]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/intel_display.c
drm/i915: Convert wait_for(I915_READ(reg)) to intel_wait_for_register()
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
618563e3 27#include <linux/dmi.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
e0dac65e 34#include <drm/drm_edid.h>
760285e7 35#include <drm/drmP.h>
79e53945 36#include "intel_drv.h"
760285e7 37#include <drm/i915_drm.h>
79e53945 38#include "i915_drv.h"
c37efb99 39#include "i915_gem_dmabuf.h"
db18b6a6 40#include "intel_dsi.h"
e5510fac 41#include "i915_trace.h"
319c1d42 42#include <drm/drm_atomic.h>
c196e1d6 43#include <drm/drm_atomic_helper.h>
760285e7
DH
44#include <drm/drm_dp_helper.h>
45#include <drm/drm_crtc_helper.h>
465c120c
MR
46#include <drm/drm_plane_helper.h>
47#include <drm/drm_rect.h>
c0f372b3 48#include <linux/dma_remapping.h>
fd8e058a 49#include <linux/reservation.h>
79e53945 50
5a21b665
DV
51static bool is_mmio_work(struct intel_flip_work *work)
52{
53 return work->mmio_work.func;
54}
55
465c120c 56/* Primary plane formats for gen <= 3 */
568db4f2 57static const uint32_t i8xx_primary_formats[] = {
67fe7dc5
DL
58 DRM_FORMAT_C8,
59 DRM_FORMAT_RGB565,
465c120c 60 DRM_FORMAT_XRGB1555,
67fe7dc5 61 DRM_FORMAT_XRGB8888,
465c120c
MR
62};
63
64/* Primary plane formats for gen >= 4 */
568db4f2 65static const uint32_t i965_primary_formats[] = {
6c0fd451
DL
66 DRM_FORMAT_C8,
67 DRM_FORMAT_RGB565,
68 DRM_FORMAT_XRGB8888,
69 DRM_FORMAT_XBGR8888,
70 DRM_FORMAT_XRGB2101010,
71 DRM_FORMAT_XBGR2101010,
72};
73
74static const uint32_t skl_primary_formats[] = {
67fe7dc5
DL
75 DRM_FORMAT_C8,
76 DRM_FORMAT_RGB565,
77 DRM_FORMAT_XRGB8888,
465c120c 78 DRM_FORMAT_XBGR8888,
67fe7dc5 79 DRM_FORMAT_ARGB8888,
465c120c
MR
80 DRM_FORMAT_ABGR8888,
81 DRM_FORMAT_XRGB2101010,
465c120c 82 DRM_FORMAT_XBGR2101010,
ea916ea0
KM
83 DRM_FORMAT_YUYV,
84 DRM_FORMAT_YVYU,
85 DRM_FORMAT_UYVY,
86 DRM_FORMAT_VYUY,
465c120c
MR
87};
88
3d7d6510
MR
89/* Cursor formats */
90static const uint32_t intel_cursor_formats[] = {
91 DRM_FORMAT_ARGB8888,
92};
93
f1f644dc 94static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 95 struct intel_crtc_state *pipe_config);
18442d08 96static void ironlake_pch_clock_get(struct intel_crtc *crtc,
5cec258b 97 struct intel_crtc_state *pipe_config);
f1f644dc 98
eb1bfe80
JB
99static int intel_framebuffer_init(struct drm_device *dev,
100 struct intel_framebuffer *ifb,
101 struct drm_mode_fb_cmd2 *mode_cmd,
102 struct drm_i915_gem_object *obj);
5b18e57c
DV
103static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
104static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
bc58be60 105static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc);
29407aab 106static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
107 struct intel_link_m_n *m_n,
108 struct intel_link_m_n *m2_n2);
29407aab 109static void ironlake_set_pipeconf(struct drm_crtc *crtc);
229fca97 110static void haswell_set_pipeconf(struct drm_crtc *crtc);
391bf048 111static void haswell_set_pipemisc(struct drm_crtc *crtc);
d288f65f 112static void vlv_prepare_pll(struct intel_crtc *crtc,
5cec258b 113 const struct intel_crtc_state *pipe_config);
d288f65f 114static void chv_prepare_pll(struct intel_crtc *crtc,
5cec258b 115 const struct intel_crtc_state *pipe_config);
5a21b665
DV
116static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
117static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
549e2bfb
CK
118static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
119 struct intel_crtc_state *crtc_state);
bfd16b2a
ML
120static void skylake_pfit_enable(struct intel_crtc *crtc);
121static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
122static void ironlake_pfit_enable(struct intel_crtc *crtc);
043e9bda 123static void intel_modeset_setup_hw_state(struct drm_device *dev);
2622a081 124static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc);
4e5ca60f 125static int ilk_max_pixel_rate(struct drm_atomic_state *state);
324513c0 126static int bxt_calc_cdclk(int max_pixclk);
e7457a9a 127
d4906093 128struct intel_limit {
4c5def93
ACO
129 struct {
130 int min, max;
131 } dot, vco, n, m, m1, m2, p, p1;
132
133 struct {
134 int dot_limit;
135 int p2_slow, p2_fast;
136 } p2;
d4906093 137};
79e53945 138
bfa7df01
VS
139/* returns HPLL frequency in kHz */
140static int valleyview_get_vco(struct drm_i915_private *dev_priv)
141{
142 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
143
144 /* Obtain SKU information */
145 mutex_lock(&dev_priv->sb_lock);
146 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
147 CCK_FUSE_HPLL_FREQ_MASK;
148 mutex_unlock(&dev_priv->sb_lock);
149
150 return vco_freq[hpll_freq] * 1000;
151}
152
c30fec65
VS
153int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
154 const char *name, u32 reg, int ref_freq)
bfa7df01
VS
155{
156 u32 val;
157 int divider;
158
bfa7df01
VS
159 mutex_lock(&dev_priv->sb_lock);
160 val = vlv_cck_read(dev_priv, reg);
161 mutex_unlock(&dev_priv->sb_lock);
162
163 divider = val & CCK_FREQUENCY_VALUES;
164
165 WARN((val & CCK_FREQUENCY_STATUS) !=
166 (divider << CCK_FREQUENCY_STATUS_SHIFT),
167 "%s change in progress\n", name);
168
c30fec65
VS
169 return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
170}
171
172static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
173 const char *name, u32 reg)
174{
175 if (dev_priv->hpll_freq == 0)
176 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
177
178 return vlv_get_cck_clock(dev_priv, name, reg,
179 dev_priv->hpll_freq);
bfa7df01
VS
180}
181
e7dc33f3
VS
182static int
183intel_pch_rawclk(struct drm_i915_private *dev_priv)
d2acd215 184{
e7dc33f3
VS
185 return (I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK) * 1000;
186}
d2acd215 187
e7dc33f3
VS
188static int
189intel_vlv_hrawclk(struct drm_i915_private *dev_priv)
190{
19ab4ed3 191 /* RAWCLK_FREQ_VLV register updated from power well code */
35d38d1f
VS
192 return vlv_get_cck_clock_hpll(dev_priv, "hrawclk",
193 CCK_DISPLAY_REF_CLOCK_CONTROL);
d2acd215
DV
194}
195
e7dc33f3
VS
196static int
197intel_g4x_hrawclk(struct drm_i915_private *dev_priv)
79e50a4f 198{
79e50a4f
JN
199 uint32_t clkcfg;
200
e7dc33f3 201 /* hrawclock is 1/4 the FSB frequency */
79e50a4f
JN
202 clkcfg = I915_READ(CLKCFG);
203 switch (clkcfg & CLKCFG_FSB_MASK) {
204 case CLKCFG_FSB_400:
e7dc33f3 205 return 100000;
79e50a4f 206 case CLKCFG_FSB_533:
e7dc33f3 207 return 133333;
79e50a4f 208 case CLKCFG_FSB_667:
e7dc33f3 209 return 166667;
79e50a4f 210 case CLKCFG_FSB_800:
e7dc33f3 211 return 200000;
79e50a4f 212 case CLKCFG_FSB_1067:
e7dc33f3 213 return 266667;
79e50a4f 214 case CLKCFG_FSB_1333:
e7dc33f3 215 return 333333;
79e50a4f
JN
216 /* these two are just a guess; one of them might be right */
217 case CLKCFG_FSB_1600:
218 case CLKCFG_FSB_1600_ALT:
e7dc33f3 219 return 400000;
79e50a4f 220 default:
e7dc33f3 221 return 133333;
79e50a4f
JN
222 }
223}
224
19ab4ed3 225void intel_update_rawclk(struct drm_i915_private *dev_priv)
e7dc33f3
VS
226{
227 if (HAS_PCH_SPLIT(dev_priv))
228 dev_priv->rawclk_freq = intel_pch_rawclk(dev_priv);
229 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
230 dev_priv->rawclk_freq = intel_vlv_hrawclk(dev_priv);
231 else if (IS_G4X(dev_priv) || IS_PINEVIEW(dev_priv))
232 dev_priv->rawclk_freq = intel_g4x_hrawclk(dev_priv);
233 else
234 return; /* no rawclk on other platforms, or no need to know it */
235
236 DRM_DEBUG_DRIVER("rawclk rate: %d kHz\n", dev_priv->rawclk_freq);
237}
238
bfa7df01
VS
239static void intel_update_czclk(struct drm_i915_private *dev_priv)
240{
666a4537 241 if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
bfa7df01
VS
242 return;
243
244 dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
245 CCK_CZ_CLOCK_CONTROL);
246
247 DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
248}
249
021357ac 250static inline u32 /* units of 100MHz */
21a727b3
VS
251intel_fdi_link_freq(struct drm_i915_private *dev_priv,
252 const struct intel_crtc_state *pipe_config)
021357ac 253{
21a727b3
VS
254 if (HAS_DDI(dev_priv))
255 return pipe_config->port_clock; /* SPLL */
256 else if (IS_GEN5(dev_priv))
257 return ((I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2) * 10000;
e3b247da 258 else
21a727b3 259 return 270000;
021357ac
CW
260}
261
1b6f4958 262static const struct intel_limit intel_limits_i8xx_dac = {
0206e353 263 .dot = { .min = 25000, .max = 350000 },
9c333719 264 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 265 .n = { .min = 2, .max = 16 },
0206e353
AJ
266 .m = { .min = 96, .max = 140 },
267 .m1 = { .min = 18, .max = 26 },
268 .m2 = { .min = 6, .max = 16 },
269 .p = { .min = 4, .max = 128 },
270 .p1 = { .min = 2, .max = 33 },
273e27ca
EA
271 .p2 = { .dot_limit = 165000,
272 .p2_slow = 4, .p2_fast = 2 },
e4b36699
KP
273};
274
1b6f4958 275static const struct intel_limit intel_limits_i8xx_dvo = {
5d536e28 276 .dot = { .min = 25000, .max = 350000 },
9c333719 277 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 278 .n = { .min = 2, .max = 16 },
5d536e28
DV
279 .m = { .min = 96, .max = 140 },
280 .m1 = { .min = 18, .max = 26 },
281 .m2 = { .min = 6, .max = 16 },
282 .p = { .min = 4, .max = 128 },
283 .p1 = { .min = 2, .max = 33 },
284 .p2 = { .dot_limit = 165000,
285 .p2_slow = 4, .p2_fast = 4 },
286};
287
1b6f4958 288static const struct intel_limit intel_limits_i8xx_lvds = {
0206e353 289 .dot = { .min = 25000, .max = 350000 },
9c333719 290 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 291 .n = { .min = 2, .max = 16 },
0206e353
AJ
292 .m = { .min = 96, .max = 140 },
293 .m1 = { .min = 18, .max = 26 },
294 .m2 = { .min = 6, .max = 16 },
295 .p = { .min = 4, .max = 128 },
296 .p1 = { .min = 1, .max = 6 },
273e27ca
EA
297 .p2 = { .dot_limit = 165000,
298 .p2_slow = 14, .p2_fast = 7 },
e4b36699 299};
273e27ca 300
1b6f4958 301static const struct intel_limit intel_limits_i9xx_sdvo = {
0206e353
AJ
302 .dot = { .min = 20000, .max = 400000 },
303 .vco = { .min = 1400000, .max = 2800000 },
304 .n = { .min = 1, .max = 6 },
305 .m = { .min = 70, .max = 120 },
4f7dfb67
PJ
306 .m1 = { .min = 8, .max = 18 },
307 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
308 .p = { .min = 5, .max = 80 },
309 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
310 .p2 = { .dot_limit = 200000,
311 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
312};
313
1b6f4958 314static const struct intel_limit intel_limits_i9xx_lvds = {
0206e353
AJ
315 .dot = { .min = 20000, .max = 400000 },
316 .vco = { .min = 1400000, .max = 2800000 },
317 .n = { .min = 1, .max = 6 },
318 .m = { .min = 70, .max = 120 },
53a7d2d1
PJ
319 .m1 = { .min = 8, .max = 18 },
320 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
321 .p = { .min = 7, .max = 98 },
322 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
323 .p2 = { .dot_limit = 112000,
324 .p2_slow = 14, .p2_fast = 7 },
e4b36699
KP
325};
326
273e27ca 327
1b6f4958 328static const struct intel_limit intel_limits_g4x_sdvo = {
273e27ca
EA
329 .dot = { .min = 25000, .max = 270000 },
330 .vco = { .min = 1750000, .max = 3500000},
331 .n = { .min = 1, .max = 4 },
332 .m = { .min = 104, .max = 138 },
333 .m1 = { .min = 17, .max = 23 },
334 .m2 = { .min = 5, .max = 11 },
335 .p = { .min = 10, .max = 30 },
336 .p1 = { .min = 1, .max = 3},
337 .p2 = { .dot_limit = 270000,
338 .p2_slow = 10,
339 .p2_fast = 10
044c7c41 340 },
e4b36699
KP
341};
342
1b6f4958 343static const struct intel_limit intel_limits_g4x_hdmi = {
273e27ca
EA
344 .dot = { .min = 22000, .max = 400000 },
345 .vco = { .min = 1750000, .max = 3500000},
346 .n = { .min = 1, .max = 4 },
347 .m = { .min = 104, .max = 138 },
348 .m1 = { .min = 16, .max = 23 },
349 .m2 = { .min = 5, .max = 11 },
350 .p = { .min = 5, .max = 80 },
351 .p1 = { .min = 1, .max = 8},
352 .p2 = { .dot_limit = 165000,
353 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
354};
355
1b6f4958 356static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
357 .dot = { .min = 20000, .max = 115000 },
358 .vco = { .min = 1750000, .max = 3500000 },
359 .n = { .min = 1, .max = 3 },
360 .m = { .min = 104, .max = 138 },
361 .m1 = { .min = 17, .max = 23 },
362 .m2 = { .min = 5, .max = 11 },
363 .p = { .min = 28, .max = 112 },
364 .p1 = { .min = 2, .max = 8 },
365 .p2 = { .dot_limit = 0,
366 .p2_slow = 14, .p2_fast = 14
044c7c41 367 },
e4b36699
KP
368};
369
1b6f4958 370static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
371 .dot = { .min = 80000, .max = 224000 },
372 .vco = { .min = 1750000, .max = 3500000 },
373 .n = { .min = 1, .max = 3 },
374 .m = { .min = 104, .max = 138 },
375 .m1 = { .min = 17, .max = 23 },
376 .m2 = { .min = 5, .max = 11 },
377 .p = { .min = 14, .max = 42 },
378 .p1 = { .min = 2, .max = 6 },
379 .p2 = { .dot_limit = 0,
380 .p2_slow = 7, .p2_fast = 7
044c7c41 381 },
e4b36699
KP
382};
383
1b6f4958 384static const struct intel_limit intel_limits_pineview_sdvo = {
0206e353
AJ
385 .dot = { .min = 20000, .max = 400000},
386 .vco = { .min = 1700000, .max = 3500000 },
273e27ca 387 /* Pineview's Ncounter is a ring counter */
0206e353
AJ
388 .n = { .min = 3, .max = 6 },
389 .m = { .min = 2, .max = 256 },
273e27ca 390 /* Pineview only has one combined m divider, which we treat as m2. */
0206e353
AJ
391 .m1 = { .min = 0, .max = 0 },
392 .m2 = { .min = 0, .max = 254 },
393 .p = { .min = 5, .max = 80 },
394 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
395 .p2 = { .dot_limit = 200000,
396 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
397};
398
1b6f4958 399static const struct intel_limit intel_limits_pineview_lvds = {
0206e353
AJ
400 .dot = { .min = 20000, .max = 400000 },
401 .vco = { .min = 1700000, .max = 3500000 },
402 .n = { .min = 3, .max = 6 },
403 .m = { .min = 2, .max = 256 },
404 .m1 = { .min = 0, .max = 0 },
405 .m2 = { .min = 0, .max = 254 },
406 .p = { .min = 7, .max = 112 },
407 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
408 .p2 = { .dot_limit = 112000,
409 .p2_slow = 14, .p2_fast = 14 },
e4b36699
KP
410};
411
273e27ca
EA
412/* Ironlake / Sandybridge
413 *
414 * We calculate clock using (register_value + 2) for N/M1/M2, so here
415 * the range value for them is (actual_value - 2).
416 */
1b6f4958 417static const struct intel_limit intel_limits_ironlake_dac = {
273e27ca
EA
418 .dot = { .min = 25000, .max = 350000 },
419 .vco = { .min = 1760000, .max = 3510000 },
420 .n = { .min = 1, .max = 5 },
421 .m = { .min = 79, .max = 127 },
422 .m1 = { .min = 12, .max = 22 },
423 .m2 = { .min = 5, .max = 9 },
424 .p = { .min = 5, .max = 80 },
425 .p1 = { .min = 1, .max = 8 },
426 .p2 = { .dot_limit = 225000,
427 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
428};
429
1b6f4958 430static const struct intel_limit intel_limits_ironlake_single_lvds = {
273e27ca
EA
431 .dot = { .min = 25000, .max = 350000 },
432 .vco = { .min = 1760000, .max = 3510000 },
433 .n = { .min = 1, .max = 3 },
434 .m = { .min = 79, .max = 118 },
435 .m1 = { .min = 12, .max = 22 },
436 .m2 = { .min = 5, .max = 9 },
437 .p = { .min = 28, .max = 112 },
438 .p1 = { .min = 2, .max = 8 },
439 .p2 = { .dot_limit = 225000,
440 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
441};
442
1b6f4958 443static const struct intel_limit intel_limits_ironlake_dual_lvds = {
273e27ca
EA
444 .dot = { .min = 25000, .max = 350000 },
445 .vco = { .min = 1760000, .max = 3510000 },
446 .n = { .min = 1, .max = 3 },
447 .m = { .min = 79, .max = 127 },
448 .m1 = { .min = 12, .max = 22 },
449 .m2 = { .min = 5, .max = 9 },
450 .p = { .min = 14, .max = 56 },
451 .p1 = { .min = 2, .max = 8 },
452 .p2 = { .dot_limit = 225000,
453 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
454};
455
273e27ca 456/* LVDS 100mhz refclk limits. */
1b6f4958 457static const struct intel_limit intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
458 .dot = { .min = 25000, .max = 350000 },
459 .vco = { .min = 1760000, .max = 3510000 },
460 .n = { .min = 1, .max = 2 },
461 .m = { .min = 79, .max = 126 },
462 .m1 = { .min = 12, .max = 22 },
463 .m2 = { .min = 5, .max = 9 },
464 .p = { .min = 28, .max = 112 },
0206e353 465 .p1 = { .min = 2, .max = 8 },
273e27ca
EA
466 .p2 = { .dot_limit = 225000,
467 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
468};
469
1b6f4958 470static const struct intel_limit intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
471 .dot = { .min = 25000, .max = 350000 },
472 .vco = { .min = 1760000, .max = 3510000 },
473 .n = { .min = 1, .max = 3 },
474 .m = { .min = 79, .max = 126 },
475 .m1 = { .min = 12, .max = 22 },
476 .m2 = { .min = 5, .max = 9 },
477 .p = { .min = 14, .max = 42 },
0206e353 478 .p1 = { .min = 2, .max = 6 },
273e27ca
EA
479 .p2 = { .dot_limit = 225000,
480 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
481};
482
1b6f4958 483static const struct intel_limit intel_limits_vlv = {
f01b7962
VS
484 /*
485 * These are the data rate limits (measured in fast clocks)
486 * since those are the strictest limits we have. The fast
487 * clock and actual rate limits are more relaxed, so checking
488 * them would make no difference.
489 */
490 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
75e53986 491 .vco = { .min = 4000000, .max = 6000000 },
a0c4da24 492 .n = { .min = 1, .max = 7 },
a0c4da24
JB
493 .m1 = { .min = 2, .max = 3 },
494 .m2 = { .min = 11, .max = 156 },
b99ab663 495 .p1 = { .min = 2, .max = 3 },
5fdc9c49 496 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
a0c4da24
JB
497};
498
1b6f4958 499static const struct intel_limit intel_limits_chv = {
ef9348c8
CML
500 /*
501 * These are the data rate limits (measured in fast clocks)
502 * since those are the strictest limits we have. The fast
503 * clock and actual rate limits are more relaxed, so checking
504 * them would make no difference.
505 */
506 .dot = { .min = 25000 * 5, .max = 540000 * 5},
17fe1021 507 .vco = { .min = 4800000, .max = 6480000 },
ef9348c8
CML
508 .n = { .min = 1, .max = 1 },
509 .m1 = { .min = 2, .max = 2 },
510 .m2 = { .min = 24 << 22, .max = 175 << 22 },
511 .p1 = { .min = 2, .max = 4 },
512 .p2 = { .p2_slow = 1, .p2_fast = 14 },
513};
514
1b6f4958 515static const struct intel_limit intel_limits_bxt = {
5ab7b0b7
ID
516 /* FIXME: find real dot limits */
517 .dot = { .min = 0, .max = INT_MAX },
e6292556 518 .vco = { .min = 4800000, .max = 6700000 },
5ab7b0b7
ID
519 .n = { .min = 1, .max = 1 },
520 .m1 = { .min = 2, .max = 2 },
521 /* FIXME: find real m2 limits */
522 .m2 = { .min = 2 << 22, .max = 255 << 22 },
523 .p1 = { .min = 2, .max = 4 },
524 .p2 = { .p2_slow = 1, .p2_fast = 20 },
525};
526
cdba954e
ACO
527static bool
528needs_modeset(struct drm_crtc_state *state)
529{
fc596660 530 return drm_atomic_crtc_needs_modeset(state);
cdba954e
ACO
531}
532
e0638cdf
PZ
533/**
534 * Returns whether any output on the specified pipe is of the specified type
535 */
4093561b 536bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
e0638cdf 537{
409ee761 538 struct drm_device *dev = crtc->base.dev;
e0638cdf
PZ
539 struct intel_encoder *encoder;
540
409ee761 541 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
e0638cdf
PZ
542 if (encoder->type == type)
543 return true;
544
545 return false;
546}
547
d0737e1d
ACO
548/**
549 * Returns whether any output on the specified pipe will have the specified
550 * type after a staged modeset is complete, i.e., the same as
551 * intel_pipe_has_type() but looking at encoder->new_crtc instead of
552 * encoder->crtc.
553 */
a93e255f
ACO
554static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
555 int type)
d0737e1d 556{
a93e255f 557 struct drm_atomic_state *state = crtc_state->base.state;
da3ced29 558 struct drm_connector *connector;
a93e255f 559 struct drm_connector_state *connector_state;
d0737e1d 560 struct intel_encoder *encoder;
a93e255f
ACO
561 int i, num_connectors = 0;
562
da3ced29 563 for_each_connector_in_state(state, connector, connector_state, i) {
a93e255f
ACO
564 if (connector_state->crtc != crtc_state->base.crtc)
565 continue;
566
567 num_connectors++;
d0737e1d 568
a93e255f
ACO
569 encoder = to_intel_encoder(connector_state->best_encoder);
570 if (encoder->type == type)
d0737e1d 571 return true;
a93e255f
ACO
572 }
573
574 WARN_ON(num_connectors == 0);
d0737e1d
ACO
575
576 return false;
577}
578
dccbea3b
ID
579/*
580 * Platform specific helpers to calculate the port PLL loopback- (clock.m),
581 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
582 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
583 * The helpers' return value is the rate of the clock that is fed to the
584 * display engine's pipe which can be the above fast dot clock rate or a
585 * divided-down version of it.
586 */
f2b115e6 587/* m1 is reserved as 0 in Pineview, n is a ring counter */
9e2c8475 588static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
79e53945 589{
2177832f
SL
590 clock->m = clock->m2 + 2;
591 clock->p = clock->p1 * clock->p2;
ed5ca77e 592 if (WARN_ON(clock->n == 0 || clock->p == 0))
dccbea3b 593 return 0;
fb03ac01
VS
594 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
595 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
dccbea3b
ID
596
597 return clock->dot;
2177832f
SL
598}
599
7429e9d4
DV
600static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
601{
602 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
603}
604
9e2c8475 605static int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
2177832f 606{
7429e9d4 607 clock->m = i9xx_dpll_compute_m(clock);
79e53945 608 clock->p = clock->p1 * clock->p2;
ed5ca77e 609 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
dccbea3b 610 return 0;
fb03ac01
VS
611 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
612 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
dccbea3b
ID
613
614 return clock->dot;
79e53945
JB
615}
616
9e2c8475 617static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
589eca67
ID
618{
619 clock->m = clock->m1 * clock->m2;
620 clock->p = clock->p1 * clock->p2;
621 if (WARN_ON(clock->n == 0 || clock->p == 0))
dccbea3b 622 return 0;
589eca67
ID
623 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
624 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
dccbea3b
ID
625
626 return clock->dot / 5;
589eca67
ID
627}
628
9e2c8475 629int chv_calc_dpll_params(int refclk, struct dpll *clock)
ef9348c8
CML
630{
631 clock->m = clock->m1 * clock->m2;
632 clock->p = clock->p1 * clock->p2;
633 if (WARN_ON(clock->n == 0 || clock->p == 0))
dccbea3b 634 return 0;
ef9348c8
CML
635 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
636 clock->n << 22);
637 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
dccbea3b
ID
638
639 return clock->dot / 5;
ef9348c8
CML
640}
641
7c04d1d9 642#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
643/**
644 * Returns whether the given set of divisors are valid for a given refclk with
645 * the given connectors.
646 */
647
1b894b59 648static bool intel_PLL_is_valid(struct drm_device *dev,
1b6f4958 649 const struct intel_limit *limit,
9e2c8475 650 const struct dpll *clock)
79e53945 651{
f01b7962
VS
652 if (clock->n < limit->n.min || limit->n.max < clock->n)
653 INTELPllInvalid("n out of range\n");
79e53945 654 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
0206e353 655 INTELPllInvalid("p1 out of range\n");
79e53945 656 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
0206e353 657 INTELPllInvalid("m2 out of range\n");
79e53945 658 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
0206e353 659 INTELPllInvalid("m1 out of range\n");
f01b7962 660
666a4537
WB
661 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) &&
662 !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev))
f01b7962
VS
663 if (clock->m1 <= clock->m2)
664 INTELPllInvalid("m1 <= m2\n");
665
666a4537 666 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev)) {
f01b7962
VS
667 if (clock->p < limit->p.min || limit->p.max < clock->p)
668 INTELPllInvalid("p out of range\n");
669 if (clock->m < limit->m.min || limit->m.max < clock->m)
670 INTELPllInvalid("m out of range\n");
671 }
672
79e53945 673 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
0206e353 674 INTELPllInvalid("vco out of range\n");
79e53945
JB
675 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
676 * connector, etc., rather than just a single range.
677 */
678 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
0206e353 679 INTELPllInvalid("dot out of range\n");
79e53945
JB
680
681 return true;
682}
683
3b1429d9 684static int
1b6f4958 685i9xx_select_p2_div(const struct intel_limit *limit,
3b1429d9
VS
686 const struct intel_crtc_state *crtc_state,
687 int target)
79e53945 688{
3b1429d9 689 struct drm_device *dev = crtc_state->base.crtc->dev;
79e53945 690
a93e255f 691 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
79e53945 692 /*
a210b028
DV
693 * For LVDS just rely on its current settings for dual-channel.
694 * We haven't figured out how to reliably set up different
695 * single/dual channel state, if we even can.
79e53945 696 */
1974cad0 697 if (intel_is_dual_link_lvds(dev))
3b1429d9 698 return limit->p2.p2_fast;
79e53945 699 else
3b1429d9 700 return limit->p2.p2_slow;
79e53945
JB
701 } else {
702 if (target < limit->p2.dot_limit)
3b1429d9 703 return limit->p2.p2_slow;
79e53945 704 else
3b1429d9 705 return limit->p2.p2_fast;
79e53945 706 }
3b1429d9
VS
707}
708
70e8aa21
ACO
709/*
710 * Returns a set of divisors for the desired target clock with the given
711 * refclk, or FALSE. The returned values represent the clock equation:
712 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
713 *
714 * Target and reference clocks are specified in kHz.
715 *
716 * If match_clock is provided, then best_clock P divider must match the P
717 * divider from @match_clock used for LVDS downclocking.
718 */
3b1429d9 719static bool
1b6f4958 720i9xx_find_best_dpll(const struct intel_limit *limit,
3b1429d9 721 struct intel_crtc_state *crtc_state,
9e2c8475
ACO
722 int target, int refclk, struct dpll *match_clock,
723 struct dpll *best_clock)
3b1429d9
VS
724{
725 struct drm_device *dev = crtc_state->base.crtc->dev;
9e2c8475 726 struct dpll clock;
3b1429d9 727 int err = target;
79e53945 728
0206e353 729 memset(best_clock, 0, sizeof(*best_clock));
79e53945 730
3b1429d9
VS
731 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
732
42158660
ZY
733 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
734 clock.m1++) {
735 for (clock.m2 = limit->m2.min;
736 clock.m2 <= limit->m2.max; clock.m2++) {
c0efc387 737 if (clock.m2 >= clock.m1)
42158660
ZY
738 break;
739 for (clock.n = limit->n.min;
740 clock.n <= limit->n.max; clock.n++) {
741 for (clock.p1 = limit->p1.min;
742 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
743 int this_err;
744
dccbea3b 745 i9xx_calc_dpll_params(refclk, &clock);
ac58c3f0
DV
746 if (!intel_PLL_is_valid(dev, limit,
747 &clock))
748 continue;
749 if (match_clock &&
750 clock.p != match_clock->p)
751 continue;
752
753 this_err = abs(clock.dot - target);
754 if (this_err < err) {
755 *best_clock = clock;
756 err = this_err;
757 }
758 }
759 }
760 }
761 }
762
763 return (err != target);
764}
765
70e8aa21
ACO
766/*
767 * Returns a set of divisors for the desired target clock with the given
768 * refclk, or FALSE. The returned values represent the clock equation:
769 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
770 *
771 * Target and reference clocks are specified in kHz.
772 *
773 * If match_clock is provided, then best_clock P divider must match the P
774 * divider from @match_clock used for LVDS downclocking.
775 */
ac58c3f0 776static bool
1b6f4958 777pnv_find_best_dpll(const struct intel_limit *limit,
a93e255f 778 struct intel_crtc_state *crtc_state,
9e2c8475
ACO
779 int target, int refclk, struct dpll *match_clock,
780 struct dpll *best_clock)
79e53945 781{
3b1429d9 782 struct drm_device *dev = crtc_state->base.crtc->dev;
9e2c8475 783 struct dpll clock;
79e53945
JB
784 int err = target;
785
0206e353 786 memset(best_clock, 0, sizeof(*best_clock));
79e53945 787
3b1429d9
VS
788 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
789
42158660
ZY
790 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
791 clock.m1++) {
792 for (clock.m2 = limit->m2.min;
793 clock.m2 <= limit->m2.max; clock.m2++) {
42158660
ZY
794 for (clock.n = limit->n.min;
795 clock.n <= limit->n.max; clock.n++) {
796 for (clock.p1 = limit->p1.min;
797 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
798 int this_err;
799
dccbea3b 800 pnv_calc_dpll_params(refclk, &clock);
1b894b59
CW
801 if (!intel_PLL_is_valid(dev, limit,
802 &clock))
79e53945 803 continue;
cec2f356
SP
804 if (match_clock &&
805 clock.p != match_clock->p)
806 continue;
79e53945
JB
807
808 this_err = abs(clock.dot - target);
809 if (this_err < err) {
810 *best_clock = clock;
811 err = this_err;
812 }
813 }
814 }
815 }
816 }
817
818 return (err != target);
819}
820
997c030c
ACO
821/*
822 * Returns a set of divisors for the desired target clock with the given
823 * refclk, or FALSE. The returned values represent the clock equation:
824 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
70e8aa21
ACO
825 *
826 * Target and reference clocks are specified in kHz.
827 *
828 * If match_clock is provided, then best_clock P divider must match the P
829 * divider from @match_clock used for LVDS downclocking.
997c030c 830 */
d4906093 831static bool
1b6f4958 832g4x_find_best_dpll(const struct intel_limit *limit,
a93e255f 833 struct intel_crtc_state *crtc_state,
9e2c8475
ACO
834 int target, int refclk, struct dpll *match_clock,
835 struct dpll *best_clock)
d4906093 836{
3b1429d9 837 struct drm_device *dev = crtc_state->base.crtc->dev;
9e2c8475 838 struct dpll clock;
d4906093 839 int max_n;
3b1429d9 840 bool found = false;
6ba770dc
AJ
841 /* approximately equals target * 0.00585 */
842 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
843
844 memset(best_clock, 0, sizeof(*best_clock));
3b1429d9
VS
845
846 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
847
d4906093 848 max_n = limit->n.max;
f77f13e2 849 /* based on hardware requirement, prefer smaller n to precision */
d4906093 850 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 851 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
852 for (clock.m1 = limit->m1.max;
853 clock.m1 >= limit->m1.min; clock.m1--) {
854 for (clock.m2 = limit->m2.max;
855 clock.m2 >= limit->m2.min; clock.m2--) {
856 for (clock.p1 = limit->p1.max;
857 clock.p1 >= limit->p1.min; clock.p1--) {
858 int this_err;
859
dccbea3b 860 i9xx_calc_dpll_params(refclk, &clock);
1b894b59
CW
861 if (!intel_PLL_is_valid(dev, limit,
862 &clock))
d4906093 863 continue;
1b894b59
CW
864
865 this_err = abs(clock.dot - target);
d4906093
ML
866 if (this_err < err_most) {
867 *best_clock = clock;
868 err_most = this_err;
869 max_n = clock.n;
870 found = true;
871 }
872 }
873 }
874 }
875 }
2c07245f
ZW
876 return found;
877}
878
d5dd62bd
ID
879/*
880 * Check if the calculated PLL configuration is more optimal compared to the
881 * best configuration and error found so far. Return the calculated error.
882 */
883static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
9e2c8475
ACO
884 const struct dpll *calculated_clock,
885 const struct dpll *best_clock,
d5dd62bd
ID
886 unsigned int best_error_ppm,
887 unsigned int *error_ppm)
888{
9ca3ba01
ID
889 /*
890 * For CHV ignore the error and consider only the P value.
891 * Prefer a bigger P value based on HW requirements.
892 */
893 if (IS_CHERRYVIEW(dev)) {
894 *error_ppm = 0;
895
896 return calculated_clock->p > best_clock->p;
897 }
898
24be4e46
ID
899 if (WARN_ON_ONCE(!target_freq))
900 return false;
901
d5dd62bd
ID
902 *error_ppm = div_u64(1000000ULL *
903 abs(target_freq - calculated_clock->dot),
904 target_freq);
905 /*
906 * Prefer a better P value over a better (smaller) error if the error
907 * is small. Ensure this preference for future configurations too by
908 * setting the error to 0.
909 */
910 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
911 *error_ppm = 0;
912
913 return true;
914 }
915
916 return *error_ppm + 10 < best_error_ppm;
917}
918
65b3d6a9
ACO
919/*
920 * Returns a set of divisors for the desired target clock with the given
921 * refclk, or FALSE. The returned values represent the clock equation:
922 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
923 */
a0c4da24 924static bool
1b6f4958 925vlv_find_best_dpll(const struct intel_limit *limit,
a93e255f 926 struct intel_crtc_state *crtc_state,
9e2c8475
ACO
927 int target, int refclk, struct dpll *match_clock,
928 struct dpll *best_clock)
a0c4da24 929{
a93e255f 930 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
a919ff14 931 struct drm_device *dev = crtc->base.dev;
9e2c8475 932 struct dpll clock;
69e4f900 933 unsigned int bestppm = 1000000;
27e639bf
VS
934 /* min update 19.2 MHz */
935 int max_n = min(limit->n.max, refclk / 19200);
49e497ef 936 bool found = false;
a0c4da24 937
6b4bf1c4
VS
938 target *= 5; /* fast clock */
939
940 memset(best_clock, 0, sizeof(*best_clock));
a0c4da24
JB
941
942 /* based on hardware requirement, prefer smaller n to precision */
27e639bf 943 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
811bbf05 944 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
889059d8 945 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
c1a9ae43 946 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
6b4bf1c4 947 clock.p = clock.p1 * clock.p2;
a0c4da24 948 /* based on hardware requirement, prefer bigger m1,m2 values */
6b4bf1c4 949 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
d5dd62bd 950 unsigned int ppm;
69e4f900 951
6b4bf1c4
VS
952 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
953 refclk * clock.m1);
954
dccbea3b 955 vlv_calc_dpll_params(refclk, &clock);
43b0ac53 956
f01b7962
VS
957 if (!intel_PLL_is_valid(dev, limit,
958 &clock))
43b0ac53
VS
959 continue;
960
d5dd62bd
ID
961 if (!vlv_PLL_is_optimal(dev, target,
962 &clock,
963 best_clock,
964 bestppm, &ppm))
965 continue;
6b4bf1c4 966
d5dd62bd
ID
967 *best_clock = clock;
968 bestppm = ppm;
969 found = true;
a0c4da24
JB
970 }
971 }
972 }
973 }
a0c4da24 974
49e497ef 975 return found;
a0c4da24 976}
a4fc5ed6 977
65b3d6a9
ACO
978/*
979 * Returns a set of divisors for the desired target clock with the given
980 * refclk, or FALSE. The returned values represent the clock equation:
981 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
982 */
ef9348c8 983static bool
1b6f4958 984chv_find_best_dpll(const struct intel_limit *limit,
a93e255f 985 struct intel_crtc_state *crtc_state,
9e2c8475
ACO
986 int target, int refclk, struct dpll *match_clock,
987 struct dpll *best_clock)
ef9348c8 988{
a93e255f 989 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
a919ff14 990 struct drm_device *dev = crtc->base.dev;
9ca3ba01 991 unsigned int best_error_ppm;
9e2c8475 992 struct dpll clock;
ef9348c8
CML
993 uint64_t m2;
994 int found = false;
995
996 memset(best_clock, 0, sizeof(*best_clock));
9ca3ba01 997 best_error_ppm = 1000000;
ef9348c8
CML
998
999 /*
1000 * Based on hardware doc, the n always set to 1, and m1 always
1001 * set to 2. If requires to support 200Mhz refclk, we need to
1002 * revisit this because n may not 1 anymore.
1003 */
1004 clock.n = 1, clock.m1 = 2;
1005 target *= 5; /* fast clock */
1006
1007 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
1008 for (clock.p2 = limit->p2.p2_fast;
1009 clock.p2 >= limit->p2.p2_slow;
1010 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
9ca3ba01 1011 unsigned int error_ppm;
ef9348c8
CML
1012
1013 clock.p = clock.p1 * clock.p2;
1014
1015 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
1016 clock.n) << 22, refclk * clock.m1);
1017
1018 if (m2 > INT_MAX/clock.m1)
1019 continue;
1020
1021 clock.m2 = m2;
1022
dccbea3b 1023 chv_calc_dpll_params(refclk, &clock);
ef9348c8
CML
1024
1025 if (!intel_PLL_is_valid(dev, limit, &clock))
1026 continue;
1027
9ca3ba01
ID
1028 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
1029 best_error_ppm, &error_ppm))
1030 continue;
1031
1032 *best_clock = clock;
1033 best_error_ppm = error_ppm;
1034 found = true;
ef9348c8
CML
1035 }
1036 }
1037
1038 return found;
1039}
1040
5ab7b0b7 1041bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
9e2c8475 1042 struct dpll *best_clock)
5ab7b0b7 1043{
65b3d6a9 1044 int refclk = 100000;
1b6f4958 1045 const struct intel_limit *limit = &intel_limits_bxt;
5ab7b0b7 1046
65b3d6a9 1047 return chv_find_best_dpll(limit, crtc_state,
5ab7b0b7
ID
1048 target_clock, refclk, NULL, best_clock);
1049}
1050
20ddf665
VS
1051bool intel_crtc_active(struct drm_crtc *crtc)
1052{
1053 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1054
1055 /* Be paranoid as we can arrive here with only partial
1056 * state retrieved from the hardware during setup.
1057 *
241bfc38 1058 * We can ditch the adjusted_mode.crtc_clock check as soon
20ddf665
VS
1059 * as Haswell has gained clock readout/fastboot support.
1060 *
66e514c1 1061 * We can ditch the crtc->primary->fb check as soon as we can
20ddf665 1062 * properly reconstruct framebuffers.
c3d1f436
MR
1063 *
1064 * FIXME: The intel_crtc->active here should be switched to
1065 * crtc->state->active once we have proper CRTC states wired up
1066 * for atomic.
20ddf665 1067 */
c3d1f436 1068 return intel_crtc->active && crtc->primary->state->fb &&
6e3c9717 1069 intel_crtc->config->base.adjusted_mode.crtc_clock;
20ddf665
VS
1070}
1071
a5c961d1
PZ
1072enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1073 enum pipe pipe)
1074{
1075 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1076 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1077
6e3c9717 1078 return intel_crtc->config->cpu_transcoder;
a5c961d1
PZ
1079}
1080
fbf49ea2
VS
1081static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1082{
1083 struct drm_i915_private *dev_priv = dev->dev_private;
f0f59a00 1084 i915_reg_t reg = PIPEDSL(pipe);
fbf49ea2
VS
1085 u32 line1, line2;
1086 u32 line_mask;
1087
1088 if (IS_GEN2(dev))
1089 line_mask = DSL_LINEMASK_GEN2;
1090 else
1091 line_mask = DSL_LINEMASK_GEN3;
1092
1093 line1 = I915_READ(reg) & line_mask;
6adfb1ef 1094 msleep(5);
fbf49ea2
VS
1095 line2 = I915_READ(reg) & line_mask;
1096
1097 return line1 == line2;
1098}
1099
ab7ad7f6
KP
1100/*
1101 * intel_wait_for_pipe_off - wait for pipe to turn off
575f7ab7 1102 * @crtc: crtc whose pipe to wait for
9d0498a2
JB
1103 *
1104 * After disabling a pipe, we can't wait for vblank in the usual way,
1105 * spinning on the vblank interrupt status bit, since we won't actually
1106 * see an interrupt when the pipe is disabled.
1107 *
ab7ad7f6
KP
1108 * On Gen4 and above:
1109 * wait for the pipe register state bit to turn off
1110 *
1111 * Otherwise:
1112 * wait for the display line value to settle (it usually
1113 * ends up stopping at the start of the next frame).
58e10eb9 1114 *
9d0498a2 1115 */
575f7ab7 1116static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
9d0498a2 1117{
575f7ab7 1118 struct drm_device *dev = crtc->base.dev;
9d0498a2 1119 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 1120 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
575f7ab7 1121 enum pipe pipe = crtc->pipe;
ab7ad7f6
KP
1122
1123 if (INTEL_INFO(dev)->gen >= 4) {
f0f59a00 1124 i915_reg_t reg = PIPECONF(cpu_transcoder);
ab7ad7f6
KP
1125
1126 /* Wait for the Pipe State to go off */
b8511f53
CW
1127 if (intel_wait_for_register(dev_priv,
1128 reg, I965_PIPECONF_ACTIVE, 0,
1129 100))
284637d9 1130 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 1131 } else {
ab7ad7f6 1132 /* Wait for the display line to settle */
fbf49ea2 1133 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
284637d9 1134 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 1135 }
79e53945
JB
1136}
1137
b24e7179 1138/* Only for pre-ILK configs */
55607e8a
DV
1139void assert_pll(struct drm_i915_private *dev_priv,
1140 enum pipe pipe, bool state)
b24e7179 1141{
b24e7179
JB
1142 u32 val;
1143 bool cur_state;
1144
649636ef 1145 val = I915_READ(DPLL(pipe));
b24e7179 1146 cur_state = !!(val & DPLL_VCO_ENABLE);
e2c719b7 1147 I915_STATE_WARN(cur_state != state,
b24e7179 1148 "PLL state assertion failure (expected %s, current %s)\n",
87ad3212 1149 onoff(state), onoff(cur_state));
b24e7179 1150}
b24e7179 1151
23538ef1 1152/* XXX: the dsi pll is shared between MIPI DSI ports */
8563b1e8 1153void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
23538ef1
JN
1154{
1155 u32 val;
1156 bool cur_state;
1157
a580516d 1158 mutex_lock(&dev_priv->sb_lock);
23538ef1 1159 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
a580516d 1160 mutex_unlock(&dev_priv->sb_lock);
23538ef1
JN
1161
1162 cur_state = val & DSI_PLL_VCO_EN;
e2c719b7 1163 I915_STATE_WARN(cur_state != state,
23538ef1 1164 "DSI PLL state assertion failure (expected %s, current %s)\n",
87ad3212 1165 onoff(state), onoff(cur_state));
23538ef1 1166}
23538ef1 1167
040484af
JB
1168static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1169 enum pipe pipe, bool state)
1170{
040484af 1171 bool cur_state;
ad80a810
PZ
1172 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1173 pipe);
040484af 1174
2d1fe073 1175 if (HAS_DDI(dev_priv)) {
affa9354 1176 /* DDI does not have a specific FDI_TX register */
649636ef 1177 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
ad80a810 1178 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
bf507ef7 1179 } else {
649636ef 1180 u32 val = I915_READ(FDI_TX_CTL(pipe));
bf507ef7
ED
1181 cur_state = !!(val & FDI_TX_ENABLE);
1182 }
e2c719b7 1183 I915_STATE_WARN(cur_state != state,
040484af 1184 "FDI TX state assertion failure (expected %s, current %s)\n",
87ad3212 1185 onoff(state), onoff(cur_state));
040484af
JB
1186}
1187#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1188#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1189
1190static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1191 enum pipe pipe, bool state)
1192{
040484af
JB
1193 u32 val;
1194 bool cur_state;
1195
649636ef 1196 val = I915_READ(FDI_RX_CTL(pipe));
d63fa0dc 1197 cur_state = !!(val & FDI_RX_ENABLE);
e2c719b7 1198 I915_STATE_WARN(cur_state != state,
040484af 1199 "FDI RX state assertion failure (expected %s, current %s)\n",
87ad3212 1200 onoff(state), onoff(cur_state));
040484af
JB
1201}
1202#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1203#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1204
1205static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1206 enum pipe pipe)
1207{
040484af
JB
1208 u32 val;
1209
1210 /* ILK FDI PLL is always enabled */
7e22dbbb 1211 if (IS_GEN5(dev_priv))
040484af
JB
1212 return;
1213
bf507ef7 1214 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
2d1fe073 1215 if (HAS_DDI(dev_priv))
bf507ef7
ED
1216 return;
1217
649636ef 1218 val = I915_READ(FDI_TX_CTL(pipe));
e2c719b7 1219 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
040484af
JB
1220}
1221
55607e8a
DV
1222void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1223 enum pipe pipe, bool state)
040484af 1224{
040484af 1225 u32 val;
55607e8a 1226 bool cur_state;
040484af 1227
649636ef 1228 val = I915_READ(FDI_RX_CTL(pipe));
55607e8a 1229 cur_state = !!(val & FDI_RX_PLL_ENABLE);
e2c719b7 1230 I915_STATE_WARN(cur_state != state,
55607e8a 1231 "FDI RX PLL assertion failure (expected %s, current %s)\n",
87ad3212 1232 onoff(state), onoff(cur_state));
040484af
JB
1233}
1234
b680c37a
DV
1235void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1236 enum pipe pipe)
ea0760cf 1237{
bedd4dba 1238 struct drm_device *dev = dev_priv->dev;
f0f59a00 1239 i915_reg_t pp_reg;
ea0760cf
JB
1240 u32 val;
1241 enum pipe panel_pipe = PIPE_A;
0de3b485 1242 bool locked = true;
ea0760cf 1243
bedd4dba
JN
1244 if (WARN_ON(HAS_DDI(dev)))
1245 return;
1246
1247 if (HAS_PCH_SPLIT(dev)) {
1248 u32 port_sel;
1249
ea0760cf 1250 pp_reg = PCH_PP_CONTROL;
bedd4dba
JN
1251 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1252
1253 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1254 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1255 panel_pipe = PIPE_B;
1256 /* XXX: else fix for eDP */
666a4537 1257 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
bedd4dba
JN
1258 /* presumably write lock depends on pipe, not port select */
1259 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1260 panel_pipe = pipe;
ea0760cf
JB
1261 } else {
1262 pp_reg = PP_CONTROL;
bedd4dba
JN
1263 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1264 panel_pipe = PIPE_B;
ea0760cf
JB
1265 }
1266
1267 val = I915_READ(pp_reg);
1268 if (!(val & PANEL_POWER_ON) ||
ec49ba2d 1269 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
ea0760cf
JB
1270 locked = false;
1271
e2c719b7 1272 I915_STATE_WARN(panel_pipe == pipe && locked,
ea0760cf 1273 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 1274 pipe_name(pipe));
ea0760cf
JB
1275}
1276
93ce0ba6
JN
1277static void assert_cursor(struct drm_i915_private *dev_priv,
1278 enum pipe pipe, bool state)
1279{
1280 struct drm_device *dev = dev_priv->dev;
1281 bool cur_state;
1282
d9d82081 1283 if (IS_845G(dev) || IS_I865G(dev))
0b87c24e 1284 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
d9d82081 1285 else
5efb3e28 1286 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
93ce0ba6 1287
e2c719b7 1288 I915_STATE_WARN(cur_state != state,
93ce0ba6 1289 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
87ad3212 1290 pipe_name(pipe), onoff(state), onoff(cur_state));
93ce0ba6
JN
1291}
1292#define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1293#define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1294
b840d907
JB
1295void assert_pipe(struct drm_i915_private *dev_priv,
1296 enum pipe pipe, bool state)
b24e7179 1297{
63d7bbe9 1298 bool cur_state;
702e7a56
PZ
1299 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1300 pipe);
4feed0eb 1301 enum intel_display_power_domain power_domain;
b24e7179 1302
b6b5d049
VS
1303 /* if we need the pipe quirk it must be always on */
1304 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1305 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
8e636784
DV
1306 state = true;
1307
4feed0eb
ID
1308 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1309 if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
649636ef 1310 u32 val = I915_READ(PIPECONF(cpu_transcoder));
69310161 1311 cur_state = !!(val & PIPECONF_ENABLE);
4feed0eb
ID
1312
1313 intel_display_power_put(dev_priv, power_domain);
1314 } else {
1315 cur_state = false;
69310161
PZ
1316 }
1317
e2c719b7 1318 I915_STATE_WARN(cur_state != state,
63d7bbe9 1319 "pipe %c assertion failure (expected %s, current %s)\n",
87ad3212 1320 pipe_name(pipe), onoff(state), onoff(cur_state));
b24e7179
JB
1321}
1322
931872fc
CW
1323static void assert_plane(struct drm_i915_private *dev_priv,
1324 enum plane plane, bool state)
b24e7179 1325{
b24e7179 1326 u32 val;
931872fc 1327 bool cur_state;
b24e7179 1328
649636ef 1329 val = I915_READ(DSPCNTR(plane));
931872fc 1330 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
e2c719b7 1331 I915_STATE_WARN(cur_state != state,
931872fc 1332 "plane %c assertion failure (expected %s, current %s)\n",
87ad3212 1333 plane_name(plane), onoff(state), onoff(cur_state));
b24e7179
JB
1334}
1335
931872fc
CW
1336#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1337#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1338
b24e7179
JB
1339static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1340 enum pipe pipe)
1341{
653e1026 1342 struct drm_device *dev = dev_priv->dev;
649636ef 1343 int i;
b24e7179 1344
653e1026
VS
1345 /* Primary planes are fixed to pipes on gen4+ */
1346 if (INTEL_INFO(dev)->gen >= 4) {
649636ef 1347 u32 val = I915_READ(DSPCNTR(pipe));
e2c719b7 1348 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
28c05794
AJ
1349 "plane %c assertion failure, should be disabled but not\n",
1350 plane_name(pipe));
19ec1358 1351 return;
28c05794 1352 }
19ec1358 1353
b24e7179 1354 /* Need to check both planes against the pipe */
055e393f 1355 for_each_pipe(dev_priv, i) {
649636ef
VS
1356 u32 val = I915_READ(DSPCNTR(i));
1357 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
b24e7179 1358 DISPPLANE_SEL_PIPE_SHIFT;
e2c719b7 1359 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
1360 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1361 plane_name(i), pipe_name(pipe));
b24e7179
JB
1362 }
1363}
1364
19332d7a
JB
1365static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1366 enum pipe pipe)
1367{
20674eef 1368 struct drm_device *dev = dev_priv->dev;
649636ef 1369 int sprite;
19332d7a 1370
7feb8b88 1371 if (INTEL_INFO(dev)->gen >= 9) {
3bdcfc0c 1372 for_each_sprite(dev_priv, pipe, sprite) {
649636ef 1373 u32 val = I915_READ(PLANE_CTL(pipe, sprite));
e2c719b7 1374 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
7feb8b88
DL
1375 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1376 sprite, pipe_name(pipe));
1377 }
666a4537 1378 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
3bdcfc0c 1379 for_each_sprite(dev_priv, pipe, sprite) {
649636ef 1380 u32 val = I915_READ(SPCNTR(pipe, sprite));
e2c719b7 1381 I915_STATE_WARN(val & SP_ENABLE,
20674eef 1382 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1fe47785 1383 sprite_name(pipe, sprite), pipe_name(pipe));
20674eef
VS
1384 }
1385 } else if (INTEL_INFO(dev)->gen >= 7) {
649636ef 1386 u32 val = I915_READ(SPRCTL(pipe));
e2c719b7 1387 I915_STATE_WARN(val & SPRITE_ENABLE,
06da8da2 1388 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef
VS
1389 plane_name(pipe), pipe_name(pipe));
1390 } else if (INTEL_INFO(dev)->gen >= 5) {
649636ef 1391 u32 val = I915_READ(DVSCNTR(pipe));
e2c719b7 1392 I915_STATE_WARN(val & DVS_ENABLE,
06da8da2 1393 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef 1394 plane_name(pipe), pipe_name(pipe));
19332d7a
JB
1395 }
1396}
1397
08c71e5e
VS
1398static void assert_vblank_disabled(struct drm_crtc *crtc)
1399{
e2c719b7 1400 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
08c71e5e
VS
1401 drm_crtc_vblank_put(crtc);
1402}
1403
7abd4b35
ACO
1404void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1405 enum pipe pipe)
92f2584a 1406{
92f2584a
JB
1407 u32 val;
1408 bool enabled;
1409
649636ef 1410 val = I915_READ(PCH_TRANSCONF(pipe));
92f2584a 1411 enabled = !!(val & TRANS_ENABLE);
e2c719b7 1412 I915_STATE_WARN(enabled,
9db4a9c7
JB
1413 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1414 pipe_name(pipe));
92f2584a
JB
1415}
1416
4e634389
KP
1417static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1418 enum pipe pipe, u32 port_sel, u32 val)
f0575e92
KP
1419{
1420 if ((val & DP_PORT_EN) == 0)
1421 return false;
1422
2d1fe073 1423 if (HAS_PCH_CPT(dev_priv)) {
f0f59a00 1424 u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
f0575e92
KP
1425 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1426 return false;
2d1fe073 1427 } else if (IS_CHERRYVIEW(dev_priv)) {
44f37d1f
CML
1428 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1429 return false;
f0575e92
KP
1430 } else {
1431 if ((val & DP_PIPE_MASK) != (pipe << 30))
1432 return false;
1433 }
1434 return true;
1435}
1436
1519b995
KP
1437static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1438 enum pipe pipe, u32 val)
1439{
dc0fa718 1440 if ((val & SDVO_ENABLE) == 0)
1519b995
KP
1441 return false;
1442
2d1fe073 1443 if (HAS_PCH_CPT(dev_priv)) {
dc0fa718 1444 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1519b995 1445 return false;
2d1fe073 1446 } else if (IS_CHERRYVIEW(dev_priv)) {
44f37d1f
CML
1447 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1448 return false;
1519b995 1449 } else {
dc0fa718 1450 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1519b995
KP
1451 return false;
1452 }
1453 return true;
1454}
1455
1456static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1457 enum pipe pipe, u32 val)
1458{
1459 if ((val & LVDS_PORT_EN) == 0)
1460 return false;
1461
2d1fe073 1462 if (HAS_PCH_CPT(dev_priv)) {
1519b995
KP
1463 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1464 return false;
1465 } else {
1466 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1467 return false;
1468 }
1469 return true;
1470}
1471
1472static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1473 enum pipe pipe, u32 val)
1474{
1475 if ((val & ADPA_DAC_ENABLE) == 0)
1476 return false;
2d1fe073 1477 if (HAS_PCH_CPT(dev_priv)) {
1519b995
KP
1478 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1479 return false;
1480 } else {
1481 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1482 return false;
1483 }
1484 return true;
1485}
1486
291906f1 1487static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0f59a00
VS
1488 enum pipe pipe, i915_reg_t reg,
1489 u32 port_sel)
291906f1 1490{
47a05eca 1491 u32 val = I915_READ(reg);
e2c719b7 1492 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
291906f1 1493 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
f0f59a00 1494 i915_mmio_reg_offset(reg), pipe_name(pipe));
de9a35ab 1495
2d1fe073 1496 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & DP_PORT_EN) == 0
75c5da27 1497 && (val & DP_PIPEB_SELECT),
de9a35ab 1498 "IBX PCH dp port still using transcoder B\n");
291906f1
JB
1499}
1500
1501static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
f0f59a00 1502 enum pipe pipe, i915_reg_t reg)
291906f1 1503{
47a05eca 1504 u32 val = I915_READ(reg);
e2c719b7 1505 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
23c99e77 1506 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
f0f59a00 1507 i915_mmio_reg_offset(reg), pipe_name(pipe));
de9a35ab 1508
2d1fe073 1509 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & SDVO_ENABLE) == 0
75c5da27 1510 && (val & SDVO_PIPE_B_SELECT),
de9a35ab 1511 "IBX PCH hdmi port still using transcoder B\n");
291906f1
JB
1512}
1513
1514static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1515 enum pipe pipe)
1516{
291906f1 1517 u32 val;
291906f1 1518
f0575e92
KP
1519 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1520 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1521 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1 1522
649636ef 1523 val = I915_READ(PCH_ADPA);
e2c719b7 1524 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
291906f1 1525 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1526 pipe_name(pipe));
291906f1 1527
649636ef 1528 val = I915_READ(PCH_LVDS);
e2c719b7 1529 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
291906f1 1530 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1531 pipe_name(pipe));
291906f1 1532
e2debe91
PZ
1533 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1534 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1535 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
291906f1
JB
1536}
1537
cd2d34d9
VS
1538static void _vlv_enable_pll(struct intel_crtc *crtc,
1539 const struct intel_crtc_state *pipe_config)
1540{
1541 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1542 enum pipe pipe = crtc->pipe;
1543
1544 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1545 POSTING_READ(DPLL(pipe));
1546 udelay(150);
1547
2c30b43b
CW
1548 if (intel_wait_for_register(dev_priv,
1549 DPLL(pipe),
1550 DPLL_LOCK_VLV,
1551 DPLL_LOCK_VLV,
1552 1))
cd2d34d9
VS
1553 DRM_ERROR("DPLL %d failed to lock\n", pipe);
1554}
1555
d288f65f 1556static void vlv_enable_pll(struct intel_crtc *crtc,
5cec258b 1557 const struct intel_crtc_state *pipe_config)
87442f73 1558{
cd2d34d9 1559 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8bd3f301 1560 enum pipe pipe = crtc->pipe;
87442f73 1561
8bd3f301 1562 assert_pipe_disabled(dev_priv, pipe);
87442f73 1563
87442f73 1564 /* PLL is protected by panel, make sure we can write it */
7d1a83cb 1565 assert_panel_unlocked(dev_priv, pipe);
87442f73 1566
cd2d34d9
VS
1567 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1568 _vlv_enable_pll(crtc, pipe_config);
426115cf 1569
8bd3f301
VS
1570 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1571 POSTING_READ(DPLL_MD(pipe));
87442f73
DV
1572}
1573
cd2d34d9
VS
1574
1575static void _chv_enable_pll(struct intel_crtc *crtc,
1576 const struct intel_crtc_state *pipe_config)
9d556c99 1577{
cd2d34d9 1578 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8bd3f301 1579 enum pipe pipe = crtc->pipe;
9d556c99 1580 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9d556c99
CML
1581 u32 tmp;
1582
a580516d 1583 mutex_lock(&dev_priv->sb_lock);
9d556c99
CML
1584
1585 /* Enable back the 10bit clock to display controller */
1586 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1587 tmp |= DPIO_DCLKP_EN;
1588 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1589
54433e91
VS
1590 mutex_unlock(&dev_priv->sb_lock);
1591
9d556c99
CML
1592 /*
1593 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1594 */
1595 udelay(1);
1596
1597 /* Enable PLL */
d288f65f 1598 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
9d556c99
CML
1599
1600 /* Check PLL is locked */
6b18826a
CW
1601 if (intel_wait_for_register(dev_priv,
1602 DPLL(pipe), DPLL_LOCK_VLV, DPLL_LOCK_VLV,
1603 1))
9d556c99 1604 DRM_ERROR("PLL %d failed to lock\n", pipe);
cd2d34d9
VS
1605}
1606
1607static void chv_enable_pll(struct intel_crtc *crtc,
1608 const struct intel_crtc_state *pipe_config)
1609{
1610 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1611 enum pipe pipe = crtc->pipe;
1612
1613 assert_pipe_disabled(dev_priv, pipe);
1614
1615 /* PLL is protected by panel, make sure we can write it */
1616 assert_panel_unlocked(dev_priv, pipe);
1617
1618 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1619 _chv_enable_pll(crtc, pipe_config);
9d556c99 1620
c231775c
VS
1621 if (pipe != PIPE_A) {
1622 /*
1623 * WaPixelRepeatModeFixForC0:chv
1624 *
1625 * DPLLCMD is AWOL. Use chicken bits to propagate
1626 * the value from DPLLBMD to either pipe B or C.
1627 */
1628 I915_WRITE(CBR4_VLV, pipe == PIPE_B ? CBR_DPLLBMD_PIPE_B : CBR_DPLLBMD_PIPE_C);
1629 I915_WRITE(DPLL_MD(PIPE_B), pipe_config->dpll_hw_state.dpll_md);
1630 I915_WRITE(CBR4_VLV, 0);
1631 dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
1632
1633 /*
1634 * DPLLB VGA mode also seems to cause problems.
1635 * We should always have it disabled.
1636 */
1637 WARN_ON((I915_READ(DPLL(PIPE_B)) & DPLL_VGA_MODE_DIS) == 0);
1638 } else {
1639 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1640 POSTING_READ(DPLL_MD(pipe));
1641 }
9d556c99
CML
1642}
1643
1c4e0274
VS
1644static int intel_num_dvo_pipes(struct drm_device *dev)
1645{
1646 struct intel_crtc *crtc;
1647 int count = 0;
1648
1649 for_each_intel_crtc(dev, crtc)
3538b9df 1650 count += crtc->base.state->active &&
409ee761 1651 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1c4e0274
VS
1652
1653 return count;
1654}
1655
66e3d5c0 1656static void i9xx_enable_pll(struct intel_crtc *crtc)
63d7bbe9 1657{
66e3d5c0
DV
1658 struct drm_device *dev = crtc->base.dev;
1659 struct drm_i915_private *dev_priv = dev->dev_private;
f0f59a00 1660 i915_reg_t reg = DPLL(crtc->pipe);
6e3c9717 1661 u32 dpll = crtc->config->dpll_hw_state.dpll;
63d7bbe9 1662
66e3d5c0 1663 assert_pipe_disabled(dev_priv, crtc->pipe);
58c6eaa2 1664
63d7bbe9 1665 /* PLL is protected by panel, make sure we can write it */
66e3d5c0
DV
1666 if (IS_MOBILE(dev) && !IS_I830(dev))
1667 assert_panel_unlocked(dev_priv, crtc->pipe);
63d7bbe9 1668
1c4e0274
VS
1669 /* Enable DVO 2x clock on both PLLs if necessary */
1670 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1671 /*
1672 * It appears to be important that we don't enable this
1673 * for the current pipe before otherwise configuring the
1674 * PLL. No idea how this should be handled if multiple
1675 * DVO outputs are enabled simultaneosly.
1676 */
1677 dpll |= DPLL_DVO_2X_MODE;
1678 I915_WRITE(DPLL(!crtc->pipe),
1679 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1680 }
66e3d5c0 1681
c2b63374
VS
1682 /*
1683 * Apparently we need to have VGA mode enabled prior to changing
1684 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1685 * dividers, even though the register value does change.
1686 */
1687 I915_WRITE(reg, 0);
1688
8e7a65aa
VS
1689 I915_WRITE(reg, dpll);
1690
66e3d5c0
DV
1691 /* Wait for the clocks to stabilize. */
1692 POSTING_READ(reg);
1693 udelay(150);
1694
1695 if (INTEL_INFO(dev)->gen >= 4) {
1696 I915_WRITE(DPLL_MD(crtc->pipe),
6e3c9717 1697 crtc->config->dpll_hw_state.dpll_md);
66e3d5c0
DV
1698 } else {
1699 /* The pixel multiplier can only be updated once the
1700 * DPLL is enabled and the clocks are stable.
1701 *
1702 * So write it again.
1703 */
1704 I915_WRITE(reg, dpll);
1705 }
63d7bbe9
JB
1706
1707 /* We do this three times for luck */
66e3d5c0 1708 I915_WRITE(reg, dpll);
63d7bbe9
JB
1709 POSTING_READ(reg);
1710 udelay(150); /* wait for warmup */
66e3d5c0 1711 I915_WRITE(reg, dpll);
63d7bbe9
JB
1712 POSTING_READ(reg);
1713 udelay(150); /* wait for warmup */
66e3d5c0 1714 I915_WRITE(reg, dpll);
63d7bbe9
JB
1715 POSTING_READ(reg);
1716 udelay(150); /* wait for warmup */
1717}
1718
1719/**
50b44a44 1720 * i9xx_disable_pll - disable a PLL
63d7bbe9
JB
1721 * @dev_priv: i915 private structure
1722 * @pipe: pipe PLL to disable
1723 *
1724 * Disable the PLL for @pipe, making sure the pipe is off first.
1725 *
1726 * Note! This is for pre-ILK only.
1727 */
1c4e0274 1728static void i9xx_disable_pll(struct intel_crtc *crtc)
63d7bbe9 1729{
1c4e0274
VS
1730 struct drm_device *dev = crtc->base.dev;
1731 struct drm_i915_private *dev_priv = dev->dev_private;
1732 enum pipe pipe = crtc->pipe;
1733
1734 /* Disable DVO 2x clock on both PLLs if necessary */
1735 if (IS_I830(dev) &&
409ee761 1736 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
3538b9df 1737 !intel_num_dvo_pipes(dev)) {
1c4e0274
VS
1738 I915_WRITE(DPLL(PIPE_B),
1739 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1740 I915_WRITE(DPLL(PIPE_A),
1741 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1742 }
1743
b6b5d049
VS
1744 /* Don't disable pipe or pipe PLLs if needed */
1745 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1746 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
63d7bbe9
JB
1747 return;
1748
1749 /* Make sure the pipe isn't still relying on us */
1750 assert_pipe_disabled(dev_priv, pipe);
1751
b8afb911 1752 I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
50b44a44 1753 POSTING_READ(DPLL(pipe));
63d7bbe9
JB
1754}
1755
f6071166
JB
1756static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1757{
b8afb911 1758 u32 val;
f6071166
JB
1759
1760 /* Make sure the pipe isn't still relying on us */
1761 assert_pipe_disabled(dev_priv, pipe);
1762
03ed5cbf
VS
1763 val = DPLL_INTEGRATED_REF_CLK_VLV |
1764 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1765 if (pipe != PIPE_A)
1766 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1767
f6071166
JB
1768 I915_WRITE(DPLL(pipe), val);
1769 POSTING_READ(DPLL(pipe));
076ed3b2
CML
1770}
1771
1772static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1773{
d752048d 1774 enum dpio_channel port = vlv_pipe_to_channel(pipe);
076ed3b2
CML
1775 u32 val;
1776
a11b0703
VS
1777 /* Make sure the pipe isn't still relying on us */
1778 assert_pipe_disabled(dev_priv, pipe);
076ed3b2 1779
60bfe44f
VS
1780 val = DPLL_SSC_REF_CLK_CHV |
1781 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
a11b0703
VS
1782 if (pipe != PIPE_A)
1783 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
03ed5cbf 1784
a11b0703
VS
1785 I915_WRITE(DPLL(pipe), val);
1786 POSTING_READ(DPLL(pipe));
d752048d 1787
a580516d 1788 mutex_lock(&dev_priv->sb_lock);
d752048d
VS
1789
1790 /* Disable 10bit clock to display controller */
1791 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1792 val &= ~DPIO_DCLKP_EN;
1793 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1794
a580516d 1795 mutex_unlock(&dev_priv->sb_lock);
f6071166
JB
1796}
1797
e4607fcf 1798void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
9b6de0a1
VS
1799 struct intel_digital_port *dport,
1800 unsigned int expected_mask)
89b667f8
JB
1801{
1802 u32 port_mask;
f0f59a00 1803 i915_reg_t dpll_reg;
89b667f8 1804
e4607fcf
CML
1805 switch (dport->port) {
1806 case PORT_B:
89b667f8 1807 port_mask = DPLL_PORTB_READY_MASK;
00fc31b7 1808 dpll_reg = DPLL(0);
e4607fcf
CML
1809 break;
1810 case PORT_C:
89b667f8 1811 port_mask = DPLL_PORTC_READY_MASK;
00fc31b7 1812 dpll_reg = DPLL(0);
9b6de0a1 1813 expected_mask <<= 4;
00fc31b7
CML
1814 break;
1815 case PORT_D:
1816 port_mask = DPLL_PORTD_READY_MASK;
1817 dpll_reg = DPIO_PHY_STATUS;
e4607fcf
CML
1818 break;
1819 default:
1820 BUG();
1821 }
89b667f8 1822
370004d3
CW
1823 if (intel_wait_for_register(dev_priv,
1824 dpll_reg, port_mask, expected_mask,
1825 1000))
9b6de0a1
VS
1826 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1827 port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
89b667f8
JB
1828}
1829
b8a4f404
PZ
1830static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1831 enum pipe pipe)
040484af 1832{
23670b32 1833 struct drm_device *dev = dev_priv->dev;
7c26e5c6 1834 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
e2b78267 1835 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
f0f59a00
VS
1836 i915_reg_t reg;
1837 uint32_t val, pipeconf_val;
040484af 1838
040484af 1839 /* Make sure PCH DPLL is enabled */
8106ddbd 1840 assert_shared_dpll_enabled(dev_priv, intel_crtc->config->shared_dpll);
040484af
JB
1841
1842 /* FDI must be feeding us bits for PCH ports */
1843 assert_fdi_tx_enabled(dev_priv, pipe);
1844 assert_fdi_rx_enabled(dev_priv, pipe);
1845
23670b32
DV
1846 if (HAS_PCH_CPT(dev)) {
1847 /* Workaround: Set the timing override bit before enabling the
1848 * pch transcoder. */
1849 reg = TRANS_CHICKEN2(pipe);
1850 val = I915_READ(reg);
1851 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1852 I915_WRITE(reg, val);
59c859d6 1853 }
23670b32 1854
ab9412ba 1855 reg = PCH_TRANSCONF(pipe);
040484af 1856 val = I915_READ(reg);
5f7f726d 1857 pipeconf_val = I915_READ(PIPECONF(pipe));
e9bcff5c 1858
2d1fe073 1859 if (HAS_PCH_IBX(dev_priv)) {
e9bcff5c 1860 /*
c5de7c6f
VS
1861 * Make the BPC in transcoder be consistent with
1862 * that in pipeconf reg. For HDMI we must use 8bpc
1863 * here for both 8bpc and 12bpc.
e9bcff5c 1864 */
dfd07d72 1865 val &= ~PIPECONF_BPC_MASK;
c5de7c6f
VS
1866 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_HDMI))
1867 val |= PIPECONF_8BPC;
1868 else
1869 val |= pipeconf_val & PIPECONF_BPC_MASK;
e9bcff5c 1870 }
5f7f726d
PZ
1871
1872 val &= ~TRANS_INTERLACE_MASK;
1873 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
2d1fe073 1874 if (HAS_PCH_IBX(dev_priv) &&
409ee761 1875 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7c26e5c6
PZ
1876 val |= TRANS_LEGACY_INTERLACED_ILK;
1877 else
1878 val |= TRANS_INTERLACED;
5f7f726d
PZ
1879 else
1880 val |= TRANS_PROGRESSIVE;
1881
040484af 1882 I915_WRITE(reg, val | TRANS_ENABLE);
650fbd84
CW
1883 if (intel_wait_for_register(dev_priv,
1884 reg, TRANS_STATE_ENABLE, TRANS_STATE_ENABLE,
1885 100))
4bb6f1f3 1886 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
040484af
JB
1887}
1888
8fb033d7 1889static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
937bb610 1890 enum transcoder cpu_transcoder)
040484af 1891{
8fb033d7 1892 u32 val, pipeconf_val;
8fb033d7 1893
8fb033d7 1894 /* FDI must be feeding us bits for PCH ports */
1a240d4d 1895 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
937bb610 1896 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
8fb033d7 1897
223a6fdf 1898 /* Workaround: set timing override bit. */
36c0d0cf 1899 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
23670b32 1900 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
36c0d0cf 1901 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
223a6fdf 1902
25f3ef11 1903 val = TRANS_ENABLE;
937bb610 1904 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
8fb033d7 1905
9a76b1c6
PZ
1906 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1907 PIPECONF_INTERLACED_ILK)
a35f2679 1908 val |= TRANS_INTERLACED;
8fb033d7
PZ
1909 else
1910 val |= TRANS_PROGRESSIVE;
1911
ab9412ba 1912 I915_WRITE(LPT_TRANSCONF, val);
d9f96244
CW
1913 if (intel_wait_for_register(dev_priv,
1914 LPT_TRANSCONF,
1915 TRANS_STATE_ENABLE,
1916 TRANS_STATE_ENABLE,
1917 100))
937bb610 1918 DRM_ERROR("Failed to enable PCH transcoder\n");
8fb033d7
PZ
1919}
1920
b8a4f404
PZ
1921static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1922 enum pipe pipe)
040484af 1923{
23670b32 1924 struct drm_device *dev = dev_priv->dev;
f0f59a00
VS
1925 i915_reg_t reg;
1926 uint32_t val;
040484af
JB
1927
1928 /* FDI relies on the transcoder */
1929 assert_fdi_tx_disabled(dev_priv, pipe);
1930 assert_fdi_rx_disabled(dev_priv, pipe);
1931
291906f1
JB
1932 /* Ports must be off as well */
1933 assert_pch_ports_disabled(dev_priv, pipe);
1934
ab9412ba 1935 reg = PCH_TRANSCONF(pipe);
040484af
JB
1936 val = I915_READ(reg);
1937 val &= ~TRANS_ENABLE;
1938 I915_WRITE(reg, val);
1939 /* wait for PCH transcoder off, transcoder state */
a7d04662
CW
1940 if (intel_wait_for_register(dev_priv,
1941 reg, TRANS_STATE_ENABLE, 0,
1942 50))
4bb6f1f3 1943 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
23670b32 1944
c465613b 1945 if (HAS_PCH_CPT(dev)) {
23670b32
DV
1946 /* Workaround: Clear the timing override chicken bit again. */
1947 reg = TRANS_CHICKEN2(pipe);
1948 val = I915_READ(reg);
1949 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1950 I915_WRITE(reg, val);
1951 }
040484af
JB
1952}
1953
ab4d966c 1954static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
8fb033d7 1955{
8fb033d7
PZ
1956 u32 val;
1957
ab9412ba 1958 val = I915_READ(LPT_TRANSCONF);
8fb033d7 1959 val &= ~TRANS_ENABLE;
ab9412ba 1960 I915_WRITE(LPT_TRANSCONF, val);
8fb033d7 1961 /* wait for PCH transcoder off, transcoder state */
dfdb4749
CW
1962 if (intel_wait_for_register(dev_priv,
1963 LPT_TRANSCONF, TRANS_STATE_ENABLE, 0,
1964 50))
8a52fd9f 1965 DRM_ERROR("Failed to disable PCH transcoder\n");
223a6fdf
PZ
1966
1967 /* Workaround: clear timing override bit. */
36c0d0cf 1968 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
23670b32 1969 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
36c0d0cf 1970 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
040484af
JB
1971}
1972
b24e7179 1973/**
309cfea8 1974 * intel_enable_pipe - enable a pipe, asserting requirements
0372264a 1975 * @crtc: crtc responsible for the pipe
b24e7179 1976 *
0372264a 1977 * Enable @crtc's pipe, making sure that various hardware specific requirements
b24e7179 1978 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
b24e7179 1979 */
e1fdc473 1980static void intel_enable_pipe(struct intel_crtc *crtc)
b24e7179 1981{
0372264a
PZ
1982 struct drm_device *dev = crtc->base.dev;
1983 struct drm_i915_private *dev_priv = dev->dev_private;
1984 enum pipe pipe = crtc->pipe;
1a70a728 1985 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1a240d4d 1986 enum pipe pch_transcoder;
f0f59a00 1987 i915_reg_t reg;
b24e7179
JB
1988 u32 val;
1989
9e2ee2dd
VS
1990 DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
1991
58c6eaa2 1992 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 1993 assert_cursor_disabled(dev_priv, pipe);
58c6eaa2
DV
1994 assert_sprites_disabled(dev_priv, pipe);
1995
2d1fe073 1996 if (HAS_PCH_LPT(dev_priv))
cc391bbb
PZ
1997 pch_transcoder = TRANSCODER_A;
1998 else
1999 pch_transcoder = pipe;
2000
b24e7179
JB
2001 /*
2002 * A pipe without a PLL won't actually be able to drive bits from
2003 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2004 * need the check.
2005 */
2d1fe073 2006 if (HAS_GMCH_DISPLAY(dev_priv))
a65347ba 2007 if (crtc->config->has_dsi_encoder)
23538ef1
JN
2008 assert_dsi_pll_enabled(dev_priv);
2009 else
2010 assert_pll_enabled(dev_priv, pipe);
040484af 2011 else {
6e3c9717 2012 if (crtc->config->has_pch_encoder) {
040484af 2013 /* if driving the PCH, we need FDI enabled */
cc391bbb 2014 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1a240d4d
DV
2015 assert_fdi_tx_pll_enabled(dev_priv,
2016 (enum pipe) cpu_transcoder);
040484af
JB
2017 }
2018 /* FIXME: assert CPU port conditions for SNB+ */
2019 }
b24e7179 2020
702e7a56 2021 reg = PIPECONF(cpu_transcoder);
b24e7179 2022 val = I915_READ(reg);
7ad25d48 2023 if (val & PIPECONF_ENABLE) {
b6b5d049
VS
2024 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2025 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
00d70b15 2026 return;
7ad25d48 2027 }
00d70b15
CW
2028
2029 I915_WRITE(reg, val | PIPECONF_ENABLE);
851855d8 2030 POSTING_READ(reg);
b7792d8b
VS
2031
2032 /*
2033 * Until the pipe starts DSL will read as 0, which would cause
2034 * an apparent vblank timestamp jump, which messes up also the
2035 * frame count when it's derived from the timestamps. So let's
2036 * wait for the pipe to start properly before we call
2037 * drm_crtc_vblank_on()
2038 */
2039 if (dev->max_vblank_count == 0 &&
2040 wait_for(intel_get_crtc_scanline(crtc) != crtc->scanline_offset, 50))
2041 DRM_ERROR("pipe %c didn't start\n", pipe_name(pipe));
b24e7179
JB
2042}
2043
2044/**
309cfea8 2045 * intel_disable_pipe - disable a pipe, asserting requirements
575f7ab7 2046 * @crtc: crtc whose pipes is to be disabled
b24e7179 2047 *
575f7ab7
VS
2048 * Disable the pipe of @crtc, making sure that various hardware
2049 * specific requirements are met, if applicable, e.g. plane
2050 * disabled, panel fitter off, etc.
b24e7179
JB
2051 *
2052 * Will wait until the pipe has shut down before returning.
2053 */
575f7ab7 2054static void intel_disable_pipe(struct intel_crtc *crtc)
b24e7179 2055{
575f7ab7 2056 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
6e3c9717 2057 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
575f7ab7 2058 enum pipe pipe = crtc->pipe;
f0f59a00 2059 i915_reg_t reg;
b24e7179
JB
2060 u32 val;
2061
9e2ee2dd
VS
2062 DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2063
b24e7179
JB
2064 /*
2065 * Make sure planes won't keep trying to pump pixels to us,
2066 * or we might hang the display.
2067 */
2068 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2069 assert_cursor_disabled(dev_priv, pipe);
19332d7a 2070 assert_sprites_disabled(dev_priv, pipe);
b24e7179 2071
702e7a56 2072 reg = PIPECONF(cpu_transcoder);
b24e7179 2073 val = I915_READ(reg);
00d70b15
CW
2074 if ((val & PIPECONF_ENABLE) == 0)
2075 return;
2076
67adc644
VS
2077 /*
2078 * Double wide has implications for planes
2079 * so best keep it disabled when not needed.
2080 */
6e3c9717 2081 if (crtc->config->double_wide)
67adc644
VS
2082 val &= ~PIPECONF_DOUBLE_WIDE;
2083
2084 /* Don't disable pipe or pipe PLLs if needed */
b6b5d049
VS
2085 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2086 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
67adc644
VS
2087 val &= ~PIPECONF_ENABLE;
2088
2089 I915_WRITE(reg, val);
2090 if ((val & PIPECONF_ENABLE) == 0)
2091 intel_wait_for_pipe_off(crtc);
b24e7179
JB
2092}
2093
693db184
CW
2094static bool need_vtd_wa(struct drm_device *dev)
2095{
2096#ifdef CONFIG_INTEL_IOMMU
2097 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2098 return true;
2099#endif
2100 return false;
2101}
2102
832be82f
VS
2103static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
2104{
2105 return IS_GEN2(dev_priv) ? 2048 : 4096;
2106}
2107
27ba3910
VS
2108static unsigned int intel_tile_width_bytes(const struct drm_i915_private *dev_priv,
2109 uint64_t fb_modifier, unsigned int cpp)
7b49f948
VS
2110{
2111 switch (fb_modifier) {
2112 case DRM_FORMAT_MOD_NONE:
2113 return cpp;
2114 case I915_FORMAT_MOD_X_TILED:
2115 if (IS_GEN2(dev_priv))
2116 return 128;
2117 else
2118 return 512;
2119 case I915_FORMAT_MOD_Y_TILED:
2120 if (IS_GEN2(dev_priv) || HAS_128_BYTE_Y_TILING(dev_priv))
2121 return 128;
2122 else
2123 return 512;
2124 case I915_FORMAT_MOD_Yf_TILED:
2125 switch (cpp) {
2126 case 1:
2127 return 64;
2128 case 2:
2129 case 4:
2130 return 128;
2131 case 8:
2132 case 16:
2133 return 256;
2134 default:
2135 MISSING_CASE(cpp);
2136 return cpp;
2137 }
2138 break;
2139 default:
2140 MISSING_CASE(fb_modifier);
2141 return cpp;
2142 }
2143}
2144
832be82f
VS
2145unsigned int intel_tile_height(const struct drm_i915_private *dev_priv,
2146 uint64_t fb_modifier, unsigned int cpp)
a57ce0b2 2147{
832be82f
VS
2148 if (fb_modifier == DRM_FORMAT_MOD_NONE)
2149 return 1;
2150 else
2151 return intel_tile_size(dev_priv) /
27ba3910 2152 intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
6761dd31
TU
2153}
2154
8d0deca8
VS
2155/* Return the tile dimensions in pixel units */
2156static void intel_tile_dims(const struct drm_i915_private *dev_priv,
2157 unsigned int *tile_width,
2158 unsigned int *tile_height,
2159 uint64_t fb_modifier,
2160 unsigned int cpp)
2161{
2162 unsigned int tile_width_bytes =
2163 intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2164
2165 *tile_width = tile_width_bytes / cpp;
2166 *tile_height = intel_tile_size(dev_priv) / tile_width_bytes;
2167}
2168
6761dd31
TU
2169unsigned int
2170intel_fb_align_height(struct drm_device *dev, unsigned int height,
832be82f 2171 uint32_t pixel_format, uint64_t fb_modifier)
6761dd31 2172{
832be82f
VS
2173 unsigned int cpp = drm_format_plane_cpp(pixel_format, 0);
2174 unsigned int tile_height = intel_tile_height(to_i915(dev), fb_modifier, cpp);
2175
2176 return ALIGN(height, tile_height);
a57ce0b2
JB
2177}
2178
1663b9d6
VS
2179unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
2180{
2181 unsigned int size = 0;
2182 int i;
2183
2184 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
2185 size += rot_info->plane[i].width * rot_info->plane[i].height;
2186
2187 return size;
2188}
2189
75c82a53 2190static void
3465c580
VS
2191intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
2192 const struct drm_framebuffer *fb,
2193 unsigned int rotation)
f64b98cd 2194{
2d7a215f
VS
2195 if (intel_rotation_90_or_270(rotation)) {
2196 *view = i915_ggtt_view_rotated;
2197 view->params.rotated = to_intel_framebuffer(fb)->rot_info;
2198 } else {
2199 *view = i915_ggtt_view_normal;
2200 }
2201}
50470bb0 2202
2d7a215f
VS
2203static void
2204intel_fill_fb_info(struct drm_i915_private *dev_priv,
2205 struct drm_framebuffer *fb)
2206{
2207 struct intel_rotation_info *info = &to_intel_framebuffer(fb)->rot_info;
2208 unsigned int tile_size, tile_width, tile_height, cpp;
50470bb0 2209
d9b3288e
VS
2210 tile_size = intel_tile_size(dev_priv);
2211
2212 cpp = drm_format_plane_cpp(fb->pixel_format, 0);
8d0deca8
VS
2213 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2214 fb->modifier[0], cpp);
d9b3288e 2215
1663b9d6
VS
2216 info->plane[0].width = DIV_ROUND_UP(fb->pitches[0], tile_width * cpp);
2217 info->plane[0].height = DIV_ROUND_UP(fb->height, tile_height);
84fe03f7 2218
89e3e142 2219 if (info->pixel_format == DRM_FORMAT_NV12) {
832be82f 2220 cpp = drm_format_plane_cpp(fb->pixel_format, 1);
8d0deca8
VS
2221 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2222 fb->modifier[1], cpp);
d9b3288e 2223
2d7a215f 2224 info->uv_offset = fb->offsets[1];
1663b9d6
VS
2225 info->plane[1].width = DIV_ROUND_UP(fb->pitches[1], tile_width * cpp);
2226 info->plane[1].height = DIV_ROUND_UP(fb->height / 2, tile_height);
89e3e142 2227 }
f64b98cd
TU
2228}
2229
603525d7 2230static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
4e9a86b6
VS
2231{
2232 if (INTEL_INFO(dev_priv)->gen >= 9)
2233 return 256 * 1024;
985b8bb4 2234 else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
666a4537 2235 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4e9a86b6
VS
2236 return 128 * 1024;
2237 else if (INTEL_INFO(dev_priv)->gen >= 4)
2238 return 4 * 1024;
2239 else
44c5905e 2240 return 0;
4e9a86b6
VS
2241}
2242
603525d7
VS
2243static unsigned int intel_surf_alignment(const struct drm_i915_private *dev_priv,
2244 uint64_t fb_modifier)
2245{
2246 switch (fb_modifier) {
2247 case DRM_FORMAT_MOD_NONE:
2248 return intel_linear_alignment(dev_priv);
2249 case I915_FORMAT_MOD_X_TILED:
2250 if (INTEL_INFO(dev_priv)->gen >= 9)
2251 return 256 * 1024;
2252 return 0;
2253 case I915_FORMAT_MOD_Y_TILED:
2254 case I915_FORMAT_MOD_Yf_TILED:
2255 return 1 * 1024 * 1024;
2256 default:
2257 MISSING_CASE(fb_modifier);
2258 return 0;
2259 }
2260}
2261
127bd2ac 2262int
3465c580
VS
2263intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb,
2264 unsigned int rotation)
6b95a207 2265{
850c4cdc 2266 struct drm_device *dev = fb->dev;
ce453d81 2267 struct drm_i915_private *dev_priv = dev->dev_private;
850c4cdc 2268 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
f64b98cd 2269 struct i915_ggtt_view view;
6b95a207
KH
2270 u32 alignment;
2271 int ret;
2272
ebcdd39e
MR
2273 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2274
603525d7 2275 alignment = intel_surf_alignment(dev_priv, fb->modifier[0]);
6b95a207 2276
3465c580 2277 intel_fill_fb_ggtt_view(&view, fb, rotation);
f64b98cd 2278
693db184
CW
2279 /* Note that the w/a also requires 64 PTE of padding following the
2280 * bo. We currently fill all unused PTE with the shadow page and so
2281 * we should always have valid PTE following the scanout preventing
2282 * the VT-d warning.
2283 */
2284 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2285 alignment = 256 * 1024;
2286
d6dd6843
PZ
2287 /*
2288 * Global gtt pte registers are special registers which actually forward
2289 * writes to a chunk of system memory. Which means that there is no risk
2290 * that the register values disappear as soon as we call
2291 * intel_runtime_pm_put(), so it is correct to wrap only the
2292 * pin/unpin/fence and not more.
2293 */
2294 intel_runtime_pm_get(dev_priv);
2295
7580d774
ML
2296 ret = i915_gem_object_pin_to_display_plane(obj, alignment,
2297 &view);
48b956c5 2298 if (ret)
b26a6b35 2299 goto err_pm;
6b95a207
KH
2300
2301 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2302 * fence, whereas 965+ only requires a fence if using
2303 * framebuffer compression. For simplicity, we always install
2304 * a fence as the cost is not that onerous.
2305 */
9807216f
VK
2306 if (view.type == I915_GGTT_VIEW_NORMAL) {
2307 ret = i915_gem_object_get_fence(obj);
2308 if (ret == -EDEADLK) {
2309 /*
2310 * -EDEADLK means there are no free fences
2311 * no pending flips.
2312 *
2313 * This is propagated to atomic, but it uses
2314 * -EDEADLK to force a locking recovery, so
2315 * change the returned error to -EBUSY.
2316 */
2317 ret = -EBUSY;
2318 goto err_unpin;
2319 } else if (ret)
2320 goto err_unpin;
1690e1eb 2321
9807216f
VK
2322 i915_gem_object_pin_fence(obj);
2323 }
6b95a207 2324
d6dd6843 2325 intel_runtime_pm_put(dev_priv);
6b95a207 2326 return 0;
48b956c5
CW
2327
2328err_unpin:
f64b98cd 2329 i915_gem_object_unpin_from_display_plane(obj, &view);
b26a6b35 2330err_pm:
d6dd6843 2331 intel_runtime_pm_put(dev_priv);
48b956c5 2332 return ret;
6b95a207
KH
2333}
2334
fb4b8ce1 2335void intel_unpin_fb_obj(struct drm_framebuffer *fb, unsigned int rotation)
1690e1eb 2336{
82bc3b2d 2337 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
f64b98cd 2338 struct i915_ggtt_view view;
82bc3b2d 2339
ebcdd39e
MR
2340 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2341
3465c580 2342 intel_fill_fb_ggtt_view(&view, fb, rotation);
f64b98cd 2343
9807216f
VK
2344 if (view.type == I915_GGTT_VIEW_NORMAL)
2345 i915_gem_object_unpin_fence(obj);
2346
f64b98cd 2347 i915_gem_object_unpin_from_display_plane(obj, &view);
1690e1eb
CW
2348}
2349
29cf9491
VS
2350/*
2351 * Adjust the tile offset by moving the difference into
2352 * the x/y offsets.
2353 *
2354 * Input tile dimensions and pitch must already be
2355 * rotated to match x and y, and in pixel units.
2356 */
2357static u32 intel_adjust_tile_offset(int *x, int *y,
2358 unsigned int tile_width,
2359 unsigned int tile_height,
2360 unsigned int tile_size,
2361 unsigned int pitch_tiles,
2362 u32 old_offset,
2363 u32 new_offset)
2364{
2365 unsigned int tiles;
2366
2367 WARN_ON(old_offset & (tile_size - 1));
2368 WARN_ON(new_offset & (tile_size - 1));
2369 WARN_ON(new_offset > old_offset);
2370
2371 tiles = (old_offset - new_offset) / tile_size;
2372
2373 *y += tiles / pitch_tiles * tile_height;
2374 *x += tiles % pitch_tiles * tile_width;
2375
2376 return new_offset;
2377}
2378
8d0deca8
VS
2379/*
2380 * Computes the linear offset to the base tile and adjusts
2381 * x, y. bytes per pixel is assumed to be a power-of-two.
2382 *
2383 * In the 90/270 rotated case, x and y are assumed
2384 * to be already rotated to match the rotated GTT view, and
2385 * pitch is the tile_height aligned framebuffer height.
2386 */
4f2d9934
VS
2387u32 intel_compute_tile_offset(int *x, int *y,
2388 const struct drm_framebuffer *fb, int plane,
8d0deca8
VS
2389 unsigned int pitch,
2390 unsigned int rotation)
c2c75131 2391{
4f2d9934
VS
2392 const struct drm_i915_private *dev_priv = to_i915(fb->dev);
2393 uint64_t fb_modifier = fb->modifier[plane];
2394 unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
29cf9491
VS
2395 u32 offset, offset_aligned, alignment;
2396
2397 alignment = intel_surf_alignment(dev_priv, fb_modifier);
2398 if (alignment)
2399 alignment--;
2400
b5c65338 2401 if (fb_modifier != DRM_FORMAT_MOD_NONE) {
8d0deca8
VS
2402 unsigned int tile_size, tile_width, tile_height;
2403 unsigned int tile_rows, tiles, pitch_tiles;
c2c75131 2404
d843310d 2405 tile_size = intel_tile_size(dev_priv);
8d0deca8
VS
2406 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2407 fb_modifier, cpp);
2408
2409 if (intel_rotation_90_or_270(rotation)) {
2410 pitch_tiles = pitch / tile_height;
2411 swap(tile_width, tile_height);
2412 } else {
2413 pitch_tiles = pitch / (tile_width * cpp);
2414 }
d843310d
VS
2415
2416 tile_rows = *y / tile_height;
2417 *y %= tile_height;
c2c75131 2418
8d0deca8
VS
2419 tiles = *x / tile_width;
2420 *x %= tile_width;
bc752862 2421
29cf9491
VS
2422 offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2423 offset_aligned = offset & ~alignment;
bc752862 2424
29cf9491
VS
2425 intel_adjust_tile_offset(x, y, tile_width, tile_height,
2426 tile_size, pitch_tiles,
2427 offset, offset_aligned);
2428 } else {
bc752862 2429 offset = *y * pitch + *x * cpp;
29cf9491
VS
2430 offset_aligned = offset & ~alignment;
2431
4e9a86b6
VS
2432 *y = (offset & alignment) / pitch;
2433 *x = ((offset & alignment) - *y * pitch) / cpp;
bc752862 2434 }
29cf9491
VS
2435
2436 return offset_aligned;
c2c75131
DV
2437}
2438
b35d63fa 2439static int i9xx_format_to_fourcc(int format)
46f297fb
JB
2440{
2441 switch (format) {
2442 case DISPPLANE_8BPP:
2443 return DRM_FORMAT_C8;
2444 case DISPPLANE_BGRX555:
2445 return DRM_FORMAT_XRGB1555;
2446 case DISPPLANE_BGRX565:
2447 return DRM_FORMAT_RGB565;
2448 default:
2449 case DISPPLANE_BGRX888:
2450 return DRM_FORMAT_XRGB8888;
2451 case DISPPLANE_RGBX888:
2452 return DRM_FORMAT_XBGR8888;
2453 case DISPPLANE_BGRX101010:
2454 return DRM_FORMAT_XRGB2101010;
2455 case DISPPLANE_RGBX101010:
2456 return DRM_FORMAT_XBGR2101010;
2457 }
2458}
2459
bc8d7dff
DL
2460static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2461{
2462 switch (format) {
2463 case PLANE_CTL_FORMAT_RGB_565:
2464 return DRM_FORMAT_RGB565;
2465 default:
2466 case PLANE_CTL_FORMAT_XRGB_8888:
2467 if (rgb_order) {
2468 if (alpha)
2469 return DRM_FORMAT_ABGR8888;
2470 else
2471 return DRM_FORMAT_XBGR8888;
2472 } else {
2473 if (alpha)
2474 return DRM_FORMAT_ARGB8888;
2475 else
2476 return DRM_FORMAT_XRGB8888;
2477 }
2478 case PLANE_CTL_FORMAT_XRGB_2101010:
2479 if (rgb_order)
2480 return DRM_FORMAT_XBGR2101010;
2481 else
2482 return DRM_FORMAT_XRGB2101010;
2483 }
2484}
2485
5724dbd1 2486static bool
f6936e29
DV
2487intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2488 struct intel_initial_plane_config *plane_config)
46f297fb
JB
2489{
2490 struct drm_device *dev = crtc->base.dev;
3badb49f 2491 struct drm_i915_private *dev_priv = to_i915(dev);
72e96d64 2492 struct i915_ggtt *ggtt = &dev_priv->ggtt;
46f297fb
JB
2493 struct drm_i915_gem_object *obj = NULL;
2494 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2d14030b 2495 struct drm_framebuffer *fb = &plane_config->fb->base;
f37b5c2b
DV
2496 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2497 u32 size_aligned = round_up(plane_config->base + plane_config->size,
2498 PAGE_SIZE);
2499
2500 size_aligned -= base_aligned;
46f297fb 2501
ff2652ea
CW
2502 if (plane_config->size == 0)
2503 return false;
2504
3badb49f
PZ
2505 /* If the FB is too big, just don't use it since fbdev is not very
2506 * important and we should probably use that space with FBC or other
2507 * features. */
72e96d64 2508 if (size_aligned * 2 > ggtt->stolen_usable_size)
3badb49f
PZ
2509 return false;
2510
12c83d99
TU
2511 mutex_lock(&dev->struct_mutex);
2512
f37b5c2b
DV
2513 obj = i915_gem_object_create_stolen_for_preallocated(dev,
2514 base_aligned,
2515 base_aligned,
2516 size_aligned);
12c83d99
TU
2517 if (!obj) {
2518 mutex_unlock(&dev->struct_mutex);
484b41dd 2519 return false;
12c83d99 2520 }
46f297fb 2521
49af449b
DL
2522 obj->tiling_mode = plane_config->tiling;
2523 if (obj->tiling_mode == I915_TILING_X)
6bf129df 2524 obj->stride = fb->pitches[0];
46f297fb 2525
6bf129df
DL
2526 mode_cmd.pixel_format = fb->pixel_format;
2527 mode_cmd.width = fb->width;
2528 mode_cmd.height = fb->height;
2529 mode_cmd.pitches[0] = fb->pitches[0];
18c5247e
DV
2530 mode_cmd.modifier[0] = fb->modifier[0];
2531 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
46f297fb 2532
6bf129df 2533 if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
484b41dd 2534 &mode_cmd, obj)) {
46f297fb
JB
2535 DRM_DEBUG_KMS("intel fb init failed\n");
2536 goto out_unref_obj;
2537 }
12c83d99 2538
46f297fb 2539 mutex_unlock(&dev->struct_mutex);
484b41dd 2540
f6936e29 2541 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
484b41dd 2542 return true;
46f297fb
JB
2543
2544out_unref_obj:
2545 drm_gem_object_unreference(&obj->base);
2546 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2547 return false;
2548}
2549
5a21b665
DV
2550/* Update plane->state->fb to match plane->fb after driver-internal updates */
2551static void
2552update_state_fb(struct drm_plane *plane)
2553{
2554 if (plane->fb == plane->state->fb)
2555 return;
2556
2557 if (plane->state->fb)
2558 drm_framebuffer_unreference(plane->state->fb);
2559 plane->state->fb = plane->fb;
2560 if (plane->state->fb)
2561 drm_framebuffer_reference(plane->state->fb);
2562}
2563
5724dbd1 2564static void
f6936e29
DV
2565intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2566 struct intel_initial_plane_config *plane_config)
484b41dd
JB
2567{
2568 struct drm_device *dev = intel_crtc->base.dev;
d9ceb816 2569 struct drm_i915_private *dev_priv = dev->dev_private;
484b41dd
JB
2570 struct drm_crtc *c;
2571 struct intel_crtc *i;
2ff8fde1 2572 struct drm_i915_gem_object *obj;
88595ac9 2573 struct drm_plane *primary = intel_crtc->base.primary;
be5651f2 2574 struct drm_plane_state *plane_state = primary->state;
200757f5
MR
2575 struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2576 struct intel_plane *intel_plane = to_intel_plane(primary);
0a8d8a86
MR
2577 struct intel_plane_state *intel_state =
2578 to_intel_plane_state(plane_state);
88595ac9 2579 struct drm_framebuffer *fb;
484b41dd 2580
2d14030b 2581 if (!plane_config->fb)
484b41dd
JB
2582 return;
2583
f6936e29 2584 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
88595ac9
DV
2585 fb = &plane_config->fb->base;
2586 goto valid_fb;
f55548b5 2587 }
484b41dd 2588
2d14030b 2589 kfree(plane_config->fb);
484b41dd
JB
2590
2591 /*
2592 * Failed to alloc the obj, check to see if we should share
2593 * an fb with another CRTC instead
2594 */
70e1e0ec 2595 for_each_crtc(dev, c) {
484b41dd
JB
2596 i = to_intel_crtc(c);
2597
2598 if (c == &intel_crtc->base)
2599 continue;
2600
2ff8fde1
MR
2601 if (!i->active)
2602 continue;
2603
88595ac9
DV
2604 fb = c->primary->fb;
2605 if (!fb)
484b41dd
JB
2606 continue;
2607
88595ac9 2608 obj = intel_fb_obj(fb);
2ff8fde1 2609 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
88595ac9
DV
2610 drm_framebuffer_reference(fb);
2611 goto valid_fb;
484b41dd
JB
2612 }
2613 }
88595ac9 2614
200757f5
MR
2615 /*
2616 * We've failed to reconstruct the BIOS FB. Current display state
2617 * indicates that the primary plane is visible, but has a NULL FB,
2618 * which will lead to problems later if we don't fix it up. The
2619 * simplest solution is to just disable the primary plane now and
2620 * pretend the BIOS never had it enabled.
2621 */
2622 to_intel_plane_state(plane_state)->visible = false;
2623 crtc_state->plane_mask &= ~(1 << drm_plane_index(primary));
2622a081 2624 intel_pre_disable_primary_noatomic(&intel_crtc->base);
200757f5
MR
2625 intel_plane->disable_plane(primary, &intel_crtc->base);
2626
88595ac9
DV
2627 return;
2628
2629valid_fb:
f44e2659
VS
2630 plane_state->src_x = 0;
2631 plane_state->src_y = 0;
be5651f2
ML
2632 plane_state->src_w = fb->width << 16;
2633 plane_state->src_h = fb->height << 16;
2634
f44e2659
VS
2635 plane_state->crtc_x = 0;
2636 plane_state->crtc_y = 0;
be5651f2
ML
2637 plane_state->crtc_w = fb->width;
2638 plane_state->crtc_h = fb->height;
2639
0a8d8a86
MR
2640 intel_state->src.x1 = plane_state->src_x;
2641 intel_state->src.y1 = plane_state->src_y;
2642 intel_state->src.x2 = plane_state->src_x + plane_state->src_w;
2643 intel_state->src.y2 = plane_state->src_y + plane_state->src_h;
2644 intel_state->dst.x1 = plane_state->crtc_x;
2645 intel_state->dst.y1 = plane_state->crtc_y;
2646 intel_state->dst.x2 = plane_state->crtc_x + plane_state->crtc_w;
2647 intel_state->dst.y2 = plane_state->crtc_y + plane_state->crtc_h;
2648
88595ac9
DV
2649 obj = intel_fb_obj(fb);
2650 if (obj->tiling_mode != I915_TILING_NONE)
2651 dev_priv->preserve_bios_swizzle = true;
2652
be5651f2
ML
2653 drm_framebuffer_reference(fb);
2654 primary->fb = primary->state->fb = fb;
36750f28 2655 primary->crtc = primary->state->crtc = &intel_crtc->base;
36750f28 2656 intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
a9ff8714 2657 obj->frontbuffer_bits |= to_intel_plane(primary)->frontbuffer_bit;
46f297fb
JB
2658}
2659
a8d201af
ML
2660static void i9xx_update_primary_plane(struct drm_plane *primary,
2661 const struct intel_crtc_state *crtc_state,
2662 const struct intel_plane_state *plane_state)
81255565 2663{
a8d201af 2664 struct drm_device *dev = primary->dev;
81255565 2665 struct drm_i915_private *dev_priv = dev->dev_private;
a8d201af
ML
2666 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2667 struct drm_framebuffer *fb = plane_state->base.fb;
2668 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
81255565 2669 int plane = intel_crtc->plane;
54ea9da8 2670 u32 linear_offset;
81255565 2671 u32 dspcntr;
f0f59a00 2672 i915_reg_t reg = DSPCNTR(plane);
8d0deca8 2673 unsigned int rotation = plane_state->base.rotation;
ac484963 2674 int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
54ea9da8
VS
2675 int x = plane_state->src.x1 >> 16;
2676 int y = plane_state->src.y1 >> 16;
c9ba6fad 2677
f45651ba
VS
2678 dspcntr = DISPPLANE_GAMMA_ENABLE;
2679
fdd508a6 2680 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2681
2682 if (INTEL_INFO(dev)->gen < 4) {
2683 if (intel_crtc->pipe == PIPE_B)
2684 dspcntr |= DISPPLANE_SEL_PIPE_B;
2685
2686 /* pipesrc and dspsize control the size that is scaled from,
2687 * which should always be the user's requested size.
2688 */
2689 I915_WRITE(DSPSIZE(plane),
a8d201af
ML
2690 ((crtc_state->pipe_src_h - 1) << 16) |
2691 (crtc_state->pipe_src_w - 1));
f45651ba 2692 I915_WRITE(DSPPOS(plane), 0);
c14b0485
VS
2693 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2694 I915_WRITE(PRIMSIZE(plane),
a8d201af
ML
2695 ((crtc_state->pipe_src_h - 1) << 16) |
2696 (crtc_state->pipe_src_w - 1));
c14b0485
VS
2697 I915_WRITE(PRIMPOS(plane), 0);
2698 I915_WRITE(PRIMCNSTALPHA(plane), 0);
f45651ba 2699 }
81255565 2700
57779d06
VS
2701 switch (fb->pixel_format) {
2702 case DRM_FORMAT_C8:
81255565
JB
2703 dspcntr |= DISPPLANE_8BPP;
2704 break;
57779d06 2705 case DRM_FORMAT_XRGB1555:
57779d06 2706 dspcntr |= DISPPLANE_BGRX555;
81255565 2707 break;
57779d06
VS
2708 case DRM_FORMAT_RGB565:
2709 dspcntr |= DISPPLANE_BGRX565;
2710 break;
2711 case DRM_FORMAT_XRGB8888:
57779d06
VS
2712 dspcntr |= DISPPLANE_BGRX888;
2713 break;
2714 case DRM_FORMAT_XBGR8888:
57779d06
VS
2715 dspcntr |= DISPPLANE_RGBX888;
2716 break;
2717 case DRM_FORMAT_XRGB2101010:
57779d06
VS
2718 dspcntr |= DISPPLANE_BGRX101010;
2719 break;
2720 case DRM_FORMAT_XBGR2101010:
57779d06 2721 dspcntr |= DISPPLANE_RGBX101010;
81255565
JB
2722 break;
2723 default:
baba133a 2724 BUG();
81255565 2725 }
57779d06 2726
f45651ba
VS
2727 if (INTEL_INFO(dev)->gen >= 4 &&
2728 obj->tiling_mode != I915_TILING_NONE)
2729 dspcntr |= DISPPLANE_TILED;
81255565 2730
de1aa629
VS
2731 if (IS_G4X(dev))
2732 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2733
ac484963 2734 linear_offset = y * fb->pitches[0] + x * cpp;
81255565 2735
c2c75131
DV
2736 if (INTEL_INFO(dev)->gen >= 4) {
2737 intel_crtc->dspaddr_offset =
4f2d9934 2738 intel_compute_tile_offset(&x, &y, fb, 0,
8d0deca8 2739 fb->pitches[0], rotation);
c2c75131
DV
2740 linear_offset -= intel_crtc->dspaddr_offset;
2741 } else {
e506a0c6 2742 intel_crtc->dspaddr_offset = linear_offset;
c2c75131 2743 }
e506a0c6 2744
8d0deca8 2745 if (rotation == BIT(DRM_ROTATE_180)) {
48404c1e
SJ
2746 dspcntr |= DISPPLANE_ROTATE_180;
2747
a8d201af
ML
2748 x += (crtc_state->pipe_src_w - 1);
2749 y += (crtc_state->pipe_src_h - 1);
48404c1e
SJ
2750
2751 /* Finding the last pixel of the last line of the display
2752 data and adding to linear_offset*/
2753 linear_offset +=
a8d201af 2754 (crtc_state->pipe_src_h - 1) * fb->pitches[0] +
ac484963 2755 (crtc_state->pipe_src_w - 1) * cpp;
48404c1e
SJ
2756 }
2757
2db3366b
PZ
2758 intel_crtc->adjusted_x = x;
2759 intel_crtc->adjusted_y = y;
2760
48404c1e
SJ
2761 I915_WRITE(reg, dspcntr);
2762
01f2c773 2763 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
a6c45cf0 2764 if (INTEL_INFO(dev)->gen >= 4) {
85ba7b7d
DV
2765 I915_WRITE(DSPSURF(plane),
2766 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
5eddb70b 2767 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 2768 I915_WRITE(DSPLINOFF(plane), linear_offset);
5eddb70b 2769 } else
f343c5f6 2770 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
5eddb70b 2771 POSTING_READ(reg);
17638cd6
JB
2772}
2773
a8d201af
ML
2774static void i9xx_disable_primary_plane(struct drm_plane *primary,
2775 struct drm_crtc *crtc)
17638cd6
JB
2776{
2777 struct drm_device *dev = crtc->dev;
2778 struct drm_i915_private *dev_priv = dev->dev_private;
2779 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
17638cd6 2780 int plane = intel_crtc->plane;
f45651ba 2781
a8d201af
ML
2782 I915_WRITE(DSPCNTR(plane), 0);
2783 if (INTEL_INFO(dev_priv)->gen >= 4)
fdd508a6 2784 I915_WRITE(DSPSURF(plane), 0);
a8d201af
ML
2785 else
2786 I915_WRITE(DSPADDR(plane), 0);
2787 POSTING_READ(DSPCNTR(plane));
2788}
c9ba6fad 2789
a8d201af
ML
2790static void ironlake_update_primary_plane(struct drm_plane *primary,
2791 const struct intel_crtc_state *crtc_state,
2792 const struct intel_plane_state *plane_state)
2793{
2794 struct drm_device *dev = primary->dev;
2795 struct drm_i915_private *dev_priv = dev->dev_private;
2796 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2797 struct drm_framebuffer *fb = plane_state->base.fb;
2798 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2799 int plane = intel_crtc->plane;
54ea9da8 2800 u32 linear_offset;
a8d201af
ML
2801 u32 dspcntr;
2802 i915_reg_t reg = DSPCNTR(plane);
8d0deca8 2803 unsigned int rotation = plane_state->base.rotation;
ac484963 2804 int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
a8d201af
ML
2805 int x = plane_state->src.x1 >> 16;
2806 int y = plane_state->src.y1 >> 16;
c9ba6fad 2807
f45651ba 2808 dspcntr = DISPPLANE_GAMMA_ENABLE;
fdd508a6 2809 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2810
2811 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2812 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
17638cd6 2813
57779d06
VS
2814 switch (fb->pixel_format) {
2815 case DRM_FORMAT_C8:
17638cd6
JB
2816 dspcntr |= DISPPLANE_8BPP;
2817 break;
57779d06
VS
2818 case DRM_FORMAT_RGB565:
2819 dspcntr |= DISPPLANE_BGRX565;
17638cd6 2820 break;
57779d06 2821 case DRM_FORMAT_XRGB8888:
57779d06
VS
2822 dspcntr |= DISPPLANE_BGRX888;
2823 break;
2824 case DRM_FORMAT_XBGR8888:
57779d06
VS
2825 dspcntr |= DISPPLANE_RGBX888;
2826 break;
2827 case DRM_FORMAT_XRGB2101010:
57779d06
VS
2828 dspcntr |= DISPPLANE_BGRX101010;
2829 break;
2830 case DRM_FORMAT_XBGR2101010:
57779d06 2831 dspcntr |= DISPPLANE_RGBX101010;
17638cd6
JB
2832 break;
2833 default:
baba133a 2834 BUG();
17638cd6
JB
2835 }
2836
2837 if (obj->tiling_mode != I915_TILING_NONE)
2838 dspcntr |= DISPPLANE_TILED;
17638cd6 2839
f45651ba 2840 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
1f5d76db 2841 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
17638cd6 2842
ac484963 2843 linear_offset = y * fb->pitches[0] + x * cpp;
c2c75131 2844 intel_crtc->dspaddr_offset =
4f2d9934 2845 intel_compute_tile_offset(&x, &y, fb, 0,
8d0deca8 2846 fb->pitches[0], rotation);
c2c75131 2847 linear_offset -= intel_crtc->dspaddr_offset;
8d0deca8 2848 if (rotation == BIT(DRM_ROTATE_180)) {
48404c1e
SJ
2849 dspcntr |= DISPPLANE_ROTATE_180;
2850
2851 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
a8d201af
ML
2852 x += (crtc_state->pipe_src_w - 1);
2853 y += (crtc_state->pipe_src_h - 1);
48404c1e
SJ
2854
2855 /* Finding the last pixel of the last line of the display
2856 data and adding to linear_offset*/
2857 linear_offset +=
a8d201af 2858 (crtc_state->pipe_src_h - 1) * fb->pitches[0] +
ac484963 2859 (crtc_state->pipe_src_w - 1) * cpp;
48404c1e
SJ
2860 }
2861 }
2862
2db3366b
PZ
2863 intel_crtc->adjusted_x = x;
2864 intel_crtc->adjusted_y = y;
2865
48404c1e 2866 I915_WRITE(reg, dspcntr);
17638cd6 2867
01f2c773 2868 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
85ba7b7d
DV
2869 I915_WRITE(DSPSURF(plane),
2870 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
b3dc685e 2871 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
bc1c91eb
DL
2872 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2873 } else {
2874 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2875 I915_WRITE(DSPLINOFF(plane), linear_offset);
2876 }
17638cd6 2877 POSTING_READ(reg);
17638cd6
JB
2878}
2879
7b49f948
VS
2880u32 intel_fb_stride_alignment(const struct drm_i915_private *dev_priv,
2881 uint64_t fb_modifier, uint32_t pixel_format)
b321803d 2882{
7b49f948 2883 if (fb_modifier == DRM_FORMAT_MOD_NONE) {
b321803d 2884 return 64;
7b49f948
VS
2885 } else {
2886 int cpp = drm_format_plane_cpp(pixel_format, 0);
2887
27ba3910 2888 return intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
b321803d
DL
2889 }
2890}
2891
44eb0cb9
MK
2892u32 intel_plane_obj_offset(struct intel_plane *intel_plane,
2893 struct drm_i915_gem_object *obj,
2894 unsigned int plane)
121920fa 2895{
ce7f1728 2896 struct i915_ggtt_view view;
dedf278c 2897 struct i915_vma *vma;
44eb0cb9 2898 u64 offset;
121920fa 2899
e7941294 2900 intel_fill_fb_ggtt_view(&view, intel_plane->base.state->fb,
3465c580 2901 intel_plane->base.state->rotation);
121920fa 2902
ce7f1728 2903 vma = i915_gem_obj_to_ggtt_view(obj, &view);
dedf278c 2904 if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n",
ce7f1728 2905 view.type))
dedf278c
TU
2906 return -1;
2907
44eb0cb9 2908 offset = vma->node.start;
dedf278c
TU
2909
2910 if (plane == 1) {
7723f47d 2911 offset += vma->ggtt_view.params.rotated.uv_start_page *
dedf278c
TU
2912 PAGE_SIZE;
2913 }
2914
44eb0cb9
MK
2915 WARN_ON(upper_32_bits(offset));
2916
2917 return lower_32_bits(offset);
121920fa
TU
2918}
2919
e435d6e5
ML
2920static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
2921{
2922 struct drm_device *dev = intel_crtc->base.dev;
2923 struct drm_i915_private *dev_priv = dev->dev_private;
2924
2925 I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
2926 I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
2927 I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
e435d6e5
ML
2928}
2929
a1b2278e
CK
2930/*
2931 * This function detaches (aka. unbinds) unused scalers in hardware
2932 */
0583236e 2933static void skl_detach_scalers(struct intel_crtc *intel_crtc)
a1b2278e 2934{
a1b2278e
CK
2935 struct intel_crtc_scaler_state *scaler_state;
2936 int i;
2937
a1b2278e
CK
2938 scaler_state = &intel_crtc->config->scaler_state;
2939
2940 /* loop through and disable scalers that aren't in use */
2941 for (i = 0; i < intel_crtc->num_scalers; i++) {
e435d6e5
ML
2942 if (!scaler_state->scalers[i].in_use)
2943 skl_detach_scaler(intel_crtc, i);
a1b2278e
CK
2944 }
2945}
2946
6156a456 2947u32 skl_plane_ctl_format(uint32_t pixel_format)
70d21f0e 2948{
6156a456 2949 switch (pixel_format) {
d161cf7a 2950 case DRM_FORMAT_C8:
c34ce3d1 2951 return PLANE_CTL_FORMAT_INDEXED;
70d21f0e 2952 case DRM_FORMAT_RGB565:
c34ce3d1 2953 return PLANE_CTL_FORMAT_RGB_565;
70d21f0e 2954 case DRM_FORMAT_XBGR8888:
c34ce3d1 2955 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
6156a456 2956 case DRM_FORMAT_XRGB8888:
c34ce3d1 2957 return PLANE_CTL_FORMAT_XRGB_8888;
6156a456
CK
2958 /*
2959 * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
2960 * to be already pre-multiplied. We need to add a knob (or a different
2961 * DRM_FORMAT) for user-space to configure that.
2962 */
f75fb42a 2963 case DRM_FORMAT_ABGR8888:
c34ce3d1 2964 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
6156a456 2965 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
6156a456 2966 case DRM_FORMAT_ARGB8888:
c34ce3d1 2967 return PLANE_CTL_FORMAT_XRGB_8888 |
6156a456 2968 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
70d21f0e 2969 case DRM_FORMAT_XRGB2101010:
c34ce3d1 2970 return PLANE_CTL_FORMAT_XRGB_2101010;
70d21f0e 2971 case DRM_FORMAT_XBGR2101010:
c34ce3d1 2972 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
6156a456 2973 case DRM_FORMAT_YUYV:
c34ce3d1 2974 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
6156a456 2975 case DRM_FORMAT_YVYU:
c34ce3d1 2976 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
6156a456 2977 case DRM_FORMAT_UYVY:
c34ce3d1 2978 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
6156a456 2979 case DRM_FORMAT_VYUY:
c34ce3d1 2980 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
70d21f0e 2981 default:
4249eeef 2982 MISSING_CASE(pixel_format);
70d21f0e 2983 }
8cfcba41 2984
c34ce3d1 2985 return 0;
6156a456 2986}
70d21f0e 2987
6156a456
CK
2988u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
2989{
6156a456 2990 switch (fb_modifier) {
30af77c4 2991 case DRM_FORMAT_MOD_NONE:
70d21f0e 2992 break;
30af77c4 2993 case I915_FORMAT_MOD_X_TILED:
c34ce3d1 2994 return PLANE_CTL_TILED_X;
b321803d 2995 case I915_FORMAT_MOD_Y_TILED:
c34ce3d1 2996 return PLANE_CTL_TILED_Y;
b321803d 2997 case I915_FORMAT_MOD_Yf_TILED:
c34ce3d1 2998 return PLANE_CTL_TILED_YF;
70d21f0e 2999 default:
6156a456 3000 MISSING_CASE(fb_modifier);
70d21f0e 3001 }
8cfcba41 3002
c34ce3d1 3003 return 0;
6156a456 3004}
70d21f0e 3005
6156a456
CK
3006u32 skl_plane_ctl_rotation(unsigned int rotation)
3007{
3b7a5119 3008 switch (rotation) {
6156a456
CK
3009 case BIT(DRM_ROTATE_0):
3010 break;
1e8df167
SJ
3011 /*
3012 * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3013 * while i915 HW rotation is clockwise, thats why this swapping.
3014 */
3b7a5119 3015 case BIT(DRM_ROTATE_90):
1e8df167 3016 return PLANE_CTL_ROTATE_270;
3b7a5119 3017 case BIT(DRM_ROTATE_180):
c34ce3d1 3018 return PLANE_CTL_ROTATE_180;
3b7a5119 3019 case BIT(DRM_ROTATE_270):
1e8df167 3020 return PLANE_CTL_ROTATE_90;
6156a456
CK
3021 default:
3022 MISSING_CASE(rotation);
3023 }
3024
c34ce3d1 3025 return 0;
6156a456
CK
3026}
3027
a8d201af
ML
3028static void skylake_update_primary_plane(struct drm_plane *plane,
3029 const struct intel_crtc_state *crtc_state,
3030 const struct intel_plane_state *plane_state)
6156a456 3031{
a8d201af 3032 struct drm_device *dev = plane->dev;
6156a456 3033 struct drm_i915_private *dev_priv = dev->dev_private;
a8d201af
ML
3034 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3035 struct drm_framebuffer *fb = plane_state->base.fb;
3036 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
6156a456
CK
3037 int pipe = intel_crtc->pipe;
3038 u32 plane_ctl, stride_div, stride;
3039 u32 tile_height, plane_offset, plane_size;
a8d201af 3040 unsigned int rotation = plane_state->base.rotation;
6156a456 3041 int x_offset, y_offset;
44eb0cb9 3042 u32 surf_addr;
a8d201af
ML
3043 int scaler_id = plane_state->scaler_id;
3044 int src_x = plane_state->src.x1 >> 16;
3045 int src_y = plane_state->src.y1 >> 16;
3046 int src_w = drm_rect_width(&plane_state->src) >> 16;
3047 int src_h = drm_rect_height(&plane_state->src) >> 16;
3048 int dst_x = plane_state->dst.x1;
3049 int dst_y = plane_state->dst.y1;
3050 int dst_w = drm_rect_width(&plane_state->dst);
3051 int dst_h = drm_rect_height(&plane_state->dst);
70d21f0e 3052
6156a456
CK
3053 plane_ctl = PLANE_CTL_ENABLE |
3054 PLANE_CTL_PIPE_GAMMA_ENABLE |
3055 PLANE_CTL_PIPE_CSC_ENABLE;
3056
3057 plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3058 plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3059 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
6156a456
CK
3060 plane_ctl |= skl_plane_ctl_rotation(rotation);
3061
7b49f948 3062 stride_div = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
b321803d 3063 fb->pixel_format);
dedf278c 3064 surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj, 0);
3b7a5119 3065
a42e5a23
PZ
3066 WARN_ON(drm_rect_width(&plane_state->src) == 0);
3067
3b7a5119 3068 if (intel_rotation_90_or_270(rotation)) {
832be82f
VS
3069 int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3070
3b7a5119 3071 /* stride = Surface height in tiles */
832be82f 3072 tile_height = intel_tile_height(dev_priv, fb->modifier[0], cpp);
3b7a5119 3073 stride = DIV_ROUND_UP(fb->height, tile_height);
a8d201af
ML
3074 x_offset = stride * tile_height - src_y - src_h;
3075 y_offset = src_x;
6156a456 3076 plane_size = (src_w - 1) << 16 | (src_h - 1);
3b7a5119
SJ
3077 } else {
3078 stride = fb->pitches[0] / stride_div;
a8d201af
ML
3079 x_offset = src_x;
3080 y_offset = src_y;
6156a456 3081 plane_size = (src_h - 1) << 16 | (src_w - 1);
3b7a5119
SJ
3082 }
3083 plane_offset = y_offset << 16 | x_offset;
b321803d 3084
2db3366b
PZ
3085 intel_crtc->adjusted_x = x_offset;
3086 intel_crtc->adjusted_y = y_offset;
3087
70d21f0e 3088 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3b7a5119
SJ
3089 I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3090 I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3091 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
6156a456
CK
3092
3093 if (scaler_id >= 0) {
3094 uint32_t ps_ctrl = 0;
3095
3096 WARN_ON(!dst_w || !dst_h);
3097 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3098 crtc_state->scaler_state.scalers[scaler_id].mode;
3099 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3100 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3101 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3102 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3103 I915_WRITE(PLANE_POS(pipe, 0), 0);
3104 } else {
3105 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3106 }
3107
121920fa 3108 I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
70d21f0e
DL
3109
3110 POSTING_READ(PLANE_SURF(pipe, 0));
3111}
3112
a8d201af
ML
3113static void skylake_disable_primary_plane(struct drm_plane *primary,
3114 struct drm_crtc *crtc)
17638cd6
JB
3115{
3116 struct drm_device *dev = crtc->dev;
3117 struct drm_i915_private *dev_priv = dev->dev_private;
a8d201af 3118 int pipe = to_intel_crtc(crtc)->pipe;
17638cd6 3119
a8d201af
ML
3120 I915_WRITE(PLANE_CTL(pipe, 0), 0);
3121 I915_WRITE(PLANE_SURF(pipe, 0), 0);
3122 POSTING_READ(PLANE_SURF(pipe, 0));
3123}
29b9bde6 3124
a8d201af
ML
3125/* Assume fb object is pinned & idle & fenced and just update base pointers */
3126static int
3127intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3128 int x, int y, enum mode_set_atomic state)
3129{
3130 /* Support for kgdboc is disabled, this needs a major rework. */
3131 DRM_ERROR("legacy panic handler not supported any more.\n");
3132
3133 return -ENODEV;
81255565
JB
3134}
3135
5a21b665
DV
3136static void intel_complete_page_flips(struct drm_i915_private *dev_priv)
3137{
3138 struct intel_crtc *crtc;
3139
3140 for_each_intel_crtc(dev_priv->dev, crtc)
3141 intel_finish_page_flip_cs(dev_priv, crtc->pipe);
3142}
3143
7514747d
VS
3144static void intel_update_primary_planes(struct drm_device *dev)
3145{
7514747d 3146 struct drm_crtc *crtc;
96a02917 3147
70e1e0ec 3148 for_each_crtc(dev, crtc) {
11c22da6
ML
3149 struct intel_plane *plane = to_intel_plane(crtc->primary);
3150 struct intel_plane_state *plane_state;
96a02917 3151
11c22da6 3152 drm_modeset_lock_crtc(crtc, &plane->base);
11c22da6
ML
3153 plane_state = to_intel_plane_state(plane->base.state);
3154
a8d201af
ML
3155 if (plane_state->visible)
3156 plane->update_plane(&plane->base,
3157 to_intel_crtc_state(crtc->state),
3158 plane_state);
11c22da6
ML
3159
3160 drm_modeset_unlock_crtc(crtc);
96a02917
VS
3161 }
3162}
3163
c033666a 3164void intel_prepare_reset(struct drm_i915_private *dev_priv)
7514747d
VS
3165{
3166 /* no reset support for gen2 */
c033666a 3167 if (IS_GEN2(dev_priv))
7514747d
VS
3168 return;
3169
3170 /* reset doesn't touch the display */
c033666a 3171 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
7514747d
VS
3172 return;
3173
c033666a 3174 drm_modeset_lock_all(dev_priv->dev);
f98ce92f
VS
3175 /*
3176 * Disabling the crtcs gracefully seems nicer. Also the
3177 * g33 docs say we should at least disable all the planes.
3178 */
c033666a 3179 intel_display_suspend(dev_priv->dev);
7514747d
VS
3180}
3181
c033666a 3182void intel_finish_reset(struct drm_i915_private *dev_priv)
7514747d 3183{
5a21b665
DV
3184 /*
3185 * Flips in the rings will be nuked by the reset,
3186 * so complete all pending flips so that user space
3187 * will get its events and not get stuck.
3188 */
3189 intel_complete_page_flips(dev_priv);
3190
7514747d 3191 /* no reset support for gen2 */
c033666a 3192 if (IS_GEN2(dev_priv))
7514747d
VS
3193 return;
3194
3195 /* reset doesn't touch the display */
c033666a 3196 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) {
7514747d
VS
3197 /*
3198 * Flips in the rings have been nuked by the reset,
3199 * so update the base address of all primary
3200 * planes to the the last fb to make sure we're
3201 * showing the correct fb after a reset.
11c22da6
ML
3202 *
3203 * FIXME: Atomic will make this obsolete since we won't schedule
3204 * CS-based flips (which might get lost in gpu resets) any more.
7514747d 3205 */
c033666a 3206 intel_update_primary_planes(dev_priv->dev);
7514747d
VS
3207 return;
3208 }
3209
3210 /*
3211 * The display has been reset as well,
3212 * so need a full re-initialization.
3213 */
3214 intel_runtime_pm_disable_interrupts(dev_priv);
3215 intel_runtime_pm_enable_interrupts(dev_priv);
3216
c033666a 3217 intel_modeset_init_hw(dev_priv->dev);
7514747d
VS
3218
3219 spin_lock_irq(&dev_priv->irq_lock);
3220 if (dev_priv->display.hpd_irq_setup)
91d14251 3221 dev_priv->display.hpd_irq_setup(dev_priv);
7514747d
VS
3222 spin_unlock_irq(&dev_priv->irq_lock);
3223
c033666a 3224 intel_display_resume(dev_priv->dev);
7514747d
VS
3225
3226 intel_hpd_init(dev_priv);
3227
c033666a 3228 drm_modeset_unlock_all(dev_priv->dev);
7514747d
VS
3229}
3230
7d5e3799
CW
3231static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3232{
5a21b665
DV
3233 struct drm_device *dev = crtc->dev;
3234 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3235 unsigned reset_counter;
3236 bool pending;
3237
3238 reset_counter = i915_reset_counter(&to_i915(dev)->gpu_error);
3239 if (intel_crtc->reset_counter != reset_counter)
3240 return false;
3241
3242 spin_lock_irq(&dev->event_lock);
3243 pending = to_intel_crtc(crtc)->flip_work != NULL;
3244 spin_unlock_irq(&dev->event_lock);
3245
3246 return pending;
7d5e3799
CW
3247}
3248
bfd16b2a
ML
3249static void intel_update_pipe_config(struct intel_crtc *crtc,
3250 struct intel_crtc_state *old_crtc_state)
e30e8f75
GP
3251{
3252 struct drm_device *dev = crtc->base.dev;
3253 struct drm_i915_private *dev_priv = dev->dev_private;
bfd16b2a
ML
3254 struct intel_crtc_state *pipe_config =
3255 to_intel_crtc_state(crtc->base.state);
e30e8f75 3256
bfd16b2a
ML
3257 /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3258 crtc->base.mode = crtc->base.state->mode;
3259
3260 DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
3261 old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
3262 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
e30e8f75
GP
3263
3264 /*
3265 * Update pipe size and adjust fitter if needed: the reason for this is
3266 * that in compute_mode_changes we check the native mode (not the pfit
3267 * mode) to see if we can flip rather than do a full mode set. In the
3268 * fastboot case, we'll flip, but if we don't update the pipesrc and
3269 * pfit state, we'll end up with a big fb scanned out into the wrong
3270 * sized surface.
e30e8f75
GP
3271 */
3272
e30e8f75 3273 I915_WRITE(PIPESRC(crtc->pipe),
bfd16b2a
ML
3274 ((pipe_config->pipe_src_w - 1) << 16) |
3275 (pipe_config->pipe_src_h - 1));
3276
3277 /* on skylake this is done by detaching scalers */
3278 if (INTEL_INFO(dev)->gen >= 9) {
3279 skl_detach_scalers(crtc);
3280
3281 if (pipe_config->pch_pfit.enabled)
3282 skylake_pfit_enable(crtc);
3283 } else if (HAS_PCH_SPLIT(dev)) {
3284 if (pipe_config->pch_pfit.enabled)
3285 ironlake_pfit_enable(crtc);
3286 else if (old_crtc_state->pch_pfit.enabled)
3287 ironlake_pfit_disable(crtc, true);
e30e8f75 3288 }
e30e8f75
GP
3289}
3290
5e84e1a4
ZW
3291static void intel_fdi_normal_train(struct drm_crtc *crtc)
3292{
3293 struct drm_device *dev = crtc->dev;
3294 struct drm_i915_private *dev_priv = dev->dev_private;
3295 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3296 int pipe = intel_crtc->pipe;
f0f59a00
VS
3297 i915_reg_t reg;
3298 u32 temp;
5e84e1a4
ZW
3299
3300 /* enable normal train */
3301 reg = FDI_TX_CTL(pipe);
3302 temp = I915_READ(reg);
61e499bf 3303 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
3304 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3305 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
3306 } else {
3307 temp &= ~FDI_LINK_TRAIN_NONE;
3308 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 3309 }
5e84e1a4
ZW
3310 I915_WRITE(reg, temp);
3311
3312 reg = FDI_RX_CTL(pipe);
3313 temp = I915_READ(reg);
3314 if (HAS_PCH_CPT(dev)) {
3315 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3316 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3317 } else {
3318 temp &= ~FDI_LINK_TRAIN_NONE;
3319 temp |= FDI_LINK_TRAIN_NONE;
3320 }
3321 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3322
3323 /* wait one idle pattern time */
3324 POSTING_READ(reg);
3325 udelay(1000);
357555c0
JB
3326
3327 /* IVB wants error correction enabled */
3328 if (IS_IVYBRIDGE(dev))
3329 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3330 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
3331}
3332
8db9d77b
ZW
3333/* The FDI link training functions for ILK/Ibexpeak. */
3334static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3335{
3336 struct drm_device *dev = crtc->dev;
3337 struct drm_i915_private *dev_priv = dev->dev_private;
3338 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3339 int pipe = intel_crtc->pipe;
f0f59a00
VS
3340 i915_reg_t reg;
3341 u32 temp, tries;
8db9d77b 3342
1c8562f6 3343 /* FDI needs bits from pipe first */
0fc932b8 3344 assert_pipe_enabled(dev_priv, pipe);
0fc932b8 3345
e1a44743
AJ
3346 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3347 for train result */
5eddb70b
CW
3348 reg = FDI_RX_IMR(pipe);
3349 temp = I915_READ(reg);
e1a44743
AJ
3350 temp &= ~FDI_RX_SYMBOL_LOCK;
3351 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
3352 I915_WRITE(reg, temp);
3353 I915_READ(reg);
e1a44743
AJ
3354 udelay(150);
3355
8db9d77b 3356 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
3357 reg = FDI_TX_CTL(pipe);
3358 temp = I915_READ(reg);
627eb5a3 3359 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3360 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
8db9d77b
ZW
3361 temp &= ~FDI_LINK_TRAIN_NONE;
3362 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 3363 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 3364
5eddb70b
CW
3365 reg = FDI_RX_CTL(pipe);
3366 temp = I915_READ(reg);
8db9d77b
ZW
3367 temp &= ~FDI_LINK_TRAIN_NONE;
3368 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
3369 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3370
3371 POSTING_READ(reg);
8db9d77b
ZW
3372 udelay(150);
3373
5b2adf89 3374 /* Ironlake workaround, enable clock pointer after FDI enable*/
8f5718a6
DV
3375 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3376 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3377 FDI_RX_PHASE_SYNC_POINTER_EN);
5b2adf89 3378
5eddb70b 3379 reg = FDI_RX_IIR(pipe);
e1a44743 3380 for (tries = 0; tries < 5; tries++) {
5eddb70b 3381 temp = I915_READ(reg);
8db9d77b
ZW
3382 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3383
3384 if ((temp & FDI_RX_BIT_LOCK)) {
3385 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 3386 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
3387 break;
3388 }
8db9d77b 3389 }
e1a44743 3390 if (tries == 5)
5eddb70b 3391 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3392
3393 /* Train 2 */
5eddb70b
CW
3394 reg = FDI_TX_CTL(pipe);
3395 temp = I915_READ(reg);
8db9d77b
ZW
3396 temp &= ~FDI_LINK_TRAIN_NONE;
3397 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 3398 I915_WRITE(reg, temp);
8db9d77b 3399
5eddb70b
CW
3400 reg = FDI_RX_CTL(pipe);
3401 temp = I915_READ(reg);
8db9d77b
ZW
3402 temp &= ~FDI_LINK_TRAIN_NONE;
3403 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 3404 I915_WRITE(reg, temp);
8db9d77b 3405
5eddb70b
CW
3406 POSTING_READ(reg);
3407 udelay(150);
8db9d77b 3408
5eddb70b 3409 reg = FDI_RX_IIR(pipe);
e1a44743 3410 for (tries = 0; tries < 5; tries++) {
5eddb70b 3411 temp = I915_READ(reg);
8db9d77b
ZW
3412 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3413
3414 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 3415 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
3416 DRM_DEBUG_KMS("FDI train 2 done.\n");
3417 break;
3418 }
8db9d77b 3419 }
e1a44743 3420 if (tries == 5)
5eddb70b 3421 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3422
3423 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 3424
8db9d77b
ZW
3425}
3426
0206e353 3427static const int snb_b_fdi_train_param[] = {
8db9d77b
ZW
3428 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3429 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3430 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3431 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3432};
3433
3434/* The FDI link training functions for SNB/Cougarpoint. */
3435static void gen6_fdi_link_train(struct drm_crtc *crtc)
3436{
3437 struct drm_device *dev = crtc->dev;
3438 struct drm_i915_private *dev_priv = dev->dev_private;
3439 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3440 int pipe = intel_crtc->pipe;
f0f59a00
VS
3441 i915_reg_t reg;
3442 u32 temp, i, retry;
8db9d77b 3443
e1a44743
AJ
3444 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3445 for train result */
5eddb70b
CW
3446 reg = FDI_RX_IMR(pipe);
3447 temp = I915_READ(reg);
e1a44743
AJ
3448 temp &= ~FDI_RX_SYMBOL_LOCK;
3449 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
3450 I915_WRITE(reg, temp);
3451
3452 POSTING_READ(reg);
e1a44743
AJ
3453 udelay(150);
3454
8db9d77b 3455 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
3456 reg = FDI_TX_CTL(pipe);
3457 temp = I915_READ(reg);
627eb5a3 3458 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3459 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
8db9d77b
ZW
3460 temp &= ~FDI_LINK_TRAIN_NONE;
3461 temp |= FDI_LINK_TRAIN_PATTERN_1;
3462 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3463 /* SNB-B */
3464 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 3465 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 3466
d74cf324
DV
3467 I915_WRITE(FDI_RX_MISC(pipe),
3468 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3469
5eddb70b
CW
3470 reg = FDI_RX_CTL(pipe);
3471 temp = I915_READ(reg);
8db9d77b
ZW
3472 if (HAS_PCH_CPT(dev)) {
3473 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3474 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3475 } else {
3476 temp &= ~FDI_LINK_TRAIN_NONE;
3477 temp |= FDI_LINK_TRAIN_PATTERN_1;
3478 }
5eddb70b
CW
3479 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3480
3481 POSTING_READ(reg);
8db9d77b
ZW
3482 udelay(150);
3483
0206e353 3484 for (i = 0; i < 4; i++) {
5eddb70b
CW
3485 reg = FDI_TX_CTL(pipe);
3486 temp = I915_READ(reg);
8db9d77b
ZW
3487 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3488 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3489 I915_WRITE(reg, temp);
3490
3491 POSTING_READ(reg);
8db9d77b
ZW
3492 udelay(500);
3493
fa37d39e
SP
3494 for (retry = 0; retry < 5; retry++) {
3495 reg = FDI_RX_IIR(pipe);
3496 temp = I915_READ(reg);
3497 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3498 if (temp & FDI_RX_BIT_LOCK) {
3499 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3500 DRM_DEBUG_KMS("FDI train 1 done.\n");
3501 break;
3502 }
3503 udelay(50);
8db9d77b 3504 }
fa37d39e
SP
3505 if (retry < 5)
3506 break;
8db9d77b
ZW
3507 }
3508 if (i == 4)
5eddb70b 3509 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3510
3511 /* Train 2 */
5eddb70b
CW
3512 reg = FDI_TX_CTL(pipe);
3513 temp = I915_READ(reg);
8db9d77b
ZW
3514 temp &= ~FDI_LINK_TRAIN_NONE;
3515 temp |= FDI_LINK_TRAIN_PATTERN_2;
3516 if (IS_GEN6(dev)) {
3517 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3518 /* SNB-B */
3519 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3520 }
5eddb70b 3521 I915_WRITE(reg, temp);
8db9d77b 3522
5eddb70b
CW
3523 reg = FDI_RX_CTL(pipe);
3524 temp = I915_READ(reg);
8db9d77b
ZW
3525 if (HAS_PCH_CPT(dev)) {
3526 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3527 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3528 } else {
3529 temp &= ~FDI_LINK_TRAIN_NONE;
3530 temp |= FDI_LINK_TRAIN_PATTERN_2;
3531 }
5eddb70b
CW
3532 I915_WRITE(reg, temp);
3533
3534 POSTING_READ(reg);
8db9d77b
ZW
3535 udelay(150);
3536
0206e353 3537 for (i = 0; i < 4; i++) {
5eddb70b
CW
3538 reg = FDI_TX_CTL(pipe);
3539 temp = I915_READ(reg);
8db9d77b
ZW
3540 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3541 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3542 I915_WRITE(reg, temp);
3543
3544 POSTING_READ(reg);
8db9d77b
ZW
3545 udelay(500);
3546
fa37d39e
SP
3547 for (retry = 0; retry < 5; retry++) {
3548 reg = FDI_RX_IIR(pipe);
3549 temp = I915_READ(reg);
3550 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3551 if (temp & FDI_RX_SYMBOL_LOCK) {
3552 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3553 DRM_DEBUG_KMS("FDI train 2 done.\n");
3554 break;
3555 }
3556 udelay(50);
8db9d77b 3557 }
fa37d39e
SP
3558 if (retry < 5)
3559 break;
8db9d77b
ZW
3560 }
3561 if (i == 4)
5eddb70b 3562 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3563
3564 DRM_DEBUG_KMS("FDI train done.\n");
3565}
3566
357555c0
JB
3567/* Manual link training for Ivy Bridge A0 parts */
3568static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3569{
3570 struct drm_device *dev = crtc->dev;
3571 struct drm_i915_private *dev_priv = dev->dev_private;
3572 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3573 int pipe = intel_crtc->pipe;
f0f59a00
VS
3574 i915_reg_t reg;
3575 u32 temp, i, j;
357555c0
JB
3576
3577 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3578 for train result */
3579 reg = FDI_RX_IMR(pipe);
3580 temp = I915_READ(reg);
3581 temp &= ~FDI_RX_SYMBOL_LOCK;
3582 temp &= ~FDI_RX_BIT_LOCK;
3583 I915_WRITE(reg, temp);
3584
3585 POSTING_READ(reg);
3586 udelay(150);
3587
01a415fd
DV
3588 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3589 I915_READ(FDI_RX_IIR(pipe)));
3590
139ccd3f
JB
3591 /* Try each vswing and preemphasis setting twice before moving on */
3592 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3593 /* disable first in case we need to retry */
3594 reg = FDI_TX_CTL(pipe);
3595 temp = I915_READ(reg);
3596 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3597 temp &= ~FDI_TX_ENABLE;
3598 I915_WRITE(reg, temp);
357555c0 3599
139ccd3f
JB
3600 reg = FDI_RX_CTL(pipe);
3601 temp = I915_READ(reg);
3602 temp &= ~FDI_LINK_TRAIN_AUTO;
3603 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3604 temp &= ~FDI_RX_ENABLE;
3605 I915_WRITE(reg, temp);
357555c0 3606
139ccd3f 3607 /* enable CPU FDI TX and PCH FDI RX */
357555c0
JB
3608 reg = FDI_TX_CTL(pipe);
3609 temp = I915_READ(reg);
139ccd3f 3610 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3611 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
139ccd3f 3612 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
357555c0 3613 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
139ccd3f
JB
3614 temp |= snb_b_fdi_train_param[j/2];
3615 temp |= FDI_COMPOSITE_SYNC;
3616 I915_WRITE(reg, temp | FDI_TX_ENABLE);
357555c0 3617
139ccd3f
JB
3618 I915_WRITE(FDI_RX_MISC(pipe),
3619 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
357555c0 3620
139ccd3f 3621 reg = FDI_RX_CTL(pipe);
357555c0 3622 temp = I915_READ(reg);
139ccd3f
JB
3623 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3624 temp |= FDI_COMPOSITE_SYNC;
3625 I915_WRITE(reg, temp | FDI_RX_ENABLE);
357555c0 3626
139ccd3f
JB
3627 POSTING_READ(reg);
3628 udelay(1); /* should be 0.5us */
357555c0 3629
139ccd3f
JB
3630 for (i = 0; i < 4; i++) {
3631 reg = FDI_RX_IIR(pipe);
3632 temp = I915_READ(reg);
3633 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3634
139ccd3f
JB
3635 if (temp & FDI_RX_BIT_LOCK ||
3636 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3637 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3638 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3639 i);
3640 break;
3641 }
3642 udelay(1); /* should be 0.5us */
3643 }
3644 if (i == 4) {
3645 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3646 continue;
3647 }
357555c0 3648
139ccd3f 3649 /* Train 2 */
357555c0
JB
3650 reg = FDI_TX_CTL(pipe);
3651 temp = I915_READ(reg);
139ccd3f
JB
3652 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3653 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3654 I915_WRITE(reg, temp);
3655
3656 reg = FDI_RX_CTL(pipe);
3657 temp = I915_READ(reg);
3658 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3659 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
357555c0
JB
3660 I915_WRITE(reg, temp);
3661
3662 POSTING_READ(reg);
139ccd3f 3663 udelay(2); /* should be 1.5us */
357555c0 3664
139ccd3f
JB
3665 for (i = 0; i < 4; i++) {
3666 reg = FDI_RX_IIR(pipe);
3667 temp = I915_READ(reg);
3668 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3669
139ccd3f
JB
3670 if (temp & FDI_RX_SYMBOL_LOCK ||
3671 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3672 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3673 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3674 i);
3675 goto train_done;
3676 }
3677 udelay(2); /* should be 1.5us */
357555c0 3678 }
139ccd3f
JB
3679 if (i == 4)
3680 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
357555c0 3681 }
357555c0 3682
139ccd3f 3683train_done:
357555c0
JB
3684 DRM_DEBUG_KMS("FDI train done.\n");
3685}
3686
88cefb6c 3687static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2c07245f 3688{
88cefb6c 3689 struct drm_device *dev = intel_crtc->base.dev;
2c07245f 3690 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 3691 int pipe = intel_crtc->pipe;
f0f59a00
VS
3692 i915_reg_t reg;
3693 u32 temp;
c64e311e 3694
c98e9dcf 3695 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
3696 reg = FDI_RX_CTL(pipe);
3697 temp = I915_READ(reg);
627eb5a3 3698 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
6e3c9717 3699 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
dfd07d72 3700 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5eddb70b
CW
3701 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3702
3703 POSTING_READ(reg);
c98e9dcf
JB
3704 udelay(200);
3705
3706 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
3707 temp = I915_READ(reg);
3708 I915_WRITE(reg, temp | FDI_PCDCLK);
3709
3710 POSTING_READ(reg);
c98e9dcf
JB
3711 udelay(200);
3712
20749730
PZ
3713 /* Enable CPU FDI TX PLL, always on for Ironlake */
3714 reg = FDI_TX_CTL(pipe);
3715 temp = I915_READ(reg);
3716 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3717 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
5eddb70b 3718
20749730
PZ
3719 POSTING_READ(reg);
3720 udelay(100);
6be4a607 3721 }
0e23b99d
JB
3722}
3723
88cefb6c
DV
3724static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3725{
3726 struct drm_device *dev = intel_crtc->base.dev;
3727 struct drm_i915_private *dev_priv = dev->dev_private;
3728 int pipe = intel_crtc->pipe;
f0f59a00
VS
3729 i915_reg_t reg;
3730 u32 temp;
88cefb6c
DV
3731
3732 /* Switch from PCDclk to Rawclk */
3733 reg = FDI_RX_CTL(pipe);
3734 temp = I915_READ(reg);
3735 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3736
3737 /* Disable CPU FDI TX PLL */
3738 reg = FDI_TX_CTL(pipe);
3739 temp = I915_READ(reg);
3740 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3741
3742 POSTING_READ(reg);
3743 udelay(100);
3744
3745 reg = FDI_RX_CTL(pipe);
3746 temp = I915_READ(reg);
3747 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3748
3749 /* Wait for the clocks to turn off. */
3750 POSTING_READ(reg);
3751 udelay(100);
3752}
3753
0fc932b8
JB
3754static void ironlake_fdi_disable(struct drm_crtc *crtc)
3755{
3756 struct drm_device *dev = crtc->dev;
3757 struct drm_i915_private *dev_priv = dev->dev_private;
3758 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3759 int pipe = intel_crtc->pipe;
f0f59a00
VS
3760 i915_reg_t reg;
3761 u32 temp;
0fc932b8
JB
3762
3763 /* disable CPU FDI tx and PCH FDI rx */
3764 reg = FDI_TX_CTL(pipe);
3765 temp = I915_READ(reg);
3766 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3767 POSTING_READ(reg);
3768
3769 reg = FDI_RX_CTL(pipe);
3770 temp = I915_READ(reg);
3771 temp &= ~(0x7 << 16);
dfd07d72 3772 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3773 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3774
3775 POSTING_READ(reg);
3776 udelay(100);
3777
3778 /* Ironlake workaround, disable clock pointer after downing FDI */
eba905b2 3779 if (HAS_PCH_IBX(dev))
6f06ce18 3780 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
0fc932b8
JB
3781
3782 /* still set train pattern 1 */
3783 reg = FDI_TX_CTL(pipe);
3784 temp = I915_READ(reg);
3785 temp &= ~FDI_LINK_TRAIN_NONE;
3786 temp |= FDI_LINK_TRAIN_PATTERN_1;
3787 I915_WRITE(reg, temp);
3788
3789 reg = FDI_RX_CTL(pipe);
3790 temp = I915_READ(reg);
3791 if (HAS_PCH_CPT(dev)) {
3792 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3793 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3794 } else {
3795 temp &= ~FDI_LINK_TRAIN_NONE;
3796 temp |= FDI_LINK_TRAIN_PATTERN_1;
3797 }
3798 /* BPC in FDI rx is consistent with that in PIPECONF */
3799 temp &= ~(0x07 << 16);
dfd07d72 3800 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3801 I915_WRITE(reg, temp);
3802
3803 POSTING_READ(reg);
3804 udelay(100);
3805}
3806
5dce5b93
CW
3807bool intel_has_pending_fb_unpin(struct drm_device *dev)
3808{
3809 struct intel_crtc *crtc;
3810
3811 /* Note that we don't need to be called with mode_config.lock here
3812 * as our list of CRTC objects is static for the lifetime of the
3813 * device and so cannot disappear as we iterate. Similarly, we can
3814 * happily treat the predicates as racy, atomic checks as userspace
3815 * cannot claim and pin a new fb without at least acquring the
3816 * struct_mutex and so serialising with us.
3817 */
d3fcc808 3818 for_each_intel_crtc(dev, crtc) {
5dce5b93
CW
3819 if (atomic_read(&crtc->unpin_work_count) == 0)
3820 continue;
3821
5a21b665 3822 if (crtc->flip_work)
5dce5b93
CW
3823 intel_wait_for_vblank(dev, crtc->pipe);
3824
3825 return true;
3826 }
3827
3828 return false;
3829}
3830
5a21b665 3831static void page_flip_completed(struct intel_crtc *intel_crtc)
d6bbafa1
CW
3832{
3833 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
5a21b665
DV
3834 struct intel_flip_work *work = intel_crtc->flip_work;
3835
3836 intel_crtc->flip_work = NULL;
d6bbafa1
CW
3837
3838 if (work->event)
560ce1dc 3839 drm_crtc_send_vblank_event(&intel_crtc->base, work->event);
d6bbafa1
CW
3840
3841 drm_crtc_vblank_put(&intel_crtc->base);
3842
5a21b665 3843 wake_up_all(&dev_priv->pending_flip_queue);
143f73b3 3844 queue_work(dev_priv->wq, &work->unpin_work);
5a21b665
DV
3845
3846 trace_i915_flip_complete(intel_crtc->plane,
3847 work->pending_flip_obj);
d6bbafa1
CW
3848}
3849
5008e874 3850static int intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
e6c3a2a6 3851{
0f91128d 3852 struct drm_device *dev = crtc->dev;
5bb61643 3853 struct drm_i915_private *dev_priv = dev->dev_private;
5008e874 3854 long ret;
e6c3a2a6 3855
2c10d571 3856 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
5008e874
ML
3857
3858 ret = wait_event_interruptible_timeout(
3859 dev_priv->pending_flip_queue,
3860 !intel_crtc_has_pending_flip(crtc),
3861 60*HZ);
3862
3863 if (ret < 0)
3864 return ret;
3865
5a21b665
DV
3866 if (ret == 0) {
3867 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3868 struct intel_flip_work *work;
3869
3870 spin_lock_irq(&dev->event_lock);
3871 work = intel_crtc->flip_work;
3872 if (work && !is_mmio_work(work)) {
3873 WARN_ONCE(1, "Removing stuck page flip\n");
3874 page_flip_completed(intel_crtc);
3875 }
3876 spin_unlock_irq(&dev->event_lock);
3877 }
5bb61643 3878
5008e874 3879 return 0;
e6c3a2a6
CW
3880}
3881
060f02d8
VS
3882static void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
3883{
3884 u32 temp;
3885
3886 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3887
3888 mutex_lock(&dev_priv->sb_lock);
3889
3890 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3891 temp |= SBI_SSCCTL_DISABLE;
3892 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3893
3894 mutex_unlock(&dev_priv->sb_lock);
3895}
3896
e615efe4
ED
3897/* Program iCLKIP clock to the desired frequency */
3898static void lpt_program_iclkip(struct drm_crtc *crtc)
3899{
64b46a06 3900 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6e3c9717 3901 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
e615efe4
ED
3902 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3903 u32 temp;
3904
060f02d8 3905 lpt_disable_iclkip(dev_priv);
e615efe4 3906
64b46a06
VS
3907 /* The iCLK virtual clock root frequency is in MHz,
3908 * but the adjusted_mode->crtc_clock in in KHz. To get the
3909 * divisors, it is necessary to divide one by another, so we
3910 * convert the virtual clock precision to KHz here for higher
3911 * precision.
3912 */
3913 for (auxdiv = 0; auxdiv < 2; auxdiv++) {
e615efe4
ED
3914 u32 iclk_virtual_root_freq = 172800 * 1000;
3915 u32 iclk_pi_range = 64;
64b46a06 3916 u32 desired_divisor;
e615efe4 3917
64b46a06
VS
3918 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
3919 clock << auxdiv);
3920 divsel = (desired_divisor / iclk_pi_range) - 2;
3921 phaseinc = desired_divisor % iclk_pi_range;
e615efe4 3922
64b46a06
VS
3923 /*
3924 * Near 20MHz is a corner case which is
3925 * out of range for the 7-bit divisor
3926 */
3927 if (divsel <= 0x7f)
3928 break;
e615efe4
ED
3929 }
3930
3931 /* This should not happen with any sane values */
3932 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3933 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3934 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3935 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3936
3937 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
12d7ceed 3938 clock,
e615efe4
ED
3939 auxdiv,
3940 divsel,
3941 phasedir,
3942 phaseinc);
3943
060f02d8
VS
3944 mutex_lock(&dev_priv->sb_lock);
3945
e615efe4 3946 /* Program SSCDIVINTPHASE6 */
988d6ee8 3947 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
e615efe4
ED
3948 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3949 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3950 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3951 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3952 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3953 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
988d6ee8 3954 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
e615efe4
ED
3955
3956 /* Program SSCAUXDIV */
988d6ee8 3957 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
e615efe4
ED
3958 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3959 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
988d6ee8 3960 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
e615efe4
ED
3961
3962 /* Enable modulator and associated divider */
988d6ee8 3963 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
e615efe4 3964 temp &= ~SBI_SSCCTL_DISABLE;
988d6ee8 3965 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
e615efe4 3966
060f02d8
VS
3967 mutex_unlock(&dev_priv->sb_lock);
3968
e615efe4
ED
3969 /* Wait for initialization time */
3970 udelay(24);
3971
3972 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3973}
3974
8802e5b6
VS
3975int lpt_get_iclkip(struct drm_i915_private *dev_priv)
3976{
3977 u32 divsel, phaseinc, auxdiv;
3978 u32 iclk_virtual_root_freq = 172800 * 1000;
3979 u32 iclk_pi_range = 64;
3980 u32 desired_divisor;
3981 u32 temp;
3982
3983 if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
3984 return 0;
3985
3986 mutex_lock(&dev_priv->sb_lock);
3987
3988 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3989 if (temp & SBI_SSCCTL_DISABLE) {
3990 mutex_unlock(&dev_priv->sb_lock);
3991 return 0;
3992 }
3993
3994 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3995 divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
3996 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
3997 phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
3998 SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
3999
4000 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4001 auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
4002 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
4003
4004 mutex_unlock(&dev_priv->sb_lock);
4005
4006 desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
4007
4008 return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4009 desired_divisor << auxdiv);
4010}
4011
275f01b2
DV
4012static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4013 enum pipe pch_transcoder)
4014{
4015 struct drm_device *dev = crtc->base.dev;
4016 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 4017 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
275f01b2
DV
4018
4019 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4020 I915_READ(HTOTAL(cpu_transcoder)));
4021 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4022 I915_READ(HBLANK(cpu_transcoder)));
4023 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4024 I915_READ(HSYNC(cpu_transcoder)));
4025
4026 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4027 I915_READ(VTOTAL(cpu_transcoder)));
4028 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4029 I915_READ(VBLANK(cpu_transcoder)));
4030 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4031 I915_READ(VSYNC(cpu_transcoder)));
4032 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4033 I915_READ(VSYNCSHIFT(cpu_transcoder)));
4034}
4035
003632d9 4036static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
1fbc0d78
DV
4037{
4038 struct drm_i915_private *dev_priv = dev->dev_private;
4039 uint32_t temp;
4040
4041 temp = I915_READ(SOUTH_CHICKEN1);
003632d9 4042 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
1fbc0d78
DV
4043 return;
4044
4045 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4046 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4047
003632d9
ACO
4048 temp &= ~FDI_BC_BIFURCATION_SELECT;
4049 if (enable)
4050 temp |= FDI_BC_BIFURCATION_SELECT;
4051
4052 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
1fbc0d78
DV
4053 I915_WRITE(SOUTH_CHICKEN1, temp);
4054 POSTING_READ(SOUTH_CHICKEN1);
4055}
4056
4057static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4058{
4059 struct drm_device *dev = intel_crtc->base.dev;
1fbc0d78
DV
4060
4061 switch (intel_crtc->pipe) {
4062 case PIPE_A:
4063 break;
4064 case PIPE_B:
6e3c9717 4065 if (intel_crtc->config->fdi_lanes > 2)
003632d9 4066 cpt_set_fdi_bc_bifurcation(dev, false);
1fbc0d78 4067 else
003632d9 4068 cpt_set_fdi_bc_bifurcation(dev, true);
1fbc0d78
DV
4069
4070 break;
4071 case PIPE_C:
003632d9 4072 cpt_set_fdi_bc_bifurcation(dev, true);
1fbc0d78
DV
4073
4074 break;
4075 default:
4076 BUG();
4077 }
4078}
4079
c48b5305
VS
4080/* Return which DP Port should be selected for Transcoder DP control */
4081static enum port
4082intel_trans_dp_port_sel(struct drm_crtc *crtc)
4083{
4084 struct drm_device *dev = crtc->dev;
4085 struct intel_encoder *encoder;
4086
4087 for_each_encoder_on_crtc(dev, crtc, encoder) {
4088 if (encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
4089 encoder->type == INTEL_OUTPUT_EDP)
4090 return enc_to_dig_port(&encoder->base)->port;
4091 }
4092
4093 return -1;
4094}
4095
f67a559d
JB
4096/*
4097 * Enable PCH resources required for PCH ports:
4098 * - PCH PLLs
4099 * - FDI training & RX/TX
4100 * - update transcoder timings
4101 * - DP transcoding bits
4102 * - transcoder
4103 */
4104static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
4105{
4106 struct drm_device *dev = crtc->dev;
4107 struct drm_i915_private *dev_priv = dev->dev_private;
4108 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4109 int pipe = intel_crtc->pipe;
f0f59a00 4110 u32 temp;
2c07245f 4111
ab9412ba 4112 assert_pch_transcoder_disabled(dev_priv, pipe);
e7e164db 4113
1fbc0d78
DV
4114 if (IS_IVYBRIDGE(dev))
4115 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4116
cd986abb
DV
4117 /* Write the TU size bits before fdi link training, so that error
4118 * detection works. */
4119 I915_WRITE(FDI_RX_TUSIZE1(pipe),
4120 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4121
c98e9dcf 4122 /* For PCH output, training FDI link */
674cf967 4123 dev_priv->display.fdi_link_train(crtc);
2c07245f 4124
3ad8a208
DV
4125 /* We need to program the right clock selection before writing the pixel
4126 * mutliplier into the DPLL. */
303b81e0 4127 if (HAS_PCH_CPT(dev)) {
ee7b9f93 4128 u32 sel;
4b645f14 4129
c98e9dcf 4130 temp = I915_READ(PCH_DPLL_SEL);
11887397
DV
4131 temp |= TRANS_DPLL_ENABLE(pipe);
4132 sel = TRANS_DPLLB_SEL(pipe);
8106ddbd
ACO
4133 if (intel_crtc->config->shared_dpll ==
4134 intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
ee7b9f93
JB
4135 temp |= sel;
4136 else
4137 temp &= ~sel;
c98e9dcf 4138 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 4139 }
5eddb70b 4140
3ad8a208
DV
4141 /* XXX: pch pll's can be enabled any time before we enable the PCH
4142 * transcoder, and we actually should do this to not upset any PCH
4143 * transcoder that already use the clock when we share it.
4144 *
4145 * Note that enable_shared_dpll tries to do the right thing, but
4146 * get_shared_dpll unconditionally resets the pll - we need that to have
4147 * the right LVDS enable sequence. */
85b3894f 4148 intel_enable_shared_dpll(intel_crtc);
3ad8a208 4149
d9b6cb56
JB
4150 /* set transcoder timing, panel must allow it */
4151 assert_panel_unlocked(dev_priv, pipe);
275f01b2 4152 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
8db9d77b 4153
303b81e0 4154 intel_fdi_normal_train(crtc);
5e84e1a4 4155
c98e9dcf 4156 /* For PCH DP, enable TRANS_DP_CTL */
6e3c9717 4157 if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
9c4edaee
VS
4158 const struct drm_display_mode *adjusted_mode =
4159 &intel_crtc->config->base.adjusted_mode;
dfd07d72 4160 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
f0f59a00 4161 i915_reg_t reg = TRANS_DP_CTL(pipe);
5eddb70b
CW
4162 temp = I915_READ(reg);
4163 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
4164 TRANS_DP_SYNC_MASK |
4165 TRANS_DP_BPC_MASK);
e3ef4479 4166 temp |= TRANS_DP_OUTPUT_ENABLE;
9325c9f0 4167 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf 4168
9c4edaee 4169 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 4170 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
9c4edaee 4171 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 4172 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
4173
4174 switch (intel_trans_dp_port_sel(crtc)) {
c48b5305 4175 case PORT_B:
5eddb70b 4176 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf 4177 break;
c48b5305 4178 case PORT_C:
5eddb70b 4179 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf 4180 break;
c48b5305 4181 case PORT_D:
5eddb70b 4182 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
4183 break;
4184 default:
e95d41e1 4185 BUG();
32f9d658 4186 }
2c07245f 4187
5eddb70b 4188 I915_WRITE(reg, temp);
6be4a607 4189 }
b52eb4dc 4190
b8a4f404 4191 ironlake_enable_pch_transcoder(dev_priv, pipe);
f67a559d
JB
4192}
4193
1507e5bd
PZ
4194static void lpt_pch_enable(struct drm_crtc *crtc)
4195{
4196 struct drm_device *dev = crtc->dev;
4197 struct drm_i915_private *dev_priv = dev->dev_private;
4198 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6e3c9717 4199 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1507e5bd 4200
ab9412ba 4201 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
1507e5bd 4202
8c52b5e8 4203 lpt_program_iclkip(crtc);
1507e5bd 4204
0540e488 4205 /* Set transcoder timing. */
275f01b2 4206 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
1507e5bd 4207
937bb610 4208 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
f67a559d
JB
4209}
4210
a1520318 4211static void cpt_verify_modeset(struct drm_device *dev, int pipe)
d4270e57
JB
4212{
4213 struct drm_i915_private *dev_priv = dev->dev_private;
f0f59a00 4214 i915_reg_t dslreg = PIPEDSL(pipe);
d4270e57
JB
4215 u32 temp;
4216
4217 temp = I915_READ(dslreg);
4218 udelay(500);
4219 if (wait_for(I915_READ(dslreg) != temp, 5)) {
d4270e57 4220 if (wait_for(I915_READ(dslreg) != temp, 5))
84f44ce7 4221 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
d4270e57
JB
4222 }
4223}
4224
86adf9d7
ML
4225static int
4226skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4227 unsigned scaler_user, int *scaler_id, unsigned int rotation,
4228 int src_w, int src_h, int dst_w, int dst_h)
a1b2278e 4229{
86adf9d7
ML
4230 struct intel_crtc_scaler_state *scaler_state =
4231 &crtc_state->scaler_state;
4232 struct intel_crtc *intel_crtc =
4233 to_intel_crtc(crtc_state->base.crtc);
a1b2278e 4234 int need_scaling;
6156a456
CK
4235
4236 need_scaling = intel_rotation_90_or_270(rotation) ?
4237 (src_h != dst_w || src_w != dst_h):
4238 (src_w != dst_w || src_h != dst_h);
a1b2278e
CK
4239
4240 /*
4241 * if plane is being disabled or scaler is no more required or force detach
4242 * - free scaler binded to this plane/crtc
4243 * - in order to do this, update crtc->scaler_usage
4244 *
4245 * Here scaler state in crtc_state is set free so that
4246 * scaler can be assigned to other user. Actual register
4247 * update to free the scaler is done in plane/panel-fit programming.
4248 * For this purpose crtc/plane_state->scaler_id isn't reset here.
4249 */
86adf9d7 4250 if (force_detach || !need_scaling) {
a1b2278e 4251 if (*scaler_id >= 0) {
86adf9d7 4252 scaler_state->scaler_users &= ~(1 << scaler_user);
a1b2278e
CK
4253 scaler_state->scalers[*scaler_id].in_use = 0;
4254
86adf9d7
ML
4255 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4256 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4257 intel_crtc->pipe, scaler_user, *scaler_id,
a1b2278e
CK
4258 scaler_state->scaler_users);
4259 *scaler_id = -1;
4260 }
4261 return 0;
4262 }
4263
4264 /* range checks */
4265 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4266 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4267
4268 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4269 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
86adf9d7 4270 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
a1b2278e 4271 "size is out of scaler range\n",
86adf9d7 4272 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
a1b2278e
CK
4273 return -EINVAL;
4274 }
4275
86adf9d7
ML
4276 /* mark this plane as a scaler user in crtc_state */
4277 scaler_state->scaler_users |= (1 << scaler_user);
4278 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4279 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4280 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4281 scaler_state->scaler_users);
4282
4283 return 0;
4284}
4285
4286/**
4287 * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4288 *
4289 * @state: crtc's scaler state
86adf9d7
ML
4290 *
4291 * Return
4292 * 0 - scaler_usage updated successfully
4293 * error - requested scaling cannot be supported or other error condition
4294 */
e435d6e5 4295int skl_update_scaler_crtc(struct intel_crtc_state *state)
86adf9d7
ML
4296{
4297 struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
7c5f93b0 4298 const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
86adf9d7 4299
78108b7c
VS
4300 DRM_DEBUG_KMS("Updating scaler for [CRTC:%d:%s] scaler_user index %u.%u\n",
4301 intel_crtc->base.base.id, intel_crtc->base.name,
4302 intel_crtc->pipe, SKL_CRTC_INDEX);
86adf9d7 4303
e435d6e5 4304 return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
fa5a7970 4305 &state->scaler_state.scaler_id, BIT(DRM_ROTATE_0),
86adf9d7 4306 state->pipe_src_w, state->pipe_src_h,
aad941d5 4307 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
86adf9d7
ML
4308}
4309
4310/**
4311 * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4312 *
4313 * @state: crtc's scaler state
86adf9d7
ML
4314 * @plane_state: atomic plane state to update
4315 *
4316 * Return
4317 * 0 - scaler_usage updated successfully
4318 * error - requested scaling cannot be supported or other error condition
4319 */
da20eabd
ML
4320static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4321 struct intel_plane_state *plane_state)
86adf9d7
ML
4322{
4323
4324 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
da20eabd
ML
4325 struct intel_plane *intel_plane =
4326 to_intel_plane(plane_state->base.plane);
86adf9d7
ML
4327 struct drm_framebuffer *fb = plane_state->base.fb;
4328 int ret;
4329
4330 bool force_detach = !fb || !plane_state->visible;
4331
72660ce0
VS
4332 DRM_DEBUG_KMS("Updating scaler for [PLANE:%d:%s] scaler_user index %u.%u\n",
4333 intel_plane->base.base.id, intel_plane->base.name,
4334 intel_crtc->pipe, drm_plane_index(&intel_plane->base));
86adf9d7
ML
4335
4336 ret = skl_update_scaler(crtc_state, force_detach,
4337 drm_plane_index(&intel_plane->base),
4338 &plane_state->scaler_id,
4339 plane_state->base.rotation,
4340 drm_rect_width(&plane_state->src) >> 16,
4341 drm_rect_height(&plane_state->src) >> 16,
4342 drm_rect_width(&plane_state->dst),
4343 drm_rect_height(&plane_state->dst));
4344
4345 if (ret || plane_state->scaler_id < 0)
4346 return ret;
4347
a1b2278e 4348 /* check colorkey */
818ed961 4349 if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
72660ce0
VS
4350 DRM_DEBUG_KMS("[PLANE:%d:%s] scaling with color key not allowed",
4351 intel_plane->base.base.id,
4352 intel_plane->base.name);
a1b2278e
CK
4353 return -EINVAL;
4354 }
4355
4356 /* Check src format */
86adf9d7
ML
4357 switch (fb->pixel_format) {
4358 case DRM_FORMAT_RGB565:
4359 case DRM_FORMAT_XBGR8888:
4360 case DRM_FORMAT_XRGB8888:
4361 case DRM_FORMAT_ABGR8888:
4362 case DRM_FORMAT_ARGB8888:
4363 case DRM_FORMAT_XRGB2101010:
4364 case DRM_FORMAT_XBGR2101010:
4365 case DRM_FORMAT_YUYV:
4366 case DRM_FORMAT_YVYU:
4367 case DRM_FORMAT_UYVY:
4368 case DRM_FORMAT_VYUY:
4369 break;
4370 default:
72660ce0
VS
4371 DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n",
4372 intel_plane->base.base.id, intel_plane->base.name,
4373 fb->base.id, fb->pixel_format);
86adf9d7 4374 return -EINVAL;
a1b2278e
CK
4375 }
4376
a1b2278e
CK
4377 return 0;
4378}
4379
e435d6e5
ML
4380static void skylake_scaler_disable(struct intel_crtc *crtc)
4381{
4382 int i;
4383
4384 for (i = 0; i < crtc->num_scalers; i++)
4385 skl_detach_scaler(crtc, i);
4386}
4387
4388static void skylake_pfit_enable(struct intel_crtc *crtc)
bd2e244f
JB
4389{
4390 struct drm_device *dev = crtc->base.dev;
4391 struct drm_i915_private *dev_priv = dev->dev_private;
4392 int pipe = crtc->pipe;
a1b2278e
CK
4393 struct intel_crtc_scaler_state *scaler_state =
4394 &crtc->config->scaler_state;
4395
4396 DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4397
6e3c9717 4398 if (crtc->config->pch_pfit.enabled) {
a1b2278e
CK
4399 int id;
4400
4401 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4402 DRM_ERROR("Requesting pfit without getting a scaler first\n");
4403 return;
4404 }
4405
4406 id = scaler_state->scaler_id;
4407 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4408 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4409 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4410 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4411
4412 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
bd2e244f
JB
4413 }
4414}
4415
b074cec8
JB
4416static void ironlake_pfit_enable(struct intel_crtc *crtc)
4417{
4418 struct drm_device *dev = crtc->base.dev;
4419 struct drm_i915_private *dev_priv = dev->dev_private;
4420 int pipe = crtc->pipe;
4421
6e3c9717 4422 if (crtc->config->pch_pfit.enabled) {
b074cec8
JB
4423 /* Force use of hard-coded filter coefficients
4424 * as some pre-programmed values are broken,
4425 * e.g. x201.
4426 */
4427 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4428 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4429 PF_PIPE_SEL_IVB(pipe));
4430 else
4431 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
6e3c9717
ACO
4432 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4433 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
d4270e57
JB
4434 }
4435}
4436
20bc8673 4437void hsw_enable_ips(struct intel_crtc *crtc)
d77e4531 4438{
cea165c3
VS
4439 struct drm_device *dev = crtc->base.dev;
4440 struct drm_i915_private *dev_priv = dev->dev_private;
d77e4531 4441
6e3c9717 4442 if (!crtc->config->ips_enabled)
d77e4531
PZ
4443 return;
4444
307e4498
ML
4445 /*
4446 * We can only enable IPS after we enable a plane and wait for a vblank
4447 * This function is called from post_plane_update, which is run after
4448 * a vblank wait.
4449 */
cea165c3 4450
d77e4531 4451 assert_plane_enabled(dev_priv, crtc->plane);
cea165c3 4452 if (IS_BROADWELL(dev)) {
2a114cc1
BW
4453 mutex_lock(&dev_priv->rps.hw_lock);
4454 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4455 mutex_unlock(&dev_priv->rps.hw_lock);
4456 /* Quoting Art Runyan: "its not safe to expect any particular
4457 * value in IPS_CTL bit 31 after enabling IPS through the
e59150dc
JB
4458 * mailbox." Moreover, the mailbox may return a bogus state,
4459 * so we need to just enable it and continue on.
2a114cc1
BW
4460 */
4461 } else {
4462 I915_WRITE(IPS_CTL, IPS_ENABLE);
4463 /* The bit only becomes 1 in the next vblank, so this wait here
4464 * is essentially intel_wait_for_vblank. If we don't have this
4465 * and don't wait for vblanks until the end of crtc_enable, then
4466 * the HW state readout code will complain that the expected
4467 * IPS_CTL value is not the one we read. */
2ec9ba3c
CW
4468 if (intel_wait_for_register(dev_priv,
4469 IPS_CTL, IPS_ENABLE, IPS_ENABLE,
4470 50))
2a114cc1
BW
4471 DRM_ERROR("Timed out waiting for IPS enable\n");
4472 }
d77e4531
PZ
4473}
4474
20bc8673 4475void hsw_disable_ips(struct intel_crtc *crtc)
d77e4531
PZ
4476{
4477 struct drm_device *dev = crtc->base.dev;
4478 struct drm_i915_private *dev_priv = dev->dev_private;
4479
6e3c9717 4480 if (!crtc->config->ips_enabled)
d77e4531
PZ
4481 return;
4482
4483 assert_plane_enabled(dev_priv, crtc->plane);
23d0b130 4484 if (IS_BROADWELL(dev)) {
2a114cc1
BW
4485 mutex_lock(&dev_priv->rps.hw_lock);
4486 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4487 mutex_unlock(&dev_priv->rps.hw_lock);
23d0b130
BW
4488 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4489 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4490 DRM_ERROR("Timed out waiting for IPS disable\n");
e59150dc 4491 } else {
2a114cc1 4492 I915_WRITE(IPS_CTL, 0);
e59150dc
JB
4493 POSTING_READ(IPS_CTL);
4494 }
d77e4531
PZ
4495
4496 /* We need to wait for a vblank before we can disable the plane. */
4497 intel_wait_for_vblank(dev, crtc->pipe);
4498}
4499
7cac945f 4500static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
d3eedb1a 4501{
7cac945f 4502 if (intel_crtc->overlay) {
d3eedb1a
VS
4503 struct drm_device *dev = intel_crtc->base.dev;
4504 struct drm_i915_private *dev_priv = dev->dev_private;
4505
4506 mutex_lock(&dev->struct_mutex);
4507 dev_priv->mm.interruptible = false;
4508 (void) intel_overlay_switch_off(intel_crtc->overlay);
4509 dev_priv->mm.interruptible = true;
4510 mutex_unlock(&dev->struct_mutex);
4511 }
4512
4513 /* Let userspace switch the overlay on again. In most cases userspace
4514 * has to recompute where to put it anyway.
4515 */
4516}
4517
87d4300a
ML
4518/**
4519 * intel_post_enable_primary - Perform operations after enabling primary plane
4520 * @crtc: the CRTC whose primary plane was just enabled
4521 *
4522 * Performs potentially sleeping operations that must be done after the primary
4523 * plane is enabled, such as updating FBC and IPS. Note that this may be
4524 * called due to an explicit primary plane update, or due to an implicit
4525 * re-enable that is caused when a sprite plane is updated to no longer
4526 * completely hide the primary plane.
4527 */
4528static void
4529intel_post_enable_primary(struct drm_crtc *crtc)
a5c4d7bc
VS
4530{
4531 struct drm_device *dev = crtc->dev;
87d4300a 4532 struct drm_i915_private *dev_priv = dev->dev_private;
a5c4d7bc
VS
4533 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4534 int pipe = intel_crtc->pipe;
a5c4d7bc 4535
87d4300a
ML
4536 /*
4537 * FIXME IPS should be fine as long as one plane is
4538 * enabled, but in practice it seems to have problems
4539 * when going from primary only to sprite only and vice
4540 * versa.
4541 */
a5c4d7bc
VS
4542 hsw_enable_ips(intel_crtc);
4543
f99d7069 4544 /*
87d4300a
ML
4545 * Gen2 reports pipe underruns whenever all planes are disabled.
4546 * So don't enable underrun reporting before at least some planes
4547 * are enabled.
4548 * FIXME: Need to fix the logic to work when we turn off all planes
4549 * but leave the pipe running.
f99d7069 4550 */
87d4300a
ML
4551 if (IS_GEN2(dev))
4552 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4553
aca7b684
VS
4554 /* Underruns don't always raise interrupts, so check manually. */
4555 intel_check_cpu_fifo_underruns(dev_priv);
4556 intel_check_pch_fifo_underruns(dev_priv);
a5c4d7bc
VS
4557}
4558
2622a081 4559/* FIXME move all this to pre_plane_update() with proper state tracking */
87d4300a
ML
4560static void
4561intel_pre_disable_primary(struct drm_crtc *crtc)
a5c4d7bc
VS
4562{
4563 struct drm_device *dev = crtc->dev;
4564 struct drm_i915_private *dev_priv = dev->dev_private;
4565 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4566 int pipe = intel_crtc->pipe;
a5c4d7bc 4567
87d4300a
ML
4568 /*
4569 * Gen2 reports pipe underruns whenever all planes are disabled.
4570 * So diasble underrun reporting before all the planes get disabled.
4571 * FIXME: Need to fix the logic to work when we turn off all planes
4572 * but leave the pipe running.
4573 */
4574 if (IS_GEN2(dev))
4575 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
a5c4d7bc 4576
2622a081
VS
4577 /*
4578 * FIXME IPS should be fine as long as one plane is
4579 * enabled, but in practice it seems to have problems
4580 * when going from primary only to sprite only and vice
4581 * versa.
4582 */
4583 hsw_disable_ips(intel_crtc);
4584}
4585
4586/* FIXME get rid of this and use pre_plane_update */
4587static void
4588intel_pre_disable_primary_noatomic(struct drm_crtc *crtc)
4589{
4590 struct drm_device *dev = crtc->dev;
4591 struct drm_i915_private *dev_priv = dev->dev_private;
4592 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4593 int pipe = intel_crtc->pipe;
4594
4595 intel_pre_disable_primary(crtc);
4596
87d4300a
ML
4597 /*
4598 * Vblank time updates from the shadow to live plane control register
4599 * are blocked if the memory self-refresh mode is active at that
4600 * moment. So to make sure the plane gets truly disabled, disable
4601 * first the self-refresh mode. The self-refresh enable bit in turn
4602 * will be checked/applied by the HW only at the next frame start
4603 * event which is after the vblank start event, so we need to have a
4604 * wait-for-vblank between disabling the plane and the pipe.
4605 */
262cd2e1 4606 if (HAS_GMCH_DISPLAY(dev)) {
87d4300a 4607 intel_set_memory_cxsr(dev_priv, false);
262cd2e1
VS
4608 dev_priv->wm.vlv.cxsr = false;
4609 intel_wait_for_vblank(dev, pipe);
4610 }
87d4300a
ML
4611}
4612
5a21b665
DV
4613static void intel_post_plane_update(struct intel_crtc_state *old_crtc_state)
4614{
4615 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
4616 struct drm_atomic_state *old_state = old_crtc_state->base.state;
4617 struct intel_crtc_state *pipe_config =
4618 to_intel_crtc_state(crtc->base.state);
4619 struct drm_device *dev = crtc->base.dev;
4620 struct drm_plane *primary = crtc->base.primary;
4621 struct drm_plane_state *old_pri_state =
4622 drm_atomic_get_existing_plane_state(old_state, primary);
4623
4624 intel_frontbuffer_flip(dev, pipe_config->fb_bits);
4625
4626 crtc->wm.cxsr_allowed = true;
4627
4628 if (pipe_config->update_wm_post && pipe_config->base.active)
4629 intel_update_watermarks(&crtc->base);
4630
4631 if (old_pri_state) {
4632 struct intel_plane_state *primary_state =
4633 to_intel_plane_state(primary->state);
4634 struct intel_plane_state *old_primary_state =
4635 to_intel_plane_state(old_pri_state);
4636
4637 intel_fbc_post_update(crtc);
4638
4639 if (primary_state->visible &&
4640 (needs_modeset(&pipe_config->base) ||
4641 !old_primary_state->visible))
4642 intel_post_enable_primary(&crtc->base);
4643 }
4644}
4645
5c74cd73 4646static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state)
ac21b225 4647{
5c74cd73 4648 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
ac21b225 4649 struct drm_device *dev = crtc->base.dev;
eddfcbcd 4650 struct drm_i915_private *dev_priv = dev->dev_private;
ab1d3a0e
ML
4651 struct intel_crtc_state *pipe_config =
4652 to_intel_crtc_state(crtc->base.state);
5c74cd73
ML
4653 struct drm_atomic_state *old_state = old_crtc_state->base.state;
4654 struct drm_plane *primary = crtc->base.primary;
4655 struct drm_plane_state *old_pri_state =
4656 drm_atomic_get_existing_plane_state(old_state, primary);
4657 bool modeset = needs_modeset(&pipe_config->base);
ac21b225 4658
5c74cd73
ML
4659 if (old_pri_state) {
4660 struct intel_plane_state *primary_state =
4661 to_intel_plane_state(primary->state);
4662 struct intel_plane_state *old_primary_state =
4663 to_intel_plane_state(old_pri_state);
4664
faf68d92 4665 intel_fbc_pre_update(crtc, pipe_config, primary_state);
31ae71fc 4666
5c74cd73
ML
4667 if (old_primary_state->visible &&
4668 (modeset || !primary_state->visible))
4669 intel_pre_disable_primary(&crtc->base);
4670 }
852eb00d 4671
a4015f9a 4672 if (pipe_config->disable_cxsr && HAS_GMCH_DISPLAY(dev)) {
852eb00d 4673 crtc->wm.cxsr_allowed = false;
2dfd178d 4674
2622a081
VS
4675 /*
4676 * Vblank time updates from the shadow to live plane control register
4677 * are blocked if the memory self-refresh mode is active at that
4678 * moment. So to make sure the plane gets truly disabled, disable
4679 * first the self-refresh mode. The self-refresh enable bit in turn
4680 * will be checked/applied by the HW only at the next frame start
4681 * event which is after the vblank start event, so we need to have a
4682 * wait-for-vblank between disabling the plane and the pipe.
4683 */
4684 if (old_crtc_state->base.active) {
2dfd178d 4685 intel_set_memory_cxsr(dev_priv, false);
2622a081
VS
4686 dev_priv->wm.vlv.cxsr = false;
4687 intel_wait_for_vblank(dev, crtc->pipe);
4688 }
852eb00d 4689 }
92826fcd 4690
ed4a6a7c
MR
4691 /*
4692 * IVB workaround: must disable low power watermarks for at least
4693 * one frame before enabling scaling. LP watermarks can be re-enabled
4694 * when scaling is disabled.
4695 *
4696 * WaCxSRDisabledForSpriteScaling:ivb
4697 */
4698 if (pipe_config->disable_lp_wm) {
4699 ilk_disable_lp_wm(dev);
4700 intel_wait_for_vblank(dev, crtc->pipe);
4701 }
4702
4703 /*
4704 * If we're doing a modeset, we're done. No need to do any pre-vblank
4705 * watermark programming here.
4706 */
4707 if (needs_modeset(&pipe_config->base))
4708 return;
4709
4710 /*
4711 * For platforms that support atomic watermarks, program the
4712 * 'intermediate' watermarks immediately. On pre-gen9 platforms, these
4713 * will be the intermediate values that are safe for both pre- and
4714 * post- vblank; when vblank happens, the 'active' values will be set
4715 * to the final 'target' values and we'll do this again to get the
4716 * optimal watermarks. For gen9+ platforms, the values we program here
4717 * will be the final target values which will get automatically latched
4718 * at vblank time; no further programming will be necessary.
4719 *
4720 * If a platform hasn't been transitioned to atomic watermarks yet,
4721 * we'll continue to update watermarks the old way, if flags tell
4722 * us to.
4723 */
4724 if (dev_priv->display.initial_watermarks != NULL)
4725 dev_priv->display.initial_watermarks(pipe_config);
caed361d 4726 else if (pipe_config->update_wm_pre)
92826fcd 4727 intel_update_watermarks(&crtc->base);
ac21b225
ML
4728}
4729
d032ffa0 4730static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
87d4300a
ML
4731{
4732 struct drm_device *dev = crtc->dev;
4733 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
d032ffa0 4734 struct drm_plane *p;
87d4300a
ML
4735 int pipe = intel_crtc->pipe;
4736
7cac945f 4737 intel_crtc_dpms_overlay_disable(intel_crtc);
27321ae8 4738
d032ffa0
ML
4739 drm_for_each_plane_mask(p, dev, plane_mask)
4740 to_intel_plane(p)->disable_plane(p, crtc);
f98551ae 4741
f99d7069
DV
4742 /*
4743 * FIXME: Once we grow proper nuclear flip support out of this we need
4744 * to compute the mask of flip planes precisely. For the time being
4745 * consider this a flip to a NULL plane.
4746 */
4747 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
a5c4d7bc
VS
4748}
4749
f67a559d
JB
4750static void ironlake_crtc_enable(struct drm_crtc *crtc)
4751{
4752 struct drm_device *dev = crtc->dev;
4753 struct drm_i915_private *dev_priv = dev->dev_private;
4754 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4755 struct intel_encoder *encoder;
f67a559d 4756 int pipe = intel_crtc->pipe;
b95c5321
ML
4757 struct intel_crtc_state *pipe_config =
4758 to_intel_crtc_state(crtc->state);
f67a559d 4759
53d9f4e9 4760 if (WARN_ON(intel_crtc->active))
f67a559d
JB
4761 return;
4762
b2c0593a
VS
4763 /*
4764 * Sometimes spurious CPU pipe underruns happen during FDI
4765 * training, at least with VGA+HDMI cloning. Suppress them.
4766 *
4767 * On ILK we get an occasional spurious CPU pipe underruns
4768 * between eDP port A enable and vdd enable. Also PCH port
4769 * enable seems to result in the occasional CPU pipe underrun.
4770 *
4771 * Spurious PCH underruns also occur during PCH enabling.
4772 */
4773 if (intel_crtc->config->has_pch_encoder || IS_GEN5(dev_priv))
4774 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
81b088ca
VS
4775 if (intel_crtc->config->has_pch_encoder)
4776 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4777
6e3c9717 4778 if (intel_crtc->config->has_pch_encoder)
b14b1055
DV
4779 intel_prepare_shared_dpll(intel_crtc);
4780
6e3c9717 4781 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 4782 intel_dp_set_m_n(intel_crtc, M1_N1);
29407aab
DV
4783
4784 intel_set_pipe_timings(intel_crtc);
bc58be60 4785 intel_set_pipe_src_size(intel_crtc);
29407aab 4786
6e3c9717 4787 if (intel_crtc->config->has_pch_encoder) {
29407aab 4788 intel_cpu_transcoder_set_m_n(intel_crtc,
6e3c9717 4789 &intel_crtc->config->fdi_m_n, NULL);
29407aab
DV
4790 }
4791
4792 ironlake_set_pipeconf(crtc);
4793
f67a559d 4794 intel_crtc->active = true;
8664281b 4795
f6736a1a 4796 for_each_encoder_on_crtc(dev, crtc, encoder)
952735ee
DV
4797 if (encoder->pre_enable)
4798 encoder->pre_enable(encoder);
f67a559d 4799
6e3c9717 4800 if (intel_crtc->config->has_pch_encoder) {
fff367c7
DV
4801 /* Note: FDI PLL enabling _must_ be done before we enable the
4802 * cpu pipes, hence this is separate from all the other fdi/pch
4803 * enabling. */
88cefb6c 4804 ironlake_fdi_pll_enable(intel_crtc);
46b6f814
DV
4805 } else {
4806 assert_fdi_tx_disabled(dev_priv, pipe);
4807 assert_fdi_rx_disabled(dev_priv, pipe);
4808 }
f67a559d 4809
b074cec8 4810 ironlake_pfit_enable(intel_crtc);
f67a559d 4811
9c54c0dd
JB
4812 /*
4813 * On ILK+ LUT must be loaded before the pipe is running but with
4814 * clocks enabled
4815 */
b95c5321 4816 intel_color_load_luts(&pipe_config->base);
9c54c0dd 4817
1d5bf5d9
ID
4818 if (dev_priv->display.initial_watermarks != NULL)
4819 dev_priv->display.initial_watermarks(intel_crtc->config);
e1fdc473 4820 intel_enable_pipe(intel_crtc);
f67a559d 4821
6e3c9717 4822 if (intel_crtc->config->has_pch_encoder)
f67a559d 4823 ironlake_pch_enable(crtc);
c98e9dcf 4824
f9b61ff6
DV
4825 assert_vblank_disabled(crtc);
4826 drm_crtc_vblank_on(crtc);
4827
fa5c73b1
DV
4828 for_each_encoder_on_crtc(dev, crtc, encoder)
4829 encoder->enable(encoder);
61b77ddd
DV
4830
4831 if (HAS_PCH_CPT(dev))
a1520318 4832 cpt_verify_modeset(dev, intel_crtc->pipe);
37ca8d4c
VS
4833
4834 /* Must wait for vblank to avoid spurious PCH FIFO underruns */
4835 if (intel_crtc->config->has_pch_encoder)
4836 intel_wait_for_vblank(dev, pipe);
b2c0593a 4837 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
37ca8d4c 4838 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
6be4a607
JB
4839}
4840
42db64ef
PZ
4841/* IPS only exists on ULT machines and is tied to pipe A. */
4842static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4843{
f5adf94e 4844 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
42db64ef
PZ
4845}
4846
4f771f10
PZ
4847static void haswell_crtc_enable(struct drm_crtc *crtc)
4848{
4849 struct drm_device *dev = crtc->dev;
4850 struct drm_i915_private *dev_priv = dev->dev_private;
4851 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4852 struct intel_encoder *encoder;
99d736a2 4853 int pipe = intel_crtc->pipe, hsw_workaround_pipe;
4d1de975 4854 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
99d736a2
ML
4855 struct intel_crtc_state *pipe_config =
4856 to_intel_crtc_state(crtc->state);
4f771f10 4857
53d9f4e9 4858 if (WARN_ON(intel_crtc->active))
4f771f10
PZ
4859 return;
4860
81b088ca
VS
4861 if (intel_crtc->config->has_pch_encoder)
4862 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4863 false);
4864
95a7a2ae
ID
4865 for_each_encoder_on_crtc(dev, crtc, encoder)
4866 if (encoder->pre_pll_enable)
4867 encoder->pre_pll_enable(encoder);
4868
8106ddbd 4869 if (intel_crtc->config->shared_dpll)
df8ad70c
DV
4870 intel_enable_shared_dpll(intel_crtc);
4871
6e3c9717 4872 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 4873 intel_dp_set_m_n(intel_crtc, M1_N1);
229fca97 4874
4d1de975
JN
4875 if (!intel_crtc->config->has_dsi_encoder)
4876 intel_set_pipe_timings(intel_crtc);
4877
bc58be60 4878 intel_set_pipe_src_size(intel_crtc);
229fca97 4879
4d1de975
JN
4880 if (cpu_transcoder != TRANSCODER_EDP &&
4881 !transcoder_is_dsi(cpu_transcoder)) {
4882 I915_WRITE(PIPE_MULT(cpu_transcoder),
6e3c9717 4883 intel_crtc->config->pixel_multiplier - 1);
ebb69c95
CT
4884 }
4885
6e3c9717 4886 if (intel_crtc->config->has_pch_encoder) {
229fca97 4887 intel_cpu_transcoder_set_m_n(intel_crtc,
6e3c9717 4888 &intel_crtc->config->fdi_m_n, NULL);
229fca97
DV
4889 }
4890
4d1de975
JN
4891 if (!intel_crtc->config->has_dsi_encoder)
4892 haswell_set_pipeconf(crtc);
4893
391bf048 4894 haswell_set_pipemisc(crtc);
229fca97 4895
b95c5321 4896 intel_color_set_csc(&pipe_config->base);
229fca97 4897
4f771f10 4898 intel_crtc->active = true;
8664281b 4899
6b698516
DV
4900 if (intel_crtc->config->has_pch_encoder)
4901 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4902 else
4903 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4904
7d4aefd0 4905 for_each_encoder_on_crtc(dev, crtc, encoder) {
4f771f10
PZ
4906 if (encoder->pre_enable)
4907 encoder->pre_enable(encoder);
7d4aefd0 4908 }
4f771f10 4909
d2d65408 4910 if (intel_crtc->config->has_pch_encoder)
4fe9467d 4911 dev_priv->display.fdi_link_train(crtc);
4fe9467d 4912
a65347ba 4913 if (!intel_crtc->config->has_dsi_encoder)
7d4aefd0 4914 intel_ddi_enable_pipe_clock(intel_crtc);
4f771f10 4915
1c132b44 4916 if (INTEL_INFO(dev)->gen >= 9)
e435d6e5 4917 skylake_pfit_enable(intel_crtc);
ff6d9f55 4918 else
1c132b44 4919 ironlake_pfit_enable(intel_crtc);
4f771f10
PZ
4920
4921 /*
4922 * On ILK+ LUT must be loaded before the pipe is running but with
4923 * clocks enabled
4924 */
b95c5321 4925 intel_color_load_luts(&pipe_config->base);
4f771f10 4926
1f544388 4927 intel_ddi_set_pipe_settings(crtc);
a65347ba 4928 if (!intel_crtc->config->has_dsi_encoder)
7d4aefd0 4929 intel_ddi_enable_transcoder_func(crtc);
4f771f10 4930
1d5bf5d9
ID
4931 if (dev_priv->display.initial_watermarks != NULL)
4932 dev_priv->display.initial_watermarks(pipe_config);
4933 else
4934 intel_update_watermarks(crtc);
4d1de975
JN
4935
4936 /* XXX: Do the pipe assertions at the right place for BXT DSI. */
4937 if (!intel_crtc->config->has_dsi_encoder)
4938 intel_enable_pipe(intel_crtc);
42db64ef 4939
6e3c9717 4940 if (intel_crtc->config->has_pch_encoder)
1507e5bd 4941 lpt_pch_enable(crtc);
4f771f10 4942
a65347ba 4943 if (intel_crtc->config->dp_encoder_is_mst)
0e32b39c
DA
4944 intel_ddi_set_vc_payload_alloc(crtc, true);
4945
f9b61ff6
DV
4946 assert_vblank_disabled(crtc);
4947 drm_crtc_vblank_on(crtc);
4948
8807e55b 4949 for_each_encoder_on_crtc(dev, crtc, encoder) {
4f771f10 4950 encoder->enable(encoder);
8807e55b
JN
4951 intel_opregion_notify_encoder(encoder, true);
4952 }
4f771f10 4953
6b698516
DV
4954 if (intel_crtc->config->has_pch_encoder) {
4955 intel_wait_for_vblank(dev, pipe);
4956 intel_wait_for_vblank(dev, pipe);
4957 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
d2d65408
VS
4958 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4959 true);
6b698516 4960 }
d2d65408 4961
e4916946
PZ
4962 /* If we change the relative order between pipe/planes enabling, we need
4963 * to change the workaround. */
99d736a2
ML
4964 hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
4965 if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
4966 intel_wait_for_vblank(dev, hsw_workaround_pipe);
4967 intel_wait_for_vblank(dev, hsw_workaround_pipe);
4968 }
4f771f10
PZ
4969}
4970
bfd16b2a 4971static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
3f8dce3a
DV
4972{
4973 struct drm_device *dev = crtc->base.dev;
4974 struct drm_i915_private *dev_priv = dev->dev_private;
4975 int pipe = crtc->pipe;
4976
4977 /* To avoid upsetting the power well on haswell only disable the pfit if
4978 * it's in use. The hw state code will make sure we get this right. */
bfd16b2a 4979 if (force || crtc->config->pch_pfit.enabled) {
3f8dce3a
DV
4980 I915_WRITE(PF_CTL(pipe), 0);
4981 I915_WRITE(PF_WIN_POS(pipe), 0);
4982 I915_WRITE(PF_WIN_SZ(pipe), 0);
4983 }
4984}
4985
6be4a607
JB
4986static void ironlake_crtc_disable(struct drm_crtc *crtc)
4987{
4988 struct drm_device *dev = crtc->dev;
4989 struct drm_i915_private *dev_priv = dev->dev_private;
4990 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4991 struct intel_encoder *encoder;
6be4a607 4992 int pipe = intel_crtc->pipe;
b52eb4dc 4993
b2c0593a
VS
4994 /*
4995 * Sometimes spurious CPU pipe underruns happen when the
4996 * pipe is already disabled, but FDI RX/TX is still enabled.
4997 * Happens at least with VGA+HDMI cloning. Suppress them.
4998 */
4999 if (intel_crtc->config->has_pch_encoder) {
5000 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
37ca8d4c 5001 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
b2c0593a 5002 }
37ca8d4c 5003
ea9d758d
DV
5004 for_each_encoder_on_crtc(dev, crtc, encoder)
5005 encoder->disable(encoder);
5006
f9b61ff6
DV
5007 drm_crtc_vblank_off(crtc);
5008 assert_vblank_disabled(crtc);
5009
575f7ab7 5010 intel_disable_pipe(intel_crtc);
32f9d658 5011
bfd16b2a 5012 ironlake_pfit_disable(intel_crtc, false);
2c07245f 5013
b2c0593a 5014 if (intel_crtc->config->has_pch_encoder)
5a74f70a
VS
5015 ironlake_fdi_disable(crtc);
5016
bf49ec8c
DV
5017 for_each_encoder_on_crtc(dev, crtc, encoder)
5018 if (encoder->post_disable)
5019 encoder->post_disable(encoder);
2c07245f 5020
6e3c9717 5021 if (intel_crtc->config->has_pch_encoder) {
d925c59a 5022 ironlake_disable_pch_transcoder(dev_priv, pipe);
6be4a607 5023
d925c59a 5024 if (HAS_PCH_CPT(dev)) {
f0f59a00
VS
5025 i915_reg_t reg;
5026 u32 temp;
5027
d925c59a
DV
5028 /* disable TRANS_DP_CTL */
5029 reg = TRANS_DP_CTL(pipe);
5030 temp = I915_READ(reg);
5031 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5032 TRANS_DP_PORT_SEL_MASK);
5033 temp |= TRANS_DP_PORT_SEL_NONE;
5034 I915_WRITE(reg, temp);
5035
5036 /* disable DPLL_SEL */
5037 temp = I915_READ(PCH_DPLL_SEL);
11887397 5038 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
d925c59a 5039 I915_WRITE(PCH_DPLL_SEL, temp);
9db4a9c7 5040 }
e3421a18 5041
d925c59a
DV
5042 ironlake_fdi_pll_disable(intel_crtc);
5043 }
81b088ca 5044
b2c0593a 5045 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
81b088ca 5046 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
6be4a607 5047}
1b3c7a47 5048
4f771f10 5049static void haswell_crtc_disable(struct drm_crtc *crtc)
ee7b9f93 5050{
4f771f10
PZ
5051 struct drm_device *dev = crtc->dev;
5052 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93 5053 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4f771f10 5054 struct intel_encoder *encoder;
6e3c9717 5055 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
ee7b9f93 5056
d2d65408
VS
5057 if (intel_crtc->config->has_pch_encoder)
5058 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5059 false);
5060
8807e55b
JN
5061 for_each_encoder_on_crtc(dev, crtc, encoder) {
5062 intel_opregion_notify_encoder(encoder, false);
4f771f10 5063 encoder->disable(encoder);
8807e55b 5064 }
4f771f10 5065
f9b61ff6
DV
5066 drm_crtc_vblank_off(crtc);
5067 assert_vblank_disabled(crtc);
5068
4d1de975
JN
5069 /* XXX: Do the pipe assertions at the right place for BXT DSI. */
5070 if (!intel_crtc->config->has_dsi_encoder)
5071 intel_disable_pipe(intel_crtc);
4f771f10 5072
6e3c9717 5073 if (intel_crtc->config->dp_encoder_is_mst)
a4bf214f
VS
5074 intel_ddi_set_vc_payload_alloc(crtc, false);
5075
a65347ba 5076 if (!intel_crtc->config->has_dsi_encoder)
7d4aefd0 5077 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4f771f10 5078
1c132b44 5079 if (INTEL_INFO(dev)->gen >= 9)
e435d6e5 5080 skylake_scaler_disable(intel_crtc);
ff6d9f55 5081 else
bfd16b2a 5082 ironlake_pfit_disable(intel_crtc, false);
4f771f10 5083
a65347ba 5084 if (!intel_crtc->config->has_dsi_encoder)
7d4aefd0 5085 intel_ddi_disable_pipe_clock(intel_crtc);
4f771f10 5086
97b040aa
ID
5087 for_each_encoder_on_crtc(dev, crtc, encoder)
5088 if (encoder->post_disable)
5089 encoder->post_disable(encoder);
81b088ca 5090
92966a37
VS
5091 if (intel_crtc->config->has_pch_encoder) {
5092 lpt_disable_pch_transcoder(dev_priv);
503a74e9 5093 lpt_disable_iclkip(dev_priv);
92966a37
VS
5094 intel_ddi_fdi_disable(crtc);
5095
81b088ca
VS
5096 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5097 true);
92966a37 5098 }
4f771f10
PZ
5099}
5100
2dd24552
JB
5101static void i9xx_pfit_enable(struct intel_crtc *crtc)
5102{
5103 struct drm_device *dev = crtc->base.dev;
5104 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 5105 struct intel_crtc_state *pipe_config = crtc->config;
2dd24552 5106
681a8504 5107 if (!pipe_config->gmch_pfit.control)
2dd24552
JB
5108 return;
5109
2dd24552 5110 /*
c0b03411
DV
5111 * The panel fitter should only be adjusted whilst the pipe is disabled,
5112 * according to register description and PRM.
2dd24552 5113 */
c0b03411
DV
5114 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5115 assert_pipe_disabled(dev_priv, crtc->pipe);
2dd24552 5116
b074cec8
JB
5117 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5118 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5a80c45c
DV
5119
5120 /* Border color in case we don't scale up to the full screen. Black by
5121 * default, change to something else for debugging. */
5122 I915_WRITE(BCLRPAT(crtc->pipe), 0);
2dd24552
JB
5123}
5124
d05410f9
DA
5125static enum intel_display_power_domain port_to_power_domain(enum port port)
5126{
5127 switch (port) {
5128 case PORT_A:
6331a704 5129 return POWER_DOMAIN_PORT_DDI_A_LANES;
d05410f9 5130 case PORT_B:
6331a704 5131 return POWER_DOMAIN_PORT_DDI_B_LANES;
d05410f9 5132 case PORT_C:
6331a704 5133 return POWER_DOMAIN_PORT_DDI_C_LANES;
d05410f9 5134 case PORT_D:
6331a704 5135 return POWER_DOMAIN_PORT_DDI_D_LANES;
d8e19f99 5136 case PORT_E:
6331a704 5137 return POWER_DOMAIN_PORT_DDI_E_LANES;
d05410f9 5138 default:
b9fec167 5139 MISSING_CASE(port);
d05410f9
DA
5140 return POWER_DOMAIN_PORT_OTHER;
5141 }
5142}
5143
25f78f58
VS
5144static enum intel_display_power_domain port_to_aux_power_domain(enum port port)
5145{
5146 switch (port) {
5147 case PORT_A:
5148 return POWER_DOMAIN_AUX_A;
5149 case PORT_B:
5150 return POWER_DOMAIN_AUX_B;
5151 case PORT_C:
5152 return POWER_DOMAIN_AUX_C;
5153 case PORT_D:
5154 return POWER_DOMAIN_AUX_D;
5155 case PORT_E:
5156 /* FIXME: Check VBT for actual wiring of PORT E */
5157 return POWER_DOMAIN_AUX_D;
5158 default:
b9fec167 5159 MISSING_CASE(port);
25f78f58
VS
5160 return POWER_DOMAIN_AUX_A;
5161 }
5162}
5163
319be8ae
ID
5164enum intel_display_power_domain
5165intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5166{
5167 struct drm_device *dev = intel_encoder->base.dev;
5168 struct intel_digital_port *intel_dig_port;
5169
5170 switch (intel_encoder->type) {
5171 case INTEL_OUTPUT_UNKNOWN:
5172 /* Only DDI platforms should ever use this output type */
5173 WARN_ON_ONCE(!HAS_DDI(dev));
5174 case INTEL_OUTPUT_DISPLAYPORT:
5175 case INTEL_OUTPUT_HDMI:
5176 case INTEL_OUTPUT_EDP:
5177 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
d05410f9 5178 return port_to_power_domain(intel_dig_port->port);
0e32b39c
DA
5179 case INTEL_OUTPUT_DP_MST:
5180 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5181 return port_to_power_domain(intel_dig_port->port);
319be8ae
ID
5182 case INTEL_OUTPUT_ANALOG:
5183 return POWER_DOMAIN_PORT_CRT;
5184 case INTEL_OUTPUT_DSI:
5185 return POWER_DOMAIN_PORT_DSI;
5186 default:
5187 return POWER_DOMAIN_PORT_OTHER;
5188 }
5189}
5190
25f78f58
VS
5191enum intel_display_power_domain
5192intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder)
5193{
5194 struct drm_device *dev = intel_encoder->base.dev;
5195 struct intel_digital_port *intel_dig_port;
5196
5197 switch (intel_encoder->type) {
5198 case INTEL_OUTPUT_UNKNOWN:
651174a4
ID
5199 case INTEL_OUTPUT_HDMI:
5200 /*
5201 * Only DDI platforms should ever use these output types.
5202 * We can get here after the HDMI detect code has already set
5203 * the type of the shared encoder. Since we can't be sure
5204 * what's the status of the given connectors, play safe and
5205 * run the DP detection too.
5206 */
25f78f58
VS
5207 WARN_ON_ONCE(!HAS_DDI(dev));
5208 case INTEL_OUTPUT_DISPLAYPORT:
5209 case INTEL_OUTPUT_EDP:
5210 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5211 return port_to_aux_power_domain(intel_dig_port->port);
5212 case INTEL_OUTPUT_DP_MST:
5213 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5214 return port_to_aux_power_domain(intel_dig_port->port);
5215 default:
b9fec167 5216 MISSING_CASE(intel_encoder->type);
25f78f58
VS
5217 return POWER_DOMAIN_AUX_A;
5218 }
5219}
5220
74bff5f9
ML
5221static unsigned long get_crtc_power_domains(struct drm_crtc *crtc,
5222 struct intel_crtc_state *crtc_state)
77d22dca 5223{
319be8ae 5224 struct drm_device *dev = crtc->dev;
74bff5f9 5225 struct drm_encoder *encoder;
319be8ae
ID
5226 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5227 enum pipe pipe = intel_crtc->pipe;
77d22dca 5228 unsigned long mask;
74bff5f9 5229 enum transcoder transcoder = crtc_state->cpu_transcoder;
77d22dca 5230
74bff5f9 5231 if (!crtc_state->base.active)
292b990e
ML
5232 return 0;
5233
77d22dca
ID
5234 mask = BIT(POWER_DOMAIN_PIPE(pipe));
5235 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
74bff5f9
ML
5236 if (crtc_state->pch_pfit.enabled ||
5237 crtc_state->pch_pfit.force_thru)
77d22dca
ID
5238 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5239
74bff5f9
ML
5240 drm_for_each_encoder_mask(encoder, dev, crtc_state->base.encoder_mask) {
5241 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5242
319be8ae 5243 mask |= BIT(intel_display_port_power_domain(intel_encoder));
74bff5f9 5244 }
319be8ae 5245
15e7ec29
ML
5246 if (crtc_state->shared_dpll)
5247 mask |= BIT(POWER_DOMAIN_PLLS);
5248
77d22dca
ID
5249 return mask;
5250}
5251
74bff5f9
ML
5252static unsigned long
5253modeset_get_crtc_power_domains(struct drm_crtc *crtc,
5254 struct intel_crtc_state *crtc_state)
77d22dca 5255{
292b990e
ML
5256 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5257 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5258 enum intel_display_power_domain domain;
5a21b665 5259 unsigned long domains, new_domains, old_domains;
77d22dca 5260
292b990e 5261 old_domains = intel_crtc->enabled_power_domains;
74bff5f9
ML
5262 intel_crtc->enabled_power_domains = new_domains =
5263 get_crtc_power_domains(crtc, crtc_state);
77d22dca 5264
5a21b665 5265 domains = new_domains & ~old_domains;
292b990e
ML
5266
5267 for_each_power_domain(domain, domains)
5268 intel_display_power_get(dev_priv, domain);
5269
5a21b665 5270 return old_domains & ~new_domains;
292b990e
ML
5271}
5272
5273static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5274 unsigned long domains)
5275{
5276 enum intel_display_power_domain domain;
5277
5278 for_each_power_domain(domain, domains)
5279 intel_display_power_put(dev_priv, domain);
5280}
77d22dca 5281
adafdc6f
MK
5282static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
5283{
5284 int max_cdclk_freq = dev_priv->max_cdclk_freq;
5285
5286 if (INTEL_INFO(dev_priv)->gen >= 9 ||
5287 IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5288 return max_cdclk_freq;
5289 else if (IS_CHERRYVIEW(dev_priv))
5290 return max_cdclk_freq*95/100;
5291 else if (INTEL_INFO(dev_priv)->gen < 4)
5292 return 2*max_cdclk_freq*90/100;
5293 else
5294 return max_cdclk_freq*90/100;
5295}
5296
b2045352
VS
5297static int skl_calc_cdclk(int max_pixclk, int vco);
5298
560a7ae4
DL
5299static void intel_update_max_cdclk(struct drm_device *dev)
5300{
5301 struct drm_i915_private *dev_priv = dev->dev_private;
5302
ef11bdb3 5303 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
560a7ae4 5304 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
b2045352
VS
5305 int max_cdclk, vco;
5306
5307 vco = dev_priv->skl_preferred_vco_freq;
63911d72 5308 WARN_ON(vco != 8100000 && vco != 8640000);
560a7ae4 5309
b2045352
VS
5310 /*
5311 * Use the lower (vco 8640) cdclk values as a
5312 * first guess. skl_calc_cdclk() will correct it
5313 * if the preferred vco is 8100 instead.
5314 */
560a7ae4 5315 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
487ed2e4 5316 max_cdclk = 617143;
560a7ae4 5317 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
b2045352 5318 max_cdclk = 540000;
560a7ae4 5319 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
b2045352 5320 max_cdclk = 432000;
560a7ae4 5321 else
487ed2e4 5322 max_cdclk = 308571;
b2045352
VS
5323
5324 dev_priv->max_cdclk_freq = skl_calc_cdclk(max_cdclk, vco);
281c114f
MR
5325 } else if (IS_BROXTON(dev)) {
5326 dev_priv->max_cdclk_freq = 624000;
560a7ae4
DL
5327 } else if (IS_BROADWELL(dev)) {
5328 /*
5329 * FIXME with extra cooling we can allow
5330 * 540 MHz for ULX and 675 Mhz for ULT.
5331 * How can we know if extra cooling is
5332 * available? PCI ID, VTB, something else?
5333 */
5334 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5335 dev_priv->max_cdclk_freq = 450000;
5336 else if (IS_BDW_ULX(dev))
5337 dev_priv->max_cdclk_freq = 450000;
5338 else if (IS_BDW_ULT(dev))
5339 dev_priv->max_cdclk_freq = 540000;
5340 else
5341 dev_priv->max_cdclk_freq = 675000;
0904deaf
MK
5342 } else if (IS_CHERRYVIEW(dev)) {
5343 dev_priv->max_cdclk_freq = 320000;
560a7ae4
DL
5344 } else if (IS_VALLEYVIEW(dev)) {
5345 dev_priv->max_cdclk_freq = 400000;
5346 } else {
5347 /* otherwise assume cdclk is fixed */
5348 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5349 }
5350
adafdc6f
MK
5351 dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
5352
560a7ae4
DL
5353 DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5354 dev_priv->max_cdclk_freq);
adafdc6f
MK
5355
5356 DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5357 dev_priv->max_dotclk_freq);
560a7ae4
DL
5358}
5359
5360static void intel_update_cdclk(struct drm_device *dev)
5361{
5362 struct drm_i915_private *dev_priv = dev->dev_private;
5363
5364 dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
2f2a121a 5365
83d7c81f 5366 if (INTEL_GEN(dev_priv) >= 9)
709e05c3
VS
5367 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz, VCO: %d kHz, ref: %d kHz\n",
5368 dev_priv->cdclk_freq, dev_priv->cdclk_pll.vco,
5369 dev_priv->cdclk_pll.ref);
2f2a121a
VS
5370 else
5371 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5372 dev_priv->cdclk_freq);
560a7ae4
DL
5373
5374 /*
b5d99ff9
VS
5375 * 9:0 CMBUS [sic] CDCLK frequency (cdfreq):
5376 * Programmng [sic] note: bit[9:2] should be programmed to the number
5377 * of cdclk that generates 4MHz reference clock freq which is used to
5378 * generate GMBus clock. This will vary with the cdclk freq.
560a7ae4 5379 */
b5d99ff9 5380 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
560a7ae4 5381 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
560a7ae4
DL
5382}
5383
92891e45
VS
5384/* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5385static int skl_cdclk_decimal(int cdclk)
5386{
5387 return DIV_ROUND_CLOSEST(cdclk - 1000, 500);
5388}
5389
5f199dfa
VS
5390static int bxt_de_pll_vco(struct drm_i915_private *dev_priv, int cdclk)
5391{
5392 int ratio;
5393
5394 if (cdclk == dev_priv->cdclk_pll.ref)
5395 return 0;
5396
5397 switch (cdclk) {
5398 default:
5399 MISSING_CASE(cdclk);
5400 case 144000:
5401 case 288000:
5402 case 384000:
5403 case 576000:
5404 ratio = 60;
5405 break;
5406 case 624000:
5407 ratio = 65;
5408 break;
5409 }
5410
5411 return dev_priv->cdclk_pll.ref * ratio;
5412}
5413
2b73001e
VS
5414static void bxt_de_pll_disable(struct drm_i915_private *dev_priv)
5415{
5416 I915_WRITE(BXT_DE_PLL_ENABLE, 0);
5417
5418 /* Timeout 200us */
5419 if (wait_for((I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK) == 0, 1))
5420 DRM_ERROR("timeout waiting for DE PLL unlock\n");
83d7c81f
VS
5421
5422 dev_priv->cdclk_pll.vco = 0;
2b73001e
VS
5423}
5424
5f199dfa 5425static void bxt_de_pll_enable(struct drm_i915_private *dev_priv, int vco)
2b73001e 5426{
5f199dfa 5427 int ratio = DIV_ROUND_CLOSEST(vco, dev_priv->cdclk_pll.ref);
2b73001e
VS
5428 u32 val;
5429
5430 val = I915_READ(BXT_DE_PLL_CTL);
5431 val &= ~BXT_DE_PLL_RATIO_MASK;
5f199dfa 5432 val |= BXT_DE_PLL_RATIO(ratio);
2b73001e
VS
5433 I915_WRITE(BXT_DE_PLL_CTL, val);
5434
5435 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5436
5437 /* Timeout 200us */
5438 if (wait_for((I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK) != 0, 1))
5439 DRM_ERROR("timeout waiting for DE PLL lock\n");
83d7c81f 5440
5f199dfa 5441 dev_priv->cdclk_pll.vco = vco;
2b73001e
VS
5442}
5443
324513c0 5444static void bxt_set_cdclk(struct drm_i915_private *dev_priv, int cdclk)
f8437dd1 5445{
5f199dfa
VS
5446 u32 val, divider;
5447 int vco, ret;
f8437dd1 5448
5f199dfa
VS
5449 vco = bxt_de_pll_vco(dev_priv, cdclk);
5450
5451 DRM_DEBUG_DRIVER("Changing CDCLK to %d kHz (VCO %d kHz)\n", cdclk, vco);
5452
5453 /* cdclk = vco / 2 / div{1,1.5,2,4} */
5454 switch (DIV_ROUND_CLOSEST(vco, cdclk)) {
5455 case 8:
f8437dd1 5456 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
f8437dd1 5457 break;
5f199dfa 5458 case 4:
f8437dd1 5459 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
f8437dd1 5460 break;
5f199dfa 5461 case 3:
f8437dd1 5462 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
f8437dd1 5463 break;
5f199dfa 5464 case 2:
f8437dd1 5465 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
f8437dd1
VK
5466 break;
5467 default:
5f199dfa
VS
5468 WARN_ON(cdclk != dev_priv->cdclk_pll.ref);
5469 WARN_ON(vco != 0);
f8437dd1 5470
5f199dfa
VS
5471 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5472 break;
f8437dd1
VK
5473 }
5474
f8437dd1 5475 /* Inform power controller of upcoming frequency change */
5f199dfa 5476 mutex_lock(&dev_priv->rps.hw_lock);
f8437dd1
VK
5477 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5478 0x80000000);
5479 mutex_unlock(&dev_priv->rps.hw_lock);
5480
5481 if (ret) {
5482 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
9ef56154 5483 ret, cdclk);
f8437dd1
VK
5484 return;
5485 }
5486
5f199dfa
VS
5487 if (dev_priv->cdclk_pll.vco != 0 &&
5488 dev_priv->cdclk_pll.vco != vco)
2b73001e 5489 bxt_de_pll_disable(dev_priv);
f8437dd1 5490
5f199dfa
VS
5491 if (dev_priv->cdclk_pll.vco != vco)
5492 bxt_de_pll_enable(dev_priv, vco);
f8437dd1 5493
5f199dfa
VS
5494 val = divider | skl_cdclk_decimal(cdclk);
5495 /*
5496 * FIXME if only the cd2x divider needs changing, it could be done
5497 * without shutting off the pipe (if only one pipe is active).
5498 */
5499 val |= BXT_CDCLK_CD2X_PIPE_NONE;
5500 /*
5501 * Disable SSA Precharge when CD clock frequency < 500 MHz,
5502 * enable otherwise.
5503 */
5504 if (cdclk >= 500000)
5505 val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5506 I915_WRITE(CDCLK_CTL, val);
f8437dd1
VK
5507
5508 mutex_lock(&dev_priv->rps.hw_lock);
5509 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
9ef56154 5510 DIV_ROUND_UP(cdclk, 25000));
f8437dd1
VK
5511 mutex_unlock(&dev_priv->rps.hw_lock);
5512
5513 if (ret) {
5514 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
9ef56154 5515 ret, cdclk);
f8437dd1
VK
5516 return;
5517 }
5518
c6c4696f 5519 intel_update_cdclk(dev_priv->dev);
f8437dd1
VK
5520}
5521
d66a2194 5522static void bxt_sanitize_cdclk(struct drm_i915_private *dev_priv)
f8437dd1 5523{
d66a2194
ID
5524 u32 cdctl, expected;
5525
089c6fd5 5526 intel_update_cdclk(dev_priv->dev);
f8437dd1 5527
d66a2194
ID
5528 if (dev_priv->cdclk_pll.vco == 0 ||
5529 dev_priv->cdclk_freq == dev_priv->cdclk_pll.ref)
5530 goto sanitize;
5531
5532 /* DPLL okay; verify the cdclock
5533 *
5534 * Some BIOS versions leave an incorrect decimal frequency value and
5535 * set reserved MBZ bits in CDCLK_CTL at least during exiting from S4,
5536 * so sanitize this register.
5537 */
5538 cdctl = I915_READ(CDCLK_CTL);
5539 /*
5540 * Let's ignore the pipe field, since BIOS could have configured the
5541 * dividers both synching to an active pipe, or asynchronously
5542 * (PIPE_NONE).
5543 */
5544 cdctl &= ~BXT_CDCLK_CD2X_PIPE_NONE;
5545
5546 expected = (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) |
5547 skl_cdclk_decimal(dev_priv->cdclk_freq);
5548 /*
5549 * Disable SSA Precharge when CD clock frequency < 500 MHz,
5550 * enable otherwise.
5551 */
5552 if (dev_priv->cdclk_freq >= 500000)
5553 expected |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5554
5555 if (cdctl == expected)
5556 /* All well; nothing to sanitize */
5557 return;
5558
5559sanitize:
5560 DRM_DEBUG_KMS("Sanitizing cdclk programmed by pre-os\n");
5561
5562 /* force cdclk programming */
5563 dev_priv->cdclk_freq = 0;
5564
5565 /* force full PLL disable + enable */
5566 dev_priv->cdclk_pll.vco = -1;
5567}
5568
324513c0 5569void bxt_init_cdclk(struct drm_i915_private *dev_priv)
d66a2194
ID
5570{
5571 bxt_sanitize_cdclk(dev_priv);
5572
5573 if (dev_priv->cdclk_freq != 0 && dev_priv->cdclk_pll.vco != 0)
089c6fd5 5574 return;
c2e001ef 5575
f8437dd1
VK
5576 /*
5577 * FIXME:
5578 * - The initial CDCLK needs to be read from VBT.
5579 * Need to make this change after VBT has changes for BXT.
f8437dd1 5580 */
324513c0 5581 bxt_set_cdclk(dev_priv, bxt_calc_cdclk(0));
f8437dd1
VK
5582}
5583
324513c0 5584void bxt_uninit_cdclk(struct drm_i915_private *dev_priv)
f8437dd1 5585{
324513c0 5586 bxt_set_cdclk(dev_priv, dev_priv->cdclk_pll.ref);
f8437dd1
VK
5587}
5588
a8ca4934
VS
5589static int skl_calc_cdclk(int max_pixclk, int vco)
5590{
63911d72 5591 if (vco == 8640000) {
a8ca4934 5592 if (max_pixclk > 540000)
487ed2e4 5593 return 617143;
a8ca4934
VS
5594 else if (max_pixclk > 432000)
5595 return 540000;
487ed2e4 5596 else if (max_pixclk > 308571)
a8ca4934
VS
5597 return 432000;
5598 else
487ed2e4 5599 return 308571;
a8ca4934 5600 } else {
a8ca4934
VS
5601 if (max_pixclk > 540000)
5602 return 675000;
5603 else if (max_pixclk > 450000)
5604 return 540000;
5605 else if (max_pixclk > 337500)
5606 return 450000;
5607 else
5608 return 337500;
5609 }
5610}
5611
ea61791e
VS
5612static void
5613skl_dpll0_update(struct drm_i915_private *dev_priv)
5d96d8af 5614{
ea61791e 5615 u32 val;
5d96d8af 5616
709e05c3 5617 dev_priv->cdclk_pll.ref = 24000;
1c3f7700 5618 dev_priv->cdclk_pll.vco = 0;
709e05c3 5619
ea61791e 5620 val = I915_READ(LCPLL1_CTL);
1c3f7700 5621 if ((val & LCPLL_PLL_ENABLE) == 0)
ea61791e 5622 return;
5d96d8af 5623
1c3f7700
ID
5624 if (WARN_ON((val & LCPLL_PLL_LOCK) == 0))
5625 return;
9f7eb31a 5626
ea61791e
VS
5627 val = I915_READ(DPLL_CTRL1);
5628
1c3f7700
ID
5629 if (WARN_ON((val & (DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) |
5630 DPLL_CTRL1_SSC(SKL_DPLL0) |
5631 DPLL_CTRL1_OVERRIDE(SKL_DPLL0))) !=
5632 DPLL_CTRL1_OVERRIDE(SKL_DPLL0)))
5633 return;
9f7eb31a 5634
ea61791e
VS
5635 switch (val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) {
5636 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, SKL_DPLL0):
5637 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, SKL_DPLL0):
5638 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, SKL_DPLL0):
5639 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, SKL_DPLL0):
63911d72 5640 dev_priv->cdclk_pll.vco = 8100000;
ea61791e
VS
5641 break;
5642 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, SKL_DPLL0):
5643 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, SKL_DPLL0):
63911d72 5644 dev_priv->cdclk_pll.vco = 8640000;
ea61791e
VS
5645 break;
5646 default:
5647 MISSING_CASE(val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
ea61791e
VS
5648 break;
5649 }
5d96d8af
DL
5650}
5651
b2045352
VS
5652void skl_set_preferred_cdclk_vco(struct drm_i915_private *dev_priv, int vco)
5653{
5654 bool changed = dev_priv->skl_preferred_vco_freq != vco;
5655
5656 dev_priv->skl_preferred_vco_freq = vco;
5657
5658 if (changed)
5659 intel_update_max_cdclk(dev_priv->dev);
5660}
5661
5d96d8af 5662static void
3861fc60 5663skl_dpll0_enable(struct drm_i915_private *dev_priv, int vco)
5d96d8af 5664{
a8ca4934 5665 int min_cdclk = skl_calc_cdclk(0, vco);
5d96d8af
DL
5666 u32 val;
5667
63911d72 5668 WARN_ON(vco != 8100000 && vco != 8640000);
b2045352 5669
5d96d8af 5670 /* select the minimum CDCLK before enabling DPLL 0 */
9ef56154 5671 val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_cdclk);
5d96d8af
DL
5672 I915_WRITE(CDCLK_CTL, val);
5673 POSTING_READ(CDCLK_CTL);
5674
5675 /*
5676 * We always enable DPLL0 with the lowest link rate possible, but still
5677 * taking into account the VCO required to operate the eDP panel at the
5678 * desired frequency. The usual DP link rates operate with a VCO of
5679 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5680 * The modeset code is responsible for the selection of the exact link
5681 * rate later on, with the constraint of choosing a frequency that
a8ca4934 5682 * works with vco.
5d96d8af
DL
5683 */
5684 val = I915_READ(DPLL_CTRL1);
5685
5686 val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5687 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5688 val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
63911d72 5689 if (vco == 8640000)
5d96d8af
DL
5690 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5691 SKL_DPLL0);
5692 else
5693 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5694 SKL_DPLL0);
5695
5696 I915_WRITE(DPLL_CTRL1, val);
5697 POSTING_READ(DPLL_CTRL1);
5698
5699 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5700
5701 if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
5702 DRM_ERROR("DPLL0 not locked\n");
1cd593e0 5703
63911d72 5704 dev_priv->cdclk_pll.vco = vco;
b2045352
VS
5705
5706 /* We'll want to keep using the current vco from now on. */
5707 skl_set_preferred_cdclk_vco(dev_priv, vco);
5d96d8af
DL
5708}
5709
430e05de
VS
5710static void
5711skl_dpll0_disable(struct drm_i915_private *dev_priv)
5712{
5713 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
5714 if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
5715 DRM_ERROR("Couldn't disable DPLL0\n");
1cd593e0 5716
63911d72 5717 dev_priv->cdclk_pll.vco = 0;
430e05de
VS
5718}
5719
5d96d8af
DL
5720static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5721{
5722 int ret;
5723 u32 val;
5724
5725 /* inform PCU we want to change CDCLK */
5726 val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5727 mutex_lock(&dev_priv->rps.hw_lock);
5728 ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5729 mutex_unlock(&dev_priv->rps.hw_lock);
5730
5731 return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5732}
5733
5734static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5735{
5736 unsigned int i;
5737
5738 for (i = 0; i < 15; i++) {
5739 if (skl_cdclk_pcu_ready(dev_priv))
5740 return true;
5741 udelay(10);
5742 }
5743
5744 return false;
5745}
5746
1cd593e0 5747static void skl_set_cdclk(struct drm_i915_private *dev_priv, int cdclk, int vco)
5d96d8af 5748{
560a7ae4 5749 struct drm_device *dev = dev_priv->dev;
5d96d8af
DL
5750 u32 freq_select, pcu_ack;
5751
1cd593e0
VS
5752 WARN_ON((cdclk == 24000) != (vco == 0));
5753
63911d72 5754 DRM_DEBUG_DRIVER("Changing CDCLK to %d kHz (VCO %d kHz)\n", cdclk, vco);
5d96d8af
DL
5755
5756 if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5757 DRM_ERROR("failed to inform PCU about cdclk change\n");
5758 return;
5759 }
5760
5761 /* set CDCLK_CTL */
9ef56154 5762 switch (cdclk) {
5d96d8af
DL
5763 case 450000:
5764 case 432000:
5765 freq_select = CDCLK_FREQ_450_432;
5766 pcu_ack = 1;
5767 break;
5768 case 540000:
5769 freq_select = CDCLK_FREQ_540;
5770 pcu_ack = 2;
5771 break;
487ed2e4 5772 case 308571:
5d96d8af
DL
5773 case 337500:
5774 default:
5775 freq_select = CDCLK_FREQ_337_308;
5776 pcu_ack = 0;
5777 break;
487ed2e4 5778 case 617143:
5d96d8af
DL
5779 case 675000:
5780 freq_select = CDCLK_FREQ_675_617;
5781 pcu_ack = 3;
5782 break;
5783 }
5784
63911d72
VS
5785 if (dev_priv->cdclk_pll.vco != 0 &&
5786 dev_priv->cdclk_pll.vco != vco)
1cd593e0
VS
5787 skl_dpll0_disable(dev_priv);
5788
63911d72 5789 if (dev_priv->cdclk_pll.vco != vco)
1cd593e0
VS
5790 skl_dpll0_enable(dev_priv, vco);
5791
9ef56154 5792 I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(cdclk));
5d96d8af
DL
5793 POSTING_READ(CDCLK_CTL);
5794
5795 /* inform PCU of the change */
5796 mutex_lock(&dev_priv->rps.hw_lock);
5797 sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5798 mutex_unlock(&dev_priv->rps.hw_lock);
560a7ae4
DL
5799
5800 intel_update_cdclk(dev);
5d96d8af
DL
5801}
5802
9f7eb31a
VS
5803static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv);
5804
5d96d8af
DL
5805void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5806{
709e05c3 5807 skl_set_cdclk(dev_priv, dev_priv->cdclk_pll.ref, 0);
5d96d8af
DL
5808}
5809
5810void skl_init_cdclk(struct drm_i915_private *dev_priv)
5811{
9f7eb31a
VS
5812 int cdclk, vco;
5813
5814 skl_sanitize_cdclk(dev_priv);
5d96d8af 5815
63911d72 5816 if (dev_priv->cdclk_freq != 0 && dev_priv->cdclk_pll.vco != 0) {
9f7eb31a
VS
5817 /*
5818 * Use the current vco as our initial
5819 * guess as to what the preferred vco is.
5820 */
5821 if (dev_priv->skl_preferred_vco_freq == 0)
5822 skl_set_preferred_cdclk_vco(dev_priv,
63911d72 5823 dev_priv->cdclk_pll.vco);
70c2c184 5824 return;
1cd593e0 5825 }
5d96d8af 5826
70c2c184
VS
5827 vco = dev_priv->skl_preferred_vco_freq;
5828 if (vco == 0)
63911d72 5829 vco = 8100000;
70c2c184 5830 cdclk = skl_calc_cdclk(0, vco);
5d96d8af 5831
70c2c184 5832 skl_set_cdclk(dev_priv, cdclk, vco);
5d96d8af
DL
5833}
5834
9f7eb31a 5835static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv)
c73666f3 5836{
09492498 5837 uint32_t cdctl, expected;
c73666f3 5838
f1b391a5
SK
5839 /*
5840 * check if the pre-os intialized the display
5841 * There is SWF18 scratchpad register defined which is set by the
5842 * pre-os which can be used by the OS drivers to check the status
5843 */
5844 if ((I915_READ(SWF_ILK(0x18)) & 0x00FFFFFF) == 0)
5845 goto sanitize;
5846
1c3f7700 5847 intel_update_cdclk(dev_priv->dev);
c73666f3 5848 /* Is PLL enabled and locked ? */
1c3f7700
ID
5849 if (dev_priv->cdclk_pll.vco == 0 ||
5850 dev_priv->cdclk_freq == dev_priv->cdclk_pll.ref)
c73666f3
SK
5851 goto sanitize;
5852
5853 /* DPLL okay; verify the cdclock
5854 *
5855 * Noticed in some instances that the freq selection is correct but
5856 * decimal part is programmed wrong from BIOS where pre-os does not
5857 * enable display. Verify the same as well.
5858 */
09492498
VS
5859 cdctl = I915_READ(CDCLK_CTL);
5860 expected = (cdctl & CDCLK_FREQ_SEL_MASK) |
5861 skl_cdclk_decimal(dev_priv->cdclk_freq);
5862 if (cdctl == expected)
c73666f3 5863 /* All well; nothing to sanitize */
9f7eb31a 5864 return;
c89e39f3 5865
9f7eb31a
VS
5866sanitize:
5867 DRM_DEBUG_KMS("Sanitizing cdclk programmed by pre-os\n");
c73666f3 5868
9f7eb31a
VS
5869 /* force cdclk programming */
5870 dev_priv->cdclk_freq = 0;
5871 /* force full PLL disable + enable */
63911d72 5872 dev_priv->cdclk_pll.vco = -1;
c73666f3
SK
5873}
5874
30a970c6
JB
5875/* Adjust CDclk dividers to allow high res or save power if possible */
5876static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5877{
5878 struct drm_i915_private *dev_priv = dev->dev_private;
5879 u32 val, cmd;
5880
164dfd28
VK
5881 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5882 != dev_priv->cdclk_freq);
d60c4473 5883
dfcab17e 5884 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
30a970c6 5885 cmd = 2;
dfcab17e 5886 else if (cdclk == 266667)
30a970c6
JB
5887 cmd = 1;
5888 else
5889 cmd = 0;
5890
5891 mutex_lock(&dev_priv->rps.hw_lock);
5892 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5893 val &= ~DSPFREQGUAR_MASK;
5894 val |= (cmd << DSPFREQGUAR_SHIFT);
5895 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5896 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5897 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5898 50)) {
5899 DRM_ERROR("timed out waiting for CDclk change\n");
5900 }
5901 mutex_unlock(&dev_priv->rps.hw_lock);
5902
54433e91
VS
5903 mutex_lock(&dev_priv->sb_lock);
5904
dfcab17e 5905 if (cdclk == 400000) {
6bcda4f0 5906 u32 divider;
30a970c6 5907
6bcda4f0 5908 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
30a970c6 5909
30a970c6
JB
5910 /* adjust cdclk divider */
5911 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
87d5d259 5912 val &= ~CCK_FREQUENCY_VALUES;
30a970c6
JB
5913 val |= divider;
5914 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
a877e801
VS
5915
5916 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
87d5d259 5917 CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
a877e801
VS
5918 50))
5919 DRM_ERROR("timed out waiting for CDclk change\n");
30a970c6
JB
5920 }
5921
30a970c6
JB
5922 /* adjust self-refresh exit latency value */
5923 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5924 val &= ~0x7f;
5925
5926 /*
5927 * For high bandwidth configs, we set a higher latency in the bunit
5928 * so that the core display fetch happens in time to avoid underruns.
5929 */
dfcab17e 5930 if (cdclk == 400000)
30a970c6
JB
5931 val |= 4500 / 250; /* 4.5 usec */
5932 else
5933 val |= 3000 / 250; /* 3.0 usec */
5934 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
54433e91 5935
a580516d 5936 mutex_unlock(&dev_priv->sb_lock);
30a970c6 5937
b6283055 5938 intel_update_cdclk(dev);
30a970c6
JB
5939}
5940
383c5a6a
VS
5941static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5942{
5943 struct drm_i915_private *dev_priv = dev->dev_private;
5944 u32 val, cmd;
5945
164dfd28
VK
5946 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5947 != dev_priv->cdclk_freq);
383c5a6a
VS
5948
5949 switch (cdclk) {
383c5a6a
VS
5950 case 333333:
5951 case 320000:
383c5a6a 5952 case 266667:
383c5a6a 5953 case 200000:
383c5a6a
VS
5954 break;
5955 default:
5f77eeb0 5956 MISSING_CASE(cdclk);
383c5a6a
VS
5957 return;
5958 }
5959
9d0d3fda
VS
5960 /*
5961 * Specs are full of misinformation, but testing on actual
5962 * hardware has shown that we just need to write the desired
5963 * CCK divider into the Punit register.
5964 */
5965 cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5966
383c5a6a
VS
5967 mutex_lock(&dev_priv->rps.hw_lock);
5968 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5969 val &= ~DSPFREQGUAR_MASK_CHV;
5970 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5971 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5972 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5973 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5974 50)) {
5975 DRM_ERROR("timed out waiting for CDclk change\n");
5976 }
5977 mutex_unlock(&dev_priv->rps.hw_lock);
5978
b6283055 5979 intel_update_cdclk(dev);
383c5a6a
VS
5980}
5981
30a970c6
JB
5982static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5983 int max_pixclk)
5984{
6bcda4f0 5985 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
6cca3195 5986 int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
29dc7ef3 5987
30a970c6
JB
5988 /*
5989 * Really only a few cases to deal with, as only 4 CDclks are supported:
5990 * 200MHz
5991 * 267MHz
29dc7ef3 5992 * 320/333MHz (depends on HPLL freq)
6cca3195
VS
5993 * 400MHz (VLV only)
5994 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5995 * of the lower bin and adjust if needed.
e37c67a1
VS
5996 *
5997 * We seem to get an unstable or solid color picture at 200MHz.
5998 * Not sure what's wrong. For now use 200MHz only when all pipes
5999 * are off.
30a970c6 6000 */
6cca3195
VS
6001 if (!IS_CHERRYVIEW(dev_priv) &&
6002 max_pixclk > freq_320*limit/100)
dfcab17e 6003 return 400000;
6cca3195 6004 else if (max_pixclk > 266667*limit/100)
29dc7ef3 6005 return freq_320;
e37c67a1 6006 else if (max_pixclk > 0)
dfcab17e 6007 return 266667;
e37c67a1
VS
6008 else
6009 return 200000;
30a970c6
JB
6010}
6011
324513c0 6012static int bxt_calc_cdclk(int max_pixclk)
f8437dd1 6013{
760e1477 6014 if (max_pixclk > 576000)
f8437dd1 6015 return 624000;
760e1477 6016 else if (max_pixclk > 384000)
f8437dd1 6017 return 576000;
760e1477 6018 else if (max_pixclk > 288000)
f8437dd1 6019 return 384000;
760e1477 6020 else if (max_pixclk > 144000)
f8437dd1
VK
6021 return 288000;
6022 else
6023 return 144000;
6024}
6025
e8788cbc 6026/* Compute the max pixel clock for new configuration. */
a821fc46
ACO
6027static int intel_mode_max_pixclk(struct drm_device *dev,
6028 struct drm_atomic_state *state)
30a970c6 6029{
565602d7
ML
6030 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
6031 struct drm_i915_private *dev_priv = dev->dev_private;
6032 struct drm_crtc *crtc;
6033 struct drm_crtc_state *crtc_state;
6034 unsigned max_pixclk = 0, i;
6035 enum pipe pipe;
30a970c6 6036
565602d7
ML
6037 memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
6038 sizeof(intel_state->min_pixclk));
304603f4 6039
565602d7
ML
6040 for_each_crtc_in_state(state, crtc, crtc_state, i) {
6041 int pixclk = 0;
6042
6043 if (crtc_state->enable)
6044 pixclk = crtc_state->adjusted_mode.crtc_clock;
304603f4 6045
565602d7 6046 intel_state->min_pixclk[i] = pixclk;
30a970c6
JB
6047 }
6048
565602d7
ML
6049 for_each_pipe(dev_priv, pipe)
6050 max_pixclk = max(intel_state->min_pixclk[pipe], max_pixclk);
6051
30a970c6
JB
6052 return max_pixclk;
6053}
6054
27c329ed 6055static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
30a970c6 6056{
27c329ed
ML
6057 struct drm_device *dev = state->dev;
6058 struct drm_i915_private *dev_priv = dev->dev_private;
6059 int max_pixclk = intel_mode_max_pixclk(dev, state);
1a617b77
ML
6060 struct intel_atomic_state *intel_state =
6061 to_intel_atomic_state(state);
30a970c6 6062
1a617b77 6063 intel_state->cdclk = intel_state->dev_cdclk =
27c329ed 6064 valleyview_calc_cdclk(dev_priv, max_pixclk);
0a9ab303 6065
1a617b77
ML
6066 if (!intel_state->active_crtcs)
6067 intel_state->dev_cdclk = valleyview_calc_cdclk(dev_priv, 0);
6068
27c329ed
ML
6069 return 0;
6070}
304603f4 6071
324513c0 6072static int bxt_modeset_calc_cdclk(struct drm_atomic_state *state)
27c329ed 6073{
4e5ca60f 6074 int max_pixclk = ilk_max_pixel_rate(state);
1a617b77
ML
6075 struct intel_atomic_state *intel_state =
6076 to_intel_atomic_state(state);
85a96e7a 6077
1a617b77 6078 intel_state->cdclk = intel_state->dev_cdclk =
324513c0 6079 bxt_calc_cdclk(max_pixclk);
85a96e7a 6080
1a617b77 6081 if (!intel_state->active_crtcs)
324513c0 6082 intel_state->dev_cdclk = bxt_calc_cdclk(0);
1a617b77 6083
27c329ed 6084 return 0;
30a970c6
JB
6085}
6086
1e69cd74
VS
6087static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
6088{
6089 unsigned int credits, default_credits;
6090
6091 if (IS_CHERRYVIEW(dev_priv))
6092 default_credits = PFI_CREDIT(12);
6093 else
6094 default_credits = PFI_CREDIT(8);
6095
bfa7df01 6096 if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
1e69cd74
VS
6097 /* CHV suggested value is 31 or 63 */
6098 if (IS_CHERRYVIEW(dev_priv))
fcc0008f 6099 credits = PFI_CREDIT_63;
1e69cd74
VS
6100 else
6101 credits = PFI_CREDIT(15);
6102 } else {
6103 credits = default_credits;
6104 }
6105
6106 /*
6107 * WA - write default credits before re-programming
6108 * FIXME: should we also set the resend bit here?
6109 */
6110 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6111 default_credits);
6112
6113 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6114 credits | PFI_CREDIT_RESEND);
6115
6116 /*
6117 * FIXME is this guaranteed to clear
6118 * immediately or should we poll for it?
6119 */
6120 WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6121}
6122
27c329ed 6123static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
30a970c6 6124{
a821fc46 6125 struct drm_device *dev = old_state->dev;
30a970c6 6126 struct drm_i915_private *dev_priv = dev->dev_private;
1a617b77
ML
6127 struct intel_atomic_state *old_intel_state =
6128 to_intel_atomic_state(old_state);
6129 unsigned req_cdclk = old_intel_state->dev_cdclk;
30a970c6 6130
27c329ed
ML
6131 /*
6132 * FIXME: We can end up here with all power domains off, yet
6133 * with a CDCLK frequency other than the minimum. To account
6134 * for this take the PIPE-A power domain, which covers the HW
6135 * blocks needed for the following programming. This can be
6136 * removed once it's guaranteed that we get here either with
6137 * the minimum CDCLK set, or the required power domains
6138 * enabled.
6139 */
6140 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
738c05c0 6141
27c329ed
ML
6142 if (IS_CHERRYVIEW(dev))
6143 cherryview_set_cdclk(dev, req_cdclk);
6144 else
6145 valleyview_set_cdclk(dev, req_cdclk);
738c05c0 6146
27c329ed 6147 vlv_program_pfi_credits(dev_priv);
1e69cd74 6148
27c329ed 6149 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
30a970c6
JB
6150}
6151
89b667f8
JB
6152static void valleyview_crtc_enable(struct drm_crtc *crtc)
6153{
6154 struct drm_device *dev = crtc->dev;
a72e4c9f 6155 struct drm_i915_private *dev_priv = to_i915(dev);
89b667f8
JB
6156 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6157 struct intel_encoder *encoder;
b95c5321
ML
6158 struct intel_crtc_state *pipe_config =
6159 to_intel_crtc_state(crtc->state);
89b667f8 6160 int pipe = intel_crtc->pipe;
89b667f8 6161
53d9f4e9 6162 if (WARN_ON(intel_crtc->active))
89b667f8
JB
6163 return;
6164
6e3c9717 6165 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 6166 intel_dp_set_m_n(intel_crtc, M1_N1);
5b18e57c
DV
6167
6168 intel_set_pipe_timings(intel_crtc);
bc58be60 6169 intel_set_pipe_src_size(intel_crtc);
5b18e57c 6170
c14b0485
VS
6171 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6172 struct drm_i915_private *dev_priv = dev->dev_private;
6173
6174 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6175 I915_WRITE(CHV_CANVAS(pipe), 0);
6176 }
6177
5b18e57c
DV
6178 i9xx_set_pipeconf(intel_crtc);
6179
89b667f8 6180 intel_crtc->active = true;
89b667f8 6181
a72e4c9f 6182 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 6183
89b667f8
JB
6184 for_each_encoder_on_crtc(dev, crtc, encoder)
6185 if (encoder->pre_pll_enable)
6186 encoder->pre_pll_enable(encoder);
6187
cd2d34d9
VS
6188 if (IS_CHERRYVIEW(dev)) {
6189 chv_prepare_pll(intel_crtc, intel_crtc->config);
6190 chv_enable_pll(intel_crtc, intel_crtc->config);
6191 } else {
6192 vlv_prepare_pll(intel_crtc, intel_crtc->config);
6193 vlv_enable_pll(intel_crtc, intel_crtc->config);
9d556c99 6194 }
89b667f8
JB
6195
6196 for_each_encoder_on_crtc(dev, crtc, encoder)
6197 if (encoder->pre_enable)
6198 encoder->pre_enable(encoder);
6199
2dd24552
JB
6200 i9xx_pfit_enable(intel_crtc);
6201
b95c5321 6202 intel_color_load_luts(&pipe_config->base);
63cbb074 6203
caed361d 6204 intel_update_watermarks(crtc);
e1fdc473 6205 intel_enable_pipe(intel_crtc);
be6a6f8e 6206
4b3a9526
VS
6207 assert_vblank_disabled(crtc);
6208 drm_crtc_vblank_on(crtc);
6209
f9b61ff6
DV
6210 for_each_encoder_on_crtc(dev, crtc, encoder)
6211 encoder->enable(encoder);
89b667f8
JB
6212}
6213
f13c2ef3
DV
6214static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6215{
6216 struct drm_device *dev = crtc->base.dev;
6217 struct drm_i915_private *dev_priv = dev->dev_private;
6218
6e3c9717
ACO
6219 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6220 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
f13c2ef3
DV
6221}
6222
0b8765c6 6223static void i9xx_crtc_enable(struct drm_crtc *crtc)
79e53945
JB
6224{
6225 struct drm_device *dev = crtc->dev;
a72e4c9f 6226 struct drm_i915_private *dev_priv = to_i915(dev);
79e53945 6227 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 6228 struct intel_encoder *encoder;
b95c5321
ML
6229 struct intel_crtc_state *pipe_config =
6230 to_intel_crtc_state(crtc->state);
cd2d34d9 6231 enum pipe pipe = intel_crtc->pipe;
79e53945 6232
53d9f4e9 6233 if (WARN_ON(intel_crtc->active))
f7abfe8b
CW
6234 return;
6235
f13c2ef3
DV
6236 i9xx_set_pll_dividers(intel_crtc);
6237
6e3c9717 6238 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 6239 intel_dp_set_m_n(intel_crtc, M1_N1);
5b18e57c
DV
6240
6241 intel_set_pipe_timings(intel_crtc);
bc58be60 6242 intel_set_pipe_src_size(intel_crtc);
5b18e57c 6243
5b18e57c
DV
6244 i9xx_set_pipeconf(intel_crtc);
6245
f7abfe8b 6246 intel_crtc->active = true;
6b383a7f 6247
4a3436e8 6248 if (!IS_GEN2(dev))
a72e4c9f 6249 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 6250
9d6d9f19
MK
6251 for_each_encoder_on_crtc(dev, crtc, encoder)
6252 if (encoder->pre_enable)
6253 encoder->pre_enable(encoder);
6254
f6736a1a
DV
6255 i9xx_enable_pll(intel_crtc);
6256
2dd24552
JB
6257 i9xx_pfit_enable(intel_crtc);
6258
b95c5321 6259 intel_color_load_luts(&pipe_config->base);
63cbb074 6260
f37fcc2a 6261 intel_update_watermarks(crtc);
e1fdc473 6262 intel_enable_pipe(intel_crtc);
be6a6f8e 6263
4b3a9526
VS
6264 assert_vblank_disabled(crtc);
6265 drm_crtc_vblank_on(crtc);
6266
f9b61ff6
DV
6267 for_each_encoder_on_crtc(dev, crtc, encoder)
6268 encoder->enable(encoder);
0b8765c6 6269}
79e53945 6270
87476d63
DV
6271static void i9xx_pfit_disable(struct intel_crtc *crtc)
6272{
6273 struct drm_device *dev = crtc->base.dev;
6274 struct drm_i915_private *dev_priv = dev->dev_private;
87476d63 6275
6e3c9717 6276 if (!crtc->config->gmch_pfit.control)
328d8e82 6277 return;
87476d63 6278
328d8e82 6279 assert_pipe_disabled(dev_priv, crtc->pipe);
87476d63 6280
328d8e82
DV
6281 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6282 I915_READ(PFIT_CONTROL));
6283 I915_WRITE(PFIT_CONTROL, 0);
87476d63
DV
6284}
6285
0b8765c6
JB
6286static void i9xx_crtc_disable(struct drm_crtc *crtc)
6287{
6288 struct drm_device *dev = crtc->dev;
6289 struct drm_i915_private *dev_priv = dev->dev_private;
6290 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 6291 struct intel_encoder *encoder;
0b8765c6 6292 int pipe = intel_crtc->pipe;
ef9c3aee 6293
6304cd91
VS
6294 /*
6295 * On gen2 planes are double buffered but the pipe isn't, so we must
6296 * wait for planes to fully turn off before disabling the pipe.
6297 */
90e83e53
ACO
6298 if (IS_GEN2(dev))
6299 intel_wait_for_vblank(dev, pipe);
6304cd91 6300
4b3a9526
VS
6301 for_each_encoder_on_crtc(dev, crtc, encoder)
6302 encoder->disable(encoder);
6303
f9b61ff6
DV
6304 drm_crtc_vblank_off(crtc);
6305 assert_vblank_disabled(crtc);
6306
575f7ab7 6307 intel_disable_pipe(intel_crtc);
24a1f16d 6308
87476d63 6309 i9xx_pfit_disable(intel_crtc);
24a1f16d 6310
89b667f8
JB
6311 for_each_encoder_on_crtc(dev, crtc, encoder)
6312 if (encoder->post_disable)
6313 encoder->post_disable(encoder);
6314
a65347ba 6315 if (!intel_crtc->config->has_dsi_encoder) {
076ed3b2
CML
6316 if (IS_CHERRYVIEW(dev))
6317 chv_disable_pll(dev_priv, pipe);
6318 else if (IS_VALLEYVIEW(dev))
6319 vlv_disable_pll(dev_priv, pipe);
6320 else
1c4e0274 6321 i9xx_disable_pll(intel_crtc);
076ed3b2 6322 }
0b8765c6 6323
d6db995f
VS
6324 for_each_encoder_on_crtc(dev, crtc, encoder)
6325 if (encoder->post_pll_disable)
6326 encoder->post_pll_disable(encoder);
6327
4a3436e8 6328 if (!IS_GEN2(dev))
a72e4c9f 6329 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
0b8765c6
JB
6330}
6331
b17d48e2
ML
6332static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6333{
842e0307 6334 struct intel_encoder *encoder;
b17d48e2
ML
6335 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6336 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6337 enum intel_display_power_domain domain;
6338 unsigned long domains;
6339
6340 if (!intel_crtc->active)
6341 return;
6342
a539205a 6343 if (to_intel_plane_state(crtc->primary->state)->visible) {
5a21b665 6344 WARN_ON(intel_crtc->flip_work);
fc32b1fd 6345
2622a081 6346 intel_pre_disable_primary_noatomic(crtc);
54a41961
ML
6347
6348 intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
6349 to_intel_plane_state(crtc->primary->state)->visible = false;
a539205a
ML
6350 }
6351
b17d48e2 6352 dev_priv->display.crtc_disable(crtc);
842e0307 6353
78108b7c
VS
6354 DRM_DEBUG_KMS("[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n",
6355 crtc->base.id, crtc->name);
842e0307
ML
6356
6357 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->state, NULL) < 0);
6358 crtc->state->active = false;
37d9078b 6359 intel_crtc->active = false;
842e0307
ML
6360 crtc->enabled = false;
6361 crtc->state->connector_mask = 0;
6362 crtc->state->encoder_mask = 0;
6363
6364 for_each_encoder_on_crtc(crtc->dev, crtc, encoder)
6365 encoder->base.crtc = NULL;
6366
58f9c0bc 6367 intel_fbc_disable(intel_crtc);
37d9078b 6368 intel_update_watermarks(crtc);
1f7457b1 6369 intel_disable_shared_dpll(intel_crtc);
b17d48e2
ML
6370
6371 domains = intel_crtc->enabled_power_domains;
6372 for_each_power_domain(domain, domains)
6373 intel_display_power_put(dev_priv, domain);
6374 intel_crtc->enabled_power_domains = 0;
565602d7
ML
6375
6376 dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe);
6377 dev_priv->min_pixclk[intel_crtc->pipe] = 0;
b17d48e2
ML
6378}
6379
6b72d486
ML
6380/*
6381 * turn all crtc's off, but do not adjust state
6382 * This has to be paired with a call to intel_modeset_setup_hw_state.
6383 */
70e0bd74 6384int intel_display_suspend(struct drm_device *dev)
ee7b9f93 6385{
e2c8b870 6386 struct drm_i915_private *dev_priv = to_i915(dev);
70e0bd74 6387 struct drm_atomic_state *state;
e2c8b870 6388 int ret;
70e0bd74 6389
e2c8b870
ML
6390 state = drm_atomic_helper_suspend(dev);
6391 ret = PTR_ERR_OR_ZERO(state);
70e0bd74
ML
6392 if (ret)
6393 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
e2c8b870
ML
6394 else
6395 dev_priv->modeset_restore_state = state;
70e0bd74 6396 return ret;
ee7b9f93
JB
6397}
6398
ea5b213a 6399void intel_encoder_destroy(struct drm_encoder *encoder)
7e7d76c3 6400{
4ef69c7a 6401 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 6402
ea5b213a
CW
6403 drm_encoder_cleanup(encoder);
6404 kfree(intel_encoder);
7e7d76c3
JB
6405}
6406
0a91ca29
DV
6407/* Cross check the actual hw state with our own modeset state tracking (and it's
6408 * internal consistency). */
5a21b665 6409static void intel_connector_verify_state(struct intel_connector *connector)
79e53945 6410{
5a21b665 6411 struct drm_crtc *crtc = connector->base.state->crtc;
35dd3c64
ML
6412
6413 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6414 connector->base.base.id,
6415 connector->base.name);
6416
0a91ca29 6417 if (connector->get_hw_state(connector)) {
e85376cb 6418 struct intel_encoder *encoder = connector->encoder;
5a21b665 6419 struct drm_connector_state *conn_state = connector->base.state;
0a91ca29 6420
35dd3c64
ML
6421 I915_STATE_WARN(!crtc,
6422 "connector enabled without attached crtc\n");
0a91ca29 6423
35dd3c64
ML
6424 if (!crtc)
6425 return;
6426
6427 I915_STATE_WARN(!crtc->state->active,
6428 "connector is active, but attached crtc isn't\n");
6429
e85376cb 6430 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
35dd3c64
ML
6431 return;
6432
e85376cb 6433 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
35dd3c64
ML
6434 "atomic encoder doesn't match attached encoder\n");
6435
e85376cb 6436 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
35dd3c64
ML
6437 "attached encoder crtc differs from connector crtc\n");
6438 } else {
4d688a2a
ML
6439 I915_STATE_WARN(crtc && crtc->state->active,
6440 "attached crtc is active, but connector isn't\n");
5a21b665 6441 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
35dd3c64 6442 "best encoder set without crtc!\n");
0a91ca29 6443 }
79e53945
JB
6444}
6445
08d9bc92
ACO
6446int intel_connector_init(struct intel_connector *connector)
6447{
5350a031 6448 drm_atomic_helper_connector_reset(&connector->base);
08d9bc92 6449
5350a031 6450 if (!connector->base.state)
08d9bc92
ACO
6451 return -ENOMEM;
6452
08d9bc92
ACO
6453 return 0;
6454}
6455
6456struct intel_connector *intel_connector_alloc(void)
6457{
6458 struct intel_connector *connector;
6459
6460 connector = kzalloc(sizeof *connector, GFP_KERNEL);
6461 if (!connector)
6462 return NULL;
6463
6464 if (intel_connector_init(connector) < 0) {
6465 kfree(connector);
6466 return NULL;
6467 }
6468
6469 return connector;
6470}
6471
f0947c37
DV
6472/* Simple connector->get_hw_state implementation for encoders that support only
6473 * one connector and no cloning and hence the encoder state determines the state
6474 * of the connector. */
6475bool intel_connector_get_hw_state(struct intel_connector *connector)
ea5b213a 6476{
24929352 6477 enum pipe pipe = 0;
f0947c37 6478 struct intel_encoder *encoder = connector->encoder;
ea5b213a 6479
f0947c37 6480 return encoder->get_hw_state(encoder, &pipe);
ea5b213a
CW
6481}
6482
6d293983 6483static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
d272ddfa 6484{
6d293983
ACO
6485 if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6486 return crtc_state->fdi_lanes;
d272ddfa
VS
6487
6488 return 0;
6489}
6490
6d293983 6491static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5cec258b 6492 struct intel_crtc_state *pipe_config)
1857e1da 6493{
6d293983
ACO
6494 struct drm_atomic_state *state = pipe_config->base.state;
6495 struct intel_crtc *other_crtc;
6496 struct intel_crtc_state *other_crtc_state;
6497
1857e1da
DV
6498 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6499 pipe_name(pipe), pipe_config->fdi_lanes);
6500 if (pipe_config->fdi_lanes > 4) {
6501 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6502 pipe_name(pipe), pipe_config->fdi_lanes);
6d293983 6503 return -EINVAL;
1857e1da
DV
6504 }
6505
bafb6553 6506 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1857e1da
DV
6507 if (pipe_config->fdi_lanes > 2) {
6508 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6509 pipe_config->fdi_lanes);
6d293983 6510 return -EINVAL;
1857e1da 6511 } else {
6d293983 6512 return 0;
1857e1da
DV
6513 }
6514 }
6515
6516 if (INTEL_INFO(dev)->num_pipes == 2)
6d293983 6517 return 0;
1857e1da
DV
6518
6519 /* Ivybridge 3 pipe is really complicated */
6520 switch (pipe) {
6521 case PIPE_A:
6d293983 6522 return 0;
1857e1da 6523 case PIPE_B:
6d293983
ACO
6524 if (pipe_config->fdi_lanes <= 2)
6525 return 0;
6526
6527 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6528 other_crtc_state =
6529 intel_atomic_get_crtc_state(state, other_crtc);
6530 if (IS_ERR(other_crtc_state))
6531 return PTR_ERR(other_crtc_state);
6532
6533 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
1857e1da
DV
6534 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6535 pipe_name(pipe), pipe_config->fdi_lanes);
6d293983 6536 return -EINVAL;
1857e1da 6537 }
6d293983 6538 return 0;
1857e1da 6539 case PIPE_C:
251cc67c
VS
6540 if (pipe_config->fdi_lanes > 2) {
6541 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6542 pipe_name(pipe), pipe_config->fdi_lanes);
6d293983 6543 return -EINVAL;
251cc67c 6544 }
6d293983
ACO
6545
6546 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6547 other_crtc_state =
6548 intel_atomic_get_crtc_state(state, other_crtc);
6549 if (IS_ERR(other_crtc_state))
6550 return PTR_ERR(other_crtc_state);
6551
6552 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
1857e1da 6553 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6d293983 6554 return -EINVAL;
1857e1da 6555 }
6d293983 6556 return 0;
1857e1da
DV
6557 default:
6558 BUG();
6559 }
6560}
6561
e29c22c0
DV
6562#define RETRY 1
6563static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5cec258b 6564 struct intel_crtc_state *pipe_config)
877d48d5 6565{
1857e1da 6566 struct drm_device *dev = intel_crtc->base.dev;
7c5f93b0 6567 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6d293983
ACO
6568 int lane, link_bw, fdi_dotclock, ret;
6569 bool needs_recompute = false;
877d48d5 6570
e29c22c0 6571retry:
877d48d5
DV
6572 /* FDI is a binary signal running at ~2.7GHz, encoding
6573 * each output octet as 10 bits. The actual frequency
6574 * is stored as a divider into a 100MHz clock, and the
6575 * mode pixel clock is stored in units of 1KHz.
6576 * Hence the bw of each lane in terms of the mode signal
6577 * is:
6578 */
21a727b3 6579 link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config);
877d48d5 6580
241bfc38 6581 fdi_dotclock = adjusted_mode->crtc_clock;
877d48d5 6582
2bd89a07 6583 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
877d48d5
DV
6584 pipe_config->pipe_bpp);
6585
6586 pipe_config->fdi_lanes = lane;
6587
2bd89a07 6588 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
877d48d5 6589 link_bw, &pipe_config->fdi_m_n);
1857e1da 6590
e3b247da 6591 ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
6d293983 6592 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
e29c22c0
DV
6593 pipe_config->pipe_bpp -= 2*3;
6594 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6595 pipe_config->pipe_bpp);
6596 needs_recompute = true;
6597 pipe_config->bw_constrained = true;
6598
6599 goto retry;
6600 }
6601
6602 if (needs_recompute)
6603 return RETRY;
6604
6d293983 6605 return ret;
877d48d5
DV
6606}
6607
8cfb3407
VS
6608static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6609 struct intel_crtc_state *pipe_config)
6610{
6611 if (pipe_config->pipe_bpp > 24)
6612 return false;
6613
6614 /* HSW can handle pixel rate up to cdclk? */
2d1fe073 6615 if (IS_HASWELL(dev_priv))
8cfb3407
VS
6616 return true;
6617
6618 /*
b432e5cf
VS
6619 * We compare against max which means we must take
6620 * the increased cdclk requirement into account when
6621 * calculating the new cdclk.
6622 *
6623 * Should measure whether using a lower cdclk w/o IPS
8cfb3407
VS
6624 */
6625 return ilk_pipe_pixel_rate(pipe_config) <=
6626 dev_priv->max_cdclk_freq * 95 / 100;
6627}
6628
42db64ef 6629static void hsw_compute_ips_config(struct intel_crtc *crtc,
5cec258b 6630 struct intel_crtc_state *pipe_config)
42db64ef 6631{
8cfb3407
VS
6632 struct drm_device *dev = crtc->base.dev;
6633 struct drm_i915_private *dev_priv = dev->dev_private;
6634
d330a953 6635 pipe_config->ips_enabled = i915.enable_ips &&
8cfb3407
VS
6636 hsw_crtc_supports_ips(crtc) &&
6637 pipe_config_supports_ips(dev_priv, pipe_config);
42db64ef
PZ
6638}
6639
39acb4aa
VS
6640static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
6641{
6642 const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6643
6644 /* GDG double wide on either pipe, otherwise pipe A only */
6645 return INTEL_INFO(dev_priv)->gen < 4 &&
6646 (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
6647}
6648
a43f6e0f 6649static int intel_crtc_compute_config(struct intel_crtc *crtc,
5cec258b 6650 struct intel_crtc_state *pipe_config)
79e53945 6651{
a43f6e0f 6652 struct drm_device *dev = crtc->base.dev;
8bd31e67 6653 struct drm_i915_private *dev_priv = dev->dev_private;
7c5f93b0 6654 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
f3261156 6655 int clock_limit = dev_priv->max_dotclk_freq;
89749350 6656
cf532bb2 6657 if (INTEL_INFO(dev)->gen < 4) {
f3261156 6658 clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
cf532bb2
VS
6659
6660 /*
39acb4aa 6661 * Enable double wide mode when the dot clock
cf532bb2 6662 * is > 90% of the (display) core speed.
cf532bb2 6663 */
39acb4aa
VS
6664 if (intel_crtc_supports_double_wide(crtc) &&
6665 adjusted_mode->crtc_clock > clock_limit) {
f3261156 6666 clock_limit = dev_priv->max_dotclk_freq;
cf532bb2 6667 pipe_config->double_wide = true;
ad3a4479 6668 }
f3261156 6669 }
ad3a4479 6670
f3261156
VS
6671 if (adjusted_mode->crtc_clock > clock_limit) {
6672 DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
6673 adjusted_mode->crtc_clock, clock_limit,
6674 yesno(pipe_config->double_wide));
6675 return -EINVAL;
2c07245f 6676 }
89749350 6677
1d1d0e27
VS
6678 /*
6679 * Pipe horizontal size must be even in:
6680 * - DVO ganged mode
6681 * - LVDS dual channel mode
6682 * - Double wide pipe
6683 */
a93e255f 6684 if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
1d1d0e27
VS
6685 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6686 pipe_config->pipe_src_w &= ~1;
6687
8693a824
DL
6688 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6689 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
44f46b42
CW
6690 */
6691 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
aad941d5 6692 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
e29c22c0 6693 return -EINVAL;
44f46b42 6694
f5adf94e 6695 if (HAS_IPS(dev))
a43f6e0f
DV
6696 hsw_compute_ips_config(crtc, pipe_config);
6697
877d48d5 6698 if (pipe_config->has_pch_encoder)
a43f6e0f 6699 return ironlake_fdi_compute_config(crtc, pipe_config);
877d48d5 6700
cf5a15be 6701 return 0;
79e53945
JB
6702}
6703
1652d19e
VS
6704static int skylake_get_display_clock_speed(struct drm_device *dev)
6705{
6706 struct drm_i915_private *dev_priv = to_i915(dev);
ea61791e 6707 uint32_t cdctl;
1652d19e 6708
ea61791e 6709 skl_dpll0_update(dev_priv);
1652d19e 6710
63911d72 6711 if (dev_priv->cdclk_pll.vco == 0)
709e05c3 6712 return dev_priv->cdclk_pll.ref;
1652d19e 6713
ea61791e 6714 cdctl = I915_READ(CDCLK_CTL);
1652d19e 6715
63911d72 6716 if (dev_priv->cdclk_pll.vco == 8640000) {
1652d19e
VS
6717 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6718 case CDCLK_FREQ_450_432:
6719 return 432000;
6720 case CDCLK_FREQ_337_308:
487ed2e4 6721 return 308571;
ea61791e
VS
6722 case CDCLK_FREQ_540:
6723 return 540000;
1652d19e 6724 case CDCLK_FREQ_675_617:
487ed2e4 6725 return 617143;
1652d19e 6726 default:
ea61791e 6727 MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
1652d19e
VS
6728 }
6729 } else {
1652d19e
VS
6730 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6731 case CDCLK_FREQ_450_432:
6732 return 450000;
6733 case CDCLK_FREQ_337_308:
6734 return 337500;
ea61791e
VS
6735 case CDCLK_FREQ_540:
6736 return 540000;
1652d19e
VS
6737 case CDCLK_FREQ_675_617:
6738 return 675000;
6739 default:
ea61791e 6740 MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
1652d19e
VS
6741 }
6742 }
6743
709e05c3 6744 return dev_priv->cdclk_pll.ref;
1652d19e
VS
6745}
6746
83d7c81f
VS
6747static void bxt_de_pll_update(struct drm_i915_private *dev_priv)
6748{
6749 u32 val;
6750
6751 dev_priv->cdclk_pll.ref = 19200;
1c3f7700 6752 dev_priv->cdclk_pll.vco = 0;
83d7c81f
VS
6753
6754 val = I915_READ(BXT_DE_PLL_ENABLE);
1c3f7700 6755 if ((val & BXT_DE_PLL_PLL_ENABLE) == 0)
83d7c81f 6756 return;
83d7c81f 6757
1c3f7700
ID
6758 if (WARN_ON((val & BXT_DE_PLL_LOCK) == 0))
6759 return;
83d7c81f
VS
6760
6761 val = I915_READ(BXT_DE_PLL_CTL);
6762 dev_priv->cdclk_pll.vco = (val & BXT_DE_PLL_RATIO_MASK) *
6763 dev_priv->cdclk_pll.ref;
6764}
6765
acd3f3d3
BP
6766static int broxton_get_display_clock_speed(struct drm_device *dev)
6767{
6768 struct drm_i915_private *dev_priv = to_i915(dev);
f5986242
VS
6769 u32 divider;
6770 int div, vco;
acd3f3d3 6771
83d7c81f
VS
6772 bxt_de_pll_update(dev_priv);
6773
f5986242
VS
6774 vco = dev_priv->cdclk_pll.vco;
6775 if (vco == 0)
6776 return dev_priv->cdclk_pll.ref;
acd3f3d3 6777
f5986242 6778 divider = I915_READ(CDCLK_CTL) & BXT_CDCLK_CD2X_DIV_SEL_MASK;
acd3f3d3 6779
f5986242 6780 switch (divider) {
acd3f3d3 6781 case BXT_CDCLK_CD2X_DIV_SEL_1:
f5986242
VS
6782 div = 2;
6783 break;
acd3f3d3 6784 case BXT_CDCLK_CD2X_DIV_SEL_1_5:
f5986242
VS
6785 div = 3;
6786 break;
acd3f3d3 6787 case BXT_CDCLK_CD2X_DIV_SEL_2:
f5986242
VS
6788 div = 4;
6789 break;
acd3f3d3 6790 case BXT_CDCLK_CD2X_DIV_SEL_4:
f5986242
VS
6791 div = 8;
6792 break;
6793 default:
6794 MISSING_CASE(divider);
6795 return dev_priv->cdclk_pll.ref;
acd3f3d3
BP
6796 }
6797
f5986242 6798 return DIV_ROUND_CLOSEST(vco, div);
acd3f3d3
BP
6799}
6800
1652d19e
VS
6801static int broadwell_get_display_clock_speed(struct drm_device *dev)
6802{
6803 struct drm_i915_private *dev_priv = dev->dev_private;
6804 uint32_t lcpll = I915_READ(LCPLL_CTL);
6805 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6806
6807 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6808 return 800000;
6809 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6810 return 450000;
6811 else if (freq == LCPLL_CLK_FREQ_450)
6812 return 450000;
6813 else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6814 return 540000;
6815 else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6816 return 337500;
6817 else
6818 return 675000;
6819}
6820
6821static int haswell_get_display_clock_speed(struct drm_device *dev)
6822{
6823 struct drm_i915_private *dev_priv = dev->dev_private;
6824 uint32_t lcpll = I915_READ(LCPLL_CTL);
6825 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6826
6827 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6828 return 800000;
6829 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6830 return 450000;
6831 else if (freq == LCPLL_CLK_FREQ_450)
6832 return 450000;
6833 else if (IS_HSW_ULT(dev))
6834 return 337500;
6835 else
6836 return 540000;
79e53945
JB
6837}
6838
25eb05fc
JB
6839static int valleyview_get_display_clock_speed(struct drm_device *dev)
6840{
bfa7df01
VS
6841 return vlv_get_cck_clock_hpll(to_i915(dev), "cdclk",
6842 CCK_DISPLAY_CLOCK_CONTROL);
25eb05fc
JB
6843}
6844
b37a6434
VS
6845static int ilk_get_display_clock_speed(struct drm_device *dev)
6846{
6847 return 450000;
6848}
6849
e70236a8
JB
6850static int i945_get_display_clock_speed(struct drm_device *dev)
6851{
6852 return 400000;
6853}
79e53945 6854
e70236a8 6855static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 6856{
e907f170 6857 return 333333;
e70236a8 6858}
79e53945 6859
e70236a8
JB
6860static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6861{
6862 return 200000;
6863}
79e53945 6864
257a7ffc
DV
6865static int pnv_get_display_clock_speed(struct drm_device *dev)
6866{
6867 u16 gcfgc = 0;
6868
6869 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6870
6871 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6872 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
e907f170 6873 return 266667;
257a7ffc 6874 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
e907f170 6875 return 333333;
257a7ffc 6876 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
e907f170 6877 return 444444;
257a7ffc
DV
6878 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6879 return 200000;
6880 default:
6881 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6882 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
e907f170 6883 return 133333;
257a7ffc 6884 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
e907f170 6885 return 166667;
257a7ffc
DV
6886 }
6887}
6888
e70236a8
JB
6889static int i915gm_get_display_clock_speed(struct drm_device *dev)
6890{
6891 u16 gcfgc = 0;
79e53945 6892
e70236a8
JB
6893 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6894
6895 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
e907f170 6896 return 133333;
e70236a8
JB
6897 else {
6898 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6899 case GC_DISPLAY_CLOCK_333_MHZ:
e907f170 6900 return 333333;
e70236a8
JB
6901 default:
6902 case GC_DISPLAY_CLOCK_190_200_MHZ:
6903 return 190000;
79e53945 6904 }
e70236a8
JB
6905 }
6906}
6907
6908static int i865_get_display_clock_speed(struct drm_device *dev)
6909{
e907f170 6910 return 266667;
e70236a8
JB
6911}
6912
1b1d2716 6913static int i85x_get_display_clock_speed(struct drm_device *dev)
e70236a8
JB
6914{
6915 u16 hpllcc = 0;
1b1d2716 6916
65cd2b3f
VS
6917 /*
6918 * 852GM/852GMV only supports 133 MHz and the HPLLCC
6919 * encoding is different :(
6920 * FIXME is this the right way to detect 852GM/852GMV?
6921 */
6922 if (dev->pdev->revision == 0x1)
6923 return 133333;
6924
1b1d2716
VS
6925 pci_bus_read_config_word(dev->pdev->bus,
6926 PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
6927
e70236a8
JB
6928 /* Assume that the hardware is in the high speed state. This
6929 * should be the default.
6930 */
6931 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6932 case GC_CLOCK_133_200:
1b1d2716 6933 case GC_CLOCK_133_200_2:
e70236a8
JB
6934 case GC_CLOCK_100_200:
6935 return 200000;
6936 case GC_CLOCK_166_250:
6937 return 250000;
6938 case GC_CLOCK_100_133:
e907f170 6939 return 133333;
1b1d2716
VS
6940 case GC_CLOCK_133_266:
6941 case GC_CLOCK_133_266_2:
6942 case GC_CLOCK_166_266:
6943 return 266667;
e70236a8 6944 }
79e53945 6945
e70236a8
JB
6946 /* Shouldn't happen */
6947 return 0;
6948}
79e53945 6949
e70236a8
JB
6950static int i830_get_display_clock_speed(struct drm_device *dev)
6951{
e907f170 6952 return 133333;
79e53945
JB
6953}
6954
34edce2f
VS
6955static unsigned int intel_hpll_vco(struct drm_device *dev)
6956{
6957 struct drm_i915_private *dev_priv = dev->dev_private;
6958 static const unsigned int blb_vco[8] = {
6959 [0] = 3200000,
6960 [1] = 4000000,
6961 [2] = 5333333,
6962 [3] = 4800000,
6963 [4] = 6400000,
6964 };
6965 static const unsigned int pnv_vco[8] = {
6966 [0] = 3200000,
6967 [1] = 4000000,
6968 [2] = 5333333,
6969 [3] = 4800000,
6970 [4] = 2666667,
6971 };
6972 static const unsigned int cl_vco[8] = {
6973 [0] = 3200000,
6974 [1] = 4000000,
6975 [2] = 5333333,
6976 [3] = 6400000,
6977 [4] = 3333333,
6978 [5] = 3566667,
6979 [6] = 4266667,
6980 };
6981 static const unsigned int elk_vco[8] = {
6982 [0] = 3200000,
6983 [1] = 4000000,
6984 [2] = 5333333,
6985 [3] = 4800000,
6986 };
6987 static const unsigned int ctg_vco[8] = {
6988 [0] = 3200000,
6989 [1] = 4000000,
6990 [2] = 5333333,
6991 [3] = 6400000,
6992 [4] = 2666667,
6993 [5] = 4266667,
6994 };
6995 const unsigned int *vco_table;
6996 unsigned int vco;
6997 uint8_t tmp = 0;
6998
6999 /* FIXME other chipsets? */
7000 if (IS_GM45(dev))
7001 vco_table = ctg_vco;
7002 else if (IS_G4X(dev))
7003 vco_table = elk_vco;
7004 else if (IS_CRESTLINE(dev))
7005 vco_table = cl_vco;
7006 else if (IS_PINEVIEW(dev))
7007 vco_table = pnv_vco;
7008 else if (IS_G33(dev))
7009 vco_table = blb_vco;
7010 else
7011 return 0;
7012
7013 tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
7014
7015 vco = vco_table[tmp & 0x7];
7016 if (vco == 0)
7017 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
7018 else
7019 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
7020
7021 return vco;
7022}
7023
7024static int gm45_get_display_clock_speed(struct drm_device *dev)
7025{
7026 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7027 uint16_t tmp = 0;
7028
7029 pci_read_config_word(dev->pdev, GCFGC, &tmp);
7030
7031 cdclk_sel = (tmp >> 12) & 0x1;
7032
7033 switch (vco) {
7034 case 2666667:
7035 case 4000000:
7036 case 5333333:
7037 return cdclk_sel ? 333333 : 222222;
7038 case 3200000:
7039 return cdclk_sel ? 320000 : 228571;
7040 default:
7041 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
7042 return 222222;
7043 }
7044}
7045
7046static int i965gm_get_display_clock_speed(struct drm_device *dev)
7047{
7048 static const uint8_t div_3200[] = { 16, 10, 8 };
7049 static const uint8_t div_4000[] = { 20, 12, 10 };
7050 static const uint8_t div_5333[] = { 24, 16, 14 };
7051 const uint8_t *div_table;
7052 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7053 uint16_t tmp = 0;
7054
7055 pci_read_config_word(dev->pdev, GCFGC, &tmp);
7056
7057 cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
7058
7059 if (cdclk_sel >= ARRAY_SIZE(div_3200))
7060 goto fail;
7061
7062 switch (vco) {
7063 case 3200000:
7064 div_table = div_3200;
7065 break;
7066 case 4000000:
7067 div_table = div_4000;
7068 break;
7069 case 5333333:
7070 div_table = div_5333;
7071 break;
7072 default:
7073 goto fail;
7074 }
7075
7076 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7077
caf4e252 7078fail:
34edce2f
VS
7079 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
7080 return 200000;
7081}
7082
7083static int g33_get_display_clock_speed(struct drm_device *dev)
7084{
7085 static const uint8_t div_3200[] = { 12, 10, 8, 7, 5, 16 };
7086 static const uint8_t div_4000[] = { 14, 12, 10, 8, 6, 20 };
7087 static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
7088 static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
7089 const uint8_t *div_table;
7090 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7091 uint16_t tmp = 0;
7092
7093 pci_read_config_word(dev->pdev, GCFGC, &tmp);
7094
7095 cdclk_sel = (tmp >> 4) & 0x7;
7096
7097 if (cdclk_sel >= ARRAY_SIZE(div_3200))
7098 goto fail;
7099
7100 switch (vco) {
7101 case 3200000:
7102 div_table = div_3200;
7103 break;
7104 case 4000000:
7105 div_table = div_4000;
7106 break;
7107 case 4800000:
7108 div_table = div_4800;
7109 break;
7110 case 5333333:
7111 div_table = div_5333;
7112 break;
7113 default:
7114 goto fail;
7115 }
7116
7117 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7118
caf4e252 7119fail:
34edce2f
VS
7120 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7121 return 190476;
7122}
7123
2c07245f 7124static void
a65851af 7125intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
2c07245f 7126{
a65851af
VS
7127 while (*num > DATA_LINK_M_N_MASK ||
7128 *den > DATA_LINK_M_N_MASK) {
2c07245f
ZW
7129 *num >>= 1;
7130 *den >>= 1;
7131 }
7132}
7133
a65851af
VS
7134static void compute_m_n(unsigned int m, unsigned int n,
7135 uint32_t *ret_m, uint32_t *ret_n)
7136{
7137 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7138 *ret_m = div_u64((uint64_t) m * *ret_n, n);
7139 intel_reduce_m_n_ratio(ret_m, ret_n);
7140}
7141
e69d0bc1
DV
7142void
7143intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7144 int pixel_clock, int link_clock,
7145 struct intel_link_m_n *m_n)
2c07245f 7146{
e69d0bc1 7147 m_n->tu = 64;
a65851af
VS
7148
7149 compute_m_n(bits_per_pixel * pixel_clock,
7150 link_clock * nlanes * 8,
7151 &m_n->gmch_m, &m_n->gmch_n);
7152
7153 compute_m_n(pixel_clock, link_clock,
7154 &m_n->link_m, &m_n->link_n);
2c07245f
ZW
7155}
7156
a7615030
CW
7157static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7158{
d330a953
JN
7159 if (i915.panel_use_ssc >= 0)
7160 return i915.panel_use_ssc != 0;
41aa3448 7161 return dev_priv->vbt.lvds_use_ssc
435793df 7162 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
7163}
7164
7429e9d4 7165static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
c65d77d8 7166{
7df00d7a 7167 return (1 << dpll->n) << 16 | dpll->m2;
7429e9d4 7168}
f47709a9 7169
7429e9d4
DV
7170static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7171{
7172 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
c65d77d8
JB
7173}
7174
f47709a9 7175static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
190f68c5 7176 struct intel_crtc_state *crtc_state,
9e2c8475 7177 struct dpll *reduced_clock)
a7516a05 7178{
f47709a9 7179 struct drm_device *dev = crtc->base.dev;
a7516a05
JB
7180 u32 fp, fp2 = 0;
7181
7182 if (IS_PINEVIEW(dev)) {
190f68c5 7183 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
a7516a05 7184 if (reduced_clock)
7429e9d4 7185 fp2 = pnv_dpll_compute_fp(reduced_clock);
a7516a05 7186 } else {
190f68c5 7187 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
a7516a05 7188 if (reduced_clock)
7429e9d4 7189 fp2 = i9xx_dpll_compute_fp(reduced_clock);
a7516a05
JB
7190 }
7191
190f68c5 7192 crtc_state->dpll_hw_state.fp0 = fp;
a7516a05 7193
f47709a9 7194 crtc->lowfreq_avail = false;
a93e255f 7195 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
ab585dea 7196 reduced_clock) {
190f68c5 7197 crtc_state->dpll_hw_state.fp1 = fp2;
f47709a9 7198 crtc->lowfreq_avail = true;
a7516a05 7199 } else {
190f68c5 7200 crtc_state->dpll_hw_state.fp1 = fp;
a7516a05
JB
7201 }
7202}
7203
5e69f97f
CML
7204static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7205 pipe)
89b667f8
JB
7206{
7207 u32 reg_val;
7208
7209 /*
7210 * PLLB opamp always calibrates to max value of 0x3f, force enable it
7211 * and set it to a reasonable value instead.
7212 */
ab3c759a 7213 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8
JB
7214 reg_val &= 0xffffff00;
7215 reg_val |= 0x00000030;
ab3c759a 7216 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 7217
ab3c759a 7218 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
7219 reg_val &= 0x8cffffff;
7220 reg_val = 0x8c000000;
ab3c759a 7221 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8 7222
ab3c759a 7223 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8 7224 reg_val &= 0xffffff00;
ab3c759a 7225 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 7226
ab3c759a 7227 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
7228 reg_val &= 0x00ffffff;
7229 reg_val |= 0xb0000000;
ab3c759a 7230 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8
JB
7231}
7232
b551842d
DV
7233static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7234 struct intel_link_m_n *m_n)
7235{
7236 struct drm_device *dev = crtc->base.dev;
7237 struct drm_i915_private *dev_priv = dev->dev_private;
7238 int pipe = crtc->pipe;
7239
e3b95f1e
DV
7240 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7241 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7242 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7243 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
b551842d
DV
7244}
7245
7246static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
7247 struct intel_link_m_n *m_n,
7248 struct intel_link_m_n *m2_n2)
b551842d
DV
7249{
7250 struct drm_device *dev = crtc->base.dev;
7251 struct drm_i915_private *dev_priv = dev->dev_private;
7252 int pipe = crtc->pipe;
6e3c9717 7253 enum transcoder transcoder = crtc->config->cpu_transcoder;
b551842d
DV
7254
7255 if (INTEL_INFO(dev)->gen >= 5) {
7256 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7257 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7258 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7259 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
f769cd24
VK
7260 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7261 * for gen < 8) and if DRRS is supported (to make sure the
7262 * registers are not unnecessarily accessed).
7263 */
44395bfe 7264 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
6e3c9717 7265 crtc->config->has_drrs) {
f769cd24
VK
7266 I915_WRITE(PIPE_DATA_M2(transcoder),
7267 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7268 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7269 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7270 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7271 }
b551842d 7272 } else {
e3b95f1e
DV
7273 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7274 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7275 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7276 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
b551842d
DV
7277 }
7278}
7279
fe3cd48d 7280void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
03afc4a2 7281{
fe3cd48d
R
7282 struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7283
7284 if (m_n == M1_N1) {
7285 dp_m_n = &crtc->config->dp_m_n;
7286 dp_m2_n2 = &crtc->config->dp_m2_n2;
7287 } else if (m_n == M2_N2) {
7288
7289 /*
7290 * M2_N2 registers are not supported. Hence m2_n2 divider value
7291 * needs to be programmed into M1_N1.
7292 */
7293 dp_m_n = &crtc->config->dp_m2_n2;
7294 } else {
7295 DRM_ERROR("Unsupported divider value\n");
7296 return;
7297 }
7298
6e3c9717
ACO
7299 if (crtc->config->has_pch_encoder)
7300 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
03afc4a2 7301 else
fe3cd48d 7302 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
03afc4a2
DV
7303}
7304
251ac862
DV
7305static void vlv_compute_dpll(struct intel_crtc *crtc,
7306 struct intel_crtc_state *pipe_config)
bdd4b6a6 7307{
03ed5cbf 7308 pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
cd2d34d9 7309 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
03ed5cbf
VS
7310 if (crtc->pipe != PIPE_A)
7311 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
bdd4b6a6 7312
cd2d34d9 7313 /* DPLL not used with DSI, but still need the rest set up */
187a1c07 7314 if (!pipe_config->has_dsi_encoder)
cd2d34d9
VS
7315 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
7316 DPLL_EXT_BUFFER_ENABLE_VLV;
7317
03ed5cbf
VS
7318 pipe_config->dpll_hw_state.dpll_md =
7319 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7320}
bdd4b6a6 7321
03ed5cbf
VS
7322static void chv_compute_dpll(struct intel_crtc *crtc,
7323 struct intel_crtc_state *pipe_config)
7324{
7325 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
cd2d34d9 7326 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
03ed5cbf
VS
7327 if (crtc->pipe != PIPE_A)
7328 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7329
cd2d34d9 7330 /* DPLL not used with DSI, but still need the rest set up */
187a1c07 7331 if (!pipe_config->has_dsi_encoder)
cd2d34d9
VS
7332 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
7333
03ed5cbf
VS
7334 pipe_config->dpll_hw_state.dpll_md =
7335 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
bdd4b6a6
DV
7336}
7337
d288f65f 7338static void vlv_prepare_pll(struct intel_crtc *crtc,
5cec258b 7339 const struct intel_crtc_state *pipe_config)
a0c4da24 7340{
f47709a9 7341 struct drm_device *dev = crtc->base.dev;
a0c4da24 7342 struct drm_i915_private *dev_priv = dev->dev_private;
cd2d34d9 7343 enum pipe pipe = crtc->pipe;
bdd4b6a6 7344 u32 mdiv;
a0c4da24 7345 u32 bestn, bestm1, bestm2, bestp1, bestp2;
bdd4b6a6 7346 u32 coreclk, reg_val;
a0c4da24 7347
cd2d34d9
VS
7348 /* Enable Refclk */
7349 I915_WRITE(DPLL(pipe),
7350 pipe_config->dpll_hw_state.dpll &
7351 ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
7352
7353 /* No need to actually set up the DPLL with DSI */
7354 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7355 return;
7356
a580516d 7357 mutex_lock(&dev_priv->sb_lock);
09153000 7358
d288f65f
VS
7359 bestn = pipe_config->dpll.n;
7360 bestm1 = pipe_config->dpll.m1;
7361 bestm2 = pipe_config->dpll.m2;
7362 bestp1 = pipe_config->dpll.p1;
7363 bestp2 = pipe_config->dpll.p2;
a0c4da24 7364
89b667f8
JB
7365 /* See eDP HDMI DPIO driver vbios notes doc */
7366
7367 /* PLL B needs special handling */
bdd4b6a6 7368 if (pipe == PIPE_B)
5e69f97f 7369 vlv_pllb_recal_opamp(dev_priv, pipe);
89b667f8
JB
7370
7371 /* Set up Tx target for periodic Rcomp update */
ab3c759a 7372 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
89b667f8
JB
7373
7374 /* Disable target IRef on PLL */
ab3c759a 7375 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
89b667f8 7376 reg_val &= 0x00ffffff;
ab3c759a 7377 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
89b667f8
JB
7378
7379 /* Disable fast lock */
ab3c759a 7380 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
89b667f8
JB
7381
7382 /* Set idtafcrecal before PLL is enabled */
a0c4da24
JB
7383 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7384 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7385 mdiv |= ((bestn << DPIO_N_SHIFT));
a0c4da24 7386 mdiv |= (1 << DPIO_K_SHIFT);
7df5080b
JB
7387
7388 /*
7389 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7390 * but we don't support that).
7391 * Note: don't use the DAC post divider as it seems unstable.
7392 */
7393 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
ab3c759a 7394 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 7395
a0c4da24 7396 mdiv |= DPIO_ENABLE_CALIBRATION;
ab3c759a 7397 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 7398
89b667f8 7399 /* Set HBR and RBR LPF coefficients */
d288f65f 7400 if (pipe_config->port_clock == 162000 ||
409ee761
ACO
7401 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
7402 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
ab3c759a 7403 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
885b0120 7404 0x009f0003);
89b667f8 7405 else
ab3c759a 7406 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
89b667f8
JB
7407 0x00d0000f);
7408
681a8504 7409 if (pipe_config->has_dp_encoder) {
89b667f8 7410 /* Use SSC source */
bdd4b6a6 7411 if (pipe == PIPE_A)
ab3c759a 7412 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
7413 0x0df40000);
7414 else
ab3c759a 7415 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
7416 0x0df70000);
7417 } else { /* HDMI or VGA */
7418 /* Use bend source */
bdd4b6a6 7419 if (pipe == PIPE_A)
ab3c759a 7420 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
7421 0x0df70000);
7422 else
ab3c759a 7423 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
7424 0x0df40000);
7425 }
a0c4da24 7426
ab3c759a 7427 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
89b667f8 7428 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
409ee761
ACO
7429 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
7430 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
89b667f8 7431 coreclk |= 0x01000000;
ab3c759a 7432 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
a0c4da24 7433
ab3c759a 7434 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
a580516d 7435 mutex_unlock(&dev_priv->sb_lock);
a0c4da24
JB
7436}
7437
d288f65f 7438static void chv_prepare_pll(struct intel_crtc *crtc,
5cec258b 7439 const struct intel_crtc_state *pipe_config)
9d556c99
CML
7440{
7441 struct drm_device *dev = crtc->base.dev;
7442 struct drm_i915_private *dev_priv = dev->dev_private;
cd2d34d9 7443 enum pipe pipe = crtc->pipe;
9d556c99 7444 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9cbe40c1 7445 u32 loopfilter, tribuf_calcntr;
9d556c99 7446 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
a945ce7e 7447 u32 dpio_val;
9cbe40c1 7448 int vco;
9d556c99 7449
cd2d34d9
VS
7450 /* Enable Refclk and SSC */
7451 I915_WRITE(DPLL(pipe),
7452 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7453
7454 /* No need to actually set up the DPLL with DSI */
7455 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7456 return;
7457
d288f65f
VS
7458 bestn = pipe_config->dpll.n;
7459 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7460 bestm1 = pipe_config->dpll.m1;
7461 bestm2 = pipe_config->dpll.m2 >> 22;
7462 bestp1 = pipe_config->dpll.p1;
7463 bestp2 = pipe_config->dpll.p2;
9cbe40c1 7464 vco = pipe_config->dpll.vco;
a945ce7e 7465 dpio_val = 0;
9cbe40c1 7466 loopfilter = 0;
9d556c99 7467
a580516d 7468 mutex_lock(&dev_priv->sb_lock);
9d556c99 7469
9d556c99
CML
7470 /* p1 and p2 divider */
7471 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7472 5 << DPIO_CHV_S1_DIV_SHIFT |
7473 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7474 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7475 1 << DPIO_CHV_K_DIV_SHIFT);
7476
7477 /* Feedback post-divider - m2 */
7478 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7479
7480 /* Feedback refclk divider - n and m1 */
7481 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7482 DPIO_CHV_M1_DIV_BY_2 |
7483 1 << DPIO_CHV_N_DIV_SHIFT);
7484
7485 /* M2 fraction division */
25a25dfc 7486 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
9d556c99
CML
7487
7488 /* M2 fraction division enable */
a945ce7e
VP
7489 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7490 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7491 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7492 if (bestm2_frac)
7493 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7494 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
9d556c99 7495
de3a0fde
VP
7496 /* Program digital lock detect threshold */
7497 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7498 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7499 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7500 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7501 if (!bestm2_frac)
7502 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7503 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7504
9d556c99 7505 /* Loop filter */
9cbe40c1
VP
7506 if (vco == 5400000) {
7507 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7508 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7509 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7510 tribuf_calcntr = 0x9;
7511 } else if (vco <= 6200000) {
7512 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7513 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7514 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7515 tribuf_calcntr = 0x9;
7516 } else if (vco <= 6480000) {
7517 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7518 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7519 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7520 tribuf_calcntr = 0x8;
7521 } else {
7522 /* Not supported. Apply the same limits as in the max case */
7523 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7524 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7525 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7526 tribuf_calcntr = 0;
7527 }
9d556c99
CML
7528 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7529
968040b2 7530 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
9cbe40c1
VP
7531 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7532 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7533 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7534
9d556c99
CML
7535 /* AFC Recal */
7536 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7537 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7538 DPIO_AFC_RECAL);
7539
a580516d 7540 mutex_unlock(&dev_priv->sb_lock);
9d556c99
CML
7541}
7542
d288f65f
VS
7543/**
7544 * vlv_force_pll_on - forcibly enable just the PLL
7545 * @dev_priv: i915 private structure
7546 * @pipe: pipe PLL to enable
7547 * @dpll: PLL configuration
7548 *
7549 * Enable the PLL for @pipe using the supplied @dpll config. To be used
7550 * in cases where we need the PLL enabled even when @pipe is not going to
7551 * be enabled.
7552 */
3f36b937
TU
7553int vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7554 const struct dpll *dpll)
d288f65f
VS
7555{
7556 struct intel_crtc *crtc =
7557 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
3f36b937
TU
7558 struct intel_crtc_state *pipe_config;
7559
7560 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
7561 if (!pipe_config)
7562 return -ENOMEM;
7563
7564 pipe_config->base.crtc = &crtc->base;
7565 pipe_config->pixel_multiplier = 1;
7566 pipe_config->dpll = *dpll;
d288f65f
VS
7567
7568 if (IS_CHERRYVIEW(dev)) {
3f36b937
TU
7569 chv_compute_dpll(crtc, pipe_config);
7570 chv_prepare_pll(crtc, pipe_config);
7571 chv_enable_pll(crtc, pipe_config);
d288f65f 7572 } else {
3f36b937
TU
7573 vlv_compute_dpll(crtc, pipe_config);
7574 vlv_prepare_pll(crtc, pipe_config);
7575 vlv_enable_pll(crtc, pipe_config);
d288f65f 7576 }
3f36b937
TU
7577
7578 kfree(pipe_config);
7579
7580 return 0;
d288f65f
VS
7581}
7582
7583/**
7584 * vlv_force_pll_off - forcibly disable just the PLL
7585 * @dev_priv: i915 private structure
7586 * @pipe: pipe PLL to disable
7587 *
7588 * Disable the PLL for @pipe. To be used in cases where we need
7589 * the PLL enabled even when @pipe is not going to be enabled.
7590 */
7591void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7592{
7593 if (IS_CHERRYVIEW(dev))
7594 chv_disable_pll(to_i915(dev), pipe);
7595 else
7596 vlv_disable_pll(to_i915(dev), pipe);
7597}
7598
251ac862
DV
7599static void i9xx_compute_dpll(struct intel_crtc *crtc,
7600 struct intel_crtc_state *crtc_state,
9e2c8475 7601 struct dpll *reduced_clock)
eb1cbe48 7602{
f47709a9 7603 struct drm_device *dev = crtc->base.dev;
eb1cbe48 7604 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48
DV
7605 u32 dpll;
7606 bool is_sdvo;
190f68c5 7607 struct dpll *clock = &crtc_state->dpll;
eb1cbe48 7608
190f68c5 7609 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
2a8f64ca 7610
a93e255f
ACO
7611 is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7612 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
eb1cbe48
DV
7613
7614 dpll = DPLL_VGA_MODE_DIS;
7615
a93e255f 7616 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
eb1cbe48
DV
7617 dpll |= DPLLB_MODE_LVDS;
7618 else
7619 dpll |= DPLLB_MODE_DAC_SERIAL;
6cc5f341 7620
ef1b460d 7621 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
190f68c5 7622 dpll |= (crtc_state->pixel_multiplier - 1)
198a037f 7623 << SDVO_MULTIPLIER_SHIFT_HIRES;
eb1cbe48 7624 }
198a037f
DV
7625
7626 if (is_sdvo)
4a33e48d 7627 dpll |= DPLL_SDVO_HIGH_SPEED;
198a037f 7628
190f68c5 7629 if (crtc_state->has_dp_encoder)
4a33e48d 7630 dpll |= DPLL_SDVO_HIGH_SPEED;
eb1cbe48
DV
7631
7632 /* compute bitmask from p1 value */
7633 if (IS_PINEVIEW(dev))
7634 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7635 else {
7636 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7637 if (IS_G4X(dev) && reduced_clock)
7638 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7639 }
7640 switch (clock->p2) {
7641 case 5:
7642 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7643 break;
7644 case 7:
7645 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7646 break;
7647 case 10:
7648 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7649 break;
7650 case 14:
7651 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7652 break;
7653 }
7654 if (INTEL_INFO(dev)->gen >= 4)
7655 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7656
190f68c5 7657 if (crtc_state->sdvo_tv_clock)
eb1cbe48 7658 dpll |= PLL_REF_INPUT_TVCLKINBC;
a93e255f 7659 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
ceb41007 7660 intel_panel_use_ssc(dev_priv))
eb1cbe48
DV
7661 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7662 else
7663 dpll |= PLL_REF_INPUT_DREFCLK;
7664
7665 dpll |= DPLL_VCO_ENABLE;
190f68c5 7666 crtc_state->dpll_hw_state.dpll = dpll;
8bcc2795 7667
eb1cbe48 7668 if (INTEL_INFO(dev)->gen >= 4) {
190f68c5 7669 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
ef1b460d 7670 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
190f68c5 7671 crtc_state->dpll_hw_state.dpll_md = dpll_md;
eb1cbe48
DV
7672 }
7673}
7674
251ac862
DV
7675static void i8xx_compute_dpll(struct intel_crtc *crtc,
7676 struct intel_crtc_state *crtc_state,
9e2c8475 7677 struct dpll *reduced_clock)
eb1cbe48 7678{
f47709a9 7679 struct drm_device *dev = crtc->base.dev;
eb1cbe48 7680 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48 7681 u32 dpll;
190f68c5 7682 struct dpll *clock = &crtc_state->dpll;
eb1cbe48 7683
190f68c5 7684 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
2a8f64ca 7685
eb1cbe48
DV
7686 dpll = DPLL_VGA_MODE_DIS;
7687
a93e255f 7688 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
eb1cbe48
DV
7689 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7690 } else {
7691 if (clock->p1 == 2)
7692 dpll |= PLL_P1_DIVIDE_BY_TWO;
7693 else
7694 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7695 if (clock->p2 == 4)
7696 dpll |= PLL_P2_DIVIDE_BY_4;
7697 }
7698
a93e255f 7699 if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
4a33e48d
DV
7700 dpll |= DPLL_DVO_2X_MODE;
7701
a93e255f 7702 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
ceb41007 7703 intel_panel_use_ssc(dev_priv))
eb1cbe48
DV
7704 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7705 else
7706 dpll |= PLL_REF_INPUT_DREFCLK;
7707
7708 dpll |= DPLL_VCO_ENABLE;
190f68c5 7709 crtc_state->dpll_hw_state.dpll = dpll;
eb1cbe48
DV
7710}
7711
8a654f3b 7712static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
b0e77b9c
PZ
7713{
7714 struct drm_device *dev = intel_crtc->base.dev;
7715 struct drm_i915_private *dev_priv = dev->dev_private;
7716 enum pipe pipe = intel_crtc->pipe;
6e3c9717 7717 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7c5f93b0 7718 const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
1caea6e9
VS
7719 uint32_t crtc_vtotal, crtc_vblank_end;
7720 int vsyncshift = 0;
4d8a62ea
DV
7721
7722 /* We need to be careful not to changed the adjusted mode, for otherwise
7723 * the hw state checker will get angry at the mismatch. */
7724 crtc_vtotal = adjusted_mode->crtc_vtotal;
7725 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
b0e77b9c 7726
609aeaca 7727 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
b0e77b9c 7728 /* the chip adds 2 halflines automatically */
4d8a62ea
DV
7729 crtc_vtotal -= 1;
7730 crtc_vblank_end -= 1;
609aeaca 7731
409ee761 7732 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
609aeaca
VS
7733 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7734 else
7735 vsyncshift = adjusted_mode->crtc_hsync_start -
7736 adjusted_mode->crtc_htotal / 2;
1caea6e9
VS
7737 if (vsyncshift < 0)
7738 vsyncshift += adjusted_mode->crtc_htotal;
b0e77b9c
PZ
7739 }
7740
7741 if (INTEL_INFO(dev)->gen > 3)
fe2b8f9d 7742 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
b0e77b9c 7743
fe2b8f9d 7744 I915_WRITE(HTOTAL(cpu_transcoder),
b0e77b9c
PZ
7745 (adjusted_mode->crtc_hdisplay - 1) |
7746 ((adjusted_mode->crtc_htotal - 1) << 16));
fe2b8f9d 7747 I915_WRITE(HBLANK(cpu_transcoder),
b0e77b9c
PZ
7748 (adjusted_mode->crtc_hblank_start - 1) |
7749 ((adjusted_mode->crtc_hblank_end - 1) << 16));
fe2b8f9d 7750 I915_WRITE(HSYNC(cpu_transcoder),
b0e77b9c
PZ
7751 (adjusted_mode->crtc_hsync_start - 1) |
7752 ((adjusted_mode->crtc_hsync_end - 1) << 16));
7753
fe2b8f9d 7754 I915_WRITE(VTOTAL(cpu_transcoder),
b0e77b9c 7755 (adjusted_mode->crtc_vdisplay - 1) |
4d8a62ea 7756 ((crtc_vtotal - 1) << 16));
fe2b8f9d 7757 I915_WRITE(VBLANK(cpu_transcoder),
b0e77b9c 7758 (adjusted_mode->crtc_vblank_start - 1) |
4d8a62ea 7759 ((crtc_vblank_end - 1) << 16));
fe2b8f9d 7760 I915_WRITE(VSYNC(cpu_transcoder),
b0e77b9c
PZ
7761 (adjusted_mode->crtc_vsync_start - 1) |
7762 ((adjusted_mode->crtc_vsync_end - 1) << 16));
7763
b5e508d4
PZ
7764 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7765 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7766 * documented on the DDI_FUNC_CTL register description, EDP Input Select
7767 * bits. */
7768 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7769 (pipe == PIPE_B || pipe == PIPE_C))
7770 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7771
bc58be60
JN
7772}
7773
7774static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc)
7775{
7776 struct drm_device *dev = intel_crtc->base.dev;
7777 struct drm_i915_private *dev_priv = dev->dev_private;
7778 enum pipe pipe = intel_crtc->pipe;
7779
b0e77b9c
PZ
7780 /* pipesrc controls the size that is scaled from, which should
7781 * always be the user's requested size.
7782 */
7783 I915_WRITE(PIPESRC(pipe),
6e3c9717
ACO
7784 ((intel_crtc->config->pipe_src_w - 1) << 16) |
7785 (intel_crtc->config->pipe_src_h - 1));
b0e77b9c
PZ
7786}
7787
1bd1bd80 7788static void intel_get_pipe_timings(struct intel_crtc *crtc,
5cec258b 7789 struct intel_crtc_state *pipe_config)
1bd1bd80
DV
7790{
7791 struct drm_device *dev = crtc->base.dev;
7792 struct drm_i915_private *dev_priv = dev->dev_private;
7793 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7794 uint32_t tmp;
7795
7796 tmp = I915_READ(HTOTAL(cpu_transcoder));
2d112de7
ACO
7797 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7798 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 7799 tmp = I915_READ(HBLANK(cpu_transcoder));
2d112de7
ACO
7800 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7801 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 7802 tmp = I915_READ(HSYNC(cpu_transcoder));
2d112de7
ACO
7803 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7804 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80
DV
7805
7806 tmp = I915_READ(VTOTAL(cpu_transcoder));
2d112de7
ACO
7807 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7808 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 7809 tmp = I915_READ(VBLANK(cpu_transcoder));
2d112de7
ACO
7810 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7811 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 7812 tmp = I915_READ(VSYNC(cpu_transcoder));
2d112de7
ACO
7813 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7814 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80
DV
7815
7816 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
2d112de7
ACO
7817 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7818 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7819 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
1bd1bd80 7820 }
bc58be60
JN
7821}
7822
7823static void intel_get_pipe_src_size(struct intel_crtc *crtc,
7824 struct intel_crtc_state *pipe_config)
7825{
7826 struct drm_device *dev = crtc->base.dev;
7827 struct drm_i915_private *dev_priv = dev->dev_private;
7828 u32 tmp;
1bd1bd80
DV
7829
7830 tmp = I915_READ(PIPESRC(crtc->pipe));
37327abd
VS
7831 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7832 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7833
2d112de7
ACO
7834 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7835 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
1bd1bd80
DV
7836}
7837
f6a83288 7838void intel_mode_from_pipe_config(struct drm_display_mode *mode,
5cec258b 7839 struct intel_crtc_state *pipe_config)
babea61d 7840{
2d112de7
ACO
7841 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7842 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7843 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7844 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
babea61d 7845
2d112de7
ACO
7846 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7847 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7848 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7849 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
babea61d 7850
2d112de7 7851 mode->flags = pipe_config->base.adjusted_mode.flags;
cd13f5ab 7852 mode->type = DRM_MODE_TYPE_DRIVER;
babea61d 7853
2d112de7
ACO
7854 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7855 mode->flags |= pipe_config->base.adjusted_mode.flags;
cd13f5ab
ML
7856
7857 mode->hsync = drm_mode_hsync(mode);
7858 mode->vrefresh = drm_mode_vrefresh(mode);
7859 drm_mode_set_name(mode);
babea61d
JB
7860}
7861
84b046f3
DV
7862static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7863{
7864 struct drm_device *dev = intel_crtc->base.dev;
7865 struct drm_i915_private *dev_priv = dev->dev_private;
7866 uint32_t pipeconf;
7867
9f11a9e4 7868 pipeconf = 0;
84b046f3 7869
b6b5d049
VS
7870 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7871 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7872 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
67c72a12 7873
6e3c9717 7874 if (intel_crtc->config->double_wide)
cf532bb2 7875 pipeconf |= PIPECONF_DOUBLE_WIDE;
84b046f3 7876
ff9ce46e 7877 /* only g4x and later have fancy bpc/dither controls */
666a4537 7878 if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
ff9ce46e 7879 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6e3c9717 7880 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
ff9ce46e 7881 pipeconf |= PIPECONF_DITHER_EN |
84b046f3 7882 PIPECONF_DITHER_TYPE_SP;
84b046f3 7883
6e3c9717 7884 switch (intel_crtc->config->pipe_bpp) {
ff9ce46e
DV
7885 case 18:
7886 pipeconf |= PIPECONF_6BPC;
7887 break;
7888 case 24:
7889 pipeconf |= PIPECONF_8BPC;
7890 break;
7891 case 30:
7892 pipeconf |= PIPECONF_10BPC;
7893 break;
7894 default:
7895 /* Case prevented by intel_choose_pipe_bpp_dither. */
7896 BUG();
84b046f3
DV
7897 }
7898 }
7899
7900 if (HAS_PIPE_CXSR(dev)) {
7901 if (intel_crtc->lowfreq_avail) {
7902 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7903 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7904 } else {
7905 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
84b046f3
DV
7906 }
7907 }
7908
6e3c9717 7909 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
efc2cfff 7910 if (INTEL_INFO(dev)->gen < 4 ||
409ee761 7911 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
efc2cfff
VS
7912 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7913 else
7914 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7915 } else
84b046f3
DV
7916 pipeconf |= PIPECONF_PROGRESSIVE;
7917
666a4537
WB
7918 if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
7919 intel_crtc->config->limited_color_range)
9f11a9e4 7920 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
9c8e09b7 7921
84b046f3
DV
7922 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7923 POSTING_READ(PIPECONF(intel_crtc->pipe));
7924}
7925
81c97f52
ACO
7926static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
7927 struct intel_crtc_state *crtc_state)
7928{
7929 struct drm_device *dev = crtc->base.dev;
7930 struct drm_i915_private *dev_priv = dev->dev_private;
1b6f4958 7931 const struct intel_limit *limit;
81c97f52
ACO
7932 int refclk = 48000;
7933
7934 memset(&crtc_state->dpll_hw_state, 0,
7935 sizeof(crtc_state->dpll_hw_state));
7936
7937 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7938 if (intel_panel_use_ssc(dev_priv)) {
7939 refclk = dev_priv->vbt.lvds_ssc_freq;
7940 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7941 }
7942
7943 limit = &intel_limits_i8xx_lvds;
7944 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO)) {
7945 limit = &intel_limits_i8xx_dvo;
7946 } else {
7947 limit = &intel_limits_i8xx_dac;
7948 }
7949
7950 if (!crtc_state->clock_set &&
7951 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7952 refclk, NULL, &crtc_state->dpll)) {
7953 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7954 return -EINVAL;
7955 }
7956
7957 i8xx_compute_dpll(crtc, crtc_state, NULL);
7958
7959 return 0;
7960}
7961
19ec6693
ACO
7962static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
7963 struct intel_crtc_state *crtc_state)
7964{
7965 struct drm_device *dev = crtc->base.dev;
7966 struct drm_i915_private *dev_priv = dev->dev_private;
1b6f4958 7967 const struct intel_limit *limit;
19ec6693
ACO
7968 int refclk = 96000;
7969
7970 memset(&crtc_state->dpll_hw_state, 0,
7971 sizeof(crtc_state->dpll_hw_state));
7972
7973 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7974 if (intel_panel_use_ssc(dev_priv)) {
7975 refclk = dev_priv->vbt.lvds_ssc_freq;
7976 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7977 }
7978
7979 if (intel_is_dual_link_lvds(dev))
7980 limit = &intel_limits_g4x_dual_channel_lvds;
7981 else
7982 limit = &intel_limits_g4x_single_channel_lvds;
7983 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
7984 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
7985 limit = &intel_limits_g4x_hdmi;
7986 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
7987 limit = &intel_limits_g4x_sdvo;
7988 } else {
7989 /* The option is for other outputs */
7990 limit = &intel_limits_i9xx_sdvo;
7991 }
7992
7993 if (!crtc_state->clock_set &&
7994 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7995 refclk, NULL, &crtc_state->dpll)) {
7996 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7997 return -EINVAL;
7998 }
7999
8000 i9xx_compute_dpll(crtc, crtc_state, NULL);
8001
8002 return 0;
8003}
8004
70e8aa21
ACO
8005static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
8006 struct intel_crtc_state *crtc_state)
8007{
8008 struct drm_device *dev = crtc->base.dev;
8009 struct drm_i915_private *dev_priv = dev->dev_private;
1b6f4958 8010 const struct intel_limit *limit;
70e8aa21
ACO
8011 int refclk = 96000;
8012
8013 memset(&crtc_state->dpll_hw_state, 0,
8014 sizeof(crtc_state->dpll_hw_state));
8015
8016 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8017 if (intel_panel_use_ssc(dev_priv)) {
8018 refclk = dev_priv->vbt.lvds_ssc_freq;
8019 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8020 }
8021
8022 limit = &intel_limits_pineview_lvds;
8023 } else {
8024 limit = &intel_limits_pineview_sdvo;
8025 }
8026
8027 if (!crtc_state->clock_set &&
8028 !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8029 refclk, NULL, &crtc_state->dpll)) {
8030 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8031 return -EINVAL;
8032 }
8033
8034 i9xx_compute_dpll(crtc, crtc_state, NULL);
8035
8036 return 0;
8037}
8038
190f68c5
ACO
8039static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
8040 struct intel_crtc_state *crtc_state)
79e53945 8041{
c7653199 8042 struct drm_device *dev = crtc->base.dev;
79e53945 8043 struct drm_i915_private *dev_priv = dev->dev_private;
1b6f4958 8044 const struct intel_limit *limit;
81c97f52 8045 int refclk = 96000;
79e53945 8046
dd3cd74a
ACO
8047 memset(&crtc_state->dpll_hw_state, 0,
8048 sizeof(crtc_state->dpll_hw_state));
8049
70e8aa21
ACO
8050 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8051 if (intel_panel_use_ssc(dev_priv)) {
8052 refclk = dev_priv->vbt.lvds_ssc_freq;
8053 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8054 }
43565a06 8055
70e8aa21
ACO
8056 limit = &intel_limits_i9xx_lvds;
8057 } else {
8058 limit = &intel_limits_i9xx_sdvo;
81c97f52 8059 }
79e53945 8060
70e8aa21
ACO
8061 if (!crtc_state->clock_set &&
8062 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8063 refclk, NULL, &crtc_state->dpll)) {
8064 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8065 return -EINVAL;
f47709a9 8066 }
7026d4ac 8067
81c97f52 8068 i9xx_compute_dpll(crtc, crtc_state, NULL);
79e53945 8069
c8f7a0db 8070 return 0;
f564048e
EA
8071}
8072
65b3d6a9
ACO
8073static int chv_crtc_compute_clock(struct intel_crtc *crtc,
8074 struct intel_crtc_state *crtc_state)
8075{
8076 int refclk = 100000;
1b6f4958 8077 const struct intel_limit *limit = &intel_limits_chv;
65b3d6a9
ACO
8078
8079 memset(&crtc_state->dpll_hw_state, 0,
8080 sizeof(crtc_state->dpll_hw_state));
8081
65b3d6a9
ACO
8082 if (!crtc_state->clock_set &&
8083 !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8084 refclk, NULL, &crtc_state->dpll)) {
8085 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8086 return -EINVAL;
8087 }
8088
8089 chv_compute_dpll(crtc, crtc_state);
8090
8091 return 0;
8092}
8093
8094static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
8095 struct intel_crtc_state *crtc_state)
8096{
8097 int refclk = 100000;
1b6f4958 8098 const struct intel_limit *limit = &intel_limits_vlv;
65b3d6a9
ACO
8099
8100 memset(&crtc_state->dpll_hw_state, 0,
8101 sizeof(crtc_state->dpll_hw_state));
8102
65b3d6a9
ACO
8103 if (!crtc_state->clock_set &&
8104 !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8105 refclk, NULL, &crtc_state->dpll)) {
8106 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8107 return -EINVAL;
8108 }
8109
8110 vlv_compute_dpll(crtc, crtc_state);
8111
8112 return 0;
8113}
8114
2fa2fe9a 8115static void i9xx_get_pfit_config(struct intel_crtc *crtc,
5cec258b 8116 struct intel_crtc_state *pipe_config)
2fa2fe9a
DV
8117{
8118 struct drm_device *dev = crtc->base.dev;
8119 struct drm_i915_private *dev_priv = dev->dev_private;
8120 uint32_t tmp;
8121
dc9e7dec
VS
8122 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
8123 return;
8124
2fa2fe9a 8125 tmp = I915_READ(PFIT_CONTROL);
06922821
DV
8126 if (!(tmp & PFIT_ENABLE))
8127 return;
2fa2fe9a 8128
06922821 8129 /* Check whether the pfit is attached to our pipe. */
2fa2fe9a
DV
8130 if (INTEL_INFO(dev)->gen < 4) {
8131 if (crtc->pipe != PIPE_B)
8132 return;
2fa2fe9a
DV
8133 } else {
8134 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
8135 return;
8136 }
8137
06922821 8138 pipe_config->gmch_pfit.control = tmp;
2fa2fe9a 8139 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
2fa2fe9a
DV
8140}
8141
acbec814 8142static void vlv_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 8143 struct intel_crtc_state *pipe_config)
acbec814
JB
8144{
8145 struct drm_device *dev = crtc->base.dev;
8146 struct drm_i915_private *dev_priv = dev->dev_private;
8147 int pipe = pipe_config->cpu_transcoder;
9e2c8475 8148 struct dpll clock;
acbec814 8149 u32 mdiv;
662c6ecb 8150 int refclk = 100000;
acbec814 8151
b521973b
VS
8152 /* In case of DSI, DPLL will not be used */
8153 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
f573de5a
SK
8154 return;
8155
a580516d 8156 mutex_lock(&dev_priv->sb_lock);
ab3c759a 8157 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
a580516d 8158 mutex_unlock(&dev_priv->sb_lock);
acbec814
JB
8159
8160 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
8161 clock.m2 = mdiv & DPIO_M2DIV_MASK;
8162 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8163 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8164 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8165
dccbea3b 8166 pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
acbec814
JB
8167}
8168
5724dbd1
DL
8169static void
8170i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8171 struct intel_initial_plane_config *plane_config)
1ad292b5
JB
8172{
8173 struct drm_device *dev = crtc->base.dev;
8174 struct drm_i915_private *dev_priv = dev->dev_private;
8175 u32 val, base, offset;
8176 int pipe = crtc->pipe, plane = crtc->plane;
8177 int fourcc, pixel_format;
6761dd31 8178 unsigned int aligned_height;
b113d5ee 8179 struct drm_framebuffer *fb;
1b842c89 8180 struct intel_framebuffer *intel_fb;
1ad292b5 8181
42a7b088
DL
8182 val = I915_READ(DSPCNTR(plane));
8183 if (!(val & DISPLAY_PLANE_ENABLE))
8184 return;
8185
d9806c9f 8186 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 8187 if (!intel_fb) {
1ad292b5
JB
8188 DRM_DEBUG_KMS("failed to alloc fb\n");
8189 return;
8190 }
8191
1b842c89
DL
8192 fb = &intel_fb->base;
8193
18c5247e
DV
8194 if (INTEL_INFO(dev)->gen >= 4) {
8195 if (val & DISPPLANE_TILED) {
49af449b 8196 plane_config->tiling = I915_TILING_X;
18c5247e
DV
8197 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8198 }
8199 }
1ad292b5
JB
8200
8201 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
b35d63fa 8202 fourcc = i9xx_format_to_fourcc(pixel_format);
b113d5ee
DL
8203 fb->pixel_format = fourcc;
8204 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
1ad292b5
JB
8205
8206 if (INTEL_INFO(dev)->gen >= 4) {
49af449b 8207 if (plane_config->tiling)
1ad292b5
JB
8208 offset = I915_READ(DSPTILEOFF(plane));
8209 else
8210 offset = I915_READ(DSPLINOFF(plane));
8211 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8212 } else {
8213 base = I915_READ(DSPADDR(plane));
8214 }
8215 plane_config->base = base;
8216
8217 val = I915_READ(PIPESRC(pipe));
b113d5ee
DL
8218 fb->width = ((val >> 16) & 0xfff) + 1;
8219 fb->height = ((val >> 0) & 0xfff) + 1;
1ad292b5
JB
8220
8221 val = I915_READ(DSPSTRIDE(pipe));
b113d5ee 8222 fb->pitches[0] = val & 0xffffffc0;
1ad292b5 8223
b113d5ee 8224 aligned_height = intel_fb_align_height(dev, fb->height,
091df6cb
DV
8225 fb->pixel_format,
8226 fb->modifier[0]);
1ad292b5 8227
f37b5c2b 8228 plane_config->size = fb->pitches[0] * aligned_height;
1ad292b5 8229
2844a921
DL
8230 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8231 pipe_name(pipe), plane, fb->width, fb->height,
8232 fb->bits_per_pixel, base, fb->pitches[0],
8233 plane_config->size);
1ad292b5 8234
2d14030b 8235 plane_config->fb = intel_fb;
1ad292b5
JB
8236}
8237
70b23a98 8238static void chv_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 8239 struct intel_crtc_state *pipe_config)
70b23a98
VS
8240{
8241 struct drm_device *dev = crtc->base.dev;
8242 struct drm_i915_private *dev_priv = dev->dev_private;
8243 int pipe = pipe_config->cpu_transcoder;
8244 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9e2c8475 8245 struct dpll clock;
0d7b6b11 8246 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
70b23a98
VS
8247 int refclk = 100000;
8248
b521973b
VS
8249 /* In case of DSI, DPLL will not be used */
8250 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8251 return;
8252
a580516d 8253 mutex_lock(&dev_priv->sb_lock);
70b23a98
VS
8254 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8255 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8256 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8257 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
0d7b6b11 8258 pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
a580516d 8259 mutex_unlock(&dev_priv->sb_lock);
70b23a98
VS
8260
8261 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
0d7b6b11
ID
8262 clock.m2 = (pll_dw0 & 0xff) << 22;
8263 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8264 clock.m2 |= pll_dw2 & 0x3fffff;
70b23a98
VS
8265 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8266 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8267 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8268
dccbea3b 8269 pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
70b23a98
VS
8270}
8271
0e8ffe1b 8272static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
5cec258b 8273 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
8274{
8275 struct drm_device *dev = crtc->base.dev;
8276 struct drm_i915_private *dev_priv = dev->dev_private;
1729050e 8277 enum intel_display_power_domain power_domain;
0e8ffe1b 8278 uint32_t tmp;
1729050e 8279 bool ret;
0e8ffe1b 8280
1729050e
ID
8281 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
8282 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
b5482bd0
ID
8283 return false;
8284
e143a21c 8285 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8106ddbd 8286 pipe_config->shared_dpll = NULL;
eccb140b 8287
1729050e
ID
8288 ret = false;
8289
0e8ffe1b
DV
8290 tmp = I915_READ(PIPECONF(crtc->pipe));
8291 if (!(tmp & PIPECONF_ENABLE))
1729050e 8292 goto out;
0e8ffe1b 8293
666a4537 8294 if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
42571aef
VS
8295 switch (tmp & PIPECONF_BPC_MASK) {
8296 case PIPECONF_6BPC:
8297 pipe_config->pipe_bpp = 18;
8298 break;
8299 case PIPECONF_8BPC:
8300 pipe_config->pipe_bpp = 24;
8301 break;
8302 case PIPECONF_10BPC:
8303 pipe_config->pipe_bpp = 30;
8304 break;
8305 default:
8306 break;
8307 }
8308 }
8309
666a4537
WB
8310 if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
8311 (tmp & PIPECONF_COLOR_RANGE_SELECT))
b5a9fa09
DV
8312 pipe_config->limited_color_range = true;
8313
282740f7
VS
8314 if (INTEL_INFO(dev)->gen < 4)
8315 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8316
1bd1bd80 8317 intel_get_pipe_timings(crtc, pipe_config);
bc58be60 8318 intel_get_pipe_src_size(crtc, pipe_config);
1bd1bd80 8319
2fa2fe9a
DV
8320 i9xx_get_pfit_config(crtc, pipe_config);
8321
6c49f241 8322 if (INTEL_INFO(dev)->gen >= 4) {
c231775c
VS
8323 /* No way to read it out on pipes B and C */
8324 if (IS_CHERRYVIEW(dev) && crtc->pipe != PIPE_A)
8325 tmp = dev_priv->chv_dpll_md[crtc->pipe];
8326 else
8327 tmp = I915_READ(DPLL_MD(crtc->pipe));
6c49f241
DV
8328 pipe_config->pixel_multiplier =
8329 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8330 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8bcc2795 8331 pipe_config->dpll_hw_state.dpll_md = tmp;
6c49f241
DV
8332 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8333 tmp = I915_READ(DPLL(crtc->pipe));
8334 pipe_config->pixel_multiplier =
8335 ((tmp & SDVO_MULTIPLIER_MASK)
8336 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8337 } else {
8338 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8339 * port and will be fixed up in the encoder->get_config
8340 * function. */
8341 pipe_config->pixel_multiplier = 1;
8342 }
8bcc2795 8343 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
666a4537 8344 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
1c4e0274
VS
8345 /*
8346 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8347 * on 830. Filter it out here so that we don't
8348 * report errors due to that.
8349 */
8350 if (IS_I830(dev))
8351 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8352
8bcc2795
DV
8353 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8354 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
165e901c
VS
8355 } else {
8356 /* Mask out read-only status bits. */
8357 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8358 DPLL_PORTC_READY_MASK |
8359 DPLL_PORTB_READY_MASK);
8bcc2795 8360 }
6c49f241 8361
70b23a98
VS
8362 if (IS_CHERRYVIEW(dev))
8363 chv_crtc_clock_get(crtc, pipe_config);
8364 else if (IS_VALLEYVIEW(dev))
acbec814
JB
8365 vlv_crtc_clock_get(crtc, pipe_config);
8366 else
8367 i9xx_crtc_clock_get(crtc, pipe_config);
18442d08 8368
0f64614d
VS
8369 /*
8370 * Normally the dotclock is filled in by the encoder .get_config()
8371 * but in case the pipe is enabled w/o any ports we need a sane
8372 * default.
8373 */
8374 pipe_config->base.adjusted_mode.crtc_clock =
8375 pipe_config->port_clock / pipe_config->pixel_multiplier;
8376
1729050e
ID
8377 ret = true;
8378
8379out:
8380 intel_display_power_put(dev_priv, power_domain);
8381
8382 return ret;
0e8ffe1b
DV
8383}
8384
dde86e2d 8385static void ironlake_init_pch_refclk(struct drm_device *dev)
13d83a67
JB
8386{
8387 struct drm_i915_private *dev_priv = dev->dev_private;
13d83a67 8388 struct intel_encoder *encoder;
1c1a24d2 8389 int i;
74cfd7ac 8390 u32 val, final;
13d83a67 8391 bool has_lvds = false;
199e5d79 8392 bool has_cpu_edp = false;
199e5d79 8393 bool has_panel = false;
99eb6a01
KP
8394 bool has_ck505 = false;
8395 bool can_ssc = false;
1c1a24d2 8396 bool using_ssc_source = false;
13d83a67
JB
8397
8398 /* We need to take the global config into account */
b2784e15 8399 for_each_intel_encoder(dev, encoder) {
199e5d79
KP
8400 switch (encoder->type) {
8401 case INTEL_OUTPUT_LVDS:
8402 has_panel = true;
8403 has_lvds = true;
8404 break;
8405 case INTEL_OUTPUT_EDP:
8406 has_panel = true;
2de6905f 8407 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
199e5d79
KP
8408 has_cpu_edp = true;
8409 break;
6847d71b
PZ
8410 default:
8411 break;
13d83a67
JB
8412 }
8413 }
8414
99eb6a01 8415 if (HAS_PCH_IBX(dev)) {
41aa3448 8416 has_ck505 = dev_priv->vbt.display_clock_mode;
99eb6a01
KP
8417 can_ssc = has_ck505;
8418 } else {
8419 has_ck505 = false;
8420 can_ssc = true;
8421 }
8422
1c1a24d2
L
8423 /* Check if any DPLLs are using the SSC source */
8424 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
8425 u32 temp = I915_READ(PCH_DPLL(i));
8426
8427 if (!(temp & DPLL_VCO_ENABLE))
8428 continue;
8429
8430 if ((temp & PLL_REF_INPUT_MASK) ==
8431 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
8432 using_ssc_source = true;
8433 break;
8434 }
8435 }
8436
8437 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n",
8438 has_panel, has_lvds, has_ck505, using_ssc_source);
13d83a67
JB
8439
8440 /* Ironlake: try to setup display ref clock before DPLL
8441 * enabling. This is only under driver's control after
8442 * PCH B stepping, previous chipset stepping should be
8443 * ignoring this setting.
8444 */
74cfd7ac
CW
8445 val = I915_READ(PCH_DREF_CONTROL);
8446
8447 /* As we must carefully and slowly disable/enable each source in turn,
8448 * compute the final state we want first and check if we need to
8449 * make any changes at all.
8450 */
8451 final = val;
8452 final &= ~DREF_NONSPREAD_SOURCE_MASK;
8453 if (has_ck505)
8454 final |= DREF_NONSPREAD_CK505_ENABLE;
8455 else
8456 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8457
8c07eb68 8458 final &= ~DREF_SSC_SOURCE_MASK;
74cfd7ac 8459 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8c07eb68 8460 final &= ~DREF_SSC1_ENABLE;
74cfd7ac
CW
8461
8462 if (has_panel) {
8463 final |= DREF_SSC_SOURCE_ENABLE;
8464
8465 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8466 final |= DREF_SSC1_ENABLE;
8467
8468 if (has_cpu_edp) {
8469 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8470 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8471 else
8472 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8473 } else
8474 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
1c1a24d2
L
8475 } else if (using_ssc_source) {
8476 final |= DREF_SSC_SOURCE_ENABLE;
8477 final |= DREF_SSC1_ENABLE;
74cfd7ac
CW
8478 }
8479
8480 if (final == val)
8481 return;
8482
13d83a67 8483 /* Always enable nonspread source */
74cfd7ac 8484 val &= ~DREF_NONSPREAD_SOURCE_MASK;
13d83a67 8485
99eb6a01 8486 if (has_ck505)
74cfd7ac 8487 val |= DREF_NONSPREAD_CK505_ENABLE;
99eb6a01 8488 else
74cfd7ac 8489 val |= DREF_NONSPREAD_SOURCE_ENABLE;
13d83a67 8490
199e5d79 8491 if (has_panel) {
74cfd7ac
CW
8492 val &= ~DREF_SSC_SOURCE_MASK;
8493 val |= DREF_SSC_SOURCE_ENABLE;
13d83a67 8494
199e5d79 8495 /* SSC must be turned on before enabling the CPU output */
99eb6a01 8496 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 8497 DRM_DEBUG_KMS("Using SSC on panel\n");
74cfd7ac 8498 val |= DREF_SSC1_ENABLE;
e77166b5 8499 } else
74cfd7ac 8500 val &= ~DREF_SSC1_ENABLE;
199e5d79
KP
8501
8502 /* Get SSC going before enabling the outputs */
74cfd7ac 8503 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
8504 POSTING_READ(PCH_DREF_CONTROL);
8505 udelay(200);
8506
74cfd7ac 8507 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
13d83a67
JB
8508
8509 /* Enable CPU source on CPU attached eDP */
199e5d79 8510 if (has_cpu_edp) {
99eb6a01 8511 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 8512 DRM_DEBUG_KMS("Using SSC on eDP\n");
74cfd7ac 8513 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
eba905b2 8514 } else
74cfd7ac 8515 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
199e5d79 8516 } else
74cfd7ac 8517 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 8518
74cfd7ac 8519 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
8520 POSTING_READ(PCH_DREF_CONTROL);
8521 udelay(200);
8522 } else {
1c1a24d2 8523 DRM_DEBUG_KMS("Disabling CPU source output\n");
199e5d79 8524
74cfd7ac 8525 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
199e5d79
KP
8526
8527 /* Turn off CPU output */
74cfd7ac 8528 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 8529
74cfd7ac 8530 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
8531 POSTING_READ(PCH_DREF_CONTROL);
8532 udelay(200);
8533
1c1a24d2
L
8534 if (!using_ssc_source) {
8535 DRM_DEBUG_KMS("Disabling SSC source\n");
199e5d79 8536
1c1a24d2
L
8537 /* Turn off the SSC source */
8538 val &= ~DREF_SSC_SOURCE_MASK;
8539 val |= DREF_SSC_SOURCE_DISABLE;
f165d283 8540
1c1a24d2
L
8541 /* Turn off SSC1 */
8542 val &= ~DREF_SSC1_ENABLE;
8543
8544 I915_WRITE(PCH_DREF_CONTROL, val);
8545 POSTING_READ(PCH_DREF_CONTROL);
8546 udelay(200);
8547 }
13d83a67 8548 }
74cfd7ac
CW
8549
8550 BUG_ON(val != final);
13d83a67
JB
8551}
8552
f31f2d55 8553static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
dde86e2d 8554{
f31f2d55 8555 uint32_t tmp;
dde86e2d 8556
0ff066a9
PZ
8557 tmp = I915_READ(SOUTH_CHICKEN2);
8558 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8559 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 8560
cf3598c2
ID
8561 if (wait_for_us(I915_READ(SOUTH_CHICKEN2) &
8562 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
0ff066a9 8563 DRM_ERROR("FDI mPHY reset assert timeout\n");
dde86e2d 8564
0ff066a9
PZ
8565 tmp = I915_READ(SOUTH_CHICKEN2);
8566 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8567 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 8568
cf3598c2
ID
8569 if (wait_for_us((I915_READ(SOUTH_CHICKEN2) &
8570 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
0ff066a9 8571 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
f31f2d55
PZ
8572}
8573
8574/* WaMPhyProgramming:hsw */
8575static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8576{
8577 uint32_t tmp;
dde86e2d
PZ
8578
8579 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8580 tmp &= ~(0xFF << 24);
8581 tmp |= (0x12 << 24);
8582 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8583
dde86e2d
PZ
8584 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8585 tmp |= (1 << 11);
8586 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8587
8588 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8589 tmp |= (1 << 11);
8590 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8591
dde86e2d
PZ
8592 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8593 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8594 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8595
8596 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8597 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8598 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8599
0ff066a9
PZ
8600 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8601 tmp &= ~(7 << 13);
8602 tmp |= (5 << 13);
8603 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
dde86e2d 8604
0ff066a9
PZ
8605 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8606 tmp &= ~(7 << 13);
8607 tmp |= (5 << 13);
8608 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
dde86e2d
PZ
8609
8610 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8611 tmp &= ~0xFF;
8612 tmp |= 0x1C;
8613 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8614
8615 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8616 tmp &= ~0xFF;
8617 tmp |= 0x1C;
8618 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8619
8620 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8621 tmp &= ~(0xFF << 16);
8622 tmp |= (0x1C << 16);
8623 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8624
8625 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8626 tmp &= ~(0xFF << 16);
8627 tmp |= (0x1C << 16);
8628 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8629
0ff066a9
PZ
8630 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8631 tmp |= (1 << 27);
8632 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
dde86e2d 8633
0ff066a9
PZ
8634 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8635 tmp |= (1 << 27);
8636 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
dde86e2d 8637
0ff066a9
PZ
8638 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8639 tmp &= ~(0xF << 28);
8640 tmp |= (4 << 28);
8641 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
dde86e2d 8642
0ff066a9
PZ
8643 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8644 tmp &= ~(0xF << 28);
8645 tmp |= (4 << 28);
8646 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
f31f2d55
PZ
8647}
8648
2fa86a1f
PZ
8649/* Implements 3 different sequences from BSpec chapter "Display iCLK
8650 * Programming" based on the parameters passed:
8651 * - Sequence to enable CLKOUT_DP
8652 * - Sequence to enable CLKOUT_DP without spread
8653 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8654 */
8655static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8656 bool with_fdi)
f31f2d55
PZ
8657{
8658 struct drm_i915_private *dev_priv = dev->dev_private;
2fa86a1f
PZ
8659 uint32_t reg, tmp;
8660
8661 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8662 with_spread = true;
c2699524 8663 if (WARN(HAS_PCH_LPT_LP(dev) && with_fdi, "LP PCH doesn't have FDI\n"))
2fa86a1f 8664 with_fdi = false;
f31f2d55 8665
a580516d 8666 mutex_lock(&dev_priv->sb_lock);
f31f2d55
PZ
8667
8668 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8669 tmp &= ~SBI_SSCCTL_DISABLE;
8670 tmp |= SBI_SSCCTL_PATHALT;
8671 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8672
8673 udelay(24);
8674
2fa86a1f
PZ
8675 if (with_spread) {
8676 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8677 tmp &= ~SBI_SSCCTL_PATHALT;
8678 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
f31f2d55 8679
2fa86a1f
PZ
8680 if (with_fdi) {
8681 lpt_reset_fdi_mphy(dev_priv);
8682 lpt_program_fdi_mphy(dev_priv);
8683 }
8684 }
dde86e2d 8685
c2699524 8686 reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
2fa86a1f
PZ
8687 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8688 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8689 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
c00db246 8690
a580516d 8691 mutex_unlock(&dev_priv->sb_lock);
dde86e2d
PZ
8692}
8693
47701c3b
PZ
8694/* Sequence to disable CLKOUT_DP */
8695static void lpt_disable_clkout_dp(struct drm_device *dev)
8696{
8697 struct drm_i915_private *dev_priv = dev->dev_private;
8698 uint32_t reg, tmp;
8699
a580516d 8700 mutex_lock(&dev_priv->sb_lock);
47701c3b 8701
c2699524 8702 reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
47701c3b
PZ
8703 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8704 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8705 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8706
8707 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8708 if (!(tmp & SBI_SSCCTL_DISABLE)) {
8709 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8710 tmp |= SBI_SSCCTL_PATHALT;
8711 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8712 udelay(32);
8713 }
8714 tmp |= SBI_SSCCTL_DISABLE;
8715 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8716 }
8717
a580516d 8718 mutex_unlock(&dev_priv->sb_lock);
47701c3b
PZ
8719}
8720
f7be2c21
VS
8721#define BEND_IDX(steps) ((50 + (steps)) / 5)
8722
8723static const uint16_t sscdivintphase[] = {
8724 [BEND_IDX( 50)] = 0x3B23,
8725 [BEND_IDX( 45)] = 0x3B23,
8726 [BEND_IDX( 40)] = 0x3C23,
8727 [BEND_IDX( 35)] = 0x3C23,
8728 [BEND_IDX( 30)] = 0x3D23,
8729 [BEND_IDX( 25)] = 0x3D23,
8730 [BEND_IDX( 20)] = 0x3E23,
8731 [BEND_IDX( 15)] = 0x3E23,
8732 [BEND_IDX( 10)] = 0x3F23,
8733 [BEND_IDX( 5)] = 0x3F23,
8734 [BEND_IDX( 0)] = 0x0025,
8735 [BEND_IDX( -5)] = 0x0025,
8736 [BEND_IDX(-10)] = 0x0125,
8737 [BEND_IDX(-15)] = 0x0125,
8738 [BEND_IDX(-20)] = 0x0225,
8739 [BEND_IDX(-25)] = 0x0225,
8740 [BEND_IDX(-30)] = 0x0325,
8741 [BEND_IDX(-35)] = 0x0325,
8742 [BEND_IDX(-40)] = 0x0425,
8743 [BEND_IDX(-45)] = 0x0425,
8744 [BEND_IDX(-50)] = 0x0525,
8745};
8746
8747/*
8748 * Bend CLKOUT_DP
8749 * steps -50 to 50 inclusive, in steps of 5
8750 * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
8751 * change in clock period = -(steps / 10) * 5.787 ps
8752 */
8753static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
8754{
8755 uint32_t tmp;
8756 int idx = BEND_IDX(steps);
8757
8758 if (WARN_ON(steps % 5 != 0))
8759 return;
8760
8761 if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
8762 return;
8763
8764 mutex_lock(&dev_priv->sb_lock);
8765
8766 if (steps % 10 != 0)
8767 tmp = 0xAAAAAAAB;
8768 else
8769 tmp = 0x00000000;
8770 intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
8771
8772 tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
8773 tmp &= 0xffff0000;
8774 tmp |= sscdivintphase[idx];
8775 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
8776
8777 mutex_unlock(&dev_priv->sb_lock);
8778}
8779
8780#undef BEND_IDX
8781
bf8fa3d3
PZ
8782static void lpt_init_pch_refclk(struct drm_device *dev)
8783{
bf8fa3d3
PZ
8784 struct intel_encoder *encoder;
8785 bool has_vga = false;
8786
b2784e15 8787 for_each_intel_encoder(dev, encoder) {
bf8fa3d3
PZ
8788 switch (encoder->type) {
8789 case INTEL_OUTPUT_ANALOG:
8790 has_vga = true;
8791 break;
6847d71b
PZ
8792 default:
8793 break;
bf8fa3d3
PZ
8794 }
8795 }
8796
f7be2c21
VS
8797 if (has_vga) {
8798 lpt_bend_clkout_dp(to_i915(dev), 0);
47701c3b 8799 lpt_enable_clkout_dp(dev, true, true);
f7be2c21 8800 } else {
47701c3b 8801 lpt_disable_clkout_dp(dev);
f7be2c21 8802 }
bf8fa3d3
PZ
8803}
8804
dde86e2d
PZ
8805/*
8806 * Initialize reference clocks when the driver loads
8807 */
8808void intel_init_pch_refclk(struct drm_device *dev)
8809{
8810 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8811 ironlake_init_pch_refclk(dev);
8812 else if (HAS_PCH_LPT(dev))
8813 lpt_init_pch_refclk(dev);
8814}
8815
6ff93609 8816static void ironlake_set_pipeconf(struct drm_crtc *crtc)
79e53945 8817{
c8203565 8818 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
79e53945
JB
8819 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8820 int pipe = intel_crtc->pipe;
c8203565
PZ
8821 uint32_t val;
8822
78114071 8823 val = 0;
c8203565 8824
6e3c9717 8825 switch (intel_crtc->config->pipe_bpp) {
c8203565 8826 case 18:
dfd07d72 8827 val |= PIPECONF_6BPC;
c8203565
PZ
8828 break;
8829 case 24:
dfd07d72 8830 val |= PIPECONF_8BPC;
c8203565
PZ
8831 break;
8832 case 30:
dfd07d72 8833 val |= PIPECONF_10BPC;
c8203565
PZ
8834 break;
8835 case 36:
dfd07d72 8836 val |= PIPECONF_12BPC;
c8203565
PZ
8837 break;
8838 default:
cc769b62
PZ
8839 /* Case prevented by intel_choose_pipe_bpp_dither. */
8840 BUG();
c8203565
PZ
8841 }
8842
6e3c9717 8843 if (intel_crtc->config->dither)
c8203565
PZ
8844 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8845
6e3c9717 8846 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
c8203565
PZ
8847 val |= PIPECONF_INTERLACED_ILK;
8848 else
8849 val |= PIPECONF_PROGRESSIVE;
8850
6e3c9717 8851 if (intel_crtc->config->limited_color_range)
3685a8f3 8852 val |= PIPECONF_COLOR_RANGE_SELECT;
3685a8f3 8853
c8203565
PZ
8854 I915_WRITE(PIPECONF(pipe), val);
8855 POSTING_READ(PIPECONF(pipe));
8856}
8857
6ff93609 8858static void haswell_set_pipeconf(struct drm_crtc *crtc)
ee2b0b38 8859{
391bf048 8860 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
ee2b0b38 8861 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6e3c9717 8862 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
391bf048 8863 u32 val = 0;
ee2b0b38 8864
391bf048 8865 if (IS_HASWELL(dev_priv) && intel_crtc->config->dither)
ee2b0b38
PZ
8866 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8867
6e3c9717 8868 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
ee2b0b38
PZ
8869 val |= PIPECONF_INTERLACED_ILK;
8870 else
8871 val |= PIPECONF_PROGRESSIVE;
8872
702e7a56
PZ
8873 I915_WRITE(PIPECONF(cpu_transcoder), val);
8874 POSTING_READ(PIPECONF(cpu_transcoder));
391bf048
JN
8875}
8876
391bf048
JN
8877static void haswell_set_pipemisc(struct drm_crtc *crtc)
8878{
8879 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8880 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
756f85cf 8881
391bf048
JN
8882 if (IS_BROADWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 9) {
8883 u32 val = 0;
756f85cf 8884
6e3c9717 8885 switch (intel_crtc->config->pipe_bpp) {
756f85cf
PZ
8886 case 18:
8887 val |= PIPEMISC_DITHER_6_BPC;
8888 break;
8889 case 24:
8890 val |= PIPEMISC_DITHER_8_BPC;
8891 break;
8892 case 30:
8893 val |= PIPEMISC_DITHER_10_BPC;
8894 break;
8895 case 36:
8896 val |= PIPEMISC_DITHER_12_BPC;
8897 break;
8898 default:
8899 /* Case prevented by pipe_config_set_bpp. */
8900 BUG();
8901 }
8902
6e3c9717 8903 if (intel_crtc->config->dither)
756f85cf
PZ
8904 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8905
391bf048 8906 I915_WRITE(PIPEMISC(intel_crtc->pipe), val);
756f85cf 8907 }
ee2b0b38
PZ
8908}
8909
d4b1931c
PZ
8910int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8911{
8912 /*
8913 * Account for spread spectrum to avoid
8914 * oversubscribing the link. Max center spread
8915 * is 2.5%; use 5% for safety's sake.
8916 */
8917 u32 bps = target_clock * bpp * 21 / 20;
619d4d04 8918 return DIV_ROUND_UP(bps, link_bw * 8);
d4b1931c
PZ
8919}
8920
7429e9d4 8921static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6cf86a5e 8922{
7429e9d4 8923 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
f48d8f23
PZ
8924}
8925
b75ca6f6
ACO
8926static void ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8927 struct intel_crtc_state *crtc_state,
9e2c8475 8928 struct dpll *reduced_clock)
79e53945 8929{
de13a2e3 8930 struct drm_crtc *crtc = &intel_crtc->base;
79e53945
JB
8931 struct drm_device *dev = crtc->dev;
8932 struct drm_i915_private *dev_priv = dev->dev_private;
55bb9992 8933 struct drm_atomic_state *state = crtc_state->base.state;
da3ced29 8934 struct drm_connector *connector;
55bb9992
ACO
8935 struct drm_connector_state *connector_state;
8936 struct intel_encoder *encoder;
b75ca6f6 8937 u32 dpll, fp, fp2;
ceb41007 8938 int factor, i;
09ede541 8939 bool is_lvds = false, is_sdvo = false;
79e53945 8940
da3ced29 8941 for_each_connector_in_state(state, connector, connector_state, i) {
55bb9992
ACO
8942 if (connector_state->crtc != crtc_state->base.crtc)
8943 continue;
8944
8945 encoder = to_intel_encoder(connector_state->best_encoder);
8946
8947 switch (encoder->type) {
79e53945
JB
8948 case INTEL_OUTPUT_LVDS:
8949 is_lvds = true;
8950 break;
8951 case INTEL_OUTPUT_SDVO:
7d57382e 8952 case INTEL_OUTPUT_HDMI:
79e53945 8953 is_sdvo = true;
79e53945 8954 break;
6847d71b
PZ
8955 default:
8956 break;
79e53945
JB
8957 }
8958 }
79e53945 8959
c1858123 8960 /* Enable autotuning of the PLL clock (if permissible) */
8febb297
EA
8961 factor = 21;
8962 if (is_lvds) {
8963 if ((intel_panel_use_ssc(dev_priv) &&
e91e941b 8964 dev_priv->vbt.lvds_ssc_freq == 100000) ||
f0b44056 8965 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8febb297 8966 factor = 25;
190f68c5 8967 } else if (crtc_state->sdvo_tv_clock)
8febb297 8968 factor = 20;
c1858123 8969
b75ca6f6
ACO
8970 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8971
190f68c5 8972 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
b75ca6f6
ACO
8973 fp |= FP_CB_TUNE;
8974
8975 if (reduced_clock) {
8976 fp2 = i9xx_dpll_compute_fp(reduced_clock);
2c07245f 8977
b75ca6f6
ACO
8978 if (reduced_clock->m < factor * reduced_clock->n)
8979 fp2 |= FP_CB_TUNE;
8980 } else {
8981 fp2 = fp;
8982 }
9a7c7890 8983
5eddb70b 8984 dpll = 0;
2c07245f 8985
a07d6787
EA
8986 if (is_lvds)
8987 dpll |= DPLLB_MODE_LVDS;
8988 else
8989 dpll |= DPLLB_MODE_DAC_SERIAL;
198a037f 8990
190f68c5 8991 dpll |= (crtc_state->pixel_multiplier - 1)
ef1b460d 8992 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
198a037f
DV
8993
8994 if (is_sdvo)
4a33e48d 8995 dpll |= DPLL_SDVO_HIGH_SPEED;
190f68c5 8996 if (crtc_state->has_dp_encoder)
4a33e48d 8997 dpll |= DPLL_SDVO_HIGH_SPEED;
79e53945 8998
a07d6787 8999 /* compute bitmask from p1 value */
190f68c5 9000 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
a07d6787 9001 /* also FPA1 */
190f68c5 9002 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
a07d6787 9003
190f68c5 9004 switch (crtc_state->dpll.p2) {
a07d6787
EA
9005 case 5:
9006 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
9007 break;
9008 case 7:
9009 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
9010 break;
9011 case 10:
9012 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
9013 break;
9014 case 14:
9015 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
9016 break;
79e53945
JB
9017 }
9018
ceb41007 9019 if (is_lvds && intel_panel_use_ssc(dev_priv))
43565a06 9020 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
9021 else
9022 dpll |= PLL_REF_INPUT_DREFCLK;
9023
b75ca6f6
ACO
9024 dpll |= DPLL_VCO_ENABLE;
9025
9026 crtc_state->dpll_hw_state.dpll = dpll;
9027 crtc_state->dpll_hw_state.fp0 = fp;
9028 crtc_state->dpll_hw_state.fp1 = fp2;
de13a2e3
PZ
9029}
9030
190f68c5
ACO
9031static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
9032 struct intel_crtc_state *crtc_state)
de13a2e3 9033{
997c030c
ACO
9034 struct drm_device *dev = crtc->base.dev;
9035 struct drm_i915_private *dev_priv = dev->dev_private;
9e2c8475 9036 struct dpll reduced_clock;
7ed9f894 9037 bool has_reduced_clock = false;
e2b78267 9038 struct intel_shared_dpll *pll;
1b6f4958 9039 const struct intel_limit *limit;
997c030c 9040 int refclk = 120000;
de13a2e3 9041
dd3cd74a
ACO
9042 memset(&crtc_state->dpll_hw_state, 0,
9043 sizeof(crtc_state->dpll_hw_state));
9044
ded220e2
ACO
9045 crtc->lowfreq_avail = false;
9046
9047 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
9048 if (!crtc_state->has_pch_encoder)
9049 return 0;
79e53945 9050
997c030c
ACO
9051 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9052 if (intel_panel_use_ssc(dev_priv)) {
9053 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
9054 dev_priv->vbt.lvds_ssc_freq);
9055 refclk = dev_priv->vbt.lvds_ssc_freq;
9056 }
9057
9058 if (intel_is_dual_link_lvds(dev)) {
9059 if (refclk == 100000)
9060 limit = &intel_limits_ironlake_dual_lvds_100m;
9061 else
9062 limit = &intel_limits_ironlake_dual_lvds;
9063 } else {
9064 if (refclk == 100000)
9065 limit = &intel_limits_ironlake_single_lvds_100m;
9066 else
9067 limit = &intel_limits_ironlake_single_lvds;
9068 }
9069 } else {
9070 limit = &intel_limits_ironlake_dac;
9071 }
9072
364ee29d 9073 if (!crtc_state->clock_set &&
997c030c
ACO
9074 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9075 refclk, NULL, &crtc_state->dpll)) {
364ee29d
ACO
9076 DRM_ERROR("Couldn't find PLL settings for mode!\n");
9077 return -EINVAL;
f47709a9 9078 }
79e53945 9079
b75ca6f6
ACO
9080 ironlake_compute_dpll(crtc, crtc_state,
9081 has_reduced_clock ? &reduced_clock : NULL);
66e985c0 9082
ded220e2
ACO
9083 pll = intel_get_shared_dpll(crtc, crtc_state, NULL);
9084 if (pll == NULL) {
9085 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
9086 pipe_name(crtc->pipe));
9087 return -EINVAL;
3fb37703 9088 }
79e53945 9089
ded220e2
ACO
9090 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
9091 has_reduced_clock)
c7653199 9092 crtc->lowfreq_avail = true;
e2b78267 9093
c8f7a0db 9094 return 0;
79e53945
JB
9095}
9096
eb14cb74
VS
9097static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
9098 struct intel_link_m_n *m_n)
9099{
9100 struct drm_device *dev = crtc->base.dev;
9101 struct drm_i915_private *dev_priv = dev->dev_private;
9102 enum pipe pipe = crtc->pipe;
9103
9104 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
9105 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
9106 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
9107 & ~TU_SIZE_MASK;
9108 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
9109 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
9110 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9111}
9112
9113static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
9114 enum transcoder transcoder,
b95af8be
VK
9115 struct intel_link_m_n *m_n,
9116 struct intel_link_m_n *m2_n2)
72419203
DV
9117{
9118 struct drm_device *dev = crtc->base.dev;
9119 struct drm_i915_private *dev_priv = dev->dev_private;
eb14cb74 9120 enum pipe pipe = crtc->pipe;
72419203 9121
eb14cb74
VS
9122 if (INTEL_INFO(dev)->gen >= 5) {
9123 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
9124 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
9125 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
9126 & ~TU_SIZE_MASK;
9127 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
9128 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
9129 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
b95af8be
VK
9130 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
9131 * gen < 8) and if DRRS is supported (to make sure the
9132 * registers are not unnecessarily read).
9133 */
9134 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
6e3c9717 9135 crtc->config->has_drrs) {
b95af8be
VK
9136 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
9137 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
9138 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
9139 & ~TU_SIZE_MASK;
9140 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
9141 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
9142 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9143 }
eb14cb74
VS
9144 } else {
9145 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
9146 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
9147 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
9148 & ~TU_SIZE_MASK;
9149 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
9150 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9151 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9152 }
9153}
9154
9155void intel_dp_get_m_n(struct intel_crtc *crtc,
5cec258b 9156 struct intel_crtc_state *pipe_config)
eb14cb74 9157{
681a8504 9158 if (pipe_config->has_pch_encoder)
eb14cb74
VS
9159 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9160 else
9161 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be
VK
9162 &pipe_config->dp_m_n,
9163 &pipe_config->dp_m2_n2);
eb14cb74 9164}
72419203 9165
eb14cb74 9166static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
5cec258b 9167 struct intel_crtc_state *pipe_config)
eb14cb74
VS
9168{
9169 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be 9170 &pipe_config->fdi_m_n, NULL);
72419203
DV
9171}
9172
bd2e244f 9173static void skylake_get_pfit_config(struct intel_crtc *crtc,
5cec258b 9174 struct intel_crtc_state *pipe_config)
bd2e244f
JB
9175{
9176 struct drm_device *dev = crtc->base.dev;
9177 struct drm_i915_private *dev_priv = dev->dev_private;
a1b2278e
CK
9178 struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9179 uint32_t ps_ctrl = 0;
9180 int id = -1;
9181 int i;
bd2e244f 9182
a1b2278e
CK
9183 /* find scaler attached to this pipe */
9184 for (i = 0; i < crtc->num_scalers; i++) {
9185 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9186 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9187 id = i;
9188 pipe_config->pch_pfit.enabled = true;
9189 pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9190 pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9191 break;
9192 }
9193 }
bd2e244f 9194
a1b2278e
CK
9195 scaler_state->scaler_id = id;
9196 if (id >= 0) {
9197 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9198 } else {
9199 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
bd2e244f
JB
9200 }
9201}
9202
5724dbd1
DL
9203static void
9204skylake_get_initial_plane_config(struct intel_crtc *crtc,
9205 struct intel_initial_plane_config *plane_config)
bc8d7dff
DL
9206{
9207 struct drm_device *dev = crtc->base.dev;
9208 struct drm_i915_private *dev_priv = dev->dev_private;
40f46283 9209 u32 val, base, offset, stride_mult, tiling;
bc8d7dff
DL
9210 int pipe = crtc->pipe;
9211 int fourcc, pixel_format;
6761dd31 9212 unsigned int aligned_height;
bc8d7dff 9213 struct drm_framebuffer *fb;
1b842c89 9214 struct intel_framebuffer *intel_fb;
bc8d7dff 9215
d9806c9f 9216 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 9217 if (!intel_fb) {
bc8d7dff
DL
9218 DRM_DEBUG_KMS("failed to alloc fb\n");
9219 return;
9220 }
9221
1b842c89
DL
9222 fb = &intel_fb->base;
9223
bc8d7dff 9224 val = I915_READ(PLANE_CTL(pipe, 0));
42a7b088
DL
9225 if (!(val & PLANE_CTL_ENABLE))
9226 goto error;
9227
bc8d7dff
DL
9228 pixel_format = val & PLANE_CTL_FORMAT_MASK;
9229 fourcc = skl_format_to_fourcc(pixel_format,
9230 val & PLANE_CTL_ORDER_RGBX,
9231 val & PLANE_CTL_ALPHA_MASK);
9232 fb->pixel_format = fourcc;
9233 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9234
40f46283
DL
9235 tiling = val & PLANE_CTL_TILED_MASK;
9236 switch (tiling) {
9237 case PLANE_CTL_TILED_LINEAR:
9238 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9239 break;
9240 case PLANE_CTL_TILED_X:
9241 plane_config->tiling = I915_TILING_X;
9242 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9243 break;
9244 case PLANE_CTL_TILED_Y:
9245 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9246 break;
9247 case PLANE_CTL_TILED_YF:
9248 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9249 break;
9250 default:
9251 MISSING_CASE(tiling);
9252 goto error;
9253 }
9254
bc8d7dff
DL
9255 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9256 plane_config->base = base;
9257
9258 offset = I915_READ(PLANE_OFFSET(pipe, 0));
9259
9260 val = I915_READ(PLANE_SIZE(pipe, 0));
9261 fb->height = ((val >> 16) & 0xfff) + 1;
9262 fb->width = ((val >> 0) & 0x1fff) + 1;
9263
9264 val = I915_READ(PLANE_STRIDE(pipe, 0));
7b49f948 9265 stride_mult = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
40f46283 9266 fb->pixel_format);
bc8d7dff
DL
9267 fb->pitches[0] = (val & 0x3ff) * stride_mult;
9268
9269 aligned_height = intel_fb_align_height(dev, fb->height,
091df6cb
DV
9270 fb->pixel_format,
9271 fb->modifier[0]);
bc8d7dff 9272
f37b5c2b 9273 plane_config->size = fb->pitches[0] * aligned_height;
bc8d7dff
DL
9274
9275 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9276 pipe_name(pipe), fb->width, fb->height,
9277 fb->bits_per_pixel, base, fb->pitches[0],
9278 plane_config->size);
9279
2d14030b 9280 plane_config->fb = intel_fb;
bc8d7dff
DL
9281 return;
9282
9283error:
9284 kfree(fb);
9285}
9286
2fa2fe9a 9287static void ironlake_get_pfit_config(struct intel_crtc *crtc,
5cec258b 9288 struct intel_crtc_state *pipe_config)
2fa2fe9a
DV
9289{
9290 struct drm_device *dev = crtc->base.dev;
9291 struct drm_i915_private *dev_priv = dev->dev_private;
9292 uint32_t tmp;
9293
9294 tmp = I915_READ(PF_CTL(crtc->pipe));
9295
9296 if (tmp & PF_ENABLE) {
fd4daa9c 9297 pipe_config->pch_pfit.enabled = true;
2fa2fe9a
DV
9298 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9299 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
cb8b2a30
DV
9300
9301 /* We currently do not free assignements of panel fitters on
9302 * ivb/hsw (since we don't use the higher upscaling modes which
9303 * differentiates them) so just WARN about this case for now. */
9304 if (IS_GEN7(dev)) {
9305 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9306 PF_PIPE_SEL_IVB(crtc->pipe));
9307 }
2fa2fe9a 9308 }
79e53945
JB
9309}
9310
5724dbd1
DL
9311static void
9312ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9313 struct intel_initial_plane_config *plane_config)
4c6baa59
JB
9314{
9315 struct drm_device *dev = crtc->base.dev;
9316 struct drm_i915_private *dev_priv = dev->dev_private;
9317 u32 val, base, offset;
aeee5a49 9318 int pipe = crtc->pipe;
4c6baa59 9319 int fourcc, pixel_format;
6761dd31 9320 unsigned int aligned_height;
b113d5ee 9321 struct drm_framebuffer *fb;
1b842c89 9322 struct intel_framebuffer *intel_fb;
4c6baa59 9323
42a7b088
DL
9324 val = I915_READ(DSPCNTR(pipe));
9325 if (!(val & DISPLAY_PLANE_ENABLE))
9326 return;
9327
d9806c9f 9328 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 9329 if (!intel_fb) {
4c6baa59
JB
9330 DRM_DEBUG_KMS("failed to alloc fb\n");
9331 return;
9332 }
9333
1b842c89
DL
9334 fb = &intel_fb->base;
9335
18c5247e
DV
9336 if (INTEL_INFO(dev)->gen >= 4) {
9337 if (val & DISPPLANE_TILED) {
49af449b 9338 plane_config->tiling = I915_TILING_X;
18c5247e
DV
9339 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9340 }
9341 }
4c6baa59
JB
9342
9343 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
b35d63fa 9344 fourcc = i9xx_format_to_fourcc(pixel_format);
b113d5ee
DL
9345 fb->pixel_format = fourcc;
9346 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
4c6baa59 9347
aeee5a49 9348 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
4c6baa59 9349 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
aeee5a49 9350 offset = I915_READ(DSPOFFSET(pipe));
4c6baa59 9351 } else {
49af449b 9352 if (plane_config->tiling)
aeee5a49 9353 offset = I915_READ(DSPTILEOFF(pipe));
4c6baa59 9354 else
aeee5a49 9355 offset = I915_READ(DSPLINOFF(pipe));
4c6baa59
JB
9356 }
9357 plane_config->base = base;
9358
9359 val = I915_READ(PIPESRC(pipe));
b113d5ee
DL
9360 fb->width = ((val >> 16) & 0xfff) + 1;
9361 fb->height = ((val >> 0) & 0xfff) + 1;
4c6baa59
JB
9362
9363 val = I915_READ(DSPSTRIDE(pipe));
b113d5ee 9364 fb->pitches[0] = val & 0xffffffc0;
4c6baa59 9365
b113d5ee 9366 aligned_height = intel_fb_align_height(dev, fb->height,
091df6cb
DV
9367 fb->pixel_format,
9368 fb->modifier[0]);
4c6baa59 9369
f37b5c2b 9370 plane_config->size = fb->pitches[0] * aligned_height;
4c6baa59 9371
2844a921
DL
9372 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9373 pipe_name(pipe), fb->width, fb->height,
9374 fb->bits_per_pixel, base, fb->pitches[0],
9375 plane_config->size);
b113d5ee 9376
2d14030b 9377 plane_config->fb = intel_fb;
4c6baa59
JB
9378}
9379
0e8ffe1b 9380static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
5cec258b 9381 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
9382{
9383 struct drm_device *dev = crtc->base.dev;
9384 struct drm_i915_private *dev_priv = dev->dev_private;
1729050e 9385 enum intel_display_power_domain power_domain;
0e8ffe1b 9386 uint32_t tmp;
1729050e 9387 bool ret;
0e8ffe1b 9388
1729050e
ID
9389 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9390 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
930e8c9e
PZ
9391 return false;
9392
e143a21c 9393 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8106ddbd 9394 pipe_config->shared_dpll = NULL;
eccb140b 9395
1729050e 9396 ret = false;
0e8ffe1b
DV
9397 tmp = I915_READ(PIPECONF(crtc->pipe));
9398 if (!(tmp & PIPECONF_ENABLE))
1729050e 9399 goto out;
0e8ffe1b 9400
42571aef
VS
9401 switch (tmp & PIPECONF_BPC_MASK) {
9402 case PIPECONF_6BPC:
9403 pipe_config->pipe_bpp = 18;
9404 break;
9405 case PIPECONF_8BPC:
9406 pipe_config->pipe_bpp = 24;
9407 break;
9408 case PIPECONF_10BPC:
9409 pipe_config->pipe_bpp = 30;
9410 break;
9411 case PIPECONF_12BPC:
9412 pipe_config->pipe_bpp = 36;
9413 break;
9414 default:
9415 break;
9416 }
9417
b5a9fa09
DV
9418 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9419 pipe_config->limited_color_range = true;
9420
ab9412ba 9421 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
66e985c0 9422 struct intel_shared_dpll *pll;
8106ddbd 9423 enum intel_dpll_id pll_id;
66e985c0 9424
88adfff1
DV
9425 pipe_config->has_pch_encoder = true;
9426
627eb5a3
DV
9427 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9428 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9429 FDI_DP_PORT_WIDTH_SHIFT) + 1;
72419203
DV
9430
9431 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6c49f241 9432
2d1fe073 9433 if (HAS_PCH_IBX(dev_priv)) {
d9a7bc67
ID
9434 /*
9435 * The pipe->pch transcoder and pch transcoder->pll
9436 * mapping is fixed.
9437 */
8106ddbd 9438 pll_id = (enum intel_dpll_id) crtc->pipe;
c0d43d62
DV
9439 } else {
9440 tmp = I915_READ(PCH_DPLL_SEL);
9441 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
8106ddbd 9442 pll_id = DPLL_ID_PCH_PLL_B;
c0d43d62 9443 else
8106ddbd 9444 pll_id= DPLL_ID_PCH_PLL_A;
c0d43d62 9445 }
66e985c0 9446
8106ddbd
ACO
9447 pipe_config->shared_dpll =
9448 intel_get_shared_dpll_by_id(dev_priv, pll_id);
9449 pll = pipe_config->shared_dpll;
66e985c0 9450
2edd6443
ACO
9451 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
9452 &pipe_config->dpll_hw_state));
c93f54cf
DV
9453
9454 tmp = pipe_config->dpll_hw_state.dpll;
9455 pipe_config->pixel_multiplier =
9456 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9457 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
18442d08
VS
9458
9459 ironlake_pch_clock_get(crtc, pipe_config);
6c49f241
DV
9460 } else {
9461 pipe_config->pixel_multiplier = 1;
627eb5a3
DV
9462 }
9463
1bd1bd80 9464 intel_get_pipe_timings(crtc, pipe_config);
bc58be60 9465 intel_get_pipe_src_size(crtc, pipe_config);
1bd1bd80 9466
2fa2fe9a
DV
9467 ironlake_get_pfit_config(crtc, pipe_config);
9468
1729050e
ID
9469 ret = true;
9470
9471out:
9472 intel_display_power_put(dev_priv, power_domain);
9473
9474 return ret;
0e8ffe1b
DV
9475}
9476
be256dc7
PZ
9477static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9478{
9479 struct drm_device *dev = dev_priv->dev;
be256dc7 9480 struct intel_crtc *crtc;
be256dc7 9481
d3fcc808 9482 for_each_intel_crtc(dev, crtc)
e2c719b7 9483 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
be256dc7
PZ
9484 pipe_name(crtc->pipe));
9485
e2c719b7
RC
9486 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9487 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
01403de3
VS
9488 I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9489 I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
e2c719b7
RC
9490 I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9491 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
be256dc7 9492 "CPU PWM1 enabled\n");
c5107b87 9493 if (IS_HASWELL(dev))
e2c719b7 9494 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
c5107b87 9495 "CPU PWM2 enabled\n");
e2c719b7 9496 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
be256dc7 9497 "PCH PWM1 enabled\n");
e2c719b7 9498 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
be256dc7 9499 "Utility pin enabled\n");
e2c719b7 9500 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
be256dc7 9501
9926ada1
PZ
9502 /*
9503 * In theory we can still leave IRQs enabled, as long as only the HPD
9504 * interrupts remain enabled. We used to check for that, but since it's
9505 * gen-specific and since we only disable LCPLL after we fully disable
9506 * the interrupts, the check below should be enough.
9507 */
e2c719b7 9508 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
be256dc7
PZ
9509}
9510
9ccd5aeb
PZ
9511static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9512{
9513 struct drm_device *dev = dev_priv->dev;
9514
9515 if (IS_HASWELL(dev))
9516 return I915_READ(D_COMP_HSW);
9517 else
9518 return I915_READ(D_COMP_BDW);
9519}
9520
3c4c9b81
PZ
9521static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9522{
9523 struct drm_device *dev = dev_priv->dev;
9524
9525 if (IS_HASWELL(dev)) {
9526 mutex_lock(&dev_priv->rps.hw_lock);
9527 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9528 val))
f475dadf 9529 DRM_ERROR("Failed to write to D_COMP\n");
3c4c9b81
PZ
9530 mutex_unlock(&dev_priv->rps.hw_lock);
9531 } else {
9ccd5aeb
PZ
9532 I915_WRITE(D_COMP_BDW, val);
9533 POSTING_READ(D_COMP_BDW);
3c4c9b81 9534 }
be256dc7
PZ
9535}
9536
9537/*
9538 * This function implements pieces of two sequences from BSpec:
9539 * - Sequence for display software to disable LCPLL
9540 * - Sequence for display software to allow package C8+
9541 * The steps implemented here are just the steps that actually touch the LCPLL
9542 * register. Callers should take care of disabling all the display engine
9543 * functions, doing the mode unset, fixing interrupts, etc.
9544 */
6ff58d53
PZ
9545static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9546 bool switch_to_fclk, bool allow_power_down)
be256dc7
PZ
9547{
9548 uint32_t val;
9549
9550 assert_can_disable_lcpll(dev_priv);
9551
9552 val = I915_READ(LCPLL_CTL);
9553
9554 if (switch_to_fclk) {
9555 val |= LCPLL_CD_SOURCE_FCLK;
9556 I915_WRITE(LCPLL_CTL, val);
9557
f53dd63f
ID
9558 if (wait_for_us(I915_READ(LCPLL_CTL) &
9559 LCPLL_CD_SOURCE_FCLK_DONE, 1))
be256dc7
PZ
9560 DRM_ERROR("Switching to FCLK failed\n");
9561
9562 val = I915_READ(LCPLL_CTL);
9563 }
9564
9565 val |= LCPLL_PLL_DISABLE;
9566 I915_WRITE(LCPLL_CTL, val);
9567 POSTING_READ(LCPLL_CTL);
9568
9569 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9570 DRM_ERROR("LCPLL still locked\n");
9571
9ccd5aeb 9572 val = hsw_read_dcomp(dev_priv);
be256dc7 9573 val |= D_COMP_COMP_DISABLE;
3c4c9b81 9574 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
9575 ndelay(100);
9576
9ccd5aeb
PZ
9577 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9578 1))
be256dc7
PZ
9579 DRM_ERROR("D_COMP RCOMP still in progress\n");
9580
9581 if (allow_power_down) {
9582 val = I915_READ(LCPLL_CTL);
9583 val |= LCPLL_POWER_DOWN_ALLOW;
9584 I915_WRITE(LCPLL_CTL, val);
9585 POSTING_READ(LCPLL_CTL);
9586 }
9587}
9588
9589/*
9590 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9591 * source.
9592 */
6ff58d53 9593static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
be256dc7
PZ
9594{
9595 uint32_t val;
9596
9597 val = I915_READ(LCPLL_CTL);
9598
9599 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9600 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9601 return;
9602
a8a8bd54
PZ
9603 /*
9604 * Make sure we're not on PC8 state before disabling PC8, otherwise
9605 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
a8a8bd54 9606 */
59bad947 9607 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
215733fa 9608
be256dc7
PZ
9609 if (val & LCPLL_POWER_DOWN_ALLOW) {
9610 val &= ~LCPLL_POWER_DOWN_ALLOW;
9611 I915_WRITE(LCPLL_CTL, val);
35d8f2eb 9612 POSTING_READ(LCPLL_CTL);
be256dc7
PZ
9613 }
9614
9ccd5aeb 9615 val = hsw_read_dcomp(dev_priv);
be256dc7
PZ
9616 val |= D_COMP_COMP_FORCE;
9617 val &= ~D_COMP_COMP_DISABLE;
3c4c9b81 9618 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
9619
9620 val = I915_READ(LCPLL_CTL);
9621 val &= ~LCPLL_PLL_DISABLE;
9622 I915_WRITE(LCPLL_CTL, val);
9623
9624 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9625 DRM_ERROR("LCPLL not locked yet\n");
9626
9627 if (val & LCPLL_CD_SOURCE_FCLK) {
9628 val = I915_READ(LCPLL_CTL);
9629 val &= ~LCPLL_CD_SOURCE_FCLK;
9630 I915_WRITE(LCPLL_CTL, val);
9631
f53dd63f
ID
9632 if (wait_for_us((I915_READ(LCPLL_CTL) &
9633 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
be256dc7
PZ
9634 DRM_ERROR("Switching back to LCPLL failed\n");
9635 }
215733fa 9636
59bad947 9637 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
b6283055 9638 intel_update_cdclk(dev_priv->dev);
be256dc7
PZ
9639}
9640
765dab67
PZ
9641/*
9642 * Package states C8 and deeper are really deep PC states that can only be
9643 * reached when all the devices on the system allow it, so even if the graphics
9644 * device allows PC8+, it doesn't mean the system will actually get to these
9645 * states. Our driver only allows PC8+ when going into runtime PM.
9646 *
9647 * The requirements for PC8+ are that all the outputs are disabled, the power
9648 * well is disabled and most interrupts are disabled, and these are also
9649 * requirements for runtime PM. When these conditions are met, we manually do
9650 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9651 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9652 * hang the machine.
9653 *
9654 * When we really reach PC8 or deeper states (not just when we allow it) we lose
9655 * the state of some registers, so when we come back from PC8+ we need to
9656 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9657 * need to take care of the registers kept by RC6. Notice that this happens even
9658 * if we don't put the device in PCI D3 state (which is what currently happens
9659 * because of the runtime PM support).
9660 *
9661 * For more, read "Display Sequences for Package C8" on the hardware
9662 * documentation.
9663 */
a14cb6fc 9664void hsw_enable_pc8(struct drm_i915_private *dev_priv)
c67a470b 9665{
c67a470b
PZ
9666 struct drm_device *dev = dev_priv->dev;
9667 uint32_t val;
9668
c67a470b
PZ
9669 DRM_DEBUG_KMS("Enabling package C8+\n");
9670
c2699524 9671 if (HAS_PCH_LPT_LP(dev)) {
c67a470b
PZ
9672 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9673 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9674 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9675 }
9676
9677 lpt_disable_clkout_dp(dev);
c67a470b
PZ
9678 hsw_disable_lcpll(dev_priv, true, true);
9679}
9680
a14cb6fc 9681void hsw_disable_pc8(struct drm_i915_private *dev_priv)
c67a470b
PZ
9682{
9683 struct drm_device *dev = dev_priv->dev;
9684 uint32_t val;
9685
c67a470b
PZ
9686 DRM_DEBUG_KMS("Disabling package C8+\n");
9687
9688 hsw_restore_lcpll(dev_priv);
c67a470b
PZ
9689 lpt_init_pch_refclk(dev);
9690
c2699524 9691 if (HAS_PCH_LPT_LP(dev)) {
c67a470b
PZ
9692 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9693 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9694 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9695 }
c67a470b
PZ
9696}
9697
324513c0 9698static void bxt_modeset_commit_cdclk(struct drm_atomic_state *old_state)
f8437dd1 9699{
a821fc46 9700 struct drm_device *dev = old_state->dev;
1a617b77
ML
9701 struct intel_atomic_state *old_intel_state =
9702 to_intel_atomic_state(old_state);
9703 unsigned int req_cdclk = old_intel_state->dev_cdclk;
f8437dd1 9704
324513c0 9705 bxt_set_cdclk(to_i915(dev), req_cdclk);
f8437dd1
VK
9706}
9707
b432e5cf 9708/* compute the max rate for new configuration */
27c329ed 9709static int ilk_max_pixel_rate(struct drm_atomic_state *state)
b432e5cf 9710{
565602d7
ML
9711 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
9712 struct drm_i915_private *dev_priv = state->dev->dev_private;
9713 struct drm_crtc *crtc;
9714 struct drm_crtc_state *cstate;
27c329ed 9715 struct intel_crtc_state *crtc_state;
565602d7
ML
9716 unsigned max_pixel_rate = 0, i;
9717 enum pipe pipe;
b432e5cf 9718
565602d7
ML
9719 memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
9720 sizeof(intel_state->min_pixclk));
27c329ed 9721
565602d7
ML
9722 for_each_crtc_in_state(state, crtc, cstate, i) {
9723 int pixel_rate;
27c329ed 9724
565602d7
ML
9725 crtc_state = to_intel_crtc_state(cstate);
9726 if (!crtc_state->base.enable) {
9727 intel_state->min_pixclk[i] = 0;
b432e5cf 9728 continue;
565602d7 9729 }
b432e5cf 9730
27c329ed 9731 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
b432e5cf
VS
9732
9733 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
565602d7 9734 if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
b432e5cf
VS
9735 pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
9736
565602d7 9737 intel_state->min_pixclk[i] = pixel_rate;
b432e5cf
VS
9738 }
9739
565602d7
ML
9740 for_each_pipe(dev_priv, pipe)
9741 max_pixel_rate = max(intel_state->min_pixclk[pipe], max_pixel_rate);
9742
b432e5cf
VS
9743 return max_pixel_rate;
9744}
9745
9746static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
9747{
9748 struct drm_i915_private *dev_priv = dev->dev_private;
9749 uint32_t val, data;
9750 int ret;
9751
9752 if (WARN((I915_READ(LCPLL_CTL) &
9753 (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
9754 LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
9755 LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
9756 LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
9757 "trying to change cdclk frequency with cdclk not enabled\n"))
9758 return;
9759
9760 mutex_lock(&dev_priv->rps.hw_lock);
9761 ret = sandybridge_pcode_write(dev_priv,
9762 BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
9763 mutex_unlock(&dev_priv->rps.hw_lock);
9764 if (ret) {
9765 DRM_ERROR("failed to inform pcode about cdclk change\n");
9766 return;
9767 }
9768
9769 val = I915_READ(LCPLL_CTL);
9770 val |= LCPLL_CD_SOURCE_FCLK;
9771 I915_WRITE(LCPLL_CTL, val);
9772
5ba00178
TU
9773 if (wait_for_us(I915_READ(LCPLL_CTL) &
9774 LCPLL_CD_SOURCE_FCLK_DONE, 1))
b432e5cf
VS
9775 DRM_ERROR("Switching to FCLK failed\n");
9776
9777 val = I915_READ(LCPLL_CTL);
9778 val &= ~LCPLL_CLK_FREQ_MASK;
9779
9780 switch (cdclk) {
9781 case 450000:
9782 val |= LCPLL_CLK_FREQ_450;
9783 data = 0;
9784 break;
9785 case 540000:
9786 val |= LCPLL_CLK_FREQ_54O_BDW;
9787 data = 1;
9788 break;
9789 case 337500:
9790 val |= LCPLL_CLK_FREQ_337_5_BDW;
9791 data = 2;
9792 break;
9793 case 675000:
9794 val |= LCPLL_CLK_FREQ_675_BDW;
9795 data = 3;
9796 break;
9797 default:
9798 WARN(1, "invalid cdclk frequency\n");
9799 return;
9800 }
9801
9802 I915_WRITE(LCPLL_CTL, val);
9803
9804 val = I915_READ(LCPLL_CTL);
9805 val &= ~LCPLL_CD_SOURCE_FCLK;
9806 I915_WRITE(LCPLL_CTL, val);
9807
5ba00178
TU
9808 if (wait_for_us((I915_READ(LCPLL_CTL) &
9809 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
b432e5cf
VS
9810 DRM_ERROR("Switching back to LCPLL failed\n");
9811
9812 mutex_lock(&dev_priv->rps.hw_lock);
9813 sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
9814 mutex_unlock(&dev_priv->rps.hw_lock);
9815
7f1052a8
VS
9816 I915_WRITE(CDCLK_FREQ, DIV_ROUND_CLOSEST(cdclk, 1000) - 1);
9817
b432e5cf
VS
9818 intel_update_cdclk(dev);
9819
9820 WARN(cdclk != dev_priv->cdclk_freq,
9821 "cdclk requested %d kHz but got %d kHz\n",
9822 cdclk, dev_priv->cdclk_freq);
9823}
9824
587c7914
VS
9825static int broadwell_calc_cdclk(int max_pixclk)
9826{
9827 if (max_pixclk > 540000)
9828 return 675000;
9829 else if (max_pixclk > 450000)
9830 return 540000;
9831 else if (max_pixclk > 337500)
9832 return 450000;
9833 else
9834 return 337500;
9835}
9836
27c329ed 9837static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
b432e5cf 9838{
27c329ed 9839 struct drm_i915_private *dev_priv = to_i915(state->dev);
1a617b77 9840 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
27c329ed 9841 int max_pixclk = ilk_max_pixel_rate(state);
b432e5cf
VS
9842 int cdclk;
9843
9844 /*
9845 * FIXME should also account for plane ratio
9846 * once 64bpp pixel formats are supported.
9847 */
587c7914 9848 cdclk = broadwell_calc_cdclk(max_pixclk);
b432e5cf 9849
b432e5cf 9850 if (cdclk > dev_priv->max_cdclk_freq) {
63ba534e
ML
9851 DRM_DEBUG_KMS("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9852 cdclk, dev_priv->max_cdclk_freq);
9853 return -EINVAL;
b432e5cf
VS
9854 }
9855
1a617b77
ML
9856 intel_state->cdclk = intel_state->dev_cdclk = cdclk;
9857 if (!intel_state->active_crtcs)
587c7914 9858 intel_state->dev_cdclk = broadwell_calc_cdclk(0);
b432e5cf
VS
9859
9860 return 0;
9861}
9862
27c329ed 9863static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
b432e5cf 9864{
27c329ed 9865 struct drm_device *dev = old_state->dev;
1a617b77
ML
9866 struct intel_atomic_state *old_intel_state =
9867 to_intel_atomic_state(old_state);
9868 unsigned req_cdclk = old_intel_state->dev_cdclk;
b432e5cf 9869
27c329ed 9870 broadwell_set_cdclk(dev, req_cdclk);
b432e5cf
VS
9871}
9872
c89e39f3
CT
9873static int skl_modeset_calc_cdclk(struct drm_atomic_state *state)
9874{
9875 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
9876 struct drm_i915_private *dev_priv = to_i915(state->dev);
9877 const int max_pixclk = ilk_max_pixel_rate(state);
a8ca4934 9878 int vco = intel_state->cdclk_pll_vco;
c89e39f3
CT
9879 int cdclk;
9880
9881 /*
9882 * FIXME should also account for plane ratio
9883 * once 64bpp pixel formats are supported.
9884 */
a8ca4934 9885 cdclk = skl_calc_cdclk(max_pixclk, vco);
c89e39f3
CT
9886
9887 /*
9888 * FIXME move the cdclk caclulation to
9889 * compute_config() so we can fail gracegully.
9890 */
9891 if (cdclk > dev_priv->max_cdclk_freq) {
9892 DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9893 cdclk, dev_priv->max_cdclk_freq);
9894 cdclk = dev_priv->max_cdclk_freq;
9895 }
9896
9897 intel_state->cdclk = intel_state->dev_cdclk = cdclk;
9898 if (!intel_state->active_crtcs)
a8ca4934 9899 intel_state->dev_cdclk = skl_calc_cdclk(0, vco);
c89e39f3
CT
9900
9901 return 0;
9902}
9903
9904static void skl_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9905{
1cd593e0
VS
9906 struct drm_i915_private *dev_priv = to_i915(old_state->dev);
9907 struct intel_atomic_state *intel_state = to_intel_atomic_state(old_state);
9908 unsigned int req_cdclk = intel_state->dev_cdclk;
9909 unsigned int req_vco = intel_state->cdclk_pll_vco;
c89e39f3 9910
1cd593e0 9911 skl_set_cdclk(dev_priv, req_cdclk, req_vco);
c89e39f3
CT
9912}
9913
190f68c5
ACO
9914static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9915 struct intel_crtc_state *crtc_state)
09b4ddf9 9916{
af3997b5
MK
9917 struct intel_encoder *intel_encoder =
9918 intel_ddi_get_crtc_new_encoder(crtc_state);
9919
9920 if (intel_encoder->type != INTEL_OUTPUT_DSI) {
9921 if (!intel_ddi_pll_select(crtc, crtc_state))
9922 return -EINVAL;
9923 }
716c2e55 9924
c7653199 9925 crtc->lowfreq_avail = false;
644cef34 9926
c8f7a0db 9927 return 0;
79e53945
JB
9928}
9929
3760b59c
S
9930static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9931 enum port port,
9932 struct intel_crtc_state *pipe_config)
9933{
8106ddbd
ACO
9934 enum intel_dpll_id id;
9935
3760b59c
S
9936 switch (port) {
9937 case PORT_A:
9938 pipe_config->ddi_pll_sel = SKL_DPLL0;
08250c4b 9939 id = DPLL_ID_SKL_DPLL0;
3760b59c
S
9940 break;
9941 case PORT_B:
9942 pipe_config->ddi_pll_sel = SKL_DPLL1;
08250c4b 9943 id = DPLL_ID_SKL_DPLL1;
3760b59c
S
9944 break;
9945 case PORT_C:
9946 pipe_config->ddi_pll_sel = SKL_DPLL2;
08250c4b 9947 id = DPLL_ID_SKL_DPLL2;
3760b59c
S
9948 break;
9949 default:
9950 DRM_ERROR("Incorrect port type\n");
8106ddbd 9951 return;
3760b59c 9952 }
8106ddbd
ACO
9953
9954 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
3760b59c
S
9955}
9956
96b7dfb7
S
9957static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9958 enum port port,
5cec258b 9959 struct intel_crtc_state *pipe_config)
96b7dfb7 9960{
8106ddbd 9961 enum intel_dpll_id id;
a3c988ea 9962 u32 temp;
96b7dfb7
S
9963
9964 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9965 pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9966
9967 switch (pipe_config->ddi_pll_sel) {
3148ade7 9968 case SKL_DPLL0:
a3c988ea
ACO
9969 id = DPLL_ID_SKL_DPLL0;
9970 break;
96b7dfb7 9971 case SKL_DPLL1:
8106ddbd 9972 id = DPLL_ID_SKL_DPLL1;
96b7dfb7
S
9973 break;
9974 case SKL_DPLL2:
8106ddbd 9975 id = DPLL_ID_SKL_DPLL2;
96b7dfb7
S
9976 break;
9977 case SKL_DPLL3:
8106ddbd 9978 id = DPLL_ID_SKL_DPLL3;
96b7dfb7 9979 break;
8106ddbd
ACO
9980 default:
9981 MISSING_CASE(pipe_config->ddi_pll_sel);
9982 return;
96b7dfb7 9983 }
8106ddbd
ACO
9984
9985 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
96b7dfb7
S
9986}
9987
7d2c8175
DL
9988static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9989 enum port port,
5cec258b 9990 struct intel_crtc_state *pipe_config)
7d2c8175 9991{
8106ddbd
ACO
9992 enum intel_dpll_id id;
9993
7d2c8175
DL
9994 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9995
9996 switch (pipe_config->ddi_pll_sel) {
9997 case PORT_CLK_SEL_WRPLL1:
8106ddbd 9998 id = DPLL_ID_WRPLL1;
7d2c8175
DL
9999 break;
10000 case PORT_CLK_SEL_WRPLL2:
8106ddbd 10001 id = DPLL_ID_WRPLL2;
7d2c8175 10002 break;
00490c22 10003 case PORT_CLK_SEL_SPLL:
8106ddbd 10004 id = DPLL_ID_SPLL;
79bd23da 10005 break;
9d16da65
ACO
10006 case PORT_CLK_SEL_LCPLL_810:
10007 id = DPLL_ID_LCPLL_810;
10008 break;
10009 case PORT_CLK_SEL_LCPLL_1350:
10010 id = DPLL_ID_LCPLL_1350;
10011 break;
10012 case PORT_CLK_SEL_LCPLL_2700:
10013 id = DPLL_ID_LCPLL_2700;
10014 break;
8106ddbd
ACO
10015 default:
10016 MISSING_CASE(pipe_config->ddi_pll_sel);
10017 /* fall through */
10018 case PORT_CLK_SEL_NONE:
8106ddbd 10019 return;
7d2c8175 10020 }
8106ddbd
ACO
10021
10022 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
7d2c8175
DL
10023}
10024
cf30429e
JN
10025static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
10026 struct intel_crtc_state *pipe_config,
10027 unsigned long *power_domain_mask)
10028{
10029 struct drm_device *dev = crtc->base.dev;
10030 struct drm_i915_private *dev_priv = dev->dev_private;
10031 enum intel_display_power_domain power_domain;
10032 u32 tmp;
10033
d9a7bc67
ID
10034 /*
10035 * The pipe->transcoder mapping is fixed with the exception of the eDP
10036 * transcoder handled below.
10037 */
cf30429e
JN
10038 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
10039
10040 /*
10041 * XXX: Do intel_display_power_get_if_enabled before reading this (for
10042 * consistency and less surprising code; it's in always on power).
10043 */
10044 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
10045 if (tmp & TRANS_DDI_FUNC_ENABLE) {
10046 enum pipe trans_edp_pipe;
10047 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
10048 default:
10049 WARN(1, "unknown pipe linked to edp transcoder\n");
10050 case TRANS_DDI_EDP_INPUT_A_ONOFF:
10051 case TRANS_DDI_EDP_INPUT_A_ON:
10052 trans_edp_pipe = PIPE_A;
10053 break;
10054 case TRANS_DDI_EDP_INPUT_B_ONOFF:
10055 trans_edp_pipe = PIPE_B;
10056 break;
10057 case TRANS_DDI_EDP_INPUT_C_ONOFF:
10058 trans_edp_pipe = PIPE_C;
10059 break;
10060 }
10061
10062 if (trans_edp_pipe == crtc->pipe)
10063 pipe_config->cpu_transcoder = TRANSCODER_EDP;
10064 }
10065
10066 power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
10067 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10068 return false;
10069 *power_domain_mask |= BIT(power_domain);
10070
10071 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
10072
10073 return tmp & PIPECONF_ENABLE;
10074}
10075
4d1de975
JN
10076static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
10077 struct intel_crtc_state *pipe_config,
10078 unsigned long *power_domain_mask)
10079{
10080 struct drm_device *dev = crtc->base.dev;
10081 struct drm_i915_private *dev_priv = dev->dev_private;
10082 enum intel_display_power_domain power_domain;
10083 enum port port;
10084 enum transcoder cpu_transcoder;
10085 u32 tmp;
10086
10087 pipe_config->has_dsi_encoder = false;
10088
10089 for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
10090 if (port == PORT_A)
10091 cpu_transcoder = TRANSCODER_DSI_A;
10092 else
10093 cpu_transcoder = TRANSCODER_DSI_C;
10094
10095 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
10096 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10097 continue;
10098 *power_domain_mask |= BIT(power_domain);
10099
db18b6a6
ID
10100 /*
10101 * The PLL needs to be enabled with a valid divider
10102 * configuration, otherwise accessing DSI registers will hang
10103 * the machine. See BSpec North Display Engine
10104 * registers/MIPI[BXT]. We can break out here early, since we
10105 * need the same DSI PLL to be enabled for both DSI ports.
10106 */
10107 if (!intel_dsi_pll_is_enabled(dev_priv))
10108 break;
10109
4d1de975
JN
10110 /* XXX: this works for video mode only */
10111 tmp = I915_READ(BXT_MIPI_PORT_CTRL(port));
10112 if (!(tmp & DPI_ENABLE))
10113 continue;
10114
10115 tmp = I915_READ(MIPI_CTRL(port));
10116 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
10117 continue;
10118
10119 pipe_config->cpu_transcoder = cpu_transcoder;
10120 pipe_config->has_dsi_encoder = true;
10121 break;
10122 }
10123
10124 return pipe_config->has_dsi_encoder;
10125}
10126
26804afd 10127static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
5cec258b 10128 struct intel_crtc_state *pipe_config)
26804afd
DV
10129{
10130 struct drm_device *dev = crtc->base.dev;
10131 struct drm_i915_private *dev_priv = dev->dev_private;
d452c5b6 10132 struct intel_shared_dpll *pll;
26804afd
DV
10133 enum port port;
10134 uint32_t tmp;
10135
10136 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
10137
10138 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
10139
ef11bdb3 10140 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
96b7dfb7 10141 skylake_get_ddi_pll(dev_priv, port, pipe_config);
3760b59c
S
10142 else if (IS_BROXTON(dev))
10143 bxt_get_ddi_pll(dev_priv, port, pipe_config);
96b7dfb7
S
10144 else
10145 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9cd86933 10146
8106ddbd
ACO
10147 pll = pipe_config->shared_dpll;
10148 if (pll) {
2edd6443
ACO
10149 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
10150 &pipe_config->dpll_hw_state));
d452c5b6
DV
10151 }
10152
26804afd
DV
10153 /*
10154 * Haswell has only FDI/PCH transcoder A. It is which is connected to
10155 * DDI E. So just check whether this pipe is wired to DDI E and whether
10156 * the PCH transcoder is on.
10157 */
ca370455
DL
10158 if (INTEL_INFO(dev)->gen < 9 &&
10159 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
26804afd
DV
10160 pipe_config->has_pch_encoder = true;
10161
10162 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
10163 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
10164 FDI_DP_PORT_WIDTH_SHIFT) + 1;
10165
10166 ironlake_get_fdi_m_n_config(crtc, pipe_config);
10167 }
10168}
10169
0e8ffe1b 10170static bool haswell_get_pipe_config(struct intel_crtc *crtc,
5cec258b 10171 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
10172{
10173 struct drm_device *dev = crtc->base.dev;
10174 struct drm_i915_private *dev_priv = dev->dev_private;
1729050e
ID
10175 enum intel_display_power_domain power_domain;
10176 unsigned long power_domain_mask;
cf30429e 10177 bool active;
0e8ffe1b 10178
1729050e
ID
10179 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
10180 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
b5482bd0 10181 return false;
1729050e
ID
10182 power_domain_mask = BIT(power_domain);
10183
8106ddbd 10184 pipe_config->shared_dpll = NULL;
c0d43d62 10185
cf30429e 10186 active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_mask);
eccb140b 10187
4d1de975
JN
10188 if (IS_BROXTON(dev_priv)) {
10189 bxt_get_dsi_transcoder_state(crtc, pipe_config,
10190 &power_domain_mask);
10191 WARN_ON(active && pipe_config->has_dsi_encoder);
10192 if (pipe_config->has_dsi_encoder)
10193 active = true;
10194 }
10195
cf30429e 10196 if (!active)
1729050e 10197 goto out;
0e8ffe1b 10198
4d1de975
JN
10199 if (!pipe_config->has_dsi_encoder) {
10200 haswell_get_ddi_port_state(crtc, pipe_config);
10201 intel_get_pipe_timings(crtc, pipe_config);
10202 }
627eb5a3 10203
bc58be60 10204 intel_get_pipe_src_size(crtc, pipe_config);
1bd1bd80 10205
05dc698c
LL
10206 pipe_config->gamma_mode =
10207 I915_READ(GAMMA_MODE(crtc->pipe)) & GAMMA_MODE_MODE_MASK;
10208
a1b2278e
CK
10209 if (INTEL_INFO(dev)->gen >= 9) {
10210 skl_init_scalers(dev, crtc, pipe_config);
10211 }
10212
af99ceda
CK
10213 if (INTEL_INFO(dev)->gen >= 9) {
10214 pipe_config->scaler_state.scaler_id = -1;
10215 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
10216 }
10217
1729050e
ID
10218 power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
10219 if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
10220 power_domain_mask |= BIT(power_domain);
1c132b44 10221 if (INTEL_INFO(dev)->gen >= 9)
bd2e244f 10222 skylake_get_pfit_config(crtc, pipe_config);
ff6d9f55 10223 else
1c132b44 10224 ironlake_get_pfit_config(crtc, pipe_config);
bd2e244f 10225 }
88adfff1 10226
e59150dc
JB
10227 if (IS_HASWELL(dev))
10228 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
10229 (I915_READ(IPS_CTL) & IPS_ENABLE);
42db64ef 10230
4d1de975
JN
10231 if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
10232 !transcoder_is_dsi(pipe_config->cpu_transcoder)) {
ebb69c95
CT
10233 pipe_config->pixel_multiplier =
10234 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
10235 } else {
10236 pipe_config->pixel_multiplier = 1;
10237 }
6c49f241 10238
1729050e
ID
10239out:
10240 for_each_power_domain(power_domain, power_domain_mask)
10241 intel_display_power_put(dev_priv, power_domain);
10242
cf30429e 10243 return active;
0e8ffe1b
DV
10244}
10245
55a08b3f
ML
10246static void i845_update_cursor(struct drm_crtc *crtc, u32 base,
10247 const struct intel_plane_state *plane_state)
560b85bb
CW
10248{
10249 struct drm_device *dev = crtc->dev;
10250 struct drm_i915_private *dev_priv = dev->dev_private;
10251 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
dc41c154 10252 uint32_t cntl = 0, size = 0;
560b85bb 10253
55a08b3f
ML
10254 if (plane_state && plane_state->visible) {
10255 unsigned int width = plane_state->base.crtc_w;
10256 unsigned int height = plane_state->base.crtc_h;
dc41c154
VS
10257 unsigned int stride = roundup_pow_of_two(width) * 4;
10258
10259 switch (stride) {
10260 default:
10261 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
10262 width, stride);
10263 stride = 256;
10264 /* fallthrough */
10265 case 256:
10266 case 512:
10267 case 1024:
10268 case 2048:
10269 break;
4b0e333e
CW
10270 }
10271
dc41c154
VS
10272 cntl |= CURSOR_ENABLE |
10273 CURSOR_GAMMA_ENABLE |
10274 CURSOR_FORMAT_ARGB |
10275 CURSOR_STRIDE(stride);
10276
10277 size = (height << 12) | width;
4b0e333e 10278 }
560b85bb 10279
dc41c154
VS
10280 if (intel_crtc->cursor_cntl != 0 &&
10281 (intel_crtc->cursor_base != base ||
10282 intel_crtc->cursor_size != size ||
10283 intel_crtc->cursor_cntl != cntl)) {
10284 /* On these chipsets we can only modify the base/size/stride
10285 * whilst the cursor is disabled.
10286 */
0b87c24e
VS
10287 I915_WRITE(CURCNTR(PIPE_A), 0);
10288 POSTING_READ(CURCNTR(PIPE_A));
dc41c154 10289 intel_crtc->cursor_cntl = 0;
4b0e333e 10290 }
560b85bb 10291
99d1f387 10292 if (intel_crtc->cursor_base != base) {
0b87c24e 10293 I915_WRITE(CURBASE(PIPE_A), base);
99d1f387
VS
10294 intel_crtc->cursor_base = base;
10295 }
4726e0b0 10296
dc41c154
VS
10297 if (intel_crtc->cursor_size != size) {
10298 I915_WRITE(CURSIZE, size);
10299 intel_crtc->cursor_size = size;
4b0e333e 10300 }
560b85bb 10301
4b0e333e 10302 if (intel_crtc->cursor_cntl != cntl) {
0b87c24e
VS
10303 I915_WRITE(CURCNTR(PIPE_A), cntl);
10304 POSTING_READ(CURCNTR(PIPE_A));
4b0e333e 10305 intel_crtc->cursor_cntl = cntl;
560b85bb 10306 }
560b85bb
CW
10307}
10308
55a08b3f
ML
10309static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base,
10310 const struct intel_plane_state *plane_state)
65a21cd6
JB
10311{
10312 struct drm_device *dev = crtc->dev;
10313 struct drm_i915_private *dev_priv = dev->dev_private;
10314 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10315 int pipe = intel_crtc->pipe;
663f3122 10316 uint32_t cntl = 0;
4b0e333e 10317
55a08b3f 10318 if (plane_state && plane_state->visible) {
4b0e333e 10319 cntl = MCURSOR_GAMMA_ENABLE;
55a08b3f 10320 switch (plane_state->base.crtc_w) {
4726e0b0
SK
10321 case 64:
10322 cntl |= CURSOR_MODE_64_ARGB_AX;
10323 break;
10324 case 128:
10325 cntl |= CURSOR_MODE_128_ARGB_AX;
10326 break;
10327 case 256:
10328 cntl |= CURSOR_MODE_256_ARGB_AX;
10329 break;
10330 default:
55a08b3f 10331 MISSING_CASE(plane_state->base.crtc_w);
4726e0b0 10332 return;
65a21cd6 10333 }
4b0e333e 10334 cntl |= pipe << 28; /* Connect to correct pipe */
47bf17a7 10335
fc6f93bc 10336 if (HAS_DDI(dev))
47bf17a7 10337 cntl |= CURSOR_PIPE_CSC_ENABLE;
65a21cd6 10338
55a08b3f
ML
10339 if (plane_state->base.rotation == BIT(DRM_ROTATE_180))
10340 cntl |= CURSOR_ROTATE_180;
10341 }
4398ad45 10342
4b0e333e
CW
10343 if (intel_crtc->cursor_cntl != cntl) {
10344 I915_WRITE(CURCNTR(pipe), cntl);
10345 POSTING_READ(CURCNTR(pipe));
10346 intel_crtc->cursor_cntl = cntl;
65a21cd6 10347 }
4b0e333e 10348
65a21cd6 10349 /* and commit changes on next vblank */
5efb3e28
VS
10350 I915_WRITE(CURBASE(pipe), base);
10351 POSTING_READ(CURBASE(pipe));
99d1f387
VS
10352
10353 intel_crtc->cursor_base = base;
65a21cd6
JB
10354}
10355
cda4b7d3 10356/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f 10357static void intel_crtc_update_cursor(struct drm_crtc *crtc,
55a08b3f 10358 const struct intel_plane_state *plane_state)
cda4b7d3
CW
10359{
10360 struct drm_device *dev = crtc->dev;
10361 struct drm_i915_private *dev_priv = dev->dev_private;
10362 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10363 int pipe = intel_crtc->pipe;
55a08b3f
ML
10364 u32 base = intel_crtc->cursor_addr;
10365 u32 pos = 0;
cda4b7d3 10366
55a08b3f
ML
10367 if (plane_state) {
10368 int x = plane_state->base.crtc_x;
10369 int y = plane_state->base.crtc_y;
cda4b7d3 10370
55a08b3f
ML
10371 if (x < 0) {
10372 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10373 x = -x;
10374 }
10375 pos |= x << CURSOR_X_SHIFT;
cda4b7d3 10376
55a08b3f
ML
10377 if (y < 0) {
10378 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10379 y = -y;
10380 }
10381 pos |= y << CURSOR_Y_SHIFT;
10382
10383 /* ILK+ do this automagically */
10384 if (HAS_GMCH_DISPLAY(dev) &&
10385 plane_state->base.rotation == BIT(DRM_ROTATE_180)) {
10386 base += (plane_state->base.crtc_h *
10387 plane_state->base.crtc_w - 1) * 4;
10388 }
cda4b7d3 10389 }
cda4b7d3 10390
5efb3e28
VS
10391 I915_WRITE(CURPOS(pipe), pos);
10392
8ac54669 10393 if (IS_845G(dev) || IS_I865G(dev))
55a08b3f 10394 i845_update_cursor(crtc, base, plane_state);
5efb3e28 10395 else
55a08b3f 10396 i9xx_update_cursor(crtc, base, plane_state);
cda4b7d3
CW
10397}
10398
dc41c154
VS
10399static bool cursor_size_ok(struct drm_device *dev,
10400 uint32_t width, uint32_t height)
10401{
10402 if (width == 0 || height == 0)
10403 return false;
10404
10405 /*
10406 * 845g/865g are special in that they are only limited by
10407 * the width of their cursors, the height is arbitrary up to
10408 * the precision of the register. Everything else requires
10409 * square cursors, limited to a few power-of-two sizes.
10410 */
10411 if (IS_845G(dev) || IS_I865G(dev)) {
10412 if ((width & 63) != 0)
10413 return false;
10414
10415 if (width > (IS_845G(dev) ? 64 : 512))
10416 return false;
10417
10418 if (height > 1023)
10419 return false;
10420 } else {
10421 switch (width | height) {
10422 case 256:
10423 case 128:
10424 if (IS_GEN2(dev))
10425 return false;
10426 case 64:
10427 break;
10428 default:
10429 return false;
10430 }
10431 }
10432
10433 return true;
10434}
10435
79e53945
JB
10436/* VESA 640x480x72Hz mode to set on the pipe */
10437static struct drm_display_mode load_detect_mode = {
10438 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10439 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10440};
10441
a8bb6818
DV
10442struct drm_framebuffer *
10443__intel_framebuffer_create(struct drm_device *dev,
10444 struct drm_mode_fb_cmd2 *mode_cmd,
10445 struct drm_i915_gem_object *obj)
d2dff872
CW
10446{
10447 struct intel_framebuffer *intel_fb;
10448 int ret;
10449
10450 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
dcb1394e 10451 if (!intel_fb)
d2dff872 10452 return ERR_PTR(-ENOMEM);
d2dff872
CW
10453
10454 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
dd4916c5
DV
10455 if (ret)
10456 goto err;
d2dff872
CW
10457
10458 return &intel_fb->base;
dcb1394e 10459
dd4916c5 10460err:
dd4916c5 10461 kfree(intel_fb);
dd4916c5 10462 return ERR_PTR(ret);
d2dff872
CW
10463}
10464
b5ea642a 10465static struct drm_framebuffer *
a8bb6818
DV
10466intel_framebuffer_create(struct drm_device *dev,
10467 struct drm_mode_fb_cmd2 *mode_cmd,
10468 struct drm_i915_gem_object *obj)
10469{
10470 struct drm_framebuffer *fb;
10471 int ret;
10472
10473 ret = i915_mutex_lock_interruptible(dev);
10474 if (ret)
10475 return ERR_PTR(ret);
10476 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10477 mutex_unlock(&dev->struct_mutex);
10478
10479 return fb;
10480}
10481
d2dff872
CW
10482static u32
10483intel_framebuffer_pitch_for_width(int width, int bpp)
10484{
10485 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10486 return ALIGN(pitch, 64);
10487}
10488
10489static u32
10490intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10491{
10492 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
1267a26b 10493 return PAGE_ALIGN(pitch * mode->vdisplay);
d2dff872
CW
10494}
10495
10496static struct drm_framebuffer *
10497intel_framebuffer_create_for_mode(struct drm_device *dev,
10498 struct drm_display_mode *mode,
10499 int depth, int bpp)
10500{
dcb1394e 10501 struct drm_framebuffer *fb;
d2dff872 10502 struct drm_i915_gem_object *obj;
0fed39bd 10503 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
d2dff872 10504
d37cd8a8 10505 obj = i915_gem_object_create(dev,
d2dff872 10506 intel_framebuffer_size_for_mode(mode, bpp));
fe3db79b
CW
10507 if (IS_ERR(obj))
10508 return ERR_CAST(obj);
d2dff872
CW
10509
10510 mode_cmd.width = mode->hdisplay;
10511 mode_cmd.height = mode->vdisplay;
308e5bcb
JB
10512 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10513 bpp);
5ca0c34a 10514 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
d2dff872 10515
dcb1394e
LW
10516 fb = intel_framebuffer_create(dev, &mode_cmd, obj);
10517 if (IS_ERR(fb))
10518 drm_gem_object_unreference_unlocked(&obj->base);
10519
10520 return fb;
d2dff872
CW
10521}
10522
10523static struct drm_framebuffer *
10524mode_fits_in_fbdev(struct drm_device *dev,
10525 struct drm_display_mode *mode)
10526{
0695726e 10527#ifdef CONFIG_DRM_FBDEV_EMULATION
d2dff872
CW
10528 struct drm_i915_private *dev_priv = dev->dev_private;
10529 struct drm_i915_gem_object *obj;
10530 struct drm_framebuffer *fb;
10531
4c0e5528 10532 if (!dev_priv->fbdev)
d2dff872
CW
10533 return NULL;
10534
4c0e5528 10535 if (!dev_priv->fbdev->fb)
d2dff872
CW
10536 return NULL;
10537
4c0e5528
DV
10538 obj = dev_priv->fbdev->fb->obj;
10539 BUG_ON(!obj);
10540
8bcd4553 10541 fb = &dev_priv->fbdev->fb->base;
01f2c773
VS
10542 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
10543 fb->bits_per_pixel))
d2dff872
CW
10544 return NULL;
10545
01f2c773 10546 if (obj->base.size < mode->vdisplay * fb->pitches[0])
d2dff872
CW
10547 return NULL;
10548
edde3617 10549 drm_framebuffer_reference(fb);
d2dff872 10550 return fb;
4520f53a
DV
10551#else
10552 return NULL;
10553#endif
d2dff872
CW
10554}
10555
d3a40d1b
ACO
10556static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
10557 struct drm_crtc *crtc,
10558 struct drm_display_mode *mode,
10559 struct drm_framebuffer *fb,
10560 int x, int y)
10561{
10562 struct drm_plane_state *plane_state;
10563 int hdisplay, vdisplay;
10564 int ret;
10565
10566 plane_state = drm_atomic_get_plane_state(state, crtc->primary);
10567 if (IS_ERR(plane_state))
10568 return PTR_ERR(plane_state);
10569
10570 if (mode)
10571 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
10572 else
10573 hdisplay = vdisplay = 0;
10574
10575 ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
10576 if (ret)
10577 return ret;
10578 drm_atomic_set_fb_for_plane(plane_state, fb);
10579 plane_state->crtc_x = 0;
10580 plane_state->crtc_y = 0;
10581 plane_state->crtc_w = hdisplay;
10582 plane_state->crtc_h = vdisplay;
10583 plane_state->src_x = x << 16;
10584 plane_state->src_y = y << 16;
10585 plane_state->src_w = hdisplay << 16;
10586 plane_state->src_h = vdisplay << 16;
10587
10588 return 0;
10589}
10590
d2434ab7 10591bool intel_get_load_detect_pipe(struct drm_connector *connector,
7173188d 10592 struct drm_display_mode *mode,
51fd371b
RC
10593 struct intel_load_detect_pipe *old,
10594 struct drm_modeset_acquire_ctx *ctx)
79e53945
JB
10595{
10596 struct intel_crtc *intel_crtc;
d2434ab7
DV
10597 struct intel_encoder *intel_encoder =
10598 intel_attached_encoder(connector);
79e53945 10599 struct drm_crtc *possible_crtc;
4ef69c7a 10600 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
10601 struct drm_crtc *crtc = NULL;
10602 struct drm_device *dev = encoder->dev;
94352cf9 10603 struct drm_framebuffer *fb;
51fd371b 10604 struct drm_mode_config *config = &dev->mode_config;
edde3617 10605 struct drm_atomic_state *state = NULL, *restore_state = NULL;
944b0c76 10606 struct drm_connector_state *connector_state;
4be07317 10607 struct intel_crtc_state *crtc_state;
51fd371b 10608 int ret, i = -1;
79e53945 10609
d2dff872 10610 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 10611 connector->base.id, connector->name,
8e329a03 10612 encoder->base.id, encoder->name);
d2dff872 10613
edde3617
ML
10614 old->restore_state = NULL;
10615
51fd371b
RC
10616retry:
10617 ret = drm_modeset_lock(&config->connection_mutex, ctx);
10618 if (ret)
ad3c558f 10619 goto fail;
6e9f798d 10620
79e53945
JB
10621 /*
10622 * Algorithm gets a little messy:
7a5e4805 10623 *
79e53945
JB
10624 * - if the connector already has an assigned crtc, use it (but make
10625 * sure it's on first)
7a5e4805 10626 *
79e53945
JB
10627 * - try to find the first unused crtc that can drive this connector,
10628 * and use that if we find one
79e53945
JB
10629 */
10630
10631 /* See if we already have a CRTC for this connector */
edde3617
ML
10632 if (connector->state->crtc) {
10633 crtc = connector->state->crtc;
8261b191 10634
51fd371b 10635 ret = drm_modeset_lock(&crtc->mutex, ctx);
4d02e2de 10636 if (ret)
ad3c558f 10637 goto fail;
8261b191
CW
10638
10639 /* Make sure the crtc and connector are running */
edde3617 10640 goto found;
79e53945
JB
10641 }
10642
10643 /* Find an unused one (if possible) */
70e1e0ec 10644 for_each_crtc(dev, possible_crtc) {
79e53945
JB
10645 i++;
10646 if (!(encoder->possible_crtcs & (1 << i)))
10647 continue;
edde3617
ML
10648
10649 ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
10650 if (ret)
10651 goto fail;
10652
10653 if (possible_crtc->state->enable) {
10654 drm_modeset_unlock(&possible_crtc->mutex);
a459249c 10655 continue;
edde3617 10656 }
a459249c
VS
10657
10658 crtc = possible_crtc;
10659 break;
79e53945
JB
10660 }
10661
10662 /*
10663 * If we didn't find an unused CRTC, don't use any.
10664 */
10665 if (!crtc) {
7173188d 10666 DRM_DEBUG_KMS("no pipe available for load-detect\n");
ad3c558f 10667 goto fail;
79e53945
JB
10668 }
10669
edde3617
ML
10670found:
10671 intel_crtc = to_intel_crtc(crtc);
10672
4d02e2de
DV
10673 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10674 if (ret)
ad3c558f 10675 goto fail;
79e53945 10676
83a57153 10677 state = drm_atomic_state_alloc(dev);
edde3617
ML
10678 restore_state = drm_atomic_state_alloc(dev);
10679 if (!state || !restore_state) {
10680 ret = -ENOMEM;
10681 goto fail;
10682 }
83a57153
ACO
10683
10684 state->acquire_ctx = ctx;
edde3617 10685 restore_state->acquire_ctx = ctx;
83a57153 10686
944b0c76
ACO
10687 connector_state = drm_atomic_get_connector_state(state, connector);
10688 if (IS_ERR(connector_state)) {
10689 ret = PTR_ERR(connector_state);
10690 goto fail;
10691 }
10692
edde3617
ML
10693 ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
10694 if (ret)
10695 goto fail;
944b0c76 10696
4be07317
ACO
10697 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10698 if (IS_ERR(crtc_state)) {
10699 ret = PTR_ERR(crtc_state);
10700 goto fail;
10701 }
10702
49d6fa21 10703 crtc_state->base.active = crtc_state->base.enable = true;
4be07317 10704
6492711d
CW
10705 if (!mode)
10706 mode = &load_detect_mode;
79e53945 10707
d2dff872
CW
10708 /* We need a framebuffer large enough to accommodate all accesses
10709 * that the plane may generate whilst we perform load detection.
10710 * We can not rely on the fbcon either being present (we get called
10711 * during its initialisation to detect all boot displays, or it may
10712 * not even exist) or that it is large enough to satisfy the
10713 * requested mode.
10714 */
94352cf9
DV
10715 fb = mode_fits_in_fbdev(dev, mode);
10716 if (fb == NULL) {
d2dff872 10717 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
94352cf9 10718 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
d2dff872
CW
10719 } else
10720 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
94352cf9 10721 if (IS_ERR(fb)) {
d2dff872 10722 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
412b61d8 10723 goto fail;
79e53945 10724 }
79e53945 10725
d3a40d1b
ACO
10726 ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10727 if (ret)
10728 goto fail;
10729
edde3617
ML
10730 drm_framebuffer_unreference(fb);
10731
10732 ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode);
10733 if (ret)
10734 goto fail;
10735
10736 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
10737 if (!ret)
10738 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
10739 if (!ret)
10740 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(restore_state, crtc->primary));
10741 if (ret) {
10742 DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
10743 goto fail;
10744 }
8c7b5ccb 10745
3ba86073
ML
10746 ret = drm_atomic_commit(state);
10747 if (ret) {
6492711d 10748 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
412b61d8 10749 goto fail;
79e53945 10750 }
edde3617
ML
10751
10752 old->restore_state = restore_state;
7173188d 10753
79e53945 10754 /* let the connector get through one full cycle before testing */
9d0498a2 10755 intel_wait_for_vblank(dev, intel_crtc->pipe);
7173188d 10756 return true;
412b61d8 10757
ad3c558f 10758fail:
e5d958ef 10759 drm_atomic_state_free(state);
edde3617
ML
10760 drm_atomic_state_free(restore_state);
10761 restore_state = state = NULL;
83a57153 10762
51fd371b
RC
10763 if (ret == -EDEADLK) {
10764 drm_modeset_backoff(ctx);
10765 goto retry;
10766 }
10767
412b61d8 10768 return false;
79e53945
JB
10769}
10770
d2434ab7 10771void intel_release_load_detect_pipe(struct drm_connector *connector,
49172fee
ACO
10772 struct intel_load_detect_pipe *old,
10773 struct drm_modeset_acquire_ctx *ctx)
79e53945 10774{
d2434ab7
DV
10775 struct intel_encoder *intel_encoder =
10776 intel_attached_encoder(connector);
4ef69c7a 10777 struct drm_encoder *encoder = &intel_encoder->base;
edde3617 10778 struct drm_atomic_state *state = old->restore_state;
d3a40d1b 10779 int ret;
79e53945 10780
d2dff872 10781 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 10782 connector->base.id, connector->name,
8e329a03 10783 encoder->base.id, encoder->name);
d2dff872 10784
edde3617 10785 if (!state)
0622a53c 10786 return;
79e53945 10787
edde3617
ML
10788 ret = drm_atomic_commit(state);
10789 if (ret) {
10790 DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
10791 drm_atomic_state_free(state);
10792 }
79e53945
JB
10793}
10794
da4a1efa 10795static int i9xx_pll_refclk(struct drm_device *dev,
5cec258b 10796 const struct intel_crtc_state *pipe_config)
da4a1efa
VS
10797{
10798 struct drm_i915_private *dev_priv = dev->dev_private;
10799 u32 dpll = pipe_config->dpll_hw_state.dpll;
10800
10801 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
e91e941b 10802 return dev_priv->vbt.lvds_ssc_freq;
da4a1efa
VS
10803 else if (HAS_PCH_SPLIT(dev))
10804 return 120000;
10805 else if (!IS_GEN2(dev))
10806 return 96000;
10807 else
10808 return 48000;
10809}
10810
79e53945 10811/* Returns the clock of the currently programmed mode of the given pipe. */
f1f644dc 10812static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 10813 struct intel_crtc_state *pipe_config)
79e53945 10814{
f1f644dc 10815 struct drm_device *dev = crtc->base.dev;
79e53945 10816 struct drm_i915_private *dev_priv = dev->dev_private;
f1f644dc 10817 int pipe = pipe_config->cpu_transcoder;
293623f7 10818 u32 dpll = pipe_config->dpll_hw_state.dpll;
79e53945 10819 u32 fp;
9e2c8475 10820 struct dpll clock;
dccbea3b 10821 int port_clock;
da4a1efa 10822 int refclk = i9xx_pll_refclk(dev, pipe_config);
79e53945
JB
10823
10824 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
293623f7 10825 fp = pipe_config->dpll_hw_state.fp0;
79e53945 10826 else
293623f7 10827 fp = pipe_config->dpll_hw_state.fp1;
79e53945
JB
10828
10829 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
10830 if (IS_PINEVIEW(dev)) {
10831 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10832 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
10833 } else {
10834 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10835 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10836 }
10837
a6c45cf0 10838 if (!IS_GEN2(dev)) {
f2b115e6
AJ
10839 if (IS_PINEVIEW(dev))
10840 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10841 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
10842 else
10843 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
10844 DPLL_FPA01_P1_POST_DIV_SHIFT);
10845
10846 switch (dpll & DPLL_MODE_MASK) {
10847 case DPLLB_MODE_DAC_SERIAL:
10848 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10849 5 : 10;
10850 break;
10851 case DPLLB_MODE_LVDS:
10852 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10853 7 : 14;
10854 break;
10855 default:
28c97730 10856 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945 10857 "mode\n", (int)(dpll & DPLL_MODE_MASK));
f1f644dc 10858 return;
79e53945
JB
10859 }
10860
ac58c3f0 10861 if (IS_PINEVIEW(dev))
dccbea3b 10862 port_clock = pnv_calc_dpll_params(refclk, &clock);
ac58c3f0 10863 else
dccbea3b 10864 port_clock = i9xx_calc_dpll_params(refclk, &clock);
79e53945 10865 } else {
0fb58223 10866 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
b1c560d1 10867 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
79e53945
JB
10868
10869 if (is_lvds) {
10870 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10871 DPLL_FPA01_P1_POST_DIV_SHIFT);
b1c560d1
VS
10872
10873 if (lvds & LVDS_CLKB_POWER_UP)
10874 clock.p2 = 7;
10875 else
10876 clock.p2 = 14;
79e53945
JB
10877 } else {
10878 if (dpll & PLL_P1_DIVIDE_BY_TWO)
10879 clock.p1 = 2;
10880 else {
10881 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10882 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10883 }
10884 if (dpll & PLL_P2_DIVIDE_BY_4)
10885 clock.p2 = 4;
10886 else
10887 clock.p2 = 2;
79e53945 10888 }
da4a1efa 10889
dccbea3b 10890 port_clock = i9xx_calc_dpll_params(refclk, &clock);
79e53945
JB
10891 }
10892
18442d08
VS
10893 /*
10894 * This value includes pixel_multiplier. We will use
241bfc38 10895 * port_clock to compute adjusted_mode.crtc_clock in the
18442d08
VS
10896 * encoder's get_config() function.
10897 */
dccbea3b 10898 pipe_config->port_clock = port_clock;
f1f644dc
JB
10899}
10900
6878da05
VS
10901int intel_dotclock_calculate(int link_freq,
10902 const struct intel_link_m_n *m_n)
f1f644dc 10903{
f1f644dc
JB
10904 /*
10905 * The calculation for the data clock is:
1041a02f 10906 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
f1f644dc 10907 * But we want to avoid losing precison if possible, so:
1041a02f 10908 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
f1f644dc
JB
10909 *
10910 * and the link clock is simpler:
1041a02f 10911 * link_clock = (m * link_clock) / n
f1f644dc
JB
10912 */
10913
6878da05
VS
10914 if (!m_n->link_n)
10915 return 0;
f1f644dc 10916
6878da05
VS
10917 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10918}
f1f644dc 10919
18442d08 10920static void ironlake_pch_clock_get(struct intel_crtc *crtc,
5cec258b 10921 struct intel_crtc_state *pipe_config)
6878da05 10922{
e3b247da 10923 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
79e53945 10924
18442d08
VS
10925 /* read out port_clock from the DPLL */
10926 i9xx_crtc_clock_get(crtc, pipe_config);
f1f644dc 10927
f1f644dc 10928 /*
e3b247da
VS
10929 * In case there is an active pipe without active ports,
10930 * we may need some idea for the dotclock anyway.
10931 * Calculate one based on the FDI configuration.
79e53945 10932 */
2d112de7 10933 pipe_config->base.adjusted_mode.crtc_clock =
21a727b3 10934 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
18442d08 10935 &pipe_config->fdi_m_n);
79e53945
JB
10936}
10937
10938/** Returns the currently programmed mode of the given pipe. */
10939struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10940 struct drm_crtc *crtc)
10941{
548f245b 10942 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 10943 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6e3c9717 10944 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
79e53945 10945 struct drm_display_mode *mode;
3f36b937 10946 struct intel_crtc_state *pipe_config;
fe2b8f9d
PZ
10947 int htot = I915_READ(HTOTAL(cpu_transcoder));
10948 int hsync = I915_READ(HSYNC(cpu_transcoder));
10949 int vtot = I915_READ(VTOTAL(cpu_transcoder));
10950 int vsync = I915_READ(VSYNC(cpu_transcoder));
293623f7 10951 enum pipe pipe = intel_crtc->pipe;
79e53945
JB
10952
10953 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10954 if (!mode)
10955 return NULL;
10956
3f36b937
TU
10957 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10958 if (!pipe_config) {
10959 kfree(mode);
10960 return NULL;
10961 }
10962
f1f644dc
JB
10963 /*
10964 * Construct a pipe_config sufficient for getting the clock info
10965 * back out of crtc_clock_get.
10966 *
10967 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10968 * to use a real value here instead.
10969 */
3f36b937
TU
10970 pipe_config->cpu_transcoder = (enum transcoder) pipe;
10971 pipe_config->pixel_multiplier = 1;
10972 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10973 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10974 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10975 i9xx_crtc_clock_get(intel_crtc, pipe_config);
10976
10977 mode->clock = pipe_config->port_clock / pipe_config->pixel_multiplier;
79e53945
JB
10978 mode->hdisplay = (htot & 0xffff) + 1;
10979 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10980 mode->hsync_start = (hsync & 0xffff) + 1;
10981 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10982 mode->vdisplay = (vtot & 0xffff) + 1;
10983 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10984 mode->vsync_start = (vsync & 0xffff) + 1;
10985 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10986
10987 drm_mode_set_name(mode);
79e53945 10988
3f36b937
TU
10989 kfree(pipe_config);
10990
79e53945
JB
10991 return mode;
10992}
10993
7d993739 10994void intel_mark_busy(struct drm_i915_private *dev_priv)
f047e395 10995{
f62a0076
CW
10996 if (dev_priv->mm.busy)
10997 return;
10998
43694d69 10999 intel_runtime_pm_get(dev_priv);
c67a470b 11000 i915_update_gfx_val(dev_priv);
7d993739 11001 if (INTEL_GEN(dev_priv) >= 6)
43cf3bf0 11002 gen6_rps_busy(dev_priv);
f62a0076 11003 dev_priv->mm.busy = true;
f047e395
CW
11004}
11005
7d993739 11006void intel_mark_idle(struct drm_i915_private *dev_priv)
652c393a 11007{
f62a0076
CW
11008 if (!dev_priv->mm.busy)
11009 return;
11010
11011 dev_priv->mm.busy = false;
11012
7d993739
TU
11013 if (INTEL_GEN(dev_priv) >= 6)
11014 gen6_rps_idle(dev_priv);
bb4cdd53 11015
43694d69 11016 intel_runtime_pm_put(dev_priv);
652c393a
JB
11017}
11018
79e53945
JB
11019static void intel_crtc_destroy(struct drm_crtc *crtc)
11020{
11021 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a 11022 struct drm_device *dev = crtc->dev;
51cbaf01 11023 struct intel_flip_work *work;
67e77c5a 11024
5e2d7afc 11025 spin_lock_irq(&dev->event_lock);
5a21b665
DV
11026 work = intel_crtc->flip_work;
11027 intel_crtc->flip_work = NULL;
11028 spin_unlock_irq(&dev->event_lock);
67e77c5a 11029
5a21b665 11030 if (work) {
51cbaf01
ML
11031 cancel_work_sync(&work->mmio_work);
11032 cancel_work_sync(&work->unpin_work);
5a21b665 11033 kfree(work);
67e77c5a 11034 }
79e53945
JB
11035
11036 drm_crtc_cleanup(crtc);
67e77c5a 11037
79e53945
JB
11038 kfree(intel_crtc);
11039}
11040
6b95a207
KH
11041static void intel_unpin_work_fn(struct work_struct *__work)
11042{
51cbaf01
ML
11043 struct intel_flip_work *work =
11044 container_of(__work, struct intel_flip_work, unpin_work);
5a21b665
DV
11045 struct intel_crtc *crtc = to_intel_crtc(work->crtc);
11046 struct drm_device *dev = crtc->base.dev;
11047 struct drm_plane *primary = crtc->base.primary;
03f476e1 11048
5a21b665
DV
11049 if (is_mmio_work(work))
11050 flush_work(&work->mmio_work);
03f476e1 11051
5a21b665
DV
11052 mutex_lock(&dev->struct_mutex);
11053 intel_unpin_fb_obj(work->old_fb, primary->state->rotation);
11054 drm_gem_object_unreference(&work->pending_flip_obj->base);
143f73b3 11055
5a21b665
DV
11056 if (work->flip_queued_req)
11057 i915_gem_request_assign(&work->flip_queued_req, NULL);
11058 mutex_unlock(&dev->struct_mutex);
143f73b3 11059
5a21b665
DV
11060 intel_frontbuffer_flip_complete(dev, to_intel_plane(primary)->frontbuffer_bit);
11061 intel_fbc_post_update(crtc);
11062 drm_framebuffer_unreference(work->old_fb);
143f73b3 11063
5a21b665
DV
11064 BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
11065 atomic_dec(&crtc->unpin_work_count);
a6747b73 11066
5a21b665
DV
11067 kfree(work);
11068}
d9e86c0e 11069
5a21b665
DV
11070/* Is 'a' after or equal to 'b'? */
11071static bool g4x_flip_count_after_eq(u32 a, u32 b)
11072{
11073 return !((a - b) & 0x80000000);
11074}
143f73b3 11075
5a21b665
DV
11076static bool __pageflip_finished_cs(struct intel_crtc *crtc,
11077 struct intel_flip_work *work)
11078{
11079 struct drm_device *dev = crtc->base.dev;
11080 struct drm_i915_private *dev_priv = dev->dev_private;
11081 unsigned reset_counter;
143f73b3 11082
5a21b665
DV
11083 reset_counter = i915_reset_counter(&dev_priv->gpu_error);
11084 if (crtc->reset_counter != reset_counter)
11085 return true;
143f73b3 11086
5a21b665
DV
11087 /*
11088 * The relevant registers doen't exist on pre-ctg.
11089 * As the flip done interrupt doesn't trigger for mmio
11090 * flips on gmch platforms, a flip count check isn't
11091 * really needed there. But since ctg has the registers,
11092 * include it in the check anyway.
11093 */
11094 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
11095 return true;
b4a98e57 11096
5a21b665
DV
11097 /*
11098 * BDW signals flip done immediately if the plane
11099 * is disabled, even if the plane enable is already
11100 * armed to occur at the next vblank :(
11101 */
f99d7069 11102
5a21b665
DV
11103 /*
11104 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
11105 * used the same base address. In that case the mmio flip might
11106 * have completed, but the CS hasn't even executed the flip yet.
11107 *
11108 * A flip count check isn't enough as the CS might have updated
11109 * the base address just after start of vblank, but before we
11110 * managed to process the interrupt. This means we'd complete the
11111 * CS flip too soon.
11112 *
11113 * Combining both checks should get us a good enough result. It may
11114 * still happen that the CS flip has been executed, but has not
11115 * yet actually completed. But in case the base address is the same
11116 * anyway, we don't really care.
11117 */
11118 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
11119 crtc->flip_work->gtt_offset &&
11120 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
11121 crtc->flip_work->flip_count);
11122}
b4a98e57 11123
5a21b665
DV
11124static bool
11125__pageflip_finished_mmio(struct intel_crtc *crtc,
11126 struct intel_flip_work *work)
11127{
11128 /*
11129 * MMIO work completes when vblank is different from
11130 * flip_queued_vblank.
11131 *
11132 * Reset counter value doesn't matter, this is handled by
11133 * i915_wait_request finishing early, so no need to handle
11134 * reset here.
11135 */
11136 return intel_crtc_get_vblank_counter(crtc) != work->flip_queued_vblank;
6b95a207
KH
11137}
11138
51cbaf01
ML
11139
11140static bool pageflip_finished(struct intel_crtc *crtc,
11141 struct intel_flip_work *work)
11142{
11143 if (!atomic_read(&work->pending))
11144 return false;
11145
11146 smp_rmb();
11147
5a21b665
DV
11148 if (is_mmio_work(work))
11149 return __pageflip_finished_mmio(crtc, work);
11150 else
11151 return __pageflip_finished_cs(crtc, work);
11152}
11153
11154void intel_finish_page_flip_cs(struct drm_i915_private *dev_priv, int pipe)
11155{
11156 struct drm_device *dev = dev_priv->dev;
11157 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11158 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11159 struct intel_flip_work *work;
11160 unsigned long flags;
11161
11162 /* Ignore early vblank irqs */
11163 if (!crtc)
11164 return;
11165
51cbaf01 11166 /*
5a21b665
DV
11167 * This is called both by irq handlers and the reset code (to complete
11168 * lost pageflips) so needs the full irqsave spinlocks.
51cbaf01 11169 */
5a21b665
DV
11170 spin_lock_irqsave(&dev->event_lock, flags);
11171 work = intel_crtc->flip_work;
11172
11173 if (work != NULL &&
11174 !is_mmio_work(work) &&
11175 pageflip_finished(intel_crtc, work))
11176 page_flip_completed(intel_crtc);
11177
11178 spin_unlock_irqrestore(&dev->event_lock, flags);
75f7f3ec
VS
11179}
11180
51cbaf01 11181void intel_finish_page_flip_mmio(struct drm_i915_private *dev_priv, int pipe)
6b95a207 11182{
91d14251 11183 struct drm_device *dev = dev_priv->dev;
5251f04e
ML
11184 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11185 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
51cbaf01 11186 struct intel_flip_work *work;
6b95a207
KH
11187 unsigned long flags;
11188
5251f04e
ML
11189 /* Ignore early vblank irqs */
11190 if (!crtc)
11191 return;
f326038a
DV
11192
11193 /*
11194 * This is called both by irq handlers and the reset code (to complete
11195 * lost pageflips) so needs the full irqsave spinlocks.
e7d841ca 11196 */
6b95a207 11197 spin_lock_irqsave(&dev->event_lock, flags);
5a21b665 11198 work = intel_crtc->flip_work;
5251f04e 11199
5a21b665
DV
11200 if (work != NULL &&
11201 is_mmio_work(work) &&
11202 pageflip_finished(intel_crtc, work))
11203 page_flip_completed(intel_crtc);
5251f04e 11204
6b95a207
KH
11205 spin_unlock_irqrestore(&dev->event_lock, flags);
11206}
11207
5a21b665
DV
11208static inline void intel_mark_page_flip_active(struct intel_crtc *crtc,
11209 struct intel_flip_work *work)
84c33a64 11210{
5a21b665 11211 work->flip_queued_vblank = intel_crtc_get_vblank_counter(crtc);
84c33a64 11212
5a21b665
DV
11213 /* Ensure that the work item is consistent when activating it ... */
11214 smp_mb__before_atomic();
11215 atomic_set(&work->pending, 1);
11216}
a6747b73 11217
5a21b665
DV
11218static int intel_gen2_queue_flip(struct drm_device *dev,
11219 struct drm_crtc *crtc,
11220 struct drm_framebuffer *fb,
11221 struct drm_i915_gem_object *obj,
11222 struct drm_i915_gem_request *req,
11223 uint32_t flags)
11224{
11225 struct intel_engine_cs *engine = req->engine;
11226 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11227 u32 flip_mask;
11228 int ret;
143f73b3 11229
5a21b665
DV
11230 ret = intel_ring_begin(req, 6);
11231 if (ret)
11232 return ret;
143f73b3 11233
5a21b665
DV
11234 /* Can't queue multiple flips, so wait for the previous
11235 * one to finish before executing the next.
11236 */
11237 if (intel_crtc->plane)
11238 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11239 else
11240 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11241 intel_ring_emit(engine, MI_WAIT_FOR_EVENT | flip_mask);
11242 intel_ring_emit(engine, MI_NOOP);
11243 intel_ring_emit(engine, MI_DISPLAY_FLIP |
11244 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11245 intel_ring_emit(engine, fb->pitches[0]);
11246 intel_ring_emit(engine, intel_crtc->flip_work->gtt_offset);
11247 intel_ring_emit(engine, 0); /* aux display base address, unused */
143f73b3 11248
5a21b665
DV
11249 return 0;
11250}
84c33a64 11251
5a21b665
DV
11252static int intel_gen3_queue_flip(struct drm_device *dev,
11253 struct drm_crtc *crtc,
11254 struct drm_framebuffer *fb,
11255 struct drm_i915_gem_object *obj,
11256 struct drm_i915_gem_request *req,
11257 uint32_t flags)
11258{
11259 struct intel_engine_cs *engine = req->engine;
11260 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11261 u32 flip_mask;
11262 int ret;
d55dbd06 11263
5a21b665
DV
11264 ret = intel_ring_begin(req, 6);
11265 if (ret)
11266 return ret;
d55dbd06 11267
5a21b665
DV
11268 if (intel_crtc->plane)
11269 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11270 else
11271 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11272 intel_ring_emit(engine, MI_WAIT_FOR_EVENT | flip_mask);
11273 intel_ring_emit(engine, MI_NOOP);
11274 intel_ring_emit(engine, MI_DISPLAY_FLIP_I915 |
11275 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11276 intel_ring_emit(engine, fb->pitches[0]);
11277 intel_ring_emit(engine, intel_crtc->flip_work->gtt_offset);
11278 intel_ring_emit(engine, MI_NOOP);
fd8e058a 11279
5a21b665
DV
11280 return 0;
11281}
84c33a64 11282
5a21b665
DV
11283static int intel_gen4_queue_flip(struct drm_device *dev,
11284 struct drm_crtc *crtc,
11285 struct drm_framebuffer *fb,
11286 struct drm_i915_gem_object *obj,
11287 struct drm_i915_gem_request *req,
11288 uint32_t flags)
11289{
11290 struct intel_engine_cs *engine = req->engine;
11291 struct drm_i915_private *dev_priv = dev->dev_private;
11292 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11293 uint32_t pf, pipesrc;
11294 int ret;
143f73b3 11295
5a21b665
DV
11296 ret = intel_ring_begin(req, 4);
11297 if (ret)
11298 return ret;
143f73b3 11299
5a21b665
DV
11300 /* i965+ uses the linear or tiled offsets from the
11301 * Display Registers (which do not change across a page-flip)
11302 * so we need only reprogram the base address.
11303 */
11304 intel_ring_emit(engine, MI_DISPLAY_FLIP |
11305 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11306 intel_ring_emit(engine, fb->pitches[0]);
11307 intel_ring_emit(engine, intel_crtc->flip_work->gtt_offset |
11308 obj->tiling_mode);
11309
11310 /* XXX Enabling the panel-fitter across page-flip is so far
11311 * untested on non-native modes, so ignore it for now.
11312 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11313 */
11314 pf = 0;
11315 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11316 intel_ring_emit(engine, pf | pipesrc);
143f73b3 11317
5a21b665 11318 return 0;
8c9f3aaf
JB
11319}
11320
5a21b665
DV
11321static int intel_gen6_queue_flip(struct drm_device *dev,
11322 struct drm_crtc *crtc,
11323 struct drm_framebuffer *fb,
11324 struct drm_i915_gem_object *obj,
11325 struct drm_i915_gem_request *req,
11326 uint32_t flags)
da20eabd 11327{
5a21b665
DV
11328 struct intel_engine_cs *engine = req->engine;
11329 struct drm_i915_private *dev_priv = dev->dev_private;
11330 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11331 uint32_t pf, pipesrc;
11332 int ret;
d21fbe87 11333
5a21b665
DV
11334 ret = intel_ring_begin(req, 4);
11335 if (ret)
11336 return ret;
92826fcd 11337
5a21b665
DV
11338 intel_ring_emit(engine, MI_DISPLAY_FLIP |
11339 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11340 intel_ring_emit(engine, fb->pitches[0] | obj->tiling_mode);
11341 intel_ring_emit(engine, intel_crtc->flip_work->gtt_offset);
92826fcd 11342
5a21b665
DV
11343 /* Contrary to the suggestions in the documentation,
11344 * "Enable Panel Fitter" does not seem to be required when page
11345 * flipping with a non-native mode, and worse causes a normal
11346 * modeset to fail.
11347 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11348 */
11349 pf = 0;
11350 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11351 intel_ring_emit(engine, pf | pipesrc);
7809e5ae 11352
5a21b665 11353 return 0;
7809e5ae
MR
11354}
11355
5a21b665
DV
11356static int intel_gen7_queue_flip(struct drm_device *dev,
11357 struct drm_crtc *crtc,
11358 struct drm_framebuffer *fb,
11359 struct drm_i915_gem_object *obj,
11360 struct drm_i915_gem_request *req,
11361 uint32_t flags)
d21fbe87 11362{
5a21b665
DV
11363 struct intel_engine_cs *engine = req->engine;
11364 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11365 uint32_t plane_bit = 0;
11366 int len, ret;
d21fbe87 11367
5a21b665
DV
11368 switch (intel_crtc->plane) {
11369 case PLANE_A:
11370 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11371 break;
11372 case PLANE_B:
11373 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11374 break;
11375 case PLANE_C:
11376 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11377 break;
11378 default:
11379 WARN_ONCE(1, "unknown plane in flip command\n");
11380 return -ENODEV;
11381 }
11382
11383 len = 4;
11384 if (engine->id == RCS) {
11385 len += 6;
11386 /*
11387 * On Gen 8, SRM is now taking an extra dword to accommodate
11388 * 48bits addresses, and we need a NOOP for the batch size to
11389 * stay even.
11390 */
11391 if (IS_GEN8(dev))
11392 len += 2;
11393 }
11394
11395 /*
11396 * BSpec MI_DISPLAY_FLIP for IVB:
11397 * "The full packet must be contained within the same cache line."
11398 *
11399 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11400 * cacheline, if we ever start emitting more commands before
11401 * the MI_DISPLAY_FLIP we may need to first emit everything else,
11402 * then do the cacheline alignment, and finally emit the
11403 * MI_DISPLAY_FLIP.
11404 */
11405 ret = intel_ring_cacheline_align(req);
11406 if (ret)
11407 return ret;
11408
11409 ret = intel_ring_begin(req, len);
11410 if (ret)
11411 return ret;
11412
11413 /* Unmask the flip-done completion message. Note that the bspec says that
11414 * we should do this for both the BCS and RCS, and that we must not unmask
11415 * more than one flip event at any time (or ensure that one flip message
11416 * can be sent by waiting for flip-done prior to queueing new flips).
11417 * Experimentation says that BCS works despite DERRMR masking all
11418 * flip-done completion events and that unmasking all planes at once
11419 * for the RCS also doesn't appear to drop events. Setting the DERRMR
11420 * to zero does lead to lockups within MI_DISPLAY_FLIP.
11421 */
11422 if (engine->id == RCS) {
11423 intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
11424 intel_ring_emit_reg(engine, DERRMR);
11425 intel_ring_emit(engine, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11426 DERRMR_PIPEB_PRI_FLIP_DONE |
11427 DERRMR_PIPEC_PRI_FLIP_DONE));
11428 if (IS_GEN8(dev))
11429 intel_ring_emit(engine, MI_STORE_REGISTER_MEM_GEN8 |
11430 MI_SRM_LRM_GLOBAL_GTT);
11431 else
11432 intel_ring_emit(engine, MI_STORE_REGISTER_MEM |
11433 MI_SRM_LRM_GLOBAL_GTT);
11434 intel_ring_emit_reg(engine, DERRMR);
11435 intel_ring_emit(engine, engine->scratch.gtt_offset + 256);
11436 if (IS_GEN8(dev)) {
11437 intel_ring_emit(engine, 0);
11438 intel_ring_emit(engine, MI_NOOP);
11439 }
11440 }
11441
11442 intel_ring_emit(engine, MI_DISPLAY_FLIP_I915 | plane_bit);
11443 intel_ring_emit(engine, (fb->pitches[0] | obj->tiling_mode));
11444 intel_ring_emit(engine, intel_crtc->flip_work->gtt_offset);
11445 intel_ring_emit(engine, (MI_NOOP));
11446
11447 return 0;
11448}
11449
11450static bool use_mmio_flip(struct intel_engine_cs *engine,
11451 struct drm_i915_gem_object *obj)
11452{
c37efb99
CW
11453 struct reservation_object *resv;
11454
5a21b665
DV
11455 /*
11456 * This is not being used for older platforms, because
11457 * non-availability of flip done interrupt forces us to use
11458 * CS flips. Older platforms derive flip done using some clever
11459 * tricks involving the flip_pending status bits and vblank irqs.
11460 * So using MMIO flips there would disrupt this mechanism.
11461 */
11462
11463 if (engine == NULL)
11464 return true;
11465
11466 if (INTEL_GEN(engine->i915) < 5)
11467 return false;
11468
11469 if (i915.use_mmio_flip < 0)
11470 return false;
11471 else if (i915.use_mmio_flip > 0)
11472 return true;
11473 else if (i915.enable_execlists)
11474 return true;
c37efb99
CW
11475
11476 resv = i915_gem_object_get_dmabuf_resv(obj);
11477 if (resv && !reservation_object_test_signaled_rcu(resv, false))
5a21b665 11478 return true;
c37efb99
CW
11479
11480 return engine != i915_gem_request_get_engine(obj->last_write_req);
5a21b665
DV
11481}
11482
11483static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
11484 unsigned int rotation,
11485 struct intel_flip_work *work)
11486{
11487 struct drm_device *dev = intel_crtc->base.dev;
11488 struct drm_i915_private *dev_priv = dev->dev_private;
11489 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11490 const enum pipe pipe = intel_crtc->pipe;
11491 u32 ctl, stride, tile_height;
11492
11493 ctl = I915_READ(PLANE_CTL(pipe, 0));
11494 ctl &= ~PLANE_CTL_TILED_MASK;
11495 switch (fb->modifier[0]) {
11496 case DRM_FORMAT_MOD_NONE:
11497 break;
11498 case I915_FORMAT_MOD_X_TILED:
11499 ctl |= PLANE_CTL_TILED_X;
11500 break;
11501 case I915_FORMAT_MOD_Y_TILED:
11502 ctl |= PLANE_CTL_TILED_Y;
11503 break;
11504 case I915_FORMAT_MOD_Yf_TILED:
11505 ctl |= PLANE_CTL_TILED_YF;
11506 break;
11507 default:
11508 MISSING_CASE(fb->modifier[0]);
11509 }
11510
11511 /*
11512 * The stride is either expressed as a multiple of 64 bytes chunks for
11513 * linear buffers or in number of tiles for tiled buffers.
11514 */
11515 if (intel_rotation_90_or_270(rotation)) {
11516 /* stride = Surface height in tiles */
11517 tile_height = intel_tile_height(dev_priv, fb->modifier[0], 0);
11518 stride = DIV_ROUND_UP(fb->height, tile_height);
11519 } else {
11520 stride = fb->pitches[0] /
11521 intel_fb_stride_alignment(dev_priv, fb->modifier[0],
11522 fb->pixel_format);
11523 }
11524
11525 /*
11526 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11527 * PLANE_SURF updates, the update is then guaranteed to be atomic.
11528 */
11529 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11530 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11531
11532 I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
11533 POSTING_READ(PLANE_SURF(pipe, 0));
11534}
11535
11536static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
11537 struct intel_flip_work *work)
11538{
11539 struct drm_device *dev = intel_crtc->base.dev;
11540 struct drm_i915_private *dev_priv = dev->dev_private;
11541 struct intel_framebuffer *intel_fb =
11542 to_intel_framebuffer(intel_crtc->base.primary->fb);
11543 struct drm_i915_gem_object *obj = intel_fb->obj;
11544 i915_reg_t reg = DSPCNTR(intel_crtc->plane);
11545 u32 dspcntr;
11546
11547 dspcntr = I915_READ(reg);
11548
11549 if (obj->tiling_mode != I915_TILING_NONE)
11550 dspcntr |= DISPPLANE_TILED;
11551 else
11552 dspcntr &= ~DISPPLANE_TILED;
11553
11554 I915_WRITE(reg, dspcntr);
11555
11556 I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
11557 POSTING_READ(DSPSURF(intel_crtc->plane));
11558}
11559
11560static void intel_mmio_flip_work_func(struct work_struct *w)
11561{
11562 struct intel_flip_work *work =
11563 container_of(w, struct intel_flip_work, mmio_work);
11564 struct intel_crtc *crtc = to_intel_crtc(work->crtc);
11565 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11566 struct intel_framebuffer *intel_fb =
11567 to_intel_framebuffer(crtc->base.primary->fb);
11568 struct drm_i915_gem_object *obj = intel_fb->obj;
c37efb99 11569 struct reservation_object *resv;
5a21b665
DV
11570
11571 if (work->flip_queued_req)
11572 WARN_ON(__i915_wait_request(work->flip_queued_req,
11573 false, NULL,
11574 &dev_priv->rps.mmioflips));
11575
11576 /* For framebuffer backed by dmabuf, wait for fence */
c37efb99
CW
11577 resv = i915_gem_object_get_dmabuf_resv(obj);
11578 if (resv)
11579 WARN_ON(reservation_object_wait_timeout_rcu(resv, false, false,
5a21b665
DV
11580 MAX_SCHEDULE_TIMEOUT) < 0);
11581
11582 intel_pipe_update_start(crtc);
11583
11584 if (INTEL_GEN(dev_priv) >= 9)
11585 skl_do_mmio_flip(crtc, work->rotation, work);
11586 else
11587 /* use_mmio_flip() retricts MMIO flips to ilk+ */
11588 ilk_do_mmio_flip(crtc, work);
11589
11590 intel_pipe_update_end(crtc, work);
11591}
11592
11593static int intel_default_queue_flip(struct drm_device *dev,
11594 struct drm_crtc *crtc,
11595 struct drm_framebuffer *fb,
11596 struct drm_i915_gem_object *obj,
11597 struct drm_i915_gem_request *req,
11598 uint32_t flags)
11599{
11600 return -ENODEV;
11601}
11602
11603static bool __pageflip_stall_check_cs(struct drm_i915_private *dev_priv,
11604 struct intel_crtc *intel_crtc,
11605 struct intel_flip_work *work)
11606{
11607 u32 addr, vblank;
11608
11609 if (!atomic_read(&work->pending))
11610 return false;
11611
11612 smp_rmb();
11613
11614 vblank = intel_crtc_get_vblank_counter(intel_crtc);
11615 if (work->flip_ready_vblank == 0) {
11616 if (work->flip_queued_req &&
11617 !i915_gem_request_completed(work->flip_queued_req, true))
11618 return false;
11619
11620 work->flip_ready_vblank = vblank;
11621 }
11622
11623 if (vblank - work->flip_ready_vblank < 3)
11624 return false;
11625
11626 /* Potential stall - if we see that the flip has happened,
11627 * assume a missed interrupt. */
11628 if (INTEL_GEN(dev_priv) >= 4)
11629 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11630 else
11631 addr = I915_READ(DSPADDR(intel_crtc->plane));
11632
11633 /* There is a potential issue here with a false positive after a flip
11634 * to the same address. We could address this by checking for a
11635 * non-incrementing frame counter.
11636 */
11637 return addr == work->gtt_offset;
11638}
11639
11640void intel_check_page_flip(struct drm_i915_private *dev_priv, int pipe)
11641{
11642 struct drm_device *dev = dev_priv->dev;
11643 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11644 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11645 struct intel_flip_work *work;
11646
11647 WARN_ON(!in_interrupt());
11648
11649 if (crtc == NULL)
11650 return;
11651
11652 spin_lock(&dev->event_lock);
11653 work = intel_crtc->flip_work;
11654
11655 if (work != NULL && !is_mmio_work(work) &&
11656 __pageflip_stall_check_cs(dev_priv, intel_crtc, work)) {
11657 WARN_ONCE(1,
11658 "Kicking stuck page flip: queued at %d, now %d\n",
11659 work->flip_queued_vblank, intel_crtc_get_vblank_counter(intel_crtc));
11660 page_flip_completed(intel_crtc);
11661 work = NULL;
11662 }
11663
11664 if (work != NULL && !is_mmio_work(work) &&
11665 intel_crtc_get_vblank_counter(intel_crtc) - work->flip_queued_vblank > 1)
11666 intel_queue_rps_boost_for_request(work->flip_queued_req);
11667 spin_unlock(&dev->event_lock);
11668}
11669
11670static int intel_crtc_page_flip(struct drm_crtc *crtc,
11671 struct drm_framebuffer *fb,
11672 struct drm_pending_vblank_event *event,
11673 uint32_t page_flip_flags)
11674{
11675 struct drm_device *dev = crtc->dev;
11676 struct drm_i915_private *dev_priv = dev->dev_private;
11677 struct drm_framebuffer *old_fb = crtc->primary->fb;
11678 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11679 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11680 struct drm_plane *primary = crtc->primary;
11681 enum pipe pipe = intel_crtc->pipe;
11682 struct intel_flip_work *work;
11683 struct intel_engine_cs *engine;
11684 bool mmio_flip;
11685 struct drm_i915_gem_request *request = NULL;
11686 int ret;
11687
11688 /*
11689 * drm_mode_page_flip_ioctl() should already catch this, but double
11690 * check to be safe. In the future we may enable pageflipping from
11691 * a disabled primary plane.
11692 */
11693 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11694 return -EBUSY;
11695
11696 /* Can't change pixel format via MI display flips. */
11697 if (fb->pixel_format != crtc->primary->fb->pixel_format)
11698 return -EINVAL;
11699
11700 /*
11701 * TILEOFF/LINOFF registers can't be changed via MI display flips.
11702 * Note that pitch changes could also affect these register.
11703 */
11704 if (INTEL_INFO(dev)->gen > 3 &&
11705 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11706 fb->pitches[0] != crtc->primary->fb->pitches[0]))
11707 return -EINVAL;
11708
11709 if (i915_terminally_wedged(&dev_priv->gpu_error))
11710 goto out_hang;
11711
11712 work = kzalloc(sizeof(*work), GFP_KERNEL);
11713 if (work == NULL)
11714 return -ENOMEM;
11715
11716 work->event = event;
11717 work->crtc = crtc;
11718 work->old_fb = old_fb;
11719 INIT_WORK(&work->unpin_work, intel_unpin_work_fn);
11720
11721 ret = drm_crtc_vblank_get(crtc);
11722 if (ret)
11723 goto free_work;
11724
11725 /* We borrow the event spin lock for protecting flip_work */
11726 spin_lock_irq(&dev->event_lock);
11727 if (intel_crtc->flip_work) {
11728 /* Before declaring the flip queue wedged, check if
11729 * the hardware completed the operation behind our backs.
11730 */
11731 if (pageflip_finished(intel_crtc, intel_crtc->flip_work)) {
11732 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11733 page_flip_completed(intel_crtc);
11734 } else {
11735 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
11736 spin_unlock_irq(&dev->event_lock);
11737
11738 drm_crtc_vblank_put(crtc);
11739 kfree(work);
11740 return -EBUSY;
11741 }
11742 }
11743 intel_crtc->flip_work = work;
11744 spin_unlock_irq(&dev->event_lock);
11745
11746 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11747 flush_workqueue(dev_priv->wq);
11748
11749 /* Reference the objects for the scheduled work. */
11750 drm_framebuffer_reference(work->old_fb);
11751 drm_gem_object_reference(&obj->base);
11752
11753 crtc->primary->fb = fb;
11754 update_state_fb(crtc->primary);
faf68d92
ML
11755
11756 intel_fbc_pre_update(intel_crtc, intel_crtc->config,
11757 to_intel_plane_state(primary->state));
5a21b665
DV
11758
11759 work->pending_flip_obj = obj;
11760
11761 ret = i915_mutex_lock_interruptible(dev);
11762 if (ret)
11763 goto cleanup;
11764
11765 intel_crtc->reset_counter = i915_reset_counter(&dev_priv->gpu_error);
11766 if (__i915_reset_in_progress_or_wedged(intel_crtc->reset_counter)) {
11767 ret = -EIO;
11768 goto cleanup;
11769 }
11770
11771 atomic_inc(&intel_crtc->unpin_work_count);
11772
11773 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
11774 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
11775
11776 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
11777 engine = &dev_priv->engine[BCS];
11778 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
11779 /* vlv: DISPLAY_FLIP fails to change tiling */
11780 engine = NULL;
11781 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
11782 engine = &dev_priv->engine[BCS];
11783 } else if (INTEL_INFO(dev)->gen >= 7) {
11784 engine = i915_gem_request_get_engine(obj->last_write_req);
11785 if (engine == NULL || engine->id != RCS)
11786 engine = &dev_priv->engine[BCS];
11787 } else {
11788 engine = &dev_priv->engine[RCS];
11789 }
11790
11791 mmio_flip = use_mmio_flip(engine, obj);
11792
11793 /* When using CS flips, we want to emit semaphores between rings.
11794 * However, when using mmio flips we will create a task to do the
11795 * synchronisation, so all we want here is to pin the framebuffer
11796 * into the display plane and skip any waits.
11797 */
11798 if (!mmio_flip) {
11799 ret = i915_gem_object_sync(obj, engine, &request);
11800 if (!ret && !request) {
11801 request = i915_gem_request_alloc(engine, NULL);
11802 ret = PTR_ERR_OR_ZERO(request);
11803 }
11804
11805 if (ret)
11806 goto cleanup_pending;
11807 }
11808
11809 ret = intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
11810 if (ret)
11811 goto cleanup_pending;
11812
11813 work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary),
11814 obj, 0);
11815 work->gtt_offset += intel_crtc->dspaddr_offset;
11816 work->rotation = crtc->primary->state->rotation;
11817
11818 if (mmio_flip) {
11819 INIT_WORK(&work->mmio_work, intel_mmio_flip_work_func);
11820
11821 i915_gem_request_assign(&work->flip_queued_req,
11822 obj->last_write_req);
11823
11824 schedule_work(&work->mmio_work);
11825 } else {
11826 i915_gem_request_assign(&work->flip_queued_req, request);
11827 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
11828 page_flip_flags);
11829 if (ret)
11830 goto cleanup_unpin;
11831
11832 intel_mark_page_flip_active(intel_crtc, work);
11833
11834 i915_add_request_no_flush(request);
11835 }
11836
11837 i915_gem_track_fb(intel_fb_obj(old_fb), obj,
11838 to_intel_plane(primary)->frontbuffer_bit);
11839 mutex_unlock(&dev->struct_mutex);
11840
11841 intel_frontbuffer_flip_prepare(dev,
11842 to_intel_plane(primary)->frontbuffer_bit);
11843
11844 trace_i915_flip_request(intel_crtc->plane, obj);
11845
11846 return 0;
11847
11848cleanup_unpin:
11849 intel_unpin_fb_obj(fb, crtc->primary->state->rotation);
11850cleanup_pending:
11851 if (!IS_ERR_OR_NULL(request))
11852 i915_add_request_no_flush(request);
11853 atomic_dec(&intel_crtc->unpin_work_count);
11854 mutex_unlock(&dev->struct_mutex);
11855cleanup:
11856 crtc->primary->fb = old_fb;
11857 update_state_fb(crtc->primary);
11858
11859 drm_gem_object_unreference_unlocked(&obj->base);
11860 drm_framebuffer_unreference(work->old_fb);
11861
11862 spin_lock_irq(&dev->event_lock);
11863 intel_crtc->flip_work = NULL;
11864 spin_unlock_irq(&dev->event_lock);
11865
11866 drm_crtc_vblank_put(crtc);
11867free_work:
11868 kfree(work);
11869
11870 if (ret == -EIO) {
11871 struct drm_atomic_state *state;
11872 struct drm_plane_state *plane_state;
11873
11874out_hang:
11875 state = drm_atomic_state_alloc(dev);
11876 if (!state)
11877 return -ENOMEM;
11878 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
11879
11880retry:
11881 plane_state = drm_atomic_get_plane_state(state, primary);
11882 ret = PTR_ERR_OR_ZERO(plane_state);
11883 if (!ret) {
11884 drm_atomic_set_fb_for_plane(plane_state, fb);
11885
11886 ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
11887 if (!ret)
11888 ret = drm_atomic_commit(state);
11889 }
11890
11891 if (ret == -EDEADLK) {
11892 drm_modeset_backoff(state->acquire_ctx);
11893 drm_atomic_state_clear(state);
11894 goto retry;
11895 }
11896
11897 if (ret)
11898 drm_atomic_state_free(state);
11899
11900 if (ret == 0 && event) {
11901 spin_lock_irq(&dev->event_lock);
11902 drm_crtc_send_vblank_event(crtc, event);
11903 spin_unlock_irq(&dev->event_lock);
11904 }
11905 }
11906 return ret;
11907}
11908
11909
11910/**
11911 * intel_wm_need_update - Check whether watermarks need updating
11912 * @plane: drm plane
11913 * @state: new plane state
11914 *
11915 * Check current plane state versus the new one to determine whether
11916 * watermarks need to be recalculated.
11917 *
11918 * Returns true or false.
11919 */
11920static bool intel_wm_need_update(struct drm_plane *plane,
11921 struct drm_plane_state *state)
11922{
11923 struct intel_plane_state *new = to_intel_plane_state(state);
11924 struct intel_plane_state *cur = to_intel_plane_state(plane->state);
11925
11926 /* Update watermarks on tiling or size changes. */
11927 if (new->visible != cur->visible)
11928 return true;
11929
11930 if (!cur->base.fb || !new->base.fb)
11931 return false;
11932
11933 if (cur->base.fb->modifier[0] != new->base.fb->modifier[0] ||
11934 cur->base.rotation != new->base.rotation ||
11935 drm_rect_width(&new->src) != drm_rect_width(&cur->src) ||
11936 drm_rect_height(&new->src) != drm_rect_height(&cur->src) ||
11937 drm_rect_width(&new->dst) != drm_rect_width(&cur->dst) ||
11938 drm_rect_height(&new->dst) != drm_rect_height(&cur->dst))
11939 return true;
11940
11941 return false;
11942}
11943
11944static bool needs_scaling(struct intel_plane_state *state)
11945{
11946 int src_w = drm_rect_width(&state->src) >> 16;
11947 int src_h = drm_rect_height(&state->src) >> 16;
11948 int dst_w = drm_rect_width(&state->dst);
11949 int dst_h = drm_rect_height(&state->dst);
11950
11951 return (src_w != dst_w || src_h != dst_h);
11952}
d21fbe87 11953
da20eabd
ML
11954int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
11955 struct drm_plane_state *plane_state)
11956{
ab1d3a0e 11957 struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
da20eabd
ML
11958 struct drm_crtc *crtc = crtc_state->crtc;
11959 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11960 struct drm_plane *plane = plane_state->plane;
11961 struct drm_device *dev = crtc->dev;
ed4a6a7c 11962 struct drm_i915_private *dev_priv = to_i915(dev);
da20eabd
ML
11963 struct intel_plane_state *old_plane_state =
11964 to_intel_plane_state(plane->state);
da20eabd
ML
11965 bool mode_changed = needs_modeset(crtc_state);
11966 bool was_crtc_enabled = crtc->state->active;
11967 bool is_crtc_enabled = crtc_state->active;
da20eabd
ML
11968 bool turn_off, turn_on, visible, was_visible;
11969 struct drm_framebuffer *fb = plane_state->fb;
78108b7c 11970 int ret;
da20eabd
ML
11971
11972 if (crtc_state && INTEL_INFO(dev)->gen >= 9 &&
11973 plane->type != DRM_PLANE_TYPE_CURSOR) {
11974 ret = skl_update_scaler_plane(
11975 to_intel_crtc_state(crtc_state),
11976 to_intel_plane_state(plane_state));
11977 if (ret)
11978 return ret;
11979 }
11980
da20eabd
ML
11981 was_visible = old_plane_state->visible;
11982 visible = to_intel_plane_state(plane_state)->visible;
11983
11984 if (!was_crtc_enabled && WARN_ON(was_visible))
11985 was_visible = false;
11986
35c08f43
ML
11987 /*
11988 * Visibility is calculated as if the crtc was on, but
11989 * after scaler setup everything depends on it being off
11990 * when the crtc isn't active.
f818ffea
VS
11991 *
11992 * FIXME this is wrong for watermarks. Watermarks should also
11993 * be computed as if the pipe would be active. Perhaps move
11994 * per-plane wm computation to the .check_plane() hook, and
11995 * only combine the results from all planes in the current place?
35c08f43
ML
11996 */
11997 if (!is_crtc_enabled)
11998 to_intel_plane_state(plane_state)->visible = visible = false;
da20eabd
ML
11999
12000 if (!was_visible && !visible)
12001 return 0;
12002
e8861675
ML
12003 if (fb != old_plane_state->base.fb)
12004 pipe_config->fb_changed = true;
12005
da20eabd
ML
12006 turn_off = was_visible && (!visible || mode_changed);
12007 turn_on = visible && (!was_visible || mode_changed);
12008
72660ce0 12009 DRM_DEBUG_ATOMIC("[CRTC:%d:%s] has [PLANE:%d:%s] with fb %i\n",
78108b7c
VS
12010 intel_crtc->base.base.id,
12011 intel_crtc->base.name,
72660ce0
VS
12012 plane->base.id, plane->name,
12013 fb ? fb->base.id : -1);
da20eabd 12014
72660ce0
VS
12015 DRM_DEBUG_ATOMIC("[PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n",
12016 plane->base.id, plane->name,
12017 was_visible, visible,
da20eabd
ML
12018 turn_off, turn_on, mode_changed);
12019
caed361d
VS
12020 if (turn_on) {
12021 pipe_config->update_wm_pre = true;
12022
12023 /* must disable cxsr around plane enable/disable */
12024 if (plane->type != DRM_PLANE_TYPE_CURSOR)
12025 pipe_config->disable_cxsr = true;
12026 } else if (turn_off) {
12027 pipe_config->update_wm_post = true;
92826fcd 12028
852eb00d 12029 /* must disable cxsr around plane enable/disable */
e8861675 12030 if (plane->type != DRM_PLANE_TYPE_CURSOR)
ab1d3a0e 12031 pipe_config->disable_cxsr = true;
852eb00d 12032 } else if (intel_wm_need_update(plane, plane_state)) {
caed361d
VS
12033 /* FIXME bollocks */
12034 pipe_config->update_wm_pre = true;
12035 pipe_config->update_wm_post = true;
852eb00d 12036 }
da20eabd 12037
ed4a6a7c 12038 /* Pre-gen9 platforms need two-step watermark updates */
caed361d
VS
12039 if ((pipe_config->update_wm_pre || pipe_config->update_wm_post) &&
12040 INTEL_INFO(dev)->gen < 9 && dev_priv->display.optimize_watermarks)
ed4a6a7c
MR
12041 to_intel_crtc_state(crtc_state)->wm.need_postvbl_update = true;
12042
8be6ca85 12043 if (visible || was_visible)
cd202f69 12044 pipe_config->fb_bits |= to_intel_plane(plane)->frontbuffer_bit;
a9ff8714 12045
31ae71fc
ML
12046 /*
12047 * WaCxSRDisabledForSpriteScaling:ivb
12048 *
12049 * cstate->update_wm was already set above, so this flag will
12050 * take effect when we commit and program watermarks.
12051 */
12052 if (plane->type == DRM_PLANE_TYPE_OVERLAY && IS_IVYBRIDGE(dev) &&
12053 needs_scaling(to_intel_plane_state(plane_state)) &&
12054 !needs_scaling(old_plane_state))
12055 pipe_config->disable_lp_wm = true;
d21fbe87 12056
da20eabd
ML
12057 return 0;
12058}
12059
6d3a1ce7
ML
12060static bool encoders_cloneable(const struct intel_encoder *a,
12061 const struct intel_encoder *b)
12062{
12063 /* masks could be asymmetric, so check both ways */
12064 return a == b || (a->cloneable & (1 << b->type) &&
12065 b->cloneable & (1 << a->type));
12066}
12067
12068static bool check_single_encoder_cloning(struct drm_atomic_state *state,
12069 struct intel_crtc *crtc,
12070 struct intel_encoder *encoder)
12071{
12072 struct intel_encoder *source_encoder;
12073 struct drm_connector *connector;
12074 struct drm_connector_state *connector_state;
12075 int i;
12076
12077 for_each_connector_in_state(state, connector, connector_state, i) {
12078 if (connector_state->crtc != &crtc->base)
12079 continue;
12080
12081 source_encoder =
12082 to_intel_encoder(connector_state->best_encoder);
12083 if (!encoders_cloneable(encoder, source_encoder))
12084 return false;
12085 }
12086
12087 return true;
12088}
12089
12090static bool check_encoder_cloning(struct drm_atomic_state *state,
12091 struct intel_crtc *crtc)
12092{
12093 struct intel_encoder *encoder;
12094 struct drm_connector *connector;
12095 struct drm_connector_state *connector_state;
12096 int i;
12097
12098 for_each_connector_in_state(state, connector, connector_state, i) {
12099 if (connector_state->crtc != &crtc->base)
12100 continue;
12101
12102 encoder = to_intel_encoder(connector_state->best_encoder);
12103 if (!check_single_encoder_cloning(state, crtc, encoder))
12104 return false;
12105 }
12106
12107 return true;
12108}
12109
12110static int intel_crtc_atomic_check(struct drm_crtc *crtc,
12111 struct drm_crtc_state *crtc_state)
12112{
cf5a15be 12113 struct drm_device *dev = crtc->dev;
ad421372 12114 struct drm_i915_private *dev_priv = dev->dev_private;
6d3a1ce7 12115 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
cf5a15be
ML
12116 struct intel_crtc_state *pipe_config =
12117 to_intel_crtc_state(crtc_state);
6d3a1ce7 12118 struct drm_atomic_state *state = crtc_state->state;
4d20cd86 12119 int ret;
6d3a1ce7
ML
12120 bool mode_changed = needs_modeset(crtc_state);
12121
12122 if (mode_changed && !check_encoder_cloning(state, intel_crtc)) {
12123 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
12124 return -EINVAL;
12125 }
12126
852eb00d 12127 if (mode_changed && !crtc_state->active)
caed361d 12128 pipe_config->update_wm_post = true;
eddfcbcd 12129
ad421372
ML
12130 if (mode_changed && crtc_state->enable &&
12131 dev_priv->display.crtc_compute_clock &&
8106ddbd 12132 !WARN_ON(pipe_config->shared_dpll)) {
ad421372
ML
12133 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
12134 pipe_config);
12135 if (ret)
12136 return ret;
12137 }
12138
82cf435b
LL
12139 if (crtc_state->color_mgmt_changed) {
12140 ret = intel_color_check(crtc, crtc_state);
12141 if (ret)
12142 return ret;
12143 }
12144
e435d6e5 12145 ret = 0;
86c8bbbe 12146 if (dev_priv->display.compute_pipe_wm) {
e3bddded 12147 ret = dev_priv->display.compute_pipe_wm(pipe_config);
ed4a6a7c
MR
12148 if (ret) {
12149 DRM_DEBUG_KMS("Target pipe watermarks are invalid\n");
12150 return ret;
12151 }
12152 }
12153
12154 if (dev_priv->display.compute_intermediate_wm &&
12155 !to_intel_atomic_state(state)->skip_intermediate_wm) {
12156 if (WARN_ON(!dev_priv->display.compute_pipe_wm))
12157 return 0;
12158
12159 /*
12160 * Calculate 'intermediate' watermarks that satisfy both the
12161 * old state and the new state. We can program these
12162 * immediately.
12163 */
12164 ret = dev_priv->display.compute_intermediate_wm(crtc->dev,
12165 intel_crtc,
12166 pipe_config);
12167 if (ret) {
12168 DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n");
86c8bbbe 12169 return ret;
ed4a6a7c 12170 }
e3d5457c
VS
12171 } else if (dev_priv->display.compute_intermediate_wm) {
12172 if (HAS_PCH_SPLIT(dev_priv) && INTEL_GEN(dev_priv) < 9)
12173 pipe_config->wm.ilk.intermediate = pipe_config->wm.ilk.optimal;
86c8bbbe
MR
12174 }
12175
e435d6e5
ML
12176 if (INTEL_INFO(dev)->gen >= 9) {
12177 if (mode_changed)
12178 ret = skl_update_scaler_crtc(pipe_config);
12179
12180 if (!ret)
12181 ret = intel_atomic_setup_scalers(dev, intel_crtc,
12182 pipe_config);
12183 }
12184
12185 return ret;
6d3a1ce7
ML
12186}
12187
65b38e0d 12188static const struct drm_crtc_helper_funcs intel_helper_funcs = {
f6e5b160 12189 .mode_set_base_atomic = intel_pipe_set_base_atomic,
5a21b665
DV
12190 .atomic_begin = intel_begin_crtc_commit,
12191 .atomic_flush = intel_finish_crtc_commit,
6d3a1ce7 12192 .atomic_check = intel_crtc_atomic_check,
f6e5b160
CW
12193};
12194
d29b2f9d
ACO
12195static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
12196{
12197 struct intel_connector *connector;
12198
12199 for_each_intel_connector(dev, connector) {
8863dc7f
DV
12200 if (connector->base.state->crtc)
12201 drm_connector_unreference(&connector->base);
12202
d29b2f9d
ACO
12203 if (connector->base.encoder) {
12204 connector->base.state->best_encoder =
12205 connector->base.encoder;
12206 connector->base.state->crtc =
12207 connector->base.encoder->crtc;
8863dc7f
DV
12208
12209 drm_connector_reference(&connector->base);
d29b2f9d
ACO
12210 } else {
12211 connector->base.state->best_encoder = NULL;
12212 connector->base.state->crtc = NULL;
12213 }
12214 }
12215}
12216
050f7aeb 12217static void
eba905b2 12218connected_sink_compute_bpp(struct intel_connector *connector,
5cec258b 12219 struct intel_crtc_state *pipe_config)
050f7aeb
DV
12220{
12221 int bpp = pipe_config->pipe_bpp;
12222
12223 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
12224 connector->base.base.id,
c23cc417 12225 connector->base.name);
050f7aeb
DV
12226
12227 /* Don't use an invalid EDID bpc value */
12228 if (connector->base.display_info.bpc &&
12229 connector->base.display_info.bpc * 3 < bpp) {
12230 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
12231 bpp, connector->base.display_info.bpc*3);
12232 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
12233 }
12234
013dd9e0
JN
12235 /* Clamp bpp to default limit on screens without EDID 1.4 */
12236 if (connector->base.display_info.bpc == 0) {
12237 int type = connector->base.connector_type;
12238 int clamp_bpp = 24;
12239
12240 /* Fall back to 18 bpp when DP sink capability is unknown. */
12241 if (type == DRM_MODE_CONNECTOR_DisplayPort ||
12242 type == DRM_MODE_CONNECTOR_eDP)
12243 clamp_bpp = 18;
12244
12245 if (bpp > clamp_bpp) {
12246 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of %d\n",
12247 bpp, clamp_bpp);
12248 pipe_config->pipe_bpp = clamp_bpp;
12249 }
050f7aeb
DV
12250 }
12251}
12252
4e53c2e0 12253static int
050f7aeb 12254compute_baseline_pipe_bpp(struct intel_crtc *crtc,
5cec258b 12255 struct intel_crtc_state *pipe_config)
4e53c2e0 12256{
050f7aeb 12257 struct drm_device *dev = crtc->base.dev;
1486017f 12258 struct drm_atomic_state *state;
da3ced29
ACO
12259 struct drm_connector *connector;
12260 struct drm_connector_state *connector_state;
1486017f 12261 int bpp, i;
4e53c2e0 12262
666a4537 12263 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)))
4e53c2e0 12264 bpp = 10*3;
d328c9d7
DV
12265 else if (INTEL_INFO(dev)->gen >= 5)
12266 bpp = 12*3;
12267 else
12268 bpp = 8*3;
12269
4e53c2e0 12270
4e53c2e0
DV
12271 pipe_config->pipe_bpp = bpp;
12272
1486017f
ACO
12273 state = pipe_config->base.state;
12274
4e53c2e0 12275 /* Clamp display bpp to EDID value */
da3ced29
ACO
12276 for_each_connector_in_state(state, connector, connector_state, i) {
12277 if (connector_state->crtc != &crtc->base)
4e53c2e0
DV
12278 continue;
12279
da3ced29
ACO
12280 connected_sink_compute_bpp(to_intel_connector(connector),
12281 pipe_config);
4e53c2e0
DV
12282 }
12283
12284 return bpp;
12285}
12286
644db711
DV
12287static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
12288{
12289 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
12290 "type: 0x%x flags: 0x%x\n",
1342830c 12291 mode->crtc_clock,
644db711
DV
12292 mode->crtc_hdisplay, mode->crtc_hsync_start,
12293 mode->crtc_hsync_end, mode->crtc_htotal,
12294 mode->crtc_vdisplay, mode->crtc_vsync_start,
12295 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
12296}
12297
c0b03411 12298static void intel_dump_pipe_config(struct intel_crtc *crtc,
5cec258b 12299 struct intel_crtc_state *pipe_config,
c0b03411
DV
12300 const char *context)
12301{
6a60cd87
CK
12302 struct drm_device *dev = crtc->base.dev;
12303 struct drm_plane *plane;
12304 struct intel_plane *intel_plane;
12305 struct intel_plane_state *state;
12306 struct drm_framebuffer *fb;
12307
78108b7c
VS
12308 DRM_DEBUG_KMS("[CRTC:%d:%s]%s config %p for pipe %c\n",
12309 crtc->base.base.id, crtc->base.name,
6a60cd87 12310 context, pipe_config, pipe_name(crtc->pipe));
c0b03411 12311
da205630 12312 DRM_DEBUG_KMS("cpu_transcoder: %s\n", transcoder_name(pipe_config->cpu_transcoder));
c0b03411
DV
12313 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
12314 pipe_config->pipe_bpp, pipe_config->dither);
12315 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12316 pipe_config->has_pch_encoder,
12317 pipe_config->fdi_lanes,
12318 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
12319 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
12320 pipe_config->fdi_m_n.tu);
90a6b7b0 12321 DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
eb14cb74 12322 pipe_config->has_dp_encoder,
90a6b7b0 12323 pipe_config->lane_count,
eb14cb74
VS
12324 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
12325 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
12326 pipe_config->dp_m_n.tu);
b95af8be 12327
90a6b7b0 12328 DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
b95af8be 12329 pipe_config->has_dp_encoder,
90a6b7b0 12330 pipe_config->lane_count,
b95af8be
VK
12331 pipe_config->dp_m2_n2.gmch_m,
12332 pipe_config->dp_m2_n2.gmch_n,
12333 pipe_config->dp_m2_n2.link_m,
12334 pipe_config->dp_m2_n2.link_n,
12335 pipe_config->dp_m2_n2.tu);
12336
55072d19
DV
12337 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12338 pipe_config->has_audio,
12339 pipe_config->has_infoframe);
12340
c0b03411 12341 DRM_DEBUG_KMS("requested mode:\n");
2d112de7 12342 drm_mode_debug_printmodeline(&pipe_config->base.mode);
c0b03411 12343 DRM_DEBUG_KMS("adjusted mode:\n");
2d112de7
ACO
12344 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12345 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
d71b8d4a 12346 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
37327abd
VS
12347 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
12348 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
0ec463d3
TU
12349 DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12350 crtc->num_scalers,
12351 pipe_config->scaler_state.scaler_users,
12352 pipe_config->scaler_state.scaler_id);
c0b03411
DV
12353 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12354 pipe_config->gmch_pfit.control,
12355 pipe_config->gmch_pfit.pgm_ratios,
12356 pipe_config->gmch_pfit.lvds_border_bits);
fd4daa9c 12357 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
c0b03411 12358 pipe_config->pch_pfit.pos,
fd4daa9c
CW
12359 pipe_config->pch_pfit.size,
12360 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
42db64ef 12361 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
cf532bb2 12362 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
6a60cd87 12363
415ff0f6 12364 if (IS_BROXTON(dev)) {
05712c15 12365 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
415ff0f6 12366 "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
c8453338 12367 "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
415ff0f6
TU
12368 pipe_config->ddi_pll_sel,
12369 pipe_config->dpll_hw_state.ebb0,
05712c15 12370 pipe_config->dpll_hw_state.ebb4,
415ff0f6
TU
12371 pipe_config->dpll_hw_state.pll0,
12372 pipe_config->dpll_hw_state.pll1,
12373 pipe_config->dpll_hw_state.pll2,
12374 pipe_config->dpll_hw_state.pll3,
12375 pipe_config->dpll_hw_state.pll6,
12376 pipe_config->dpll_hw_state.pll8,
05712c15 12377 pipe_config->dpll_hw_state.pll9,
c8453338 12378 pipe_config->dpll_hw_state.pll10,
415ff0f6 12379 pipe_config->dpll_hw_state.pcsdw12);
ef11bdb3 12380 } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
415ff0f6
TU
12381 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
12382 "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12383 pipe_config->ddi_pll_sel,
12384 pipe_config->dpll_hw_state.ctrl1,
12385 pipe_config->dpll_hw_state.cfgcr1,
12386 pipe_config->dpll_hw_state.cfgcr2);
12387 } else if (HAS_DDI(dev)) {
1260f07e 12388 DRM_DEBUG_KMS("ddi_pll_sel: 0x%x; dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
415ff0f6 12389 pipe_config->ddi_pll_sel,
00490c22
ML
12390 pipe_config->dpll_hw_state.wrpll,
12391 pipe_config->dpll_hw_state.spll);
415ff0f6
TU
12392 } else {
12393 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12394 "fp0: 0x%x, fp1: 0x%x\n",
12395 pipe_config->dpll_hw_state.dpll,
12396 pipe_config->dpll_hw_state.dpll_md,
12397 pipe_config->dpll_hw_state.fp0,
12398 pipe_config->dpll_hw_state.fp1);
12399 }
12400
6a60cd87
CK
12401 DRM_DEBUG_KMS("planes on this crtc\n");
12402 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12403 intel_plane = to_intel_plane(plane);
12404 if (intel_plane->pipe != crtc->pipe)
12405 continue;
12406
12407 state = to_intel_plane_state(plane->state);
12408 fb = state->base.fb;
12409 if (!fb) {
1d577e02
VS
12410 DRM_DEBUG_KMS("[PLANE:%d:%s] disabled, scaler_id = %d\n",
12411 plane->base.id, plane->name, state->scaler_id);
6a60cd87
CK
12412 continue;
12413 }
12414
1d577e02
VS
12415 DRM_DEBUG_KMS("[PLANE:%d:%s] enabled",
12416 plane->base.id, plane->name);
12417 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = %s",
12418 fb->base.id, fb->width, fb->height,
12419 drm_get_format_name(fb->pixel_format));
12420 DRM_DEBUG_KMS("\tscaler:%d src %dx%d+%d+%d dst %dx%d+%d+%d\n",
12421 state->scaler_id,
12422 state->src.x1 >> 16, state->src.y1 >> 16,
12423 drm_rect_width(&state->src) >> 16,
12424 drm_rect_height(&state->src) >> 16,
12425 state->dst.x1, state->dst.y1,
12426 drm_rect_width(&state->dst),
12427 drm_rect_height(&state->dst));
6a60cd87 12428 }
c0b03411
DV
12429}
12430
5448a00d 12431static bool check_digital_port_conflicts(struct drm_atomic_state *state)
00f0b378 12432{
5448a00d 12433 struct drm_device *dev = state->dev;
da3ced29 12434 struct drm_connector *connector;
00f0b378
VS
12435 unsigned int used_ports = 0;
12436
12437 /*
12438 * Walk the connector list instead of the encoder
12439 * list to detect the problem on ddi platforms
12440 * where there's just one encoder per digital port.
12441 */
0bff4858
VS
12442 drm_for_each_connector(connector, dev) {
12443 struct drm_connector_state *connector_state;
12444 struct intel_encoder *encoder;
12445
12446 connector_state = drm_atomic_get_existing_connector_state(state, connector);
12447 if (!connector_state)
12448 connector_state = connector->state;
12449
5448a00d 12450 if (!connector_state->best_encoder)
00f0b378
VS
12451 continue;
12452
5448a00d
ACO
12453 encoder = to_intel_encoder(connector_state->best_encoder);
12454
12455 WARN_ON(!connector_state->crtc);
00f0b378
VS
12456
12457 switch (encoder->type) {
12458 unsigned int port_mask;
12459 case INTEL_OUTPUT_UNKNOWN:
12460 if (WARN_ON(!HAS_DDI(dev)))
12461 break;
12462 case INTEL_OUTPUT_DISPLAYPORT:
12463 case INTEL_OUTPUT_HDMI:
12464 case INTEL_OUTPUT_EDP:
12465 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12466
12467 /* the same port mustn't appear more than once */
12468 if (used_ports & port_mask)
12469 return false;
12470
12471 used_ports |= port_mask;
12472 default:
12473 break;
12474 }
12475 }
12476
12477 return true;
12478}
12479
83a57153
ACO
12480static void
12481clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12482{
12483 struct drm_crtc_state tmp_state;
663a3640 12484 struct intel_crtc_scaler_state scaler_state;
4978cc93 12485 struct intel_dpll_hw_state dpll_hw_state;
8106ddbd 12486 struct intel_shared_dpll *shared_dpll;
8504c74c 12487 uint32_t ddi_pll_sel;
c4e2d043 12488 bool force_thru;
83a57153 12489
7546a384
ACO
12490 /* FIXME: before the switch to atomic started, a new pipe_config was
12491 * kzalloc'd. Code that depends on any field being zero should be
12492 * fixed, so that the crtc_state can be safely duplicated. For now,
12493 * only fields that are know to not cause problems are preserved. */
12494
83a57153 12495 tmp_state = crtc_state->base;
663a3640 12496 scaler_state = crtc_state->scaler_state;
4978cc93
ACO
12497 shared_dpll = crtc_state->shared_dpll;
12498 dpll_hw_state = crtc_state->dpll_hw_state;
8504c74c 12499 ddi_pll_sel = crtc_state->ddi_pll_sel;
c4e2d043 12500 force_thru = crtc_state->pch_pfit.force_thru;
4978cc93 12501
83a57153 12502 memset(crtc_state, 0, sizeof *crtc_state);
4978cc93 12503
83a57153 12504 crtc_state->base = tmp_state;
663a3640 12505 crtc_state->scaler_state = scaler_state;
4978cc93
ACO
12506 crtc_state->shared_dpll = shared_dpll;
12507 crtc_state->dpll_hw_state = dpll_hw_state;
8504c74c 12508 crtc_state->ddi_pll_sel = ddi_pll_sel;
c4e2d043 12509 crtc_state->pch_pfit.force_thru = force_thru;
83a57153
ACO
12510}
12511
548ee15b 12512static int
b8cecdf5 12513intel_modeset_pipe_config(struct drm_crtc *crtc,
b359283a 12514 struct intel_crtc_state *pipe_config)
ee7b9f93 12515{
b359283a 12516 struct drm_atomic_state *state = pipe_config->base.state;
7758a113 12517 struct intel_encoder *encoder;
da3ced29 12518 struct drm_connector *connector;
0b901879 12519 struct drm_connector_state *connector_state;
d328c9d7 12520 int base_bpp, ret = -EINVAL;
0b901879 12521 int i;
e29c22c0 12522 bool retry = true;
ee7b9f93 12523
83a57153 12524 clear_intel_crtc_state(pipe_config);
7758a113 12525
e143a21c
DV
12526 pipe_config->cpu_transcoder =
12527 (enum transcoder) to_intel_crtc(crtc)->pipe;
b8cecdf5 12528
2960bc9c
ID
12529 /*
12530 * Sanitize sync polarity flags based on requested ones. If neither
12531 * positive or negative polarity is requested, treat this as meaning
12532 * negative polarity.
12533 */
2d112de7 12534 if (!(pipe_config->base.adjusted_mode.flags &
2960bc9c 12535 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
2d112de7 12536 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
2960bc9c 12537
2d112de7 12538 if (!(pipe_config->base.adjusted_mode.flags &
2960bc9c 12539 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
2d112de7 12540 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
2960bc9c 12541
d328c9d7
DV
12542 base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12543 pipe_config);
12544 if (base_bpp < 0)
4e53c2e0
DV
12545 goto fail;
12546
e41a56be
VS
12547 /*
12548 * Determine the real pipe dimensions. Note that stereo modes can
12549 * increase the actual pipe size due to the frame doubling and
12550 * insertion of additional space for blanks between the frame. This
12551 * is stored in the crtc timings. We use the requested mode to do this
12552 * computation to clearly distinguish it from the adjusted mode, which
12553 * can be changed by the connectors in the below retry loop.
12554 */
2d112de7 12555 drm_crtc_get_hv_timing(&pipe_config->base.mode,
ecb7e16b
GP
12556 &pipe_config->pipe_src_w,
12557 &pipe_config->pipe_src_h);
e41a56be 12558
e29c22c0 12559encoder_retry:
ef1b460d 12560 /* Ensure the port clock defaults are reset when retrying. */
ff9a6750 12561 pipe_config->port_clock = 0;
ef1b460d 12562 pipe_config->pixel_multiplier = 1;
ff9a6750 12563
135c81b8 12564 /* Fill in default crtc timings, allow encoders to overwrite them. */
2d112de7
ACO
12565 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12566 CRTC_STEREO_DOUBLE);
135c81b8 12567
7758a113
DV
12568 /* Pass our mode to the connectors and the CRTC to give them a chance to
12569 * adjust it according to limitations or connector properties, and also
12570 * a chance to reject the mode entirely.
47f1c6c9 12571 */
da3ced29 12572 for_each_connector_in_state(state, connector, connector_state, i) {
0b901879 12573 if (connector_state->crtc != crtc)
7758a113 12574 continue;
7ae89233 12575
0b901879
ACO
12576 encoder = to_intel_encoder(connector_state->best_encoder);
12577
efea6e8e
DV
12578 if (!(encoder->compute_config(encoder, pipe_config))) {
12579 DRM_DEBUG_KMS("Encoder config failure\n");
7758a113
DV
12580 goto fail;
12581 }
ee7b9f93 12582 }
47f1c6c9 12583
ff9a6750
DV
12584 /* Set default port clock if not overwritten by the encoder. Needs to be
12585 * done afterwards in case the encoder adjusts the mode. */
12586 if (!pipe_config->port_clock)
2d112de7 12587 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
241bfc38 12588 * pipe_config->pixel_multiplier;
ff9a6750 12589
a43f6e0f 12590 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
e29c22c0 12591 if (ret < 0) {
7758a113
DV
12592 DRM_DEBUG_KMS("CRTC fixup failed\n");
12593 goto fail;
ee7b9f93 12594 }
e29c22c0
DV
12595
12596 if (ret == RETRY) {
12597 if (WARN(!retry, "loop in pipe configuration computation\n")) {
12598 ret = -EINVAL;
12599 goto fail;
12600 }
12601
12602 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12603 retry = false;
12604 goto encoder_retry;
12605 }
12606
e8fa4270
DV
12607 /* Dithering seems to not pass-through bits correctly when it should, so
12608 * only enable it on 6bpc panels. */
12609 pipe_config->dither = pipe_config->pipe_bpp == 6*3;
62f0ace5 12610 DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
d328c9d7 12611 base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
4e53c2e0 12612
7758a113 12613fail:
548ee15b 12614 return ret;
ee7b9f93 12615}
47f1c6c9 12616
ea9d758d 12617static void
4740b0f2 12618intel_modeset_update_crtc_state(struct drm_atomic_state *state)
ea9d758d 12619{
0a9ab303
ACO
12620 struct drm_crtc *crtc;
12621 struct drm_crtc_state *crtc_state;
8a75d157 12622 int i;
ea9d758d 12623
7668851f 12624 /* Double check state. */
8a75d157 12625 for_each_crtc_in_state(state, crtc, crtc_state, i) {
3cb480bc 12626 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
fc467a22
ML
12627
12628 /* Update hwmode for vblank functions */
12629 if (crtc->state->active)
12630 crtc->hwmode = crtc->state->adjusted_mode;
12631 else
12632 crtc->hwmode.crtc_clock = 0;
61067a5e
ML
12633
12634 /*
12635 * Update legacy state to satisfy fbc code. This can
12636 * be removed when fbc uses the atomic state.
12637 */
12638 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
12639 struct drm_plane_state *plane_state = crtc->primary->state;
12640
12641 crtc->primary->fb = plane_state->fb;
12642 crtc->x = plane_state->src_x >> 16;
12643 crtc->y = plane_state->src_y >> 16;
12644 }
ea9d758d 12645 }
ea9d758d
DV
12646}
12647
3bd26263 12648static bool intel_fuzzy_clock_check(int clock1, int clock2)
f1f644dc 12649{
3bd26263 12650 int diff;
f1f644dc
JB
12651
12652 if (clock1 == clock2)
12653 return true;
12654
12655 if (!clock1 || !clock2)
12656 return false;
12657
12658 diff = abs(clock1 - clock2);
12659
12660 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12661 return true;
12662
12663 return false;
12664}
12665
25c5b266
DV
12666#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
12667 list_for_each_entry((intel_crtc), \
12668 &(dev)->mode_config.crtc_list, \
12669 base.head) \
95150bdf 12670 for_each_if (mask & (1 <<(intel_crtc)->pipe))
25c5b266 12671
cfb23ed6
ML
12672static bool
12673intel_compare_m_n(unsigned int m, unsigned int n,
12674 unsigned int m2, unsigned int n2,
12675 bool exact)
12676{
12677 if (m == m2 && n == n2)
12678 return true;
12679
12680 if (exact || !m || !n || !m2 || !n2)
12681 return false;
12682
12683 BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
12684
31d10b57
ML
12685 if (n > n2) {
12686 while (n > n2) {
cfb23ed6
ML
12687 m2 <<= 1;
12688 n2 <<= 1;
12689 }
31d10b57
ML
12690 } else if (n < n2) {
12691 while (n < n2) {
cfb23ed6
ML
12692 m <<= 1;
12693 n <<= 1;
12694 }
12695 }
12696
31d10b57
ML
12697 if (n != n2)
12698 return false;
12699
12700 return intel_fuzzy_clock_check(m, m2);
cfb23ed6
ML
12701}
12702
12703static bool
12704intel_compare_link_m_n(const struct intel_link_m_n *m_n,
12705 struct intel_link_m_n *m2_n2,
12706 bool adjust)
12707{
12708 if (m_n->tu == m2_n2->tu &&
12709 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
12710 m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
12711 intel_compare_m_n(m_n->link_m, m_n->link_n,
12712 m2_n2->link_m, m2_n2->link_n, !adjust)) {
12713 if (adjust)
12714 *m2_n2 = *m_n;
12715
12716 return true;
12717 }
12718
12719 return false;
12720}
12721
0e8ffe1b 12722static bool
2fa2fe9a 12723intel_pipe_config_compare(struct drm_device *dev,
5cec258b 12724 struct intel_crtc_state *current_config,
cfb23ed6
ML
12725 struct intel_crtc_state *pipe_config,
12726 bool adjust)
0e8ffe1b 12727{
cfb23ed6
ML
12728 bool ret = true;
12729
12730#define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
12731 do { \
12732 if (!adjust) \
12733 DRM_ERROR(fmt, ##__VA_ARGS__); \
12734 else \
12735 DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
12736 } while (0)
12737
66e985c0
DV
12738#define PIPE_CONF_CHECK_X(name) \
12739 if (current_config->name != pipe_config->name) { \
cfb23ed6 12740 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
66e985c0
DV
12741 "(expected 0x%08x, found 0x%08x)\n", \
12742 current_config->name, \
12743 pipe_config->name); \
cfb23ed6 12744 ret = false; \
66e985c0
DV
12745 }
12746
08a24034
DV
12747#define PIPE_CONF_CHECK_I(name) \
12748 if (current_config->name != pipe_config->name) { \
cfb23ed6 12749 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
08a24034
DV
12750 "(expected %i, found %i)\n", \
12751 current_config->name, \
12752 pipe_config->name); \
cfb23ed6
ML
12753 ret = false; \
12754 }
12755
8106ddbd
ACO
12756#define PIPE_CONF_CHECK_P(name) \
12757 if (current_config->name != pipe_config->name) { \
12758 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12759 "(expected %p, found %p)\n", \
12760 current_config->name, \
12761 pipe_config->name); \
12762 ret = false; \
12763 }
12764
cfb23ed6
ML
12765#define PIPE_CONF_CHECK_M_N(name) \
12766 if (!intel_compare_link_m_n(&current_config->name, \
12767 &pipe_config->name,\
12768 adjust)) { \
12769 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12770 "(expected tu %i gmch %i/%i link %i/%i, " \
12771 "found tu %i, gmch %i/%i link %i/%i)\n", \
12772 current_config->name.tu, \
12773 current_config->name.gmch_m, \
12774 current_config->name.gmch_n, \
12775 current_config->name.link_m, \
12776 current_config->name.link_n, \
12777 pipe_config->name.tu, \
12778 pipe_config->name.gmch_m, \
12779 pipe_config->name.gmch_n, \
12780 pipe_config->name.link_m, \
12781 pipe_config->name.link_n); \
12782 ret = false; \
12783 }
12784
55c561a7
DV
12785/* This is required for BDW+ where there is only one set of registers for
12786 * switching between high and low RR.
12787 * This macro can be used whenever a comparison has to be made between one
12788 * hw state and multiple sw state variables.
12789 */
cfb23ed6
ML
12790#define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
12791 if (!intel_compare_link_m_n(&current_config->name, \
12792 &pipe_config->name, adjust) && \
12793 !intel_compare_link_m_n(&current_config->alt_name, \
12794 &pipe_config->name, adjust)) { \
12795 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12796 "(expected tu %i gmch %i/%i link %i/%i, " \
12797 "or tu %i gmch %i/%i link %i/%i, " \
12798 "found tu %i, gmch %i/%i link %i/%i)\n", \
12799 current_config->name.tu, \
12800 current_config->name.gmch_m, \
12801 current_config->name.gmch_n, \
12802 current_config->name.link_m, \
12803 current_config->name.link_n, \
12804 current_config->alt_name.tu, \
12805 current_config->alt_name.gmch_m, \
12806 current_config->alt_name.gmch_n, \
12807 current_config->alt_name.link_m, \
12808 current_config->alt_name.link_n, \
12809 pipe_config->name.tu, \
12810 pipe_config->name.gmch_m, \
12811 pipe_config->name.gmch_n, \
12812 pipe_config->name.link_m, \
12813 pipe_config->name.link_n); \
12814 ret = false; \
88adfff1
DV
12815 }
12816
1bd1bd80
DV
12817#define PIPE_CONF_CHECK_FLAGS(name, mask) \
12818 if ((current_config->name ^ pipe_config->name) & (mask)) { \
cfb23ed6 12819 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
1bd1bd80
DV
12820 "(expected %i, found %i)\n", \
12821 current_config->name & (mask), \
12822 pipe_config->name & (mask)); \
cfb23ed6 12823 ret = false; \
1bd1bd80
DV
12824 }
12825
5e550656
VS
12826#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
12827 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
cfb23ed6 12828 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
5e550656
VS
12829 "(expected %i, found %i)\n", \
12830 current_config->name, \
12831 pipe_config->name); \
cfb23ed6 12832 ret = false; \
5e550656
VS
12833 }
12834
bb760063
DV
12835#define PIPE_CONF_QUIRK(quirk) \
12836 ((current_config->quirks | pipe_config->quirks) & (quirk))
12837
eccb140b
DV
12838 PIPE_CONF_CHECK_I(cpu_transcoder);
12839
08a24034
DV
12840 PIPE_CONF_CHECK_I(has_pch_encoder);
12841 PIPE_CONF_CHECK_I(fdi_lanes);
cfb23ed6 12842 PIPE_CONF_CHECK_M_N(fdi_m_n);
08a24034 12843
eb14cb74 12844 PIPE_CONF_CHECK_I(has_dp_encoder);
90a6b7b0 12845 PIPE_CONF_CHECK_I(lane_count);
95a7a2ae 12846 PIPE_CONF_CHECK_X(lane_lat_optim_mask);
b95af8be
VK
12847
12848 if (INTEL_INFO(dev)->gen < 8) {
cfb23ed6
ML
12849 PIPE_CONF_CHECK_M_N(dp_m_n);
12850
cfb23ed6
ML
12851 if (current_config->has_drrs)
12852 PIPE_CONF_CHECK_M_N(dp_m2_n2);
12853 } else
12854 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
eb14cb74 12855
a65347ba
JN
12856 PIPE_CONF_CHECK_I(has_dsi_encoder);
12857
2d112de7
ACO
12858 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12859 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12860 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12861 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12862 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12863 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
1bd1bd80 12864
2d112de7
ACO
12865 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12866 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12867 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12868 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12869 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12870 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
1bd1bd80 12871
c93f54cf 12872 PIPE_CONF_CHECK_I(pixel_multiplier);
6897b4b5 12873 PIPE_CONF_CHECK_I(has_hdmi_sink);
b5a9fa09 12874 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
666a4537 12875 IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
b5a9fa09 12876 PIPE_CONF_CHECK_I(limited_color_range);
e43823ec 12877 PIPE_CONF_CHECK_I(has_infoframe);
6c49f241 12878
9ed109a7
DV
12879 PIPE_CONF_CHECK_I(has_audio);
12880
2d112de7 12881 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
1bd1bd80
DV
12882 DRM_MODE_FLAG_INTERLACE);
12883
bb760063 12884 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
2d112de7 12885 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 12886 DRM_MODE_FLAG_PHSYNC);
2d112de7 12887 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 12888 DRM_MODE_FLAG_NHSYNC);
2d112de7 12889 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 12890 DRM_MODE_FLAG_PVSYNC);
2d112de7 12891 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063
DV
12892 DRM_MODE_FLAG_NVSYNC);
12893 }
045ac3b5 12894
333b8ca8 12895 PIPE_CONF_CHECK_X(gmch_pfit.control);
e2ff2d4a
DV
12896 /* pfit ratios are autocomputed by the hw on gen4+ */
12897 if (INTEL_INFO(dev)->gen < 4)
7f7d8dd6 12898 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
333b8ca8 12899 PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
9953599b 12900
bfd16b2a
ML
12901 if (!adjust) {
12902 PIPE_CONF_CHECK_I(pipe_src_w);
12903 PIPE_CONF_CHECK_I(pipe_src_h);
12904
12905 PIPE_CONF_CHECK_I(pch_pfit.enabled);
12906 if (current_config->pch_pfit.enabled) {
12907 PIPE_CONF_CHECK_X(pch_pfit.pos);
12908 PIPE_CONF_CHECK_X(pch_pfit.size);
12909 }
2fa2fe9a 12910
7aefe2b5
ML
12911 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12912 }
a1b2278e 12913
e59150dc
JB
12914 /* BDW+ don't expose a synchronous way to read the state */
12915 if (IS_HASWELL(dev))
12916 PIPE_CONF_CHECK_I(ips_enabled);
42db64ef 12917
282740f7
VS
12918 PIPE_CONF_CHECK_I(double_wide);
12919
26804afd
DV
12920 PIPE_CONF_CHECK_X(ddi_pll_sel);
12921
8106ddbd 12922 PIPE_CONF_CHECK_P(shared_dpll);
66e985c0 12923 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8bcc2795 12924 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
66e985c0
DV
12925 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12926 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
d452c5b6 12927 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
00490c22 12928 PIPE_CONF_CHECK_X(dpll_hw_state.spll);
3f4cd19f
DL
12929 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12930 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12931 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
c0d43d62 12932
47eacbab
VS
12933 PIPE_CONF_CHECK_X(dsi_pll.ctrl);
12934 PIPE_CONF_CHECK_X(dsi_pll.div);
12935
42571aef
VS
12936 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12937 PIPE_CONF_CHECK_I(pipe_bpp);
12938
2d112de7 12939 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
a9a7e98a 12940 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
5e550656 12941
66e985c0 12942#undef PIPE_CONF_CHECK_X
08a24034 12943#undef PIPE_CONF_CHECK_I
8106ddbd 12944#undef PIPE_CONF_CHECK_P
1bd1bd80 12945#undef PIPE_CONF_CHECK_FLAGS
5e550656 12946#undef PIPE_CONF_CHECK_CLOCK_FUZZY
bb760063 12947#undef PIPE_CONF_QUIRK
cfb23ed6 12948#undef INTEL_ERR_OR_DBG_KMS
88adfff1 12949
cfb23ed6 12950 return ret;
0e8ffe1b
DV
12951}
12952
e3b247da
VS
12953static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
12954 const struct intel_crtc_state *pipe_config)
12955{
12956 if (pipe_config->has_pch_encoder) {
21a727b3 12957 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
e3b247da
VS
12958 &pipe_config->fdi_m_n);
12959 int dotclock = pipe_config->base.adjusted_mode.crtc_clock;
12960
12961 /*
12962 * FDI already provided one idea for the dotclock.
12963 * Yell if the encoder disagrees.
12964 */
12965 WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock),
12966 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12967 fdi_dotclock, dotclock);
12968 }
12969}
12970
c0ead703
ML
12971static void verify_wm_state(struct drm_crtc *crtc,
12972 struct drm_crtc_state *new_state)
08db6652 12973{
e7c84544 12974 struct drm_device *dev = crtc->dev;
08db6652
DL
12975 struct drm_i915_private *dev_priv = dev->dev_private;
12976 struct skl_ddb_allocation hw_ddb, *sw_ddb;
e7c84544
ML
12977 struct skl_ddb_entry *hw_entry, *sw_entry;
12978 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12979 const enum pipe pipe = intel_crtc->pipe;
08db6652
DL
12980 int plane;
12981
e7c84544 12982 if (INTEL_INFO(dev)->gen < 9 || !new_state->active)
08db6652
DL
12983 return;
12984
12985 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12986 sw_ddb = &dev_priv->wm.skl_hw.ddb;
12987
e7c84544
ML
12988 /* planes */
12989 for_each_plane(dev_priv, pipe, plane) {
12990 hw_entry = &hw_ddb.plane[pipe][plane];
12991 sw_entry = &sw_ddb->plane[pipe][plane];
08db6652 12992
e7c84544 12993 if (skl_ddb_entry_equal(hw_entry, sw_entry))
08db6652
DL
12994 continue;
12995
e7c84544
ML
12996 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12997 "(expected (%u,%u), found (%u,%u))\n",
12998 pipe_name(pipe), plane + 1,
12999 sw_entry->start, sw_entry->end,
13000 hw_entry->start, hw_entry->end);
13001 }
08db6652 13002
e7c84544
ML
13003 /* cursor */
13004 hw_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
13005 sw_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
08db6652 13006
e7c84544 13007 if (!skl_ddb_entry_equal(hw_entry, sw_entry)) {
08db6652
DL
13008 DRM_ERROR("mismatch in DDB state pipe %c cursor "
13009 "(expected (%u,%u), found (%u,%u))\n",
13010 pipe_name(pipe),
13011 sw_entry->start, sw_entry->end,
13012 hw_entry->start, hw_entry->end);
13013 }
13014}
13015
91d1b4bd 13016static void
c0ead703 13017verify_connector_state(struct drm_device *dev, struct drm_crtc *crtc)
8af6cf88 13018{
35dd3c64 13019 struct drm_connector *connector;
8af6cf88 13020
e7c84544 13021 drm_for_each_connector(connector, dev) {
35dd3c64
ML
13022 struct drm_encoder *encoder = connector->encoder;
13023 struct drm_connector_state *state = connector->state;
ad3c558f 13024
e7c84544
ML
13025 if (state->crtc != crtc)
13026 continue;
13027
5a21b665 13028 intel_connector_verify_state(to_intel_connector(connector));
8af6cf88 13029
ad3c558f 13030 I915_STATE_WARN(state->best_encoder != encoder,
35dd3c64 13031 "connector's atomic encoder doesn't match legacy encoder\n");
8af6cf88 13032 }
91d1b4bd
DV
13033}
13034
13035static void
c0ead703 13036verify_encoder_state(struct drm_device *dev)
91d1b4bd
DV
13037{
13038 struct intel_encoder *encoder;
13039 struct intel_connector *connector;
8af6cf88 13040
b2784e15 13041 for_each_intel_encoder(dev, encoder) {
8af6cf88 13042 bool enabled = false;
4d20cd86 13043 enum pipe pipe;
8af6cf88
DV
13044
13045 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
13046 encoder->base.base.id,
8e329a03 13047 encoder->base.name);
8af6cf88 13048
3a3371ff 13049 for_each_intel_connector(dev, connector) {
4d20cd86 13050 if (connector->base.state->best_encoder != &encoder->base)
8af6cf88
DV
13051 continue;
13052 enabled = true;
ad3c558f
ML
13053
13054 I915_STATE_WARN(connector->base.state->crtc !=
13055 encoder->base.crtc,
13056 "connector's crtc doesn't match encoder crtc\n");
8af6cf88 13057 }
0e32b39c 13058
e2c719b7 13059 I915_STATE_WARN(!!encoder->base.crtc != enabled,
8af6cf88
DV
13060 "encoder's enabled state mismatch "
13061 "(expected %i, found %i)\n",
13062 !!encoder->base.crtc, enabled);
7c60d198
ML
13063
13064 if (!encoder->base.crtc) {
4d20cd86 13065 bool active;
7c60d198 13066
4d20cd86
ML
13067 active = encoder->get_hw_state(encoder, &pipe);
13068 I915_STATE_WARN(active,
13069 "encoder detached but still enabled on pipe %c.\n",
13070 pipe_name(pipe));
7c60d198 13071 }
8af6cf88 13072 }
91d1b4bd
DV
13073}
13074
13075static void
c0ead703
ML
13076verify_crtc_state(struct drm_crtc *crtc,
13077 struct drm_crtc_state *old_crtc_state,
13078 struct drm_crtc_state *new_crtc_state)
91d1b4bd 13079{
e7c84544 13080 struct drm_device *dev = crtc->dev;
fbee40df 13081 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd 13082 struct intel_encoder *encoder;
e7c84544
ML
13083 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13084 struct intel_crtc_state *pipe_config, *sw_config;
13085 struct drm_atomic_state *old_state;
13086 bool active;
045ac3b5 13087
e7c84544 13088 old_state = old_crtc_state->state;
ec2dc6a0 13089 __drm_atomic_helper_crtc_destroy_state(old_crtc_state);
e7c84544
ML
13090 pipe_config = to_intel_crtc_state(old_crtc_state);
13091 memset(pipe_config, 0, sizeof(*pipe_config));
13092 pipe_config->base.crtc = crtc;
13093 pipe_config->base.state = old_state;
8af6cf88 13094
78108b7c 13095 DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.id, crtc->name);
8af6cf88 13096
e7c84544 13097 active = dev_priv->display.get_pipe_config(intel_crtc, pipe_config);
d62cf62a 13098
e7c84544
ML
13099 /* hw state is inconsistent with the pipe quirk */
13100 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
13101 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
13102 active = new_crtc_state->active;
6c49f241 13103
e7c84544
ML
13104 I915_STATE_WARN(new_crtc_state->active != active,
13105 "crtc active state doesn't match with hw state "
13106 "(expected %i, found %i)\n", new_crtc_state->active, active);
0e8ffe1b 13107
e7c84544
ML
13108 I915_STATE_WARN(intel_crtc->active != new_crtc_state->active,
13109 "transitional active state does not match atomic hw state "
13110 "(expected %i, found %i)\n", new_crtc_state->active, intel_crtc->active);
4d20cd86 13111
e7c84544
ML
13112 for_each_encoder_on_crtc(dev, crtc, encoder) {
13113 enum pipe pipe;
4d20cd86 13114
e7c84544
ML
13115 active = encoder->get_hw_state(encoder, &pipe);
13116 I915_STATE_WARN(active != new_crtc_state->active,
13117 "[ENCODER:%i] active %i with crtc active %i\n",
13118 encoder->base.base.id, active, new_crtc_state->active);
4d20cd86 13119
e7c84544
ML
13120 I915_STATE_WARN(active && intel_crtc->pipe != pipe,
13121 "Encoder connected to wrong pipe %c\n",
13122 pipe_name(pipe));
4d20cd86 13123
e7c84544
ML
13124 if (active)
13125 encoder->get_config(encoder, pipe_config);
13126 }
53d9f4e9 13127
e7c84544
ML
13128 if (!new_crtc_state->active)
13129 return;
cfb23ed6 13130
e7c84544 13131 intel_pipe_config_sanity_check(dev_priv, pipe_config);
e3b247da 13132
e7c84544
ML
13133 sw_config = to_intel_crtc_state(crtc->state);
13134 if (!intel_pipe_config_compare(dev, sw_config,
13135 pipe_config, false)) {
13136 I915_STATE_WARN(1, "pipe state doesn't match!\n");
13137 intel_dump_pipe_config(intel_crtc, pipe_config,
13138 "[hw state]");
13139 intel_dump_pipe_config(intel_crtc, sw_config,
13140 "[sw state]");
8af6cf88
DV
13141 }
13142}
13143
91d1b4bd 13144static void
c0ead703
ML
13145verify_single_dpll_state(struct drm_i915_private *dev_priv,
13146 struct intel_shared_dpll *pll,
13147 struct drm_crtc *crtc,
13148 struct drm_crtc_state *new_state)
91d1b4bd 13149{
91d1b4bd 13150 struct intel_dpll_hw_state dpll_hw_state;
e7c84544
ML
13151 unsigned crtc_mask;
13152 bool active;
5358901f 13153
e7c84544 13154 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
5358901f 13155
e7c84544 13156 DRM_DEBUG_KMS("%s\n", pll->name);
5358901f 13157
e7c84544 13158 active = pll->funcs.get_hw_state(dev_priv, pll, &dpll_hw_state);
5358901f 13159
e7c84544
ML
13160 if (!(pll->flags & INTEL_DPLL_ALWAYS_ON)) {
13161 I915_STATE_WARN(!pll->on && pll->active_mask,
13162 "pll in active use but not on in sw tracking\n");
13163 I915_STATE_WARN(pll->on && !pll->active_mask,
13164 "pll is on but not used by any active crtc\n");
13165 I915_STATE_WARN(pll->on != active,
13166 "pll on state mismatch (expected %i, found %i)\n",
13167 pll->on, active);
13168 }
5358901f 13169
e7c84544 13170 if (!crtc) {
2dd66ebd 13171 I915_STATE_WARN(pll->active_mask & ~pll->config.crtc_mask,
e7c84544
ML
13172 "more active pll users than references: %x vs %x\n",
13173 pll->active_mask, pll->config.crtc_mask);
5358901f 13174
e7c84544
ML
13175 return;
13176 }
13177
13178 crtc_mask = 1 << drm_crtc_index(crtc);
13179
13180 if (new_state->active)
13181 I915_STATE_WARN(!(pll->active_mask & crtc_mask),
13182 "pll active mismatch (expected pipe %c in active mask 0x%02x)\n",
13183 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
13184 else
13185 I915_STATE_WARN(pll->active_mask & crtc_mask,
13186 "pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n",
13187 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
2dd66ebd 13188
e7c84544
ML
13189 I915_STATE_WARN(!(pll->config.crtc_mask & crtc_mask),
13190 "pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n",
13191 crtc_mask, pll->config.crtc_mask);
66e985c0 13192
e7c84544
ML
13193 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state,
13194 &dpll_hw_state,
13195 sizeof(dpll_hw_state)),
13196 "pll hw state mismatch\n");
13197}
13198
13199static void
c0ead703
ML
13200verify_shared_dpll_state(struct drm_device *dev, struct drm_crtc *crtc,
13201 struct drm_crtc_state *old_crtc_state,
13202 struct drm_crtc_state *new_crtc_state)
e7c84544
ML
13203{
13204 struct drm_i915_private *dev_priv = dev->dev_private;
13205 struct intel_crtc_state *old_state = to_intel_crtc_state(old_crtc_state);
13206 struct intel_crtc_state *new_state = to_intel_crtc_state(new_crtc_state);
13207
13208 if (new_state->shared_dpll)
c0ead703 13209 verify_single_dpll_state(dev_priv, new_state->shared_dpll, crtc, new_crtc_state);
e7c84544
ML
13210
13211 if (old_state->shared_dpll &&
13212 old_state->shared_dpll != new_state->shared_dpll) {
13213 unsigned crtc_mask = 1 << drm_crtc_index(crtc);
13214 struct intel_shared_dpll *pll = old_state->shared_dpll;
13215
13216 I915_STATE_WARN(pll->active_mask & crtc_mask,
13217 "pll active mismatch (didn't expect pipe %c in active mask)\n",
13218 pipe_name(drm_crtc_index(crtc)));
13219 I915_STATE_WARN(pll->config.crtc_mask & crtc_mask,
13220 "pll enabled crtcs mismatch (found %x in enabled mask)\n",
13221 pipe_name(drm_crtc_index(crtc)));
5358901f 13222 }
8af6cf88
DV
13223}
13224
e7c84544 13225static void
c0ead703 13226intel_modeset_verify_crtc(struct drm_crtc *crtc,
e7c84544
ML
13227 struct drm_crtc_state *old_state,
13228 struct drm_crtc_state *new_state)
13229{
5a21b665
DV
13230 if (!needs_modeset(new_state) &&
13231 !to_intel_crtc_state(new_state)->update_pipe)
13232 return;
13233
c0ead703 13234 verify_wm_state(crtc, new_state);
5a21b665 13235 verify_connector_state(crtc->dev, crtc);
c0ead703
ML
13236 verify_crtc_state(crtc, old_state, new_state);
13237 verify_shared_dpll_state(crtc->dev, crtc, old_state, new_state);
e7c84544
ML
13238}
13239
13240static void
c0ead703 13241verify_disabled_dpll_state(struct drm_device *dev)
e7c84544
ML
13242{
13243 struct drm_i915_private *dev_priv = dev->dev_private;
13244 int i;
13245
13246 for (i = 0; i < dev_priv->num_shared_dpll; i++)
c0ead703 13247 verify_single_dpll_state(dev_priv, &dev_priv->shared_dplls[i], NULL, NULL);
e7c84544
ML
13248}
13249
13250static void
c0ead703 13251intel_modeset_verify_disabled(struct drm_device *dev)
e7c84544 13252{
c0ead703
ML
13253 verify_encoder_state(dev);
13254 verify_connector_state(dev, NULL);
13255 verify_disabled_dpll_state(dev);
e7c84544
ML
13256}
13257
80715b2f
VS
13258static void update_scanline_offset(struct intel_crtc *crtc)
13259{
13260 struct drm_device *dev = crtc->base.dev;
13261
13262 /*
13263 * The scanline counter increments at the leading edge of hsync.
13264 *
13265 * On most platforms it starts counting from vtotal-1 on the
13266 * first active line. That means the scanline counter value is
13267 * always one less than what we would expect. Ie. just after
13268 * start of vblank, which also occurs at start of hsync (on the
13269 * last active line), the scanline counter will read vblank_start-1.
13270 *
13271 * On gen2 the scanline counter starts counting from 1 instead
13272 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
13273 * to keep the value positive), instead of adding one.
13274 *
13275 * On HSW+ the behaviour of the scanline counter depends on the output
13276 * type. For DP ports it behaves like most other platforms, but on HDMI
13277 * there's an extra 1 line difference. So we need to add two instead of
13278 * one to the value.
13279 */
13280 if (IS_GEN2(dev)) {
124abe07 13281 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
80715b2f
VS
13282 int vtotal;
13283
124abe07
VS
13284 vtotal = adjusted_mode->crtc_vtotal;
13285 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
80715b2f
VS
13286 vtotal /= 2;
13287
13288 crtc->scanline_offset = vtotal - 1;
13289 } else if (HAS_DDI(dev) &&
409ee761 13290 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
80715b2f
VS
13291 crtc->scanline_offset = 2;
13292 } else
13293 crtc->scanline_offset = 1;
13294}
13295
ad421372 13296static void intel_modeset_clear_plls(struct drm_atomic_state *state)
ed6739ef 13297{
225da59b 13298 struct drm_device *dev = state->dev;
ed6739ef 13299 struct drm_i915_private *dev_priv = to_i915(dev);
ad421372 13300 struct intel_shared_dpll_config *shared_dpll = NULL;
0a9ab303
ACO
13301 struct drm_crtc *crtc;
13302 struct drm_crtc_state *crtc_state;
0a9ab303 13303 int i;
ed6739ef
ACO
13304
13305 if (!dev_priv->display.crtc_compute_clock)
ad421372 13306 return;
ed6739ef 13307
0a9ab303 13308 for_each_crtc_in_state(state, crtc, crtc_state, i) {
fb1a38a9 13309 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8106ddbd
ACO
13310 struct intel_shared_dpll *old_dpll =
13311 to_intel_crtc_state(crtc->state)->shared_dpll;
0a9ab303 13312
fb1a38a9 13313 if (!needs_modeset(crtc_state))
225da59b
ACO
13314 continue;
13315
8106ddbd 13316 to_intel_crtc_state(crtc_state)->shared_dpll = NULL;
fb1a38a9 13317
8106ddbd 13318 if (!old_dpll)
fb1a38a9 13319 continue;
0a9ab303 13320
ad421372
ML
13321 if (!shared_dpll)
13322 shared_dpll = intel_atomic_get_shared_dpll_state(state);
ed6739ef 13323
8106ddbd 13324 intel_shared_dpll_config_put(shared_dpll, old_dpll, intel_crtc);
ad421372 13325 }
ed6739ef
ACO
13326}
13327
99d736a2
ML
13328/*
13329 * This implements the workaround described in the "notes" section of the mode
13330 * set sequence documentation. When going from no pipes or single pipe to
13331 * multiple pipes, and planes are enabled after the pipe, we need to wait at
13332 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
13333 */
13334static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
13335{
13336 struct drm_crtc_state *crtc_state;
13337 struct intel_crtc *intel_crtc;
13338 struct drm_crtc *crtc;
13339 struct intel_crtc_state *first_crtc_state = NULL;
13340 struct intel_crtc_state *other_crtc_state = NULL;
13341 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
13342 int i;
13343
13344 /* look at all crtc's that are going to be enabled in during modeset */
13345 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13346 intel_crtc = to_intel_crtc(crtc);
13347
13348 if (!crtc_state->active || !needs_modeset(crtc_state))
13349 continue;
13350
13351 if (first_crtc_state) {
13352 other_crtc_state = to_intel_crtc_state(crtc_state);
13353 break;
13354 } else {
13355 first_crtc_state = to_intel_crtc_state(crtc_state);
13356 first_pipe = intel_crtc->pipe;
13357 }
13358 }
13359
13360 /* No workaround needed? */
13361 if (!first_crtc_state)
13362 return 0;
13363
13364 /* w/a possibly needed, check how many crtc's are already enabled. */
13365 for_each_intel_crtc(state->dev, intel_crtc) {
13366 struct intel_crtc_state *pipe_config;
13367
13368 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
13369 if (IS_ERR(pipe_config))
13370 return PTR_ERR(pipe_config);
13371
13372 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
13373
13374 if (!pipe_config->base.active ||
13375 needs_modeset(&pipe_config->base))
13376 continue;
13377
13378 /* 2 or more enabled crtcs means no need for w/a */
13379 if (enabled_pipe != INVALID_PIPE)
13380 return 0;
13381
13382 enabled_pipe = intel_crtc->pipe;
13383 }
13384
13385 if (enabled_pipe != INVALID_PIPE)
13386 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13387 else if (other_crtc_state)
13388 other_crtc_state->hsw_workaround_pipe = first_pipe;
13389
13390 return 0;
13391}
13392
27c329ed
ML
13393static int intel_modeset_all_pipes(struct drm_atomic_state *state)
13394{
13395 struct drm_crtc *crtc;
13396 struct drm_crtc_state *crtc_state;
13397 int ret = 0;
13398
13399 /* add all active pipes to the state */
13400 for_each_crtc(state->dev, crtc) {
13401 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13402 if (IS_ERR(crtc_state))
13403 return PTR_ERR(crtc_state);
13404
13405 if (!crtc_state->active || needs_modeset(crtc_state))
13406 continue;
13407
13408 crtc_state->mode_changed = true;
13409
13410 ret = drm_atomic_add_affected_connectors(state, crtc);
13411 if (ret)
13412 break;
13413
13414 ret = drm_atomic_add_affected_planes(state, crtc);
13415 if (ret)
13416 break;
13417 }
13418
13419 return ret;
13420}
13421
c347a676 13422static int intel_modeset_checks(struct drm_atomic_state *state)
054518dd 13423{
565602d7
ML
13424 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13425 struct drm_i915_private *dev_priv = state->dev->dev_private;
13426 struct drm_crtc *crtc;
13427 struct drm_crtc_state *crtc_state;
13428 int ret = 0, i;
054518dd 13429
b359283a
ML
13430 if (!check_digital_port_conflicts(state)) {
13431 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13432 return -EINVAL;
13433 }
13434
565602d7
ML
13435 intel_state->modeset = true;
13436 intel_state->active_crtcs = dev_priv->active_crtcs;
13437
13438 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13439 if (crtc_state->active)
13440 intel_state->active_crtcs |= 1 << i;
13441 else
13442 intel_state->active_crtcs &= ~(1 << i);
8b4a7d05
MR
13443
13444 if (crtc_state->active != crtc->state->active)
13445 intel_state->active_pipe_changes |= drm_crtc_mask(crtc);
565602d7
ML
13446 }
13447
054518dd
ACO
13448 /*
13449 * See if the config requires any additional preparation, e.g.
13450 * to adjust global state with pipes off. We need to do this
13451 * here so we can get the modeset_pipe updated config for the new
13452 * mode set on this crtc. For other crtcs we need to use the
13453 * adjusted_mode bits in the crtc directly.
13454 */
27c329ed 13455 if (dev_priv->display.modeset_calc_cdclk) {
c89e39f3 13456 if (!intel_state->cdclk_pll_vco)
63911d72 13457 intel_state->cdclk_pll_vco = dev_priv->cdclk_pll.vco;
b2045352
VS
13458 if (!intel_state->cdclk_pll_vco)
13459 intel_state->cdclk_pll_vco = dev_priv->skl_preferred_vco_freq;
c89e39f3 13460
27c329ed 13461 ret = dev_priv->display.modeset_calc_cdclk(state);
c89e39f3
CT
13462 if (ret < 0)
13463 return ret;
27c329ed 13464
c89e39f3 13465 if (intel_state->dev_cdclk != dev_priv->cdclk_freq ||
63911d72 13466 intel_state->cdclk_pll_vco != dev_priv->cdclk_pll.vco)
27c329ed
ML
13467 ret = intel_modeset_all_pipes(state);
13468
13469 if (ret < 0)
054518dd 13470 return ret;
e8788cbc
ML
13471
13472 DRM_DEBUG_KMS("New cdclk calculated to be atomic %u, actual %u\n",
13473 intel_state->cdclk, intel_state->dev_cdclk);
27c329ed 13474 } else
1a617b77 13475 to_intel_atomic_state(state)->cdclk = dev_priv->atomic_cdclk_freq;
054518dd 13476
ad421372 13477 intel_modeset_clear_plls(state);
054518dd 13478
565602d7 13479 if (IS_HASWELL(dev_priv))
ad421372 13480 return haswell_mode_set_planes_workaround(state);
99d736a2 13481
ad421372 13482 return 0;
c347a676
ACO
13483}
13484
aa363136
MR
13485/*
13486 * Handle calculation of various watermark data at the end of the atomic check
13487 * phase. The code here should be run after the per-crtc and per-plane 'check'
13488 * handlers to ensure that all derived state has been updated.
13489 */
55994c2c 13490static int calc_watermark_data(struct drm_atomic_state *state)
aa363136
MR
13491{
13492 struct drm_device *dev = state->dev;
98d39494 13493 struct drm_i915_private *dev_priv = to_i915(dev);
98d39494
MR
13494
13495 /* Is there platform-specific watermark information to calculate? */
13496 if (dev_priv->display.compute_global_watermarks)
55994c2c
MR
13497 return dev_priv->display.compute_global_watermarks(state);
13498
13499 return 0;
aa363136
MR
13500}
13501
74c090b1
ML
13502/**
13503 * intel_atomic_check - validate state object
13504 * @dev: drm device
13505 * @state: state to validate
13506 */
13507static int intel_atomic_check(struct drm_device *dev,
13508 struct drm_atomic_state *state)
c347a676 13509{
dd8b3bdb 13510 struct drm_i915_private *dev_priv = to_i915(dev);
aa363136 13511 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
c347a676
ACO
13512 struct drm_crtc *crtc;
13513 struct drm_crtc_state *crtc_state;
13514 int ret, i;
61333b60 13515 bool any_ms = false;
c347a676 13516
74c090b1 13517 ret = drm_atomic_helper_check_modeset(dev, state);
054518dd
ACO
13518 if (ret)
13519 return ret;
13520
c347a676 13521 for_each_crtc_in_state(state, crtc, crtc_state, i) {
cfb23ed6
ML
13522 struct intel_crtc_state *pipe_config =
13523 to_intel_crtc_state(crtc_state);
1ed51de9
DV
13524
13525 /* Catch I915_MODE_FLAG_INHERITED */
13526 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
13527 crtc_state->mode_changed = true;
cfb23ed6 13528
af4a879e 13529 if (!needs_modeset(crtc_state))
c347a676
ACO
13530 continue;
13531
af4a879e
DV
13532 if (!crtc_state->enable) {
13533 any_ms = true;
cfb23ed6 13534 continue;
af4a879e 13535 }
cfb23ed6 13536
26495481
DV
13537 /* FIXME: For only active_changed we shouldn't need to do any
13538 * state recomputation at all. */
13539
1ed51de9
DV
13540 ret = drm_atomic_add_affected_connectors(state, crtc);
13541 if (ret)
13542 return ret;
b359283a 13543
cfb23ed6 13544 ret = intel_modeset_pipe_config(crtc, pipe_config);
25aa1c39
ML
13545 if (ret) {
13546 intel_dump_pipe_config(to_intel_crtc(crtc),
13547 pipe_config, "[failed]");
c347a676 13548 return ret;
25aa1c39 13549 }
c347a676 13550
73831236 13551 if (i915.fastboot &&
dd8b3bdb 13552 intel_pipe_config_compare(dev,
cfb23ed6 13553 to_intel_crtc_state(crtc->state),
1ed51de9 13554 pipe_config, true)) {
26495481 13555 crtc_state->mode_changed = false;
bfd16b2a 13556 to_intel_crtc_state(crtc_state)->update_pipe = true;
26495481
DV
13557 }
13558
af4a879e 13559 if (needs_modeset(crtc_state))
26495481 13560 any_ms = true;
cfb23ed6 13561
af4a879e
DV
13562 ret = drm_atomic_add_affected_planes(state, crtc);
13563 if (ret)
13564 return ret;
61333b60 13565
26495481
DV
13566 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
13567 needs_modeset(crtc_state) ?
13568 "[modeset]" : "[fastset]");
c347a676
ACO
13569 }
13570
61333b60
ML
13571 if (any_ms) {
13572 ret = intel_modeset_checks(state);
13573
13574 if (ret)
13575 return ret;
27c329ed 13576 } else
dd8b3bdb 13577 intel_state->cdclk = dev_priv->cdclk_freq;
76305b1a 13578
dd8b3bdb 13579 ret = drm_atomic_helper_check_planes(dev, state);
aa363136
MR
13580 if (ret)
13581 return ret;
13582
f51be2e0 13583 intel_fbc_choose_crtc(dev_priv, state);
55994c2c 13584 return calc_watermark_data(state);
054518dd
ACO
13585}
13586
5008e874
ML
13587static int intel_atomic_prepare_commit(struct drm_device *dev,
13588 struct drm_atomic_state *state,
81072bfd 13589 bool nonblock)
5008e874 13590{
7580d774
ML
13591 struct drm_i915_private *dev_priv = dev->dev_private;
13592 struct drm_plane_state *plane_state;
5008e874 13593 struct drm_crtc_state *crtc_state;
7580d774 13594 struct drm_plane *plane;
5008e874
ML
13595 struct drm_crtc *crtc;
13596 int i, ret;
13597
5a21b665
DV
13598 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13599 if (state->legacy_cursor_update)
a6747b73
ML
13600 continue;
13601
5a21b665
DV
13602 ret = intel_crtc_wait_for_pending_flips(crtc);
13603 if (ret)
13604 return ret;
5008e874 13605
5a21b665
DV
13606 if (atomic_read(&to_intel_crtc(crtc)->unpin_work_count) >= 2)
13607 flush_workqueue(dev_priv->wq);
d55dbd06
ML
13608 }
13609
f935675f
ML
13610 ret = mutex_lock_interruptible(&dev->struct_mutex);
13611 if (ret)
13612 return ret;
13613
5008e874 13614 ret = drm_atomic_helper_prepare_planes(dev, state);
f7e5838b 13615 mutex_unlock(&dev->struct_mutex);
7580d774 13616
21daaeee 13617 if (!ret && !nonblock) {
7580d774
ML
13618 for_each_plane_in_state(state, plane, plane_state, i) {
13619 struct intel_plane_state *intel_plane_state =
13620 to_intel_plane_state(plane_state);
13621
13622 if (!intel_plane_state->wait_req)
13623 continue;
13624
13625 ret = __i915_wait_request(intel_plane_state->wait_req,
299259a3 13626 true, NULL, NULL);
f7e5838b 13627 if (ret) {
f4457ae7
CW
13628 /* Any hang should be swallowed by the wait */
13629 WARN_ON(ret == -EIO);
f7e5838b
CW
13630 mutex_lock(&dev->struct_mutex);
13631 drm_atomic_helper_cleanup_planes(dev, state);
13632 mutex_unlock(&dev->struct_mutex);
7580d774 13633 break;
f7e5838b 13634 }
7580d774 13635 }
7580d774 13636 }
5008e874
ML
13637
13638 return ret;
13639}
13640
a2991414
ML
13641u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc)
13642{
13643 struct drm_device *dev = crtc->base.dev;
13644
13645 if (!dev->max_vblank_count)
13646 return drm_accurate_vblank_count(&crtc->base);
13647
13648 return dev->driver->get_vblank_counter(dev, crtc->pipe);
13649}
13650
5a21b665
DV
13651static void intel_atomic_wait_for_vblanks(struct drm_device *dev,
13652 struct drm_i915_private *dev_priv,
13653 unsigned crtc_mask)
e8861675 13654{
5a21b665
DV
13655 unsigned last_vblank_count[I915_MAX_PIPES];
13656 enum pipe pipe;
13657 int ret;
e8861675 13658
5a21b665
DV
13659 if (!crtc_mask)
13660 return;
e8861675 13661
5a21b665
DV
13662 for_each_pipe(dev_priv, pipe) {
13663 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
e8861675 13664
5a21b665 13665 if (!((1 << pipe) & crtc_mask))
e8861675
ML
13666 continue;
13667
5a21b665
DV
13668 ret = drm_crtc_vblank_get(crtc);
13669 if (WARN_ON(ret != 0)) {
13670 crtc_mask &= ~(1 << pipe);
13671 continue;
e8861675
ML
13672 }
13673
5a21b665 13674 last_vblank_count[pipe] = drm_crtc_vblank_count(crtc);
e8861675
ML
13675 }
13676
5a21b665
DV
13677 for_each_pipe(dev_priv, pipe) {
13678 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
13679 long lret;
e8861675 13680
5a21b665
DV
13681 if (!((1 << pipe) & crtc_mask))
13682 continue;
d55dbd06 13683
5a21b665
DV
13684 lret = wait_event_timeout(dev->vblank[pipe].queue,
13685 last_vblank_count[pipe] !=
13686 drm_crtc_vblank_count(crtc),
13687 msecs_to_jiffies(50));
d55dbd06 13688
5a21b665 13689 WARN(!lret, "pipe %c vblank wait timed out\n", pipe_name(pipe));
d55dbd06 13690
5a21b665 13691 drm_crtc_vblank_put(crtc);
d55dbd06
ML
13692 }
13693}
13694
5a21b665 13695static bool needs_vblank_wait(struct intel_crtc_state *crtc_state)
a6747b73 13696{
5a21b665
DV
13697 /* fb updated, need to unpin old fb */
13698 if (crtc_state->fb_changed)
13699 return true;
a6747b73 13700
5a21b665
DV
13701 /* wm changes, need vblank before final wm's */
13702 if (crtc_state->update_wm_post)
13703 return true;
a6747b73 13704
5a21b665
DV
13705 /*
13706 * cxsr is re-enabled after vblank.
13707 * This is already handled by crtc_state->update_wm_post,
13708 * but added for clarity.
13709 */
13710 if (crtc_state->disable_cxsr)
13711 return true;
a6747b73 13712
5a21b665 13713 return false;
e8861675
ML
13714}
13715
94f05024 13716static void intel_atomic_commit_tail(struct drm_atomic_state *state)
a6778b3c 13717{
94f05024 13718 struct drm_device *dev = state->dev;
565602d7 13719 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
fbee40df 13720 struct drm_i915_private *dev_priv = dev->dev_private;
29ceb0e6 13721 struct drm_crtc_state *old_crtc_state;
7580d774 13722 struct drm_crtc *crtc;
5a21b665 13723 struct intel_crtc_state *intel_cstate;
94f05024
DV
13724 struct drm_plane *plane;
13725 struct drm_plane_state *plane_state;
5a21b665
DV
13726 bool hw_check = intel_state->modeset;
13727 unsigned long put_domains[I915_MAX_PIPES] = {};
13728 unsigned crtc_vblank_mask = 0;
94f05024 13729 int i, ret;
a6778b3c 13730
94f05024
DV
13731 for_each_plane_in_state(state, plane, plane_state, i) {
13732 struct intel_plane_state *intel_plane_state =
13733 to_intel_plane_state(plane_state);
ea0000f0 13734
94f05024
DV
13735 if (!intel_plane_state->wait_req)
13736 continue;
d4afb8cc 13737
94f05024
DV
13738 ret = __i915_wait_request(intel_plane_state->wait_req,
13739 true, NULL, NULL);
13740 /* EIO should be eaten, and we can't get interrupted in the
13741 * worker, and blocking commits have waited already. */
13742 WARN_ON(ret);
13743 }
1c5e19f8 13744
ea0000f0
DV
13745 drm_atomic_helper_wait_for_dependencies(state);
13746
565602d7
ML
13747 if (intel_state->modeset) {
13748 memcpy(dev_priv->min_pixclk, intel_state->min_pixclk,
13749 sizeof(intel_state->min_pixclk));
13750 dev_priv->active_crtcs = intel_state->active_crtcs;
1a617b77 13751 dev_priv->atomic_cdclk_freq = intel_state->cdclk;
5a21b665
DV
13752
13753 intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
565602d7
ML
13754 }
13755
29ceb0e6 13756 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
a539205a
ML
13757 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13758
5a21b665
DV
13759 if (needs_modeset(crtc->state) ||
13760 to_intel_crtc_state(crtc->state)->update_pipe) {
13761 hw_check = true;
13762
13763 put_domains[to_intel_crtc(crtc)->pipe] =
13764 modeset_get_crtc_power_domains(crtc,
13765 to_intel_crtc_state(crtc->state));
13766 }
13767
61333b60
ML
13768 if (!needs_modeset(crtc->state))
13769 continue;
13770
29ceb0e6 13771 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
460da916 13772
29ceb0e6
VS
13773 if (old_crtc_state->active) {
13774 intel_crtc_disable_planes(crtc, old_crtc_state->plane_mask);
a539205a 13775 dev_priv->display.crtc_disable(crtc);
eddfcbcd 13776 intel_crtc->active = false;
58f9c0bc 13777 intel_fbc_disable(intel_crtc);
eddfcbcd 13778 intel_disable_shared_dpll(intel_crtc);
9bbc8258
VS
13779
13780 /*
13781 * Underruns don't always raise
13782 * interrupts, so check manually.
13783 */
13784 intel_check_cpu_fifo_underruns(dev_priv);
13785 intel_check_pch_fifo_underruns(dev_priv);
b9001114
ML
13786
13787 if (!crtc->state->active)
13788 intel_update_watermarks(crtc);
a539205a 13789 }
b8cecdf5 13790 }
7758a113 13791
ea9d758d
DV
13792 /* Only after disabling all output pipelines that will be changed can we
13793 * update the the output configuration. */
4740b0f2 13794 intel_modeset_update_crtc_state(state);
f6e5b160 13795
565602d7 13796 if (intel_state->modeset) {
4740b0f2 13797 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
33c8df89
ML
13798
13799 if (dev_priv->display.modeset_commit_cdclk &&
c89e39f3 13800 (intel_state->dev_cdclk != dev_priv->cdclk_freq ||
63911d72 13801 intel_state->cdclk_pll_vco != dev_priv->cdclk_pll.vco))
33c8df89 13802 dev_priv->display.modeset_commit_cdclk(state);
f6d1973d 13803
c0ead703 13804 intel_modeset_verify_disabled(dev);
4740b0f2 13805 }
47fab737 13806
a6778b3c 13807 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
29ceb0e6 13808 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
f6ac4b2a
ML
13809 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13810 bool modeset = needs_modeset(crtc->state);
5a21b665
DV
13811 struct intel_crtc_state *pipe_config =
13812 to_intel_crtc_state(crtc->state);
9f836f90 13813
f6ac4b2a 13814 if (modeset && crtc->state->active) {
a539205a
ML
13815 update_scanline_offset(to_intel_crtc(crtc));
13816 dev_priv->display.crtc_enable(crtc);
13817 }
80715b2f 13818
1f7528c4
DV
13819 /* Complete events for now disable pipes here. */
13820 if (modeset && !crtc->state->active && crtc->state->event) {
13821 spin_lock_irq(&dev->event_lock);
13822 drm_crtc_send_vblank_event(crtc, crtc->state->event);
13823 spin_unlock_irq(&dev->event_lock);
13824
13825 crtc->state->event = NULL;
13826 }
13827
f6ac4b2a 13828 if (!modeset)
29ceb0e6 13829 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
f6ac4b2a 13830
5a21b665
DV
13831 if (crtc->state->active &&
13832 drm_atomic_get_existing_plane_state(state, crtc->primary))
faf68d92 13833 intel_fbc_enable(intel_crtc, pipe_config, to_intel_plane_state(crtc->primary->state));
5a21b665 13834
1f7528c4 13835 if (crtc->state->active)
5a21b665 13836 drm_atomic_helper_commit_planes_on_crtc(old_crtc_state);
f6d1973d 13837
5a21b665
DV
13838 if (pipe_config->base.active && needs_vblank_wait(pipe_config))
13839 crtc_vblank_mask |= 1 << i;
177246a8
MR
13840 }
13841
94f05024
DV
13842 /* FIXME: We should call drm_atomic_helper_commit_hw_done() here
13843 * already, but still need the state for the delayed optimization. To
13844 * fix this:
13845 * - wrap the optimization/post_plane_update stuff into a per-crtc work.
13846 * - schedule that vblank worker _before_ calling hw_done
13847 * - at the start of commit_tail, cancel it _synchrously
13848 * - switch over to the vblank wait helper in the core after that since
13849 * we don't need out special handling any more.
13850 */
5a21b665
DV
13851 if (!state->legacy_cursor_update)
13852 intel_atomic_wait_for_vblanks(dev, dev_priv, crtc_vblank_mask);
13853
13854 /*
13855 * Now that the vblank has passed, we can go ahead and program the
13856 * optimal watermarks on platforms that need two-step watermark
13857 * programming.
13858 *
13859 * TODO: Move this (and other cleanup) to an async worker eventually.
13860 */
13861 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13862 intel_cstate = to_intel_crtc_state(crtc->state);
13863
13864 if (dev_priv->display.optimize_watermarks)
13865 dev_priv->display.optimize_watermarks(intel_cstate);
13866 }
13867
13868 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13869 intel_post_plane_update(to_intel_crtc_state(old_crtc_state));
13870
13871 if (put_domains[i])
13872 modeset_put_power_domains(dev_priv, put_domains[i]);
13873
13874 intel_modeset_verify_crtc(crtc, old_crtc_state, crtc->state);
13875 }
13876
94f05024
DV
13877 drm_atomic_helper_commit_hw_done(state);
13878
5a21b665
DV
13879 if (intel_state->modeset)
13880 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
13881
13882 mutex_lock(&dev->struct_mutex);
13883 drm_atomic_helper_cleanup_planes(dev, state);
13884 mutex_unlock(&dev->struct_mutex);
13885
ea0000f0
DV
13886 drm_atomic_helper_commit_cleanup_done(state);
13887
ee165b1a 13888 drm_atomic_state_free(state);
f30da187 13889
75714940
MK
13890 /* As one of the primary mmio accessors, KMS has a high likelihood
13891 * of triggering bugs in unclaimed access. After we finish
13892 * modesetting, see if an error has been flagged, and if so
13893 * enable debugging for the next modeset - and hope we catch
13894 * the culprit.
13895 *
13896 * XXX note that we assume display power is on at this point.
13897 * This might hold true now but we need to add pm helper to check
13898 * unclaimed only when the hardware is on, as atomic commits
13899 * can happen also when the device is completely off.
13900 */
13901 intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
94f05024
DV
13902}
13903
13904static void intel_atomic_commit_work(struct work_struct *work)
13905{
13906 struct drm_atomic_state *state = container_of(work,
13907 struct drm_atomic_state,
13908 commit_work);
13909 intel_atomic_commit_tail(state);
13910}
13911
6c9c1b38
DV
13912static void intel_atomic_track_fbs(struct drm_atomic_state *state)
13913{
13914 struct drm_plane_state *old_plane_state;
13915 struct drm_plane *plane;
13916 struct drm_i915_gem_object *obj, *old_obj;
13917 struct intel_plane *intel_plane;
13918 int i;
13919
13920 mutex_lock(&state->dev->struct_mutex);
13921 for_each_plane_in_state(state, plane, old_plane_state, i) {
13922 obj = intel_fb_obj(plane->state->fb);
13923 old_obj = intel_fb_obj(old_plane_state->fb);
13924 intel_plane = to_intel_plane(plane);
13925
13926 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13927 }
13928 mutex_unlock(&state->dev->struct_mutex);
13929}
13930
94f05024
DV
13931/**
13932 * intel_atomic_commit - commit validated state object
13933 * @dev: DRM device
13934 * @state: the top-level driver state object
13935 * @nonblock: nonblocking commit
13936 *
13937 * This function commits a top-level state object that has been validated
13938 * with drm_atomic_helper_check().
13939 *
13940 * FIXME: Atomic modeset support for i915 is not yet complete. At the moment
13941 * nonblocking commits are only safe for pure plane updates. Everything else
13942 * should work though.
13943 *
13944 * RETURNS
13945 * Zero for success or -errno.
13946 */
13947static int intel_atomic_commit(struct drm_device *dev,
13948 struct drm_atomic_state *state,
13949 bool nonblock)
13950{
13951 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13952 struct drm_i915_private *dev_priv = dev->dev_private;
13953 int ret = 0;
13954
13955 if (intel_state->modeset && nonblock) {
13956 DRM_DEBUG_KMS("nonblocking commit for modeset not yet implemented.\n");
13957 return -EINVAL;
13958 }
13959
13960 ret = drm_atomic_helper_setup_commit(state, nonblock);
13961 if (ret)
13962 return ret;
13963
13964 INIT_WORK(&state->commit_work, intel_atomic_commit_work);
13965
13966 ret = intel_atomic_prepare_commit(dev, state, nonblock);
13967 if (ret) {
13968 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
13969 return ret;
13970 }
13971
13972 drm_atomic_helper_swap_state(state, true);
13973 dev_priv->wm.distrust_bios_wm = false;
13974 dev_priv->wm.skl_results = intel_state->wm_results;
13975 intel_shared_dpll_commit(state);
6c9c1b38 13976 intel_atomic_track_fbs(state);
94f05024
DV
13977
13978 if (nonblock)
13979 queue_work(system_unbound_wq, &state->commit_work);
13980 else
13981 intel_atomic_commit_tail(state);
75714940 13982
74c090b1 13983 return 0;
7f27126e
JB
13984}
13985
c0c36b94
CW
13986void intel_crtc_restore_mode(struct drm_crtc *crtc)
13987{
83a57153
ACO
13988 struct drm_device *dev = crtc->dev;
13989 struct drm_atomic_state *state;
e694eb02 13990 struct drm_crtc_state *crtc_state;
2bfb4627 13991 int ret;
83a57153
ACO
13992
13993 state = drm_atomic_state_alloc(dev);
13994 if (!state) {
78108b7c
VS
13995 DRM_DEBUG_KMS("[CRTC:%d:%s] crtc restore failed, out of memory",
13996 crtc->base.id, crtc->name);
83a57153
ACO
13997 return;
13998 }
13999
e694eb02 14000 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
83a57153 14001
e694eb02
ML
14002retry:
14003 crtc_state = drm_atomic_get_crtc_state(state, crtc);
14004 ret = PTR_ERR_OR_ZERO(crtc_state);
14005 if (!ret) {
14006 if (!crtc_state->active)
14007 goto out;
83a57153 14008
e694eb02 14009 crtc_state->mode_changed = true;
74c090b1 14010 ret = drm_atomic_commit(state);
83a57153
ACO
14011 }
14012
e694eb02
ML
14013 if (ret == -EDEADLK) {
14014 drm_atomic_state_clear(state);
14015 drm_modeset_backoff(state->acquire_ctx);
14016 goto retry;
4ed9fb37 14017 }
4be07317 14018
2bfb4627 14019 if (ret)
e694eb02 14020out:
2bfb4627 14021 drm_atomic_state_free(state);
c0c36b94
CW
14022}
14023
25c5b266
DV
14024#undef for_each_intel_crtc_masked
14025
f6e5b160 14026static const struct drm_crtc_funcs intel_crtc_funcs = {
82cf435b 14027 .gamma_set = drm_atomic_helper_legacy_gamma_set,
74c090b1 14028 .set_config = drm_atomic_helper_set_config,
82cf435b 14029 .set_property = drm_atomic_helper_crtc_set_property,
f6e5b160 14030 .destroy = intel_crtc_destroy,
527b6abe 14031 .page_flip = intel_crtc_page_flip,
1356837e
MR
14032 .atomic_duplicate_state = intel_crtc_duplicate_state,
14033 .atomic_destroy_state = intel_crtc_destroy_state,
f6e5b160
CW
14034};
14035
6beb8c23
MR
14036/**
14037 * intel_prepare_plane_fb - Prepare fb for usage on plane
14038 * @plane: drm plane to prepare for
14039 * @fb: framebuffer to prepare for presentation
14040 *
14041 * Prepares a framebuffer for usage on a display plane. Generally this
14042 * involves pinning the underlying object and updating the frontbuffer tracking
14043 * bits. Some older platforms need special physical address handling for
14044 * cursor planes.
14045 *
f935675f
ML
14046 * Must be called with struct_mutex held.
14047 *
6beb8c23
MR
14048 * Returns 0 on success, negative error code on failure.
14049 */
14050int
14051intel_prepare_plane_fb(struct drm_plane *plane,
d136dfee 14052 const struct drm_plane_state *new_state)
465c120c
MR
14053{
14054 struct drm_device *dev = plane->dev;
844f9111 14055 struct drm_framebuffer *fb = new_state->fb;
6beb8c23 14056 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
1ee49399 14057 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
c37efb99 14058 struct reservation_object *resv;
6beb8c23 14059 int ret = 0;
465c120c 14060
1ee49399 14061 if (!obj && !old_obj)
465c120c
MR
14062 return 0;
14063
5008e874
ML
14064 if (old_obj) {
14065 struct drm_crtc_state *crtc_state =
14066 drm_atomic_get_existing_crtc_state(new_state->state, plane->state->crtc);
14067
14068 /* Big Hammer, we also need to ensure that any pending
14069 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
14070 * current scanout is retired before unpinning the old
14071 * framebuffer. Note that we rely on userspace rendering
14072 * into the buffer attached to the pipe they are waiting
14073 * on. If not, userspace generates a GPU hang with IPEHR
14074 * point to the MI_WAIT_FOR_EVENT.
14075 *
14076 * This should only fail upon a hung GPU, in which case we
14077 * can safely continue.
14078 */
14079 if (needs_modeset(crtc_state))
14080 ret = i915_gem_object_wait_rendering(old_obj, true);
f4457ae7
CW
14081 if (ret) {
14082 /* GPU hangs should have been swallowed by the wait */
14083 WARN_ON(ret == -EIO);
f935675f 14084 return ret;
f4457ae7 14085 }
5008e874
ML
14086 }
14087
c37efb99
CW
14088 if (!obj)
14089 return 0;
14090
5a21b665 14091 /* For framebuffer backed by dmabuf, wait for fence */
c37efb99
CW
14092 resv = i915_gem_object_get_dmabuf_resv(obj);
14093 if (resv) {
5a21b665
DV
14094 long lret;
14095
c37efb99 14096 lret = reservation_object_wait_timeout_rcu(resv, false, true,
5a21b665
DV
14097 MAX_SCHEDULE_TIMEOUT);
14098 if (lret == -ERESTARTSYS)
14099 return lret;
14100
14101 WARN(lret < 0, "waiting returns %li\n", lret);
14102 }
14103
c37efb99 14104 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
6beb8c23
MR
14105 INTEL_INFO(dev)->cursor_needs_physical) {
14106 int align = IS_I830(dev) ? 16 * 1024 : 256;
14107 ret = i915_gem_object_attach_phys(obj, align);
14108 if (ret)
14109 DRM_DEBUG_KMS("failed to attach phys object\n");
14110 } else {
3465c580 14111 ret = intel_pin_and_fence_fb_obj(fb, new_state->rotation);
6beb8c23 14112 }
465c120c 14113
c37efb99 14114 if (ret == 0) {
6c9c1b38
DV
14115 struct intel_plane_state *plane_state =
14116 to_intel_plane_state(new_state);
7580d774 14117
6c9c1b38
DV
14118 i915_gem_request_assign(&plane_state->wait_req,
14119 obj->last_write_req);
7580d774 14120 }
fdd508a6 14121
6beb8c23
MR
14122 return ret;
14123}
14124
38f3ce3a
MR
14125/**
14126 * intel_cleanup_plane_fb - Cleans up an fb after plane use
14127 * @plane: drm plane to clean up for
14128 * @fb: old framebuffer that was on plane
14129 *
14130 * Cleans up a framebuffer that has just been removed from a plane.
f935675f
ML
14131 *
14132 * Must be called with struct_mutex held.
38f3ce3a
MR
14133 */
14134void
14135intel_cleanup_plane_fb(struct drm_plane *plane,
d136dfee 14136 const struct drm_plane_state *old_state)
38f3ce3a
MR
14137{
14138 struct drm_device *dev = plane->dev;
7580d774 14139 struct intel_plane_state *old_intel_state;
1ee49399
ML
14140 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_state->fb);
14141 struct drm_i915_gem_object *obj = intel_fb_obj(plane->state->fb);
38f3ce3a 14142
7580d774
ML
14143 old_intel_state = to_intel_plane_state(old_state);
14144
1ee49399 14145 if (!obj && !old_obj)
38f3ce3a
MR
14146 return;
14147
1ee49399
ML
14148 if (old_obj && (plane->type != DRM_PLANE_TYPE_CURSOR ||
14149 !INTEL_INFO(dev)->cursor_needs_physical))
3465c580 14150 intel_unpin_fb_obj(old_state->fb, old_state->rotation);
1ee49399 14151
7580d774 14152 i915_gem_request_assign(&old_intel_state->wait_req, NULL);
465c120c
MR
14153}
14154
6156a456
CK
14155int
14156skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
14157{
14158 int max_scale;
14159 struct drm_device *dev;
14160 struct drm_i915_private *dev_priv;
14161 int crtc_clock, cdclk;
14162
bf8a0af0 14163 if (!intel_crtc || !crtc_state->base.enable)
6156a456
CK
14164 return DRM_PLANE_HELPER_NO_SCALING;
14165
14166 dev = intel_crtc->base.dev;
14167 dev_priv = dev->dev_private;
14168 crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
27c329ed 14169 cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
6156a456 14170
54bf1ce6 14171 if (WARN_ON_ONCE(!crtc_clock || cdclk < crtc_clock))
6156a456
CK
14172 return DRM_PLANE_HELPER_NO_SCALING;
14173
14174 /*
14175 * skl max scale is lower of:
14176 * close to 3 but not 3, -1 is for that purpose
14177 * or
14178 * cdclk/crtc_clock
14179 */
14180 max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
14181
14182 return max_scale;
14183}
14184
465c120c 14185static int
3c692a41 14186intel_check_primary_plane(struct drm_plane *plane,
061e4b8d 14187 struct intel_crtc_state *crtc_state,
3c692a41
GP
14188 struct intel_plane_state *state)
14189{
2b875c22
MR
14190 struct drm_crtc *crtc = state->base.crtc;
14191 struct drm_framebuffer *fb = state->base.fb;
6156a456 14192 int min_scale = DRM_PLANE_HELPER_NO_SCALING;
061e4b8d
ML
14193 int max_scale = DRM_PLANE_HELPER_NO_SCALING;
14194 bool can_position = false;
465c120c 14195
693bdc28
VS
14196 if (INTEL_INFO(plane->dev)->gen >= 9) {
14197 /* use scaler when colorkey is not required */
14198 if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
14199 min_scale = 1;
14200 max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
14201 }
d8106366 14202 can_position = true;
6156a456 14203 }
d8106366 14204
061e4b8d
ML
14205 return drm_plane_helper_check_update(plane, crtc, fb, &state->src,
14206 &state->dst, &state->clip,
9b8b013d 14207 state->base.rotation,
da20eabd
ML
14208 min_scale, max_scale,
14209 can_position, true,
14210 &state->visible);
14af293f
GP
14211}
14212
5a21b665
DV
14213static void intel_begin_crtc_commit(struct drm_crtc *crtc,
14214 struct drm_crtc_state *old_crtc_state)
14215{
14216 struct drm_device *dev = crtc->dev;
14217 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14218 struct intel_crtc_state *old_intel_state =
14219 to_intel_crtc_state(old_crtc_state);
14220 bool modeset = needs_modeset(crtc->state);
14221
14222 /* Perform vblank evasion around commit operation */
14223 intel_pipe_update_start(intel_crtc);
14224
14225 if (modeset)
14226 return;
14227
14228 if (crtc->state->color_mgmt_changed || to_intel_crtc_state(crtc->state)->update_pipe) {
14229 intel_color_set_csc(crtc->state);
14230 intel_color_load_luts(crtc->state);
14231 }
14232
14233 if (to_intel_crtc_state(crtc->state)->update_pipe)
14234 intel_update_pipe_config(intel_crtc, old_intel_state);
14235 else if (INTEL_INFO(dev)->gen >= 9)
14236 skl_detach_scalers(intel_crtc);
14237}
14238
14239static void intel_finish_crtc_commit(struct drm_crtc *crtc,
14240 struct drm_crtc_state *old_crtc_state)
14241{
14242 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14243
14244 intel_pipe_update_end(intel_crtc, NULL);
14245}
14246
cf4c7c12 14247/**
4a3b8769
MR
14248 * intel_plane_destroy - destroy a plane
14249 * @plane: plane to destroy
cf4c7c12 14250 *
4a3b8769
MR
14251 * Common destruction function for all types of planes (primary, cursor,
14252 * sprite).
cf4c7c12 14253 */
4a3b8769 14254void intel_plane_destroy(struct drm_plane *plane)
465c120c 14255{
69ae561f
VS
14256 if (!plane)
14257 return;
14258
465c120c 14259 drm_plane_cleanup(plane);
69ae561f 14260 kfree(to_intel_plane(plane));
465c120c
MR
14261}
14262
65a3fea0 14263const struct drm_plane_funcs intel_plane_funcs = {
70a101f8
MR
14264 .update_plane = drm_atomic_helper_update_plane,
14265 .disable_plane = drm_atomic_helper_disable_plane,
3d7d6510 14266 .destroy = intel_plane_destroy,
c196e1d6 14267 .set_property = drm_atomic_helper_plane_set_property,
a98b3431
MR
14268 .atomic_get_property = intel_plane_atomic_get_property,
14269 .atomic_set_property = intel_plane_atomic_set_property,
ea2c67bb
MR
14270 .atomic_duplicate_state = intel_plane_duplicate_state,
14271 .atomic_destroy_state = intel_plane_destroy_state,
14272
465c120c
MR
14273};
14274
14275static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
14276 int pipe)
14277{
fca0ce2a
VS
14278 struct intel_plane *primary = NULL;
14279 struct intel_plane_state *state = NULL;
465c120c 14280 const uint32_t *intel_primary_formats;
45e3743a 14281 unsigned int num_formats;
fca0ce2a 14282 int ret;
465c120c
MR
14283
14284 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
fca0ce2a
VS
14285 if (!primary)
14286 goto fail;
465c120c 14287
8e7d688b 14288 state = intel_create_plane_state(&primary->base);
fca0ce2a
VS
14289 if (!state)
14290 goto fail;
8e7d688b 14291 primary->base.state = &state->base;
ea2c67bb 14292
465c120c
MR
14293 primary->can_scale = false;
14294 primary->max_downscale = 1;
6156a456
CK
14295 if (INTEL_INFO(dev)->gen >= 9) {
14296 primary->can_scale = true;
af99ceda 14297 state->scaler_id = -1;
6156a456 14298 }
465c120c
MR
14299 primary->pipe = pipe;
14300 primary->plane = pipe;
a9ff8714 14301 primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
c59cb179 14302 primary->check_plane = intel_check_primary_plane;
465c120c
MR
14303 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
14304 primary->plane = !pipe;
14305
6c0fd451
DL
14306 if (INTEL_INFO(dev)->gen >= 9) {
14307 intel_primary_formats = skl_primary_formats;
14308 num_formats = ARRAY_SIZE(skl_primary_formats);
a8d201af
ML
14309
14310 primary->update_plane = skylake_update_primary_plane;
14311 primary->disable_plane = skylake_disable_primary_plane;
14312 } else if (HAS_PCH_SPLIT(dev)) {
14313 intel_primary_formats = i965_primary_formats;
14314 num_formats = ARRAY_SIZE(i965_primary_formats);
14315
14316 primary->update_plane = ironlake_update_primary_plane;
14317 primary->disable_plane = i9xx_disable_primary_plane;
6c0fd451 14318 } else if (INTEL_INFO(dev)->gen >= 4) {
568db4f2
DL
14319 intel_primary_formats = i965_primary_formats;
14320 num_formats = ARRAY_SIZE(i965_primary_formats);
a8d201af
ML
14321
14322 primary->update_plane = i9xx_update_primary_plane;
14323 primary->disable_plane = i9xx_disable_primary_plane;
6c0fd451
DL
14324 } else {
14325 intel_primary_formats = i8xx_primary_formats;
14326 num_formats = ARRAY_SIZE(i8xx_primary_formats);
a8d201af
ML
14327
14328 primary->update_plane = i9xx_update_primary_plane;
14329 primary->disable_plane = i9xx_disable_primary_plane;
465c120c
MR
14330 }
14331
38573dc1
VS
14332 if (INTEL_INFO(dev)->gen >= 9)
14333 ret = drm_universal_plane_init(dev, &primary->base, 0,
14334 &intel_plane_funcs,
14335 intel_primary_formats, num_formats,
14336 DRM_PLANE_TYPE_PRIMARY,
14337 "plane 1%c", pipe_name(pipe));
14338 else if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
14339 ret = drm_universal_plane_init(dev, &primary->base, 0,
14340 &intel_plane_funcs,
14341 intel_primary_formats, num_formats,
14342 DRM_PLANE_TYPE_PRIMARY,
14343 "primary %c", pipe_name(pipe));
14344 else
14345 ret = drm_universal_plane_init(dev, &primary->base, 0,
14346 &intel_plane_funcs,
14347 intel_primary_formats, num_formats,
14348 DRM_PLANE_TYPE_PRIMARY,
14349 "plane %c", plane_name(primary->plane));
fca0ce2a
VS
14350 if (ret)
14351 goto fail;
48404c1e 14352
3b7a5119
SJ
14353 if (INTEL_INFO(dev)->gen >= 4)
14354 intel_create_rotation_property(dev, primary);
48404c1e 14355
ea2c67bb
MR
14356 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
14357
465c120c 14358 return &primary->base;
fca0ce2a
VS
14359
14360fail:
14361 kfree(state);
14362 kfree(primary);
14363
14364 return NULL;
465c120c
MR
14365}
14366
3b7a5119
SJ
14367void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
14368{
14369 if (!dev->mode_config.rotation_property) {
14370 unsigned long flags = BIT(DRM_ROTATE_0) |
14371 BIT(DRM_ROTATE_180);
14372
14373 if (INTEL_INFO(dev)->gen >= 9)
14374 flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
14375
14376 dev->mode_config.rotation_property =
14377 drm_mode_create_rotation_property(dev, flags);
14378 }
14379 if (dev->mode_config.rotation_property)
14380 drm_object_attach_property(&plane->base.base,
14381 dev->mode_config.rotation_property,
14382 plane->base.state->rotation);
14383}
14384
3d7d6510 14385static int
852e787c 14386intel_check_cursor_plane(struct drm_plane *plane,
061e4b8d 14387 struct intel_crtc_state *crtc_state,
852e787c 14388 struct intel_plane_state *state)
3d7d6510 14389{
061e4b8d 14390 struct drm_crtc *crtc = crtc_state->base.crtc;
2b875c22 14391 struct drm_framebuffer *fb = state->base.fb;
757f9a3e 14392 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
b29ec92c 14393 enum pipe pipe = to_intel_plane(plane)->pipe;
757f9a3e
GP
14394 unsigned stride;
14395 int ret;
3d7d6510 14396
061e4b8d
ML
14397 ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src,
14398 &state->dst, &state->clip,
9b8b013d 14399 state->base.rotation,
3d7d6510
MR
14400 DRM_PLANE_HELPER_NO_SCALING,
14401 DRM_PLANE_HELPER_NO_SCALING,
852e787c 14402 true, true, &state->visible);
757f9a3e
GP
14403 if (ret)
14404 return ret;
14405
757f9a3e
GP
14406 /* if we want to turn off the cursor ignore width and height */
14407 if (!obj)
da20eabd 14408 return 0;
757f9a3e 14409
757f9a3e 14410 /* Check for which cursor types we support */
061e4b8d 14411 if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
ea2c67bb
MR
14412 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
14413 state->base.crtc_w, state->base.crtc_h);
757f9a3e
GP
14414 return -EINVAL;
14415 }
14416
ea2c67bb
MR
14417 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
14418 if (obj->base.size < stride * state->base.crtc_h) {
757f9a3e
GP
14419 DRM_DEBUG_KMS("buffer is too small\n");
14420 return -ENOMEM;
14421 }
14422
3a656b54 14423 if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
757f9a3e 14424 DRM_DEBUG_KMS("cursor cannot be tiled\n");
da20eabd 14425 return -EINVAL;
32b7eeec
MR
14426 }
14427
b29ec92c
VS
14428 /*
14429 * There's something wrong with the cursor on CHV pipe C.
14430 * If it straddles the left edge of the screen then
14431 * moving it away from the edge or disabling it often
14432 * results in a pipe underrun, and often that can lead to
14433 * dead pipe (constant underrun reported, and it scans
14434 * out just a solid color). To recover from that, the
14435 * display power well must be turned off and on again.
14436 * Refuse the put the cursor into that compromised position.
14437 */
14438 if (IS_CHERRYVIEW(plane->dev) && pipe == PIPE_C &&
14439 state->visible && state->base.crtc_x < 0) {
14440 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
14441 return -EINVAL;
14442 }
14443
da20eabd 14444 return 0;
852e787c 14445}
3d7d6510 14446
a8ad0d8e
ML
14447static void
14448intel_disable_cursor_plane(struct drm_plane *plane,
7fabf5ef 14449 struct drm_crtc *crtc)
a8ad0d8e 14450{
f2858021
ML
14451 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14452
14453 intel_crtc->cursor_addr = 0;
55a08b3f 14454 intel_crtc_update_cursor(crtc, NULL);
a8ad0d8e
ML
14455}
14456
f4a2cf29 14457static void
55a08b3f
ML
14458intel_update_cursor_plane(struct drm_plane *plane,
14459 const struct intel_crtc_state *crtc_state,
14460 const struct intel_plane_state *state)
852e787c 14461{
55a08b3f
ML
14462 struct drm_crtc *crtc = crtc_state->base.crtc;
14463 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ea2c67bb 14464 struct drm_device *dev = plane->dev;
2b875c22 14465 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
a912f12f 14466 uint32_t addr;
852e787c 14467
f4a2cf29 14468 if (!obj)
a912f12f 14469 addr = 0;
f4a2cf29 14470 else if (!INTEL_INFO(dev)->cursor_needs_physical)
a912f12f 14471 addr = i915_gem_obj_ggtt_offset(obj);
f4a2cf29 14472 else
a912f12f 14473 addr = obj->phys_handle->busaddr;
852e787c 14474
a912f12f 14475 intel_crtc->cursor_addr = addr;
55a08b3f 14476 intel_crtc_update_cursor(crtc, state);
852e787c
GP
14477}
14478
3d7d6510
MR
14479static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
14480 int pipe)
14481{
fca0ce2a
VS
14482 struct intel_plane *cursor = NULL;
14483 struct intel_plane_state *state = NULL;
14484 int ret;
3d7d6510
MR
14485
14486 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
fca0ce2a
VS
14487 if (!cursor)
14488 goto fail;
3d7d6510 14489
8e7d688b 14490 state = intel_create_plane_state(&cursor->base);
fca0ce2a
VS
14491 if (!state)
14492 goto fail;
8e7d688b 14493 cursor->base.state = &state->base;
ea2c67bb 14494
3d7d6510
MR
14495 cursor->can_scale = false;
14496 cursor->max_downscale = 1;
14497 cursor->pipe = pipe;
14498 cursor->plane = pipe;
a9ff8714 14499 cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
c59cb179 14500 cursor->check_plane = intel_check_cursor_plane;
55a08b3f 14501 cursor->update_plane = intel_update_cursor_plane;
a8ad0d8e 14502 cursor->disable_plane = intel_disable_cursor_plane;
3d7d6510 14503
fca0ce2a
VS
14504 ret = drm_universal_plane_init(dev, &cursor->base, 0,
14505 &intel_plane_funcs,
14506 intel_cursor_formats,
14507 ARRAY_SIZE(intel_cursor_formats),
38573dc1
VS
14508 DRM_PLANE_TYPE_CURSOR,
14509 "cursor %c", pipe_name(pipe));
fca0ce2a
VS
14510 if (ret)
14511 goto fail;
4398ad45
VS
14512
14513 if (INTEL_INFO(dev)->gen >= 4) {
14514 if (!dev->mode_config.rotation_property)
14515 dev->mode_config.rotation_property =
14516 drm_mode_create_rotation_property(dev,
14517 BIT(DRM_ROTATE_0) |
14518 BIT(DRM_ROTATE_180));
14519 if (dev->mode_config.rotation_property)
14520 drm_object_attach_property(&cursor->base.base,
14521 dev->mode_config.rotation_property,
8e7d688b 14522 state->base.rotation);
4398ad45
VS
14523 }
14524
af99ceda
CK
14525 if (INTEL_INFO(dev)->gen >=9)
14526 state->scaler_id = -1;
14527
ea2c67bb
MR
14528 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
14529
3d7d6510 14530 return &cursor->base;
fca0ce2a
VS
14531
14532fail:
14533 kfree(state);
14534 kfree(cursor);
14535
14536 return NULL;
3d7d6510
MR
14537}
14538
549e2bfb
CK
14539static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
14540 struct intel_crtc_state *crtc_state)
14541{
14542 int i;
14543 struct intel_scaler *intel_scaler;
14544 struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
14545
14546 for (i = 0; i < intel_crtc->num_scalers; i++) {
14547 intel_scaler = &scaler_state->scalers[i];
14548 intel_scaler->in_use = 0;
549e2bfb
CK
14549 intel_scaler->mode = PS_SCALER_MODE_DYN;
14550 }
14551
14552 scaler_state->scaler_id = -1;
14553}
14554
b358d0a6 14555static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 14556{
fbee40df 14557 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 14558 struct intel_crtc *intel_crtc;
f5de6e07 14559 struct intel_crtc_state *crtc_state = NULL;
3d7d6510
MR
14560 struct drm_plane *primary = NULL;
14561 struct drm_plane *cursor = NULL;
8563b1e8 14562 int ret;
79e53945 14563
955382f3 14564 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
79e53945
JB
14565 if (intel_crtc == NULL)
14566 return;
14567
f5de6e07
ACO
14568 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
14569 if (!crtc_state)
14570 goto fail;
550acefd
ACO
14571 intel_crtc->config = crtc_state;
14572 intel_crtc->base.state = &crtc_state->base;
07878248 14573 crtc_state->base.crtc = &intel_crtc->base;
f5de6e07 14574
549e2bfb
CK
14575 /* initialize shared scalers */
14576 if (INTEL_INFO(dev)->gen >= 9) {
14577 if (pipe == PIPE_C)
14578 intel_crtc->num_scalers = 1;
14579 else
14580 intel_crtc->num_scalers = SKL_NUM_SCALERS;
14581
14582 skl_init_scalers(dev, intel_crtc, crtc_state);
14583 }
14584
465c120c 14585 primary = intel_primary_plane_create(dev, pipe);
3d7d6510
MR
14586 if (!primary)
14587 goto fail;
14588
14589 cursor = intel_cursor_plane_create(dev, pipe);
14590 if (!cursor)
14591 goto fail;
14592
465c120c 14593 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
4d5d72b7
VS
14594 cursor, &intel_crtc_funcs,
14595 "pipe %c", pipe_name(pipe));
3d7d6510
MR
14596 if (ret)
14597 goto fail;
79e53945 14598
1f1c2e24
VS
14599 /*
14600 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
8c0f92e1 14601 * is hooked to pipe B. Hence we want plane A feeding pipe B.
1f1c2e24 14602 */
80824003
JB
14603 intel_crtc->pipe = pipe;
14604 intel_crtc->plane = pipe;
3a77c4c4 14605 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
28c97730 14606 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 14607 intel_crtc->plane = !pipe;
80824003
JB
14608 }
14609
4b0e333e
CW
14610 intel_crtc->cursor_base = ~0;
14611 intel_crtc->cursor_cntl = ~0;
dc41c154 14612 intel_crtc->cursor_size = ~0;
8d7849db 14613
852eb00d
VS
14614 intel_crtc->wm.cxsr_allowed = true;
14615
22fd0fab
JB
14616 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
14617 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
14618 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
14619 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
14620
79e53945 14621 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
87b6b101 14622
8563b1e8
LL
14623 intel_color_init(&intel_crtc->base);
14624
87b6b101 14625 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
3d7d6510
MR
14626 return;
14627
14628fail:
69ae561f
VS
14629 intel_plane_destroy(primary);
14630 intel_plane_destroy(cursor);
f5de6e07 14631 kfree(crtc_state);
3d7d6510 14632 kfree(intel_crtc);
79e53945
JB
14633}
14634
752aa88a
JB
14635enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
14636{
14637 struct drm_encoder *encoder = connector->base.encoder;
6e9f798d 14638 struct drm_device *dev = connector->base.dev;
752aa88a 14639
51fd371b 14640 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
752aa88a 14641
d3babd3f 14642 if (!encoder || WARN_ON(!encoder->crtc))
752aa88a
JB
14643 return INVALID_PIPE;
14644
14645 return to_intel_crtc(encoder->crtc)->pipe;
14646}
14647
08d7b3d1 14648int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 14649 struct drm_file *file)
08d7b3d1 14650{
08d7b3d1 14651 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7707e653 14652 struct drm_crtc *drmmode_crtc;
c05422d5 14653 struct intel_crtc *crtc;
08d7b3d1 14654
7707e653 14655 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
71240ed2 14656 if (!drmmode_crtc)
3f2c2057 14657 return -ENOENT;
08d7b3d1 14658
7707e653 14659 crtc = to_intel_crtc(drmmode_crtc);
c05422d5 14660 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 14661
c05422d5 14662 return 0;
08d7b3d1
CW
14663}
14664
66a9278e 14665static int intel_encoder_clones(struct intel_encoder *encoder)
79e53945 14666{
66a9278e
DV
14667 struct drm_device *dev = encoder->base.dev;
14668 struct intel_encoder *source_encoder;
79e53945 14669 int index_mask = 0;
79e53945
JB
14670 int entry = 0;
14671
b2784e15 14672 for_each_intel_encoder(dev, source_encoder) {
bc079e8b 14673 if (encoders_cloneable(encoder, source_encoder))
66a9278e
DV
14674 index_mask |= (1 << entry);
14675
79e53945
JB
14676 entry++;
14677 }
4ef69c7a 14678
79e53945
JB
14679 return index_mask;
14680}
14681
4d302442
CW
14682static bool has_edp_a(struct drm_device *dev)
14683{
14684 struct drm_i915_private *dev_priv = dev->dev_private;
14685
14686 if (!IS_MOBILE(dev))
14687 return false;
14688
14689 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
14690 return false;
14691
e3589908 14692 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
4d302442
CW
14693 return false;
14694
14695 return true;
14696}
14697
84b4e042
JB
14698static bool intel_crt_present(struct drm_device *dev)
14699{
14700 struct drm_i915_private *dev_priv = dev->dev_private;
14701
884497ed
DL
14702 if (INTEL_INFO(dev)->gen >= 9)
14703 return false;
14704
cf404ce4 14705 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
84b4e042
JB
14706 return false;
14707
14708 if (IS_CHERRYVIEW(dev))
14709 return false;
14710
65e472e4
VS
14711 if (HAS_PCH_LPT_H(dev) && I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
14712 return false;
14713
70ac54d0
VS
14714 /* DDI E can't be used if DDI A requires 4 lanes */
14715 if (HAS_DDI(dev) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
14716 return false;
14717
e4abb733 14718 if (!dev_priv->vbt.int_crt_support)
84b4e042
JB
14719 return false;
14720
14721 return true;
14722}
14723
79e53945
JB
14724static void intel_setup_outputs(struct drm_device *dev)
14725{
725e30ad 14726 struct drm_i915_private *dev_priv = dev->dev_private;
4ef69c7a 14727 struct intel_encoder *encoder;
cb0953d7 14728 bool dpd_is_edp = false;
79e53945 14729
97a824e1
ID
14730 /*
14731 * intel_edp_init_connector() depends on this completing first, to
14732 * prevent the registeration of both eDP and LVDS and the incorrect
14733 * sharing of the PPS.
14734 */
c9093354 14735 intel_lvds_init(dev);
79e53945 14736
84b4e042 14737 if (intel_crt_present(dev))
79935fca 14738 intel_crt_init(dev);
cb0953d7 14739
c776eb2e
VK
14740 if (IS_BROXTON(dev)) {
14741 /*
14742 * FIXME: Broxton doesn't support port detection via the
14743 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
14744 * detect the ports.
14745 */
14746 intel_ddi_init(dev, PORT_A);
14747 intel_ddi_init(dev, PORT_B);
14748 intel_ddi_init(dev, PORT_C);
c6c794a2
SS
14749
14750 intel_dsi_init(dev);
c776eb2e 14751 } else if (HAS_DDI(dev)) {
0e72a5b5
ED
14752 int found;
14753
de31facd
JB
14754 /*
14755 * Haswell uses DDI functions to detect digital outputs.
14756 * On SKL pre-D0 the strap isn't connected, so we assume
14757 * it's there.
14758 */
77179400 14759 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
de31facd 14760 /* WaIgnoreDDIAStrap: skl */
ef11bdb3 14761 if (found || IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
0e72a5b5
ED
14762 intel_ddi_init(dev, PORT_A);
14763
14764 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
14765 * register */
14766 found = I915_READ(SFUSE_STRAP);
14767
14768 if (found & SFUSE_STRAP_DDIB_DETECTED)
14769 intel_ddi_init(dev, PORT_B);
14770 if (found & SFUSE_STRAP_DDIC_DETECTED)
14771 intel_ddi_init(dev, PORT_C);
14772 if (found & SFUSE_STRAP_DDID_DETECTED)
14773 intel_ddi_init(dev, PORT_D);
2800e4c2
RV
14774 /*
14775 * On SKL we don't have a way to detect DDI-E so we rely on VBT.
14776 */
ef11bdb3 14777 if ((IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) &&
2800e4c2
RV
14778 (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
14779 dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
14780 dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
14781 intel_ddi_init(dev, PORT_E);
14782
0e72a5b5 14783 } else if (HAS_PCH_SPLIT(dev)) {
cb0953d7 14784 int found;
5d8a7752 14785 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
270b3042
DV
14786
14787 if (has_edp_a(dev))
14788 intel_dp_init(dev, DP_A, PORT_A);
cb0953d7 14789
dc0fa718 14790 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
461ed3ca 14791 /* PCH SDVOB multiplex with HDMIB */
2a5c0832 14792 found = intel_sdvo_init(dev, PCH_SDVOB, PORT_B);
30ad48b7 14793 if (!found)
e2debe91 14794 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
5eb08b69 14795 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
ab9d7c30 14796 intel_dp_init(dev, PCH_DP_B, PORT_B);
30ad48b7
ZW
14797 }
14798
dc0fa718 14799 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
e2debe91 14800 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
30ad48b7 14801
dc0fa718 14802 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
e2debe91 14803 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
30ad48b7 14804
5eb08b69 14805 if (I915_READ(PCH_DP_C) & DP_DETECTED)
ab9d7c30 14806 intel_dp_init(dev, PCH_DP_C, PORT_C);
5eb08b69 14807
270b3042 14808 if (I915_READ(PCH_DP_D) & DP_DETECTED)
ab9d7c30 14809 intel_dp_init(dev, PCH_DP_D, PORT_D);
666a4537 14810 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
22f35042 14811 bool has_edp, has_port;
457c52d8 14812
e17ac6db
VS
14813 /*
14814 * The DP_DETECTED bit is the latched state of the DDC
14815 * SDA pin at boot. However since eDP doesn't require DDC
14816 * (no way to plug in a DP->HDMI dongle) the DDC pins for
14817 * eDP ports may have been muxed to an alternate function.
14818 * Thus we can't rely on the DP_DETECTED bit alone to detect
14819 * eDP ports. Consult the VBT as well as DP_DETECTED to
14820 * detect eDP ports.
22f35042
VS
14821 *
14822 * Sadly the straps seem to be missing sometimes even for HDMI
14823 * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap
14824 * and VBT for the presence of the port. Additionally we can't
14825 * trust the port type the VBT declares as we've seen at least
14826 * HDMI ports that the VBT claim are DP or eDP.
e17ac6db 14827 */
457c52d8 14828 has_edp = intel_dp_is_edp(dev, PORT_B);
22f35042
VS
14829 has_port = intel_bios_is_port_present(dev_priv, PORT_B);
14830 if (I915_READ(VLV_DP_B) & DP_DETECTED || has_port)
457c52d8 14831 has_edp &= intel_dp_init(dev, VLV_DP_B, PORT_B);
22f35042 14832 if ((I915_READ(VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp)
e66eb81d 14833 intel_hdmi_init(dev, VLV_HDMIB, PORT_B);
585a94b8 14834
457c52d8 14835 has_edp = intel_dp_is_edp(dev, PORT_C);
22f35042
VS
14836 has_port = intel_bios_is_port_present(dev_priv, PORT_C);
14837 if (I915_READ(VLV_DP_C) & DP_DETECTED || has_port)
457c52d8 14838 has_edp &= intel_dp_init(dev, VLV_DP_C, PORT_C);
22f35042 14839 if ((I915_READ(VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp)
e66eb81d 14840 intel_hdmi_init(dev, VLV_HDMIC, PORT_C);
19c03924 14841
9418c1f1 14842 if (IS_CHERRYVIEW(dev)) {
22f35042
VS
14843 /*
14844 * eDP not supported on port D,
14845 * so no need to worry about it
14846 */
14847 has_port = intel_bios_is_port_present(dev_priv, PORT_D);
14848 if (I915_READ(CHV_DP_D) & DP_DETECTED || has_port)
e66eb81d 14849 intel_dp_init(dev, CHV_DP_D, PORT_D);
22f35042
VS
14850 if (I915_READ(CHV_HDMID) & SDVO_DETECTED || has_port)
14851 intel_hdmi_init(dev, CHV_HDMID, PORT_D);
9418c1f1
VS
14852 }
14853
3cfca973 14854 intel_dsi_init(dev);
09da55dc 14855 } else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
27185ae1 14856 bool found = false;
7d57382e 14857
e2debe91 14858 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 14859 DRM_DEBUG_KMS("probing SDVOB\n");
2a5c0832 14860 found = intel_sdvo_init(dev, GEN3_SDVOB, PORT_B);
3fec3d2f 14861 if (!found && IS_G4X(dev)) {
b01f2c3a 14862 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
e2debe91 14863 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
b01f2c3a 14864 }
27185ae1 14865
3fec3d2f 14866 if (!found && IS_G4X(dev))
ab9d7c30 14867 intel_dp_init(dev, DP_B, PORT_B);
725e30ad 14868 }
13520b05
KH
14869
14870 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 14871
e2debe91 14872 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 14873 DRM_DEBUG_KMS("probing SDVOC\n");
2a5c0832 14874 found = intel_sdvo_init(dev, GEN3_SDVOC, PORT_C);
b01f2c3a 14875 }
27185ae1 14876
e2debe91 14877 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
27185ae1 14878
3fec3d2f 14879 if (IS_G4X(dev)) {
b01f2c3a 14880 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
e2debe91 14881 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
b01f2c3a 14882 }
3fec3d2f 14883 if (IS_G4X(dev))
ab9d7c30 14884 intel_dp_init(dev, DP_C, PORT_C);
725e30ad 14885 }
27185ae1 14886
3fec3d2f 14887 if (IS_G4X(dev) &&
e7281eab 14888 (I915_READ(DP_D) & DP_DETECTED))
ab9d7c30 14889 intel_dp_init(dev, DP_D, PORT_D);
bad720ff 14890 } else if (IS_GEN2(dev))
79e53945
JB
14891 intel_dvo_init(dev);
14892
103a196f 14893 if (SUPPORTS_TV(dev))
79e53945
JB
14894 intel_tv_init(dev);
14895
0bc12bcb 14896 intel_psr_init(dev);
7c8f8a70 14897
b2784e15 14898 for_each_intel_encoder(dev, encoder) {
4ef69c7a
CW
14899 encoder->base.possible_crtcs = encoder->crtc_mask;
14900 encoder->base.possible_clones =
66a9278e 14901 intel_encoder_clones(encoder);
79e53945 14902 }
47356eb6 14903
dde86e2d 14904 intel_init_pch_refclk(dev);
270b3042
DV
14905
14906 drm_helper_move_panel_connectors_to_head(dev);
79e53945
JB
14907}
14908
14909static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14910{
60a5ca01 14911 struct drm_device *dev = fb->dev;
79e53945 14912 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945 14913
ef2d633e 14914 drm_framebuffer_cleanup(fb);
60a5ca01 14915 mutex_lock(&dev->struct_mutex);
ef2d633e 14916 WARN_ON(!intel_fb->obj->framebuffer_references--);
60a5ca01
VS
14917 drm_gem_object_unreference(&intel_fb->obj->base);
14918 mutex_unlock(&dev->struct_mutex);
79e53945
JB
14919 kfree(intel_fb);
14920}
14921
14922static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 14923 struct drm_file *file,
79e53945
JB
14924 unsigned int *handle)
14925{
14926 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 14927 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 14928
cc917ab4
CW
14929 if (obj->userptr.mm) {
14930 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
14931 return -EINVAL;
14932 }
14933
05394f39 14934 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
14935}
14936
86c98588
RV
14937static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
14938 struct drm_file *file,
14939 unsigned flags, unsigned color,
14940 struct drm_clip_rect *clips,
14941 unsigned num_clips)
14942{
14943 struct drm_device *dev = fb->dev;
14944 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14945 struct drm_i915_gem_object *obj = intel_fb->obj;
14946
14947 mutex_lock(&dev->struct_mutex);
74b4ea1e 14948 intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
86c98588
RV
14949 mutex_unlock(&dev->struct_mutex);
14950
14951 return 0;
14952}
14953
79e53945
JB
14954static const struct drm_framebuffer_funcs intel_fb_funcs = {
14955 .destroy = intel_user_framebuffer_destroy,
14956 .create_handle = intel_user_framebuffer_create_handle,
86c98588 14957 .dirty = intel_user_framebuffer_dirty,
79e53945
JB
14958};
14959
b321803d
DL
14960static
14961u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14962 uint32_t pixel_format)
14963{
14964 u32 gen = INTEL_INFO(dev)->gen;
14965
14966 if (gen >= 9) {
ac484963
VS
14967 int cpp = drm_format_plane_cpp(pixel_format, 0);
14968
b321803d
DL
14969 /* "The stride in bytes must not exceed the of the size of 8K
14970 * pixels and 32K bytes."
14971 */
ac484963 14972 return min(8192 * cpp, 32768);
666a4537 14973 } else if (gen >= 5 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
b321803d
DL
14974 return 32*1024;
14975 } else if (gen >= 4) {
14976 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14977 return 16*1024;
14978 else
14979 return 32*1024;
14980 } else if (gen >= 3) {
14981 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14982 return 8*1024;
14983 else
14984 return 16*1024;
14985 } else {
14986 /* XXX DSPC is limited to 4k tiled */
14987 return 8*1024;
14988 }
14989}
14990
b5ea642a
DV
14991static int intel_framebuffer_init(struct drm_device *dev,
14992 struct intel_framebuffer *intel_fb,
14993 struct drm_mode_fb_cmd2 *mode_cmd,
14994 struct drm_i915_gem_object *obj)
79e53945 14995{
7b49f948 14996 struct drm_i915_private *dev_priv = to_i915(dev);
6761dd31 14997 unsigned int aligned_height;
79e53945 14998 int ret;
b321803d 14999 u32 pitch_limit, stride_alignment;
79e53945 15000
dd4916c5
DV
15001 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
15002
2a80eada
DV
15003 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
15004 /* Enforce that fb modifier and tiling mode match, but only for
15005 * X-tiled. This is needed for FBC. */
15006 if (!!(obj->tiling_mode == I915_TILING_X) !=
15007 !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
15008 DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
15009 return -EINVAL;
15010 }
15011 } else {
15012 if (obj->tiling_mode == I915_TILING_X)
15013 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
15014 else if (obj->tiling_mode == I915_TILING_Y) {
15015 DRM_DEBUG("No Y tiling for legacy addfb\n");
15016 return -EINVAL;
15017 }
15018 }
15019
9a8f0a12
TU
15020 /* Passed in modifier sanity checking. */
15021 switch (mode_cmd->modifier[0]) {
15022 case I915_FORMAT_MOD_Y_TILED:
15023 case I915_FORMAT_MOD_Yf_TILED:
15024 if (INTEL_INFO(dev)->gen < 9) {
15025 DRM_DEBUG("Unsupported tiling 0x%llx!\n",
15026 mode_cmd->modifier[0]);
15027 return -EINVAL;
15028 }
15029 case DRM_FORMAT_MOD_NONE:
15030 case I915_FORMAT_MOD_X_TILED:
15031 break;
15032 default:
c0f40428
JB
15033 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
15034 mode_cmd->modifier[0]);
57cd6508 15035 return -EINVAL;
c16ed4be 15036 }
57cd6508 15037
7b49f948
VS
15038 stride_alignment = intel_fb_stride_alignment(dev_priv,
15039 mode_cmd->modifier[0],
b321803d
DL
15040 mode_cmd->pixel_format);
15041 if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
15042 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
15043 mode_cmd->pitches[0], stride_alignment);
57cd6508 15044 return -EINVAL;
c16ed4be 15045 }
57cd6508 15046
b321803d
DL
15047 pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
15048 mode_cmd->pixel_format);
a35cdaa0 15049 if (mode_cmd->pitches[0] > pitch_limit) {
b321803d
DL
15050 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
15051 mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
2a80eada 15052 "tiled" : "linear",
a35cdaa0 15053 mode_cmd->pitches[0], pitch_limit);
5d7bd705 15054 return -EINVAL;
c16ed4be 15055 }
5d7bd705 15056
2a80eada 15057 if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
c16ed4be
CW
15058 mode_cmd->pitches[0] != obj->stride) {
15059 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
15060 mode_cmd->pitches[0], obj->stride);
5d7bd705 15061 return -EINVAL;
c16ed4be 15062 }
5d7bd705 15063
57779d06 15064 /* Reject formats not supported by any plane early. */
308e5bcb 15065 switch (mode_cmd->pixel_format) {
57779d06 15066 case DRM_FORMAT_C8:
04b3924d
VS
15067 case DRM_FORMAT_RGB565:
15068 case DRM_FORMAT_XRGB8888:
15069 case DRM_FORMAT_ARGB8888:
57779d06
VS
15070 break;
15071 case DRM_FORMAT_XRGB1555:
c16ed4be 15072 if (INTEL_INFO(dev)->gen > 3) {
4ee62c76
VS
15073 DRM_DEBUG("unsupported pixel format: %s\n",
15074 drm_get_format_name(mode_cmd->pixel_format));
57779d06 15075 return -EINVAL;
c16ed4be 15076 }
57779d06 15077 break;
57779d06 15078 case DRM_FORMAT_ABGR8888:
666a4537
WB
15079 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
15080 INTEL_INFO(dev)->gen < 9) {
6c0fd451
DL
15081 DRM_DEBUG("unsupported pixel format: %s\n",
15082 drm_get_format_name(mode_cmd->pixel_format));
15083 return -EINVAL;
15084 }
15085 break;
15086 case DRM_FORMAT_XBGR8888:
04b3924d 15087 case DRM_FORMAT_XRGB2101010:
57779d06 15088 case DRM_FORMAT_XBGR2101010:
c16ed4be 15089 if (INTEL_INFO(dev)->gen < 4) {
4ee62c76
VS
15090 DRM_DEBUG("unsupported pixel format: %s\n",
15091 drm_get_format_name(mode_cmd->pixel_format));
57779d06 15092 return -EINVAL;
c16ed4be 15093 }
b5626747 15094 break;
7531208b 15095 case DRM_FORMAT_ABGR2101010:
666a4537 15096 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
7531208b
DL
15097 DRM_DEBUG("unsupported pixel format: %s\n",
15098 drm_get_format_name(mode_cmd->pixel_format));
15099 return -EINVAL;
15100 }
15101 break;
04b3924d
VS
15102 case DRM_FORMAT_YUYV:
15103 case DRM_FORMAT_UYVY:
15104 case DRM_FORMAT_YVYU:
15105 case DRM_FORMAT_VYUY:
c16ed4be 15106 if (INTEL_INFO(dev)->gen < 5) {
4ee62c76
VS
15107 DRM_DEBUG("unsupported pixel format: %s\n",
15108 drm_get_format_name(mode_cmd->pixel_format));
57779d06 15109 return -EINVAL;
c16ed4be 15110 }
57cd6508
CW
15111 break;
15112 default:
4ee62c76
VS
15113 DRM_DEBUG("unsupported pixel format: %s\n",
15114 drm_get_format_name(mode_cmd->pixel_format));
57cd6508
CW
15115 return -EINVAL;
15116 }
15117
90f9a336
VS
15118 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
15119 if (mode_cmd->offsets[0] != 0)
15120 return -EINVAL;
15121
ec2c981e 15122 aligned_height = intel_fb_align_height(dev, mode_cmd->height,
091df6cb
DV
15123 mode_cmd->pixel_format,
15124 mode_cmd->modifier[0]);
53155c0a
DV
15125 /* FIXME drm helper for size checks (especially planar formats)? */
15126 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
15127 return -EINVAL;
15128
c7d73f6a
DV
15129 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
15130 intel_fb->obj = obj;
15131
2d7a215f
VS
15132 intel_fill_fb_info(dev_priv, &intel_fb->base);
15133
79e53945
JB
15134 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
15135 if (ret) {
15136 DRM_ERROR("framebuffer init failed %d\n", ret);
15137 return ret;
15138 }
15139
0b05e1e0
VS
15140 intel_fb->obj->framebuffer_references++;
15141
79e53945
JB
15142 return 0;
15143}
15144
79e53945
JB
15145static struct drm_framebuffer *
15146intel_user_framebuffer_create(struct drm_device *dev,
15147 struct drm_file *filp,
1eb83451 15148 const struct drm_mode_fb_cmd2 *user_mode_cmd)
79e53945 15149{
dcb1394e 15150 struct drm_framebuffer *fb;
05394f39 15151 struct drm_i915_gem_object *obj;
76dc3769 15152 struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
79e53945 15153
a8ad0bd8 15154 obj = to_intel_bo(drm_gem_object_lookup(filp, mode_cmd.handles[0]));
c8725226 15155 if (&obj->base == NULL)
cce13ff7 15156 return ERR_PTR(-ENOENT);
79e53945 15157
92907cbb 15158 fb = intel_framebuffer_create(dev, &mode_cmd, obj);
dcb1394e
LW
15159 if (IS_ERR(fb))
15160 drm_gem_object_unreference_unlocked(&obj->base);
15161
15162 return fb;
79e53945
JB
15163}
15164
0695726e 15165#ifndef CONFIG_DRM_FBDEV_EMULATION
0632fef6 15166static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
4520f53a
DV
15167{
15168}
15169#endif
15170
79e53945 15171static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 15172 .fb_create = intel_user_framebuffer_create,
0632fef6 15173 .output_poll_changed = intel_fbdev_output_poll_changed,
5ee67f1c
MR
15174 .atomic_check = intel_atomic_check,
15175 .atomic_commit = intel_atomic_commit,
de419ab6
ML
15176 .atomic_state_alloc = intel_atomic_state_alloc,
15177 .atomic_state_clear = intel_atomic_state_clear,
79e53945
JB
15178};
15179
88212941
ID
15180/**
15181 * intel_init_display_hooks - initialize the display modesetting hooks
15182 * @dev_priv: device private
15183 */
15184void intel_init_display_hooks(struct drm_i915_private *dev_priv)
e70236a8 15185{
88212941 15186 if (INTEL_INFO(dev_priv)->gen >= 9) {
bc8d7dff 15187 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
5724dbd1
DL
15188 dev_priv->display.get_initial_plane_config =
15189 skylake_get_initial_plane_config;
bc8d7dff
DL
15190 dev_priv->display.crtc_compute_clock =
15191 haswell_crtc_compute_clock;
15192 dev_priv->display.crtc_enable = haswell_crtc_enable;
15193 dev_priv->display.crtc_disable = haswell_crtc_disable;
88212941 15194 } else if (HAS_DDI(dev_priv)) {
0e8ffe1b 15195 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
5724dbd1
DL
15196 dev_priv->display.get_initial_plane_config =
15197 ironlake_get_initial_plane_config;
797d0259
ACO
15198 dev_priv->display.crtc_compute_clock =
15199 haswell_crtc_compute_clock;
4f771f10
PZ
15200 dev_priv->display.crtc_enable = haswell_crtc_enable;
15201 dev_priv->display.crtc_disable = haswell_crtc_disable;
88212941 15202 } else if (HAS_PCH_SPLIT(dev_priv)) {
0e8ffe1b 15203 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
5724dbd1
DL
15204 dev_priv->display.get_initial_plane_config =
15205 ironlake_get_initial_plane_config;
3fb37703
ACO
15206 dev_priv->display.crtc_compute_clock =
15207 ironlake_crtc_compute_clock;
76e5a89c
DV
15208 dev_priv->display.crtc_enable = ironlake_crtc_enable;
15209 dev_priv->display.crtc_disable = ironlake_crtc_disable;
65b3d6a9 15210 } else if (IS_CHERRYVIEW(dev_priv)) {
89b667f8 15211 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
5724dbd1
DL
15212 dev_priv->display.get_initial_plane_config =
15213 i9xx_get_initial_plane_config;
65b3d6a9
ACO
15214 dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
15215 dev_priv->display.crtc_enable = valleyview_crtc_enable;
15216 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15217 } else if (IS_VALLEYVIEW(dev_priv)) {
15218 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15219 dev_priv->display.get_initial_plane_config =
15220 i9xx_get_initial_plane_config;
15221 dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
89b667f8
JB
15222 dev_priv->display.crtc_enable = valleyview_crtc_enable;
15223 dev_priv->display.crtc_disable = i9xx_crtc_disable;
19ec6693
ACO
15224 } else if (IS_G4X(dev_priv)) {
15225 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15226 dev_priv->display.get_initial_plane_config =
15227 i9xx_get_initial_plane_config;
15228 dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
15229 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15230 dev_priv->display.crtc_disable = i9xx_crtc_disable;
70e8aa21
ACO
15231 } else if (IS_PINEVIEW(dev_priv)) {
15232 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15233 dev_priv->display.get_initial_plane_config =
15234 i9xx_get_initial_plane_config;
15235 dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
15236 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15237 dev_priv->display.crtc_disable = i9xx_crtc_disable;
81c97f52 15238 } else if (!IS_GEN2(dev_priv)) {
0e8ffe1b 15239 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
5724dbd1
DL
15240 dev_priv->display.get_initial_plane_config =
15241 i9xx_get_initial_plane_config;
d6dfee7a 15242 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
76e5a89c
DV
15243 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15244 dev_priv->display.crtc_disable = i9xx_crtc_disable;
81c97f52
ACO
15245 } else {
15246 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15247 dev_priv->display.get_initial_plane_config =
15248 i9xx_get_initial_plane_config;
15249 dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
15250 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15251 dev_priv->display.crtc_disable = i9xx_crtc_disable;
f564048e 15252 }
e70236a8 15253
e70236a8 15254 /* Returns the core display clock speed */
88212941 15255 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
1652d19e
VS
15256 dev_priv->display.get_display_clock_speed =
15257 skylake_get_display_clock_speed;
88212941 15258 else if (IS_BROXTON(dev_priv))
acd3f3d3
BP
15259 dev_priv->display.get_display_clock_speed =
15260 broxton_get_display_clock_speed;
88212941 15261 else if (IS_BROADWELL(dev_priv))
1652d19e
VS
15262 dev_priv->display.get_display_clock_speed =
15263 broadwell_get_display_clock_speed;
88212941 15264 else if (IS_HASWELL(dev_priv))
1652d19e
VS
15265 dev_priv->display.get_display_clock_speed =
15266 haswell_get_display_clock_speed;
88212941 15267 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
25eb05fc
JB
15268 dev_priv->display.get_display_clock_speed =
15269 valleyview_get_display_clock_speed;
88212941 15270 else if (IS_GEN5(dev_priv))
b37a6434
VS
15271 dev_priv->display.get_display_clock_speed =
15272 ilk_get_display_clock_speed;
88212941
ID
15273 else if (IS_I945G(dev_priv) || IS_BROADWATER(dev_priv) ||
15274 IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv))
e70236a8
JB
15275 dev_priv->display.get_display_clock_speed =
15276 i945_get_display_clock_speed;
88212941 15277 else if (IS_GM45(dev_priv))
34edce2f
VS
15278 dev_priv->display.get_display_clock_speed =
15279 gm45_get_display_clock_speed;
88212941 15280 else if (IS_CRESTLINE(dev_priv))
34edce2f
VS
15281 dev_priv->display.get_display_clock_speed =
15282 i965gm_get_display_clock_speed;
88212941 15283 else if (IS_PINEVIEW(dev_priv))
34edce2f
VS
15284 dev_priv->display.get_display_clock_speed =
15285 pnv_get_display_clock_speed;
88212941 15286 else if (IS_G33(dev_priv) || IS_G4X(dev_priv))
34edce2f
VS
15287 dev_priv->display.get_display_clock_speed =
15288 g33_get_display_clock_speed;
88212941 15289 else if (IS_I915G(dev_priv))
e70236a8
JB
15290 dev_priv->display.get_display_clock_speed =
15291 i915_get_display_clock_speed;
88212941 15292 else if (IS_I945GM(dev_priv) || IS_845G(dev_priv))
e70236a8
JB
15293 dev_priv->display.get_display_clock_speed =
15294 i9xx_misc_get_display_clock_speed;
88212941 15295 else if (IS_I915GM(dev_priv))
e70236a8
JB
15296 dev_priv->display.get_display_clock_speed =
15297 i915gm_get_display_clock_speed;
88212941 15298 else if (IS_I865G(dev_priv))
e70236a8
JB
15299 dev_priv->display.get_display_clock_speed =
15300 i865_get_display_clock_speed;
88212941 15301 else if (IS_I85X(dev_priv))
e70236a8 15302 dev_priv->display.get_display_clock_speed =
1b1d2716 15303 i85x_get_display_clock_speed;
623e01e5 15304 else { /* 830 */
88212941 15305 WARN(!IS_I830(dev_priv), "Unknown platform. Assuming 133 MHz CDCLK\n");
e70236a8
JB
15306 dev_priv->display.get_display_clock_speed =
15307 i830_get_display_clock_speed;
623e01e5 15308 }
e70236a8 15309
88212941 15310 if (IS_GEN5(dev_priv)) {
3bb11b53 15311 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
88212941 15312 } else if (IS_GEN6(dev_priv)) {
3bb11b53 15313 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
88212941 15314 } else if (IS_IVYBRIDGE(dev_priv)) {
3bb11b53
SJ
15315 /* FIXME: detect B0+ stepping and use auto training */
15316 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
88212941 15317 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3bb11b53 15318 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
445e780b
VS
15319 }
15320
15321 if (IS_BROADWELL(dev_priv)) {
15322 dev_priv->display.modeset_commit_cdclk =
15323 broadwell_modeset_commit_cdclk;
15324 dev_priv->display.modeset_calc_cdclk =
15325 broadwell_modeset_calc_cdclk;
88212941 15326 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
27c329ed
ML
15327 dev_priv->display.modeset_commit_cdclk =
15328 valleyview_modeset_commit_cdclk;
15329 dev_priv->display.modeset_calc_cdclk =
15330 valleyview_modeset_calc_cdclk;
88212941 15331 } else if (IS_BROXTON(dev_priv)) {
27c329ed 15332 dev_priv->display.modeset_commit_cdclk =
324513c0 15333 bxt_modeset_commit_cdclk;
27c329ed 15334 dev_priv->display.modeset_calc_cdclk =
324513c0 15335 bxt_modeset_calc_cdclk;
c89e39f3
CT
15336 } else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
15337 dev_priv->display.modeset_commit_cdclk =
15338 skl_modeset_commit_cdclk;
15339 dev_priv->display.modeset_calc_cdclk =
15340 skl_modeset_calc_cdclk;
e70236a8 15341 }
5a21b665
DV
15342
15343 switch (INTEL_INFO(dev_priv)->gen) {
15344 case 2:
15345 dev_priv->display.queue_flip = intel_gen2_queue_flip;
15346 break;
15347
15348 case 3:
15349 dev_priv->display.queue_flip = intel_gen3_queue_flip;
15350 break;
15351
15352 case 4:
15353 case 5:
15354 dev_priv->display.queue_flip = intel_gen4_queue_flip;
15355 break;
15356
15357 case 6:
15358 dev_priv->display.queue_flip = intel_gen6_queue_flip;
15359 break;
15360 case 7:
15361 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
15362 dev_priv->display.queue_flip = intel_gen7_queue_flip;
15363 break;
15364 case 9:
15365 /* Drop through - unsupported since execlist only. */
15366 default:
15367 /* Default just returns -ENODEV to indicate unsupported */
15368 dev_priv->display.queue_flip = intel_default_queue_flip;
15369 }
e70236a8
JB
15370}
15371
b690e96c
JB
15372/*
15373 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
15374 * resume, or other times. This quirk makes sure that's the case for
15375 * affected systems.
15376 */
0206e353 15377static void quirk_pipea_force(struct drm_device *dev)
b690e96c
JB
15378{
15379 struct drm_i915_private *dev_priv = dev->dev_private;
15380
15381 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
bc0daf48 15382 DRM_INFO("applying pipe a force quirk\n");
b690e96c
JB
15383}
15384
b6b5d049
VS
15385static void quirk_pipeb_force(struct drm_device *dev)
15386{
15387 struct drm_i915_private *dev_priv = dev->dev_private;
15388
15389 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
15390 DRM_INFO("applying pipe b force quirk\n");
15391}
15392
435793df
KP
15393/*
15394 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
15395 */
15396static void quirk_ssc_force_disable(struct drm_device *dev)
15397{
15398 struct drm_i915_private *dev_priv = dev->dev_private;
15399 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
bc0daf48 15400 DRM_INFO("applying lvds SSC disable quirk\n");
435793df
KP
15401}
15402
4dca20ef 15403/*
5a15ab5b
CE
15404 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
15405 * brightness value
4dca20ef
CE
15406 */
15407static void quirk_invert_brightness(struct drm_device *dev)
15408{
15409 struct drm_i915_private *dev_priv = dev->dev_private;
15410 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
bc0daf48 15411 DRM_INFO("applying inverted panel brightness quirk\n");
435793df
KP
15412}
15413
9c72cc6f
SD
15414/* Some VBT's incorrectly indicate no backlight is present */
15415static void quirk_backlight_present(struct drm_device *dev)
15416{
15417 struct drm_i915_private *dev_priv = dev->dev_private;
15418 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
15419 DRM_INFO("applying backlight present quirk\n");
15420}
15421
b690e96c
JB
15422struct intel_quirk {
15423 int device;
15424 int subsystem_vendor;
15425 int subsystem_device;
15426 void (*hook)(struct drm_device *dev);
15427};
15428
5f85f176
EE
15429/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
15430struct intel_dmi_quirk {
15431 void (*hook)(struct drm_device *dev);
15432 const struct dmi_system_id (*dmi_id_list)[];
15433};
15434
15435static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
15436{
15437 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
15438 return 1;
15439}
15440
15441static const struct intel_dmi_quirk intel_dmi_quirks[] = {
15442 {
15443 .dmi_id_list = &(const struct dmi_system_id[]) {
15444 {
15445 .callback = intel_dmi_reverse_brightness,
15446 .ident = "NCR Corporation",
15447 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
15448 DMI_MATCH(DMI_PRODUCT_NAME, ""),
15449 },
15450 },
15451 { } /* terminating entry */
15452 },
15453 .hook = quirk_invert_brightness,
15454 },
15455};
15456
c43b5634 15457static struct intel_quirk intel_quirks[] = {
b690e96c
JB
15458 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
15459 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
15460
b690e96c
JB
15461 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
15462 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
15463
5f080c0f
VS
15464 /* 830 needs to leave pipe A & dpll A up */
15465 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
15466
b6b5d049
VS
15467 /* 830 needs to leave pipe B & dpll B up */
15468 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
15469
435793df
KP
15470 /* Lenovo U160 cannot use SSC on LVDS */
15471 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
15472
15473 /* Sony Vaio Y cannot use SSC on LVDS */
15474 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
5a15ab5b 15475
be505f64
AH
15476 /* Acer Aspire 5734Z must invert backlight brightness */
15477 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
15478
15479 /* Acer/eMachines G725 */
15480 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
15481
15482 /* Acer/eMachines e725 */
15483 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
15484
15485 /* Acer/Packard Bell NCL20 */
15486 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
15487
15488 /* Acer Aspire 4736Z */
15489 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
0f540c3a
JN
15490
15491 /* Acer Aspire 5336 */
15492 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
2e93a1aa
SD
15493
15494 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
15495 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
d4967d8c 15496
dfb3d47b
SD
15497 /* Acer C720 Chromebook (Core i3 4005U) */
15498 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
15499
b2a9601c 15500 /* Apple Macbook 2,1 (Core 2 T7400) */
15501 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
15502
1b9448b0
JN
15503 /* Apple Macbook 4,1 */
15504 { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
15505
d4967d8c
SD
15506 /* Toshiba CB35 Chromebook (Celeron 2955U) */
15507 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
724cb06f
SD
15508
15509 /* HP Chromebook 14 (Celeron 2955U) */
15510 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
cf6f0af9
JN
15511
15512 /* Dell Chromebook 11 */
15513 { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
9be64eee
JN
15514
15515 /* Dell Chromebook 11 (2015 version) */
15516 { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
b690e96c
JB
15517};
15518
15519static void intel_init_quirks(struct drm_device *dev)
15520{
15521 struct pci_dev *d = dev->pdev;
15522 int i;
15523
15524 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
15525 struct intel_quirk *q = &intel_quirks[i];
15526
15527 if (d->device == q->device &&
15528 (d->subsystem_vendor == q->subsystem_vendor ||
15529 q->subsystem_vendor == PCI_ANY_ID) &&
15530 (d->subsystem_device == q->subsystem_device ||
15531 q->subsystem_device == PCI_ANY_ID))
15532 q->hook(dev);
15533 }
5f85f176
EE
15534 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
15535 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
15536 intel_dmi_quirks[i].hook(dev);
15537 }
b690e96c
JB
15538}
15539
9cce37f4
JB
15540/* Disable the VGA plane that we never use */
15541static void i915_disable_vga(struct drm_device *dev)
15542{
15543 struct drm_i915_private *dev_priv = dev->dev_private;
15544 u8 sr1;
f0f59a00 15545 i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
9cce37f4 15546
2b37c616 15547 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
9cce37f4 15548 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
3fdcf431 15549 outb(SR01, VGA_SR_INDEX);
9cce37f4
JB
15550 sr1 = inb(VGA_SR_DATA);
15551 outb(sr1 | 1<<5, VGA_SR_DATA);
15552 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
15553 udelay(300);
15554
01f5a626 15555 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
9cce37f4
JB
15556 POSTING_READ(vga_reg);
15557}
15558
f817586c
DV
15559void intel_modeset_init_hw(struct drm_device *dev)
15560{
1a617b77
ML
15561 struct drm_i915_private *dev_priv = dev->dev_private;
15562
b6283055 15563 intel_update_cdclk(dev);
1a617b77
ML
15564
15565 dev_priv->atomic_cdclk_freq = dev_priv->cdclk_freq;
15566
f817586c 15567 intel_init_clock_gating(dev);
dc97997a 15568 intel_enable_gt_powersave(dev_priv);
f817586c
DV
15569}
15570
d93c0372
MR
15571/*
15572 * Calculate what we think the watermarks should be for the state we've read
15573 * out of the hardware and then immediately program those watermarks so that
15574 * we ensure the hardware settings match our internal state.
15575 *
15576 * We can calculate what we think WM's should be by creating a duplicate of the
15577 * current state (which was constructed during hardware readout) and running it
15578 * through the atomic check code to calculate new watermark values in the
15579 * state object.
15580 */
15581static void sanitize_watermarks(struct drm_device *dev)
15582{
15583 struct drm_i915_private *dev_priv = to_i915(dev);
15584 struct drm_atomic_state *state;
15585 struct drm_crtc *crtc;
15586 struct drm_crtc_state *cstate;
15587 struct drm_modeset_acquire_ctx ctx;
15588 int ret;
15589 int i;
15590
15591 /* Only supported on platforms that use atomic watermark design */
ed4a6a7c 15592 if (!dev_priv->display.optimize_watermarks)
d93c0372
MR
15593 return;
15594
15595 /*
15596 * We need to hold connection_mutex before calling duplicate_state so
15597 * that the connector loop is protected.
15598 */
15599 drm_modeset_acquire_init(&ctx, 0);
15600retry:
0cd1262d 15601 ret = drm_modeset_lock_all_ctx(dev, &ctx);
d93c0372
MR
15602 if (ret == -EDEADLK) {
15603 drm_modeset_backoff(&ctx);
15604 goto retry;
15605 } else if (WARN_ON(ret)) {
0cd1262d 15606 goto fail;
d93c0372
MR
15607 }
15608
15609 state = drm_atomic_helper_duplicate_state(dev, &ctx);
15610 if (WARN_ON(IS_ERR(state)))
0cd1262d 15611 goto fail;
d93c0372 15612
ed4a6a7c
MR
15613 /*
15614 * Hardware readout is the only time we don't want to calculate
15615 * intermediate watermarks (since we don't trust the current
15616 * watermarks).
15617 */
15618 to_intel_atomic_state(state)->skip_intermediate_wm = true;
15619
d93c0372
MR
15620 ret = intel_atomic_check(dev, state);
15621 if (ret) {
15622 /*
15623 * If we fail here, it means that the hardware appears to be
15624 * programmed in a way that shouldn't be possible, given our
15625 * understanding of watermark requirements. This might mean a
15626 * mistake in the hardware readout code or a mistake in the
15627 * watermark calculations for a given platform. Raise a WARN
15628 * so that this is noticeable.
15629 *
15630 * If this actually happens, we'll have to just leave the
15631 * BIOS-programmed watermarks untouched and hope for the best.
15632 */
15633 WARN(true, "Could not determine valid watermarks for inherited state\n");
0cd1262d 15634 goto fail;
d93c0372
MR
15635 }
15636
15637 /* Write calculated watermark values back */
d93c0372
MR
15638 for_each_crtc_in_state(state, crtc, cstate, i) {
15639 struct intel_crtc_state *cs = to_intel_crtc_state(cstate);
15640
ed4a6a7c
MR
15641 cs->wm.need_postvbl_update = true;
15642 dev_priv->display.optimize_watermarks(cs);
d93c0372
MR
15643 }
15644
15645 drm_atomic_state_free(state);
0cd1262d 15646fail:
d93c0372
MR
15647 drm_modeset_drop_locks(&ctx);
15648 drm_modeset_acquire_fini(&ctx);
15649}
15650
79e53945
JB
15651void intel_modeset_init(struct drm_device *dev)
15652{
72e96d64
JL
15653 struct drm_i915_private *dev_priv = to_i915(dev);
15654 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1fe47785 15655 int sprite, ret;
8cc87b75 15656 enum pipe pipe;
46f297fb 15657 struct intel_crtc *crtc;
79e53945
JB
15658
15659 drm_mode_config_init(dev);
15660
15661 dev->mode_config.min_width = 0;
15662 dev->mode_config.min_height = 0;
15663
019d96cb
DA
15664 dev->mode_config.preferred_depth = 24;
15665 dev->mode_config.prefer_shadow = 1;
15666
25bab385
TU
15667 dev->mode_config.allow_fb_modifiers = true;
15668
e6ecefaa 15669 dev->mode_config.funcs = &intel_mode_funcs;
79e53945 15670
b690e96c
JB
15671 intel_init_quirks(dev);
15672
1fa61106
ED
15673 intel_init_pm(dev);
15674
e3c74757
BW
15675 if (INTEL_INFO(dev)->num_pipes == 0)
15676 return;
15677
69f92f67
LW
15678 /*
15679 * There may be no VBT; and if the BIOS enabled SSC we can
15680 * just keep using it to avoid unnecessary flicker. Whereas if the
15681 * BIOS isn't using it, don't assume it will work even if the VBT
15682 * indicates as much.
15683 */
15684 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
15685 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
15686 DREF_SSC1_ENABLE);
15687
15688 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
15689 DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
15690 bios_lvds_use_ssc ? "en" : "dis",
15691 dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
15692 dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
15693 }
15694 }
15695
a6c45cf0
CW
15696 if (IS_GEN2(dev)) {
15697 dev->mode_config.max_width = 2048;
15698 dev->mode_config.max_height = 2048;
15699 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
15700 dev->mode_config.max_width = 4096;
15701 dev->mode_config.max_height = 4096;
79e53945 15702 } else {
a6c45cf0
CW
15703 dev->mode_config.max_width = 8192;
15704 dev->mode_config.max_height = 8192;
79e53945 15705 }
068be561 15706
dc41c154
VS
15707 if (IS_845G(dev) || IS_I865G(dev)) {
15708 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
15709 dev->mode_config.cursor_height = 1023;
15710 } else if (IS_GEN2(dev)) {
068be561
DL
15711 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
15712 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
15713 } else {
15714 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
15715 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
15716 }
15717
72e96d64 15718 dev->mode_config.fb_base = ggtt->mappable_base;
79e53945 15719
28c97730 15720 DRM_DEBUG_KMS("%d display pipe%s available.\n",
7eb552ae
BW
15721 INTEL_INFO(dev)->num_pipes,
15722 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
79e53945 15723
055e393f 15724 for_each_pipe(dev_priv, pipe) {
8cc87b75 15725 intel_crtc_init(dev, pipe);
3bdcfc0c 15726 for_each_sprite(dev_priv, pipe, sprite) {
1fe47785 15727 ret = intel_plane_init(dev, pipe, sprite);
7f1f3851 15728 if (ret)
06da8da2 15729 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
1fe47785 15730 pipe_name(pipe), sprite_name(pipe, sprite), ret);
7f1f3851 15731 }
79e53945
JB
15732 }
15733
bfa7df01
VS
15734 intel_update_czclk(dev_priv);
15735 intel_update_cdclk(dev);
15736
e72f9fbf 15737 intel_shared_dpll_init(dev);
ee7b9f93 15738
b2045352
VS
15739 if (dev_priv->max_cdclk_freq == 0)
15740 intel_update_max_cdclk(dev);
15741
9cce37f4
JB
15742 /* Just disable it once at startup */
15743 i915_disable_vga(dev);
79e53945 15744 intel_setup_outputs(dev);
11be49eb 15745
6e9f798d 15746 drm_modeset_lock_all(dev);
043e9bda 15747 intel_modeset_setup_hw_state(dev);
6e9f798d 15748 drm_modeset_unlock_all(dev);
46f297fb 15749
d3fcc808 15750 for_each_intel_crtc(dev, crtc) {
eeebeac5
ML
15751 struct intel_initial_plane_config plane_config = {};
15752
46f297fb
JB
15753 if (!crtc->active)
15754 continue;
15755
46f297fb 15756 /*
46f297fb
JB
15757 * Note that reserving the BIOS fb up front prevents us
15758 * from stuffing other stolen allocations like the ring
15759 * on top. This prevents some ugliness at boot time, and
15760 * can even allow for smooth boot transitions if the BIOS
15761 * fb is large enough for the active pipe configuration.
15762 */
eeebeac5
ML
15763 dev_priv->display.get_initial_plane_config(crtc,
15764 &plane_config);
15765
15766 /*
15767 * If the fb is shared between multiple heads, we'll
15768 * just get the first one.
15769 */
15770 intel_find_initial_plane_obj(crtc, &plane_config);
46f297fb 15771 }
d93c0372
MR
15772
15773 /*
15774 * Make sure hardware watermarks really match the state we read out.
15775 * Note that we need to do this after reconstructing the BIOS fb's
15776 * since the watermark calculation done here will use pstate->fb.
15777 */
15778 sanitize_watermarks(dev);
2c7111db
CW
15779}
15780
7fad798e
DV
15781static void intel_enable_pipe_a(struct drm_device *dev)
15782{
15783 struct intel_connector *connector;
15784 struct drm_connector *crt = NULL;
15785 struct intel_load_detect_pipe load_detect_temp;
208bf9fd 15786 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
7fad798e
DV
15787
15788 /* We can't just switch on the pipe A, we need to set things up with a
15789 * proper mode and output configuration. As a gross hack, enable pipe A
15790 * by enabling the load detect pipe once. */
3a3371ff 15791 for_each_intel_connector(dev, connector) {
7fad798e
DV
15792 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
15793 crt = &connector->base;
15794 break;
15795 }
15796 }
15797
15798 if (!crt)
15799 return;
15800
208bf9fd 15801 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
49172fee 15802 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
7fad798e
DV
15803}
15804
fa555837
DV
15805static bool
15806intel_check_plane_mapping(struct intel_crtc *crtc)
15807{
7eb552ae
BW
15808 struct drm_device *dev = crtc->base.dev;
15809 struct drm_i915_private *dev_priv = dev->dev_private;
649636ef 15810 u32 val;
fa555837 15811
7eb552ae 15812 if (INTEL_INFO(dev)->num_pipes == 1)
fa555837
DV
15813 return true;
15814
649636ef 15815 val = I915_READ(DSPCNTR(!crtc->plane));
fa555837
DV
15816
15817 if ((val & DISPLAY_PLANE_ENABLE) &&
15818 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
15819 return false;
15820
15821 return true;
15822}
15823
02e93c35
VS
15824static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
15825{
15826 struct drm_device *dev = crtc->base.dev;
15827 struct intel_encoder *encoder;
15828
15829 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15830 return true;
15831
15832 return false;
15833}
15834
dd756198
VS
15835static bool intel_encoder_has_connectors(struct intel_encoder *encoder)
15836{
15837 struct drm_device *dev = encoder->base.dev;
15838 struct intel_connector *connector;
15839
15840 for_each_connector_on_encoder(dev, &encoder->base, connector)
15841 return true;
15842
15843 return false;
15844}
15845
24929352
DV
15846static void intel_sanitize_crtc(struct intel_crtc *crtc)
15847{
15848 struct drm_device *dev = crtc->base.dev;
15849 struct drm_i915_private *dev_priv = dev->dev_private;
4d1de975 15850 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
24929352 15851
24929352 15852 /* Clear any frame start delays used for debugging left by the BIOS */
4d1de975
JN
15853 if (!transcoder_is_dsi(cpu_transcoder)) {
15854 i915_reg_t reg = PIPECONF(cpu_transcoder);
15855
15856 I915_WRITE(reg,
15857 I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
15858 }
24929352 15859
d3eaf884 15860 /* restore vblank interrupts to correct state */
9625604c 15861 drm_crtc_vblank_reset(&crtc->base);
d297e103 15862 if (crtc->active) {
f9cd7b88
VS
15863 struct intel_plane *plane;
15864
9625604c 15865 drm_crtc_vblank_on(&crtc->base);
f9cd7b88
VS
15866
15867 /* Disable everything but the primary plane */
15868 for_each_intel_plane_on_crtc(dev, crtc, plane) {
15869 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
15870 continue;
15871
15872 plane->disable_plane(&plane->base, &crtc->base);
15873 }
9625604c 15874 }
d3eaf884 15875
24929352 15876 /* We need to sanitize the plane -> pipe mapping first because this will
fa555837
DV
15877 * disable the crtc (and hence change the state) if it is wrong. Note
15878 * that gen4+ has a fixed plane -> pipe mapping. */
15879 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
24929352
DV
15880 bool plane;
15881
78108b7c
VS
15882 DRM_DEBUG_KMS("[CRTC:%d:%s] wrong plane connection detected!\n",
15883 crtc->base.base.id, crtc->base.name);
24929352
DV
15884
15885 /* Pipe has the wrong plane attached and the plane is active.
15886 * Temporarily change the plane mapping and disable everything
15887 * ... */
15888 plane = crtc->plane;
b70709a6 15889 to_intel_plane_state(crtc->base.primary->state)->visible = true;
24929352 15890 crtc->plane = !plane;
b17d48e2 15891 intel_crtc_disable_noatomic(&crtc->base);
24929352 15892 crtc->plane = plane;
24929352 15893 }
24929352 15894
7fad798e
DV
15895 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
15896 crtc->pipe == PIPE_A && !crtc->active) {
15897 /* BIOS forgot to enable pipe A, this mostly happens after
15898 * resume. Force-enable the pipe to fix this, the update_dpms
15899 * call below we restore the pipe to the right state, but leave
15900 * the required bits on. */
15901 intel_enable_pipe_a(dev);
15902 }
15903
24929352
DV
15904 /* Adjust the state of the output pipe according to whether we
15905 * have active connectors/encoders. */
842e0307 15906 if (crtc->active && !intel_crtc_has_encoders(crtc))
b17d48e2 15907 intel_crtc_disable_noatomic(&crtc->base);
24929352 15908
a3ed6aad 15909 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
4cc31489
DV
15910 /*
15911 * We start out with underrun reporting disabled to avoid races.
15912 * For correct bookkeeping mark this on active crtcs.
15913 *
c5ab3bc0
DV
15914 * Also on gmch platforms we dont have any hardware bits to
15915 * disable the underrun reporting. Which means we need to start
15916 * out with underrun reporting disabled also on inactive pipes,
15917 * since otherwise we'll complain about the garbage we read when
15918 * e.g. coming up after runtime pm.
15919 *
4cc31489
DV
15920 * No protection against concurrent access is required - at
15921 * worst a fifo underrun happens which also sets this to false.
15922 */
15923 crtc->cpu_fifo_underrun_disabled = true;
15924 crtc->pch_fifo_underrun_disabled = true;
15925 }
24929352
DV
15926}
15927
15928static void intel_sanitize_encoder(struct intel_encoder *encoder)
15929{
15930 struct intel_connector *connector;
15931 struct drm_device *dev = encoder->base.dev;
15932
15933 /* We need to check both for a crtc link (meaning that the
15934 * encoder is active and trying to read from a pipe) and the
15935 * pipe itself being active. */
15936 bool has_active_crtc = encoder->base.crtc &&
15937 to_intel_crtc(encoder->base.crtc)->active;
15938
dd756198 15939 if (intel_encoder_has_connectors(encoder) && !has_active_crtc) {
24929352
DV
15940 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15941 encoder->base.base.id,
8e329a03 15942 encoder->base.name);
24929352
DV
15943
15944 /* Connector is active, but has no active pipe. This is
15945 * fallout from our resume register restoring. Disable
15946 * the encoder manually again. */
15947 if (encoder->base.crtc) {
15948 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15949 encoder->base.base.id,
8e329a03 15950 encoder->base.name);
24929352 15951 encoder->disable(encoder);
a62d1497
VS
15952 if (encoder->post_disable)
15953 encoder->post_disable(encoder);
24929352 15954 }
7f1950fb 15955 encoder->base.crtc = NULL;
24929352
DV
15956
15957 /* Inconsistent output/port/pipe state happens presumably due to
15958 * a bug in one of the get_hw_state functions. Or someplace else
15959 * in our code, like the register restore mess on resume. Clamp
15960 * things to off as a safer default. */
3a3371ff 15961 for_each_intel_connector(dev, connector) {
24929352
DV
15962 if (connector->encoder != encoder)
15963 continue;
7f1950fb
EE
15964 connector->base.dpms = DRM_MODE_DPMS_OFF;
15965 connector->base.encoder = NULL;
24929352
DV
15966 }
15967 }
15968 /* Enabled encoders without active connectors will be fixed in
15969 * the crtc fixup. */
15970}
15971
04098753 15972void i915_redisable_vga_power_on(struct drm_device *dev)
0fde901f
KM
15973{
15974 struct drm_i915_private *dev_priv = dev->dev_private;
f0f59a00 15975 i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
0fde901f 15976
04098753
ID
15977 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15978 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15979 i915_disable_vga(dev);
15980 }
15981}
15982
15983void i915_redisable_vga(struct drm_device *dev)
15984{
15985 struct drm_i915_private *dev_priv = dev->dev_private;
15986
8dc8a27c
PZ
15987 /* This function can be called both from intel_modeset_setup_hw_state or
15988 * at a very early point in our resume sequence, where the power well
15989 * structures are not yet restored. Since this function is at a very
15990 * paranoid "someone might have enabled VGA while we were not looking"
15991 * level, just check if the power well is enabled instead of trying to
15992 * follow the "don't touch the power well if we don't need it" policy
15993 * the rest of the driver uses. */
6392f847 15994 if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_VGA))
8dc8a27c
PZ
15995 return;
15996
04098753 15997 i915_redisable_vga_power_on(dev);
6392f847
ID
15998
15999 intel_display_power_put(dev_priv, POWER_DOMAIN_VGA);
0fde901f
KM
16000}
16001
f9cd7b88 16002static bool primary_get_hw_state(struct intel_plane *plane)
98ec7739 16003{
f9cd7b88 16004 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
98ec7739 16005
f9cd7b88 16006 return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
d032ffa0
ML
16007}
16008
f9cd7b88
VS
16009/* FIXME read out full plane state for all planes */
16010static void readout_plane_state(struct intel_crtc *crtc)
d032ffa0 16011{
b26d3ea3 16012 struct drm_plane *primary = crtc->base.primary;
f9cd7b88 16013 struct intel_plane_state *plane_state =
b26d3ea3 16014 to_intel_plane_state(primary->state);
d032ffa0 16015
19b8d387 16016 plane_state->visible = crtc->active &&
b26d3ea3
ML
16017 primary_get_hw_state(to_intel_plane(primary));
16018
16019 if (plane_state->visible)
16020 crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
98ec7739
VS
16021}
16022
30e984df 16023static void intel_modeset_readout_hw_state(struct drm_device *dev)
24929352
DV
16024{
16025 struct drm_i915_private *dev_priv = dev->dev_private;
16026 enum pipe pipe;
24929352
DV
16027 struct intel_crtc *crtc;
16028 struct intel_encoder *encoder;
16029 struct intel_connector *connector;
5358901f 16030 int i;
24929352 16031
565602d7
ML
16032 dev_priv->active_crtcs = 0;
16033
d3fcc808 16034 for_each_intel_crtc(dev, crtc) {
565602d7
ML
16035 struct intel_crtc_state *crtc_state = crtc->config;
16036 int pixclk = 0;
3b117c8f 16037
ec2dc6a0 16038 __drm_atomic_helper_crtc_destroy_state(&crtc_state->base);
565602d7
ML
16039 memset(crtc_state, 0, sizeof(*crtc_state));
16040 crtc_state->base.crtc = &crtc->base;
24929352 16041
565602d7
ML
16042 crtc_state->base.active = crtc_state->base.enable =
16043 dev_priv->display.get_pipe_config(crtc, crtc_state);
16044
16045 crtc->base.enabled = crtc_state->base.enable;
16046 crtc->active = crtc_state->base.active;
16047
16048 if (crtc_state->base.active) {
16049 dev_priv->active_crtcs |= 1 << crtc->pipe;
16050
c89e39f3 16051 if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv))
565602d7 16052 pixclk = ilk_pipe_pixel_rate(crtc_state);
9558d15d 16053 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
565602d7
ML
16054 pixclk = crtc_state->base.adjusted_mode.crtc_clock;
16055 else
16056 WARN_ON(dev_priv->display.modeset_calc_cdclk);
9558d15d
VS
16057
16058 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
16059 if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
16060 pixclk = DIV_ROUND_UP(pixclk * 100, 95);
565602d7
ML
16061 }
16062
16063 dev_priv->min_pixclk[crtc->pipe] = pixclk;
b70709a6 16064
f9cd7b88 16065 readout_plane_state(crtc);
24929352 16066
78108b7c
VS
16067 DRM_DEBUG_KMS("[CRTC:%d:%s] hw state readout: %s\n",
16068 crtc->base.base.id, crtc->base.name,
24929352
DV
16069 crtc->active ? "enabled" : "disabled");
16070 }
16071
5358901f
DV
16072 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
16073 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
16074
2edd6443
ACO
16075 pll->on = pll->funcs.get_hw_state(dev_priv, pll,
16076 &pll->config.hw_state);
3e369b76 16077 pll->config.crtc_mask = 0;
d3fcc808 16078 for_each_intel_crtc(dev, crtc) {
2dd66ebd 16079 if (crtc->active && crtc->config->shared_dpll == pll)
3e369b76 16080 pll->config.crtc_mask |= 1 << crtc->pipe;
5358901f 16081 }
2dd66ebd 16082 pll->active_mask = pll->config.crtc_mask;
5358901f 16083
1e6f2ddc 16084 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
3e369b76 16085 pll->name, pll->config.crtc_mask, pll->on);
5358901f
DV
16086 }
16087
b2784e15 16088 for_each_intel_encoder(dev, encoder) {
24929352
DV
16089 pipe = 0;
16090
16091 if (encoder->get_hw_state(encoder, &pipe)) {
045ac3b5
JB
16092 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
16093 encoder->base.crtc = &crtc->base;
6e3c9717 16094 encoder->get_config(encoder, crtc->config);
24929352
DV
16095 } else {
16096 encoder->base.crtc = NULL;
16097 }
16098
6f2bcceb 16099 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
24929352 16100 encoder->base.base.id,
8e329a03 16101 encoder->base.name,
24929352 16102 encoder->base.crtc ? "enabled" : "disabled",
6f2bcceb 16103 pipe_name(pipe));
24929352
DV
16104 }
16105
3a3371ff 16106 for_each_intel_connector(dev, connector) {
24929352
DV
16107 if (connector->get_hw_state(connector)) {
16108 connector->base.dpms = DRM_MODE_DPMS_ON;
2aa974c9
ML
16109
16110 encoder = connector->encoder;
16111 connector->base.encoder = &encoder->base;
16112
16113 if (encoder->base.crtc &&
16114 encoder->base.crtc->state->active) {
16115 /*
16116 * This has to be done during hardware readout
16117 * because anything calling .crtc_disable may
16118 * rely on the connector_mask being accurate.
16119 */
16120 encoder->base.crtc->state->connector_mask |=
16121 1 << drm_connector_index(&connector->base);
e87a52b3
ML
16122 encoder->base.crtc->state->encoder_mask |=
16123 1 << drm_encoder_index(&encoder->base);
2aa974c9
ML
16124 }
16125
24929352
DV
16126 } else {
16127 connector->base.dpms = DRM_MODE_DPMS_OFF;
16128 connector->base.encoder = NULL;
16129 }
16130 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
16131 connector->base.base.id,
c23cc417 16132 connector->base.name,
24929352
DV
16133 connector->base.encoder ? "enabled" : "disabled");
16134 }
7f4c6284
VS
16135
16136 for_each_intel_crtc(dev, crtc) {
16137 crtc->base.hwmode = crtc->config->base.adjusted_mode;
16138
16139 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
16140 if (crtc->base.state->active) {
16141 intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
16142 intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
16143 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
16144
16145 /*
16146 * The initial mode needs to be set in order to keep
16147 * the atomic core happy. It wants a valid mode if the
16148 * crtc's enabled, so we do the above call.
16149 *
16150 * At this point some state updated by the connectors
16151 * in their ->detect() callback has not run yet, so
16152 * no recalculation can be done yet.
16153 *
16154 * Even if we could do a recalculation and modeset
16155 * right now it would cause a double modeset if
16156 * fbdev or userspace chooses a different initial mode.
16157 *
16158 * If that happens, someone indicated they wanted a
16159 * mode change, which means it's safe to do a full
16160 * recalculation.
16161 */
16162 crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
9eca6832
VS
16163
16164 drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
16165 update_scanline_offset(crtc);
7f4c6284 16166 }
e3b247da
VS
16167
16168 intel_pipe_config_sanity_check(dev_priv, crtc->config);
7f4c6284 16169 }
30e984df
DV
16170}
16171
043e9bda
ML
16172/* Scan out the current hw modeset state,
16173 * and sanitizes it to the current state
16174 */
16175static void
16176intel_modeset_setup_hw_state(struct drm_device *dev)
30e984df
DV
16177{
16178 struct drm_i915_private *dev_priv = dev->dev_private;
16179 enum pipe pipe;
30e984df
DV
16180 struct intel_crtc *crtc;
16181 struct intel_encoder *encoder;
35c95375 16182 int i;
30e984df
DV
16183
16184 intel_modeset_readout_hw_state(dev);
24929352
DV
16185
16186 /* HW state is read out, now we need to sanitize this mess. */
b2784e15 16187 for_each_intel_encoder(dev, encoder) {
24929352
DV
16188 intel_sanitize_encoder(encoder);
16189 }
16190
055e393f 16191 for_each_pipe(dev_priv, pipe) {
24929352
DV
16192 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
16193 intel_sanitize_crtc(crtc);
6e3c9717
ACO
16194 intel_dump_pipe_config(crtc, crtc->config,
16195 "[setup_hw_state]");
24929352 16196 }
9a935856 16197
d29b2f9d
ACO
16198 intel_modeset_update_connector_atomic_state(dev);
16199
35c95375
DV
16200 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
16201 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
16202
2dd66ebd 16203 if (!pll->on || pll->active_mask)
35c95375
DV
16204 continue;
16205
16206 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
16207
2edd6443 16208 pll->funcs.disable(dev_priv, pll);
35c95375
DV
16209 pll->on = false;
16210 }
16211
666a4537 16212 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
6eb1a681
VS
16213 vlv_wm_get_hw_state(dev);
16214 else if (IS_GEN9(dev))
3078999f
PB
16215 skl_wm_get_hw_state(dev);
16216 else if (HAS_PCH_SPLIT(dev))
243e6a44 16217 ilk_wm_get_hw_state(dev);
292b990e
ML
16218
16219 for_each_intel_crtc(dev, crtc) {
16220 unsigned long put_domains;
16221
74bff5f9 16222 put_domains = modeset_get_crtc_power_domains(&crtc->base, crtc->config);
292b990e
ML
16223 if (WARN_ON(put_domains))
16224 modeset_put_power_domains(dev_priv, put_domains);
16225 }
16226 intel_display_set_init_power(dev_priv, false);
010cf73d
PZ
16227
16228 intel_fbc_init_pipe_state(dev_priv);
043e9bda 16229}
7d0bc1ea 16230
043e9bda
ML
16231void intel_display_resume(struct drm_device *dev)
16232{
e2c8b870
ML
16233 struct drm_i915_private *dev_priv = to_i915(dev);
16234 struct drm_atomic_state *state = dev_priv->modeset_restore_state;
16235 struct drm_modeset_acquire_ctx ctx;
043e9bda 16236 int ret;
e2c8b870 16237 bool setup = false;
f30da187 16238
e2c8b870 16239 dev_priv->modeset_restore_state = NULL;
043e9bda 16240
ea49c9ac
ML
16241 /*
16242 * This is a cludge because with real atomic modeset mode_config.mutex
16243 * won't be taken. Unfortunately some probed state like
16244 * audio_codec_enable is still protected by mode_config.mutex, so lock
16245 * it here for now.
16246 */
16247 mutex_lock(&dev->mode_config.mutex);
e2c8b870 16248 drm_modeset_acquire_init(&ctx, 0);
043e9bda 16249
e2c8b870
ML
16250retry:
16251 ret = drm_modeset_lock_all_ctx(dev, &ctx);
043e9bda 16252
e2c8b870
ML
16253 if (ret == 0 && !setup) {
16254 setup = true;
043e9bda 16255
e2c8b870
ML
16256 intel_modeset_setup_hw_state(dev);
16257 i915_redisable_vga(dev);
45e2b5f6 16258 }
8af6cf88 16259
e2c8b870
ML
16260 if (ret == 0 && state) {
16261 struct drm_crtc_state *crtc_state;
16262 struct drm_crtc *crtc;
16263 int i;
043e9bda 16264
e2c8b870
ML
16265 state->acquire_ctx = &ctx;
16266
e3d5457c
VS
16267 /* ignore any reset values/BIOS leftovers in the WM registers */
16268 to_intel_atomic_state(state)->skip_intermediate_wm = true;
16269
e2c8b870
ML
16270 for_each_crtc_in_state(state, crtc, crtc_state, i) {
16271 /*
16272 * Force recalculation even if we restore
16273 * current state. With fast modeset this may not result
16274 * in a modeset when the state is compatible.
16275 */
16276 crtc_state->mode_changed = true;
16277 }
16278
16279 ret = drm_atomic_commit(state);
043e9bda
ML
16280 }
16281
e2c8b870
ML
16282 if (ret == -EDEADLK) {
16283 drm_modeset_backoff(&ctx);
16284 goto retry;
16285 }
043e9bda 16286
e2c8b870
ML
16287 drm_modeset_drop_locks(&ctx);
16288 drm_modeset_acquire_fini(&ctx);
ea49c9ac 16289 mutex_unlock(&dev->mode_config.mutex);
043e9bda 16290
e2c8b870
ML
16291 if (ret) {
16292 DRM_ERROR("Restoring old state failed with %i\n", ret);
16293 drm_atomic_state_free(state);
16294 }
2c7111db
CW
16295}
16296
16297void intel_modeset_gem_init(struct drm_device *dev)
16298{
dc97997a 16299 struct drm_i915_private *dev_priv = to_i915(dev);
484b41dd 16300 struct drm_crtc *c;
2ff8fde1 16301 struct drm_i915_gem_object *obj;
e0d6149b 16302 int ret;
484b41dd 16303
dc97997a 16304 intel_init_gt_powersave(dev_priv);
ae48434c 16305
1833b134 16306 intel_modeset_init_hw(dev);
02e792fb 16307
1ee8da6d 16308 intel_setup_overlay(dev_priv);
484b41dd
JB
16309
16310 /*
16311 * Make sure any fbs we allocated at startup are properly
16312 * pinned & fenced. When we do the allocation it's too early
16313 * for this.
16314 */
70e1e0ec 16315 for_each_crtc(dev, c) {
2ff8fde1
MR
16316 obj = intel_fb_obj(c->primary->fb);
16317 if (obj == NULL)
484b41dd
JB
16318 continue;
16319
e0d6149b 16320 mutex_lock(&dev->struct_mutex);
3465c580
VS
16321 ret = intel_pin_and_fence_fb_obj(c->primary->fb,
16322 c->primary->state->rotation);
e0d6149b
TU
16323 mutex_unlock(&dev->struct_mutex);
16324 if (ret) {
484b41dd
JB
16325 DRM_ERROR("failed to pin boot fb on pipe %d\n",
16326 to_intel_crtc(c)->pipe);
66e514c1 16327 drm_framebuffer_unreference(c->primary->fb);
5a21b665 16328 c->primary->fb = NULL;
36750f28 16329 c->primary->crtc = c->primary->state->crtc = NULL;
5a21b665 16330 update_state_fb(c->primary);
36750f28 16331 c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
484b41dd
JB
16332 }
16333 }
1ebaa0b9
CW
16334}
16335
16336int intel_connector_register(struct drm_connector *connector)
16337{
16338 struct intel_connector *intel_connector = to_intel_connector(connector);
16339 int ret;
16340
16341 ret = intel_backlight_device_register(intel_connector);
16342 if (ret)
16343 goto err;
16344
16345 return 0;
0962c3c9 16346
1ebaa0b9
CW
16347err:
16348 return ret;
79e53945
JB
16349}
16350
c191eca1 16351void intel_connector_unregister(struct drm_connector *connector)
4932e2c3 16352{
e63d87c0 16353 struct intel_connector *intel_connector = to_intel_connector(connector);
4932e2c3 16354
e63d87c0 16355 intel_backlight_device_unregister(intel_connector);
4932e2c3 16356 intel_panel_destroy_backlight(connector);
4932e2c3
ID
16357}
16358
79e53945
JB
16359void intel_modeset_cleanup(struct drm_device *dev)
16360{
652c393a 16361 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 16362
dc97997a 16363 intel_disable_gt_powersave(dev_priv);
2eb5252e 16364
fd0c0642
DV
16365 /*
16366 * Interrupts and polling as the first thing to avoid creating havoc.
2eb5252e 16367 * Too much stuff here (turning of connectors, ...) would
fd0c0642
DV
16368 * experience fancy races otherwise.
16369 */
2aeb7d3a 16370 intel_irq_uninstall(dev_priv);
eb21b92b 16371
fd0c0642
DV
16372 /*
16373 * Due to the hpd irq storm handling the hotplug work can re-arm the
16374 * poll handlers. Hence disable polling after hpd handling is shut down.
16375 */
f87ea761 16376 drm_kms_helper_poll_fini(dev);
fd0c0642 16377
723bfd70
JB
16378 intel_unregister_dsm_handler();
16379
c937ab3e 16380 intel_fbc_global_disable(dev_priv);
69341a5e 16381
1630fe75
CW
16382 /* flush any delayed tasks or pending work */
16383 flush_scheduled_work();
16384
79e53945 16385 drm_mode_config_cleanup(dev);
4d7bb011 16386
1ee8da6d 16387 intel_cleanup_overlay(dev_priv);
ae48434c 16388
dc97997a 16389 intel_cleanup_gt_powersave(dev_priv);
f5949141
DV
16390
16391 intel_teardown_gmbus(dev);
79e53945
JB
16392}
16393
df0e9248
CW
16394void intel_connector_attach_encoder(struct intel_connector *connector,
16395 struct intel_encoder *encoder)
16396{
16397 connector->encoder = encoder;
16398 drm_mode_connector_attach_encoder(&connector->base,
16399 &encoder->base);
79e53945 16400}
28d52043
DA
16401
16402/*
16403 * set vga decode state - true == enable VGA decode
16404 */
16405int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
16406{
16407 struct drm_i915_private *dev_priv = dev->dev_private;
a885b3cc 16408 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
28d52043
DA
16409 u16 gmch_ctrl;
16410
75fa041d
CW
16411 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
16412 DRM_ERROR("failed to read control word\n");
16413 return -EIO;
16414 }
16415
c0cc8a55
CW
16416 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
16417 return 0;
16418
28d52043
DA
16419 if (state)
16420 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
16421 else
16422 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
75fa041d
CW
16423
16424 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
16425 DRM_ERROR("failed to write control word\n");
16426 return -EIO;
16427 }
16428
28d52043
DA
16429 return 0;
16430}
c4a1d9e4 16431
c4a1d9e4 16432struct intel_display_error_state {
ff57f1b0
PZ
16433
16434 u32 power_well_driver;
16435
63b66e5b
CW
16436 int num_transcoders;
16437
c4a1d9e4
CW
16438 struct intel_cursor_error_state {
16439 u32 control;
16440 u32 position;
16441 u32 base;
16442 u32 size;
52331309 16443 } cursor[I915_MAX_PIPES];
c4a1d9e4
CW
16444
16445 struct intel_pipe_error_state {
ddf9c536 16446 bool power_domain_on;
c4a1d9e4 16447 u32 source;
f301b1e1 16448 u32 stat;
52331309 16449 } pipe[I915_MAX_PIPES];
c4a1d9e4
CW
16450
16451 struct intel_plane_error_state {
16452 u32 control;
16453 u32 stride;
16454 u32 size;
16455 u32 pos;
16456 u32 addr;
16457 u32 surface;
16458 u32 tile_offset;
52331309 16459 } plane[I915_MAX_PIPES];
63b66e5b
CW
16460
16461 struct intel_transcoder_error_state {
ddf9c536 16462 bool power_domain_on;
63b66e5b
CW
16463 enum transcoder cpu_transcoder;
16464
16465 u32 conf;
16466
16467 u32 htotal;
16468 u32 hblank;
16469 u32 hsync;
16470 u32 vtotal;
16471 u32 vblank;
16472 u32 vsync;
16473 } transcoder[4];
c4a1d9e4
CW
16474};
16475
16476struct intel_display_error_state *
c033666a 16477intel_display_capture_error_state(struct drm_i915_private *dev_priv)
c4a1d9e4 16478{
c4a1d9e4 16479 struct intel_display_error_state *error;
63b66e5b
CW
16480 int transcoders[] = {
16481 TRANSCODER_A,
16482 TRANSCODER_B,
16483 TRANSCODER_C,
16484 TRANSCODER_EDP,
16485 };
c4a1d9e4
CW
16486 int i;
16487
c033666a 16488 if (INTEL_INFO(dev_priv)->num_pipes == 0)
63b66e5b
CW
16489 return NULL;
16490
9d1cb914 16491 error = kzalloc(sizeof(*error), GFP_ATOMIC);
c4a1d9e4
CW
16492 if (error == NULL)
16493 return NULL;
16494
c033666a 16495 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
ff57f1b0
PZ
16496 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
16497
055e393f 16498 for_each_pipe(dev_priv, i) {
ddf9c536 16499 error->pipe[i].power_domain_on =
f458ebbc
DV
16500 __intel_display_power_is_enabled(dev_priv,
16501 POWER_DOMAIN_PIPE(i));
ddf9c536 16502 if (!error->pipe[i].power_domain_on)
9d1cb914
PZ
16503 continue;
16504
5efb3e28
VS
16505 error->cursor[i].control = I915_READ(CURCNTR(i));
16506 error->cursor[i].position = I915_READ(CURPOS(i));
16507 error->cursor[i].base = I915_READ(CURBASE(i));
c4a1d9e4
CW
16508
16509 error->plane[i].control = I915_READ(DSPCNTR(i));
16510 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
c033666a 16511 if (INTEL_GEN(dev_priv) <= 3) {
51889b35 16512 error->plane[i].size = I915_READ(DSPSIZE(i));
80ca378b
PZ
16513 error->plane[i].pos = I915_READ(DSPPOS(i));
16514 }
c033666a 16515 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
ca291363 16516 error->plane[i].addr = I915_READ(DSPADDR(i));
c033666a 16517 if (INTEL_GEN(dev_priv) >= 4) {
c4a1d9e4
CW
16518 error->plane[i].surface = I915_READ(DSPSURF(i));
16519 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
16520 }
16521
c4a1d9e4 16522 error->pipe[i].source = I915_READ(PIPESRC(i));
f301b1e1 16523
c033666a 16524 if (HAS_GMCH_DISPLAY(dev_priv))
f301b1e1 16525 error->pipe[i].stat = I915_READ(PIPESTAT(i));
63b66e5b
CW
16526 }
16527
4d1de975 16528 /* Note: this does not include DSI transcoders. */
c033666a 16529 error->num_transcoders = INTEL_INFO(dev_priv)->num_pipes;
2d1fe073 16530 if (HAS_DDI(dev_priv))
63b66e5b
CW
16531 error->num_transcoders++; /* Account for eDP. */
16532
16533 for (i = 0; i < error->num_transcoders; i++) {
16534 enum transcoder cpu_transcoder = transcoders[i];
16535
ddf9c536 16536 error->transcoder[i].power_domain_on =
f458ebbc 16537 __intel_display_power_is_enabled(dev_priv,
38cc1daf 16538 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
ddf9c536 16539 if (!error->transcoder[i].power_domain_on)
9d1cb914
PZ
16540 continue;
16541
63b66e5b
CW
16542 error->transcoder[i].cpu_transcoder = cpu_transcoder;
16543
16544 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
16545 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
16546 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
16547 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
16548 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
16549 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
16550 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
c4a1d9e4
CW
16551 }
16552
16553 return error;
16554}
16555
edc3d884
MK
16556#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
16557
c4a1d9e4 16558void
edc3d884 16559intel_display_print_error_state(struct drm_i915_error_state_buf *m,
c4a1d9e4
CW
16560 struct drm_device *dev,
16561 struct intel_display_error_state *error)
16562{
055e393f 16563 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4
CW
16564 int i;
16565
63b66e5b
CW
16566 if (!error)
16567 return;
16568
edc3d884 16569 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
190be112 16570 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
edc3d884 16571 err_printf(m, "PWR_WELL_CTL2: %08x\n",
ff57f1b0 16572 error->power_well_driver);
055e393f 16573 for_each_pipe(dev_priv, i) {
edc3d884 16574 err_printf(m, "Pipe [%d]:\n", i);
ddf9c536 16575 err_printf(m, " Power: %s\n",
87ad3212 16576 onoff(error->pipe[i].power_domain_on));
edc3d884 16577 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
f301b1e1 16578 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
edc3d884
MK
16579
16580 err_printf(m, "Plane [%d]:\n", i);
16581 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
16582 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
80ca378b 16583 if (INTEL_INFO(dev)->gen <= 3) {
edc3d884
MK
16584 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
16585 err_printf(m, " POS: %08x\n", error->plane[i].pos);
80ca378b 16586 }
4b71a570 16587 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
edc3d884 16588 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
c4a1d9e4 16589 if (INTEL_INFO(dev)->gen >= 4) {
edc3d884
MK
16590 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
16591 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
c4a1d9e4
CW
16592 }
16593
edc3d884
MK
16594 err_printf(m, "Cursor [%d]:\n", i);
16595 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
16596 err_printf(m, " POS: %08x\n", error->cursor[i].position);
16597 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
c4a1d9e4 16598 }
63b66e5b
CW
16599
16600 for (i = 0; i < error->num_transcoders; i++) {
da205630 16601 err_printf(m, "CPU transcoder: %s\n",
63b66e5b 16602 transcoder_name(error->transcoder[i].cpu_transcoder));
ddf9c536 16603 err_printf(m, " Power: %s\n",
87ad3212 16604 onoff(error->transcoder[i].power_domain_on));
63b66e5b
CW
16605 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
16606 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
16607 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
16608 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
16609 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
16610 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
16611 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
16612 }
c4a1d9e4 16613}