]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/intel_display.c
drm/i915: Make INTEL_PCH_TYPE & co only take dev_priv
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
618563e3 27#include <linux/dmi.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
e0dac65e 34#include <drm/drm_edid.h>
760285e7 35#include <drm/drmP.h>
79e53945 36#include "intel_drv.h"
5d723d7a 37#include "intel_frontbuffer.h"
760285e7 38#include <drm/i915_drm.h>
79e53945 39#include "i915_drv.h"
c37efb99 40#include "i915_gem_dmabuf.h"
db18b6a6 41#include "intel_dsi.h"
e5510fac 42#include "i915_trace.h"
319c1d42 43#include <drm/drm_atomic.h>
c196e1d6 44#include <drm/drm_atomic_helper.h>
760285e7
DH
45#include <drm/drm_dp_helper.h>
46#include <drm/drm_crtc_helper.h>
465c120c
MR
47#include <drm/drm_plane_helper.h>
48#include <drm/drm_rect.h>
c0f372b3 49#include <linux/dma_remapping.h>
fd8e058a 50#include <linux/reservation.h>
79e53945 51
5a21b665
DV
52static bool is_mmio_work(struct intel_flip_work *work)
53{
54 return work->mmio_work.func;
55}
56
465c120c 57/* Primary plane formats for gen <= 3 */
568db4f2 58static const uint32_t i8xx_primary_formats[] = {
67fe7dc5
DL
59 DRM_FORMAT_C8,
60 DRM_FORMAT_RGB565,
465c120c 61 DRM_FORMAT_XRGB1555,
67fe7dc5 62 DRM_FORMAT_XRGB8888,
465c120c
MR
63};
64
65/* Primary plane formats for gen >= 4 */
568db4f2 66static const uint32_t i965_primary_formats[] = {
6c0fd451
DL
67 DRM_FORMAT_C8,
68 DRM_FORMAT_RGB565,
69 DRM_FORMAT_XRGB8888,
70 DRM_FORMAT_XBGR8888,
71 DRM_FORMAT_XRGB2101010,
72 DRM_FORMAT_XBGR2101010,
73};
74
75static const uint32_t skl_primary_formats[] = {
67fe7dc5
DL
76 DRM_FORMAT_C8,
77 DRM_FORMAT_RGB565,
78 DRM_FORMAT_XRGB8888,
465c120c 79 DRM_FORMAT_XBGR8888,
67fe7dc5 80 DRM_FORMAT_ARGB8888,
465c120c
MR
81 DRM_FORMAT_ABGR8888,
82 DRM_FORMAT_XRGB2101010,
465c120c 83 DRM_FORMAT_XBGR2101010,
ea916ea0
KM
84 DRM_FORMAT_YUYV,
85 DRM_FORMAT_YVYU,
86 DRM_FORMAT_UYVY,
87 DRM_FORMAT_VYUY,
465c120c
MR
88};
89
3d7d6510
MR
90/* Cursor formats */
91static const uint32_t intel_cursor_formats[] = {
92 DRM_FORMAT_ARGB8888,
93};
94
f1f644dc 95static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 96 struct intel_crtc_state *pipe_config);
18442d08 97static void ironlake_pch_clock_get(struct intel_crtc *crtc,
5cec258b 98 struct intel_crtc_state *pipe_config);
f1f644dc 99
eb1bfe80
JB
100static int intel_framebuffer_init(struct drm_device *dev,
101 struct intel_framebuffer *ifb,
102 struct drm_mode_fb_cmd2 *mode_cmd,
103 struct drm_i915_gem_object *obj);
5b18e57c
DV
104static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
105static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
bc58be60 106static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc);
29407aab 107static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
108 struct intel_link_m_n *m_n,
109 struct intel_link_m_n *m2_n2);
29407aab 110static void ironlake_set_pipeconf(struct drm_crtc *crtc);
229fca97 111static void haswell_set_pipeconf(struct drm_crtc *crtc);
391bf048 112static void haswell_set_pipemisc(struct drm_crtc *crtc);
d288f65f 113static void vlv_prepare_pll(struct intel_crtc *crtc,
5cec258b 114 const struct intel_crtc_state *pipe_config);
d288f65f 115static void chv_prepare_pll(struct intel_crtc *crtc,
5cec258b 116 const struct intel_crtc_state *pipe_config);
5a21b665
DV
117static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
118static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
549e2bfb
CK
119static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
120 struct intel_crtc_state *crtc_state);
bfd16b2a
ML
121static void skylake_pfit_enable(struct intel_crtc *crtc);
122static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
123static void ironlake_pfit_enable(struct intel_crtc *crtc);
043e9bda 124static void intel_modeset_setup_hw_state(struct drm_device *dev);
2622a081 125static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc);
4e5ca60f 126static int ilk_max_pixel_rate(struct drm_atomic_state *state);
324513c0 127static int bxt_calc_cdclk(int max_pixclk);
e7457a9a 128
d4906093 129struct intel_limit {
4c5def93
ACO
130 struct {
131 int min, max;
132 } dot, vco, n, m, m1, m2, p, p1;
133
134 struct {
135 int dot_limit;
136 int p2_slow, p2_fast;
137 } p2;
d4906093 138};
79e53945 139
bfa7df01
VS
140/* returns HPLL frequency in kHz */
141static int valleyview_get_vco(struct drm_i915_private *dev_priv)
142{
143 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
144
145 /* Obtain SKU information */
146 mutex_lock(&dev_priv->sb_lock);
147 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
148 CCK_FUSE_HPLL_FREQ_MASK;
149 mutex_unlock(&dev_priv->sb_lock);
150
151 return vco_freq[hpll_freq] * 1000;
152}
153
c30fec65
VS
154int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
155 const char *name, u32 reg, int ref_freq)
bfa7df01
VS
156{
157 u32 val;
158 int divider;
159
bfa7df01
VS
160 mutex_lock(&dev_priv->sb_lock);
161 val = vlv_cck_read(dev_priv, reg);
162 mutex_unlock(&dev_priv->sb_lock);
163
164 divider = val & CCK_FREQUENCY_VALUES;
165
166 WARN((val & CCK_FREQUENCY_STATUS) !=
167 (divider << CCK_FREQUENCY_STATUS_SHIFT),
168 "%s change in progress\n", name);
169
c30fec65
VS
170 return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
171}
172
173static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
174 const char *name, u32 reg)
175{
176 if (dev_priv->hpll_freq == 0)
177 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
178
179 return vlv_get_cck_clock(dev_priv, name, reg,
180 dev_priv->hpll_freq);
bfa7df01
VS
181}
182
e7dc33f3
VS
183static int
184intel_pch_rawclk(struct drm_i915_private *dev_priv)
d2acd215 185{
e7dc33f3
VS
186 return (I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK) * 1000;
187}
d2acd215 188
e7dc33f3
VS
189static int
190intel_vlv_hrawclk(struct drm_i915_private *dev_priv)
191{
19ab4ed3 192 /* RAWCLK_FREQ_VLV register updated from power well code */
35d38d1f
VS
193 return vlv_get_cck_clock_hpll(dev_priv, "hrawclk",
194 CCK_DISPLAY_REF_CLOCK_CONTROL);
d2acd215
DV
195}
196
e7dc33f3
VS
197static int
198intel_g4x_hrawclk(struct drm_i915_private *dev_priv)
79e50a4f 199{
79e50a4f
JN
200 uint32_t clkcfg;
201
e7dc33f3 202 /* hrawclock is 1/4 the FSB frequency */
79e50a4f
JN
203 clkcfg = I915_READ(CLKCFG);
204 switch (clkcfg & CLKCFG_FSB_MASK) {
205 case CLKCFG_FSB_400:
e7dc33f3 206 return 100000;
79e50a4f 207 case CLKCFG_FSB_533:
e7dc33f3 208 return 133333;
79e50a4f 209 case CLKCFG_FSB_667:
e7dc33f3 210 return 166667;
79e50a4f 211 case CLKCFG_FSB_800:
e7dc33f3 212 return 200000;
79e50a4f 213 case CLKCFG_FSB_1067:
e7dc33f3 214 return 266667;
79e50a4f 215 case CLKCFG_FSB_1333:
e7dc33f3 216 return 333333;
79e50a4f
JN
217 /* these two are just a guess; one of them might be right */
218 case CLKCFG_FSB_1600:
219 case CLKCFG_FSB_1600_ALT:
e7dc33f3 220 return 400000;
79e50a4f 221 default:
e7dc33f3 222 return 133333;
79e50a4f
JN
223 }
224}
225
19ab4ed3 226void intel_update_rawclk(struct drm_i915_private *dev_priv)
e7dc33f3
VS
227{
228 if (HAS_PCH_SPLIT(dev_priv))
229 dev_priv->rawclk_freq = intel_pch_rawclk(dev_priv);
230 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
231 dev_priv->rawclk_freq = intel_vlv_hrawclk(dev_priv);
232 else if (IS_G4X(dev_priv) || IS_PINEVIEW(dev_priv))
233 dev_priv->rawclk_freq = intel_g4x_hrawclk(dev_priv);
234 else
235 return; /* no rawclk on other platforms, or no need to know it */
236
237 DRM_DEBUG_DRIVER("rawclk rate: %d kHz\n", dev_priv->rawclk_freq);
238}
239
bfa7df01
VS
240static void intel_update_czclk(struct drm_i915_private *dev_priv)
241{
666a4537 242 if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
bfa7df01
VS
243 return;
244
245 dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
246 CCK_CZ_CLOCK_CONTROL);
247
248 DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
249}
250
021357ac 251static inline u32 /* units of 100MHz */
21a727b3
VS
252intel_fdi_link_freq(struct drm_i915_private *dev_priv,
253 const struct intel_crtc_state *pipe_config)
021357ac 254{
21a727b3
VS
255 if (HAS_DDI(dev_priv))
256 return pipe_config->port_clock; /* SPLL */
257 else if (IS_GEN5(dev_priv))
258 return ((I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2) * 10000;
e3b247da 259 else
21a727b3 260 return 270000;
021357ac
CW
261}
262
1b6f4958 263static const struct intel_limit intel_limits_i8xx_dac = {
0206e353 264 .dot = { .min = 25000, .max = 350000 },
9c333719 265 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 266 .n = { .min = 2, .max = 16 },
0206e353
AJ
267 .m = { .min = 96, .max = 140 },
268 .m1 = { .min = 18, .max = 26 },
269 .m2 = { .min = 6, .max = 16 },
270 .p = { .min = 4, .max = 128 },
271 .p1 = { .min = 2, .max = 33 },
273e27ca
EA
272 .p2 = { .dot_limit = 165000,
273 .p2_slow = 4, .p2_fast = 2 },
e4b36699
KP
274};
275
1b6f4958 276static const struct intel_limit intel_limits_i8xx_dvo = {
5d536e28 277 .dot = { .min = 25000, .max = 350000 },
9c333719 278 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 279 .n = { .min = 2, .max = 16 },
5d536e28
DV
280 .m = { .min = 96, .max = 140 },
281 .m1 = { .min = 18, .max = 26 },
282 .m2 = { .min = 6, .max = 16 },
283 .p = { .min = 4, .max = 128 },
284 .p1 = { .min = 2, .max = 33 },
285 .p2 = { .dot_limit = 165000,
286 .p2_slow = 4, .p2_fast = 4 },
287};
288
1b6f4958 289static const struct intel_limit intel_limits_i8xx_lvds = {
0206e353 290 .dot = { .min = 25000, .max = 350000 },
9c333719 291 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 292 .n = { .min = 2, .max = 16 },
0206e353
AJ
293 .m = { .min = 96, .max = 140 },
294 .m1 = { .min = 18, .max = 26 },
295 .m2 = { .min = 6, .max = 16 },
296 .p = { .min = 4, .max = 128 },
297 .p1 = { .min = 1, .max = 6 },
273e27ca
EA
298 .p2 = { .dot_limit = 165000,
299 .p2_slow = 14, .p2_fast = 7 },
e4b36699 300};
273e27ca 301
1b6f4958 302static const struct intel_limit intel_limits_i9xx_sdvo = {
0206e353
AJ
303 .dot = { .min = 20000, .max = 400000 },
304 .vco = { .min = 1400000, .max = 2800000 },
305 .n = { .min = 1, .max = 6 },
306 .m = { .min = 70, .max = 120 },
4f7dfb67
PJ
307 .m1 = { .min = 8, .max = 18 },
308 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
309 .p = { .min = 5, .max = 80 },
310 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
311 .p2 = { .dot_limit = 200000,
312 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
313};
314
1b6f4958 315static const struct intel_limit intel_limits_i9xx_lvds = {
0206e353
AJ
316 .dot = { .min = 20000, .max = 400000 },
317 .vco = { .min = 1400000, .max = 2800000 },
318 .n = { .min = 1, .max = 6 },
319 .m = { .min = 70, .max = 120 },
53a7d2d1
PJ
320 .m1 = { .min = 8, .max = 18 },
321 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
322 .p = { .min = 7, .max = 98 },
323 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
324 .p2 = { .dot_limit = 112000,
325 .p2_slow = 14, .p2_fast = 7 },
e4b36699
KP
326};
327
273e27ca 328
1b6f4958 329static const struct intel_limit intel_limits_g4x_sdvo = {
273e27ca
EA
330 .dot = { .min = 25000, .max = 270000 },
331 .vco = { .min = 1750000, .max = 3500000},
332 .n = { .min = 1, .max = 4 },
333 .m = { .min = 104, .max = 138 },
334 .m1 = { .min = 17, .max = 23 },
335 .m2 = { .min = 5, .max = 11 },
336 .p = { .min = 10, .max = 30 },
337 .p1 = { .min = 1, .max = 3},
338 .p2 = { .dot_limit = 270000,
339 .p2_slow = 10,
340 .p2_fast = 10
044c7c41 341 },
e4b36699
KP
342};
343
1b6f4958 344static const struct intel_limit intel_limits_g4x_hdmi = {
273e27ca
EA
345 .dot = { .min = 22000, .max = 400000 },
346 .vco = { .min = 1750000, .max = 3500000},
347 .n = { .min = 1, .max = 4 },
348 .m = { .min = 104, .max = 138 },
349 .m1 = { .min = 16, .max = 23 },
350 .m2 = { .min = 5, .max = 11 },
351 .p = { .min = 5, .max = 80 },
352 .p1 = { .min = 1, .max = 8},
353 .p2 = { .dot_limit = 165000,
354 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
355};
356
1b6f4958 357static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
358 .dot = { .min = 20000, .max = 115000 },
359 .vco = { .min = 1750000, .max = 3500000 },
360 .n = { .min = 1, .max = 3 },
361 .m = { .min = 104, .max = 138 },
362 .m1 = { .min = 17, .max = 23 },
363 .m2 = { .min = 5, .max = 11 },
364 .p = { .min = 28, .max = 112 },
365 .p1 = { .min = 2, .max = 8 },
366 .p2 = { .dot_limit = 0,
367 .p2_slow = 14, .p2_fast = 14
044c7c41 368 },
e4b36699
KP
369};
370
1b6f4958 371static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
372 .dot = { .min = 80000, .max = 224000 },
373 .vco = { .min = 1750000, .max = 3500000 },
374 .n = { .min = 1, .max = 3 },
375 .m = { .min = 104, .max = 138 },
376 .m1 = { .min = 17, .max = 23 },
377 .m2 = { .min = 5, .max = 11 },
378 .p = { .min = 14, .max = 42 },
379 .p1 = { .min = 2, .max = 6 },
380 .p2 = { .dot_limit = 0,
381 .p2_slow = 7, .p2_fast = 7
044c7c41 382 },
e4b36699
KP
383};
384
1b6f4958 385static const struct intel_limit intel_limits_pineview_sdvo = {
0206e353
AJ
386 .dot = { .min = 20000, .max = 400000},
387 .vco = { .min = 1700000, .max = 3500000 },
273e27ca 388 /* Pineview's Ncounter is a ring counter */
0206e353
AJ
389 .n = { .min = 3, .max = 6 },
390 .m = { .min = 2, .max = 256 },
273e27ca 391 /* Pineview only has one combined m divider, which we treat as m2. */
0206e353
AJ
392 .m1 = { .min = 0, .max = 0 },
393 .m2 = { .min = 0, .max = 254 },
394 .p = { .min = 5, .max = 80 },
395 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
396 .p2 = { .dot_limit = 200000,
397 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
398};
399
1b6f4958 400static const struct intel_limit intel_limits_pineview_lvds = {
0206e353
AJ
401 .dot = { .min = 20000, .max = 400000 },
402 .vco = { .min = 1700000, .max = 3500000 },
403 .n = { .min = 3, .max = 6 },
404 .m = { .min = 2, .max = 256 },
405 .m1 = { .min = 0, .max = 0 },
406 .m2 = { .min = 0, .max = 254 },
407 .p = { .min = 7, .max = 112 },
408 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
409 .p2 = { .dot_limit = 112000,
410 .p2_slow = 14, .p2_fast = 14 },
e4b36699
KP
411};
412
273e27ca
EA
413/* Ironlake / Sandybridge
414 *
415 * We calculate clock using (register_value + 2) for N/M1/M2, so here
416 * the range value for them is (actual_value - 2).
417 */
1b6f4958 418static const struct intel_limit intel_limits_ironlake_dac = {
273e27ca
EA
419 .dot = { .min = 25000, .max = 350000 },
420 .vco = { .min = 1760000, .max = 3510000 },
421 .n = { .min = 1, .max = 5 },
422 .m = { .min = 79, .max = 127 },
423 .m1 = { .min = 12, .max = 22 },
424 .m2 = { .min = 5, .max = 9 },
425 .p = { .min = 5, .max = 80 },
426 .p1 = { .min = 1, .max = 8 },
427 .p2 = { .dot_limit = 225000,
428 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
429};
430
1b6f4958 431static const struct intel_limit intel_limits_ironlake_single_lvds = {
273e27ca
EA
432 .dot = { .min = 25000, .max = 350000 },
433 .vco = { .min = 1760000, .max = 3510000 },
434 .n = { .min = 1, .max = 3 },
435 .m = { .min = 79, .max = 118 },
436 .m1 = { .min = 12, .max = 22 },
437 .m2 = { .min = 5, .max = 9 },
438 .p = { .min = 28, .max = 112 },
439 .p1 = { .min = 2, .max = 8 },
440 .p2 = { .dot_limit = 225000,
441 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
442};
443
1b6f4958 444static const struct intel_limit intel_limits_ironlake_dual_lvds = {
273e27ca
EA
445 .dot = { .min = 25000, .max = 350000 },
446 .vco = { .min = 1760000, .max = 3510000 },
447 .n = { .min = 1, .max = 3 },
448 .m = { .min = 79, .max = 127 },
449 .m1 = { .min = 12, .max = 22 },
450 .m2 = { .min = 5, .max = 9 },
451 .p = { .min = 14, .max = 56 },
452 .p1 = { .min = 2, .max = 8 },
453 .p2 = { .dot_limit = 225000,
454 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
455};
456
273e27ca 457/* LVDS 100mhz refclk limits. */
1b6f4958 458static const struct intel_limit intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
459 .dot = { .min = 25000, .max = 350000 },
460 .vco = { .min = 1760000, .max = 3510000 },
461 .n = { .min = 1, .max = 2 },
462 .m = { .min = 79, .max = 126 },
463 .m1 = { .min = 12, .max = 22 },
464 .m2 = { .min = 5, .max = 9 },
465 .p = { .min = 28, .max = 112 },
0206e353 466 .p1 = { .min = 2, .max = 8 },
273e27ca
EA
467 .p2 = { .dot_limit = 225000,
468 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
469};
470
1b6f4958 471static const struct intel_limit intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
472 .dot = { .min = 25000, .max = 350000 },
473 .vco = { .min = 1760000, .max = 3510000 },
474 .n = { .min = 1, .max = 3 },
475 .m = { .min = 79, .max = 126 },
476 .m1 = { .min = 12, .max = 22 },
477 .m2 = { .min = 5, .max = 9 },
478 .p = { .min = 14, .max = 42 },
0206e353 479 .p1 = { .min = 2, .max = 6 },
273e27ca
EA
480 .p2 = { .dot_limit = 225000,
481 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
482};
483
1b6f4958 484static const struct intel_limit intel_limits_vlv = {
f01b7962
VS
485 /*
486 * These are the data rate limits (measured in fast clocks)
487 * since those are the strictest limits we have. The fast
488 * clock and actual rate limits are more relaxed, so checking
489 * them would make no difference.
490 */
491 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
75e53986 492 .vco = { .min = 4000000, .max = 6000000 },
a0c4da24 493 .n = { .min = 1, .max = 7 },
a0c4da24
JB
494 .m1 = { .min = 2, .max = 3 },
495 .m2 = { .min = 11, .max = 156 },
b99ab663 496 .p1 = { .min = 2, .max = 3 },
5fdc9c49 497 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
a0c4da24
JB
498};
499
1b6f4958 500static const struct intel_limit intel_limits_chv = {
ef9348c8
CML
501 /*
502 * These are the data rate limits (measured in fast clocks)
503 * since those are the strictest limits we have. The fast
504 * clock and actual rate limits are more relaxed, so checking
505 * them would make no difference.
506 */
507 .dot = { .min = 25000 * 5, .max = 540000 * 5},
17fe1021 508 .vco = { .min = 4800000, .max = 6480000 },
ef9348c8
CML
509 .n = { .min = 1, .max = 1 },
510 .m1 = { .min = 2, .max = 2 },
511 .m2 = { .min = 24 << 22, .max = 175 << 22 },
512 .p1 = { .min = 2, .max = 4 },
513 .p2 = { .p2_slow = 1, .p2_fast = 14 },
514};
515
1b6f4958 516static const struct intel_limit intel_limits_bxt = {
5ab7b0b7
ID
517 /* FIXME: find real dot limits */
518 .dot = { .min = 0, .max = INT_MAX },
e6292556 519 .vco = { .min = 4800000, .max = 6700000 },
5ab7b0b7
ID
520 .n = { .min = 1, .max = 1 },
521 .m1 = { .min = 2, .max = 2 },
522 /* FIXME: find real m2 limits */
523 .m2 = { .min = 2 << 22, .max = 255 << 22 },
524 .p1 = { .min = 2, .max = 4 },
525 .p2 = { .p2_slow = 1, .p2_fast = 20 },
526};
527
cdba954e
ACO
528static bool
529needs_modeset(struct drm_crtc_state *state)
530{
fc596660 531 return drm_atomic_crtc_needs_modeset(state);
cdba954e
ACO
532}
533
dccbea3b
ID
534/*
535 * Platform specific helpers to calculate the port PLL loopback- (clock.m),
536 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
537 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
538 * The helpers' return value is the rate of the clock that is fed to the
539 * display engine's pipe which can be the above fast dot clock rate or a
540 * divided-down version of it.
541 */
f2b115e6 542/* m1 is reserved as 0 in Pineview, n is a ring counter */
9e2c8475 543static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
79e53945 544{
2177832f
SL
545 clock->m = clock->m2 + 2;
546 clock->p = clock->p1 * clock->p2;
ed5ca77e 547 if (WARN_ON(clock->n == 0 || clock->p == 0))
dccbea3b 548 return 0;
fb03ac01
VS
549 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
550 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
dccbea3b
ID
551
552 return clock->dot;
2177832f
SL
553}
554
7429e9d4
DV
555static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
556{
557 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
558}
559
9e2c8475 560static int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
2177832f 561{
7429e9d4 562 clock->m = i9xx_dpll_compute_m(clock);
79e53945 563 clock->p = clock->p1 * clock->p2;
ed5ca77e 564 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
dccbea3b 565 return 0;
fb03ac01
VS
566 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
567 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
dccbea3b
ID
568
569 return clock->dot;
79e53945
JB
570}
571
9e2c8475 572static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
589eca67
ID
573{
574 clock->m = clock->m1 * clock->m2;
575 clock->p = clock->p1 * clock->p2;
576 if (WARN_ON(clock->n == 0 || clock->p == 0))
dccbea3b 577 return 0;
589eca67
ID
578 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
579 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
dccbea3b
ID
580
581 return clock->dot / 5;
589eca67
ID
582}
583
9e2c8475 584int chv_calc_dpll_params(int refclk, struct dpll *clock)
ef9348c8
CML
585{
586 clock->m = clock->m1 * clock->m2;
587 clock->p = clock->p1 * clock->p2;
588 if (WARN_ON(clock->n == 0 || clock->p == 0))
dccbea3b 589 return 0;
ef9348c8
CML
590 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
591 clock->n << 22);
592 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
dccbea3b
ID
593
594 return clock->dot / 5;
ef9348c8
CML
595}
596
7c04d1d9 597#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
598/**
599 * Returns whether the given set of divisors are valid for a given refclk with
600 * the given connectors.
601 */
602
1b894b59 603static bool intel_PLL_is_valid(struct drm_device *dev,
1b6f4958 604 const struct intel_limit *limit,
9e2c8475 605 const struct dpll *clock)
79e53945 606{
f01b7962
VS
607 if (clock->n < limit->n.min || limit->n.max < clock->n)
608 INTELPllInvalid("n out of range\n");
79e53945 609 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
0206e353 610 INTELPllInvalid("p1 out of range\n");
79e53945 611 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
0206e353 612 INTELPllInvalid("m2 out of range\n");
79e53945 613 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
0206e353 614 INTELPllInvalid("m1 out of range\n");
f01b7962 615
666a4537
WB
616 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) &&
617 !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev))
f01b7962
VS
618 if (clock->m1 <= clock->m2)
619 INTELPllInvalid("m1 <= m2\n");
620
666a4537 621 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev)) {
f01b7962
VS
622 if (clock->p < limit->p.min || limit->p.max < clock->p)
623 INTELPllInvalid("p out of range\n");
624 if (clock->m < limit->m.min || limit->m.max < clock->m)
625 INTELPllInvalid("m out of range\n");
626 }
627
79e53945 628 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
0206e353 629 INTELPllInvalid("vco out of range\n");
79e53945
JB
630 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
631 * connector, etc., rather than just a single range.
632 */
633 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
0206e353 634 INTELPllInvalid("dot out of range\n");
79e53945
JB
635
636 return true;
637}
638
3b1429d9 639static int
1b6f4958 640i9xx_select_p2_div(const struct intel_limit *limit,
3b1429d9
VS
641 const struct intel_crtc_state *crtc_state,
642 int target)
79e53945 643{
3b1429d9 644 struct drm_device *dev = crtc_state->base.crtc->dev;
79e53945 645
2d84d2b3 646 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
79e53945 647 /*
a210b028
DV
648 * For LVDS just rely on its current settings for dual-channel.
649 * We haven't figured out how to reliably set up different
650 * single/dual channel state, if we even can.
79e53945 651 */
1974cad0 652 if (intel_is_dual_link_lvds(dev))
3b1429d9 653 return limit->p2.p2_fast;
79e53945 654 else
3b1429d9 655 return limit->p2.p2_slow;
79e53945
JB
656 } else {
657 if (target < limit->p2.dot_limit)
3b1429d9 658 return limit->p2.p2_slow;
79e53945 659 else
3b1429d9 660 return limit->p2.p2_fast;
79e53945 661 }
3b1429d9
VS
662}
663
70e8aa21
ACO
664/*
665 * Returns a set of divisors for the desired target clock with the given
666 * refclk, or FALSE. The returned values represent the clock equation:
667 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
668 *
669 * Target and reference clocks are specified in kHz.
670 *
671 * If match_clock is provided, then best_clock P divider must match the P
672 * divider from @match_clock used for LVDS downclocking.
673 */
3b1429d9 674static bool
1b6f4958 675i9xx_find_best_dpll(const struct intel_limit *limit,
3b1429d9 676 struct intel_crtc_state *crtc_state,
9e2c8475
ACO
677 int target, int refclk, struct dpll *match_clock,
678 struct dpll *best_clock)
3b1429d9
VS
679{
680 struct drm_device *dev = crtc_state->base.crtc->dev;
9e2c8475 681 struct dpll clock;
3b1429d9 682 int err = target;
79e53945 683
0206e353 684 memset(best_clock, 0, sizeof(*best_clock));
79e53945 685
3b1429d9
VS
686 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
687
42158660
ZY
688 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
689 clock.m1++) {
690 for (clock.m2 = limit->m2.min;
691 clock.m2 <= limit->m2.max; clock.m2++) {
c0efc387 692 if (clock.m2 >= clock.m1)
42158660
ZY
693 break;
694 for (clock.n = limit->n.min;
695 clock.n <= limit->n.max; clock.n++) {
696 for (clock.p1 = limit->p1.min;
697 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
698 int this_err;
699
dccbea3b 700 i9xx_calc_dpll_params(refclk, &clock);
ac58c3f0
DV
701 if (!intel_PLL_is_valid(dev, limit,
702 &clock))
703 continue;
704 if (match_clock &&
705 clock.p != match_clock->p)
706 continue;
707
708 this_err = abs(clock.dot - target);
709 if (this_err < err) {
710 *best_clock = clock;
711 err = this_err;
712 }
713 }
714 }
715 }
716 }
717
718 return (err != target);
719}
720
70e8aa21
ACO
721/*
722 * Returns a set of divisors for the desired target clock with the given
723 * refclk, or FALSE. The returned values represent the clock equation:
724 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
725 *
726 * Target and reference clocks are specified in kHz.
727 *
728 * If match_clock is provided, then best_clock P divider must match the P
729 * divider from @match_clock used for LVDS downclocking.
730 */
ac58c3f0 731static bool
1b6f4958 732pnv_find_best_dpll(const struct intel_limit *limit,
a93e255f 733 struct intel_crtc_state *crtc_state,
9e2c8475
ACO
734 int target, int refclk, struct dpll *match_clock,
735 struct dpll *best_clock)
79e53945 736{
3b1429d9 737 struct drm_device *dev = crtc_state->base.crtc->dev;
9e2c8475 738 struct dpll clock;
79e53945
JB
739 int err = target;
740
0206e353 741 memset(best_clock, 0, sizeof(*best_clock));
79e53945 742
3b1429d9
VS
743 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
744
42158660
ZY
745 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
746 clock.m1++) {
747 for (clock.m2 = limit->m2.min;
748 clock.m2 <= limit->m2.max; clock.m2++) {
42158660
ZY
749 for (clock.n = limit->n.min;
750 clock.n <= limit->n.max; clock.n++) {
751 for (clock.p1 = limit->p1.min;
752 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
753 int this_err;
754
dccbea3b 755 pnv_calc_dpll_params(refclk, &clock);
1b894b59
CW
756 if (!intel_PLL_is_valid(dev, limit,
757 &clock))
79e53945 758 continue;
cec2f356
SP
759 if (match_clock &&
760 clock.p != match_clock->p)
761 continue;
79e53945
JB
762
763 this_err = abs(clock.dot - target);
764 if (this_err < err) {
765 *best_clock = clock;
766 err = this_err;
767 }
768 }
769 }
770 }
771 }
772
773 return (err != target);
774}
775
997c030c
ACO
776/*
777 * Returns a set of divisors for the desired target clock with the given
778 * refclk, or FALSE. The returned values represent the clock equation:
779 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
70e8aa21
ACO
780 *
781 * Target and reference clocks are specified in kHz.
782 *
783 * If match_clock is provided, then best_clock P divider must match the P
784 * divider from @match_clock used for LVDS downclocking.
997c030c 785 */
d4906093 786static bool
1b6f4958 787g4x_find_best_dpll(const struct intel_limit *limit,
a93e255f 788 struct intel_crtc_state *crtc_state,
9e2c8475
ACO
789 int target, int refclk, struct dpll *match_clock,
790 struct dpll *best_clock)
d4906093 791{
3b1429d9 792 struct drm_device *dev = crtc_state->base.crtc->dev;
9e2c8475 793 struct dpll clock;
d4906093 794 int max_n;
3b1429d9 795 bool found = false;
6ba770dc
AJ
796 /* approximately equals target * 0.00585 */
797 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
798
799 memset(best_clock, 0, sizeof(*best_clock));
3b1429d9
VS
800
801 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
802
d4906093 803 max_n = limit->n.max;
f77f13e2 804 /* based on hardware requirement, prefer smaller n to precision */
d4906093 805 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 806 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
807 for (clock.m1 = limit->m1.max;
808 clock.m1 >= limit->m1.min; clock.m1--) {
809 for (clock.m2 = limit->m2.max;
810 clock.m2 >= limit->m2.min; clock.m2--) {
811 for (clock.p1 = limit->p1.max;
812 clock.p1 >= limit->p1.min; clock.p1--) {
813 int this_err;
814
dccbea3b 815 i9xx_calc_dpll_params(refclk, &clock);
1b894b59
CW
816 if (!intel_PLL_is_valid(dev, limit,
817 &clock))
d4906093 818 continue;
1b894b59
CW
819
820 this_err = abs(clock.dot - target);
d4906093
ML
821 if (this_err < err_most) {
822 *best_clock = clock;
823 err_most = this_err;
824 max_n = clock.n;
825 found = true;
826 }
827 }
828 }
829 }
830 }
2c07245f
ZW
831 return found;
832}
833
d5dd62bd
ID
834/*
835 * Check if the calculated PLL configuration is more optimal compared to the
836 * best configuration and error found so far. Return the calculated error.
837 */
838static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
9e2c8475
ACO
839 const struct dpll *calculated_clock,
840 const struct dpll *best_clock,
d5dd62bd
ID
841 unsigned int best_error_ppm,
842 unsigned int *error_ppm)
843{
9ca3ba01
ID
844 /*
845 * For CHV ignore the error and consider only the P value.
846 * Prefer a bigger P value based on HW requirements.
847 */
848 if (IS_CHERRYVIEW(dev)) {
849 *error_ppm = 0;
850
851 return calculated_clock->p > best_clock->p;
852 }
853
24be4e46
ID
854 if (WARN_ON_ONCE(!target_freq))
855 return false;
856
d5dd62bd
ID
857 *error_ppm = div_u64(1000000ULL *
858 abs(target_freq - calculated_clock->dot),
859 target_freq);
860 /*
861 * Prefer a better P value over a better (smaller) error if the error
862 * is small. Ensure this preference for future configurations too by
863 * setting the error to 0.
864 */
865 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
866 *error_ppm = 0;
867
868 return true;
869 }
870
871 return *error_ppm + 10 < best_error_ppm;
872}
873
65b3d6a9
ACO
874/*
875 * Returns a set of divisors for the desired target clock with the given
876 * refclk, or FALSE. The returned values represent the clock equation:
877 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
878 */
a0c4da24 879static bool
1b6f4958 880vlv_find_best_dpll(const struct intel_limit *limit,
a93e255f 881 struct intel_crtc_state *crtc_state,
9e2c8475
ACO
882 int target, int refclk, struct dpll *match_clock,
883 struct dpll *best_clock)
a0c4da24 884{
a93e255f 885 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
a919ff14 886 struct drm_device *dev = crtc->base.dev;
9e2c8475 887 struct dpll clock;
69e4f900 888 unsigned int bestppm = 1000000;
27e639bf
VS
889 /* min update 19.2 MHz */
890 int max_n = min(limit->n.max, refclk / 19200);
49e497ef 891 bool found = false;
a0c4da24 892
6b4bf1c4
VS
893 target *= 5; /* fast clock */
894
895 memset(best_clock, 0, sizeof(*best_clock));
a0c4da24
JB
896
897 /* based on hardware requirement, prefer smaller n to precision */
27e639bf 898 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
811bbf05 899 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
889059d8 900 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
c1a9ae43 901 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
6b4bf1c4 902 clock.p = clock.p1 * clock.p2;
a0c4da24 903 /* based on hardware requirement, prefer bigger m1,m2 values */
6b4bf1c4 904 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
d5dd62bd 905 unsigned int ppm;
69e4f900 906
6b4bf1c4
VS
907 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
908 refclk * clock.m1);
909
dccbea3b 910 vlv_calc_dpll_params(refclk, &clock);
43b0ac53 911
f01b7962
VS
912 if (!intel_PLL_is_valid(dev, limit,
913 &clock))
43b0ac53
VS
914 continue;
915
d5dd62bd
ID
916 if (!vlv_PLL_is_optimal(dev, target,
917 &clock,
918 best_clock,
919 bestppm, &ppm))
920 continue;
6b4bf1c4 921
d5dd62bd
ID
922 *best_clock = clock;
923 bestppm = ppm;
924 found = true;
a0c4da24
JB
925 }
926 }
927 }
928 }
a0c4da24 929
49e497ef 930 return found;
a0c4da24 931}
a4fc5ed6 932
65b3d6a9
ACO
933/*
934 * Returns a set of divisors for the desired target clock with the given
935 * refclk, or FALSE. The returned values represent the clock equation:
936 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
937 */
ef9348c8 938static bool
1b6f4958 939chv_find_best_dpll(const struct intel_limit *limit,
a93e255f 940 struct intel_crtc_state *crtc_state,
9e2c8475
ACO
941 int target, int refclk, struct dpll *match_clock,
942 struct dpll *best_clock)
ef9348c8 943{
a93e255f 944 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
a919ff14 945 struct drm_device *dev = crtc->base.dev;
9ca3ba01 946 unsigned int best_error_ppm;
9e2c8475 947 struct dpll clock;
ef9348c8
CML
948 uint64_t m2;
949 int found = false;
950
951 memset(best_clock, 0, sizeof(*best_clock));
9ca3ba01 952 best_error_ppm = 1000000;
ef9348c8
CML
953
954 /*
955 * Based on hardware doc, the n always set to 1, and m1 always
956 * set to 2. If requires to support 200Mhz refclk, we need to
957 * revisit this because n may not 1 anymore.
958 */
959 clock.n = 1, clock.m1 = 2;
960 target *= 5; /* fast clock */
961
962 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
963 for (clock.p2 = limit->p2.p2_fast;
964 clock.p2 >= limit->p2.p2_slow;
965 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
9ca3ba01 966 unsigned int error_ppm;
ef9348c8
CML
967
968 clock.p = clock.p1 * clock.p2;
969
970 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
971 clock.n) << 22, refclk * clock.m1);
972
973 if (m2 > INT_MAX/clock.m1)
974 continue;
975
976 clock.m2 = m2;
977
dccbea3b 978 chv_calc_dpll_params(refclk, &clock);
ef9348c8
CML
979
980 if (!intel_PLL_is_valid(dev, limit, &clock))
981 continue;
982
9ca3ba01
ID
983 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
984 best_error_ppm, &error_ppm))
985 continue;
986
987 *best_clock = clock;
988 best_error_ppm = error_ppm;
989 found = true;
ef9348c8
CML
990 }
991 }
992
993 return found;
994}
995
5ab7b0b7 996bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
9e2c8475 997 struct dpll *best_clock)
5ab7b0b7 998{
65b3d6a9 999 int refclk = 100000;
1b6f4958 1000 const struct intel_limit *limit = &intel_limits_bxt;
5ab7b0b7 1001
65b3d6a9 1002 return chv_find_best_dpll(limit, crtc_state,
5ab7b0b7
ID
1003 target_clock, refclk, NULL, best_clock);
1004}
1005
20ddf665
VS
1006bool intel_crtc_active(struct drm_crtc *crtc)
1007{
1008 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1009
1010 /* Be paranoid as we can arrive here with only partial
1011 * state retrieved from the hardware during setup.
1012 *
241bfc38 1013 * We can ditch the adjusted_mode.crtc_clock check as soon
20ddf665
VS
1014 * as Haswell has gained clock readout/fastboot support.
1015 *
66e514c1 1016 * We can ditch the crtc->primary->fb check as soon as we can
20ddf665 1017 * properly reconstruct framebuffers.
c3d1f436
MR
1018 *
1019 * FIXME: The intel_crtc->active here should be switched to
1020 * crtc->state->active once we have proper CRTC states wired up
1021 * for atomic.
20ddf665 1022 */
c3d1f436 1023 return intel_crtc->active && crtc->primary->state->fb &&
6e3c9717 1024 intel_crtc->config->base.adjusted_mode.crtc_clock;
20ddf665
VS
1025}
1026
a5c961d1
PZ
1027enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1028 enum pipe pipe)
1029{
1030 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1031 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1032
6e3c9717 1033 return intel_crtc->config->cpu_transcoder;
a5c961d1
PZ
1034}
1035
fbf49ea2
VS
1036static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1037{
fac5e23e 1038 struct drm_i915_private *dev_priv = to_i915(dev);
f0f59a00 1039 i915_reg_t reg = PIPEDSL(pipe);
fbf49ea2
VS
1040 u32 line1, line2;
1041 u32 line_mask;
1042
1043 if (IS_GEN2(dev))
1044 line_mask = DSL_LINEMASK_GEN2;
1045 else
1046 line_mask = DSL_LINEMASK_GEN3;
1047
1048 line1 = I915_READ(reg) & line_mask;
6adfb1ef 1049 msleep(5);
fbf49ea2
VS
1050 line2 = I915_READ(reg) & line_mask;
1051
1052 return line1 == line2;
1053}
1054
ab7ad7f6
KP
1055/*
1056 * intel_wait_for_pipe_off - wait for pipe to turn off
575f7ab7 1057 * @crtc: crtc whose pipe to wait for
9d0498a2
JB
1058 *
1059 * After disabling a pipe, we can't wait for vblank in the usual way,
1060 * spinning on the vblank interrupt status bit, since we won't actually
1061 * see an interrupt when the pipe is disabled.
1062 *
ab7ad7f6
KP
1063 * On Gen4 and above:
1064 * wait for the pipe register state bit to turn off
1065 *
1066 * Otherwise:
1067 * wait for the display line value to settle (it usually
1068 * ends up stopping at the start of the next frame).
58e10eb9 1069 *
9d0498a2 1070 */
575f7ab7 1071static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
9d0498a2 1072{
575f7ab7 1073 struct drm_device *dev = crtc->base.dev;
fac5e23e 1074 struct drm_i915_private *dev_priv = to_i915(dev);
6e3c9717 1075 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
575f7ab7 1076 enum pipe pipe = crtc->pipe;
ab7ad7f6
KP
1077
1078 if (INTEL_INFO(dev)->gen >= 4) {
f0f59a00 1079 i915_reg_t reg = PIPECONF(cpu_transcoder);
ab7ad7f6
KP
1080
1081 /* Wait for the Pipe State to go off */
b8511f53
CW
1082 if (intel_wait_for_register(dev_priv,
1083 reg, I965_PIPECONF_ACTIVE, 0,
1084 100))
284637d9 1085 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 1086 } else {
ab7ad7f6 1087 /* Wait for the display line to settle */
fbf49ea2 1088 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
284637d9 1089 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 1090 }
79e53945
JB
1091}
1092
b24e7179 1093/* Only for pre-ILK configs */
55607e8a
DV
1094void assert_pll(struct drm_i915_private *dev_priv,
1095 enum pipe pipe, bool state)
b24e7179 1096{
b24e7179
JB
1097 u32 val;
1098 bool cur_state;
1099
649636ef 1100 val = I915_READ(DPLL(pipe));
b24e7179 1101 cur_state = !!(val & DPLL_VCO_ENABLE);
e2c719b7 1102 I915_STATE_WARN(cur_state != state,
b24e7179 1103 "PLL state assertion failure (expected %s, current %s)\n",
87ad3212 1104 onoff(state), onoff(cur_state));
b24e7179 1105}
b24e7179 1106
23538ef1 1107/* XXX: the dsi pll is shared between MIPI DSI ports */
8563b1e8 1108void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
23538ef1
JN
1109{
1110 u32 val;
1111 bool cur_state;
1112
a580516d 1113 mutex_lock(&dev_priv->sb_lock);
23538ef1 1114 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
a580516d 1115 mutex_unlock(&dev_priv->sb_lock);
23538ef1
JN
1116
1117 cur_state = val & DSI_PLL_VCO_EN;
e2c719b7 1118 I915_STATE_WARN(cur_state != state,
23538ef1 1119 "DSI PLL state assertion failure (expected %s, current %s)\n",
87ad3212 1120 onoff(state), onoff(cur_state));
23538ef1 1121}
23538ef1 1122
040484af
JB
1123static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1124 enum pipe pipe, bool state)
1125{
040484af 1126 bool cur_state;
ad80a810
PZ
1127 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1128 pipe);
040484af 1129
2d1fe073 1130 if (HAS_DDI(dev_priv)) {
affa9354 1131 /* DDI does not have a specific FDI_TX register */
649636ef 1132 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
ad80a810 1133 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
bf507ef7 1134 } else {
649636ef 1135 u32 val = I915_READ(FDI_TX_CTL(pipe));
bf507ef7
ED
1136 cur_state = !!(val & FDI_TX_ENABLE);
1137 }
e2c719b7 1138 I915_STATE_WARN(cur_state != state,
040484af 1139 "FDI TX state assertion failure (expected %s, current %s)\n",
87ad3212 1140 onoff(state), onoff(cur_state));
040484af
JB
1141}
1142#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1143#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1144
1145static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1146 enum pipe pipe, bool state)
1147{
040484af
JB
1148 u32 val;
1149 bool cur_state;
1150
649636ef 1151 val = I915_READ(FDI_RX_CTL(pipe));
d63fa0dc 1152 cur_state = !!(val & FDI_RX_ENABLE);
e2c719b7 1153 I915_STATE_WARN(cur_state != state,
040484af 1154 "FDI RX state assertion failure (expected %s, current %s)\n",
87ad3212 1155 onoff(state), onoff(cur_state));
040484af
JB
1156}
1157#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1158#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1159
1160static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1161 enum pipe pipe)
1162{
040484af
JB
1163 u32 val;
1164
1165 /* ILK FDI PLL is always enabled */
7e22dbbb 1166 if (IS_GEN5(dev_priv))
040484af
JB
1167 return;
1168
bf507ef7 1169 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
2d1fe073 1170 if (HAS_DDI(dev_priv))
bf507ef7
ED
1171 return;
1172
649636ef 1173 val = I915_READ(FDI_TX_CTL(pipe));
e2c719b7 1174 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
040484af
JB
1175}
1176
55607e8a
DV
1177void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1178 enum pipe pipe, bool state)
040484af 1179{
040484af 1180 u32 val;
55607e8a 1181 bool cur_state;
040484af 1182
649636ef 1183 val = I915_READ(FDI_RX_CTL(pipe));
55607e8a 1184 cur_state = !!(val & FDI_RX_PLL_ENABLE);
e2c719b7 1185 I915_STATE_WARN(cur_state != state,
55607e8a 1186 "FDI RX PLL assertion failure (expected %s, current %s)\n",
87ad3212 1187 onoff(state), onoff(cur_state));
040484af
JB
1188}
1189
4f8036a2 1190void assert_panel_unlocked(struct drm_i915_private *dev_priv, enum pipe pipe)
ea0760cf 1191{
f0f59a00 1192 i915_reg_t pp_reg;
ea0760cf
JB
1193 u32 val;
1194 enum pipe panel_pipe = PIPE_A;
0de3b485 1195 bool locked = true;
ea0760cf 1196
4f8036a2 1197 if (WARN_ON(HAS_DDI(dev_priv)))
bedd4dba
JN
1198 return;
1199
4f8036a2 1200 if (HAS_PCH_SPLIT(dev_priv)) {
bedd4dba
JN
1201 u32 port_sel;
1202
44cb734c
ID
1203 pp_reg = PP_CONTROL(0);
1204 port_sel = I915_READ(PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK;
bedd4dba
JN
1205
1206 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1207 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1208 panel_pipe = PIPE_B;
1209 /* XXX: else fix for eDP */
4f8036a2 1210 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
bedd4dba 1211 /* presumably write lock depends on pipe, not port select */
44cb734c 1212 pp_reg = PP_CONTROL(pipe);
bedd4dba 1213 panel_pipe = pipe;
ea0760cf 1214 } else {
44cb734c 1215 pp_reg = PP_CONTROL(0);
bedd4dba
JN
1216 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1217 panel_pipe = PIPE_B;
ea0760cf
JB
1218 }
1219
1220 val = I915_READ(pp_reg);
1221 if (!(val & PANEL_POWER_ON) ||
ec49ba2d 1222 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
ea0760cf
JB
1223 locked = false;
1224
e2c719b7 1225 I915_STATE_WARN(panel_pipe == pipe && locked,
ea0760cf 1226 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 1227 pipe_name(pipe));
ea0760cf
JB
1228}
1229
93ce0ba6
JN
1230static void assert_cursor(struct drm_i915_private *dev_priv,
1231 enum pipe pipe, bool state)
1232{
91c8a326 1233 struct drm_device *dev = &dev_priv->drm;
93ce0ba6
JN
1234 bool cur_state;
1235
d9d82081 1236 if (IS_845G(dev) || IS_I865G(dev))
0b87c24e 1237 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
d9d82081 1238 else
5efb3e28 1239 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
93ce0ba6 1240
e2c719b7 1241 I915_STATE_WARN(cur_state != state,
93ce0ba6 1242 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
87ad3212 1243 pipe_name(pipe), onoff(state), onoff(cur_state));
93ce0ba6
JN
1244}
1245#define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1246#define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1247
b840d907
JB
1248void assert_pipe(struct drm_i915_private *dev_priv,
1249 enum pipe pipe, bool state)
b24e7179 1250{
63d7bbe9 1251 bool cur_state;
702e7a56
PZ
1252 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1253 pipe);
4feed0eb 1254 enum intel_display_power_domain power_domain;
b24e7179 1255
b6b5d049
VS
1256 /* if we need the pipe quirk it must be always on */
1257 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1258 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
8e636784
DV
1259 state = true;
1260
4feed0eb
ID
1261 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1262 if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
649636ef 1263 u32 val = I915_READ(PIPECONF(cpu_transcoder));
69310161 1264 cur_state = !!(val & PIPECONF_ENABLE);
4feed0eb
ID
1265
1266 intel_display_power_put(dev_priv, power_domain);
1267 } else {
1268 cur_state = false;
69310161
PZ
1269 }
1270
e2c719b7 1271 I915_STATE_WARN(cur_state != state,
63d7bbe9 1272 "pipe %c assertion failure (expected %s, current %s)\n",
87ad3212 1273 pipe_name(pipe), onoff(state), onoff(cur_state));
b24e7179
JB
1274}
1275
931872fc
CW
1276static void assert_plane(struct drm_i915_private *dev_priv,
1277 enum plane plane, bool state)
b24e7179 1278{
b24e7179 1279 u32 val;
931872fc 1280 bool cur_state;
b24e7179 1281
649636ef 1282 val = I915_READ(DSPCNTR(plane));
931872fc 1283 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
e2c719b7 1284 I915_STATE_WARN(cur_state != state,
931872fc 1285 "plane %c assertion failure (expected %s, current %s)\n",
87ad3212 1286 plane_name(plane), onoff(state), onoff(cur_state));
b24e7179
JB
1287}
1288
931872fc
CW
1289#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1290#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1291
b24e7179
JB
1292static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1293 enum pipe pipe)
1294{
91c8a326 1295 struct drm_device *dev = &dev_priv->drm;
649636ef 1296 int i;
b24e7179 1297
653e1026
VS
1298 /* Primary planes are fixed to pipes on gen4+ */
1299 if (INTEL_INFO(dev)->gen >= 4) {
649636ef 1300 u32 val = I915_READ(DSPCNTR(pipe));
e2c719b7 1301 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
28c05794
AJ
1302 "plane %c assertion failure, should be disabled but not\n",
1303 plane_name(pipe));
19ec1358 1304 return;
28c05794 1305 }
19ec1358 1306
b24e7179 1307 /* Need to check both planes against the pipe */
055e393f 1308 for_each_pipe(dev_priv, i) {
649636ef
VS
1309 u32 val = I915_READ(DSPCNTR(i));
1310 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
b24e7179 1311 DISPPLANE_SEL_PIPE_SHIFT;
e2c719b7 1312 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
1313 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1314 plane_name(i), pipe_name(pipe));
b24e7179
JB
1315 }
1316}
1317
19332d7a
JB
1318static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1319 enum pipe pipe)
1320{
91c8a326 1321 struct drm_device *dev = &dev_priv->drm;
649636ef 1322 int sprite;
19332d7a 1323
7feb8b88 1324 if (INTEL_INFO(dev)->gen >= 9) {
3bdcfc0c 1325 for_each_sprite(dev_priv, pipe, sprite) {
649636ef 1326 u32 val = I915_READ(PLANE_CTL(pipe, sprite));
e2c719b7 1327 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
7feb8b88
DL
1328 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1329 sprite, pipe_name(pipe));
1330 }
666a4537 1331 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
3bdcfc0c 1332 for_each_sprite(dev_priv, pipe, sprite) {
649636ef 1333 u32 val = I915_READ(SPCNTR(pipe, sprite));
e2c719b7 1334 I915_STATE_WARN(val & SP_ENABLE,
20674eef 1335 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1fe47785 1336 sprite_name(pipe, sprite), pipe_name(pipe));
20674eef
VS
1337 }
1338 } else if (INTEL_INFO(dev)->gen >= 7) {
649636ef 1339 u32 val = I915_READ(SPRCTL(pipe));
e2c719b7 1340 I915_STATE_WARN(val & SPRITE_ENABLE,
06da8da2 1341 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef
VS
1342 plane_name(pipe), pipe_name(pipe));
1343 } else if (INTEL_INFO(dev)->gen >= 5) {
649636ef 1344 u32 val = I915_READ(DVSCNTR(pipe));
e2c719b7 1345 I915_STATE_WARN(val & DVS_ENABLE,
06da8da2 1346 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef 1347 plane_name(pipe), pipe_name(pipe));
19332d7a
JB
1348 }
1349}
1350
08c71e5e
VS
1351static void assert_vblank_disabled(struct drm_crtc *crtc)
1352{
e2c719b7 1353 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
08c71e5e
VS
1354 drm_crtc_vblank_put(crtc);
1355}
1356
7abd4b35
ACO
1357void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1358 enum pipe pipe)
92f2584a 1359{
92f2584a
JB
1360 u32 val;
1361 bool enabled;
1362
649636ef 1363 val = I915_READ(PCH_TRANSCONF(pipe));
92f2584a 1364 enabled = !!(val & TRANS_ENABLE);
e2c719b7 1365 I915_STATE_WARN(enabled,
9db4a9c7
JB
1366 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1367 pipe_name(pipe));
92f2584a
JB
1368}
1369
4e634389
KP
1370static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1371 enum pipe pipe, u32 port_sel, u32 val)
f0575e92
KP
1372{
1373 if ((val & DP_PORT_EN) == 0)
1374 return false;
1375
2d1fe073 1376 if (HAS_PCH_CPT(dev_priv)) {
f0f59a00 1377 u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
f0575e92
KP
1378 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1379 return false;
2d1fe073 1380 } else if (IS_CHERRYVIEW(dev_priv)) {
44f37d1f
CML
1381 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1382 return false;
f0575e92
KP
1383 } else {
1384 if ((val & DP_PIPE_MASK) != (pipe << 30))
1385 return false;
1386 }
1387 return true;
1388}
1389
1519b995
KP
1390static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1391 enum pipe pipe, u32 val)
1392{
dc0fa718 1393 if ((val & SDVO_ENABLE) == 0)
1519b995
KP
1394 return false;
1395
2d1fe073 1396 if (HAS_PCH_CPT(dev_priv)) {
dc0fa718 1397 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1519b995 1398 return false;
2d1fe073 1399 } else if (IS_CHERRYVIEW(dev_priv)) {
44f37d1f
CML
1400 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1401 return false;
1519b995 1402 } else {
dc0fa718 1403 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1519b995
KP
1404 return false;
1405 }
1406 return true;
1407}
1408
1409static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1410 enum pipe pipe, u32 val)
1411{
1412 if ((val & LVDS_PORT_EN) == 0)
1413 return false;
1414
2d1fe073 1415 if (HAS_PCH_CPT(dev_priv)) {
1519b995
KP
1416 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1417 return false;
1418 } else {
1419 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1420 return false;
1421 }
1422 return true;
1423}
1424
1425static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1426 enum pipe pipe, u32 val)
1427{
1428 if ((val & ADPA_DAC_ENABLE) == 0)
1429 return false;
2d1fe073 1430 if (HAS_PCH_CPT(dev_priv)) {
1519b995
KP
1431 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1432 return false;
1433 } else {
1434 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1435 return false;
1436 }
1437 return true;
1438}
1439
291906f1 1440static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0f59a00
VS
1441 enum pipe pipe, i915_reg_t reg,
1442 u32 port_sel)
291906f1 1443{
47a05eca 1444 u32 val = I915_READ(reg);
e2c719b7 1445 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
291906f1 1446 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
f0f59a00 1447 i915_mmio_reg_offset(reg), pipe_name(pipe));
de9a35ab 1448
2d1fe073 1449 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & DP_PORT_EN) == 0
75c5da27 1450 && (val & DP_PIPEB_SELECT),
de9a35ab 1451 "IBX PCH dp port still using transcoder B\n");
291906f1
JB
1452}
1453
1454static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
f0f59a00 1455 enum pipe pipe, i915_reg_t reg)
291906f1 1456{
47a05eca 1457 u32 val = I915_READ(reg);
e2c719b7 1458 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
23c99e77 1459 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
f0f59a00 1460 i915_mmio_reg_offset(reg), pipe_name(pipe));
de9a35ab 1461
2d1fe073 1462 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & SDVO_ENABLE) == 0
75c5da27 1463 && (val & SDVO_PIPE_B_SELECT),
de9a35ab 1464 "IBX PCH hdmi port still using transcoder B\n");
291906f1
JB
1465}
1466
1467static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1468 enum pipe pipe)
1469{
291906f1 1470 u32 val;
291906f1 1471
f0575e92
KP
1472 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1473 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1474 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1 1475
649636ef 1476 val = I915_READ(PCH_ADPA);
e2c719b7 1477 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
291906f1 1478 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1479 pipe_name(pipe));
291906f1 1480
649636ef 1481 val = I915_READ(PCH_LVDS);
e2c719b7 1482 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
291906f1 1483 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1484 pipe_name(pipe));
291906f1 1485
e2debe91
PZ
1486 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1487 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1488 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
291906f1
JB
1489}
1490
cd2d34d9
VS
1491static void _vlv_enable_pll(struct intel_crtc *crtc,
1492 const struct intel_crtc_state *pipe_config)
1493{
1494 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1495 enum pipe pipe = crtc->pipe;
1496
1497 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1498 POSTING_READ(DPLL(pipe));
1499 udelay(150);
1500
2c30b43b
CW
1501 if (intel_wait_for_register(dev_priv,
1502 DPLL(pipe),
1503 DPLL_LOCK_VLV,
1504 DPLL_LOCK_VLV,
1505 1))
cd2d34d9
VS
1506 DRM_ERROR("DPLL %d failed to lock\n", pipe);
1507}
1508
d288f65f 1509static void vlv_enable_pll(struct intel_crtc *crtc,
5cec258b 1510 const struct intel_crtc_state *pipe_config)
87442f73 1511{
cd2d34d9 1512 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8bd3f301 1513 enum pipe pipe = crtc->pipe;
87442f73 1514
8bd3f301 1515 assert_pipe_disabled(dev_priv, pipe);
87442f73 1516
87442f73 1517 /* PLL is protected by panel, make sure we can write it */
7d1a83cb 1518 assert_panel_unlocked(dev_priv, pipe);
87442f73 1519
cd2d34d9
VS
1520 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1521 _vlv_enable_pll(crtc, pipe_config);
426115cf 1522
8bd3f301
VS
1523 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1524 POSTING_READ(DPLL_MD(pipe));
87442f73
DV
1525}
1526
cd2d34d9
VS
1527
1528static void _chv_enable_pll(struct intel_crtc *crtc,
1529 const struct intel_crtc_state *pipe_config)
9d556c99 1530{
cd2d34d9 1531 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8bd3f301 1532 enum pipe pipe = crtc->pipe;
9d556c99 1533 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9d556c99
CML
1534 u32 tmp;
1535
a580516d 1536 mutex_lock(&dev_priv->sb_lock);
9d556c99
CML
1537
1538 /* Enable back the 10bit clock to display controller */
1539 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1540 tmp |= DPIO_DCLKP_EN;
1541 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1542
54433e91
VS
1543 mutex_unlock(&dev_priv->sb_lock);
1544
9d556c99
CML
1545 /*
1546 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1547 */
1548 udelay(1);
1549
1550 /* Enable PLL */
d288f65f 1551 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
9d556c99
CML
1552
1553 /* Check PLL is locked */
6b18826a
CW
1554 if (intel_wait_for_register(dev_priv,
1555 DPLL(pipe), DPLL_LOCK_VLV, DPLL_LOCK_VLV,
1556 1))
9d556c99 1557 DRM_ERROR("PLL %d failed to lock\n", pipe);
cd2d34d9
VS
1558}
1559
1560static void chv_enable_pll(struct intel_crtc *crtc,
1561 const struct intel_crtc_state *pipe_config)
1562{
1563 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1564 enum pipe pipe = crtc->pipe;
1565
1566 assert_pipe_disabled(dev_priv, pipe);
1567
1568 /* PLL is protected by panel, make sure we can write it */
1569 assert_panel_unlocked(dev_priv, pipe);
1570
1571 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1572 _chv_enable_pll(crtc, pipe_config);
9d556c99 1573
c231775c
VS
1574 if (pipe != PIPE_A) {
1575 /*
1576 * WaPixelRepeatModeFixForC0:chv
1577 *
1578 * DPLLCMD is AWOL. Use chicken bits to propagate
1579 * the value from DPLLBMD to either pipe B or C.
1580 */
1581 I915_WRITE(CBR4_VLV, pipe == PIPE_B ? CBR_DPLLBMD_PIPE_B : CBR_DPLLBMD_PIPE_C);
1582 I915_WRITE(DPLL_MD(PIPE_B), pipe_config->dpll_hw_state.dpll_md);
1583 I915_WRITE(CBR4_VLV, 0);
1584 dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
1585
1586 /*
1587 * DPLLB VGA mode also seems to cause problems.
1588 * We should always have it disabled.
1589 */
1590 WARN_ON((I915_READ(DPLL(PIPE_B)) & DPLL_VGA_MODE_DIS) == 0);
1591 } else {
1592 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1593 POSTING_READ(DPLL_MD(pipe));
1594 }
9d556c99
CML
1595}
1596
1c4e0274
VS
1597static int intel_num_dvo_pipes(struct drm_device *dev)
1598{
1599 struct intel_crtc *crtc;
1600 int count = 0;
1601
2d84d2b3 1602 for_each_intel_crtc(dev, crtc) {
3538b9df 1603 count += crtc->base.state->active &&
2d84d2b3
VS
1604 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO);
1605 }
1c4e0274
VS
1606
1607 return count;
1608}
1609
66e3d5c0 1610static void i9xx_enable_pll(struct intel_crtc *crtc)
63d7bbe9 1611{
66e3d5c0 1612 struct drm_device *dev = crtc->base.dev;
fac5e23e 1613 struct drm_i915_private *dev_priv = to_i915(dev);
f0f59a00 1614 i915_reg_t reg = DPLL(crtc->pipe);
6e3c9717 1615 u32 dpll = crtc->config->dpll_hw_state.dpll;
63d7bbe9 1616
66e3d5c0 1617 assert_pipe_disabled(dev_priv, crtc->pipe);
58c6eaa2 1618
63d7bbe9 1619 /* PLL is protected by panel, make sure we can write it */
66e3d5c0
DV
1620 if (IS_MOBILE(dev) && !IS_I830(dev))
1621 assert_panel_unlocked(dev_priv, crtc->pipe);
63d7bbe9 1622
1c4e0274
VS
1623 /* Enable DVO 2x clock on both PLLs if necessary */
1624 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1625 /*
1626 * It appears to be important that we don't enable this
1627 * for the current pipe before otherwise configuring the
1628 * PLL. No idea how this should be handled if multiple
1629 * DVO outputs are enabled simultaneosly.
1630 */
1631 dpll |= DPLL_DVO_2X_MODE;
1632 I915_WRITE(DPLL(!crtc->pipe),
1633 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1634 }
66e3d5c0 1635
c2b63374
VS
1636 /*
1637 * Apparently we need to have VGA mode enabled prior to changing
1638 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1639 * dividers, even though the register value does change.
1640 */
1641 I915_WRITE(reg, 0);
1642
8e7a65aa
VS
1643 I915_WRITE(reg, dpll);
1644
66e3d5c0
DV
1645 /* Wait for the clocks to stabilize. */
1646 POSTING_READ(reg);
1647 udelay(150);
1648
1649 if (INTEL_INFO(dev)->gen >= 4) {
1650 I915_WRITE(DPLL_MD(crtc->pipe),
6e3c9717 1651 crtc->config->dpll_hw_state.dpll_md);
66e3d5c0
DV
1652 } else {
1653 /* The pixel multiplier can only be updated once the
1654 * DPLL is enabled and the clocks are stable.
1655 *
1656 * So write it again.
1657 */
1658 I915_WRITE(reg, dpll);
1659 }
63d7bbe9
JB
1660
1661 /* We do this three times for luck */
66e3d5c0 1662 I915_WRITE(reg, dpll);
63d7bbe9
JB
1663 POSTING_READ(reg);
1664 udelay(150); /* wait for warmup */
66e3d5c0 1665 I915_WRITE(reg, dpll);
63d7bbe9
JB
1666 POSTING_READ(reg);
1667 udelay(150); /* wait for warmup */
66e3d5c0 1668 I915_WRITE(reg, dpll);
63d7bbe9
JB
1669 POSTING_READ(reg);
1670 udelay(150); /* wait for warmup */
1671}
1672
1673/**
50b44a44 1674 * i9xx_disable_pll - disable a PLL
63d7bbe9
JB
1675 * @dev_priv: i915 private structure
1676 * @pipe: pipe PLL to disable
1677 *
1678 * Disable the PLL for @pipe, making sure the pipe is off first.
1679 *
1680 * Note! This is for pre-ILK only.
1681 */
1c4e0274 1682static void i9xx_disable_pll(struct intel_crtc *crtc)
63d7bbe9 1683{
1c4e0274 1684 struct drm_device *dev = crtc->base.dev;
fac5e23e 1685 struct drm_i915_private *dev_priv = to_i915(dev);
1c4e0274
VS
1686 enum pipe pipe = crtc->pipe;
1687
1688 /* Disable DVO 2x clock on both PLLs if necessary */
1689 if (IS_I830(dev) &&
2d84d2b3 1690 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO) &&
3538b9df 1691 !intel_num_dvo_pipes(dev)) {
1c4e0274
VS
1692 I915_WRITE(DPLL(PIPE_B),
1693 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1694 I915_WRITE(DPLL(PIPE_A),
1695 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1696 }
1697
b6b5d049
VS
1698 /* Don't disable pipe or pipe PLLs if needed */
1699 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1700 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
63d7bbe9
JB
1701 return;
1702
1703 /* Make sure the pipe isn't still relying on us */
1704 assert_pipe_disabled(dev_priv, pipe);
1705
b8afb911 1706 I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
50b44a44 1707 POSTING_READ(DPLL(pipe));
63d7bbe9
JB
1708}
1709
f6071166
JB
1710static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1711{
b8afb911 1712 u32 val;
f6071166
JB
1713
1714 /* Make sure the pipe isn't still relying on us */
1715 assert_pipe_disabled(dev_priv, pipe);
1716
03ed5cbf
VS
1717 val = DPLL_INTEGRATED_REF_CLK_VLV |
1718 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1719 if (pipe != PIPE_A)
1720 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1721
f6071166
JB
1722 I915_WRITE(DPLL(pipe), val);
1723 POSTING_READ(DPLL(pipe));
076ed3b2
CML
1724}
1725
1726static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1727{
d752048d 1728 enum dpio_channel port = vlv_pipe_to_channel(pipe);
076ed3b2
CML
1729 u32 val;
1730
a11b0703
VS
1731 /* Make sure the pipe isn't still relying on us */
1732 assert_pipe_disabled(dev_priv, pipe);
076ed3b2 1733
60bfe44f
VS
1734 val = DPLL_SSC_REF_CLK_CHV |
1735 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
a11b0703
VS
1736 if (pipe != PIPE_A)
1737 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
03ed5cbf 1738
a11b0703
VS
1739 I915_WRITE(DPLL(pipe), val);
1740 POSTING_READ(DPLL(pipe));
d752048d 1741
a580516d 1742 mutex_lock(&dev_priv->sb_lock);
d752048d
VS
1743
1744 /* Disable 10bit clock to display controller */
1745 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1746 val &= ~DPIO_DCLKP_EN;
1747 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1748
a580516d 1749 mutex_unlock(&dev_priv->sb_lock);
f6071166
JB
1750}
1751
e4607fcf 1752void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
9b6de0a1
VS
1753 struct intel_digital_port *dport,
1754 unsigned int expected_mask)
89b667f8
JB
1755{
1756 u32 port_mask;
f0f59a00 1757 i915_reg_t dpll_reg;
89b667f8 1758
e4607fcf
CML
1759 switch (dport->port) {
1760 case PORT_B:
89b667f8 1761 port_mask = DPLL_PORTB_READY_MASK;
00fc31b7 1762 dpll_reg = DPLL(0);
e4607fcf
CML
1763 break;
1764 case PORT_C:
89b667f8 1765 port_mask = DPLL_PORTC_READY_MASK;
00fc31b7 1766 dpll_reg = DPLL(0);
9b6de0a1 1767 expected_mask <<= 4;
00fc31b7
CML
1768 break;
1769 case PORT_D:
1770 port_mask = DPLL_PORTD_READY_MASK;
1771 dpll_reg = DPIO_PHY_STATUS;
e4607fcf
CML
1772 break;
1773 default:
1774 BUG();
1775 }
89b667f8 1776
370004d3
CW
1777 if (intel_wait_for_register(dev_priv,
1778 dpll_reg, port_mask, expected_mask,
1779 1000))
9b6de0a1
VS
1780 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1781 port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
89b667f8
JB
1782}
1783
b8a4f404
PZ
1784static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1785 enum pipe pipe)
040484af 1786{
7c26e5c6 1787 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
e2b78267 1788 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
f0f59a00
VS
1789 i915_reg_t reg;
1790 uint32_t val, pipeconf_val;
040484af 1791
040484af 1792 /* Make sure PCH DPLL is enabled */
8106ddbd 1793 assert_shared_dpll_enabled(dev_priv, intel_crtc->config->shared_dpll);
040484af
JB
1794
1795 /* FDI must be feeding us bits for PCH ports */
1796 assert_fdi_tx_enabled(dev_priv, pipe);
1797 assert_fdi_rx_enabled(dev_priv, pipe);
1798
6e266956 1799 if (HAS_PCH_CPT(dev_priv)) {
23670b32
DV
1800 /* Workaround: Set the timing override bit before enabling the
1801 * pch transcoder. */
1802 reg = TRANS_CHICKEN2(pipe);
1803 val = I915_READ(reg);
1804 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1805 I915_WRITE(reg, val);
59c859d6 1806 }
23670b32 1807
ab9412ba 1808 reg = PCH_TRANSCONF(pipe);
040484af 1809 val = I915_READ(reg);
5f7f726d 1810 pipeconf_val = I915_READ(PIPECONF(pipe));
e9bcff5c 1811
2d1fe073 1812 if (HAS_PCH_IBX(dev_priv)) {
e9bcff5c 1813 /*
c5de7c6f
VS
1814 * Make the BPC in transcoder be consistent with
1815 * that in pipeconf reg. For HDMI we must use 8bpc
1816 * here for both 8bpc and 12bpc.
e9bcff5c 1817 */
dfd07d72 1818 val &= ~PIPECONF_BPC_MASK;
2d84d2b3 1819 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_HDMI))
c5de7c6f
VS
1820 val |= PIPECONF_8BPC;
1821 else
1822 val |= pipeconf_val & PIPECONF_BPC_MASK;
e9bcff5c 1823 }
5f7f726d
PZ
1824
1825 val &= ~TRANS_INTERLACE_MASK;
1826 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
2d1fe073 1827 if (HAS_PCH_IBX(dev_priv) &&
2d84d2b3 1828 intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
7c26e5c6
PZ
1829 val |= TRANS_LEGACY_INTERLACED_ILK;
1830 else
1831 val |= TRANS_INTERLACED;
5f7f726d
PZ
1832 else
1833 val |= TRANS_PROGRESSIVE;
1834
040484af 1835 I915_WRITE(reg, val | TRANS_ENABLE);
650fbd84
CW
1836 if (intel_wait_for_register(dev_priv,
1837 reg, TRANS_STATE_ENABLE, TRANS_STATE_ENABLE,
1838 100))
4bb6f1f3 1839 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
040484af
JB
1840}
1841
8fb033d7 1842static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
937bb610 1843 enum transcoder cpu_transcoder)
040484af 1844{
8fb033d7 1845 u32 val, pipeconf_val;
8fb033d7 1846
8fb033d7 1847 /* FDI must be feeding us bits for PCH ports */
1a240d4d 1848 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
937bb610 1849 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
8fb033d7 1850
223a6fdf 1851 /* Workaround: set timing override bit. */
36c0d0cf 1852 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
23670b32 1853 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
36c0d0cf 1854 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
223a6fdf 1855
25f3ef11 1856 val = TRANS_ENABLE;
937bb610 1857 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
8fb033d7 1858
9a76b1c6
PZ
1859 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1860 PIPECONF_INTERLACED_ILK)
a35f2679 1861 val |= TRANS_INTERLACED;
8fb033d7
PZ
1862 else
1863 val |= TRANS_PROGRESSIVE;
1864
ab9412ba 1865 I915_WRITE(LPT_TRANSCONF, val);
d9f96244
CW
1866 if (intel_wait_for_register(dev_priv,
1867 LPT_TRANSCONF,
1868 TRANS_STATE_ENABLE,
1869 TRANS_STATE_ENABLE,
1870 100))
937bb610 1871 DRM_ERROR("Failed to enable PCH transcoder\n");
8fb033d7
PZ
1872}
1873
b8a4f404
PZ
1874static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1875 enum pipe pipe)
040484af 1876{
f0f59a00
VS
1877 i915_reg_t reg;
1878 uint32_t val;
040484af
JB
1879
1880 /* FDI relies on the transcoder */
1881 assert_fdi_tx_disabled(dev_priv, pipe);
1882 assert_fdi_rx_disabled(dev_priv, pipe);
1883
291906f1
JB
1884 /* Ports must be off as well */
1885 assert_pch_ports_disabled(dev_priv, pipe);
1886
ab9412ba 1887 reg = PCH_TRANSCONF(pipe);
040484af
JB
1888 val = I915_READ(reg);
1889 val &= ~TRANS_ENABLE;
1890 I915_WRITE(reg, val);
1891 /* wait for PCH transcoder off, transcoder state */
a7d04662
CW
1892 if (intel_wait_for_register(dev_priv,
1893 reg, TRANS_STATE_ENABLE, 0,
1894 50))
4bb6f1f3 1895 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
23670b32 1896
6e266956 1897 if (HAS_PCH_CPT(dev_priv)) {
23670b32
DV
1898 /* Workaround: Clear the timing override chicken bit again. */
1899 reg = TRANS_CHICKEN2(pipe);
1900 val = I915_READ(reg);
1901 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1902 I915_WRITE(reg, val);
1903 }
040484af
JB
1904}
1905
b7076546 1906void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
8fb033d7 1907{
8fb033d7
PZ
1908 u32 val;
1909
ab9412ba 1910 val = I915_READ(LPT_TRANSCONF);
8fb033d7 1911 val &= ~TRANS_ENABLE;
ab9412ba 1912 I915_WRITE(LPT_TRANSCONF, val);
8fb033d7 1913 /* wait for PCH transcoder off, transcoder state */
dfdb4749
CW
1914 if (intel_wait_for_register(dev_priv,
1915 LPT_TRANSCONF, TRANS_STATE_ENABLE, 0,
1916 50))
8a52fd9f 1917 DRM_ERROR("Failed to disable PCH transcoder\n");
223a6fdf
PZ
1918
1919 /* Workaround: clear timing override bit. */
36c0d0cf 1920 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
23670b32 1921 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
36c0d0cf 1922 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
040484af
JB
1923}
1924
b24e7179 1925/**
309cfea8 1926 * intel_enable_pipe - enable a pipe, asserting requirements
0372264a 1927 * @crtc: crtc responsible for the pipe
b24e7179 1928 *
0372264a 1929 * Enable @crtc's pipe, making sure that various hardware specific requirements
b24e7179 1930 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
b24e7179 1931 */
e1fdc473 1932static void intel_enable_pipe(struct intel_crtc *crtc)
b24e7179 1933{
0372264a 1934 struct drm_device *dev = crtc->base.dev;
fac5e23e 1935 struct drm_i915_private *dev_priv = to_i915(dev);
0372264a 1936 enum pipe pipe = crtc->pipe;
1a70a728 1937 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1a240d4d 1938 enum pipe pch_transcoder;
f0f59a00 1939 i915_reg_t reg;
b24e7179
JB
1940 u32 val;
1941
9e2ee2dd
VS
1942 DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
1943
58c6eaa2 1944 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 1945 assert_cursor_disabled(dev_priv, pipe);
58c6eaa2
DV
1946 assert_sprites_disabled(dev_priv, pipe);
1947
2d1fe073 1948 if (HAS_PCH_LPT(dev_priv))
cc391bbb
PZ
1949 pch_transcoder = TRANSCODER_A;
1950 else
1951 pch_transcoder = pipe;
1952
b24e7179
JB
1953 /*
1954 * A pipe without a PLL won't actually be able to drive bits from
1955 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1956 * need the check.
1957 */
09fa8bb9 1958 if (HAS_GMCH_DISPLAY(dev_priv)) {
d7edc4e5 1959 if (intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DSI))
23538ef1
JN
1960 assert_dsi_pll_enabled(dev_priv);
1961 else
1962 assert_pll_enabled(dev_priv, pipe);
09fa8bb9 1963 } else {
6e3c9717 1964 if (crtc->config->has_pch_encoder) {
040484af 1965 /* if driving the PCH, we need FDI enabled */
cc391bbb 1966 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1a240d4d
DV
1967 assert_fdi_tx_pll_enabled(dev_priv,
1968 (enum pipe) cpu_transcoder);
040484af
JB
1969 }
1970 /* FIXME: assert CPU port conditions for SNB+ */
1971 }
b24e7179 1972
702e7a56 1973 reg = PIPECONF(cpu_transcoder);
b24e7179 1974 val = I915_READ(reg);
7ad25d48 1975 if (val & PIPECONF_ENABLE) {
b6b5d049
VS
1976 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1977 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
00d70b15 1978 return;
7ad25d48 1979 }
00d70b15
CW
1980
1981 I915_WRITE(reg, val | PIPECONF_ENABLE);
851855d8 1982 POSTING_READ(reg);
b7792d8b
VS
1983
1984 /*
1985 * Until the pipe starts DSL will read as 0, which would cause
1986 * an apparent vblank timestamp jump, which messes up also the
1987 * frame count when it's derived from the timestamps. So let's
1988 * wait for the pipe to start properly before we call
1989 * drm_crtc_vblank_on()
1990 */
1991 if (dev->max_vblank_count == 0 &&
1992 wait_for(intel_get_crtc_scanline(crtc) != crtc->scanline_offset, 50))
1993 DRM_ERROR("pipe %c didn't start\n", pipe_name(pipe));
b24e7179
JB
1994}
1995
1996/**
309cfea8 1997 * intel_disable_pipe - disable a pipe, asserting requirements
575f7ab7 1998 * @crtc: crtc whose pipes is to be disabled
b24e7179 1999 *
575f7ab7
VS
2000 * Disable the pipe of @crtc, making sure that various hardware
2001 * specific requirements are met, if applicable, e.g. plane
2002 * disabled, panel fitter off, etc.
b24e7179
JB
2003 *
2004 * Will wait until the pipe has shut down before returning.
2005 */
575f7ab7 2006static void intel_disable_pipe(struct intel_crtc *crtc)
b24e7179 2007{
fac5e23e 2008 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6e3c9717 2009 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
575f7ab7 2010 enum pipe pipe = crtc->pipe;
f0f59a00 2011 i915_reg_t reg;
b24e7179
JB
2012 u32 val;
2013
9e2ee2dd
VS
2014 DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2015
b24e7179
JB
2016 /*
2017 * Make sure planes won't keep trying to pump pixels to us,
2018 * or we might hang the display.
2019 */
2020 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2021 assert_cursor_disabled(dev_priv, pipe);
19332d7a 2022 assert_sprites_disabled(dev_priv, pipe);
b24e7179 2023
702e7a56 2024 reg = PIPECONF(cpu_transcoder);
b24e7179 2025 val = I915_READ(reg);
00d70b15
CW
2026 if ((val & PIPECONF_ENABLE) == 0)
2027 return;
2028
67adc644
VS
2029 /*
2030 * Double wide has implications for planes
2031 * so best keep it disabled when not needed.
2032 */
6e3c9717 2033 if (crtc->config->double_wide)
67adc644
VS
2034 val &= ~PIPECONF_DOUBLE_WIDE;
2035
2036 /* Don't disable pipe or pipe PLLs if needed */
b6b5d049
VS
2037 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2038 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
67adc644
VS
2039 val &= ~PIPECONF_ENABLE;
2040
2041 I915_WRITE(reg, val);
2042 if ((val & PIPECONF_ENABLE) == 0)
2043 intel_wait_for_pipe_off(crtc);
b24e7179
JB
2044}
2045
832be82f
VS
2046static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
2047{
2048 return IS_GEN2(dev_priv) ? 2048 : 4096;
2049}
2050
27ba3910
VS
2051static unsigned int intel_tile_width_bytes(const struct drm_i915_private *dev_priv,
2052 uint64_t fb_modifier, unsigned int cpp)
7b49f948
VS
2053{
2054 switch (fb_modifier) {
2055 case DRM_FORMAT_MOD_NONE:
2056 return cpp;
2057 case I915_FORMAT_MOD_X_TILED:
2058 if (IS_GEN2(dev_priv))
2059 return 128;
2060 else
2061 return 512;
2062 case I915_FORMAT_MOD_Y_TILED:
2063 if (IS_GEN2(dev_priv) || HAS_128_BYTE_Y_TILING(dev_priv))
2064 return 128;
2065 else
2066 return 512;
2067 case I915_FORMAT_MOD_Yf_TILED:
2068 switch (cpp) {
2069 case 1:
2070 return 64;
2071 case 2:
2072 case 4:
2073 return 128;
2074 case 8:
2075 case 16:
2076 return 256;
2077 default:
2078 MISSING_CASE(cpp);
2079 return cpp;
2080 }
2081 break;
2082 default:
2083 MISSING_CASE(fb_modifier);
2084 return cpp;
2085 }
2086}
2087
832be82f
VS
2088unsigned int intel_tile_height(const struct drm_i915_private *dev_priv,
2089 uint64_t fb_modifier, unsigned int cpp)
a57ce0b2 2090{
832be82f
VS
2091 if (fb_modifier == DRM_FORMAT_MOD_NONE)
2092 return 1;
2093 else
2094 return intel_tile_size(dev_priv) /
27ba3910 2095 intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
6761dd31
TU
2096}
2097
8d0deca8
VS
2098/* Return the tile dimensions in pixel units */
2099static void intel_tile_dims(const struct drm_i915_private *dev_priv,
2100 unsigned int *tile_width,
2101 unsigned int *tile_height,
2102 uint64_t fb_modifier,
2103 unsigned int cpp)
2104{
2105 unsigned int tile_width_bytes =
2106 intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2107
2108 *tile_width = tile_width_bytes / cpp;
2109 *tile_height = intel_tile_size(dev_priv) / tile_width_bytes;
2110}
2111
6761dd31
TU
2112unsigned int
2113intel_fb_align_height(struct drm_device *dev, unsigned int height,
832be82f 2114 uint32_t pixel_format, uint64_t fb_modifier)
6761dd31 2115{
832be82f
VS
2116 unsigned int cpp = drm_format_plane_cpp(pixel_format, 0);
2117 unsigned int tile_height = intel_tile_height(to_i915(dev), fb_modifier, cpp);
2118
2119 return ALIGN(height, tile_height);
a57ce0b2
JB
2120}
2121
1663b9d6
VS
2122unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
2123{
2124 unsigned int size = 0;
2125 int i;
2126
2127 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
2128 size += rot_info->plane[i].width * rot_info->plane[i].height;
2129
2130 return size;
2131}
2132
75c82a53 2133static void
3465c580
VS
2134intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
2135 const struct drm_framebuffer *fb,
2136 unsigned int rotation)
f64b98cd 2137{
2d7a215f
VS
2138 if (intel_rotation_90_or_270(rotation)) {
2139 *view = i915_ggtt_view_rotated;
2140 view->params.rotated = to_intel_framebuffer(fb)->rot_info;
2141 } else {
2142 *view = i915_ggtt_view_normal;
2143 }
2144}
50470bb0 2145
603525d7 2146static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
4e9a86b6
VS
2147{
2148 if (INTEL_INFO(dev_priv)->gen >= 9)
2149 return 256 * 1024;
985b8bb4 2150 else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
666a4537 2151 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4e9a86b6
VS
2152 return 128 * 1024;
2153 else if (INTEL_INFO(dev_priv)->gen >= 4)
2154 return 4 * 1024;
2155 else
44c5905e 2156 return 0;
4e9a86b6
VS
2157}
2158
603525d7
VS
2159static unsigned int intel_surf_alignment(const struct drm_i915_private *dev_priv,
2160 uint64_t fb_modifier)
2161{
2162 switch (fb_modifier) {
2163 case DRM_FORMAT_MOD_NONE:
2164 return intel_linear_alignment(dev_priv);
2165 case I915_FORMAT_MOD_X_TILED:
2166 if (INTEL_INFO(dev_priv)->gen >= 9)
2167 return 256 * 1024;
2168 return 0;
2169 case I915_FORMAT_MOD_Y_TILED:
2170 case I915_FORMAT_MOD_Yf_TILED:
2171 return 1 * 1024 * 1024;
2172 default:
2173 MISSING_CASE(fb_modifier);
2174 return 0;
2175 }
2176}
2177
058d88c4
CW
2178struct i915_vma *
2179intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb, unsigned int rotation)
6b95a207 2180{
850c4cdc 2181 struct drm_device *dev = fb->dev;
fac5e23e 2182 struct drm_i915_private *dev_priv = to_i915(dev);
850c4cdc 2183 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
f64b98cd 2184 struct i915_ggtt_view view;
058d88c4 2185 struct i915_vma *vma;
6b95a207 2186 u32 alignment;
6b95a207 2187
ebcdd39e
MR
2188 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2189
603525d7 2190 alignment = intel_surf_alignment(dev_priv, fb->modifier[0]);
6b95a207 2191
3465c580 2192 intel_fill_fb_ggtt_view(&view, fb, rotation);
f64b98cd 2193
693db184
CW
2194 /* Note that the w/a also requires 64 PTE of padding following the
2195 * bo. We currently fill all unused PTE with the shadow page and so
2196 * we should always have valid PTE following the scanout preventing
2197 * the VT-d warning.
2198 */
48f112fe 2199 if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024)
693db184
CW
2200 alignment = 256 * 1024;
2201
d6dd6843
PZ
2202 /*
2203 * Global gtt pte registers are special registers which actually forward
2204 * writes to a chunk of system memory. Which means that there is no risk
2205 * that the register values disappear as soon as we call
2206 * intel_runtime_pm_put(), so it is correct to wrap only the
2207 * pin/unpin/fence and not more.
2208 */
2209 intel_runtime_pm_get(dev_priv);
2210
058d88c4 2211 vma = i915_gem_object_pin_to_display_plane(obj, alignment, &view);
49ef5294
CW
2212 if (IS_ERR(vma))
2213 goto err;
6b95a207 2214
05a20d09 2215 if (i915_vma_is_map_and_fenceable(vma)) {
49ef5294
CW
2216 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2217 * fence, whereas 965+ only requires a fence if using
2218 * framebuffer compression. For simplicity, we always, when
2219 * possible, install a fence as the cost is not that onerous.
2220 *
2221 * If we fail to fence the tiled scanout, then either the
2222 * modeset will reject the change (which is highly unlikely as
2223 * the affected systems, all but one, do not have unmappable
2224 * space) or we will not be able to enable full powersaving
2225 * techniques (also likely not to apply due to various limits
2226 * FBC and the like impose on the size of the buffer, which
2227 * presumably we violated anyway with this unmappable buffer).
2228 * Anyway, it is presumably better to stumble onwards with
2229 * something and try to run the system in a "less than optimal"
2230 * mode that matches the user configuration.
2231 */
2232 if (i915_vma_get_fence(vma) == 0)
2233 i915_vma_pin_fence(vma);
9807216f 2234 }
6b95a207 2235
49ef5294 2236err:
d6dd6843 2237 intel_runtime_pm_put(dev_priv);
058d88c4 2238 return vma;
6b95a207
KH
2239}
2240
fb4b8ce1 2241void intel_unpin_fb_obj(struct drm_framebuffer *fb, unsigned int rotation)
1690e1eb 2242{
82bc3b2d 2243 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
f64b98cd 2244 struct i915_ggtt_view view;
058d88c4 2245 struct i915_vma *vma;
82bc3b2d 2246
ebcdd39e
MR
2247 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2248
3465c580 2249 intel_fill_fb_ggtt_view(&view, fb, rotation);
05a20d09 2250 vma = i915_gem_object_to_ggtt(obj, &view);
f64b98cd 2251
49ef5294 2252 i915_vma_unpin_fence(vma);
058d88c4 2253 i915_gem_object_unpin_from_display_plane(vma);
1690e1eb
CW
2254}
2255
ef78ec94
VS
2256static int intel_fb_pitch(const struct drm_framebuffer *fb, int plane,
2257 unsigned int rotation)
2258{
2259 if (intel_rotation_90_or_270(rotation))
2260 return to_intel_framebuffer(fb)->rotated[plane].pitch;
2261 else
2262 return fb->pitches[plane];
2263}
2264
6687c906
VS
2265/*
2266 * Convert the x/y offsets into a linear offset.
2267 * Only valid with 0/180 degree rotation, which is fine since linear
2268 * offset is only used with linear buffers on pre-hsw and tiled buffers
2269 * with gen2/3, and 90/270 degree rotations isn't supported on any of them.
2270 */
2271u32 intel_fb_xy_to_linear(int x, int y,
2949056c
VS
2272 const struct intel_plane_state *state,
2273 int plane)
6687c906 2274{
2949056c 2275 const struct drm_framebuffer *fb = state->base.fb;
6687c906
VS
2276 unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2277 unsigned int pitch = fb->pitches[plane];
2278
2279 return y * pitch + x * cpp;
2280}
2281
2282/*
2283 * Add the x/y offsets derived from fb->offsets[] to the user
2284 * specified plane src x/y offsets. The resulting x/y offsets
2285 * specify the start of scanout from the beginning of the gtt mapping.
2286 */
2287void intel_add_fb_offsets(int *x, int *y,
2949056c
VS
2288 const struct intel_plane_state *state,
2289 int plane)
6687c906
VS
2290
2291{
2949056c
VS
2292 const struct intel_framebuffer *intel_fb = to_intel_framebuffer(state->base.fb);
2293 unsigned int rotation = state->base.rotation;
6687c906
VS
2294
2295 if (intel_rotation_90_or_270(rotation)) {
2296 *x += intel_fb->rotated[plane].x;
2297 *y += intel_fb->rotated[plane].y;
2298 } else {
2299 *x += intel_fb->normal[plane].x;
2300 *y += intel_fb->normal[plane].y;
2301 }
2302}
2303
29cf9491 2304/*
29cf9491
VS
2305 * Input tile dimensions and pitch must already be
2306 * rotated to match x and y, and in pixel units.
2307 */
66a2d927
VS
2308static u32 _intel_adjust_tile_offset(int *x, int *y,
2309 unsigned int tile_width,
2310 unsigned int tile_height,
2311 unsigned int tile_size,
2312 unsigned int pitch_tiles,
2313 u32 old_offset,
2314 u32 new_offset)
29cf9491 2315{
b9b24038 2316 unsigned int pitch_pixels = pitch_tiles * tile_width;
29cf9491
VS
2317 unsigned int tiles;
2318
2319 WARN_ON(old_offset & (tile_size - 1));
2320 WARN_ON(new_offset & (tile_size - 1));
2321 WARN_ON(new_offset > old_offset);
2322
2323 tiles = (old_offset - new_offset) / tile_size;
2324
2325 *y += tiles / pitch_tiles * tile_height;
2326 *x += tiles % pitch_tiles * tile_width;
2327
b9b24038
VS
2328 /* minimize x in case it got needlessly big */
2329 *y += *x / pitch_pixels * tile_height;
2330 *x %= pitch_pixels;
2331
29cf9491
VS
2332 return new_offset;
2333}
2334
66a2d927
VS
2335/*
2336 * Adjust the tile offset by moving the difference into
2337 * the x/y offsets.
2338 */
2339static u32 intel_adjust_tile_offset(int *x, int *y,
2340 const struct intel_plane_state *state, int plane,
2341 u32 old_offset, u32 new_offset)
2342{
2343 const struct drm_i915_private *dev_priv = to_i915(state->base.plane->dev);
2344 const struct drm_framebuffer *fb = state->base.fb;
2345 unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2346 unsigned int rotation = state->base.rotation;
2347 unsigned int pitch = intel_fb_pitch(fb, plane, rotation);
2348
2349 WARN_ON(new_offset > old_offset);
2350
2351 if (fb->modifier[plane] != DRM_FORMAT_MOD_NONE) {
2352 unsigned int tile_size, tile_width, tile_height;
2353 unsigned int pitch_tiles;
2354
2355 tile_size = intel_tile_size(dev_priv);
2356 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2357 fb->modifier[plane], cpp);
2358
2359 if (intel_rotation_90_or_270(rotation)) {
2360 pitch_tiles = pitch / tile_height;
2361 swap(tile_width, tile_height);
2362 } else {
2363 pitch_tiles = pitch / (tile_width * cpp);
2364 }
2365
2366 _intel_adjust_tile_offset(x, y, tile_width, tile_height,
2367 tile_size, pitch_tiles,
2368 old_offset, new_offset);
2369 } else {
2370 old_offset += *y * pitch + *x * cpp;
2371
2372 *y = (old_offset - new_offset) / pitch;
2373 *x = ((old_offset - new_offset) - *y * pitch) / cpp;
2374 }
2375
2376 return new_offset;
2377}
2378
8d0deca8
VS
2379/*
2380 * Computes the linear offset to the base tile and adjusts
2381 * x, y. bytes per pixel is assumed to be a power-of-two.
2382 *
2383 * In the 90/270 rotated case, x and y are assumed
2384 * to be already rotated to match the rotated GTT view, and
2385 * pitch is the tile_height aligned framebuffer height.
6687c906
VS
2386 *
2387 * This function is used when computing the derived information
2388 * under intel_framebuffer, so using any of that information
2389 * here is not allowed. Anything under drm_framebuffer can be
2390 * used. This is why the user has to pass in the pitch since it
2391 * is specified in the rotated orientation.
8d0deca8 2392 */
6687c906
VS
2393static u32 _intel_compute_tile_offset(const struct drm_i915_private *dev_priv,
2394 int *x, int *y,
2395 const struct drm_framebuffer *fb, int plane,
2396 unsigned int pitch,
2397 unsigned int rotation,
2398 u32 alignment)
c2c75131 2399{
4f2d9934
VS
2400 uint64_t fb_modifier = fb->modifier[plane];
2401 unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
6687c906 2402 u32 offset, offset_aligned;
29cf9491 2403
29cf9491
VS
2404 if (alignment)
2405 alignment--;
2406
b5c65338 2407 if (fb_modifier != DRM_FORMAT_MOD_NONE) {
8d0deca8
VS
2408 unsigned int tile_size, tile_width, tile_height;
2409 unsigned int tile_rows, tiles, pitch_tiles;
c2c75131 2410
d843310d 2411 tile_size = intel_tile_size(dev_priv);
8d0deca8
VS
2412 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2413 fb_modifier, cpp);
2414
2415 if (intel_rotation_90_or_270(rotation)) {
2416 pitch_tiles = pitch / tile_height;
2417 swap(tile_width, tile_height);
2418 } else {
2419 pitch_tiles = pitch / (tile_width * cpp);
2420 }
d843310d
VS
2421
2422 tile_rows = *y / tile_height;
2423 *y %= tile_height;
c2c75131 2424
8d0deca8
VS
2425 tiles = *x / tile_width;
2426 *x %= tile_width;
bc752862 2427
29cf9491
VS
2428 offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2429 offset_aligned = offset & ~alignment;
bc752862 2430
66a2d927
VS
2431 _intel_adjust_tile_offset(x, y, tile_width, tile_height,
2432 tile_size, pitch_tiles,
2433 offset, offset_aligned);
29cf9491 2434 } else {
bc752862 2435 offset = *y * pitch + *x * cpp;
29cf9491
VS
2436 offset_aligned = offset & ~alignment;
2437
4e9a86b6
VS
2438 *y = (offset & alignment) / pitch;
2439 *x = ((offset & alignment) - *y * pitch) / cpp;
bc752862 2440 }
29cf9491
VS
2441
2442 return offset_aligned;
c2c75131
DV
2443}
2444
6687c906 2445u32 intel_compute_tile_offset(int *x, int *y,
2949056c
VS
2446 const struct intel_plane_state *state,
2447 int plane)
6687c906 2448{
2949056c
VS
2449 const struct drm_i915_private *dev_priv = to_i915(state->base.plane->dev);
2450 const struct drm_framebuffer *fb = state->base.fb;
2451 unsigned int rotation = state->base.rotation;
ef78ec94 2452 int pitch = intel_fb_pitch(fb, plane, rotation);
8d970654
VS
2453 u32 alignment;
2454
2455 /* AUX_DIST needs only 4K alignment */
2456 if (fb->pixel_format == DRM_FORMAT_NV12 && plane == 1)
2457 alignment = 4096;
2458 else
2459 alignment = intel_surf_alignment(dev_priv, fb->modifier[plane]);
6687c906
VS
2460
2461 return _intel_compute_tile_offset(dev_priv, x, y, fb, plane, pitch,
2462 rotation, alignment);
2463}
2464
2465/* Convert the fb->offset[] linear offset into x/y offsets */
2466static void intel_fb_offset_to_xy(int *x, int *y,
2467 const struct drm_framebuffer *fb, int plane)
2468{
2469 unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2470 unsigned int pitch = fb->pitches[plane];
2471 u32 linear_offset = fb->offsets[plane];
2472
2473 *y = linear_offset / pitch;
2474 *x = linear_offset % pitch / cpp;
2475}
2476
72618ebf
VS
2477static unsigned int intel_fb_modifier_to_tiling(uint64_t fb_modifier)
2478{
2479 switch (fb_modifier) {
2480 case I915_FORMAT_MOD_X_TILED:
2481 return I915_TILING_X;
2482 case I915_FORMAT_MOD_Y_TILED:
2483 return I915_TILING_Y;
2484 default:
2485 return I915_TILING_NONE;
2486 }
2487}
2488
6687c906
VS
2489static int
2490intel_fill_fb_info(struct drm_i915_private *dev_priv,
2491 struct drm_framebuffer *fb)
2492{
2493 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
2494 struct intel_rotation_info *rot_info = &intel_fb->rot_info;
2495 u32 gtt_offset_rotated = 0;
2496 unsigned int max_size = 0;
2497 uint32_t format = fb->pixel_format;
2498 int i, num_planes = drm_format_num_planes(format);
2499 unsigned int tile_size = intel_tile_size(dev_priv);
2500
2501 for (i = 0; i < num_planes; i++) {
2502 unsigned int width, height;
2503 unsigned int cpp, size;
2504 u32 offset;
2505 int x, y;
2506
2507 cpp = drm_format_plane_cpp(format, i);
2508 width = drm_format_plane_width(fb->width, format, i);
2509 height = drm_format_plane_height(fb->height, format, i);
2510
2511 intel_fb_offset_to_xy(&x, &y, fb, i);
2512
60d5f2a4
VS
2513 /*
2514 * The fence (if used) is aligned to the start of the object
2515 * so having the framebuffer wrap around across the edge of the
2516 * fenced region doesn't really work. We have no API to configure
2517 * the fence start offset within the object (nor could we probably
2518 * on gen2/3). So it's just easier if we just require that the
2519 * fb layout agrees with the fence layout. We already check that the
2520 * fb stride matches the fence stride elsewhere.
2521 */
2522 if (i915_gem_object_is_tiled(intel_fb->obj) &&
2523 (x + width) * cpp > fb->pitches[i]) {
2524 DRM_DEBUG("bad fb plane %d offset: 0x%x\n",
2525 i, fb->offsets[i]);
2526 return -EINVAL;
2527 }
2528
6687c906
VS
2529 /*
2530 * First pixel of the framebuffer from
2531 * the start of the normal gtt mapping.
2532 */
2533 intel_fb->normal[i].x = x;
2534 intel_fb->normal[i].y = y;
2535
2536 offset = _intel_compute_tile_offset(dev_priv, &x, &y,
2537 fb, 0, fb->pitches[i],
cc926387 2538 DRM_ROTATE_0, tile_size);
6687c906
VS
2539 offset /= tile_size;
2540
2541 if (fb->modifier[i] != DRM_FORMAT_MOD_NONE) {
2542 unsigned int tile_width, tile_height;
2543 unsigned int pitch_tiles;
2544 struct drm_rect r;
2545
2546 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2547 fb->modifier[i], cpp);
2548
2549 rot_info->plane[i].offset = offset;
2550 rot_info->plane[i].stride = DIV_ROUND_UP(fb->pitches[i], tile_width * cpp);
2551 rot_info->plane[i].width = DIV_ROUND_UP(x + width, tile_width);
2552 rot_info->plane[i].height = DIV_ROUND_UP(y + height, tile_height);
2553
2554 intel_fb->rotated[i].pitch =
2555 rot_info->plane[i].height * tile_height;
2556
2557 /* how many tiles does this plane need */
2558 size = rot_info->plane[i].stride * rot_info->plane[i].height;
2559 /*
2560 * If the plane isn't horizontally tile aligned,
2561 * we need one more tile.
2562 */
2563 if (x != 0)
2564 size++;
2565
2566 /* rotate the x/y offsets to match the GTT view */
2567 r.x1 = x;
2568 r.y1 = y;
2569 r.x2 = x + width;
2570 r.y2 = y + height;
2571 drm_rect_rotate(&r,
2572 rot_info->plane[i].width * tile_width,
2573 rot_info->plane[i].height * tile_height,
cc926387 2574 DRM_ROTATE_270);
6687c906
VS
2575 x = r.x1;
2576 y = r.y1;
2577
2578 /* rotate the tile dimensions to match the GTT view */
2579 pitch_tiles = intel_fb->rotated[i].pitch / tile_height;
2580 swap(tile_width, tile_height);
2581
2582 /*
2583 * We only keep the x/y offsets, so push all of the
2584 * gtt offset into the x/y offsets.
2585 */
66a2d927
VS
2586 _intel_adjust_tile_offset(&x, &y, tile_size,
2587 tile_width, tile_height, pitch_tiles,
2588 gtt_offset_rotated * tile_size, 0);
6687c906
VS
2589
2590 gtt_offset_rotated += rot_info->plane[i].width * rot_info->plane[i].height;
2591
2592 /*
2593 * First pixel of the framebuffer from
2594 * the start of the rotated gtt mapping.
2595 */
2596 intel_fb->rotated[i].x = x;
2597 intel_fb->rotated[i].y = y;
2598 } else {
2599 size = DIV_ROUND_UP((y + height) * fb->pitches[i] +
2600 x * cpp, tile_size);
2601 }
2602
2603 /* how many tiles in total needed in the bo */
2604 max_size = max(max_size, offset + size);
2605 }
2606
2607 if (max_size * tile_size > to_intel_framebuffer(fb)->obj->base.size) {
2608 DRM_DEBUG("fb too big for bo (need %u bytes, have %zu bytes)\n",
2609 max_size * tile_size, to_intel_framebuffer(fb)->obj->base.size);
2610 return -EINVAL;
2611 }
2612
2613 return 0;
2614}
2615
b35d63fa 2616static int i9xx_format_to_fourcc(int format)
46f297fb
JB
2617{
2618 switch (format) {
2619 case DISPPLANE_8BPP:
2620 return DRM_FORMAT_C8;
2621 case DISPPLANE_BGRX555:
2622 return DRM_FORMAT_XRGB1555;
2623 case DISPPLANE_BGRX565:
2624 return DRM_FORMAT_RGB565;
2625 default:
2626 case DISPPLANE_BGRX888:
2627 return DRM_FORMAT_XRGB8888;
2628 case DISPPLANE_RGBX888:
2629 return DRM_FORMAT_XBGR8888;
2630 case DISPPLANE_BGRX101010:
2631 return DRM_FORMAT_XRGB2101010;
2632 case DISPPLANE_RGBX101010:
2633 return DRM_FORMAT_XBGR2101010;
2634 }
2635}
2636
bc8d7dff
DL
2637static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2638{
2639 switch (format) {
2640 case PLANE_CTL_FORMAT_RGB_565:
2641 return DRM_FORMAT_RGB565;
2642 default:
2643 case PLANE_CTL_FORMAT_XRGB_8888:
2644 if (rgb_order) {
2645 if (alpha)
2646 return DRM_FORMAT_ABGR8888;
2647 else
2648 return DRM_FORMAT_XBGR8888;
2649 } else {
2650 if (alpha)
2651 return DRM_FORMAT_ARGB8888;
2652 else
2653 return DRM_FORMAT_XRGB8888;
2654 }
2655 case PLANE_CTL_FORMAT_XRGB_2101010:
2656 if (rgb_order)
2657 return DRM_FORMAT_XBGR2101010;
2658 else
2659 return DRM_FORMAT_XRGB2101010;
2660 }
2661}
2662
5724dbd1 2663static bool
f6936e29
DV
2664intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2665 struct intel_initial_plane_config *plane_config)
46f297fb
JB
2666{
2667 struct drm_device *dev = crtc->base.dev;
3badb49f 2668 struct drm_i915_private *dev_priv = to_i915(dev);
72e96d64 2669 struct i915_ggtt *ggtt = &dev_priv->ggtt;
46f297fb
JB
2670 struct drm_i915_gem_object *obj = NULL;
2671 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2d14030b 2672 struct drm_framebuffer *fb = &plane_config->fb->base;
f37b5c2b
DV
2673 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2674 u32 size_aligned = round_up(plane_config->base + plane_config->size,
2675 PAGE_SIZE);
2676
2677 size_aligned -= base_aligned;
46f297fb 2678
ff2652ea
CW
2679 if (plane_config->size == 0)
2680 return false;
2681
3badb49f
PZ
2682 /* If the FB is too big, just don't use it since fbdev is not very
2683 * important and we should probably use that space with FBC or other
2684 * features. */
72e96d64 2685 if (size_aligned * 2 > ggtt->stolen_usable_size)
3badb49f
PZ
2686 return false;
2687
12c83d99
TU
2688 mutex_lock(&dev->struct_mutex);
2689
f37b5c2b
DV
2690 obj = i915_gem_object_create_stolen_for_preallocated(dev,
2691 base_aligned,
2692 base_aligned,
2693 size_aligned);
12c83d99
TU
2694 if (!obj) {
2695 mutex_unlock(&dev->struct_mutex);
484b41dd 2696 return false;
12c83d99 2697 }
46f297fb 2698
3e510a8e
CW
2699 if (plane_config->tiling == I915_TILING_X)
2700 obj->tiling_and_stride = fb->pitches[0] | I915_TILING_X;
46f297fb 2701
6bf129df
DL
2702 mode_cmd.pixel_format = fb->pixel_format;
2703 mode_cmd.width = fb->width;
2704 mode_cmd.height = fb->height;
2705 mode_cmd.pitches[0] = fb->pitches[0];
18c5247e
DV
2706 mode_cmd.modifier[0] = fb->modifier[0];
2707 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
46f297fb 2708
6bf129df 2709 if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
484b41dd 2710 &mode_cmd, obj)) {
46f297fb
JB
2711 DRM_DEBUG_KMS("intel fb init failed\n");
2712 goto out_unref_obj;
2713 }
12c83d99 2714
46f297fb 2715 mutex_unlock(&dev->struct_mutex);
484b41dd 2716
f6936e29 2717 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
484b41dd 2718 return true;
46f297fb
JB
2719
2720out_unref_obj:
f8c417cd 2721 i915_gem_object_put(obj);
46f297fb 2722 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2723 return false;
2724}
2725
5a21b665
DV
2726/* Update plane->state->fb to match plane->fb after driver-internal updates */
2727static void
2728update_state_fb(struct drm_plane *plane)
2729{
2730 if (plane->fb == plane->state->fb)
2731 return;
2732
2733 if (plane->state->fb)
2734 drm_framebuffer_unreference(plane->state->fb);
2735 plane->state->fb = plane->fb;
2736 if (plane->state->fb)
2737 drm_framebuffer_reference(plane->state->fb);
2738}
2739
5724dbd1 2740static void
f6936e29
DV
2741intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2742 struct intel_initial_plane_config *plane_config)
484b41dd
JB
2743{
2744 struct drm_device *dev = intel_crtc->base.dev;
fac5e23e 2745 struct drm_i915_private *dev_priv = to_i915(dev);
484b41dd
JB
2746 struct drm_crtc *c;
2747 struct intel_crtc *i;
2ff8fde1 2748 struct drm_i915_gem_object *obj;
88595ac9 2749 struct drm_plane *primary = intel_crtc->base.primary;
be5651f2 2750 struct drm_plane_state *plane_state = primary->state;
200757f5
MR
2751 struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2752 struct intel_plane *intel_plane = to_intel_plane(primary);
0a8d8a86
MR
2753 struct intel_plane_state *intel_state =
2754 to_intel_plane_state(plane_state);
88595ac9 2755 struct drm_framebuffer *fb;
484b41dd 2756
2d14030b 2757 if (!plane_config->fb)
484b41dd
JB
2758 return;
2759
f6936e29 2760 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
88595ac9
DV
2761 fb = &plane_config->fb->base;
2762 goto valid_fb;
f55548b5 2763 }
484b41dd 2764
2d14030b 2765 kfree(plane_config->fb);
484b41dd
JB
2766
2767 /*
2768 * Failed to alloc the obj, check to see if we should share
2769 * an fb with another CRTC instead
2770 */
70e1e0ec 2771 for_each_crtc(dev, c) {
484b41dd
JB
2772 i = to_intel_crtc(c);
2773
2774 if (c == &intel_crtc->base)
2775 continue;
2776
2ff8fde1
MR
2777 if (!i->active)
2778 continue;
2779
88595ac9
DV
2780 fb = c->primary->fb;
2781 if (!fb)
484b41dd
JB
2782 continue;
2783
88595ac9 2784 obj = intel_fb_obj(fb);
058d88c4 2785 if (i915_gem_object_ggtt_offset(obj, NULL) == plane_config->base) {
88595ac9
DV
2786 drm_framebuffer_reference(fb);
2787 goto valid_fb;
484b41dd
JB
2788 }
2789 }
88595ac9 2790
200757f5
MR
2791 /*
2792 * We've failed to reconstruct the BIOS FB. Current display state
2793 * indicates that the primary plane is visible, but has a NULL FB,
2794 * which will lead to problems later if we don't fix it up. The
2795 * simplest solution is to just disable the primary plane now and
2796 * pretend the BIOS never had it enabled.
2797 */
936e71e3 2798 to_intel_plane_state(plane_state)->base.visible = false;
200757f5 2799 crtc_state->plane_mask &= ~(1 << drm_plane_index(primary));
2622a081 2800 intel_pre_disable_primary_noatomic(&intel_crtc->base);
200757f5
MR
2801 intel_plane->disable_plane(primary, &intel_crtc->base);
2802
88595ac9
DV
2803 return;
2804
2805valid_fb:
f44e2659
VS
2806 plane_state->src_x = 0;
2807 plane_state->src_y = 0;
be5651f2
ML
2808 plane_state->src_w = fb->width << 16;
2809 plane_state->src_h = fb->height << 16;
2810
f44e2659
VS
2811 plane_state->crtc_x = 0;
2812 plane_state->crtc_y = 0;
be5651f2
ML
2813 plane_state->crtc_w = fb->width;
2814 plane_state->crtc_h = fb->height;
2815
936e71e3
VS
2816 intel_state->base.src.x1 = plane_state->src_x;
2817 intel_state->base.src.y1 = plane_state->src_y;
2818 intel_state->base.src.x2 = plane_state->src_x + plane_state->src_w;
2819 intel_state->base.src.y2 = plane_state->src_y + plane_state->src_h;
2820 intel_state->base.dst.x1 = plane_state->crtc_x;
2821 intel_state->base.dst.y1 = plane_state->crtc_y;
2822 intel_state->base.dst.x2 = plane_state->crtc_x + plane_state->crtc_w;
2823 intel_state->base.dst.y2 = plane_state->crtc_y + plane_state->crtc_h;
0a8d8a86 2824
88595ac9 2825 obj = intel_fb_obj(fb);
3e510a8e 2826 if (i915_gem_object_is_tiled(obj))
88595ac9
DV
2827 dev_priv->preserve_bios_swizzle = true;
2828
be5651f2
ML
2829 drm_framebuffer_reference(fb);
2830 primary->fb = primary->state->fb = fb;
36750f28 2831 primary->crtc = primary->state->crtc = &intel_crtc->base;
36750f28 2832 intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
faf5bf0a
CW
2833 atomic_or(to_intel_plane(primary)->frontbuffer_bit,
2834 &obj->frontbuffer_bits);
46f297fb
JB
2835}
2836
b63a16f6
VS
2837static int skl_max_plane_width(const struct drm_framebuffer *fb, int plane,
2838 unsigned int rotation)
2839{
2840 int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2841
2842 switch (fb->modifier[plane]) {
2843 case DRM_FORMAT_MOD_NONE:
2844 case I915_FORMAT_MOD_X_TILED:
2845 switch (cpp) {
2846 case 8:
2847 return 4096;
2848 case 4:
2849 case 2:
2850 case 1:
2851 return 8192;
2852 default:
2853 MISSING_CASE(cpp);
2854 break;
2855 }
2856 break;
2857 case I915_FORMAT_MOD_Y_TILED:
2858 case I915_FORMAT_MOD_Yf_TILED:
2859 switch (cpp) {
2860 case 8:
2861 return 2048;
2862 case 4:
2863 return 4096;
2864 case 2:
2865 case 1:
2866 return 8192;
2867 default:
2868 MISSING_CASE(cpp);
2869 break;
2870 }
2871 break;
2872 default:
2873 MISSING_CASE(fb->modifier[plane]);
2874 }
2875
2876 return 2048;
2877}
2878
2879static int skl_check_main_surface(struct intel_plane_state *plane_state)
2880{
2881 const struct drm_i915_private *dev_priv = to_i915(plane_state->base.plane->dev);
2882 const struct drm_framebuffer *fb = plane_state->base.fb;
2883 unsigned int rotation = plane_state->base.rotation;
cc926387
DV
2884 int x = plane_state->base.src.x1 >> 16;
2885 int y = plane_state->base.src.y1 >> 16;
2886 int w = drm_rect_width(&plane_state->base.src) >> 16;
2887 int h = drm_rect_height(&plane_state->base.src) >> 16;
b63a16f6
VS
2888 int max_width = skl_max_plane_width(fb, 0, rotation);
2889 int max_height = 4096;
8d970654 2890 u32 alignment, offset, aux_offset = plane_state->aux.offset;
b63a16f6
VS
2891
2892 if (w > max_width || h > max_height) {
2893 DRM_DEBUG_KMS("requested Y/RGB source size %dx%d too big (limit %dx%d)\n",
2894 w, h, max_width, max_height);
2895 return -EINVAL;
2896 }
2897
2898 intel_add_fb_offsets(&x, &y, plane_state, 0);
2899 offset = intel_compute_tile_offset(&x, &y, plane_state, 0);
2900
2901 alignment = intel_surf_alignment(dev_priv, fb->modifier[0]);
2902
8d970654
VS
2903 /*
2904 * AUX surface offset is specified as the distance from the
2905 * main surface offset, and it must be non-negative. Make
2906 * sure that is what we will get.
2907 */
2908 if (offset > aux_offset)
2909 offset = intel_adjust_tile_offset(&x, &y, plane_state, 0,
2910 offset, aux_offset & ~(alignment - 1));
2911
b63a16f6
VS
2912 /*
2913 * When using an X-tiled surface, the plane blows up
2914 * if the x offset + width exceed the stride.
2915 *
2916 * TODO: linear and Y-tiled seem fine, Yf untested,
2917 */
2918 if (fb->modifier[0] == I915_FORMAT_MOD_X_TILED) {
2919 int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2920
2921 while ((x + w) * cpp > fb->pitches[0]) {
2922 if (offset == 0) {
2923 DRM_DEBUG_KMS("Unable to find suitable display surface offset\n");
2924 return -EINVAL;
2925 }
2926
2927 offset = intel_adjust_tile_offset(&x, &y, plane_state, 0,
2928 offset, offset - alignment);
2929 }
2930 }
2931
2932 plane_state->main.offset = offset;
2933 plane_state->main.x = x;
2934 plane_state->main.y = y;
2935
2936 return 0;
2937}
2938
8d970654
VS
2939static int skl_check_nv12_aux_surface(struct intel_plane_state *plane_state)
2940{
2941 const struct drm_framebuffer *fb = plane_state->base.fb;
2942 unsigned int rotation = plane_state->base.rotation;
2943 int max_width = skl_max_plane_width(fb, 1, rotation);
2944 int max_height = 4096;
cc926387
DV
2945 int x = plane_state->base.src.x1 >> 17;
2946 int y = plane_state->base.src.y1 >> 17;
2947 int w = drm_rect_width(&plane_state->base.src) >> 17;
2948 int h = drm_rect_height(&plane_state->base.src) >> 17;
8d970654
VS
2949 u32 offset;
2950
2951 intel_add_fb_offsets(&x, &y, plane_state, 1);
2952 offset = intel_compute_tile_offset(&x, &y, plane_state, 1);
2953
2954 /* FIXME not quite sure how/if these apply to the chroma plane */
2955 if (w > max_width || h > max_height) {
2956 DRM_DEBUG_KMS("CbCr source size %dx%d too big (limit %dx%d)\n",
2957 w, h, max_width, max_height);
2958 return -EINVAL;
2959 }
2960
2961 plane_state->aux.offset = offset;
2962 plane_state->aux.x = x;
2963 plane_state->aux.y = y;
2964
2965 return 0;
2966}
2967
b63a16f6
VS
2968int skl_check_plane_surface(struct intel_plane_state *plane_state)
2969{
2970 const struct drm_framebuffer *fb = plane_state->base.fb;
2971 unsigned int rotation = plane_state->base.rotation;
2972 int ret;
2973
2974 /* Rotate src coordinates to match rotated GTT view */
2975 if (intel_rotation_90_or_270(rotation))
cc926387
DV
2976 drm_rect_rotate(&plane_state->base.src,
2977 fb->width, fb->height, DRM_ROTATE_270);
b63a16f6 2978
8d970654
VS
2979 /*
2980 * Handle the AUX surface first since
2981 * the main surface setup depends on it.
2982 */
2983 if (fb->pixel_format == DRM_FORMAT_NV12) {
2984 ret = skl_check_nv12_aux_surface(plane_state);
2985 if (ret)
2986 return ret;
2987 } else {
2988 plane_state->aux.offset = ~0xfff;
2989 plane_state->aux.x = 0;
2990 plane_state->aux.y = 0;
2991 }
2992
b63a16f6
VS
2993 ret = skl_check_main_surface(plane_state);
2994 if (ret)
2995 return ret;
2996
2997 return 0;
2998}
2999
a8d201af
ML
3000static void i9xx_update_primary_plane(struct drm_plane *primary,
3001 const struct intel_crtc_state *crtc_state,
3002 const struct intel_plane_state *plane_state)
81255565 3003{
a8d201af 3004 struct drm_device *dev = primary->dev;
fac5e23e 3005 struct drm_i915_private *dev_priv = to_i915(dev);
a8d201af
ML
3006 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3007 struct drm_framebuffer *fb = plane_state->base.fb;
3008 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
81255565 3009 int plane = intel_crtc->plane;
54ea9da8 3010 u32 linear_offset;
81255565 3011 u32 dspcntr;
f0f59a00 3012 i915_reg_t reg = DSPCNTR(plane);
8d0deca8 3013 unsigned int rotation = plane_state->base.rotation;
936e71e3
VS
3014 int x = plane_state->base.src.x1 >> 16;
3015 int y = plane_state->base.src.y1 >> 16;
c9ba6fad 3016
f45651ba
VS
3017 dspcntr = DISPPLANE_GAMMA_ENABLE;
3018
fdd508a6 3019 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
3020
3021 if (INTEL_INFO(dev)->gen < 4) {
3022 if (intel_crtc->pipe == PIPE_B)
3023 dspcntr |= DISPPLANE_SEL_PIPE_B;
3024
3025 /* pipesrc and dspsize control the size that is scaled from,
3026 * which should always be the user's requested size.
3027 */
3028 I915_WRITE(DSPSIZE(plane),
a8d201af
ML
3029 ((crtc_state->pipe_src_h - 1) << 16) |
3030 (crtc_state->pipe_src_w - 1));
f45651ba 3031 I915_WRITE(DSPPOS(plane), 0);
c14b0485
VS
3032 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
3033 I915_WRITE(PRIMSIZE(plane),
a8d201af
ML
3034 ((crtc_state->pipe_src_h - 1) << 16) |
3035 (crtc_state->pipe_src_w - 1));
c14b0485
VS
3036 I915_WRITE(PRIMPOS(plane), 0);
3037 I915_WRITE(PRIMCNSTALPHA(plane), 0);
f45651ba 3038 }
81255565 3039
57779d06
VS
3040 switch (fb->pixel_format) {
3041 case DRM_FORMAT_C8:
81255565
JB
3042 dspcntr |= DISPPLANE_8BPP;
3043 break;
57779d06 3044 case DRM_FORMAT_XRGB1555:
57779d06 3045 dspcntr |= DISPPLANE_BGRX555;
81255565 3046 break;
57779d06
VS
3047 case DRM_FORMAT_RGB565:
3048 dspcntr |= DISPPLANE_BGRX565;
3049 break;
3050 case DRM_FORMAT_XRGB8888:
57779d06
VS
3051 dspcntr |= DISPPLANE_BGRX888;
3052 break;
3053 case DRM_FORMAT_XBGR8888:
57779d06
VS
3054 dspcntr |= DISPPLANE_RGBX888;
3055 break;
3056 case DRM_FORMAT_XRGB2101010:
57779d06
VS
3057 dspcntr |= DISPPLANE_BGRX101010;
3058 break;
3059 case DRM_FORMAT_XBGR2101010:
57779d06 3060 dspcntr |= DISPPLANE_RGBX101010;
81255565
JB
3061 break;
3062 default:
baba133a 3063 BUG();
81255565 3064 }
57779d06 3065
72618ebf
VS
3066 if (INTEL_GEN(dev_priv) >= 4 &&
3067 fb->modifier[0] == I915_FORMAT_MOD_X_TILED)
f45651ba 3068 dspcntr |= DISPPLANE_TILED;
81255565 3069
de1aa629
VS
3070 if (IS_G4X(dev))
3071 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
3072
2949056c 3073 intel_add_fb_offsets(&x, &y, plane_state, 0);
81255565 3074
6687c906 3075 if (INTEL_INFO(dev)->gen >= 4)
c2c75131 3076 intel_crtc->dspaddr_offset =
2949056c 3077 intel_compute_tile_offset(&x, &y, plane_state, 0);
e506a0c6 3078
31ad61e4 3079 if (rotation == DRM_ROTATE_180) {
48404c1e
SJ
3080 dspcntr |= DISPPLANE_ROTATE_180;
3081
a8d201af
ML
3082 x += (crtc_state->pipe_src_w - 1);
3083 y += (crtc_state->pipe_src_h - 1);
48404c1e
SJ
3084 }
3085
2949056c 3086 linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0);
6687c906
VS
3087
3088 if (INTEL_INFO(dev)->gen < 4)
3089 intel_crtc->dspaddr_offset = linear_offset;
3090
2db3366b
PZ
3091 intel_crtc->adjusted_x = x;
3092 intel_crtc->adjusted_y = y;
3093
48404c1e
SJ
3094 I915_WRITE(reg, dspcntr);
3095
01f2c773 3096 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
a6c45cf0 3097 if (INTEL_INFO(dev)->gen >= 4) {
85ba7b7d 3098 I915_WRITE(DSPSURF(plane),
6687c906
VS
3099 intel_fb_gtt_offset(fb, rotation) +
3100 intel_crtc->dspaddr_offset);
5eddb70b 3101 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 3102 I915_WRITE(DSPLINOFF(plane), linear_offset);
5eddb70b 3103 } else
058d88c4 3104 I915_WRITE(DSPADDR(plane), i915_gem_object_ggtt_offset(obj, NULL) + linear_offset);
5eddb70b 3105 POSTING_READ(reg);
17638cd6
JB
3106}
3107
a8d201af
ML
3108static void i9xx_disable_primary_plane(struct drm_plane *primary,
3109 struct drm_crtc *crtc)
17638cd6
JB
3110{
3111 struct drm_device *dev = crtc->dev;
fac5e23e 3112 struct drm_i915_private *dev_priv = to_i915(dev);
17638cd6 3113 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
17638cd6 3114 int plane = intel_crtc->plane;
f45651ba 3115
a8d201af
ML
3116 I915_WRITE(DSPCNTR(plane), 0);
3117 if (INTEL_INFO(dev_priv)->gen >= 4)
fdd508a6 3118 I915_WRITE(DSPSURF(plane), 0);
a8d201af
ML
3119 else
3120 I915_WRITE(DSPADDR(plane), 0);
3121 POSTING_READ(DSPCNTR(plane));
3122}
c9ba6fad 3123
a8d201af
ML
3124static void ironlake_update_primary_plane(struct drm_plane *primary,
3125 const struct intel_crtc_state *crtc_state,
3126 const struct intel_plane_state *plane_state)
3127{
3128 struct drm_device *dev = primary->dev;
fac5e23e 3129 struct drm_i915_private *dev_priv = to_i915(dev);
a8d201af
ML
3130 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3131 struct drm_framebuffer *fb = plane_state->base.fb;
a8d201af 3132 int plane = intel_crtc->plane;
54ea9da8 3133 u32 linear_offset;
a8d201af
ML
3134 u32 dspcntr;
3135 i915_reg_t reg = DSPCNTR(plane);
8d0deca8 3136 unsigned int rotation = plane_state->base.rotation;
936e71e3
VS
3137 int x = plane_state->base.src.x1 >> 16;
3138 int y = plane_state->base.src.y1 >> 16;
c9ba6fad 3139
f45651ba 3140 dspcntr = DISPPLANE_GAMMA_ENABLE;
fdd508a6 3141 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
3142
3143 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3144 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
17638cd6 3145
57779d06
VS
3146 switch (fb->pixel_format) {
3147 case DRM_FORMAT_C8:
17638cd6
JB
3148 dspcntr |= DISPPLANE_8BPP;
3149 break;
57779d06
VS
3150 case DRM_FORMAT_RGB565:
3151 dspcntr |= DISPPLANE_BGRX565;
17638cd6 3152 break;
57779d06 3153 case DRM_FORMAT_XRGB8888:
57779d06
VS
3154 dspcntr |= DISPPLANE_BGRX888;
3155 break;
3156 case DRM_FORMAT_XBGR8888:
57779d06
VS
3157 dspcntr |= DISPPLANE_RGBX888;
3158 break;
3159 case DRM_FORMAT_XRGB2101010:
57779d06
VS
3160 dspcntr |= DISPPLANE_BGRX101010;
3161 break;
3162 case DRM_FORMAT_XBGR2101010:
57779d06 3163 dspcntr |= DISPPLANE_RGBX101010;
17638cd6
JB
3164 break;
3165 default:
baba133a 3166 BUG();
17638cd6
JB
3167 }
3168
72618ebf 3169 if (fb->modifier[0] == I915_FORMAT_MOD_X_TILED)
17638cd6 3170 dspcntr |= DISPPLANE_TILED;
17638cd6 3171
f45651ba 3172 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
1f5d76db 3173 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
17638cd6 3174
2949056c 3175 intel_add_fb_offsets(&x, &y, plane_state, 0);
6687c906 3176
c2c75131 3177 intel_crtc->dspaddr_offset =
2949056c 3178 intel_compute_tile_offset(&x, &y, plane_state, 0);
6687c906 3179
31ad61e4 3180 if (rotation == DRM_ROTATE_180) {
48404c1e
SJ
3181 dspcntr |= DISPPLANE_ROTATE_180;
3182
3183 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
a8d201af
ML
3184 x += (crtc_state->pipe_src_w - 1);
3185 y += (crtc_state->pipe_src_h - 1);
48404c1e
SJ
3186 }
3187 }
3188
2949056c 3189 linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0);
6687c906 3190
2db3366b
PZ
3191 intel_crtc->adjusted_x = x;
3192 intel_crtc->adjusted_y = y;
3193
48404c1e 3194 I915_WRITE(reg, dspcntr);
17638cd6 3195
01f2c773 3196 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
85ba7b7d 3197 I915_WRITE(DSPSURF(plane),
6687c906
VS
3198 intel_fb_gtt_offset(fb, rotation) +
3199 intel_crtc->dspaddr_offset);
b3dc685e 3200 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
bc1c91eb
DL
3201 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
3202 } else {
3203 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
3204 I915_WRITE(DSPLINOFF(plane), linear_offset);
3205 }
17638cd6 3206 POSTING_READ(reg);
17638cd6
JB
3207}
3208
7b49f948
VS
3209u32 intel_fb_stride_alignment(const struct drm_i915_private *dev_priv,
3210 uint64_t fb_modifier, uint32_t pixel_format)
b321803d 3211{
7b49f948 3212 if (fb_modifier == DRM_FORMAT_MOD_NONE) {
b321803d 3213 return 64;
7b49f948
VS
3214 } else {
3215 int cpp = drm_format_plane_cpp(pixel_format, 0);
3216
27ba3910 3217 return intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
b321803d
DL
3218 }
3219}
3220
6687c906
VS
3221u32 intel_fb_gtt_offset(struct drm_framebuffer *fb,
3222 unsigned int rotation)
121920fa 3223{
6687c906 3224 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
ce7f1728 3225 struct i915_ggtt_view view;
058d88c4 3226 struct i915_vma *vma;
121920fa 3227
6687c906 3228 intel_fill_fb_ggtt_view(&view, fb, rotation);
dedf278c 3229
058d88c4
CW
3230 vma = i915_gem_object_to_ggtt(obj, &view);
3231 if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n",
3232 view.type))
3233 return -1;
3234
bde13ebd 3235 return i915_ggtt_offset(vma);
121920fa
TU
3236}
3237
e435d6e5
ML
3238static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
3239{
3240 struct drm_device *dev = intel_crtc->base.dev;
fac5e23e 3241 struct drm_i915_private *dev_priv = to_i915(dev);
e435d6e5
ML
3242
3243 I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
3244 I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
3245 I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
e435d6e5
ML
3246}
3247
a1b2278e
CK
3248/*
3249 * This function detaches (aka. unbinds) unused scalers in hardware
3250 */
0583236e 3251static void skl_detach_scalers(struct intel_crtc *intel_crtc)
a1b2278e 3252{
a1b2278e
CK
3253 struct intel_crtc_scaler_state *scaler_state;
3254 int i;
3255
a1b2278e
CK
3256 scaler_state = &intel_crtc->config->scaler_state;
3257
3258 /* loop through and disable scalers that aren't in use */
3259 for (i = 0; i < intel_crtc->num_scalers; i++) {
e435d6e5
ML
3260 if (!scaler_state->scalers[i].in_use)
3261 skl_detach_scaler(intel_crtc, i);
a1b2278e
CK
3262 }
3263}
3264
d2196774
VS
3265u32 skl_plane_stride(const struct drm_framebuffer *fb, int plane,
3266 unsigned int rotation)
3267{
3268 const struct drm_i915_private *dev_priv = to_i915(fb->dev);
3269 u32 stride = intel_fb_pitch(fb, plane, rotation);
3270
3271 /*
3272 * The stride is either expressed as a multiple of 64 bytes chunks for
3273 * linear buffers or in number of tiles for tiled buffers.
3274 */
3275 if (intel_rotation_90_or_270(rotation)) {
3276 int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
3277
3278 stride /= intel_tile_height(dev_priv, fb->modifier[0], cpp);
3279 } else {
3280 stride /= intel_fb_stride_alignment(dev_priv, fb->modifier[0],
3281 fb->pixel_format);
3282 }
3283
3284 return stride;
3285}
3286
6156a456 3287u32 skl_plane_ctl_format(uint32_t pixel_format)
70d21f0e 3288{
6156a456 3289 switch (pixel_format) {
d161cf7a 3290 case DRM_FORMAT_C8:
c34ce3d1 3291 return PLANE_CTL_FORMAT_INDEXED;
70d21f0e 3292 case DRM_FORMAT_RGB565:
c34ce3d1 3293 return PLANE_CTL_FORMAT_RGB_565;
70d21f0e 3294 case DRM_FORMAT_XBGR8888:
c34ce3d1 3295 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
6156a456 3296 case DRM_FORMAT_XRGB8888:
c34ce3d1 3297 return PLANE_CTL_FORMAT_XRGB_8888;
6156a456
CK
3298 /*
3299 * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
3300 * to be already pre-multiplied. We need to add a knob (or a different
3301 * DRM_FORMAT) for user-space to configure that.
3302 */
f75fb42a 3303 case DRM_FORMAT_ABGR8888:
c34ce3d1 3304 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
6156a456 3305 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
6156a456 3306 case DRM_FORMAT_ARGB8888:
c34ce3d1 3307 return PLANE_CTL_FORMAT_XRGB_8888 |
6156a456 3308 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
70d21f0e 3309 case DRM_FORMAT_XRGB2101010:
c34ce3d1 3310 return PLANE_CTL_FORMAT_XRGB_2101010;
70d21f0e 3311 case DRM_FORMAT_XBGR2101010:
c34ce3d1 3312 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
6156a456 3313 case DRM_FORMAT_YUYV:
c34ce3d1 3314 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
6156a456 3315 case DRM_FORMAT_YVYU:
c34ce3d1 3316 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
6156a456 3317 case DRM_FORMAT_UYVY:
c34ce3d1 3318 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
6156a456 3319 case DRM_FORMAT_VYUY:
c34ce3d1 3320 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
70d21f0e 3321 default:
4249eeef 3322 MISSING_CASE(pixel_format);
70d21f0e 3323 }
8cfcba41 3324
c34ce3d1 3325 return 0;
6156a456 3326}
70d21f0e 3327
6156a456
CK
3328u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
3329{
6156a456 3330 switch (fb_modifier) {
30af77c4 3331 case DRM_FORMAT_MOD_NONE:
70d21f0e 3332 break;
30af77c4 3333 case I915_FORMAT_MOD_X_TILED:
c34ce3d1 3334 return PLANE_CTL_TILED_X;
b321803d 3335 case I915_FORMAT_MOD_Y_TILED:
c34ce3d1 3336 return PLANE_CTL_TILED_Y;
b321803d 3337 case I915_FORMAT_MOD_Yf_TILED:
c34ce3d1 3338 return PLANE_CTL_TILED_YF;
70d21f0e 3339 default:
6156a456 3340 MISSING_CASE(fb_modifier);
70d21f0e 3341 }
8cfcba41 3342
c34ce3d1 3343 return 0;
6156a456 3344}
70d21f0e 3345
6156a456
CK
3346u32 skl_plane_ctl_rotation(unsigned int rotation)
3347{
3b7a5119 3348 switch (rotation) {
31ad61e4 3349 case DRM_ROTATE_0:
6156a456 3350 break;
1e8df167
SJ
3351 /*
3352 * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3353 * while i915 HW rotation is clockwise, thats why this swapping.
3354 */
31ad61e4 3355 case DRM_ROTATE_90:
1e8df167 3356 return PLANE_CTL_ROTATE_270;
31ad61e4 3357 case DRM_ROTATE_180:
c34ce3d1 3358 return PLANE_CTL_ROTATE_180;
31ad61e4 3359 case DRM_ROTATE_270:
1e8df167 3360 return PLANE_CTL_ROTATE_90;
6156a456
CK
3361 default:
3362 MISSING_CASE(rotation);
3363 }
3364
c34ce3d1 3365 return 0;
6156a456
CK
3366}
3367
a8d201af
ML
3368static void skylake_update_primary_plane(struct drm_plane *plane,
3369 const struct intel_crtc_state *crtc_state,
3370 const struct intel_plane_state *plane_state)
6156a456 3371{
a8d201af 3372 struct drm_device *dev = plane->dev;
fac5e23e 3373 struct drm_i915_private *dev_priv = to_i915(dev);
a8d201af
ML
3374 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3375 struct drm_framebuffer *fb = plane_state->base.fb;
62e0fb88 3376 const struct skl_wm_values *wm = &dev_priv->wm.skl_results;
6156a456 3377 int pipe = intel_crtc->pipe;
d2196774 3378 u32 plane_ctl;
a8d201af 3379 unsigned int rotation = plane_state->base.rotation;
d2196774 3380 u32 stride = skl_plane_stride(fb, 0, rotation);
b63a16f6 3381 u32 surf_addr = plane_state->main.offset;
a8d201af 3382 int scaler_id = plane_state->scaler_id;
b63a16f6
VS
3383 int src_x = plane_state->main.x;
3384 int src_y = plane_state->main.y;
936e71e3
VS
3385 int src_w = drm_rect_width(&plane_state->base.src) >> 16;
3386 int src_h = drm_rect_height(&plane_state->base.src) >> 16;
3387 int dst_x = plane_state->base.dst.x1;
3388 int dst_y = plane_state->base.dst.y1;
3389 int dst_w = drm_rect_width(&plane_state->base.dst);
3390 int dst_h = drm_rect_height(&plane_state->base.dst);
70d21f0e 3391
6156a456
CK
3392 plane_ctl = PLANE_CTL_ENABLE |
3393 PLANE_CTL_PIPE_GAMMA_ENABLE |
3394 PLANE_CTL_PIPE_CSC_ENABLE;
3395
3396 plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3397 plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3398 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
6156a456
CK
3399 plane_ctl |= skl_plane_ctl_rotation(rotation);
3400
6687c906
VS
3401 /* Sizes are 0 based */
3402 src_w--;
3403 src_h--;
3404 dst_w--;
3405 dst_h--;
3406
4c0b8a8b
PZ
3407 intel_crtc->dspaddr_offset = surf_addr;
3408
6687c906
VS
3409 intel_crtc->adjusted_x = src_x;
3410 intel_crtc->adjusted_y = src_y;
2db3366b 3411
62e0fb88
L
3412 if (wm->dirty_pipes & drm_crtc_mask(&intel_crtc->base))
3413 skl_write_plane_wm(intel_crtc, wm, 0);
3414
70d21f0e 3415 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
6687c906 3416 I915_WRITE(PLANE_OFFSET(pipe, 0), (src_y << 16) | src_x);
ef78ec94 3417 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
6687c906 3418 I915_WRITE(PLANE_SIZE(pipe, 0), (src_h << 16) | src_w);
6156a456
CK
3419
3420 if (scaler_id >= 0) {
3421 uint32_t ps_ctrl = 0;
3422
3423 WARN_ON(!dst_w || !dst_h);
3424 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3425 crtc_state->scaler_state.scalers[scaler_id].mode;
3426 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3427 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3428 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3429 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3430 I915_WRITE(PLANE_POS(pipe, 0), 0);
3431 } else {
3432 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3433 }
3434
6687c906
VS
3435 I915_WRITE(PLANE_SURF(pipe, 0),
3436 intel_fb_gtt_offset(fb, rotation) + surf_addr);
70d21f0e
DL
3437
3438 POSTING_READ(PLANE_SURF(pipe, 0));
3439}
3440
a8d201af
ML
3441static void skylake_disable_primary_plane(struct drm_plane *primary,
3442 struct drm_crtc *crtc)
17638cd6
JB
3443{
3444 struct drm_device *dev = crtc->dev;
fac5e23e 3445 struct drm_i915_private *dev_priv = to_i915(dev);
62e0fb88
L
3446 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3447 int pipe = intel_crtc->pipe;
3448
ccebc23b
L
3449 /*
3450 * We only populate skl_results on watermark updates, and if the
3451 * plane's visiblity isn't actually changing neither is its watermarks.
3452 */
3453 if (!crtc->primary->state->visible)
3454 skl_write_plane_wm(intel_crtc, &dev_priv->wm.skl_results, 0);
17638cd6 3455
a8d201af
ML
3456 I915_WRITE(PLANE_CTL(pipe, 0), 0);
3457 I915_WRITE(PLANE_SURF(pipe, 0), 0);
3458 POSTING_READ(PLANE_SURF(pipe, 0));
3459}
29b9bde6 3460
a8d201af
ML
3461/* Assume fb object is pinned & idle & fenced and just update base pointers */
3462static int
3463intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3464 int x, int y, enum mode_set_atomic state)
3465{
3466 /* Support for kgdboc is disabled, this needs a major rework. */
3467 DRM_ERROR("legacy panic handler not supported any more.\n");
3468
3469 return -ENODEV;
81255565
JB
3470}
3471
5a21b665
DV
3472static void intel_complete_page_flips(struct drm_i915_private *dev_priv)
3473{
3474 struct intel_crtc *crtc;
3475
91c8a326 3476 for_each_intel_crtc(&dev_priv->drm, crtc)
5a21b665
DV
3477 intel_finish_page_flip_cs(dev_priv, crtc->pipe);
3478}
3479
7514747d
VS
3480static void intel_update_primary_planes(struct drm_device *dev)
3481{
7514747d 3482 struct drm_crtc *crtc;
96a02917 3483
70e1e0ec 3484 for_each_crtc(dev, crtc) {
11c22da6 3485 struct intel_plane *plane = to_intel_plane(crtc->primary);
73974893
ML
3486 struct intel_plane_state *plane_state =
3487 to_intel_plane_state(plane->base.state);
11c22da6 3488
936e71e3 3489 if (plane_state->base.visible)
a8d201af
ML
3490 plane->update_plane(&plane->base,
3491 to_intel_crtc_state(crtc->state),
3492 plane_state);
73974893
ML
3493 }
3494}
3495
3496static int
3497__intel_display_resume(struct drm_device *dev,
3498 struct drm_atomic_state *state)
3499{
3500 struct drm_crtc_state *crtc_state;
3501 struct drm_crtc *crtc;
3502 int i, ret;
11c22da6 3503
73974893
ML
3504 intel_modeset_setup_hw_state(dev);
3505 i915_redisable_vga(dev);
3506
3507 if (!state)
3508 return 0;
3509
3510 for_each_crtc_in_state(state, crtc, crtc_state, i) {
3511 /*
3512 * Force recalculation even if we restore
3513 * current state. With fast modeset this may not result
3514 * in a modeset when the state is compatible.
3515 */
3516 crtc_state->mode_changed = true;
96a02917 3517 }
73974893
ML
3518
3519 /* ignore any reset values/BIOS leftovers in the WM registers */
3520 to_intel_atomic_state(state)->skip_intermediate_wm = true;
3521
3522 ret = drm_atomic_commit(state);
3523
3524 WARN_ON(ret == -EDEADLK);
3525 return ret;
96a02917
VS
3526}
3527
4ac2ba2f
VS
3528static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv)
3529{
ae98104b
VS
3530 return intel_has_gpu_reset(dev_priv) &&
3531 INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv);
4ac2ba2f
VS
3532}
3533
c033666a 3534void intel_prepare_reset(struct drm_i915_private *dev_priv)
7514747d 3535{
73974893
ML
3536 struct drm_device *dev = &dev_priv->drm;
3537 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
3538 struct drm_atomic_state *state;
3539 int ret;
3540
73974893
ML
3541 /*
3542 * Need mode_config.mutex so that we don't
3543 * trample ongoing ->detect() and whatnot.
3544 */
3545 mutex_lock(&dev->mode_config.mutex);
3546 drm_modeset_acquire_init(ctx, 0);
3547 while (1) {
3548 ret = drm_modeset_lock_all_ctx(dev, ctx);
3549 if (ret != -EDEADLK)
3550 break;
3551
3552 drm_modeset_backoff(ctx);
3553 }
3554
3555 /* reset doesn't touch the display, but flips might get nuked anyway, */
522a63de 3556 if (!i915.force_reset_modeset_test &&
4ac2ba2f 3557 !gpu_reset_clobbers_display(dev_priv))
7514747d
VS
3558 return;
3559
f98ce92f
VS
3560 /*
3561 * Disabling the crtcs gracefully seems nicer. Also the
3562 * g33 docs say we should at least disable all the planes.
3563 */
73974893
ML
3564 state = drm_atomic_helper_duplicate_state(dev, ctx);
3565 if (IS_ERR(state)) {
3566 ret = PTR_ERR(state);
3567 state = NULL;
3568 DRM_ERROR("Duplicating state failed with %i\n", ret);
3569 goto err;
3570 }
3571
3572 ret = drm_atomic_helper_disable_all(dev, ctx);
3573 if (ret) {
3574 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
3575 goto err;
3576 }
3577
3578 dev_priv->modeset_restore_state = state;
3579 state->acquire_ctx = ctx;
3580 return;
3581
3582err:
3583 drm_atomic_state_free(state);
7514747d
VS
3584}
3585
c033666a 3586void intel_finish_reset(struct drm_i915_private *dev_priv)
7514747d 3587{
73974893
ML
3588 struct drm_device *dev = &dev_priv->drm;
3589 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
3590 struct drm_atomic_state *state = dev_priv->modeset_restore_state;
3591 int ret;
3592
5a21b665
DV
3593 /*
3594 * Flips in the rings will be nuked by the reset,
3595 * so complete all pending flips so that user space
3596 * will get its events and not get stuck.
3597 */
3598 intel_complete_page_flips(dev_priv);
3599
73974893
ML
3600 dev_priv->modeset_restore_state = NULL;
3601
7514747d 3602 /* reset doesn't touch the display */
4ac2ba2f 3603 if (!gpu_reset_clobbers_display(dev_priv)) {
522a63de
ML
3604 if (!state) {
3605 /*
3606 * Flips in the rings have been nuked by the reset,
3607 * so update the base address of all primary
3608 * planes to the the last fb to make sure we're
3609 * showing the correct fb after a reset.
3610 *
3611 * FIXME: Atomic will make this obsolete since we won't schedule
3612 * CS-based flips (which might get lost in gpu resets) any more.
3613 */
3614 intel_update_primary_planes(dev);
3615 } else {
3616 ret = __intel_display_resume(dev, state);
3617 if (ret)
3618 DRM_ERROR("Restoring old state failed with %i\n", ret);
3619 }
73974893
ML
3620 } else {
3621 /*
3622 * The display has been reset as well,
3623 * so need a full re-initialization.
3624 */
3625 intel_runtime_pm_disable_interrupts(dev_priv);
3626 intel_runtime_pm_enable_interrupts(dev_priv);
7514747d 3627
51f59205 3628 intel_pps_unlock_regs_wa(dev_priv);
73974893 3629 intel_modeset_init_hw(dev);
7514747d 3630
73974893
ML
3631 spin_lock_irq(&dev_priv->irq_lock);
3632 if (dev_priv->display.hpd_irq_setup)
3633 dev_priv->display.hpd_irq_setup(dev_priv);
3634 spin_unlock_irq(&dev_priv->irq_lock);
7514747d 3635
73974893
ML
3636 ret = __intel_display_resume(dev, state);
3637 if (ret)
3638 DRM_ERROR("Restoring old state failed with %i\n", ret);
7514747d 3639
73974893
ML
3640 intel_hpd_init(dev_priv);
3641 }
7514747d 3642
73974893
ML
3643 drm_modeset_drop_locks(ctx);
3644 drm_modeset_acquire_fini(ctx);
3645 mutex_unlock(&dev->mode_config.mutex);
7514747d
VS
3646}
3647
8af29b0c
CW
3648static bool abort_flip_on_reset(struct intel_crtc *crtc)
3649{
3650 struct i915_gpu_error *error = &to_i915(crtc->base.dev)->gpu_error;
3651
3652 if (i915_reset_in_progress(error))
3653 return true;
3654
3655 if (crtc->reset_count != i915_reset_count(error))
3656 return true;
3657
3658 return false;
3659}
3660
7d5e3799
CW
3661static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3662{
5a21b665
DV
3663 struct drm_device *dev = crtc->dev;
3664 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5a21b665
DV
3665 bool pending;
3666
8af29b0c 3667 if (abort_flip_on_reset(intel_crtc))
5a21b665
DV
3668 return false;
3669
3670 spin_lock_irq(&dev->event_lock);
3671 pending = to_intel_crtc(crtc)->flip_work != NULL;
3672 spin_unlock_irq(&dev->event_lock);
3673
3674 return pending;
7d5e3799
CW
3675}
3676
bfd16b2a
ML
3677static void intel_update_pipe_config(struct intel_crtc *crtc,
3678 struct intel_crtc_state *old_crtc_state)
e30e8f75
GP
3679{
3680 struct drm_device *dev = crtc->base.dev;
fac5e23e 3681 struct drm_i915_private *dev_priv = to_i915(dev);
bfd16b2a
ML
3682 struct intel_crtc_state *pipe_config =
3683 to_intel_crtc_state(crtc->base.state);
e30e8f75 3684
bfd16b2a
ML
3685 /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3686 crtc->base.mode = crtc->base.state->mode;
3687
3688 DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
3689 old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
3690 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
e30e8f75
GP
3691
3692 /*
3693 * Update pipe size and adjust fitter if needed: the reason for this is
3694 * that in compute_mode_changes we check the native mode (not the pfit
3695 * mode) to see if we can flip rather than do a full mode set. In the
3696 * fastboot case, we'll flip, but if we don't update the pipesrc and
3697 * pfit state, we'll end up with a big fb scanned out into the wrong
3698 * sized surface.
e30e8f75
GP
3699 */
3700
e30e8f75 3701 I915_WRITE(PIPESRC(crtc->pipe),
bfd16b2a
ML
3702 ((pipe_config->pipe_src_w - 1) << 16) |
3703 (pipe_config->pipe_src_h - 1));
3704
3705 /* on skylake this is done by detaching scalers */
3706 if (INTEL_INFO(dev)->gen >= 9) {
3707 skl_detach_scalers(crtc);
3708
3709 if (pipe_config->pch_pfit.enabled)
3710 skylake_pfit_enable(crtc);
6e266956 3711 } else if (HAS_PCH_SPLIT(dev_priv)) {
bfd16b2a
ML
3712 if (pipe_config->pch_pfit.enabled)
3713 ironlake_pfit_enable(crtc);
3714 else if (old_crtc_state->pch_pfit.enabled)
3715 ironlake_pfit_disable(crtc, true);
e30e8f75 3716 }
e30e8f75
GP
3717}
3718
5e84e1a4
ZW
3719static void intel_fdi_normal_train(struct drm_crtc *crtc)
3720{
3721 struct drm_device *dev = crtc->dev;
fac5e23e 3722 struct drm_i915_private *dev_priv = to_i915(dev);
5e84e1a4
ZW
3723 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3724 int pipe = intel_crtc->pipe;
f0f59a00
VS
3725 i915_reg_t reg;
3726 u32 temp;
5e84e1a4
ZW
3727
3728 /* enable normal train */
3729 reg = FDI_TX_CTL(pipe);
3730 temp = I915_READ(reg);
61e499bf 3731 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
3732 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3733 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
3734 } else {
3735 temp &= ~FDI_LINK_TRAIN_NONE;
3736 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 3737 }
5e84e1a4
ZW
3738 I915_WRITE(reg, temp);
3739
3740 reg = FDI_RX_CTL(pipe);
3741 temp = I915_READ(reg);
6e266956 3742 if (HAS_PCH_CPT(dev_priv)) {
5e84e1a4
ZW
3743 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3744 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3745 } else {
3746 temp &= ~FDI_LINK_TRAIN_NONE;
3747 temp |= FDI_LINK_TRAIN_NONE;
3748 }
3749 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3750
3751 /* wait one idle pattern time */
3752 POSTING_READ(reg);
3753 udelay(1000);
357555c0
JB
3754
3755 /* IVB wants error correction enabled */
3756 if (IS_IVYBRIDGE(dev))
3757 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3758 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
3759}
3760
8db9d77b
ZW
3761/* The FDI link training functions for ILK/Ibexpeak. */
3762static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3763{
3764 struct drm_device *dev = crtc->dev;
fac5e23e 3765 struct drm_i915_private *dev_priv = to_i915(dev);
8db9d77b
ZW
3766 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3767 int pipe = intel_crtc->pipe;
f0f59a00
VS
3768 i915_reg_t reg;
3769 u32 temp, tries;
8db9d77b 3770
1c8562f6 3771 /* FDI needs bits from pipe first */
0fc932b8 3772 assert_pipe_enabled(dev_priv, pipe);
0fc932b8 3773
e1a44743
AJ
3774 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3775 for train result */
5eddb70b
CW
3776 reg = FDI_RX_IMR(pipe);
3777 temp = I915_READ(reg);
e1a44743
AJ
3778 temp &= ~FDI_RX_SYMBOL_LOCK;
3779 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
3780 I915_WRITE(reg, temp);
3781 I915_READ(reg);
e1a44743
AJ
3782 udelay(150);
3783
8db9d77b 3784 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
3785 reg = FDI_TX_CTL(pipe);
3786 temp = I915_READ(reg);
627eb5a3 3787 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3788 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
8db9d77b
ZW
3789 temp &= ~FDI_LINK_TRAIN_NONE;
3790 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 3791 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 3792
5eddb70b
CW
3793 reg = FDI_RX_CTL(pipe);
3794 temp = I915_READ(reg);
8db9d77b
ZW
3795 temp &= ~FDI_LINK_TRAIN_NONE;
3796 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
3797 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3798
3799 POSTING_READ(reg);
8db9d77b
ZW
3800 udelay(150);
3801
5b2adf89 3802 /* Ironlake workaround, enable clock pointer after FDI enable*/
8f5718a6
DV
3803 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3804 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3805 FDI_RX_PHASE_SYNC_POINTER_EN);
5b2adf89 3806
5eddb70b 3807 reg = FDI_RX_IIR(pipe);
e1a44743 3808 for (tries = 0; tries < 5; tries++) {
5eddb70b 3809 temp = I915_READ(reg);
8db9d77b
ZW
3810 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3811
3812 if ((temp & FDI_RX_BIT_LOCK)) {
3813 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 3814 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
3815 break;
3816 }
8db9d77b 3817 }
e1a44743 3818 if (tries == 5)
5eddb70b 3819 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3820
3821 /* Train 2 */
5eddb70b
CW
3822 reg = FDI_TX_CTL(pipe);
3823 temp = I915_READ(reg);
8db9d77b
ZW
3824 temp &= ~FDI_LINK_TRAIN_NONE;
3825 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 3826 I915_WRITE(reg, temp);
8db9d77b 3827
5eddb70b
CW
3828 reg = FDI_RX_CTL(pipe);
3829 temp = I915_READ(reg);
8db9d77b
ZW
3830 temp &= ~FDI_LINK_TRAIN_NONE;
3831 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 3832 I915_WRITE(reg, temp);
8db9d77b 3833
5eddb70b
CW
3834 POSTING_READ(reg);
3835 udelay(150);
8db9d77b 3836
5eddb70b 3837 reg = FDI_RX_IIR(pipe);
e1a44743 3838 for (tries = 0; tries < 5; tries++) {
5eddb70b 3839 temp = I915_READ(reg);
8db9d77b
ZW
3840 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3841
3842 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 3843 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
3844 DRM_DEBUG_KMS("FDI train 2 done.\n");
3845 break;
3846 }
8db9d77b 3847 }
e1a44743 3848 if (tries == 5)
5eddb70b 3849 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3850
3851 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 3852
8db9d77b
ZW
3853}
3854
0206e353 3855static const int snb_b_fdi_train_param[] = {
8db9d77b
ZW
3856 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3857 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3858 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3859 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3860};
3861
3862/* The FDI link training functions for SNB/Cougarpoint. */
3863static void gen6_fdi_link_train(struct drm_crtc *crtc)
3864{
3865 struct drm_device *dev = crtc->dev;
fac5e23e 3866 struct drm_i915_private *dev_priv = to_i915(dev);
8db9d77b
ZW
3867 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3868 int pipe = intel_crtc->pipe;
f0f59a00
VS
3869 i915_reg_t reg;
3870 u32 temp, i, retry;
8db9d77b 3871
e1a44743
AJ
3872 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3873 for train result */
5eddb70b
CW
3874 reg = FDI_RX_IMR(pipe);
3875 temp = I915_READ(reg);
e1a44743
AJ
3876 temp &= ~FDI_RX_SYMBOL_LOCK;
3877 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
3878 I915_WRITE(reg, temp);
3879
3880 POSTING_READ(reg);
e1a44743
AJ
3881 udelay(150);
3882
8db9d77b 3883 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
3884 reg = FDI_TX_CTL(pipe);
3885 temp = I915_READ(reg);
627eb5a3 3886 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3887 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
8db9d77b
ZW
3888 temp &= ~FDI_LINK_TRAIN_NONE;
3889 temp |= FDI_LINK_TRAIN_PATTERN_1;
3890 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3891 /* SNB-B */
3892 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 3893 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 3894
d74cf324
DV
3895 I915_WRITE(FDI_RX_MISC(pipe),
3896 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3897
5eddb70b
CW
3898 reg = FDI_RX_CTL(pipe);
3899 temp = I915_READ(reg);
6e266956 3900 if (HAS_PCH_CPT(dev_priv)) {
8db9d77b
ZW
3901 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3902 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3903 } else {
3904 temp &= ~FDI_LINK_TRAIN_NONE;
3905 temp |= FDI_LINK_TRAIN_PATTERN_1;
3906 }
5eddb70b
CW
3907 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3908
3909 POSTING_READ(reg);
8db9d77b
ZW
3910 udelay(150);
3911
0206e353 3912 for (i = 0; i < 4; i++) {
5eddb70b
CW
3913 reg = FDI_TX_CTL(pipe);
3914 temp = I915_READ(reg);
8db9d77b
ZW
3915 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3916 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3917 I915_WRITE(reg, temp);
3918
3919 POSTING_READ(reg);
8db9d77b
ZW
3920 udelay(500);
3921
fa37d39e
SP
3922 for (retry = 0; retry < 5; retry++) {
3923 reg = FDI_RX_IIR(pipe);
3924 temp = I915_READ(reg);
3925 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3926 if (temp & FDI_RX_BIT_LOCK) {
3927 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3928 DRM_DEBUG_KMS("FDI train 1 done.\n");
3929 break;
3930 }
3931 udelay(50);
8db9d77b 3932 }
fa37d39e
SP
3933 if (retry < 5)
3934 break;
8db9d77b
ZW
3935 }
3936 if (i == 4)
5eddb70b 3937 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3938
3939 /* Train 2 */
5eddb70b
CW
3940 reg = FDI_TX_CTL(pipe);
3941 temp = I915_READ(reg);
8db9d77b
ZW
3942 temp &= ~FDI_LINK_TRAIN_NONE;
3943 temp |= FDI_LINK_TRAIN_PATTERN_2;
3944 if (IS_GEN6(dev)) {
3945 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3946 /* SNB-B */
3947 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3948 }
5eddb70b 3949 I915_WRITE(reg, temp);
8db9d77b 3950
5eddb70b
CW
3951 reg = FDI_RX_CTL(pipe);
3952 temp = I915_READ(reg);
6e266956 3953 if (HAS_PCH_CPT(dev_priv)) {
8db9d77b
ZW
3954 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3955 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3956 } else {
3957 temp &= ~FDI_LINK_TRAIN_NONE;
3958 temp |= FDI_LINK_TRAIN_PATTERN_2;
3959 }
5eddb70b
CW
3960 I915_WRITE(reg, temp);
3961
3962 POSTING_READ(reg);
8db9d77b
ZW
3963 udelay(150);
3964
0206e353 3965 for (i = 0; i < 4; i++) {
5eddb70b
CW
3966 reg = FDI_TX_CTL(pipe);
3967 temp = I915_READ(reg);
8db9d77b
ZW
3968 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3969 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3970 I915_WRITE(reg, temp);
3971
3972 POSTING_READ(reg);
8db9d77b
ZW
3973 udelay(500);
3974
fa37d39e
SP
3975 for (retry = 0; retry < 5; retry++) {
3976 reg = FDI_RX_IIR(pipe);
3977 temp = I915_READ(reg);
3978 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3979 if (temp & FDI_RX_SYMBOL_LOCK) {
3980 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3981 DRM_DEBUG_KMS("FDI train 2 done.\n");
3982 break;
3983 }
3984 udelay(50);
8db9d77b 3985 }
fa37d39e
SP
3986 if (retry < 5)
3987 break;
8db9d77b
ZW
3988 }
3989 if (i == 4)
5eddb70b 3990 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3991
3992 DRM_DEBUG_KMS("FDI train done.\n");
3993}
3994
357555c0
JB
3995/* Manual link training for Ivy Bridge A0 parts */
3996static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3997{
3998 struct drm_device *dev = crtc->dev;
fac5e23e 3999 struct drm_i915_private *dev_priv = to_i915(dev);
357555c0
JB
4000 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4001 int pipe = intel_crtc->pipe;
f0f59a00
VS
4002 i915_reg_t reg;
4003 u32 temp, i, j;
357555c0
JB
4004
4005 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
4006 for train result */
4007 reg = FDI_RX_IMR(pipe);
4008 temp = I915_READ(reg);
4009 temp &= ~FDI_RX_SYMBOL_LOCK;
4010 temp &= ~FDI_RX_BIT_LOCK;
4011 I915_WRITE(reg, temp);
4012
4013 POSTING_READ(reg);
4014 udelay(150);
4015
01a415fd
DV
4016 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
4017 I915_READ(FDI_RX_IIR(pipe)));
4018
139ccd3f
JB
4019 /* Try each vswing and preemphasis setting twice before moving on */
4020 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
4021 /* disable first in case we need to retry */
4022 reg = FDI_TX_CTL(pipe);
4023 temp = I915_READ(reg);
4024 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
4025 temp &= ~FDI_TX_ENABLE;
4026 I915_WRITE(reg, temp);
357555c0 4027
139ccd3f
JB
4028 reg = FDI_RX_CTL(pipe);
4029 temp = I915_READ(reg);
4030 temp &= ~FDI_LINK_TRAIN_AUTO;
4031 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4032 temp &= ~FDI_RX_ENABLE;
4033 I915_WRITE(reg, temp);
357555c0 4034
139ccd3f 4035 /* enable CPU FDI TX and PCH FDI RX */
357555c0
JB
4036 reg = FDI_TX_CTL(pipe);
4037 temp = I915_READ(reg);
139ccd3f 4038 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 4039 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
139ccd3f 4040 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
357555c0 4041 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
139ccd3f
JB
4042 temp |= snb_b_fdi_train_param[j/2];
4043 temp |= FDI_COMPOSITE_SYNC;
4044 I915_WRITE(reg, temp | FDI_TX_ENABLE);
357555c0 4045
139ccd3f
JB
4046 I915_WRITE(FDI_RX_MISC(pipe),
4047 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
357555c0 4048
139ccd3f 4049 reg = FDI_RX_CTL(pipe);
357555c0 4050 temp = I915_READ(reg);
139ccd3f
JB
4051 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
4052 temp |= FDI_COMPOSITE_SYNC;
4053 I915_WRITE(reg, temp | FDI_RX_ENABLE);
357555c0 4054
139ccd3f
JB
4055 POSTING_READ(reg);
4056 udelay(1); /* should be 0.5us */
357555c0 4057
139ccd3f
JB
4058 for (i = 0; i < 4; i++) {
4059 reg = FDI_RX_IIR(pipe);
4060 temp = I915_READ(reg);
4061 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 4062
139ccd3f
JB
4063 if (temp & FDI_RX_BIT_LOCK ||
4064 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
4065 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
4066 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
4067 i);
4068 break;
4069 }
4070 udelay(1); /* should be 0.5us */
4071 }
4072 if (i == 4) {
4073 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
4074 continue;
4075 }
357555c0 4076
139ccd3f 4077 /* Train 2 */
357555c0
JB
4078 reg = FDI_TX_CTL(pipe);
4079 temp = I915_READ(reg);
139ccd3f
JB
4080 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
4081 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
4082 I915_WRITE(reg, temp);
4083
4084 reg = FDI_RX_CTL(pipe);
4085 temp = I915_READ(reg);
4086 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4087 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
357555c0
JB
4088 I915_WRITE(reg, temp);
4089
4090 POSTING_READ(reg);
139ccd3f 4091 udelay(2); /* should be 1.5us */
357555c0 4092
139ccd3f
JB
4093 for (i = 0; i < 4; i++) {
4094 reg = FDI_RX_IIR(pipe);
4095 temp = I915_READ(reg);
4096 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 4097
139ccd3f
JB
4098 if (temp & FDI_RX_SYMBOL_LOCK ||
4099 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
4100 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
4101 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
4102 i);
4103 goto train_done;
4104 }
4105 udelay(2); /* should be 1.5us */
357555c0 4106 }
139ccd3f
JB
4107 if (i == 4)
4108 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
357555c0 4109 }
357555c0 4110
139ccd3f 4111train_done:
357555c0
JB
4112 DRM_DEBUG_KMS("FDI train done.\n");
4113}
4114
88cefb6c 4115static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2c07245f 4116{
88cefb6c 4117 struct drm_device *dev = intel_crtc->base.dev;
fac5e23e 4118 struct drm_i915_private *dev_priv = to_i915(dev);
2c07245f 4119 int pipe = intel_crtc->pipe;
f0f59a00
VS
4120 i915_reg_t reg;
4121 u32 temp;
c64e311e 4122
c98e9dcf 4123 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
4124 reg = FDI_RX_CTL(pipe);
4125 temp = I915_READ(reg);
627eb5a3 4126 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
6e3c9717 4127 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
dfd07d72 4128 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5eddb70b
CW
4129 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
4130
4131 POSTING_READ(reg);
c98e9dcf
JB
4132 udelay(200);
4133
4134 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
4135 temp = I915_READ(reg);
4136 I915_WRITE(reg, temp | FDI_PCDCLK);
4137
4138 POSTING_READ(reg);
c98e9dcf
JB
4139 udelay(200);
4140
20749730
PZ
4141 /* Enable CPU FDI TX PLL, always on for Ironlake */
4142 reg = FDI_TX_CTL(pipe);
4143 temp = I915_READ(reg);
4144 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
4145 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
5eddb70b 4146
20749730
PZ
4147 POSTING_READ(reg);
4148 udelay(100);
6be4a607 4149 }
0e23b99d
JB
4150}
4151
88cefb6c
DV
4152static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
4153{
4154 struct drm_device *dev = intel_crtc->base.dev;
fac5e23e 4155 struct drm_i915_private *dev_priv = to_i915(dev);
88cefb6c 4156 int pipe = intel_crtc->pipe;
f0f59a00
VS
4157 i915_reg_t reg;
4158 u32 temp;
88cefb6c
DV
4159
4160 /* Switch from PCDclk to Rawclk */
4161 reg = FDI_RX_CTL(pipe);
4162 temp = I915_READ(reg);
4163 I915_WRITE(reg, temp & ~FDI_PCDCLK);
4164
4165 /* Disable CPU FDI TX PLL */
4166 reg = FDI_TX_CTL(pipe);
4167 temp = I915_READ(reg);
4168 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
4169
4170 POSTING_READ(reg);
4171 udelay(100);
4172
4173 reg = FDI_RX_CTL(pipe);
4174 temp = I915_READ(reg);
4175 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
4176
4177 /* Wait for the clocks to turn off. */
4178 POSTING_READ(reg);
4179 udelay(100);
4180}
4181
0fc932b8
JB
4182static void ironlake_fdi_disable(struct drm_crtc *crtc)
4183{
4184 struct drm_device *dev = crtc->dev;
fac5e23e 4185 struct drm_i915_private *dev_priv = to_i915(dev);
0fc932b8
JB
4186 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4187 int pipe = intel_crtc->pipe;
f0f59a00
VS
4188 i915_reg_t reg;
4189 u32 temp;
0fc932b8
JB
4190
4191 /* disable CPU FDI tx and PCH FDI rx */
4192 reg = FDI_TX_CTL(pipe);
4193 temp = I915_READ(reg);
4194 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
4195 POSTING_READ(reg);
4196
4197 reg = FDI_RX_CTL(pipe);
4198 temp = I915_READ(reg);
4199 temp &= ~(0x7 << 16);
dfd07d72 4200 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
4201 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
4202
4203 POSTING_READ(reg);
4204 udelay(100);
4205
4206 /* Ironlake workaround, disable clock pointer after downing FDI */
6e266956 4207 if (HAS_PCH_IBX(dev_priv))
6f06ce18 4208 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
0fc932b8
JB
4209
4210 /* still set train pattern 1 */
4211 reg = FDI_TX_CTL(pipe);
4212 temp = I915_READ(reg);
4213 temp &= ~FDI_LINK_TRAIN_NONE;
4214 temp |= FDI_LINK_TRAIN_PATTERN_1;
4215 I915_WRITE(reg, temp);
4216
4217 reg = FDI_RX_CTL(pipe);
4218 temp = I915_READ(reg);
6e266956 4219 if (HAS_PCH_CPT(dev_priv)) {
0fc932b8
JB
4220 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4221 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
4222 } else {
4223 temp &= ~FDI_LINK_TRAIN_NONE;
4224 temp |= FDI_LINK_TRAIN_PATTERN_1;
4225 }
4226 /* BPC in FDI rx is consistent with that in PIPECONF */
4227 temp &= ~(0x07 << 16);
dfd07d72 4228 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
4229 I915_WRITE(reg, temp);
4230
4231 POSTING_READ(reg);
4232 udelay(100);
4233}
4234
5dce5b93
CW
4235bool intel_has_pending_fb_unpin(struct drm_device *dev)
4236{
4237 struct intel_crtc *crtc;
4238
4239 /* Note that we don't need to be called with mode_config.lock here
4240 * as our list of CRTC objects is static for the lifetime of the
4241 * device and so cannot disappear as we iterate. Similarly, we can
4242 * happily treat the predicates as racy, atomic checks as userspace
4243 * cannot claim and pin a new fb without at least acquring the
4244 * struct_mutex and so serialising with us.
4245 */
d3fcc808 4246 for_each_intel_crtc(dev, crtc) {
5dce5b93
CW
4247 if (atomic_read(&crtc->unpin_work_count) == 0)
4248 continue;
4249
5a21b665 4250 if (crtc->flip_work)
5dce5b93
CW
4251 intel_wait_for_vblank(dev, crtc->pipe);
4252
4253 return true;
4254 }
4255
4256 return false;
4257}
4258
5a21b665 4259static void page_flip_completed(struct intel_crtc *intel_crtc)
d6bbafa1
CW
4260{
4261 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
5a21b665
DV
4262 struct intel_flip_work *work = intel_crtc->flip_work;
4263
4264 intel_crtc->flip_work = NULL;
d6bbafa1
CW
4265
4266 if (work->event)
560ce1dc 4267 drm_crtc_send_vblank_event(&intel_crtc->base, work->event);
d6bbafa1
CW
4268
4269 drm_crtc_vblank_put(&intel_crtc->base);
4270
5a21b665 4271 wake_up_all(&dev_priv->pending_flip_queue);
143f73b3 4272 queue_work(dev_priv->wq, &work->unpin_work);
5a21b665
DV
4273
4274 trace_i915_flip_complete(intel_crtc->plane,
4275 work->pending_flip_obj);
d6bbafa1
CW
4276}
4277
5008e874 4278static int intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
e6c3a2a6 4279{
0f91128d 4280 struct drm_device *dev = crtc->dev;
fac5e23e 4281 struct drm_i915_private *dev_priv = to_i915(dev);
5008e874 4282 long ret;
e6c3a2a6 4283
2c10d571 4284 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
5008e874
ML
4285
4286 ret = wait_event_interruptible_timeout(
4287 dev_priv->pending_flip_queue,
4288 !intel_crtc_has_pending_flip(crtc),
4289 60*HZ);
4290
4291 if (ret < 0)
4292 return ret;
4293
5a21b665
DV
4294 if (ret == 0) {
4295 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4296 struct intel_flip_work *work;
4297
4298 spin_lock_irq(&dev->event_lock);
4299 work = intel_crtc->flip_work;
4300 if (work && !is_mmio_work(work)) {
4301 WARN_ONCE(1, "Removing stuck page flip\n");
4302 page_flip_completed(intel_crtc);
4303 }
4304 spin_unlock_irq(&dev->event_lock);
4305 }
5bb61643 4306
5008e874 4307 return 0;
e6c3a2a6
CW
4308}
4309
b7076546 4310void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
060f02d8
VS
4311{
4312 u32 temp;
4313
4314 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
4315
4316 mutex_lock(&dev_priv->sb_lock);
4317
4318 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4319 temp |= SBI_SSCCTL_DISABLE;
4320 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4321
4322 mutex_unlock(&dev_priv->sb_lock);
4323}
4324
e615efe4
ED
4325/* Program iCLKIP clock to the desired frequency */
4326static void lpt_program_iclkip(struct drm_crtc *crtc)
4327{
64b46a06 4328 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6e3c9717 4329 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
e615efe4
ED
4330 u32 divsel, phaseinc, auxdiv, phasedir = 0;
4331 u32 temp;
4332
060f02d8 4333 lpt_disable_iclkip(dev_priv);
e615efe4 4334
64b46a06
VS
4335 /* The iCLK virtual clock root frequency is in MHz,
4336 * but the adjusted_mode->crtc_clock in in KHz. To get the
4337 * divisors, it is necessary to divide one by another, so we
4338 * convert the virtual clock precision to KHz here for higher
4339 * precision.
4340 */
4341 for (auxdiv = 0; auxdiv < 2; auxdiv++) {
e615efe4
ED
4342 u32 iclk_virtual_root_freq = 172800 * 1000;
4343 u32 iclk_pi_range = 64;
64b46a06 4344 u32 desired_divisor;
e615efe4 4345
64b46a06
VS
4346 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4347 clock << auxdiv);
4348 divsel = (desired_divisor / iclk_pi_range) - 2;
4349 phaseinc = desired_divisor % iclk_pi_range;
e615efe4 4350
64b46a06
VS
4351 /*
4352 * Near 20MHz is a corner case which is
4353 * out of range for the 7-bit divisor
4354 */
4355 if (divsel <= 0x7f)
4356 break;
e615efe4
ED
4357 }
4358
4359 /* This should not happen with any sane values */
4360 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
4361 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
4362 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
4363 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
4364
4365 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
12d7ceed 4366 clock,
e615efe4
ED
4367 auxdiv,
4368 divsel,
4369 phasedir,
4370 phaseinc);
4371
060f02d8
VS
4372 mutex_lock(&dev_priv->sb_lock);
4373
e615efe4 4374 /* Program SSCDIVINTPHASE6 */
988d6ee8 4375 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
e615efe4
ED
4376 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
4377 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
4378 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
4379 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
4380 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4381 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
988d6ee8 4382 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
e615efe4
ED
4383
4384 /* Program SSCAUXDIV */
988d6ee8 4385 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
e615efe4
ED
4386 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4387 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
988d6ee8 4388 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
e615efe4
ED
4389
4390 /* Enable modulator and associated divider */
988d6ee8 4391 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
e615efe4 4392 temp &= ~SBI_SSCCTL_DISABLE;
988d6ee8 4393 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
e615efe4 4394
060f02d8
VS
4395 mutex_unlock(&dev_priv->sb_lock);
4396
e615efe4
ED
4397 /* Wait for initialization time */
4398 udelay(24);
4399
4400 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4401}
4402
8802e5b6
VS
4403int lpt_get_iclkip(struct drm_i915_private *dev_priv)
4404{
4405 u32 divsel, phaseinc, auxdiv;
4406 u32 iclk_virtual_root_freq = 172800 * 1000;
4407 u32 iclk_pi_range = 64;
4408 u32 desired_divisor;
4409 u32 temp;
4410
4411 if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
4412 return 0;
4413
4414 mutex_lock(&dev_priv->sb_lock);
4415
4416 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4417 if (temp & SBI_SSCCTL_DISABLE) {
4418 mutex_unlock(&dev_priv->sb_lock);
4419 return 0;
4420 }
4421
4422 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4423 divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
4424 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
4425 phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
4426 SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
4427
4428 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4429 auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
4430 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
4431
4432 mutex_unlock(&dev_priv->sb_lock);
4433
4434 desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
4435
4436 return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4437 desired_divisor << auxdiv);
4438}
4439
275f01b2
DV
4440static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4441 enum pipe pch_transcoder)
4442{
4443 struct drm_device *dev = crtc->base.dev;
fac5e23e 4444 struct drm_i915_private *dev_priv = to_i915(dev);
6e3c9717 4445 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
275f01b2
DV
4446
4447 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4448 I915_READ(HTOTAL(cpu_transcoder)));
4449 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4450 I915_READ(HBLANK(cpu_transcoder)));
4451 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4452 I915_READ(HSYNC(cpu_transcoder)));
4453
4454 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4455 I915_READ(VTOTAL(cpu_transcoder)));
4456 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4457 I915_READ(VBLANK(cpu_transcoder)));
4458 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4459 I915_READ(VSYNC(cpu_transcoder)));
4460 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4461 I915_READ(VSYNCSHIFT(cpu_transcoder)));
4462}
4463
003632d9 4464static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
1fbc0d78 4465{
fac5e23e 4466 struct drm_i915_private *dev_priv = to_i915(dev);
1fbc0d78
DV
4467 uint32_t temp;
4468
4469 temp = I915_READ(SOUTH_CHICKEN1);
003632d9 4470 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
1fbc0d78
DV
4471 return;
4472
4473 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4474 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4475
003632d9
ACO
4476 temp &= ~FDI_BC_BIFURCATION_SELECT;
4477 if (enable)
4478 temp |= FDI_BC_BIFURCATION_SELECT;
4479
4480 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
1fbc0d78
DV
4481 I915_WRITE(SOUTH_CHICKEN1, temp);
4482 POSTING_READ(SOUTH_CHICKEN1);
4483}
4484
4485static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4486{
4487 struct drm_device *dev = intel_crtc->base.dev;
1fbc0d78
DV
4488
4489 switch (intel_crtc->pipe) {
4490 case PIPE_A:
4491 break;
4492 case PIPE_B:
6e3c9717 4493 if (intel_crtc->config->fdi_lanes > 2)
003632d9 4494 cpt_set_fdi_bc_bifurcation(dev, false);
1fbc0d78 4495 else
003632d9 4496 cpt_set_fdi_bc_bifurcation(dev, true);
1fbc0d78
DV
4497
4498 break;
4499 case PIPE_C:
003632d9 4500 cpt_set_fdi_bc_bifurcation(dev, true);
1fbc0d78
DV
4501
4502 break;
4503 default:
4504 BUG();
4505 }
4506}
4507
c48b5305
VS
4508/* Return which DP Port should be selected for Transcoder DP control */
4509static enum port
4510intel_trans_dp_port_sel(struct drm_crtc *crtc)
4511{
4512 struct drm_device *dev = crtc->dev;
4513 struct intel_encoder *encoder;
4514
4515 for_each_encoder_on_crtc(dev, crtc, encoder) {
cca0502b 4516 if (encoder->type == INTEL_OUTPUT_DP ||
c48b5305
VS
4517 encoder->type == INTEL_OUTPUT_EDP)
4518 return enc_to_dig_port(&encoder->base)->port;
4519 }
4520
4521 return -1;
4522}
4523
f67a559d
JB
4524/*
4525 * Enable PCH resources required for PCH ports:
4526 * - PCH PLLs
4527 * - FDI training & RX/TX
4528 * - update transcoder timings
4529 * - DP transcoding bits
4530 * - transcoder
4531 */
4532static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
4533{
4534 struct drm_device *dev = crtc->dev;
fac5e23e 4535 struct drm_i915_private *dev_priv = to_i915(dev);
0e23b99d
JB
4536 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4537 int pipe = intel_crtc->pipe;
f0f59a00 4538 u32 temp;
2c07245f 4539
ab9412ba 4540 assert_pch_transcoder_disabled(dev_priv, pipe);
e7e164db 4541
1fbc0d78
DV
4542 if (IS_IVYBRIDGE(dev))
4543 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4544
cd986abb
DV
4545 /* Write the TU size bits before fdi link training, so that error
4546 * detection works. */
4547 I915_WRITE(FDI_RX_TUSIZE1(pipe),
4548 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4549
c98e9dcf 4550 /* For PCH output, training FDI link */
674cf967 4551 dev_priv->display.fdi_link_train(crtc);
2c07245f 4552
3ad8a208
DV
4553 /* We need to program the right clock selection before writing the pixel
4554 * mutliplier into the DPLL. */
6e266956 4555 if (HAS_PCH_CPT(dev_priv)) {
ee7b9f93 4556 u32 sel;
4b645f14 4557
c98e9dcf 4558 temp = I915_READ(PCH_DPLL_SEL);
11887397
DV
4559 temp |= TRANS_DPLL_ENABLE(pipe);
4560 sel = TRANS_DPLLB_SEL(pipe);
8106ddbd
ACO
4561 if (intel_crtc->config->shared_dpll ==
4562 intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
ee7b9f93
JB
4563 temp |= sel;
4564 else
4565 temp &= ~sel;
c98e9dcf 4566 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 4567 }
5eddb70b 4568
3ad8a208
DV
4569 /* XXX: pch pll's can be enabled any time before we enable the PCH
4570 * transcoder, and we actually should do this to not upset any PCH
4571 * transcoder that already use the clock when we share it.
4572 *
4573 * Note that enable_shared_dpll tries to do the right thing, but
4574 * get_shared_dpll unconditionally resets the pll - we need that to have
4575 * the right LVDS enable sequence. */
85b3894f 4576 intel_enable_shared_dpll(intel_crtc);
3ad8a208 4577
d9b6cb56
JB
4578 /* set transcoder timing, panel must allow it */
4579 assert_panel_unlocked(dev_priv, pipe);
275f01b2 4580 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
8db9d77b 4581
303b81e0 4582 intel_fdi_normal_train(crtc);
5e84e1a4 4583
c98e9dcf 4584 /* For PCH DP, enable TRANS_DP_CTL */
6e266956
TU
4585 if (HAS_PCH_CPT(dev_priv) &&
4586 intel_crtc_has_dp_encoder(intel_crtc->config)) {
9c4edaee
VS
4587 const struct drm_display_mode *adjusted_mode =
4588 &intel_crtc->config->base.adjusted_mode;
dfd07d72 4589 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
f0f59a00 4590 i915_reg_t reg = TRANS_DP_CTL(pipe);
5eddb70b
CW
4591 temp = I915_READ(reg);
4592 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
4593 TRANS_DP_SYNC_MASK |
4594 TRANS_DP_BPC_MASK);
e3ef4479 4595 temp |= TRANS_DP_OUTPUT_ENABLE;
9325c9f0 4596 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf 4597
9c4edaee 4598 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 4599 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
9c4edaee 4600 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 4601 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
4602
4603 switch (intel_trans_dp_port_sel(crtc)) {
c48b5305 4604 case PORT_B:
5eddb70b 4605 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf 4606 break;
c48b5305 4607 case PORT_C:
5eddb70b 4608 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf 4609 break;
c48b5305 4610 case PORT_D:
5eddb70b 4611 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
4612 break;
4613 default:
e95d41e1 4614 BUG();
32f9d658 4615 }
2c07245f 4616
5eddb70b 4617 I915_WRITE(reg, temp);
6be4a607 4618 }
b52eb4dc 4619
b8a4f404 4620 ironlake_enable_pch_transcoder(dev_priv, pipe);
f67a559d
JB
4621}
4622
1507e5bd
PZ
4623static void lpt_pch_enable(struct drm_crtc *crtc)
4624{
4625 struct drm_device *dev = crtc->dev;
fac5e23e 4626 struct drm_i915_private *dev_priv = to_i915(dev);
1507e5bd 4627 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6e3c9717 4628 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1507e5bd 4629
ab9412ba 4630 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
1507e5bd 4631
8c52b5e8 4632 lpt_program_iclkip(crtc);
1507e5bd 4633
0540e488 4634 /* Set transcoder timing. */
275f01b2 4635 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
1507e5bd 4636
937bb610 4637 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
f67a559d
JB
4638}
4639
a1520318 4640static void cpt_verify_modeset(struct drm_device *dev, int pipe)
d4270e57 4641{
fac5e23e 4642 struct drm_i915_private *dev_priv = to_i915(dev);
f0f59a00 4643 i915_reg_t dslreg = PIPEDSL(pipe);
d4270e57
JB
4644 u32 temp;
4645
4646 temp = I915_READ(dslreg);
4647 udelay(500);
4648 if (wait_for(I915_READ(dslreg) != temp, 5)) {
d4270e57 4649 if (wait_for(I915_READ(dslreg) != temp, 5))
84f44ce7 4650 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
d4270e57
JB
4651 }
4652}
4653
86adf9d7
ML
4654static int
4655skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4656 unsigned scaler_user, int *scaler_id, unsigned int rotation,
4657 int src_w, int src_h, int dst_w, int dst_h)
a1b2278e 4658{
86adf9d7
ML
4659 struct intel_crtc_scaler_state *scaler_state =
4660 &crtc_state->scaler_state;
4661 struct intel_crtc *intel_crtc =
4662 to_intel_crtc(crtc_state->base.crtc);
a1b2278e 4663 int need_scaling;
6156a456
CK
4664
4665 need_scaling = intel_rotation_90_or_270(rotation) ?
4666 (src_h != dst_w || src_w != dst_h):
4667 (src_w != dst_w || src_h != dst_h);
a1b2278e
CK
4668
4669 /*
4670 * if plane is being disabled or scaler is no more required or force detach
4671 * - free scaler binded to this plane/crtc
4672 * - in order to do this, update crtc->scaler_usage
4673 *
4674 * Here scaler state in crtc_state is set free so that
4675 * scaler can be assigned to other user. Actual register
4676 * update to free the scaler is done in plane/panel-fit programming.
4677 * For this purpose crtc/plane_state->scaler_id isn't reset here.
4678 */
86adf9d7 4679 if (force_detach || !need_scaling) {
a1b2278e 4680 if (*scaler_id >= 0) {
86adf9d7 4681 scaler_state->scaler_users &= ~(1 << scaler_user);
a1b2278e
CK
4682 scaler_state->scalers[*scaler_id].in_use = 0;
4683
86adf9d7
ML
4684 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4685 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4686 intel_crtc->pipe, scaler_user, *scaler_id,
a1b2278e
CK
4687 scaler_state->scaler_users);
4688 *scaler_id = -1;
4689 }
4690 return 0;
4691 }
4692
4693 /* range checks */
4694 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4695 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4696
4697 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4698 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
86adf9d7 4699 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
a1b2278e 4700 "size is out of scaler range\n",
86adf9d7 4701 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
a1b2278e
CK
4702 return -EINVAL;
4703 }
4704
86adf9d7
ML
4705 /* mark this plane as a scaler user in crtc_state */
4706 scaler_state->scaler_users |= (1 << scaler_user);
4707 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4708 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4709 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4710 scaler_state->scaler_users);
4711
4712 return 0;
4713}
4714
4715/**
4716 * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4717 *
4718 * @state: crtc's scaler state
86adf9d7
ML
4719 *
4720 * Return
4721 * 0 - scaler_usage updated successfully
4722 * error - requested scaling cannot be supported or other error condition
4723 */
e435d6e5 4724int skl_update_scaler_crtc(struct intel_crtc_state *state)
86adf9d7
ML
4725{
4726 struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
7c5f93b0 4727 const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
86adf9d7 4728
78108b7c
VS
4729 DRM_DEBUG_KMS("Updating scaler for [CRTC:%d:%s] scaler_user index %u.%u\n",
4730 intel_crtc->base.base.id, intel_crtc->base.name,
4731 intel_crtc->pipe, SKL_CRTC_INDEX);
86adf9d7 4732
e435d6e5 4733 return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
31ad61e4 4734 &state->scaler_state.scaler_id, DRM_ROTATE_0,
86adf9d7 4735 state->pipe_src_w, state->pipe_src_h,
aad941d5 4736 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
86adf9d7
ML
4737}
4738
4739/**
4740 * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4741 *
4742 * @state: crtc's scaler state
86adf9d7
ML
4743 * @plane_state: atomic plane state to update
4744 *
4745 * Return
4746 * 0 - scaler_usage updated successfully
4747 * error - requested scaling cannot be supported or other error condition
4748 */
da20eabd
ML
4749static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4750 struct intel_plane_state *plane_state)
86adf9d7
ML
4751{
4752
4753 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
da20eabd
ML
4754 struct intel_plane *intel_plane =
4755 to_intel_plane(plane_state->base.plane);
86adf9d7
ML
4756 struct drm_framebuffer *fb = plane_state->base.fb;
4757 int ret;
4758
936e71e3 4759 bool force_detach = !fb || !plane_state->base.visible;
86adf9d7 4760
72660ce0
VS
4761 DRM_DEBUG_KMS("Updating scaler for [PLANE:%d:%s] scaler_user index %u.%u\n",
4762 intel_plane->base.base.id, intel_plane->base.name,
4763 intel_crtc->pipe, drm_plane_index(&intel_plane->base));
86adf9d7
ML
4764
4765 ret = skl_update_scaler(crtc_state, force_detach,
4766 drm_plane_index(&intel_plane->base),
4767 &plane_state->scaler_id,
4768 plane_state->base.rotation,
936e71e3
VS
4769 drm_rect_width(&plane_state->base.src) >> 16,
4770 drm_rect_height(&plane_state->base.src) >> 16,
4771 drm_rect_width(&plane_state->base.dst),
4772 drm_rect_height(&plane_state->base.dst));
86adf9d7
ML
4773
4774 if (ret || plane_state->scaler_id < 0)
4775 return ret;
4776
a1b2278e 4777 /* check colorkey */
818ed961 4778 if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
72660ce0
VS
4779 DRM_DEBUG_KMS("[PLANE:%d:%s] scaling with color key not allowed",
4780 intel_plane->base.base.id,
4781 intel_plane->base.name);
a1b2278e
CK
4782 return -EINVAL;
4783 }
4784
4785 /* Check src format */
86adf9d7
ML
4786 switch (fb->pixel_format) {
4787 case DRM_FORMAT_RGB565:
4788 case DRM_FORMAT_XBGR8888:
4789 case DRM_FORMAT_XRGB8888:
4790 case DRM_FORMAT_ABGR8888:
4791 case DRM_FORMAT_ARGB8888:
4792 case DRM_FORMAT_XRGB2101010:
4793 case DRM_FORMAT_XBGR2101010:
4794 case DRM_FORMAT_YUYV:
4795 case DRM_FORMAT_YVYU:
4796 case DRM_FORMAT_UYVY:
4797 case DRM_FORMAT_VYUY:
4798 break;
4799 default:
72660ce0
VS
4800 DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n",
4801 intel_plane->base.base.id, intel_plane->base.name,
4802 fb->base.id, fb->pixel_format);
86adf9d7 4803 return -EINVAL;
a1b2278e
CK
4804 }
4805
a1b2278e
CK
4806 return 0;
4807}
4808
e435d6e5
ML
4809static void skylake_scaler_disable(struct intel_crtc *crtc)
4810{
4811 int i;
4812
4813 for (i = 0; i < crtc->num_scalers; i++)
4814 skl_detach_scaler(crtc, i);
4815}
4816
4817static void skylake_pfit_enable(struct intel_crtc *crtc)
bd2e244f
JB
4818{
4819 struct drm_device *dev = crtc->base.dev;
fac5e23e 4820 struct drm_i915_private *dev_priv = to_i915(dev);
bd2e244f 4821 int pipe = crtc->pipe;
a1b2278e
CK
4822 struct intel_crtc_scaler_state *scaler_state =
4823 &crtc->config->scaler_state;
4824
4825 DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4826
6e3c9717 4827 if (crtc->config->pch_pfit.enabled) {
a1b2278e
CK
4828 int id;
4829
4830 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4831 DRM_ERROR("Requesting pfit without getting a scaler first\n");
4832 return;
4833 }
4834
4835 id = scaler_state->scaler_id;
4836 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4837 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4838 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4839 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4840
4841 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
bd2e244f
JB
4842 }
4843}
4844
b074cec8
JB
4845static void ironlake_pfit_enable(struct intel_crtc *crtc)
4846{
4847 struct drm_device *dev = crtc->base.dev;
fac5e23e 4848 struct drm_i915_private *dev_priv = to_i915(dev);
b074cec8
JB
4849 int pipe = crtc->pipe;
4850
6e3c9717 4851 if (crtc->config->pch_pfit.enabled) {
b074cec8
JB
4852 /* Force use of hard-coded filter coefficients
4853 * as some pre-programmed values are broken,
4854 * e.g. x201.
4855 */
4856 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4857 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4858 PF_PIPE_SEL_IVB(pipe));
4859 else
4860 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
6e3c9717
ACO
4861 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4862 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
d4270e57
JB
4863 }
4864}
4865
20bc8673 4866void hsw_enable_ips(struct intel_crtc *crtc)
d77e4531 4867{
cea165c3 4868 struct drm_device *dev = crtc->base.dev;
fac5e23e 4869 struct drm_i915_private *dev_priv = to_i915(dev);
d77e4531 4870
6e3c9717 4871 if (!crtc->config->ips_enabled)
d77e4531
PZ
4872 return;
4873
307e4498
ML
4874 /*
4875 * We can only enable IPS after we enable a plane and wait for a vblank
4876 * This function is called from post_plane_update, which is run after
4877 * a vblank wait.
4878 */
cea165c3 4879
d77e4531 4880 assert_plane_enabled(dev_priv, crtc->plane);
cea165c3 4881 if (IS_BROADWELL(dev)) {
2a114cc1
BW
4882 mutex_lock(&dev_priv->rps.hw_lock);
4883 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4884 mutex_unlock(&dev_priv->rps.hw_lock);
4885 /* Quoting Art Runyan: "its not safe to expect any particular
4886 * value in IPS_CTL bit 31 after enabling IPS through the
e59150dc
JB
4887 * mailbox." Moreover, the mailbox may return a bogus state,
4888 * so we need to just enable it and continue on.
2a114cc1
BW
4889 */
4890 } else {
4891 I915_WRITE(IPS_CTL, IPS_ENABLE);
4892 /* The bit only becomes 1 in the next vblank, so this wait here
4893 * is essentially intel_wait_for_vblank. If we don't have this
4894 * and don't wait for vblanks until the end of crtc_enable, then
4895 * the HW state readout code will complain that the expected
4896 * IPS_CTL value is not the one we read. */
2ec9ba3c
CW
4897 if (intel_wait_for_register(dev_priv,
4898 IPS_CTL, IPS_ENABLE, IPS_ENABLE,
4899 50))
2a114cc1
BW
4900 DRM_ERROR("Timed out waiting for IPS enable\n");
4901 }
d77e4531
PZ
4902}
4903
20bc8673 4904void hsw_disable_ips(struct intel_crtc *crtc)
d77e4531
PZ
4905{
4906 struct drm_device *dev = crtc->base.dev;
fac5e23e 4907 struct drm_i915_private *dev_priv = to_i915(dev);
d77e4531 4908
6e3c9717 4909 if (!crtc->config->ips_enabled)
d77e4531
PZ
4910 return;
4911
4912 assert_plane_enabled(dev_priv, crtc->plane);
23d0b130 4913 if (IS_BROADWELL(dev)) {
2a114cc1
BW
4914 mutex_lock(&dev_priv->rps.hw_lock);
4915 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4916 mutex_unlock(&dev_priv->rps.hw_lock);
23d0b130 4917 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
b85c1ecf
CW
4918 if (intel_wait_for_register(dev_priv,
4919 IPS_CTL, IPS_ENABLE, 0,
4920 42))
23d0b130 4921 DRM_ERROR("Timed out waiting for IPS disable\n");
e59150dc 4922 } else {
2a114cc1 4923 I915_WRITE(IPS_CTL, 0);
e59150dc
JB
4924 POSTING_READ(IPS_CTL);
4925 }
d77e4531
PZ
4926
4927 /* We need to wait for a vblank before we can disable the plane. */
4928 intel_wait_for_vblank(dev, crtc->pipe);
4929}
4930
7cac945f 4931static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
d3eedb1a 4932{
7cac945f 4933 if (intel_crtc->overlay) {
d3eedb1a 4934 struct drm_device *dev = intel_crtc->base.dev;
fac5e23e 4935 struct drm_i915_private *dev_priv = to_i915(dev);
d3eedb1a
VS
4936
4937 mutex_lock(&dev->struct_mutex);
4938 dev_priv->mm.interruptible = false;
4939 (void) intel_overlay_switch_off(intel_crtc->overlay);
4940 dev_priv->mm.interruptible = true;
4941 mutex_unlock(&dev->struct_mutex);
4942 }
4943
4944 /* Let userspace switch the overlay on again. In most cases userspace
4945 * has to recompute where to put it anyway.
4946 */
4947}
4948
87d4300a
ML
4949/**
4950 * intel_post_enable_primary - Perform operations after enabling primary plane
4951 * @crtc: the CRTC whose primary plane was just enabled
4952 *
4953 * Performs potentially sleeping operations that must be done after the primary
4954 * plane is enabled, such as updating FBC and IPS. Note that this may be
4955 * called due to an explicit primary plane update, or due to an implicit
4956 * re-enable that is caused when a sprite plane is updated to no longer
4957 * completely hide the primary plane.
4958 */
4959static void
4960intel_post_enable_primary(struct drm_crtc *crtc)
a5c4d7bc
VS
4961{
4962 struct drm_device *dev = crtc->dev;
fac5e23e 4963 struct drm_i915_private *dev_priv = to_i915(dev);
a5c4d7bc
VS
4964 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4965 int pipe = intel_crtc->pipe;
a5c4d7bc 4966
87d4300a
ML
4967 /*
4968 * FIXME IPS should be fine as long as one plane is
4969 * enabled, but in practice it seems to have problems
4970 * when going from primary only to sprite only and vice
4971 * versa.
4972 */
a5c4d7bc
VS
4973 hsw_enable_ips(intel_crtc);
4974
f99d7069 4975 /*
87d4300a
ML
4976 * Gen2 reports pipe underruns whenever all planes are disabled.
4977 * So don't enable underrun reporting before at least some planes
4978 * are enabled.
4979 * FIXME: Need to fix the logic to work when we turn off all planes
4980 * but leave the pipe running.
f99d7069 4981 */
87d4300a
ML
4982 if (IS_GEN2(dev))
4983 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4984
aca7b684
VS
4985 /* Underruns don't always raise interrupts, so check manually. */
4986 intel_check_cpu_fifo_underruns(dev_priv);
4987 intel_check_pch_fifo_underruns(dev_priv);
a5c4d7bc
VS
4988}
4989
2622a081 4990/* FIXME move all this to pre_plane_update() with proper state tracking */
87d4300a
ML
4991static void
4992intel_pre_disable_primary(struct drm_crtc *crtc)
a5c4d7bc
VS
4993{
4994 struct drm_device *dev = crtc->dev;
fac5e23e 4995 struct drm_i915_private *dev_priv = to_i915(dev);
a5c4d7bc
VS
4996 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4997 int pipe = intel_crtc->pipe;
a5c4d7bc 4998
87d4300a
ML
4999 /*
5000 * Gen2 reports pipe underruns whenever all planes are disabled.
5001 * So diasble underrun reporting before all the planes get disabled.
5002 * FIXME: Need to fix the logic to work when we turn off all planes
5003 * but leave the pipe running.
5004 */
5005 if (IS_GEN2(dev))
5006 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
a5c4d7bc 5007
2622a081
VS
5008 /*
5009 * FIXME IPS should be fine as long as one plane is
5010 * enabled, but in practice it seems to have problems
5011 * when going from primary only to sprite only and vice
5012 * versa.
5013 */
5014 hsw_disable_ips(intel_crtc);
5015}
5016
5017/* FIXME get rid of this and use pre_plane_update */
5018static void
5019intel_pre_disable_primary_noatomic(struct drm_crtc *crtc)
5020{
5021 struct drm_device *dev = crtc->dev;
fac5e23e 5022 struct drm_i915_private *dev_priv = to_i915(dev);
2622a081
VS
5023 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5024 int pipe = intel_crtc->pipe;
5025
5026 intel_pre_disable_primary(crtc);
5027
87d4300a
ML
5028 /*
5029 * Vblank time updates from the shadow to live plane control register
5030 * are blocked if the memory self-refresh mode is active at that
5031 * moment. So to make sure the plane gets truly disabled, disable
5032 * first the self-refresh mode. The self-refresh enable bit in turn
5033 * will be checked/applied by the HW only at the next frame start
5034 * event which is after the vblank start event, so we need to have a
5035 * wait-for-vblank between disabling the plane and the pipe.
5036 */
262cd2e1 5037 if (HAS_GMCH_DISPLAY(dev)) {
87d4300a 5038 intel_set_memory_cxsr(dev_priv, false);
262cd2e1
VS
5039 dev_priv->wm.vlv.cxsr = false;
5040 intel_wait_for_vblank(dev, pipe);
5041 }
87d4300a
ML
5042}
5043
5a21b665
DV
5044static void intel_post_plane_update(struct intel_crtc_state *old_crtc_state)
5045{
5046 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
5047 struct drm_atomic_state *old_state = old_crtc_state->base.state;
5048 struct intel_crtc_state *pipe_config =
5049 to_intel_crtc_state(crtc->base.state);
5a21b665
DV
5050 struct drm_plane *primary = crtc->base.primary;
5051 struct drm_plane_state *old_pri_state =
5052 drm_atomic_get_existing_plane_state(old_state, primary);
5053
5748b6a1 5054 intel_frontbuffer_flip(to_i915(crtc->base.dev), pipe_config->fb_bits);
5a21b665
DV
5055
5056 crtc->wm.cxsr_allowed = true;
5057
5058 if (pipe_config->update_wm_post && pipe_config->base.active)
5059 intel_update_watermarks(&crtc->base);
5060
5061 if (old_pri_state) {
5062 struct intel_plane_state *primary_state =
5063 to_intel_plane_state(primary->state);
5064 struct intel_plane_state *old_primary_state =
5065 to_intel_plane_state(old_pri_state);
5066
5067 intel_fbc_post_update(crtc);
5068
936e71e3 5069 if (primary_state->base.visible &&
5a21b665 5070 (needs_modeset(&pipe_config->base) ||
936e71e3 5071 !old_primary_state->base.visible))
5a21b665
DV
5072 intel_post_enable_primary(&crtc->base);
5073 }
5074}
5075
5c74cd73 5076static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state)
ac21b225 5077{
5c74cd73 5078 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
ac21b225 5079 struct drm_device *dev = crtc->base.dev;
fac5e23e 5080 struct drm_i915_private *dev_priv = to_i915(dev);
ab1d3a0e
ML
5081 struct intel_crtc_state *pipe_config =
5082 to_intel_crtc_state(crtc->base.state);
5c74cd73
ML
5083 struct drm_atomic_state *old_state = old_crtc_state->base.state;
5084 struct drm_plane *primary = crtc->base.primary;
5085 struct drm_plane_state *old_pri_state =
5086 drm_atomic_get_existing_plane_state(old_state, primary);
5087 bool modeset = needs_modeset(&pipe_config->base);
ac21b225 5088
5c74cd73
ML
5089 if (old_pri_state) {
5090 struct intel_plane_state *primary_state =
5091 to_intel_plane_state(primary->state);
5092 struct intel_plane_state *old_primary_state =
5093 to_intel_plane_state(old_pri_state);
5094
faf68d92 5095 intel_fbc_pre_update(crtc, pipe_config, primary_state);
31ae71fc 5096
936e71e3
VS
5097 if (old_primary_state->base.visible &&
5098 (modeset || !primary_state->base.visible))
5c74cd73
ML
5099 intel_pre_disable_primary(&crtc->base);
5100 }
852eb00d 5101
a4015f9a 5102 if (pipe_config->disable_cxsr && HAS_GMCH_DISPLAY(dev)) {
852eb00d 5103 crtc->wm.cxsr_allowed = false;
2dfd178d 5104
2622a081
VS
5105 /*
5106 * Vblank time updates from the shadow to live plane control register
5107 * are blocked if the memory self-refresh mode is active at that
5108 * moment. So to make sure the plane gets truly disabled, disable
5109 * first the self-refresh mode. The self-refresh enable bit in turn
5110 * will be checked/applied by the HW only at the next frame start
5111 * event which is after the vblank start event, so we need to have a
5112 * wait-for-vblank between disabling the plane and the pipe.
5113 */
5114 if (old_crtc_state->base.active) {
2dfd178d 5115 intel_set_memory_cxsr(dev_priv, false);
2622a081
VS
5116 dev_priv->wm.vlv.cxsr = false;
5117 intel_wait_for_vblank(dev, crtc->pipe);
5118 }
852eb00d 5119 }
92826fcd 5120
ed4a6a7c
MR
5121 /*
5122 * IVB workaround: must disable low power watermarks for at least
5123 * one frame before enabling scaling. LP watermarks can be re-enabled
5124 * when scaling is disabled.
5125 *
5126 * WaCxSRDisabledForSpriteScaling:ivb
5127 */
5128 if (pipe_config->disable_lp_wm) {
5129 ilk_disable_lp_wm(dev);
5130 intel_wait_for_vblank(dev, crtc->pipe);
5131 }
5132
5133 /*
5134 * If we're doing a modeset, we're done. No need to do any pre-vblank
5135 * watermark programming here.
5136 */
5137 if (needs_modeset(&pipe_config->base))
5138 return;
5139
5140 /*
5141 * For platforms that support atomic watermarks, program the
5142 * 'intermediate' watermarks immediately. On pre-gen9 platforms, these
5143 * will be the intermediate values that are safe for both pre- and
5144 * post- vblank; when vblank happens, the 'active' values will be set
5145 * to the final 'target' values and we'll do this again to get the
5146 * optimal watermarks. For gen9+ platforms, the values we program here
5147 * will be the final target values which will get automatically latched
5148 * at vblank time; no further programming will be necessary.
5149 *
5150 * If a platform hasn't been transitioned to atomic watermarks yet,
5151 * we'll continue to update watermarks the old way, if flags tell
5152 * us to.
5153 */
5154 if (dev_priv->display.initial_watermarks != NULL)
5155 dev_priv->display.initial_watermarks(pipe_config);
caed361d 5156 else if (pipe_config->update_wm_pre)
92826fcd 5157 intel_update_watermarks(&crtc->base);
ac21b225
ML
5158}
5159
d032ffa0 5160static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
87d4300a
ML
5161{
5162 struct drm_device *dev = crtc->dev;
5163 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
d032ffa0 5164 struct drm_plane *p;
87d4300a
ML
5165 int pipe = intel_crtc->pipe;
5166
7cac945f 5167 intel_crtc_dpms_overlay_disable(intel_crtc);
27321ae8 5168
d032ffa0
ML
5169 drm_for_each_plane_mask(p, dev, plane_mask)
5170 to_intel_plane(p)->disable_plane(p, crtc);
f98551ae 5171
f99d7069
DV
5172 /*
5173 * FIXME: Once we grow proper nuclear flip support out of this we need
5174 * to compute the mask of flip planes precisely. For the time being
5175 * consider this a flip to a NULL plane.
5176 */
5748b6a1 5177 intel_frontbuffer_flip(to_i915(dev), INTEL_FRONTBUFFER_ALL_MASK(pipe));
a5c4d7bc
VS
5178}
5179
fb1c98b1 5180static void intel_encoders_pre_pll_enable(struct drm_crtc *crtc,
fd6bbda9 5181 struct intel_crtc_state *crtc_state,
fb1c98b1
ML
5182 struct drm_atomic_state *old_state)
5183{
5184 struct drm_connector_state *old_conn_state;
5185 struct drm_connector *conn;
5186 int i;
5187
5188 for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5189 struct drm_connector_state *conn_state = conn->state;
5190 struct intel_encoder *encoder =
5191 to_intel_encoder(conn_state->best_encoder);
5192
5193 if (conn_state->crtc != crtc)
5194 continue;
5195
5196 if (encoder->pre_pll_enable)
fd6bbda9 5197 encoder->pre_pll_enable(encoder, crtc_state, conn_state);
fb1c98b1
ML
5198 }
5199}
5200
5201static void intel_encoders_pre_enable(struct drm_crtc *crtc,
fd6bbda9 5202 struct intel_crtc_state *crtc_state,
fb1c98b1
ML
5203 struct drm_atomic_state *old_state)
5204{
5205 struct drm_connector_state *old_conn_state;
5206 struct drm_connector *conn;
5207 int i;
5208
5209 for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5210 struct drm_connector_state *conn_state = conn->state;
5211 struct intel_encoder *encoder =
5212 to_intel_encoder(conn_state->best_encoder);
5213
5214 if (conn_state->crtc != crtc)
5215 continue;
5216
5217 if (encoder->pre_enable)
fd6bbda9 5218 encoder->pre_enable(encoder, crtc_state, conn_state);
fb1c98b1
ML
5219 }
5220}
5221
5222static void intel_encoders_enable(struct drm_crtc *crtc,
fd6bbda9 5223 struct intel_crtc_state *crtc_state,
fb1c98b1
ML
5224 struct drm_atomic_state *old_state)
5225{
5226 struct drm_connector_state *old_conn_state;
5227 struct drm_connector *conn;
5228 int i;
5229
5230 for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5231 struct drm_connector_state *conn_state = conn->state;
5232 struct intel_encoder *encoder =
5233 to_intel_encoder(conn_state->best_encoder);
5234
5235 if (conn_state->crtc != crtc)
5236 continue;
5237
fd6bbda9 5238 encoder->enable(encoder, crtc_state, conn_state);
fb1c98b1
ML
5239 intel_opregion_notify_encoder(encoder, true);
5240 }
5241}
5242
5243static void intel_encoders_disable(struct drm_crtc *crtc,
fd6bbda9 5244 struct intel_crtc_state *old_crtc_state,
fb1c98b1
ML
5245 struct drm_atomic_state *old_state)
5246{
5247 struct drm_connector_state *old_conn_state;
5248 struct drm_connector *conn;
5249 int i;
5250
5251 for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5252 struct intel_encoder *encoder =
5253 to_intel_encoder(old_conn_state->best_encoder);
5254
5255 if (old_conn_state->crtc != crtc)
5256 continue;
5257
5258 intel_opregion_notify_encoder(encoder, false);
fd6bbda9 5259 encoder->disable(encoder, old_crtc_state, old_conn_state);
fb1c98b1
ML
5260 }
5261}
5262
5263static void intel_encoders_post_disable(struct drm_crtc *crtc,
fd6bbda9 5264 struct intel_crtc_state *old_crtc_state,
fb1c98b1
ML
5265 struct drm_atomic_state *old_state)
5266{
5267 struct drm_connector_state *old_conn_state;
5268 struct drm_connector *conn;
5269 int i;
5270
5271 for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5272 struct intel_encoder *encoder =
5273 to_intel_encoder(old_conn_state->best_encoder);
5274
5275 if (old_conn_state->crtc != crtc)
5276 continue;
5277
5278 if (encoder->post_disable)
fd6bbda9 5279 encoder->post_disable(encoder, old_crtc_state, old_conn_state);
fb1c98b1
ML
5280 }
5281}
5282
5283static void intel_encoders_post_pll_disable(struct drm_crtc *crtc,
fd6bbda9 5284 struct intel_crtc_state *old_crtc_state,
fb1c98b1
ML
5285 struct drm_atomic_state *old_state)
5286{
5287 struct drm_connector_state *old_conn_state;
5288 struct drm_connector *conn;
5289 int i;
5290
5291 for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5292 struct intel_encoder *encoder =
5293 to_intel_encoder(old_conn_state->best_encoder);
5294
5295 if (old_conn_state->crtc != crtc)
5296 continue;
5297
5298 if (encoder->post_pll_disable)
fd6bbda9 5299 encoder->post_pll_disable(encoder, old_crtc_state, old_conn_state);
fb1c98b1
ML
5300 }
5301}
5302
4a806558
ML
5303static void ironlake_crtc_enable(struct intel_crtc_state *pipe_config,
5304 struct drm_atomic_state *old_state)
f67a559d 5305{
4a806558 5306 struct drm_crtc *crtc = pipe_config->base.crtc;
f67a559d 5307 struct drm_device *dev = crtc->dev;
fac5e23e 5308 struct drm_i915_private *dev_priv = to_i915(dev);
f67a559d
JB
5309 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5310 int pipe = intel_crtc->pipe;
f67a559d 5311
53d9f4e9 5312 if (WARN_ON(intel_crtc->active))
f67a559d
JB
5313 return;
5314
b2c0593a
VS
5315 /*
5316 * Sometimes spurious CPU pipe underruns happen during FDI
5317 * training, at least with VGA+HDMI cloning. Suppress them.
5318 *
5319 * On ILK we get an occasional spurious CPU pipe underruns
5320 * between eDP port A enable and vdd enable. Also PCH port
5321 * enable seems to result in the occasional CPU pipe underrun.
5322 *
5323 * Spurious PCH underruns also occur during PCH enabling.
5324 */
5325 if (intel_crtc->config->has_pch_encoder || IS_GEN5(dev_priv))
5326 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
81b088ca
VS
5327 if (intel_crtc->config->has_pch_encoder)
5328 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5329
6e3c9717 5330 if (intel_crtc->config->has_pch_encoder)
b14b1055
DV
5331 intel_prepare_shared_dpll(intel_crtc);
5332
37a5650b 5333 if (intel_crtc_has_dp_encoder(intel_crtc->config))
fe3cd48d 5334 intel_dp_set_m_n(intel_crtc, M1_N1);
29407aab
DV
5335
5336 intel_set_pipe_timings(intel_crtc);
bc58be60 5337 intel_set_pipe_src_size(intel_crtc);
29407aab 5338
6e3c9717 5339 if (intel_crtc->config->has_pch_encoder) {
29407aab 5340 intel_cpu_transcoder_set_m_n(intel_crtc,
6e3c9717 5341 &intel_crtc->config->fdi_m_n, NULL);
29407aab
DV
5342 }
5343
5344 ironlake_set_pipeconf(crtc);
5345
f67a559d 5346 intel_crtc->active = true;
8664281b 5347
fd6bbda9 5348 intel_encoders_pre_enable(crtc, pipe_config, old_state);
f67a559d 5349
6e3c9717 5350 if (intel_crtc->config->has_pch_encoder) {
fff367c7
DV
5351 /* Note: FDI PLL enabling _must_ be done before we enable the
5352 * cpu pipes, hence this is separate from all the other fdi/pch
5353 * enabling. */
88cefb6c 5354 ironlake_fdi_pll_enable(intel_crtc);
46b6f814
DV
5355 } else {
5356 assert_fdi_tx_disabled(dev_priv, pipe);
5357 assert_fdi_rx_disabled(dev_priv, pipe);
5358 }
f67a559d 5359
b074cec8 5360 ironlake_pfit_enable(intel_crtc);
f67a559d 5361
9c54c0dd
JB
5362 /*
5363 * On ILK+ LUT must be loaded before the pipe is running but with
5364 * clocks enabled
5365 */
b95c5321 5366 intel_color_load_luts(&pipe_config->base);
9c54c0dd 5367
1d5bf5d9
ID
5368 if (dev_priv->display.initial_watermarks != NULL)
5369 dev_priv->display.initial_watermarks(intel_crtc->config);
e1fdc473 5370 intel_enable_pipe(intel_crtc);
f67a559d 5371
6e3c9717 5372 if (intel_crtc->config->has_pch_encoder)
f67a559d 5373 ironlake_pch_enable(crtc);
c98e9dcf 5374
f9b61ff6
DV
5375 assert_vblank_disabled(crtc);
5376 drm_crtc_vblank_on(crtc);
5377
fd6bbda9 5378 intel_encoders_enable(crtc, pipe_config, old_state);
61b77ddd 5379
6e266956 5380 if (HAS_PCH_CPT(dev_priv))
a1520318 5381 cpt_verify_modeset(dev, intel_crtc->pipe);
37ca8d4c
VS
5382
5383 /* Must wait for vblank to avoid spurious PCH FIFO underruns */
5384 if (intel_crtc->config->has_pch_encoder)
5385 intel_wait_for_vblank(dev, pipe);
b2c0593a 5386 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
37ca8d4c 5387 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
6be4a607
JB
5388}
5389
42db64ef
PZ
5390/* IPS only exists on ULT machines and is tied to pipe A. */
5391static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
5392{
f5adf94e 5393 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
42db64ef
PZ
5394}
5395
4a806558
ML
5396static void haswell_crtc_enable(struct intel_crtc_state *pipe_config,
5397 struct drm_atomic_state *old_state)
4f771f10 5398{
4a806558 5399 struct drm_crtc *crtc = pipe_config->base.crtc;
4f771f10 5400 struct drm_device *dev = crtc->dev;
fac5e23e 5401 struct drm_i915_private *dev_priv = to_i915(dev);
4f771f10 5402 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
99d736a2 5403 int pipe = intel_crtc->pipe, hsw_workaround_pipe;
4d1de975 5404 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4f771f10 5405
53d9f4e9 5406 if (WARN_ON(intel_crtc->active))
4f771f10
PZ
5407 return;
5408
81b088ca
VS
5409 if (intel_crtc->config->has_pch_encoder)
5410 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5411 false);
5412
fd6bbda9 5413 intel_encoders_pre_pll_enable(crtc, pipe_config, old_state);
95a7a2ae 5414
8106ddbd 5415 if (intel_crtc->config->shared_dpll)
df8ad70c
DV
5416 intel_enable_shared_dpll(intel_crtc);
5417
37a5650b 5418 if (intel_crtc_has_dp_encoder(intel_crtc->config))
fe3cd48d 5419 intel_dp_set_m_n(intel_crtc, M1_N1);
229fca97 5420
d7edc4e5 5421 if (!transcoder_is_dsi(cpu_transcoder))
4d1de975
JN
5422 intel_set_pipe_timings(intel_crtc);
5423
bc58be60 5424 intel_set_pipe_src_size(intel_crtc);
229fca97 5425
4d1de975
JN
5426 if (cpu_transcoder != TRANSCODER_EDP &&
5427 !transcoder_is_dsi(cpu_transcoder)) {
5428 I915_WRITE(PIPE_MULT(cpu_transcoder),
6e3c9717 5429 intel_crtc->config->pixel_multiplier - 1);
ebb69c95
CT
5430 }
5431
6e3c9717 5432 if (intel_crtc->config->has_pch_encoder) {
229fca97 5433 intel_cpu_transcoder_set_m_n(intel_crtc,
6e3c9717 5434 &intel_crtc->config->fdi_m_n, NULL);
229fca97
DV
5435 }
5436
d7edc4e5 5437 if (!transcoder_is_dsi(cpu_transcoder))
4d1de975
JN
5438 haswell_set_pipeconf(crtc);
5439
391bf048 5440 haswell_set_pipemisc(crtc);
229fca97 5441
b95c5321 5442 intel_color_set_csc(&pipe_config->base);
229fca97 5443
4f771f10 5444 intel_crtc->active = true;
8664281b 5445
6b698516
DV
5446 if (intel_crtc->config->has_pch_encoder)
5447 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5448 else
5449 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5450
fd6bbda9 5451 intel_encoders_pre_enable(crtc, pipe_config, old_state);
4f771f10 5452
d2d65408 5453 if (intel_crtc->config->has_pch_encoder)
4fe9467d 5454 dev_priv->display.fdi_link_train(crtc);
4fe9467d 5455
d7edc4e5 5456 if (!transcoder_is_dsi(cpu_transcoder))
7d4aefd0 5457 intel_ddi_enable_pipe_clock(intel_crtc);
4f771f10 5458
1c132b44 5459 if (INTEL_INFO(dev)->gen >= 9)
e435d6e5 5460 skylake_pfit_enable(intel_crtc);
ff6d9f55 5461 else
1c132b44 5462 ironlake_pfit_enable(intel_crtc);
4f771f10
PZ
5463
5464 /*
5465 * On ILK+ LUT must be loaded before the pipe is running but with
5466 * clocks enabled
5467 */
b95c5321 5468 intel_color_load_luts(&pipe_config->base);
4f771f10 5469
1f544388 5470 intel_ddi_set_pipe_settings(crtc);
d7edc4e5 5471 if (!transcoder_is_dsi(cpu_transcoder))
7d4aefd0 5472 intel_ddi_enable_transcoder_func(crtc);
4f771f10 5473
1d5bf5d9
ID
5474 if (dev_priv->display.initial_watermarks != NULL)
5475 dev_priv->display.initial_watermarks(pipe_config);
5476 else
5477 intel_update_watermarks(crtc);
4d1de975
JN
5478
5479 /* XXX: Do the pipe assertions at the right place for BXT DSI. */
d7edc4e5 5480 if (!transcoder_is_dsi(cpu_transcoder))
4d1de975 5481 intel_enable_pipe(intel_crtc);
42db64ef 5482
6e3c9717 5483 if (intel_crtc->config->has_pch_encoder)
1507e5bd 5484 lpt_pch_enable(crtc);
4f771f10 5485
a65347ba 5486 if (intel_crtc->config->dp_encoder_is_mst)
0e32b39c
DA
5487 intel_ddi_set_vc_payload_alloc(crtc, true);
5488
f9b61ff6
DV
5489 assert_vblank_disabled(crtc);
5490 drm_crtc_vblank_on(crtc);
5491
fd6bbda9 5492 intel_encoders_enable(crtc, pipe_config, old_state);
4f771f10 5493
6b698516
DV
5494 if (intel_crtc->config->has_pch_encoder) {
5495 intel_wait_for_vblank(dev, pipe);
5496 intel_wait_for_vblank(dev, pipe);
5497 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
d2d65408
VS
5498 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5499 true);
6b698516 5500 }
d2d65408 5501
e4916946
PZ
5502 /* If we change the relative order between pipe/planes enabling, we need
5503 * to change the workaround. */
99d736a2
ML
5504 hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
5505 if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
5506 intel_wait_for_vblank(dev, hsw_workaround_pipe);
5507 intel_wait_for_vblank(dev, hsw_workaround_pipe);
5508 }
4f771f10
PZ
5509}
5510
bfd16b2a 5511static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
3f8dce3a
DV
5512{
5513 struct drm_device *dev = crtc->base.dev;
fac5e23e 5514 struct drm_i915_private *dev_priv = to_i915(dev);
3f8dce3a
DV
5515 int pipe = crtc->pipe;
5516
5517 /* To avoid upsetting the power well on haswell only disable the pfit if
5518 * it's in use. The hw state code will make sure we get this right. */
bfd16b2a 5519 if (force || crtc->config->pch_pfit.enabled) {
3f8dce3a
DV
5520 I915_WRITE(PF_CTL(pipe), 0);
5521 I915_WRITE(PF_WIN_POS(pipe), 0);
5522 I915_WRITE(PF_WIN_SZ(pipe), 0);
5523 }
5524}
5525
4a806558
ML
5526static void ironlake_crtc_disable(struct intel_crtc_state *old_crtc_state,
5527 struct drm_atomic_state *old_state)
6be4a607 5528{
4a806558 5529 struct drm_crtc *crtc = old_crtc_state->base.crtc;
6be4a607 5530 struct drm_device *dev = crtc->dev;
fac5e23e 5531 struct drm_i915_private *dev_priv = to_i915(dev);
6be4a607
JB
5532 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5533 int pipe = intel_crtc->pipe;
b52eb4dc 5534
b2c0593a
VS
5535 /*
5536 * Sometimes spurious CPU pipe underruns happen when the
5537 * pipe is already disabled, but FDI RX/TX is still enabled.
5538 * Happens at least with VGA+HDMI cloning. Suppress them.
5539 */
5540 if (intel_crtc->config->has_pch_encoder) {
5541 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
37ca8d4c 5542 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
b2c0593a 5543 }
37ca8d4c 5544
fd6bbda9 5545 intel_encoders_disable(crtc, old_crtc_state, old_state);
ea9d758d 5546
f9b61ff6
DV
5547 drm_crtc_vblank_off(crtc);
5548 assert_vblank_disabled(crtc);
5549
575f7ab7 5550 intel_disable_pipe(intel_crtc);
32f9d658 5551
bfd16b2a 5552 ironlake_pfit_disable(intel_crtc, false);
2c07245f 5553
b2c0593a 5554 if (intel_crtc->config->has_pch_encoder)
5a74f70a
VS
5555 ironlake_fdi_disable(crtc);
5556
fd6bbda9 5557 intel_encoders_post_disable(crtc, old_crtc_state, old_state);
2c07245f 5558
6e3c9717 5559 if (intel_crtc->config->has_pch_encoder) {
d925c59a 5560 ironlake_disable_pch_transcoder(dev_priv, pipe);
6be4a607 5561
6e266956 5562 if (HAS_PCH_CPT(dev_priv)) {
f0f59a00
VS
5563 i915_reg_t reg;
5564 u32 temp;
5565
d925c59a
DV
5566 /* disable TRANS_DP_CTL */
5567 reg = TRANS_DP_CTL(pipe);
5568 temp = I915_READ(reg);
5569 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5570 TRANS_DP_PORT_SEL_MASK);
5571 temp |= TRANS_DP_PORT_SEL_NONE;
5572 I915_WRITE(reg, temp);
5573
5574 /* disable DPLL_SEL */
5575 temp = I915_READ(PCH_DPLL_SEL);
11887397 5576 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
d925c59a 5577 I915_WRITE(PCH_DPLL_SEL, temp);
9db4a9c7 5578 }
e3421a18 5579
d925c59a
DV
5580 ironlake_fdi_pll_disable(intel_crtc);
5581 }
81b088ca 5582
b2c0593a 5583 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
81b088ca 5584 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
6be4a607 5585}
1b3c7a47 5586
4a806558
ML
5587static void haswell_crtc_disable(struct intel_crtc_state *old_crtc_state,
5588 struct drm_atomic_state *old_state)
ee7b9f93 5589{
4a806558 5590 struct drm_crtc *crtc = old_crtc_state->base.crtc;
4f771f10 5591 struct drm_device *dev = crtc->dev;
fac5e23e 5592 struct drm_i915_private *dev_priv = to_i915(dev);
ee7b9f93 5593 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6e3c9717 5594 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
ee7b9f93 5595
d2d65408
VS
5596 if (intel_crtc->config->has_pch_encoder)
5597 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5598 false);
5599
fd6bbda9 5600 intel_encoders_disable(crtc, old_crtc_state, old_state);
4f771f10 5601
f9b61ff6
DV
5602 drm_crtc_vblank_off(crtc);
5603 assert_vblank_disabled(crtc);
5604
4d1de975 5605 /* XXX: Do the pipe assertions at the right place for BXT DSI. */
d7edc4e5 5606 if (!transcoder_is_dsi(cpu_transcoder))
4d1de975 5607 intel_disable_pipe(intel_crtc);
4f771f10 5608
6e3c9717 5609 if (intel_crtc->config->dp_encoder_is_mst)
a4bf214f
VS
5610 intel_ddi_set_vc_payload_alloc(crtc, false);
5611
d7edc4e5 5612 if (!transcoder_is_dsi(cpu_transcoder))
7d4aefd0 5613 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4f771f10 5614
1c132b44 5615 if (INTEL_INFO(dev)->gen >= 9)
e435d6e5 5616 skylake_scaler_disable(intel_crtc);
ff6d9f55 5617 else
bfd16b2a 5618 ironlake_pfit_disable(intel_crtc, false);
4f771f10 5619
d7edc4e5 5620 if (!transcoder_is_dsi(cpu_transcoder))
7d4aefd0 5621 intel_ddi_disable_pipe_clock(intel_crtc);
4f771f10 5622
fd6bbda9 5623 intel_encoders_post_disable(crtc, old_crtc_state, old_state);
81b088ca 5624
b7076546 5625 if (old_crtc_state->has_pch_encoder)
81b088ca
VS
5626 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5627 true);
4f771f10
PZ
5628}
5629
2dd24552
JB
5630static void i9xx_pfit_enable(struct intel_crtc *crtc)
5631{
5632 struct drm_device *dev = crtc->base.dev;
fac5e23e 5633 struct drm_i915_private *dev_priv = to_i915(dev);
6e3c9717 5634 struct intel_crtc_state *pipe_config = crtc->config;
2dd24552 5635
681a8504 5636 if (!pipe_config->gmch_pfit.control)
2dd24552
JB
5637 return;
5638
2dd24552 5639 /*
c0b03411
DV
5640 * The panel fitter should only be adjusted whilst the pipe is disabled,
5641 * according to register description and PRM.
2dd24552 5642 */
c0b03411
DV
5643 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5644 assert_pipe_disabled(dev_priv, crtc->pipe);
2dd24552 5645
b074cec8
JB
5646 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5647 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5a80c45c
DV
5648
5649 /* Border color in case we don't scale up to the full screen. Black by
5650 * default, change to something else for debugging. */
5651 I915_WRITE(BCLRPAT(crtc->pipe), 0);
2dd24552
JB
5652}
5653
d05410f9
DA
5654static enum intel_display_power_domain port_to_power_domain(enum port port)
5655{
5656 switch (port) {
5657 case PORT_A:
6331a704 5658 return POWER_DOMAIN_PORT_DDI_A_LANES;
d05410f9 5659 case PORT_B:
6331a704 5660 return POWER_DOMAIN_PORT_DDI_B_LANES;
d05410f9 5661 case PORT_C:
6331a704 5662 return POWER_DOMAIN_PORT_DDI_C_LANES;
d05410f9 5663 case PORT_D:
6331a704 5664 return POWER_DOMAIN_PORT_DDI_D_LANES;
d8e19f99 5665 case PORT_E:
6331a704 5666 return POWER_DOMAIN_PORT_DDI_E_LANES;
d05410f9 5667 default:
b9fec167 5668 MISSING_CASE(port);
d05410f9
DA
5669 return POWER_DOMAIN_PORT_OTHER;
5670 }
5671}
5672
25f78f58
VS
5673static enum intel_display_power_domain port_to_aux_power_domain(enum port port)
5674{
5675 switch (port) {
5676 case PORT_A:
5677 return POWER_DOMAIN_AUX_A;
5678 case PORT_B:
5679 return POWER_DOMAIN_AUX_B;
5680 case PORT_C:
5681 return POWER_DOMAIN_AUX_C;
5682 case PORT_D:
5683 return POWER_DOMAIN_AUX_D;
5684 case PORT_E:
5685 /* FIXME: Check VBT for actual wiring of PORT E */
5686 return POWER_DOMAIN_AUX_D;
5687 default:
b9fec167 5688 MISSING_CASE(port);
25f78f58
VS
5689 return POWER_DOMAIN_AUX_A;
5690 }
5691}
5692
319be8ae
ID
5693enum intel_display_power_domain
5694intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5695{
4f8036a2 5696 struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
319be8ae
ID
5697 struct intel_digital_port *intel_dig_port;
5698
5699 switch (intel_encoder->type) {
5700 case INTEL_OUTPUT_UNKNOWN:
5701 /* Only DDI platforms should ever use this output type */
4f8036a2 5702 WARN_ON_ONCE(!HAS_DDI(dev_priv));
cca0502b 5703 case INTEL_OUTPUT_DP:
319be8ae
ID
5704 case INTEL_OUTPUT_HDMI:
5705 case INTEL_OUTPUT_EDP:
5706 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
d05410f9 5707 return port_to_power_domain(intel_dig_port->port);
0e32b39c
DA
5708 case INTEL_OUTPUT_DP_MST:
5709 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5710 return port_to_power_domain(intel_dig_port->port);
319be8ae
ID
5711 case INTEL_OUTPUT_ANALOG:
5712 return POWER_DOMAIN_PORT_CRT;
5713 case INTEL_OUTPUT_DSI:
5714 return POWER_DOMAIN_PORT_DSI;
5715 default:
5716 return POWER_DOMAIN_PORT_OTHER;
5717 }
5718}
5719
25f78f58
VS
5720enum intel_display_power_domain
5721intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder)
5722{
4f8036a2 5723 struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
25f78f58
VS
5724 struct intel_digital_port *intel_dig_port;
5725
5726 switch (intel_encoder->type) {
5727 case INTEL_OUTPUT_UNKNOWN:
651174a4
ID
5728 case INTEL_OUTPUT_HDMI:
5729 /*
5730 * Only DDI platforms should ever use these output types.
5731 * We can get here after the HDMI detect code has already set
5732 * the type of the shared encoder. Since we can't be sure
5733 * what's the status of the given connectors, play safe and
5734 * run the DP detection too.
5735 */
4f8036a2 5736 WARN_ON_ONCE(!HAS_DDI(dev_priv));
cca0502b 5737 case INTEL_OUTPUT_DP:
25f78f58
VS
5738 case INTEL_OUTPUT_EDP:
5739 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5740 return port_to_aux_power_domain(intel_dig_port->port);
5741 case INTEL_OUTPUT_DP_MST:
5742 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5743 return port_to_aux_power_domain(intel_dig_port->port);
5744 default:
b9fec167 5745 MISSING_CASE(intel_encoder->type);
25f78f58
VS
5746 return POWER_DOMAIN_AUX_A;
5747 }
5748}
5749
74bff5f9
ML
5750static unsigned long get_crtc_power_domains(struct drm_crtc *crtc,
5751 struct intel_crtc_state *crtc_state)
77d22dca 5752{
319be8ae 5753 struct drm_device *dev = crtc->dev;
74bff5f9 5754 struct drm_encoder *encoder;
319be8ae
ID
5755 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5756 enum pipe pipe = intel_crtc->pipe;
77d22dca 5757 unsigned long mask;
74bff5f9 5758 enum transcoder transcoder = crtc_state->cpu_transcoder;
77d22dca 5759
74bff5f9 5760 if (!crtc_state->base.active)
292b990e
ML
5761 return 0;
5762
77d22dca
ID
5763 mask = BIT(POWER_DOMAIN_PIPE(pipe));
5764 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
74bff5f9
ML
5765 if (crtc_state->pch_pfit.enabled ||
5766 crtc_state->pch_pfit.force_thru)
77d22dca
ID
5767 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5768
74bff5f9
ML
5769 drm_for_each_encoder_mask(encoder, dev, crtc_state->base.encoder_mask) {
5770 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5771
319be8ae 5772 mask |= BIT(intel_display_port_power_domain(intel_encoder));
74bff5f9 5773 }
319be8ae 5774
15e7ec29
ML
5775 if (crtc_state->shared_dpll)
5776 mask |= BIT(POWER_DOMAIN_PLLS);
5777
77d22dca
ID
5778 return mask;
5779}
5780
74bff5f9
ML
5781static unsigned long
5782modeset_get_crtc_power_domains(struct drm_crtc *crtc,
5783 struct intel_crtc_state *crtc_state)
77d22dca 5784{
fac5e23e 5785 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
292b990e
ML
5786 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5787 enum intel_display_power_domain domain;
5a21b665 5788 unsigned long domains, new_domains, old_domains;
77d22dca 5789
292b990e 5790 old_domains = intel_crtc->enabled_power_domains;
74bff5f9
ML
5791 intel_crtc->enabled_power_domains = new_domains =
5792 get_crtc_power_domains(crtc, crtc_state);
77d22dca 5793
5a21b665 5794 domains = new_domains & ~old_domains;
292b990e
ML
5795
5796 for_each_power_domain(domain, domains)
5797 intel_display_power_get(dev_priv, domain);
5798
5a21b665 5799 return old_domains & ~new_domains;
292b990e
ML
5800}
5801
5802static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5803 unsigned long domains)
5804{
5805 enum intel_display_power_domain domain;
5806
5807 for_each_power_domain(domain, domains)
5808 intel_display_power_put(dev_priv, domain);
5809}
77d22dca 5810
adafdc6f
MK
5811static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
5812{
5813 int max_cdclk_freq = dev_priv->max_cdclk_freq;
5814
5815 if (INTEL_INFO(dev_priv)->gen >= 9 ||
5816 IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5817 return max_cdclk_freq;
5818 else if (IS_CHERRYVIEW(dev_priv))
5819 return max_cdclk_freq*95/100;
5820 else if (INTEL_INFO(dev_priv)->gen < 4)
5821 return 2*max_cdclk_freq*90/100;
5822 else
5823 return max_cdclk_freq*90/100;
5824}
5825
b2045352
VS
5826static int skl_calc_cdclk(int max_pixclk, int vco);
5827
560a7ae4
DL
5828static void intel_update_max_cdclk(struct drm_device *dev)
5829{
fac5e23e 5830 struct drm_i915_private *dev_priv = to_i915(dev);
560a7ae4 5831
ef11bdb3 5832 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
560a7ae4 5833 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
b2045352
VS
5834 int max_cdclk, vco;
5835
5836 vco = dev_priv->skl_preferred_vco_freq;
63911d72 5837 WARN_ON(vco != 8100000 && vco != 8640000);
560a7ae4 5838
b2045352
VS
5839 /*
5840 * Use the lower (vco 8640) cdclk values as a
5841 * first guess. skl_calc_cdclk() will correct it
5842 * if the preferred vco is 8100 instead.
5843 */
560a7ae4 5844 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
487ed2e4 5845 max_cdclk = 617143;
560a7ae4 5846 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
b2045352 5847 max_cdclk = 540000;
560a7ae4 5848 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
b2045352 5849 max_cdclk = 432000;
560a7ae4 5850 else
487ed2e4 5851 max_cdclk = 308571;
b2045352
VS
5852
5853 dev_priv->max_cdclk_freq = skl_calc_cdclk(max_cdclk, vco);
281c114f
MR
5854 } else if (IS_BROXTON(dev)) {
5855 dev_priv->max_cdclk_freq = 624000;
560a7ae4
DL
5856 } else if (IS_BROADWELL(dev)) {
5857 /*
5858 * FIXME with extra cooling we can allow
5859 * 540 MHz for ULX and 675 Mhz for ULT.
5860 * How can we know if extra cooling is
5861 * available? PCI ID, VTB, something else?
5862 */
5863 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5864 dev_priv->max_cdclk_freq = 450000;
5865 else if (IS_BDW_ULX(dev))
5866 dev_priv->max_cdclk_freq = 450000;
5867 else if (IS_BDW_ULT(dev))
5868 dev_priv->max_cdclk_freq = 540000;
5869 else
5870 dev_priv->max_cdclk_freq = 675000;
0904deaf
MK
5871 } else if (IS_CHERRYVIEW(dev)) {
5872 dev_priv->max_cdclk_freq = 320000;
560a7ae4
DL
5873 } else if (IS_VALLEYVIEW(dev)) {
5874 dev_priv->max_cdclk_freq = 400000;
5875 } else {
5876 /* otherwise assume cdclk is fixed */
5877 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5878 }
5879
adafdc6f
MK
5880 dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
5881
560a7ae4
DL
5882 DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5883 dev_priv->max_cdclk_freq);
adafdc6f
MK
5884
5885 DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5886 dev_priv->max_dotclk_freq);
560a7ae4
DL
5887}
5888
5889static void intel_update_cdclk(struct drm_device *dev)
5890{
fac5e23e 5891 struct drm_i915_private *dev_priv = to_i915(dev);
560a7ae4
DL
5892
5893 dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
2f2a121a 5894
83d7c81f 5895 if (INTEL_GEN(dev_priv) >= 9)
709e05c3
VS
5896 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz, VCO: %d kHz, ref: %d kHz\n",
5897 dev_priv->cdclk_freq, dev_priv->cdclk_pll.vco,
5898 dev_priv->cdclk_pll.ref);
2f2a121a
VS
5899 else
5900 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5901 dev_priv->cdclk_freq);
560a7ae4
DL
5902
5903 /*
b5d99ff9
VS
5904 * 9:0 CMBUS [sic] CDCLK frequency (cdfreq):
5905 * Programmng [sic] note: bit[9:2] should be programmed to the number
5906 * of cdclk that generates 4MHz reference clock freq which is used to
5907 * generate GMBus clock. This will vary with the cdclk freq.
560a7ae4 5908 */
b5d99ff9 5909 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
560a7ae4 5910 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
560a7ae4
DL
5911}
5912
92891e45
VS
5913/* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5914static int skl_cdclk_decimal(int cdclk)
5915{
5916 return DIV_ROUND_CLOSEST(cdclk - 1000, 500);
5917}
5918
5f199dfa
VS
5919static int bxt_de_pll_vco(struct drm_i915_private *dev_priv, int cdclk)
5920{
5921 int ratio;
5922
5923 if (cdclk == dev_priv->cdclk_pll.ref)
5924 return 0;
5925
5926 switch (cdclk) {
5927 default:
5928 MISSING_CASE(cdclk);
5929 case 144000:
5930 case 288000:
5931 case 384000:
5932 case 576000:
5933 ratio = 60;
5934 break;
5935 case 624000:
5936 ratio = 65;
5937 break;
5938 }
5939
5940 return dev_priv->cdclk_pll.ref * ratio;
5941}
5942
2b73001e
VS
5943static void bxt_de_pll_disable(struct drm_i915_private *dev_priv)
5944{
5945 I915_WRITE(BXT_DE_PLL_ENABLE, 0);
5946
5947 /* Timeout 200us */
95cac283
CW
5948 if (intel_wait_for_register(dev_priv,
5949 BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 0,
5950 1))
2b73001e 5951 DRM_ERROR("timeout waiting for DE PLL unlock\n");
83d7c81f
VS
5952
5953 dev_priv->cdclk_pll.vco = 0;
2b73001e
VS
5954}
5955
5f199dfa 5956static void bxt_de_pll_enable(struct drm_i915_private *dev_priv, int vco)
2b73001e 5957{
5f199dfa 5958 int ratio = DIV_ROUND_CLOSEST(vco, dev_priv->cdclk_pll.ref);
2b73001e
VS
5959 u32 val;
5960
5961 val = I915_READ(BXT_DE_PLL_CTL);
5962 val &= ~BXT_DE_PLL_RATIO_MASK;
5f199dfa 5963 val |= BXT_DE_PLL_RATIO(ratio);
2b73001e
VS
5964 I915_WRITE(BXT_DE_PLL_CTL, val);
5965
5966 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5967
5968 /* Timeout 200us */
e084e1b9
CW
5969 if (intel_wait_for_register(dev_priv,
5970 BXT_DE_PLL_ENABLE,
5971 BXT_DE_PLL_LOCK,
5972 BXT_DE_PLL_LOCK,
5973 1))
2b73001e 5974 DRM_ERROR("timeout waiting for DE PLL lock\n");
83d7c81f 5975
5f199dfa 5976 dev_priv->cdclk_pll.vco = vco;
2b73001e
VS
5977}
5978
324513c0 5979static void bxt_set_cdclk(struct drm_i915_private *dev_priv, int cdclk)
f8437dd1 5980{
5f199dfa
VS
5981 u32 val, divider;
5982 int vco, ret;
f8437dd1 5983
5f199dfa
VS
5984 vco = bxt_de_pll_vco(dev_priv, cdclk);
5985
5986 DRM_DEBUG_DRIVER("Changing CDCLK to %d kHz (VCO %d kHz)\n", cdclk, vco);
5987
5988 /* cdclk = vco / 2 / div{1,1.5,2,4} */
5989 switch (DIV_ROUND_CLOSEST(vco, cdclk)) {
5990 case 8:
f8437dd1 5991 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
f8437dd1 5992 break;
5f199dfa 5993 case 4:
f8437dd1 5994 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
f8437dd1 5995 break;
5f199dfa 5996 case 3:
f8437dd1 5997 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
f8437dd1 5998 break;
5f199dfa 5999 case 2:
f8437dd1 6000 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
f8437dd1
VK
6001 break;
6002 default:
5f199dfa
VS
6003 WARN_ON(cdclk != dev_priv->cdclk_pll.ref);
6004 WARN_ON(vco != 0);
f8437dd1 6005
5f199dfa
VS
6006 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
6007 break;
f8437dd1
VK
6008 }
6009
f8437dd1 6010 /* Inform power controller of upcoming frequency change */
5f199dfa 6011 mutex_lock(&dev_priv->rps.hw_lock);
f8437dd1
VK
6012 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
6013 0x80000000);
6014 mutex_unlock(&dev_priv->rps.hw_lock);
6015
6016 if (ret) {
6017 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
9ef56154 6018 ret, cdclk);
f8437dd1
VK
6019 return;
6020 }
6021
5f199dfa
VS
6022 if (dev_priv->cdclk_pll.vco != 0 &&
6023 dev_priv->cdclk_pll.vco != vco)
2b73001e 6024 bxt_de_pll_disable(dev_priv);
f8437dd1 6025
5f199dfa
VS
6026 if (dev_priv->cdclk_pll.vco != vco)
6027 bxt_de_pll_enable(dev_priv, vco);
f8437dd1 6028
5f199dfa
VS
6029 val = divider | skl_cdclk_decimal(cdclk);
6030 /*
6031 * FIXME if only the cd2x divider needs changing, it could be done
6032 * without shutting off the pipe (if only one pipe is active).
6033 */
6034 val |= BXT_CDCLK_CD2X_PIPE_NONE;
6035 /*
6036 * Disable SSA Precharge when CD clock frequency < 500 MHz,
6037 * enable otherwise.
6038 */
6039 if (cdclk >= 500000)
6040 val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
6041 I915_WRITE(CDCLK_CTL, val);
f8437dd1
VK
6042
6043 mutex_lock(&dev_priv->rps.hw_lock);
6044 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
9ef56154 6045 DIV_ROUND_UP(cdclk, 25000));
f8437dd1
VK
6046 mutex_unlock(&dev_priv->rps.hw_lock);
6047
6048 if (ret) {
6049 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
9ef56154 6050 ret, cdclk);
f8437dd1
VK
6051 return;
6052 }
6053
91c8a326 6054 intel_update_cdclk(&dev_priv->drm);
f8437dd1
VK
6055}
6056
d66a2194 6057static void bxt_sanitize_cdclk(struct drm_i915_private *dev_priv)
f8437dd1 6058{
d66a2194
ID
6059 u32 cdctl, expected;
6060
91c8a326 6061 intel_update_cdclk(&dev_priv->drm);
f8437dd1 6062
d66a2194
ID
6063 if (dev_priv->cdclk_pll.vco == 0 ||
6064 dev_priv->cdclk_freq == dev_priv->cdclk_pll.ref)
6065 goto sanitize;
6066
6067 /* DPLL okay; verify the cdclock
6068 *
6069 * Some BIOS versions leave an incorrect decimal frequency value and
6070 * set reserved MBZ bits in CDCLK_CTL at least during exiting from S4,
6071 * so sanitize this register.
6072 */
6073 cdctl = I915_READ(CDCLK_CTL);
6074 /*
6075 * Let's ignore the pipe field, since BIOS could have configured the
6076 * dividers both synching to an active pipe, or asynchronously
6077 * (PIPE_NONE).
6078 */
6079 cdctl &= ~BXT_CDCLK_CD2X_PIPE_NONE;
6080
6081 expected = (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) |
6082 skl_cdclk_decimal(dev_priv->cdclk_freq);
6083 /*
6084 * Disable SSA Precharge when CD clock frequency < 500 MHz,
6085 * enable otherwise.
6086 */
6087 if (dev_priv->cdclk_freq >= 500000)
6088 expected |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
6089
6090 if (cdctl == expected)
6091 /* All well; nothing to sanitize */
6092 return;
6093
6094sanitize:
6095 DRM_DEBUG_KMS("Sanitizing cdclk programmed by pre-os\n");
6096
6097 /* force cdclk programming */
6098 dev_priv->cdclk_freq = 0;
6099
6100 /* force full PLL disable + enable */
6101 dev_priv->cdclk_pll.vco = -1;
6102}
6103
324513c0 6104void bxt_init_cdclk(struct drm_i915_private *dev_priv)
d66a2194
ID
6105{
6106 bxt_sanitize_cdclk(dev_priv);
6107
6108 if (dev_priv->cdclk_freq != 0 && dev_priv->cdclk_pll.vco != 0)
089c6fd5 6109 return;
c2e001ef 6110
f8437dd1
VK
6111 /*
6112 * FIXME:
6113 * - The initial CDCLK needs to be read from VBT.
6114 * Need to make this change after VBT has changes for BXT.
f8437dd1 6115 */
324513c0 6116 bxt_set_cdclk(dev_priv, bxt_calc_cdclk(0));
f8437dd1
VK
6117}
6118
324513c0 6119void bxt_uninit_cdclk(struct drm_i915_private *dev_priv)
f8437dd1 6120{
324513c0 6121 bxt_set_cdclk(dev_priv, dev_priv->cdclk_pll.ref);
f8437dd1
VK
6122}
6123
a8ca4934
VS
6124static int skl_calc_cdclk(int max_pixclk, int vco)
6125{
63911d72 6126 if (vco == 8640000) {
a8ca4934 6127 if (max_pixclk > 540000)
487ed2e4 6128 return 617143;
a8ca4934
VS
6129 else if (max_pixclk > 432000)
6130 return 540000;
487ed2e4 6131 else if (max_pixclk > 308571)
a8ca4934
VS
6132 return 432000;
6133 else
487ed2e4 6134 return 308571;
a8ca4934 6135 } else {
a8ca4934
VS
6136 if (max_pixclk > 540000)
6137 return 675000;
6138 else if (max_pixclk > 450000)
6139 return 540000;
6140 else if (max_pixclk > 337500)
6141 return 450000;
6142 else
6143 return 337500;
6144 }
6145}
6146
ea61791e
VS
6147static void
6148skl_dpll0_update(struct drm_i915_private *dev_priv)
5d96d8af 6149{
ea61791e 6150 u32 val;
5d96d8af 6151
709e05c3 6152 dev_priv->cdclk_pll.ref = 24000;
1c3f7700 6153 dev_priv->cdclk_pll.vco = 0;
709e05c3 6154
ea61791e 6155 val = I915_READ(LCPLL1_CTL);
1c3f7700 6156 if ((val & LCPLL_PLL_ENABLE) == 0)
ea61791e 6157 return;
5d96d8af 6158
1c3f7700
ID
6159 if (WARN_ON((val & LCPLL_PLL_LOCK) == 0))
6160 return;
9f7eb31a 6161
ea61791e
VS
6162 val = I915_READ(DPLL_CTRL1);
6163
1c3f7700
ID
6164 if (WARN_ON((val & (DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) |
6165 DPLL_CTRL1_SSC(SKL_DPLL0) |
6166 DPLL_CTRL1_OVERRIDE(SKL_DPLL0))) !=
6167 DPLL_CTRL1_OVERRIDE(SKL_DPLL0)))
6168 return;
9f7eb31a 6169
ea61791e
VS
6170 switch (val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) {
6171 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, SKL_DPLL0):
6172 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, SKL_DPLL0):
6173 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, SKL_DPLL0):
6174 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, SKL_DPLL0):
63911d72 6175 dev_priv->cdclk_pll.vco = 8100000;
ea61791e
VS
6176 break;
6177 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, SKL_DPLL0):
6178 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, SKL_DPLL0):
63911d72 6179 dev_priv->cdclk_pll.vco = 8640000;
ea61791e
VS
6180 break;
6181 default:
6182 MISSING_CASE(val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
ea61791e
VS
6183 break;
6184 }
5d96d8af
DL
6185}
6186
b2045352
VS
6187void skl_set_preferred_cdclk_vco(struct drm_i915_private *dev_priv, int vco)
6188{
6189 bool changed = dev_priv->skl_preferred_vco_freq != vco;
6190
6191 dev_priv->skl_preferred_vco_freq = vco;
6192
6193 if (changed)
91c8a326 6194 intel_update_max_cdclk(&dev_priv->drm);
b2045352
VS
6195}
6196
5d96d8af 6197static void
3861fc60 6198skl_dpll0_enable(struct drm_i915_private *dev_priv, int vco)
5d96d8af 6199{
a8ca4934 6200 int min_cdclk = skl_calc_cdclk(0, vco);
5d96d8af
DL
6201 u32 val;
6202
63911d72 6203 WARN_ON(vco != 8100000 && vco != 8640000);
b2045352 6204
5d96d8af 6205 /* select the minimum CDCLK before enabling DPLL 0 */
9ef56154 6206 val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_cdclk);
5d96d8af
DL
6207 I915_WRITE(CDCLK_CTL, val);
6208 POSTING_READ(CDCLK_CTL);
6209
6210 /*
6211 * We always enable DPLL0 with the lowest link rate possible, but still
6212 * taking into account the VCO required to operate the eDP panel at the
6213 * desired frequency. The usual DP link rates operate with a VCO of
6214 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
6215 * The modeset code is responsible for the selection of the exact link
6216 * rate later on, with the constraint of choosing a frequency that
a8ca4934 6217 * works with vco.
5d96d8af
DL
6218 */
6219 val = I915_READ(DPLL_CTRL1);
6220
6221 val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
6222 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
6223 val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
63911d72 6224 if (vco == 8640000)
5d96d8af
DL
6225 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
6226 SKL_DPLL0);
6227 else
6228 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
6229 SKL_DPLL0);
6230
6231 I915_WRITE(DPLL_CTRL1, val);
6232 POSTING_READ(DPLL_CTRL1);
6233
6234 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
6235
e24ca054
CW
6236 if (intel_wait_for_register(dev_priv,
6237 LCPLL1_CTL, LCPLL_PLL_LOCK, LCPLL_PLL_LOCK,
6238 5))
5d96d8af 6239 DRM_ERROR("DPLL0 not locked\n");
1cd593e0 6240
63911d72 6241 dev_priv->cdclk_pll.vco = vco;
b2045352
VS
6242
6243 /* We'll want to keep using the current vco from now on. */
6244 skl_set_preferred_cdclk_vco(dev_priv, vco);
5d96d8af
DL
6245}
6246
430e05de
VS
6247static void
6248skl_dpll0_disable(struct drm_i915_private *dev_priv)
6249{
6250 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
8ad32a05
CW
6251 if (intel_wait_for_register(dev_priv,
6252 LCPLL1_CTL, LCPLL_PLL_LOCK, 0,
6253 1))
430e05de 6254 DRM_ERROR("Couldn't disable DPLL0\n");
1cd593e0 6255
63911d72 6256 dev_priv->cdclk_pll.vco = 0;
430e05de
VS
6257}
6258
5d96d8af
DL
6259static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
6260{
6261 int ret;
6262 u32 val;
6263
6264 /* inform PCU we want to change CDCLK */
6265 val = SKL_CDCLK_PREPARE_FOR_CHANGE;
6266 mutex_lock(&dev_priv->rps.hw_lock);
6267 ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
6268 mutex_unlock(&dev_priv->rps.hw_lock);
6269
6270 return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
6271}
6272
6273static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
6274{
848496e5 6275 return _wait_for(skl_cdclk_pcu_ready(dev_priv), 3000, 10) == 0;
5d96d8af
DL
6276}
6277
1cd593e0 6278static void skl_set_cdclk(struct drm_i915_private *dev_priv, int cdclk, int vco)
5d96d8af 6279{
91c8a326 6280 struct drm_device *dev = &dev_priv->drm;
5d96d8af
DL
6281 u32 freq_select, pcu_ack;
6282
1cd593e0
VS
6283 WARN_ON((cdclk == 24000) != (vco == 0));
6284
63911d72 6285 DRM_DEBUG_DRIVER("Changing CDCLK to %d kHz (VCO %d kHz)\n", cdclk, vco);
5d96d8af
DL
6286
6287 if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
6288 DRM_ERROR("failed to inform PCU about cdclk change\n");
6289 return;
6290 }
6291
6292 /* set CDCLK_CTL */
9ef56154 6293 switch (cdclk) {
5d96d8af
DL
6294 case 450000:
6295 case 432000:
6296 freq_select = CDCLK_FREQ_450_432;
6297 pcu_ack = 1;
6298 break;
6299 case 540000:
6300 freq_select = CDCLK_FREQ_540;
6301 pcu_ack = 2;
6302 break;
487ed2e4 6303 case 308571:
5d96d8af
DL
6304 case 337500:
6305 default:
6306 freq_select = CDCLK_FREQ_337_308;
6307 pcu_ack = 0;
6308 break;
487ed2e4 6309 case 617143:
5d96d8af
DL
6310 case 675000:
6311 freq_select = CDCLK_FREQ_675_617;
6312 pcu_ack = 3;
6313 break;
6314 }
6315
63911d72
VS
6316 if (dev_priv->cdclk_pll.vco != 0 &&
6317 dev_priv->cdclk_pll.vco != vco)
1cd593e0
VS
6318 skl_dpll0_disable(dev_priv);
6319
63911d72 6320 if (dev_priv->cdclk_pll.vco != vco)
1cd593e0
VS
6321 skl_dpll0_enable(dev_priv, vco);
6322
9ef56154 6323 I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(cdclk));
5d96d8af
DL
6324 POSTING_READ(CDCLK_CTL);
6325
6326 /* inform PCU of the change */
6327 mutex_lock(&dev_priv->rps.hw_lock);
6328 sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
6329 mutex_unlock(&dev_priv->rps.hw_lock);
560a7ae4
DL
6330
6331 intel_update_cdclk(dev);
5d96d8af
DL
6332}
6333
9f7eb31a
VS
6334static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv);
6335
5d96d8af
DL
6336void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
6337{
709e05c3 6338 skl_set_cdclk(dev_priv, dev_priv->cdclk_pll.ref, 0);
5d96d8af
DL
6339}
6340
6341void skl_init_cdclk(struct drm_i915_private *dev_priv)
6342{
9f7eb31a
VS
6343 int cdclk, vco;
6344
6345 skl_sanitize_cdclk(dev_priv);
5d96d8af 6346
63911d72 6347 if (dev_priv->cdclk_freq != 0 && dev_priv->cdclk_pll.vco != 0) {
9f7eb31a
VS
6348 /*
6349 * Use the current vco as our initial
6350 * guess as to what the preferred vco is.
6351 */
6352 if (dev_priv->skl_preferred_vco_freq == 0)
6353 skl_set_preferred_cdclk_vco(dev_priv,
63911d72 6354 dev_priv->cdclk_pll.vco);
70c2c184 6355 return;
1cd593e0 6356 }
5d96d8af 6357
70c2c184
VS
6358 vco = dev_priv->skl_preferred_vco_freq;
6359 if (vco == 0)
63911d72 6360 vco = 8100000;
70c2c184 6361 cdclk = skl_calc_cdclk(0, vco);
5d96d8af 6362
70c2c184 6363 skl_set_cdclk(dev_priv, cdclk, vco);
5d96d8af
DL
6364}
6365
9f7eb31a 6366static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv)
c73666f3 6367{
09492498 6368 uint32_t cdctl, expected;
c73666f3 6369
f1b391a5
SK
6370 /*
6371 * check if the pre-os intialized the display
6372 * There is SWF18 scratchpad register defined which is set by the
6373 * pre-os which can be used by the OS drivers to check the status
6374 */
6375 if ((I915_READ(SWF_ILK(0x18)) & 0x00FFFFFF) == 0)
6376 goto sanitize;
6377
91c8a326 6378 intel_update_cdclk(&dev_priv->drm);
c73666f3 6379 /* Is PLL enabled and locked ? */
1c3f7700
ID
6380 if (dev_priv->cdclk_pll.vco == 0 ||
6381 dev_priv->cdclk_freq == dev_priv->cdclk_pll.ref)
c73666f3
SK
6382 goto sanitize;
6383
6384 /* DPLL okay; verify the cdclock
6385 *
6386 * Noticed in some instances that the freq selection is correct but
6387 * decimal part is programmed wrong from BIOS where pre-os does not
6388 * enable display. Verify the same as well.
6389 */
09492498
VS
6390 cdctl = I915_READ(CDCLK_CTL);
6391 expected = (cdctl & CDCLK_FREQ_SEL_MASK) |
6392 skl_cdclk_decimal(dev_priv->cdclk_freq);
6393 if (cdctl == expected)
c73666f3 6394 /* All well; nothing to sanitize */
9f7eb31a 6395 return;
c89e39f3 6396
9f7eb31a
VS
6397sanitize:
6398 DRM_DEBUG_KMS("Sanitizing cdclk programmed by pre-os\n");
c73666f3 6399
9f7eb31a
VS
6400 /* force cdclk programming */
6401 dev_priv->cdclk_freq = 0;
6402 /* force full PLL disable + enable */
63911d72 6403 dev_priv->cdclk_pll.vco = -1;
c73666f3
SK
6404}
6405
30a970c6
JB
6406/* Adjust CDclk dividers to allow high res or save power if possible */
6407static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
6408{
fac5e23e 6409 struct drm_i915_private *dev_priv = to_i915(dev);
30a970c6
JB
6410 u32 val, cmd;
6411
164dfd28
VK
6412 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
6413 != dev_priv->cdclk_freq);
d60c4473 6414
dfcab17e 6415 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
30a970c6 6416 cmd = 2;
dfcab17e 6417 else if (cdclk == 266667)
30a970c6
JB
6418 cmd = 1;
6419 else
6420 cmd = 0;
6421
6422 mutex_lock(&dev_priv->rps.hw_lock);
6423 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
6424 val &= ~DSPFREQGUAR_MASK;
6425 val |= (cmd << DSPFREQGUAR_SHIFT);
6426 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
6427 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
6428 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
6429 50)) {
6430 DRM_ERROR("timed out waiting for CDclk change\n");
6431 }
6432 mutex_unlock(&dev_priv->rps.hw_lock);
6433
54433e91
VS
6434 mutex_lock(&dev_priv->sb_lock);
6435
dfcab17e 6436 if (cdclk == 400000) {
6bcda4f0 6437 u32 divider;
30a970c6 6438
6bcda4f0 6439 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
30a970c6 6440
30a970c6
JB
6441 /* adjust cdclk divider */
6442 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
87d5d259 6443 val &= ~CCK_FREQUENCY_VALUES;
30a970c6
JB
6444 val |= divider;
6445 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
a877e801
VS
6446
6447 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
87d5d259 6448 CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
a877e801
VS
6449 50))
6450 DRM_ERROR("timed out waiting for CDclk change\n");
30a970c6
JB
6451 }
6452
30a970c6
JB
6453 /* adjust self-refresh exit latency value */
6454 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
6455 val &= ~0x7f;
6456
6457 /*
6458 * For high bandwidth configs, we set a higher latency in the bunit
6459 * so that the core display fetch happens in time to avoid underruns.
6460 */
dfcab17e 6461 if (cdclk == 400000)
30a970c6
JB
6462 val |= 4500 / 250; /* 4.5 usec */
6463 else
6464 val |= 3000 / 250; /* 3.0 usec */
6465 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
54433e91 6466
a580516d 6467 mutex_unlock(&dev_priv->sb_lock);
30a970c6 6468
b6283055 6469 intel_update_cdclk(dev);
30a970c6
JB
6470}
6471
383c5a6a
VS
6472static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
6473{
fac5e23e 6474 struct drm_i915_private *dev_priv = to_i915(dev);
383c5a6a
VS
6475 u32 val, cmd;
6476
164dfd28
VK
6477 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
6478 != dev_priv->cdclk_freq);
383c5a6a
VS
6479
6480 switch (cdclk) {
383c5a6a
VS
6481 case 333333:
6482 case 320000:
383c5a6a 6483 case 266667:
383c5a6a 6484 case 200000:
383c5a6a
VS
6485 break;
6486 default:
5f77eeb0 6487 MISSING_CASE(cdclk);
383c5a6a
VS
6488 return;
6489 }
6490
9d0d3fda
VS
6491 /*
6492 * Specs are full of misinformation, but testing on actual
6493 * hardware has shown that we just need to write the desired
6494 * CCK divider into the Punit register.
6495 */
6496 cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
6497
383c5a6a
VS
6498 mutex_lock(&dev_priv->rps.hw_lock);
6499 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
6500 val &= ~DSPFREQGUAR_MASK_CHV;
6501 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
6502 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
6503 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
6504 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
6505 50)) {
6506 DRM_ERROR("timed out waiting for CDclk change\n");
6507 }
6508 mutex_unlock(&dev_priv->rps.hw_lock);
6509
b6283055 6510 intel_update_cdclk(dev);
383c5a6a
VS
6511}
6512
30a970c6
JB
6513static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
6514 int max_pixclk)
6515{
6bcda4f0 6516 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
6cca3195 6517 int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
29dc7ef3 6518
30a970c6
JB
6519 /*
6520 * Really only a few cases to deal with, as only 4 CDclks are supported:
6521 * 200MHz
6522 * 267MHz
29dc7ef3 6523 * 320/333MHz (depends on HPLL freq)
6cca3195
VS
6524 * 400MHz (VLV only)
6525 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
6526 * of the lower bin and adjust if needed.
e37c67a1
VS
6527 *
6528 * We seem to get an unstable or solid color picture at 200MHz.
6529 * Not sure what's wrong. For now use 200MHz only when all pipes
6530 * are off.
30a970c6 6531 */
6cca3195
VS
6532 if (!IS_CHERRYVIEW(dev_priv) &&
6533 max_pixclk > freq_320*limit/100)
dfcab17e 6534 return 400000;
6cca3195 6535 else if (max_pixclk > 266667*limit/100)
29dc7ef3 6536 return freq_320;
e37c67a1 6537 else if (max_pixclk > 0)
dfcab17e 6538 return 266667;
e37c67a1
VS
6539 else
6540 return 200000;
30a970c6
JB
6541}
6542
324513c0 6543static int bxt_calc_cdclk(int max_pixclk)
f8437dd1 6544{
760e1477 6545 if (max_pixclk > 576000)
f8437dd1 6546 return 624000;
760e1477 6547 else if (max_pixclk > 384000)
f8437dd1 6548 return 576000;
760e1477 6549 else if (max_pixclk > 288000)
f8437dd1 6550 return 384000;
760e1477 6551 else if (max_pixclk > 144000)
f8437dd1
VK
6552 return 288000;
6553 else
6554 return 144000;
6555}
6556
e8788cbc 6557/* Compute the max pixel clock for new configuration. */
a821fc46
ACO
6558static int intel_mode_max_pixclk(struct drm_device *dev,
6559 struct drm_atomic_state *state)
30a970c6 6560{
565602d7 6561 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
fac5e23e 6562 struct drm_i915_private *dev_priv = to_i915(dev);
565602d7
ML
6563 struct drm_crtc *crtc;
6564 struct drm_crtc_state *crtc_state;
6565 unsigned max_pixclk = 0, i;
6566 enum pipe pipe;
30a970c6 6567
565602d7
ML
6568 memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
6569 sizeof(intel_state->min_pixclk));
304603f4 6570
565602d7
ML
6571 for_each_crtc_in_state(state, crtc, crtc_state, i) {
6572 int pixclk = 0;
6573
6574 if (crtc_state->enable)
6575 pixclk = crtc_state->adjusted_mode.crtc_clock;
304603f4 6576
565602d7 6577 intel_state->min_pixclk[i] = pixclk;
30a970c6
JB
6578 }
6579
565602d7
ML
6580 for_each_pipe(dev_priv, pipe)
6581 max_pixclk = max(intel_state->min_pixclk[pipe], max_pixclk);
6582
30a970c6
JB
6583 return max_pixclk;
6584}
6585
27c329ed 6586static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
30a970c6 6587{
27c329ed 6588 struct drm_device *dev = state->dev;
fac5e23e 6589 struct drm_i915_private *dev_priv = to_i915(dev);
27c329ed 6590 int max_pixclk = intel_mode_max_pixclk(dev, state);
1a617b77
ML
6591 struct intel_atomic_state *intel_state =
6592 to_intel_atomic_state(state);
30a970c6 6593
1a617b77 6594 intel_state->cdclk = intel_state->dev_cdclk =
27c329ed 6595 valleyview_calc_cdclk(dev_priv, max_pixclk);
0a9ab303 6596
1a617b77
ML
6597 if (!intel_state->active_crtcs)
6598 intel_state->dev_cdclk = valleyview_calc_cdclk(dev_priv, 0);
6599
27c329ed
ML
6600 return 0;
6601}
304603f4 6602
324513c0 6603static int bxt_modeset_calc_cdclk(struct drm_atomic_state *state)
27c329ed 6604{
4e5ca60f 6605 int max_pixclk = ilk_max_pixel_rate(state);
1a617b77
ML
6606 struct intel_atomic_state *intel_state =
6607 to_intel_atomic_state(state);
85a96e7a 6608
1a617b77 6609 intel_state->cdclk = intel_state->dev_cdclk =
324513c0 6610 bxt_calc_cdclk(max_pixclk);
85a96e7a 6611
1a617b77 6612 if (!intel_state->active_crtcs)
324513c0 6613 intel_state->dev_cdclk = bxt_calc_cdclk(0);
1a617b77 6614
27c329ed 6615 return 0;
30a970c6
JB
6616}
6617
1e69cd74
VS
6618static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
6619{
6620 unsigned int credits, default_credits;
6621
6622 if (IS_CHERRYVIEW(dev_priv))
6623 default_credits = PFI_CREDIT(12);
6624 else
6625 default_credits = PFI_CREDIT(8);
6626
bfa7df01 6627 if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
1e69cd74
VS
6628 /* CHV suggested value is 31 or 63 */
6629 if (IS_CHERRYVIEW(dev_priv))
fcc0008f 6630 credits = PFI_CREDIT_63;
1e69cd74
VS
6631 else
6632 credits = PFI_CREDIT(15);
6633 } else {
6634 credits = default_credits;
6635 }
6636
6637 /*
6638 * WA - write default credits before re-programming
6639 * FIXME: should we also set the resend bit here?
6640 */
6641 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6642 default_credits);
6643
6644 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6645 credits | PFI_CREDIT_RESEND);
6646
6647 /*
6648 * FIXME is this guaranteed to clear
6649 * immediately or should we poll for it?
6650 */
6651 WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6652}
6653
27c329ed 6654static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
30a970c6 6655{
a821fc46 6656 struct drm_device *dev = old_state->dev;
fac5e23e 6657 struct drm_i915_private *dev_priv = to_i915(dev);
1a617b77
ML
6658 struct intel_atomic_state *old_intel_state =
6659 to_intel_atomic_state(old_state);
6660 unsigned req_cdclk = old_intel_state->dev_cdclk;
30a970c6 6661
27c329ed
ML
6662 /*
6663 * FIXME: We can end up here with all power domains off, yet
6664 * with a CDCLK frequency other than the minimum. To account
6665 * for this take the PIPE-A power domain, which covers the HW
6666 * blocks needed for the following programming. This can be
6667 * removed once it's guaranteed that we get here either with
6668 * the minimum CDCLK set, or the required power domains
6669 * enabled.
6670 */
6671 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
738c05c0 6672
27c329ed
ML
6673 if (IS_CHERRYVIEW(dev))
6674 cherryview_set_cdclk(dev, req_cdclk);
6675 else
6676 valleyview_set_cdclk(dev, req_cdclk);
738c05c0 6677
27c329ed 6678 vlv_program_pfi_credits(dev_priv);
1e69cd74 6679
27c329ed 6680 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
30a970c6
JB
6681}
6682
4a806558
ML
6683static void valleyview_crtc_enable(struct intel_crtc_state *pipe_config,
6684 struct drm_atomic_state *old_state)
89b667f8 6685{
4a806558 6686 struct drm_crtc *crtc = pipe_config->base.crtc;
89b667f8 6687 struct drm_device *dev = crtc->dev;
a72e4c9f 6688 struct drm_i915_private *dev_priv = to_i915(dev);
89b667f8 6689 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
89b667f8 6690 int pipe = intel_crtc->pipe;
89b667f8 6691
53d9f4e9 6692 if (WARN_ON(intel_crtc->active))
89b667f8
JB
6693 return;
6694
37a5650b 6695 if (intel_crtc_has_dp_encoder(intel_crtc->config))
fe3cd48d 6696 intel_dp_set_m_n(intel_crtc, M1_N1);
5b18e57c
DV
6697
6698 intel_set_pipe_timings(intel_crtc);
bc58be60 6699 intel_set_pipe_src_size(intel_crtc);
5b18e57c 6700
c14b0485 6701 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
fac5e23e 6702 struct drm_i915_private *dev_priv = to_i915(dev);
c14b0485
VS
6703
6704 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6705 I915_WRITE(CHV_CANVAS(pipe), 0);
6706 }
6707
5b18e57c
DV
6708 i9xx_set_pipeconf(intel_crtc);
6709
89b667f8 6710 intel_crtc->active = true;
89b667f8 6711
a72e4c9f 6712 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 6713
fd6bbda9 6714 intel_encoders_pre_pll_enable(crtc, pipe_config, old_state);
89b667f8 6715
cd2d34d9
VS
6716 if (IS_CHERRYVIEW(dev)) {
6717 chv_prepare_pll(intel_crtc, intel_crtc->config);
6718 chv_enable_pll(intel_crtc, intel_crtc->config);
6719 } else {
6720 vlv_prepare_pll(intel_crtc, intel_crtc->config);
6721 vlv_enable_pll(intel_crtc, intel_crtc->config);
9d556c99 6722 }
89b667f8 6723
fd6bbda9 6724 intel_encoders_pre_enable(crtc, pipe_config, old_state);
89b667f8 6725
2dd24552
JB
6726 i9xx_pfit_enable(intel_crtc);
6727
b95c5321 6728 intel_color_load_luts(&pipe_config->base);
63cbb074 6729
caed361d 6730 intel_update_watermarks(crtc);
e1fdc473 6731 intel_enable_pipe(intel_crtc);
be6a6f8e 6732
4b3a9526
VS
6733 assert_vblank_disabled(crtc);
6734 drm_crtc_vblank_on(crtc);
6735
fd6bbda9 6736 intel_encoders_enable(crtc, pipe_config, old_state);
89b667f8
JB
6737}
6738
f13c2ef3
DV
6739static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6740{
6741 struct drm_device *dev = crtc->base.dev;
fac5e23e 6742 struct drm_i915_private *dev_priv = to_i915(dev);
f13c2ef3 6743
6e3c9717
ACO
6744 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6745 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
f13c2ef3
DV
6746}
6747
4a806558
ML
6748static void i9xx_crtc_enable(struct intel_crtc_state *pipe_config,
6749 struct drm_atomic_state *old_state)
79e53945 6750{
4a806558 6751 struct drm_crtc *crtc = pipe_config->base.crtc;
79e53945 6752 struct drm_device *dev = crtc->dev;
a72e4c9f 6753 struct drm_i915_private *dev_priv = to_i915(dev);
79e53945 6754 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
cd2d34d9 6755 enum pipe pipe = intel_crtc->pipe;
79e53945 6756
53d9f4e9 6757 if (WARN_ON(intel_crtc->active))
f7abfe8b
CW
6758 return;
6759
f13c2ef3
DV
6760 i9xx_set_pll_dividers(intel_crtc);
6761
37a5650b 6762 if (intel_crtc_has_dp_encoder(intel_crtc->config))
fe3cd48d 6763 intel_dp_set_m_n(intel_crtc, M1_N1);
5b18e57c
DV
6764
6765 intel_set_pipe_timings(intel_crtc);
bc58be60 6766 intel_set_pipe_src_size(intel_crtc);
5b18e57c 6767
5b18e57c
DV
6768 i9xx_set_pipeconf(intel_crtc);
6769
f7abfe8b 6770 intel_crtc->active = true;
6b383a7f 6771
4a3436e8 6772 if (!IS_GEN2(dev))
a72e4c9f 6773 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 6774
fd6bbda9 6775 intel_encoders_pre_enable(crtc, pipe_config, old_state);
9d6d9f19 6776
f6736a1a
DV
6777 i9xx_enable_pll(intel_crtc);
6778
2dd24552
JB
6779 i9xx_pfit_enable(intel_crtc);
6780
b95c5321 6781 intel_color_load_luts(&pipe_config->base);
63cbb074 6782
f37fcc2a 6783 intel_update_watermarks(crtc);
e1fdc473 6784 intel_enable_pipe(intel_crtc);
be6a6f8e 6785
4b3a9526
VS
6786 assert_vblank_disabled(crtc);
6787 drm_crtc_vblank_on(crtc);
6788
fd6bbda9 6789 intel_encoders_enable(crtc, pipe_config, old_state);
0b8765c6 6790}
79e53945 6791
87476d63
DV
6792static void i9xx_pfit_disable(struct intel_crtc *crtc)
6793{
6794 struct drm_device *dev = crtc->base.dev;
fac5e23e 6795 struct drm_i915_private *dev_priv = to_i915(dev);
87476d63 6796
6e3c9717 6797 if (!crtc->config->gmch_pfit.control)
328d8e82 6798 return;
87476d63 6799
328d8e82 6800 assert_pipe_disabled(dev_priv, crtc->pipe);
87476d63 6801
328d8e82
DV
6802 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6803 I915_READ(PFIT_CONTROL));
6804 I915_WRITE(PFIT_CONTROL, 0);
87476d63
DV
6805}
6806
4a806558
ML
6807static void i9xx_crtc_disable(struct intel_crtc_state *old_crtc_state,
6808 struct drm_atomic_state *old_state)
0b8765c6 6809{
4a806558 6810 struct drm_crtc *crtc = old_crtc_state->base.crtc;
0b8765c6 6811 struct drm_device *dev = crtc->dev;
fac5e23e 6812 struct drm_i915_private *dev_priv = to_i915(dev);
0b8765c6
JB
6813 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6814 int pipe = intel_crtc->pipe;
ef9c3aee 6815
6304cd91
VS
6816 /*
6817 * On gen2 planes are double buffered but the pipe isn't, so we must
6818 * wait for planes to fully turn off before disabling the pipe.
6819 */
90e83e53
ACO
6820 if (IS_GEN2(dev))
6821 intel_wait_for_vblank(dev, pipe);
6304cd91 6822
fd6bbda9 6823 intel_encoders_disable(crtc, old_crtc_state, old_state);
4b3a9526 6824
f9b61ff6
DV
6825 drm_crtc_vblank_off(crtc);
6826 assert_vblank_disabled(crtc);
6827
575f7ab7 6828 intel_disable_pipe(intel_crtc);
24a1f16d 6829
87476d63 6830 i9xx_pfit_disable(intel_crtc);
24a1f16d 6831
fd6bbda9 6832 intel_encoders_post_disable(crtc, old_crtc_state, old_state);
89b667f8 6833
d7edc4e5 6834 if (!intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DSI)) {
076ed3b2
CML
6835 if (IS_CHERRYVIEW(dev))
6836 chv_disable_pll(dev_priv, pipe);
6837 else if (IS_VALLEYVIEW(dev))
6838 vlv_disable_pll(dev_priv, pipe);
6839 else
1c4e0274 6840 i9xx_disable_pll(intel_crtc);
076ed3b2 6841 }
0b8765c6 6842
fd6bbda9 6843 intel_encoders_post_pll_disable(crtc, old_crtc_state, old_state);
d6db995f 6844
4a3436e8 6845 if (!IS_GEN2(dev))
a72e4c9f 6846 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
0b8765c6
JB
6847}
6848
b17d48e2
ML
6849static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6850{
842e0307 6851 struct intel_encoder *encoder;
b17d48e2
ML
6852 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6853 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6854 enum intel_display_power_domain domain;
6855 unsigned long domains;
4a806558
ML
6856 struct drm_atomic_state *state;
6857 struct intel_crtc_state *crtc_state;
6858 int ret;
b17d48e2
ML
6859
6860 if (!intel_crtc->active)
6861 return;
6862
936e71e3 6863 if (to_intel_plane_state(crtc->primary->state)->base.visible) {
5a21b665 6864 WARN_ON(intel_crtc->flip_work);
fc32b1fd 6865
2622a081 6866 intel_pre_disable_primary_noatomic(crtc);
54a41961
ML
6867
6868 intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
936e71e3 6869 to_intel_plane_state(crtc->primary->state)->base.visible = false;
a539205a
ML
6870 }
6871
4a806558
ML
6872 state = drm_atomic_state_alloc(crtc->dev);
6873 state->acquire_ctx = crtc->dev->mode_config.acquire_ctx;
6874
6875 /* Everything's already locked, -EDEADLK can't happen. */
6876 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
6877 ret = drm_atomic_add_affected_connectors(state, crtc);
6878
6879 WARN_ON(IS_ERR(crtc_state) || ret);
6880
6881 dev_priv->display.crtc_disable(crtc_state, state);
6882
6883 drm_atomic_state_free(state);
842e0307 6884
78108b7c
VS
6885 DRM_DEBUG_KMS("[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n",
6886 crtc->base.id, crtc->name);
842e0307
ML
6887
6888 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->state, NULL) < 0);
6889 crtc->state->active = false;
37d9078b 6890 intel_crtc->active = false;
842e0307
ML
6891 crtc->enabled = false;
6892 crtc->state->connector_mask = 0;
6893 crtc->state->encoder_mask = 0;
6894
6895 for_each_encoder_on_crtc(crtc->dev, crtc, encoder)
6896 encoder->base.crtc = NULL;
6897
58f9c0bc 6898 intel_fbc_disable(intel_crtc);
37d9078b 6899 intel_update_watermarks(crtc);
1f7457b1 6900 intel_disable_shared_dpll(intel_crtc);
b17d48e2
ML
6901
6902 domains = intel_crtc->enabled_power_domains;
6903 for_each_power_domain(domain, domains)
6904 intel_display_power_put(dev_priv, domain);
6905 intel_crtc->enabled_power_domains = 0;
565602d7
ML
6906
6907 dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe);
6908 dev_priv->min_pixclk[intel_crtc->pipe] = 0;
b17d48e2
ML
6909}
6910
6b72d486
ML
6911/*
6912 * turn all crtc's off, but do not adjust state
6913 * This has to be paired with a call to intel_modeset_setup_hw_state.
6914 */
70e0bd74 6915int intel_display_suspend(struct drm_device *dev)
ee7b9f93 6916{
e2c8b870 6917 struct drm_i915_private *dev_priv = to_i915(dev);
70e0bd74 6918 struct drm_atomic_state *state;
e2c8b870 6919 int ret;
70e0bd74 6920
e2c8b870
ML
6921 state = drm_atomic_helper_suspend(dev);
6922 ret = PTR_ERR_OR_ZERO(state);
70e0bd74
ML
6923 if (ret)
6924 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
e2c8b870
ML
6925 else
6926 dev_priv->modeset_restore_state = state;
70e0bd74 6927 return ret;
ee7b9f93
JB
6928}
6929
ea5b213a 6930void intel_encoder_destroy(struct drm_encoder *encoder)
7e7d76c3 6931{
4ef69c7a 6932 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 6933
ea5b213a
CW
6934 drm_encoder_cleanup(encoder);
6935 kfree(intel_encoder);
7e7d76c3
JB
6936}
6937
0a91ca29
DV
6938/* Cross check the actual hw state with our own modeset state tracking (and it's
6939 * internal consistency). */
5a21b665 6940static void intel_connector_verify_state(struct intel_connector *connector)
79e53945 6941{
5a21b665 6942 struct drm_crtc *crtc = connector->base.state->crtc;
35dd3c64
ML
6943
6944 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6945 connector->base.base.id,
6946 connector->base.name);
6947
0a91ca29 6948 if (connector->get_hw_state(connector)) {
e85376cb 6949 struct intel_encoder *encoder = connector->encoder;
5a21b665 6950 struct drm_connector_state *conn_state = connector->base.state;
0a91ca29 6951
35dd3c64
ML
6952 I915_STATE_WARN(!crtc,
6953 "connector enabled without attached crtc\n");
0a91ca29 6954
35dd3c64
ML
6955 if (!crtc)
6956 return;
6957
6958 I915_STATE_WARN(!crtc->state->active,
6959 "connector is active, but attached crtc isn't\n");
6960
e85376cb 6961 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
35dd3c64
ML
6962 return;
6963
e85376cb 6964 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
35dd3c64
ML
6965 "atomic encoder doesn't match attached encoder\n");
6966
e85376cb 6967 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
35dd3c64
ML
6968 "attached encoder crtc differs from connector crtc\n");
6969 } else {
4d688a2a
ML
6970 I915_STATE_WARN(crtc && crtc->state->active,
6971 "attached crtc is active, but connector isn't\n");
5a21b665 6972 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
35dd3c64 6973 "best encoder set without crtc!\n");
0a91ca29 6974 }
79e53945
JB
6975}
6976
08d9bc92
ACO
6977int intel_connector_init(struct intel_connector *connector)
6978{
5350a031 6979 drm_atomic_helper_connector_reset(&connector->base);
08d9bc92 6980
5350a031 6981 if (!connector->base.state)
08d9bc92
ACO
6982 return -ENOMEM;
6983
08d9bc92
ACO
6984 return 0;
6985}
6986
6987struct intel_connector *intel_connector_alloc(void)
6988{
6989 struct intel_connector *connector;
6990
6991 connector = kzalloc(sizeof *connector, GFP_KERNEL);
6992 if (!connector)
6993 return NULL;
6994
6995 if (intel_connector_init(connector) < 0) {
6996 kfree(connector);
6997 return NULL;
6998 }
6999
7000 return connector;
7001}
7002
f0947c37
DV
7003/* Simple connector->get_hw_state implementation for encoders that support only
7004 * one connector and no cloning and hence the encoder state determines the state
7005 * of the connector. */
7006bool intel_connector_get_hw_state(struct intel_connector *connector)
ea5b213a 7007{
24929352 7008 enum pipe pipe = 0;
f0947c37 7009 struct intel_encoder *encoder = connector->encoder;
ea5b213a 7010
f0947c37 7011 return encoder->get_hw_state(encoder, &pipe);
ea5b213a
CW
7012}
7013
6d293983 7014static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
d272ddfa 7015{
6d293983
ACO
7016 if (crtc_state->base.enable && crtc_state->has_pch_encoder)
7017 return crtc_state->fdi_lanes;
d272ddfa
VS
7018
7019 return 0;
7020}
7021
6d293983 7022static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5cec258b 7023 struct intel_crtc_state *pipe_config)
1857e1da 7024{
6d293983
ACO
7025 struct drm_atomic_state *state = pipe_config->base.state;
7026 struct intel_crtc *other_crtc;
7027 struct intel_crtc_state *other_crtc_state;
7028
1857e1da
DV
7029 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
7030 pipe_name(pipe), pipe_config->fdi_lanes);
7031 if (pipe_config->fdi_lanes > 4) {
7032 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
7033 pipe_name(pipe), pipe_config->fdi_lanes);
6d293983 7034 return -EINVAL;
1857e1da
DV
7035 }
7036
bafb6553 7037 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1857e1da
DV
7038 if (pipe_config->fdi_lanes > 2) {
7039 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
7040 pipe_config->fdi_lanes);
6d293983 7041 return -EINVAL;
1857e1da 7042 } else {
6d293983 7043 return 0;
1857e1da
DV
7044 }
7045 }
7046
7047 if (INTEL_INFO(dev)->num_pipes == 2)
6d293983 7048 return 0;
1857e1da
DV
7049
7050 /* Ivybridge 3 pipe is really complicated */
7051 switch (pipe) {
7052 case PIPE_A:
6d293983 7053 return 0;
1857e1da 7054 case PIPE_B:
6d293983
ACO
7055 if (pipe_config->fdi_lanes <= 2)
7056 return 0;
7057
7058 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
7059 other_crtc_state =
7060 intel_atomic_get_crtc_state(state, other_crtc);
7061 if (IS_ERR(other_crtc_state))
7062 return PTR_ERR(other_crtc_state);
7063
7064 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
1857e1da
DV
7065 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
7066 pipe_name(pipe), pipe_config->fdi_lanes);
6d293983 7067 return -EINVAL;
1857e1da 7068 }
6d293983 7069 return 0;
1857e1da 7070 case PIPE_C:
251cc67c
VS
7071 if (pipe_config->fdi_lanes > 2) {
7072 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
7073 pipe_name(pipe), pipe_config->fdi_lanes);
6d293983 7074 return -EINVAL;
251cc67c 7075 }
6d293983
ACO
7076
7077 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
7078 other_crtc_state =
7079 intel_atomic_get_crtc_state(state, other_crtc);
7080 if (IS_ERR(other_crtc_state))
7081 return PTR_ERR(other_crtc_state);
7082
7083 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
1857e1da 7084 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6d293983 7085 return -EINVAL;
1857e1da 7086 }
6d293983 7087 return 0;
1857e1da
DV
7088 default:
7089 BUG();
7090 }
7091}
7092
e29c22c0
DV
7093#define RETRY 1
7094static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5cec258b 7095 struct intel_crtc_state *pipe_config)
877d48d5 7096{
1857e1da 7097 struct drm_device *dev = intel_crtc->base.dev;
7c5f93b0 7098 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6d293983
ACO
7099 int lane, link_bw, fdi_dotclock, ret;
7100 bool needs_recompute = false;
877d48d5 7101
e29c22c0 7102retry:
877d48d5
DV
7103 /* FDI is a binary signal running at ~2.7GHz, encoding
7104 * each output octet as 10 bits. The actual frequency
7105 * is stored as a divider into a 100MHz clock, and the
7106 * mode pixel clock is stored in units of 1KHz.
7107 * Hence the bw of each lane in terms of the mode signal
7108 * is:
7109 */
21a727b3 7110 link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config);
877d48d5 7111
241bfc38 7112 fdi_dotclock = adjusted_mode->crtc_clock;
877d48d5 7113
2bd89a07 7114 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
877d48d5
DV
7115 pipe_config->pipe_bpp);
7116
7117 pipe_config->fdi_lanes = lane;
7118
2bd89a07 7119 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
877d48d5 7120 link_bw, &pipe_config->fdi_m_n);
1857e1da 7121
e3b247da 7122 ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
6d293983 7123 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
e29c22c0
DV
7124 pipe_config->pipe_bpp -= 2*3;
7125 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
7126 pipe_config->pipe_bpp);
7127 needs_recompute = true;
7128 pipe_config->bw_constrained = true;
7129
7130 goto retry;
7131 }
7132
7133 if (needs_recompute)
7134 return RETRY;
7135
6d293983 7136 return ret;
877d48d5
DV
7137}
7138
8cfb3407
VS
7139static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
7140 struct intel_crtc_state *pipe_config)
7141{
7142 if (pipe_config->pipe_bpp > 24)
7143 return false;
7144
7145 /* HSW can handle pixel rate up to cdclk? */
2d1fe073 7146 if (IS_HASWELL(dev_priv))
8cfb3407
VS
7147 return true;
7148
7149 /*
b432e5cf
VS
7150 * We compare against max which means we must take
7151 * the increased cdclk requirement into account when
7152 * calculating the new cdclk.
7153 *
7154 * Should measure whether using a lower cdclk w/o IPS
8cfb3407
VS
7155 */
7156 return ilk_pipe_pixel_rate(pipe_config) <=
7157 dev_priv->max_cdclk_freq * 95 / 100;
7158}
7159
42db64ef 7160static void hsw_compute_ips_config(struct intel_crtc *crtc,
5cec258b 7161 struct intel_crtc_state *pipe_config)
42db64ef 7162{
8cfb3407 7163 struct drm_device *dev = crtc->base.dev;
fac5e23e 7164 struct drm_i915_private *dev_priv = to_i915(dev);
8cfb3407 7165
d330a953 7166 pipe_config->ips_enabled = i915.enable_ips &&
8cfb3407
VS
7167 hsw_crtc_supports_ips(crtc) &&
7168 pipe_config_supports_ips(dev_priv, pipe_config);
42db64ef
PZ
7169}
7170
39acb4aa
VS
7171static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
7172{
7173 const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7174
7175 /* GDG double wide on either pipe, otherwise pipe A only */
7176 return INTEL_INFO(dev_priv)->gen < 4 &&
7177 (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
7178}
7179
a43f6e0f 7180static int intel_crtc_compute_config(struct intel_crtc *crtc,
5cec258b 7181 struct intel_crtc_state *pipe_config)
79e53945 7182{
a43f6e0f 7183 struct drm_device *dev = crtc->base.dev;
fac5e23e 7184 struct drm_i915_private *dev_priv = to_i915(dev);
7c5f93b0 7185 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
f3261156 7186 int clock_limit = dev_priv->max_dotclk_freq;
89749350 7187
cf532bb2 7188 if (INTEL_INFO(dev)->gen < 4) {
f3261156 7189 clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
cf532bb2
VS
7190
7191 /*
39acb4aa 7192 * Enable double wide mode when the dot clock
cf532bb2 7193 * is > 90% of the (display) core speed.
cf532bb2 7194 */
39acb4aa
VS
7195 if (intel_crtc_supports_double_wide(crtc) &&
7196 adjusted_mode->crtc_clock > clock_limit) {
f3261156 7197 clock_limit = dev_priv->max_dotclk_freq;
cf532bb2 7198 pipe_config->double_wide = true;
ad3a4479 7199 }
f3261156 7200 }
ad3a4479 7201
f3261156
VS
7202 if (adjusted_mode->crtc_clock > clock_limit) {
7203 DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
7204 adjusted_mode->crtc_clock, clock_limit,
7205 yesno(pipe_config->double_wide));
7206 return -EINVAL;
2c07245f 7207 }
89749350 7208
1d1d0e27
VS
7209 /*
7210 * Pipe horizontal size must be even in:
7211 * - DVO ganged mode
7212 * - LVDS dual channel mode
7213 * - Double wide pipe
7214 */
2d84d2b3 7215 if ((intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) &&
1d1d0e27
VS
7216 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
7217 pipe_config->pipe_src_w &= ~1;
7218
8693a824
DL
7219 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
7220 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
44f46b42
CW
7221 */
7222 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
aad941d5 7223 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
e29c22c0 7224 return -EINVAL;
44f46b42 7225
f5adf94e 7226 if (HAS_IPS(dev))
a43f6e0f
DV
7227 hsw_compute_ips_config(crtc, pipe_config);
7228
877d48d5 7229 if (pipe_config->has_pch_encoder)
a43f6e0f 7230 return ironlake_fdi_compute_config(crtc, pipe_config);
877d48d5 7231
cf5a15be 7232 return 0;
79e53945
JB
7233}
7234
1652d19e
VS
7235static int skylake_get_display_clock_speed(struct drm_device *dev)
7236{
7237 struct drm_i915_private *dev_priv = to_i915(dev);
ea61791e 7238 uint32_t cdctl;
1652d19e 7239
ea61791e 7240 skl_dpll0_update(dev_priv);
1652d19e 7241
63911d72 7242 if (dev_priv->cdclk_pll.vco == 0)
709e05c3 7243 return dev_priv->cdclk_pll.ref;
1652d19e 7244
ea61791e 7245 cdctl = I915_READ(CDCLK_CTL);
1652d19e 7246
63911d72 7247 if (dev_priv->cdclk_pll.vco == 8640000) {
1652d19e
VS
7248 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
7249 case CDCLK_FREQ_450_432:
7250 return 432000;
7251 case CDCLK_FREQ_337_308:
487ed2e4 7252 return 308571;
ea61791e
VS
7253 case CDCLK_FREQ_540:
7254 return 540000;
1652d19e 7255 case CDCLK_FREQ_675_617:
487ed2e4 7256 return 617143;
1652d19e 7257 default:
ea61791e 7258 MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
1652d19e
VS
7259 }
7260 } else {
1652d19e
VS
7261 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
7262 case CDCLK_FREQ_450_432:
7263 return 450000;
7264 case CDCLK_FREQ_337_308:
7265 return 337500;
ea61791e
VS
7266 case CDCLK_FREQ_540:
7267 return 540000;
1652d19e
VS
7268 case CDCLK_FREQ_675_617:
7269 return 675000;
7270 default:
ea61791e 7271 MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
1652d19e
VS
7272 }
7273 }
7274
709e05c3 7275 return dev_priv->cdclk_pll.ref;
1652d19e
VS
7276}
7277
83d7c81f
VS
7278static void bxt_de_pll_update(struct drm_i915_private *dev_priv)
7279{
7280 u32 val;
7281
7282 dev_priv->cdclk_pll.ref = 19200;
1c3f7700 7283 dev_priv->cdclk_pll.vco = 0;
83d7c81f
VS
7284
7285 val = I915_READ(BXT_DE_PLL_ENABLE);
1c3f7700 7286 if ((val & BXT_DE_PLL_PLL_ENABLE) == 0)
83d7c81f 7287 return;
83d7c81f 7288
1c3f7700
ID
7289 if (WARN_ON((val & BXT_DE_PLL_LOCK) == 0))
7290 return;
83d7c81f
VS
7291
7292 val = I915_READ(BXT_DE_PLL_CTL);
7293 dev_priv->cdclk_pll.vco = (val & BXT_DE_PLL_RATIO_MASK) *
7294 dev_priv->cdclk_pll.ref;
7295}
7296
acd3f3d3
BP
7297static int broxton_get_display_clock_speed(struct drm_device *dev)
7298{
7299 struct drm_i915_private *dev_priv = to_i915(dev);
f5986242
VS
7300 u32 divider;
7301 int div, vco;
acd3f3d3 7302
83d7c81f
VS
7303 bxt_de_pll_update(dev_priv);
7304
f5986242
VS
7305 vco = dev_priv->cdclk_pll.vco;
7306 if (vco == 0)
7307 return dev_priv->cdclk_pll.ref;
acd3f3d3 7308
f5986242 7309 divider = I915_READ(CDCLK_CTL) & BXT_CDCLK_CD2X_DIV_SEL_MASK;
acd3f3d3 7310
f5986242 7311 switch (divider) {
acd3f3d3 7312 case BXT_CDCLK_CD2X_DIV_SEL_1:
f5986242
VS
7313 div = 2;
7314 break;
acd3f3d3 7315 case BXT_CDCLK_CD2X_DIV_SEL_1_5:
f5986242
VS
7316 div = 3;
7317 break;
acd3f3d3 7318 case BXT_CDCLK_CD2X_DIV_SEL_2:
f5986242
VS
7319 div = 4;
7320 break;
acd3f3d3 7321 case BXT_CDCLK_CD2X_DIV_SEL_4:
f5986242
VS
7322 div = 8;
7323 break;
7324 default:
7325 MISSING_CASE(divider);
7326 return dev_priv->cdclk_pll.ref;
acd3f3d3
BP
7327 }
7328
f5986242 7329 return DIV_ROUND_CLOSEST(vco, div);
acd3f3d3
BP
7330}
7331
1652d19e
VS
7332static int broadwell_get_display_clock_speed(struct drm_device *dev)
7333{
fac5e23e 7334 struct drm_i915_private *dev_priv = to_i915(dev);
1652d19e
VS
7335 uint32_t lcpll = I915_READ(LCPLL_CTL);
7336 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
7337
7338 if (lcpll & LCPLL_CD_SOURCE_FCLK)
7339 return 800000;
7340 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
7341 return 450000;
7342 else if (freq == LCPLL_CLK_FREQ_450)
7343 return 450000;
7344 else if (freq == LCPLL_CLK_FREQ_54O_BDW)
7345 return 540000;
7346 else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
7347 return 337500;
7348 else
7349 return 675000;
7350}
7351
7352static int haswell_get_display_clock_speed(struct drm_device *dev)
7353{
fac5e23e 7354 struct drm_i915_private *dev_priv = to_i915(dev);
1652d19e
VS
7355 uint32_t lcpll = I915_READ(LCPLL_CTL);
7356 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
7357
7358 if (lcpll & LCPLL_CD_SOURCE_FCLK)
7359 return 800000;
7360 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
7361 return 450000;
7362 else if (freq == LCPLL_CLK_FREQ_450)
7363 return 450000;
7364 else if (IS_HSW_ULT(dev))
7365 return 337500;
7366 else
7367 return 540000;
79e53945
JB
7368}
7369
25eb05fc
JB
7370static int valleyview_get_display_clock_speed(struct drm_device *dev)
7371{
bfa7df01
VS
7372 return vlv_get_cck_clock_hpll(to_i915(dev), "cdclk",
7373 CCK_DISPLAY_CLOCK_CONTROL);
25eb05fc
JB
7374}
7375
b37a6434
VS
7376static int ilk_get_display_clock_speed(struct drm_device *dev)
7377{
7378 return 450000;
7379}
7380
e70236a8
JB
7381static int i945_get_display_clock_speed(struct drm_device *dev)
7382{
7383 return 400000;
7384}
79e53945 7385
e70236a8 7386static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 7387{
e907f170 7388 return 333333;
e70236a8 7389}
79e53945 7390
e70236a8
JB
7391static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
7392{
7393 return 200000;
7394}
79e53945 7395
257a7ffc
DV
7396static int pnv_get_display_clock_speed(struct drm_device *dev)
7397{
52a05c30 7398 struct pci_dev *pdev = dev->pdev;
257a7ffc
DV
7399 u16 gcfgc = 0;
7400
52a05c30 7401 pci_read_config_word(pdev, GCFGC, &gcfgc);
257a7ffc
DV
7402
7403 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
7404 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
e907f170 7405 return 266667;
257a7ffc 7406 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
e907f170 7407 return 333333;
257a7ffc 7408 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
e907f170 7409 return 444444;
257a7ffc
DV
7410 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
7411 return 200000;
7412 default:
7413 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
7414 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
e907f170 7415 return 133333;
257a7ffc 7416 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
e907f170 7417 return 166667;
257a7ffc
DV
7418 }
7419}
7420
e70236a8
JB
7421static int i915gm_get_display_clock_speed(struct drm_device *dev)
7422{
52a05c30 7423 struct pci_dev *pdev = dev->pdev;
e70236a8 7424 u16 gcfgc = 0;
79e53945 7425
52a05c30 7426 pci_read_config_word(pdev, GCFGC, &gcfgc);
e70236a8
JB
7427
7428 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
e907f170 7429 return 133333;
e70236a8
JB
7430 else {
7431 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
7432 case GC_DISPLAY_CLOCK_333_MHZ:
e907f170 7433 return 333333;
e70236a8
JB
7434 default:
7435 case GC_DISPLAY_CLOCK_190_200_MHZ:
7436 return 190000;
79e53945 7437 }
e70236a8
JB
7438 }
7439}
7440
7441static int i865_get_display_clock_speed(struct drm_device *dev)
7442{
e907f170 7443 return 266667;
e70236a8
JB
7444}
7445
1b1d2716 7446static int i85x_get_display_clock_speed(struct drm_device *dev)
e70236a8 7447{
52a05c30 7448 struct pci_dev *pdev = dev->pdev;
e70236a8 7449 u16 hpllcc = 0;
1b1d2716 7450
65cd2b3f
VS
7451 /*
7452 * 852GM/852GMV only supports 133 MHz and the HPLLCC
7453 * encoding is different :(
7454 * FIXME is this the right way to detect 852GM/852GMV?
7455 */
52a05c30 7456 if (pdev->revision == 0x1)
65cd2b3f
VS
7457 return 133333;
7458
52a05c30 7459 pci_bus_read_config_word(pdev->bus,
1b1d2716
VS
7460 PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
7461
e70236a8
JB
7462 /* Assume that the hardware is in the high speed state. This
7463 * should be the default.
7464 */
7465 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
7466 case GC_CLOCK_133_200:
1b1d2716 7467 case GC_CLOCK_133_200_2:
e70236a8
JB
7468 case GC_CLOCK_100_200:
7469 return 200000;
7470 case GC_CLOCK_166_250:
7471 return 250000;
7472 case GC_CLOCK_100_133:
e907f170 7473 return 133333;
1b1d2716
VS
7474 case GC_CLOCK_133_266:
7475 case GC_CLOCK_133_266_2:
7476 case GC_CLOCK_166_266:
7477 return 266667;
e70236a8 7478 }
79e53945 7479
e70236a8
JB
7480 /* Shouldn't happen */
7481 return 0;
7482}
79e53945 7483
e70236a8
JB
7484static int i830_get_display_clock_speed(struct drm_device *dev)
7485{
e907f170 7486 return 133333;
79e53945
JB
7487}
7488
34edce2f
VS
7489static unsigned int intel_hpll_vco(struct drm_device *dev)
7490{
fac5e23e 7491 struct drm_i915_private *dev_priv = to_i915(dev);
34edce2f
VS
7492 static const unsigned int blb_vco[8] = {
7493 [0] = 3200000,
7494 [1] = 4000000,
7495 [2] = 5333333,
7496 [3] = 4800000,
7497 [4] = 6400000,
7498 };
7499 static const unsigned int pnv_vco[8] = {
7500 [0] = 3200000,
7501 [1] = 4000000,
7502 [2] = 5333333,
7503 [3] = 4800000,
7504 [4] = 2666667,
7505 };
7506 static const unsigned int cl_vco[8] = {
7507 [0] = 3200000,
7508 [1] = 4000000,
7509 [2] = 5333333,
7510 [3] = 6400000,
7511 [4] = 3333333,
7512 [5] = 3566667,
7513 [6] = 4266667,
7514 };
7515 static const unsigned int elk_vco[8] = {
7516 [0] = 3200000,
7517 [1] = 4000000,
7518 [2] = 5333333,
7519 [3] = 4800000,
7520 };
7521 static const unsigned int ctg_vco[8] = {
7522 [0] = 3200000,
7523 [1] = 4000000,
7524 [2] = 5333333,
7525 [3] = 6400000,
7526 [4] = 2666667,
7527 [5] = 4266667,
7528 };
7529 const unsigned int *vco_table;
7530 unsigned int vco;
7531 uint8_t tmp = 0;
7532
7533 /* FIXME other chipsets? */
7534 if (IS_GM45(dev))
7535 vco_table = ctg_vco;
7536 else if (IS_G4X(dev))
7537 vco_table = elk_vco;
7538 else if (IS_CRESTLINE(dev))
7539 vco_table = cl_vco;
7540 else if (IS_PINEVIEW(dev))
7541 vco_table = pnv_vco;
7542 else if (IS_G33(dev))
7543 vco_table = blb_vco;
7544 else
7545 return 0;
7546
7547 tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
7548
7549 vco = vco_table[tmp & 0x7];
7550 if (vco == 0)
7551 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
7552 else
7553 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
7554
7555 return vco;
7556}
7557
7558static int gm45_get_display_clock_speed(struct drm_device *dev)
7559{
52a05c30 7560 struct pci_dev *pdev = dev->pdev;
34edce2f
VS
7561 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7562 uint16_t tmp = 0;
7563
52a05c30 7564 pci_read_config_word(pdev, GCFGC, &tmp);
34edce2f
VS
7565
7566 cdclk_sel = (tmp >> 12) & 0x1;
7567
7568 switch (vco) {
7569 case 2666667:
7570 case 4000000:
7571 case 5333333:
7572 return cdclk_sel ? 333333 : 222222;
7573 case 3200000:
7574 return cdclk_sel ? 320000 : 228571;
7575 default:
7576 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
7577 return 222222;
7578 }
7579}
7580
7581static int i965gm_get_display_clock_speed(struct drm_device *dev)
7582{
52a05c30 7583 struct pci_dev *pdev = dev->pdev;
34edce2f
VS
7584 static const uint8_t div_3200[] = { 16, 10, 8 };
7585 static const uint8_t div_4000[] = { 20, 12, 10 };
7586 static const uint8_t div_5333[] = { 24, 16, 14 };
7587 const uint8_t *div_table;
7588 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7589 uint16_t tmp = 0;
7590
52a05c30 7591 pci_read_config_word(pdev, GCFGC, &tmp);
34edce2f
VS
7592
7593 cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
7594
7595 if (cdclk_sel >= ARRAY_SIZE(div_3200))
7596 goto fail;
7597
7598 switch (vco) {
7599 case 3200000:
7600 div_table = div_3200;
7601 break;
7602 case 4000000:
7603 div_table = div_4000;
7604 break;
7605 case 5333333:
7606 div_table = div_5333;
7607 break;
7608 default:
7609 goto fail;
7610 }
7611
7612 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7613
caf4e252 7614fail:
34edce2f
VS
7615 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
7616 return 200000;
7617}
7618
7619static int g33_get_display_clock_speed(struct drm_device *dev)
7620{
52a05c30 7621 struct pci_dev *pdev = dev->pdev;
34edce2f
VS
7622 static const uint8_t div_3200[] = { 12, 10, 8, 7, 5, 16 };
7623 static const uint8_t div_4000[] = { 14, 12, 10, 8, 6, 20 };
7624 static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
7625 static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
7626 const uint8_t *div_table;
7627 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7628 uint16_t tmp = 0;
7629
52a05c30 7630 pci_read_config_word(pdev, GCFGC, &tmp);
34edce2f
VS
7631
7632 cdclk_sel = (tmp >> 4) & 0x7;
7633
7634 if (cdclk_sel >= ARRAY_SIZE(div_3200))
7635 goto fail;
7636
7637 switch (vco) {
7638 case 3200000:
7639 div_table = div_3200;
7640 break;
7641 case 4000000:
7642 div_table = div_4000;
7643 break;
7644 case 4800000:
7645 div_table = div_4800;
7646 break;
7647 case 5333333:
7648 div_table = div_5333;
7649 break;
7650 default:
7651 goto fail;
7652 }
7653
7654 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7655
caf4e252 7656fail:
34edce2f
VS
7657 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7658 return 190476;
7659}
7660
2c07245f 7661static void
a65851af 7662intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
2c07245f 7663{
a65851af
VS
7664 while (*num > DATA_LINK_M_N_MASK ||
7665 *den > DATA_LINK_M_N_MASK) {
2c07245f
ZW
7666 *num >>= 1;
7667 *den >>= 1;
7668 }
7669}
7670
a65851af
VS
7671static void compute_m_n(unsigned int m, unsigned int n,
7672 uint32_t *ret_m, uint32_t *ret_n)
7673{
7674 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7675 *ret_m = div_u64((uint64_t) m * *ret_n, n);
7676 intel_reduce_m_n_ratio(ret_m, ret_n);
7677}
7678
e69d0bc1
DV
7679void
7680intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7681 int pixel_clock, int link_clock,
7682 struct intel_link_m_n *m_n)
2c07245f 7683{
e69d0bc1 7684 m_n->tu = 64;
a65851af
VS
7685
7686 compute_m_n(bits_per_pixel * pixel_clock,
7687 link_clock * nlanes * 8,
7688 &m_n->gmch_m, &m_n->gmch_n);
7689
7690 compute_m_n(pixel_clock, link_clock,
7691 &m_n->link_m, &m_n->link_n);
2c07245f
ZW
7692}
7693
a7615030
CW
7694static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7695{
d330a953
JN
7696 if (i915.panel_use_ssc >= 0)
7697 return i915.panel_use_ssc != 0;
41aa3448 7698 return dev_priv->vbt.lvds_use_ssc
435793df 7699 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
7700}
7701
7429e9d4 7702static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
c65d77d8 7703{
7df00d7a 7704 return (1 << dpll->n) << 16 | dpll->m2;
7429e9d4 7705}
f47709a9 7706
7429e9d4
DV
7707static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7708{
7709 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
c65d77d8
JB
7710}
7711
f47709a9 7712static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
190f68c5 7713 struct intel_crtc_state *crtc_state,
9e2c8475 7714 struct dpll *reduced_clock)
a7516a05 7715{
f47709a9 7716 struct drm_device *dev = crtc->base.dev;
a7516a05
JB
7717 u32 fp, fp2 = 0;
7718
7719 if (IS_PINEVIEW(dev)) {
190f68c5 7720 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
a7516a05 7721 if (reduced_clock)
7429e9d4 7722 fp2 = pnv_dpll_compute_fp(reduced_clock);
a7516a05 7723 } else {
190f68c5 7724 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
a7516a05 7725 if (reduced_clock)
7429e9d4 7726 fp2 = i9xx_dpll_compute_fp(reduced_clock);
a7516a05
JB
7727 }
7728
190f68c5 7729 crtc_state->dpll_hw_state.fp0 = fp;
a7516a05 7730
f47709a9 7731 crtc->lowfreq_avail = false;
2d84d2b3 7732 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
ab585dea 7733 reduced_clock) {
190f68c5 7734 crtc_state->dpll_hw_state.fp1 = fp2;
f47709a9 7735 crtc->lowfreq_avail = true;
a7516a05 7736 } else {
190f68c5 7737 crtc_state->dpll_hw_state.fp1 = fp;
a7516a05
JB
7738 }
7739}
7740
5e69f97f
CML
7741static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7742 pipe)
89b667f8
JB
7743{
7744 u32 reg_val;
7745
7746 /*
7747 * PLLB opamp always calibrates to max value of 0x3f, force enable it
7748 * and set it to a reasonable value instead.
7749 */
ab3c759a 7750 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8
JB
7751 reg_val &= 0xffffff00;
7752 reg_val |= 0x00000030;
ab3c759a 7753 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 7754
ab3c759a 7755 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
7756 reg_val &= 0x8cffffff;
7757 reg_val = 0x8c000000;
ab3c759a 7758 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8 7759
ab3c759a 7760 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8 7761 reg_val &= 0xffffff00;
ab3c759a 7762 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 7763
ab3c759a 7764 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
7765 reg_val &= 0x00ffffff;
7766 reg_val |= 0xb0000000;
ab3c759a 7767 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8
JB
7768}
7769
b551842d
DV
7770static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7771 struct intel_link_m_n *m_n)
7772{
7773 struct drm_device *dev = crtc->base.dev;
fac5e23e 7774 struct drm_i915_private *dev_priv = to_i915(dev);
b551842d
DV
7775 int pipe = crtc->pipe;
7776
e3b95f1e
DV
7777 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7778 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7779 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7780 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
b551842d
DV
7781}
7782
7783static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
7784 struct intel_link_m_n *m_n,
7785 struct intel_link_m_n *m2_n2)
b551842d
DV
7786{
7787 struct drm_device *dev = crtc->base.dev;
fac5e23e 7788 struct drm_i915_private *dev_priv = to_i915(dev);
b551842d 7789 int pipe = crtc->pipe;
6e3c9717 7790 enum transcoder transcoder = crtc->config->cpu_transcoder;
b551842d
DV
7791
7792 if (INTEL_INFO(dev)->gen >= 5) {
7793 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7794 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7795 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7796 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
f769cd24
VK
7797 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7798 * for gen < 8) and if DRRS is supported (to make sure the
7799 * registers are not unnecessarily accessed).
7800 */
44395bfe 7801 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
6e3c9717 7802 crtc->config->has_drrs) {
f769cd24
VK
7803 I915_WRITE(PIPE_DATA_M2(transcoder),
7804 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7805 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7806 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7807 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7808 }
b551842d 7809 } else {
e3b95f1e
DV
7810 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7811 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7812 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7813 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
b551842d
DV
7814 }
7815}
7816
fe3cd48d 7817void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
03afc4a2 7818{
fe3cd48d
R
7819 struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7820
7821 if (m_n == M1_N1) {
7822 dp_m_n = &crtc->config->dp_m_n;
7823 dp_m2_n2 = &crtc->config->dp_m2_n2;
7824 } else if (m_n == M2_N2) {
7825
7826 /*
7827 * M2_N2 registers are not supported. Hence m2_n2 divider value
7828 * needs to be programmed into M1_N1.
7829 */
7830 dp_m_n = &crtc->config->dp_m2_n2;
7831 } else {
7832 DRM_ERROR("Unsupported divider value\n");
7833 return;
7834 }
7835
6e3c9717
ACO
7836 if (crtc->config->has_pch_encoder)
7837 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
03afc4a2 7838 else
fe3cd48d 7839 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
03afc4a2
DV
7840}
7841
251ac862
DV
7842static void vlv_compute_dpll(struct intel_crtc *crtc,
7843 struct intel_crtc_state *pipe_config)
bdd4b6a6 7844{
03ed5cbf 7845 pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
cd2d34d9 7846 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
03ed5cbf
VS
7847 if (crtc->pipe != PIPE_A)
7848 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
bdd4b6a6 7849
cd2d34d9 7850 /* DPLL not used with DSI, but still need the rest set up */
d7edc4e5 7851 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
cd2d34d9
VS
7852 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
7853 DPLL_EXT_BUFFER_ENABLE_VLV;
7854
03ed5cbf
VS
7855 pipe_config->dpll_hw_state.dpll_md =
7856 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7857}
bdd4b6a6 7858
03ed5cbf
VS
7859static void chv_compute_dpll(struct intel_crtc *crtc,
7860 struct intel_crtc_state *pipe_config)
7861{
7862 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
cd2d34d9 7863 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
03ed5cbf
VS
7864 if (crtc->pipe != PIPE_A)
7865 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7866
cd2d34d9 7867 /* DPLL not used with DSI, but still need the rest set up */
d7edc4e5 7868 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
cd2d34d9
VS
7869 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
7870
03ed5cbf
VS
7871 pipe_config->dpll_hw_state.dpll_md =
7872 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
bdd4b6a6
DV
7873}
7874
d288f65f 7875static void vlv_prepare_pll(struct intel_crtc *crtc,
5cec258b 7876 const struct intel_crtc_state *pipe_config)
a0c4da24 7877{
f47709a9 7878 struct drm_device *dev = crtc->base.dev;
fac5e23e 7879 struct drm_i915_private *dev_priv = to_i915(dev);
cd2d34d9 7880 enum pipe pipe = crtc->pipe;
bdd4b6a6 7881 u32 mdiv;
a0c4da24 7882 u32 bestn, bestm1, bestm2, bestp1, bestp2;
bdd4b6a6 7883 u32 coreclk, reg_val;
a0c4da24 7884
cd2d34d9
VS
7885 /* Enable Refclk */
7886 I915_WRITE(DPLL(pipe),
7887 pipe_config->dpll_hw_state.dpll &
7888 ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
7889
7890 /* No need to actually set up the DPLL with DSI */
7891 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7892 return;
7893
a580516d 7894 mutex_lock(&dev_priv->sb_lock);
09153000 7895
d288f65f
VS
7896 bestn = pipe_config->dpll.n;
7897 bestm1 = pipe_config->dpll.m1;
7898 bestm2 = pipe_config->dpll.m2;
7899 bestp1 = pipe_config->dpll.p1;
7900 bestp2 = pipe_config->dpll.p2;
a0c4da24 7901
89b667f8
JB
7902 /* See eDP HDMI DPIO driver vbios notes doc */
7903
7904 /* PLL B needs special handling */
bdd4b6a6 7905 if (pipe == PIPE_B)
5e69f97f 7906 vlv_pllb_recal_opamp(dev_priv, pipe);
89b667f8
JB
7907
7908 /* Set up Tx target for periodic Rcomp update */
ab3c759a 7909 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
89b667f8
JB
7910
7911 /* Disable target IRef on PLL */
ab3c759a 7912 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
89b667f8 7913 reg_val &= 0x00ffffff;
ab3c759a 7914 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
89b667f8
JB
7915
7916 /* Disable fast lock */
ab3c759a 7917 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
89b667f8
JB
7918
7919 /* Set idtafcrecal before PLL is enabled */
a0c4da24
JB
7920 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7921 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7922 mdiv |= ((bestn << DPIO_N_SHIFT));
a0c4da24 7923 mdiv |= (1 << DPIO_K_SHIFT);
7df5080b
JB
7924
7925 /*
7926 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7927 * but we don't support that).
7928 * Note: don't use the DAC post divider as it seems unstable.
7929 */
7930 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
ab3c759a 7931 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 7932
a0c4da24 7933 mdiv |= DPIO_ENABLE_CALIBRATION;
ab3c759a 7934 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 7935
89b667f8 7936 /* Set HBR and RBR LPF coefficients */
d288f65f 7937 if (pipe_config->port_clock == 162000 ||
2d84d2b3
VS
7938 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_ANALOG) ||
7939 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI))
ab3c759a 7940 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
885b0120 7941 0x009f0003);
89b667f8 7942 else
ab3c759a 7943 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
89b667f8
JB
7944 0x00d0000f);
7945
37a5650b 7946 if (intel_crtc_has_dp_encoder(pipe_config)) {
89b667f8 7947 /* Use SSC source */
bdd4b6a6 7948 if (pipe == PIPE_A)
ab3c759a 7949 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
7950 0x0df40000);
7951 else
ab3c759a 7952 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
7953 0x0df70000);
7954 } else { /* HDMI or VGA */
7955 /* Use bend source */
bdd4b6a6 7956 if (pipe == PIPE_A)
ab3c759a 7957 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
7958 0x0df70000);
7959 else
ab3c759a 7960 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
7961 0x0df40000);
7962 }
a0c4da24 7963
ab3c759a 7964 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
89b667f8 7965 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
2210ce7f 7966 if (intel_crtc_has_dp_encoder(crtc->config))
89b667f8 7967 coreclk |= 0x01000000;
ab3c759a 7968 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
a0c4da24 7969
ab3c759a 7970 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
a580516d 7971 mutex_unlock(&dev_priv->sb_lock);
a0c4da24
JB
7972}
7973
d288f65f 7974static void chv_prepare_pll(struct intel_crtc *crtc,
5cec258b 7975 const struct intel_crtc_state *pipe_config)
9d556c99
CML
7976{
7977 struct drm_device *dev = crtc->base.dev;
fac5e23e 7978 struct drm_i915_private *dev_priv = to_i915(dev);
cd2d34d9 7979 enum pipe pipe = crtc->pipe;
9d556c99 7980 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9cbe40c1 7981 u32 loopfilter, tribuf_calcntr;
9d556c99 7982 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
a945ce7e 7983 u32 dpio_val;
9cbe40c1 7984 int vco;
9d556c99 7985
cd2d34d9
VS
7986 /* Enable Refclk and SSC */
7987 I915_WRITE(DPLL(pipe),
7988 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7989
7990 /* No need to actually set up the DPLL with DSI */
7991 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7992 return;
7993
d288f65f
VS
7994 bestn = pipe_config->dpll.n;
7995 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7996 bestm1 = pipe_config->dpll.m1;
7997 bestm2 = pipe_config->dpll.m2 >> 22;
7998 bestp1 = pipe_config->dpll.p1;
7999 bestp2 = pipe_config->dpll.p2;
9cbe40c1 8000 vco = pipe_config->dpll.vco;
a945ce7e 8001 dpio_val = 0;
9cbe40c1 8002 loopfilter = 0;
9d556c99 8003
a580516d 8004 mutex_lock(&dev_priv->sb_lock);
9d556c99 8005
9d556c99
CML
8006 /* p1 and p2 divider */
8007 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
8008 5 << DPIO_CHV_S1_DIV_SHIFT |
8009 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
8010 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
8011 1 << DPIO_CHV_K_DIV_SHIFT);
8012
8013 /* Feedback post-divider - m2 */
8014 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
8015
8016 /* Feedback refclk divider - n and m1 */
8017 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
8018 DPIO_CHV_M1_DIV_BY_2 |
8019 1 << DPIO_CHV_N_DIV_SHIFT);
8020
8021 /* M2 fraction division */
25a25dfc 8022 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
9d556c99
CML
8023
8024 /* M2 fraction division enable */
a945ce7e
VP
8025 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8026 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
8027 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
8028 if (bestm2_frac)
8029 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
8030 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
9d556c99 8031
de3a0fde
VP
8032 /* Program digital lock detect threshold */
8033 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
8034 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
8035 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
8036 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
8037 if (!bestm2_frac)
8038 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
8039 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
8040
9d556c99 8041 /* Loop filter */
9cbe40c1
VP
8042 if (vco == 5400000) {
8043 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
8044 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
8045 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
8046 tribuf_calcntr = 0x9;
8047 } else if (vco <= 6200000) {
8048 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
8049 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
8050 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8051 tribuf_calcntr = 0x9;
8052 } else if (vco <= 6480000) {
8053 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
8054 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
8055 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8056 tribuf_calcntr = 0x8;
8057 } else {
8058 /* Not supported. Apply the same limits as in the max case */
8059 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
8060 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
8061 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8062 tribuf_calcntr = 0;
8063 }
9d556c99
CML
8064 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
8065
968040b2 8066 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
9cbe40c1
VP
8067 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
8068 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
8069 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
8070
9d556c99
CML
8071 /* AFC Recal */
8072 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
8073 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
8074 DPIO_AFC_RECAL);
8075
a580516d 8076 mutex_unlock(&dev_priv->sb_lock);
9d556c99
CML
8077}
8078
d288f65f
VS
8079/**
8080 * vlv_force_pll_on - forcibly enable just the PLL
8081 * @dev_priv: i915 private structure
8082 * @pipe: pipe PLL to enable
8083 * @dpll: PLL configuration
8084 *
8085 * Enable the PLL for @pipe using the supplied @dpll config. To be used
8086 * in cases where we need the PLL enabled even when @pipe is not going to
8087 * be enabled.
8088 */
3f36b937
TU
8089int vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
8090 const struct dpll *dpll)
d288f65f
VS
8091{
8092 struct intel_crtc *crtc =
8093 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
3f36b937
TU
8094 struct intel_crtc_state *pipe_config;
8095
8096 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
8097 if (!pipe_config)
8098 return -ENOMEM;
8099
8100 pipe_config->base.crtc = &crtc->base;
8101 pipe_config->pixel_multiplier = 1;
8102 pipe_config->dpll = *dpll;
d288f65f
VS
8103
8104 if (IS_CHERRYVIEW(dev)) {
3f36b937
TU
8105 chv_compute_dpll(crtc, pipe_config);
8106 chv_prepare_pll(crtc, pipe_config);
8107 chv_enable_pll(crtc, pipe_config);
d288f65f 8108 } else {
3f36b937
TU
8109 vlv_compute_dpll(crtc, pipe_config);
8110 vlv_prepare_pll(crtc, pipe_config);
8111 vlv_enable_pll(crtc, pipe_config);
d288f65f 8112 }
3f36b937
TU
8113
8114 kfree(pipe_config);
8115
8116 return 0;
d288f65f
VS
8117}
8118
8119/**
8120 * vlv_force_pll_off - forcibly disable just the PLL
8121 * @dev_priv: i915 private structure
8122 * @pipe: pipe PLL to disable
8123 *
8124 * Disable the PLL for @pipe. To be used in cases where we need
8125 * the PLL enabled even when @pipe is not going to be enabled.
8126 */
8127void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
8128{
8129 if (IS_CHERRYVIEW(dev))
8130 chv_disable_pll(to_i915(dev), pipe);
8131 else
8132 vlv_disable_pll(to_i915(dev), pipe);
8133}
8134
251ac862
DV
8135static void i9xx_compute_dpll(struct intel_crtc *crtc,
8136 struct intel_crtc_state *crtc_state,
9e2c8475 8137 struct dpll *reduced_clock)
eb1cbe48 8138{
f47709a9 8139 struct drm_device *dev = crtc->base.dev;
fac5e23e 8140 struct drm_i915_private *dev_priv = to_i915(dev);
eb1cbe48 8141 u32 dpll;
190f68c5 8142 struct dpll *clock = &crtc_state->dpll;
eb1cbe48 8143
190f68c5 8144 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
2a8f64ca 8145
eb1cbe48
DV
8146 dpll = DPLL_VGA_MODE_DIS;
8147
2d84d2b3 8148 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
eb1cbe48
DV
8149 dpll |= DPLLB_MODE_LVDS;
8150 else
8151 dpll |= DPLLB_MODE_DAC_SERIAL;
6cc5f341 8152
ef1b460d 8153 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
190f68c5 8154 dpll |= (crtc_state->pixel_multiplier - 1)
198a037f 8155 << SDVO_MULTIPLIER_SHIFT_HIRES;
eb1cbe48 8156 }
198a037f 8157
3d6e9ee0
VS
8158 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
8159 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
4a33e48d 8160 dpll |= DPLL_SDVO_HIGH_SPEED;
198a037f 8161
37a5650b 8162 if (intel_crtc_has_dp_encoder(crtc_state))
4a33e48d 8163 dpll |= DPLL_SDVO_HIGH_SPEED;
eb1cbe48
DV
8164
8165 /* compute bitmask from p1 value */
8166 if (IS_PINEVIEW(dev))
8167 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
8168 else {
8169 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8170 if (IS_G4X(dev) && reduced_clock)
8171 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8172 }
8173 switch (clock->p2) {
8174 case 5:
8175 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8176 break;
8177 case 7:
8178 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8179 break;
8180 case 10:
8181 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8182 break;
8183 case 14:
8184 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8185 break;
8186 }
8187 if (INTEL_INFO(dev)->gen >= 4)
8188 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
8189
190f68c5 8190 if (crtc_state->sdvo_tv_clock)
eb1cbe48 8191 dpll |= PLL_REF_INPUT_TVCLKINBC;
2d84d2b3 8192 else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
ceb41007 8193 intel_panel_use_ssc(dev_priv))
eb1cbe48
DV
8194 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8195 else
8196 dpll |= PLL_REF_INPUT_DREFCLK;
8197
8198 dpll |= DPLL_VCO_ENABLE;
190f68c5 8199 crtc_state->dpll_hw_state.dpll = dpll;
8bcc2795 8200
eb1cbe48 8201 if (INTEL_INFO(dev)->gen >= 4) {
190f68c5 8202 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
ef1b460d 8203 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
190f68c5 8204 crtc_state->dpll_hw_state.dpll_md = dpll_md;
eb1cbe48
DV
8205 }
8206}
8207
251ac862
DV
8208static void i8xx_compute_dpll(struct intel_crtc *crtc,
8209 struct intel_crtc_state *crtc_state,
9e2c8475 8210 struct dpll *reduced_clock)
eb1cbe48 8211{
f47709a9 8212 struct drm_device *dev = crtc->base.dev;
fac5e23e 8213 struct drm_i915_private *dev_priv = to_i915(dev);
eb1cbe48 8214 u32 dpll;
190f68c5 8215 struct dpll *clock = &crtc_state->dpll;
eb1cbe48 8216
190f68c5 8217 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
2a8f64ca 8218
eb1cbe48
DV
8219 dpll = DPLL_VGA_MODE_DIS;
8220
2d84d2b3 8221 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
eb1cbe48
DV
8222 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8223 } else {
8224 if (clock->p1 == 2)
8225 dpll |= PLL_P1_DIVIDE_BY_TWO;
8226 else
8227 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8228 if (clock->p2 == 4)
8229 dpll |= PLL_P2_DIVIDE_BY_4;
8230 }
8231
2d84d2b3 8232 if (!IS_I830(dev) && intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
4a33e48d
DV
8233 dpll |= DPLL_DVO_2X_MODE;
8234
2d84d2b3 8235 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
ceb41007 8236 intel_panel_use_ssc(dev_priv))
eb1cbe48
DV
8237 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8238 else
8239 dpll |= PLL_REF_INPUT_DREFCLK;
8240
8241 dpll |= DPLL_VCO_ENABLE;
190f68c5 8242 crtc_state->dpll_hw_state.dpll = dpll;
eb1cbe48
DV
8243}
8244
8a654f3b 8245static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
b0e77b9c
PZ
8246{
8247 struct drm_device *dev = intel_crtc->base.dev;
fac5e23e 8248 struct drm_i915_private *dev_priv = to_i915(dev);
b0e77b9c 8249 enum pipe pipe = intel_crtc->pipe;
6e3c9717 8250 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7c5f93b0 8251 const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
1caea6e9
VS
8252 uint32_t crtc_vtotal, crtc_vblank_end;
8253 int vsyncshift = 0;
4d8a62ea
DV
8254
8255 /* We need to be careful not to changed the adjusted mode, for otherwise
8256 * the hw state checker will get angry at the mismatch. */
8257 crtc_vtotal = adjusted_mode->crtc_vtotal;
8258 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
b0e77b9c 8259
609aeaca 8260 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
b0e77b9c 8261 /* the chip adds 2 halflines automatically */
4d8a62ea
DV
8262 crtc_vtotal -= 1;
8263 crtc_vblank_end -= 1;
609aeaca 8264
2d84d2b3 8265 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
609aeaca
VS
8266 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
8267 else
8268 vsyncshift = adjusted_mode->crtc_hsync_start -
8269 adjusted_mode->crtc_htotal / 2;
1caea6e9
VS
8270 if (vsyncshift < 0)
8271 vsyncshift += adjusted_mode->crtc_htotal;
b0e77b9c
PZ
8272 }
8273
8274 if (INTEL_INFO(dev)->gen > 3)
fe2b8f9d 8275 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
b0e77b9c 8276
fe2b8f9d 8277 I915_WRITE(HTOTAL(cpu_transcoder),
b0e77b9c
PZ
8278 (adjusted_mode->crtc_hdisplay - 1) |
8279 ((adjusted_mode->crtc_htotal - 1) << 16));
fe2b8f9d 8280 I915_WRITE(HBLANK(cpu_transcoder),
b0e77b9c
PZ
8281 (adjusted_mode->crtc_hblank_start - 1) |
8282 ((adjusted_mode->crtc_hblank_end - 1) << 16));
fe2b8f9d 8283 I915_WRITE(HSYNC(cpu_transcoder),
b0e77b9c
PZ
8284 (adjusted_mode->crtc_hsync_start - 1) |
8285 ((adjusted_mode->crtc_hsync_end - 1) << 16));
8286
fe2b8f9d 8287 I915_WRITE(VTOTAL(cpu_transcoder),
b0e77b9c 8288 (adjusted_mode->crtc_vdisplay - 1) |
4d8a62ea 8289 ((crtc_vtotal - 1) << 16));
fe2b8f9d 8290 I915_WRITE(VBLANK(cpu_transcoder),
b0e77b9c 8291 (adjusted_mode->crtc_vblank_start - 1) |
4d8a62ea 8292 ((crtc_vblank_end - 1) << 16));
fe2b8f9d 8293 I915_WRITE(VSYNC(cpu_transcoder),
b0e77b9c
PZ
8294 (adjusted_mode->crtc_vsync_start - 1) |
8295 ((adjusted_mode->crtc_vsync_end - 1) << 16));
8296
b5e508d4
PZ
8297 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
8298 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
8299 * documented on the DDI_FUNC_CTL register description, EDP Input Select
8300 * bits. */
8301 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
8302 (pipe == PIPE_B || pipe == PIPE_C))
8303 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
8304
bc58be60
JN
8305}
8306
8307static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc)
8308{
8309 struct drm_device *dev = intel_crtc->base.dev;
fac5e23e 8310 struct drm_i915_private *dev_priv = to_i915(dev);
bc58be60
JN
8311 enum pipe pipe = intel_crtc->pipe;
8312
b0e77b9c
PZ
8313 /* pipesrc controls the size that is scaled from, which should
8314 * always be the user's requested size.
8315 */
8316 I915_WRITE(PIPESRC(pipe),
6e3c9717
ACO
8317 ((intel_crtc->config->pipe_src_w - 1) << 16) |
8318 (intel_crtc->config->pipe_src_h - 1));
b0e77b9c
PZ
8319}
8320
1bd1bd80 8321static void intel_get_pipe_timings(struct intel_crtc *crtc,
5cec258b 8322 struct intel_crtc_state *pipe_config)
1bd1bd80
DV
8323{
8324 struct drm_device *dev = crtc->base.dev;
fac5e23e 8325 struct drm_i915_private *dev_priv = to_i915(dev);
1bd1bd80
DV
8326 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
8327 uint32_t tmp;
8328
8329 tmp = I915_READ(HTOTAL(cpu_transcoder));
2d112de7
ACO
8330 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
8331 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 8332 tmp = I915_READ(HBLANK(cpu_transcoder));
2d112de7
ACO
8333 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
8334 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 8335 tmp = I915_READ(HSYNC(cpu_transcoder));
2d112de7
ACO
8336 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
8337 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80
DV
8338
8339 tmp = I915_READ(VTOTAL(cpu_transcoder));
2d112de7
ACO
8340 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
8341 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 8342 tmp = I915_READ(VBLANK(cpu_transcoder));
2d112de7
ACO
8343 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
8344 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 8345 tmp = I915_READ(VSYNC(cpu_transcoder));
2d112de7
ACO
8346 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
8347 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80
DV
8348
8349 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
2d112de7
ACO
8350 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
8351 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
8352 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
1bd1bd80 8353 }
bc58be60
JN
8354}
8355
8356static void intel_get_pipe_src_size(struct intel_crtc *crtc,
8357 struct intel_crtc_state *pipe_config)
8358{
8359 struct drm_device *dev = crtc->base.dev;
fac5e23e 8360 struct drm_i915_private *dev_priv = to_i915(dev);
bc58be60 8361 u32 tmp;
1bd1bd80
DV
8362
8363 tmp = I915_READ(PIPESRC(crtc->pipe));
37327abd
VS
8364 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
8365 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
8366
2d112de7
ACO
8367 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
8368 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
1bd1bd80
DV
8369}
8370
f6a83288 8371void intel_mode_from_pipe_config(struct drm_display_mode *mode,
5cec258b 8372 struct intel_crtc_state *pipe_config)
babea61d 8373{
2d112de7
ACO
8374 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
8375 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
8376 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
8377 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
babea61d 8378
2d112de7
ACO
8379 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
8380 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
8381 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
8382 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
babea61d 8383
2d112de7 8384 mode->flags = pipe_config->base.adjusted_mode.flags;
cd13f5ab 8385 mode->type = DRM_MODE_TYPE_DRIVER;
babea61d 8386
2d112de7
ACO
8387 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
8388 mode->flags |= pipe_config->base.adjusted_mode.flags;
cd13f5ab
ML
8389
8390 mode->hsync = drm_mode_hsync(mode);
8391 mode->vrefresh = drm_mode_vrefresh(mode);
8392 drm_mode_set_name(mode);
babea61d
JB
8393}
8394
84b046f3
DV
8395static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
8396{
8397 struct drm_device *dev = intel_crtc->base.dev;
fac5e23e 8398 struct drm_i915_private *dev_priv = to_i915(dev);
84b046f3
DV
8399 uint32_t pipeconf;
8400
9f11a9e4 8401 pipeconf = 0;
84b046f3 8402
b6b5d049
VS
8403 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
8404 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
8405 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
67c72a12 8406
6e3c9717 8407 if (intel_crtc->config->double_wide)
cf532bb2 8408 pipeconf |= PIPECONF_DOUBLE_WIDE;
84b046f3 8409
ff9ce46e 8410 /* only g4x and later have fancy bpc/dither controls */
666a4537 8411 if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
ff9ce46e 8412 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6e3c9717 8413 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
ff9ce46e 8414 pipeconf |= PIPECONF_DITHER_EN |
84b046f3 8415 PIPECONF_DITHER_TYPE_SP;
84b046f3 8416
6e3c9717 8417 switch (intel_crtc->config->pipe_bpp) {
ff9ce46e
DV
8418 case 18:
8419 pipeconf |= PIPECONF_6BPC;
8420 break;
8421 case 24:
8422 pipeconf |= PIPECONF_8BPC;
8423 break;
8424 case 30:
8425 pipeconf |= PIPECONF_10BPC;
8426 break;
8427 default:
8428 /* Case prevented by intel_choose_pipe_bpp_dither. */
8429 BUG();
84b046f3
DV
8430 }
8431 }
8432
8433 if (HAS_PIPE_CXSR(dev)) {
8434 if (intel_crtc->lowfreq_avail) {
8435 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
8436 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
8437 } else {
8438 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
84b046f3
DV
8439 }
8440 }
8441
6e3c9717 8442 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
efc2cfff 8443 if (INTEL_INFO(dev)->gen < 4 ||
2d84d2b3 8444 intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
efc2cfff
VS
8445 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
8446 else
8447 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
8448 } else
84b046f3
DV
8449 pipeconf |= PIPECONF_PROGRESSIVE;
8450
666a4537
WB
8451 if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
8452 intel_crtc->config->limited_color_range)
9f11a9e4 8453 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
9c8e09b7 8454
84b046f3
DV
8455 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
8456 POSTING_READ(PIPECONF(intel_crtc->pipe));
8457}
8458
81c97f52
ACO
8459static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
8460 struct intel_crtc_state *crtc_state)
8461{
8462 struct drm_device *dev = crtc->base.dev;
fac5e23e 8463 struct drm_i915_private *dev_priv = to_i915(dev);
1b6f4958 8464 const struct intel_limit *limit;
81c97f52
ACO
8465 int refclk = 48000;
8466
8467 memset(&crtc_state->dpll_hw_state, 0,
8468 sizeof(crtc_state->dpll_hw_state));
8469
2d84d2b3 8470 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
81c97f52
ACO
8471 if (intel_panel_use_ssc(dev_priv)) {
8472 refclk = dev_priv->vbt.lvds_ssc_freq;
8473 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8474 }
8475
8476 limit = &intel_limits_i8xx_lvds;
2d84d2b3 8477 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
81c97f52
ACO
8478 limit = &intel_limits_i8xx_dvo;
8479 } else {
8480 limit = &intel_limits_i8xx_dac;
8481 }
8482
8483 if (!crtc_state->clock_set &&
8484 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8485 refclk, NULL, &crtc_state->dpll)) {
8486 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8487 return -EINVAL;
8488 }
8489
8490 i8xx_compute_dpll(crtc, crtc_state, NULL);
8491
8492 return 0;
8493}
8494
19ec6693
ACO
8495static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
8496 struct intel_crtc_state *crtc_state)
8497{
8498 struct drm_device *dev = crtc->base.dev;
fac5e23e 8499 struct drm_i915_private *dev_priv = to_i915(dev);
1b6f4958 8500 const struct intel_limit *limit;
19ec6693
ACO
8501 int refclk = 96000;
8502
8503 memset(&crtc_state->dpll_hw_state, 0,
8504 sizeof(crtc_state->dpll_hw_state));
8505
2d84d2b3 8506 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
19ec6693
ACO
8507 if (intel_panel_use_ssc(dev_priv)) {
8508 refclk = dev_priv->vbt.lvds_ssc_freq;
8509 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8510 }
8511
8512 if (intel_is_dual_link_lvds(dev))
8513 limit = &intel_limits_g4x_dual_channel_lvds;
8514 else
8515 limit = &intel_limits_g4x_single_channel_lvds;
2d84d2b3
VS
8516 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
8517 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
19ec6693 8518 limit = &intel_limits_g4x_hdmi;
2d84d2b3 8519 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
19ec6693
ACO
8520 limit = &intel_limits_g4x_sdvo;
8521 } else {
8522 /* The option is for other outputs */
8523 limit = &intel_limits_i9xx_sdvo;
8524 }
8525
8526 if (!crtc_state->clock_set &&
8527 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8528 refclk, NULL, &crtc_state->dpll)) {
8529 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8530 return -EINVAL;
8531 }
8532
8533 i9xx_compute_dpll(crtc, crtc_state, NULL);
8534
8535 return 0;
8536}
8537
70e8aa21
ACO
8538static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
8539 struct intel_crtc_state *crtc_state)
8540{
8541 struct drm_device *dev = crtc->base.dev;
fac5e23e 8542 struct drm_i915_private *dev_priv = to_i915(dev);
1b6f4958 8543 const struct intel_limit *limit;
70e8aa21
ACO
8544 int refclk = 96000;
8545
8546 memset(&crtc_state->dpll_hw_state, 0,
8547 sizeof(crtc_state->dpll_hw_state));
8548
2d84d2b3 8549 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
70e8aa21
ACO
8550 if (intel_panel_use_ssc(dev_priv)) {
8551 refclk = dev_priv->vbt.lvds_ssc_freq;
8552 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8553 }
8554
8555 limit = &intel_limits_pineview_lvds;
8556 } else {
8557 limit = &intel_limits_pineview_sdvo;
8558 }
8559
8560 if (!crtc_state->clock_set &&
8561 !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8562 refclk, NULL, &crtc_state->dpll)) {
8563 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8564 return -EINVAL;
8565 }
8566
8567 i9xx_compute_dpll(crtc, crtc_state, NULL);
8568
8569 return 0;
8570}
8571
190f68c5
ACO
8572static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
8573 struct intel_crtc_state *crtc_state)
79e53945 8574{
c7653199 8575 struct drm_device *dev = crtc->base.dev;
fac5e23e 8576 struct drm_i915_private *dev_priv = to_i915(dev);
1b6f4958 8577 const struct intel_limit *limit;
81c97f52 8578 int refclk = 96000;
79e53945 8579
dd3cd74a
ACO
8580 memset(&crtc_state->dpll_hw_state, 0,
8581 sizeof(crtc_state->dpll_hw_state));
8582
2d84d2b3 8583 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
70e8aa21
ACO
8584 if (intel_panel_use_ssc(dev_priv)) {
8585 refclk = dev_priv->vbt.lvds_ssc_freq;
8586 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8587 }
43565a06 8588
70e8aa21
ACO
8589 limit = &intel_limits_i9xx_lvds;
8590 } else {
8591 limit = &intel_limits_i9xx_sdvo;
81c97f52 8592 }
79e53945 8593
70e8aa21
ACO
8594 if (!crtc_state->clock_set &&
8595 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8596 refclk, NULL, &crtc_state->dpll)) {
8597 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8598 return -EINVAL;
f47709a9 8599 }
7026d4ac 8600
81c97f52 8601 i9xx_compute_dpll(crtc, crtc_state, NULL);
79e53945 8602
c8f7a0db 8603 return 0;
f564048e
EA
8604}
8605
65b3d6a9
ACO
8606static int chv_crtc_compute_clock(struct intel_crtc *crtc,
8607 struct intel_crtc_state *crtc_state)
8608{
8609 int refclk = 100000;
1b6f4958 8610 const struct intel_limit *limit = &intel_limits_chv;
65b3d6a9
ACO
8611
8612 memset(&crtc_state->dpll_hw_state, 0,
8613 sizeof(crtc_state->dpll_hw_state));
8614
65b3d6a9
ACO
8615 if (!crtc_state->clock_set &&
8616 !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8617 refclk, NULL, &crtc_state->dpll)) {
8618 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8619 return -EINVAL;
8620 }
8621
8622 chv_compute_dpll(crtc, crtc_state);
8623
8624 return 0;
8625}
8626
8627static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
8628 struct intel_crtc_state *crtc_state)
8629{
8630 int refclk = 100000;
1b6f4958 8631 const struct intel_limit *limit = &intel_limits_vlv;
65b3d6a9
ACO
8632
8633 memset(&crtc_state->dpll_hw_state, 0,
8634 sizeof(crtc_state->dpll_hw_state));
8635
65b3d6a9
ACO
8636 if (!crtc_state->clock_set &&
8637 !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8638 refclk, NULL, &crtc_state->dpll)) {
8639 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8640 return -EINVAL;
8641 }
8642
8643 vlv_compute_dpll(crtc, crtc_state);
8644
8645 return 0;
8646}
8647
2fa2fe9a 8648static void i9xx_get_pfit_config(struct intel_crtc *crtc,
5cec258b 8649 struct intel_crtc_state *pipe_config)
2fa2fe9a
DV
8650{
8651 struct drm_device *dev = crtc->base.dev;
fac5e23e 8652 struct drm_i915_private *dev_priv = to_i915(dev);
2fa2fe9a
DV
8653 uint32_t tmp;
8654
dc9e7dec
VS
8655 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
8656 return;
8657
2fa2fe9a 8658 tmp = I915_READ(PFIT_CONTROL);
06922821
DV
8659 if (!(tmp & PFIT_ENABLE))
8660 return;
2fa2fe9a 8661
06922821 8662 /* Check whether the pfit is attached to our pipe. */
2fa2fe9a
DV
8663 if (INTEL_INFO(dev)->gen < 4) {
8664 if (crtc->pipe != PIPE_B)
8665 return;
2fa2fe9a
DV
8666 } else {
8667 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
8668 return;
8669 }
8670
06922821 8671 pipe_config->gmch_pfit.control = tmp;
2fa2fe9a 8672 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
2fa2fe9a
DV
8673}
8674
acbec814 8675static void vlv_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 8676 struct intel_crtc_state *pipe_config)
acbec814
JB
8677{
8678 struct drm_device *dev = crtc->base.dev;
fac5e23e 8679 struct drm_i915_private *dev_priv = to_i915(dev);
acbec814 8680 int pipe = pipe_config->cpu_transcoder;
9e2c8475 8681 struct dpll clock;
acbec814 8682 u32 mdiv;
662c6ecb 8683 int refclk = 100000;
acbec814 8684
b521973b
VS
8685 /* In case of DSI, DPLL will not be used */
8686 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
f573de5a
SK
8687 return;
8688
a580516d 8689 mutex_lock(&dev_priv->sb_lock);
ab3c759a 8690 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
a580516d 8691 mutex_unlock(&dev_priv->sb_lock);
acbec814
JB
8692
8693 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
8694 clock.m2 = mdiv & DPIO_M2DIV_MASK;
8695 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8696 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8697 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8698
dccbea3b 8699 pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
acbec814
JB
8700}
8701
5724dbd1
DL
8702static void
8703i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8704 struct intel_initial_plane_config *plane_config)
1ad292b5
JB
8705{
8706 struct drm_device *dev = crtc->base.dev;
fac5e23e 8707 struct drm_i915_private *dev_priv = to_i915(dev);
1ad292b5
JB
8708 u32 val, base, offset;
8709 int pipe = crtc->pipe, plane = crtc->plane;
8710 int fourcc, pixel_format;
6761dd31 8711 unsigned int aligned_height;
b113d5ee 8712 struct drm_framebuffer *fb;
1b842c89 8713 struct intel_framebuffer *intel_fb;
1ad292b5 8714
42a7b088
DL
8715 val = I915_READ(DSPCNTR(plane));
8716 if (!(val & DISPLAY_PLANE_ENABLE))
8717 return;
8718
d9806c9f 8719 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 8720 if (!intel_fb) {
1ad292b5
JB
8721 DRM_DEBUG_KMS("failed to alloc fb\n");
8722 return;
8723 }
8724
1b842c89
DL
8725 fb = &intel_fb->base;
8726
18c5247e
DV
8727 if (INTEL_INFO(dev)->gen >= 4) {
8728 if (val & DISPPLANE_TILED) {
49af449b 8729 plane_config->tiling = I915_TILING_X;
18c5247e
DV
8730 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8731 }
8732 }
1ad292b5
JB
8733
8734 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
b35d63fa 8735 fourcc = i9xx_format_to_fourcc(pixel_format);
b113d5ee
DL
8736 fb->pixel_format = fourcc;
8737 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
1ad292b5
JB
8738
8739 if (INTEL_INFO(dev)->gen >= 4) {
49af449b 8740 if (plane_config->tiling)
1ad292b5
JB
8741 offset = I915_READ(DSPTILEOFF(plane));
8742 else
8743 offset = I915_READ(DSPLINOFF(plane));
8744 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8745 } else {
8746 base = I915_READ(DSPADDR(plane));
8747 }
8748 plane_config->base = base;
8749
8750 val = I915_READ(PIPESRC(pipe));
b113d5ee
DL
8751 fb->width = ((val >> 16) & 0xfff) + 1;
8752 fb->height = ((val >> 0) & 0xfff) + 1;
1ad292b5
JB
8753
8754 val = I915_READ(DSPSTRIDE(pipe));
b113d5ee 8755 fb->pitches[0] = val & 0xffffffc0;
1ad292b5 8756
b113d5ee 8757 aligned_height = intel_fb_align_height(dev, fb->height,
091df6cb
DV
8758 fb->pixel_format,
8759 fb->modifier[0]);
1ad292b5 8760
f37b5c2b 8761 plane_config->size = fb->pitches[0] * aligned_height;
1ad292b5 8762
2844a921
DL
8763 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8764 pipe_name(pipe), plane, fb->width, fb->height,
8765 fb->bits_per_pixel, base, fb->pitches[0],
8766 plane_config->size);
1ad292b5 8767
2d14030b 8768 plane_config->fb = intel_fb;
1ad292b5
JB
8769}
8770
70b23a98 8771static void chv_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 8772 struct intel_crtc_state *pipe_config)
70b23a98
VS
8773{
8774 struct drm_device *dev = crtc->base.dev;
fac5e23e 8775 struct drm_i915_private *dev_priv = to_i915(dev);
70b23a98
VS
8776 int pipe = pipe_config->cpu_transcoder;
8777 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9e2c8475 8778 struct dpll clock;
0d7b6b11 8779 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
70b23a98
VS
8780 int refclk = 100000;
8781
b521973b
VS
8782 /* In case of DSI, DPLL will not be used */
8783 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8784 return;
8785
a580516d 8786 mutex_lock(&dev_priv->sb_lock);
70b23a98
VS
8787 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8788 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8789 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8790 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
0d7b6b11 8791 pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
a580516d 8792 mutex_unlock(&dev_priv->sb_lock);
70b23a98
VS
8793
8794 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
0d7b6b11
ID
8795 clock.m2 = (pll_dw0 & 0xff) << 22;
8796 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8797 clock.m2 |= pll_dw2 & 0x3fffff;
70b23a98
VS
8798 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8799 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8800 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8801
dccbea3b 8802 pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
70b23a98
VS
8803}
8804
0e8ffe1b 8805static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
5cec258b 8806 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
8807{
8808 struct drm_device *dev = crtc->base.dev;
fac5e23e 8809 struct drm_i915_private *dev_priv = to_i915(dev);
1729050e 8810 enum intel_display_power_domain power_domain;
0e8ffe1b 8811 uint32_t tmp;
1729050e 8812 bool ret;
0e8ffe1b 8813
1729050e
ID
8814 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
8815 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
b5482bd0
ID
8816 return false;
8817
e143a21c 8818 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8106ddbd 8819 pipe_config->shared_dpll = NULL;
eccb140b 8820
1729050e
ID
8821 ret = false;
8822
0e8ffe1b
DV
8823 tmp = I915_READ(PIPECONF(crtc->pipe));
8824 if (!(tmp & PIPECONF_ENABLE))
1729050e 8825 goto out;
0e8ffe1b 8826
666a4537 8827 if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
42571aef
VS
8828 switch (tmp & PIPECONF_BPC_MASK) {
8829 case PIPECONF_6BPC:
8830 pipe_config->pipe_bpp = 18;
8831 break;
8832 case PIPECONF_8BPC:
8833 pipe_config->pipe_bpp = 24;
8834 break;
8835 case PIPECONF_10BPC:
8836 pipe_config->pipe_bpp = 30;
8837 break;
8838 default:
8839 break;
8840 }
8841 }
8842
666a4537
WB
8843 if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
8844 (tmp & PIPECONF_COLOR_RANGE_SELECT))
b5a9fa09
DV
8845 pipe_config->limited_color_range = true;
8846
282740f7
VS
8847 if (INTEL_INFO(dev)->gen < 4)
8848 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8849
1bd1bd80 8850 intel_get_pipe_timings(crtc, pipe_config);
bc58be60 8851 intel_get_pipe_src_size(crtc, pipe_config);
1bd1bd80 8852
2fa2fe9a
DV
8853 i9xx_get_pfit_config(crtc, pipe_config);
8854
6c49f241 8855 if (INTEL_INFO(dev)->gen >= 4) {
c231775c
VS
8856 /* No way to read it out on pipes B and C */
8857 if (IS_CHERRYVIEW(dev) && crtc->pipe != PIPE_A)
8858 tmp = dev_priv->chv_dpll_md[crtc->pipe];
8859 else
8860 tmp = I915_READ(DPLL_MD(crtc->pipe));
6c49f241
DV
8861 pipe_config->pixel_multiplier =
8862 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8863 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8bcc2795 8864 pipe_config->dpll_hw_state.dpll_md = tmp;
6c49f241
DV
8865 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8866 tmp = I915_READ(DPLL(crtc->pipe));
8867 pipe_config->pixel_multiplier =
8868 ((tmp & SDVO_MULTIPLIER_MASK)
8869 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8870 } else {
8871 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8872 * port and will be fixed up in the encoder->get_config
8873 * function. */
8874 pipe_config->pixel_multiplier = 1;
8875 }
8bcc2795 8876 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
666a4537 8877 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
1c4e0274
VS
8878 /*
8879 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8880 * on 830. Filter it out here so that we don't
8881 * report errors due to that.
8882 */
8883 if (IS_I830(dev))
8884 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8885
8bcc2795
DV
8886 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8887 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
165e901c
VS
8888 } else {
8889 /* Mask out read-only status bits. */
8890 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8891 DPLL_PORTC_READY_MASK |
8892 DPLL_PORTB_READY_MASK);
8bcc2795 8893 }
6c49f241 8894
70b23a98
VS
8895 if (IS_CHERRYVIEW(dev))
8896 chv_crtc_clock_get(crtc, pipe_config);
8897 else if (IS_VALLEYVIEW(dev))
acbec814
JB
8898 vlv_crtc_clock_get(crtc, pipe_config);
8899 else
8900 i9xx_crtc_clock_get(crtc, pipe_config);
18442d08 8901
0f64614d
VS
8902 /*
8903 * Normally the dotclock is filled in by the encoder .get_config()
8904 * but in case the pipe is enabled w/o any ports we need a sane
8905 * default.
8906 */
8907 pipe_config->base.adjusted_mode.crtc_clock =
8908 pipe_config->port_clock / pipe_config->pixel_multiplier;
8909
1729050e
ID
8910 ret = true;
8911
8912out:
8913 intel_display_power_put(dev_priv, power_domain);
8914
8915 return ret;
0e8ffe1b
DV
8916}
8917
dde86e2d 8918static void ironlake_init_pch_refclk(struct drm_device *dev)
13d83a67 8919{
fac5e23e 8920 struct drm_i915_private *dev_priv = to_i915(dev);
13d83a67 8921 struct intel_encoder *encoder;
1c1a24d2 8922 int i;
74cfd7ac 8923 u32 val, final;
13d83a67 8924 bool has_lvds = false;
199e5d79 8925 bool has_cpu_edp = false;
199e5d79 8926 bool has_panel = false;
99eb6a01
KP
8927 bool has_ck505 = false;
8928 bool can_ssc = false;
1c1a24d2 8929 bool using_ssc_source = false;
13d83a67
JB
8930
8931 /* We need to take the global config into account */
b2784e15 8932 for_each_intel_encoder(dev, encoder) {
199e5d79
KP
8933 switch (encoder->type) {
8934 case INTEL_OUTPUT_LVDS:
8935 has_panel = true;
8936 has_lvds = true;
8937 break;
8938 case INTEL_OUTPUT_EDP:
8939 has_panel = true;
2de6905f 8940 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
199e5d79
KP
8941 has_cpu_edp = true;
8942 break;
6847d71b
PZ
8943 default:
8944 break;
13d83a67
JB
8945 }
8946 }
8947
6e266956 8948 if (HAS_PCH_IBX(dev_priv)) {
41aa3448 8949 has_ck505 = dev_priv->vbt.display_clock_mode;
99eb6a01
KP
8950 can_ssc = has_ck505;
8951 } else {
8952 has_ck505 = false;
8953 can_ssc = true;
8954 }
8955
1c1a24d2
L
8956 /* Check if any DPLLs are using the SSC source */
8957 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
8958 u32 temp = I915_READ(PCH_DPLL(i));
8959
8960 if (!(temp & DPLL_VCO_ENABLE))
8961 continue;
8962
8963 if ((temp & PLL_REF_INPUT_MASK) ==
8964 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
8965 using_ssc_source = true;
8966 break;
8967 }
8968 }
8969
8970 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n",
8971 has_panel, has_lvds, has_ck505, using_ssc_source);
13d83a67
JB
8972
8973 /* Ironlake: try to setup display ref clock before DPLL
8974 * enabling. This is only under driver's control after
8975 * PCH B stepping, previous chipset stepping should be
8976 * ignoring this setting.
8977 */
74cfd7ac
CW
8978 val = I915_READ(PCH_DREF_CONTROL);
8979
8980 /* As we must carefully and slowly disable/enable each source in turn,
8981 * compute the final state we want first and check if we need to
8982 * make any changes at all.
8983 */
8984 final = val;
8985 final &= ~DREF_NONSPREAD_SOURCE_MASK;
8986 if (has_ck505)
8987 final |= DREF_NONSPREAD_CK505_ENABLE;
8988 else
8989 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8990
8c07eb68 8991 final &= ~DREF_SSC_SOURCE_MASK;
74cfd7ac 8992 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8c07eb68 8993 final &= ~DREF_SSC1_ENABLE;
74cfd7ac
CW
8994
8995 if (has_panel) {
8996 final |= DREF_SSC_SOURCE_ENABLE;
8997
8998 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8999 final |= DREF_SSC1_ENABLE;
9000
9001 if (has_cpu_edp) {
9002 if (intel_panel_use_ssc(dev_priv) && can_ssc)
9003 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
9004 else
9005 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
9006 } else
9007 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
1c1a24d2
L
9008 } else if (using_ssc_source) {
9009 final |= DREF_SSC_SOURCE_ENABLE;
9010 final |= DREF_SSC1_ENABLE;
74cfd7ac
CW
9011 }
9012
9013 if (final == val)
9014 return;
9015
13d83a67 9016 /* Always enable nonspread source */
74cfd7ac 9017 val &= ~DREF_NONSPREAD_SOURCE_MASK;
13d83a67 9018
99eb6a01 9019 if (has_ck505)
74cfd7ac 9020 val |= DREF_NONSPREAD_CK505_ENABLE;
99eb6a01 9021 else
74cfd7ac 9022 val |= DREF_NONSPREAD_SOURCE_ENABLE;
13d83a67 9023
199e5d79 9024 if (has_panel) {
74cfd7ac
CW
9025 val &= ~DREF_SSC_SOURCE_MASK;
9026 val |= DREF_SSC_SOURCE_ENABLE;
13d83a67 9027
199e5d79 9028 /* SSC must be turned on before enabling the CPU output */
99eb6a01 9029 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 9030 DRM_DEBUG_KMS("Using SSC on panel\n");
74cfd7ac 9031 val |= DREF_SSC1_ENABLE;
e77166b5 9032 } else
74cfd7ac 9033 val &= ~DREF_SSC1_ENABLE;
199e5d79
KP
9034
9035 /* Get SSC going before enabling the outputs */
74cfd7ac 9036 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
9037 POSTING_READ(PCH_DREF_CONTROL);
9038 udelay(200);
9039
74cfd7ac 9040 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
13d83a67
JB
9041
9042 /* Enable CPU source on CPU attached eDP */
199e5d79 9043 if (has_cpu_edp) {
99eb6a01 9044 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 9045 DRM_DEBUG_KMS("Using SSC on eDP\n");
74cfd7ac 9046 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
eba905b2 9047 } else
74cfd7ac 9048 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
199e5d79 9049 } else
74cfd7ac 9050 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 9051
74cfd7ac 9052 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
9053 POSTING_READ(PCH_DREF_CONTROL);
9054 udelay(200);
9055 } else {
1c1a24d2 9056 DRM_DEBUG_KMS("Disabling CPU source output\n");
199e5d79 9057
74cfd7ac 9058 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
199e5d79
KP
9059
9060 /* Turn off CPU output */
74cfd7ac 9061 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 9062
74cfd7ac 9063 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
9064 POSTING_READ(PCH_DREF_CONTROL);
9065 udelay(200);
9066
1c1a24d2
L
9067 if (!using_ssc_source) {
9068 DRM_DEBUG_KMS("Disabling SSC source\n");
199e5d79 9069
1c1a24d2
L
9070 /* Turn off the SSC source */
9071 val &= ~DREF_SSC_SOURCE_MASK;
9072 val |= DREF_SSC_SOURCE_DISABLE;
f165d283 9073
1c1a24d2
L
9074 /* Turn off SSC1 */
9075 val &= ~DREF_SSC1_ENABLE;
9076
9077 I915_WRITE(PCH_DREF_CONTROL, val);
9078 POSTING_READ(PCH_DREF_CONTROL);
9079 udelay(200);
9080 }
13d83a67 9081 }
74cfd7ac
CW
9082
9083 BUG_ON(val != final);
13d83a67
JB
9084}
9085
f31f2d55 9086static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
dde86e2d 9087{
f31f2d55 9088 uint32_t tmp;
dde86e2d 9089
0ff066a9
PZ
9090 tmp = I915_READ(SOUTH_CHICKEN2);
9091 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
9092 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 9093
cf3598c2
ID
9094 if (wait_for_us(I915_READ(SOUTH_CHICKEN2) &
9095 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
0ff066a9 9096 DRM_ERROR("FDI mPHY reset assert timeout\n");
dde86e2d 9097
0ff066a9
PZ
9098 tmp = I915_READ(SOUTH_CHICKEN2);
9099 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
9100 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 9101
cf3598c2
ID
9102 if (wait_for_us((I915_READ(SOUTH_CHICKEN2) &
9103 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
0ff066a9 9104 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
f31f2d55
PZ
9105}
9106
9107/* WaMPhyProgramming:hsw */
9108static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
9109{
9110 uint32_t tmp;
dde86e2d
PZ
9111
9112 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
9113 tmp &= ~(0xFF << 24);
9114 tmp |= (0x12 << 24);
9115 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
9116
dde86e2d
PZ
9117 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
9118 tmp |= (1 << 11);
9119 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
9120
9121 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
9122 tmp |= (1 << 11);
9123 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
9124
dde86e2d
PZ
9125 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
9126 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
9127 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
9128
9129 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
9130 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
9131 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
9132
0ff066a9
PZ
9133 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
9134 tmp &= ~(7 << 13);
9135 tmp |= (5 << 13);
9136 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
dde86e2d 9137
0ff066a9
PZ
9138 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
9139 tmp &= ~(7 << 13);
9140 tmp |= (5 << 13);
9141 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
dde86e2d
PZ
9142
9143 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
9144 tmp &= ~0xFF;
9145 tmp |= 0x1C;
9146 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
9147
9148 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
9149 tmp &= ~0xFF;
9150 tmp |= 0x1C;
9151 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
9152
9153 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
9154 tmp &= ~(0xFF << 16);
9155 tmp |= (0x1C << 16);
9156 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
9157
9158 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
9159 tmp &= ~(0xFF << 16);
9160 tmp |= (0x1C << 16);
9161 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
9162
0ff066a9
PZ
9163 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
9164 tmp |= (1 << 27);
9165 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
dde86e2d 9166
0ff066a9
PZ
9167 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
9168 tmp |= (1 << 27);
9169 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
dde86e2d 9170
0ff066a9
PZ
9171 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
9172 tmp &= ~(0xF << 28);
9173 tmp |= (4 << 28);
9174 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
dde86e2d 9175
0ff066a9
PZ
9176 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
9177 tmp &= ~(0xF << 28);
9178 tmp |= (4 << 28);
9179 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
f31f2d55
PZ
9180}
9181
2fa86a1f
PZ
9182/* Implements 3 different sequences from BSpec chapter "Display iCLK
9183 * Programming" based on the parameters passed:
9184 * - Sequence to enable CLKOUT_DP
9185 * - Sequence to enable CLKOUT_DP without spread
9186 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
9187 */
9188static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
9189 bool with_fdi)
f31f2d55 9190{
fac5e23e 9191 struct drm_i915_private *dev_priv = to_i915(dev);
2fa86a1f
PZ
9192 uint32_t reg, tmp;
9193
9194 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
9195 with_spread = true;
4f8036a2
TU
9196 if (WARN(HAS_PCH_LPT_LP(dev_priv) &&
9197 with_fdi, "LP PCH doesn't have FDI\n"))
2fa86a1f 9198 with_fdi = false;
f31f2d55 9199
a580516d 9200 mutex_lock(&dev_priv->sb_lock);
f31f2d55
PZ
9201
9202 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9203 tmp &= ~SBI_SSCCTL_DISABLE;
9204 tmp |= SBI_SSCCTL_PATHALT;
9205 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9206
9207 udelay(24);
9208
2fa86a1f
PZ
9209 if (with_spread) {
9210 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9211 tmp &= ~SBI_SSCCTL_PATHALT;
9212 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
f31f2d55 9213
2fa86a1f
PZ
9214 if (with_fdi) {
9215 lpt_reset_fdi_mphy(dev_priv);
9216 lpt_program_fdi_mphy(dev_priv);
9217 }
9218 }
dde86e2d 9219
4f8036a2 9220 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
2fa86a1f
PZ
9221 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
9222 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
9223 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
c00db246 9224
a580516d 9225 mutex_unlock(&dev_priv->sb_lock);
dde86e2d
PZ
9226}
9227
47701c3b
PZ
9228/* Sequence to disable CLKOUT_DP */
9229static void lpt_disable_clkout_dp(struct drm_device *dev)
9230{
fac5e23e 9231 struct drm_i915_private *dev_priv = to_i915(dev);
47701c3b
PZ
9232 uint32_t reg, tmp;
9233
a580516d 9234 mutex_lock(&dev_priv->sb_lock);
47701c3b 9235
4f8036a2 9236 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
47701c3b
PZ
9237 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
9238 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
9239 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
9240
9241 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9242 if (!(tmp & SBI_SSCCTL_DISABLE)) {
9243 if (!(tmp & SBI_SSCCTL_PATHALT)) {
9244 tmp |= SBI_SSCCTL_PATHALT;
9245 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9246 udelay(32);
9247 }
9248 tmp |= SBI_SSCCTL_DISABLE;
9249 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9250 }
9251
a580516d 9252 mutex_unlock(&dev_priv->sb_lock);
47701c3b
PZ
9253}
9254
f7be2c21
VS
9255#define BEND_IDX(steps) ((50 + (steps)) / 5)
9256
9257static const uint16_t sscdivintphase[] = {
9258 [BEND_IDX( 50)] = 0x3B23,
9259 [BEND_IDX( 45)] = 0x3B23,
9260 [BEND_IDX( 40)] = 0x3C23,
9261 [BEND_IDX( 35)] = 0x3C23,
9262 [BEND_IDX( 30)] = 0x3D23,
9263 [BEND_IDX( 25)] = 0x3D23,
9264 [BEND_IDX( 20)] = 0x3E23,
9265 [BEND_IDX( 15)] = 0x3E23,
9266 [BEND_IDX( 10)] = 0x3F23,
9267 [BEND_IDX( 5)] = 0x3F23,
9268 [BEND_IDX( 0)] = 0x0025,
9269 [BEND_IDX( -5)] = 0x0025,
9270 [BEND_IDX(-10)] = 0x0125,
9271 [BEND_IDX(-15)] = 0x0125,
9272 [BEND_IDX(-20)] = 0x0225,
9273 [BEND_IDX(-25)] = 0x0225,
9274 [BEND_IDX(-30)] = 0x0325,
9275 [BEND_IDX(-35)] = 0x0325,
9276 [BEND_IDX(-40)] = 0x0425,
9277 [BEND_IDX(-45)] = 0x0425,
9278 [BEND_IDX(-50)] = 0x0525,
9279};
9280
9281/*
9282 * Bend CLKOUT_DP
9283 * steps -50 to 50 inclusive, in steps of 5
9284 * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
9285 * change in clock period = -(steps / 10) * 5.787 ps
9286 */
9287static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
9288{
9289 uint32_t tmp;
9290 int idx = BEND_IDX(steps);
9291
9292 if (WARN_ON(steps % 5 != 0))
9293 return;
9294
9295 if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
9296 return;
9297
9298 mutex_lock(&dev_priv->sb_lock);
9299
9300 if (steps % 10 != 0)
9301 tmp = 0xAAAAAAAB;
9302 else
9303 tmp = 0x00000000;
9304 intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
9305
9306 tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
9307 tmp &= 0xffff0000;
9308 tmp |= sscdivintphase[idx];
9309 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
9310
9311 mutex_unlock(&dev_priv->sb_lock);
9312}
9313
9314#undef BEND_IDX
9315
bf8fa3d3
PZ
9316static void lpt_init_pch_refclk(struct drm_device *dev)
9317{
bf8fa3d3
PZ
9318 struct intel_encoder *encoder;
9319 bool has_vga = false;
9320
b2784e15 9321 for_each_intel_encoder(dev, encoder) {
bf8fa3d3
PZ
9322 switch (encoder->type) {
9323 case INTEL_OUTPUT_ANALOG:
9324 has_vga = true;
9325 break;
6847d71b
PZ
9326 default:
9327 break;
bf8fa3d3
PZ
9328 }
9329 }
9330
f7be2c21
VS
9331 if (has_vga) {
9332 lpt_bend_clkout_dp(to_i915(dev), 0);
47701c3b 9333 lpt_enable_clkout_dp(dev, true, true);
f7be2c21 9334 } else {
47701c3b 9335 lpt_disable_clkout_dp(dev);
f7be2c21 9336 }
bf8fa3d3
PZ
9337}
9338
dde86e2d
PZ
9339/*
9340 * Initialize reference clocks when the driver loads
9341 */
9342void intel_init_pch_refclk(struct drm_device *dev)
9343{
6e266956
TU
9344 struct drm_i915_private *dev_priv = to_i915(dev);
9345
9346 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))
dde86e2d 9347 ironlake_init_pch_refclk(dev);
6e266956 9348 else if (HAS_PCH_LPT(dev_priv))
dde86e2d
PZ
9349 lpt_init_pch_refclk(dev);
9350}
9351
6ff93609 9352static void ironlake_set_pipeconf(struct drm_crtc *crtc)
79e53945 9353{
fac5e23e 9354 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
79e53945
JB
9355 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9356 int pipe = intel_crtc->pipe;
c8203565
PZ
9357 uint32_t val;
9358
78114071 9359 val = 0;
c8203565 9360
6e3c9717 9361 switch (intel_crtc->config->pipe_bpp) {
c8203565 9362 case 18:
dfd07d72 9363 val |= PIPECONF_6BPC;
c8203565
PZ
9364 break;
9365 case 24:
dfd07d72 9366 val |= PIPECONF_8BPC;
c8203565
PZ
9367 break;
9368 case 30:
dfd07d72 9369 val |= PIPECONF_10BPC;
c8203565
PZ
9370 break;
9371 case 36:
dfd07d72 9372 val |= PIPECONF_12BPC;
c8203565
PZ
9373 break;
9374 default:
cc769b62
PZ
9375 /* Case prevented by intel_choose_pipe_bpp_dither. */
9376 BUG();
c8203565
PZ
9377 }
9378
6e3c9717 9379 if (intel_crtc->config->dither)
c8203565
PZ
9380 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
9381
6e3c9717 9382 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
c8203565
PZ
9383 val |= PIPECONF_INTERLACED_ILK;
9384 else
9385 val |= PIPECONF_PROGRESSIVE;
9386
6e3c9717 9387 if (intel_crtc->config->limited_color_range)
3685a8f3 9388 val |= PIPECONF_COLOR_RANGE_SELECT;
3685a8f3 9389
c8203565
PZ
9390 I915_WRITE(PIPECONF(pipe), val);
9391 POSTING_READ(PIPECONF(pipe));
9392}
9393
6ff93609 9394static void haswell_set_pipeconf(struct drm_crtc *crtc)
ee2b0b38 9395{
fac5e23e 9396 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
ee2b0b38 9397 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6e3c9717 9398 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
391bf048 9399 u32 val = 0;
ee2b0b38 9400
391bf048 9401 if (IS_HASWELL(dev_priv) && intel_crtc->config->dither)
ee2b0b38
PZ
9402 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
9403
6e3c9717 9404 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
ee2b0b38
PZ
9405 val |= PIPECONF_INTERLACED_ILK;
9406 else
9407 val |= PIPECONF_PROGRESSIVE;
9408
702e7a56
PZ
9409 I915_WRITE(PIPECONF(cpu_transcoder), val);
9410 POSTING_READ(PIPECONF(cpu_transcoder));
391bf048
JN
9411}
9412
391bf048
JN
9413static void haswell_set_pipemisc(struct drm_crtc *crtc)
9414{
fac5e23e 9415 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
391bf048 9416 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
756f85cf 9417
391bf048
JN
9418 if (IS_BROADWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 9) {
9419 u32 val = 0;
756f85cf 9420
6e3c9717 9421 switch (intel_crtc->config->pipe_bpp) {
756f85cf
PZ
9422 case 18:
9423 val |= PIPEMISC_DITHER_6_BPC;
9424 break;
9425 case 24:
9426 val |= PIPEMISC_DITHER_8_BPC;
9427 break;
9428 case 30:
9429 val |= PIPEMISC_DITHER_10_BPC;
9430 break;
9431 case 36:
9432 val |= PIPEMISC_DITHER_12_BPC;
9433 break;
9434 default:
9435 /* Case prevented by pipe_config_set_bpp. */
9436 BUG();
9437 }
9438
6e3c9717 9439 if (intel_crtc->config->dither)
756f85cf
PZ
9440 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
9441
391bf048 9442 I915_WRITE(PIPEMISC(intel_crtc->pipe), val);
756f85cf 9443 }
ee2b0b38
PZ
9444}
9445
d4b1931c
PZ
9446int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
9447{
9448 /*
9449 * Account for spread spectrum to avoid
9450 * oversubscribing the link. Max center spread
9451 * is 2.5%; use 5% for safety's sake.
9452 */
9453 u32 bps = target_clock * bpp * 21 / 20;
619d4d04 9454 return DIV_ROUND_UP(bps, link_bw * 8);
d4b1931c
PZ
9455}
9456
7429e9d4 9457static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6cf86a5e 9458{
7429e9d4 9459 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
f48d8f23
PZ
9460}
9461
b75ca6f6
ACO
9462static void ironlake_compute_dpll(struct intel_crtc *intel_crtc,
9463 struct intel_crtc_state *crtc_state,
9e2c8475 9464 struct dpll *reduced_clock)
79e53945 9465{
de13a2e3 9466 struct drm_crtc *crtc = &intel_crtc->base;
79e53945 9467 struct drm_device *dev = crtc->dev;
fac5e23e 9468 struct drm_i915_private *dev_priv = to_i915(dev);
b75ca6f6 9469 u32 dpll, fp, fp2;
3d6e9ee0 9470 int factor;
79e53945 9471
c1858123 9472 /* Enable autotuning of the PLL clock (if permissible) */
8febb297 9473 factor = 21;
3d6e9ee0 9474 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8febb297 9475 if ((intel_panel_use_ssc(dev_priv) &&
e91e941b 9476 dev_priv->vbt.lvds_ssc_freq == 100000) ||
6e266956 9477 (HAS_PCH_IBX(dev_priv) && intel_is_dual_link_lvds(dev)))
8febb297 9478 factor = 25;
190f68c5 9479 } else if (crtc_state->sdvo_tv_clock)
8febb297 9480 factor = 20;
c1858123 9481
b75ca6f6
ACO
9482 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
9483
190f68c5 9484 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
b75ca6f6
ACO
9485 fp |= FP_CB_TUNE;
9486
9487 if (reduced_clock) {
9488 fp2 = i9xx_dpll_compute_fp(reduced_clock);
2c07245f 9489
b75ca6f6
ACO
9490 if (reduced_clock->m < factor * reduced_clock->n)
9491 fp2 |= FP_CB_TUNE;
9492 } else {
9493 fp2 = fp;
9494 }
9a7c7890 9495
5eddb70b 9496 dpll = 0;
2c07245f 9497
3d6e9ee0 9498 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
a07d6787
EA
9499 dpll |= DPLLB_MODE_LVDS;
9500 else
9501 dpll |= DPLLB_MODE_DAC_SERIAL;
198a037f 9502
190f68c5 9503 dpll |= (crtc_state->pixel_multiplier - 1)
ef1b460d 9504 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
198a037f 9505
3d6e9ee0
VS
9506 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
9507 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
4a33e48d 9508 dpll |= DPLL_SDVO_HIGH_SPEED;
3d6e9ee0 9509
37a5650b 9510 if (intel_crtc_has_dp_encoder(crtc_state))
4a33e48d 9511 dpll |= DPLL_SDVO_HIGH_SPEED;
79e53945 9512
7d7f8633
VS
9513 /*
9514 * The high speed IO clock is only really required for
9515 * SDVO/HDMI/DP, but we also enable it for CRT to make it
9516 * possible to share the DPLL between CRT and HDMI. Enabling
9517 * the clock needlessly does no real harm, except use up a
9518 * bit of power potentially.
9519 *
9520 * We'll limit this to IVB with 3 pipes, since it has only two
9521 * DPLLs and so DPLL sharing is the only way to get three pipes
9522 * driving PCH ports at the same time. On SNB we could do this,
9523 * and potentially avoid enabling the second DPLL, but it's not
9524 * clear if it''s a win or loss power wise. No point in doing
9525 * this on ILK at all since it has a fixed DPLL<->pipe mapping.
9526 */
9527 if (INTEL_INFO(dev_priv)->num_pipes == 3 &&
9528 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG))
9529 dpll |= DPLL_SDVO_HIGH_SPEED;
9530
a07d6787 9531 /* compute bitmask from p1 value */
190f68c5 9532 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
a07d6787 9533 /* also FPA1 */
190f68c5 9534 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
a07d6787 9535
190f68c5 9536 switch (crtc_state->dpll.p2) {
a07d6787
EA
9537 case 5:
9538 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
9539 break;
9540 case 7:
9541 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
9542 break;
9543 case 10:
9544 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
9545 break;
9546 case 14:
9547 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
9548 break;
79e53945
JB
9549 }
9550
3d6e9ee0
VS
9551 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
9552 intel_panel_use_ssc(dev_priv))
43565a06 9553 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
9554 else
9555 dpll |= PLL_REF_INPUT_DREFCLK;
9556
b75ca6f6
ACO
9557 dpll |= DPLL_VCO_ENABLE;
9558
9559 crtc_state->dpll_hw_state.dpll = dpll;
9560 crtc_state->dpll_hw_state.fp0 = fp;
9561 crtc_state->dpll_hw_state.fp1 = fp2;
de13a2e3
PZ
9562}
9563
190f68c5
ACO
9564static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
9565 struct intel_crtc_state *crtc_state)
de13a2e3 9566{
997c030c 9567 struct drm_device *dev = crtc->base.dev;
fac5e23e 9568 struct drm_i915_private *dev_priv = to_i915(dev);
9e2c8475 9569 struct dpll reduced_clock;
7ed9f894 9570 bool has_reduced_clock = false;
e2b78267 9571 struct intel_shared_dpll *pll;
1b6f4958 9572 const struct intel_limit *limit;
997c030c 9573 int refclk = 120000;
de13a2e3 9574
dd3cd74a
ACO
9575 memset(&crtc_state->dpll_hw_state, 0,
9576 sizeof(crtc_state->dpll_hw_state));
9577
ded220e2
ACO
9578 crtc->lowfreq_avail = false;
9579
9580 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
9581 if (!crtc_state->has_pch_encoder)
9582 return 0;
79e53945 9583
2d84d2b3 9584 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
997c030c
ACO
9585 if (intel_panel_use_ssc(dev_priv)) {
9586 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
9587 dev_priv->vbt.lvds_ssc_freq);
9588 refclk = dev_priv->vbt.lvds_ssc_freq;
9589 }
9590
9591 if (intel_is_dual_link_lvds(dev)) {
9592 if (refclk == 100000)
9593 limit = &intel_limits_ironlake_dual_lvds_100m;
9594 else
9595 limit = &intel_limits_ironlake_dual_lvds;
9596 } else {
9597 if (refclk == 100000)
9598 limit = &intel_limits_ironlake_single_lvds_100m;
9599 else
9600 limit = &intel_limits_ironlake_single_lvds;
9601 }
9602 } else {
9603 limit = &intel_limits_ironlake_dac;
9604 }
9605
364ee29d 9606 if (!crtc_state->clock_set &&
997c030c
ACO
9607 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9608 refclk, NULL, &crtc_state->dpll)) {
364ee29d
ACO
9609 DRM_ERROR("Couldn't find PLL settings for mode!\n");
9610 return -EINVAL;
f47709a9 9611 }
79e53945 9612
b75ca6f6
ACO
9613 ironlake_compute_dpll(crtc, crtc_state,
9614 has_reduced_clock ? &reduced_clock : NULL);
66e985c0 9615
ded220e2
ACO
9616 pll = intel_get_shared_dpll(crtc, crtc_state, NULL);
9617 if (pll == NULL) {
9618 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
9619 pipe_name(crtc->pipe));
9620 return -EINVAL;
3fb37703 9621 }
79e53945 9622
2d84d2b3 9623 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
ded220e2 9624 has_reduced_clock)
c7653199 9625 crtc->lowfreq_avail = true;
e2b78267 9626
c8f7a0db 9627 return 0;
79e53945
JB
9628}
9629
eb14cb74
VS
9630static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
9631 struct intel_link_m_n *m_n)
9632{
9633 struct drm_device *dev = crtc->base.dev;
fac5e23e 9634 struct drm_i915_private *dev_priv = to_i915(dev);
eb14cb74
VS
9635 enum pipe pipe = crtc->pipe;
9636
9637 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
9638 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
9639 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
9640 & ~TU_SIZE_MASK;
9641 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
9642 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
9643 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9644}
9645
9646static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
9647 enum transcoder transcoder,
b95af8be
VK
9648 struct intel_link_m_n *m_n,
9649 struct intel_link_m_n *m2_n2)
72419203
DV
9650{
9651 struct drm_device *dev = crtc->base.dev;
fac5e23e 9652 struct drm_i915_private *dev_priv = to_i915(dev);
eb14cb74 9653 enum pipe pipe = crtc->pipe;
72419203 9654
eb14cb74
VS
9655 if (INTEL_INFO(dev)->gen >= 5) {
9656 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
9657 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
9658 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
9659 & ~TU_SIZE_MASK;
9660 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
9661 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
9662 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
b95af8be
VK
9663 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
9664 * gen < 8) and if DRRS is supported (to make sure the
9665 * registers are not unnecessarily read).
9666 */
9667 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
6e3c9717 9668 crtc->config->has_drrs) {
b95af8be
VK
9669 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
9670 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
9671 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
9672 & ~TU_SIZE_MASK;
9673 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
9674 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
9675 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9676 }
eb14cb74
VS
9677 } else {
9678 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
9679 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
9680 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
9681 & ~TU_SIZE_MASK;
9682 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
9683 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9684 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9685 }
9686}
9687
9688void intel_dp_get_m_n(struct intel_crtc *crtc,
5cec258b 9689 struct intel_crtc_state *pipe_config)
eb14cb74 9690{
681a8504 9691 if (pipe_config->has_pch_encoder)
eb14cb74
VS
9692 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9693 else
9694 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be
VK
9695 &pipe_config->dp_m_n,
9696 &pipe_config->dp_m2_n2);
eb14cb74 9697}
72419203 9698
eb14cb74 9699static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
5cec258b 9700 struct intel_crtc_state *pipe_config)
eb14cb74
VS
9701{
9702 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be 9703 &pipe_config->fdi_m_n, NULL);
72419203
DV
9704}
9705
bd2e244f 9706static void skylake_get_pfit_config(struct intel_crtc *crtc,
5cec258b 9707 struct intel_crtc_state *pipe_config)
bd2e244f
JB
9708{
9709 struct drm_device *dev = crtc->base.dev;
fac5e23e 9710 struct drm_i915_private *dev_priv = to_i915(dev);
a1b2278e
CK
9711 struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9712 uint32_t ps_ctrl = 0;
9713 int id = -1;
9714 int i;
bd2e244f 9715
a1b2278e
CK
9716 /* find scaler attached to this pipe */
9717 for (i = 0; i < crtc->num_scalers; i++) {
9718 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9719 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9720 id = i;
9721 pipe_config->pch_pfit.enabled = true;
9722 pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9723 pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9724 break;
9725 }
9726 }
bd2e244f 9727
a1b2278e
CK
9728 scaler_state->scaler_id = id;
9729 if (id >= 0) {
9730 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9731 } else {
9732 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
bd2e244f
JB
9733 }
9734}
9735
5724dbd1
DL
9736static void
9737skylake_get_initial_plane_config(struct intel_crtc *crtc,
9738 struct intel_initial_plane_config *plane_config)
bc8d7dff
DL
9739{
9740 struct drm_device *dev = crtc->base.dev;
fac5e23e 9741 struct drm_i915_private *dev_priv = to_i915(dev);
40f46283 9742 u32 val, base, offset, stride_mult, tiling;
bc8d7dff
DL
9743 int pipe = crtc->pipe;
9744 int fourcc, pixel_format;
6761dd31 9745 unsigned int aligned_height;
bc8d7dff 9746 struct drm_framebuffer *fb;
1b842c89 9747 struct intel_framebuffer *intel_fb;
bc8d7dff 9748
d9806c9f 9749 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 9750 if (!intel_fb) {
bc8d7dff
DL
9751 DRM_DEBUG_KMS("failed to alloc fb\n");
9752 return;
9753 }
9754
1b842c89
DL
9755 fb = &intel_fb->base;
9756
bc8d7dff 9757 val = I915_READ(PLANE_CTL(pipe, 0));
42a7b088
DL
9758 if (!(val & PLANE_CTL_ENABLE))
9759 goto error;
9760
bc8d7dff
DL
9761 pixel_format = val & PLANE_CTL_FORMAT_MASK;
9762 fourcc = skl_format_to_fourcc(pixel_format,
9763 val & PLANE_CTL_ORDER_RGBX,
9764 val & PLANE_CTL_ALPHA_MASK);
9765 fb->pixel_format = fourcc;
9766 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9767
40f46283
DL
9768 tiling = val & PLANE_CTL_TILED_MASK;
9769 switch (tiling) {
9770 case PLANE_CTL_TILED_LINEAR:
9771 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9772 break;
9773 case PLANE_CTL_TILED_X:
9774 plane_config->tiling = I915_TILING_X;
9775 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9776 break;
9777 case PLANE_CTL_TILED_Y:
9778 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9779 break;
9780 case PLANE_CTL_TILED_YF:
9781 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9782 break;
9783 default:
9784 MISSING_CASE(tiling);
9785 goto error;
9786 }
9787
bc8d7dff
DL
9788 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9789 plane_config->base = base;
9790
9791 offset = I915_READ(PLANE_OFFSET(pipe, 0));
9792
9793 val = I915_READ(PLANE_SIZE(pipe, 0));
9794 fb->height = ((val >> 16) & 0xfff) + 1;
9795 fb->width = ((val >> 0) & 0x1fff) + 1;
9796
9797 val = I915_READ(PLANE_STRIDE(pipe, 0));
7b49f948 9798 stride_mult = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
40f46283 9799 fb->pixel_format);
bc8d7dff
DL
9800 fb->pitches[0] = (val & 0x3ff) * stride_mult;
9801
9802 aligned_height = intel_fb_align_height(dev, fb->height,
091df6cb
DV
9803 fb->pixel_format,
9804 fb->modifier[0]);
bc8d7dff 9805
f37b5c2b 9806 plane_config->size = fb->pitches[0] * aligned_height;
bc8d7dff
DL
9807
9808 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9809 pipe_name(pipe), fb->width, fb->height,
9810 fb->bits_per_pixel, base, fb->pitches[0],
9811 plane_config->size);
9812
2d14030b 9813 plane_config->fb = intel_fb;
bc8d7dff
DL
9814 return;
9815
9816error:
d1a3a036 9817 kfree(intel_fb);
bc8d7dff
DL
9818}
9819
2fa2fe9a 9820static void ironlake_get_pfit_config(struct intel_crtc *crtc,
5cec258b 9821 struct intel_crtc_state *pipe_config)
2fa2fe9a
DV
9822{
9823 struct drm_device *dev = crtc->base.dev;
fac5e23e 9824 struct drm_i915_private *dev_priv = to_i915(dev);
2fa2fe9a
DV
9825 uint32_t tmp;
9826
9827 tmp = I915_READ(PF_CTL(crtc->pipe));
9828
9829 if (tmp & PF_ENABLE) {
fd4daa9c 9830 pipe_config->pch_pfit.enabled = true;
2fa2fe9a
DV
9831 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9832 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
cb8b2a30
DV
9833
9834 /* We currently do not free assignements of panel fitters on
9835 * ivb/hsw (since we don't use the higher upscaling modes which
9836 * differentiates them) so just WARN about this case for now. */
9837 if (IS_GEN7(dev)) {
9838 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9839 PF_PIPE_SEL_IVB(crtc->pipe));
9840 }
2fa2fe9a 9841 }
79e53945
JB
9842}
9843
5724dbd1
DL
9844static void
9845ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9846 struct intel_initial_plane_config *plane_config)
4c6baa59
JB
9847{
9848 struct drm_device *dev = crtc->base.dev;
fac5e23e 9849 struct drm_i915_private *dev_priv = to_i915(dev);
4c6baa59 9850 u32 val, base, offset;
aeee5a49 9851 int pipe = crtc->pipe;
4c6baa59 9852 int fourcc, pixel_format;
6761dd31 9853 unsigned int aligned_height;
b113d5ee 9854 struct drm_framebuffer *fb;
1b842c89 9855 struct intel_framebuffer *intel_fb;
4c6baa59 9856
42a7b088
DL
9857 val = I915_READ(DSPCNTR(pipe));
9858 if (!(val & DISPLAY_PLANE_ENABLE))
9859 return;
9860
d9806c9f 9861 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 9862 if (!intel_fb) {
4c6baa59
JB
9863 DRM_DEBUG_KMS("failed to alloc fb\n");
9864 return;
9865 }
9866
1b842c89
DL
9867 fb = &intel_fb->base;
9868
18c5247e
DV
9869 if (INTEL_INFO(dev)->gen >= 4) {
9870 if (val & DISPPLANE_TILED) {
49af449b 9871 plane_config->tiling = I915_TILING_X;
18c5247e
DV
9872 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9873 }
9874 }
4c6baa59
JB
9875
9876 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
b35d63fa 9877 fourcc = i9xx_format_to_fourcc(pixel_format);
b113d5ee
DL
9878 fb->pixel_format = fourcc;
9879 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
4c6baa59 9880
aeee5a49 9881 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
4c6baa59 9882 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
aeee5a49 9883 offset = I915_READ(DSPOFFSET(pipe));
4c6baa59 9884 } else {
49af449b 9885 if (plane_config->tiling)
aeee5a49 9886 offset = I915_READ(DSPTILEOFF(pipe));
4c6baa59 9887 else
aeee5a49 9888 offset = I915_READ(DSPLINOFF(pipe));
4c6baa59
JB
9889 }
9890 plane_config->base = base;
9891
9892 val = I915_READ(PIPESRC(pipe));
b113d5ee
DL
9893 fb->width = ((val >> 16) & 0xfff) + 1;
9894 fb->height = ((val >> 0) & 0xfff) + 1;
4c6baa59
JB
9895
9896 val = I915_READ(DSPSTRIDE(pipe));
b113d5ee 9897 fb->pitches[0] = val & 0xffffffc0;
4c6baa59 9898
b113d5ee 9899 aligned_height = intel_fb_align_height(dev, fb->height,
091df6cb
DV
9900 fb->pixel_format,
9901 fb->modifier[0]);
4c6baa59 9902
f37b5c2b 9903 plane_config->size = fb->pitches[0] * aligned_height;
4c6baa59 9904
2844a921
DL
9905 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9906 pipe_name(pipe), fb->width, fb->height,
9907 fb->bits_per_pixel, base, fb->pitches[0],
9908 plane_config->size);
b113d5ee 9909
2d14030b 9910 plane_config->fb = intel_fb;
4c6baa59
JB
9911}
9912
0e8ffe1b 9913static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
5cec258b 9914 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
9915{
9916 struct drm_device *dev = crtc->base.dev;
fac5e23e 9917 struct drm_i915_private *dev_priv = to_i915(dev);
1729050e 9918 enum intel_display_power_domain power_domain;
0e8ffe1b 9919 uint32_t tmp;
1729050e 9920 bool ret;
0e8ffe1b 9921
1729050e
ID
9922 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9923 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
930e8c9e
PZ
9924 return false;
9925
e143a21c 9926 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8106ddbd 9927 pipe_config->shared_dpll = NULL;
eccb140b 9928
1729050e 9929 ret = false;
0e8ffe1b
DV
9930 tmp = I915_READ(PIPECONF(crtc->pipe));
9931 if (!(tmp & PIPECONF_ENABLE))
1729050e 9932 goto out;
0e8ffe1b 9933
42571aef
VS
9934 switch (tmp & PIPECONF_BPC_MASK) {
9935 case PIPECONF_6BPC:
9936 pipe_config->pipe_bpp = 18;
9937 break;
9938 case PIPECONF_8BPC:
9939 pipe_config->pipe_bpp = 24;
9940 break;
9941 case PIPECONF_10BPC:
9942 pipe_config->pipe_bpp = 30;
9943 break;
9944 case PIPECONF_12BPC:
9945 pipe_config->pipe_bpp = 36;
9946 break;
9947 default:
9948 break;
9949 }
9950
b5a9fa09
DV
9951 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9952 pipe_config->limited_color_range = true;
9953
ab9412ba 9954 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
66e985c0 9955 struct intel_shared_dpll *pll;
8106ddbd 9956 enum intel_dpll_id pll_id;
66e985c0 9957
88adfff1
DV
9958 pipe_config->has_pch_encoder = true;
9959
627eb5a3
DV
9960 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9961 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9962 FDI_DP_PORT_WIDTH_SHIFT) + 1;
72419203
DV
9963
9964 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6c49f241 9965
2d1fe073 9966 if (HAS_PCH_IBX(dev_priv)) {
d9a7bc67
ID
9967 /*
9968 * The pipe->pch transcoder and pch transcoder->pll
9969 * mapping is fixed.
9970 */
8106ddbd 9971 pll_id = (enum intel_dpll_id) crtc->pipe;
c0d43d62
DV
9972 } else {
9973 tmp = I915_READ(PCH_DPLL_SEL);
9974 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
8106ddbd 9975 pll_id = DPLL_ID_PCH_PLL_B;
c0d43d62 9976 else
8106ddbd 9977 pll_id= DPLL_ID_PCH_PLL_A;
c0d43d62 9978 }
66e985c0 9979
8106ddbd
ACO
9980 pipe_config->shared_dpll =
9981 intel_get_shared_dpll_by_id(dev_priv, pll_id);
9982 pll = pipe_config->shared_dpll;
66e985c0 9983
2edd6443
ACO
9984 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
9985 &pipe_config->dpll_hw_state));
c93f54cf
DV
9986
9987 tmp = pipe_config->dpll_hw_state.dpll;
9988 pipe_config->pixel_multiplier =
9989 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9990 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
18442d08
VS
9991
9992 ironlake_pch_clock_get(crtc, pipe_config);
6c49f241
DV
9993 } else {
9994 pipe_config->pixel_multiplier = 1;
627eb5a3
DV
9995 }
9996
1bd1bd80 9997 intel_get_pipe_timings(crtc, pipe_config);
bc58be60 9998 intel_get_pipe_src_size(crtc, pipe_config);
1bd1bd80 9999
2fa2fe9a
DV
10000 ironlake_get_pfit_config(crtc, pipe_config);
10001
1729050e
ID
10002 ret = true;
10003
10004out:
10005 intel_display_power_put(dev_priv, power_domain);
10006
10007 return ret;
0e8ffe1b
DV
10008}
10009
be256dc7
PZ
10010static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
10011{
91c8a326 10012 struct drm_device *dev = &dev_priv->drm;
be256dc7 10013 struct intel_crtc *crtc;
be256dc7 10014
d3fcc808 10015 for_each_intel_crtc(dev, crtc)
e2c719b7 10016 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
be256dc7
PZ
10017 pipe_name(crtc->pipe));
10018
e2c719b7
RC
10019 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
10020 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
01403de3
VS
10021 I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
10022 I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
44cb734c 10023 I915_STATE_WARN(I915_READ(PP_STATUS(0)) & PP_ON, "Panel power on\n");
e2c719b7 10024 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
be256dc7 10025 "CPU PWM1 enabled\n");
c5107b87 10026 if (IS_HASWELL(dev))
e2c719b7 10027 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
c5107b87 10028 "CPU PWM2 enabled\n");
e2c719b7 10029 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
be256dc7 10030 "PCH PWM1 enabled\n");
e2c719b7 10031 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
be256dc7 10032 "Utility pin enabled\n");
e2c719b7 10033 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
be256dc7 10034
9926ada1
PZ
10035 /*
10036 * In theory we can still leave IRQs enabled, as long as only the HPD
10037 * interrupts remain enabled. We used to check for that, but since it's
10038 * gen-specific and since we only disable LCPLL after we fully disable
10039 * the interrupts, the check below should be enough.
10040 */
e2c719b7 10041 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
be256dc7
PZ
10042}
10043
9ccd5aeb
PZ
10044static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
10045{
91c8a326 10046 struct drm_device *dev = &dev_priv->drm;
9ccd5aeb
PZ
10047
10048 if (IS_HASWELL(dev))
10049 return I915_READ(D_COMP_HSW);
10050 else
10051 return I915_READ(D_COMP_BDW);
10052}
10053
3c4c9b81
PZ
10054static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
10055{
91c8a326 10056 struct drm_device *dev = &dev_priv->drm;
3c4c9b81
PZ
10057
10058 if (IS_HASWELL(dev)) {
10059 mutex_lock(&dev_priv->rps.hw_lock);
10060 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
10061 val))
79cf219a 10062 DRM_DEBUG_KMS("Failed to write to D_COMP\n");
3c4c9b81
PZ
10063 mutex_unlock(&dev_priv->rps.hw_lock);
10064 } else {
9ccd5aeb
PZ
10065 I915_WRITE(D_COMP_BDW, val);
10066 POSTING_READ(D_COMP_BDW);
3c4c9b81 10067 }
be256dc7
PZ
10068}
10069
10070/*
10071 * This function implements pieces of two sequences from BSpec:
10072 * - Sequence for display software to disable LCPLL
10073 * - Sequence for display software to allow package C8+
10074 * The steps implemented here are just the steps that actually touch the LCPLL
10075 * register. Callers should take care of disabling all the display engine
10076 * functions, doing the mode unset, fixing interrupts, etc.
10077 */
6ff58d53
PZ
10078static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
10079 bool switch_to_fclk, bool allow_power_down)
be256dc7
PZ
10080{
10081 uint32_t val;
10082
10083 assert_can_disable_lcpll(dev_priv);
10084
10085 val = I915_READ(LCPLL_CTL);
10086
10087 if (switch_to_fclk) {
10088 val |= LCPLL_CD_SOURCE_FCLK;
10089 I915_WRITE(LCPLL_CTL, val);
10090
f53dd63f
ID
10091 if (wait_for_us(I915_READ(LCPLL_CTL) &
10092 LCPLL_CD_SOURCE_FCLK_DONE, 1))
be256dc7
PZ
10093 DRM_ERROR("Switching to FCLK failed\n");
10094
10095 val = I915_READ(LCPLL_CTL);
10096 }
10097
10098 val |= LCPLL_PLL_DISABLE;
10099 I915_WRITE(LCPLL_CTL, val);
10100 POSTING_READ(LCPLL_CTL);
10101
24d8441d 10102 if (intel_wait_for_register(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 0, 1))
be256dc7
PZ
10103 DRM_ERROR("LCPLL still locked\n");
10104
9ccd5aeb 10105 val = hsw_read_dcomp(dev_priv);
be256dc7 10106 val |= D_COMP_COMP_DISABLE;
3c4c9b81 10107 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
10108 ndelay(100);
10109
9ccd5aeb
PZ
10110 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
10111 1))
be256dc7
PZ
10112 DRM_ERROR("D_COMP RCOMP still in progress\n");
10113
10114 if (allow_power_down) {
10115 val = I915_READ(LCPLL_CTL);
10116 val |= LCPLL_POWER_DOWN_ALLOW;
10117 I915_WRITE(LCPLL_CTL, val);
10118 POSTING_READ(LCPLL_CTL);
10119 }
10120}
10121
10122/*
10123 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
10124 * source.
10125 */
6ff58d53 10126static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
be256dc7
PZ
10127{
10128 uint32_t val;
10129
10130 val = I915_READ(LCPLL_CTL);
10131
10132 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
10133 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
10134 return;
10135
a8a8bd54
PZ
10136 /*
10137 * Make sure we're not on PC8 state before disabling PC8, otherwise
10138 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
a8a8bd54 10139 */
59bad947 10140 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
215733fa 10141
be256dc7
PZ
10142 if (val & LCPLL_POWER_DOWN_ALLOW) {
10143 val &= ~LCPLL_POWER_DOWN_ALLOW;
10144 I915_WRITE(LCPLL_CTL, val);
35d8f2eb 10145 POSTING_READ(LCPLL_CTL);
be256dc7
PZ
10146 }
10147
9ccd5aeb 10148 val = hsw_read_dcomp(dev_priv);
be256dc7
PZ
10149 val |= D_COMP_COMP_FORCE;
10150 val &= ~D_COMP_COMP_DISABLE;
3c4c9b81 10151 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
10152
10153 val = I915_READ(LCPLL_CTL);
10154 val &= ~LCPLL_PLL_DISABLE;
10155 I915_WRITE(LCPLL_CTL, val);
10156
93220c08
CW
10157 if (intel_wait_for_register(dev_priv,
10158 LCPLL_CTL, LCPLL_PLL_LOCK, LCPLL_PLL_LOCK,
10159 5))
be256dc7
PZ
10160 DRM_ERROR("LCPLL not locked yet\n");
10161
10162 if (val & LCPLL_CD_SOURCE_FCLK) {
10163 val = I915_READ(LCPLL_CTL);
10164 val &= ~LCPLL_CD_SOURCE_FCLK;
10165 I915_WRITE(LCPLL_CTL, val);
10166
f53dd63f
ID
10167 if (wait_for_us((I915_READ(LCPLL_CTL) &
10168 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
be256dc7
PZ
10169 DRM_ERROR("Switching back to LCPLL failed\n");
10170 }
215733fa 10171
59bad947 10172 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
91c8a326 10173 intel_update_cdclk(&dev_priv->drm);
be256dc7
PZ
10174}
10175
765dab67
PZ
10176/*
10177 * Package states C8 and deeper are really deep PC states that can only be
10178 * reached when all the devices on the system allow it, so even if the graphics
10179 * device allows PC8+, it doesn't mean the system will actually get to these
10180 * states. Our driver only allows PC8+ when going into runtime PM.
10181 *
10182 * The requirements for PC8+ are that all the outputs are disabled, the power
10183 * well is disabled and most interrupts are disabled, and these are also
10184 * requirements for runtime PM. When these conditions are met, we manually do
10185 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
10186 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
10187 * hang the machine.
10188 *
10189 * When we really reach PC8 or deeper states (not just when we allow it) we lose
10190 * the state of some registers, so when we come back from PC8+ we need to
10191 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
10192 * need to take care of the registers kept by RC6. Notice that this happens even
10193 * if we don't put the device in PCI D3 state (which is what currently happens
10194 * because of the runtime PM support).
10195 *
10196 * For more, read "Display Sequences for Package C8" on the hardware
10197 * documentation.
10198 */
a14cb6fc 10199void hsw_enable_pc8(struct drm_i915_private *dev_priv)
c67a470b 10200{
91c8a326 10201 struct drm_device *dev = &dev_priv->drm;
c67a470b
PZ
10202 uint32_t val;
10203
c67a470b
PZ
10204 DRM_DEBUG_KMS("Enabling package C8+\n");
10205
4f8036a2 10206 if (HAS_PCH_LPT_LP(dev_priv)) {
c67a470b
PZ
10207 val = I915_READ(SOUTH_DSPCLK_GATE_D);
10208 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
10209 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
10210 }
10211
10212 lpt_disable_clkout_dp(dev);
c67a470b
PZ
10213 hsw_disable_lcpll(dev_priv, true, true);
10214}
10215
a14cb6fc 10216void hsw_disable_pc8(struct drm_i915_private *dev_priv)
c67a470b 10217{
91c8a326 10218 struct drm_device *dev = &dev_priv->drm;
c67a470b
PZ
10219 uint32_t val;
10220
c67a470b
PZ
10221 DRM_DEBUG_KMS("Disabling package C8+\n");
10222
10223 hsw_restore_lcpll(dev_priv);
c67a470b
PZ
10224 lpt_init_pch_refclk(dev);
10225
4f8036a2 10226 if (HAS_PCH_LPT_LP(dev_priv)) {
c67a470b
PZ
10227 val = I915_READ(SOUTH_DSPCLK_GATE_D);
10228 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
10229 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
10230 }
c67a470b
PZ
10231}
10232
324513c0 10233static void bxt_modeset_commit_cdclk(struct drm_atomic_state *old_state)
f8437dd1 10234{
a821fc46 10235 struct drm_device *dev = old_state->dev;
1a617b77
ML
10236 struct intel_atomic_state *old_intel_state =
10237 to_intel_atomic_state(old_state);
10238 unsigned int req_cdclk = old_intel_state->dev_cdclk;
f8437dd1 10239
324513c0 10240 bxt_set_cdclk(to_i915(dev), req_cdclk);
f8437dd1
VK
10241}
10242
b432e5cf 10243/* compute the max rate for new configuration */
27c329ed 10244static int ilk_max_pixel_rate(struct drm_atomic_state *state)
b432e5cf 10245{
565602d7 10246 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
fac5e23e 10247 struct drm_i915_private *dev_priv = to_i915(state->dev);
565602d7
ML
10248 struct drm_crtc *crtc;
10249 struct drm_crtc_state *cstate;
27c329ed 10250 struct intel_crtc_state *crtc_state;
565602d7
ML
10251 unsigned max_pixel_rate = 0, i;
10252 enum pipe pipe;
b432e5cf 10253
565602d7
ML
10254 memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
10255 sizeof(intel_state->min_pixclk));
27c329ed 10256
565602d7
ML
10257 for_each_crtc_in_state(state, crtc, cstate, i) {
10258 int pixel_rate;
27c329ed 10259
565602d7
ML
10260 crtc_state = to_intel_crtc_state(cstate);
10261 if (!crtc_state->base.enable) {
10262 intel_state->min_pixclk[i] = 0;
b432e5cf 10263 continue;
565602d7 10264 }
b432e5cf 10265
27c329ed 10266 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
b432e5cf
VS
10267
10268 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
565602d7 10269 if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
b432e5cf
VS
10270 pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
10271
565602d7 10272 intel_state->min_pixclk[i] = pixel_rate;
b432e5cf
VS
10273 }
10274
565602d7
ML
10275 for_each_pipe(dev_priv, pipe)
10276 max_pixel_rate = max(intel_state->min_pixclk[pipe], max_pixel_rate);
10277
b432e5cf
VS
10278 return max_pixel_rate;
10279}
10280
10281static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
10282{
fac5e23e 10283 struct drm_i915_private *dev_priv = to_i915(dev);
b432e5cf
VS
10284 uint32_t val, data;
10285 int ret;
10286
10287 if (WARN((I915_READ(LCPLL_CTL) &
10288 (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
10289 LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
10290 LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
10291 LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
10292 "trying to change cdclk frequency with cdclk not enabled\n"))
10293 return;
10294
10295 mutex_lock(&dev_priv->rps.hw_lock);
10296 ret = sandybridge_pcode_write(dev_priv,
10297 BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
10298 mutex_unlock(&dev_priv->rps.hw_lock);
10299 if (ret) {
10300 DRM_ERROR("failed to inform pcode about cdclk change\n");
10301 return;
10302 }
10303
10304 val = I915_READ(LCPLL_CTL);
10305 val |= LCPLL_CD_SOURCE_FCLK;
10306 I915_WRITE(LCPLL_CTL, val);
10307
5ba00178
TU
10308 if (wait_for_us(I915_READ(LCPLL_CTL) &
10309 LCPLL_CD_SOURCE_FCLK_DONE, 1))
b432e5cf
VS
10310 DRM_ERROR("Switching to FCLK failed\n");
10311
10312 val = I915_READ(LCPLL_CTL);
10313 val &= ~LCPLL_CLK_FREQ_MASK;
10314
10315 switch (cdclk) {
10316 case 450000:
10317 val |= LCPLL_CLK_FREQ_450;
10318 data = 0;
10319 break;
10320 case 540000:
10321 val |= LCPLL_CLK_FREQ_54O_BDW;
10322 data = 1;
10323 break;
10324 case 337500:
10325 val |= LCPLL_CLK_FREQ_337_5_BDW;
10326 data = 2;
10327 break;
10328 case 675000:
10329 val |= LCPLL_CLK_FREQ_675_BDW;
10330 data = 3;
10331 break;
10332 default:
10333 WARN(1, "invalid cdclk frequency\n");
10334 return;
10335 }
10336
10337 I915_WRITE(LCPLL_CTL, val);
10338
10339 val = I915_READ(LCPLL_CTL);
10340 val &= ~LCPLL_CD_SOURCE_FCLK;
10341 I915_WRITE(LCPLL_CTL, val);
10342
5ba00178
TU
10343 if (wait_for_us((I915_READ(LCPLL_CTL) &
10344 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
b432e5cf
VS
10345 DRM_ERROR("Switching back to LCPLL failed\n");
10346
10347 mutex_lock(&dev_priv->rps.hw_lock);
10348 sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
10349 mutex_unlock(&dev_priv->rps.hw_lock);
10350
7f1052a8
VS
10351 I915_WRITE(CDCLK_FREQ, DIV_ROUND_CLOSEST(cdclk, 1000) - 1);
10352
b432e5cf
VS
10353 intel_update_cdclk(dev);
10354
10355 WARN(cdclk != dev_priv->cdclk_freq,
10356 "cdclk requested %d kHz but got %d kHz\n",
10357 cdclk, dev_priv->cdclk_freq);
10358}
10359
587c7914
VS
10360static int broadwell_calc_cdclk(int max_pixclk)
10361{
10362 if (max_pixclk > 540000)
10363 return 675000;
10364 else if (max_pixclk > 450000)
10365 return 540000;
10366 else if (max_pixclk > 337500)
10367 return 450000;
10368 else
10369 return 337500;
10370}
10371
27c329ed 10372static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
b432e5cf 10373{
27c329ed 10374 struct drm_i915_private *dev_priv = to_i915(state->dev);
1a617b77 10375 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
27c329ed 10376 int max_pixclk = ilk_max_pixel_rate(state);
b432e5cf
VS
10377 int cdclk;
10378
10379 /*
10380 * FIXME should also account for plane ratio
10381 * once 64bpp pixel formats are supported.
10382 */
587c7914 10383 cdclk = broadwell_calc_cdclk(max_pixclk);
b432e5cf 10384
b432e5cf 10385 if (cdclk > dev_priv->max_cdclk_freq) {
63ba534e
ML
10386 DRM_DEBUG_KMS("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
10387 cdclk, dev_priv->max_cdclk_freq);
10388 return -EINVAL;
b432e5cf
VS
10389 }
10390
1a617b77
ML
10391 intel_state->cdclk = intel_state->dev_cdclk = cdclk;
10392 if (!intel_state->active_crtcs)
587c7914 10393 intel_state->dev_cdclk = broadwell_calc_cdclk(0);
b432e5cf
VS
10394
10395 return 0;
10396}
10397
27c329ed 10398static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
b432e5cf 10399{
27c329ed 10400 struct drm_device *dev = old_state->dev;
1a617b77
ML
10401 struct intel_atomic_state *old_intel_state =
10402 to_intel_atomic_state(old_state);
10403 unsigned req_cdclk = old_intel_state->dev_cdclk;
b432e5cf 10404
27c329ed 10405 broadwell_set_cdclk(dev, req_cdclk);
b432e5cf
VS
10406}
10407
c89e39f3
CT
10408static int skl_modeset_calc_cdclk(struct drm_atomic_state *state)
10409{
10410 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
10411 struct drm_i915_private *dev_priv = to_i915(state->dev);
10412 const int max_pixclk = ilk_max_pixel_rate(state);
a8ca4934 10413 int vco = intel_state->cdclk_pll_vco;
c89e39f3
CT
10414 int cdclk;
10415
10416 /*
10417 * FIXME should also account for plane ratio
10418 * once 64bpp pixel formats are supported.
10419 */
a8ca4934 10420 cdclk = skl_calc_cdclk(max_pixclk, vco);
c89e39f3
CT
10421
10422 /*
10423 * FIXME move the cdclk caclulation to
10424 * compute_config() so we can fail gracegully.
10425 */
10426 if (cdclk > dev_priv->max_cdclk_freq) {
10427 DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
10428 cdclk, dev_priv->max_cdclk_freq);
10429 cdclk = dev_priv->max_cdclk_freq;
10430 }
10431
10432 intel_state->cdclk = intel_state->dev_cdclk = cdclk;
10433 if (!intel_state->active_crtcs)
a8ca4934 10434 intel_state->dev_cdclk = skl_calc_cdclk(0, vco);
c89e39f3
CT
10435
10436 return 0;
10437}
10438
10439static void skl_modeset_commit_cdclk(struct drm_atomic_state *old_state)
10440{
1cd593e0
VS
10441 struct drm_i915_private *dev_priv = to_i915(old_state->dev);
10442 struct intel_atomic_state *intel_state = to_intel_atomic_state(old_state);
10443 unsigned int req_cdclk = intel_state->dev_cdclk;
10444 unsigned int req_vco = intel_state->cdclk_pll_vco;
c89e39f3 10445
1cd593e0 10446 skl_set_cdclk(dev_priv, req_cdclk, req_vco);
c89e39f3
CT
10447}
10448
190f68c5
ACO
10449static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
10450 struct intel_crtc_state *crtc_state)
09b4ddf9 10451{
d7edc4e5 10452 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) {
af3997b5
MK
10453 if (!intel_ddi_pll_select(crtc, crtc_state))
10454 return -EINVAL;
10455 }
716c2e55 10456
c7653199 10457 crtc->lowfreq_avail = false;
644cef34 10458
c8f7a0db 10459 return 0;
79e53945
JB
10460}
10461
3760b59c
S
10462static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
10463 enum port port,
10464 struct intel_crtc_state *pipe_config)
10465{
8106ddbd
ACO
10466 enum intel_dpll_id id;
10467
3760b59c
S
10468 switch (port) {
10469 case PORT_A:
08250c4b 10470 id = DPLL_ID_SKL_DPLL0;
3760b59c
S
10471 break;
10472 case PORT_B:
08250c4b 10473 id = DPLL_ID_SKL_DPLL1;
3760b59c
S
10474 break;
10475 case PORT_C:
08250c4b 10476 id = DPLL_ID_SKL_DPLL2;
3760b59c
S
10477 break;
10478 default:
10479 DRM_ERROR("Incorrect port type\n");
8106ddbd 10480 return;
3760b59c 10481 }
8106ddbd
ACO
10482
10483 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
3760b59c
S
10484}
10485
96b7dfb7
S
10486static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
10487 enum port port,
5cec258b 10488 struct intel_crtc_state *pipe_config)
96b7dfb7 10489{
8106ddbd 10490 enum intel_dpll_id id;
a3c988ea 10491 u32 temp;
96b7dfb7
S
10492
10493 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
c856052a 10494 id = temp >> (port * 3 + 1);
96b7dfb7 10495
c856052a 10496 if (WARN_ON(id < SKL_DPLL0 || id > SKL_DPLL3))
8106ddbd 10497 return;
8106ddbd
ACO
10498
10499 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
96b7dfb7
S
10500}
10501
7d2c8175
DL
10502static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
10503 enum port port,
5cec258b 10504 struct intel_crtc_state *pipe_config)
7d2c8175 10505{
8106ddbd 10506 enum intel_dpll_id id;
c856052a 10507 uint32_t ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
8106ddbd 10508
c856052a 10509 switch (ddi_pll_sel) {
7d2c8175 10510 case PORT_CLK_SEL_WRPLL1:
8106ddbd 10511 id = DPLL_ID_WRPLL1;
7d2c8175
DL
10512 break;
10513 case PORT_CLK_SEL_WRPLL2:
8106ddbd 10514 id = DPLL_ID_WRPLL2;
7d2c8175 10515 break;
00490c22 10516 case PORT_CLK_SEL_SPLL:
8106ddbd 10517 id = DPLL_ID_SPLL;
79bd23da 10518 break;
9d16da65
ACO
10519 case PORT_CLK_SEL_LCPLL_810:
10520 id = DPLL_ID_LCPLL_810;
10521 break;
10522 case PORT_CLK_SEL_LCPLL_1350:
10523 id = DPLL_ID_LCPLL_1350;
10524 break;
10525 case PORT_CLK_SEL_LCPLL_2700:
10526 id = DPLL_ID_LCPLL_2700;
10527 break;
8106ddbd 10528 default:
c856052a 10529 MISSING_CASE(ddi_pll_sel);
8106ddbd
ACO
10530 /* fall through */
10531 case PORT_CLK_SEL_NONE:
8106ddbd 10532 return;
7d2c8175 10533 }
8106ddbd
ACO
10534
10535 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
7d2c8175
DL
10536}
10537
cf30429e
JN
10538static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
10539 struct intel_crtc_state *pipe_config,
10540 unsigned long *power_domain_mask)
10541{
10542 struct drm_device *dev = crtc->base.dev;
fac5e23e 10543 struct drm_i915_private *dev_priv = to_i915(dev);
cf30429e
JN
10544 enum intel_display_power_domain power_domain;
10545 u32 tmp;
10546
d9a7bc67
ID
10547 /*
10548 * The pipe->transcoder mapping is fixed with the exception of the eDP
10549 * transcoder handled below.
10550 */
cf30429e
JN
10551 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
10552
10553 /*
10554 * XXX: Do intel_display_power_get_if_enabled before reading this (for
10555 * consistency and less surprising code; it's in always on power).
10556 */
10557 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
10558 if (tmp & TRANS_DDI_FUNC_ENABLE) {
10559 enum pipe trans_edp_pipe;
10560 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
10561 default:
10562 WARN(1, "unknown pipe linked to edp transcoder\n");
10563 case TRANS_DDI_EDP_INPUT_A_ONOFF:
10564 case TRANS_DDI_EDP_INPUT_A_ON:
10565 trans_edp_pipe = PIPE_A;
10566 break;
10567 case TRANS_DDI_EDP_INPUT_B_ONOFF:
10568 trans_edp_pipe = PIPE_B;
10569 break;
10570 case TRANS_DDI_EDP_INPUT_C_ONOFF:
10571 trans_edp_pipe = PIPE_C;
10572 break;
10573 }
10574
10575 if (trans_edp_pipe == crtc->pipe)
10576 pipe_config->cpu_transcoder = TRANSCODER_EDP;
10577 }
10578
10579 power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
10580 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10581 return false;
10582 *power_domain_mask |= BIT(power_domain);
10583
10584 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
10585
10586 return tmp & PIPECONF_ENABLE;
10587}
10588
4d1de975
JN
10589static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
10590 struct intel_crtc_state *pipe_config,
10591 unsigned long *power_domain_mask)
10592{
10593 struct drm_device *dev = crtc->base.dev;
fac5e23e 10594 struct drm_i915_private *dev_priv = to_i915(dev);
4d1de975
JN
10595 enum intel_display_power_domain power_domain;
10596 enum port port;
10597 enum transcoder cpu_transcoder;
10598 u32 tmp;
10599
4d1de975
JN
10600 for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
10601 if (port == PORT_A)
10602 cpu_transcoder = TRANSCODER_DSI_A;
10603 else
10604 cpu_transcoder = TRANSCODER_DSI_C;
10605
10606 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
10607 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10608 continue;
10609 *power_domain_mask |= BIT(power_domain);
10610
db18b6a6
ID
10611 /*
10612 * The PLL needs to be enabled with a valid divider
10613 * configuration, otherwise accessing DSI registers will hang
10614 * the machine. See BSpec North Display Engine
10615 * registers/MIPI[BXT]. We can break out here early, since we
10616 * need the same DSI PLL to be enabled for both DSI ports.
10617 */
10618 if (!intel_dsi_pll_is_enabled(dev_priv))
10619 break;
10620
4d1de975
JN
10621 /* XXX: this works for video mode only */
10622 tmp = I915_READ(BXT_MIPI_PORT_CTRL(port));
10623 if (!(tmp & DPI_ENABLE))
10624 continue;
10625
10626 tmp = I915_READ(MIPI_CTRL(port));
10627 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
10628 continue;
10629
10630 pipe_config->cpu_transcoder = cpu_transcoder;
4d1de975
JN
10631 break;
10632 }
10633
d7edc4e5 10634 return transcoder_is_dsi(pipe_config->cpu_transcoder);
4d1de975
JN
10635}
10636
26804afd 10637static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
5cec258b 10638 struct intel_crtc_state *pipe_config)
26804afd
DV
10639{
10640 struct drm_device *dev = crtc->base.dev;
fac5e23e 10641 struct drm_i915_private *dev_priv = to_i915(dev);
d452c5b6 10642 struct intel_shared_dpll *pll;
26804afd
DV
10643 enum port port;
10644 uint32_t tmp;
10645
10646 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
10647
10648 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
10649
ef11bdb3 10650 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
96b7dfb7 10651 skylake_get_ddi_pll(dev_priv, port, pipe_config);
3760b59c
S
10652 else if (IS_BROXTON(dev))
10653 bxt_get_ddi_pll(dev_priv, port, pipe_config);
96b7dfb7
S
10654 else
10655 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9cd86933 10656
8106ddbd
ACO
10657 pll = pipe_config->shared_dpll;
10658 if (pll) {
2edd6443
ACO
10659 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
10660 &pipe_config->dpll_hw_state));
d452c5b6
DV
10661 }
10662
26804afd
DV
10663 /*
10664 * Haswell has only FDI/PCH transcoder A. It is which is connected to
10665 * DDI E. So just check whether this pipe is wired to DDI E and whether
10666 * the PCH transcoder is on.
10667 */
ca370455
DL
10668 if (INTEL_INFO(dev)->gen < 9 &&
10669 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
26804afd
DV
10670 pipe_config->has_pch_encoder = true;
10671
10672 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
10673 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
10674 FDI_DP_PORT_WIDTH_SHIFT) + 1;
10675
10676 ironlake_get_fdi_m_n_config(crtc, pipe_config);
10677 }
10678}
10679
0e8ffe1b 10680static bool haswell_get_pipe_config(struct intel_crtc *crtc,
5cec258b 10681 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
10682{
10683 struct drm_device *dev = crtc->base.dev;
fac5e23e 10684 struct drm_i915_private *dev_priv = to_i915(dev);
1729050e
ID
10685 enum intel_display_power_domain power_domain;
10686 unsigned long power_domain_mask;
cf30429e 10687 bool active;
0e8ffe1b 10688
1729050e
ID
10689 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
10690 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
b5482bd0 10691 return false;
1729050e
ID
10692 power_domain_mask = BIT(power_domain);
10693
8106ddbd 10694 pipe_config->shared_dpll = NULL;
c0d43d62 10695
cf30429e 10696 active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_mask);
eccb140b 10697
d7edc4e5
VS
10698 if (IS_BROXTON(dev_priv) &&
10699 bxt_get_dsi_transcoder_state(crtc, pipe_config, &power_domain_mask)) {
10700 WARN_ON(active);
10701 active = true;
4d1de975
JN
10702 }
10703
cf30429e 10704 if (!active)
1729050e 10705 goto out;
0e8ffe1b 10706
d7edc4e5 10707 if (!transcoder_is_dsi(pipe_config->cpu_transcoder)) {
4d1de975
JN
10708 haswell_get_ddi_port_state(crtc, pipe_config);
10709 intel_get_pipe_timings(crtc, pipe_config);
10710 }
627eb5a3 10711
bc58be60 10712 intel_get_pipe_src_size(crtc, pipe_config);
1bd1bd80 10713
05dc698c
LL
10714 pipe_config->gamma_mode =
10715 I915_READ(GAMMA_MODE(crtc->pipe)) & GAMMA_MODE_MODE_MASK;
10716
a1b2278e
CK
10717 if (INTEL_INFO(dev)->gen >= 9) {
10718 skl_init_scalers(dev, crtc, pipe_config);
10719 }
10720
af99ceda
CK
10721 if (INTEL_INFO(dev)->gen >= 9) {
10722 pipe_config->scaler_state.scaler_id = -1;
10723 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
10724 }
10725
1729050e
ID
10726 power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
10727 if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
10728 power_domain_mask |= BIT(power_domain);
1c132b44 10729 if (INTEL_INFO(dev)->gen >= 9)
bd2e244f 10730 skylake_get_pfit_config(crtc, pipe_config);
ff6d9f55 10731 else
1c132b44 10732 ironlake_get_pfit_config(crtc, pipe_config);
bd2e244f 10733 }
88adfff1 10734
e59150dc
JB
10735 if (IS_HASWELL(dev))
10736 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
10737 (I915_READ(IPS_CTL) & IPS_ENABLE);
42db64ef 10738
4d1de975
JN
10739 if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
10740 !transcoder_is_dsi(pipe_config->cpu_transcoder)) {
ebb69c95
CT
10741 pipe_config->pixel_multiplier =
10742 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
10743 } else {
10744 pipe_config->pixel_multiplier = 1;
10745 }
6c49f241 10746
1729050e
ID
10747out:
10748 for_each_power_domain(power_domain, power_domain_mask)
10749 intel_display_power_put(dev_priv, power_domain);
10750
cf30429e 10751 return active;
0e8ffe1b
DV
10752}
10753
55a08b3f
ML
10754static void i845_update_cursor(struct drm_crtc *crtc, u32 base,
10755 const struct intel_plane_state *plane_state)
560b85bb
CW
10756{
10757 struct drm_device *dev = crtc->dev;
fac5e23e 10758 struct drm_i915_private *dev_priv = to_i915(dev);
560b85bb 10759 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
dc41c154 10760 uint32_t cntl = 0, size = 0;
560b85bb 10761
936e71e3 10762 if (plane_state && plane_state->base.visible) {
55a08b3f
ML
10763 unsigned int width = plane_state->base.crtc_w;
10764 unsigned int height = plane_state->base.crtc_h;
dc41c154
VS
10765 unsigned int stride = roundup_pow_of_two(width) * 4;
10766
10767 switch (stride) {
10768 default:
10769 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
10770 width, stride);
10771 stride = 256;
10772 /* fallthrough */
10773 case 256:
10774 case 512:
10775 case 1024:
10776 case 2048:
10777 break;
4b0e333e
CW
10778 }
10779
dc41c154
VS
10780 cntl |= CURSOR_ENABLE |
10781 CURSOR_GAMMA_ENABLE |
10782 CURSOR_FORMAT_ARGB |
10783 CURSOR_STRIDE(stride);
10784
10785 size = (height << 12) | width;
4b0e333e 10786 }
560b85bb 10787
dc41c154
VS
10788 if (intel_crtc->cursor_cntl != 0 &&
10789 (intel_crtc->cursor_base != base ||
10790 intel_crtc->cursor_size != size ||
10791 intel_crtc->cursor_cntl != cntl)) {
10792 /* On these chipsets we can only modify the base/size/stride
10793 * whilst the cursor is disabled.
10794 */
0b87c24e
VS
10795 I915_WRITE(CURCNTR(PIPE_A), 0);
10796 POSTING_READ(CURCNTR(PIPE_A));
dc41c154 10797 intel_crtc->cursor_cntl = 0;
4b0e333e 10798 }
560b85bb 10799
99d1f387 10800 if (intel_crtc->cursor_base != base) {
0b87c24e 10801 I915_WRITE(CURBASE(PIPE_A), base);
99d1f387
VS
10802 intel_crtc->cursor_base = base;
10803 }
4726e0b0 10804
dc41c154
VS
10805 if (intel_crtc->cursor_size != size) {
10806 I915_WRITE(CURSIZE, size);
10807 intel_crtc->cursor_size = size;
4b0e333e 10808 }
560b85bb 10809
4b0e333e 10810 if (intel_crtc->cursor_cntl != cntl) {
0b87c24e
VS
10811 I915_WRITE(CURCNTR(PIPE_A), cntl);
10812 POSTING_READ(CURCNTR(PIPE_A));
4b0e333e 10813 intel_crtc->cursor_cntl = cntl;
560b85bb 10814 }
560b85bb
CW
10815}
10816
55a08b3f
ML
10817static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base,
10818 const struct intel_plane_state *plane_state)
65a21cd6
JB
10819{
10820 struct drm_device *dev = crtc->dev;
fac5e23e 10821 struct drm_i915_private *dev_priv = to_i915(dev);
65a21cd6 10822 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
62e0fb88 10823 const struct skl_wm_values *wm = &dev_priv->wm.skl_results;
65a21cd6 10824 int pipe = intel_crtc->pipe;
663f3122 10825 uint32_t cntl = 0;
4b0e333e 10826
62e0fb88
L
10827 if (INTEL_GEN(dev_priv) >= 9 && wm->dirty_pipes & drm_crtc_mask(crtc))
10828 skl_write_cursor_wm(intel_crtc, wm);
10829
936e71e3 10830 if (plane_state && plane_state->base.visible) {
4b0e333e 10831 cntl = MCURSOR_GAMMA_ENABLE;
55a08b3f 10832 switch (plane_state->base.crtc_w) {
4726e0b0
SK
10833 case 64:
10834 cntl |= CURSOR_MODE_64_ARGB_AX;
10835 break;
10836 case 128:
10837 cntl |= CURSOR_MODE_128_ARGB_AX;
10838 break;
10839 case 256:
10840 cntl |= CURSOR_MODE_256_ARGB_AX;
10841 break;
10842 default:
55a08b3f 10843 MISSING_CASE(plane_state->base.crtc_w);
4726e0b0 10844 return;
65a21cd6 10845 }
4b0e333e 10846 cntl |= pipe << 28; /* Connect to correct pipe */
47bf17a7 10847
4f8036a2 10848 if (HAS_DDI(dev_priv))
47bf17a7 10849 cntl |= CURSOR_PIPE_CSC_ENABLE;
65a21cd6 10850
31ad61e4 10851 if (plane_state->base.rotation == DRM_ROTATE_180)
55a08b3f
ML
10852 cntl |= CURSOR_ROTATE_180;
10853 }
4398ad45 10854
4b0e333e
CW
10855 if (intel_crtc->cursor_cntl != cntl) {
10856 I915_WRITE(CURCNTR(pipe), cntl);
10857 POSTING_READ(CURCNTR(pipe));
10858 intel_crtc->cursor_cntl = cntl;
65a21cd6 10859 }
4b0e333e 10860
65a21cd6 10861 /* and commit changes on next vblank */
5efb3e28
VS
10862 I915_WRITE(CURBASE(pipe), base);
10863 POSTING_READ(CURBASE(pipe));
99d1f387
VS
10864
10865 intel_crtc->cursor_base = base;
65a21cd6
JB
10866}
10867
cda4b7d3 10868/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f 10869static void intel_crtc_update_cursor(struct drm_crtc *crtc,
55a08b3f 10870 const struct intel_plane_state *plane_state)
cda4b7d3
CW
10871{
10872 struct drm_device *dev = crtc->dev;
fac5e23e 10873 struct drm_i915_private *dev_priv = to_i915(dev);
cda4b7d3
CW
10874 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10875 int pipe = intel_crtc->pipe;
55a08b3f
ML
10876 u32 base = intel_crtc->cursor_addr;
10877 u32 pos = 0;
cda4b7d3 10878
55a08b3f
ML
10879 if (plane_state) {
10880 int x = plane_state->base.crtc_x;
10881 int y = plane_state->base.crtc_y;
cda4b7d3 10882
55a08b3f
ML
10883 if (x < 0) {
10884 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10885 x = -x;
10886 }
10887 pos |= x << CURSOR_X_SHIFT;
cda4b7d3 10888
55a08b3f
ML
10889 if (y < 0) {
10890 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10891 y = -y;
10892 }
10893 pos |= y << CURSOR_Y_SHIFT;
10894
10895 /* ILK+ do this automagically */
10896 if (HAS_GMCH_DISPLAY(dev) &&
31ad61e4 10897 plane_state->base.rotation == DRM_ROTATE_180) {
55a08b3f
ML
10898 base += (plane_state->base.crtc_h *
10899 plane_state->base.crtc_w - 1) * 4;
10900 }
cda4b7d3 10901 }
cda4b7d3 10902
5efb3e28
VS
10903 I915_WRITE(CURPOS(pipe), pos);
10904
8ac54669 10905 if (IS_845G(dev) || IS_I865G(dev))
55a08b3f 10906 i845_update_cursor(crtc, base, plane_state);
5efb3e28 10907 else
55a08b3f 10908 i9xx_update_cursor(crtc, base, plane_state);
cda4b7d3
CW
10909}
10910
dc41c154
VS
10911static bool cursor_size_ok(struct drm_device *dev,
10912 uint32_t width, uint32_t height)
10913{
10914 if (width == 0 || height == 0)
10915 return false;
10916
10917 /*
10918 * 845g/865g are special in that they are only limited by
10919 * the width of their cursors, the height is arbitrary up to
10920 * the precision of the register. Everything else requires
10921 * square cursors, limited to a few power-of-two sizes.
10922 */
10923 if (IS_845G(dev) || IS_I865G(dev)) {
10924 if ((width & 63) != 0)
10925 return false;
10926
10927 if (width > (IS_845G(dev) ? 64 : 512))
10928 return false;
10929
10930 if (height > 1023)
10931 return false;
10932 } else {
10933 switch (width | height) {
10934 case 256:
10935 case 128:
10936 if (IS_GEN2(dev))
10937 return false;
10938 case 64:
10939 break;
10940 default:
10941 return false;
10942 }
10943 }
10944
10945 return true;
10946}
10947
79e53945
JB
10948/* VESA 640x480x72Hz mode to set on the pipe */
10949static struct drm_display_mode load_detect_mode = {
10950 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10951 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10952};
10953
a8bb6818
DV
10954struct drm_framebuffer *
10955__intel_framebuffer_create(struct drm_device *dev,
10956 struct drm_mode_fb_cmd2 *mode_cmd,
10957 struct drm_i915_gem_object *obj)
d2dff872
CW
10958{
10959 struct intel_framebuffer *intel_fb;
10960 int ret;
10961
10962 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
dcb1394e 10963 if (!intel_fb)
d2dff872 10964 return ERR_PTR(-ENOMEM);
d2dff872
CW
10965
10966 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
dd4916c5
DV
10967 if (ret)
10968 goto err;
d2dff872
CW
10969
10970 return &intel_fb->base;
dcb1394e 10971
dd4916c5 10972err:
dd4916c5 10973 kfree(intel_fb);
dd4916c5 10974 return ERR_PTR(ret);
d2dff872
CW
10975}
10976
b5ea642a 10977static struct drm_framebuffer *
a8bb6818
DV
10978intel_framebuffer_create(struct drm_device *dev,
10979 struct drm_mode_fb_cmd2 *mode_cmd,
10980 struct drm_i915_gem_object *obj)
10981{
10982 struct drm_framebuffer *fb;
10983 int ret;
10984
10985 ret = i915_mutex_lock_interruptible(dev);
10986 if (ret)
10987 return ERR_PTR(ret);
10988 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10989 mutex_unlock(&dev->struct_mutex);
10990
10991 return fb;
10992}
10993
d2dff872
CW
10994static u32
10995intel_framebuffer_pitch_for_width(int width, int bpp)
10996{
10997 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10998 return ALIGN(pitch, 64);
10999}
11000
11001static u32
11002intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
11003{
11004 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
1267a26b 11005 return PAGE_ALIGN(pitch * mode->vdisplay);
d2dff872
CW
11006}
11007
11008static struct drm_framebuffer *
11009intel_framebuffer_create_for_mode(struct drm_device *dev,
11010 struct drm_display_mode *mode,
11011 int depth, int bpp)
11012{
dcb1394e 11013 struct drm_framebuffer *fb;
d2dff872 11014 struct drm_i915_gem_object *obj;
0fed39bd 11015 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
d2dff872 11016
d37cd8a8 11017 obj = i915_gem_object_create(dev,
d2dff872 11018 intel_framebuffer_size_for_mode(mode, bpp));
fe3db79b
CW
11019 if (IS_ERR(obj))
11020 return ERR_CAST(obj);
d2dff872
CW
11021
11022 mode_cmd.width = mode->hdisplay;
11023 mode_cmd.height = mode->vdisplay;
308e5bcb
JB
11024 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
11025 bpp);
5ca0c34a 11026 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
d2dff872 11027
dcb1394e
LW
11028 fb = intel_framebuffer_create(dev, &mode_cmd, obj);
11029 if (IS_ERR(fb))
34911fd3 11030 i915_gem_object_put_unlocked(obj);
dcb1394e
LW
11031
11032 return fb;
d2dff872
CW
11033}
11034
11035static struct drm_framebuffer *
11036mode_fits_in_fbdev(struct drm_device *dev,
11037 struct drm_display_mode *mode)
11038{
0695726e 11039#ifdef CONFIG_DRM_FBDEV_EMULATION
fac5e23e 11040 struct drm_i915_private *dev_priv = to_i915(dev);
d2dff872
CW
11041 struct drm_i915_gem_object *obj;
11042 struct drm_framebuffer *fb;
11043
4c0e5528 11044 if (!dev_priv->fbdev)
d2dff872
CW
11045 return NULL;
11046
4c0e5528 11047 if (!dev_priv->fbdev->fb)
d2dff872
CW
11048 return NULL;
11049
4c0e5528
DV
11050 obj = dev_priv->fbdev->fb->obj;
11051 BUG_ON(!obj);
11052
8bcd4553 11053 fb = &dev_priv->fbdev->fb->base;
01f2c773
VS
11054 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
11055 fb->bits_per_pixel))
d2dff872
CW
11056 return NULL;
11057
01f2c773 11058 if (obj->base.size < mode->vdisplay * fb->pitches[0])
d2dff872
CW
11059 return NULL;
11060
edde3617 11061 drm_framebuffer_reference(fb);
d2dff872 11062 return fb;
4520f53a
DV
11063#else
11064 return NULL;
11065#endif
d2dff872
CW
11066}
11067
d3a40d1b
ACO
11068static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
11069 struct drm_crtc *crtc,
11070 struct drm_display_mode *mode,
11071 struct drm_framebuffer *fb,
11072 int x, int y)
11073{
11074 struct drm_plane_state *plane_state;
11075 int hdisplay, vdisplay;
11076 int ret;
11077
11078 plane_state = drm_atomic_get_plane_state(state, crtc->primary);
11079 if (IS_ERR(plane_state))
11080 return PTR_ERR(plane_state);
11081
11082 if (mode)
11083 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
11084 else
11085 hdisplay = vdisplay = 0;
11086
11087 ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
11088 if (ret)
11089 return ret;
11090 drm_atomic_set_fb_for_plane(plane_state, fb);
11091 plane_state->crtc_x = 0;
11092 plane_state->crtc_y = 0;
11093 plane_state->crtc_w = hdisplay;
11094 plane_state->crtc_h = vdisplay;
11095 plane_state->src_x = x << 16;
11096 plane_state->src_y = y << 16;
11097 plane_state->src_w = hdisplay << 16;
11098 plane_state->src_h = vdisplay << 16;
11099
11100 return 0;
11101}
11102
d2434ab7 11103bool intel_get_load_detect_pipe(struct drm_connector *connector,
7173188d 11104 struct drm_display_mode *mode,
51fd371b
RC
11105 struct intel_load_detect_pipe *old,
11106 struct drm_modeset_acquire_ctx *ctx)
79e53945
JB
11107{
11108 struct intel_crtc *intel_crtc;
d2434ab7
DV
11109 struct intel_encoder *intel_encoder =
11110 intel_attached_encoder(connector);
79e53945 11111 struct drm_crtc *possible_crtc;
4ef69c7a 11112 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
11113 struct drm_crtc *crtc = NULL;
11114 struct drm_device *dev = encoder->dev;
94352cf9 11115 struct drm_framebuffer *fb;
51fd371b 11116 struct drm_mode_config *config = &dev->mode_config;
edde3617 11117 struct drm_atomic_state *state = NULL, *restore_state = NULL;
944b0c76 11118 struct drm_connector_state *connector_state;
4be07317 11119 struct intel_crtc_state *crtc_state;
51fd371b 11120 int ret, i = -1;
79e53945 11121
d2dff872 11122 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 11123 connector->base.id, connector->name,
8e329a03 11124 encoder->base.id, encoder->name);
d2dff872 11125
edde3617
ML
11126 old->restore_state = NULL;
11127
51fd371b
RC
11128retry:
11129 ret = drm_modeset_lock(&config->connection_mutex, ctx);
11130 if (ret)
ad3c558f 11131 goto fail;
6e9f798d 11132
79e53945
JB
11133 /*
11134 * Algorithm gets a little messy:
7a5e4805 11135 *
79e53945
JB
11136 * - if the connector already has an assigned crtc, use it (but make
11137 * sure it's on first)
7a5e4805 11138 *
79e53945
JB
11139 * - try to find the first unused crtc that can drive this connector,
11140 * and use that if we find one
79e53945
JB
11141 */
11142
11143 /* See if we already have a CRTC for this connector */
edde3617
ML
11144 if (connector->state->crtc) {
11145 crtc = connector->state->crtc;
8261b191 11146
51fd371b 11147 ret = drm_modeset_lock(&crtc->mutex, ctx);
4d02e2de 11148 if (ret)
ad3c558f 11149 goto fail;
8261b191
CW
11150
11151 /* Make sure the crtc and connector are running */
edde3617 11152 goto found;
79e53945
JB
11153 }
11154
11155 /* Find an unused one (if possible) */
70e1e0ec 11156 for_each_crtc(dev, possible_crtc) {
79e53945
JB
11157 i++;
11158 if (!(encoder->possible_crtcs & (1 << i)))
11159 continue;
edde3617
ML
11160
11161 ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
11162 if (ret)
11163 goto fail;
11164
11165 if (possible_crtc->state->enable) {
11166 drm_modeset_unlock(&possible_crtc->mutex);
a459249c 11167 continue;
edde3617 11168 }
a459249c
VS
11169
11170 crtc = possible_crtc;
11171 break;
79e53945
JB
11172 }
11173
11174 /*
11175 * If we didn't find an unused CRTC, don't use any.
11176 */
11177 if (!crtc) {
7173188d 11178 DRM_DEBUG_KMS("no pipe available for load-detect\n");
ad3c558f 11179 goto fail;
79e53945
JB
11180 }
11181
edde3617
ML
11182found:
11183 intel_crtc = to_intel_crtc(crtc);
11184
4d02e2de
DV
11185 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
11186 if (ret)
ad3c558f 11187 goto fail;
79e53945 11188
83a57153 11189 state = drm_atomic_state_alloc(dev);
edde3617
ML
11190 restore_state = drm_atomic_state_alloc(dev);
11191 if (!state || !restore_state) {
11192 ret = -ENOMEM;
11193 goto fail;
11194 }
83a57153
ACO
11195
11196 state->acquire_ctx = ctx;
edde3617 11197 restore_state->acquire_ctx = ctx;
83a57153 11198
944b0c76
ACO
11199 connector_state = drm_atomic_get_connector_state(state, connector);
11200 if (IS_ERR(connector_state)) {
11201 ret = PTR_ERR(connector_state);
11202 goto fail;
11203 }
11204
edde3617
ML
11205 ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
11206 if (ret)
11207 goto fail;
944b0c76 11208
4be07317
ACO
11209 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
11210 if (IS_ERR(crtc_state)) {
11211 ret = PTR_ERR(crtc_state);
11212 goto fail;
11213 }
11214
49d6fa21 11215 crtc_state->base.active = crtc_state->base.enable = true;
4be07317 11216
6492711d
CW
11217 if (!mode)
11218 mode = &load_detect_mode;
79e53945 11219
d2dff872
CW
11220 /* We need a framebuffer large enough to accommodate all accesses
11221 * that the plane may generate whilst we perform load detection.
11222 * We can not rely on the fbcon either being present (we get called
11223 * during its initialisation to detect all boot displays, or it may
11224 * not even exist) or that it is large enough to satisfy the
11225 * requested mode.
11226 */
94352cf9
DV
11227 fb = mode_fits_in_fbdev(dev, mode);
11228 if (fb == NULL) {
d2dff872 11229 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
94352cf9 11230 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
d2dff872
CW
11231 } else
11232 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
94352cf9 11233 if (IS_ERR(fb)) {
d2dff872 11234 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
412b61d8 11235 goto fail;
79e53945 11236 }
79e53945 11237
d3a40d1b
ACO
11238 ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
11239 if (ret)
11240 goto fail;
11241
edde3617
ML
11242 drm_framebuffer_unreference(fb);
11243
11244 ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode);
11245 if (ret)
11246 goto fail;
11247
11248 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
11249 if (!ret)
11250 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
11251 if (!ret)
11252 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(restore_state, crtc->primary));
11253 if (ret) {
11254 DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
11255 goto fail;
11256 }
8c7b5ccb 11257
3ba86073
ML
11258 ret = drm_atomic_commit(state);
11259 if (ret) {
6492711d 11260 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
412b61d8 11261 goto fail;
79e53945 11262 }
edde3617
ML
11263
11264 old->restore_state = restore_state;
7173188d 11265
79e53945 11266 /* let the connector get through one full cycle before testing */
9d0498a2 11267 intel_wait_for_vblank(dev, intel_crtc->pipe);
7173188d 11268 return true;
412b61d8 11269
ad3c558f 11270fail:
e5d958ef 11271 drm_atomic_state_free(state);
edde3617
ML
11272 drm_atomic_state_free(restore_state);
11273 restore_state = state = NULL;
83a57153 11274
51fd371b
RC
11275 if (ret == -EDEADLK) {
11276 drm_modeset_backoff(ctx);
11277 goto retry;
11278 }
11279
412b61d8 11280 return false;
79e53945
JB
11281}
11282
d2434ab7 11283void intel_release_load_detect_pipe(struct drm_connector *connector,
49172fee
ACO
11284 struct intel_load_detect_pipe *old,
11285 struct drm_modeset_acquire_ctx *ctx)
79e53945 11286{
d2434ab7
DV
11287 struct intel_encoder *intel_encoder =
11288 intel_attached_encoder(connector);
4ef69c7a 11289 struct drm_encoder *encoder = &intel_encoder->base;
edde3617 11290 struct drm_atomic_state *state = old->restore_state;
d3a40d1b 11291 int ret;
79e53945 11292
d2dff872 11293 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 11294 connector->base.id, connector->name,
8e329a03 11295 encoder->base.id, encoder->name);
d2dff872 11296
edde3617 11297 if (!state)
0622a53c 11298 return;
79e53945 11299
edde3617
ML
11300 ret = drm_atomic_commit(state);
11301 if (ret) {
11302 DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
11303 drm_atomic_state_free(state);
11304 }
79e53945
JB
11305}
11306
da4a1efa 11307static int i9xx_pll_refclk(struct drm_device *dev,
5cec258b 11308 const struct intel_crtc_state *pipe_config)
da4a1efa 11309{
fac5e23e 11310 struct drm_i915_private *dev_priv = to_i915(dev);
da4a1efa
VS
11311 u32 dpll = pipe_config->dpll_hw_state.dpll;
11312
11313 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
e91e941b 11314 return dev_priv->vbt.lvds_ssc_freq;
6e266956 11315 else if (HAS_PCH_SPLIT(dev_priv))
da4a1efa
VS
11316 return 120000;
11317 else if (!IS_GEN2(dev))
11318 return 96000;
11319 else
11320 return 48000;
11321}
11322
79e53945 11323/* Returns the clock of the currently programmed mode of the given pipe. */
f1f644dc 11324static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 11325 struct intel_crtc_state *pipe_config)
79e53945 11326{
f1f644dc 11327 struct drm_device *dev = crtc->base.dev;
fac5e23e 11328 struct drm_i915_private *dev_priv = to_i915(dev);
f1f644dc 11329 int pipe = pipe_config->cpu_transcoder;
293623f7 11330 u32 dpll = pipe_config->dpll_hw_state.dpll;
79e53945 11331 u32 fp;
9e2c8475 11332 struct dpll clock;
dccbea3b 11333 int port_clock;
da4a1efa 11334 int refclk = i9xx_pll_refclk(dev, pipe_config);
79e53945
JB
11335
11336 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
293623f7 11337 fp = pipe_config->dpll_hw_state.fp0;
79e53945 11338 else
293623f7 11339 fp = pipe_config->dpll_hw_state.fp1;
79e53945
JB
11340
11341 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
11342 if (IS_PINEVIEW(dev)) {
11343 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
11344 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
11345 } else {
11346 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
11347 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
11348 }
11349
a6c45cf0 11350 if (!IS_GEN2(dev)) {
f2b115e6
AJ
11351 if (IS_PINEVIEW(dev))
11352 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
11353 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
11354 else
11355 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
11356 DPLL_FPA01_P1_POST_DIV_SHIFT);
11357
11358 switch (dpll & DPLL_MODE_MASK) {
11359 case DPLLB_MODE_DAC_SERIAL:
11360 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
11361 5 : 10;
11362 break;
11363 case DPLLB_MODE_LVDS:
11364 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
11365 7 : 14;
11366 break;
11367 default:
28c97730 11368 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945 11369 "mode\n", (int)(dpll & DPLL_MODE_MASK));
f1f644dc 11370 return;
79e53945
JB
11371 }
11372
ac58c3f0 11373 if (IS_PINEVIEW(dev))
dccbea3b 11374 port_clock = pnv_calc_dpll_params(refclk, &clock);
ac58c3f0 11375 else
dccbea3b 11376 port_clock = i9xx_calc_dpll_params(refclk, &clock);
79e53945 11377 } else {
0fb58223 11378 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
b1c560d1 11379 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
79e53945
JB
11380
11381 if (is_lvds) {
11382 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
11383 DPLL_FPA01_P1_POST_DIV_SHIFT);
b1c560d1
VS
11384
11385 if (lvds & LVDS_CLKB_POWER_UP)
11386 clock.p2 = 7;
11387 else
11388 clock.p2 = 14;
79e53945
JB
11389 } else {
11390 if (dpll & PLL_P1_DIVIDE_BY_TWO)
11391 clock.p1 = 2;
11392 else {
11393 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
11394 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
11395 }
11396 if (dpll & PLL_P2_DIVIDE_BY_4)
11397 clock.p2 = 4;
11398 else
11399 clock.p2 = 2;
79e53945 11400 }
da4a1efa 11401
dccbea3b 11402 port_clock = i9xx_calc_dpll_params(refclk, &clock);
79e53945
JB
11403 }
11404
18442d08
VS
11405 /*
11406 * This value includes pixel_multiplier. We will use
241bfc38 11407 * port_clock to compute adjusted_mode.crtc_clock in the
18442d08
VS
11408 * encoder's get_config() function.
11409 */
dccbea3b 11410 pipe_config->port_clock = port_clock;
f1f644dc
JB
11411}
11412
6878da05
VS
11413int intel_dotclock_calculate(int link_freq,
11414 const struct intel_link_m_n *m_n)
f1f644dc 11415{
f1f644dc
JB
11416 /*
11417 * The calculation for the data clock is:
1041a02f 11418 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
f1f644dc 11419 * But we want to avoid losing precison if possible, so:
1041a02f 11420 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
f1f644dc
JB
11421 *
11422 * and the link clock is simpler:
1041a02f 11423 * link_clock = (m * link_clock) / n
f1f644dc
JB
11424 */
11425
6878da05
VS
11426 if (!m_n->link_n)
11427 return 0;
f1f644dc 11428
6878da05
VS
11429 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
11430}
f1f644dc 11431
18442d08 11432static void ironlake_pch_clock_get(struct intel_crtc *crtc,
5cec258b 11433 struct intel_crtc_state *pipe_config)
6878da05 11434{
e3b247da 11435 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
79e53945 11436
18442d08
VS
11437 /* read out port_clock from the DPLL */
11438 i9xx_crtc_clock_get(crtc, pipe_config);
f1f644dc 11439
f1f644dc 11440 /*
e3b247da
VS
11441 * In case there is an active pipe without active ports,
11442 * we may need some idea for the dotclock anyway.
11443 * Calculate one based on the FDI configuration.
79e53945 11444 */
2d112de7 11445 pipe_config->base.adjusted_mode.crtc_clock =
21a727b3 11446 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
18442d08 11447 &pipe_config->fdi_m_n);
79e53945
JB
11448}
11449
11450/** Returns the currently programmed mode of the given pipe. */
11451struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
11452 struct drm_crtc *crtc)
11453{
fac5e23e 11454 struct drm_i915_private *dev_priv = to_i915(dev);
79e53945 11455 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6e3c9717 11456 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
79e53945 11457 struct drm_display_mode *mode;
3f36b937 11458 struct intel_crtc_state *pipe_config;
fe2b8f9d
PZ
11459 int htot = I915_READ(HTOTAL(cpu_transcoder));
11460 int hsync = I915_READ(HSYNC(cpu_transcoder));
11461 int vtot = I915_READ(VTOTAL(cpu_transcoder));
11462 int vsync = I915_READ(VSYNC(cpu_transcoder));
293623f7 11463 enum pipe pipe = intel_crtc->pipe;
79e53945
JB
11464
11465 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
11466 if (!mode)
11467 return NULL;
11468
3f36b937
TU
11469 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
11470 if (!pipe_config) {
11471 kfree(mode);
11472 return NULL;
11473 }
11474
f1f644dc
JB
11475 /*
11476 * Construct a pipe_config sufficient for getting the clock info
11477 * back out of crtc_clock_get.
11478 *
11479 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
11480 * to use a real value here instead.
11481 */
3f36b937
TU
11482 pipe_config->cpu_transcoder = (enum transcoder) pipe;
11483 pipe_config->pixel_multiplier = 1;
11484 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(pipe));
11485 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(pipe));
11486 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(pipe));
11487 i9xx_crtc_clock_get(intel_crtc, pipe_config);
11488
11489 mode->clock = pipe_config->port_clock / pipe_config->pixel_multiplier;
79e53945
JB
11490 mode->hdisplay = (htot & 0xffff) + 1;
11491 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
11492 mode->hsync_start = (hsync & 0xffff) + 1;
11493 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
11494 mode->vdisplay = (vtot & 0xffff) + 1;
11495 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
11496 mode->vsync_start = (vsync & 0xffff) + 1;
11497 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
11498
11499 drm_mode_set_name(mode);
79e53945 11500
3f36b937
TU
11501 kfree(pipe_config);
11502
79e53945
JB
11503 return mode;
11504}
11505
11506static void intel_crtc_destroy(struct drm_crtc *crtc)
11507{
11508 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a 11509 struct drm_device *dev = crtc->dev;
51cbaf01 11510 struct intel_flip_work *work;
67e77c5a 11511
5e2d7afc 11512 spin_lock_irq(&dev->event_lock);
5a21b665
DV
11513 work = intel_crtc->flip_work;
11514 intel_crtc->flip_work = NULL;
11515 spin_unlock_irq(&dev->event_lock);
67e77c5a 11516
5a21b665 11517 if (work) {
51cbaf01
ML
11518 cancel_work_sync(&work->mmio_work);
11519 cancel_work_sync(&work->unpin_work);
5a21b665 11520 kfree(work);
67e77c5a 11521 }
79e53945
JB
11522
11523 drm_crtc_cleanup(crtc);
67e77c5a 11524
79e53945
JB
11525 kfree(intel_crtc);
11526}
11527
6b95a207
KH
11528static void intel_unpin_work_fn(struct work_struct *__work)
11529{
51cbaf01
ML
11530 struct intel_flip_work *work =
11531 container_of(__work, struct intel_flip_work, unpin_work);
5a21b665
DV
11532 struct intel_crtc *crtc = to_intel_crtc(work->crtc);
11533 struct drm_device *dev = crtc->base.dev;
11534 struct drm_plane *primary = crtc->base.primary;
03f476e1 11535
5a21b665
DV
11536 if (is_mmio_work(work))
11537 flush_work(&work->mmio_work);
03f476e1 11538
5a21b665
DV
11539 mutex_lock(&dev->struct_mutex);
11540 intel_unpin_fb_obj(work->old_fb, primary->state->rotation);
f8c417cd 11541 i915_gem_object_put(work->pending_flip_obj);
5a21b665 11542 mutex_unlock(&dev->struct_mutex);
143f73b3 11543
e8a261ea
CW
11544 i915_gem_request_put(work->flip_queued_req);
11545
5748b6a1
CW
11546 intel_frontbuffer_flip_complete(to_i915(dev),
11547 to_intel_plane(primary)->frontbuffer_bit);
5a21b665
DV
11548 intel_fbc_post_update(crtc);
11549 drm_framebuffer_unreference(work->old_fb);
143f73b3 11550
5a21b665
DV
11551 BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
11552 atomic_dec(&crtc->unpin_work_count);
a6747b73 11553
5a21b665
DV
11554 kfree(work);
11555}
d9e86c0e 11556
5a21b665
DV
11557/* Is 'a' after or equal to 'b'? */
11558static bool g4x_flip_count_after_eq(u32 a, u32 b)
11559{
11560 return !((a - b) & 0x80000000);
11561}
143f73b3 11562
5a21b665
DV
11563static bool __pageflip_finished_cs(struct intel_crtc *crtc,
11564 struct intel_flip_work *work)
11565{
11566 struct drm_device *dev = crtc->base.dev;
fac5e23e 11567 struct drm_i915_private *dev_priv = to_i915(dev);
143f73b3 11568
8af29b0c 11569 if (abort_flip_on_reset(crtc))
5a21b665 11570 return true;
143f73b3 11571
5a21b665
DV
11572 /*
11573 * The relevant registers doen't exist on pre-ctg.
11574 * As the flip done interrupt doesn't trigger for mmio
11575 * flips on gmch platforms, a flip count check isn't
11576 * really needed there. But since ctg has the registers,
11577 * include it in the check anyway.
11578 */
11579 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
11580 return true;
b4a98e57 11581
5a21b665
DV
11582 /*
11583 * BDW signals flip done immediately if the plane
11584 * is disabled, even if the plane enable is already
11585 * armed to occur at the next vblank :(
11586 */
f99d7069 11587
5a21b665
DV
11588 /*
11589 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
11590 * used the same base address. In that case the mmio flip might
11591 * have completed, but the CS hasn't even executed the flip yet.
11592 *
11593 * A flip count check isn't enough as the CS might have updated
11594 * the base address just after start of vblank, but before we
11595 * managed to process the interrupt. This means we'd complete the
11596 * CS flip too soon.
11597 *
11598 * Combining both checks should get us a good enough result. It may
11599 * still happen that the CS flip has been executed, but has not
11600 * yet actually completed. But in case the base address is the same
11601 * anyway, we don't really care.
11602 */
11603 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
11604 crtc->flip_work->gtt_offset &&
11605 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
11606 crtc->flip_work->flip_count);
11607}
b4a98e57 11608
5a21b665
DV
11609static bool
11610__pageflip_finished_mmio(struct intel_crtc *crtc,
11611 struct intel_flip_work *work)
11612{
11613 /*
11614 * MMIO work completes when vblank is different from
11615 * flip_queued_vblank.
11616 *
11617 * Reset counter value doesn't matter, this is handled by
11618 * i915_wait_request finishing early, so no need to handle
11619 * reset here.
11620 */
11621 return intel_crtc_get_vblank_counter(crtc) != work->flip_queued_vblank;
6b95a207
KH
11622}
11623
51cbaf01
ML
11624
11625static bool pageflip_finished(struct intel_crtc *crtc,
11626 struct intel_flip_work *work)
11627{
11628 if (!atomic_read(&work->pending))
11629 return false;
11630
11631 smp_rmb();
11632
5a21b665
DV
11633 if (is_mmio_work(work))
11634 return __pageflip_finished_mmio(crtc, work);
11635 else
11636 return __pageflip_finished_cs(crtc, work);
11637}
11638
11639void intel_finish_page_flip_cs(struct drm_i915_private *dev_priv, int pipe)
11640{
91c8a326 11641 struct drm_device *dev = &dev_priv->drm;
5a21b665
DV
11642 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11643 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11644 struct intel_flip_work *work;
11645 unsigned long flags;
11646
11647 /* Ignore early vblank irqs */
11648 if (!crtc)
11649 return;
11650
51cbaf01 11651 /*
5a21b665
DV
11652 * This is called both by irq handlers and the reset code (to complete
11653 * lost pageflips) so needs the full irqsave spinlocks.
51cbaf01 11654 */
5a21b665
DV
11655 spin_lock_irqsave(&dev->event_lock, flags);
11656 work = intel_crtc->flip_work;
11657
11658 if (work != NULL &&
11659 !is_mmio_work(work) &&
11660 pageflip_finished(intel_crtc, work))
11661 page_flip_completed(intel_crtc);
11662
11663 spin_unlock_irqrestore(&dev->event_lock, flags);
75f7f3ec
VS
11664}
11665
51cbaf01 11666void intel_finish_page_flip_mmio(struct drm_i915_private *dev_priv, int pipe)
6b95a207 11667{
91c8a326 11668 struct drm_device *dev = &dev_priv->drm;
5251f04e
ML
11669 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11670 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
51cbaf01 11671 struct intel_flip_work *work;
6b95a207
KH
11672 unsigned long flags;
11673
5251f04e
ML
11674 /* Ignore early vblank irqs */
11675 if (!crtc)
11676 return;
f326038a
DV
11677
11678 /*
11679 * This is called both by irq handlers and the reset code (to complete
11680 * lost pageflips) so needs the full irqsave spinlocks.
e7d841ca 11681 */
6b95a207 11682 spin_lock_irqsave(&dev->event_lock, flags);
5a21b665 11683 work = intel_crtc->flip_work;
5251f04e 11684
5a21b665
DV
11685 if (work != NULL &&
11686 is_mmio_work(work) &&
11687 pageflip_finished(intel_crtc, work))
11688 page_flip_completed(intel_crtc);
5251f04e 11689
6b95a207
KH
11690 spin_unlock_irqrestore(&dev->event_lock, flags);
11691}
11692
5a21b665
DV
11693static inline void intel_mark_page_flip_active(struct intel_crtc *crtc,
11694 struct intel_flip_work *work)
84c33a64 11695{
5a21b665 11696 work->flip_queued_vblank = intel_crtc_get_vblank_counter(crtc);
84c33a64 11697
5a21b665
DV
11698 /* Ensure that the work item is consistent when activating it ... */
11699 smp_mb__before_atomic();
11700 atomic_set(&work->pending, 1);
11701}
a6747b73 11702
5a21b665
DV
11703static int intel_gen2_queue_flip(struct drm_device *dev,
11704 struct drm_crtc *crtc,
11705 struct drm_framebuffer *fb,
11706 struct drm_i915_gem_object *obj,
11707 struct drm_i915_gem_request *req,
11708 uint32_t flags)
11709{
7e37f889 11710 struct intel_ring *ring = req->ring;
5a21b665
DV
11711 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11712 u32 flip_mask;
11713 int ret;
143f73b3 11714
5a21b665
DV
11715 ret = intel_ring_begin(req, 6);
11716 if (ret)
11717 return ret;
143f73b3 11718
5a21b665
DV
11719 /* Can't queue multiple flips, so wait for the previous
11720 * one to finish before executing the next.
11721 */
11722 if (intel_crtc->plane)
11723 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11724 else
11725 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
b5321f30
CW
11726 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
11727 intel_ring_emit(ring, MI_NOOP);
11728 intel_ring_emit(ring, MI_DISPLAY_FLIP |
5a21b665 11729 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
b5321f30
CW
11730 intel_ring_emit(ring, fb->pitches[0]);
11731 intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11732 intel_ring_emit(ring, 0); /* aux display base address, unused */
143f73b3 11733
5a21b665
DV
11734 return 0;
11735}
84c33a64 11736
5a21b665
DV
11737static int intel_gen3_queue_flip(struct drm_device *dev,
11738 struct drm_crtc *crtc,
11739 struct drm_framebuffer *fb,
11740 struct drm_i915_gem_object *obj,
11741 struct drm_i915_gem_request *req,
11742 uint32_t flags)
11743{
7e37f889 11744 struct intel_ring *ring = req->ring;
5a21b665
DV
11745 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11746 u32 flip_mask;
11747 int ret;
d55dbd06 11748
5a21b665
DV
11749 ret = intel_ring_begin(req, 6);
11750 if (ret)
11751 return ret;
d55dbd06 11752
5a21b665
DV
11753 if (intel_crtc->plane)
11754 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11755 else
11756 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
b5321f30
CW
11757 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
11758 intel_ring_emit(ring, MI_NOOP);
11759 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
5a21b665 11760 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
b5321f30
CW
11761 intel_ring_emit(ring, fb->pitches[0]);
11762 intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11763 intel_ring_emit(ring, MI_NOOP);
fd8e058a 11764
5a21b665
DV
11765 return 0;
11766}
84c33a64 11767
5a21b665
DV
11768static int intel_gen4_queue_flip(struct drm_device *dev,
11769 struct drm_crtc *crtc,
11770 struct drm_framebuffer *fb,
11771 struct drm_i915_gem_object *obj,
11772 struct drm_i915_gem_request *req,
11773 uint32_t flags)
11774{
7e37f889 11775 struct intel_ring *ring = req->ring;
fac5e23e 11776 struct drm_i915_private *dev_priv = to_i915(dev);
5a21b665
DV
11777 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11778 uint32_t pf, pipesrc;
11779 int ret;
143f73b3 11780
5a21b665
DV
11781 ret = intel_ring_begin(req, 4);
11782 if (ret)
11783 return ret;
143f73b3 11784
5a21b665
DV
11785 /* i965+ uses the linear or tiled offsets from the
11786 * Display Registers (which do not change across a page-flip)
11787 * so we need only reprogram the base address.
11788 */
b5321f30 11789 intel_ring_emit(ring, MI_DISPLAY_FLIP |
5a21b665 11790 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
b5321f30
CW
11791 intel_ring_emit(ring, fb->pitches[0]);
11792 intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset |
72618ebf 11793 intel_fb_modifier_to_tiling(fb->modifier[0]));
5a21b665
DV
11794
11795 /* XXX Enabling the panel-fitter across page-flip is so far
11796 * untested on non-native modes, so ignore it for now.
11797 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11798 */
11799 pf = 0;
11800 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
b5321f30 11801 intel_ring_emit(ring, pf | pipesrc);
143f73b3 11802
5a21b665 11803 return 0;
8c9f3aaf
JB
11804}
11805
5a21b665
DV
11806static int intel_gen6_queue_flip(struct drm_device *dev,
11807 struct drm_crtc *crtc,
11808 struct drm_framebuffer *fb,
11809 struct drm_i915_gem_object *obj,
11810 struct drm_i915_gem_request *req,
11811 uint32_t flags)
da20eabd 11812{
7e37f889 11813 struct intel_ring *ring = req->ring;
fac5e23e 11814 struct drm_i915_private *dev_priv = to_i915(dev);
5a21b665
DV
11815 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11816 uint32_t pf, pipesrc;
11817 int ret;
d21fbe87 11818
5a21b665
DV
11819 ret = intel_ring_begin(req, 4);
11820 if (ret)
11821 return ret;
92826fcd 11822
b5321f30 11823 intel_ring_emit(ring, MI_DISPLAY_FLIP |
5a21b665 11824 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
72618ebf
VS
11825 intel_ring_emit(ring, fb->pitches[0] |
11826 intel_fb_modifier_to_tiling(fb->modifier[0]));
b5321f30 11827 intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
92826fcd 11828
5a21b665
DV
11829 /* Contrary to the suggestions in the documentation,
11830 * "Enable Panel Fitter" does not seem to be required when page
11831 * flipping with a non-native mode, and worse causes a normal
11832 * modeset to fail.
11833 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11834 */
11835 pf = 0;
11836 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
b5321f30 11837 intel_ring_emit(ring, pf | pipesrc);
7809e5ae 11838
5a21b665 11839 return 0;
7809e5ae
MR
11840}
11841
5a21b665
DV
11842static int intel_gen7_queue_flip(struct drm_device *dev,
11843 struct drm_crtc *crtc,
11844 struct drm_framebuffer *fb,
11845 struct drm_i915_gem_object *obj,
11846 struct drm_i915_gem_request *req,
11847 uint32_t flags)
d21fbe87 11848{
7e37f889 11849 struct intel_ring *ring = req->ring;
5a21b665
DV
11850 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11851 uint32_t plane_bit = 0;
11852 int len, ret;
d21fbe87 11853
5a21b665
DV
11854 switch (intel_crtc->plane) {
11855 case PLANE_A:
11856 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11857 break;
11858 case PLANE_B:
11859 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11860 break;
11861 case PLANE_C:
11862 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11863 break;
11864 default:
11865 WARN_ONCE(1, "unknown plane in flip command\n");
11866 return -ENODEV;
11867 }
11868
11869 len = 4;
b5321f30 11870 if (req->engine->id == RCS) {
5a21b665
DV
11871 len += 6;
11872 /*
11873 * On Gen 8, SRM is now taking an extra dword to accommodate
11874 * 48bits addresses, and we need a NOOP for the batch size to
11875 * stay even.
11876 */
11877 if (IS_GEN8(dev))
11878 len += 2;
11879 }
11880
11881 /*
11882 * BSpec MI_DISPLAY_FLIP for IVB:
11883 * "The full packet must be contained within the same cache line."
11884 *
11885 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11886 * cacheline, if we ever start emitting more commands before
11887 * the MI_DISPLAY_FLIP we may need to first emit everything else,
11888 * then do the cacheline alignment, and finally emit the
11889 * MI_DISPLAY_FLIP.
11890 */
11891 ret = intel_ring_cacheline_align(req);
11892 if (ret)
11893 return ret;
11894
11895 ret = intel_ring_begin(req, len);
11896 if (ret)
11897 return ret;
11898
11899 /* Unmask the flip-done completion message. Note that the bspec says that
11900 * we should do this for both the BCS and RCS, and that we must not unmask
11901 * more than one flip event at any time (or ensure that one flip message
11902 * can be sent by waiting for flip-done prior to queueing new flips).
11903 * Experimentation says that BCS works despite DERRMR masking all
11904 * flip-done completion events and that unmasking all planes at once
11905 * for the RCS also doesn't appear to drop events. Setting the DERRMR
11906 * to zero does lead to lockups within MI_DISPLAY_FLIP.
11907 */
b5321f30
CW
11908 if (req->engine->id == RCS) {
11909 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
11910 intel_ring_emit_reg(ring, DERRMR);
11911 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
5a21b665
DV
11912 DERRMR_PIPEB_PRI_FLIP_DONE |
11913 DERRMR_PIPEC_PRI_FLIP_DONE));
11914 if (IS_GEN8(dev))
b5321f30 11915 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8 |
5a21b665
DV
11916 MI_SRM_LRM_GLOBAL_GTT);
11917 else
b5321f30 11918 intel_ring_emit(ring, MI_STORE_REGISTER_MEM |
5a21b665 11919 MI_SRM_LRM_GLOBAL_GTT);
b5321f30 11920 intel_ring_emit_reg(ring, DERRMR);
bde13ebd
CW
11921 intel_ring_emit(ring,
11922 i915_ggtt_offset(req->engine->scratch) + 256);
5a21b665 11923 if (IS_GEN8(dev)) {
b5321f30
CW
11924 intel_ring_emit(ring, 0);
11925 intel_ring_emit(ring, MI_NOOP);
5a21b665
DV
11926 }
11927 }
11928
b5321f30 11929 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
72618ebf
VS
11930 intel_ring_emit(ring, fb->pitches[0] |
11931 intel_fb_modifier_to_tiling(fb->modifier[0]));
b5321f30
CW
11932 intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11933 intel_ring_emit(ring, (MI_NOOP));
5a21b665
DV
11934
11935 return 0;
11936}
11937
11938static bool use_mmio_flip(struct intel_engine_cs *engine,
11939 struct drm_i915_gem_object *obj)
11940{
c37efb99
CW
11941 struct reservation_object *resv;
11942
5a21b665
DV
11943 /*
11944 * This is not being used for older platforms, because
11945 * non-availability of flip done interrupt forces us to use
11946 * CS flips. Older platforms derive flip done using some clever
11947 * tricks involving the flip_pending status bits and vblank irqs.
11948 * So using MMIO flips there would disrupt this mechanism.
11949 */
11950
11951 if (engine == NULL)
11952 return true;
11953
11954 if (INTEL_GEN(engine->i915) < 5)
11955 return false;
11956
11957 if (i915.use_mmio_flip < 0)
11958 return false;
11959 else if (i915.use_mmio_flip > 0)
11960 return true;
11961 else if (i915.enable_execlists)
11962 return true;
c37efb99
CW
11963
11964 resv = i915_gem_object_get_dmabuf_resv(obj);
11965 if (resv && !reservation_object_test_signaled_rcu(resv, false))
5a21b665 11966 return true;
c37efb99 11967
d72d908b
CW
11968 return engine != i915_gem_active_get_engine(&obj->last_write,
11969 &obj->base.dev->struct_mutex);
5a21b665
DV
11970}
11971
11972static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
11973 unsigned int rotation,
11974 struct intel_flip_work *work)
11975{
11976 struct drm_device *dev = intel_crtc->base.dev;
fac5e23e 11977 struct drm_i915_private *dev_priv = to_i915(dev);
5a21b665
DV
11978 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11979 const enum pipe pipe = intel_crtc->pipe;
d2196774 11980 u32 ctl, stride = skl_plane_stride(fb, 0, rotation);
5a21b665
DV
11981
11982 ctl = I915_READ(PLANE_CTL(pipe, 0));
11983 ctl &= ~PLANE_CTL_TILED_MASK;
11984 switch (fb->modifier[0]) {
11985 case DRM_FORMAT_MOD_NONE:
11986 break;
11987 case I915_FORMAT_MOD_X_TILED:
11988 ctl |= PLANE_CTL_TILED_X;
11989 break;
11990 case I915_FORMAT_MOD_Y_TILED:
11991 ctl |= PLANE_CTL_TILED_Y;
11992 break;
11993 case I915_FORMAT_MOD_Yf_TILED:
11994 ctl |= PLANE_CTL_TILED_YF;
11995 break;
11996 default:
11997 MISSING_CASE(fb->modifier[0]);
11998 }
11999
5a21b665
DV
12000 /*
12001 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
12002 * PLANE_SURF updates, the update is then guaranteed to be atomic.
12003 */
12004 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
12005 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
12006
12007 I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
12008 POSTING_READ(PLANE_SURF(pipe, 0));
12009}
12010
12011static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
12012 struct intel_flip_work *work)
12013{
12014 struct drm_device *dev = intel_crtc->base.dev;
fac5e23e 12015 struct drm_i915_private *dev_priv = to_i915(dev);
72618ebf 12016 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
5a21b665
DV
12017 i915_reg_t reg = DSPCNTR(intel_crtc->plane);
12018 u32 dspcntr;
12019
12020 dspcntr = I915_READ(reg);
12021
72618ebf 12022 if (fb->modifier[0] == I915_FORMAT_MOD_X_TILED)
5a21b665
DV
12023 dspcntr |= DISPPLANE_TILED;
12024 else
12025 dspcntr &= ~DISPPLANE_TILED;
12026
12027 I915_WRITE(reg, dspcntr);
12028
12029 I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
12030 POSTING_READ(DSPSURF(intel_crtc->plane));
12031}
12032
12033static void intel_mmio_flip_work_func(struct work_struct *w)
12034{
12035 struct intel_flip_work *work =
12036 container_of(w, struct intel_flip_work, mmio_work);
12037 struct intel_crtc *crtc = to_intel_crtc(work->crtc);
12038 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12039 struct intel_framebuffer *intel_fb =
12040 to_intel_framebuffer(crtc->base.primary->fb);
12041 struct drm_i915_gem_object *obj = intel_fb->obj;
c37efb99 12042 struct reservation_object *resv;
5a21b665
DV
12043
12044 if (work->flip_queued_req)
776f3236 12045 WARN_ON(i915_wait_request(work->flip_queued_req,
ea746f36 12046 0, NULL, NO_WAITBOOST));
5a21b665
DV
12047
12048 /* For framebuffer backed by dmabuf, wait for fence */
c37efb99
CW
12049 resv = i915_gem_object_get_dmabuf_resv(obj);
12050 if (resv)
12051 WARN_ON(reservation_object_wait_timeout_rcu(resv, false, false,
5a21b665
DV
12052 MAX_SCHEDULE_TIMEOUT) < 0);
12053
12054 intel_pipe_update_start(crtc);
12055
12056 if (INTEL_GEN(dev_priv) >= 9)
12057 skl_do_mmio_flip(crtc, work->rotation, work);
12058 else
12059 /* use_mmio_flip() retricts MMIO flips to ilk+ */
12060 ilk_do_mmio_flip(crtc, work);
12061
12062 intel_pipe_update_end(crtc, work);
12063}
12064
12065static int intel_default_queue_flip(struct drm_device *dev,
12066 struct drm_crtc *crtc,
12067 struct drm_framebuffer *fb,
12068 struct drm_i915_gem_object *obj,
12069 struct drm_i915_gem_request *req,
12070 uint32_t flags)
12071{
12072 return -ENODEV;
12073}
12074
12075static bool __pageflip_stall_check_cs(struct drm_i915_private *dev_priv,
12076 struct intel_crtc *intel_crtc,
12077 struct intel_flip_work *work)
12078{
12079 u32 addr, vblank;
12080
12081 if (!atomic_read(&work->pending))
12082 return false;
12083
12084 smp_rmb();
12085
12086 vblank = intel_crtc_get_vblank_counter(intel_crtc);
12087 if (work->flip_ready_vblank == 0) {
12088 if (work->flip_queued_req &&
f69a02c9 12089 !i915_gem_request_completed(work->flip_queued_req))
5a21b665
DV
12090 return false;
12091
12092 work->flip_ready_vblank = vblank;
12093 }
12094
12095 if (vblank - work->flip_ready_vblank < 3)
12096 return false;
12097
12098 /* Potential stall - if we see that the flip has happened,
12099 * assume a missed interrupt. */
12100 if (INTEL_GEN(dev_priv) >= 4)
12101 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
12102 else
12103 addr = I915_READ(DSPADDR(intel_crtc->plane));
12104
12105 /* There is a potential issue here with a false positive after a flip
12106 * to the same address. We could address this by checking for a
12107 * non-incrementing frame counter.
12108 */
12109 return addr == work->gtt_offset;
12110}
12111
12112void intel_check_page_flip(struct drm_i915_private *dev_priv, int pipe)
12113{
91c8a326 12114 struct drm_device *dev = &dev_priv->drm;
5a21b665
DV
12115 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
12116 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12117 struct intel_flip_work *work;
12118
12119 WARN_ON(!in_interrupt());
12120
12121 if (crtc == NULL)
12122 return;
12123
12124 spin_lock(&dev->event_lock);
12125 work = intel_crtc->flip_work;
12126
12127 if (work != NULL && !is_mmio_work(work) &&
12128 __pageflip_stall_check_cs(dev_priv, intel_crtc, work)) {
12129 WARN_ONCE(1,
12130 "Kicking stuck page flip: queued at %d, now %d\n",
12131 work->flip_queued_vblank, intel_crtc_get_vblank_counter(intel_crtc));
12132 page_flip_completed(intel_crtc);
12133 work = NULL;
12134 }
12135
12136 if (work != NULL && !is_mmio_work(work) &&
12137 intel_crtc_get_vblank_counter(intel_crtc) - work->flip_queued_vblank > 1)
12138 intel_queue_rps_boost_for_request(work->flip_queued_req);
12139 spin_unlock(&dev->event_lock);
12140}
12141
12142static int intel_crtc_page_flip(struct drm_crtc *crtc,
12143 struct drm_framebuffer *fb,
12144 struct drm_pending_vblank_event *event,
12145 uint32_t page_flip_flags)
12146{
12147 struct drm_device *dev = crtc->dev;
fac5e23e 12148 struct drm_i915_private *dev_priv = to_i915(dev);
5a21b665
DV
12149 struct drm_framebuffer *old_fb = crtc->primary->fb;
12150 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12151 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12152 struct drm_plane *primary = crtc->primary;
12153 enum pipe pipe = intel_crtc->pipe;
12154 struct intel_flip_work *work;
12155 struct intel_engine_cs *engine;
12156 bool mmio_flip;
8e637178 12157 struct drm_i915_gem_request *request;
058d88c4 12158 struct i915_vma *vma;
5a21b665
DV
12159 int ret;
12160
12161 /*
12162 * drm_mode_page_flip_ioctl() should already catch this, but double
12163 * check to be safe. In the future we may enable pageflipping from
12164 * a disabled primary plane.
12165 */
12166 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
12167 return -EBUSY;
12168
12169 /* Can't change pixel format via MI display flips. */
12170 if (fb->pixel_format != crtc->primary->fb->pixel_format)
12171 return -EINVAL;
12172
12173 /*
12174 * TILEOFF/LINOFF registers can't be changed via MI display flips.
12175 * Note that pitch changes could also affect these register.
12176 */
12177 if (INTEL_INFO(dev)->gen > 3 &&
12178 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
12179 fb->pitches[0] != crtc->primary->fb->pitches[0]))
12180 return -EINVAL;
12181
12182 if (i915_terminally_wedged(&dev_priv->gpu_error))
12183 goto out_hang;
12184
12185 work = kzalloc(sizeof(*work), GFP_KERNEL);
12186 if (work == NULL)
12187 return -ENOMEM;
12188
12189 work->event = event;
12190 work->crtc = crtc;
12191 work->old_fb = old_fb;
12192 INIT_WORK(&work->unpin_work, intel_unpin_work_fn);
12193
12194 ret = drm_crtc_vblank_get(crtc);
12195 if (ret)
12196 goto free_work;
12197
12198 /* We borrow the event spin lock for protecting flip_work */
12199 spin_lock_irq(&dev->event_lock);
12200 if (intel_crtc->flip_work) {
12201 /* Before declaring the flip queue wedged, check if
12202 * the hardware completed the operation behind our backs.
12203 */
12204 if (pageflip_finished(intel_crtc, intel_crtc->flip_work)) {
12205 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
12206 page_flip_completed(intel_crtc);
12207 } else {
12208 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
12209 spin_unlock_irq(&dev->event_lock);
12210
12211 drm_crtc_vblank_put(crtc);
12212 kfree(work);
12213 return -EBUSY;
12214 }
12215 }
12216 intel_crtc->flip_work = work;
12217 spin_unlock_irq(&dev->event_lock);
12218
12219 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
12220 flush_workqueue(dev_priv->wq);
12221
12222 /* Reference the objects for the scheduled work. */
12223 drm_framebuffer_reference(work->old_fb);
5a21b665
DV
12224
12225 crtc->primary->fb = fb;
12226 update_state_fb(crtc->primary);
faf68d92 12227
25dc556a 12228 work->pending_flip_obj = i915_gem_object_get(obj);
5a21b665
DV
12229
12230 ret = i915_mutex_lock_interruptible(dev);
12231 if (ret)
12232 goto cleanup;
12233
8af29b0c
CW
12234 intel_crtc->reset_count = i915_reset_count(&dev_priv->gpu_error);
12235 if (i915_reset_in_progress_or_wedged(&dev_priv->gpu_error)) {
5a21b665
DV
12236 ret = -EIO;
12237 goto cleanup;
12238 }
12239
12240 atomic_inc(&intel_crtc->unpin_work_count);
12241
12242 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
12243 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
12244
12245 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
3b3f1650 12246 engine = dev_priv->engine[BCS];
72618ebf 12247 if (fb->modifier[0] != old_fb->modifier[0])
5a21b665
DV
12248 /* vlv: DISPLAY_FLIP fails to change tiling */
12249 engine = NULL;
12250 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
3b3f1650 12251 engine = dev_priv->engine[BCS];
5a21b665 12252 } else if (INTEL_INFO(dev)->gen >= 7) {
d72d908b
CW
12253 engine = i915_gem_active_get_engine(&obj->last_write,
12254 &obj->base.dev->struct_mutex);
5a21b665 12255 if (engine == NULL || engine->id != RCS)
3b3f1650 12256 engine = dev_priv->engine[BCS];
5a21b665 12257 } else {
3b3f1650 12258 engine = dev_priv->engine[RCS];
5a21b665
DV
12259 }
12260
12261 mmio_flip = use_mmio_flip(engine, obj);
12262
058d88c4
CW
12263 vma = intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
12264 if (IS_ERR(vma)) {
12265 ret = PTR_ERR(vma);
5a21b665 12266 goto cleanup_pending;
058d88c4 12267 }
5a21b665 12268
6687c906 12269 work->gtt_offset = intel_fb_gtt_offset(fb, primary->state->rotation);
5a21b665
DV
12270 work->gtt_offset += intel_crtc->dspaddr_offset;
12271 work->rotation = crtc->primary->state->rotation;
12272
1f061316
PZ
12273 /*
12274 * There's the potential that the next frame will not be compatible with
12275 * FBC, so we want to call pre_update() before the actual page flip.
12276 * The problem is that pre_update() caches some information about the fb
12277 * object, so we want to do this only after the object is pinned. Let's
12278 * be on the safe side and do this immediately before scheduling the
12279 * flip.
12280 */
12281 intel_fbc_pre_update(intel_crtc, intel_crtc->config,
12282 to_intel_plane_state(primary->state));
12283
5a21b665
DV
12284 if (mmio_flip) {
12285 INIT_WORK(&work->mmio_work, intel_mmio_flip_work_func);
12286
d72d908b
CW
12287 work->flip_queued_req = i915_gem_active_get(&obj->last_write,
12288 &obj->base.dev->struct_mutex);
6277c8d0 12289 queue_work(system_unbound_wq, &work->mmio_work);
5a21b665 12290 } else {
8e637178
CW
12291 request = i915_gem_request_alloc(engine, engine->last_context);
12292 if (IS_ERR(request)) {
12293 ret = PTR_ERR(request);
12294 goto cleanup_unpin;
12295 }
12296
a2bc4695 12297 ret = i915_gem_request_await_object(request, obj, false);
8e637178
CW
12298 if (ret)
12299 goto cleanup_request;
12300
5a21b665
DV
12301 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
12302 page_flip_flags);
12303 if (ret)
8e637178 12304 goto cleanup_request;
5a21b665
DV
12305
12306 intel_mark_page_flip_active(intel_crtc, work);
12307
8e637178 12308 work->flip_queued_req = i915_gem_request_get(request);
5a21b665
DV
12309 i915_add_request_no_flush(request);
12310 }
12311
12312 i915_gem_track_fb(intel_fb_obj(old_fb), obj,
12313 to_intel_plane(primary)->frontbuffer_bit);
12314 mutex_unlock(&dev->struct_mutex);
12315
5748b6a1 12316 intel_frontbuffer_flip_prepare(to_i915(dev),
5a21b665
DV
12317 to_intel_plane(primary)->frontbuffer_bit);
12318
12319 trace_i915_flip_request(intel_crtc->plane, obj);
12320
12321 return 0;
12322
8e637178
CW
12323cleanup_request:
12324 i915_add_request_no_flush(request);
5a21b665
DV
12325cleanup_unpin:
12326 intel_unpin_fb_obj(fb, crtc->primary->state->rotation);
12327cleanup_pending:
5a21b665
DV
12328 atomic_dec(&intel_crtc->unpin_work_count);
12329 mutex_unlock(&dev->struct_mutex);
12330cleanup:
12331 crtc->primary->fb = old_fb;
12332 update_state_fb(crtc->primary);
12333
34911fd3 12334 i915_gem_object_put_unlocked(obj);
5a21b665
DV
12335 drm_framebuffer_unreference(work->old_fb);
12336
12337 spin_lock_irq(&dev->event_lock);
12338 intel_crtc->flip_work = NULL;
12339 spin_unlock_irq(&dev->event_lock);
12340
12341 drm_crtc_vblank_put(crtc);
12342free_work:
12343 kfree(work);
12344
12345 if (ret == -EIO) {
12346 struct drm_atomic_state *state;
12347 struct drm_plane_state *plane_state;
12348
12349out_hang:
12350 state = drm_atomic_state_alloc(dev);
12351 if (!state)
12352 return -ENOMEM;
12353 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
12354
12355retry:
12356 plane_state = drm_atomic_get_plane_state(state, primary);
12357 ret = PTR_ERR_OR_ZERO(plane_state);
12358 if (!ret) {
12359 drm_atomic_set_fb_for_plane(plane_state, fb);
12360
12361 ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
12362 if (!ret)
12363 ret = drm_atomic_commit(state);
12364 }
12365
12366 if (ret == -EDEADLK) {
12367 drm_modeset_backoff(state->acquire_ctx);
12368 drm_atomic_state_clear(state);
12369 goto retry;
12370 }
12371
12372 if (ret)
12373 drm_atomic_state_free(state);
12374
12375 if (ret == 0 && event) {
12376 spin_lock_irq(&dev->event_lock);
12377 drm_crtc_send_vblank_event(crtc, event);
12378 spin_unlock_irq(&dev->event_lock);
12379 }
12380 }
12381 return ret;
12382}
12383
12384
12385/**
12386 * intel_wm_need_update - Check whether watermarks need updating
12387 * @plane: drm plane
12388 * @state: new plane state
12389 *
12390 * Check current plane state versus the new one to determine whether
12391 * watermarks need to be recalculated.
12392 *
12393 * Returns true or false.
12394 */
12395static bool intel_wm_need_update(struct drm_plane *plane,
12396 struct drm_plane_state *state)
12397{
12398 struct intel_plane_state *new = to_intel_plane_state(state);
12399 struct intel_plane_state *cur = to_intel_plane_state(plane->state);
12400
12401 /* Update watermarks on tiling or size changes. */
936e71e3 12402 if (new->base.visible != cur->base.visible)
5a21b665
DV
12403 return true;
12404
12405 if (!cur->base.fb || !new->base.fb)
12406 return false;
12407
12408 if (cur->base.fb->modifier[0] != new->base.fb->modifier[0] ||
12409 cur->base.rotation != new->base.rotation ||
936e71e3
VS
12410 drm_rect_width(&new->base.src) != drm_rect_width(&cur->base.src) ||
12411 drm_rect_height(&new->base.src) != drm_rect_height(&cur->base.src) ||
12412 drm_rect_width(&new->base.dst) != drm_rect_width(&cur->base.dst) ||
12413 drm_rect_height(&new->base.dst) != drm_rect_height(&cur->base.dst))
5a21b665
DV
12414 return true;
12415
12416 return false;
12417}
12418
12419static bool needs_scaling(struct intel_plane_state *state)
12420{
936e71e3
VS
12421 int src_w = drm_rect_width(&state->base.src) >> 16;
12422 int src_h = drm_rect_height(&state->base.src) >> 16;
12423 int dst_w = drm_rect_width(&state->base.dst);
12424 int dst_h = drm_rect_height(&state->base.dst);
5a21b665
DV
12425
12426 return (src_w != dst_w || src_h != dst_h);
12427}
d21fbe87 12428
da20eabd
ML
12429int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
12430 struct drm_plane_state *plane_state)
12431{
ab1d3a0e 12432 struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
da20eabd
ML
12433 struct drm_crtc *crtc = crtc_state->crtc;
12434 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12435 struct drm_plane *plane = plane_state->plane;
12436 struct drm_device *dev = crtc->dev;
ed4a6a7c 12437 struct drm_i915_private *dev_priv = to_i915(dev);
da20eabd
ML
12438 struct intel_plane_state *old_plane_state =
12439 to_intel_plane_state(plane->state);
da20eabd
ML
12440 bool mode_changed = needs_modeset(crtc_state);
12441 bool was_crtc_enabled = crtc->state->active;
12442 bool is_crtc_enabled = crtc_state->active;
da20eabd
ML
12443 bool turn_off, turn_on, visible, was_visible;
12444 struct drm_framebuffer *fb = plane_state->fb;
78108b7c 12445 int ret;
da20eabd 12446
84114990 12447 if (INTEL_GEN(dev) >= 9 && plane->type != DRM_PLANE_TYPE_CURSOR) {
da20eabd
ML
12448 ret = skl_update_scaler_plane(
12449 to_intel_crtc_state(crtc_state),
12450 to_intel_plane_state(plane_state));
12451 if (ret)
12452 return ret;
12453 }
12454
936e71e3
VS
12455 was_visible = old_plane_state->base.visible;
12456 visible = to_intel_plane_state(plane_state)->base.visible;
da20eabd
ML
12457
12458 if (!was_crtc_enabled && WARN_ON(was_visible))
12459 was_visible = false;
12460
35c08f43
ML
12461 /*
12462 * Visibility is calculated as if the crtc was on, but
12463 * after scaler setup everything depends on it being off
12464 * when the crtc isn't active.
f818ffea
VS
12465 *
12466 * FIXME this is wrong for watermarks. Watermarks should also
12467 * be computed as if the pipe would be active. Perhaps move
12468 * per-plane wm computation to the .check_plane() hook, and
12469 * only combine the results from all planes in the current place?
35c08f43
ML
12470 */
12471 if (!is_crtc_enabled)
936e71e3 12472 to_intel_plane_state(plane_state)->base.visible = visible = false;
da20eabd
ML
12473
12474 if (!was_visible && !visible)
12475 return 0;
12476
e8861675
ML
12477 if (fb != old_plane_state->base.fb)
12478 pipe_config->fb_changed = true;
12479
da20eabd
ML
12480 turn_off = was_visible && (!visible || mode_changed);
12481 turn_on = visible && (!was_visible || mode_changed);
12482
72660ce0 12483 DRM_DEBUG_ATOMIC("[CRTC:%d:%s] has [PLANE:%d:%s] with fb %i\n",
78108b7c
VS
12484 intel_crtc->base.base.id,
12485 intel_crtc->base.name,
72660ce0
VS
12486 plane->base.id, plane->name,
12487 fb ? fb->base.id : -1);
da20eabd 12488
72660ce0
VS
12489 DRM_DEBUG_ATOMIC("[PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n",
12490 plane->base.id, plane->name,
12491 was_visible, visible,
da20eabd
ML
12492 turn_off, turn_on, mode_changed);
12493
caed361d
VS
12494 if (turn_on) {
12495 pipe_config->update_wm_pre = true;
12496
12497 /* must disable cxsr around plane enable/disable */
12498 if (plane->type != DRM_PLANE_TYPE_CURSOR)
12499 pipe_config->disable_cxsr = true;
12500 } else if (turn_off) {
12501 pipe_config->update_wm_post = true;
92826fcd 12502
852eb00d 12503 /* must disable cxsr around plane enable/disable */
e8861675 12504 if (plane->type != DRM_PLANE_TYPE_CURSOR)
ab1d3a0e 12505 pipe_config->disable_cxsr = true;
852eb00d 12506 } else if (intel_wm_need_update(plane, plane_state)) {
caed361d
VS
12507 /* FIXME bollocks */
12508 pipe_config->update_wm_pre = true;
12509 pipe_config->update_wm_post = true;
852eb00d 12510 }
da20eabd 12511
ed4a6a7c 12512 /* Pre-gen9 platforms need two-step watermark updates */
caed361d
VS
12513 if ((pipe_config->update_wm_pre || pipe_config->update_wm_post) &&
12514 INTEL_INFO(dev)->gen < 9 && dev_priv->display.optimize_watermarks)
ed4a6a7c
MR
12515 to_intel_crtc_state(crtc_state)->wm.need_postvbl_update = true;
12516
8be6ca85 12517 if (visible || was_visible)
cd202f69 12518 pipe_config->fb_bits |= to_intel_plane(plane)->frontbuffer_bit;
a9ff8714 12519
31ae71fc
ML
12520 /*
12521 * WaCxSRDisabledForSpriteScaling:ivb
12522 *
12523 * cstate->update_wm was already set above, so this flag will
12524 * take effect when we commit and program watermarks.
12525 */
12526 if (plane->type == DRM_PLANE_TYPE_OVERLAY && IS_IVYBRIDGE(dev) &&
12527 needs_scaling(to_intel_plane_state(plane_state)) &&
12528 !needs_scaling(old_plane_state))
12529 pipe_config->disable_lp_wm = true;
d21fbe87 12530
da20eabd
ML
12531 return 0;
12532}
12533
6d3a1ce7
ML
12534static bool encoders_cloneable(const struct intel_encoder *a,
12535 const struct intel_encoder *b)
12536{
12537 /* masks could be asymmetric, so check both ways */
12538 return a == b || (a->cloneable & (1 << b->type) &&
12539 b->cloneable & (1 << a->type));
12540}
12541
12542static bool check_single_encoder_cloning(struct drm_atomic_state *state,
12543 struct intel_crtc *crtc,
12544 struct intel_encoder *encoder)
12545{
12546 struct intel_encoder *source_encoder;
12547 struct drm_connector *connector;
12548 struct drm_connector_state *connector_state;
12549 int i;
12550
12551 for_each_connector_in_state(state, connector, connector_state, i) {
12552 if (connector_state->crtc != &crtc->base)
12553 continue;
12554
12555 source_encoder =
12556 to_intel_encoder(connector_state->best_encoder);
12557 if (!encoders_cloneable(encoder, source_encoder))
12558 return false;
12559 }
12560
12561 return true;
12562}
12563
6d3a1ce7
ML
12564static int intel_crtc_atomic_check(struct drm_crtc *crtc,
12565 struct drm_crtc_state *crtc_state)
12566{
cf5a15be 12567 struct drm_device *dev = crtc->dev;
fac5e23e 12568 struct drm_i915_private *dev_priv = to_i915(dev);
6d3a1ce7 12569 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
cf5a15be
ML
12570 struct intel_crtc_state *pipe_config =
12571 to_intel_crtc_state(crtc_state);
6d3a1ce7 12572 struct drm_atomic_state *state = crtc_state->state;
4d20cd86 12573 int ret;
6d3a1ce7
ML
12574 bool mode_changed = needs_modeset(crtc_state);
12575
852eb00d 12576 if (mode_changed && !crtc_state->active)
caed361d 12577 pipe_config->update_wm_post = true;
eddfcbcd 12578
ad421372
ML
12579 if (mode_changed && crtc_state->enable &&
12580 dev_priv->display.crtc_compute_clock &&
8106ddbd 12581 !WARN_ON(pipe_config->shared_dpll)) {
ad421372
ML
12582 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
12583 pipe_config);
12584 if (ret)
12585 return ret;
12586 }
12587
82cf435b
LL
12588 if (crtc_state->color_mgmt_changed) {
12589 ret = intel_color_check(crtc, crtc_state);
12590 if (ret)
12591 return ret;
e7852a4b
LL
12592
12593 /*
12594 * Changing color management on Intel hardware is
12595 * handled as part of planes update.
12596 */
12597 crtc_state->planes_changed = true;
82cf435b
LL
12598 }
12599
e435d6e5 12600 ret = 0;
86c8bbbe 12601 if (dev_priv->display.compute_pipe_wm) {
e3bddded 12602 ret = dev_priv->display.compute_pipe_wm(pipe_config);
ed4a6a7c
MR
12603 if (ret) {
12604 DRM_DEBUG_KMS("Target pipe watermarks are invalid\n");
12605 return ret;
12606 }
12607 }
12608
12609 if (dev_priv->display.compute_intermediate_wm &&
12610 !to_intel_atomic_state(state)->skip_intermediate_wm) {
12611 if (WARN_ON(!dev_priv->display.compute_pipe_wm))
12612 return 0;
12613
12614 /*
12615 * Calculate 'intermediate' watermarks that satisfy both the
12616 * old state and the new state. We can program these
12617 * immediately.
12618 */
12619 ret = dev_priv->display.compute_intermediate_wm(crtc->dev,
12620 intel_crtc,
12621 pipe_config);
12622 if (ret) {
12623 DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n");
86c8bbbe 12624 return ret;
ed4a6a7c 12625 }
e3d5457c
VS
12626 } else if (dev_priv->display.compute_intermediate_wm) {
12627 if (HAS_PCH_SPLIT(dev_priv) && INTEL_GEN(dev_priv) < 9)
12628 pipe_config->wm.ilk.intermediate = pipe_config->wm.ilk.optimal;
86c8bbbe
MR
12629 }
12630
e435d6e5
ML
12631 if (INTEL_INFO(dev)->gen >= 9) {
12632 if (mode_changed)
12633 ret = skl_update_scaler_crtc(pipe_config);
12634
12635 if (!ret)
12636 ret = intel_atomic_setup_scalers(dev, intel_crtc,
12637 pipe_config);
12638 }
12639
12640 return ret;
6d3a1ce7
ML
12641}
12642
65b38e0d 12643static const struct drm_crtc_helper_funcs intel_helper_funcs = {
f6e5b160 12644 .mode_set_base_atomic = intel_pipe_set_base_atomic,
5a21b665
DV
12645 .atomic_begin = intel_begin_crtc_commit,
12646 .atomic_flush = intel_finish_crtc_commit,
6d3a1ce7 12647 .atomic_check = intel_crtc_atomic_check,
f6e5b160
CW
12648};
12649
d29b2f9d
ACO
12650static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
12651{
12652 struct intel_connector *connector;
12653
12654 for_each_intel_connector(dev, connector) {
8863dc7f
DV
12655 if (connector->base.state->crtc)
12656 drm_connector_unreference(&connector->base);
12657
d29b2f9d
ACO
12658 if (connector->base.encoder) {
12659 connector->base.state->best_encoder =
12660 connector->base.encoder;
12661 connector->base.state->crtc =
12662 connector->base.encoder->crtc;
8863dc7f
DV
12663
12664 drm_connector_reference(&connector->base);
d29b2f9d
ACO
12665 } else {
12666 connector->base.state->best_encoder = NULL;
12667 connector->base.state->crtc = NULL;
12668 }
12669 }
12670}
12671
050f7aeb 12672static void
eba905b2 12673connected_sink_compute_bpp(struct intel_connector *connector,
5cec258b 12674 struct intel_crtc_state *pipe_config)
050f7aeb 12675{
6a2a5c5d 12676 const struct drm_display_info *info = &connector->base.display_info;
050f7aeb
DV
12677 int bpp = pipe_config->pipe_bpp;
12678
12679 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
6a2a5c5d
VS
12680 connector->base.base.id,
12681 connector->base.name);
050f7aeb
DV
12682
12683 /* Don't use an invalid EDID bpc value */
6a2a5c5d 12684 if (info->bpc != 0 && info->bpc * 3 < bpp) {
050f7aeb 12685 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
6a2a5c5d
VS
12686 bpp, info->bpc * 3);
12687 pipe_config->pipe_bpp = info->bpc * 3;
050f7aeb
DV
12688 }
12689
196f954e 12690 /* Clamp bpp to 8 on screens without EDID 1.4 */
6a2a5c5d 12691 if (info->bpc == 0 && bpp > 24) {
196f954e
MK
12692 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
12693 bpp);
12694 pipe_config->pipe_bpp = 24;
050f7aeb
DV
12695 }
12696}
12697
4e53c2e0 12698static int
050f7aeb 12699compute_baseline_pipe_bpp(struct intel_crtc *crtc,
5cec258b 12700 struct intel_crtc_state *pipe_config)
4e53c2e0 12701{
050f7aeb 12702 struct drm_device *dev = crtc->base.dev;
1486017f 12703 struct drm_atomic_state *state;
da3ced29
ACO
12704 struct drm_connector *connector;
12705 struct drm_connector_state *connector_state;
1486017f 12706 int bpp, i;
4e53c2e0 12707
666a4537 12708 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)))
4e53c2e0 12709 bpp = 10*3;
d328c9d7
DV
12710 else if (INTEL_INFO(dev)->gen >= 5)
12711 bpp = 12*3;
12712 else
12713 bpp = 8*3;
12714
4e53c2e0 12715
4e53c2e0
DV
12716 pipe_config->pipe_bpp = bpp;
12717
1486017f
ACO
12718 state = pipe_config->base.state;
12719
4e53c2e0 12720 /* Clamp display bpp to EDID value */
da3ced29
ACO
12721 for_each_connector_in_state(state, connector, connector_state, i) {
12722 if (connector_state->crtc != &crtc->base)
4e53c2e0
DV
12723 continue;
12724
da3ced29
ACO
12725 connected_sink_compute_bpp(to_intel_connector(connector),
12726 pipe_config);
4e53c2e0
DV
12727 }
12728
12729 return bpp;
12730}
12731
644db711
DV
12732static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
12733{
12734 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
12735 "type: 0x%x flags: 0x%x\n",
1342830c 12736 mode->crtc_clock,
644db711
DV
12737 mode->crtc_hdisplay, mode->crtc_hsync_start,
12738 mode->crtc_hsync_end, mode->crtc_htotal,
12739 mode->crtc_vdisplay, mode->crtc_vsync_start,
12740 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
12741}
12742
c0b03411 12743static void intel_dump_pipe_config(struct intel_crtc *crtc,
5cec258b 12744 struct intel_crtc_state *pipe_config,
c0b03411
DV
12745 const char *context)
12746{
6a60cd87 12747 struct drm_device *dev = crtc->base.dev;
4f8036a2 12748 struct drm_i915_private *dev_priv = to_i915(dev);
6a60cd87
CK
12749 struct drm_plane *plane;
12750 struct intel_plane *intel_plane;
12751 struct intel_plane_state *state;
12752 struct drm_framebuffer *fb;
12753
78108b7c
VS
12754 DRM_DEBUG_KMS("[CRTC:%d:%s]%s config %p for pipe %c\n",
12755 crtc->base.base.id, crtc->base.name,
6a60cd87 12756 context, pipe_config, pipe_name(crtc->pipe));
c0b03411 12757
da205630 12758 DRM_DEBUG_KMS("cpu_transcoder: %s\n", transcoder_name(pipe_config->cpu_transcoder));
c0b03411
DV
12759 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
12760 pipe_config->pipe_bpp, pipe_config->dither);
12761 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12762 pipe_config->has_pch_encoder,
12763 pipe_config->fdi_lanes,
12764 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
12765 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
12766 pipe_config->fdi_m_n.tu);
90a6b7b0 12767 DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
37a5650b 12768 intel_crtc_has_dp_encoder(pipe_config),
90a6b7b0 12769 pipe_config->lane_count,
eb14cb74
VS
12770 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
12771 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
12772 pipe_config->dp_m_n.tu);
b95af8be 12773
90a6b7b0 12774 DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
37a5650b 12775 intel_crtc_has_dp_encoder(pipe_config),
90a6b7b0 12776 pipe_config->lane_count,
b95af8be
VK
12777 pipe_config->dp_m2_n2.gmch_m,
12778 pipe_config->dp_m2_n2.gmch_n,
12779 pipe_config->dp_m2_n2.link_m,
12780 pipe_config->dp_m2_n2.link_n,
12781 pipe_config->dp_m2_n2.tu);
12782
55072d19
DV
12783 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12784 pipe_config->has_audio,
12785 pipe_config->has_infoframe);
12786
c0b03411 12787 DRM_DEBUG_KMS("requested mode:\n");
2d112de7 12788 drm_mode_debug_printmodeline(&pipe_config->base.mode);
c0b03411 12789 DRM_DEBUG_KMS("adjusted mode:\n");
2d112de7
ACO
12790 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12791 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
d71b8d4a 12792 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
37327abd
VS
12793 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
12794 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
0ec463d3
TU
12795 DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12796 crtc->num_scalers,
12797 pipe_config->scaler_state.scaler_users,
12798 pipe_config->scaler_state.scaler_id);
c0b03411
DV
12799 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12800 pipe_config->gmch_pfit.control,
12801 pipe_config->gmch_pfit.pgm_ratios,
12802 pipe_config->gmch_pfit.lvds_border_bits);
fd4daa9c 12803 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
c0b03411 12804 pipe_config->pch_pfit.pos,
fd4daa9c
CW
12805 pipe_config->pch_pfit.size,
12806 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
42db64ef 12807 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
cf532bb2 12808 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
6a60cd87 12809
415ff0f6 12810 if (IS_BROXTON(dev)) {
c856052a 12811 DRM_DEBUG_KMS("dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
415ff0f6 12812 "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
c8453338 12813 "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
415ff0f6 12814 pipe_config->dpll_hw_state.ebb0,
05712c15 12815 pipe_config->dpll_hw_state.ebb4,
415ff0f6
TU
12816 pipe_config->dpll_hw_state.pll0,
12817 pipe_config->dpll_hw_state.pll1,
12818 pipe_config->dpll_hw_state.pll2,
12819 pipe_config->dpll_hw_state.pll3,
12820 pipe_config->dpll_hw_state.pll6,
12821 pipe_config->dpll_hw_state.pll8,
05712c15 12822 pipe_config->dpll_hw_state.pll9,
c8453338 12823 pipe_config->dpll_hw_state.pll10,
415ff0f6 12824 pipe_config->dpll_hw_state.pcsdw12);
ef11bdb3 12825 } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
c856052a 12826 DRM_DEBUG_KMS("dpll_hw_state: "
415ff0f6 12827 "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
415ff0f6
TU
12828 pipe_config->dpll_hw_state.ctrl1,
12829 pipe_config->dpll_hw_state.cfgcr1,
12830 pipe_config->dpll_hw_state.cfgcr2);
4f8036a2 12831 } else if (HAS_DDI(dev_priv)) {
c856052a 12832 DRM_DEBUG_KMS("dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
00490c22
ML
12833 pipe_config->dpll_hw_state.wrpll,
12834 pipe_config->dpll_hw_state.spll);
415ff0f6
TU
12835 } else {
12836 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12837 "fp0: 0x%x, fp1: 0x%x\n",
12838 pipe_config->dpll_hw_state.dpll,
12839 pipe_config->dpll_hw_state.dpll_md,
12840 pipe_config->dpll_hw_state.fp0,
12841 pipe_config->dpll_hw_state.fp1);
12842 }
12843
6a60cd87
CK
12844 DRM_DEBUG_KMS("planes on this crtc\n");
12845 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
d3828147 12846 char *format_name;
6a60cd87
CK
12847 intel_plane = to_intel_plane(plane);
12848 if (intel_plane->pipe != crtc->pipe)
12849 continue;
12850
12851 state = to_intel_plane_state(plane->state);
12852 fb = state->base.fb;
12853 if (!fb) {
1d577e02
VS
12854 DRM_DEBUG_KMS("[PLANE:%d:%s] disabled, scaler_id = %d\n",
12855 plane->base.id, plane->name, state->scaler_id);
6a60cd87
CK
12856 continue;
12857 }
12858
90844f00
EE
12859 format_name = drm_get_format_name(fb->pixel_format);
12860
1d577e02
VS
12861 DRM_DEBUG_KMS("[PLANE:%d:%s] enabled",
12862 plane->base.id, plane->name);
12863 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = %s",
90844f00 12864 fb->base.id, fb->width, fb->height, format_name);
1d577e02
VS
12865 DRM_DEBUG_KMS("\tscaler:%d src %dx%d+%d+%d dst %dx%d+%d+%d\n",
12866 state->scaler_id,
936e71e3
VS
12867 state->base.src.x1 >> 16,
12868 state->base.src.y1 >> 16,
12869 drm_rect_width(&state->base.src) >> 16,
12870 drm_rect_height(&state->base.src) >> 16,
12871 state->base.dst.x1, state->base.dst.y1,
12872 drm_rect_width(&state->base.dst),
12873 drm_rect_height(&state->base.dst));
90844f00
EE
12874
12875 kfree(format_name);
6a60cd87 12876 }
c0b03411
DV
12877}
12878
5448a00d 12879static bool check_digital_port_conflicts(struct drm_atomic_state *state)
00f0b378 12880{
5448a00d 12881 struct drm_device *dev = state->dev;
da3ced29 12882 struct drm_connector *connector;
00f0b378 12883 unsigned int used_ports = 0;
477321e0 12884 unsigned int used_mst_ports = 0;
00f0b378
VS
12885
12886 /*
12887 * Walk the connector list instead of the encoder
12888 * list to detect the problem on ddi platforms
12889 * where there's just one encoder per digital port.
12890 */
0bff4858
VS
12891 drm_for_each_connector(connector, dev) {
12892 struct drm_connector_state *connector_state;
12893 struct intel_encoder *encoder;
12894
12895 connector_state = drm_atomic_get_existing_connector_state(state, connector);
12896 if (!connector_state)
12897 connector_state = connector->state;
12898
5448a00d 12899 if (!connector_state->best_encoder)
00f0b378
VS
12900 continue;
12901
5448a00d
ACO
12902 encoder = to_intel_encoder(connector_state->best_encoder);
12903
12904 WARN_ON(!connector_state->crtc);
00f0b378
VS
12905
12906 switch (encoder->type) {
12907 unsigned int port_mask;
12908 case INTEL_OUTPUT_UNKNOWN:
4f8036a2 12909 if (WARN_ON(!HAS_DDI(to_i915(dev))))
00f0b378 12910 break;
cca0502b 12911 case INTEL_OUTPUT_DP:
00f0b378
VS
12912 case INTEL_OUTPUT_HDMI:
12913 case INTEL_OUTPUT_EDP:
12914 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12915
12916 /* the same port mustn't appear more than once */
12917 if (used_ports & port_mask)
12918 return false;
12919
12920 used_ports |= port_mask;
477321e0
VS
12921 break;
12922 case INTEL_OUTPUT_DP_MST:
12923 used_mst_ports |=
12924 1 << enc_to_mst(&encoder->base)->primary->port;
12925 break;
00f0b378
VS
12926 default:
12927 break;
12928 }
12929 }
12930
477321e0
VS
12931 /* can't mix MST and SST/HDMI on the same port */
12932 if (used_ports & used_mst_ports)
12933 return false;
12934
00f0b378
VS
12935 return true;
12936}
12937
83a57153
ACO
12938static void
12939clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12940{
12941 struct drm_crtc_state tmp_state;
663a3640 12942 struct intel_crtc_scaler_state scaler_state;
4978cc93 12943 struct intel_dpll_hw_state dpll_hw_state;
8106ddbd 12944 struct intel_shared_dpll *shared_dpll;
c4e2d043 12945 bool force_thru;
83a57153 12946
7546a384
ACO
12947 /* FIXME: before the switch to atomic started, a new pipe_config was
12948 * kzalloc'd. Code that depends on any field being zero should be
12949 * fixed, so that the crtc_state can be safely duplicated. For now,
12950 * only fields that are know to not cause problems are preserved. */
12951
83a57153 12952 tmp_state = crtc_state->base;
663a3640 12953 scaler_state = crtc_state->scaler_state;
4978cc93
ACO
12954 shared_dpll = crtc_state->shared_dpll;
12955 dpll_hw_state = crtc_state->dpll_hw_state;
c4e2d043 12956 force_thru = crtc_state->pch_pfit.force_thru;
4978cc93 12957
83a57153 12958 memset(crtc_state, 0, sizeof *crtc_state);
4978cc93 12959
83a57153 12960 crtc_state->base = tmp_state;
663a3640 12961 crtc_state->scaler_state = scaler_state;
4978cc93
ACO
12962 crtc_state->shared_dpll = shared_dpll;
12963 crtc_state->dpll_hw_state = dpll_hw_state;
c4e2d043 12964 crtc_state->pch_pfit.force_thru = force_thru;
83a57153
ACO
12965}
12966
548ee15b 12967static int
b8cecdf5 12968intel_modeset_pipe_config(struct drm_crtc *crtc,
b359283a 12969 struct intel_crtc_state *pipe_config)
ee7b9f93 12970{
b359283a 12971 struct drm_atomic_state *state = pipe_config->base.state;
7758a113 12972 struct intel_encoder *encoder;
da3ced29 12973 struct drm_connector *connector;
0b901879 12974 struct drm_connector_state *connector_state;
d328c9d7 12975 int base_bpp, ret = -EINVAL;
0b901879 12976 int i;
e29c22c0 12977 bool retry = true;
ee7b9f93 12978
83a57153 12979 clear_intel_crtc_state(pipe_config);
7758a113 12980
e143a21c
DV
12981 pipe_config->cpu_transcoder =
12982 (enum transcoder) to_intel_crtc(crtc)->pipe;
b8cecdf5 12983
2960bc9c
ID
12984 /*
12985 * Sanitize sync polarity flags based on requested ones. If neither
12986 * positive or negative polarity is requested, treat this as meaning
12987 * negative polarity.
12988 */
2d112de7 12989 if (!(pipe_config->base.adjusted_mode.flags &
2960bc9c 12990 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
2d112de7 12991 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
2960bc9c 12992
2d112de7 12993 if (!(pipe_config->base.adjusted_mode.flags &
2960bc9c 12994 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
2d112de7 12995 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
2960bc9c 12996
d328c9d7
DV
12997 base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12998 pipe_config);
12999 if (base_bpp < 0)
4e53c2e0
DV
13000 goto fail;
13001
e41a56be
VS
13002 /*
13003 * Determine the real pipe dimensions. Note that stereo modes can
13004 * increase the actual pipe size due to the frame doubling and
13005 * insertion of additional space for blanks between the frame. This
13006 * is stored in the crtc timings. We use the requested mode to do this
13007 * computation to clearly distinguish it from the adjusted mode, which
13008 * can be changed by the connectors in the below retry loop.
13009 */
2d112de7 13010 drm_crtc_get_hv_timing(&pipe_config->base.mode,
ecb7e16b
GP
13011 &pipe_config->pipe_src_w,
13012 &pipe_config->pipe_src_h);
e41a56be 13013
253c84c8
VS
13014 for_each_connector_in_state(state, connector, connector_state, i) {
13015 if (connector_state->crtc != crtc)
13016 continue;
13017
13018 encoder = to_intel_encoder(connector_state->best_encoder);
13019
e25148d0
VS
13020 if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) {
13021 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
13022 goto fail;
13023 }
13024
253c84c8
VS
13025 /*
13026 * Determine output_types before calling the .compute_config()
13027 * hooks so that the hooks can use this information safely.
13028 */
13029 pipe_config->output_types |= 1 << encoder->type;
13030 }
13031
e29c22c0 13032encoder_retry:
ef1b460d 13033 /* Ensure the port clock defaults are reset when retrying. */
ff9a6750 13034 pipe_config->port_clock = 0;
ef1b460d 13035 pipe_config->pixel_multiplier = 1;
ff9a6750 13036
135c81b8 13037 /* Fill in default crtc timings, allow encoders to overwrite them. */
2d112de7
ACO
13038 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
13039 CRTC_STEREO_DOUBLE);
135c81b8 13040
7758a113
DV
13041 /* Pass our mode to the connectors and the CRTC to give them a chance to
13042 * adjust it according to limitations or connector properties, and also
13043 * a chance to reject the mode entirely.
47f1c6c9 13044 */
da3ced29 13045 for_each_connector_in_state(state, connector, connector_state, i) {
0b901879 13046 if (connector_state->crtc != crtc)
7758a113 13047 continue;
7ae89233 13048
0b901879
ACO
13049 encoder = to_intel_encoder(connector_state->best_encoder);
13050
0a478c27 13051 if (!(encoder->compute_config(encoder, pipe_config, connector_state))) {
efea6e8e 13052 DRM_DEBUG_KMS("Encoder config failure\n");
7758a113
DV
13053 goto fail;
13054 }
ee7b9f93 13055 }
47f1c6c9 13056
ff9a6750
DV
13057 /* Set default port clock if not overwritten by the encoder. Needs to be
13058 * done afterwards in case the encoder adjusts the mode. */
13059 if (!pipe_config->port_clock)
2d112de7 13060 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
241bfc38 13061 * pipe_config->pixel_multiplier;
ff9a6750 13062
a43f6e0f 13063 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
e29c22c0 13064 if (ret < 0) {
7758a113
DV
13065 DRM_DEBUG_KMS("CRTC fixup failed\n");
13066 goto fail;
ee7b9f93 13067 }
e29c22c0
DV
13068
13069 if (ret == RETRY) {
13070 if (WARN(!retry, "loop in pipe configuration computation\n")) {
13071 ret = -EINVAL;
13072 goto fail;
13073 }
13074
13075 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
13076 retry = false;
13077 goto encoder_retry;
13078 }
13079
e8fa4270
DV
13080 /* Dithering seems to not pass-through bits correctly when it should, so
13081 * only enable it on 6bpc panels. */
13082 pipe_config->dither = pipe_config->pipe_bpp == 6*3;
62f0ace5 13083 DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
d328c9d7 13084 base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
4e53c2e0 13085
7758a113 13086fail:
548ee15b 13087 return ret;
ee7b9f93 13088}
47f1c6c9 13089
ea9d758d 13090static void
4740b0f2 13091intel_modeset_update_crtc_state(struct drm_atomic_state *state)
ea9d758d 13092{
0a9ab303
ACO
13093 struct drm_crtc *crtc;
13094 struct drm_crtc_state *crtc_state;
8a75d157 13095 int i;
ea9d758d 13096
7668851f 13097 /* Double check state. */
8a75d157 13098 for_each_crtc_in_state(state, crtc, crtc_state, i) {
3cb480bc 13099 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
fc467a22
ML
13100
13101 /* Update hwmode for vblank functions */
13102 if (crtc->state->active)
13103 crtc->hwmode = crtc->state->adjusted_mode;
13104 else
13105 crtc->hwmode.crtc_clock = 0;
61067a5e
ML
13106
13107 /*
13108 * Update legacy state to satisfy fbc code. This can
13109 * be removed when fbc uses the atomic state.
13110 */
13111 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
13112 struct drm_plane_state *plane_state = crtc->primary->state;
13113
13114 crtc->primary->fb = plane_state->fb;
13115 crtc->x = plane_state->src_x >> 16;
13116 crtc->y = plane_state->src_y >> 16;
13117 }
ea9d758d 13118 }
ea9d758d
DV
13119}
13120
3bd26263 13121static bool intel_fuzzy_clock_check(int clock1, int clock2)
f1f644dc 13122{
3bd26263 13123 int diff;
f1f644dc
JB
13124
13125 if (clock1 == clock2)
13126 return true;
13127
13128 if (!clock1 || !clock2)
13129 return false;
13130
13131 diff = abs(clock1 - clock2);
13132
13133 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
13134 return true;
13135
13136 return false;
13137}
13138
cfb23ed6
ML
13139static bool
13140intel_compare_m_n(unsigned int m, unsigned int n,
13141 unsigned int m2, unsigned int n2,
13142 bool exact)
13143{
13144 if (m == m2 && n == n2)
13145 return true;
13146
13147 if (exact || !m || !n || !m2 || !n2)
13148 return false;
13149
13150 BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
13151
31d10b57
ML
13152 if (n > n2) {
13153 while (n > n2) {
cfb23ed6
ML
13154 m2 <<= 1;
13155 n2 <<= 1;
13156 }
31d10b57
ML
13157 } else if (n < n2) {
13158 while (n < n2) {
cfb23ed6
ML
13159 m <<= 1;
13160 n <<= 1;
13161 }
13162 }
13163
31d10b57
ML
13164 if (n != n2)
13165 return false;
13166
13167 return intel_fuzzy_clock_check(m, m2);
cfb23ed6
ML
13168}
13169
13170static bool
13171intel_compare_link_m_n(const struct intel_link_m_n *m_n,
13172 struct intel_link_m_n *m2_n2,
13173 bool adjust)
13174{
13175 if (m_n->tu == m2_n2->tu &&
13176 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
13177 m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
13178 intel_compare_m_n(m_n->link_m, m_n->link_n,
13179 m2_n2->link_m, m2_n2->link_n, !adjust)) {
13180 if (adjust)
13181 *m2_n2 = *m_n;
13182
13183 return true;
13184 }
13185
13186 return false;
13187}
13188
0e8ffe1b 13189static bool
2fa2fe9a 13190intel_pipe_config_compare(struct drm_device *dev,
5cec258b 13191 struct intel_crtc_state *current_config,
cfb23ed6
ML
13192 struct intel_crtc_state *pipe_config,
13193 bool adjust)
0e8ffe1b 13194{
cfb23ed6
ML
13195 bool ret = true;
13196
13197#define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
13198 do { \
13199 if (!adjust) \
13200 DRM_ERROR(fmt, ##__VA_ARGS__); \
13201 else \
13202 DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
13203 } while (0)
13204
66e985c0
DV
13205#define PIPE_CONF_CHECK_X(name) \
13206 if (current_config->name != pipe_config->name) { \
cfb23ed6 13207 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
66e985c0
DV
13208 "(expected 0x%08x, found 0x%08x)\n", \
13209 current_config->name, \
13210 pipe_config->name); \
cfb23ed6 13211 ret = false; \
66e985c0
DV
13212 }
13213
08a24034
DV
13214#define PIPE_CONF_CHECK_I(name) \
13215 if (current_config->name != pipe_config->name) { \
cfb23ed6 13216 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
08a24034
DV
13217 "(expected %i, found %i)\n", \
13218 current_config->name, \
13219 pipe_config->name); \
cfb23ed6
ML
13220 ret = false; \
13221 }
13222
8106ddbd
ACO
13223#define PIPE_CONF_CHECK_P(name) \
13224 if (current_config->name != pipe_config->name) { \
13225 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13226 "(expected %p, found %p)\n", \
13227 current_config->name, \
13228 pipe_config->name); \
13229 ret = false; \
13230 }
13231
cfb23ed6
ML
13232#define PIPE_CONF_CHECK_M_N(name) \
13233 if (!intel_compare_link_m_n(&current_config->name, \
13234 &pipe_config->name,\
13235 adjust)) { \
13236 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13237 "(expected tu %i gmch %i/%i link %i/%i, " \
13238 "found tu %i, gmch %i/%i link %i/%i)\n", \
13239 current_config->name.tu, \
13240 current_config->name.gmch_m, \
13241 current_config->name.gmch_n, \
13242 current_config->name.link_m, \
13243 current_config->name.link_n, \
13244 pipe_config->name.tu, \
13245 pipe_config->name.gmch_m, \
13246 pipe_config->name.gmch_n, \
13247 pipe_config->name.link_m, \
13248 pipe_config->name.link_n); \
13249 ret = false; \
13250 }
13251
55c561a7
DV
13252/* This is required for BDW+ where there is only one set of registers for
13253 * switching between high and low RR.
13254 * This macro can be used whenever a comparison has to be made between one
13255 * hw state and multiple sw state variables.
13256 */
cfb23ed6
ML
13257#define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
13258 if (!intel_compare_link_m_n(&current_config->name, \
13259 &pipe_config->name, adjust) && \
13260 !intel_compare_link_m_n(&current_config->alt_name, \
13261 &pipe_config->name, adjust)) { \
13262 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13263 "(expected tu %i gmch %i/%i link %i/%i, " \
13264 "or tu %i gmch %i/%i link %i/%i, " \
13265 "found tu %i, gmch %i/%i link %i/%i)\n", \
13266 current_config->name.tu, \
13267 current_config->name.gmch_m, \
13268 current_config->name.gmch_n, \
13269 current_config->name.link_m, \
13270 current_config->name.link_n, \
13271 current_config->alt_name.tu, \
13272 current_config->alt_name.gmch_m, \
13273 current_config->alt_name.gmch_n, \
13274 current_config->alt_name.link_m, \
13275 current_config->alt_name.link_n, \
13276 pipe_config->name.tu, \
13277 pipe_config->name.gmch_m, \
13278 pipe_config->name.gmch_n, \
13279 pipe_config->name.link_m, \
13280 pipe_config->name.link_n); \
13281 ret = false; \
88adfff1
DV
13282 }
13283
1bd1bd80
DV
13284#define PIPE_CONF_CHECK_FLAGS(name, mask) \
13285 if ((current_config->name ^ pipe_config->name) & (mask)) { \
cfb23ed6 13286 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
1bd1bd80
DV
13287 "(expected %i, found %i)\n", \
13288 current_config->name & (mask), \
13289 pipe_config->name & (mask)); \
cfb23ed6 13290 ret = false; \
1bd1bd80
DV
13291 }
13292
5e550656
VS
13293#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
13294 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
cfb23ed6 13295 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
5e550656
VS
13296 "(expected %i, found %i)\n", \
13297 current_config->name, \
13298 pipe_config->name); \
cfb23ed6 13299 ret = false; \
5e550656
VS
13300 }
13301
bb760063
DV
13302#define PIPE_CONF_QUIRK(quirk) \
13303 ((current_config->quirks | pipe_config->quirks) & (quirk))
13304
eccb140b
DV
13305 PIPE_CONF_CHECK_I(cpu_transcoder);
13306
08a24034
DV
13307 PIPE_CONF_CHECK_I(has_pch_encoder);
13308 PIPE_CONF_CHECK_I(fdi_lanes);
cfb23ed6 13309 PIPE_CONF_CHECK_M_N(fdi_m_n);
08a24034 13310
90a6b7b0 13311 PIPE_CONF_CHECK_I(lane_count);
95a7a2ae 13312 PIPE_CONF_CHECK_X(lane_lat_optim_mask);
b95af8be
VK
13313
13314 if (INTEL_INFO(dev)->gen < 8) {
cfb23ed6
ML
13315 PIPE_CONF_CHECK_M_N(dp_m_n);
13316
cfb23ed6
ML
13317 if (current_config->has_drrs)
13318 PIPE_CONF_CHECK_M_N(dp_m2_n2);
13319 } else
13320 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
eb14cb74 13321
253c84c8 13322 PIPE_CONF_CHECK_X(output_types);
a65347ba 13323
2d112de7
ACO
13324 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
13325 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
13326 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
13327 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
13328 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
13329 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
1bd1bd80 13330
2d112de7
ACO
13331 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
13332 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
13333 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
13334 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
13335 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
13336 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
1bd1bd80 13337
c93f54cf 13338 PIPE_CONF_CHECK_I(pixel_multiplier);
6897b4b5 13339 PIPE_CONF_CHECK_I(has_hdmi_sink);
b5a9fa09 13340 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
666a4537 13341 IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
b5a9fa09 13342 PIPE_CONF_CHECK_I(limited_color_range);
e43823ec 13343 PIPE_CONF_CHECK_I(has_infoframe);
6c49f241 13344
9ed109a7
DV
13345 PIPE_CONF_CHECK_I(has_audio);
13346
2d112de7 13347 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
1bd1bd80
DV
13348 DRM_MODE_FLAG_INTERLACE);
13349
bb760063 13350 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
2d112de7 13351 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 13352 DRM_MODE_FLAG_PHSYNC);
2d112de7 13353 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 13354 DRM_MODE_FLAG_NHSYNC);
2d112de7 13355 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 13356 DRM_MODE_FLAG_PVSYNC);
2d112de7 13357 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063
DV
13358 DRM_MODE_FLAG_NVSYNC);
13359 }
045ac3b5 13360
333b8ca8 13361 PIPE_CONF_CHECK_X(gmch_pfit.control);
e2ff2d4a
DV
13362 /* pfit ratios are autocomputed by the hw on gen4+ */
13363 if (INTEL_INFO(dev)->gen < 4)
7f7d8dd6 13364 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
333b8ca8 13365 PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
9953599b 13366
bfd16b2a
ML
13367 if (!adjust) {
13368 PIPE_CONF_CHECK_I(pipe_src_w);
13369 PIPE_CONF_CHECK_I(pipe_src_h);
13370
13371 PIPE_CONF_CHECK_I(pch_pfit.enabled);
13372 if (current_config->pch_pfit.enabled) {
13373 PIPE_CONF_CHECK_X(pch_pfit.pos);
13374 PIPE_CONF_CHECK_X(pch_pfit.size);
13375 }
2fa2fe9a 13376
7aefe2b5
ML
13377 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
13378 }
a1b2278e 13379
e59150dc
JB
13380 /* BDW+ don't expose a synchronous way to read the state */
13381 if (IS_HASWELL(dev))
13382 PIPE_CONF_CHECK_I(ips_enabled);
42db64ef 13383
282740f7
VS
13384 PIPE_CONF_CHECK_I(double_wide);
13385
8106ddbd 13386 PIPE_CONF_CHECK_P(shared_dpll);
66e985c0 13387 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8bcc2795 13388 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
66e985c0
DV
13389 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
13390 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
d452c5b6 13391 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
00490c22 13392 PIPE_CONF_CHECK_X(dpll_hw_state.spll);
3f4cd19f
DL
13393 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
13394 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
13395 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
c0d43d62 13396
47eacbab
VS
13397 PIPE_CONF_CHECK_X(dsi_pll.ctrl);
13398 PIPE_CONF_CHECK_X(dsi_pll.div);
13399
42571aef
VS
13400 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
13401 PIPE_CONF_CHECK_I(pipe_bpp);
13402
2d112de7 13403 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
a9a7e98a 13404 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
5e550656 13405
66e985c0 13406#undef PIPE_CONF_CHECK_X
08a24034 13407#undef PIPE_CONF_CHECK_I
8106ddbd 13408#undef PIPE_CONF_CHECK_P
1bd1bd80 13409#undef PIPE_CONF_CHECK_FLAGS
5e550656 13410#undef PIPE_CONF_CHECK_CLOCK_FUZZY
bb760063 13411#undef PIPE_CONF_QUIRK
cfb23ed6 13412#undef INTEL_ERR_OR_DBG_KMS
88adfff1 13413
cfb23ed6 13414 return ret;
0e8ffe1b
DV
13415}
13416
e3b247da
VS
13417static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
13418 const struct intel_crtc_state *pipe_config)
13419{
13420 if (pipe_config->has_pch_encoder) {
21a727b3 13421 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
e3b247da
VS
13422 &pipe_config->fdi_m_n);
13423 int dotclock = pipe_config->base.adjusted_mode.crtc_clock;
13424
13425 /*
13426 * FDI already provided one idea for the dotclock.
13427 * Yell if the encoder disagrees.
13428 */
13429 WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock),
13430 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
13431 fdi_dotclock, dotclock);
13432 }
13433}
13434
c0ead703
ML
13435static void verify_wm_state(struct drm_crtc *crtc,
13436 struct drm_crtc_state *new_state)
08db6652 13437{
e7c84544 13438 struct drm_device *dev = crtc->dev;
fac5e23e 13439 struct drm_i915_private *dev_priv = to_i915(dev);
08db6652 13440 struct skl_ddb_allocation hw_ddb, *sw_ddb;
e7c84544
ML
13441 struct skl_ddb_entry *hw_entry, *sw_entry;
13442 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13443 const enum pipe pipe = intel_crtc->pipe;
08db6652
DL
13444 int plane;
13445
e7c84544 13446 if (INTEL_INFO(dev)->gen < 9 || !new_state->active)
08db6652
DL
13447 return;
13448
13449 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
13450 sw_ddb = &dev_priv->wm.skl_hw.ddb;
13451
e7c84544
ML
13452 /* planes */
13453 for_each_plane(dev_priv, pipe, plane) {
13454 hw_entry = &hw_ddb.plane[pipe][plane];
13455 sw_entry = &sw_ddb->plane[pipe][plane];
08db6652 13456
e7c84544 13457 if (skl_ddb_entry_equal(hw_entry, sw_entry))
08db6652
DL
13458 continue;
13459
e7c84544
ML
13460 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
13461 "(expected (%u,%u), found (%u,%u))\n",
13462 pipe_name(pipe), plane + 1,
13463 sw_entry->start, sw_entry->end,
13464 hw_entry->start, hw_entry->end);
13465 }
08db6652 13466
27082493
L
13467 /*
13468 * cursor
13469 * If the cursor plane isn't active, we may not have updated it's ddb
13470 * allocation. In that case since the ddb allocation will be updated
13471 * once the plane becomes visible, we can skip this check
13472 */
13473 if (intel_crtc->cursor_addr) {
13474 hw_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
13475 sw_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
13476
13477 if (!skl_ddb_entry_equal(hw_entry, sw_entry)) {
13478 DRM_ERROR("mismatch in DDB state pipe %c cursor "
13479 "(expected (%u,%u), found (%u,%u))\n",
13480 pipe_name(pipe),
13481 sw_entry->start, sw_entry->end,
13482 hw_entry->start, hw_entry->end);
13483 }
08db6652
DL
13484 }
13485}
13486
91d1b4bd 13487static void
c0ead703 13488verify_connector_state(struct drm_device *dev, struct drm_crtc *crtc)
8af6cf88 13489{
35dd3c64 13490 struct drm_connector *connector;
8af6cf88 13491
e7c84544 13492 drm_for_each_connector(connector, dev) {
35dd3c64
ML
13493 struct drm_encoder *encoder = connector->encoder;
13494 struct drm_connector_state *state = connector->state;
ad3c558f 13495
e7c84544
ML
13496 if (state->crtc != crtc)
13497 continue;
13498
5a21b665 13499 intel_connector_verify_state(to_intel_connector(connector));
8af6cf88 13500
ad3c558f 13501 I915_STATE_WARN(state->best_encoder != encoder,
35dd3c64 13502 "connector's atomic encoder doesn't match legacy encoder\n");
8af6cf88 13503 }
91d1b4bd
DV
13504}
13505
13506static void
c0ead703 13507verify_encoder_state(struct drm_device *dev)
91d1b4bd
DV
13508{
13509 struct intel_encoder *encoder;
13510 struct intel_connector *connector;
8af6cf88 13511
b2784e15 13512 for_each_intel_encoder(dev, encoder) {
8af6cf88 13513 bool enabled = false;
4d20cd86 13514 enum pipe pipe;
8af6cf88
DV
13515
13516 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
13517 encoder->base.base.id,
8e329a03 13518 encoder->base.name);
8af6cf88 13519
3a3371ff 13520 for_each_intel_connector(dev, connector) {
4d20cd86 13521 if (connector->base.state->best_encoder != &encoder->base)
8af6cf88
DV
13522 continue;
13523 enabled = true;
ad3c558f
ML
13524
13525 I915_STATE_WARN(connector->base.state->crtc !=
13526 encoder->base.crtc,
13527 "connector's crtc doesn't match encoder crtc\n");
8af6cf88 13528 }
0e32b39c 13529
e2c719b7 13530 I915_STATE_WARN(!!encoder->base.crtc != enabled,
8af6cf88
DV
13531 "encoder's enabled state mismatch "
13532 "(expected %i, found %i)\n",
13533 !!encoder->base.crtc, enabled);
7c60d198
ML
13534
13535 if (!encoder->base.crtc) {
4d20cd86 13536 bool active;
7c60d198 13537
4d20cd86
ML
13538 active = encoder->get_hw_state(encoder, &pipe);
13539 I915_STATE_WARN(active,
13540 "encoder detached but still enabled on pipe %c.\n",
13541 pipe_name(pipe));
7c60d198 13542 }
8af6cf88 13543 }
91d1b4bd
DV
13544}
13545
13546static void
c0ead703
ML
13547verify_crtc_state(struct drm_crtc *crtc,
13548 struct drm_crtc_state *old_crtc_state,
13549 struct drm_crtc_state *new_crtc_state)
91d1b4bd 13550{
e7c84544 13551 struct drm_device *dev = crtc->dev;
fac5e23e 13552 struct drm_i915_private *dev_priv = to_i915(dev);
91d1b4bd 13553 struct intel_encoder *encoder;
e7c84544
ML
13554 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13555 struct intel_crtc_state *pipe_config, *sw_config;
13556 struct drm_atomic_state *old_state;
13557 bool active;
045ac3b5 13558
e7c84544 13559 old_state = old_crtc_state->state;
ec2dc6a0 13560 __drm_atomic_helper_crtc_destroy_state(old_crtc_state);
e7c84544
ML
13561 pipe_config = to_intel_crtc_state(old_crtc_state);
13562 memset(pipe_config, 0, sizeof(*pipe_config));
13563 pipe_config->base.crtc = crtc;
13564 pipe_config->base.state = old_state;
8af6cf88 13565
78108b7c 13566 DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.id, crtc->name);
8af6cf88 13567
e7c84544 13568 active = dev_priv->display.get_pipe_config(intel_crtc, pipe_config);
d62cf62a 13569
e7c84544
ML
13570 /* hw state is inconsistent with the pipe quirk */
13571 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
13572 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
13573 active = new_crtc_state->active;
6c49f241 13574
e7c84544
ML
13575 I915_STATE_WARN(new_crtc_state->active != active,
13576 "crtc active state doesn't match with hw state "
13577 "(expected %i, found %i)\n", new_crtc_state->active, active);
0e8ffe1b 13578
e7c84544
ML
13579 I915_STATE_WARN(intel_crtc->active != new_crtc_state->active,
13580 "transitional active state does not match atomic hw state "
13581 "(expected %i, found %i)\n", new_crtc_state->active, intel_crtc->active);
4d20cd86 13582
e7c84544
ML
13583 for_each_encoder_on_crtc(dev, crtc, encoder) {
13584 enum pipe pipe;
4d20cd86 13585
e7c84544
ML
13586 active = encoder->get_hw_state(encoder, &pipe);
13587 I915_STATE_WARN(active != new_crtc_state->active,
13588 "[ENCODER:%i] active %i with crtc active %i\n",
13589 encoder->base.base.id, active, new_crtc_state->active);
4d20cd86 13590
e7c84544
ML
13591 I915_STATE_WARN(active && intel_crtc->pipe != pipe,
13592 "Encoder connected to wrong pipe %c\n",
13593 pipe_name(pipe));
4d20cd86 13594
253c84c8
VS
13595 if (active) {
13596 pipe_config->output_types |= 1 << encoder->type;
e7c84544 13597 encoder->get_config(encoder, pipe_config);
253c84c8 13598 }
e7c84544 13599 }
53d9f4e9 13600
e7c84544
ML
13601 if (!new_crtc_state->active)
13602 return;
cfb23ed6 13603
e7c84544 13604 intel_pipe_config_sanity_check(dev_priv, pipe_config);
e3b247da 13605
e7c84544
ML
13606 sw_config = to_intel_crtc_state(crtc->state);
13607 if (!intel_pipe_config_compare(dev, sw_config,
13608 pipe_config, false)) {
13609 I915_STATE_WARN(1, "pipe state doesn't match!\n");
13610 intel_dump_pipe_config(intel_crtc, pipe_config,
13611 "[hw state]");
13612 intel_dump_pipe_config(intel_crtc, sw_config,
13613 "[sw state]");
8af6cf88
DV
13614 }
13615}
13616
91d1b4bd 13617static void
c0ead703
ML
13618verify_single_dpll_state(struct drm_i915_private *dev_priv,
13619 struct intel_shared_dpll *pll,
13620 struct drm_crtc *crtc,
13621 struct drm_crtc_state *new_state)
91d1b4bd 13622{
91d1b4bd 13623 struct intel_dpll_hw_state dpll_hw_state;
e7c84544
ML
13624 unsigned crtc_mask;
13625 bool active;
5358901f 13626
e7c84544 13627 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
5358901f 13628
e7c84544 13629 DRM_DEBUG_KMS("%s\n", pll->name);
5358901f 13630
e7c84544 13631 active = pll->funcs.get_hw_state(dev_priv, pll, &dpll_hw_state);
5358901f 13632
e7c84544
ML
13633 if (!(pll->flags & INTEL_DPLL_ALWAYS_ON)) {
13634 I915_STATE_WARN(!pll->on && pll->active_mask,
13635 "pll in active use but not on in sw tracking\n");
13636 I915_STATE_WARN(pll->on && !pll->active_mask,
13637 "pll is on but not used by any active crtc\n");
13638 I915_STATE_WARN(pll->on != active,
13639 "pll on state mismatch (expected %i, found %i)\n",
13640 pll->on, active);
13641 }
5358901f 13642
e7c84544 13643 if (!crtc) {
2dd66ebd 13644 I915_STATE_WARN(pll->active_mask & ~pll->config.crtc_mask,
e7c84544
ML
13645 "more active pll users than references: %x vs %x\n",
13646 pll->active_mask, pll->config.crtc_mask);
5358901f 13647
e7c84544
ML
13648 return;
13649 }
13650
13651 crtc_mask = 1 << drm_crtc_index(crtc);
13652
13653 if (new_state->active)
13654 I915_STATE_WARN(!(pll->active_mask & crtc_mask),
13655 "pll active mismatch (expected pipe %c in active mask 0x%02x)\n",
13656 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
13657 else
13658 I915_STATE_WARN(pll->active_mask & crtc_mask,
13659 "pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n",
13660 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
2dd66ebd 13661
e7c84544
ML
13662 I915_STATE_WARN(!(pll->config.crtc_mask & crtc_mask),
13663 "pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n",
13664 crtc_mask, pll->config.crtc_mask);
66e985c0 13665
e7c84544
ML
13666 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state,
13667 &dpll_hw_state,
13668 sizeof(dpll_hw_state)),
13669 "pll hw state mismatch\n");
13670}
13671
13672static void
c0ead703
ML
13673verify_shared_dpll_state(struct drm_device *dev, struct drm_crtc *crtc,
13674 struct drm_crtc_state *old_crtc_state,
13675 struct drm_crtc_state *new_crtc_state)
e7c84544 13676{
fac5e23e 13677 struct drm_i915_private *dev_priv = to_i915(dev);
e7c84544
ML
13678 struct intel_crtc_state *old_state = to_intel_crtc_state(old_crtc_state);
13679 struct intel_crtc_state *new_state = to_intel_crtc_state(new_crtc_state);
13680
13681 if (new_state->shared_dpll)
c0ead703 13682 verify_single_dpll_state(dev_priv, new_state->shared_dpll, crtc, new_crtc_state);
e7c84544
ML
13683
13684 if (old_state->shared_dpll &&
13685 old_state->shared_dpll != new_state->shared_dpll) {
13686 unsigned crtc_mask = 1 << drm_crtc_index(crtc);
13687 struct intel_shared_dpll *pll = old_state->shared_dpll;
13688
13689 I915_STATE_WARN(pll->active_mask & crtc_mask,
13690 "pll active mismatch (didn't expect pipe %c in active mask)\n",
13691 pipe_name(drm_crtc_index(crtc)));
13692 I915_STATE_WARN(pll->config.crtc_mask & crtc_mask,
13693 "pll enabled crtcs mismatch (found %x in enabled mask)\n",
13694 pipe_name(drm_crtc_index(crtc)));
5358901f 13695 }
8af6cf88
DV
13696}
13697
e7c84544 13698static void
c0ead703 13699intel_modeset_verify_crtc(struct drm_crtc *crtc,
e7c84544
ML
13700 struct drm_crtc_state *old_state,
13701 struct drm_crtc_state *new_state)
13702{
5a21b665
DV
13703 if (!needs_modeset(new_state) &&
13704 !to_intel_crtc_state(new_state)->update_pipe)
13705 return;
13706
c0ead703 13707 verify_wm_state(crtc, new_state);
5a21b665 13708 verify_connector_state(crtc->dev, crtc);
c0ead703
ML
13709 verify_crtc_state(crtc, old_state, new_state);
13710 verify_shared_dpll_state(crtc->dev, crtc, old_state, new_state);
e7c84544
ML
13711}
13712
13713static void
c0ead703 13714verify_disabled_dpll_state(struct drm_device *dev)
e7c84544 13715{
fac5e23e 13716 struct drm_i915_private *dev_priv = to_i915(dev);
e7c84544
ML
13717 int i;
13718
13719 for (i = 0; i < dev_priv->num_shared_dpll; i++)
c0ead703 13720 verify_single_dpll_state(dev_priv, &dev_priv->shared_dplls[i], NULL, NULL);
e7c84544
ML
13721}
13722
13723static void
c0ead703 13724intel_modeset_verify_disabled(struct drm_device *dev)
e7c84544 13725{
c0ead703
ML
13726 verify_encoder_state(dev);
13727 verify_connector_state(dev, NULL);
13728 verify_disabled_dpll_state(dev);
e7c84544
ML
13729}
13730
80715b2f
VS
13731static void update_scanline_offset(struct intel_crtc *crtc)
13732{
4f8036a2 13733 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
80715b2f
VS
13734
13735 /*
13736 * The scanline counter increments at the leading edge of hsync.
13737 *
13738 * On most platforms it starts counting from vtotal-1 on the
13739 * first active line. That means the scanline counter value is
13740 * always one less than what we would expect. Ie. just after
13741 * start of vblank, which also occurs at start of hsync (on the
13742 * last active line), the scanline counter will read vblank_start-1.
13743 *
13744 * On gen2 the scanline counter starts counting from 1 instead
13745 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
13746 * to keep the value positive), instead of adding one.
13747 *
13748 * On HSW+ the behaviour of the scanline counter depends on the output
13749 * type. For DP ports it behaves like most other platforms, but on HDMI
13750 * there's an extra 1 line difference. So we need to add two instead of
13751 * one to the value.
13752 */
4f8036a2 13753 if (IS_GEN2(dev_priv)) {
124abe07 13754 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
80715b2f
VS
13755 int vtotal;
13756
124abe07
VS
13757 vtotal = adjusted_mode->crtc_vtotal;
13758 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
80715b2f
VS
13759 vtotal /= 2;
13760
13761 crtc->scanline_offset = vtotal - 1;
4f8036a2 13762 } else if (HAS_DDI(dev_priv) &&
2d84d2b3 13763 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI)) {
80715b2f
VS
13764 crtc->scanline_offset = 2;
13765 } else
13766 crtc->scanline_offset = 1;
13767}
13768
ad421372 13769static void intel_modeset_clear_plls(struct drm_atomic_state *state)
ed6739ef 13770{
225da59b 13771 struct drm_device *dev = state->dev;
ed6739ef 13772 struct drm_i915_private *dev_priv = to_i915(dev);
ad421372 13773 struct intel_shared_dpll_config *shared_dpll = NULL;
0a9ab303
ACO
13774 struct drm_crtc *crtc;
13775 struct drm_crtc_state *crtc_state;
0a9ab303 13776 int i;
ed6739ef
ACO
13777
13778 if (!dev_priv->display.crtc_compute_clock)
ad421372 13779 return;
ed6739ef 13780
0a9ab303 13781 for_each_crtc_in_state(state, crtc, crtc_state, i) {
fb1a38a9 13782 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8106ddbd
ACO
13783 struct intel_shared_dpll *old_dpll =
13784 to_intel_crtc_state(crtc->state)->shared_dpll;
0a9ab303 13785
fb1a38a9 13786 if (!needs_modeset(crtc_state))
225da59b
ACO
13787 continue;
13788
8106ddbd 13789 to_intel_crtc_state(crtc_state)->shared_dpll = NULL;
fb1a38a9 13790
8106ddbd 13791 if (!old_dpll)
fb1a38a9 13792 continue;
0a9ab303 13793
ad421372
ML
13794 if (!shared_dpll)
13795 shared_dpll = intel_atomic_get_shared_dpll_state(state);
ed6739ef 13796
8106ddbd 13797 intel_shared_dpll_config_put(shared_dpll, old_dpll, intel_crtc);
ad421372 13798 }
ed6739ef
ACO
13799}
13800
99d736a2
ML
13801/*
13802 * This implements the workaround described in the "notes" section of the mode
13803 * set sequence documentation. When going from no pipes or single pipe to
13804 * multiple pipes, and planes are enabled after the pipe, we need to wait at
13805 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
13806 */
13807static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
13808{
13809 struct drm_crtc_state *crtc_state;
13810 struct intel_crtc *intel_crtc;
13811 struct drm_crtc *crtc;
13812 struct intel_crtc_state *first_crtc_state = NULL;
13813 struct intel_crtc_state *other_crtc_state = NULL;
13814 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
13815 int i;
13816
13817 /* look at all crtc's that are going to be enabled in during modeset */
13818 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13819 intel_crtc = to_intel_crtc(crtc);
13820
13821 if (!crtc_state->active || !needs_modeset(crtc_state))
13822 continue;
13823
13824 if (first_crtc_state) {
13825 other_crtc_state = to_intel_crtc_state(crtc_state);
13826 break;
13827 } else {
13828 first_crtc_state = to_intel_crtc_state(crtc_state);
13829 first_pipe = intel_crtc->pipe;
13830 }
13831 }
13832
13833 /* No workaround needed? */
13834 if (!first_crtc_state)
13835 return 0;
13836
13837 /* w/a possibly needed, check how many crtc's are already enabled. */
13838 for_each_intel_crtc(state->dev, intel_crtc) {
13839 struct intel_crtc_state *pipe_config;
13840
13841 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
13842 if (IS_ERR(pipe_config))
13843 return PTR_ERR(pipe_config);
13844
13845 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
13846
13847 if (!pipe_config->base.active ||
13848 needs_modeset(&pipe_config->base))
13849 continue;
13850
13851 /* 2 or more enabled crtcs means no need for w/a */
13852 if (enabled_pipe != INVALID_PIPE)
13853 return 0;
13854
13855 enabled_pipe = intel_crtc->pipe;
13856 }
13857
13858 if (enabled_pipe != INVALID_PIPE)
13859 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13860 else if (other_crtc_state)
13861 other_crtc_state->hsw_workaround_pipe = first_pipe;
13862
13863 return 0;
13864}
13865
27c329ed
ML
13866static int intel_modeset_all_pipes(struct drm_atomic_state *state)
13867{
13868 struct drm_crtc *crtc;
13869 struct drm_crtc_state *crtc_state;
13870 int ret = 0;
13871
13872 /* add all active pipes to the state */
13873 for_each_crtc(state->dev, crtc) {
13874 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13875 if (IS_ERR(crtc_state))
13876 return PTR_ERR(crtc_state);
13877
13878 if (!crtc_state->active || needs_modeset(crtc_state))
13879 continue;
13880
13881 crtc_state->mode_changed = true;
13882
13883 ret = drm_atomic_add_affected_connectors(state, crtc);
13884 if (ret)
13885 break;
13886
13887 ret = drm_atomic_add_affected_planes(state, crtc);
13888 if (ret)
13889 break;
13890 }
13891
13892 return ret;
13893}
13894
c347a676 13895static int intel_modeset_checks(struct drm_atomic_state *state)
054518dd 13896{
565602d7 13897 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
fac5e23e 13898 struct drm_i915_private *dev_priv = to_i915(state->dev);
565602d7
ML
13899 struct drm_crtc *crtc;
13900 struct drm_crtc_state *crtc_state;
13901 int ret = 0, i;
054518dd 13902
b359283a
ML
13903 if (!check_digital_port_conflicts(state)) {
13904 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13905 return -EINVAL;
13906 }
13907
565602d7
ML
13908 intel_state->modeset = true;
13909 intel_state->active_crtcs = dev_priv->active_crtcs;
13910
13911 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13912 if (crtc_state->active)
13913 intel_state->active_crtcs |= 1 << i;
13914 else
13915 intel_state->active_crtcs &= ~(1 << i);
8b4a7d05
MR
13916
13917 if (crtc_state->active != crtc->state->active)
13918 intel_state->active_pipe_changes |= drm_crtc_mask(crtc);
565602d7
ML
13919 }
13920
054518dd
ACO
13921 /*
13922 * See if the config requires any additional preparation, e.g.
13923 * to adjust global state with pipes off. We need to do this
13924 * here so we can get the modeset_pipe updated config for the new
13925 * mode set on this crtc. For other crtcs we need to use the
13926 * adjusted_mode bits in the crtc directly.
13927 */
27c329ed 13928 if (dev_priv->display.modeset_calc_cdclk) {
c89e39f3 13929 if (!intel_state->cdclk_pll_vco)
63911d72 13930 intel_state->cdclk_pll_vco = dev_priv->cdclk_pll.vco;
b2045352
VS
13931 if (!intel_state->cdclk_pll_vco)
13932 intel_state->cdclk_pll_vco = dev_priv->skl_preferred_vco_freq;
c89e39f3 13933
27c329ed 13934 ret = dev_priv->display.modeset_calc_cdclk(state);
c89e39f3
CT
13935 if (ret < 0)
13936 return ret;
27c329ed 13937
c89e39f3 13938 if (intel_state->dev_cdclk != dev_priv->cdclk_freq ||
63911d72 13939 intel_state->cdclk_pll_vco != dev_priv->cdclk_pll.vco)
27c329ed
ML
13940 ret = intel_modeset_all_pipes(state);
13941
13942 if (ret < 0)
054518dd 13943 return ret;
e8788cbc
ML
13944
13945 DRM_DEBUG_KMS("New cdclk calculated to be atomic %u, actual %u\n",
13946 intel_state->cdclk, intel_state->dev_cdclk);
27c329ed 13947 } else
1a617b77 13948 to_intel_atomic_state(state)->cdclk = dev_priv->atomic_cdclk_freq;
054518dd 13949
ad421372 13950 intel_modeset_clear_plls(state);
054518dd 13951
565602d7 13952 if (IS_HASWELL(dev_priv))
ad421372 13953 return haswell_mode_set_planes_workaround(state);
99d736a2 13954
ad421372 13955 return 0;
c347a676
ACO
13956}
13957
aa363136
MR
13958/*
13959 * Handle calculation of various watermark data at the end of the atomic check
13960 * phase. The code here should be run after the per-crtc and per-plane 'check'
13961 * handlers to ensure that all derived state has been updated.
13962 */
55994c2c 13963static int calc_watermark_data(struct drm_atomic_state *state)
aa363136
MR
13964{
13965 struct drm_device *dev = state->dev;
98d39494 13966 struct drm_i915_private *dev_priv = to_i915(dev);
98d39494
MR
13967
13968 /* Is there platform-specific watermark information to calculate? */
13969 if (dev_priv->display.compute_global_watermarks)
55994c2c
MR
13970 return dev_priv->display.compute_global_watermarks(state);
13971
13972 return 0;
aa363136
MR
13973}
13974
74c090b1
ML
13975/**
13976 * intel_atomic_check - validate state object
13977 * @dev: drm device
13978 * @state: state to validate
13979 */
13980static int intel_atomic_check(struct drm_device *dev,
13981 struct drm_atomic_state *state)
c347a676 13982{
dd8b3bdb 13983 struct drm_i915_private *dev_priv = to_i915(dev);
aa363136 13984 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
c347a676
ACO
13985 struct drm_crtc *crtc;
13986 struct drm_crtc_state *crtc_state;
13987 int ret, i;
61333b60 13988 bool any_ms = false;
c347a676 13989
74c090b1 13990 ret = drm_atomic_helper_check_modeset(dev, state);
054518dd
ACO
13991 if (ret)
13992 return ret;
13993
c347a676 13994 for_each_crtc_in_state(state, crtc, crtc_state, i) {
cfb23ed6
ML
13995 struct intel_crtc_state *pipe_config =
13996 to_intel_crtc_state(crtc_state);
1ed51de9
DV
13997
13998 /* Catch I915_MODE_FLAG_INHERITED */
13999 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
14000 crtc_state->mode_changed = true;
cfb23ed6 14001
af4a879e 14002 if (!needs_modeset(crtc_state))
c347a676
ACO
14003 continue;
14004
af4a879e
DV
14005 if (!crtc_state->enable) {
14006 any_ms = true;
cfb23ed6 14007 continue;
af4a879e 14008 }
cfb23ed6 14009
26495481
DV
14010 /* FIXME: For only active_changed we shouldn't need to do any
14011 * state recomputation at all. */
14012
1ed51de9
DV
14013 ret = drm_atomic_add_affected_connectors(state, crtc);
14014 if (ret)
14015 return ret;
b359283a 14016
cfb23ed6 14017 ret = intel_modeset_pipe_config(crtc, pipe_config);
25aa1c39
ML
14018 if (ret) {
14019 intel_dump_pipe_config(to_intel_crtc(crtc),
14020 pipe_config, "[failed]");
c347a676 14021 return ret;
25aa1c39 14022 }
c347a676 14023
73831236 14024 if (i915.fastboot &&
dd8b3bdb 14025 intel_pipe_config_compare(dev,
cfb23ed6 14026 to_intel_crtc_state(crtc->state),
1ed51de9 14027 pipe_config, true)) {
26495481 14028 crtc_state->mode_changed = false;
bfd16b2a 14029 to_intel_crtc_state(crtc_state)->update_pipe = true;
26495481
DV
14030 }
14031
af4a879e 14032 if (needs_modeset(crtc_state))
26495481 14033 any_ms = true;
cfb23ed6 14034
af4a879e
DV
14035 ret = drm_atomic_add_affected_planes(state, crtc);
14036 if (ret)
14037 return ret;
61333b60 14038
26495481
DV
14039 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
14040 needs_modeset(crtc_state) ?
14041 "[modeset]" : "[fastset]");
c347a676
ACO
14042 }
14043
61333b60
ML
14044 if (any_ms) {
14045 ret = intel_modeset_checks(state);
14046
14047 if (ret)
14048 return ret;
27c329ed 14049 } else
dd8b3bdb 14050 intel_state->cdclk = dev_priv->cdclk_freq;
76305b1a 14051
dd8b3bdb 14052 ret = drm_atomic_helper_check_planes(dev, state);
aa363136
MR
14053 if (ret)
14054 return ret;
14055
f51be2e0 14056 intel_fbc_choose_crtc(dev_priv, state);
55994c2c 14057 return calc_watermark_data(state);
054518dd
ACO
14058}
14059
5008e874
ML
14060static int intel_atomic_prepare_commit(struct drm_device *dev,
14061 struct drm_atomic_state *state,
81072bfd 14062 bool nonblock)
5008e874 14063{
fac5e23e 14064 struct drm_i915_private *dev_priv = to_i915(dev);
7580d774 14065 struct drm_plane_state *plane_state;
5008e874 14066 struct drm_crtc_state *crtc_state;
7580d774 14067 struct drm_plane *plane;
5008e874
ML
14068 struct drm_crtc *crtc;
14069 int i, ret;
14070
5a21b665
DV
14071 for_each_crtc_in_state(state, crtc, crtc_state, i) {
14072 if (state->legacy_cursor_update)
a6747b73
ML
14073 continue;
14074
5a21b665
DV
14075 ret = intel_crtc_wait_for_pending_flips(crtc);
14076 if (ret)
14077 return ret;
5008e874 14078
5a21b665
DV
14079 if (atomic_read(&to_intel_crtc(crtc)->unpin_work_count) >= 2)
14080 flush_workqueue(dev_priv->wq);
d55dbd06
ML
14081 }
14082
f935675f
ML
14083 ret = mutex_lock_interruptible(&dev->struct_mutex);
14084 if (ret)
14085 return ret;
14086
5008e874 14087 ret = drm_atomic_helper_prepare_planes(dev, state);
f7e5838b 14088 mutex_unlock(&dev->struct_mutex);
7580d774 14089
21daaeee 14090 if (!ret && !nonblock) {
7580d774
ML
14091 for_each_plane_in_state(state, plane, plane_state, i) {
14092 struct intel_plane_state *intel_plane_state =
14093 to_intel_plane_state(plane_state);
14094
14095 if (!intel_plane_state->wait_req)
14096 continue;
14097
776f3236 14098 ret = i915_wait_request(intel_plane_state->wait_req,
ea746f36
CW
14099 I915_WAIT_INTERRUPTIBLE,
14100 NULL, NULL);
f7e5838b 14101 if (ret) {
f4457ae7
CW
14102 /* Any hang should be swallowed by the wait */
14103 WARN_ON(ret == -EIO);
f7e5838b
CW
14104 mutex_lock(&dev->struct_mutex);
14105 drm_atomic_helper_cleanup_planes(dev, state);
14106 mutex_unlock(&dev->struct_mutex);
7580d774 14107 break;
f7e5838b 14108 }
7580d774 14109 }
7580d774 14110 }
5008e874
ML
14111
14112 return ret;
14113}
14114
a2991414
ML
14115u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc)
14116{
14117 struct drm_device *dev = crtc->base.dev;
14118
14119 if (!dev->max_vblank_count)
14120 return drm_accurate_vblank_count(&crtc->base);
14121
14122 return dev->driver->get_vblank_counter(dev, crtc->pipe);
14123}
14124
5a21b665
DV
14125static void intel_atomic_wait_for_vblanks(struct drm_device *dev,
14126 struct drm_i915_private *dev_priv,
14127 unsigned crtc_mask)
e8861675 14128{
5a21b665
DV
14129 unsigned last_vblank_count[I915_MAX_PIPES];
14130 enum pipe pipe;
14131 int ret;
e8861675 14132
5a21b665
DV
14133 if (!crtc_mask)
14134 return;
e8861675 14135
5a21b665
DV
14136 for_each_pipe(dev_priv, pipe) {
14137 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
e8861675 14138
5a21b665 14139 if (!((1 << pipe) & crtc_mask))
e8861675
ML
14140 continue;
14141
5a21b665
DV
14142 ret = drm_crtc_vblank_get(crtc);
14143 if (WARN_ON(ret != 0)) {
14144 crtc_mask &= ~(1 << pipe);
14145 continue;
e8861675
ML
14146 }
14147
5a21b665 14148 last_vblank_count[pipe] = drm_crtc_vblank_count(crtc);
e8861675
ML
14149 }
14150
5a21b665
DV
14151 for_each_pipe(dev_priv, pipe) {
14152 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
14153 long lret;
e8861675 14154
5a21b665
DV
14155 if (!((1 << pipe) & crtc_mask))
14156 continue;
d55dbd06 14157
5a21b665
DV
14158 lret = wait_event_timeout(dev->vblank[pipe].queue,
14159 last_vblank_count[pipe] !=
14160 drm_crtc_vblank_count(crtc),
14161 msecs_to_jiffies(50));
d55dbd06 14162
5a21b665 14163 WARN(!lret, "pipe %c vblank wait timed out\n", pipe_name(pipe));
d55dbd06 14164
5a21b665 14165 drm_crtc_vblank_put(crtc);
d55dbd06
ML
14166 }
14167}
14168
5a21b665 14169static bool needs_vblank_wait(struct intel_crtc_state *crtc_state)
a6747b73 14170{
5a21b665
DV
14171 /* fb updated, need to unpin old fb */
14172 if (crtc_state->fb_changed)
14173 return true;
a6747b73 14174
5a21b665
DV
14175 /* wm changes, need vblank before final wm's */
14176 if (crtc_state->update_wm_post)
14177 return true;
a6747b73 14178
5a21b665
DV
14179 /*
14180 * cxsr is re-enabled after vblank.
14181 * This is already handled by crtc_state->update_wm_post,
14182 * but added for clarity.
14183 */
14184 if (crtc_state->disable_cxsr)
14185 return true;
a6747b73 14186
5a21b665 14187 return false;
e8861675
ML
14188}
14189
896e5bb0
L
14190static void intel_update_crtc(struct drm_crtc *crtc,
14191 struct drm_atomic_state *state,
14192 struct drm_crtc_state *old_crtc_state,
14193 unsigned int *crtc_vblank_mask)
14194{
14195 struct drm_device *dev = crtc->dev;
14196 struct drm_i915_private *dev_priv = to_i915(dev);
14197 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14198 struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc->state);
14199 bool modeset = needs_modeset(crtc->state);
14200
14201 if (modeset) {
14202 update_scanline_offset(intel_crtc);
14203 dev_priv->display.crtc_enable(pipe_config, state);
14204 } else {
14205 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
14206 }
14207
14208 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
14209 intel_fbc_enable(
14210 intel_crtc, pipe_config,
14211 to_intel_plane_state(crtc->primary->state));
14212 }
14213
14214 drm_atomic_helper_commit_planes_on_crtc(old_crtc_state);
14215
14216 if (needs_vblank_wait(pipe_config))
14217 *crtc_vblank_mask |= drm_crtc_mask(crtc);
14218}
14219
14220static void intel_update_crtcs(struct drm_atomic_state *state,
14221 unsigned int *crtc_vblank_mask)
14222{
14223 struct drm_crtc *crtc;
14224 struct drm_crtc_state *old_crtc_state;
14225 int i;
14226
14227 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14228 if (!crtc->state->active)
14229 continue;
14230
14231 intel_update_crtc(crtc, state, old_crtc_state,
14232 crtc_vblank_mask);
14233 }
14234}
14235
27082493
L
14236static void skl_update_crtcs(struct drm_atomic_state *state,
14237 unsigned int *crtc_vblank_mask)
14238{
14239 struct drm_device *dev = state->dev;
14240 struct drm_i915_private *dev_priv = to_i915(dev);
14241 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14242 struct drm_crtc *crtc;
14243 struct drm_crtc_state *old_crtc_state;
14244 struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
14245 struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
14246 unsigned int updated = 0;
14247 bool progress;
14248 enum pipe pipe;
14249
14250 /*
14251 * Whenever the number of active pipes changes, we need to make sure we
14252 * update the pipes in the right order so that their ddb allocations
14253 * never overlap with eachother inbetween CRTC updates. Otherwise we'll
14254 * cause pipe underruns and other bad stuff.
14255 */
14256 do {
14257 int i;
14258 progress = false;
14259
14260 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14261 bool vbl_wait = false;
14262 unsigned int cmask = drm_crtc_mask(crtc);
14263 pipe = to_intel_crtc(crtc)->pipe;
14264
14265 if (updated & cmask || !crtc->state->active)
14266 continue;
14267 if (skl_ddb_allocation_overlaps(state, cur_ddb, new_ddb,
14268 pipe))
14269 continue;
14270
14271 updated |= cmask;
14272
14273 /*
14274 * If this is an already active pipe, it's DDB changed,
14275 * and this isn't the last pipe that needs updating
14276 * then we need to wait for a vblank to pass for the
14277 * new ddb allocation to take effect.
14278 */
14279 if (!skl_ddb_allocation_equals(cur_ddb, new_ddb, pipe) &&
14280 !crtc->state->active_changed &&
14281 intel_state->wm_results.dirty_pipes != updated)
14282 vbl_wait = true;
14283
14284 intel_update_crtc(crtc, state, old_crtc_state,
14285 crtc_vblank_mask);
14286
14287 if (vbl_wait)
14288 intel_wait_for_vblank(dev, pipe);
14289
14290 progress = true;
14291 }
14292 } while (progress);
14293}
14294
94f05024 14295static void intel_atomic_commit_tail(struct drm_atomic_state *state)
a6778b3c 14296{
94f05024 14297 struct drm_device *dev = state->dev;
565602d7 14298 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
fac5e23e 14299 struct drm_i915_private *dev_priv = to_i915(dev);
29ceb0e6 14300 struct drm_crtc_state *old_crtc_state;
7580d774 14301 struct drm_crtc *crtc;
5a21b665 14302 struct intel_crtc_state *intel_cstate;
94f05024
DV
14303 struct drm_plane *plane;
14304 struct drm_plane_state *plane_state;
5a21b665
DV
14305 bool hw_check = intel_state->modeset;
14306 unsigned long put_domains[I915_MAX_PIPES] = {};
14307 unsigned crtc_vblank_mask = 0;
94f05024 14308 int i, ret;
a6778b3c 14309
94f05024
DV
14310 for_each_plane_in_state(state, plane, plane_state, i) {
14311 struct intel_plane_state *intel_plane_state =
14312 to_intel_plane_state(plane_state);
ea0000f0 14313
94f05024
DV
14314 if (!intel_plane_state->wait_req)
14315 continue;
d4afb8cc 14316
776f3236 14317 ret = i915_wait_request(intel_plane_state->wait_req,
ea746f36 14318 0, NULL, NULL);
94f05024
DV
14319 /* EIO should be eaten, and we can't get interrupted in the
14320 * worker, and blocking commits have waited already. */
14321 WARN_ON(ret);
14322 }
1c5e19f8 14323
ea0000f0
DV
14324 drm_atomic_helper_wait_for_dependencies(state);
14325
565602d7
ML
14326 if (intel_state->modeset) {
14327 memcpy(dev_priv->min_pixclk, intel_state->min_pixclk,
14328 sizeof(intel_state->min_pixclk));
14329 dev_priv->active_crtcs = intel_state->active_crtcs;
1a617b77 14330 dev_priv->atomic_cdclk_freq = intel_state->cdclk;
5a21b665
DV
14331
14332 intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
565602d7
ML
14333 }
14334
29ceb0e6 14335 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
a539205a
ML
14336 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14337
5a21b665
DV
14338 if (needs_modeset(crtc->state) ||
14339 to_intel_crtc_state(crtc->state)->update_pipe) {
14340 hw_check = true;
14341
14342 put_domains[to_intel_crtc(crtc)->pipe] =
14343 modeset_get_crtc_power_domains(crtc,
14344 to_intel_crtc_state(crtc->state));
14345 }
14346
61333b60
ML
14347 if (!needs_modeset(crtc->state))
14348 continue;
14349
29ceb0e6 14350 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
460da916 14351
29ceb0e6
VS
14352 if (old_crtc_state->active) {
14353 intel_crtc_disable_planes(crtc, old_crtc_state->plane_mask);
4a806558 14354 dev_priv->display.crtc_disable(to_intel_crtc_state(old_crtc_state), state);
eddfcbcd 14355 intel_crtc->active = false;
58f9c0bc 14356 intel_fbc_disable(intel_crtc);
eddfcbcd 14357 intel_disable_shared_dpll(intel_crtc);
9bbc8258
VS
14358
14359 /*
14360 * Underruns don't always raise
14361 * interrupts, so check manually.
14362 */
14363 intel_check_cpu_fifo_underruns(dev_priv);
14364 intel_check_pch_fifo_underruns(dev_priv);
b9001114
ML
14365
14366 if (!crtc->state->active)
14367 intel_update_watermarks(crtc);
a539205a 14368 }
b8cecdf5 14369 }
7758a113 14370
ea9d758d
DV
14371 /* Only after disabling all output pipelines that will be changed can we
14372 * update the the output configuration. */
4740b0f2 14373 intel_modeset_update_crtc_state(state);
f6e5b160 14374
565602d7 14375 if (intel_state->modeset) {
4740b0f2 14376 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
33c8df89
ML
14377
14378 if (dev_priv->display.modeset_commit_cdclk &&
c89e39f3 14379 (intel_state->dev_cdclk != dev_priv->cdclk_freq ||
63911d72 14380 intel_state->cdclk_pll_vco != dev_priv->cdclk_pll.vco))
33c8df89 14381 dev_priv->display.modeset_commit_cdclk(state);
f6d1973d 14382
656d1b89
L
14383 /*
14384 * SKL workaround: bspec recommends we disable the SAGV when we
14385 * have more then one pipe enabled
14386 */
56feca91 14387 if (!intel_can_enable_sagv(state))
16dcdc4e 14388 intel_disable_sagv(dev_priv);
656d1b89 14389
c0ead703 14390 intel_modeset_verify_disabled(dev);
4740b0f2 14391 }
47fab737 14392
896e5bb0 14393 /* Complete the events for pipes that have now been disabled */
29ceb0e6 14394 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
f6ac4b2a 14395 bool modeset = needs_modeset(crtc->state);
80715b2f 14396
1f7528c4
DV
14397 /* Complete events for now disable pipes here. */
14398 if (modeset && !crtc->state->active && crtc->state->event) {
14399 spin_lock_irq(&dev->event_lock);
14400 drm_crtc_send_vblank_event(crtc, crtc->state->event);
14401 spin_unlock_irq(&dev->event_lock);
14402
14403 crtc->state->event = NULL;
14404 }
177246a8
MR
14405 }
14406
896e5bb0
L
14407 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
14408 dev_priv->display.update_crtcs(state, &crtc_vblank_mask);
14409
94f05024
DV
14410 /* FIXME: We should call drm_atomic_helper_commit_hw_done() here
14411 * already, but still need the state for the delayed optimization. To
14412 * fix this:
14413 * - wrap the optimization/post_plane_update stuff into a per-crtc work.
14414 * - schedule that vblank worker _before_ calling hw_done
14415 * - at the start of commit_tail, cancel it _synchrously
14416 * - switch over to the vblank wait helper in the core after that since
14417 * we don't need out special handling any more.
14418 */
5a21b665
DV
14419 if (!state->legacy_cursor_update)
14420 intel_atomic_wait_for_vblanks(dev, dev_priv, crtc_vblank_mask);
14421
14422 /*
14423 * Now that the vblank has passed, we can go ahead and program the
14424 * optimal watermarks on platforms that need two-step watermark
14425 * programming.
14426 *
14427 * TODO: Move this (and other cleanup) to an async worker eventually.
14428 */
14429 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14430 intel_cstate = to_intel_crtc_state(crtc->state);
14431
14432 if (dev_priv->display.optimize_watermarks)
14433 dev_priv->display.optimize_watermarks(intel_cstate);
14434 }
14435
14436 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14437 intel_post_plane_update(to_intel_crtc_state(old_crtc_state));
14438
14439 if (put_domains[i])
14440 modeset_put_power_domains(dev_priv, put_domains[i]);
14441
14442 intel_modeset_verify_crtc(crtc, old_crtc_state, crtc->state);
14443 }
14444
56feca91 14445 if (intel_state->modeset && intel_can_enable_sagv(state))
16dcdc4e 14446 intel_enable_sagv(dev_priv);
656d1b89 14447
94f05024
DV
14448 drm_atomic_helper_commit_hw_done(state);
14449
5a21b665
DV
14450 if (intel_state->modeset)
14451 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
14452
14453 mutex_lock(&dev->struct_mutex);
14454 drm_atomic_helper_cleanup_planes(dev, state);
14455 mutex_unlock(&dev->struct_mutex);
14456
ea0000f0
DV
14457 drm_atomic_helper_commit_cleanup_done(state);
14458
ee165b1a 14459 drm_atomic_state_free(state);
f30da187 14460
75714940
MK
14461 /* As one of the primary mmio accessors, KMS has a high likelihood
14462 * of triggering bugs in unclaimed access. After we finish
14463 * modesetting, see if an error has been flagged, and if so
14464 * enable debugging for the next modeset - and hope we catch
14465 * the culprit.
14466 *
14467 * XXX note that we assume display power is on at this point.
14468 * This might hold true now but we need to add pm helper to check
14469 * unclaimed only when the hardware is on, as atomic commits
14470 * can happen also when the device is completely off.
14471 */
14472 intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
94f05024
DV
14473}
14474
14475static void intel_atomic_commit_work(struct work_struct *work)
14476{
14477 struct drm_atomic_state *state = container_of(work,
14478 struct drm_atomic_state,
14479 commit_work);
14480 intel_atomic_commit_tail(state);
14481}
14482
6c9c1b38
DV
14483static void intel_atomic_track_fbs(struct drm_atomic_state *state)
14484{
14485 struct drm_plane_state *old_plane_state;
14486 struct drm_plane *plane;
6c9c1b38
DV
14487 int i;
14488
faf5bf0a
CW
14489 for_each_plane_in_state(state, plane, old_plane_state, i)
14490 i915_gem_track_fb(intel_fb_obj(old_plane_state->fb),
14491 intel_fb_obj(plane->state->fb),
14492 to_intel_plane(plane)->frontbuffer_bit);
6c9c1b38
DV
14493}
14494
94f05024
DV
14495/**
14496 * intel_atomic_commit - commit validated state object
14497 * @dev: DRM device
14498 * @state: the top-level driver state object
14499 * @nonblock: nonblocking commit
14500 *
14501 * This function commits a top-level state object that has been validated
14502 * with drm_atomic_helper_check().
14503 *
14504 * FIXME: Atomic modeset support for i915 is not yet complete. At the moment
14505 * nonblocking commits are only safe for pure plane updates. Everything else
14506 * should work though.
14507 *
14508 * RETURNS
14509 * Zero for success or -errno.
14510 */
14511static int intel_atomic_commit(struct drm_device *dev,
14512 struct drm_atomic_state *state,
14513 bool nonblock)
14514{
14515 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
fac5e23e 14516 struct drm_i915_private *dev_priv = to_i915(dev);
94f05024
DV
14517 int ret = 0;
14518
14519 if (intel_state->modeset && nonblock) {
14520 DRM_DEBUG_KMS("nonblocking commit for modeset not yet implemented.\n");
14521 return -EINVAL;
14522 }
14523
14524 ret = drm_atomic_helper_setup_commit(state, nonblock);
14525 if (ret)
14526 return ret;
14527
14528 INIT_WORK(&state->commit_work, intel_atomic_commit_work);
14529
14530 ret = intel_atomic_prepare_commit(dev, state, nonblock);
14531 if (ret) {
14532 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
14533 return ret;
14534 }
14535
14536 drm_atomic_helper_swap_state(state, true);
14537 dev_priv->wm.distrust_bios_wm = false;
14538 dev_priv->wm.skl_results = intel_state->wm_results;
14539 intel_shared_dpll_commit(state);
6c9c1b38 14540 intel_atomic_track_fbs(state);
94f05024
DV
14541
14542 if (nonblock)
14543 queue_work(system_unbound_wq, &state->commit_work);
14544 else
14545 intel_atomic_commit_tail(state);
75714940 14546
74c090b1 14547 return 0;
7f27126e
JB
14548}
14549
c0c36b94
CW
14550void intel_crtc_restore_mode(struct drm_crtc *crtc)
14551{
83a57153
ACO
14552 struct drm_device *dev = crtc->dev;
14553 struct drm_atomic_state *state;
e694eb02 14554 struct drm_crtc_state *crtc_state;
2bfb4627 14555 int ret;
83a57153
ACO
14556
14557 state = drm_atomic_state_alloc(dev);
14558 if (!state) {
78108b7c
VS
14559 DRM_DEBUG_KMS("[CRTC:%d:%s] crtc restore failed, out of memory",
14560 crtc->base.id, crtc->name);
83a57153
ACO
14561 return;
14562 }
14563
e694eb02 14564 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
83a57153 14565
e694eb02
ML
14566retry:
14567 crtc_state = drm_atomic_get_crtc_state(state, crtc);
14568 ret = PTR_ERR_OR_ZERO(crtc_state);
14569 if (!ret) {
14570 if (!crtc_state->active)
14571 goto out;
83a57153 14572
e694eb02 14573 crtc_state->mode_changed = true;
74c090b1 14574 ret = drm_atomic_commit(state);
83a57153
ACO
14575 }
14576
e694eb02
ML
14577 if (ret == -EDEADLK) {
14578 drm_atomic_state_clear(state);
14579 drm_modeset_backoff(state->acquire_ctx);
14580 goto retry;
4ed9fb37 14581 }
4be07317 14582
2bfb4627 14583 if (ret)
e694eb02 14584out:
2bfb4627 14585 drm_atomic_state_free(state);
c0c36b94
CW
14586}
14587
a8784875
BP
14588/*
14589 * FIXME: Remove this once i915 is fully DRIVER_ATOMIC by calling
14590 * drm_atomic_helper_legacy_gamma_set() directly.
14591 */
14592static int intel_atomic_legacy_gamma_set(struct drm_crtc *crtc,
14593 u16 *red, u16 *green, u16 *blue,
14594 uint32_t size)
14595{
14596 struct drm_device *dev = crtc->dev;
14597 struct drm_mode_config *config = &dev->mode_config;
14598 struct drm_crtc_state *state;
14599 int ret;
14600
14601 ret = drm_atomic_helper_legacy_gamma_set(crtc, red, green, blue, size);
14602 if (ret)
14603 return ret;
14604
14605 /*
14606 * Make sure we update the legacy properties so this works when
14607 * atomic is not enabled.
14608 */
14609
14610 state = crtc->state;
14611
14612 drm_object_property_set_value(&crtc->base,
14613 config->degamma_lut_property,
14614 (state->degamma_lut) ?
14615 state->degamma_lut->base.id : 0);
14616
14617 drm_object_property_set_value(&crtc->base,
14618 config->ctm_property,
14619 (state->ctm) ?
14620 state->ctm->base.id : 0);
14621
14622 drm_object_property_set_value(&crtc->base,
14623 config->gamma_lut_property,
14624 (state->gamma_lut) ?
14625 state->gamma_lut->base.id : 0);
14626
14627 return 0;
14628}
14629
f6e5b160 14630static const struct drm_crtc_funcs intel_crtc_funcs = {
a8784875 14631 .gamma_set = intel_atomic_legacy_gamma_set,
74c090b1 14632 .set_config = drm_atomic_helper_set_config,
82cf435b 14633 .set_property = drm_atomic_helper_crtc_set_property,
f6e5b160 14634 .destroy = intel_crtc_destroy,
527b6abe 14635 .page_flip = intel_crtc_page_flip,
1356837e
MR
14636 .atomic_duplicate_state = intel_crtc_duplicate_state,
14637 .atomic_destroy_state = intel_crtc_destroy_state,
f6e5b160
CW
14638};
14639
6beb8c23
MR
14640/**
14641 * intel_prepare_plane_fb - Prepare fb for usage on plane
14642 * @plane: drm plane to prepare for
14643 * @fb: framebuffer to prepare for presentation
14644 *
14645 * Prepares a framebuffer for usage on a display plane. Generally this
14646 * involves pinning the underlying object and updating the frontbuffer tracking
14647 * bits. Some older platforms need special physical address handling for
14648 * cursor planes.
14649 *
f935675f
ML
14650 * Must be called with struct_mutex held.
14651 *
6beb8c23
MR
14652 * Returns 0 on success, negative error code on failure.
14653 */
14654int
14655intel_prepare_plane_fb(struct drm_plane *plane,
1832040d 14656 struct drm_plane_state *new_state)
465c120c
MR
14657{
14658 struct drm_device *dev = plane->dev;
844f9111 14659 struct drm_framebuffer *fb = new_state->fb;
6beb8c23 14660 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
1ee49399 14661 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
c37efb99 14662 struct reservation_object *resv;
6beb8c23 14663 int ret = 0;
465c120c 14664
1ee49399 14665 if (!obj && !old_obj)
465c120c
MR
14666 return 0;
14667
5008e874
ML
14668 if (old_obj) {
14669 struct drm_crtc_state *crtc_state =
14670 drm_atomic_get_existing_crtc_state(new_state->state, plane->state->crtc);
14671
14672 /* Big Hammer, we also need to ensure that any pending
14673 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
14674 * current scanout is retired before unpinning the old
14675 * framebuffer. Note that we rely on userspace rendering
14676 * into the buffer attached to the pipe they are waiting
14677 * on. If not, userspace generates a GPU hang with IPEHR
14678 * point to the MI_WAIT_FOR_EVENT.
14679 *
14680 * This should only fail upon a hung GPU, in which case we
14681 * can safely continue.
14682 */
14683 if (needs_modeset(crtc_state))
14684 ret = i915_gem_object_wait_rendering(old_obj, true);
f4457ae7
CW
14685 if (ret) {
14686 /* GPU hangs should have been swallowed by the wait */
14687 WARN_ON(ret == -EIO);
f935675f 14688 return ret;
f4457ae7 14689 }
5008e874
ML
14690 }
14691
c37efb99
CW
14692 if (!obj)
14693 return 0;
14694
5a21b665 14695 /* For framebuffer backed by dmabuf, wait for fence */
c37efb99
CW
14696 resv = i915_gem_object_get_dmabuf_resv(obj);
14697 if (resv) {
5a21b665
DV
14698 long lret;
14699
c37efb99 14700 lret = reservation_object_wait_timeout_rcu(resv, false, true,
5a21b665
DV
14701 MAX_SCHEDULE_TIMEOUT);
14702 if (lret == -ERESTARTSYS)
14703 return lret;
14704
14705 WARN(lret < 0, "waiting returns %li\n", lret);
14706 }
14707
c37efb99 14708 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
6beb8c23
MR
14709 INTEL_INFO(dev)->cursor_needs_physical) {
14710 int align = IS_I830(dev) ? 16 * 1024 : 256;
14711 ret = i915_gem_object_attach_phys(obj, align);
14712 if (ret)
14713 DRM_DEBUG_KMS("failed to attach phys object\n");
14714 } else {
058d88c4
CW
14715 struct i915_vma *vma;
14716
14717 vma = intel_pin_and_fence_fb_obj(fb, new_state->rotation);
14718 if (IS_ERR(vma))
14719 ret = PTR_ERR(vma);
6beb8c23 14720 }
465c120c 14721
c37efb99 14722 if (ret == 0) {
27c01aae 14723 to_intel_plane_state(new_state)->wait_req =
d72d908b
CW
14724 i915_gem_active_get(&obj->last_write,
14725 &obj->base.dev->struct_mutex);
7580d774 14726 }
fdd508a6 14727
6beb8c23
MR
14728 return ret;
14729}
14730
38f3ce3a
MR
14731/**
14732 * intel_cleanup_plane_fb - Cleans up an fb after plane use
14733 * @plane: drm plane to clean up for
14734 * @fb: old framebuffer that was on plane
14735 *
14736 * Cleans up a framebuffer that has just been removed from a plane.
f935675f
ML
14737 *
14738 * Must be called with struct_mutex held.
38f3ce3a
MR
14739 */
14740void
14741intel_cleanup_plane_fb(struct drm_plane *plane,
1832040d 14742 struct drm_plane_state *old_state)
38f3ce3a
MR
14743{
14744 struct drm_device *dev = plane->dev;
7580d774 14745 struct intel_plane_state *old_intel_state;
84978257 14746 struct intel_plane_state *intel_state = to_intel_plane_state(plane->state);
1ee49399
ML
14747 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_state->fb);
14748 struct drm_i915_gem_object *obj = intel_fb_obj(plane->state->fb);
38f3ce3a 14749
7580d774
ML
14750 old_intel_state = to_intel_plane_state(old_state);
14751
1ee49399 14752 if (!obj && !old_obj)
38f3ce3a
MR
14753 return;
14754
1ee49399
ML
14755 if (old_obj && (plane->type != DRM_PLANE_TYPE_CURSOR ||
14756 !INTEL_INFO(dev)->cursor_needs_physical))
3465c580 14757 intel_unpin_fb_obj(old_state->fb, old_state->rotation);
1ee49399 14758
84978257 14759 i915_gem_request_assign(&intel_state->wait_req, NULL);
7580d774 14760 i915_gem_request_assign(&old_intel_state->wait_req, NULL);
465c120c
MR
14761}
14762
6156a456
CK
14763int
14764skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
14765{
14766 int max_scale;
6156a456
CK
14767 int crtc_clock, cdclk;
14768
bf8a0af0 14769 if (!intel_crtc || !crtc_state->base.enable)
6156a456
CK
14770 return DRM_PLANE_HELPER_NO_SCALING;
14771
6156a456 14772 crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
27c329ed 14773 cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
6156a456 14774
54bf1ce6 14775 if (WARN_ON_ONCE(!crtc_clock || cdclk < crtc_clock))
6156a456
CK
14776 return DRM_PLANE_HELPER_NO_SCALING;
14777
14778 /*
14779 * skl max scale is lower of:
14780 * close to 3 but not 3, -1 is for that purpose
14781 * or
14782 * cdclk/crtc_clock
14783 */
14784 max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
14785
14786 return max_scale;
14787}
14788
465c120c 14789static int
3c692a41 14790intel_check_primary_plane(struct drm_plane *plane,
061e4b8d 14791 struct intel_crtc_state *crtc_state,
3c692a41
GP
14792 struct intel_plane_state *state)
14793{
b63a16f6 14794 struct drm_i915_private *dev_priv = to_i915(plane->dev);
2b875c22 14795 struct drm_crtc *crtc = state->base.crtc;
6156a456 14796 int min_scale = DRM_PLANE_HELPER_NO_SCALING;
061e4b8d
ML
14797 int max_scale = DRM_PLANE_HELPER_NO_SCALING;
14798 bool can_position = false;
b63a16f6 14799 int ret;
465c120c 14800
b63a16f6 14801 if (INTEL_GEN(dev_priv) >= 9) {
693bdc28
VS
14802 /* use scaler when colorkey is not required */
14803 if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
14804 min_scale = 1;
14805 max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
14806 }
d8106366 14807 can_position = true;
6156a456 14808 }
d8106366 14809
cc926387
DV
14810 ret = drm_plane_helper_check_state(&state->base,
14811 &state->clip,
14812 min_scale, max_scale,
14813 can_position, true);
b63a16f6
VS
14814 if (ret)
14815 return ret;
14816
cc926387 14817 if (!state->base.fb)
b63a16f6
VS
14818 return 0;
14819
14820 if (INTEL_GEN(dev_priv) >= 9) {
14821 ret = skl_check_plane_surface(state);
14822 if (ret)
14823 return ret;
14824 }
14825
14826 return 0;
14af293f
GP
14827}
14828
5a21b665
DV
14829static void intel_begin_crtc_commit(struct drm_crtc *crtc,
14830 struct drm_crtc_state *old_crtc_state)
14831{
14832 struct drm_device *dev = crtc->dev;
62e0fb88 14833 struct drm_i915_private *dev_priv = to_i915(dev);
5a21b665
DV
14834 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14835 struct intel_crtc_state *old_intel_state =
14836 to_intel_crtc_state(old_crtc_state);
14837 bool modeset = needs_modeset(crtc->state);
62e0fb88 14838 enum pipe pipe = intel_crtc->pipe;
5a21b665
DV
14839
14840 /* Perform vblank evasion around commit operation */
14841 intel_pipe_update_start(intel_crtc);
14842
14843 if (modeset)
14844 return;
14845
14846 if (crtc->state->color_mgmt_changed || to_intel_crtc_state(crtc->state)->update_pipe) {
14847 intel_color_set_csc(crtc->state);
14848 intel_color_load_luts(crtc->state);
14849 }
14850
14851 if (to_intel_crtc_state(crtc->state)->update_pipe)
14852 intel_update_pipe_config(intel_crtc, old_intel_state);
62e0fb88 14853 else if (INTEL_GEN(dev_priv) >= 9) {
5a21b665 14854 skl_detach_scalers(intel_crtc);
62e0fb88
L
14855
14856 I915_WRITE(PIPE_WM_LINETIME(pipe),
14857 dev_priv->wm.skl_hw.wm_linetime[pipe]);
14858 }
5a21b665
DV
14859}
14860
14861static void intel_finish_crtc_commit(struct drm_crtc *crtc,
14862 struct drm_crtc_state *old_crtc_state)
14863{
14864 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14865
14866 intel_pipe_update_end(intel_crtc, NULL);
14867}
14868
cf4c7c12 14869/**
4a3b8769
MR
14870 * intel_plane_destroy - destroy a plane
14871 * @plane: plane to destroy
cf4c7c12 14872 *
4a3b8769
MR
14873 * Common destruction function for all types of planes (primary, cursor,
14874 * sprite).
cf4c7c12 14875 */
4a3b8769 14876void intel_plane_destroy(struct drm_plane *plane)
465c120c 14877{
69ae561f
VS
14878 if (!plane)
14879 return;
14880
465c120c 14881 drm_plane_cleanup(plane);
69ae561f 14882 kfree(to_intel_plane(plane));
465c120c
MR
14883}
14884
65a3fea0 14885const struct drm_plane_funcs intel_plane_funcs = {
70a101f8
MR
14886 .update_plane = drm_atomic_helper_update_plane,
14887 .disable_plane = drm_atomic_helper_disable_plane,
3d7d6510 14888 .destroy = intel_plane_destroy,
c196e1d6 14889 .set_property = drm_atomic_helper_plane_set_property,
a98b3431
MR
14890 .atomic_get_property = intel_plane_atomic_get_property,
14891 .atomic_set_property = intel_plane_atomic_set_property,
ea2c67bb
MR
14892 .atomic_duplicate_state = intel_plane_duplicate_state,
14893 .atomic_destroy_state = intel_plane_destroy_state,
14894
465c120c
MR
14895};
14896
14897static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
14898 int pipe)
14899{
6e266956 14900 struct drm_i915_private *dev_priv = to_i915(dev);
fca0ce2a
VS
14901 struct intel_plane *primary = NULL;
14902 struct intel_plane_state *state = NULL;
465c120c 14903 const uint32_t *intel_primary_formats;
45e3743a 14904 unsigned int num_formats;
fca0ce2a 14905 int ret;
465c120c
MR
14906
14907 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
fca0ce2a
VS
14908 if (!primary)
14909 goto fail;
465c120c 14910
8e7d688b 14911 state = intel_create_plane_state(&primary->base);
fca0ce2a
VS
14912 if (!state)
14913 goto fail;
8e7d688b 14914 primary->base.state = &state->base;
ea2c67bb 14915
465c120c
MR
14916 primary->can_scale = false;
14917 primary->max_downscale = 1;
6156a456
CK
14918 if (INTEL_INFO(dev)->gen >= 9) {
14919 primary->can_scale = true;
af99ceda 14920 state->scaler_id = -1;
6156a456 14921 }
465c120c
MR
14922 primary->pipe = pipe;
14923 primary->plane = pipe;
a9ff8714 14924 primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
c59cb179 14925 primary->check_plane = intel_check_primary_plane;
465c120c
MR
14926 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
14927 primary->plane = !pipe;
14928
6c0fd451
DL
14929 if (INTEL_INFO(dev)->gen >= 9) {
14930 intel_primary_formats = skl_primary_formats;
14931 num_formats = ARRAY_SIZE(skl_primary_formats);
a8d201af
ML
14932
14933 primary->update_plane = skylake_update_primary_plane;
14934 primary->disable_plane = skylake_disable_primary_plane;
6e266956 14935 } else if (HAS_PCH_SPLIT(dev_priv)) {
a8d201af
ML
14936 intel_primary_formats = i965_primary_formats;
14937 num_formats = ARRAY_SIZE(i965_primary_formats);
14938
14939 primary->update_plane = ironlake_update_primary_plane;
14940 primary->disable_plane = i9xx_disable_primary_plane;
6c0fd451 14941 } else if (INTEL_INFO(dev)->gen >= 4) {
568db4f2
DL
14942 intel_primary_formats = i965_primary_formats;
14943 num_formats = ARRAY_SIZE(i965_primary_formats);
a8d201af
ML
14944
14945 primary->update_plane = i9xx_update_primary_plane;
14946 primary->disable_plane = i9xx_disable_primary_plane;
6c0fd451
DL
14947 } else {
14948 intel_primary_formats = i8xx_primary_formats;
14949 num_formats = ARRAY_SIZE(i8xx_primary_formats);
a8d201af
ML
14950
14951 primary->update_plane = i9xx_update_primary_plane;
14952 primary->disable_plane = i9xx_disable_primary_plane;
465c120c
MR
14953 }
14954
38573dc1
VS
14955 if (INTEL_INFO(dev)->gen >= 9)
14956 ret = drm_universal_plane_init(dev, &primary->base, 0,
14957 &intel_plane_funcs,
14958 intel_primary_formats, num_formats,
14959 DRM_PLANE_TYPE_PRIMARY,
14960 "plane 1%c", pipe_name(pipe));
14961 else if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
14962 ret = drm_universal_plane_init(dev, &primary->base, 0,
14963 &intel_plane_funcs,
14964 intel_primary_formats, num_formats,
14965 DRM_PLANE_TYPE_PRIMARY,
14966 "primary %c", pipe_name(pipe));
14967 else
14968 ret = drm_universal_plane_init(dev, &primary->base, 0,
14969 &intel_plane_funcs,
14970 intel_primary_formats, num_formats,
14971 DRM_PLANE_TYPE_PRIMARY,
14972 "plane %c", plane_name(primary->plane));
fca0ce2a
VS
14973 if (ret)
14974 goto fail;
48404c1e 14975
3b7a5119
SJ
14976 if (INTEL_INFO(dev)->gen >= 4)
14977 intel_create_rotation_property(dev, primary);
48404c1e 14978
ea2c67bb
MR
14979 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
14980
465c120c 14981 return &primary->base;
fca0ce2a
VS
14982
14983fail:
14984 kfree(state);
14985 kfree(primary);
14986
14987 return NULL;
465c120c
MR
14988}
14989
3b7a5119
SJ
14990void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
14991{
14992 if (!dev->mode_config.rotation_property) {
31ad61e4
JL
14993 unsigned long flags = DRM_ROTATE_0 |
14994 DRM_ROTATE_180;
3b7a5119
SJ
14995
14996 if (INTEL_INFO(dev)->gen >= 9)
31ad61e4 14997 flags |= DRM_ROTATE_90 | DRM_ROTATE_270;
3b7a5119
SJ
14998
14999 dev->mode_config.rotation_property =
15000 drm_mode_create_rotation_property(dev, flags);
15001 }
15002 if (dev->mode_config.rotation_property)
15003 drm_object_attach_property(&plane->base.base,
15004 dev->mode_config.rotation_property,
15005 plane->base.state->rotation);
15006}
15007
3d7d6510 15008static int
852e787c 15009intel_check_cursor_plane(struct drm_plane *plane,
061e4b8d 15010 struct intel_crtc_state *crtc_state,
852e787c 15011 struct intel_plane_state *state)
3d7d6510 15012{
2b875c22 15013 struct drm_framebuffer *fb = state->base.fb;
757f9a3e 15014 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
b29ec92c 15015 enum pipe pipe = to_intel_plane(plane)->pipe;
757f9a3e
GP
15016 unsigned stride;
15017 int ret;
3d7d6510 15018
f8856a44
VS
15019 ret = drm_plane_helper_check_state(&state->base,
15020 &state->clip,
15021 DRM_PLANE_HELPER_NO_SCALING,
15022 DRM_PLANE_HELPER_NO_SCALING,
15023 true, true);
757f9a3e
GP
15024 if (ret)
15025 return ret;
15026
757f9a3e
GP
15027 /* if we want to turn off the cursor ignore width and height */
15028 if (!obj)
da20eabd 15029 return 0;
757f9a3e 15030
757f9a3e 15031 /* Check for which cursor types we support */
061e4b8d 15032 if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
ea2c67bb
MR
15033 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
15034 state->base.crtc_w, state->base.crtc_h);
757f9a3e
GP
15035 return -EINVAL;
15036 }
15037
ea2c67bb
MR
15038 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
15039 if (obj->base.size < stride * state->base.crtc_h) {
757f9a3e
GP
15040 DRM_DEBUG_KMS("buffer is too small\n");
15041 return -ENOMEM;
15042 }
15043
3a656b54 15044 if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
757f9a3e 15045 DRM_DEBUG_KMS("cursor cannot be tiled\n");
da20eabd 15046 return -EINVAL;
32b7eeec
MR
15047 }
15048
b29ec92c
VS
15049 /*
15050 * There's something wrong with the cursor on CHV pipe C.
15051 * If it straddles the left edge of the screen then
15052 * moving it away from the edge or disabling it often
15053 * results in a pipe underrun, and often that can lead to
15054 * dead pipe (constant underrun reported, and it scans
15055 * out just a solid color). To recover from that, the
15056 * display power well must be turned off and on again.
15057 * Refuse the put the cursor into that compromised position.
15058 */
15059 if (IS_CHERRYVIEW(plane->dev) && pipe == PIPE_C &&
936e71e3 15060 state->base.visible && state->base.crtc_x < 0) {
b29ec92c
VS
15061 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
15062 return -EINVAL;
15063 }
15064
da20eabd 15065 return 0;
852e787c 15066}
3d7d6510 15067
a8ad0d8e
ML
15068static void
15069intel_disable_cursor_plane(struct drm_plane *plane,
7fabf5ef 15070 struct drm_crtc *crtc)
a8ad0d8e 15071{
f2858021
ML
15072 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
15073
15074 intel_crtc->cursor_addr = 0;
55a08b3f 15075 intel_crtc_update_cursor(crtc, NULL);
a8ad0d8e
ML
15076}
15077
f4a2cf29 15078static void
55a08b3f
ML
15079intel_update_cursor_plane(struct drm_plane *plane,
15080 const struct intel_crtc_state *crtc_state,
15081 const struct intel_plane_state *state)
852e787c 15082{
55a08b3f
ML
15083 struct drm_crtc *crtc = crtc_state->base.crtc;
15084 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ea2c67bb 15085 struct drm_device *dev = plane->dev;
2b875c22 15086 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
a912f12f 15087 uint32_t addr;
852e787c 15088
f4a2cf29 15089 if (!obj)
a912f12f 15090 addr = 0;
f4a2cf29 15091 else if (!INTEL_INFO(dev)->cursor_needs_physical)
058d88c4 15092 addr = i915_gem_object_ggtt_offset(obj, NULL);
f4a2cf29 15093 else
a912f12f 15094 addr = obj->phys_handle->busaddr;
852e787c 15095
a912f12f 15096 intel_crtc->cursor_addr = addr;
55a08b3f 15097 intel_crtc_update_cursor(crtc, state);
852e787c
GP
15098}
15099
3d7d6510
MR
15100static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
15101 int pipe)
15102{
fca0ce2a
VS
15103 struct intel_plane *cursor = NULL;
15104 struct intel_plane_state *state = NULL;
15105 int ret;
3d7d6510
MR
15106
15107 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
fca0ce2a
VS
15108 if (!cursor)
15109 goto fail;
3d7d6510 15110
8e7d688b 15111 state = intel_create_plane_state(&cursor->base);
fca0ce2a
VS
15112 if (!state)
15113 goto fail;
8e7d688b 15114 cursor->base.state = &state->base;
ea2c67bb 15115
3d7d6510
MR
15116 cursor->can_scale = false;
15117 cursor->max_downscale = 1;
15118 cursor->pipe = pipe;
15119 cursor->plane = pipe;
a9ff8714 15120 cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
c59cb179 15121 cursor->check_plane = intel_check_cursor_plane;
55a08b3f 15122 cursor->update_plane = intel_update_cursor_plane;
a8ad0d8e 15123 cursor->disable_plane = intel_disable_cursor_plane;
3d7d6510 15124
fca0ce2a
VS
15125 ret = drm_universal_plane_init(dev, &cursor->base, 0,
15126 &intel_plane_funcs,
15127 intel_cursor_formats,
15128 ARRAY_SIZE(intel_cursor_formats),
38573dc1
VS
15129 DRM_PLANE_TYPE_CURSOR,
15130 "cursor %c", pipe_name(pipe));
fca0ce2a
VS
15131 if (ret)
15132 goto fail;
4398ad45
VS
15133
15134 if (INTEL_INFO(dev)->gen >= 4) {
15135 if (!dev->mode_config.rotation_property)
15136 dev->mode_config.rotation_property =
15137 drm_mode_create_rotation_property(dev,
31ad61e4
JL
15138 DRM_ROTATE_0 |
15139 DRM_ROTATE_180);
4398ad45
VS
15140 if (dev->mode_config.rotation_property)
15141 drm_object_attach_property(&cursor->base.base,
15142 dev->mode_config.rotation_property,
8e7d688b 15143 state->base.rotation);
4398ad45
VS
15144 }
15145
af99ceda
CK
15146 if (INTEL_INFO(dev)->gen >=9)
15147 state->scaler_id = -1;
15148
ea2c67bb
MR
15149 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
15150
3d7d6510 15151 return &cursor->base;
fca0ce2a
VS
15152
15153fail:
15154 kfree(state);
15155 kfree(cursor);
15156
15157 return NULL;
3d7d6510
MR
15158}
15159
549e2bfb
CK
15160static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
15161 struct intel_crtc_state *crtc_state)
15162{
15163 int i;
15164 struct intel_scaler *intel_scaler;
15165 struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
15166
15167 for (i = 0; i < intel_crtc->num_scalers; i++) {
15168 intel_scaler = &scaler_state->scalers[i];
15169 intel_scaler->in_use = 0;
549e2bfb
CK
15170 intel_scaler->mode = PS_SCALER_MODE_DYN;
15171 }
15172
15173 scaler_state->scaler_id = -1;
15174}
15175
b358d0a6 15176static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 15177{
fac5e23e 15178 struct drm_i915_private *dev_priv = to_i915(dev);
79e53945 15179 struct intel_crtc *intel_crtc;
f5de6e07 15180 struct intel_crtc_state *crtc_state = NULL;
3d7d6510
MR
15181 struct drm_plane *primary = NULL;
15182 struct drm_plane *cursor = NULL;
8563b1e8 15183 int ret;
79e53945 15184
955382f3 15185 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
79e53945
JB
15186 if (intel_crtc == NULL)
15187 return;
15188
f5de6e07
ACO
15189 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
15190 if (!crtc_state)
15191 goto fail;
550acefd
ACO
15192 intel_crtc->config = crtc_state;
15193 intel_crtc->base.state = &crtc_state->base;
07878248 15194 crtc_state->base.crtc = &intel_crtc->base;
f5de6e07 15195
549e2bfb
CK
15196 /* initialize shared scalers */
15197 if (INTEL_INFO(dev)->gen >= 9) {
15198 if (pipe == PIPE_C)
15199 intel_crtc->num_scalers = 1;
15200 else
15201 intel_crtc->num_scalers = SKL_NUM_SCALERS;
15202
15203 skl_init_scalers(dev, intel_crtc, crtc_state);
15204 }
15205
465c120c 15206 primary = intel_primary_plane_create(dev, pipe);
3d7d6510
MR
15207 if (!primary)
15208 goto fail;
15209
15210 cursor = intel_cursor_plane_create(dev, pipe);
15211 if (!cursor)
15212 goto fail;
15213
465c120c 15214 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
4d5d72b7
VS
15215 cursor, &intel_crtc_funcs,
15216 "pipe %c", pipe_name(pipe));
3d7d6510
MR
15217 if (ret)
15218 goto fail;
79e53945 15219
1f1c2e24
VS
15220 /*
15221 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
8c0f92e1 15222 * is hooked to pipe B. Hence we want plane A feeding pipe B.
1f1c2e24 15223 */
80824003
JB
15224 intel_crtc->pipe = pipe;
15225 intel_crtc->plane = pipe;
3a77c4c4 15226 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
28c97730 15227 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 15228 intel_crtc->plane = !pipe;
80824003
JB
15229 }
15230
4b0e333e
CW
15231 intel_crtc->cursor_base = ~0;
15232 intel_crtc->cursor_cntl = ~0;
dc41c154 15233 intel_crtc->cursor_size = ~0;
8d7849db 15234
852eb00d
VS
15235 intel_crtc->wm.cxsr_allowed = true;
15236
22fd0fab
JB
15237 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
15238 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
15239 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
15240 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
15241
79e53945 15242 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
87b6b101 15243
8563b1e8
LL
15244 intel_color_init(&intel_crtc->base);
15245
87b6b101 15246 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
3d7d6510
MR
15247 return;
15248
15249fail:
69ae561f
VS
15250 intel_plane_destroy(primary);
15251 intel_plane_destroy(cursor);
f5de6e07 15252 kfree(crtc_state);
3d7d6510 15253 kfree(intel_crtc);
79e53945
JB
15254}
15255
752aa88a
JB
15256enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
15257{
15258 struct drm_encoder *encoder = connector->base.encoder;
6e9f798d 15259 struct drm_device *dev = connector->base.dev;
752aa88a 15260
51fd371b 15261 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
752aa88a 15262
d3babd3f 15263 if (!encoder || WARN_ON(!encoder->crtc))
752aa88a
JB
15264 return INVALID_PIPE;
15265
15266 return to_intel_crtc(encoder->crtc)->pipe;
15267}
15268
08d7b3d1 15269int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 15270 struct drm_file *file)
08d7b3d1 15271{
08d7b3d1 15272 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7707e653 15273 struct drm_crtc *drmmode_crtc;
c05422d5 15274 struct intel_crtc *crtc;
08d7b3d1 15275
7707e653 15276 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
71240ed2 15277 if (!drmmode_crtc)
3f2c2057 15278 return -ENOENT;
08d7b3d1 15279
7707e653 15280 crtc = to_intel_crtc(drmmode_crtc);
c05422d5 15281 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 15282
c05422d5 15283 return 0;
08d7b3d1
CW
15284}
15285
66a9278e 15286static int intel_encoder_clones(struct intel_encoder *encoder)
79e53945 15287{
66a9278e
DV
15288 struct drm_device *dev = encoder->base.dev;
15289 struct intel_encoder *source_encoder;
79e53945 15290 int index_mask = 0;
79e53945
JB
15291 int entry = 0;
15292
b2784e15 15293 for_each_intel_encoder(dev, source_encoder) {
bc079e8b 15294 if (encoders_cloneable(encoder, source_encoder))
66a9278e
DV
15295 index_mask |= (1 << entry);
15296
79e53945
JB
15297 entry++;
15298 }
4ef69c7a 15299
79e53945
JB
15300 return index_mask;
15301}
15302
4d302442
CW
15303static bool has_edp_a(struct drm_device *dev)
15304{
fac5e23e 15305 struct drm_i915_private *dev_priv = to_i915(dev);
4d302442
CW
15306
15307 if (!IS_MOBILE(dev))
15308 return false;
15309
15310 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
15311 return false;
15312
e3589908 15313 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
4d302442
CW
15314 return false;
15315
15316 return true;
15317}
15318
84b4e042
JB
15319static bool intel_crt_present(struct drm_device *dev)
15320{
fac5e23e 15321 struct drm_i915_private *dev_priv = to_i915(dev);
84b4e042 15322
884497ed
DL
15323 if (INTEL_INFO(dev)->gen >= 9)
15324 return false;
15325
cf404ce4 15326 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
84b4e042
JB
15327 return false;
15328
15329 if (IS_CHERRYVIEW(dev))
15330 return false;
15331
4f8036a2
TU
15332 if (HAS_PCH_LPT_H(dev_priv) &&
15333 I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
65e472e4
VS
15334 return false;
15335
70ac54d0 15336 /* DDI E can't be used if DDI A requires 4 lanes */
4f8036a2 15337 if (HAS_DDI(dev_priv) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
70ac54d0
VS
15338 return false;
15339
e4abb733 15340 if (!dev_priv->vbt.int_crt_support)
84b4e042
JB
15341 return false;
15342
15343 return true;
15344}
15345
8090ba8c
ID
15346void intel_pps_unlock_regs_wa(struct drm_i915_private *dev_priv)
15347{
15348 int pps_num;
15349 int pps_idx;
15350
15351 if (HAS_DDI(dev_priv))
15352 return;
15353 /*
15354 * This w/a is needed at least on CPT/PPT, but to be sure apply it
15355 * everywhere where registers can be write protected.
15356 */
15357 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15358 pps_num = 2;
15359 else
15360 pps_num = 1;
15361
15362 for (pps_idx = 0; pps_idx < pps_num; pps_idx++) {
15363 u32 val = I915_READ(PP_CONTROL(pps_idx));
15364
15365 val = (val & ~PANEL_UNLOCK_MASK) | PANEL_UNLOCK_REGS;
15366 I915_WRITE(PP_CONTROL(pps_idx), val);
15367 }
15368}
15369
44cb734c
ID
15370static void intel_pps_init(struct drm_i915_private *dev_priv)
15371{
15372 if (HAS_PCH_SPLIT(dev_priv) || IS_BROXTON(dev_priv))
15373 dev_priv->pps_mmio_base = PCH_PPS_BASE;
15374 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15375 dev_priv->pps_mmio_base = VLV_PPS_BASE;
15376 else
15377 dev_priv->pps_mmio_base = PPS_BASE;
8090ba8c
ID
15378
15379 intel_pps_unlock_regs_wa(dev_priv);
44cb734c
ID
15380}
15381
79e53945
JB
15382static void intel_setup_outputs(struct drm_device *dev)
15383{
fac5e23e 15384 struct drm_i915_private *dev_priv = to_i915(dev);
4ef69c7a 15385 struct intel_encoder *encoder;
cb0953d7 15386 bool dpd_is_edp = false;
79e53945 15387
44cb734c
ID
15388 intel_pps_init(dev_priv);
15389
97a824e1
ID
15390 /*
15391 * intel_edp_init_connector() depends on this completing first, to
15392 * prevent the registeration of both eDP and LVDS and the incorrect
15393 * sharing of the PPS.
15394 */
c9093354 15395 intel_lvds_init(dev);
79e53945 15396
84b4e042 15397 if (intel_crt_present(dev))
79935fca 15398 intel_crt_init(dev);
cb0953d7 15399
c776eb2e
VK
15400 if (IS_BROXTON(dev)) {
15401 /*
15402 * FIXME: Broxton doesn't support port detection via the
15403 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
15404 * detect the ports.
15405 */
15406 intel_ddi_init(dev, PORT_A);
15407 intel_ddi_init(dev, PORT_B);
15408 intel_ddi_init(dev, PORT_C);
c6c794a2
SS
15409
15410 intel_dsi_init(dev);
4f8036a2 15411 } else if (HAS_DDI(dev_priv)) {
0e72a5b5
ED
15412 int found;
15413
de31facd
JB
15414 /*
15415 * Haswell uses DDI functions to detect digital outputs.
15416 * On SKL pre-D0 the strap isn't connected, so we assume
15417 * it's there.
15418 */
77179400 15419 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
de31facd 15420 /* WaIgnoreDDIAStrap: skl */
ef11bdb3 15421 if (found || IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
0e72a5b5
ED
15422 intel_ddi_init(dev, PORT_A);
15423
15424 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
15425 * register */
15426 found = I915_READ(SFUSE_STRAP);
15427
15428 if (found & SFUSE_STRAP_DDIB_DETECTED)
15429 intel_ddi_init(dev, PORT_B);
15430 if (found & SFUSE_STRAP_DDIC_DETECTED)
15431 intel_ddi_init(dev, PORT_C);
15432 if (found & SFUSE_STRAP_DDID_DETECTED)
15433 intel_ddi_init(dev, PORT_D);
2800e4c2
RV
15434 /*
15435 * On SKL we don't have a way to detect DDI-E so we rely on VBT.
15436 */
ef11bdb3 15437 if ((IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) &&
2800e4c2
RV
15438 (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
15439 dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
15440 dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
15441 intel_ddi_init(dev, PORT_E);
15442
6e266956 15443 } else if (HAS_PCH_SPLIT(dev_priv)) {
cb0953d7 15444 int found;
5d8a7752 15445 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
270b3042
DV
15446
15447 if (has_edp_a(dev))
15448 intel_dp_init(dev, DP_A, PORT_A);
cb0953d7 15449
dc0fa718 15450 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
461ed3ca 15451 /* PCH SDVOB multiplex with HDMIB */
2a5c0832 15452 found = intel_sdvo_init(dev, PCH_SDVOB, PORT_B);
30ad48b7 15453 if (!found)
e2debe91 15454 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
5eb08b69 15455 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
ab9d7c30 15456 intel_dp_init(dev, PCH_DP_B, PORT_B);
30ad48b7
ZW
15457 }
15458
dc0fa718 15459 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
e2debe91 15460 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
30ad48b7 15461
dc0fa718 15462 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
e2debe91 15463 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
30ad48b7 15464
5eb08b69 15465 if (I915_READ(PCH_DP_C) & DP_DETECTED)
ab9d7c30 15466 intel_dp_init(dev, PCH_DP_C, PORT_C);
5eb08b69 15467
270b3042 15468 if (I915_READ(PCH_DP_D) & DP_DETECTED)
ab9d7c30 15469 intel_dp_init(dev, PCH_DP_D, PORT_D);
666a4537 15470 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
22f35042 15471 bool has_edp, has_port;
457c52d8 15472
e17ac6db
VS
15473 /*
15474 * The DP_DETECTED bit is the latched state of the DDC
15475 * SDA pin at boot. However since eDP doesn't require DDC
15476 * (no way to plug in a DP->HDMI dongle) the DDC pins for
15477 * eDP ports may have been muxed to an alternate function.
15478 * Thus we can't rely on the DP_DETECTED bit alone to detect
15479 * eDP ports. Consult the VBT as well as DP_DETECTED to
15480 * detect eDP ports.
22f35042
VS
15481 *
15482 * Sadly the straps seem to be missing sometimes even for HDMI
15483 * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap
15484 * and VBT for the presence of the port. Additionally we can't
15485 * trust the port type the VBT declares as we've seen at least
15486 * HDMI ports that the VBT claim are DP or eDP.
e17ac6db 15487 */
457c52d8 15488 has_edp = intel_dp_is_edp(dev, PORT_B);
22f35042
VS
15489 has_port = intel_bios_is_port_present(dev_priv, PORT_B);
15490 if (I915_READ(VLV_DP_B) & DP_DETECTED || has_port)
457c52d8 15491 has_edp &= intel_dp_init(dev, VLV_DP_B, PORT_B);
22f35042 15492 if ((I915_READ(VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp)
e66eb81d 15493 intel_hdmi_init(dev, VLV_HDMIB, PORT_B);
585a94b8 15494
457c52d8 15495 has_edp = intel_dp_is_edp(dev, PORT_C);
22f35042
VS
15496 has_port = intel_bios_is_port_present(dev_priv, PORT_C);
15497 if (I915_READ(VLV_DP_C) & DP_DETECTED || has_port)
457c52d8 15498 has_edp &= intel_dp_init(dev, VLV_DP_C, PORT_C);
22f35042 15499 if ((I915_READ(VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp)
e66eb81d 15500 intel_hdmi_init(dev, VLV_HDMIC, PORT_C);
19c03924 15501
9418c1f1 15502 if (IS_CHERRYVIEW(dev)) {
22f35042
VS
15503 /*
15504 * eDP not supported on port D,
15505 * so no need to worry about it
15506 */
15507 has_port = intel_bios_is_port_present(dev_priv, PORT_D);
15508 if (I915_READ(CHV_DP_D) & DP_DETECTED || has_port)
e66eb81d 15509 intel_dp_init(dev, CHV_DP_D, PORT_D);
22f35042
VS
15510 if (I915_READ(CHV_HDMID) & SDVO_DETECTED || has_port)
15511 intel_hdmi_init(dev, CHV_HDMID, PORT_D);
9418c1f1
VS
15512 }
15513
3cfca973 15514 intel_dsi_init(dev);
09da55dc 15515 } else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
27185ae1 15516 bool found = false;
7d57382e 15517
e2debe91 15518 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 15519 DRM_DEBUG_KMS("probing SDVOB\n");
2a5c0832 15520 found = intel_sdvo_init(dev, GEN3_SDVOB, PORT_B);
3fec3d2f 15521 if (!found && IS_G4X(dev)) {
b01f2c3a 15522 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
e2debe91 15523 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
b01f2c3a 15524 }
27185ae1 15525
3fec3d2f 15526 if (!found && IS_G4X(dev))
ab9d7c30 15527 intel_dp_init(dev, DP_B, PORT_B);
725e30ad 15528 }
13520b05
KH
15529
15530 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 15531
e2debe91 15532 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 15533 DRM_DEBUG_KMS("probing SDVOC\n");
2a5c0832 15534 found = intel_sdvo_init(dev, GEN3_SDVOC, PORT_C);
b01f2c3a 15535 }
27185ae1 15536
e2debe91 15537 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
27185ae1 15538
3fec3d2f 15539 if (IS_G4X(dev)) {
b01f2c3a 15540 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
e2debe91 15541 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
b01f2c3a 15542 }
3fec3d2f 15543 if (IS_G4X(dev))
ab9d7c30 15544 intel_dp_init(dev, DP_C, PORT_C);
725e30ad 15545 }
27185ae1 15546
3fec3d2f 15547 if (IS_G4X(dev) &&
e7281eab 15548 (I915_READ(DP_D) & DP_DETECTED))
ab9d7c30 15549 intel_dp_init(dev, DP_D, PORT_D);
bad720ff 15550 } else if (IS_GEN2(dev))
79e53945
JB
15551 intel_dvo_init(dev);
15552
103a196f 15553 if (SUPPORTS_TV(dev))
79e53945
JB
15554 intel_tv_init(dev);
15555
0bc12bcb 15556 intel_psr_init(dev);
7c8f8a70 15557
b2784e15 15558 for_each_intel_encoder(dev, encoder) {
4ef69c7a
CW
15559 encoder->base.possible_crtcs = encoder->crtc_mask;
15560 encoder->base.possible_clones =
66a9278e 15561 intel_encoder_clones(encoder);
79e53945 15562 }
47356eb6 15563
dde86e2d 15564 intel_init_pch_refclk(dev);
270b3042
DV
15565
15566 drm_helper_move_panel_connectors_to_head(dev);
79e53945
JB
15567}
15568
15569static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
15570{
60a5ca01 15571 struct drm_device *dev = fb->dev;
79e53945 15572 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945 15573
ef2d633e 15574 drm_framebuffer_cleanup(fb);
60a5ca01 15575 mutex_lock(&dev->struct_mutex);
ef2d633e 15576 WARN_ON(!intel_fb->obj->framebuffer_references--);
f8c417cd 15577 i915_gem_object_put(intel_fb->obj);
60a5ca01 15578 mutex_unlock(&dev->struct_mutex);
79e53945
JB
15579 kfree(intel_fb);
15580}
15581
15582static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 15583 struct drm_file *file,
79e53945
JB
15584 unsigned int *handle)
15585{
15586 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 15587 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 15588
cc917ab4
CW
15589 if (obj->userptr.mm) {
15590 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
15591 return -EINVAL;
15592 }
15593
05394f39 15594 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
15595}
15596
86c98588
RV
15597static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
15598 struct drm_file *file,
15599 unsigned flags, unsigned color,
15600 struct drm_clip_rect *clips,
15601 unsigned num_clips)
15602{
15603 struct drm_device *dev = fb->dev;
15604 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
15605 struct drm_i915_gem_object *obj = intel_fb->obj;
15606
15607 mutex_lock(&dev->struct_mutex);
74b4ea1e 15608 intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
86c98588
RV
15609 mutex_unlock(&dev->struct_mutex);
15610
15611 return 0;
15612}
15613
79e53945
JB
15614static const struct drm_framebuffer_funcs intel_fb_funcs = {
15615 .destroy = intel_user_framebuffer_destroy,
15616 .create_handle = intel_user_framebuffer_create_handle,
86c98588 15617 .dirty = intel_user_framebuffer_dirty,
79e53945
JB
15618};
15619
b321803d
DL
15620static
15621u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
15622 uint32_t pixel_format)
15623{
15624 u32 gen = INTEL_INFO(dev)->gen;
15625
15626 if (gen >= 9) {
ac484963
VS
15627 int cpp = drm_format_plane_cpp(pixel_format, 0);
15628
b321803d
DL
15629 /* "The stride in bytes must not exceed the of the size of 8K
15630 * pixels and 32K bytes."
15631 */
ac484963 15632 return min(8192 * cpp, 32768);
666a4537 15633 } else if (gen >= 5 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
b321803d
DL
15634 return 32*1024;
15635 } else if (gen >= 4) {
15636 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
15637 return 16*1024;
15638 else
15639 return 32*1024;
15640 } else if (gen >= 3) {
15641 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
15642 return 8*1024;
15643 else
15644 return 16*1024;
15645 } else {
15646 /* XXX DSPC is limited to 4k tiled */
15647 return 8*1024;
15648 }
15649}
15650
b5ea642a
DV
15651static int intel_framebuffer_init(struct drm_device *dev,
15652 struct intel_framebuffer *intel_fb,
15653 struct drm_mode_fb_cmd2 *mode_cmd,
15654 struct drm_i915_gem_object *obj)
79e53945 15655{
7b49f948 15656 struct drm_i915_private *dev_priv = to_i915(dev);
c2ff7370 15657 unsigned int tiling = i915_gem_object_get_tiling(obj);
79e53945 15658 int ret;
b321803d 15659 u32 pitch_limit, stride_alignment;
d3828147 15660 char *format_name;
79e53945 15661
dd4916c5
DV
15662 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
15663
2a80eada 15664 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
c2ff7370
VS
15665 /*
15666 * If there's a fence, enforce that
15667 * the fb modifier and tiling mode match.
15668 */
15669 if (tiling != I915_TILING_NONE &&
15670 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
2a80eada
DV
15671 DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
15672 return -EINVAL;
15673 }
15674 } else {
c2ff7370 15675 if (tiling == I915_TILING_X) {
2a80eada 15676 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
c2ff7370 15677 } else if (tiling == I915_TILING_Y) {
2a80eada
DV
15678 DRM_DEBUG("No Y tiling for legacy addfb\n");
15679 return -EINVAL;
15680 }
15681 }
15682
9a8f0a12
TU
15683 /* Passed in modifier sanity checking. */
15684 switch (mode_cmd->modifier[0]) {
15685 case I915_FORMAT_MOD_Y_TILED:
15686 case I915_FORMAT_MOD_Yf_TILED:
15687 if (INTEL_INFO(dev)->gen < 9) {
15688 DRM_DEBUG("Unsupported tiling 0x%llx!\n",
15689 mode_cmd->modifier[0]);
15690 return -EINVAL;
15691 }
15692 case DRM_FORMAT_MOD_NONE:
15693 case I915_FORMAT_MOD_X_TILED:
15694 break;
15695 default:
c0f40428
JB
15696 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
15697 mode_cmd->modifier[0]);
57cd6508 15698 return -EINVAL;
c16ed4be 15699 }
57cd6508 15700
c2ff7370
VS
15701 /*
15702 * gen2/3 display engine uses the fence if present,
15703 * so the tiling mode must match the fb modifier exactly.
15704 */
15705 if (INTEL_INFO(dev_priv)->gen < 4 &&
15706 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
15707 DRM_DEBUG("tiling_mode must match fb modifier exactly on gen2/3\n");
15708 return -EINVAL;
15709 }
15710
7b49f948
VS
15711 stride_alignment = intel_fb_stride_alignment(dev_priv,
15712 mode_cmd->modifier[0],
b321803d
DL
15713 mode_cmd->pixel_format);
15714 if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
15715 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
15716 mode_cmd->pitches[0], stride_alignment);
57cd6508 15717 return -EINVAL;
c16ed4be 15718 }
57cd6508 15719
b321803d
DL
15720 pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
15721 mode_cmd->pixel_format);
a35cdaa0 15722 if (mode_cmd->pitches[0] > pitch_limit) {
b321803d
DL
15723 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
15724 mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
2a80eada 15725 "tiled" : "linear",
a35cdaa0 15726 mode_cmd->pitches[0], pitch_limit);
5d7bd705 15727 return -EINVAL;
c16ed4be 15728 }
5d7bd705 15729
c2ff7370
VS
15730 /*
15731 * If there's a fence, enforce that
15732 * the fb pitch and fence stride match.
15733 */
15734 if (tiling != I915_TILING_NONE &&
3e510a8e 15735 mode_cmd->pitches[0] != i915_gem_object_get_stride(obj)) {
c16ed4be 15736 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
3e510a8e
CW
15737 mode_cmd->pitches[0],
15738 i915_gem_object_get_stride(obj));
5d7bd705 15739 return -EINVAL;
c16ed4be 15740 }
5d7bd705 15741
57779d06 15742 /* Reject formats not supported by any plane early. */
308e5bcb 15743 switch (mode_cmd->pixel_format) {
57779d06 15744 case DRM_FORMAT_C8:
04b3924d
VS
15745 case DRM_FORMAT_RGB565:
15746 case DRM_FORMAT_XRGB8888:
15747 case DRM_FORMAT_ARGB8888:
57779d06
VS
15748 break;
15749 case DRM_FORMAT_XRGB1555:
c16ed4be 15750 if (INTEL_INFO(dev)->gen > 3) {
90844f00
EE
15751 format_name = drm_get_format_name(mode_cmd->pixel_format);
15752 DRM_DEBUG("unsupported pixel format: %s\n", format_name);
15753 kfree(format_name);
57779d06 15754 return -EINVAL;
c16ed4be 15755 }
57779d06 15756 break;
57779d06 15757 case DRM_FORMAT_ABGR8888:
666a4537
WB
15758 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
15759 INTEL_INFO(dev)->gen < 9) {
90844f00
EE
15760 format_name = drm_get_format_name(mode_cmd->pixel_format);
15761 DRM_DEBUG("unsupported pixel format: %s\n", format_name);
15762 kfree(format_name);
6c0fd451
DL
15763 return -EINVAL;
15764 }
15765 break;
15766 case DRM_FORMAT_XBGR8888:
04b3924d 15767 case DRM_FORMAT_XRGB2101010:
57779d06 15768 case DRM_FORMAT_XBGR2101010:
c16ed4be 15769 if (INTEL_INFO(dev)->gen < 4) {
90844f00
EE
15770 format_name = drm_get_format_name(mode_cmd->pixel_format);
15771 DRM_DEBUG("unsupported pixel format: %s\n", format_name);
15772 kfree(format_name);
57779d06 15773 return -EINVAL;
c16ed4be 15774 }
b5626747 15775 break;
7531208b 15776 case DRM_FORMAT_ABGR2101010:
666a4537 15777 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
90844f00
EE
15778 format_name = drm_get_format_name(mode_cmd->pixel_format);
15779 DRM_DEBUG("unsupported pixel format: %s\n", format_name);
15780 kfree(format_name);
7531208b
DL
15781 return -EINVAL;
15782 }
15783 break;
04b3924d
VS
15784 case DRM_FORMAT_YUYV:
15785 case DRM_FORMAT_UYVY:
15786 case DRM_FORMAT_YVYU:
15787 case DRM_FORMAT_VYUY:
c16ed4be 15788 if (INTEL_INFO(dev)->gen < 5) {
90844f00
EE
15789 format_name = drm_get_format_name(mode_cmd->pixel_format);
15790 DRM_DEBUG("unsupported pixel format: %s\n", format_name);
15791 kfree(format_name);
57779d06 15792 return -EINVAL;
c16ed4be 15793 }
57cd6508
CW
15794 break;
15795 default:
90844f00
EE
15796 format_name = drm_get_format_name(mode_cmd->pixel_format);
15797 DRM_DEBUG("unsupported pixel format: %s\n", format_name);
15798 kfree(format_name);
57cd6508
CW
15799 return -EINVAL;
15800 }
15801
90f9a336
VS
15802 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
15803 if (mode_cmd->offsets[0] != 0)
15804 return -EINVAL;
15805
c7d73f6a
DV
15806 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
15807 intel_fb->obj = obj;
15808
6687c906
VS
15809 ret = intel_fill_fb_info(dev_priv, &intel_fb->base);
15810 if (ret)
15811 return ret;
2d7a215f 15812
79e53945
JB
15813 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
15814 if (ret) {
15815 DRM_ERROR("framebuffer init failed %d\n", ret);
15816 return ret;
15817 }
15818
0b05e1e0
VS
15819 intel_fb->obj->framebuffer_references++;
15820
79e53945
JB
15821 return 0;
15822}
15823
79e53945
JB
15824static struct drm_framebuffer *
15825intel_user_framebuffer_create(struct drm_device *dev,
15826 struct drm_file *filp,
1eb83451 15827 const struct drm_mode_fb_cmd2 *user_mode_cmd)
79e53945 15828{
dcb1394e 15829 struct drm_framebuffer *fb;
05394f39 15830 struct drm_i915_gem_object *obj;
76dc3769 15831 struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
79e53945 15832
03ac0642
CW
15833 obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]);
15834 if (!obj)
cce13ff7 15835 return ERR_PTR(-ENOENT);
79e53945 15836
92907cbb 15837 fb = intel_framebuffer_create(dev, &mode_cmd, obj);
dcb1394e 15838 if (IS_ERR(fb))
34911fd3 15839 i915_gem_object_put_unlocked(obj);
dcb1394e
LW
15840
15841 return fb;
79e53945
JB
15842}
15843
79e53945 15844static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 15845 .fb_create = intel_user_framebuffer_create,
0632fef6 15846 .output_poll_changed = intel_fbdev_output_poll_changed,
5ee67f1c
MR
15847 .atomic_check = intel_atomic_check,
15848 .atomic_commit = intel_atomic_commit,
de419ab6
ML
15849 .atomic_state_alloc = intel_atomic_state_alloc,
15850 .atomic_state_clear = intel_atomic_state_clear,
79e53945
JB
15851};
15852
88212941
ID
15853/**
15854 * intel_init_display_hooks - initialize the display modesetting hooks
15855 * @dev_priv: device private
15856 */
15857void intel_init_display_hooks(struct drm_i915_private *dev_priv)
e70236a8 15858{
88212941 15859 if (INTEL_INFO(dev_priv)->gen >= 9) {
bc8d7dff 15860 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
5724dbd1
DL
15861 dev_priv->display.get_initial_plane_config =
15862 skylake_get_initial_plane_config;
bc8d7dff
DL
15863 dev_priv->display.crtc_compute_clock =
15864 haswell_crtc_compute_clock;
15865 dev_priv->display.crtc_enable = haswell_crtc_enable;
15866 dev_priv->display.crtc_disable = haswell_crtc_disable;
88212941 15867 } else if (HAS_DDI(dev_priv)) {
0e8ffe1b 15868 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
5724dbd1
DL
15869 dev_priv->display.get_initial_plane_config =
15870 ironlake_get_initial_plane_config;
797d0259
ACO
15871 dev_priv->display.crtc_compute_clock =
15872 haswell_crtc_compute_clock;
4f771f10
PZ
15873 dev_priv->display.crtc_enable = haswell_crtc_enable;
15874 dev_priv->display.crtc_disable = haswell_crtc_disable;
88212941 15875 } else if (HAS_PCH_SPLIT(dev_priv)) {
0e8ffe1b 15876 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
5724dbd1
DL
15877 dev_priv->display.get_initial_plane_config =
15878 ironlake_get_initial_plane_config;
3fb37703
ACO
15879 dev_priv->display.crtc_compute_clock =
15880 ironlake_crtc_compute_clock;
76e5a89c
DV
15881 dev_priv->display.crtc_enable = ironlake_crtc_enable;
15882 dev_priv->display.crtc_disable = ironlake_crtc_disable;
65b3d6a9 15883 } else if (IS_CHERRYVIEW(dev_priv)) {
89b667f8 15884 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
5724dbd1
DL
15885 dev_priv->display.get_initial_plane_config =
15886 i9xx_get_initial_plane_config;
65b3d6a9
ACO
15887 dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
15888 dev_priv->display.crtc_enable = valleyview_crtc_enable;
15889 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15890 } else if (IS_VALLEYVIEW(dev_priv)) {
15891 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15892 dev_priv->display.get_initial_plane_config =
15893 i9xx_get_initial_plane_config;
15894 dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
89b667f8
JB
15895 dev_priv->display.crtc_enable = valleyview_crtc_enable;
15896 dev_priv->display.crtc_disable = i9xx_crtc_disable;
19ec6693
ACO
15897 } else if (IS_G4X(dev_priv)) {
15898 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15899 dev_priv->display.get_initial_plane_config =
15900 i9xx_get_initial_plane_config;
15901 dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
15902 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15903 dev_priv->display.crtc_disable = i9xx_crtc_disable;
70e8aa21
ACO
15904 } else if (IS_PINEVIEW(dev_priv)) {
15905 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15906 dev_priv->display.get_initial_plane_config =
15907 i9xx_get_initial_plane_config;
15908 dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
15909 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15910 dev_priv->display.crtc_disable = i9xx_crtc_disable;
81c97f52 15911 } else if (!IS_GEN2(dev_priv)) {
0e8ffe1b 15912 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
5724dbd1
DL
15913 dev_priv->display.get_initial_plane_config =
15914 i9xx_get_initial_plane_config;
d6dfee7a 15915 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
76e5a89c
DV
15916 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15917 dev_priv->display.crtc_disable = i9xx_crtc_disable;
81c97f52
ACO
15918 } else {
15919 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15920 dev_priv->display.get_initial_plane_config =
15921 i9xx_get_initial_plane_config;
15922 dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
15923 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15924 dev_priv->display.crtc_disable = i9xx_crtc_disable;
f564048e 15925 }
e70236a8 15926
e70236a8 15927 /* Returns the core display clock speed */
88212941 15928 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
1652d19e
VS
15929 dev_priv->display.get_display_clock_speed =
15930 skylake_get_display_clock_speed;
88212941 15931 else if (IS_BROXTON(dev_priv))
acd3f3d3
BP
15932 dev_priv->display.get_display_clock_speed =
15933 broxton_get_display_clock_speed;
88212941 15934 else if (IS_BROADWELL(dev_priv))
1652d19e
VS
15935 dev_priv->display.get_display_clock_speed =
15936 broadwell_get_display_clock_speed;
88212941 15937 else if (IS_HASWELL(dev_priv))
1652d19e
VS
15938 dev_priv->display.get_display_clock_speed =
15939 haswell_get_display_clock_speed;
88212941 15940 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
25eb05fc
JB
15941 dev_priv->display.get_display_clock_speed =
15942 valleyview_get_display_clock_speed;
88212941 15943 else if (IS_GEN5(dev_priv))
b37a6434
VS
15944 dev_priv->display.get_display_clock_speed =
15945 ilk_get_display_clock_speed;
88212941
ID
15946 else if (IS_I945G(dev_priv) || IS_BROADWATER(dev_priv) ||
15947 IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv))
e70236a8
JB
15948 dev_priv->display.get_display_clock_speed =
15949 i945_get_display_clock_speed;
88212941 15950 else if (IS_GM45(dev_priv))
34edce2f
VS
15951 dev_priv->display.get_display_clock_speed =
15952 gm45_get_display_clock_speed;
88212941 15953 else if (IS_CRESTLINE(dev_priv))
34edce2f
VS
15954 dev_priv->display.get_display_clock_speed =
15955 i965gm_get_display_clock_speed;
88212941 15956 else if (IS_PINEVIEW(dev_priv))
34edce2f
VS
15957 dev_priv->display.get_display_clock_speed =
15958 pnv_get_display_clock_speed;
88212941 15959 else if (IS_G33(dev_priv) || IS_G4X(dev_priv))
34edce2f
VS
15960 dev_priv->display.get_display_clock_speed =
15961 g33_get_display_clock_speed;
88212941 15962 else if (IS_I915G(dev_priv))
e70236a8
JB
15963 dev_priv->display.get_display_clock_speed =
15964 i915_get_display_clock_speed;
88212941 15965 else if (IS_I945GM(dev_priv) || IS_845G(dev_priv))
e70236a8
JB
15966 dev_priv->display.get_display_clock_speed =
15967 i9xx_misc_get_display_clock_speed;
88212941 15968 else if (IS_I915GM(dev_priv))
e70236a8
JB
15969 dev_priv->display.get_display_clock_speed =
15970 i915gm_get_display_clock_speed;
88212941 15971 else if (IS_I865G(dev_priv))
e70236a8
JB
15972 dev_priv->display.get_display_clock_speed =
15973 i865_get_display_clock_speed;
88212941 15974 else if (IS_I85X(dev_priv))
e70236a8 15975 dev_priv->display.get_display_clock_speed =
1b1d2716 15976 i85x_get_display_clock_speed;
623e01e5 15977 else { /* 830 */
88212941 15978 WARN(!IS_I830(dev_priv), "Unknown platform. Assuming 133 MHz CDCLK\n");
e70236a8
JB
15979 dev_priv->display.get_display_clock_speed =
15980 i830_get_display_clock_speed;
623e01e5 15981 }
e70236a8 15982
88212941 15983 if (IS_GEN5(dev_priv)) {
3bb11b53 15984 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
88212941 15985 } else if (IS_GEN6(dev_priv)) {
3bb11b53 15986 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
88212941 15987 } else if (IS_IVYBRIDGE(dev_priv)) {
3bb11b53
SJ
15988 /* FIXME: detect B0+ stepping and use auto training */
15989 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
88212941 15990 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3bb11b53 15991 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
445e780b
VS
15992 }
15993
15994 if (IS_BROADWELL(dev_priv)) {
15995 dev_priv->display.modeset_commit_cdclk =
15996 broadwell_modeset_commit_cdclk;
15997 dev_priv->display.modeset_calc_cdclk =
15998 broadwell_modeset_calc_cdclk;
88212941 15999 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
27c329ed
ML
16000 dev_priv->display.modeset_commit_cdclk =
16001 valleyview_modeset_commit_cdclk;
16002 dev_priv->display.modeset_calc_cdclk =
16003 valleyview_modeset_calc_cdclk;
88212941 16004 } else if (IS_BROXTON(dev_priv)) {
27c329ed 16005 dev_priv->display.modeset_commit_cdclk =
324513c0 16006 bxt_modeset_commit_cdclk;
27c329ed 16007 dev_priv->display.modeset_calc_cdclk =
324513c0 16008 bxt_modeset_calc_cdclk;
c89e39f3
CT
16009 } else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
16010 dev_priv->display.modeset_commit_cdclk =
16011 skl_modeset_commit_cdclk;
16012 dev_priv->display.modeset_calc_cdclk =
16013 skl_modeset_calc_cdclk;
e70236a8 16014 }
5a21b665 16015
27082493
L
16016 if (dev_priv->info.gen >= 9)
16017 dev_priv->display.update_crtcs = skl_update_crtcs;
16018 else
16019 dev_priv->display.update_crtcs = intel_update_crtcs;
16020
5a21b665
DV
16021 switch (INTEL_INFO(dev_priv)->gen) {
16022 case 2:
16023 dev_priv->display.queue_flip = intel_gen2_queue_flip;
16024 break;
16025
16026 case 3:
16027 dev_priv->display.queue_flip = intel_gen3_queue_flip;
16028 break;
16029
16030 case 4:
16031 case 5:
16032 dev_priv->display.queue_flip = intel_gen4_queue_flip;
16033 break;
16034
16035 case 6:
16036 dev_priv->display.queue_flip = intel_gen6_queue_flip;
16037 break;
16038 case 7:
16039 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
16040 dev_priv->display.queue_flip = intel_gen7_queue_flip;
16041 break;
16042 case 9:
16043 /* Drop through - unsupported since execlist only. */
16044 default:
16045 /* Default just returns -ENODEV to indicate unsupported */
16046 dev_priv->display.queue_flip = intel_default_queue_flip;
16047 }
e70236a8
JB
16048}
16049
b690e96c
JB
16050/*
16051 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
16052 * resume, or other times. This quirk makes sure that's the case for
16053 * affected systems.
16054 */
0206e353 16055static void quirk_pipea_force(struct drm_device *dev)
b690e96c 16056{
fac5e23e 16057 struct drm_i915_private *dev_priv = to_i915(dev);
b690e96c
JB
16058
16059 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
bc0daf48 16060 DRM_INFO("applying pipe a force quirk\n");
b690e96c
JB
16061}
16062
b6b5d049
VS
16063static void quirk_pipeb_force(struct drm_device *dev)
16064{
fac5e23e 16065 struct drm_i915_private *dev_priv = to_i915(dev);
b6b5d049
VS
16066
16067 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
16068 DRM_INFO("applying pipe b force quirk\n");
16069}
16070
435793df
KP
16071/*
16072 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
16073 */
16074static void quirk_ssc_force_disable(struct drm_device *dev)
16075{
fac5e23e 16076 struct drm_i915_private *dev_priv = to_i915(dev);
435793df 16077 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
bc0daf48 16078 DRM_INFO("applying lvds SSC disable quirk\n");
435793df
KP
16079}
16080
4dca20ef 16081/*
5a15ab5b
CE
16082 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
16083 * brightness value
4dca20ef
CE
16084 */
16085static void quirk_invert_brightness(struct drm_device *dev)
16086{
fac5e23e 16087 struct drm_i915_private *dev_priv = to_i915(dev);
4dca20ef 16088 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
bc0daf48 16089 DRM_INFO("applying inverted panel brightness quirk\n");
435793df
KP
16090}
16091
9c72cc6f
SD
16092/* Some VBT's incorrectly indicate no backlight is present */
16093static void quirk_backlight_present(struct drm_device *dev)
16094{
fac5e23e 16095 struct drm_i915_private *dev_priv = to_i915(dev);
9c72cc6f
SD
16096 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
16097 DRM_INFO("applying backlight present quirk\n");
16098}
16099
b690e96c
JB
16100struct intel_quirk {
16101 int device;
16102 int subsystem_vendor;
16103 int subsystem_device;
16104 void (*hook)(struct drm_device *dev);
16105};
16106
5f85f176
EE
16107/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
16108struct intel_dmi_quirk {
16109 void (*hook)(struct drm_device *dev);
16110 const struct dmi_system_id (*dmi_id_list)[];
16111};
16112
16113static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
16114{
16115 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
16116 return 1;
16117}
16118
16119static const struct intel_dmi_quirk intel_dmi_quirks[] = {
16120 {
16121 .dmi_id_list = &(const struct dmi_system_id[]) {
16122 {
16123 .callback = intel_dmi_reverse_brightness,
16124 .ident = "NCR Corporation",
16125 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
16126 DMI_MATCH(DMI_PRODUCT_NAME, ""),
16127 },
16128 },
16129 { } /* terminating entry */
16130 },
16131 .hook = quirk_invert_brightness,
16132 },
16133};
16134
c43b5634 16135static struct intel_quirk intel_quirks[] = {
b690e96c
JB
16136 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
16137 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
16138
b690e96c
JB
16139 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
16140 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
16141
5f080c0f
VS
16142 /* 830 needs to leave pipe A & dpll A up */
16143 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
16144
b6b5d049
VS
16145 /* 830 needs to leave pipe B & dpll B up */
16146 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
16147
435793df
KP
16148 /* Lenovo U160 cannot use SSC on LVDS */
16149 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
16150
16151 /* Sony Vaio Y cannot use SSC on LVDS */
16152 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
5a15ab5b 16153
be505f64
AH
16154 /* Acer Aspire 5734Z must invert backlight brightness */
16155 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
16156
16157 /* Acer/eMachines G725 */
16158 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
16159
16160 /* Acer/eMachines e725 */
16161 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
16162
16163 /* Acer/Packard Bell NCL20 */
16164 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
16165
16166 /* Acer Aspire 4736Z */
16167 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
0f540c3a
JN
16168
16169 /* Acer Aspire 5336 */
16170 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
2e93a1aa
SD
16171
16172 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
16173 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
d4967d8c 16174
dfb3d47b
SD
16175 /* Acer C720 Chromebook (Core i3 4005U) */
16176 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
16177
b2a9601c 16178 /* Apple Macbook 2,1 (Core 2 T7400) */
16179 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
16180
1b9448b0
JN
16181 /* Apple Macbook 4,1 */
16182 { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
16183
d4967d8c
SD
16184 /* Toshiba CB35 Chromebook (Celeron 2955U) */
16185 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
724cb06f
SD
16186
16187 /* HP Chromebook 14 (Celeron 2955U) */
16188 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
cf6f0af9
JN
16189
16190 /* Dell Chromebook 11 */
16191 { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
9be64eee
JN
16192
16193 /* Dell Chromebook 11 (2015 version) */
16194 { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
b690e96c
JB
16195};
16196
16197static void intel_init_quirks(struct drm_device *dev)
16198{
16199 struct pci_dev *d = dev->pdev;
16200 int i;
16201
16202 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
16203 struct intel_quirk *q = &intel_quirks[i];
16204
16205 if (d->device == q->device &&
16206 (d->subsystem_vendor == q->subsystem_vendor ||
16207 q->subsystem_vendor == PCI_ANY_ID) &&
16208 (d->subsystem_device == q->subsystem_device ||
16209 q->subsystem_device == PCI_ANY_ID))
16210 q->hook(dev);
16211 }
5f85f176
EE
16212 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
16213 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
16214 intel_dmi_quirks[i].hook(dev);
16215 }
b690e96c
JB
16216}
16217
9cce37f4
JB
16218/* Disable the VGA plane that we never use */
16219static void i915_disable_vga(struct drm_device *dev)
16220{
fac5e23e 16221 struct drm_i915_private *dev_priv = to_i915(dev);
52a05c30 16222 struct pci_dev *pdev = dev_priv->drm.pdev;
9cce37f4 16223 u8 sr1;
f0f59a00 16224 i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
9cce37f4 16225
2b37c616 16226 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
52a05c30 16227 vga_get_uninterruptible(pdev, VGA_RSRC_LEGACY_IO);
3fdcf431 16228 outb(SR01, VGA_SR_INDEX);
9cce37f4
JB
16229 sr1 = inb(VGA_SR_DATA);
16230 outb(sr1 | 1<<5, VGA_SR_DATA);
52a05c30 16231 vga_put(pdev, VGA_RSRC_LEGACY_IO);
9cce37f4
JB
16232 udelay(300);
16233
01f5a626 16234 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
9cce37f4
JB
16235 POSTING_READ(vga_reg);
16236}
16237
f817586c
DV
16238void intel_modeset_init_hw(struct drm_device *dev)
16239{
fac5e23e 16240 struct drm_i915_private *dev_priv = to_i915(dev);
1a617b77 16241
b6283055 16242 intel_update_cdclk(dev);
1a617b77
ML
16243
16244 dev_priv->atomic_cdclk_freq = dev_priv->cdclk_freq;
16245
f817586c 16246 intel_init_clock_gating(dev);
f817586c
DV
16247}
16248
d93c0372
MR
16249/*
16250 * Calculate what we think the watermarks should be for the state we've read
16251 * out of the hardware and then immediately program those watermarks so that
16252 * we ensure the hardware settings match our internal state.
16253 *
16254 * We can calculate what we think WM's should be by creating a duplicate of the
16255 * current state (which was constructed during hardware readout) and running it
16256 * through the atomic check code to calculate new watermark values in the
16257 * state object.
16258 */
16259static void sanitize_watermarks(struct drm_device *dev)
16260{
16261 struct drm_i915_private *dev_priv = to_i915(dev);
16262 struct drm_atomic_state *state;
16263 struct drm_crtc *crtc;
16264 struct drm_crtc_state *cstate;
16265 struct drm_modeset_acquire_ctx ctx;
16266 int ret;
16267 int i;
16268
16269 /* Only supported on platforms that use atomic watermark design */
ed4a6a7c 16270 if (!dev_priv->display.optimize_watermarks)
d93c0372
MR
16271 return;
16272
16273 /*
16274 * We need to hold connection_mutex before calling duplicate_state so
16275 * that the connector loop is protected.
16276 */
16277 drm_modeset_acquire_init(&ctx, 0);
16278retry:
0cd1262d 16279 ret = drm_modeset_lock_all_ctx(dev, &ctx);
d93c0372
MR
16280 if (ret == -EDEADLK) {
16281 drm_modeset_backoff(&ctx);
16282 goto retry;
16283 } else if (WARN_ON(ret)) {
0cd1262d 16284 goto fail;
d93c0372
MR
16285 }
16286
16287 state = drm_atomic_helper_duplicate_state(dev, &ctx);
16288 if (WARN_ON(IS_ERR(state)))
0cd1262d 16289 goto fail;
d93c0372 16290
ed4a6a7c
MR
16291 /*
16292 * Hardware readout is the only time we don't want to calculate
16293 * intermediate watermarks (since we don't trust the current
16294 * watermarks).
16295 */
16296 to_intel_atomic_state(state)->skip_intermediate_wm = true;
16297
d93c0372
MR
16298 ret = intel_atomic_check(dev, state);
16299 if (ret) {
16300 /*
16301 * If we fail here, it means that the hardware appears to be
16302 * programmed in a way that shouldn't be possible, given our
16303 * understanding of watermark requirements. This might mean a
16304 * mistake in the hardware readout code or a mistake in the
16305 * watermark calculations for a given platform. Raise a WARN
16306 * so that this is noticeable.
16307 *
16308 * If this actually happens, we'll have to just leave the
16309 * BIOS-programmed watermarks untouched and hope for the best.
16310 */
16311 WARN(true, "Could not determine valid watermarks for inherited state\n");
0cd1262d 16312 goto fail;
d93c0372
MR
16313 }
16314
16315 /* Write calculated watermark values back */
d93c0372
MR
16316 for_each_crtc_in_state(state, crtc, cstate, i) {
16317 struct intel_crtc_state *cs = to_intel_crtc_state(cstate);
16318
ed4a6a7c
MR
16319 cs->wm.need_postvbl_update = true;
16320 dev_priv->display.optimize_watermarks(cs);
d93c0372
MR
16321 }
16322
16323 drm_atomic_state_free(state);
0cd1262d 16324fail:
d93c0372
MR
16325 drm_modeset_drop_locks(&ctx);
16326 drm_modeset_acquire_fini(&ctx);
16327}
16328
79e53945
JB
16329void intel_modeset_init(struct drm_device *dev)
16330{
72e96d64
JL
16331 struct drm_i915_private *dev_priv = to_i915(dev);
16332 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1fe47785 16333 int sprite, ret;
8cc87b75 16334 enum pipe pipe;
46f297fb 16335 struct intel_crtc *crtc;
79e53945
JB
16336
16337 drm_mode_config_init(dev);
16338
16339 dev->mode_config.min_width = 0;
16340 dev->mode_config.min_height = 0;
16341
019d96cb
DA
16342 dev->mode_config.preferred_depth = 24;
16343 dev->mode_config.prefer_shadow = 1;
16344
25bab385
TU
16345 dev->mode_config.allow_fb_modifiers = true;
16346
e6ecefaa 16347 dev->mode_config.funcs = &intel_mode_funcs;
79e53945 16348
b690e96c
JB
16349 intel_init_quirks(dev);
16350
1fa61106
ED
16351 intel_init_pm(dev);
16352
e3c74757
BW
16353 if (INTEL_INFO(dev)->num_pipes == 0)
16354 return;
16355
69f92f67
LW
16356 /*
16357 * There may be no VBT; and if the BIOS enabled SSC we can
16358 * just keep using it to avoid unnecessary flicker. Whereas if the
16359 * BIOS isn't using it, don't assume it will work even if the VBT
16360 * indicates as much.
16361 */
6e266956 16362 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
69f92f67
LW
16363 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
16364 DREF_SSC1_ENABLE);
16365
16366 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
16367 DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
16368 bios_lvds_use_ssc ? "en" : "dis",
16369 dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
16370 dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
16371 }
16372 }
16373
a6c45cf0
CW
16374 if (IS_GEN2(dev)) {
16375 dev->mode_config.max_width = 2048;
16376 dev->mode_config.max_height = 2048;
16377 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
16378 dev->mode_config.max_width = 4096;
16379 dev->mode_config.max_height = 4096;
79e53945 16380 } else {
a6c45cf0
CW
16381 dev->mode_config.max_width = 8192;
16382 dev->mode_config.max_height = 8192;
79e53945 16383 }
068be561 16384
dc41c154
VS
16385 if (IS_845G(dev) || IS_I865G(dev)) {
16386 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
16387 dev->mode_config.cursor_height = 1023;
16388 } else if (IS_GEN2(dev)) {
068be561
DL
16389 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
16390 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
16391 } else {
16392 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
16393 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
16394 }
16395
72e96d64 16396 dev->mode_config.fb_base = ggtt->mappable_base;
79e53945 16397
28c97730 16398 DRM_DEBUG_KMS("%d display pipe%s available.\n",
7eb552ae
BW
16399 INTEL_INFO(dev)->num_pipes,
16400 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
79e53945 16401
055e393f 16402 for_each_pipe(dev_priv, pipe) {
8cc87b75 16403 intel_crtc_init(dev, pipe);
3bdcfc0c 16404 for_each_sprite(dev_priv, pipe, sprite) {
1fe47785 16405 ret = intel_plane_init(dev, pipe, sprite);
7f1f3851 16406 if (ret)
06da8da2 16407 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
1fe47785 16408 pipe_name(pipe), sprite_name(pipe, sprite), ret);
7f1f3851 16409 }
79e53945
JB
16410 }
16411
bfa7df01
VS
16412 intel_update_czclk(dev_priv);
16413 intel_update_cdclk(dev);
16414
e72f9fbf 16415 intel_shared_dpll_init(dev);
ee7b9f93 16416
b2045352
VS
16417 if (dev_priv->max_cdclk_freq == 0)
16418 intel_update_max_cdclk(dev);
16419
9cce37f4
JB
16420 /* Just disable it once at startup */
16421 i915_disable_vga(dev);
79e53945 16422 intel_setup_outputs(dev);
11be49eb 16423
6e9f798d 16424 drm_modeset_lock_all(dev);
043e9bda 16425 intel_modeset_setup_hw_state(dev);
6e9f798d 16426 drm_modeset_unlock_all(dev);
46f297fb 16427
d3fcc808 16428 for_each_intel_crtc(dev, crtc) {
eeebeac5
ML
16429 struct intel_initial_plane_config plane_config = {};
16430
46f297fb
JB
16431 if (!crtc->active)
16432 continue;
16433
46f297fb 16434 /*
46f297fb
JB
16435 * Note that reserving the BIOS fb up front prevents us
16436 * from stuffing other stolen allocations like the ring
16437 * on top. This prevents some ugliness at boot time, and
16438 * can even allow for smooth boot transitions if the BIOS
16439 * fb is large enough for the active pipe configuration.
16440 */
eeebeac5
ML
16441 dev_priv->display.get_initial_plane_config(crtc,
16442 &plane_config);
16443
16444 /*
16445 * If the fb is shared between multiple heads, we'll
16446 * just get the first one.
16447 */
16448 intel_find_initial_plane_obj(crtc, &plane_config);
46f297fb 16449 }
d93c0372
MR
16450
16451 /*
16452 * Make sure hardware watermarks really match the state we read out.
16453 * Note that we need to do this after reconstructing the BIOS fb's
16454 * since the watermark calculation done here will use pstate->fb.
16455 */
16456 sanitize_watermarks(dev);
2c7111db
CW
16457}
16458
7fad798e
DV
16459static void intel_enable_pipe_a(struct drm_device *dev)
16460{
16461 struct intel_connector *connector;
16462 struct drm_connector *crt = NULL;
16463 struct intel_load_detect_pipe load_detect_temp;
208bf9fd 16464 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
7fad798e
DV
16465
16466 /* We can't just switch on the pipe A, we need to set things up with a
16467 * proper mode and output configuration. As a gross hack, enable pipe A
16468 * by enabling the load detect pipe once. */
3a3371ff 16469 for_each_intel_connector(dev, connector) {
7fad798e
DV
16470 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
16471 crt = &connector->base;
16472 break;
16473 }
16474 }
16475
16476 if (!crt)
16477 return;
16478
208bf9fd 16479 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
49172fee 16480 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
7fad798e
DV
16481}
16482
fa555837
DV
16483static bool
16484intel_check_plane_mapping(struct intel_crtc *crtc)
16485{
7eb552ae 16486 struct drm_device *dev = crtc->base.dev;
fac5e23e 16487 struct drm_i915_private *dev_priv = to_i915(dev);
649636ef 16488 u32 val;
fa555837 16489
7eb552ae 16490 if (INTEL_INFO(dev)->num_pipes == 1)
fa555837
DV
16491 return true;
16492
649636ef 16493 val = I915_READ(DSPCNTR(!crtc->plane));
fa555837
DV
16494
16495 if ((val & DISPLAY_PLANE_ENABLE) &&
16496 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
16497 return false;
16498
16499 return true;
16500}
16501
02e93c35
VS
16502static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
16503{
16504 struct drm_device *dev = crtc->base.dev;
16505 struct intel_encoder *encoder;
16506
16507 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
16508 return true;
16509
16510 return false;
16511}
16512
496b0fc3
ML
16513static struct intel_connector *intel_encoder_find_connector(struct intel_encoder *encoder)
16514{
16515 struct drm_device *dev = encoder->base.dev;
16516 struct intel_connector *connector;
16517
16518 for_each_connector_on_encoder(dev, &encoder->base, connector)
16519 return connector;
16520
16521 return NULL;
16522}
16523
a168f5b3
VS
16524static bool has_pch_trancoder(struct drm_i915_private *dev_priv,
16525 enum transcoder pch_transcoder)
16526{
16527 return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
16528 (HAS_PCH_LPT_H(dev_priv) && pch_transcoder == TRANSCODER_A);
16529}
16530
24929352
DV
16531static void intel_sanitize_crtc(struct intel_crtc *crtc)
16532{
16533 struct drm_device *dev = crtc->base.dev;
fac5e23e 16534 struct drm_i915_private *dev_priv = to_i915(dev);
4d1de975 16535 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
24929352 16536
24929352 16537 /* Clear any frame start delays used for debugging left by the BIOS */
4d1de975
JN
16538 if (!transcoder_is_dsi(cpu_transcoder)) {
16539 i915_reg_t reg = PIPECONF(cpu_transcoder);
16540
16541 I915_WRITE(reg,
16542 I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
16543 }
24929352 16544
d3eaf884 16545 /* restore vblank interrupts to correct state */
9625604c 16546 drm_crtc_vblank_reset(&crtc->base);
d297e103 16547 if (crtc->active) {
f9cd7b88
VS
16548 struct intel_plane *plane;
16549
9625604c 16550 drm_crtc_vblank_on(&crtc->base);
f9cd7b88
VS
16551
16552 /* Disable everything but the primary plane */
16553 for_each_intel_plane_on_crtc(dev, crtc, plane) {
16554 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
16555 continue;
16556
16557 plane->disable_plane(&plane->base, &crtc->base);
16558 }
9625604c 16559 }
d3eaf884 16560
24929352 16561 /* We need to sanitize the plane -> pipe mapping first because this will
fa555837
DV
16562 * disable the crtc (and hence change the state) if it is wrong. Note
16563 * that gen4+ has a fixed plane -> pipe mapping. */
16564 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
24929352
DV
16565 bool plane;
16566
78108b7c
VS
16567 DRM_DEBUG_KMS("[CRTC:%d:%s] wrong plane connection detected!\n",
16568 crtc->base.base.id, crtc->base.name);
24929352
DV
16569
16570 /* Pipe has the wrong plane attached and the plane is active.
16571 * Temporarily change the plane mapping and disable everything
16572 * ... */
16573 plane = crtc->plane;
936e71e3 16574 to_intel_plane_state(crtc->base.primary->state)->base.visible = true;
24929352 16575 crtc->plane = !plane;
b17d48e2 16576 intel_crtc_disable_noatomic(&crtc->base);
24929352 16577 crtc->plane = plane;
24929352 16578 }
24929352 16579
7fad798e
DV
16580 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
16581 crtc->pipe == PIPE_A && !crtc->active) {
16582 /* BIOS forgot to enable pipe A, this mostly happens after
16583 * resume. Force-enable the pipe to fix this, the update_dpms
16584 * call below we restore the pipe to the right state, but leave
16585 * the required bits on. */
16586 intel_enable_pipe_a(dev);
16587 }
16588
24929352
DV
16589 /* Adjust the state of the output pipe according to whether we
16590 * have active connectors/encoders. */
842e0307 16591 if (crtc->active && !intel_crtc_has_encoders(crtc))
b17d48e2 16592 intel_crtc_disable_noatomic(&crtc->base);
24929352 16593
a3ed6aad 16594 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
4cc31489
DV
16595 /*
16596 * We start out with underrun reporting disabled to avoid races.
16597 * For correct bookkeeping mark this on active crtcs.
16598 *
c5ab3bc0
DV
16599 * Also on gmch platforms we dont have any hardware bits to
16600 * disable the underrun reporting. Which means we need to start
16601 * out with underrun reporting disabled also on inactive pipes,
16602 * since otherwise we'll complain about the garbage we read when
16603 * e.g. coming up after runtime pm.
16604 *
4cc31489
DV
16605 * No protection against concurrent access is required - at
16606 * worst a fifo underrun happens which also sets this to false.
16607 */
16608 crtc->cpu_fifo_underrun_disabled = true;
a168f5b3
VS
16609 /*
16610 * We track the PCH trancoder underrun reporting state
16611 * within the crtc. With crtc for pipe A housing the underrun
16612 * reporting state for PCH transcoder A, crtc for pipe B housing
16613 * it for PCH transcoder B, etc. LPT-H has only PCH transcoder A,
16614 * and marking underrun reporting as disabled for the non-existing
16615 * PCH transcoders B and C would prevent enabling the south
16616 * error interrupt (see cpt_can_enable_serr_int()).
16617 */
16618 if (has_pch_trancoder(dev_priv, (enum transcoder)crtc->pipe))
16619 crtc->pch_fifo_underrun_disabled = true;
4cc31489 16620 }
24929352
DV
16621}
16622
16623static void intel_sanitize_encoder(struct intel_encoder *encoder)
16624{
16625 struct intel_connector *connector;
24929352
DV
16626
16627 /* We need to check both for a crtc link (meaning that the
16628 * encoder is active and trying to read from a pipe) and the
16629 * pipe itself being active. */
16630 bool has_active_crtc = encoder->base.crtc &&
16631 to_intel_crtc(encoder->base.crtc)->active;
16632
496b0fc3
ML
16633 connector = intel_encoder_find_connector(encoder);
16634 if (connector && !has_active_crtc) {
24929352
DV
16635 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
16636 encoder->base.base.id,
8e329a03 16637 encoder->base.name);
24929352
DV
16638
16639 /* Connector is active, but has no active pipe. This is
16640 * fallout from our resume register restoring. Disable
16641 * the encoder manually again. */
16642 if (encoder->base.crtc) {
fd6bbda9
ML
16643 struct drm_crtc_state *crtc_state = encoder->base.crtc->state;
16644
24929352
DV
16645 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
16646 encoder->base.base.id,
8e329a03 16647 encoder->base.name);
fd6bbda9 16648 encoder->disable(encoder, to_intel_crtc_state(crtc_state), connector->base.state);
a62d1497 16649 if (encoder->post_disable)
fd6bbda9 16650 encoder->post_disable(encoder, to_intel_crtc_state(crtc_state), connector->base.state);
24929352 16651 }
7f1950fb 16652 encoder->base.crtc = NULL;
24929352
DV
16653
16654 /* Inconsistent output/port/pipe state happens presumably due to
16655 * a bug in one of the get_hw_state functions. Or someplace else
16656 * in our code, like the register restore mess on resume. Clamp
16657 * things to off as a safer default. */
fd6bbda9
ML
16658
16659 connector->base.dpms = DRM_MODE_DPMS_OFF;
16660 connector->base.encoder = NULL;
24929352
DV
16661 }
16662 /* Enabled encoders without active connectors will be fixed in
16663 * the crtc fixup. */
16664}
16665
04098753 16666void i915_redisable_vga_power_on(struct drm_device *dev)
0fde901f 16667{
fac5e23e 16668 struct drm_i915_private *dev_priv = to_i915(dev);
f0f59a00 16669 i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
0fde901f 16670
04098753
ID
16671 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
16672 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
16673 i915_disable_vga(dev);
16674 }
16675}
16676
16677void i915_redisable_vga(struct drm_device *dev)
16678{
fac5e23e 16679 struct drm_i915_private *dev_priv = to_i915(dev);
04098753 16680
8dc8a27c
PZ
16681 /* This function can be called both from intel_modeset_setup_hw_state or
16682 * at a very early point in our resume sequence, where the power well
16683 * structures are not yet restored. Since this function is at a very
16684 * paranoid "someone might have enabled VGA while we were not looking"
16685 * level, just check if the power well is enabled instead of trying to
16686 * follow the "don't touch the power well if we don't need it" policy
16687 * the rest of the driver uses. */
6392f847 16688 if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_VGA))
8dc8a27c
PZ
16689 return;
16690
04098753 16691 i915_redisable_vga_power_on(dev);
6392f847
ID
16692
16693 intel_display_power_put(dev_priv, POWER_DOMAIN_VGA);
0fde901f
KM
16694}
16695
f9cd7b88 16696static bool primary_get_hw_state(struct intel_plane *plane)
98ec7739 16697{
f9cd7b88 16698 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
98ec7739 16699
f9cd7b88 16700 return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
d032ffa0
ML
16701}
16702
f9cd7b88
VS
16703/* FIXME read out full plane state for all planes */
16704static void readout_plane_state(struct intel_crtc *crtc)
d032ffa0 16705{
b26d3ea3 16706 struct drm_plane *primary = crtc->base.primary;
f9cd7b88 16707 struct intel_plane_state *plane_state =
b26d3ea3 16708 to_intel_plane_state(primary->state);
d032ffa0 16709
936e71e3 16710 plane_state->base.visible = crtc->active &&
b26d3ea3
ML
16711 primary_get_hw_state(to_intel_plane(primary));
16712
936e71e3 16713 if (plane_state->base.visible)
b26d3ea3 16714 crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
98ec7739
VS
16715}
16716
30e984df 16717static void intel_modeset_readout_hw_state(struct drm_device *dev)
24929352 16718{
fac5e23e 16719 struct drm_i915_private *dev_priv = to_i915(dev);
24929352 16720 enum pipe pipe;
24929352
DV
16721 struct intel_crtc *crtc;
16722 struct intel_encoder *encoder;
16723 struct intel_connector *connector;
5358901f 16724 int i;
24929352 16725
565602d7
ML
16726 dev_priv->active_crtcs = 0;
16727
d3fcc808 16728 for_each_intel_crtc(dev, crtc) {
565602d7
ML
16729 struct intel_crtc_state *crtc_state = crtc->config;
16730 int pixclk = 0;
3b117c8f 16731
ec2dc6a0 16732 __drm_atomic_helper_crtc_destroy_state(&crtc_state->base);
565602d7
ML
16733 memset(crtc_state, 0, sizeof(*crtc_state));
16734 crtc_state->base.crtc = &crtc->base;
24929352 16735
565602d7
ML
16736 crtc_state->base.active = crtc_state->base.enable =
16737 dev_priv->display.get_pipe_config(crtc, crtc_state);
16738
16739 crtc->base.enabled = crtc_state->base.enable;
16740 crtc->active = crtc_state->base.active;
16741
16742 if (crtc_state->base.active) {
16743 dev_priv->active_crtcs |= 1 << crtc->pipe;
16744
c89e39f3 16745 if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv))
565602d7 16746 pixclk = ilk_pipe_pixel_rate(crtc_state);
9558d15d 16747 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
565602d7
ML
16748 pixclk = crtc_state->base.adjusted_mode.crtc_clock;
16749 else
16750 WARN_ON(dev_priv->display.modeset_calc_cdclk);
9558d15d
VS
16751
16752 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
16753 if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
16754 pixclk = DIV_ROUND_UP(pixclk * 100, 95);
565602d7
ML
16755 }
16756
16757 dev_priv->min_pixclk[crtc->pipe] = pixclk;
b70709a6 16758
f9cd7b88 16759 readout_plane_state(crtc);
24929352 16760
78108b7c
VS
16761 DRM_DEBUG_KMS("[CRTC:%d:%s] hw state readout: %s\n",
16762 crtc->base.base.id, crtc->base.name,
24929352
DV
16763 crtc->active ? "enabled" : "disabled");
16764 }
16765
5358901f
DV
16766 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
16767 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
16768
2edd6443
ACO
16769 pll->on = pll->funcs.get_hw_state(dev_priv, pll,
16770 &pll->config.hw_state);
3e369b76 16771 pll->config.crtc_mask = 0;
d3fcc808 16772 for_each_intel_crtc(dev, crtc) {
2dd66ebd 16773 if (crtc->active && crtc->config->shared_dpll == pll)
3e369b76 16774 pll->config.crtc_mask |= 1 << crtc->pipe;
5358901f 16775 }
2dd66ebd 16776 pll->active_mask = pll->config.crtc_mask;
5358901f 16777
1e6f2ddc 16778 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
3e369b76 16779 pll->name, pll->config.crtc_mask, pll->on);
5358901f
DV
16780 }
16781
b2784e15 16782 for_each_intel_encoder(dev, encoder) {
24929352
DV
16783 pipe = 0;
16784
16785 if (encoder->get_hw_state(encoder, &pipe)) {
045ac3b5
JB
16786 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
16787 encoder->base.crtc = &crtc->base;
253c84c8 16788 crtc->config->output_types |= 1 << encoder->type;
6e3c9717 16789 encoder->get_config(encoder, crtc->config);
24929352
DV
16790 } else {
16791 encoder->base.crtc = NULL;
16792 }
16793
6f2bcceb 16794 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
24929352 16795 encoder->base.base.id,
8e329a03 16796 encoder->base.name,
24929352 16797 encoder->base.crtc ? "enabled" : "disabled",
6f2bcceb 16798 pipe_name(pipe));
24929352
DV
16799 }
16800
3a3371ff 16801 for_each_intel_connector(dev, connector) {
24929352
DV
16802 if (connector->get_hw_state(connector)) {
16803 connector->base.dpms = DRM_MODE_DPMS_ON;
2aa974c9
ML
16804
16805 encoder = connector->encoder;
16806 connector->base.encoder = &encoder->base;
16807
16808 if (encoder->base.crtc &&
16809 encoder->base.crtc->state->active) {
16810 /*
16811 * This has to be done during hardware readout
16812 * because anything calling .crtc_disable may
16813 * rely on the connector_mask being accurate.
16814 */
16815 encoder->base.crtc->state->connector_mask |=
16816 1 << drm_connector_index(&connector->base);
e87a52b3
ML
16817 encoder->base.crtc->state->encoder_mask |=
16818 1 << drm_encoder_index(&encoder->base);
2aa974c9
ML
16819 }
16820
24929352
DV
16821 } else {
16822 connector->base.dpms = DRM_MODE_DPMS_OFF;
16823 connector->base.encoder = NULL;
16824 }
16825 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
16826 connector->base.base.id,
c23cc417 16827 connector->base.name,
24929352
DV
16828 connector->base.encoder ? "enabled" : "disabled");
16829 }
7f4c6284
VS
16830
16831 for_each_intel_crtc(dev, crtc) {
16832 crtc->base.hwmode = crtc->config->base.adjusted_mode;
16833
16834 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
16835 if (crtc->base.state->active) {
16836 intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
16837 intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
16838 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
16839
16840 /*
16841 * The initial mode needs to be set in order to keep
16842 * the atomic core happy. It wants a valid mode if the
16843 * crtc's enabled, so we do the above call.
16844 *
16845 * At this point some state updated by the connectors
16846 * in their ->detect() callback has not run yet, so
16847 * no recalculation can be done yet.
16848 *
16849 * Even if we could do a recalculation and modeset
16850 * right now it would cause a double modeset if
16851 * fbdev or userspace chooses a different initial mode.
16852 *
16853 * If that happens, someone indicated they wanted a
16854 * mode change, which means it's safe to do a full
16855 * recalculation.
16856 */
16857 crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
9eca6832
VS
16858
16859 drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
16860 update_scanline_offset(crtc);
7f4c6284 16861 }
e3b247da
VS
16862
16863 intel_pipe_config_sanity_check(dev_priv, crtc->config);
7f4c6284 16864 }
30e984df
DV
16865}
16866
043e9bda
ML
16867/* Scan out the current hw modeset state,
16868 * and sanitizes it to the current state
16869 */
16870static void
16871intel_modeset_setup_hw_state(struct drm_device *dev)
30e984df 16872{
fac5e23e 16873 struct drm_i915_private *dev_priv = to_i915(dev);
30e984df 16874 enum pipe pipe;
30e984df
DV
16875 struct intel_crtc *crtc;
16876 struct intel_encoder *encoder;
35c95375 16877 int i;
30e984df
DV
16878
16879 intel_modeset_readout_hw_state(dev);
24929352
DV
16880
16881 /* HW state is read out, now we need to sanitize this mess. */
b2784e15 16882 for_each_intel_encoder(dev, encoder) {
24929352
DV
16883 intel_sanitize_encoder(encoder);
16884 }
16885
055e393f 16886 for_each_pipe(dev_priv, pipe) {
24929352
DV
16887 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
16888 intel_sanitize_crtc(crtc);
6e3c9717
ACO
16889 intel_dump_pipe_config(crtc, crtc->config,
16890 "[setup_hw_state]");
24929352 16891 }
9a935856 16892
d29b2f9d
ACO
16893 intel_modeset_update_connector_atomic_state(dev);
16894
35c95375
DV
16895 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
16896 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
16897
2dd66ebd 16898 if (!pll->on || pll->active_mask)
35c95375
DV
16899 continue;
16900
16901 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
16902
2edd6443 16903 pll->funcs.disable(dev_priv, pll);
35c95375
DV
16904 pll->on = false;
16905 }
16906
666a4537 16907 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
6eb1a681
VS
16908 vlv_wm_get_hw_state(dev);
16909 else if (IS_GEN9(dev))
3078999f 16910 skl_wm_get_hw_state(dev);
6e266956 16911 else if (HAS_PCH_SPLIT(dev_priv))
243e6a44 16912 ilk_wm_get_hw_state(dev);
292b990e
ML
16913
16914 for_each_intel_crtc(dev, crtc) {
16915 unsigned long put_domains;
16916
74bff5f9 16917 put_domains = modeset_get_crtc_power_domains(&crtc->base, crtc->config);
292b990e
ML
16918 if (WARN_ON(put_domains))
16919 modeset_put_power_domains(dev_priv, put_domains);
16920 }
16921 intel_display_set_init_power(dev_priv, false);
010cf73d
PZ
16922
16923 intel_fbc_init_pipe_state(dev_priv);
043e9bda 16924}
7d0bc1ea 16925
043e9bda
ML
16926void intel_display_resume(struct drm_device *dev)
16927{
e2c8b870
ML
16928 struct drm_i915_private *dev_priv = to_i915(dev);
16929 struct drm_atomic_state *state = dev_priv->modeset_restore_state;
16930 struct drm_modeset_acquire_ctx ctx;
043e9bda 16931 int ret;
f30da187 16932
e2c8b870 16933 dev_priv->modeset_restore_state = NULL;
73974893
ML
16934 if (state)
16935 state->acquire_ctx = &ctx;
043e9bda 16936
ea49c9ac
ML
16937 /*
16938 * This is a cludge because with real atomic modeset mode_config.mutex
16939 * won't be taken. Unfortunately some probed state like
16940 * audio_codec_enable is still protected by mode_config.mutex, so lock
16941 * it here for now.
16942 */
16943 mutex_lock(&dev->mode_config.mutex);
e2c8b870 16944 drm_modeset_acquire_init(&ctx, 0);
043e9bda 16945
73974893
ML
16946 while (1) {
16947 ret = drm_modeset_lock_all_ctx(dev, &ctx);
16948 if (ret != -EDEADLK)
16949 break;
043e9bda 16950
e2c8b870 16951 drm_modeset_backoff(&ctx);
e2c8b870 16952 }
043e9bda 16953
73974893
ML
16954 if (!ret)
16955 ret = __intel_display_resume(dev, state);
16956
e2c8b870
ML
16957 drm_modeset_drop_locks(&ctx);
16958 drm_modeset_acquire_fini(&ctx);
ea49c9ac 16959 mutex_unlock(&dev->mode_config.mutex);
043e9bda 16960
e2c8b870
ML
16961 if (ret) {
16962 DRM_ERROR("Restoring old state failed with %i\n", ret);
16963 drm_atomic_state_free(state);
16964 }
2c7111db
CW
16965}
16966
16967void intel_modeset_gem_init(struct drm_device *dev)
16968{
dc97997a 16969 struct drm_i915_private *dev_priv = to_i915(dev);
484b41dd 16970 struct drm_crtc *c;
2ff8fde1 16971 struct drm_i915_gem_object *obj;
484b41dd 16972
dc97997a 16973 intel_init_gt_powersave(dev_priv);
ae48434c 16974
1833b134 16975 intel_modeset_init_hw(dev);
02e792fb 16976
1ee8da6d 16977 intel_setup_overlay(dev_priv);
484b41dd
JB
16978
16979 /*
16980 * Make sure any fbs we allocated at startup are properly
16981 * pinned & fenced. When we do the allocation it's too early
16982 * for this.
16983 */
70e1e0ec 16984 for_each_crtc(dev, c) {
058d88c4
CW
16985 struct i915_vma *vma;
16986
2ff8fde1
MR
16987 obj = intel_fb_obj(c->primary->fb);
16988 if (obj == NULL)
484b41dd
JB
16989 continue;
16990
e0d6149b 16991 mutex_lock(&dev->struct_mutex);
058d88c4 16992 vma = intel_pin_and_fence_fb_obj(c->primary->fb,
3465c580 16993 c->primary->state->rotation);
e0d6149b 16994 mutex_unlock(&dev->struct_mutex);
058d88c4 16995 if (IS_ERR(vma)) {
484b41dd
JB
16996 DRM_ERROR("failed to pin boot fb on pipe %d\n",
16997 to_intel_crtc(c)->pipe);
66e514c1 16998 drm_framebuffer_unreference(c->primary->fb);
5a21b665 16999 c->primary->fb = NULL;
36750f28 17000 c->primary->crtc = c->primary->state->crtc = NULL;
5a21b665 17001 update_state_fb(c->primary);
36750f28 17002 c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
484b41dd
JB
17003 }
17004 }
1ebaa0b9
CW
17005}
17006
17007int intel_connector_register(struct drm_connector *connector)
17008{
17009 struct intel_connector *intel_connector = to_intel_connector(connector);
17010 int ret;
17011
17012 ret = intel_backlight_device_register(intel_connector);
17013 if (ret)
17014 goto err;
17015
17016 return 0;
0962c3c9 17017
1ebaa0b9
CW
17018err:
17019 return ret;
79e53945
JB
17020}
17021
c191eca1 17022void intel_connector_unregister(struct drm_connector *connector)
4932e2c3 17023{
e63d87c0 17024 struct intel_connector *intel_connector = to_intel_connector(connector);
4932e2c3 17025
e63d87c0 17026 intel_backlight_device_unregister(intel_connector);
4932e2c3 17027 intel_panel_destroy_backlight(connector);
4932e2c3
ID
17028}
17029
79e53945
JB
17030void intel_modeset_cleanup(struct drm_device *dev)
17031{
fac5e23e 17032 struct drm_i915_private *dev_priv = to_i915(dev);
652c393a 17033
dc97997a 17034 intel_disable_gt_powersave(dev_priv);
2eb5252e 17035
fd0c0642
DV
17036 /*
17037 * Interrupts and polling as the first thing to avoid creating havoc.
2eb5252e 17038 * Too much stuff here (turning of connectors, ...) would
fd0c0642
DV
17039 * experience fancy races otherwise.
17040 */
2aeb7d3a 17041 intel_irq_uninstall(dev_priv);
eb21b92b 17042
fd0c0642
DV
17043 /*
17044 * Due to the hpd irq storm handling the hotplug work can re-arm the
17045 * poll handlers. Hence disable polling after hpd handling is shut down.
17046 */
f87ea761 17047 drm_kms_helper_poll_fini(dev);
fd0c0642 17048
723bfd70
JB
17049 intel_unregister_dsm_handler();
17050
c937ab3e 17051 intel_fbc_global_disable(dev_priv);
69341a5e 17052
1630fe75
CW
17053 /* flush any delayed tasks or pending work */
17054 flush_scheduled_work();
17055
79e53945 17056 drm_mode_config_cleanup(dev);
4d7bb011 17057
1ee8da6d 17058 intel_cleanup_overlay(dev_priv);
ae48434c 17059
dc97997a 17060 intel_cleanup_gt_powersave(dev_priv);
f5949141
DV
17061
17062 intel_teardown_gmbus(dev);
79e53945
JB
17063}
17064
df0e9248
CW
17065void intel_connector_attach_encoder(struct intel_connector *connector,
17066 struct intel_encoder *encoder)
17067{
17068 connector->encoder = encoder;
17069 drm_mode_connector_attach_encoder(&connector->base,
17070 &encoder->base);
79e53945 17071}
28d52043
DA
17072
17073/*
17074 * set vga decode state - true == enable VGA decode
17075 */
17076int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
17077{
fac5e23e 17078 struct drm_i915_private *dev_priv = to_i915(dev);
a885b3cc 17079 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
28d52043
DA
17080 u16 gmch_ctrl;
17081
75fa041d
CW
17082 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
17083 DRM_ERROR("failed to read control word\n");
17084 return -EIO;
17085 }
17086
c0cc8a55
CW
17087 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
17088 return 0;
17089
28d52043
DA
17090 if (state)
17091 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
17092 else
17093 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
75fa041d
CW
17094
17095 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
17096 DRM_ERROR("failed to write control word\n");
17097 return -EIO;
17098 }
17099
28d52043
DA
17100 return 0;
17101}
c4a1d9e4 17102
98a2f411
CW
17103#if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
17104
c4a1d9e4 17105struct intel_display_error_state {
ff57f1b0
PZ
17106
17107 u32 power_well_driver;
17108
63b66e5b
CW
17109 int num_transcoders;
17110
c4a1d9e4
CW
17111 struct intel_cursor_error_state {
17112 u32 control;
17113 u32 position;
17114 u32 base;
17115 u32 size;
52331309 17116 } cursor[I915_MAX_PIPES];
c4a1d9e4
CW
17117
17118 struct intel_pipe_error_state {
ddf9c536 17119 bool power_domain_on;
c4a1d9e4 17120 u32 source;
f301b1e1 17121 u32 stat;
52331309 17122 } pipe[I915_MAX_PIPES];
c4a1d9e4
CW
17123
17124 struct intel_plane_error_state {
17125 u32 control;
17126 u32 stride;
17127 u32 size;
17128 u32 pos;
17129 u32 addr;
17130 u32 surface;
17131 u32 tile_offset;
52331309 17132 } plane[I915_MAX_PIPES];
63b66e5b
CW
17133
17134 struct intel_transcoder_error_state {
ddf9c536 17135 bool power_domain_on;
63b66e5b
CW
17136 enum transcoder cpu_transcoder;
17137
17138 u32 conf;
17139
17140 u32 htotal;
17141 u32 hblank;
17142 u32 hsync;
17143 u32 vtotal;
17144 u32 vblank;
17145 u32 vsync;
17146 } transcoder[4];
c4a1d9e4
CW
17147};
17148
17149struct intel_display_error_state *
c033666a 17150intel_display_capture_error_state(struct drm_i915_private *dev_priv)
c4a1d9e4 17151{
c4a1d9e4 17152 struct intel_display_error_state *error;
63b66e5b
CW
17153 int transcoders[] = {
17154 TRANSCODER_A,
17155 TRANSCODER_B,
17156 TRANSCODER_C,
17157 TRANSCODER_EDP,
17158 };
c4a1d9e4
CW
17159 int i;
17160
c033666a 17161 if (INTEL_INFO(dev_priv)->num_pipes == 0)
63b66e5b
CW
17162 return NULL;
17163
9d1cb914 17164 error = kzalloc(sizeof(*error), GFP_ATOMIC);
c4a1d9e4
CW
17165 if (error == NULL)
17166 return NULL;
17167
c033666a 17168 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
ff57f1b0
PZ
17169 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
17170
055e393f 17171 for_each_pipe(dev_priv, i) {
ddf9c536 17172 error->pipe[i].power_domain_on =
f458ebbc
DV
17173 __intel_display_power_is_enabled(dev_priv,
17174 POWER_DOMAIN_PIPE(i));
ddf9c536 17175 if (!error->pipe[i].power_domain_on)
9d1cb914
PZ
17176 continue;
17177
5efb3e28
VS
17178 error->cursor[i].control = I915_READ(CURCNTR(i));
17179 error->cursor[i].position = I915_READ(CURPOS(i));
17180 error->cursor[i].base = I915_READ(CURBASE(i));
c4a1d9e4
CW
17181
17182 error->plane[i].control = I915_READ(DSPCNTR(i));
17183 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
c033666a 17184 if (INTEL_GEN(dev_priv) <= 3) {
51889b35 17185 error->plane[i].size = I915_READ(DSPSIZE(i));
80ca378b
PZ
17186 error->plane[i].pos = I915_READ(DSPPOS(i));
17187 }
c033666a 17188 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
ca291363 17189 error->plane[i].addr = I915_READ(DSPADDR(i));
c033666a 17190 if (INTEL_GEN(dev_priv) >= 4) {
c4a1d9e4
CW
17191 error->plane[i].surface = I915_READ(DSPSURF(i));
17192 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
17193 }
17194
c4a1d9e4 17195 error->pipe[i].source = I915_READ(PIPESRC(i));
f301b1e1 17196
c033666a 17197 if (HAS_GMCH_DISPLAY(dev_priv))
f301b1e1 17198 error->pipe[i].stat = I915_READ(PIPESTAT(i));
63b66e5b
CW
17199 }
17200
4d1de975 17201 /* Note: this does not include DSI transcoders. */
c033666a 17202 error->num_transcoders = INTEL_INFO(dev_priv)->num_pipes;
2d1fe073 17203 if (HAS_DDI(dev_priv))
63b66e5b
CW
17204 error->num_transcoders++; /* Account for eDP. */
17205
17206 for (i = 0; i < error->num_transcoders; i++) {
17207 enum transcoder cpu_transcoder = transcoders[i];
17208
ddf9c536 17209 error->transcoder[i].power_domain_on =
f458ebbc 17210 __intel_display_power_is_enabled(dev_priv,
38cc1daf 17211 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
ddf9c536 17212 if (!error->transcoder[i].power_domain_on)
9d1cb914
PZ
17213 continue;
17214
63b66e5b
CW
17215 error->transcoder[i].cpu_transcoder = cpu_transcoder;
17216
17217 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
17218 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
17219 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
17220 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
17221 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
17222 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
17223 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
c4a1d9e4
CW
17224 }
17225
17226 return error;
17227}
17228
edc3d884
MK
17229#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
17230
c4a1d9e4 17231void
edc3d884 17232intel_display_print_error_state(struct drm_i915_error_state_buf *m,
c4a1d9e4
CW
17233 struct drm_device *dev,
17234 struct intel_display_error_state *error)
17235{
fac5e23e 17236 struct drm_i915_private *dev_priv = to_i915(dev);
c4a1d9e4
CW
17237 int i;
17238
63b66e5b
CW
17239 if (!error)
17240 return;
17241
edc3d884 17242 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
190be112 17243 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
edc3d884 17244 err_printf(m, "PWR_WELL_CTL2: %08x\n",
ff57f1b0 17245 error->power_well_driver);
055e393f 17246 for_each_pipe(dev_priv, i) {
edc3d884 17247 err_printf(m, "Pipe [%d]:\n", i);
ddf9c536 17248 err_printf(m, " Power: %s\n",
87ad3212 17249 onoff(error->pipe[i].power_domain_on));
edc3d884 17250 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
f301b1e1 17251 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
edc3d884
MK
17252
17253 err_printf(m, "Plane [%d]:\n", i);
17254 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
17255 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
80ca378b 17256 if (INTEL_INFO(dev)->gen <= 3) {
edc3d884
MK
17257 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
17258 err_printf(m, " POS: %08x\n", error->plane[i].pos);
80ca378b 17259 }
4b71a570 17260 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
edc3d884 17261 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
c4a1d9e4 17262 if (INTEL_INFO(dev)->gen >= 4) {
edc3d884
MK
17263 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
17264 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
c4a1d9e4
CW
17265 }
17266
edc3d884
MK
17267 err_printf(m, "Cursor [%d]:\n", i);
17268 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
17269 err_printf(m, " POS: %08x\n", error->cursor[i].position);
17270 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
c4a1d9e4 17271 }
63b66e5b
CW
17272
17273 for (i = 0; i < error->num_transcoders; i++) {
da205630 17274 err_printf(m, "CPU transcoder: %s\n",
63b66e5b 17275 transcoder_name(error->transcoder[i].cpu_transcoder));
ddf9c536 17276 err_printf(m, " Power: %s\n",
87ad3212 17277 onoff(error->transcoder[i].power_domain_on));
63b66e5b
CW
17278 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
17279 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
17280 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
17281 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
17282 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
17283 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
17284 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
17285 }
c4a1d9e4 17286}
98a2f411
CW
17287
17288#endif