]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/intel_display.c
drm/i915: s/crtc_state/old_crtc_state/ in intel_atomic_commit()
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
618563e3 27#include <linux/dmi.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
e0dac65e 34#include <drm/drm_edid.h>
760285e7 35#include <drm/drmP.h>
79e53945 36#include "intel_drv.h"
760285e7 37#include <drm/i915_drm.h>
79e53945 38#include "i915_drv.h"
e5510fac 39#include "i915_trace.h"
319c1d42 40#include <drm/drm_atomic.h>
c196e1d6 41#include <drm/drm_atomic_helper.h>
760285e7
DH
42#include <drm/drm_dp_helper.h>
43#include <drm/drm_crtc_helper.h>
465c120c
MR
44#include <drm/drm_plane_helper.h>
45#include <drm/drm_rect.h>
c0f372b3 46#include <linux/dma_remapping.h>
fd8e058a
AG
47#include <linux/reservation.h>
48#include <linux/dma-buf.h>
79e53945 49
465c120c 50/* Primary plane formats for gen <= 3 */
568db4f2 51static const uint32_t i8xx_primary_formats[] = {
67fe7dc5
DL
52 DRM_FORMAT_C8,
53 DRM_FORMAT_RGB565,
465c120c 54 DRM_FORMAT_XRGB1555,
67fe7dc5 55 DRM_FORMAT_XRGB8888,
465c120c
MR
56};
57
58/* Primary plane formats for gen >= 4 */
568db4f2 59static const uint32_t i965_primary_formats[] = {
6c0fd451
DL
60 DRM_FORMAT_C8,
61 DRM_FORMAT_RGB565,
62 DRM_FORMAT_XRGB8888,
63 DRM_FORMAT_XBGR8888,
64 DRM_FORMAT_XRGB2101010,
65 DRM_FORMAT_XBGR2101010,
66};
67
68static const uint32_t skl_primary_formats[] = {
67fe7dc5
DL
69 DRM_FORMAT_C8,
70 DRM_FORMAT_RGB565,
71 DRM_FORMAT_XRGB8888,
465c120c 72 DRM_FORMAT_XBGR8888,
67fe7dc5 73 DRM_FORMAT_ARGB8888,
465c120c
MR
74 DRM_FORMAT_ABGR8888,
75 DRM_FORMAT_XRGB2101010,
465c120c 76 DRM_FORMAT_XBGR2101010,
ea916ea0
KM
77 DRM_FORMAT_YUYV,
78 DRM_FORMAT_YVYU,
79 DRM_FORMAT_UYVY,
80 DRM_FORMAT_VYUY,
465c120c
MR
81};
82
3d7d6510
MR
83/* Cursor formats */
84static const uint32_t intel_cursor_formats[] = {
85 DRM_FORMAT_ARGB8888,
86};
87
f1f644dc 88static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 89 struct intel_crtc_state *pipe_config);
18442d08 90static void ironlake_pch_clock_get(struct intel_crtc *crtc,
5cec258b 91 struct intel_crtc_state *pipe_config);
f1f644dc 92
eb1bfe80
JB
93static int intel_framebuffer_init(struct drm_device *dev,
94 struct intel_framebuffer *ifb,
95 struct drm_mode_fb_cmd2 *mode_cmd,
96 struct drm_i915_gem_object *obj);
5b18e57c
DV
97static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
98static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
29407aab 99static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
100 struct intel_link_m_n *m_n,
101 struct intel_link_m_n *m2_n2);
29407aab 102static void ironlake_set_pipeconf(struct drm_crtc *crtc);
229fca97
DV
103static void haswell_set_pipeconf(struct drm_crtc *crtc);
104static void intel_set_pipe_csc(struct drm_crtc *crtc);
d288f65f 105static void vlv_prepare_pll(struct intel_crtc *crtc,
5cec258b 106 const struct intel_crtc_state *pipe_config);
d288f65f 107static void chv_prepare_pll(struct intel_crtc *crtc,
5cec258b 108 const struct intel_crtc_state *pipe_config);
613d2b27
ML
109static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
110static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
549e2bfb
CK
111static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
112 struct intel_crtc_state *crtc_state);
5ab7b0b7
ID
113static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
114 int num_connectors);
bfd16b2a
ML
115static void skylake_pfit_enable(struct intel_crtc *crtc);
116static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
117static void ironlake_pfit_enable(struct intel_crtc *crtc);
043e9bda 118static void intel_modeset_setup_hw_state(struct drm_device *dev);
2622a081 119static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc);
e7457a9a 120
79e53945 121typedef struct {
0206e353 122 int min, max;
79e53945
JB
123} intel_range_t;
124
125typedef struct {
0206e353
AJ
126 int dot_limit;
127 int p2_slow, p2_fast;
79e53945
JB
128} intel_p2_t;
129
d4906093
ML
130typedef struct intel_limit intel_limit_t;
131struct intel_limit {
0206e353
AJ
132 intel_range_t dot, vco, n, m, m1, m2, p, p1;
133 intel_p2_t p2;
d4906093 134};
79e53945 135
bfa7df01
VS
136/* returns HPLL frequency in kHz */
137static int valleyview_get_vco(struct drm_i915_private *dev_priv)
138{
139 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
140
141 /* Obtain SKU information */
142 mutex_lock(&dev_priv->sb_lock);
143 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
144 CCK_FUSE_HPLL_FREQ_MASK;
145 mutex_unlock(&dev_priv->sb_lock);
146
147 return vco_freq[hpll_freq] * 1000;
148}
149
150static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
151 const char *name, u32 reg)
152{
153 u32 val;
154 int divider;
155
156 if (dev_priv->hpll_freq == 0)
157 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
158
159 mutex_lock(&dev_priv->sb_lock);
160 val = vlv_cck_read(dev_priv, reg);
161 mutex_unlock(&dev_priv->sb_lock);
162
163 divider = val & CCK_FREQUENCY_VALUES;
164
165 WARN((val & CCK_FREQUENCY_STATUS) !=
166 (divider << CCK_FREQUENCY_STATUS_SHIFT),
167 "%s change in progress\n", name);
168
169 return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
170}
171
e7dc33f3
VS
172static int
173intel_pch_rawclk(struct drm_i915_private *dev_priv)
d2acd215 174{
e7dc33f3
VS
175 return (I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK) * 1000;
176}
d2acd215 177
e7dc33f3
VS
178static int
179intel_vlv_hrawclk(struct drm_i915_private *dev_priv)
180{
35d38d1f
VS
181 return vlv_get_cck_clock_hpll(dev_priv, "hrawclk",
182 CCK_DISPLAY_REF_CLOCK_CONTROL);
d2acd215
DV
183}
184
e7dc33f3
VS
185static int
186intel_g4x_hrawclk(struct drm_i915_private *dev_priv)
79e50a4f 187{
79e50a4f
JN
188 uint32_t clkcfg;
189
e7dc33f3 190 /* hrawclock is 1/4 the FSB frequency */
79e50a4f
JN
191 clkcfg = I915_READ(CLKCFG);
192 switch (clkcfg & CLKCFG_FSB_MASK) {
193 case CLKCFG_FSB_400:
e7dc33f3 194 return 100000;
79e50a4f 195 case CLKCFG_FSB_533:
e7dc33f3 196 return 133333;
79e50a4f 197 case CLKCFG_FSB_667:
e7dc33f3 198 return 166667;
79e50a4f 199 case CLKCFG_FSB_800:
e7dc33f3 200 return 200000;
79e50a4f 201 case CLKCFG_FSB_1067:
e7dc33f3 202 return 266667;
79e50a4f 203 case CLKCFG_FSB_1333:
e7dc33f3 204 return 333333;
79e50a4f
JN
205 /* these two are just a guess; one of them might be right */
206 case CLKCFG_FSB_1600:
207 case CLKCFG_FSB_1600_ALT:
e7dc33f3 208 return 400000;
79e50a4f 209 default:
e7dc33f3 210 return 133333;
79e50a4f
JN
211 }
212}
213
e7dc33f3
VS
214static void intel_update_rawclk(struct drm_i915_private *dev_priv)
215{
216 if (HAS_PCH_SPLIT(dev_priv))
217 dev_priv->rawclk_freq = intel_pch_rawclk(dev_priv);
218 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
219 dev_priv->rawclk_freq = intel_vlv_hrawclk(dev_priv);
220 else if (IS_G4X(dev_priv) || IS_PINEVIEW(dev_priv))
221 dev_priv->rawclk_freq = intel_g4x_hrawclk(dev_priv);
222 else
223 return; /* no rawclk on other platforms, or no need to know it */
224
225 DRM_DEBUG_DRIVER("rawclk rate: %d kHz\n", dev_priv->rawclk_freq);
226}
227
bfa7df01
VS
228static void intel_update_czclk(struct drm_i915_private *dev_priv)
229{
666a4537 230 if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
bfa7df01
VS
231 return;
232
233 dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
234 CCK_CZ_CLOCK_CONTROL);
235
236 DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
237}
238
021357ac 239static inline u32 /* units of 100MHz */
21a727b3
VS
240intel_fdi_link_freq(struct drm_i915_private *dev_priv,
241 const struct intel_crtc_state *pipe_config)
021357ac 242{
21a727b3
VS
243 if (HAS_DDI(dev_priv))
244 return pipe_config->port_clock; /* SPLL */
245 else if (IS_GEN5(dev_priv))
246 return ((I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2) * 10000;
e3b247da 247 else
21a727b3 248 return 270000;
021357ac
CW
249}
250
5d536e28 251static const intel_limit_t intel_limits_i8xx_dac = {
0206e353 252 .dot = { .min = 25000, .max = 350000 },
9c333719 253 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 254 .n = { .min = 2, .max = 16 },
0206e353
AJ
255 .m = { .min = 96, .max = 140 },
256 .m1 = { .min = 18, .max = 26 },
257 .m2 = { .min = 6, .max = 16 },
258 .p = { .min = 4, .max = 128 },
259 .p1 = { .min = 2, .max = 33 },
273e27ca
EA
260 .p2 = { .dot_limit = 165000,
261 .p2_slow = 4, .p2_fast = 2 },
e4b36699
KP
262};
263
5d536e28
DV
264static const intel_limit_t intel_limits_i8xx_dvo = {
265 .dot = { .min = 25000, .max = 350000 },
9c333719 266 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 267 .n = { .min = 2, .max = 16 },
5d536e28
DV
268 .m = { .min = 96, .max = 140 },
269 .m1 = { .min = 18, .max = 26 },
270 .m2 = { .min = 6, .max = 16 },
271 .p = { .min = 4, .max = 128 },
272 .p1 = { .min = 2, .max = 33 },
273 .p2 = { .dot_limit = 165000,
274 .p2_slow = 4, .p2_fast = 4 },
275};
276
e4b36699 277static const intel_limit_t intel_limits_i8xx_lvds = {
0206e353 278 .dot = { .min = 25000, .max = 350000 },
9c333719 279 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 280 .n = { .min = 2, .max = 16 },
0206e353
AJ
281 .m = { .min = 96, .max = 140 },
282 .m1 = { .min = 18, .max = 26 },
283 .m2 = { .min = 6, .max = 16 },
284 .p = { .min = 4, .max = 128 },
285 .p1 = { .min = 1, .max = 6 },
273e27ca
EA
286 .p2 = { .dot_limit = 165000,
287 .p2_slow = 14, .p2_fast = 7 },
e4b36699 288};
273e27ca 289
e4b36699 290static const intel_limit_t intel_limits_i9xx_sdvo = {
0206e353
AJ
291 .dot = { .min = 20000, .max = 400000 },
292 .vco = { .min = 1400000, .max = 2800000 },
293 .n = { .min = 1, .max = 6 },
294 .m = { .min = 70, .max = 120 },
4f7dfb67
PJ
295 .m1 = { .min = 8, .max = 18 },
296 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
297 .p = { .min = 5, .max = 80 },
298 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
299 .p2 = { .dot_limit = 200000,
300 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
301};
302
303static const intel_limit_t intel_limits_i9xx_lvds = {
0206e353
AJ
304 .dot = { .min = 20000, .max = 400000 },
305 .vco = { .min = 1400000, .max = 2800000 },
306 .n = { .min = 1, .max = 6 },
307 .m = { .min = 70, .max = 120 },
53a7d2d1
PJ
308 .m1 = { .min = 8, .max = 18 },
309 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
310 .p = { .min = 7, .max = 98 },
311 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
312 .p2 = { .dot_limit = 112000,
313 .p2_slow = 14, .p2_fast = 7 },
e4b36699
KP
314};
315
273e27ca 316
e4b36699 317static const intel_limit_t intel_limits_g4x_sdvo = {
273e27ca
EA
318 .dot = { .min = 25000, .max = 270000 },
319 .vco = { .min = 1750000, .max = 3500000},
320 .n = { .min = 1, .max = 4 },
321 .m = { .min = 104, .max = 138 },
322 .m1 = { .min = 17, .max = 23 },
323 .m2 = { .min = 5, .max = 11 },
324 .p = { .min = 10, .max = 30 },
325 .p1 = { .min = 1, .max = 3},
326 .p2 = { .dot_limit = 270000,
327 .p2_slow = 10,
328 .p2_fast = 10
044c7c41 329 },
e4b36699
KP
330};
331
332static const intel_limit_t intel_limits_g4x_hdmi = {
273e27ca
EA
333 .dot = { .min = 22000, .max = 400000 },
334 .vco = { .min = 1750000, .max = 3500000},
335 .n = { .min = 1, .max = 4 },
336 .m = { .min = 104, .max = 138 },
337 .m1 = { .min = 16, .max = 23 },
338 .m2 = { .min = 5, .max = 11 },
339 .p = { .min = 5, .max = 80 },
340 .p1 = { .min = 1, .max = 8},
341 .p2 = { .dot_limit = 165000,
342 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
343};
344
345static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
346 .dot = { .min = 20000, .max = 115000 },
347 .vco = { .min = 1750000, .max = 3500000 },
348 .n = { .min = 1, .max = 3 },
349 .m = { .min = 104, .max = 138 },
350 .m1 = { .min = 17, .max = 23 },
351 .m2 = { .min = 5, .max = 11 },
352 .p = { .min = 28, .max = 112 },
353 .p1 = { .min = 2, .max = 8 },
354 .p2 = { .dot_limit = 0,
355 .p2_slow = 14, .p2_fast = 14
044c7c41 356 },
e4b36699
KP
357};
358
359static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
360 .dot = { .min = 80000, .max = 224000 },
361 .vco = { .min = 1750000, .max = 3500000 },
362 .n = { .min = 1, .max = 3 },
363 .m = { .min = 104, .max = 138 },
364 .m1 = { .min = 17, .max = 23 },
365 .m2 = { .min = 5, .max = 11 },
366 .p = { .min = 14, .max = 42 },
367 .p1 = { .min = 2, .max = 6 },
368 .p2 = { .dot_limit = 0,
369 .p2_slow = 7, .p2_fast = 7
044c7c41 370 },
e4b36699
KP
371};
372
f2b115e6 373static const intel_limit_t intel_limits_pineview_sdvo = {
0206e353
AJ
374 .dot = { .min = 20000, .max = 400000},
375 .vco = { .min = 1700000, .max = 3500000 },
273e27ca 376 /* Pineview's Ncounter is a ring counter */
0206e353
AJ
377 .n = { .min = 3, .max = 6 },
378 .m = { .min = 2, .max = 256 },
273e27ca 379 /* Pineview only has one combined m divider, which we treat as m2. */
0206e353
AJ
380 .m1 = { .min = 0, .max = 0 },
381 .m2 = { .min = 0, .max = 254 },
382 .p = { .min = 5, .max = 80 },
383 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
384 .p2 = { .dot_limit = 200000,
385 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
386};
387
f2b115e6 388static const intel_limit_t intel_limits_pineview_lvds = {
0206e353
AJ
389 .dot = { .min = 20000, .max = 400000 },
390 .vco = { .min = 1700000, .max = 3500000 },
391 .n = { .min = 3, .max = 6 },
392 .m = { .min = 2, .max = 256 },
393 .m1 = { .min = 0, .max = 0 },
394 .m2 = { .min = 0, .max = 254 },
395 .p = { .min = 7, .max = 112 },
396 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
397 .p2 = { .dot_limit = 112000,
398 .p2_slow = 14, .p2_fast = 14 },
e4b36699
KP
399};
400
273e27ca
EA
401/* Ironlake / Sandybridge
402 *
403 * We calculate clock using (register_value + 2) for N/M1/M2, so here
404 * the range value for them is (actual_value - 2).
405 */
b91ad0ec 406static const intel_limit_t intel_limits_ironlake_dac = {
273e27ca
EA
407 .dot = { .min = 25000, .max = 350000 },
408 .vco = { .min = 1760000, .max = 3510000 },
409 .n = { .min = 1, .max = 5 },
410 .m = { .min = 79, .max = 127 },
411 .m1 = { .min = 12, .max = 22 },
412 .m2 = { .min = 5, .max = 9 },
413 .p = { .min = 5, .max = 80 },
414 .p1 = { .min = 1, .max = 8 },
415 .p2 = { .dot_limit = 225000,
416 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
417};
418
b91ad0ec 419static const intel_limit_t intel_limits_ironlake_single_lvds = {
273e27ca
EA
420 .dot = { .min = 25000, .max = 350000 },
421 .vco = { .min = 1760000, .max = 3510000 },
422 .n = { .min = 1, .max = 3 },
423 .m = { .min = 79, .max = 118 },
424 .m1 = { .min = 12, .max = 22 },
425 .m2 = { .min = 5, .max = 9 },
426 .p = { .min = 28, .max = 112 },
427 .p1 = { .min = 2, .max = 8 },
428 .p2 = { .dot_limit = 225000,
429 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
430};
431
432static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273e27ca
EA
433 .dot = { .min = 25000, .max = 350000 },
434 .vco = { .min = 1760000, .max = 3510000 },
435 .n = { .min = 1, .max = 3 },
436 .m = { .min = 79, .max = 127 },
437 .m1 = { .min = 12, .max = 22 },
438 .m2 = { .min = 5, .max = 9 },
439 .p = { .min = 14, .max = 56 },
440 .p1 = { .min = 2, .max = 8 },
441 .p2 = { .dot_limit = 225000,
442 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
443};
444
273e27ca 445/* LVDS 100mhz refclk limits. */
b91ad0ec 446static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
447 .dot = { .min = 25000, .max = 350000 },
448 .vco = { .min = 1760000, .max = 3510000 },
449 .n = { .min = 1, .max = 2 },
450 .m = { .min = 79, .max = 126 },
451 .m1 = { .min = 12, .max = 22 },
452 .m2 = { .min = 5, .max = 9 },
453 .p = { .min = 28, .max = 112 },
0206e353 454 .p1 = { .min = 2, .max = 8 },
273e27ca
EA
455 .p2 = { .dot_limit = 225000,
456 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
457};
458
459static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
460 .dot = { .min = 25000, .max = 350000 },
461 .vco = { .min = 1760000, .max = 3510000 },
462 .n = { .min = 1, .max = 3 },
463 .m = { .min = 79, .max = 126 },
464 .m1 = { .min = 12, .max = 22 },
465 .m2 = { .min = 5, .max = 9 },
466 .p = { .min = 14, .max = 42 },
0206e353 467 .p1 = { .min = 2, .max = 6 },
273e27ca
EA
468 .p2 = { .dot_limit = 225000,
469 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
470};
471
dc730512 472static const intel_limit_t intel_limits_vlv = {
f01b7962
VS
473 /*
474 * These are the data rate limits (measured in fast clocks)
475 * since those are the strictest limits we have. The fast
476 * clock and actual rate limits are more relaxed, so checking
477 * them would make no difference.
478 */
479 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
75e53986 480 .vco = { .min = 4000000, .max = 6000000 },
a0c4da24 481 .n = { .min = 1, .max = 7 },
a0c4da24
JB
482 .m1 = { .min = 2, .max = 3 },
483 .m2 = { .min = 11, .max = 156 },
b99ab663 484 .p1 = { .min = 2, .max = 3 },
5fdc9c49 485 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
a0c4da24
JB
486};
487
ef9348c8
CML
488static const intel_limit_t intel_limits_chv = {
489 /*
490 * These are the data rate limits (measured in fast clocks)
491 * since those are the strictest limits we have. The fast
492 * clock and actual rate limits are more relaxed, so checking
493 * them would make no difference.
494 */
495 .dot = { .min = 25000 * 5, .max = 540000 * 5},
17fe1021 496 .vco = { .min = 4800000, .max = 6480000 },
ef9348c8
CML
497 .n = { .min = 1, .max = 1 },
498 .m1 = { .min = 2, .max = 2 },
499 .m2 = { .min = 24 << 22, .max = 175 << 22 },
500 .p1 = { .min = 2, .max = 4 },
501 .p2 = { .p2_slow = 1, .p2_fast = 14 },
502};
503
5ab7b0b7
ID
504static const intel_limit_t intel_limits_bxt = {
505 /* FIXME: find real dot limits */
506 .dot = { .min = 0, .max = INT_MAX },
e6292556 507 .vco = { .min = 4800000, .max = 6700000 },
5ab7b0b7
ID
508 .n = { .min = 1, .max = 1 },
509 .m1 = { .min = 2, .max = 2 },
510 /* FIXME: find real m2 limits */
511 .m2 = { .min = 2 << 22, .max = 255 << 22 },
512 .p1 = { .min = 2, .max = 4 },
513 .p2 = { .p2_slow = 1, .p2_fast = 20 },
514};
515
cdba954e
ACO
516static bool
517needs_modeset(struct drm_crtc_state *state)
518{
fc596660 519 return drm_atomic_crtc_needs_modeset(state);
cdba954e
ACO
520}
521
e0638cdf
PZ
522/**
523 * Returns whether any output on the specified pipe is of the specified type
524 */
4093561b 525bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
e0638cdf 526{
409ee761 527 struct drm_device *dev = crtc->base.dev;
e0638cdf
PZ
528 struct intel_encoder *encoder;
529
409ee761 530 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
e0638cdf
PZ
531 if (encoder->type == type)
532 return true;
533
534 return false;
535}
536
d0737e1d
ACO
537/**
538 * Returns whether any output on the specified pipe will have the specified
539 * type after a staged modeset is complete, i.e., the same as
540 * intel_pipe_has_type() but looking at encoder->new_crtc instead of
541 * encoder->crtc.
542 */
a93e255f
ACO
543static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
544 int type)
d0737e1d 545{
a93e255f 546 struct drm_atomic_state *state = crtc_state->base.state;
da3ced29 547 struct drm_connector *connector;
a93e255f 548 struct drm_connector_state *connector_state;
d0737e1d 549 struct intel_encoder *encoder;
a93e255f
ACO
550 int i, num_connectors = 0;
551
da3ced29 552 for_each_connector_in_state(state, connector, connector_state, i) {
a93e255f
ACO
553 if (connector_state->crtc != crtc_state->base.crtc)
554 continue;
555
556 num_connectors++;
d0737e1d 557
a93e255f
ACO
558 encoder = to_intel_encoder(connector_state->best_encoder);
559 if (encoder->type == type)
d0737e1d 560 return true;
a93e255f
ACO
561 }
562
563 WARN_ON(num_connectors == 0);
d0737e1d
ACO
564
565 return false;
566}
567
a93e255f
ACO
568static const intel_limit_t *
569intel_ironlake_limit(struct intel_crtc_state *crtc_state, int refclk)
2c07245f 570{
a93e255f 571 struct drm_device *dev = crtc_state->base.crtc->dev;
2c07245f 572 const intel_limit_t *limit;
b91ad0ec 573
a93e255f 574 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1974cad0 575 if (intel_is_dual_link_lvds(dev)) {
1b894b59 576 if (refclk == 100000)
b91ad0ec
ZW
577 limit = &intel_limits_ironlake_dual_lvds_100m;
578 else
579 limit = &intel_limits_ironlake_dual_lvds;
580 } else {
1b894b59 581 if (refclk == 100000)
b91ad0ec
ZW
582 limit = &intel_limits_ironlake_single_lvds_100m;
583 else
584 limit = &intel_limits_ironlake_single_lvds;
585 }
c6bb3538 586 } else
b91ad0ec 587 limit = &intel_limits_ironlake_dac;
2c07245f
ZW
588
589 return limit;
590}
591
a93e255f
ACO
592static const intel_limit_t *
593intel_g4x_limit(struct intel_crtc_state *crtc_state)
044c7c41 594{
a93e255f 595 struct drm_device *dev = crtc_state->base.crtc->dev;
044c7c41
ML
596 const intel_limit_t *limit;
597
a93e255f 598 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1974cad0 599 if (intel_is_dual_link_lvds(dev))
e4b36699 600 limit = &intel_limits_g4x_dual_channel_lvds;
044c7c41 601 else
e4b36699 602 limit = &intel_limits_g4x_single_channel_lvds;
a93e255f
ACO
603 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
604 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
e4b36699 605 limit = &intel_limits_g4x_hdmi;
a93e255f 606 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
e4b36699 607 limit = &intel_limits_g4x_sdvo;
044c7c41 608 } else /* The option is for other outputs */
e4b36699 609 limit = &intel_limits_i9xx_sdvo;
044c7c41
ML
610
611 return limit;
612}
613
a93e255f
ACO
614static const intel_limit_t *
615intel_limit(struct intel_crtc_state *crtc_state, int refclk)
79e53945 616{
a93e255f 617 struct drm_device *dev = crtc_state->base.crtc->dev;
79e53945
JB
618 const intel_limit_t *limit;
619
5ab7b0b7
ID
620 if (IS_BROXTON(dev))
621 limit = &intel_limits_bxt;
622 else if (HAS_PCH_SPLIT(dev))
a93e255f 623 limit = intel_ironlake_limit(crtc_state, refclk);
2c07245f 624 else if (IS_G4X(dev)) {
a93e255f 625 limit = intel_g4x_limit(crtc_state);
f2b115e6 626 } else if (IS_PINEVIEW(dev)) {
a93e255f 627 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
f2b115e6 628 limit = &intel_limits_pineview_lvds;
2177832f 629 else
f2b115e6 630 limit = &intel_limits_pineview_sdvo;
ef9348c8
CML
631 } else if (IS_CHERRYVIEW(dev)) {
632 limit = &intel_limits_chv;
a0c4da24 633 } else if (IS_VALLEYVIEW(dev)) {
dc730512 634 limit = &intel_limits_vlv;
a6c45cf0 635 } else if (!IS_GEN2(dev)) {
a93e255f 636 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
a6c45cf0
CW
637 limit = &intel_limits_i9xx_lvds;
638 else
639 limit = &intel_limits_i9xx_sdvo;
79e53945 640 } else {
a93e255f 641 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
e4b36699 642 limit = &intel_limits_i8xx_lvds;
a93e255f 643 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
e4b36699 644 limit = &intel_limits_i8xx_dvo;
5d536e28
DV
645 else
646 limit = &intel_limits_i8xx_dac;
79e53945
JB
647 }
648 return limit;
649}
650
dccbea3b
ID
651/*
652 * Platform specific helpers to calculate the port PLL loopback- (clock.m),
653 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
654 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
655 * The helpers' return value is the rate of the clock that is fed to the
656 * display engine's pipe which can be the above fast dot clock rate or a
657 * divided-down version of it.
658 */
f2b115e6 659/* m1 is reserved as 0 in Pineview, n is a ring counter */
dccbea3b 660static int pnv_calc_dpll_params(int refclk, intel_clock_t *clock)
79e53945 661{
2177832f
SL
662 clock->m = clock->m2 + 2;
663 clock->p = clock->p1 * clock->p2;
ed5ca77e 664 if (WARN_ON(clock->n == 0 || clock->p == 0))
dccbea3b 665 return 0;
fb03ac01
VS
666 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
667 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
dccbea3b
ID
668
669 return clock->dot;
2177832f
SL
670}
671
7429e9d4
DV
672static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
673{
674 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
675}
676
dccbea3b 677static int i9xx_calc_dpll_params(int refclk, intel_clock_t *clock)
2177832f 678{
7429e9d4 679 clock->m = i9xx_dpll_compute_m(clock);
79e53945 680 clock->p = clock->p1 * clock->p2;
ed5ca77e 681 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
dccbea3b 682 return 0;
fb03ac01
VS
683 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
684 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
dccbea3b
ID
685
686 return clock->dot;
79e53945
JB
687}
688
dccbea3b 689static int vlv_calc_dpll_params(int refclk, intel_clock_t *clock)
589eca67
ID
690{
691 clock->m = clock->m1 * clock->m2;
692 clock->p = clock->p1 * clock->p2;
693 if (WARN_ON(clock->n == 0 || clock->p == 0))
dccbea3b 694 return 0;
589eca67
ID
695 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
696 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
dccbea3b
ID
697
698 return clock->dot / 5;
589eca67
ID
699}
700
dccbea3b 701int chv_calc_dpll_params(int refclk, intel_clock_t *clock)
ef9348c8
CML
702{
703 clock->m = clock->m1 * clock->m2;
704 clock->p = clock->p1 * clock->p2;
705 if (WARN_ON(clock->n == 0 || clock->p == 0))
dccbea3b 706 return 0;
ef9348c8
CML
707 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
708 clock->n << 22);
709 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
dccbea3b
ID
710
711 return clock->dot / 5;
ef9348c8
CML
712}
713
7c04d1d9 714#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
715/**
716 * Returns whether the given set of divisors are valid for a given refclk with
717 * the given connectors.
718 */
719
1b894b59
CW
720static bool intel_PLL_is_valid(struct drm_device *dev,
721 const intel_limit_t *limit,
722 const intel_clock_t *clock)
79e53945 723{
f01b7962
VS
724 if (clock->n < limit->n.min || limit->n.max < clock->n)
725 INTELPllInvalid("n out of range\n");
79e53945 726 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
0206e353 727 INTELPllInvalid("p1 out of range\n");
79e53945 728 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
0206e353 729 INTELPllInvalid("m2 out of range\n");
79e53945 730 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
0206e353 731 INTELPllInvalid("m1 out of range\n");
f01b7962 732
666a4537
WB
733 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) &&
734 !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev))
f01b7962
VS
735 if (clock->m1 <= clock->m2)
736 INTELPllInvalid("m1 <= m2\n");
737
666a4537 738 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev)) {
f01b7962
VS
739 if (clock->p < limit->p.min || limit->p.max < clock->p)
740 INTELPllInvalid("p out of range\n");
741 if (clock->m < limit->m.min || limit->m.max < clock->m)
742 INTELPllInvalid("m out of range\n");
743 }
744
79e53945 745 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
0206e353 746 INTELPllInvalid("vco out of range\n");
79e53945
JB
747 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
748 * connector, etc., rather than just a single range.
749 */
750 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
0206e353 751 INTELPllInvalid("dot out of range\n");
79e53945
JB
752
753 return true;
754}
755
3b1429d9
VS
756static int
757i9xx_select_p2_div(const intel_limit_t *limit,
758 const struct intel_crtc_state *crtc_state,
759 int target)
79e53945 760{
3b1429d9 761 struct drm_device *dev = crtc_state->base.crtc->dev;
79e53945 762
a93e255f 763 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
79e53945 764 /*
a210b028
DV
765 * For LVDS just rely on its current settings for dual-channel.
766 * We haven't figured out how to reliably set up different
767 * single/dual channel state, if we even can.
79e53945 768 */
1974cad0 769 if (intel_is_dual_link_lvds(dev))
3b1429d9 770 return limit->p2.p2_fast;
79e53945 771 else
3b1429d9 772 return limit->p2.p2_slow;
79e53945
JB
773 } else {
774 if (target < limit->p2.dot_limit)
3b1429d9 775 return limit->p2.p2_slow;
79e53945 776 else
3b1429d9 777 return limit->p2.p2_fast;
79e53945 778 }
3b1429d9
VS
779}
780
781static bool
782i9xx_find_best_dpll(const intel_limit_t *limit,
783 struct intel_crtc_state *crtc_state,
784 int target, int refclk, intel_clock_t *match_clock,
785 intel_clock_t *best_clock)
786{
787 struct drm_device *dev = crtc_state->base.crtc->dev;
788 intel_clock_t clock;
789 int err = target;
79e53945 790
0206e353 791 memset(best_clock, 0, sizeof(*best_clock));
79e53945 792
3b1429d9
VS
793 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
794
42158660
ZY
795 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
796 clock.m1++) {
797 for (clock.m2 = limit->m2.min;
798 clock.m2 <= limit->m2.max; clock.m2++) {
c0efc387 799 if (clock.m2 >= clock.m1)
42158660
ZY
800 break;
801 for (clock.n = limit->n.min;
802 clock.n <= limit->n.max; clock.n++) {
803 for (clock.p1 = limit->p1.min;
804 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
805 int this_err;
806
dccbea3b 807 i9xx_calc_dpll_params(refclk, &clock);
ac58c3f0
DV
808 if (!intel_PLL_is_valid(dev, limit,
809 &clock))
810 continue;
811 if (match_clock &&
812 clock.p != match_clock->p)
813 continue;
814
815 this_err = abs(clock.dot - target);
816 if (this_err < err) {
817 *best_clock = clock;
818 err = this_err;
819 }
820 }
821 }
822 }
823 }
824
825 return (err != target);
826}
827
828static bool
a93e255f
ACO
829pnv_find_best_dpll(const intel_limit_t *limit,
830 struct intel_crtc_state *crtc_state,
ee9300bb
DV
831 int target, int refclk, intel_clock_t *match_clock,
832 intel_clock_t *best_clock)
79e53945 833{
3b1429d9 834 struct drm_device *dev = crtc_state->base.crtc->dev;
79e53945 835 intel_clock_t clock;
79e53945
JB
836 int err = target;
837
0206e353 838 memset(best_clock, 0, sizeof(*best_clock));
79e53945 839
3b1429d9
VS
840 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
841
42158660
ZY
842 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
843 clock.m1++) {
844 for (clock.m2 = limit->m2.min;
845 clock.m2 <= limit->m2.max; clock.m2++) {
42158660
ZY
846 for (clock.n = limit->n.min;
847 clock.n <= limit->n.max; clock.n++) {
848 for (clock.p1 = limit->p1.min;
849 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
850 int this_err;
851
dccbea3b 852 pnv_calc_dpll_params(refclk, &clock);
1b894b59
CW
853 if (!intel_PLL_is_valid(dev, limit,
854 &clock))
79e53945 855 continue;
cec2f356
SP
856 if (match_clock &&
857 clock.p != match_clock->p)
858 continue;
79e53945
JB
859
860 this_err = abs(clock.dot - target);
861 if (this_err < err) {
862 *best_clock = clock;
863 err = this_err;
864 }
865 }
866 }
867 }
868 }
869
870 return (err != target);
871}
872
d4906093 873static bool
a93e255f
ACO
874g4x_find_best_dpll(const intel_limit_t *limit,
875 struct intel_crtc_state *crtc_state,
ee9300bb
DV
876 int target, int refclk, intel_clock_t *match_clock,
877 intel_clock_t *best_clock)
d4906093 878{
3b1429d9 879 struct drm_device *dev = crtc_state->base.crtc->dev;
d4906093
ML
880 intel_clock_t clock;
881 int max_n;
3b1429d9 882 bool found = false;
6ba770dc
AJ
883 /* approximately equals target * 0.00585 */
884 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
885
886 memset(best_clock, 0, sizeof(*best_clock));
3b1429d9
VS
887
888 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
889
d4906093 890 max_n = limit->n.max;
f77f13e2 891 /* based on hardware requirement, prefer smaller n to precision */
d4906093 892 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 893 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
894 for (clock.m1 = limit->m1.max;
895 clock.m1 >= limit->m1.min; clock.m1--) {
896 for (clock.m2 = limit->m2.max;
897 clock.m2 >= limit->m2.min; clock.m2--) {
898 for (clock.p1 = limit->p1.max;
899 clock.p1 >= limit->p1.min; clock.p1--) {
900 int this_err;
901
dccbea3b 902 i9xx_calc_dpll_params(refclk, &clock);
1b894b59
CW
903 if (!intel_PLL_is_valid(dev, limit,
904 &clock))
d4906093 905 continue;
1b894b59
CW
906
907 this_err = abs(clock.dot - target);
d4906093
ML
908 if (this_err < err_most) {
909 *best_clock = clock;
910 err_most = this_err;
911 max_n = clock.n;
912 found = true;
913 }
914 }
915 }
916 }
917 }
2c07245f
ZW
918 return found;
919}
920
d5dd62bd
ID
921/*
922 * Check if the calculated PLL configuration is more optimal compared to the
923 * best configuration and error found so far. Return the calculated error.
924 */
925static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
926 const intel_clock_t *calculated_clock,
927 const intel_clock_t *best_clock,
928 unsigned int best_error_ppm,
929 unsigned int *error_ppm)
930{
9ca3ba01
ID
931 /*
932 * For CHV ignore the error and consider only the P value.
933 * Prefer a bigger P value based on HW requirements.
934 */
935 if (IS_CHERRYVIEW(dev)) {
936 *error_ppm = 0;
937
938 return calculated_clock->p > best_clock->p;
939 }
940
24be4e46
ID
941 if (WARN_ON_ONCE(!target_freq))
942 return false;
943
d5dd62bd
ID
944 *error_ppm = div_u64(1000000ULL *
945 abs(target_freq - calculated_clock->dot),
946 target_freq);
947 /*
948 * Prefer a better P value over a better (smaller) error if the error
949 * is small. Ensure this preference for future configurations too by
950 * setting the error to 0.
951 */
952 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
953 *error_ppm = 0;
954
955 return true;
956 }
957
958 return *error_ppm + 10 < best_error_ppm;
959}
960
a0c4da24 961static bool
a93e255f
ACO
962vlv_find_best_dpll(const intel_limit_t *limit,
963 struct intel_crtc_state *crtc_state,
ee9300bb
DV
964 int target, int refclk, intel_clock_t *match_clock,
965 intel_clock_t *best_clock)
a0c4da24 966{
a93e255f 967 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
a919ff14 968 struct drm_device *dev = crtc->base.dev;
6b4bf1c4 969 intel_clock_t clock;
69e4f900 970 unsigned int bestppm = 1000000;
27e639bf
VS
971 /* min update 19.2 MHz */
972 int max_n = min(limit->n.max, refclk / 19200);
49e497ef 973 bool found = false;
a0c4da24 974
6b4bf1c4
VS
975 target *= 5; /* fast clock */
976
977 memset(best_clock, 0, sizeof(*best_clock));
a0c4da24
JB
978
979 /* based on hardware requirement, prefer smaller n to precision */
27e639bf 980 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
811bbf05 981 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
889059d8 982 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
c1a9ae43 983 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
6b4bf1c4 984 clock.p = clock.p1 * clock.p2;
a0c4da24 985 /* based on hardware requirement, prefer bigger m1,m2 values */
6b4bf1c4 986 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
d5dd62bd 987 unsigned int ppm;
69e4f900 988
6b4bf1c4
VS
989 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
990 refclk * clock.m1);
991
dccbea3b 992 vlv_calc_dpll_params(refclk, &clock);
43b0ac53 993
f01b7962
VS
994 if (!intel_PLL_is_valid(dev, limit,
995 &clock))
43b0ac53
VS
996 continue;
997
d5dd62bd
ID
998 if (!vlv_PLL_is_optimal(dev, target,
999 &clock,
1000 best_clock,
1001 bestppm, &ppm))
1002 continue;
6b4bf1c4 1003
d5dd62bd
ID
1004 *best_clock = clock;
1005 bestppm = ppm;
1006 found = true;
a0c4da24
JB
1007 }
1008 }
1009 }
1010 }
a0c4da24 1011
49e497ef 1012 return found;
a0c4da24 1013}
a4fc5ed6 1014
ef9348c8 1015static bool
a93e255f
ACO
1016chv_find_best_dpll(const intel_limit_t *limit,
1017 struct intel_crtc_state *crtc_state,
ef9348c8
CML
1018 int target, int refclk, intel_clock_t *match_clock,
1019 intel_clock_t *best_clock)
1020{
a93e255f 1021 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
a919ff14 1022 struct drm_device *dev = crtc->base.dev;
9ca3ba01 1023 unsigned int best_error_ppm;
ef9348c8
CML
1024 intel_clock_t clock;
1025 uint64_t m2;
1026 int found = false;
1027
1028 memset(best_clock, 0, sizeof(*best_clock));
9ca3ba01 1029 best_error_ppm = 1000000;
ef9348c8
CML
1030
1031 /*
1032 * Based on hardware doc, the n always set to 1, and m1 always
1033 * set to 2. If requires to support 200Mhz refclk, we need to
1034 * revisit this because n may not 1 anymore.
1035 */
1036 clock.n = 1, clock.m1 = 2;
1037 target *= 5; /* fast clock */
1038
1039 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
1040 for (clock.p2 = limit->p2.p2_fast;
1041 clock.p2 >= limit->p2.p2_slow;
1042 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
9ca3ba01 1043 unsigned int error_ppm;
ef9348c8
CML
1044
1045 clock.p = clock.p1 * clock.p2;
1046
1047 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
1048 clock.n) << 22, refclk * clock.m1);
1049
1050 if (m2 > INT_MAX/clock.m1)
1051 continue;
1052
1053 clock.m2 = m2;
1054
dccbea3b 1055 chv_calc_dpll_params(refclk, &clock);
ef9348c8
CML
1056
1057 if (!intel_PLL_is_valid(dev, limit, &clock))
1058 continue;
1059
9ca3ba01
ID
1060 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
1061 best_error_ppm, &error_ppm))
1062 continue;
1063
1064 *best_clock = clock;
1065 best_error_ppm = error_ppm;
1066 found = true;
ef9348c8
CML
1067 }
1068 }
1069
1070 return found;
1071}
1072
5ab7b0b7
ID
1073bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
1074 intel_clock_t *best_clock)
1075{
1076 int refclk = i9xx_get_refclk(crtc_state, 0);
1077
1078 return chv_find_best_dpll(intel_limit(crtc_state, refclk), crtc_state,
1079 target_clock, refclk, NULL, best_clock);
1080}
1081
20ddf665
VS
1082bool intel_crtc_active(struct drm_crtc *crtc)
1083{
1084 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1085
1086 /* Be paranoid as we can arrive here with only partial
1087 * state retrieved from the hardware during setup.
1088 *
241bfc38 1089 * We can ditch the adjusted_mode.crtc_clock check as soon
20ddf665
VS
1090 * as Haswell has gained clock readout/fastboot support.
1091 *
66e514c1 1092 * We can ditch the crtc->primary->fb check as soon as we can
20ddf665 1093 * properly reconstruct framebuffers.
c3d1f436
MR
1094 *
1095 * FIXME: The intel_crtc->active here should be switched to
1096 * crtc->state->active once we have proper CRTC states wired up
1097 * for atomic.
20ddf665 1098 */
c3d1f436 1099 return intel_crtc->active && crtc->primary->state->fb &&
6e3c9717 1100 intel_crtc->config->base.adjusted_mode.crtc_clock;
20ddf665
VS
1101}
1102
a5c961d1
PZ
1103enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1104 enum pipe pipe)
1105{
1106 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1107 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1108
6e3c9717 1109 return intel_crtc->config->cpu_transcoder;
a5c961d1
PZ
1110}
1111
fbf49ea2
VS
1112static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1113{
1114 struct drm_i915_private *dev_priv = dev->dev_private;
f0f59a00 1115 i915_reg_t reg = PIPEDSL(pipe);
fbf49ea2
VS
1116 u32 line1, line2;
1117 u32 line_mask;
1118
1119 if (IS_GEN2(dev))
1120 line_mask = DSL_LINEMASK_GEN2;
1121 else
1122 line_mask = DSL_LINEMASK_GEN3;
1123
1124 line1 = I915_READ(reg) & line_mask;
6adfb1ef 1125 msleep(5);
fbf49ea2
VS
1126 line2 = I915_READ(reg) & line_mask;
1127
1128 return line1 == line2;
1129}
1130
ab7ad7f6
KP
1131/*
1132 * intel_wait_for_pipe_off - wait for pipe to turn off
575f7ab7 1133 * @crtc: crtc whose pipe to wait for
9d0498a2
JB
1134 *
1135 * After disabling a pipe, we can't wait for vblank in the usual way,
1136 * spinning on the vblank interrupt status bit, since we won't actually
1137 * see an interrupt when the pipe is disabled.
1138 *
ab7ad7f6
KP
1139 * On Gen4 and above:
1140 * wait for the pipe register state bit to turn off
1141 *
1142 * Otherwise:
1143 * wait for the display line value to settle (it usually
1144 * ends up stopping at the start of the next frame).
58e10eb9 1145 *
9d0498a2 1146 */
575f7ab7 1147static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
9d0498a2 1148{
575f7ab7 1149 struct drm_device *dev = crtc->base.dev;
9d0498a2 1150 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 1151 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
575f7ab7 1152 enum pipe pipe = crtc->pipe;
ab7ad7f6
KP
1153
1154 if (INTEL_INFO(dev)->gen >= 4) {
f0f59a00 1155 i915_reg_t reg = PIPECONF(cpu_transcoder);
ab7ad7f6
KP
1156
1157 /* Wait for the Pipe State to go off */
58e10eb9
CW
1158 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1159 100))
284637d9 1160 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 1161 } else {
ab7ad7f6 1162 /* Wait for the display line to settle */
fbf49ea2 1163 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
284637d9 1164 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 1165 }
79e53945
JB
1166}
1167
b24e7179 1168/* Only for pre-ILK configs */
55607e8a
DV
1169void assert_pll(struct drm_i915_private *dev_priv,
1170 enum pipe pipe, bool state)
b24e7179 1171{
b24e7179
JB
1172 u32 val;
1173 bool cur_state;
1174
649636ef 1175 val = I915_READ(DPLL(pipe));
b24e7179 1176 cur_state = !!(val & DPLL_VCO_ENABLE);
e2c719b7 1177 I915_STATE_WARN(cur_state != state,
b24e7179 1178 "PLL state assertion failure (expected %s, current %s)\n",
87ad3212 1179 onoff(state), onoff(cur_state));
b24e7179 1180}
b24e7179 1181
23538ef1
JN
1182/* XXX: the dsi pll is shared between MIPI DSI ports */
1183static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1184{
1185 u32 val;
1186 bool cur_state;
1187
a580516d 1188 mutex_lock(&dev_priv->sb_lock);
23538ef1 1189 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
a580516d 1190 mutex_unlock(&dev_priv->sb_lock);
23538ef1
JN
1191
1192 cur_state = val & DSI_PLL_VCO_EN;
e2c719b7 1193 I915_STATE_WARN(cur_state != state,
23538ef1 1194 "DSI PLL state assertion failure (expected %s, current %s)\n",
87ad3212 1195 onoff(state), onoff(cur_state));
23538ef1
JN
1196}
1197#define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1198#define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1199
040484af
JB
1200static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1201 enum pipe pipe, bool state)
1202{
040484af 1203 bool cur_state;
ad80a810
PZ
1204 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1205 pipe);
040484af 1206
affa9354
PZ
1207 if (HAS_DDI(dev_priv->dev)) {
1208 /* DDI does not have a specific FDI_TX register */
649636ef 1209 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
ad80a810 1210 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
bf507ef7 1211 } else {
649636ef 1212 u32 val = I915_READ(FDI_TX_CTL(pipe));
bf507ef7
ED
1213 cur_state = !!(val & FDI_TX_ENABLE);
1214 }
e2c719b7 1215 I915_STATE_WARN(cur_state != state,
040484af 1216 "FDI TX state assertion failure (expected %s, current %s)\n",
87ad3212 1217 onoff(state), onoff(cur_state));
040484af
JB
1218}
1219#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1220#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1221
1222static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1223 enum pipe pipe, bool state)
1224{
040484af
JB
1225 u32 val;
1226 bool cur_state;
1227
649636ef 1228 val = I915_READ(FDI_RX_CTL(pipe));
d63fa0dc 1229 cur_state = !!(val & FDI_RX_ENABLE);
e2c719b7 1230 I915_STATE_WARN(cur_state != state,
040484af 1231 "FDI RX state assertion failure (expected %s, current %s)\n",
87ad3212 1232 onoff(state), onoff(cur_state));
040484af
JB
1233}
1234#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1235#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1236
1237static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1238 enum pipe pipe)
1239{
040484af
JB
1240 u32 val;
1241
1242 /* ILK FDI PLL is always enabled */
3d13ef2e 1243 if (INTEL_INFO(dev_priv->dev)->gen == 5)
040484af
JB
1244 return;
1245
bf507ef7 1246 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
affa9354 1247 if (HAS_DDI(dev_priv->dev))
bf507ef7
ED
1248 return;
1249
649636ef 1250 val = I915_READ(FDI_TX_CTL(pipe));
e2c719b7 1251 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
040484af
JB
1252}
1253
55607e8a
DV
1254void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1255 enum pipe pipe, bool state)
040484af 1256{
040484af 1257 u32 val;
55607e8a 1258 bool cur_state;
040484af 1259
649636ef 1260 val = I915_READ(FDI_RX_CTL(pipe));
55607e8a 1261 cur_state = !!(val & FDI_RX_PLL_ENABLE);
e2c719b7 1262 I915_STATE_WARN(cur_state != state,
55607e8a 1263 "FDI RX PLL assertion failure (expected %s, current %s)\n",
87ad3212 1264 onoff(state), onoff(cur_state));
040484af
JB
1265}
1266
b680c37a
DV
1267void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1268 enum pipe pipe)
ea0760cf 1269{
bedd4dba 1270 struct drm_device *dev = dev_priv->dev;
f0f59a00 1271 i915_reg_t pp_reg;
ea0760cf
JB
1272 u32 val;
1273 enum pipe panel_pipe = PIPE_A;
0de3b485 1274 bool locked = true;
ea0760cf 1275
bedd4dba
JN
1276 if (WARN_ON(HAS_DDI(dev)))
1277 return;
1278
1279 if (HAS_PCH_SPLIT(dev)) {
1280 u32 port_sel;
1281
ea0760cf 1282 pp_reg = PCH_PP_CONTROL;
bedd4dba
JN
1283 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1284
1285 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1286 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1287 panel_pipe = PIPE_B;
1288 /* XXX: else fix for eDP */
666a4537 1289 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
bedd4dba
JN
1290 /* presumably write lock depends on pipe, not port select */
1291 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1292 panel_pipe = pipe;
ea0760cf
JB
1293 } else {
1294 pp_reg = PP_CONTROL;
bedd4dba
JN
1295 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1296 panel_pipe = PIPE_B;
ea0760cf
JB
1297 }
1298
1299 val = I915_READ(pp_reg);
1300 if (!(val & PANEL_POWER_ON) ||
ec49ba2d 1301 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
ea0760cf
JB
1302 locked = false;
1303
e2c719b7 1304 I915_STATE_WARN(panel_pipe == pipe && locked,
ea0760cf 1305 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 1306 pipe_name(pipe));
ea0760cf
JB
1307}
1308
93ce0ba6
JN
1309static void assert_cursor(struct drm_i915_private *dev_priv,
1310 enum pipe pipe, bool state)
1311{
1312 struct drm_device *dev = dev_priv->dev;
1313 bool cur_state;
1314
d9d82081 1315 if (IS_845G(dev) || IS_I865G(dev))
0b87c24e 1316 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
d9d82081 1317 else
5efb3e28 1318 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
93ce0ba6 1319
e2c719b7 1320 I915_STATE_WARN(cur_state != state,
93ce0ba6 1321 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
87ad3212 1322 pipe_name(pipe), onoff(state), onoff(cur_state));
93ce0ba6
JN
1323}
1324#define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1325#define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1326
b840d907
JB
1327void assert_pipe(struct drm_i915_private *dev_priv,
1328 enum pipe pipe, bool state)
b24e7179 1329{
63d7bbe9 1330 bool cur_state;
702e7a56
PZ
1331 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1332 pipe);
4feed0eb 1333 enum intel_display_power_domain power_domain;
b24e7179 1334
b6b5d049
VS
1335 /* if we need the pipe quirk it must be always on */
1336 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1337 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
8e636784
DV
1338 state = true;
1339
4feed0eb
ID
1340 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1341 if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
649636ef 1342 u32 val = I915_READ(PIPECONF(cpu_transcoder));
69310161 1343 cur_state = !!(val & PIPECONF_ENABLE);
4feed0eb
ID
1344
1345 intel_display_power_put(dev_priv, power_domain);
1346 } else {
1347 cur_state = false;
69310161
PZ
1348 }
1349
e2c719b7 1350 I915_STATE_WARN(cur_state != state,
63d7bbe9 1351 "pipe %c assertion failure (expected %s, current %s)\n",
87ad3212 1352 pipe_name(pipe), onoff(state), onoff(cur_state));
b24e7179
JB
1353}
1354
931872fc
CW
1355static void assert_plane(struct drm_i915_private *dev_priv,
1356 enum plane plane, bool state)
b24e7179 1357{
b24e7179 1358 u32 val;
931872fc 1359 bool cur_state;
b24e7179 1360
649636ef 1361 val = I915_READ(DSPCNTR(plane));
931872fc 1362 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
e2c719b7 1363 I915_STATE_WARN(cur_state != state,
931872fc 1364 "plane %c assertion failure (expected %s, current %s)\n",
87ad3212 1365 plane_name(plane), onoff(state), onoff(cur_state));
b24e7179
JB
1366}
1367
931872fc
CW
1368#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1369#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1370
b24e7179
JB
1371static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1372 enum pipe pipe)
1373{
653e1026 1374 struct drm_device *dev = dev_priv->dev;
649636ef 1375 int i;
b24e7179 1376
653e1026
VS
1377 /* Primary planes are fixed to pipes on gen4+ */
1378 if (INTEL_INFO(dev)->gen >= 4) {
649636ef 1379 u32 val = I915_READ(DSPCNTR(pipe));
e2c719b7 1380 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
28c05794
AJ
1381 "plane %c assertion failure, should be disabled but not\n",
1382 plane_name(pipe));
19ec1358 1383 return;
28c05794 1384 }
19ec1358 1385
b24e7179 1386 /* Need to check both planes against the pipe */
055e393f 1387 for_each_pipe(dev_priv, i) {
649636ef
VS
1388 u32 val = I915_READ(DSPCNTR(i));
1389 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
b24e7179 1390 DISPPLANE_SEL_PIPE_SHIFT;
e2c719b7 1391 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
1392 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1393 plane_name(i), pipe_name(pipe));
b24e7179
JB
1394 }
1395}
1396
19332d7a
JB
1397static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1398 enum pipe pipe)
1399{
20674eef 1400 struct drm_device *dev = dev_priv->dev;
649636ef 1401 int sprite;
19332d7a 1402
7feb8b88 1403 if (INTEL_INFO(dev)->gen >= 9) {
3bdcfc0c 1404 for_each_sprite(dev_priv, pipe, sprite) {
649636ef 1405 u32 val = I915_READ(PLANE_CTL(pipe, sprite));
e2c719b7 1406 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
7feb8b88
DL
1407 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1408 sprite, pipe_name(pipe));
1409 }
666a4537 1410 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
3bdcfc0c 1411 for_each_sprite(dev_priv, pipe, sprite) {
649636ef 1412 u32 val = I915_READ(SPCNTR(pipe, sprite));
e2c719b7 1413 I915_STATE_WARN(val & SP_ENABLE,
20674eef 1414 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1fe47785 1415 sprite_name(pipe, sprite), pipe_name(pipe));
20674eef
VS
1416 }
1417 } else if (INTEL_INFO(dev)->gen >= 7) {
649636ef 1418 u32 val = I915_READ(SPRCTL(pipe));
e2c719b7 1419 I915_STATE_WARN(val & SPRITE_ENABLE,
06da8da2 1420 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef
VS
1421 plane_name(pipe), pipe_name(pipe));
1422 } else if (INTEL_INFO(dev)->gen >= 5) {
649636ef 1423 u32 val = I915_READ(DVSCNTR(pipe));
e2c719b7 1424 I915_STATE_WARN(val & DVS_ENABLE,
06da8da2 1425 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef 1426 plane_name(pipe), pipe_name(pipe));
19332d7a
JB
1427 }
1428}
1429
08c71e5e
VS
1430static void assert_vblank_disabled(struct drm_crtc *crtc)
1431{
e2c719b7 1432 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
08c71e5e
VS
1433 drm_crtc_vblank_put(crtc);
1434}
1435
7abd4b35
ACO
1436void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1437 enum pipe pipe)
92f2584a 1438{
92f2584a
JB
1439 u32 val;
1440 bool enabled;
1441
649636ef 1442 val = I915_READ(PCH_TRANSCONF(pipe));
92f2584a 1443 enabled = !!(val & TRANS_ENABLE);
e2c719b7 1444 I915_STATE_WARN(enabled,
9db4a9c7
JB
1445 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1446 pipe_name(pipe));
92f2584a
JB
1447}
1448
4e634389
KP
1449static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1450 enum pipe pipe, u32 port_sel, u32 val)
f0575e92
KP
1451{
1452 if ((val & DP_PORT_EN) == 0)
1453 return false;
1454
1455 if (HAS_PCH_CPT(dev_priv->dev)) {
f0f59a00 1456 u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
f0575e92
KP
1457 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1458 return false;
44f37d1f
CML
1459 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1460 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1461 return false;
f0575e92
KP
1462 } else {
1463 if ((val & DP_PIPE_MASK) != (pipe << 30))
1464 return false;
1465 }
1466 return true;
1467}
1468
1519b995
KP
1469static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1470 enum pipe pipe, u32 val)
1471{
dc0fa718 1472 if ((val & SDVO_ENABLE) == 0)
1519b995
KP
1473 return false;
1474
1475 if (HAS_PCH_CPT(dev_priv->dev)) {
dc0fa718 1476 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1519b995 1477 return false;
44f37d1f
CML
1478 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1479 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1480 return false;
1519b995 1481 } else {
dc0fa718 1482 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1519b995
KP
1483 return false;
1484 }
1485 return true;
1486}
1487
1488static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1489 enum pipe pipe, u32 val)
1490{
1491 if ((val & LVDS_PORT_EN) == 0)
1492 return false;
1493
1494 if (HAS_PCH_CPT(dev_priv->dev)) {
1495 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1496 return false;
1497 } else {
1498 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1499 return false;
1500 }
1501 return true;
1502}
1503
1504static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1505 enum pipe pipe, u32 val)
1506{
1507 if ((val & ADPA_DAC_ENABLE) == 0)
1508 return false;
1509 if (HAS_PCH_CPT(dev_priv->dev)) {
1510 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1511 return false;
1512 } else {
1513 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1514 return false;
1515 }
1516 return true;
1517}
1518
291906f1 1519static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0f59a00
VS
1520 enum pipe pipe, i915_reg_t reg,
1521 u32 port_sel)
291906f1 1522{
47a05eca 1523 u32 val = I915_READ(reg);
e2c719b7 1524 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
291906f1 1525 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
f0f59a00 1526 i915_mmio_reg_offset(reg), pipe_name(pipe));
de9a35ab 1527
e2c719b7 1528 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
75c5da27 1529 && (val & DP_PIPEB_SELECT),
de9a35ab 1530 "IBX PCH dp port still using transcoder B\n");
291906f1
JB
1531}
1532
1533static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
f0f59a00 1534 enum pipe pipe, i915_reg_t reg)
291906f1 1535{
47a05eca 1536 u32 val = I915_READ(reg);
e2c719b7 1537 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
23c99e77 1538 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
f0f59a00 1539 i915_mmio_reg_offset(reg), pipe_name(pipe));
de9a35ab 1540
e2c719b7 1541 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
75c5da27 1542 && (val & SDVO_PIPE_B_SELECT),
de9a35ab 1543 "IBX PCH hdmi port still using transcoder B\n");
291906f1
JB
1544}
1545
1546static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1547 enum pipe pipe)
1548{
291906f1 1549 u32 val;
291906f1 1550
f0575e92
KP
1551 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1552 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1553 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1 1554
649636ef 1555 val = I915_READ(PCH_ADPA);
e2c719b7 1556 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
291906f1 1557 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1558 pipe_name(pipe));
291906f1 1559
649636ef 1560 val = I915_READ(PCH_LVDS);
e2c719b7 1561 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
291906f1 1562 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1563 pipe_name(pipe));
291906f1 1564
e2debe91
PZ
1565 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1566 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1567 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
291906f1
JB
1568}
1569
d288f65f 1570static void vlv_enable_pll(struct intel_crtc *crtc,
5cec258b 1571 const struct intel_crtc_state *pipe_config)
87442f73 1572{
426115cf
DV
1573 struct drm_device *dev = crtc->base.dev;
1574 struct drm_i915_private *dev_priv = dev->dev_private;
f0f59a00 1575 i915_reg_t reg = DPLL(crtc->pipe);
d288f65f 1576 u32 dpll = pipe_config->dpll_hw_state.dpll;
87442f73 1577
426115cf 1578 assert_pipe_disabled(dev_priv, crtc->pipe);
87442f73 1579
87442f73 1580 /* PLL is protected by panel, make sure we can write it */
6a9e7363 1581 if (IS_MOBILE(dev_priv->dev))
426115cf 1582 assert_panel_unlocked(dev_priv, crtc->pipe);
87442f73 1583
426115cf
DV
1584 I915_WRITE(reg, dpll);
1585 POSTING_READ(reg);
1586 udelay(150);
1587
1588 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1589 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1590
d288f65f 1591 I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
426115cf 1592 POSTING_READ(DPLL_MD(crtc->pipe));
87442f73
DV
1593
1594 /* We do this three times for luck */
426115cf 1595 I915_WRITE(reg, dpll);
87442f73
DV
1596 POSTING_READ(reg);
1597 udelay(150); /* wait for warmup */
426115cf 1598 I915_WRITE(reg, dpll);
87442f73
DV
1599 POSTING_READ(reg);
1600 udelay(150); /* wait for warmup */
426115cf 1601 I915_WRITE(reg, dpll);
87442f73
DV
1602 POSTING_READ(reg);
1603 udelay(150); /* wait for warmup */
1604}
1605
d288f65f 1606static void chv_enable_pll(struct intel_crtc *crtc,
5cec258b 1607 const struct intel_crtc_state *pipe_config)
9d556c99
CML
1608{
1609 struct drm_device *dev = crtc->base.dev;
1610 struct drm_i915_private *dev_priv = dev->dev_private;
1611 int pipe = crtc->pipe;
1612 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9d556c99
CML
1613 u32 tmp;
1614
1615 assert_pipe_disabled(dev_priv, crtc->pipe);
1616
a580516d 1617 mutex_lock(&dev_priv->sb_lock);
9d556c99
CML
1618
1619 /* Enable back the 10bit clock to display controller */
1620 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1621 tmp |= DPIO_DCLKP_EN;
1622 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1623
54433e91
VS
1624 mutex_unlock(&dev_priv->sb_lock);
1625
9d556c99
CML
1626 /*
1627 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1628 */
1629 udelay(1);
1630
1631 /* Enable PLL */
d288f65f 1632 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
9d556c99
CML
1633
1634 /* Check PLL is locked */
a11b0703 1635 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
9d556c99
CML
1636 DRM_ERROR("PLL %d failed to lock\n", pipe);
1637
a11b0703 1638 /* not sure when this should be written */
d288f65f 1639 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
a11b0703 1640 POSTING_READ(DPLL_MD(pipe));
9d556c99
CML
1641}
1642
1c4e0274
VS
1643static int intel_num_dvo_pipes(struct drm_device *dev)
1644{
1645 struct intel_crtc *crtc;
1646 int count = 0;
1647
1648 for_each_intel_crtc(dev, crtc)
3538b9df 1649 count += crtc->base.state->active &&
409ee761 1650 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1c4e0274
VS
1651
1652 return count;
1653}
1654
66e3d5c0 1655static void i9xx_enable_pll(struct intel_crtc *crtc)
63d7bbe9 1656{
66e3d5c0
DV
1657 struct drm_device *dev = crtc->base.dev;
1658 struct drm_i915_private *dev_priv = dev->dev_private;
f0f59a00 1659 i915_reg_t reg = DPLL(crtc->pipe);
6e3c9717 1660 u32 dpll = crtc->config->dpll_hw_state.dpll;
63d7bbe9 1661
66e3d5c0 1662 assert_pipe_disabled(dev_priv, crtc->pipe);
58c6eaa2 1663
63d7bbe9 1664 /* No really, not for ILK+ */
3d13ef2e 1665 BUG_ON(INTEL_INFO(dev)->gen >= 5);
63d7bbe9
JB
1666
1667 /* PLL is protected by panel, make sure we can write it */
66e3d5c0
DV
1668 if (IS_MOBILE(dev) && !IS_I830(dev))
1669 assert_panel_unlocked(dev_priv, crtc->pipe);
63d7bbe9 1670
1c4e0274
VS
1671 /* Enable DVO 2x clock on both PLLs if necessary */
1672 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1673 /*
1674 * It appears to be important that we don't enable this
1675 * for the current pipe before otherwise configuring the
1676 * PLL. No idea how this should be handled if multiple
1677 * DVO outputs are enabled simultaneosly.
1678 */
1679 dpll |= DPLL_DVO_2X_MODE;
1680 I915_WRITE(DPLL(!crtc->pipe),
1681 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1682 }
66e3d5c0 1683
c2b63374
VS
1684 /*
1685 * Apparently we need to have VGA mode enabled prior to changing
1686 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1687 * dividers, even though the register value does change.
1688 */
1689 I915_WRITE(reg, 0);
1690
8e7a65aa
VS
1691 I915_WRITE(reg, dpll);
1692
66e3d5c0
DV
1693 /* Wait for the clocks to stabilize. */
1694 POSTING_READ(reg);
1695 udelay(150);
1696
1697 if (INTEL_INFO(dev)->gen >= 4) {
1698 I915_WRITE(DPLL_MD(crtc->pipe),
6e3c9717 1699 crtc->config->dpll_hw_state.dpll_md);
66e3d5c0
DV
1700 } else {
1701 /* The pixel multiplier can only be updated once the
1702 * DPLL is enabled and the clocks are stable.
1703 *
1704 * So write it again.
1705 */
1706 I915_WRITE(reg, dpll);
1707 }
63d7bbe9
JB
1708
1709 /* We do this three times for luck */
66e3d5c0 1710 I915_WRITE(reg, dpll);
63d7bbe9
JB
1711 POSTING_READ(reg);
1712 udelay(150); /* wait for warmup */
66e3d5c0 1713 I915_WRITE(reg, dpll);
63d7bbe9
JB
1714 POSTING_READ(reg);
1715 udelay(150); /* wait for warmup */
66e3d5c0 1716 I915_WRITE(reg, dpll);
63d7bbe9
JB
1717 POSTING_READ(reg);
1718 udelay(150); /* wait for warmup */
1719}
1720
1721/**
50b44a44 1722 * i9xx_disable_pll - disable a PLL
63d7bbe9
JB
1723 * @dev_priv: i915 private structure
1724 * @pipe: pipe PLL to disable
1725 *
1726 * Disable the PLL for @pipe, making sure the pipe is off first.
1727 *
1728 * Note! This is for pre-ILK only.
1729 */
1c4e0274 1730static void i9xx_disable_pll(struct intel_crtc *crtc)
63d7bbe9 1731{
1c4e0274
VS
1732 struct drm_device *dev = crtc->base.dev;
1733 struct drm_i915_private *dev_priv = dev->dev_private;
1734 enum pipe pipe = crtc->pipe;
1735
1736 /* Disable DVO 2x clock on both PLLs if necessary */
1737 if (IS_I830(dev) &&
409ee761 1738 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
3538b9df 1739 !intel_num_dvo_pipes(dev)) {
1c4e0274
VS
1740 I915_WRITE(DPLL(PIPE_B),
1741 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1742 I915_WRITE(DPLL(PIPE_A),
1743 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1744 }
1745
b6b5d049
VS
1746 /* Don't disable pipe or pipe PLLs if needed */
1747 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1748 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
63d7bbe9
JB
1749 return;
1750
1751 /* Make sure the pipe isn't still relying on us */
1752 assert_pipe_disabled(dev_priv, pipe);
1753
b8afb911 1754 I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
50b44a44 1755 POSTING_READ(DPLL(pipe));
63d7bbe9
JB
1756}
1757
f6071166
JB
1758static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1759{
b8afb911 1760 u32 val;
f6071166
JB
1761
1762 /* Make sure the pipe isn't still relying on us */
1763 assert_pipe_disabled(dev_priv, pipe);
1764
e5cbfbfb
ID
1765 /*
1766 * Leave integrated clock source and reference clock enabled for pipe B.
1767 * The latter is needed for VGA hotplug / manual detection.
1768 */
b8afb911 1769 val = DPLL_VGA_MODE_DIS;
f6071166 1770 if (pipe == PIPE_B)
60bfe44f 1771 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REF_CLK_ENABLE_VLV;
f6071166
JB
1772 I915_WRITE(DPLL(pipe), val);
1773 POSTING_READ(DPLL(pipe));
076ed3b2
CML
1774
1775}
1776
1777static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1778{
d752048d 1779 enum dpio_channel port = vlv_pipe_to_channel(pipe);
076ed3b2
CML
1780 u32 val;
1781
a11b0703
VS
1782 /* Make sure the pipe isn't still relying on us */
1783 assert_pipe_disabled(dev_priv, pipe);
076ed3b2 1784
a11b0703 1785 /* Set PLL en = 0 */
60bfe44f
VS
1786 val = DPLL_SSC_REF_CLK_CHV |
1787 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
a11b0703
VS
1788 if (pipe != PIPE_A)
1789 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1790 I915_WRITE(DPLL(pipe), val);
1791 POSTING_READ(DPLL(pipe));
d752048d 1792
a580516d 1793 mutex_lock(&dev_priv->sb_lock);
d752048d
VS
1794
1795 /* Disable 10bit clock to display controller */
1796 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1797 val &= ~DPIO_DCLKP_EN;
1798 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1799
a580516d 1800 mutex_unlock(&dev_priv->sb_lock);
f6071166
JB
1801}
1802
e4607fcf 1803void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
9b6de0a1
VS
1804 struct intel_digital_port *dport,
1805 unsigned int expected_mask)
89b667f8
JB
1806{
1807 u32 port_mask;
f0f59a00 1808 i915_reg_t dpll_reg;
89b667f8 1809
e4607fcf
CML
1810 switch (dport->port) {
1811 case PORT_B:
89b667f8 1812 port_mask = DPLL_PORTB_READY_MASK;
00fc31b7 1813 dpll_reg = DPLL(0);
e4607fcf
CML
1814 break;
1815 case PORT_C:
89b667f8 1816 port_mask = DPLL_PORTC_READY_MASK;
00fc31b7 1817 dpll_reg = DPLL(0);
9b6de0a1 1818 expected_mask <<= 4;
00fc31b7
CML
1819 break;
1820 case PORT_D:
1821 port_mask = DPLL_PORTD_READY_MASK;
1822 dpll_reg = DPIO_PHY_STATUS;
e4607fcf
CML
1823 break;
1824 default:
1825 BUG();
1826 }
89b667f8 1827
9b6de0a1
VS
1828 if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
1829 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1830 port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
89b667f8
JB
1831}
1832
b8a4f404
PZ
1833static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1834 enum pipe pipe)
040484af 1835{
23670b32 1836 struct drm_device *dev = dev_priv->dev;
7c26e5c6 1837 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
e2b78267 1838 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
f0f59a00
VS
1839 i915_reg_t reg;
1840 uint32_t val, pipeconf_val;
040484af
JB
1841
1842 /* PCH only available on ILK+ */
55522f37 1843 BUG_ON(!HAS_PCH_SPLIT(dev));
040484af
JB
1844
1845 /* Make sure PCH DPLL is enabled */
8106ddbd 1846 assert_shared_dpll_enabled(dev_priv, intel_crtc->config->shared_dpll);
040484af
JB
1847
1848 /* FDI must be feeding us bits for PCH ports */
1849 assert_fdi_tx_enabled(dev_priv, pipe);
1850 assert_fdi_rx_enabled(dev_priv, pipe);
1851
23670b32
DV
1852 if (HAS_PCH_CPT(dev)) {
1853 /* Workaround: Set the timing override bit before enabling the
1854 * pch transcoder. */
1855 reg = TRANS_CHICKEN2(pipe);
1856 val = I915_READ(reg);
1857 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1858 I915_WRITE(reg, val);
59c859d6 1859 }
23670b32 1860
ab9412ba 1861 reg = PCH_TRANSCONF(pipe);
040484af 1862 val = I915_READ(reg);
5f7f726d 1863 pipeconf_val = I915_READ(PIPECONF(pipe));
e9bcff5c
JB
1864
1865 if (HAS_PCH_IBX(dev_priv->dev)) {
1866 /*
c5de7c6f
VS
1867 * Make the BPC in transcoder be consistent with
1868 * that in pipeconf reg. For HDMI we must use 8bpc
1869 * here for both 8bpc and 12bpc.
e9bcff5c 1870 */
dfd07d72 1871 val &= ~PIPECONF_BPC_MASK;
c5de7c6f
VS
1872 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_HDMI))
1873 val |= PIPECONF_8BPC;
1874 else
1875 val |= pipeconf_val & PIPECONF_BPC_MASK;
e9bcff5c 1876 }
5f7f726d
PZ
1877
1878 val &= ~TRANS_INTERLACE_MASK;
1879 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
7c26e5c6 1880 if (HAS_PCH_IBX(dev_priv->dev) &&
409ee761 1881 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7c26e5c6
PZ
1882 val |= TRANS_LEGACY_INTERLACED_ILK;
1883 else
1884 val |= TRANS_INTERLACED;
5f7f726d
PZ
1885 else
1886 val |= TRANS_PROGRESSIVE;
1887
040484af
JB
1888 I915_WRITE(reg, val | TRANS_ENABLE);
1889 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
4bb6f1f3 1890 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
040484af
JB
1891}
1892
8fb033d7 1893static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
937bb610 1894 enum transcoder cpu_transcoder)
040484af 1895{
8fb033d7 1896 u32 val, pipeconf_val;
8fb033d7
PZ
1897
1898 /* PCH only available on ILK+ */
55522f37 1899 BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
8fb033d7 1900
8fb033d7 1901 /* FDI must be feeding us bits for PCH ports */
1a240d4d 1902 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
937bb610 1903 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
8fb033d7 1904
223a6fdf 1905 /* Workaround: set timing override bit. */
36c0d0cf 1906 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
23670b32 1907 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
36c0d0cf 1908 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
223a6fdf 1909
25f3ef11 1910 val = TRANS_ENABLE;
937bb610 1911 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
8fb033d7 1912
9a76b1c6
PZ
1913 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1914 PIPECONF_INTERLACED_ILK)
a35f2679 1915 val |= TRANS_INTERLACED;
8fb033d7
PZ
1916 else
1917 val |= TRANS_PROGRESSIVE;
1918
ab9412ba
DV
1919 I915_WRITE(LPT_TRANSCONF, val);
1920 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
937bb610 1921 DRM_ERROR("Failed to enable PCH transcoder\n");
8fb033d7
PZ
1922}
1923
b8a4f404
PZ
1924static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1925 enum pipe pipe)
040484af 1926{
23670b32 1927 struct drm_device *dev = dev_priv->dev;
f0f59a00
VS
1928 i915_reg_t reg;
1929 uint32_t val;
040484af
JB
1930
1931 /* FDI relies on the transcoder */
1932 assert_fdi_tx_disabled(dev_priv, pipe);
1933 assert_fdi_rx_disabled(dev_priv, pipe);
1934
291906f1
JB
1935 /* Ports must be off as well */
1936 assert_pch_ports_disabled(dev_priv, pipe);
1937
ab9412ba 1938 reg = PCH_TRANSCONF(pipe);
040484af
JB
1939 val = I915_READ(reg);
1940 val &= ~TRANS_ENABLE;
1941 I915_WRITE(reg, val);
1942 /* wait for PCH transcoder off, transcoder state */
1943 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
4bb6f1f3 1944 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
23670b32 1945
c465613b 1946 if (HAS_PCH_CPT(dev)) {
23670b32
DV
1947 /* Workaround: Clear the timing override chicken bit again. */
1948 reg = TRANS_CHICKEN2(pipe);
1949 val = I915_READ(reg);
1950 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1951 I915_WRITE(reg, val);
1952 }
040484af
JB
1953}
1954
ab4d966c 1955static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
8fb033d7 1956{
8fb033d7
PZ
1957 u32 val;
1958
ab9412ba 1959 val = I915_READ(LPT_TRANSCONF);
8fb033d7 1960 val &= ~TRANS_ENABLE;
ab9412ba 1961 I915_WRITE(LPT_TRANSCONF, val);
8fb033d7 1962 /* wait for PCH transcoder off, transcoder state */
ab9412ba 1963 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
8a52fd9f 1964 DRM_ERROR("Failed to disable PCH transcoder\n");
223a6fdf
PZ
1965
1966 /* Workaround: clear timing override bit. */
36c0d0cf 1967 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
23670b32 1968 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
36c0d0cf 1969 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
040484af
JB
1970}
1971
b24e7179 1972/**
309cfea8 1973 * intel_enable_pipe - enable a pipe, asserting requirements
0372264a 1974 * @crtc: crtc responsible for the pipe
b24e7179 1975 *
0372264a 1976 * Enable @crtc's pipe, making sure that various hardware specific requirements
b24e7179 1977 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
b24e7179 1978 */
e1fdc473 1979static void intel_enable_pipe(struct intel_crtc *crtc)
b24e7179 1980{
0372264a
PZ
1981 struct drm_device *dev = crtc->base.dev;
1982 struct drm_i915_private *dev_priv = dev->dev_private;
1983 enum pipe pipe = crtc->pipe;
1a70a728 1984 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1a240d4d 1985 enum pipe pch_transcoder;
f0f59a00 1986 i915_reg_t reg;
b24e7179
JB
1987 u32 val;
1988
9e2ee2dd
VS
1989 DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
1990
58c6eaa2 1991 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 1992 assert_cursor_disabled(dev_priv, pipe);
58c6eaa2
DV
1993 assert_sprites_disabled(dev_priv, pipe);
1994
681e5811 1995 if (HAS_PCH_LPT(dev_priv->dev))
cc391bbb
PZ
1996 pch_transcoder = TRANSCODER_A;
1997 else
1998 pch_transcoder = pipe;
1999
b24e7179
JB
2000 /*
2001 * A pipe without a PLL won't actually be able to drive bits from
2002 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2003 * need the check.
2004 */
50360403 2005 if (HAS_GMCH_DISPLAY(dev_priv->dev))
a65347ba 2006 if (crtc->config->has_dsi_encoder)
23538ef1
JN
2007 assert_dsi_pll_enabled(dev_priv);
2008 else
2009 assert_pll_enabled(dev_priv, pipe);
040484af 2010 else {
6e3c9717 2011 if (crtc->config->has_pch_encoder) {
040484af 2012 /* if driving the PCH, we need FDI enabled */
cc391bbb 2013 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1a240d4d
DV
2014 assert_fdi_tx_pll_enabled(dev_priv,
2015 (enum pipe) cpu_transcoder);
040484af
JB
2016 }
2017 /* FIXME: assert CPU port conditions for SNB+ */
2018 }
b24e7179 2019
702e7a56 2020 reg = PIPECONF(cpu_transcoder);
b24e7179 2021 val = I915_READ(reg);
7ad25d48 2022 if (val & PIPECONF_ENABLE) {
b6b5d049
VS
2023 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2024 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
00d70b15 2025 return;
7ad25d48 2026 }
00d70b15
CW
2027
2028 I915_WRITE(reg, val | PIPECONF_ENABLE);
851855d8 2029 POSTING_READ(reg);
b7792d8b
VS
2030
2031 /*
2032 * Until the pipe starts DSL will read as 0, which would cause
2033 * an apparent vblank timestamp jump, which messes up also the
2034 * frame count when it's derived from the timestamps. So let's
2035 * wait for the pipe to start properly before we call
2036 * drm_crtc_vblank_on()
2037 */
2038 if (dev->max_vblank_count == 0 &&
2039 wait_for(intel_get_crtc_scanline(crtc) != crtc->scanline_offset, 50))
2040 DRM_ERROR("pipe %c didn't start\n", pipe_name(pipe));
b24e7179
JB
2041}
2042
2043/**
309cfea8 2044 * intel_disable_pipe - disable a pipe, asserting requirements
575f7ab7 2045 * @crtc: crtc whose pipes is to be disabled
b24e7179 2046 *
575f7ab7
VS
2047 * Disable the pipe of @crtc, making sure that various hardware
2048 * specific requirements are met, if applicable, e.g. plane
2049 * disabled, panel fitter off, etc.
b24e7179
JB
2050 *
2051 * Will wait until the pipe has shut down before returning.
2052 */
575f7ab7 2053static void intel_disable_pipe(struct intel_crtc *crtc)
b24e7179 2054{
575f7ab7 2055 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
6e3c9717 2056 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
575f7ab7 2057 enum pipe pipe = crtc->pipe;
f0f59a00 2058 i915_reg_t reg;
b24e7179
JB
2059 u32 val;
2060
9e2ee2dd
VS
2061 DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2062
b24e7179
JB
2063 /*
2064 * Make sure planes won't keep trying to pump pixels to us,
2065 * or we might hang the display.
2066 */
2067 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2068 assert_cursor_disabled(dev_priv, pipe);
19332d7a 2069 assert_sprites_disabled(dev_priv, pipe);
b24e7179 2070
702e7a56 2071 reg = PIPECONF(cpu_transcoder);
b24e7179 2072 val = I915_READ(reg);
00d70b15
CW
2073 if ((val & PIPECONF_ENABLE) == 0)
2074 return;
2075
67adc644
VS
2076 /*
2077 * Double wide has implications for planes
2078 * so best keep it disabled when not needed.
2079 */
6e3c9717 2080 if (crtc->config->double_wide)
67adc644
VS
2081 val &= ~PIPECONF_DOUBLE_WIDE;
2082
2083 /* Don't disable pipe or pipe PLLs if needed */
b6b5d049
VS
2084 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2085 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
67adc644
VS
2086 val &= ~PIPECONF_ENABLE;
2087
2088 I915_WRITE(reg, val);
2089 if ((val & PIPECONF_ENABLE) == 0)
2090 intel_wait_for_pipe_off(crtc);
b24e7179
JB
2091}
2092
693db184
CW
2093static bool need_vtd_wa(struct drm_device *dev)
2094{
2095#ifdef CONFIG_INTEL_IOMMU
2096 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2097 return true;
2098#endif
2099 return false;
2100}
2101
832be82f
VS
2102static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
2103{
2104 return IS_GEN2(dev_priv) ? 2048 : 4096;
2105}
2106
27ba3910
VS
2107static unsigned int intel_tile_width_bytes(const struct drm_i915_private *dev_priv,
2108 uint64_t fb_modifier, unsigned int cpp)
7b49f948
VS
2109{
2110 switch (fb_modifier) {
2111 case DRM_FORMAT_MOD_NONE:
2112 return cpp;
2113 case I915_FORMAT_MOD_X_TILED:
2114 if (IS_GEN2(dev_priv))
2115 return 128;
2116 else
2117 return 512;
2118 case I915_FORMAT_MOD_Y_TILED:
2119 if (IS_GEN2(dev_priv) || HAS_128_BYTE_Y_TILING(dev_priv))
2120 return 128;
2121 else
2122 return 512;
2123 case I915_FORMAT_MOD_Yf_TILED:
2124 switch (cpp) {
2125 case 1:
2126 return 64;
2127 case 2:
2128 case 4:
2129 return 128;
2130 case 8:
2131 case 16:
2132 return 256;
2133 default:
2134 MISSING_CASE(cpp);
2135 return cpp;
2136 }
2137 break;
2138 default:
2139 MISSING_CASE(fb_modifier);
2140 return cpp;
2141 }
2142}
2143
832be82f
VS
2144unsigned int intel_tile_height(const struct drm_i915_private *dev_priv,
2145 uint64_t fb_modifier, unsigned int cpp)
a57ce0b2 2146{
832be82f
VS
2147 if (fb_modifier == DRM_FORMAT_MOD_NONE)
2148 return 1;
2149 else
2150 return intel_tile_size(dev_priv) /
27ba3910 2151 intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
6761dd31
TU
2152}
2153
8d0deca8
VS
2154/* Return the tile dimensions in pixel units */
2155static void intel_tile_dims(const struct drm_i915_private *dev_priv,
2156 unsigned int *tile_width,
2157 unsigned int *tile_height,
2158 uint64_t fb_modifier,
2159 unsigned int cpp)
2160{
2161 unsigned int tile_width_bytes =
2162 intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2163
2164 *tile_width = tile_width_bytes / cpp;
2165 *tile_height = intel_tile_size(dev_priv) / tile_width_bytes;
2166}
2167
6761dd31
TU
2168unsigned int
2169intel_fb_align_height(struct drm_device *dev, unsigned int height,
832be82f 2170 uint32_t pixel_format, uint64_t fb_modifier)
6761dd31 2171{
832be82f
VS
2172 unsigned int cpp = drm_format_plane_cpp(pixel_format, 0);
2173 unsigned int tile_height = intel_tile_height(to_i915(dev), fb_modifier, cpp);
2174
2175 return ALIGN(height, tile_height);
a57ce0b2
JB
2176}
2177
1663b9d6
VS
2178unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
2179{
2180 unsigned int size = 0;
2181 int i;
2182
2183 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
2184 size += rot_info->plane[i].width * rot_info->plane[i].height;
2185
2186 return size;
2187}
2188
75c82a53 2189static void
3465c580
VS
2190intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
2191 const struct drm_framebuffer *fb,
2192 unsigned int rotation)
f64b98cd 2193{
2d7a215f
VS
2194 if (intel_rotation_90_or_270(rotation)) {
2195 *view = i915_ggtt_view_rotated;
2196 view->params.rotated = to_intel_framebuffer(fb)->rot_info;
2197 } else {
2198 *view = i915_ggtt_view_normal;
2199 }
2200}
50470bb0 2201
2d7a215f
VS
2202static void
2203intel_fill_fb_info(struct drm_i915_private *dev_priv,
2204 struct drm_framebuffer *fb)
2205{
2206 struct intel_rotation_info *info = &to_intel_framebuffer(fb)->rot_info;
2207 unsigned int tile_size, tile_width, tile_height, cpp;
50470bb0 2208
d9b3288e
VS
2209 tile_size = intel_tile_size(dev_priv);
2210
2211 cpp = drm_format_plane_cpp(fb->pixel_format, 0);
8d0deca8
VS
2212 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2213 fb->modifier[0], cpp);
d9b3288e 2214
1663b9d6
VS
2215 info->plane[0].width = DIV_ROUND_UP(fb->pitches[0], tile_width * cpp);
2216 info->plane[0].height = DIV_ROUND_UP(fb->height, tile_height);
84fe03f7 2217
89e3e142 2218 if (info->pixel_format == DRM_FORMAT_NV12) {
832be82f 2219 cpp = drm_format_plane_cpp(fb->pixel_format, 1);
8d0deca8
VS
2220 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2221 fb->modifier[1], cpp);
d9b3288e 2222
2d7a215f 2223 info->uv_offset = fb->offsets[1];
1663b9d6
VS
2224 info->plane[1].width = DIV_ROUND_UP(fb->pitches[1], tile_width * cpp);
2225 info->plane[1].height = DIV_ROUND_UP(fb->height / 2, tile_height);
89e3e142 2226 }
f64b98cd
TU
2227}
2228
603525d7 2229static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
4e9a86b6
VS
2230{
2231 if (INTEL_INFO(dev_priv)->gen >= 9)
2232 return 256 * 1024;
985b8bb4 2233 else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
666a4537 2234 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4e9a86b6
VS
2235 return 128 * 1024;
2236 else if (INTEL_INFO(dev_priv)->gen >= 4)
2237 return 4 * 1024;
2238 else
44c5905e 2239 return 0;
4e9a86b6
VS
2240}
2241
603525d7
VS
2242static unsigned int intel_surf_alignment(const struct drm_i915_private *dev_priv,
2243 uint64_t fb_modifier)
2244{
2245 switch (fb_modifier) {
2246 case DRM_FORMAT_MOD_NONE:
2247 return intel_linear_alignment(dev_priv);
2248 case I915_FORMAT_MOD_X_TILED:
2249 if (INTEL_INFO(dev_priv)->gen >= 9)
2250 return 256 * 1024;
2251 return 0;
2252 case I915_FORMAT_MOD_Y_TILED:
2253 case I915_FORMAT_MOD_Yf_TILED:
2254 return 1 * 1024 * 1024;
2255 default:
2256 MISSING_CASE(fb_modifier);
2257 return 0;
2258 }
2259}
2260
127bd2ac 2261int
3465c580
VS
2262intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb,
2263 unsigned int rotation)
6b95a207 2264{
850c4cdc 2265 struct drm_device *dev = fb->dev;
ce453d81 2266 struct drm_i915_private *dev_priv = dev->dev_private;
850c4cdc 2267 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
f64b98cd 2268 struct i915_ggtt_view view;
6b95a207
KH
2269 u32 alignment;
2270 int ret;
2271
ebcdd39e
MR
2272 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2273
603525d7 2274 alignment = intel_surf_alignment(dev_priv, fb->modifier[0]);
6b95a207 2275
3465c580 2276 intel_fill_fb_ggtt_view(&view, fb, rotation);
f64b98cd 2277
693db184
CW
2278 /* Note that the w/a also requires 64 PTE of padding following the
2279 * bo. We currently fill all unused PTE with the shadow page and so
2280 * we should always have valid PTE following the scanout preventing
2281 * the VT-d warning.
2282 */
2283 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2284 alignment = 256 * 1024;
2285
d6dd6843
PZ
2286 /*
2287 * Global gtt pte registers are special registers which actually forward
2288 * writes to a chunk of system memory. Which means that there is no risk
2289 * that the register values disappear as soon as we call
2290 * intel_runtime_pm_put(), so it is correct to wrap only the
2291 * pin/unpin/fence and not more.
2292 */
2293 intel_runtime_pm_get(dev_priv);
2294
7580d774
ML
2295 ret = i915_gem_object_pin_to_display_plane(obj, alignment,
2296 &view);
48b956c5 2297 if (ret)
b26a6b35 2298 goto err_pm;
6b95a207
KH
2299
2300 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2301 * fence, whereas 965+ only requires a fence if using
2302 * framebuffer compression. For simplicity, we always install
2303 * a fence as the cost is not that onerous.
2304 */
9807216f
VK
2305 if (view.type == I915_GGTT_VIEW_NORMAL) {
2306 ret = i915_gem_object_get_fence(obj);
2307 if (ret == -EDEADLK) {
2308 /*
2309 * -EDEADLK means there are no free fences
2310 * no pending flips.
2311 *
2312 * This is propagated to atomic, but it uses
2313 * -EDEADLK to force a locking recovery, so
2314 * change the returned error to -EBUSY.
2315 */
2316 ret = -EBUSY;
2317 goto err_unpin;
2318 } else if (ret)
2319 goto err_unpin;
1690e1eb 2320
9807216f
VK
2321 i915_gem_object_pin_fence(obj);
2322 }
6b95a207 2323
d6dd6843 2324 intel_runtime_pm_put(dev_priv);
6b95a207 2325 return 0;
48b956c5
CW
2326
2327err_unpin:
f64b98cd 2328 i915_gem_object_unpin_from_display_plane(obj, &view);
b26a6b35 2329err_pm:
d6dd6843 2330 intel_runtime_pm_put(dev_priv);
48b956c5 2331 return ret;
6b95a207
KH
2332}
2333
3465c580 2334static void intel_unpin_fb_obj(struct drm_framebuffer *fb, unsigned int rotation)
1690e1eb 2335{
82bc3b2d 2336 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
f64b98cd 2337 struct i915_ggtt_view view;
82bc3b2d 2338
ebcdd39e
MR
2339 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2340
3465c580 2341 intel_fill_fb_ggtt_view(&view, fb, rotation);
f64b98cd 2342
9807216f
VK
2343 if (view.type == I915_GGTT_VIEW_NORMAL)
2344 i915_gem_object_unpin_fence(obj);
2345
f64b98cd 2346 i915_gem_object_unpin_from_display_plane(obj, &view);
1690e1eb
CW
2347}
2348
29cf9491
VS
2349/*
2350 * Adjust the tile offset by moving the difference into
2351 * the x/y offsets.
2352 *
2353 * Input tile dimensions and pitch must already be
2354 * rotated to match x and y, and in pixel units.
2355 */
2356static u32 intel_adjust_tile_offset(int *x, int *y,
2357 unsigned int tile_width,
2358 unsigned int tile_height,
2359 unsigned int tile_size,
2360 unsigned int pitch_tiles,
2361 u32 old_offset,
2362 u32 new_offset)
2363{
2364 unsigned int tiles;
2365
2366 WARN_ON(old_offset & (tile_size - 1));
2367 WARN_ON(new_offset & (tile_size - 1));
2368 WARN_ON(new_offset > old_offset);
2369
2370 tiles = (old_offset - new_offset) / tile_size;
2371
2372 *y += tiles / pitch_tiles * tile_height;
2373 *x += tiles % pitch_tiles * tile_width;
2374
2375 return new_offset;
2376}
2377
8d0deca8
VS
2378/*
2379 * Computes the linear offset to the base tile and adjusts
2380 * x, y. bytes per pixel is assumed to be a power-of-two.
2381 *
2382 * In the 90/270 rotated case, x and y are assumed
2383 * to be already rotated to match the rotated GTT view, and
2384 * pitch is the tile_height aligned framebuffer height.
2385 */
4f2d9934
VS
2386u32 intel_compute_tile_offset(int *x, int *y,
2387 const struct drm_framebuffer *fb, int plane,
8d0deca8
VS
2388 unsigned int pitch,
2389 unsigned int rotation)
c2c75131 2390{
4f2d9934
VS
2391 const struct drm_i915_private *dev_priv = to_i915(fb->dev);
2392 uint64_t fb_modifier = fb->modifier[plane];
2393 unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
29cf9491
VS
2394 u32 offset, offset_aligned, alignment;
2395
2396 alignment = intel_surf_alignment(dev_priv, fb_modifier);
2397 if (alignment)
2398 alignment--;
2399
b5c65338 2400 if (fb_modifier != DRM_FORMAT_MOD_NONE) {
8d0deca8
VS
2401 unsigned int tile_size, tile_width, tile_height;
2402 unsigned int tile_rows, tiles, pitch_tiles;
c2c75131 2403
d843310d 2404 tile_size = intel_tile_size(dev_priv);
8d0deca8
VS
2405 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2406 fb_modifier, cpp);
2407
2408 if (intel_rotation_90_or_270(rotation)) {
2409 pitch_tiles = pitch / tile_height;
2410 swap(tile_width, tile_height);
2411 } else {
2412 pitch_tiles = pitch / (tile_width * cpp);
2413 }
d843310d
VS
2414
2415 tile_rows = *y / tile_height;
2416 *y %= tile_height;
c2c75131 2417
8d0deca8
VS
2418 tiles = *x / tile_width;
2419 *x %= tile_width;
bc752862 2420
29cf9491
VS
2421 offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2422 offset_aligned = offset & ~alignment;
bc752862 2423
29cf9491
VS
2424 intel_adjust_tile_offset(x, y, tile_width, tile_height,
2425 tile_size, pitch_tiles,
2426 offset, offset_aligned);
2427 } else {
bc752862 2428 offset = *y * pitch + *x * cpp;
29cf9491
VS
2429 offset_aligned = offset & ~alignment;
2430
4e9a86b6
VS
2431 *y = (offset & alignment) / pitch;
2432 *x = ((offset & alignment) - *y * pitch) / cpp;
bc752862 2433 }
29cf9491
VS
2434
2435 return offset_aligned;
c2c75131
DV
2436}
2437
b35d63fa 2438static int i9xx_format_to_fourcc(int format)
46f297fb
JB
2439{
2440 switch (format) {
2441 case DISPPLANE_8BPP:
2442 return DRM_FORMAT_C8;
2443 case DISPPLANE_BGRX555:
2444 return DRM_FORMAT_XRGB1555;
2445 case DISPPLANE_BGRX565:
2446 return DRM_FORMAT_RGB565;
2447 default:
2448 case DISPPLANE_BGRX888:
2449 return DRM_FORMAT_XRGB8888;
2450 case DISPPLANE_RGBX888:
2451 return DRM_FORMAT_XBGR8888;
2452 case DISPPLANE_BGRX101010:
2453 return DRM_FORMAT_XRGB2101010;
2454 case DISPPLANE_RGBX101010:
2455 return DRM_FORMAT_XBGR2101010;
2456 }
2457}
2458
bc8d7dff
DL
2459static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2460{
2461 switch (format) {
2462 case PLANE_CTL_FORMAT_RGB_565:
2463 return DRM_FORMAT_RGB565;
2464 default:
2465 case PLANE_CTL_FORMAT_XRGB_8888:
2466 if (rgb_order) {
2467 if (alpha)
2468 return DRM_FORMAT_ABGR8888;
2469 else
2470 return DRM_FORMAT_XBGR8888;
2471 } else {
2472 if (alpha)
2473 return DRM_FORMAT_ARGB8888;
2474 else
2475 return DRM_FORMAT_XRGB8888;
2476 }
2477 case PLANE_CTL_FORMAT_XRGB_2101010:
2478 if (rgb_order)
2479 return DRM_FORMAT_XBGR2101010;
2480 else
2481 return DRM_FORMAT_XRGB2101010;
2482 }
2483}
2484
5724dbd1 2485static bool
f6936e29
DV
2486intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2487 struct intel_initial_plane_config *plane_config)
46f297fb
JB
2488{
2489 struct drm_device *dev = crtc->base.dev;
3badb49f 2490 struct drm_i915_private *dev_priv = to_i915(dev);
46f297fb
JB
2491 struct drm_i915_gem_object *obj = NULL;
2492 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2d14030b 2493 struct drm_framebuffer *fb = &plane_config->fb->base;
f37b5c2b
DV
2494 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2495 u32 size_aligned = round_up(plane_config->base + plane_config->size,
2496 PAGE_SIZE);
2497
2498 size_aligned -= base_aligned;
46f297fb 2499
ff2652ea
CW
2500 if (plane_config->size == 0)
2501 return false;
2502
3badb49f
PZ
2503 /* If the FB is too big, just don't use it since fbdev is not very
2504 * important and we should probably use that space with FBC or other
2505 * features. */
2506 if (size_aligned * 2 > dev_priv->gtt.stolen_usable_size)
2507 return false;
2508
12c83d99
TU
2509 mutex_lock(&dev->struct_mutex);
2510
f37b5c2b
DV
2511 obj = i915_gem_object_create_stolen_for_preallocated(dev,
2512 base_aligned,
2513 base_aligned,
2514 size_aligned);
12c83d99
TU
2515 if (!obj) {
2516 mutex_unlock(&dev->struct_mutex);
484b41dd 2517 return false;
12c83d99 2518 }
46f297fb 2519
49af449b
DL
2520 obj->tiling_mode = plane_config->tiling;
2521 if (obj->tiling_mode == I915_TILING_X)
6bf129df 2522 obj->stride = fb->pitches[0];
46f297fb 2523
6bf129df
DL
2524 mode_cmd.pixel_format = fb->pixel_format;
2525 mode_cmd.width = fb->width;
2526 mode_cmd.height = fb->height;
2527 mode_cmd.pitches[0] = fb->pitches[0];
18c5247e
DV
2528 mode_cmd.modifier[0] = fb->modifier[0];
2529 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
46f297fb 2530
6bf129df 2531 if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
484b41dd 2532 &mode_cmd, obj)) {
46f297fb
JB
2533 DRM_DEBUG_KMS("intel fb init failed\n");
2534 goto out_unref_obj;
2535 }
12c83d99 2536
46f297fb 2537 mutex_unlock(&dev->struct_mutex);
484b41dd 2538
f6936e29 2539 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
484b41dd 2540 return true;
46f297fb
JB
2541
2542out_unref_obj:
2543 drm_gem_object_unreference(&obj->base);
2544 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2545 return false;
2546}
2547
afd65eb4
MR
2548/* Update plane->state->fb to match plane->fb after driver-internal updates */
2549static void
2550update_state_fb(struct drm_plane *plane)
2551{
2552 if (plane->fb == plane->state->fb)
2553 return;
2554
2555 if (plane->state->fb)
2556 drm_framebuffer_unreference(plane->state->fb);
2557 plane->state->fb = plane->fb;
2558 if (plane->state->fb)
2559 drm_framebuffer_reference(plane->state->fb);
2560}
2561
5724dbd1 2562static void
f6936e29
DV
2563intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2564 struct intel_initial_plane_config *plane_config)
484b41dd
JB
2565{
2566 struct drm_device *dev = intel_crtc->base.dev;
d9ceb816 2567 struct drm_i915_private *dev_priv = dev->dev_private;
484b41dd
JB
2568 struct drm_crtc *c;
2569 struct intel_crtc *i;
2ff8fde1 2570 struct drm_i915_gem_object *obj;
88595ac9 2571 struct drm_plane *primary = intel_crtc->base.primary;
be5651f2 2572 struct drm_plane_state *plane_state = primary->state;
200757f5
MR
2573 struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2574 struct intel_plane *intel_plane = to_intel_plane(primary);
0a8d8a86
MR
2575 struct intel_plane_state *intel_state =
2576 to_intel_plane_state(plane_state);
88595ac9 2577 struct drm_framebuffer *fb;
484b41dd 2578
2d14030b 2579 if (!plane_config->fb)
484b41dd
JB
2580 return;
2581
f6936e29 2582 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
88595ac9
DV
2583 fb = &plane_config->fb->base;
2584 goto valid_fb;
f55548b5 2585 }
484b41dd 2586
2d14030b 2587 kfree(plane_config->fb);
484b41dd
JB
2588
2589 /*
2590 * Failed to alloc the obj, check to see if we should share
2591 * an fb with another CRTC instead
2592 */
70e1e0ec 2593 for_each_crtc(dev, c) {
484b41dd
JB
2594 i = to_intel_crtc(c);
2595
2596 if (c == &intel_crtc->base)
2597 continue;
2598
2ff8fde1
MR
2599 if (!i->active)
2600 continue;
2601
88595ac9
DV
2602 fb = c->primary->fb;
2603 if (!fb)
484b41dd
JB
2604 continue;
2605
88595ac9 2606 obj = intel_fb_obj(fb);
2ff8fde1 2607 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
88595ac9
DV
2608 drm_framebuffer_reference(fb);
2609 goto valid_fb;
484b41dd
JB
2610 }
2611 }
88595ac9 2612
200757f5
MR
2613 /*
2614 * We've failed to reconstruct the BIOS FB. Current display state
2615 * indicates that the primary plane is visible, but has a NULL FB,
2616 * which will lead to problems later if we don't fix it up. The
2617 * simplest solution is to just disable the primary plane now and
2618 * pretend the BIOS never had it enabled.
2619 */
2620 to_intel_plane_state(plane_state)->visible = false;
2621 crtc_state->plane_mask &= ~(1 << drm_plane_index(primary));
2622a081 2622 intel_pre_disable_primary_noatomic(&intel_crtc->base);
200757f5
MR
2623 intel_plane->disable_plane(primary, &intel_crtc->base);
2624
88595ac9
DV
2625 return;
2626
2627valid_fb:
f44e2659
VS
2628 plane_state->src_x = 0;
2629 plane_state->src_y = 0;
be5651f2
ML
2630 plane_state->src_w = fb->width << 16;
2631 plane_state->src_h = fb->height << 16;
2632
f44e2659
VS
2633 plane_state->crtc_x = 0;
2634 plane_state->crtc_y = 0;
be5651f2
ML
2635 plane_state->crtc_w = fb->width;
2636 plane_state->crtc_h = fb->height;
2637
0a8d8a86
MR
2638 intel_state->src.x1 = plane_state->src_x;
2639 intel_state->src.y1 = plane_state->src_y;
2640 intel_state->src.x2 = plane_state->src_x + plane_state->src_w;
2641 intel_state->src.y2 = plane_state->src_y + plane_state->src_h;
2642 intel_state->dst.x1 = plane_state->crtc_x;
2643 intel_state->dst.y1 = plane_state->crtc_y;
2644 intel_state->dst.x2 = plane_state->crtc_x + plane_state->crtc_w;
2645 intel_state->dst.y2 = plane_state->crtc_y + plane_state->crtc_h;
2646
88595ac9
DV
2647 obj = intel_fb_obj(fb);
2648 if (obj->tiling_mode != I915_TILING_NONE)
2649 dev_priv->preserve_bios_swizzle = true;
2650
be5651f2
ML
2651 drm_framebuffer_reference(fb);
2652 primary->fb = primary->state->fb = fb;
36750f28 2653 primary->crtc = primary->state->crtc = &intel_crtc->base;
36750f28 2654 intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
a9ff8714 2655 obj->frontbuffer_bits |= to_intel_plane(primary)->frontbuffer_bit;
46f297fb
JB
2656}
2657
a8d201af
ML
2658static void i9xx_update_primary_plane(struct drm_plane *primary,
2659 const struct intel_crtc_state *crtc_state,
2660 const struct intel_plane_state *plane_state)
81255565 2661{
a8d201af 2662 struct drm_device *dev = primary->dev;
81255565 2663 struct drm_i915_private *dev_priv = dev->dev_private;
a8d201af
ML
2664 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2665 struct drm_framebuffer *fb = plane_state->base.fb;
2666 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
81255565 2667 int plane = intel_crtc->plane;
54ea9da8 2668 u32 linear_offset;
81255565 2669 u32 dspcntr;
f0f59a00 2670 i915_reg_t reg = DSPCNTR(plane);
8d0deca8 2671 unsigned int rotation = plane_state->base.rotation;
ac484963 2672 int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
54ea9da8
VS
2673 int x = plane_state->src.x1 >> 16;
2674 int y = plane_state->src.y1 >> 16;
c9ba6fad 2675
f45651ba
VS
2676 dspcntr = DISPPLANE_GAMMA_ENABLE;
2677
fdd508a6 2678 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2679
2680 if (INTEL_INFO(dev)->gen < 4) {
2681 if (intel_crtc->pipe == PIPE_B)
2682 dspcntr |= DISPPLANE_SEL_PIPE_B;
2683
2684 /* pipesrc and dspsize control the size that is scaled from,
2685 * which should always be the user's requested size.
2686 */
2687 I915_WRITE(DSPSIZE(plane),
a8d201af
ML
2688 ((crtc_state->pipe_src_h - 1) << 16) |
2689 (crtc_state->pipe_src_w - 1));
f45651ba 2690 I915_WRITE(DSPPOS(plane), 0);
c14b0485
VS
2691 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2692 I915_WRITE(PRIMSIZE(plane),
a8d201af
ML
2693 ((crtc_state->pipe_src_h - 1) << 16) |
2694 (crtc_state->pipe_src_w - 1));
c14b0485
VS
2695 I915_WRITE(PRIMPOS(plane), 0);
2696 I915_WRITE(PRIMCNSTALPHA(plane), 0);
f45651ba 2697 }
81255565 2698
57779d06
VS
2699 switch (fb->pixel_format) {
2700 case DRM_FORMAT_C8:
81255565
JB
2701 dspcntr |= DISPPLANE_8BPP;
2702 break;
57779d06 2703 case DRM_FORMAT_XRGB1555:
57779d06 2704 dspcntr |= DISPPLANE_BGRX555;
81255565 2705 break;
57779d06
VS
2706 case DRM_FORMAT_RGB565:
2707 dspcntr |= DISPPLANE_BGRX565;
2708 break;
2709 case DRM_FORMAT_XRGB8888:
57779d06
VS
2710 dspcntr |= DISPPLANE_BGRX888;
2711 break;
2712 case DRM_FORMAT_XBGR8888:
57779d06
VS
2713 dspcntr |= DISPPLANE_RGBX888;
2714 break;
2715 case DRM_FORMAT_XRGB2101010:
57779d06
VS
2716 dspcntr |= DISPPLANE_BGRX101010;
2717 break;
2718 case DRM_FORMAT_XBGR2101010:
57779d06 2719 dspcntr |= DISPPLANE_RGBX101010;
81255565
JB
2720 break;
2721 default:
baba133a 2722 BUG();
81255565 2723 }
57779d06 2724
f45651ba
VS
2725 if (INTEL_INFO(dev)->gen >= 4 &&
2726 obj->tiling_mode != I915_TILING_NONE)
2727 dspcntr |= DISPPLANE_TILED;
81255565 2728
de1aa629
VS
2729 if (IS_G4X(dev))
2730 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2731
ac484963 2732 linear_offset = y * fb->pitches[0] + x * cpp;
81255565 2733
c2c75131
DV
2734 if (INTEL_INFO(dev)->gen >= 4) {
2735 intel_crtc->dspaddr_offset =
4f2d9934 2736 intel_compute_tile_offset(&x, &y, fb, 0,
8d0deca8 2737 fb->pitches[0], rotation);
c2c75131
DV
2738 linear_offset -= intel_crtc->dspaddr_offset;
2739 } else {
e506a0c6 2740 intel_crtc->dspaddr_offset = linear_offset;
c2c75131 2741 }
e506a0c6 2742
8d0deca8 2743 if (rotation == BIT(DRM_ROTATE_180)) {
48404c1e
SJ
2744 dspcntr |= DISPPLANE_ROTATE_180;
2745
a8d201af
ML
2746 x += (crtc_state->pipe_src_w - 1);
2747 y += (crtc_state->pipe_src_h - 1);
48404c1e
SJ
2748
2749 /* Finding the last pixel of the last line of the display
2750 data and adding to linear_offset*/
2751 linear_offset +=
a8d201af 2752 (crtc_state->pipe_src_h - 1) * fb->pitches[0] +
ac484963 2753 (crtc_state->pipe_src_w - 1) * cpp;
48404c1e
SJ
2754 }
2755
2db3366b
PZ
2756 intel_crtc->adjusted_x = x;
2757 intel_crtc->adjusted_y = y;
2758
48404c1e
SJ
2759 I915_WRITE(reg, dspcntr);
2760
01f2c773 2761 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
a6c45cf0 2762 if (INTEL_INFO(dev)->gen >= 4) {
85ba7b7d
DV
2763 I915_WRITE(DSPSURF(plane),
2764 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
5eddb70b 2765 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 2766 I915_WRITE(DSPLINOFF(plane), linear_offset);
5eddb70b 2767 } else
f343c5f6 2768 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
5eddb70b 2769 POSTING_READ(reg);
17638cd6
JB
2770}
2771
a8d201af
ML
2772static void i9xx_disable_primary_plane(struct drm_plane *primary,
2773 struct drm_crtc *crtc)
17638cd6
JB
2774{
2775 struct drm_device *dev = crtc->dev;
2776 struct drm_i915_private *dev_priv = dev->dev_private;
2777 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
17638cd6 2778 int plane = intel_crtc->plane;
f45651ba 2779
a8d201af
ML
2780 I915_WRITE(DSPCNTR(plane), 0);
2781 if (INTEL_INFO(dev_priv)->gen >= 4)
fdd508a6 2782 I915_WRITE(DSPSURF(plane), 0);
a8d201af
ML
2783 else
2784 I915_WRITE(DSPADDR(plane), 0);
2785 POSTING_READ(DSPCNTR(plane));
2786}
c9ba6fad 2787
a8d201af
ML
2788static void ironlake_update_primary_plane(struct drm_plane *primary,
2789 const struct intel_crtc_state *crtc_state,
2790 const struct intel_plane_state *plane_state)
2791{
2792 struct drm_device *dev = primary->dev;
2793 struct drm_i915_private *dev_priv = dev->dev_private;
2794 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2795 struct drm_framebuffer *fb = plane_state->base.fb;
2796 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2797 int plane = intel_crtc->plane;
54ea9da8 2798 u32 linear_offset;
a8d201af
ML
2799 u32 dspcntr;
2800 i915_reg_t reg = DSPCNTR(plane);
8d0deca8 2801 unsigned int rotation = plane_state->base.rotation;
ac484963 2802 int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
a8d201af
ML
2803 int x = plane_state->src.x1 >> 16;
2804 int y = plane_state->src.y1 >> 16;
c9ba6fad 2805
f45651ba 2806 dspcntr = DISPPLANE_GAMMA_ENABLE;
fdd508a6 2807 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2808
2809 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2810 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
17638cd6 2811
57779d06
VS
2812 switch (fb->pixel_format) {
2813 case DRM_FORMAT_C8:
17638cd6
JB
2814 dspcntr |= DISPPLANE_8BPP;
2815 break;
57779d06
VS
2816 case DRM_FORMAT_RGB565:
2817 dspcntr |= DISPPLANE_BGRX565;
17638cd6 2818 break;
57779d06 2819 case DRM_FORMAT_XRGB8888:
57779d06
VS
2820 dspcntr |= DISPPLANE_BGRX888;
2821 break;
2822 case DRM_FORMAT_XBGR8888:
57779d06
VS
2823 dspcntr |= DISPPLANE_RGBX888;
2824 break;
2825 case DRM_FORMAT_XRGB2101010:
57779d06
VS
2826 dspcntr |= DISPPLANE_BGRX101010;
2827 break;
2828 case DRM_FORMAT_XBGR2101010:
57779d06 2829 dspcntr |= DISPPLANE_RGBX101010;
17638cd6
JB
2830 break;
2831 default:
baba133a 2832 BUG();
17638cd6
JB
2833 }
2834
2835 if (obj->tiling_mode != I915_TILING_NONE)
2836 dspcntr |= DISPPLANE_TILED;
17638cd6 2837
f45651ba 2838 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
1f5d76db 2839 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
17638cd6 2840
ac484963 2841 linear_offset = y * fb->pitches[0] + x * cpp;
c2c75131 2842 intel_crtc->dspaddr_offset =
4f2d9934 2843 intel_compute_tile_offset(&x, &y, fb, 0,
8d0deca8 2844 fb->pitches[0], rotation);
c2c75131 2845 linear_offset -= intel_crtc->dspaddr_offset;
8d0deca8 2846 if (rotation == BIT(DRM_ROTATE_180)) {
48404c1e
SJ
2847 dspcntr |= DISPPLANE_ROTATE_180;
2848
2849 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
a8d201af
ML
2850 x += (crtc_state->pipe_src_w - 1);
2851 y += (crtc_state->pipe_src_h - 1);
48404c1e
SJ
2852
2853 /* Finding the last pixel of the last line of the display
2854 data and adding to linear_offset*/
2855 linear_offset +=
a8d201af 2856 (crtc_state->pipe_src_h - 1) * fb->pitches[0] +
ac484963 2857 (crtc_state->pipe_src_w - 1) * cpp;
48404c1e
SJ
2858 }
2859 }
2860
2db3366b
PZ
2861 intel_crtc->adjusted_x = x;
2862 intel_crtc->adjusted_y = y;
2863
48404c1e 2864 I915_WRITE(reg, dspcntr);
17638cd6 2865
01f2c773 2866 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
85ba7b7d
DV
2867 I915_WRITE(DSPSURF(plane),
2868 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
b3dc685e 2869 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
bc1c91eb
DL
2870 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2871 } else {
2872 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2873 I915_WRITE(DSPLINOFF(plane), linear_offset);
2874 }
17638cd6 2875 POSTING_READ(reg);
17638cd6
JB
2876}
2877
7b49f948
VS
2878u32 intel_fb_stride_alignment(const struct drm_i915_private *dev_priv,
2879 uint64_t fb_modifier, uint32_t pixel_format)
b321803d 2880{
7b49f948 2881 if (fb_modifier == DRM_FORMAT_MOD_NONE) {
b321803d 2882 return 64;
7b49f948
VS
2883 } else {
2884 int cpp = drm_format_plane_cpp(pixel_format, 0);
2885
27ba3910 2886 return intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
b321803d
DL
2887 }
2888}
2889
44eb0cb9
MK
2890u32 intel_plane_obj_offset(struct intel_plane *intel_plane,
2891 struct drm_i915_gem_object *obj,
2892 unsigned int plane)
121920fa 2893{
ce7f1728 2894 struct i915_ggtt_view view;
dedf278c 2895 struct i915_vma *vma;
44eb0cb9 2896 u64 offset;
121920fa 2897
e7941294 2898 intel_fill_fb_ggtt_view(&view, intel_plane->base.state->fb,
3465c580 2899 intel_plane->base.state->rotation);
121920fa 2900
ce7f1728 2901 vma = i915_gem_obj_to_ggtt_view(obj, &view);
dedf278c 2902 if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n",
ce7f1728 2903 view.type))
dedf278c
TU
2904 return -1;
2905
44eb0cb9 2906 offset = vma->node.start;
dedf278c
TU
2907
2908 if (plane == 1) {
7723f47d 2909 offset += vma->ggtt_view.params.rotated.uv_start_page *
dedf278c
TU
2910 PAGE_SIZE;
2911 }
2912
44eb0cb9
MK
2913 WARN_ON(upper_32_bits(offset));
2914
2915 return lower_32_bits(offset);
121920fa
TU
2916}
2917
e435d6e5
ML
2918static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
2919{
2920 struct drm_device *dev = intel_crtc->base.dev;
2921 struct drm_i915_private *dev_priv = dev->dev_private;
2922
2923 I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
2924 I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
2925 I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
e435d6e5
ML
2926}
2927
a1b2278e
CK
2928/*
2929 * This function detaches (aka. unbinds) unused scalers in hardware
2930 */
0583236e 2931static void skl_detach_scalers(struct intel_crtc *intel_crtc)
a1b2278e 2932{
a1b2278e
CK
2933 struct intel_crtc_scaler_state *scaler_state;
2934 int i;
2935
a1b2278e
CK
2936 scaler_state = &intel_crtc->config->scaler_state;
2937
2938 /* loop through and disable scalers that aren't in use */
2939 for (i = 0; i < intel_crtc->num_scalers; i++) {
e435d6e5
ML
2940 if (!scaler_state->scalers[i].in_use)
2941 skl_detach_scaler(intel_crtc, i);
a1b2278e
CK
2942 }
2943}
2944
6156a456 2945u32 skl_plane_ctl_format(uint32_t pixel_format)
70d21f0e 2946{
6156a456 2947 switch (pixel_format) {
d161cf7a 2948 case DRM_FORMAT_C8:
c34ce3d1 2949 return PLANE_CTL_FORMAT_INDEXED;
70d21f0e 2950 case DRM_FORMAT_RGB565:
c34ce3d1 2951 return PLANE_CTL_FORMAT_RGB_565;
70d21f0e 2952 case DRM_FORMAT_XBGR8888:
c34ce3d1 2953 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
6156a456 2954 case DRM_FORMAT_XRGB8888:
c34ce3d1 2955 return PLANE_CTL_FORMAT_XRGB_8888;
6156a456
CK
2956 /*
2957 * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
2958 * to be already pre-multiplied. We need to add a knob (or a different
2959 * DRM_FORMAT) for user-space to configure that.
2960 */
f75fb42a 2961 case DRM_FORMAT_ABGR8888:
c34ce3d1 2962 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
6156a456 2963 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
6156a456 2964 case DRM_FORMAT_ARGB8888:
c34ce3d1 2965 return PLANE_CTL_FORMAT_XRGB_8888 |
6156a456 2966 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
70d21f0e 2967 case DRM_FORMAT_XRGB2101010:
c34ce3d1 2968 return PLANE_CTL_FORMAT_XRGB_2101010;
70d21f0e 2969 case DRM_FORMAT_XBGR2101010:
c34ce3d1 2970 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
6156a456 2971 case DRM_FORMAT_YUYV:
c34ce3d1 2972 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
6156a456 2973 case DRM_FORMAT_YVYU:
c34ce3d1 2974 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
6156a456 2975 case DRM_FORMAT_UYVY:
c34ce3d1 2976 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
6156a456 2977 case DRM_FORMAT_VYUY:
c34ce3d1 2978 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
70d21f0e 2979 default:
4249eeef 2980 MISSING_CASE(pixel_format);
70d21f0e 2981 }
8cfcba41 2982
c34ce3d1 2983 return 0;
6156a456 2984}
70d21f0e 2985
6156a456
CK
2986u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
2987{
6156a456 2988 switch (fb_modifier) {
30af77c4 2989 case DRM_FORMAT_MOD_NONE:
70d21f0e 2990 break;
30af77c4 2991 case I915_FORMAT_MOD_X_TILED:
c34ce3d1 2992 return PLANE_CTL_TILED_X;
b321803d 2993 case I915_FORMAT_MOD_Y_TILED:
c34ce3d1 2994 return PLANE_CTL_TILED_Y;
b321803d 2995 case I915_FORMAT_MOD_Yf_TILED:
c34ce3d1 2996 return PLANE_CTL_TILED_YF;
70d21f0e 2997 default:
6156a456 2998 MISSING_CASE(fb_modifier);
70d21f0e 2999 }
8cfcba41 3000
c34ce3d1 3001 return 0;
6156a456 3002}
70d21f0e 3003
6156a456
CK
3004u32 skl_plane_ctl_rotation(unsigned int rotation)
3005{
3b7a5119 3006 switch (rotation) {
6156a456
CK
3007 case BIT(DRM_ROTATE_0):
3008 break;
1e8df167
SJ
3009 /*
3010 * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3011 * while i915 HW rotation is clockwise, thats why this swapping.
3012 */
3b7a5119 3013 case BIT(DRM_ROTATE_90):
1e8df167 3014 return PLANE_CTL_ROTATE_270;
3b7a5119 3015 case BIT(DRM_ROTATE_180):
c34ce3d1 3016 return PLANE_CTL_ROTATE_180;
3b7a5119 3017 case BIT(DRM_ROTATE_270):
1e8df167 3018 return PLANE_CTL_ROTATE_90;
6156a456
CK
3019 default:
3020 MISSING_CASE(rotation);
3021 }
3022
c34ce3d1 3023 return 0;
6156a456
CK
3024}
3025
a8d201af
ML
3026static void skylake_update_primary_plane(struct drm_plane *plane,
3027 const struct intel_crtc_state *crtc_state,
3028 const struct intel_plane_state *plane_state)
6156a456 3029{
a8d201af 3030 struct drm_device *dev = plane->dev;
6156a456 3031 struct drm_i915_private *dev_priv = dev->dev_private;
a8d201af
ML
3032 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3033 struct drm_framebuffer *fb = plane_state->base.fb;
3034 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
6156a456
CK
3035 int pipe = intel_crtc->pipe;
3036 u32 plane_ctl, stride_div, stride;
3037 u32 tile_height, plane_offset, plane_size;
a8d201af 3038 unsigned int rotation = plane_state->base.rotation;
6156a456 3039 int x_offset, y_offset;
44eb0cb9 3040 u32 surf_addr;
a8d201af
ML
3041 int scaler_id = plane_state->scaler_id;
3042 int src_x = plane_state->src.x1 >> 16;
3043 int src_y = plane_state->src.y1 >> 16;
3044 int src_w = drm_rect_width(&plane_state->src) >> 16;
3045 int src_h = drm_rect_height(&plane_state->src) >> 16;
3046 int dst_x = plane_state->dst.x1;
3047 int dst_y = plane_state->dst.y1;
3048 int dst_w = drm_rect_width(&plane_state->dst);
3049 int dst_h = drm_rect_height(&plane_state->dst);
70d21f0e 3050
6156a456
CK
3051 plane_ctl = PLANE_CTL_ENABLE |
3052 PLANE_CTL_PIPE_GAMMA_ENABLE |
3053 PLANE_CTL_PIPE_CSC_ENABLE;
3054
3055 plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3056 plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3057 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
6156a456
CK
3058 plane_ctl |= skl_plane_ctl_rotation(rotation);
3059
7b49f948 3060 stride_div = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
b321803d 3061 fb->pixel_format);
dedf278c 3062 surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj, 0);
3b7a5119 3063
a42e5a23
PZ
3064 WARN_ON(drm_rect_width(&plane_state->src) == 0);
3065
3b7a5119 3066 if (intel_rotation_90_or_270(rotation)) {
832be82f
VS
3067 int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3068
3b7a5119 3069 /* stride = Surface height in tiles */
832be82f 3070 tile_height = intel_tile_height(dev_priv, fb->modifier[0], cpp);
3b7a5119 3071 stride = DIV_ROUND_UP(fb->height, tile_height);
a8d201af
ML
3072 x_offset = stride * tile_height - src_y - src_h;
3073 y_offset = src_x;
6156a456 3074 plane_size = (src_w - 1) << 16 | (src_h - 1);
3b7a5119
SJ
3075 } else {
3076 stride = fb->pitches[0] / stride_div;
a8d201af
ML
3077 x_offset = src_x;
3078 y_offset = src_y;
6156a456 3079 plane_size = (src_h - 1) << 16 | (src_w - 1);
3b7a5119
SJ
3080 }
3081 plane_offset = y_offset << 16 | x_offset;
b321803d 3082
2db3366b
PZ
3083 intel_crtc->adjusted_x = x_offset;
3084 intel_crtc->adjusted_y = y_offset;
3085
70d21f0e 3086 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3b7a5119
SJ
3087 I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3088 I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3089 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
6156a456
CK
3090
3091 if (scaler_id >= 0) {
3092 uint32_t ps_ctrl = 0;
3093
3094 WARN_ON(!dst_w || !dst_h);
3095 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3096 crtc_state->scaler_state.scalers[scaler_id].mode;
3097 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3098 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3099 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3100 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3101 I915_WRITE(PLANE_POS(pipe, 0), 0);
3102 } else {
3103 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3104 }
3105
121920fa 3106 I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
70d21f0e
DL
3107
3108 POSTING_READ(PLANE_SURF(pipe, 0));
3109}
3110
a8d201af
ML
3111static void skylake_disable_primary_plane(struct drm_plane *primary,
3112 struct drm_crtc *crtc)
17638cd6
JB
3113{
3114 struct drm_device *dev = crtc->dev;
3115 struct drm_i915_private *dev_priv = dev->dev_private;
a8d201af 3116 int pipe = to_intel_crtc(crtc)->pipe;
17638cd6 3117
a8d201af
ML
3118 I915_WRITE(PLANE_CTL(pipe, 0), 0);
3119 I915_WRITE(PLANE_SURF(pipe, 0), 0);
3120 POSTING_READ(PLANE_SURF(pipe, 0));
3121}
29b9bde6 3122
a8d201af
ML
3123/* Assume fb object is pinned & idle & fenced and just update base pointers */
3124static int
3125intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3126 int x, int y, enum mode_set_atomic state)
3127{
3128 /* Support for kgdboc is disabled, this needs a major rework. */
3129 DRM_ERROR("legacy panic handler not supported any more.\n");
3130
3131 return -ENODEV;
81255565
JB
3132}
3133
7514747d 3134static void intel_complete_page_flips(struct drm_device *dev)
96a02917 3135{
96a02917
VS
3136 struct drm_crtc *crtc;
3137
70e1e0ec 3138 for_each_crtc(dev, crtc) {
96a02917
VS
3139 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3140 enum plane plane = intel_crtc->plane;
3141
3142 intel_prepare_page_flip(dev, plane);
3143 intel_finish_page_flip_plane(dev, plane);
3144 }
7514747d
VS
3145}
3146
3147static void intel_update_primary_planes(struct drm_device *dev)
3148{
7514747d 3149 struct drm_crtc *crtc;
96a02917 3150
70e1e0ec 3151 for_each_crtc(dev, crtc) {
11c22da6
ML
3152 struct intel_plane *plane = to_intel_plane(crtc->primary);
3153 struct intel_plane_state *plane_state;
96a02917 3154
11c22da6 3155 drm_modeset_lock_crtc(crtc, &plane->base);
11c22da6
ML
3156 plane_state = to_intel_plane_state(plane->base.state);
3157
a8d201af
ML
3158 if (plane_state->visible)
3159 plane->update_plane(&plane->base,
3160 to_intel_crtc_state(crtc->state),
3161 plane_state);
11c22da6
ML
3162
3163 drm_modeset_unlock_crtc(crtc);
96a02917
VS
3164 }
3165}
3166
7514747d
VS
3167void intel_prepare_reset(struct drm_device *dev)
3168{
3169 /* no reset support for gen2 */
3170 if (IS_GEN2(dev))
3171 return;
3172
3173 /* reset doesn't touch the display */
3174 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3175 return;
3176
3177 drm_modeset_lock_all(dev);
f98ce92f
VS
3178 /*
3179 * Disabling the crtcs gracefully seems nicer. Also the
3180 * g33 docs say we should at least disable all the planes.
3181 */
6b72d486 3182 intel_display_suspend(dev);
7514747d
VS
3183}
3184
3185void intel_finish_reset(struct drm_device *dev)
3186{
3187 struct drm_i915_private *dev_priv = to_i915(dev);
3188
3189 /*
3190 * Flips in the rings will be nuked by the reset,
3191 * so complete all pending flips so that user space
3192 * will get its events and not get stuck.
3193 */
3194 intel_complete_page_flips(dev);
3195
3196 /* no reset support for gen2 */
3197 if (IS_GEN2(dev))
3198 return;
3199
3200 /* reset doesn't touch the display */
3201 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3202 /*
3203 * Flips in the rings have been nuked by the reset,
3204 * so update the base address of all primary
3205 * planes to the the last fb to make sure we're
3206 * showing the correct fb after a reset.
11c22da6
ML
3207 *
3208 * FIXME: Atomic will make this obsolete since we won't schedule
3209 * CS-based flips (which might get lost in gpu resets) any more.
7514747d
VS
3210 */
3211 intel_update_primary_planes(dev);
3212 return;
3213 }
3214
3215 /*
3216 * The display has been reset as well,
3217 * so need a full re-initialization.
3218 */
3219 intel_runtime_pm_disable_interrupts(dev_priv);
3220 intel_runtime_pm_enable_interrupts(dev_priv);
3221
3222 intel_modeset_init_hw(dev);
3223
3224 spin_lock_irq(&dev_priv->irq_lock);
3225 if (dev_priv->display.hpd_irq_setup)
3226 dev_priv->display.hpd_irq_setup(dev);
3227 spin_unlock_irq(&dev_priv->irq_lock);
3228
043e9bda 3229 intel_display_resume(dev);
7514747d
VS
3230
3231 intel_hpd_init(dev_priv);
3232
3233 drm_modeset_unlock_all(dev);
3234}
3235
7d5e3799
CW
3236static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3237{
3238 struct drm_device *dev = crtc->dev;
3239 struct drm_i915_private *dev_priv = dev->dev_private;
3240 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7d5e3799
CW
3241 bool pending;
3242
3243 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3244 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3245 return false;
3246
5e2d7afc 3247 spin_lock_irq(&dev->event_lock);
7d5e3799 3248 pending = to_intel_crtc(crtc)->unpin_work != NULL;
5e2d7afc 3249 spin_unlock_irq(&dev->event_lock);
7d5e3799
CW
3250
3251 return pending;
3252}
3253
bfd16b2a
ML
3254static void intel_update_pipe_config(struct intel_crtc *crtc,
3255 struct intel_crtc_state *old_crtc_state)
e30e8f75
GP
3256{
3257 struct drm_device *dev = crtc->base.dev;
3258 struct drm_i915_private *dev_priv = dev->dev_private;
bfd16b2a
ML
3259 struct intel_crtc_state *pipe_config =
3260 to_intel_crtc_state(crtc->base.state);
e30e8f75 3261
bfd16b2a
ML
3262 /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3263 crtc->base.mode = crtc->base.state->mode;
3264
3265 DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
3266 old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
3267 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
e30e8f75 3268
44522d85
ML
3269 if (HAS_DDI(dev))
3270 intel_set_pipe_csc(&crtc->base);
3271
e30e8f75
GP
3272 /*
3273 * Update pipe size and adjust fitter if needed: the reason for this is
3274 * that in compute_mode_changes we check the native mode (not the pfit
3275 * mode) to see if we can flip rather than do a full mode set. In the
3276 * fastboot case, we'll flip, but if we don't update the pipesrc and
3277 * pfit state, we'll end up with a big fb scanned out into the wrong
3278 * sized surface.
e30e8f75
GP
3279 */
3280
e30e8f75 3281 I915_WRITE(PIPESRC(crtc->pipe),
bfd16b2a
ML
3282 ((pipe_config->pipe_src_w - 1) << 16) |
3283 (pipe_config->pipe_src_h - 1));
3284
3285 /* on skylake this is done by detaching scalers */
3286 if (INTEL_INFO(dev)->gen >= 9) {
3287 skl_detach_scalers(crtc);
3288
3289 if (pipe_config->pch_pfit.enabled)
3290 skylake_pfit_enable(crtc);
3291 } else if (HAS_PCH_SPLIT(dev)) {
3292 if (pipe_config->pch_pfit.enabled)
3293 ironlake_pfit_enable(crtc);
3294 else if (old_crtc_state->pch_pfit.enabled)
3295 ironlake_pfit_disable(crtc, true);
e30e8f75 3296 }
e30e8f75
GP
3297}
3298
5e84e1a4
ZW
3299static void intel_fdi_normal_train(struct drm_crtc *crtc)
3300{
3301 struct drm_device *dev = crtc->dev;
3302 struct drm_i915_private *dev_priv = dev->dev_private;
3303 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3304 int pipe = intel_crtc->pipe;
f0f59a00
VS
3305 i915_reg_t reg;
3306 u32 temp;
5e84e1a4
ZW
3307
3308 /* enable normal train */
3309 reg = FDI_TX_CTL(pipe);
3310 temp = I915_READ(reg);
61e499bf 3311 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
3312 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3313 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
3314 } else {
3315 temp &= ~FDI_LINK_TRAIN_NONE;
3316 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 3317 }
5e84e1a4
ZW
3318 I915_WRITE(reg, temp);
3319
3320 reg = FDI_RX_CTL(pipe);
3321 temp = I915_READ(reg);
3322 if (HAS_PCH_CPT(dev)) {
3323 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3324 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3325 } else {
3326 temp &= ~FDI_LINK_TRAIN_NONE;
3327 temp |= FDI_LINK_TRAIN_NONE;
3328 }
3329 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3330
3331 /* wait one idle pattern time */
3332 POSTING_READ(reg);
3333 udelay(1000);
357555c0
JB
3334
3335 /* IVB wants error correction enabled */
3336 if (IS_IVYBRIDGE(dev))
3337 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3338 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
3339}
3340
8db9d77b
ZW
3341/* The FDI link training functions for ILK/Ibexpeak. */
3342static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3343{
3344 struct drm_device *dev = crtc->dev;
3345 struct drm_i915_private *dev_priv = dev->dev_private;
3346 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3347 int pipe = intel_crtc->pipe;
f0f59a00
VS
3348 i915_reg_t reg;
3349 u32 temp, tries;
8db9d77b 3350
1c8562f6 3351 /* FDI needs bits from pipe first */
0fc932b8 3352 assert_pipe_enabled(dev_priv, pipe);
0fc932b8 3353
e1a44743
AJ
3354 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3355 for train result */
5eddb70b
CW
3356 reg = FDI_RX_IMR(pipe);
3357 temp = I915_READ(reg);
e1a44743
AJ
3358 temp &= ~FDI_RX_SYMBOL_LOCK;
3359 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
3360 I915_WRITE(reg, temp);
3361 I915_READ(reg);
e1a44743
AJ
3362 udelay(150);
3363
8db9d77b 3364 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
3365 reg = FDI_TX_CTL(pipe);
3366 temp = I915_READ(reg);
627eb5a3 3367 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3368 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
8db9d77b
ZW
3369 temp &= ~FDI_LINK_TRAIN_NONE;
3370 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 3371 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 3372
5eddb70b
CW
3373 reg = FDI_RX_CTL(pipe);
3374 temp = I915_READ(reg);
8db9d77b
ZW
3375 temp &= ~FDI_LINK_TRAIN_NONE;
3376 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
3377 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3378
3379 POSTING_READ(reg);
8db9d77b
ZW
3380 udelay(150);
3381
5b2adf89 3382 /* Ironlake workaround, enable clock pointer after FDI enable*/
8f5718a6
DV
3383 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3384 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3385 FDI_RX_PHASE_SYNC_POINTER_EN);
5b2adf89 3386
5eddb70b 3387 reg = FDI_RX_IIR(pipe);
e1a44743 3388 for (tries = 0; tries < 5; tries++) {
5eddb70b 3389 temp = I915_READ(reg);
8db9d77b
ZW
3390 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3391
3392 if ((temp & FDI_RX_BIT_LOCK)) {
3393 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 3394 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
3395 break;
3396 }
8db9d77b 3397 }
e1a44743 3398 if (tries == 5)
5eddb70b 3399 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3400
3401 /* Train 2 */
5eddb70b
CW
3402 reg = FDI_TX_CTL(pipe);
3403 temp = I915_READ(reg);
8db9d77b
ZW
3404 temp &= ~FDI_LINK_TRAIN_NONE;
3405 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 3406 I915_WRITE(reg, temp);
8db9d77b 3407
5eddb70b
CW
3408 reg = FDI_RX_CTL(pipe);
3409 temp = I915_READ(reg);
8db9d77b
ZW
3410 temp &= ~FDI_LINK_TRAIN_NONE;
3411 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 3412 I915_WRITE(reg, temp);
8db9d77b 3413
5eddb70b
CW
3414 POSTING_READ(reg);
3415 udelay(150);
8db9d77b 3416
5eddb70b 3417 reg = FDI_RX_IIR(pipe);
e1a44743 3418 for (tries = 0; tries < 5; tries++) {
5eddb70b 3419 temp = I915_READ(reg);
8db9d77b
ZW
3420 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3421
3422 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 3423 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
3424 DRM_DEBUG_KMS("FDI train 2 done.\n");
3425 break;
3426 }
8db9d77b 3427 }
e1a44743 3428 if (tries == 5)
5eddb70b 3429 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3430
3431 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 3432
8db9d77b
ZW
3433}
3434
0206e353 3435static const int snb_b_fdi_train_param[] = {
8db9d77b
ZW
3436 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3437 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3438 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3439 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3440};
3441
3442/* The FDI link training functions for SNB/Cougarpoint. */
3443static void gen6_fdi_link_train(struct drm_crtc *crtc)
3444{
3445 struct drm_device *dev = crtc->dev;
3446 struct drm_i915_private *dev_priv = dev->dev_private;
3447 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3448 int pipe = intel_crtc->pipe;
f0f59a00
VS
3449 i915_reg_t reg;
3450 u32 temp, i, retry;
8db9d77b 3451
e1a44743
AJ
3452 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3453 for train result */
5eddb70b
CW
3454 reg = FDI_RX_IMR(pipe);
3455 temp = I915_READ(reg);
e1a44743
AJ
3456 temp &= ~FDI_RX_SYMBOL_LOCK;
3457 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
3458 I915_WRITE(reg, temp);
3459
3460 POSTING_READ(reg);
e1a44743
AJ
3461 udelay(150);
3462
8db9d77b 3463 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
3464 reg = FDI_TX_CTL(pipe);
3465 temp = I915_READ(reg);
627eb5a3 3466 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3467 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
8db9d77b
ZW
3468 temp &= ~FDI_LINK_TRAIN_NONE;
3469 temp |= FDI_LINK_TRAIN_PATTERN_1;
3470 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3471 /* SNB-B */
3472 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 3473 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 3474
d74cf324
DV
3475 I915_WRITE(FDI_RX_MISC(pipe),
3476 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3477
5eddb70b
CW
3478 reg = FDI_RX_CTL(pipe);
3479 temp = I915_READ(reg);
8db9d77b
ZW
3480 if (HAS_PCH_CPT(dev)) {
3481 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3482 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3483 } else {
3484 temp &= ~FDI_LINK_TRAIN_NONE;
3485 temp |= FDI_LINK_TRAIN_PATTERN_1;
3486 }
5eddb70b
CW
3487 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3488
3489 POSTING_READ(reg);
8db9d77b
ZW
3490 udelay(150);
3491
0206e353 3492 for (i = 0; i < 4; i++) {
5eddb70b
CW
3493 reg = FDI_TX_CTL(pipe);
3494 temp = I915_READ(reg);
8db9d77b
ZW
3495 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3496 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3497 I915_WRITE(reg, temp);
3498
3499 POSTING_READ(reg);
8db9d77b
ZW
3500 udelay(500);
3501
fa37d39e
SP
3502 for (retry = 0; retry < 5; retry++) {
3503 reg = FDI_RX_IIR(pipe);
3504 temp = I915_READ(reg);
3505 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3506 if (temp & FDI_RX_BIT_LOCK) {
3507 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3508 DRM_DEBUG_KMS("FDI train 1 done.\n");
3509 break;
3510 }
3511 udelay(50);
8db9d77b 3512 }
fa37d39e
SP
3513 if (retry < 5)
3514 break;
8db9d77b
ZW
3515 }
3516 if (i == 4)
5eddb70b 3517 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3518
3519 /* Train 2 */
5eddb70b
CW
3520 reg = FDI_TX_CTL(pipe);
3521 temp = I915_READ(reg);
8db9d77b
ZW
3522 temp &= ~FDI_LINK_TRAIN_NONE;
3523 temp |= FDI_LINK_TRAIN_PATTERN_2;
3524 if (IS_GEN6(dev)) {
3525 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3526 /* SNB-B */
3527 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3528 }
5eddb70b 3529 I915_WRITE(reg, temp);
8db9d77b 3530
5eddb70b
CW
3531 reg = FDI_RX_CTL(pipe);
3532 temp = I915_READ(reg);
8db9d77b
ZW
3533 if (HAS_PCH_CPT(dev)) {
3534 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3535 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3536 } else {
3537 temp &= ~FDI_LINK_TRAIN_NONE;
3538 temp |= FDI_LINK_TRAIN_PATTERN_2;
3539 }
5eddb70b
CW
3540 I915_WRITE(reg, temp);
3541
3542 POSTING_READ(reg);
8db9d77b
ZW
3543 udelay(150);
3544
0206e353 3545 for (i = 0; i < 4; i++) {
5eddb70b
CW
3546 reg = FDI_TX_CTL(pipe);
3547 temp = I915_READ(reg);
8db9d77b
ZW
3548 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3549 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3550 I915_WRITE(reg, temp);
3551
3552 POSTING_READ(reg);
8db9d77b
ZW
3553 udelay(500);
3554
fa37d39e
SP
3555 for (retry = 0; retry < 5; retry++) {
3556 reg = FDI_RX_IIR(pipe);
3557 temp = I915_READ(reg);
3558 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3559 if (temp & FDI_RX_SYMBOL_LOCK) {
3560 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3561 DRM_DEBUG_KMS("FDI train 2 done.\n");
3562 break;
3563 }
3564 udelay(50);
8db9d77b 3565 }
fa37d39e
SP
3566 if (retry < 5)
3567 break;
8db9d77b
ZW
3568 }
3569 if (i == 4)
5eddb70b 3570 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3571
3572 DRM_DEBUG_KMS("FDI train done.\n");
3573}
3574
357555c0
JB
3575/* Manual link training for Ivy Bridge A0 parts */
3576static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3577{
3578 struct drm_device *dev = crtc->dev;
3579 struct drm_i915_private *dev_priv = dev->dev_private;
3580 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3581 int pipe = intel_crtc->pipe;
f0f59a00
VS
3582 i915_reg_t reg;
3583 u32 temp, i, j;
357555c0
JB
3584
3585 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3586 for train result */
3587 reg = FDI_RX_IMR(pipe);
3588 temp = I915_READ(reg);
3589 temp &= ~FDI_RX_SYMBOL_LOCK;
3590 temp &= ~FDI_RX_BIT_LOCK;
3591 I915_WRITE(reg, temp);
3592
3593 POSTING_READ(reg);
3594 udelay(150);
3595
01a415fd
DV
3596 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3597 I915_READ(FDI_RX_IIR(pipe)));
3598
139ccd3f
JB
3599 /* Try each vswing and preemphasis setting twice before moving on */
3600 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3601 /* disable first in case we need to retry */
3602 reg = FDI_TX_CTL(pipe);
3603 temp = I915_READ(reg);
3604 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3605 temp &= ~FDI_TX_ENABLE;
3606 I915_WRITE(reg, temp);
357555c0 3607
139ccd3f
JB
3608 reg = FDI_RX_CTL(pipe);
3609 temp = I915_READ(reg);
3610 temp &= ~FDI_LINK_TRAIN_AUTO;
3611 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3612 temp &= ~FDI_RX_ENABLE;
3613 I915_WRITE(reg, temp);
357555c0 3614
139ccd3f 3615 /* enable CPU FDI TX and PCH FDI RX */
357555c0
JB
3616 reg = FDI_TX_CTL(pipe);
3617 temp = I915_READ(reg);
139ccd3f 3618 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3619 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
139ccd3f 3620 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
357555c0 3621 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
139ccd3f
JB
3622 temp |= snb_b_fdi_train_param[j/2];
3623 temp |= FDI_COMPOSITE_SYNC;
3624 I915_WRITE(reg, temp | FDI_TX_ENABLE);
357555c0 3625
139ccd3f
JB
3626 I915_WRITE(FDI_RX_MISC(pipe),
3627 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
357555c0 3628
139ccd3f 3629 reg = FDI_RX_CTL(pipe);
357555c0 3630 temp = I915_READ(reg);
139ccd3f
JB
3631 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3632 temp |= FDI_COMPOSITE_SYNC;
3633 I915_WRITE(reg, temp | FDI_RX_ENABLE);
357555c0 3634
139ccd3f
JB
3635 POSTING_READ(reg);
3636 udelay(1); /* should be 0.5us */
357555c0 3637
139ccd3f
JB
3638 for (i = 0; i < 4; i++) {
3639 reg = FDI_RX_IIR(pipe);
3640 temp = I915_READ(reg);
3641 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3642
139ccd3f
JB
3643 if (temp & FDI_RX_BIT_LOCK ||
3644 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3645 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3646 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3647 i);
3648 break;
3649 }
3650 udelay(1); /* should be 0.5us */
3651 }
3652 if (i == 4) {
3653 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3654 continue;
3655 }
357555c0 3656
139ccd3f 3657 /* Train 2 */
357555c0
JB
3658 reg = FDI_TX_CTL(pipe);
3659 temp = I915_READ(reg);
139ccd3f
JB
3660 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3661 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3662 I915_WRITE(reg, temp);
3663
3664 reg = FDI_RX_CTL(pipe);
3665 temp = I915_READ(reg);
3666 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3667 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
357555c0
JB
3668 I915_WRITE(reg, temp);
3669
3670 POSTING_READ(reg);
139ccd3f 3671 udelay(2); /* should be 1.5us */
357555c0 3672
139ccd3f
JB
3673 for (i = 0; i < 4; i++) {
3674 reg = FDI_RX_IIR(pipe);
3675 temp = I915_READ(reg);
3676 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3677
139ccd3f
JB
3678 if (temp & FDI_RX_SYMBOL_LOCK ||
3679 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3680 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3681 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3682 i);
3683 goto train_done;
3684 }
3685 udelay(2); /* should be 1.5us */
357555c0 3686 }
139ccd3f
JB
3687 if (i == 4)
3688 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
357555c0 3689 }
357555c0 3690
139ccd3f 3691train_done:
357555c0
JB
3692 DRM_DEBUG_KMS("FDI train done.\n");
3693}
3694
88cefb6c 3695static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2c07245f 3696{
88cefb6c 3697 struct drm_device *dev = intel_crtc->base.dev;
2c07245f 3698 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 3699 int pipe = intel_crtc->pipe;
f0f59a00
VS
3700 i915_reg_t reg;
3701 u32 temp;
c64e311e 3702
c98e9dcf 3703 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
3704 reg = FDI_RX_CTL(pipe);
3705 temp = I915_READ(reg);
627eb5a3 3706 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
6e3c9717 3707 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
dfd07d72 3708 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5eddb70b
CW
3709 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3710
3711 POSTING_READ(reg);
c98e9dcf
JB
3712 udelay(200);
3713
3714 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
3715 temp = I915_READ(reg);
3716 I915_WRITE(reg, temp | FDI_PCDCLK);
3717
3718 POSTING_READ(reg);
c98e9dcf
JB
3719 udelay(200);
3720
20749730
PZ
3721 /* Enable CPU FDI TX PLL, always on for Ironlake */
3722 reg = FDI_TX_CTL(pipe);
3723 temp = I915_READ(reg);
3724 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3725 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
5eddb70b 3726
20749730
PZ
3727 POSTING_READ(reg);
3728 udelay(100);
6be4a607 3729 }
0e23b99d
JB
3730}
3731
88cefb6c
DV
3732static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3733{
3734 struct drm_device *dev = intel_crtc->base.dev;
3735 struct drm_i915_private *dev_priv = dev->dev_private;
3736 int pipe = intel_crtc->pipe;
f0f59a00
VS
3737 i915_reg_t reg;
3738 u32 temp;
88cefb6c
DV
3739
3740 /* Switch from PCDclk to Rawclk */
3741 reg = FDI_RX_CTL(pipe);
3742 temp = I915_READ(reg);
3743 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3744
3745 /* Disable CPU FDI TX PLL */
3746 reg = FDI_TX_CTL(pipe);
3747 temp = I915_READ(reg);
3748 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3749
3750 POSTING_READ(reg);
3751 udelay(100);
3752
3753 reg = FDI_RX_CTL(pipe);
3754 temp = I915_READ(reg);
3755 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3756
3757 /* Wait for the clocks to turn off. */
3758 POSTING_READ(reg);
3759 udelay(100);
3760}
3761
0fc932b8
JB
3762static void ironlake_fdi_disable(struct drm_crtc *crtc)
3763{
3764 struct drm_device *dev = crtc->dev;
3765 struct drm_i915_private *dev_priv = dev->dev_private;
3766 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3767 int pipe = intel_crtc->pipe;
f0f59a00
VS
3768 i915_reg_t reg;
3769 u32 temp;
0fc932b8
JB
3770
3771 /* disable CPU FDI tx and PCH FDI rx */
3772 reg = FDI_TX_CTL(pipe);
3773 temp = I915_READ(reg);
3774 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3775 POSTING_READ(reg);
3776
3777 reg = FDI_RX_CTL(pipe);
3778 temp = I915_READ(reg);
3779 temp &= ~(0x7 << 16);
dfd07d72 3780 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3781 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3782
3783 POSTING_READ(reg);
3784 udelay(100);
3785
3786 /* Ironlake workaround, disable clock pointer after downing FDI */
eba905b2 3787 if (HAS_PCH_IBX(dev))
6f06ce18 3788 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
0fc932b8
JB
3789
3790 /* still set train pattern 1 */
3791 reg = FDI_TX_CTL(pipe);
3792 temp = I915_READ(reg);
3793 temp &= ~FDI_LINK_TRAIN_NONE;
3794 temp |= FDI_LINK_TRAIN_PATTERN_1;
3795 I915_WRITE(reg, temp);
3796
3797 reg = FDI_RX_CTL(pipe);
3798 temp = I915_READ(reg);
3799 if (HAS_PCH_CPT(dev)) {
3800 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3801 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3802 } else {
3803 temp &= ~FDI_LINK_TRAIN_NONE;
3804 temp |= FDI_LINK_TRAIN_PATTERN_1;
3805 }
3806 /* BPC in FDI rx is consistent with that in PIPECONF */
3807 temp &= ~(0x07 << 16);
dfd07d72 3808 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3809 I915_WRITE(reg, temp);
3810
3811 POSTING_READ(reg);
3812 udelay(100);
3813}
3814
5dce5b93
CW
3815bool intel_has_pending_fb_unpin(struct drm_device *dev)
3816{
3817 struct intel_crtc *crtc;
3818
3819 /* Note that we don't need to be called with mode_config.lock here
3820 * as our list of CRTC objects is static for the lifetime of the
3821 * device and so cannot disappear as we iterate. Similarly, we can
3822 * happily treat the predicates as racy, atomic checks as userspace
3823 * cannot claim and pin a new fb without at least acquring the
3824 * struct_mutex and so serialising with us.
3825 */
d3fcc808 3826 for_each_intel_crtc(dev, crtc) {
5dce5b93
CW
3827 if (atomic_read(&crtc->unpin_work_count) == 0)
3828 continue;
3829
3830 if (crtc->unpin_work)
3831 intel_wait_for_vblank(dev, crtc->pipe);
3832
3833 return true;
3834 }
3835
3836 return false;
3837}
3838
d6bbafa1
CW
3839static void page_flip_completed(struct intel_crtc *intel_crtc)
3840{
3841 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3842 struct intel_unpin_work *work = intel_crtc->unpin_work;
3843
3844 /* ensure that the unpin work is consistent wrt ->pending. */
3845 smp_rmb();
3846 intel_crtc->unpin_work = NULL;
3847
3848 if (work->event)
3849 drm_send_vblank_event(intel_crtc->base.dev,
3850 intel_crtc->pipe,
3851 work->event);
3852
3853 drm_crtc_vblank_put(&intel_crtc->base);
3854
3855 wake_up_all(&dev_priv->pending_flip_queue);
3856 queue_work(dev_priv->wq, &work->work);
3857
3858 trace_i915_flip_complete(intel_crtc->plane,
3859 work->pending_flip_obj);
3860}
3861
5008e874 3862static int intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
e6c3a2a6 3863{
0f91128d 3864 struct drm_device *dev = crtc->dev;
5bb61643 3865 struct drm_i915_private *dev_priv = dev->dev_private;
5008e874 3866 long ret;
e6c3a2a6 3867
2c10d571 3868 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
5008e874
ML
3869
3870 ret = wait_event_interruptible_timeout(
3871 dev_priv->pending_flip_queue,
3872 !intel_crtc_has_pending_flip(crtc),
3873 60*HZ);
3874
3875 if (ret < 0)
3876 return ret;
3877
3878 if (ret == 0) {
9c787942 3879 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2c10d571 3880
5e2d7afc 3881 spin_lock_irq(&dev->event_lock);
9c787942
CW
3882 if (intel_crtc->unpin_work) {
3883 WARN_ONCE(1, "Removing stuck page flip\n");
3884 page_flip_completed(intel_crtc);
3885 }
5e2d7afc 3886 spin_unlock_irq(&dev->event_lock);
9c787942 3887 }
5bb61643 3888
5008e874 3889 return 0;
e6c3a2a6
CW
3890}
3891
060f02d8
VS
3892static void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
3893{
3894 u32 temp;
3895
3896 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3897
3898 mutex_lock(&dev_priv->sb_lock);
3899
3900 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3901 temp |= SBI_SSCCTL_DISABLE;
3902 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3903
3904 mutex_unlock(&dev_priv->sb_lock);
3905}
3906
e615efe4
ED
3907/* Program iCLKIP clock to the desired frequency */
3908static void lpt_program_iclkip(struct drm_crtc *crtc)
3909{
64b46a06 3910 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6e3c9717 3911 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
e615efe4
ED
3912 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3913 u32 temp;
3914
060f02d8 3915 lpt_disable_iclkip(dev_priv);
e615efe4 3916
64b46a06
VS
3917 /* The iCLK virtual clock root frequency is in MHz,
3918 * but the adjusted_mode->crtc_clock in in KHz. To get the
3919 * divisors, it is necessary to divide one by another, so we
3920 * convert the virtual clock precision to KHz here for higher
3921 * precision.
3922 */
3923 for (auxdiv = 0; auxdiv < 2; auxdiv++) {
e615efe4
ED
3924 u32 iclk_virtual_root_freq = 172800 * 1000;
3925 u32 iclk_pi_range = 64;
64b46a06 3926 u32 desired_divisor;
e615efe4 3927
64b46a06
VS
3928 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
3929 clock << auxdiv);
3930 divsel = (desired_divisor / iclk_pi_range) - 2;
3931 phaseinc = desired_divisor % iclk_pi_range;
e615efe4 3932
64b46a06
VS
3933 /*
3934 * Near 20MHz is a corner case which is
3935 * out of range for the 7-bit divisor
3936 */
3937 if (divsel <= 0x7f)
3938 break;
e615efe4
ED
3939 }
3940
3941 /* This should not happen with any sane values */
3942 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3943 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3944 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3945 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3946
3947 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
12d7ceed 3948 clock,
e615efe4
ED
3949 auxdiv,
3950 divsel,
3951 phasedir,
3952 phaseinc);
3953
060f02d8
VS
3954 mutex_lock(&dev_priv->sb_lock);
3955
e615efe4 3956 /* Program SSCDIVINTPHASE6 */
988d6ee8 3957 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
e615efe4
ED
3958 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3959 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3960 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3961 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3962 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3963 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
988d6ee8 3964 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
e615efe4
ED
3965
3966 /* Program SSCAUXDIV */
988d6ee8 3967 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
e615efe4
ED
3968 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3969 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
988d6ee8 3970 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
e615efe4
ED
3971
3972 /* Enable modulator and associated divider */
988d6ee8 3973 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
e615efe4 3974 temp &= ~SBI_SSCCTL_DISABLE;
988d6ee8 3975 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
e615efe4 3976
060f02d8
VS
3977 mutex_unlock(&dev_priv->sb_lock);
3978
e615efe4
ED
3979 /* Wait for initialization time */
3980 udelay(24);
3981
3982 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3983}
3984
8802e5b6
VS
3985int lpt_get_iclkip(struct drm_i915_private *dev_priv)
3986{
3987 u32 divsel, phaseinc, auxdiv;
3988 u32 iclk_virtual_root_freq = 172800 * 1000;
3989 u32 iclk_pi_range = 64;
3990 u32 desired_divisor;
3991 u32 temp;
3992
3993 if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
3994 return 0;
3995
3996 mutex_lock(&dev_priv->sb_lock);
3997
3998 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3999 if (temp & SBI_SSCCTL_DISABLE) {
4000 mutex_unlock(&dev_priv->sb_lock);
4001 return 0;
4002 }
4003
4004 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4005 divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
4006 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
4007 phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
4008 SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
4009
4010 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4011 auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
4012 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
4013
4014 mutex_unlock(&dev_priv->sb_lock);
4015
4016 desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
4017
4018 return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4019 desired_divisor << auxdiv);
4020}
4021
275f01b2
DV
4022static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4023 enum pipe pch_transcoder)
4024{
4025 struct drm_device *dev = crtc->base.dev;
4026 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 4027 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
275f01b2
DV
4028
4029 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4030 I915_READ(HTOTAL(cpu_transcoder)));
4031 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4032 I915_READ(HBLANK(cpu_transcoder)));
4033 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4034 I915_READ(HSYNC(cpu_transcoder)));
4035
4036 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4037 I915_READ(VTOTAL(cpu_transcoder)));
4038 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4039 I915_READ(VBLANK(cpu_transcoder)));
4040 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4041 I915_READ(VSYNC(cpu_transcoder)));
4042 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4043 I915_READ(VSYNCSHIFT(cpu_transcoder)));
4044}
4045
003632d9 4046static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
1fbc0d78
DV
4047{
4048 struct drm_i915_private *dev_priv = dev->dev_private;
4049 uint32_t temp;
4050
4051 temp = I915_READ(SOUTH_CHICKEN1);
003632d9 4052 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
1fbc0d78
DV
4053 return;
4054
4055 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4056 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4057
003632d9
ACO
4058 temp &= ~FDI_BC_BIFURCATION_SELECT;
4059 if (enable)
4060 temp |= FDI_BC_BIFURCATION_SELECT;
4061
4062 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
1fbc0d78
DV
4063 I915_WRITE(SOUTH_CHICKEN1, temp);
4064 POSTING_READ(SOUTH_CHICKEN1);
4065}
4066
4067static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4068{
4069 struct drm_device *dev = intel_crtc->base.dev;
1fbc0d78
DV
4070
4071 switch (intel_crtc->pipe) {
4072 case PIPE_A:
4073 break;
4074 case PIPE_B:
6e3c9717 4075 if (intel_crtc->config->fdi_lanes > 2)
003632d9 4076 cpt_set_fdi_bc_bifurcation(dev, false);
1fbc0d78 4077 else
003632d9 4078 cpt_set_fdi_bc_bifurcation(dev, true);
1fbc0d78
DV
4079
4080 break;
4081 case PIPE_C:
003632d9 4082 cpt_set_fdi_bc_bifurcation(dev, true);
1fbc0d78
DV
4083
4084 break;
4085 default:
4086 BUG();
4087 }
4088}
4089
c48b5305
VS
4090/* Return which DP Port should be selected for Transcoder DP control */
4091static enum port
4092intel_trans_dp_port_sel(struct drm_crtc *crtc)
4093{
4094 struct drm_device *dev = crtc->dev;
4095 struct intel_encoder *encoder;
4096
4097 for_each_encoder_on_crtc(dev, crtc, encoder) {
4098 if (encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
4099 encoder->type == INTEL_OUTPUT_EDP)
4100 return enc_to_dig_port(&encoder->base)->port;
4101 }
4102
4103 return -1;
4104}
4105
f67a559d
JB
4106/*
4107 * Enable PCH resources required for PCH ports:
4108 * - PCH PLLs
4109 * - FDI training & RX/TX
4110 * - update transcoder timings
4111 * - DP transcoding bits
4112 * - transcoder
4113 */
4114static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
4115{
4116 struct drm_device *dev = crtc->dev;
4117 struct drm_i915_private *dev_priv = dev->dev_private;
4118 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4119 int pipe = intel_crtc->pipe;
f0f59a00 4120 u32 temp;
2c07245f 4121
ab9412ba 4122 assert_pch_transcoder_disabled(dev_priv, pipe);
e7e164db 4123
1fbc0d78
DV
4124 if (IS_IVYBRIDGE(dev))
4125 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4126
cd986abb
DV
4127 /* Write the TU size bits before fdi link training, so that error
4128 * detection works. */
4129 I915_WRITE(FDI_RX_TUSIZE1(pipe),
4130 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4131
3860b2ec
VS
4132 /*
4133 * Sometimes spurious CPU pipe underruns happen during FDI
4134 * training, at least with VGA+HDMI cloning. Suppress them.
4135 */
4136 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4137
c98e9dcf 4138 /* For PCH output, training FDI link */
674cf967 4139 dev_priv->display.fdi_link_train(crtc);
2c07245f 4140
3ad8a208
DV
4141 /* We need to program the right clock selection before writing the pixel
4142 * mutliplier into the DPLL. */
303b81e0 4143 if (HAS_PCH_CPT(dev)) {
ee7b9f93 4144 u32 sel;
4b645f14 4145
c98e9dcf 4146 temp = I915_READ(PCH_DPLL_SEL);
11887397
DV
4147 temp |= TRANS_DPLL_ENABLE(pipe);
4148 sel = TRANS_DPLLB_SEL(pipe);
8106ddbd
ACO
4149 if (intel_crtc->config->shared_dpll ==
4150 intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
ee7b9f93
JB
4151 temp |= sel;
4152 else
4153 temp &= ~sel;
c98e9dcf 4154 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 4155 }
5eddb70b 4156
3ad8a208
DV
4157 /* XXX: pch pll's can be enabled any time before we enable the PCH
4158 * transcoder, and we actually should do this to not upset any PCH
4159 * transcoder that already use the clock when we share it.
4160 *
4161 * Note that enable_shared_dpll tries to do the right thing, but
4162 * get_shared_dpll unconditionally resets the pll - we need that to have
4163 * the right LVDS enable sequence. */
85b3894f 4164 intel_enable_shared_dpll(intel_crtc);
3ad8a208 4165
d9b6cb56
JB
4166 /* set transcoder timing, panel must allow it */
4167 assert_panel_unlocked(dev_priv, pipe);
275f01b2 4168 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
8db9d77b 4169
303b81e0 4170 intel_fdi_normal_train(crtc);
5e84e1a4 4171
3860b2ec
VS
4172 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4173
c98e9dcf 4174 /* For PCH DP, enable TRANS_DP_CTL */
6e3c9717 4175 if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
9c4edaee
VS
4176 const struct drm_display_mode *adjusted_mode =
4177 &intel_crtc->config->base.adjusted_mode;
dfd07d72 4178 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
f0f59a00 4179 i915_reg_t reg = TRANS_DP_CTL(pipe);
5eddb70b
CW
4180 temp = I915_READ(reg);
4181 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
4182 TRANS_DP_SYNC_MASK |
4183 TRANS_DP_BPC_MASK);
e3ef4479 4184 temp |= TRANS_DP_OUTPUT_ENABLE;
9325c9f0 4185 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf 4186
9c4edaee 4187 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 4188 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
9c4edaee 4189 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 4190 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
4191
4192 switch (intel_trans_dp_port_sel(crtc)) {
c48b5305 4193 case PORT_B:
5eddb70b 4194 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf 4195 break;
c48b5305 4196 case PORT_C:
5eddb70b 4197 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf 4198 break;
c48b5305 4199 case PORT_D:
5eddb70b 4200 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
4201 break;
4202 default:
e95d41e1 4203 BUG();
32f9d658 4204 }
2c07245f 4205
5eddb70b 4206 I915_WRITE(reg, temp);
6be4a607 4207 }
b52eb4dc 4208
b8a4f404 4209 ironlake_enable_pch_transcoder(dev_priv, pipe);
f67a559d
JB
4210}
4211
1507e5bd
PZ
4212static void lpt_pch_enable(struct drm_crtc *crtc)
4213{
4214 struct drm_device *dev = crtc->dev;
4215 struct drm_i915_private *dev_priv = dev->dev_private;
4216 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6e3c9717 4217 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1507e5bd 4218
ab9412ba 4219 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
1507e5bd 4220
8c52b5e8 4221 lpt_program_iclkip(crtc);
1507e5bd 4222
0540e488 4223 /* Set transcoder timing. */
275f01b2 4224 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
1507e5bd 4225
937bb610 4226 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
f67a559d
JB
4227}
4228
a1520318 4229static void cpt_verify_modeset(struct drm_device *dev, int pipe)
d4270e57
JB
4230{
4231 struct drm_i915_private *dev_priv = dev->dev_private;
f0f59a00 4232 i915_reg_t dslreg = PIPEDSL(pipe);
d4270e57
JB
4233 u32 temp;
4234
4235 temp = I915_READ(dslreg);
4236 udelay(500);
4237 if (wait_for(I915_READ(dslreg) != temp, 5)) {
d4270e57 4238 if (wait_for(I915_READ(dslreg) != temp, 5))
84f44ce7 4239 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
d4270e57
JB
4240 }
4241}
4242
86adf9d7
ML
4243static int
4244skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4245 unsigned scaler_user, int *scaler_id, unsigned int rotation,
4246 int src_w, int src_h, int dst_w, int dst_h)
a1b2278e 4247{
86adf9d7
ML
4248 struct intel_crtc_scaler_state *scaler_state =
4249 &crtc_state->scaler_state;
4250 struct intel_crtc *intel_crtc =
4251 to_intel_crtc(crtc_state->base.crtc);
a1b2278e 4252 int need_scaling;
6156a456
CK
4253
4254 need_scaling = intel_rotation_90_or_270(rotation) ?
4255 (src_h != dst_w || src_w != dst_h):
4256 (src_w != dst_w || src_h != dst_h);
a1b2278e
CK
4257
4258 /*
4259 * if plane is being disabled or scaler is no more required or force detach
4260 * - free scaler binded to this plane/crtc
4261 * - in order to do this, update crtc->scaler_usage
4262 *
4263 * Here scaler state in crtc_state is set free so that
4264 * scaler can be assigned to other user. Actual register
4265 * update to free the scaler is done in plane/panel-fit programming.
4266 * For this purpose crtc/plane_state->scaler_id isn't reset here.
4267 */
86adf9d7 4268 if (force_detach || !need_scaling) {
a1b2278e 4269 if (*scaler_id >= 0) {
86adf9d7 4270 scaler_state->scaler_users &= ~(1 << scaler_user);
a1b2278e
CK
4271 scaler_state->scalers[*scaler_id].in_use = 0;
4272
86adf9d7
ML
4273 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4274 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4275 intel_crtc->pipe, scaler_user, *scaler_id,
a1b2278e
CK
4276 scaler_state->scaler_users);
4277 *scaler_id = -1;
4278 }
4279 return 0;
4280 }
4281
4282 /* range checks */
4283 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4284 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4285
4286 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4287 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
86adf9d7 4288 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
a1b2278e 4289 "size is out of scaler range\n",
86adf9d7 4290 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
a1b2278e
CK
4291 return -EINVAL;
4292 }
4293
86adf9d7
ML
4294 /* mark this plane as a scaler user in crtc_state */
4295 scaler_state->scaler_users |= (1 << scaler_user);
4296 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4297 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4298 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4299 scaler_state->scaler_users);
4300
4301 return 0;
4302}
4303
4304/**
4305 * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4306 *
4307 * @state: crtc's scaler state
86adf9d7
ML
4308 *
4309 * Return
4310 * 0 - scaler_usage updated successfully
4311 * error - requested scaling cannot be supported or other error condition
4312 */
e435d6e5 4313int skl_update_scaler_crtc(struct intel_crtc_state *state)
86adf9d7
ML
4314{
4315 struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
7c5f93b0 4316 const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
86adf9d7
ML
4317
4318 DRM_DEBUG_KMS("Updating scaler for [CRTC:%i] scaler_user index %u.%u\n",
4319 intel_crtc->base.base.id, intel_crtc->pipe, SKL_CRTC_INDEX);
4320
e435d6e5 4321 return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
fa5a7970 4322 &state->scaler_state.scaler_id, BIT(DRM_ROTATE_0),
86adf9d7 4323 state->pipe_src_w, state->pipe_src_h,
aad941d5 4324 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
86adf9d7
ML
4325}
4326
4327/**
4328 * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4329 *
4330 * @state: crtc's scaler state
86adf9d7
ML
4331 * @plane_state: atomic plane state to update
4332 *
4333 * Return
4334 * 0 - scaler_usage updated successfully
4335 * error - requested scaling cannot be supported or other error condition
4336 */
da20eabd
ML
4337static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4338 struct intel_plane_state *plane_state)
86adf9d7
ML
4339{
4340
4341 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
da20eabd
ML
4342 struct intel_plane *intel_plane =
4343 to_intel_plane(plane_state->base.plane);
86adf9d7
ML
4344 struct drm_framebuffer *fb = plane_state->base.fb;
4345 int ret;
4346
4347 bool force_detach = !fb || !plane_state->visible;
4348
4349 DRM_DEBUG_KMS("Updating scaler for [PLANE:%d] scaler_user index %u.%u\n",
4350 intel_plane->base.base.id, intel_crtc->pipe,
4351 drm_plane_index(&intel_plane->base));
4352
4353 ret = skl_update_scaler(crtc_state, force_detach,
4354 drm_plane_index(&intel_plane->base),
4355 &plane_state->scaler_id,
4356 plane_state->base.rotation,
4357 drm_rect_width(&plane_state->src) >> 16,
4358 drm_rect_height(&plane_state->src) >> 16,
4359 drm_rect_width(&plane_state->dst),
4360 drm_rect_height(&plane_state->dst));
4361
4362 if (ret || plane_state->scaler_id < 0)
4363 return ret;
4364
a1b2278e 4365 /* check colorkey */
818ed961 4366 if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
86adf9d7 4367 DRM_DEBUG_KMS("[PLANE:%d] scaling with color key not allowed",
818ed961 4368 intel_plane->base.base.id);
a1b2278e
CK
4369 return -EINVAL;
4370 }
4371
4372 /* Check src format */
86adf9d7
ML
4373 switch (fb->pixel_format) {
4374 case DRM_FORMAT_RGB565:
4375 case DRM_FORMAT_XBGR8888:
4376 case DRM_FORMAT_XRGB8888:
4377 case DRM_FORMAT_ABGR8888:
4378 case DRM_FORMAT_ARGB8888:
4379 case DRM_FORMAT_XRGB2101010:
4380 case DRM_FORMAT_XBGR2101010:
4381 case DRM_FORMAT_YUYV:
4382 case DRM_FORMAT_YVYU:
4383 case DRM_FORMAT_UYVY:
4384 case DRM_FORMAT_VYUY:
4385 break;
4386 default:
4387 DRM_DEBUG_KMS("[PLANE:%d] FB:%d unsupported scaling format 0x%x\n",
4388 intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4389 return -EINVAL;
a1b2278e
CK
4390 }
4391
a1b2278e
CK
4392 return 0;
4393}
4394
e435d6e5
ML
4395static void skylake_scaler_disable(struct intel_crtc *crtc)
4396{
4397 int i;
4398
4399 for (i = 0; i < crtc->num_scalers; i++)
4400 skl_detach_scaler(crtc, i);
4401}
4402
4403static void skylake_pfit_enable(struct intel_crtc *crtc)
bd2e244f
JB
4404{
4405 struct drm_device *dev = crtc->base.dev;
4406 struct drm_i915_private *dev_priv = dev->dev_private;
4407 int pipe = crtc->pipe;
a1b2278e
CK
4408 struct intel_crtc_scaler_state *scaler_state =
4409 &crtc->config->scaler_state;
4410
4411 DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4412
6e3c9717 4413 if (crtc->config->pch_pfit.enabled) {
a1b2278e
CK
4414 int id;
4415
4416 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4417 DRM_ERROR("Requesting pfit without getting a scaler first\n");
4418 return;
4419 }
4420
4421 id = scaler_state->scaler_id;
4422 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4423 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4424 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4425 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4426
4427 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
bd2e244f
JB
4428 }
4429}
4430
b074cec8
JB
4431static void ironlake_pfit_enable(struct intel_crtc *crtc)
4432{
4433 struct drm_device *dev = crtc->base.dev;
4434 struct drm_i915_private *dev_priv = dev->dev_private;
4435 int pipe = crtc->pipe;
4436
6e3c9717 4437 if (crtc->config->pch_pfit.enabled) {
b074cec8
JB
4438 /* Force use of hard-coded filter coefficients
4439 * as some pre-programmed values are broken,
4440 * e.g. x201.
4441 */
4442 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4443 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4444 PF_PIPE_SEL_IVB(pipe));
4445 else
4446 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
6e3c9717
ACO
4447 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4448 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
d4270e57
JB
4449 }
4450}
4451
20bc8673 4452void hsw_enable_ips(struct intel_crtc *crtc)
d77e4531 4453{
cea165c3
VS
4454 struct drm_device *dev = crtc->base.dev;
4455 struct drm_i915_private *dev_priv = dev->dev_private;
d77e4531 4456
6e3c9717 4457 if (!crtc->config->ips_enabled)
d77e4531
PZ
4458 return;
4459
cea165c3
VS
4460 /* We can only enable IPS after we enable a plane and wait for a vblank */
4461 intel_wait_for_vblank(dev, crtc->pipe);
4462
d77e4531 4463 assert_plane_enabled(dev_priv, crtc->plane);
cea165c3 4464 if (IS_BROADWELL(dev)) {
2a114cc1
BW
4465 mutex_lock(&dev_priv->rps.hw_lock);
4466 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4467 mutex_unlock(&dev_priv->rps.hw_lock);
4468 /* Quoting Art Runyan: "its not safe to expect any particular
4469 * value in IPS_CTL bit 31 after enabling IPS through the
e59150dc
JB
4470 * mailbox." Moreover, the mailbox may return a bogus state,
4471 * so we need to just enable it and continue on.
2a114cc1
BW
4472 */
4473 } else {
4474 I915_WRITE(IPS_CTL, IPS_ENABLE);
4475 /* The bit only becomes 1 in the next vblank, so this wait here
4476 * is essentially intel_wait_for_vblank. If we don't have this
4477 * and don't wait for vblanks until the end of crtc_enable, then
4478 * the HW state readout code will complain that the expected
4479 * IPS_CTL value is not the one we read. */
4480 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4481 DRM_ERROR("Timed out waiting for IPS enable\n");
4482 }
d77e4531
PZ
4483}
4484
20bc8673 4485void hsw_disable_ips(struct intel_crtc *crtc)
d77e4531
PZ
4486{
4487 struct drm_device *dev = crtc->base.dev;
4488 struct drm_i915_private *dev_priv = dev->dev_private;
4489
6e3c9717 4490 if (!crtc->config->ips_enabled)
d77e4531
PZ
4491 return;
4492
4493 assert_plane_enabled(dev_priv, crtc->plane);
23d0b130 4494 if (IS_BROADWELL(dev)) {
2a114cc1
BW
4495 mutex_lock(&dev_priv->rps.hw_lock);
4496 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4497 mutex_unlock(&dev_priv->rps.hw_lock);
23d0b130
BW
4498 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4499 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4500 DRM_ERROR("Timed out waiting for IPS disable\n");
e59150dc 4501 } else {
2a114cc1 4502 I915_WRITE(IPS_CTL, 0);
e59150dc
JB
4503 POSTING_READ(IPS_CTL);
4504 }
d77e4531
PZ
4505
4506 /* We need to wait for a vblank before we can disable the plane. */
4507 intel_wait_for_vblank(dev, crtc->pipe);
4508}
4509
4510/** Loads the palette/gamma unit for the CRTC with the prepared values */
4511static void intel_crtc_load_lut(struct drm_crtc *crtc)
4512{
4513 struct drm_device *dev = crtc->dev;
4514 struct drm_i915_private *dev_priv = dev->dev_private;
4515 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4516 enum pipe pipe = intel_crtc->pipe;
d77e4531
PZ
4517 int i;
4518 bool reenable_ips = false;
4519
4520 /* The clocks have to be on to load the palette. */
53d9f4e9 4521 if (!crtc->state->active)
d77e4531
PZ
4522 return;
4523
50360403 4524 if (HAS_GMCH_DISPLAY(dev_priv->dev)) {
a65347ba 4525 if (intel_crtc->config->has_dsi_encoder)
d77e4531
PZ
4526 assert_dsi_pll_enabled(dev_priv);
4527 else
4528 assert_pll_enabled(dev_priv, pipe);
4529 }
4530
d77e4531
PZ
4531 /* Workaround : Do not read or write the pipe palette/gamma data while
4532 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4533 */
6e3c9717 4534 if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
d77e4531
PZ
4535 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4536 GAMMA_MODE_MODE_SPLIT)) {
4537 hsw_disable_ips(intel_crtc);
4538 reenable_ips = true;
4539 }
4540
4541 for (i = 0; i < 256; i++) {
f0f59a00 4542 i915_reg_t palreg;
f65a9c5b
VS
4543
4544 if (HAS_GMCH_DISPLAY(dev))
4545 palreg = PALETTE(pipe, i);
4546 else
4547 palreg = LGC_PALETTE(pipe, i);
4548
4549 I915_WRITE(palreg,
d77e4531
PZ
4550 (intel_crtc->lut_r[i] << 16) |
4551 (intel_crtc->lut_g[i] << 8) |
4552 intel_crtc->lut_b[i]);
4553 }
4554
4555 if (reenable_ips)
4556 hsw_enable_ips(intel_crtc);
4557}
4558
7cac945f 4559static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
d3eedb1a 4560{
7cac945f 4561 if (intel_crtc->overlay) {
d3eedb1a
VS
4562 struct drm_device *dev = intel_crtc->base.dev;
4563 struct drm_i915_private *dev_priv = dev->dev_private;
4564
4565 mutex_lock(&dev->struct_mutex);
4566 dev_priv->mm.interruptible = false;
4567 (void) intel_overlay_switch_off(intel_crtc->overlay);
4568 dev_priv->mm.interruptible = true;
4569 mutex_unlock(&dev->struct_mutex);
4570 }
4571
4572 /* Let userspace switch the overlay on again. In most cases userspace
4573 * has to recompute where to put it anyway.
4574 */
4575}
4576
87d4300a
ML
4577/**
4578 * intel_post_enable_primary - Perform operations after enabling primary plane
4579 * @crtc: the CRTC whose primary plane was just enabled
4580 *
4581 * Performs potentially sleeping operations that must be done after the primary
4582 * plane is enabled, such as updating FBC and IPS. Note that this may be
4583 * called due to an explicit primary plane update, or due to an implicit
4584 * re-enable that is caused when a sprite plane is updated to no longer
4585 * completely hide the primary plane.
4586 */
4587static void
4588intel_post_enable_primary(struct drm_crtc *crtc)
a5c4d7bc
VS
4589{
4590 struct drm_device *dev = crtc->dev;
87d4300a 4591 struct drm_i915_private *dev_priv = dev->dev_private;
a5c4d7bc
VS
4592 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4593 int pipe = intel_crtc->pipe;
a5c4d7bc 4594
87d4300a
ML
4595 /*
4596 * FIXME IPS should be fine as long as one plane is
4597 * enabled, but in practice it seems to have problems
4598 * when going from primary only to sprite only and vice
4599 * versa.
4600 */
a5c4d7bc
VS
4601 hsw_enable_ips(intel_crtc);
4602
f99d7069 4603 /*
87d4300a
ML
4604 * Gen2 reports pipe underruns whenever all planes are disabled.
4605 * So don't enable underrun reporting before at least some planes
4606 * are enabled.
4607 * FIXME: Need to fix the logic to work when we turn off all planes
4608 * but leave the pipe running.
f99d7069 4609 */
87d4300a
ML
4610 if (IS_GEN2(dev))
4611 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4612
aca7b684
VS
4613 /* Underruns don't always raise interrupts, so check manually. */
4614 intel_check_cpu_fifo_underruns(dev_priv);
4615 intel_check_pch_fifo_underruns(dev_priv);
a5c4d7bc
VS
4616}
4617
2622a081 4618/* FIXME move all this to pre_plane_update() with proper state tracking */
87d4300a
ML
4619static void
4620intel_pre_disable_primary(struct drm_crtc *crtc)
a5c4d7bc
VS
4621{
4622 struct drm_device *dev = crtc->dev;
4623 struct drm_i915_private *dev_priv = dev->dev_private;
4624 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4625 int pipe = intel_crtc->pipe;
a5c4d7bc 4626
87d4300a
ML
4627 /*
4628 * Gen2 reports pipe underruns whenever all planes are disabled.
4629 * So diasble underrun reporting before all the planes get disabled.
4630 * FIXME: Need to fix the logic to work when we turn off all planes
4631 * but leave the pipe running.
4632 */
4633 if (IS_GEN2(dev))
4634 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
a5c4d7bc 4635
2622a081
VS
4636 /*
4637 * FIXME IPS should be fine as long as one plane is
4638 * enabled, but in practice it seems to have problems
4639 * when going from primary only to sprite only and vice
4640 * versa.
4641 */
4642 hsw_disable_ips(intel_crtc);
4643}
4644
4645/* FIXME get rid of this and use pre_plane_update */
4646static void
4647intel_pre_disable_primary_noatomic(struct drm_crtc *crtc)
4648{
4649 struct drm_device *dev = crtc->dev;
4650 struct drm_i915_private *dev_priv = dev->dev_private;
4651 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4652 int pipe = intel_crtc->pipe;
4653
4654 intel_pre_disable_primary(crtc);
4655
87d4300a
ML
4656 /*
4657 * Vblank time updates from the shadow to live plane control register
4658 * are blocked if the memory self-refresh mode is active at that
4659 * moment. So to make sure the plane gets truly disabled, disable
4660 * first the self-refresh mode. The self-refresh enable bit in turn
4661 * will be checked/applied by the HW only at the next frame start
4662 * event which is after the vblank start event, so we need to have a
4663 * wait-for-vblank between disabling the plane and the pipe.
4664 */
262cd2e1 4665 if (HAS_GMCH_DISPLAY(dev)) {
87d4300a 4666 intel_set_memory_cxsr(dev_priv, false);
262cd2e1
VS
4667 dev_priv->wm.vlv.cxsr = false;
4668 intel_wait_for_vblank(dev, pipe);
4669 }
87d4300a
ML
4670}
4671
ac21b225
ML
4672static void intel_post_plane_update(struct intel_crtc *crtc)
4673{
4674 struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
92826fcd
ML
4675 struct intel_crtc_state *pipe_config =
4676 to_intel_crtc_state(crtc->base.state);
ac21b225 4677 struct drm_device *dev = crtc->base.dev;
ac21b225 4678
ac21b225
ML
4679 intel_frontbuffer_flip(dev, atomic->fb_bits);
4680
ab1d3a0e 4681 crtc->wm.cxsr_allowed = true;
852eb00d 4682
caed361d 4683 if (pipe_config->update_wm_post && pipe_config->base.active)
f015c551
VS
4684 intel_update_watermarks(&crtc->base);
4685
c80ac854 4686 if (atomic->update_fbc)
1eb52238 4687 intel_fbc_post_update(crtc);
ac21b225
ML
4688
4689 if (atomic->post_enable_primary)
4690 intel_post_enable_primary(&crtc->base);
4691
ac21b225
ML
4692 memset(atomic, 0, sizeof(*atomic));
4693}
4694
5c74cd73 4695static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state)
ac21b225 4696{
5c74cd73 4697 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
ac21b225 4698 struct drm_device *dev = crtc->base.dev;
eddfcbcd 4699 struct drm_i915_private *dev_priv = dev->dev_private;
ac21b225 4700 struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
ab1d3a0e
ML
4701 struct intel_crtc_state *pipe_config =
4702 to_intel_crtc_state(crtc->base.state);
5c74cd73
ML
4703 struct drm_atomic_state *old_state = old_crtc_state->base.state;
4704 struct drm_plane *primary = crtc->base.primary;
4705 struct drm_plane_state *old_pri_state =
4706 drm_atomic_get_existing_plane_state(old_state, primary);
4707 bool modeset = needs_modeset(&pipe_config->base);
ac21b225 4708
1eb52238
PZ
4709 if (atomic->update_fbc)
4710 intel_fbc_pre_update(crtc);
ac21b225 4711
5c74cd73
ML
4712 if (old_pri_state) {
4713 struct intel_plane_state *primary_state =
4714 to_intel_plane_state(primary->state);
4715 struct intel_plane_state *old_primary_state =
4716 to_intel_plane_state(old_pri_state);
4717
4718 if (old_primary_state->visible &&
4719 (modeset || !primary_state->visible))
4720 intel_pre_disable_primary(&crtc->base);
4721 }
852eb00d 4722
ab1d3a0e 4723 if (pipe_config->disable_cxsr) {
852eb00d 4724 crtc->wm.cxsr_allowed = false;
2dfd178d 4725
2622a081
VS
4726 /*
4727 * Vblank time updates from the shadow to live plane control register
4728 * are blocked if the memory self-refresh mode is active at that
4729 * moment. So to make sure the plane gets truly disabled, disable
4730 * first the self-refresh mode. The self-refresh enable bit in turn
4731 * will be checked/applied by the HW only at the next frame start
4732 * event which is after the vblank start event, so we need to have a
4733 * wait-for-vblank between disabling the plane and the pipe.
4734 */
4735 if (old_crtc_state->base.active) {
2dfd178d 4736 intel_set_memory_cxsr(dev_priv, false);
2622a081
VS
4737 dev_priv->wm.vlv.cxsr = false;
4738 intel_wait_for_vblank(dev, crtc->pipe);
4739 }
852eb00d 4740 }
92826fcd 4741
ed4a6a7c
MR
4742 /*
4743 * IVB workaround: must disable low power watermarks for at least
4744 * one frame before enabling scaling. LP watermarks can be re-enabled
4745 * when scaling is disabled.
4746 *
4747 * WaCxSRDisabledForSpriteScaling:ivb
4748 */
4749 if (pipe_config->disable_lp_wm) {
4750 ilk_disable_lp_wm(dev);
4751 intel_wait_for_vblank(dev, crtc->pipe);
4752 }
4753
4754 /*
4755 * If we're doing a modeset, we're done. No need to do any pre-vblank
4756 * watermark programming here.
4757 */
4758 if (needs_modeset(&pipe_config->base))
4759 return;
4760
4761 /*
4762 * For platforms that support atomic watermarks, program the
4763 * 'intermediate' watermarks immediately. On pre-gen9 platforms, these
4764 * will be the intermediate values that are safe for both pre- and
4765 * post- vblank; when vblank happens, the 'active' values will be set
4766 * to the final 'target' values and we'll do this again to get the
4767 * optimal watermarks. For gen9+ platforms, the values we program here
4768 * will be the final target values which will get automatically latched
4769 * at vblank time; no further programming will be necessary.
4770 *
4771 * If a platform hasn't been transitioned to atomic watermarks yet,
4772 * we'll continue to update watermarks the old way, if flags tell
4773 * us to.
4774 */
4775 if (dev_priv->display.initial_watermarks != NULL)
4776 dev_priv->display.initial_watermarks(pipe_config);
caed361d 4777 else if (pipe_config->update_wm_pre)
92826fcd 4778 intel_update_watermarks(&crtc->base);
ac21b225
ML
4779}
4780
d032ffa0 4781static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
87d4300a
ML
4782{
4783 struct drm_device *dev = crtc->dev;
4784 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
d032ffa0 4785 struct drm_plane *p;
87d4300a
ML
4786 int pipe = intel_crtc->pipe;
4787
7cac945f 4788 intel_crtc_dpms_overlay_disable(intel_crtc);
27321ae8 4789
d032ffa0
ML
4790 drm_for_each_plane_mask(p, dev, plane_mask)
4791 to_intel_plane(p)->disable_plane(p, crtc);
f98551ae 4792
f99d7069
DV
4793 /*
4794 * FIXME: Once we grow proper nuclear flip support out of this we need
4795 * to compute the mask of flip planes precisely. For the time being
4796 * consider this a flip to a NULL plane.
4797 */
4798 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
a5c4d7bc
VS
4799}
4800
f67a559d
JB
4801static void ironlake_crtc_enable(struct drm_crtc *crtc)
4802{
4803 struct drm_device *dev = crtc->dev;
4804 struct drm_i915_private *dev_priv = dev->dev_private;
4805 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4806 struct intel_encoder *encoder;
f67a559d 4807 int pipe = intel_crtc->pipe;
f67a559d 4808
53d9f4e9 4809 if (WARN_ON(intel_crtc->active))
f67a559d
JB
4810 return;
4811
81b088ca
VS
4812 if (intel_crtc->config->has_pch_encoder)
4813 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4814
6e3c9717 4815 if (intel_crtc->config->has_pch_encoder)
b14b1055
DV
4816 intel_prepare_shared_dpll(intel_crtc);
4817
6e3c9717 4818 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 4819 intel_dp_set_m_n(intel_crtc, M1_N1);
29407aab
DV
4820
4821 intel_set_pipe_timings(intel_crtc);
4822
6e3c9717 4823 if (intel_crtc->config->has_pch_encoder) {
29407aab 4824 intel_cpu_transcoder_set_m_n(intel_crtc,
6e3c9717 4825 &intel_crtc->config->fdi_m_n, NULL);
29407aab
DV
4826 }
4827
4828 ironlake_set_pipeconf(crtc);
4829
f67a559d 4830 intel_crtc->active = true;
8664281b 4831
a72e4c9f 4832 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
8664281b 4833
f6736a1a 4834 for_each_encoder_on_crtc(dev, crtc, encoder)
952735ee
DV
4835 if (encoder->pre_enable)
4836 encoder->pre_enable(encoder);
f67a559d 4837
6e3c9717 4838 if (intel_crtc->config->has_pch_encoder) {
fff367c7
DV
4839 /* Note: FDI PLL enabling _must_ be done before we enable the
4840 * cpu pipes, hence this is separate from all the other fdi/pch
4841 * enabling. */
88cefb6c 4842 ironlake_fdi_pll_enable(intel_crtc);
46b6f814
DV
4843 } else {
4844 assert_fdi_tx_disabled(dev_priv, pipe);
4845 assert_fdi_rx_disabled(dev_priv, pipe);
4846 }
f67a559d 4847
b074cec8 4848 ironlake_pfit_enable(intel_crtc);
f67a559d 4849
9c54c0dd
JB
4850 /*
4851 * On ILK+ LUT must be loaded before the pipe is running but with
4852 * clocks enabled
4853 */
4854 intel_crtc_load_lut(crtc);
4855
1d5bf5d9
ID
4856 if (dev_priv->display.initial_watermarks != NULL)
4857 dev_priv->display.initial_watermarks(intel_crtc->config);
e1fdc473 4858 intel_enable_pipe(intel_crtc);
f67a559d 4859
6e3c9717 4860 if (intel_crtc->config->has_pch_encoder)
f67a559d 4861 ironlake_pch_enable(crtc);
c98e9dcf 4862
f9b61ff6
DV
4863 assert_vblank_disabled(crtc);
4864 drm_crtc_vblank_on(crtc);
4865
fa5c73b1
DV
4866 for_each_encoder_on_crtc(dev, crtc, encoder)
4867 encoder->enable(encoder);
61b77ddd
DV
4868
4869 if (HAS_PCH_CPT(dev))
a1520318 4870 cpt_verify_modeset(dev, intel_crtc->pipe);
37ca8d4c
VS
4871
4872 /* Must wait for vblank to avoid spurious PCH FIFO underruns */
4873 if (intel_crtc->config->has_pch_encoder)
4874 intel_wait_for_vblank(dev, pipe);
4875 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
6be4a607
JB
4876}
4877
42db64ef
PZ
4878/* IPS only exists on ULT machines and is tied to pipe A. */
4879static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4880{
f5adf94e 4881 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
42db64ef
PZ
4882}
4883
4f771f10
PZ
4884static void haswell_crtc_enable(struct drm_crtc *crtc)
4885{
4886 struct drm_device *dev = crtc->dev;
4887 struct drm_i915_private *dev_priv = dev->dev_private;
4888 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4889 struct intel_encoder *encoder;
99d736a2
ML
4890 int pipe = intel_crtc->pipe, hsw_workaround_pipe;
4891 struct intel_crtc_state *pipe_config =
4892 to_intel_crtc_state(crtc->state);
4f771f10 4893
53d9f4e9 4894 if (WARN_ON(intel_crtc->active))
4f771f10
PZ
4895 return;
4896
81b088ca
VS
4897 if (intel_crtc->config->has_pch_encoder)
4898 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4899 false);
4900
8106ddbd 4901 if (intel_crtc->config->shared_dpll)
df8ad70c
DV
4902 intel_enable_shared_dpll(intel_crtc);
4903
6e3c9717 4904 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 4905 intel_dp_set_m_n(intel_crtc, M1_N1);
229fca97
DV
4906
4907 intel_set_pipe_timings(intel_crtc);
4908
6e3c9717
ACO
4909 if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4910 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4911 intel_crtc->config->pixel_multiplier - 1);
ebb69c95
CT
4912 }
4913
6e3c9717 4914 if (intel_crtc->config->has_pch_encoder) {
229fca97 4915 intel_cpu_transcoder_set_m_n(intel_crtc,
6e3c9717 4916 &intel_crtc->config->fdi_m_n, NULL);
229fca97
DV
4917 }
4918
4919 haswell_set_pipeconf(crtc);
4920
4921 intel_set_pipe_csc(crtc);
4922
4f771f10 4923 intel_crtc->active = true;
8664281b 4924
6b698516
DV
4925 if (intel_crtc->config->has_pch_encoder)
4926 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4927 else
4928 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4929
7d4aefd0 4930 for_each_encoder_on_crtc(dev, crtc, encoder) {
4f771f10
PZ
4931 if (encoder->pre_enable)
4932 encoder->pre_enable(encoder);
7d4aefd0 4933 }
4f771f10 4934
d2d65408 4935 if (intel_crtc->config->has_pch_encoder)
4fe9467d 4936 dev_priv->display.fdi_link_train(crtc);
4fe9467d 4937
a65347ba 4938 if (!intel_crtc->config->has_dsi_encoder)
7d4aefd0 4939 intel_ddi_enable_pipe_clock(intel_crtc);
4f771f10 4940
1c132b44 4941 if (INTEL_INFO(dev)->gen >= 9)
e435d6e5 4942 skylake_pfit_enable(intel_crtc);
ff6d9f55 4943 else
1c132b44 4944 ironlake_pfit_enable(intel_crtc);
4f771f10
PZ
4945
4946 /*
4947 * On ILK+ LUT must be loaded before the pipe is running but with
4948 * clocks enabled
4949 */
4950 intel_crtc_load_lut(crtc);
4951
1f544388 4952 intel_ddi_set_pipe_settings(crtc);
a65347ba 4953 if (!intel_crtc->config->has_dsi_encoder)
7d4aefd0 4954 intel_ddi_enable_transcoder_func(crtc);
4f771f10 4955
1d5bf5d9
ID
4956 if (dev_priv->display.initial_watermarks != NULL)
4957 dev_priv->display.initial_watermarks(pipe_config);
4958 else
4959 intel_update_watermarks(crtc);
e1fdc473 4960 intel_enable_pipe(intel_crtc);
42db64ef 4961
6e3c9717 4962 if (intel_crtc->config->has_pch_encoder)
1507e5bd 4963 lpt_pch_enable(crtc);
4f771f10 4964
a65347ba 4965 if (intel_crtc->config->dp_encoder_is_mst)
0e32b39c
DA
4966 intel_ddi_set_vc_payload_alloc(crtc, true);
4967
f9b61ff6
DV
4968 assert_vblank_disabled(crtc);
4969 drm_crtc_vblank_on(crtc);
4970
8807e55b 4971 for_each_encoder_on_crtc(dev, crtc, encoder) {
4f771f10 4972 encoder->enable(encoder);
8807e55b
JN
4973 intel_opregion_notify_encoder(encoder, true);
4974 }
4f771f10 4975
6b698516
DV
4976 if (intel_crtc->config->has_pch_encoder) {
4977 intel_wait_for_vblank(dev, pipe);
4978 intel_wait_for_vblank(dev, pipe);
4979 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
d2d65408
VS
4980 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4981 true);
6b698516 4982 }
d2d65408 4983
e4916946
PZ
4984 /* If we change the relative order between pipe/planes enabling, we need
4985 * to change the workaround. */
99d736a2
ML
4986 hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
4987 if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
4988 intel_wait_for_vblank(dev, hsw_workaround_pipe);
4989 intel_wait_for_vblank(dev, hsw_workaround_pipe);
4990 }
4f771f10
PZ
4991}
4992
bfd16b2a 4993static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
3f8dce3a
DV
4994{
4995 struct drm_device *dev = crtc->base.dev;
4996 struct drm_i915_private *dev_priv = dev->dev_private;
4997 int pipe = crtc->pipe;
4998
4999 /* To avoid upsetting the power well on haswell only disable the pfit if
5000 * it's in use. The hw state code will make sure we get this right. */
bfd16b2a 5001 if (force || crtc->config->pch_pfit.enabled) {
3f8dce3a
DV
5002 I915_WRITE(PF_CTL(pipe), 0);
5003 I915_WRITE(PF_WIN_POS(pipe), 0);
5004 I915_WRITE(PF_WIN_SZ(pipe), 0);
5005 }
5006}
5007
6be4a607
JB
5008static void ironlake_crtc_disable(struct drm_crtc *crtc)
5009{
5010 struct drm_device *dev = crtc->dev;
5011 struct drm_i915_private *dev_priv = dev->dev_private;
5012 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 5013 struct intel_encoder *encoder;
6be4a607 5014 int pipe = intel_crtc->pipe;
b52eb4dc 5015
37ca8d4c
VS
5016 if (intel_crtc->config->has_pch_encoder)
5017 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5018
ea9d758d
DV
5019 for_each_encoder_on_crtc(dev, crtc, encoder)
5020 encoder->disable(encoder);
5021
f9b61ff6
DV
5022 drm_crtc_vblank_off(crtc);
5023 assert_vblank_disabled(crtc);
5024
3860b2ec
VS
5025 /*
5026 * Sometimes spurious CPU pipe underruns happen when the
5027 * pipe is already disabled, but FDI RX/TX is still enabled.
5028 * Happens at least with VGA+HDMI cloning. Suppress them.
5029 */
5030 if (intel_crtc->config->has_pch_encoder)
5031 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5032
575f7ab7 5033 intel_disable_pipe(intel_crtc);
32f9d658 5034
bfd16b2a 5035 ironlake_pfit_disable(intel_crtc, false);
2c07245f 5036
3860b2ec 5037 if (intel_crtc->config->has_pch_encoder) {
5a74f70a 5038 ironlake_fdi_disable(crtc);
3860b2ec
VS
5039 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5040 }
5a74f70a 5041
bf49ec8c
DV
5042 for_each_encoder_on_crtc(dev, crtc, encoder)
5043 if (encoder->post_disable)
5044 encoder->post_disable(encoder);
2c07245f 5045
6e3c9717 5046 if (intel_crtc->config->has_pch_encoder) {
d925c59a 5047 ironlake_disable_pch_transcoder(dev_priv, pipe);
6be4a607 5048
d925c59a 5049 if (HAS_PCH_CPT(dev)) {
f0f59a00
VS
5050 i915_reg_t reg;
5051 u32 temp;
5052
d925c59a
DV
5053 /* disable TRANS_DP_CTL */
5054 reg = TRANS_DP_CTL(pipe);
5055 temp = I915_READ(reg);
5056 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5057 TRANS_DP_PORT_SEL_MASK);
5058 temp |= TRANS_DP_PORT_SEL_NONE;
5059 I915_WRITE(reg, temp);
5060
5061 /* disable DPLL_SEL */
5062 temp = I915_READ(PCH_DPLL_SEL);
11887397 5063 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
d925c59a 5064 I915_WRITE(PCH_DPLL_SEL, temp);
9db4a9c7 5065 }
e3421a18 5066
d925c59a
DV
5067 ironlake_fdi_pll_disable(intel_crtc);
5068 }
81b088ca
VS
5069
5070 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
6be4a607 5071}
1b3c7a47 5072
4f771f10 5073static void haswell_crtc_disable(struct drm_crtc *crtc)
ee7b9f93 5074{
4f771f10
PZ
5075 struct drm_device *dev = crtc->dev;
5076 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93 5077 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4f771f10 5078 struct intel_encoder *encoder;
6e3c9717 5079 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
ee7b9f93 5080
d2d65408
VS
5081 if (intel_crtc->config->has_pch_encoder)
5082 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5083 false);
5084
8807e55b
JN
5085 for_each_encoder_on_crtc(dev, crtc, encoder) {
5086 intel_opregion_notify_encoder(encoder, false);
4f771f10 5087 encoder->disable(encoder);
8807e55b 5088 }
4f771f10 5089
f9b61ff6
DV
5090 drm_crtc_vblank_off(crtc);
5091 assert_vblank_disabled(crtc);
5092
575f7ab7 5093 intel_disable_pipe(intel_crtc);
4f771f10 5094
6e3c9717 5095 if (intel_crtc->config->dp_encoder_is_mst)
a4bf214f
VS
5096 intel_ddi_set_vc_payload_alloc(crtc, false);
5097
a65347ba 5098 if (!intel_crtc->config->has_dsi_encoder)
7d4aefd0 5099 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4f771f10 5100
1c132b44 5101 if (INTEL_INFO(dev)->gen >= 9)
e435d6e5 5102 skylake_scaler_disable(intel_crtc);
ff6d9f55 5103 else
bfd16b2a 5104 ironlake_pfit_disable(intel_crtc, false);
4f771f10 5105
a65347ba 5106 if (!intel_crtc->config->has_dsi_encoder)
7d4aefd0 5107 intel_ddi_disable_pipe_clock(intel_crtc);
4f771f10 5108
97b040aa
ID
5109 for_each_encoder_on_crtc(dev, crtc, encoder)
5110 if (encoder->post_disable)
5111 encoder->post_disable(encoder);
81b088ca 5112
92966a37
VS
5113 if (intel_crtc->config->has_pch_encoder) {
5114 lpt_disable_pch_transcoder(dev_priv);
503a74e9 5115 lpt_disable_iclkip(dev_priv);
92966a37
VS
5116 intel_ddi_fdi_disable(crtc);
5117
81b088ca
VS
5118 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5119 true);
92966a37 5120 }
4f771f10
PZ
5121}
5122
2dd24552
JB
5123static void i9xx_pfit_enable(struct intel_crtc *crtc)
5124{
5125 struct drm_device *dev = crtc->base.dev;
5126 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 5127 struct intel_crtc_state *pipe_config = crtc->config;
2dd24552 5128
681a8504 5129 if (!pipe_config->gmch_pfit.control)
2dd24552
JB
5130 return;
5131
2dd24552 5132 /*
c0b03411
DV
5133 * The panel fitter should only be adjusted whilst the pipe is disabled,
5134 * according to register description and PRM.
2dd24552 5135 */
c0b03411
DV
5136 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5137 assert_pipe_disabled(dev_priv, crtc->pipe);
2dd24552 5138
b074cec8
JB
5139 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5140 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5a80c45c
DV
5141
5142 /* Border color in case we don't scale up to the full screen. Black by
5143 * default, change to something else for debugging. */
5144 I915_WRITE(BCLRPAT(crtc->pipe), 0);
2dd24552
JB
5145}
5146
d05410f9
DA
5147static enum intel_display_power_domain port_to_power_domain(enum port port)
5148{
5149 switch (port) {
5150 case PORT_A:
6331a704 5151 return POWER_DOMAIN_PORT_DDI_A_LANES;
d05410f9 5152 case PORT_B:
6331a704 5153 return POWER_DOMAIN_PORT_DDI_B_LANES;
d05410f9 5154 case PORT_C:
6331a704 5155 return POWER_DOMAIN_PORT_DDI_C_LANES;
d05410f9 5156 case PORT_D:
6331a704 5157 return POWER_DOMAIN_PORT_DDI_D_LANES;
d8e19f99 5158 case PORT_E:
6331a704 5159 return POWER_DOMAIN_PORT_DDI_E_LANES;
d05410f9 5160 default:
b9fec167 5161 MISSING_CASE(port);
d05410f9
DA
5162 return POWER_DOMAIN_PORT_OTHER;
5163 }
5164}
5165
25f78f58
VS
5166static enum intel_display_power_domain port_to_aux_power_domain(enum port port)
5167{
5168 switch (port) {
5169 case PORT_A:
5170 return POWER_DOMAIN_AUX_A;
5171 case PORT_B:
5172 return POWER_DOMAIN_AUX_B;
5173 case PORT_C:
5174 return POWER_DOMAIN_AUX_C;
5175 case PORT_D:
5176 return POWER_DOMAIN_AUX_D;
5177 case PORT_E:
5178 /* FIXME: Check VBT for actual wiring of PORT E */
5179 return POWER_DOMAIN_AUX_D;
5180 default:
b9fec167 5181 MISSING_CASE(port);
25f78f58
VS
5182 return POWER_DOMAIN_AUX_A;
5183 }
5184}
5185
319be8ae
ID
5186enum intel_display_power_domain
5187intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5188{
5189 struct drm_device *dev = intel_encoder->base.dev;
5190 struct intel_digital_port *intel_dig_port;
5191
5192 switch (intel_encoder->type) {
5193 case INTEL_OUTPUT_UNKNOWN:
5194 /* Only DDI platforms should ever use this output type */
5195 WARN_ON_ONCE(!HAS_DDI(dev));
5196 case INTEL_OUTPUT_DISPLAYPORT:
5197 case INTEL_OUTPUT_HDMI:
5198 case INTEL_OUTPUT_EDP:
5199 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
d05410f9 5200 return port_to_power_domain(intel_dig_port->port);
0e32b39c
DA
5201 case INTEL_OUTPUT_DP_MST:
5202 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5203 return port_to_power_domain(intel_dig_port->port);
319be8ae
ID
5204 case INTEL_OUTPUT_ANALOG:
5205 return POWER_DOMAIN_PORT_CRT;
5206 case INTEL_OUTPUT_DSI:
5207 return POWER_DOMAIN_PORT_DSI;
5208 default:
5209 return POWER_DOMAIN_PORT_OTHER;
5210 }
5211}
5212
25f78f58
VS
5213enum intel_display_power_domain
5214intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder)
5215{
5216 struct drm_device *dev = intel_encoder->base.dev;
5217 struct intel_digital_port *intel_dig_port;
5218
5219 switch (intel_encoder->type) {
5220 case INTEL_OUTPUT_UNKNOWN:
651174a4
ID
5221 case INTEL_OUTPUT_HDMI:
5222 /*
5223 * Only DDI platforms should ever use these output types.
5224 * We can get here after the HDMI detect code has already set
5225 * the type of the shared encoder. Since we can't be sure
5226 * what's the status of the given connectors, play safe and
5227 * run the DP detection too.
5228 */
25f78f58
VS
5229 WARN_ON_ONCE(!HAS_DDI(dev));
5230 case INTEL_OUTPUT_DISPLAYPORT:
5231 case INTEL_OUTPUT_EDP:
5232 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5233 return port_to_aux_power_domain(intel_dig_port->port);
5234 case INTEL_OUTPUT_DP_MST:
5235 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5236 return port_to_aux_power_domain(intel_dig_port->port);
5237 default:
b9fec167 5238 MISSING_CASE(intel_encoder->type);
25f78f58
VS
5239 return POWER_DOMAIN_AUX_A;
5240 }
5241}
5242
74bff5f9
ML
5243static unsigned long get_crtc_power_domains(struct drm_crtc *crtc,
5244 struct intel_crtc_state *crtc_state)
77d22dca 5245{
319be8ae 5246 struct drm_device *dev = crtc->dev;
74bff5f9 5247 struct drm_encoder *encoder;
319be8ae
ID
5248 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5249 enum pipe pipe = intel_crtc->pipe;
77d22dca 5250 unsigned long mask;
74bff5f9 5251 enum transcoder transcoder = crtc_state->cpu_transcoder;
77d22dca 5252
74bff5f9 5253 if (!crtc_state->base.active)
292b990e
ML
5254 return 0;
5255
77d22dca
ID
5256 mask = BIT(POWER_DOMAIN_PIPE(pipe));
5257 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
74bff5f9
ML
5258 if (crtc_state->pch_pfit.enabled ||
5259 crtc_state->pch_pfit.force_thru)
77d22dca
ID
5260 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5261
74bff5f9
ML
5262 drm_for_each_encoder_mask(encoder, dev, crtc_state->base.encoder_mask) {
5263 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5264
319be8ae 5265 mask |= BIT(intel_display_port_power_domain(intel_encoder));
74bff5f9 5266 }
319be8ae 5267
77d22dca
ID
5268 return mask;
5269}
5270
74bff5f9
ML
5271static unsigned long
5272modeset_get_crtc_power_domains(struct drm_crtc *crtc,
5273 struct intel_crtc_state *crtc_state)
77d22dca 5274{
292b990e
ML
5275 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5276 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5277 enum intel_display_power_domain domain;
5278 unsigned long domains, new_domains, old_domains;
77d22dca 5279
292b990e 5280 old_domains = intel_crtc->enabled_power_domains;
74bff5f9
ML
5281 intel_crtc->enabled_power_domains = new_domains =
5282 get_crtc_power_domains(crtc, crtc_state);
77d22dca 5283
292b990e
ML
5284 domains = new_domains & ~old_domains;
5285
5286 for_each_power_domain(domain, domains)
5287 intel_display_power_get(dev_priv, domain);
5288
5289 return old_domains & ~new_domains;
5290}
5291
5292static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5293 unsigned long domains)
5294{
5295 enum intel_display_power_domain domain;
5296
5297 for_each_power_domain(domain, domains)
5298 intel_display_power_put(dev_priv, domain);
5299}
77d22dca 5300
adafdc6f
MK
5301static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
5302{
5303 int max_cdclk_freq = dev_priv->max_cdclk_freq;
5304
5305 if (INTEL_INFO(dev_priv)->gen >= 9 ||
5306 IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5307 return max_cdclk_freq;
5308 else if (IS_CHERRYVIEW(dev_priv))
5309 return max_cdclk_freq*95/100;
5310 else if (INTEL_INFO(dev_priv)->gen < 4)
5311 return 2*max_cdclk_freq*90/100;
5312 else
5313 return max_cdclk_freq*90/100;
5314}
5315
560a7ae4
DL
5316static void intel_update_max_cdclk(struct drm_device *dev)
5317{
5318 struct drm_i915_private *dev_priv = dev->dev_private;
5319
ef11bdb3 5320 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
560a7ae4
DL
5321 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5322
5323 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5324 dev_priv->max_cdclk_freq = 675000;
5325 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5326 dev_priv->max_cdclk_freq = 540000;
5327 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5328 dev_priv->max_cdclk_freq = 450000;
5329 else
5330 dev_priv->max_cdclk_freq = 337500;
5331 } else if (IS_BROADWELL(dev)) {
5332 /*
5333 * FIXME with extra cooling we can allow
5334 * 540 MHz for ULX and 675 Mhz for ULT.
5335 * How can we know if extra cooling is
5336 * available? PCI ID, VTB, something else?
5337 */
5338 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5339 dev_priv->max_cdclk_freq = 450000;
5340 else if (IS_BDW_ULX(dev))
5341 dev_priv->max_cdclk_freq = 450000;
5342 else if (IS_BDW_ULT(dev))
5343 dev_priv->max_cdclk_freq = 540000;
5344 else
5345 dev_priv->max_cdclk_freq = 675000;
0904deaf
MK
5346 } else if (IS_CHERRYVIEW(dev)) {
5347 dev_priv->max_cdclk_freq = 320000;
560a7ae4
DL
5348 } else if (IS_VALLEYVIEW(dev)) {
5349 dev_priv->max_cdclk_freq = 400000;
5350 } else {
5351 /* otherwise assume cdclk is fixed */
5352 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5353 }
5354
adafdc6f
MK
5355 dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
5356
560a7ae4
DL
5357 DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5358 dev_priv->max_cdclk_freq);
adafdc6f
MK
5359
5360 DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5361 dev_priv->max_dotclk_freq);
560a7ae4
DL
5362}
5363
5364static void intel_update_cdclk(struct drm_device *dev)
5365{
5366 struct drm_i915_private *dev_priv = dev->dev_private;
5367
5368 dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5369 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5370 dev_priv->cdclk_freq);
5371
5372 /*
5373 * Program the gmbus_freq based on the cdclk frequency.
5374 * BSpec erroneously claims we should aim for 4MHz, but
5375 * in fact 1MHz is the correct frequency.
5376 */
666a4537 5377 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
560a7ae4
DL
5378 /*
5379 * Program the gmbus_freq based on the cdclk frequency.
5380 * BSpec erroneously claims we should aim for 4MHz, but
5381 * in fact 1MHz is the correct frequency.
5382 */
5383 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5384 }
5385
5386 if (dev_priv->max_cdclk_freq == 0)
5387 intel_update_max_cdclk(dev);
5388}
5389
70d0c574 5390static void broxton_set_cdclk(struct drm_device *dev, int frequency)
f8437dd1
VK
5391{
5392 struct drm_i915_private *dev_priv = dev->dev_private;
5393 uint32_t divider;
5394 uint32_t ratio;
5395 uint32_t current_freq;
5396 int ret;
5397
5398 /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5399 switch (frequency) {
5400 case 144000:
5401 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5402 ratio = BXT_DE_PLL_RATIO(60);
5403 break;
5404 case 288000:
5405 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5406 ratio = BXT_DE_PLL_RATIO(60);
5407 break;
5408 case 384000:
5409 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5410 ratio = BXT_DE_PLL_RATIO(60);
5411 break;
5412 case 576000:
5413 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5414 ratio = BXT_DE_PLL_RATIO(60);
5415 break;
5416 case 624000:
5417 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5418 ratio = BXT_DE_PLL_RATIO(65);
5419 break;
5420 case 19200:
5421 /*
5422 * Bypass frequency with DE PLL disabled. Init ratio, divider
5423 * to suppress GCC warning.
5424 */
5425 ratio = 0;
5426 divider = 0;
5427 break;
5428 default:
5429 DRM_ERROR("unsupported CDCLK freq %d", frequency);
5430
5431 return;
5432 }
5433
5434 mutex_lock(&dev_priv->rps.hw_lock);
5435 /* Inform power controller of upcoming frequency change */
5436 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5437 0x80000000);
5438 mutex_unlock(&dev_priv->rps.hw_lock);
5439
5440 if (ret) {
5441 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5442 ret, frequency);
5443 return;
5444 }
5445
5446 current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5447 /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5448 current_freq = current_freq * 500 + 1000;
5449
5450 /*
5451 * DE PLL has to be disabled when
5452 * - setting to 19.2MHz (bypass, PLL isn't used)
5453 * - before setting to 624MHz (PLL needs toggling)
5454 * - before setting to any frequency from 624MHz (PLL needs toggling)
5455 */
5456 if (frequency == 19200 || frequency == 624000 ||
5457 current_freq == 624000) {
5458 I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5459 /* Timeout 200us */
5460 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5461 1))
5462 DRM_ERROR("timout waiting for DE PLL unlock\n");
5463 }
5464
5465 if (frequency != 19200) {
5466 uint32_t val;
5467
5468 val = I915_READ(BXT_DE_PLL_CTL);
5469 val &= ~BXT_DE_PLL_RATIO_MASK;
5470 val |= ratio;
5471 I915_WRITE(BXT_DE_PLL_CTL, val);
5472
5473 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5474 /* Timeout 200us */
5475 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5476 DRM_ERROR("timeout waiting for DE PLL lock\n");
5477
5478 val = I915_READ(CDCLK_CTL);
5479 val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
5480 val |= divider;
5481 /*
5482 * Disable SSA Precharge when CD clock frequency < 500 MHz,
5483 * enable otherwise.
5484 */
5485 val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5486 if (frequency >= 500000)
5487 val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5488
5489 val &= ~CDCLK_FREQ_DECIMAL_MASK;
5490 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5491 val |= (frequency - 1000) / 500;
5492 I915_WRITE(CDCLK_CTL, val);
5493 }
5494
5495 mutex_lock(&dev_priv->rps.hw_lock);
5496 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5497 DIV_ROUND_UP(frequency, 25000));
5498 mutex_unlock(&dev_priv->rps.hw_lock);
5499
5500 if (ret) {
5501 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5502 ret, frequency);
5503 return;
5504 }
5505
a47871bd 5506 intel_update_cdclk(dev);
f8437dd1
VK
5507}
5508
5509void broxton_init_cdclk(struct drm_device *dev)
5510{
5511 struct drm_i915_private *dev_priv = dev->dev_private;
5512 uint32_t val;
5513
5514 /*
5515 * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
5516 * or else the reset will hang because there is no PCH to respond.
5517 * Move the handshake programming to initialization sequence.
5518 * Previously was left up to BIOS.
5519 */
5520 val = I915_READ(HSW_NDE_RSTWRN_OPT);
5521 val &= ~RESET_PCH_HANDSHAKE_ENABLE;
5522 I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
5523
5524 /* Enable PG1 for cdclk */
5525 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5526
5527 /* check if cd clock is enabled */
5528 if (I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE) {
5529 DRM_DEBUG_KMS("Display already initialized\n");
5530 return;
5531 }
5532
5533 /*
5534 * FIXME:
5535 * - The initial CDCLK needs to be read from VBT.
5536 * Need to make this change after VBT has changes for BXT.
5537 * - check if setting the max (or any) cdclk freq is really necessary
5538 * here, it belongs to modeset time
5539 */
5540 broxton_set_cdclk(dev, 624000);
5541
5542 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
22e02c0b
VS
5543 POSTING_READ(DBUF_CTL);
5544
f8437dd1
VK
5545 udelay(10);
5546
5547 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5548 DRM_ERROR("DBuf power enable timeout!\n");
5549}
5550
5551void broxton_uninit_cdclk(struct drm_device *dev)
5552{
5553 struct drm_i915_private *dev_priv = dev->dev_private;
5554
5555 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
22e02c0b
VS
5556 POSTING_READ(DBUF_CTL);
5557
f8437dd1
VK
5558 udelay(10);
5559
5560 if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5561 DRM_ERROR("DBuf power disable timeout!\n");
5562
5563 /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5564 broxton_set_cdclk(dev, 19200);
5565
5566 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5567}
5568
5d96d8af
DL
5569static const struct skl_cdclk_entry {
5570 unsigned int freq;
5571 unsigned int vco;
5572} skl_cdclk_frequencies[] = {
5573 { .freq = 308570, .vco = 8640 },
5574 { .freq = 337500, .vco = 8100 },
5575 { .freq = 432000, .vco = 8640 },
5576 { .freq = 450000, .vco = 8100 },
5577 { .freq = 540000, .vco = 8100 },
5578 { .freq = 617140, .vco = 8640 },
5579 { .freq = 675000, .vco = 8100 },
5580};
5581
5582static unsigned int skl_cdclk_decimal(unsigned int freq)
5583{
5584 return (freq - 1000) / 500;
5585}
5586
5587static unsigned int skl_cdclk_get_vco(unsigned int freq)
5588{
5589 unsigned int i;
5590
5591 for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) {
5592 const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i];
5593
5594 if (e->freq == freq)
5595 return e->vco;
5596 }
5597
5598 return 8100;
5599}
5600
5601static void
5602skl_dpll0_enable(struct drm_i915_private *dev_priv, unsigned int required_vco)
5603{
5604 unsigned int min_freq;
5605 u32 val;
5606
5607 /* select the minimum CDCLK before enabling DPLL 0 */
5608 val = I915_READ(CDCLK_CTL);
5609 val &= ~CDCLK_FREQ_SEL_MASK | ~CDCLK_FREQ_DECIMAL_MASK;
5610 val |= CDCLK_FREQ_337_308;
5611
5612 if (required_vco == 8640)
5613 min_freq = 308570;
5614 else
5615 min_freq = 337500;
5616
5617 val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_freq);
5618
5619 I915_WRITE(CDCLK_CTL, val);
5620 POSTING_READ(CDCLK_CTL);
5621
5622 /*
5623 * We always enable DPLL0 with the lowest link rate possible, but still
5624 * taking into account the VCO required to operate the eDP panel at the
5625 * desired frequency. The usual DP link rates operate with a VCO of
5626 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5627 * The modeset code is responsible for the selection of the exact link
5628 * rate later on, with the constraint of choosing a frequency that
5629 * works with required_vco.
5630 */
5631 val = I915_READ(DPLL_CTRL1);
5632
5633 val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5634 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5635 val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5636 if (required_vco == 8640)
5637 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5638 SKL_DPLL0);
5639 else
5640 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5641 SKL_DPLL0);
5642
5643 I915_WRITE(DPLL_CTRL1, val);
5644 POSTING_READ(DPLL_CTRL1);
5645
5646 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5647
5648 if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
5649 DRM_ERROR("DPLL0 not locked\n");
5650}
5651
5652static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5653{
5654 int ret;
5655 u32 val;
5656
5657 /* inform PCU we want to change CDCLK */
5658 val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5659 mutex_lock(&dev_priv->rps.hw_lock);
5660 ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5661 mutex_unlock(&dev_priv->rps.hw_lock);
5662
5663 return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5664}
5665
5666static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5667{
5668 unsigned int i;
5669
5670 for (i = 0; i < 15; i++) {
5671 if (skl_cdclk_pcu_ready(dev_priv))
5672 return true;
5673 udelay(10);
5674 }
5675
5676 return false;
5677}
5678
5679static void skl_set_cdclk(struct drm_i915_private *dev_priv, unsigned int freq)
5680{
560a7ae4 5681 struct drm_device *dev = dev_priv->dev;
5d96d8af
DL
5682 u32 freq_select, pcu_ack;
5683
5684 DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq);
5685
5686 if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5687 DRM_ERROR("failed to inform PCU about cdclk change\n");
5688 return;
5689 }
5690
5691 /* set CDCLK_CTL */
5692 switch(freq) {
5693 case 450000:
5694 case 432000:
5695 freq_select = CDCLK_FREQ_450_432;
5696 pcu_ack = 1;
5697 break;
5698 case 540000:
5699 freq_select = CDCLK_FREQ_540;
5700 pcu_ack = 2;
5701 break;
5702 case 308570:
5703 case 337500:
5704 default:
5705 freq_select = CDCLK_FREQ_337_308;
5706 pcu_ack = 0;
5707 break;
5708 case 617140:
5709 case 675000:
5710 freq_select = CDCLK_FREQ_675_617;
5711 pcu_ack = 3;
5712 break;
5713 }
5714
5715 I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(freq));
5716 POSTING_READ(CDCLK_CTL);
5717
5718 /* inform PCU of the change */
5719 mutex_lock(&dev_priv->rps.hw_lock);
5720 sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5721 mutex_unlock(&dev_priv->rps.hw_lock);
560a7ae4
DL
5722
5723 intel_update_cdclk(dev);
5d96d8af
DL
5724}
5725
5726void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5727{
5728 /* disable DBUF power */
5729 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5730 POSTING_READ(DBUF_CTL);
5731
5732 udelay(10);
5733
5734 if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5735 DRM_ERROR("DBuf power disable timeout\n");
5736
ab96c1ee
ID
5737 /* disable DPLL0 */
5738 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
5739 if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
5740 DRM_ERROR("Couldn't disable DPLL0\n");
5d96d8af
DL
5741}
5742
5743void skl_init_cdclk(struct drm_i915_private *dev_priv)
5744{
5d96d8af
DL
5745 unsigned int required_vco;
5746
39d9b85a
GW
5747 /* DPLL0 not enabled (happens on early BIOS versions) */
5748 if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE)) {
5749 /* enable DPLL0 */
5750 required_vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk);
5751 skl_dpll0_enable(dev_priv, required_vco);
5d96d8af
DL
5752 }
5753
5d96d8af
DL
5754 /* set CDCLK to the frequency the BIOS chose */
5755 skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk);
5756
5757 /* enable DBUF power */
5758 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5759 POSTING_READ(DBUF_CTL);
5760
5761 udelay(10);
5762
5763 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5764 DRM_ERROR("DBuf power enable timeout\n");
5765}
5766
c73666f3
SK
5767int skl_sanitize_cdclk(struct drm_i915_private *dev_priv)
5768{
5769 uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
5770 uint32_t cdctl = I915_READ(CDCLK_CTL);
5771 int freq = dev_priv->skl_boot_cdclk;
5772
f1b391a5
SK
5773 /*
5774 * check if the pre-os intialized the display
5775 * There is SWF18 scratchpad register defined which is set by the
5776 * pre-os which can be used by the OS drivers to check the status
5777 */
5778 if ((I915_READ(SWF_ILK(0x18)) & 0x00FFFFFF) == 0)
5779 goto sanitize;
5780
c73666f3
SK
5781 /* Is PLL enabled and locked ? */
5782 if (!((lcpll1 & LCPLL_PLL_ENABLE) && (lcpll1 & LCPLL_PLL_LOCK)))
5783 goto sanitize;
5784
5785 /* DPLL okay; verify the cdclock
5786 *
5787 * Noticed in some instances that the freq selection is correct but
5788 * decimal part is programmed wrong from BIOS where pre-os does not
5789 * enable display. Verify the same as well.
5790 */
5791 if (cdctl == ((cdctl & CDCLK_FREQ_SEL_MASK) | skl_cdclk_decimal(freq)))
5792 /* All well; nothing to sanitize */
5793 return false;
5794sanitize:
5795 /*
5796 * As of now initialize with max cdclk till
5797 * we get dynamic cdclk support
5798 * */
5799 dev_priv->skl_boot_cdclk = dev_priv->max_cdclk_freq;
5800 skl_init_cdclk(dev_priv);
5801
5802 /* we did have to sanitize */
5803 return true;
5804}
5805
30a970c6
JB
5806/* Adjust CDclk dividers to allow high res or save power if possible */
5807static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5808{
5809 struct drm_i915_private *dev_priv = dev->dev_private;
5810 u32 val, cmd;
5811
164dfd28
VK
5812 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5813 != dev_priv->cdclk_freq);
d60c4473 5814
dfcab17e 5815 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
30a970c6 5816 cmd = 2;
dfcab17e 5817 else if (cdclk == 266667)
30a970c6
JB
5818 cmd = 1;
5819 else
5820 cmd = 0;
5821
5822 mutex_lock(&dev_priv->rps.hw_lock);
5823 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5824 val &= ~DSPFREQGUAR_MASK;
5825 val |= (cmd << DSPFREQGUAR_SHIFT);
5826 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5827 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5828 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5829 50)) {
5830 DRM_ERROR("timed out waiting for CDclk change\n");
5831 }
5832 mutex_unlock(&dev_priv->rps.hw_lock);
5833
54433e91
VS
5834 mutex_lock(&dev_priv->sb_lock);
5835
dfcab17e 5836 if (cdclk == 400000) {
6bcda4f0 5837 u32 divider;
30a970c6 5838
6bcda4f0 5839 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
30a970c6 5840
30a970c6
JB
5841 /* adjust cdclk divider */
5842 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
87d5d259 5843 val &= ~CCK_FREQUENCY_VALUES;
30a970c6
JB
5844 val |= divider;
5845 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
a877e801
VS
5846
5847 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
87d5d259 5848 CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
a877e801
VS
5849 50))
5850 DRM_ERROR("timed out waiting for CDclk change\n");
30a970c6
JB
5851 }
5852
30a970c6
JB
5853 /* adjust self-refresh exit latency value */
5854 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5855 val &= ~0x7f;
5856
5857 /*
5858 * For high bandwidth configs, we set a higher latency in the bunit
5859 * so that the core display fetch happens in time to avoid underruns.
5860 */
dfcab17e 5861 if (cdclk == 400000)
30a970c6
JB
5862 val |= 4500 / 250; /* 4.5 usec */
5863 else
5864 val |= 3000 / 250; /* 3.0 usec */
5865 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
54433e91 5866
a580516d 5867 mutex_unlock(&dev_priv->sb_lock);
30a970c6 5868
b6283055 5869 intel_update_cdclk(dev);
30a970c6
JB
5870}
5871
383c5a6a
VS
5872static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5873{
5874 struct drm_i915_private *dev_priv = dev->dev_private;
5875 u32 val, cmd;
5876
164dfd28
VK
5877 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5878 != dev_priv->cdclk_freq);
383c5a6a
VS
5879
5880 switch (cdclk) {
383c5a6a
VS
5881 case 333333:
5882 case 320000:
383c5a6a 5883 case 266667:
383c5a6a 5884 case 200000:
383c5a6a
VS
5885 break;
5886 default:
5f77eeb0 5887 MISSING_CASE(cdclk);
383c5a6a
VS
5888 return;
5889 }
5890
9d0d3fda
VS
5891 /*
5892 * Specs are full of misinformation, but testing on actual
5893 * hardware has shown that we just need to write the desired
5894 * CCK divider into the Punit register.
5895 */
5896 cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5897
383c5a6a
VS
5898 mutex_lock(&dev_priv->rps.hw_lock);
5899 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5900 val &= ~DSPFREQGUAR_MASK_CHV;
5901 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5902 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5903 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5904 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5905 50)) {
5906 DRM_ERROR("timed out waiting for CDclk change\n");
5907 }
5908 mutex_unlock(&dev_priv->rps.hw_lock);
5909
b6283055 5910 intel_update_cdclk(dev);
383c5a6a
VS
5911}
5912
30a970c6
JB
5913static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5914 int max_pixclk)
5915{
6bcda4f0 5916 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
6cca3195 5917 int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
29dc7ef3 5918
30a970c6
JB
5919 /*
5920 * Really only a few cases to deal with, as only 4 CDclks are supported:
5921 * 200MHz
5922 * 267MHz
29dc7ef3 5923 * 320/333MHz (depends on HPLL freq)
6cca3195
VS
5924 * 400MHz (VLV only)
5925 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5926 * of the lower bin and adjust if needed.
e37c67a1
VS
5927 *
5928 * We seem to get an unstable or solid color picture at 200MHz.
5929 * Not sure what's wrong. For now use 200MHz only when all pipes
5930 * are off.
30a970c6 5931 */
6cca3195
VS
5932 if (!IS_CHERRYVIEW(dev_priv) &&
5933 max_pixclk > freq_320*limit/100)
dfcab17e 5934 return 400000;
6cca3195 5935 else if (max_pixclk > 266667*limit/100)
29dc7ef3 5936 return freq_320;
e37c67a1 5937 else if (max_pixclk > 0)
dfcab17e 5938 return 266667;
e37c67a1
VS
5939 else
5940 return 200000;
30a970c6
JB
5941}
5942
f8437dd1
VK
5943static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
5944 int max_pixclk)
5945{
5946 /*
5947 * FIXME:
5948 * - remove the guardband, it's not needed on BXT
5949 * - set 19.2MHz bypass frequency if there are no active pipes
5950 */
5951 if (max_pixclk > 576000*9/10)
5952 return 624000;
5953 else if (max_pixclk > 384000*9/10)
5954 return 576000;
5955 else if (max_pixclk > 288000*9/10)
5956 return 384000;
5957 else if (max_pixclk > 144000*9/10)
5958 return 288000;
5959 else
5960 return 144000;
5961}
5962
e8788cbc 5963/* Compute the max pixel clock for new configuration. */
a821fc46
ACO
5964static int intel_mode_max_pixclk(struct drm_device *dev,
5965 struct drm_atomic_state *state)
30a970c6 5966{
565602d7
ML
5967 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
5968 struct drm_i915_private *dev_priv = dev->dev_private;
5969 struct drm_crtc *crtc;
5970 struct drm_crtc_state *crtc_state;
5971 unsigned max_pixclk = 0, i;
5972 enum pipe pipe;
30a970c6 5973
565602d7
ML
5974 memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
5975 sizeof(intel_state->min_pixclk));
304603f4 5976
565602d7
ML
5977 for_each_crtc_in_state(state, crtc, crtc_state, i) {
5978 int pixclk = 0;
5979
5980 if (crtc_state->enable)
5981 pixclk = crtc_state->adjusted_mode.crtc_clock;
304603f4 5982
565602d7 5983 intel_state->min_pixclk[i] = pixclk;
30a970c6
JB
5984 }
5985
565602d7
ML
5986 for_each_pipe(dev_priv, pipe)
5987 max_pixclk = max(intel_state->min_pixclk[pipe], max_pixclk);
5988
30a970c6
JB
5989 return max_pixclk;
5990}
5991
27c329ed 5992static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
30a970c6 5993{
27c329ed
ML
5994 struct drm_device *dev = state->dev;
5995 struct drm_i915_private *dev_priv = dev->dev_private;
5996 int max_pixclk = intel_mode_max_pixclk(dev, state);
1a617b77
ML
5997 struct intel_atomic_state *intel_state =
5998 to_intel_atomic_state(state);
30a970c6 5999
304603f4
ACO
6000 if (max_pixclk < 0)
6001 return max_pixclk;
30a970c6 6002
1a617b77 6003 intel_state->cdclk = intel_state->dev_cdclk =
27c329ed 6004 valleyview_calc_cdclk(dev_priv, max_pixclk);
0a9ab303 6005
1a617b77
ML
6006 if (!intel_state->active_crtcs)
6007 intel_state->dev_cdclk = valleyview_calc_cdclk(dev_priv, 0);
6008
27c329ed
ML
6009 return 0;
6010}
304603f4 6011
27c329ed
ML
6012static int broxton_modeset_calc_cdclk(struct drm_atomic_state *state)
6013{
6014 struct drm_device *dev = state->dev;
6015 struct drm_i915_private *dev_priv = dev->dev_private;
6016 int max_pixclk = intel_mode_max_pixclk(dev, state);
1a617b77
ML
6017 struct intel_atomic_state *intel_state =
6018 to_intel_atomic_state(state);
85a96e7a 6019
27c329ed
ML
6020 if (max_pixclk < 0)
6021 return max_pixclk;
85a96e7a 6022
1a617b77 6023 intel_state->cdclk = intel_state->dev_cdclk =
27c329ed 6024 broxton_calc_cdclk(dev_priv, max_pixclk);
85a96e7a 6025
1a617b77
ML
6026 if (!intel_state->active_crtcs)
6027 intel_state->dev_cdclk = broxton_calc_cdclk(dev_priv, 0);
6028
27c329ed 6029 return 0;
30a970c6
JB
6030}
6031
1e69cd74
VS
6032static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
6033{
6034 unsigned int credits, default_credits;
6035
6036 if (IS_CHERRYVIEW(dev_priv))
6037 default_credits = PFI_CREDIT(12);
6038 else
6039 default_credits = PFI_CREDIT(8);
6040
bfa7df01 6041 if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
1e69cd74
VS
6042 /* CHV suggested value is 31 or 63 */
6043 if (IS_CHERRYVIEW(dev_priv))
fcc0008f 6044 credits = PFI_CREDIT_63;
1e69cd74
VS
6045 else
6046 credits = PFI_CREDIT(15);
6047 } else {
6048 credits = default_credits;
6049 }
6050
6051 /*
6052 * WA - write default credits before re-programming
6053 * FIXME: should we also set the resend bit here?
6054 */
6055 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6056 default_credits);
6057
6058 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6059 credits | PFI_CREDIT_RESEND);
6060
6061 /*
6062 * FIXME is this guaranteed to clear
6063 * immediately or should we poll for it?
6064 */
6065 WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6066}
6067
27c329ed 6068static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
30a970c6 6069{
a821fc46 6070 struct drm_device *dev = old_state->dev;
30a970c6 6071 struct drm_i915_private *dev_priv = dev->dev_private;
1a617b77
ML
6072 struct intel_atomic_state *old_intel_state =
6073 to_intel_atomic_state(old_state);
6074 unsigned req_cdclk = old_intel_state->dev_cdclk;
30a970c6 6075
27c329ed
ML
6076 /*
6077 * FIXME: We can end up here with all power domains off, yet
6078 * with a CDCLK frequency other than the minimum. To account
6079 * for this take the PIPE-A power domain, which covers the HW
6080 * blocks needed for the following programming. This can be
6081 * removed once it's guaranteed that we get here either with
6082 * the minimum CDCLK set, or the required power domains
6083 * enabled.
6084 */
6085 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
738c05c0 6086
27c329ed
ML
6087 if (IS_CHERRYVIEW(dev))
6088 cherryview_set_cdclk(dev, req_cdclk);
6089 else
6090 valleyview_set_cdclk(dev, req_cdclk);
738c05c0 6091
27c329ed 6092 vlv_program_pfi_credits(dev_priv);
1e69cd74 6093
27c329ed 6094 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
30a970c6
JB
6095}
6096
89b667f8
JB
6097static void valleyview_crtc_enable(struct drm_crtc *crtc)
6098{
6099 struct drm_device *dev = crtc->dev;
a72e4c9f 6100 struct drm_i915_private *dev_priv = to_i915(dev);
89b667f8
JB
6101 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6102 struct intel_encoder *encoder;
6103 int pipe = intel_crtc->pipe;
89b667f8 6104
53d9f4e9 6105 if (WARN_ON(intel_crtc->active))
89b667f8
JB
6106 return;
6107
6e3c9717 6108 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 6109 intel_dp_set_m_n(intel_crtc, M1_N1);
5b18e57c
DV
6110
6111 intel_set_pipe_timings(intel_crtc);
6112
c14b0485
VS
6113 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6114 struct drm_i915_private *dev_priv = dev->dev_private;
6115
6116 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6117 I915_WRITE(CHV_CANVAS(pipe), 0);
6118 }
6119
5b18e57c
DV
6120 i9xx_set_pipeconf(intel_crtc);
6121
89b667f8 6122 intel_crtc->active = true;
89b667f8 6123
a72e4c9f 6124 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 6125
89b667f8
JB
6126 for_each_encoder_on_crtc(dev, crtc, encoder)
6127 if (encoder->pre_pll_enable)
6128 encoder->pre_pll_enable(encoder);
6129
a65347ba 6130 if (!intel_crtc->config->has_dsi_encoder) {
c0b4c660
VS
6131 if (IS_CHERRYVIEW(dev)) {
6132 chv_prepare_pll(intel_crtc, intel_crtc->config);
6e3c9717 6133 chv_enable_pll(intel_crtc, intel_crtc->config);
c0b4c660
VS
6134 } else {
6135 vlv_prepare_pll(intel_crtc, intel_crtc->config);
6e3c9717 6136 vlv_enable_pll(intel_crtc, intel_crtc->config);
c0b4c660 6137 }
9d556c99 6138 }
89b667f8
JB
6139
6140 for_each_encoder_on_crtc(dev, crtc, encoder)
6141 if (encoder->pre_enable)
6142 encoder->pre_enable(encoder);
6143
2dd24552
JB
6144 i9xx_pfit_enable(intel_crtc);
6145
63cbb074
VS
6146 intel_crtc_load_lut(crtc);
6147
caed361d 6148 intel_update_watermarks(crtc);
e1fdc473 6149 intel_enable_pipe(intel_crtc);
be6a6f8e 6150
4b3a9526
VS
6151 assert_vblank_disabled(crtc);
6152 drm_crtc_vblank_on(crtc);
6153
f9b61ff6
DV
6154 for_each_encoder_on_crtc(dev, crtc, encoder)
6155 encoder->enable(encoder);
89b667f8
JB
6156}
6157
f13c2ef3
DV
6158static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6159{
6160 struct drm_device *dev = crtc->base.dev;
6161 struct drm_i915_private *dev_priv = dev->dev_private;
6162
6e3c9717
ACO
6163 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6164 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
f13c2ef3
DV
6165}
6166
0b8765c6 6167static void i9xx_crtc_enable(struct drm_crtc *crtc)
79e53945
JB
6168{
6169 struct drm_device *dev = crtc->dev;
a72e4c9f 6170 struct drm_i915_private *dev_priv = to_i915(dev);
79e53945 6171 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 6172 struct intel_encoder *encoder;
79e53945 6173 int pipe = intel_crtc->pipe;
79e53945 6174
53d9f4e9 6175 if (WARN_ON(intel_crtc->active))
f7abfe8b
CW
6176 return;
6177
f13c2ef3
DV
6178 i9xx_set_pll_dividers(intel_crtc);
6179
6e3c9717 6180 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 6181 intel_dp_set_m_n(intel_crtc, M1_N1);
5b18e57c
DV
6182
6183 intel_set_pipe_timings(intel_crtc);
6184
5b18e57c
DV
6185 i9xx_set_pipeconf(intel_crtc);
6186
f7abfe8b 6187 intel_crtc->active = true;
6b383a7f 6188
4a3436e8 6189 if (!IS_GEN2(dev))
a72e4c9f 6190 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 6191
9d6d9f19
MK
6192 for_each_encoder_on_crtc(dev, crtc, encoder)
6193 if (encoder->pre_enable)
6194 encoder->pre_enable(encoder);
6195
f6736a1a
DV
6196 i9xx_enable_pll(intel_crtc);
6197
2dd24552
JB
6198 i9xx_pfit_enable(intel_crtc);
6199
63cbb074
VS
6200 intel_crtc_load_lut(crtc);
6201
f37fcc2a 6202 intel_update_watermarks(crtc);
e1fdc473 6203 intel_enable_pipe(intel_crtc);
be6a6f8e 6204
4b3a9526
VS
6205 assert_vblank_disabled(crtc);
6206 drm_crtc_vblank_on(crtc);
6207
f9b61ff6
DV
6208 for_each_encoder_on_crtc(dev, crtc, encoder)
6209 encoder->enable(encoder);
0b8765c6 6210}
79e53945 6211
87476d63
DV
6212static void i9xx_pfit_disable(struct intel_crtc *crtc)
6213{
6214 struct drm_device *dev = crtc->base.dev;
6215 struct drm_i915_private *dev_priv = dev->dev_private;
87476d63 6216
6e3c9717 6217 if (!crtc->config->gmch_pfit.control)
328d8e82 6218 return;
87476d63 6219
328d8e82 6220 assert_pipe_disabled(dev_priv, crtc->pipe);
87476d63 6221
328d8e82
DV
6222 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6223 I915_READ(PFIT_CONTROL));
6224 I915_WRITE(PFIT_CONTROL, 0);
87476d63
DV
6225}
6226
0b8765c6
JB
6227static void i9xx_crtc_disable(struct drm_crtc *crtc)
6228{
6229 struct drm_device *dev = crtc->dev;
6230 struct drm_i915_private *dev_priv = dev->dev_private;
6231 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 6232 struct intel_encoder *encoder;
0b8765c6 6233 int pipe = intel_crtc->pipe;
ef9c3aee 6234
6304cd91
VS
6235 /*
6236 * On gen2 planes are double buffered but the pipe isn't, so we must
6237 * wait for planes to fully turn off before disabling the pipe.
564ed191
ID
6238 * We also need to wait on all gmch platforms because of the
6239 * self-refresh mode constraint explained above.
6304cd91 6240 */
564ed191 6241 intel_wait_for_vblank(dev, pipe);
6304cd91 6242
4b3a9526
VS
6243 for_each_encoder_on_crtc(dev, crtc, encoder)
6244 encoder->disable(encoder);
6245
f9b61ff6
DV
6246 drm_crtc_vblank_off(crtc);
6247 assert_vblank_disabled(crtc);
6248
575f7ab7 6249 intel_disable_pipe(intel_crtc);
24a1f16d 6250
87476d63 6251 i9xx_pfit_disable(intel_crtc);
24a1f16d 6252
89b667f8
JB
6253 for_each_encoder_on_crtc(dev, crtc, encoder)
6254 if (encoder->post_disable)
6255 encoder->post_disable(encoder);
6256
a65347ba 6257 if (!intel_crtc->config->has_dsi_encoder) {
076ed3b2
CML
6258 if (IS_CHERRYVIEW(dev))
6259 chv_disable_pll(dev_priv, pipe);
6260 else if (IS_VALLEYVIEW(dev))
6261 vlv_disable_pll(dev_priv, pipe);
6262 else
1c4e0274 6263 i9xx_disable_pll(intel_crtc);
076ed3b2 6264 }
0b8765c6 6265
d6db995f
VS
6266 for_each_encoder_on_crtc(dev, crtc, encoder)
6267 if (encoder->post_pll_disable)
6268 encoder->post_pll_disable(encoder);
6269
4a3436e8 6270 if (!IS_GEN2(dev))
a72e4c9f 6271 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
0b8765c6
JB
6272}
6273
b17d48e2
ML
6274static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6275{
6276 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6277 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6278 enum intel_display_power_domain domain;
6279 unsigned long domains;
6280
6281 if (!intel_crtc->active)
6282 return;
6283
a539205a 6284 if (to_intel_plane_state(crtc->primary->state)->visible) {
fc32b1fd
ML
6285 WARN_ON(intel_crtc->unpin_work);
6286
2622a081 6287 intel_pre_disable_primary_noatomic(crtc);
54a41961
ML
6288
6289 intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
6290 to_intel_plane_state(crtc->primary->state)->visible = false;
a539205a
ML
6291 }
6292
b17d48e2 6293 dev_priv->display.crtc_disable(crtc);
37d9078b 6294 intel_crtc->active = false;
58f9c0bc 6295 intel_fbc_disable(intel_crtc);
37d9078b 6296 intel_update_watermarks(crtc);
1f7457b1 6297 intel_disable_shared_dpll(intel_crtc);
b17d48e2
ML
6298
6299 domains = intel_crtc->enabled_power_domains;
6300 for_each_power_domain(domain, domains)
6301 intel_display_power_put(dev_priv, domain);
6302 intel_crtc->enabled_power_domains = 0;
565602d7
ML
6303
6304 dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe);
6305 dev_priv->min_pixclk[intel_crtc->pipe] = 0;
b17d48e2
ML
6306}
6307
6b72d486
ML
6308/*
6309 * turn all crtc's off, but do not adjust state
6310 * This has to be paired with a call to intel_modeset_setup_hw_state.
6311 */
70e0bd74 6312int intel_display_suspend(struct drm_device *dev)
ee7b9f93 6313{
e2c8b870 6314 struct drm_i915_private *dev_priv = to_i915(dev);
70e0bd74 6315 struct drm_atomic_state *state;
e2c8b870 6316 int ret;
70e0bd74 6317
e2c8b870
ML
6318 state = drm_atomic_helper_suspend(dev);
6319 ret = PTR_ERR_OR_ZERO(state);
70e0bd74
ML
6320 if (ret)
6321 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
e2c8b870
ML
6322 else
6323 dev_priv->modeset_restore_state = state;
70e0bd74 6324 return ret;
ee7b9f93
JB
6325}
6326
ea5b213a 6327void intel_encoder_destroy(struct drm_encoder *encoder)
7e7d76c3 6328{
4ef69c7a 6329 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 6330
ea5b213a
CW
6331 drm_encoder_cleanup(encoder);
6332 kfree(intel_encoder);
7e7d76c3
JB
6333}
6334
0a91ca29
DV
6335/* Cross check the actual hw state with our own modeset state tracking (and it's
6336 * internal consistency). */
b980514c 6337static void intel_connector_check_state(struct intel_connector *connector)
79e53945 6338{
35dd3c64
ML
6339 struct drm_crtc *crtc = connector->base.state->crtc;
6340
6341 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6342 connector->base.base.id,
6343 connector->base.name);
6344
0a91ca29 6345 if (connector->get_hw_state(connector)) {
e85376cb 6346 struct intel_encoder *encoder = connector->encoder;
35dd3c64 6347 struct drm_connector_state *conn_state = connector->base.state;
0a91ca29 6348
35dd3c64
ML
6349 I915_STATE_WARN(!crtc,
6350 "connector enabled without attached crtc\n");
0a91ca29 6351
35dd3c64
ML
6352 if (!crtc)
6353 return;
6354
6355 I915_STATE_WARN(!crtc->state->active,
6356 "connector is active, but attached crtc isn't\n");
6357
e85376cb 6358 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
35dd3c64
ML
6359 return;
6360
e85376cb 6361 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
35dd3c64
ML
6362 "atomic encoder doesn't match attached encoder\n");
6363
e85376cb 6364 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
35dd3c64
ML
6365 "attached encoder crtc differs from connector crtc\n");
6366 } else {
4d688a2a
ML
6367 I915_STATE_WARN(crtc && crtc->state->active,
6368 "attached crtc is active, but connector isn't\n");
35dd3c64
ML
6369 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
6370 "best encoder set without crtc!\n");
0a91ca29 6371 }
79e53945
JB
6372}
6373
08d9bc92
ACO
6374int intel_connector_init(struct intel_connector *connector)
6375{
5350a031 6376 drm_atomic_helper_connector_reset(&connector->base);
08d9bc92 6377
5350a031 6378 if (!connector->base.state)
08d9bc92
ACO
6379 return -ENOMEM;
6380
08d9bc92
ACO
6381 return 0;
6382}
6383
6384struct intel_connector *intel_connector_alloc(void)
6385{
6386 struct intel_connector *connector;
6387
6388 connector = kzalloc(sizeof *connector, GFP_KERNEL);
6389 if (!connector)
6390 return NULL;
6391
6392 if (intel_connector_init(connector) < 0) {
6393 kfree(connector);
6394 return NULL;
6395 }
6396
6397 return connector;
6398}
6399
f0947c37
DV
6400/* Simple connector->get_hw_state implementation for encoders that support only
6401 * one connector and no cloning and hence the encoder state determines the state
6402 * of the connector. */
6403bool intel_connector_get_hw_state(struct intel_connector *connector)
ea5b213a 6404{
24929352 6405 enum pipe pipe = 0;
f0947c37 6406 struct intel_encoder *encoder = connector->encoder;
ea5b213a 6407
f0947c37 6408 return encoder->get_hw_state(encoder, &pipe);
ea5b213a
CW
6409}
6410
6d293983 6411static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
d272ddfa 6412{
6d293983
ACO
6413 if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6414 return crtc_state->fdi_lanes;
d272ddfa
VS
6415
6416 return 0;
6417}
6418
6d293983 6419static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5cec258b 6420 struct intel_crtc_state *pipe_config)
1857e1da 6421{
6d293983
ACO
6422 struct drm_atomic_state *state = pipe_config->base.state;
6423 struct intel_crtc *other_crtc;
6424 struct intel_crtc_state *other_crtc_state;
6425
1857e1da
DV
6426 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6427 pipe_name(pipe), pipe_config->fdi_lanes);
6428 if (pipe_config->fdi_lanes > 4) {
6429 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6430 pipe_name(pipe), pipe_config->fdi_lanes);
6d293983 6431 return -EINVAL;
1857e1da
DV
6432 }
6433
bafb6553 6434 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1857e1da
DV
6435 if (pipe_config->fdi_lanes > 2) {
6436 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6437 pipe_config->fdi_lanes);
6d293983 6438 return -EINVAL;
1857e1da 6439 } else {
6d293983 6440 return 0;
1857e1da
DV
6441 }
6442 }
6443
6444 if (INTEL_INFO(dev)->num_pipes == 2)
6d293983 6445 return 0;
1857e1da
DV
6446
6447 /* Ivybridge 3 pipe is really complicated */
6448 switch (pipe) {
6449 case PIPE_A:
6d293983 6450 return 0;
1857e1da 6451 case PIPE_B:
6d293983
ACO
6452 if (pipe_config->fdi_lanes <= 2)
6453 return 0;
6454
6455 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6456 other_crtc_state =
6457 intel_atomic_get_crtc_state(state, other_crtc);
6458 if (IS_ERR(other_crtc_state))
6459 return PTR_ERR(other_crtc_state);
6460
6461 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
1857e1da
DV
6462 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6463 pipe_name(pipe), pipe_config->fdi_lanes);
6d293983 6464 return -EINVAL;
1857e1da 6465 }
6d293983 6466 return 0;
1857e1da 6467 case PIPE_C:
251cc67c
VS
6468 if (pipe_config->fdi_lanes > 2) {
6469 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6470 pipe_name(pipe), pipe_config->fdi_lanes);
6d293983 6471 return -EINVAL;
251cc67c 6472 }
6d293983
ACO
6473
6474 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6475 other_crtc_state =
6476 intel_atomic_get_crtc_state(state, other_crtc);
6477 if (IS_ERR(other_crtc_state))
6478 return PTR_ERR(other_crtc_state);
6479
6480 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
1857e1da 6481 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6d293983 6482 return -EINVAL;
1857e1da 6483 }
6d293983 6484 return 0;
1857e1da
DV
6485 default:
6486 BUG();
6487 }
6488}
6489
e29c22c0
DV
6490#define RETRY 1
6491static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5cec258b 6492 struct intel_crtc_state *pipe_config)
877d48d5 6493{
1857e1da 6494 struct drm_device *dev = intel_crtc->base.dev;
7c5f93b0 6495 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6d293983
ACO
6496 int lane, link_bw, fdi_dotclock, ret;
6497 bool needs_recompute = false;
877d48d5 6498
e29c22c0 6499retry:
877d48d5
DV
6500 /* FDI is a binary signal running at ~2.7GHz, encoding
6501 * each output octet as 10 bits. The actual frequency
6502 * is stored as a divider into a 100MHz clock, and the
6503 * mode pixel clock is stored in units of 1KHz.
6504 * Hence the bw of each lane in terms of the mode signal
6505 * is:
6506 */
21a727b3 6507 link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config);
877d48d5 6508
241bfc38 6509 fdi_dotclock = adjusted_mode->crtc_clock;
877d48d5 6510
2bd89a07 6511 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
877d48d5
DV
6512 pipe_config->pipe_bpp);
6513
6514 pipe_config->fdi_lanes = lane;
6515
2bd89a07 6516 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
877d48d5 6517 link_bw, &pipe_config->fdi_m_n);
1857e1da 6518
e3b247da 6519 ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
6d293983 6520 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
e29c22c0
DV
6521 pipe_config->pipe_bpp -= 2*3;
6522 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6523 pipe_config->pipe_bpp);
6524 needs_recompute = true;
6525 pipe_config->bw_constrained = true;
6526
6527 goto retry;
6528 }
6529
6530 if (needs_recompute)
6531 return RETRY;
6532
6d293983 6533 return ret;
877d48d5
DV
6534}
6535
8cfb3407
VS
6536static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6537 struct intel_crtc_state *pipe_config)
6538{
6539 if (pipe_config->pipe_bpp > 24)
6540 return false;
6541
6542 /* HSW can handle pixel rate up to cdclk? */
6543 if (IS_HASWELL(dev_priv->dev))
6544 return true;
6545
6546 /*
b432e5cf
VS
6547 * We compare against max which means we must take
6548 * the increased cdclk requirement into account when
6549 * calculating the new cdclk.
6550 *
6551 * Should measure whether using a lower cdclk w/o IPS
8cfb3407
VS
6552 */
6553 return ilk_pipe_pixel_rate(pipe_config) <=
6554 dev_priv->max_cdclk_freq * 95 / 100;
6555}
6556
42db64ef 6557static void hsw_compute_ips_config(struct intel_crtc *crtc,
5cec258b 6558 struct intel_crtc_state *pipe_config)
42db64ef 6559{
8cfb3407
VS
6560 struct drm_device *dev = crtc->base.dev;
6561 struct drm_i915_private *dev_priv = dev->dev_private;
6562
d330a953 6563 pipe_config->ips_enabled = i915.enable_ips &&
8cfb3407
VS
6564 hsw_crtc_supports_ips(crtc) &&
6565 pipe_config_supports_ips(dev_priv, pipe_config);
42db64ef
PZ
6566}
6567
39acb4aa
VS
6568static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
6569{
6570 const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6571
6572 /* GDG double wide on either pipe, otherwise pipe A only */
6573 return INTEL_INFO(dev_priv)->gen < 4 &&
6574 (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
6575}
6576
a43f6e0f 6577static int intel_crtc_compute_config(struct intel_crtc *crtc,
5cec258b 6578 struct intel_crtc_state *pipe_config)
79e53945 6579{
a43f6e0f 6580 struct drm_device *dev = crtc->base.dev;
8bd31e67 6581 struct drm_i915_private *dev_priv = dev->dev_private;
7c5f93b0 6582 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
89749350 6583
ad3a4479 6584 /* FIXME should check pixel clock limits on all platforms */
cf532bb2 6585 if (INTEL_INFO(dev)->gen < 4) {
39acb4aa 6586 int clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
cf532bb2
VS
6587
6588 /*
39acb4aa 6589 * Enable double wide mode when the dot clock
cf532bb2 6590 * is > 90% of the (display) core speed.
cf532bb2 6591 */
39acb4aa
VS
6592 if (intel_crtc_supports_double_wide(crtc) &&
6593 adjusted_mode->crtc_clock > clock_limit) {
ad3a4479 6594 clock_limit *= 2;
cf532bb2 6595 pipe_config->double_wide = true;
ad3a4479
VS
6596 }
6597
39acb4aa
VS
6598 if (adjusted_mode->crtc_clock > clock_limit) {
6599 DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
6600 adjusted_mode->crtc_clock, clock_limit,
6601 yesno(pipe_config->double_wide));
e29c22c0 6602 return -EINVAL;
39acb4aa 6603 }
2c07245f 6604 }
89749350 6605
1d1d0e27
VS
6606 /*
6607 * Pipe horizontal size must be even in:
6608 * - DVO ganged mode
6609 * - LVDS dual channel mode
6610 * - Double wide pipe
6611 */
a93e255f 6612 if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
1d1d0e27
VS
6613 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6614 pipe_config->pipe_src_w &= ~1;
6615
8693a824
DL
6616 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6617 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
44f46b42
CW
6618 */
6619 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
aad941d5 6620 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
e29c22c0 6621 return -EINVAL;
44f46b42 6622
f5adf94e 6623 if (HAS_IPS(dev))
a43f6e0f
DV
6624 hsw_compute_ips_config(crtc, pipe_config);
6625
877d48d5 6626 if (pipe_config->has_pch_encoder)
a43f6e0f 6627 return ironlake_fdi_compute_config(crtc, pipe_config);
877d48d5 6628
cf5a15be 6629 return 0;
79e53945
JB
6630}
6631
1652d19e
VS
6632static int skylake_get_display_clock_speed(struct drm_device *dev)
6633{
6634 struct drm_i915_private *dev_priv = to_i915(dev);
6635 uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
6636 uint32_t cdctl = I915_READ(CDCLK_CTL);
6637 uint32_t linkrate;
6638
414355a7 6639 if (!(lcpll1 & LCPLL_PLL_ENABLE))
1652d19e 6640 return 24000; /* 24MHz is the cd freq with NSSC ref */
1652d19e
VS
6641
6642 if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
6643 return 540000;
6644
6645 linkrate = (I915_READ(DPLL_CTRL1) &
71cd8423 6646 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
1652d19e 6647
71cd8423
DL
6648 if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
6649 linkrate == DPLL_CTRL1_LINK_RATE_1080) {
1652d19e
VS
6650 /* vco 8640 */
6651 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6652 case CDCLK_FREQ_450_432:
6653 return 432000;
6654 case CDCLK_FREQ_337_308:
6655 return 308570;
6656 case CDCLK_FREQ_675_617:
6657 return 617140;
6658 default:
6659 WARN(1, "Unknown cd freq selection\n");
6660 }
6661 } else {
6662 /* vco 8100 */
6663 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6664 case CDCLK_FREQ_450_432:
6665 return 450000;
6666 case CDCLK_FREQ_337_308:
6667 return 337500;
6668 case CDCLK_FREQ_675_617:
6669 return 675000;
6670 default:
6671 WARN(1, "Unknown cd freq selection\n");
6672 }
6673 }
6674
6675 /* error case, do as if DPLL0 isn't enabled */
6676 return 24000;
6677}
6678
acd3f3d3
BP
6679static int broxton_get_display_clock_speed(struct drm_device *dev)
6680{
6681 struct drm_i915_private *dev_priv = to_i915(dev);
6682 uint32_t cdctl = I915_READ(CDCLK_CTL);
6683 uint32_t pll_ratio = I915_READ(BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK;
6684 uint32_t pll_enab = I915_READ(BXT_DE_PLL_ENABLE);
6685 int cdclk;
6686
6687 if (!(pll_enab & BXT_DE_PLL_PLL_ENABLE))
6688 return 19200;
6689
6690 cdclk = 19200 * pll_ratio / 2;
6691
6692 switch (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) {
6693 case BXT_CDCLK_CD2X_DIV_SEL_1:
6694 return cdclk; /* 576MHz or 624MHz */
6695 case BXT_CDCLK_CD2X_DIV_SEL_1_5:
6696 return cdclk * 2 / 3; /* 384MHz */
6697 case BXT_CDCLK_CD2X_DIV_SEL_2:
6698 return cdclk / 2; /* 288MHz */
6699 case BXT_CDCLK_CD2X_DIV_SEL_4:
6700 return cdclk / 4; /* 144MHz */
6701 }
6702
6703 /* error case, do as if DE PLL isn't enabled */
6704 return 19200;
6705}
6706
1652d19e
VS
6707static int broadwell_get_display_clock_speed(struct drm_device *dev)
6708{
6709 struct drm_i915_private *dev_priv = dev->dev_private;
6710 uint32_t lcpll = I915_READ(LCPLL_CTL);
6711 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6712
6713 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6714 return 800000;
6715 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6716 return 450000;
6717 else if (freq == LCPLL_CLK_FREQ_450)
6718 return 450000;
6719 else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6720 return 540000;
6721 else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6722 return 337500;
6723 else
6724 return 675000;
6725}
6726
6727static int haswell_get_display_clock_speed(struct drm_device *dev)
6728{
6729 struct drm_i915_private *dev_priv = dev->dev_private;
6730 uint32_t lcpll = I915_READ(LCPLL_CTL);
6731 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6732
6733 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6734 return 800000;
6735 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6736 return 450000;
6737 else if (freq == LCPLL_CLK_FREQ_450)
6738 return 450000;
6739 else if (IS_HSW_ULT(dev))
6740 return 337500;
6741 else
6742 return 540000;
79e53945
JB
6743}
6744
25eb05fc
JB
6745static int valleyview_get_display_clock_speed(struct drm_device *dev)
6746{
bfa7df01
VS
6747 return vlv_get_cck_clock_hpll(to_i915(dev), "cdclk",
6748 CCK_DISPLAY_CLOCK_CONTROL);
25eb05fc
JB
6749}
6750
b37a6434
VS
6751static int ilk_get_display_clock_speed(struct drm_device *dev)
6752{
6753 return 450000;
6754}
6755
e70236a8
JB
6756static int i945_get_display_clock_speed(struct drm_device *dev)
6757{
6758 return 400000;
6759}
79e53945 6760
e70236a8 6761static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 6762{
e907f170 6763 return 333333;
e70236a8 6764}
79e53945 6765
e70236a8
JB
6766static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6767{
6768 return 200000;
6769}
79e53945 6770
257a7ffc
DV
6771static int pnv_get_display_clock_speed(struct drm_device *dev)
6772{
6773 u16 gcfgc = 0;
6774
6775 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6776
6777 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6778 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
e907f170 6779 return 266667;
257a7ffc 6780 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
e907f170 6781 return 333333;
257a7ffc 6782 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
e907f170 6783 return 444444;
257a7ffc
DV
6784 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6785 return 200000;
6786 default:
6787 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6788 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
e907f170 6789 return 133333;
257a7ffc 6790 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
e907f170 6791 return 166667;
257a7ffc
DV
6792 }
6793}
6794
e70236a8
JB
6795static int i915gm_get_display_clock_speed(struct drm_device *dev)
6796{
6797 u16 gcfgc = 0;
79e53945 6798
e70236a8
JB
6799 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6800
6801 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
e907f170 6802 return 133333;
e70236a8
JB
6803 else {
6804 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6805 case GC_DISPLAY_CLOCK_333_MHZ:
e907f170 6806 return 333333;
e70236a8
JB
6807 default:
6808 case GC_DISPLAY_CLOCK_190_200_MHZ:
6809 return 190000;
79e53945 6810 }
e70236a8
JB
6811 }
6812}
6813
6814static int i865_get_display_clock_speed(struct drm_device *dev)
6815{
e907f170 6816 return 266667;
e70236a8
JB
6817}
6818
1b1d2716 6819static int i85x_get_display_clock_speed(struct drm_device *dev)
e70236a8
JB
6820{
6821 u16 hpllcc = 0;
1b1d2716 6822
65cd2b3f
VS
6823 /*
6824 * 852GM/852GMV only supports 133 MHz and the HPLLCC
6825 * encoding is different :(
6826 * FIXME is this the right way to detect 852GM/852GMV?
6827 */
6828 if (dev->pdev->revision == 0x1)
6829 return 133333;
6830
1b1d2716
VS
6831 pci_bus_read_config_word(dev->pdev->bus,
6832 PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
6833
e70236a8
JB
6834 /* Assume that the hardware is in the high speed state. This
6835 * should be the default.
6836 */
6837 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6838 case GC_CLOCK_133_200:
1b1d2716 6839 case GC_CLOCK_133_200_2:
e70236a8
JB
6840 case GC_CLOCK_100_200:
6841 return 200000;
6842 case GC_CLOCK_166_250:
6843 return 250000;
6844 case GC_CLOCK_100_133:
e907f170 6845 return 133333;
1b1d2716
VS
6846 case GC_CLOCK_133_266:
6847 case GC_CLOCK_133_266_2:
6848 case GC_CLOCK_166_266:
6849 return 266667;
e70236a8 6850 }
79e53945 6851
e70236a8
JB
6852 /* Shouldn't happen */
6853 return 0;
6854}
79e53945 6855
e70236a8
JB
6856static int i830_get_display_clock_speed(struct drm_device *dev)
6857{
e907f170 6858 return 133333;
79e53945
JB
6859}
6860
34edce2f
VS
6861static unsigned int intel_hpll_vco(struct drm_device *dev)
6862{
6863 struct drm_i915_private *dev_priv = dev->dev_private;
6864 static const unsigned int blb_vco[8] = {
6865 [0] = 3200000,
6866 [1] = 4000000,
6867 [2] = 5333333,
6868 [3] = 4800000,
6869 [4] = 6400000,
6870 };
6871 static const unsigned int pnv_vco[8] = {
6872 [0] = 3200000,
6873 [1] = 4000000,
6874 [2] = 5333333,
6875 [3] = 4800000,
6876 [4] = 2666667,
6877 };
6878 static const unsigned int cl_vco[8] = {
6879 [0] = 3200000,
6880 [1] = 4000000,
6881 [2] = 5333333,
6882 [3] = 6400000,
6883 [4] = 3333333,
6884 [5] = 3566667,
6885 [6] = 4266667,
6886 };
6887 static const unsigned int elk_vco[8] = {
6888 [0] = 3200000,
6889 [1] = 4000000,
6890 [2] = 5333333,
6891 [3] = 4800000,
6892 };
6893 static const unsigned int ctg_vco[8] = {
6894 [0] = 3200000,
6895 [1] = 4000000,
6896 [2] = 5333333,
6897 [3] = 6400000,
6898 [4] = 2666667,
6899 [5] = 4266667,
6900 };
6901 const unsigned int *vco_table;
6902 unsigned int vco;
6903 uint8_t tmp = 0;
6904
6905 /* FIXME other chipsets? */
6906 if (IS_GM45(dev))
6907 vco_table = ctg_vco;
6908 else if (IS_G4X(dev))
6909 vco_table = elk_vco;
6910 else if (IS_CRESTLINE(dev))
6911 vco_table = cl_vco;
6912 else if (IS_PINEVIEW(dev))
6913 vco_table = pnv_vco;
6914 else if (IS_G33(dev))
6915 vco_table = blb_vco;
6916 else
6917 return 0;
6918
6919 tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
6920
6921 vco = vco_table[tmp & 0x7];
6922 if (vco == 0)
6923 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
6924 else
6925 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
6926
6927 return vco;
6928}
6929
6930static int gm45_get_display_clock_speed(struct drm_device *dev)
6931{
6932 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6933 uint16_t tmp = 0;
6934
6935 pci_read_config_word(dev->pdev, GCFGC, &tmp);
6936
6937 cdclk_sel = (tmp >> 12) & 0x1;
6938
6939 switch (vco) {
6940 case 2666667:
6941 case 4000000:
6942 case 5333333:
6943 return cdclk_sel ? 333333 : 222222;
6944 case 3200000:
6945 return cdclk_sel ? 320000 : 228571;
6946 default:
6947 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
6948 return 222222;
6949 }
6950}
6951
6952static int i965gm_get_display_clock_speed(struct drm_device *dev)
6953{
6954 static const uint8_t div_3200[] = { 16, 10, 8 };
6955 static const uint8_t div_4000[] = { 20, 12, 10 };
6956 static const uint8_t div_5333[] = { 24, 16, 14 };
6957 const uint8_t *div_table;
6958 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6959 uint16_t tmp = 0;
6960
6961 pci_read_config_word(dev->pdev, GCFGC, &tmp);
6962
6963 cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
6964
6965 if (cdclk_sel >= ARRAY_SIZE(div_3200))
6966 goto fail;
6967
6968 switch (vco) {
6969 case 3200000:
6970 div_table = div_3200;
6971 break;
6972 case 4000000:
6973 div_table = div_4000;
6974 break;
6975 case 5333333:
6976 div_table = div_5333;
6977 break;
6978 default:
6979 goto fail;
6980 }
6981
6982 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
6983
caf4e252 6984fail:
34edce2f
VS
6985 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
6986 return 200000;
6987}
6988
6989static int g33_get_display_clock_speed(struct drm_device *dev)
6990{
6991 static const uint8_t div_3200[] = { 12, 10, 8, 7, 5, 16 };
6992 static const uint8_t div_4000[] = { 14, 12, 10, 8, 6, 20 };
6993 static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
6994 static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
6995 const uint8_t *div_table;
6996 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6997 uint16_t tmp = 0;
6998
6999 pci_read_config_word(dev->pdev, GCFGC, &tmp);
7000
7001 cdclk_sel = (tmp >> 4) & 0x7;
7002
7003 if (cdclk_sel >= ARRAY_SIZE(div_3200))
7004 goto fail;
7005
7006 switch (vco) {
7007 case 3200000:
7008 div_table = div_3200;
7009 break;
7010 case 4000000:
7011 div_table = div_4000;
7012 break;
7013 case 4800000:
7014 div_table = div_4800;
7015 break;
7016 case 5333333:
7017 div_table = div_5333;
7018 break;
7019 default:
7020 goto fail;
7021 }
7022
7023 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7024
caf4e252 7025fail:
34edce2f
VS
7026 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7027 return 190476;
7028}
7029
2c07245f 7030static void
a65851af 7031intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
2c07245f 7032{
a65851af
VS
7033 while (*num > DATA_LINK_M_N_MASK ||
7034 *den > DATA_LINK_M_N_MASK) {
2c07245f
ZW
7035 *num >>= 1;
7036 *den >>= 1;
7037 }
7038}
7039
a65851af
VS
7040static void compute_m_n(unsigned int m, unsigned int n,
7041 uint32_t *ret_m, uint32_t *ret_n)
7042{
7043 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7044 *ret_m = div_u64((uint64_t) m * *ret_n, n);
7045 intel_reduce_m_n_ratio(ret_m, ret_n);
7046}
7047
e69d0bc1
DV
7048void
7049intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7050 int pixel_clock, int link_clock,
7051 struct intel_link_m_n *m_n)
2c07245f 7052{
e69d0bc1 7053 m_n->tu = 64;
a65851af
VS
7054
7055 compute_m_n(bits_per_pixel * pixel_clock,
7056 link_clock * nlanes * 8,
7057 &m_n->gmch_m, &m_n->gmch_n);
7058
7059 compute_m_n(pixel_clock, link_clock,
7060 &m_n->link_m, &m_n->link_n);
2c07245f
ZW
7061}
7062
a7615030
CW
7063static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7064{
d330a953
JN
7065 if (i915.panel_use_ssc >= 0)
7066 return i915.panel_use_ssc != 0;
41aa3448 7067 return dev_priv->vbt.lvds_use_ssc
435793df 7068 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
7069}
7070
a93e255f
ACO
7071static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
7072 int num_connectors)
c65d77d8 7073{
a93e255f 7074 struct drm_device *dev = crtc_state->base.crtc->dev;
c65d77d8
JB
7075 struct drm_i915_private *dev_priv = dev->dev_private;
7076 int refclk;
7077
a93e255f
ACO
7078 WARN_ON(!crtc_state->base.state);
7079
666a4537 7080 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev) || IS_BROXTON(dev)) {
9a0ea498 7081 refclk = 100000;
a93e255f 7082 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
c65d77d8 7083 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b
VS
7084 refclk = dev_priv->vbt.lvds_ssc_freq;
7085 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
c65d77d8
JB
7086 } else if (!IS_GEN2(dev)) {
7087 refclk = 96000;
7088 } else {
7089 refclk = 48000;
7090 }
7091
7092 return refclk;
7093}
7094
7429e9d4 7095static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
c65d77d8 7096{
7df00d7a 7097 return (1 << dpll->n) << 16 | dpll->m2;
7429e9d4 7098}
f47709a9 7099
7429e9d4
DV
7100static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7101{
7102 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
c65d77d8
JB
7103}
7104
f47709a9 7105static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
190f68c5 7106 struct intel_crtc_state *crtc_state,
a7516a05
JB
7107 intel_clock_t *reduced_clock)
7108{
f47709a9 7109 struct drm_device *dev = crtc->base.dev;
a7516a05
JB
7110 u32 fp, fp2 = 0;
7111
7112 if (IS_PINEVIEW(dev)) {
190f68c5 7113 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
a7516a05 7114 if (reduced_clock)
7429e9d4 7115 fp2 = pnv_dpll_compute_fp(reduced_clock);
a7516a05 7116 } else {
190f68c5 7117 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
a7516a05 7118 if (reduced_clock)
7429e9d4 7119 fp2 = i9xx_dpll_compute_fp(reduced_clock);
a7516a05
JB
7120 }
7121
190f68c5 7122 crtc_state->dpll_hw_state.fp0 = fp;
a7516a05 7123
f47709a9 7124 crtc->lowfreq_avail = false;
a93e255f 7125 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
ab585dea 7126 reduced_clock) {
190f68c5 7127 crtc_state->dpll_hw_state.fp1 = fp2;
f47709a9 7128 crtc->lowfreq_avail = true;
a7516a05 7129 } else {
190f68c5 7130 crtc_state->dpll_hw_state.fp1 = fp;
a7516a05
JB
7131 }
7132}
7133
5e69f97f
CML
7134static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7135 pipe)
89b667f8
JB
7136{
7137 u32 reg_val;
7138
7139 /*
7140 * PLLB opamp always calibrates to max value of 0x3f, force enable it
7141 * and set it to a reasonable value instead.
7142 */
ab3c759a 7143 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8
JB
7144 reg_val &= 0xffffff00;
7145 reg_val |= 0x00000030;
ab3c759a 7146 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 7147
ab3c759a 7148 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
7149 reg_val &= 0x8cffffff;
7150 reg_val = 0x8c000000;
ab3c759a 7151 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8 7152
ab3c759a 7153 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8 7154 reg_val &= 0xffffff00;
ab3c759a 7155 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 7156
ab3c759a 7157 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
7158 reg_val &= 0x00ffffff;
7159 reg_val |= 0xb0000000;
ab3c759a 7160 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8
JB
7161}
7162
b551842d
DV
7163static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7164 struct intel_link_m_n *m_n)
7165{
7166 struct drm_device *dev = crtc->base.dev;
7167 struct drm_i915_private *dev_priv = dev->dev_private;
7168 int pipe = crtc->pipe;
7169
e3b95f1e
DV
7170 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7171 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7172 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7173 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
b551842d
DV
7174}
7175
7176static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
7177 struct intel_link_m_n *m_n,
7178 struct intel_link_m_n *m2_n2)
b551842d
DV
7179{
7180 struct drm_device *dev = crtc->base.dev;
7181 struct drm_i915_private *dev_priv = dev->dev_private;
7182 int pipe = crtc->pipe;
6e3c9717 7183 enum transcoder transcoder = crtc->config->cpu_transcoder;
b551842d
DV
7184
7185 if (INTEL_INFO(dev)->gen >= 5) {
7186 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7187 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7188 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7189 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
f769cd24
VK
7190 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7191 * for gen < 8) and if DRRS is supported (to make sure the
7192 * registers are not unnecessarily accessed).
7193 */
44395bfe 7194 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
6e3c9717 7195 crtc->config->has_drrs) {
f769cd24
VK
7196 I915_WRITE(PIPE_DATA_M2(transcoder),
7197 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7198 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7199 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7200 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7201 }
b551842d 7202 } else {
e3b95f1e
DV
7203 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7204 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7205 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7206 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
b551842d
DV
7207 }
7208}
7209
fe3cd48d 7210void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
03afc4a2 7211{
fe3cd48d
R
7212 struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7213
7214 if (m_n == M1_N1) {
7215 dp_m_n = &crtc->config->dp_m_n;
7216 dp_m2_n2 = &crtc->config->dp_m2_n2;
7217 } else if (m_n == M2_N2) {
7218
7219 /*
7220 * M2_N2 registers are not supported. Hence m2_n2 divider value
7221 * needs to be programmed into M1_N1.
7222 */
7223 dp_m_n = &crtc->config->dp_m2_n2;
7224 } else {
7225 DRM_ERROR("Unsupported divider value\n");
7226 return;
7227 }
7228
6e3c9717
ACO
7229 if (crtc->config->has_pch_encoder)
7230 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
03afc4a2 7231 else
fe3cd48d 7232 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
03afc4a2
DV
7233}
7234
251ac862
DV
7235static void vlv_compute_dpll(struct intel_crtc *crtc,
7236 struct intel_crtc_state *pipe_config)
bdd4b6a6
DV
7237{
7238 u32 dpll, dpll_md;
7239
7240 /*
7241 * Enable DPIO clock input. We should never disable the reference
7242 * clock for pipe B, since VGA hotplug / manual detection depends
7243 * on it.
7244 */
60bfe44f
VS
7245 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REF_CLK_ENABLE_VLV |
7246 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_REF_CLK_VLV;
bdd4b6a6
DV
7247 /* We should never disable this, set it here for state tracking */
7248 if (crtc->pipe == PIPE_B)
7249 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7250 dpll |= DPLL_VCO_ENABLE;
d288f65f 7251 pipe_config->dpll_hw_state.dpll = dpll;
bdd4b6a6 7252
d288f65f 7253 dpll_md = (pipe_config->pixel_multiplier - 1)
bdd4b6a6 7254 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
d288f65f 7255 pipe_config->dpll_hw_state.dpll_md = dpll_md;
bdd4b6a6
DV
7256}
7257
d288f65f 7258static void vlv_prepare_pll(struct intel_crtc *crtc,
5cec258b 7259 const struct intel_crtc_state *pipe_config)
a0c4da24 7260{
f47709a9 7261 struct drm_device *dev = crtc->base.dev;
a0c4da24 7262 struct drm_i915_private *dev_priv = dev->dev_private;
f47709a9 7263 int pipe = crtc->pipe;
bdd4b6a6 7264 u32 mdiv;
a0c4da24 7265 u32 bestn, bestm1, bestm2, bestp1, bestp2;
bdd4b6a6 7266 u32 coreclk, reg_val;
a0c4da24 7267
a580516d 7268 mutex_lock(&dev_priv->sb_lock);
09153000 7269
d288f65f
VS
7270 bestn = pipe_config->dpll.n;
7271 bestm1 = pipe_config->dpll.m1;
7272 bestm2 = pipe_config->dpll.m2;
7273 bestp1 = pipe_config->dpll.p1;
7274 bestp2 = pipe_config->dpll.p2;
a0c4da24 7275
89b667f8
JB
7276 /* See eDP HDMI DPIO driver vbios notes doc */
7277
7278 /* PLL B needs special handling */
bdd4b6a6 7279 if (pipe == PIPE_B)
5e69f97f 7280 vlv_pllb_recal_opamp(dev_priv, pipe);
89b667f8
JB
7281
7282 /* Set up Tx target for periodic Rcomp update */
ab3c759a 7283 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
89b667f8
JB
7284
7285 /* Disable target IRef on PLL */
ab3c759a 7286 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
89b667f8 7287 reg_val &= 0x00ffffff;
ab3c759a 7288 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
89b667f8
JB
7289
7290 /* Disable fast lock */
ab3c759a 7291 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
89b667f8
JB
7292
7293 /* Set idtafcrecal before PLL is enabled */
a0c4da24
JB
7294 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7295 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7296 mdiv |= ((bestn << DPIO_N_SHIFT));
a0c4da24 7297 mdiv |= (1 << DPIO_K_SHIFT);
7df5080b
JB
7298
7299 /*
7300 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7301 * but we don't support that).
7302 * Note: don't use the DAC post divider as it seems unstable.
7303 */
7304 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
ab3c759a 7305 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 7306
a0c4da24 7307 mdiv |= DPIO_ENABLE_CALIBRATION;
ab3c759a 7308 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 7309
89b667f8 7310 /* Set HBR and RBR LPF coefficients */
d288f65f 7311 if (pipe_config->port_clock == 162000 ||
409ee761
ACO
7312 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
7313 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
ab3c759a 7314 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
885b0120 7315 0x009f0003);
89b667f8 7316 else
ab3c759a 7317 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
89b667f8
JB
7318 0x00d0000f);
7319
681a8504 7320 if (pipe_config->has_dp_encoder) {
89b667f8 7321 /* Use SSC source */
bdd4b6a6 7322 if (pipe == PIPE_A)
ab3c759a 7323 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
7324 0x0df40000);
7325 else
ab3c759a 7326 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
7327 0x0df70000);
7328 } else { /* HDMI or VGA */
7329 /* Use bend source */
bdd4b6a6 7330 if (pipe == PIPE_A)
ab3c759a 7331 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
7332 0x0df70000);
7333 else
ab3c759a 7334 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
7335 0x0df40000);
7336 }
a0c4da24 7337
ab3c759a 7338 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
89b667f8 7339 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
409ee761
ACO
7340 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
7341 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
89b667f8 7342 coreclk |= 0x01000000;
ab3c759a 7343 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
a0c4da24 7344
ab3c759a 7345 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
a580516d 7346 mutex_unlock(&dev_priv->sb_lock);
a0c4da24
JB
7347}
7348
251ac862
DV
7349static void chv_compute_dpll(struct intel_crtc *crtc,
7350 struct intel_crtc_state *pipe_config)
1ae0d137 7351{
60bfe44f
VS
7352 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7353 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
1ae0d137
VS
7354 DPLL_VCO_ENABLE;
7355 if (crtc->pipe != PIPE_A)
d288f65f 7356 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
1ae0d137 7357
d288f65f
VS
7358 pipe_config->dpll_hw_state.dpll_md =
7359 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
1ae0d137
VS
7360}
7361
d288f65f 7362static void chv_prepare_pll(struct intel_crtc *crtc,
5cec258b 7363 const struct intel_crtc_state *pipe_config)
9d556c99
CML
7364{
7365 struct drm_device *dev = crtc->base.dev;
7366 struct drm_i915_private *dev_priv = dev->dev_private;
7367 int pipe = crtc->pipe;
f0f59a00 7368 i915_reg_t dpll_reg = DPLL(crtc->pipe);
9d556c99 7369 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9cbe40c1 7370 u32 loopfilter, tribuf_calcntr;
9d556c99 7371 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
a945ce7e 7372 u32 dpio_val;
9cbe40c1 7373 int vco;
9d556c99 7374
d288f65f
VS
7375 bestn = pipe_config->dpll.n;
7376 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7377 bestm1 = pipe_config->dpll.m1;
7378 bestm2 = pipe_config->dpll.m2 >> 22;
7379 bestp1 = pipe_config->dpll.p1;
7380 bestp2 = pipe_config->dpll.p2;
9cbe40c1 7381 vco = pipe_config->dpll.vco;
a945ce7e 7382 dpio_val = 0;
9cbe40c1 7383 loopfilter = 0;
9d556c99
CML
7384
7385 /*
7386 * Enable Refclk and SSC
7387 */
a11b0703 7388 I915_WRITE(dpll_reg,
d288f65f 7389 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
a11b0703 7390
a580516d 7391 mutex_lock(&dev_priv->sb_lock);
9d556c99 7392
9d556c99
CML
7393 /* p1 and p2 divider */
7394 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7395 5 << DPIO_CHV_S1_DIV_SHIFT |
7396 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7397 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7398 1 << DPIO_CHV_K_DIV_SHIFT);
7399
7400 /* Feedback post-divider - m2 */
7401 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7402
7403 /* Feedback refclk divider - n and m1 */
7404 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7405 DPIO_CHV_M1_DIV_BY_2 |
7406 1 << DPIO_CHV_N_DIV_SHIFT);
7407
7408 /* M2 fraction division */
25a25dfc 7409 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
9d556c99
CML
7410
7411 /* M2 fraction division enable */
a945ce7e
VP
7412 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7413 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7414 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7415 if (bestm2_frac)
7416 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7417 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
9d556c99 7418
de3a0fde
VP
7419 /* Program digital lock detect threshold */
7420 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7421 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7422 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7423 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7424 if (!bestm2_frac)
7425 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7426 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7427
9d556c99 7428 /* Loop filter */
9cbe40c1
VP
7429 if (vco == 5400000) {
7430 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7431 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7432 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7433 tribuf_calcntr = 0x9;
7434 } else if (vco <= 6200000) {
7435 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7436 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7437 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7438 tribuf_calcntr = 0x9;
7439 } else if (vco <= 6480000) {
7440 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7441 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7442 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7443 tribuf_calcntr = 0x8;
7444 } else {
7445 /* Not supported. Apply the same limits as in the max case */
7446 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7447 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7448 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7449 tribuf_calcntr = 0;
7450 }
9d556c99
CML
7451 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7452
968040b2 7453 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
9cbe40c1
VP
7454 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7455 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7456 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7457
9d556c99
CML
7458 /* AFC Recal */
7459 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7460 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7461 DPIO_AFC_RECAL);
7462
a580516d 7463 mutex_unlock(&dev_priv->sb_lock);
9d556c99
CML
7464}
7465
d288f65f
VS
7466/**
7467 * vlv_force_pll_on - forcibly enable just the PLL
7468 * @dev_priv: i915 private structure
7469 * @pipe: pipe PLL to enable
7470 * @dpll: PLL configuration
7471 *
7472 * Enable the PLL for @pipe using the supplied @dpll config. To be used
7473 * in cases where we need the PLL enabled even when @pipe is not going to
7474 * be enabled.
7475 */
3f36b937
TU
7476int vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7477 const struct dpll *dpll)
d288f65f
VS
7478{
7479 struct intel_crtc *crtc =
7480 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
3f36b937
TU
7481 struct intel_crtc_state *pipe_config;
7482
7483 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
7484 if (!pipe_config)
7485 return -ENOMEM;
7486
7487 pipe_config->base.crtc = &crtc->base;
7488 pipe_config->pixel_multiplier = 1;
7489 pipe_config->dpll = *dpll;
d288f65f
VS
7490
7491 if (IS_CHERRYVIEW(dev)) {
3f36b937
TU
7492 chv_compute_dpll(crtc, pipe_config);
7493 chv_prepare_pll(crtc, pipe_config);
7494 chv_enable_pll(crtc, pipe_config);
d288f65f 7495 } else {
3f36b937
TU
7496 vlv_compute_dpll(crtc, pipe_config);
7497 vlv_prepare_pll(crtc, pipe_config);
7498 vlv_enable_pll(crtc, pipe_config);
d288f65f 7499 }
3f36b937
TU
7500
7501 kfree(pipe_config);
7502
7503 return 0;
d288f65f
VS
7504}
7505
7506/**
7507 * vlv_force_pll_off - forcibly disable just the PLL
7508 * @dev_priv: i915 private structure
7509 * @pipe: pipe PLL to disable
7510 *
7511 * Disable the PLL for @pipe. To be used in cases where we need
7512 * the PLL enabled even when @pipe is not going to be enabled.
7513 */
7514void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7515{
7516 if (IS_CHERRYVIEW(dev))
7517 chv_disable_pll(to_i915(dev), pipe);
7518 else
7519 vlv_disable_pll(to_i915(dev), pipe);
7520}
7521
251ac862
DV
7522static void i9xx_compute_dpll(struct intel_crtc *crtc,
7523 struct intel_crtc_state *crtc_state,
7524 intel_clock_t *reduced_clock,
7525 int num_connectors)
eb1cbe48 7526{
f47709a9 7527 struct drm_device *dev = crtc->base.dev;
eb1cbe48 7528 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48
DV
7529 u32 dpll;
7530 bool is_sdvo;
190f68c5 7531 struct dpll *clock = &crtc_state->dpll;
eb1cbe48 7532
190f68c5 7533 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
2a8f64ca 7534
a93e255f
ACO
7535 is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7536 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
eb1cbe48
DV
7537
7538 dpll = DPLL_VGA_MODE_DIS;
7539
a93e255f 7540 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
eb1cbe48
DV
7541 dpll |= DPLLB_MODE_LVDS;
7542 else
7543 dpll |= DPLLB_MODE_DAC_SERIAL;
6cc5f341 7544
ef1b460d 7545 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
190f68c5 7546 dpll |= (crtc_state->pixel_multiplier - 1)
198a037f 7547 << SDVO_MULTIPLIER_SHIFT_HIRES;
eb1cbe48 7548 }
198a037f
DV
7549
7550 if (is_sdvo)
4a33e48d 7551 dpll |= DPLL_SDVO_HIGH_SPEED;
198a037f 7552
190f68c5 7553 if (crtc_state->has_dp_encoder)
4a33e48d 7554 dpll |= DPLL_SDVO_HIGH_SPEED;
eb1cbe48
DV
7555
7556 /* compute bitmask from p1 value */
7557 if (IS_PINEVIEW(dev))
7558 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7559 else {
7560 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7561 if (IS_G4X(dev) && reduced_clock)
7562 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7563 }
7564 switch (clock->p2) {
7565 case 5:
7566 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7567 break;
7568 case 7:
7569 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7570 break;
7571 case 10:
7572 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7573 break;
7574 case 14:
7575 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7576 break;
7577 }
7578 if (INTEL_INFO(dev)->gen >= 4)
7579 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7580
190f68c5 7581 if (crtc_state->sdvo_tv_clock)
eb1cbe48 7582 dpll |= PLL_REF_INPUT_TVCLKINBC;
a93e255f 7583 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
7584 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7585 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7586 else
7587 dpll |= PLL_REF_INPUT_DREFCLK;
7588
7589 dpll |= DPLL_VCO_ENABLE;
190f68c5 7590 crtc_state->dpll_hw_state.dpll = dpll;
8bcc2795 7591
eb1cbe48 7592 if (INTEL_INFO(dev)->gen >= 4) {
190f68c5 7593 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
ef1b460d 7594 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
190f68c5 7595 crtc_state->dpll_hw_state.dpll_md = dpll_md;
eb1cbe48
DV
7596 }
7597}
7598
251ac862
DV
7599static void i8xx_compute_dpll(struct intel_crtc *crtc,
7600 struct intel_crtc_state *crtc_state,
7601 intel_clock_t *reduced_clock,
7602 int num_connectors)
eb1cbe48 7603{
f47709a9 7604 struct drm_device *dev = crtc->base.dev;
eb1cbe48 7605 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48 7606 u32 dpll;
190f68c5 7607 struct dpll *clock = &crtc_state->dpll;
eb1cbe48 7608
190f68c5 7609 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
2a8f64ca 7610
eb1cbe48
DV
7611 dpll = DPLL_VGA_MODE_DIS;
7612
a93e255f 7613 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
eb1cbe48
DV
7614 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7615 } else {
7616 if (clock->p1 == 2)
7617 dpll |= PLL_P1_DIVIDE_BY_TWO;
7618 else
7619 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7620 if (clock->p2 == 4)
7621 dpll |= PLL_P2_DIVIDE_BY_4;
7622 }
7623
a93e255f 7624 if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
4a33e48d
DV
7625 dpll |= DPLL_DVO_2X_MODE;
7626
a93e255f 7627 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
7628 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7629 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7630 else
7631 dpll |= PLL_REF_INPUT_DREFCLK;
7632
7633 dpll |= DPLL_VCO_ENABLE;
190f68c5 7634 crtc_state->dpll_hw_state.dpll = dpll;
eb1cbe48
DV
7635}
7636
8a654f3b 7637static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
b0e77b9c
PZ
7638{
7639 struct drm_device *dev = intel_crtc->base.dev;
7640 struct drm_i915_private *dev_priv = dev->dev_private;
7641 enum pipe pipe = intel_crtc->pipe;
6e3c9717 7642 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7c5f93b0 7643 const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
1caea6e9
VS
7644 uint32_t crtc_vtotal, crtc_vblank_end;
7645 int vsyncshift = 0;
4d8a62ea
DV
7646
7647 /* We need to be careful not to changed the adjusted mode, for otherwise
7648 * the hw state checker will get angry at the mismatch. */
7649 crtc_vtotal = adjusted_mode->crtc_vtotal;
7650 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
b0e77b9c 7651
609aeaca 7652 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
b0e77b9c 7653 /* the chip adds 2 halflines automatically */
4d8a62ea
DV
7654 crtc_vtotal -= 1;
7655 crtc_vblank_end -= 1;
609aeaca 7656
409ee761 7657 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
609aeaca
VS
7658 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7659 else
7660 vsyncshift = adjusted_mode->crtc_hsync_start -
7661 adjusted_mode->crtc_htotal / 2;
1caea6e9
VS
7662 if (vsyncshift < 0)
7663 vsyncshift += adjusted_mode->crtc_htotal;
b0e77b9c
PZ
7664 }
7665
7666 if (INTEL_INFO(dev)->gen > 3)
fe2b8f9d 7667 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
b0e77b9c 7668
fe2b8f9d 7669 I915_WRITE(HTOTAL(cpu_transcoder),
b0e77b9c
PZ
7670 (adjusted_mode->crtc_hdisplay - 1) |
7671 ((adjusted_mode->crtc_htotal - 1) << 16));
fe2b8f9d 7672 I915_WRITE(HBLANK(cpu_transcoder),
b0e77b9c
PZ
7673 (adjusted_mode->crtc_hblank_start - 1) |
7674 ((adjusted_mode->crtc_hblank_end - 1) << 16));
fe2b8f9d 7675 I915_WRITE(HSYNC(cpu_transcoder),
b0e77b9c
PZ
7676 (adjusted_mode->crtc_hsync_start - 1) |
7677 ((adjusted_mode->crtc_hsync_end - 1) << 16));
7678
fe2b8f9d 7679 I915_WRITE(VTOTAL(cpu_transcoder),
b0e77b9c 7680 (adjusted_mode->crtc_vdisplay - 1) |
4d8a62ea 7681 ((crtc_vtotal - 1) << 16));
fe2b8f9d 7682 I915_WRITE(VBLANK(cpu_transcoder),
b0e77b9c 7683 (adjusted_mode->crtc_vblank_start - 1) |
4d8a62ea 7684 ((crtc_vblank_end - 1) << 16));
fe2b8f9d 7685 I915_WRITE(VSYNC(cpu_transcoder),
b0e77b9c
PZ
7686 (adjusted_mode->crtc_vsync_start - 1) |
7687 ((adjusted_mode->crtc_vsync_end - 1) << 16));
7688
b5e508d4
PZ
7689 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7690 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7691 * documented on the DDI_FUNC_CTL register description, EDP Input Select
7692 * bits. */
7693 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7694 (pipe == PIPE_B || pipe == PIPE_C))
7695 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7696
b0e77b9c
PZ
7697 /* pipesrc controls the size that is scaled from, which should
7698 * always be the user's requested size.
7699 */
7700 I915_WRITE(PIPESRC(pipe),
6e3c9717
ACO
7701 ((intel_crtc->config->pipe_src_w - 1) << 16) |
7702 (intel_crtc->config->pipe_src_h - 1));
b0e77b9c
PZ
7703}
7704
1bd1bd80 7705static void intel_get_pipe_timings(struct intel_crtc *crtc,
5cec258b 7706 struct intel_crtc_state *pipe_config)
1bd1bd80
DV
7707{
7708 struct drm_device *dev = crtc->base.dev;
7709 struct drm_i915_private *dev_priv = dev->dev_private;
7710 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7711 uint32_t tmp;
7712
7713 tmp = I915_READ(HTOTAL(cpu_transcoder));
2d112de7
ACO
7714 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7715 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 7716 tmp = I915_READ(HBLANK(cpu_transcoder));
2d112de7
ACO
7717 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7718 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 7719 tmp = I915_READ(HSYNC(cpu_transcoder));
2d112de7
ACO
7720 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7721 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80
DV
7722
7723 tmp = I915_READ(VTOTAL(cpu_transcoder));
2d112de7
ACO
7724 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7725 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 7726 tmp = I915_READ(VBLANK(cpu_transcoder));
2d112de7
ACO
7727 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7728 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 7729 tmp = I915_READ(VSYNC(cpu_transcoder));
2d112de7
ACO
7730 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7731 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80
DV
7732
7733 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
2d112de7
ACO
7734 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7735 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7736 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
1bd1bd80
DV
7737 }
7738
7739 tmp = I915_READ(PIPESRC(crtc->pipe));
37327abd
VS
7740 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7741 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7742
2d112de7
ACO
7743 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7744 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
1bd1bd80
DV
7745}
7746
f6a83288 7747void intel_mode_from_pipe_config(struct drm_display_mode *mode,
5cec258b 7748 struct intel_crtc_state *pipe_config)
babea61d 7749{
2d112de7
ACO
7750 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7751 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7752 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7753 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
babea61d 7754
2d112de7
ACO
7755 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7756 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7757 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7758 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
babea61d 7759
2d112de7 7760 mode->flags = pipe_config->base.adjusted_mode.flags;
cd13f5ab 7761 mode->type = DRM_MODE_TYPE_DRIVER;
babea61d 7762
2d112de7
ACO
7763 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7764 mode->flags |= pipe_config->base.adjusted_mode.flags;
cd13f5ab
ML
7765
7766 mode->hsync = drm_mode_hsync(mode);
7767 mode->vrefresh = drm_mode_vrefresh(mode);
7768 drm_mode_set_name(mode);
babea61d
JB
7769}
7770
84b046f3
DV
7771static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7772{
7773 struct drm_device *dev = intel_crtc->base.dev;
7774 struct drm_i915_private *dev_priv = dev->dev_private;
7775 uint32_t pipeconf;
7776
9f11a9e4 7777 pipeconf = 0;
84b046f3 7778
b6b5d049
VS
7779 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7780 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7781 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
67c72a12 7782
6e3c9717 7783 if (intel_crtc->config->double_wide)
cf532bb2 7784 pipeconf |= PIPECONF_DOUBLE_WIDE;
84b046f3 7785
ff9ce46e 7786 /* only g4x and later have fancy bpc/dither controls */
666a4537 7787 if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
ff9ce46e 7788 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6e3c9717 7789 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
ff9ce46e 7790 pipeconf |= PIPECONF_DITHER_EN |
84b046f3 7791 PIPECONF_DITHER_TYPE_SP;
84b046f3 7792
6e3c9717 7793 switch (intel_crtc->config->pipe_bpp) {
ff9ce46e
DV
7794 case 18:
7795 pipeconf |= PIPECONF_6BPC;
7796 break;
7797 case 24:
7798 pipeconf |= PIPECONF_8BPC;
7799 break;
7800 case 30:
7801 pipeconf |= PIPECONF_10BPC;
7802 break;
7803 default:
7804 /* Case prevented by intel_choose_pipe_bpp_dither. */
7805 BUG();
84b046f3
DV
7806 }
7807 }
7808
7809 if (HAS_PIPE_CXSR(dev)) {
7810 if (intel_crtc->lowfreq_avail) {
7811 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7812 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7813 } else {
7814 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
84b046f3
DV
7815 }
7816 }
7817
6e3c9717 7818 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
efc2cfff 7819 if (INTEL_INFO(dev)->gen < 4 ||
409ee761 7820 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
efc2cfff
VS
7821 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7822 else
7823 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7824 } else
84b046f3
DV
7825 pipeconf |= PIPECONF_PROGRESSIVE;
7826
666a4537
WB
7827 if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
7828 intel_crtc->config->limited_color_range)
9f11a9e4 7829 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
9c8e09b7 7830
84b046f3
DV
7831 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7832 POSTING_READ(PIPECONF(intel_crtc->pipe));
7833}
7834
190f68c5
ACO
7835static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7836 struct intel_crtc_state *crtc_state)
79e53945 7837{
c7653199 7838 struct drm_device *dev = crtc->base.dev;
79e53945 7839 struct drm_i915_private *dev_priv = dev->dev_private;
c751ce4f 7840 int refclk, num_connectors = 0;
c329a4ec
DV
7841 intel_clock_t clock;
7842 bool ok;
d4906093 7843 const intel_limit_t *limit;
55bb9992 7844 struct drm_atomic_state *state = crtc_state->base.state;
da3ced29 7845 struct drm_connector *connector;
55bb9992
ACO
7846 struct drm_connector_state *connector_state;
7847 int i;
79e53945 7848
dd3cd74a
ACO
7849 memset(&crtc_state->dpll_hw_state, 0,
7850 sizeof(crtc_state->dpll_hw_state));
7851
a65347ba
JN
7852 if (crtc_state->has_dsi_encoder)
7853 return 0;
43565a06 7854
a65347ba
JN
7855 for_each_connector_in_state(state, connector, connector_state, i) {
7856 if (connector_state->crtc == &crtc->base)
7857 num_connectors++;
79e53945
JB
7858 }
7859
190f68c5 7860 if (!crtc_state->clock_set) {
a93e255f 7861 refclk = i9xx_get_refclk(crtc_state, num_connectors);
79e53945 7862
e9fd1c02
JN
7863 /*
7864 * Returns a set of divisors for the desired target clock with
7865 * the given refclk, or FALSE. The returned values represent
7866 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
7867 * 2) / p1 / p2.
7868 */
a93e255f
ACO
7869 limit = intel_limit(crtc_state, refclk);
7870 ok = dev_priv->display.find_dpll(limit, crtc_state,
190f68c5 7871 crtc_state->port_clock,
e9fd1c02 7872 refclk, NULL, &clock);
f2335330 7873 if (!ok) {
e9fd1c02
JN
7874 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7875 return -EINVAL;
7876 }
79e53945 7877
f2335330 7878 /* Compat-code for transition, will disappear. */
190f68c5
ACO
7879 crtc_state->dpll.n = clock.n;
7880 crtc_state->dpll.m1 = clock.m1;
7881 crtc_state->dpll.m2 = clock.m2;
7882 crtc_state->dpll.p1 = clock.p1;
7883 crtc_state->dpll.p2 = clock.p2;
f47709a9 7884 }
7026d4ac 7885
e9fd1c02 7886 if (IS_GEN2(dev)) {
c329a4ec 7887 i8xx_compute_dpll(crtc, crtc_state, NULL,
251ac862 7888 num_connectors);
9d556c99 7889 } else if (IS_CHERRYVIEW(dev)) {
251ac862 7890 chv_compute_dpll(crtc, crtc_state);
e9fd1c02 7891 } else if (IS_VALLEYVIEW(dev)) {
251ac862 7892 vlv_compute_dpll(crtc, crtc_state);
e9fd1c02 7893 } else {
c329a4ec 7894 i9xx_compute_dpll(crtc, crtc_state, NULL,
251ac862 7895 num_connectors);
e9fd1c02 7896 }
79e53945 7897
c8f7a0db 7898 return 0;
f564048e
EA
7899}
7900
2fa2fe9a 7901static void i9xx_get_pfit_config(struct intel_crtc *crtc,
5cec258b 7902 struct intel_crtc_state *pipe_config)
2fa2fe9a
DV
7903{
7904 struct drm_device *dev = crtc->base.dev;
7905 struct drm_i915_private *dev_priv = dev->dev_private;
7906 uint32_t tmp;
7907
dc9e7dec
VS
7908 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
7909 return;
7910
2fa2fe9a 7911 tmp = I915_READ(PFIT_CONTROL);
06922821
DV
7912 if (!(tmp & PFIT_ENABLE))
7913 return;
2fa2fe9a 7914
06922821 7915 /* Check whether the pfit is attached to our pipe. */
2fa2fe9a
DV
7916 if (INTEL_INFO(dev)->gen < 4) {
7917 if (crtc->pipe != PIPE_B)
7918 return;
2fa2fe9a
DV
7919 } else {
7920 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
7921 return;
7922 }
7923
06922821 7924 pipe_config->gmch_pfit.control = tmp;
2fa2fe9a
DV
7925 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
7926 if (INTEL_INFO(dev)->gen < 5)
7927 pipe_config->gmch_pfit.lvds_border_bits =
7928 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
7929}
7930
acbec814 7931static void vlv_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 7932 struct intel_crtc_state *pipe_config)
acbec814
JB
7933{
7934 struct drm_device *dev = crtc->base.dev;
7935 struct drm_i915_private *dev_priv = dev->dev_private;
7936 int pipe = pipe_config->cpu_transcoder;
7937 intel_clock_t clock;
7938 u32 mdiv;
662c6ecb 7939 int refclk = 100000;
acbec814 7940
f573de5a
SK
7941 /* In case of MIPI DPLL will not even be used */
7942 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
7943 return;
7944
a580516d 7945 mutex_lock(&dev_priv->sb_lock);
ab3c759a 7946 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
a580516d 7947 mutex_unlock(&dev_priv->sb_lock);
acbec814
JB
7948
7949 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
7950 clock.m2 = mdiv & DPIO_M2DIV_MASK;
7951 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
7952 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
7953 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
7954
dccbea3b 7955 pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
acbec814
JB
7956}
7957
5724dbd1
DL
7958static void
7959i9xx_get_initial_plane_config(struct intel_crtc *crtc,
7960 struct intel_initial_plane_config *plane_config)
1ad292b5
JB
7961{
7962 struct drm_device *dev = crtc->base.dev;
7963 struct drm_i915_private *dev_priv = dev->dev_private;
7964 u32 val, base, offset;
7965 int pipe = crtc->pipe, plane = crtc->plane;
7966 int fourcc, pixel_format;
6761dd31 7967 unsigned int aligned_height;
b113d5ee 7968 struct drm_framebuffer *fb;
1b842c89 7969 struct intel_framebuffer *intel_fb;
1ad292b5 7970
42a7b088
DL
7971 val = I915_READ(DSPCNTR(plane));
7972 if (!(val & DISPLAY_PLANE_ENABLE))
7973 return;
7974
d9806c9f 7975 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 7976 if (!intel_fb) {
1ad292b5
JB
7977 DRM_DEBUG_KMS("failed to alloc fb\n");
7978 return;
7979 }
7980
1b842c89
DL
7981 fb = &intel_fb->base;
7982
18c5247e
DV
7983 if (INTEL_INFO(dev)->gen >= 4) {
7984 if (val & DISPPLANE_TILED) {
49af449b 7985 plane_config->tiling = I915_TILING_X;
18c5247e
DV
7986 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
7987 }
7988 }
1ad292b5
JB
7989
7990 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
b35d63fa 7991 fourcc = i9xx_format_to_fourcc(pixel_format);
b113d5ee
DL
7992 fb->pixel_format = fourcc;
7993 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
1ad292b5
JB
7994
7995 if (INTEL_INFO(dev)->gen >= 4) {
49af449b 7996 if (plane_config->tiling)
1ad292b5
JB
7997 offset = I915_READ(DSPTILEOFF(plane));
7998 else
7999 offset = I915_READ(DSPLINOFF(plane));
8000 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8001 } else {
8002 base = I915_READ(DSPADDR(plane));
8003 }
8004 plane_config->base = base;
8005
8006 val = I915_READ(PIPESRC(pipe));
b113d5ee
DL
8007 fb->width = ((val >> 16) & 0xfff) + 1;
8008 fb->height = ((val >> 0) & 0xfff) + 1;
1ad292b5
JB
8009
8010 val = I915_READ(DSPSTRIDE(pipe));
b113d5ee 8011 fb->pitches[0] = val & 0xffffffc0;
1ad292b5 8012
b113d5ee 8013 aligned_height = intel_fb_align_height(dev, fb->height,
091df6cb
DV
8014 fb->pixel_format,
8015 fb->modifier[0]);
1ad292b5 8016
f37b5c2b 8017 plane_config->size = fb->pitches[0] * aligned_height;
1ad292b5 8018
2844a921
DL
8019 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8020 pipe_name(pipe), plane, fb->width, fb->height,
8021 fb->bits_per_pixel, base, fb->pitches[0],
8022 plane_config->size);
1ad292b5 8023
2d14030b 8024 plane_config->fb = intel_fb;
1ad292b5
JB
8025}
8026
70b23a98 8027static void chv_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 8028 struct intel_crtc_state *pipe_config)
70b23a98
VS
8029{
8030 struct drm_device *dev = crtc->base.dev;
8031 struct drm_i915_private *dev_priv = dev->dev_private;
8032 int pipe = pipe_config->cpu_transcoder;
8033 enum dpio_channel port = vlv_pipe_to_channel(pipe);
8034 intel_clock_t clock;
0d7b6b11 8035 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
70b23a98
VS
8036 int refclk = 100000;
8037
a580516d 8038 mutex_lock(&dev_priv->sb_lock);
70b23a98
VS
8039 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8040 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8041 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8042 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
0d7b6b11 8043 pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
a580516d 8044 mutex_unlock(&dev_priv->sb_lock);
70b23a98
VS
8045
8046 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
0d7b6b11
ID
8047 clock.m2 = (pll_dw0 & 0xff) << 22;
8048 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8049 clock.m2 |= pll_dw2 & 0x3fffff;
70b23a98
VS
8050 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8051 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8052 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8053
dccbea3b 8054 pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
70b23a98
VS
8055}
8056
0e8ffe1b 8057static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
5cec258b 8058 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
8059{
8060 struct drm_device *dev = crtc->base.dev;
8061 struct drm_i915_private *dev_priv = dev->dev_private;
1729050e 8062 enum intel_display_power_domain power_domain;
0e8ffe1b 8063 uint32_t tmp;
1729050e 8064 bool ret;
0e8ffe1b 8065
1729050e
ID
8066 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
8067 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
b5482bd0
ID
8068 return false;
8069
e143a21c 8070 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8106ddbd 8071 pipe_config->shared_dpll = NULL;
eccb140b 8072
1729050e
ID
8073 ret = false;
8074
0e8ffe1b
DV
8075 tmp = I915_READ(PIPECONF(crtc->pipe));
8076 if (!(tmp & PIPECONF_ENABLE))
1729050e 8077 goto out;
0e8ffe1b 8078
666a4537 8079 if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
42571aef
VS
8080 switch (tmp & PIPECONF_BPC_MASK) {
8081 case PIPECONF_6BPC:
8082 pipe_config->pipe_bpp = 18;
8083 break;
8084 case PIPECONF_8BPC:
8085 pipe_config->pipe_bpp = 24;
8086 break;
8087 case PIPECONF_10BPC:
8088 pipe_config->pipe_bpp = 30;
8089 break;
8090 default:
8091 break;
8092 }
8093 }
8094
666a4537
WB
8095 if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
8096 (tmp & PIPECONF_COLOR_RANGE_SELECT))
b5a9fa09
DV
8097 pipe_config->limited_color_range = true;
8098
282740f7
VS
8099 if (INTEL_INFO(dev)->gen < 4)
8100 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8101
1bd1bd80
DV
8102 intel_get_pipe_timings(crtc, pipe_config);
8103
2fa2fe9a
DV
8104 i9xx_get_pfit_config(crtc, pipe_config);
8105
6c49f241
DV
8106 if (INTEL_INFO(dev)->gen >= 4) {
8107 tmp = I915_READ(DPLL_MD(crtc->pipe));
8108 pipe_config->pixel_multiplier =
8109 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8110 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8bcc2795 8111 pipe_config->dpll_hw_state.dpll_md = tmp;
6c49f241
DV
8112 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8113 tmp = I915_READ(DPLL(crtc->pipe));
8114 pipe_config->pixel_multiplier =
8115 ((tmp & SDVO_MULTIPLIER_MASK)
8116 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8117 } else {
8118 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8119 * port and will be fixed up in the encoder->get_config
8120 * function. */
8121 pipe_config->pixel_multiplier = 1;
8122 }
8bcc2795 8123 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
666a4537 8124 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
1c4e0274
VS
8125 /*
8126 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8127 * on 830. Filter it out here so that we don't
8128 * report errors due to that.
8129 */
8130 if (IS_I830(dev))
8131 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8132
8bcc2795
DV
8133 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8134 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
165e901c
VS
8135 } else {
8136 /* Mask out read-only status bits. */
8137 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8138 DPLL_PORTC_READY_MASK |
8139 DPLL_PORTB_READY_MASK);
8bcc2795 8140 }
6c49f241 8141
70b23a98
VS
8142 if (IS_CHERRYVIEW(dev))
8143 chv_crtc_clock_get(crtc, pipe_config);
8144 else if (IS_VALLEYVIEW(dev))
acbec814
JB
8145 vlv_crtc_clock_get(crtc, pipe_config);
8146 else
8147 i9xx_crtc_clock_get(crtc, pipe_config);
18442d08 8148
0f64614d
VS
8149 /*
8150 * Normally the dotclock is filled in by the encoder .get_config()
8151 * but in case the pipe is enabled w/o any ports we need a sane
8152 * default.
8153 */
8154 pipe_config->base.adjusted_mode.crtc_clock =
8155 pipe_config->port_clock / pipe_config->pixel_multiplier;
8156
1729050e
ID
8157 ret = true;
8158
8159out:
8160 intel_display_power_put(dev_priv, power_domain);
8161
8162 return ret;
0e8ffe1b
DV
8163}
8164
dde86e2d 8165static void ironlake_init_pch_refclk(struct drm_device *dev)
13d83a67
JB
8166{
8167 struct drm_i915_private *dev_priv = dev->dev_private;
13d83a67 8168 struct intel_encoder *encoder;
74cfd7ac 8169 u32 val, final;
13d83a67 8170 bool has_lvds = false;
199e5d79 8171 bool has_cpu_edp = false;
199e5d79 8172 bool has_panel = false;
99eb6a01
KP
8173 bool has_ck505 = false;
8174 bool can_ssc = false;
13d83a67
JB
8175
8176 /* We need to take the global config into account */
b2784e15 8177 for_each_intel_encoder(dev, encoder) {
199e5d79
KP
8178 switch (encoder->type) {
8179 case INTEL_OUTPUT_LVDS:
8180 has_panel = true;
8181 has_lvds = true;
8182 break;
8183 case INTEL_OUTPUT_EDP:
8184 has_panel = true;
2de6905f 8185 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
199e5d79
KP
8186 has_cpu_edp = true;
8187 break;
6847d71b
PZ
8188 default:
8189 break;
13d83a67
JB
8190 }
8191 }
8192
99eb6a01 8193 if (HAS_PCH_IBX(dev)) {
41aa3448 8194 has_ck505 = dev_priv->vbt.display_clock_mode;
99eb6a01
KP
8195 can_ssc = has_ck505;
8196 } else {
8197 has_ck505 = false;
8198 can_ssc = true;
8199 }
8200
2de6905f
ID
8201 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
8202 has_panel, has_lvds, has_ck505);
13d83a67
JB
8203
8204 /* Ironlake: try to setup display ref clock before DPLL
8205 * enabling. This is only under driver's control after
8206 * PCH B stepping, previous chipset stepping should be
8207 * ignoring this setting.
8208 */
74cfd7ac
CW
8209 val = I915_READ(PCH_DREF_CONTROL);
8210
8211 /* As we must carefully and slowly disable/enable each source in turn,
8212 * compute the final state we want first and check if we need to
8213 * make any changes at all.
8214 */
8215 final = val;
8216 final &= ~DREF_NONSPREAD_SOURCE_MASK;
8217 if (has_ck505)
8218 final |= DREF_NONSPREAD_CK505_ENABLE;
8219 else
8220 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8221
8222 final &= ~DREF_SSC_SOURCE_MASK;
8223 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8224 final &= ~DREF_SSC1_ENABLE;
8225
8226 if (has_panel) {
8227 final |= DREF_SSC_SOURCE_ENABLE;
8228
8229 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8230 final |= DREF_SSC1_ENABLE;
8231
8232 if (has_cpu_edp) {
8233 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8234 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8235 else
8236 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8237 } else
8238 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8239 } else {
8240 final |= DREF_SSC_SOURCE_DISABLE;
8241 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8242 }
8243
8244 if (final == val)
8245 return;
8246
13d83a67 8247 /* Always enable nonspread source */
74cfd7ac 8248 val &= ~DREF_NONSPREAD_SOURCE_MASK;
13d83a67 8249
99eb6a01 8250 if (has_ck505)
74cfd7ac 8251 val |= DREF_NONSPREAD_CK505_ENABLE;
99eb6a01 8252 else
74cfd7ac 8253 val |= DREF_NONSPREAD_SOURCE_ENABLE;
13d83a67 8254
199e5d79 8255 if (has_panel) {
74cfd7ac
CW
8256 val &= ~DREF_SSC_SOURCE_MASK;
8257 val |= DREF_SSC_SOURCE_ENABLE;
13d83a67 8258
199e5d79 8259 /* SSC must be turned on before enabling the CPU output */
99eb6a01 8260 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 8261 DRM_DEBUG_KMS("Using SSC on panel\n");
74cfd7ac 8262 val |= DREF_SSC1_ENABLE;
e77166b5 8263 } else
74cfd7ac 8264 val &= ~DREF_SSC1_ENABLE;
199e5d79
KP
8265
8266 /* Get SSC going before enabling the outputs */
74cfd7ac 8267 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
8268 POSTING_READ(PCH_DREF_CONTROL);
8269 udelay(200);
8270
74cfd7ac 8271 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
13d83a67
JB
8272
8273 /* Enable CPU source on CPU attached eDP */
199e5d79 8274 if (has_cpu_edp) {
99eb6a01 8275 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 8276 DRM_DEBUG_KMS("Using SSC on eDP\n");
74cfd7ac 8277 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
eba905b2 8278 } else
74cfd7ac 8279 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
199e5d79 8280 } else
74cfd7ac 8281 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 8282
74cfd7ac 8283 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
8284 POSTING_READ(PCH_DREF_CONTROL);
8285 udelay(200);
8286 } else {
8287 DRM_DEBUG_KMS("Disabling SSC entirely\n");
8288
74cfd7ac 8289 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
199e5d79
KP
8290
8291 /* Turn off CPU output */
74cfd7ac 8292 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 8293
74cfd7ac 8294 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
8295 POSTING_READ(PCH_DREF_CONTROL);
8296 udelay(200);
8297
8298 /* Turn off the SSC source */
74cfd7ac
CW
8299 val &= ~DREF_SSC_SOURCE_MASK;
8300 val |= DREF_SSC_SOURCE_DISABLE;
199e5d79
KP
8301
8302 /* Turn off SSC1 */
74cfd7ac 8303 val &= ~DREF_SSC1_ENABLE;
199e5d79 8304
74cfd7ac 8305 I915_WRITE(PCH_DREF_CONTROL, val);
13d83a67
JB
8306 POSTING_READ(PCH_DREF_CONTROL);
8307 udelay(200);
8308 }
74cfd7ac
CW
8309
8310 BUG_ON(val != final);
13d83a67
JB
8311}
8312
f31f2d55 8313static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
dde86e2d 8314{
f31f2d55 8315 uint32_t tmp;
dde86e2d 8316
0ff066a9
PZ
8317 tmp = I915_READ(SOUTH_CHICKEN2);
8318 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8319 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 8320
0ff066a9
PZ
8321 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
8322 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8323 DRM_ERROR("FDI mPHY reset assert timeout\n");
dde86e2d 8324
0ff066a9
PZ
8325 tmp = I915_READ(SOUTH_CHICKEN2);
8326 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8327 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 8328
0ff066a9
PZ
8329 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
8330 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8331 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
f31f2d55
PZ
8332}
8333
8334/* WaMPhyProgramming:hsw */
8335static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8336{
8337 uint32_t tmp;
dde86e2d
PZ
8338
8339 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8340 tmp &= ~(0xFF << 24);
8341 tmp |= (0x12 << 24);
8342 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8343
dde86e2d
PZ
8344 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8345 tmp |= (1 << 11);
8346 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8347
8348 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8349 tmp |= (1 << 11);
8350 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8351
dde86e2d
PZ
8352 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8353 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8354 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8355
8356 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8357 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8358 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8359
0ff066a9
PZ
8360 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8361 tmp &= ~(7 << 13);
8362 tmp |= (5 << 13);
8363 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
dde86e2d 8364
0ff066a9
PZ
8365 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8366 tmp &= ~(7 << 13);
8367 tmp |= (5 << 13);
8368 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
dde86e2d
PZ
8369
8370 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8371 tmp &= ~0xFF;
8372 tmp |= 0x1C;
8373 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8374
8375 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8376 tmp &= ~0xFF;
8377 tmp |= 0x1C;
8378 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8379
8380 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8381 tmp &= ~(0xFF << 16);
8382 tmp |= (0x1C << 16);
8383 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8384
8385 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8386 tmp &= ~(0xFF << 16);
8387 tmp |= (0x1C << 16);
8388 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8389
0ff066a9
PZ
8390 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8391 tmp |= (1 << 27);
8392 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
dde86e2d 8393
0ff066a9
PZ
8394 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8395 tmp |= (1 << 27);
8396 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
dde86e2d 8397
0ff066a9
PZ
8398 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8399 tmp &= ~(0xF << 28);
8400 tmp |= (4 << 28);
8401 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
dde86e2d 8402
0ff066a9
PZ
8403 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8404 tmp &= ~(0xF << 28);
8405 tmp |= (4 << 28);
8406 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
f31f2d55
PZ
8407}
8408
2fa86a1f
PZ
8409/* Implements 3 different sequences from BSpec chapter "Display iCLK
8410 * Programming" based on the parameters passed:
8411 * - Sequence to enable CLKOUT_DP
8412 * - Sequence to enable CLKOUT_DP without spread
8413 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8414 */
8415static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8416 bool with_fdi)
f31f2d55
PZ
8417{
8418 struct drm_i915_private *dev_priv = dev->dev_private;
2fa86a1f
PZ
8419 uint32_t reg, tmp;
8420
8421 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8422 with_spread = true;
c2699524 8423 if (WARN(HAS_PCH_LPT_LP(dev) && with_fdi, "LP PCH doesn't have FDI\n"))
2fa86a1f 8424 with_fdi = false;
f31f2d55 8425
a580516d 8426 mutex_lock(&dev_priv->sb_lock);
f31f2d55
PZ
8427
8428 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8429 tmp &= ~SBI_SSCCTL_DISABLE;
8430 tmp |= SBI_SSCCTL_PATHALT;
8431 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8432
8433 udelay(24);
8434
2fa86a1f
PZ
8435 if (with_spread) {
8436 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8437 tmp &= ~SBI_SSCCTL_PATHALT;
8438 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
f31f2d55 8439
2fa86a1f
PZ
8440 if (with_fdi) {
8441 lpt_reset_fdi_mphy(dev_priv);
8442 lpt_program_fdi_mphy(dev_priv);
8443 }
8444 }
dde86e2d 8445
c2699524 8446 reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
2fa86a1f
PZ
8447 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8448 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8449 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
c00db246 8450
a580516d 8451 mutex_unlock(&dev_priv->sb_lock);
dde86e2d
PZ
8452}
8453
47701c3b
PZ
8454/* Sequence to disable CLKOUT_DP */
8455static void lpt_disable_clkout_dp(struct drm_device *dev)
8456{
8457 struct drm_i915_private *dev_priv = dev->dev_private;
8458 uint32_t reg, tmp;
8459
a580516d 8460 mutex_lock(&dev_priv->sb_lock);
47701c3b 8461
c2699524 8462 reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
47701c3b
PZ
8463 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8464 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8465 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8466
8467 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8468 if (!(tmp & SBI_SSCCTL_DISABLE)) {
8469 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8470 tmp |= SBI_SSCCTL_PATHALT;
8471 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8472 udelay(32);
8473 }
8474 tmp |= SBI_SSCCTL_DISABLE;
8475 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8476 }
8477
a580516d 8478 mutex_unlock(&dev_priv->sb_lock);
47701c3b
PZ
8479}
8480
f7be2c21
VS
8481#define BEND_IDX(steps) ((50 + (steps)) / 5)
8482
8483static const uint16_t sscdivintphase[] = {
8484 [BEND_IDX( 50)] = 0x3B23,
8485 [BEND_IDX( 45)] = 0x3B23,
8486 [BEND_IDX( 40)] = 0x3C23,
8487 [BEND_IDX( 35)] = 0x3C23,
8488 [BEND_IDX( 30)] = 0x3D23,
8489 [BEND_IDX( 25)] = 0x3D23,
8490 [BEND_IDX( 20)] = 0x3E23,
8491 [BEND_IDX( 15)] = 0x3E23,
8492 [BEND_IDX( 10)] = 0x3F23,
8493 [BEND_IDX( 5)] = 0x3F23,
8494 [BEND_IDX( 0)] = 0x0025,
8495 [BEND_IDX( -5)] = 0x0025,
8496 [BEND_IDX(-10)] = 0x0125,
8497 [BEND_IDX(-15)] = 0x0125,
8498 [BEND_IDX(-20)] = 0x0225,
8499 [BEND_IDX(-25)] = 0x0225,
8500 [BEND_IDX(-30)] = 0x0325,
8501 [BEND_IDX(-35)] = 0x0325,
8502 [BEND_IDX(-40)] = 0x0425,
8503 [BEND_IDX(-45)] = 0x0425,
8504 [BEND_IDX(-50)] = 0x0525,
8505};
8506
8507/*
8508 * Bend CLKOUT_DP
8509 * steps -50 to 50 inclusive, in steps of 5
8510 * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
8511 * change in clock period = -(steps / 10) * 5.787 ps
8512 */
8513static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
8514{
8515 uint32_t tmp;
8516 int idx = BEND_IDX(steps);
8517
8518 if (WARN_ON(steps % 5 != 0))
8519 return;
8520
8521 if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
8522 return;
8523
8524 mutex_lock(&dev_priv->sb_lock);
8525
8526 if (steps % 10 != 0)
8527 tmp = 0xAAAAAAAB;
8528 else
8529 tmp = 0x00000000;
8530 intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
8531
8532 tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
8533 tmp &= 0xffff0000;
8534 tmp |= sscdivintphase[idx];
8535 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
8536
8537 mutex_unlock(&dev_priv->sb_lock);
8538}
8539
8540#undef BEND_IDX
8541
bf8fa3d3
PZ
8542static void lpt_init_pch_refclk(struct drm_device *dev)
8543{
bf8fa3d3
PZ
8544 struct intel_encoder *encoder;
8545 bool has_vga = false;
8546
b2784e15 8547 for_each_intel_encoder(dev, encoder) {
bf8fa3d3
PZ
8548 switch (encoder->type) {
8549 case INTEL_OUTPUT_ANALOG:
8550 has_vga = true;
8551 break;
6847d71b
PZ
8552 default:
8553 break;
bf8fa3d3
PZ
8554 }
8555 }
8556
f7be2c21
VS
8557 if (has_vga) {
8558 lpt_bend_clkout_dp(to_i915(dev), 0);
47701c3b 8559 lpt_enable_clkout_dp(dev, true, true);
f7be2c21 8560 } else {
47701c3b 8561 lpt_disable_clkout_dp(dev);
f7be2c21 8562 }
bf8fa3d3
PZ
8563}
8564
dde86e2d
PZ
8565/*
8566 * Initialize reference clocks when the driver loads
8567 */
8568void intel_init_pch_refclk(struct drm_device *dev)
8569{
8570 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8571 ironlake_init_pch_refclk(dev);
8572 else if (HAS_PCH_LPT(dev))
8573 lpt_init_pch_refclk(dev);
8574}
8575
55bb9992 8576static int ironlake_get_refclk(struct intel_crtc_state *crtc_state)
d9d444cb 8577{
55bb9992 8578 struct drm_device *dev = crtc_state->base.crtc->dev;
d9d444cb 8579 struct drm_i915_private *dev_priv = dev->dev_private;
55bb9992 8580 struct drm_atomic_state *state = crtc_state->base.state;
da3ced29 8581 struct drm_connector *connector;
55bb9992 8582 struct drm_connector_state *connector_state;
d9d444cb 8583 struct intel_encoder *encoder;
55bb9992 8584 int num_connectors = 0, i;
d9d444cb
JB
8585 bool is_lvds = false;
8586
da3ced29 8587 for_each_connector_in_state(state, connector, connector_state, i) {
55bb9992
ACO
8588 if (connector_state->crtc != crtc_state->base.crtc)
8589 continue;
8590
8591 encoder = to_intel_encoder(connector_state->best_encoder);
8592
d9d444cb
JB
8593 switch (encoder->type) {
8594 case INTEL_OUTPUT_LVDS:
8595 is_lvds = true;
8596 break;
6847d71b
PZ
8597 default:
8598 break;
d9d444cb
JB
8599 }
8600 num_connectors++;
8601 }
8602
8603 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b 8604 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
41aa3448 8605 dev_priv->vbt.lvds_ssc_freq);
e91e941b 8606 return dev_priv->vbt.lvds_ssc_freq;
d9d444cb
JB
8607 }
8608
8609 return 120000;
8610}
8611
6ff93609 8612static void ironlake_set_pipeconf(struct drm_crtc *crtc)
79e53945 8613{
c8203565 8614 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
79e53945
JB
8615 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8616 int pipe = intel_crtc->pipe;
c8203565
PZ
8617 uint32_t val;
8618
78114071 8619 val = 0;
c8203565 8620
6e3c9717 8621 switch (intel_crtc->config->pipe_bpp) {
c8203565 8622 case 18:
dfd07d72 8623 val |= PIPECONF_6BPC;
c8203565
PZ
8624 break;
8625 case 24:
dfd07d72 8626 val |= PIPECONF_8BPC;
c8203565
PZ
8627 break;
8628 case 30:
dfd07d72 8629 val |= PIPECONF_10BPC;
c8203565
PZ
8630 break;
8631 case 36:
dfd07d72 8632 val |= PIPECONF_12BPC;
c8203565
PZ
8633 break;
8634 default:
cc769b62
PZ
8635 /* Case prevented by intel_choose_pipe_bpp_dither. */
8636 BUG();
c8203565
PZ
8637 }
8638
6e3c9717 8639 if (intel_crtc->config->dither)
c8203565
PZ
8640 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8641
6e3c9717 8642 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
c8203565
PZ
8643 val |= PIPECONF_INTERLACED_ILK;
8644 else
8645 val |= PIPECONF_PROGRESSIVE;
8646
6e3c9717 8647 if (intel_crtc->config->limited_color_range)
3685a8f3 8648 val |= PIPECONF_COLOR_RANGE_SELECT;
3685a8f3 8649
c8203565
PZ
8650 I915_WRITE(PIPECONF(pipe), val);
8651 POSTING_READ(PIPECONF(pipe));
8652}
8653
86d3efce
VS
8654/*
8655 * Set up the pipe CSC unit.
8656 *
8657 * Currently only full range RGB to limited range RGB conversion
8658 * is supported, but eventually this should handle various
8659 * RGB<->YCbCr scenarios as well.
8660 */
50f3b016 8661static void intel_set_pipe_csc(struct drm_crtc *crtc)
86d3efce
VS
8662{
8663 struct drm_device *dev = crtc->dev;
8664 struct drm_i915_private *dev_priv = dev->dev_private;
8665 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8666 int pipe = intel_crtc->pipe;
8667 uint16_t coeff = 0x7800; /* 1.0 */
8668
8669 /*
8670 * TODO: Check what kind of values actually come out of the pipe
8671 * with these coeff/postoff values and adjust to get the best
8672 * accuracy. Perhaps we even need to take the bpc value into
8673 * consideration.
8674 */
8675
6e3c9717 8676 if (intel_crtc->config->limited_color_range)
86d3efce
VS
8677 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
8678
8679 /*
8680 * GY/GU and RY/RU should be the other way around according
8681 * to BSpec, but reality doesn't agree. Just set them up in
8682 * a way that results in the correct picture.
8683 */
8684 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
8685 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
8686
8687 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
8688 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
8689
8690 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
8691 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
8692
8693 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
8694 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
8695 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
8696
8697 if (INTEL_INFO(dev)->gen > 6) {
8698 uint16_t postoff = 0;
8699
6e3c9717 8700 if (intel_crtc->config->limited_color_range)
32cf0cb0 8701 postoff = (16 * (1 << 12) / 255) & 0x1fff;
86d3efce
VS
8702
8703 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
8704 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
8705 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
8706
8707 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
8708 } else {
8709 uint32_t mode = CSC_MODE_YUV_TO_RGB;
8710
6e3c9717 8711 if (intel_crtc->config->limited_color_range)
86d3efce
VS
8712 mode |= CSC_BLACK_SCREEN_OFFSET;
8713
8714 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
8715 }
8716}
8717
6ff93609 8718static void haswell_set_pipeconf(struct drm_crtc *crtc)
ee2b0b38 8719{
756f85cf
PZ
8720 struct drm_device *dev = crtc->dev;
8721 struct drm_i915_private *dev_priv = dev->dev_private;
ee2b0b38 8722 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
756f85cf 8723 enum pipe pipe = intel_crtc->pipe;
6e3c9717 8724 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
ee2b0b38
PZ
8725 uint32_t val;
8726
3eff4faa 8727 val = 0;
ee2b0b38 8728
6e3c9717 8729 if (IS_HASWELL(dev) && intel_crtc->config->dither)
ee2b0b38
PZ
8730 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8731
6e3c9717 8732 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
ee2b0b38
PZ
8733 val |= PIPECONF_INTERLACED_ILK;
8734 else
8735 val |= PIPECONF_PROGRESSIVE;
8736
702e7a56
PZ
8737 I915_WRITE(PIPECONF(cpu_transcoder), val);
8738 POSTING_READ(PIPECONF(cpu_transcoder));
3eff4faa
DV
8739
8740 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
8741 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
756f85cf 8742
3cdf122c 8743 if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
756f85cf
PZ
8744 val = 0;
8745
6e3c9717 8746 switch (intel_crtc->config->pipe_bpp) {
756f85cf
PZ
8747 case 18:
8748 val |= PIPEMISC_DITHER_6_BPC;
8749 break;
8750 case 24:
8751 val |= PIPEMISC_DITHER_8_BPC;
8752 break;
8753 case 30:
8754 val |= PIPEMISC_DITHER_10_BPC;
8755 break;
8756 case 36:
8757 val |= PIPEMISC_DITHER_12_BPC;
8758 break;
8759 default:
8760 /* Case prevented by pipe_config_set_bpp. */
8761 BUG();
8762 }
8763
6e3c9717 8764 if (intel_crtc->config->dither)
756f85cf
PZ
8765 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8766
8767 I915_WRITE(PIPEMISC(pipe), val);
8768 }
ee2b0b38
PZ
8769}
8770
6591c6e4 8771static bool ironlake_compute_clocks(struct drm_crtc *crtc,
190f68c5 8772 struct intel_crtc_state *crtc_state,
6591c6e4
PZ
8773 intel_clock_t *clock,
8774 bool *has_reduced_clock,
8775 intel_clock_t *reduced_clock)
8776{
8777 struct drm_device *dev = crtc->dev;
8778 struct drm_i915_private *dev_priv = dev->dev_private;
6591c6e4 8779 int refclk;
d4906093 8780 const intel_limit_t *limit;
c329a4ec 8781 bool ret;
79e53945 8782
55bb9992 8783 refclk = ironlake_get_refclk(crtc_state);
79e53945 8784
d4906093
ML
8785 /*
8786 * Returns a set of divisors for the desired target clock with the given
8787 * refclk, or FALSE. The returned values represent the clock equation:
8788 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
8789 */
a93e255f
ACO
8790 limit = intel_limit(crtc_state, refclk);
8791 ret = dev_priv->display.find_dpll(limit, crtc_state,
190f68c5 8792 crtc_state->port_clock,
ee9300bb 8793 refclk, NULL, clock);
6591c6e4
PZ
8794 if (!ret)
8795 return false;
cda4b7d3 8796
6591c6e4
PZ
8797 return true;
8798}
8799
d4b1931c
PZ
8800int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8801{
8802 /*
8803 * Account for spread spectrum to avoid
8804 * oversubscribing the link. Max center spread
8805 * is 2.5%; use 5% for safety's sake.
8806 */
8807 u32 bps = target_clock * bpp * 21 / 20;
619d4d04 8808 return DIV_ROUND_UP(bps, link_bw * 8);
d4b1931c
PZ
8809}
8810
7429e9d4 8811static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6cf86a5e 8812{
7429e9d4 8813 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
f48d8f23
PZ
8814}
8815
de13a2e3 8816static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
190f68c5 8817 struct intel_crtc_state *crtc_state,
7429e9d4 8818 u32 *fp,
9a7c7890 8819 intel_clock_t *reduced_clock, u32 *fp2)
79e53945 8820{
de13a2e3 8821 struct drm_crtc *crtc = &intel_crtc->base;
79e53945
JB
8822 struct drm_device *dev = crtc->dev;
8823 struct drm_i915_private *dev_priv = dev->dev_private;
55bb9992 8824 struct drm_atomic_state *state = crtc_state->base.state;
da3ced29 8825 struct drm_connector *connector;
55bb9992
ACO
8826 struct drm_connector_state *connector_state;
8827 struct intel_encoder *encoder;
de13a2e3 8828 uint32_t dpll;
55bb9992 8829 int factor, num_connectors = 0, i;
09ede541 8830 bool is_lvds = false, is_sdvo = false;
79e53945 8831
da3ced29 8832 for_each_connector_in_state(state, connector, connector_state, i) {
55bb9992
ACO
8833 if (connector_state->crtc != crtc_state->base.crtc)
8834 continue;
8835
8836 encoder = to_intel_encoder(connector_state->best_encoder);
8837
8838 switch (encoder->type) {
79e53945
JB
8839 case INTEL_OUTPUT_LVDS:
8840 is_lvds = true;
8841 break;
8842 case INTEL_OUTPUT_SDVO:
7d57382e 8843 case INTEL_OUTPUT_HDMI:
79e53945 8844 is_sdvo = true;
79e53945 8845 break;
6847d71b
PZ
8846 default:
8847 break;
79e53945 8848 }
43565a06 8849
c751ce4f 8850 num_connectors++;
79e53945 8851 }
79e53945 8852
c1858123 8853 /* Enable autotuning of the PLL clock (if permissible) */
8febb297
EA
8854 factor = 21;
8855 if (is_lvds) {
8856 if ((intel_panel_use_ssc(dev_priv) &&
e91e941b 8857 dev_priv->vbt.lvds_ssc_freq == 100000) ||
f0b44056 8858 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8febb297 8859 factor = 25;
190f68c5 8860 } else if (crtc_state->sdvo_tv_clock)
8febb297 8861 factor = 20;
c1858123 8862
190f68c5 8863 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
7d0ac5b7 8864 *fp |= FP_CB_TUNE;
2c07245f 8865
9a7c7890
DV
8866 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
8867 *fp2 |= FP_CB_TUNE;
8868
5eddb70b 8869 dpll = 0;
2c07245f 8870
a07d6787
EA
8871 if (is_lvds)
8872 dpll |= DPLLB_MODE_LVDS;
8873 else
8874 dpll |= DPLLB_MODE_DAC_SERIAL;
198a037f 8875
190f68c5 8876 dpll |= (crtc_state->pixel_multiplier - 1)
ef1b460d 8877 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
198a037f
DV
8878
8879 if (is_sdvo)
4a33e48d 8880 dpll |= DPLL_SDVO_HIGH_SPEED;
190f68c5 8881 if (crtc_state->has_dp_encoder)
4a33e48d 8882 dpll |= DPLL_SDVO_HIGH_SPEED;
79e53945 8883
a07d6787 8884 /* compute bitmask from p1 value */
190f68c5 8885 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
a07d6787 8886 /* also FPA1 */
190f68c5 8887 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
a07d6787 8888
190f68c5 8889 switch (crtc_state->dpll.p2) {
a07d6787
EA
8890 case 5:
8891 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8892 break;
8893 case 7:
8894 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8895 break;
8896 case 10:
8897 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8898 break;
8899 case 14:
8900 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8901 break;
79e53945
JB
8902 }
8903
b4c09f3b 8904 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 8905 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
8906 else
8907 dpll |= PLL_REF_INPUT_DREFCLK;
8908
959e16d6 8909 return dpll | DPLL_VCO_ENABLE;
de13a2e3
PZ
8910}
8911
190f68c5
ACO
8912static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8913 struct intel_crtc_state *crtc_state)
de13a2e3 8914{
c7653199 8915 struct drm_device *dev = crtc->base.dev;
de13a2e3 8916 intel_clock_t clock, reduced_clock;
cbbab5bd 8917 u32 dpll = 0, fp = 0, fp2 = 0;
e2f12b07 8918 bool ok, has_reduced_clock = false;
8b47047b 8919 bool is_lvds = false;
e2b78267 8920 struct intel_shared_dpll *pll;
de13a2e3 8921
dd3cd74a
ACO
8922 memset(&crtc_state->dpll_hw_state, 0,
8923 sizeof(crtc_state->dpll_hw_state));
8924
7905df29 8925 is_lvds = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS);
79e53945 8926
5dc5298b
PZ
8927 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
8928 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
a07d6787 8929
190f68c5 8930 ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
de13a2e3 8931 &has_reduced_clock, &reduced_clock);
190f68c5 8932 if (!ok && !crtc_state->clock_set) {
de13a2e3
PZ
8933 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8934 return -EINVAL;
79e53945 8935 }
f47709a9 8936 /* Compat-code for transition, will disappear. */
190f68c5
ACO
8937 if (!crtc_state->clock_set) {
8938 crtc_state->dpll.n = clock.n;
8939 crtc_state->dpll.m1 = clock.m1;
8940 crtc_state->dpll.m2 = clock.m2;
8941 crtc_state->dpll.p1 = clock.p1;
8942 crtc_state->dpll.p2 = clock.p2;
f47709a9 8943 }
79e53945 8944
5dc5298b 8945 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
190f68c5
ACO
8946 if (crtc_state->has_pch_encoder) {
8947 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
cbbab5bd 8948 if (has_reduced_clock)
7429e9d4 8949 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
cbbab5bd 8950
190f68c5 8951 dpll = ironlake_compute_dpll(crtc, crtc_state,
cbbab5bd
DV
8952 &fp, &reduced_clock,
8953 has_reduced_clock ? &fp2 : NULL);
8954
190f68c5
ACO
8955 crtc_state->dpll_hw_state.dpll = dpll;
8956 crtc_state->dpll_hw_state.fp0 = fp;
66e985c0 8957 if (has_reduced_clock)
190f68c5 8958 crtc_state->dpll_hw_state.fp1 = fp2;
66e985c0 8959 else
190f68c5 8960 crtc_state->dpll_hw_state.fp1 = fp;
66e985c0 8961
daedf20a 8962 pll = intel_get_shared_dpll(crtc, crtc_state, NULL);
ee7b9f93 8963 if (pll == NULL) {
84f44ce7 8964 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
c7653199 8965 pipe_name(crtc->pipe));
4b645f14
JB
8966 return -EINVAL;
8967 }
3fb37703 8968 }
79e53945 8969
ab585dea 8970 if (is_lvds && has_reduced_clock)
c7653199 8971 crtc->lowfreq_avail = true;
bcd644e0 8972 else
c7653199 8973 crtc->lowfreq_avail = false;
e2b78267 8974
c8f7a0db 8975 return 0;
79e53945
JB
8976}
8977
eb14cb74
VS
8978static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
8979 struct intel_link_m_n *m_n)
8980{
8981 struct drm_device *dev = crtc->base.dev;
8982 struct drm_i915_private *dev_priv = dev->dev_private;
8983 enum pipe pipe = crtc->pipe;
8984
8985 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
8986 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
8987 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
8988 & ~TU_SIZE_MASK;
8989 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
8990 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
8991 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8992}
8993
8994static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
8995 enum transcoder transcoder,
b95af8be
VK
8996 struct intel_link_m_n *m_n,
8997 struct intel_link_m_n *m2_n2)
72419203
DV
8998{
8999 struct drm_device *dev = crtc->base.dev;
9000 struct drm_i915_private *dev_priv = dev->dev_private;
eb14cb74 9001 enum pipe pipe = crtc->pipe;
72419203 9002
eb14cb74
VS
9003 if (INTEL_INFO(dev)->gen >= 5) {
9004 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
9005 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
9006 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
9007 & ~TU_SIZE_MASK;
9008 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
9009 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
9010 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
b95af8be
VK
9011 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
9012 * gen < 8) and if DRRS is supported (to make sure the
9013 * registers are not unnecessarily read).
9014 */
9015 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
6e3c9717 9016 crtc->config->has_drrs) {
b95af8be
VK
9017 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
9018 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
9019 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
9020 & ~TU_SIZE_MASK;
9021 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
9022 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
9023 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9024 }
eb14cb74
VS
9025 } else {
9026 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
9027 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
9028 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
9029 & ~TU_SIZE_MASK;
9030 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
9031 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9032 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9033 }
9034}
9035
9036void intel_dp_get_m_n(struct intel_crtc *crtc,
5cec258b 9037 struct intel_crtc_state *pipe_config)
eb14cb74 9038{
681a8504 9039 if (pipe_config->has_pch_encoder)
eb14cb74
VS
9040 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9041 else
9042 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be
VK
9043 &pipe_config->dp_m_n,
9044 &pipe_config->dp_m2_n2);
eb14cb74 9045}
72419203 9046
eb14cb74 9047static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
5cec258b 9048 struct intel_crtc_state *pipe_config)
eb14cb74
VS
9049{
9050 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be 9051 &pipe_config->fdi_m_n, NULL);
72419203
DV
9052}
9053
bd2e244f 9054static void skylake_get_pfit_config(struct intel_crtc *crtc,
5cec258b 9055 struct intel_crtc_state *pipe_config)
bd2e244f
JB
9056{
9057 struct drm_device *dev = crtc->base.dev;
9058 struct drm_i915_private *dev_priv = dev->dev_private;
a1b2278e
CK
9059 struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9060 uint32_t ps_ctrl = 0;
9061 int id = -1;
9062 int i;
bd2e244f 9063
a1b2278e
CK
9064 /* find scaler attached to this pipe */
9065 for (i = 0; i < crtc->num_scalers; i++) {
9066 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9067 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9068 id = i;
9069 pipe_config->pch_pfit.enabled = true;
9070 pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9071 pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9072 break;
9073 }
9074 }
bd2e244f 9075
a1b2278e
CK
9076 scaler_state->scaler_id = id;
9077 if (id >= 0) {
9078 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9079 } else {
9080 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
bd2e244f
JB
9081 }
9082}
9083
5724dbd1
DL
9084static void
9085skylake_get_initial_plane_config(struct intel_crtc *crtc,
9086 struct intel_initial_plane_config *plane_config)
bc8d7dff
DL
9087{
9088 struct drm_device *dev = crtc->base.dev;
9089 struct drm_i915_private *dev_priv = dev->dev_private;
40f46283 9090 u32 val, base, offset, stride_mult, tiling;
bc8d7dff
DL
9091 int pipe = crtc->pipe;
9092 int fourcc, pixel_format;
6761dd31 9093 unsigned int aligned_height;
bc8d7dff 9094 struct drm_framebuffer *fb;
1b842c89 9095 struct intel_framebuffer *intel_fb;
bc8d7dff 9096
d9806c9f 9097 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 9098 if (!intel_fb) {
bc8d7dff
DL
9099 DRM_DEBUG_KMS("failed to alloc fb\n");
9100 return;
9101 }
9102
1b842c89
DL
9103 fb = &intel_fb->base;
9104
bc8d7dff 9105 val = I915_READ(PLANE_CTL(pipe, 0));
42a7b088
DL
9106 if (!(val & PLANE_CTL_ENABLE))
9107 goto error;
9108
bc8d7dff
DL
9109 pixel_format = val & PLANE_CTL_FORMAT_MASK;
9110 fourcc = skl_format_to_fourcc(pixel_format,
9111 val & PLANE_CTL_ORDER_RGBX,
9112 val & PLANE_CTL_ALPHA_MASK);
9113 fb->pixel_format = fourcc;
9114 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9115
40f46283
DL
9116 tiling = val & PLANE_CTL_TILED_MASK;
9117 switch (tiling) {
9118 case PLANE_CTL_TILED_LINEAR:
9119 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9120 break;
9121 case PLANE_CTL_TILED_X:
9122 plane_config->tiling = I915_TILING_X;
9123 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9124 break;
9125 case PLANE_CTL_TILED_Y:
9126 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9127 break;
9128 case PLANE_CTL_TILED_YF:
9129 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9130 break;
9131 default:
9132 MISSING_CASE(tiling);
9133 goto error;
9134 }
9135
bc8d7dff
DL
9136 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9137 plane_config->base = base;
9138
9139 offset = I915_READ(PLANE_OFFSET(pipe, 0));
9140
9141 val = I915_READ(PLANE_SIZE(pipe, 0));
9142 fb->height = ((val >> 16) & 0xfff) + 1;
9143 fb->width = ((val >> 0) & 0x1fff) + 1;
9144
9145 val = I915_READ(PLANE_STRIDE(pipe, 0));
7b49f948 9146 stride_mult = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
40f46283 9147 fb->pixel_format);
bc8d7dff
DL
9148 fb->pitches[0] = (val & 0x3ff) * stride_mult;
9149
9150 aligned_height = intel_fb_align_height(dev, fb->height,
091df6cb
DV
9151 fb->pixel_format,
9152 fb->modifier[0]);
bc8d7dff 9153
f37b5c2b 9154 plane_config->size = fb->pitches[0] * aligned_height;
bc8d7dff
DL
9155
9156 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9157 pipe_name(pipe), fb->width, fb->height,
9158 fb->bits_per_pixel, base, fb->pitches[0],
9159 plane_config->size);
9160
2d14030b 9161 plane_config->fb = intel_fb;
bc8d7dff
DL
9162 return;
9163
9164error:
9165 kfree(fb);
9166}
9167
2fa2fe9a 9168static void ironlake_get_pfit_config(struct intel_crtc *crtc,
5cec258b 9169 struct intel_crtc_state *pipe_config)
2fa2fe9a
DV
9170{
9171 struct drm_device *dev = crtc->base.dev;
9172 struct drm_i915_private *dev_priv = dev->dev_private;
9173 uint32_t tmp;
9174
9175 tmp = I915_READ(PF_CTL(crtc->pipe));
9176
9177 if (tmp & PF_ENABLE) {
fd4daa9c 9178 pipe_config->pch_pfit.enabled = true;
2fa2fe9a
DV
9179 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9180 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
cb8b2a30
DV
9181
9182 /* We currently do not free assignements of panel fitters on
9183 * ivb/hsw (since we don't use the higher upscaling modes which
9184 * differentiates them) so just WARN about this case for now. */
9185 if (IS_GEN7(dev)) {
9186 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9187 PF_PIPE_SEL_IVB(crtc->pipe));
9188 }
2fa2fe9a 9189 }
79e53945
JB
9190}
9191
5724dbd1
DL
9192static void
9193ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9194 struct intel_initial_plane_config *plane_config)
4c6baa59
JB
9195{
9196 struct drm_device *dev = crtc->base.dev;
9197 struct drm_i915_private *dev_priv = dev->dev_private;
9198 u32 val, base, offset;
aeee5a49 9199 int pipe = crtc->pipe;
4c6baa59 9200 int fourcc, pixel_format;
6761dd31 9201 unsigned int aligned_height;
b113d5ee 9202 struct drm_framebuffer *fb;
1b842c89 9203 struct intel_framebuffer *intel_fb;
4c6baa59 9204
42a7b088
DL
9205 val = I915_READ(DSPCNTR(pipe));
9206 if (!(val & DISPLAY_PLANE_ENABLE))
9207 return;
9208
d9806c9f 9209 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 9210 if (!intel_fb) {
4c6baa59
JB
9211 DRM_DEBUG_KMS("failed to alloc fb\n");
9212 return;
9213 }
9214
1b842c89
DL
9215 fb = &intel_fb->base;
9216
18c5247e
DV
9217 if (INTEL_INFO(dev)->gen >= 4) {
9218 if (val & DISPPLANE_TILED) {
49af449b 9219 plane_config->tiling = I915_TILING_X;
18c5247e
DV
9220 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9221 }
9222 }
4c6baa59
JB
9223
9224 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
b35d63fa 9225 fourcc = i9xx_format_to_fourcc(pixel_format);
b113d5ee
DL
9226 fb->pixel_format = fourcc;
9227 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
4c6baa59 9228
aeee5a49 9229 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
4c6baa59 9230 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
aeee5a49 9231 offset = I915_READ(DSPOFFSET(pipe));
4c6baa59 9232 } else {
49af449b 9233 if (plane_config->tiling)
aeee5a49 9234 offset = I915_READ(DSPTILEOFF(pipe));
4c6baa59 9235 else
aeee5a49 9236 offset = I915_READ(DSPLINOFF(pipe));
4c6baa59
JB
9237 }
9238 plane_config->base = base;
9239
9240 val = I915_READ(PIPESRC(pipe));
b113d5ee
DL
9241 fb->width = ((val >> 16) & 0xfff) + 1;
9242 fb->height = ((val >> 0) & 0xfff) + 1;
4c6baa59
JB
9243
9244 val = I915_READ(DSPSTRIDE(pipe));
b113d5ee 9245 fb->pitches[0] = val & 0xffffffc0;
4c6baa59 9246
b113d5ee 9247 aligned_height = intel_fb_align_height(dev, fb->height,
091df6cb
DV
9248 fb->pixel_format,
9249 fb->modifier[0]);
4c6baa59 9250
f37b5c2b 9251 plane_config->size = fb->pitches[0] * aligned_height;
4c6baa59 9252
2844a921
DL
9253 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9254 pipe_name(pipe), fb->width, fb->height,
9255 fb->bits_per_pixel, base, fb->pitches[0],
9256 plane_config->size);
b113d5ee 9257
2d14030b 9258 plane_config->fb = intel_fb;
4c6baa59
JB
9259}
9260
0e8ffe1b 9261static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
5cec258b 9262 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
9263{
9264 struct drm_device *dev = crtc->base.dev;
9265 struct drm_i915_private *dev_priv = dev->dev_private;
1729050e 9266 enum intel_display_power_domain power_domain;
0e8ffe1b 9267 uint32_t tmp;
1729050e 9268 bool ret;
0e8ffe1b 9269
1729050e
ID
9270 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9271 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
930e8c9e
PZ
9272 return false;
9273
e143a21c 9274 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8106ddbd 9275 pipe_config->shared_dpll = NULL;
eccb140b 9276
1729050e 9277 ret = false;
0e8ffe1b
DV
9278 tmp = I915_READ(PIPECONF(crtc->pipe));
9279 if (!(tmp & PIPECONF_ENABLE))
1729050e 9280 goto out;
0e8ffe1b 9281
42571aef
VS
9282 switch (tmp & PIPECONF_BPC_MASK) {
9283 case PIPECONF_6BPC:
9284 pipe_config->pipe_bpp = 18;
9285 break;
9286 case PIPECONF_8BPC:
9287 pipe_config->pipe_bpp = 24;
9288 break;
9289 case PIPECONF_10BPC:
9290 pipe_config->pipe_bpp = 30;
9291 break;
9292 case PIPECONF_12BPC:
9293 pipe_config->pipe_bpp = 36;
9294 break;
9295 default:
9296 break;
9297 }
9298
b5a9fa09
DV
9299 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9300 pipe_config->limited_color_range = true;
9301
ab9412ba 9302 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
66e985c0 9303 struct intel_shared_dpll *pll;
8106ddbd 9304 enum intel_dpll_id pll_id;
66e985c0 9305
88adfff1
DV
9306 pipe_config->has_pch_encoder = true;
9307
627eb5a3
DV
9308 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9309 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9310 FDI_DP_PORT_WIDTH_SHIFT) + 1;
72419203
DV
9311
9312 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6c49f241 9313
c0d43d62 9314 if (HAS_PCH_IBX(dev_priv->dev)) {
8106ddbd 9315 pll_id = (enum intel_dpll_id) crtc->pipe;
c0d43d62
DV
9316 } else {
9317 tmp = I915_READ(PCH_DPLL_SEL);
9318 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
8106ddbd 9319 pll_id = DPLL_ID_PCH_PLL_B;
c0d43d62 9320 else
8106ddbd 9321 pll_id= DPLL_ID_PCH_PLL_A;
c0d43d62 9322 }
66e985c0 9323
8106ddbd
ACO
9324 pipe_config->shared_dpll =
9325 intel_get_shared_dpll_by_id(dev_priv, pll_id);
9326 pll = pipe_config->shared_dpll;
66e985c0 9327
2edd6443
ACO
9328 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
9329 &pipe_config->dpll_hw_state));
c93f54cf
DV
9330
9331 tmp = pipe_config->dpll_hw_state.dpll;
9332 pipe_config->pixel_multiplier =
9333 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9334 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
18442d08
VS
9335
9336 ironlake_pch_clock_get(crtc, pipe_config);
6c49f241
DV
9337 } else {
9338 pipe_config->pixel_multiplier = 1;
627eb5a3
DV
9339 }
9340
1bd1bd80
DV
9341 intel_get_pipe_timings(crtc, pipe_config);
9342
2fa2fe9a
DV
9343 ironlake_get_pfit_config(crtc, pipe_config);
9344
1729050e
ID
9345 ret = true;
9346
9347out:
9348 intel_display_power_put(dev_priv, power_domain);
9349
9350 return ret;
0e8ffe1b
DV
9351}
9352
be256dc7
PZ
9353static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9354{
9355 struct drm_device *dev = dev_priv->dev;
be256dc7 9356 struct intel_crtc *crtc;
be256dc7 9357
d3fcc808 9358 for_each_intel_crtc(dev, crtc)
e2c719b7 9359 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
be256dc7
PZ
9360 pipe_name(crtc->pipe));
9361
e2c719b7
RC
9362 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9363 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
01403de3
VS
9364 I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9365 I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
e2c719b7
RC
9366 I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9367 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
be256dc7 9368 "CPU PWM1 enabled\n");
c5107b87 9369 if (IS_HASWELL(dev))
e2c719b7 9370 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
c5107b87 9371 "CPU PWM2 enabled\n");
e2c719b7 9372 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
be256dc7 9373 "PCH PWM1 enabled\n");
e2c719b7 9374 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
be256dc7 9375 "Utility pin enabled\n");
e2c719b7 9376 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
be256dc7 9377
9926ada1
PZ
9378 /*
9379 * In theory we can still leave IRQs enabled, as long as only the HPD
9380 * interrupts remain enabled. We used to check for that, but since it's
9381 * gen-specific and since we only disable LCPLL after we fully disable
9382 * the interrupts, the check below should be enough.
9383 */
e2c719b7 9384 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
be256dc7
PZ
9385}
9386
9ccd5aeb
PZ
9387static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9388{
9389 struct drm_device *dev = dev_priv->dev;
9390
9391 if (IS_HASWELL(dev))
9392 return I915_READ(D_COMP_HSW);
9393 else
9394 return I915_READ(D_COMP_BDW);
9395}
9396
3c4c9b81
PZ
9397static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9398{
9399 struct drm_device *dev = dev_priv->dev;
9400
9401 if (IS_HASWELL(dev)) {
9402 mutex_lock(&dev_priv->rps.hw_lock);
9403 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9404 val))
f475dadf 9405 DRM_ERROR("Failed to write to D_COMP\n");
3c4c9b81
PZ
9406 mutex_unlock(&dev_priv->rps.hw_lock);
9407 } else {
9ccd5aeb
PZ
9408 I915_WRITE(D_COMP_BDW, val);
9409 POSTING_READ(D_COMP_BDW);
3c4c9b81 9410 }
be256dc7
PZ
9411}
9412
9413/*
9414 * This function implements pieces of two sequences from BSpec:
9415 * - Sequence for display software to disable LCPLL
9416 * - Sequence for display software to allow package C8+
9417 * The steps implemented here are just the steps that actually touch the LCPLL
9418 * register. Callers should take care of disabling all the display engine
9419 * functions, doing the mode unset, fixing interrupts, etc.
9420 */
6ff58d53
PZ
9421static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9422 bool switch_to_fclk, bool allow_power_down)
be256dc7
PZ
9423{
9424 uint32_t val;
9425
9426 assert_can_disable_lcpll(dev_priv);
9427
9428 val = I915_READ(LCPLL_CTL);
9429
9430 if (switch_to_fclk) {
9431 val |= LCPLL_CD_SOURCE_FCLK;
9432 I915_WRITE(LCPLL_CTL, val);
9433
9434 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9435 LCPLL_CD_SOURCE_FCLK_DONE, 1))
9436 DRM_ERROR("Switching to FCLK failed\n");
9437
9438 val = I915_READ(LCPLL_CTL);
9439 }
9440
9441 val |= LCPLL_PLL_DISABLE;
9442 I915_WRITE(LCPLL_CTL, val);
9443 POSTING_READ(LCPLL_CTL);
9444
9445 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9446 DRM_ERROR("LCPLL still locked\n");
9447
9ccd5aeb 9448 val = hsw_read_dcomp(dev_priv);
be256dc7 9449 val |= D_COMP_COMP_DISABLE;
3c4c9b81 9450 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
9451 ndelay(100);
9452
9ccd5aeb
PZ
9453 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9454 1))
be256dc7
PZ
9455 DRM_ERROR("D_COMP RCOMP still in progress\n");
9456
9457 if (allow_power_down) {
9458 val = I915_READ(LCPLL_CTL);
9459 val |= LCPLL_POWER_DOWN_ALLOW;
9460 I915_WRITE(LCPLL_CTL, val);
9461 POSTING_READ(LCPLL_CTL);
9462 }
9463}
9464
9465/*
9466 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9467 * source.
9468 */
6ff58d53 9469static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
be256dc7
PZ
9470{
9471 uint32_t val;
9472
9473 val = I915_READ(LCPLL_CTL);
9474
9475 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9476 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9477 return;
9478
a8a8bd54
PZ
9479 /*
9480 * Make sure we're not on PC8 state before disabling PC8, otherwise
9481 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
a8a8bd54 9482 */
59bad947 9483 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
215733fa 9484
be256dc7
PZ
9485 if (val & LCPLL_POWER_DOWN_ALLOW) {
9486 val &= ~LCPLL_POWER_DOWN_ALLOW;
9487 I915_WRITE(LCPLL_CTL, val);
35d8f2eb 9488 POSTING_READ(LCPLL_CTL);
be256dc7
PZ
9489 }
9490
9ccd5aeb 9491 val = hsw_read_dcomp(dev_priv);
be256dc7
PZ
9492 val |= D_COMP_COMP_FORCE;
9493 val &= ~D_COMP_COMP_DISABLE;
3c4c9b81 9494 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
9495
9496 val = I915_READ(LCPLL_CTL);
9497 val &= ~LCPLL_PLL_DISABLE;
9498 I915_WRITE(LCPLL_CTL, val);
9499
9500 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9501 DRM_ERROR("LCPLL not locked yet\n");
9502
9503 if (val & LCPLL_CD_SOURCE_FCLK) {
9504 val = I915_READ(LCPLL_CTL);
9505 val &= ~LCPLL_CD_SOURCE_FCLK;
9506 I915_WRITE(LCPLL_CTL, val);
9507
9508 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9509 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9510 DRM_ERROR("Switching back to LCPLL failed\n");
9511 }
215733fa 9512
59bad947 9513 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
b6283055 9514 intel_update_cdclk(dev_priv->dev);
be256dc7
PZ
9515}
9516
765dab67
PZ
9517/*
9518 * Package states C8 and deeper are really deep PC states that can only be
9519 * reached when all the devices on the system allow it, so even if the graphics
9520 * device allows PC8+, it doesn't mean the system will actually get to these
9521 * states. Our driver only allows PC8+ when going into runtime PM.
9522 *
9523 * The requirements for PC8+ are that all the outputs are disabled, the power
9524 * well is disabled and most interrupts are disabled, and these are also
9525 * requirements for runtime PM. When these conditions are met, we manually do
9526 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9527 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9528 * hang the machine.
9529 *
9530 * When we really reach PC8 or deeper states (not just when we allow it) we lose
9531 * the state of some registers, so when we come back from PC8+ we need to
9532 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9533 * need to take care of the registers kept by RC6. Notice that this happens even
9534 * if we don't put the device in PCI D3 state (which is what currently happens
9535 * because of the runtime PM support).
9536 *
9537 * For more, read "Display Sequences for Package C8" on the hardware
9538 * documentation.
9539 */
a14cb6fc 9540void hsw_enable_pc8(struct drm_i915_private *dev_priv)
c67a470b 9541{
c67a470b
PZ
9542 struct drm_device *dev = dev_priv->dev;
9543 uint32_t val;
9544
c67a470b
PZ
9545 DRM_DEBUG_KMS("Enabling package C8+\n");
9546
c2699524 9547 if (HAS_PCH_LPT_LP(dev)) {
c67a470b
PZ
9548 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9549 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9550 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9551 }
9552
9553 lpt_disable_clkout_dp(dev);
c67a470b
PZ
9554 hsw_disable_lcpll(dev_priv, true, true);
9555}
9556
a14cb6fc 9557void hsw_disable_pc8(struct drm_i915_private *dev_priv)
c67a470b
PZ
9558{
9559 struct drm_device *dev = dev_priv->dev;
9560 uint32_t val;
9561
c67a470b
PZ
9562 DRM_DEBUG_KMS("Disabling package C8+\n");
9563
9564 hsw_restore_lcpll(dev_priv);
c67a470b
PZ
9565 lpt_init_pch_refclk(dev);
9566
c2699524 9567 if (HAS_PCH_LPT_LP(dev)) {
c67a470b
PZ
9568 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9569 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9570 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9571 }
c67a470b
PZ
9572}
9573
27c329ed 9574static void broxton_modeset_commit_cdclk(struct drm_atomic_state *old_state)
f8437dd1 9575{
a821fc46 9576 struct drm_device *dev = old_state->dev;
1a617b77
ML
9577 struct intel_atomic_state *old_intel_state =
9578 to_intel_atomic_state(old_state);
9579 unsigned int req_cdclk = old_intel_state->dev_cdclk;
f8437dd1 9580
27c329ed 9581 broxton_set_cdclk(dev, req_cdclk);
f8437dd1
VK
9582}
9583
b432e5cf 9584/* compute the max rate for new configuration */
27c329ed 9585static int ilk_max_pixel_rate(struct drm_atomic_state *state)
b432e5cf 9586{
565602d7
ML
9587 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
9588 struct drm_i915_private *dev_priv = state->dev->dev_private;
9589 struct drm_crtc *crtc;
9590 struct drm_crtc_state *cstate;
27c329ed 9591 struct intel_crtc_state *crtc_state;
565602d7
ML
9592 unsigned max_pixel_rate = 0, i;
9593 enum pipe pipe;
b432e5cf 9594
565602d7
ML
9595 memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
9596 sizeof(intel_state->min_pixclk));
27c329ed 9597
565602d7
ML
9598 for_each_crtc_in_state(state, crtc, cstate, i) {
9599 int pixel_rate;
27c329ed 9600
565602d7
ML
9601 crtc_state = to_intel_crtc_state(cstate);
9602 if (!crtc_state->base.enable) {
9603 intel_state->min_pixclk[i] = 0;
b432e5cf 9604 continue;
565602d7 9605 }
b432e5cf 9606
27c329ed 9607 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
b432e5cf
VS
9608
9609 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
565602d7 9610 if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
b432e5cf
VS
9611 pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
9612
565602d7 9613 intel_state->min_pixclk[i] = pixel_rate;
b432e5cf
VS
9614 }
9615
565602d7
ML
9616 for_each_pipe(dev_priv, pipe)
9617 max_pixel_rate = max(intel_state->min_pixclk[pipe], max_pixel_rate);
9618
b432e5cf
VS
9619 return max_pixel_rate;
9620}
9621
9622static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
9623{
9624 struct drm_i915_private *dev_priv = dev->dev_private;
9625 uint32_t val, data;
9626 int ret;
9627
9628 if (WARN((I915_READ(LCPLL_CTL) &
9629 (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
9630 LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
9631 LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
9632 LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
9633 "trying to change cdclk frequency with cdclk not enabled\n"))
9634 return;
9635
9636 mutex_lock(&dev_priv->rps.hw_lock);
9637 ret = sandybridge_pcode_write(dev_priv,
9638 BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
9639 mutex_unlock(&dev_priv->rps.hw_lock);
9640 if (ret) {
9641 DRM_ERROR("failed to inform pcode about cdclk change\n");
9642 return;
9643 }
9644
9645 val = I915_READ(LCPLL_CTL);
9646 val |= LCPLL_CD_SOURCE_FCLK;
9647 I915_WRITE(LCPLL_CTL, val);
9648
5ba00178
TU
9649 if (wait_for_us(I915_READ(LCPLL_CTL) &
9650 LCPLL_CD_SOURCE_FCLK_DONE, 1))
b432e5cf
VS
9651 DRM_ERROR("Switching to FCLK failed\n");
9652
9653 val = I915_READ(LCPLL_CTL);
9654 val &= ~LCPLL_CLK_FREQ_MASK;
9655
9656 switch (cdclk) {
9657 case 450000:
9658 val |= LCPLL_CLK_FREQ_450;
9659 data = 0;
9660 break;
9661 case 540000:
9662 val |= LCPLL_CLK_FREQ_54O_BDW;
9663 data = 1;
9664 break;
9665 case 337500:
9666 val |= LCPLL_CLK_FREQ_337_5_BDW;
9667 data = 2;
9668 break;
9669 case 675000:
9670 val |= LCPLL_CLK_FREQ_675_BDW;
9671 data = 3;
9672 break;
9673 default:
9674 WARN(1, "invalid cdclk frequency\n");
9675 return;
9676 }
9677
9678 I915_WRITE(LCPLL_CTL, val);
9679
9680 val = I915_READ(LCPLL_CTL);
9681 val &= ~LCPLL_CD_SOURCE_FCLK;
9682 I915_WRITE(LCPLL_CTL, val);
9683
5ba00178
TU
9684 if (wait_for_us((I915_READ(LCPLL_CTL) &
9685 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
b432e5cf
VS
9686 DRM_ERROR("Switching back to LCPLL failed\n");
9687
9688 mutex_lock(&dev_priv->rps.hw_lock);
9689 sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
9690 mutex_unlock(&dev_priv->rps.hw_lock);
9691
9692 intel_update_cdclk(dev);
9693
9694 WARN(cdclk != dev_priv->cdclk_freq,
9695 "cdclk requested %d kHz but got %d kHz\n",
9696 cdclk, dev_priv->cdclk_freq);
9697}
9698
27c329ed 9699static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
b432e5cf 9700{
27c329ed 9701 struct drm_i915_private *dev_priv = to_i915(state->dev);
1a617b77 9702 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
27c329ed 9703 int max_pixclk = ilk_max_pixel_rate(state);
b432e5cf
VS
9704 int cdclk;
9705
9706 /*
9707 * FIXME should also account for plane ratio
9708 * once 64bpp pixel formats are supported.
9709 */
27c329ed 9710 if (max_pixclk > 540000)
b432e5cf 9711 cdclk = 675000;
27c329ed 9712 else if (max_pixclk > 450000)
b432e5cf 9713 cdclk = 540000;
27c329ed 9714 else if (max_pixclk > 337500)
b432e5cf
VS
9715 cdclk = 450000;
9716 else
9717 cdclk = 337500;
9718
b432e5cf 9719 if (cdclk > dev_priv->max_cdclk_freq) {
63ba534e
ML
9720 DRM_DEBUG_KMS("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9721 cdclk, dev_priv->max_cdclk_freq);
9722 return -EINVAL;
b432e5cf
VS
9723 }
9724
1a617b77
ML
9725 intel_state->cdclk = intel_state->dev_cdclk = cdclk;
9726 if (!intel_state->active_crtcs)
9727 intel_state->dev_cdclk = 337500;
b432e5cf
VS
9728
9729 return 0;
9730}
9731
27c329ed 9732static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
b432e5cf 9733{
27c329ed 9734 struct drm_device *dev = old_state->dev;
1a617b77
ML
9735 struct intel_atomic_state *old_intel_state =
9736 to_intel_atomic_state(old_state);
9737 unsigned req_cdclk = old_intel_state->dev_cdclk;
b432e5cf 9738
27c329ed 9739 broadwell_set_cdclk(dev, req_cdclk);
b432e5cf
VS
9740}
9741
190f68c5
ACO
9742static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9743 struct intel_crtc_state *crtc_state)
09b4ddf9 9744{
af3997b5
MK
9745 struct intel_encoder *intel_encoder =
9746 intel_ddi_get_crtc_new_encoder(crtc_state);
9747
9748 if (intel_encoder->type != INTEL_OUTPUT_DSI) {
9749 if (!intel_ddi_pll_select(crtc, crtc_state))
9750 return -EINVAL;
9751 }
716c2e55 9752
c7653199 9753 crtc->lowfreq_avail = false;
644cef34 9754
c8f7a0db 9755 return 0;
79e53945
JB
9756}
9757
3760b59c
S
9758static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9759 enum port port,
9760 struct intel_crtc_state *pipe_config)
9761{
8106ddbd
ACO
9762 enum intel_dpll_id id;
9763
3760b59c
S
9764 switch (port) {
9765 case PORT_A:
9766 pipe_config->ddi_pll_sel = SKL_DPLL0;
8106ddbd 9767 id = DPLL_ID_SKL_DPLL1;
3760b59c
S
9768 break;
9769 case PORT_B:
9770 pipe_config->ddi_pll_sel = SKL_DPLL1;
8106ddbd 9771 id = DPLL_ID_SKL_DPLL2;
3760b59c
S
9772 break;
9773 case PORT_C:
9774 pipe_config->ddi_pll_sel = SKL_DPLL2;
8106ddbd 9775 id = DPLL_ID_SKL_DPLL3;
3760b59c
S
9776 break;
9777 default:
9778 DRM_ERROR("Incorrect port type\n");
8106ddbd 9779 return;
3760b59c 9780 }
8106ddbd
ACO
9781
9782 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
3760b59c
S
9783}
9784
96b7dfb7
S
9785static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9786 enum port port,
5cec258b 9787 struct intel_crtc_state *pipe_config)
96b7dfb7 9788{
8106ddbd 9789 enum intel_dpll_id id;
a3c988ea 9790 u32 temp;
96b7dfb7
S
9791
9792 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9793 pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9794
9795 switch (pipe_config->ddi_pll_sel) {
3148ade7 9796 case SKL_DPLL0:
a3c988ea
ACO
9797 id = DPLL_ID_SKL_DPLL0;
9798 break;
96b7dfb7 9799 case SKL_DPLL1:
8106ddbd 9800 id = DPLL_ID_SKL_DPLL1;
96b7dfb7
S
9801 break;
9802 case SKL_DPLL2:
8106ddbd 9803 id = DPLL_ID_SKL_DPLL2;
96b7dfb7
S
9804 break;
9805 case SKL_DPLL3:
8106ddbd 9806 id = DPLL_ID_SKL_DPLL3;
96b7dfb7 9807 break;
8106ddbd
ACO
9808 default:
9809 MISSING_CASE(pipe_config->ddi_pll_sel);
9810 return;
96b7dfb7 9811 }
8106ddbd
ACO
9812
9813 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
96b7dfb7
S
9814}
9815
7d2c8175
DL
9816static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9817 enum port port,
5cec258b 9818 struct intel_crtc_state *pipe_config)
7d2c8175 9819{
8106ddbd
ACO
9820 enum intel_dpll_id id;
9821
7d2c8175
DL
9822 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9823
9824 switch (pipe_config->ddi_pll_sel) {
9825 case PORT_CLK_SEL_WRPLL1:
8106ddbd 9826 id = DPLL_ID_WRPLL1;
7d2c8175
DL
9827 break;
9828 case PORT_CLK_SEL_WRPLL2:
8106ddbd 9829 id = DPLL_ID_WRPLL2;
7d2c8175 9830 break;
00490c22 9831 case PORT_CLK_SEL_SPLL:
8106ddbd 9832 id = DPLL_ID_SPLL;
79bd23da 9833 break;
9d16da65
ACO
9834 case PORT_CLK_SEL_LCPLL_810:
9835 id = DPLL_ID_LCPLL_810;
9836 break;
9837 case PORT_CLK_SEL_LCPLL_1350:
9838 id = DPLL_ID_LCPLL_1350;
9839 break;
9840 case PORT_CLK_SEL_LCPLL_2700:
9841 id = DPLL_ID_LCPLL_2700;
9842 break;
8106ddbd
ACO
9843 default:
9844 MISSING_CASE(pipe_config->ddi_pll_sel);
9845 /* fall through */
9846 case PORT_CLK_SEL_NONE:
8106ddbd 9847 return;
7d2c8175 9848 }
8106ddbd
ACO
9849
9850 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
7d2c8175
DL
9851}
9852
26804afd 9853static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
5cec258b 9854 struct intel_crtc_state *pipe_config)
26804afd
DV
9855{
9856 struct drm_device *dev = crtc->base.dev;
9857 struct drm_i915_private *dev_priv = dev->dev_private;
d452c5b6 9858 struct intel_shared_dpll *pll;
26804afd
DV
9859 enum port port;
9860 uint32_t tmp;
9861
9862 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9863
9864 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9865
ef11bdb3 9866 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
96b7dfb7 9867 skylake_get_ddi_pll(dev_priv, port, pipe_config);
3760b59c
S
9868 else if (IS_BROXTON(dev))
9869 bxt_get_ddi_pll(dev_priv, port, pipe_config);
96b7dfb7
S
9870 else
9871 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9cd86933 9872
8106ddbd
ACO
9873 pll = pipe_config->shared_dpll;
9874 if (pll) {
2edd6443
ACO
9875 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
9876 &pipe_config->dpll_hw_state));
d452c5b6
DV
9877 }
9878
26804afd
DV
9879 /*
9880 * Haswell has only FDI/PCH transcoder A. It is which is connected to
9881 * DDI E. So just check whether this pipe is wired to DDI E and whether
9882 * the PCH transcoder is on.
9883 */
ca370455
DL
9884 if (INTEL_INFO(dev)->gen < 9 &&
9885 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
26804afd
DV
9886 pipe_config->has_pch_encoder = true;
9887
9888 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9889 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9890 FDI_DP_PORT_WIDTH_SHIFT) + 1;
9891
9892 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9893 }
9894}
9895
0e8ffe1b 9896static bool haswell_get_pipe_config(struct intel_crtc *crtc,
5cec258b 9897 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
9898{
9899 struct drm_device *dev = crtc->base.dev;
9900 struct drm_i915_private *dev_priv = dev->dev_private;
1729050e
ID
9901 enum intel_display_power_domain power_domain;
9902 unsigned long power_domain_mask;
0e8ffe1b 9903 uint32_t tmp;
1729050e 9904 bool ret;
0e8ffe1b 9905
1729050e
ID
9906 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9907 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
b5482bd0 9908 return false;
1729050e
ID
9909 power_domain_mask = BIT(power_domain);
9910
9911 ret = false;
b5482bd0 9912
e143a21c 9913 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8106ddbd 9914 pipe_config->shared_dpll = NULL;
c0d43d62 9915
eccb140b
DV
9916 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9917 if (tmp & TRANS_DDI_FUNC_ENABLE) {
9918 enum pipe trans_edp_pipe;
9919 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9920 default:
9921 WARN(1, "unknown pipe linked to edp transcoder\n");
9922 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9923 case TRANS_DDI_EDP_INPUT_A_ON:
9924 trans_edp_pipe = PIPE_A;
9925 break;
9926 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9927 trans_edp_pipe = PIPE_B;
9928 break;
9929 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9930 trans_edp_pipe = PIPE_C;
9931 break;
9932 }
9933
9934 if (trans_edp_pipe == crtc->pipe)
9935 pipe_config->cpu_transcoder = TRANSCODER_EDP;
9936 }
9937
1729050e
ID
9938 power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
9939 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9940 goto out;
9941 power_domain_mask |= BIT(power_domain);
2bfce950 9942
eccb140b 9943 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
0e8ffe1b 9944 if (!(tmp & PIPECONF_ENABLE))
1729050e 9945 goto out;
0e8ffe1b 9946
26804afd 9947 haswell_get_ddi_port_state(crtc, pipe_config);
627eb5a3 9948
1bd1bd80
DV
9949 intel_get_pipe_timings(crtc, pipe_config);
9950
a1b2278e
CK
9951 if (INTEL_INFO(dev)->gen >= 9) {
9952 skl_init_scalers(dev, crtc, pipe_config);
9953 }
9954
af99ceda
CK
9955 if (INTEL_INFO(dev)->gen >= 9) {
9956 pipe_config->scaler_state.scaler_id = -1;
9957 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
9958 }
9959
1729050e
ID
9960 power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
9961 if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
9962 power_domain_mask |= BIT(power_domain);
1c132b44 9963 if (INTEL_INFO(dev)->gen >= 9)
bd2e244f 9964 skylake_get_pfit_config(crtc, pipe_config);
ff6d9f55 9965 else
1c132b44 9966 ironlake_get_pfit_config(crtc, pipe_config);
bd2e244f 9967 }
88adfff1 9968
e59150dc
JB
9969 if (IS_HASWELL(dev))
9970 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
9971 (I915_READ(IPS_CTL) & IPS_ENABLE);
42db64ef 9972
ebb69c95
CT
9973 if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
9974 pipe_config->pixel_multiplier =
9975 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
9976 } else {
9977 pipe_config->pixel_multiplier = 1;
9978 }
6c49f241 9979
1729050e
ID
9980 ret = true;
9981
9982out:
9983 for_each_power_domain(power_domain, power_domain_mask)
9984 intel_display_power_put(dev_priv, power_domain);
9985
9986 return ret;
0e8ffe1b
DV
9987}
9988
55a08b3f
ML
9989static void i845_update_cursor(struct drm_crtc *crtc, u32 base,
9990 const struct intel_plane_state *plane_state)
560b85bb
CW
9991{
9992 struct drm_device *dev = crtc->dev;
9993 struct drm_i915_private *dev_priv = dev->dev_private;
9994 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
dc41c154 9995 uint32_t cntl = 0, size = 0;
560b85bb 9996
55a08b3f
ML
9997 if (plane_state && plane_state->visible) {
9998 unsigned int width = plane_state->base.crtc_w;
9999 unsigned int height = plane_state->base.crtc_h;
dc41c154
VS
10000 unsigned int stride = roundup_pow_of_two(width) * 4;
10001
10002 switch (stride) {
10003 default:
10004 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
10005 width, stride);
10006 stride = 256;
10007 /* fallthrough */
10008 case 256:
10009 case 512:
10010 case 1024:
10011 case 2048:
10012 break;
4b0e333e
CW
10013 }
10014
dc41c154
VS
10015 cntl |= CURSOR_ENABLE |
10016 CURSOR_GAMMA_ENABLE |
10017 CURSOR_FORMAT_ARGB |
10018 CURSOR_STRIDE(stride);
10019
10020 size = (height << 12) | width;
4b0e333e 10021 }
560b85bb 10022
dc41c154
VS
10023 if (intel_crtc->cursor_cntl != 0 &&
10024 (intel_crtc->cursor_base != base ||
10025 intel_crtc->cursor_size != size ||
10026 intel_crtc->cursor_cntl != cntl)) {
10027 /* On these chipsets we can only modify the base/size/stride
10028 * whilst the cursor is disabled.
10029 */
0b87c24e
VS
10030 I915_WRITE(CURCNTR(PIPE_A), 0);
10031 POSTING_READ(CURCNTR(PIPE_A));
dc41c154 10032 intel_crtc->cursor_cntl = 0;
4b0e333e 10033 }
560b85bb 10034
99d1f387 10035 if (intel_crtc->cursor_base != base) {
0b87c24e 10036 I915_WRITE(CURBASE(PIPE_A), base);
99d1f387
VS
10037 intel_crtc->cursor_base = base;
10038 }
4726e0b0 10039
dc41c154
VS
10040 if (intel_crtc->cursor_size != size) {
10041 I915_WRITE(CURSIZE, size);
10042 intel_crtc->cursor_size = size;
4b0e333e 10043 }
560b85bb 10044
4b0e333e 10045 if (intel_crtc->cursor_cntl != cntl) {
0b87c24e
VS
10046 I915_WRITE(CURCNTR(PIPE_A), cntl);
10047 POSTING_READ(CURCNTR(PIPE_A));
4b0e333e 10048 intel_crtc->cursor_cntl = cntl;
560b85bb 10049 }
560b85bb
CW
10050}
10051
55a08b3f
ML
10052static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base,
10053 const struct intel_plane_state *plane_state)
65a21cd6
JB
10054{
10055 struct drm_device *dev = crtc->dev;
10056 struct drm_i915_private *dev_priv = dev->dev_private;
10057 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10058 int pipe = intel_crtc->pipe;
663f3122 10059 uint32_t cntl = 0;
4b0e333e 10060
55a08b3f 10061 if (plane_state && plane_state->visible) {
4b0e333e 10062 cntl = MCURSOR_GAMMA_ENABLE;
55a08b3f 10063 switch (plane_state->base.crtc_w) {
4726e0b0
SK
10064 case 64:
10065 cntl |= CURSOR_MODE_64_ARGB_AX;
10066 break;
10067 case 128:
10068 cntl |= CURSOR_MODE_128_ARGB_AX;
10069 break;
10070 case 256:
10071 cntl |= CURSOR_MODE_256_ARGB_AX;
10072 break;
10073 default:
55a08b3f 10074 MISSING_CASE(plane_state->base.crtc_w);
4726e0b0 10075 return;
65a21cd6 10076 }
4b0e333e 10077 cntl |= pipe << 28; /* Connect to correct pipe */
47bf17a7 10078
fc6f93bc 10079 if (HAS_DDI(dev))
47bf17a7 10080 cntl |= CURSOR_PIPE_CSC_ENABLE;
65a21cd6 10081
55a08b3f
ML
10082 if (plane_state->base.rotation == BIT(DRM_ROTATE_180))
10083 cntl |= CURSOR_ROTATE_180;
10084 }
4398ad45 10085
4b0e333e
CW
10086 if (intel_crtc->cursor_cntl != cntl) {
10087 I915_WRITE(CURCNTR(pipe), cntl);
10088 POSTING_READ(CURCNTR(pipe));
10089 intel_crtc->cursor_cntl = cntl;
65a21cd6 10090 }
4b0e333e 10091
65a21cd6 10092 /* and commit changes on next vblank */
5efb3e28
VS
10093 I915_WRITE(CURBASE(pipe), base);
10094 POSTING_READ(CURBASE(pipe));
99d1f387
VS
10095
10096 intel_crtc->cursor_base = base;
65a21cd6
JB
10097}
10098
cda4b7d3 10099/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f 10100static void intel_crtc_update_cursor(struct drm_crtc *crtc,
55a08b3f 10101 const struct intel_plane_state *plane_state)
cda4b7d3
CW
10102{
10103 struct drm_device *dev = crtc->dev;
10104 struct drm_i915_private *dev_priv = dev->dev_private;
10105 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10106 int pipe = intel_crtc->pipe;
55a08b3f
ML
10107 u32 base = intel_crtc->cursor_addr;
10108 u32 pos = 0;
cda4b7d3 10109
55a08b3f
ML
10110 if (plane_state) {
10111 int x = plane_state->base.crtc_x;
10112 int y = plane_state->base.crtc_y;
cda4b7d3 10113
55a08b3f
ML
10114 if (x < 0) {
10115 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10116 x = -x;
10117 }
10118 pos |= x << CURSOR_X_SHIFT;
cda4b7d3 10119
55a08b3f
ML
10120 if (y < 0) {
10121 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10122 y = -y;
10123 }
10124 pos |= y << CURSOR_Y_SHIFT;
10125
10126 /* ILK+ do this automagically */
10127 if (HAS_GMCH_DISPLAY(dev) &&
10128 plane_state->base.rotation == BIT(DRM_ROTATE_180)) {
10129 base += (plane_state->base.crtc_h *
10130 plane_state->base.crtc_w - 1) * 4;
10131 }
cda4b7d3 10132 }
cda4b7d3 10133
5efb3e28
VS
10134 I915_WRITE(CURPOS(pipe), pos);
10135
8ac54669 10136 if (IS_845G(dev) || IS_I865G(dev))
55a08b3f 10137 i845_update_cursor(crtc, base, plane_state);
5efb3e28 10138 else
55a08b3f 10139 i9xx_update_cursor(crtc, base, plane_state);
cda4b7d3
CW
10140}
10141
dc41c154
VS
10142static bool cursor_size_ok(struct drm_device *dev,
10143 uint32_t width, uint32_t height)
10144{
10145 if (width == 0 || height == 0)
10146 return false;
10147
10148 /*
10149 * 845g/865g are special in that they are only limited by
10150 * the width of their cursors, the height is arbitrary up to
10151 * the precision of the register. Everything else requires
10152 * square cursors, limited to a few power-of-two sizes.
10153 */
10154 if (IS_845G(dev) || IS_I865G(dev)) {
10155 if ((width & 63) != 0)
10156 return false;
10157
10158 if (width > (IS_845G(dev) ? 64 : 512))
10159 return false;
10160
10161 if (height > 1023)
10162 return false;
10163 } else {
10164 switch (width | height) {
10165 case 256:
10166 case 128:
10167 if (IS_GEN2(dev))
10168 return false;
10169 case 64:
10170 break;
10171 default:
10172 return false;
10173 }
10174 }
10175
10176 return true;
10177}
10178
79e53945 10179static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7203425a 10180 u16 *blue, uint32_t start, uint32_t size)
79e53945 10181{
7203425a 10182 int end = (start + size > 256) ? 256 : start + size, i;
79e53945 10183 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 10184
7203425a 10185 for (i = start; i < end; i++) {
79e53945
JB
10186 intel_crtc->lut_r[i] = red[i] >> 8;
10187 intel_crtc->lut_g[i] = green[i] >> 8;
10188 intel_crtc->lut_b[i] = blue[i] >> 8;
10189 }
10190
10191 intel_crtc_load_lut(crtc);
10192}
10193
79e53945
JB
10194/* VESA 640x480x72Hz mode to set on the pipe */
10195static struct drm_display_mode load_detect_mode = {
10196 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10197 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10198};
10199
a8bb6818
DV
10200struct drm_framebuffer *
10201__intel_framebuffer_create(struct drm_device *dev,
10202 struct drm_mode_fb_cmd2 *mode_cmd,
10203 struct drm_i915_gem_object *obj)
d2dff872
CW
10204{
10205 struct intel_framebuffer *intel_fb;
10206 int ret;
10207
10208 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
dcb1394e 10209 if (!intel_fb)
d2dff872 10210 return ERR_PTR(-ENOMEM);
d2dff872
CW
10211
10212 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
dd4916c5
DV
10213 if (ret)
10214 goto err;
d2dff872
CW
10215
10216 return &intel_fb->base;
dcb1394e 10217
dd4916c5 10218err:
dd4916c5 10219 kfree(intel_fb);
dd4916c5 10220 return ERR_PTR(ret);
d2dff872
CW
10221}
10222
b5ea642a 10223static struct drm_framebuffer *
a8bb6818
DV
10224intel_framebuffer_create(struct drm_device *dev,
10225 struct drm_mode_fb_cmd2 *mode_cmd,
10226 struct drm_i915_gem_object *obj)
10227{
10228 struct drm_framebuffer *fb;
10229 int ret;
10230
10231 ret = i915_mutex_lock_interruptible(dev);
10232 if (ret)
10233 return ERR_PTR(ret);
10234 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10235 mutex_unlock(&dev->struct_mutex);
10236
10237 return fb;
10238}
10239
d2dff872
CW
10240static u32
10241intel_framebuffer_pitch_for_width(int width, int bpp)
10242{
10243 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10244 return ALIGN(pitch, 64);
10245}
10246
10247static u32
10248intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10249{
10250 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
1267a26b 10251 return PAGE_ALIGN(pitch * mode->vdisplay);
d2dff872
CW
10252}
10253
10254static struct drm_framebuffer *
10255intel_framebuffer_create_for_mode(struct drm_device *dev,
10256 struct drm_display_mode *mode,
10257 int depth, int bpp)
10258{
dcb1394e 10259 struct drm_framebuffer *fb;
d2dff872 10260 struct drm_i915_gem_object *obj;
0fed39bd 10261 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
d2dff872
CW
10262
10263 obj = i915_gem_alloc_object(dev,
10264 intel_framebuffer_size_for_mode(mode, bpp));
10265 if (obj == NULL)
10266 return ERR_PTR(-ENOMEM);
10267
10268 mode_cmd.width = mode->hdisplay;
10269 mode_cmd.height = mode->vdisplay;
308e5bcb
JB
10270 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10271 bpp);
5ca0c34a 10272 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
d2dff872 10273
dcb1394e
LW
10274 fb = intel_framebuffer_create(dev, &mode_cmd, obj);
10275 if (IS_ERR(fb))
10276 drm_gem_object_unreference_unlocked(&obj->base);
10277
10278 return fb;
d2dff872
CW
10279}
10280
10281static struct drm_framebuffer *
10282mode_fits_in_fbdev(struct drm_device *dev,
10283 struct drm_display_mode *mode)
10284{
0695726e 10285#ifdef CONFIG_DRM_FBDEV_EMULATION
d2dff872
CW
10286 struct drm_i915_private *dev_priv = dev->dev_private;
10287 struct drm_i915_gem_object *obj;
10288 struct drm_framebuffer *fb;
10289
4c0e5528 10290 if (!dev_priv->fbdev)
d2dff872
CW
10291 return NULL;
10292
4c0e5528 10293 if (!dev_priv->fbdev->fb)
d2dff872
CW
10294 return NULL;
10295
4c0e5528
DV
10296 obj = dev_priv->fbdev->fb->obj;
10297 BUG_ON(!obj);
10298
8bcd4553 10299 fb = &dev_priv->fbdev->fb->base;
01f2c773
VS
10300 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
10301 fb->bits_per_pixel))
d2dff872
CW
10302 return NULL;
10303
01f2c773 10304 if (obj->base.size < mode->vdisplay * fb->pitches[0])
d2dff872
CW
10305 return NULL;
10306
edde3617 10307 drm_framebuffer_reference(fb);
d2dff872 10308 return fb;
4520f53a
DV
10309#else
10310 return NULL;
10311#endif
d2dff872
CW
10312}
10313
d3a40d1b
ACO
10314static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
10315 struct drm_crtc *crtc,
10316 struct drm_display_mode *mode,
10317 struct drm_framebuffer *fb,
10318 int x, int y)
10319{
10320 struct drm_plane_state *plane_state;
10321 int hdisplay, vdisplay;
10322 int ret;
10323
10324 plane_state = drm_atomic_get_plane_state(state, crtc->primary);
10325 if (IS_ERR(plane_state))
10326 return PTR_ERR(plane_state);
10327
10328 if (mode)
10329 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
10330 else
10331 hdisplay = vdisplay = 0;
10332
10333 ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
10334 if (ret)
10335 return ret;
10336 drm_atomic_set_fb_for_plane(plane_state, fb);
10337 plane_state->crtc_x = 0;
10338 plane_state->crtc_y = 0;
10339 plane_state->crtc_w = hdisplay;
10340 plane_state->crtc_h = vdisplay;
10341 plane_state->src_x = x << 16;
10342 plane_state->src_y = y << 16;
10343 plane_state->src_w = hdisplay << 16;
10344 plane_state->src_h = vdisplay << 16;
10345
10346 return 0;
10347}
10348
d2434ab7 10349bool intel_get_load_detect_pipe(struct drm_connector *connector,
7173188d 10350 struct drm_display_mode *mode,
51fd371b
RC
10351 struct intel_load_detect_pipe *old,
10352 struct drm_modeset_acquire_ctx *ctx)
79e53945
JB
10353{
10354 struct intel_crtc *intel_crtc;
d2434ab7
DV
10355 struct intel_encoder *intel_encoder =
10356 intel_attached_encoder(connector);
79e53945 10357 struct drm_crtc *possible_crtc;
4ef69c7a 10358 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
10359 struct drm_crtc *crtc = NULL;
10360 struct drm_device *dev = encoder->dev;
94352cf9 10361 struct drm_framebuffer *fb;
51fd371b 10362 struct drm_mode_config *config = &dev->mode_config;
edde3617 10363 struct drm_atomic_state *state = NULL, *restore_state = NULL;
944b0c76 10364 struct drm_connector_state *connector_state;
4be07317 10365 struct intel_crtc_state *crtc_state;
51fd371b 10366 int ret, i = -1;
79e53945 10367
d2dff872 10368 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 10369 connector->base.id, connector->name,
8e329a03 10370 encoder->base.id, encoder->name);
d2dff872 10371
edde3617
ML
10372 old->restore_state = NULL;
10373
51fd371b
RC
10374retry:
10375 ret = drm_modeset_lock(&config->connection_mutex, ctx);
10376 if (ret)
ad3c558f 10377 goto fail;
6e9f798d 10378
79e53945
JB
10379 /*
10380 * Algorithm gets a little messy:
7a5e4805 10381 *
79e53945
JB
10382 * - if the connector already has an assigned crtc, use it (but make
10383 * sure it's on first)
7a5e4805 10384 *
79e53945
JB
10385 * - try to find the first unused crtc that can drive this connector,
10386 * and use that if we find one
79e53945
JB
10387 */
10388
10389 /* See if we already have a CRTC for this connector */
edde3617
ML
10390 if (connector->state->crtc) {
10391 crtc = connector->state->crtc;
8261b191 10392
51fd371b 10393 ret = drm_modeset_lock(&crtc->mutex, ctx);
4d02e2de 10394 if (ret)
ad3c558f 10395 goto fail;
8261b191
CW
10396
10397 /* Make sure the crtc and connector are running */
edde3617 10398 goto found;
79e53945
JB
10399 }
10400
10401 /* Find an unused one (if possible) */
70e1e0ec 10402 for_each_crtc(dev, possible_crtc) {
79e53945
JB
10403 i++;
10404 if (!(encoder->possible_crtcs & (1 << i)))
10405 continue;
edde3617
ML
10406
10407 ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
10408 if (ret)
10409 goto fail;
10410
10411 if (possible_crtc->state->enable) {
10412 drm_modeset_unlock(&possible_crtc->mutex);
a459249c 10413 continue;
edde3617 10414 }
a459249c
VS
10415
10416 crtc = possible_crtc;
10417 break;
79e53945
JB
10418 }
10419
10420 /*
10421 * If we didn't find an unused CRTC, don't use any.
10422 */
10423 if (!crtc) {
7173188d 10424 DRM_DEBUG_KMS("no pipe available for load-detect\n");
ad3c558f 10425 goto fail;
79e53945
JB
10426 }
10427
edde3617
ML
10428found:
10429 intel_crtc = to_intel_crtc(crtc);
10430
4d02e2de
DV
10431 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10432 if (ret)
ad3c558f 10433 goto fail;
79e53945 10434
83a57153 10435 state = drm_atomic_state_alloc(dev);
edde3617
ML
10436 restore_state = drm_atomic_state_alloc(dev);
10437 if (!state || !restore_state) {
10438 ret = -ENOMEM;
10439 goto fail;
10440 }
83a57153
ACO
10441
10442 state->acquire_ctx = ctx;
edde3617 10443 restore_state->acquire_ctx = ctx;
83a57153 10444
944b0c76
ACO
10445 connector_state = drm_atomic_get_connector_state(state, connector);
10446 if (IS_ERR(connector_state)) {
10447 ret = PTR_ERR(connector_state);
10448 goto fail;
10449 }
10450
edde3617
ML
10451 ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
10452 if (ret)
10453 goto fail;
944b0c76 10454
4be07317
ACO
10455 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10456 if (IS_ERR(crtc_state)) {
10457 ret = PTR_ERR(crtc_state);
10458 goto fail;
10459 }
10460
49d6fa21 10461 crtc_state->base.active = crtc_state->base.enable = true;
4be07317 10462
6492711d
CW
10463 if (!mode)
10464 mode = &load_detect_mode;
79e53945 10465
d2dff872
CW
10466 /* We need a framebuffer large enough to accommodate all accesses
10467 * that the plane may generate whilst we perform load detection.
10468 * We can not rely on the fbcon either being present (we get called
10469 * during its initialisation to detect all boot displays, or it may
10470 * not even exist) or that it is large enough to satisfy the
10471 * requested mode.
10472 */
94352cf9
DV
10473 fb = mode_fits_in_fbdev(dev, mode);
10474 if (fb == NULL) {
d2dff872 10475 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
94352cf9 10476 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
d2dff872
CW
10477 } else
10478 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
94352cf9 10479 if (IS_ERR(fb)) {
d2dff872 10480 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
412b61d8 10481 goto fail;
79e53945 10482 }
79e53945 10483
d3a40d1b
ACO
10484 ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10485 if (ret)
10486 goto fail;
10487
edde3617
ML
10488 drm_framebuffer_unreference(fb);
10489
10490 ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode);
10491 if (ret)
10492 goto fail;
10493
10494 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
10495 if (!ret)
10496 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
10497 if (!ret)
10498 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(restore_state, crtc->primary));
10499 if (ret) {
10500 DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
10501 goto fail;
10502 }
8c7b5ccb 10503
3ba86073
ML
10504 ret = drm_atomic_commit(state);
10505 if (ret) {
6492711d 10506 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
412b61d8 10507 goto fail;
79e53945 10508 }
edde3617
ML
10509
10510 old->restore_state = restore_state;
7173188d 10511
79e53945 10512 /* let the connector get through one full cycle before testing */
9d0498a2 10513 intel_wait_for_vblank(dev, intel_crtc->pipe);
7173188d 10514 return true;
412b61d8 10515
ad3c558f 10516fail:
e5d958ef 10517 drm_atomic_state_free(state);
edde3617
ML
10518 drm_atomic_state_free(restore_state);
10519 restore_state = state = NULL;
83a57153 10520
51fd371b
RC
10521 if (ret == -EDEADLK) {
10522 drm_modeset_backoff(ctx);
10523 goto retry;
10524 }
10525
412b61d8 10526 return false;
79e53945
JB
10527}
10528
d2434ab7 10529void intel_release_load_detect_pipe(struct drm_connector *connector,
49172fee
ACO
10530 struct intel_load_detect_pipe *old,
10531 struct drm_modeset_acquire_ctx *ctx)
79e53945 10532{
d2434ab7
DV
10533 struct intel_encoder *intel_encoder =
10534 intel_attached_encoder(connector);
4ef69c7a 10535 struct drm_encoder *encoder = &intel_encoder->base;
edde3617 10536 struct drm_atomic_state *state = old->restore_state;
d3a40d1b 10537 int ret;
79e53945 10538
d2dff872 10539 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 10540 connector->base.id, connector->name,
8e329a03 10541 encoder->base.id, encoder->name);
d2dff872 10542
edde3617 10543 if (!state)
0622a53c 10544 return;
79e53945 10545
edde3617
ML
10546 ret = drm_atomic_commit(state);
10547 if (ret) {
10548 DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
10549 drm_atomic_state_free(state);
10550 }
79e53945
JB
10551}
10552
da4a1efa 10553static int i9xx_pll_refclk(struct drm_device *dev,
5cec258b 10554 const struct intel_crtc_state *pipe_config)
da4a1efa
VS
10555{
10556 struct drm_i915_private *dev_priv = dev->dev_private;
10557 u32 dpll = pipe_config->dpll_hw_state.dpll;
10558
10559 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
e91e941b 10560 return dev_priv->vbt.lvds_ssc_freq;
da4a1efa
VS
10561 else if (HAS_PCH_SPLIT(dev))
10562 return 120000;
10563 else if (!IS_GEN2(dev))
10564 return 96000;
10565 else
10566 return 48000;
10567}
10568
79e53945 10569/* Returns the clock of the currently programmed mode of the given pipe. */
f1f644dc 10570static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 10571 struct intel_crtc_state *pipe_config)
79e53945 10572{
f1f644dc 10573 struct drm_device *dev = crtc->base.dev;
79e53945 10574 struct drm_i915_private *dev_priv = dev->dev_private;
f1f644dc 10575 int pipe = pipe_config->cpu_transcoder;
293623f7 10576 u32 dpll = pipe_config->dpll_hw_state.dpll;
79e53945
JB
10577 u32 fp;
10578 intel_clock_t clock;
dccbea3b 10579 int port_clock;
da4a1efa 10580 int refclk = i9xx_pll_refclk(dev, pipe_config);
79e53945
JB
10581
10582 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
293623f7 10583 fp = pipe_config->dpll_hw_state.fp0;
79e53945 10584 else
293623f7 10585 fp = pipe_config->dpll_hw_state.fp1;
79e53945
JB
10586
10587 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
10588 if (IS_PINEVIEW(dev)) {
10589 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10590 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
10591 } else {
10592 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10593 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10594 }
10595
a6c45cf0 10596 if (!IS_GEN2(dev)) {
f2b115e6
AJ
10597 if (IS_PINEVIEW(dev))
10598 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10599 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
10600 else
10601 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
10602 DPLL_FPA01_P1_POST_DIV_SHIFT);
10603
10604 switch (dpll & DPLL_MODE_MASK) {
10605 case DPLLB_MODE_DAC_SERIAL:
10606 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10607 5 : 10;
10608 break;
10609 case DPLLB_MODE_LVDS:
10610 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10611 7 : 14;
10612 break;
10613 default:
28c97730 10614 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945 10615 "mode\n", (int)(dpll & DPLL_MODE_MASK));
f1f644dc 10616 return;
79e53945
JB
10617 }
10618
ac58c3f0 10619 if (IS_PINEVIEW(dev))
dccbea3b 10620 port_clock = pnv_calc_dpll_params(refclk, &clock);
ac58c3f0 10621 else
dccbea3b 10622 port_clock = i9xx_calc_dpll_params(refclk, &clock);
79e53945 10623 } else {
0fb58223 10624 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
b1c560d1 10625 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
79e53945
JB
10626
10627 if (is_lvds) {
10628 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10629 DPLL_FPA01_P1_POST_DIV_SHIFT);
b1c560d1
VS
10630
10631 if (lvds & LVDS_CLKB_POWER_UP)
10632 clock.p2 = 7;
10633 else
10634 clock.p2 = 14;
79e53945
JB
10635 } else {
10636 if (dpll & PLL_P1_DIVIDE_BY_TWO)
10637 clock.p1 = 2;
10638 else {
10639 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10640 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10641 }
10642 if (dpll & PLL_P2_DIVIDE_BY_4)
10643 clock.p2 = 4;
10644 else
10645 clock.p2 = 2;
79e53945 10646 }
da4a1efa 10647
dccbea3b 10648 port_clock = i9xx_calc_dpll_params(refclk, &clock);
79e53945
JB
10649 }
10650
18442d08
VS
10651 /*
10652 * This value includes pixel_multiplier. We will use
241bfc38 10653 * port_clock to compute adjusted_mode.crtc_clock in the
18442d08
VS
10654 * encoder's get_config() function.
10655 */
dccbea3b 10656 pipe_config->port_clock = port_clock;
f1f644dc
JB
10657}
10658
6878da05
VS
10659int intel_dotclock_calculate(int link_freq,
10660 const struct intel_link_m_n *m_n)
f1f644dc 10661{
f1f644dc
JB
10662 /*
10663 * The calculation for the data clock is:
1041a02f 10664 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
f1f644dc 10665 * But we want to avoid losing precison if possible, so:
1041a02f 10666 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
f1f644dc
JB
10667 *
10668 * and the link clock is simpler:
1041a02f 10669 * link_clock = (m * link_clock) / n
f1f644dc
JB
10670 */
10671
6878da05
VS
10672 if (!m_n->link_n)
10673 return 0;
f1f644dc 10674
6878da05
VS
10675 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10676}
f1f644dc 10677
18442d08 10678static void ironlake_pch_clock_get(struct intel_crtc *crtc,
5cec258b 10679 struct intel_crtc_state *pipe_config)
6878da05 10680{
e3b247da 10681 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
79e53945 10682
18442d08
VS
10683 /* read out port_clock from the DPLL */
10684 i9xx_crtc_clock_get(crtc, pipe_config);
f1f644dc 10685
f1f644dc 10686 /*
e3b247da
VS
10687 * In case there is an active pipe without active ports,
10688 * we may need some idea for the dotclock anyway.
10689 * Calculate one based on the FDI configuration.
79e53945 10690 */
2d112de7 10691 pipe_config->base.adjusted_mode.crtc_clock =
21a727b3 10692 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
18442d08 10693 &pipe_config->fdi_m_n);
79e53945
JB
10694}
10695
10696/** Returns the currently programmed mode of the given pipe. */
10697struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10698 struct drm_crtc *crtc)
10699{
548f245b 10700 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 10701 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6e3c9717 10702 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
79e53945 10703 struct drm_display_mode *mode;
3f36b937 10704 struct intel_crtc_state *pipe_config;
fe2b8f9d
PZ
10705 int htot = I915_READ(HTOTAL(cpu_transcoder));
10706 int hsync = I915_READ(HSYNC(cpu_transcoder));
10707 int vtot = I915_READ(VTOTAL(cpu_transcoder));
10708 int vsync = I915_READ(VSYNC(cpu_transcoder));
293623f7 10709 enum pipe pipe = intel_crtc->pipe;
79e53945
JB
10710
10711 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10712 if (!mode)
10713 return NULL;
10714
3f36b937
TU
10715 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10716 if (!pipe_config) {
10717 kfree(mode);
10718 return NULL;
10719 }
10720
f1f644dc
JB
10721 /*
10722 * Construct a pipe_config sufficient for getting the clock info
10723 * back out of crtc_clock_get.
10724 *
10725 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10726 * to use a real value here instead.
10727 */
3f36b937
TU
10728 pipe_config->cpu_transcoder = (enum transcoder) pipe;
10729 pipe_config->pixel_multiplier = 1;
10730 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10731 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10732 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10733 i9xx_crtc_clock_get(intel_crtc, pipe_config);
10734
10735 mode->clock = pipe_config->port_clock / pipe_config->pixel_multiplier;
79e53945
JB
10736 mode->hdisplay = (htot & 0xffff) + 1;
10737 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10738 mode->hsync_start = (hsync & 0xffff) + 1;
10739 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10740 mode->vdisplay = (vtot & 0xffff) + 1;
10741 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10742 mode->vsync_start = (vsync & 0xffff) + 1;
10743 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10744
10745 drm_mode_set_name(mode);
79e53945 10746
3f36b937
TU
10747 kfree(pipe_config);
10748
79e53945
JB
10749 return mode;
10750}
10751
f047e395
CW
10752void intel_mark_busy(struct drm_device *dev)
10753{
c67a470b
PZ
10754 struct drm_i915_private *dev_priv = dev->dev_private;
10755
f62a0076
CW
10756 if (dev_priv->mm.busy)
10757 return;
10758
43694d69 10759 intel_runtime_pm_get(dev_priv);
c67a470b 10760 i915_update_gfx_val(dev_priv);
43cf3bf0
CW
10761 if (INTEL_INFO(dev)->gen >= 6)
10762 gen6_rps_busy(dev_priv);
f62a0076 10763 dev_priv->mm.busy = true;
f047e395
CW
10764}
10765
10766void intel_mark_idle(struct drm_device *dev)
652c393a 10767{
c67a470b 10768 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 10769
f62a0076
CW
10770 if (!dev_priv->mm.busy)
10771 return;
10772
10773 dev_priv->mm.busy = false;
10774
3d13ef2e 10775 if (INTEL_INFO(dev)->gen >= 6)
b29c19b6 10776 gen6_rps_idle(dev->dev_private);
bb4cdd53 10777
43694d69 10778 intel_runtime_pm_put(dev_priv);
652c393a
JB
10779}
10780
79e53945
JB
10781static void intel_crtc_destroy(struct drm_crtc *crtc)
10782{
10783 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a
DV
10784 struct drm_device *dev = crtc->dev;
10785 struct intel_unpin_work *work;
67e77c5a 10786
5e2d7afc 10787 spin_lock_irq(&dev->event_lock);
67e77c5a
DV
10788 work = intel_crtc->unpin_work;
10789 intel_crtc->unpin_work = NULL;
5e2d7afc 10790 spin_unlock_irq(&dev->event_lock);
67e77c5a
DV
10791
10792 if (work) {
10793 cancel_work_sync(&work->work);
10794 kfree(work);
10795 }
79e53945
JB
10796
10797 drm_crtc_cleanup(crtc);
67e77c5a 10798
79e53945
JB
10799 kfree(intel_crtc);
10800}
10801
6b95a207
KH
10802static void intel_unpin_work_fn(struct work_struct *__work)
10803{
10804 struct intel_unpin_work *work =
10805 container_of(__work, struct intel_unpin_work, work);
a9ff8714
VS
10806 struct intel_crtc *crtc = to_intel_crtc(work->crtc);
10807 struct drm_device *dev = crtc->base.dev;
10808 struct drm_plane *primary = crtc->base.primary;
6b95a207 10809
b4a98e57 10810 mutex_lock(&dev->struct_mutex);
3465c580 10811 intel_unpin_fb_obj(work->old_fb, primary->state->rotation);
05394f39 10812 drm_gem_object_unreference(&work->pending_flip_obj->base);
d9e86c0e 10813
f06cc1b9 10814 if (work->flip_queued_req)
146d84f0 10815 i915_gem_request_assign(&work->flip_queued_req, NULL);
b4a98e57
CW
10816 mutex_unlock(&dev->struct_mutex);
10817
a9ff8714 10818 intel_frontbuffer_flip_complete(dev, to_intel_plane(primary)->frontbuffer_bit);
1eb52238 10819 intel_fbc_post_update(crtc);
89ed88ba 10820 drm_framebuffer_unreference(work->old_fb);
f99d7069 10821
a9ff8714
VS
10822 BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
10823 atomic_dec(&crtc->unpin_work_count);
b4a98e57 10824
6b95a207
KH
10825 kfree(work);
10826}
10827
1afe3e9d 10828static void do_intel_finish_page_flip(struct drm_device *dev,
49b14a5c 10829 struct drm_crtc *crtc)
6b95a207 10830{
6b95a207
KH
10831 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10832 struct intel_unpin_work *work;
6b95a207
KH
10833 unsigned long flags;
10834
10835 /* Ignore early vblank irqs */
10836 if (intel_crtc == NULL)
10837 return;
10838
f326038a
DV
10839 /*
10840 * This is called both by irq handlers and the reset code (to complete
10841 * lost pageflips) so needs the full irqsave spinlocks.
10842 */
6b95a207
KH
10843 spin_lock_irqsave(&dev->event_lock, flags);
10844 work = intel_crtc->unpin_work;
e7d841ca
CW
10845
10846 /* Ensure we don't miss a work->pending update ... */
10847 smp_rmb();
10848
10849 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
6b95a207
KH
10850 spin_unlock_irqrestore(&dev->event_lock, flags);
10851 return;
10852 }
10853
d6bbafa1 10854 page_flip_completed(intel_crtc);
0af7e4df 10855
6b95a207 10856 spin_unlock_irqrestore(&dev->event_lock, flags);
6b95a207
KH
10857}
10858
1afe3e9d
JB
10859void intel_finish_page_flip(struct drm_device *dev, int pipe)
10860{
fbee40df 10861 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
10862 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10863
49b14a5c 10864 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
10865}
10866
10867void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
10868{
fbee40df 10869 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
10870 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
10871
49b14a5c 10872 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
10873}
10874
75f7f3ec
VS
10875/* Is 'a' after or equal to 'b'? */
10876static bool g4x_flip_count_after_eq(u32 a, u32 b)
10877{
10878 return !((a - b) & 0x80000000);
10879}
10880
10881static bool page_flip_finished(struct intel_crtc *crtc)
10882{
10883 struct drm_device *dev = crtc->base.dev;
10884 struct drm_i915_private *dev_priv = dev->dev_private;
10885
bdfa7542
VS
10886 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
10887 crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
10888 return true;
10889
75f7f3ec
VS
10890 /*
10891 * The relevant registers doen't exist on pre-ctg.
10892 * As the flip done interrupt doesn't trigger for mmio
10893 * flips on gmch platforms, a flip count check isn't
10894 * really needed there. But since ctg has the registers,
10895 * include it in the check anyway.
10896 */
10897 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10898 return true;
10899
e8861675
ML
10900 /*
10901 * BDW signals flip done immediately if the plane
10902 * is disabled, even if the plane enable is already
10903 * armed to occur at the next vblank :(
10904 */
10905
75f7f3ec
VS
10906 /*
10907 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10908 * used the same base address. In that case the mmio flip might
10909 * have completed, but the CS hasn't even executed the flip yet.
10910 *
10911 * A flip count check isn't enough as the CS might have updated
10912 * the base address just after start of vblank, but before we
10913 * managed to process the interrupt. This means we'd complete the
10914 * CS flip too soon.
10915 *
10916 * Combining both checks should get us a good enough result. It may
10917 * still happen that the CS flip has been executed, but has not
10918 * yet actually completed. But in case the base address is the same
10919 * anyway, we don't really care.
10920 */
10921 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
10922 crtc->unpin_work->gtt_offset &&
fd8f507c 10923 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
75f7f3ec
VS
10924 crtc->unpin_work->flip_count);
10925}
10926
6b95a207
KH
10927void intel_prepare_page_flip(struct drm_device *dev, int plane)
10928{
fbee40df 10929 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
10930 struct intel_crtc *intel_crtc =
10931 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
10932 unsigned long flags;
10933
f326038a
DV
10934
10935 /*
10936 * This is called both by irq handlers and the reset code (to complete
10937 * lost pageflips) so needs the full irqsave spinlocks.
10938 *
10939 * NB: An MMIO update of the plane base pointer will also
e7d841ca
CW
10940 * generate a page-flip completion irq, i.e. every modeset
10941 * is also accompanied by a spurious intel_prepare_page_flip().
10942 */
6b95a207 10943 spin_lock_irqsave(&dev->event_lock, flags);
75f7f3ec 10944 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
e7d841ca 10945 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
6b95a207
KH
10946 spin_unlock_irqrestore(&dev->event_lock, flags);
10947}
10948
6042639c 10949static inline void intel_mark_page_flip_active(struct intel_unpin_work *work)
e7d841ca
CW
10950{
10951 /* Ensure that the work item is consistent when activating it ... */
10952 smp_wmb();
6042639c 10953 atomic_set(&work->pending, INTEL_FLIP_PENDING);
e7d841ca
CW
10954 /* and that it is marked active as soon as the irq could fire. */
10955 smp_wmb();
10956}
10957
8c9f3aaf
JB
10958static int intel_gen2_queue_flip(struct drm_device *dev,
10959 struct drm_crtc *crtc,
10960 struct drm_framebuffer *fb,
ed8d1975 10961 struct drm_i915_gem_object *obj,
6258fbe2 10962 struct drm_i915_gem_request *req,
ed8d1975 10963 uint32_t flags)
8c9f3aaf 10964{
6258fbe2 10965 struct intel_engine_cs *ring = req->ring;
8c9f3aaf 10966 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
10967 u32 flip_mask;
10968 int ret;
10969
5fb9de1a 10970 ret = intel_ring_begin(req, 6);
8c9f3aaf 10971 if (ret)
4fa62c89 10972 return ret;
8c9f3aaf
JB
10973
10974 /* Can't queue multiple flips, so wait for the previous
10975 * one to finish before executing the next.
10976 */
10977 if (intel_crtc->plane)
10978 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10979 else
10980 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
10981 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10982 intel_ring_emit(ring, MI_NOOP);
10983 intel_ring_emit(ring, MI_DISPLAY_FLIP |
10984 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10985 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 10986 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952 10987 intel_ring_emit(ring, 0); /* aux display base address, unused */
e7d841ca 10988
6042639c 10989 intel_mark_page_flip_active(intel_crtc->unpin_work);
83d4092b 10990 return 0;
8c9f3aaf
JB
10991}
10992
10993static int intel_gen3_queue_flip(struct drm_device *dev,
10994 struct drm_crtc *crtc,
10995 struct drm_framebuffer *fb,
ed8d1975 10996 struct drm_i915_gem_object *obj,
6258fbe2 10997 struct drm_i915_gem_request *req,
ed8d1975 10998 uint32_t flags)
8c9f3aaf 10999{
6258fbe2 11000 struct intel_engine_cs *ring = req->ring;
8c9f3aaf 11001 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
11002 u32 flip_mask;
11003 int ret;
11004
5fb9de1a 11005 ret = intel_ring_begin(req, 6);
8c9f3aaf 11006 if (ret)
4fa62c89 11007 return ret;
8c9f3aaf
JB
11008
11009 if (intel_crtc->plane)
11010 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11011 else
11012 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
11013 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
11014 intel_ring_emit(ring, MI_NOOP);
11015 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
11016 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11017 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 11018 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952
DV
11019 intel_ring_emit(ring, MI_NOOP);
11020
6042639c 11021 intel_mark_page_flip_active(intel_crtc->unpin_work);
83d4092b 11022 return 0;
8c9f3aaf
JB
11023}
11024
11025static int intel_gen4_queue_flip(struct drm_device *dev,
11026 struct drm_crtc *crtc,
11027 struct drm_framebuffer *fb,
ed8d1975 11028 struct drm_i915_gem_object *obj,
6258fbe2 11029 struct drm_i915_gem_request *req,
ed8d1975 11030 uint32_t flags)
8c9f3aaf 11031{
6258fbe2 11032 struct intel_engine_cs *ring = req->ring;
8c9f3aaf
JB
11033 struct drm_i915_private *dev_priv = dev->dev_private;
11034 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11035 uint32_t pf, pipesrc;
11036 int ret;
11037
5fb9de1a 11038 ret = intel_ring_begin(req, 4);
8c9f3aaf 11039 if (ret)
4fa62c89 11040 return ret;
8c9f3aaf
JB
11041
11042 /* i965+ uses the linear or tiled offsets from the
11043 * Display Registers (which do not change across a page-flip)
11044 * so we need only reprogram the base address.
11045 */
6d90c952
DV
11046 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11047 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11048 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 11049 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
c2c75131 11050 obj->tiling_mode);
8c9f3aaf
JB
11051
11052 /* XXX Enabling the panel-fitter across page-flip is so far
11053 * untested on non-native modes, so ignore it for now.
11054 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11055 */
11056 pf = 0;
11057 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 11058 intel_ring_emit(ring, pf | pipesrc);
e7d841ca 11059
6042639c 11060 intel_mark_page_flip_active(intel_crtc->unpin_work);
83d4092b 11061 return 0;
8c9f3aaf
JB
11062}
11063
11064static int intel_gen6_queue_flip(struct drm_device *dev,
11065 struct drm_crtc *crtc,
11066 struct drm_framebuffer *fb,
ed8d1975 11067 struct drm_i915_gem_object *obj,
6258fbe2 11068 struct drm_i915_gem_request *req,
ed8d1975 11069 uint32_t flags)
8c9f3aaf 11070{
6258fbe2 11071 struct intel_engine_cs *ring = req->ring;
8c9f3aaf
JB
11072 struct drm_i915_private *dev_priv = dev->dev_private;
11073 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11074 uint32_t pf, pipesrc;
11075 int ret;
11076
5fb9de1a 11077 ret = intel_ring_begin(req, 4);
8c9f3aaf 11078 if (ret)
4fa62c89 11079 return ret;
8c9f3aaf 11080
6d90c952
DV
11081 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11082 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11083 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
75f7f3ec 11084 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
8c9f3aaf 11085
dc257cf1
DV
11086 /* Contrary to the suggestions in the documentation,
11087 * "Enable Panel Fitter" does not seem to be required when page
11088 * flipping with a non-native mode, and worse causes a normal
11089 * modeset to fail.
11090 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11091 */
11092 pf = 0;
8c9f3aaf 11093 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 11094 intel_ring_emit(ring, pf | pipesrc);
e7d841ca 11095
6042639c 11096 intel_mark_page_flip_active(intel_crtc->unpin_work);
83d4092b 11097 return 0;
8c9f3aaf
JB
11098}
11099
7c9017e5
JB
11100static int intel_gen7_queue_flip(struct drm_device *dev,
11101 struct drm_crtc *crtc,
11102 struct drm_framebuffer *fb,
ed8d1975 11103 struct drm_i915_gem_object *obj,
6258fbe2 11104 struct drm_i915_gem_request *req,
ed8d1975 11105 uint32_t flags)
7c9017e5 11106{
6258fbe2 11107 struct intel_engine_cs *ring = req->ring;
7c9017e5 11108 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
cb05d8de 11109 uint32_t plane_bit = 0;
ffe74d75
CW
11110 int len, ret;
11111
eba905b2 11112 switch (intel_crtc->plane) {
cb05d8de
DV
11113 case PLANE_A:
11114 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11115 break;
11116 case PLANE_B:
11117 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11118 break;
11119 case PLANE_C:
11120 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11121 break;
11122 default:
11123 WARN_ONCE(1, "unknown plane in flip command\n");
4fa62c89 11124 return -ENODEV;
cb05d8de
DV
11125 }
11126
ffe74d75 11127 len = 4;
f476828a 11128 if (ring->id == RCS) {
ffe74d75 11129 len += 6;
f476828a
DL
11130 /*
11131 * On Gen 8, SRM is now taking an extra dword to accommodate
11132 * 48bits addresses, and we need a NOOP for the batch size to
11133 * stay even.
11134 */
11135 if (IS_GEN8(dev))
11136 len += 2;
11137 }
ffe74d75 11138
f66fab8e
VS
11139 /*
11140 * BSpec MI_DISPLAY_FLIP for IVB:
11141 * "The full packet must be contained within the same cache line."
11142 *
11143 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11144 * cacheline, if we ever start emitting more commands before
11145 * the MI_DISPLAY_FLIP we may need to first emit everything else,
11146 * then do the cacheline alignment, and finally emit the
11147 * MI_DISPLAY_FLIP.
11148 */
bba09b12 11149 ret = intel_ring_cacheline_align(req);
f66fab8e 11150 if (ret)
4fa62c89 11151 return ret;
f66fab8e 11152
5fb9de1a 11153 ret = intel_ring_begin(req, len);
7c9017e5 11154 if (ret)
4fa62c89 11155 return ret;
7c9017e5 11156
ffe74d75
CW
11157 /* Unmask the flip-done completion message. Note that the bspec says that
11158 * we should do this for both the BCS and RCS, and that we must not unmask
11159 * more than one flip event at any time (or ensure that one flip message
11160 * can be sent by waiting for flip-done prior to queueing new flips).
11161 * Experimentation says that BCS works despite DERRMR masking all
11162 * flip-done completion events and that unmasking all planes at once
11163 * for the RCS also doesn't appear to drop events. Setting the DERRMR
11164 * to zero does lead to lockups within MI_DISPLAY_FLIP.
11165 */
11166 if (ring->id == RCS) {
11167 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
f92a9162 11168 intel_ring_emit_reg(ring, DERRMR);
ffe74d75
CW
11169 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11170 DERRMR_PIPEB_PRI_FLIP_DONE |
11171 DERRMR_PIPEC_PRI_FLIP_DONE));
f476828a 11172 if (IS_GEN8(dev))
f1afe24f 11173 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8 |
f476828a
DL
11174 MI_SRM_LRM_GLOBAL_GTT);
11175 else
f1afe24f 11176 intel_ring_emit(ring, MI_STORE_REGISTER_MEM |
f476828a 11177 MI_SRM_LRM_GLOBAL_GTT);
f92a9162 11178 intel_ring_emit_reg(ring, DERRMR);
ffe74d75 11179 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
f476828a
DL
11180 if (IS_GEN8(dev)) {
11181 intel_ring_emit(ring, 0);
11182 intel_ring_emit(ring, MI_NOOP);
11183 }
ffe74d75
CW
11184 }
11185
cb05d8de 11186 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
01f2c773 11187 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
75f7f3ec 11188 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
7c9017e5 11189 intel_ring_emit(ring, (MI_NOOP));
e7d841ca 11190
6042639c 11191 intel_mark_page_flip_active(intel_crtc->unpin_work);
83d4092b 11192 return 0;
7c9017e5
JB
11193}
11194
84c33a64
SG
11195static bool use_mmio_flip(struct intel_engine_cs *ring,
11196 struct drm_i915_gem_object *obj)
11197{
11198 /*
11199 * This is not being used for older platforms, because
11200 * non-availability of flip done interrupt forces us to use
11201 * CS flips. Older platforms derive flip done using some clever
11202 * tricks involving the flip_pending status bits and vblank irqs.
11203 * So using MMIO flips there would disrupt this mechanism.
11204 */
11205
8e09bf83
CW
11206 if (ring == NULL)
11207 return true;
11208
84c33a64
SG
11209 if (INTEL_INFO(ring->dev)->gen < 5)
11210 return false;
11211
11212 if (i915.use_mmio_flip < 0)
11213 return false;
11214 else if (i915.use_mmio_flip > 0)
11215 return true;
14bf993e
OM
11216 else if (i915.enable_execlists)
11217 return true;
fd8e058a
AG
11218 else if (obj->base.dma_buf &&
11219 !reservation_object_test_signaled_rcu(obj->base.dma_buf->resv,
11220 false))
11221 return true;
84c33a64 11222 else
b4716185 11223 return ring != i915_gem_request_get_ring(obj->last_write_req);
84c33a64
SG
11224}
11225
6042639c 11226static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
86efe24a 11227 unsigned int rotation,
6042639c 11228 struct intel_unpin_work *work)
ff944564
DL
11229{
11230 struct drm_device *dev = intel_crtc->base.dev;
11231 struct drm_i915_private *dev_priv = dev->dev_private;
11232 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
ff944564 11233 const enum pipe pipe = intel_crtc->pipe;
86efe24a 11234 u32 ctl, stride, tile_height;
ff944564
DL
11235
11236 ctl = I915_READ(PLANE_CTL(pipe, 0));
11237 ctl &= ~PLANE_CTL_TILED_MASK;
2ebef630
TU
11238 switch (fb->modifier[0]) {
11239 case DRM_FORMAT_MOD_NONE:
11240 break;
11241 case I915_FORMAT_MOD_X_TILED:
ff944564 11242 ctl |= PLANE_CTL_TILED_X;
2ebef630
TU
11243 break;
11244 case I915_FORMAT_MOD_Y_TILED:
11245 ctl |= PLANE_CTL_TILED_Y;
11246 break;
11247 case I915_FORMAT_MOD_Yf_TILED:
11248 ctl |= PLANE_CTL_TILED_YF;
11249 break;
11250 default:
11251 MISSING_CASE(fb->modifier[0]);
11252 }
ff944564
DL
11253
11254 /*
11255 * The stride is either expressed as a multiple of 64 bytes chunks for
11256 * linear buffers or in number of tiles for tiled buffers.
11257 */
86efe24a
TU
11258 if (intel_rotation_90_or_270(rotation)) {
11259 /* stride = Surface height in tiles */
832be82f 11260 tile_height = intel_tile_height(dev_priv, fb->modifier[0], 0);
86efe24a
TU
11261 stride = DIV_ROUND_UP(fb->height, tile_height);
11262 } else {
11263 stride = fb->pitches[0] /
7b49f948
VS
11264 intel_fb_stride_alignment(dev_priv, fb->modifier[0],
11265 fb->pixel_format);
86efe24a 11266 }
ff944564
DL
11267
11268 /*
11269 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11270 * PLANE_SURF updates, the update is then guaranteed to be atomic.
11271 */
11272 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11273 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11274
6042639c 11275 I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
ff944564
DL
11276 POSTING_READ(PLANE_SURF(pipe, 0));
11277}
11278
6042639c
CW
11279static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
11280 struct intel_unpin_work *work)
84c33a64
SG
11281{
11282 struct drm_device *dev = intel_crtc->base.dev;
11283 struct drm_i915_private *dev_priv = dev->dev_private;
11284 struct intel_framebuffer *intel_fb =
11285 to_intel_framebuffer(intel_crtc->base.primary->fb);
11286 struct drm_i915_gem_object *obj = intel_fb->obj;
f0f59a00 11287 i915_reg_t reg = DSPCNTR(intel_crtc->plane);
84c33a64 11288 u32 dspcntr;
84c33a64 11289
84c33a64
SG
11290 dspcntr = I915_READ(reg);
11291
c5d97472
DL
11292 if (obj->tiling_mode != I915_TILING_NONE)
11293 dspcntr |= DISPPLANE_TILED;
11294 else
11295 dspcntr &= ~DISPPLANE_TILED;
11296
84c33a64
SG
11297 I915_WRITE(reg, dspcntr);
11298
6042639c 11299 I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
84c33a64 11300 POSTING_READ(DSPSURF(intel_crtc->plane));
ff944564
DL
11301}
11302
11303/*
11304 * XXX: This is the temporary way to update the plane registers until we get
11305 * around to using the usual plane update functions for MMIO flips
11306 */
6042639c 11307static void intel_do_mmio_flip(struct intel_mmio_flip *mmio_flip)
ff944564 11308{
6042639c
CW
11309 struct intel_crtc *crtc = mmio_flip->crtc;
11310 struct intel_unpin_work *work;
11311
11312 spin_lock_irq(&crtc->base.dev->event_lock);
11313 work = crtc->unpin_work;
11314 spin_unlock_irq(&crtc->base.dev->event_lock);
11315 if (work == NULL)
11316 return;
ff944564 11317
6042639c 11318 intel_mark_page_flip_active(work);
ff944564 11319
6042639c 11320 intel_pipe_update_start(crtc);
ff944564 11321
6042639c 11322 if (INTEL_INFO(mmio_flip->i915)->gen >= 9)
86efe24a 11323 skl_do_mmio_flip(crtc, mmio_flip->rotation, work);
ff944564
DL
11324 else
11325 /* use_mmio_flip() retricts MMIO flips to ilk+ */
6042639c 11326 ilk_do_mmio_flip(crtc, work);
ff944564 11327
6042639c 11328 intel_pipe_update_end(crtc);
84c33a64
SG
11329}
11330
9362c7c5 11331static void intel_mmio_flip_work_func(struct work_struct *work)
84c33a64 11332{
b2cfe0ab
CW
11333 struct intel_mmio_flip *mmio_flip =
11334 container_of(work, struct intel_mmio_flip, work);
fd8e058a
AG
11335 struct intel_framebuffer *intel_fb =
11336 to_intel_framebuffer(mmio_flip->crtc->base.primary->fb);
11337 struct drm_i915_gem_object *obj = intel_fb->obj;
84c33a64 11338
6042639c 11339 if (mmio_flip->req) {
eed29a5b 11340 WARN_ON(__i915_wait_request(mmio_flip->req,
b2cfe0ab 11341 mmio_flip->crtc->reset_counter,
bcafc4e3
CW
11342 false, NULL,
11343 &mmio_flip->i915->rps.mmioflips));
6042639c
CW
11344 i915_gem_request_unreference__unlocked(mmio_flip->req);
11345 }
84c33a64 11346
fd8e058a
AG
11347 /* For framebuffer backed by dmabuf, wait for fence */
11348 if (obj->base.dma_buf)
11349 WARN_ON(reservation_object_wait_timeout_rcu(obj->base.dma_buf->resv,
11350 false, false,
11351 MAX_SCHEDULE_TIMEOUT) < 0);
11352
6042639c 11353 intel_do_mmio_flip(mmio_flip);
b2cfe0ab 11354 kfree(mmio_flip);
84c33a64
SG
11355}
11356
11357static int intel_queue_mmio_flip(struct drm_device *dev,
11358 struct drm_crtc *crtc,
86efe24a 11359 struct drm_i915_gem_object *obj)
84c33a64 11360{
b2cfe0ab
CW
11361 struct intel_mmio_flip *mmio_flip;
11362
11363 mmio_flip = kmalloc(sizeof(*mmio_flip), GFP_KERNEL);
11364 if (mmio_flip == NULL)
11365 return -ENOMEM;
84c33a64 11366
bcafc4e3 11367 mmio_flip->i915 = to_i915(dev);
eed29a5b 11368 mmio_flip->req = i915_gem_request_reference(obj->last_write_req);
b2cfe0ab 11369 mmio_flip->crtc = to_intel_crtc(crtc);
86efe24a 11370 mmio_flip->rotation = crtc->primary->state->rotation;
536f5b5e 11371
b2cfe0ab
CW
11372 INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func);
11373 schedule_work(&mmio_flip->work);
84c33a64 11374
84c33a64
SG
11375 return 0;
11376}
11377
8c9f3aaf
JB
11378static int intel_default_queue_flip(struct drm_device *dev,
11379 struct drm_crtc *crtc,
11380 struct drm_framebuffer *fb,
ed8d1975 11381 struct drm_i915_gem_object *obj,
6258fbe2 11382 struct drm_i915_gem_request *req,
ed8d1975 11383 uint32_t flags)
8c9f3aaf
JB
11384{
11385 return -ENODEV;
11386}
11387
d6bbafa1
CW
11388static bool __intel_pageflip_stall_check(struct drm_device *dev,
11389 struct drm_crtc *crtc)
11390{
11391 struct drm_i915_private *dev_priv = dev->dev_private;
11392 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11393 struct intel_unpin_work *work = intel_crtc->unpin_work;
11394 u32 addr;
11395
11396 if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
11397 return true;
11398
908565c2
CW
11399 if (atomic_read(&work->pending) < INTEL_FLIP_PENDING)
11400 return false;
11401
d6bbafa1
CW
11402 if (!work->enable_stall_check)
11403 return false;
11404
11405 if (work->flip_ready_vblank == 0) {
3a8a946e
DV
11406 if (work->flip_queued_req &&
11407 !i915_gem_request_completed(work->flip_queued_req, true))
d6bbafa1
CW
11408 return false;
11409
1e3feefd 11410 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
d6bbafa1
CW
11411 }
11412
1e3feefd 11413 if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
d6bbafa1
CW
11414 return false;
11415
11416 /* Potential stall - if we see that the flip has happened,
11417 * assume a missed interrupt. */
11418 if (INTEL_INFO(dev)->gen >= 4)
11419 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11420 else
11421 addr = I915_READ(DSPADDR(intel_crtc->plane));
11422
11423 /* There is a potential issue here with a false positive after a flip
11424 * to the same address. We could address this by checking for a
11425 * non-incrementing frame counter.
11426 */
11427 return addr == work->gtt_offset;
11428}
11429
11430void intel_check_page_flip(struct drm_device *dev, int pipe)
11431{
11432 struct drm_i915_private *dev_priv = dev->dev_private;
11433 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11434 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6ad790c0 11435 struct intel_unpin_work *work;
f326038a 11436
6c51d46f 11437 WARN_ON(!in_interrupt());
d6bbafa1
CW
11438
11439 if (crtc == NULL)
11440 return;
11441
f326038a 11442 spin_lock(&dev->event_lock);
6ad790c0
CW
11443 work = intel_crtc->unpin_work;
11444 if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
d6bbafa1 11445 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
6ad790c0 11446 work->flip_queued_vblank, drm_vblank_count(dev, pipe));
d6bbafa1 11447 page_flip_completed(intel_crtc);
6ad790c0 11448 work = NULL;
d6bbafa1 11449 }
6ad790c0
CW
11450 if (work != NULL &&
11451 drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
11452 intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
f326038a 11453 spin_unlock(&dev->event_lock);
d6bbafa1
CW
11454}
11455
6b95a207
KH
11456static int intel_crtc_page_flip(struct drm_crtc *crtc,
11457 struct drm_framebuffer *fb,
ed8d1975
KP
11458 struct drm_pending_vblank_event *event,
11459 uint32_t page_flip_flags)
6b95a207
KH
11460{
11461 struct drm_device *dev = crtc->dev;
11462 struct drm_i915_private *dev_priv = dev->dev_private;
f4510a27 11463 struct drm_framebuffer *old_fb = crtc->primary->fb;
2ff8fde1 11464 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
6b95a207 11465 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
455a6808 11466 struct drm_plane *primary = crtc->primary;
a071fa00 11467 enum pipe pipe = intel_crtc->pipe;
6b95a207 11468 struct intel_unpin_work *work;
a4872ba6 11469 struct intel_engine_cs *ring;
cf5d8a46 11470 bool mmio_flip;
91af127f 11471 struct drm_i915_gem_request *request = NULL;
52e68630 11472 int ret;
6b95a207 11473
2ff8fde1
MR
11474 /*
11475 * drm_mode_page_flip_ioctl() should already catch this, but double
11476 * check to be safe. In the future we may enable pageflipping from
11477 * a disabled primary plane.
11478 */
11479 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11480 return -EBUSY;
11481
e6a595d2 11482 /* Can't change pixel format via MI display flips. */
f4510a27 11483 if (fb->pixel_format != crtc->primary->fb->pixel_format)
e6a595d2
VS
11484 return -EINVAL;
11485
11486 /*
11487 * TILEOFF/LINOFF registers can't be changed via MI display flips.
11488 * Note that pitch changes could also affect these register.
11489 */
11490 if (INTEL_INFO(dev)->gen > 3 &&
f4510a27
MR
11491 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11492 fb->pitches[0] != crtc->primary->fb->pitches[0]))
e6a595d2
VS
11493 return -EINVAL;
11494
f900db47
CW
11495 if (i915_terminally_wedged(&dev_priv->gpu_error))
11496 goto out_hang;
11497
b14c5679 11498 work = kzalloc(sizeof(*work), GFP_KERNEL);
6b95a207
KH
11499 if (work == NULL)
11500 return -ENOMEM;
11501
6b95a207 11502 work->event = event;
b4a98e57 11503 work->crtc = crtc;
ab8d6675 11504 work->old_fb = old_fb;
6b95a207
KH
11505 INIT_WORK(&work->work, intel_unpin_work_fn);
11506
87b6b101 11507 ret = drm_crtc_vblank_get(crtc);
7317c75e
JB
11508 if (ret)
11509 goto free_work;
11510
6b95a207 11511 /* We borrow the event spin lock for protecting unpin_work */
5e2d7afc 11512 spin_lock_irq(&dev->event_lock);
6b95a207 11513 if (intel_crtc->unpin_work) {
d6bbafa1
CW
11514 /* Before declaring the flip queue wedged, check if
11515 * the hardware completed the operation behind our backs.
11516 */
11517 if (__intel_pageflip_stall_check(dev, crtc)) {
11518 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11519 page_flip_completed(intel_crtc);
11520 } else {
11521 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
5e2d7afc 11522 spin_unlock_irq(&dev->event_lock);
468f0b44 11523
d6bbafa1
CW
11524 drm_crtc_vblank_put(crtc);
11525 kfree(work);
11526 return -EBUSY;
11527 }
6b95a207
KH
11528 }
11529 intel_crtc->unpin_work = work;
5e2d7afc 11530 spin_unlock_irq(&dev->event_lock);
6b95a207 11531
b4a98e57
CW
11532 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11533 flush_workqueue(dev_priv->wq);
11534
75dfca80 11535 /* Reference the objects for the scheduled work. */
ab8d6675 11536 drm_framebuffer_reference(work->old_fb);
05394f39 11537 drm_gem_object_reference(&obj->base);
6b95a207 11538
f4510a27 11539 crtc->primary->fb = fb;
afd65eb4 11540 update_state_fb(crtc->primary);
e8216e50 11541 intel_fbc_pre_update(intel_crtc);
1ed1f968 11542
e1f99ce6 11543 work->pending_flip_obj = obj;
e1f99ce6 11544
89ed88ba
CW
11545 ret = i915_mutex_lock_interruptible(dev);
11546 if (ret)
11547 goto cleanup;
11548
b4a98e57 11549 atomic_inc(&intel_crtc->unpin_work_count);
10d83730 11550 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
e1f99ce6 11551
75f7f3ec 11552 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
fd8f507c 11553 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
75f7f3ec 11554
666a4537 11555 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
4fa62c89 11556 ring = &dev_priv->ring[BCS];
ab8d6675 11557 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
8e09bf83
CW
11558 /* vlv: DISPLAY_FLIP fails to change tiling */
11559 ring = NULL;
48bf5b2d 11560 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
2a92d5bc 11561 ring = &dev_priv->ring[BCS];
4fa62c89 11562 } else if (INTEL_INFO(dev)->gen >= 7) {
b4716185 11563 ring = i915_gem_request_get_ring(obj->last_write_req);
4fa62c89
VS
11564 if (ring == NULL || ring->id != RCS)
11565 ring = &dev_priv->ring[BCS];
11566 } else {
11567 ring = &dev_priv->ring[RCS];
11568 }
11569
cf5d8a46
CW
11570 mmio_flip = use_mmio_flip(ring, obj);
11571
11572 /* When using CS flips, we want to emit semaphores between rings.
11573 * However, when using mmio flips we will create a task to do the
11574 * synchronisation, so all we want here is to pin the framebuffer
11575 * into the display plane and skip any waits.
11576 */
7580d774
ML
11577 if (!mmio_flip) {
11578 ret = i915_gem_object_sync(obj, ring, &request);
11579 if (ret)
11580 goto cleanup_pending;
11581 }
11582
3465c580 11583 ret = intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
8c9f3aaf
JB
11584 if (ret)
11585 goto cleanup_pending;
6b95a207 11586
dedf278c
TU
11587 work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary),
11588 obj, 0);
11589 work->gtt_offset += intel_crtc->dspaddr_offset;
4fa62c89 11590
cf5d8a46 11591 if (mmio_flip) {
86efe24a 11592 ret = intel_queue_mmio_flip(dev, crtc, obj);
d6bbafa1
CW
11593 if (ret)
11594 goto cleanup_unpin;
11595
f06cc1b9
JH
11596 i915_gem_request_assign(&work->flip_queued_req,
11597 obj->last_write_req);
d6bbafa1 11598 } else {
6258fbe2 11599 if (!request) {
26827088
DG
11600 request = i915_gem_request_alloc(ring, NULL);
11601 if (IS_ERR(request)) {
11602 ret = PTR_ERR(request);
6258fbe2 11603 goto cleanup_unpin;
26827088 11604 }
6258fbe2
JH
11605 }
11606
11607 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
d6bbafa1
CW
11608 page_flip_flags);
11609 if (ret)
11610 goto cleanup_unpin;
11611
6258fbe2 11612 i915_gem_request_assign(&work->flip_queued_req, request);
d6bbafa1
CW
11613 }
11614
91af127f 11615 if (request)
75289874 11616 i915_add_request_no_flush(request);
91af127f 11617
1e3feefd 11618 work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
d6bbafa1 11619 work->enable_stall_check = true;
4fa62c89 11620
ab8d6675 11621 i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
a9ff8714 11622 to_intel_plane(primary)->frontbuffer_bit);
c80ac854 11623 mutex_unlock(&dev->struct_mutex);
a071fa00 11624
a9ff8714
VS
11625 intel_frontbuffer_flip_prepare(dev,
11626 to_intel_plane(primary)->frontbuffer_bit);
6b95a207 11627
e5510fac
JB
11628 trace_i915_flip_request(intel_crtc->plane, obj);
11629
6b95a207 11630 return 0;
96b099fd 11631
4fa62c89 11632cleanup_unpin:
3465c580 11633 intel_unpin_fb_obj(fb, crtc->primary->state->rotation);
8c9f3aaf 11634cleanup_pending:
0aa498d5 11635 if (!IS_ERR_OR_NULL(request))
91af127f 11636 i915_gem_request_cancel(request);
b4a98e57 11637 atomic_dec(&intel_crtc->unpin_work_count);
89ed88ba
CW
11638 mutex_unlock(&dev->struct_mutex);
11639cleanup:
f4510a27 11640 crtc->primary->fb = old_fb;
afd65eb4 11641 update_state_fb(crtc->primary);
89ed88ba
CW
11642
11643 drm_gem_object_unreference_unlocked(&obj->base);
ab8d6675 11644 drm_framebuffer_unreference(work->old_fb);
96b099fd 11645
5e2d7afc 11646 spin_lock_irq(&dev->event_lock);
96b099fd 11647 intel_crtc->unpin_work = NULL;
5e2d7afc 11648 spin_unlock_irq(&dev->event_lock);
96b099fd 11649
87b6b101 11650 drm_crtc_vblank_put(crtc);
7317c75e 11651free_work:
96b099fd
CW
11652 kfree(work);
11653
f900db47 11654 if (ret == -EIO) {
02e0efb5
ML
11655 struct drm_atomic_state *state;
11656 struct drm_plane_state *plane_state;
11657
f900db47 11658out_hang:
02e0efb5
ML
11659 state = drm_atomic_state_alloc(dev);
11660 if (!state)
11661 return -ENOMEM;
11662 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
11663
11664retry:
11665 plane_state = drm_atomic_get_plane_state(state, primary);
11666 ret = PTR_ERR_OR_ZERO(plane_state);
11667 if (!ret) {
11668 drm_atomic_set_fb_for_plane(plane_state, fb);
11669
11670 ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
11671 if (!ret)
11672 ret = drm_atomic_commit(state);
11673 }
11674
11675 if (ret == -EDEADLK) {
11676 drm_modeset_backoff(state->acquire_ctx);
11677 drm_atomic_state_clear(state);
11678 goto retry;
11679 }
11680
11681 if (ret)
11682 drm_atomic_state_free(state);
11683
f0d3dad3 11684 if (ret == 0 && event) {
5e2d7afc 11685 spin_lock_irq(&dev->event_lock);
a071fa00 11686 drm_send_vblank_event(dev, pipe, event);
5e2d7afc 11687 spin_unlock_irq(&dev->event_lock);
f0d3dad3 11688 }
f900db47 11689 }
96b099fd 11690 return ret;
6b95a207
KH
11691}
11692
da20eabd
ML
11693
11694/**
11695 * intel_wm_need_update - Check whether watermarks need updating
11696 * @plane: drm plane
11697 * @state: new plane state
11698 *
11699 * Check current plane state versus the new one to determine whether
11700 * watermarks need to be recalculated.
11701 *
11702 * Returns true or false.
11703 */
11704static bool intel_wm_need_update(struct drm_plane *plane,
11705 struct drm_plane_state *state)
11706{
d21fbe87
MR
11707 struct intel_plane_state *new = to_intel_plane_state(state);
11708 struct intel_plane_state *cur = to_intel_plane_state(plane->state);
11709
11710 /* Update watermarks on tiling or size changes. */
92826fcd
ML
11711 if (new->visible != cur->visible)
11712 return true;
11713
11714 if (!cur->base.fb || !new->base.fb)
11715 return false;
11716
11717 if (cur->base.fb->modifier[0] != new->base.fb->modifier[0] ||
11718 cur->base.rotation != new->base.rotation ||
d21fbe87
MR
11719 drm_rect_width(&new->src) != drm_rect_width(&cur->src) ||
11720 drm_rect_height(&new->src) != drm_rect_height(&cur->src) ||
11721 drm_rect_width(&new->dst) != drm_rect_width(&cur->dst) ||
11722 drm_rect_height(&new->dst) != drm_rect_height(&cur->dst))
2791a16c 11723 return true;
7809e5ae 11724
2791a16c 11725 return false;
7809e5ae
MR
11726}
11727
d21fbe87
MR
11728static bool needs_scaling(struct intel_plane_state *state)
11729{
11730 int src_w = drm_rect_width(&state->src) >> 16;
11731 int src_h = drm_rect_height(&state->src) >> 16;
11732 int dst_w = drm_rect_width(&state->dst);
11733 int dst_h = drm_rect_height(&state->dst);
11734
11735 return (src_w != dst_w || src_h != dst_h);
11736}
11737
da20eabd
ML
11738int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
11739 struct drm_plane_state *plane_state)
11740{
ab1d3a0e 11741 struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
da20eabd
ML
11742 struct drm_crtc *crtc = crtc_state->crtc;
11743 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11744 struct drm_plane *plane = plane_state->plane;
11745 struct drm_device *dev = crtc->dev;
ed4a6a7c 11746 struct drm_i915_private *dev_priv = to_i915(dev);
da20eabd
ML
11747 struct intel_plane_state *old_plane_state =
11748 to_intel_plane_state(plane->state);
11749 int idx = intel_crtc->base.base.id, ret;
da20eabd
ML
11750 bool mode_changed = needs_modeset(crtc_state);
11751 bool was_crtc_enabled = crtc->state->active;
11752 bool is_crtc_enabled = crtc_state->active;
da20eabd
ML
11753 bool turn_off, turn_on, visible, was_visible;
11754 struct drm_framebuffer *fb = plane_state->fb;
11755
11756 if (crtc_state && INTEL_INFO(dev)->gen >= 9 &&
11757 plane->type != DRM_PLANE_TYPE_CURSOR) {
11758 ret = skl_update_scaler_plane(
11759 to_intel_crtc_state(crtc_state),
11760 to_intel_plane_state(plane_state));
11761 if (ret)
11762 return ret;
11763 }
11764
da20eabd
ML
11765 was_visible = old_plane_state->visible;
11766 visible = to_intel_plane_state(plane_state)->visible;
11767
11768 if (!was_crtc_enabled && WARN_ON(was_visible))
11769 was_visible = false;
11770
35c08f43
ML
11771 /*
11772 * Visibility is calculated as if the crtc was on, but
11773 * after scaler setup everything depends on it being off
11774 * when the crtc isn't active.
11775 */
11776 if (!is_crtc_enabled)
11777 to_intel_plane_state(plane_state)->visible = visible = false;
da20eabd
ML
11778
11779 if (!was_visible && !visible)
11780 return 0;
11781
e8861675
ML
11782 if (fb != old_plane_state->base.fb)
11783 pipe_config->fb_changed = true;
11784
da20eabd
ML
11785 turn_off = was_visible && (!visible || mode_changed);
11786 turn_on = visible && (!was_visible || mode_changed);
11787
11788 DRM_DEBUG_ATOMIC("[CRTC:%i] has [PLANE:%i] with fb %i\n", idx,
11789 plane->base.id, fb ? fb->base.id : -1);
11790
11791 DRM_DEBUG_ATOMIC("[PLANE:%i] visible %i -> %i, off %i, on %i, ms %i\n",
11792 plane->base.id, was_visible, visible,
11793 turn_off, turn_on, mode_changed);
11794
caed361d
VS
11795 if (turn_on) {
11796 pipe_config->update_wm_pre = true;
11797
11798 /* must disable cxsr around plane enable/disable */
11799 if (plane->type != DRM_PLANE_TYPE_CURSOR)
11800 pipe_config->disable_cxsr = true;
11801 } else if (turn_off) {
11802 pipe_config->update_wm_post = true;
92826fcd 11803
852eb00d 11804 /* must disable cxsr around plane enable/disable */
e8861675 11805 if (plane->type != DRM_PLANE_TYPE_CURSOR)
ab1d3a0e 11806 pipe_config->disable_cxsr = true;
852eb00d 11807 } else if (intel_wm_need_update(plane, plane_state)) {
caed361d
VS
11808 /* FIXME bollocks */
11809 pipe_config->update_wm_pre = true;
11810 pipe_config->update_wm_post = true;
852eb00d 11811 }
da20eabd 11812
ed4a6a7c 11813 /* Pre-gen9 platforms need two-step watermark updates */
caed361d
VS
11814 if ((pipe_config->update_wm_pre || pipe_config->update_wm_post) &&
11815 INTEL_INFO(dev)->gen < 9 && dev_priv->display.optimize_watermarks)
ed4a6a7c
MR
11816 to_intel_crtc_state(crtc_state)->wm.need_postvbl_update = true;
11817
8be6ca85 11818 if (visible || was_visible)
a9ff8714
VS
11819 intel_crtc->atomic.fb_bits |=
11820 to_intel_plane(plane)->frontbuffer_bit;
11821
da20eabd
ML
11822 switch (plane->type) {
11823 case DRM_PLANE_TYPE_PRIMARY:
da20eabd 11824 intel_crtc->atomic.post_enable_primary = turn_on;
fcf38d13 11825 intel_crtc->atomic.update_fbc = true;
da20eabd 11826
da20eabd
ML
11827 break;
11828 case DRM_PLANE_TYPE_CURSOR:
da20eabd
ML
11829 break;
11830 case DRM_PLANE_TYPE_OVERLAY:
d21fbe87
MR
11831 /*
11832 * WaCxSRDisabledForSpriteScaling:ivb
11833 *
11834 * cstate->update_wm was already set above, so this flag will
11835 * take effect when we commit and program watermarks.
11836 */
11837 if (IS_IVYBRIDGE(dev) &&
11838 needs_scaling(to_intel_plane_state(plane_state)) &&
e8861675
ML
11839 !needs_scaling(old_plane_state))
11840 pipe_config->disable_lp_wm = true;
d21fbe87
MR
11841
11842 break;
da20eabd
ML
11843 }
11844 return 0;
11845}
11846
6d3a1ce7
ML
11847static bool encoders_cloneable(const struct intel_encoder *a,
11848 const struct intel_encoder *b)
11849{
11850 /* masks could be asymmetric, so check both ways */
11851 return a == b || (a->cloneable & (1 << b->type) &&
11852 b->cloneable & (1 << a->type));
11853}
11854
11855static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11856 struct intel_crtc *crtc,
11857 struct intel_encoder *encoder)
11858{
11859 struct intel_encoder *source_encoder;
11860 struct drm_connector *connector;
11861 struct drm_connector_state *connector_state;
11862 int i;
11863
11864 for_each_connector_in_state(state, connector, connector_state, i) {
11865 if (connector_state->crtc != &crtc->base)
11866 continue;
11867
11868 source_encoder =
11869 to_intel_encoder(connector_state->best_encoder);
11870 if (!encoders_cloneable(encoder, source_encoder))
11871 return false;
11872 }
11873
11874 return true;
11875}
11876
11877static bool check_encoder_cloning(struct drm_atomic_state *state,
11878 struct intel_crtc *crtc)
11879{
11880 struct intel_encoder *encoder;
11881 struct drm_connector *connector;
11882 struct drm_connector_state *connector_state;
11883 int i;
11884
11885 for_each_connector_in_state(state, connector, connector_state, i) {
11886 if (connector_state->crtc != &crtc->base)
11887 continue;
11888
11889 encoder = to_intel_encoder(connector_state->best_encoder);
11890 if (!check_single_encoder_cloning(state, crtc, encoder))
11891 return false;
11892 }
11893
11894 return true;
11895}
11896
11897static int intel_crtc_atomic_check(struct drm_crtc *crtc,
11898 struct drm_crtc_state *crtc_state)
11899{
cf5a15be 11900 struct drm_device *dev = crtc->dev;
ad421372 11901 struct drm_i915_private *dev_priv = dev->dev_private;
6d3a1ce7 11902 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
cf5a15be
ML
11903 struct intel_crtc_state *pipe_config =
11904 to_intel_crtc_state(crtc_state);
6d3a1ce7 11905 struct drm_atomic_state *state = crtc_state->state;
4d20cd86 11906 int ret;
6d3a1ce7
ML
11907 bool mode_changed = needs_modeset(crtc_state);
11908
11909 if (mode_changed && !check_encoder_cloning(state, intel_crtc)) {
11910 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11911 return -EINVAL;
11912 }
11913
852eb00d 11914 if (mode_changed && !crtc_state->active)
caed361d 11915 pipe_config->update_wm_post = true;
eddfcbcd 11916
ad421372
ML
11917 if (mode_changed && crtc_state->enable &&
11918 dev_priv->display.crtc_compute_clock &&
8106ddbd 11919 !WARN_ON(pipe_config->shared_dpll)) {
ad421372
ML
11920 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11921 pipe_config);
11922 if (ret)
11923 return ret;
11924 }
11925
e435d6e5 11926 ret = 0;
86c8bbbe 11927 if (dev_priv->display.compute_pipe_wm) {
e3bddded 11928 ret = dev_priv->display.compute_pipe_wm(pipe_config);
ed4a6a7c
MR
11929 if (ret) {
11930 DRM_DEBUG_KMS("Target pipe watermarks are invalid\n");
11931 return ret;
11932 }
11933 }
11934
11935 if (dev_priv->display.compute_intermediate_wm &&
11936 !to_intel_atomic_state(state)->skip_intermediate_wm) {
11937 if (WARN_ON(!dev_priv->display.compute_pipe_wm))
11938 return 0;
11939
11940 /*
11941 * Calculate 'intermediate' watermarks that satisfy both the
11942 * old state and the new state. We can program these
11943 * immediately.
11944 */
11945 ret = dev_priv->display.compute_intermediate_wm(crtc->dev,
11946 intel_crtc,
11947 pipe_config);
11948 if (ret) {
11949 DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n");
86c8bbbe 11950 return ret;
ed4a6a7c 11951 }
86c8bbbe
MR
11952 }
11953
e435d6e5
ML
11954 if (INTEL_INFO(dev)->gen >= 9) {
11955 if (mode_changed)
11956 ret = skl_update_scaler_crtc(pipe_config);
11957
11958 if (!ret)
11959 ret = intel_atomic_setup_scalers(dev, intel_crtc,
11960 pipe_config);
11961 }
11962
11963 return ret;
6d3a1ce7
ML
11964}
11965
65b38e0d 11966static const struct drm_crtc_helper_funcs intel_helper_funcs = {
f6e5b160
CW
11967 .mode_set_base_atomic = intel_pipe_set_base_atomic,
11968 .load_lut = intel_crtc_load_lut,
ea2c67bb
MR
11969 .atomic_begin = intel_begin_crtc_commit,
11970 .atomic_flush = intel_finish_crtc_commit,
6d3a1ce7 11971 .atomic_check = intel_crtc_atomic_check,
f6e5b160
CW
11972};
11973
d29b2f9d
ACO
11974static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
11975{
11976 struct intel_connector *connector;
11977
11978 for_each_intel_connector(dev, connector) {
11979 if (connector->base.encoder) {
11980 connector->base.state->best_encoder =
11981 connector->base.encoder;
11982 connector->base.state->crtc =
11983 connector->base.encoder->crtc;
11984 } else {
11985 connector->base.state->best_encoder = NULL;
11986 connector->base.state->crtc = NULL;
11987 }
11988 }
11989}
11990
050f7aeb 11991static void
eba905b2 11992connected_sink_compute_bpp(struct intel_connector *connector,
5cec258b 11993 struct intel_crtc_state *pipe_config)
050f7aeb
DV
11994{
11995 int bpp = pipe_config->pipe_bpp;
11996
11997 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
11998 connector->base.base.id,
c23cc417 11999 connector->base.name);
050f7aeb
DV
12000
12001 /* Don't use an invalid EDID bpc value */
12002 if (connector->base.display_info.bpc &&
12003 connector->base.display_info.bpc * 3 < bpp) {
12004 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
12005 bpp, connector->base.display_info.bpc*3);
12006 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
12007 }
12008
013dd9e0
JN
12009 /* Clamp bpp to default limit on screens without EDID 1.4 */
12010 if (connector->base.display_info.bpc == 0) {
12011 int type = connector->base.connector_type;
12012 int clamp_bpp = 24;
12013
12014 /* Fall back to 18 bpp when DP sink capability is unknown. */
12015 if (type == DRM_MODE_CONNECTOR_DisplayPort ||
12016 type == DRM_MODE_CONNECTOR_eDP)
12017 clamp_bpp = 18;
12018
12019 if (bpp > clamp_bpp) {
12020 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of %d\n",
12021 bpp, clamp_bpp);
12022 pipe_config->pipe_bpp = clamp_bpp;
12023 }
050f7aeb
DV
12024 }
12025}
12026
4e53c2e0 12027static int
050f7aeb 12028compute_baseline_pipe_bpp(struct intel_crtc *crtc,
5cec258b 12029 struct intel_crtc_state *pipe_config)
4e53c2e0 12030{
050f7aeb 12031 struct drm_device *dev = crtc->base.dev;
1486017f 12032 struct drm_atomic_state *state;
da3ced29
ACO
12033 struct drm_connector *connector;
12034 struct drm_connector_state *connector_state;
1486017f 12035 int bpp, i;
4e53c2e0 12036
666a4537 12037 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)))
4e53c2e0 12038 bpp = 10*3;
d328c9d7
DV
12039 else if (INTEL_INFO(dev)->gen >= 5)
12040 bpp = 12*3;
12041 else
12042 bpp = 8*3;
12043
4e53c2e0 12044
4e53c2e0
DV
12045 pipe_config->pipe_bpp = bpp;
12046
1486017f
ACO
12047 state = pipe_config->base.state;
12048
4e53c2e0 12049 /* Clamp display bpp to EDID value */
da3ced29
ACO
12050 for_each_connector_in_state(state, connector, connector_state, i) {
12051 if (connector_state->crtc != &crtc->base)
4e53c2e0
DV
12052 continue;
12053
da3ced29
ACO
12054 connected_sink_compute_bpp(to_intel_connector(connector),
12055 pipe_config);
4e53c2e0
DV
12056 }
12057
12058 return bpp;
12059}
12060
644db711
DV
12061static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
12062{
12063 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
12064 "type: 0x%x flags: 0x%x\n",
1342830c 12065 mode->crtc_clock,
644db711
DV
12066 mode->crtc_hdisplay, mode->crtc_hsync_start,
12067 mode->crtc_hsync_end, mode->crtc_htotal,
12068 mode->crtc_vdisplay, mode->crtc_vsync_start,
12069 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
12070}
12071
c0b03411 12072static void intel_dump_pipe_config(struct intel_crtc *crtc,
5cec258b 12073 struct intel_crtc_state *pipe_config,
c0b03411
DV
12074 const char *context)
12075{
6a60cd87
CK
12076 struct drm_device *dev = crtc->base.dev;
12077 struct drm_plane *plane;
12078 struct intel_plane *intel_plane;
12079 struct intel_plane_state *state;
12080 struct drm_framebuffer *fb;
12081
12082 DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
12083 context, pipe_config, pipe_name(crtc->pipe));
c0b03411
DV
12084
12085 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
12086 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
12087 pipe_config->pipe_bpp, pipe_config->dither);
12088 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12089 pipe_config->has_pch_encoder,
12090 pipe_config->fdi_lanes,
12091 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
12092 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
12093 pipe_config->fdi_m_n.tu);
90a6b7b0 12094 DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
eb14cb74 12095 pipe_config->has_dp_encoder,
90a6b7b0 12096 pipe_config->lane_count,
eb14cb74
VS
12097 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
12098 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
12099 pipe_config->dp_m_n.tu);
b95af8be 12100
90a6b7b0 12101 DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
b95af8be 12102 pipe_config->has_dp_encoder,
90a6b7b0 12103 pipe_config->lane_count,
b95af8be
VK
12104 pipe_config->dp_m2_n2.gmch_m,
12105 pipe_config->dp_m2_n2.gmch_n,
12106 pipe_config->dp_m2_n2.link_m,
12107 pipe_config->dp_m2_n2.link_n,
12108 pipe_config->dp_m2_n2.tu);
12109
55072d19
DV
12110 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12111 pipe_config->has_audio,
12112 pipe_config->has_infoframe);
12113
c0b03411 12114 DRM_DEBUG_KMS("requested mode:\n");
2d112de7 12115 drm_mode_debug_printmodeline(&pipe_config->base.mode);
c0b03411 12116 DRM_DEBUG_KMS("adjusted mode:\n");
2d112de7
ACO
12117 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12118 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
d71b8d4a 12119 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
37327abd
VS
12120 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
12121 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
0ec463d3
TU
12122 DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12123 crtc->num_scalers,
12124 pipe_config->scaler_state.scaler_users,
12125 pipe_config->scaler_state.scaler_id);
c0b03411
DV
12126 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12127 pipe_config->gmch_pfit.control,
12128 pipe_config->gmch_pfit.pgm_ratios,
12129 pipe_config->gmch_pfit.lvds_border_bits);
fd4daa9c 12130 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
c0b03411 12131 pipe_config->pch_pfit.pos,
fd4daa9c
CW
12132 pipe_config->pch_pfit.size,
12133 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
42db64ef 12134 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
cf532bb2 12135 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
6a60cd87 12136
415ff0f6 12137 if (IS_BROXTON(dev)) {
05712c15 12138 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
415ff0f6 12139 "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
c8453338 12140 "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
415ff0f6
TU
12141 pipe_config->ddi_pll_sel,
12142 pipe_config->dpll_hw_state.ebb0,
05712c15 12143 pipe_config->dpll_hw_state.ebb4,
415ff0f6
TU
12144 pipe_config->dpll_hw_state.pll0,
12145 pipe_config->dpll_hw_state.pll1,
12146 pipe_config->dpll_hw_state.pll2,
12147 pipe_config->dpll_hw_state.pll3,
12148 pipe_config->dpll_hw_state.pll6,
12149 pipe_config->dpll_hw_state.pll8,
05712c15 12150 pipe_config->dpll_hw_state.pll9,
c8453338 12151 pipe_config->dpll_hw_state.pll10,
415ff0f6 12152 pipe_config->dpll_hw_state.pcsdw12);
ef11bdb3 12153 } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
415ff0f6
TU
12154 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
12155 "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12156 pipe_config->ddi_pll_sel,
12157 pipe_config->dpll_hw_state.ctrl1,
12158 pipe_config->dpll_hw_state.cfgcr1,
12159 pipe_config->dpll_hw_state.cfgcr2);
12160 } else if (HAS_DDI(dev)) {
1260f07e 12161 DRM_DEBUG_KMS("ddi_pll_sel: 0x%x; dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
415ff0f6 12162 pipe_config->ddi_pll_sel,
00490c22
ML
12163 pipe_config->dpll_hw_state.wrpll,
12164 pipe_config->dpll_hw_state.spll);
415ff0f6
TU
12165 } else {
12166 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12167 "fp0: 0x%x, fp1: 0x%x\n",
12168 pipe_config->dpll_hw_state.dpll,
12169 pipe_config->dpll_hw_state.dpll_md,
12170 pipe_config->dpll_hw_state.fp0,
12171 pipe_config->dpll_hw_state.fp1);
12172 }
12173
6a60cd87
CK
12174 DRM_DEBUG_KMS("planes on this crtc\n");
12175 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12176 intel_plane = to_intel_plane(plane);
12177 if (intel_plane->pipe != crtc->pipe)
12178 continue;
12179
12180 state = to_intel_plane_state(plane->state);
12181 fb = state->base.fb;
12182 if (!fb) {
12183 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
12184 "disabled, scaler_id = %d\n",
12185 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12186 plane->base.id, intel_plane->pipe,
12187 (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
12188 drm_plane_index(plane), state->scaler_id);
12189 continue;
12190 }
12191
12192 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
12193 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12194 plane->base.id, intel_plane->pipe,
12195 crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
12196 drm_plane_index(plane));
12197 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
12198 fb->base.id, fb->width, fb->height, fb->pixel_format);
12199 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
12200 state->scaler_id,
12201 state->src.x1 >> 16, state->src.y1 >> 16,
12202 drm_rect_width(&state->src) >> 16,
12203 drm_rect_height(&state->src) >> 16,
12204 state->dst.x1, state->dst.y1,
12205 drm_rect_width(&state->dst), drm_rect_height(&state->dst));
12206 }
c0b03411
DV
12207}
12208
5448a00d 12209static bool check_digital_port_conflicts(struct drm_atomic_state *state)
00f0b378 12210{
5448a00d 12211 struct drm_device *dev = state->dev;
da3ced29 12212 struct drm_connector *connector;
00f0b378
VS
12213 unsigned int used_ports = 0;
12214
12215 /*
12216 * Walk the connector list instead of the encoder
12217 * list to detect the problem on ddi platforms
12218 * where there's just one encoder per digital port.
12219 */
0bff4858
VS
12220 drm_for_each_connector(connector, dev) {
12221 struct drm_connector_state *connector_state;
12222 struct intel_encoder *encoder;
12223
12224 connector_state = drm_atomic_get_existing_connector_state(state, connector);
12225 if (!connector_state)
12226 connector_state = connector->state;
12227
5448a00d 12228 if (!connector_state->best_encoder)
00f0b378
VS
12229 continue;
12230
5448a00d
ACO
12231 encoder = to_intel_encoder(connector_state->best_encoder);
12232
12233 WARN_ON(!connector_state->crtc);
00f0b378
VS
12234
12235 switch (encoder->type) {
12236 unsigned int port_mask;
12237 case INTEL_OUTPUT_UNKNOWN:
12238 if (WARN_ON(!HAS_DDI(dev)))
12239 break;
12240 case INTEL_OUTPUT_DISPLAYPORT:
12241 case INTEL_OUTPUT_HDMI:
12242 case INTEL_OUTPUT_EDP:
12243 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12244
12245 /* the same port mustn't appear more than once */
12246 if (used_ports & port_mask)
12247 return false;
12248
12249 used_ports |= port_mask;
12250 default:
12251 break;
12252 }
12253 }
12254
12255 return true;
12256}
12257
83a57153
ACO
12258static void
12259clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12260{
12261 struct drm_crtc_state tmp_state;
663a3640 12262 struct intel_crtc_scaler_state scaler_state;
4978cc93 12263 struct intel_dpll_hw_state dpll_hw_state;
8106ddbd 12264 struct intel_shared_dpll *shared_dpll;
8504c74c 12265 uint32_t ddi_pll_sel;
c4e2d043 12266 bool force_thru;
83a57153 12267
7546a384
ACO
12268 /* FIXME: before the switch to atomic started, a new pipe_config was
12269 * kzalloc'd. Code that depends on any field being zero should be
12270 * fixed, so that the crtc_state can be safely duplicated. For now,
12271 * only fields that are know to not cause problems are preserved. */
12272
83a57153 12273 tmp_state = crtc_state->base;
663a3640 12274 scaler_state = crtc_state->scaler_state;
4978cc93
ACO
12275 shared_dpll = crtc_state->shared_dpll;
12276 dpll_hw_state = crtc_state->dpll_hw_state;
8504c74c 12277 ddi_pll_sel = crtc_state->ddi_pll_sel;
c4e2d043 12278 force_thru = crtc_state->pch_pfit.force_thru;
4978cc93 12279
83a57153 12280 memset(crtc_state, 0, sizeof *crtc_state);
4978cc93 12281
83a57153 12282 crtc_state->base = tmp_state;
663a3640 12283 crtc_state->scaler_state = scaler_state;
4978cc93
ACO
12284 crtc_state->shared_dpll = shared_dpll;
12285 crtc_state->dpll_hw_state = dpll_hw_state;
8504c74c 12286 crtc_state->ddi_pll_sel = ddi_pll_sel;
c4e2d043 12287 crtc_state->pch_pfit.force_thru = force_thru;
83a57153
ACO
12288}
12289
548ee15b 12290static int
b8cecdf5 12291intel_modeset_pipe_config(struct drm_crtc *crtc,
b359283a 12292 struct intel_crtc_state *pipe_config)
ee7b9f93 12293{
b359283a 12294 struct drm_atomic_state *state = pipe_config->base.state;
7758a113 12295 struct intel_encoder *encoder;
da3ced29 12296 struct drm_connector *connector;
0b901879 12297 struct drm_connector_state *connector_state;
d328c9d7 12298 int base_bpp, ret = -EINVAL;
0b901879 12299 int i;
e29c22c0 12300 bool retry = true;
ee7b9f93 12301
83a57153 12302 clear_intel_crtc_state(pipe_config);
7758a113 12303
e143a21c
DV
12304 pipe_config->cpu_transcoder =
12305 (enum transcoder) to_intel_crtc(crtc)->pipe;
b8cecdf5 12306
2960bc9c
ID
12307 /*
12308 * Sanitize sync polarity flags based on requested ones. If neither
12309 * positive or negative polarity is requested, treat this as meaning
12310 * negative polarity.
12311 */
2d112de7 12312 if (!(pipe_config->base.adjusted_mode.flags &
2960bc9c 12313 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
2d112de7 12314 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
2960bc9c 12315
2d112de7 12316 if (!(pipe_config->base.adjusted_mode.flags &
2960bc9c 12317 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
2d112de7 12318 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
2960bc9c 12319
d328c9d7
DV
12320 base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12321 pipe_config);
12322 if (base_bpp < 0)
4e53c2e0
DV
12323 goto fail;
12324
e41a56be
VS
12325 /*
12326 * Determine the real pipe dimensions. Note that stereo modes can
12327 * increase the actual pipe size due to the frame doubling and
12328 * insertion of additional space for blanks between the frame. This
12329 * is stored in the crtc timings. We use the requested mode to do this
12330 * computation to clearly distinguish it from the adjusted mode, which
12331 * can be changed by the connectors in the below retry loop.
12332 */
2d112de7 12333 drm_crtc_get_hv_timing(&pipe_config->base.mode,
ecb7e16b
GP
12334 &pipe_config->pipe_src_w,
12335 &pipe_config->pipe_src_h);
e41a56be 12336
e29c22c0 12337encoder_retry:
ef1b460d 12338 /* Ensure the port clock defaults are reset when retrying. */
ff9a6750 12339 pipe_config->port_clock = 0;
ef1b460d 12340 pipe_config->pixel_multiplier = 1;
ff9a6750 12341
135c81b8 12342 /* Fill in default crtc timings, allow encoders to overwrite them. */
2d112de7
ACO
12343 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12344 CRTC_STEREO_DOUBLE);
135c81b8 12345
7758a113
DV
12346 /* Pass our mode to the connectors and the CRTC to give them a chance to
12347 * adjust it according to limitations or connector properties, and also
12348 * a chance to reject the mode entirely.
47f1c6c9 12349 */
da3ced29 12350 for_each_connector_in_state(state, connector, connector_state, i) {
0b901879 12351 if (connector_state->crtc != crtc)
7758a113 12352 continue;
7ae89233 12353
0b901879
ACO
12354 encoder = to_intel_encoder(connector_state->best_encoder);
12355
efea6e8e
DV
12356 if (!(encoder->compute_config(encoder, pipe_config))) {
12357 DRM_DEBUG_KMS("Encoder config failure\n");
7758a113
DV
12358 goto fail;
12359 }
ee7b9f93 12360 }
47f1c6c9 12361
ff9a6750
DV
12362 /* Set default port clock if not overwritten by the encoder. Needs to be
12363 * done afterwards in case the encoder adjusts the mode. */
12364 if (!pipe_config->port_clock)
2d112de7 12365 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
241bfc38 12366 * pipe_config->pixel_multiplier;
ff9a6750 12367
a43f6e0f 12368 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
e29c22c0 12369 if (ret < 0) {
7758a113
DV
12370 DRM_DEBUG_KMS("CRTC fixup failed\n");
12371 goto fail;
ee7b9f93 12372 }
e29c22c0
DV
12373
12374 if (ret == RETRY) {
12375 if (WARN(!retry, "loop in pipe configuration computation\n")) {
12376 ret = -EINVAL;
12377 goto fail;
12378 }
12379
12380 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12381 retry = false;
12382 goto encoder_retry;
12383 }
12384
e8fa4270
DV
12385 /* Dithering seems to not pass-through bits correctly when it should, so
12386 * only enable it on 6bpc panels. */
12387 pipe_config->dither = pipe_config->pipe_bpp == 6*3;
62f0ace5 12388 DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
d328c9d7 12389 base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
4e53c2e0 12390
7758a113 12391fail:
548ee15b 12392 return ret;
ee7b9f93 12393}
47f1c6c9 12394
ea9d758d 12395static void
4740b0f2 12396intel_modeset_update_crtc_state(struct drm_atomic_state *state)
ea9d758d 12397{
0a9ab303
ACO
12398 struct drm_crtc *crtc;
12399 struct drm_crtc_state *crtc_state;
8a75d157 12400 int i;
ea9d758d 12401
7668851f 12402 /* Double check state. */
8a75d157 12403 for_each_crtc_in_state(state, crtc, crtc_state, i) {
3cb480bc 12404 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
fc467a22
ML
12405
12406 /* Update hwmode for vblank functions */
12407 if (crtc->state->active)
12408 crtc->hwmode = crtc->state->adjusted_mode;
12409 else
12410 crtc->hwmode.crtc_clock = 0;
61067a5e
ML
12411
12412 /*
12413 * Update legacy state to satisfy fbc code. This can
12414 * be removed when fbc uses the atomic state.
12415 */
12416 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
12417 struct drm_plane_state *plane_state = crtc->primary->state;
12418
12419 crtc->primary->fb = plane_state->fb;
12420 crtc->x = plane_state->src_x >> 16;
12421 crtc->y = plane_state->src_y >> 16;
12422 }
ea9d758d 12423 }
ea9d758d
DV
12424}
12425
3bd26263 12426static bool intel_fuzzy_clock_check(int clock1, int clock2)
f1f644dc 12427{
3bd26263 12428 int diff;
f1f644dc
JB
12429
12430 if (clock1 == clock2)
12431 return true;
12432
12433 if (!clock1 || !clock2)
12434 return false;
12435
12436 diff = abs(clock1 - clock2);
12437
12438 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12439 return true;
12440
12441 return false;
12442}
12443
25c5b266
DV
12444#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
12445 list_for_each_entry((intel_crtc), \
12446 &(dev)->mode_config.crtc_list, \
12447 base.head) \
95150bdf 12448 for_each_if (mask & (1 <<(intel_crtc)->pipe))
25c5b266 12449
cfb23ed6
ML
12450static bool
12451intel_compare_m_n(unsigned int m, unsigned int n,
12452 unsigned int m2, unsigned int n2,
12453 bool exact)
12454{
12455 if (m == m2 && n == n2)
12456 return true;
12457
12458 if (exact || !m || !n || !m2 || !n2)
12459 return false;
12460
12461 BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
12462
31d10b57
ML
12463 if (n > n2) {
12464 while (n > n2) {
cfb23ed6
ML
12465 m2 <<= 1;
12466 n2 <<= 1;
12467 }
31d10b57
ML
12468 } else if (n < n2) {
12469 while (n < n2) {
cfb23ed6
ML
12470 m <<= 1;
12471 n <<= 1;
12472 }
12473 }
12474
31d10b57
ML
12475 if (n != n2)
12476 return false;
12477
12478 return intel_fuzzy_clock_check(m, m2);
cfb23ed6
ML
12479}
12480
12481static bool
12482intel_compare_link_m_n(const struct intel_link_m_n *m_n,
12483 struct intel_link_m_n *m2_n2,
12484 bool adjust)
12485{
12486 if (m_n->tu == m2_n2->tu &&
12487 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
12488 m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
12489 intel_compare_m_n(m_n->link_m, m_n->link_n,
12490 m2_n2->link_m, m2_n2->link_n, !adjust)) {
12491 if (adjust)
12492 *m2_n2 = *m_n;
12493
12494 return true;
12495 }
12496
12497 return false;
12498}
12499
0e8ffe1b 12500static bool
2fa2fe9a 12501intel_pipe_config_compare(struct drm_device *dev,
5cec258b 12502 struct intel_crtc_state *current_config,
cfb23ed6
ML
12503 struct intel_crtc_state *pipe_config,
12504 bool adjust)
0e8ffe1b 12505{
cfb23ed6
ML
12506 bool ret = true;
12507
12508#define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
12509 do { \
12510 if (!adjust) \
12511 DRM_ERROR(fmt, ##__VA_ARGS__); \
12512 else \
12513 DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
12514 } while (0)
12515
66e985c0
DV
12516#define PIPE_CONF_CHECK_X(name) \
12517 if (current_config->name != pipe_config->name) { \
cfb23ed6 12518 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
66e985c0
DV
12519 "(expected 0x%08x, found 0x%08x)\n", \
12520 current_config->name, \
12521 pipe_config->name); \
cfb23ed6 12522 ret = false; \
66e985c0
DV
12523 }
12524
08a24034
DV
12525#define PIPE_CONF_CHECK_I(name) \
12526 if (current_config->name != pipe_config->name) { \
cfb23ed6 12527 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
08a24034
DV
12528 "(expected %i, found %i)\n", \
12529 current_config->name, \
12530 pipe_config->name); \
cfb23ed6
ML
12531 ret = false; \
12532 }
12533
8106ddbd
ACO
12534#define PIPE_CONF_CHECK_P(name) \
12535 if (current_config->name != pipe_config->name) { \
12536 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12537 "(expected %p, found %p)\n", \
12538 current_config->name, \
12539 pipe_config->name); \
12540 ret = false; \
12541 }
12542
cfb23ed6
ML
12543#define PIPE_CONF_CHECK_M_N(name) \
12544 if (!intel_compare_link_m_n(&current_config->name, \
12545 &pipe_config->name,\
12546 adjust)) { \
12547 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12548 "(expected tu %i gmch %i/%i link %i/%i, " \
12549 "found tu %i, gmch %i/%i link %i/%i)\n", \
12550 current_config->name.tu, \
12551 current_config->name.gmch_m, \
12552 current_config->name.gmch_n, \
12553 current_config->name.link_m, \
12554 current_config->name.link_n, \
12555 pipe_config->name.tu, \
12556 pipe_config->name.gmch_m, \
12557 pipe_config->name.gmch_n, \
12558 pipe_config->name.link_m, \
12559 pipe_config->name.link_n); \
12560 ret = false; \
12561 }
12562
12563#define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
12564 if (!intel_compare_link_m_n(&current_config->name, \
12565 &pipe_config->name, adjust) && \
12566 !intel_compare_link_m_n(&current_config->alt_name, \
12567 &pipe_config->name, adjust)) { \
12568 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12569 "(expected tu %i gmch %i/%i link %i/%i, " \
12570 "or tu %i gmch %i/%i link %i/%i, " \
12571 "found tu %i, gmch %i/%i link %i/%i)\n", \
12572 current_config->name.tu, \
12573 current_config->name.gmch_m, \
12574 current_config->name.gmch_n, \
12575 current_config->name.link_m, \
12576 current_config->name.link_n, \
12577 current_config->alt_name.tu, \
12578 current_config->alt_name.gmch_m, \
12579 current_config->alt_name.gmch_n, \
12580 current_config->alt_name.link_m, \
12581 current_config->alt_name.link_n, \
12582 pipe_config->name.tu, \
12583 pipe_config->name.gmch_m, \
12584 pipe_config->name.gmch_n, \
12585 pipe_config->name.link_m, \
12586 pipe_config->name.link_n); \
12587 ret = false; \
88adfff1
DV
12588 }
12589
b95af8be
VK
12590/* This is required for BDW+ where there is only one set of registers for
12591 * switching between high and low RR.
12592 * This macro can be used whenever a comparison has to be made between one
12593 * hw state and multiple sw state variables.
12594 */
12595#define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
12596 if ((current_config->name != pipe_config->name) && \
12597 (current_config->alt_name != pipe_config->name)) { \
cfb23ed6 12598 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
b95af8be
VK
12599 "(expected %i or %i, found %i)\n", \
12600 current_config->name, \
12601 current_config->alt_name, \
12602 pipe_config->name); \
cfb23ed6 12603 ret = false; \
b95af8be
VK
12604 }
12605
1bd1bd80
DV
12606#define PIPE_CONF_CHECK_FLAGS(name, mask) \
12607 if ((current_config->name ^ pipe_config->name) & (mask)) { \
cfb23ed6 12608 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
1bd1bd80
DV
12609 "(expected %i, found %i)\n", \
12610 current_config->name & (mask), \
12611 pipe_config->name & (mask)); \
cfb23ed6 12612 ret = false; \
1bd1bd80
DV
12613 }
12614
5e550656
VS
12615#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
12616 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
cfb23ed6 12617 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
5e550656
VS
12618 "(expected %i, found %i)\n", \
12619 current_config->name, \
12620 pipe_config->name); \
cfb23ed6 12621 ret = false; \
5e550656
VS
12622 }
12623
bb760063
DV
12624#define PIPE_CONF_QUIRK(quirk) \
12625 ((current_config->quirks | pipe_config->quirks) & (quirk))
12626
eccb140b
DV
12627 PIPE_CONF_CHECK_I(cpu_transcoder);
12628
08a24034
DV
12629 PIPE_CONF_CHECK_I(has_pch_encoder);
12630 PIPE_CONF_CHECK_I(fdi_lanes);
cfb23ed6 12631 PIPE_CONF_CHECK_M_N(fdi_m_n);
08a24034 12632
eb14cb74 12633 PIPE_CONF_CHECK_I(has_dp_encoder);
90a6b7b0 12634 PIPE_CONF_CHECK_I(lane_count);
b95af8be
VK
12635
12636 if (INTEL_INFO(dev)->gen < 8) {
cfb23ed6
ML
12637 PIPE_CONF_CHECK_M_N(dp_m_n);
12638
cfb23ed6
ML
12639 if (current_config->has_drrs)
12640 PIPE_CONF_CHECK_M_N(dp_m2_n2);
12641 } else
12642 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
eb14cb74 12643
a65347ba
JN
12644 PIPE_CONF_CHECK_I(has_dsi_encoder);
12645
2d112de7
ACO
12646 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12647 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12648 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12649 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12650 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12651 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
1bd1bd80 12652
2d112de7
ACO
12653 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12654 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12655 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12656 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12657 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12658 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
1bd1bd80 12659
c93f54cf 12660 PIPE_CONF_CHECK_I(pixel_multiplier);
6897b4b5 12661 PIPE_CONF_CHECK_I(has_hdmi_sink);
b5a9fa09 12662 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
666a4537 12663 IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
b5a9fa09 12664 PIPE_CONF_CHECK_I(limited_color_range);
e43823ec 12665 PIPE_CONF_CHECK_I(has_infoframe);
6c49f241 12666
9ed109a7
DV
12667 PIPE_CONF_CHECK_I(has_audio);
12668
2d112de7 12669 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
1bd1bd80
DV
12670 DRM_MODE_FLAG_INTERLACE);
12671
bb760063 12672 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
2d112de7 12673 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 12674 DRM_MODE_FLAG_PHSYNC);
2d112de7 12675 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 12676 DRM_MODE_FLAG_NHSYNC);
2d112de7 12677 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 12678 DRM_MODE_FLAG_PVSYNC);
2d112de7 12679 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063
DV
12680 DRM_MODE_FLAG_NVSYNC);
12681 }
045ac3b5 12682
333b8ca8 12683 PIPE_CONF_CHECK_X(gmch_pfit.control);
e2ff2d4a
DV
12684 /* pfit ratios are autocomputed by the hw on gen4+ */
12685 if (INTEL_INFO(dev)->gen < 4)
12686 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
333b8ca8 12687 PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
9953599b 12688
bfd16b2a
ML
12689 if (!adjust) {
12690 PIPE_CONF_CHECK_I(pipe_src_w);
12691 PIPE_CONF_CHECK_I(pipe_src_h);
12692
12693 PIPE_CONF_CHECK_I(pch_pfit.enabled);
12694 if (current_config->pch_pfit.enabled) {
12695 PIPE_CONF_CHECK_X(pch_pfit.pos);
12696 PIPE_CONF_CHECK_X(pch_pfit.size);
12697 }
2fa2fe9a 12698
7aefe2b5
ML
12699 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12700 }
a1b2278e 12701
e59150dc
JB
12702 /* BDW+ don't expose a synchronous way to read the state */
12703 if (IS_HASWELL(dev))
12704 PIPE_CONF_CHECK_I(ips_enabled);
42db64ef 12705
282740f7
VS
12706 PIPE_CONF_CHECK_I(double_wide);
12707
26804afd
DV
12708 PIPE_CONF_CHECK_X(ddi_pll_sel);
12709
8106ddbd 12710 PIPE_CONF_CHECK_P(shared_dpll);
66e985c0 12711 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8bcc2795 12712 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
66e985c0
DV
12713 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12714 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
d452c5b6 12715 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
00490c22 12716 PIPE_CONF_CHECK_X(dpll_hw_state.spll);
3f4cd19f
DL
12717 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12718 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12719 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
c0d43d62 12720
42571aef
VS
12721 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12722 PIPE_CONF_CHECK_I(pipe_bpp);
12723
2d112de7 12724 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
a9a7e98a 12725 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
5e550656 12726
66e985c0 12727#undef PIPE_CONF_CHECK_X
08a24034 12728#undef PIPE_CONF_CHECK_I
8106ddbd 12729#undef PIPE_CONF_CHECK_P
b95af8be 12730#undef PIPE_CONF_CHECK_I_ALT
1bd1bd80 12731#undef PIPE_CONF_CHECK_FLAGS
5e550656 12732#undef PIPE_CONF_CHECK_CLOCK_FUZZY
bb760063 12733#undef PIPE_CONF_QUIRK
cfb23ed6 12734#undef INTEL_ERR_OR_DBG_KMS
88adfff1 12735
cfb23ed6 12736 return ret;
0e8ffe1b
DV
12737}
12738
e3b247da
VS
12739static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
12740 const struct intel_crtc_state *pipe_config)
12741{
12742 if (pipe_config->has_pch_encoder) {
21a727b3 12743 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
e3b247da
VS
12744 &pipe_config->fdi_m_n);
12745 int dotclock = pipe_config->base.adjusted_mode.crtc_clock;
12746
12747 /*
12748 * FDI already provided one idea for the dotclock.
12749 * Yell if the encoder disagrees.
12750 */
12751 WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock),
12752 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12753 fdi_dotclock, dotclock);
12754 }
12755}
12756
08db6652
DL
12757static void check_wm_state(struct drm_device *dev)
12758{
12759 struct drm_i915_private *dev_priv = dev->dev_private;
12760 struct skl_ddb_allocation hw_ddb, *sw_ddb;
12761 struct intel_crtc *intel_crtc;
12762 int plane;
12763
12764 if (INTEL_INFO(dev)->gen < 9)
12765 return;
12766
12767 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12768 sw_ddb = &dev_priv->wm.skl_hw.ddb;
12769
12770 for_each_intel_crtc(dev, intel_crtc) {
12771 struct skl_ddb_entry *hw_entry, *sw_entry;
12772 const enum pipe pipe = intel_crtc->pipe;
12773
12774 if (!intel_crtc->active)
12775 continue;
12776
12777 /* planes */
dd740780 12778 for_each_plane(dev_priv, pipe, plane) {
08db6652
DL
12779 hw_entry = &hw_ddb.plane[pipe][plane];
12780 sw_entry = &sw_ddb->plane[pipe][plane];
12781
12782 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12783 continue;
12784
12785 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12786 "(expected (%u,%u), found (%u,%u))\n",
12787 pipe_name(pipe), plane + 1,
12788 sw_entry->start, sw_entry->end,
12789 hw_entry->start, hw_entry->end);
12790 }
12791
12792 /* cursor */
4969d33e
MR
12793 hw_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
12794 sw_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
08db6652
DL
12795
12796 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12797 continue;
12798
12799 DRM_ERROR("mismatch in DDB state pipe %c cursor "
12800 "(expected (%u,%u), found (%u,%u))\n",
12801 pipe_name(pipe),
12802 sw_entry->start, sw_entry->end,
12803 hw_entry->start, hw_entry->end);
12804 }
12805}
12806
91d1b4bd 12807static void
35dd3c64
ML
12808check_connector_state(struct drm_device *dev,
12809 struct drm_atomic_state *old_state)
8af6cf88 12810{
35dd3c64
ML
12811 struct drm_connector_state *old_conn_state;
12812 struct drm_connector *connector;
12813 int i;
8af6cf88 12814
35dd3c64
ML
12815 for_each_connector_in_state(old_state, connector, old_conn_state, i) {
12816 struct drm_encoder *encoder = connector->encoder;
12817 struct drm_connector_state *state = connector->state;
ad3c558f 12818
8af6cf88
DV
12819 /* This also checks the encoder/connector hw state with the
12820 * ->get_hw_state callbacks. */
35dd3c64 12821 intel_connector_check_state(to_intel_connector(connector));
8af6cf88 12822
ad3c558f 12823 I915_STATE_WARN(state->best_encoder != encoder,
35dd3c64 12824 "connector's atomic encoder doesn't match legacy encoder\n");
8af6cf88 12825 }
91d1b4bd
DV
12826}
12827
12828static void
12829check_encoder_state(struct drm_device *dev)
12830{
12831 struct intel_encoder *encoder;
12832 struct intel_connector *connector;
8af6cf88 12833
b2784e15 12834 for_each_intel_encoder(dev, encoder) {
8af6cf88 12835 bool enabled = false;
4d20cd86 12836 enum pipe pipe;
8af6cf88
DV
12837
12838 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12839 encoder->base.base.id,
8e329a03 12840 encoder->base.name);
8af6cf88 12841
3a3371ff 12842 for_each_intel_connector(dev, connector) {
4d20cd86 12843 if (connector->base.state->best_encoder != &encoder->base)
8af6cf88
DV
12844 continue;
12845 enabled = true;
ad3c558f
ML
12846
12847 I915_STATE_WARN(connector->base.state->crtc !=
12848 encoder->base.crtc,
12849 "connector's crtc doesn't match encoder crtc\n");
8af6cf88 12850 }
0e32b39c 12851
e2c719b7 12852 I915_STATE_WARN(!!encoder->base.crtc != enabled,
8af6cf88
DV
12853 "encoder's enabled state mismatch "
12854 "(expected %i, found %i)\n",
12855 !!encoder->base.crtc, enabled);
7c60d198
ML
12856
12857 if (!encoder->base.crtc) {
4d20cd86 12858 bool active;
7c60d198 12859
4d20cd86
ML
12860 active = encoder->get_hw_state(encoder, &pipe);
12861 I915_STATE_WARN(active,
12862 "encoder detached but still enabled on pipe %c.\n",
12863 pipe_name(pipe));
7c60d198 12864 }
8af6cf88 12865 }
91d1b4bd
DV
12866}
12867
12868static void
4d20cd86 12869check_crtc_state(struct drm_device *dev, struct drm_atomic_state *old_state)
91d1b4bd 12870{
fbee40df 12871 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd 12872 struct intel_encoder *encoder;
4d20cd86
ML
12873 struct drm_crtc_state *old_crtc_state;
12874 struct drm_crtc *crtc;
12875 int i;
8af6cf88 12876
4d20cd86
ML
12877 for_each_crtc_in_state(old_state, crtc, old_crtc_state, i) {
12878 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12879 struct intel_crtc_state *pipe_config, *sw_config;
7b89b8de 12880 bool active;
8af6cf88 12881
bfd16b2a
ML
12882 if (!needs_modeset(crtc->state) &&
12883 !to_intel_crtc_state(crtc->state)->update_pipe)
4d20cd86 12884 continue;
045ac3b5 12885
4d20cd86
ML
12886 __drm_atomic_helper_crtc_destroy_state(crtc, old_crtc_state);
12887 pipe_config = to_intel_crtc_state(old_crtc_state);
12888 memset(pipe_config, 0, sizeof(*pipe_config));
12889 pipe_config->base.crtc = crtc;
12890 pipe_config->base.state = old_state;
8af6cf88 12891
4d20cd86
ML
12892 DRM_DEBUG_KMS("[CRTC:%d]\n",
12893 crtc->base.id);
8af6cf88 12894
4d20cd86
ML
12895 active = dev_priv->display.get_pipe_config(intel_crtc,
12896 pipe_config);
d62cf62a 12897
b6b5d049 12898 /* hw state is inconsistent with the pipe quirk */
4d20cd86
ML
12899 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12900 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12901 active = crtc->state->active;
6c49f241 12902
4d20cd86 12903 I915_STATE_WARN(crtc->state->active != active,
0e8ffe1b 12904 "crtc active state doesn't match with hw state "
4d20cd86 12905 "(expected %i, found %i)\n", crtc->state->active, active);
0e8ffe1b 12906
4d20cd86 12907 I915_STATE_WARN(intel_crtc->active != crtc->state->active,
53d9f4e9 12908 "transitional active state does not match atomic hw state "
4d20cd86
ML
12909 "(expected %i, found %i)\n", crtc->state->active, intel_crtc->active);
12910
12911 for_each_encoder_on_crtc(dev, crtc, encoder) {
12912 enum pipe pipe;
12913
12914 active = encoder->get_hw_state(encoder, &pipe);
12915 I915_STATE_WARN(active != crtc->state->active,
12916 "[ENCODER:%i] active %i with crtc active %i\n",
12917 encoder->base.base.id, active, crtc->state->active);
12918
12919 I915_STATE_WARN(active && intel_crtc->pipe != pipe,
12920 "Encoder connected to wrong pipe %c\n",
12921 pipe_name(pipe));
12922
12923 if (active)
12924 encoder->get_config(encoder, pipe_config);
12925 }
53d9f4e9 12926
4d20cd86 12927 if (!crtc->state->active)
cfb23ed6
ML
12928 continue;
12929
e3b247da
VS
12930 intel_pipe_config_sanity_check(dev_priv, pipe_config);
12931
4d20cd86
ML
12932 sw_config = to_intel_crtc_state(crtc->state);
12933 if (!intel_pipe_config_compare(dev, sw_config,
12934 pipe_config, false)) {
e2c719b7 12935 I915_STATE_WARN(1, "pipe state doesn't match!\n");
4d20cd86 12936 intel_dump_pipe_config(intel_crtc, pipe_config,
c0b03411 12937 "[hw state]");
4d20cd86 12938 intel_dump_pipe_config(intel_crtc, sw_config,
c0b03411
DV
12939 "[sw state]");
12940 }
8af6cf88
DV
12941 }
12942}
12943
91d1b4bd
DV
12944static void
12945check_shared_dpll_state(struct drm_device *dev)
12946{
fbee40df 12947 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
12948 struct intel_crtc *crtc;
12949 struct intel_dpll_hw_state dpll_hw_state;
12950 int i;
5358901f
DV
12951
12952 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
8106ddbd
ACO
12953 struct intel_shared_dpll *pll =
12954 intel_get_shared_dpll_by_id(dev_priv, i);
5358901f
DV
12955 int enabled_crtcs = 0, active_crtcs = 0;
12956 bool active;
12957
12958 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12959
12960 DRM_DEBUG_KMS("%s\n", pll->name);
12961
2edd6443 12962 active = pll->funcs.get_hw_state(dev_priv, pll, &dpll_hw_state);
5358901f 12963
e2c719b7 12964 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
5358901f 12965 "more active pll users than references: %i vs %i\n",
3e369b76 12966 pll->active, hweight32(pll->config.crtc_mask));
e2c719b7 12967 I915_STATE_WARN(pll->active && !pll->on,
5358901f 12968 "pll in active use but not on in sw tracking\n");
9d16da65
ACO
12969
12970 if (!(pll->flags & INTEL_DPLL_ALWAYS_ON)) {
12971 I915_STATE_WARN(pll->on && !pll->active,
12972 "pll in on but not on in use in sw tracking\n");
12973 I915_STATE_WARN(pll->on != active,
12974 "pll on state mismatch (expected %i, found %i)\n",
12975 pll->on, active);
12976 }
5358901f 12977
d3fcc808 12978 for_each_intel_crtc(dev, crtc) {
8106ddbd 12979 if (crtc->base.state->enable && crtc->config->shared_dpll == pll)
5358901f 12980 enabled_crtcs++;
8106ddbd 12981 if (crtc->active && crtc->config->shared_dpll == pll)
5358901f
DV
12982 active_crtcs++;
12983 }
e2c719b7 12984 I915_STATE_WARN(pll->active != active_crtcs,
5358901f
DV
12985 "pll active crtcs mismatch (expected %i, found %i)\n",
12986 pll->active, active_crtcs);
e2c719b7 12987 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
5358901f 12988 "pll enabled crtcs mismatch (expected %i, found %i)\n",
3e369b76 12989 hweight32(pll->config.crtc_mask), enabled_crtcs);
66e985c0 12990
e2c719b7 12991 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
66e985c0
DV
12992 sizeof(dpll_hw_state)),
12993 "pll hw state mismatch\n");
5358901f 12994 }
8af6cf88
DV
12995}
12996
ee165b1a
ML
12997static void
12998intel_modeset_check_state(struct drm_device *dev,
12999 struct drm_atomic_state *old_state)
91d1b4bd 13000{
08db6652 13001 check_wm_state(dev);
35dd3c64 13002 check_connector_state(dev, old_state);
91d1b4bd 13003 check_encoder_state(dev);
4d20cd86 13004 check_crtc_state(dev, old_state);
91d1b4bd
DV
13005 check_shared_dpll_state(dev);
13006}
13007
80715b2f
VS
13008static void update_scanline_offset(struct intel_crtc *crtc)
13009{
13010 struct drm_device *dev = crtc->base.dev;
13011
13012 /*
13013 * The scanline counter increments at the leading edge of hsync.
13014 *
13015 * On most platforms it starts counting from vtotal-1 on the
13016 * first active line. That means the scanline counter value is
13017 * always one less than what we would expect. Ie. just after
13018 * start of vblank, which also occurs at start of hsync (on the
13019 * last active line), the scanline counter will read vblank_start-1.
13020 *
13021 * On gen2 the scanline counter starts counting from 1 instead
13022 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
13023 * to keep the value positive), instead of adding one.
13024 *
13025 * On HSW+ the behaviour of the scanline counter depends on the output
13026 * type. For DP ports it behaves like most other platforms, but on HDMI
13027 * there's an extra 1 line difference. So we need to add two instead of
13028 * one to the value.
13029 */
13030 if (IS_GEN2(dev)) {
124abe07 13031 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
80715b2f
VS
13032 int vtotal;
13033
124abe07
VS
13034 vtotal = adjusted_mode->crtc_vtotal;
13035 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
80715b2f
VS
13036 vtotal /= 2;
13037
13038 crtc->scanline_offset = vtotal - 1;
13039 } else if (HAS_DDI(dev) &&
409ee761 13040 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
80715b2f
VS
13041 crtc->scanline_offset = 2;
13042 } else
13043 crtc->scanline_offset = 1;
13044}
13045
ad421372 13046static void intel_modeset_clear_plls(struct drm_atomic_state *state)
ed6739ef 13047{
225da59b 13048 struct drm_device *dev = state->dev;
ed6739ef 13049 struct drm_i915_private *dev_priv = to_i915(dev);
ad421372 13050 struct intel_shared_dpll_config *shared_dpll = NULL;
0a9ab303
ACO
13051 struct drm_crtc *crtc;
13052 struct drm_crtc_state *crtc_state;
0a9ab303 13053 int i;
ed6739ef
ACO
13054
13055 if (!dev_priv->display.crtc_compute_clock)
ad421372 13056 return;
ed6739ef 13057
0a9ab303 13058 for_each_crtc_in_state(state, crtc, crtc_state, i) {
fb1a38a9 13059 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8106ddbd
ACO
13060 struct intel_shared_dpll *old_dpll =
13061 to_intel_crtc_state(crtc->state)->shared_dpll;
0a9ab303 13062
fb1a38a9 13063 if (!needs_modeset(crtc_state))
225da59b
ACO
13064 continue;
13065
8106ddbd 13066 to_intel_crtc_state(crtc_state)->shared_dpll = NULL;
fb1a38a9 13067
8106ddbd 13068 if (!old_dpll)
fb1a38a9 13069 continue;
0a9ab303 13070
ad421372
ML
13071 if (!shared_dpll)
13072 shared_dpll = intel_atomic_get_shared_dpll_state(state);
ed6739ef 13073
8106ddbd 13074 intel_shared_dpll_config_put(shared_dpll, old_dpll, intel_crtc);
ad421372 13075 }
ed6739ef
ACO
13076}
13077
99d736a2
ML
13078/*
13079 * This implements the workaround described in the "notes" section of the mode
13080 * set sequence documentation. When going from no pipes or single pipe to
13081 * multiple pipes, and planes are enabled after the pipe, we need to wait at
13082 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
13083 */
13084static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
13085{
13086 struct drm_crtc_state *crtc_state;
13087 struct intel_crtc *intel_crtc;
13088 struct drm_crtc *crtc;
13089 struct intel_crtc_state *first_crtc_state = NULL;
13090 struct intel_crtc_state *other_crtc_state = NULL;
13091 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
13092 int i;
13093
13094 /* look at all crtc's that are going to be enabled in during modeset */
13095 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13096 intel_crtc = to_intel_crtc(crtc);
13097
13098 if (!crtc_state->active || !needs_modeset(crtc_state))
13099 continue;
13100
13101 if (first_crtc_state) {
13102 other_crtc_state = to_intel_crtc_state(crtc_state);
13103 break;
13104 } else {
13105 first_crtc_state = to_intel_crtc_state(crtc_state);
13106 first_pipe = intel_crtc->pipe;
13107 }
13108 }
13109
13110 /* No workaround needed? */
13111 if (!first_crtc_state)
13112 return 0;
13113
13114 /* w/a possibly needed, check how many crtc's are already enabled. */
13115 for_each_intel_crtc(state->dev, intel_crtc) {
13116 struct intel_crtc_state *pipe_config;
13117
13118 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
13119 if (IS_ERR(pipe_config))
13120 return PTR_ERR(pipe_config);
13121
13122 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
13123
13124 if (!pipe_config->base.active ||
13125 needs_modeset(&pipe_config->base))
13126 continue;
13127
13128 /* 2 or more enabled crtcs means no need for w/a */
13129 if (enabled_pipe != INVALID_PIPE)
13130 return 0;
13131
13132 enabled_pipe = intel_crtc->pipe;
13133 }
13134
13135 if (enabled_pipe != INVALID_PIPE)
13136 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13137 else if (other_crtc_state)
13138 other_crtc_state->hsw_workaround_pipe = first_pipe;
13139
13140 return 0;
13141}
13142
27c329ed
ML
13143static int intel_modeset_all_pipes(struct drm_atomic_state *state)
13144{
13145 struct drm_crtc *crtc;
13146 struct drm_crtc_state *crtc_state;
13147 int ret = 0;
13148
13149 /* add all active pipes to the state */
13150 for_each_crtc(state->dev, crtc) {
13151 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13152 if (IS_ERR(crtc_state))
13153 return PTR_ERR(crtc_state);
13154
13155 if (!crtc_state->active || needs_modeset(crtc_state))
13156 continue;
13157
13158 crtc_state->mode_changed = true;
13159
13160 ret = drm_atomic_add_affected_connectors(state, crtc);
13161 if (ret)
13162 break;
13163
13164 ret = drm_atomic_add_affected_planes(state, crtc);
13165 if (ret)
13166 break;
13167 }
13168
13169 return ret;
13170}
13171
c347a676 13172static int intel_modeset_checks(struct drm_atomic_state *state)
054518dd 13173{
565602d7
ML
13174 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13175 struct drm_i915_private *dev_priv = state->dev->dev_private;
13176 struct drm_crtc *crtc;
13177 struct drm_crtc_state *crtc_state;
13178 int ret = 0, i;
054518dd 13179
b359283a
ML
13180 if (!check_digital_port_conflicts(state)) {
13181 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13182 return -EINVAL;
13183 }
13184
565602d7
ML
13185 intel_state->modeset = true;
13186 intel_state->active_crtcs = dev_priv->active_crtcs;
13187
13188 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13189 if (crtc_state->active)
13190 intel_state->active_crtcs |= 1 << i;
13191 else
13192 intel_state->active_crtcs &= ~(1 << i);
13193 }
13194
054518dd
ACO
13195 /*
13196 * See if the config requires any additional preparation, e.g.
13197 * to adjust global state with pipes off. We need to do this
13198 * here so we can get the modeset_pipe updated config for the new
13199 * mode set on this crtc. For other crtcs we need to use the
13200 * adjusted_mode bits in the crtc directly.
13201 */
27c329ed 13202 if (dev_priv->display.modeset_calc_cdclk) {
27c329ed
ML
13203 ret = dev_priv->display.modeset_calc_cdclk(state);
13204
1a617b77 13205 if (!ret && intel_state->dev_cdclk != dev_priv->cdclk_freq)
27c329ed
ML
13206 ret = intel_modeset_all_pipes(state);
13207
13208 if (ret < 0)
054518dd 13209 return ret;
e8788cbc
ML
13210
13211 DRM_DEBUG_KMS("New cdclk calculated to be atomic %u, actual %u\n",
13212 intel_state->cdclk, intel_state->dev_cdclk);
27c329ed 13213 } else
1a617b77 13214 to_intel_atomic_state(state)->cdclk = dev_priv->atomic_cdclk_freq;
054518dd 13215
ad421372 13216 intel_modeset_clear_plls(state);
054518dd 13217
565602d7 13218 if (IS_HASWELL(dev_priv))
ad421372 13219 return haswell_mode_set_planes_workaround(state);
99d736a2 13220
ad421372 13221 return 0;
c347a676
ACO
13222}
13223
aa363136
MR
13224/*
13225 * Handle calculation of various watermark data at the end of the atomic check
13226 * phase. The code here should be run after the per-crtc and per-plane 'check'
13227 * handlers to ensure that all derived state has been updated.
13228 */
13229static void calc_watermark_data(struct drm_atomic_state *state)
13230{
13231 struct drm_device *dev = state->dev;
13232 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13233 struct drm_crtc *crtc;
13234 struct drm_crtc_state *cstate;
13235 struct drm_plane *plane;
13236 struct drm_plane_state *pstate;
13237
13238 /*
13239 * Calculate watermark configuration details now that derived
13240 * plane/crtc state is all properly updated.
13241 */
13242 drm_for_each_crtc(crtc, dev) {
13243 cstate = drm_atomic_get_existing_crtc_state(state, crtc) ?:
13244 crtc->state;
13245
13246 if (cstate->active)
13247 intel_state->wm_config.num_pipes_active++;
13248 }
13249 drm_for_each_legacy_plane(plane, dev) {
13250 pstate = drm_atomic_get_existing_plane_state(state, plane) ?:
13251 plane->state;
13252
13253 if (!to_intel_plane_state(pstate)->visible)
13254 continue;
13255
13256 intel_state->wm_config.sprites_enabled = true;
13257 if (pstate->crtc_w != pstate->src_w >> 16 ||
13258 pstate->crtc_h != pstate->src_h >> 16)
13259 intel_state->wm_config.sprites_scaled = true;
13260 }
13261}
13262
74c090b1
ML
13263/**
13264 * intel_atomic_check - validate state object
13265 * @dev: drm device
13266 * @state: state to validate
13267 */
13268static int intel_atomic_check(struct drm_device *dev,
13269 struct drm_atomic_state *state)
c347a676 13270{
dd8b3bdb 13271 struct drm_i915_private *dev_priv = to_i915(dev);
aa363136 13272 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
c347a676
ACO
13273 struct drm_crtc *crtc;
13274 struct drm_crtc_state *crtc_state;
13275 int ret, i;
61333b60 13276 bool any_ms = false;
c347a676 13277
74c090b1 13278 ret = drm_atomic_helper_check_modeset(dev, state);
054518dd
ACO
13279 if (ret)
13280 return ret;
13281
c347a676 13282 for_each_crtc_in_state(state, crtc, crtc_state, i) {
cfb23ed6
ML
13283 struct intel_crtc_state *pipe_config =
13284 to_intel_crtc_state(crtc_state);
1ed51de9 13285
ba8af3e5
ML
13286 memset(&to_intel_crtc(crtc)->atomic, 0,
13287 sizeof(struct intel_crtc_atomic_commit));
13288
1ed51de9
DV
13289 /* Catch I915_MODE_FLAG_INHERITED */
13290 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
13291 crtc_state->mode_changed = true;
cfb23ed6 13292
61333b60
ML
13293 if (!crtc_state->enable) {
13294 if (needs_modeset(crtc_state))
13295 any_ms = true;
c347a676 13296 continue;
61333b60 13297 }
c347a676 13298
26495481 13299 if (!needs_modeset(crtc_state))
cfb23ed6
ML
13300 continue;
13301
26495481
DV
13302 /* FIXME: For only active_changed we shouldn't need to do any
13303 * state recomputation at all. */
13304
1ed51de9
DV
13305 ret = drm_atomic_add_affected_connectors(state, crtc);
13306 if (ret)
13307 return ret;
b359283a 13308
cfb23ed6 13309 ret = intel_modeset_pipe_config(crtc, pipe_config);
c347a676
ACO
13310 if (ret)
13311 return ret;
13312
73831236 13313 if (i915.fastboot &&
dd8b3bdb 13314 intel_pipe_config_compare(dev,
cfb23ed6 13315 to_intel_crtc_state(crtc->state),
1ed51de9 13316 pipe_config, true)) {
26495481 13317 crtc_state->mode_changed = false;
bfd16b2a 13318 to_intel_crtc_state(crtc_state)->update_pipe = true;
26495481
DV
13319 }
13320
13321 if (needs_modeset(crtc_state)) {
13322 any_ms = true;
cfb23ed6
ML
13323
13324 ret = drm_atomic_add_affected_planes(state, crtc);
13325 if (ret)
13326 return ret;
13327 }
61333b60 13328
26495481
DV
13329 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
13330 needs_modeset(crtc_state) ?
13331 "[modeset]" : "[fastset]");
c347a676
ACO
13332 }
13333
61333b60
ML
13334 if (any_ms) {
13335 ret = intel_modeset_checks(state);
13336
13337 if (ret)
13338 return ret;
27c329ed 13339 } else
dd8b3bdb 13340 intel_state->cdclk = dev_priv->cdclk_freq;
76305b1a 13341
dd8b3bdb 13342 ret = drm_atomic_helper_check_planes(dev, state);
aa363136
MR
13343 if (ret)
13344 return ret;
13345
f51be2e0 13346 intel_fbc_choose_crtc(dev_priv, state);
aa363136
MR
13347 calc_watermark_data(state);
13348
13349 return 0;
054518dd
ACO
13350}
13351
5008e874
ML
13352static int intel_atomic_prepare_commit(struct drm_device *dev,
13353 struct drm_atomic_state *state,
13354 bool async)
13355{
7580d774
ML
13356 struct drm_i915_private *dev_priv = dev->dev_private;
13357 struct drm_plane_state *plane_state;
5008e874 13358 struct drm_crtc_state *crtc_state;
7580d774 13359 struct drm_plane *plane;
5008e874
ML
13360 struct drm_crtc *crtc;
13361 int i, ret;
13362
13363 if (async) {
13364 DRM_DEBUG_KMS("i915 does not yet support async commit\n");
13365 return -EINVAL;
13366 }
13367
13368 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13369 ret = intel_crtc_wait_for_pending_flips(crtc);
13370 if (ret)
13371 return ret;
7580d774
ML
13372
13373 if (atomic_read(&to_intel_crtc(crtc)->unpin_work_count) >= 2)
13374 flush_workqueue(dev_priv->wq);
5008e874
ML
13375 }
13376
f935675f
ML
13377 ret = mutex_lock_interruptible(&dev->struct_mutex);
13378 if (ret)
13379 return ret;
13380
5008e874 13381 ret = drm_atomic_helper_prepare_planes(dev, state);
7580d774
ML
13382 if (!ret && !async && !i915_reset_in_progress(&dev_priv->gpu_error)) {
13383 u32 reset_counter;
13384
13385 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
13386 mutex_unlock(&dev->struct_mutex);
13387
13388 for_each_plane_in_state(state, plane, plane_state, i) {
13389 struct intel_plane_state *intel_plane_state =
13390 to_intel_plane_state(plane_state);
13391
13392 if (!intel_plane_state->wait_req)
13393 continue;
13394
13395 ret = __i915_wait_request(intel_plane_state->wait_req,
13396 reset_counter, true,
13397 NULL, NULL);
13398
13399 /* Swallow -EIO errors to allow updates during hw lockup. */
13400 if (ret == -EIO)
13401 ret = 0;
13402
13403 if (ret)
13404 break;
13405 }
13406
13407 if (!ret)
13408 return 0;
13409
13410 mutex_lock(&dev->struct_mutex);
13411 drm_atomic_helper_cleanup_planes(dev, state);
13412 }
5008e874 13413
f935675f 13414 mutex_unlock(&dev->struct_mutex);
5008e874
ML
13415 return ret;
13416}
13417
e8861675
ML
13418static void intel_atomic_wait_for_vblanks(struct drm_device *dev,
13419 struct drm_i915_private *dev_priv,
13420 unsigned crtc_mask)
13421{
13422 unsigned last_vblank_count[I915_MAX_PIPES];
13423 enum pipe pipe;
13424 int ret;
13425
13426 if (!crtc_mask)
13427 return;
13428
13429 for_each_pipe(dev_priv, pipe) {
13430 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
13431
13432 if (!((1 << pipe) & crtc_mask))
13433 continue;
13434
13435 ret = drm_crtc_vblank_get(crtc);
13436 if (WARN_ON(ret != 0)) {
13437 crtc_mask &= ~(1 << pipe);
13438 continue;
13439 }
13440
13441 last_vblank_count[pipe] = drm_crtc_vblank_count(crtc);
13442 }
13443
13444 for_each_pipe(dev_priv, pipe) {
13445 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
13446 long lret;
13447
13448 if (!((1 << pipe) & crtc_mask))
13449 continue;
13450
13451 lret = wait_event_timeout(dev->vblank[pipe].queue,
13452 last_vblank_count[pipe] !=
13453 drm_crtc_vblank_count(crtc),
13454 msecs_to_jiffies(50));
13455
13456 WARN_ON(!lret);
13457
13458 drm_crtc_vblank_put(crtc);
13459 }
13460}
13461
13462static bool needs_vblank_wait(struct intel_crtc_state *crtc_state)
13463{
13464 /* fb updated, need to unpin old fb */
13465 if (crtc_state->fb_changed)
13466 return true;
13467
13468 /* wm changes, need vblank before final wm's */
caed361d 13469 if (crtc_state->update_wm_post)
e8861675
ML
13470 return true;
13471
13472 /*
13473 * cxsr is re-enabled after vblank.
caed361d 13474 * This is already handled by crtc_state->update_wm_post,
e8861675
ML
13475 * but added for clarity.
13476 */
13477 if (crtc_state->disable_cxsr)
13478 return true;
13479
13480 return false;
13481}
13482
74c090b1
ML
13483/**
13484 * intel_atomic_commit - commit validated state object
13485 * @dev: DRM device
13486 * @state: the top-level driver state object
13487 * @async: asynchronous commit
13488 *
13489 * This function commits a top-level state object that has been validated
13490 * with drm_atomic_helper_check().
13491 *
13492 * FIXME: Atomic modeset support for i915 is not yet complete. At the moment
13493 * we can only handle plane-related operations and do not yet support
13494 * asynchronous commit.
13495 *
13496 * RETURNS
13497 * Zero for success or -errno.
13498 */
13499static int intel_atomic_commit(struct drm_device *dev,
13500 struct drm_atomic_state *state,
13501 bool async)
a6778b3c 13502{
565602d7 13503 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
fbee40df 13504 struct drm_i915_private *dev_priv = dev->dev_private;
29ceb0e6 13505 struct drm_crtc_state *old_crtc_state;
7580d774 13506 struct drm_crtc *crtc;
ed4a6a7c 13507 struct intel_crtc_state *intel_cstate;
565602d7
ML
13508 int ret = 0, i;
13509 bool hw_check = intel_state->modeset;
33c8df89 13510 unsigned long put_domains[I915_MAX_PIPES] = {};
e8861675 13511 unsigned crtc_vblank_mask = 0;
a6778b3c 13512
5008e874 13513 ret = intel_atomic_prepare_commit(dev, state, async);
7580d774
ML
13514 if (ret) {
13515 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
d4afb8cc 13516 return ret;
7580d774 13517 }
d4afb8cc 13518
1c5e19f8 13519 drm_atomic_helper_swap_state(dev, state);
aa363136 13520 dev_priv->wm.config = to_intel_atomic_state(state)->wm_config;
1c5e19f8 13521
565602d7
ML
13522 if (intel_state->modeset) {
13523 memcpy(dev_priv->min_pixclk, intel_state->min_pixclk,
13524 sizeof(intel_state->min_pixclk));
13525 dev_priv->active_crtcs = intel_state->active_crtcs;
1a617b77 13526 dev_priv->atomic_cdclk_freq = intel_state->cdclk;
33c8df89
ML
13527
13528 intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
565602d7
ML
13529 }
13530
29ceb0e6 13531 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
a539205a
ML
13532 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13533
33c8df89
ML
13534 if (needs_modeset(crtc->state) ||
13535 to_intel_crtc_state(crtc->state)->update_pipe) {
13536 hw_check = true;
13537
13538 put_domains[to_intel_crtc(crtc)->pipe] =
13539 modeset_get_crtc_power_domains(crtc,
13540 to_intel_crtc_state(crtc->state));
13541 }
13542
61333b60
ML
13543 if (!needs_modeset(crtc->state))
13544 continue;
13545
29ceb0e6 13546 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
460da916 13547
29ceb0e6
VS
13548 if (old_crtc_state->active) {
13549 intel_crtc_disable_planes(crtc, old_crtc_state->plane_mask);
a539205a 13550 dev_priv->display.crtc_disable(crtc);
eddfcbcd 13551 intel_crtc->active = false;
58f9c0bc 13552 intel_fbc_disable(intel_crtc);
eddfcbcd 13553 intel_disable_shared_dpll(intel_crtc);
9bbc8258
VS
13554
13555 /*
13556 * Underruns don't always raise
13557 * interrupts, so check manually.
13558 */
13559 intel_check_cpu_fifo_underruns(dev_priv);
13560 intel_check_pch_fifo_underruns(dev_priv);
b9001114
ML
13561
13562 if (!crtc->state->active)
13563 intel_update_watermarks(crtc);
a539205a 13564 }
b8cecdf5 13565 }
7758a113 13566
ea9d758d
DV
13567 /* Only after disabling all output pipelines that will be changed can we
13568 * update the the output configuration. */
4740b0f2 13569 intel_modeset_update_crtc_state(state);
f6e5b160 13570
565602d7 13571 if (intel_state->modeset) {
4740b0f2
ML
13572 intel_shared_dpll_commit(state);
13573
13574 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
33c8df89
ML
13575
13576 if (dev_priv->display.modeset_commit_cdclk &&
13577 intel_state->dev_cdclk != dev_priv->cdclk_freq)
13578 dev_priv->display.modeset_commit_cdclk(state);
4740b0f2 13579 }
47fab737 13580
a6778b3c 13581 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
29ceb0e6 13582 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
f6ac4b2a
ML
13583 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13584 bool modeset = needs_modeset(crtc->state);
e8861675
ML
13585 struct intel_crtc_state *pipe_config =
13586 to_intel_crtc_state(crtc->state);
13587 bool update_pipe = !modeset && pipe_config->update_pipe;
9f836f90 13588
f6ac4b2a 13589 if (modeset && crtc->state->active) {
a539205a
ML
13590 update_scanline_offset(to_intel_crtc(crtc));
13591 dev_priv->display.crtc_enable(crtc);
13592 }
80715b2f 13593
f6ac4b2a 13594 if (!modeset)
29ceb0e6 13595 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
f6ac4b2a 13596
49227c4a
PZ
13597 if (crtc->state->active && intel_crtc->atomic.update_fbc)
13598 intel_fbc_enable(intel_crtc);
13599
6173ee28
ML
13600 if (crtc->state->active &&
13601 (crtc->state->planes_changed || update_pipe))
29ceb0e6 13602 drm_atomic_helper_commit_planes_on_crtc(old_crtc_state);
bfd16b2a 13603
e8861675
ML
13604 if (pipe_config->base.active && needs_vblank_wait(pipe_config))
13605 crtc_vblank_mask |= 1 << i;
80715b2f 13606 }
a6778b3c 13607
a6778b3c 13608 /* FIXME: add subpixel order */
83a57153 13609
e8861675
ML
13610 if (!state->legacy_cursor_update)
13611 intel_atomic_wait_for_vblanks(dev, dev_priv, crtc_vblank_mask);
f935675f 13612
29ceb0e6 13613 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
e8861675
ML
13614 intel_post_plane_update(to_intel_crtc(crtc));
13615
33c8df89
ML
13616 if (put_domains[i])
13617 modeset_put_power_domains(dev_priv, put_domains[i]);
13618 }
13619
13620 if (intel_state->modeset)
13621 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
13622
ed4a6a7c
MR
13623 /*
13624 * Now that the vblank has passed, we can go ahead and program the
13625 * optimal watermarks on platforms that need two-step watermark
13626 * programming.
13627 *
13628 * TODO: Move this (and other cleanup) to an async worker eventually.
13629 */
29ceb0e6 13630 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
ed4a6a7c
MR
13631 intel_cstate = to_intel_crtc_state(crtc->state);
13632
13633 if (dev_priv->display.optimize_watermarks)
13634 dev_priv->display.optimize_watermarks(intel_cstate);
13635 }
13636
f935675f 13637 mutex_lock(&dev->struct_mutex);
d4afb8cc 13638 drm_atomic_helper_cleanup_planes(dev, state);
f935675f 13639 mutex_unlock(&dev->struct_mutex);
2bfb4627 13640
565602d7 13641 if (hw_check)
ee165b1a
ML
13642 intel_modeset_check_state(dev, state);
13643
13644 drm_atomic_state_free(state);
f30da187 13645
75714940
MK
13646 /* As one of the primary mmio accessors, KMS has a high likelihood
13647 * of triggering bugs in unclaimed access. After we finish
13648 * modesetting, see if an error has been flagged, and if so
13649 * enable debugging for the next modeset - and hope we catch
13650 * the culprit.
13651 *
13652 * XXX note that we assume display power is on at this point.
13653 * This might hold true now but we need to add pm helper to check
13654 * unclaimed only when the hardware is on, as atomic commits
13655 * can happen also when the device is completely off.
13656 */
13657 intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
13658
74c090b1 13659 return 0;
7f27126e
JB
13660}
13661
c0c36b94
CW
13662void intel_crtc_restore_mode(struct drm_crtc *crtc)
13663{
83a57153
ACO
13664 struct drm_device *dev = crtc->dev;
13665 struct drm_atomic_state *state;
e694eb02 13666 struct drm_crtc_state *crtc_state;
2bfb4627 13667 int ret;
83a57153
ACO
13668
13669 state = drm_atomic_state_alloc(dev);
13670 if (!state) {
e694eb02 13671 DRM_DEBUG_KMS("[CRTC:%d] crtc restore failed, out of memory",
83a57153
ACO
13672 crtc->base.id);
13673 return;
13674 }
13675
e694eb02 13676 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
83a57153 13677
e694eb02
ML
13678retry:
13679 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13680 ret = PTR_ERR_OR_ZERO(crtc_state);
13681 if (!ret) {
13682 if (!crtc_state->active)
13683 goto out;
83a57153 13684
e694eb02 13685 crtc_state->mode_changed = true;
74c090b1 13686 ret = drm_atomic_commit(state);
83a57153
ACO
13687 }
13688
e694eb02
ML
13689 if (ret == -EDEADLK) {
13690 drm_atomic_state_clear(state);
13691 drm_modeset_backoff(state->acquire_ctx);
13692 goto retry;
4ed9fb37 13693 }
4be07317 13694
2bfb4627 13695 if (ret)
e694eb02 13696out:
2bfb4627 13697 drm_atomic_state_free(state);
c0c36b94
CW
13698}
13699
25c5b266
DV
13700#undef for_each_intel_crtc_masked
13701
f6e5b160 13702static const struct drm_crtc_funcs intel_crtc_funcs = {
f6e5b160 13703 .gamma_set = intel_crtc_gamma_set,
74c090b1 13704 .set_config = drm_atomic_helper_set_config,
f6e5b160
CW
13705 .destroy = intel_crtc_destroy,
13706 .page_flip = intel_crtc_page_flip,
1356837e
MR
13707 .atomic_duplicate_state = intel_crtc_duplicate_state,
13708 .atomic_destroy_state = intel_crtc_destroy_state,
f6e5b160
CW
13709};
13710
6beb8c23
MR
13711/**
13712 * intel_prepare_plane_fb - Prepare fb for usage on plane
13713 * @plane: drm plane to prepare for
13714 * @fb: framebuffer to prepare for presentation
13715 *
13716 * Prepares a framebuffer for usage on a display plane. Generally this
13717 * involves pinning the underlying object and updating the frontbuffer tracking
13718 * bits. Some older platforms need special physical address handling for
13719 * cursor planes.
13720 *
f935675f
ML
13721 * Must be called with struct_mutex held.
13722 *
6beb8c23
MR
13723 * Returns 0 on success, negative error code on failure.
13724 */
13725int
13726intel_prepare_plane_fb(struct drm_plane *plane,
d136dfee 13727 const struct drm_plane_state *new_state)
465c120c
MR
13728{
13729 struct drm_device *dev = plane->dev;
844f9111 13730 struct drm_framebuffer *fb = new_state->fb;
6beb8c23 13731 struct intel_plane *intel_plane = to_intel_plane(plane);
6beb8c23 13732 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
1ee49399 13733 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
6beb8c23 13734 int ret = 0;
465c120c 13735
1ee49399 13736 if (!obj && !old_obj)
465c120c
MR
13737 return 0;
13738
5008e874
ML
13739 if (old_obj) {
13740 struct drm_crtc_state *crtc_state =
13741 drm_atomic_get_existing_crtc_state(new_state->state, plane->state->crtc);
13742
13743 /* Big Hammer, we also need to ensure that any pending
13744 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
13745 * current scanout is retired before unpinning the old
13746 * framebuffer. Note that we rely on userspace rendering
13747 * into the buffer attached to the pipe they are waiting
13748 * on. If not, userspace generates a GPU hang with IPEHR
13749 * point to the MI_WAIT_FOR_EVENT.
13750 *
13751 * This should only fail upon a hung GPU, in which case we
13752 * can safely continue.
13753 */
13754 if (needs_modeset(crtc_state))
13755 ret = i915_gem_object_wait_rendering(old_obj, true);
13756
13757 /* Swallow -EIO errors to allow updates during hw lockup. */
13758 if (ret && ret != -EIO)
f935675f 13759 return ret;
5008e874
ML
13760 }
13761
3c28ff22
AG
13762 /* For framebuffer backed by dmabuf, wait for fence */
13763 if (obj && obj->base.dma_buf) {
bcf8be27
ML
13764 long lret;
13765
13766 lret = reservation_object_wait_timeout_rcu(obj->base.dma_buf->resv,
13767 false, true,
13768 MAX_SCHEDULE_TIMEOUT);
13769 if (lret == -ERESTARTSYS)
13770 return lret;
3c28ff22 13771
bcf8be27 13772 WARN(lret < 0, "waiting returns %li\n", lret);
3c28ff22
AG
13773 }
13774
1ee49399
ML
13775 if (!obj) {
13776 ret = 0;
13777 } else if (plane->type == DRM_PLANE_TYPE_CURSOR &&
6beb8c23
MR
13778 INTEL_INFO(dev)->cursor_needs_physical) {
13779 int align = IS_I830(dev) ? 16 * 1024 : 256;
13780 ret = i915_gem_object_attach_phys(obj, align);
13781 if (ret)
13782 DRM_DEBUG_KMS("failed to attach phys object\n");
13783 } else {
3465c580 13784 ret = intel_pin_and_fence_fb_obj(fb, new_state->rotation);
6beb8c23 13785 }
465c120c 13786
7580d774
ML
13787 if (ret == 0) {
13788 if (obj) {
13789 struct intel_plane_state *plane_state =
13790 to_intel_plane_state(new_state);
13791
13792 i915_gem_request_assign(&plane_state->wait_req,
13793 obj->last_write_req);
13794 }
13795
a9ff8714 13796 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
7580d774 13797 }
fdd508a6 13798
6beb8c23
MR
13799 return ret;
13800}
13801
38f3ce3a
MR
13802/**
13803 * intel_cleanup_plane_fb - Cleans up an fb after plane use
13804 * @plane: drm plane to clean up for
13805 * @fb: old framebuffer that was on plane
13806 *
13807 * Cleans up a framebuffer that has just been removed from a plane.
f935675f
ML
13808 *
13809 * Must be called with struct_mutex held.
38f3ce3a
MR
13810 */
13811void
13812intel_cleanup_plane_fb(struct drm_plane *plane,
d136dfee 13813 const struct drm_plane_state *old_state)
38f3ce3a
MR
13814{
13815 struct drm_device *dev = plane->dev;
1ee49399 13816 struct intel_plane *intel_plane = to_intel_plane(plane);
7580d774 13817 struct intel_plane_state *old_intel_state;
1ee49399
ML
13818 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_state->fb);
13819 struct drm_i915_gem_object *obj = intel_fb_obj(plane->state->fb);
38f3ce3a 13820
7580d774
ML
13821 old_intel_state = to_intel_plane_state(old_state);
13822
1ee49399 13823 if (!obj && !old_obj)
38f3ce3a
MR
13824 return;
13825
1ee49399
ML
13826 if (old_obj && (plane->type != DRM_PLANE_TYPE_CURSOR ||
13827 !INTEL_INFO(dev)->cursor_needs_physical))
3465c580 13828 intel_unpin_fb_obj(old_state->fb, old_state->rotation);
1ee49399
ML
13829
13830 /* prepare_fb aborted? */
13831 if ((old_obj && (old_obj->frontbuffer_bits & intel_plane->frontbuffer_bit)) ||
13832 (obj && !(obj->frontbuffer_bits & intel_plane->frontbuffer_bit)))
13833 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
7580d774
ML
13834
13835 i915_gem_request_assign(&old_intel_state->wait_req, NULL);
465c120c
MR
13836}
13837
6156a456
CK
13838int
13839skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13840{
13841 int max_scale;
13842 struct drm_device *dev;
13843 struct drm_i915_private *dev_priv;
13844 int crtc_clock, cdclk;
13845
bf8a0af0 13846 if (!intel_crtc || !crtc_state->base.enable)
6156a456
CK
13847 return DRM_PLANE_HELPER_NO_SCALING;
13848
13849 dev = intel_crtc->base.dev;
13850 dev_priv = dev->dev_private;
13851 crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
27c329ed 13852 cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
6156a456 13853
54bf1ce6 13854 if (WARN_ON_ONCE(!crtc_clock || cdclk < crtc_clock))
6156a456
CK
13855 return DRM_PLANE_HELPER_NO_SCALING;
13856
13857 /*
13858 * skl max scale is lower of:
13859 * close to 3 but not 3, -1 is for that purpose
13860 * or
13861 * cdclk/crtc_clock
13862 */
13863 max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
13864
13865 return max_scale;
13866}
13867
465c120c 13868static int
3c692a41 13869intel_check_primary_plane(struct drm_plane *plane,
061e4b8d 13870 struct intel_crtc_state *crtc_state,
3c692a41
GP
13871 struct intel_plane_state *state)
13872{
2b875c22
MR
13873 struct drm_crtc *crtc = state->base.crtc;
13874 struct drm_framebuffer *fb = state->base.fb;
6156a456 13875 int min_scale = DRM_PLANE_HELPER_NO_SCALING;
061e4b8d
ML
13876 int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13877 bool can_position = false;
465c120c 13878
693bdc28
VS
13879 if (INTEL_INFO(plane->dev)->gen >= 9) {
13880 /* use scaler when colorkey is not required */
13881 if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
13882 min_scale = 1;
13883 max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
13884 }
d8106366 13885 can_position = true;
6156a456 13886 }
d8106366 13887
061e4b8d
ML
13888 return drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13889 &state->dst, &state->clip,
da20eabd
ML
13890 min_scale, max_scale,
13891 can_position, true,
13892 &state->visible);
14af293f
GP
13893}
13894
613d2b27
ML
13895static void intel_begin_crtc_commit(struct drm_crtc *crtc,
13896 struct drm_crtc_state *old_crtc_state)
3c692a41 13897{
32b7eeec 13898 struct drm_device *dev = crtc->dev;
3c692a41 13899 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
bfd16b2a
ML
13900 struct intel_crtc_state *old_intel_state =
13901 to_intel_crtc_state(old_crtc_state);
13902 bool modeset = needs_modeset(crtc->state);
3c692a41 13903
c34c9ee4 13904 /* Perform vblank evasion around commit operation */
62852622 13905 intel_pipe_update_start(intel_crtc);
0583236e 13906
bfd16b2a
ML
13907 if (modeset)
13908 return;
13909
13910 if (to_intel_crtc_state(crtc->state)->update_pipe)
13911 intel_update_pipe_config(intel_crtc, old_intel_state);
13912 else if (INTEL_INFO(dev)->gen >= 9)
0583236e 13913 skl_detach_scalers(intel_crtc);
32b7eeec
MR
13914}
13915
613d2b27
ML
13916static void intel_finish_crtc_commit(struct drm_crtc *crtc,
13917 struct drm_crtc_state *old_crtc_state)
32b7eeec 13918{
32b7eeec 13919 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
32b7eeec 13920
62852622 13921 intel_pipe_update_end(intel_crtc);
3c692a41
GP
13922}
13923
cf4c7c12 13924/**
4a3b8769
MR
13925 * intel_plane_destroy - destroy a plane
13926 * @plane: plane to destroy
cf4c7c12 13927 *
4a3b8769
MR
13928 * Common destruction function for all types of planes (primary, cursor,
13929 * sprite).
cf4c7c12 13930 */
4a3b8769 13931void intel_plane_destroy(struct drm_plane *plane)
465c120c
MR
13932{
13933 struct intel_plane *intel_plane = to_intel_plane(plane);
13934 drm_plane_cleanup(plane);
13935 kfree(intel_plane);
13936}
13937
65a3fea0 13938const struct drm_plane_funcs intel_plane_funcs = {
70a101f8
MR
13939 .update_plane = drm_atomic_helper_update_plane,
13940 .disable_plane = drm_atomic_helper_disable_plane,
3d7d6510 13941 .destroy = intel_plane_destroy,
c196e1d6 13942 .set_property = drm_atomic_helper_plane_set_property,
a98b3431
MR
13943 .atomic_get_property = intel_plane_atomic_get_property,
13944 .atomic_set_property = intel_plane_atomic_set_property,
ea2c67bb
MR
13945 .atomic_duplicate_state = intel_plane_duplicate_state,
13946 .atomic_destroy_state = intel_plane_destroy_state,
13947
465c120c
MR
13948};
13949
13950static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
13951 int pipe)
13952{
13953 struct intel_plane *primary;
8e7d688b 13954 struct intel_plane_state *state;
465c120c 13955 const uint32_t *intel_primary_formats;
45e3743a 13956 unsigned int num_formats;
465c120c
MR
13957
13958 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
13959 if (primary == NULL)
13960 return NULL;
13961
8e7d688b
MR
13962 state = intel_create_plane_state(&primary->base);
13963 if (!state) {
ea2c67bb
MR
13964 kfree(primary);
13965 return NULL;
13966 }
8e7d688b 13967 primary->base.state = &state->base;
ea2c67bb 13968
465c120c
MR
13969 primary->can_scale = false;
13970 primary->max_downscale = 1;
6156a456
CK
13971 if (INTEL_INFO(dev)->gen >= 9) {
13972 primary->can_scale = true;
af99ceda 13973 state->scaler_id = -1;
6156a456 13974 }
465c120c
MR
13975 primary->pipe = pipe;
13976 primary->plane = pipe;
a9ff8714 13977 primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
c59cb179 13978 primary->check_plane = intel_check_primary_plane;
465c120c
MR
13979 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
13980 primary->plane = !pipe;
13981
6c0fd451
DL
13982 if (INTEL_INFO(dev)->gen >= 9) {
13983 intel_primary_formats = skl_primary_formats;
13984 num_formats = ARRAY_SIZE(skl_primary_formats);
a8d201af
ML
13985
13986 primary->update_plane = skylake_update_primary_plane;
13987 primary->disable_plane = skylake_disable_primary_plane;
13988 } else if (HAS_PCH_SPLIT(dev)) {
13989 intel_primary_formats = i965_primary_formats;
13990 num_formats = ARRAY_SIZE(i965_primary_formats);
13991
13992 primary->update_plane = ironlake_update_primary_plane;
13993 primary->disable_plane = i9xx_disable_primary_plane;
6c0fd451 13994 } else if (INTEL_INFO(dev)->gen >= 4) {
568db4f2
DL
13995 intel_primary_formats = i965_primary_formats;
13996 num_formats = ARRAY_SIZE(i965_primary_formats);
a8d201af
ML
13997
13998 primary->update_plane = i9xx_update_primary_plane;
13999 primary->disable_plane = i9xx_disable_primary_plane;
6c0fd451
DL
14000 } else {
14001 intel_primary_formats = i8xx_primary_formats;
14002 num_formats = ARRAY_SIZE(i8xx_primary_formats);
a8d201af
ML
14003
14004 primary->update_plane = i9xx_update_primary_plane;
14005 primary->disable_plane = i9xx_disable_primary_plane;
465c120c
MR
14006 }
14007
14008 drm_universal_plane_init(dev, &primary->base, 0,
65a3fea0 14009 &intel_plane_funcs,
465c120c 14010 intel_primary_formats, num_formats,
b0b3b795 14011 DRM_PLANE_TYPE_PRIMARY, NULL);
48404c1e 14012
3b7a5119
SJ
14013 if (INTEL_INFO(dev)->gen >= 4)
14014 intel_create_rotation_property(dev, primary);
48404c1e 14015
ea2c67bb
MR
14016 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
14017
465c120c
MR
14018 return &primary->base;
14019}
14020
3b7a5119
SJ
14021void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
14022{
14023 if (!dev->mode_config.rotation_property) {
14024 unsigned long flags = BIT(DRM_ROTATE_0) |
14025 BIT(DRM_ROTATE_180);
14026
14027 if (INTEL_INFO(dev)->gen >= 9)
14028 flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
14029
14030 dev->mode_config.rotation_property =
14031 drm_mode_create_rotation_property(dev, flags);
14032 }
14033 if (dev->mode_config.rotation_property)
14034 drm_object_attach_property(&plane->base.base,
14035 dev->mode_config.rotation_property,
14036 plane->base.state->rotation);
14037}
14038
3d7d6510 14039static int
852e787c 14040intel_check_cursor_plane(struct drm_plane *plane,
061e4b8d 14041 struct intel_crtc_state *crtc_state,
852e787c 14042 struct intel_plane_state *state)
3d7d6510 14043{
061e4b8d 14044 struct drm_crtc *crtc = crtc_state->base.crtc;
2b875c22 14045 struct drm_framebuffer *fb = state->base.fb;
757f9a3e 14046 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
b29ec92c 14047 enum pipe pipe = to_intel_plane(plane)->pipe;
757f9a3e
GP
14048 unsigned stride;
14049 int ret;
3d7d6510 14050
061e4b8d
ML
14051 ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src,
14052 &state->dst, &state->clip,
3d7d6510
MR
14053 DRM_PLANE_HELPER_NO_SCALING,
14054 DRM_PLANE_HELPER_NO_SCALING,
852e787c 14055 true, true, &state->visible);
757f9a3e
GP
14056 if (ret)
14057 return ret;
14058
757f9a3e
GP
14059 /* if we want to turn off the cursor ignore width and height */
14060 if (!obj)
da20eabd 14061 return 0;
757f9a3e 14062
757f9a3e 14063 /* Check for which cursor types we support */
061e4b8d 14064 if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
ea2c67bb
MR
14065 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
14066 state->base.crtc_w, state->base.crtc_h);
757f9a3e
GP
14067 return -EINVAL;
14068 }
14069
ea2c67bb
MR
14070 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
14071 if (obj->base.size < stride * state->base.crtc_h) {
757f9a3e
GP
14072 DRM_DEBUG_KMS("buffer is too small\n");
14073 return -ENOMEM;
14074 }
14075
3a656b54 14076 if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
757f9a3e 14077 DRM_DEBUG_KMS("cursor cannot be tiled\n");
da20eabd 14078 return -EINVAL;
32b7eeec
MR
14079 }
14080
b29ec92c
VS
14081 /*
14082 * There's something wrong with the cursor on CHV pipe C.
14083 * If it straddles the left edge of the screen then
14084 * moving it away from the edge or disabling it often
14085 * results in a pipe underrun, and often that can lead to
14086 * dead pipe (constant underrun reported, and it scans
14087 * out just a solid color). To recover from that, the
14088 * display power well must be turned off and on again.
14089 * Refuse the put the cursor into that compromised position.
14090 */
14091 if (IS_CHERRYVIEW(plane->dev) && pipe == PIPE_C &&
14092 state->visible && state->base.crtc_x < 0) {
14093 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
14094 return -EINVAL;
14095 }
14096
da20eabd 14097 return 0;
852e787c 14098}
3d7d6510 14099
a8ad0d8e
ML
14100static void
14101intel_disable_cursor_plane(struct drm_plane *plane,
7fabf5ef 14102 struct drm_crtc *crtc)
a8ad0d8e 14103{
f2858021
ML
14104 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14105
14106 intel_crtc->cursor_addr = 0;
55a08b3f 14107 intel_crtc_update_cursor(crtc, NULL);
a8ad0d8e
ML
14108}
14109
f4a2cf29 14110static void
55a08b3f
ML
14111intel_update_cursor_plane(struct drm_plane *plane,
14112 const struct intel_crtc_state *crtc_state,
14113 const struct intel_plane_state *state)
852e787c 14114{
55a08b3f
ML
14115 struct drm_crtc *crtc = crtc_state->base.crtc;
14116 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ea2c67bb 14117 struct drm_device *dev = plane->dev;
2b875c22 14118 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
a912f12f 14119 uint32_t addr;
852e787c 14120
f4a2cf29 14121 if (!obj)
a912f12f 14122 addr = 0;
f4a2cf29 14123 else if (!INTEL_INFO(dev)->cursor_needs_physical)
a912f12f 14124 addr = i915_gem_obj_ggtt_offset(obj);
f4a2cf29 14125 else
a912f12f 14126 addr = obj->phys_handle->busaddr;
852e787c 14127
a912f12f 14128 intel_crtc->cursor_addr = addr;
55a08b3f 14129 intel_crtc_update_cursor(crtc, state);
852e787c
GP
14130}
14131
3d7d6510
MR
14132static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
14133 int pipe)
14134{
14135 struct intel_plane *cursor;
8e7d688b 14136 struct intel_plane_state *state;
3d7d6510
MR
14137
14138 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
14139 if (cursor == NULL)
14140 return NULL;
14141
8e7d688b
MR
14142 state = intel_create_plane_state(&cursor->base);
14143 if (!state) {
ea2c67bb
MR
14144 kfree(cursor);
14145 return NULL;
14146 }
8e7d688b 14147 cursor->base.state = &state->base;
ea2c67bb 14148
3d7d6510
MR
14149 cursor->can_scale = false;
14150 cursor->max_downscale = 1;
14151 cursor->pipe = pipe;
14152 cursor->plane = pipe;
a9ff8714 14153 cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
c59cb179 14154 cursor->check_plane = intel_check_cursor_plane;
55a08b3f 14155 cursor->update_plane = intel_update_cursor_plane;
a8ad0d8e 14156 cursor->disable_plane = intel_disable_cursor_plane;
3d7d6510
MR
14157
14158 drm_universal_plane_init(dev, &cursor->base, 0,
65a3fea0 14159 &intel_plane_funcs,
3d7d6510
MR
14160 intel_cursor_formats,
14161 ARRAY_SIZE(intel_cursor_formats),
b0b3b795 14162 DRM_PLANE_TYPE_CURSOR, NULL);
4398ad45
VS
14163
14164 if (INTEL_INFO(dev)->gen >= 4) {
14165 if (!dev->mode_config.rotation_property)
14166 dev->mode_config.rotation_property =
14167 drm_mode_create_rotation_property(dev,
14168 BIT(DRM_ROTATE_0) |
14169 BIT(DRM_ROTATE_180));
14170 if (dev->mode_config.rotation_property)
14171 drm_object_attach_property(&cursor->base.base,
14172 dev->mode_config.rotation_property,
8e7d688b 14173 state->base.rotation);
4398ad45
VS
14174 }
14175
af99ceda
CK
14176 if (INTEL_INFO(dev)->gen >=9)
14177 state->scaler_id = -1;
14178
ea2c67bb
MR
14179 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
14180
3d7d6510
MR
14181 return &cursor->base;
14182}
14183
549e2bfb
CK
14184static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
14185 struct intel_crtc_state *crtc_state)
14186{
14187 int i;
14188 struct intel_scaler *intel_scaler;
14189 struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
14190
14191 for (i = 0; i < intel_crtc->num_scalers; i++) {
14192 intel_scaler = &scaler_state->scalers[i];
14193 intel_scaler->in_use = 0;
549e2bfb
CK
14194 intel_scaler->mode = PS_SCALER_MODE_DYN;
14195 }
14196
14197 scaler_state->scaler_id = -1;
14198}
14199
b358d0a6 14200static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 14201{
fbee40df 14202 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 14203 struct intel_crtc *intel_crtc;
f5de6e07 14204 struct intel_crtc_state *crtc_state = NULL;
3d7d6510
MR
14205 struct drm_plane *primary = NULL;
14206 struct drm_plane *cursor = NULL;
465c120c 14207 int i, ret;
79e53945 14208
955382f3 14209 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
79e53945
JB
14210 if (intel_crtc == NULL)
14211 return;
14212
f5de6e07
ACO
14213 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
14214 if (!crtc_state)
14215 goto fail;
550acefd
ACO
14216 intel_crtc->config = crtc_state;
14217 intel_crtc->base.state = &crtc_state->base;
07878248 14218 crtc_state->base.crtc = &intel_crtc->base;
f5de6e07 14219
549e2bfb
CK
14220 /* initialize shared scalers */
14221 if (INTEL_INFO(dev)->gen >= 9) {
14222 if (pipe == PIPE_C)
14223 intel_crtc->num_scalers = 1;
14224 else
14225 intel_crtc->num_scalers = SKL_NUM_SCALERS;
14226
14227 skl_init_scalers(dev, intel_crtc, crtc_state);
14228 }
14229
465c120c 14230 primary = intel_primary_plane_create(dev, pipe);
3d7d6510
MR
14231 if (!primary)
14232 goto fail;
14233
14234 cursor = intel_cursor_plane_create(dev, pipe);
14235 if (!cursor)
14236 goto fail;
14237
465c120c 14238 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
f9882876 14239 cursor, &intel_crtc_funcs, NULL);
3d7d6510
MR
14240 if (ret)
14241 goto fail;
79e53945
JB
14242
14243 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
79e53945
JB
14244 for (i = 0; i < 256; i++) {
14245 intel_crtc->lut_r[i] = i;
14246 intel_crtc->lut_g[i] = i;
14247 intel_crtc->lut_b[i] = i;
14248 }
14249
1f1c2e24
VS
14250 /*
14251 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
8c0f92e1 14252 * is hooked to pipe B. Hence we want plane A feeding pipe B.
1f1c2e24 14253 */
80824003
JB
14254 intel_crtc->pipe = pipe;
14255 intel_crtc->plane = pipe;
3a77c4c4 14256 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
28c97730 14257 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 14258 intel_crtc->plane = !pipe;
80824003
JB
14259 }
14260
4b0e333e
CW
14261 intel_crtc->cursor_base = ~0;
14262 intel_crtc->cursor_cntl = ~0;
dc41c154 14263 intel_crtc->cursor_size = ~0;
8d7849db 14264
852eb00d
VS
14265 intel_crtc->wm.cxsr_allowed = true;
14266
22fd0fab
JB
14267 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
14268 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
14269 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
14270 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
14271
79e53945 14272 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
87b6b101
DV
14273
14274 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
3d7d6510
MR
14275 return;
14276
14277fail:
14278 if (primary)
14279 drm_plane_cleanup(primary);
14280 if (cursor)
14281 drm_plane_cleanup(cursor);
f5de6e07 14282 kfree(crtc_state);
3d7d6510 14283 kfree(intel_crtc);
79e53945
JB
14284}
14285
752aa88a
JB
14286enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
14287{
14288 struct drm_encoder *encoder = connector->base.encoder;
6e9f798d 14289 struct drm_device *dev = connector->base.dev;
752aa88a 14290
51fd371b 14291 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
752aa88a 14292
d3babd3f 14293 if (!encoder || WARN_ON(!encoder->crtc))
752aa88a
JB
14294 return INVALID_PIPE;
14295
14296 return to_intel_crtc(encoder->crtc)->pipe;
14297}
14298
08d7b3d1 14299int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 14300 struct drm_file *file)
08d7b3d1 14301{
08d7b3d1 14302 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7707e653 14303 struct drm_crtc *drmmode_crtc;
c05422d5 14304 struct intel_crtc *crtc;
08d7b3d1 14305
7707e653 14306 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
08d7b3d1 14307
7707e653 14308 if (!drmmode_crtc) {
08d7b3d1 14309 DRM_ERROR("no such CRTC id\n");
3f2c2057 14310 return -ENOENT;
08d7b3d1
CW
14311 }
14312
7707e653 14313 crtc = to_intel_crtc(drmmode_crtc);
c05422d5 14314 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 14315
c05422d5 14316 return 0;
08d7b3d1
CW
14317}
14318
66a9278e 14319static int intel_encoder_clones(struct intel_encoder *encoder)
79e53945 14320{
66a9278e
DV
14321 struct drm_device *dev = encoder->base.dev;
14322 struct intel_encoder *source_encoder;
79e53945 14323 int index_mask = 0;
79e53945
JB
14324 int entry = 0;
14325
b2784e15 14326 for_each_intel_encoder(dev, source_encoder) {
bc079e8b 14327 if (encoders_cloneable(encoder, source_encoder))
66a9278e
DV
14328 index_mask |= (1 << entry);
14329
79e53945
JB
14330 entry++;
14331 }
4ef69c7a 14332
79e53945
JB
14333 return index_mask;
14334}
14335
4d302442
CW
14336static bool has_edp_a(struct drm_device *dev)
14337{
14338 struct drm_i915_private *dev_priv = dev->dev_private;
14339
14340 if (!IS_MOBILE(dev))
14341 return false;
14342
14343 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
14344 return false;
14345
e3589908 14346 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
4d302442
CW
14347 return false;
14348
14349 return true;
14350}
14351
84b4e042
JB
14352static bool intel_crt_present(struct drm_device *dev)
14353{
14354 struct drm_i915_private *dev_priv = dev->dev_private;
14355
884497ed
DL
14356 if (INTEL_INFO(dev)->gen >= 9)
14357 return false;
14358
cf404ce4 14359 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
84b4e042
JB
14360 return false;
14361
14362 if (IS_CHERRYVIEW(dev))
14363 return false;
14364
65e472e4
VS
14365 if (HAS_PCH_LPT_H(dev) && I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
14366 return false;
14367
70ac54d0
VS
14368 /* DDI E can't be used if DDI A requires 4 lanes */
14369 if (HAS_DDI(dev) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
14370 return false;
14371
e4abb733 14372 if (!dev_priv->vbt.int_crt_support)
84b4e042
JB
14373 return false;
14374
14375 return true;
14376}
14377
79e53945
JB
14378static void intel_setup_outputs(struct drm_device *dev)
14379{
725e30ad 14380 struct drm_i915_private *dev_priv = dev->dev_private;
4ef69c7a 14381 struct intel_encoder *encoder;
cb0953d7 14382 bool dpd_is_edp = false;
79e53945 14383
c9093354 14384 intel_lvds_init(dev);
79e53945 14385
84b4e042 14386 if (intel_crt_present(dev))
79935fca 14387 intel_crt_init(dev);
cb0953d7 14388
c776eb2e
VK
14389 if (IS_BROXTON(dev)) {
14390 /*
14391 * FIXME: Broxton doesn't support port detection via the
14392 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
14393 * detect the ports.
14394 */
14395 intel_ddi_init(dev, PORT_A);
14396 intel_ddi_init(dev, PORT_B);
14397 intel_ddi_init(dev, PORT_C);
14398 } else if (HAS_DDI(dev)) {
0e72a5b5
ED
14399 int found;
14400
de31facd
JB
14401 /*
14402 * Haswell uses DDI functions to detect digital outputs.
14403 * On SKL pre-D0 the strap isn't connected, so we assume
14404 * it's there.
14405 */
77179400 14406 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
de31facd 14407 /* WaIgnoreDDIAStrap: skl */
ef11bdb3 14408 if (found || IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
0e72a5b5
ED
14409 intel_ddi_init(dev, PORT_A);
14410
14411 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
14412 * register */
14413 found = I915_READ(SFUSE_STRAP);
14414
14415 if (found & SFUSE_STRAP_DDIB_DETECTED)
14416 intel_ddi_init(dev, PORT_B);
14417 if (found & SFUSE_STRAP_DDIC_DETECTED)
14418 intel_ddi_init(dev, PORT_C);
14419 if (found & SFUSE_STRAP_DDID_DETECTED)
14420 intel_ddi_init(dev, PORT_D);
2800e4c2
RV
14421 /*
14422 * On SKL we don't have a way to detect DDI-E so we rely on VBT.
14423 */
ef11bdb3 14424 if ((IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) &&
2800e4c2
RV
14425 (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
14426 dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
14427 dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
14428 intel_ddi_init(dev, PORT_E);
14429
0e72a5b5 14430 } else if (HAS_PCH_SPLIT(dev)) {
cb0953d7 14431 int found;
5d8a7752 14432 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
270b3042
DV
14433
14434 if (has_edp_a(dev))
14435 intel_dp_init(dev, DP_A, PORT_A);
cb0953d7 14436
dc0fa718 14437 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
461ed3ca 14438 /* PCH SDVOB multiplex with HDMIB */
2a5c0832 14439 found = intel_sdvo_init(dev, PCH_SDVOB, PORT_B);
30ad48b7 14440 if (!found)
e2debe91 14441 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
5eb08b69 14442 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
ab9d7c30 14443 intel_dp_init(dev, PCH_DP_B, PORT_B);
30ad48b7
ZW
14444 }
14445
dc0fa718 14446 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
e2debe91 14447 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
30ad48b7 14448
dc0fa718 14449 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
e2debe91 14450 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
30ad48b7 14451
5eb08b69 14452 if (I915_READ(PCH_DP_C) & DP_DETECTED)
ab9d7c30 14453 intel_dp_init(dev, PCH_DP_C, PORT_C);
5eb08b69 14454
270b3042 14455 if (I915_READ(PCH_DP_D) & DP_DETECTED)
ab9d7c30 14456 intel_dp_init(dev, PCH_DP_D, PORT_D);
666a4537 14457 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
e17ac6db
VS
14458 /*
14459 * The DP_DETECTED bit is the latched state of the DDC
14460 * SDA pin at boot. However since eDP doesn't require DDC
14461 * (no way to plug in a DP->HDMI dongle) the DDC pins for
14462 * eDP ports may have been muxed to an alternate function.
14463 * Thus we can't rely on the DP_DETECTED bit alone to detect
14464 * eDP ports. Consult the VBT as well as DP_DETECTED to
14465 * detect eDP ports.
14466 */
e66eb81d 14467 if (I915_READ(VLV_HDMIB) & SDVO_DETECTED &&
d2182a66 14468 !intel_dp_is_edp(dev, PORT_B))
e66eb81d
VS
14469 intel_hdmi_init(dev, VLV_HDMIB, PORT_B);
14470 if (I915_READ(VLV_DP_B) & DP_DETECTED ||
e17ac6db 14471 intel_dp_is_edp(dev, PORT_B))
e66eb81d 14472 intel_dp_init(dev, VLV_DP_B, PORT_B);
585a94b8 14473
e66eb81d 14474 if (I915_READ(VLV_HDMIC) & SDVO_DETECTED &&
d2182a66 14475 !intel_dp_is_edp(dev, PORT_C))
e66eb81d
VS
14476 intel_hdmi_init(dev, VLV_HDMIC, PORT_C);
14477 if (I915_READ(VLV_DP_C) & DP_DETECTED ||
e17ac6db 14478 intel_dp_is_edp(dev, PORT_C))
e66eb81d 14479 intel_dp_init(dev, VLV_DP_C, PORT_C);
19c03924 14480
9418c1f1 14481 if (IS_CHERRYVIEW(dev)) {
e17ac6db 14482 /* eDP not supported on port D, so don't check VBT */
e66eb81d
VS
14483 if (I915_READ(CHV_HDMID) & SDVO_DETECTED)
14484 intel_hdmi_init(dev, CHV_HDMID, PORT_D);
14485 if (I915_READ(CHV_DP_D) & DP_DETECTED)
14486 intel_dp_init(dev, CHV_DP_D, PORT_D);
9418c1f1
VS
14487 }
14488
3cfca973 14489 intel_dsi_init(dev);
09da55dc 14490 } else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
27185ae1 14491 bool found = false;
7d57382e 14492
e2debe91 14493 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 14494 DRM_DEBUG_KMS("probing SDVOB\n");
2a5c0832 14495 found = intel_sdvo_init(dev, GEN3_SDVOB, PORT_B);
3fec3d2f 14496 if (!found && IS_G4X(dev)) {
b01f2c3a 14497 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
e2debe91 14498 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
b01f2c3a 14499 }
27185ae1 14500
3fec3d2f 14501 if (!found && IS_G4X(dev))
ab9d7c30 14502 intel_dp_init(dev, DP_B, PORT_B);
725e30ad 14503 }
13520b05
KH
14504
14505 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 14506
e2debe91 14507 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 14508 DRM_DEBUG_KMS("probing SDVOC\n");
2a5c0832 14509 found = intel_sdvo_init(dev, GEN3_SDVOC, PORT_C);
b01f2c3a 14510 }
27185ae1 14511
e2debe91 14512 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
27185ae1 14513
3fec3d2f 14514 if (IS_G4X(dev)) {
b01f2c3a 14515 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
e2debe91 14516 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
b01f2c3a 14517 }
3fec3d2f 14518 if (IS_G4X(dev))
ab9d7c30 14519 intel_dp_init(dev, DP_C, PORT_C);
725e30ad 14520 }
27185ae1 14521
3fec3d2f 14522 if (IS_G4X(dev) &&
e7281eab 14523 (I915_READ(DP_D) & DP_DETECTED))
ab9d7c30 14524 intel_dp_init(dev, DP_D, PORT_D);
bad720ff 14525 } else if (IS_GEN2(dev))
79e53945
JB
14526 intel_dvo_init(dev);
14527
103a196f 14528 if (SUPPORTS_TV(dev))
79e53945
JB
14529 intel_tv_init(dev);
14530
0bc12bcb 14531 intel_psr_init(dev);
7c8f8a70 14532
b2784e15 14533 for_each_intel_encoder(dev, encoder) {
4ef69c7a
CW
14534 encoder->base.possible_crtcs = encoder->crtc_mask;
14535 encoder->base.possible_clones =
66a9278e 14536 intel_encoder_clones(encoder);
79e53945 14537 }
47356eb6 14538
dde86e2d 14539 intel_init_pch_refclk(dev);
270b3042
DV
14540
14541 drm_helper_move_panel_connectors_to_head(dev);
79e53945
JB
14542}
14543
14544static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14545{
60a5ca01 14546 struct drm_device *dev = fb->dev;
79e53945 14547 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945 14548
ef2d633e 14549 drm_framebuffer_cleanup(fb);
60a5ca01 14550 mutex_lock(&dev->struct_mutex);
ef2d633e 14551 WARN_ON(!intel_fb->obj->framebuffer_references--);
60a5ca01
VS
14552 drm_gem_object_unreference(&intel_fb->obj->base);
14553 mutex_unlock(&dev->struct_mutex);
79e53945
JB
14554 kfree(intel_fb);
14555}
14556
14557static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 14558 struct drm_file *file,
79e53945
JB
14559 unsigned int *handle)
14560{
14561 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 14562 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 14563
cc917ab4
CW
14564 if (obj->userptr.mm) {
14565 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
14566 return -EINVAL;
14567 }
14568
05394f39 14569 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
14570}
14571
86c98588
RV
14572static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
14573 struct drm_file *file,
14574 unsigned flags, unsigned color,
14575 struct drm_clip_rect *clips,
14576 unsigned num_clips)
14577{
14578 struct drm_device *dev = fb->dev;
14579 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14580 struct drm_i915_gem_object *obj = intel_fb->obj;
14581
14582 mutex_lock(&dev->struct_mutex);
74b4ea1e 14583 intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
86c98588
RV
14584 mutex_unlock(&dev->struct_mutex);
14585
14586 return 0;
14587}
14588
79e53945
JB
14589static const struct drm_framebuffer_funcs intel_fb_funcs = {
14590 .destroy = intel_user_framebuffer_destroy,
14591 .create_handle = intel_user_framebuffer_create_handle,
86c98588 14592 .dirty = intel_user_framebuffer_dirty,
79e53945
JB
14593};
14594
b321803d
DL
14595static
14596u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14597 uint32_t pixel_format)
14598{
14599 u32 gen = INTEL_INFO(dev)->gen;
14600
14601 if (gen >= 9) {
ac484963
VS
14602 int cpp = drm_format_plane_cpp(pixel_format, 0);
14603
b321803d
DL
14604 /* "The stride in bytes must not exceed the of the size of 8K
14605 * pixels and 32K bytes."
14606 */
ac484963 14607 return min(8192 * cpp, 32768);
666a4537 14608 } else if (gen >= 5 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
b321803d
DL
14609 return 32*1024;
14610 } else if (gen >= 4) {
14611 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14612 return 16*1024;
14613 else
14614 return 32*1024;
14615 } else if (gen >= 3) {
14616 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14617 return 8*1024;
14618 else
14619 return 16*1024;
14620 } else {
14621 /* XXX DSPC is limited to 4k tiled */
14622 return 8*1024;
14623 }
14624}
14625
b5ea642a
DV
14626static int intel_framebuffer_init(struct drm_device *dev,
14627 struct intel_framebuffer *intel_fb,
14628 struct drm_mode_fb_cmd2 *mode_cmd,
14629 struct drm_i915_gem_object *obj)
79e53945 14630{
7b49f948 14631 struct drm_i915_private *dev_priv = to_i915(dev);
6761dd31 14632 unsigned int aligned_height;
79e53945 14633 int ret;
b321803d 14634 u32 pitch_limit, stride_alignment;
79e53945 14635
dd4916c5
DV
14636 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14637
2a80eada
DV
14638 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14639 /* Enforce that fb modifier and tiling mode match, but only for
14640 * X-tiled. This is needed for FBC. */
14641 if (!!(obj->tiling_mode == I915_TILING_X) !=
14642 !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14643 DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14644 return -EINVAL;
14645 }
14646 } else {
14647 if (obj->tiling_mode == I915_TILING_X)
14648 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14649 else if (obj->tiling_mode == I915_TILING_Y) {
14650 DRM_DEBUG("No Y tiling for legacy addfb\n");
14651 return -EINVAL;
14652 }
14653 }
14654
9a8f0a12
TU
14655 /* Passed in modifier sanity checking. */
14656 switch (mode_cmd->modifier[0]) {
14657 case I915_FORMAT_MOD_Y_TILED:
14658 case I915_FORMAT_MOD_Yf_TILED:
14659 if (INTEL_INFO(dev)->gen < 9) {
14660 DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14661 mode_cmd->modifier[0]);
14662 return -EINVAL;
14663 }
14664 case DRM_FORMAT_MOD_NONE:
14665 case I915_FORMAT_MOD_X_TILED:
14666 break;
14667 default:
c0f40428
JB
14668 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14669 mode_cmd->modifier[0]);
57cd6508 14670 return -EINVAL;
c16ed4be 14671 }
57cd6508 14672
7b49f948
VS
14673 stride_alignment = intel_fb_stride_alignment(dev_priv,
14674 mode_cmd->modifier[0],
b321803d
DL
14675 mode_cmd->pixel_format);
14676 if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14677 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14678 mode_cmd->pitches[0], stride_alignment);
57cd6508 14679 return -EINVAL;
c16ed4be 14680 }
57cd6508 14681
b321803d
DL
14682 pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14683 mode_cmd->pixel_format);
a35cdaa0 14684 if (mode_cmd->pitches[0] > pitch_limit) {
b321803d
DL
14685 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14686 mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
2a80eada 14687 "tiled" : "linear",
a35cdaa0 14688 mode_cmd->pitches[0], pitch_limit);
5d7bd705 14689 return -EINVAL;
c16ed4be 14690 }
5d7bd705 14691
2a80eada 14692 if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
c16ed4be
CW
14693 mode_cmd->pitches[0] != obj->stride) {
14694 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14695 mode_cmd->pitches[0], obj->stride);
5d7bd705 14696 return -EINVAL;
c16ed4be 14697 }
5d7bd705 14698
57779d06 14699 /* Reject formats not supported by any plane early. */
308e5bcb 14700 switch (mode_cmd->pixel_format) {
57779d06 14701 case DRM_FORMAT_C8:
04b3924d
VS
14702 case DRM_FORMAT_RGB565:
14703 case DRM_FORMAT_XRGB8888:
14704 case DRM_FORMAT_ARGB8888:
57779d06
VS
14705 break;
14706 case DRM_FORMAT_XRGB1555:
c16ed4be 14707 if (INTEL_INFO(dev)->gen > 3) {
4ee62c76
VS
14708 DRM_DEBUG("unsupported pixel format: %s\n",
14709 drm_get_format_name(mode_cmd->pixel_format));
57779d06 14710 return -EINVAL;
c16ed4be 14711 }
57779d06 14712 break;
57779d06 14713 case DRM_FORMAT_ABGR8888:
666a4537
WB
14714 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
14715 INTEL_INFO(dev)->gen < 9) {
6c0fd451
DL
14716 DRM_DEBUG("unsupported pixel format: %s\n",
14717 drm_get_format_name(mode_cmd->pixel_format));
14718 return -EINVAL;
14719 }
14720 break;
14721 case DRM_FORMAT_XBGR8888:
04b3924d 14722 case DRM_FORMAT_XRGB2101010:
57779d06 14723 case DRM_FORMAT_XBGR2101010:
c16ed4be 14724 if (INTEL_INFO(dev)->gen < 4) {
4ee62c76
VS
14725 DRM_DEBUG("unsupported pixel format: %s\n",
14726 drm_get_format_name(mode_cmd->pixel_format));
57779d06 14727 return -EINVAL;
c16ed4be 14728 }
b5626747 14729 break;
7531208b 14730 case DRM_FORMAT_ABGR2101010:
666a4537 14731 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
7531208b
DL
14732 DRM_DEBUG("unsupported pixel format: %s\n",
14733 drm_get_format_name(mode_cmd->pixel_format));
14734 return -EINVAL;
14735 }
14736 break;
04b3924d
VS
14737 case DRM_FORMAT_YUYV:
14738 case DRM_FORMAT_UYVY:
14739 case DRM_FORMAT_YVYU:
14740 case DRM_FORMAT_VYUY:
c16ed4be 14741 if (INTEL_INFO(dev)->gen < 5) {
4ee62c76
VS
14742 DRM_DEBUG("unsupported pixel format: %s\n",
14743 drm_get_format_name(mode_cmd->pixel_format));
57779d06 14744 return -EINVAL;
c16ed4be 14745 }
57cd6508
CW
14746 break;
14747 default:
4ee62c76
VS
14748 DRM_DEBUG("unsupported pixel format: %s\n",
14749 drm_get_format_name(mode_cmd->pixel_format));
57cd6508
CW
14750 return -EINVAL;
14751 }
14752
90f9a336
VS
14753 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14754 if (mode_cmd->offsets[0] != 0)
14755 return -EINVAL;
14756
ec2c981e 14757 aligned_height = intel_fb_align_height(dev, mode_cmd->height,
091df6cb
DV
14758 mode_cmd->pixel_format,
14759 mode_cmd->modifier[0]);
53155c0a
DV
14760 /* FIXME drm helper for size checks (especially planar formats)? */
14761 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14762 return -EINVAL;
14763
c7d73f6a
DV
14764 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14765 intel_fb->obj = obj;
14766
2d7a215f
VS
14767 intel_fill_fb_info(dev_priv, &intel_fb->base);
14768
79e53945
JB
14769 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14770 if (ret) {
14771 DRM_ERROR("framebuffer init failed %d\n", ret);
14772 return ret;
14773 }
14774
0b05e1e0
VS
14775 intel_fb->obj->framebuffer_references++;
14776
79e53945
JB
14777 return 0;
14778}
14779
79e53945
JB
14780static struct drm_framebuffer *
14781intel_user_framebuffer_create(struct drm_device *dev,
14782 struct drm_file *filp,
1eb83451 14783 const struct drm_mode_fb_cmd2 *user_mode_cmd)
79e53945 14784{
dcb1394e 14785 struct drm_framebuffer *fb;
05394f39 14786 struct drm_i915_gem_object *obj;
76dc3769 14787 struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
79e53945 14788
308e5bcb 14789 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
76dc3769 14790 mode_cmd.handles[0]));
c8725226 14791 if (&obj->base == NULL)
cce13ff7 14792 return ERR_PTR(-ENOENT);
79e53945 14793
92907cbb 14794 fb = intel_framebuffer_create(dev, &mode_cmd, obj);
dcb1394e
LW
14795 if (IS_ERR(fb))
14796 drm_gem_object_unreference_unlocked(&obj->base);
14797
14798 return fb;
79e53945
JB
14799}
14800
0695726e 14801#ifndef CONFIG_DRM_FBDEV_EMULATION
0632fef6 14802static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
4520f53a
DV
14803{
14804}
14805#endif
14806
79e53945 14807static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 14808 .fb_create = intel_user_framebuffer_create,
0632fef6 14809 .output_poll_changed = intel_fbdev_output_poll_changed,
5ee67f1c
MR
14810 .atomic_check = intel_atomic_check,
14811 .atomic_commit = intel_atomic_commit,
de419ab6
ML
14812 .atomic_state_alloc = intel_atomic_state_alloc,
14813 .atomic_state_clear = intel_atomic_state_clear,
79e53945
JB
14814};
14815
e70236a8
JB
14816/* Set up chip specific display functions */
14817static void intel_init_display(struct drm_device *dev)
14818{
14819 struct drm_i915_private *dev_priv = dev->dev_private;
14820
ee9300bb
DV
14821 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
14822 dev_priv->display.find_dpll = g4x_find_best_dpll;
ef9348c8
CML
14823 else if (IS_CHERRYVIEW(dev))
14824 dev_priv->display.find_dpll = chv_find_best_dpll;
ee9300bb
DV
14825 else if (IS_VALLEYVIEW(dev))
14826 dev_priv->display.find_dpll = vlv_find_best_dpll;
14827 else if (IS_PINEVIEW(dev))
14828 dev_priv->display.find_dpll = pnv_find_best_dpll;
14829 else
14830 dev_priv->display.find_dpll = i9xx_find_best_dpll;
14831
bc8d7dff
DL
14832 if (INTEL_INFO(dev)->gen >= 9) {
14833 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
5724dbd1
DL
14834 dev_priv->display.get_initial_plane_config =
14835 skylake_get_initial_plane_config;
bc8d7dff
DL
14836 dev_priv->display.crtc_compute_clock =
14837 haswell_crtc_compute_clock;
14838 dev_priv->display.crtc_enable = haswell_crtc_enable;
14839 dev_priv->display.crtc_disable = haswell_crtc_disable;
bc8d7dff 14840 } else if (HAS_DDI(dev)) {
0e8ffe1b 14841 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
5724dbd1
DL
14842 dev_priv->display.get_initial_plane_config =
14843 ironlake_get_initial_plane_config;
797d0259
ACO
14844 dev_priv->display.crtc_compute_clock =
14845 haswell_crtc_compute_clock;
4f771f10
PZ
14846 dev_priv->display.crtc_enable = haswell_crtc_enable;
14847 dev_priv->display.crtc_disable = haswell_crtc_disable;
09b4ddf9 14848 } else if (HAS_PCH_SPLIT(dev)) {
0e8ffe1b 14849 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
5724dbd1
DL
14850 dev_priv->display.get_initial_plane_config =
14851 ironlake_get_initial_plane_config;
3fb37703
ACO
14852 dev_priv->display.crtc_compute_clock =
14853 ironlake_crtc_compute_clock;
76e5a89c
DV
14854 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14855 dev_priv->display.crtc_disable = ironlake_crtc_disable;
666a4537 14856 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
89b667f8 14857 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
5724dbd1
DL
14858 dev_priv->display.get_initial_plane_config =
14859 i9xx_get_initial_plane_config;
d6dfee7a 14860 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
89b667f8
JB
14861 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14862 dev_priv->display.crtc_disable = i9xx_crtc_disable;
f564048e 14863 } else {
0e8ffe1b 14864 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
5724dbd1
DL
14865 dev_priv->display.get_initial_plane_config =
14866 i9xx_get_initial_plane_config;
d6dfee7a 14867 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
76e5a89c
DV
14868 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14869 dev_priv->display.crtc_disable = i9xx_crtc_disable;
f564048e 14870 }
e70236a8 14871
e70236a8 14872 /* Returns the core display clock speed */
ef11bdb3 14873 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
1652d19e
VS
14874 dev_priv->display.get_display_clock_speed =
14875 skylake_get_display_clock_speed;
acd3f3d3
BP
14876 else if (IS_BROXTON(dev))
14877 dev_priv->display.get_display_clock_speed =
14878 broxton_get_display_clock_speed;
1652d19e
VS
14879 else if (IS_BROADWELL(dev))
14880 dev_priv->display.get_display_clock_speed =
14881 broadwell_get_display_clock_speed;
14882 else if (IS_HASWELL(dev))
14883 dev_priv->display.get_display_clock_speed =
14884 haswell_get_display_clock_speed;
666a4537 14885 else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
25eb05fc
JB
14886 dev_priv->display.get_display_clock_speed =
14887 valleyview_get_display_clock_speed;
b37a6434
VS
14888 else if (IS_GEN5(dev))
14889 dev_priv->display.get_display_clock_speed =
14890 ilk_get_display_clock_speed;
a7c66cd8 14891 else if (IS_I945G(dev) || IS_BROADWATER(dev) ||
34edce2f 14892 IS_GEN6(dev) || IS_IVYBRIDGE(dev))
e70236a8
JB
14893 dev_priv->display.get_display_clock_speed =
14894 i945_get_display_clock_speed;
34edce2f
VS
14895 else if (IS_GM45(dev))
14896 dev_priv->display.get_display_clock_speed =
14897 gm45_get_display_clock_speed;
14898 else if (IS_CRESTLINE(dev))
14899 dev_priv->display.get_display_clock_speed =
14900 i965gm_get_display_clock_speed;
14901 else if (IS_PINEVIEW(dev))
14902 dev_priv->display.get_display_clock_speed =
14903 pnv_get_display_clock_speed;
14904 else if (IS_G33(dev) || IS_G4X(dev))
14905 dev_priv->display.get_display_clock_speed =
14906 g33_get_display_clock_speed;
e70236a8
JB
14907 else if (IS_I915G(dev))
14908 dev_priv->display.get_display_clock_speed =
14909 i915_get_display_clock_speed;
257a7ffc 14910 else if (IS_I945GM(dev) || IS_845G(dev))
e70236a8
JB
14911 dev_priv->display.get_display_clock_speed =
14912 i9xx_misc_get_display_clock_speed;
14913 else if (IS_I915GM(dev))
14914 dev_priv->display.get_display_clock_speed =
14915 i915gm_get_display_clock_speed;
14916 else if (IS_I865G(dev))
14917 dev_priv->display.get_display_clock_speed =
14918 i865_get_display_clock_speed;
f0f8a9ce 14919 else if (IS_I85X(dev))
e70236a8 14920 dev_priv->display.get_display_clock_speed =
1b1d2716 14921 i85x_get_display_clock_speed;
623e01e5
VS
14922 else { /* 830 */
14923 WARN(!IS_I830(dev), "Unknown platform. Assuming 133 MHz CDCLK\n");
e70236a8
JB
14924 dev_priv->display.get_display_clock_speed =
14925 i830_get_display_clock_speed;
623e01e5 14926 }
e70236a8 14927
7c10a2b5 14928 if (IS_GEN5(dev)) {
3bb11b53 14929 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
3bb11b53
SJ
14930 } else if (IS_GEN6(dev)) {
14931 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
3bb11b53
SJ
14932 } else if (IS_IVYBRIDGE(dev)) {
14933 /* FIXME: detect B0+ stepping and use auto training */
14934 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
059b2fe9 14935 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3bb11b53 14936 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
27c329ed
ML
14937 if (IS_BROADWELL(dev)) {
14938 dev_priv->display.modeset_commit_cdclk =
14939 broadwell_modeset_commit_cdclk;
14940 dev_priv->display.modeset_calc_cdclk =
14941 broadwell_modeset_calc_cdclk;
14942 }
666a4537 14943 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
27c329ed
ML
14944 dev_priv->display.modeset_commit_cdclk =
14945 valleyview_modeset_commit_cdclk;
14946 dev_priv->display.modeset_calc_cdclk =
14947 valleyview_modeset_calc_cdclk;
f8437dd1 14948 } else if (IS_BROXTON(dev)) {
27c329ed
ML
14949 dev_priv->display.modeset_commit_cdclk =
14950 broxton_modeset_commit_cdclk;
14951 dev_priv->display.modeset_calc_cdclk =
14952 broxton_modeset_calc_cdclk;
e70236a8 14953 }
8c9f3aaf 14954
8c9f3aaf
JB
14955 switch (INTEL_INFO(dev)->gen) {
14956 case 2:
14957 dev_priv->display.queue_flip = intel_gen2_queue_flip;
14958 break;
14959
14960 case 3:
14961 dev_priv->display.queue_flip = intel_gen3_queue_flip;
14962 break;
14963
14964 case 4:
14965 case 5:
14966 dev_priv->display.queue_flip = intel_gen4_queue_flip;
14967 break;
14968
14969 case 6:
14970 dev_priv->display.queue_flip = intel_gen6_queue_flip;
14971 break;
7c9017e5 14972 case 7:
4e0bbc31 14973 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
7c9017e5
JB
14974 dev_priv->display.queue_flip = intel_gen7_queue_flip;
14975 break;
830c81db 14976 case 9:
ba343e02
TU
14977 /* Drop through - unsupported since execlist only. */
14978 default:
14979 /* Default just returns -ENODEV to indicate unsupported */
14980 dev_priv->display.queue_flip = intel_default_queue_flip;
8c9f3aaf 14981 }
7bd688cd 14982
e39b999a 14983 mutex_init(&dev_priv->pps_mutex);
e70236a8
JB
14984}
14985
b690e96c
JB
14986/*
14987 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
14988 * resume, or other times. This quirk makes sure that's the case for
14989 * affected systems.
14990 */
0206e353 14991static void quirk_pipea_force(struct drm_device *dev)
b690e96c
JB
14992{
14993 struct drm_i915_private *dev_priv = dev->dev_private;
14994
14995 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
bc0daf48 14996 DRM_INFO("applying pipe a force quirk\n");
b690e96c
JB
14997}
14998
b6b5d049
VS
14999static void quirk_pipeb_force(struct drm_device *dev)
15000{
15001 struct drm_i915_private *dev_priv = dev->dev_private;
15002
15003 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
15004 DRM_INFO("applying pipe b force quirk\n");
15005}
15006
435793df
KP
15007/*
15008 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
15009 */
15010static void quirk_ssc_force_disable(struct drm_device *dev)
15011{
15012 struct drm_i915_private *dev_priv = dev->dev_private;
15013 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
bc0daf48 15014 DRM_INFO("applying lvds SSC disable quirk\n");
435793df
KP
15015}
15016
4dca20ef 15017/*
5a15ab5b
CE
15018 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
15019 * brightness value
4dca20ef
CE
15020 */
15021static void quirk_invert_brightness(struct drm_device *dev)
15022{
15023 struct drm_i915_private *dev_priv = dev->dev_private;
15024 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
bc0daf48 15025 DRM_INFO("applying inverted panel brightness quirk\n");
435793df
KP
15026}
15027
9c72cc6f
SD
15028/* Some VBT's incorrectly indicate no backlight is present */
15029static void quirk_backlight_present(struct drm_device *dev)
15030{
15031 struct drm_i915_private *dev_priv = dev->dev_private;
15032 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
15033 DRM_INFO("applying backlight present quirk\n");
15034}
15035
b690e96c
JB
15036struct intel_quirk {
15037 int device;
15038 int subsystem_vendor;
15039 int subsystem_device;
15040 void (*hook)(struct drm_device *dev);
15041};
15042
5f85f176
EE
15043/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
15044struct intel_dmi_quirk {
15045 void (*hook)(struct drm_device *dev);
15046 const struct dmi_system_id (*dmi_id_list)[];
15047};
15048
15049static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
15050{
15051 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
15052 return 1;
15053}
15054
15055static const struct intel_dmi_quirk intel_dmi_quirks[] = {
15056 {
15057 .dmi_id_list = &(const struct dmi_system_id[]) {
15058 {
15059 .callback = intel_dmi_reverse_brightness,
15060 .ident = "NCR Corporation",
15061 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
15062 DMI_MATCH(DMI_PRODUCT_NAME, ""),
15063 },
15064 },
15065 { } /* terminating entry */
15066 },
15067 .hook = quirk_invert_brightness,
15068 },
15069};
15070
c43b5634 15071static struct intel_quirk intel_quirks[] = {
b690e96c
JB
15072 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
15073 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
15074
b690e96c
JB
15075 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
15076 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
15077
5f080c0f
VS
15078 /* 830 needs to leave pipe A & dpll A up */
15079 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
15080
b6b5d049
VS
15081 /* 830 needs to leave pipe B & dpll B up */
15082 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
15083
435793df
KP
15084 /* Lenovo U160 cannot use SSC on LVDS */
15085 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
15086
15087 /* Sony Vaio Y cannot use SSC on LVDS */
15088 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
5a15ab5b 15089
be505f64
AH
15090 /* Acer Aspire 5734Z must invert backlight brightness */
15091 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
15092
15093 /* Acer/eMachines G725 */
15094 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
15095
15096 /* Acer/eMachines e725 */
15097 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
15098
15099 /* Acer/Packard Bell NCL20 */
15100 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
15101
15102 /* Acer Aspire 4736Z */
15103 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
0f540c3a
JN
15104
15105 /* Acer Aspire 5336 */
15106 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
2e93a1aa
SD
15107
15108 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
15109 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
d4967d8c 15110
dfb3d47b
SD
15111 /* Acer C720 Chromebook (Core i3 4005U) */
15112 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
15113
b2a9601c 15114 /* Apple Macbook 2,1 (Core 2 T7400) */
15115 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
15116
1b9448b0
JN
15117 /* Apple Macbook 4,1 */
15118 { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
15119
d4967d8c
SD
15120 /* Toshiba CB35 Chromebook (Celeron 2955U) */
15121 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
724cb06f
SD
15122
15123 /* HP Chromebook 14 (Celeron 2955U) */
15124 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
cf6f0af9
JN
15125
15126 /* Dell Chromebook 11 */
15127 { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
9be64eee
JN
15128
15129 /* Dell Chromebook 11 (2015 version) */
15130 { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
b690e96c
JB
15131};
15132
15133static void intel_init_quirks(struct drm_device *dev)
15134{
15135 struct pci_dev *d = dev->pdev;
15136 int i;
15137
15138 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
15139 struct intel_quirk *q = &intel_quirks[i];
15140
15141 if (d->device == q->device &&
15142 (d->subsystem_vendor == q->subsystem_vendor ||
15143 q->subsystem_vendor == PCI_ANY_ID) &&
15144 (d->subsystem_device == q->subsystem_device ||
15145 q->subsystem_device == PCI_ANY_ID))
15146 q->hook(dev);
15147 }
5f85f176
EE
15148 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
15149 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
15150 intel_dmi_quirks[i].hook(dev);
15151 }
b690e96c
JB
15152}
15153
9cce37f4
JB
15154/* Disable the VGA plane that we never use */
15155static void i915_disable_vga(struct drm_device *dev)
15156{
15157 struct drm_i915_private *dev_priv = dev->dev_private;
15158 u8 sr1;
f0f59a00 15159 i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
9cce37f4 15160
2b37c616 15161 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
9cce37f4 15162 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
3fdcf431 15163 outb(SR01, VGA_SR_INDEX);
9cce37f4
JB
15164 sr1 = inb(VGA_SR_DATA);
15165 outb(sr1 | 1<<5, VGA_SR_DATA);
15166 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
15167 udelay(300);
15168
01f5a626 15169 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
9cce37f4
JB
15170 POSTING_READ(vga_reg);
15171}
15172
f817586c
DV
15173void intel_modeset_init_hw(struct drm_device *dev)
15174{
1a617b77
ML
15175 struct drm_i915_private *dev_priv = dev->dev_private;
15176
b6283055 15177 intel_update_cdclk(dev);
1a617b77
ML
15178
15179 dev_priv->atomic_cdclk_freq = dev_priv->cdclk_freq;
15180
f817586c 15181 intel_init_clock_gating(dev);
8090c6b9 15182 intel_enable_gt_powersave(dev);
f817586c
DV
15183}
15184
d93c0372
MR
15185/*
15186 * Calculate what we think the watermarks should be for the state we've read
15187 * out of the hardware and then immediately program those watermarks so that
15188 * we ensure the hardware settings match our internal state.
15189 *
15190 * We can calculate what we think WM's should be by creating a duplicate of the
15191 * current state (which was constructed during hardware readout) and running it
15192 * through the atomic check code to calculate new watermark values in the
15193 * state object.
15194 */
15195static void sanitize_watermarks(struct drm_device *dev)
15196{
15197 struct drm_i915_private *dev_priv = to_i915(dev);
15198 struct drm_atomic_state *state;
15199 struct drm_crtc *crtc;
15200 struct drm_crtc_state *cstate;
15201 struct drm_modeset_acquire_ctx ctx;
15202 int ret;
15203 int i;
15204
15205 /* Only supported on platforms that use atomic watermark design */
ed4a6a7c 15206 if (!dev_priv->display.optimize_watermarks)
d93c0372
MR
15207 return;
15208
15209 /*
15210 * We need to hold connection_mutex before calling duplicate_state so
15211 * that the connector loop is protected.
15212 */
15213 drm_modeset_acquire_init(&ctx, 0);
15214retry:
0cd1262d 15215 ret = drm_modeset_lock_all_ctx(dev, &ctx);
d93c0372
MR
15216 if (ret == -EDEADLK) {
15217 drm_modeset_backoff(&ctx);
15218 goto retry;
15219 } else if (WARN_ON(ret)) {
0cd1262d 15220 goto fail;
d93c0372
MR
15221 }
15222
15223 state = drm_atomic_helper_duplicate_state(dev, &ctx);
15224 if (WARN_ON(IS_ERR(state)))
0cd1262d 15225 goto fail;
d93c0372 15226
ed4a6a7c
MR
15227 /*
15228 * Hardware readout is the only time we don't want to calculate
15229 * intermediate watermarks (since we don't trust the current
15230 * watermarks).
15231 */
15232 to_intel_atomic_state(state)->skip_intermediate_wm = true;
15233
d93c0372
MR
15234 ret = intel_atomic_check(dev, state);
15235 if (ret) {
15236 /*
15237 * If we fail here, it means that the hardware appears to be
15238 * programmed in a way that shouldn't be possible, given our
15239 * understanding of watermark requirements. This might mean a
15240 * mistake in the hardware readout code or a mistake in the
15241 * watermark calculations for a given platform. Raise a WARN
15242 * so that this is noticeable.
15243 *
15244 * If this actually happens, we'll have to just leave the
15245 * BIOS-programmed watermarks untouched and hope for the best.
15246 */
15247 WARN(true, "Could not determine valid watermarks for inherited state\n");
0cd1262d 15248 goto fail;
d93c0372
MR
15249 }
15250
15251 /* Write calculated watermark values back */
15252 to_i915(dev)->wm.config = to_intel_atomic_state(state)->wm_config;
15253 for_each_crtc_in_state(state, crtc, cstate, i) {
15254 struct intel_crtc_state *cs = to_intel_crtc_state(cstate);
15255
ed4a6a7c
MR
15256 cs->wm.need_postvbl_update = true;
15257 dev_priv->display.optimize_watermarks(cs);
d93c0372
MR
15258 }
15259
15260 drm_atomic_state_free(state);
0cd1262d 15261fail:
d93c0372
MR
15262 drm_modeset_drop_locks(&ctx);
15263 drm_modeset_acquire_fini(&ctx);
15264}
15265
79e53945
JB
15266void intel_modeset_init(struct drm_device *dev)
15267{
652c393a 15268 struct drm_i915_private *dev_priv = dev->dev_private;
1fe47785 15269 int sprite, ret;
8cc87b75 15270 enum pipe pipe;
46f297fb 15271 struct intel_crtc *crtc;
79e53945
JB
15272
15273 drm_mode_config_init(dev);
15274
15275 dev->mode_config.min_width = 0;
15276 dev->mode_config.min_height = 0;
15277
019d96cb
DA
15278 dev->mode_config.preferred_depth = 24;
15279 dev->mode_config.prefer_shadow = 1;
15280
25bab385
TU
15281 dev->mode_config.allow_fb_modifiers = true;
15282
e6ecefaa 15283 dev->mode_config.funcs = &intel_mode_funcs;
79e53945 15284
b690e96c
JB
15285 intel_init_quirks(dev);
15286
1fa61106
ED
15287 intel_init_pm(dev);
15288
e3c74757
BW
15289 if (INTEL_INFO(dev)->num_pipes == 0)
15290 return;
15291
69f92f67
LW
15292 /*
15293 * There may be no VBT; and if the BIOS enabled SSC we can
15294 * just keep using it to avoid unnecessary flicker. Whereas if the
15295 * BIOS isn't using it, don't assume it will work even if the VBT
15296 * indicates as much.
15297 */
15298 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
15299 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
15300 DREF_SSC1_ENABLE);
15301
15302 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
15303 DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
15304 bios_lvds_use_ssc ? "en" : "dis",
15305 dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
15306 dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
15307 }
15308 }
15309
e70236a8 15310 intel_init_display(dev);
7c10a2b5 15311 intel_init_audio(dev);
e70236a8 15312
a6c45cf0
CW
15313 if (IS_GEN2(dev)) {
15314 dev->mode_config.max_width = 2048;
15315 dev->mode_config.max_height = 2048;
15316 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
15317 dev->mode_config.max_width = 4096;
15318 dev->mode_config.max_height = 4096;
79e53945 15319 } else {
a6c45cf0
CW
15320 dev->mode_config.max_width = 8192;
15321 dev->mode_config.max_height = 8192;
79e53945 15322 }
068be561 15323
dc41c154
VS
15324 if (IS_845G(dev) || IS_I865G(dev)) {
15325 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
15326 dev->mode_config.cursor_height = 1023;
15327 } else if (IS_GEN2(dev)) {
068be561
DL
15328 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
15329 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
15330 } else {
15331 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
15332 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
15333 }
15334
5d4545ae 15335 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
79e53945 15336
28c97730 15337 DRM_DEBUG_KMS("%d display pipe%s available.\n",
7eb552ae
BW
15338 INTEL_INFO(dev)->num_pipes,
15339 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
79e53945 15340
055e393f 15341 for_each_pipe(dev_priv, pipe) {
8cc87b75 15342 intel_crtc_init(dev, pipe);
3bdcfc0c 15343 for_each_sprite(dev_priv, pipe, sprite) {
1fe47785 15344 ret = intel_plane_init(dev, pipe, sprite);
7f1f3851 15345 if (ret)
06da8da2 15346 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
1fe47785 15347 pipe_name(pipe), sprite_name(pipe, sprite), ret);
7f1f3851 15348 }
79e53945
JB
15349 }
15350
bfa7df01 15351 intel_update_czclk(dev_priv);
e7dc33f3 15352 intel_update_rawclk(dev_priv);
bfa7df01
VS
15353 intel_update_cdclk(dev);
15354
e72f9fbf 15355 intel_shared_dpll_init(dev);
ee7b9f93 15356
9cce37f4
JB
15357 /* Just disable it once at startup */
15358 i915_disable_vga(dev);
79e53945 15359 intel_setup_outputs(dev);
11be49eb 15360
6e9f798d 15361 drm_modeset_lock_all(dev);
043e9bda 15362 intel_modeset_setup_hw_state(dev);
6e9f798d 15363 drm_modeset_unlock_all(dev);
46f297fb 15364
d3fcc808 15365 for_each_intel_crtc(dev, crtc) {
eeebeac5
ML
15366 struct intel_initial_plane_config plane_config = {};
15367
46f297fb
JB
15368 if (!crtc->active)
15369 continue;
15370
46f297fb 15371 /*
46f297fb
JB
15372 * Note that reserving the BIOS fb up front prevents us
15373 * from stuffing other stolen allocations like the ring
15374 * on top. This prevents some ugliness at boot time, and
15375 * can even allow for smooth boot transitions if the BIOS
15376 * fb is large enough for the active pipe configuration.
15377 */
eeebeac5
ML
15378 dev_priv->display.get_initial_plane_config(crtc,
15379 &plane_config);
15380
15381 /*
15382 * If the fb is shared between multiple heads, we'll
15383 * just get the first one.
15384 */
15385 intel_find_initial_plane_obj(crtc, &plane_config);
46f297fb 15386 }
d93c0372
MR
15387
15388 /*
15389 * Make sure hardware watermarks really match the state we read out.
15390 * Note that we need to do this after reconstructing the BIOS fb's
15391 * since the watermark calculation done here will use pstate->fb.
15392 */
15393 sanitize_watermarks(dev);
2c7111db
CW
15394}
15395
7fad798e
DV
15396static void intel_enable_pipe_a(struct drm_device *dev)
15397{
15398 struct intel_connector *connector;
15399 struct drm_connector *crt = NULL;
15400 struct intel_load_detect_pipe load_detect_temp;
208bf9fd 15401 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
7fad798e
DV
15402
15403 /* We can't just switch on the pipe A, we need to set things up with a
15404 * proper mode and output configuration. As a gross hack, enable pipe A
15405 * by enabling the load detect pipe once. */
3a3371ff 15406 for_each_intel_connector(dev, connector) {
7fad798e
DV
15407 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
15408 crt = &connector->base;
15409 break;
15410 }
15411 }
15412
15413 if (!crt)
15414 return;
15415
208bf9fd 15416 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
49172fee 15417 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
7fad798e
DV
15418}
15419
fa555837
DV
15420static bool
15421intel_check_plane_mapping(struct intel_crtc *crtc)
15422{
7eb552ae
BW
15423 struct drm_device *dev = crtc->base.dev;
15424 struct drm_i915_private *dev_priv = dev->dev_private;
649636ef 15425 u32 val;
fa555837 15426
7eb552ae 15427 if (INTEL_INFO(dev)->num_pipes == 1)
fa555837
DV
15428 return true;
15429
649636ef 15430 val = I915_READ(DSPCNTR(!crtc->plane));
fa555837
DV
15431
15432 if ((val & DISPLAY_PLANE_ENABLE) &&
15433 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
15434 return false;
15435
15436 return true;
15437}
15438
02e93c35
VS
15439static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
15440{
15441 struct drm_device *dev = crtc->base.dev;
15442 struct intel_encoder *encoder;
15443
15444 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15445 return true;
15446
15447 return false;
15448}
15449
dd756198
VS
15450static bool intel_encoder_has_connectors(struct intel_encoder *encoder)
15451{
15452 struct drm_device *dev = encoder->base.dev;
15453 struct intel_connector *connector;
15454
15455 for_each_connector_on_encoder(dev, &encoder->base, connector)
15456 return true;
15457
15458 return false;
15459}
15460
24929352
DV
15461static void intel_sanitize_crtc(struct intel_crtc *crtc)
15462{
15463 struct drm_device *dev = crtc->base.dev;
15464 struct drm_i915_private *dev_priv = dev->dev_private;
f0f59a00 15465 i915_reg_t reg = PIPECONF(crtc->config->cpu_transcoder);
24929352 15466
24929352 15467 /* Clear any frame start delays used for debugging left by the BIOS */
24929352
DV
15468 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
15469
d3eaf884 15470 /* restore vblank interrupts to correct state */
9625604c 15471 drm_crtc_vblank_reset(&crtc->base);
d297e103 15472 if (crtc->active) {
f9cd7b88
VS
15473 struct intel_plane *plane;
15474
9625604c 15475 drm_crtc_vblank_on(&crtc->base);
f9cd7b88
VS
15476
15477 /* Disable everything but the primary plane */
15478 for_each_intel_plane_on_crtc(dev, crtc, plane) {
15479 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
15480 continue;
15481
15482 plane->disable_plane(&plane->base, &crtc->base);
15483 }
9625604c 15484 }
d3eaf884 15485
24929352 15486 /* We need to sanitize the plane -> pipe mapping first because this will
fa555837
DV
15487 * disable the crtc (and hence change the state) if it is wrong. Note
15488 * that gen4+ has a fixed plane -> pipe mapping. */
15489 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
24929352
DV
15490 bool plane;
15491
24929352
DV
15492 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
15493 crtc->base.base.id);
15494
15495 /* Pipe has the wrong plane attached and the plane is active.
15496 * Temporarily change the plane mapping and disable everything
15497 * ... */
15498 plane = crtc->plane;
b70709a6 15499 to_intel_plane_state(crtc->base.primary->state)->visible = true;
24929352 15500 crtc->plane = !plane;
b17d48e2 15501 intel_crtc_disable_noatomic(&crtc->base);
24929352 15502 crtc->plane = plane;
24929352 15503 }
24929352 15504
7fad798e
DV
15505 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
15506 crtc->pipe == PIPE_A && !crtc->active) {
15507 /* BIOS forgot to enable pipe A, this mostly happens after
15508 * resume. Force-enable the pipe to fix this, the update_dpms
15509 * call below we restore the pipe to the right state, but leave
15510 * the required bits on. */
15511 intel_enable_pipe_a(dev);
15512 }
15513
24929352
DV
15514 /* Adjust the state of the output pipe according to whether we
15515 * have active connectors/encoders. */
02e93c35 15516 if (!intel_crtc_has_encoders(crtc))
b17d48e2 15517 intel_crtc_disable_noatomic(&crtc->base);
24929352 15518
53d9f4e9 15519 if (crtc->active != crtc->base.state->active) {
02e93c35 15520 struct intel_encoder *encoder;
24929352
DV
15521
15522 /* This can happen either due to bugs in the get_hw_state
b17d48e2
ML
15523 * functions or because of calls to intel_crtc_disable_noatomic,
15524 * or because the pipe is force-enabled due to the
24929352
DV
15525 * pipe A quirk. */
15526 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
15527 crtc->base.base.id,
83d65738 15528 crtc->base.state->enable ? "enabled" : "disabled",
24929352
DV
15529 crtc->active ? "enabled" : "disabled");
15530
4be40c98 15531 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, NULL) < 0);
49d6fa21 15532 crtc->base.state->active = crtc->active;
24929352 15533 crtc->base.enabled = crtc->active;
2aa974c9 15534 crtc->base.state->connector_mask = 0;
e87a52b3 15535 crtc->base.state->encoder_mask = 0;
24929352
DV
15536
15537 /* Because we only establish the connector -> encoder ->
15538 * crtc links if something is active, this means the
15539 * crtc is now deactivated. Break the links. connector
15540 * -> encoder links are only establish when things are
15541 * actually up, hence no need to break them. */
15542 WARN_ON(crtc->active);
15543
2d406bb0 15544 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
24929352 15545 encoder->base.crtc = NULL;
24929352 15546 }
c5ab3bc0 15547
a3ed6aad 15548 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
4cc31489
DV
15549 /*
15550 * We start out with underrun reporting disabled to avoid races.
15551 * For correct bookkeeping mark this on active crtcs.
15552 *
c5ab3bc0
DV
15553 * Also on gmch platforms we dont have any hardware bits to
15554 * disable the underrun reporting. Which means we need to start
15555 * out with underrun reporting disabled also on inactive pipes,
15556 * since otherwise we'll complain about the garbage we read when
15557 * e.g. coming up after runtime pm.
15558 *
4cc31489
DV
15559 * No protection against concurrent access is required - at
15560 * worst a fifo underrun happens which also sets this to false.
15561 */
15562 crtc->cpu_fifo_underrun_disabled = true;
15563 crtc->pch_fifo_underrun_disabled = true;
15564 }
24929352
DV
15565}
15566
15567static void intel_sanitize_encoder(struct intel_encoder *encoder)
15568{
15569 struct intel_connector *connector;
15570 struct drm_device *dev = encoder->base.dev;
15571
15572 /* We need to check both for a crtc link (meaning that the
15573 * encoder is active and trying to read from a pipe) and the
15574 * pipe itself being active. */
15575 bool has_active_crtc = encoder->base.crtc &&
15576 to_intel_crtc(encoder->base.crtc)->active;
15577
dd756198 15578 if (intel_encoder_has_connectors(encoder) && !has_active_crtc) {
24929352
DV
15579 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15580 encoder->base.base.id,
8e329a03 15581 encoder->base.name);
24929352
DV
15582
15583 /* Connector is active, but has no active pipe. This is
15584 * fallout from our resume register restoring. Disable
15585 * the encoder manually again. */
15586 if (encoder->base.crtc) {
15587 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15588 encoder->base.base.id,
8e329a03 15589 encoder->base.name);
24929352 15590 encoder->disable(encoder);
a62d1497
VS
15591 if (encoder->post_disable)
15592 encoder->post_disable(encoder);
24929352 15593 }
7f1950fb 15594 encoder->base.crtc = NULL;
24929352
DV
15595
15596 /* Inconsistent output/port/pipe state happens presumably due to
15597 * a bug in one of the get_hw_state functions. Or someplace else
15598 * in our code, like the register restore mess on resume. Clamp
15599 * things to off as a safer default. */
3a3371ff 15600 for_each_intel_connector(dev, connector) {
24929352
DV
15601 if (connector->encoder != encoder)
15602 continue;
7f1950fb
EE
15603 connector->base.dpms = DRM_MODE_DPMS_OFF;
15604 connector->base.encoder = NULL;
24929352
DV
15605 }
15606 }
15607 /* Enabled encoders without active connectors will be fixed in
15608 * the crtc fixup. */
15609}
15610
04098753 15611void i915_redisable_vga_power_on(struct drm_device *dev)
0fde901f
KM
15612{
15613 struct drm_i915_private *dev_priv = dev->dev_private;
f0f59a00 15614 i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
0fde901f 15615
04098753
ID
15616 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15617 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15618 i915_disable_vga(dev);
15619 }
15620}
15621
15622void i915_redisable_vga(struct drm_device *dev)
15623{
15624 struct drm_i915_private *dev_priv = dev->dev_private;
15625
8dc8a27c
PZ
15626 /* This function can be called both from intel_modeset_setup_hw_state or
15627 * at a very early point in our resume sequence, where the power well
15628 * structures are not yet restored. Since this function is at a very
15629 * paranoid "someone might have enabled VGA while we were not looking"
15630 * level, just check if the power well is enabled instead of trying to
15631 * follow the "don't touch the power well if we don't need it" policy
15632 * the rest of the driver uses. */
6392f847 15633 if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_VGA))
8dc8a27c
PZ
15634 return;
15635
04098753 15636 i915_redisable_vga_power_on(dev);
6392f847
ID
15637
15638 intel_display_power_put(dev_priv, POWER_DOMAIN_VGA);
0fde901f
KM
15639}
15640
f9cd7b88 15641static bool primary_get_hw_state(struct intel_plane *plane)
98ec7739 15642{
f9cd7b88 15643 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
98ec7739 15644
f9cd7b88 15645 return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
d032ffa0
ML
15646}
15647
f9cd7b88
VS
15648/* FIXME read out full plane state for all planes */
15649static void readout_plane_state(struct intel_crtc *crtc)
d032ffa0 15650{
b26d3ea3 15651 struct drm_plane *primary = crtc->base.primary;
f9cd7b88 15652 struct intel_plane_state *plane_state =
b26d3ea3 15653 to_intel_plane_state(primary->state);
d032ffa0 15654
19b8d387 15655 plane_state->visible = crtc->active &&
b26d3ea3
ML
15656 primary_get_hw_state(to_intel_plane(primary));
15657
15658 if (plane_state->visible)
15659 crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
98ec7739
VS
15660}
15661
30e984df 15662static void intel_modeset_readout_hw_state(struct drm_device *dev)
24929352
DV
15663{
15664 struct drm_i915_private *dev_priv = dev->dev_private;
15665 enum pipe pipe;
24929352
DV
15666 struct intel_crtc *crtc;
15667 struct intel_encoder *encoder;
15668 struct intel_connector *connector;
5358901f 15669 int i;
24929352 15670
565602d7
ML
15671 dev_priv->active_crtcs = 0;
15672
d3fcc808 15673 for_each_intel_crtc(dev, crtc) {
565602d7
ML
15674 struct intel_crtc_state *crtc_state = crtc->config;
15675 int pixclk = 0;
3b117c8f 15676
565602d7
ML
15677 __drm_atomic_helper_crtc_destroy_state(&crtc->base, &crtc_state->base);
15678 memset(crtc_state, 0, sizeof(*crtc_state));
15679 crtc_state->base.crtc = &crtc->base;
24929352 15680
565602d7
ML
15681 crtc_state->base.active = crtc_state->base.enable =
15682 dev_priv->display.get_pipe_config(crtc, crtc_state);
15683
15684 crtc->base.enabled = crtc_state->base.enable;
15685 crtc->active = crtc_state->base.active;
15686
15687 if (crtc_state->base.active) {
15688 dev_priv->active_crtcs |= 1 << crtc->pipe;
15689
15690 if (IS_BROADWELL(dev_priv)) {
15691 pixclk = ilk_pipe_pixel_rate(crtc_state);
15692
15693 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
15694 if (crtc_state->ips_enabled)
15695 pixclk = DIV_ROUND_UP(pixclk * 100, 95);
15696 } else if (IS_VALLEYVIEW(dev_priv) ||
15697 IS_CHERRYVIEW(dev_priv) ||
15698 IS_BROXTON(dev_priv))
15699 pixclk = crtc_state->base.adjusted_mode.crtc_clock;
15700 else
15701 WARN_ON(dev_priv->display.modeset_calc_cdclk);
15702 }
15703
15704 dev_priv->min_pixclk[crtc->pipe] = pixclk;
b70709a6 15705
f9cd7b88 15706 readout_plane_state(crtc);
24929352
DV
15707
15708 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
15709 crtc->base.base.id,
15710 crtc->active ? "enabled" : "disabled");
15711 }
15712
5358901f
DV
15713 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15714 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15715
2edd6443
ACO
15716 pll->on = pll->funcs.get_hw_state(dev_priv, pll,
15717 &pll->config.hw_state);
5358901f 15718 pll->active = 0;
3e369b76 15719 pll->config.crtc_mask = 0;
d3fcc808 15720 for_each_intel_crtc(dev, crtc) {
8106ddbd 15721 if (crtc->active && crtc->config->shared_dpll == pll) {
5358901f 15722 pll->active++;
3e369b76 15723 pll->config.crtc_mask |= 1 << crtc->pipe;
1e6f2ddc 15724 }
5358901f 15725 }
5358901f 15726
1e6f2ddc 15727 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
3e369b76 15728 pll->name, pll->config.crtc_mask, pll->on);
bd2bb1b9 15729
3e369b76 15730 if (pll->config.crtc_mask)
bd2bb1b9 15731 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5358901f
DV
15732 }
15733
b2784e15 15734 for_each_intel_encoder(dev, encoder) {
24929352
DV
15735 pipe = 0;
15736
15737 if (encoder->get_hw_state(encoder, &pipe)) {
045ac3b5
JB
15738 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15739 encoder->base.crtc = &crtc->base;
6e3c9717 15740 encoder->get_config(encoder, crtc->config);
24929352
DV
15741 } else {
15742 encoder->base.crtc = NULL;
15743 }
15744
6f2bcceb 15745 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
24929352 15746 encoder->base.base.id,
8e329a03 15747 encoder->base.name,
24929352 15748 encoder->base.crtc ? "enabled" : "disabled",
6f2bcceb 15749 pipe_name(pipe));
24929352
DV
15750 }
15751
3a3371ff 15752 for_each_intel_connector(dev, connector) {
24929352
DV
15753 if (connector->get_hw_state(connector)) {
15754 connector->base.dpms = DRM_MODE_DPMS_ON;
2aa974c9
ML
15755
15756 encoder = connector->encoder;
15757 connector->base.encoder = &encoder->base;
15758
15759 if (encoder->base.crtc &&
15760 encoder->base.crtc->state->active) {
15761 /*
15762 * This has to be done during hardware readout
15763 * because anything calling .crtc_disable may
15764 * rely on the connector_mask being accurate.
15765 */
15766 encoder->base.crtc->state->connector_mask |=
15767 1 << drm_connector_index(&connector->base);
e87a52b3
ML
15768 encoder->base.crtc->state->encoder_mask |=
15769 1 << drm_encoder_index(&encoder->base);
2aa974c9
ML
15770 }
15771
24929352
DV
15772 } else {
15773 connector->base.dpms = DRM_MODE_DPMS_OFF;
15774 connector->base.encoder = NULL;
15775 }
15776 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15777 connector->base.base.id,
c23cc417 15778 connector->base.name,
24929352
DV
15779 connector->base.encoder ? "enabled" : "disabled");
15780 }
7f4c6284
VS
15781
15782 for_each_intel_crtc(dev, crtc) {
15783 crtc->base.hwmode = crtc->config->base.adjusted_mode;
15784
15785 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
15786 if (crtc->base.state->active) {
15787 intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
15788 intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
15789 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
15790
15791 /*
15792 * The initial mode needs to be set in order to keep
15793 * the atomic core happy. It wants a valid mode if the
15794 * crtc's enabled, so we do the above call.
15795 *
15796 * At this point some state updated by the connectors
15797 * in their ->detect() callback has not run yet, so
15798 * no recalculation can be done yet.
15799 *
15800 * Even if we could do a recalculation and modeset
15801 * right now it would cause a double modeset if
15802 * fbdev or userspace chooses a different initial mode.
15803 *
15804 * If that happens, someone indicated they wanted a
15805 * mode change, which means it's safe to do a full
15806 * recalculation.
15807 */
15808 crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
9eca6832
VS
15809
15810 drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
15811 update_scanline_offset(crtc);
7f4c6284 15812 }
e3b247da
VS
15813
15814 intel_pipe_config_sanity_check(dev_priv, crtc->config);
7f4c6284 15815 }
30e984df
DV
15816}
15817
043e9bda
ML
15818/* Scan out the current hw modeset state,
15819 * and sanitizes it to the current state
15820 */
15821static void
15822intel_modeset_setup_hw_state(struct drm_device *dev)
30e984df
DV
15823{
15824 struct drm_i915_private *dev_priv = dev->dev_private;
15825 enum pipe pipe;
30e984df
DV
15826 struct intel_crtc *crtc;
15827 struct intel_encoder *encoder;
35c95375 15828 int i;
30e984df
DV
15829
15830 intel_modeset_readout_hw_state(dev);
24929352
DV
15831
15832 /* HW state is read out, now we need to sanitize this mess. */
b2784e15 15833 for_each_intel_encoder(dev, encoder) {
24929352
DV
15834 intel_sanitize_encoder(encoder);
15835 }
15836
055e393f 15837 for_each_pipe(dev_priv, pipe) {
24929352
DV
15838 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15839 intel_sanitize_crtc(crtc);
6e3c9717
ACO
15840 intel_dump_pipe_config(crtc, crtc->config,
15841 "[setup_hw_state]");
24929352 15842 }
9a935856 15843
d29b2f9d
ACO
15844 intel_modeset_update_connector_atomic_state(dev);
15845
35c95375
DV
15846 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15847 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15848
15849 if (!pll->on || pll->active)
15850 continue;
15851
15852 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15853
2edd6443 15854 pll->funcs.disable(dev_priv, pll);
35c95375
DV
15855 pll->on = false;
15856 }
15857
666a4537 15858 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
6eb1a681
VS
15859 vlv_wm_get_hw_state(dev);
15860 else if (IS_GEN9(dev))
3078999f
PB
15861 skl_wm_get_hw_state(dev);
15862 else if (HAS_PCH_SPLIT(dev))
243e6a44 15863 ilk_wm_get_hw_state(dev);
292b990e
ML
15864
15865 for_each_intel_crtc(dev, crtc) {
15866 unsigned long put_domains;
15867
74bff5f9 15868 put_domains = modeset_get_crtc_power_domains(&crtc->base, crtc->config);
292b990e
ML
15869 if (WARN_ON(put_domains))
15870 modeset_put_power_domains(dev_priv, put_domains);
15871 }
15872 intel_display_set_init_power(dev_priv, false);
010cf73d
PZ
15873
15874 intel_fbc_init_pipe_state(dev_priv);
043e9bda 15875}
7d0bc1ea 15876
043e9bda
ML
15877void intel_display_resume(struct drm_device *dev)
15878{
e2c8b870
ML
15879 struct drm_i915_private *dev_priv = to_i915(dev);
15880 struct drm_atomic_state *state = dev_priv->modeset_restore_state;
15881 struct drm_modeset_acquire_ctx ctx;
043e9bda 15882 int ret;
e2c8b870 15883 bool setup = false;
f30da187 15884
e2c8b870 15885 dev_priv->modeset_restore_state = NULL;
043e9bda 15886
ea49c9ac
ML
15887 /*
15888 * This is a cludge because with real atomic modeset mode_config.mutex
15889 * won't be taken. Unfortunately some probed state like
15890 * audio_codec_enable is still protected by mode_config.mutex, so lock
15891 * it here for now.
15892 */
15893 mutex_lock(&dev->mode_config.mutex);
e2c8b870 15894 drm_modeset_acquire_init(&ctx, 0);
043e9bda 15895
e2c8b870
ML
15896retry:
15897 ret = drm_modeset_lock_all_ctx(dev, &ctx);
043e9bda 15898
e2c8b870
ML
15899 if (ret == 0 && !setup) {
15900 setup = true;
043e9bda 15901
e2c8b870
ML
15902 intel_modeset_setup_hw_state(dev);
15903 i915_redisable_vga(dev);
45e2b5f6 15904 }
8af6cf88 15905
e2c8b870
ML
15906 if (ret == 0 && state) {
15907 struct drm_crtc_state *crtc_state;
15908 struct drm_crtc *crtc;
15909 int i;
043e9bda 15910
e2c8b870
ML
15911 state->acquire_ctx = &ctx;
15912
15913 for_each_crtc_in_state(state, crtc, crtc_state, i) {
15914 /*
15915 * Force recalculation even if we restore
15916 * current state. With fast modeset this may not result
15917 * in a modeset when the state is compatible.
15918 */
15919 crtc_state->mode_changed = true;
15920 }
15921
15922 ret = drm_atomic_commit(state);
043e9bda
ML
15923 }
15924
e2c8b870
ML
15925 if (ret == -EDEADLK) {
15926 drm_modeset_backoff(&ctx);
15927 goto retry;
15928 }
043e9bda 15929
e2c8b870
ML
15930 drm_modeset_drop_locks(&ctx);
15931 drm_modeset_acquire_fini(&ctx);
ea49c9ac 15932 mutex_unlock(&dev->mode_config.mutex);
043e9bda 15933
e2c8b870
ML
15934 if (ret) {
15935 DRM_ERROR("Restoring old state failed with %i\n", ret);
15936 drm_atomic_state_free(state);
15937 }
2c7111db
CW
15938}
15939
15940void intel_modeset_gem_init(struct drm_device *dev)
15941{
484b41dd 15942 struct drm_crtc *c;
2ff8fde1 15943 struct drm_i915_gem_object *obj;
e0d6149b 15944 int ret;
484b41dd 15945
ae48434c 15946 intel_init_gt_powersave(dev);
ae48434c 15947
1833b134 15948 intel_modeset_init_hw(dev);
02e792fb
DV
15949
15950 intel_setup_overlay(dev);
484b41dd
JB
15951
15952 /*
15953 * Make sure any fbs we allocated at startup are properly
15954 * pinned & fenced. When we do the allocation it's too early
15955 * for this.
15956 */
70e1e0ec 15957 for_each_crtc(dev, c) {
2ff8fde1
MR
15958 obj = intel_fb_obj(c->primary->fb);
15959 if (obj == NULL)
484b41dd
JB
15960 continue;
15961
e0d6149b 15962 mutex_lock(&dev->struct_mutex);
3465c580
VS
15963 ret = intel_pin_and_fence_fb_obj(c->primary->fb,
15964 c->primary->state->rotation);
e0d6149b
TU
15965 mutex_unlock(&dev->struct_mutex);
15966 if (ret) {
484b41dd
JB
15967 DRM_ERROR("failed to pin boot fb on pipe %d\n",
15968 to_intel_crtc(c)->pipe);
66e514c1
DA
15969 drm_framebuffer_unreference(c->primary->fb);
15970 c->primary->fb = NULL;
36750f28 15971 c->primary->crtc = c->primary->state->crtc = NULL;
afd65eb4 15972 update_state_fb(c->primary);
36750f28 15973 c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
484b41dd
JB
15974 }
15975 }
0962c3c9
VS
15976
15977 intel_backlight_register(dev);
79e53945
JB
15978}
15979
4932e2c3
ID
15980void intel_connector_unregister(struct intel_connector *intel_connector)
15981{
15982 struct drm_connector *connector = &intel_connector->base;
15983
15984 intel_panel_destroy_backlight(connector);
34ea3d38 15985 drm_connector_unregister(connector);
4932e2c3
ID
15986}
15987
79e53945
JB
15988void intel_modeset_cleanup(struct drm_device *dev)
15989{
652c393a 15990 struct drm_i915_private *dev_priv = dev->dev_private;
19c8054c 15991 struct intel_connector *connector;
652c393a 15992
2eb5252e
ID
15993 intel_disable_gt_powersave(dev);
15994
0962c3c9
VS
15995 intel_backlight_unregister(dev);
15996
fd0c0642
DV
15997 /*
15998 * Interrupts and polling as the first thing to avoid creating havoc.
2eb5252e 15999 * Too much stuff here (turning of connectors, ...) would
fd0c0642
DV
16000 * experience fancy races otherwise.
16001 */
2aeb7d3a 16002 intel_irq_uninstall(dev_priv);
eb21b92b 16003
fd0c0642
DV
16004 /*
16005 * Due to the hpd irq storm handling the hotplug work can re-arm the
16006 * poll handlers. Hence disable polling after hpd handling is shut down.
16007 */
f87ea761 16008 drm_kms_helper_poll_fini(dev);
fd0c0642 16009
723bfd70
JB
16010 intel_unregister_dsm_handler();
16011
c937ab3e 16012 intel_fbc_global_disable(dev_priv);
69341a5e 16013
1630fe75
CW
16014 /* flush any delayed tasks or pending work */
16015 flush_scheduled_work();
16016
db31af1d 16017 /* destroy the backlight and sysfs files before encoders/connectors */
19c8054c
JN
16018 for_each_intel_connector(dev, connector)
16019 connector->unregister(connector);
d9255d57 16020
79e53945 16021 drm_mode_config_cleanup(dev);
4d7bb011
DV
16022
16023 intel_cleanup_overlay(dev);
ae48434c 16024
ae48434c 16025 intel_cleanup_gt_powersave(dev);
f5949141
DV
16026
16027 intel_teardown_gmbus(dev);
79e53945
JB
16028}
16029
f1c79df3
ZW
16030/*
16031 * Return which encoder is currently attached for connector.
16032 */
df0e9248 16033struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
79e53945 16034{
df0e9248
CW
16035 return &intel_attached_encoder(connector)->base;
16036}
f1c79df3 16037
df0e9248
CW
16038void intel_connector_attach_encoder(struct intel_connector *connector,
16039 struct intel_encoder *encoder)
16040{
16041 connector->encoder = encoder;
16042 drm_mode_connector_attach_encoder(&connector->base,
16043 &encoder->base);
79e53945 16044}
28d52043
DA
16045
16046/*
16047 * set vga decode state - true == enable VGA decode
16048 */
16049int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
16050{
16051 struct drm_i915_private *dev_priv = dev->dev_private;
a885b3cc 16052 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
28d52043
DA
16053 u16 gmch_ctrl;
16054
75fa041d
CW
16055 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
16056 DRM_ERROR("failed to read control word\n");
16057 return -EIO;
16058 }
16059
c0cc8a55
CW
16060 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
16061 return 0;
16062
28d52043
DA
16063 if (state)
16064 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
16065 else
16066 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
75fa041d
CW
16067
16068 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
16069 DRM_ERROR("failed to write control word\n");
16070 return -EIO;
16071 }
16072
28d52043
DA
16073 return 0;
16074}
c4a1d9e4 16075
c4a1d9e4 16076struct intel_display_error_state {
ff57f1b0
PZ
16077
16078 u32 power_well_driver;
16079
63b66e5b
CW
16080 int num_transcoders;
16081
c4a1d9e4
CW
16082 struct intel_cursor_error_state {
16083 u32 control;
16084 u32 position;
16085 u32 base;
16086 u32 size;
52331309 16087 } cursor[I915_MAX_PIPES];
c4a1d9e4
CW
16088
16089 struct intel_pipe_error_state {
ddf9c536 16090 bool power_domain_on;
c4a1d9e4 16091 u32 source;
f301b1e1 16092 u32 stat;
52331309 16093 } pipe[I915_MAX_PIPES];
c4a1d9e4
CW
16094
16095 struct intel_plane_error_state {
16096 u32 control;
16097 u32 stride;
16098 u32 size;
16099 u32 pos;
16100 u32 addr;
16101 u32 surface;
16102 u32 tile_offset;
52331309 16103 } plane[I915_MAX_PIPES];
63b66e5b
CW
16104
16105 struct intel_transcoder_error_state {
ddf9c536 16106 bool power_domain_on;
63b66e5b
CW
16107 enum transcoder cpu_transcoder;
16108
16109 u32 conf;
16110
16111 u32 htotal;
16112 u32 hblank;
16113 u32 hsync;
16114 u32 vtotal;
16115 u32 vblank;
16116 u32 vsync;
16117 } transcoder[4];
c4a1d9e4
CW
16118};
16119
16120struct intel_display_error_state *
16121intel_display_capture_error_state(struct drm_device *dev)
16122{
fbee40df 16123 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4 16124 struct intel_display_error_state *error;
63b66e5b
CW
16125 int transcoders[] = {
16126 TRANSCODER_A,
16127 TRANSCODER_B,
16128 TRANSCODER_C,
16129 TRANSCODER_EDP,
16130 };
c4a1d9e4
CW
16131 int i;
16132
63b66e5b
CW
16133 if (INTEL_INFO(dev)->num_pipes == 0)
16134 return NULL;
16135
9d1cb914 16136 error = kzalloc(sizeof(*error), GFP_ATOMIC);
c4a1d9e4
CW
16137 if (error == NULL)
16138 return NULL;
16139
190be112 16140 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
ff57f1b0
PZ
16141 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
16142
055e393f 16143 for_each_pipe(dev_priv, i) {
ddf9c536 16144 error->pipe[i].power_domain_on =
f458ebbc
DV
16145 __intel_display_power_is_enabled(dev_priv,
16146 POWER_DOMAIN_PIPE(i));
ddf9c536 16147 if (!error->pipe[i].power_domain_on)
9d1cb914
PZ
16148 continue;
16149
5efb3e28
VS
16150 error->cursor[i].control = I915_READ(CURCNTR(i));
16151 error->cursor[i].position = I915_READ(CURPOS(i));
16152 error->cursor[i].base = I915_READ(CURBASE(i));
c4a1d9e4
CW
16153
16154 error->plane[i].control = I915_READ(DSPCNTR(i));
16155 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
80ca378b 16156 if (INTEL_INFO(dev)->gen <= 3) {
51889b35 16157 error->plane[i].size = I915_READ(DSPSIZE(i));
80ca378b
PZ
16158 error->plane[i].pos = I915_READ(DSPPOS(i));
16159 }
ca291363
PZ
16160 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
16161 error->plane[i].addr = I915_READ(DSPADDR(i));
c4a1d9e4
CW
16162 if (INTEL_INFO(dev)->gen >= 4) {
16163 error->plane[i].surface = I915_READ(DSPSURF(i));
16164 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
16165 }
16166
c4a1d9e4 16167 error->pipe[i].source = I915_READ(PIPESRC(i));
f301b1e1 16168
3abfce77 16169 if (HAS_GMCH_DISPLAY(dev))
f301b1e1 16170 error->pipe[i].stat = I915_READ(PIPESTAT(i));
63b66e5b
CW
16171 }
16172
16173 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
16174 if (HAS_DDI(dev_priv->dev))
16175 error->num_transcoders++; /* Account for eDP. */
16176
16177 for (i = 0; i < error->num_transcoders; i++) {
16178 enum transcoder cpu_transcoder = transcoders[i];
16179
ddf9c536 16180 error->transcoder[i].power_domain_on =
f458ebbc 16181 __intel_display_power_is_enabled(dev_priv,
38cc1daf 16182 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
ddf9c536 16183 if (!error->transcoder[i].power_domain_on)
9d1cb914
PZ
16184 continue;
16185
63b66e5b
CW
16186 error->transcoder[i].cpu_transcoder = cpu_transcoder;
16187
16188 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
16189 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
16190 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
16191 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
16192 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
16193 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
16194 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
c4a1d9e4
CW
16195 }
16196
16197 return error;
16198}
16199
edc3d884
MK
16200#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
16201
c4a1d9e4 16202void
edc3d884 16203intel_display_print_error_state(struct drm_i915_error_state_buf *m,
c4a1d9e4
CW
16204 struct drm_device *dev,
16205 struct intel_display_error_state *error)
16206{
055e393f 16207 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4
CW
16208 int i;
16209
63b66e5b
CW
16210 if (!error)
16211 return;
16212
edc3d884 16213 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
190be112 16214 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
edc3d884 16215 err_printf(m, "PWR_WELL_CTL2: %08x\n",
ff57f1b0 16216 error->power_well_driver);
055e393f 16217 for_each_pipe(dev_priv, i) {
edc3d884 16218 err_printf(m, "Pipe [%d]:\n", i);
ddf9c536 16219 err_printf(m, " Power: %s\n",
87ad3212 16220 onoff(error->pipe[i].power_domain_on));
edc3d884 16221 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
f301b1e1 16222 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
edc3d884
MK
16223
16224 err_printf(m, "Plane [%d]:\n", i);
16225 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
16226 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
80ca378b 16227 if (INTEL_INFO(dev)->gen <= 3) {
edc3d884
MK
16228 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
16229 err_printf(m, " POS: %08x\n", error->plane[i].pos);
80ca378b 16230 }
4b71a570 16231 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
edc3d884 16232 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
c4a1d9e4 16233 if (INTEL_INFO(dev)->gen >= 4) {
edc3d884
MK
16234 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
16235 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
c4a1d9e4
CW
16236 }
16237
edc3d884
MK
16238 err_printf(m, "Cursor [%d]:\n", i);
16239 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
16240 err_printf(m, " POS: %08x\n", error->cursor[i].position);
16241 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
c4a1d9e4 16242 }
63b66e5b
CW
16243
16244 for (i = 0; i < error->num_transcoders; i++) {
1cf84bb6 16245 err_printf(m, "CPU transcoder: %c\n",
63b66e5b 16246 transcoder_name(error->transcoder[i].cpu_transcoder));
ddf9c536 16247 err_printf(m, " Power: %s\n",
87ad3212 16248 onoff(error->transcoder[i].power_domain_on));
63b66e5b
CW
16249 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
16250 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
16251 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
16252 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
16253 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
16254 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
16255 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
16256 }
c4a1d9e4 16257}