]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - block/blk-core.c
nbd: fix 64-bit division
[mirror_ubuntu-zesty-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
320ae51f 19#include <linux/blk-mq.h>
1da177e4
LT
20#include <linux/highmem.h>
21#include <linux/mm.h>
22#include <linux/kernel_stat.h>
23#include <linux/string.h>
24#include <linux/init.h>
1da177e4
LT
25#include <linux/completion.h>
26#include <linux/slab.h>
27#include <linux/swap.h>
28#include <linux/writeback.h>
faccbd4b 29#include <linux/task_io_accounting_ops.h>
c17bb495 30#include <linux/fault-inject.h>
73c10101 31#include <linux/list_sort.h>
e3c78ca5 32#include <linux/delay.h>
aaf7c680 33#include <linux/ratelimit.h>
6c954667 34#include <linux/pm_runtime.h>
eea8f41c 35#include <linux/blk-cgroup.h>
55782138
LZ
36
37#define CREATE_TRACE_POINTS
38#include <trace/events/block.h>
1da177e4 39
8324aa91 40#include "blk.h"
43a5e4e2 41#include "blk-mq.h"
87760e5e 42#include "blk-wbt.h"
8324aa91 43
d07335e5 44EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 45EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 46EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
3291fa57 47EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
cbae8d45 48EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
0bfc2455 49
a73f730d
TH
50DEFINE_IDA(blk_queue_ida);
51
1da177e4
LT
52/*
53 * For the allocated request tables
54 */
d674d414 55struct kmem_cache *request_cachep;
1da177e4
LT
56
57/*
58 * For queue allocation
59 */
6728cb0e 60struct kmem_cache *blk_requestq_cachep;
1da177e4 61
1da177e4
LT
62/*
63 * Controlling structure to kblockd
64 */
ff856bad 65static struct workqueue_struct *kblockd_workqueue;
1da177e4 66
d40f75a0
TH
67static void blk_clear_congested(struct request_list *rl, int sync)
68{
d40f75a0
TH
69#ifdef CONFIG_CGROUP_WRITEBACK
70 clear_wb_congested(rl->blkg->wb_congested, sync);
71#else
482cf79c
TH
72 /*
73 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
74 * flip its congestion state for events on other blkcgs.
75 */
76 if (rl == &rl->q->root_rl)
77 clear_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
d40f75a0
TH
78#endif
79}
80
81static void blk_set_congested(struct request_list *rl, int sync)
82{
d40f75a0
TH
83#ifdef CONFIG_CGROUP_WRITEBACK
84 set_wb_congested(rl->blkg->wb_congested, sync);
85#else
482cf79c
TH
86 /* see blk_clear_congested() */
87 if (rl == &rl->q->root_rl)
88 set_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
d40f75a0
TH
89#endif
90}
91
8324aa91 92void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
93{
94 int nr;
95
96 nr = q->nr_requests - (q->nr_requests / 8) + 1;
97 if (nr > q->nr_requests)
98 nr = q->nr_requests;
99 q->nr_congestion_on = nr;
100
101 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
102 if (nr < 1)
103 nr = 1;
104 q->nr_congestion_off = nr;
105}
106
1da177e4
LT
107/**
108 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
109 * @bdev: device
110 *
111 * Locates the passed device's request queue and returns the address of its
ff9ea323
TH
112 * backing_dev_info. This function can only be called if @bdev is opened
113 * and the return value is never NULL.
1da177e4
LT
114 */
115struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
116{
165125e1 117 struct request_queue *q = bdev_get_queue(bdev);
1da177e4 118
ff9ea323 119 return &q->backing_dev_info;
1da177e4 120}
1da177e4
LT
121EXPORT_SYMBOL(blk_get_backing_dev_info);
122
2a4aa30c 123void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 124{
1afb20f3
FT
125 memset(rq, 0, sizeof(*rq));
126
1da177e4 127 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 128 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 129 rq->cpu = -1;
63a71386 130 rq->q = q;
a2dec7b3 131 rq->__sector = (sector_t) -1;
2e662b65
JA
132 INIT_HLIST_NODE(&rq->hash);
133 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 134 rq->cmd = rq->__cmd;
e2494e1b 135 rq->cmd_len = BLK_MAX_CDB;
63a71386 136 rq->tag = -1;
b243ddcb 137 rq->start_time = jiffies;
9195291e 138 set_start_time_ns(rq);
09e099d4 139 rq->part = NULL;
1da177e4 140}
2a4aa30c 141EXPORT_SYMBOL(blk_rq_init);
1da177e4 142
5bb23a68
N
143static void req_bio_endio(struct request *rq, struct bio *bio,
144 unsigned int nbytes, int error)
1da177e4 145{
78d8e58a 146 if (error)
4246a0b6 147 bio->bi_error = error;
797e7dbb 148
e8064021 149 if (unlikely(rq->rq_flags & RQF_QUIET))
b7c44ed9 150 bio_set_flag(bio, BIO_QUIET);
08bafc03 151
f79ea416 152 bio_advance(bio, nbytes);
7ba1ba12 153
143a87f4 154 /* don't actually finish bio if it's part of flush sequence */
e8064021 155 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
4246a0b6 156 bio_endio(bio);
1da177e4 157}
1da177e4 158
1da177e4
LT
159void blk_dump_rq_flags(struct request *rq, char *msg)
160{
161 int bit;
162
5953316d 163 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
4aff5e23 164 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
5953316d 165 (unsigned long long) rq->cmd_flags);
1da177e4 166
83096ebf
TH
167 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
168 (unsigned long long)blk_rq_pos(rq),
169 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
b4f42e28
JA
170 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
171 rq->bio, rq->biotail, blk_rq_bytes(rq));
1da177e4 172
33659ebb 173 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
6728cb0e 174 printk(KERN_INFO " cdb: ");
d34c87e4 175 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
176 printk("%02x ", rq->cmd[bit]);
177 printk("\n");
178 }
179}
1da177e4
LT
180EXPORT_SYMBOL(blk_dump_rq_flags);
181
3cca6dc1 182static void blk_delay_work(struct work_struct *work)
1da177e4 183{
3cca6dc1 184 struct request_queue *q;
1da177e4 185
3cca6dc1
JA
186 q = container_of(work, struct request_queue, delay_work.work);
187 spin_lock_irq(q->queue_lock);
24ecfbe2 188 __blk_run_queue(q);
3cca6dc1 189 spin_unlock_irq(q->queue_lock);
1da177e4 190}
1da177e4
LT
191
192/**
3cca6dc1
JA
193 * blk_delay_queue - restart queueing after defined interval
194 * @q: The &struct request_queue in question
195 * @msecs: Delay in msecs
1da177e4
LT
196 *
197 * Description:
3cca6dc1
JA
198 * Sometimes queueing needs to be postponed for a little while, to allow
199 * resources to come back. This function will make sure that queueing is
70460571 200 * restarted around the specified time. Queue lock must be held.
3cca6dc1
JA
201 */
202void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 203{
70460571
BVA
204 if (likely(!blk_queue_dead(q)))
205 queue_delayed_work(kblockd_workqueue, &q->delay_work,
206 msecs_to_jiffies(msecs));
2ad8b1ef 207}
3cca6dc1 208EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 209
21491412
JA
210/**
211 * blk_start_queue_async - asynchronously restart a previously stopped queue
212 * @q: The &struct request_queue in question
213 *
214 * Description:
215 * blk_start_queue_async() will clear the stop flag on the queue, and
216 * ensure that the request_fn for the queue is run from an async
217 * context.
218 **/
219void blk_start_queue_async(struct request_queue *q)
220{
221 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
222 blk_run_queue_async(q);
223}
224EXPORT_SYMBOL(blk_start_queue_async);
225
1da177e4
LT
226/**
227 * blk_start_queue - restart a previously stopped queue
165125e1 228 * @q: The &struct request_queue in question
1da177e4
LT
229 *
230 * Description:
231 * blk_start_queue() will clear the stop flag on the queue, and call
232 * the request_fn for the queue if it was in a stopped state when
233 * entered. Also see blk_stop_queue(). Queue lock must be held.
234 **/
165125e1 235void blk_start_queue(struct request_queue *q)
1da177e4 236{
a038e253
PBG
237 WARN_ON(!irqs_disabled());
238
75ad23bc 239 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 240 __blk_run_queue(q);
1da177e4 241}
1da177e4
LT
242EXPORT_SYMBOL(blk_start_queue);
243
244/**
245 * blk_stop_queue - stop a queue
165125e1 246 * @q: The &struct request_queue in question
1da177e4
LT
247 *
248 * Description:
249 * The Linux block layer assumes that a block driver will consume all
250 * entries on the request queue when the request_fn strategy is called.
251 * Often this will not happen, because of hardware limitations (queue
252 * depth settings). If a device driver gets a 'queue full' response,
253 * or if it simply chooses not to queue more I/O at one point, it can
254 * call this function to prevent the request_fn from being called until
255 * the driver has signalled it's ready to go again. This happens by calling
256 * blk_start_queue() to restart queue operations. Queue lock must be held.
257 **/
165125e1 258void blk_stop_queue(struct request_queue *q)
1da177e4 259{
136b5721 260 cancel_delayed_work(&q->delay_work);
75ad23bc 261 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
262}
263EXPORT_SYMBOL(blk_stop_queue);
264
265/**
266 * blk_sync_queue - cancel any pending callbacks on a queue
267 * @q: the queue
268 *
269 * Description:
270 * The block layer may perform asynchronous callback activity
271 * on a queue, such as calling the unplug function after a timeout.
272 * A block device may call blk_sync_queue to ensure that any
273 * such activity is cancelled, thus allowing it to release resources
59c51591 274 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
275 * that its ->make_request_fn will not re-add plugging prior to calling
276 * this function.
277 *
da527770 278 * This function does not cancel any asynchronous activity arising
da3dae54 279 * out of elevator or throttling code. That would require elevator_exit()
5efd6113 280 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 281 *
1da177e4
LT
282 */
283void blk_sync_queue(struct request_queue *q)
284{
70ed28b9 285 del_timer_sync(&q->timeout);
f04c1fe7
ML
286
287 if (q->mq_ops) {
288 struct blk_mq_hw_ctx *hctx;
289 int i;
290
70f4db63 291 queue_for_each_hw_ctx(q, hctx, i) {
27489a3c 292 cancel_work_sync(&hctx->run_work);
70f4db63
CH
293 cancel_delayed_work_sync(&hctx->delay_work);
294 }
f04c1fe7
ML
295 } else {
296 cancel_delayed_work_sync(&q->delay_work);
297 }
1da177e4
LT
298}
299EXPORT_SYMBOL(blk_sync_queue);
300
c246e80d
BVA
301/**
302 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
303 * @q: The queue to run
304 *
305 * Description:
306 * Invoke request handling on a queue if there are any pending requests.
307 * May be used to restart request handling after a request has completed.
308 * This variant runs the queue whether or not the queue has been
309 * stopped. Must be called with the queue lock held and interrupts
310 * disabled. See also @blk_run_queue.
311 */
312inline void __blk_run_queue_uncond(struct request_queue *q)
313{
314 if (unlikely(blk_queue_dead(q)))
315 return;
316
24faf6f6
BVA
317 /*
318 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
319 * the queue lock internally. As a result multiple threads may be
320 * running such a request function concurrently. Keep track of the
321 * number of active request_fn invocations such that blk_drain_queue()
322 * can wait until all these request_fn calls have finished.
323 */
324 q->request_fn_active++;
c246e80d 325 q->request_fn(q);
24faf6f6 326 q->request_fn_active--;
c246e80d 327}
a7928c15 328EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
c246e80d 329
1da177e4 330/**
80a4b58e 331 * __blk_run_queue - run a single device queue
1da177e4 332 * @q: The queue to run
80a4b58e
JA
333 *
334 * Description:
335 * See @blk_run_queue. This variant must be called with the queue lock
24ecfbe2 336 * held and interrupts disabled.
1da177e4 337 */
24ecfbe2 338void __blk_run_queue(struct request_queue *q)
1da177e4 339{
a538cd03
TH
340 if (unlikely(blk_queue_stopped(q)))
341 return;
342
c246e80d 343 __blk_run_queue_uncond(q);
75ad23bc
NP
344}
345EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 346
24ecfbe2
CH
347/**
348 * blk_run_queue_async - run a single device queue in workqueue context
349 * @q: The queue to run
350 *
351 * Description:
352 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
70460571 353 * of us. The caller must hold the queue lock.
24ecfbe2
CH
354 */
355void blk_run_queue_async(struct request_queue *q)
356{
70460571 357 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
e7c2f967 358 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
24ecfbe2 359}
c21e6beb 360EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 361
75ad23bc
NP
362/**
363 * blk_run_queue - run a single device queue
364 * @q: The queue to run
80a4b58e
JA
365 *
366 * Description:
367 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 368 * May be used to restart queueing when a request has completed.
75ad23bc
NP
369 */
370void blk_run_queue(struct request_queue *q)
371{
372 unsigned long flags;
373
374 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 375 __blk_run_queue(q);
1da177e4
LT
376 spin_unlock_irqrestore(q->queue_lock, flags);
377}
378EXPORT_SYMBOL(blk_run_queue);
379
165125e1 380void blk_put_queue(struct request_queue *q)
483f4afc
AV
381{
382 kobject_put(&q->kobj);
383}
d86e0e83 384EXPORT_SYMBOL(blk_put_queue);
483f4afc 385
e3c78ca5 386/**
807592a4 387 * __blk_drain_queue - drain requests from request_queue
e3c78ca5 388 * @q: queue to drain
c9a929dd 389 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 390 *
c9a929dd
TH
391 * Drain requests from @q. If @drain_all is set, all requests are drained.
392 * If not, only ELVPRIV requests are drained. The caller is responsible
393 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 394 */
807592a4
BVA
395static void __blk_drain_queue(struct request_queue *q, bool drain_all)
396 __releases(q->queue_lock)
397 __acquires(q->queue_lock)
e3c78ca5 398{
458f27a9
AH
399 int i;
400
807592a4
BVA
401 lockdep_assert_held(q->queue_lock);
402
e3c78ca5 403 while (true) {
481a7d64 404 bool drain = false;
e3c78ca5 405
b855b04a
TH
406 /*
407 * The caller might be trying to drain @q before its
408 * elevator is initialized.
409 */
410 if (q->elevator)
411 elv_drain_elevator(q);
412
5efd6113 413 blkcg_drain_queue(q);
e3c78ca5 414
4eabc941
TH
415 /*
416 * This function might be called on a queue which failed
b855b04a
TH
417 * driver init after queue creation or is not yet fully
418 * active yet. Some drivers (e.g. fd and loop) get unhappy
419 * in such cases. Kick queue iff dispatch queue has
420 * something on it and @q has request_fn set.
4eabc941 421 */
b855b04a 422 if (!list_empty(&q->queue_head) && q->request_fn)
4eabc941 423 __blk_run_queue(q);
c9a929dd 424
8a5ecdd4 425 drain |= q->nr_rqs_elvpriv;
24faf6f6 426 drain |= q->request_fn_active;
481a7d64
TH
427
428 /*
429 * Unfortunately, requests are queued at and tracked from
430 * multiple places and there's no single counter which can
431 * be drained. Check all the queues and counters.
432 */
433 if (drain_all) {
e97c293c 434 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
481a7d64
TH
435 drain |= !list_empty(&q->queue_head);
436 for (i = 0; i < 2; i++) {
8a5ecdd4 437 drain |= q->nr_rqs[i];
481a7d64 438 drain |= q->in_flight[i];
7c94e1c1
ML
439 if (fq)
440 drain |= !list_empty(&fq->flush_queue[i]);
481a7d64
TH
441 }
442 }
e3c78ca5 443
481a7d64 444 if (!drain)
e3c78ca5 445 break;
807592a4
BVA
446
447 spin_unlock_irq(q->queue_lock);
448
e3c78ca5 449 msleep(10);
807592a4
BVA
450
451 spin_lock_irq(q->queue_lock);
e3c78ca5 452 }
458f27a9
AH
453
454 /*
455 * With queue marked dead, any woken up waiter will fail the
456 * allocation path, so the wakeup chaining is lost and we're
457 * left with hung waiters. We need to wake up those waiters.
458 */
459 if (q->request_fn) {
a051661c
TH
460 struct request_list *rl;
461
a051661c
TH
462 blk_queue_for_each_rl(rl, q)
463 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
464 wake_up_all(&rl->wait[i]);
458f27a9 465 }
e3c78ca5
TH
466}
467
d732580b
TH
468/**
469 * blk_queue_bypass_start - enter queue bypass mode
470 * @q: queue of interest
471 *
472 * In bypass mode, only the dispatch FIFO queue of @q is used. This
473 * function makes @q enter bypass mode and drains all requests which were
6ecf23af 474 * throttled or issued before. On return, it's guaranteed that no request
80fd9979
TH
475 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
476 * inside queue or RCU read lock.
d732580b
TH
477 */
478void blk_queue_bypass_start(struct request_queue *q)
479{
480 spin_lock_irq(q->queue_lock);
776687bc 481 q->bypass_depth++;
d732580b
TH
482 queue_flag_set(QUEUE_FLAG_BYPASS, q);
483 spin_unlock_irq(q->queue_lock);
484
776687bc
TH
485 /*
486 * Queues start drained. Skip actual draining till init is
487 * complete. This avoids lenghty delays during queue init which
488 * can happen many times during boot.
489 */
490 if (blk_queue_init_done(q)) {
807592a4
BVA
491 spin_lock_irq(q->queue_lock);
492 __blk_drain_queue(q, false);
493 spin_unlock_irq(q->queue_lock);
494
b82d4b19
TH
495 /* ensure blk_queue_bypass() is %true inside RCU read lock */
496 synchronize_rcu();
497 }
d732580b
TH
498}
499EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
500
501/**
502 * blk_queue_bypass_end - leave queue bypass mode
503 * @q: queue of interest
504 *
505 * Leave bypass mode and restore the normal queueing behavior.
506 */
507void blk_queue_bypass_end(struct request_queue *q)
508{
509 spin_lock_irq(q->queue_lock);
510 if (!--q->bypass_depth)
511 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
512 WARN_ON_ONCE(q->bypass_depth < 0);
513 spin_unlock_irq(q->queue_lock);
514}
515EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
516
aed3ea94
JA
517void blk_set_queue_dying(struct request_queue *q)
518{
1b856086
BVA
519 spin_lock_irq(q->queue_lock);
520 queue_flag_set(QUEUE_FLAG_DYING, q);
521 spin_unlock_irq(q->queue_lock);
aed3ea94
JA
522
523 if (q->mq_ops)
524 blk_mq_wake_waiters(q);
525 else {
526 struct request_list *rl;
527
528 blk_queue_for_each_rl(rl, q) {
529 if (rl->rq_pool) {
530 wake_up(&rl->wait[BLK_RW_SYNC]);
531 wake_up(&rl->wait[BLK_RW_ASYNC]);
532 }
533 }
534 }
535}
536EXPORT_SYMBOL_GPL(blk_set_queue_dying);
537
c9a929dd
TH
538/**
539 * blk_cleanup_queue - shutdown a request queue
540 * @q: request queue to shutdown
541 *
c246e80d
BVA
542 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
543 * put it. All future requests will be failed immediately with -ENODEV.
c94a96ac 544 */
6728cb0e 545void blk_cleanup_queue(struct request_queue *q)
483f4afc 546{
c9a929dd 547 spinlock_t *lock = q->queue_lock;
e3335de9 548
3f3299d5 549 /* mark @q DYING, no new request or merges will be allowed afterwards */
483f4afc 550 mutex_lock(&q->sysfs_lock);
aed3ea94 551 blk_set_queue_dying(q);
c9a929dd 552 spin_lock_irq(lock);
6ecf23af 553
80fd9979 554 /*
3f3299d5 555 * A dying queue is permanently in bypass mode till released. Note
80fd9979
TH
556 * that, unlike blk_queue_bypass_start(), we aren't performing
557 * synchronize_rcu() after entering bypass mode to avoid the delay
558 * as some drivers create and destroy a lot of queues while
559 * probing. This is still safe because blk_release_queue() will be
560 * called only after the queue refcnt drops to zero and nothing,
561 * RCU or not, would be traversing the queue by then.
562 */
6ecf23af
TH
563 q->bypass_depth++;
564 queue_flag_set(QUEUE_FLAG_BYPASS, q);
565
c9a929dd
TH
566 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
567 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
3f3299d5 568 queue_flag_set(QUEUE_FLAG_DYING, q);
c9a929dd
TH
569 spin_unlock_irq(lock);
570 mutex_unlock(&q->sysfs_lock);
571
c246e80d
BVA
572 /*
573 * Drain all requests queued before DYING marking. Set DEAD flag to
574 * prevent that q->request_fn() gets invoked after draining finished.
575 */
3ef28e83
DW
576 blk_freeze_queue(q);
577 spin_lock_irq(lock);
578 if (!q->mq_ops)
43a5e4e2 579 __blk_drain_queue(q, true);
c246e80d 580 queue_flag_set(QUEUE_FLAG_DEAD, q);
807592a4 581 spin_unlock_irq(lock);
c9a929dd 582
5a48fc14
DW
583 /* for synchronous bio-based driver finish in-flight integrity i/o */
584 blk_flush_integrity();
585
c9a929dd
TH
586 /* @q won't process any more request, flush async actions */
587 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
588 blk_sync_queue(q);
589
45a9c9d9
BVA
590 if (q->mq_ops)
591 blk_mq_free_queue(q);
3ef28e83 592 percpu_ref_exit(&q->q_usage_counter);
45a9c9d9 593
5e5cfac0
AH
594 spin_lock_irq(lock);
595 if (q->queue_lock != &q->__queue_lock)
596 q->queue_lock = &q->__queue_lock;
597 spin_unlock_irq(lock);
598
b02176f3 599 bdi_unregister(&q->backing_dev_info);
6cd18e71 600
c9a929dd 601 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
602 blk_put_queue(q);
603}
1da177e4
LT
604EXPORT_SYMBOL(blk_cleanup_queue);
605
271508db
DR
606/* Allocate memory local to the request queue */
607static void *alloc_request_struct(gfp_t gfp_mask, void *data)
608{
609 int nid = (int)(long)data;
610 return kmem_cache_alloc_node(request_cachep, gfp_mask, nid);
611}
612
613static void free_request_struct(void *element, void *unused)
614{
615 kmem_cache_free(request_cachep, element);
616}
617
5b788ce3
TH
618int blk_init_rl(struct request_list *rl, struct request_queue *q,
619 gfp_t gfp_mask)
1da177e4 620{
1abec4fd
MS
621 if (unlikely(rl->rq_pool))
622 return 0;
623
5b788ce3 624 rl->q = q;
1faa16d2
JA
625 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
626 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
1faa16d2
JA
627 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
628 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 629
271508db
DR
630 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct,
631 free_request_struct,
632 (void *)(long)q->node, gfp_mask,
633 q->node);
1da177e4
LT
634 if (!rl->rq_pool)
635 return -ENOMEM;
636
637 return 0;
638}
639
5b788ce3
TH
640void blk_exit_rl(struct request_list *rl)
641{
642 if (rl->rq_pool)
643 mempool_destroy(rl->rq_pool);
644}
645
165125e1 646struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 647{
c304a51b 648 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
1946089a
CL
649}
650EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 651
6f3b0e8b 652int blk_queue_enter(struct request_queue *q, bool nowait)
3ef28e83
DW
653{
654 while (true) {
655 int ret;
656
657 if (percpu_ref_tryget_live(&q->q_usage_counter))
658 return 0;
659
6f3b0e8b 660 if (nowait)
3ef28e83
DW
661 return -EBUSY;
662
663 ret = wait_event_interruptible(q->mq_freeze_wq,
664 !atomic_read(&q->mq_freeze_depth) ||
665 blk_queue_dying(q));
666 if (blk_queue_dying(q))
667 return -ENODEV;
668 if (ret)
669 return ret;
670 }
671}
672
673void blk_queue_exit(struct request_queue *q)
674{
675 percpu_ref_put(&q->q_usage_counter);
676}
677
678static void blk_queue_usage_counter_release(struct percpu_ref *ref)
679{
680 struct request_queue *q =
681 container_of(ref, struct request_queue, q_usage_counter);
682
683 wake_up_all(&q->mq_freeze_wq);
684}
685
287922eb
CH
686static void blk_rq_timed_out_timer(unsigned long data)
687{
688 struct request_queue *q = (struct request_queue *)data;
689
690 kblockd_schedule_work(&q->timeout_work);
691}
692
165125e1 693struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 694{
165125e1 695 struct request_queue *q;
e0bf68dd 696 int err;
1946089a 697
8324aa91 698 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 699 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
700 if (!q)
701 return NULL;
702
00380a40 703 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
a73f730d 704 if (q->id < 0)
3d2936f4 705 goto fail_q;
a73f730d 706
54efd50b
KO
707 q->bio_split = bioset_create(BIO_POOL_SIZE, 0);
708 if (!q->bio_split)
709 goto fail_id;
710
0989a025 711 q->backing_dev_info.ra_pages =
09cbfeaf 712 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
89e9b9e0 713 q->backing_dev_info.capabilities = BDI_CAP_CGROUP_WRITEBACK;
d993831f 714 q->backing_dev_info.name = "block";
5151412d 715 q->node = node_id;
0989a025 716
e0bf68dd 717 err = bdi_init(&q->backing_dev_info);
a73f730d 718 if (err)
54efd50b 719 goto fail_split;
e0bf68dd 720
31373d09
MG
721 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
722 laptop_mode_timer_fn, (unsigned long) q);
242f9dcb 723 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
b855b04a 724 INIT_LIST_HEAD(&q->queue_head);
242f9dcb 725 INIT_LIST_HEAD(&q->timeout_list);
a612fddf 726 INIT_LIST_HEAD(&q->icq_list);
4eef3049 727#ifdef CONFIG_BLK_CGROUP
e8989fae 728 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 729#endif
3cca6dc1 730 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 731
8324aa91 732 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 733
483f4afc 734 mutex_init(&q->sysfs_lock);
e7e72bf6 735 spin_lock_init(&q->__queue_lock);
483f4afc 736
c94a96ac
VG
737 /*
738 * By default initialize queue_lock to internal lock and driver can
739 * override it later if need be.
740 */
741 q->queue_lock = &q->__queue_lock;
742
b82d4b19
TH
743 /*
744 * A queue starts its life with bypass turned on to avoid
745 * unnecessary bypass on/off overhead and nasty surprises during
749fefe6
TH
746 * init. The initial bypass will be finished when the queue is
747 * registered by blk_register_queue().
b82d4b19
TH
748 */
749 q->bypass_depth = 1;
750 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
751
320ae51f
JA
752 init_waitqueue_head(&q->mq_freeze_wq);
753
3ef28e83
DW
754 /*
755 * Init percpu_ref in atomic mode so that it's faster to shutdown.
756 * See blk_register_queue() for details.
757 */
758 if (percpu_ref_init(&q->q_usage_counter,
759 blk_queue_usage_counter_release,
760 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
fff4996b 761 goto fail_bdi;
f51b802c 762
3ef28e83
DW
763 if (blkcg_init_queue(q))
764 goto fail_ref;
765
1da177e4 766 return q;
a73f730d 767
3ef28e83
DW
768fail_ref:
769 percpu_ref_exit(&q->q_usage_counter);
fff4996b
MP
770fail_bdi:
771 bdi_destroy(&q->backing_dev_info);
54efd50b
KO
772fail_split:
773 bioset_free(q->bio_split);
a73f730d
TH
774fail_id:
775 ida_simple_remove(&blk_queue_ida, q->id);
776fail_q:
777 kmem_cache_free(blk_requestq_cachep, q);
778 return NULL;
1da177e4 779}
1946089a 780EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
781
782/**
783 * blk_init_queue - prepare a request queue for use with a block device
784 * @rfn: The function to be called to process requests that have been
785 * placed on the queue.
786 * @lock: Request queue spin lock
787 *
788 * Description:
789 * If a block device wishes to use the standard request handling procedures,
790 * which sorts requests and coalesces adjacent requests, then it must
791 * call blk_init_queue(). The function @rfn will be called when there
792 * are requests on the queue that need to be processed. If the device
793 * supports plugging, then @rfn may not be called immediately when requests
794 * are available on the queue, but may be called at some time later instead.
795 * Plugged queues are generally unplugged when a buffer belonging to one
796 * of the requests on the queue is needed, or due to memory pressure.
797 *
798 * @rfn is not required, or even expected, to remove all requests off the
799 * queue, but only as many as it can handle at a time. If it does leave
800 * requests on the queue, it is responsible for arranging that the requests
801 * get dealt with eventually.
802 *
803 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
804 * request queue; this lock will be taken also from interrupt context, so irq
805 * disabling is needed for it.
1da177e4 806 *
710027a4 807 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
808 * it didn't succeed.
809 *
810 * Note:
811 * blk_init_queue() must be paired with a blk_cleanup_queue() call
812 * when the block device is deactivated (such as at module unload).
813 **/
1946089a 814
165125e1 815struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 816{
c304a51b 817 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1946089a
CL
818}
819EXPORT_SYMBOL(blk_init_queue);
820
165125e1 821struct request_queue *
1946089a
CL
822blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
823{
c86d1b8a 824 struct request_queue *uninit_q, *q;
1da177e4 825
c86d1b8a
MS
826 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
827 if (!uninit_q)
828 return NULL;
829
5151412d 830 q = blk_init_allocated_queue(uninit_q, rfn, lock);
c86d1b8a 831 if (!q)
7982e90c 832 blk_cleanup_queue(uninit_q);
18741986 833
7982e90c 834 return q;
01effb0d
MS
835}
836EXPORT_SYMBOL(blk_init_queue_node);
837
dece1635 838static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
336b7e1f 839
01effb0d
MS
840struct request_queue *
841blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
842 spinlock_t *lock)
01effb0d 843{
1da177e4
LT
844 if (!q)
845 return NULL;
846
f70ced09 847 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0);
ba483388 848 if (!q->fq)
7982e90c
MS
849 return NULL;
850
a051661c 851 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
708f04d2 852 goto fail;
1da177e4 853
287922eb 854 INIT_WORK(&q->timeout_work, blk_timeout_work);
1da177e4 855 q->request_fn = rfn;
1da177e4 856 q->prep_rq_fn = NULL;
28018c24 857 q->unprep_rq_fn = NULL;
60ea8226 858 q->queue_flags |= QUEUE_FLAG_DEFAULT;
c94a96ac
VG
859
860 /* Override internal queue lock with supplied lock pointer */
861 if (lock)
862 q->queue_lock = lock;
1da177e4 863
f3b144aa
JA
864 /*
865 * This also sets hw/phys segments, boundary and size
866 */
c20e8de2 867 blk_queue_make_request(q, blk_queue_bio);
1da177e4 868
44ec9542
AS
869 q->sg_reserved_size = INT_MAX;
870
eb1c160b
TS
871 /* Protect q->elevator from elevator_change */
872 mutex_lock(&q->sysfs_lock);
873
b82d4b19 874 /* init elevator */
eb1c160b
TS
875 if (elevator_init(q, NULL)) {
876 mutex_unlock(&q->sysfs_lock);
708f04d2 877 goto fail;
eb1c160b
TS
878 }
879
880 mutex_unlock(&q->sysfs_lock);
881
b82d4b19 882 return q;
708f04d2
DJ
883
884fail:
ba483388 885 blk_free_flush_queue(q->fq);
87760e5e 886 wbt_exit(q);
708f04d2 887 return NULL;
1da177e4 888}
5151412d 889EXPORT_SYMBOL(blk_init_allocated_queue);
1da177e4 890
09ac46c4 891bool blk_get_queue(struct request_queue *q)
1da177e4 892{
3f3299d5 893 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
894 __blk_get_queue(q);
895 return true;
1da177e4
LT
896 }
897
09ac46c4 898 return false;
1da177e4 899}
d86e0e83 900EXPORT_SYMBOL(blk_get_queue);
1da177e4 901
5b788ce3 902static inline void blk_free_request(struct request_list *rl, struct request *rq)
1da177e4 903{
e8064021 904 if (rq->rq_flags & RQF_ELVPRIV) {
5b788ce3 905 elv_put_request(rl->q, rq);
f1f8cc94 906 if (rq->elv.icq)
11a3122f 907 put_io_context(rq->elv.icq->ioc);
f1f8cc94
TH
908 }
909
5b788ce3 910 mempool_free(rq, rl->rq_pool);
1da177e4
LT
911}
912
1da177e4
LT
913/*
914 * ioc_batching returns true if the ioc is a valid batching request and
915 * should be given priority access to a request.
916 */
165125e1 917static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
918{
919 if (!ioc)
920 return 0;
921
922 /*
923 * Make sure the process is able to allocate at least 1 request
924 * even if the batch times out, otherwise we could theoretically
925 * lose wakeups.
926 */
927 return ioc->nr_batch_requests == q->nr_batching ||
928 (ioc->nr_batch_requests > 0
929 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
930}
931
932/*
933 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
934 * will cause the process to be a "batcher" on all queues in the system. This
935 * is the behaviour we want though - once it gets a wakeup it should be given
936 * a nice run.
937 */
165125e1 938static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
939{
940 if (!ioc || ioc_batching(q, ioc))
941 return;
942
943 ioc->nr_batch_requests = q->nr_batching;
944 ioc->last_waited = jiffies;
945}
946
5b788ce3 947static void __freed_request(struct request_list *rl, int sync)
1da177e4 948{
5b788ce3 949 struct request_queue *q = rl->q;
1da177e4 950
d40f75a0
TH
951 if (rl->count[sync] < queue_congestion_off_threshold(q))
952 blk_clear_congested(rl, sync);
1da177e4 953
1faa16d2
JA
954 if (rl->count[sync] + 1 <= q->nr_requests) {
955 if (waitqueue_active(&rl->wait[sync]))
956 wake_up(&rl->wait[sync]);
1da177e4 957
5b788ce3 958 blk_clear_rl_full(rl, sync);
1da177e4
LT
959 }
960}
961
962/*
963 * A request has just been released. Account for it, update the full and
964 * congestion status, wake up any waiters. Called under q->queue_lock.
965 */
e8064021
CH
966static void freed_request(struct request_list *rl, bool sync,
967 req_flags_t rq_flags)
1da177e4 968{
5b788ce3 969 struct request_queue *q = rl->q;
1da177e4 970
8a5ecdd4 971 q->nr_rqs[sync]--;
1faa16d2 972 rl->count[sync]--;
e8064021 973 if (rq_flags & RQF_ELVPRIV)
8a5ecdd4 974 q->nr_rqs_elvpriv--;
1da177e4 975
5b788ce3 976 __freed_request(rl, sync);
1da177e4 977
1faa16d2 978 if (unlikely(rl->starved[sync ^ 1]))
5b788ce3 979 __freed_request(rl, sync ^ 1);
1da177e4
LT
980}
981
e3a2b3f9
JA
982int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
983{
984 struct request_list *rl;
d40f75a0 985 int on_thresh, off_thresh;
e3a2b3f9
JA
986
987 spin_lock_irq(q->queue_lock);
988 q->nr_requests = nr;
989 blk_queue_congestion_threshold(q);
d40f75a0
TH
990 on_thresh = queue_congestion_on_threshold(q);
991 off_thresh = queue_congestion_off_threshold(q);
e3a2b3f9 992
d40f75a0
TH
993 blk_queue_for_each_rl(rl, q) {
994 if (rl->count[BLK_RW_SYNC] >= on_thresh)
995 blk_set_congested(rl, BLK_RW_SYNC);
996 else if (rl->count[BLK_RW_SYNC] < off_thresh)
997 blk_clear_congested(rl, BLK_RW_SYNC);
e3a2b3f9 998
d40f75a0
TH
999 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1000 blk_set_congested(rl, BLK_RW_ASYNC);
1001 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1002 blk_clear_congested(rl, BLK_RW_ASYNC);
e3a2b3f9 1003
e3a2b3f9
JA
1004 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1005 blk_set_rl_full(rl, BLK_RW_SYNC);
1006 } else {
1007 blk_clear_rl_full(rl, BLK_RW_SYNC);
1008 wake_up(&rl->wait[BLK_RW_SYNC]);
1009 }
1010
1011 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1012 blk_set_rl_full(rl, BLK_RW_ASYNC);
1013 } else {
1014 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1015 wake_up(&rl->wait[BLK_RW_ASYNC]);
1016 }
1017 }
1018
1019 spin_unlock_irq(q->queue_lock);
1020 return 0;
1021}
1022
9d5a4e94
MS
1023/*
1024 * Determine if elevator data should be initialized when allocating the
1025 * request associated with @bio.
1026 */
1027static bool blk_rq_should_init_elevator(struct bio *bio)
1028{
1029 if (!bio)
1030 return true;
1031
1032 /*
1033 * Flush requests do not use the elevator so skip initialization.
1034 * This allows a request to share the flush and elevator data.
1035 */
1eff9d32 1036 if (bio->bi_opf & (REQ_PREFLUSH | REQ_FUA))
9d5a4e94
MS
1037 return false;
1038
1039 return true;
1040}
1041
852c788f
TH
1042/**
1043 * rq_ioc - determine io_context for request allocation
1044 * @bio: request being allocated is for this bio (can be %NULL)
1045 *
1046 * Determine io_context to use for request allocation for @bio. May return
1047 * %NULL if %current->io_context doesn't exist.
1048 */
1049static struct io_context *rq_ioc(struct bio *bio)
1050{
1051#ifdef CONFIG_BLK_CGROUP
1052 if (bio && bio->bi_ioc)
1053 return bio->bi_ioc;
1054#endif
1055 return current->io_context;
1056}
1057
da8303c6 1058/**
a06e05e6 1059 * __get_request - get a free request
5b788ce3 1060 * @rl: request list to allocate from
ef295ecf 1061 * @op: operation and flags
da8303c6
TH
1062 * @bio: bio to allocate request for (can be %NULL)
1063 * @gfp_mask: allocation mask
1064 *
1065 * Get a free request from @q. This function may fail under memory
1066 * pressure or if @q is dead.
1067 *
da3dae54 1068 * Must be called with @q->queue_lock held and,
a492f075
JL
1069 * Returns ERR_PTR on failure, with @q->queue_lock held.
1070 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1071 */
ef295ecf
CH
1072static struct request *__get_request(struct request_list *rl, unsigned int op,
1073 struct bio *bio, gfp_t gfp_mask)
1da177e4 1074{
5b788ce3 1075 struct request_queue *q = rl->q;
b679281a 1076 struct request *rq;
7f4b35d1
TH
1077 struct elevator_type *et = q->elevator->type;
1078 struct io_context *ioc = rq_ioc(bio);
f1f8cc94 1079 struct io_cq *icq = NULL;
ef295ecf 1080 const bool is_sync = op_is_sync(op);
75eb6c37 1081 int may_queue;
e8064021 1082 req_flags_t rq_flags = RQF_ALLOCED;
88ee5ef1 1083
3f3299d5 1084 if (unlikely(blk_queue_dying(q)))
a492f075 1085 return ERR_PTR(-ENODEV);
da8303c6 1086
ef295ecf 1087 may_queue = elv_may_queue(q, op);
88ee5ef1
JA
1088 if (may_queue == ELV_MQUEUE_NO)
1089 goto rq_starved;
1090
1faa16d2
JA
1091 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1092 if (rl->count[is_sync]+1 >= q->nr_requests) {
88ee5ef1
JA
1093 /*
1094 * The queue will fill after this allocation, so set
1095 * it as full, and mark this process as "batching".
1096 * This process will be allowed to complete a batch of
1097 * requests, others will be blocked.
1098 */
5b788ce3 1099 if (!blk_rl_full(rl, is_sync)) {
88ee5ef1 1100 ioc_set_batching(q, ioc);
5b788ce3 1101 blk_set_rl_full(rl, is_sync);
88ee5ef1
JA
1102 } else {
1103 if (may_queue != ELV_MQUEUE_MUST
1104 && !ioc_batching(q, ioc)) {
1105 /*
1106 * The queue is full and the allocating
1107 * process is not a "batcher", and not
1108 * exempted by the IO scheduler
1109 */
a492f075 1110 return ERR_PTR(-ENOMEM);
88ee5ef1
JA
1111 }
1112 }
1da177e4 1113 }
d40f75a0 1114 blk_set_congested(rl, is_sync);
1da177e4
LT
1115 }
1116
082cf69e
JA
1117 /*
1118 * Only allow batching queuers to allocate up to 50% over the defined
1119 * limit of requests, otherwise we could have thousands of requests
1120 * allocated with any setting of ->nr_requests
1121 */
1faa16d2 1122 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
a492f075 1123 return ERR_PTR(-ENOMEM);
fd782a4a 1124
8a5ecdd4 1125 q->nr_rqs[is_sync]++;
1faa16d2
JA
1126 rl->count[is_sync]++;
1127 rl->starved[is_sync] = 0;
cb98fc8b 1128
f1f8cc94
TH
1129 /*
1130 * Decide whether the new request will be managed by elevator. If
e8064021 1131 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
f1f8cc94
TH
1132 * prevent the current elevator from being destroyed until the new
1133 * request is freed. This guarantees icq's won't be destroyed and
1134 * makes creating new ones safe.
1135 *
1136 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1137 * it will be created after releasing queue_lock.
1138 */
d732580b 1139 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
e8064021 1140 rq_flags |= RQF_ELVPRIV;
8a5ecdd4 1141 q->nr_rqs_elvpriv++;
f1f8cc94
TH
1142 if (et->icq_cache && ioc)
1143 icq = ioc_lookup_icq(ioc, q);
9d5a4e94 1144 }
cb98fc8b 1145
f253b86b 1146 if (blk_queue_io_stat(q))
e8064021 1147 rq_flags |= RQF_IO_STAT;
1da177e4
LT
1148 spin_unlock_irq(q->queue_lock);
1149
29e2b09a 1150 /* allocate and init request */
5b788ce3 1151 rq = mempool_alloc(rl->rq_pool, gfp_mask);
29e2b09a 1152 if (!rq)
b679281a 1153 goto fail_alloc;
1da177e4 1154
29e2b09a 1155 blk_rq_init(q, rq);
a051661c 1156 blk_rq_set_rl(rq, rl);
ef295ecf 1157 rq->cmd_flags = op;
e8064021 1158 rq->rq_flags = rq_flags;
29e2b09a 1159
aaf7c680 1160 /* init elvpriv */
e8064021 1161 if (rq_flags & RQF_ELVPRIV) {
aaf7c680 1162 if (unlikely(et->icq_cache && !icq)) {
7f4b35d1
TH
1163 if (ioc)
1164 icq = ioc_create_icq(ioc, q, gfp_mask);
aaf7c680
TH
1165 if (!icq)
1166 goto fail_elvpriv;
29e2b09a 1167 }
aaf7c680
TH
1168
1169 rq->elv.icq = icq;
1170 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1171 goto fail_elvpriv;
1172
1173 /* @rq->elv.icq holds io_context until @rq is freed */
29e2b09a
TH
1174 if (icq)
1175 get_io_context(icq->ioc);
1176 }
aaf7c680 1177out:
88ee5ef1
JA
1178 /*
1179 * ioc may be NULL here, and ioc_batching will be false. That's
1180 * OK, if the queue is under the request limit then requests need
1181 * not count toward the nr_batch_requests limit. There will always
1182 * be some limit enforced by BLK_BATCH_TIME.
1183 */
1da177e4
LT
1184 if (ioc_batching(q, ioc))
1185 ioc->nr_batch_requests--;
6728cb0e 1186
e6a40b09 1187 trace_block_getrq(q, bio, op);
1da177e4 1188 return rq;
b679281a 1189
aaf7c680
TH
1190fail_elvpriv:
1191 /*
1192 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1193 * and may fail indefinitely under memory pressure and thus
1194 * shouldn't stall IO. Treat this request as !elvpriv. This will
1195 * disturb iosched and blkcg but weird is bettern than dead.
1196 */
7b2b10e0
RE
1197 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1198 __func__, dev_name(q->backing_dev_info.dev));
aaf7c680 1199
e8064021 1200 rq->rq_flags &= ~RQF_ELVPRIV;
aaf7c680
TH
1201 rq->elv.icq = NULL;
1202
1203 spin_lock_irq(q->queue_lock);
8a5ecdd4 1204 q->nr_rqs_elvpriv--;
aaf7c680
TH
1205 spin_unlock_irq(q->queue_lock);
1206 goto out;
1207
b679281a
TH
1208fail_alloc:
1209 /*
1210 * Allocation failed presumably due to memory. Undo anything we
1211 * might have messed up.
1212 *
1213 * Allocating task should really be put onto the front of the wait
1214 * queue, but this is pretty rare.
1215 */
1216 spin_lock_irq(q->queue_lock);
e8064021 1217 freed_request(rl, is_sync, rq_flags);
b679281a
TH
1218
1219 /*
1220 * in the very unlikely event that allocation failed and no
1221 * requests for this direction was pending, mark us starved so that
1222 * freeing of a request in the other direction will notice
1223 * us. another possible fix would be to split the rq mempool into
1224 * READ and WRITE
1225 */
1226rq_starved:
1227 if (unlikely(rl->count[is_sync] == 0))
1228 rl->starved[is_sync] = 1;
a492f075 1229 return ERR_PTR(-ENOMEM);
1da177e4
LT
1230}
1231
da8303c6 1232/**
a06e05e6 1233 * get_request - get a free request
da8303c6 1234 * @q: request_queue to allocate request from
ef295ecf 1235 * @op: operation and flags
da8303c6 1236 * @bio: bio to allocate request for (can be %NULL)
a06e05e6 1237 * @gfp_mask: allocation mask
da8303c6 1238 *
d0164adc
MG
1239 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1240 * this function keeps retrying under memory pressure and fails iff @q is dead.
d6344532 1241 *
da3dae54 1242 * Must be called with @q->queue_lock held and,
a492f075
JL
1243 * Returns ERR_PTR on failure, with @q->queue_lock held.
1244 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1245 */
ef295ecf
CH
1246static struct request *get_request(struct request_queue *q, unsigned int op,
1247 struct bio *bio, gfp_t gfp_mask)
1da177e4 1248{
ef295ecf 1249 const bool is_sync = op_is_sync(op);
a06e05e6 1250 DEFINE_WAIT(wait);
a051661c 1251 struct request_list *rl;
1da177e4 1252 struct request *rq;
a051661c
TH
1253
1254 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
a06e05e6 1255retry:
ef295ecf 1256 rq = __get_request(rl, op, bio, gfp_mask);
a492f075 1257 if (!IS_ERR(rq))
a06e05e6 1258 return rq;
1da177e4 1259
d0164adc 1260 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
a051661c 1261 blk_put_rl(rl);
a492f075 1262 return rq;
a051661c 1263 }
1da177e4 1264
a06e05e6
TH
1265 /* wait on @rl and retry */
1266 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1267 TASK_UNINTERRUPTIBLE);
1da177e4 1268
e6a40b09 1269 trace_block_sleeprq(q, bio, op);
1da177e4 1270
a06e05e6
TH
1271 spin_unlock_irq(q->queue_lock);
1272 io_schedule();
d6344532 1273
a06e05e6
TH
1274 /*
1275 * After sleeping, we become a "batching" process and will be able
1276 * to allocate at least one request, and up to a big batch of them
1277 * for a small period time. See ioc_batching, ioc_set_batching
1278 */
a06e05e6 1279 ioc_set_batching(q, current->io_context);
05caf8db 1280
a06e05e6
TH
1281 spin_lock_irq(q->queue_lock);
1282 finish_wait(&rl->wait[is_sync], &wait);
1da177e4 1283
a06e05e6 1284 goto retry;
1da177e4
LT
1285}
1286
320ae51f
JA
1287static struct request *blk_old_get_request(struct request_queue *q, int rw,
1288 gfp_t gfp_mask)
1da177e4
LT
1289{
1290 struct request *rq;
1291
1292 BUG_ON(rw != READ && rw != WRITE);
1293
7f4b35d1
TH
1294 /* create ioc upfront */
1295 create_io_context(gfp_mask, q->node);
1296
d6344532 1297 spin_lock_irq(q->queue_lock);
ef295ecf 1298 rq = get_request(q, rw, NULL, gfp_mask);
0c4de0f3 1299 if (IS_ERR(rq)) {
da8303c6 1300 spin_unlock_irq(q->queue_lock);
0c4de0f3
CH
1301 return rq;
1302 }
1da177e4 1303
0c4de0f3
CH
1304 /* q->queue_lock is unlocked at this point */
1305 rq->__data_len = 0;
1306 rq->__sector = (sector_t) -1;
1307 rq->bio = rq->biotail = NULL;
1da177e4
LT
1308 return rq;
1309}
320ae51f
JA
1310
1311struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1312{
1313 if (q->mq_ops)
6f3b0e8b
CH
1314 return blk_mq_alloc_request(q, rw,
1315 (gfp_mask & __GFP_DIRECT_RECLAIM) ?
1316 0 : BLK_MQ_REQ_NOWAIT);
320ae51f
JA
1317 else
1318 return blk_old_get_request(q, rw, gfp_mask);
1319}
1da177e4
LT
1320EXPORT_SYMBOL(blk_get_request);
1321
f27b087b 1322/**
da3dae54 1323 * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
f27b087b
JA
1324 * @rq: request to be initialized
1325 *
1326 */
1327void blk_rq_set_block_pc(struct request *rq)
1328{
1329 rq->cmd_type = REQ_TYPE_BLOCK_PC;
f27b087b 1330 memset(rq->__cmd, 0, sizeof(rq->__cmd));
f27b087b
JA
1331}
1332EXPORT_SYMBOL(blk_rq_set_block_pc);
1333
1da177e4
LT
1334/**
1335 * blk_requeue_request - put a request back on queue
1336 * @q: request queue where request should be inserted
1337 * @rq: request to be inserted
1338 *
1339 * Description:
1340 * Drivers often keep queueing requests until the hardware cannot accept
1341 * more, when that condition happens we need to put the request back
1342 * on the queue. Must be called with queue lock held.
1343 */
165125e1 1344void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1345{
242f9dcb
JA
1346 blk_delete_timer(rq);
1347 blk_clear_rq_complete(rq);
5f3ea37c 1348 trace_block_rq_requeue(q, rq);
87760e5e 1349 wbt_requeue(q->rq_wb, &rq->issue_stat);
2056a782 1350
e8064021 1351 if (rq->rq_flags & RQF_QUEUED)
1da177e4
LT
1352 blk_queue_end_tag(q, rq);
1353
ba396a6c
JB
1354 BUG_ON(blk_queued_rq(rq));
1355
1da177e4
LT
1356 elv_requeue_request(q, rq);
1357}
1da177e4
LT
1358EXPORT_SYMBOL(blk_requeue_request);
1359
73c10101
JA
1360static void add_acct_request(struct request_queue *q, struct request *rq,
1361 int where)
1362{
320ae51f 1363 blk_account_io_start(rq, true);
7eaceacc 1364 __elv_add_request(q, rq, where);
73c10101
JA
1365}
1366
074a7aca
TH
1367static void part_round_stats_single(int cpu, struct hd_struct *part,
1368 unsigned long now)
1369{
7276d02e
JA
1370 int inflight;
1371
074a7aca
TH
1372 if (now == part->stamp)
1373 return;
1374
7276d02e
JA
1375 inflight = part_in_flight(part);
1376 if (inflight) {
074a7aca 1377 __part_stat_add(cpu, part, time_in_queue,
7276d02e 1378 inflight * (now - part->stamp));
074a7aca
TH
1379 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1380 }
1381 part->stamp = now;
1382}
1383
1384/**
496aa8a9
RD
1385 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1386 * @cpu: cpu number for stats access
1387 * @part: target partition
1da177e4
LT
1388 *
1389 * The average IO queue length and utilisation statistics are maintained
1390 * by observing the current state of the queue length and the amount of
1391 * time it has been in this state for.
1392 *
1393 * Normally, that accounting is done on IO completion, but that can result
1394 * in more than a second's worth of IO being accounted for within any one
1395 * second, leading to >100% utilisation. To deal with that, we call this
1396 * function to do a round-off before returning the results when reading
1397 * /proc/diskstats. This accounts immediately for all queue usage up to
1398 * the current jiffies and restarts the counters again.
1399 */
c9959059 1400void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1401{
1402 unsigned long now = jiffies;
1403
074a7aca
TH
1404 if (part->partno)
1405 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1406 part_round_stats_single(cpu, part, now);
6f2576af 1407}
074a7aca 1408EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1409
47fafbc7 1410#ifdef CONFIG_PM
c8158819
LM
1411static void blk_pm_put_request(struct request *rq)
1412{
e8064021 1413 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
c8158819
LM
1414 pm_runtime_mark_last_busy(rq->q->dev);
1415}
1416#else
1417static inline void blk_pm_put_request(struct request *rq) {}
1418#endif
1419
1da177e4
LT
1420/*
1421 * queue lock must be held
1422 */
165125e1 1423void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1424{
e8064021
CH
1425 req_flags_t rq_flags = req->rq_flags;
1426
1da177e4
LT
1427 if (unlikely(!q))
1428 return;
1da177e4 1429
6f5ba581
CH
1430 if (q->mq_ops) {
1431 blk_mq_free_request(req);
1432 return;
1433 }
1434
c8158819
LM
1435 blk_pm_put_request(req);
1436
8922e16c
TH
1437 elv_completed_request(q, req);
1438
1cd96c24
BH
1439 /* this is a bio leak */
1440 WARN_ON(req->bio != NULL);
1441
87760e5e
JA
1442 wbt_done(q->rq_wb, &req->issue_stat);
1443
1da177e4
LT
1444 /*
1445 * Request may not have originated from ll_rw_blk. if not,
1446 * it didn't come out of our reserved rq pools
1447 */
e8064021 1448 if (rq_flags & RQF_ALLOCED) {
a051661c 1449 struct request_list *rl = blk_rq_rl(req);
ef295ecf 1450 bool sync = op_is_sync(req->cmd_flags);
1da177e4 1451
1da177e4 1452 BUG_ON(!list_empty(&req->queuelist));
360f92c2 1453 BUG_ON(ELV_ON_HASH(req));
1da177e4 1454
a051661c 1455 blk_free_request(rl, req);
e8064021 1456 freed_request(rl, sync, rq_flags);
a051661c 1457 blk_put_rl(rl);
1da177e4
LT
1458 }
1459}
6e39b69e
MC
1460EXPORT_SYMBOL_GPL(__blk_put_request);
1461
1da177e4
LT
1462void blk_put_request(struct request *req)
1463{
165125e1 1464 struct request_queue *q = req->q;
8922e16c 1465
320ae51f
JA
1466 if (q->mq_ops)
1467 blk_mq_free_request(req);
1468 else {
1469 unsigned long flags;
1470
1471 spin_lock_irqsave(q->queue_lock, flags);
1472 __blk_put_request(q, req);
1473 spin_unlock_irqrestore(q->queue_lock, flags);
1474 }
1da177e4 1475}
1da177e4
LT
1476EXPORT_SYMBOL(blk_put_request);
1477
66ac0280
CH
1478/**
1479 * blk_add_request_payload - add a payload to a request
1480 * @rq: request to update
1481 * @page: page backing the payload
37e58237 1482 * @offset: offset in page
66ac0280
CH
1483 * @len: length of the payload.
1484 *
1485 * This allows to later add a payload to an already submitted request by
1486 * a block driver. The driver needs to take care of freeing the payload
1487 * itself.
1488 *
1489 * Note that this is a quite horrible hack and nothing but handling of
1490 * discard requests should ever use it.
1491 */
1492void blk_add_request_payload(struct request *rq, struct page *page,
37e58237 1493 int offset, unsigned int len)
66ac0280
CH
1494{
1495 struct bio *bio = rq->bio;
1496
1497 bio->bi_io_vec->bv_page = page;
37e58237 1498 bio->bi_io_vec->bv_offset = offset;
66ac0280
CH
1499 bio->bi_io_vec->bv_len = len;
1500
4f024f37 1501 bio->bi_iter.bi_size = len;
66ac0280
CH
1502 bio->bi_vcnt = 1;
1503 bio->bi_phys_segments = 1;
1504
1505 rq->__data_len = rq->resid_len = len;
1506 rq->nr_phys_segments = 1;
66ac0280
CH
1507}
1508EXPORT_SYMBOL_GPL(blk_add_request_payload);
1509
320ae51f
JA
1510bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1511 struct bio *bio)
73c10101 1512{
1eff9d32 1513 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 1514
73c10101
JA
1515 if (!ll_back_merge_fn(q, req, bio))
1516 return false;
1517
8c1cf6bb 1518 trace_block_bio_backmerge(q, req, bio);
73c10101
JA
1519
1520 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1521 blk_rq_set_mixed_merge(req);
1522
1523 req->biotail->bi_next = bio;
1524 req->biotail = bio;
4f024f37 1525 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1526 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1527
320ae51f 1528 blk_account_io_start(req, false);
73c10101
JA
1529 return true;
1530}
1531
320ae51f
JA
1532bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1533 struct bio *bio)
73c10101 1534{
1eff9d32 1535 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 1536
73c10101
JA
1537 if (!ll_front_merge_fn(q, req, bio))
1538 return false;
1539
8c1cf6bb 1540 trace_block_bio_frontmerge(q, req, bio);
73c10101
JA
1541
1542 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1543 blk_rq_set_mixed_merge(req);
1544
73c10101
JA
1545 bio->bi_next = req->bio;
1546 req->bio = bio;
1547
4f024f37
KO
1548 req->__sector = bio->bi_iter.bi_sector;
1549 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1550 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1551
320ae51f 1552 blk_account_io_start(req, false);
73c10101
JA
1553 return true;
1554}
1555
bd87b589 1556/**
320ae51f 1557 * blk_attempt_plug_merge - try to merge with %current's plugged list
bd87b589
TH
1558 * @q: request_queue new bio is being queued at
1559 * @bio: new bio being queued
1560 * @request_count: out parameter for number of traversed plugged requests
ccc2600b
RD
1561 * @same_queue_rq: pointer to &struct request that gets filled in when
1562 * another request associated with @q is found on the plug list
1563 * (optional, may be %NULL)
bd87b589
TH
1564 *
1565 * Determine whether @bio being queued on @q can be merged with a request
1566 * on %current's plugged list. Returns %true if merge was successful,
1567 * otherwise %false.
1568 *
07c2bd37
TH
1569 * Plugging coalesces IOs from the same issuer for the same purpose without
1570 * going through @q->queue_lock. As such it's more of an issuing mechanism
1571 * than scheduling, and the request, while may have elvpriv data, is not
1572 * added on the elevator at this point. In addition, we don't have
1573 * reliable access to the elevator outside queue lock. Only check basic
1574 * merging parameters without querying the elevator.
da41a589
RE
1575 *
1576 * Caller must ensure !blk_queue_nomerges(q) beforehand.
73c10101 1577 */
320ae51f 1578bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
5b3f341f
SL
1579 unsigned int *request_count,
1580 struct request **same_queue_rq)
73c10101
JA
1581{
1582 struct blk_plug *plug;
1583 struct request *rq;
1584 bool ret = false;
92f399c7 1585 struct list_head *plug_list;
73c10101 1586
bd87b589 1587 plug = current->plug;
73c10101
JA
1588 if (!plug)
1589 goto out;
56ebdaf2 1590 *request_count = 0;
73c10101 1591
92f399c7
SL
1592 if (q->mq_ops)
1593 plug_list = &plug->mq_list;
1594 else
1595 plug_list = &plug->list;
1596
1597 list_for_each_entry_reverse(rq, plug_list, queuelist) {
73c10101
JA
1598 int el_ret;
1599
5b3f341f 1600 if (rq->q == q) {
1b2e19f1 1601 (*request_count)++;
5b3f341f
SL
1602 /*
1603 * Only blk-mq multiple hardware queues case checks the
1604 * rq in the same queue, there should be only one such
1605 * rq in a queue
1606 **/
1607 if (same_queue_rq)
1608 *same_queue_rq = rq;
1609 }
56ebdaf2 1610
07c2bd37 1611 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
1612 continue;
1613
050c8ea8 1614 el_ret = blk_try_merge(rq, bio);
73c10101
JA
1615 if (el_ret == ELEVATOR_BACK_MERGE) {
1616 ret = bio_attempt_back_merge(q, rq, bio);
1617 if (ret)
1618 break;
1619 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1620 ret = bio_attempt_front_merge(q, rq, bio);
1621 if (ret)
1622 break;
1623 }
1624 }
1625out:
1626 return ret;
1627}
1628
0809e3ac
JM
1629unsigned int blk_plug_queued_count(struct request_queue *q)
1630{
1631 struct blk_plug *plug;
1632 struct request *rq;
1633 struct list_head *plug_list;
1634 unsigned int ret = 0;
1635
1636 plug = current->plug;
1637 if (!plug)
1638 goto out;
1639
1640 if (q->mq_ops)
1641 plug_list = &plug->mq_list;
1642 else
1643 plug_list = &plug->list;
1644
1645 list_for_each_entry(rq, plug_list, queuelist) {
1646 if (rq->q == q)
1647 ret++;
1648 }
1649out:
1650 return ret;
1651}
1652
86db1e29 1653void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1654{
4aff5e23 1655 req->cmd_type = REQ_TYPE_FS;
1eff9d32 1656 if (bio->bi_opf & REQ_RAHEAD)
a82afdfc 1657 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1658
52d9e675 1659 req->errors = 0;
4f024f37 1660 req->__sector = bio->bi_iter.bi_sector;
52d9e675 1661 req->ioprio = bio_prio(bio);
bc1c56fd 1662 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1663}
1664
dece1635 1665static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1666{
73c10101 1667 struct blk_plug *plug;
ef295ecf 1668 int el_ret, where = ELEVATOR_INSERT_SORT;
73c10101 1669 struct request *req;
56ebdaf2 1670 unsigned int request_count = 0;
87760e5e 1671 unsigned int wb_acct;
1da177e4 1672
1da177e4
LT
1673 /*
1674 * low level driver can indicate that it wants pages above a
1675 * certain limit bounced to low memory (ie for highmem, or even
1676 * ISA dma in theory)
1677 */
1678 blk_queue_bounce(q, &bio);
1679
23688bf4
JN
1680 blk_queue_split(q, &bio, q->bio_split);
1681
ffecfd1a 1682 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
4246a0b6
CH
1683 bio->bi_error = -EIO;
1684 bio_endio(bio);
dece1635 1685 return BLK_QC_T_NONE;
ffecfd1a
DW
1686 }
1687
1eff9d32 1688 if (bio->bi_opf & (REQ_PREFLUSH | REQ_FUA)) {
73c10101 1689 spin_lock_irq(q->queue_lock);
ae1b1539 1690 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1691 goto get_rq;
1692 }
1693
73c10101
JA
1694 /*
1695 * Check if we can merge with the plugged list before grabbing
1696 * any locks.
1697 */
0809e3ac
JM
1698 if (!blk_queue_nomerges(q)) {
1699 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
dece1635 1700 return BLK_QC_T_NONE;
0809e3ac
JM
1701 } else
1702 request_count = blk_plug_queued_count(q);
1da177e4 1703
73c10101 1704 spin_lock_irq(q->queue_lock);
2056a782 1705
73c10101
JA
1706 el_ret = elv_merge(q, &req, bio);
1707 if (el_ret == ELEVATOR_BACK_MERGE) {
73c10101 1708 if (bio_attempt_back_merge(q, req, bio)) {
07c2bd37 1709 elv_bio_merged(q, req, bio);
73c10101
JA
1710 if (!attempt_back_merge(q, req))
1711 elv_merged_request(q, req, el_ret);
1712 goto out_unlock;
1713 }
1714 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
73c10101 1715 if (bio_attempt_front_merge(q, req, bio)) {
07c2bd37 1716 elv_bio_merged(q, req, bio);
73c10101
JA
1717 if (!attempt_front_merge(q, req))
1718 elv_merged_request(q, req, el_ret);
1719 goto out_unlock;
80a761fd 1720 }
1da177e4
LT
1721 }
1722
450991bc 1723get_rq:
87760e5e
JA
1724 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1725
1da177e4 1726 /*
450991bc 1727 * Grab a free request. This is might sleep but can not fail.
d6344532 1728 * Returns with the queue unlocked.
450991bc 1729 */
ef295ecf 1730 req = get_request(q, bio->bi_opf, bio, GFP_NOIO);
a492f075 1731 if (IS_ERR(req)) {
87760e5e 1732 __wbt_done(q->rq_wb, wb_acct);
4246a0b6
CH
1733 bio->bi_error = PTR_ERR(req);
1734 bio_endio(bio);
da8303c6
TH
1735 goto out_unlock;
1736 }
d6344532 1737
87760e5e
JA
1738 wbt_track(&req->issue_stat, wb_acct);
1739
450991bc
NP
1740 /*
1741 * After dropping the lock and possibly sleeping here, our request
1742 * may now be mergeable after it had proven unmergeable (above).
1743 * We don't worry about that case for efficiency. It won't happen
1744 * often, and the elevators are able to handle it.
1da177e4 1745 */
52d9e675 1746 init_request_from_bio(req, bio);
1da177e4 1747
9562ad9a 1748 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 1749 req->cpu = raw_smp_processor_id();
73c10101
JA
1750
1751 plug = current->plug;
721a9602 1752 if (plug) {
dc6d36c9
JA
1753 /*
1754 * If this is the first request added after a plug, fire
7aef2e78 1755 * of a plug trace.
0a6219a9
ML
1756 *
1757 * @request_count may become stale because of schedule
1758 * out, so check plug list again.
dc6d36c9 1759 */
0a6219a9 1760 if (!request_count || list_empty(&plug->list))
dc6d36c9 1761 trace_block_plug(q);
3540d5e8 1762 else {
50d24c34
SL
1763 struct request *last = list_entry_rq(plug->list.prev);
1764 if (request_count >= BLK_MAX_REQUEST_COUNT ||
1765 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
3540d5e8 1766 blk_flush_plug_list(plug, false);
019ceb7d
SL
1767 trace_block_plug(q);
1768 }
73c10101 1769 }
73c10101 1770 list_add_tail(&req->queuelist, &plug->list);
320ae51f 1771 blk_account_io_start(req, true);
73c10101
JA
1772 } else {
1773 spin_lock_irq(q->queue_lock);
1774 add_acct_request(q, req, where);
24ecfbe2 1775 __blk_run_queue(q);
73c10101
JA
1776out_unlock:
1777 spin_unlock_irq(q->queue_lock);
1778 }
dece1635
JA
1779
1780 return BLK_QC_T_NONE;
1da177e4
LT
1781}
1782
1783/*
1784 * If bio->bi_dev is a partition, remap the location
1785 */
1786static inline void blk_partition_remap(struct bio *bio)
1787{
1788 struct block_device *bdev = bio->bi_bdev;
1789
778889d8
ST
1790 /*
1791 * Zone reset does not include bi_size so bio_sectors() is always 0.
1792 * Include a test for the reset op code and perform the remap if needed.
1793 */
1794 if (bdev != bdev->bd_contains &&
1795 (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET)) {
1da177e4
LT
1796 struct hd_struct *p = bdev->bd_part;
1797
4f024f37 1798 bio->bi_iter.bi_sector += p->start_sect;
1da177e4 1799 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1800
d07335e5
MS
1801 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1802 bdev->bd_dev,
4f024f37 1803 bio->bi_iter.bi_sector - p->start_sect);
1da177e4
LT
1804 }
1805}
1806
1da177e4
LT
1807static void handle_bad_sector(struct bio *bio)
1808{
1809 char b[BDEVNAME_SIZE];
1810
1811 printk(KERN_INFO "attempt to access beyond end of device\n");
6296b960 1812 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
1da177e4 1813 bdevname(bio->bi_bdev, b),
1eff9d32 1814 bio->bi_opf,
f73a1c7d 1815 (unsigned long long)bio_end_sector(bio),
77304d2a 1816 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1da177e4
LT
1817}
1818
c17bb495
AM
1819#ifdef CONFIG_FAIL_MAKE_REQUEST
1820
1821static DECLARE_FAULT_ATTR(fail_make_request);
1822
1823static int __init setup_fail_make_request(char *str)
1824{
1825 return setup_fault_attr(&fail_make_request, str);
1826}
1827__setup("fail_make_request=", setup_fail_make_request);
1828
b2c9cd37 1829static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 1830{
b2c9cd37 1831 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
1832}
1833
1834static int __init fail_make_request_debugfs(void)
1835{
dd48c085
AM
1836 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1837 NULL, &fail_make_request);
1838
21f9fcd8 1839 return PTR_ERR_OR_ZERO(dir);
c17bb495
AM
1840}
1841
1842late_initcall(fail_make_request_debugfs);
1843
1844#else /* CONFIG_FAIL_MAKE_REQUEST */
1845
b2c9cd37
AM
1846static inline bool should_fail_request(struct hd_struct *part,
1847 unsigned int bytes)
c17bb495 1848{
b2c9cd37 1849 return false;
c17bb495
AM
1850}
1851
1852#endif /* CONFIG_FAIL_MAKE_REQUEST */
1853
c07e2b41
JA
1854/*
1855 * Check whether this bio extends beyond the end of the device.
1856 */
1857static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1858{
1859 sector_t maxsector;
1860
1861 if (!nr_sectors)
1862 return 0;
1863
1864 /* Test device or partition size, when known. */
77304d2a 1865 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
c07e2b41 1866 if (maxsector) {
4f024f37 1867 sector_t sector = bio->bi_iter.bi_sector;
c07e2b41
JA
1868
1869 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1870 /*
1871 * This may well happen - the kernel calls bread()
1872 * without checking the size of the device, e.g., when
1873 * mounting a device.
1874 */
1875 handle_bad_sector(bio);
1876 return 1;
1877 }
1878 }
1879
1880 return 0;
1881}
1882
27a84d54
CH
1883static noinline_for_stack bool
1884generic_make_request_checks(struct bio *bio)
1da177e4 1885{
165125e1 1886 struct request_queue *q;
5a7bbad2 1887 int nr_sectors = bio_sectors(bio);
51fd77bd 1888 int err = -EIO;
5a7bbad2
CH
1889 char b[BDEVNAME_SIZE];
1890 struct hd_struct *part;
1da177e4
LT
1891
1892 might_sleep();
1da177e4 1893
c07e2b41
JA
1894 if (bio_check_eod(bio, nr_sectors))
1895 goto end_io;
1da177e4 1896
5a7bbad2
CH
1897 q = bdev_get_queue(bio->bi_bdev);
1898 if (unlikely(!q)) {
1899 printk(KERN_ERR
1900 "generic_make_request: Trying to access "
1901 "nonexistent block-device %s (%Lu)\n",
1902 bdevname(bio->bi_bdev, b),
4f024f37 1903 (long long) bio->bi_iter.bi_sector);
5a7bbad2
CH
1904 goto end_io;
1905 }
c17bb495 1906
5a7bbad2 1907 part = bio->bi_bdev->bd_part;
4f024f37 1908 if (should_fail_request(part, bio->bi_iter.bi_size) ||
5a7bbad2 1909 should_fail_request(&part_to_disk(part)->part0,
4f024f37 1910 bio->bi_iter.bi_size))
5a7bbad2 1911 goto end_io;
2056a782 1912
5a7bbad2
CH
1913 /*
1914 * If this device has partitions, remap block n
1915 * of partition p to block n+start(p) of the disk.
1916 */
1917 blk_partition_remap(bio);
2056a782 1918
5a7bbad2
CH
1919 if (bio_check_eod(bio, nr_sectors))
1920 goto end_io;
1e87901e 1921
5a7bbad2
CH
1922 /*
1923 * Filter flush bio's early so that make_request based
1924 * drivers without flush support don't have to worry
1925 * about them.
1926 */
1eff9d32 1927 if ((bio->bi_opf & (REQ_PREFLUSH | REQ_FUA)) &&
c888a8f9 1928 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1eff9d32 1929 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
5a7bbad2
CH
1930 if (!nr_sectors) {
1931 err = 0;
51fd77bd
JA
1932 goto end_io;
1933 }
5a7bbad2 1934 }
5ddfe969 1935
288dab8a
CH
1936 switch (bio_op(bio)) {
1937 case REQ_OP_DISCARD:
1938 if (!blk_queue_discard(q))
1939 goto not_supported;
1940 break;
1941 case REQ_OP_SECURE_ERASE:
1942 if (!blk_queue_secure_erase(q))
1943 goto not_supported;
1944 break;
1945 case REQ_OP_WRITE_SAME:
1946 if (!bdev_write_same(bio->bi_bdev))
1947 goto not_supported;
2d253440
ST
1948 case REQ_OP_ZONE_REPORT:
1949 case REQ_OP_ZONE_RESET:
1950 if (!bdev_is_zoned(bio->bi_bdev))
1951 goto not_supported;
288dab8a 1952 break;
a6f0788e
CK
1953 case REQ_OP_WRITE_ZEROES:
1954 if (!bdev_write_zeroes_sectors(bio->bi_bdev))
1955 goto not_supported;
1956 break;
288dab8a
CH
1957 default:
1958 break;
5a7bbad2 1959 }
01edede4 1960
7f4b35d1
TH
1961 /*
1962 * Various block parts want %current->io_context and lazy ioc
1963 * allocation ends up trading a lot of pain for a small amount of
1964 * memory. Just allocate it upfront. This may fail and block
1965 * layer knows how to live with it.
1966 */
1967 create_io_context(GFP_ATOMIC, q->node);
1968
ae118896
TH
1969 if (!blkcg_bio_issue_check(q, bio))
1970 return false;
27a84d54 1971
5a7bbad2 1972 trace_block_bio_queue(q, bio);
27a84d54 1973 return true;
a7384677 1974
288dab8a
CH
1975not_supported:
1976 err = -EOPNOTSUPP;
a7384677 1977end_io:
4246a0b6
CH
1978 bio->bi_error = err;
1979 bio_endio(bio);
27a84d54 1980 return false;
1da177e4
LT
1981}
1982
27a84d54
CH
1983/**
1984 * generic_make_request - hand a buffer to its device driver for I/O
1985 * @bio: The bio describing the location in memory and on the device.
1986 *
1987 * generic_make_request() is used to make I/O requests of block
1988 * devices. It is passed a &struct bio, which describes the I/O that needs
1989 * to be done.
1990 *
1991 * generic_make_request() does not return any status. The
1992 * success/failure status of the request, along with notification of
1993 * completion, is delivered asynchronously through the bio->bi_end_io
1994 * function described (one day) else where.
1995 *
1996 * The caller of generic_make_request must make sure that bi_io_vec
1997 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1998 * set to describe the device address, and the
1999 * bi_end_io and optionally bi_private are set to describe how
2000 * completion notification should be signaled.
2001 *
2002 * generic_make_request and the drivers it calls may use bi_next if this
2003 * bio happens to be merged with someone else, and may resubmit the bio to
2004 * a lower device by calling into generic_make_request recursively, which
2005 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796 2006 */
dece1635 2007blk_qc_t generic_make_request(struct bio *bio)
d89d8796 2008{
bddd87c7 2009 struct bio_list bio_list_on_stack;
dece1635 2010 blk_qc_t ret = BLK_QC_T_NONE;
bddd87c7 2011
27a84d54 2012 if (!generic_make_request_checks(bio))
dece1635 2013 goto out;
27a84d54
CH
2014
2015 /*
2016 * We only want one ->make_request_fn to be active at a time, else
2017 * stack usage with stacked devices could be a problem. So use
2018 * current->bio_list to keep a list of requests submited by a
2019 * make_request_fn function. current->bio_list is also used as a
2020 * flag to say if generic_make_request is currently active in this
2021 * task or not. If it is NULL, then no make_request is active. If
2022 * it is non-NULL, then a make_request is active, and new requests
2023 * should be added at the tail
2024 */
bddd87c7 2025 if (current->bio_list) {
bddd87c7 2026 bio_list_add(current->bio_list, bio);
dece1635 2027 goto out;
d89d8796 2028 }
27a84d54 2029
d89d8796
NB
2030 /* following loop may be a bit non-obvious, and so deserves some
2031 * explanation.
2032 * Before entering the loop, bio->bi_next is NULL (as all callers
2033 * ensure that) so we have a list with a single bio.
2034 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
2035 * we assign bio_list to a pointer to the bio_list_on_stack,
2036 * thus initialising the bio_list of new bios to be
27a84d54 2037 * added. ->make_request() may indeed add some more bios
d89d8796
NB
2038 * through a recursive call to generic_make_request. If it
2039 * did, we find a non-NULL value in bio_list and re-enter the loop
2040 * from the top. In this case we really did just take the bio
bddd87c7 2041 * of the top of the list (no pretending) and so remove it from
27a84d54 2042 * bio_list, and call into ->make_request() again.
d89d8796
NB
2043 */
2044 BUG_ON(bio->bi_next);
bddd87c7
AM
2045 bio_list_init(&bio_list_on_stack);
2046 current->bio_list = &bio_list_on_stack;
d89d8796 2047 do {
27a84d54
CH
2048 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2049
6f3b0e8b 2050 if (likely(blk_queue_enter(q, false) == 0)) {
dece1635 2051 ret = q->make_request_fn(q, bio);
3ef28e83
DW
2052
2053 blk_queue_exit(q);
27a84d54 2054
3ef28e83
DW
2055 bio = bio_list_pop(current->bio_list);
2056 } else {
2057 struct bio *bio_next = bio_list_pop(current->bio_list);
2058
2059 bio_io_error(bio);
2060 bio = bio_next;
2061 }
d89d8796 2062 } while (bio);
bddd87c7 2063 current->bio_list = NULL; /* deactivate */
dece1635
JA
2064
2065out:
2066 return ret;
d89d8796 2067}
1da177e4
LT
2068EXPORT_SYMBOL(generic_make_request);
2069
2070/**
710027a4 2071 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
2072 * @bio: The &struct bio which describes the I/O
2073 *
2074 * submit_bio() is very similar in purpose to generic_make_request(), and
2075 * uses that function to do most of the work. Both are fairly rough
710027a4 2076 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
2077 *
2078 */
4e49ea4a 2079blk_qc_t submit_bio(struct bio *bio)
1da177e4 2080{
bf2de6f5
JA
2081 /*
2082 * If it's a regular read/write or a barrier with data attached,
2083 * go through the normal accounting stuff before submission.
2084 */
e2a60da7 2085 if (bio_has_data(bio)) {
4363ac7c
MP
2086 unsigned int count;
2087
95fe6c1a 2088 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
4363ac7c
MP
2089 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2090 else
2091 count = bio_sectors(bio);
2092
a8ebb056 2093 if (op_is_write(bio_op(bio))) {
bf2de6f5
JA
2094 count_vm_events(PGPGOUT, count);
2095 } else {
4f024f37 2096 task_io_account_read(bio->bi_iter.bi_size);
bf2de6f5
JA
2097 count_vm_events(PGPGIN, count);
2098 }
2099
2100 if (unlikely(block_dump)) {
2101 char b[BDEVNAME_SIZE];
8dcbdc74 2102 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 2103 current->comm, task_pid_nr(current),
a8ebb056 2104 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
4f024f37 2105 (unsigned long long)bio->bi_iter.bi_sector,
8dcbdc74
SM
2106 bdevname(bio->bi_bdev, b),
2107 count);
bf2de6f5 2108 }
1da177e4
LT
2109 }
2110
dece1635 2111 return generic_make_request(bio);
1da177e4 2112}
1da177e4
LT
2113EXPORT_SYMBOL(submit_bio);
2114
82124d60 2115/**
bf4e6b4e
HR
2116 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2117 * for new the queue limits
82124d60
KU
2118 * @q: the queue
2119 * @rq: the request being checked
2120 *
2121 * Description:
2122 * @rq may have been made based on weaker limitations of upper-level queues
2123 * in request stacking drivers, and it may violate the limitation of @q.
2124 * Since the block layer and the underlying device driver trust @rq
2125 * after it is inserted to @q, it should be checked against @q before
2126 * the insertion using this generic function.
2127 *
82124d60 2128 * Request stacking drivers like request-based dm may change the queue
bf4e6b4e
HR
2129 * limits when retrying requests on other queues. Those requests need
2130 * to be checked against the new queue limits again during dispatch.
82124d60 2131 */
bf4e6b4e
HR
2132static int blk_cloned_rq_check_limits(struct request_queue *q,
2133 struct request *rq)
82124d60 2134{
8fe0d473 2135 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
82124d60
KU
2136 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2137 return -EIO;
2138 }
2139
2140 /*
2141 * queue's settings related to segment counting like q->bounce_pfn
2142 * may differ from that of other stacking queues.
2143 * Recalculate it to check the request correctly on this queue's
2144 * limitation.
2145 */
2146 blk_recalc_rq_segments(rq);
8a78362c 2147 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
2148 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2149 return -EIO;
2150 }
2151
2152 return 0;
2153}
82124d60
KU
2154
2155/**
2156 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2157 * @q: the queue to submit the request
2158 * @rq: the request being queued
2159 */
2160int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2161{
2162 unsigned long flags;
4853abaa 2163 int where = ELEVATOR_INSERT_BACK;
82124d60 2164
bf4e6b4e 2165 if (blk_cloned_rq_check_limits(q, rq))
82124d60
KU
2166 return -EIO;
2167
b2c9cd37
AM
2168 if (rq->rq_disk &&
2169 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
82124d60 2170 return -EIO;
82124d60 2171
7fb4898e
KB
2172 if (q->mq_ops) {
2173 if (blk_queue_io_stat(q))
2174 blk_account_io_start(rq, true);
6acfe68b 2175 blk_mq_insert_request(rq, false, true, false);
7fb4898e
KB
2176 return 0;
2177 }
2178
82124d60 2179 spin_lock_irqsave(q->queue_lock, flags);
3f3299d5 2180 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
2181 spin_unlock_irqrestore(q->queue_lock, flags);
2182 return -ENODEV;
2183 }
82124d60
KU
2184
2185 /*
2186 * Submitting request must be dequeued before calling this function
2187 * because it will be linked to another request_queue
2188 */
2189 BUG_ON(blk_queued_rq(rq));
2190
28a8f0d3 2191 if (rq->cmd_flags & (REQ_PREFLUSH | REQ_FUA))
4853abaa
JM
2192 where = ELEVATOR_INSERT_FLUSH;
2193
2194 add_acct_request(q, rq, where);
e67b77c7
JM
2195 if (where == ELEVATOR_INSERT_FLUSH)
2196 __blk_run_queue(q);
82124d60
KU
2197 spin_unlock_irqrestore(q->queue_lock, flags);
2198
2199 return 0;
2200}
2201EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2202
80a761fd
TH
2203/**
2204 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2205 * @rq: request to examine
2206 *
2207 * Description:
2208 * A request could be merge of IOs which require different failure
2209 * handling. This function determines the number of bytes which
2210 * can be failed from the beginning of the request without
2211 * crossing into area which need to be retried further.
2212 *
2213 * Return:
2214 * The number of bytes to fail.
2215 *
2216 * Context:
2217 * queue_lock must be held.
2218 */
2219unsigned int blk_rq_err_bytes(const struct request *rq)
2220{
2221 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2222 unsigned int bytes = 0;
2223 struct bio *bio;
2224
e8064021 2225 if (!(rq->rq_flags & RQF_MIXED_MERGE))
80a761fd
TH
2226 return blk_rq_bytes(rq);
2227
2228 /*
2229 * Currently the only 'mixing' which can happen is between
2230 * different fastfail types. We can safely fail portions
2231 * which have all the failfast bits that the first one has -
2232 * the ones which are at least as eager to fail as the first
2233 * one.
2234 */
2235 for (bio = rq->bio; bio; bio = bio->bi_next) {
1eff9d32 2236 if ((bio->bi_opf & ff) != ff)
80a761fd 2237 break;
4f024f37 2238 bytes += bio->bi_iter.bi_size;
80a761fd
TH
2239 }
2240
2241 /* this could lead to infinite loop */
2242 BUG_ON(blk_rq_bytes(rq) && !bytes);
2243 return bytes;
2244}
2245EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2246
320ae51f 2247void blk_account_io_completion(struct request *req, unsigned int bytes)
bc58ba94 2248{
c2553b58 2249 if (blk_do_io_stat(req)) {
bc58ba94
JA
2250 const int rw = rq_data_dir(req);
2251 struct hd_struct *part;
2252 int cpu;
2253
2254 cpu = part_stat_lock();
09e099d4 2255 part = req->part;
bc58ba94
JA
2256 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2257 part_stat_unlock();
2258 }
2259}
2260
320ae51f 2261void blk_account_io_done(struct request *req)
bc58ba94 2262{
bc58ba94 2263 /*
dd4c133f
TH
2264 * Account IO completion. flush_rq isn't accounted as a
2265 * normal IO on queueing nor completion. Accounting the
2266 * containing request is enough.
bc58ba94 2267 */
e8064021 2268 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
bc58ba94
JA
2269 unsigned long duration = jiffies - req->start_time;
2270 const int rw = rq_data_dir(req);
2271 struct hd_struct *part;
2272 int cpu;
2273
2274 cpu = part_stat_lock();
09e099d4 2275 part = req->part;
bc58ba94
JA
2276
2277 part_stat_inc(cpu, part, ios[rw]);
2278 part_stat_add(cpu, part, ticks[rw], duration);
2279 part_round_stats(cpu, part);
316d315b 2280 part_dec_in_flight(part, rw);
bc58ba94 2281
6c23a968 2282 hd_struct_put(part);
bc58ba94
JA
2283 part_stat_unlock();
2284 }
2285}
2286
47fafbc7 2287#ifdef CONFIG_PM
c8158819
LM
2288/*
2289 * Don't process normal requests when queue is suspended
2290 * or in the process of suspending/resuming
2291 */
2292static struct request *blk_pm_peek_request(struct request_queue *q,
2293 struct request *rq)
2294{
2295 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
e8064021 2296 (q->rpm_status != RPM_ACTIVE && !(rq->rq_flags & RQF_PM))))
c8158819
LM
2297 return NULL;
2298 else
2299 return rq;
2300}
2301#else
2302static inline struct request *blk_pm_peek_request(struct request_queue *q,
2303 struct request *rq)
2304{
2305 return rq;
2306}
2307#endif
2308
320ae51f
JA
2309void blk_account_io_start(struct request *rq, bool new_io)
2310{
2311 struct hd_struct *part;
2312 int rw = rq_data_dir(rq);
2313 int cpu;
2314
2315 if (!blk_do_io_stat(rq))
2316 return;
2317
2318 cpu = part_stat_lock();
2319
2320 if (!new_io) {
2321 part = rq->part;
2322 part_stat_inc(cpu, part, merges[rw]);
2323 } else {
2324 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2325 if (!hd_struct_try_get(part)) {
2326 /*
2327 * The partition is already being removed,
2328 * the request will be accounted on the disk only
2329 *
2330 * We take a reference on disk->part0 although that
2331 * partition will never be deleted, so we can treat
2332 * it as any other partition.
2333 */
2334 part = &rq->rq_disk->part0;
2335 hd_struct_get(part);
2336 }
2337 part_round_stats(cpu, part);
2338 part_inc_in_flight(part, rw);
2339 rq->part = part;
2340 }
2341
2342 part_stat_unlock();
2343}
2344
3bcddeac 2345/**
9934c8c0
TH
2346 * blk_peek_request - peek at the top of a request queue
2347 * @q: request queue to peek at
2348 *
2349 * Description:
2350 * Return the request at the top of @q. The returned request
2351 * should be started using blk_start_request() before LLD starts
2352 * processing it.
2353 *
2354 * Return:
2355 * Pointer to the request at the top of @q if available. Null
2356 * otherwise.
2357 *
2358 * Context:
2359 * queue_lock must be held.
2360 */
2361struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
2362{
2363 struct request *rq;
2364 int ret;
2365
2366 while ((rq = __elv_next_request(q)) != NULL) {
c8158819
LM
2367
2368 rq = blk_pm_peek_request(q, rq);
2369 if (!rq)
2370 break;
2371
e8064021 2372 if (!(rq->rq_flags & RQF_STARTED)) {
158dbda0
TH
2373 /*
2374 * This is the first time the device driver
2375 * sees this request (possibly after
2376 * requeueing). Notify IO scheduler.
2377 */
e8064021 2378 if (rq->rq_flags & RQF_SORTED)
158dbda0
TH
2379 elv_activate_rq(q, rq);
2380
2381 /*
2382 * just mark as started even if we don't start
2383 * it, a request that has been delayed should
2384 * not be passed by new incoming requests
2385 */
e8064021 2386 rq->rq_flags |= RQF_STARTED;
158dbda0
TH
2387 trace_block_rq_issue(q, rq);
2388 }
2389
2390 if (!q->boundary_rq || q->boundary_rq == rq) {
2391 q->end_sector = rq_end_sector(rq);
2392 q->boundary_rq = NULL;
2393 }
2394
e8064021 2395 if (rq->rq_flags & RQF_DONTPREP)
158dbda0
TH
2396 break;
2397
2e46e8b2 2398 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
2399 /*
2400 * make sure space for the drain appears we
2401 * know we can do this because max_hw_segments
2402 * has been adjusted to be one fewer than the
2403 * device can handle
2404 */
2405 rq->nr_phys_segments++;
2406 }
2407
2408 if (!q->prep_rq_fn)
2409 break;
2410
2411 ret = q->prep_rq_fn(q, rq);
2412 if (ret == BLKPREP_OK) {
2413 break;
2414 } else if (ret == BLKPREP_DEFER) {
2415 /*
2416 * the request may have been (partially) prepped.
2417 * we need to keep this request in the front to
e8064021 2418 * avoid resource deadlock. RQF_STARTED will
158dbda0
TH
2419 * prevent other fs requests from passing this one.
2420 */
2e46e8b2 2421 if (q->dma_drain_size && blk_rq_bytes(rq) &&
e8064021 2422 !(rq->rq_flags & RQF_DONTPREP)) {
158dbda0
TH
2423 /*
2424 * remove the space for the drain we added
2425 * so that we don't add it again
2426 */
2427 --rq->nr_phys_segments;
2428 }
2429
2430 rq = NULL;
2431 break;
0fb5b1fb
MP
2432 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2433 int err = (ret == BLKPREP_INVALID) ? -EREMOTEIO : -EIO;
2434
e8064021 2435 rq->rq_flags |= RQF_QUIET;
c143dc90
JB
2436 /*
2437 * Mark this request as started so we don't trigger
2438 * any debug logic in the end I/O path.
2439 */
2440 blk_start_request(rq);
0fb5b1fb 2441 __blk_end_request_all(rq, err);
158dbda0
TH
2442 } else {
2443 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2444 break;
2445 }
2446 }
2447
2448 return rq;
2449}
9934c8c0 2450EXPORT_SYMBOL(blk_peek_request);
158dbda0 2451
9934c8c0 2452void blk_dequeue_request(struct request *rq)
158dbda0 2453{
9934c8c0
TH
2454 struct request_queue *q = rq->q;
2455
158dbda0
TH
2456 BUG_ON(list_empty(&rq->queuelist));
2457 BUG_ON(ELV_ON_HASH(rq));
2458
2459 list_del_init(&rq->queuelist);
2460
2461 /*
2462 * the time frame between a request being removed from the lists
2463 * and to it is freed is accounted as io that is in progress at
2464 * the driver side.
2465 */
9195291e 2466 if (blk_account_rq(rq)) {
0a7ae2ff 2467 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
2468 set_io_start_time_ns(rq);
2469 }
158dbda0
TH
2470}
2471
9934c8c0
TH
2472/**
2473 * blk_start_request - start request processing on the driver
2474 * @req: request to dequeue
2475 *
2476 * Description:
2477 * Dequeue @req and start timeout timer on it. This hands off the
2478 * request to the driver.
2479 *
2480 * Block internal functions which don't want to start timer should
2481 * call blk_dequeue_request().
2482 *
2483 * Context:
2484 * queue_lock must be held.
2485 */
2486void blk_start_request(struct request *req)
2487{
2488 blk_dequeue_request(req);
2489
cf43e6be
JA
2490 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2491 blk_stat_set_issue_time(&req->issue_stat);
2492 req->rq_flags |= RQF_STATS;
87760e5e 2493 wbt_issue(req->q->rq_wb, &req->issue_stat);
cf43e6be
JA
2494 }
2495
9934c8c0 2496 /*
5f49f631
TH
2497 * We are now handing the request to the hardware, initialize
2498 * resid_len to full count and add the timeout handler.
9934c8c0 2499 */
5f49f631 2500 req->resid_len = blk_rq_bytes(req);
dbb66c4b
FT
2501 if (unlikely(blk_bidi_rq(req)))
2502 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2503
4912aa6c 2504 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
9934c8c0
TH
2505 blk_add_timer(req);
2506}
2507EXPORT_SYMBOL(blk_start_request);
2508
2509/**
2510 * blk_fetch_request - fetch a request from a request queue
2511 * @q: request queue to fetch a request from
2512 *
2513 * Description:
2514 * Return the request at the top of @q. The request is started on
2515 * return and LLD can start processing it immediately.
2516 *
2517 * Return:
2518 * Pointer to the request at the top of @q if available. Null
2519 * otherwise.
2520 *
2521 * Context:
2522 * queue_lock must be held.
2523 */
2524struct request *blk_fetch_request(struct request_queue *q)
2525{
2526 struct request *rq;
2527
2528 rq = blk_peek_request(q);
2529 if (rq)
2530 blk_start_request(rq);
2531 return rq;
2532}
2533EXPORT_SYMBOL(blk_fetch_request);
2534
3bcddeac 2535/**
2e60e022 2536 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2537 * @req: the request being processed
710027a4 2538 * @error: %0 for success, < %0 for error
8ebf9756 2539 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2540 *
2541 * Description:
8ebf9756
RD
2542 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2543 * the request structure even if @req doesn't have leftover.
2544 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2545 *
2546 * This special helper function is only for request stacking drivers
2547 * (e.g. request-based dm) so that they can handle partial completion.
2548 * Actual device drivers should use blk_end_request instead.
2549 *
2550 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2551 * %false return from this function.
3bcddeac
KU
2552 *
2553 * Return:
2e60e022
TH
2554 * %false - this request doesn't have any more data
2555 * %true - this request has more data
3bcddeac 2556 **/
2e60e022 2557bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 2558{
f79ea416 2559 int total_bytes;
1da177e4 2560
4a0efdc9
HR
2561 trace_block_rq_complete(req->q, req, nr_bytes);
2562
2e60e022
TH
2563 if (!req->bio)
2564 return false;
2565
1da177e4 2566 /*
6f41469c
TH
2567 * For fs requests, rq is just carrier of independent bio's
2568 * and each partial completion should be handled separately.
2569 * Reset per-request error on each partial completion.
2570 *
2571 * TODO: tj: This is too subtle. It would be better to let
2572 * low level drivers do what they see fit.
1da177e4 2573 */
33659ebb 2574 if (req->cmd_type == REQ_TYPE_FS)
1da177e4
LT
2575 req->errors = 0;
2576
33659ebb 2577 if (error && req->cmd_type == REQ_TYPE_FS &&
e8064021 2578 !(req->rq_flags & RQF_QUIET)) {
79775567
HR
2579 char *error_type;
2580
2581 switch (error) {
2582 case -ENOLINK:
2583 error_type = "recoverable transport";
2584 break;
2585 case -EREMOTEIO:
2586 error_type = "critical target";
2587 break;
2588 case -EBADE:
2589 error_type = "critical nexus";
2590 break;
d1ffc1f8
HR
2591 case -ETIMEDOUT:
2592 error_type = "timeout";
2593 break;
a9d6ceb8
HR
2594 case -ENOSPC:
2595 error_type = "critical space allocation";
2596 break;
7e782af5
HR
2597 case -ENODATA:
2598 error_type = "critical medium";
2599 break;
79775567
HR
2600 case -EIO:
2601 default:
2602 error_type = "I/O";
2603 break;
2604 }
ef3ecb66
RE
2605 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2606 __func__, error_type, req->rq_disk ?
37d7b34f
YZ
2607 req->rq_disk->disk_name : "?",
2608 (unsigned long long)blk_rq_pos(req));
2609
1da177e4
LT
2610 }
2611
bc58ba94 2612 blk_account_io_completion(req, nr_bytes);
d72d904a 2613
f79ea416
KO
2614 total_bytes = 0;
2615 while (req->bio) {
2616 struct bio *bio = req->bio;
4f024f37 2617 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1da177e4 2618
4f024f37 2619 if (bio_bytes == bio->bi_iter.bi_size)
1da177e4 2620 req->bio = bio->bi_next;
1da177e4 2621
f79ea416 2622 req_bio_endio(req, bio, bio_bytes, error);
1da177e4 2623
f79ea416
KO
2624 total_bytes += bio_bytes;
2625 nr_bytes -= bio_bytes;
1da177e4 2626
f79ea416
KO
2627 if (!nr_bytes)
2628 break;
1da177e4
LT
2629 }
2630
2631 /*
2632 * completely done
2633 */
2e60e022
TH
2634 if (!req->bio) {
2635 /*
2636 * Reset counters so that the request stacking driver
2637 * can find how many bytes remain in the request
2638 * later.
2639 */
a2dec7b3 2640 req->__data_len = 0;
2e60e022
TH
2641 return false;
2642 }
1da177e4 2643
a2dec7b3 2644 req->__data_len -= total_bytes;
2e46e8b2
TH
2645
2646 /* update sector only for requests with clear definition of sector */
e2a60da7 2647 if (req->cmd_type == REQ_TYPE_FS)
a2dec7b3 2648 req->__sector += total_bytes >> 9;
2e46e8b2 2649
80a761fd 2650 /* mixed attributes always follow the first bio */
e8064021 2651 if (req->rq_flags & RQF_MIXED_MERGE) {
80a761fd 2652 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1eff9d32 2653 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
80a761fd
TH
2654 }
2655
2e46e8b2
TH
2656 /*
2657 * If total number of sectors is less than the first segment
2658 * size, something has gone terribly wrong.
2659 */
2660 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
8182924b 2661 blk_dump_rq_flags(req, "request botched");
a2dec7b3 2662 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2663 }
2664
2665 /* recalculate the number of segments */
1da177e4 2666 blk_recalc_rq_segments(req);
2e46e8b2 2667
2e60e022 2668 return true;
1da177e4 2669}
2e60e022 2670EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2671
2e60e022
TH
2672static bool blk_update_bidi_request(struct request *rq, int error,
2673 unsigned int nr_bytes,
2674 unsigned int bidi_bytes)
5efccd17 2675{
2e60e022
TH
2676 if (blk_update_request(rq, error, nr_bytes))
2677 return true;
5efccd17 2678
2e60e022
TH
2679 /* Bidi request must be completed as a whole */
2680 if (unlikely(blk_bidi_rq(rq)) &&
2681 blk_update_request(rq->next_rq, error, bidi_bytes))
2682 return true;
5efccd17 2683
e2e1a148
JA
2684 if (blk_queue_add_random(rq->q))
2685 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2686
2687 return false;
1da177e4
LT
2688}
2689
28018c24
JB
2690/**
2691 * blk_unprep_request - unprepare a request
2692 * @req: the request
2693 *
2694 * This function makes a request ready for complete resubmission (or
2695 * completion). It happens only after all error handling is complete,
2696 * so represents the appropriate moment to deallocate any resources
2697 * that were allocated to the request in the prep_rq_fn. The queue
2698 * lock is held when calling this.
2699 */
2700void blk_unprep_request(struct request *req)
2701{
2702 struct request_queue *q = req->q;
2703
e8064021 2704 req->rq_flags &= ~RQF_DONTPREP;
28018c24
JB
2705 if (q->unprep_rq_fn)
2706 q->unprep_rq_fn(q, req);
2707}
2708EXPORT_SYMBOL_GPL(blk_unprep_request);
2709
1da177e4
LT
2710/*
2711 * queue lock must be held
2712 */
12120077 2713void blk_finish_request(struct request *req, int error)
1da177e4 2714{
cf43e6be
JA
2715 struct request_queue *q = req->q;
2716
2717 if (req->rq_flags & RQF_STATS)
2718 blk_stat_add(&q->rq_stats[rq_data_dir(req)], req);
2719
e8064021 2720 if (req->rq_flags & RQF_QUEUED)
cf43e6be 2721 blk_queue_end_tag(q, req);
b8286239 2722
ba396a6c 2723 BUG_ON(blk_queued_rq(req));
1da177e4 2724
33659ebb 2725 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
31373d09 2726 laptop_io_completion(&req->q->backing_dev_info);
1da177e4 2727
e78042e5
MA
2728 blk_delete_timer(req);
2729
e8064021 2730 if (req->rq_flags & RQF_DONTPREP)
28018c24
JB
2731 blk_unprep_request(req);
2732
bc58ba94 2733 blk_account_io_done(req);
b8286239 2734
87760e5e
JA
2735 if (req->end_io) {
2736 wbt_done(req->q->rq_wb, &req->issue_stat);
8ffdc655 2737 req->end_io(req, error);
87760e5e 2738 } else {
b8286239
KU
2739 if (blk_bidi_rq(req))
2740 __blk_put_request(req->next_rq->q, req->next_rq);
2741
cf43e6be 2742 __blk_put_request(q, req);
b8286239 2743 }
1da177e4 2744}
12120077 2745EXPORT_SYMBOL(blk_finish_request);
1da177e4 2746
3b11313a 2747/**
2e60e022
TH
2748 * blk_end_bidi_request - Complete a bidi request
2749 * @rq: the request to complete
2750 * @error: %0 for success, < %0 for error
2751 * @nr_bytes: number of bytes to complete @rq
2752 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2753 *
2754 * Description:
e3a04fe3 2755 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2756 * Drivers that supports bidi can safely call this member for any
2757 * type of request, bidi or uni. In the later case @bidi_bytes is
2758 * just ignored.
336cdb40
KU
2759 *
2760 * Return:
2e60e022
TH
2761 * %false - we are done with this request
2762 * %true - still buffers pending for this request
a0cd1285 2763 **/
b1f74493 2764static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2765 unsigned int nr_bytes, unsigned int bidi_bytes)
2766{
336cdb40 2767 struct request_queue *q = rq->q;
2e60e022 2768 unsigned long flags;
32fab448 2769
2e60e022
TH
2770 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2771 return true;
32fab448 2772
336cdb40 2773 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2774 blk_finish_request(rq, error);
336cdb40
KU
2775 spin_unlock_irqrestore(q->queue_lock, flags);
2776
2e60e022 2777 return false;
32fab448
KU
2778}
2779
336cdb40 2780/**
2e60e022
TH
2781 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2782 * @rq: the request to complete
710027a4 2783 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2784 * @nr_bytes: number of bytes to complete @rq
2785 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2786 *
2787 * Description:
2e60e022
TH
2788 * Identical to blk_end_bidi_request() except that queue lock is
2789 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2790 *
2791 * Return:
2e60e022
TH
2792 * %false - we are done with this request
2793 * %true - still buffers pending for this request
336cdb40 2794 **/
4853abaa 2795bool __blk_end_bidi_request(struct request *rq, int error,
b1f74493 2796 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2797{
2e60e022
TH
2798 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2799 return true;
336cdb40 2800
2e60e022 2801 blk_finish_request(rq, error);
336cdb40 2802
2e60e022 2803 return false;
336cdb40 2804}
e19a3ab0
KU
2805
2806/**
2807 * blk_end_request - Helper function for drivers to complete the request.
2808 * @rq: the request being processed
710027a4 2809 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2810 * @nr_bytes: number of bytes to complete
2811 *
2812 * Description:
2813 * Ends I/O on a number of bytes attached to @rq.
2814 * If @rq has leftover, sets it up for the next range of segments.
2815 *
2816 * Return:
b1f74493
FT
2817 * %false - we are done with this request
2818 * %true - still buffers pending for this request
e19a3ab0 2819 **/
b1f74493 2820bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2821{
b1f74493 2822 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2823}
56ad1740 2824EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2825
2826/**
b1f74493
FT
2827 * blk_end_request_all - Helper function for drives to finish the request.
2828 * @rq: the request to finish
8ebf9756 2829 * @error: %0 for success, < %0 for error
336cdb40
KU
2830 *
2831 * Description:
b1f74493
FT
2832 * Completely finish @rq.
2833 */
2834void blk_end_request_all(struct request *rq, int error)
336cdb40 2835{
b1f74493
FT
2836 bool pending;
2837 unsigned int bidi_bytes = 0;
336cdb40 2838
b1f74493
FT
2839 if (unlikely(blk_bidi_rq(rq)))
2840 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2841
b1f74493
FT
2842 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2843 BUG_ON(pending);
2844}
56ad1740 2845EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2846
b1f74493
FT
2847/**
2848 * blk_end_request_cur - Helper function to finish the current request chunk.
2849 * @rq: the request to finish the current chunk for
8ebf9756 2850 * @error: %0 for success, < %0 for error
b1f74493
FT
2851 *
2852 * Description:
2853 * Complete the current consecutively mapped chunk from @rq.
2854 *
2855 * Return:
2856 * %false - we are done with this request
2857 * %true - still buffers pending for this request
2858 */
2859bool blk_end_request_cur(struct request *rq, int error)
2860{
2861 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2862}
56ad1740 2863EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2864
80a761fd
TH
2865/**
2866 * blk_end_request_err - Finish a request till the next failure boundary.
2867 * @rq: the request to finish till the next failure boundary for
2868 * @error: must be negative errno
2869 *
2870 * Description:
2871 * Complete @rq till the next failure boundary.
2872 *
2873 * Return:
2874 * %false - we are done with this request
2875 * %true - still buffers pending for this request
2876 */
2877bool blk_end_request_err(struct request *rq, int error)
2878{
2879 WARN_ON(error >= 0);
2880 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2881}
2882EXPORT_SYMBOL_GPL(blk_end_request_err);
2883
e3a04fe3 2884/**
b1f74493
FT
2885 * __blk_end_request - Helper function for drivers to complete the request.
2886 * @rq: the request being processed
2887 * @error: %0 for success, < %0 for error
2888 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2889 *
2890 * Description:
b1f74493 2891 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2892 *
2893 * Return:
b1f74493
FT
2894 * %false - we are done with this request
2895 * %true - still buffers pending for this request
e3a04fe3 2896 **/
b1f74493 2897bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2898{
b1f74493 2899 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2900}
56ad1740 2901EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2902
32fab448 2903/**
b1f74493
FT
2904 * __blk_end_request_all - Helper function for drives to finish the request.
2905 * @rq: the request to finish
8ebf9756 2906 * @error: %0 for success, < %0 for error
32fab448
KU
2907 *
2908 * Description:
b1f74493 2909 * Completely finish @rq. Must be called with queue lock held.
32fab448 2910 */
b1f74493 2911void __blk_end_request_all(struct request *rq, int error)
32fab448 2912{
b1f74493
FT
2913 bool pending;
2914 unsigned int bidi_bytes = 0;
2915
2916 if (unlikely(blk_bidi_rq(rq)))
2917 bidi_bytes = blk_rq_bytes(rq->next_rq);
2918
2919 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2920 BUG_ON(pending);
32fab448 2921}
56ad1740 2922EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2923
e19a3ab0 2924/**
b1f74493
FT
2925 * __blk_end_request_cur - Helper function to finish the current request chunk.
2926 * @rq: the request to finish the current chunk for
8ebf9756 2927 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2928 *
2929 * Description:
b1f74493
FT
2930 * Complete the current consecutively mapped chunk from @rq. Must
2931 * be called with queue lock held.
e19a3ab0
KU
2932 *
2933 * Return:
b1f74493
FT
2934 * %false - we are done with this request
2935 * %true - still buffers pending for this request
2936 */
2937bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2938{
b1f74493 2939 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2940}
56ad1740 2941EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2942
80a761fd
TH
2943/**
2944 * __blk_end_request_err - Finish a request till the next failure boundary.
2945 * @rq: the request to finish till the next failure boundary for
2946 * @error: must be negative errno
2947 *
2948 * Description:
2949 * Complete @rq till the next failure boundary. Must be called
2950 * with queue lock held.
2951 *
2952 * Return:
2953 * %false - we are done with this request
2954 * %true - still buffers pending for this request
2955 */
2956bool __blk_end_request_err(struct request *rq, int error)
2957{
2958 WARN_ON(error >= 0);
2959 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2960}
2961EXPORT_SYMBOL_GPL(__blk_end_request_err);
2962
86db1e29
JA
2963void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2964 struct bio *bio)
1da177e4 2965{
b4f42e28 2966 if (bio_has_data(bio))
fb2dce86 2967 rq->nr_phys_segments = bio_phys_segments(q, bio);
b4f42e28 2968
4f024f37 2969 rq->__data_len = bio->bi_iter.bi_size;
1da177e4 2970 rq->bio = rq->biotail = bio;
1da177e4 2971
66846572
N
2972 if (bio->bi_bdev)
2973 rq->rq_disk = bio->bi_bdev->bd_disk;
2974}
1da177e4 2975
2d4dc890
IL
2976#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2977/**
2978 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2979 * @rq: the request to be flushed
2980 *
2981 * Description:
2982 * Flush all pages in @rq.
2983 */
2984void rq_flush_dcache_pages(struct request *rq)
2985{
2986 struct req_iterator iter;
7988613b 2987 struct bio_vec bvec;
2d4dc890
IL
2988
2989 rq_for_each_segment(bvec, rq, iter)
7988613b 2990 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
2991}
2992EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2993#endif
2994
ef9e3fac
KU
2995/**
2996 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2997 * @q : the queue of the device being checked
2998 *
2999 * Description:
3000 * Check if underlying low-level drivers of a device are busy.
3001 * If the drivers want to export their busy state, they must set own
3002 * exporting function using blk_queue_lld_busy() first.
3003 *
3004 * Basically, this function is used only by request stacking drivers
3005 * to stop dispatching requests to underlying devices when underlying
3006 * devices are busy. This behavior helps more I/O merging on the queue
3007 * of the request stacking driver and prevents I/O throughput regression
3008 * on burst I/O load.
3009 *
3010 * Return:
3011 * 0 - Not busy (The request stacking driver should dispatch request)
3012 * 1 - Busy (The request stacking driver should stop dispatching request)
3013 */
3014int blk_lld_busy(struct request_queue *q)
3015{
3016 if (q->lld_busy_fn)
3017 return q->lld_busy_fn(q);
3018
3019 return 0;
3020}
3021EXPORT_SYMBOL_GPL(blk_lld_busy);
3022
78d8e58a
MS
3023/**
3024 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3025 * @rq: the clone request to be cleaned up
3026 *
3027 * Description:
3028 * Free all bios in @rq for a cloned request.
3029 */
3030void blk_rq_unprep_clone(struct request *rq)
3031{
3032 struct bio *bio;
3033
3034 while ((bio = rq->bio) != NULL) {
3035 rq->bio = bio->bi_next;
3036
3037 bio_put(bio);
3038 }
3039}
3040EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3041
3042/*
3043 * Copy attributes of the original request to the clone request.
3044 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3045 */
3046static void __blk_rq_prep_clone(struct request *dst, struct request *src)
b0fd271d
KU
3047{
3048 dst->cpu = src->cpu;
ef295ecf 3049 dst->cmd_flags = src->cmd_flags | REQ_NOMERGE;
b0fd271d
KU
3050 dst->cmd_type = src->cmd_type;
3051 dst->__sector = blk_rq_pos(src);
3052 dst->__data_len = blk_rq_bytes(src);
3053 dst->nr_phys_segments = src->nr_phys_segments;
3054 dst->ioprio = src->ioprio;
3055 dst->extra_len = src->extra_len;
78d8e58a
MS
3056}
3057
3058/**
3059 * blk_rq_prep_clone - Helper function to setup clone request
3060 * @rq: the request to be setup
3061 * @rq_src: original request to be cloned
3062 * @bs: bio_set that bios for clone are allocated from
3063 * @gfp_mask: memory allocation mask for bio
3064 * @bio_ctr: setup function to be called for each clone bio.
3065 * Returns %0 for success, non %0 for failure.
3066 * @data: private data to be passed to @bio_ctr
3067 *
3068 * Description:
3069 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3070 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3071 * are not copied, and copying such parts is the caller's responsibility.
3072 * Also, pages which the original bios are pointing to are not copied
3073 * and the cloned bios just point same pages.
3074 * So cloned bios must be completed before original bios, which means
3075 * the caller must complete @rq before @rq_src.
3076 */
3077int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3078 struct bio_set *bs, gfp_t gfp_mask,
3079 int (*bio_ctr)(struct bio *, struct bio *, void *),
3080 void *data)
3081{
3082 struct bio *bio, *bio_src;
3083
3084 if (!bs)
3085 bs = fs_bio_set;
3086
3087 __rq_for_each_bio(bio_src, rq_src) {
3088 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3089 if (!bio)
3090 goto free_and_out;
3091
3092 if (bio_ctr && bio_ctr(bio, bio_src, data))
3093 goto free_and_out;
3094
3095 if (rq->bio) {
3096 rq->biotail->bi_next = bio;
3097 rq->biotail = bio;
3098 } else
3099 rq->bio = rq->biotail = bio;
3100 }
3101
3102 __blk_rq_prep_clone(rq, rq_src);
3103
3104 return 0;
3105
3106free_and_out:
3107 if (bio)
3108 bio_put(bio);
3109 blk_rq_unprep_clone(rq);
3110
3111 return -ENOMEM;
b0fd271d
KU
3112}
3113EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3114
59c3d45e 3115int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
3116{
3117 return queue_work(kblockd_workqueue, work);
3118}
1da177e4
LT
3119EXPORT_SYMBOL(kblockd_schedule_work);
3120
ee63cfa7
JA
3121int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3122{
3123 return queue_work_on(cpu, kblockd_workqueue, work);
3124}
3125EXPORT_SYMBOL(kblockd_schedule_work_on);
3126
59c3d45e
JA
3127int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3128 unsigned long delay)
e43473b7
VG
3129{
3130 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3131}
3132EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3133
8ab14595
JA
3134int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3135 unsigned long delay)
3136{
3137 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3138}
3139EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3140
75df7136
SJ
3141/**
3142 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3143 * @plug: The &struct blk_plug that needs to be initialized
3144 *
3145 * Description:
3146 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3147 * pending I/O should the task end up blocking between blk_start_plug() and
3148 * blk_finish_plug(). This is important from a performance perspective, but
3149 * also ensures that we don't deadlock. For instance, if the task is blocking
3150 * for a memory allocation, memory reclaim could end up wanting to free a
3151 * page belonging to that request that is currently residing in our private
3152 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3153 * this kind of deadlock.
3154 */
73c10101
JA
3155void blk_start_plug(struct blk_plug *plug)
3156{
3157 struct task_struct *tsk = current;
3158
dd6cf3e1
SL
3159 /*
3160 * If this is a nested plug, don't actually assign it.
3161 */
3162 if (tsk->plug)
3163 return;
3164
73c10101 3165 INIT_LIST_HEAD(&plug->list);
320ae51f 3166 INIT_LIST_HEAD(&plug->mq_list);
048c9374 3167 INIT_LIST_HEAD(&plug->cb_list);
73c10101 3168 /*
dd6cf3e1
SL
3169 * Store ordering should not be needed here, since a potential
3170 * preempt will imply a full memory barrier
73c10101 3171 */
dd6cf3e1 3172 tsk->plug = plug;
73c10101
JA
3173}
3174EXPORT_SYMBOL(blk_start_plug);
3175
3176static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3177{
3178 struct request *rqa = container_of(a, struct request, queuelist);
3179 struct request *rqb = container_of(b, struct request, queuelist);
3180
975927b9
JM
3181 return !(rqa->q < rqb->q ||
3182 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
73c10101
JA
3183}
3184
49cac01e
JA
3185/*
3186 * If 'from_schedule' is true, then postpone the dispatch of requests
3187 * until a safe kblockd context. We due this to avoid accidental big
3188 * additional stack usage in driver dispatch, in places where the originally
3189 * plugger did not intend it.
3190 */
f6603783 3191static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 3192 bool from_schedule)
99e22598 3193 __releases(q->queue_lock)
94b5eb28 3194{
49cac01e 3195 trace_block_unplug(q, depth, !from_schedule);
99e22598 3196
70460571 3197 if (from_schedule)
24ecfbe2 3198 blk_run_queue_async(q);
70460571 3199 else
24ecfbe2 3200 __blk_run_queue(q);
70460571 3201 spin_unlock(q->queue_lock);
94b5eb28
JA
3202}
3203
74018dc3 3204static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
3205{
3206 LIST_HEAD(callbacks);
3207
2a7d5559
SL
3208 while (!list_empty(&plug->cb_list)) {
3209 list_splice_init(&plug->cb_list, &callbacks);
048c9374 3210
2a7d5559
SL
3211 while (!list_empty(&callbacks)) {
3212 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
3213 struct blk_plug_cb,
3214 list);
2a7d5559 3215 list_del(&cb->list);
74018dc3 3216 cb->callback(cb, from_schedule);
2a7d5559 3217 }
048c9374
N
3218 }
3219}
3220
9cbb1750
N
3221struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3222 int size)
3223{
3224 struct blk_plug *plug = current->plug;
3225 struct blk_plug_cb *cb;
3226
3227 if (!plug)
3228 return NULL;
3229
3230 list_for_each_entry(cb, &plug->cb_list, list)
3231 if (cb->callback == unplug && cb->data == data)
3232 return cb;
3233
3234 /* Not currently on the callback list */
3235 BUG_ON(size < sizeof(*cb));
3236 cb = kzalloc(size, GFP_ATOMIC);
3237 if (cb) {
3238 cb->data = data;
3239 cb->callback = unplug;
3240 list_add(&cb->list, &plug->cb_list);
3241 }
3242 return cb;
3243}
3244EXPORT_SYMBOL(blk_check_plugged);
3245
49cac01e 3246void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
3247{
3248 struct request_queue *q;
3249 unsigned long flags;
3250 struct request *rq;
109b8129 3251 LIST_HEAD(list);
94b5eb28 3252 unsigned int depth;
73c10101 3253
74018dc3 3254 flush_plug_callbacks(plug, from_schedule);
320ae51f
JA
3255
3256 if (!list_empty(&plug->mq_list))
3257 blk_mq_flush_plug_list(plug, from_schedule);
3258
73c10101
JA
3259 if (list_empty(&plug->list))
3260 return;
3261
109b8129
N
3262 list_splice_init(&plug->list, &list);
3263
422765c2 3264 list_sort(NULL, &list, plug_rq_cmp);
73c10101
JA
3265
3266 q = NULL;
94b5eb28 3267 depth = 0;
18811272
JA
3268
3269 /*
3270 * Save and disable interrupts here, to avoid doing it for every
3271 * queue lock we have to take.
3272 */
73c10101 3273 local_irq_save(flags);
109b8129
N
3274 while (!list_empty(&list)) {
3275 rq = list_entry_rq(list.next);
73c10101 3276 list_del_init(&rq->queuelist);
73c10101
JA
3277 BUG_ON(!rq->q);
3278 if (rq->q != q) {
99e22598
JA
3279 /*
3280 * This drops the queue lock
3281 */
3282 if (q)
49cac01e 3283 queue_unplugged(q, depth, from_schedule);
73c10101 3284 q = rq->q;
94b5eb28 3285 depth = 0;
73c10101
JA
3286 spin_lock(q->queue_lock);
3287 }
8ba61435
TH
3288
3289 /*
3290 * Short-circuit if @q is dead
3291 */
3f3299d5 3292 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
3293 __blk_end_request_all(rq, -ENODEV);
3294 continue;
3295 }
3296
73c10101
JA
3297 /*
3298 * rq is already accounted, so use raw insert
3299 */
28a8f0d3 3300 if (rq->cmd_flags & (REQ_PREFLUSH | REQ_FUA))
401a18e9
JA
3301 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3302 else
3303 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
3304
3305 depth++;
73c10101
JA
3306 }
3307
99e22598
JA
3308 /*
3309 * This drops the queue lock
3310 */
3311 if (q)
49cac01e 3312 queue_unplugged(q, depth, from_schedule);
73c10101 3313
73c10101
JA
3314 local_irq_restore(flags);
3315}
73c10101
JA
3316
3317void blk_finish_plug(struct blk_plug *plug)
3318{
dd6cf3e1
SL
3319 if (plug != current->plug)
3320 return;
f6603783 3321 blk_flush_plug_list(plug, false);
73c10101 3322
dd6cf3e1 3323 current->plug = NULL;
73c10101 3324}
88b996cd 3325EXPORT_SYMBOL(blk_finish_plug);
73c10101 3326
47fafbc7 3327#ifdef CONFIG_PM
6c954667
LM
3328/**
3329 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3330 * @q: the queue of the device
3331 * @dev: the device the queue belongs to
3332 *
3333 * Description:
3334 * Initialize runtime-PM-related fields for @q and start auto suspend for
3335 * @dev. Drivers that want to take advantage of request-based runtime PM
3336 * should call this function after @dev has been initialized, and its
3337 * request queue @q has been allocated, and runtime PM for it can not happen
3338 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3339 * cases, driver should call this function before any I/O has taken place.
3340 *
3341 * This function takes care of setting up using auto suspend for the device,
3342 * the autosuspend delay is set to -1 to make runtime suspend impossible
3343 * until an updated value is either set by user or by driver. Drivers do
3344 * not need to touch other autosuspend settings.
3345 *
3346 * The block layer runtime PM is request based, so only works for drivers
3347 * that use request as their IO unit instead of those directly use bio's.
3348 */
3349void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3350{
3351 q->dev = dev;
3352 q->rpm_status = RPM_ACTIVE;
3353 pm_runtime_set_autosuspend_delay(q->dev, -1);
3354 pm_runtime_use_autosuspend(q->dev);
3355}
3356EXPORT_SYMBOL(blk_pm_runtime_init);
3357
3358/**
3359 * blk_pre_runtime_suspend - Pre runtime suspend check
3360 * @q: the queue of the device
3361 *
3362 * Description:
3363 * This function will check if runtime suspend is allowed for the device
3364 * by examining if there are any requests pending in the queue. If there
3365 * are requests pending, the device can not be runtime suspended; otherwise,
3366 * the queue's status will be updated to SUSPENDING and the driver can
3367 * proceed to suspend the device.
3368 *
3369 * For the not allowed case, we mark last busy for the device so that
3370 * runtime PM core will try to autosuspend it some time later.
3371 *
3372 * This function should be called near the start of the device's
3373 * runtime_suspend callback.
3374 *
3375 * Return:
3376 * 0 - OK to runtime suspend the device
3377 * -EBUSY - Device should not be runtime suspended
3378 */
3379int blk_pre_runtime_suspend(struct request_queue *q)
3380{
3381 int ret = 0;
3382
4fd41a85
KX
3383 if (!q->dev)
3384 return ret;
3385
6c954667
LM
3386 spin_lock_irq(q->queue_lock);
3387 if (q->nr_pending) {
3388 ret = -EBUSY;
3389 pm_runtime_mark_last_busy(q->dev);
3390 } else {
3391 q->rpm_status = RPM_SUSPENDING;
3392 }
3393 spin_unlock_irq(q->queue_lock);
3394 return ret;
3395}
3396EXPORT_SYMBOL(blk_pre_runtime_suspend);
3397
3398/**
3399 * blk_post_runtime_suspend - Post runtime suspend processing
3400 * @q: the queue of the device
3401 * @err: return value of the device's runtime_suspend function
3402 *
3403 * Description:
3404 * Update the queue's runtime status according to the return value of the
3405 * device's runtime suspend function and mark last busy for the device so
3406 * that PM core will try to auto suspend the device at a later time.
3407 *
3408 * This function should be called near the end of the device's
3409 * runtime_suspend callback.
3410 */
3411void blk_post_runtime_suspend(struct request_queue *q, int err)
3412{
4fd41a85
KX
3413 if (!q->dev)
3414 return;
3415
6c954667
LM
3416 spin_lock_irq(q->queue_lock);
3417 if (!err) {
3418 q->rpm_status = RPM_SUSPENDED;
3419 } else {
3420 q->rpm_status = RPM_ACTIVE;
3421 pm_runtime_mark_last_busy(q->dev);
3422 }
3423 spin_unlock_irq(q->queue_lock);
3424}
3425EXPORT_SYMBOL(blk_post_runtime_suspend);
3426
3427/**
3428 * blk_pre_runtime_resume - Pre runtime resume processing
3429 * @q: the queue of the device
3430 *
3431 * Description:
3432 * Update the queue's runtime status to RESUMING in preparation for the
3433 * runtime resume of the device.
3434 *
3435 * This function should be called near the start of the device's
3436 * runtime_resume callback.
3437 */
3438void blk_pre_runtime_resume(struct request_queue *q)
3439{
4fd41a85
KX
3440 if (!q->dev)
3441 return;
3442
6c954667
LM
3443 spin_lock_irq(q->queue_lock);
3444 q->rpm_status = RPM_RESUMING;
3445 spin_unlock_irq(q->queue_lock);
3446}
3447EXPORT_SYMBOL(blk_pre_runtime_resume);
3448
3449/**
3450 * blk_post_runtime_resume - Post runtime resume processing
3451 * @q: the queue of the device
3452 * @err: return value of the device's runtime_resume function
3453 *
3454 * Description:
3455 * Update the queue's runtime status according to the return value of the
3456 * device's runtime_resume function. If it is successfully resumed, process
3457 * the requests that are queued into the device's queue when it is resuming
3458 * and then mark last busy and initiate autosuspend for it.
3459 *
3460 * This function should be called near the end of the device's
3461 * runtime_resume callback.
3462 */
3463void blk_post_runtime_resume(struct request_queue *q, int err)
3464{
4fd41a85
KX
3465 if (!q->dev)
3466 return;
3467
6c954667
LM
3468 spin_lock_irq(q->queue_lock);
3469 if (!err) {
3470 q->rpm_status = RPM_ACTIVE;
3471 __blk_run_queue(q);
3472 pm_runtime_mark_last_busy(q->dev);
c60855cd 3473 pm_request_autosuspend(q->dev);
6c954667
LM
3474 } else {
3475 q->rpm_status = RPM_SUSPENDED;
3476 }
3477 spin_unlock_irq(q->queue_lock);
3478}
3479EXPORT_SYMBOL(blk_post_runtime_resume);
d07ab6d1
MW
3480
3481/**
3482 * blk_set_runtime_active - Force runtime status of the queue to be active
3483 * @q: the queue of the device
3484 *
3485 * If the device is left runtime suspended during system suspend the resume
3486 * hook typically resumes the device and corrects runtime status
3487 * accordingly. However, that does not affect the queue runtime PM status
3488 * which is still "suspended". This prevents processing requests from the
3489 * queue.
3490 *
3491 * This function can be used in driver's resume hook to correct queue
3492 * runtime PM status and re-enable peeking requests from the queue. It
3493 * should be called before first request is added to the queue.
3494 */
3495void blk_set_runtime_active(struct request_queue *q)
3496{
3497 spin_lock_irq(q->queue_lock);
3498 q->rpm_status = RPM_ACTIVE;
3499 pm_runtime_mark_last_busy(q->dev);
3500 pm_request_autosuspend(q->dev);
3501 spin_unlock_irq(q->queue_lock);
3502}
3503EXPORT_SYMBOL(blk_set_runtime_active);
6c954667
LM
3504#endif
3505
1da177e4
LT
3506int __init blk_dev_init(void)
3507{
ef295ecf
CH
3508 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3509 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
0762b23d 3510 FIELD_SIZEOF(struct request, cmd_flags));
ef295ecf
CH
3511 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3512 FIELD_SIZEOF(struct bio, bi_opf));
9eb55b03 3513
89b90be2
TH
3514 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3515 kblockd_workqueue = alloc_workqueue("kblockd",
28747fcd 3516 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
3517 if (!kblockd_workqueue)
3518 panic("Failed to create kblockd\n");
3519
3520 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3521 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 3522
c2789bd4 3523 blk_requestq_cachep = kmem_cache_create("request_queue",
165125e1 3524 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 3525
d38ecf93 3526 return 0;
1da177e4 3527}