]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/intel_display.c
drm/i915: Reorder i915_add_request to separate the phases better
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
618563e3 27#include <linux/dmi.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
e0dac65e 34#include <drm/drm_edid.h>
760285e7 35#include <drm/drmP.h>
79e53945 36#include "intel_drv.h"
5d723d7a 37#include "intel_frontbuffer.h"
760285e7 38#include <drm/i915_drm.h>
79e53945 39#include "i915_drv.h"
c37efb99 40#include "i915_gem_dmabuf.h"
db18b6a6 41#include "intel_dsi.h"
e5510fac 42#include "i915_trace.h"
319c1d42 43#include <drm/drm_atomic.h>
c196e1d6 44#include <drm/drm_atomic_helper.h>
760285e7
DH
45#include <drm/drm_dp_helper.h>
46#include <drm/drm_crtc_helper.h>
465c120c
MR
47#include <drm/drm_plane_helper.h>
48#include <drm/drm_rect.h>
c0f372b3 49#include <linux/dma_remapping.h>
fd8e058a 50#include <linux/reservation.h>
79e53945 51
5a21b665
DV
52static bool is_mmio_work(struct intel_flip_work *work)
53{
54 return work->mmio_work.func;
55}
56
465c120c 57/* Primary plane formats for gen <= 3 */
568db4f2 58static const uint32_t i8xx_primary_formats[] = {
67fe7dc5
DL
59 DRM_FORMAT_C8,
60 DRM_FORMAT_RGB565,
465c120c 61 DRM_FORMAT_XRGB1555,
67fe7dc5 62 DRM_FORMAT_XRGB8888,
465c120c
MR
63};
64
65/* Primary plane formats for gen >= 4 */
568db4f2 66static const uint32_t i965_primary_formats[] = {
6c0fd451
DL
67 DRM_FORMAT_C8,
68 DRM_FORMAT_RGB565,
69 DRM_FORMAT_XRGB8888,
70 DRM_FORMAT_XBGR8888,
71 DRM_FORMAT_XRGB2101010,
72 DRM_FORMAT_XBGR2101010,
73};
74
75static const uint32_t skl_primary_formats[] = {
67fe7dc5
DL
76 DRM_FORMAT_C8,
77 DRM_FORMAT_RGB565,
78 DRM_FORMAT_XRGB8888,
465c120c 79 DRM_FORMAT_XBGR8888,
67fe7dc5 80 DRM_FORMAT_ARGB8888,
465c120c
MR
81 DRM_FORMAT_ABGR8888,
82 DRM_FORMAT_XRGB2101010,
465c120c 83 DRM_FORMAT_XBGR2101010,
ea916ea0
KM
84 DRM_FORMAT_YUYV,
85 DRM_FORMAT_YVYU,
86 DRM_FORMAT_UYVY,
87 DRM_FORMAT_VYUY,
465c120c
MR
88};
89
3d7d6510
MR
90/* Cursor formats */
91static const uint32_t intel_cursor_formats[] = {
92 DRM_FORMAT_ARGB8888,
93};
94
f1f644dc 95static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 96 struct intel_crtc_state *pipe_config);
18442d08 97static void ironlake_pch_clock_get(struct intel_crtc *crtc,
5cec258b 98 struct intel_crtc_state *pipe_config);
f1f644dc 99
eb1bfe80
JB
100static int intel_framebuffer_init(struct drm_device *dev,
101 struct intel_framebuffer *ifb,
102 struct drm_mode_fb_cmd2 *mode_cmd,
103 struct drm_i915_gem_object *obj);
5b18e57c
DV
104static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
105static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
bc58be60 106static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc);
29407aab 107static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
108 struct intel_link_m_n *m_n,
109 struct intel_link_m_n *m2_n2);
29407aab 110static void ironlake_set_pipeconf(struct drm_crtc *crtc);
229fca97 111static void haswell_set_pipeconf(struct drm_crtc *crtc);
391bf048 112static void haswell_set_pipemisc(struct drm_crtc *crtc);
d288f65f 113static void vlv_prepare_pll(struct intel_crtc *crtc,
5cec258b 114 const struct intel_crtc_state *pipe_config);
d288f65f 115static void chv_prepare_pll(struct intel_crtc *crtc,
5cec258b 116 const struct intel_crtc_state *pipe_config);
5a21b665
DV
117static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
118static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
549e2bfb
CK
119static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
120 struct intel_crtc_state *crtc_state);
bfd16b2a
ML
121static void skylake_pfit_enable(struct intel_crtc *crtc);
122static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
123static void ironlake_pfit_enable(struct intel_crtc *crtc);
043e9bda 124static void intel_modeset_setup_hw_state(struct drm_device *dev);
2622a081 125static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc);
4e5ca60f 126static int ilk_max_pixel_rate(struct drm_atomic_state *state);
324513c0 127static int bxt_calc_cdclk(int max_pixclk);
e7457a9a 128
d4906093 129struct intel_limit {
4c5def93
ACO
130 struct {
131 int min, max;
132 } dot, vco, n, m, m1, m2, p, p1;
133
134 struct {
135 int dot_limit;
136 int p2_slow, p2_fast;
137 } p2;
d4906093 138};
79e53945 139
bfa7df01
VS
140/* returns HPLL frequency in kHz */
141static int valleyview_get_vco(struct drm_i915_private *dev_priv)
142{
143 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
144
145 /* Obtain SKU information */
146 mutex_lock(&dev_priv->sb_lock);
147 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
148 CCK_FUSE_HPLL_FREQ_MASK;
149 mutex_unlock(&dev_priv->sb_lock);
150
151 return vco_freq[hpll_freq] * 1000;
152}
153
c30fec65
VS
154int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
155 const char *name, u32 reg, int ref_freq)
bfa7df01
VS
156{
157 u32 val;
158 int divider;
159
bfa7df01
VS
160 mutex_lock(&dev_priv->sb_lock);
161 val = vlv_cck_read(dev_priv, reg);
162 mutex_unlock(&dev_priv->sb_lock);
163
164 divider = val & CCK_FREQUENCY_VALUES;
165
166 WARN((val & CCK_FREQUENCY_STATUS) !=
167 (divider << CCK_FREQUENCY_STATUS_SHIFT),
168 "%s change in progress\n", name);
169
c30fec65
VS
170 return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
171}
172
173static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
174 const char *name, u32 reg)
175{
176 if (dev_priv->hpll_freq == 0)
177 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
178
179 return vlv_get_cck_clock(dev_priv, name, reg,
180 dev_priv->hpll_freq);
bfa7df01
VS
181}
182
e7dc33f3
VS
183static int
184intel_pch_rawclk(struct drm_i915_private *dev_priv)
d2acd215 185{
e7dc33f3
VS
186 return (I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK) * 1000;
187}
d2acd215 188
e7dc33f3
VS
189static int
190intel_vlv_hrawclk(struct drm_i915_private *dev_priv)
191{
19ab4ed3 192 /* RAWCLK_FREQ_VLV register updated from power well code */
35d38d1f
VS
193 return vlv_get_cck_clock_hpll(dev_priv, "hrawclk",
194 CCK_DISPLAY_REF_CLOCK_CONTROL);
d2acd215
DV
195}
196
e7dc33f3
VS
197static int
198intel_g4x_hrawclk(struct drm_i915_private *dev_priv)
79e50a4f 199{
79e50a4f
JN
200 uint32_t clkcfg;
201
e7dc33f3 202 /* hrawclock is 1/4 the FSB frequency */
79e50a4f
JN
203 clkcfg = I915_READ(CLKCFG);
204 switch (clkcfg & CLKCFG_FSB_MASK) {
205 case CLKCFG_FSB_400:
e7dc33f3 206 return 100000;
79e50a4f 207 case CLKCFG_FSB_533:
e7dc33f3 208 return 133333;
79e50a4f 209 case CLKCFG_FSB_667:
e7dc33f3 210 return 166667;
79e50a4f 211 case CLKCFG_FSB_800:
e7dc33f3 212 return 200000;
79e50a4f 213 case CLKCFG_FSB_1067:
e7dc33f3 214 return 266667;
79e50a4f 215 case CLKCFG_FSB_1333:
e7dc33f3 216 return 333333;
79e50a4f
JN
217 /* these two are just a guess; one of them might be right */
218 case CLKCFG_FSB_1600:
219 case CLKCFG_FSB_1600_ALT:
e7dc33f3 220 return 400000;
79e50a4f 221 default:
e7dc33f3 222 return 133333;
79e50a4f
JN
223 }
224}
225
19ab4ed3 226void intel_update_rawclk(struct drm_i915_private *dev_priv)
e7dc33f3
VS
227{
228 if (HAS_PCH_SPLIT(dev_priv))
229 dev_priv->rawclk_freq = intel_pch_rawclk(dev_priv);
230 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
231 dev_priv->rawclk_freq = intel_vlv_hrawclk(dev_priv);
232 else if (IS_G4X(dev_priv) || IS_PINEVIEW(dev_priv))
233 dev_priv->rawclk_freq = intel_g4x_hrawclk(dev_priv);
234 else
235 return; /* no rawclk on other platforms, or no need to know it */
236
237 DRM_DEBUG_DRIVER("rawclk rate: %d kHz\n", dev_priv->rawclk_freq);
238}
239
bfa7df01
VS
240static void intel_update_czclk(struct drm_i915_private *dev_priv)
241{
666a4537 242 if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
bfa7df01
VS
243 return;
244
245 dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
246 CCK_CZ_CLOCK_CONTROL);
247
248 DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
249}
250
021357ac 251static inline u32 /* units of 100MHz */
21a727b3
VS
252intel_fdi_link_freq(struct drm_i915_private *dev_priv,
253 const struct intel_crtc_state *pipe_config)
021357ac 254{
21a727b3
VS
255 if (HAS_DDI(dev_priv))
256 return pipe_config->port_clock; /* SPLL */
257 else if (IS_GEN5(dev_priv))
258 return ((I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2) * 10000;
e3b247da 259 else
21a727b3 260 return 270000;
021357ac
CW
261}
262
1b6f4958 263static const struct intel_limit intel_limits_i8xx_dac = {
0206e353 264 .dot = { .min = 25000, .max = 350000 },
9c333719 265 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 266 .n = { .min = 2, .max = 16 },
0206e353
AJ
267 .m = { .min = 96, .max = 140 },
268 .m1 = { .min = 18, .max = 26 },
269 .m2 = { .min = 6, .max = 16 },
270 .p = { .min = 4, .max = 128 },
271 .p1 = { .min = 2, .max = 33 },
273e27ca
EA
272 .p2 = { .dot_limit = 165000,
273 .p2_slow = 4, .p2_fast = 2 },
e4b36699
KP
274};
275
1b6f4958 276static const struct intel_limit intel_limits_i8xx_dvo = {
5d536e28 277 .dot = { .min = 25000, .max = 350000 },
9c333719 278 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 279 .n = { .min = 2, .max = 16 },
5d536e28
DV
280 .m = { .min = 96, .max = 140 },
281 .m1 = { .min = 18, .max = 26 },
282 .m2 = { .min = 6, .max = 16 },
283 .p = { .min = 4, .max = 128 },
284 .p1 = { .min = 2, .max = 33 },
285 .p2 = { .dot_limit = 165000,
286 .p2_slow = 4, .p2_fast = 4 },
287};
288
1b6f4958 289static const struct intel_limit intel_limits_i8xx_lvds = {
0206e353 290 .dot = { .min = 25000, .max = 350000 },
9c333719 291 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 292 .n = { .min = 2, .max = 16 },
0206e353
AJ
293 .m = { .min = 96, .max = 140 },
294 .m1 = { .min = 18, .max = 26 },
295 .m2 = { .min = 6, .max = 16 },
296 .p = { .min = 4, .max = 128 },
297 .p1 = { .min = 1, .max = 6 },
273e27ca
EA
298 .p2 = { .dot_limit = 165000,
299 .p2_slow = 14, .p2_fast = 7 },
e4b36699 300};
273e27ca 301
1b6f4958 302static const struct intel_limit intel_limits_i9xx_sdvo = {
0206e353
AJ
303 .dot = { .min = 20000, .max = 400000 },
304 .vco = { .min = 1400000, .max = 2800000 },
305 .n = { .min = 1, .max = 6 },
306 .m = { .min = 70, .max = 120 },
4f7dfb67
PJ
307 .m1 = { .min = 8, .max = 18 },
308 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
309 .p = { .min = 5, .max = 80 },
310 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
311 .p2 = { .dot_limit = 200000,
312 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
313};
314
1b6f4958 315static const struct intel_limit intel_limits_i9xx_lvds = {
0206e353
AJ
316 .dot = { .min = 20000, .max = 400000 },
317 .vco = { .min = 1400000, .max = 2800000 },
318 .n = { .min = 1, .max = 6 },
319 .m = { .min = 70, .max = 120 },
53a7d2d1
PJ
320 .m1 = { .min = 8, .max = 18 },
321 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
322 .p = { .min = 7, .max = 98 },
323 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
324 .p2 = { .dot_limit = 112000,
325 .p2_slow = 14, .p2_fast = 7 },
e4b36699
KP
326};
327
273e27ca 328
1b6f4958 329static const struct intel_limit intel_limits_g4x_sdvo = {
273e27ca
EA
330 .dot = { .min = 25000, .max = 270000 },
331 .vco = { .min = 1750000, .max = 3500000},
332 .n = { .min = 1, .max = 4 },
333 .m = { .min = 104, .max = 138 },
334 .m1 = { .min = 17, .max = 23 },
335 .m2 = { .min = 5, .max = 11 },
336 .p = { .min = 10, .max = 30 },
337 .p1 = { .min = 1, .max = 3},
338 .p2 = { .dot_limit = 270000,
339 .p2_slow = 10,
340 .p2_fast = 10
044c7c41 341 },
e4b36699
KP
342};
343
1b6f4958 344static const struct intel_limit intel_limits_g4x_hdmi = {
273e27ca
EA
345 .dot = { .min = 22000, .max = 400000 },
346 .vco = { .min = 1750000, .max = 3500000},
347 .n = { .min = 1, .max = 4 },
348 .m = { .min = 104, .max = 138 },
349 .m1 = { .min = 16, .max = 23 },
350 .m2 = { .min = 5, .max = 11 },
351 .p = { .min = 5, .max = 80 },
352 .p1 = { .min = 1, .max = 8},
353 .p2 = { .dot_limit = 165000,
354 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
355};
356
1b6f4958 357static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
358 .dot = { .min = 20000, .max = 115000 },
359 .vco = { .min = 1750000, .max = 3500000 },
360 .n = { .min = 1, .max = 3 },
361 .m = { .min = 104, .max = 138 },
362 .m1 = { .min = 17, .max = 23 },
363 .m2 = { .min = 5, .max = 11 },
364 .p = { .min = 28, .max = 112 },
365 .p1 = { .min = 2, .max = 8 },
366 .p2 = { .dot_limit = 0,
367 .p2_slow = 14, .p2_fast = 14
044c7c41 368 },
e4b36699
KP
369};
370
1b6f4958 371static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
372 .dot = { .min = 80000, .max = 224000 },
373 .vco = { .min = 1750000, .max = 3500000 },
374 .n = { .min = 1, .max = 3 },
375 .m = { .min = 104, .max = 138 },
376 .m1 = { .min = 17, .max = 23 },
377 .m2 = { .min = 5, .max = 11 },
378 .p = { .min = 14, .max = 42 },
379 .p1 = { .min = 2, .max = 6 },
380 .p2 = { .dot_limit = 0,
381 .p2_slow = 7, .p2_fast = 7
044c7c41 382 },
e4b36699
KP
383};
384
1b6f4958 385static const struct intel_limit intel_limits_pineview_sdvo = {
0206e353
AJ
386 .dot = { .min = 20000, .max = 400000},
387 .vco = { .min = 1700000, .max = 3500000 },
273e27ca 388 /* Pineview's Ncounter is a ring counter */
0206e353
AJ
389 .n = { .min = 3, .max = 6 },
390 .m = { .min = 2, .max = 256 },
273e27ca 391 /* Pineview only has one combined m divider, which we treat as m2. */
0206e353
AJ
392 .m1 = { .min = 0, .max = 0 },
393 .m2 = { .min = 0, .max = 254 },
394 .p = { .min = 5, .max = 80 },
395 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
396 .p2 = { .dot_limit = 200000,
397 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
398};
399
1b6f4958 400static const struct intel_limit intel_limits_pineview_lvds = {
0206e353
AJ
401 .dot = { .min = 20000, .max = 400000 },
402 .vco = { .min = 1700000, .max = 3500000 },
403 .n = { .min = 3, .max = 6 },
404 .m = { .min = 2, .max = 256 },
405 .m1 = { .min = 0, .max = 0 },
406 .m2 = { .min = 0, .max = 254 },
407 .p = { .min = 7, .max = 112 },
408 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
409 .p2 = { .dot_limit = 112000,
410 .p2_slow = 14, .p2_fast = 14 },
e4b36699
KP
411};
412
273e27ca
EA
413/* Ironlake / Sandybridge
414 *
415 * We calculate clock using (register_value + 2) for N/M1/M2, so here
416 * the range value for them is (actual_value - 2).
417 */
1b6f4958 418static const struct intel_limit intel_limits_ironlake_dac = {
273e27ca
EA
419 .dot = { .min = 25000, .max = 350000 },
420 .vco = { .min = 1760000, .max = 3510000 },
421 .n = { .min = 1, .max = 5 },
422 .m = { .min = 79, .max = 127 },
423 .m1 = { .min = 12, .max = 22 },
424 .m2 = { .min = 5, .max = 9 },
425 .p = { .min = 5, .max = 80 },
426 .p1 = { .min = 1, .max = 8 },
427 .p2 = { .dot_limit = 225000,
428 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
429};
430
1b6f4958 431static const struct intel_limit intel_limits_ironlake_single_lvds = {
273e27ca
EA
432 .dot = { .min = 25000, .max = 350000 },
433 .vco = { .min = 1760000, .max = 3510000 },
434 .n = { .min = 1, .max = 3 },
435 .m = { .min = 79, .max = 118 },
436 .m1 = { .min = 12, .max = 22 },
437 .m2 = { .min = 5, .max = 9 },
438 .p = { .min = 28, .max = 112 },
439 .p1 = { .min = 2, .max = 8 },
440 .p2 = { .dot_limit = 225000,
441 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
442};
443
1b6f4958 444static const struct intel_limit intel_limits_ironlake_dual_lvds = {
273e27ca
EA
445 .dot = { .min = 25000, .max = 350000 },
446 .vco = { .min = 1760000, .max = 3510000 },
447 .n = { .min = 1, .max = 3 },
448 .m = { .min = 79, .max = 127 },
449 .m1 = { .min = 12, .max = 22 },
450 .m2 = { .min = 5, .max = 9 },
451 .p = { .min = 14, .max = 56 },
452 .p1 = { .min = 2, .max = 8 },
453 .p2 = { .dot_limit = 225000,
454 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
455};
456
273e27ca 457/* LVDS 100mhz refclk limits. */
1b6f4958 458static const struct intel_limit intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
459 .dot = { .min = 25000, .max = 350000 },
460 .vco = { .min = 1760000, .max = 3510000 },
461 .n = { .min = 1, .max = 2 },
462 .m = { .min = 79, .max = 126 },
463 .m1 = { .min = 12, .max = 22 },
464 .m2 = { .min = 5, .max = 9 },
465 .p = { .min = 28, .max = 112 },
0206e353 466 .p1 = { .min = 2, .max = 8 },
273e27ca
EA
467 .p2 = { .dot_limit = 225000,
468 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
469};
470
1b6f4958 471static const struct intel_limit intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
472 .dot = { .min = 25000, .max = 350000 },
473 .vco = { .min = 1760000, .max = 3510000 },
474 .n = { .min = 1, .max = 3 },
475 .m = { .min = 79, .max = 126 },
476 .m1 = { .min = 12, .max = 22 },
477 .m2 = { .min = 5, .max = 9 },
478 .p = { .min = 14, .max = 42 },
0206e353 479 .p1 = { .min = 2, .max = 6 },
273e27ca
EA
480 .p2 = { .dot_limit = 225000,
481 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
482};
483
1b6f4958 484static const struct intel_limit intel_limits_vlv = {
f01b7962
VS
485 /*
486 * These are the data rate limits (measured in fast clocks)
487 * since those are the strictest limits we have. The fast
488 * clock and actual rate limits are more relaxed, so checking
489 * them would make no difference.
490 */
491 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
75e53986 492 .vco = { .min = 4000000, .max = 6000000 },
a0c4da24 493 .n = { .min = 1, .max = 7 },
a0c4da24
JB
494 .m1 = { .min = 2, .max = 3 },
495 .m2 = { .min = 11, .max = 156 },
b99ab663 496 .p1 = { .min = 2, .max = 3 },
5fdc9c49 497 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
a0c4da24
JB
498};
499
1b6f4958 500static const struct intel_limit intel_limits_chv = {
ef9348c8
CML
501 /*
502 * These are the data rate limits (measured in fast clocks)
503 * since those are the strictest limits we have. The fast
504 * clock and actual rate limits are more relaxed, so checking
505 * them would make no difference.
506 */
507 .dot = { .min = 25000 * 5, .max = 540000 * 5},
17fe1021 508 .vco = { .min = 4800000, .max = 6480000 },
ef9348c8
CML
509 .n = { .min = 1, .max = 1 },
510 .m1 = { .min = 2, .max = 2 },
511 .m2 = { .min = 24 << 22, .max = 175 << 22 },
512 .p1 = { .min = 2, .max = 4 },
513 .p2 = { .p2_slow = 1, .p2_fast = 14 },
514};
515
1b6f4958 516static const struct intel_limit intel_limits_bxt = {
5ab7b0b7
ID
517 /* FIXME: find real dot limits */
518 .dot = { .min = 0, .max = INT_MAX },
e6292556 519 .vco = { .min = 4800000, .max = 6700000 },
5ab7b0b7
ID
520 .n = { .min = 1, .max = 1 },
521 .m1 = { .min = 2, .max = 2 },
522 /* FIXME: find real m2 limits */
523 .m2 = { .min = 2 << 22, .max = 255 << 22 },
524 .p1 = { .min = 2, .max = 4 },
525 .p2 = { .p2_slow = 1, .p2_fast = 20 },
526};
527
cdba954e
ACO
528static bool
529needs_modeset(struct drm_crtc_state *state)
530{
fc596660 531 return drm_atomic_crtc_needs_modeset(state);
cdba954e
ACO
532}
533
dccbea3b
ID
534/*
535 * Platform specific helpers to calculate the port PLL loopback- (clock.m),
536 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
537 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
538 * The helpers' return value is the rate of the clock that is fed to the
539 * display engine's pipe which can be the above fast dot clock rate or a
540 * divided-down version of it.
541 */
f2b115e6 542/* m1 is reserved as 0 in Pineview, n is a ring counter */
9e2c8475 543static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
79e53945 544{
2177832f
SL
545 clock->m = clock->m2 + 2;
546 clock->p = clock->p1 * clock->p2;
ed5ca77e 547 if (WARN_ON(clock->n == 0 || clock->p == 0))
dccbea3b 548 return 0;
fb03ac01
VS
549 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
550 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
dccbea3b
ID
551
552 return clock->dot;
2177832f
SL
553}
554
7429e9d4
DV
555static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
556{
557 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
558}
559
9e2c8475 560static int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
2177832f 561{
7429e9d4 562 clock->m = i9xx_dpll_compute_m(clock);
79e53945 563 clock->p = clock->p1 * clock->p2;
ed5ca77e 564 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
dccbea3b 565 return 0;
fb03ac01
VS
566 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
567 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
dccbea3b
ID
568
569 return clock->dot;
79e53945
JB
570}
571
9e2c8475 572static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
589eca67
ID
573{
574 clock->m = clock->m1 * clock->m2;
575 clock->p = clock->p1 * clock->p2;
576 if (WARN_ON(clock->n == 0 || clock->p == 0))
dccbea3b 577 return 0;
589eca67
ID
578 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
579 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
dccbea3b
ID
580
581 return clock->dot / 5;
589eca67
ID
582}
583
9e2c8475 584int chv_calc_dpll_params(int refclk, struct dpll *clock)
ef9348c8
CML
585{
586 clock->m = clock->m1 * clock->m2;
587 clock->p = clock->p1 * clock->p2;
588 if (WARN_ON(clock->n == 0 || clock->p == 0))
dccbea3b 589 return 0;
ef9348c8
CML
590 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
591 clock->n << 22);
592 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
dccbea3b
ID
593
594 return clock->dot / 5;
ef9348c8
CML
595}
596
7c04d1d9 597#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
598/**
599 * Returns whether the given set of divisors are valid for a given refclk with
600 * the given connectors.
601 */
602
1b894b59 603static bool intel_PLL_is_valid(struct drm_device *dev,
1b6f4958 604 const struct intel_limit *limit,
9e2c8475 605 const struct dpll *clock)
79e53945 606{
f01b7962
VS
607 if (clock->n < limit->n.min || limit->n.max < clock->n)
608 INTELPllInvalid("n out of range\n");
79e53945 609 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
0206e353 610 INTELPllInvalid("p1 out of range\n");
79e53945 611 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
0206e353 612 INTELPllInvalid("m2 out of range\n");
79e53945 613 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
0206e353 614 INTELPllInvalid("m1 out of range\n");
f01b7962 615
666a4537
WB
616 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) &&
617 !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev))
f01b7962
VS
618 if (clock->m1 <= clock->m2)
619 INTELPllInvalid("m1 <= m2\n");
620
666a4537 621 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev)) {
f01b7962
VS
622 if (clock->p < limit->p.min || limit->p.max < clock->p)
623 INTELPllInvalid("p out of range\n");
624 if (clock->m < limit->m.min || limit->m.max < clock->m)
625 INTELPllInvalid("m out of range\n");
626 }
627
79e53945 628 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
0206e353 629 INTELPllInvalid("vco out of range\n");
79e53945
JB
630 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
631 * connector, etc., rather than just a single range.
632 */
633 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
0206e353 634 INTELPllInvalid("dot out of range\n");
79e53945
JB
635
636 return true;
637}
638
3b1429d9 639static int
1b6f4958 640i9xx_select_p2_div(const struct intel_limit *limit,
3b1429d9
VS
641 const struct intel_crtc_state *crtc_state,
642 int target)
79e53945 643{
3b1429d9 644 struct drm_device *dev = crtc_state->base.crtc->dev;
79e53945 645
2d84d2b3 646 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
79e53945 647 /*
a210b028
DV
648 * For LVDS just rely on its current settings for dual-channel.
649 * We haven't figured out how to reliably set up different
650 * single/dual channel state, if we even can.
79e53945 651 */
1974cad0 652 if (intel_is_dual_link_lvds(dev))
3b1429d9 653 return limit->p2.p2_fast;
79e53945 654 else
3b1429d9 655 return limit->p2.p2_slow;
79e53945
JB
656 } else {
657 if (target < limit->p2.dot_limit)
3b1429d9 658 return limit->p2.p2_slow;
79e53945 659 else
3b1429d9 660 return limit->p2.p2_fast;
79e53945 661 }
3b1429d9
VS
662}
663
70e8aa21
ACO
664/*
665 * Returns a set of divisors for the desired target clock with the given
666 * refclk, or FALSE. The returned values represent the clock equation:
667 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
668 *
669 * Target and reference clocks are specified in kHz.
670 *
671 * If match_clock is provided, then best_clock P divider must match the P
672 * divider from @match_clock used for LVDS downclocking.
673 */
3b1429d9 674static bool
1b6f4958 675i9xx_find_best_dpll(const struct intel_limit *limit,
3b1429d9 676 struct intel_crtc_state *crtc_state,
9e2c8475
ACO
677 int target, int refclk, struct dpll *match_clock,
678 struct dpll *best_clock)
3b1429d9
VS
679{
680 struct drm_device *dev = crtc_state->base.crtc->dev;
9e2c8475 681 struct dpll clock;
3b1429d9 682 int err = target;
79e53945 683
0206e353 684 memset(best_clock, 0, sizeof(*best_clock));
79e53945 685
3b1429d9
VS
686 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
687
42158660
ZY
688 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
689 clock.m1++) {
690 for (clock.m2 = limit->m2.min;
691 clock.m2 <= limit->m2.max; clock.m2++) {
c0efc387 692 if (clock.m2 >= clock.m1)
42158660
ZY
693 break;
694 for (clock.n = limit->n.min;
695 clock.n <= limit->n.max; clock.n++) {
696 for (clock.p1 = limit->p1.min;
697 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
698 int this_err;
699
dccbea3b 700 i9xx_calc_dpll_params(refclk, &clock);
ac58c3f0
DV
701 if (!intel_PLL_is_valid(dev, limit,
702 &clock))
703 continue;
704 if (match_clock &&
705 clock.p != match_clock->p)
706 continue;
707
708 this_err = abs(clock.dot - target);
709 if (this_err < err) {
710 *best_clock = clock;
711 err = this_err;
712 }
713 }
714 }
715 }
716 }
717
718 return (err != target);
719}
720
70e8aa21
ACO
721/*
722 * Returns a set of divisors for the desired target clock with the given
723 * refclk, or FALSE. The returned values represent the clock equation:
724 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
725 *
726 * Target and reference clocks are specified in kHz.
727 *
728 * If match_clock is provided, then best_clock P divider must match the P
729 * divider from @match_clock used for LVDS downclocking.
730 */
ac58c3f0 731static bool
1b6f4958 732pnv_find_best_dpll(const struct intel_limit *limit,
a93e255f 733 struct intel_crtc_state *crtc_state,
9e2c8475
ACO
734 int target, int refclk, struct dpll *match_clock,
735 struct dpll *best_clock)
79e53945 736{
3b1429d9 737 struct drm_device *dev = crtc_state->base.crtc->dev;
9e2c8475 738 struct dpll clock;
79e53945
JB
739 int err = target;
740
0206e353 741 memset(best_clock, 0, sizeof(*best_clock));
79e53945 742
3b1429d9
VS
743 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
744
42158660
ZY
745 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
746 clock.m1++) {
747 for (clock.m2 = limit->m2.min;
748 clock.m2 <= limit->m2.max; clock.m2++) {
42158660
ZY
749 for (clock.n = limit->n.min;
750 clock.n <= limit->n.max; clock.n++) {
751 for (clock.p1 = limit->p1.min;
752 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
753 int this_err;
754
dccbea3b 755 pnv_calc_dpll_params(refclk, &clock);
1b894b59
CW
756 if (!intel_PLL_is_valid(dev, limit,
757 &clock))
79e53945 758 continue;
cec2f356
SP
759 if (match_clock &&
760 clock.p != match_clock->p)
761 continue;
79e53945
JB
762
763 this_err = abs(clock.dot - target);
764 if (this_err < err) {
765 *best_clock = clock;
766 err = this_err;
767 }
768 }
769 }
770 }
771 }
772
773 return (err != target);
774}
775
997c030c
ACO
776/*
777 * Returns a set of divisors for the desired target clock with the given
778 * refclk, or FALSE. The returned values represent the clock equation:
779 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
70e8aa21
ACO
780 *
781 * Target and reference clocks are specified in kHz.
782 *
783 * If match_clock is provided, then best_clock P divider must match the P
784 * divider from @match_clock used for LVDS downclocking.
997c030c 785 */
d4906093 786static bool
1b6f4958 787g4x_find_best_dpll(const struct intel_limit *limit,
a93e255f 788 struct intel_crtc_state *crtc_state,
9e2c8475
ACO
789 int target, int refclk, struct dpll *match_clock,
790 struct dpll *best_clock)
d4906093 791{
3b1429d9 792 struct drm_device *dev = crtc_state->base.crtc->dev;
9e2c8475 793 struct dpll clock;
d4906093 794 int max_n;
3b1429d9 795 bool found = false;
6ba770dc
AJ
796 /* approximately equals target * 0.00585 */
797 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
798
799 memset(best_clock, 0, sizeof(*best_clock));
3b1429d9
VS
800
801 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
802
d4906093 803 max_n = limit->n.max;
f77f13e2 804 /* based on hardware requirement, prefer smaller n to precision */
d4906093 805 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 806 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
807 for (clock.m1 = limit->m1.max;
808 clock.m1 >= limit->m1.min; clock.m1--) {
809 for (clock.m2 = limit->m2.max;
810 clock.m2 >= limit->m2.min; clock.m2--) {
811 for (clock.p1 = limit->p1.max;
812 clock.p1 >= limit->p1.min; clock.p1--) {
813 int this_err;
814
dccbea3b 815 i9xx_calc_dpll_params(refclk, &clock);
1b894b59
CW
816 if (!intel_PLL_is_valid(dev, limit,
817 &clock))
d4906093 818 continue;
1b894b59
CW
819
820 this_err = abs(clock.dot - target);
d4906093
ML
821 if (this_err < err_most) {
822 *best_clock = clock;
823 err_most = this_err;
824 max_n = clock.n;
825 found = true;
826 }
827 }
828 }
829 }
830 }
2c07245f
ZW
831 return found;
832}
833
d5dd62bd
ID
834/*
835 * Check if the calculated PLL configuration is more optimal compared to the
836 * best configuration and error found so far. Return the calculated error.
837 */
838static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
9e2c8475
ACO
839 const struct dpll *calculated_clock,
840 const struct dpll *best_clock,
d5dd62bd
ID
841 unsigned int best_error_ppm,
842 unsigned int *error_ppm)
843{
9ca3ba01
ID
844 /*
845 * For CHV ignore the error and consider only the P value.
846 * Prefer a bigger P value based on HW requirements.
847 */
848 if (IS_CHERRYVIEW(dev)) {
849 *error_ppm = 0;
850
851 return calculated_clock->p > best_clock->p;
852 }
853
24be4e46
ID
854 if (WARN_ON_ONCE(!target_freq))
855 return false;
856
d5dd62bd
ID
857 *error_ppm = div_u64(1000000ULL *
858 abs(target_freq - calculated_clock->dot),
859 target_freq);
860 /*
861 * Prefer a better P value over a better (smaller) error if the error
862 * is small. Ensure this preference for future configurations too by
863 * setting the error to 0.
864 */
865 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
866 *error_ppm = 0;
867
868 return true;
869 }
870
871 return *error_ppm + 10 < best_error_ppm;
872}
873
65b3d6a9
ACO
874/*
875 * Returns a set of divisors for the desired target clock with the given
876 * refclk, or FALSE. The returned values represent the clock equation:
877 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
878 */
a0c4da24 879static bool
1b6f4958 880vlv_find_best_dpll(const struct intel_limit *limit,
a93e255f 881 struct intel_crtc_state *crtc_state,
9e2c8475
ACO
882 int target, int refclk, struct dpll *match_clock,
883 struct dpll *best_clock)
a0c4da24 884{
a93e255f 885 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
a919ff14 886 struct drm_device *dev = crtc->base.dev;
9e2c8475 887 struct dpll clock;
69e4f900 888 unsigned int bestppm = 1000000;
27e639bf
VS
889 /* min update 19.2 MHz */
890 int max_n = min(limit->n.max, refclk / 19200);
49e497ef 891 bool found = false;
a0c4da24 892
6b4bf1c4
VS
893 target *= 5; /* fast clock */
894
895 memset(best_clock, 0, sizeof(*best_clock));
a0c4da24
JB
896
897 /* based on hardware requirement, prefer smaller n to precision */
27e639bf 898 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
811bbf05 899 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
889059d8 900 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
c1a9ae43 901 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
6b4bf1c4 902 clock.p = clock.p1 * clock.p2;
a0c4da24 903 /* based on hardware requirement, prefer bigger m1,m2 values */
6b4bf1c4 904 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
d5dd62bd 905 unsigned int ppm;
69e4f900 906
6b4bf1c4
VS
907 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
908 refclk * clock.m1);
909
dccbea3b 910 vlv_calc_dpll_params(refclk, &clock);
43b0ac53 911
f01b7962
VS
912 if (!intel_PLL_is_valid(dev, limit,
913 &clock))
43b0ac53
VS
914 continue;
915
d5dd62bd
ID
916 if (!vlv_PLL_is_optimal(dev, target,
917 &clock,
918 best_clock,
919 bestppm, &ppm))
920 continue;
6b4bf1c4 921
d5dd62bd
ID
922 *best_clock = clock;
923 bestppm = ppm;
924 found = true;
a0c4da24
JB
925 }
926 }
927 }
928 }
a0c4da24 929
49e497ef 930 return found;
a0c4da24 931}
a4fc5ed6 932
65b3d6a9
ACO
933/*
934 * Returns a set of divisors for the desired target clock with the given
935 * refclk, or FALSE. The returned values represent the clock equation:
936 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
937 */
ef9348c8 938static bool
1b6f4958 939chv_find_best_dpll(const struct intel_limit *limit,
a93e255f 940 struct intel_crtc_state *crtc_state,
9e2c8475
ACO
941 int target, int refclk, struct dpll *match_clock,
942 struct dpll *best_clock)
ef9348c8 943{
a93e255f 944 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
a919ff14 945 struct drm_device *dev = crtc->base.dev;
9ca3ba01 946 unsigned int best_error_ppm;
9e2c8475 947 struct dpll clock;
ef9348c8
CML
948 uint64_t m2;
949 int found = false;
950
951 memset(best_clock, 0, sizeof(*best_clock));
9ca3ba01 952 best_error_ppm = 1000000;
ef9348c8
CML
953
954 /*
955 * Based on hardware doc, the n always set to 1, and m1 always
956 * set to 2. If requires to support 200Mhz refclk, we need to
957 * revisit this because n may not 1 anymore.
958 */
959 clock.n = 1, clock.m1 = 2;
960 target *= 5; /* fast clock */
961
962 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
963 for (clock.p2 = limit->p2.p2_fast;
964 clock.p2 >= limit->p2.p2_slow;
965 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
9ca3ba01 966 unsigned int error_ppm;
ef9348c8
CML
967
968 clock.p = clock.p1 * clock.p2;
969
970 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
971 clock.n) << 22, refclk * clock.m1);
972
973 if (m2 > INT_MAX/clock.m1)
974 continue;
975
976 clock.m2 = m2;
977
dccbea3b 978 chv_calc_dpll_params(refclk, &clock);
ef9348c8
CML
979
980 if (!intel_PLL_is_valid(dev, limit, &clock))
981 continue;
982
9ca3ba01
ID
983 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
984 best_error_ppm, &error_ppm))
985 continue;
986
987 *best_clock = clock;
988 best_error_ppm = error_ppm;
989 found = true;
ef9348c8
CML
990 }
991 }
992
993 return found;
994}
995
5ab7b0b7 996bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
9e2c8475 997 struct dpll *best_clock)
5ab7b0b7 998{
65b3d6a9 999 int refclk = 100000;
1b6f4958 1000 const struct intel_limit *limit = &intel_limits_bxt;
5ab7b0b7 1001
65b3d6a9 1002 return chv_find_best_dpll(limit, crtc_state,
5ab7b0b7
ID
1003 target_clock, refclk, NULL, best_clock);
1004}
1005
20ddf665
VS
1006bool intel_crtc_active(struct drm_crtc *crtc)
1007{
1008 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1009
1010 /* Be paranoid as we can arrive here with only partial
1011 * state retrieved from the hardware during setup.
1012 *
241bfc38 1013 * We can ditch the adjusted_mode.crtc_clock check as soon
20ddf665
VS
1014 * as Haswell has gained clock readout/fastboot support.
1015 *
66e514c1 1016 * We can ditch the crtc->primary->fb check as soon as we can
20ddf665 1017 * properly reconstruct framebuffers.
c3d1f436
MR
1018 *
1019 * FIXME: The intel_crtc->active here should be switched to
1020 * crtc->state->active once we have proper CRTC states wired up
1021 * for atomic.
20ddf665 1022 */
c3d1f436 1023 return intel_crtc->active && crtc->primary->state->fb &&
6e3c9717 1024 intel_crtc->config->base.adjusted_mode.crtc_clock;
20ddf665
VS
1025}
1026
a5c961d1
PZ
1027enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1028 enum pipe pipe)
1029{
1030 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1031 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1032
6e3c9717 1033 return intel_crtc->config->cpu_transcoder;
a5c961d1
PZ
1034}
1035
fbf49ea2
VS
1036static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1037{
fac5e23e 1038 struct drm_i915_private *dev_priv = to_i915(dev);
f0f59a00 1039 i915_reg_t reg = PIPEDSL(pipe);
fbf49ea2
VS
1040 u32 line1, line2;
1041 u32 line_mask;
1042
1043 if (IS_GEN2(dev))
1044 line_mask = DSL_LINEMASK_GEN2;
1045 else
1046 line_mask = DSL_LINEMASK_GEN3;
1047
1048 line1 = I915_READ(reg) & line_mask;
6adfb1ef 1049 msleep(5);
fbf49ea2
VS
1050 line2 = I915_READ(reg) & line_mask;
1051
1052 return line1 == line2;
1053}
1054
ab7ad7f6
KP
1055/*
1056 * intel_wait_for_pipe_off - wait for pipe to turn off
575f7ab7 1057 * @crtc: crtc whose pipe to wait for
9d0498a2
JB
1058 *
1059 * After disabling a pipe, we can't wait for vblank in the usual way,
1060 * spinning on the vblank interrupt status bit, since we won't actually
1061 * see an interrupt when the pipe is disabled.
1062 *
ab7ad7f6
KP
1063 * On Gen4 and above:
1064 * wait for the pipe register state bit to turn off
1065 *
1066 * Otherwise:
1067 * wait for the display line value to settle (it usually
1068 * ends up stopping at the start of the next frame).
58e10eb9 1069 *
9d0498a2 1070 */
575f7ab7 1071static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
9d0498a2 1072{
575f7ab7 1073 struct drm_device *dev = crtc->base.dev;
fac5e23e 1074 struct drm_i915_private *dev_priv = to_i915(dev);
6e3c9717 1075 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
575f7ab7 1076 enum pipe pipe = crtc->pipe;
ab7ad7f6
KP
1077
1078 if (INTEL_INFO(dev)->gen >= 4) {
f0f59a00 1079 i915_reg_t reg = PIPECONF(cpu_transcoder);
ab7ad7f6
KP
1080
1081 /* Wait for the Pipe State to go off */
b8511f53
CW
1082 if (intel_wait_for_register(dev_priv,
1083 reg, I965_PIPECONF_ACTIVE, 0,
1084 100))
284637d9 1085 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 1086 } else {
ab7ad7f6 1087 /* Wait for the display line to settle */
fbf49ea2 1088 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
284637d9 1089 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 1090 }
79e53945
JB
1091}
1092
b24e7179 1093/* Only for pre-ILK configs */
55607e8a
DV
1094void assert_pll(struct drm_i915_private *dev_priv,
1095 enum pipe pipe, bool state)
b24e7179 1096{
b24e7179
JB
1097 u32 val;
1098 bool cur_state;
1099
649636ef 1100 val = I915_READ(DPLL(pipe));
b24e7179 1101 cur_state = !!(val & DPLL_VCO_ENABLE);
e2c719b7 1102 I915_STATE_WARN(cur_state != state,
b24e7179 1103 "PLL state assertion failure (expected %s, current %s)\n",
87ad3212 1104 onoff(state), onoff(cur_state));
b24e7179 1105}
b24e7179 1106
23538ef1 1107/* XXX: the dsi pll is shared between MIPI DSI ports */
8563b1e8 1108void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
23538ef1
JN
1109{
1110 u32 val;
1111 bool cur_state;
1112
a580516d 1113 mutex_lock(&dev_priv->sb_lock);
23538ef1 1114 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
a580516d 1115 mutex_unlock(&dev_priv->sb_lock);
23538ef1
JN
1116
1117 cur_state = val & DSI_PLL_VCO_EN;
e2c719b7 1118 I915_STATE_WARN(cur_state != state,
23538ef1 1119 "DSI PLL state assertion failure (expected %s, current %s)\n",
87ad3212 1120 onoff(state), onoff(cur_state));
23538ef1 1121}
23538ef1 1122
040484af
JB
1123static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1124 enum pipe pipe, bool state)
1125{
040484af 1126 bool cur_state;
ad80a810
PZ
1127 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1128 pipe);
040484af 1129
2d1fe073 1130 if (HAS_DDI(dev_priv)) {
affa9354 1131 /* DDI does not have a specific FDI_TX register */
649636ef 1132 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
ad80a810 1133 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
bf507ef7 1134 } else {
649636ef 1135 u32 val = I915_READ(FDI_TX_CTL(pipe));
bf507ef7
ED
1136 cur_state = !!(val & FDI_TX_ENABLE);
1137 }
e2c719b7 1138 I915_STATE_WARN(cur_state != state,
040484af 1139 "FDI TX state assertion failure (expected %s, current %s)\n",
87ad3212 1140 onoff(state), onoff(cur_state));
040484af
JB
1141}
1142#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1143#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1144
1145static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1146 enum pipe pipe, bool state)
1147{
040484af
JB
1148 u32 val;
1149 bool cur_state;
1150
649636ef 1151 val = I915_READ(FDI_RX_CTL(pipe));
d63fa0dc 1152 cur_state = !!(val & FDI_RX_ENABLE);
e2c719b7 1153 I915_STATE_WARN(cur_state != state,
040484af 1154 "FDI RX state assertion failure (expected %s, current %s)\n",
87ad3212 1155 onoff(state), onoff(cur_state));
040484af
JB
1156}
1157#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1158#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1159
1160static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1161 enum pipe pipe)
1162{
040484af
JB
1163 u32 val;
1164
1165 /* ILK FDI PLL is always enabled */
7e22dbbb 1166 if (IS_GEN5(dev_priv))
040484af
JB
1167 return;
1168
bf507ef7 1169 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
2d1fe073 1170 if (HAS_DDI(dev_priv))
bf507ef7
ED
1171 return;
1172
649636ef 1173 val = I915_READ(FDI_TX_CTL(pipe));
e2c719b7 1174 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
040484af
JB
1175}
1176
55607e8a
DV
1177void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1178 enum pipe pipe, bool state)
040484af 1179{
040484af 1180 u32 val;
55607e8a 1181 bool cur_state;
040484af 1182
649636ef 1183 val = I915_READ(FDI_RX_CTL(pipe));
55607e8a 1184 cur_state = !!(val & FDI_RX_PLL_ENABLE);
e2c719b7 1185 I915_STATE_WARN(cur_state != state,
55607e8a 1186 "FDI RX PLL assertion failure (expected %s, current %s)\n",
87ad3212 1187 onoff(state), onoff(cur_state));
040484af
JB
1188}
1189
b680c37a
DV
1190void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1191 enum pipe pipe)
ea0760cf 1192{
91c8a326 1193 struct drm_device *dev = &dev_priv->drm;
f0f59a00 1194 i915_reg_t pp_reg;
ea0760cf
JB
1195 u32 val;
1196 enum pipe panel_pipe = PIPE_A;
0de3b485 1197 bool locked = true;
ea0760cf 1198
bedd4dba
JN
1199 if (WARN_ON(HAS_DDI(dev)))
1200 return;
1201
1202 if (HAS_PCH_SPLIT(dev)) {
1203 u32 port_sel;
1204
44cb734c
ID
1205 pp_reg = PP_CONTROL(0);
1206 port_sel = I915_READ(PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK;
bedd4dba
JN
1207
1208 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1209 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1210 panel_pipe = PIPE_B;
1211 /* XXX: else fix for eDP */
666a4537 1212 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
bedd4dba 1213 /* presumably write lock depends on pipe, not port select */
44cb734c 1214 pp_reg = PP_CONTROL(pipe);
bedd4dba 1215 panel_pipe = pipe;
ea0760cf 1216 } else {
44cb734c 1217 pp_reg = PP_CONTROL(0);
bedd4dba
JN
1218 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1219 panel_pipe = PIPE_B;
ea0760cf
JB
1220 }
1221
1222 val = I915_READ(pp_reg);
1223 if (!(val & PANEL_POWER_ON) ||
ec49ba2d 1224 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
ea0760cf
JB
1225 locked = false;
1226
e2c719b7 1227 I915_STATE_WARN(panel_pipe == pipe && locked,
ea0760cf 1228 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 1229 pipe_name(pipe));
ea0760cf
JB
1230}
1231
93ce0ba6
JN
1232static void assert_cursor(struct drm_i915_private *dev_priv,
1233 enum pipe pipe, bool state)
1234{
91c8a326 1235 struct drm_device *dev = &dev_priv->drm;
93ce0ba6
JN
1236 bool cur_state;
1237
d9d82081 1238 if (IS_845G(dev) || IS_I865G(dev))
0b87c24e 1239 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
d9d82081 1240 else
5efb3e28 1241 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
93ce0ba6 1242
e2c719b7 1243 I915_STATE_WARN(cur_state != state,
93ce0ba6 1244 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
87ad3212 1245 pipe_name(pipe), onoff(state), onoff(cur_state));
93ce0ba6
JN
1246}
1247#define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1248#define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1249
b840d907
JB
1250void assert_pipe(struct drm_i915_private *dev_priv,
1251 enum pipe pipe, bool state)
b24e7179 1252{
63d7bbe9 1253 bool cur_state;
702e7a56
PZ
1254 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1255 pipe);
4feed0eb 1256 enum intel_display_power_domain power_domain;
b24e7179 1257
b6b5d049
VS
1258 /* if we need the pipe quirk it must be always on */
1259 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1260 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
8e636784
DV
1261 state = true;
1262
4feed0eb
ID
1263 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1264 if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
649636ef 1265 u32 val = I915_READ(PIPECONF(cpu_transcoder));
69310161 1266 cur_state = !!(val & PIPECONF_ENABLE);
4feed0eb
ID
1267
1268 intel_display_power_put(dev_priv, power_domain);
1269 } else {
1270 cur_state = false;
69310161
PZ
1271 }
1272
e2c719b7 1273 I915_STATE_WARN(cur_state != state,
63d7bbe9 1274 "pipe %c assertion failure (expected %s, current %s)\n",
87ad3212 1275 pipe_name(pipe), onoff(state), onoff(cur_state));
b24e7179
JB
1276}
1277
931872fc
CW
1278static void assert_plane(struct drm_i915_private *dev_priv,
1279 enum plane plane, bool state)
b24e7179 1280{
b24e7179 1281 u32 val;
931872fc 1282 bool cur_state;
b24e7179 1283
649636ef 1284 val = I915_READ(DSPCNTR(plane));
931872fc 1285 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
e2c719b7 1286 I915_STATE_WARN(cur_state != state,
931872fc 1287 "plane %c assertion failure (expected %s, current %s)\n",
87ad3212 1288 plane_name(plane), onoff(state), onoff(cur_state));
b24e7179
JB
1289}
1290
931872fc
CW
1291#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1292#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1293
b24e7179
JB
1294static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1295 enum pipe pipe)
1296{
91c8a326 1297 struct drm_device *dev = &dev_priv->drm;
649636ef 1298 int i;
b24e7179 1299
653e1026
VS
1300 /* Primary planes are fixed to pipes on gen4+ */
1301 if (INTEL_INFO(dev)->gen >= 4) {
649636ef 1302 u32 val = I915_READ(DSPCNTR(pipe));
e2c719b7 1303 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
28c05794
AJ
1304 "plane %c assertion failure, should be disabled but not\n",
1305 plane_name(pipe));
19ec1358 1306 return;
28c05794 1307 }
19ec1358 1308
b24e7179 1309 /* Need to check both planes against the pipe */
055e393f 1310 for_each_pipe(dev_priv, i) {
649636ef
VS
1311 u32 val = I915_READ(DSPCNTR(i));
1312 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
b24e7179 1313 DISPPLANE_SEL_PIPE_SHIFT;
e2c719b7 1314 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
1315 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1316 plane_name(i), pipe_name(pipe));
b24e7179
JB
1317 }
1318}
1319
19332d7a
JB
1320static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1321 enum pipe pipe)
1322{
91c8a326 1323 struct drm_device *dev = &dev_priv->drm;
649636ef 1324 int sprite;
19332d7a 1325
7feb8b88 1326 if (INTEL_INFO(dev)->gen >= 9) {
3bdcfc0c 1327 for_each_sprite(dev_priv, pipe, sprite) {
649636ef 1328 u32 val = I915_READ(PLANE_CTL(pipe, sprite));
e2c719b7 1329 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
7feb8b88
DL
1330 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1331 sprite, pipe_name(pipe));
1332 }
666a4537 1333 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
3bdcfc0c 1334 for_each_sprite(dev_priv, pipe, sprite) {
649636ef 1335 u32 val = I915_READ(SPCNTR(pipe, sprite));
e2c719b7 1336 I915_STATE_WARN(val & SP_ENABLE,
20674eef 1337 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1fe47785 1338 sprite_name(pipe, sprite), pipe_name(pipe));
20674eef
VS
1339 }
1340 } else if (INTEL_INFO(dev)->gen >= 7) {
649636ef 1341 u32 val = I915_READ(SPRCTL(pipe));
e2c719b7 1342 I915_STATE_WARN(val & SPRITE_ENABLE,
06da8da2 1343 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef
VS
1344 plane_name(pipe), pipe_name(pipe));
1345 } else if (INTEL_INFO(dev)->gen >= 5) {
649636ef 1346 u32 val = I915_READ(DVSCNTR(pipe));
e2c719b7 1347 I915_STATE_WARN(val & DVS_ENABLE,
06da8da2 1348 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef 1349 plane_name(pipe), pipe_name(pipe));
19332d7a
JB
1350 }
1351}
1352
08c71e5e
VS
1353static void assert_vblank_disabled(struct drm_crtc *crtc)
1354{
e2c719b7 1355 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
08c71e5e
VS
1356 drm_crtc_vblank_put(crtc);
1357}
1358
7abd4b35
ACO
1359void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1360 enum pipe pipe)
92f2584a 1361{
92f2584a
JB
1362 u32 val;
1363 bool enabled;
1364
649636ef 1365 val = I915_READ(PCH_TRANSCONF(pipe));
92f2584a 1366 enabled = !!(val & TRANS_ENABLE);
e2c719b7 1367 I915_STATE_WARN(enabled,
9db4a9c7
JB
1368 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1369 pipe_name(pipe));
92f2584a
JB
1370}
1371
4e634389
KP
1372static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1373 enum pipe pipe, u32 port_sel, u32 val)
f0575e92
KP
1374{
1375 if ((val & DP_PORT_EN) == 0)
1376 return false;
1377
2d1fe073 1378 if (HAS_PCH_CPT(dev_priv)) {
f0f59a00 1379 u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
f0575e92
KP
1380 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1381 return false;
2d1fe073 1382 } else if (IS_CHERRYVIEW(dev_priv)) {
44f37d1f
CML
1383 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1384 return false;
f0575e92
KP
1385 } else {
1386 if ((val & DP_PIPE_MASK) != (pipe << 30))
1387 return false;
1388 }
1389 return true;
1390}
1391
1519b995
KP
1392static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1393 enum pipe pipe, u32 val)
1394{
dc0fa718 1395 if ((val & SDVO_ENABLE) == 0)
1519b995
KP
1396 return false;
1397
2d1fe073 1398 if (HAS_PCH_CPT(dev_priv)) {
dc0fa718 1399 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1519b995 1400 return false;
2d1fe073 1401 } else if (IS_CHERRYVIEW(dev_priv)) {
44f37d1f
CML
1402 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1403 return false;
1519b995 1404 } else {
dc0fa718 1405 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1519b995
KP
1406 return false;
1407 }
1408 return true;
1409}
1410
1411static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1412 enum pipe pipe, u32 val)
1413{
1414 if ((val & LVDS_PORT_EN) == 0)
1415 return false;
1416
2d1fe073 1417 if (HAS_PCH_CPT(dev_priv)) {
1519b995
KP
1418 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1419 return false;
1420 } else {
1421 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1422 return false;
1423 }
1424 return true;
1425}
1426
1427static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1428 enum pipe pipe, u32 val)
1429{
1430 if ((val & ADPA_DAC_ENABLE) == 0)
1431 return false;
2d1fe073 1432 if (HAS_PCH_CPT(dev_priv)) {
1519b995
KP
1433 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1434 return false;
1435 } else {
1436 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1437 return false;
1438 }
1439 return true;
1440}
1441
291906f1 1442static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0f59a00
VS
1443 enum pipe pipe, i915_reg_t reg,
1444 u32 port_sel)
291906f1 1445{
47a05eca 1446 u32 val = I915_READ(reg);
e2c719b7 1447 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
291906f1 1448 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
f0f59a00 1449 i915_mmio_reg_offset(reg), pipe_name(pipe));
de9a35ab 1450
2d1fe073 1451 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & DP_PORT_EN) == 0
75c5da27 1452 && (val & DP_PIPEB_SELECT),
de9a35ab 1453 "IBX PCH dp port still using transcoder B\n");
291906f1
JB
1454}
1455
1456static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
f0f59a00 1457 enum pipe pipe, i915_reg_t reg)
291906f1 1458{
47a05eca 1459 u32 val = I915_READ(reg);
e2c719b7 1460 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
23c99e77 1461 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
f0f59a00 1462 i915_mmio_reg_offset(reg), pipe_name(pipe));
de9a35ab 1463
2d1fe073 1464 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & SDVO_ENABLE) == 0
75c5da27 1465 && (val & SDVO_PIPE_B_SELECT),
de9a35ab 1466 "IBX PCH hdmi port still using transcoder B\n");
291906f1
JB
1467}
1468
1469static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1470 enum pipe pipe)
1471{
291906f1 1472 u32 val;
291906f1 1473
f0575e92
KP
1474 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1475 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1476 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1 1477
649636ef 1478 val = I915_READ(PCH_ADPA);
e2c719b7 1479 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
291906f1 1480 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1481 pipe_name(pipe));
291906f1 1482
649636ef 1483 val = I915_READ(PCH_LVDS);
e2c719b7 1484 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
291906f1 1485 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1486 pipe_name(pipe));
291906f1 1487
e2debe91
PZ
1488 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1489 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1490 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
291906f1
JB
1491}
1492
cd2d34d9
VS
1493static void _vlv_enable_pll(struct intel_crtc *crtc,
1494 const struct intel_crtc_state *pipe_config)
1495{
1496 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1497 enum pipe pipe = crtc->pipe;
1498
1499 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1500 POSTING_READ(DPLL(pipe));
1501 udelay(150);
1502
2c30b43b
CW
1503 if (intel_wait_for_register(dev_priv,
1504 DPLL(pipe),
1505 DPLL_LOCK_VLV,
1506 DPLL_LOCK_VLV,
1507 1))
cd2d34d9
VS
1508 DRM_ERROR("DPLL %d failed to lock\n", pipe);
1509}
1510
d288f65f 1511static void vlv_enable_pll(struct intel_crtc *crtc,
5cec258b 1512 const struct intel_crtc_state *pipe_config)
87442f73 1513{
cd2d34d9 1514 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8bd3f301 1515 enum pipe pipe = crtc->pipe;
87442f73 1516
8bd3f301 1517 assert_pipe_disabled(dev_priv, pipe);
87442f73 1518
87442f73 1519 /* PLL is protected by panel, make sure we can write it */
7d1a83cb 1520 assert_panel_unlocked(dev_priv, pipe);
87442f73 1521
cd2d34d9
VS
1522 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1523 _vlv_enable_pll(crtc, pipe_config);
426115cf 1524
8bd3f301
VS
1525 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1526 POSTING_READ(DPLL_MD(pipe));
87442f73
DV
1527}
1528
cd2d34d9
VS
1529
1530static void _chv_enable_pll(struct intel_crtc *crtc,
1531 const struct intel_crtc_state *pipe_config)
9d556c99 1532{
cd2d34d9 1533 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8bd3f301 1534 enum pipe pipe = crtc->pipe;
9d556c99 1535 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9d556c99
CML
1536 u32 tmp;
1537
a580516d 1538 mutex_lock(&dev_priv->sb_lock);
9d556c99
CML
1539
1540 /* Enable back the 10bit clock to display controller */
1541 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1542 tmp |= DPIO_DCLKP_EN;
1543 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1544
54433e91
VS
1545 mutex_unlock(&dev_priv->sb_lock);
1546
9d556c99
CML
1547 /*
1548 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1549 */
1550 udelay(1);
1551
1552 /* Enable PLL */
d288f65f 1553 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
9d556c99
CML
1554
1555 /* Check PLL is locked */
6b18826a
CW
1556 if (intel_wait_for_register(dev_priv,
1557 DPLL(pipe), DPLL_LOCK_VLV, DPLL_LOCK_VLV,
1558 1))
9d556c99 1559 DRM_ERROR("PLL %d failed to lock\n", pipe);
cd2d34d9
VS
1560}
1561
1562static void chv_enable_pll(struct intel_crtc *crtc,
1563 const struct intel_crtc_state *pipe_config)
1564{
1565 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1566 enum pipe pipe = crtc->pipe;
1567
1568 assert_pipe_disabled(dev_priv, pipe);
1569
1570 /* PLL is protected by panel, make sure we can write it */
1571 assert_panel_unlocked(dev_priv, pipe);
1572
1573 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1574 _chv_enable_pll(crtc, pipe_config);
9d556c99 1575
c231775c
VS
1576 if (pipe != PIPE_A) {
1577 /*
1578 * WaPixelRepeatModeFixForC0:chv
1579 *
1580 * DPLLCMD is AWOL. Use chicken bits to propagate
1581 * the value from DPLLBMD to either pipe B or C.
1582 */
1583 I915_WRITE(CBR4_VLV, pipe == PIPE_B ? CBR_DPLLBMD_PIPE_B : CBR_DPLLBMD_PIPE_C);
1584 I915_WRITE(DPLL_MD(PIPE_B), pipe_config->dpll_hw_state.dpll_md);
1585 I915_WRITE(CBR4_VLV, 0);
1586 dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
1587
1588 /*
1589 * DPLLB VGA mode also seems to cause problems.
1590 * We should always have it disabled.
1591 */
1592 WARN_ON((I915_READ(DPLL(PIPE_B)) & DPLL_VGA_MODE_DIS) == 0);
1593 } else {
1594 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1595 POSTING_READ(DPLL_MD(pipe));
1596 }
9d556c99
CML
1597}
1598
1c4e0274
VS
1599static int intel_num_dvo_pipes(struct drm_device *dev)
1600{
1601 struct intel_crtc *crtc;
1602 int count = 0;
1603
2d84d2b3 1604 for_each_intel_crtc(dev, crtc) {
3538b9df 1605 count += crtc->base.state->active &&
2d84d2b3
VS
1606 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO);
1607 }
1c4e0274
VS
1608
1609 return count;
1610}
1611
66e3d5c0 1612static void i9xx_enable_pll(struct intel_crtc *crtc)
63d7bbe9 1613{
66e3d5c0 1614 struct drm_device *dev = crtc->base.dev;
fac5e23e 1615 struct drm_i915_private *dev_priv = to_i915(dev);
f0f59a00 1616 i915_reg_t reg = DPLL(crtc->pipe);
6e3c9717 1617 u32 dpll = crtc->config->dpll_hw_state.dpll;
63d7bbe9 1618
66e3d5c0 1619 assert_pipe_disabled(dev_priv, crtc->pipe);
58c6eaa2 1620
63d7bbe9 1621 /* PLL is protected by panel, make sure we can write it */
66e3d5c0
DV
1622 if (IS_MOBILE(dev) && !IS_I830(dev))
1623 assert_panel_unlocked(dev_priv, crtc->pipe);
63d7bbe9 1624
1c4e0274
VS
1625 /* Enable DVO 2x clock on both PLLs if necessary */
1626 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1627 /*
1628 * It appears to be important that we don't enable this
1629 * for the current pipe before otherwise configuring the
1630 * PLL. No idea how this should be handled if multiple
1631 * DVO outputs are enabled simultaneosly.
1632 */
1633 dpll |= DPLL_DVO_2X_MODE;
1634 I915_WRITE(DPLL(!crtc->pipe),
1635 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1636 }
66e3d5c0 1637
c2b63374
VS
1638 /*
1639 * Apparently we need to have VGA mode enabled prior to changing
1640 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1641 * dividers, even though the register value does change.
1642 */
1643 I915_WRITE(reg, 0);
1644
8e7a65aa
VS
1645 I915_WRITE(reg, dpll);
1646
66e3d5c0
DV
1647 /* Wait for the clocks to stabilize. */
1648 POSTING_READ(reg);
1649 udelay(150);
1650
1651 if (INTEL_INFO(dev)->gen >= 4) {
1652 I915_WRITE(DPLL_MD(crtc->pipe),
6e3c9717 1653 crtc->config->dpll_hw_state.dpll_md);
66e3d5c0
DV
1654 } else {
1655 /* The pixel multiplier can only be updated once the
1656 * DPLL is enabled and the clocks are stable.
1657 *
1658 * So write it again.
1659 */
1660 I915_WRITE(reg, dpll);
1661 }
63d7bbe9
JB
1662
1663 /* We do this three times for luck */
66e3d5c0 1664 I915_WRITE(reg, dpll);
63d7bbe9
JB
1665 POSTING_READ(reg);
1666 udelay(150); /* wait for warmup */
66e3d5c0 1667 I915_WRITE(reg, dpll);
63d7bbe9
JB
1668 POSTING_READ(reg);
1669 udelay(150); /* wait for warmup */
66e3d5c0 1670 I915_WRITE(reg, dpll);
63d7bbe9
JB
1671 POSTING_READ(reg);
1672 udelay(150); /* wait for warmup */
1673}
1674
1675/**
50b44a44 1676 * i9xx_disable_pll - disable a PLL
63d7bbe9
JB
1677 * @dev_priv: i915 private structure
1678 * @pipe: pipe PLL to disable
1679 *
1680 * Disable the PLL for @pipe, making sure the pipe is off first.
1681 *
1682 * Note! This is for pre-ILK only.
1683 */
1c4e0274 1684static void i9xx_disable_pll(struct intel_crtc *crtc)
63d7bbe9 1685{
1c4e0274 1686 struct drm_device *dev = crtc->base.dev;
fac5e23e 1687 struct drm_i915_private *dev_priv = to_i915(dev);
1c4e0274
VS
1688 enum pipe pipe = crtc->pipe;
1689
1690 /* Disable DVO 2x clock on both PLLs if necessary */
1691 if (IS_I830(dev) &&
2d84d2b3 1692 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO) &&
3538b9df 1693 !intel_num_dvo_pipes(dev)) {
1c4e0274
VS
1694 I915_WRITE(DPLL(PIPE_B),
1695 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1696 I915_WRITE(DPLL(PIPE_A),
1697 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1698 }
1699
b6b5d049
VS
1700 /* Don't disable pipe or pipe PLLs if needed */
1701 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1702 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
63d7bbe9
JB
1703 return;
1704
1705 /* Make sure the pipe isn't still relying on us */
1706 assert_pipe_disabled(dev_priv, pipe);
1707
b8afb911 1708 I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
50b44a44 1709 POSTING_READ(DPLL(pipe));
63d7bbe9
JB
1710}
1711
f6071166
JB
1712static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1713{
b8afb911 1714 u32 val;
f6071166
JB
1715
1716 /* Make sure the pipe isn't still relying on us */
1717 assert_pipe_disabled(dev_priv, pipe);
1718
03ed5cbf
VS
1719 val = DPLL_INTEGRATED_REF_CLK_VLV |
1720 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1721 if (pipe != PIPE_A)
1722 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1723
f6071166
JB
1724 I915_WRITE(DPLL(pipe), val);
1725 POSTING_READ(DPLL(pipe));
076ed3b2
CML
1726}
1727
1728static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1729{
d752048d 1730 enum dpio_channel port = vlv_pipe_to_channel(pipe);
076ed3b2
CML
1731 u32 val;
1732
a11b0703
VS
1733 /* Make sure the pipe isn't still relying on us */
1734 assert_pipe_disabled(dev_priv, pipe);
076ed3b2 1735
60bfe44f
VS
1736 val = DPLL_SSC_REF_CLK_CHV |
1737 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
a11b0703
VS
1738 if (pipe != PIPE_A)
1739 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
03ed5cbf 1740
a11b0703
VS
1741 I915_WRITE(DPLL(pipe), val);
1742 POSTING_READ(DPLL(pipe));
d752048d 1743
a580516d 1744 mutex_lock(&dev_priv->sb_lock);
d752048d
VS
1745
1746 /* Disable 10bit clock to display controller */
1747 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1748 val &= ~DPIO_DCLKP_EN;
1749 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1750
a580516d 1751 mutex_unlock(&dev_priv->sb_lock);
f6071166
JB
1752}
1753
e4607fcf 1754void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
9b6de0a1
VS
1755 struct intel_digital_port *dport,
1756 unsigned int expected_mask)
89b667f8
JB
1757{
1758 u32 port_mask;
f0f59a00 1759 i915_reg_t dpll_reg;
89b667f8 1760
e4607fcf
CML
1761 switch (dport->port) {
1762 case PORT_B:
89b667f8 1763 port_mask = DPLL_PORTB_READY_MASK;
00fc31b7 1764 dpll_reg = DPLL(0);
e4607fcf
CML
1765 break;
1766 case PORT_C:
89b667f8 1767 port_mask = DPLL_PORTC_READY_MASK;
00fc31b7 1768 dpll_reg = DPLL(0);
9b6de0a1 1769 expected_mask <<= 4;
00fc31b7
CML
1770 break;
1771 case PORT_D:
1772 port_mask = DPLL_PORTD_READY_MASK;
1773 dpll_reg = DPIO_PHY_STATUS;
e4607fcf
CML
1774 break;
1775 default:
1776 BUG();
1777 }
89b667f8 1778
370004d3
CW
1779 if (intel_wait_for_register(dev_priv,
1780 dpll_reg, port_mask, expected_mask,
1781 1000))
9b6de0a1
VS
1782 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1783 port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
89b667f8
JB
1784}
1785
b8a4f404
PZ
1786static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1787 enum pipe pipe)
040484af 1788{
91c8a326 1789 struct drm_device *dev = &dev_priv->drm;
7c26e5c6 1790 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
e2b78267 1791 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
f0f59a00
VS
1792 i915_reg_t reg;
1793 uint32_t val, pipeconf_val;
040484af 1794
040484af 1795 /* Make sure PCH DPLL is enabled */
8106ddbd 1796 assert_shared_dpll_enabled(dev_priv, intel_crtc->config->shared_dpll);
040484af
JB
1797
1798 /* FDI must be feeding us bits for PCH ports */
1799 assert_fdi_tx_enabled(dev_priv, pipe);
1800 assert_fdi_rx_enabled(dev_priv, pipe);
1801
23670b32
DV
1802 if (HAS_PCH_CPT(dev)) {
1803 /* Workaround: Set the timing override bit before enabling the
1804 * pch transcoder. */
1805 reg = TRANS_CHICKEN2(pipe);
1806 val = I915_READ(reg);
1807 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1808 I915_WRITE(reg, val);
59c859d6 1809 }
23670b32 1810
ab9412ba 1811 reg = PCH_TRANSCONF(pipe);
040484af 1812 val = I915_READ(reg);
5f7f726d 1813 pipeconf_val = I915_READ(PIPECONF(pipe));
e9bcff5c 1814
2d1fe073 1815 if (HAS_PCH_IBX(dev_priv)) {
e9bcff5c 1816 /*
c5de7c6f
VS
1817 * Make the BPC in transcoder be consistent with
1818 * that in pipeconf reg. For HDMI we must use 8bpc
1819 * here for both 8bpc and 12bpc.
e9bcff5c 1820 */
dfd07d72 1821 val &= ~PIPECONF_BPC_MASK;
2d84d2b3 1822 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_HDMI))
c5de7c6f
VS
1823 val |= PIPECONF_8BPC;
1824 else
1825 val |= pipeconf_val & PIPECONF_BPC_MASK;
e9bcff5c 1826 }
5f7f726d
PZ
1827
1828 val &= ~TRANS_INTERLACE_MASK;
1829 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
2d1fe073 1830 if (HAS_PCH_IBX(dev_priv) &&
2d84d2b3 1831 intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
7c26e5c6
PZ
1832 val |= TRANS_LEGACY_INTERLACED_ILK;
1833 else
1834 val |= TRANS_INTERLACED;
5f7f726d
PZ
1835 else
1836 val |= TRANS_PROGRESSIVE;
1837
040484af 1838 I915_WRITE(reg, val | TRANS_ENABLE);
650fbd84
CW
1839 if (intel_wait_for_register(dev_priv,
1840 reg, TRANS_STATE_ENABLE, TRANS_STATE_ENABLE,
1841 100))
4bb6f1f3 1842 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
040484af
JB
1843}
1844
8fb033d7 1845static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
937bb610 1846 enum transcoder cpu_transcoder)
040484af 1847{
8fb033d7 1848 u32 val, pipeconf_val;
8fb033d7 1849
8fb033d7 1850 /* FDI must be feeding us bits for PCH ports */
1a240d4d 1851 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
937bb610 1852 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
8fb033d7 1853
223a6fdf 1854 /* Workaround: set timing override bit. */
36c0d0cf 1855 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
23670b32 1856 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
36c0d0cf 1857 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
223a6fdf 1858
25f3ef11 1859 val = TRANS_ENABLE;
937bb610 1860 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
8fb033d7 1861
9a76b1c6
PZ
1862 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1863 PIPECONF_INTERLACED_ILK)
a35f2679 1864 val |= TRANS_INTERLACED;
8fb033d7
PZ
1865 else
1866 val |= TRANS_PROGRESSIVE;
1867
ab9412ba 1868 I915_WRITE(LPT_TRANSCONF, val);
d9f96244
CW
1869 if (intel_wait_for_register(dev_priv,
1870 LPT_TRANSCONF,
1871 TRANS_STATE_ENABLE,
1872 TRANS_STATE_ENABLE,
1873 100))
937bb610 1874 DRM_ERROR("Failed to enable PCH transcoder\n");
8fb033d7
PZ
1875}
1876
b8a4f404
PZ
1877static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1878 enum pipe pipe)
040484af 1879{
91c8a326 1880 struct drm_device *dev = &dev_priv->drm;
f0f59a00
VS
1881 i915_reg_t reg;
1882 uint32_t val;
040484af
JB
1883
1884 /* FDI relies on the transcoder */
1885 assert_fdi_tx_disabled(dev_priv, pipe);
1886 assert_fdi_rx_disabled(dev_priv, pipe);
1887
291906f1
JB
1888 /* Ports must be off as well */
1889 assert_pch_ports_disabled(dev_priv, pipe);
1890
ab9412ba 1891 reg = PCH_TRANSCONF(pipe);
040484af
JB
1892 val = I915_READ(reg);
1893 val &= ~TRANS_ENABLE;
1894 I915_WRITE(reg, val);
1895 /* wait for PCH transcoder off, transcoder state */
a7d04662
CW
1896 if (intel_wait_for_register(dev_priv,
1897 reg, TRANS_STATE_ENABLE, 0,
1898 50))
4bb6f1f3 1899 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
23670b32 1900
c465613b 1901 if (HAS_PCH_CPT(dev)) {
23670b32
DV
1902 /* Workaround: Clear the timing override chicken bit again. */
1903 reg = TRANS_CHICKEN2(pipe);
1904 val = I915_READ(reg);
1905 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1906 I915_WRITE(reg, val);
1907 }
040484af
JB
1908}
1909
b7076546 1910void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
8fb033d7 1911{
8fb033d7
PZ
1912 u32 val;
1913
ab9412ba 1914 val = I915_READ(LPT_TRANSCONF);
8fb033d7 1915 val &= ~TRANS_ENABLE;
ab9412ba 1916 I915_WRITE(LPT_TRANSCONF, val);
8fb033d7 1917 /* wait for PCH transcoder off, transcoder state */
dfdb4749
CW
1918 if (intel_wait_for_register(dev_priv,
1919 LPT_TRANSCONF, TRANS_STATE_ENABLE, 0,
1920 50))
8a52fd9f 1921 DRM_ERROR("Failed to disable PCH transcoder\n");
223a6fdf
PZ
1922
1923 /* Workaround: clear timing override bit. */
36c0d0cf 1924 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
23670b32 1925 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
36c0d0cf 1926 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
040484af
JB
1927}
1928
b24e7179 1929/**
309cfea8 1930 * intel_enable_pipe - enable a pipe, asserting requirements
0372264a 1931 * @crtc: crtc responsible for the pipe
b24e7179 1932 *
0372264a 1933 * Enable @crtc's pipe, making sure that various hardware specific requirements
b24e7179 1934 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
b24e7179 1935 */
e1fdc473 1936static void intel_enable_pipe(struct intel_crtc *crtc)
b24e7179 1937{
0372264a 1938 struct drm_device *dev = crtc->base.dev;
fac5e23e 1939 struct drm_i915_private *dev_priv = to_i915(dev);
0372264a 1940 enum pipe pipe = crtc->pipe;
1a70a728 1941 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1a240d4d 1942 enum pipe pch_transcoder;
f0f59a00 1943 i915_reg_t reg;
b24e7179
JB
1944 u32 val;
1945
9e2ee2dd
VS
1946 DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
1947
58c6eaa2 1948 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 1949 assert_cursor_disabled(dev_priv, pipe);
58c6eaa2
DV
1950 assert_sprites_disabled(dev_priv, pipe);
1951
2d1fe073 1952 if (HAS_PCH_LPT(dev_priv))
cc391bbb
PZ
1953 pch_transcoder = TRANSCODER_A;
1954 else
1955 pch_transcoder = pipe;
1956
b24e7179
JB
1957 /*
1958 * A pipe without a PLL won't actually be able to drive bits from
1959 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1960 * need the check.
1961 */
09fa8bb9 1962 if (HAS_GMCH_DISPLAY(dev_priv)) {
d7edc4e5 1963 if (intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DSI))
23538ef1
JN
1964 assert_dsi_pll_enabled(dev_priv);
1965 else
1966 assert_pll_enabled(dev_priv, pipe);
09fa8bb9 1967 } else {
6e3c9717 1968 if (crtc->config->has_pch_encoder) {
040484af 1969 /* if driving the PCH, we need FDI enabled */
cc391bbb 1970 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1a240d4d
DV
1971 assert_fdi_tx_pll_enabled(dev_priv,
1972 (enum pipe) cpu_transcoder);
040484af
JB
1973 }
1974 /* FIXME: assert CPU port conditions for SNB+ */
1975 }
b24e7179 1976
702e7a56 1977 reg = PIPECONF(cpu_transcoder);
b24e7179 1978 val = I915_READ(reg);
7ad25d48 1979 if (val & PIPECONF_ENABLE) {
b6b5d049
VS
1980 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1981 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
00d70b15 1982 return;
7ad25d48 1983 }
00d70b15
CW
1984
1985 I915_WRITE(reg, val | PIPECONF_ENABLE);
851855d8 1986 POSTING_READ(reg);
b7792d8b
VS
1987
1988 /*
1989 * Until the pipe starts DSL will read as 0, which would cause
1990 * an apparent vblank timestamp jump, which messes up also the
1991 * frame count when it's derived from the timestamps. So let's
1992 * wait for the pipe to start properly before we call
1993 * drm_crtc_vblank_on()
1994 */
1995 if (dev->max_vblank_count == 0 &&
1996 wait_for(intel_get_crtc_scanline(crtc) != crtc->scanline_offset, 50))
1997 DRM_ERROR("pipe %c didn't start\n", pipe_name(pipe));
b24e7179
JB
1998}
1999
2000/**
309cfea8 2001 * intel_disable_pipe - disable a pipe, asserting requirements
575f7ab7 2002 * @crtc: crtc whose pipes is to be disabled
b24e7179 2003 *
575f7ab7
VS
2004 * Disable the pipe of @crtc, making sure that various hardware
2005 * specific requirements are met, if applicable, e.g. plane
2006 * disabled, panel fitter off, etc.
b24e7179
JB
2007 *
2008 * Will wait until the pipe has shut down before returning.
2009 */
575f7ab7 2010static void intel_disable_pipe(struct intel_crtc *crtc)
b24e7179 2011{
fac5e23e 2012 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6e3c9717 2013 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
575f7ab7 2014 enum pipe pipe = crtc->pipe;
f0f59a00 2015 i915_reg_t reg;
b24e7179
JB
2016 u32 val;
2017
9e2ee2dd
VS
2018 DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2019
b24e7179
JB
2020 /*
2021 * Make sure planes won't keep trying to pump pixels to us,
2022 * or we might hang the display.
2023 */
2024 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2025 assert_cursor_disabled(dev_priv, pipe);
19332d7a 2026 assert_sprites_disabled(dev_priv, pipe);
b24e7179 2027
702e7a56 2028 reg = PIPECONF(cpu_transcoder);
b24e7179 2029 val = I915_READ(reg);
00d70b15
CW
2030 if ((val & PIPECONF_ENABLE) == 0)
2031 return;
2032
67adc644
VS
2033 /*
2034 * Double wide has implications for planes
2035 * so best keep it disabled when not needed.
2036 */
6e3c9717 2037 if (crtc->config->double_wide)
67adc644
VS
2038 val &= ~PIPECONF_DOUBLE_WIDE;
2039
2040 /* Don't disable pipe or pipe PLLs if needed */
b6b5d049
VS
2041 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2042 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
67adc644
VS
2043 val &= ~PIPECONF_ENABLE;
2044
2045 I915_WRITE(reg, val);
2046 if ((val & PIPECONF_ENABLE) == 0)
2047 intel_wait_for_pipe_off(crtc);
b24e7179
JB
2048}
2049
832be82f
VS
2050static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
2051{
2052 return IS_GEN2(dev_priv) ? 2048 : 4096;
2053}
2054
27ba3910
VS
2055static unsigned int intel_tile_width_bytes(const struct drm_i915_private *dev_priv,
2056 uint64_t fb_modifier, unsigned int cpp)
7b49f948
VS
2057{
2058 switch (fb_modifier) {
2059 case DRM_FORMAT_MOD_NONE:
2060 return cpp;
2061 case I915_FORMAT_MOD_X_TILED:
2062 if (IS_GEN2(dev_priv))
2063 return 128;
2064 else
2065 return 512;
2066 case I915_FORMAT_MOD_Y_TILED:
2067 if (IS_GEN2(dev_priv) || HAS_128_BYTE_Y_TILING(dev_priv))
2068 return 128;
2069 else
2070 return 512;
2071 case I915_FORMAT_MOD_Yf_TILED:
2072 switch (cpp) {
2073 case 1:
2074 return 64;
2075 case 2:
2076 case 4:
2077 return 128;
2078 case 8:
2079 case 16:
2080 return 256;
2081 default:
2082 MISSING_CASE(cpp);
2083 return cpp;
2084 }
2085 break;
2086 default:
2087 MISSING_CASE(fb_modifier);
2088 return cpp;
2089 }
2090}
2091
832be82f
VS
2092unsigned int intel_tile_height(const struct drm_i915_private *dev_priv,
2093 uint64_t fb_modifier, unsigned int cpp)
a57ce0b2 2094{
832be82f
VS
2095 if (fb_modifier == DRM_FORMAT_MOD_NONE)
2096 return 1;
2097 else
2098 return intel_tile_size(dev_priv) /
27ba3910 2099 intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
6761dd31
TU
2100}
2101
8d0deca8
VS
2102/* Return the tile dimensions in pixel units */
2103static void intel_tile_dims(const struct drm_i915_private *dev_priv,
2104 unsigned int *tile_width,
2105 unsigned int *tile_height,
2106 uint64_t fb_modifier,
2107 unsigned int cpp)
2108{
2109 unsigned int tile_width_bytes =
2110 intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2111
2112 *tile_width = tile_width_bytes / cpp;
2113 *tile_height = intel_tile_size(dev_priv) / tile_width_bytes;
2114}
2115
6761dd31
TU
2116unsigned int
2117intel_fb_align_height(struct drm_device *dev, unsigned int height,
832be82f 2118 uint32_t pixel_format, uint64_t fb_modifier)
6761dd31 2119{
832be82f
VS
2120 unsigned int cpp = drm_format_plane_cpp(pixel_format, 0);
2121 unsigned int tile_height = intel_tile_height(to_i915(dev), fb_modifier, cpp);
2122
2123 return ALIGN(height, tile_height);
a57ce0b2
JB
2124}
2125
1663b9d6
VS
2126unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
2127{
2128 unsigned int size = 0;
2129 int i;
2130
2131 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
2132 size += rot_info->plane[i].width * rot_info->plane[i].height;
2133
2134 return size;
2135}
2136
75c82a53 2137static void
3465c580
VS
2138intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
2139 const struct drm_framebuffer *fb,
2140 unsigned int rotation)
f64b98cd 2141{
2d7a215f
VS
2142 if (intel_rotation_90_or_270(rotation)) {
2143 *view = i915_ggtt_view_rotated;
2144 view->params.rotated = to_intel_framebuffer(fb)->rot_info;
2145 } else {
2146 *view = i915_ggtt_view_normal;
2147 }
2148}
50470bb0 2149
603525d7 2150static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
4e9a86b6
VS
2151{
2152 if (INTEL_INFO(dev_priv)->gen >= 9)
2153 return 256 * 1024;
985b8bb4 2154 else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
666a4537 2155 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4e9a86b6
VS
2156 return 128 * 1024;
2157 else if (INTEL_INFO(dev_priv)->gen >= 4)
2158 return 4 * 1024;
2159 else
44c5905e 2160 return 0;
4e9a86b6
VS
2161}
2162
603525d7
VS
2163static unsigned int intel_surf_alignment(const struct drm_i915_private *dev_priv,
2164 uint64_t fb_modifier)
2165{
2166 switch (fb_modifier) {
2167 case DRM_FORMAT_MOD_NONE:
2168 return intel_linear_alignment(dev_priv);
2169 case I915_FORMAT_MOD_X_TILED:
2170 if (INTEL_INFO(dev_priv)->gen >= 9)
2171 return 256 * 1024;
2172 return 0;
2173 case I915_FORMAT_MOD_Y_TILED:
2174 case I915_FORMAT_MOD_Yf_TILED:
2175 return 1 * 1024 * 1024;
2176 default:
2177 MISSING_CASE(fb_modifier);
2178 return 0;
2179 }
2180}
2181
058d88c4
CW
2182struct i915_vma *
2183intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb, unsigned int rotation)
6b95a207 2184{
850c4cdc 2185 struct drm_device *dev = fb->dev;
fac5e23e 2186 struct drm_i915_private *dev_priv = to_i915(dev);
850c4cdc 2187 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
f64b98cd 2188 struct i915_ggtt_view view;
058d88c4 2189 struct i915_vma *vma;
6b95a207 2190 u32 alignment;
6b95a207 2191
ebcdd39e
MR
2192 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2193
603525d7 2194 alignment = intel_surf_alignment(dev_priv, fb->modifier[0]);
6b95a207 2195
3465c580 2196 intel_fill_fb_ggtt_view(&view, fb, rotation);
f64b98cd 2197
693db184
CW
2198 /* Note that the w/a also requires 64 PTE of padding following the
2199 * bo. We currently fill all unused PTE with the shadow page and so
2200 * we should always have valid PTE following the scanout preventing
2201 * the VT-d warning.
2202 */
48f112fe 2203 if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024)
693db184
CW
2204 alignment = 256 * 1024;
2205
d6dd6843
PZ
2206 /*
2207 * Global gtt pte registers are special registers which actually forward
2208 * writes to a chunk of system memory. Which means that there is no risk
2209 * that the register values disappear as soon as we call
2210 * intel_runtime_pm_put(), so it is correct to wrap only the
2211 * pin/unpin/fence and not more.
2212 */
2213 intel_runtime_pm_get(dev_priv);
2214
058d88c4 2215 vma = i915_gem_object_pin_to_display_plane(obj, alignment, &view);
49ef5294
CW
2216 if (IS_ERR(vma))
2217 goto err;
6b95a207 2218
05a20d09 2219 if (i915_vma_is_map_and_fenceable(vma)) {
49ef5294
CW
2220 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2221 * fence, whereas 965+ only requires a fence if using
2222 * framebuffer compression. For simplicity, we always, when
2223 * possible, install a fence as the cost is not that onerous.
2224 *
2225 * If we fail to fence the tiled scanout, then either the
2226 * modeset will reject the change (which is highly unlikely as
2227 * the affected systems, all but one, do not have unmappable
2228 * space) or we will not be able to enable full powersaving
2229 * techniques (also likely not to apply due to various limits
2230 * FBC and the like impose on the size of the buffer, which
2231 * presumably we violated anyway with this unmappable buffer).
2232 * Anyway, it is presumably better to stumble onwards with
2233 * something and try to run the system in a "less than optimal"
2234 * mode that matches the user configuration.
2235 */
2236 if (i915_vma_get_fence(vma) == 0)
2237 i915_vma_pin_fence(vma);
9807216f 2238 }
6b95a207 2239
49ef5294 2240err:
d6dd6843 2241 intel_runtime_pm_put(dev_priv);
058d88c4 2242 return vma;
6b95a207
KH
2243}
2244
fb4b8ce1 2245void intel_unpin_fb_obj(struct drm_framebuffer *fb, unsigned int rotation)
1690e1eb 2246{
82bc3b2d 2247 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
f64b98cd 2248 struct i915_ggtt_view view;
058d88c4 2249 struct i915_vma *vma;
82bc3b2d 2250
ebcdd39e
MR
2251 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2252
3465c580 2253 intel_fill_fb_ggtt_view(&view, fb, rotation);
05a20d09 2254 vma = i915_gem_object_to_ggtt(obj, &view);
f64b98cd 2255
49ef5294 2256 i915_vma_unpin_fence(vma);
058d88c4 2257 i915_gem_object_unpin_from_display_plane(vma);
1690e1eb
CW
2258}
2259
ef78ec94
VS
2260static int intel_fb_pitch(const struct drm_framebuffer *fb, int plane,
2261 unsigned int rotation)
2262{
2263 if (intel_rotation_90_or_270(rotation))
2264 return to_intel_framebuffer(fb)->rotated[plane].pitch;
2265 else
2266 return fb->pitches[plane];
2267}
2268
6687c906
VS
2269/*
2270 * Convert the x/y offsets into a linear offset.
2271 * Only valid with 0/180 degree rotation, which is fine since linear
2272 * offset is only used with linear buffers on pre-hsw and tiled buffers
2273 * with gen2/3, and 90/270 degree rotations isn't supported on any of them.
2274 */
2275u32 intel_fb_xy_to_linear(int x, int y,
2949056c
VS
2276 const struct intel_plane_state *state,
2277 int plane)
6687c906 2278{
2949056c 2279 const struct drm_framebuffer *fb = state->base.fb;
6687c906
VS
2280 unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2281 unsigned int pitch = fb->pitches[plane];
2282
2283 return y * pitch + x * cpp;
2284}
2285
2286/*
2287 * Add the x/y offsets derived from fb->offsets[] to the user
2288 * specified plane src x/y offsets. The resulting x/y offsets
2289 * specify the start of scanout from the beginning of the gtt mapping.
2290 */
2291void intel_add_fb_offsets(int *x, int *y,
2949056c
VS
2292 const struct intel_plane_state *state,
2293 int plane)
6687c906
VS
2294
2295{
2949056c
VS
2296 const struct intel_framebuffer *intel_fb = to_intel_framebuffer(state->base.fb);
2297 unsigned int rotation = state->base.rotation;
6687c906
VS
2298
2299 if (intel_rotation_90_or_270(rotation)) {
2300 *x += intel_fb->rotated[plane].x;
2301 *y += intel_fb->rotated[plane].y;
2302 } else {
2303 *x += intel_fb->normal[plane].x;
2304 *y += intel_fb->normal[plane].y;
2305 }
2306}
2307
29cf9491 2308/*
29cf9491
VS
2309 * Input tile dimensions and pitch must already be
2310 * rotated to match x and y, and in pixel units.
2311 */
66a2d927
VS
2312static u32 _intel_adjust_tile_offset(int *x, int *y,
2313 unsigned int tile_width,
2314 unsigned int tile_height,
2315 unsigned int tile_size,
2316 unsigned int pitch_tiles,
2317 u32 old_offset,
2318 u32 new_offset)
29cf9491 2319{
b9b24038 2320 unsigned int pitch_pixels = pitch_tiles * tile_width;
29cf9491
VS
2321 unsigned int tiles;
2322
2323 WARN_ON(old_offset & (tile_size - 1));
2324 WARN_ON(new_offset & (tile_size - 1));
2325 WARN_ON(new_offset > old_offset);
2326
2327 tiles = (old_offset - new_offset) / tile_size;
2328
2329 *y += tiles / pitch_tiles * tile_height;
2330 *x += tiles % pitch_tiles * tile_width;
2331
b9b24038
VS
2332 /* minimize x in case it got needlessly big */
2333 *y += *x / pitch_pixels * tile_height;
2334 *x %= pitch_pixels;
2335
29cf9491
VS
2336 return new_offset;
2337}
2338
66a2d927
VS
2339/*
2340 * Adjust the tile offset by moving the difference into
2341 * the x/y offsets.
2342 */
2343static u32 intel_adjust_tile_offset(int *x, int *y,
2344 const struct intel_plane_state *state, int plane,
2345 u32 old_offset, u32 new_offset)
2346{
2347 const struct drm_i915_private *dev_priv = to_i915(state->base.plane->dev);
2348 const struct drm_framebuffer *fb = state->base.fb;
2349 unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2350 unsigned int rotation = state->base.rotation;
2351 unsigned int pitch = intel_fb_pitch(fb, plane, rotation);
2352
2353 WARN_ON(new_offset > old_offset);
2354
2355 if (fb->modifier[plane] != DRM_FORMAT_MOD_NONE) {
2356 unsigned int tile_size, tile_width, tile_height;
2357 unsigned int pitch_tiles;
2358
2359 tile_size = intel_tile_size(dev_priv);
2360 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2361 fb->modifier[plane], cpp);
2362
2363 if (intel_rotation_90_or_270(rotation)) {
2364 pitch_tiles = pitch / tile_height;
2365 swap(tile_width, tile_height);
2366 } else {
2367 pitch_tiles = pitch / (tile_width * cpp);
2368 }
2369
2370 _intel_adjust_tile_offset(x, y, tile_width, tile_height,
2371 tile_size, pitch_tiles,
2372 old_offset, new_offset);
2373 } else {
2374 old_offset += *y * pitch + *x * cpp;
2375
2376 *y = (old_offset - new_offset) / pitch;
2377 *x = ((old_offset - new_offset) - *y * pitch) / cpp;
2378 }
2379
2380 return new_offset;
2381}
2382
8d0deca8
VS
2383/*
2384 * Computes the linear offset to the base tile and adjusts
2385 * x, y. bytes per pixel is assumed to be a power-of-two.
2386 *
2387 * In the 90/270 rotated case, x and y are assumed
2388 * to be already rotated to match the rotated GTT view, and
2389 * pitch is the tile_height aligned framebuffer height.
6687c906
VS
2390 *
2391 * This function is used when computing the derived information
2392 * under intel_framebuffer, so using any of that information
2393 * here is not allowed. Anything under drm_framebuffer can be
2394 * used. This is why the user has to pass in the pitch since it
2395 * is specified in the rotated orientation.
8d0deca8 2396 */
6687c906
VS
2397static u32 _intel_compute_tile_offset(const struct drm_i915_private *dev_priv,
2398 int *x, int *y,
2399 const struct drm_framebuffer *fb, int plane,
2400 unsigned int pitch,
2401 unsigned int rotation,
2402 u32 alignment)
c2c75131 2403{
4f2d9934
VS
2404 uint64_t fb_modifier = fb->modifier[plane];
2405 unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
6687c906 2406 u32 offset, offset_aligned;
29cf9491 2407
29cf9491
VS
2408 if (alignment)
2409 alignment--;
2410
b5c65338 2411 if (fb_modifier != DRM_FORMAT_MOD_NONE) {
8d0deca8
VS
2412 unsigned int tile_size, tile_width, tile_height;
2413 unsigned int tile_rows, tiles, pitch_tiles;
c2c75131 2414
d843310d 2415 tile_size = intel_tile_size(dev_priv);
8d0deca8
VS
2416 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2417 fb_modifier, cpp);
2418
2419 if (intel_rotation_90_or_270(rotation)) {
2420 pitch_tiles = pitch / tile_height;
2421 swap(tile_width, tile_height);
2422 } else {
2423 pitch_tiles = pitch / (tile_width * cpp);
2424 }
d843310d
VS
2425
2426 tile_rows = *y / tile_height;
2427 *y %= tile_height;
c2c75131 2428
8d0deca8
VS
2429 tiles = *x / tile_width;
2430 *x %= tile_width;
bc752862 2431
29cf9491
VS
2432 offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2433 offset_aligned = offset & ~alignment;
bc752862 2434
66a2d927
VS
2435 _intel_adjust_tile_offset(x, y, tile_width, tile_height,
2436 tile_size, pitch_tiles,
2437 offset, offset_aligned);
29cf9491 2438 } else {
bc752862 2439 offset = *y * pitch + *x * cpp;
29cf9491
VS
2440 offset_aligned = offset & ~alignment;
2441
4e9a86b6
VS
2442 *y = (offset & alignment) / pitch;
2443 *x = ((offset & alignment) - *y * pitch) / cpp;
bc752862 2444 }
29cf9491
VS
2445
2446 return offset_aligned;
c2c75131
DV
2447}
2448
6687c906 2449u32 intel_compute_tile_offset(int *x, int *y,
2949056c
VS
2450 const struct intel_plane_state *state,
2451 int plane)
6687c906 2452{
2949056c
VS
2453 const struct drm_i915_private *dev_priv = to_i915(state->base.plane->dev);
2454 const struct drm_framebuffer *fb = state->base.fb;
2455 unsigned int rotation = state->base.rotation;
ef78ec94 2456 int pitch = intel_fb_pitch(fb, plane, rotation);
8d970654
VS
2457 u32 alignment;
2458
2459 /* AUX_DIST needs only 4K alignment */
2460 if (fb->pixel_format == DRM_FORMAT_NV12 && plane == 1)
2461 alignment = 4096;
2462 else
2463 alignment = intel_surf_alignment(dev_priv, fb->modifier[plane]);
6687c906
VS
2464
2465 return _intel_compute_tile_offset(dev_priv, x, y, fb, plane, pitch,
2466 rotation, alignment);
2467}
2468
2469/* Convert the fb->offset[] linear offset into x/y offsets */
2470static void intel_fb_offset_to_xy(int *x, int *y,
2471 const struct drm_framebuffer *fb, int plane)
2472{
2473 unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2474 unsigned int pitch = fb->pitches[plane];
2475 u32 linear_offset = fb->offsets[plane];
2476
2477 *y = linear_offset / pitch;
2478 *x = linear_offset % pitch / cpp;
2479}
2480
72618ebf
VS
2481static unsigned int intel_fb_modifier_to_tiling(uint64_t fb_modifier)
2482{
2483 switch (fb_modifier) {
2484 case I915_FORMAT_MOD_X_TILED:
2485 return I915_TILING_X;
2486 case I915_FORMAT_MOD_Y_TILED:
2487 return I915_TILING_Y;
2488 default:
2489 return I915_TILING_NONE;
2490 }
2491}
2492
6687c906
VS
2493static int
2494intel_fill_fb_info(struct drm_i915_private *dev_priv,
2495 struct drm_framebuffer *fb)
2496{
2497 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
2498 struct intel_rotation_info *rot_info = &intel_fb->rot_info;
2499 u32 gtt_offset_rotated = 0;
2500 unsigned int max_size = 0;
2501 uint32_t format = fb->pixel_format;
2502 int i, num_planes = drm_format_num_planes(format);
2503 unsigned int tile_size = intel_tile_size(dev_priv);
2504
2505 for (i = 0; i < num_planes; i++) {
2506 unsigned int width, height;
2507 unsigned int cpp, size;
2508 u32 offset;
2509 int x, y;
2510
2511 cpp = drm_format_plane_cpp(format, i);
2512 width = drm_format_plane_width(fb->width, format, i);
2513 height = drm_format_plane_height(fb->height, format, i);
2514
2515 intel_fb_offset_to_xy(&x, &y, fb, i);
2516
60d5f2a4
VS
2517 /*
2518 * The fence (if used) is aligned to the start of the object
2519 * so having the framebuffer wrap around across the edge of the
2520 * fenced region doesn't really work. We have no API to configure
2521 * the fence start offset within the object (nor could we probably
2522 * on gen2/3). So it's just easier if we just require that the
2523 * fb layout agrees with the fence layout. We already check that the
2524 * fb stride matches the fence stride elsewhere.
2525 */
2526 if (i915_gem_object_is_tiled(intel_fb->obj) &&
2527 (x + width) * cpp > fb->pitches[i]) {
2528 DRM_DEBUG("bad fb plane %d offset: 0x%x\n",
2529 i, fb->offsets[i]);
2530 return -EINVAL;
2531 }
2532
6687c906
VS
2533 /*
2534 * First pixel of the framebuffer from
2535 * the start of the normal gtt mapping.
2536 */
2537 intel_fb->normal[i].x = x;
2538 intel_fb->normal[i].y = y;
2539
2540 offset = _intel_compute_tile_offset(dev_priv, &x, &y,
2541 fb, 0, fb->pitches[i],
cc926387 2542 DRM_ROTATE_0, tile_size);
6687c906
VS
2543 offset /= tile_size;
2544
2545 if (fb->modifier[i] != DRM_FORMAT_MOD_NONE) {
2546 unsigned int tile_width, tile_height;
2547 unsigned int pitch_tiles;
2548 struct drm_rect r;
2549
2550 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2551 fb->modifier[i], cpp);
2552
2553 rot_info->plane[i].offset = offset;
2554 rot_info->plane[i].stride = DIV_ROUND_UP(fb->pitches[i], tile_width * cpp);
2555 rot_info->plane[i].width = DIV_ROUND_UP(x + width, tile_width);
2556 rot_info->plane[i].height = DIV_ROUND_UP(y + height, tile_height);
2557
2558 intel_fb->rotated[i].pitch =
2559 rot_info->plane[i].height * tile_height;
2560
2561 /* how many tiles does this plane need */
2562 size = rot_info->plane[i].stride * rot_info->plane[i].height;
2563 /*
2564 * If the plane isn't horizontally tile aligned,
2565 * we need one more tile.
2566 */
2567 if (x != 0)
2568 size++;
2569
2570 /* rotate the x/y offsets to match the GTT view */
2571 r.x1 = x;
2572 r.y1 = y;
2573 r.x2 = x + width;
2574 r.y2 = y + height;
2575 drm_rect_rotate(&r,
2576 rot_info->plane[i].width * tile_width,
2577 rot_info->plane[i].height * tile_height,
cc926387 2578 DRM_ROTATE_270);
6687c906
VS
2579 x = r.x1;
2580 y = r.y1;
2581
2582 /* rotate the tile dimensions to match the GTT view */
2583 pitch_tiles = intel_fb->rotated[i].pitch / tile_height;
2584 swap(tile_width, tile_height);
2585
2586 /*
2587 * We only keep the x/y offsets, so push all of the
2588 * gtt offset into the x/y offsets.
2589 */
66a2d927
VS
2590 _intel_adjust_tile_offset(&x, &y, tile_size,
2591 tile_width, tile_height, pitch_tiles,
2592 gtt_offset_rotated * tile_size, 0);
6687c906
VS
2593
2594 gtt_offset_rotated += rot_info->plane[i].width * rot_info->plane[i].height;
2595
2596 /*
2597 * First pixel of the framebuffer from
2598 * the start of the rotated gtt mapping.
2599 */
2600 intel_fb->rotated[i].x = x;
2601 intel_fb->rotated[i].y = y;
2602 } else {
2603 size = DIV_ROUND_UP((y + height) * fb->pitches[i] +
2604 x * cpp, tile_size);
2605 }
2606
2607 /* how many tiles in total needed in the bo */
2608 max_size = max(max_size, offset + size);
2609 }
2610
2611 if (max_size * tile_size > to_intel_framebuffer(fb)->obj->base.size) {
2612 DRM_DEBUG("fb too big for bo (need %u bytes, have %zu bytes)\n",
2613 max_size * tile_size, to_intel_framebuffer(fb)->obj->base.size);
2614 return -EINVAL;
2615 }
2616
2617 return 0;
2618}
2619
b35d63fa 2620static int i9xx_format_to_fourcc(int format)
46f297fb
JB
2621{
2622 switch (format) {
2623 case DISPPLANE_8BPP:
2624 return DRM_FORMAT_C8;
2625 case DISPPLANE_BGRX555:
2626 return DRM_FORMAT_XRGB1555;
2627 case DISPPLANE_BGRX565:
2628 return DRM_FORMAT_RGB565;
2629 default:
2630 case DISPPLANE_BGRX888:
2631 return DRM_FORMAT_XRGB8888;
2632 case DISPPLANE_RGBX888:
2633 return DRM_FORMAT_XBGR8888;
2634 case DISPPLANE_BGRX101010:
2635 return DRM_FORMAT_XRGB2101010;
2636 case DISPPLANE_RGBX101010:
2637 return DRM_FORMAT_XBGR2101010;
2638 }
2639}
2640
bc8d7dff
DL
2641static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2642{
2643 switch (format) {
2644 case PLANE_CTL_FORMAT_RGB_565:
2645 return DRM_FORMAT_RGB565;
2646 default:
2647 case PLANE_CTL_FORMAT_XRGB_8888:
2648 if (rgb_order) {
2649 if (alpha)
2650 return DRM_FORMAT_ABGR8888;
2651 else
2652 return DRM_FORMAT_XBGR8888;
2653 } else {
2654 if (alpha)
2655 return DRM_FORMAT_ARGB8888;
2656 else
2657 return DRM_FORMAT_XRGB8888;
2658 }
2659 case PLANE_CTL_FORMAT_XRGB_2101010:
2660 if (rgb_order)
2661 return DRM_FORMAT_XBGR2101010;
2662 else
2663 return DRM_FORMAT_XRGB2101010;
2664 }
2665}
2666
5724dbd1 2667static bool
f6936e29
DV
2668intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2669 struct intel_initial_plane_config *plane_config)
46f297fb
JB
2670{
2671 struct drm_device *dev = crtc->base.dev;
3badb49f 2672 struct drm_i915_private *dev_priv = to_i915(dev);
72e96d64 2673 struct i915_ggtt *ggtt = &dev_priv->ggtt;
46f297fb
JB
2674 struct drm_i915_gem_object *obj = NULL;
2675 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2d14030b 2676 struct drm_framebuffer *fb = &plane_config->fb->base;
f37b5c2b
DV
2677 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2678 u32 size_aligned = round_up(plane_config->base + plane_config->size,
2679 PAGE_SIZE);
2680
2681 size_aligned -= base_aligned;
46f297fb 2682
ff2652ea
CW
2683 if (plane_config->size == 0)
2684 return false;
2685
3badb49f
PZ
2686 /* If the FB is too big, just don't use it since fbdev is not very
2687 * important and we should probably use that space with FBC or other
2688 * features. */
72e96d64 2689 if (size_aligned * 2 > ggtt->stolen_usable_size)
3badb49f
PZ
2690 return false;
2691
12c83d99
TU
2692 mutex_lock(&dev->struct_mutex);
2693
f37b5c2b
DV
2694 obj = i915_gem_object_create_stolen_for_preallocated(dev,
2695 base_aligned,
2696 base_aligned,
2697 size_aligned);
12c83d99
TU
2698 if (!obj) {
2699 mutex_unlock(&dev->struct_mutex);
484b41dd 2700 return false;
12c83d99 2701 }
46f297fb 2702
3e510a8e
CW
2703 if (plane_config->tiling == I915_TILING_X)
2704 obj->tiling_and_stride = fb->pitches[0] | I915_TILING_X;
46f297fb 2705
6bf129df
DL
2706 mode_cmd.pixel_format = fb->pixel_format;
2707 mode_cmd.width = fb->width;
2708 mode_cmd.height = fb->height;
2709 mode_cmd.pitches[0] = fb->pitches[0];
18c5247e
DV
2710 mode_cmd.modifier[0] = fb->modifier[0];
2711 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
46f297fb 2712
6bf129df 2713 if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
484b41dd 2714 &mode_cmd, obj)) {
46f297fb
JB
2715 DRM_DEBUG_KMS("intel fb init failed\n");
2716 goto out_unref_obj;
2717 }
12c83d99 2718
46f297fb 2719 mutex_unlock(&dev->struct_mutex);
484b41dd 2720
f6936e29 2721 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
484b41dd 2722 return true;
46f297fb
JB
2723
2724out_unref_obj:
f8c417cd 2725 i915_gem_object_put(obj);
46f297fb 2726 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2727 return false;
2728}
2729
5a21b665
DV
2730/* Update plane->state->fb to match plane->fb after driver-internal updates */
2731static void
2732update_state_fb(struct drm_plane *plane)
2733{
2734 if (plane->fb == plane->state->fb)
2735 return;
2736
2737 if (plane->state->fb)
2738 drm_framebuffer_unreference(plane->state->fb);
2739 plane->state->fb = plane->fb;
2740 if (plane->state->fb)
2741 drm_framebuffer_reference(plane->state->fb);
2742}
2743
5724dbd1 2744static void
f6936e29
DV
2745intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2746 struct intel_initial_plane_config *plane_config)
484b41dd
JB
2747{
2748 struct drm_device *dev = intel_crtc->base.dev;
fac5e23e 2749 struct drm_i915_private *dev_priv = to_i915(dev);
484b41dd
JB
2750 struct drm_crtc *c;
2751 struct intel_crtc *i;
2ff8fde1 2752 struct drm_i915_gem_object *obj;
88595ac9 2753 struct drm_plane *primary = intel_crtc->base.primary;
be5651f2 2754 struct drm_plane_state *plane_state = primary->state;
200757f5
MR
2755 struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2756 struct intel_plane *intel_plane = to_intel_plane(primary);
0a8d8a86
MR
2757 struct intel_plane_state *intel_state =
2758 to_intel_plane_state(plane_state);
88595ac9 2759 struct drm_framebuffer *fb;
484b41dd 2760
2d14030b 2761 if (!plane_config->fb)
484b41dd
JB
2762 return;
2763
f6936e29 2764 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
88595ac9
DV
2765 fb = &plane_config->fb->base;
2766 goto valid_fb;
f55548b5 2767 }
484b41dd 2768
2d14030b 2769 kfree(plane_config->fb);
484b41dd
JB
2770
2771 /*
2772 * Failed to alloc the obj, check to see if we should share
2773 * an fb with another CRTC instead
2774 */
70e1e0ec 2775 for_each_crtc(dev, c) {
484b41dd
JB
2776 i = to_intel_crtc(c);
2777
2778 if (c == &intel_crtc->base)
2779 continue;
2780
2ff8fde1
MR
2781 if (!i->active)
2782 continue;
2783
88595ac9
DV
2784 fb = c->primary->fb;
2785 if (!fb)
484b41dd
JB
2786 continue;
2787
88595ac9 2788 obj = intel_fb_obj(fb);
058d88c4 2789 if (i915_gem_object_ggtt_offset(obj, NULL) == plane_config->base) {
88595ac9
DV
2790 drm_framebuffer_reference(fb);
2791 goto valid_fb;
484b41dd
JB
2792 }
2793 }
88595ac9 2794
200757f5
MR
2795 /*
2796 * We've failed to reconstruct the BIOS FB. Current display state
2797 * indicates that the primary plane is visible, but has a NULL FB,
2798 * which will lead to problems later if we don't fix it up. The
2799 * simplest solution is to just disable the primary plane now and
2800 * pretend the BIOS never had it enabled.
2801 */
936e71e3 2802 to_intel_plane_state(plane_state)->base.visible = false;
200757f5 2803 crtc_state->plane_mask &= ~(1 << drm_plane_index(primary));
2622a081 2804 intel_pre_disable_primary_noatomic(&intel_crtc->base);
200757f5
MR
2805 intel_plane->disable_plane(primary, &intel_crtc->base);
2806
88595ac9
DV
2807 return;
2808
2809valid_fb:
f44e2659
VS
2810 plane_state->src_x = 0;
2811 plane_state->src_y = 0;
be5651f2
ML
2812 plane_state->src_w = fb->width << 16;
2813 plane_state->src_h = fb->height << 16;
2814
f44e2659
VS
2815 plane_state->crtc_x = 0;
2816 plane_state->crtc_y = 0;
be5651f2
ML
2817 plane_state->crtc_w = fb->width;
2818 plane_state->crtc_h = fb->height;
2819
936e71e3
VS
2820 intel_state->base.src.x1 = plane_state->src_x;
2821 intel_state->base.src.y1 = plane_state->src_y;
2822 intel_state->base.src.x2 = plane_state->src_x + plane_state->src_w;
2823 intel_state->base.src.y2 = plane_state->src_y + plane_state->src_h;
2824 intel_state->base.dst.x1 = plane_state->crtc_x;
2825 intel_state->base.dst.y1 = plane_state->crtc_y;
2826 intel_state->base.dst.x2 = plane_state->crtc_x + plane_state->crtc_w;
2827 intel_state->base.dst.y2 = plane_state->crtc_y + plane_state->crtc_h;
0a8d8a86 2828
88595ac9 2829 obj = intel_fb_obj(fb);
3e510a8e 2830 if (i915_gem_object_is_tiled(obj))
88595ac9
DV
2831 dev_priv->preserve_bios_swizzle = true;
2832
be5651f2
ML
2833 drm_framebuffer_reference(fb);
2834 primary->fb = primary->state->fb = fb;
36750f28 2835 primary->crtc = primary->state->crtc = &intel_crtc->base;
36750f28 2836 intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
faf5bf0a
CW
2837 atomic_or(to_intel_plane(primary)->frontbuffer_bit,
2838 &obj->frontbuffer_bits);
46f297fb
JB
2839}
2840
b63a16f6
VS
2841static int skl_max_plane_width(const struct drm_framebuffer *fb, int plane,
2842 unsigned int rotation)
2843{
2844 int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2845
2846 switch (fb->modifier[plane]) {
2847 case DRM_FORMAT_MOD_NONE:
2848 case I915_FORMAT_MOD_X_TILED:
2849 switch (cpp) {
2850 case 8:
2851 return 4096;
2852 case 4:
2853 case 2:
2854 case 1:
2855 return 8192;
2856 default:
2857 MISSING_CASE(cpp);
2858 break;
2859 }
2860 break;
2861 case I915_FORMAT_MOD_Y_TILED:
2862 case I915_FORMAT_MOD_Yf_TILED:
2863 switch (cpp) {
2864 case 8:
2865 return 2048;
2866 case 4:
2867 return 4096;
2868 case 2:
2869 case 1:
2870 return 8192;
2871 default:
2872 MISSING_CASE(cpp);
2873 break;
2874 }
2875 break;
2876 default:
2877 MISSING_CASE(fb->modifier[plane]);
2878 }
2879
2880 return 2048;
2881}
2882
2883static int skl_check_main_surface(struct intel_plane_state *plane_state)
2884{
2885 const struct drm_i915_private *dev_priv = to_i915(plane_state->base.plane->dev);
2886 const struct drm_framebuffer *fb = plane_state->base.fb;
2887 unsigned int rotation = plane_state->base.rotation;
cc926387
DV
2888 int x = plane_state->base.src.x1 >> 16;
2889 int y = plane_state->base.src.y1 >> 16;
2890 int w = drm_rect_width(&plane_state->base.src) >> 16;
2891 int h = drm_rect_height(&plane_state->base.src) >> 16;
b63a16f6
VS
2892 int max_width = skl_max_plane_width(fb, 0, rotation);
2893 int max_height = 4096;
8d970654 2894 u32 alignment, offset, aux_offset = plane_state->aux.offset;
b63a16f6
VS
2895
2896 if (w > max_width || h > max_height) {
2897 DRM_DEBUG_KMS("requested Y/RGB source size %dx%d too big (limit %dx%d)\n",
2898 w, h, max_width, max_height);
2899 return -EINVAL;
2900 }
2901
2902 intel_add_fb_offsets(&x, &y, plane_state, 0);
2903 offset = intel_compute_tile_offset(&x, &y, plane_state, 0);
2904
2905 alignment = intel_surf_alignment(dev_priv, fb->modifier[0]);
2906
8d970654
VS
2907 /*
2908 * AUX surface offset is specified as the distance from the
2909 * main surface offset, and it must be non-negative. Make
2910 * sure that is what we will get.
2911 */
2912 if (offset > aux_offset)
2913 offset = intel_adjust_tile_offset(&x, &y, plane_state, 0,
2914 offset, aux_offset & ~(alignment - 1));
2915
b63a16f6
VS
2916 /*
2917 * When using an X-tiled surface, the plane blows up
2918 * if the x offset + width exceed the stride.
2919 *
2920 * TODO: linear and Y-tiled seem fine, Yf untested,
2921 */
2922 if (fb->modifier[0] == I915_FORMAT_MOD_X_TILED) {
2923 int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2924
2925 while ((x + w) * cpp > fb->pitches[0]) {
2926 if (offset == 0) {
2927 DRM_DEBUG_KMS("Unable to find suitable display surface offset\n");
2928 return -EINVAL;
2929 }
2930
2931 offset = intel_adjust_tile_offset(&x, &y, plane_state, 0,
2932 offset, offset - alignment);
2933 }
2934 }
2935
2936 plane_state->main.offset = offset;
2937 plane_state->main.x = x;
2938 plane_state->main.y = y;
2939
2940 return 0;
2941}
2942
8d970654
VS
2943static int skl_check_nv12_aux_surface(struct intel_plane_state *plane_state)
2944{
2945 const struct drm_framebuffer *fb = plane_state->base.fb;
2946 unsigned int rotation = plane_state->base.rotation;
2947 int max_width = skl_max_plane_width(fb, 1, rotation);
2948 int max_height = 4096;
cc926387
DV
2949 int x = plane_state->base.src.x1 >> 17;
2950 int y = plane_state->base.src.y1 >> 17;
2951 int w = drm_rect_width(&plane_state->base.src) >> 17;
2952 int h = drm_rect_height(&plane_state->base.src) >> 17;
8d970654
VS
2953 u32 offset;
2954
2955 intel_add_fb_offsets(&x, &y, plane_state, 1);
2956 offset = intel_compute_tile_offset(&x, &y, plane_state, 1);
2957
2958 /* FIXME not quite sure how/if these apply to the chroma plane */
2959 if (w > max_width || h > max_height) {
2960 DRM_DEBUG_KMS("CbCr source size %dx%d too big (limit %dx%d)\n",
2961 w, h, max_width, max_height);
2962 return -EINVAL;
2963 }
2964
2965 plane_state->aux.offset = offset;
2966 plane_state->aux.x = x;
2967 plane_state->aux.y = y;
2968
2969 return 0;
2970}
2971
b63a16f6
VS
2972int skl_check_plane_surface(struct intel_plane_state *plane_state)
2973{
2974 const struct drm_framebuffer *fb = plane_state->base.fb;
2975 unsigned int rotation = plane_state->base.rotation;
2976 int ret;
2977
2978 /* Rotate src coordinates to match rotated GTT view */
2979 if (intel_rotation_90_or_270(rotation))
cc926387
DV
2980 drm_rect_rotate(&plane_state->base.src,
2981 fb->width, fb->height, DRM_ROTATE_270);
b63a16f6 2982
8d970654
VS
2983 /*
2984 * Handle the AUX surface first since
2985 * the main surface setup depends on it.
2986 */
2987 if (fb->pixel_format == DRM_FORMAT_NV12) {
2988 ret = skl_check_nv12_aux_surface(plane_state);
2989 if (ret)
2990 return ret;
2991 } else {
2992 plane_state->aux.offset = ~0xfff;
2993 plane_state->aux.x = 0;
2994 plane_state->aux.y = 0;
2995 }
2996
b63a16f6
VS
2997 ret = skl_check_main_surface(plane_state);
2998 if (ret)
2999 return ret;
3000
3001 return 0;
3002}
3003
a8d201af
ML
3004static void i9xx_update_primary_plane(struct drm_plane *primary,
3005 const struct intel_crtc_state *crtc_state,
3006 const struct intel_plane_state *plane_state)
81255565 3007{
a8d201af 3008 struct drm_device *dev = primary->dev;
fac5e23e 3009 struct drm_i915_private *dev_priv = to_i915(dev);
a8d201af
ML
3010 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3011 struct drm_framebuffer *fb = plane_state->base.fb;
3012 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
81255565 3013 int plane = intel_crtc->plane;
54ea9da8 3014 u32 linear_offset;
81255565 3015 u32 dspcntr;
f0f59a00 3016 i915_reg_t reg = DSPCNTR(plane);
8d0deca8 3017 unsigned int rotation = plane_state->base.rotation;
936e71e3
VS
3018 int x = plane_state->base.src.x1 >> 16;
3019 int y = plane_state->base.src.y1 >> 16;
c9ba6fad 3020
f45651ba
VS
3021 dspcntr = DISPPLANE_GAMMA_ENABLE;
3022
fdd508a6 3023 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
3024
3025 if (INTEL_INFO(dev)->gen < 4) {
3026 if (intel_crtc->pipe == PIPE_B)
3027 dspcntr |= DISPPLANE_SEL_PIPE_B;
3028
3029 /* pipesrc and dspsize control the size that is scaled from,
3030 * which should always be the user's requested size.
3031 */
3032 I915_WRITE(DSPSIZE(plane),
a8d201af
ML
3033 ((crtc_state->pipe_src_h - 1) << 16) |
3034 (crtc_state->pipe_src_w - 1));
f45651ba 3035 I915_WRITE(DSPPOS(plane), 0);
c14b0485
VS
3036 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
3037 I915_WRITE(PRIMSIZE(plane),
a8d201af
ML
3038 ((crtc_state->pipe_src_h - 1) << 16) |
3039 (crtc_state->pipe_src_w - 1));
c14b0485
VS
3040 I915_WRITE(PRIMPOS(plane), 0);
3041 I915_WRITE(PRIMCNSTALPHA(plane), 0);
f45651ba 3042 }
81255565 3043
57779d06
VS
3044 switch (fb->pixel_format) {
3045 case DRM_FORMAT_C8:
81255565
JB
3046 dspcntr |= DISPPLANE_8BPP;
3047 break;
57779d06 3048 case DRM_FORMAT_XRGB1555:
57779d06 3049 dspcntr |= DISPPLANE_BGRX555;
81255565 3050 break;
57779d06
VS
3051 case DRM_FORMAT_RGB565:
3052 dspcntr |= DISPPLANE_BGRX565;
3053 break;
3054 case DRM_FORMAT_XRGB8888:
57779d06
VS
3055 dspcntr |= DISPPLANE_BGRX888;
3056 break;
3057 case DRM_FORMAT_XBGR8888:
57779d06
VS
3058 dspcntr |= DISPPLANE_RGBX888;
3059 break;
3060 case DRM_FORMAT_XRGB2101010:
57779d06
VS
3061 dspcntr |= DISPPLANE_BGRX101010;
3062 break;
3063 case DRM_FORMAT_XBGR2101010:
57779d06 3064 dspcntr |= DISPPLANE_RGBX101010;
81255565
JB
3065 break;
3066 default:
baba133a 3067 BUG();
81255565 3068 }
57779d06 3069
72618ebf
VS
3070 if (INTEL_GEN(dev_priv) >= 4 &&
3071 fb->modifier[0] == I915_FORMAT_MOD_X_TILED)
f45651ba 3072 dspcntr |= DISPPLANE_TILED;
81255565 3073
de1aa629
VS
3074 if (IS_G4X(dev))
3075 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
3076
2949056c 3077 intel_add_fb_offsets(&x, &y, plane_state, 0);
81255565 3078
6687c906 3079 if (INTEL_INFO(dev)->gen >= 4)
c2c75131 3080 intel_crtc->dspaddr_offset =
2949056c 3081 intel_compute_tile_offset(&x, &y, plane_state, 0);
e506a0c6 3082
31ad61e4 3083 if (rotation == DRM_ROTATE_180) {
48404c1e
SJ
3084 dspcntr |= DISPPLANE_ROTATE_180;
3085
a8d201af
ML
3086 x += (crtc_state->pipe_src_w - 1);
3087 y += (crtc_state->pipe_src_h - 1);
48404c1e
SJ
3088 }
3089
2949056c 3090 linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0);
6687c906
VS
3091
3092 if (INTEL_INFO(dev)->gen < 4)
3093 intel_crtc->dspaddr_offset = linear_offset;
3094
2db3366b
PZ
3095 intel_crtc->adjusted_x = x;
3096 intel_crtc->adjusted_y = y;
3097
48404c1e
SJ
3098 I915_WRITE(reg, dspcntr);
3099
01f2c773 3100 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
a6c45cf0 3101 if (INTEL_INFO(dev)->gen >= 4) {
85ba7b7d 3102 I915_WRITE(DSPSURF(plane),
6687c906
VS
3103 intel_fb_gtt_offset(fb, rotation) +
3104 intel_crtc->dspaddr_offset);
5eddb70b 3105 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 3106 I915_WRITE(DSPLINOFF(plane), linear_offset);
5eddb70b 3107 } else
058d88c4 3108 I915_WRITE(DSPADDR(plane), i915_gem_object_ggtt_offset(obj, NULL) + linear_offset);
5eddb70b 3109 POSTING_READ(reg);
17638cd6
JB
3110}
3111
a8d201af
ML
3112static void i9xx_disable_primary_plane(struct drm_plane *primary,
3113 struct drm_crtc *crtc)
17638cd6
JB
3114{
3115 struct drm_device *dev = crtc->dev;
fac5e23e 3116 struct drm_i915_private *dev_priv = to_i915(dev);
17638cd6 3117 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
17638cd6 3118 int plane = intel_crtc->plane;
f45651ba 3119
a8d201af
ML
3120 I915_WRITE(DSPCNTR(plane), 0);
3121 if (INTEL_INFO(dev_priv)->gen >= 4)
fdd508a6 3122 I915_WRITE(DSPSURF(plane), 0);
a8d201af
ML
3123 else
3124 I915_WRITE(DSPADDR(plane), 0);
3125 POSTING_READ(DSPCNTR(plane));
3126}
c9ba6fad 3127
a8d201af
ML
3128static void ironlake_update_primary_plane(struct drm_plane *primary,
3129 const struct intel_crtc_state *crtc_state,
3130 const struct intel_plane_state *plane_state)
3131{
3132 struct drm_device *dev = primary->dev;
fac5e23e 3133 struct drm_i915_private *dev_priv = to_i915(dev);
a8d201af
ML
3134 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3135 struct drm_framebuffer *fb = plane_state->base.fb;
a8d201af 3136 int plane = intel_crtc->plane;
54ea9da8 3137 u32 linear_offset;
a8d201af
ML
3138 u32 dspcntr;
3139 i915_reg_t reg = DSPCNTR(plane);
8d0deca8 3140 unsigned int rotation = plane_state->base.rotation;
936e71e3
VS
3141 int x = plane_state->base.src.x1 >> 16;
3142 int y = plane_state->base.src.y1 >> 16;
c9ba6fad 3143
f45651ba 3144 dspcntr = DISPPLANE_GAMMA_ENABLE;
fdd508a6 3145 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
3146
3147 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3148 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
17638cd6 3149
57779d06
VS
3150 switch (fb->pixel_format) {
3151 case DRM_FORMAT_C8:
17638cd6
JB
3152 dspcntr |= DISPPLANE_8BPP;
3153 break;
57779d06
VS
3154 case DRM_FORMAT_RGB565:
3155 dspcntr |= DISPPLANE_BGRX565;
17638cd6 3156 break;
57779d06 3157 case DRM_FORMAT_XRGB8888:
57779d06
VS
3158 dspcntr |= DISPPLANE_BGRX888;
3159 break;
3160 case DRM_FORMAT_XBGR8888:
57779d06
VS
3161 dspcntr |= DISPPLANE_RGBX888;
3162 break;
3163 case DRM_FORMAT_XRGB2101010:
57779d06
VS
3164 dspcntr |= DISPPLANE_BGRX101010;
3165 break;
3166 case DRM_FORMAT_XBGR2101010:
57779d06 3167 dspcntr |= DISPPLANE_RGBX101010;
17638cd6
JB
3168 break;
3169 default:
baba133a 3170 BUG();
17638cd6
JB
3171 }
3172
72618ebf 3173 if (fb->modifier[0] == I915_FORMAT_MOD_X_TILED)
17638cd6 3174 dspcntr |= DISPPLANE_TILED;
17638cd6 3175
f45651ba 3176 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
1f5d76db 3177 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
17638cd6 3178
2949056c 3179 intel_add_fb_offsets(&x, &y, plane_state, 0);
6687c906 3180
c2c75131 3181 intel_crtc->dspaddr_offset =
2949056c 3182 intel_compute_tile_offset(&x, &y, plane_state, 0);
6687c906 3183
31ad61e4 3184 if (rotation == DRM_ROTATE_180) {
48404c1e
SJ
3185 dspcntr |= DISPPLANE_ROTATE_180;
3186
3187 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
a8d201af
ML
3188 x += (crtc_state->pipe_src_w - 1);
3189 y += (crtc_state->pipe_src_h - 1);
48404c1e
SJ
3190 }
3191 }
3192
2949056c 3193 linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0);
6687c906 3194
2db3366b
PZ
3195 intel_crtc->adjusted_x = x;
3196 intel_crtc->adjusted_y = y;
3197
48404c1e 3198 I915_WRITE(reg, dspcntr);
17638cd6 3199
01f2c773 3200 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
85ba7b7d 3201 I915_WRITE(DSPSURF(plane),
6687c906
VS
3202 intel_fb_gtt_offset(fb, rotation) +
3203 intel_crtc->dspaddr_offset);
b3dc685e 3204 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
bc1c91eb
DL
3205 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
3206 } else {
3207 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
3208 I915_WRITE(DSPLINOFF(plane), linear_offset);
3209 }
17638cd6 3210 POSTING_READ(reg);
17638cd6
JB
3211}
3212
7b49f948
VS
3213u32 intel_fb_stride_alignment(const struct drm_i915_private *dev_priv,
3214 uint64_t fb_modifier, uint32_t pixel_format)
b321803d 3215{
7b49f948 3216 if (fb_modifier == DRM_FORMAT_MOD_NONE) {
b321803d 3217 return 64;
7b49f948
VS
3218 } else {
3219 int cpp = drm_format_plane_cpp(pixel_format, 0);
3220
27ba3910 3221 return intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
b321803d
DL
3222 }
3223}
3224
6687c906
VS
3225u32 intel_fb_gtt_offset(struct drm_framebuffer *fb,
3226 unsigned int rotation)
121920fa 3227{
6687c906 3228 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
ce7f1728 3229 struct i915_ggtt_view view;
058d88c4 3230 struct i915_vma *vma;
121920fa 3231
6687c906 3232 intel_fill_fb_ggtt_view(&view, fb, rotation);
dedf278c 3233
058d88c4
CW
3234 vma = i915_gem_object_to_ggtt(obj, &view);
3235 if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n",
3236 view.type))
3237 return -1;
3238
bde13ebd 3239 return i915_ggtt_offset(vma);
121920fa
TU
3240}
3241
e435d6e5
ML
3242static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
3243{
3244 struct drm_device *dev = intel_crtc->base.dev;
fac5e23e 3245 struct drm_i915_private *dev_priv = to_i915(dev);
e435d6e5
ML
3246
3247 I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
3248 I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
3249 I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
e435d6e5
ML
3250}
3251
a1b2278e
CK
3252/*
3253 * This function detaches (aka. unbinds) unused scalers in hardware
3254 */
0583236e 3255static void skl_detach_scalers(struct intel_crtc *intel_crtc)
a1b2278e 3256{
a1b2278e
CK
3257 struct intel_crtc_scaler_state *scaler_state;
3258 int i;
3259
a1b2278e
CK
3260 scaler_state = &intel_crtc->config->scaler_state;
3261
3262 /* loop through and disable scalers that aren't in use */
3263 for (i = 0; i < intel_crtc->num_scalers; i++) {
e435d6e5
ML
3264 if (!scaler_state->scalers[i].in_use)
3265 skl_detach_scaler(intel_crtc, i);
a1b2278e
CK
3266 }
3267}
3268
d2196774
VS
3269u32 skl_plane_stride(const struct drm_framebuffer *fb, int plane,
3270 unsigned int rotation)
3271{
3272 const struct drm_i915_private *dev_priv = to_i915(fb->dev);
3273 u32 stride = intel_fb_pitch(fb, plane, rotation);
3274
3275 /*
3276 * The stride is either expressed as a multiple of 64 bytes chunks for
3277 * linear buffers or in number of tiles for tiled buffers.
3278 */
3279 if (intel_rotation_90_or_270(rotation)) {
3280 int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
3281
3282 stride /= intel_tile_height(dev_priv, fb->modifier[0], cpp);
3283 } else {
3284 stride /= intel_fb_stride_alignment(dev_priv, fb->modifier[0],
3285 fb->pixel_format);
3286 }
3287
3288 return stride;
3289}
3290
6156a456 3291u32 skl_plane_ctl_format(uint32_t pixel_format)
70d21f0e 3292{
6156a456 3293 switch (pixel_format) {
d161cf7a 3294 case DRM_FORMAT_C8:
c34ce3d1 3295 return PLANE_CTL_FORMAT_INDEXED;
70d21f0e 3296 case DRM_FORMAT_RGB565:
c34ce3d1 3297 return PLANE_CTL_FORMAT_RGB_565;
70d21f0e 3298 case DRM_FORMAT_XBGR8888:
c34ce3d1 3299 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
6156a456 3300 case DRM_FORMAT_XRGB8888:
c34ce3d1 3301 return PLANE_CTL_FORMAT_XRGB_8888;
6156a456
CK
3302 /*
3303 * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
3304 * to be already pre-multiplied. We need to add a knob (or a different
3305 * DRM_FORMAT) for user-space to configure that.
3306 */
f75fb42a 3307 case DRM_FORMAT_ABGR8888:
c34ce3d1 3308 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
6156a456 3309 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
6156a456 3310 case DRM_FORMAT_ARGB8888:
c34ce3d1 3311 return PLANE_CTL_FORMAT_XRGB_8888 |
6156a456 3312 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
70d21f0e 3313 case DRM_FORMAT_XRGB2101010:
c34ce3d1 3314 return PLANE_CTL_FORMAT_XRGB_2101010;
70d21f0e 3315 case DRM_FORMAT_XBGR2101010:
c34ce3d1 3316 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
6156a456 3317 case DRM_FORMAT_YUYV:
c34ce3d1 3318 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
6156a456 3319 case DRM_FORMAT_YVYU:
c34ce3d1 3320 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
6156a456 3321 case DRM_FORMAT_UYVY:
c34ce3d1 3322 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
6156a456 3323 case DRM_FORMAT_VYUY:
c34ce3d1 3324 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
70d21f0e 3325 default:
4249eeef 3326 MISSING_CASE(pixel_format);
70d21f0e 3327 }
8cfcba41 3328
c34ce3d1 3329 return 0;
6156a456 3330}
70d21f0e 3331
6156a456
CK
3332u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
3333{
6156a456 3334 switch (fb_modifier) {
30af77c4 3335 case DRM_FORMAT_MOD_NONE:
70d21f0e 3336 break;
30af77c4 3337 case I915_FORMAT_MOD_X_TILED:
c34ce3d1 3338 return PLANE_CTL_TILED_X;
b321803d 3339 case I915_FORMAT_MOD_Y_TILED:
c34ce3d1 3340 return PLANE_CTL_TILED_Y;
b321803d 3341 case I915_FORMAT_MOD_Yf_TILED:
c34ce3d1 3342 return PLANE_CTL_TILED_YF;
70d21f0e 3343 default:
6156a456 3344 MISSING_CASE(fb_modifier);
70d21f0e 3345 }
8cfcba41 3346
c34ce3d1 3347 return 0;
6156a456 3348}
70d21f0e 3349
6156a456
CK
3350u32 skl_plane_ctl_rotation(unsigned int rotation)
3351{
3b7a5119 3352 switch (rotation) {
31ad61e4 3353 case DRM_ROTATE_0:
6156a456 3354 break;
1e8df167
SJ
3355 /*
3356 * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3357 * while i915 HW rotation is clockwise, thats why this swapping.
3358 */
31ad61e4 3359 case DRM_ROTATE_90:
1e8df167 3360 return PLANE_CTL_ROTATE_270;
31ad61e4 3361 case DRM_ROTATE_180:
c34ce3d1 3362 return PLANE_CTL_ROTATE_180;
31ad61e4 3363 case DRM_ROTATE_270:
1e8df167 3364 return PLANE_CTL_ROTATE_90;
6156a456
CK
3365 default:
3366 MISSING_CASE(rotation);
3367 }
3368
c34ce3d1 3369 return 0;
6156a456
CK
3370}
3371
a8d201af
ML
3372static void skylake_update_primary_plane(struct drm_plane *plane,
3373 const struct intel_crtc_state *crtc_state,
3374 const struct intel_plane_state *plane_state)
6156a456 3375{
a8d201af 3376 struct drm_device *dev = plane->dev;
fac5e23e 3377 struct drm_i915_private *dev_priv = to_i915(dev);
a8d201af
ML
3378 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3379 struct drm_framebuffer *fb = plane_state->base.fb;
62e0fb88 3380 const struct skl_wm_values *wm = &dev_priv->wm.skl_results;
6156a456 3381 int pipe = intel_crtc->pipe;
d2196774 3382 u32 plane_ctl;
a8d201af 3383 unsigned int rotation = plane_state->base.rotation;
d2196774 3384 u32 stride = skl_plane_stride(fb, 0, rotation);
b63a16f6 3385 u32 surf_addr = plane_state->main.offset;
a8d201af 3386 int scaler_id = plane_state->scaler_id;
b63a16f6
VS
3387 int src_x = plane_state->main.x;
3388 int src_y = plane_state->main.y;
936e71e3
VS
3389 int src_w = drm_rect_width(&plane_state->base.src) >> 16;
3390 int src_h = drm_rect_height(&plane_state->base.src) >> 16;
3391 int dst_x = plane_state->base.dst.x1;
3392 int dst_y = plane_state->base.dst.y1;
3393 int dst_w = drm_rect_width(&plane_state->base.dst);
3394 int dst_h = drm_rect_height(&plane_state->base.dst);
70d21f0e 3395
6156a456
CK
3396 plane_ctl = PLANE_CTL_ENABLE |
3397 PLANE_CTL_PIPE_GAMMA_ENABLE |
3398 PLANE_CTL_PIPE_CSC_ENABLE;
3399
3400 plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3401 plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3402 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
6156a456
CK
3403 plane_ctl |= skl_plane_ctl_rotation(rotation);
3404
6687c906
VS
3405 /* Sizes are 0 based */
3406 src_w--;
3407 src_h--;
3408 dst_w--;
3409 dst_h--;
3410
3411 intel_crtc->adjusted_x = src_x;
3412 intel_crtc->adjusted_y = src_y;
2db3366b 3413
62e0fb88
L
3414 if (wm->dirty_pipes & drm_crtc_mask(&intel_crtc->base))
3415 skl_write_plane_wm(intel_crtc, wm, 0);
3416
70d21f0e 3417 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
6687c906 3418 I915_WRITE(PLANE_OFFSET(pipe, 0), (src_y << 16) | src_x);
ef78ec94 3419 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
6687c906 3420 I915_WRITE(PLANE_SIZE(pipe, 0), (src_h << 16) | src_w);
6156a456
CK
3421
3422 if (scaler_id >= 0) {
3423 uint32_t ps_ctrl = 0;
3424
3425 WARN_ON(!dst_w || !dst_h);
3426 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3427 crtc_state->scaler_state.scalers[scaler_id].mode;
3428 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3429 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3430 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3431 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3432 I915_WRITE(PLANE_POS(pipe, 0), 0);
3433 } else {
3434 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3435 }
3436
6687c906
VS
3437 I915_WRITE(PLANE_SURF(pipe, 0),
3438 intel_fb_gtt_offset(fb, rotation) + surf_addr);
70d21f0e
DL
3439
3440 POSTING_READ(PLANE_SURF(pipe, 0));
3441}
3442
a8d201af
ML
3443static void skylake_disable_primary_plane(struct drm_plane *primary,
3444 struct drm_crtc *crtc)
17638cd6
JB
3445{
3446 struct drm_device *dev = crtc->dev;
fac5e23e 3447 struct drm_i915_private *dev_priv = to_i915(dev);
62e0fb88
L
3448 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3449 int pipe = intel_crtc->pipe;
3450
ccebc23b
L
3451 /*
3452 * We only populate skl_results on watermark updates, and if the
3453 * plane's visiblity isn't actually changing neither is its watermarks.
3454 */
3455 if (!crtc->primary->state->visible)
3456 skl_write_plane_wm(intel_crtc, &dev_priv->wm.skl_results, 0);
17638cd6 3457
a8d201af
ML
3458 I915_WRITE(PLANE_CTL(pipe, 0), 0);
3459 I915_WRITE(PLANE_SURF(pipe, 0), 0);
3460 POSTING_READ(PLANE_SURF(pipe, 0));
3461}
29b9bde6 3462
a8d201af
ML
3463/* Assume fb object is pinned & idle & fenced and just update base pointers */
3464static int
3465intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3466 int x, int y, enum mode_set_atomic state)
3467{
3468 /* Support for kgdboc is disabled, this needs a major rework. */
3469 DRM_ERROR("legacy panic handler not supported any more.\n");
3470
3471 return -ENODEV;
81255565
JB
3472}
3473
5a21b665
DV
3474static void intel_complete_page_flips(struct drm_i915_private *dev_priv)
3475{
3476 struct intel_crtc *crtc;
3477
91c8a326 3478 for_each_intel_crtc(&dev_priv->drm, crtc)
5a21b665
DV
3479 intel_finish_page_flip_cs(dev_priv, crtc->pipe);
3480}
3481
7514747d
VS
3482static void intel_update_primary_planes(struct drm_device *dev)
3483{
7514747d 3484 struct drm_crtc *crtc;
96a02917 3485
70e1e0ec 3486 for_each_crtc(dev, crtc) {
11c22da6 3487 struct intel_plane *plane = to_intel_plane(crtc->primary);
73974893
ML
3488 struct intel_plane_state *plane_state =
3489 to_intel_plane_state(plane->base.state);
11c22da6 3490
936e71e3 3491 if (plane_state->base.visible)
a8d201af
ML
3492 plane->update_plane(&plane->base,
3493 to_intel_crtc_state(crtc->state),
3494 plane_state);
73974893
ML
3495 }
3496}
3497
3498static int
3499__intel_display_resume(struct drm_device *dev,
3500 struct drm_atomic_state *state)
3501{
3502 struct drm_crtc_state *crtc_state;
3503 struct drm_crtc *crtc;
3504 int i, ret;
11c22da6 3505
73974893
ML
3506 intel_modeset_setup_hw_state(dev);
3507 i915_redisable_vga(dev);
3508
3509 if (!state)
3510 return 0;
3511
3512 for_each_crtc_in_state(state, crtc, crtc_state, i) {
3513 /*
3514 * Force recalculation even if we restore
3515 * current state. With fast modeset this may not result
3516 * in a modeset when the state is compatible.
3517 */
3518 crtc_state->mode_changed = true;
96a02917 3519 }
73974893
ML
3520
3521 /* ignore any reset values/BIOS leftovers in the WM registers */
3522 to_intel_atomic_state(state)->skip_intermediate_wm = true;
3523
3524 ret = drm_atomic_commit(state);
3525
3526 WARN_ON(ret == -EDEADLK);
3527 return ret;
96a02917
VS
3528}
3529
4ac2ba2f
VS
3530static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv)
3531{
ae98104b
VS
3532 return intel_has_gpu_reset(dev_priv) &&
3533 INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv);
4ac2ba2f
VS
3534}
3535
c033666a 3536void intel_prepare_reset(struct drm_i915_private *dev_priv)
7514747d 3537{
73974893
ML
3538 struct drm_device *dev = &dev_priv->drm;
3539 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
3540 struct drm_atomic_state *state;
3541 int ret;
3542
73974893
ML
3543 /*
3544 * Need mode_config.mutex so that we don't
3545 * trample ongoing ->detect() and whatnot.
3546 */
3547 mutex_lock(&dev->mode_config.mutex);
3548 drm_modeset_acquire_init(ctx, 0);
3549 while (1) {
3550 ret = drm_modeset_lock_all_ctx(dev, ctx);
3551 if (ret != -EDEADLK)
3552 break;
3553
3554 drm_modeset_backoff(ctx);
3555 }
3556
3557 /* reset doesn't touch the display, but flips might get nuked anyway, */
522a63de 3558 if (!i915.force_reset_modeset_test &&
4ac2ba2f 3559 !gpu_reset_clobbers_display(dev_priv))
7514747d
VS
3560 return;
3561
f98ce92f
VS
3562 /*
3563 * Disabling the crtcs gracefully seems nicer. Also the
3564 * g33 docs say we should at least disable all the planes.
3565 */
73974893
ML
3566 state = drm_atomic_helper_duplicate_state(dev, ctx);
3567 if (IS_ERR(state)) {
3568 ret = PTR_ERR(state);
3569 state = NULL;
3570 DRM_ERROR("Duplicating state failed with %i\n", ret);
3571 goto err;
3572 }
3573
3574 ret = drm_atomic_helper_disable_all(dev, ctx);
3575 if (ret) {
3576 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
3577 goto err;
3578 }
3579
3580 dev_priv->modeset_restore_state = state;
3581 state->acquire_ctx = ctx;
3582 return;
3583
3584err:
3585 drm_atomic_state_free(state);
7514747d
VS
3586}
3587
c033666a 3588void intel_finish_reset(struct drm_i915_private *dev_priv)
7514747d 3589{
73974893
ML
3590 struct drm_device *dev = &dev_priv->drm;
3591 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
3592 struct drm_atomic_state *state = dev_priv->modeset_restore_state;
3593 int ret;
3594
5a21b665
DV
3595 /*
3596 * Flips in the rings will be nuked by the reset,
3597 * so complete all pending flips so that user space
3598 * will get its events and not get stuck.
3599 */
3600 intel_complete_page_flips(dev_priv);
3601
73974893
ML
3602 dev_priv->modeset_restore_state = NULL;
3603
7514747d 3604 /* reset doesn't touch the display */
4ac2ba2f 3605 if (!gpu_reset_clobbers_display(dev_priv)) {
522a63de
ML
3606 if (!state) {
3607 /*
3608 * Flips in the rings have been nuked by the reset,
3609 * so update the base address of all primary
3610 * planes to the the last fb to make sure we're
3611 * showing the correct fb after a reset.
3612 *
3613 * FIXME: Atomic will make this obsolete since we won't schedule
3614 * CS-based flips (which might get lost in gpu resets) any more.
3615 */
3616 intel_update_primary_planes(dev);
3617 } else {
3618 ret = __intel_display_resume(dev, state);
3619 if (ret)
3620 DRM_ERROR("Restoring old state failed with %i\n", ret);
3621 }
73974893
ML
3622 } else {
3623 /*
3624 * The display has been reset as well,
3625 * so need a full re-initialization.
3626 */
3627 intel_runtime_pm_disable_interrupts(dev_priv);
3628 intel_runtime_pm_enable_interrupts(dev_priv);
7514747d 3629
73974893 3630 intel_modeset_init_hw(dev);
7514747d 3631
73974893
ML
3632 spin_lock_irq(&dev_priv->irq_lock);
3633 if (dev_priv->display.hpd_irq_setup)
3634 dev_priv->display.hpd_irq_setup(dev_priv);
3635 spin_unlock_irq(&dev_priv->irq_lock);
7514747d 3636
73974893
ML
3637 ret = __intel_display_resume(dev, state);
3638 if (ret)
3639 DRM_ERROR("Restoring old state failed with %i\n", ret);
7514747d 3640
73974893
ML
3641 intel_hpd_init(dev_priv);
3642 }
7514747d 3643
73974893
ML
3644 drm_modeset_drop_locks(ctx);
3645 drm_modeset_acquire_fini(ctx);
3646 mutex_unlock(&dev->mode_config.mutex);
7514747d
VS
3647}
3648
8af29b0c
CW
3649static bool abort_flip_on_reset(struct intel_crtc *crtc)
3650{
3651 struct i915_gpu_error *error = &to_i915(crtc->base.dev)->gpu_error;
3652
3653 if (i915_reset_in_progress(error))
3654 return true;
3655
3656 if (crtc->reset_count != i915_reset_count(error))
3657 return true;
3658
3659 return false;
3660}
3661
7d5e3799
CW
3662static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3663{
5a21b665
DV
3664 struct drm_device *dev = crtc->dev;
3665 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5a21b665
DV
3666 bool pending;
3667
8af29b0c 3668 if (abort_flip_on_reset(intel_crtc))
5a21b665
DV
3669 return false;
3670
3671 spin_lock_irq(&dev->event_lock);
3672 pending = to_intel_crtc(crtc)->flip_work != NULL;
3673 spin_unlock_irq(&dev->event_lock);
3674
3675 return pending;
7d5e3799
CW
3676}
3677
bfd16b2a
ML
3678static void intel_update_pipe_config(struct intel_crtc *crtc,
3679 struct intel_crtc_state *old_crtc_state)
e30e8f75
GP
3680{
3681 struct drm_device *dev = crtc->base.dev;
fac5e23e 3682 struct drm_i915_private *dev_priv = to_i915(dev);
bfd16b2a
ML
3683 struct intel_crtc_state *pipe_config =
3684 to_intel_crtc_state(crtc->base.state);
e30e8f75 3685
bfd16b2a
ML
3686 /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3687 crtc->base.mode = crtc->base.state->mode;
3688
3689 DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
3690 old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
3691 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
e30e8f75
GP
3692
3693 /*
3694 * Update pipe size and adjust fitter if needed: the reason for this is
3695 * that in compute_mode_changes we check the native mode (not the pfit
3696 * mode) to see if we can flip rather than do a full mode set. In the
3697 * fastboot case, we'll flip, but if we don't update the pipesrc and
3698 * pfit state, we'll end up with a big fb scanned out into the wrong
3699 * sized surface.
e30e8f75
GP
3700 */
3701
e30e8f75 3702 I915_WRITE(PIPESRC(crtc->pipe),
bfd16b2a
ML
3703 ((pipe_config->pipe_src_w - 1) << 16) |
3704 (pipe_config->pipe_src_h - 1));
3705
3706 /* on skylake this is done by detaching scalers */
3707 if (INTEL_INFO(dev)->gen >= 9) {
3708 skl_detach_scalers(crtc);
3709
3710 if (pipe_config->pch_pfit.enabled)
3711 skylake_pfit_enable(crtc);
3712 } else if (HAS_PCH_SPLIT(dev)) {
3713 if (pipe_config->pch_pfit.enabled)
3714 ironlake_pfit_enable(crtc);
3715 else if (old_crtc_state->pch_pfit.enabled)
3716 ironlake_pfit_disable(crtc, true);
e30e8f75 3717 }
e30e8f75
GP
3718}
3719
5e84e1a4
ZW
3720static void intel_fdi_normal_train(struct drm_crtc *crtc)
3721{
3722 struct drm_device *dev = crtc->dev;
fac5e23e 3723 struct drm_i915_private *dev_priv = to_i915(dev);
5e84e1a4
ZW
3724 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3725 int pipe = intel_crtc->pipe;
f0f59a00
VS
3726 i915_reg_t reg;
3727 u32 temp;
5e84e1a4
ZW
3728
3729 /* enable normal train */
3730 reg = FDI_TX_CTL(pipe);
3731 temp = I915_READ(reg);
61e499bf 3732 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
3733 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3734 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
3735 } else {
3736 temp &= ~FDI_LINK_TRAIN_NONE;
3737 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 3738 }
5e84e1a4
ZW
3739 I915_WRITE(reg, temp);
3740
3741 reg = FDI_RX_CTL(pipe);
3742 temp = I915_READ(reg);
3743 if (HAS_PCH_CPT(dev)) {
3744 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3745 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3746 } else {
3747 temp &= ~FDI_LINK_TRAIN_NONE;
3748 temp |= FDI_LINK_TRAIN_NONE;
3749 }
3750 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3751
3752 /* wait one idle pattern time */
3753 POSTING_READ(reg);
3754 udelay(1000);
357555c0
JB
3755
3756 /* IVB wants error correction enabled */
3757 if (IS_IVYBRIDGE(dev))
3758 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3759 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
3760}
3761
8db9d77b
ZW
3762/* The FDI link training functions for ILK/Ibexpeak. */
3763static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3764{
3765 struct drm_device *dev = crtc->dev;
fac5e23e 3766 struct drm_i915_private *dev_priv = to_i915(dev);
8db9d77b
ZW
3767 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3768 int pipe = intel_crtc->pipe;
f0f59a00
VS
3769 i915_reg_t reg;
3770 u32 temp, tries;
8db9d77b 3771
1c8562f6 3772 /* FDI needs bits from pipe first */
0fc932b8 3773 assert_pipe_enabled(dev_priv, pipe);
0fc932b8 3774
e1a44743
AJ
3775 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3776 for train result */
5eddb70b
CW
3777 reg = FDI_RX_IMR(pipe);
3778 temp = I915_READ(reg);
e1a44743
AJ
3779 temp &= ~FDI_RX_SYMBOL_LOCK;
3780 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
3781 I915_WRITE(reg, temp);
3782 I915_READ(reg);
e1a44743
AJ
3783 udelay(150);
3784
8db9d77b 3785 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
3786 reg = FDI_TX_CTL(pipe);
3787 temp = I915_READ(reg);
627eb5a3 3788 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3789 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
8db9d77b
ZW
3790 temp &= ~FDI_LINK_TRAIN_NONE;
3791 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 3792 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 3793
5eddb70b
CW
3794 reg = FDI_RX_CTL(pipe);
3795 temp = I915_READ(reg);
8db9d77b
ZW
3796 temp &= ~FDI_LINK_TRAIN_NONE;
3797 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
3798 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3799
3800 POSTING_READ(reg);
8db9d77b
ZW
3801 udelay(150);
3802
5b2adf89 3803 /* Ironlake workaround, enable clock pointer after FDI enable*/
8f5718a6
DV
3804 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3805 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3806 FDI_RX_PHASE_SYNC_POINTER_EN);
5b2adf89 3807
5eddb70b 3808 reg = FDI_RX_IIR(pipe);
e1a44743 3809 for (tries = 0; tries < 5; tries++) {
5eddb70b 3810 temp = I915_READ(reg);
8db9d77b
ZW
3811 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3812
3813 if ((temp & FDI_RX_BIT_LOCK)) {
3814 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 3815 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
3816 break;
3817 }
8db9d77b 3818 }
e1a44743 3819 if (tries == 5)
5eddb70b 3820 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3821
3822 /* Train 2 */
5eddb70b
CW
3823 reg = FDI_TX_CTL(pipe);
3824 temp = I915_READ(reg);
8db9d77b
ZW
3825 temp &= ~FDI_LINK_TRAIN_NONE;
3826 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 3827 I915_WRITE(reg, temp);
8db9d77b 3828
5eddb70b
CW
3829 reg = FDI_RX_CTL(pipe);
3830 temp = I915_READ(reg);
8db9d77b
ZW
3831 temp &= ~FDI_LINK_TRAIN_NONE;
3832 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 3833 I915_WRITE(reg, temp);
8db9d77b 3834
5eddb70b
CW
3835 POSTING_READ(reg);
3836 udelay(150);
8db9d77b 3837
5eddb70b 3838 reg = FDI_RX_IIR(pipe);
e1a44743 3839 for (tries = 0; tries < 5; tries++) {
5eddb70b 3840 temp = I915_READ(reg);
8db9d77b
ZW
3841 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3842
3843 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 3844 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
3845 DRM_DEBUG_KMS("FDI train 2 done.\n");
3846 break;
3847 }
8db9d77b 3848 }
e1a44743 3849 if (tries == 5)
5eddb70b 3850 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3851
3852 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 3853
8db9d77b
ZW
3854}
3855
0206e353 3856static const int snb_b_fdi_train_param[] = {
8db9d77b
ZW
3857 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3858 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3859 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3860 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3861};
3862
3863/* The FDI link training functions for SNB/Cougarpoint. */
3864static void gen6_fdi_link_train(struct drm_crtc *crtc)
3865{
3866 struct drm_device *dev = crtc->dev;
fac5e23e 3867 struct drm_i915_private *dev_priv = to_i915(dev);
8db9d77b
ZW
3868 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3869 int pipe = intel_crtc->pipe;
f0f59a00
VS
3870 i915_reg_t reg;
3871 u32 temp, i, retry;
8db9d77b 3872
e1a44743
AJ
3873 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3874 for train result */
5eddb70b
CW
3875 reg = FDI_RX_IMR(pipe);
3876 temp = I915_READ(reg);
e1a44743
AJ
3877 temp &= ~FDI_RX_SYMBOL_LOCK;
3878 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
3879 I915_WRITE(reg, temp);
3880
3881 POSTING_READ(reg);
e1a44743
AJ
3882 udelay(150);
3883
8db9d77b 3884 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
3885 reg = FDI_TX_CTL(pipe);
3886 temp = I915_READ(reg);
627eb5a3 3887 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3888 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
8db9d77b
ZW
3889 temp &= ~FDI_LINK_TRAIN_NONE;
3890 temp |= FDI_LINK_TRAIN_PATTERN_1;
3891 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3892 /* SNB-B */
3893 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 3894 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 3895
d74cf324
DV
3896 I915_WRITE(FDI_RX_MISC(pipe),
3897 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3898
5eddb70b
CW
3899 reg = FDI_RX_CTL(pipe);
3900 temp = I915_READ(reg);
8db9d77b
ZW
3901 if (HAS_PCH_CPT(dev)) {
3902 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3903 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3904 } else {
3905 temp &= ~FDI_LINK_TRAIN_NONE;
3906 temp |= FDI_LINK_TRAIN_PATTERN_1;
3907 }
5eddb70b
CW
3908 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3909
3910 POSTING_READ(reg);
8db9d77b
ZW
3911 udelay(150);
3912
0206e353 3913 for (i = 0; i < 4; i++) {
5eddb70b
CW
3914 reg = FDI_TX_CTL(pipe);
3915 temp = I915_READ(reg);
8db9d77b
ZW
3916 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3917 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3918 I915_WRITE(reg, temp);
3919
3920 POSTING_READ(reg);
8db9d77b
ZW
3921 udelay(500);
3922
fa37d39e
SP
3923 for (retry = 0; retry < 5; retry++) {
3924 reg = FDI_RX_IIR(pipe);
3925 temp = I915_READ(reg);
3926 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3927 if (temp & FDI_RX_BIT_LOCK) {
3928 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3929 DRM_DEBUG_KMS("FDI train 1 done.\n");
3930 break;
3931 }
3932 udelay(50);
8db9d77b 3933 }
fa37d39e
SP
3934 if (retry < 5)
3935 break;
8db9d77b
ZW
3936 }
3937 if (i == 4)
5eddb70b 3938 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3939
3940 /* Train 2 */
5eddb70b
CW
3941 reg = FDI_TX_CTL(pipe);
3942 temp = I915_READ(reg);
8db9d77b
ZW
3943 temp &= ~FDI_LINK_TRAIN_NONE;
3944 temp |= FDI_LINK_TRAIN_PATTERN_2;
3945 if (IS_GEN6(dev)) {
3946 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3947 /* SNB-B */
3948 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3949 }
5eddb70b 3950 I915_WRITE(reg, temp);
8db9d77b 3951
5eddb70b
CW
3952 reg = FDI_RX_CTL(pipe);
3953 temp = I915_READ(reg);
8db9d77b
ZW
3954 if (HAS_PCH_CPT(dev)) {
3955 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3956 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3957 } else {
3958 temp &= ~FDI_LINK_TRAIN_NONE;
3959 temp |= FDI_LINK_TRAIN_PATTERN_2;
3960 }
5eddb70b
CW
3961 I915_WRITE(reg, temp);
3962
3963 POSTING_READ(reg);
8db9d77b
ZW
3964 udelay(150);
3965
0206e353 3966 for (i = 0; i < 4; i++) {
5eddb70b
CW
3967 reg = FDI_TX_CTL(pipe);
3968 temp = I915_READ(reg);
8db9d77b
ZW
3969 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3970 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3971 I915_WRITE(reg, temp);
3972
3973 POSTING_READ(reg);
8db9d77b
ZW
3974 udelay(500);
3975
fa37d39e
SP
3976 for (retry = 0; retry < 5; retry++) {
3977 reg = FDI_RX_IIR(pipe);
3978 temp = I915_READ(reg);
3979 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3980 if (temp & FDI_RX_SYMBOL_LOCK) {
3981 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3982 DRM_DEBUG_KMS("FDI train 2 done.\n");
3983 break;
3984 }
3985 udelay(50);
8db9d77b 3986 }
fa37d39e
SP
3987 if (retry < 5)
3988 break;
8db9d77b
ZW
3989 }
3990 if (i == 4)
5eddb70b 3991 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3992
3993 DRM_DEBUG_KMS("FDI train done.\n");
3994}
3995
357555c0
JB
3996/* Manual link training for Ivy Bridge A0 parts */
3997static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3998{
3999 struct drm_device *dev = crtc->dev;
fac5e23e 4000 struct drm_i915_private *dev_priv = to_i915(dev);
357555c0
JB
4001 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4002 int pipe = intel_crtc->pipe;
f0f59a00
VS
4003 i915_reg_t reg;
4004 u32 temp, i, j;
357555c0
JB
4005
4006 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
4007 for train result */
4008 reg = FDI_RX_IMR(pipe);
4009 temp = I915_READ(reg);
4010 temp &= ~FDI_RX_SYMBOL_LOCK;
4011 temp &= ~FDI_RX_BIT_LOCK;
4012 I915_WRITE(reg, temp);
4013
4014 POSTING_READ(reg);
4015 udelay(150);
4016
01a415fd
DV
4017 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
4018 I915_READ(FDI_RX_IIR(pipe)));
4019
139ccd3f
JB
4020 /* Try each vswing and preemphasis setting twice before moving on */
4021 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
4022 /* disable first in case we need to retry */
4023 reg = FDI_TX_CTL(pipe);
4024 temp = I915_READ(reg);
4025 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
4026 temp &= ~FDI_TX_ENABLE;
4027 I915_WRITE(reg, temp);
357555c0 4028
139ccd3f
JB
4029 reg = FDI_RX_CTL(pipe);
4030 temp = I915_READ(reg);
4031 temp &= ~FDI_LINK_TRAIN_AUTO;
4032 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4033 temp &= ~FDI_RX_ENABLE;
4034 I915_WRITE(reg, temp);
357555c0 4035
139ccd3f 4036 /* enable CPU FDI TX and PCH FDI RX */
357555c0
JB
4037 reg = FDI_TX_CTL(pipe);
4038 temp = I915_READ(reg);
139ccd3f 4039 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 4040 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
139ccd3f 4041 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
357555c0 4042 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
139ccd3f
JB
4043 temp |= snb_b_fdi_train_param[j/2];
4044 temp |= FDI_COMPOSITE_SYNC;
4045 I915_WRITE(reg, temp | FDI_TX_ENABLE);
357555c0 4046
139ccd3f
JB
4047 I915_WRITE(FDI_RX_MISC(pipe),
4048 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
357555c0 4049
139ccd3f 4050 reg = FDI_RX_CTL(pipe);
357555c0 4051 temp = I915_READ(reg);
139ccd3f
JB
4052 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
4053 temp |= FDI_COMPOSITE_SYNC;
4054 I915_WRITE(reg, temp | FDI_RX_ENABLE);
357555c0 4055
139ccd3f
JB
4056 POSTING_READ(reg);
4057 udelay(1); /* should be 0.5us */
357555c0 4058
139ccd3f
JB
4059 for (i = 0; i < 4; i++) {
4060 reg = FDI_RX_IIR(pipe);
4061 temp = I915_READ(reg);
4062 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 4063
139ccd3f
JB
4064 if (temp & FDI_RX_BIT_LOCK ||
4065 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
4066 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
4067 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
4068 i);
4069 break;
4070 }
4071 udelay(1); /* should be 0.5us */
4072 }
4073 if (i == 4) {
4074 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
4075 continue;
4076 }
357555c0 4077
139ccd3f 4078 /* Train 2 */
357555c0
JB
4079 reg = FDI_TX_CTL(pipe);
4080 temp = I915_READ(reg);
139ccd3f
JB
4081 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
4082 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
4083 I915_WRITE(reg, temp);
4084
4085 reg = FDI_RX_CTL(pipe);
4086 temp = I915_READ(reg);
4087 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4088 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
357555c0
JB
4089 I915_WRITE(reg, temp);
4090
4091 POSTING_READ(reg);
139ccd3f 4092 udelay(2); /* should be 1.5us */
357555c0 4093
139ccd3f
JB
4094 for (i = 0; i < 4; i++) {
4095 reg = FDI_RX_IIR(pipe);
4096 temp = I915_READ(reg);
4097 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 4098
139ccd3f
JB
4099 if (temp & FDI_RX_SYMBOL_LOCK ||
4100 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
4101 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
4102 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
4103 i);
4104 goto train_done;
4105 }
4106 udelay(2); /* should be 1.5us */
357555c0 4107 }
139ccd3f
JB
4108 if (i == 4)
4109 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
357555c0 4110 }
357555c0 4111
139ccd3f 4112train_done:
357555c0
JB
4113 DRM_DEBUG_KMS("FDI train done.\n");
4114}
4115
88cefb6c 4116static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2c07245f 4117{
88cefb6c 4118 struct drm_device *dev = intel_crtc->base.dev;
fac5e23e 4119 struct drm_i915_private *dev_priv = to_i915(dev);
2c07245f 4120 int pipe = intel_crtc->pipe;
f0f59a00
VS
4121 i915_reg_t reg;
4122 u32 temp;
c64e311e 4123
c98e9dcf 4124 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
4125 reg = FDI_RX_CTL(pipe);
4126 temp = I915_READ(reg);
627eb5a3 4127 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
6e3c9717 4128 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
dfd07d72 4129 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5eddb70b
CW
4130 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
4131
4132 POSTING_READ(reg);
c98e9dcf
JB
4133 udelay(200);
4134
4135 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
4136 temp = I915_READ(reg);
4137 I915_WRITE(reg, temp | FDI_PCDCLK);
4138
4139 POSTING_READ(reg);
c98e9dcf
JB
4140 udelay(200);
4141
20749730
PZ
4142 /* Enable CPU FDI TX PLL, always on for Ironlake */
4143 reg = FDI_TX_CTL(pipe);
4144 temp = I915_READ(reg);
4145 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
4146 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
5eddb70b 4147
20749730
PZ
4148 POSTING_READ(reg);
4149 udelay(100);
6be4a607 4150 }
0e23b99d
JB
4151}
4152
88cefb6c
DV
4153static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
4154{
4155 struct drm_device *dev = intel_crtc->base.dev;
fac5e23e 4156 struct drm_i915_private *dev_priv = to_i915(dev);
88cefb6c 4157 int pipe = intel_crtc->pipe;
f0f59a00
VS
4158 i915_reg_t reg;
4159 u32 temp;
88cefb6c
DV
4160
4161 /* Switch from PCDclk to Rawclk */
4162 reg = FDI_RX_CTL(pipe);
4163 temp = I915_READ(reg);
4164 I915_WRITE(reg, temp & ~FDI_PCDCLK);
4165
4166 /* Disable CPU FDI TX PLL */
4167 reg = FDI_TX_CTL(pipe);
4168 temp = I915_READ(reg);
4169 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
4170
4171 POSTING_READ(reg);
4172 udelay(100);
4173
4174 reg = FDI_RX_CTL(pipe);
4175 temp = I915_READ(reg);
4176 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
4177
4178 /* Wait for the clocks to turn off. */
4179 POSTING_READ(reg);
4180 udelay(100);
4181}
4182
0fc932b8
JB
4183static void ironlake_fdi_disable(struct drm_crtc *crtc)
4184{
4185 struct drm_device *dev = crtc->dev;
fac5e23e 4186 struct drm_i915_private *dev_priv = to_i915(dev);
0fc932b8
JB
4187 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4188 int pipe = intel_crtc->pipe;
f0f59a00
VS
4189 i915_reg_t reg;
4190 u32 temp;
0fc932b8
JB
4191
4192 /* disable CPU FDI tx and PCH FDI rx */
4193 reg = FDI_TX_CTL(pipe);
4194 temp = I915_READ(reg);
4195 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
4196 POSTING_READ(reg);
4197
4198 reg = FDI_RX_CTL(pipe);
4199 temp = I915_READ(reg);
4200 temp &= ~(0x7 << 16);
dfd07d72 4201 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
4202 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
4203
4204 POSTING_READ(reg);
4205 udelay(100);
4206
4207 /* Ironlake workaround, disable clock pointer after downing FDI */
eba905b2 4208 if (HAS_PCH_IBX(dev))
6f06ce18 4209 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
0fc932b8
JB
4210
4211 /* still set train pattern 1 */
4212 reg = FDI_TX_CTL(pipe);
4213 temp = I915_READ(reg);
4214 temp &= ~FDI_LINK_TRAIN_NONE;
4215 temp |= FDI_LINK_TRAIN_PATTERN_1;
4216 I915_WRITE(reg, temp);
4217
4218 reg = FDI_RX_CTL(pipe);
4219 temp = I915_READ(reg);
4220 if (HAS_PCH_CPT(dev)) {
4221 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4222 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
4223 } else {
4224 temp &= ~FDI_LINK_TRAIN_NONE;
4225 temp |= FDI_LINK_TRAIN_PATTERN_1;
4226 }
4227 /* BPC in FDI rx is consistent with that in PIPECONF */
4228 temp &= ~(0x07 << 16);
dfd07d72 4229 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
4230 I915_WRITE(reg, temp);
4231
4232 POSTING_READ(reg);
4233 udelay(100);
4234}
4235
5dce5b93
CW
4236bool intel_has_pending_fb_unpin(struct drm_device *dev)
4237{
4238 struct intel_crtc *crtc;
4239
4240 /* Note that we don't need to be called with mode_config.lock here
4241 * as our list of CRTC objects is static for the lifetime of the
4242 * device and so cannot disappear as we iterate. Similarly, we can
4243 * happily treat the predicates as racy, atomic checks as userspace
4244 * cannot claim and pin a new fb without at least acquring the
4245 * struct_mutex and so serialising with us.
4246 */
d3fcc808 4247 for_each_intel_crtc(dev, crtc) {
5dce5b93
CW
4248 if (atomic_read(&crtc->unpin_work_count) == 0)
4249 continue;
4250
5a21b665 4251 if (crtc->flip_work)
5dce5b93
CW
4252 intel_wait_for_vblank(dev, crtc->pipe);
4253
4254 return true;
4255 }
4256
4257 return false;
4258}
4259
5a21b665 4260static void page_flip_completed(struct intel_crtc *intel_crtc)
d6bbafa1
CW
4261{
4262 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
5a21b665
DV
4263 struct intel_flip_work *work = intel_crtc->flip_work;
4264
4265 intel_crtc->flip_work = NULL;
d6bbafa1
CW
4266
4267 if (work->event)
560ce1dc 4268 drm_crtc_send_vblank_event(&intel_crtc->base, work->event);
d6bbafa1
CW
4269
4270 drm_crtc_vblank_put(&intel_crtc->base);
4271
5a21b665 4272 wake_up_all(&dev_priv->pending_flip_queue);
143f73b3 4273 queue_work(dev_priv->wq, &work->unpin_work);
5a21b665
DV
4274
4275 trace_i915_flip_complete(intel_crtc->plane,
4276 work->pending_flip_obj);
d6bbafa1
CW
4277}
4278
5008e874 4279static int intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
e6c3a2a6 4280{
0f91128d 4281 struct drm_device *dev = crtc->dev;
fac5e23e 4282 struct drm_i915_private *dev_priv = to_i915(dev);
5008e874 4283 long ret;
e6c3a2a6 4284
2c10d571 4285 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
5008e874
ML
4286
4287 ret = wait_event_interruptible_timeout(
4288 dev_priv->pending_flip_queue,
4289 !intel_crtc_has_pending_flip(crtc),
4290 60*HZ);
4291
4292 if (ret < 0)
4293 return ret;
4294
5a21b665
DV
4295 if (ret == 0) {
4296 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4297 struct intel_flip_work *work;
4298
4299 spin_lock_irq(&dev->event_lock);
4300 work = intel_crtc->flip_work;
4301 if (work && !is_mmio_work(work)) {
4302 WARN_ONCE(1, "Removing stuck page flip\n");
4303 page_flip_completed(intel_crtc);
4304 }
4305 spin_unlock_irq(&dev->event_lock);
4306 }
5bb61643 4307
5008e874 4308 return 0;
e6c3a2a6
CW
4309}
4310
b7076546 4311void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
060f02d8
VS
4312{
4313 u32 temp;
4314
4315 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
4316
4317 mutex_lock(&dev_priv->sb_lock);
4318
4319 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4320 temp |= SBI_SSCCTL_DISABLE;
4321 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4322
4323 mutex_unlock(&dev_priv->sb_lock);
4324}
4325
e615efe4
ED
4326/* Program iCLKIP clock to the desired frequency */
4327static void lpt_program_iclkip(struct drm_crtc *crtc)
4328{
64b46a06 4329 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6e3c9717 4330 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
e615efe4
ED
4331 u32 divsel, phaseinc, auxdiv, phasedir = 0;
4332 u32 temp;
4333
060f02d8 4334 lpt_disable_iclkip(dev_priv);
e615efe4 4335
64b46a06
VS
4336 /* The iCLK virtual clock root frequency is in MHz,
4337 * but the adjusted_mode->crtc_clock in in KHz. To get the
4338 * divisors, it is necessary to divide one by another, so we
4339 * convert the virtual clock precision to KHz here for higher
4340 * precision.
4341 */
4342 for (auxdiv = 0; auxdiv < 2; auxdiv++) {
e615efe4
ED
4343 u32 iclk_virtual_root_freq = 172800 * 1000;
4344 u32 iclk_pi_range = 64;
64b46a06 4345 u32 desired_divisor;
e615efe4 4346
64b46a06
VS
4347 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4348 clock << auxdiv);
4349 divsel = (desired_divisor / iclk_pi_range) - 2;
4350 phaseinc = desired_divisor % iclk_pi_range;
e615efe4 4351
64b46a06
VS
4352 /*
4353 * Near 20MHz is a corner case which is
4354 * out of range for the 7-bit divisor
4355 */
4356 if (divsel <= 0x7f)
4357 break;
e615efe4
ED
4358 }
4359
4360 /* This should not happen with any sane values */
4361 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
4362 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
4363 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
4364 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
4365
4366 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
12d7ceed 4367 clock,
e615efe4
ED
4368 auxdiv,
4369 divsel,
4370 phasedir,
4371 phaseinc);
4372
060f02d8
VS
4373 mutex_lock(&dev_priv->sb_lock);
4374
e615efe4 4375 /* Program SSCDIVINTPHASE6 */
988d6ee8 4376 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
e615efe4
ED
4377 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
4378 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
4379 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
4380 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
4381 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4382 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
988d6ee8 4383 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
e615efe4
ED
4384
4385 /* Program SSCAUXDIV */
988d6ee8 4386 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
e615efe4
ED
4387 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4388 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
988d6ee8 4389 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
e615efe4
ED
4390
4391 /* Enable modulator and associated divider */
988d6ee8 4392 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
e615efe4 4393 temp &= ~SBI_SSCCTL_DISABLE;
988d6ee8 4394 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
e615efe4 4395
060f02d8
VS
4396 mutex_unlock(&dev_priv->sb_lock);
4397
e615efe4
ED
4398 /* Wait for initialization time */
4399 udelay(24);
4400
4401 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4402}
4403
8802e5b6
VS
4404int lpt_get_iclkip(struct drm_i915_private *dev_priv)
4405{
4406 u32 divsel, phaseinc, auxdiv;
4407 u32 iclk_virtual_root_freq = 172800 * 1000;
4408 u32 iclk_pi_range = 64;
4409 u32 desired_divisor;
4410 u32 temp;
4411
4412 if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
4413 return 0;
4414
4415 mutex_lock(&dev_priv->sb_lock);
4416
4417 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4418 if (temp & SBI_SSCCTL_DISABLE) {
4419 mutex_unlock(&dev_priv->sb_lock);
4420 return 0;
4421 }
4422
4423 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4424 divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
4425 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
4426 phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
4427 SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
4428
4429 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4430 auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
4431 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
4432
4433 mutex_unlock(&dev_priv->sb_lock);
4434
4435 desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
4436
4437 return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4438 desired_divisor << auxdiv);
4439}
4440
275f01b2
DV
4441static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4442 enum pipe pch_transcoder)
4443{
4444 struct drm_device *dev = crtc->base.dev;
fac5e23e 4445 struct drm_i915_private *dev_priv = to_i915(dev);
6e3c9717 4446 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
275f01b2
DV
4447
4448 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4449 I915_READ(HTOTAL(cpu_transcoder)));
4450 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4451 I915_READ(HBLANK(cpu_transcoder)));
4452 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4453 I915_READ(HSYNC(cpu_transcoder)));
4454
4455 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4456 I915_READ(VTOTAL(cpu_transcoder)));
4457 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4458 I915_READ(VBLANK(cpu_transcoder)));
4459 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4460 I915_READ(VSYNC(cpu_transcoder)));
4461 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4462 I915_READ(VSYNCSHIFT(cpu_transcoder)));
4463}
4464
003632d9 4465static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
1fbc0d78 4466{
fac5e23e 4467 struct drm_i915_private *dev_priv = to_i915(dev);
1fbc0d78
DV
4468 uint32_t temp;
4469
4470 temp = I915_READ(SOUTH_CHICKEN1);
003632d9 4471 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
1fbc0d78
DV
4472 return;
4473
4474 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4475 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4476
003632d9
ACO
4477 temp &= ~FDI_BC_BIFURCATION_SELECT;
4478 if (enable)
4479 temp |= FDI_BC_BIFURCATION_SELECT;
4480
4481 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
1fbc0d78
DV
4482 I915_WRITE(SOUTH_CHICKEN1, temp);
4483 POSTING_READ(SOUTH_CHICKEN1);
4484}
4485
4486static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4487{
4488 struct drm_device *dev = intel_crtc->base.dev;
1fbc0d78
DV
4489
4490 switch (intel_crtc->pipe) {
4491 case PIPE_A:
4492 break;
4493 case PIPE_B:
6e3c9717 4494 if (intel_crtc->config->fdi_lanes > 2)
003632d9 4495 cpt_set_fdi_bc_bifurcation(dev, false);
1fbc0d78 4496 else
003632d9 4497 cpt_set_fdi_bc_bifurcation(dev, true);
1fbc0d78
DV
4498
4499 break;
4500 case PIPE_C:
003632d9 4501 cpt_set_fdi_bc_bifurcation(dev, true);
1fbc0d78
DV
4502
4503 break;
4504 default:
4505 BUG();
4506 }
4507}
4508
c48b5305
VS
4509/* Return which DP Port should be selected for Transcoder DP control */
4510static enum port
4511intel_trans_dp_port_sel(struct drm_crtc *crtc)
4512{
4513 struct drm_device *dev = crtc->dev;
4514 struct intel_encoder *encoder;
4515
4516 for_each_encoder_on_crtc(dev, crtc, encoder) {
cca0502b 4517 if (encoder->type == INTEL_OUTPUT_DP ||
c48b5305
VS
4518 encoder->type == INTEL_OUTPUT_EDP)
4519 return enc_to_dig_port(&encoder->base)->port;
4520 }
4521
4522 return -1;
4523}
4524
f67a559d
JB
4525/*
4526 * Enable PCH resources required for PCH ports:
4527 * - PCH PLLs
4528 * - FDI training & RX/TX
4529 * - update transcoder timings
4530 * - DP transcoding bits
4531 * - transcoder
4532 */
4533static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
4534{
4535 struct drm_device *dev = crtc->dev;
fac5e23e 4536 struct drm_i915_private *dev_priv = to_i915(dev);
0e23b99d
JB
4537 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4538 int pipe = intel_crtc->pipe;
f0f59a00 4539 u32 temp;
2c07245f 4540
ab9412ba 4541 assert_pch_transcoder_disabled(dev_priv, pipe);
e7e164db 4542
1fbc0d78
DV
4543 if (IS_IVYBRIDGE(dev))
4544 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4545
cd986abb
DV
4546 /* Write the TU size bits before fdi link training, so that error
4547 * detection works. */
4548 I915_WRITE(FDI_RX_TUSIZE1(pipe),
4549 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4550
c98e9dcf 4551 /* For PCH output, training FDI link */
674cf967 4552 dev_priv->display.fdi_link_train(crtc);
2c07245f 4553
3ad8a208
DV
4554 /* We need to program the right clock selection before writing the pixel
4555 * mutliplier into the DPLL. */
303b81e0 4556 if (HAS_PCH_CPT(dev)) {
ee7b9f93 4557 u32 sel;
4b645f14 4558
c98e9dcf 4559 temp = I915_READ(PCH_DPLL_SEL);
11887397
DV
4560 temp |= TRANS_DPLL_ENABLE(pipe);
4561 sel = TRANS_DPLLB_SEL(pipe);
8106ddbd
ACO
4562 if (intel_crtc->config->shared_dpll ==
4563 intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
ee7b9f93
JB
4564 temp |= sel;
4565 else
4566 temp &= ~sel;
c98e9dcf 4567 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 4568 }
5eddb70b 4569
3ad8a208
DV
4570 /* XXX: pch pll's can be enabled any time before we enable the PCH
4571 * transcoder, and we actually should do this to not upset any PCH
4572 * transcoder that already use the clock when we share it.
4573 *
4574 * Note that enable_shared_dpll tries to do the right thing, but
4575 * get_shared_dpll unconditionally resets the pll - we need that to have
4576 * the right LVDS enable sequence. */
85b3894f 4577 intel_enable_shared_dpll(intel_crtc);
3ad8a208 4578
d9b6cb56
JB
4579 /* set transcoder timing, panel must allow it */
4580 assert_panel_unlocked(dev_priv, pipe);
275f01b2 4581 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
8db9d77b 4582
303b81e0 4583 intel_fdi_normal_train(crtc);
5e84e1a4 4584
c98e9dcf 4585 /* For PCH DP, enable TRANS_DP_CTL */
37a5650b 4586 if (HAS_PCH_CPT(dev) && intel_crtc_has_dp_encoder(intel_crtc->config)) {
9c4edaee
VS
4587 const struct drm_display_mode *adjusted_mode =
4588 &intel_crtc->config->base.adjusted_mode;
dfd07d72 4589 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
f0f59a00 4590 i915_reg_t reg = TRANS_DP_CTL(pipe);
5eddb70b
CW
4591 temp = I915_READ(reg);
4592 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
4593 TRANS_DP_SYNC_MASK |
4594 TRANS_DP_BPC_MASK);
e3ef4479 4595 temp |= TRANS_DP_OUTPUT_ENABLE;
9325c9f0 4596 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf 4597
9c4edaee 4598 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 4599 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
9c4edaee 4600 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 4601 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
4602
4603 switch (intel_trans_dp_port_sel(crtc)) {
c48b5305 4604 case PORT_B:
5eddb70b 4605 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf 4606 break;
c48b5305 4607 case PORT_C:
5eddb70b 4608 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf 4609 break;
c48b5305 4610 case PORT_D:
5eddb70b 4611 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
4612 break;
4613 default:
e95d41e1 4614 BUG();
32f9d658 4615 }
2c07245f 4616
5eddb70b 4617 I915_WRITE(reg, temp);
6be4a607 4618 }
b52eb4dc 4619
b8a4f404 4620 ironlake_enable_pch_transcoder(dev_priv, pipe);
f67a559d
JB
4621}
4622
1507e5bd
PZ
4623static void lpt_pch_enable(struct drm_crtc *crtc)
4624{
4625 struct drm_device *dev = crtc->dev;
fac5e23e 4626 struct drm_i915_private *dev_priv = to_i915(dev);
1507e5bd 4627 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6e3c9717 4628 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1507e5bd 4629
ab9412ba 4630 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
1507e5bd 4631
8c52b5e8 4632 lpt_program_iclkip(crtc);
1507e5bd 4633
0540e488 4634 /* Set transcoder timing. */
275f01b2 4635 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
1507e5bd 4636
937bb610 4637 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
f67a559d
JB
4638}
4639
a1520318 4640static void cpt_verify_modeset(struct drm_device *dev, int pipe)
d4270e57 4641{
fac5e23e 4642 struct drm_i915_private *dev_priv = to_i915(dev);
f0f59a00 4643 i915_reg_t dslreg = PIPEDSL(pipe);
d4270e57
JB
4644 u32 temp;
4645
4646 temp = I915_READ(dslreg);
4647 udelay(500);
4648 if (wait_for(I915_READ(dslreg) != temp, 5)) {
d4270e57 4649 if (wait_for(I915_READ(dslreg) != temp, 5))
84f44ce7 4650 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
d4270e57
JB
4651 }
4652}
4653
86adf9d7
ML
4654static int
4655skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4656 unsigned scaler_user, int *scaler_id, unsigned int rotation,
4657 int src_w, int src_h, int dst_w, int dst_h)
a1b2278e 4658{
86adf9d7
ML
4659 struct intel_crtc_scaler_state *scaler_state =
4660 &crtc_state->scaler_state;
4661 struct intel_crtc *intel_crtc =
4662 to_intel_crtc(crtc_state->base.crtc);
a1b2278e 4663 int need_scaling;
6156a456
CK
4664
4665 need_scaling = intel_rotation_90_or_270(rotation) ?
4666 (src_h != dst_w || src_w != dst_h):
4667 (src_w != dst_w || src_h != dst_h);
a1b2278e
CK
4668
4669 /*
4670 * if plane is being disabled or scaler is no more required or force detach
4671 * - free scaler binded to this plane/crtc
4672 * - in order to do this, update crtc->scaler_usage
4673 *
4674 * Here scaler state in crtc_state is set free so that
4675 * scaler can be assigned to other user. Actual register
4676 * update to free the scaler is done in plane/panel-fit programming.
4677 * For this purpose crtc/plane_state->scaler_id isn't reset here.
4678 */
86adf9d7 4679 if (force_detach || !need_scaling) {
a1b2278e 4680 if (*scaler_id >= 0) {
86adf9d7 4681 scaler_state->scaler_users &= ~(1 << scaler_user);
a1b2278e
CK
4682 scaler_state->scalers[*scaler_id].in_use = 0;
4683
86adf9d7
ML
4684 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4685 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4686 intel_crtc->pipe, scaler_user, *scaler_id,
a1b2278e
CK
4687 scaler_state->scaler_users);
4688 *scaler_id = -1;
4689 }
4690 return 0;
4691 }
4692
4693 /* range checks */
4694 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4695 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4696
4697 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4698 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
86adf9d7 4699 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
a1b2278e 4700 "size is out of scaler range\n",
86adf9d7 4701 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
a1b2278e
CK
4702 return -EINVAL;
4703 }
4704
86adf9d7
ML
4705 /* mark this plane as a scaler user in crtc_state */
4706 scaler_state->scaler_users |= (1 << scaler_user);
4707 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4708 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4709 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4710 scaler_state->scaler_users);
4711
4712 return 0;
4713}
4714
4715/**
4716 * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4717 *
4718 * @state: crtc's scaler state
86adf9d7
ML
4719 *
4720 * Return
4721 * 0 - scaler_usage updated successfully
4722 * error - requested scaling cannot be supported or other error condition
4723 */
e435d6e5 4724int skl_update_scaler_crtc(struct intel_crtc_state *state)
86adf9d7
ML
4725{
4726 struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
7c5f93b0 4727 const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
86adf9d7 4728
78108b7c
VS
4729 DRM_DEBUG_KMS("Updating scaler for [CRTC:%d:%s] scaler_user index %u.%u\n",
4730 intel_crtc->base.base.id, intel_crtc->base.name,
4731 intel_crtc->pipe, SKL_CRTC_INDEX);
86adf9d7 4732
e435d6e5 4733 return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
31ad61e4 4734 &state->scaler_state.scaler_id, DRM_ROTATE_0,
86adf9d7 4735 state->pipe_src_w, state->pipe_src_h,
aad941d5 4736 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
86adf9d7
ML
4737}
4738
4739/**
4740 * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4741 *
4742 * @state: crtc's scaler state
86adf9d7
ML
4743 * @plane_state: atomic plane state to update
4744 *
4745 * Return
4746 * 0 - scaler_usage updated successfully
4747 * error - requested scaling cannot be supported or other error condition
4748 */
da20eabd
ML
4749static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4750 struct intel_plane_state *plane_state)
86adf9d7
ML
4751{
4752
4753 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
da20eabd
ML
4754 struct intel_plane *intel_plane =
4755 to_intel_plane(plane_state->base.plane);
86adf9d7
ML
4756 struct drm_framebuffer *fb = plane_state->base.fb;
4757 int ret;
4758
936e71e3 4759 bool force_detach = !fb || !plane_state->base.visible;
86adf9d7 4760
72660ce0
VS
4761 DRM_DEBUG_KMS("Updating scaler for [PLANE:%d:%s] scaler_user index %u.%u\n",
4762 intel_plane->base.base.id, intel_plane->base.name,
4763 intel_crtc->pipe, drm_plane_index(&intel_plane->base));
86adf9d7
ML
4764
4765 ret = skl_update_scaler(crtc_state, force_detach,
4766 drm_plane_index(&intel_plane->base),
4767 &plane_state->scaler_id,
4768 plane_state->base.rotation,
936e71e3
VS
4769 drm_rect_width(&plane_state->base.src) >> 16,
4770 drm_rect_height(&plane_state->base.src) >> 16,
4771 drm_rect_width(&plane_state->base.dst),
4772 drm_rect_height(&plane_state->base.dst));
86adf9d7
ML
4773
4774 if (ret || plane_state->scaler_id < 0)
4775 return ret;
4776
a1b2278e 4777 /* check colorkey */
818ed961 4778 if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
72660ce0
VS
4779 DRM_DEBUG_KMS("[PLANE:%d:%s] scaling with color key not allowed",
4780 intel_plane->base.base.id,
4781 intel_plane->base.name);
a1b2278e
CK
4782 return -EINVAL;
4783 }
4784
4785 /* Check src format */
86adf9d7
ML
4786 switch (fb->pixel_format) {
4787 case DRM_FORMAT_RGB565:
4788 case DRM_FORMAT_XBGR8888:
4789 case DRM_FORMAT_XRGB8888:
4790 case DRM_FORMAT_ABGR8888:
4791 case DRM_FORMAT_ARGB8888:
4792 case DRM_FORMAT_XRGB2101010:
4793 case DRM_FORMAT_XBGR2101010:
4794 case DRM_FORMAT_YUYV:
4795 case DRM_FORMAT_YVYU:
4796 case DRM_FORMAT_UYVY:
4797 case DRM_FORMAT_VYUY:
4798 break;
4799 default:
72660ce0
VS
4800 DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n",
4801 intel_plane->base.base.id, intel_plane->base.name,
4802 fb->base.id, fb->pixel_format);
86adf9d7 4803 return -EINVAL;
a1b2278e
CK
4804 }
4805
a1b2278e
CK
4806 return 0;
4807}
4808
e435d6e5
ML
4809static void skylake_scaler_disable(struct intel_crtc *crtc)
4810{
4811 int i;
4812
4813 for (i = 0; i < crtc->num_scalers; i++)
4814 skl_detach_scaler(crtc, i);
4815}
4816
4817static void skylake_pfit_enable(struct intel_crtc *crtc)
bd2e244f
JB
4818{
4819 struct drm_device *dev = crtc->base.dev;
fac5e23e 4820 struct drm_i915_private *dev_priv = to_i915(dev);
bd2e244f 4821 int pipe = crtc->pipe;
a1b2278e
CK
4822 struct intel_crtc_scaler_state *scaler_state =
4823 &crtc->config->scaler_state;
4824
4825 DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4826
6e3c9717 4827 if (crtc->config->pch_pfit.enabled) {
a1b2278e
CK
4828 int id;
4829
4830 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4831 DRM_ERROR("Requesting pfit without getting a scaler first\n");
4832 return;
4833 }
4834
4835 id = scaler_state->scaler_id;
4836 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4837 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4838 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4839 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4840
4841 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
bd2e244f
JB
4842 }
4843}
4844
b074cec8
JB
4845static void ironlake_pfit_enable(struct intel_crtc *crtc)
4846{
4847 struct drm_device *dev = crtc->base.dev;
fac5e23e 4848 struct drm_i915_private *dev_priv = to_i915(dev);
b074cec8
JB
4849 int pipe = crtc->pipe;
4850
6e3c9717 4851 if (crtc->config->pch_pfit.enabled) {
b074cec8
JB
4852 /* Force use of hard-coded filter coefficients
4853 * as some pre-programmed values are broken,
4854 * e.g. x201.
4855 */
4856 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4857 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4858 PF_PIPE_SEL_IVB(pipe));
4859 else
4860 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
6e3c9717
ACO
4861 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4862 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
d4270e57
JB
4863 }
4864}
4865
20bc8673 4866void hsw_enable_ips(struct intel_crtc *crtc)
d77e4531 4867{
cea165c3 4868 struct drm_device *dev = crtc->base.dev;
fac5e23e 4869 struct drm_i915_private *dev_priv = to_i915(dev);
d77e4531 4870
6e3c9717 4871 if (!crtc->config->ips_enabled)
d77e4531
PZ
4872 return;
4873
307e4498
ML
4874 /*
4875 * We can only enable IPS after we enable a plane and wait for a vblank
4876 * This function is called from post_plane_update, which is run after
4877 * a vblank wait.
4878 */
cea165c3 4879
d77e4531 4880 assert_plane_enabled(dev_priv, crtc->plane);
cea165c3 4881 if (IS_BROADWELL(dev)) {
2a114cc1
BW
4882 mutex_lock(&dev_priv->rps.hw_lock);
4883 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4884 mutex_unlock(&dev_priv->rps.hw_lock);
4885 /* Quoting Art Runyan: "its not safe to expect any particular
4886 * value in IPS_CTL bit 31 after enabling IPS through the
e59150dc
JB
4887 * mailbox." Moreover, the mailbox may return a bogus state,
4888 * so we need to just enable it and continue on.
2a114cc1
BW
4889 */
4890 } else {
4891 I915_WRITE(IPS_CTL, IPS_ENABLE);
4892 /* The bit only becomes 1 in the next vblank, so this wait here
4893 * is essentially intel_wait_for_vblank. If we don't have this
4894 * and don't wait for vblanks until the end of crtc_enable, then
4895 * the HW state readout code will complain that the expected
4896 * IPS_CTL value is not the one we read. */
2ec9ba3c
CW
4897 if (intel_wait_for_register(dev_priv,
4898 IPS_CTL, IPS_ENABLE, IPS_ENABLE,
4899 50))
2a114cc1
BW
4900 DRM_ERROR("Timed out waiting for IPS enable\n");
4901 }
d77e4531
PZ
4902}
4903
20bc8673 4904void hsw_disable_ips(struct intel_crtc *crtc)
d77e4531
PZ
4905{
4906 struct drm_device *dev = crtc->base.dev;
fac5e23e 4907 struct drm_i915_private *dev_priv = to_i915(dev);
d77e4531 4908
6e3c9717 4909 if (!crtc->config->ips_enabled)
d77e4531
PZ
4910 return;
4911
4912 assert_plane_enabled(dev_priv, crtc->plane);
23d0b130 4913 if (IS_BROADWELL(dev)) {
2a114cc1
BW
4914 mutex_lock(&dev_priv->rps.hw_lock);
4915 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4916 mutex_unlock(&dev_priv->rps.hw_lock);
23d0b130 4917 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
b85c1ecf
CW
4918 if (intel_wait_for_register(dev_priv,
4919 IPS_CTL, IPS_ENABLE, 0,
4920 42))
23d0b130 4921 DRM_ERROR("Timed out waiting for IPS disable\n");
e59150dc 4922 } else {
2a114cc1 4923 I915_WRITE(IPS_CTL, 0);
e59150dc
JB
4924 POSTING_READ(IPS_CTL);
4925 }
d77e4531
PZ
4926
4927 /* We need to wait for a vblank before we can disable the plane. */
4928 intel_wait_for_vblank(dev, crtc->pipe);
4929}
4930
7cac945f 4931static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
d3eedb1a 4932{
7cac945f 4933 if (intel_crtc->overlay) {
d3eedb1a 4934 struct drm_device *dev = intel_crtc->base.dev;
fac5e23e 4935 struct drm_i915_private *dev_priv = to_i915(dev);
d3eedb1a
VS
4936
4937 mutex_lock(&dev->struct_mutex);
4938 dev_priv->mm.interruptible = false;
4939 (void) intel_overlay_switch_off(intel_crtc->overlay);
4940 dev_priv->mm.interruptible = true;
4941 mutex_unlock(&dev->struct_mutex);
4942 }
4943
4944 /* Let userspace switch the overlay on again. In most cases userspace
4945 * has to recompute where to put it anyway.
4946 */
4947}
4948
87d4300a
ML
4949/**
4950 * intel_post_enable_primary - Perform operations after enabling primary plane
4951 * @crtc: the CRTC whose primary plane was just enabled
4952 *
4953 * Performs potentially sleeping operations that must be done after the primary
4954 * plane is enabled, such as updating FBC and IPS. Note that this may be
4955 * called due to an explicit primary plane update, or due to an implicit
4956 * re-enable that is caused when a sprite plane is updated to no longer
4957 * completely hide the primary plane.
4958 */
4959static void
4960intel_post_enable_primary(struct drm_crtc *crtc)
a5c4d7bc
VS
4961{
4962 struct drm_device *dev = crtc->dev;
fac5e23e 4963 struct drm_i915_private *dev_priv = to_i915(dev);
a5c4d7bc
VS
4964 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4965 int pipe = intel_crtc->pipe;
a5c4d7bc 4966
87d4300a
ML
4967 /*
4968 * FIXME IPS should be fine as long as one plane is
4969 * enabled, but in practice it seems to have problems
4970 * when going from primary only to sprite only and vice
4971 * versa.
4972 */
a5c4d7bc
VS
4973 hsw_enable_ips(intel_crtc);
4974
f99d7069 4975 /*
87d4300a
ML
4976 * Gen2 reports pipe underruns whenever all planes are disabled.
4977 * So don't enable underrun reporting before at least some planes
4978 * are enabled.
4979 * FIXME: Need to fix the logic to work when we turn off all planes
4980 * but leave the pipe running.
f99d7069 4981 */
87d4300a
ML
4982 if (IS_GEN2(dev))
4983 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4984
aca7b684
VS
4985 /* Underruns don't always raise interrupts, so check manually. */
4986 intel_check_cpu_fifo_underruns(dev_priv);
4987 intel_check_pch_fifo_underruns(dev_priv);
a5c4d7bc
VS
4988}
4989
2622a081 4990/* FIXME move all this to pre_plane_update() with proper state tracking */
87d4300a
ML
4991static void
4992intel_pre_disable_primary(struct drm_crtc *crtc)
a5c4d7bc
VS
4993{
4994 struct drm_device *dev = crtc->dev;
fac5e23e 4995 struct drm_i915_private *dev_priv = to_i915(dev);
a5c4d7bc
VS
4996 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4997 int pipe = intel_crtc->pipe;
a5c4d7bc 4998
87d4300a
ML
4999 /*
5000 * Gen2 reports pipe underruns whenever all planes are disabled.
5001 * So diasble underrun reporting before all the planes get disabled.
5002 * FIXME: Need to fix the logic to work when we turn off all planes
5003 * but leave the pipe running.
5004 */
5005 if (IS_GEN2(dev))
5006 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
a5c4d7bc 5007
2622a081
VS
5008 /*
5009 * FIXME IPS should be fine as long as one plane is
5010 * enabled, but in practice it seems to have problems
5011 * when going from primary only to sprite only and vice
5012 * versa.
5013 */
5014 hsw_disable_ips(intel_crtc);
5015}
5016
5017/* FIXME get rid of this and use pre_plane_update */
5018static void
5019intel_pre_disable_primary_noatomic(struct drm_crtc *crtc)
5020{
5021 struct drm_device *dev = crtc->dev;
fac5e23e 5022 struct drm_i915_private *dev_priv = to_i915(dev);
2622a081
VS
5023 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5024 int pipe = intel_crtc->pipe;
5025
5026 intel_pre_disable_primary(crtc);
5027
87d4300a
ML
5028 /*
5029 * Vblank time updates from the shadow to live plane control register
5030 * are blocked if the memory self-refresh mode is active at that
5031 * moment. So to make sure the plane gets truly disabled, disable
5032 * first the self-refresh mode. The self-refresh enable bit in turn
5033 * will be checked/applied by the HW only at the next frame start
5034 * event which is after the vblank start event, so we need to have a
5035 * wait-for-vblank between disabling the plane and the pipe.
5036 */
262cd2e1 5037 if (HAS_GMCH_DISPLAY(dev)) {
87d4300a 5038 intel_set_memory_cxsr(dev_priv, false);
262cd2e1
VS
5039 dev_priv->wm.vlv.cxsr = false;
5040 intel_wait_for_vblank(dev, pipe);
5041 }
87d4300a
ML
5042}
5043
5a21b665
DV
5044static void intel_post_plane_update(struct intel_crtc_state *old_crtc_state)
5045{
5046 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
5047 struct drm_atomic_state *old_state = old_crtc_state->base.state;
5048 struct intel_crtc_state *pipe_config =
5049 to_intel_crtc_state(crtc->base.state);
5a21b665
DV
5050 struct drm_plane *primary = crtc->base.primary;
5051 struct drm_plane_state *old_pri_state =
5052 drm_atomic_get_existing_plane_state(old_state, primary);
5053
5748b6a1 5054 intel_frontbuffer_flip(to_i915(crtc->base.dev), pipe_config->fb_bits);
5a21b665
DV
5055
5056 crtc->wm.cxsr_allowed = true;
5057
5058 if (pipe_config->update_wm_post && pipe_config->base.active)
5059 intel_update_watermarks(&crtc->base);
5060
5061 if (old_pri_state) {
5062 struct intel_plane_state *primary_state =
5063 to_intel_plane_state(primary->state);
5064 struct intel_plane_state *old_primary_state =
5065 to_intel_plane_state(old_pri_state);
5066
5067 intel_fbc_post_update(crtc);
5068
936e71e3 5069 if (primary_state->base.visible &&
5a21b665 5070 (needs_modeset(&pipe_config->base) ||
936e71e3 5071 !old_primary_state->base.visible))
5a21b665
DV
5072 intel_post_enable_primary(&crtc->base);
5073 }
5074}
5075
5c74cd73 5076static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state)
ac21b225 5077{
5c74cd73 5078 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
ac21b225 5079 struct drm_device *dev = crtc->base.dev;
fac5e23e 5080 struct drm_i915_private *dev_priv = to_i915(dev);
ab1d3a0e
ML
5081 struct intel_crtc_state *pipe_config =
5082 to_intel_crtc_state(crtc->base.state);
5c74cd73
ML
5083 struct drm_atomic_state *old_state = old_crtc_state->base.state;
5084 struct drm_plane *primary = crtc->base.primary;
5085 struct drm_plane_state *old_pri_state =
5086 drm_atomic_get_existing_plane_state(old_state, primary);
5087 bool modeset = needs_modeset(&pipe_config->base);
ac21b225 5088
5c74cd73
ML
5089 if (old_pri_state) {
5090 struct intel_plane_state *primary_state =
5091 to_intel_plane_state(primary->state);
5092 struct intel_plane_state *old_primary_state =
5093 to_intel_plane_state(old_pri_state);
5094
faf68d92 5095 intel_fbc_pre_update(crtc, pipe_config, primary_state);
31ae71fc 5096
936e71e3
VS
5097 if (old_primary_state->base.visible &&
5098 (modeset || !primary_state->base.visible))
5c74cd73
ML
5099 intel_pre_disable_primary(&crtc->base);
5100 }
852eb00d 5101
a4015f9a 5102 if (pipe_config->disable_cxsr && HAS_GMCH_DISPLAY(dev)) {
852eb00d 5103 crtc->wm.cxsr_allowed = false;
2dfd178d 5104
2622a081
VS
5105 /*
5106 * Vblank time updates from the shadow to live plane control register
5107 * are blocked if the memory self-refresh mode is active at that
5108 * moment. So to make sure the plane gets truly disabled, disable
5109 * first the self-refresh mode. The self-refresh enable bit in turn
5110 * will be checked/applied by the HW only at the next frame start
5111 * event which is after the vblank start event, so we need to have a
5112 * wait-for-vblank between disabling the plane and the pipe.
5113 */
5114 if (old_crtc_state->base.active) {
2dfd178d 5115 intel_set_memory_cxsr(dev_priv, false);
2622a081
VS
5116 dev_priv->wm.vlv.cxsr = false;
5117 intel_wait_for_vblank(dev, crtc->pipe);
5118 }
852eb00d 5119 }
92826fcd 5120
ed4a6a7c
MR
5121 /*
5122 * IVB workaround: must disable low power watermarks for at least
5123 * one frame before enabling scaling. LP watermarks can be re-enabled
5124 * when scaling is disabled.
5125 *
5126 * WaCxSRDisabledForSpriteScaling:ivb
5127 */
5128 if (pipe_config->disable_lp_wm) {
5129 ilk_disable_lp_wm(dev);
5130 intel_wait_for_vblank(dev, crtc->pipe);
5131 }
5132
5133 /*
5134 * If we're doing a modeset, we're done. No need to do any pre-vblank
5135 * watermark programming here.
5136 */
5137 if (needs_modeset(&pipe_config->base))
5138 return;
5139
5140 /*
5141 * For platforms that support atomic watermarks, program the
5142 * 'intermediate' watermarks immediately. On pre-gen9 platforms, these
5143 * will be the intermediate values that are safe for both pre- and
5144 * post- vblank; when vblank happens, the 'active' values will be set
5145 * to the final 'target' values and we'll do this again to get the
5146 * optimal watermarks. For gen9+ platforms, the values we program here
5147 * will be the final target values which will get automatically latched
5148 * at vblank time; no further programming will be necessary.
5149 *
5150 * If a platform hasn't been transitioned to atomic watermarks yet,
5151 * we'll continue to update watermarks the old way, if flags tell
5152 * us to.
5153 */
5154 if (dev_priv->display.initial_watermarks != NULL)
5155 dev_priv->display.initial_watermarks(pipe_config);
caed361d 5156 else if (pipe_config->update_wm_pre)
92826fcd 5157 intel_update_watermarks(&crtc->base);
ac21b225
ML
5158}
5159
d032ffa0 5160static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
87d4300a
ML
5161{
5162 struct drm_device *dev = crtc->dev;
5163 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
d032ffa0 5164 struct drm_plane *p;
87d4300a
ML
5165 int pipe = intel_crtc->pipe;
5166
7cac945f 5167 intel_crtc_dpms_overlay_disable(intel_crtc);
27321ae8 5168
d032ffa0
ML
5169 drm_for_each_plane_mask(p, dev, plane_mask)
5170 to_intel_plane(p)->disable_plane(p, crtc);
f98551ae 5171
f99d7069
DV
5172 /*
5173 * FIXME: Once we grow proper nuclear flip support out of this we need
5174 * to compute the mask of flip planes precisely. For the time being
5175 * consider this a flip to a NULL plane.
5176 */
5748b6a1 5177 intel_frontbuffer_flip(to_i915(dev), INTEL_FRONTBUFFER_ALL_MASK(pipe));
a5c4d7bc
VS
5178}
5179
fb1c98b1 5180static void intel_encoders_pre_pll_enable(struct drm_crtc *crtc,
fd6bbda9 5181 struct intel_crtc_state *crtc_state,
fb1c98b1
ML
5182 struct drm_atomic_state *old_state)
5183{
5184 struct drm_connector_state *old_conn_state;
5185 struct drm_connector *conn;
5186 int i;
5187
5188 for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5189 struct drm_connector_state *conn_state = conn->state;
5190 struct intel_encoder *encoder =
5191 to_intel_encoder(conn_state->best_encoder);
5192
5193 if (conn_state->crtc != crtc)
5194 continue;
5195
5196 if (encoder->pre_pll_enable)
fd6bbda9 5197 encoder->pre_pll_enable(encoder, crtc_state, conn_state);
fb1c98b1
ML
5198 }
5199}
5200
5201static void intel_encoders_pre_enable(struct drm_crtc *crtc,
fd6bbda9 5202 struct intel_crtc_state *crtc_state,
fb1c98b1
ML
5203 struct drm_atomic_state *old_state)
5204{
5205 struct drm_connector_state *old_conn_state;
5206 struct drm_connector *conn;
5207 int i;
5208
5209 for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5210 struct drm_connector_state *conn_state = conn->state;
5211 struct intel_encoder *encoder =
5212 to_intel_encoder(conn_state->best_encoder);
5213
5214 if (conn_state->crtc != crtc)
5215 continue;
5216
5217 if (encoder->pre_enable)
fd6bbda9 5218 encoder->pre_enable(encoder, crtc_state, conn_state);
fb1c98b1
ML
5219 }
5220}
5221
5222static void intel_encoders_enable(struct drm_crtc *crtc,
fd6bbda9 5223 struct intel_crtc_state *crtc_state,
fb1c98b1
ML
5224 struct drm_atomic_state *old_state)
5225{
5226 struct drm_connector_state *old_conn_state;
5227 struct drm_connector *conn;
5228 int i;
5229
5230 for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5231 struct drm_connector_state *conn_state = conn->state;
5232 struct intel_encoder *encoder =
5233 to_intel_encoder(conn_state->best_encoder);
5234
5235 if (conn_state->crtc != crtc)
5236 continue;
5237
fd6bbda9 5238 encoder->enable(encoder, crtc_state, conn_state);
fb1c98b1
ML
5239 intel_opregion_notify_encoder(encoder, true);
5240 }
5241}
5242
5243static void intel_encoders_disable(struct drm_crtc *crtc,
fd6bbda9 5244 struct intel_crtc_state *old_crtc_state,
fb1c98b1
ML
5245 struct drm_atomic_state *old_state)
5246{
5247 struct drm_connector_state *old_conn_state;
5248 struct drm_connector *conn;
5249 int i;
5250
5251 for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5252 struct intel_encoder *encoder =
5253 to_intel_encoder(old_conn_state->best_encoder);
5254
5255 if (old_conn_state->crtc != crtc)
5256 continue;
5257
5258 intel_opregion_notify_encoder(encoder, false);
fd6bbda9 5259 encoder->disable(encoder, old_crtc_state, old_conn_state);
fb1c98b1
ML
5260 }
5261}
5262
5263static void intel_encoders_post_disable(struct drm_crtc *crtc,
fd6bbda9 5264 struct intel_crtc_state *old_crtc_state,
fb1c98b1
ML
5265 struct drm_atomic_state *old_state)
5266{
5267 struct drm_connector_state *old_conn_state;
5268 struct drm_connector *conn;
5269 int i;
5270
5271 for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5272 struct intel_encoder *encoder =
5273 to_intel_encoder(old_conn_state->best_encoder);
5274
5275 if (old_conn_state->crtc != crtc)
5276 continue;
5277
5278 if (encoder->post_disable)
fd6bbda9 5279 encoder->post_disable(encoder, old_crtc_state, old_conn_state);
fb1c98b1
ML
5280 }
5281}
5282
5283static void intel_encoders_post_pll_disable(struct drm_crtc *crtc,
fd6bbda9 5284 struct intel_crtc_state *old_crtc_state,
fb1c98b1
ML
5285 struct drm_atomic_state *old_state)
5286{
5287 struct drm_connector_state *old_conn_state;
5288 struct drm_connector *conn;
5289 int i;
5290
5291 for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5292 struct intel_encoder *encoder =
5293 to_intel_encoder(old_conn_state->best_encoder);
5294
5295 if (old_conn_state->crtc != crtc)
5296 continue;
5297
5298 if (encoder->post_pll_disable)
fd6bbda9 5299 encoder->post_pll_disable(encoder, old_crtc_state, old_conn_state);
fb1c98b1
ML
5300 }
5301}
5302
4a806558
ML
5303static void ironlake_crtc_enable(struct intel_crtc_state *pipe_config,
5304 struct drm_atomic_state *old_state)
f67a559d 5305{
4a806558 5306 struct drm_crtc *crtc = pipe_config->base.crtc;
f67a559d 5307 struct drm_device *dev = crtc->dev;
fac5e23e 5308 struct drm_i915_private *dev_priv = to_i915(dev);
f67a559d
JB
5309 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5310 int pipe = intel_crtc->pipe;
f67a559d 5311
53d9f4e9 5312 if (WARN_ON(intel_crtc->active))
f67a559d
JB
5313 return;
5314
b2c0593a
VS
5315 /*
5316 * Sometimes spurious CPU pipe underruns happen during FDI
5317 * training, at least with VGA+HDMI cloning. Suppress them.
5318 *
5319 * On ILK we get an occasional spurious CPU pipe underruns
5320 * between eDP port A enable and vdd enable. Also PCH port
5321 * enable seems to result in the occasional CPU pipe underrun.
5322 *
5323 * Spurious PCH underruns also occur during PCH enabling.
5324 */
5325 if (intel_crtc->config->has_pch_encoder || IS_GEN5(dev_priv))
5326 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
81b088ca
VS
5327 if (intel_crtc->config->has_pch_encoder)
5328 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5329
6e3c9717 5330 if (intel_crtc->config->has_pch_encoder)
b14b1055
DV
5331 intel_prepare_shared_dpll(intel_crtc);
5332
37a5650b 5333 if (intel_crtc_has_dp_encoder(intel_crtc->config))
fe3cd48d 5334 intel_dp_set_m_n(intel_crtc, M1_N1);
29407aab
DV
5335
5336 intel_set_pipe_timings(intel_crtc);
bc58be60 5337 intel_set_pipe_src_size(intel_crtc);
29407aab 5338
6e3c9717 5339 if (intel_crtc->config->has_pch_encoder) {
29407aab 5340 intel_cpu_transcoder_set_m_n(intel_crtc,
6e3c9717 5341 &intel_crtc->config->fdi_m_n, NULL);
29407aab
DV
5342 }
5343
5344 ironlake_set_pipeconf(crtc);
5345
f67a559d 5346 intel_crtc->active = true;
8664281b 5347
fd6bbda9 5348 intel_encoders_pre_enable(crtc, pipe_config, old_state);
f67a559d 5349
6e3c9717 5350 if (intel_crtc->config->has_pch_encoder) {
fff367c7
DV
5351 /* Note: FDI PLL enabling _must_ be done before we enable the
5352 * cpu pipes, hence this is separate from all the other fdi/pch
5353 * enabling. */
88cefb6c 5354 ironlake_fdi_pll_enable(intel_crtc);
46b6f814
DV
5355 } else {
5356 assert_fdi_tx_disabled(dev_priv, pipe);
5357 assert_fdi_rx_disabled(dev_priv, pipe);
5358 }
f67a559d 5359
b074cec8 5360 ironlake_pfit_enable(intel_crtc);
f67a559d 5361
9c54c0dd
JB
5362 /*
5363 * On ILK+ LUT must be loaded before the pipe is running but with
5364 * clocks enabled
5365 */
b95c5321 5366 intel_color_load_luts(&pipe_config->base);
9c54c0dd 5367
1d5bf5d9
ID
5368 if (dev_priv->display.initial_watermarks != NULL)
5369 dev_priv->display.initial_watermarks(intel_crtc->config);
e1fdc473 5370 intel_enable_pipe(intel_crtc);
f67a559d 5371
6e3c9717 5372 if (intel_crtc->config->has_pch_encoder)
f67a559d 5373 ironlake_pch_enable(crtc);
c98e9dcf 5374
f9b61ff6
DV
5375 assert_vblank_disabled(crtc);
5376 drm_crtc_vblank_on(crtc);
5377
fd6bbda9 5378 intel_encoders_enable(crtc, pipe_config, old_state);
61b77ddd
DV
5379
5380 if (HAS_PCH_CPT(dev))
a1520318 5381 cpt_verify_modeset(dev, intel_crtc->pipe);
37ca8d4c
VS
5382
5383 /* Must wait for vblank to avoid spurious PCH FIFO underruns */
5384 if (intel_crtc->config->has_pch_encoder)
5385 intel_wait_for_vblank(dev, pipe);
b2c0593a 5386 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
37ca8d4c 5387 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
6be4a607
JB
5388}
5389
42db64ef
PZ
5390/* IPS only exists on ULT machines and is tied to pipe A. */
5391static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
5392{
f5adf94e 5393 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
42db64ef
PZ
5394}
5395
4a806558
ML
5396static void haswell_crtc_enable(struct intel_crtc_state *pipe_config,
5397 struct drm_atomic_state *old_state)
4f771f10 5398{
4a806558 5399 struct drm_crtc *crtc = pipe_config->base.crtc;
4f771f10 5400 struct drm_device *dev = crtc->dev;
fac5e23e 5401 struct drm_i915_private *dev_priv = to_i915(dev);
4f771f10 5402 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
99d736a2 5403 int pipe = intel_crtc->pipe, hsw_workaround_pipe;
4d1de975 5404 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4f771f10 5405
53d9f4e9 5406 if (WARN_ON(intel_crtc->active))
4f771f10
PZ
5407 return;
5408
81b088ca
VS
5409 if (intel_crtc->config->has_pch_encoder)
5410 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5411 false);
5412
fd6bbda9 5413 intel_encoders_pre_pll_enable(crtc, pipe_config, old_state);
95a7a2ae 5414
8106ddbd 5415 if (intel_crtc->config->shared_dpll)
df8ad70c
DV
5416 intel_enable_shared_dpll(intel_crtc);
5417
37a5650b 5418 if (intel_crtc_has_dp_encoder(intel_crtc->config))
fe3cd48d 5419 intel_dp_set_m_n(intel_crtc, M1_N1);
229fca97 5420
d7edc4e5 5421 if (!transcoder_is_dsi(cpu_transcoder))
4d1de975
JN
5422 intel_set_pipe_timings(intel_crtc);
5423
bc58be60 5424 intel_set_pipe_src_size(intel_crtc);
229fca97 5425
4d1de975
JN
5426 if (cpu_transcoder != TRANSCODER_EDP &&
5427 !transcoder_is_dsi(cpu_transcoder)) {
5428 I915_WRITE(PIPE_MULT(cpu_transcoder),
6e3c9717 5429 intel_crtc->config->pixel_multiplier - 1);
ebb69c95
CT
5430 }
5431
6e3c9717 5432 if (intel_crtc->config->has_pch_encoder) {
229fca97 5433 intel_cpu_transcoder_set_m_n(intel_crtc,
6e3c9717 5434 &intel_crtc->config->fdi_m_n, NULL);
229fca97
DV
5435 }
5436
d7edc4e5 5437 if (!transcoder_is_dsi(cpu_transcoder))
4d1de975
JN
5438 haswell_set_pipeconf(crtc);
5439
391bf048 5440 haswell_set_pipemisc(crtc);
229fca97 5441
b95c5321 5442 intel_color_set_csc(&pipe_config->base);
229fca97 5443
4f771f10 5444 intel_crtc->active = true;
8664281b 5445
6b698516
DV
5446 if (intel_crtc->config->has_pch_encoder)
5447 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5448 else
5449 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5450
fd6bbda9 5451 intel_encoders_pre_enable(crtc, pipe_config, old_state);
4f771f10 5452
d2d65408 5453 if (intel_crtc->config->has_pch_encoder)
4fe9467d 5454 dev_priv->display.fdi_link_train(crtc);
4fe9467d 5455
d7edc4e5 5456 if (!transcoder_is_dsi(cpu_transcoder))
7d4aefd0 5457 intel_ddi_enable_pipe_clock(intel_crtc);
4f771f10 5458
1c132b44 5459 if (INTEL_INFO(dev)->gen >= 9)
e435d6e5 5460 skylake_pfit_enable(intel_crtc);
ff6d9f55 5461 else
1c132b44 5462 ironlake_pfit_enable(intel_crtc);
4f771f10
PZ
5463
5464 /*
5465 * On ILK+ LUT must be loaded before the pipe is running but with
5466 * clocks enabled
5467 */
b95c5321 5468 intel_color_load_luts(&pipe_config->base);
4f771f10 5469
1f544388 5470 intel_ddi_set_pipe_settings(crtc);
d7edc4e5 5471 if (!transcoder_is_dsi(cpu_transcoder))
7d4aefd0 5472 intel_ddi_enable_transcoder_func(crtc);
4f771f10 5473
1d5bf5d9
ID
5474 if (dev_priv->display.initial_watermarks != NULL)
5475 dev_priv->display.initial_watermarks(pipe_config);
5476 else
5477 intel_update_watermarks(crtc);
4d1de975
JN
5478
5479 /* XXX: Do the pipe assertions at the right place for BXT DSI. */
d7edc4e5 5480 if (!transcoder_is_dsi(cpu_transcoder))
4d1de975 5481 intel_enable_pipe(intel_crtc);
42db64ef 5482
6e3c9717 5483 if (intel_crtc->config->has_pch_encoder)
1507e5bd 5484 lpt_pch_enable(crtc);
4f771f10 5485
a65347ba 5486 if (intel_crtc->config->dp_encoder_is_mst)
0e32b39c
DA
5487 intel_ddi_set_vc_payload_alloc(crtc, true);
5488
f9b61ff6
DV
5489 assert_vblank_disabled(crtc);
5490 drm_crtc_vblank_on(crtc);
5491
fd6bbda9 5492 intel_encoders_enable(crtc, pipe_config, old_state);
4f771f10 5493
6b698516
DV
5494 if (intel_crtc->config->has_pch_encoder) {
5495 intel_wait_for_vblank(dev, pipe);
5496 intel_wait_for_vblank(dev, pipe);
5497 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
d2d65408
VS
5498 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5499 true);
6b698516 5500 }
d2d65408 5501
e4916946
PZ
5502 /* If we change the relative order between pipe/planes enabling, we need
5503 * to change the workaround. */
99d736a2
ML
5504 hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
5505 if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
5506 intel_wait_for_vblank(dev, hsw_workaround_pipe);
5507 intel_wait_for_vblank(dev, hsw_workaround_pipe);
5508 }
4f771f10
PZ
5509}
5510
bfd16b2a 5511static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
3f8dce3a
DV
5512{
5513 struct drm_device *dev = crtc->base.dev;
fac5e23e 5514 struct drm_i915_private *dev_priv = to_i915(dev);
3f8dce3a
DV
5515 int pipe = crtc->pipe;
5516
5517 /* To avoid upsetting the power well on haswell only disable the pfit if
5518 * it's in use. The hw state code will make sure we get this right. */
bfd16b2a 5519 if (force || crtc->config->pch_pfit.enabled) {
3f8dce3a
DV
5520 I915_WRITE(PF_CTL(pipe), 0);
5521 I915_WRITE(PF_WIN_POS(pipe), 0);
5522 I915_WRITE(PF_WIN_SZ(pipe), 0);
5523 }
5524}
5525
4a806558
ML
5526static void ironlake_crtc_disable(struct intel_crtc_state *old_crtc_state,
5527 struct drm_atomic_state *old_state)
6be4a607 5528{
4a806558 5529 struct drm_crtc *crtc = old_crtc_state->base.crtc;
6be4a607 5530 struct drm_device *dev = crtc->dev;
fac5e23e 5531 struct drm_i915_private *dev_priv = to_i915(dev);
6be4a607
JB
5532 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5533 int pipe = intel_crtc->pipe;
b52eb4dc 5534
b2c0593a
VS
5535 /*
5536 * Sometimes spurious CPU pipe underruns happen when the
5537 * pipe is already disabled, but FDI RX/TX is still enabled.
5538 * Happens at least with VGA+HDMI cloning. Suppress them.
5539 */
5540 if (intel_crtc->config->has_pch_encoder) {
5541 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
37ca8d4c 5542 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
b2c0593a 5543 }
37ca8d4c 5544
fd6bbda9 5545 intel_encoders_disable(crtc, old_crtc_state, old_state);
ea9d758d 5546
f9b61ff6
DV
5547 drm_crtc_vblank_off(crtc);
5548 assert_vblank_disabled(crtc);
5549
575f7ab7 5550 intel_disable_pipe(intel_crtc);
32f9d658 5551
bfd16b2a 5552 ironlake_pfit_disable(intel_crtc, false);
2c07245f 5553
b2c0593a 5554 if (intel_crtc->config->has_pch_encoder)
5a74f70a
VS
5555 ironlake_fdi_disable(crtc);
5556
fd6bbda9 5557 intel_encoders_post_disable(crtc, old_crtc_state, old_state);
2c07245f 5558
6e3c9717 5559 if (intel_crtc->config->has_pch_encoder) {
d925c59a 5560 ironlake_disable_pch_transcoder(dev_priv, pipe);
6be4a607 5561
d925c59a 5562 if (HAS_PCH_CPT(dev)) {
f0f59a00
VS
5563 i915_reg_t reg;
5564 u32 temp;
5565
d925c59a
DV
5566 /* disable TRANS_DP_CTL */
5567 reg = TRANS_DP_CTL(pipe);
5568 temp = I915_READ(reg);
5569 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5570 TRANS_DP_PORT_SEL_MASK);
5571 temp |= TRANS_DP_PORT_SEL_NONE;
5572 I915_WRITE(reg, temp);
5573
5574 /* disable DPLL_SEL */
5575 temp = I915_READ(PCH_DPLL_SEL);
11887397 5576 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
d925c59a 5577 I915_WRITE(PCH_DPLL_SEL, temp);
9db4a9c7 5578 }
e3421a18 5579
d925c59a
DV
5580 ironlake_fdi_pll_disable(intel_crtc);
5581 }
81b088ca 5582
b2c0593a 5583 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
81b088ca 5584 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
6be4a607 5585}
1b3c7a47 5586
4a806558
ML
5587static void haswell_crtc_disable(struct intel_crtc_state *old_crtc_state,
5588 struct drm_atomic_state *old_state)
ee7b9f93 5589{
4a806558 5590 struct drm_crtc *crtc = old_crtc_state->base.crtc;
4f771f10 5591 struct drm_device *dev = crtc->dev;
fac5e23e 5592 struct drm_i915_private *dev_priv = to_i915(dev);
ee7b9f93 5593 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6e3c9717 5594 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
ee7b9f93 5595
d2d65408
VS
5596 if (intel_crtc->config->has_pch_encoder)
5597 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5598 false);
5599
fd6bbda9 5600 intel_encoders_disable(crtc, old_crtc_state, old_state);
4f771f10 5601
f9b61ff6
DV
5602 drm_crtc_vblank_off(crtc);
5603 assert_vblank_disabled(crtc);
5604
4d1de975 5605 /* XXX: Do the pipe assertions at the right place for BXT DSI. */
d7edc4e5 5606 if (!transcoder_is_dsi(cpu_transcoder))
4d1de975 5607 intel_disable_pipe(intel_crtc);
4f771f10 5608
6e3c9717 5609 if (intel_crtc->config->dp_encoder_is_mst)
a4bf214f
VS
5610 intel_ddi_set_vc_payload_alloc(crtc, false);
5611
d7edc4e5 5612 if (!transcoder_is_dsi(cpu_transcoder))
7d4aefd0 5613 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4f771f10 5614
1c132b44 5615 if (INTEL_INFO(dev)->gen >= 9)
e435d6e5 5616 skylake_scaler_disable(intel_crtc);
ff6d9f55 5617 else
bfd16b2a 5618 ironlake_pfit_disable(intel_crtc, false);
4f771f10 5619
d7edc4e5 5620 if (!transcoder_is_dsi(cpu_transcoder))
7d4aefd0 5621 intel_ddi_disable_pipe_clock(intel_crtc);
4f771f10 5622
fd6bbda9 5623 intel_encoders_post_disable(crtc, old_crtc_state, old_state);
81b088ca 5624
b7076546 5625 if (old_crtc_state->has_pch_encoder)
81b088ca
VS
5626 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5627 true);
4f771f10
PZ
5628}
5629
2dd24552
JB
5630static void i9xx_pfit_enable(struct intel_crtc *crtc)
5631{
5632 struct drm_device *dev = crtc->base.dev;
fac5e23e 5633 struct drm_i915_private *dev_priv = to_i915(dev);
6e3c9717 5634 struct intel_crtc_state *pipe_config = crtc->config;
2dd24552 5635
681a8504 5636 if (!pipe_config->gmch_pfit.control)
2dd24552
JB
5637 return;
5638
2dd24552 5639 /*
c0b03411
DV
5640 * The panel fitter should only be adjusted whilst the pipe is disabled,
5641 * according to register description and PRM.
2dd24552 5642 */
c0b03411
DV
5643 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5644 assert_pipe_disabled(dev_priv, crtc->pipe);
2dd24552 5645
b074cec8
JB
5646 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5647 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5a80c45c
DV
5648
5649 /* Border color in case we don't scale up to the full screen. Black by
5650 * default, change to something else for debugging. */
5651 I915_WRITE(BCLRPAT(crtc->pipe), 0);
2dd24552
JB
5652}
5653
d05410f9
DA
5654static enum intel_display_power_domain port_to_power_domain(enum port port)
5655{
5656 switch (port) {
5657 case PORT_A:
6331a704 5658 return POWER_DOMAIN_PORT_DDI_A_LANES;
d05410f9 5659 case PORT_B:
6331a704 5660 return POWER_DOMAIN_PORT_DDI_B_LANES;
d05410f9 5661 case PORT_C:
6331a704 5662 return POWER_DOMAIN_PORT_DDI_C_LANES;
d05410f9 5663 case PORT_D:
6331a704 5664 return POWER_DOMAIN_PORT_DDI_D_LANES;
d8e19f99 5665 case PORT_E:
6331a704 5666 return POWER_DOMAIN_PORT_DDI_E_LANES;
d05410f9 5667 default:
b9fec167 5668 MISSING_CASE(port);
d05410f9
DA
5669 return POWER_DOMAIN_PORT_OTHER;
5670 }
5671}
5672
25f78f58
VS
5673static enum intel_display_power_domain port_to_aux_power_domain(enum port port)
5674{
5675 switch (port) {
5676 case PORT_A:
5677 return POWER_DOMAIN_AUX_A;
5678 case PORT_B:
5679 return POWER_DOMAIN_AUX_B;
5680 case PORT_C:
5681 return POWER_DOMAIN_AUX_C;
5682 case PORT_D:
5683 return POWER_DOMAIN_AUX_D;
5684 case PORT_E:
5685 /* FIXME: Check VBT for actual wiring of PORT E */
5686 return POWER_DOMAIN_AUX_D;
5687 default:
b9fec167 5688 MISSING_CASE(port);
25f78f58
VS
5689 return POWER_DOMAIN_AUX_A;
5690 }
5691}
5692
319be8ae
ID
5693enum intel_display_power_domain
5694intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5695{
5696 struct drm_device *dev = intel_encoder->base.dev;
5697 struct intel_digital_port *intel_dig_port;
5698
5699 switch (intel_encoder->type) {
5700 case INTEL_OUTPUT_UNKNOWN:
5701 /* Only DDI platforms should ever use this output type */
5702 WARN_ON_ONCE(!HAS_DDI(dev));
cca0502b 5703 case INTEL_OUTPUT_DP:
319be8ae
ID
5704 case INTEL_OUTPUT_HDMI:
5705 case INTEL_OUTPUT_EDP:
5706 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
d05410f9 5707 return port_to_power_domain(intel_dig_port->port);
0e32b39c
DA
5708 case INTEL_OUTPUT_DP_MST:
5709 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5710 return port_to_power_domain(intel_dig_port->port);
319be8ae
ID
5711 case INTEL_OUTPUT_ANALOG:
5712 return POWER_DOMAIN_PORT_CRT;
5713 case INTEL_OUTPUT_DSI:
5714 return POWER_DOMAIN_PORT_DSI;
5715 default:
5716 return POWER_DOMAIN_PORT_OTHER;
5717 }
5718}
5719
25f78f58
VS
5720enum intel_display_power_domain
5721intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder)
5722{
5723 struct drm_device *dev = intel_encoder->base.dev;
5724 struct intel_digital_port *intel_dig_port;
5725
5726 switch (intel_encoder->type) {
5727 case INTEL_OUTPUT_UNKNOWN:
651174a4
ID
5728 case INTEL_OUTPUT_HDMI:
5729 /*
5730 * Only DDI platforms should ever use these output types.
5731 * We can get here after the HDMI detect code has already set
5732 * the type of the shared encoder. Since we can't be sure
5733 * what's the status of the given connectors, play safe and
5734 * run the DP detection too.
5735 */
25f78f58 5736 WARN_ON_ONCE(!HAS_DDI(dev));
cca0502b 5737 case INTEL_OUTPUT_DP:
25f78f58
VS
5738 case INTEL_OUTPUT_EDP:
5739 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5740 return port_to_aux_power_domain(intel_dig_port->port);
5741 case INTEL_OUTPUT_DP_MST:
5742 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5743 return port_to_aux_power_domain(intel_dig_port->port);
5744 default:
b9fec167 5745 MISSING_CASE(intel_encoder->type);
25f78f58
VS
5746 return POWER_DOMAIN_AUX_A;
5747 }
5748}
5749
74bff5f9
ML
5750static unsigned long get_crtc_power_domains(struct drm_crtc *crtc,
5751 struct intel_crtc_state *crtc_state)
77d22dca 5752{
319be8ae 5753 struct drm_device *dev = crtc->dev;
74bff5f9 5754 struct drm_encoder *encoder;
319be8ae
ID
5755 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5756 enum pipe pipe = intel_crtc->pipe;
77d22dca 5757 unsigned long mask;
74bff5f9 5758 enum transcoder transcoder = crtc_state->cpu_transcoder;
77d22dca 5759
74bff5f9 5760 if (!crtc_state->base.active)
292b990e
ML
5761 return 0;
5762
77d22dca
ID
5763 mask = BIT(POWER_DOMAIN_PIPE(pipe));
5764 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
74bff5f9
ML
5765 if (crtc_state->pch_pfit.enabled ||
5766 crtc_state->pch_pfit.force_thru)
77d22dca
ID
5767 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5768
74bff5f9
ML
5769 drm_for_each_encoder_mask(encoder, dev, crtc_state->base.encoder_mask) {
5770 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5771
319be8ae 5772 mask |= BIT(intel_display_port_power_domain(intel_encoder));
74bff5f9 5773 }
319be8ae 5774
15e7ec29
ML
5775 if (crtc_state->shared_dpll)
5776 mask |= BIT(POWER_DOMAIN_PLLS);
5777
77d22dca
ID
5778 return mask;
5779}
5780
74bff5f9
ML
5781static unsigned long
5782modeset_get_crtc_power_domains(struct drm_crtc *crtc,
5783 struct intel_crtc_state *crtc_state)
77d22dca 5784{
fac5e23e 5785 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
292b990e
ML
5786 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5787 enum intel_display_power_domain domain;
5a21b665 5788 unsigned long domains, new_domains, old_domains;
77d22dca 5789
292b990e 5790 old_domains = intel_crtc->enabled_power_domains;
74bff5f9
ML
5791 intel_crtc->enabled_power_domains = new_domains =
5792 get_crtc_power_domains(crtc, crtc_state);
77d22dca 5793
5a21b665 5794 domains = new_domains & ~old_domains;
292b990e
ML
5795
5796 for_each_power_domain(domain, domains)
5797 intel_display_power_get(dev_priv, domain);
5798
5a21b665 5799 return old_domains & ~new_domains;
292b990e
ML
5800}
5801
5802static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5803 unsigned long domains)
5804{
5805 enum intel_display_power_domain domain;
5806
5807 for_each_power_domain(domain, domains)
5808 intel_display_power_put(dev_priv, domain);
5809}
77d22dca 5810
adafdc6f
MK
5811static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
5812{
5813 int max_cdclk_freq = dev_priv->max_cdclk_freq;
5814
5815 if (INTEL_INFO(dev_priv)->gen >= 9 ||
5816 IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5817 return max_cdclk_freq;
5818 else if (IS_CHERRYVIEW(dev_priv))
5819 return max_cdclk_freq*95/100;
5820 else if (INTEL_INFO(dev_priv)->gen < 4)
5821 return 2*max_cdclk_freq*90/100;
5822 else
5823 return max_cdclk_freq*90/100;
5824}
5825
b2045352
VS
5826static int skl_calc_cdclk(int max_pixclk, int vco);
5827
560a7ae4
DL
5828static void intel_update_max_cdclk(struct drm_device *dev)
5829{
fac5e23e 5830 struct drm_i915_private *dev_priv = to_i915(dev);
560a7ae4 5831
ef11bdb3 5832 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
560a7ae4 5833 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
b2045352
VS
5834 int max_cdclk, vco;
5835
5836 vco = dev_priv->skl_preferred_vco_freq;
63911d72 5837 WARN_ON(vco != 8100000 && vco != 8640000);
560a7ae4 5838
b2045352
VS
5839 /*
5840 * Use the lower (vco 8640) cdclk values as a
5841 * first guess. skl_calc_cdclk() will correct it
5842 * if the preferred vco is 8100 instead.
5843 */
560a7ae4 5844 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
487ed2e4 5845 max_cdclk = 617143;
560a7ae4 5846 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
b2045352 5847 max_cdclk = 540000;
560a7ae4 5848 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
b2045352 5849 max_cdclk = 432000;
560a7ae4 5850 else
487ed2e4 5851 max_cdclk = 308571;
b2045352
VS
5852
5853 dev_priv->max_cdclk_freq = skl_calc_cdclk(max_cdclk, vco);
281c114f
MR
5854 } else if (IS_BROXTON(dev)) {
5855 dev_priv->max_cdclk_freq = 624000;
560a7ae4
DL
5856 } else if (IS_BROADWELL(dev)) {
5857 /*
5858 * FIXME with extra cooling we can allow
5859 * 540 MHz for ULX and 675 Mhz for ULT.
5860 * How can we know if extra cooling is
5861 * available? PCI ID, VTB, something else?
5862 */
5863 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5864 dev_priv->max_cdclk_freq = 450000;
5865 else if (IS_BDW_ULX(dev))
5866 dev_priv->max_cdclk_freq = 450000;
5867 else if (IS_BDW_ULT(dev))
5868 dev_priv->max_cdclk_freq = 540000;
5869 else
5870 dev_priv->max_cdclk_freq = 675000;
0904deaf
MK
5871 } else if (IS_CHERRYVIEW(dev)) {
5872 dev_priv->max_cdclk_freq = 320000;
560a7ae4
DL
5873 } else if (IS_VALLEYVIEW(dev)) {
5874 dev_priv->max_cdclk_freq = 400000;
5875 } else {
5876 /* otherwise assume cdclk is fixed */
5877 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5878 }
5879
adafdc6f
MK
5880 dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
5881
560a7ae4
DL
5882 DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5883 dev_priv->max_cdclk_freq);
adafdc6f
MK
5884
5885 DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5886 dev_priv->max_dotclk_freq);
560a7ae4
DL
5887}
5888
5889static void intel_update_cdclk(struct drm_device *dev)
5890{
fac5e23e 5891 struct drm_i915_private *dev_priv = to_i915(dev);
560a7ae4
DL
5892
5893 dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
2f2a121a 5894
83d7c81f 5895 if (INTEL_GEN(dev_priv) >= 9)
709e05c3
VS
5896 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz, VCO: %d kHz, ref: %d kHz\n",
5897 dev_priv->cdclk_freq, dev_priv->cdclk_pll.vco,
5898 dev_priv->cdclk_pll.ref);
2f2a121a
VS
5899 else
5900 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5901 dev_priv->cdclk_freq);
560a7ae4
DL
5902
5903 /*
b5d99ff9
VS
5904 * 9:0 CMBUS [sic] CDCLK frequency (cdfreq):
5905 * Programmng [sic] note: bit[9:2] should be programmed to the number
5906 * of cdclk that generates 4MHz reference clock freq which is used to
5907 * generate GMBus clock. This will vary with the cdclk freq.
560a7ae4 5908 */
b5d99ff9 5909 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
560a7ae4 5910 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
560a7ae4
DL
5911}
5912
92891e45
VS
5913/* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5914static int skl_cdclk_decimal(int cdclk)
5915{
5916 return DIV_ROUND_CLOSEST(cdclk - 1000, 500);
5917}
5918
5f199dfa
VS
5919static int bxt_de_pll_vco(struct drm_i915_private *dev_priv, int cdclk)
5920{
5921 int ratio;
5922
5923 if (cdclk == dev_priv->cdclk_pll.ref)
5924 return 0;
5925
5926 switch (cdclk) {
5927 default:
5928 MISSING_CASE(cdclk);
5929 case 144000:
5930 case 288000:
5931 case 384000:
5932 case 576000:
5933 ratio = 60;
5934 break;
5935 case 624000:
5936 ratio = 65;
5937 break;
5938 }
5939
5940 return dev_priv->cdclk_pll.ref * ratio;
5941}
5942
2b73001e
VS
5943static void bxt_de_pll_disable(struct drm_i915_private *dev_priv)
5944{
5945 I915_WRITE(BXT_DE_PLL_ENABLE, 0);
5946
5947 /* Timeout 200us */
95cac283
CW
5948 if (intel_wait_for_register(dev_priv,
5949 BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 0,
5950 1))
2b73001e 5951 DRM_ERROR("timeout waiting for DE PLL unlock\n");
83d7c81f
VS
5952
5953 dev_priv->cdclk_pll.vco = 0;
2b73001e
VS
5954}
5955
5f199dfa 5956static void bxt_de_pll_enable(struct drm_i915_private *dev_priv, int vco)
2b73001e 5957{
5f199dfa 5958 int ratio = DIV_ROUND_CLOSEST(vco, dev_priv->cdclk_pll.ref);
2b73001e
VS
5959 u32 val;
5960
5961 val = I915_READ(BXT_DE_PLL_CTL);
5962 val &= ~BXT_DE_PLL_RATIO_MASK;
5f199dfa 5963 val |= BXT_DE_PLL_RATIO(ratio);
2b73001e
VS
5964 I915_WRITE(BXT_DE_PLL_CTL, val);
5965
5966 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5967
5968 /* Timeout 200us */
e084e1b9
CW
5969 if (intel_wait_for_register(dev_priv,
5970 BXT_DE_PLL_ENABLE,
5971 BXT_DE_PLL_LOCK,
5972 BXT_DE_PLL_LOCK,
5973 1))
2b73001e 5974 DRM_ERROR("timeout waiting for DE PLL lock\n");
83d7c81f 5975
5f199dfa 5976 dev_priv->cdclk_pll.vco = vco;
2b73001e
VS
5977}
5978
324513c0 5979static void bxt_set_cdclk(struct drm_i915_private *dev_priv, int cdclk)
f8437dd1 5980{
5f199dfa
VS
5981 u32 val, divider;
5982 int vco, ret;
f8437dd1 5983
5f199dfa
VS
5984 vco = bxt_de_pll_vco(dev_priv, cdclk);
5985
5986 DRM_DEBUG_DRIVER("Changing CDCLK to %d kHz (VCO %d kHz)\n", cdclk, vco);
5987
5988 /* cdclk = vco / 2 / div{1,1.5,2,4} */
5989 switch (DIV_ROUND_CLOSEST(vco, cdclk)) {
5990 case 8:
f8437dd1 5991 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
f8437dd1 5992 break;
5f199dfa 5993 case 4:
f8437dd1 5994 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
f8437dd1 5995 break;
5f199dfa 5996 case 3:
f8437dd1 5997 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
f8437dd1 5998 break;
5f199dfa 5999 case 2:
f8437dd1 6000 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
f8437dd1
VK
6001 break;
6002 default:
5f199dfa
VS
6003 WARN_ON(cdclk != dev_priv->cdclk_pll.ref);
6004 WARN_ON(vco != 0);
f8437dd1 6005
5f199dfa
VS
6006 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
6007 break;
f8437dd1
VK
6008 }
6009
f8437dd1 6010 /* Inform power controller of upcoming frequency change */
5f199dfa 6011 mutex_lock(&dev_priv->rps.hw_lock);
f8437dd1
VK
6012 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
6013 0x80000000);
6014 mutex_unlock(&dev_priv->rps.hw_lock);
6015
6016 if (ret) {
6017 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
9ef56154 6018 ret, cdclk);
f8437dd1
VK
6019 return;
6020 }
6021
5f199dfa
VS
6022 if (dev_priv->cdclk_pll.vco != 0 &&
6023 dev_priv->cdclk_pll.vco != vco)
2b73001e 6024 bxt_de_pll_disable(dev_priv);
f8437dd1 6025
5f199dfa
VS
6026 if (dev_priv->cdclk_pll.vco != vco)
6027 bxt_de_pll_enable(dev_priv, vco);
f8437dd1 6028
5f199dfa
VS
6029 val = divider | skl_cdclk_decimal(cdclk);
6030 /*
6031 * FIXME if only the cd2x divider needs changing, it could be done
6032 * without shutting off the pipe (if only one pipe is active).
6033 */
6034 val |= BXT_CDCLK_CD2X_PIPE_NONE;
6035 /*
6036 * Disable SSA Precharge when CD clock frequency < 500 MHz,
6037 * enable otherwise.
6038 */
6039 if (cdclk >= 500000)
6040 val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
6041 I915_WRITE(CDCLK_CTL, val);
f8437dd1
VK
6042
6043 mutex_lock(&dev_priv->rps.hw_lock);
6044 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
9ef56154 6045 DIV_ROUND_UP(cdclk, 25000));
f8437dd1
VK
6046 mutex_unlock(&dev_priv->rps.hw_lock);
6047
6048 if (ret) {
6049 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
9ef56154 6050 ret, cdclk);
f8437dd1
VK
6051 return;
6052 }
6053
91c8a326 6054 intel_update_cdclk(&dev_priv->drm);
f8437dd1
VK
6055}
6056
d66a2194 6057static void bxt_sanitize_cdclk(struct drm_i915_private *dev_priv)
f8437dd1 6058{
d66a2194
ID
6059 u32 cdctl, expected;
6060
91c8a326 6061 intel_update_cdclk(&dev_priv->drm);
f8437dd1 6062
d66a2194
ID
6063 if (dev_priv->cdclk_pll.vco == 0 ||
6064 dev_priv->cdclk_freq == dev_priv->cdclk_pll.ref)
6065 goto sanitize;
6066
6067 /* DPLL okay; verify the cdclock
6068 *
6069 * Some BIOS versions leave an incorrect decimal frequency value and
6070 * set reserved MBZ bits in CDCLK_CTL at least during exiting from S4,
6071 * so sanitize this register.
6072 */
6073 cdctl = I915_READ(CDCLK_CTL);
6074 /*
6075 * Let's ignore the pipe field, since BIOS could have configured the
6076 * dividers both synching to an active pipe, or asynchronously
6077 * (PIPE_NONE).
6078 */
6079 cdctl &= ~BXT_CDCLK_CD2X_PIPE_NONE;
6080
6081 expected = (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) |
6082 skl_cdclk_decimal(dev_priv->cdclk_freq);
6083 /*
6084 * Disable SSA Precharge when CD clock frequency < 500 MHz,
6085 * enable otherwise.
6086 */
6087 if (dev_priv->cdclk_freq >= 500000)
6088 expected |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
6089
6090 if (cdctl == expected)
6091 /* All well; nothing to sanitize */
6092 return;
6093
6094sanitize:
6095 DRM_DEBUG_KMS("Sanitizing cdclk programmed by pre-os\n");
6096
6097 /* force cdclk programming */
6098 dev_priv->cdclk_freq = 0;
6099
6100 /* force full PLL disable + enable */
6101 dev_priv->cdclk_pll.vco = -1;
6102}
6103
324513c0 6104void bxt_init_cdclk(struct drm_i915_private *dev_priv)
d66a2194
ID
6105{
6106 bxt_sanitize_cdclk(dev_priv);
6107
6108 if (dev_priv->cdclk_freq != 0 && dev_priv->cdclk_pll.vco != 0)
089c6fd5 6109 return;
c2e001ef 6110
f8437dd1
VK
6111 /*
6112 * FIXME:
6113 * - The initial CDCLK needs to be read from VBT.
6114 * Need to make this change after VBT has changes for BXT.
f8437dd1 6115 */
324513c0 6116 bxt_set_cdclk(dev_priv, bxt_calc_cdclk(0));
f8437dd1
VK
6117}
6118
324513c0 6119void bxt_uninit_cdclk(struct drm_i915_private *dev_priv)
f8437dd1 6120{
324513c0 6121 bxt_set_cdclk(dev_priv, dev_priv->cdclk_pll.ref);
f8437dd1
VK
6122}
6123
a8ca4934
VS
6124static int skl_calc_cdclk(int max_pixclk, int vco)
6125{
63911d72 6126 if (vco == 8640000) {
a8ca4934 6127 if (max_pixclk > 540000)
487ed2e4 6128 return 617143;
a8ca4934
VS
6129 else if (max_pixclk > 432000)
6130 return 540000;
487ed2e4 6131 else if (max_pixclk > 308571)
a8ca4934
VS
6132 return 432000;
6133 else
487ed2e4 6134 return 308571;
a8ca4934 6135 } else {
a8ca4934
VS
6136 if (max_pixclk > 540000)
6137 return 675000;
6138 else if (max_pixclk > 450000)
6139 return 540000;
6140 else if (max_pixclk > 337500)
6141 return 450000;
6142 else
6143 return 337500;
6144 }
6145}
6146
ea61791e
VS
6147static void
6148skl_dpll0_update(struct drm_i915_private *dev_priv)
5d96d8af 6149{
ea61791e 6150 u32 val;
5d96d8af 6151
709e05c3 6152 dev_priv->cdclk_pll.ref = 24000;
1c3f7700 6153 dev_priv->cdclk_pll.vco = 0;
709e05c3 6154
ea61791e 6155 val = I915_READ(LCPLL1_CTL);
1c3f7700 6156 if ((val & LCPLL_PLL_ENABLE) == 0)
ea61791e 6157 return;
5d96d8af 6158
1c3f7700
ID
6159 if (WARN_ON((val & LCPLL_PLL_LOCK) == 0))
6160 return;
9f7eb31a 6161
ea61791e
VS
6162 val = I915_READ(DPLL_CTRL1);
6163
1c3f7700
ID
6164 if (WARN_ON((val & (DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) |
6165 DPLL_CTRL1_SSC(SKL_DPLL0) |
6166 DPLL_CTRL1_OVERRIDE(SKL_DPLL0))) !=
6167 DPLL_CTRL1_OVERRIDE(SKL_DPLL0)))
6168 return;
9f7eb31a 6169
ea61791e
VS
6170 switch (val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) {
6171 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, SKL_DPLL0):
6172 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, SKL_DPLL0):
6173 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, SKL_DPLL0):
6174 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, SKL_DPLL0):
63911d72 6175 dev_priv->cdclk_pll.vco = 8100000;
ea61791e
VS
6176 break;
6177 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, SKL_DPLL0):
6178 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, SKL_DPLL0):
63911d72 6179 dev_priv->cdclk_pll.vco = 8640000;
ea61791e
VS
6180 break;
6181 default:
6182 MISSING_CASE(val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
ea61791e
VS
6183 break;
6184 }
5d96d8af
DL
6185}
6186
b2045352
VS
6187void skl_set_preferred_cdclk_vco(struct drm_i915_private *dev_priv, int vco)
6188{
6189 bool changed = dev_priv->skl_preferred_vco_freq != vco;
6190
6191 dev_priv->skl_preferred_vco_freq = vco;
6192
6193 if (changed)
91c8a326 6194 intel_update_max_cdclk(&dev_priv->drm);
b2045352
VS
6195}
6196
5d96d8af 6197static void
3861fc60 6198skl_dpll0_enable(struct drm_i915_private *dev_priv, int vco)
5d96d8af 6199{
a8ca4934 6200 int min_cdclk = skl_calc_cdclk(0, vco);
5d96d8af
DL
6201 u32 val;
6202
63911d72 6203 WARN_ON(vco != 8100000 && vco != 8640000);
b2045352 6204
5d96d8af 6205 /* select the minimum CDCLK before enabling DPLL 0 */
9ef56154 6206 val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_cdclk);
5d96d8af
DL
6207 I915_WRITE(CDCLK_CTL, val);
6208 POSTING_READ(CDCLK_CTL);
6209
6210 /*
6211 * We always enable DPLL0 with the lowest link rate possible, but still
6212 * taking into account the VCO required to operate the eDP panel at the
6213 * desired frequency. The usual DP link rates operate with a VCO of
6214 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
6215 * The modeset code is responsible for the selection of the exact link
6216 * rate later on, with the constraint of choosing a frequency that
a8ca4934 6217 * works with vco.
5d96d8af
DL
6218 */
6219 val = I915_READ(DPLL_CTRL1);
6220
6221 val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
6222 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
6223 val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
63911d72 6224 if (vco == 8640000)
5d96d8af
DL
6225 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
6226 SKL_DPLL0);
6227 else
6228 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
6229 SKL_DPLL0);
6230
6231 I915_WRITE(DPLL_CTRL1, val);
6232 POSTING_READ(DPLL_CTRL1);
6233
6234 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
6235
e24ca054
CW
6236 if (intel_wait_for_register(dev_priv,
6237 LCPLL1_CTL, LCPLL_PLL_LOCK, LCPLL_PLL_LOCK,
6238 5))
5d96d8af 6239 DRM_ERROR("DPLL0 not locked\n");
1cd593e0 6240
63911d72 6241 dev_priv->cdclk_pll.vco = vco;
b2045352
VS
6242
6243 /* We'll want to keep using the current vco from now on. */
6244 skl_set_preferred_cdclk_vco(dev_priv, vco);
5d96d8af
DL
6245}
6246
430e05de
VS
6247static void
6248skl_dpll0_disable(struct drm_i915_private *dev_priv)
6249{
6250 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
8ad32a05
CW
6251 if (intel_wait_for_register(dev_priv,
6252 LCPLL1_CTL, LCPLL_PLL_LOCK, 0,
6253 1))
430e05de 6254 DRM_ERROR("Couldn't disable DPLL0\n");
1cd593e0 6255
63911d72 6256 dev_priv->cdclk_pll.vco = 0;
430e05de
VS
6257}
6258
5d96d8af
DL
6259static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
6260{
6261 int ret;
6262 u32 val;
6263
6264 /* inform PCU we want to change CDCLK */
6265 val = SKL_CDCLK_PREPARE_FOR_CHANGE;
6266 mutex_lock(&dev_priv->rps.hw_lock);
6267 ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
6268 mutex_unlock(&dev_priv->rps.hw_lock);
6269
6270 return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
6271}
6272
6273static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
6274{
848496e5 6275 return _wait_for(skl_cdclk_pcu_ready(dev_priv), 3000, 10) == 0;
5d96d8af
DL
6276}
6277
1cd593e0 6278static void skl_set_cdclk(struct drm_i915_private *dev_priv, int cdclk, int vco)
5d96d8af 6279{
91c8a326 6280 struct drm_device *dev = &dev_priv->drm;
5d96d8af
DL
6281 u32 freq_select, pcu_ack;
6282
1cd593e0
VS
6283 WARN_ON((cdclk == 24000) != (vco == 0));
6284
63911d72 6285 DRM_DEBUG_DRIVER("Changing CDCLK to %d kHz (VCO %d kHz)\n", cdclk, vco);
5d96d8af
DL
6286
6287 if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
6288 DRM_ERROR("failed to inform PCU about cdclk change\n");
6289 return;
6290 }
6291
6292 /* set CDCLK_CTL */
9ef56154 6293 switch (cdclk) {
5d96d8af
DL
6294 case 450000:
6295 case 432000:
6296 freq_select = CDCLK_FREQ_450_432;
6297 pcu_ack = 1;
6298 break;
6299 case 540000:
6300 freq_select = CDCLK_FREQ_540;
6301 pcu_ack = 2;
6302 break;
487ed2e4 6303 case 308571:
5d96d8af
DL
6304 case 337500:
6305 default:
6306 freq_select = CDCLK_FREQ_337_308;
6307 pcu_ack = 0;
6308 break;
487ed2e4 6309 case 617143:
5d96d8af
DL
6310 case 675000:
6311 freq_select = CDCLK_FREQ_675_617;
6312 pcu_ack = 3;
6313 break;
6314 }
6315
63911d72
VS
6316 if (dev_priv->cdclk_pll.vco != 0 &&
6317 dev_priv->cdclk_pll.vco != vco)
1cd593e0
VS
6318 skl_dpll0_disable(dev_priv);
6319
63911d72 6320 if (dev_priv->cdclk_pll.vco != vco)
1cd593e0
VS
6321 skl_dpll0_enable(dev_priv, vco);
6322
9ef56154 6323 I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(cdclk));
5d96d8af
DL
6324 POSTING_READ(CDCLK_CTL);
6325
6326 /* inform PCU of the change */
6327 mutex_lock(&dev_priv->rps.hw_lock);
6328 sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
6329 mutex_unlock(&dev_priv->rps.hw_lock);
560a7ae4
DL
6330
6331 intel_update_cdclk(dev);
5d96d8af
DL
6332}
6333
9f7eb31a
VS
6334static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv);
6335
5d96d8af
DL
6336void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
6337{
709e05c3 6338 skl_set_cdclk(dev_priv, dev_priv->cdclk_pll.ref, 0);
5d96d8af
DL
6339}
6340
6341void skl_init_cdclk(struct drm_i915_private *dev_priv)
6342{
9f7eb31a
VS
6343 int cdclk, vco;
6344
6345 skl_sanitize_cdclk(dev_priv);
5d96d8af 6346
63911d72 6347 if (dev_priv->cdclk_freq != 0 && dev_priv->cdclk_pll.vco != 0) {
9f7eb31a
VS
6348 /*
6349 * Use the current vco as our initial
6350 * guess as to what the preferred vco is.
6351 */
6352 if (dev_priv->skl_preferred_vco_freq == 0)
6353 skl_set_preferred_cdclk_vco(dev_priv,
63911d72 6354 dev_priv->cdclk_pll.vco);
70c2c184 6355 return;
1cd593e0 6356 }
5d96d8af 6357
70c2c184
VS
6358 vco = dev_priv->skl_preferred_vco_freq;
6359 if (vco == 0)
63911d72 6360 vco = 8100000;
70c2c184 6361 cdclk = skl_calc_cdclk(0, vco);
5d96d8af 6362
70c2c184 6363 skl_set_cdclk(dev_priv, cdclk, vco);
5d96d8af
DL
6364}
6365
9f7eb31a 6366static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv)
c73666f3 6367{
09492498 6368 uint32_t cdctl, expected;
c73666f3 6369
f1b391a5
SK
6370 /*
6371 * check if the pre-os intialized the display
6372 * There is SWF18 scratchpad register defined which is set by the
6373 * pre-os which can be used by the OS drivers to check the status
6374 */
6375 if ((I915_READ(SWF_ILK(0x18)) & 0x00FFFFFF) == 0)
6376 goto sanitize;
6377
91c8a326 6378 intel_update_cdclk(&dev_priv->drm);
c73666f3 6379 /* Is PLL enabled and locked ? */
1c3f7700
ID
6380 if (dev_priv->cdclk_pll.vco == 0 ||
6381 dev_priv->cdclk_freq == dev_priv->cdclk_pll.ref)
c73666f3
SK
6382 goto sanitize;
6383
6384 /* DPLL okay; verify the cdclock
6385 *
6386 * Noticed in some instances that the freq selection is correct but
6387 * decimal part is programmed wrong from BIOS where pre-os does not
6388 * enable display. Verify the same as well.
6389 */
09492498
VS
6390 cdctl = I915_READ(CDCLK_CTL);
6391 expected = (cdctl & CDCLK_FREQ_SEL_MASK) |
6392 skl_cdclk_decimal(dev_priv->cdclk_freq);
6393 if (cdctl == expected)
c73666f3 6394 /* All well; nothing to sanitize */
9f7eb31a 6395 return;
c89e39f3 6396
9f7eb31a
VS
6397sanitize:
6398 DRM_DEBUG_KMS("Sanitizing cdclk programmed by pre-os\n");
c73666f3 6399
9f7eb31a
VS
6400 /* force cdclk programming */
6401 dev_priv->cdclk_freq = 0;
6402 /* force full PLL disable + enable */
63911d72 6403 dev_priv->cdclk_pll.vco = -1;
c73666f3
SK
6404}
6405
30a970c6
JB
6406/* Adjust CDclk dividers to allow high res or save power if possible */
6407static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
6408{
fac5e23e 6409 struct drm_i915_private *dev_priv = to_i915(dev);
30a970c6
JB
6410 u32 val, cmd;
6411
164dfd28
VK
6412 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
6413 != dev_priv->cdclk_freq);
d60c4473 6414
dfcab17e 6415 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
30a970c6 6416 cmd = 2;
dfcab17e 6417 else if (cdclk == 266667)
30a970c6
JB
6418 cmd = 1;
6419 else
6420 cmd = 0;
6421
6422 mutex_lock(&dev_priv->rps.hw_lock);
6423 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
6424 val &= ~DSPFREQGUAR_MASK;
6425 val |= (cmd << DSPFREQGUAR_SHIFT);
6426 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
6427 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
6428 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
6429 50)) {
6430 DRM_ERROR("timed out waiting for CDclk change\n");
6431 }
6432 mutex_unlock(&dev_priv->rps.hw_lock);
6433
54433e91
VS
6434 mutex_lock(&dev_priv->sb_lock);
6435
dfcab17e 6436 if (cdclk == 400000) {
6bcda4f0 6437 u32 divider;
30a970c6 6438
6bcda4f0 6439 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
30a970c6 6440
30a970c6
JB
6441 /* adjust cdclk divider */
6442 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
87d5d259 6443 val &= ~CCK_FREQUENCY_VALUES;
30a970c6
JB
6444 val |= divider;
6445 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
a877e801
VS
6446
6447 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
87d5d259 6448 CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
a877e801
VS
6449 50))
6450 DRM_ERROR("timed out waiting for CDclk change\n");
30a970c6
JB
6451 }
6452
30a970c6
JB
6453 /* adjust self-refresh exit latency value */
6454 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
6455 val &= ~0x7f;
6456
6457 /*
6458 * For high bandwidth configs, we set a higher latency in the bunit
6459 * so that the core display fetch happens in time to avoid underruns.
6460 */
dfcab17e 6461 if (cdclk == 400000)
30a970c6
JB
6462 val |= 4500 / 250; /* 4.5 usec */
6463 else
6464 val |= 3000 / 250; /* 3.0 usec */
6465 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
54433e91 6466
a580516d 6467 mutex_unlock(&dev_priv->sb_lock);
30a970c6 6468
b6283055 6469 intel_update_cdclk(dev);
30a970c6
JB
6470}
6471
383c5a6a
VS
6472static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
6473{
fac5e23e 6474 struct drm_i915_private *dev_priv = to_i915(dev);
383c5a6a
VS
6475 u32 val, cmd;
6476
164dfd28
VK
6477 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
6478 != dev_priv->cdclk_freq);
383c5a6a
VS
6479
6480 switch (cdclk) {
383c5a6a
VS
6481 case 333333:
6482 case 320000:
383c5a6a 6483 case 266667:
383c5a6a 6484 case 200000:
383c5a6a
VS
6485 break;
6486 default:
5f77eeb0 6487 MISSING_CASE(cdclk);
383c5a6a
VS
6488 return;
6489 }
6490
9d0d3fda
VS
6491 /*
6492 * Specs are full of misinformation, but testing on actual
6493 * hardware has shown that we just need to write the desired
6494 * CCK divider into the Punit register.
6495 */
6496 cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
6497
383c5a6a
VS
6498 mutex_lock(&dev_priv->rps.hw_lock);
6499 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
6500 val &= ~DSPFREQGUAR_MASK_CHV;
6501 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
6502 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
6503 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
6504 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
6505 50)) {
6506 DRM_ERROR("timed out waiting for CDclk change\n");
6507 }
6508 mutex_unlock(&dev_priv->rps.hw_lock);
6509
b6283055 6510 intel_update_cdclk(dev);
383c5a6a
VS
6511}
6512
30a970c6
JB
6513static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
6514 int max_pixclk)
6515{
6bcda4f0 6516 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
6cca3195 6517 int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
29dc7ef3 6518
30a970c6
JB
6519 /*
6520 * Really only a few cases to deal with, as only 4 CDclks are supported:
6521 * 200MHz
6522 * 267MHz
29dc7ef3 6523 * 320/333MHz (depends on HPLL freq)
6cca3195
VS
6524 * 400MHz (VLV only)
6525 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
6526 * of the lower bin and adjust if needed.
e37c67a1
VS
6527 *
6528 * We seem to get an unstable or solid color picture at 200MHz.
6529 * Not sure what's wrong. For now use 200MHz only when all pipes
6530 * are off.
30a970c6 6531 */
6cca3195
VS
6532 if (!IS_CHERRYVIEW(dev_priv) &&
6533 max_pixclk > freq_320*limit/100)
dfcab17e 6534 return 400000;
6cca3195 6535 else if (max_pixclk > 266667*limit/100)
29dc7ef3 6536 return freq_320;
e37c67a1 6537 else if (max_pixclk > 0)
dfcab17e 6538 return 266667;
e37c67a1
VS
6539 else
6540 return 200000;
30a970c6
JB
6541}
6542
324513c0 6543static int bxt_calc_cdclk(int max_pixclk)
f8437dd1 6544{
760e1477 6545 if (max_pixclk > 576000)
f8437dd1 6546 return 624000;
760e1477 6547 else if (max_pixclk > 384000)
f8437dd1 6548 return 576000;
760e1477 6549 else if (max_pixclk > 288000)
f8437dd1 6550 return 384000;
760e1477 6551 else if (max_pixclk > 144000)
f8437dd1
VK
6552 return 288000;
6553 else
6554 return 144000;
6555}
6556
e8788cbc 6557/* Compute the max pixel clock for new configuration. */
a821fc46
ACO
6558static int intel_mode_max_pixclk(struct drm_device *dev,
6559 struct drm_atomic_state *state)
30a970c6 6560{
565602d7 6561 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
fac5e23e 6562 struct drm_i915_private *dev_priv = to_i915(dev);
565602d7
ML
6563 struct drm_crtc *crtc;
6564 struct drm_crtc_state *crtc_state;
6565 unsigned max_pixclk = 0, i;
6566 enum pipe pipe;
30a970c6 6567
565602d7
ML
6568 memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
6569 sizeof(intel_state->min_pixclk));
304603f4 6570
565602d7
ML
6571 for_each_crtc_in_state(state, crtc, crtc_state, i) {
6572 int pixclk = 0;
6573
6574 if (crtc_state->enable)
6575 pixclk = crtc_state->adjusted_mode.crtc_clock;
304603f4 6576
565602d7 6577 intel_state->min_pixclk[i] = pixclk;
30a970c6
JB
6578 }
6579
565602d7
ML
6580 for_each_pipe(dev_priv, pipe)
6581 max_pixclk = max(intel_state->min_pixclk[pipe], max_pixclk);
6582
30a970c6
JB
6583 return max_pixclk;
6584}
6585
27c329ed 6586static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
30a970c6 6587{
27c329ed 6588 struct drm_device *dev = state->dev;
fac5e23e 6589 struct drm_i915_private *dev_priv = to_i915(dev);
27c329ed 6590 int max_pixclk = intel_mode_max_pixclk(dev, state);
1a617b77
ML
6591 struct intel_atomic_state *intel_state =
6592 to_intel_atomic_state(state);
30a970c6 6593
1a617b77 6594 intel_state->cdclk = intel_state->dev_cdclk =
27c329ed 6595 valleyview_calc_cdclk(dev_priv, max_pixclk);
0a9ab303 6596
1a617b77
ML
6597 if (!intel_state->active_crtcs)
6598 intel_state->dev_cdclk = valleyview_calc_cdclk(dev_priv, 0);
6599
27c329ed
ML
6600 return 0;
6601}
304603f4 6602
324513c0 6603static int bxt_modeset_calc_cdclk(struct drm_atomic_state *state)
27c329ed 6604{
4e5ca60f 6605 int max_pixclk = ilk_max_pixel_rate(state);
1a617b77
ML
6606 struct intel_atomic_state *intel_state =
6607 to_intel_atomic_state(state);
85a96e7a 6608
1a617b77 6609 intel_state->cdclk = intel_state->dev_cdclk =
324513c0 6610 bxt_calc_cdclk(max_pixclk);
85a96e7a 6611
1a617b77 6612 if (!intel_state->active_crtcs)
324513c0 6613 intel_state->dev_cdclk = bxt_calc_cdclk(0);
1a617b77 6614
27c329ed 6615 return 0;
30a970c6
JB
6616}
6617
1e69cd74
VS
6618static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
6619{
6620 unsigned int credits, default_credits;
6621
6622 if (IS_CHERRYVIEW(dev_priv))
6623 default_credits = PFI_CREDIT(12);
6624 else
6625 default_credits = PFI_CREDIT(8);
6626
bfa7df01 6627 if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
1e69cd74
VS
6628 /* CHV suggested value is 31 or 63 */
6629 if (IS_CHERRYVIEW(dev_priv))
fcc0008f 6630 credits = PFI_CREDIT_63;
1e69cd74
VS
6631 else
6632 credits = PFI_CREDIT(15);
6633 } else {
6634 credits = default_credits;
6635 }
6636
6637 /*
6638 * WA - write default credits before re-programming
6639 * FIXME: should we also set the resend bit here?
6640 */
6641 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6642 default_credits);
6643
6644 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6645 credits | PFI_CREDIT_RESEND);
6646
6647 /*
6648 * FIXME is this guaranteed to clear
6649 * immediately or should we poll for it?
6650 */
6651 WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6652}
6653
27c329ed 6654static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
30a970c6 6655{
a821fc46 6656 struct drm_device *dev = old_state->dev;
fac5e23e 6657 struct drm_i915_private *dev_priv = to_i915(dev);
1a617b77
ML
6658 struct intel_atomic_state *old_intel_state =
6659 to_intel_atomic_state(old_state);
6660 unsigned req_cdclk = old_intel_state->dev_cdclk;
30a970c6 6661
27c329ed
ML
6662 /*
6663 * FIXME: We can end up here with all power domains off, yet
6664 * with a CDCLK frequency other than the minimum. To account
6665 * for this take the PIPE-A power domain, which covers the HW
6666 * blocks needed for the following programming. This can be
6667 * removed once it's guaranteed that we get here either with
6668 * the minimum CDCLK set, or the required power domains
6669 * enabled.
6670 */
6671 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
738c05c0 6672
27c329ed
ML
6673 if (IS_CHERRYVIEW(dev))
6674 cherryview_set_cdclk(dev, req_cdclk);
6675 else
6676 valleyview_set_cdclk(dev, req_cdclk);
738c05c0 6677
27c329ed 6678 vlv_program_pfi_credits(dev_priv);
1e69cd74 6679
27c329ed 6680 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
30a970c6
JB
6681}
6682
4a806558
ML
6683static void valleyview_crtc_enable(struct intel_crtc_state *pipe_config,
6684 struct drm_atomic_state *old_state)
89b667f8 6685{
4a806558 6686 struct drm_crtc *crtc = pipe_config->base.crtc;
89b667f8 6687 struct drm_device *dev = crtc->dev;
a72e4c9f 6688 struct drm_i915_private *dev_priv = to_i915(dev);
89b667f8 6689 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
89b667f8 6690 int pipe = intel_crtc->pipe;
89b667f8 6691
53d9f4e9 6692 if (WARN_ON(intel_crtc->active))
89b667f8
JB
6693 return;
6694
37a5650b 6695 if (intel_crtc_has_dp_encoder(intel_crtc->config))
fe3cd48d 6696 intel_dp_set_m_n(intel_crtc, M1_N1);
5b18e57c
DV
6697
6698 intel_set_pipe_timings(intel_crtc);
bc58be60 6699 intel_set_pipe_src_size(intel_crtc);
5b18e57c 6700
c14b0485 6701 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
fac5e23e 6702 struct drm_i915_private *dev_priv = to_i915(dev);
c14b0485
VS
6703
6704 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6705 I915_WRITE(CHV_CANVAS(pipe), 0);
6706 }
6707
5b18e57c
DV
6708 i9xx_set_pipeconf(intel_crtc);
6709
89b667f8 6710 intel_crtc->active = true;
89b667f8 6711
a72e4c9f 6712 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 6713
fd6bbda9 6714 intel_encoders_pre_pll_enable(crtc, pipe_config, old_state);
89b667f8 6715
cd2d34d9
VS
6716 if (IS_CHERRYVIEW(dev)) {
6717 chv_prepare_pll(intel_crtc, intel_crtc->config);
6718 chv_enable_pll(intel_crtc, intel_crtc->config);
6719 } else {
6720 vlv_prepare_pll(intel_crtc, intel_crtc->config);
6721 vlv_enable_pll(intel_crtc, intel_crtc->config);
9d556c99 6722 }
89b667f8 6723
fd6bbda9 6724 intel_encoders_pre_enable(crtc, pipe_config, old_state);
89b667f8 6725
2dd24552
JB
6726 i9xx_pfit_enable(intel_crtc);
6727
b95c5321 6728 intel_color_load_luts(&pipe_config->base);
63cbb074 6729
caed361d 6730 intel_update_watermarks(crtc);
e1fdc473 6731 intel_enable_pipe(intel_crtc);
be6a6f8e 6732
4b3a9526
VS
6733 assert_vblank_disabled(crtc);
6734 drm_crtc_vblank_on(crtc);
6735
fd6bbda9 6736 intel_encoders_enable(crtc, pipe_config, old_state);
89b667f8
JB
6737}
6738
f13c2ef3
DV
6739static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6740{
6741 struct drm_device *dev = crtc->base.dev;
fac5e23e 6742 struct drm_i915_private *dev_priv = to_i915(dev);
f13c2ef3 6743
6e3c9717
ACO
6744 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6745 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
f13c2ef3
DV
6746}
6747
4a806558
ML
6748static void i9xx_crtc_enable(struct intel_crtc_state *pipe_config,
6749 struct drm_atomic_state *old_state)
79e53945 6750{
4a806558 6751 struct drm_crtc *crtc = pipe_config->base.crtc;
79e53945 6752 struct drm_device *dev = crtc->dev;
a72e4c9f 6753 struct drm_i915_private *dev_priv = to_i915(dev);
79e53945 6754 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
cd2d34d9 6755 enum pipe pipe = intel_crtc->pipe;
79e53945 6756
53d9f4e9 6757 if (WARN_ON(intel_crtc->active))
f7abfe8b
CW
6758 return;
6759
f13c2ef3
DV
6760 i9xx_set_pll_dividers(intel_crtc);
6761
37a5650b 6762 if (intel_crtc_has_dp_encoder(intel_crtc->config))
fe3cd48d 6763 intel_dp_set_m_n(intel_crtc, M1_N1);
5b18e57c
DV
6764
6765 intel_set_pipe_timings(intel_crtc);
bc58be60 6766 intel_set_pipe_src_size(intel_crtc);
5b18e57c 6767
5b18e57c
DV
6768 i9xx_set_pipeconf(intel_crtc);
6769
f7abfe8b 6770 intel_crtc->active = true;
6b383a7f 6771
4a3436e8 6772 if (!IS_GEN2(dev))
a72e4c9f 6773 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 6774
fd6bbda9 6775 intel_encoders_pre_enable(crtc, pipe_config, old_state);
9d6d9f19 6776
f6736a1a
DV
6777 i9xx_enable_pll(intel_crtc);
6778
2dd24552
JB
6779 i9xx_pfit_enable(intel_crtc);
6780
b95c5321 6781 intel_color_load_luts(&pipe_config->base);
63cbb074 6782
f37fcc2a 6783 intel_update_watermarks(crtc);
e1fdc473 6784 intel_enable_pipe(intel_crtc);
be6a6f8e 6785
4b3a9526
VS
6786 assert_vblank_disabled(crtc);
6787 drm_crtc_vblank_on(crtc);
6788
fd6bbda9 6789 intel_encoders_enable(crtc, pipe_config, old_state);
0b8765c6 6790}
79e53945 6791
87476d63
DV
6792static void i9xx_pfit_disable(struct intel_crtc *crtc)
6793{
6794 struct drm_device *dev = crtc->base.dev;
fac5e23e 6795 struct drm_i915_private *dev_priv = to_i915(dev);
87476d63 6796
6e3c9717 6797 if (!crtc->config->gmch_pfit.control)
328d8e82 6798 return;
87476d63 6799
328d8e82 6800 assert_pipe_disabled(dev_priv, crtc->pipe);
87476d63 6801
328d8e82
DV
6802 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6803 I915_READ(PFIT_CONTROL));
6804 I915_WRITE(PFIT_CONTROL, 0);
87476d63
DV
6805}
6806
4a806558
ML
6807static void i9xx_crtc_disable(struct intel_crtc_state *old_crtc_state,
6808 struct drm_atomic_state *old_state)
0b8765c6 6809{
4a806558 6810 struct drm_crtc *crtc = old_crtc_state->base.crtc;
0b8765c6 6811 struct drm_device *dev = crtc->dev;
fac5e23e 6812 struct drm_i915_private *dev_priv = to_i915(dev);
0b8765c6
JB
6813 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6814 int pipe = intel_crtc->pipe;
ef9c3aee 6815
6304cd91
VS
6816 /*
6817 * On gen2 planes are double buffered but the pipe isn't, so we must
6818 * wait for planes to fully turn off before disabling the pipe.
6819 */
90e83e53
ACO
6820 if (IS_GEN2(dev))
6821 intel_wait_for_vblank(dev, pipe);
6304cd91 6822
fd6bbda9 6823 intel_encoders_disable(crtc, old_crtc_state, old_state);
4b3a9526 6824
f9b61ff6
DV
6825 drm_crtc_vblank_off(crtc);
6826 assert_vblank_disabled(crtc);
6827
575f7ab7 6828 intel_disable_pipe(intel_crtc);
24a1f16d 6829
87476d63 6830 i9xx_pfit_disable(intel_crtc);
24a1f16d 6831
fd6bbda9 6832 intel_encoders_post_disable(crtc, old_crtc_state, old_state);
89b667f8 6833
d7edc4e5 6834 if (!intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DSI)) {
076ed3b2
CML
6835 if (IS_CHERRYVIEW(dev))
6836 chv_disable_pll(dev_priv, pipe);
6837 else if (IS_VALLEYVIEW(dev))
6838 vlv_disable_pll(dev_priv, pipe);
6839 else
1c4e0274 6840 i9xx_disable_pll(intel_crtc);
076ed3b2 6841 }
0b8765c6 6842
fd6bbda9 6843 intel_encoders_post_pll_disable(crtc, old_crtc_state, old_state);
d6db995f 6844
4a3436e8 6845 if (!IS_GEN2(dev))
a72e4c9f 6846 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
0b8765c6
JB
6847}
6848
b17d48e2
ML
6849static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6850{
842e0307 6851 struct intel_encoder *encoder;
b17d48e2
ML
6852 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6853 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6854 enum intel_display_power_domain domain;
6855 unsigned long domains;
4a806558
ML
6856 struct drm_atomic_state *state;
6857 struct intel_crtc_state *crtc_state;
6858 int ret;
b17d48e2
ML
6859
6860 if (!intel_crtc->active)
6861 return;
6862
936e71e3 6863 if (to_intel_plane_state(crtc->primary->state)->base.visible) {
5a21b665 6864 WARN_ON(intel_crtc->flip_work);
fc32b1fd 6865
2622a081 6866 intel_pre_disable_primary_noatomic(crtc);
54a41961
ML
6867
6868 intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
936e71e3 6869 to_intel_plane_state(crtc->primary->state)->base.visible = false;
a539205a
ML
6870 }
6871
4a806558
ML
6872 state = drm_atomic_state_alloc(crtc->dev);
6873 state->acquire_ctx = crtc->dev->mode_config.acquire_ctx;
6874
6875 /* Everything's already locked, -EDEADLK can't happen. */
6876 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
6877 ret = drm_atomic_add_affected_connectors(state, crtc);
6878
6879 WARN_ON(IS_ERR(crtc_state) || ret);
6880
6881 dev_priv->display.crtc_disable(crtc_state, state);
6882
6883 drm_atomic_state_free(state);
842e0307 6884
78108b7c
VS
6885 DRM_DEBUG_KMS("[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n",
6886 crtc->base.id, crtc->name);
842e0307
ML
6887
6888 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->state, NULL) < 0);
6889 crtc->state->active = false;
37d9078b 6890 intel_crtc->active = false;
842e0307
ML
6891 crtc->enabled = false;
6892 crtc->state->connector_mask = 0;
6893 crtc->state->encoder_mask = 0;
6894
6895 for_each_encoder_on_crtc(crtc->dev, crtc, encoder)
6896 encoder->base.crtc = NULL;
6897
58f9c0bc 6898 intel_fbc_disable(intel_crtc);
37d9078b 6899 intel_update_watermarks(crtc);
1f7457b1 6900 intel_disable_shared_dpll(intel_crtc);
b17d48e2
ML
6901
6902 domains = intel_crtc->enabled_power_domains;
6903 for_each_power_domain(domain, domains)
6904 intel_display_power_put(dev_priv, domain);
6905 intel_crtc->enabled_power_domains = 0;
565602d7
ML
6906
6907 dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe);
6908 dev_priv->min_pixclk[intel_crtc->pipe] = 0;
b17d48e2
ML
6909}
6910
6b72d486
ML
6911/*
6912 * turn all crtc's off, but do not adjust state
6913 * This has to be paired with a call to intel_modeset_setup_hw_state.
6914 */
70e0bd74 6915int intel_display_suspend(struct drm_device *dev)
ee7b9f93 6916{
e2c8b870 6917 struct drm_i915_private *dev_priv = to_i915(dev);
70e0bd74 6918 struct drm_atomic_state *state;
e2c8b870 6919 int ret;
70e0bd74 6920
e2c8b870
ML
6921 state = drm_atomic_helper_suspend(dev);
6922 ret = PTR_ERR_OR_ZERO(state);
70e0bd74
ML
6923 if (ret)
6924 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
e2c8b870
ML
6925 else
6926 dev_priv->modeset_restore_state = state;
70e0bd74 6927 return ret;
ee7b9f93
JB
6928}
6929
ea5b213a 6930void intel_encoder_destroy(struct drm_encoder *encoder)
7e7d76c3 6931{
4ef69c7a 6932 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 6933
ea5b213a
CW
6934 drm_encoder_cleanup(encoder);
6935 kfree(intel_encoder);
7e7d76c3
JB
6936}
6937
0a91ca29
DV
6938/* Cross check the actual hw state with our own modeset state tracking (and it's
6939 * internal consistency). */
5a21b665 6940static void intel_connector_verify_state(struct intel_connector *connector)
79e53945 6941{
5a21b665 6942 struct drm_crtc *crtc = connector->base.state->crtc;
35dd3c64
ML
6943
6944 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6945 connector->base.base.id,
6946 connector->base.name);
6947
0a91ca29 6948 if (connector->get_hw_state(connector)) {
e85376cb 6949 struct intel_encoder *encoder = connector->encoder;
5a21b665 6950 struct drm_connector_state *conn_state = connector->base.state;
0a91ca29 6951
35dd3c64
ML
6952 I915_STATE_WARN(!crtc,
6953 "connector enabled without attached crtc\n");
0a91ca29 6954
35dd3c64
ML
6955 if (!crtc)
6956 return;
6957
6958 I915_STATE_WARN(!crtc->state->active,
6959 "connector is active, but attached crtc isn't\n");
6960
e85376cb 6961 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
35dd3c64
ML
6962 return;
6963
e85376cb 6964 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
35dd3c64
ML
6965 "atomic encoder doesn't match attached encoder\n");
6966
e85376cb 6967 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
35dd3c64
ML
6968 "attached encoder crtc differs from connector crtc\n");
6969 } else {
4d688a2a
ML
6970 I915_STATE_WARN(crtc && crtc->state->active,
6971 "attached crtc is active, but connector isn't\n");
5a21b665 6972 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
35dd3c64 6973 "best encoder set without crtc!\n");
0a91ca29 6974 }
79e53945
JB
6975}
6976
08d9bc92
ACO
6977int intel_connector_init(struct intel_connector *connector)
6978{
5350a031 6979 drm_atomic_helper_connector_reset(&connector->base);
08d9bc92 6980
5350a031 6981 if (!connector->base.state)
08d9bc92
ACO
6982 return -ENOMEM;
6983
08d9bc92
ACO
6984 return 0;
6985}
6986
6987struct intel_connector *intel_connector_alloc(void)
6988{
6989 struct intel_connector *connector;
6990
6991 connector = kzalloc(sizeof *connector, GFP_KERNEL);
6992 if (!connector)
6993 return NULL;
6994
6995 if (intel_connector_init(connector) < 0) {
6996 kfree(connector);
6997 return NULL;
6998 }
6999
7000 return connector;
7001}
7002
f0947c37
DV
7003/* Simple connector->get_hw_state implementation for encoders that support only
7004 * one connector and no cloning and hence the encoder state determines the state
7005 * of the connector. */
7006bool intel_connector_get_hw_state(struct intel_connector *connector)
ea5b213a 7007{
24929352 7008 enum pipe pipe = 0;
f0947c37 7009 struct intel_encoder *encoder = connector->encoder;
ea5b213a 7010
f0947c37 7011 return encoder->get_hw_state(encoder, &pipe);
ea5b213a
CW
7012}
7013
6d293983 7014static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
d272ddfa 7015{
6d293983
ACO
7016 if (crtc_state->base.enable && crtc_state->has_pch_encoder)
7017 return crtc_state->fdi_lanes;
d272ddfa
VS
7018
7019 return 0;
7020}
7021
6d293983 7022static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5cec258b 7023 struct intel_crtc_state *pipe_config)
1857e1da 7024{
6d293983
ACO
7025 struct drm_atomic_state *state = pipe_config->base.state;
7026 struct intel_crtc *other_crtc;
7027 struct intel_crtc_state *other_crtc_state;
7028
1857e1da
DV
7029 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
7030 pipe_name(pipe), pipe_config->fdi_lanes);
7031 if (pipe_config->fdi_lanes > 4) {
7032 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
7033 pipe_name(pipe), pipe_config->fdi_lanes);
6d293983 7034 return -EINVAL;
1857e1da
DV
7035 }
7036
bafb6553 7037 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1857e1da
DV
7038 if (pipe_config->fdi_lanes > 2) {
7039 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
7040 pipe_config->fdi_lanes);
6d293983 7041 return -EINVAL;
1857e1da 7042 } else {
6d293983 7043 return 0;
1857e1da
DV
7044 }
7045 }
7046
7047 if (INTEL_INFO(dev)->num_pipes == 2)
6d293983 7048 return 0;
1857e1da
DV
7049
7050 /* Ivybridge 3 pipe is really complicated */
7051 switch (pipe) {
7052 case PIPE_A:
6d293983 7053 return 0;
1857e1da 7054 case PIPE_B:
6d293983
ACO
7055 if (pipe_config->fdi_lanes <= 2)
7056 return 0;
7057
7058 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
7059 other_crtc_state =
7060 intel_atomic_get_crtc_state(state, other_crtc);
7061 if (IS_ERR(other_crtc_state))
7062 return PTR_ERR(other_crtc_state);
7063
7064 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
1857e1da
DV
7065 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
7066 pipe_name(pipe), pipe_config->fdi_lanes);
6d293983 7067 return -EINVAL;
1857e1da 7068 }
6d293983 7069 return 0;
1857e1da 7070 case PIPE_C:
251cc67c
VS
7071 if (pipe_config->fdi_lanes > 2) {
7072 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
7073 pipe_name(pipe), pipe_config->fdi_lanes);
6d293983 7074 return -EINVAL;
251cc67c 7075 }
6d293983
ACO
7076
7077 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
7078 other_crtc_state =
7079 intel_atomic_get_crtc_state(state, other_crtc);
7080 if (IS_ERR(other_crtc_state))
7081 return PTR_ERR(other_crtc_state);
7082
7083 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
1857e1da 7084 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6d293983 7085 return -EINVAL;
1857e1da 7086 }
6d293983 7087 return 0;
1857e1da
DV
7088 default:
7089 BUG();
7090 }
7091}
7092
e29c22c0
DV
7093#define RETRY 1
7094static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5cec258b 7095 struct intel_crtc_state *pipe_config)
877d48d5 7096{
1857e1da 7097 struct drm_device *dev = intel_crtc->base.dev;
7c5f93b0 7098 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6d293983
ACO
7099 int lane, link_bw, fdi_dotclock, ret;
7100 bool needs_recompute = false;
877d48d5 7101
e29c22c0 7102retry:
877d48d5
DV
7103 /* FDI is a binary signal running at ~2.7GHz, encoding
7104 * each output octet as 10 bits. The actual frequency
7105 * is stored as a divider into a 100MHz clock, and the
7106 * mode pixel clock is stored in units of 1KHz.
7107 * Hence the bw of each lane in terms of the mode signal
7108 * is:
7109 */
21a727b3 7110 link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config);
877d48d5 7111
241bfc38 7112 fdi_dotclock = adjusted_mode->crtc_clock;
877d48d5 7113
2bd89a07 7114 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
877d48d5
DV
7115 pipe_config->pipe_bpp);
7116
7117 pipe_config->fdi_lanes = lane;
7118
2bd89a07 7119 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
877d48d5 7120 link_bw, &pipe_config->fdi_m_n);
1857e1da 7121
e3b247da 7122 ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
6d293983 7123 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
e29c22c0
DV
7124 pipe_config->pipe_bpp -= 2*3;
7125 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
7126 pipe_config->pipe_bpp);
7127 needs_recompute = true;
7128 pipe_config->bw_constrained = true;
7129
7130 goto retry;
7131 }
7132
7133 if (needs_recompute)
7134 return RETRY;
7135
6d293983 7136 return ret;
877d48d5
DV
7137}
7138
8cfb3407
VS
7139static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
7140 struct intel_crtc_state *pipe_config)
7141{
7142 if (pipe_config->pipe_bpp > 24)
7143 return false;
7144
7145 /* HSW can handle pixel rate up to cdclk? */
2d1fe073 7146 if (IS_HASWELL(dev_priv))
8cfb3407
VS
7147 return true;
7148
7149 /*
b432e5cf
VS
7150 * We compare against max which means we must take
7151 * the increased cdclk requirement into account when
7152 * calculating the new cdclk.
7153 *
7154 * Should measure whether using a lower cdclk w/o IPS
8cfb3407
VS
7155 */
7156 return ilk_pipe_pixel_rate(pipe_config) <=
7157 dev_priv->max_cdclk_freq * 95 / 100;
7158}
7159
42db64ef 7160static void hsw_compute_ips_config(struct intel_crtc *crtc,
5cec258b 7161 struct intel_crtc_state *pipe_config)
42db64ef 7162{
8cfb3407 7163 struct drm_device *dev = crtc->base.dev;
fac5e23e 7164 struct drm_i915_private *dev_priv = to_i915(dev);
8cfb3407 7165
d330a953 7166 pipe_config->ips_enabled = i915.enable_ips &&
8cfb3407
VS
7167 hsw_crtc_supports_ips(crtc) &&
7168 pipe_config_supports_ips(dev_priv, pipe_config);
42db64ef
PZ
7169}
7170
39acb4aa
VS
7171static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
7172{
7173 const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7174
7175 /* GDG double wide on either pipe, otherwise pipe A only */
7176 return INTEL_INFO(dev_priv)->gen < 4 &&
7177 (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
7178}
7179
a43f6e0f 7180static int intel_crtc_compute_config(struct intel_crtc *crtc,
5cec258b 7181 struct intel_crtc_state *pipe_config)
79e53945 7182{
a43f6e0f 7183 struct drm_device *dev = crtc->base.dev;
fac5e23e 7184 struct drm_i915_private *dev_priv = to_i915(dev);
7c5f93b0 7185 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
f3261156 7186 int clock_limit = dev_priv->max_dotclk_freq;
89749350 7187
cf532bb2 7188 if (INTEL_INFO(dev)->gen < 4) {
f3261156 7189 clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
cf532bb2
VS
7190
7191 /*
39acb4aa 7192 * Enable double wide mode when the dot clock
cf532bb2 7193 * is > 90% of the (display) core speed.
cf532bb2 7194 */
39acb4aa
VS
7195 if (intel_crtc_supports_double_wide(crtc) &&
7196 adjusted_mode->crtc_clock > clock_limit) {
f3261156 7197 clock_limit = dev_priv->max_dotclk_freq;
cf532bb2 7198 pipe_config->double_wide = true;
ad3a4479 7199 }
f3261156 7200 }
ad3a4479 7201
f3261156
VS
7202 if (adjusted_mode->crtc_clock > clock_limit) {
7203 DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
7204 adjusted_mode->crtc_clock, clock_limit,
7205 yesno(pipe_config->double_wide));
7206 return -EINVAL;
2c07245f 7207 }
89749350 7208
1d1d0e27
VS
7209 /*
7210 * Pipe horizontal size must be even in:
7211 * - DVO ganged mode
7212 * - LVDS dual channel mode
7213 * - Double wide pipe
7214 */
2d84d2b3 7215 if ((intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) &&
1d1d0e27
VS
7216 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
7217 pipe_config->pipe_src_w &= ~1;
7218
8693a824
DL
7219 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
7220 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
44f46b42
CW
7221 */
7222 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
aad941d5 7223 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
e29c22c0 7224 return -EINVAL;
44f46b42 7225
f5adf94e 7226 if (HAS_IPS(dev))
a43f6e0f
DV
7227 hsw_compute_ips_config(crtc, pipe_config);
7228
877d48d5 7229 if (pipe_config->has_pch_encoder)
a43f6e0f 7230 return ironlake_fdi_compute_config(crtc, pipe_config);
877d48d5 7231
cf5a15be 7232 return 0;
79e53945
JB
7233}
7234
1652d19e
VS
7235static int skylake_get_display_clock_speed(struct drm_device *dev)
7236{
7237 struct drm_i915_private *dev_priv = to_i915(dev);
ea61791e 7238 uint32_t cdctl;
1652d19e 7239
ea61791e 7240 skl_dpll0_update(dev_priv);
1652d19e 7241
63911d72 7242 if (dev_priv->cdclk_pll.vco == 0)
709e05c3 7243 return dev_priv->cdclk_pll.ref;
1652d19e 7244
ea61791e 7245 cdctl = I915_READ(CDCLK_CTL);
1652d19e 7246
63911d72 7247 if (dev_priv->cdclk_pll.vco == 8640000) {
1652d19e
VS
7248 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
7249 case CDCLK_FREQ_450_432:
7250 return 432000;
7251 case CDCLK_FREQ_337_308:
487ed2e4 7252 return 308571;
ea61791e
VS
7253 case CDCLK_FREQ_540:
7254 return 540000;
1652d19e 7255 case CDCLK_FREQ_675_617:
487ed2e4 7256 return 617143;
1652d19e 7257 default:
ea61791e 7258 MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
1652d19e
VS
7259 }
7260 } else {
1652d19e
VS
7261 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
7262 case CDCLK_FREQ_450_432:
7263 return 450000;
7264 case CDCLK_FREQ_337_308:
7265 return 337500;
ea61791e
VS
7266 case CDCLK_FREQ_540:
7267 return 540000;
1652d19e
VS
7268 case CDCLK_FREQ_675_617:
7269 return 675000;
7270 default:
ea61791e 7271 MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
1652d19e
VS
7272 }
7273 }
7274
709e05c3 7275 return dev_priv->cdclk_pll.ref;
1652d19e
VS
7276}
7277
83d7c81f
VS
7278static void bxt_de_pll_update(struct drm_i915_private *dev_priv)
7279{
7280 u32 val;
7281
7282 dev_priv->cdclk_pll.ref = 19200;
1c3f7700 7283 dev_priv->cdclk_pll.vco = 0;
83d7c81f
VS
7284
7285 val = I915_READ(BXT_DE_PLL_ENABLE);
1c3f7700 7286 if ((val & BXT_DE_PLL_PLL_ENABLE) == 0)
83d7c81f 7287 return;
83d7c81f 7288
1c3f7700
ID
7289 if (WARN_ON((val & BXT_DE_PLL_LOCK) == 0))
7290 return;
83d7c81f
VS
7291
7292 val = I915_READ(BXT_DE_PLL_CTL);
7293 dev_priv->cdclk_pll.vco = (val & BXT_DE_PLL_RATIO_MASK) *
7294 dev_priv->cdclk_pll.ref;
7295}
7296
acd3f3d3
BP
7297static int broxton_get_display_clock_speed(struct drm_device *dev)
7298{
7299 struct drm_i915_private *dev_priv = to_i915(dev);
f5986242
VS
7300 u32 divider;
7301 int div, vco;
acd3f3d3 7302
83d7c81f
VS
7303 bxt_de_pll_update(dev_priv);
7304
f5986242
VS
7305 vco = dev_priv->cdclk_pll.vco;
7306 if (vco == 0)
7307 return dev_priv->cdclk_pll.ref;
acd3f3d3 7308
f5986242 7309 divider = I915_READ(CDCLK_CTL) & BXT_CDCLK_CD2X_DIV_SEL_MASK;
acd3f3d3 7310
f5986242 7311 switch (divider) {
acd3f3d3 7312 case BXT_CDCLK_CD2X_DIV_SEL_1:
f5986242
VS
7313 div = 2;
7314 break;
acd3f3d3 7315 case BXT_CDCLK_CD2X_DIV_SEL_1_5:
f5986242
VS
7316 div = 3;
7317 break;
acd3f3d3 7318 case BXT_CDCLK_CD2X_DIV_SEL_2:
f5986242
VS
7319 div = 4;
7320 break;
acd3f3d3 7321 case BXT_CDCLK_CD2X_DIV_SEL_4:
f5986242
VS
7322 div = 8;
7323 break;
7324 default:
7325 MISSING_CASE(divider);
7326 return dev_priv->cdclk_pll.ref;
acd3f3d3
BP
7327 }
7328
f5986242 7329 return DIV_ROUND_CLOSEST(vco, div);
acd3f3d3
BP
7330}
7331
1652d19e
VS
7332static int broadwell_get_display_clock_speed(struct drm_device *dev)
7333{
fac5e23e 7334 struct drm_i915_private *dev_priv = to_i915(dev);
1652d19e
VS
7335 uint32_t lcpll = I915_READ(LCPLL_CTL);
7336 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
7337
7338 if (lcpll & LCPLL_CD_SOURCE_FCLK)
7339 return 800000;
7340 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
7341 return 450000;
7342 else if (freq == LCPLL_CLK_FREQ_450)
7343 return 450000;
7344 else if (freq == LCPLL_CLK_FREQ_54O_BDW)
7345 return 540000;
7346 else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
7347 return 337500;
7348 else
7349 return 675000;
7350}
7351
7352static int haswell_get_display_clock_speed(struct drm_device *dev)
7353{
fac5e23e 7354 struct drm_i915_private *dev_priv = to_i915(dev);
1652d19e
VS
7355 uint32_t lcpll = I915_READ(LCPLL_CTL);
7356 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
7357
7358 if (lcpll & LCPLL_CD_SOURCE_FCLK)
7359 return 800000;
7360 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
7361 return 450000;
7362 else if (freq == LCPLL_CLK_FREQ_450)
7363 return 450000;
7364 else if (IS_HSW_ULT(dev))
7365 return 337500;
7366 else
7367 return 540000;
79e53945
JB
7368}
7369
25eb05fc
JB
7370static int valleyview_get_display_clock_speed(struct drm_device *dev)
7371{
bfa7df01
VS
7372 return vlv_get_cck_clock_hpll(to_i915(dev), "cdclk",
7373 CCK_DISPLAY_CLOCK_CONTROL);
25eb05fc
JB
7374}
7375
b37a6434
VS
7376static int ilk_get_display_clock_speed(struct drm_device *dev)
7377{
7378 return 450000;
7379}
7380
e70236a8
JB
7381static int i945_get_display_clock_speed(struct drm_device *dev)
7382{
7383 return 400000;
7384}
79e53945 7385
e70236a8 7386static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 7387{
e907f170 7388 return 333333;
e70236a8 7389}
79e53945 7390
e70236a8
JB
7391static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
7392{
7393 return 200000;
7394}
79e53945 7395
257a7ffc
DV
7396static int pnv_get_display_clock_speed(struct drm_device *dev)
7397{
52a05c30 7398 struct pci_dev *pdev = dev->pdev;
257a7ffc
DV
7399 u16 gcfgc = 0;
7400
52a05c30 7401 pci_read_config_word(pdev, GCFGC, &gcfgc);
257a7ffc
DV
7402
7403 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
7404 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
e907f170 7405 return 266667;
257a7ffc 7406 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
e907f170 7407 return 333333;
257a7ffc 7408 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
e907f170 7409 return 444444;
257a7ffc
DV
7410 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
7411 return 200000;
7412 default:
7413 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
7414 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
e907f170 7415 return 133333;
257a7ffc 7416 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
e907f170 7417 return 166667;
257a7ffc
DV
7418 }
7419}
7420
e70236a8
JB
7421static int i915gm_get_display_clock_speed(struct drm_device *dev)
7422{
52a05c30 7423 struct pci_dev *pdev = dev->pdev;
e70236a8 7424 u16 gcfgc = 0;
79e53945 7425
52a05c30 7426 pci_read_config_word(pdev, GCFGC, &gcfgc);
e70236a8
JB
7427
7428 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
e907f170 7429 return 133333;
e70236a8
JB
7430 else {
7431 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
7432 case GC_DISPLAY_CLOCK_333_MHZ:
e907f170 7433 return 333333;
e70236a8
JB
7434 default:
7435 case GC_DISPLAY_CLOCK_190_200_MHZ:
7436 return 190000;
79e53945 7437 }
e70236a8
JB
7438 }
7439}
7440
7441static int i865_get_display_clock_speed(struct drm_device *dev)
7442{
e907f170 7443 return 266667;
e70236a8
JB
7444}
7445
1b1d2716 7446static int i85x_get_display_clock_speed(struct drm_device *dev)
e70236a8 7447{
52a05c30 7448 struct pci_dev *pdev = dev->pdev;
e70236a8 7449 u16 hpllcc = 0;
1b1d2716 7450
65cd2b3f
VS
7451 /*
7452 * 852GM/852GMV only supports 133 MHz and the HPLLCC
7453 * encoding is different :(
7454 * FIXME is this the right way to detect 852GM/852GMV?
7455 */
52a05c30 7456 if (pdev->revision == 0x1)
65cd2b3f
VS
7457 return 133333;
7458
52a05c30 7459 pci_bus_read_config_word(pdev->bus,
1b1d2716
VS
7460 PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
7461
e70236a8
JB
7462 /* Assume that the hardware is in the high speed state. This
7463 * should be the default.
7464 */
7465 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
7466 case GC_CLOCK_133_200:
1b1d2716 7467 case GC_CLOCK_133_200_2:
e70236a8
JB
7468 case GC_CLOCK_100_200:
7469 return 200000;
7470 case GC_CLOCK_166_250:
7471 return 250000;
7472 case GC_CLOCK_100_133:
e907f170 7473 return 133333;
1b1d2716
VS
7474 case GC_CLOCK_133_266:
7475 case GC_CLOCK_133_266_2:
7476 case GC_CLOCK_166_266:
7477 return 266667;
e70236a8 7478 }
79e53945 7479
e70236a8
JB
7480 /* Shouldn't happen */
7481 return 0;
7482}
79e53945 7483
e70236a8
JB
7484static int i830_get_display_clock_speed(struct drm_device *dev)
7485{
e907f170 7486 return 133333;
79e53945
JB
7487}
7488
34edce2f
VS
7489static unsigned int intel_hpll_vco(struct drm_device *dev)
7490{
fac5e23e 7491 struct drm_i915_private *dev_priv = to_i915(dev);
34edce2f
VS
7492 static const unsigned int blb_vco[8] = {
7493 [0] = 3200000,
7494 [1] = 4000000,
7495 [2] = 5333333,
7496 [3] = 4800000,
7497 [4] = 6400000,
7498 };
7499 static const unsigned int pnv_vco[8] = {
7500 [0] = 3200000,
7501 [1] = 4000000,
7502 [2] = 5333333,
7503 [3] = 4800000,
7504 [4] = 2666667,
7505 };
7506 static const unsigned int cl_vco[8] = {
7507 [0] = 3200000,
7508 [1] = 4000000,
7509 [2] = 5333333,
7510 [3] = 6400000,
7511 [4] = 3333333,
7512 [5] = 3566667,
7513 [6] = 4266667,
7514 };
7515 static const unsigned int elk_vco[8] = {
7516 [0] = 3200000,
7517 [1] = 4000000,
7518 [2] = 5333333,
7519 [3] = 4800000,
7520 };
7521 static const unsigned int ctg_vco[8] = {
7522 [0] = 3200000,
7523 [1] = 4000000,
7524 [2] = 5333333,
7525 [3] = 6400000,
7526 [4] = 2666667,
7527 [5] = 4266667,
7528 };
7529 const unsigned int *vco_table;
7530 unsigned int vco;
7531 uint8_t tmp = 0;
7532
7533 /* FIXME other chipsets? */
7534 if (IS_GM45(dev))
7535 vco_table = ctg_vco;
7536 else if (IS_G4X(dev))
7537 vco_table = elk_vco;
7538 else if (IS_CRESTLINE(dev))
7539 vco_table = cl_vco;
7540 else if (IS_PINEVIEW(dev))
7541 vco_table = pnv_vco;
7542 else if (IS_G33(dev))
7543 vco_table = blb_vco;
7544 else
7545 return 0;
7546
7547 tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
7548
7549 vco = vco_table[tmp & 0x7];
7550 if (vco == 0)
7551 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
7552 else
7553 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
7554
7555 return vco;
7556}
7557
7558static int gm45_get_display_clock_speed(struct drm_device *dev)
7559{
52a05c30 7560 struct pci_dev *pdev = dev->pdev;
34edce2f
VS
7561 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7562 uint16_t tmp = 0;
7563
52a05c30 7564 pci_read_config_word(pdev, GCFGC, &tmp);
34edce2f
VS
7565
7566 cdclk_sel = (tmp >> 12) & 0x1;
7567
7568 switch (vco) {
7569 case 2666667:
7570 case 4000000:
7571 case 5333333:
7572 return cdclk_sel ? 333333 : 222222;
7573 case 3200000:
7574 return cdclk_sel ? 320000 : 228571;
7575 default:
7576 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
7577 return 222222;
7578 }
7579}
7580
7581static int i965gm_get_display_clock_speed(struct drm_device *dev)
7582{
52a05c30 7583 struct pci_dev *pdev = dev->pdev;
34edce2f
VS
7584 static const uint8_t div_3200[] = { 16, 10, 8 };
7585 static const uint8_t div_4000[] = { 20, 12, 10 };
7586 static const uint8_t div_5333[] = { 24, 16, 14 };
7587 const uint8_t *div_table;
7588 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7589 uint16_t tmp = 0;
7590
52a05c30 7591 pci_read_config_word(pdev, GCFGC, &tmp);
34edce2f
VS
7592
7593 cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
7594
7595 if (cdclk_sel >= ARRAY_SIZE(div_3200))
7596 goto fail;
7597
7598 switch (vco) {
7599 case 3200000:
7600 div_table = div_3200;
7601 break;
7602 case 4000000:
7603 div_table = div_4000;
7604 break;
7605 case 5333333:
7606 div_table = div_5333;
7607 break;
7608 default:
7609 goto fail;
7610 }
7611
7612 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7613
caf4e252 7614fail:
34edce2f
VS
7615 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
7616 return 200000;
7617}
7618
7619static int g33_get_display_clock_speed(struct drm_device *dev)
7620{
52a05c30 7621 struct pci_dev *pdev = dev->pdev;
34edce2f
VS
7622 static const uint8_t div_3200[] = { 12, 10, 8, 7, 5, 16 };
7623 static const uint8_t div_4000[] = { 14, 12, 10, 8, 6, 20 };
7624 static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
7625 static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
7626 const uint8_t *div_table;
7627 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7628 uint16_t tmp = 0;
7629
52a05c30 7630 pci_read_config_word(pdev, GCFGC, &tmp);
34edce2f
VS
7631
7632 cdclk_sel = (tmp >> 4) & 0x7;
7633
7634 if (cdclk_sel >= ARRAY_SIZE(div_3200))
7635 goto fail;
7636
7637 switch (vco) {
7638 case 3200000:
7639 div_table = div_3200;
7640 break;
7641 case 4000000:
7642 div_table = div_4000;
7643 break;
7644 case 4800000:
7645 div_table = div_4800;
7646 break;
7647 case 5333333:
7648 div_table = div_5333;
7649 break;
7650 default:
7651 goto fail;
7652 }
7653
7654 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7655
caf4e252 7656fail:
34edce2f
VS
7657 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7658 return 190476;
7659}
7660
2c07245f 7661static void
a65851af 7662intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
2c07245f 7663{
a65851af
VS
7664 while (*num > DATA_LINK_M_N_MASK ||
7665 *den > DATA_LINK_M_N_MASK) {
2c07245f
ZW
7666 *num >>= 1;
7667 *den >>= 1;
7668 }
7669}
7670
a65851af
VS
7671static void compute_m_n(unsigned int m, unsigned int n,
7672 uint32_t *ret_m, uint32_t *ret_n)
7673{
7674 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7675 *ret_m = div_u64((uint64_t) m * *ret_n, n);
7676 intel_reduce_m_n_ratio(ret_m, ret_n);
7677}
7678
e69d0bc1
DV
7679void
7680intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7681 int pixel_clock, int link_clock,
7682 struct intel_link_m_n *m_n)
2c07245f 7683{
e69d0bc1 7684 m_n->tu = 64;
a65851af
VS
7685
7686 compute_m_n(bits_per_pixel * pixel_clock,
7687 link_clock * nlanes * 8,
7688 &m_n->gmch_m, &m_n->gmch_n);
7689
7690 compute_m_n(pixel_clock, link_clock,
7691 &m_n->link_m, &m_n->link_n);
2c07245f
ZW
7692}
7693
a7615030
CW
7694static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7695{
d330a953
JN
7696 if (i915.panel_use_ssc >= 0)
7697 return i915.panel_use_ssc != 0;
41aa3448 7698 return dev_priv->vbt.lvds_use_ssc
435793df 7699 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
7700}
7701
7429e9d4 7702static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
c65d77d8 7703{
7df00d7a 7704 return (1 << dpll->n) << 16 | dpll->m2;
7429e9d4 7705}
f47709a9 7706
7429e9d4
DV
7707static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7708{
7709 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
c65d77d8
JB
7710}
7711
f47709a9 7712static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
190f68c5 7713 struct intel_crtc_state *crtc_state,
9e2c8475 7714 struct dpll *reduced_clock)
a7516a05 7715{
f47709a9 7716 struct drm_device *dev = crtc->base.dev;
a7516a05
JB
7717 u32 fp, fp2 = 0;
7718
7719 if (IS_PINEVIEW(dev)) {
190f68c5 7720 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
a7516a05 7721 if (reduced_clock)
7429e9d4 7722 fp2 = pnv_dpll_compute_fp(reduced_clock);
a7516a05 7723 } else {
190f68c5 7724 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
a7516a05 7725 if (reduced_clock)
7429e9d4 7726 fp2 = i9xx_dpll_compute_fp(reduced_clock);
a7516a05
JB
7727 }
7728
190f68c5 7729 crtc_state->dpll_hw_state.fp0 = fp;
a7516a05 7730
f47709a9 7731 crtc->lowfreq_avail = false;
2d84d2b3 7732 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
ab585dea 7733 reduced_clock) {
190f68c5 7734 crtc_state->dpll_hw_state.fp1 = fp2;
f47709a9 7735 crtc->lowfreq_avail = true;
a7516a05 7736 } else {
190f68c5 7737 crtc_state->dpll_hw_state.fp1 = fp;
a7516a05
JB
7738 }
7739}
7740
5e69f97f
CML
7741static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7742 pipe)
89b667f8
JB
7743{
7744 u32 reg_val;
7745
7746 /*
7747 * PLLB opamp always calibrates to max value of 0x3f, force enable it
7748 * and set it to a reasonable value instead.
7749 */
ab3c759a 7750 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8
JB
7751 reg_val &= 0xffffff00;
7752 reg_val |= 0x00000030;
ab3c759a 7753 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 7754
ab3c759a 7755 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
7756 reg_val &= 0x8cffffff;
7757 reg_val = 0x8c000000;
ab3c759a 7758 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8 7759
ab3c759a 7760 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8 7761 reg_val &= 0xffffff00;
ab3c759a 7762 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 7763
ab3c759a 7764 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
7765 reg_val &= 0x00ffffff;
7766 reg_val |= 0xb0000000;
ab3c759a 7767 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8
JB
7768}
7769
b551842d
DV
7770static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7771 struct intel_link_m_n *m_n)
7772{
7773 struct drm_device *dev = crtc->base.dev;
fac5e23e 7774 struct drm_i915_private *dev_priv = to_i915(dev);
b551842d
DV
7775 int pipe = crtc->pipe;
7776
e3b95f1e
DV
7777 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7778 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7779 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7780 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
b551842d
DV
7781}
7782
7783static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
7784 struct intel_link_m_n *m_n,
7785 struct intel_link_m_n *m2_n2)
b551842d
DV
7786{
7787 struct drm_device *dev = crtc->base.dev;
fac5e23e 7788 struct drm_i915_private *dev_priv = to_i915(dev);
b551842d 7789 int pipe = crtc->pipe;
6e3c9717 7790 enum transcoder transcoder = crtc->config->cpu_transcoder;
b551842d
DV
7791
7792 if (INTEL_INFO(dev)->gen >= 5) {
7793 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7794 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7795 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7796 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
f769cd24
VK
7797 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7798 * for gen < 8) and if DRRS is supported (to make sure the
7799 * registers are not unnecessarily accessed).
7800 */
44395bfe 7801 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
6e3c9717 7802 crtc->config->has_drrs) {
f769cd24
VK
7803 I915_WRITE(PIPE_DATA_M2(transcoder),
7804 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7805 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7806 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7807 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7808 }
b551842d 7809 } else {
e3b95f1e
DV
7810 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7811 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7812 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7813 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
b551842d
DV
7814 }
7815}
7816
fe3cd48d 7817void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
03afc4a2 7818{
fe3cd48d
R
7819 struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7820
7821 if (m_n == M1_N1) {
7822 dp_m_n = &crtc->config->dp_m_n;
7823 dp_m2_n2 = &crtc->config->dp_m2_n2;
7824 } else if (m_n == M2_N2) {
7825
7826 /*
7827 * M2_N2 registers are not supported. Hence m2_n2 divider value
7828 * needs to be programmed into M1_N1.
7829 */
7830 dp_m_n = &crtc->config->dp_m2_n2;
7831 } else {
7832 DRM_ERROR("Unsupported divider value\n");
7833 return;
7834 }
7835
6e3c9717
ACO
7836 if (crtc->config->has_pch_encoder)
7837 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
03afc4a2 7838 else
fe3cd48d 7839 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
03afc4a2
DV
7840}
7841
251ac862
DV
7842static void vlv_compute_dpll(struct intel_crtc *crtc,
7843 struct intel_crtc_state *pipe_config)
bdd4b6a6 7844{
03ed5cbf 7845 pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
cd2d34d9 7846 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
03ed5cbf
VS
7847 if (crtc->pipe != PIPE_A)
7848 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
bdd4b6a6 7849
cd2d34d9 7850 /* DPLL not used with DSI, but still need the rest set up */
d7edc4e5 7851 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
cd2d34d9
VS
7852 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
7853 DPLL_EXT_BUFFER_ENABLE_VLV;
7854
03ed5cbf
VS
7855 pipe_config->dpll_hw_state.dpll_md =
7856 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7857}
bdd4b6a6 7858
03ed5cbf
VS
7859static void chv_compute_dpll(struct intel_crtc *crtc,
7860 struct intel_crtc_state *pipe_config)
7861{
7862 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
cd2d34d9 7863 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
03ed5cbf
VS
7864 if (crtc->pipe != PIPE_A)
7865 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7866
cd2d34d9 7867 /* DPLL not used with DSI, but still need the rest set up */
d7edc4e5 7868 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
cd2d34d9
VS
7869 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
7870
03ed5cbf
VS
7871 pipe_config->dpll_hw_state.dpll_md =
7872 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
bdd4b6a6
DV
7873}
7874
d288f65f 7875static void vlv_prepare_pll(struct intel_crtc *crtc,
5cec258b 7876 const struct intel_crtc_state *pipe_config)
a0c4da24 7877{
f47709a9 7878 struct drm_device *dev = crtc->base.dev;
fac5e23e 7879 struct drm_i915_private *dev_priv = to_i915(dev);
cd2d34d9 7880 enum pipe pipe = crtc->pipe;
bdd4b6a6 7881 u32 mdiv;
a0c4da24 7882 u32 bestn, bestm1, bestm2, bestp1, bestp2;
bdd4b6a6 7883 u32 coreclk, reg_val;
a0c4da24 7884
cd2d34d9
VS
7885 /* Enable Refclk */
7886 I915_WRITE(DPLL(pipe),
7887 pipe_config->dpll_hw_state.dpll &
7888 ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
7889
7890 /* No need to actually set up the DPLL with DSI */
7891 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7892 return;
7893
a580516d 7894 mutex_lock(&dev_priv->sb_lock);
09153000 7895
d288f65f
VS
7896 bestn = pipe_config->dpll.n;
7897 bestm1 = pipe_config->dpll.m1;
7898 bestm2 = pipe_config->dpll.m2;
7899 bestp1 = pipe_config->dpll.p1;
7900 bestp2 = pipe_config->dpll.p2;
a0c4da24 7901
89b667f8
JB
7902 /* See eDP HDMI DPIO driver vbios notes doc */
7903
7904 /* PLL B needs special handling */
bdd4b6a6 7905 if (pipe == PIPE_B)
5e69f97f 7906 vlv_pllb_recal_opamp(dev_priv, pipe);
89b667f8
JB
7907
7908 /* Set up Tx target for periodic Rcomp update */
ab3c759a 7909 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
89b667f8
JB
7910
7911 /* Disable target IRef on PLL */
ab3c759a 7912 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
89b667f8 7913 reg_val &= 0x00ffffff;
ab3c759a 7914 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
89b667f8
JB
7915
7916 /* Disable fast lock */
ab3c759a 7917 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
89b667f8
JB
7918
7919 /* Set idtafcrecal before PLL is enabled */
a0c4da24
JB
7920 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7921 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7922 mdiv |= ((bestn << DPIO_N_SHIFT));
a0c4da24 7923 mdiv |= (1 << DPIO_K_SHIFT);
7df5080b
JB
7924
7925 /*
7926 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7927 * but we don't support that).
7928 * Note: don't use the DAC post divider as it seems unstable.
7929 */
7930 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
ab3c759a 7931 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 7932
a0c4da24 7933 mdiv |= DPIO_ENABLE_CALIBRATION;
ab3c759a 7934 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 7935
89b667f8 7936 /* Set HBR and RBR LPF coefficients */
d288f65f 7937 if (pipe_config->port_clock == 162000 ||
2d84d2b3
VS
7938 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_ANALOG) ||
7939 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI))
ab3c759a 7940 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
885b0120 7941 0x009f0003);
89b667f8 7942 else
ab3c759a 7943 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
89b667f8
JB
7944 0x00d0000f);
7945
37a5650b 7946 if (intel_crtc_has_dp_encoder(pipe_config)) {
89b667f8 7947 /* Use SSC source */
bdd4b6a6 7948 if (pipe == PIPE_A)
ab3c759a 7949 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
7950 0x0df40000);
7951 else
ab3c759a 7952 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
7953 0x0df70000);
7954 } else { /* HDMI or VGA */
7955 /* Use bend source */
bdd4b6a6 7956 if (pipe == PIPE_A)
ab3c759a 7957 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
7958 0x0df70000);
7959 else
ab3c759a 7960 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
7961 0x0df40000);
7962 }
a0c4da24 7963
ab3c759a 7964 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
89b667f8 7965 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
2210ce7f 7966 if (intel_crtc_has_dp_encoder(crtc->config))
89b667f8 7967 coreclk |= 0x01000000;
ab3c759a 7968 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
a0c4da24 7969
ab3c759a 7970 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
a580516d 7971 mutex_unlock(&dev_priv->sb_lock);
a0c4da24
JB
7972}
7973
d288f65f 7974static void chv_prepare_pll(struct intel_crtc *crtc,
5cec258b 7975 const struct intel_crtc_state *pipe_config)
9d556c99
CML
7976{
7977 struct drm_device *dev = crtc->base.dev;
fac5e23e 7978 struct drm_i915_private *dev_priv = to_i915(dev);
cd2d34d9 7979 enum pipe pipe = crtc->pipe;
9d556c99 7980 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9cbe40c1 7981 u32 loopfilter, tribuf_calcntr;
9d556c99 7982 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
a945ce7e 7983 u32 dpio_val;
9cbe40c1 7984 int vco;
9d556c99 7985
cd2d34d9
VS
7986 /* Enable Refclk and SSC */
7987 I915_WRITE(DPLL(pipe),
7988 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7989
7990 /* No need to actually set up the DPLL with DSI */
7991 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7992 return;
7993
d288f65f
VS
7994 bestn = pipe_config->dpll.n;
7995 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7996 bestm1 = pipe_config->dpll.m1;
7997 bestm2 = pipe_config->dpll.m2 >> 22;
7998 bestp1 = pipe_config->dpll.p1;
7999 bestp2 = pipe_config->dpll.p2;
9cbe40c1 8000 vco = pipe_config->dpll.vco;
a945ce7e 8001 dpio_val = 0;
9cbe40c1 8002 loopfilter = 0;
9d556c99 8003
a580516d 8004 mutex_lock(&dev_priv->sb_lock);
9d556c99 8005
9d556c99
CML
8006 /* p1 and p2 divider */
8007 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
8008 5 << DPIO_CHV_S1_DIV_SHIFT |
8009 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
8010 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
8011 1 << DPIO_CHV_K_DIV_SHIFT);
8012
8013 /* Feedback post-divider - m2 */
8014 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
8015
8016 /* Feedback refclk divider - n and m1 */
8017 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
8018 DPIO_CHV_M1_DIV_BY_2 |
8019 1 << DPIO_CHV_N_DIV_SHIFT);
8020
8021 /* M2 fraction division */
25a25dfc 8022 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
9d556c99
CML
8023
8024 /* M2 fraction division enable */
a945ce7e
VP
8025 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8026 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
8027 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
8028 if (bestm2_frac)
8029 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
8030 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
9d556c99 8031
de3a0fde
VP
8032 /* Program digital lock detect threshold */
8033 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
8034 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
8035 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
8036 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
8037 if (!bestm2_frac)
8038 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
8039 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
8040
9d556c99 8041 /* Loop filter */
9cbe40c1
VP
8042 if (vco == 5400000) {
8043 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
8044 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
8045 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
8046 tribuf_calcntr = 0x9;
8047 } else if (vco <= 6200000) {
8048 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
8049 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
8050 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8051 tribuf_calcntr = 0x9;
8052 } else if (vco <= 6480000) {
8053 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
8054 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
8055 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8056 tribuf_calcntr = 0x8;
8057 } else {
8058 /* Not supported. Apply the same limits as in the max case */
8059 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
8060 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
8061 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8062 tribuf_calcntr = 0;
8063 }
9d556c99
CML
8064 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
8065
968040b2 8066 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
9cbe40c1
VP
8067 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
8068 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
8069 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
8070
9d556c99
CML
8071 /* AFC Recal */
8072 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
8073 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
8074 DPIO_AFC_RECAL);
8075
a580516d 8076 mutex_unlock(&dev_priv->sb_lock);
9d556c99
CML
8077}
8078
d288f65f
VS
8079/**
8080 * vlv_force_pll_on - forcibly enable just the PLL
8081 * @dev_priv: i915 private structure
8082 * @pipe: pipe PLL to enable
8083 * @dpll: PLL configuration
8084 *
8085 * Enable the PLL for @pipe using the supplied @dpll config. To be used
8086 * in cases where we need the PLL enabled even when @pipe is not going to
8087 * be enabled.
8088 */
3f36b937
TU
8089int vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
8090 const struct dpll *dpll)
d288f65f
VS
8091{
8092 struct intel_crtc *crtc =
8093 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
3f36b937
TU
8094 struct intel_crtc_state *pipe_config;
8095
8096 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
8097 if (!pipe_config)
8098 return -ENOMEM;
8099
8100 pipe_config->base.crtc = &crtc->base;
8101 pipe_config->pixel_multiplier = 1;
8102 pipe_config->dpll = *dpll;
d288f65f
VS
8103
8104 if (IS_CHERRYVIEW(dev)) {
3f36b937
TU
8105 chv_compute_dpll(crtc, pipe_config);
8106 chv_prepare_pll(crtc, pipe_config);
8107 chv_enable_pll(crtc, pipe_config);
d288f65f 8108 } else {
3f36b937
TU
8109 vlv_compute_dpll(crtc, pipe_config);
8110 vlv_prepare_pll(crtc, pipe_config);
8111 vlv_enable_pll(crtc, pipe_config);
d288f65f 8112 }
3f36b937
TU
8113
8114 kfree(pipe_config);
8115
8116 return 0;
d288f65f
VS
8117}
8118
8119/**
8120 * vlv_force_pll_off - forcibly disable just the PLL
8121 * @dev_priv: i915 private structure
8122 * @pipe: pipe PLL to disable
8123 *
8124 * Disable the PLL for @pipe. To be used in cases where we need
8125 * the PLL enabled even when @pipe is not going to be enabled.
8126 */
8127void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
8128{
8129 if (IS_CHERRYVIEW(dev))
8130 chv_disable_pll(to_i915(dev), pipe);
8131 else
8132 vlv_disable_pll(to_i915(dev), pipe);
8133}
8134
251ac862
DV
8135static void i9xx_compute_dpll(struct intel_crtc *crtc,
8136 struct intel_crtc_state *crtc_state,
9e2c8475 8137 struct dpll *reduced_clock)
eb1cbe48 8138{
f47709a9 8139 struct drm_device *dev = crtc->base.dev;
fac5e23e 8140 struct drm_i915_private *dev_priv = to_i915(dev);
eb1cbe48 8141 u32 dpll;
190f68c5 8142 struct dpll *clock = &crtc_state->dpll;
eb1cbe48 8143
190f68c5 8144 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
2a8f64ca 8145
eb1cbe48
DV
8146 dpll = DPLL_VGA_MODE_DIS;
8147
2d84d2b3 8148 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
eb1cbe48
DV
8149 dpll |= DPLLB_MODE_LVDS;
8150 else
8151 dpll |= DPLLB_MODE_DAC_SERIAL;
6cc5f341 8152
ef1b460d 8153 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
190f68c5 8154 dpll |= (crtc_state->pixel_multiplier - 1)
198a037f 8155 << SDVO_MULTIPLIER_SHIFT_HIRES;
eb1cbe48 8156 }
198a037f 8157
3d6e9ee0
VS
8158 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
8159 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
4a33e48d 8160 dpll |= DPLL_SDVO_HIGH_SPEED;
198a037f 8161
37a5650b 8162 if (intel_crtc_has_dp_encoder(crtc_state))
4a33e48d 8163 dpll |= DPLL_SDVO_HIGH_SPEED;
eb1cbe48
DV
8164
8165 /* compute bitmask from p1 value */
8166 if (IS_PINEVIEW(dev))
8167 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
8168 else {
8169 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8170 if (IS_G4X(dev) && reduced_clock)
8171 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8172 }
8173 switch (clock->p2) {
8174 case 5:
8175 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8176 break;
8177 case 7:
8178 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8179 break;
8180 case 10:
8181 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8182 break;
8183 case 14:
8184 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8185 break;
8186 }
8187 if (INTEL_INFO(dev)->gen >= 4)
8188 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
8189
190f68c5 8190 if (crtc_state->sdvo_tv_clock)
eb1cbe48 8191 dpll |= PLL_REF_INPUT_TVCLKINBC;
2d84d2b3 8192 else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
ceb41007 8193 intel_panel_use_ssc(dev_priv))
eb1cbe48
DV
8194 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8195 else
8196 dpll |= PLL_REF_INPUT_DREFCLK;
8197
8198 dpll |= DPLL_VCO_ENABLE;
190f68c5 8199 crtc_state->dpll_hw_state.dpll = dpll;
8bcc2795 8200
eb1cbe48 8201 if (INTEL_INFO(dev)->gen >= 4) {
190f68c5 8202 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
ef1b460d 8203 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
190f68c5 8204 crtc_state->dpll_hw_state.dpll_md = dpll_md;
eb1cbe48
DV
8205 }
8206}
8207
251ac862
DV
8208static void i8xx_compute_dpll(struct intel_crtc *crtc,
8209 struct intel_crtc_state *crtc_state,
9e2c8475 8210 struct dpll *reduced_clock)
eb1cbe48 8211{
f47709a9 8212 struct drm_device *dev = crtc->base.dev;
fac5e23e 8213 struct drm_i915_private *dev_priv = to_i915(dev);
eb1cbe48 8214 u32 dpll;
190f68c5 8215 struct dpll *clock = &crtc_state->dpll;
eb1cbe48 8216
190f68c5 8217 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
2a8f64ca 8218
eb1cbe48
DV
8219 dpll = DPLL_VGA_MODE_DIS;
8220
2d84d2b3 8221 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
eb1cbe48
DV
8222 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8223 } else {
8224 if (clock->p1 == 2)
8225 dpll |= PLL_P1_DIVIDE_BY_TWO;
8226 else
8227 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8228 if (clock->p2 == 4)
8229 dpll |= PLL_P2_DIVIDE_BY_4;
8230 }
8231
2d84d2b3 8232 if (!IS_I830(dev) && intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
4a33e48d
DV
8233 dpll |= DPLL_DVO_2X_MODE;
8234
2d84d2b3 8235 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
ceb41007 8236 intel_panel_use_ssc(dev_priv))
eb1cbe48
DV
8237 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8238 else
8239 dpll |= PLL_REF_INPUT_DREFCLK;
8240
8241 dpll |= DPLL_VCO_ENABLE;
190f68c5 8242 crtc_state->dpll_hw_state.dpll = dpll;
eb1cbe48
DV
8243}
8244
8a654f3b 8245static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
b0e77b9c
PZ
8246{
8247 struct drm_device *dev = intel_crtc->base.dev;
fac5e23e 8248 struct drm_i915_private *dev_priv = to_i915(dev);
b0e77b9c 8249 enum pipe pipe = intel_crtc->pipe;
6e3c9717 8250 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7c5f93b0 8251 const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
1caea6e9
VS
8252 uint32_t crtc_vtotal, crtc_vblank_end;
8253 int vsyncshift = 0;
4d8a62ea
DV
8254
8255 /* We need to be careful not to changed the adjusted mode, for otherwise
8256 * the hw state checker will get angry at the mismatch. */
8257 crtc_vtotal = adjusted_mode->crtc_vtotal;
8258 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
b0e77b9c 8259
609aeaca 8260 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
b0e77b9c 8261 /* the chip adds 2 halflines automatically */
4d8a62ea
DV
8262 crtc_vtotal -= 1;
8263 crtc_vblank_end -= 1;
609aeaca 8264
2d84d2b3 8265 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
609aeaca
VS
8266 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
8267 else
8268 vsyncshift = adjusted_mode->crtc_hsync_start -
8269 adjusted_mode->crtc_htotal / 2;
1caea6e9
VS
8270 if (vsyncshift < 0)
8271 vsyncshift += adjusted_mode->crtc_htotal;
b0e77b9c
PZ
8272 }
8273
8274 if (INTEL_INFO(dev)->gen > 3)
fe2b8f9d 8275 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
b0e77b9c 8276
fe2b8f9d 8277 I915_WRITE(HTOTAL(cpu_transcoder),
b0e77b9c
PZ
8278 (adjusted_mode->crtc_hdisplay - 1) |
8279 ((adjusted_mode->crtc_htotal - 1) << 16));
fe2b8f9d 8280 I915_WRITE(HBLANK(cpu_transcoder),
b0e77b9c
PZ
8281 (adjusted_mode->crtc_hblank_start - 1) |
8282 ((adjusted_mode->crtc_hblank_end - 1) << 16));
fe2b8f9d 8283 I915_WRITE(HSYNC(cpu_transcoder),
b0e77b9c
PZ
8284 (adjusted_mode->crtc_hsync_start - 1) |
8285 ((adjusted_mode->crtc_hsync_end - 1) << 16));
8286
fe2b8f9d 8287 I915_WRITE(VTOTAL(cpu_transcoder),
b0e77b9c 8288 (adjusted_mode->crtc_vdisplay - 1) |
4d8a62ea 8289 ((crtc_vtotal - 1) << 16));
fe2b8f9d 8290 I915_WRITE(VBLANK(cpu_transcoder),
b0e77b9c 8291 (adjusted_mode->crtc_vblank_start - 1) |
4d8a62ea 8292 ((crtc_vblank_end - 1) << 16));
fe2b8f9d 8293 I915_WRITE(VSYNC(cpu_transcoder),
b0e77b9c
PZ
8294 (adjusted_mode->crtc_vsync_start - 1) |
8295 ((adjusted_mode->crtc_vsync_end - 1) << 16));
8296
b5e508d4
PZ
8297 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
8298 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
8299 * documented on the DDI_FUNC_CTL register description, EDP Input Select
8300 * bits. */
8301 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
8302 (pipe == PIPE_B || pipe == PIPE_C))
8303 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
8304
bc58be60
JN
8305}
8306
8307static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc)
8308{
8309 struct drm_device *dev = intel_crtc->base.dev;
fac5e23e 8310 struct drm_i915_private *dev_priv = to_i915(dev);
bc58be60
JN
8311 enum pipe pipe = intel_crtc->pipe;
8312
b0e77b9c
PZ
8313 /* pipesrc controls the size that is scaled from, which should
8314 * always be the user's requested size.
8315 */
8316 I915_WRITE(PIPESRC(pipe),
6e3c9717
ACO
8317 ((intel_crtc->config->pipe_src_w - 1) << 16) |
8318 (intel_crtc->config->pipe_src_h - 1));
b0e77b9c
PZ
8319}
8320
1bd1bd80 8321static void intel_get_pipe_timings(struct intel_crtc *crtc,
5cec258b 8322 struct intel_crtc_state *pipe_config)
1bd1bd80
DV
8323{
8324 struct drm_device *dev = crtc->base.dev;
fac5e23e 8325 struct drm_i915_private *dev_priv = to_i915(dev);
1bd1bd80
DV
8326 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
8327 uint32_t tmp;
8328
8329 tmp = I915_READ(HTOTAL(cpu_transcoder));
2d112de7
ACO
8330 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
8331 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 8332 tmp = I915_READ(HBLANK(cpu_transcoder));
2d112de7
ACO
8333 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
8334 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 8335 tmp = I915_READ(HSYNC(cpu_transcoder));
2d112de7
ACO
8336 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
8337 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80
DV
8338
8339 tmp = I915_READ(VTOTAL(cpu_transcoder));
2d112de7
ACO
8340 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
8341 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 8342 tmp = I915_READ(VBLANK(cpu_transcoder));
2d112de7
ACO
8343 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
8344 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 8345 tmp = I915_READ(VSYNC(cpu_transcoder));
2d112de7
ACO
8346 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
8347 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80
DV
8348
8349 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
2d112de7
ACO
8350 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
8351 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
8352 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
1bd1bd80 8353 }
bc58be60
JN
8354}
8355
8356static void intel_get_pipe_src_size(struct intel_crtc *crtc,
8357 struct intel_crtc_state *pipe_config)
8358{
8359 struct drm_device *dev = crtc->base.dev;
fac5e23e 8360 struct drm_i915_private *dev_priv = to_i915(dev);
bc58be60 8361 u32 tmp;
1bd1bd80
DV
8362
8363 tmp = I915_READ(PIPESRC(crtc->pipe));
37327abd
VS
8364 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
8365 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
8366
2d112de7
ACO
8367 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
8368 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
1bd1bd80
DV
8369}
8370
f6a83288 8371void intel_mode_from_pipe_config(struct drm_display_mode *mode,
5cec258b 8372 struct intel_crtc_state *pipe_config)
babea61d 8373{
2d112de7
ACO
8374 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
8375 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
8376 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
8377 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
babea61d 8378
2d112de7
ACO
8379 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
8380 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
8381 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
8382 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
babea61d 8383
2d112de7 8384 mode->flags = pipe_config->base.adjusted_mode.flags;
cd13f5ab 8385 mode->type = DRM_MODE_TYPE_DRIVER;
babea61d 8386
2d112de7
ACO
8387 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
8388 mode->flags |= pipe_config->base.adjusted_mode.flags;
cd13f5ab
ML
8389
8390 mode->hsync = drm_mode_hsync(mode);
8391 mode->vrefresh = drm_mode_vrefresh(mode);
8392 drm_mode_set_name(mode);
babea61d
JB
8393}
8394
84b046f3
DV
8395static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
8396{
8397 struct drm_device *dev = intel_crtc->base.dev;
fac5e23e 8398 struct drm_i915_private *dev_priv = to_i915(dev);
84b046f3
DV
8399 uint32_t pipeconf;
8400
9f11a9e4 8401 pipeconf = 0;
84b046f3 8402
b6b5d049
VS
8403 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
8404 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
8405 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
67c72a12 8406
6e3c9717 8407 if (intel_crtc->config->double_wide)
cf532bb2 8408 pipeconf |= PIPECONF_DOUBLE_WIDE;
84b046f3 8409
ff9ce46e 8410 /* only g4x and later have fancy bpc/dither controls */
666a4537 8411 if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
ff9ce46e 8412 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6e3c9717 8413 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
ff9ce46e 8414 pipeconf |= PIPECONF_DITHER_EN |
84b046f3 8415 PIPECONF_DITHER_TYPE_SP;
84b046f3 8416
6e3c9717 8417 switch (intel_crtc->config->pipe_bpp) {
ff9ce46e
DV
8418 case 18:
8419 pipeconf |= PIPECONF_6BPC;
8420 break;
8421 case 24:
8422 pipeconf |= PIPECONF_8BPC;
8423 break;
8424 case 30:
8425 pipeconf |= PIPECONF_10BPC;
8426 break;
8427 default:
8428 /* Case prevented by intel_choose_pipe_bpp_dither. */
8429 BUG();
84b046f3
DV
8430 }
8431 }
8432
8433 if (HAS_PIPE_CXSR(dev)) {
8434 if (intel_crtc->lowfreq_avail) {
8435 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
8436 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
8437 } else {
8438 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
84b046f3
DV
8439 }
8440 }
8441
6e3c9717 8442 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
efc2cfff 8443 if (INTEL_INFO(dev)->gen < 4 ||
2d84d2b3 8444 intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
efc2cfff
VS
8445 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
8446 else
8447 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
8448 } else
84b046f3
DV
8449 pipeconf |= PIPECONF_PROGRESSIVE;
8450
666a4537
WB
8451 if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
8452 intel_crtc->config->limited_color_range)
9f11a9e4 8453 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
9c8e09b7 8454
84b046f3
DV
8455 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
8456 POSTING_READ(PIPECONF(intel_crtc->pipe));
8457}
8458
81c97f52
ACO
8459static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
8460 struct intel_crtc_state *crtc_state)
8461{
8462 struct drm_device *dev = crtc->base.dev;
fac5e23e 8463 struct drm_i915_private *dev_priv = to_i915(dev);
1b6f4958 8464 const struct intel_limit *limit;
81c97f52
ACO
8465 int refclk = 48000;
8466
8467 memset(&crtc_state->dpll_hw_state, 0,
8468 sizeof(crtc_state->dpll_hw_state));
8469
2d84d2b3 8470 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
81c97f52
ACO
8471 if (intel_panel_use_ssc(dev_priv)) {
8472 refclk = dev_priv->vbt.lvds_ssc_freq;
8473 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8474 }
8475
8476 limit = &intel_limits_i8xx_lvds;
2d84d2b3 8477 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
81c97f52
ACO
8478 limit = &intel_limits_i8xx_dvo;
8479 } else {
8480 limit = &intel_limits_i8xx_dac;
8481 }
8482
8483 if (!crtc_state->clock_set &&
8484 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8485 refclk, NULL, &crtc_state->dpll)) {
8486 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8487 return -EINVAL;
8488 }
8489
8490 i8xx_compute_dpll(crtc, crtc_state, NULL);
8491
8492 return 0;
8493}
8494
19ec6693
ACO
8495static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
8496 struct intel_crtc_state *crtc_state)
8497{
8498 struct drm_device *dev = crtc->base.dev;
fac5e23e 8499 struct drm_i915_private *dev_priv = to_i915(dev);
1b6f4958 8500 const struct intel_limit *limit;
19ec6693
ACO
8501 int refclk = 96000;
8502
8503 memset(&crtc_state->dpll_hw_state, 0,
8504 sizeof(crtc_state->dpll_hw_state));
8505
2d84d2b3 8506 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
19ec6693
ACO
8507 if (intel_panel_use_ssc(dev_priv)) {
8508 refclk = dev_priv->vbt.lvds_ssc_freq;
8509 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8510 }
8511
8512 if (intel_is_dual_link_lvds(dev))
8513 limit = &intel_limits_g4x_dual_channel_lvds;
8514 else
8515 limit = &intel_limits_g4x_single_channel_lvds;
2d84d2b3
VS
8516 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
8517 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
19ec6693 8518 limit = &intel_limits_g4x_hdmi;
2d84d2b3 8519 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
19ec6693
ACO
8520 limit = &intel_limits_g4x_sdvo;
8521 } else {
8522 /* The option is for other outputs */
8523 limit = &intel_limits_i9xx_sdvo;
8524 }
8525
8526 if (!crtc_state->clock_set &&
8527 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8528 refclk, NULL, &crtc_state->dpll)) {
8529 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8530 return -EINVAL;
8531 }
8532
8533 i9xx_compute_dpll(crtc, crtc_state, NULL);
8534
8535 return 0;
8536}
8537
70e8aa21
ACO
8538static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
8539 struct intel_crtc_state *crtc_state)
8540{
8541 struct drm_device *dev = crtc->base.dev;
fac5e23e 8542 struct drm_i915_private *dev_priv = to_i915(dev);
1b6f4958 8543 const struct intel_limit *limit;
70e8aa21
ACO
8544 int refclk = 96000;
8545
8546 memset(&crtc_state->dpll_hw_state, 0,
8547 sizeof(crtc_state->dpll_hw_state));
8548
2d84d2b3 8549 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
70e8aa21
ACO
8550 if (intel_panel_use_ssc(dev_priv)) {
8551 refclk = dev_priv->vbt.lvds_ssc_freq;
8552 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8553 }
8554
8555 limit = &intel_limits_pineview_lvds;
8556 } else {
8557 limit = &intel_limits_pineview_sdvo;
8558 }
8559
8560 if (!crtc_state->clock_set &&
8561 !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8562 refclk, NULL, &crtc_state->dpll)) {
8563 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8564 return -EINVAL;
8565 }
8566
8567 i9xx_compute_dpll(crtc, crtc_state, NULL);
8568
8569 return 0;
8570}
8571
190f68c5
ACO
8572static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
8573 struct intel_crtc_state *crtc_state)
79e53945 8574{
c7653199 8575 struct drm_device *dev = crtc->base.dev;
fac5e23e 8576 struct drm_i915_private *dev_priv = to_i915(dev);
1b6f4958 8577 const struct intel_limit *limit;
81c97f52 8578 int refclk = 96000;
79e53945 8579
dd3cd74a
ACO
8580 memset(&crtc_state->dpll_hw_state, 0,
8581 sizeof(crtc_state->dpll_hw_state));
8582
2d84d2b3 8583 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
70e8aa21
ACO
8584 if (intel_panel_use_ssc(dev_priv)) {
8585 refclk = dev_priv->vbt.lvds_ssc_freq;
8586 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8587 }
43565a06 8588
70e8aa21
ACO
8589 limit = &intel_limits_i9xx_lvds;
8590 } else {
8591 limit = &intel_limits_i9xx_sdvo;
81c97f52 8592 }
79e53945 8593
70e8aa21
ACO
8594 if (!crtc_state->clock_set &&
8595 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8596 refclk, NULL, &crtc_state->dpll)) {
8597 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8598 return -EINVAL;
f47709a9 8599 }
7026d4ac 8600
81c97f52 8601 i9xx_compute_dpll(crtc, crtc_state, NULL);
79e53945 8602
c8f7a0db 8603 return 0;
f564048e
EA
8604}
8605
65b3d6a9
ACO
8606static int chv_crtc_compute_clock(struct intel_crtc *crtc,
8607 struct intel_crtc_state *crtc_state)
8608{
8609 int refclk = 100000;
1b6f4958 8610 const struct intel_limit *limit = &intel_limits_chv;
65b3d6a9
ACO
8611
8612 memset(&crtc_state->dpll_hw_state, 0,
8613 sizeof(crtc_state->dpll_hw_state));
8614
65b3d6a9
ACO
8615 if (!crtc_state->clock_set &&
8616 !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8617 refclk, NULL, &crtc_state->dpll)) {
8618 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8619 return -EINVAL;
8620 }
8621
8622 chv_compute_dpll(crtc, crtc_state);
8623
8624 return 0;
8625}
8626
8627static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
8628 struct intel_crtc_state *crtc_state)
8629{
8630 int refclk = 100000;
1b6f4958 8631 const struct intel_limit *limit = &intel_limits_vlv;
65b3d6a9
ACO
8632
8633 memset(&crtc_state->dpll_hw_state, 0,
8634 sizeof(crtc_state->dpll_hw_state));
8635
65b3d6a9
ACO
8636 if (!crtc_state->clock_set &&
8637 !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8638 refclk, NULL, &crtc_state->dpll)) {
8639 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8640 return -EINVAL;
8641 }
8642
8643 vlv_compute_dpll(crtc, crtc_state);
8644
8645 return 0;
8646}
8647
2fa2fe9a 8648static void i9xx_get_pfit_config(struct intel_crtc *crtc,
5cec258b 8649 struct intel_crtc_state *pipe_config)
2fa2fe9a
DV
8650{
8651 struct drm_device *dev = crtc->base.dev;
fac5e23e 8652 struct drm_i915_private *dev_priv = to_i915(dev);
2fa2fe9a
DV
8653 uint32_t tmp;
8654
dc9e7dec
VS
8655 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
8656 return;
8657
2fa2fe9a 8658 tmp = I915_READ(PFIT_CONTROL);
06922821
DV
8659 if (!(tmp & PFIT_ENABLE))
8660 return;
2fa2fe9a 8661
06922821 8662 /* Check whether the pfit is attached to our pipe. */
2fa2fe9a
DV
8663 if (INTEL_INFO(dev)->gen < 4) {
8664 if (crtc->pipe != PIPE_B)
8665 return;
2fa2fe9a
DV
8666 } else {
8667 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
8668 return;
8669 }
8670
06922821 8671 pipe_config->gmch_pfit.control = tmp;
2fa2fe9a 8672 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
2fa2fe9a
DV
8673}
8674
acbec814 8675static void vlv_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 8676 struct intel_crtc_state *pipe_config)
acbec814
JB
8677{
8678 struct drm_device *dev = crtc->base.dev;
fac5e23e 8679 struct drm_i915_private *dev_priv = to_i915(dev);
acbec814 8680 int pipe = pipe_config->cpu_transcoder;
9e2c8475 8681 struct dpll clock;
acbec814 8682 u32 mdiv;
662c6ecb 8683 int refclk = 100000;
acbec814 8684
b521973b
VS
8685 /* In case of DSI, DPLL will not be used */
8686 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
f573de5a
SK
8687 return;
8688
a580516d 8689 mutex_lock(&dev_priv->sb_lock);
ab3c759a 8690 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
a580516d 8691 mutex_unlock(&dev_priv->sb_lock);
acbec814
JB
8692
8693 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
8694 clock.m2 = mdiv & DPIO_M2DIV_MASK;
8695 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8696 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8697 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8698
dccbea3b 8699 pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
acbec814
JB
8700}
8701
5724dbd1
DL
8702static void
8703i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8704 struct intel_initial_plane_config *plane_config)
1ad292b5
JB
8705{
8706 struct drm_device *dev = crtc->base.dev;
fac5e23e 8707 struct drm_i915_private *dev_priv = to_i915(dev);
1ad292b5
JB
8708 u32 val, base, offset;
8709 int pipe = crtc->pipe, plane = crtc->plane;
8710 int fourcc, pixel_format;
6761dd31 8711 unsigned int aligned_height;
b113d5ee 8712 struct drm_framebuffer *fb;
1b842c89 8713 struct intel_framebuffer *intel_fb;
1ad292b5 8714
42a7b088
DL
8715 val = I915_READ(DSPCNTR(plane));
8716 if (!(val & DISPLAY_PLANE_ENABLE))
8717 return;
8718
d9806c9f 8719 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 8720 if (!intel_fb) {
1ad292b5
JB
8721 DRM_DEBUG_KMS("failed to alloc fb\n");
8722 return;
8723 }
8724
1b842c89
DL
8725 fb = &intel_fb->base;
8726
18c5247e
DV
8727 if (INTEL_INFO(dev)->gen >= 4) {
8728 if (val & DISPPLANE_TILED) {
49af449b 8729 plane_config->tiling = I915_TILING_X;
18c5247e
DV
8730 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8731 }
8732 }
1ad292b5
JB
8733
8734 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
b35d63fa 8735 fourcc = i9xx_format_to_fourcc(pixel_format);
b113d5ee
DL
8736 fb->pixel_format = fourcc;
8737 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
1ad292b5
JB
8738
8739 if (INTEL_INFO(dev)->gen >= 4) {
49af449b 8740 if (plane_config->tiling)
1ad292b5
JB
8741 offset = I915_READ(DSPTILEOFF(plane));
8742 else
8743 offset = I915_READ(DSPLINOFF(plane));
8744 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8745 } else {
8746 base = I915_READ(DSPADDR(plane));
8747 }
8748 plane_config->base = base;
8749
8750 val = I915_READ(PIPESRC(pipe));
b113d5ee
DL
8751 fb->width = ((val >> 16) & 0xfff) + 1;
8752 fb->height = ((val >> 0) & 0xfff) + 1;
1ad292b5
JB
8753
8754 val = I915_READ(DSPSTRIDE(pipe));
b113d5ee 8755 fb->pitches[0] = val & 0xffffffc0;
1ad292b5 8756
b113d5ee 8757 aligned_height = intel_fb_align_height(dev, fb->height,
091df6cb
DV
8758 fb->pixel_format,
8759 fb->modifier[0]);
1ad292b5 8760
f37b5c2b 8761 plane_config->size = fb->pitches[0] * aligned_height;
1ad292b5 8762
2844a921
DL
8763 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8764 pipe_name(pipe), plane, fb->width, fb->height,
8765 fb->bits_per_pixel, base, fb->pitches[0],
8766 plane_config->size);
1ad292b5 8767
2d14030b 8768 plane_config->fb = intel_fb;
1ad292b5
JB
8769}
8770
70b23a98 8771static void chv_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 8772 struct intel_crtc_state *pipe_config)
70b23a98
VS
8773{
8774 struct drm_device *dev = crtc->base.dev;
fac5e23e 8775 struct drm_i915_private *dev_priv = to_i915(dev);
70b23a98
VS
8776 int pipe = pipe_config->cpu_transcoder;
8777 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9e2c8475 8778 struct dpll clock;
0d7b6b11 8779 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
70b23a98
VS
8780 int refclk = 100000;
8781
b521973b
VS
8782 /* In case of DSI, DPLL will not be used */
8783 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8784 return;
8785
a580516d 8786 mutex_lock(&dev_priv->sb_lock);
70b23a98
VS
8787 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8788 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8789 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8790 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
0d7b6b11 8791 pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
a580516d 8792 mutex_unlock(&dev_priv->sb_lock);
70b23a98
VS
8793
8794 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
0d7b6b11
ID
8795 clock.m2 = (pll_dw0 & 0xff) << 22;
8796 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8797 clock.m2 |= pll_dw2 & 0x3fffff;
70b23a98
VS
8798 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8799 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8800 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8801
dccbea3b 8802 pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
70b23a98
VS
8803}
8804
0e8ffe1b 8805static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
5cec258b 8806 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
8807{
8808 struct drm_device *dev = crtc->base.dev;
fac5e23e 8809 struct drm_i915_private *dev_priv = to_i915(dev);
1729050e 8810 enum intel_display_power_domain power_domain;
0e8ffe1b 8811 uint32_t tmp;
1729050e 8812 bool ret;
0e8ffe1b 8813
1729050e
ID
8814 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
8815 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
b5482bd0
ID
8816 return false;
8817
e143a21c 8818 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8106ddbd 8819 pipe_config->shared_dpll = NULL;
eccb140b 8820
1729050e
ID
8821 ret = false;
8822
0e8ffe1b
DV
8823 tmp = I915_READ(PIPECONF(crtc->pipe));
8824 if (!(tmp & PIPECONF_ENABLE))
1729050e 8825 goto out;
0e8ffe1b 8826
666a4537 8827 if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
42571aef
VS
8828 switch (tmp & PIPECONF_BPC_MASK) {
8829 case PIPECONF_6BPC:
8830 pipe_config->pipe_bpp = 18;
8831 break;
8832 case PIPECONF_8BPC:
8833 pipe_config->pipe_bpp = 24;
8834 break;
8835 case PIPECONF_10BPC:
8836 pipe_config->pipe_bpp = 30;
8837 break;
8838 default:
8839 break;
8840 }
8841 }
8842
666a4537
WB
8843 if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
8844 (tmp & PIPECONF_COLOR_RANGE_SELECT))
b5a9fa09
DV
8845 pipe_config->limited_color_range = true;
8846
282740f7
VS
8847 if (INTEL_INFO(dev)->gen < 4)
8848 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8849
1bd1bd80 8850 intel_get_pipe_timings(crtc, pipe_config);
bc58be60 8851 intel_get_pipe_src_size(crtc, pipe_config);
1bd1bd80 8852
2fa2fe9a
DV
8853 i9xx_get_pfit_config(crtc, pipe_config);
8854
6c49f241 8855 if (INTEL_INFO(dev)->gen >= 4) {
c231775c
VS
8856 /* No way to read it out on pipes B and C */
8857 if (IS_CHERRYVIEW(dev) && crtc->pipe != PIPE_A)
8858 tmp = dev_priv->chv_dpll_md[crtc->pipe];
8859 else
8860 tmp = I915_READ(DPLL_MD(crtc->pipe));
6c49f241
DV
8861 pipe_config->pixel_multiplier =
8862 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8863 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8bcc2795 8864 pipe_config->dpll_hw_state.dpll_md = tmp;
6c49f241
DV
8865 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8866 tmp = I915_READ(DPLL(crtc->pipe));
8867 pipe_config->pixel_multiplier =
8868 ((tmp & SDVO_MULTIPLIER_MASK)
8869 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8870 } else {
8871 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8872 * port and will be fixed up in the encoder->get_config
8873 * function. */
8874 pipe_config->pixel_multiplier = 1;
8875 }
8bcc2795 8876 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
666a4537 8877 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
1c4e0274
VS
8878 /*
8879 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8880 * on 830. Filter it out here so that we don't
8881 * report errors due to that.
8882 */
8883 if (IS_I830(dev))
8884 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8885
8bcc2795
DV
8886 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8887 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
165e901c
VS
8888 } else {
8889 /* Mask out read-only status bits. */
8890 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8891 DPLL_PORTC_READY_MASK |
8892 DPLL_PORTB_READY_MASK);
8bcc2795 8893 }
6c49f241 8894
70b23a98
VS
8895 if (IS_CHERRYVIEW(dev))
8896 chv_crtc_clock_get(crtc, pipe_config);
8897 else if (IS_VALLEYVIEW(dev))
acbec814
JB
8898 vlv_crtc_clock_get(crtc, pipe_config);
8899 else
8900 i9xx_crtc_clock_get(crtc, pipe_config);
18442d08 8901
0f64614d
VS
8902 /*
8903 * Normally the dotclock is filled in by the encoder .get_config()
8904 * but in case the pipe is enabled w/o any ports we need a sane
8905 * default.
8906 */
8907 pipe_config->base.adjusted_mode.crtc_clock =
8908 pipe_config->port_clock / pipe_config->pixel_multiplier;
8909
1729050e
ID
8910 ret = true;
8911
8912out:
8913 intel_display_power_put(dev_priv, power_domain);
8914
8915 return ret;
0e8ffe1b
DV
8916}
8917
dde86e2d 8918static void ironlake_init_pch_refclk(struct drm_device *dev)
13d83a67 8919{
fac5e23e 8920 struct drm_i915_private *dev_priv = to_i915(dev);
13d83a67 8921 struct intel_encoder *encoder;
1c1a24d2 8922 int i;
74cfd7ac 8923 u32 val, final;
13d83a67 8924 bool has_lvds = false;
199e5d79 8925 bool has_cpu_edp = false;
199e5d79 8926 bool has_panel = false;
99eb6a01
KP
8927 bool has_ck505 = false;
8928 bool can_ssc = false;
1c1a24d2 8929 bool using_ssc_source = false;
13d83a67
JB
8930
8931 /* We need to take the global config into account */
b2784e15 8932 for_each_intel_encoder(dev, encoder) {
199e5d79
KP
8933 switch (encoder->type) {
8934 case INTEL_OUTPUT_LVDS:
8935 has_panel = true;
8936 has_lvds = true;
8937 break;
8938 case INTEL_OUTPUT_EDP:
8939 has_panel = true;
2de6905f 8940 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
199e5d79
KP
8941 has_cpu_edp = true;
8942 break;
6847d71b
PZ
8943 default:
8944 break;
13d83a67
JB
8945 }
8946 }
8947
99eb6a01 8948 if (HAS_PCH_IBX(dev)) {
41aa3448 8949 has_ck505 = dev_priv->vbt.display_clock_mode;
99eb6a01
KP
8950 can_ssc = has_ck505;
8951 } else {
8952 has_ck505 = false;
8953 can_ssc = true;
8954 }
8955
1c1a24d2
L
8956 /* Check if any DPLLs are using the SSC source */
8957 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
8958 u32 temp = I915_READ(PCH_DPLL(i));
8959
8960 if (!(temp & DPLL_VCO_ENABLE))
8961 continue;
8962
8963 if ((temp & PLL_REF_INPUT_MASK) ==
8964 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
8965 using_ssc_source = true;
8966 break;
8967 }
8968 }
8969
8970 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n",
8971 has_panel, has_lvds, has_ck505, using_ssc_source);
13d83a67
JB
8972
8973 /* Ironlake: try to setup display ref clock before DPLL
8974 * enabling. This is only under driver's control after
8975 * PCH B stepping, previous chipset stepping should be
8976 * ignoring this setting.
8977 */
74cfd7ac
CW
8978 val = I915_READ(PCH_DREF_CONTROL);
8979
8980 /* As we must carefully and slowly disable/enable each source in turn,
8981 * compute the final state we want first and check if we need to
8982 * make any changes at all.
8983 */
8984 final = val;
8985 final &= ~DREF_NONSPREAD_SOURCE_MASK;
8986 if (has_ck505)
8987 final |= DREF_NONSPREAD_CK505_ENABLE;
8988 else
8989 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8990
8c07eb68 8991 final &= ~DREF_SSC_SOURCE_MASK;
74cfd7ac 8992 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8c07eb68 8993 final &= ~DREF_SSC1_ENABLE;
74cfd7ac
CW
8994
8995 if (has_panel) {
8996 final |= DREF_SSC_SOURCE_ENABLE;
8997
8998 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8999 final |= DREF_SSC1_ENABLE;
9000
9001 if (has_cpu_edp) {
9002 if (intel_panel_use_ssc(dev_priv) && can_ssc)
9003 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
9004 else
9005 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
9006 } else
9007 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
1c1a24d2
L
9008 } else if (using_ssc_source) {
9009 final |= DREF_SSC_SOURCE_ENABLE;
9010 final |= DREF_SSC1_ENABLE;
74cfd7ac
CW
9011 }
9012
9013 if (final == val)
9014 return;
9015
13d83a67 9016 /* Always enable nonspread source */
74cfd7ac 9017 val &= ~DREF_NONSPREAD_SOURCE_MASK;
13d83a67 9018
99eb6a01 9019 if (has_ck505)
74cfd7ac 9020 val |= DREF_NONSPREAD_CK505_ENABLE;
99eb6a01 9021 else
74cfd7ac 9022 val |= DREF_NONSPREAD_SOURCE_ENABLE;
13d83a67 9023
199e5d79 9024 if (has_panel) {
74cfd7ac
CW
9025 val &= ~DREF_SSC_SOURCE_MASK;
9026 val |= DREF_SSC_SOURCE_ENABLE;
13d83a67 9027
199e5d79 9028 /* SSC must be turned on before enabling the CPU output */
99eb6a01 9029 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 9030 DRM_DEBUG_KMS("Using SSC on panel\n");
74cfd7ac 9031 val |= DREF_SSC1_ENABLE;
e77166b5 9032 } else
74cfd7ac 9033 val &= ~DREF_SSC1_ENABLE;
199e5d79
KP
9034
9035 /* Get SSC going before enabling the outputs */
74cfd7ac 9036 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
9037 POSTING_READ(PCH_DREF_CONTROL);
9038 udelay(200);
9039
74cfd7ac 9040 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
13d83a67
JB
9041
9042 /* Enable CPU source on CPU attached eDP */
199e5d79 9043 if (has_cpu_edp) {
99eb6a01 9044 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 9045 DRM_DEBUG_KMS("Using SSC on eDP\n");
74cfd7ac 9046 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
eba905b2 9047 } else
74cfd7ac 9048 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
199e5d79 9049 } else
74cfd7ac 9050 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 9051
74cfd7ac 9052 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
9053 POSTING_READ(PCH_DREF_CONTROL);
9054 udelay(200);
9055 } else {
1c1a24d2 9056 DRM_DEBUG_KMS("Disabling CPU source output\n");
199e5d79 9057
74cfd7ac 9058 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
199e5d79
KP
9059
9060 /* Turn off CPU output */
74cfd7ac 9061 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 9062
74cfd7ac 9063 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
9064 POSTING_READ(PCH_DREF_CONTROL);
9065 udelay(200);
9066
1c1a24d2
L
9067 if (!using_ssc_source) {
9068 DRM_DEBUG_KMS("Disabling SSC source\n");
199e5d79 9069
1c1a24d2
L
9070 /* Turn off the SSC source */
9071 val &= ~DREF_SSC_SOURCE_MASK;
9072 val |= DREF_SSC_SOURCE_DISABLE;
f165d283 9073
1c1a24d2
L
9074 /* Turn off SSC1 */
9075 val &= ~DREF_SSC1_ENABLE;
9076
9077 I915_WRITE(PCH_DREF_CONTROL, val);
9078 POSTING_READ(PCH_DREF_CONTROL);
9079 udelay(200);
9080 }
13d83a67 9081 }
74cfd7ac
CW
9082
9083 BUG_ON(val != final);
13d83a67
JB
9084}
9085
f31f2d55 9086static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
dde86e2d 9087{
f31f2d55 9088 uint32_t tmp;
dde86e2d 9089
0ff066a9
PZ
9090 tmp = I915_READ(SOUTH_CHICKEN2);
9091 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
9092 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 9093
cf3598c2
ID
9094 if (wait_for_us(I915_READ(SOUTH_CHICKEN2) &
9095 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
0ff066a9 9096 DRM_ERROR("FDI mPHY reset assert timeout\n");
dde86e2d 9097
0ff066a9
PZ
9098 tmp = I915_READ(SOUTH_CHICKEN2);
9099 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
9100 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 9101
cf3598c2
ID
9102 if (wait_for_us((I915_READ(SOUTH_CHICKEN2) &
9103 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
0ff066a9 9104 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
f31f2d55
PZ
9105}
9106
9107/* WaMPhyProgramming:hsw */
9108static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
9109{
9110 uint32_t tmp;
dde86e2d
PZ
9111
9112 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
9113 tmp &= ~(0xFF << 24);
9114 tmp |= (0x12 << 24);
9115 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
9116
dde86e2d
PZ
9117 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
9118 tmp |= (1 << 11);
9119 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
9120
9121 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
9122 tmp |= (1 << 11);
9123 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
9124
dde86e2d
PZ
9125 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
9126 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
9127 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
9128
9129 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
9130 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
9131 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
9132
0ff066a9
PZ
9133 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
9134 tmp &= ~(7 << 13);
9135 tmp |= (5 << 13);
9136 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
dde86e2d 9137
0ff066a9
PZ
9138 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
9139 tmp &= ~(7 << 13);
9140 tmp |= (5 << 13);
9141 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
dde86e2d
PZ
9142
9143 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
9144 tmp &= ~0xFF;
9145 tmp |= 0x1C;
9146 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
9147
9148 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
9149 tmp &= ~0xFF;
9150 tmp |= 0x1C;
9151 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
9152
9153 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
9154 tmp &= ~(0xFF << 16);
9155 tmp |= (0x1C << 16);
9156 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
9157
9158 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
9159 tmp &= ~(0xFF << 16);
9160 tmp |= (0x1C << 16);
9161 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
9162
0ff066a9
PZ
9163 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
9164 tmp |= (1 << 27);
9165 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
dde86e2d 9166
0ff066a9
PZ
9167 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
9168 tmp |= (1 << 27);
9169 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
dde86e2d 9170
0ff066a9
PZ
9171 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
9172 tmp &= ~(0xF << 28);
9173 tmp |= (4 << 28);
9174 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
dde86e2d 9175
0ff066a9
PZ
9176 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
9177 tmp &= ~(0xF << 28);
9178 tmp |= (4 << 28);
9179 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
f31f2d55
PZ
9180}
9181
2fa86a1f
PZ
9182/* Implements 3 different sequences from BSpec chapter "Display iCLK
9183 * Programming" based on the parameters passed:
9184 * - Sequence to enable CLKOUT_DP
9185 * - Sequence to enable CLKOUT_DP without spread
9186 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
9187 */
9188static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
9189 bool with_fdi)
f31f2d55 9190{
fac5e23e 9191 struct drm_i915_private *dev_priv = to_i915(dev);
2fa86a1f
PZ
9192 uint32_t reg, tmp;
9193
9194 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
9195 with_spread = true;
c2699524 9196 if (WARN(HAS_PCH_LPT_LP(dev) && with_fdi, "LP PCH doesn't have FDI\n"))
2fa86a1f 9197 with_fdi = false;
f31f2d55 9198
a580516d 9199 mutex_lock(&dev_priv->sb_lock);
f31f2d55
PZ
9200
9201 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9202 tmp &= ~SBI_SSCCTL_DISABLE;
9203 tmp |= SBI_SSCCTL_PATHALT;
9204 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9205
9206 udelay(24);
9207
2fa86a1f
PZ
9208 if (with_spread) {
9209 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9210 tmp &= ~SBI_SSCCTL_PATHALT;
9211 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
f31f2d55 9212
2fa86a1f
PZ
9213 if (with_fdi) {
9214 lpt_reset_fdi_mphy(dev_priv);
9215 lpt_program_fdi_mphy(dev_priv);
9216 }
9217 }
dde86e2d 9218
c2699524 9219 reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
2fa86a1f
PZ
9220 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
9221 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
9222 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
c00db246 9223
a580516d 9224 mutex_unlock(&dev_priv->sb_lock);
dde86e2d
PZ
9225}
9226
47701c3b
PZ
9227/* Sequence to disable CLKOUT_DP */
9228static void lpt_disable_clkout_dp(struct drm_device *dev)
9229{
fac5e23e 9230 struct drm_i915_private *dev_priv = to_i915(dev);
47701c3b
PZ
9231 uint32_t reg, tmp;
9232
a580516d 9233 mutex_lock(&dev_priv->sb_lock);
47701c3b 9234
c2699524 9235 reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
47701c3b
PZ
9236 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
9237 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
9238 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
9239
9240 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9241 if (!(tmp & SBI_SSCCTL_DISABLE)) {
9242 if (!(tmp & SBI_SSCCTL_PATHALT)) {
9243 tmp |= SBI_SSCCTL_PATHALT;
9244 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9245 udelay(32);
9246 }
9247 tmp |= SBI_SSCCTL_DISABLE;
9248 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9249 }
9250
a580516d 9251 mutex_unlock(&dev_priv->sb_lock);
47701c3b
PZ
9252}
9253
f7be2c21
VS
9254#define BEND_IDX(steps) ((50 + (steps)) / 5)
9255
9256static const uint16_t sscdivintphase[] = {
9257 [BEND_IDX( 50)] = 0x3B23,
9258 [BEND_IDX( 45)] = 0x3B23,
9259 [BEND_IDX( 40)] = 0x3C23,
9260 [BEND_IDX( 35)] = 0x3C23,
9261 [BEND_IDX( 30)] = 0x3D23,
9262 [BEND_IDX( 25)] = 0x3D23,
9263 [BEND_IDX( 20)] = 0x3E23,
9264 [BEND_IDX( 15)] = 0x3E23,
9265 [BEND_IDX( 10)] = 0x3F23,
9266 [BEND_IDX( 5)] = 0x3F23,
9267 [BEND_IDX( 0)] = 0x0025,
9268 [BEND_IDX( -5)] = 0x0025,
9269 [BEND_IDX(-10)] = 0x0125,
9270 [BEND_IDX(-15)] = 0x0125,
9271 [BEND_IDX(-20)] = 0x0225,
9272 [BEND_IDX(-25)] = 0x0225,
9273 [BEND_IDX(-30)] = 0x0325,
9274 [BEND_IDX(-35)] = 0x0325,
9275 [BEND_IDX(-40)] = 0x0425,
9276 [BEND_IDX(-45)] = 0x0425,
9277 [BEND_IDX(-50)] = 0x0525,
9278};
9279
9280/*
9281 * Bend CLKOUT_DP
9282 * steps -50 to 50 inclusive, in steps of 5
9283 * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
9284 * change in clock period = -(steps / 10) * 5.787 ps
9285 */
9286static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
9287{
9288 uint32_t tmp;
9289 int idx = BEND_IDX(steps);
9290
9291 if (WARN_ON(steps % 5 != 0))
9292 return;
9293
9294 if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
9295 return;
9296
9297 mutex_lock(&dev_priv->sb_lock);
9298
9299 if (steps % 10 != 0)
9300 tmp = 0xAAAAAAAB;
9301 else
9302 tmp = 0x00000000;
9303 intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
9304
9305 tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
9306 tmp &= 0xffff0000;
9307 tmp |= sscdivintphase[idx];
9308 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
9309
9310 mutex_unlock(&dev_priv->sb_lock);
9311}
9312
9313#undef BEND_IDX
9314
bf8fa3d3
PZ
9315static void lpt_init_pch_refclk(struct drm_device *dev)
9316{
bf8fa3d3
PZ
9317 struct intel_encoder *encoder;
9318 bool has_vga = false;
9319
b2784e15 9320 for_each_intel_encoder(dev, encoder) {
bf8fa3d3
PZ
9321 switch (encoder->type) {
9322 case INTEL_OUTPUT_ANALOG:
9323 has_vga = true;
9324 break;
6847d71b
PZ
9325 default:
9326 break;
bf8fa3d3
PZ
9327 }
9328 }
9329
f7be2c21
VS
9330 if (has_vga) {
9331 lpt_bend_clkout_dp(to_i915(dev), 0);
47701c3b 9332 lpt_enable_clkout_dp(dev, true, true);
f7be2c21 9333 } else {
47701c3b 9334 lpt_disable_clkout_dp(dev);
f7be2c21 9335 }
bf8fa3d3
PZ
9336}
9337
dde86e2d
PZ
9338/*
9339 * Initialize reference clocks when the driver loads
9340 */
9341void intel_init_pch_refclk(struct drm_device *dev)
9342{
9343 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
9344 ironlake_init_pch_refclk(dev);
9345 else if (HAS_PCH_LPT(dev))
9346 lpt_init_pch_refclk(dev);
9347}
9348
6ff93609 9349static void ironlake_set_pipeconf(struct drm_crtc *crtc)
79e53945 9350{
fac5e23e 9351 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
79e53945
JB
9352 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9353 int pipe = intel_crtc->pipe;
c8203565
PZ
9354 uint32_t val;
9355
78114071 9356 val = 0;
c8203565 9357
6e3c9717 9358 switch (intel_crtc->config->pipe_bpp) {
c8203565 9359 case 18:
dfd07d72 9360 val |= PIPECONF_6BPC;
c8203565
PZ
9361 break;
9362 case 24:
dfd07d72 9363 val |= PIPECONF_8BPC;
c8203565
PZ
9364 break;
9365 case 30:
dfd07d72 9366 val |= PIPECONF_10BPC;
c8203565
PZ
9367 break;
9368 case 36:
dfd07d72 9369 val |= PIPECONF_12BPC;
c8203565
PZ
9370 break;
9371 default:
cc769b62
PZ
9372 /* Case prevented by intel_choose_pipe_bpp_dither. */
9373 BUG();
c8203565
PZ
9374 }
9375
6e3c9717 9376 if (intel_crtc->config->dither)
c8203565
PZ
9377 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
9378
6e3c9717 9379 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
c8203565
PZ
9380 val |= PIPECONF_INTERLACED_ILK;
9381 else
9382 val |= PIPECONF_PROGRESSIVE;
9383
6e3c9717 9384 if (intel_crtc->config->limited_color_range)
3685a8f3 9385 val |= PIPECONF_COLOR_RANGE_SELECT;
3685a8f3 9386
c8203565
PZ
9387 I915_WRITE(PIPECONF(pipe), val);
9388 POSTING_READ(PIPECONF(pipe));
9389}
9390
6ff93609 9391static void haswell_set_pipeconf(struct drm_crtc *crtc)
ee2b0b38 9392{
fac5e23e 9393 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
ee2b0b38 9394 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6e3c9717 9395 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
391bf048 9396 u32 val = 0;
ee2b0b38 9397
391bf048 9398 if (IS_HASWELL(dev_priv) && intel_crtc->config->dither)
ee2b0b38
PZ
9399 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
9400
6e3c9717 9401 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
ee2b0b38
PZ
9402 val |= PIPECONF_INTERLACED_ILK;
9403 else
9404 val |= PIPECONF_PROGRESSIVE;
9405
702e7a56
PZ
9406 I915_WRITE(PIPECONF(cpu_transcoder), val);
9407 POSTING_READ(PIPECONF(cpu_transcoder));
391bf048
JN
9408}
9409
391bf048
JN
9410static void haswell_set_pipemisc(struct drm_crtc *crtc)
9411{
fac5e23e 9412 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
391bf048 9413 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
756f85cf 9414
391bf048
JN
9415 if (IS_BROADWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 9) {
9416 u32 val = 0;
756f85cf 9417
6e3c9717 9418 switch (intel_crtc->config->pipe_bpp) {
756f85cf
PZ
9419 case 18:
9420 val |= PIPEMISC_DITHER_6_BPC;
9421 break;
9422 case 24:
9423 val |= PIPEMISC_DITHER_8_BPC;
9424 break;
9425 case 30:
9426 val |= PIPEMISC_DITHER_10_BPC;
9427 break;
9428 case 36:
9429 val |= PIPEMISC_DITHER_12_BPC;
9430 break;
9431 default:
9432 /* Case prevented by pipe_config_set_bpp. */
9433 BUG();
9434 }
9435
6e3c9717 9436 if (intel_crtc->config->dither)
756f85cf
PZ
9437 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
9438
391bf048 9439 I915_WRITE(PIPEMISC(intel_crtc->pipe), val);
756f85cf 9440 }
ee2b0b38
PZ
9441}
9442
d4b1931c
PZ
9443int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
9444{
9445 /*
9446 * Account for spread spectrum to avoid
9447 * oversubscribing the link. Max center spread
9448 * is 2.5%; use 5% for safety's sake.
9449 */
9450 u32 bps = target_clock * bpp * 21 / 20;
619d4d04 9451 return DIV_ROUND_UP(bps, link_bw * 8);
d4b1931c
PZ
9452}
9453
7429e9d4 9454static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6cf86a5e 9455{
7429e9d4 9456 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
f48d8f23
PZ
9457}
9458
b75ca6f6
ACO
9459static void ironlake_compute_dpll(struct intel_crtc *intel_crtc,
9460 struct intel_crtc_state *crtc_state,
9e2c8475 9461 struct dpll *reduced_clock)
79e53945 9462{
de13a2e3 9463 struct drm_crtc *crtc = &intel_crtc->base;
79e53945 9464 struct drm_device *dev = crtc->dev;
fac5e23e 9465 struct drm_i915_private *dev_priv = to_i915(dev);
b75ca6f6 9466 u32 dpll, fp, fp2;
3d6e9ee0 9467 int factor;
79e53945 9468
c1858123 9469 /* Enable autotuning of the PLL clock (if permissible) */
8febb297 9470 factor = 21;
3d6e9ee0 9471 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8febb297 9472 if ((intel_panel_use_ssc(dev_priv) &&
e91e941b 9473 dev_priv->vbt.lvds_ssc_freq == 100000) ||
f0b44056 9474 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8febb297 9475 factor = 25;
190f68c5 9476 } else if (crtc_state->sdvo_tv_clock)
8febb297 9477 factor = 20;
c1858123 9478
b75ca6f6
ACO
9479 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
9480
190f68c5 9481 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
b75ca6f6
ACO
9482 fp |= FP_CB_TUNE;
9483
9484 if (reduced_clock) {
9485 fp2 = i9xx_dpll_compute_fp(reduced_clock);
2c07245f 9486
b75ca6f6
ACO
9487 if (reduced_clock->m < factor * reduced_clock->n)
9488 fp2 |= FP_CB_TUNE;
9489 } else {
9490 fp2 = fp;
9491 }
9a7c7890 9492
5eddb70b 9493 dpll = 0;
2c07245f 9494
3d6e9ee0 9495 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
a07d6787
EA
9496 dpll |= DPLLB_MODE_LVDS;
9497 else
9498 dpll |= DPLLB_MODE_DAC_SERIAL;
198a037f 9499
190f68c5 9500 dpll |= (crtc_state->pixel_multiplier - 1)
ef1b460d 9501 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
198a037f 9502
3d6e9ee0
VS
9503 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
9504 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
4a33e48d 9505 dpll |= DPLL_SDVO_HIGH_SPEED;
3d6e9ee0 9506
37a5650b 9507 if (intel_crtc_has_dp_encoder(crtc_state))
4a33e48d 9508 dpll |= DPLL_SDVO_HIGH_SPEED;
79e53945 9509
a07d6787 9510 /* compute bitmask from p1 value */
190f68c5 9511 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
a07d6787 9512 /* also FPA1 */
190f68c5 9513 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
a07d6787 9514
190f68c5 9515 switch (crtc_state->dpll.p2) {
a07d6787
EA
9516 case 5:
9517 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
9518 break;
9519 case 7:
9520 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
9521 break;
9522 case 10:
9523 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
9524 break;
9525 case 14:
9526 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
9527 break;
79e53945
JB
9528 }
9529
3d6e9ee0
VS
9530 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
9531 intel_panel_use_ssc(dev_priv))
43565a06 9532 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
9533 else
9534 dpll |= PLL_REF_INPUT_DREFCLK;
9535
b75ca6f6
ACO
9536 dpll |= DPLL_VCO_ENABLE;
9537
9538 crtc_state->dpll_hw_state.dpll = dpll;
9539 crtc_state->dpll_hw_state.fp0 = fp;
9540 crtc_state->dpll_hw_state.fp1 = fp2;
de13a2e3
PZ
9541}
9542
190f68c5
ACO
9543static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
9544 struct intel_crtc_state *crtc_state)
de13a2e3 9545{
997c030c 9546 struct drm_device *dev = crtc->base.dev;
fac5e23e 9547 struct drm_i915_private *dev_priv = to_i915(dev);
9e2c8475 9548 struct dpll reduced_clock;
7ed9f894 9549 bool has_reduced_clock = false;
e2b78267 9550 struct intel_shared_dpll *pll;
1b6f4958 9551 const struct intel_limit *limit;
997c030c 9552 int refclk = 120000;
de13a2e3 9553
dd3cd74a
ACO
9554 memset(&crtc_state->dpll_hw_state, 0,
9555 sizeof(crtc_state->dpll_hw_state));
9556
ded220e2
ACO
9557 crtc->lowfreq_avail = false;
9558
9559 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
9560 if (!crtc_state->has_pch_encoder)
9561 return 0;
79e53945 9562
2d84d2b3 9563 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
997c030c
ACO
9564 if (intel_panel_use_ssc(dev_priv)) {
9565 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
9566 dev_priv->vbt.lvds_ssc_freq);
9567 refclk = dev_priv->vbt.lvds_ssc_freq;
9568 }
9569
9570 if (intel_is_dual_link_lvds(dev)) {
9571 if (refclk == 100000)
9572 limit = &intel_limits_ironlake_dual_lvds_100m;
9573 else
9574 limit = &intel_limits_ironlake_dual_lvds;
9575 } else {
9576 if (refclk == 100000)
9577 limit = &intel_limits_ironlake_single_lvds_100m;
9578 else
9579 limit = &intel_limits_ironlake_single_lvds;
9580 }
9581 } else {
9582 limit = &intel_limits_ironlake_dac;
9583 }
9584
364ee29d 9585 if (!crtc_state->clock_set &&
997c030c
ACO
9586 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9587 refclk, NULL, &crtc_state->dpll)) {
364ee29d
ACO
9588 DRM_ERROR("Couldn't find PLL settings for mode!\n");
9589 return -EINVAL;
f47709a9 9590 }
79e53945 9591
b75ca6f6
ACO
9592 ironlake_compute_dpll(crtc, crtc_state,
9593 has_reduced_clock ? &reduced_clock : NULL);
66e985c0 9594
ded220e2
ACO
9595 pll = intel_get_shared_dpll(crtc, crtc_state, NULL);
9596 if (pll == NULL) {
9597 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
9598 pipe_name(crtc->pipe));
9599 return -EINVAL;
3fb37703 9600 }
79e53945 9601
2d84d2b3 9602 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
ded220e2 9603 has_reduced_clock)
c7653199 9604 crtc->lowfreq_avail = true;
e2b78267 9605
c8f7a0db 9606 return 0;
79e53945
JB
9607}
9608
eb14cb74
VS
9609static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
9610 struct intel_link_m_n *m_n)
9611{
9612 struct drm_device *dev = crtc->base.dev;
fac5e23e 9613 struct drm_i915_private *dev_priv = to_i915(dev);
eb14cb74
VS
9614 enum pipe pipe = crtc->pipe;
9615
9616 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
9617 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
9618 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
9619 & ~TU_SIZE_MASK;
9620 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
9621 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
9622 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9623}
9624
9625static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
9626 enum transcoder transcoder,
b95af8be
VK
9627 struct intel_link_m_n *m_n,
9628 struct intel_link_m_n *m2_n2)
72419203
DV
9629{
9630 struct drm_device *dev = crtc->base.dev;
fac5e23e 9631 struct drm_i915_private *dev_priv = to_i915(dev);
eb14cb74 9632 enum pipe pipe = crtc->pipe;
72419203 9633
eb14cb74
VS
9634 if (INTEL_INFO(dev)->gen >= 5) {
9635 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
9636 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
9637 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
9638 & ~TU_SIZE_MASK;
9639 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
9640 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
9641 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
b95af8be
VK
9642 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
9643 * gen < 8) and if DRRS is supported (to make sure the
9644 * registers are not unnecessarily read).
9645 */
9646 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
6e3c9717 9647 crtc->config->has_drrs) {
b95af8be
VK
9648 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
9649 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
9650 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
9651 & ~TU_SIZE_MASK;
9652 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
9653 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
9654 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9655 }
eb14cb74
VS
9656 } else {
9657 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
9658 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
9659 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
9660 & ~TU_SIZE_MASK;
9661 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
9662 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9663 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9664 }
9665}
9666
9667void intel_dp_get_m_n(struct intel_crtc *crtc,
5cec258b 9668 struct intel_crtc_state *pipe_config)
eb14cb74 9669{
681a8504 9670 if (pipe_config->has_pch_encoder)
eb14cb74
VS
9671 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9672 else
9673 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be
VK
9674 &pipe_config->dp_m_n,
9675 &pipe_config->dp_m2_n2);
eb14cb74 9676}
72419203 9677
eb14cb74 9678static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
5cec258b 9679 struct intel_crtc_state *pipe_config)
eb14cb74
VS
9680{
9681 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be 9682 &pipe_config->fdi_m_n, NULL);
72419203
DV
9683}
9684
bd2e244f 9685static void skylake_get_pfit_config(struct intel_crtc *crtc,
5cec258b 9686 struct intel_crtc_state *pipe_config)
bd2e244f
JB
9687{
9688 struct drm_device *dev = crtc->base.dev;
fac5e23e 9689 struct drm_i915_private *dev_priv = to_i915(dev);
a1b2278e
CK
9690 struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9691 uint32_t ps_ctrl = 0;
9692 int id = -1;
9693 int i;
bd2e244f 9694
a1b2278e
CK
9695 /* find scaler attached to this pipe */
9696 for (i = 0; i < crtc->num_scalers; i++) {
9697 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9698 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9699 id = i;
9700 pipe_config->pch_pfit.enabled = true;
9701 pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9702 pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9703 break;
9704 }
9705 }
bd2e244f 9706
a1b2278e
CK
9707 scaler_state->scaler_id = id;
9708 if (id >= 0) {
9709 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9710 } else {
9711 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
bd2e244f
JB
9712 }
9713}
9714
5724dbd1
DL
9715static void
9716skylake_get_initial_plane_config(struct intel_crtc *crtc,
9717 struct intel_initial_plane_config *plane_config)
bc8d7dff
DL
9718{
9719 struct drm_device *dev = crtc->base.dev;
fac5e23e 9720 struct drm_i915_private *dev_priv = to_i915(dev);
40f46283 9721 u32 val, base, offset, stride_mult, tiling;
bc8d7dff
DL
9722 int pipe = crtc->pipe;
9723 int fourcc, pixel_format;
6761dd31 9724 unsigned int aligned_height;
bc8d7dff 9725 struct drm_framebuffer *fb;
1b842c89 9726 struct intel_framebuffer *intel_fb;
bc8d7dff 9727
d9806c9f 9728 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 9729 if (!intel_fb) {
bc8d7dff
DL
9730 DRM_DEBUG_KMS("failed to alloc fb\n");
9731 return;
9732 }
9733
1b842c89
DL
9734 fb = &intel_fb->base;
9735
bc8d7dff 9736 val = I915_READ(PLANE_CTL(pipe, 0));
42a7b088
DL
9737 if (!(val & PLANE_CTL_ENABLE))
9738 goto error;
9739
bc8d7dff
DL
9740 pixel_format = val & PLANE_CTL_FORMAT_MASK;
9741 fourcc = skl_format_to_fourcc(pixel_format,
9742 val & PLANE_CTL_ORDER_RGBX,
9743 val & PLANE_CTL_ALPHA_MASK);
9744 fb->pixel_format = fourcc;
9745 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9746
40f46283
DL
9747 tiling = val & PLANE_CTL_TILED_MASK;
9748 switch (tiling) {
9749 case PLANE_CTL_TILED_LINEAR:
9750 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9751 break;
9752 case PLANE_CTL_TILED_X:
9753 plane_config->tiling = I915_TILING_X;
9754 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9755 break;
9756 case PLANE_CTL_TILED_Y:
9757 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9758 break;
9759 case PLANE_CTL_TILED_YF:
9760 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9761 break;
9762 default:
9763 MISSING_CASE(tiling);
9764 goto error;
9765 }
9766
bc8d7dff
DL
9767 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9768 plane_config->base = base;
9769
9770 offset = I915_READ(PLANE_OFFSET(pipe, 0));
9771
9772 val = I915_READ(PLANE_SIZE(pipe, 0));
9773 fb->height = ((val >> 16) & 0xfff) + 1;
9774 fb->width = ((val >> 0) & 0x1fff) + 1;
9775
9776 val = I915_READ(PLANE_STRIDE(pipe, 0));
7b49f948 9777 stride_mult = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
40f46283 9778 fb->pixel_format);
bc8d7dff
DL
9779 fb->pitches[0] = (val & 0x3ff) * stride_mult;
9780
9781 aligned_height = intel_fb_align_height(dev, fb->height,
091df6cb
DV
9782 fb->pixel_format,
9783 fb->modifier[0]);
bc8d7dff 9784
f37b5c2b 9785 plane_config->size = fb->pitches[0] * aligned_height;
bc8d7dff
DL
9786
9787 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9788 pipe_name(pipe), fb->width, fb->height,
9789 fb->bits_per_pixel, base, fb->pitches[0],
9790 plane_config->size);
9791
2d14030b 9792 plane_config->fb = intel_fb;
bc8d7dff
DL
9793 return;
9794
9795error:
d1a3a036 9796 kfree(intel_fb);
bc8d7dff
DL
9797}
9798
2fa2fe9a 9799static void ironlake_get_pfit_config(struct intel_crtc *crtc,
5cec258b 9800 struct intel_crtc_state *pipe_config)
2fa2fe9a
DV
9801{
9802 struct drm_device *dev = crtc->base.dev;
fac5e23e 9803 struct drm_i915_private *dev_priv = to_i915(dev);
2fa2fe9a
DV
9804 uint32_t tmp;
9805
9806 tmp = I915_READ(PF_CTL(crtc->pipe));
9807
9808 if (tmp & PF_ENABLE) {
fd4daa9c 9809 pipe_config->pch_pfit.enabled = true;
2fa2fe9a
DV
9810 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9811 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
cb8b2a30
DV
9812
9813 /* We currently do not free assignements of panel fitters on
9814 * ivb/hsw (since we don't use the higher upscaling modes which
9815 * differentiates them) so just WARN about this case for now. */
9816 if (IS_GEN7(dev)) {
9817 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9818 PF_PIPE_SEL_IVB(crtc->pipe));
9819 }
2fa2fe9a 9820 }
79e53945
JB
9821}
9822
5724dbd1
DL
9823static void
9824ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9825 struct intel_initial_plane_config *plane_config)
4c6baa59
JB
9826{
9827 struct drm_device *dev = crtc->base.dev;
fac5e23e 9828 struct drm_i915_private *dev_priv = to_i915(dev);
4c6baa59 9829 u32 val, base, offset;
aeee5a49 9830 int pipe = crtc->pipe;
4c6baa59 9831 int fourcc, pixel_format;
6761dd31 9832 unsigned int aligned_height;
b113d5ee 9833 struct drm_framebuffer *fb;
1b842c89 9834 struct intel_framebuffer *intel_fb;
4c6baa59 9835
42a7b088
DL
9836 val = I915_READ(DSPCNTR(pipe));
9837 if (!(val & DISPLAY_PLANE_ENABLE))
9838 return;
9839
d9806c9f 9840 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 9841 if (!intel_fb) {
4c6baa59
JB
9842 DRM_DEBUG_KMS("failed to alloc fb\n");
9843 return;
9844 }
9845
1b842c89
DL
9846 fb = &intel_fb->base;
9847
18c5247e
DV
9848 if (INTEL_INFO(dev)->gen >= 4) {
9849 if (val & DISPPLANE_TILED) {
49af449b 9850 plane_config->tiling = I915_TILING_X;
18c5247e
DV
9851 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9852 }
9853 }
4c6baa59
JB
9854
9855 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
b35d63fa 9856 fourcc = i9xx_format_to_fourcc(pixel_format);
b113d5ee
DL
9857 fb->pixel_format = fourcc;
9858 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
4c6baa59 9859
aeee5a49 9860 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
4c6baa59 9861 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
aeee5a49 9862 offset = I915_READ(DSPOFFSET(pipe));
4c6baa59 9863 } else {
49af449b 9864 if (plane_config->tiling)
aeee5a49 9865 offset = I915_READ(DSPTILEOFF(pipe));
4c6baa59 9866 else
aeee5a49 9867 offset = I915_READ(DSPLINOFF(pipe));
4c6baa59
JB
9868 }
9869 plane_config->base = base;
9870
9871 val = I915_READ(PIPESRC(pipe));
b113d5ee
DL
9872 fb->width = ((val >> 16) & 0xfff) + 1;
9873 fb->height = ((val >> 0) & 0xfff) + 1;
4c6baa59
JB
9874
9875 val = I915_READ(DSPSTRIDE(pipe));
b113d5ee 9876 fb->pitches[0] = val & 0xffffffc0;
4c6baa59 9877
b113d5ee 9878 aligned_height = intel_fb_align_height(dev, fb->height,
091df6cb
DV
9879 fb->pixel_format,
9880 fb->modifier[0]);
4c6baa59 9881
f37b5c2b 9882 plane_config->size = fb->pitches[0] * aligned_height;
4c6baa59 9883
2844a921
DL
9884 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9885 pipe_name(pipe), fb->width, fb->height,
9886 fb->bits_per_pixel, base, fb->pitches[0],
9887 plane_config->size);
b113d5ee 9888
2d14030b 9889 plane_config->fb = intel_fb;
4c6baa59
JB
9890}
9891
0e8ffe1b 9892static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
5cec258b 9893 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
9894{
9895 struct drm_device *dev = crtc->base.dev;
fac5e23e 9896 struct drm_i915_private *dev_priv = to_i915(dev);
1729050e 9897 enum intel_display_power_domain power_domain;
0e8ffe1b 9898 uint32_t tmp;
1729050e 9899 bool ret;
0e8ffe1b 9900
1729050e
ID
9901 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9902 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
930e8c9e
PZ
9903 return false;
9904
e143a21c 9905 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8106ddbd 9906 pipe_config->shared_dpll = NULL;
eccb140b 9907
1729050e 9908 ret = false;
0e8ffe1b
DV
9909 tmp = I915_READ(PIPECONF(crtc->pipe));
9910 if (!(tmp & PIPECONF_ENABLE))
1729050e 9911 goto out;
0e8ffe1b 9912
42571aef
VS
9913 switch (tmp & PIPECONF_BPC_MASK) {
9914 case PIPECONF_6BPC:
9915 pipe_config->pipe_bpp = 18;
9916 break;
9917 case PIPECONF_8BPC:
9918 pipe_config->pipe_bpp = 24;
9919 break;
9920 case PIPECONF_10BPC:
9921 pipe_config->pipe_bpp = 30;
9922 break;
9923 case PIPECONF_12BPC:
9924 pipe_config->pipe_bpp = 36;
9925 break;
9926 default:
9927 break;
9928 }
9929
b5a9fa09
DV
9930 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9931 pipe_config->limited_color_range = true;
9932
ab9412ba 9933 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
66e985c0 9934 struct intel_shared_dpll *pll;
8106ddbd 9935 enum intel_dpll_id pll_id;
66e985c0 9936
88adfff1
DV
9937 pipe_config->has_pch_encoder = true;
9938
627eb5a3
DV
9939 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9940 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9941 FDI_DP_PORT_WIDTH_SHIFT) + 1;
72419203
DV
9942
9943 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6c49f241 9944
2d1fe073 9945 if (HAS_PCH_IBX(dev_priv)) {
d9a7bc67
ID
9946 /*
9947 * The pipe->pch transcoder and pch transcoder->pll
9948 * mapping is fixed.
9949 */
8106ddbd 9950 pll_id = (enum intel_dpll_id) crtc->pipe;
c0d43d62
DV
9951 } else {
9952 tmp = I915_READ(PCH_DPLL_SEL);
9953 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
8106ddbd 9954 pll_id = DPLL_ID_PCH_PLL_B;
c0d43d62 9955 else
8106ddbd 9956 pll_id= DPLL_ID_PCH_PLL_A;
c0d43d62 9957 }
66e985c0 9958
8106ddbd
ACO
9959 pipe_config->shared_dpll =
9960 intel_get_shared_dpll_by_id(dev_priv, pll_id);
9961 pll = pipe_config->shared_dpll;
66e985c0 9962
2edd6443
ACO
9963 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
9964 &pipe_config->dpll_hw_state));
c93f54cf
DV
9965
9966 tmp = pipe_config->dpll_hw_state.dpll;
9967 pipe_config->pixel_multiplier =
9968 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9969 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
18442d08
VS
9970
9971 ironlake_pch_clock_get(crtc, pipe_config);
6c49f241
DV
9972 } else {
9973 pipe_config->pixel_multiplier = 1;
627eb5a3
DV
9974 }
9975
1bd1bd80 9976 intel_get_pipe_timings(crtc, pipe_config);
bc58be60 9977 intel_get_pipe_src_size(crtc, pipe_config);
1bd1bd80 9978
2fa2fe9a
DV
9979 ironlake_get_pfit_config(crtc, pipe_config);
9980
1729050e
ID
9981 ret = true;
9982
9983out:
9984 intel_display_power_put(dev_priv, power_domain);
9985
9986 return ret;
0e8ffe1b
DV
9987}
9988
be256dc7
PZ
9989static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9990{
91c8a326 9991 struct drm_device *dev = &dev_priv->drm;
be256dc7 9992 struct intel_crtc *crtc;
be256dc7 9993
d3fcc808 9994 for_each_intel_crtc(dev, crtc)
e2c719b7 9995 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
be256dc7
PZ
9996 pipe_name(crtc->pipe));
9997
e2c719b7
RC
9998 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9999 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
01403de3
VS
10000 I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
10001 I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
44cb734c 10002 I915_STATE_WARN(I915_READ(PP_STATUS(0)) & PP_ON, "Panel power on\n");
e2c719b7 10003 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
be256dc7 10004 "CPU PWM1 enabled\n");
c5107b87 10005 if (IS_HASWELL(dev))
e2c719b7 10006 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
c5107b87 10007 "CPU PWM2 enabled\n");
e2c719b7 10008 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
be256dc7 10009 "PCH PWM1 enabled\n");
e2c719b7 10010 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
be256dc7 10011 "Utility pin enabled\n");
e2c719b7 10012 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
be256dc7 10013
9926ada1
PZ
10014 /*
10015 * In theory we can still leave IRQs enabled, as long as only the HPD
10016 * interrupts remain enabled. We used to check for that, but since it's
10017 * gen-specific and since we only disable LCPLL after we fully disable
10018 * the interrupts, the check below should be enough.
10019 */
e2c719b7 10020 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
be256dc7
PZ
10021}
10022
9ccd5aeb
PZ
10023static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
10024{
91c8a326 10025 struct drm_device *dev = &dev_priv->drm;
9ccd5aeb
PZ
10026
10027 if (IS_HASWELL(dev))
10028 return I915_READ(D_COMP_HSW);
10029 else
10030 return I915_READ(D_COMP_BDW);
10031}
10032
3c4c9b81
PZ
10033static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
10034{
91c8a326 10035 struct drm_device *dev = &dev_priv->drm;
3c4c9b81
PZ
10036
10037 if (IS_HASWELL(dev)) {
10038 mutex_lock(&dev_priv->rps.hw_lock);
10039 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
10040 val))
79cf219a 10041 DRM_DEBUG_KMS("Failed to write to D_COMP\n");
3c4c9b81
PZ
10042 mutex_unlock(&dev_priv->rps.hw_lock);
10043 } else {
9ccd5aeb
PZ
10044 I915_WRITE(D_COMP_BDW, val);
10045 POSTING_READ(D_COMP_BDW);
3c4c9b81 10046 }
be256dc7
PZ
10047}
10048
10049/*
10050 * This function implements pieces of two sequences from BSpec:
10051 * - Sequence for display software to disable LCPLL
10052 * - Sequence for display software to allow package C8+
10053 * The steps implemented here are just the steps that actually touch the LCPLL
10054 * register. Callers should take care of disabling all the display engine
10055 * functions, doing the mode unset, fixing interrupts, etc.
10056 */
6ff58d53
PZ
10057static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
10058 bool switch_to_fclk, bool allow_power_down)
be256dc7
PZ
10059{
10060 uint32_t val;
10061
10062 assert_can_disable_lcpll(dev_priv);
10063
10064 val = I915_READ(LCPLL_CTL);
10065
10066 if (switch_to_fclk) {
10067 val |= LCPLL_CD_SOURCE_FCLK;
10068 I915_WRITE(LCPLL_CTL, val);
10069
f53dd63f
ID
10070 if (wait_for_us(I915_READ(LCPLL_CTL) &
10071 LCPLL_CD_SOURCE_FCLK_DONE, 1))
be256dc7
PZ
10072 DRM_ERROR("Switching to FCLK failed\n");
10073
10074 val = I915_READ(LCPLL_CTL);
10075 }
10076
10077 val |= LCPLL_PLL_DISABLE;
10078 I915_WRITE(LCPLL_CTL, val);
10079 POSTING_READ(LCPLL_CTL);
10080
24d8441d 10081 if (intel_wait_for_register(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 0, 1))
be256dc7
PZ
10082 DRM_ERROR("LCPLL still locked\n");
10083
9ccd5aeb 10084 val = hsw_read_dcomp(dev_priv);
be256dc7 10085 val |= D_COMP_COMP_DISABLE;
3c4c9b81 10086 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
10087 ndelay(100);
10088
9ccd5aeb
PZ
10089 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
10090 1))
be256dc7
PZ
10091 DRM_ERROR("D_COMP RCOMP still in progress\n");
10092
10093 if (allow_power_down) {
10094 val = I915_READ(LCPLL_CTL);
10095 val |= LCPLL_POWER_DOWN_ALLOW;
10096 I915_WRITE(LCPLL_CTL, val);
10097 POSTING_READ(LCPLL_CTL);
10098 }
10099}
10100
10101/*
10102 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
10103 * source.
10104 */
6ff58d53 10105static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
be256dc7
PZ
10106{
10107 uint32_t val;
10108
10109 val = I915_READ(LCPLL_CTL);
10110
10111 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
10112 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
10113 return;
10114
a8a8bd54
PZ
10115 /*
10116 * Make sure we're not on PC8 state before disabling PC8, otherwise
10117 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
a8a8bd54 10118 */
59bad947 10119 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
215733fa 10120
be256dc7
PZ
10121 if (val & LCPLL_POWER_DOWN_ALLOW) {
10122 val &= ~LCPLL_POWER_DOWN_ALLOW;
10123 I915_WRITE(LCPLL_CTL, val);
35d8f2eb 10124 POSTING_READ(LCPLL_CTL);
be256dc7
PZ
10125 }
10126
9ccd5aeb 10127 val = hsw_read_dcomp(dev_priv);
be256dc7
PZ
10128 val |= D_COMP_COMP_FORCE;
10129 val &= ~D_COMP_COMP_DISABLE;
3c4c9b81 10130 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
10131
10132 val = I915_READ(LCPLL_CTL);
10133 val &= ~LCPLL_PLL_DISABLE;
10134 I915_WRITE(LCPLL_CTL, val);
10135
93220c08
CW
10136 if (intel_wait_for_register(dev_priv,
10137 LCPLL_CTL, LCPLL_PLL_LOCK, LCPLL_PLL_LOCK,
10138 5))
be256dc7
PZ
10139 DRM_ERROR("LCPLL not locked yet\n");
10140
10141 if (val & LCPLL_CD_SOURCE_FCLK) {
10142 val = I915_READ(LCPLL_CTL);
10143 val &= ~LCPLL_CD_SOURCE_FCLK;
10144 I915_WRITE(LCPLL_CTL, val);
10145
f53dd63f
ID
10146 if (wait_for_us((I915_READ(LCPLL_CTL) &
10147 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
be256dc7
PZ
10148 DRM_ERROR("Switching back to LCPLL failed\n");
10149 }
215733fa 10150
59bad947 10151 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
91c8a326 10152 intel_update_cdclk(&dev_priv->drm);
be256dc7
PZ
10153}
10154
765dab67
PZ
10155/*
10156 * Package states C8 and deeper are really deep PC states that can only be
10157 * reached when all the devices on the system allow it, so even if the graphics
10158 * device allows PC8+, it doesn't mean the system will actually get to these
10159 * states. Our driver only allows PC8+ when going into runtime PM.
10160 *
10161 * The requirements for PC8+ are that all the outputs are disabled, the power
10162 * well is disabled and most interrupts are disabled, and these are also
10163 * requirements for runtime PM. When these conditions are met, we manually do
10164 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
10165 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
10166 * hang the machine.
10167 *
10168 * When we really reach PC8 or deeper states (not just when we allow it) we lose
10169 * the state of some registers, so when we come back from PC8+ we need to
10170 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
10171 * need to take care of the registers kept by RC6. Notice that this happens even
10172 * if we don't put the device in PCI D3 state (which is what currently happens
10173 * because of the runtime PM support).
10174 *
10175 * For more, read "Display Sequences for Package C8" on the hardware
10176 * documentation.
10177 */
a14cb6fc 10178void hsw_enable_pc8(struct drm_i915_private *dev_priv)
c67a470b 10179{
91c8a326 10180 struct drm_device *dev = &dev_priv->drm;
c67a470b
PZ
10181 uint32_t val;
10182
c67a470b
PZ
10183 DRM_DEBUG_KMS("Enabling package C8+\n");
10184
c2699524 10185 if (HAS_PCH_LPT_LP(dev)) {
c67a470b
PZ
10186 val = I915_READ(SOUTH_DSPCLK_GATE_D);
10187 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
10188 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
10189 }
10190
10191 lpt_disable_clkout_dp(dev);
c67a470b
PZ
10192 hsw_disable_lcpll(dev_priv, true, true);
10193}
10194
a14cb6fc 10195void hsw_disable_pc8(struct drm_i915_private *dev_priv)
c67a470b 10196{
91c8a326 10197 struct drm_device *dev = &dev_priv->drm;
c67a470b
PZ
10198 uint32_t val;
10199
c67a470b
PZ
10200 DRM_DEBUG_KMS("Disabling package C8+\n");
10201
10202 hsw_restore_lcpll(dev_priv);
c67a470b
PZ
10203 lpt_init_pch_refclk(dev);
10204
c2699524 10205 if (HAS_PCH_LPT_LP(dev)) {
c67a470b
PZ
10206 val = I915_READ(SOUTH_DSPCLK_GATE_D);
10207 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
10208 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
10209 }
c67a470b
PZ
10210}
10211
324513c0 10212static void bxt_modeset_commit_cdclk(struct drm_atomic_state *old_state)
f8437dd1 10213{
a821fc46 10214 struct drm_device *dev = old_state->dev;
1a617b77
ML
10215 struct intel_atomic_state *old_intel_state =
10216 to_intel_atomic_state(old_state);
10217 unsigned int req_cdclk = old_intel_state->dev_cdclk;
f8437dd1 10218
324513c0 10219 bxt_set_cdclk(to_i915(dev), req_cdclk);
f8437dd1
VK
10220}
10221
b432e5cf 10222/* compute the max rate for new configuration */
27c329ed 10223static int ilk_max_pixel_rate(struct drm_atomic_state *state)
b432e5cf 10224{
565602d7 10225 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
fac5e23e 10226 struct drm_i915_private *dev_priv = to_i915(state->dev);
565602d7
ML
10227 struct drm_crtc *crtc;
10228 struct drm_crtc_state *cstate;
27c329ed 10229 struct intel_crtc_state *crtc_state;
565602d7
ML
10230 unsigned max_pixel_rate = 0, i;
10231 enum pipe pipe;
b432e5cf 10232
565602d7
ML
10233 memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
10234 sizeof(intel_state->min_pixclk));
27c329ed 10235
565602d7
ML
10236 for_each_crtc_in_state(state, crtc, cstate, i) {
10237 int pixel_rate;
27c329ed 10238
565602d7
ML
10239 crtc_state = to_intel_crtc_state(cstate);
10240 if (!crtc_state->base.enable) {
10241 intel_state->min_pixclk[i] = 0;
b432e5cf 10242 continue;
565602d7 10243 }
b432e5cf 10244
27c329ed 10245 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
b432e5cf
VS
10246
10247 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
565602d7 10248 if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
b432e5cf
VS
10249 pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
10250
565602d7 10251 intel_state->min_pixclk[i] = pixel_rate;
b432e5cf
VS
10252 }
10253
565602d7
ML
10254 for_each_pipe(dev_priv, pipe)
10255 max_pixel_rate = max(intel_state->min_pixclk[pipe], max_pixel_rate);
10256
b432e5cf
VS
10257 return max_pixel_rate;
10258}
10259
10260static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
10261{
fac5e23e 10262 struct drm_i915_private *dev_priv = to_i915(dev);
b432e5cf
VS
10263 uint32_t val, data;
10264 int ret;
10265
10266 if (WARN((I915_READ(LCPLL_CTL) &
10267 (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
10268 LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
10269 LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
10270 LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
10271 "trying to change cdclk frequency with cdclk not enabled\n"))
10272 return;
10273
10274 mutex_lock(&dev_priv->rps.hw_lock);
10275 ret = sandybridge_pcode_write(dev_priv,
10276 BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
10277 mutex_unlock(&dev_priv->rps.hw_lock);
10278 if (ret) {
10279 DRM_ERROR("failed to inform pcode about cdclk change\n");
10280 return;
10281 }
10282
10283 val = I915_READ(LCPLL_CTL);
10284 val |= LCPLL_CD_SOURCE_FCLK;
10285 I915_WRITE(LCPLL_CTL, val);
10286
5ba00178
TU
10287 if (wait_for_us(I915_READ(LCPLL_CTL) &
10288 LCPLL_CD_SOURCE_FCLK_DONE, 1))
b432e5cf
VS
10289 DRM_ERROR("Switching to FCLK failed\n");
10290
10291 val = I915_READ(LCPLL_CTL);
10292 val &= ~LCPLL_CLK_FREQ_MASK;
10293
10294 switch (cdclk) {
10295 case 450000:
10296 val |= LCPLL_CLK_FREQ_450;
10297 data = 0;
10298 break;
10299 case 540000:
10300 val |= LCPLL_CLK_FREQ_54O_BDW;
10301 data = 1;
10302 break;
10303 case 337500:
10304 val |= LCPLL_CLK_FREQ_337_5_BDW;
10305 data = 2;
10306 break;
10307 case 675000:
10308 val |= LCPLL_CLK_FREQ_675_BDW;
10309 data = 3;
10310 break;
10311 default:
10312 WARN(1, "invalid cdclk frequency\n");
10313 return;
10314 }
10315
10316 I915_WRITE(LCPLL_CTL, val);
10317
10318 val = I915_READ(LCPLL_CTL);
10319 val &= ~LCPLL_CD_SOURCE_FCLK;
10320 I915_WRITE(LCPLL_CTL, val);
10321
5ba00178
TU
10322 if (wait_for_us((I915_READ(LCPLL_CTL) &
10323 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
b432e5cf
VS
10324 DRM_ERROR("Switching back to LCPLL failed\n");
10325
10326 mutex_lock(&dev_priv->rps.hw_lock);
10327 sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
10328 mutex_unlock(&dev_priv->rps.hw_lock);
10329
7f1052a8
VS
10330 I915_WRITE(CDCLK_FREQ, DIV_ROUND_CLOSEST(cdclk, 1000) - 1);
10331
b432e5cf
VS
10332 intel_update_cdclk(dev);
10333
10334 WARN(cdclk != dev_priv->cdclk_freq,
10335 "cdclk requested %d kHz but got %d kHz\n",
10336 cdclk, dev_priv->cdclk_freq);
10337}
10338
587c7914
VS
10339static int broadwell_calc_cdclk(int max_pixclk)
10340{
10341 if (max_pixclk > 540000)
10342 return 675000;
10343 else if (max_pixclk > 450000)
10344 return 540000;
10345 else if (max_pixclk > 337500)
10346 return 450000;
10347 else
10348 return 337500;
10349}
10350
27c329ed 10351static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
b432e5cf 10352{
27c329ed 10353 struct drm_i915_private *dev_priv = to_i915(state->dev);
1a617b77 10354 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
27c329ed 10355 int max_pixclk = ilk_max_pixel_rate(state);
b432e5cf
VS
10356 int cdclk;
10357
10358 /*
10359 * FIXME should also account for plane ratio
10360 * once 64bpp pixel formats are supported.
10361 */
587c7914 10362 cdclk = broadwell_calc_cdclk(max_pixclk);
b432e5cf 10363
b432e5cf 10364 if (cdclk > dev_priv->max_cdclk_freq) {
63ba534e
ML
10365 DRM_DEBUG_KMS("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
10366 cdclk, dev_priv->max_cdclk_freq);
10367 return -EINVAL;
b432e5cf
VS
10368 }
10369
1a617b77
ML
10370 intel_state->cdclk = intel_state->dev_cdclk = cdclk;
10371 if (!intel_state->active_crtcs)
587c7914 10372 intel_state->dev_cdclk = broadwell_calc_cdclk(0);
b432e5cf
VS
10373
10374 return 0;
10375}
10376
27c329ed 10377static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
b432e5cf 10378{
27c329ed 10379 struct drm_device *dev = old_state->dev;
1a617b77
ML
10380 struct intel_atomic_state *old_intel_state =
10381 to_intel_atomic_state(old_state);
10382 unsigned req_cdclk = old_intel_state->dev_cdclk;
b432e5cf 10383
27c329ed 10384 broadwell_set_cdclk(dev, req_cdclk);
b432e5cf
VS
10385}
10386
c89e39f3
CT
10387static int skl_modeset_calc_cdclk(struct drm_atomic_state *state)
10388{
10389 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
10390 struct drm_i915_private *dev_priv = to_i915(state->dev);
10391 const int max_pixclk = ilk_max_pixel_rate(state);
a8ca4934 10392 int vco = intel_state->cdclk_pll_vco;
c89e39f3
CT
10393 int cdclk;
10394
10395 /*
10396 * FIXME should also account for plane ratio
10397 * once 64bpp pixel formats are supported.
10398 */
a8ca4934 10399 cdclk = skl_calc_cdclk(max_pixclk, vco);
c89e39f3
CT
10400
10401 /*
10402 * FIXME move the cdclk caclulation to
10403 * compute_config() so we can fail gracegully.
10404 */
10405 if (cdclk > dev_priv->max_cdclk_freq) {
10406 DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
10407 cdclk, dev_priv->max_cdclk_freq);
10408 cdclk = dev_priv->max_cdclk_freq;
10409 }
10410
10411 intel_state->cdclk = intel_state->dev_cdclk = cdclk;
10412 if (!intel_state->active_crtcs)
a8ca4934 10413 intel_state->dev_cdclk = skl_calc_cdclk(0, vco);
c89e39f3
CT
10414
10415 return 0;
10416}
10417
10418static void skl_modeset_commit_cdclk(struct drm_atomic_state *old_state)
10419{
1cd593e0
VS
10420 struct drm_i915_private *dev_priv = to_i915(old_state->dev);
10421 struct intel_atomic_state *intel_state = to_intel_atomic_state(old_state);
10422 unsigned int req_cdclk = intel_state->dev_cdclk;
10423 unsigned int req_vco = intel_state->cdclk_pll_vco;
c89e39f3 10424
1cd593e0 10425 skl_set_cdclk(dev_priv, req_cdclk, req_vco);
c89e39f3
CT
10426}
10427
190f68c5
ACO
10428static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
10429 struct intel_crtc_state *crtc_state)
09b4ddf9 10430{
d7edc4e5 10431 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) {
af3997b5
MK
10432 if (!intel_ddi_pll_select(crtc, crtc_state))
10433 return -EINVAL;
10434 }
716c2e55 10435
c7653199 10436 crtc->lowfreq_avail = false;
644cef34 10437
c8f7a0db 10438 return 0;
79e53945
JB
10439}
10440
3760b59c
S
10441static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
10442 enum port port,
10443 struct intel_crtc_state *pipe_config)
10444{
8106ddbd
ACO
10445 enum intel_dpll_id id;
10446
3760b59c
S
10447 switch (port) {
10448 case PORT_A:
08250c4b 10449 id = DPLL_ID_SKL_DPLL0;
3760b59c
S
10450 break;
10451 case PORT_B:
08250c4b 10452 id = DPLL_ID_SKL_DPLL1;
3760b59c
S
10453 break;
10454 case PORT_C:
08250c4b 10455 id = DPLL_ID_SKL_DPLL2;
3760b59c
S
10456 break;
10457 default:
10458 DRM_ERROR("Incorrect port type\n");
8106ddbd 10459 return;
3760b59c 10460 }
8106ddbd
ACO
10461
10462 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
3760b59c
S
10463}
10464
96b7dfb7
S
10465static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
10466 enum port port,
5cec258b 10467 struct intel_crtc_state *pipe_config)
96b7dfb7 10468{
8106ddbd 10469 enum intel_dpll_id id;
a3c988ea 10470 u32 temp;
96b7dfb7
S
10471
10472 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
c856052a 10473 id = temp >> (port * 3 + 1);
96b7dfb7 10474
c856052a 10475 if (WARN_ON(id < SKL_DPLL0 || id > SKL_DPLL3))
8106ddbd 10476 return;
8106ddbd
ACO
10477
10478 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
96b7dfb7
S
10479}
10480
7d2c8175
DL
10481static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
10482 enum port port,
5cec258b 10483 struct intel_crtc_state *pipe_config)
7d2c8175 10484{
8106ddbd 10485 enum intel_dpll_id id;
c856052a 10486 uint32_t ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
8106ddbd 10487
c856052a 10488 switch (ddi_pll_sel) {
7d2c8175 10489 case PORT_CLK_SEL_WRPLL1:
8106ddbd 10490 id = DPLL_ID_WRPLL1;
7d2c8175
DL
10491 break;
10492 case PORT_CLK_SEL_WRPLL2:
8106ddbd 10493 id = DPLL_ID_WRPLL2;
7d2c8175 10494 break;
00490c22 10495 case PORT_CLK_SEL_SPLL:
8106ddbd 10496 id = DPLL_ID_SPLL;
79bd23da 10497 break;
9d16da65
ACO
10498 case PORT_CLK_SEL_LCPLL_810:
10499 id = DPLL_ID_LCPLL_810;
10500 break;
10501 case PORT_CLK_SEL_LCPLL_1350:
10502 id = DPLL_ID_LCPLL_1350;
10503 break;
10504 case PORT_CLK_SEL_LCPLL_2700:
10505 id = DPLL_ID_LCPLL_2700;
10506 break;
8106ddbd 10507 default:
c856052a 10508 MISSING_CASE(ddi_pll_sel);
8106ddbd
ACO
10509 /* fall through */
10510 case PORT_CLK_SEL_NONE:
8106ddbd 10511 return;
7d2c8175 10512 }
8106ddbd
ACO
10513
10514 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
7d2c8175
DL
10515}
10516
cf30429e
JN
10517static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
10518 struct intel_crtc_state *pipe_config,
10519 unsigned long *power_domain_mask)
10520{
10521 struct drm_device *dev = crtc->base.dev;
fac5e23e 10522 struct drm_i915_private *dev_priv = to_i915(dev);
cf30429e
JN
10523 enum intel_display_power_domain power_domain;
10524 u32 tmp;
10525
d9a7bc67
ID
10526 /*
10527 * The pipe->transcoder mapping is fixed with the exception of the eDP
10528 * transcoder handled below.
10529 */
cf30429e
JN
10530 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
10531
10532 /*
10533 * XXX: Do intel_display_power_get_if_enabled before reading this (for
10534 * consistency and less surprising code; it's in always on power).
10535 */
10536 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
10537 if (tmp & TRANS_DDI_FUNC_ENABLE) {
10538 enum pipe trans_edp_pipe;
10539 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
10540 default:
10541 WARN(1, "unknown pipe linked to edp transcoder\n");
10542 case TRANS_DDI_EDP_INPUT_A_ONOFF:
10543 case TRANS_DDI_EDP_INPUT_A_ON:
10544 trans_edp_pipe = PIPE_A;
10545 break;
10546 case TRANS_DDI_EDP_INPUT_B_ONOFF:
10547 trans_edp_pipe = PIPE_B;
10548 break;
10549 case TRANS_DDI_EDP_INPUT_C_ONOFF:
10550 trans_edp_pipe = PIPE_C;
10551 break;
10552 }
10553
10554 if (trans_edp_pipe == crtc->pipe)
10555 pipe_config->cpu_transcoder = TRANSCODER_EDP;
10556 }
10557
10558 power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
10559 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10560 return false;
10561 *power_domain_mask |= BIT(power_domain);
10562
10563 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
10564
10565 return tmp & PIPECONF_ENABLE;
10566}
10567
4d1de975
JN
10568static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
10569 struct intel_crtc_state *pipe_config,
10570 unsigned long *power_domain_mask)
10571{
10572 struct drm_device *dev = crtc->base.dev;
fac5e23e 10573 struct drm_i915_private *dev_priv = to_i915(dev);
4d1de975
JN
10574 enum intel_display_power_domain power_domain;
10575 enum port port;
10576 enum transcoder cpu_transcoder;
10577 u32 tmp;
10578
4d1de975
JN
10579 for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
10580 if (port == PORT_A)
10581 cpu_transcoder = TRANSCODER_DSI_A;
10582 else
10583 cpu_transcoder = TRANSCODER_DSI_C;
10584
10585 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
10586 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10587 continue;
10588 *power_domain_mask |= BIT(power_domain);
10589
db18b6a6
ID
10590 /*
10591 * The PLL needs to be enabled with a valid divider
10592 * configuration, otherwise accessing DSI registers will hang
10593 * the machine. See BSpec North Display Engine
10594 * registers/MIPI[BXT]. We can break out here early, since we
10595 * need the same DSI PLL to be enabled for both DSI ports.
10596 */
10597 if (!intel_dsi_pll_is_enabled(dev_priv))
10598 break;
10599
4d1de975
JN
10600 /* XXX: this works for video mode only */
10601 tmp = I915_READ(BXT_MIPI_PORT_CTRL(port));
10602 if (!(tmp & DPI_ENABLE))
10603 continue;
10604
10605 tmp = I915_READ(MIPI_CTRL(port));
10606 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
10607 continue;
10608
10609 pipe_config->cpu_transcoder = cpu_transcoder;
4d1de975
JN
10610 break;
10611 }
10612
d7edc4e5 10613 return transcoder_is_dsi(pipe_config->cpu_transcoder);
4d1de975
JN
10614}
10615
26804afd 10616static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
5cec258b 10617 struct intel_crtc_state *pipe_config)
26804afd
DV
10618{
10619 struct drm_device *dev = crtc->base.dev;
fac5e23e 10620 struct drm_i915_private *dev_priv = to_i915(dev);
d452c5b6 10621 struct intel_shared_dpll *pll;
26804afd
DV
10622 enum port port;
10623 uint32_t tmp;
10624
10625 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
10626
10627 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
10628
ef11bdb3 10629 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
96b7dfb7 10630 skylake_get_ddi_pll(dev_priv, port, pipe_config);
3760b59c
S
10631 else if (IS_BROXTON(dev))
10632 bxt_get_ddi_pll(dev_priv, port, pipe_config);
96b7dfb7
S
10633 else
10634 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9cd86933 10635
8106ddbd
ACO
10636 pll = pipe_config->shared_dpll;
10637 if (pll) {
2edd6443
ACO
10638 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
10639 &pipe_config->dpll_hw_state));
d452c5b6
DV
10640 }
10641
26804afd
DV
10642 /*
10643 * Haswell has only FDI/PCH transcoder A. It is which is connected to
10644 * DDI E. So just check whether this pipe is wired to DDI E and whether
10645 * the PCH transcoder is on.
10646 */
ca370455
DL
10647 if (INTEL_INFO(dev)->gen < 9 &&
10648 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
26804afd
DV
10649 pipe_config->has_pch_encoder = true;
10650
10651 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
10652 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
10653 FDI_DP_PORT_WIDTH_SHIFT) + 1;
10654
10655 ironlake_get_fdi_m_n_config(crtc, pipe_config);
10656 }
10657}
10658
0e8ffe1b 10659static bool haswell_get_pipe_config(struct intel_crtc *crtc,
5cec258b 10660 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
10661{
10662 struct drm_device *dev = crtc->base.dev;
fac5e23e 10663 struct drm_i915_private *dev_priv = to_i915(dev);
1729050e
ID
10664 enum intel_display_power_domain power_domain;
10665 unsigned long power_domain_mask;
cf30429e 10666 bool active;
0e8ffe1b 10667
1729050e
ID
10668 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
10669 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
b5482bd0 10670 return false;
1729050e
ID
10671 power_domain_mask = BIT(power_domain);
10672
8106ddbd 10673 pipe_config->shared_dpll = NULL;
c0d43d62 10674
cf30429e 10675 active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_mask);
eccb140b 10676
d7edc4e5
VS
10677 if (IS_BROXTON(dev_priv) &&
10678 bxt_get_dsi_transcoder_state(crtc, pipe_config, &power_domain_mask)) {
10679 WARN_ON(active);
10680 active = true;
4d1de975
JN
10681 }
10682
cf30429e 10683 if (!active)
1729050e 10684 goto out;
0e8ffe1b 10685
d7edc4e5 10686 if (!transcoder_is_dsi(pipe_config->cpu_transcoder)) {
4d1de975
JN
10687 haswell_get_ddi_port_state(crtc, pipe_config);
10688 intel_get_pipe_timings(crtc, pipe_config);
10689 }
627eb5a3 10690
bc58be60 10691 intel_get_pipe_src_size(crtc, pipe_config);
1bd1bd80 10692
05dc698c
LL
10693 pipe_config->gamma_mode =
10694 I915_READ(GAMMA_MODE(crtc->pipe)) & GAMMA_MODE_MODE_MASK;
10695
a1b2278e
CK
10696 if (INTEL_INFO(dev)->gen >= 9) {
10697 skl_init_scalers(dev, crtc, pipe_config);
10698 }
10699
af99ceda
CK
10700 if (INTEL_INFO(dev)->gen >= 9) {
10701 pipe_config->scaler_state.scaler_id = -1;
10702 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
10703 }
10704
1729050e
ID
10705 power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
10706 if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
10707 power_domain_mask |= BIT(power_domain);
1c132b44 10708 if (INTEL_INFO(dev)->gen >= 9)
bd2e244f 10709 skylake_get_pfit_config(crtc, pipe_config);
ff6d9f55 10710 else
1c132b44 10711 ironlake_get_pfit_config(crtc, pipe_config);
bd2e244f 10712 }
88adfff1 10713
e59150dc
JB
10714 if (IS_HASWELL(dev))
10715 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
10716 (I915_READ(IPS_CTL) & IPS_ENABLE);
42db64ef 10717
4d1de975
JN
10718 if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
10719 !transcoder_is_dsi(pipe_config->cpu_transcoder)) {
ebb69c95
CT
10720 pipe_config->pixel_multiplier =
10721 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
10722 } else {
10723 pipe_config->pixel_multiplier = 1;
10724 }
6c49f241 10725
1729050e
ID
10726out:
10727 for_each_power_domain(power_domain, power_domain_mask)
10728 intel_display_power_put(dev_priv, power_domain);
10729
cf30429e 10730 return active;
0e8ffe1b
DV
10731}
10732
55a08b3f
ML
10733static void i845_update_cursor(struct drm_crtc *crtc, u32 base,
10734 const struct intel_plane_state *plane_state)
560b85bb
CW
10735{
10736 struct drm_device *dev = crtc->dev;
fac5e23e 10737 struct drm_i915_private *dev_priv = to_i915(dev);
560b85bb 10738 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
dc41c154 10739 uint32_t cntl = 0, size = 0;
560b85bb 10740
936e71e3 10741 if (plane_state && plane_state->base.visible) {
55a08b3f
ML
10742 unsigned int width = plane_state->base.crtc_w;
10743 unsigned int height = plane_state->base.crtc_h;
dc41c154
VS
10744 unsigned int stride = roundup_pow_of_two(width) * 4;
10745
10746 switch (stride) {
10747 default:
10748 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
10749 width, stride);
10750 stride = 256;
10751 /* fallthrough */
10752 case 256:
10753 case 512:
10754 case 1024:
10755 case 2048:
10756 break;
4b0e333e
CW
10757 }
10758
dc41c154
VS
10759 cntl |= CURSOR_ENABLE |
10760 CURSOR_GAMMA_ENABLE |
10761 CURSOR_FORMAT_ARGB |
10762 CURSOR_STRIDE(stride);
10763
10764 size = (height << 12) | width;
4b0e333e 10765 }
560b85bb 10766
dc41c154
VS
10767 if (intel_crtc->cursor_cntl != 0 &&
10768 (intel_crtc->cursor_base != base ||
10769 intel_crtc->cursor_size != size ||
10770 intel_crtc->cursor_cntl != cntl)) {
10771 /* On these chipsets we can only modify the base/size/stride
10772 * whilst the cursor is disabled.
10773 */
0b87c24e
VS
10774 I915_WRITE(CURCNTR(PIPE_A), 0);
10775 POSTING_READ(CURCNTR(PIPE_A));
dc41c154 10776 intel_crtc->cursor_cntl = 0;
4b0e333e 10777 }
560b85bb 10778
99d1f387 10779 if (intel_crtc->cursor_base != base) {
0b87c24e 10780 I915_WRITE(CURBASE(PIPE_A), base);
99d1f387
VS
10781 intel_crtc->cursor_base = base;
10782 }
4726e0b0 10783
dc41c154
VS
10784 if (intel_crtc->cursor_size != size) {
10785 I915_WRITE(CURSIZE, size);
10786 intel_crtc->cursor_size = size;
4b0e333e 10787 }
560b85bb 10788
4b0e333e 10789 if (intel_crtc->cursor_cntl != cntl) {
0b87c24e
VS
10790 I915_WRITE(CURCNTR(PIPE_A), cntl);
10791 POSTING_READ(CURCNTR(PIPE_A));
4b0e333e 10792 intel_crtc->cursor_cntl = cntl;
560b85bb 10793 }
560b85bb
CW
10794}
10795
55a08b3f
ML
10796static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base,
10797 const struct intel_plane_state *plane_state)
65a21cd6
JB
10798{
10799 struct drm_device *dev = crtc->dev;
fac5e23e 10800 struct drm_i915_private *dev_priv = to_i915(dev);
65a21cd6 10801 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
62e0fb88 10802 const struct skl_wm_values *wm = &dev_priv->wm.skl_results;
65a21cd6 10803 int pipe = intel_crtc->pipe;
663f3122 10804 uint32_t cntl = 0;
4b0e333e 10805
62e0fb88
L
10806 if (INTEL_GEN(dev_priv) >= 9 && wm->dirty_pipes & drm_crtc_mask(crtc))
10807 skl_write_cursor_wm(intel_crtc, wm);
10808
936e71e3 10809 if (plane_state && plane_state->base.visible) {
4b0e333e 10810 cntl = MCURSOR_GAMMA_ENABLE;
55a08b3f 10811 switch (plane_state->base.crtc_w) {
4726e0b0
SK
10812 case 64:
10813 cntl |= CURSOR_MODE_64_ARGB_AX;
10814 break;
10815 case 128:
10816 cntl |= CURSOR_MODE_128_ARGB_AX;
10817 break;
10818 case 256:
10819 cntl |= CURSOR_MODE_256_ARGB_AX;
10820 break;
10821 default:
55a08b3f 10822 MISSING_CASE(plane_state->base.crtc_w);
4726e0b0 10823 return;
65a21cd6 10824 }
4b0e333e 10825 cntl |= pipe << 28; /* Connect to correct pipe */
47bf17a7 10826
fc6f93bc 10827 if (HAS_DDI(dev))
47bf17a7 10828 cntl |= CURSOR_PIPE_CSC_ENABLE;
65a21cd6 10829
31ad61e4 10830 if (plane_state->base.rotation == DRM_ROTATE_180)
55a08b3f
ML
10831 cntl |= CURSOR_ROTATE_180;
10832 }
4398ad45 10833
4b0e333e
CW
10834 if (intel_crtc->cursor_cntl != cntl) {
10835 I915_WRITE(CURCNTR(pipe), cntl);
10836 POSTING_READ(CURCNTR(pipe));
10837 intel_crtc->cursor_cntl = cntl;
65a21cd6 10838 }
4b0e333e 10839
65a21cd6 10840 /* and commit changes on next vblank */
5efb3e28
VS
10841 I915_WRITE(CURBASE(pipe), base);
10842 POSTING_READ(CURBASE(pipe));
99d1f387
VS
10843
10844 intel_crtc->cursor_base = base;
65a21cd6
JB
10845}
10846
cda4b7d3 10847/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f 10848static void intel_crtc_update_cursor(struct drm_crtc *crtc,
55a08b3f 10849 const struct intel_plane_state *plane_state)
cda4b7d3
CW
10850{
10851 struct drm_device *dev = crtc->dev;
fac5e23e 10852 struct drm_i915_private *dev_priv = to_i915(dev);
cda4b7d3
CW
10853 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10854 int pipe = intel_crtc->pipe;
55a08b3f
ML
10855 u32 base = intel_crtc->cursor_addr;
10856 u32 pos = 0;
cda4b7d3 10857
55a08b3f
ML
10858 if (plane_state) {
10859 int x = plane_state->base.crtc_x;
10860 int y = plane_state->base.crtc_y;
cda4b7d3 10861
55a08b3f
ML
10862 if (x < 0) {
10863 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10864 x = -x;
10865 }
10866 pos |= x << CURSOR_X_SHIFT;
cda4b7d3 10867
55a08b3f
ML
10868 if (y < 0) {
10869 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10870 y = -y;
10871 }
10872 pos |= y << CURSOR_Y_SHIFT;
10873
10874 /* ILK+ do this automagically */
10875 if (HAS_GMCH_DISPLAY(dev) &&
31ad61e4 10876 plane_state->base.rotation == DRM_ROTATE_180) {
55a08b3f
ML
10877 base += (plane_state->base.crtc_h *
10878 plane_state->base.crtc_w - 1) * 4;
10879 }
cda4b7d3 10880 }
cda4b7d3 10881
5efb3e28
VS
10882 I915_WRITE(CURPOS(pipe), pos);
10883
8ac54669 10884 if (IS_845G(dev) || IS_I865G(dev))
55a08b3f 10885 i845_update_cursor(crtc, base, plane_state);
5efb3e28 10886 else
55a08b3f 10887 i9xx_update_cursor(crtc, base, plane_state);
cda4b7d3
CW
10888}
10889
dc41c154
VS
10890static bool cursor_size_ok(struct drm_device *dev,
10891 uint32_t width, uint32_t height)
10892{
10893 if (width == 0 || height == 0)
10894 return false;
10895
10896 /*
10897 * 845g/865g are special in that they are only limited by
10898 * the width of their cursors, the height is arbitrary up to
10899 * the precision of the register. Everything else requires
10900 * square cursors, limited to a few power-of-two sizes.
10901 */
10902 if (IS_845G(dev) || IS_I865G(dev)) {
10903 if ((width & 63) != 0)
10904 return false;
10905
10906 if (width > (IS_845G(dev) ? 64 : 512))
10907 return false;
10908
10909 if (height > 1023)
10910 return false;
10911 } else {
10912 switch (width | height) {
10913 case 256:
10914 case 128:
10915 if (IS_GEN2(dev))
10916 return false;
10917 case 64:
10918 break;
10919 default:
10920 return false;
10921 }
10922 }
10923
10924 return true;
10925}
10926
79e53945
JB
10927/* VESA 640x480x72Hz mode to set on the pipe */
10928static struct drm_display_mode load_detect_mode = {
10929 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10930 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10931};
10932
a8bb6818
DV
10933struct drm_framebuffer *
10934__intel_framebuffer_create(struct drm_device *dev,
10935 struct drm_mode_fb_cmd2 *mode_cmd,
10936 struct drm_i915_gem_object *obj)
d2dff872
CW
10937{
10938 struct intel_framebuffer *intel_fb;
10939 int ret;
10940
10941 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
dcb1394e 10942 if (!intel_fb)
d2dff872 10943 return ERR_PTR(-ENOMEM);
d2dff872
CW
10944
10945 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
dd4916c5
DV
10946 if (ret)
10947 goto err;
d2dff872
CW
10948
10949 return &intel_fb->base;
dcb1394e 10950
dd4916c5 10951err:
dd4916c5 10952 kfree(intel_fb);
dd4916c5 10953 return ERR_PTR(ret);
d2dff872
CW
10954}
10955
b5ea642a 10956static struct drm_framebuffer *
a8bb6818
DV
10957intel_framebuffer_create(struct drm_device *dev,
10958 struct drm_mode_fb_cmd2 *mode_cmd,
10959 struct drm_i915_gem_object *obj)
10960{
10961 struct drm_framebuffer *fb;
10962 int ret;
10963
10964 ret = i915_mutex_lock_interruptible(dev);
10965 if (ret)
10966 return ERR_PTR(ret);
10967 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10968 mutex_unlock(&dev->struct_mutex);
10969
10970 return fb;
10971}
10972
d2dff872
CW
10973static u32
10974intel_framebuffer_pitch_for_width(int width, int bpp)
10975{
10976 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10977 return ALIGN(pitch, 64);
10978}
10979
10980static u32
10981intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10982{
10983 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
1267a26b 10984 return PAGE_ALIGN(pitch * mode->vdisplay);
d2dff872
CW
10985}
10986
10987static struct drm_framebuffer *
10988intel_framebuffer_create_for_mode(struct drm_device *dev,
10989 struct drm_display_mode *mode,
10990 int depth, int bpp)
10991{
dcb1394e 10992 struct drm_framebuffer *fb;
d2dff872 10993 struct drm_i915_gem_object *obj;
0fed39bd 10994 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
d2dff872 10995
d37cd8a8 10996 obj = i915_gem_object_create(dev,
d2dff872 10997 intel_framebuffer_size_for_mode(mode, bpp));
fe3db79b
CW
10998 if (IS_ERR(obj))
10999 return ERR_CAST(obj);
d2dff872
CW
11000
11001 mode_cmd.width = mode->hdisplay;
11002 mode_cmd.height = mode->vdisplay;
308e5bcb
JB
11003 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
11004 bpp);
5ca0c34a 11005 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
d2dff872 11006
dcb1394e
LW
11007 fb = intel_framebuffer_create(dev, &mode_cmd, obj);
11008 if (IS_ERR(fb))
34911fd3 11009 i915_gem_object_put_unlocked(obj);
dcb1394e
LW
11010
11011 return fb;
d2dff872
CW
11012}
11013
11014static struct drm_framebuffer *
11015mode_fits_in_fbdev(struct drm_device *dev,
11016 struct drm_display_mode *mode)
11017{
0695726e 11018#ifdef CONFIG_DRM_FBDEV_EMULATION
fac5e23e 11019 struct drm_i915_private *dev_priv = to_i915(dev);
d2dff872
CW
11020 struct drm_i915_gem_object *obj;
11021 struct drm_framebuffer *fb;
11022
4c0e5528 11023 if (!dev_priv->fbdev)
d2dff872
CW
11024 return NULL;
11025
4c0e5528 11026 if (!dev_priv->fbdev->fb)
d2dff872
CW
11027 return NULL;
11028
4c0e5528
DV
11029 obj = dev_priv->fbdev->fb->obj;
11030 BUG_ON(!obj);
11031
8bcd4553 11032 fb = &dev_priv->fbdev->fb->base;
01f2c773
VS
11033 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
11034 fb->bits_per_pixel))
d2dff872
CW
11035 return NULL;
11036
01f2c773 11037 if (obj->base.size < mode->vdisplay * fb->pitches[0])
d2dff872
CW
11038 return NULL;
11039
edde3617 11040 drm_framebuffer_reference(fb);
d2dff872 11041 return fb;
4520f53a
DV
11042#else
11043 return NULL;
11044#endif
d2dff872
CW
11045}
11046
d3a40d1b
ACO
11047static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
11048 struct drm_crtc *crtc,
11049 struct drm_display_mode *mode,
11050 struct drm_framebuffer *fb,
11051 int x, int y)
11052{
11053 struct drm_plane_state *plane_state;
11054 int hdisplay, vdisplay;
11055 int ret;
11056
11057 plane_state = drm_atomic_get_plane_state(state, crtc->primary);
11058 if (IS_ERR(plane_state))
11059 return PTR_ERR(plane_state);
11060
11061 if (mode)
11062 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
11063 else
11064 hdisplay = vdisplay = 0;
11065
11066 ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
11067 if (ret)
11068 return ret;
11069 drm_atomic_set_fb_for_plane(plane_state, fb);
11070 plane_state->crtc_x = 0;
11071 plane_state->crtc_y = 0;
11072 plane_state->crtc_w = hdisplay;
11073 plane_state->crtc_h = vdisplay;
11074 plane_state->src_x = x << 16;
11075 plane_state->src_y = y << 16;
11076 plane_state->src_w = hdisplay << 16;
11077 plane_state->src_h = vdisplay << 16;
11078
11079 return 0;
11080}
11081
d2434ab7 11082bool intel_get_load_detect_pipe(struct drm_connector *connector,
7173188d 11083 struct drm_display_mode *mode,
51fd371b
RC
11084 struct intel_load_detect_pipe *old,
11085 struct drm_modeset_acquire_ctx *ctx)
79e53945
JB
11086{
11087 struct intel_crtc *intel_crtc;
d2434ab7
DV
11088 struct intel_encoder *intel_encoder =
11089 intel_attached_encoder(connector);
79e53945 11090 struct drm_crtc *possible_crtc;
4ef69c7a 11091 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
11092 struct drm_crtc *crtc = NULL;
11093 struct drm_device *dev = encoder->dev;
94352cf9 11094 struct drm_framebuffer *fb;
51fd371b 11095 struct drm_mode_config *config = &dev->mode_config;
edde3617 11096 struct drm_atomic_state *state = NULL, *restore_state = NULL;
944b0c76 11097 struct drm_connector_state *connector_state;
4be07317 11098 struct intel_crtc_state *crtc_state;
51fd371b 11099 int ret, i = -1;
79e53945 11100
d2dff872 11101 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 11102 connector->base.id, connector->name,
8e329a03 11103 encoder->base.id, encoder->name);
d2dff872 11104
edde3617
ML
11105 old->restore_state = NULL;
11106
51fd371b
RC
11107retry:
11108 ret = drm_modeset_lock(&config->connection_mutex, ctx);
11109 if (ret)
ad3c558f 11110 goto fail;
6e9f798d 11111
79e53945
JB
11112 /*
11113 * Algorithm gets a little messy:
7a5e4805 11114 *
79e53945
JB
11115 * - if the connector already has an assigned crtc, use it (but make
11116 * sure it's on first)
7a5e4805 11117 *
79e53945
JB
11118 * - try to find the first unused crtc that can drive this connector,
11119 * and use that if we find one
79e53945
JB
11120 */
11121
11122 /* See if we already have a CRTC for this connector */
edde3617
ML
11123 if (connector->state->crtc) {
11124 crtc = connector->state->crtc;
8261b191 11125
51fd371b 11126 ret = drm_modeset_lock(&crtc->mutex, ctx);
4d02e2de 11127 if (ret)
ad3c558f 11128 goto fail;
8261b191
CW
11129
11130 /* Make sure the crtc and connector are running */
edde3617 11131 goto found;
79e53945
JB
11132 }
11133
11134 /* Find an unused one (if possible) */
70e1e0ec 11135 for_each_crtc(dev, possible_crtc) {
79e53945
JB
11136 i++;
11137 if (!(encoder->possible_crtcs & (1 << i)))
11138 continue;
edde3617
ML
11139
11140 ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
11141 if (ret)
11142 goto fail;
11143
11144 if (possible_crtc->state->enable) {
11145 drm_modeset_unlock(&possible_crtc->mutex);
a459249c 11146 continue;
edde3617 11147 }
a459249c
VS
11148
11149 crtc = possible_crtc;
11150 break;
79e53945
JB
11151 }
11152
11153 /*
11154 * If we didn't find an unused CRTC, don't use any.
11155 */
11156 if (!crtc) {
7173188d 11157 DRM_DEBUG_KMS("no pipe available for load-detect\n");
ad3c558f 11158 goto fail;
79e53945
JB
11159 }
11160
edde3617
ML
11161found:
11162 intel_crtc = to_intel_crtc(crtc);
11163
4d02e2de
DV
11164 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
11165 if (ret)
ad3c558f 11166 goto fail;
79e53945 11167
83a57153 11168 state = drm_atomic_state_alloc(dev);
edde3617
ML
11169 restore_state = drm_atomic_state_alloc(dev);
11170 if (!state || !restore_state) {
11171 ret = -ENOMEM;
11172 goto fail;
11173 }
83a57153
ACO
11174
11175 state->acquire_ctx = ctx;
edde3617 11176 restore_state->acquire_ctx = ctx;
83a57153 11177
944b0c76
ACO
11178 connector_state = drm_atomic_get_connector_state(state, connector);
11179 if (IS_ERR(connector_state)) {
11180 ret = PTR_ERR(connector_state);
11181 goto fail;
11182 }
11183
edde3617
ML
11184 ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
11185 if (ret)
11186 goto fail;
944b0c76 11187
4be07317
ACO
11188 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
11189 if (IS_ERR(crtc_state)) {
11190 ret = PTR_ERR(crtc_state);
11191 goto fail;
11192 }
11193
49d6fa21 11194 crtc_state->base.active = crtc_state->base.enable = true;
4be07317 11195
6492711d
CW
11196 if (!mode)
11197 mode = &load_detect_mode;
79e53945 11198
d2dff872
CW
11199 /* We need a framebuffer large enough to accommodate all accesses
11200 * that the plane may generate whilst we perform load detection.
11201 * We can not rely on the fbcon either being present (we get called
11202 * during its initialisation to detect all boot displays, or it may
11203 * not even exist) or that it is large enough to satisfy the
11204 * requested mode.
11205 */
94352cf9
DV
11206 fb = mode_fits_in_fbdev(dev, mode);
11207 if (fb == NULL) {
d2dff872 11208 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
94352cf9 11209 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
d2dff872
CW
11210 } else
11211 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
94352cf9 11212 if (IS_ERR(fb)) {
d2dff872 11213 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
412b61d8 11214 goto fail;
79e53945 11215 }
79e53945 11216
d3a40d1b
ACO
11217 ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
11218 if (ret)
11219 goto fail;
11220
edde3617
ML
11221 drm_framebuffer_unreference(fb);
11222
11223 ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode);
11224 if (ret)
11225 goto fail;
11226
11227 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
11228 if (!ret)
11229 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
11230 if (!ret)
11231 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(restore_state, crtc->primary));
11232 if (ret) {
11233 DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
11234 goto fail;
11235 }
8c7b5ccb 11236
3ba86073
ML
11237 ret = drm_atomic_commit(state);
11238 if (ret) {
6492711d 11239 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
412b61d8 11240 goto fail;
79e53945 11241 }
edde3617
ML
11242
11243 old->restore_state = restore_state;
7173188d 11244
79e53945 11245 /* let the connector get through one full cycle before testing */
9d0498a2 11246 intel_wait_for_vblank(dev, intel_crtc->pipe);
7173188d 11247 return true;
412b61d8 11248
ad3c558f 11249fail:
e5d958ef 11250 drm_atomic_state_free(state);
edde3617
ML
11251 drm_atomic_state_free(restore_state);
11252 restore_state = state = NULL;
83a57153 11253
51fd371b
RC
11254 if (ret == -EDEADLK) {
11255 drm_modeset_backoff(ctx);
11256 goto retry;
11257 }
11258
412b61d8 11259 return false;
79e53945
JB
11260}
11261
d2434ab7 11262void intel_release_load_detect_pipe(struct drm_connector *connector,
49172fee
ACO
11263 struct intel_load_detect_pipe *old,
11264 struct drm_modeset_acquire_ctx *ctx)
79e53945 11265{
d2434ab7
DV
11266 struct intel_encoder *intel_encoder =
11267 intel_attached_encoder(connector);
4ef69c7a 11268 struct drm_encoder *encoder = &intel_encoder->base;
edde3617 11269 struct drm_atomic_state *state = old->restore_state;
d3a40d1b 11270 int ret;
79e53945 11271
d2dff872 11272 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 11273 connector->base.id, connector->name,
8e329a03 11274 encoder->base.id, encoder->name);
d2dff872 11275
edde3617 11276 if (!state)
0622a53c 11277 return;
79e53945 11278
edde3617
ML
11279 ret = drm_atomic_commit(state);
11280 if (ret) {
11281 DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
11282 drm_atomic_state_free(state);
11283 }
79e53945
JB
11284}
11285
da4a1efa 11286static int i9xx_pll_refclk(struct drm_device *dev,
5cec258b 11287 const struct intel_crtc_state *pipe_config)
da4a1efa 11288{
fac5e23e 11289 struct drm_i915_private *dev_priv = to_i915(dev);
da4a1efa
VS
11290 u32 dpll = pipe_config->dpll_hw_state.dpll;
11291
11292 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
e91e941b 11293 return dev_priv->vbt.lvds_ssc_freq;
da4a1efa
VS
11294 else if (HAS_PCH_SPLIT(dev))
11295 return 120000;
11296 else if (!IS_GEN2(dev))
11297 return 96000;
11298 else
11299 return 48000;
11300}
11301
79e53945 11302/* Returns the clock of the currently programmed mode of the given pipe. */
f1f644dc 11303static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 11304 struct intel_crtc_state *pipe_config)
79e53945 11305{
f1f644dc 11306 struct drm_device *dev = crtc->base.dev;
fac5e23e 11307 struct drm_i915_private *dev_priv = to_i915(dev);
f1f644dc 11308 int pipe = pipe_config->cpu_transcoder;
293623f7 11309 u32 dpll = pipe_config->dpll_hw_state.dpll;
79e53945 11310 u32 fp;
9e2c8475 11311 struct dpll clock;
dccbea3b 11312 int port_clock;
da4a1efa 11313 int refclk = i9xx_pll_refclk(dev, pipe_config);
79e53945
JB
11314
11315 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
293623f7 11316 fp = pipe_config->dpll_hw_state.fp0;
79e53945 11317 else
293623f7 11318 fp = pipe_config->dpll_hw_state.fp1;
79e53945
JB
11319
11320 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
11321 if (IS_PINEVIEW(dev)) {
11322 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
11323 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
11324 } else {
11325 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
11326 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
11327 }
11328
a6c45cf0 11329 if (!IS_GEN2(dev)) {
f2b115e6
AJ
11330 if (IS_PINEVIEW(dev))
11331 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
11332 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
11333 else
11334 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
11335 DPLL_FPA01_P1_POST_DIV_SHIFT);
11336
11337 switch (dpll & DPLL_MODE_MASK) {
11338 case DPLLB_MODE_DAC_SERIAL:
11339 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
11340 5 : 10;
11341 break;
11342 case DPLLB_MODE_LVDS:
11343 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
11344 7 : 14;
11345 break;
11346 default:
28c97730 11347 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945 11348 "mode\n", (int)(dpll & DPLL_MODE_MASK));
f1f644dc 11349 return;
79e53945
JB
11350 }
11351
ac58c3f0 11352 if (IS_PINEVIEW(dev))
dccbea3b 11353 port_clock = pnv_calc_dpll_params(refclk, &clock);
ac58c3f0 11354 else
dccbea3b 11355 port_clock = i9xx_calc_dpll_params(refclk, &clock);
79e53945 11356 } else {
0fb58223 11357 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
b1c560d1 11358 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
79e53945
JB
11359
11360 if (is_lvds) {
11361 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
11362 DPLL_FPA01_P1_POST_DIV_SHIFT);
b1c560d1
VS
11363
11364 if (lvds & LVDS_CLKB_POWER_UP)
11365 clock.p2 = 7;
11366 else
11367 clock.p2 = 14;
79e53945
JB
11368 } else {
11369 if (dpll & PLL_P1_DIVIDE_BY_TWO)
11370 clock.p1 = 2;
11371 else {
11372 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
11373 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
11374 }
11375 if (dpll & PLL_P2_DIVIDE_BY_4)
11376 clock.p2 = 4;
11377 else
11378 clock.p2 = 2;
79e53945 11379 }
da4a1efa 11380
dccbea3b 11381 port_clock = i9xx_calc_dpll_params(refclk, &clock);
79e53945
JB
11382 }
11383
18442d08
VS
11384 /*
11385 * This value includes pixel_multiplier. We will use
241bfc38 11386 * port_clock to compute adjusted_mode.crtc_clock in the
18442d08
VS
11387 * encoder's get_config() function.
11388 */
dccbea3b 11389 pipe_config->port_clock = port_clock;
f1f644dc
JB
11390}
11391
6878da05
VS
11392int intel_dotclock_calculate(int link_freq,
11393 const struct intel_link_m_n *m_n)
f1f644dc 11394{
f1f644dc
JB
11395 /*
11396 * The calculation for the data clock is:
1041a02f 11397 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
f1f644dc 11398 * But we want to avoid losing precison if possible, so:
1041a02f 11399 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
f1f644dc
JB
11400 *
11401 * and the link clock is simpler:
1041a02f 11402 * link_clock = (m * link_clock) / n
f1f644dc
JB
11403 */
11404
6878da05
VS
11405 if (!m_n->link_n)
11406 return 0;
f1f644dc 11407
6878da05
VS
11408 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
11409}
f1f644dc 11410
18442d08 11411static void ironlake_pch_clock_get(struct intel_crtc *crtc,
5cec258b 11412 struct intel_crtc_state *pipe_config)
6878da05 11413{
e3b247da 11414 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
79e53945 11415
18442d08
VS
11416 /* read out port_clock from the DPLL */
11417 i9xx_crtc_clock_get(crtc, pipe_config);
f1f644dc 11418
f1f644dc 11419 /*
e3b247da
VS
11420 * In case there is an active pipe without active ports,
11421 * we may need some idea for the dotclock anyway.
11422 * Calculate one based on the FDI configuration.
79e53945 11423 */
2d112de7 11424 pipe_config->base.adjusted_mode.crtc_clock =
21a727b3 11425 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
18442d08 11426 &pipe_config->fdi_m_n);
79e53945
JB
11427}
11428
11429/** Returns the currently programmed mode of the given pipe. */
11430struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
11431 struct drm_crtc *crtc)
11432{
fac5e23e 11433 struct drm_i915_private *dev_priv = to_i915(dev);
79e53945 11434 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6e3c9717 11435 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
79e53945 11436 struct drm_display_mode *mode;
3f36b937 11437 struct intel_crtc_state *pipe_config;
fe2b8f9d
PZ
11438 int htot = I915_READ(HTOTAL(cpu_transcoder));
11439 int hsync = I915_READ(HSYNC(cpu_transcoder));
11440 int vtot = I915_READ(VTOTAL(cpu_transcoder));
11441 int vsync = I915_READ(VSYNC(cpu_transcoder));
293623f7 11442 enum pipe pipe = intel_crtc->pipe;
79e53945
JB
11443
11444 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
11445 if (!mode)
11446 return NULL;
11447
3f36b937
TU
11448 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
11449 if (!pipe_config) {
11450 kfree(mode);
11451 return NULL;
11452 }
11453
f1f644dc
JB
11454 /*
11455 * Construct a pipe_config sufficient for getting the clock info
11456 * back out of crtc_clock_get.
11457 *
11458 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
11459 * to use a real value here instead.
11460 */
3f36b937
TU
11461 pipe_config->cpu_transcoder = (enum transcoder) pipe;
11462 pipe_config->pixel_multiplier = 1;
11463 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(pipe));
11464 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(pipe));
11465 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(pipe));
11466 i9xx_crtc_clock_get(intel_crtc, pipe_config);
11467
11468 mode->clock = pipe_config->port_clock / pipe_config->pixel_multiplier;
79e53945
JB
11469 mode->hdisplay = (htot & 0xffff) + 1;
11470 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
11471 mode->hsync_start = (hsync & 0xffff) + 1;
11472 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
11473 mode->vdisplay = (vtot & 0xffff) + 1;
11474 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
11475 mode->vsync_start = (vsync & 0xffff) + 1;
11476 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
11477
11478 drm_mode_set_name(mode);
79e53945 11479
3f36b937
TU
11480 kfree(pipe_config);
11481
79e53945
JB
11482 return mode;
11483}
11484
11485static void intel_crtc_destroy(struct drm_crtc *crtc)
11486{
11487 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a 11488 struct drm_device *dev = crtc->dev;
51cbaf01 11489 struct intel_flip_work *work;
67e77c5a 11490
5e2d7afc 11491 spin_lock_irq(&dev->event_lock);
5a21b665
DV
11492 work = intel_crtc->flip_work;
11493 intel_crtc->flip_work = NULL;
11494 spin_unlock_irq(&dev->event_lock);
67e77c5a 11495
5a21b665 11496 if (work) {
51cbaf01
ML
11497 cancel_work_sync(&work->mmio_work);
11498 cancel_work_sync(&work->unpin_work);
5a21b665 11499 kfree(work);
67e77c5a 11500 }
79e53945
JB
11501
11502 drm_crtc_cleanup(crtc);
67e77c5a 11503
79e53945
JB
11504 kfree(intel_crtc);
11505}
11506
6b95a207
KH
11507static void intel_unpin_work_fn(struct work_struct *__work)
11508{
51cbaf01
ML
11509 struct intel_flip_work *work =
11510 container_of(__work, struct intel_flip_work, unpin_work);
5a21b665
DV
11511 struct intel_crtc *crtc = to_intel_crtc(work->crtc);
11512 struct drm_device *dev = crtc->base.dev;
11513 struct drm_plane *primary = crtc->base.primary;
03f476e1 11514
5a21b665
DV
11515 if (is_mmio_work(work))
11516 flush_work(&work->mmio_work);
03f476e1 11517
5a21b665
DV
11518 mutex_lock(&dev->struct_mutex);
11519 intel_unpin_fb_obj(work->old_fb, primary->state->rotation);
f8c417cd 11520 i915_gem_object_put(work->pending_flip_obj);
5a21b665 11521 mutex_unlock(&dev->struct_mutex);
143f73b3 11522
e8a261ea
CW
11523 i915_gem_request_put(work->flip_queued_req);
11524
5748b6a1
CW
11525 intel_frontbuffer_flip_complete(to_i915(dev),
11526 to_intel_plane(primary)->frontbuffer_bit);
5a21b665
DV
11527 intel_fbc_post_update(crtc);
11528 drm_framebuffer_unreference(work->old_fb);
143f73b3 11529
5a21b665
DV
11530 BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
11531 atomic_dec(&crtc->unpin_work_count);
a6747b73 11532
5a21b665
DV
11533 kfree(work);
11534}
d9e86c0e 11535
5a21b665
DV
11536/* Is 'a' after or equal to 'b'? */
11537static bool g4x_flip_count_after_eq(u32 a, u32 b)
11538{
11539 return !((a - b) & 0x80000000);
11540}
143f73b3 11541
5a21b665
DV
11542static bool __pageflip_finished_cs(struct intel_crtc *crtc,
11543 struct intel_flip_work *work)
11544{
11545 struct drm_device *dev = crtc->base.dev;
fac5e23e 11546 struct drm_i915_private *dev_priv = to_i915(dev);
143f73b3 11547
8af29b0c 11548 if (abort_flip_on_reset(crtc))
5a21b665 11549 return true;
143f73b3 11550
5a21b665
DV
11551 /*
11552 * The relevant registers doen't exist on pre-ctg.
11553 * As the flip done interrupt doesn't trigger for mmio
11554 * flips on gmch platforms, a flip count check isn't
11555 * really needed there. But since ctg has the registers,
11556 * include it in the check anyway.
11557 */
11558 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
11559 return true;
b4a98e57 11560
5a21b665
DV
11561 /*
11562 * BDW signals flip done immediately if the plane
11563 * is disabled, even if the plane enable is already
11564 * armed to occur at the next vblank :(
11565 */
f99d7069 11566
5a21b665
DV
11567 /*
11568 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
11569 * used the same base address. In that case the mmio flip might
11570 * have completed, but the CS hasn't even executed the flip yet.
11571 *
11572 * A flip count check isn't enough as the CS might have updated
11573 * the base address just after start of vblank, but before we
11574 * managed to process the interrupt. This means we'd complete the
11575 * CS flip too soon.
11576 *
11577 * Combining both checks should get us a good enough result. It may
11578 * still happen that the CS flip has been executed, but has not
11579 * yet actually completed. But in case the base address is the same
11580 * anyway, we don't really care.
11581 */
11582 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
11583 crtc->flip_work->gtt_offset &&
11584 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
11585 crtc->flip_work->flip_count);
11586}
b4a98e57 11587
5a21b665
DV
11588static bool
11589__pageflip_finished_mmio(struct intel_crtc *crtc,
11590 struct intel_flip_work *work)
11591{
11592 /*
11593 * MMIO work completes when vblank is different from
11594 * flip_queued_vblank.
11595 *
11596 * Reset counter value doesn't matter, this is handled by
11597 * i915_wait_request finishing early, so no need to handle
11598 * reset here.
11599 */
11600 return intel_crtc_get_vblank_counter(crtc) != work->flip_queued_vblank;
6b95a207
KH
11601}
11602
51cbaf01
ML
11603
11604static bool pageflip_finished(struct intel_crtc *crtc,
11605 struct intel_flip_work *work)
11606{
11607 if (!atomic_read(&work->pending))
11608 return false;
11609
11610 smp_rmb();
11611
5a21b665
DV
11612 if (is_mmio_work(work))
11613 return __pageflip_finished_mmio(crtc, work);
11614 else
11615 return __pageflip_finished_cs(crtc, work);
11616}
11617
11618void intel_finish_page_flip_cs(struct drm_i915_private *dev_priv, int pipe)
11619{
91c8a326 11620 struct drm_device *dev = &dev_priv->drm;
5a21b665
DV
11621 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11622 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11623 struct intel_flip_work *work;
11624 unsigned long flags;
11625
11626 /* Ignore early vblank irqs */
11627 if (!crtc)
11628 return;
11629
51cbaf01 11630 /*
5a21b665
DV
11631 * This is called both by irq handlers and the reset code (to complete
11632 * lost pageflips) so needs the full irqsave spinlocks.
51cbaf01 11633 */
5a21b665
DV
11634 spin_lock_irqsave(&dev->event_lock, flags);
11635 work = intel_crtc->flip_work;
11636
11637 if (work != NULL &&
11638 !is_mmio_work(work) &&
11639 pageflip_finished(intel_crtc, work))
11640 page_flip_completed(intel_crtc);
11641
11642 spin_unlock_irqrestore(&dev->event_lock, flags);
75f7f3ec
VS
11643}
11644
51cbaf01 11645void intel_finish_page_flip_mmio(struct drm_i915_private *dev_priv, int pipe)
6b95a207 11646{
91c8a326 11647 struct drm_device *dev = &dev_priv->drm;
5251f04e
ML
11648 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11649 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
51cbaf01 11650 struct intel_flip_work *work;
6b95a207
KH
11651 unsigned long flags;
11652
5251f04e
ML
11653 /* Ignore early vblank irqs */
11654 if (!crtc)
11655 return;
f326038a
DV
11656
11657 /*
11658 * This is called both by irq handlers and the reset code (to complete
11659 * lost pageflips) so needs the full irqsave spinlocks.
e7d841ca 11660 */
6b95a207 11661 spin_lock_irqsave(&dev->event_lock, flags);
5a21b665 11662 work = intel_crtc->flip_work;
5251f04e 11663
5a21b665
DV
11664 if (work != NULL &&
11665 is_mmio_work(work) &&
11666 pageflip_finished(intel_crtc, work))
11667 page_flip_completed(intel_crtc);
5251f04e 11668
6b95a207
KH
11669 spin_unlock_irqrestore(&dev->event_lock, flags);
11670}
11671
5a21b665
DV
11672static inline void intel_mark_page_flip_active(struct intel_crtc *crtc,
11673 struct intel_flip_work *work)
84c33a64 11674{
5a21b665 11675 work->flip_queued_vblank = intel_crtc_get_vblank_counter(crtc);
84c33a64 11676
5a21b665
DV
11677 /* Ensure that the work item is consistent when activating it ... */
11678 smp_mb__before_atomic();
11679 atomic_set(&work->pending, 1);
11680}
a6747b73 11681
5a21b665
DV
11682static int intel_gen2_queue_flip(struct drm_device *dev,
11683 struct drm_crtc *crtc,
11684 struct drm_framebuffer *fb,
11685 struct drm_i915_gem_object *obj,
11686 struct drm_i915_gem_request *req,
11687 uint32_t flags)
11688{
7e37f889 11689 struct intel_ring *ring = req->ring;
5a21b665
DV
11690 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11691 u32 flip_mask;
11692 int ret;
143f73b3 11693
5a21b665
DV
11694 ret = intel_ring_begin(req, 6);
11695 if (ret)
11696 return ret;
143f73b3 11697
5a21b665
DV
11698 /* Can't queue multiple flips, so wait for the previous
11699 * one to finish before executing the next.
11700 */
11701 if (intel_crtc->plane)
11702 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11703 else
11704 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
b5321f30
CW
11705 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
11706 intel_ring_emit(ring, MI_NOOP);
11707 intel_ring_emit(ring, MI_DISPLAY_FLIP |
5a21b665 11708 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
b5321f30
CW
11709 intel_ring_emit(ring, fb->pitches[0]);
11710 intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11711 intel_ring_emit(ring, 0); /* aux display base address, unused */
143f73b3 11712
5a21b665
DV
11713 return 0;
11714}
84c33a64 11715
5a21b665
DV
11716static int intel_gen3_queue_flip(struct drm_device *dev,
11717 struct drm_crtc *crtc,
11718 struct drm_framebuffer *fb,
11719 struct drm_i915_gem_object *obj,
11720 struct drm_i915_gem_request *req,
11721 uint32_t flags)
11722{
7e37f889 11723 struct intel_ring *ring = req->ring;
5a21b665
DV
11724 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11725 u32 flip_mask;
11726 int ret;
d55dbd06 11727
5a21b665
DV
11728 ret = intel_ring_begin(req, 6);
11729 if (ret)
11730 return ret;
d55dbd06 11731
5a21b665
DV
11732 if (intel_crtc->plane)
11733 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11734 else
11735 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
b5321f30
CW
11736 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
11737 intel_ring_emit(ring, MI_NOOP);
11738 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
5a21b665 11739 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
b5321f30
CW
11740 intel_ring_emit(ring, fb->pitches[0]);
11741 intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11742 intel_ring_emit(ring, MI_NOOP);
fd8e058a 11743
5a21b665
DV
11744 return 0;
11745}
84c33a64 11746
5a21b665
DV
11747static int intel_gen4_queue_flip(struct drm_device *dev,
11748 struct drm_crtc *crtc,
11749 struct drm_framebuffer *fb,
11750 struct drm_i915_gem_object *obj,
11751 struct drm_i915_gem_request *req,
11752 uint32_t flags)
11753{
7e37f889 11754 struct intel_ring *ring = req->ring;
fac5e23e 11755 struct drm_i915_private *dev_priv = to_i915(dev);
5a21b665
DV
11756 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11757 uint32_t pf, pipesrc;
11758 int ret;
143f73b3 11759
5a21b665
DV
11760 ret = intel_ring_begin(req, 4);
11761 if (ret)
11762 return ret;
143f73b3 11763
5a21b665
DV
11764 /* i965+ uses the linear or tiled offsets from the
11765 * Display Registers (which do not change across a page-flip)
11766 * so we need only reprogram the base address.
11767 */
b5321f30 11768 intel_ring_emit(ring, MI_DISPLAY_FLIP |
5a21b665 11769 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
b5321f30
CW
11770 intel_ring_emit(ring, fb->pitches[0]);
11771 intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset |
72618ebf 11772 intel_fb_modifier_to_tiling(fb->modifier[0]));
5a21b665
DV
11773
11774 /* XXX Enabling the panel-fitter across page-flip is so far
11775 * untested on non-native modes, so ignore it for now.
11776 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11777 */
11778 pf = 0;
11779 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
b5321f30 11780 intel_ring_emit(ring, pf | pipesrc);
143f73b3 11781
5a21b665 11782 return 0;
8c9f3aaf
JB
11783}
11784
5a21b665
DV
11785static int intel_gen6_queue_flip(struct drm_device *dev,
11786 struct drm_crtc *crtc,
11787 struct drm_framebuffer *fb,
11788 struct drm_i915_gem_object *obj,
11789 struct drm_i915_gem_request *req,
11790 uint32_t flags)
da20eabd 11791{
7e37f889 11792 struct intel_ring *ring = req->ring;
fac5e23e 11793 struct drm_i915_private *dev_priv = to_i915(dev);
5a21b665
DV
11794 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11795 uint32_t pf, pipesrc;
11796 int ret;
d21fbe87 11797
5a21b665
DV
11798 ret = intel_ring_begin(req, 4);
11799 if (ret)
11800 return ret;
92826fcd 11801
b5321f30 11802 intel_ring_emit(ring, MI_DISPLAY_FLIP |
5a21b665 11803 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
72618ebf
VS
11804 intel_ring_emit(ring, fb->pitches[0] |
11805 intel_fb_modifier_to_tiling(fb->modifier[0]));
b5321f30 11806 intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
92826fcd 11807
5a21b665
DV
11808 /* Contrary to the suggestions in the documentation,
11809 * "Enable Panel Fitter" does not seem to be required when page
11810 * flipping with a non-native mode, and worse causes a normal
11811 * modeset to fail.
11812 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11813 */
11814 pf = 0;
11815 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
b5321f30 11816 intel_ring_emit(ring, pf | pipesrc);
7809e5ae 11817
5a21b665 11818 return 0;
7809e5ae
MR
11819}
11820
5a21b665
DV
11821static int intel_gen7_queue_flip(struct drm_device *dev,
11822 struct drm_crtc *crtc,
11823 struct drm_framebuffer *fb,
11824 struct drm_i915_gem_object *obj,
11825 struct drm_i915_gem_request *req,
11826 uint32_t flags)
d21fbe87 11827{
7e37f889 11828 struct intel_ring *ring = req->ring;
5a21b665
DV
11829 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11830 uint32_t plane_bit = 0;
11831 int len, ret;
d21fbe87 11832
5a21b665
DV
11833 switch (intel_crtc->plane) {
11834 case PLANE_A:
11835 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11836 break;
11837 case PLANE_B:
11838 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11839 break;
11840 case PLANE_C:
11841 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11842 break;
11843 default:
11844 WARN_ONCE(1, "unknown plane in flip command\n");
11845 return -ENODEV;
11846 }
11847
11848 len = 4;
b5321f30 11849 if (req->engine->id == RCS) {
5a21b665
DV
11850 len += 6;
11851 /*
11852 * On Gen 8, SRM is now taking an extra dword to accommodate
11853 * 48bits addresses, and we need a NOOP for the batch size to
11854 * stay even.
11855 */
11856 if (IS_GEN8(dev))
11857 len += 2;
11858 }
11859
11860 /*
11861 * BSpec MI_DISPLAY_FLIP for IVB:
11862 * "The full packet must be contained within the same cache line."
11863 *
11864 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11865 * cacheline, if we ever start emitting more commands before
11866 * the MI_DISPLAY_FLIP we may need to first emit everything else,
11867 * then do the cacheline alignment, and finally emit the
11868 * MI_DISPLAY_FLIP.
11869 */
11870 ret = intel_ring_cacheline_align(req);
11871 if (ret)
11872 return ret;
11873
11874 ret = intel_ring_begin(req, len);
11875 if (ret)
11876 return ret;
11877
11878 /* Unmask the flip-done completion message. Note that the bspec says that
11879 * we should do this for both the BCS and RCS, and that we must not unmask
11880 * more than one flip event at any time (or ensure that one flip message
11881 * can be sent by waiting for flip-done prior to queueing new flips).
11882 * Experimentation says that BCS works despite DERRMR masking all
11883 * flip-done completion events and that unmasking all planes at once
11884 * for the RCS also doesn't appear to drop events. Setting the DERRMR
11885 * to zero does lead to lockups within MI_DISPLAY_FLIP.
11886 */
b5321f30
CW
11887 if (req->engine->id == RCS) {
11888 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
11889 intel_ring_emit_reg(ring, DERRMR);
11890 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
5a21b665
DV
11891 DERRMR_PIPEB_PRI_FLIP_DONE |
11892 DERRMR_PIPEC_PRI_FLIP_DONE));
11893 if (IS_GEN8(dev))
b5321f30 11894 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8 |
5a21b665
DV
11895 MI_SRM_LRM_GLOBAL_GTT);
11896 else
b5321f30 11897 intel_ring_emit(ring, MI_STORE_REGISTER_MEM |
5a21b665 11898 MI_SRM_LRM_GLOBAL_GTT);
b5321f30 11899 intel_ring_emit_reg(ring, DERRMR);
bde13ebd
CW
11900 intel_ring_emit(ring,
11901 i915_ggtt_offset(req->engine->scratch) + 256);
5a21b665 11902 if (IS_GEN8(dev)) {
b5321f30
CW
11903 intel_ring_emit(ring, 0);
11904 intel_ring_emit(ring, MI_NOOP);
5a21b665
DV
11905 }
11906 }
11907
b5321f30 11908 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
72618ebf
VS
11909 intel_ring_emit(ring, fb->pitches[0] |
11910 intel_fb_modifier_to_tiling(fb->modifier[0]));
b5321f30
CW
11911 intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11912 intel_ring_emit(ring, (MI_NOOP));
5a21b665
DV
11913
11914 return 0;
11915}
11916
11917static bool use_mmio_flip(struct intel_engine_cs *engine,
11918 struct drm_i915_gem_object *obj)
11919{
c37efb99
CW
11920 struct reservation_object *resv;
11921
5a21b665
DV
11922 /*
11923 * This is not being used for older platforms, because
11924 * non-availability of flip done interrupt forces us to use
11925 * CS flips. Older platforms derive flip done using some clever
11926 * tricks involving the flip_pending status bits and vblank irqs.
11927 * So using MMIO flips there would disrupt this mechanism.
11928 */
11929
11930 if (engine == NULL)
11931 return true;
11932
11933 if (INTEL_GEN(engine->i915) < 5)
11934 return false;
11935
11936 if (i915.use_mmio_flip < 0)
11937 return false;
11938 else if (i915.use_mmio_flip > 0)
11939 return true;
11940 else if (i915.enable_execlists)
11941 return true;
c37efb99
CW
11942
11943 resv = i915_gem_object_get_dmabuf_resv(obj);
11944 if (resv && !reservation_object_test_signaled_rcu(resv, false))
5a21b665 11945 return true;
c37efb99 11946
d72d908b
CW
11947 return engine != i915_gem_active_get_engine(&obj->last_write,
11948 &obj->base.dev->struct_mutex);
5a21b665
DV
11949}
11950
11951static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
11952 unsigned int rotation,
11953 struct intel_flip_work *work)
11954{
11955 struct drm_device *dev = intel_crtc->base.dev;
fac5e23e 11956 struct drm_i915_private *dev_priv = to_i915(dev);
5a21b665
DV
11957 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11958 const enum pipe pipe = intel_crtc->pipe;
d2196774 11959 u32 ctl, stride = skl_plane_stride(fb, 0, rotation);
5a21b665
DV
11960
11961 ctl = I915_READ(PLANE_CTL(pipe, 0));
11962 ctl &= ~PLANE_CTL_TILED_MASK;
11963 switch (fb->modifier[0]) {
11964 case DRM_FORMAT_MOD_NONE:
11965 break;
11966 case I915_FORMAT_MOD_X_TILED:
11967 ctl |= PLANE_CTL_TILED_X;
11968 break;
11969 case I915_FORMAT_MOD_Y_TILED:
11970 ctl |= PLANE_CTL_TILED_Y;
11971 break;
11972 case I915_FORMAT_MOD_Yf_TILED:
11973 ctl |= PLANE_CTL_TILED_YF;
11974 break;
11975 default:
11976 MISSING_CASE(fb->modifier[0]);
11977 }
11978
5a21b665
DV
11979 /*
11980 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11981 * PLANE_SURF updates, the update is then guaranteed to be atomic.
11982 */
11983 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11984 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11985
11986 I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
11987 POSTING_READ(PLANE_SURF(pipe, 0));
11988}
11989
11990static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
11991 struct intel_flip_work *work)
11992{
11993 struct drm_device *dev = intel_crtc->base.dev;
fac5e23e 11994 struct drm_i915_private *dev_priv = to_i915(dev);
72618ebf 11995 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
5a21b665
DV
11996 i915_reg_t reg = DSPCNTR(intel_crtc->plane);
11997 u32 dspcntr;
11998
11999 dspcntr = I915_READ(reg);
12000
72618ebf 12001 if (fb->modifier[0] == I915_FORMAT_MOD_X_TILED)
5a21b665
DV
12002 dspcntr |= DISPPLANE_TILED;
12003 else
12004 dspcntr &= ~DISPPLANE_TILED;
12005
12006 I915_WRITE(reg, dspcntr);
12007
12008 I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
12009 POSTING_READ(DSPSURF(intel_crtc->plane));
12010}
12011
12012static void intel_mmio_flip_work_func(struct work_struct *w)
12013{
12014 struct intel_flip_work *work =
12015 container_of(w, struct intel_flip_work, mmio_work);
12016 struct intel_crtc *crtc = to_intel_crtc(work->crtc);
12017 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12018 struct intel_framebuffer *intel_fb =
12019 to_intel_framebuffer(crtc->base.primary->fb);
12020 struct drm_i915_gem_object *obj = intel_fb->obj;
c37efb99 12021 struct reservation_object *resv;
5a21b665
DV
12022
12023 if (work->flip_queued_req)
776f3236 12024 WARN_ON(i915_wait_request(work->flip_queued_req,
ea746f36 12025 0, NULL, NO_WAITBOOST));
5a21b665
DV
12026
12027 /* For framebuffer backed by dmabuf, wait for fence */
c37efb99
CW
12028 resv = i915_gem_object_get_dmabuf_resv(obj);
12029 if (resv)
12030 WARN_ON(reservation_object_wait_timeout_rcu(resv, false, false,
5a21b665
DV
12031 MAX_SCHEDULE_TIMEOUT) < 0);
12032
12033 intel_pipe_update_start(crtc);
12034
12035 if (INTEL_GEN(dev_priv) >= 9)
12036 skl_do_mmio_flip(crtc, work->rotation, work);
12037 else
12038 /* use_mmio_flip() retricts MMIO flips to ilk+ */
12039 ilk_do_mmio_flip(crtc, work);
12040
12041 intel_pipe_update_end(crtc, work);
12042}
12043
12044static int intel_default_queue_flip(struct drm_device *dev,
12045 struct drm_crtc *crtc,
12046 struct drm_framebuffer *fb,
12047 struct drm_i915_gem_object *obj,
12048 struct drm_i915_gem_request *req,
12049 uint32_t flags)
12050{
12051 return -ENODEV;
12052}
12053
12054static bool __pageflip_stall_check_cs(struct drm_i915_private *dev_priv,
12055 struct intel_crtc *intel_crtc,
12056 struct intel_flip_work *work)
12057{
12058 u32 addr, vblank;
12059
12060 if (!atomic_read(&work->pending))
12061 return false;
12062
12063 smp_rmb();
12064
12065 vblank = intel_crtc_get_vblank_counter(intel_crtc);
12066 if (work->flip_ready_vblank == 0) {
12067 if (work->flip_queued_req &&
f69a02c9 12068 !i915_gem_request_completed(work->flip_queued_req))
5a21b665
DV
12069 return false;
12070
12071 work->flip_ready_vblank = vblank;
12072 }
12073
12074 if (vblank - work->flip_ready_vblank < 3)
12075 return false;
12076
12077 /* Potential stall - if we see that the flip has happened,
12078 * assume a missed interrupt. */
12079 if (INTEL_GEN(dev_priv) >= 4)
12080 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
12081 else
12082 addr = I915_READ(DSPADDR(intel_crtc->plane));
12083
12084 /* There is a potential issue here with a false positive after a flip
12085 * to the same address. We could address this by checking for a
12086 * non-incrementing frame counter.
12087 */
12088 return addr == work->gtt_offset;
12089}
12090
12091void intel_check_page_flip(struct drm_i915_private *dev_priv, int pipe)
12092{
91c8a326 12093 struct drm_device *dev = &dev_priv->drm;
5a21b665
DV
12094 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
12095 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12096 struct intel_flip_work *work;
12097
12098 WARN_ON(!in_interrupt());
12099
12100 if (crtc == NULL)
12101 return;
12102
12103 spin_lock(&dev->event_lock);
12104 work = intel_crtc->flip_work;
12105
12106 if (work != NULL && !is_mmio_work(work) &&
12107 __pageflip_stall_check_cs(dev_priv, intel_crtc, work)) {
12108 WARN_ONCE(1,
12109 "Kicking stuck page flip: queued at %d, now %d\n",
12110 work->flip_queued_vblank, intel_crtc_get_vblank_counter(intel_crtc));
12111 page_flip_completed(intel_crtc);
12112 work = NULL;
12113 }
12114
12115 if (work != NULL && !is_mmio_work(work) &&
12116 intel_crtc_get_vblank_counter(intel_crtc) - work->flip_queued_vblank > 1)
12117 intel_queue_rps_boost_for_request(work->flip_queued_req);
12118 spin_unlock(&dev->event_lock);
12119}
12120
12121static int intel_crtc_page_flip(struct drm_crtc *crtc,
12122 struct drm_framebuffer *fb,
12123 struct drm_pending_vblank_event *event,
12124 uint32_t page_flip_flags)
12125{
12126 struct drm_device *dev = crtc->dev;
fac5e23e 12127 struct drm_i915_private *dev_priv = to_i915(dev);
5a21b665
DV
12128 struct drm_framebuffer *old_fb = crtc->primary->fb;
12129 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12130 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12131 struct drm_plane *primary = crtc->primary;
12132 enum pipe pipe = intel_crtc->pipe;
12133 struct intel_flip_work *work;
12134 struct intel_engine_cs *engine;
12135 bool mmio_flip;
8e637178 12136 struct drm_i915_gem_request *request;
058d88c4 12137 struct i915_vma *vma;
5a21b665
DV
12138 int ret;
12139
12140 /*
12141 * drm_mode_page_flip_ioctl() should already catch this, but double
12142 * check to be safe. In the future we may enable pageflipping from
12143 * a disabled primary plane.
12144 */
12145 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
12146 return -EBUSY;
12147
12148 /* Can't change pixel format via MI display flips. */
12149 if (fb->pixel_format != crtc->primary->fb->pixel_format)
12150 return -EINVAL;
12151
12152 /*
12153 * TILEOFF/LINOFF registers can't be changed via MI display flips.
12154 * Note that pitch changes could also affect these register.
12155 */
12156 if (INTEL_INFO(dev)->gen > 3 &&
12157 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
12158 fb->pitches[0] != crtc->primary->fb->pitches[0]))
12159 return -EINVAL;
12160
12161 if (i915_terminally_wedged(&dev_priv->gpu_error))
12162 goto out_hang;
12163
12164 work = kzalloc(sizeof(*work), GFP_KERNEL);
12165 if (work == NULL)
12166 return -ENOMEM;
12167
12168 work->event = event;
12169 work->crtc = crtc;
12170 work->old_fb = old_fb;
12171 INIT_WORK(&work->unpin_work, intel_unpin_work_fn);
12172
12173 ret = drm_crtc_vblank_get(crtc);
12174 if (ret)
12175 goto free_work;
12176
12177 /* We borrow the event spin lock for protecting flip_work */
12178 spin_lock_irq(&dev->event_lock);
12179 if (intel_crtc->flip_work) {
12180 /* Before declaring the flip queue wedged, check if
12181 * the hardware completed the operation behind our backs.
12182 */
12183 if (pageflip_finished(intel_crtc, intel_crtc->flip_work)) {
12184 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
12185 page_flip_completed(intel_crtc);
12186 } else {
12187 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
12188 spin_unlock_irq(&dev->event_lock);
12189
12190 drm_crtc_vblank_put(crtc);
12191 kfree(work);
12192 return -EBUSY;
12193 }
12194 }
12195 intel_crtc->flip_work = work;
12196 spin_unlock_irq(&dev->event_lock);
12197
12198 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
12199 flush_workqueue(dev_priv->wq);
12200
12201 /* Reference the objects for the scheduled work. */
12202 drm_framebuffer_reference(work->old_fb);
5a21b665
DV
12203
12204 crtc->primary->fb = fb;
12205 update_state_fb(crtc->primary);
faf68d92 12206
25dc556a 12207 work->pending_flip_obj = i915_gem_object_get(obj);
5a21b665
DV
12208
12209 ret = i915_mutex_lock_interruptible(dev);
12210 if (ret)
12211 goto cleanup;
12212
8af29b0c
CW
12213 intel_crtc->reset_count = i915_reset_count(&dev_priv->gpu_error);
12214 if (i915_reset_in_progress_or_wedged(&dev_priv->gpu_error)) {
5a21b665
DV
12215 ret = -EIO;
12216 goto cleanup;
12217 }
12218
12219 atomic_inc(&intel_crtc->unpin_work_count);
12220
12221 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
12222 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
12223
12224 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
12225 engine = &dev_priv->engine[BCS];
72618ebf 12226 if (fb->modifier[0] != old_fb->modifier[0])
5a21b665
DV
12227 /* vlv: DISPLAY_FLIP fails to change tiling */
12228 engine = NULL;
12229 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
12230 engine = &dev_priv->engine[BCS];
12231 } else if (INTEL_INFO(dev)->gen >= 7) {
d72d908b
CW
12232 engine = i915_gem_active_get_engine(&obj->last_write,
12233 &obj->base.dev->struct_mutex);
5a21b665
DV
12234 if (engine == NULL || engine->id != RCS)
12235 engine = &dev_priv->engine[BCS];
12236 } else {
12237 engine = &dev_priv->engine[RCS];
12238 }
12239
12240 mmio_flip = use_mmio_flip(engine, obj);
12241
058d88c4
CW
12242 vma = intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
12243 if (IS_ERR(vma)) {
12244 ret = PTR_ERR(vma);
5a21b665 12245 goto cleanup_pending;
058d88c4 12246 }
5a21b665 12247
6687c906 12248 work->gtt_offset = intel_fb_gtt_offset(fb, primary->state->rotation);
5a21b665
DV
12249 work->gtt_offset += intel_crtc->dspaddr_offset;
12250 work->rotation = crtc->primary->state->rotation;
12251
1f061316
PZ
12252 /*
12253 * There's the potential that the next frame will not be compatible with
12254 * FBC, so we want to call pre_update() before the actual page flip.
12255 * The problem is that pre_update() caches some information about the fb
12256 * object, so we want to do this only after the object is pinned. Let's
12257 * be on the safe side and do this immediately before scheduling the
12258 * flip.
12259 */
12260 intel_fbc_pre_update(intel_crtc, intel_crtc->config,
12261 to_intel_plane_state(primary->state));
12262
5a21b665
DV
12263 if (mmio_flip) {
12264 INIT_WORK(&work->mmio_work, intel_mmio_flip_work_func);
12265
d72d908b
CW
12266 work->flip_queued_req = i915_gem_active_get(&obj->last_write,
12267 &obj->base.dev->struct_mutex);
5a21b665
DV
12268 schedule_work(&work->mmio_work);
12269 } else {
8e637178
CW
12270 request = i915_gem_request_alloc(engine, engine->last_context);
12271 if (IS_ERR(request)) {
12272 ret = PTR_ERR(request);
12273 goto cleanup_unpin;
12274 }
12275
12276 ret = i915_gem_object_sync(obj, request);
12277 if (ret)
12278 goto cleanup_request;
12279
5a21b665
DV
12280 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
12281 page_flip_flags);
12282 if (ret)
8e637178 12283 goto cleanup_request;
5a21b665
DV
12284
12285 intel_mark_page_flip_active(intel_crtc, work);
12286
8e637178 12287 work->flip_queued_req = i915_gem_request_get(request);
5a21b665
DV
12288 i915_add_request_no_flush(request);
12289 }
12290
12291 i915_gem_track_fb(intel_fb_obj(old_fb), obj,
12292 to_intel_plane(primary)->frontbuffer_bit);
12293 mutex_unlock(&dev->struct_mutex);
12294
5748b6a1 12295 intel_frontbuffer_flip_prepare(to_i915(dev),
5a21b665
DV
12296 to_intel_plane(primary)->frontbuffer_bit);
12297
12298 trace_i915_flip_request(intel_crtc->plane, obj);
12299
12300 return 0;
12301
8e637178
CW
12302cleanup_request:
12303 i915_add_request_no_flush(request);
5a21b665
DV
12304cleanup_unpin:
12305 intel_unpin_fb_obj(fb, crtc->primary->state->rotation);
12306cleanup_pending:
5a21b665
DV
12307 atomic_dec(&intel_crtc->unpin_work_count);
12308 mutex_unlock(&dev->struct_mutex);
12309cleanup:
12310 crtc->primary->fb = old_fb;
12311 update_state_fb(crtc->primary);
12312
34911fd3 12313 i915_gem_object_put_unlocked(obj);
5a21b665
DV
12314 drm_framebuffer_unreference(work->old_fb);
12315
12316 spin_lock_irq(&dev->event_lock);
12317 intel_crtc->flip_work = NULL;
12318 spin_unlock_irq(&dev->event_lock);
12319
12320 drm_crtc_vblank_put(crtc);
12321free_work:
12322 kfree(work);
12323
12324 if (ret == -EIO) {
12325 struct drm_atomic_state *state;
12326 struct drm_plane_state *plane_state;
12327
12328out_hang:
12329 state = drm_atomic_state_alloc(dev);
12330 if (!state)
12331 return -ENOMEM;
12332 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
12333
12334retry:
12335 plane_state = drm_atomic_get_plane_state(state, primary);
12336 ret = PTR_ERR_OR_ZERO(plane_state);
12337 if (!ret) {
12338 drm_atomic_set_fb_for_plane(plane_state, fb);
12339
12340 ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
12341 if (!ret)
12342 ret = drm_atomic_commit(state);
12343 }
12344
12345 if (ret == -EDEADLK) {
12346 drm_modeset_backoff(state->acquire_ctx);
12347 drm_atomic_state_clear(state);
12348 goto retry;
12349 }
12350
12351 if (ret)
12352 drm_atomic_state_free(state);
12353
12354 if (ret == 0 && event) {
12355 spin_lock_irq(&dev->event_lock);
12356 drm_crtc_send_vblank_event(crtc, event);
12357 spin_unlock_irq(&dev->event_lock);
12358 }
12359 }
12360 return ret;
12361}
12362
12363
12364/**
12365 * intel_wm_need_update - Check whether watermarks need updating
12366 * @plane: drm plane
12367 * @state: new plane state
12368 *
12369 * Check current plane state versus the new one to determine whether
12370 * watermarks need to be recalculated.
12371 *
12372 * Returns true or false.
12373 */
12374static bool intel_wm_need_update(struct drm_plane *plane,
12375 struct drm_plane_state *state)
12376{
12377 struct intel_plane_state *new = to_intel_plane_state(state);
12378 struct intel_plane_state *cur = to_intel_plane_state(plane->state);
12379
12380 /* Update watermarks on tiling or size changes. */
936e71e3 12381 if (new->base.visible != cur->base.visible)
5a21b665
DV
12382 return true;
12383
12384 if (!cur->base.fb || !new->base.fb)
12385 return false;
12386
12387 if (cur->base.fb->modifier[0] != new->base.fb->modifier[0] ||
12388 cur->base.rotation != new->base.rotation ||
936e71e3
VS
12389 drm_rect_width(&new->base.src) != drm_rect_width(&cur->base.src) ||
12390 drm_rect_height(&new->base.src) != drm_rect_height(&cur->base.src) ||
12391 drm_rect_width(&new->base.dst) != drm_rect_width(&cur->base.dst) ||
12392 drm_rect_height(&new->base.dst) != drm_rect_height(&cur->base.dst))
5a21b665
DV
12393 return true;
12394
12395 return false;
12396}
12397
12398static bool needs_scaling(struct intel_plane_state *state)
12399{
936e71e3
VS
12400 int src_w = drm_rect_width(&state->base.src) >> 16;
12401 int src_h = drm_rect_height(&state->base.src) >> 16;
12402 int dst_w = drm_rect_width(&state->base.dst);
12403 int dst_h = drm_rect_height(&state->base.dst);
5a21b665
DV
12404
12405 return (src_w != dst_w || src_h != dst_h);
12406}
d21fbe87 12407
da20eabd
ML
12408int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
12409 struct drm_plane_state *plane_state)
12410{
ab1d3a0e 12411 struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
da20eabd
ML
12412 struct drm_crtc *crtc = crtc_state->crtc;
12413 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12414 struct drm_plane *plane = plane_state->plane;
12415 struct drm_device *dev = crtc->dev;
ed4a6a7c 12416 struct drm_i915_private *dev_priv = to_i915(dev);
da20eabd
ML
12417 struct intel_plane_state *old_plane_state =
12418 to_intel_plane_state(plane->state);
da20eabd
ML
12419 bool mode_changed = needs_modeset(crtc_state);
12420 bool was_crtc_enabled = crtc->state->active;
12421 bool is_crtc_enabled = crtc_state->active;
da20eabd
ML
12422 bool turn_off, turn_on, visible, was_visible;
12423 struct drm_framebuffer *fb = plane_state->fb;
78108b7c 12424 int ret;
da20eabd 12425
84114990 12426 if (INTEL_GEN(dev) >= 9 && plane->type != DRM_PLANE_TYPE_CURSOR) {
da20eabd
ML
12427 ret = skl_update_scaler_plane(
12428 to_intel_crtc_state(crtc_state),
12429 to_intel_plane_state(plane_state));
12430 if (ret)
12431 return ret;
12432 }
12433
936e71e3
VS
12434 was_visible = old_plane_state->base.visible;
12435 visible = to_intel_plane_state(plane_state)->base.visible;
da20eabd
ML
12436
12437 if (!was_crtc_enabled && WARN_ON(was_visible))
12438 was_visible = false;
12439
35c08f43
ML
12440 /*
12441 * Visibility is calculated as if the crtc was on, but
12442 * after scaler setup everything depends on it being off
12443 * when the crtc isn't active.
f818ffea
VS
12444 *
12445 * FIXME this is wrong for watermarks. Watermarks should also
12446 * be computed as if the pipe would be active. Perhaps move
12447 * per-plane wm computation to the .check_plane() hook, and
12448 * only combine the results from all planes in the current place?
35c08f43
ML
12449 */
12450 if (!is_crtc_enabled)
936e71e3 12451 to_intel_plane_state(plane_state)->base.visible = visible = false;
da20eabd
ML
12452
12453 if (!was_visible && !visible)
12454 return 0;
12455
e8861675
ML
12456 if (fb != old_plane_state->base.fb)
12457 pipe_config->fb_changed = true;
12458
da20eabd
ML
12459 turn_off = was_visible && (!visible || mode_changed);
12460 turn_on = visible && (!was_visible || mode_changed);
12461
72660ce0 12462 DRM_DEBUG_ATOMIC("[CRTC:%d:%s] has [PLANE:%d:%s] with fb %i\n",
78108b7c
VS
12463 intel_crtc->base.base.id,
12464 intel_crtc->base.name,
72660ce0
VS
12465 plane->base.id, plane->name,
12466 fb ? fb->base.id : -1);
da20eabd 12467
72660ce0
VS
12468 DRM_DEBUG_ATOMIC("[PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n",
12469 plane->base.id, plane->name,
12470 was_visible, visible,
da20eabd
ML
12471 turn_off, turn_on, mode_changed);
12472
caed361d
VS
12473 if (turn_on) {
12474 pipe_config->update_wm_pre = true;
12475
12476 /* must disable cxsr around plane enable/disable */
12477 if (plane->type != DRM_PLANE_TYPE_CURSOR)
12478 pipe_config->disable_cxsr = true;
12479 } else if (turn_off) {
12480 pipe_config->update_wm_post = true;
92826fcd 12481
852eb00d 12482 /* must disable cxsr around plane enable/disable */
e8861675 12483 if (plane->type != DRM_PLANE_TYPE_CURSOR)
ab1d3a0e 12484 pipe_config->disable_cxsr = true;
852eb00d 12485 } else if (intel_wm_need_update(plane, plane_state)) {
caed361d
VS
12486 /* FIXME bollocks */
12487 pipe_config->update_wm_pre = true;
12488 pipe_config->update_wm_post = true;
852eb00d 12489 }
da20eabd 12490
ed4a6a7c 12491 /* Pre-gen9 platforms need two-step watermark updates */
caed361d
VS
12492 if ((pipe_config->update_wm_pre || pipe_config->update_wm_post) &&
12493 INTEL_INFO(dev)->gen < 9 && dev_priv->display.optimize_watermarks)
ed4a6a7c
MR
12494 to_intel_crtc_state(crtc_state)->wm.need_postvbl_update = true;
12495
8be6ca85 12496 if (visible || was_visible)
cd202f69 12497 pipe_config->fb_bits |= to_intel_plane(plane)->frontbuffer_bit;
a9ff8714 12498
31ae71fc
ML
12499 /*
12500 * WaCxSRDisabledForSpriteScaling:ivb
12501 *
12502 * cstate->update_wm was already set above, so this flag will
12503 * take effect when we commit and program watermarks.
12504 */
12505 if (plane->type == DRM_PLANE_TYPE_OVERLAY && IS_IVYBRIDGE(dev) &&
12506 needs_scaling(to_intel_plane_state(plane_state)) &&
12507 !needs_scaling(old_plane_state))
12508 pipe_config->disable_lp_wm = true;
d21fbe87 12509
da20eabd
ML
12510 return 0;
12511}
12512
6d3a1ce7
ML
12513static bool encoders_cloneable(const struct intel_encoder *a,
12514 const struct intel_encoder *b)
12515{
12516 /* masks could be asymmetric, so check both ways */
12517 return a == b || (a->cloneable & (1 << b->type) &&
12518 b->cloneable & (1 << a->type));
12519}
12520
12521static bool check_single_encoder_cloning(struct drm_atomic_state *state,
12522 struct intel_crtc *crtc,
12523 struct intel_encoder *encoder)
12524{
12525 struct intel_encoder *source_encoder;
12526 struct drm_connector *connector;
12527 struct drm_connector_state *connector_state;
12528 int i;
12529
12530 for_each_connector_in_state(state, connector, connector_state, i) {
12531 if (connector_state->crtc != &crtc->base)
12532 continue;
12533
12534 source_encoder =
12535 to_intel_encoder(connector_state->best_encoder);
12536 if (!encoders_cloneable(encoder, source_encoder))
12537 return false;
12538 }
12539
12540 return true;
12541}
12542
6d3a1ce7
ML
12543static int intel_crtc_atomic_check(struct drm_crtc *crtc,
12544 struct drm_crtc_state *crtc_state)
12545{
cf5a15be 12546 struct drm_device *dev = crtc->dev;
fac5e23e 12547 struct drm_i915_private *dev_priv = to_i915(dev);
6d3a1ce7 12548 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
cf5a15be
ML
12549 struct intel_crtc_state *pipe_config =
12550 to_intel_crtc_state(crtc_state);
6d3a1ce7 12551 struct drm_atomic_state *state = crtc_state->state;
4d20cd86 12552 int ret;
6d3a1ce7
ML
12553 bool mode_changed = needs_modeset(crtc_state);
12554
852eb00d 12555 if (mode_changed && !crtc_state->active)
caed361d 12556 pipe_config->update_wm_post = true;
eddfcbcd 12557
ad421372
ML
12558 if (mode_changed && crtc_state->enable &&
12559 dev_priv->display.crtc_compute_clock &&
8106ddbd 12560 !WARN_ON(pipe_config->shared_dpll)) {
ad421372
ML
12561 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
12562 pipe_config);
12563 if (ret)
12564 return ret;
12565 }
12566
82cf435b
LL
12567 if (crtc_state->color_mgmt_changed) {
12568 ret = intel_color_check(crtc, crtc_state);
12569 if (ret)
12570 return ret;
e7852a4b
LL
12571
12572 /*
12573 * Changing color management on Intel hardware is
12574 * handled as part of planes update.
12575 */
12576 crtc_state->planes_changed = true;
82cf435b
LL
12577 }
12578
e435d6e5 12579 ret = 0;
86c8bbbe 12580 if (dev_priv->display.compute_pipe_wm) {
e3bddded 12581 ret = dev_priv->display.compute_pipe_wm(pipe_config);
ed4a6a7c
MR
12582 if (ret) {
12583 DRM_DEBUG_KMS("Target pipe watermarks are invalid\n");
12584 return ret;
12585 }
12586 }
12587
12588 if (dev_priv->display.compute_intermediate_wm &&
12589 !to_intel_atomic_state(state)->skip_intermediate_wm) {
12590 if (WARN_ON(!dev_priv->display.compute_pipe_wm))
12591 return 0;
12592
12593 /*
12594 * Calculate 'intermediate' watermarks that satisfy both the
12595 * old state and the new state. We can program these
12596 * immediately.
12597 */
12598 ret = dev_priv->display.compute_intermediate_wm(crtc->dev,
12599 intel_crtc,
12600 pipe_config);
12601 if (ret) {
12602 DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n");
86c8bbbe 12603 return ret;
ed4a6a7c 12604 }
e3d5457c
VS
12605 } else if (dev_priv->display.compute_intermediate_wm) {
12606 if (HAS_PCH_SPLIT(dev_priv) && INTEL_GEN(dev_priv) < 9)
12607 pipe_config->wm.ilk.intermediate = pipe_config->wm.ilk.optimal;
86c8bbbe
MR
12608 }
12609
e435d6e5
ML
12610 if (INTEL_INFO(dev)->gen >= 9) {
12611 if (mode_changed)
12612 ret = skl_update_scaler_crtc(pipe_config);
12613
12614 if (!ret)
12615 ret = intel_atomic_setup_scalers(dev, intel_crtc,
12616 pipe_config);
12617 }
12618
12619 return ret;
6d3a1ce7
ML
12620}
12621
65b38e0d 12622static const struct drm_crtc_helper_funcs intel_helper_funcs = {
f6e5b160 12623 .mode_set_base_atomic = intel_pipe_set_base_atomic,
5a21b665
DV
12624 .atomic_begin = intel_begin_crtc_commit,
12625 .atomic_flush = intel_finish_crtc_commit,
6d3a1ce7 12626 .atomic_check = intel_crtc_atomic_check,
f6e5b160
CW
12627};
12628
d29b2f9d
ACO
12629static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
12630{
12631 struct intel_connector *connector;
12632
12633 for_each_intel_connector(dev, connector) {
8863dc7f
DV
12634 if (connector->base.state->crtc)
12635 drm_connector_unreference(&connector->base);
12636
d29b2f9d
ACO
12637 if (connector->base.encoder) {
12638 connector->base.state->best_encoder =
12639 connector->base.encoder;
12640 connector->base.state->crtc =
12641 connector->base.encoder->crtc;
8863dc7f
DV
12642
12643 drm_connector_reference(&connector->base);
d29b2f9d
ACO
12644 } else {
12645 connector->base.state->best_encoder = NULL;
12646 connector->base.state->crtc = NULL;
12647 }
12648 }
12649}
12650
050f7aeb 12651static void
eba905b2 12652connected_sink_compute_bpp(struct intel_connector *connector,
5cec258b 12653 struct intel_crtc_state *pipe_config)
050f7aeb
DV
12654{
12655 int bpp = pipe_config->pipe_bpp;
12656
12657 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
12658 connector->base.base.id,
c23cc417 12659 connector->base.name);
050f7aeb
DV
12660
12661 /* Don't use an invalid EDID bpc value */
12662 if (connector->base.display_info.bpc &&
12663 connector->base.display_info.bpc * 3 < bpp) {
12664 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
12665 bpp, connector->base.display_info.bpc*3);
12666 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
12667 }
12668
196f954e
MK
12669 /* Clamp bpp to 8 on screens without EDID 1.4 */
12670 if (connector->base.display_info.bpc == 0 && bpp > 24) {
12671 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
12672 bpp);
12673 pipe_config->pipe_bpp = 24;
050f7aeb
DV
12674 }
12675}
12676
4e53c2e0 12677static int
050f7aeb 12678compute_baseline_pipe_bpp(struct intel_crtc *crtc,
5cec258b 12679 struct intel_crtc_state *pipe_config)
4e53c2e0 12680{
050f7aeb 12681 struct drm_device *dev = crtc->base.dev;
1486017f 12682 struct drm_atomic_state *state;
da3ced29
ACO
12683 struct drm_connector *connector;
12684 struct drm_connector_state *connector_state;
1486017f 12685 int bpp, i;
4e53c2e0 12686
666a4537 12687 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)))
4e53c2e0 12688 bpp = 10*3;
d328c9d7
DV
12689 else if (INTEL_INFO(dev)->gen >= 5)
12690 bpp = 12*3;
12691 else
12692 bpp = 8*3;
12693
4e53c2e0 12694
4e53c2e0
DV
12695 pipe_config->pipe_bpp = bpp;
12696
1486017f
ACO
12697 state = pipe_config->base.state;
12698
4e53c2e0 12699 /* Clamp display bpp to EDID value */
da3ced29
ACO
12700 for_each_connector_in_state(state, connector, connector_state, i) {
12701 if (connector_state->crtc != &crtc->base)
4e53c2e0
DV
12702 continue;
12703
da3ced29
ACO
12704 connected_sink_compute_bpp(to_intel_connector(connector),
12705 pipe_config);
4e53c2e0
DV
12706 }
12707
12708 return bpp;
12709}
12710
644db711
DV
12711static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
12712{
12713 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
12714 "type: 0x%x flags: 0x%x\n",
1342830c 12715 mode->crtc_clock,
644db711
DV
12716 mode->crtc_hdisplay, mode->crtc_hsync_start,
12717 mode->crtc_hsync_end, mode->crtc_htotal,
12718 mode->crtc_vdisplay, mode->crtc_vsync_start,
12719 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
12720}
12721
c0b03411 12722static void intel_dump_pipe_config(struct intel_crtc *crtc,
5cec258b 12723 struct intel_crtc_state *pipe_config,
c0b03411
DV
12724 const char *context)
12725{
6a60cd87
CK
12726 struct drm_device *dev = crtc->base.dev;
12727 struct drm_plane *plane;
12728 struct intel_plane *intel_plane;
12729 struct intel_plane_state *state;
12730 struct drm_framebuffer *fb;
12731
78108b7c
VS
12732 DRM_DEBUG_KMS("[CRTC:%d:%s]%s config %p for pipe %c\n",
12733 crtc->base.base.id, crtc->base.name,
6a60cd87 12734 context, pipe_config, pipe_name(crtc->pipe));
c0b03411 12735
da205630 12736 DRM_DEBUG_KMS("cpu_transcoder: %s\n", transcoder_name(pipe_config->cpu_transcoder));
c0b03411
DV
12737 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
12738 pipe_config->pipe_bpp, pipe_config->dither);
12739 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12740 pipe_config->has_pch_encoder,
12741 pipe_config->fdi_lanes,
12742 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
12743 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
12744 pipe_config->fdi_m_n.tu);
90a6b7b0 12745 DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
37a5650b 12746 intel_crtc_has_dp_encoder(pipe_config),
90a6b7b0 12747 pipe_config->lane_count,
eb14cb74
VS
12748 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
12749 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
12750 pipe_config->dp_m_n.tu);
b95af8be 12751
90a6b7b0 12752 DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
37a5650b 12753 intel_crtc_has_dp_encoder(pipe_config),
90a6b7b0 12754 pipe_config->lane_count,
b95af8be
VK
12755 pipe_config->dp_m2_n2.gmch_m,
12756 pipe_config->dp_m2_n2.gmch_n,
12757 pipe_config->dp_m2_n2.link_m,
12758 pipe_config->dp_m2_n2.link_n,
12759 pipe_config->dp_m2_n2.tu);
12760
55072d19
DV
12761 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12762 pipe_config->has_audio,
12763 pipe_config->has_infoframe);
12764
c0b03411 12765 DRM_DEBUG_KMS("requested mode:\n");
2d112de7 12766 drm_mode_debug_printmodeline(&pipe_config->base.mode);
c0b03411 12767 DRM_DEBUG_KMS("adjusted mode:\n");
2d112de7
ACO
12768 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12769 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
d71b8d4a 12770 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
37327abd
VS
12771 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
12772 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
0ec463d3
TU
12773 DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12774 crtc->num_scalers,
12775 pipe_config->scaler_state.scaler_users,
12776 pipe_config->scaler_state.scaler_id);
c0b03411
DV
12777 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12778 pipe_config->gmch_pfit.control,
12779 pipe_config->gmch_pfit.pgm_ratios,
12780 pipe_config->gmch_pfit.lvds_border_bits);
fd4daa9c 12781 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
c0b03411 12782 pipe_config->pch_pfit.pos,
fd4daa9c
CW
12783 pipe_config->pch_pfit.size,
12784 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
42db64ef 12785 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
cf532bb2 12786 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
6a60cd87 12787
415ff0f6 12788 if (IS_BROXTON(dev)) {
c856052a 12789 DRM_DEBUG_KMS("dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
415ff0f6 12790 "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
c8453338 12791 "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
415ff0f6 12792 pipe_config->dpll_hw_state.ebb0,
05712c15 12793 pipe_config->dpll_hw_state.ebb4,
415ff0f6
TU
12794 pipe_config->dpll_hw_state.pll0,
12795 pipe_config->dpll_hw_state.pll1,
12796 pipe_config->dpll_hw_state.pll2,
12797 pipe_config->dpll_hw_state.pll3,
12798 pipe_config->dpll_hw_state.pll6,
12799 pipe_config->dpll_hw_state.pll8,
05712c15 12800 pipe_config->dpll_hw_state.pll9,
c8453338 12801 pipe_config->dpll_hw_state.pll10,
415ff0f6 12802 pipe_config->dpll_hw_state.pcsdw12);
ef11bdb3 12803 } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
c856052a 12804 DRM_DEBUG_KMS("dpll_hw_state: "
415ff0f6 12805 "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
415ff0f6
TU
12806 pipe_config->dpll_hw_state.ctrl1,
12807 pipe_config->dpll_hw_state.cfgcr1,
12808 pipe_config->dpll_hw_state.cfgcr2);
12809 } else if (HAS_DDI(dev)) {
c856052a 12810 DRM_DEBUG_KMS("dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
00490c22
ML
12811 pipe_config->dpll_hw_state.wrpll,
12812 pipe_config->dpll_hw_state.spll);
415ff0f6
TU
12813 } else {
12814 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12815 "fp0: 0x%x, fp1: 0x%x\n",
12816 pipe_config->dpll_hw_state.dpll,
12817 pipe_config->dpll_hw_state.dpll_md,
12818 pipe_config->dpll_hw_state.fp0,
12819 pipe_config->dpll_hw_state.fp1);
12820 }
12821
6a60cd87
CK
12822 DRM_DEBUG_KMS("planes on this crtc\n");
12823 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12824 intel_plane = to_intel_plane(plane);
12825 if (intel_plane->pipe != crtc->pipe)
12826 continue;
12827
12828 state = to_intel_plane_state(plane->state);
12829 fb = state->base.fb;
12830 if (!fb) {
1d577e02
VS
12831 DRM_DEBUG_KMS("[PLANE:%d:%s] disabled, scaler_id = %d\n",
12832 plane->base.id, plane->name, state->scaler_id);
6a60cd87
CK
12833 continue;
12834 }
12835
1d577e02
VS
12836 DRM_DEBUG_KMS("[PLANE:%d:%s] enabled",
12837 plane->base.id, plane->name);
12838 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = %s",
12839 fb->base.id, fb->width, fb->height,
12840 drm_get_format_name(fb->pixel_format));
12841 DRM_DEBUG_KMS("\tscaler:%d src %dx%d+%d+%d dst %dx%d+%d+%d\n",
12842 state->scaler_id,
936e71e3
VS
12843 state->base.src.x1 >> 16,
12844 state->base.src.y1 >> 16,
12845 drm_rect_width(&state->base.src) >> 16,
12846 drm_rect_height(&state->base.src) >> 16,
12847 state->base.dst.x1, state->base.dst.y1,
12848 drm_rect_width(&state->base.dst),
12849 drm_rect_height(&state->base.dst));
6a60cd87 12850 }
c0b03411
DV
12851}
12852
5448a00d 12853static bool check_digital_port_conflicts(struct drm_atomic_state *state)
00f0b378 12854{
5448a00d 12855 struct drm_device *dev = state->dev;
da3ced29 12856 struct drm_connector *connector;
00f0b378 12857 unsigned int used_ports = 0;
477321e0 12858 unsigned int used_mst_ports = 0;
00f0b378
VS
12859
12860 /*
12861 * Walk the connector list instead of the encoder
12862 * list to detect the problem on ddi platforms
12863 * where there's just one encoder per digital port.
12864 */
0bff4858
VS
12865 drm_for_each_connector(connector, dev) {
12866 struct drm_connector_state *connector_state;
12867 struct intel_encoder *encoder;
12868
12869 connector_state = drm_atomic_get_existing_connector_state(state, connector);
12870 if (!connector_state)
12871 connector_state = connector->state;
12872
5448a00d 12873 if (!connector_state->best_encoder)
00f0b378
VS
12874 continue;
12875
5448a00d
ACO
12876 encoder = to_intel_encoder(connector_state->best_encoder);
12877
12878 WARN_ON(!connector_state->crtc);
00f0b378
VS
12879
12880 switch (encoder->type) {
12881 unsigned int port_mask;
12882 case INTEL_OUTPUT_UNKNOWN:
12883 if (WARN_ON(!HAS_DDI(dev)))
12884 break;
cca0502b 12885 case INTEL_OUTPUT_DP:
00f0b378
VS
12886 case INTEL_OUTPUT_HDMI:
12887 case INTEL_OUTPUT_EDP:
12888 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12889
12890 /* the same port mustn't appear more than once */
12891 if (used_ports & port_mask)
12892 return false;
12893
12894 used_ports |= port_mask;
477321e0
VS
12895 break;
12896 case INTEL_OUTPUT_DP_MST:
12897 used_mst_ports |=
12898 1 << enc_to_mst(&encoder->base)->primary->port;
12899 break;
00f0b378
VS
12900 default:
12901 break;
12902 }
12903 }
12904
477321e0
VS
12905 /* can't mix MST and SST/HDMI on the same port */
12906 if (used_ports & used_mst_ports)
12907 return false;
12908
00f0b378
VS
12909 return true;
12910}
12911
83a57153
ACO
12912static void
12913clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12914{
12915 struct drm_crtc_state tmp_state;
663a3640 12916 struct intel_crtc_scaler_state scaler_state;
4978cc93 12917 struct intel_dpll_hw_state dpll_hw_state;
8106ddbd 12918 struct intel_shared_dpll *shared_dpll;
c4e2d043 12919 bool force_thru;
83a57153 12920
7546a384
ACO
12921 /* FIXME: before the switch to atomic started, a new pipe_config was
12922 * kzalloc'd. Code that depends on any field being zero should be
12923 * fixed, so that the crtc_state can be safely duplicated. For now,
12924 * only fields that are know to not cause problems are preserved. */
12925
83a57153 12926 tmp_state = crtc_state->base;
663a3640 12927 scaler_state = crtc_state->scaler_state;
4978cc93
ACO
12928 shared_dpll = crtc_state->shared_dpll;
12929 dpll_hw_state = crtc_state->dpll_hw_state;
c4e2d043 12930 force_thru = crtc_state->pch_pfit.force_thru;
4978cc93 12931
83a57153 12932 memset(crtc_state, 0, sizeof *crtc_state);
4978cc93 12933
83a57153 12934 crtc_state->base = tmp_state;
663a3640 12935 crtc_state->scaler_state = scaler_state;
4978cc93
ACO
12936 crtc_state->shared_dpll = shared_dpll;
12937 crtc_state->dpll_hw_state = dpll_hw_state;
c4e2d043 12938 crtc_state->pch_pfit.force_thru = force_thru;
83a57153
ACO
12939}
12940
548ee15b 12941static int
b8cecdf5 12942intel_modeset_pipe_config(struct drm_crtc *crtc,
b359283a 12943 struct intel_crtc_state *pipe_config)
ee7b9f93 12944{
b359283a 12945 struct drm_atomic_state *state = pipe_config->base.state;
7758a113 12946 struct intel_encoder *encoder;
da3ced29 12947 struct drm_connector *connector;
0b901879 12948 struct drm_connector_state *connector_state;
d328c9d7 12949 int base_bpp, ret = -EINVAL;
0b901879 12950 int i;
e29c22c0 12951 bool retry = true;
ee7b9f93 12952
83a57153 12953 clear_intel_crtc_state(pipe_config);
7758a113 12954
e143a21c
DV
12955 pipe_config->cpu_transcoder =
12956 (enum transcoder) to_intel_crtc(crtc)->pipe;
b8cecdf5 12957
2960bc9c
ID
12958 /*
12959 * Sanitize sync polarity flags based on requested ones. If neither
12960 * positive or negative polarity is requested, treat this as meaning
12961 * negative polarity.
12962 */
2d112de7 12963 if (!(pipe_config->base.adjusted_mode.flags &
2960bc9c 12964 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
2d112de7 12965 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
2960bc9c 12966
2d112de7 12967 if (!(pipe_config->base.adjusted_mode.flags &
2960bc9c 12968 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
2d112de7 12969 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
2960bc9c 12970
d328c9d7
DV
12971 base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12972 pipe_config);
12973 if (base_bpp < 0)
4e53c2e0
DV
12974 goto fail;
12975
e41a56be
VS
12976 /*
12977 * Determine the real pipe dimensions. Note that stereo modes can
12978 * increase the actual pipe size due to the frame doubling and
12979 * insertion of additional space for blanks between the frame. This
12980 * is stored in the crtc timings. We use the requested mode to do this
12981 * computation to clearly distinguish it from the adjusted mode, which
12982 * can be changed by the connectors in the below retry loop.
12983 */
2d112de7 12984 drm_crtc_get_hv_timing(&pipe_config->base.mode,
ecb7e16b
GP
12985 &pipe_config->pipe_src_w,
12986 &pipe_config->pipe_src_h);
e41a56be 12987
253c84c8
VS
12988 for_each_connector_in_state(state, connector, connector_state, i) {
12989 if (connector_state->crtc != crtc)
12990 continue;
12991
12992 encoder = to_intel_encoder(connector_state->best_encoder);
12993
e25148d0
VS
12994 if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) {
12995 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
12996 goto fail;
12997 }
12998
253c84c8
VS
12999 /*
13000 * Determine output_types before calling the .compute_config()
13001 * hooks so that the hooks can use this information safely.
13002 */
13003 pipe_config->output_types |= 1 << encoder->type;
13004 }
13005
e29c22c0 13006encoder_retry:
ef1b460d 13007 /* Ensure the port clock defaults are reset when retrying. */
ff9a6750 13008 pipe_config->port_clock = 0;
ef1b460d 13009 pipe_config->pixel_multiplier = 1;
ff9a6750 13010
135c81b8 13011 /* Fill in default crtc timings, allow encoders to overwrite them. */
2d112de7
ACO
13012 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
13013 CRTC_STEREO_DOUBLE);
135c81b8 13014
7758a113
DV
13015 /* Pass our mode to the connectors and the CRTC to give them a chance to
13016 * adjust it according to limitations or connector properties, and also
13017 * a chance to reject the mode entirely.
47f1c6c9 13018 */
da3ced29 13019 for_each_connector_in_state(state, connector, connector_state, i) {
0b901879 13020 if (connector_state->crtc != crtc)
7758a113 13021 continue;
7ae89233 13022
0b901879
ACO
13023 encoder = to_intel_encoder(connector_state->best_encoder);
13024
0a478c27 13025 if (!(encoder->compute_config(encoder, pipe_config, connector_state))) {
efea6e8e 13026 DRM_DEBUG_KMS("Encoder config failure\n");
7758a113
DV
13027 goto fail;
13028 }
ee7b9f93 13029 }
47f1c6c9 13030
ff9a6750
DV
13031 /* Set default port clock if not overwritten by the encoder. Needs to be
13032 * done afterwards in case the encoder adjusts the mode. */
13033 if (!pipe_config->port_clock)
2d112de7 13034 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
241bfc38 13035 * pipe_config->pixel_multiplier;
ff9a6750 13036
a43f6e0f 13037 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
e29c22c0 13038 if (ret < 0) {
7758a113
DV
13039 DRM_DEBUG_KMS("CRTC fixup failed\n");
13040 goto fail;
ee7b9f93 13041 }
e29c22c0
DV
13042
13043 if (ret == RETRY) {
13044 if (WARN(!retry, "loop in pipe configuration computation\n")) {
13045 ret = -EINVAL;
13046 goto fail;
13047 }
13048
13049 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
13050 retry = false;
13051 goto encoder_retry;
13052 }
13053
e8fa4270
DV
13054 /* Dithering seems to not pass-through bits correctly when it should, so
13055 * only enable it on 6bpc panels. */
13056 pipe_config->dither = pipe_config->pipe_bpp == 6*3;
62f0ace5 13057 DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
d328c9d7 13058 base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
4e53c2e0 13059
7758a113 13060fail:
548ee15b 13061 return ret;
ee7b9f93 13062}
47f1c6c9 13063
ea9d758d 13064static void
4740b0f2 13065intel_modeset_update_crtc_state(struct drm_atomic_state *state)
ea9d758d 13066{
0a9ab303
ACO
13067 struct drm_crtc *crtc;
13068 struct drm_crtc_state *crtc_state;
8a75d157 13069 int i;
ea9d758d 13070
7668851f 13071 /* Double check state. */
8a75d157 13072 for_each_crtc_in_state(state, crtc, crtc_state, i) {
3cb480bc 13073 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
fc467a22
ML
13074
13075 /* Update hwmode for vblank functions */
13076 if (crtc->state->active)
13077 crtc->hwmode = crtc->state->adjusted_mode;
13078 else
13079 crtc->hwmode.crtc_clock = 0;
61067a5e
ML
13080
13081 /*
13082 * Update legacy state to satisfy fbc code. This can
13083 * be removed when fbc uses the atomic state.
13084 */
13085 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
13086 struct drm_plane_state *plane_state = crtc->primary->state;
13087
13088 crtc->primary->fb = plane_state->fb;
13089 crtc->x = plane_state->src_x >> 16;
13090 crtc->y = plane_state->src_y >> 16;
13091 }
ea9d758d 13092 }
ea9d758d
DV
13093}
13094
3bd26263 13095static bool intel_fuzzy_clock_check(int clock1, int clock2)
f1f644dc 13096{
3bd26263 13097 int diff;
f1f644dc
JB
13098
13099 if (clock1 == clock2)
13100 return true;
13101
13102 if (!clock1 || !clock2)
13103 return false;
13104
13105 diff = abs(clock1 - clock2);
13106
13107 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
13108 return true;
13109
13110 return false;
13111}
13112
cfb23ed6
ML
13113static bool
13114intel_compare_m_n(unsigned int m, unsigned int n,
13115 unsigned int m2, unsigned int n2,
13116 bool exact)
13117{
13118 if (m == m2 && n == n2)
13119 return true;
13120
13121 if (exact || !m || !n || !m2 || !n2)
13122 return false;
13123
13124 BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
13125
31d10b57
ML
13126 if (n > n2) {
13127 while (n > n2) {
cfb23ed6
ML
13128 m2 <<= 1;
13129 n2 <<= 1;
13130 }
31d10b57
ML
13131 } else if (n < n2) {
13132 while (n < n2) {
cfb23ed6
ML
13133 m <<= 1;
13134 n <<= 1;
13135 }
13136 }
13137
31d10b57
ML
13138 if (n != n2)
13139 return false;
13140
13141 return intel_fuzzy_clock_check(m, m2);
cfb23ed6
ML
13142}
13143
13144static bool
13145intel_compare_link_m_n(const struct intel_link_m_n *m_n,
13146 struct intel_link_m_n *m2_n2,
13147 bool adjust)
13148{
13149 if (m_n->tu == m2_n2->tu &&
13150 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
13151 m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
13152 intel_compare_m_n(m_n->link_m, m_n->link_n,
13153 m2_n2->link_m, m2_n2->link_n, !adjust)) {
13154 if (adjust)
13155 *m2_n2 = *m_n;
13156
13157 return true;
13158 }
13159
13160 return false;
13161}
13162
0e8ffe1b 13163static bool
2fa2fe9a 13164intel_pipe_config_compare(struct drm_device *dev,
5cec258b 13165 struct intel_crtc_state *current_config,
cfb23ed6
ML
13166 struct intel_crtc_state *pipe_config,
13167 bool adjust)
0e8ffe1b 13168{
cfb23ed6
ML
13169 bool ret = true;
13170
13171#define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
13172 do { \
13173 if (!adjust) \
13174 DRM_ERROR(fmt, ##__VA_ARGS__); \
13175 else \
13176 DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
13177 } while (0)
13178
66e985c0
DV
13179#define PIPE_CONF_CHECK_X(name) \
13180 if (current_config->name != pipe_config->name) { \
cfb23ed6 13181 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
66e985c0
DV
13182 "(expected 0x%08x, found 0x%08x)\n", \
13183 current_config->name, \
13184 pipe_config->name); \
cfb23ed6 13185 ret = false; \
66e985c0
DV
13186 }
13187
08a24034
DV
13188#define PIPE_CONF_CHECK_I(name) \
13189 if (current_config->name != pipe_config->name) { \
cfb23ed6 13190 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
08a24034
DV
13191 "(expected %i, found %i)\n", \
13192 current_config->name, \
13193 pipe_config->name); \
cfb23ed6
ML
13194 ret = false; \
13195 }
13196
8106ddbd
ACO
13197#define PIPE_CONF_CHECK_P(name) \
13198 if (current_config->name != pipe_config->name) { \
13199 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13200 "(expected %p, found %p)\n", \
13201 current_config->name, \
13202 pipe_config->name); \
13203 ret = false; \
13204 }
13205
cfb23ed6
ML
13206#define PIPE_CONF_CHECK_M_N(name) \
13207 if (!intel_compare_link_m_n(&current_config->name, \
13208 &pipe_config->name,\
13209 adjust)) { \
13210 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13211 "(expected tu %i gmch %i/%i link %i/%i, " \
13212 "found tu %i, gmch %i/%i link %i/%i)\n", \
13213 current_config->name.tu, \
13214 current_config->name.gmch_m, \
13215 current_config->name.gmch_n, \
13216 current_config->name.link_m, \
13217 current_config->name.link_n, \
13218 pipe_config->name.tu, \
13219 pipe_config->name.gmch_m, \
13220 pipe_config->name.gmch_n, \
13221 pipe_config->name.link_m, \
13222 pipe_config->name.link_n); \
13223 ret = false; \
13224 }
13225
55c561a7
DV
13226/* This is required for BDW+ where there is only one set of registers for
13227 * switching between high and low RR.
13228 * This macro can be used whenever a comparison has to be made between one
13229 * hw state and multiple sw state variables.
13230 */
cfb23ed6
ML
13231#define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
13232 if (!intel_compare_link_m_n(&current_config->name, \
13233 &pipe_config->name, adjust) && \
13234 !intel_compare_link_m_n(&current_config->alt_name, \
13235 &pipe_config->name, adjust)) { \
13236 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13237 "(expected tu %i gmch %i/%i link %i/%i, " \
13238 "or tu %i gmch %i/%i link %i/%i, " \
13239 "found tu %i, gmch %i/%i link %i/%i)\n", \
13240 current_config->name.tu, \
13241 current_config->name.gmch_m, \
13242 current_config->name.gmch_n, \
13243 current_config->name.link_m, \
13244 current_config->name.link_n, \
13245 current_config->alt_name.tu, \
13246 current_config->alt_name.gmch_m, \
13247 current_config->alt_name.gmch_n, \
13248 current_config->alt_name.link_m, \
13249 current_config->alt_name.link_n, \
13250 pipe_config->name.tu, \
13251 pipe_config->name.gmch_m, \
13252 pipe_config->name.gmch_n, \
13253 pipe_config->name.link_m, \
13254 pipe_config->name.link_n); \
13255 ret = false; \
88adfff1
DV
13256 }
13257
1bd1bd80
DV
13258#define PIPE_CONF_CHECK_FLAGS(name, mask) \
13259 if ((current_config->name ^ pipe_config->name) & (mask)) { \
cfb23ed6 13260 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
1bd1bd80
DV
13261 "(expected %i, found %i)\n", \
13262 current_config->name & (mask), \
13263 pipe_config->name & (mask)); \
cfb23ed6 13264 ret = false; \
1bd1bd80
DV
13265 }
13266
5e550656
VS
13267#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
13268 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
cfb23ed6 13269 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
5e550656
VS
13270 "(expected %i, found %i)\n", \
13271 current_config->name, \
13272 pipe_config->name); \
cfb23ed6 13273 ret = false; \
5e550656
VS
13274 }
13275
bb760063
DV
13276#define PIPE_CONF_QUIRK(quirk) \
13277 ((current_config->quirks | pipe_config->quirks) & (quirk))
13278
eccb140b
DV
13279 PIPE_CONF_CHECK_I(cpu_transcoder);
13280
08a24034
DV
13281 PIPE_CONF_CHECK_I(has_pch_encoder);
13282 PIPE_CONF_CHECK_I(fdi_lanes);
cfb23ed6 13283 PIPE_CONF_CHECK_M_N(fdi_m_n);
08a24034 13284
90a6b7b0 13285 PIPE_CONF_CHECK_I(lane_count);
95a7a2ae 13286 PIPE_CONF_CHECK_X(lane_lat_optim_mask);
b95af8be
VK
13287
13288 if (INTEL_INFO(dev)->gen < 8) {
cfb23ed6
ML
13289 PIPE_CONF_CHECK_M_N(dp_m_n);
13290
cfb23ed6
ML
13291 if (current_config->has_drrs)
13292 PIPE_CONF_CHECK_M_N(dp_m2_n2);
13293 } else
13294 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
eb14cb74 13295
253c84c8 13296 PIPE_CONF_CHECK_X(output_types);
a65347ba 13297
2d112de7
ACO
13298 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
13299 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
13300 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
13301 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
13302 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
13303 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
1bd1bd80 13304
2d112de7
ACO
13305 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
13306 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
13307 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
13308 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
13309 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
13310 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
1bd1bd80 13311
c93f54cf 13312 PIPE_CONF_CHECK_I(pixel_multiplier);
6897b4b5 13313 PIPE_CONF_CHECK_I(has_hdmi_sink);
b5a9fa09 13314 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
666a4537 13315 IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
b5a9fa09 13316 PIPE_CONF_CHECK_I(limited_color_range);
e43823ec 13317 PIPE_CONF_CHECK_I(has_infoframe);
6c49f241 13318
9ed109a7
DV
13319 PIPE_CONF_CHECK_I(has_audio);
13320
2d112de7 13321 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
1bd1bd80
DV
13322 DRM_MODE_FLAG_INTERLACE);
13323
bb760063 13324 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
2d112de7 13325 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 13326 DRM_MODE_FLAG_PHSYNC);
2d112de7 13327 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 13328 DRM_MODE_FLAG_NHSYNC);
2d112de7 13329 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 13330 DRM_MODE_FLAG_PVSYNC);
2d112de7 13331 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063
DV
13332 DRM_MODE_FLAG_NVSYNC);
13333 }
045ac3b5 13334
333b8ca8 13335 PIPE_CONF_CHECK_X(gmch_pfit.control);
e2ff2d4a
DV
13336 /* pfit ratios are autocomputed by the hw on gen4+ */
13337 if (INTEL_INFO(dev)->gen < 4)
7f7d8dd6 13338 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
333b8ca8 13339 PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
9953599b 13340
bfd16b2a
ML
13341 if (!adjust) {
13342 PIPE_CONF_CHECK_I(pipe_src_w);
13343 PIPE_CONF_CHECK_I(pipe_src_h);
13344
13345 PIPE_CONF_CHECK_I(pch_pfit.enabled);
13346 if (current_config->pch_pfit.enabled) {
13347 PIPE_CONF_CHECK_X(pch_pfit.pos);
13348 PIPE_CONF_CHECK_X(pch_pfit.size);
13349 }
2fa2fe9a 13350
7aefe2b5
ML
13351 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
13352 }
a1b2278e 13353
e59150dc
JB
13354 /* BDW+ don't expose a synchronous way to read the state */
13355 if (IS_HASWELL(dev))
13356 PIPE_CONF_CHECK_I(ips_enabled);
42db64ef 13357
282740f7
VS
13358 PIPE_CONF_CHECK_I(double_wide);
13359
8106ddbd 13360 PIPE_CONF_CHECK_P(shared_dpll);
66e985c0 13361 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8bcc2795 13362 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
66e985c0
DV
13363 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
13364 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
d452c5b6 13365 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
00490c22 13366 PIPE_CONF_CHECK_X(dpll_hw_state.spll);
3f4cd19f
DL
13367 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
13368 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
13369 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
c0d43d62 13370
47eacbab
VS
13371 PIPE_CONF_CHECK_X(dsi_pll.ctrl);
13372 PIPE_CONF_CHECK_X(dsi_pll.div);
13373
42571aef
VS
13374 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
13375 PIPE_CONF_CHECK_I(pipe_bpp);
13376
2d112de7 13377 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
a9a7e98a 13378 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
5e550656 13379
66e985c0 13380#undef PIPE_CONF_CHECK_X
08a24034 13381#undef PIPE_CONF_CHECK_I
8106ddbd 13382#undef PIPE_CONF_CHECK_P
1bd1bd80 13383#undef PIPE_CONF_CHECK_FLAGS
5e550656 13384#undef PIPE_CONF_CHECK_CLOCK_FUZZY
bb760063 13385#undef PIPE_CONF_QUIRK
cfb23ed6 13386#undef INTEL_ERR_OR_DBG_KMS
88adfff1 13387
cfb23ed6 13388 return ret;
0e8ffe1b
DV
13389}
13390
e3b247da
VS
13391static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
13392 const struct intel_crtc_state *pipe_config)
13393{
13394 if (pipe_config->has_pch_encoder) {
21a727b3 13395 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
e3b247da
VS
13396 &pipe_config->fdi_m_n);
13397 int dotclock = pipe_config->base.adjusted_mode.crtc_clock;
13398
13399 /*
13400 * FDI already provided one idea for the dotclock.
13401 * Yell if the encoder disagrees.
13402 */
13403 WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock),
13404 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
13405 fdi_dotclock, dotclock);
13406 }
13407}
13408
c0ead703
ML
13409static void verify_wm_state(struct drm_crtc *crtc,
13410 struct drm_crtc_state *new_state)
08db6652 13411{
e7c84544 13412 struct drm_device *dev = crtc->dev;
fac5e23e 13413 struct drm_i915_private *dev_priv = to_i915(dev);
08db6652 13414 struct skl_ddb_allocation hw_ddb, *sw_ddb;
e7c84544
ML
13415 struct skl_ddb_entry *hw_entry, *sw_entry;
13416 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13417 const enum pipe pipe = intel_crtc->pipe;
08db6652
DL
13418 int plane;
13419
e7c84544 13420 if (INTEL_INFO(dev)->gen < 9 || !new_state->active)
08db6652
DL
13421 return;
13422
13423 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
13424 sw_ddb = &dev_priv->wm.skl_hw.ddb;
13425
e7c84544
ML
13426 /* planes */
13427 for_each_plane(dev_priv, pipe, plane) {
13428 hw_entry = &hw_ddb.plane[pipe][plane];
13429 sw_entry = &sw_ddb->plane[pipe][plane];
08db6652 13430
e7c84544 13431 if (skl_ddb_entry_equal(hw_entry, sw_entry))
08db6652
DL
13432 continue;
13433
e7c84544
ML
13434 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
13435 "(expected (%u,%u), found (%u,%u))\n",
13436 pipe_name(pipe), plane + 1,
13437 sw_entry->start, sw_entry->end,
13438 hw_entry->start, hw_entry->end);
13439 }
08db6652 13440
27082493
L
13441 /*
13442 * cursor
13443 * If the cursor plane isn't active, we may not have updated it's ddb
13444 * allocation. In that case since the ddb allocation will be updated
13445 * once the plane becomes visible, we can skip this check
13446 */
13447 if (intel_crtc->cursor_addr) {
13448 hw_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
13449 sw_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
13450
13451 if (!skl_ddb_entry_equal(hw_entry, sw_entry)) {
13452 DRM_ERROR("mismatch in DDB state pipe %c cursor "
13453 "(expected (%u,%u), found (%u,%u))\n",
13454 pipe_name(pipe),
13455 sw_entry->start, sw_entry->end,
13456 hw_entry->start, hw_entry->end);
13457 }
08db6652
DL
13458 }
13459}
13460
91d1b4bd 13461static void
c0ead703 13462verify_connector_state(struct drm_device *dev, struct drm_crtc *crtc)
8af6cf88 13463{
35dd3c64 13464 struct drm_connector *connector;
8af6cf88 13465
e7c84544 13466 drm_for_each_connector(connector, dev) {
35dd3c64
ML
13467 struct drm_encoder *encoder = connector->encoder;
13468 struct drm_connector_state *state = connector->state;
ad3c558f 13469
e7c84544
ML
13470 if (state->crtc != crtc)
13471 continue;
13472
5a21b665 13473 intel_connector_verify_state(to_intel_connector(connector));
8af6cf88 13474
ad3c558f 13475 I915_STATE_WARN(state->best_encoder != encoder,
35dd3c64 13476 "connector's atomic encoder doesn't match legacy encoder\n");
8af6cf88 13477 }
91d1b4bd
DV
13478}
13479
13480static void
c0ead703 13481verify_encoder_state(struct drm_device *dev)
91d1b4bd
DV
13482{
13483 struct intel_encoder *encoder;
13484 struct intel_connector *connector;
8af6cf88 13485
b2784e15 13486 for_each_intel_encoder(dev, encoder) {
8af6cf88 13487 bool enabled = false;
4d20cd86 13488 enum pipe pipe;
8af6cf88
DV
13489
13490 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
13491 encoder->base.base.id,
8e329a03 13492 encoder->base.name);
8af6cf88 13493
3a3371ff 13494 for_each_intel_connector(dev, connector) {
4d20cd86 13495 if (connector->base.state->best_encoder != &encoder->base)
8af6cf88
DV
13496 continue;
13497 enabled = true;
ad3c558f
ML
13498
13499 I915_STATE_WARN(connector->base.state->crtc !=
13500 encoder->base.crtc,
13501 "connector's crtc doesn't match encoder crtc\n");
8af6cf88 13502 }
0e32b39c 13503
e2c719b7 13504 I915_STATE_WARN(!!encoder->base.crtc != enabled,
8af6cf88
DV
13505 "encoder's enabled state mismatch "
13506 "(expected %i, found %i)\n",
13507 !!encoder->base.crtc, enabled);
7c60d198
ML
13508
13509 if (!encoder->base.crtc) {
4d20cd86 13510 bool active;
7c60d198 13511
4d20cd86
ML
13512 active = encoder->get_hw_state(encoder, &pipe);
13513 I915_STATE_WARN(active,
13514 "encoder detached but still enabled on pipe %c.\n",
13515 pipe_name(pipe));
7c60d198 13516 }
8af6cf88 13517 }
91d1b4bd
DV
13518}
13519
13520static void
c0ead703
ML
13521verify_crtc_state(struct drm_crtc *crtc,
13522 struct drm_crtc_state *old_crtc_state,
13523 struct drm_crtc_state *new_crtc_state)
91d1b4bd 13524{
e7c84544 13525 struct drm_device *dev = crtc->dev;
fac5e23e 13526 struct drm_i915_private *dev_priv = to_i915(dev);
91d1b4bd 13527 struct intel_encoder *encoder;
e7c84544
ML
13528 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13529 struct intel_crtc_state *pipe_config, *sw_config;
13530 struct drm_atomic_state *old_state;
13531 bool active;
045ac3b5 13532
e7c84544 13533 old_state = old_crtc_state->state;
ec2dc6a0 13534 __drm_atomic_helper_crtc_destroy_state(old_crtc_state);
e7c84544
ML
13535 pipe_config = to_intel_crtc_state(old_crtc_state);
13536 memset(pipe_config, 0, sizeof(*pipe_config));
13537 pipe_config->base.crtc = crtc;
13538 pipe_config->base.state = old_state;
8af6cf88 13539
78108b7c 13540 DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.id, crtc->name);
8af6cf88 13541
e7c84544 13542 active = dev_priv->display.get_pipe_config(intel_crtc, pipe_config);
d62cf62a 13543
e7c84544
ML
13544 /* hw state is inconsistent with the pipe quirk */
13545 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
13546 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
13547 active = new_crtc_state->active;
6c49f241 13548
e7c84544
ML
13549 I915_STATE_WARN(new_crtc_state->active != active,
13550 "crtc active state doesn't match with hw state "
13551 "(expected %i, found %i)\n", new_crtc_state->active, active);
0e8ffe1b 13552
e7c84544
ML
13553 I915_STATE_WARN(intel_crtc->active != new_crtc_state->active,
13554 "transitional active state does not match atomic hw state "
13555 "(expected %i, found %i)\n", new_crtc_state->active, intel_crtc->active);
4d20cd86 13556
e7c84544
ML
13557 for_each_encoder_on_crtc(dev, crtc, encoder) {
13558 enum pipe pipe;
4d20cd86 13559
e7c84544
ML
13560 active = encoder->get_hw_state(encoder, &pipe);
13561 I915_STATE_WARN(active != new_crtc_state->active,
13562 "[ENCODER:%i] active %i with crtc active %i\n",
13563 encoder->base.base.id, active, new_crtc_state->active);
4d20cd86 13564
e7c84544
ML
13565 I915_STATE_WARN(active && intel_crtc->pipe != pipe,
13566 "Encoder connected to wrong pipe %c\n",
13567 pipe_name(pipe));
4d20cd86 13568
253c84c8
VS
13569 if (active) {
13570 pipe_config->output_types |= 1 << encoder->type;
e7c84544 13571 encoder->get_config(encoder, pipe_config);
253c84c8 13572 }
e7c84544 13573 }
53d9f4e9 13574
e7c84544
ML
13575 if (!new_crtc_state->active)
13576 return;
cfb23ed6 13577
e7c84544 13578 intel_pipe_config_sanity_check(dev_priv, pipe_config);
e3b247da 13579
e7c84544
ML
13580 sw_config = to_intel_crtc_state(crtc->state);
13581 if (!intel_pipe_config_compare(dev, sw_config,
13582 pipe_config, false)) {
13583 I915_STATE_WARN(1, "pipe state doesn't match!\n");
13584 intel_dump_pipe_config(intel_crtc, pipe_config,
13585 "[hw state]");
13586 intel_dump_pipe_config(intel_crtc, sw_config,
13587 "[sw state]");
8af6cf88
DV
13588 }
13589}
13590
91d1b4bd 13591static void
c0ead703
ML
13592verify_single_dpll_state(struct drm_i915_private *dev_priv,
13593 struct intel_shared_dpll *pll,
13594 struct drm_crtc *crtc,
13595 struct drm_crtc_state *new_state)
91d1b4bd 13596{
91d1b4bd 13597 struct intel_dpll_hw_state dpll_hw_state;
e7c84544
ML
13598 unsigned crtc_mask;
13599 bool active;
5358901f 13600
e7c84544 13601 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
5358901f 13602
e7c84544 13603 DRM_DEBUG_KMS("%s\n", pll->name);
5358901f 13604
e7c84544 13605 active = pll->funcs.get_hw_state(dev_priv, pll, &dpll_hw_state);
5358901f 13606
e7c84544
ML
13607 if (!(pll->flags & INTEL_DPLL_ALWAYS_ON)) {
13608 I915_STATE_WARN(!pll->on && pll->active_mask,
13609 "pll in active use but not on in sw tracking\n");
13610 I915_STATE_WARN(pll->on && !pll->active_mask,
13611 "pll is on but not used by any active crtc\n");
13612 I915_STATE_WARN(pll->on != active,
13613 "pll on state mismatch (expected %i, found %i)\n",
13614 pll->on, active);
13615 }
5358901f 13616
e7c84544 13617 if (!crtc) {
2dd66ebd 13618 I915_STATE_WARN(pll->active_mask & ~pll->config.crtc_mask,
e7c84544
ML
13619 "more active pll users than references: %x vs %x\n",
13620 pll->active_mask, pll->config.crtc_mask);
5358901f 13621
e7c84544
ML
13622 return;
13623 }
13624
13625 crtc_mask = 1 << drm_crtc_index(crtc);
13626
13627 if (new_state->active)
13628 I915_STATE_WARN(!(pll->active_mask & crtc_mask),
13629 "pll active mismatch (expected pipe %c in active mask 0x%02x)\n",
13630 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
13631 else
13632 I915_STATE_WARN(pll->active_mask & crtc_mask,
13633 "pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n",
13634 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
2dd66ebd 13635
e7c84544
ML
13636 I915_STATE_WARN(!(pll->config.crtc_mask & crtc_mask),
13637 "pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n",
13638 crtc_mask, pll->config.crtc_mask);
66e985c0 13639
e7c84544
ML
13640 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state,
13641 &dpll_hw_state,
13642 sizeof(dpll_hw_state)),
13643 "pll hw state mismatch\n");
13644}
13645
13646static void
c0ead703
ML
13647verify_shared_dpll_state(struct drm_device *dev, struct drm_crtc *crtc,
13648 struct drm_crtc_state *old_crtc_state,
13649 struct drm_crtc_state *new_crtc_state)
e7c84544 13650{
fac5e23e 13651 struct drm_i915_private *dev_priv = to_i915(dev);
e7c84544
ML
13652 struct intel_crtc_state *old_state = to_intel_crtc_state(old_crtc_state);
13653 struct intel_crtc_state *new_state = to_intel_crtc_state(new_crtc_state);
13654
13655 if (new_state->shared_dpll)
c0ead703 13656 verify_single_dpll_state(dev_priv, new_state->shared_dpll, crtc, new_crtc_state);
e7c84544
ML
13657
13658 if (old_state->shared_dpll &&
13659 old_state->shared_dpll != new_state->shared_dpll) {
13660 unsigned crtc_mask = 1 << drm_crtc_index(crtc);
13661 struct intel_shared_dpll *pll = old_state->shared_dpll;
13662
13663 I915_STATE_WARN(pll->active_mask & crtc_mask,
13664 "pll active mismatch (didn't expect pipe %c in active mask)\n",
13665 pipe_name(drm_crtc_index(crtc)));
13666 I915_STATE_WARN(pll->config.crtc_mask & crtc_mask,
13667 "pll enabled crtcs mismatch (found %x in enabled mask)\n",
13668 pipe_name(drm_crtc_index(crtc)));
5358901f 13669 }
8af6cf88
DV
13670}
13671
e7c84544 13672static void
c0ead703 13673intel_modeset_verify_crtc(struct drm_crtc *crtc,
e7c84544
ML
13674 struct drm_crtc_state *old_state,
13675 struct drm_crtc_state *new_state)
13676{
5a21b665
DV
13677 if (!needs_modeset(new_state) &&
13678 !to_intel_crtc_state(new_state)->update_pipe)
13679 return;
13680
c0ead703 13681 verify_wm_state(crtc, new_state);
5a21b665 13682 verify_connector_state(crtc->dev, crtc);
c0ead703
ML
13683 verify_crtc_state(crtc, old_state, new_state);
13684 verify_shared_dpll_state(crtc->dev, crtc, old_state, new_state);
e7c84544
ML
13685}
13686
13687static void
c0ead703 13688verify_disabled_dpll_state(struct drm_device *dev)
e7c84544 13689{
fac5e23e 13690 struct drm_i915_private *dev_priv = to_i915(dev);
e7c84544
ML
13691 int i;
13692
13693 for (i = 0; i < dev_priv->num_shared_dpll; i++)
c0ead703 13694 verify_single_dpll_state(dev_priv, &dev_priv->shared_dplls[i], NULL, NULL);
e7c84544
ML
13695}
13696
13697static void
c0ead703 13698intel_modeset_verify_disabled(struct drm_device *dev)
e7c84544 13699{
c0ead703
ML
13700 verify_encoder_state(dev);
13701 verify_connector_state(dev, NULL);
13702 verify_disabled_dpll_state(dev);
e7c84544
ML
13703}
13704
80715b2f
VS
13705static void update_scanline_offset(struct intel_crtc *crtc)
13706{
13707 struct drm_device *dev = crtc->base.dev;
13708
13709 /*
13710 * The scanline counter increments at the leading edge of hsync.
13711 *
13712 * On most platforms it starts counting from vtotal-1 on the
13713 * first active line. That means the scanline counter value is
13714 * always one less than what we would expect. Ie. just after
13715 * start of vblank, which also occurs at start of hsync (on the
13716 * last active line), the scanline counter will read vblank_start-1.
13717 *
13718 * On gen2 the scanline counter starts counting from 1 instead
13719 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
13720 * to keep the value positive), instead of adding one.
13721 *
13722 * On HSW+ the behaviour of the scanline counter depends on the output
13723 * type. For DP ports it behaves like most other platforms, but on HDMI
13724 * there's an extra 1 line difference. So we need to add two instead of
13725 * one to the value.
13726 */
13727 if (IS_GEN2(dev)) {
124abe07 13728 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
80715b2f
VS
13729 int vtotal;
13730
124abe07
VS
13731 vtotal = adjusted_mode->crtc_vtotal;
13732 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
80715b2f
VS
13733 vtotal /= 2;
13734
13735 crtc->scanline_offset = vtotal - 1;
13736 } else if (HAS_DDI(dev) &&
2d84d2b3 13737 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI)) {
80715b2f
VS
13738 crtc->scanline_offset = 2;
13739 } else
13740 crtc->scanline_offset = 1;
13741}
13742
ad421372 13743static void intel_modeset_clear_plls(struct drm_atomic_state *state)
ed6739ef 13744{
225da59b 13745 struct drm_device *dev = state->dev;
ed6739ef 13746 struct drm_i915_private *dev_priv = to_i915(dev);
ad421372 13747 struct intel_shared_dpll_config *shared_dpll = NULL;
0a9ab303
ACO
13748 struct drm_crtc *crtc;
13749 struct drm_crtc_state *crtc_state;
0a9ab303 13750 int i;
ed6739ef
ACO
13751
13752 if (!dev_priv->display.crtc_compute_clock)
ad421372 13753 return;
ed6739ef 13754
0a9ab303 13755 for_each_crtc_in_state(state, crtc, crtc_state, i) {
fb1a38a9 13756 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8106ddbd
ACO
13757 struct intel_shared_dpll *old_dpll =
13758 to_intel_crtc_state(crtc->state)->shared_dpll;
0a9ab303 13759
fb1a38a9 13760 if (!needs_modeset(crtc_state))
225da59b
ACO
13761 continue;
13762
8106ddbd 13763 to_intel_crtc_state(crtc_state)->shared_dpll = NULL;
fb1a38a9 13764
8106ddbd 13765 if (!old_dpll)
fb1a38a9 13766 continue;
0a9ab303 13767
ad421372
ML
13768 if (!shared_dpll)
13769 shared_dpll = intel_atomic_get_shared_dpll_state(state);
ed6739ef 13770
8106ddbd 13771 intel_shared_dpll_config_put(shared_dpll, old_dpll, intel_crtc);
ad421372 13772 }
ed6739ef
ACO
13773}
13774
99d736a2
ML
13775/*
13776 * This implements the workaround described in the "notes" section of the mode
13777 * set sequence documentation. When going from no pipes or single pipe to
13778 * multiple pipes, and planes are enabled after the pipe, we need to wait at
13779 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
13780 */
13781static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
13782{
13783 struct drm_crtc_state *crtc_state;
13784 struct intel_crtc *intel_crtc;
13785 struct drm_crtc *crtc;
13786 struct intel_crtc_state *first_crtc_state = NULL;
13787 struct intel_crtc_state *other_crtc_state = NULL;
13788 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
13789 int i;
13790
13791 /* look at all crtc's that are going to be enabled in during modeset */
13792 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13793 intel_crtc = to_intel_crtc(crtc);
13794
13795 if (!crtc_state->active || !needs_modeset(crtc_state))
13796 continue;
13797
13798 if (first_crtc_state) {
13799 other_crtc_state = to_intel_crtc_state(crtc_state);
13800 break;
13801 } else {
13802 first_crtc_state = to_intel_crtc_state(crtc_state);
13803 first_pipe = intel_crtc->pipe;
13804 }
13805 }
13806
13807 /* No workaround needed? */
13808 if (!first_crtc_state)
13809 return 0;
13810
13811 /* w/a possibly needed, check how many crtc's are already enabled. */
13812 for_each_intel_crtc(state->dev, intel_crtc) {
13813 struct intel_crtc_state *pipe_config;
13814
13815 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
13816 if (IS_ERR(pipe_config))
13817 return PTR_ERR(pipe_config);
13818
13819 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
13820
13821 if (!pipe_config->base.active ||
13822 needs_modeset(&pipe_config->base))
13823 continue;
13824
13825 /* 2 or more enabled crtcs means no need for w/a */
13826 if (enabled_pipe != INVALID_PIPE)
13827 return 0;
13828
13829 enabled_pipe = intel_crtc->pipe;
13830 }
13831
13832 if (enabled_pipe != INVALID_PIPE)
13833 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13834 else if (other_crtc_state)
13835 other_crtc_state->hsw_workaround_pipe = first_pipe;
13836
13837 return 0;
13838}
13839
27c329ed
ML
13840static int intel_modeset_all_pipes(struct drm_atomic_state *state)
13841{
13842 struct drm_crtc *crtc;
13843 struct drm_crtc_state *crtc_state;
13844 int ret = 0;
13845
13846 /* add all active pipes to the state */
13847 for_each_crtc(state->dev, crtc) {
13848 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13849 if (IS_ERR(crtc_state))
13850 return PTR_ERR(crtc_state);
13851
13852 if (!crtc_state->active || needs_modeset(crtc_state))
13853 continue;
13854
13855 crtc_state->mode_changed = true;
13856
13857 ret = drm_atomic_add_affected_connectors(state, crtc);
13858 if (ret)
13859 break;
13860
13861 ret = drm_atomic_add_affected_planes(state, crtc);
13862 if (ret)
13863 break;
13864 }
13865
13866 return ret;
13867}
13868
c347a676 13869static int intel_modeset_checks(struct drm_atomic_state *state)
054518dd 13870{
565602d7 13871 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
fac5e23e 13872 struct drm_i915_private *dev_priv = to_i915(state->dev);
565602d7
ML
13873 struct drm_crtc *crtc;
13874 struct drm_crtc_state *crtc_state;
13875 int ret = 0, i;
054518dd 13876
b359283a
ML
13877 if (!check_digital_port_conflicts(state)) {
13878 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13879 return -EINVAL;
13880 }
13881
565602d7
ML
13882 intel_state->modeset = true;
13883 intel_state->active_crtcs = dev_priv->active_crtcs;
13884
13885 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13886 if (crtc_state->active)
13887 intel_state->active_crtcs |= 1 << i;
13888 else
13889 intel_state->active_crtcs &= ~(1 << i);
8b4a7d05
MR
13890
13891 if (crtc_state->active != crtc->state->active)
13892 intel_state->active_pipe_changes |= drm_crtc_mask(crtc);
565602d7
ML
13893 }
13894
054518dd
ACO
13895 /*
13896 * See if the config requires any additional preparation, e.g.
13897 * to adjust global state with pipes off. We need to do this
13898 * here so we can get the modeset_pipe updated config for the new
13899 * mode set on this crtc. For other crtcs we need to use the
13900 * adjusted_mode bits in the crtc directly.
13901 */
27c329ed 13902 if (dev_priv->display.modeset_calc_cdclk) {
c89e39f3 13903 if (!intel_state->cdclk_pll_vco)
63911d72 13904 intel_state->cdclk_pll_vco = dev_priv->cdclk_pll.vco;
b2045352
VS
13905 if (!intel_state->cdclk_pll_vco)
13906 intel_state->cdclk_pll_vco = dev_priv->skl_preferred_vco_freq;
c89e39f3 13907
27c329ed 13908 ret = dev_priv->display.modeset_calc_cdclk(state);
c89e39f3
CT
13909 if (ret < 0)
13910 return ret;
27c329ed 13911
c89e39f3 13912 if (intel_state->dev_cdclk != dev_priv->cdclk_freq ||
63911d72 13913 intel_state->cdclk_pll_vco != dev_priv->cdclk_pll.vco)
27c329ed
ML
13914 ret = intel_modeset_all_pipes(state);
13915
13916 if (ret < 0)
054518dd 13917 return ret;
e8788cbc
ML
13918
13919 DRM_DEBUG_KMS("New cdclk calculated to be atomic %u, actual %u\n",
13920 intel_state->cdclk, intel_state->dev_cdclk);
27c329ed 13921 } else
1a617b77 13922 to_intel_atomic_state(state)->cdclk = dev_priv->atomic_cdclk_freq;
054518dd 13923
ad421372 13924 intel_modeset_clear_plls(state);
054518dd 13925
565602d7 13926 if (IS_HASWELL(dev_priv))
ad421372 13927 return haswell_mode_set_planes_workaround(state);
99d736a2 13928
ad421372 13929 return 0;
c347a676
ACO
13930}
13931
aa363136
MR
13932/*
13933 * Handle calculation of various watermark data at the end of the atomic check
13934 * phase. The code here should be run after the per-crtc and per-plane 'check'
13935 * handlers to ensure that all derived state has been updated.
13936 */
55994c2c 13937static int calc_watermark_data(struct drm_atomic_state *state)
aa363136
MR
13938{
13939 struct drm_device *dev = state->dev;
98d39494 13940 struct drm_i915_private *dev_priv = to_i915(dev);
98d39494
MR
13941
13942 /* Is there platform-specific watermark information to calculate? */
13943 if (dev_priv->display.compute_global_watermarks)
55994c2c
MR
13944 return dev_priv->display.compute_global_watermarks(state);
13945
13946 return 0;
aa363136
MR
13947}
13948
74c090b1
ML
13949/**
13950 * intel_atomic_check - validate state object
13951 * @dev: drm device
13952 * @state: state to validate
13953 */
13954static int intel_atomic_check(struct drm_device *dev,
13955 struct drm_atomic_state *state)
c347a676 13956{
dd8b3bdb 13957 struct drm_i915_private *dev_priv = to_i915(dev);
aa363136 13958 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
c347a676
ACO
13959 struct drm_crtc *crtc;
13960 struct drm_crtc_state *crtc_state;
13961 int ret, i;
61333b60 13962 bool any_ms = false;
c347a676 13963
74c090b1 13964 ret = drm_atomic_helper_check_modeset(dev, state);
054518dd
ACO
13965 if (ret)
13966 return ret;
13967
c347a676 13968 for_each_crtc_in_state(state, crtc, crtc_state, i) {
cfb23ed6
ML
13969 struct intel_crtc_state *pipe_config =
13970 to_intel_crtc_state(crtc_state);
1ed51de9
DV
13971
13972 /* Catch I915_MODE_FLAG_INHERITED */
13973 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
13974 crtc_state->mode_changed = true;
cfb23ed6 13975
af4a879e 13976 if (!needs_modeset(crtc_state))
c347a676
ACO
13977 continue;
13978
af4a879e
DV
13979 if (!crtc_state->enable) {
13980 any_ms = true;
cfb23ed6 13981 continue;
af4a879e 13982 }
cfb23ed6 13983
26495481
DV
13984 /* FIXME: For only active_changed we shouldn't need to do any
13985 * state recomputation at all. */
13986
1ed51de9
DV
13987 ret = drm_atomic_add_affected_connectors(state, crtc);
13988 if (ret)
13989 return ret;
b359283a 13990
cfb23ed6 13991 ret = intel_modeset_pipe_config(crtc, pipe_config);
25aa1c39
ML
13992 if (ret) {
13993 intel_dump_pipe_config(to_intel_crtc(crtc),
13994 pipe_config, "[failed]");
c347a676 13995 return ret;
25aa1c39 13996 }
c347a676 13997
73831236 13998 if (i915.fastboot &&
dd8b3bdb 13999 intel_pipe_config_compare(dev,
cfb23ed6 14000 to_intel_crtc_state(crtc->state),
1ed51de9 14001 pipe_config, true)) {
26495481 14002 crtc_state->mode_changed = false;
bfd16b2a 14003 to_intel_crtc_state(crtc_state)->update_pipe = true;
26495481
DV
14004 }
14005
af4a879e 14006 if (needs_modeset(crtc_state))
26495481 14007 any_ms = true;
cfb23ed6 14008
af4a879e
DV
14009 ret = drm_atomic_add_affected_planes(state, crtc);
14010 if (ret)
14011 return ret;
61333b60 14012
26495481
DV
14013 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
14014 needs_modeset(crtc_state) ?
14015 "[modeset]" : "[fastset]");
c347a676
ACO
14016 }
14017
61333b60
ML
14018 if (any_ms) {
14019 ret = intel_modeset_checks(state);
14020
14021 if (ret)
14022 return ret;
27c329ed 14023 } else
dd8b3bdb 14024 intel_state->cdclk = dev_priv->cdclk_freq;
76305b1a 14025
dd8b3bdb 14026 ret = drm_atomic_helper_check_planes(dev, state);
aa363136
MR
14027 if (ret)
14028 return ret;
14029
f51be2e0 14030 intel_fbc_choose_crtc(dev_priv, state);
55994c2c 14031 return calc_watermark_data(state);
054518dd
ACO
14032}
14033
5008e874
ML
14034static int intel_atomic_prepare_commit(struct drm_device *dev,
14035 struct drm_atomic_state *state,
81072bfd 14036 bool nonblock)
5008e874 14037{
fac5e23e 14038 struct drm_i915_private *dev_priv = to_i915(dev);
7580d774 14039 struct drm_plane_state *plane_state;
5008e874 14040 struct drm_crtc_state *crtc_state;
7580d774 14041 struct drm_plane *plane;
5008e874
ML
14042 struct drm_crtc *crtc;
14043 int i, ret;
14044
5a21b665
DV
14045 for_each_crtc_in_state(state, crtc, crtc_state, i) {
14046 if (state->legacy_cursor_update)
a6747b73
ML
14047 continue;
14048
5a21b665
DV
14049 ret = intel_crtc_wait_for_pending_flips(crtc);
14050 if (ret)
14051 return ret;
5008e874 14052
5a21b665
DV
14053 if (atomic_read(&to_intel_crtc(crtc)->unpin_work_count) >= 2)
14054 flush_workqueue(dev_priv->wq);
d55dbd06
ML
14055 }
14056
f935675f
ML
14057 ret = mutex_lock_interruptible(&dev->struct_mutex);
14058 if (ret)
14059 return ret;
14060
5008e874 14061 ret = drm_atomic_helper_prepare_planes(dev, state);
f7e5838b 14062 mutex_unlock(&dev->struct_mutex);
7580d774 14063
21daaeee 14064 if (!ret && !nonblock) {
7580d774
ML
14065 for_each_plane_in_state(state, plane, plane_state, i) {
14066 struct intel_plane_state *intel_plane_state =
14067 to_intel_plane_state(plane_state);
14068
14069 if (!intel_plane_state->wait_req)
14070 continue;
14071
776f3236 14072 ret = i915_wait_request(intel_plane_state->wait_req,
ea746f36
CW
14073 I915_WAIT_INTERRUPTIBLE,
14074 NULL, NULL);
f7e5838b 14075 if (ret) {
f4457ae7
CW
14076 /* Any hang should be swallowed by the wait */
14077 WARN_ON(ret == -EIO);
f7e5838b
CW
14078 mutex_lock(&dev->struct_mutex);
14079 drm_atomic_helper_cleanup_planes(dev, state);
14080 mutex_unlock(&dev->struct_mutex);
7580d774 14081 break;
f7e5838b 14082 }
7580d774 14083 }
7580d774 14084 }
5008e874
ML
14085
14086 return ret;
14087}
14088
a2991414
ML
14089u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc)
14090{
14091 struct drm_device *dev = crtc->base.dev;
14092
14093 if (!dev->max_vblank_count)
14094 return drm_accurate_vblank_count(&crtc->base);
14095
14096 return dev->driver->get_vblank_counter(dev, crtc->pipe);
14097}
14098
5a21b665
DV
14099static void intel_atomic_wait_for_vblanks(struct drm_device *dev,
14100 struct drm_i915_private *dev_priv,
14101 unsigned crtc_mask)
e8861675 14102{
5a21b665
DV
14103 unsigned last_vblank_count[I915_MAX_PIPES];
14104 enum pipe pipe;
14105 int ret;
e8861675 14106
5a21b665
DV
14107 if (!crtc_mask)
14108 return;
e8861675 14109
5a21b665
DV
14110 for_each_pipe(dev_priv, pipe) {
14111 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
e8861675 14112
5a21b665 14113 if (!((1 << pipe) & crtc_mask))
e8861675
ML
14114 continue;
14115
5a21b665
DV
14116 ret = drm_crtc_vblank_get(crtc);
14117 if (WARN_ON(ret != 0)) {
14118 crtc_mask &= ~(1 << pipe);
14119 continue;
e8861675
ML
14120 }
14121
5a21b665 14122 last_vblank_count[pipe] = drm_crtc_vblank_count(crtc);
e8861675
ML
14123 }
14124
5a21b665
DV
14125 for_each_pipe(dev_priv, pipe) {
14126 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
14127 long lret;
e8861675 14128
5a21b665
DV
14129 if (!((1 << pipe) & crtc_mask))
14130 continue;
d55dbd06 14131
5a21b665
DV
14132 lret = wait_event_timeout(dev->vblank[pipe].queue,
14133 last_vblank_count[pipe] !=
14134 drm_crtc_vblank_count(crtc),
14135 msecs_to_jiffies(50));
d55dbd06 14136
5a21b665 14137 WARN(!lret, "pipe %c vblank wait timed out\n", pipe_name(pipe));
d55dbd06 14138
5a21b665 14139 drm_crtc_vblank_put(crtc);
d55dbd06
ML
14140 }
14141}
14142
5a21b665 14143static bool needs_vblank_wait(struct intel_crtc_state *crtc_state)
a6747b73 14144{
5a21b665
DV
14145 /* fb updated, need to unpin old fb */
14146 if (crtc_state->fb_changed)
14147 return true;
a6747b73 14148
5a21b665
DV
14149 /* wm changes, need vblank before final wm's */
14150 if (crtc_state->update_wm_post)
14151 return true;
a6747b73 14152
5a21b665
DV
14153 /*
14154 * cxsr is re-enabled after vblank.
14155 * This is already handled by crtc_state->update_wm_post,
14156 * but added for clarity.
14157 */
14158 if (crtc_state->disable_cxsr)
14159 return true;
a6747b73 14160
5a21b665 14161 return false;
e8861675
ML
14162}
14163
896e5bb0
L
14164static void intel_update_crtc(struct drm_crtc *crtc,
14165 struct drm_atomic_state *state,
14166 struct drm_crtc_state *old_crtc_state,
14167 unsigned int *crtc_vblank_mask)
14168{
14169 struct drm_device *dev = crtc->dev;
14170 struct drm_i915_private *dev_priv = to_i915(dev);
14171 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14172 struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc->state);
14173 bool modeset = needs_modeset(crtc->state);
14174
14175 if (modeset) {
14176 update_scanline_offset(intel_crtc);
14177 dev_priv->display.crtc_enable(pipe_config, state);
14178 } else {
14179 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
14180 }
14181
14182 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
14183 intel_fbc_enable(
14184 intel_crtc, pipe_config,
14185 to_intel_plane_state(crtc->primary->state));
14186 }
14187
14188 drm_atomic_helper_commit_planes_on_crtc(old_crtc_state);
14189
14190 if (needs_vblank_wait(pipe_config))
14191 *crtc_vblank_mask |= drm_crtc_mask(crtc);
14192}
14193
14194static void intel_update_crtcs(struct drm_atomic_state *state,
14195 unsigned int *crtc_vblank_mask)
14196{
14197 struct drm_crtc *crtc;
14198 struct drm_crtc_state *old_crtc_state;
14199 int i;
14200
14201 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14202 if (!crtc->state->active)
14203 continue;
14204
14205 intel_update_crtc(crtc, state, old_crtc_state,
14206 crtc_vblank_mask);
14207 }
14208}
14209
27082493
L
14210static void skl_update_crtcs(struct drm_atomic_state *state,
14211 unsigned int *crtc_vblank_mask)
14212{
14213 struct drm_device *dev = state->dev;
14214 struct drm_i915_private *dev_priv = to_i915(dev);
14215 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14216 struct drm_crtc *crtc;
14217 struct drm_crtc_state *old_crtc_state;
14218 struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
14219 struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
14220 unsigned int updated = 0;
14221 bool progress;
14222 enum pipe pipe;
14223
14224 /*
14225 * Whenever the number of active pipes changes, we need to make sure we
14226 * update the pipes in the right order so that their ddb allocations
14227 * never overlap with eachother inbetween CRTC updates. Otherwise we'll
14228 * cause pipe underruns and other bad stuff.
14229 */
14230 do {
14231 int i;
14232 progress = false;
14233
14234 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14235 bool vbl_wait = false;
14236 unsigned int cmask = drm_crtc_mask(crtc);
14237 pipe = to_intel_crtc(crtc)->pipe;
14238
14239 if (updated & cmask || !crtc->state->active)
14240 continue;
14241 if (skl_ddb_allocation_overlaps(state, cur_ddb, new_ddb,
14242 pipe))
14243 continue;
14244
14245 updated |= cmask;
14246
14247 /*
14248 * If this is an already active pipe, it's DDB changed,
14249 * and this isn't the last pipe that needs updating
14250 * then we need to wait for a vblank to pass for the
14251 * new ddb allocation to take effect.
14252 */
14253 if (!skl_ddb_allocation_equals(cur_ddb, new_ddb, pipe) &&
14254 !crtc->state->active_changed &&
14255 intel_state->wm_results.dirty_pipes != updated)
14256 vbl_wait = true;
14257
14258 intel_update_crtc(crtc, state, old_crtc_state,
14259 crtc_vblank_mask);
14260
14261 if (vbl_wait)
14262 intel_wait_for_vblank(dev, pipe);
14263
14264 progress = true;
14265 }
14266 } while (progress);
14267}
14268
94f05024 14269static void intel_atomic_commit_tail(struct drm_atomic_state *state)
a6778b3c 14270{
94f05024 14271 struct drm_device *dev = state->dev;
565602d7 14272 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
fac5e23e 14273 struct drm_i915_private *dev_priv = to_i915(dev);
29ceb0e6 14274 struct drm_crtc_state *old_crtc_state;
7580d774 14275 struct drm_crtc *crtc;
5a21b665 14276 struct intel_crtc_state *intel_cstate;
94f05024
DV
14277 struct drm_plane *plane;
14278 struct drm_plane_state *plane_state;
5a21b665
DV
14279 bool hw_check = intel_state->modeset;
14280 unsigned long put_domains[I915_MAX_PIPES] = {};
14281 unsigned crtc_vblank_mask = 0;
94f05024 14282 int i, ret;
a6778b3c 14283
94f05024
DV
14284 for_each_plane_in_state(state, plane, plane_state, i) {
14285 struct intel_plane_state *intel_plane_state =
14286 to_intel_plane_state(plane_state);
ea0000f0 14287
94f05024
DV
14288 if (!intel_plane_state->wait_req)
14289 continue;
d4afb8cc 14290
776f3236 14291 ret = i915_wait_request(intel_plane_state->wait_req,
ea746f36 14292 0, NULL, NULL);
94f05024
DV
14293 /* EIO should be eaten, and we can't get interrupted in the
14294 * worker, and blocking commits have waited already. */
14295 WARN_ON(ret);
14296 }
1c5e19f8 14297
ea0000f0
DV
14298 drm_atomic_helper_wait_for_dependencies(state);
14299
565602d7
ML
14300 if (intel_state->modeset) {
14301 memcpy(dev_priv->min_pixclk, intel_state->min_pixclk,
14302 sizeof(intel_state->min_pixclk));
14303 dev_priv->active_crtcs = intel_state->active_crtcs;
1a617b77 14304 dev_priv->atomic_cdclk_freq = intel_state->cdclk;
5a21b665
DV
14305
14306 intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
565602d7
ML
14307 }
14308
29ceb0e6 14309 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
a539205a
ML
14310 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14311
5a21b665
DV
14312 if (needs_modeset(crtc->state) ||
14313 to_intel_crtc_state(crtc->state)->update_pipe) {
14314 hw_check = true;
14315
14316 put_domains[to_intel_crtc(crtc)->pipe] =
14317 modeset_get_crtc_power_domains(crtc,
14318 to_intel_crtc_state(crtc->state));
14319 }
14320
61333b60
ML
14321 if (!needs_modeset(crtc->state))
14322 continue;
14323
29ceb0e6 14324 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
460da916 14325
29ceb0e6
VS
14326 if (old_crtc_state->active) {
14327 intel_crtc_disable_planes(crtc, old_crtc_state->plane_mask);
4a806558 14328 dev_priv->display.crtc_disable(to_intel_crtc_state(old_crtc_state), state);
eddfcbcd 14329 intel_crtc->active = false;
58f9c0bc 14330 intel_fbc_disable(intel_crtc);
eddfcbcd 14331 intel_disable_shared_dpll(intel_crtc);
9bbc8258
VS
14332
14333 /*
14334 * Underruns don't always raise
14335 * interrupts, so check manually.
14336 */
14337 intel_check_cpu_fifo_underruns(dev_priv);
14338 intel_check_pch_fifo_underruns(dev_priv);
b9001114
ML
14339
14340 if (!crtc->state->active)
14341 intel_update_watermarks(crtc);
a539205a 14342 }
b8cecdf5 14343 }
7758a113 14344
ea9d758d
DV
14345 /* Only after disabling all output pipelines that will be changed can we
14346 * update the the output configuration. */
4740b0f2 14347 intel_modeset_update_crtc_state(state);
f6e5b160 14348
565602d7 14349 if (intel_state->modeset) {
4740b0f2 14350 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
33c8df89
ML
14351
14352 if (dev_priv->display.modeset_commit_cdclk &&
c89e39f3 14353 (intel_state->dev_cdclk != dev_priv->cdclk_freq ||
63911d72 14354 intel_state->cdclk_pll_vco != dev_priv->cdclk_pll.vco))
33c8df89 14355 dev_priv->display.modeset_commit_cdclk(state);
f6d1973d 14356
656d1b89
L
14357 /*
14358 * SKL workaround: bspec recommends we disable the SAGV when we
14359 * have more then one pipe enabled
14360 */
14361 if (IS_SKYLAKE(dev_priv) && !skl_can_enable_sagv(state))
14362 skl_disable_sagv(dev_priv);
14363
c0ead703 14364 intel_modeset_verify_disabled(dev);
4740b0f2 14365 }
47fab737 14366
896e5bb0 14367 /* Complete the events for pipes that have now been disabled */
29ceb0e6 14368 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
f6ac4b2a 14369 bool modeset = needs_modeset(crtc->state);
80715b2f 14370
1f7528c4
DV
14371 /* Complete events for now disable pipes here. */
14372 if (modeset && !crtc->state->active && crtc->state->event) {
14373 spin_lock_irq(&dev->event_lock);
14374 drm_crtc_send_vblank_event(crtc, crtc->state->event);
14375 spin_unlock_irq(&dev->event_lock);
14376
14377 crtc->state->event = NULL;
14378 }
177246a8
MR
14379 }
14380
896e5bb0
L
14381 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
14382 dev_priv->display.update_crtcs(state, &crtc_vblank_mask);
14383
94f05024
DV
14384 /* FIXME: We should call drm_atomic_helper_commit_hw_done() here
14385 * already, but still need the state for the delayed optimization. To
14386 * fix this:
14387 * - wrap the optimization/post_plane_update stuff into a per-crtc work.
14388 * - schedule that vblank worker _before_ calling hw_done
14389 * - at the start of commit_tail, cancel it _synchrously
14390 * - switch over to the vblank wait helper in the core after that since
14391 * we don't need out special handling any more.
14392 */
5a21b665
DV
14393 if (!state->legacy_cursor_update)
14394 intel_atomic_wait_for_vblanks(dev, dev_priv, crtc_vblank_mask);
14395
14396 /*
14397 * Now that the vblank has passed, we can go ahead and program the
14398 * optimal watermarks on platforms that need two-step watermark
14399 * programming.
14400 *
14401 * TODO: Move this (and other cleanup) to an async worker eventually.
14402 */
14403 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14404 intel_cstate = to_intel_crtc_state(crtc->state);
14405
14406 if (dev_priv->display.optimize_watermarks)
14407 dev_priv->display.optimize_watermarks(intel_cstate);
14408 }
14409
14410 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14411 intel_post_plane_update(to_intel_crtc_state(old_crtc_state));
14412
14413 if (put_domains[i])
14414 modeset_put_power_domains(dev_priv, put_domains[i]);
14415
14416 intel_modeset_verify_crtc(crtc, old_crtc_state, crtc->state);
14417 }
14418
656d1b89
L
14419 if (IS_SKYLAKE(dev_priv) && intel_state->modeset &&
14420 skl_can_enable_sagv(state))
14421 skl_enable_sagv(dev_priv);
14422
94f05024
DV
14423 drm_atomic_helper_commit_hw_done(state);
14424
5a21b665
DV
14425 if (intel_state->modeset)
14426 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
14427
14428 mutex_lock(&dev->struct_mutex);
14429 drm_atomic_helper_cleanup_planes(dev, state);
14430 mutex_unlock(&dev->struct_mutex);
14431
ea0000f0
DV
14432 drm_atomic_helper_commit_cleanup_done(state);
14433
ee165b1a 14434 drm_atomic_state_free(state);
f30da187 14435
75714940
MK
14436 /* As one of the primary mmio accessors, KMS has a high likelihood
14437 * of triggering bugs in unclaimed access. After we finish
14438 * modesetting, see if an error has been flagged, and if so
14439 * enable debugging for the next modeset - and hope we catch
14440 * the culprit.
14441 *
14442 * XXX note that we assume display power is on at this point.
14443 * This might hold true now but we need to add pm helper to check
14444 * unclaimed only when the hardware is on, as atomic commits
14445 * can happen also when the device is completely off.
14446 */
14447 intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
94f05024
DV
14448}
14449
14450static void intel_atomic_commit_work(struct work_struct *work)
14451{
14452 struct drm_atomic_state *state = container_of(work,
14453 struct drm_atomic_state,
14454 commit_work);
14455 intel_atomic_commit_tail(state);
14456}
14457
6c9c1b38
DV
14458static void intel_atomic_track_fbs(struct drm_atomic_state *state)
14459{
14460 struct drm_plane_state *old_plane_state;
14461 struct drm_plane *plane;
6c9c1b38
DV
14462 int i;
14463
faf5bf0a
CW
14464 for_each_plane_in_state(state, plane, old_plane_state, i)
14465 i915_gem_track_fb(intel_fb_obj(old_plane_state->fb),
14466 intel_fb_obj(plane->state->fb),
14467 to_intel_plane(plane)->frontbuffer_bit);
6c9c1b38
DV
14468}
14469
94f05024
DV
14470/**
14471 * intel_atomic_commit - commit validated state object
14472 * @dev: DRM device
14473 * @state: the top-level driver state object
14474 * @nonblock: nonblocking commit
14475 *
14476 * This function commits a top-level state object that has been validated
14477 * with drm_atomic_helper_check().
14478 *
14479 * FIXME: Atomic modeset support for i915 is not yet complete. At the moment
14480 * nonblocking commits are only safe for pure plane updates. Everything else
14481 * should work though.
14482 *
14483 * RETURNS
14484 * Zero for success or -errno.
14485 */
14486static int intel_atomic_commit(struct drm_device *dev,
14487 struct drm_atomic_state *state,
14488 bool nonblock)
14489{
14490 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
fac5e23e 14491 struct drm_i915_private *dev_priv = to_i915(dev);
94f05024
DV
14492 int ret = 0;
14493
14494 if (intel_state->modeset && nonblock) {
14495 DRM_DEBUG_KMS("nonblocking commit for modeset not yet implemented.\n");
14496 return -EINVAL;
14497 }
14498
14499 ret = drm_atomic_helper_setup_commit(state, nonblock);
14500 if (ret)
14501 return ret;
14502
14503 INIT_WORK(&state->commit_work, intel_atomic_commit_work);
14504
14505 ret = intel_atomic_prepare_commit(dev, state, nonblock);
14506 if (ret) {
14507 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
14508 return ret;
14509 }
14510
14511 drm_atomic_helper_swap_state(state, true);
14512 dev_priv->wm.distrust_bios_wm = false;
14513 dev_priv->wm.skl_results = intel_state->wm_results;
14514 intel_shared_dpll_commit(state);
6c9c1b38 14515 intel_atomic_track_fbs(state);
94f05024
DV
14516
14517 if (nonblock)
14518 queue_work(system_unbound_wq, &state->commit_work);
14519 else
14520 intel_atomic_commit_tail(state);
75714940 14521
74c090b1 14522 return 0;
7f27126e
JB
14523}
14524
c0c36b94
CW
14525void intel_crtc_restore_mode(struct drm_crtc *crtc)
14526{
83a57153
ACO
14527 struct drm_device *dev = crtc->dev;
14528 struct drm_atomic_state *state;
e694eb02 14529 struct drm_crtc_state *crtc_state;
2bfb4627 14530 int ret;
83a57153
ACO
14531
14532 state = drm_atomic_state_alloc(dev);
14533 if (!state) {
78108b7c
VS
14534 DRM_DEBUG_KMS("[CRTC:%d:%s] crtc restore failed, out of memory",
14535 crtc->base.id, crtc->name);
83a57153
ACO
14536 return;
14537 }
14538
e694eb02 14539 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
83a57153 14540
e694eb02
ML
14541retry:
14542 crtc_state = drm_atomic_get_crtc_state(state, crtc);
14543 ret = PTR_ERR_OR_ZERO(crtc_state);
14544 if (!ret) {
14545 if (!crtc_state->active)
14546 goto out;
83a57153 14547
e694eb02 14548 crtc_state->mode_changed = true;
74c090b1 14549 ret = drm_atomic_commit(state);
83a57153
ACO
14550 }
14551
e694eb02
ML
14552 if (ret == -EDEADLK) {
14553 drm_atomic_state_clear(state);
14554 drm_modeset_backoff(state->acquire_ctx);
14555 goto retry;
4ed9fb37 14556 }
4be07317 14557
2bfb4627 14558 if (ret)
e694eb02 14559out:
2bfb4627 14560 drm_atomic_state_free(state);
c0c36b94
CW
14561}
14562
a8784875
BP
14563/*
14564 * FIXME: Remove this once i915 is fully DRIVER_ATOMIC by calling
14565 * drm_atomic_helper_legacy_gamma_set() directly.
14566 */
14567static int intel_atomic_legacy_gamma_set(struct drm_crtc *crtc,
14568 u16 *red, u16 *green, u16 *blue,
14569 uint32_t size)
14570{
14571 struct drm_device *dev = crtc->dev;
14572 struct drm_mode_config *config = &dev->mode_config;
14573 struct drm_crtc_state *state;
14574 int ret;
14575
14576 ret = drm_atomic_helper_legacy_gamma_set(crtc, red, green, blue, size);
14577 if (ret)
14578 return ret;
14579
14580 /*
14581 * Make sure we update the legacy properties so this works when
14582 * atomic is not enabled.
14583 */
14584
14585 state = crtc->state;
14586
14587 drm_object_property_set_value(&crtc->base,
14588 config->degamma_lut_property,
14589 (state->degamma_lut) ?
14590 state->degamma_lut->base.id : 0);
14591
14592 drm_object_property_set_value(&crtc->base,
14593 config->ctm_property,
14594 (state->ctm) ?
14595 state->ctm->base.id : 0);
14596
14597 drm_object_property_set_value(&crtc->base,
14598 config->gamma_lut_property,
14599 (state->gamma_lut) ?
14600 state->gamma_lut->base.id : 0);
14601
14602 return 0;
14603}
14604
f6e5b160 14605static const struct drm_crtc_funcs intel_crtc_funcs = {
a8784875 14606 .gamma_set = intel_atomic_legacy_gamma_set,
74c090b1 14607 .set_config = drm_atomic_helper_set_config,
82cf435b 14608 .set_property = drm_atomic_helper_crtc_set_property,
f6e5b160 14609 .destroy = intel_crtc_destroy,
527b6abe 14610 .page_flip = intel_crtc_page_flip,
1356837e
MR
14611 .atomic_duplicate_state = intel_crtc_duplicate_state,
14612 .atomic_destroy_state = intel_crtc_destroy_state,
f6e5b160
CW
14613};
14614
6beb8c23
MR
14615/**
14616 * intel_prepare_plane_fb - Prepare fb for usage on plane
14617 * @plane: drm plane to prepare for
14618 * @fb: framebuffer to prepare for presentation
14619 *
14620 * Prepares a framebuffer for usage on a display plane. Generally this
14621 * involves pinning the underlying object and updating the frontbuffer tracking
14622 * bits. Some older platforms need special physical address handling for
14623 * cursor planes.
14624 *
f935675f
ML
14625 * Must be called with struct_mutex held.
14626 *
6beb8c23
MR
14627 * Returns 0 on success, negative error code on failure.
14628 */
14629int
14630intel_prepare_plane_fb(struct drm_plane *plane,
d136dfee 14631 const struct drm_plane_state *new_state)
465c120c
MR
14632{
14633 struct drm_device *dev = plane->dev;
844f9111 14634 struct drm_framebuffer *fb = new_state->fb;
6beb8c23 14635 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
1ee49399 14636 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
c37efb99 14637 struct reservation_object *resv;
6beb8c23 14638 int ret = 0;
465c120c 14639
1ee49399 14640 if (!obj && !old_obj)
465c120c
MR
14641 return 0;
14642
5008e874
ML
14643 if (old_obj) {
14644 struct drm_crtc_state *crtc_state =
14645 drm_atomic_get_existing_crtc_state(new_state->state, plane->state->crtc);
14646
14647 /* Big Hammer, we also need to ensure that any pending
14648 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
14649 * current scanout is retired before unpinning the old
14650 * framebuffer. Note that we rely on userspace rendering
14651 * into the buffer attached to the pipe they are waiting
14652 * on. If not, userspace generates a GPU hang with IPEHR
14653 * point to the MI_WAIT_FOR_EVENT.
14654 *
14655 * This should only fail upon a hung GPU, in which case we
14656 * can safely continue.
14657 */
14658 if (needs_modeset(crtc_state))
14659 ret = i915_gem_object_wait_rendering(old_obj, true);
f4457ae7
CW
14660 if (ret) {
14661 /* GPU hangs should have been swallowed by the wait */
14662 WARN_ON(ret == -EIO);
f935675f 14663 return ret;
f4457ae7 14664 }
5008e874
ML
14665 }
14666
c37efb99
CW
14667 if (!obj)
14668 return 0;
14669
5a21b665 14670 /* For framebuffer backed by dmabuf, wait for fence */
c37efb99
CW
14671 resv = i915_gem_object_get_dmabuf_resv(obj);
14672 if (resv) {
5a21b665
DV
14673 long lret;
14674
c37efb99 14675 lret = reservation_object_wait_timeout_rcu(resv, false, true,
5a21b665
DV
14676 MAX_SCHEDULE_TIMEOUT);
14677 if (lret == -ERESTARTSYS)
14678 return lret;
14679
14680 WARN(lret < 0, "waiting returns %li\n", lret);
14681 }
14682
c37efb99 14683 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
6beb8c23
MR
14684 INTEL_INFO(dev)->cursor_needs_physical) {
14685 int align = IS_I830(dev) ? 16 * 1024 : 256;
14686 ret = i915_gem_object_attach_phys(obj, align);
14687 if (ret)
14688 DRM_DEBUG_KMS("failed to attach phys object\n");
14689 } else {
058d88c4
CW
14690 struct i915_vma *vma;
14691
14692 vma = intel_pin_and_fence_fb_obj(fb, new_state->rotation);
14693 if (IS_ERR(vma))
14694 ret = PTR_ERR(vma);
6beb8c23 14695 }
465c120c 14696
c37efb99 14697 if (ret == 0) {
27c01aae 14698 to_intel_plane_state(new_state)->wait_req =
d72d908b
CW
14699 i915_gem_active_get(&obj->last_write,
14700 &obj->base.dev->struct_mutex);
7580d774 14701 }
fdd508a6 14702
6beb8c23
MR
14703 return ret;
14704}
14705
38f3ce3a
MR
14706/**
14707 * intel_cleanup_plane_fb - Cleans up an fb after plane use
14708 * @plane: drm plane to clean up for
14709 * @fb: old framebuffer that was on plane
14710 *
14711 * Cleans up a framebuffer that has just been removed from a plane.
f935675f
ML
14712 *
14713 * Must be called with struct_mutex held.
38f3ce3a
MR
14714 */
14715void
14716intel_cleanup_plane_fb(struct drm_plane *plane,
d136dfee 14717 const struct drm_plane_state *old_state)
38f3ce3a
MR
14718{
14719 struct drm_device *dev = plane->dev;
7580d774 14720 struct intel_plane_state *old_intel_state;
84978257 14721 struct intel_plane_state *intel_state = to_intel_plane_state(plane->state);
1ee49399
ML
14722 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_state->fb);
14723 struct drm_i915_gem_object *obj = intel_fb_obj(plane->state->fb);
38f3ce3a 14724
7580d774
ML
14725 old_intel_state = to_intel_plane_state(old_state);
14726
1ee49399 14727 if (!obj && !old_obj)
38f3ce3a
MR
14728 return;
14729
1ee49399
ML
14730 if (old_obj && (plane->type != DRM_PLANE_TYPE_CURSOR ||
14731 !INTEL_INFO(dev)->cursor_needs_physical))
3465c580 14732 intel_unpin_fb_obj(old_state->fb, old_state->rotation);
1ee49399 14733
84978257 14734 i915_gem_request_assign(&intel_state->wait_req, NULL);
7580d774 14735 i915_gem_request_assign(&old_intel_state->wait_req, NULL);
465c120c
MR
14736}
14737
6156a456
CK
14738int
14739skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
14740{
14741 int max_scale;
6156a456
CK
14742 int crtc_clock, cdclk;
14743
bf8a0af0 14744 if (!intel_crtc || !crtc_state->base.enable)
6156a456
CK
14745 return DRM_PLANE_HELPER_NO_SCALING;
14746
6156a456 14747 crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
27c329ed 14748 cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
6156a456 14749
54bf1ce6 14750 if (WARN_ON_ONCE(!crtc_clock || cdclk < crtc_clock))
6156a456
CK
14751 return DRM_PLANE_HELPER_NO_SCALING;
14752
14753 /*
14754 * skl max scale is lower of:
14755 * close to 3 but not 3, -1 is for that purpose
14756 * or
14757 * cdclk/crtc_clock
14758 */
14759 max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
14760
14761 return max_scale;
14762}
14763
465c120c 14764static int
3c692a41 14765intel_check_primary_plane(struct drm_plane *plane,
061e4b8d 14766 struct intel_crtc_state *crtc_state,
3c692a41
GP
14767 struct intel_plane_state *state)
14768{
b63a16f6 14769 struct drm_i915_private *dev_priv = to_i915(plane->dev);
2b875c22 14770 struct drm_crtc *crtc = state->base.crtc;
6156a456 14771 int min_scale = DRM_PLANE_HELPER_NO_SCALING;
061e4b8d
ML
14772 int max_scale = DRM_PLANE_HELPER_NO_SCALING;
14773 bool can_position = false;
b63a16f6 14774 int ret;
465c120c 14775
b63a16f6 14776 if (INTEL_GEN(dev_priv) >= 9) {
693bdc28
VS
14777 /* use scaler when colorkey is not required */
14778 if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
14779 min_scale = 1;
14780 max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
14781 }
d8106366 14782 can_position = true;
6156a456 14783 }
d8106366 14784
cc926387
DV
14785 ret = drm_plane_helper_check_state(&state->base,
14786 &state->clip,
14787 min_scale, max_scale,
14788 can_position, true);
b63a16f6
VS
14789 if (ret)
14790 return ret;
14791
cc926387 14792 if (!state->base.fb)
b63a16f6
VS
14793 return 0;
14794
14795 if (INTEL_GEN(dev_priv) >= 9) {
14796 ret = skl_check_plane_surface(state);
14797 if (ret)
14798 return ret;
14799 }
14800
14801 return 0;
14af293f
GP
14802}
14803
5a21b665
DV
14804static void intel_begin_crtc_commit(struct drm_crtc *crtc,
14805 struct drm_crtc_state *old_crtc_state)
14806{
14807 struct drm_device *dev = crtc->dev;
62e0fb88 14808 struct drm_i915_private *dev_priv = to_i915(dev);
5a21b665
DV
14809 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14810 struct intel_crtc_state *old_intel_state =
14811 to_intel_crtc_state(old_crtc_state);
14812 bool modeset = needs_modeset(crtc->state);
62e0fb88 14813 enum pipe pipe = intel_crtc->pipe;
5a21b665
DV
14814
14815 /* Perform vblank evasion around commit operation */
14816 intel_pipe_update_start(intel_crtc);
14817
14818 if (modeset)
14819 return;
14820
14821 if (crtc->state->color_mgmt_changed || to_intel_crtc_state(crtc->state)->update_pipe) {
14822 intel_color_set_csc(crtc->state);
14823 intel_color_load_luts(crtc->state);
14824 }
14825
14826 if (to_intel_crtc_state(crtc->state)->update_pipe)
14827 intel_update_pipe_config(intel_crtc, old_intel_state);
62e0fb88 14828 else if (INTEL_GEN(dev_priv) >= 9) {
5a21b665 14829 skl_detach_scalers(intel_crtc);
62e0fb88
L
14830
14831 I915_WRITE(PIPE_WM_LINETIME(pipe),
14832 dev_priv->wm.skl_hw.wm_linetime[pipe]);
14833 }
5a21b665
DV
14834}
14835
14836static void intel_finish_crtc_commit(struct drm_crtc *crtc,
14837 struct drm_crtc_state *old_crtc_state)
14838{
14839 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14840
14841 intel_pipe_update_end(intel_crtc, NULL);
14842}
14843
cf4c7c12 14844/**
4a3b8769
MR
14845 * intel_plane_destroy - destroy a plane
14846 * @plane: plane to destroy
cf4c7c12 14847 *
4a3b8769
MR
14848 * Common destruction function for all types of planes (primary, cursor,
14849 * sprite).
cf4c7c12 14850 */
4a3b8769 14851void intel_plane_destroy(struct drm_plane *plane)
465c120c 14852{
69ae561f
VS
14853 if (!plane)
14854 return;
14855
465c120c 14856 drm_plane_cleanup(plane);
69ae561f 14857 kfree(to_intel_plane(plane));
465c120c
MR
14858}
14859
65a3fea0 14860const struct drm_plane_funcs intel_plane_funcs = {
70a101f8
MR
14861 .update_plane = drm_atomic_helper_update_plane,
14862 .disable_plane = drm_atomic_helper_disable_plane,
3d7d6510 14863 .destroy = intel_plane_destroy,
c196e1d6 14864 .set_property = drm_atomic_helper_plane_set_property,
a98b3431
MR
14865 .atomic_get_property = intel_plane_atomic_get_property,
14866 .atomic_set_property = intel_plane_atomic_set_property,
ea2c67bb
MR
14867 .atomic_duplicate_state = intel_plane_duplicate_state,
14868 .atomic_destroy_state = intel_plane_destroy_state,
14869
465c120c
MR
14870};
14871
14872static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
14873 int pipe)
14874{
fca0ce2a
VS
14875 struct intel_plane *primary = NULL;
14876 struct intel_plane_state *state = NULL;
465c120c 14877 const uint32_t *intel_primary_formats;
45e3743a 14878 unsigned int num_formats;
fca0ce2a 14879 int ret;
465c120c
MR
14880
14881 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
fca0ce2a
VS
14882 if (!primary)
14883 goto fail;
465c120c 14884
8e7d688b 14885 state = intel_create_plane_state(&primary->base);
fca0ce2a
VS
14886 if (!state)
14887 goto fail;
8e7d688b 14888 primary->base.state = &state->base;
ea2c67bb 14889
465c120c
MR
14890 primary->can_scale = false;
14891 primary->max_downscale = 1;
6156a456
CK
14892 if (INTEL_INFO(dev)->gen >= 9) {
14893 primary->can_scale = true;
af99ceda 14894 state->scaler_id = -1;
6156a456 14895 }
465c120c
MR
14896 primary->pipe = pipe;
14897 primary->plane = pipe;
a9ff8714 14898 primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
c59cb179 14899 primary->check_plane = intel_check_primary_plane;
465c120c
MR
14900 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
14901 primary->plane = !pipe;
14902
6c0fd451
DL
14903 if (INTEL_INFO(dev)->gen >= 9) {
14904 intel_primary_formats = skl_primary_formats;
14905 num_formats = ARRAY_SIZE(skl_primary_formats);
a8d201af
ML
14906
14907 primary->update_plane = skylake_update_primary_plane;
14908 primary->disable_plane = skylake_disable_primary_plane;
14909 } else if (HAS_PCH_SPLIT(dev)) {
14910 intel_primary_formats = i965_primary_formats;
14911 num_formats = ARRAY_SIZE(i965_primary_formats);
14912
14913 primary->update_plane = ironlake_update_primary_plane;
14914 primary->disable_plane = i9xx_disable_primary_plane;
6c0fd451 14915 } else if (INTEL_INFO(dev)->gen >= 4) {
568db4f2
DL
14916 intel_primary_formats = i965_primary_formats;
14917 num_formats = ARRAY_SIZE(i965_primary_formats);
a8d201af
ML
14918
14919 primary->update_plane = i9xx_update_primary_plane;
14920 primary->disable_plane = i9xx_disable_primary_plane;
6c0fd451
DL
14921 } else {
14922 intel_primary_formats = i8xx_primary_formats;
14923 num_formats = ARRAY_SIZE(i8xx_primary_formats);
a8d201af
ML
14924
14925 primary->update_plane = i9xx_update_primary_plane;
14926 primary->disable_plane = i9xx_disable_primary_plane;
465c120c
MR
14927 }
14928
38573dc1
VS
14929 if (INTEL_INFO(dev)->gen >= 9)
14930 ret = drm_universal_plane_init(dev, &primary->base, 0,
14931 &intel_plane_funcs,
14932 intel_primary_formats, num_formats,
14933 DRM_PLANE_TYPE_PRIMARY,
14934 "plane 1%c", pipe_name(pipe));
14935 else if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
14936 ret = drm_universal_plane_init(dev, &primary->base, 0,
14937 &intel_plane_funcs,
14938 intel_primary_formats, num_formats,
14939 DRM_PLANE_TYPE_PRIMARY,
14940 "primary %c", pipe_name(pipe));
14941 else
14942 ret = drm_universal_plane_init(dev, &primary->base, 0,
14943 &intel_plane_funcs,
14944 intel_primary_formats, num_formats,
14945 DRM_PLANE_TYPE_PRIMARY,
14946 "plane %c", plane_name(primary->plane));
fca0ce2a
VS
14947 if (ret)
14948 goto fail;
48404c1e 14949
3b7a5119
SJ
14950 if (INTEL_INFO(dev)->gen >= 4)
14951 intel_create_rotation_property(dev, primary);
48404c1e 14952
ea2c67bb
MR
14953 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
14954
465c120c 14955 return &primary->base;
fca0ce2a
VS
14956
14957fail:
14958 kfree(state);
14959 kfree(primary);
14960
14961 return NULL;
465c120c
MR
14962}
14963
3b7a5119
SJ
14964void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
14965{
14966 if (!dev->mode_config.rotation_property) {
31ad61e4
JL
14967 unsigned long flags = DRM_ROTATE_0 |
14968 DRM_ROTATE_180;
3b7a5119
SJ
14969
14970 if (INTEL_INFO(dev)->gen >= 9)
31ad61e4 14971 flags |= DRM_ROTATE_90 | DRM_ROTATE_270;
3b7a5119
SJ
14972
14973 dev->mode_config.rotation_property =
14974 drm_mode_create_rotation_property(dev, flags);
14975 }
14976 if (dev->mode_config.rotation_property)
14977 drm_object_attach_property(&plane->base.base,
14978 dev->mode_config.rotation_property,
14979 plane->base.state->rotation);
14980}
14981
3d7d6510 14982static int
852e787c 14983intel_check_cursor_plane(struct drm_plane *plane,
061e4b8d 14984 struct intel_crtc_state *crtc_state,
852e787c 14985 struct intel_plane_state *state)
3d7d6510 14986{
2b875c22 14987 struct drm_framebuffer *fb = state->base.fb;
757f9a3e 14988 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
b29ec92c 14989 enum pipe pipe = to_intel_plane(plane)->pipe;
757f9a3e
GP
14990 unsigned stride;
14991 int ret;
3d7d6510 14992
f8856a44
VS
14993 ret = drm_plane_helper_check_state(&state->base,
14994 &state->clip,
14995 DRM_PLANE_HELPER_NO_SCALING,
14996 DRM_PLANE_HELPER_NO_SCALING,
14997 true, true);
757f9a3e
GP
14998 if (ret)
14999 return ret;
15000
757f9a3e
GP
15001 /* if we want to turn off the cursor ignore width and height */
15002 if (!obj)
da20eabd 15003 return 0;
757f9a3e 15004
757f9a3e 15005 /* Check for which cursor types we support */
061e4b8d 15006 if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
ea2c67bb
MR
15007 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
15008 state->base.crtc_w, state->base.crtc_h);
757f9a3e
GP
15009 return -EINVAL;
15010 }
15011
ea2c67bb
MR
15012 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
15013 if (obj->base.size < stride * state->base.crtc_h) {
757f9a3e
GP
15014 DRM_DEBUG_KMS("buffer is too small\n");
15015 return -ENOMEM;
15016 }
15017
3a656b54 15018 if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
757f9a3e 15019 DRM_DEBUG_KMS("cursor cannot be tiled\n");
da20eabd 15020 return -EINVAL;
32b7eeec
MR
15021 }
15022
b29ec92c
VS
15023 /*
15024 * There's something wrong with the cursor on CHV pipe C.
15025 * If it straddles the left edge of the screen then
15026 * moving it away from the edge or disabling it often
15027 * results in a pipe underrun, and often that can lead to
15028 * dead pipe (constant underrun reported, and it scans
15029 * out just a solid color). To recover from that, the
15030 * display power well must be turned off and on again.
15031 * Refuse the put the cursor into that compromised position.
15032 */
15033 if (IS_CHERRYVIEW(plane->dev) && pipe == PIPE_C &&
936e71e3 15034 state->base.visible && state->base.crtc_x < 0) {
b29ec92c
VS
15035 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
15036 return -EINVAL;
15037 }
15038
da20eabd 15039 return 0;
852e787c 15040}
3d7d6510 15041
a8ad0d8e
ML
15042static void
15043intel_disable_cursor_plane(struct drm_plane *plane,
7fabf5ef 15044 struct drm_crtc *crtc)
a8ad0d8e 15045{
f2858021
ML
15046 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
15047
15048 intel_crtc->cursor_addr = 0;
55a08b3f 15049 intel_crtc_update_cursor(crtc, NULL);
a8ad0d8e
ML
15050}
15051
f4a2cf29 15052static void
55a08b3f
ML
15053intel_update_cursor_plane(struct drm_plane *plane,
15054 const struct intel_crtc_state *crtc_state,
15055 const struct intel_plane_state *state)
852e787c 15056{
55a08b3f
ML
15057 struct drm_crtc *crtc = crtc_state->base.crtc;
15058 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ea2c67bb 15059 struct drm_device *dev = plane->dev;
2b875c22 15060 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
a912f12f 15061 uint32_t addr;
852e787c 15062
f4a2cf29 15063 if (!obj)
a912f12f 15064 addr = 0;
f4a2cf29 15065 else if (!INTEL_INFO(dev)->cursor_needs_physical)
058d88c4 15066 addr = i915_gem_object_ggtt_offset(obj, NULL);
f4a2cf29 15067 else
a912f12f 15068 addr = obj->phys_handle->busaddr;
852e787c 15069
a912f12f 15070 intel_crtc->cursor_addr = addr;
55a08b3f 15071 intel_crtc_update_cursor(crtc, state);
852e787c
GP
15072}
15073
3d7d6510
MR
15074static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
15075 int pipe)
15076{
fca0ce2a
VS
15077 struct intel_plane *cursor = NULL;
15078 struct intel_plane_state *state = NULL;
15079 int ret;
3d7d6510
MR
15080
15081 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
fca0ce2a
VS
15082 if (!cursor)
15083 goto fail;
3d7d6510 15084
8e7d688b 15085 state = intel_create_plane_state(&cursor->base);
fca0ce2a
VS
15086 if (!state)
15087 goto fail;
8e7d688b 15088 cursor->base.state = &state->base;
ea2c67bb 15089
3d7d6510
MR
15090 cursor->can_scale = false;
15091 cursor->max_downscale = 1;
15092 cursor->pipe = pipe;
15093 cursor->plane = pipe;
a9ff8714 15094 cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
c59cb179 15095 cursor->check_plane = intel_check_cursor_plane;
55a08b3f 15096 cursor->update_plane = intel_update_cursor_plane;
a8ad0d8e 15097 cursor->disable_plane = intel_disable_cursor_plane;
3d7d6510 15098
fca0ce2a
VS
15099 ret = drm_universal_plane_init(dev, &cursor->base, 0,
15100 &intel_plane_funcs,
15101 intel_cursor_formats,
15102 ARRAY_SIZE(intel_cursor_formats),
38573dc1
VS
15103 DRM_PLANE_TYPE_CURSOR,
15104 "cursor %c", pipe_name(pipe));
fca0ce2a
VS
15105 if (ret)
15106 goto fail;
4398ad45
VS
15107
15108 if (INTEL_INFO(dev)->gen >= 4) {
15109 if (!dev->mode_config.rotation_property)
15110 dev->mode_config.rotation_property =
15111 drm_mode_create_rotation_property(dev,
31ad61e4
JL
15112 DRM_ROTATE_0 |
15113 DRM_ROTATE_180);
4398ad45
VS
15114 if (dev->mode_config.rotation_property)
15115 drm_object_attach_property(&cursor->base.base,
15116 dev->mode_config.rotation_property,
8e7d688b 15117 state->base.rotation);
4398ad45
VS
15118 }
15119
af99ceda
CK
15120 if (INTEL_INFO(dev)->gen >=9)
15121 state->scaler_id = -1;
15122
ea2c67bb
MR
15123 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
15124
3d7d6510 15125 return &cursor->base;
fca0ce2a
VS
15126
15127fail:
15128 kfree(state);
15129 kfree(cursor);
15130
15131 return NULL;
3d7d6510
MR
15132}
15133
549e2bfb
CK
15134static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
15135 struct intel_crtc_state *crtc_state)
15136{
15137 int i;
15138 struct intel_scaler *intel_scaler;
15139 struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
15140
15141 for (i = 0; i < intel_crtc->num_scalers; i++) {
15142 intel_scaler = &scaler_state->scalers[i];
15143 intel_scaler->in_use = 0;
549e2bfb
CK
15144 intel_scaler->mode = PS_SCALER_MODE_DYN;
15145 }
15146
15147 scaler_state->scaler_id = -1;
15148}
15149
b358d0a6 15150static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 15151{
fac5e23e 15152 struct drm_i915_private *dev_priv = to_i915(dev);
79e53945 15153 struct intel_crtc *intel_crtc;
f5de6e07 15154 struct intel_crtc_state *crtc_state = NULL;
3d7d6510
MR
15155 struct drm_plane *primary = NULL;
15156 struct drm_plane *cursor = NULL;
8563b1e8 15157 int ret;
79e53945 15158
955382f3 15159 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
79e53945
JB
15160 if (intel_crtc == NULL)
15161 return;
15162
f5de6e07
ACO
15163 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
15164 if (!crtc_state)
15165 goto fail;
550acefd
ACO
15166 intel_crtc->config = crtc_state;
15167 intel_crtc->base.state = &crtc_state->base;
07878248 15168 crtc_state->base.crtc = &intel_crtc->base;
f5de6e07 15169
549e2bfb
CK
15170 /* initialize shared scalers */
15171 if (INTEL_INFO(dev)->gen >= 9) {
15172 if (pipe == PIPE_C)
15173 intel_crtc->num_scalers = 1;
15174 else
15175 intel_crtc->num_scalers = SKL_NUM_SCALERS;
15176
15177 skl_init_scalers(dev, intel_crtc, crtc_state);
15178 }
15179
465c120c 15180 primary = intel_primary_plane_create(dev, pipe);
3d7d6510
MR
15181 if (!primary)
15182 goto fail;
15183
15184 cursor = intel_cursor_plane_create(dev, pipe);
15185 if (!cursor)
15186 goto fail;
15187
465c120c 15188 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
4d5d72b7
VS
15189 cursor, &intel_crtc_funcs,
15190 "pipe %c", pipe_name(pipe));
3d7d6510
MR
15191 if (ret)
15192 goto fail;
79e53945 15193
1f1c2e24
VS
15194 /*
15195 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
8c0f92e1 15196 * is hooked to pipe B. Hence we want plane A feeding pipe B.
1f1c2e24 15197 */
80824003
JB
15198 intel_crtc->pipe = pipe;
15199 intel_crtc->plane = pipe;
3a77c4c4 15200 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
28c97730 15201 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 15202 intel_crtc->plane = !pipe;
80824003
JB
15203 }
15204
4b0e333e
CW
15205 intel_crtc->cursor_base = ~0;
15206 intel_crtc->cursor_cntl = ~0;
dc41c154 15207 intel_crtc->cursor_size = ~0;
8d7849db 15208
852eb00d
VS
15209 intel_crtc->wm.cxsr_allowed = true;
15210
22fd0fab
JB
15211 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
15212 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
15213 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
15214 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
15215
79e53945 15216 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
87b6b101 15217
8563b1e8
LL
15218 intel_color_init(&intel_crtc->base);
15219
87b6b101 15220 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
3d7d6510
MR
15221 return;
15222
15223fail:
69ae561f
VS
15224 intel_plane_destroy(primary);
15225 intel_plane_destroy(cursor);
f5de6e07 15226 kfree(crtc_state);
3d7d6510 15227 kfree(intel_crtc);
79e53945
JB
15228}
15229
752aa88a
JB
15230enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
15231{
15232 struct drm_encoder *encoder = connector->base.encoder;
6e9f798d 15233 struct drm_device *dev = connector->base.dev;
752aa88a 15234
51fd371b 15235 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
752aa88a 15236
d3babd3f 15237 if (!encoder || WARN_ON(!encoder->crtc))
752aa88a
JB
15238 return INVALID_PIPE;
15239
15240 return to_intel_crtc(encoder->crtc)->pipe;
15241}
15242
08d7b3d1 15243int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 15244 struct drm_file *file)
08d7b3d1 15245{
08d7b3d1 15246 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7707e653 15247 struct drm_crtc *drmmode_crtc;
c05422d5 15248 struct intel_crtc *crtc;
08d7b3d1 15249
7707e653 15250 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
71240ed2 15251 if (!drmmode_crtc)
3f2c2057 15252 return -ENOENT;
08d7b3d1 15253
7707e653 15254 crtc = to_intel_crtc(drmmode_crtc);
c05422d5 15255 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 15256
c05422d5 15257 return 0;
08d7b3d1
CW
15258}
15259
66a9278e 15260static int intel_encoder_clones(struct intel_encoder *encoder)
79e53945 15261{
66a9278e
DV
15262 struct drm_device *dev = encoder->base.dev;
15263 struct intel_encoder *source_encoder;
79e53945 15264 int index_mask = 0;
79e53945
JB
15265 int entry = 0;
15266
b2784e15 15267 for_each_intel_encoder(dev, source_encoder) {
bc079e8b 15268 if (encoders_cloneable(encoder, source_encoder))
66a9278e
DV
15269 index_mask |= (1 << entry);
15270
79e53945
JB
15271 entry++;
15272 }
4ef69c7a 15273
79e53945
JB
15274 return index_mask;
15275}
15276
4d302442
CW
15277static bool has_edp_a(struct drm_device *dev)
15278{
fac5e23e 15279 struct drm_i915_private *dev_priv = to_i915(dev);
4d302442
CW
15280
15281 if (!IS_MOBILE(dev))
15282 return false;
15283
15284 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
15285 return false;
15286
e3589908 15287 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
4d302442
CW
15288 return false;
15289
15290 return true;
15291}
15292
84b4e042
JB
15293static bool intel_crt_present(struct drm_device *dev)
15294{
fac5e23e 15295 struct drm_i915_private *dev_priv = to_i915(dev);
84b4e042 15296
884497ed
DL
15297 if (INTEL_INFO(dev)->gen >= 9)
15298 return false;
15299
cf404ce4 15300 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
84b4e042
JB
15301 return false;
15302
15303 if (IS_CHERRYVIEW(dev))
15304 return false;
15305
65e472e4
VS
15306 if (HAS_PCH_LPT_H(dev) && I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
15307 return false;
15308
70ac54d0
VS
15309 /* DDI E can't be used if DDI A requires 4 lanes */
15310 if (HAS_DDI(dev) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
15311 return false;
15312
e4abb733 15313 if (!dev_priv->vbt.int_crt_support)
84b4e042
JB
15314 return false;
15315
15316 return true;
15317}
15318
8090ba8c
ID
15319void intel_pps_unlock_regs_wa(struct drm_i915_private *dev_priv)
15320{
15321 int pps_num;
15322 int pps_idx;
15323
15324 if (HAS_DDI(dev_priv))
15325 return;
15326 /*
15327 * This w/a is needed at least on CPT/PPT, but to be sure apply it
15328 * everywhere where registers can be write protected.
15329 */
15330 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15331 pps_num = 2;
15332 else
15333 pps_num = 1;
15334
15335 for (pps_idx = 0; pps_idx < pps_num; pps_idx++) {
15336 u32 val = I915_READ(PP_CONTROL(pps_idx));
15337
15338 val = (val & ~PANEL_UNLOCK_MASK) | PANEL_UNLOCK_REGS;
15339 I915_WRITE(PP_CONTROL(pps_idx), val);
15340 }
15341}
15342
44cb734c
ID
15343static void intel_pps_init(struct drm_i915_private *dev_priv)
15344{
15345 if (HAS_PCH_SPLIT(dev_priv) || IS_BROXTON(dev_priv))
15346 dev_priv->pps_mmio_base = PCH_PPS_BASE;
15347 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15348 dev_priv->pps_mmio_base = VLV_PPS_BASE;
15349 else
15350 dev_priv->pps_mmio_base = PPS_BASE;
8090ba8c
ID
15351
15352 intel_pps_unlock_regs_wa(dev_priv);
44cb734c
ID
15353}
15354
79e53945
JB
15355static void intel_setup_outputs(struct drm_device *dev)
15356{
fac5e23e 15357 struct drm_i915_private *dev_priv = to_i915(dev);
4ef69c7a 15358 struct intel_encoder *encoder;
cb0953d7 15359 bool dpd_is_edp = false;
79e53945 15360
44cb734c
ID
15361 intel_pps_init(dev_priv);
15362
97a824e1
ID
15363 /*
15364 * intel_edp_init_connector() depends on this completing first, to
15365 * prevent the registeration of both eDP and LVDS and the incorrect
15366 * sharing of the PPS.
15367 */
c9093354 15368 intel_lvds_init(dev);
79e53945 15369
84b4e042 15370 if (intel_crt_present(dev))
79935fca 15371 intel_crt_init(dev);
cb0953d7 15372
c776eb2e
VK
15373 if (IS_BROXTON(dev)) {
15374 /*
15375 * FIXME: Broxton doesn't support port detection via the
15376 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
15377 * detect the ports.
15378 */
15379 intel_ddi_init(dev, PORT_A);
15380 intel_ddi_init(dev, PORT_B);
15381 intel_ddi_init(dev, PORT_C);
c6c794a2
SS
15382
15383 intel_dsi_init(dev);
c776eb2e 15384 } else if (HAS_DDI(dev)) {
0e72a5b5
ED
15385 int found;
15386
de31facd
JB
15387 /*
15388 * Haswell uses DDI functions to detect digital outputs.
15389 * On SKL pre-D0 the strap isn't connected, so we assume
15390 * it's there.
15391 */
77179400 15392 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
de31facd 15393 /* WaIgnoreDDIAStrap: skl */
ef11bdb3 15394 if (found || IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
0e72a5b5
ED
15395 intel_ddi_init(dev, PORT_A);
15396
15397 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
15398 * register */
15399 found = I915_READ(SFUSE_STRAP);
15400
15401 if (found & SFUSE_STRAP_DDIB_DETECTED)
15402 intel_ddi_init(dev, PORT_B);
15403 if (found & SFUSE_STRAP_DDIC_DETECTED)
15404 intel_ddi_init(dev, PORT_C);
15405 if (found & SFUSE_STRAP_DDID_DETECTED)
15406 intel_ddi_init(dev, PORT_D);
2800e4c2
RV
15407 /*
15408 * On SKL we don't have a way to detect DDI-E so we rely on VBT.
15409 */
ef11bdb3 15410 if ((IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) &&
2800e4c2
RV
15411 (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
15412 dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
15413 dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
15414 intel_ddi_init(dev, PORT_E);
15415
0e72a5b5 15416 } else if (HAS_PCH_SPLIT(dev)) {
cb0953d7 15417 int found;
5d8a7752 15418 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
270b3042
DV
15419
15420 if (has_edp_a(dev))
15421 intel_dp_init(dev, DP_A, PORT_A);
cb0953d7 15422
dc0fa718 15423 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
461ed3ca 15424 /* PCH SDVOB multiplex with HDMIB */
2a5c0832 15425 found = intel_sdvo_init(dev, PCH_SDVOB, PORT_B);
30ad48b7 15426 if (!found)
e2debe91 15427 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
5eb08b69 15428 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
ab9d7c30 15429 intel_dp_init(dev, PCH_DP_B, PORT_B);
30ad48b7
ZW
15430 }
15431
dc0fa718 15432 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
e2debe91 15433 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
30ad48b7 15434
dc0fa718 15435 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
e2debe91 15436 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
30ad48b7 15437
5eb08b69 15438 if (I915_READ(PCH_DP_C) & DP_DETECTED)
ab9d7c30 15439 intel_dp_init(dev, PCH_DP_C, PORT_C);
5eb08b69 15440
270b3042 15441 if (I915_READ(PCH_DP_D) & DP_DETECTED)
ab9d7c30 15442 intel_dp_init(dev, PCH_DP_D, PORT_D);
666a4537 15443 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
22f35042 15444 bool has_edp, has_port;
457c52d8 15445
e17ac6db
VS
15446 /*
15447 * The DP_DETECTED bit is the latched state of the DDC
15448 * SDA pin at boot. However since eDP doesn't require DDC
15449 * (no way to plug in a DP->HDMI dongle) the DDC pins for
15450 * eDP ports may have been muxed to an alternate function.
15451 * Thus we can't rely on the DP_DETECTED bit alone to detect
15452 * eDP ports. Consult the VBT as well as DP_DETECTED to
15453 * detect eDP ports.
22f35042
VS
15454 *
15455 * Sadly the straps seem to be missing sometimes even for HDMI
15456 * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap
15457 * and VBT for the presence of the port. Additionally we can't
15458 * trust the port type the VBT declares as we've seen at least
15459 * HDMI ports that the VBT claim are DP or eDP.
e17ac6db 15460 */
457c52d8 15461 has_edp = intel_dp_is_edp(dev, PORT_B);
22f35042
VS
15462 has_port = intel_bios_is_port_present(dev_priv, PORT_B);
15463 if (I915_READ(VLV_DP_B) & DP_DETECTED || has_port)
457c52d8 15464 has_edp &= intel_dp_init(dev, VLV_DP_B, PORT_B);
22f35042 15465 if ((I915_READ(VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp)
e66eb81d 15466 intel_hdmi_init(dev, VLV_HDMIB, PORT_B);
585a94b8 15467
457c52d8 15468 has_edp = intel_dp_is_edp(dev, PORT_C);
22f35042
VS
15469 has_port = intel_bios_is_port_present(dev_priv, PORT_C);
15470 if (I915_READ(VLV_DP_C) & DP_DETECTED || has_port)
457c52d8 15471 has_edp &= intel_dp_init(dev, VLV_DP_C, PORT_C);
22f35042 15472 if ((I915_READ(VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp)
e66eb81d 15473 intel_hdmi_init(dev, VLV_HDMIC, PORT_C);
19c03924 15474
9418c1f1 15475 if (IS_CHERRYVIEW(dev)) {
22f35042
VS
15476 /*
15477 * eDP not supported on port D,
15478 * so no need to worry about it
15479 */
15480 has_port = intel_bios_is_port_present(dev_priv, PORT_D);
15481 if (I915_READ(CHV_DP_D) & DP_DETECTED || has_port)
e66eb81d 15482 intel_dp_init(dev, CHV_DP_D, PORT_D);
22f35042
VS
15483 if (I915_READ(CHV_HDMID) & SDVO_DETECTED || has_port)
15484 intel_hdmi_init(dev, CHV_HDMID, PORT_D);
9418c1f1
VS
15485 }
15486
3cfca973 15487 intel_dsi_init(dev);
09da55dc 15488 } else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
27185ae1 15489 bool found = false;
7d57382e 15490
e2debe91 15491 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 15492 DRM_DEBUG_KMS("probing SDVOB\n");
2a5c0832 15493 found = intel_sdvo_init(dev, GEN3_SDVOB, PORT_B);
3fec3d2f 15494 if (!found && IS_G4X(dev)) {
b01f2c3a 15495 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
e2debe91 15496 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
b01f2c3a 15497 }
27185ae1 15498
3fec3d2f 15499 if (!found && IS_G4X(dev))
ab9d7c30 15500 intel_dp_init(dev, DP_B, PORT_B);
725e30ad 15501 }
13520b05
KH
15502
15503 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 15504
e2debe91 15505 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 15506 DRM_DEBUG_KMS("probing SDVOC\n");
2a5c0832 15507 found = intel_sdvo_init(dev, GEN3_SDVOC, PORT_C);
b01f2c3a 15508 }
27185ae1 15509
e2debe91 15510 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
27185ae1 15511
3fec3d2f 15512 if (IS_G4X(dev)) {
b01f2c3a 15513 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
e2debe91 15514 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
b01f2c3a 15515 }
3fec3d2f 15516 if (IS_G4X(dev))
ab9d7c30 15517 intel_dp_init(dev, DP_C, PORT_C);
725e30ad 15518 }
27185ae1 15519
3fec3d2f 15520 if (IS_G4X(dev) &&
e7281eab 15521 (I915_READ(DP_D) & DP_DETECTED))
ab9d7c30 15522 intel_dp_init(dev, DP_D, PORT_D);
bad720ff 15523 } else if (IS_GEN2(dev))
79e53945
JB
15524 intel_dvo_init(dev);
15525
103a196f 15526 if (SUPPORTS_TV(dev))
79e53945
JB
15527 intel_tv_init(dev);
15528
0bc12bcb 15529 intel_psr_init(dev);
7c8f8a70 15530
b2784e15 15531 for_each_intel_encoder(dev, encoder) {
4ef69c7a
CW
15532 encoder->base.possible_crtcs = encoder->crtc_mask;
15533 encoder->base.possible_clones =
66a9278e 15534 intel_encoder_clones(encoder);
79e53945 15535 }
47356eb6 15536
dde86e2d 15537 intel_init_pch_refclk(dev);
270b3042
DV
15538
15539 drm_helper_move_panel_connectors_to_head(dev);
79e53945
JB
15540}
15541
15542static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
15543{
60a5ca01 15544 struct drm_device *dev = fb->dev;
79e53945 15545 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945 15546
ef2d633e 15547 drm_framebuffer_cleanup(fb);
60a5ca01 15548 mutex_lock(&dev->struct_mutex);
ef2d633e 15549 WARN_ON(!intel_fb->obj->framebuffer_references--);
f8c417cd 15550 i915_gem_object_put(intel_fb->obj);
60a5ca01 15551 mutex_unlock(&dev->struct_mutex);
79e53945
JB
15552 kfree(intel_fb);
15553}
15554
15555static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 15556 struct drm_file *file,
79e53945
JB
15557 unsigned int *handle)
15558{
15559 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 15560 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 15561
cc917ab4
CW
15562 if (obj->userptr.mm) {
15563 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
15564 return -EINVAL;
15565 }
15566
05394f39 15567 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
15568}
15569
86c98588
RV
15570static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
15571 struct drm_file *file,
15572 unsigned flags, unsigned color,
15573 struct drm_clip_rect *clips,
15574 unsigned num_clips)
15575{
15576 struct drm_device *dev = fb->dev;
15577 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
15578 struct drm_i915_gem_object *obj = intel_fb->obj;
15579
15580 mutex_lock(&dev->struct_mutex);
74b4ea1e 15581 intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
86c98588
RV
15582 mutex_unlock(&dev->struct_mutex);
15583
15584 return 0;
15585}
15586
79e53945
JB
15587static const struct drm_framebuffer_funcs intel_fb_funcs = {
15588 .destroy = intel_user_framebuffer_destroy,
15589 .create_handle = intel_user_framebuffer_create_handle,
86c98588 15590 .dirty = intel_user_framebuffer_dirty,
79e53945
JB
15591};
15592
b321803d
DL
15593static
15594u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
15595 uint32_t pixel_format)
15596{
15597 u32 gen = INTEL_INFO(dev)->gen;
15598
15599 if (gen >= 9) {
ac484963
VS
15600 int cpp = drm_format_plane_cpp(pixel_format, 0);
15601
b321803d
DL
15602 /* "The stride in bytes must not exceed the of the size of 8K
15603 * pixels and 32K bytes."
15604 */
ac484963 15605 return min(8192 * cpp, 32768);
666a4537 15606 } else if (gen >= 5 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
b321803d
DL
15607 return 32*1024;
15608 } else if (gen >= 4) {
15609 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
15610 return 16*1024;
15611 else
15612 return 32*1024;
15613 } else if (gen >= 3) {
15614 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
15615 return 8*1024;
15616 else
15617 return 16*1024;
15618 } else {
15619 /* XXX DSPC is limited to 4k tiled */
15620 return 8*1024;
15621 }
15622}
15623
b5ea642a
DV
15624static int intel_framebuffer_init(struct drm_device *dev,
15625 struct intel_framebuffer *intel_fb,
15626 struct drm_mode_fb_cmd2 *mode_cmd,
15627 struct drm_i915_gem_object *obj)
79e53945 15628{
7b49f948 15629 struct drm_i915_private *dev_priv = to_i915(dev);
c2ff7370 15630 unsigned int tiling = i915_gem_object_get_tiling(obj);
79e53945 15631 int ret;
b321803d 15632 u32 pitch_limit, stride_alignment;
79e53945 15633
dd4916c5
DV
15634 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
15635
2a80eada 15636 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
c2ff7370
VS
15637 /*
15638 * If there's a fence, enforce that
15639 * the fb modifier and tiling mode match.
15640 */
15641 if (tiling != I915_TILING_NONE &&
15642 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
2a80eada
DV
15643 DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
15644 return -EINVAL;
15645 }
15646 } else {
c2ff7370 15647 if (tiling == I915_TILING_X) {
2a80eada 15648 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
c2ff7370 15649 } else if (tiling == I915_TILING_Y) {
2a80eada
DV
15650 DRM_DEBUG("No Y tiling for legacy addfb\n");
15651 return -EINVAL;
15652 }
15653 }
15654
9a8f0a12
TU
15655 /* Passed in modifier sanity checking. */
15656 switch (mode_cmd->modifier[0]) {
15657 case I915_FORMAT_MOD_Y_TILED:
15658 case I915_FORMAT_MOD_Yf_TILED:
15659 if (INTEL_INFO(dev)->gen < 9) {
15660 DRM_DEBUG("Unsupported tiling 0x%llx!\n",
15661 mode_cmd->modifier[0]);
15662 return -EINVAL;
15663 }
15664 case DRM_FORMAT_MOD_NONE:
15665 case I915_FORMAT_MOD_X_TILED:
15666 break;
15667 default:
c0f40428
JB
15668 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
15669 mode_cmd->modifier[0]);
57cd6508 15670 return -EINVAL;
c16ed4be 15671 }
57cd6508 15672
c2ff7370
VS
15673 /*
15674 * gen2/3 display engine uses the fence if present,
15675 * so the tiling mode must match the fb modifier exactly.
15676 */
15677 if (INTEL_INFO(dev_priv)->gen < 4 &&
15678 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
15679 DRM_DEBUG("tiling_mode must match fb modifier exactly on gen2/3\n");
15680 return -EINVAL;
15681 }
15682
7b49f948
VS
15683 stride_alignment = intel_fb_stride_alignment(dev_priv,
15684 mode_cmd->modifier[0],
b321803d
DL
15685 mode_cmd->pixel_format);
15686 if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
15687 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
15688 mode_cmd->pitches[0], stride_alignment);
57cd6508 15689 return -EINVAL;
c16ed4be 15690 }
57cd6508 15691
b321803d
DL
15692 pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
15693 mode_cmd->pixel_format);
a35cdaa0 15694 if (mode_cmd->pitches[0] > pitch_limit) {
b321803d
DL
15695 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
15696 mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
2a80eada 15697 "tiled" : "linear",
a35cdaa0 15698 mode_cmd->pitches[0], pitch_limit);
5d7bd705 15699 return -EINVAL;
c16ed4be 15700 }
5d7bd705 15701
c2ff7370
VS
15702 /*
15703 * If there's a fence, enforce that
15704 * the fb pitch and fence stride match.
15705 */
15706 if (tiling != I915_TILING_NONE &&
3e510a8e 15707 mode_cmd->pitches[0] != i915_gem_object_get_stride(obj)) {
c16ed4be 15708 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
3e510a8e
CW
15709 mode_cmd->pitches[0],
15710 i915_gem_object_get_stride(obj));
5d7bd705 15711 return -EINVAL;
c16ed4be 15712 }
5d7bd705 15713
57779d06 15714 /* Reject formats not supported by any plane early. */
308e5bcb 15715 switch (mode_cmd->pixel_format) {
57779d06 15716 case DRM_FORMAT_C8:
04b3924d
VS
15717 case DRM_FORMAT_RGB565:
15718 case DRM_FORMAT_XRGB8888:
15719 case DRM_FORMAT_ARGB8888:
57779d06
VS
15720 break;
15721 case DRM_FORMAT_XRGB1555:
c16ed4be 15722 if (INTEL_INFO(dev)->gen > 3) {
4ee62c76
VS
15723 DRM_DEBUG("unsupported pixel format: %s\n",
15724 drm_get_format_name(mode_cmd->pixel_format));
57779d06 15725 return -EINVAL;
c16ed4be 15726 }
57779d06 15727 break;
57779d06 15728 case DRM_FORMAT_ABGR8888:
666a4537
WB
15729 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
15730 INTEL_INFO(dev)->gen < 9) {
6c0fd451
DL
15731 DRM_DEBUG("unsupported pixel format: %s\n",
15732 drm_get_format_name(mode_cmd->pixel_format));
15733 return -EINVAL;
15734 }
15735 break;
15736 case DRM_FORMAT_XBGR8888:
04b3924d 15737 case DRM_FORMAT_XRGB2101010:
57779d06 15738 case DRM_FORMAT_XBGR2101010:
c16ed4be 15739 if (INTEL_INFO(dev)->gen < 4) {
4ee62c76
VS
15740 DRM_DEBUG("unsupported pixel format: %s\n",
15741 drm_get_format_name(mode_cmd->pixel_format));
57779d06 15742 return -EINVAL;
c16ed4be 15743 }
b5626747 15744 break;
7531208b 15745 case DRM_FORMAT_ABGR2101010:
666a4537 15746 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
7531208b
DL
15747 DRM_DEBUG("unsupported pixel format: %s\n",
15748 drm_get_format_name(mode_cmd->pixel_format));
15749 return -EINVAL;
15750 }
15751 break;
04b3924d
VS
15752 case DRM_FORMAT_YUYV:
15753 case DRM_FORMAT_UYVY:
15754 case DRM_FORMAT_YVYU:
15755 case DRM_FORMAT_VYUY:
c16ed4be 15756 if (INTEL_INFO(dev)->gen < 5) {
4ee62c76
VS
15757 DRM_DEBUG("unsupported pixel format: %s\n",
15758 drm_get_format_name(mode_cmd->pixel_format));
57779d06 15759 return -EINVAL;
c16ed4be 15760 }
57cd6508
CW
15761 break;
15762 default:
4ee62c76
VS
15763 DRM_DEBUG("unsupported pixel format: %s\n",
15764 drm_get_format_name(mode_cmd->pixel_format));
57cd6508
CW
15765 return -EINVAL;
15766 }
15767
90f9a336
VS
15768 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
15769 if (mode_cmd->offsets[0] != 0)
15770 return -EINVAL;
15771
c7d73f6a
DV
15772 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
15773 intel_fb->obj = obj;
15774
6687c906
VS
15775 ret = intel_fill_fb_info(dev_priv, &intel_fb->base);
15776 if (ret)
15777 return ret;
2d7a215f 15778
79e53945
JB
15779 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
15780 if (ret) {
15781 DRM_ERROR("framebuffer init failed %d\n", ret);
15782 return ret;
15783 }
15784
0b05e1e0
VS
15785 intel_fb->obj->framebuffer_references++;
15786
79e53945
JB
15787 return 0;
15788}
15789
79e53945
JB
15790static struct drm_framebuffer *
15791intel_user_framebuffer_create(struct drm_device *dev,
15792 struct drm_file *filp,
1eb83451 15793 const struct drm_mode_fb_cmd2 *user_mode_cmd)
79e53945 15794{
dcb1394e 15795 struct drm_framebuffer *fb;
05394f39 15796 struct drm_i915_gem_object *obj;
76dc3769 15797 struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
79e53945 15798
03ac0642
CW
15799 obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]);
15800 if (!obj)
cce13ff7 15801 return ERR_PTR(-ENOENT);
79e53945 15802
92907cbb 15803 fb = intel_framebuffer_create(dev, &mode_cmd, obj);
dcb1394e 15804 if (IS_ERR(fb))
34911fd3 15805 i915_gem_object_put_unlocked(obj);
dcb1394e
LW
15806
15807 return fb;
79e53945
JB
15808}
15809
0695726e 15810#ifndef CONFIG_DRM_FBDEV_EMULATION
0632fef6 15811static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
4520f53a
DV
15812{
15813}
15814#endif
15815
79e53945 15816static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 15817 .fb_create = intel_user_framebuffer_create,
0632fef6 15818 .output_poll_changed = intel_fbdev_output_poll_changed,
5ee67f1c
MR
15819 .atomic_check = intel_atomic_check,
15820 .atomic_commit = intel_atomic_commit,
de419ab6
ML
15821 .atomic_state_alloc = intel_atomic_state_alloc,
15822 .atomic_state_clear = intel_atomic_state_clear,
79e53945
JB
15823};
15824
88212941
ID
15825/**
15826 * intel_init_display_hooks - initialize the display modesetting hooks
15827 * @dev_priv: device private
15828 */
15829void intel_init_display_hooks(struct drm_i915_private *dev_priv)
e70236a8 15830{
88212941 15831 if (INTEL_INFO(dev_priv)->gen >= 9) {
bc8d7dff 15832 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
5724dbd1
DL
15833 dev_priv->display.get_initial_plane_config =
15834 skylake_get_initial_plane_config;
bc8d7dff
DL
15835 dev_priv->display.crtc_compute_clock =
15836 haswell_crtc_compute_clock;
15837 dev_priv->display.crtc_enable = haswell_crtc_enable;
15838 dev_priv->display.crtc_disable = haswell_crtc_disable;
88212941 15839 } else if (HAS_DDI(dev_priv)) {
0e8ffe1b 15840 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
5724dbd1
DL
15841 dev_priv->display.get_initial_plane_config =
15842 ironlake_get_initial_plane_config;
797d0259
ACO
15843 dev_priv->display.crtc_compute_clock =
15844 haswell_crtc_compute_clock;
4f771f10
PZ
15845 dev_priv->display.crtc_enable = haswell_crtc_enable;
15846 dev_priv->display.crtc_disable = haswell_crtc_disable;
88212941 15847 } else if (HAS_PCH_SPLIT(dev_priv)) {
0e8ffe1b 15848 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
5724dbd1
DL
15849 dev_priv->display.get_initial_plane_config =
15850 ironlake_get_initial_plane_config;
3fb37703
ACO
15851 dev_priv->display.crtc_compute_clock =
15852 ironlake_crtc_compute_clock;
76e5a89c
DV
15853 dev_priv->display.crtc_enable = ironlake_crtc_enable;
15854 dev_priv->display.crtc_disable = ironlake_crtc_disable;
65b3d6a9 15855 } else if (IS_CHERRYVIEW(dev_priv)) {
89b667f8 15856 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
5724dbd1
DL
15857 dev_priv->display.get_initial_plane_config =
15858 i9xx_get_initial_plane_config;
65b3d6a9
ACO
15859 dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
15860 dev_priv->display.crtc_enable = valleyview_crtc_enable;
15861 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15862 } else if (IS_VALLEYVIEW(dev_priv)) {
15863 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15864 dev_priv->display.get_initial_plane_config =
15865 i9xx_get_initial_plane_config;
15866 dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
89b667f8
JB
15867 dev_priv->display.crtc_enable = valleyview_crtc_enable;
15868 dev_priv->display.crtc_disable = i9xx_crtc_disable;
19ec6693
ACO
15869 } else if (IS_G4X(dev_priv)) {
15870 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15871 dev_priv->display.get_initial_plane_config =
15872 i9xx_get_initial_plane_config;
15873 dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
15874 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15875 dev_priv->display.crtc_disable = i9xx_crtc_disable;
70e8aa21
ACO
15876 } else if (IS_PINEVIEW(dev_priv)) {
15877 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15878 dev_priv->display.get_initial_plane_config =
15879 i9xx_get_initial_plane_config;
15880 dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
15881 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15882 dev_priv->display.crtc_disable = i9xx_crtc_disable;
81c97f52 15883 } else if (!IS_GEN2(dev_priv)) {
0e8ffe1b 15884 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
5724dbd1
DL
15885 dev_priv->display.get_initial_plane_config =
15886 i9xx_get_initial_plane_config;
d6dfee7a 15887 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
76e5a89c
DV
15888 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15889 dev_priv->display.crtc_disable = i9xx_crtc_disable;
81c97f52
ACO
15890 } else {
15891 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15892 dev_priv->display.get_initial_plane_config =
15893 i9xx_get_initial_plane_config;
15894 dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
15895 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15896 dev_priv->display.crtc_disable = i9xx_crtc_disable;
f564048e 15897 }
e70236a8 15898
e70236a8 15899 /* Returns the core display clock speed */
88212941 15900 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
1652d19e
VS
15901 dev_priv->display.get_display_clock_speed =
15902 skylake_get_display_clock_speed;
88212941 15903 else if (IS_BROXTON(dev_priv))
acd3f3d3
BP
15904 dev_priv->display.get_display_clock_speed =
15905 broxton_get_display_clock_speed;
88212941 15906 else if (IS_BROADWELL(dev_priv))
1652d19e
VS
15907 dev_priv->display.get_display_clock_speed =
15908 broadwell_get_display_clock_speed;
88212941 15909 else if (IS_HASWELL(dev_priv))
1652d19e
VS
15910 dev_priv->display.get_display_clock_speed =
15911 haswell_get_display_clock_speed;
88212941 15912 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
25eb05fc
JB
15913 dev_priv->display.get_display_clock_speed =
15914 valleyview_get_display_clock_speed;
88212941 15915 else if (IS_GEN5(dev_priv))
b37a6434
VS
15916 dev_priv->display.get_display_clock_speed =
15917 ilk_get_display_clock_speed;
88212941
ID
15918 else if (IS_I945G(dev_priv) || IS_BROADWATER(dev_priv) ||
15919 IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv))
e70236a8
JB
15920 dev_priv->display.get_display_clock_speed =
15921 i945_get_display_clock_speed;
88212941 15922 else if (IS_GM45(dev_priv))
34edce2f
VS
15923 dev_priv->display.get_display_clock_speed =
15924 gm45_get_display_clock_speed;
88212941 15925 else if (IS_CRESTLINE(dev_priv))
34edce2f
VS
15926 dev_priv->display.get_display_clock_speed =
15927 i965gm_get_display_clock_speed;
88212941 15928 else if (IS_PINEVIEW(dev_priv))
34edce2f
VS
15929 dev_priv->display.get_display_clock_speed =
15930 pnv_get_display_clock_speed;
88212941 15931 else if (IS_G33(dev_priv) || IS_G4X(dev_priv))
34edce2f
VS
15932 dev_priv->display.get_display_clock_speed =
15933 g33_get_display_clock_speed;
88212941 15934 else if (IS_I915G(dev_priv))
e70236a8
JB
15935 dev_priv->display.get_display_clock_speed =
15936 i915_get_display_clock_speed;
88212941 15937 else if (IS_I945GM(dev_priv) || IS_845G(dev_priv))
e70236a8
JB
15938 dev_priv->display.get_display_clock_speed =
15939 i9xx_misc_get_display_clock_speed;
88212941 15940 else if (IS_I915GM(dev_priv))
e70236a8
JB
15941 dev_priv->display.get_display_clock_speed =
15942 i915gm_get_display_clock_speed;
88212941 15943 else if (IS_I865G(dev_priv))
e70236a8
JB
15944 dev_priv->display.get_display_clock_speed =
15945 i865_get_display_clock_speed;
88212941 15946 else if (IS_I85X(dev_priv))
e70236a8 15947 dev_priv->display.get_display_clock_speed =
1b1d2716 15948 i85x_get_display_clock_speed;
623e01e5 15949 else { /* 830 */
88212941 15950 WARN(!IS_I830(dev_priv), "Unknown platform. Assuming 133 MHz CDCLK\n");
e70236a8
JB
15951 dev_priv->display.get_display_clock_speed =
15952 i830_get_display_clock_speed;
623e01e5 15953 }
e70236a8 15954
88212941 15955 if (IS_GEN5(dev_priv)) {
3bb11b53 15956 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
88212941 15957 } else if (IS_GEN6(dev_priv)) {
3bb11b53 15958 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
88212941 15959 } else if (IS_IVYBRIDGE(dev_priv)) {
3bb11b53
SJ
15960 /* FIXME: detect B0+ stepping and use auto training */
15961 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
88212941 15962 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3bb11b53 15963 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
445e780b
VS
15964 }
15965
15966 if (IS_BROADWELL(dev_priv)) {
15967 dev_priv->display.modeset_commit_cdclk =
15968 broadwell_modeset_commit_cdclk;
15969 dev_priv->display.modeset_calc_cdclk =
15970 broadwell_modeset_calc_cdclk;
88212941 15971 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
27c329ed
ML
15972 dev_priv->display.modeset_commit_cdclk =
15973 valleyview_modeset_commit_cdclk;
15974 dev_priv->display.modeset_calc_cdclk =
15975 valleyview_modeset_calc_cdclk;
88212941 15976 } else if (IS_BROXTON(dev_priv)) {
27c329ed 15977 dev_priv->display.modeset_commit_cdclk =
324513c0 15978 bxt_modeset_commit_cdclk;
27c329ed 15979 dev_priv->display.modeset_calc_cdclk =
324513c0 15980 bxt_modeset_calc_cdclk;
c89e39f3
CT
15981 } else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
15982 dev_priv->display.modeset_commit_cdclk =
15983 skl_modeset_commit_cdclk;
15984 dev_priv->display.modeset_calc_cdclk =
15985 skl_modeset_calc_cdclk;
e70236a8 15986 }
5a21b665 15987
27082493
L
15988 if (dev_priv->info.gen >= 9)
15989 dev_priv->display.update_crtcs = skl_update_crtcs;
15990 else
15991 dev_priv->display.update_crtcs = intel_update_crtcs;
15992
5a21b665
DV
15993 switch (INTEL_INFO(dev_priv)->gen) {
15994 case 2:
15995 dev_priv->display.queue_flip = intel_gen2_queue_flip;
15996 break;
15997
15998 case 3:
15999 dev_priv->display.queue_flip = intel_gen3_queue_flip;
16000 break;
16001
16002 case 4:
16003 case 5:
16004 dev_priv->display.queue_flip = intel_gen4_queue_flip;
16005 break;
16006
16007 case 6:
16008 dev_priv->display.queue_flip = intel_gen6_queue_flip;
16009 break;
16010 case 7:
16011 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
16012 dev_priv->display.queue_flip = intel_gen7_queue_flip;
16013 break;
16014 case 9:
16015 /* Drop through - unsupported since execlist only. */
16016 default:
16017 /* Default just returns -ENODEV to indicate unsupported */
16018 dev_priv->display.queue_flip = intel_default_queue_flip;
16019 }
e70236a8
JB
16020}
16021
b690e96c
JB
16022/*
16023 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
16024 * resume, or other times. This quirk makes sure that's the case for
16025 * affected systems.
16026 */
0206e353 16027static void quirk_pipea_force(struct drm_device *dev)
b690e96c 16028{
fac5e23e 16029 struct drm_i915_private *dev_priv = to_i915(dev);
b690e96c
JB
16030
16031 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
bc0daf48 16032 DRM_INFO("applying pipe a force quirk\n");
b690e96c
JB
16033}
16034
b6b5d049
VS
16035static void quirk_pipeb_force(struct drm_device *dev)
16036{
fac5e23e 16037 struct drm_i915_private *dev_priv = to_i915(dev);
b6b5d049
VS
16038
16039 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
16040 DRM_INFO("applying pipe b force quirk\n");
16041}
16042
435793df
KP
16043/*
16044 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
16045 */
16046static void quirk_ssc_force_disable(struct drm_device *dev)
16047{
fac5e23e 16048 struct drm_i915_private *dev_priv = to_i915(dev);
435793df 16049 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
bc0daf48 16050 DRM_INFO("applying lvds SSC disable quirk\n");
435793df
KP
16051}
16052
4dca20ef 16053/*
5a15ab5b
CE
16054 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
16055 * brightness value
4dca20ef
CE
16056 */
16057static void quirk_invert_brightness(struct drm_device *dev)
16058{
fac5e23e 16059 struct drm_i915_private *dev_priv = to_i915(dev);
4dca20ef 16060 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
bc0daf48 16061 DRM_INFO("applying inverted panel brightness quirk\n");
435793df
KP
16062}
16063
9c72cc6f
SD
16064/* Some VBT's incorrectly indicate no backlight is present */
16065static void quirk_backlight_present(struct drm_device *dev)
16066{
fac5e23e 16067 struct drm_i915_private *dev_priv = to_i915(dev);
9c72cc6f
SD
16068 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
16069 DRM_INFO("applying backlight present quirk\n");
16070}
16071
b690e96c
JB
16072struct intel_quirk {
16073 int device;
16074 int subsystem_vendor;
16075 int subsystem_device;
16076 void (*hook)(struct drm_device *dev);
16077};
16078
5f85f176
EE
16079/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
16080struct intel_dmi_quirk {
16081 void (*hook)(struct drm_device *dev);
16082 const struct dmi_system_id (*dmi_id_list)[];
16083};
16084
16085static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
16086{
16087 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
16088 return 1;
16089}
16090
16091static const struct intel_dmi_quirk intel_dmi_quirks[] = {
16092 {
16093 .dmi_id_list = &(const struct dmi_system_id[]) {
16094 {
16095 .callback = intel_dmi_reverse_brightness,
16096 .ident = "NCR Corporation",
16097 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
16098 DMI_MATCH(DMI_PRODUCT_NAME, ""),
16099 },
16100 },
16101 { } /* terminating entry */
16102 },
16103 .hook = quirk_invert_brightness,
16104 },
16105};
16106
c43b5634 16107static struct intel_quirk intel_quirks[] = {
b690e96c
JB
16108 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
16109 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
16110
b690e96c
JB
16111 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
16112 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
16113
5f080c0f
VS
16114 /* 830 needs to leave pipe A & dpll A up */
16115 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
16116
b6b5d049
VS
16117 /* 830 needs to leave pipe B & dpll B up */
16118 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
16119
435793df
KP
16120 /* Lenovo U160 cannot use SSC on LVDS */
16121 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
16122
16123 /* Sony Vaio Y cannot use SSC on LVDS */
16124 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
5a15ab5b 16125
be505f64
AH
16126 /* Acer Aspire 5734Z must invert backlight brightness */
16127 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
16128
16129 /* Acer/eMachines G725 */
16130 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
16131
16132 /* Acer/eMachines e725 */
16133 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
16134
16135 /* Acer/Packard Bell NCL20 */
16136 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
16137
16138 /* Acer Aspire 4736Z */
16139 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
0f540c3a
JN
16140
16141 /* Acer Aspire 5336 */
16142 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
2e93a1aa
SD
16143
16144 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
16145 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
d4967d8c 16146
dfb3d47b
SD
16147 /* Acer C720 Chromebook (Core i3 4005U) */
16148 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
16149
b2a9601c 16150 /* Apple Macbook 2,1 (Core 2 T7400) */
16151 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
16152
1b9448b0
JN
16153 /* Apple Macbook 4,1 */
16154 { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
16155
d4967d8c
SD
16156 /* Toshiba CB35 Chromebook (Celeron 2955U) */
16157 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
724cb06f
SD
16158
16159 /* HP Chromebook 14 (Celeron 2955U) */
16160 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
cf6f0af9
JN
16161
16162 /* Dell Chromebook 11 */
16163 { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
9be64eee
JN
16164
16165 /* Dell Chromebook 11 (2015 version) */
16166 { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
b690e96c
JB
16167};
16168
16169static void intel_init_quirks(struct drm_device *dev)
16170{
16171 struct pci_dev *d = dev->pdev;
16172 int i;
16173
16174 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
16175 struct intel_quirk *q = &intel_quirks[i];
16176
16177 if (d->device == q->device &&
16178 (d->subsystem_vendor == q->subsystem_vendor ||
16179 q->subsystem_vendor == PCI_ANY_ID) &&
16180 (d->subsystem_device == q->subsystem_device ||
16181 q->subsystem_device == PCI_ANY_ID))
16182 q->hook(dev);
16183 }
5f85f176
EE
16184 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
16185 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
16186 intel_dmi_quirks[i].hook(dev);
16187 }
b690e96c
JB
16188}
16189
9cce37f4
JB
16190/* Disable the VGA plane that we never use */
16191static void i915_disable_vga(struct drm_device *dev)
16192{
fac5e23e 16193 struct drm_i915_private *dev_priv = to_i915(dev);
52a05c30 16194 struct pci_dev *pdev = dev_priv->drm.pdev;
9cce37f4 16195 u8 sr1;
f0f59a00 16196 i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
9cce37f4 16197
2b37c616 16198 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
52a05c30 16199 vga_get_uninterruptible(pdev, VGA_RSRC_LEGACY_IO);
3fdcf431 16200 outb(SR01, VGA_SR_INDEX);
9cce37f4
JB
16201 sr1 = inb(VGA_SR_DATA);
16202 outb(sr1 | 1<<5, VGA_SR_DATA);
52a05c30 16203 vga_put(pdev, VGA_RSRC_LEGACY_IO);
9cce37f4
JB
16204 udelay(300);
16205
01f5a626 16206 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
9cce37f4
JB
16207 POSTING_READ(vga_reg);
16208}
16209
f817586c
DV
16210void intel_modeset_init_hw(struct drm_device *dev)
16211{
fac5e23e 16212 struct drm_i915_private *dev_priv = to_i915(dev);
1a617b77 16213
b6283055 16214 intel_update_cdclk(dev);
1a617b77
ML
16215
16216 dev_priv->atomic_cdclk_freq = dev_priv->cdclk_freq;
16217
f817586c 16218 intel_init_clock_gating(dev);
f817586c
DV
16219}
16220
d93c0372
MR
16221/*
16222 * Calculate what we think the watermarks should be for the state we've read
16223 * out of the hardware and then immediately program those watermarks so that
16224 * we ensure the hardware settings match our internal state.
16225 *
16226 * We can calculate what we think WM's should be by creating a duplicate of the
16227 * current state (which was constructed during hardware readout) and running it
16228 * through the atomic check code to calculate new watermark values in the
16229 * state object.
16230 */
16231static void sanitize_watermarks(struct drm_device *dev)
16232{
16233 struct drm_i915_private *dev_priv = to_i915(dev);
16234 struct drm_atomic_state *state;
16235 struct drm_crtc *crtc;
16236 struct drm_crtc_state *cstate;
16237 struct drm_modeset_acquire_ctx ctx;
16238 int ret;
16239 int i;
16240
16241 /* Only supported on platforms that use atomic watermark design */
ed4a6a7c 16242 if (!dev_priv->display.optimize_watermarks)
d93c0372
MR
16243 return;
16244
16245 /*
16246 * We need to hold connection_mutex before calling duplicate_state so
16247 * that the connector loop is protected.
16248 */
16249 drm_modeset_acquire_init(&ctx, 0);
16250retry:
0cd1262d 16251 ret = drm_modeset_lock_all_ctx(dev, &ctx);
d93c0372
MR
16252 if (ret == -EDEADLK) {
16253 drm_modeset_backoff(&ctx);
16254 goto retry;
16255 } else if (WARN_ON(ret)) {
0cd1262d 16256 goto fail;
d93c0372
MR
16257 }
16258
16259 state = drm_atomic_helper_duplicate_state(dev, &ctx);
16260 if (WARN_ON(IS_ERR(state)))
0cd1262d 16261 goto fail;
d93c0372 16262
ed4a6a7c
MR
16263 /*
16264 * Hardware readout is the only time we don't want to calculate
16265 * intermediate watermarks (since we don't trust the current
16266 * watermarks).
16267 */
16268 to_intel_atomic_state(state)->skip_intermediate_wm = true;
16269
d93c0372
MR
16270 ret = intel_atomic_check(dev, state);
16271 if (ret) {
16272 /*
16273 * If we fail here, it means that the hardware appears to be
16274 * programmed in a way that shouldn't be possible, given our
16275 * understanding of watermark requirements. This might mean a
16276 * mistake in the hardware readout code or a mistake in the
16277 * watermark calculations for a given platform. Raise a WARN
16278 * so that this is noticeable.
16279 *
16280 * If this actually happens, we'll have to just leave the
16281 * BIOS-programmed watermarks untouched and hope for the best.
16282 */
16283 WARN(true, "Could not determine valid watermarks for inherited state\n");
0cd1262d 16284 goto fail;
d93c0372
MR
16285 }
16286
16287 /* Write calculated watermark values back */
d93c0372
MR
16288 for_each_crtc_in_state(state, crtc, cstate, i) {
16289 struct intel_crtc_state *cs = to_intel_crtc_state(cstate);
16290
ed4a6a7c
MR
16291 cs->wm.need_postvbl_update = true;
16292 dev_priv->display.optimize_watermarks(cs);
d93c0372
MR
16293 }
16294
16295 drm_atomic_state_free(state);
0cd1262d 16296fail:
d93c0372
MR
16297 drm_modeset_drop_locks(&ctx);
16298 drm_modeset_acquire_fini(&ctx);
16299}
16300
79e53945
JB
16301void intel_modeset_init(struct drm_device *dev)
16302{
72e96d64
JL
16303 struct drm_i915_private *dev_priv = to_i915(dev);
16304 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1fe47785 16305 int sprite, ret;
8cc87b75 16306 enum pipe pipe;
46f297fb 16307 struct intel_crtc *crtc;
79e53945
JB
16308
16309 drm_mode_config_init(dev);
16310
16311 dev->mode_config.min_width = 0;
16312 dev->mode_config.min_height = 0;
16313
019d96cb
DA
16314 dev->mode_config.preferred_depth = 24;
16315 dev->mode_config.prefer_shadow = 1;
16316
25bab385
TU
16317 dev->mode_config.allow_fb_modifiers = true;
16318
e6ecefaa 16319 dev->mode_config.funcs = &intel_mode_funcs;
79e53945 16320
b690e96c
JB
16321 intel_init_quirks(dev);
16322
1fa61106
ED
16323 intel_init_pm(dev);
16324
e3c74757
BW
16325 if (INTEL_INFO(dev)->num_pipes == 0)
16326 return;
16327
69f92f67
LW
16328 /*
16329 * There may be no VBT; and if the BIOS enabled SSC we can
16330 * just keep using it to avoid unnecessary flicker. Whereas if the
16331 * BIOS isn't using it, don't assume it will work even if the VBT
16332 * indicates as much.
16333 */
16334 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
16335 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
16336 DREF_SSC1_ENABLE);
16337
16338 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
16339 DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
16340 bios_lvds_use_ssc ? "en" : "dis",
16341 dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
16342 dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
16343 }
16344 }
16345
a6c45cf0
CW
16346 if (IS_GEN2(dev)) {
16347 dev->mode_config.max_width = 2048;
16348 dev->mode_config.max_height = 2048;
16349 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
16350 dev->mode_config.max_width = 4096;
16351 dev->mode_config.max_height = 4096;
79e53945 16352 } else {
a6c45cf0
CW
16353 dev->mode_config.max_width = 8192;
16354 dev->mode_config.max_height = 8192;
79e53945 16355 }
068be561 16356
dc41c154
VS
16357 if (IS_845G(dev) || IS_I865G(dev)) {
16358 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
16359 dev->mode_config.cursor_height = 1023;
16360 } else if (IS_GEN2(dev)) {
068be561
DL
16361 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
16362 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
16363 } else {
16364 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
16365 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
16366 }
16367
72e96d64 16368 dev->mode_config.fb_base = ggtt->mappable_base;
79e53945 16369
28c97730 16370 DRM_DEBUG_KMS("%d display pipe%s available.\n",
7eb552ae
BW
16371 INTEL_INFO(dev)->num_pipes,
16372 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
79e53945 16373
055e393f 16374 for_each_pipe(dev_priv, pipe) {
8cc87b75 16375 intel_crtc_init(dev, pipe);
3bdcfc0c 16376 for_each_sprite(dev_priv, pipe, sprite) {
1fe47785 16377 ret = intel_plane_init(dev, pipe, sprite);
7f1f3851 16378 if (ret)
06da8da2 16379 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
1fe47785 16380 pipe_name(pipe), sprite_name(pipe, sprite), ret);
7f1f3851 16381 }
79e53945
JB
16382 }
16383
bfa7df01
VS
16384 intel_update_czclk(dev_priv);
16385 intel_update_cdclk(dev);
16386
e72f9fbf 16387 intel_shared_dpll_init(dev);
ee7b9f93 16388
b2045352
VS
16389 if (dev_priv->max_cdclk_freq == 0)
16390 intel_update_max_cdclk(dev);
16391
9cce37f4
JB
16392 /* Just disable it once at startup */
16393 i915_disable_vga(dev);
79e53945 16394 intel_setup_outputs(dev);
11be49eb 16395
6e9f798d 16396 drm_modeset_lock_all(dev);
043e9bda 16397 intel_modeset_setup_hw_state(dev);
6e9f798d 16398 drm_modeset_unlock_all(dev);
46f297fb 16399
d3fcc808 16400 for_each_intel_crtc(dev, crtc) {
eeebeac5
ML
16401 struct intel_initial_plane_config plane_config = {};
16402
46f297fb
JB
16403 if (!crtc->active)
16404 continue;
16405
46f297fb 16406 /*
46f297fb
JB
16407 * Note that reserving the BIOS fb up front prevents us
16408 * from stuffing other stolen allocations like the ring
16409 * on top. This prevents some ugliness at boot time, and
16410 * can even allow for smooth boot transitions if the BIOS
16411 * fb is large enough for the active pipe configuration.
16412 */
eeebeac5
ML
16413 dev_priv->display.get_initial_plane_config(crtc,
16414 &plane_config);
16415
16416 /*
16417 * If the fb is shared between multiple heads, we'll
16418 * just get the first one.
16419 */
16420 intel_find_initial_plane_obj(crtc, &plane_config);
46f297fb 16421 }
d93c0372
MR
16422
16423 /*
16424 * Make sure hardware watermarks really match the state we read out.
16425 * Note that we need to do this after reconstructing the BIOS fb's
16426 * since the watermark calculation done here will use pstate->fb.
16427 */
16428 sanitize_watermarks(dev);
2c7111db
CW
16429}
16430
7fad798e
DV
16431static void intel_enable_pipe_a(struct drm_device *dev)
16432{
16433 struct intel_connector *connector;
16434 struct drm_connector *crt = NULL;
16435 struct intel_load_detect_pipe load_detect_temp;
208bf9fd 16436 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
7fad798e
DV
16437
16438 /* We can't just switch on the pipe A, we need to set things up with a
16439 * proper mode and output configuration. As a gross hack, enable pipe A
16440 * by enabling the load detect pipe once. */
3a3371ff 16441 for_each_intel_connector(dev, connector) {
7fad798e
DV
16442 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
16443 crt = &connector->base;
16444 break;
16445 }
16446 }
16447
16448 if (!crt)
16449 return;
16450
208bf9fd 16451 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
49172fee 16452 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
7fad798e
DV
16453}
16454
fa555837
DV
16455static bool
16456intel_check_plane_mapping(struct intel_crtc *crtc)
16457{
7eb552ae 16458 struct drm_device *dev = crtc->base.dev;
fac5e23e 16459 struct drm_i915_private *dev_priv = to_i915(dev);
649636ef 16460 u32 val;
fa555837 16461
7eb552ae 16462 if (INTEL_INFO(dev)->num_pipes == 1)
fa555837
DV
16463 return true;
16464
649636ef 16465 val = I915_READ(DSPCNTR(!crtc->plane));
fa555837
DV
16466
16467 if ((val & DISPLAY_PLANE_ENABLE) &&
16468 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
16469 return false;
16470
16471 return true;
16472}
16473
02e93c35
VS
16474static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
16475{
16476 struct drm_device *dev = crtc->base.dev;
16477 struct intel_encoder *encoder;
16478
16479 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
16480 return true;
16481
16482 return false;
16483}
16484
496b0fc3
ML
16485static struct intel_connector *intel_encoder_find_connector(struct intel_encoder *encoder)
16486{
16487 struct drm_device *dev = encoder->base.dev;
16488 struct intel_connector *connector;
16489
16490 for_each_connector_on_encoder(dev, &encoder->base, connector)
16491 return connector;
16492
16493 return NULL;
16494}
16495
a168f5b3
VS
16496static bool has_pch_trancoder(struct drm_i915_private *dev_priv,
16497 enum transcoder pch_transcoder)
16498{
16499 return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
16500 (HAS_PCH_LPT_H(dev_priv) && pch_transcoder == TRANSCODER_A);
16501}
16502
24929352
DV
16503static void intel_sanitize_crtc(struct intel_crtc *crtc)
16504{
16505 struct drm_device *dev = crtc->base.dev;
fac5e23e 16506 struct drm_i915_private *dev_priv = to_i915(dev);
4d1de975 16507 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
24929352 16508
24929352 16509 /* Clear any frame start delays used for debugging left by the BIOS */
4d1de975
JN
16510 if (!transcoder_is_dsi(cpu_transcoder)) {
16511 i915_reg_t reg = PIPECONF(cpu_transcoder);
16512
16513 I915_WRITE(reg,
16514 I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
16515 }
24929352 16516
d3eaf884 16517 /* restore vblank interrupts to correct state */
9625604c 16518 drm_crtc_vblank_reset(&crtc->base);
d297e103 16519 if (crtc->active) {
f9cd7b88
VS
16520 struct intel_plane *plane;
16521
9625604c 16522 drm_crtc_vblank_on(&crtc->base);
f9cd7b88
VS
16523
16524 /* Disable everything but the primary plane */
16525 for_each_intel_plane_on_crtc(dev, crtc, plane) {
16526 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
16527 continue;
16528
16529 plane->disable_plane(&plane->base, &crtc->base);
16530 }
9625604c 16531 }
d3eaf884 16532
24929352 16533 /* We need to sanitize the plane -> pipe mapping first because this will
fa555837
DV
16534 * disable the crtc (and hence change the state) if it is wrong. Note
16535 * that gen4+ has a fixed plane -> pipe mapping. */
16536 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
24929352
DV
16537 bool plane;
16538
78108b7c
VS
16539 DRM_DEBUG_KMS("[CRTC:%d:%s] wrong plane connection detected!\n",
16540 crtc->base.base.id, crtc->base.name);
24929352
DV
16541
16542 /* Pipe has the wrong plane attached and the plane is active.
16543 * Temporarily change the plane mapping and disable everything
16544 * ... */
16545 plane = crtc->plane;
936e71e3 16546 to_intel_plane_state(crtc->base.primary->state)->base.visible = true;
24929352 16547 crtc->plane = !plane;
b17d48e2 16548 intel_crtc_disable_noatomic(&crtc->base);
24929352 16549 crtc->plane = plane;
24929352 16550 }
24929352 16551
7fad798e
DV
16552 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
16553 crtc->pipe == PIPE_A && !crtc->active) {
16554 /* BIOS forgot to enable pipe A, this mostly happens after
16555 * resume. Force-enable the pipe to fix this, the update_dpms
16556 * call below we restore the pipe to the right state, but leave
16557 * the required bits on. */
16558 intel_enable_pipe_a(dev);
16559 }
16560
24929352
DV
16561 /* Adjust the state of the output pipe according to whether we
16562 * have active connectors/encoders. */
842e0307 16563 if (crtc->active && !intel_crtc_has_encoders(crtc))
b17d48e2 16564 intel_crtc_disable_noatomic(&crtc->base);
24929352 16565
a3ed6aad 16566 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
4cc31489
DV
16567 /*
16568 * We start out with underrun reporting disabled to avoid races.
16569 * For correct bookkeeping mark this on active crtcs.
16570 *
c5ab3bc0
DV
16571 * Also on gmch platforms we dont have any hardware bits to
16572 * disable the underrun reporting. Which means we need to start
16573 * out with underrun reporting disabled also on inactive pipes,
16574 * since otherwise we'll complain about the garbage we read when
16575 * e.g. coming up after runtime pm.
16576 *
4cc31489
DV
16577 * No protection against concurrent access is required - at
16578 * worst a fifo underrun happens which also sets this to false.
16579 */
16580 crtc->cpu_fifo_underrun_disabled = true;
a168f5b3
VS
16581 /*
16582 * We track the PCH trancoder underrun reporting state
16583 * within the crtc. With crtc for pipe A housing the underrun
16584 * reporting state for PCH transcoder A, crtc for pipe B housing
16585 * it for PCH transcoder B, etc. LPT-H has only PCH transcoder A,
16586 * and marking underrun reporting as disabled for the non-existing
16587 * PCH transcoders B and C would prevent enabling the south
16588 * error interrupt (see cpt_can_enable_serr_int()).
16589 */
16590 if (has_pch_trancoder(dev_priv, (enum transcoder)crtc->pipe))
16591 crtc->pch_fifo_underrun_disabled = true;
4cc31489 16592 }
24929352
DV
16593}
16594
16595static void intel_sanitize_encoder(struct intel_encoder *encoder)
16596{
16597 struct intel_connector *connector;
24929352
DV
16598
16599 /* We need to check both for a crtc link (meaning that the
16600 * encoder is active and trying to read from a pipe) and the
16601 * pipe itself being active. */
16602 bool has_active_crtc = encoder->base.crtc &&
16603 to_intel_crtc(encoder->base.crtc)->active;
16604
496b0fc3
ML
16605 connector = intel_encoder_find_connector(encoder);
16606 if (connector && !has_active_crtc) {
24929352
DV
16607 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
16608 encoder->base.base.id,
8e329a03 16609 encoder->base.name);
24929352
DV
16610
16611 /* Connector is active, but has no active pipe. This is
16612 * fallout from our resume register restoring. Disable
16613 * the encoder manually again. */
16614 if (encoder->base.crtc) {
fd6bbda9
ML
16615 struct drm_crtc_state *crtc_state = encoder->base.crtc->state;
16616
24929352
DV
16617 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
16618 encoder->base.base.id,
8e329a03 16619 encoder->base.name);
fd6bbda9 16620 encoder->disable(encoder, to_intel_crtc_state(crtc_state), connector->base.state);
a62d1497 16621 if (encoder->post_disable)
fd6bbda9 16622 encoder->post_disable(encoder, to_intel_crtc_state(crtc_state), connector->base.state);
24929352 16623 }
7f1950fb 16624 encoder->base.crtc = NULL;
24929352
DV
16625
16626 /* Inconsistent output/port/pipe state happens presumably due to
16627 * a bug in one of the get_hw_state functions. Or someplace else
16628 * in our code, like the register restore mess on resume. Clamp
16629 * things to off as a safer default. */
fd6bbda9
ML
16630
16631 connector->base.dpms = DRM_MODE_DPMS_OFF;
16632 connector->base.encoder = NULL;
24929352
DV
16633 }
16634 /* Enabled encoders without active connectors will be fixed in
16635 * the crtc fixup. */
16636}
16637
04098753 16638void i915_redisable_vga_power_on(struct drm_device *dev)
0fde901f 16639{
fac5e23e 16640 struct drm_i915_private *dev_priv = to_i915(dev);
f0f59a00 16641 i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
0fde901f 16642
04098753
ID
16643 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
16644 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
16645 i915_disable_vga(dev);
16646 }
16647}
16648
16649void i915_redisable_vga(struct drm_device *dev)
16650{
fac5e23e 16651 struct drm_i915_private *dev_priv = to_i915(dev);
04098753 16652
8dc8a27c
PZ
16653 /* This function can be called both from intel_modeset_setup_hw_state or
16654 * at a very early point in our resume sequence, where the power well
16655 * structures are not yet restored. Since this function is at a very
16656 * paranoid "someone might have enabled VGA while we were not looking"
16657 * level, just check if the power well is enabled instead of trying to
16658 * follow the "don't touch the power well if we don't need it" policy
16659 * the rest of the driver uses. */
6392f847 16660 if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_VGA))
8dc8a27c
PZ
16661 return;
16662
04098753 16663 i915_redisable_vga_power_on(dev);
6392f847
ID
16664
16665 intel_display_power_put(dev_priv, POWER_DOMAIN_VGA);
0fde901f
KM
16666}
16667
f9cd7b88 16668static bool primary_get_hw_state(struct intel_plane *plane)
98ec7739 16669{
f9cd7b88 16670 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
98ec7739 16671
f9cd7b88 16672 return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
d032ffa0
ML
16673}
16674
f9cd7b88
VS
16675/* FIXME read out full plane state for all planes */
16676static void readout_plane_state(struct intel_crtc *crtc)
d032ffa0 16677{
b26d3ea3 16678 struct drm_plane *primary = crtc->base.primary;
f9cd7b88 16679 struct intel_plane_state *plane_state =
b26d3ea3 16680 to_intel_plane_state(primary->state);
d032ffa0 16681
936e71e3 16682 plane_state->base.visible = crtc->active &&
b26d3ea3
ML
16683 primary_get_hw_state(to_intel_plane(primary));
16684
936e71e3 16685 if (plane_state->base.visible)
b26d3ea3 16686 crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
98ec7739
VS
16687}
16688
30e984df 16689static void intel_modeset_readout_hw_state(struct drm_device *dev)
24929352 16690{
fac5e23e 16691 struct drm_i915_private *dev_priv = to_i915(dev);
24929352 16692 enum pipe pipe;
24929352
DV
16693 struct intel_crtc *crtc;
16694 struct intel_encoder *encoder;
16695 struct intel_connector *connector;
5358901f 16696 int i;
24929352 16697
565602d7
ML
16698 dev_priv->active_crtcs = 0;
16699
d3fcc808 16700 for_each_intel_crtc(dev, crtc) {
565602d7
ML
16701 struct intel_crtc_state *crtc_state = crtc->config;
16702 int pixclk = 0;
3b117c8f 16703
ec2dc6a0 16704 __drm_atomic_helper_crtc_destroy_state(&crtc_state->base);
565602d7
ML
16705 memset(crtc_state, 0, sizeof(*crtc_state));
16706 crtc_state->base.crtc = &crtc->base;
24929352 16707
565602d7
ML
16708 crtc_state->base.active = crtc_state->base.enable =
16709 dev_priv->display.get_pipe_config(crtc, crtc_state);
16710
16711 crtc->base.enabled = crtc_state->base.enable;
16712 crtc->active = crtc_state->base.active;
16713
16714 if (crtc_state->base.active) {
16715 dev_priv->active_crtcs |= 1 << crtc->pipe;
16716
c89e39f3 16717 if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv))
565602d7 16718 pixclk = ilk_pipe_pixel_rate(crtc_state);
9558d15d 16719 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
565602d7
ML
16720 pixclk = crtc_state->base.adjusted_mode.crtc_clock;
16721 else
16722 WARN_ON(dev_priv->display.modeset_calc_cdclk);
9558d15d
VS
16723
16724 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
16725 if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
16726 pixclk = DIV_ROUND_UP(pixclk * 100, 95);
565602d7
ML
16727 }
16728
16729 dev_priv->min_pixclk[crtc->pipe] = pixclk;
b70709a6 16730
f9cd7b88 16731 readout_plane_state(crtc);
24929352 16732
78108b7c
VS
16733 DRM_DEBUG_KMS("[CRTC:%d:%s] hw state readout: %s\n",
16734 crtc->base.base.id, crtc->base.name,
24929352
DV
16735 crtc->active ? "enabled" : "disabled");
16736 }
16737
5358901f
DV
16738 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
16739 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
16740
2edd6443
ACO
16741 pll->on = pll->funcs.get_hw_state(dev_priv, pll,
16742 &pll->config.hw_state);
3e369b76 16743 pll->config.crtc_mask = 0;
d3fcc808 16744 for_each_intel_crtc(dev, crtc) {
2dd66ebd 16745 if (crtc->active && crtc->config->shared_dpll == pll)
3e369b76 16746 pll->config.crtc_mask |= 1 << crtc->pipe;
5358901f 16747 }
2dd66ebd 16748 pll->active_mask = pll->config.crtc_mask;
5358901f 16749
1e6f2ddc 16750 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
3e369b76 16751 pll->name, pll->config.crtc_mask, pll->on);
5358901f
DV
16752 }
16753
b2784e15 16754 for_each_intel_encoder(dev, encoder) {
24929352
DV
16755 pipe = 0;
16756
16757 if (encoder->get_hw_state(encoder, &pipe)) {
045ac3b5
JB
16758 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
16759 encoder->base.crtc = &crtc->base;
253c84c8 16760 crtc->config->output_types |= 1 << encoder->type;
6e3c9717 16761 encoder->get_config(encoder, crtc->config);
24929352
DV
16762 } else {
16763 encoder->base.crtc = NULL;
16764 }
16765
6f2bcceb 16766 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
24929352 16767 encoder->base.base.id,
8e329a03 16768 encoder->base.name,
24929352 16769 encoder->base.crtc ? "enabled" : "disabled",
6f2bcceb 16770 pipe_name(pipe));
24929352
DV
16771 }
16772
3a3371ff 16773 for_each_intel_connector(dev, connector) {
24929352
DV
16774 if (connector->get_hw_state(connector)) {
16775 connector->base.dpms = DRM_MODE_DPMS_ON;
2aa974c9
ML
16776
16777 encoder = connector->encoder;
16778 connector->base.encoder = &encoder->base;
16779
16780 if (encoder->base.crtc &&
16781 encoder->base.crtc->state->active) {
16782 /*
16783 * This has to be done during hardware readout
16784 * because anything calling .crtc_disable may
16785 * rely on the connector_mask being accurate.
16786 */
16787 encoder->base.crtc->state->connector_mask |=
16788 1 << drm_connector_index(&connector->base);
e87a52b3
ML
16789 encoder->base.crtc->state->encoder_mask |=
16790 1 << drm_encoder_index(&encoder->base);
2aa974c9
ML
16791 }
16792
24929352
DV
16793 } else {
16794 connector->base.dpms = DRM_MODE_DPMS_OFF;
16795 connector->base.encoder = NULL;
16796 }
16797 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
16798 connector->base.base.id,
c23cc417 16799 connector->base.name,
24929352
DV
16800 connector->base.encoder ? "enabled" : "disabled");
16801 }
7f4c6284
VS
16802
16803 for_each_intel_crtc(dev, crtc) {
16804 crtc->base.hwmode = crtc->config->base.adjusted_mode;
16805
16806 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
16807 if (crtc->base.state->active) {
16808 intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
16809 intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
16810 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
16811
16812 /*
16813 * The initial mode needs to be set in order to keep
16814 * the atomic core happy. It wants a valid mode if the
16815 * crtc's enabled, so we do the above call.
16816 *
16817 * At this point some state updated by the connectors
16818 * in their ->detect() callback has not run yet, so
16819 * no recalculation can be done yet.
16820 *
16821 * Even if we could do a recalculation and modeset
16822 * right now it would cause a double modeset if
16823 * fbdev or userspace chooses a different initial mode.
16824 *
16825 * If that happens, someone indicated they wanted a
16826 * mode change, which means it's safe to do a full
16827 * recalculation.
16828 */
16829 crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
9eca6832
VS
16830
16831 drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
16832 update_scanline_offset(crtc);
7f4c6284 16833 }
e3b247da
VS
16834
16835 intel_pipe_config_sanity_check(dev_priv, crtc->config);
7f4c6284 16836 }
30e984df
DV
16837}
16838
043e9bda
ML
16839/* Scan out the current hw modeset state,
16840 * and sanitizes it to the current state
16841 */
16842static void
16843intel_modeset_setup_hw_state(struct drm_device *dev)
30e984df 16844{
fac5e23e 16845 struct drm_i915_private *dev_priv = to_i915(dev);
30e984df 16846 enum pipe pipe;
30e984df
DV
16847 struct intel_crtc *crtc;
16848 struct intel_encoder *encoder;
35c95375 16849 int i;
30e984df
DV
16850
16851 intel_modeset_readout_hw_state(dev);
24929352
DV
16852
16853 /* HW state is read out, now we need to sanitize this mess. */
b2784e15 16854 for_each_intel_encoder(dev, encoder) {
24929352
DV
16855 intel_sanitize_encoder(encoder);
16856 }
16857
055e393f 16858 for_each_pipe(dev_priv, pipe) {
24929352
DV
16859 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
16860 intel_sanitize_crtc(crtc);
6e3c9717
ACO
16861 intel_dump_pipe_config(crtc, crtc->config,
16862 "[setup_hw_state]");
24929352 16863 }
9a935856 16864
d29b2f9d
ACO
16865 intel_modeset_update_connector_atomic_state(dev);
16866
35c95375
DV
16867 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
16868 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
16869
2dd66ebd 16870 if (!pll->on || pll->active_mask)
35c95375
DV
16871 continue;
16872
16873 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
16874
2edd6443 16875 pll->funcs.disable(dev_priv, pll);
35c95375
DV
16876 pll->on = false;
16877 }
16878
666a4537 16879 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
6eb1a681
VS
16880 vlv_wm_get_hw_state(dev);
16881 else if (IS_GEN9(dev))
3078999f
PB
16882 skl_wm_get_hw_state(dev);
16883 else if (HAS_PCH_SPLIT(dev))
243e6a44 16884 ilk_wm_get_hw_state(dev);
292b990e
ML
16885
16886 for_each_intel_crtc(dev, crtc) {
16887 unsigned long put_domains;
16888
74bff5f9 16889 put_domains = modeset_get_crtc_power_domains(&crtc->base, crtc->config);
292b990e
ML
16890 if (WARN_ON(put_domains))
16891 modeset_put_power_domains(dev_priv, put_domains);
16892 }
16893 intel_display_set_init_power(dev_priv, false);
010cf73d
PZ
16894
16895 intel_fbc_init_pipe_state(dev_priv);
043e9bda 16896}
7d0bc1ea 16897
043e9bda
ML
16898void intel_display_resume(struct drm_device *dev)
16899{
e2c8b870
ML
16900 struct drm_i915_private *dev_priv = to_i915(dev);
16901 struct drm_atomic_state *state = dev_priv->modeset_restore_state;
16902 struct drm_modeset_acquire_ctx ctx;
043e9bda 16903 int ret;
f30da187 16904
e2c8b870 16905 dev_priv->modeset_restore_state = NULL;
73974893
ML
16906 if (state)
16907 state->acquire_ctx = &ctx;
043e9bda 16908
ea49c9ac
ML
16909 /*
16910 * This is a cludge because with real atomic modeset mode_config.mutex
16911 * won't be taken. Unfortunately some probed state like
16912 * audio_codec_enable is still protected by mode_config.mutex, so lock
16913 * it here for now.
16914 */
16915 mutex_lock(&dev->mode_config.mutex);
e2c8b870 16916 drm_modeset_acquire_init(&ctx, 0);
043e9bda 16917
73974893
ML
16918 while (1) {
16919 ret = drm_modeset_lock_all_ctx(dev, &ctx);
16920 if (ret != -EDEADLK)
16921 break;
043e9bda 16922
e2c8b870 16923 drm_modeset_backoff(&ctx);
e2c8b870 16924 }
043e9bda 16925
73974893
ML
16926 if (!ret)
16927 ret = __intel_display_resume(dev, state);
16928
e2c8b870
ML
16929 drm_modeset_drop_locks(&ctx);
16930 drm_modeset_acquire_fini(&ctx);
ea49c9ac 16931 mutex_unlock(&dev->mode_config.mutex);
043e9bda 16932
e2c8b870
ML
16933 if (ret) {
16934 DRM_ERROR("Restoring old state failed with %i\n", ret);
16935 drm_atomic_state_free(state);
16936 }
2c7111db
CW
16937}
16938
16939void intel_modeset_gem_init(struct drm_device *dev)
16940{
dc97997a 16941 struct drm_i915_private *dev_priv = to_i915(dev);
484b41dd 16942 struct drm_crtc *c;
2ff8fde1 16943 struct drm_i915_gem_object *obj;
484b41dd 16944
dc97997a 16945 intel_init_gt_powersave(dev_priv);
ae48434c 16946
1833b134 16947 intel_modeset_init_hw(dev);
02e792fb 16948
1ee8da6d 16949 intel_setup_overlay(dev_priv);
484b41dd
JB
16950
16951 /*
16952 * Make sure any fbs we allocated at startup are properly
16953 * pinned & fenced. When we do the allocation it's too early
16954 * for this.
16955 */
70e1e0ec 16956 for_each_crtc(dev, c) {
058d88c4
CW
16957 struct i915_vma *vma;
16958
2ff8fde1
MR
16959 obj = intel_fb_obj(c->primary->fb);
16960 if (obj == NULL)
484b41dd
JB
16961 continue;
16962
e0d6149b 16963 mutex_lock(&dev->struct_mutex);
058d88c4 16964 vma = intel_pin_and_fence_fb_obj(c->primary->fb,
3465c580 16965 c->primary->state->rotation);
e0d6149b 16966 mutex_unlock(&dev->struct_mutex);
058d88c4 16967 if (IS_ERR(vma)) {
484b41dd
JB
16968 DRM_ERROR("failed to pin boot fb on pipe %d\n",
16969 to_intel_crtc(c)->pipe);
66e514c1 16970 drm_framebuffer_unreference(c->primary->fb);
5a21b665 16971 c->primary->fb = NULL;
36750f28 16972 c->primary->crtc = c->primary->state->crtc = NULL;
5a21b665 16973 update_state_fb(c->primary);
36750f28 16974 c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
484b41dd
JB
16975 }
16976 }
1ebaa0b9
CW
16977}
16978
16979int intel_connector_register(struct drm_connector *connector)
16980{
16981 struct intel_connector *intel_connector = to_intel_connector(connector);
16982 int ret;
16983
16984 ret = intel_backlight_device_register(intel_connector);
16985 if (ret)
16986 goto err;
16987
16988 return 0;
0962c3c9 16989
1ebaa0b9
CW
16990err:
16991 return ret;
79e53945
JB
16992}
16993
c191eca1 16994void intel_connector_unregister(struct drm_connector *connector)
4932e2c3 16995{
e63d87c0 16996 struct intel_connector *intel_connector = to_intel_connector(connector);
4932e2c3 16997
e63d87c0 16998 intel_backlight_device_unregister(intel_connector);
4932e2c3 16999 intel_panel_destroy_backlight(connector);
4932e2c3
ID
17000}
17001
79e53945
JB
17002void intel_modeset_cleanup(struct drm_device *dev)
17003{
fac5e23e 17004 struct drm_i915_private *dev_priv = to_i915(dev);
652c393a 17005
dc97997a 17006 intel_disable_gt_powersave(dev_priv);
2eb5252e 17007
fd0c0642
DV
17008 /*
17009 * Interrupts and polling as the first thing to avoid creating havoc.
2eb5252e 17010 * Too much stuff here (turning of connectors, ...) would
fd0c0642
DV
17011 * experience fancy races otherwise.
17012 */
2aeb7d3a 17013 intel_irq_uninstall(dev_priv);
eb21b92b 17014
fd0c0642
DV
17015 /*
17016 * Due to the hpd irq storm handling the hotplug work can re-arm the
17017 * poll handlers. Hence disable polling after hpd handling is shut down.
17018 */
f87ea761 17019 drm_kms_helper_poll_fini(dev);
fd0c0642 17020
723bfd70
JB
17021 intel_unregister_dsm_handler();
17022
c937ab3e 17023 intel_fbc_global_disable(dev_priv);
69341a5e 17024
1630fe75
CW
17025 /* flush any delayed tasks or pending work */
17026 flush_scheduled_work();
17027
79e53945 17028 drm_mode_config_cleanup(dev);
4d7bb011 17029
1ee8da6d 17030 intel_cleanup_overlay(dev_priv);
ae48434c 17031
dc97997a 17032 intel_cleanup_gt_powersave(dev_priv);
f5949141
DV
17033
17034 intel_teardown_gmbus(dev);
79e53945
JB
17035}
17036
df0e9248
CW
17037void intel_connector_attach_encoder(struct intel_connector *connector,
17038 struct intel_encoder *encoder)
17039{
17040 connector->encoder = encoder;
17041 drm_mode_connector_attach_encoder(&connector->base,
17042 &encoder->base);
79e53945 17043}
28d52043
DA
17044
17045/*
17046 * set vga decode state - true == enable VGA decode
17047 */
17048int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
17049{
fac5e23e 17050 struct drm_i915_private *dev_priv = to_i915(dev);
a885b3cc 17051 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
28d52043
DA
17052 u16 gmch_ctrl;
17053
75fa041d
CW
17054 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
17055 DRM_ERROR("failed to read control word\n");
17056 return -EIO;
17057 }
17058
c0cc8a55
CW
17059 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
17060 return 0;
17061
28d52043
DA
17062 if (state)
17063 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
17064 else
17065 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
75fa041d
CW
17066
17067 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
17068 DRM_ERROR("failed to write control word\n");
17069 return -EIO;
17070 }
17071
28d52043
DA
17072 return 0;
17073}
c4a1d9e4 17074
c4a1d9e4 17075struct intel_display_error_state {
ff57f1b0
PZ
17076
17077 u32 power_well_driver;
17078
63b66e5b
CW
17079 int num_transcoders;
17080
c4a1d9e4
CW
17081 struct intel_cursor_error_state {
17082 u32 control;
17083 u32 position;
17084 u32 base;
17085 u32 size;
52331309 17086 } cursor[I915_MAX_PIPES];
c4a1d9e4
CW
17087
17088 struct intel_pipe_error_state {
ddf9c536 17089 bool power_domain_on;
c4a1d9e4 17090 u32 source;
f301b1e1 17091 u32 stat;
52331309 17092 } pipe[I915_MAX_PIPES];
c4a1d9e4
CW
17093
17094 struct intel_plane_error_state {
17095 u32 control;
17096 u32 stride;
17097 u32 size;
17098 u32 pos;
17099 u32 addr;
17100 u32 surface;
17101 u32 tile_offset;
52331309 17102 } plane[I915_MAX_PIPES];
63b66e5b
CW
17103
17104 struct intel_transcoder_error_state {
ddf9c536 17105 bool power_domain_on;
63b66e5b
CW
17106 enum transcoder cpu_transcoder;
17107
17108 u32 conf;
17109
17110 u32 htotal;
17111 u32 hblank;
17112 u32 hsync;
17113 u32 vtotal;
17114 u32 vblank;
17115 u32 vsync;
17116 } transcoder[4];
c4a1d9e4
CW
17117};
17118
17119struct intel_display_error_state *
c033666a 17120intel_display_capture_error_state(struct drm_i915_private *dev_priv)
c4a1d9e4 17121{
c4a1d9e4 17122 struct intel_display_error_state *error;
63b66e5b
CW
17123 int transcoders[] = {
17124 TRANSCODER_A,
17125 TRANSCODER_B,
17126 TRANSCODER_C,
17127 TRANSCODER_EDP,
17128 };
c4a1d9e4
CW
17129 int i;
17130
c033666a 17131 if (INTEL_INFO(dev_priv)->num_pipes == 0)
63b66e5b
CW
17132 return NULL;
17133
9d1cb914 17134 error = kzalloc(sizeof(*error), GFP_ATOMIC);
c4a1d9e4
CW
17135 if (error == NULL)
17136 return NULL;
17137
c033666a 17138 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
ff57f1b0
PZ
17139 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
17140
055e393f 17141 for_each_pipe(dev_priv, i) {
ddf9c536 17142 error->pipe[i].power_domain_on =
f458ebbc
DV
17143 __intel_display_power_is_enabled(dev_priv,
17144 POWER_DOMAIN_PIPE(i));
ddf9c536 17145 if (!error->pipe[i].power_domain_on)
9d1cb914
PZ
17146 continue;
17147
5efb3e28
VS
17148 error->cursor[i].control = I915_READ(CURCNTR(i));
17149 error->cursor[i].position = I915_READ(CURPOS(i));
17150 error->cursor[i].base = I915_READ(CURBASE(i));
c4a1d9e4
CW
17151
17152 error->plane[i].control = I915_READ(DSPCNTR(i));
17153 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
c033666a 17154 if (INTEL_GEN(dev_priv) <= 3) {
51889b35 17155 error->plane[i].size = I915_READ(DSPSIZE(i));
80ca378b
PZ
17156 error->plane[i].pos = I915_READ(DSPPOS(i));
17157 }
c033666a 17158 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
ca291363 17159 error->plane[i].addr = I915_READ(DSPADDR(i));
c033666a 17160 if (INTEL_GEN(dev_priv) >= 4) {
c4a1d9e4
CW
17161 error->plane[i].surface = I915_READ(DSPSURF(i));
17162 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
17163 }
17164
c4a1d9e4 17165 error->pipe[i].source = I915_READ(PIPESRC(i));
f301b1e1 17166
c033666a 17167 if (HAS_GMCH_DISPLAY(dev_priv))
f301b1e1 17168 error->pipe[i].stat = I915_READ(PIPESTAT(i));
63b66e5b
CW
17169 }
17170
4d1de975 17171 /* Note: this does not include DSI transcoders. */
c033666a 17172 error->num_transcoders = INTEL_INFO(dev_priv)->num_pipes;
2d1fe073 17173 if (HAS_DDI(dev_priv))
63b66e5b
CW
17174 error->num_transcoders++; /* Account for eDP. */
17175
17176 for (i = 0; i < error->num_transcoders; i++) {
17177 enum transcoder cpu_transcoder = transcoders[i];
17178
ddf9c536 17179 error->transcoder[i].power_domain_on =
f458ebbc 17180 __intel_display_power_is_enabled(dev_priv,
38cc1daf 17181 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
ddf9c536 17182 if (!error->transcoder[i].power_domain_on)
9d1cb914
PZ
17183 continue;
17184
63b66e5b
CW
17185 error->transcoder[i].cpu_transcoder = cpu_transcoder;
17186
17187 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
17188 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
17189 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
17190 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
17191 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
17192 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
17193 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
c4a1d9e4
CW
17194 }
17195
17196 return error;
17197}
17198
edc3d884
MK
17199#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
17200
c4a1d9e4 17201void
edc3d884 17202intel_display_print_error_state(struct drm_i915_error_state_buf *m,
c4a1d9e4
CW
17203 struct drm_device *dev,
17204 struct intel_display_error_state *error)
17205{
fac5e23e 17206 struct drm_i915_private *dev_priv = to_i915(dev);
c4a1d9e4
CW
17207 int i;
17208
63b66e5b
CW
17209 if (!error)
17210 return;
17211
edc3d884 17212 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
190be112 17213 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
edc3d884 17214 err_printf(m, "PWR_WELL_CTL2: %08x\n",
ff57f1b0 17215 error->power_well_driver);
055e393f 17216 for_each_pipe(dev_priv, i) {
edc3d884 17217 err_printf(m, "Pipe [%d]:\n", i);
ddf9c536 17218 err_printf(m, " Power: %s\n",
87ad3212 17219 onoff(error->pipe[i].power_domain_on));
edc3d884 17220 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
f301b1e1 17221 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
edc3d884
MK
17222
17223 err_printf(m, "Plane [%d]:\n", i);
17224 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
17225 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
80ca378b 17226 if (INTEL_INFO(dev)->gen <= 3) {
edc3d884
MK
17227 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
17228 err_printf(m, " POS: %08x\n", error->plane[i].pos);
80ca378b 17229 }
4b71a570 17230 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
edc3d884 17231 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
c4a1d9e4 17232 if (INTEL_INFO(dev)->gen >= 4) {
edc3d884
MK
17233 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
17234 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
c4a1d9e4
CW
17235 }
17236
edc3d884
MK
17237 err_printf(m, "Cursor [%d]:\n", i);
17238 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
17239 err_printf(m, " POS: %08x\n", error->cursor[i].position);
17240 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
c4a1d9e4 17241 }
63b66e5b
CW
17242
17243 for (i = 0; i < error->num_transcoders; i++) {
da205630 17244 err_printf(m, "CPU transcoder: %s\n",
63b66e5b 17245 transcoder_name(error->transcoder[i].cpu_transcoder));
ddf9c536 17246 err_printf(m, " Power: %s\n",
87ad3212 17247 onoff(error->transcoder[i].power_domain_on));
63b66e5b
CW
17248 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
17249 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
17250 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
17251 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
17252 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
17253 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
17254 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
17255 }
c4a1d9e4 17256}