]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/intel_display.c
drm/i915: Rename local struct intel_engine_cs variables
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
618563e3 27#include <linux/dmi.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
e0dac65e 34#include <drm/drm_edid.h>
760285e7 35#include <drm/drmP.h>
79e53945 36#include "intel_drv.h"
760285e7 37#include <drm/i915_drm.h>
79e53945 38#include "i915_drv.h"
e5510fac 39#include "i915_trace.h"
319c1d42 40#include <drm/drm_atomic.h>
c196e1d6 41#include <drm/drm_atomic_helper.h>
760285e7
DH
42#include <drm/drm_dp_helper.h>
43#include <drm/drm_crtc_helper.h>
465c120c
MR
44#include <drm/drm_plane_helper.h>
45#include <drm/drm_rect.h>
c0f372b3 46#include <linux/dma_remapping.h>
fd8e058a
AG
47#include <linux/reservation.h>
48#include <linux/dma-buf.h>
79e53945 49
465c120c 50/* Primary plane formats for gen <= 3 */
568db4f2 51static const uint32_t i8xx_primary_formats[] = {
67fe7dc5
DL
52 DRM_FORMAT_C8,
53 DRM_FORMAT_RGB565,
465c120c 54 DRM_FORMAT_XRGB1555,
67fe7dc5 55 DRM_FORMAT_XRGB8888,
465c120c
MR
56};
57
58/* Primary plane formats for gen >= 4 */
568db4f2 59static const uint32_t i965_primary_formats[] = {
6c0fd451
DL
60 DRM_FORMAT_C8,
61 DRM_FORMAT_RGB565,
62 DRM_FORMAT_XRGB8888,
63 DRM_FORMAT_XBGR8888,
64 DRM_FORMAT_XRGB2101010,
65 DRM_FORMAT_XBGR2101010,
66};
67
68static const uint32_t skl_primary_formats[] = {
67fe7dc5
DL
69 DRM_FORMAT_C8,
70 DRM_FORMAT_RGB565,
71 DRM_FORMAT_XRGB8888,
465c120c 72 DRM_FORMAT_XBGR8888,
67fe7dc5 73 DRM_FORMAT_ARGB8888,
465c120c
MR
74 DRM_FORMAT_ABGR8888,
75 DRM_FORMAT_XRGB2101010,
465c120c 76 DRM_FORMAT_XBGR2101010,
ea916ea0
KM
77 DRM_FORMAT_YUYV,
78 DRM_FORMAT_YVYU,
79 DRM_FORMAT_UYVY,
80 DRM_FORMAT_VYUY,
465c120c
MR
81};
82
3d7d6510
MR
83/* Cursor formats */
84static const uint32_t intel_cursor_formats[] = {
85 DRM_FORMAT_ARGB8888,
86};
87
f1f644dc 88static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 89 struct intel_crtc_state *pipe_config);
18442d08 90static void ironlake_pch_clock_get(struct intel_crtc *crtc,
5cec258b 91 struct intel_crtc_state *pipe_config);
f1f644dc 92
eb1bfe80
JB
93static int intel_framebuffer_init(struct drm_device *dev,
94 struct intel_framebuffer *ifb,
95 struct drm_mode_fb_cmd2 *mode_cmd,
96 struct drm_i915_gem_object *obj);
5b18e57c
DV
97static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
98static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
29407aab 99static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
100 struct intel_link_m_n *m_n,
101 struct intel_link_m_n *m2_n2);
29407aab 102static void ironlake_set_pipeconf(struct drm_crtc *crtc);
229fca97
DV
103static void haswell_set_pipeconf(struct drm_crtc *crtc);
104static void intel_set_pipe_csc(struct drm_crtc *crtc);
d288f65f 105static void vlv_prepare_pll(struct intel_crtc *crtc,
5cec258b 106 const struct intel_crtc_state *pipe_config);
d288f65f 107static void chv_prepare_pll(struct intel_crtc *crtc,
5cec258b 108 const struct intel_crtc_state *pipe_config);
613d2b27
ML
109static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
110static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
549e2bfb
CK
111static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
112 struct intel_crtc_state *crtc_state);
5ab7b0b7
ID
113static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
114 int num_connectors);
bfd16b2a
ML
115static void skylake_pfit_enable(struct intel_crtc *crtc);
116static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
117static void ironlake_pfit_enable(struct intel_crtc *crtc);
043e9bda 118static void intel_modeset_setup_hw_state(struct drm_device *dev);
2622a081 119static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc);
e7457a9a 120
79e53945 121typedef struct {
0206e353 122 int min, max;
79e53945
JB
123} intel_range_t;
124
125typedef struct {
0206e353
AJ
126 int dot_limit;
127 int p2_slow, p2_fast;
79e53945
JB
128} intel_p2_t;
129
d4906093
ML
130typedef struct intel_limit intel_limit_t;
131struct intel_limit {
0206e353
AJ
132 intel_range_t dot, vco, n, m, m1, m2, p, p1;
133 intel_p2_t p2;
d4906093 134};
79e53945 135
bfa7df01
VS
136/* returns HPLL frequency in kHz */
137static int valleyview_get_vco(struct drm_i915_private *dev_priv)
138{
139 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
140
141 /* Obtain SKU information */
142 mutex_lock(&dev_priv->sb_lock);
143 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
144 CCK_FUSE_HPLL_FREQ_MASK;
145 mutex_unlock(&dev_priv->sb_lock);
146
147 return vco_freq[hpll_freq] * 1000;
148}
149
150static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
151 const char *name, u32 reg)
152{
153 u32 val;
154 int divider;
155
156 if (dev_priv->hpll_freq == 0)
157 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
158
159 mutex_lock(&dev_priv->sb_lock);
160 val = vlv_cck_read(dev_priv, reg);
161 mutex_unlock(&dev_priv->sb_lock);
162
163 divider = val & CCK_FREQUENCY_VALUES;
164
165 WARN((val & CCK_FREQUENCY_STATUS) !=
166 (divider << CCK_FREQUENCY_STATUS_SHIFT),
167 "%s change in progress\n", name);
168
169 return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
170}
171
e7dc33f3
VS
172static int
173intel_pch_rawclk(struct drm_i915_private *dev_priv)
d2acd215 174{
e7dc33f3
VS
175 return (I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK) * 1000;
176}
d2acd215 177
e7dc33f3
VS
178static int
179intel_vlv_hrawclk(struct drm_i915_private *dev_priv)
180{
35d38d1f
VS
181 return vlv_get_cck_clock_hpll(dev_priv, "hrawclk",
182 CCK_DISPLAY_REF_CLOCK_CONTROL);
d2acd215
DV
183}
184
e7dc33f3
VS
185static int
186intel_g4x_hrawclk(struct drm_i915_private *dev_priv)
79e50a4f 187{
79e50a4f
JN
188 uint32_t clkcfg;
189
e7dc33f3 190 /* hrawclock is 1/4 the FSB frequency */
79e50a4f
JN
191 clkcfg = I915_READ(CLKCFG);
192 switch (clkcfg & CLKCFG_FSB_MASK) {
193 case CLKCFG_FSB_400:
e7dc33f3 194 return 100000;
79e50a4f 195 case CLKCFG_FSB_533:
e7dc33f3 196 return 133333;
79e50a4f 197 case CLKCFG_FSB_667:
e7dc33f3 198 return 166667;
79e50a4f 199 case CLKCFG_FSB_800:
e7dc33f3 200 return 200000;
79e50a4f 201 case CLKCFG_FSB_1067:
e7dc33f3 202 return 266667;
79e50a4f 203 case CLKCFG_FSB_1333:
e7dc33f3 204 return 333333;
79e50a4f
JN
205 /* these two are just a guess; one of them might be right */
206 case CLKCFG_FSB_1600:
207 case CLKCFG_FSB_1600_ALT:
e7dc33f3 208 return 400000;
79e50a4f 209 default:
e7dc33f3 210 return 133333;
79e50a4f
JN
211 }
212}
213
e7dc33f3
VS
214static void intel_update_rawclk(struct drm_i915_private *dev_priv)
215{
216 if (HAS_PCH_SPLIT(dev_priv))
217 dev_priv->rawclk_freq = intel_pch_rawclk(dev_priv);
218 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
219 dev_priv->rawclk_freq = intel_vlv_hrawclk(dev_priv);
220 else if (IS_G4X(dev_priv) || IS_PINEVIEW(dev_priv))
221 dev_priv->rawclk_freq = intel_g4x_hrawclk(dev_priv);
222 else
223 return; /* no rawclk on other platforms, or no need to know it */
224
225 DRM_DEBUG_DRIVER("rawclk rate: %d kHz\n", dev_priv->rawclk_freq);
226}
227
bfa7df01
VS
228static void intel_update_czclk(struct drm_i915_private *dev_priv)
229{
666a4537 230 if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
bfa7df01
VS
231 return;
232
233 dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
234 CCK_CZ_CLOCK_CONTROL);
235
236 DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
237}
238
021357ac 239static inline u32 /* units of 100MHz */
21a727b3
VS
240intel_fdi_link_freq(struct drm_i915_private *dev_priv,
241 const struct intel_crtc_state *pipe_config)
021357ac 242{
21a727b3
VS
243 if (HAS_DDI(dev_priv))
244 return pipe_config->port_clock; /* SPLL */
245 else if (IS_GEN5(dev_priv))
246 return ((I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2) * 10000;
e3b247da 247 else
21a727b3 248 return 270000;
021357ac
CW
249}
250
5d536e28 251static const intel_limit_t intel_limits_i8xx_dac = {
0206e353 252 .dot = { .min = 25000, .max = 350000 },
9c333719 253 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 254 .n = { .min = 2, .max = 16 },
0206e353
AJ
255 .m = { .min = 96, .max = 140 },
256 .m1 = { .min = 18, .max = 26 },
257 .m2 = { .min = 6, .max = 16 },
258 .p = { .min = 4, .max = 128 },
259 .p1 = { .min = 2, .max = 33 },
273e27ca
EA
260 .p2 = { .dot_limit = 165000,
261 .p2_slow = 4, .p2_fast = 2 },
e4b36699
KP
262};
263
5d536e28
DV
264static const intel_limit_t intel_limits_i8xx_dvo = {
265 .dot = { .min = 25000, .max = 350000 },
9c333719 266 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 267 .n = { .min = 2, .max = 16 },
5d536e28
DV
268 .m = { .min = 96, .max = 140 },
269 .m1 = { .min = 18, .max = 26 },
270 .m2 = { .min = 6, .max = 16 },
271 .p = { .min = 4, .max = 128 },
272 .p1 = { .min = 2, .max = 33 },
273 .p2 = { .dot_limit = 165000,
274 .p2_slow = 4, .p2_fast = 4 },
275};
276
e4b36699 277static const intel_limit_t intel_limits_i8xx_lvds = {
0206e353 278 .dot = { .min = 25000, .max = 350000 },
9c333719 279 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 280 .n = { .min = 2, .max = 16 },
0206e353
AJ
281 .m = { .min = 96, .max = 140 },
282 .m1 = { .min = 18, .max = 26 },
283 .m2 = { .min = 6, .max = 16 },
284 .p = { .min = 4, .max = 128 },
285 .p1 = { .min = 1, .max = 6 },
273e27ca
EA
286 .p2 = { .dot_limit = 165000,
287 .p2_slow = 14, .p2_fast = 7 },
e4b36699 288};
273e27ca 289
e4b36699 290static const intel_limit_t intel_limits_i9xx_sdvo = {
0206e353
AJ
291 .dot = { .min = 20000, .max = 400000 },
292 .vco = { .min = 1400000, .max = 2800000 },
293 .n = { .min = 1, .max = 6 },
294 .m = { .min = 70, .max = 120 },
4f7dfb67
PJ
295 .m1 = { .min = 8, .max = 18 },
296 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
297 .p = { .min = 5, .max = 80 },
298 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
299 .p2 = { .dot_limit = 200000,
300 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
301};
302
303static const intel_limit_t intel_limits_i9xx_lvds = {
0206e353
AJ
304 .dot = { .min = 20000, .max = 400000 },
305 .vco = { .min = 1400000, .max = 2800000 },
306 .n = { .min = 1, .max = 6 },
307 .m = { .min = 70, .max = 120 },
53a7d2d1
PJ
308 .m1 = { .min = 8, .max = 18 },
309 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
310 .p = { .min = 7, .max = 98 },
311 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
312 .p2 = { .dot_limit = 112000,
313 .p2_slow = 14, .p2_fast = 7 },
e4b36699
KP
314};
315
273e27ca 316
e4b36699 317static const intel_limit_t intel_limits_g4x_sdvo = {
273e27ca
EA
318 .dot = { .min = 25000, .max = 270000 },
319 .vco = { .min = 1750000, .max = 3500000},
320 .n = { .min = 1, .max = 4 },
321 .m = { .min = 104, .max = 138 },
322 .m1 = { .min = 17, .max = 23 },
323 .m2 = { .min = 5, .max = 11 },
324 .p = { .min = 10, .max = 30 },
325 .p1 = { .min = 1, .max = 3},
326 .p2 = { .dot_limit = 270000,
327 .p2_slow = 10,
328 .p2_fast = 10
044c7c41 329 },
e4b36699
KP
330};
331
332static const intel_limit_t intel_limits_g4x_hdmi = {
273e27ca
EA
333 .dot = { .min = 22000, .max = 400000 },
334 .vco = { .min = 1750000, .max = 3500000},
335 .n = { .min = 1, .max = 4 },
336 .m = { .min = 104, .max = 138 },
337 .m1 = { .min = 16, .max = 23 },
338 .m2 = { .min = 5, .max = 11 },
339 .p = { .min = 5, .max = 80 },
340 .p1 = { .min = 1, .max = 8},
341 .p2 = { .dot_limit = 165000,
342 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
343};
344
345static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
346 .dot = { .min = 20000, .max = 115000 },
347 .vco = { .min = 1750000, .max = 3500000 },
348 .n = { .min = 1, .max = 3 },
349 .m = { .min = 104, .max = 138 },
350 .m1 = { .min = 17, .max = 23 },
351 .m2 = { .min = 5, .max = 11 },
352 .p = { .min = 28, .max = 112 },
353 .p1 = { .min = 2, .max = 8 },
354 .p2 = { .dot_limit = 0,
355 .p2_slow = 14, .p2_fast = 14
044c7c41 356 },
e4b36699
KP
357};
358
359static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
360 .dot = { .min = 80000, .max = 224000 },
361 .vco = { .min = 1750000, .max = 3500000 },
362 .n = { .min = 1, .max = 3 },
363 .m = { .min = 104, .max = 138 },
364 .m1 = { .min = 17, .max = 23 },
365 .m2 = { .min = 5, .max = 11 },
366 .p = { .min = 14, .max = 42 },
367 .p1 = { .min = 2, .max = 6 },
368 .p2 = { .dot_limit = 0,
369 .p2_slow = 7, .p2_fast = 7
044c7c41 370 },
e4b36699
KP
371};
372
f2b115e6 373static const intel_limit_t intel_limits_pineview_sdvo = {
0206e353
AJ
374 .dot = { .min = 20000, .max = 400000},
375 .vco = { .min = 1700000, .max = 3500000 },
273e27ca 376 /* Pineview's Ncounter is a ring counter */
0206e353
AJ
377 .n = { .min = 3, .max = 6 },
378 .m = { .min = 2, .max = 256 },
273e27ca 379 /* Pineview only has one combined m divider, which we treat as m2. */
0206e353
AJ
380 .m1 = { .min = 0, .max = 0 },
381 .m2 = { .min = 0, .max = 254 },
382 .p = { .min = 5, .max = 80 },
383 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
384 .p2 = { .dot_limit = 200000,
385 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
386};
387
f2b115e6 388static const intel_limit_t intel_limits_pineview_lvds = {
0206e353
AJ
389 .dot = { .min = 20000, .max = 400000 },
390 .vco = { .min = 1700000, .max = 3500000 },
391 .n = { .min = 3, .max = 6 },
392 .m = { .min = 2, .max = 256 },
393 .m1 = { .min = 0, .max = 0 },
394 .m2 = { .min = 0, .max = 254 },
395 .p = { .min = 7, .max = 112 },
396 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
397 .p2 = { .dot_limit = 112000,
398 .p2_slow = 14, .p2_fast = 14 },
e4b36699
KP
399};
400
273e27ca
EA
401/* Ironlake / Sandybridge
402 *
403 * We calculate clock using (register_value + 2) for N/M1/M2, so here
404 * the range value for them is (actual_value - 2).
405 */
b91ad0ec 406static const intel_limit_t intel_limits_ironlake_dac = {
273e27ca
EA
407 .dot = { .min = 25000, .max = 350000 },
408 .vco = { .min = 1760000, .max = 3510000 },
409 .n = { .min = 1, .max = 5 },
410 .m = { .min = 79, .max = 127 },
411 .m1 = { .min = 12, .max = 22 },
412 .m2 = { .min = 5, .max = 9 },
413 .p = { .min = 5, .max = 80 },
414 .p1 = { .min = 1, .max = 8 },
415 .p2 = { .dot_limit = 225000,
416 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
417};
418
b91ad0ec 419static const intel_limit_t intel_limits_ironlake_single_lvds = {
273e27ca
EA
420 .dot = { .min = 25000, .max = 350000 },
421 .vco = { .min = 1760000, .max = 3510000 },
422 .n = { .min = 1, .max = 3 },
423 .m = { .min = 79, .max = 118 },
424 .m1 = { .min = 12, .max = 22 },
425 .m2 = { .min = 5, .max = 9 },
426 .p = { .min = 28, .max = 112 },
427 .p1 = { .min = 2, .max = 8 },
428 .p2 = { .dot_limit = 225000,
429 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
430};
431
432static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273e27ca
EA
433 .dot = { .min = 25000, .max = 350000 },
434 .vco = { .min = 1760000, .max = 3510000 },
435 .n = { .min = 1, .max = 3 },
436 .m = { .min = 79, .max = 127 },
437 .m1 = { .min = 12, .max = 22 },
438 .m2 = { .min = 5, .max = 9 },
439 .p = { .min = 14, .max = 56 },
440 .p1 = { .min = 2, .max = 8 },
441 .p2 = { .dot_limit = 225000,
442 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
443};
444
273e27ca 445/* LVDS 100mhz refclk limits. */
b91ad0ec 446static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
447 .dot = { .min = 25000, .max = 350000 },
448 .vco = { .min = 1760000, .max = 3510000 },
449 .n = { .min = 1, .max = 2 },
450 .m = { .min = 79, .max = 126 },
451 .m1 = { .min = 12, .max = 22 },
452 .m2 = { .min = 5, .max = 9 },
453 .p = { .min = 28, .max = 112 },
0206e353 454 .p1 = { .min = 2, .max = 8 },
273e27ca
EA
455 .p2 = { .dot_limit = 225000,
456 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
457};
458
459static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
460 .dot = { .min = 25000, .max = 350000 },
461 .vco = { .min = 1760000, .max = 3510000 },
462 .n = { .min = 1, .max = 3 },
463 .m = { .min = 79, .max = 126 },
464 .m1 = { .min = 12, .max = 22 },
465 .m2 = { .min = 5, .max = 9 },
466 .p = { .min = 14, .max = 42 },
0206e353 467 .p1 = { .min = 2, .max = 6 },
273e27ca
EA
468 .p2 = { .dot_limit = 225000,
469 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
470};
471
dc730512 472static const intel_limit_t intel_limits_vlv = {
f01b7962
VS
473 /*
474 * These are the data rate limits (measured in fast clocks)
475 * since those are the strictest limits we have. The fast
476 * clock and actual rate limits are more relaxed, so checking
477 * them would make no difference.
478 */
479 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
75e53986 480 .vco = { .min = 4000000, .max = 6000000 },
a0c4da24 481 .n = { .min = 1, .max = 7 },
a0c4da24
JB
482 .m1 = { .min = 2, .max = 3 },
483 .m2 = { .min = 11, .max = 156 },
b99ab663 484 .p1 = { .min = 2, .max = 3 },
5fdc9c49 485 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
a0c4da24
JB
486};
487
ef9348c8
CML
488static const intel_limit_t intel_limits_chv = {
489 /*
490 * These are the data rate limits (measured in fast clocks)
491 * since those are the strictest limits we have. The fast
492 * clock and actual rate limits are more relaxed, so checking
493 * them would make no difference.
494 */
495 .dot = { .min = 25000 * 5, .max = 540000 * 5},
17fe1021 496 .vco = { .min = 4800000, .max = 6480000 },
ef9348c8
CML
497 .n = { .min = 1, .max = 1 },
498 .m1 = { .min = 2, .max = 2 },
499 .m2 = { .min = 24 << 22, .max = 175 << 22 },
500 .p1 = { .min = 2, .max = 4 },
501 .p2 = { .p2_slow = 1, .p2_fast = 14 },
502};
503
5ab7b0b7
ID
504static const intel_limit_t intel_limits_bxt = {
505 /* FIXME: find real dot limits */
506 .dot = { .min = 0, .max = INT_MAX },
e6292556 507 .vco = { .min = 4800000, .max = 6700000 },
5ab7b0b7
ID
508 .n = { .min = 1, .max = 1 },
509 .m1 = { .min = 2, .max = 2 },
510 /* FIXME: find real m2 limits */
511 .m2 = { .min = 2 << 22, .max = 255 << 22 },
512 .p1 = { .min = 2, .max = 4 },
513 .p2 = { .p2_slow = 1, .p2_fast = 20 },
514};
515
cdba954e
ACO
516static bool
517needs_modeset(struct drm_crtc_state *state)
518{
fc596660 519 return drm_atomic_crtc_needs_modeset(state);
cdba954e
ACO
520}
521
e0638cdf
PZ
522/**
523 * Returns whether any output on the specified pipe is of the specified type
524 */
4093561b 525bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
e0638cdf 526{
409ee761 527 struct drm_device *dev = crtc->base.dev;
e0638cdf
PZ
528 struct intel_encoder *encoder;
529
409ee761 530 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
e0638cdf
PZ
531 if (encoder->type == type)
532 return true;
533
534 return false;
535}
536
d0737e1d
ACO
537/**
538 * Returns whether any output on the specified pipe will have the specified
539 * type after a staged modeset is complete, i.e., the same as
540 * intel_pipe_has_type() but looking at encoder->new_crtc instead of
541 * encoder->crtc.
542 */
a93e255f
ACO
543static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
544 int type)
d0737e1d 545{
a93e255f 546 struct drm_atomic_state *state = crtc_state->base.state;
da3ced29 547 struct drm_connector *connector;
a93e255f 548 struct drm_connector_state *connector_state;
d0737e1d 549 struct intel_encoder *encoder;
a93e255f
ACO
550 int i, num_connectors = 0;
551
da3ced29 552 for_each_connector_in_state(state, connector, connector_state, i) {
a93e255f
ACO
553 if (connector_state->crtc != crtc_state->base.crtc)
554 continue;
555
556 num_connectors++;
d0737e1d 557
a93e255f
ACO
558 encoder = to_intel_encoder(connector_state->best_encoder);
559 if (encoder->type == type)
d0737e1d 560 return true;
a93e255f
ACO
561 }
562
563 WARN_ON(num_connectors == 0);
d0737e1d
ACO
564
565 return false;
566}
567
a93e255f
ACO
568static const intel_limit_t *
569intel_ironlake_limit(struct intel_crtc_state *crtc_state, int refclk)
2c07245f 570{
a93e255f 571 struct drm_device *dev = crtc_state->base.crtc->dev;
2c07245f 572 const intel_limit_t *limit;
b91ad0ec 573
a93e255f 574 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1974cad0 575 if (intel_is_dual_link_lvds(dev)) {
1b894b59 576 if (refclk == 100000)
b91ad0ec
ZW
577 limit = &intel_limits_ironlake_dual_lvds_100m;
578 else
579 limit = &intel_limits_ironlake_dual_lvds;
580 } else {
1b894b59 581 if (refclk == 100000)
b91ad0ec
ZW
582 limit = &intel_limits_ironlake_single_lvds_100m;
583 else
584 limit = &intel_limits_ironlake_single_lvds;
585 }
c6bb3538 586 } else
b91ad0ec 587 limit = &intel_limits_ironlake_dac;
2c07245f
ZW
588
589 return limit;
590}
591
a93e255f
ACO
592static const intel_limit_t *
593intel_g4x_limit(struct intel_crtc_state *crtc_state)
044c7c41 594{
a93e255f 595 struct drm_device *dev = crtc_state->base.crtc->dev;
044c7c41
ML
596 const intel_limit_t *limit;
597
a93e255f 598 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1974cad0 599 if (intel_is_dual_link_lvds(dev))
e4b36699 600 limit = &intel_limits_g4x_dual_channel_lvds;
044c7c41 601 else
e4b36699 602 limit = &intel_limits_g4x_single_channel_lvds;
a93e255f
ACO
603 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
604 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
e4b36699 605 limit = &intel_limits_g4x_hdmi;
a93e255f 606 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
e4b36699 607 limit = &intel_limits_g4x_sdvo;
044c7c41 608 } else /* The option is for other outputs */
e4b36699 609 limit = &intel_limits_i9xx_sdvo;
044c7c41
ML
610
611 return limit;
612}
613
a93e255f
ACO
614static const intel_limit_t *
615intel_limit(struct intel_crtc_state *crtc_state, int refclk)
79e53945 616{
a93e255f 617 struct drm_device *dev = crtc_state->base.crtc->dev;
79e53945
JB
618 const intel_limit_t *limit;
619
5ab7b0b7
ID
620 if (IS_BROXTON(dev))
621 limit = &intel_limits_bxt;
622 else if (HAS_PCH_SPLIT(dev))
a93e255f 623 limit = intel_ironlake_limit(crtc_state, refclk);
2c07245f 624 else if (IS_G4X(dev)) {
a93e255f 625 limit = intel_g4x_limit(crtc_state);
f2b115e6 626 } else if (IS_PINEVIEW(dev)) {
a93e255f 627 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
f2b115e6 628 limit = &intel_limits_pineview_lvds;
2177832f 629 else
f2b115e6 630 limit = &intel_limits_pineview_sdvo;
ef9348c8
CML
631 } else if (IS_CHERRYVIEW(dev)) {
632 limit = &intel_limits_chv;
a0c4da24 633 } else if (IS_VALLEYVIEW(dev)) {
dc730512 634 limit = &intel_limits_vlv;
a6c45cf0 635 } else if (!IS_GEN2(dev)) {
a93e255f 636 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
a6c45cf0
CW
637 limit = &intel_limits_i9xx_lvds;
638 else
639 limit = &intel_limits_i9xx_sdvo;
79e53945 640 } else {
a93e255f 641 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
e4b36699 642 limit = &intel_limits_i8xx_lvds;
a93e255f 643 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
e4b36699 644 limit = &intel_limits_i8xx_dvo;
5d536e28
DV
645 else
646 limit = &intel_limits_i8xx_dac;
79e53945
JB
647 }
648 return limit;
649}
650
dccbea3b
ID
651/*
652 * Platform specific helpers to calculate the port PLL loopback- (clock.m),
653 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
654 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
655 * The helpers' return value is the rate of the clock that is fed to the
656 * display engine's pipe which can be the above fast dot clock rate or a
657 * divided-down version of it.
658 */
f2b115e6 659/* m1 is reserved as 0 in Pineview, n is a ring counter */
dccbea3b 660static int pnv_calc_dpll_params(int refclk, intel_clock_t *clock)
79e53945 661{
2177832f
SL
662 clock->m = clock->m2 + 2;
663 clock->p = clock->p1 * clock->p2;
ed5ca77e 664 if (WARN_ON(clock->n == 0 || clock->p == 0))
dccbea3b 665 return 0;
fb03ac01
VS
666 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
667 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
dccbea3b
ID
668
669 return clock->dot;
2177832f
SL
670}
671
7429e9d4
DV
672static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
673{
674 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
675}
676
dccbea3b 677static int i9xx_calc_dpll_params(int refclk, intel_clock_t *clock)
2177832f 678{
7429e9d4 679 clock->m = i9xx_dpll_compute_m(clock);
79e53945 680 clock->p = clock->p1 * clock->p2;
ed5ca77e 681 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
dccbea3b 682 return 0;
fb03ac01
VS
683 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
684 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
dccbea3b
ID
685
686 return clock->dot;
79e53945
JB
687}
688
dccbea3b 689static int vlv_calc_dpll_params(int refclk, intel_clock_t *clock)
589eca67
ID
690{
691 clock->m = clock->m1 * clock->m2;
692 clock->p = clock->p1 * clock->p2;
693 if (WARN_ON(clock->n == 0 || clock->p == 0))
dccbea3b 694 return 0;
589eca67
ID
695 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
696 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
dccbea3b
ID
697
698 return clock->dot / 5;
589eca67
ID
699}
700
dccbea3b 701int chv_calc_dpll_params(int refclk, intel_clock_t *clock)
ef9348c8
CML
702{
703 clock->m = clock->m1 * clock->m2;
704 clock->p = clock->p1 * clock->p2;
705 if (WARN_ON(clock->n == 0 || clock->p == 0))
dccbea3b 706 return 0;
ef9348c8
CML
707 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
708 clock->n << 22);
709 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
dccbea3b
ID
710
711 return clock->dot / 5;
ef9348c8
CML
712}
713
7c04d1d9 714#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
715/**
716 * Returns whether the given set of divisors are valid for a given refclk with
717 * the given connectors.
718 */
719
1b894b59
CW
720static bool intel_PLL_is_valid(struct drm_device *dev,
721 const intel_limit_t *limit,
722 const intel_clock_t *clock)
79e53945 723{
f01b7962
VS
724 if (clock->n < limit->n.min || limit->n.max < clock->n)
725 INTELPllInvalid("n out of range\n");
79e53945 726 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
0206e353 727 INTELPllInvalid("p1 out of range\n");
79e53945 728 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
0206e353 729 INTELPllInvalid("m2 out of range\n");
79e53945 730 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
0206e353 731 INTELPllInvalid("m1 out of range\n");
f01b7962 732
666a4537
WB
733 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) &&
734 !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev))
f01b7962
VS
735 if (clock->m1 <= clock->m2)
736 INTELPllInvalid("m1 <= m2\n");
737
666a4537 738 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev)) {
f01b7962
VS
739 if (clock->p < limit->p.min || limit->p.max < clock->p)
740 INTELPllInvalid("p out of range\n");
741 if (clock->m < limit->m.min || limit->m.max < clock->m)
742 INTELPllInvalid("m out of range\n");
743 }
744
79e53945 745 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
0206e353 746 INTELPllInvalid("vco out of range\n");
79e53945
JB
747 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
748 * connector, etc., rather than just a single range.
749 */
750 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
0206e353 751 INTELPllInvalid("dot out of range\n");
79e53945
JB
752
753 return true;
754}
755
3b1429d9
VS
756static int
757i9xx_select_p2_div(const intel_limit_t *limit,
758 const struct intel_crtc_state *crtc_state,
759 int target)
79e53945 760{
3b1429d9 761 struct drm_device *dev = crtc_state->base.crtc->dev;
79e53945 762
a93e255f 763 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
79e53945 764 /*
a210b028
DV
765 * For LVDS just rely on its current settings for dual-channel.
766 * We haven't figured out how to reliably set up different
767 * single/dual channel state, if we even can.
79e53945 768 */
1974cad0 769 if (intel_is_dual_link_lvds(dev))
3b1429d9 770 return limit->p2.p2_fast;
79e53945 771 else
3b1429d9 772 return limit->p2.p2_slow;
79e53945
JB
773 } else {
774 if (target < limit->p2.dot_limit)
3b1429d9 775 return limit->p2.p2_slow;
79e53945 776 else
3b1429d9 777 return limit->p2.p2_fast;
79e53945 778 }
3b1429d9
VS
779}
780
781static bool
782i9xx_find_best_dpll(const intel_limit_t *limit,
783 struct intel_crtc_state *crtc_state,
784 int target, int refclk, intel_clock_t *match_clock,
785 intel_clock_t *best_clock)
786{
787 struct drm_device *dev = crtc_state->base.crtc->dev;
788 intel_clock_t clock;
789 int err = target;
79e53945 790
0206e353 791 memset(best_clock, 0, sizeof(*best_clock));
79e53945 792
3b1429d9
VS
793 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
794
42158660
ZY
795 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
796 clock.m1++) {
797 for (clock.m2 = limit->m2.min;
798 clock.m2 <= limit->m2.max; clock.m2++) {
c0efc387 799 if (clock.m2 >= clock.m1)
42158660
ZY
800 break;
801 for (clock.n = limit->n.min;
802 clock.n <= limit->n.max; clock.n++) {
803 for (clock.p1 = limit->p1.min;
804 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
805 int this_err;
806
dccbea3b 807 i9xx_calc_dpll_params(refclk, &clock);
ac58c3f0
DV
808 if (!intel_PLL_is_valid(dev, limit,
809 &clock))
810 continue;
811 if (match_clock &&
812 clock.p != match_clock->p)
813 continue;
814
815 this_err = abs(clock.dot - target);
816 if (this_err < err) {
817 *best_clock = clock;
818 err = this_err;
819 }
820 }
821 }
822 }
823 }
824
825 return (err != target);
826}
827
828static bool
a93e255f
ACO
829pnv_find_best_dpll(const intel_limit_t *limit,
830 struct intel_crtc_state *crtc_state,
ee9300bb
DV
831 int target, int refclk, intel_clock_t *match_clock,
832 intel_clock_t *best_clock)
79e53945 833{
3b1429d9 834 struct drm_device *dev = crtc_state->base.crtc->dev;
79e53945 835 intel_clock_t clock;
79e53945
JB
836 int err = target;
837
0206e353 838 memset(best_clock, 0, sizeof(*best_clock));
79e53945 839
3b1429d9
VS
840 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
841
42158660
ZY
842 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
843 clock.m1++) {
844 for (clock.m2 = limit->m2.min;
845 clock.m2 <= limit->m2.max; clock.m2++) {
42158660
ZY
846 for (clock.n = limit->n.min;
847 clock.n <= limit->n.max; clock.n++) {
848 for (clock.p1 = limit->p1.min;
849 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
850 int this_err;
851
dccbea3b 852 pnv_calc_dpll_params(refclk, &clock);
1b894b59
CW
853 if (!intel_PLL_is_valid(dev, limit,
854 &clock))
79e53945 855 continue;
cec2f356
SP
856 if (match_clock &&
857 clock.p != match_clock->p)
858 continue;
79e53945
JB
859
860 this_err = abs(clock.dot - target);
861 if (this_err < err) {
862 *best_clock = clock;
863 err = this_err;
864 }
865 }
866 }
867 }
868 }
869
870 return (err != target);
871}
872
d4906093 873static bool
a93e255f
ACO
874g4x_find_best_dpll(const intel_limit_t *limit,
875 struct intel_crtc_state *crtc_state,
ee9300bb
DV
876 int target, int refclk, intel_clock_t *match_clock,
877 intel_clock_t *best_clock)
d4906093 878{
3b1429d9 879 struct drm_device *dev = crtc_state->base.crtc->dev;
d4906093
ML
880 intel_clock_t clock;
881 int max_n;
3b1429d9 882 bool found = false;
6ba770dc
AJ
883 /* approximately equals target * 0.00585 */
884 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
885
886 memset(best_clock, 0, sizeof(*best_clock));
3b1429d9
VS
887
888 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
889
d4906093 890 max_n = limit->n.max;
f77f13e2 891 /* based on hardware requirement, prefer smaller n to precision */
d4906093 892 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 893 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
894 for (clock.m1 = limit->m1.max;
895 clock.m1 >= limit->m1.min; clock.m1--) {
896 for (clock.m2 = limit->m2.max;
897 clock.m2 >= limit->m2.min; clock.m2--) {
898 for (clock.p1 = limit->p1.max;
899 clock.p1 >= limit->p1.min; clock.p1--) {
900 int this_err;
901
dccbea3b 902 i9xx_calc_dpll_params(refclk, &clock);
1b894b59
CW
903 if (!intel_PLL_is_valid(dev, limit,
904 &clock))
d4906093 905 continue;
1b894b59
CW
906
907 this_err = abs(clock.dot - target);
d4906093
ML
908 if (this_err < err_most) {
909 *best_clock = clock;
910 err_most = this_err;
911 max_n = clock.n;
912 found = true;
913 }
914 }
915 }
916 }
917 }
2c07245f
ZW
918 return found;
919}
920
d5dd62bd
ID
921/*
922 * Check if the calculated PLL configuration is more optimal compared to the
923 * best configuration and error found so far. Return the calculated error.
924 */
925static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
926 const intel_clock_t *calculated_clock,
927 const intel_clock_t *best_clock,
928 unsigned int best_error_ppm,
929 unsigned int *error_ppm)
930{
9ca3ba01
ID
931 /*
932 * For CHV ignore the error and consider only the P value.
933 * Prefer a bigger P value based on HW requirements.
934 */
935 if (IS_CHERRYVIEW(dev)) {
936 *error_ppm = 0;
937
938 return calculated_clock->p > best_clock->p;
939 }
940
24be4e46
ID
941 if (WARN_ON_ONCE(!target_freq))
942 return false;
943
d5dd62bd
ID
944 *error_ppm = div_u64(1000000ULL *
945 abs(target_freq - calculated_clock->dot),
946 target_freq);
947 /*
948 * Prefer a better P value over a better (smaller) error if the error
949 * is small. Ensure this preference for future configurations too by
950 * setting the error to 0.
951 */
952 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
953 *error_ppm = 0;
954
955 return true;
956 }
957
958 return *error_ppm + 10 < best_error_ppm;
959}
960
a0c4da24 961static bool
a93e255f
ACO
962vlv_find_best_dpll(const intel_limit_t *limit,
963 struct intel_crtc_state *crtc_state,
ee9300bb
DV
964 int target, int refclk, intel_clock_t *match_clock,
965 intel_clock_t *best_clock)
a0c4da24 966{
a93e255f 967 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
a919ff14 968 struct drm_device *dev = crtc->base.dev;
6b4bf1c4 969 intel_clock_t clock;
69e4f900 970 unsigned int bestppm = 1000000;
27e639bf
VS
971 /* min update 19.2 MHz */
972 int max_n = min(limit->n.max, refclk / 19200);
49e497ef 973 bool found = false;
a0c4da24 974
6b4bf1c4
VS
975 target *= 5; /* fast clock */
976
977 memset(best_clock, 0, sizeof(*best_clock));
a0c4da24
JB
978
979 /* based on hardware requirement, prefer smaller n to precision */
27e639bf 980 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
811bbf05 981 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
889059d8 982 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
c1a9ae43 983 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
6b4bf1c4 984 clock.p = clock.p1 * clock.p2;
a0c4da24 985 /* based on hardware requirement, prefer bigger m1,m2 values */
6b4bf1c4 986 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
d5dd62bd 987 unsigned int ppm;
69e4f900 988
6b4bf1c4
VS
989 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
990 refclk * clock.m1);
991
dccbea3b 992 vlv_calc_dpll_params(refclk, &clock);
43b0ac53 993
f01b7962
VS
994 if (!intel_PLL_is_valid(dev, limit,
995 &clock))
43b0ac53
VS
996 continue;
997
d5dd62bd
ID
998 if (!vlv_PLL_is_optimal(dev, target,
999 &clock,
1000 best_clock,
1001 bestppm, &ppm))
1002 continue;
6b4bf1c4 1003
d5dd62bd
ID
1004 *best_clock = clock;
1005 bestppm = ppm;
1006 found = true;
a0c4da24
JB
1007 }
1008 }
1009 }
1010 }
a0c4da24 1011
49e497ef 1012 return found;
a0c4da24 1013}
a4fc5ed6 1014
ef9348c8 1015static bool
a93e255f
ACO
1016chv_find_best_dpll(const intel_limit_t *limit,
1017 struct intel_crtc_state *crtc_state,
ef9348c8
CML
1018 int target, int refclk, intel_clock_t *match_clock,
1019 intel_clock_t *best_clock)
1020{
a93e255f 1021 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
a919ff14 1022 struct drm_device *dev = crtc->base.dev;
9ca3ba01 1023 unsigned int best_error_ppm;
ef9348c8
CML
1024 intel_clock_t clock;
1025 uint64_t m2;
1026 int found = false;
1027
1028 memset(best_clock, 0, sizeof(*best_clock));
9ca3ba01 1029 best_error_ppm = 1000000;
ef9348c8
CML
1030
1031 /*
1032 * Based on hardware doc, the n always set to 1, and m1 always
1033 * set to 2. If requires to support 200Mhz refclk, we need to
1034 * revisit this because n may not 1 anymore.
1035 */
1036 clock.n = 1, clock.m1 = 2;
1037 target *= 5; /* fast clock */
1038
1039 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
1040 for (clock.p2 = limit->p2.p2_fast;
1041 clock.p2 >= limit->p2.p2_slow;
1042 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
9ca3ba01 1043 unsigned int error_ppm;
ef9348c8
CML
1044
1045 clock.p = clock.p1 * clock.p2;
1046
1047 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
1048 clock.n) << 22, refclk * clock.m1);
1049
1050 if (m2 > INT_MAX/clock.m1)
1051 continue;
1052
1053 clock.m2 = m2;
1054
dccbea3b 1055 chv_calc_dpll_params(refclk, &clock);
ef9348c8
CML
1056
1057 if (!intel_PLL_is_valid(dev, limit, &clock))
1058 continue;
1059
9ca3ba01
ID
1060 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
1061 best_error_ppm, &error_ppm))
1062 continue;
1063
1064 *best_clock = clock;
1065 best_error_ppm = error_ppm;
1066 found = true;
ef9348c8
CML
1067 }
1068 }
1069
1070 return found;
1071}
1072
5ab7b0b7
ID
1073bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
1074 intel_clock_t *best_clock)
1075{
1076 int refclk = i9xx_get_refclk(crtc_state, 0);
1077
1078 return chv_find_best_dpll(intel_limit(crtc_state, refclk), crtc_state,
1079 target_clock, refclk, NULL, best_clock);
1080}
1081
20ddf665
VS
1082bool intel_crtc_active(struct drm_crtc *crtc)
1083{
1084 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1085
1086 /* Be paranoid as we can arrive here with only partial
1087 * state retrieved from the hardware during setup.
1088 *
241bfc38 1089 * We can ditch the adjusted_mode.crtc_clock check as soon
20ddf665
VS
1090 * as Haswell has gained clock readout/fastboot support.
1091 *
66e514c1 1092 * We can ditch the crtc->primary->fb check as soon as we can
20ddf665 1093 * properly reconstruct framebuffers.
c3d1f436
MR
1094 *
1095 * FIXME: The intel_crtc->active here should be switched to
1096 * crtc->state->active once we have proper CRTC states wired up
1097 * for atomic.
20ddf665 1098 */
c3d1f436 1099 return intel_crtc->active && crtc->primary->state->fb &&
6e3c9717 1100 intel_crtc->config->base.adjusted_mode.crtc_clock;
20ddf665
VS
1101}
1102
a5c961d1
PZ
1103enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1104 enum pipe pipe)
1105{
1106 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1107 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1108
6e3c9717 1109 return intel_crtc->config->cpu_transcoder;
a5c961d1
PZ
1110}
1111
fbf49ea2
VS
1112static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1113{
1114 struct drm_i915_private *dev_priv = dev->dev_private;
f0f59a00 1115 i915_reg_t reg = PIPEDSL(pipe);
fbf49ea2
VS
1116 u32 line1, line2;
1117 u32 line_mask;
1118
1119 if (IS_GEN2(dev))
1120 line_mask = DSL_LINEMASK_GEN2;
1121 else
1122 line_mask = DSL_LINEMASK_GEN3;
1123
1124 line1 = I915_READ(reg) & line_mask;
6adfb1ef 1125 msleep(5);
fbf49ea2
VS
1126 line2 = I915_READ(reg) & line_mask;
1127
1128 return line1 == line2;
1129}
1130
ab7ad7f6
KP
1131/*
1132 * intel_wait_for_pipe_off - wait for pipe to turn off
575f7ab7 1133 * @crtc: crtc whose pipe to wait for
9d0498a2
JB
1134 *
1135 * After disabling a pipe, we can't wait for vblank in the usual way,
1136 * spinning on the vblank interrupt status bit, since we won't actually
1137 * see an interrupt when the pipe is disabled.
1138 *
ab7ad7f6
KP
1139 * On Gen4 and above:
1140 * wait for the pipe register state bit to turn off
1141 *
1142 * Otherwise:
1143 * wait for the display line value to settle (it usually
1144 * ends up stopping at the start of the next frame).
58e10eb9 1145 *
9d0498a2 1146 */
575f7ab7 1147static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
9d0498a2 1148{
575f7ab7 1149 struct drm_device *dev = crtc->base.dev;
9d0498a2 1150 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 1151 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
575f7ab7 1152 enum pipe pipe = crtc->pipe;
ab7ad7f6
KP
1153
1154 if (INTEL_INFO(dev)->gen >= 4) {
f0f59a00 1155 i915_reg_t reg = PIPECONF(cpu_transcoder);
ab7ad7f6
KP
1156
1157 /* Wait for the Pipe State to go off */
58e10eb9
CW
1158 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1159 100))
284637d9 1160 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 1161 } else {
ab7ad7f6 1162 /* Wait for the display line to settle */
fbf49ea2 1163 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
284637d9 1164 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 1165 }
79e53945
JB
1166}
1167
b24e7179 1168/* Only for pre-ILK configs */
55607e8a
DV
1169void assert_pll(struct drm_i915_private *dev_priv,
1170 enum pipe pipe, bool state)
b24e7179 1171{
b24e7179
JB
1172 u32 val;
1173 bool cur_state;
1174
649636ef 1175 val = I915_READ(DPLL(pipe));
b24e7179 1176 cur_state = !!(val & DPLL_VCO_ENABLE);
e2c719b7 1177 I915_STATE_WARN(cur_state != state,
b24e7179 1178 "PLL state assertion failure (expected %s, current %s)\n",
87ad3212 1179 onoff(state), onoff(cur_state));
b24e7179 1180}
b24e7179 1181
23538ef1
JN
1182/* XXX: the dsi pll is shared between MIPI DSI ports */
1183static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1184{
1185 u32 val;
1186 bool cur_state;
1187
a580516d 1188 mutex_lock(&dev_priv->sb_lock);
23538ef1 1189 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
a580516d 1190 mutex_unlock(&dev_priv->sb_lock);
23538ef1
JN
1191
1192 cur_state = val & DSI_PLL_VCO_EN;
e2c719b7 1193 I915_STATE_WARN(cur_state != state,
23538ef1 1194 "DSI PLL state assertion failure (expected %s, current %s)\n",
87ad3212 1195 onoff(state), onoff(cur_state));
23538ef1
JN
1196}
1197#define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1198#define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1199
040484af
JB
1200static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1201 enum pipe pipe, bool state)
1202{
040484af 1203 bool cur_state;
ad80a810
PZ
1204 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1205 pipe);
040484af 1206
affa9354
PZ
1207 if (HAS_DDI(dev_priv->dev)) {
1208 /* DDI does not have a specific FDI_TX register */
649636ef 1209 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
ad80a810 1210 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
bf507ef7 1211 } else {
649636ef 1212 u32 val = I915_READ(FDI_TX_CTL(pipe));
bf507ef7
ED
1213 cur_state = !!(val & FDI_TX_ENABLE);
1214 }
e2c719b7 1215 I915_STATE_WARN(cur_state != state,
040484af 1216 "FDI TX state assertion failure (expected %s, current %s)\n",
87ad3212 1217 onoff(state), onoff(cur_state));
040484af
JB
1218}
1219#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1220#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1221
1222static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1223 enum pipe pipe, bool state)
1224{
040484af
JB
1225 u32 val;
1226 bool cur_state;
1227
649636ef 1228 val = I915_READ(FDI_RX_CTL(pipe));
d63fa0dc 1229 cur_state = !!(val & FDI_RX_ENABLE);
e2c719b7 1230 I915_STATE_WARN(cur_state != state,
040484af 1231 "FDI RX state assertion failure (expected %s, current %s)\n",
87ad3212 1232 onoff(state), onoff(cur_state));
040484af
JB
1233}
1234#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1235#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1236
1237static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1238 enum pipe pipe)
1239{
040484af
JB
1240 u32 val;
1241
1242 /* ILK FDI PLL is always enabled */
3d13ef2e 1243 if (INTEL_INFO(dev_priv->dev)->gen == 5)
040484af
JB
1244 return;
1245
bf507ef7 1246 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
affa9354 1247 if (HAS_DDI(dev_priv->dev))
bf507ef7
ED
1248 return;
1249
649636ef 1250 val = I915_READ(FDI_TX_CTL(pipe));
e2c719b7 1251 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
040484af
JB
1252}
1253
55607e8a
DV
1254void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1255 enum pipe pipe, bool state)
040484af 1256{
040484af 1257 u32 val;
55607e8a 1258 bool cur_state;
040484af 1259
649636ef 1260 val = I915_READ(FDI_RX_CTL(pipe));
55607e8a 1261 cur_state = !!(val & FDI_RX_PLL_ENABLE);
e2c719b7 1262 I915_STATE_WARN(cur_state != state,
55607e8a 1263 "FDI RX PLL assertion failure (expected %s, current %s)\n",
87ad3212 1264 onoff(state), onoff(cur_state));
040484af
JB
1265}
1266
b680c37a
DV
1267void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1268 enum pipe pipe)
ea0760cf 1269{
bedd4dba 1270 struct drm_device *dev = dev_priv->dev;
f0f59a00 1271 i915_reg_t pp_reg;
ea0760cf
JB
1272 u32 val;
1273 enum pipe panel_pipe = PIPE_A;
0de3b485 1274 bool locked = true;
ea0760cf 1275
bedd4dba
JN
1276 if (WARN_ON(HAS_DDI(dev)))
1277 return;
1278
1279 if (HAS_PCH_SPLIT(dev)) {
1280 u32 port_sel;
1281
ea0760cf 1282 pp_reg = PCH_PP_CONTROL;
bedd4dba
JN
1283 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1284
1285 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1286 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1287 panel_pipe = PIPE_B;
1288 /* XXX: else fix for eDP */
666a4537 1289 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
bedd4dba
JN
1290 /* presumably write lock depends on pipe, not port select */
1291 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1292 panel_pipe = pipe;
ea0760cf
JB
1293 } else {
1294 pp_reg = PP_CONTROL;
bedd4dba
JN
1295 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1296 panel_pipe = PIPE_B;
ea0760cf
JB
1297 }
1298
1299 val = I915_READ(pp_reg);
1300 if (!(val & PANEL_POWER_ON) ||
ec49ba2d 1301 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
ea0760cf
JB
1302 locked = false;
1303
e2c719b7 1304 I915_STATE_WARN(panel_pipe == pipe && locked,
ea0760cf 1305 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 1306 pipe_name(pipe));
ea0760cf
JB
1307}
1308
93ce0ba6
JN
1309static void assert_cursor(struct drm_i915_private *dev_priv,
1310 enum pipe pipe, bool state)
1311{
1312 struct drm_device *dev = dev_priv->dev;
1313 bool cur_state;
1314
d9d82081 1315 if (IS_845G(dev) || IS_I865G(dev))
0b87c24e 1316 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
d9d82081 1317 else
5efb3e28 1318 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
93ce0ba6 1319
e2c719b7 1320 I915_STATE_WARN(cur_state != state,
93ce0ba6 1321 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
87ad3212 1322 pipe_name(pipe), onoff(state), onoff(cur_state));
93ce0ba6
JN
1323}
1324#define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1325#define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1326
b840d907
JB
1327void assert_pipe(struct drm_i915_private *dev_priv,
1328 enum pipe pipe, bool state)
b24e7179 1329{
63d7bbe9 1330 bool cur_state;
702e7a56
PZ
1331 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1332 pipe);
4feed0eb 1333 enum intel_display_power_domain power_domain;
b24e7179 1334
b6b5d049
VS
1335 /* if we need the pipe quirk it must be always on */
1336 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1337 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
8e636784
DV
1338 state = true;
1339
4feed0eb
ID
1340 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1341 if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
649636ef 1342 u32 val = I915_READ(PIPECONF(cpu_transcoder));
69310161 1343 cur_state = !!(val & PIPECONF_ENABLE);
4feed0eb
ID
1344
1345 intel_display_power_put(dev_priv, power_domain);
1346 } else {
1347 cur_state = false;
69310161
PZ
1348 }
1349
e2c719b7 1350 I915_STATE_WARN(cur_state != state,
63d7bbe9 1351 "pipe %c assertion failure (expected %s, current %s)\n",
87ad3212 1352 pipe_name(pipe), onoff(state), onoff(cur_state));
b24e7179
JB
1353}
1354
931872fc
CW
1355static void assert_plane(struct drm_i915_private *dev_priv,
1356 enum plane plane, bool state)
b24e7179 1357{
b24e7179 1358 u32 val;
931872fc 1359 bool cur_state;
b24e7179 1360
649636ef 1361 val = I915_READ(DSPCNTR(plane));
931872fc 1362 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
e2c719b7 1363 I915_STATE_WARN(cur_state != state,
931872fc 1364 "plane %c assertion failure (expected %s, current %s)\n",
87ad3212 1365 plane_name(plane), onoff(state), onoff(cur_state));
b24e7179
JB
1366}
1367
931872fc
CW
1368#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1369#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1370
b24e7179
JB
1371static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1372 enum pipe pipe)
1373{
653e1026 1374 struct drm_device *dev = dev_priv->dev;
649636ef 1375 int i;
b24e7179 1376
653e1026
VS
1377 /* Primary planes are fixed to pipes on gen4+ */
1378 if (INTEL_INFO(dev)->gen >= 4) {
649636ef 1379 u32 val = I915_READ(DSPCNTR(pipe));
e2c719b7 1380 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
28c05794
AJ
1381 "plane %c assertion failure, should be disabled but not\n",
1382 plane_name(pipe));
19ec1358 1383 return;
28c05794 1384 }
19ec1358 1385
b24e7179 1386 /* Need to check both planes against the pipe */
055e393f 1387 for_each_pipe(dev_priv, i) {
649636ef
VS
1388 u32 val = I915_READ(DSPCNTR(i));
1389 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
b24e7179 1390 DISPPLANE_SEL_PIPE_SHIFT;
e2c719b7 1391 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
1392 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1393 plane_name(i), pipe_name(pipe));
b24e7179
JB
1394 }
1395}
1396
19332d7a
JB
1397static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1398 enum pipe pipe)
1399{
20674eef 1400 struct drm_device *dev = dev_priv->dev;
649636ef 1401 int sprite;
19332d7a 1402
7feb8b88 1403 if (INTEL_INFO(dev)->gen >= 9) {
3bdcfc0c 1404 for_each_sprite(dev_priv, pipe, sprite) {
649636ef 1405 u32 val = I915_READ(PLANE_CTL(pipe, sprite));
e2c719b7 1406 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
7feb8b88
DL
1407 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1408 sprite, pipe_name(pipe));
1409 }
666a4537 1410 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
3bdcfc0c 1411 for_each_sprite(dev_priv, pipe, sprite) {
649636ef 1412 u32 val = I915_READ(SPCNTR(pipe, sprite));
e2c719b7 1413 I915_STATE_WARN(val & SP_ENABLE,
20674eef 1414 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1fe47785 1415 sprite_name(pipe, sprite), pipe_name(pipe));
20674eef
VS
1416 }
1417 } else if (INTEL_INFO(dev)->gen >= 7) {
649636ef 1418 u32 val = I915_READ(SPRCTL(pipe));
e2c719b7 1419 I915_STATE_WARN(val & SPRITE_ENABLE,
06da8da2 1420 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef
VS
1421 plane_name(pipe), pipe_name(pipe));
1422 } else if (INTEL_INFO(dev)->gen >= 5) {
649636ef 1423 u32 val = I915_READ(DVSCNTR(pipe));
e2c719b7 1424 I915_STATE_WARN(val & DVS_ENABLE,
06da8da2 1425 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef 1426 plane_name(pipe), pipe_name(pipe));
19332d7a
JB
1427 }
1428}
1429
08c71e5e
VS
1430static void assert_vblank_disabled(struct drm_crtc *crtc)
1431{
e2c719b7 1432 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
08c71e5e
VS
1433 drm_crtc_vblank_put(crtc);
1434}
1435
7abd4b35
ACO
1436void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1437 enum pipe pipe)
92f2584a 1438{
92f2584a
JB
1439 u32 val;
1440 bool enabled;
1441
649636ef 1442 val = I915_READ(PCH_TRANSCONF(pipe));
92f2584a 1443 enabled = !!(val & TRANS_ENABLE);
e2c719b7 1444 I915_STATE_WARN(enabled,
9db4a9c7
JB
1445 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1446 pipe_name(pipe));
92f2584a
JB
1447}
1448
4e634389
KP
1449static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1450 enum pipe pipe, u32 port_sel, u32 val)
f0575e92
KP
1451{
1452 if ((val & DP_PORT_EN) == 0)
1453 return false;
1454
1455 if (HAS_PCH_CPT(dev_priv->dev)) {
f0f59a00 1456 u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
f0575e92
KP
1457 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1458 return false;
44f37d1f
CML
1459 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1460 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1461 return false;
f0575e92
KP
1462 } else {
1463 if ((val & DP_PIPE_MASK) != (pipe << 30))
1464 return false;
1465 }
1466 return true;
1467}
1468
1519b995
KP
1469static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1470 enum pipe pipe, u32 val)
1471{
dc0fa718 1472 if ((val & SDVO_ENABLE) == 0)
1519b995
KP
1473 return false;
1474
1475 if (HAS_PCH_CPT(dev_priv->dev)) {
dc0fa718 1476 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1519b995 1477 return false;
44f37d1f
CML
1478 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1479 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1480 return false;
1519b995 1481 } else {
dc0fa718 1482 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1519b995
KP
1483 return false;
1484 }
1485 return true;
1486}
1487
1488static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1489 enum pipe pipe, u32 val)
1490{
1491 if ((val & LVDS_PORT_EN) == 0)
1492 return false;
1493
1494 if (HAS_PCH_CPT(dev_priv->dev)) {
1495 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1496 return false;
1497 } else {
1498 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1499 return false;
1500 }
1501 return true;
1502}
1503
1504static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1505 enum pipe pipe, u32 val)
1506{
1507 if ((val & ADPA_DAC_ENABLE) == 0)
1508 return false;
1509 if (HAS_PCH_CPT(dev_priv->dev)) {
1510 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1511 return false;
1512 } else {
1513 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1514 return false;
1515 }
1516 return true;
1517}
1518
291906f1 1519static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0f59a00
VS
1520 enum pipe pipe, i915_reg_t reg,
1521 u32 port_sel)
291906f1 1522{
47a05eca 1523 u32 val = I915_READ(reg);
e2c719b7 1524 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
291906f1 1525 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
f0f59a00 1526 i915_mmio_reg_offset(reg), pipe_name(pipe));
de9a35ab 1527
e2c719b7 1528 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
75c5da27 1529 && (val & DP_PIPEB_SELECT),
de9a35ab 1530 "IBX PCH dp port still using transcoder B\n");
291906f1
JB
1531}
1532
1533static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
f0f59a00 1534 enum pipe pipe, i915_reg_t reg)
291906f1 1535{
47a05eca 1536 u32 val = I915_READ(reg);
e2c719b7 1537 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
23c99e77 1538 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
f0f59a00 1539 i915_mmio_reg_offset(reg), pipe_name(pipe));
de9a35ab 1540
e2c719b7 1541 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
75c5da27 1542 && (val & SDVO_PIPE_B_SELECT),
de9a35ab 1543 "IBX PCH hdmi port still using transcoder B\n");
291906f1
JB
1544}
1545
1546static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1547 enum pipe pipe)
1548{
291906f1 1549 u32 val;
291906f1 1550
f0575e92
KP
1551 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1552 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1553 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1 1554
649636ef 1555 val = I915_READ(PCH_ADPA);
e2c719b7 1556 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
291906f1 1557 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1558 pipe_name(pipe));
291906f1 1559
649636ef 1560 val = I915_READ(PCH_LVDS);
e2c719b7 1561 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
291906f1 1562 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1563 pipe_name(pipe));
291906f1 1564
e2debe91
PZ
1565 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1566 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1567 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
291906f1
JB
1568}
1569
d288f65f 1570static void vlv_enable_pll(struct intel_crtc *crtc,
5cec258b 1571 const struct intel_crtc_state *pipe_config)
87442f73 1572{
426115cf
DV
1573 struct drm_device *dev = crtc->base.dev;
1574 struct drm_i915_private *dev_priv = dev->dev_private;
f0f59a00 1575 i915_reg_t reg = DPLL(crtc->pipe);
d288f65f 1576 u32 dpll = pipe_config->dpll_hw_state.dpll;
87442f73 1577
426115cf 1578 assert_pipe_disabled(dev_priv, crtc->pipe);
87442f73 1579
87442f73 1580 /* PLL is protected by panel, make sure we can write it */
6a9e7363 1581 if (IS_MOBILE(dev_priv->dev))
426115cf 1582 assert_panel_unlocked(dev_priv, crtc->pipe);
87442f73 1583
426115cf
DV
1584 I915_WRITE(reg, dpll);
1585 POSTING_READ(reg);
1586 udelay(150);
1587
1588 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1589 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1590
d288f65f 1591 I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
426115cf 1592 POSTING_READ(DPLL_MD(crtc->pipe));
87442f73
DV
1593
1594 /* We do this three times for luck */
426115cf 1595 I915_WRITE(reg, dpll);
87442f73
DV
1596 POSTING_READ(reg);
1597 udelay(150); /* wait for warmup */
426115cf 1598 I915_WRITE(reg, dpll);
87442f73
DV
1599 POSTING_READ(reg);
1600 udelay(150); /* wait for warmup */
426115cf 1601 I915_WRITE(reg, dpll);
87442f73
DV
1602 POSTING_READ(reg);
1603 udelay(150); /* wait for warmup */
1604}
1605
d288f65f 1606static void chv_enable_pll(struct intel_crtc *crtc,
5cec258b 1607 const struct intel_crtc_state *pipe_config)
9d556c99
CML
1608{
1609 struct drm_device *dev = crtc->base.dev;
1610 struct drm_i915_private *dev_priv = dev->dev_private;
1611 int pipe = crtc->pipe;
1612 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9d556c99
CML
1613 u32 tmp;
1614
1615 assert_pipe_disabled(dev_priv, crtc->pipe);
1616
a580516d 1617 mutex_lock(&dev_priv->sb_lock);
9d556c99
CML
1618
1619 /* Enable back the 10bit clock to display controller */
1620 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1621 tmp |= DPIO_DCLKP_EN;
1622 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1623
54433e91
VS
1624 mutex_unlock(&dev_priv->sb_lock);
1625
9d556c99
CML
1626 /*
1627 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1628 */
1629 udelay(1);
1630
1631 /* Enable PLL */
d288f65f 1632 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
9d556c99
CML
1633
1634 /* Check PLL is locked */
a11b0703 1635 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
9d556c99
CML
1636 DRM_ERROR("PLL %d failed to lock\n", pipe);
1637
a11b0703 1638 /* not sure when this should be written */
d288f65f 1639 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
a11b0703 1640 POSTING_READ(DPLL_MD(pipe));
9d556c99
CML
1641}
1642
1c4e0274
VS
1643static int intel_num_dvo_pipes(struct drm_device *dev)
1644{
1645 struct intel_crtc *crtc;
1646 int count = 0;
1647
1648 for_each_intel_crtc(dev, crtc)
3538b9df 1649 count += crtc->base.state->active &&
409ee761 1650 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1c4e0274
VS
1651
1652 return count;
1653}
1654
66e3d5c0 1655static void i9xx_enable_pll(struct intel_crtc *crtc)
63d7bbe9 1656{
66e3d5c0
DV
1657 struct drm_device *dev = crtc->base.dev;
1658 struct drm_i915_private *dev_priv = dev->dev_private;
f0f59a00 1659 i915_reg_t reg = DPLL(crtc->pipe);
6e3c9717 1660 u32 dpll = crtc->config->dpll_hw_state.dpll;
63d7bbe9 1661
66e3d5c0 1662 assert_pipe_disabled(dev_priv, crtc->pipe);
58c6eaa2 1663
63d7bbe9 1664 /* No really, not for ILK+ */
3d13ef2e 1665 BUG_ON(INTEL_INFO(dev)->gen >= 5);
63d7bbe9
JB
1666
1667 /* PLL is protected by panel, make sure we can write it */
66e3d5c0
DV
1668 if (IS_MOBILE(dev) && !IS_I830(dev))
1669 assert_panel_unlocked(dev_priv, crtc->pipe);
63d7bbe9 1670
1c4e0274
VS
1671 /* Enable DVO 2x clock on both PLLs if necessary */
1672 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1673 /*
1674 * It appears to be important that we don't enable this
1675 * for the current pipe before otherwise configuring the
1676 * PLL. No idea how this should be handled if multiple
1677 * DVO outputs are enabled simultaneosly.
1678 */
1679 dpll |= DPLL_DVO_2X_MODE;
1680 I915_WRITE(DPLL(!crtc->pipe),
1681 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1682 }
66e3d5c0 1683
c2b63374
VS
1684 /*
1685 * Apparently we need to have VGA mode enabled prior to changing
1686 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1687 * dividers, even though the register value does change.
1688 */
1689 I915_WRITE(reg, 0);
1690
8e7a65aa
VS
1691 I915_WRITE(reg, dpll);
1692
66e3d5c0
DV
1693 /* Wait for the clocks to stabilize. */
1694 POSTING_READ(reg);
1695 udelay(150);
1696
1697 if (INTEL_INFO(dev)->gen >= 4) {
1698 I915_WRITE(DPLL_MD(crtc->pipe),
6e3c9717 1699 crtc->config->dpll_hw_state.dpll_md);
66e3d5c0
DV
1700 } else {
1701 /* The pixel multiplier can only be updated once the
1702 * DPLL is enabled and the clocks are stable.
1703 *
1704 * So write it again.
1705 */
1706 I915_WRITE(reg, dpll);
1707 }
63d7bbe9
JB
1708
1709 /* We do this three times for luck */
66e3d5c0 1710 I915_WRITE(reg, dpll);
63d7bbe9
JB
1711 POSTING_READ(reg);
1712 udelay(150); /* wait for warmup */
66e3d5c0 1713 I915_WRITE(reg, dpll);
63d7bbe9
JB
1714 POSTING_READ(reg);
1715 udelay(150); /* wait for warmup */
66e3d5c0 1716 I915_WRITE(reg, dpll);
63d7bbe9
JB
1717 POSTING_READ(reg);
1718 udelay(150); /* wait for warmup */
1719}
1720
1721/**
50b44a44 1722 * i9xx_disable_pll - disable a PLL
63d7bbe9
JB
1723 * @dev_priv: i915 private structure
1724 * @pipe: pipe PLL to disable
1725 *
1726 * Disable the PLL for @pipe, making sure the pipe is off first.
1727 *
1728 * Note! This is for pre-ILK only.
1729 */
1c4e0274 1730static void i9xx_disable_pll(struct intel_crtc *crtc)
63d7bbe9 1731{
1c4e0274
VS
1732 struct drm_device *dev = crtc->base.dev;
1733 struct drm_i915_private *dev_priv = dev->dev_private;
1734 enum pipe pipe = crtc->pipe;
1735
1736 /* Disable DVO 2x clock on both PLLs if necessary */
1737 if (IS_I830(dev) &&
409ee761 1738 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
3538b9df 1739 !intel_num_dvo_pipes(dev)) {
1c4e0274
VS
1740 I915_WRITE(DPLL(PIPE_B),
1741 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1742 I915_WRITE(DPLL(PIPE_A),
1743 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1744 }
1745
b6b5d049
VS
1746 /* Don't disable pipe or pipe PLLs if needed */
1747 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1748 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
63d7bbe9
JB
1749 return;
1750
1751 /* Make sure the pipe isn't still relying on us */
1752 assert_pipe_disabled(dev_priv, pipe);
1753
b8afb911 1754 I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
50b44a44 1755 POSTING_READ(DPLL(pipe));
63d7bbe9
JB
1756}
1757
f6071166
JB
1758static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1759{
b8afb911 1760 u32 val;
f6071166
JB
1761
1762 /* Make sure the pipe isn't still relying on us */
1763 assert_pipe_disabled(dev_priv, pipe);
1764
e5cbfbfb
ID
1765 /*
1766 * Leave integrated clock source and reference clock enabled for pipe B.
1767 * The latter is needed for VGA hotplug / manual detection.
1768 */
b8afb911 1769 val = DPLL_VGA_MODE_DIS;
f6071166 1770 if (pipe == PIPE_B)
60bfe44f 1771 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REF_CLK_ENABLE_VLV;
f6071166
JB
1772 I915_WRITE(DPLL(pipe), val);
1773 POSTING_READ(DPLL(pipe));
076ed3b2
CML
1774
1775}
1776
1777static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1778{
d752048d 1779 enum dpio_channel port = vlv_pipe_to_channel(pipe);
076ed3b2
CML
1780 u32 val;
1781
a11b0703
VS
1782 /* Make sure the pipe isn't still relying on us */
1783 assert_pipe_disabled(dev_priv, pipe);
076ed3b2 1784
a11b0703 1785 /* Set PLL en = 0 */
60bfe44f
VS
1786 val = DPLL_SSC_REF_CLK_CHV |
1787 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
a11b0703
VS
1788 if (pipe != PIPE_A)
1789 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1790 I915_WRITE(DPLL(pipe), val);
1791 POSTING_READ(DPLL(pipe));
d752048d 1792
a580516d 1793 mutex_lock(&dev_priv->sb_lock);
d752048d
VS
1794
1795 /* Disable 10bit clock to display controller */
1796 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1797 val &= ~DPIO_DCLKP_EN;
1798 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1799
a580516d 1800 mutex_unlock(&dev_priv->sb_lock);
f6071166
JB
1801}
1802
e4607fcf 1803void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
9b6de0a1
VS
1804 struct intel_digital_port *dport,
1805 unsigned int expected_mask)
89b667f8
JB
1806{
1807 u32 port_mask;
f0f59a00 1808 i915_reg_t dpll_reg;
89b667f8 1809
e4607fcf
CML
1810 switch (dport->port) {
1811 case PORT_B:
89b667f8 1812 port_mask = DPLL_PORTB_READY_MASK;
00fc31b7 1813 dpll_reg = DPLL(0);
e4607fcf
CML
1814 break;
1815 case PORT_C:
89b667f8 1816 port_mask = DPLL_PORTC_READY_MASK;
00fc31b7 1817 dpll_reg = DPLL(0);
9b6de0a1 1818 expected_mask <<= 4;
00fc31b7
CML
1819 break;
1820 case PORT_D:
1821 port_mask = DPLL_PORTD_READY_MASK;
1822 dpll_reg = DPIO_PHY_STATUS;
e4607fcf
CML
1823 break;
1824 default:
1825 BUG();
1826 }
89b667f8 1827
9b6de0a1
VS
1828 if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
1829 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1830 port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
89b667f8
JB
1831}
1832
b8a4f404
PZ
1833static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1834 enum pipe pipe)
040484af 1835{
23670b32 1836 struct drm_device *dev = dev_priv->dev;
7c26e5c6 1837 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
e2b78267 1838 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
f0f59a00
VS
1839 i915_reg_t reg;
1840 uint32_t val, pipeconf_val;
040484af
JB
1841
1842 /* PCH only available on ILK+ */
55522f37 1843 BUG_ON(!HAS_PCH_SPLIT(dev));
040484af
JB
1844
1845 /* Make sure PCH DPLL is enabled */
8106ddbd 1846 assert_shared_dpll_enabled(dev_priv, intel_crtc->config->shared_dpll);
040484af
JB
1847
1848 /* FDI must be feeding us bits for PCH ports */
1849 assert_fdi_tx_enabled(dev_priv, pipe);
1850 assert_fdi_rx_enabled(dev_priv, pipe);
1851
23670b32
DV
1852 if (HAS_PCH_CPT(dev)) {
1853 /* Workaround: Set the timing override bit before enabling the
1854 * pch transcoder. */
1855 reg = TRANS_CHICKEN2(pipe);
1856 val = I915_READ(reg);
1857 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1858 I915_WRITE(reg, val);
59c859d6 1859 }
23670b32 1860
ab9412ba 1861 reg = PCH_TRANSCONF(pipe);
040484af 1862 val = I915_READ(reg);
5f7f726d 1863 pipeconf_val = I915_READ(PIPECONF(pipe));
e9bcff5c
JB
1864
1865 if (HAS_PCH_IBX(dev_priv->dev)) {
1866 /*
c5de7c6f
VS
1867 * Make the BPC in transcoder be consistent with
1868 * that in pipeconf reg. For HDMI we must use 8bpc
1869 * here for both 8bpc and 12bpc.
e9bcff5c 1870 */
dfd07d72 1871 val &= ~PIPECONF_BPC_MASK;
c5de7c6f
VS
1872 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_HDMI))
1873 val |= PIPECONF_8BPC;
1874 else
1875 val |= pipeconf_val & PIPECONF_BPC_MASK;
e9bcff5c 1876 }
5f7f726d
PZ
1877
1878 val &= ~TRANS_INTERLACE_MASK;
1879 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
7c26e5c6 1880 if (HAS_PCH_IBX(dev_priv->dev) &&
409ee761 1881 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7c26e5c6
PZ
1882 val |= TRANS_LEGACY_INTERLACED_ILK;
1883 else
1884 val |= TRANS_INTERLACED;
5f7f726d
PZ
1885 else
1886 val |= TRANS_PROGRESSIVE;
1887
040484af
JB
1888 I915_WRITE(reg, val | TRANS_ENABLE);
1889 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
4bb6f1f3 1890 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
040484af
JB
1891}
1892
8fb033d7 1893static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
937bb610 1894 enum transcoder cpu_transcoder)
040484af 1895{
8fb033d7 1896 u32 val, pipeconf_val;
8fb033d7
PZ
1897
1898 /* PCH only available on ILK+ */
55522f37 1899 BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
8fb033d7 1900
8fb033d7 1901 /* FDI must be feeding us bits for PCH ports */
1a240d4d 1902 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
937bb610 1903 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
8fb033d7 1904
223a6fdf 1905 /* Workaround: set timing override bit. */
36c0d0cf 1906 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
23670b32 1907 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
36c0d0cf 1908 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
223a6fdf 1909
25f3ef11 1910 val = TRANS_ENABLE;
937bb610 1911 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
8fb033d7 1912
9a76b1c6
PZ
1913 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1914 PIPECONF_INTERLACED_ILK)
a35f2679 1915 val |= TRANS_INTERLACED;
8fb033d7
PZ
1916 else
1917 val |= TRANS_PROGRESSIVE;
1918
ab9412ba
DV
1919 I915_WRITE(LPT_TRANSCONF, val);
1920 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
937bb610 1921 DRM_ERROR("Failed to enable PCH transcoder\n");
8fb033d7
PZ
1922}
1923
b8a4f404
PZ
1924static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1925 enum pipe pipe)
040484af 1926{
23670b32 1927 struct drm_device *dev = dev_priv->dev;
f0f59a00
VS
1928 i915_reg_t reg;
1929 uint32_t val;
040484af
JB
1930
1931 /* FDI relies on the transcoder */
1932 assert_fdi_tx_disabled(dev_priv, pipe);
1933 assert_fdi_rx_disabled(dev_priv, pipe);
1934
291906f1
JB
1935 /* Ports must be off as well */
1936 assert_pch_ports_disabled(dev_priv, pipe);
1937
ab9412ba 1938 reg = PCH_TRANSCONF(pipe);
040484af
JB
1939 val = I915_READ(reg);
1940 val &= ~TRANS_ENABLE;
1941 I915_WRITE(reg, val);
1942 /* wait for PCH transcoder off, transcoder state */
1943 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
4bb6f1f3 1944 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
23670b32 1945
c465613b 1946 if (HAS_PCH_CPT(dev)) {
23670b32
DV
1947 /* Workaround: Clear the timing override chicken bit again. */
1948 reg = TRANS_CHICKEN2(pipe);
1949 val = I915_READ(reg);
1950 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1951 I915_WRITE(reg, val);
1952 }
040484af
JB
1953}
1954
ab4d966c 1955static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
8fb033d7 1956{
8fb033d7
PZ
1957 u32 val;
1958
ab9412ba 1959 val = I915_READ(LPT_TRANSCONF);
8fb033d7 1960 val &= ~TRANS_ENABLE;
ab9412ba 1961 I915_WRITE(LPT_TRANSCONF, val);
8fb033d7 1962 /* wait for PCH transcoder off, transcoder state */
ab9412ba 1963 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
8a52fd9f 1964 DRM_ERROR("Failed to disable PCH transcoder\n");
223a6fdf
PZ
1965
1966 /* Workaround: clear timing override bit. */
36c0d0cf 1967 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
23670b32 1968 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
36c0d0cf 1969 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
040484af
JB
1970}
1971
b24e7179 1972/**
309cfea8 1973 * intel_enable_pipe - enable a pipe, asserting requirements
0372264a 1974 * @crtc: crtc responsible for the pipe
b24e7179 1975 *
0372264a 1976 * Enable @crtc's pipe, making sure that various hardware specific requirements
b24e7179 1977 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
b24e7179 1978 */
e1fdc473 1979static void intel_enable_pipe(struct intel_crtc *crtc)
b24e7179 1980{
0372264a
PZ
1981 struct drm_device *dev = crtc->base.dev;
1982 struct drm_i915_private *dev_priv = dev->dev_private;
1983 enum pipe pipe = crtc->pipe;
1a70a728 1984 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1a240d4d 1985 enum pipe pch_transcoder;
f0f59a00 1986 i915_reg_t reg;
b24e7179
JB
1987 u32 val;
1988
9e2ee2dd
VS
1989 DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
1990
58c6eaa2 1991 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 1992 assert_cursor_disabled(dev_priv, pipe);
58c6eaa2
DV
1993 assert_sprites_disabled(dev_priv, pipe);
1994
681e5811 1995 if (HAS_PCH_LPT(dev_priv->dev))
cc391bbb
PZ
1996 pch_transcoder = TRANSCODER_A;
1997 else
1998 pch_transcoder = pipe;
1999
b24e7179
JB
2000 /*
2001 * A pipe without a PLL won't actually be able to drive bits from
2002 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2003 * need the check.
2004 */
50360403 2005 if (HAS_GMCH_DISPLAY(dev_priv->dev))
a65347ba 2006 if (crtc->config->has_dsi_encoder)
23538ef1
JN
2007 assert_dsi_pll_enabled(dev_priv);
2008 else
2009 assert_pll_enabled(dev_priv, pipe);
040484af 2010 else {
6e3c9717 2011 if (crtc->config->has_pch_encoder) {
040484af 2012 /* if driving the PCH, we need FDI enabled */
cc391bbb 2013 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1a240d4d
DV
2014 assert_fdi_tx_pll_enabled(dev_priv,
2015 (enum pipe) cpu_transcoder);
040484af
JB
2016 }
2017 /* FIXME: assert CPU port conditions for SNB+ */
2018 }
b24e7179 2019
702e7a56 2020 reg = PIPECONF(cpu_transcoder);
b24e7179 2021 val = I915_READ(reg);
7ad25d48 2022 if (val & PIPECONF_ENABLE) {
b6b5d049
VS
2023 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2024 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
00d70b15 2025 return;
7ad25d48 2026 }
00d70b15
CW
2027
2028 I915_WRITE(reg, val | PIPECONF_ENABLE);
851855d8 2029 POSTING_READ(reg);
b7792d8b
VS
2030
2031 /*
2032 * Until the pipe starts DSL will read as 0, which would cause
2033 * an apparent vblank timestamp jump, which messes up also the
2034 * frame count when it's derived from the timestamps. So let's
2035 * wait for the pipe to start properly before we call
2036 * drm_crtc_vblank_on()
2037 */
2038 if (dev->max_vblank_count == 0 &&
2039 wait_for(intel_get_crtc_scanline(crtc) != crtc->scanline_offset, 50))
2040 DRM_ERROR("pipe %c didn't start\n", pipe_name(pipe));
b24e7179
JB
2041}
2042
2043/**
309cfea8 2044 * intel_disable_pipe - disable a pipe, asserting requirements
575f7ab7 2045 * @crtc: crtc whose pipes is to be disabled
b24e7179 2046 *
575f7ab7
VS
2047 * Disable the pipe of @crtc, making sure that various hardware
2048 * specific requirements are met, if applicable, e.g. plane
2049 * disabled, panel fitter off, etc.
b24e7179
JB
2050 *
2051 * Will wait until the pipe has shut down before returning.
2052 */
575f7ab7 2053static void intel_disable_pipe(struct intel_crtc *crtc)
b24e7179 2054{
575f7ab7 2055 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
6e3c9717 2056 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
575f7ab7 2057 enum pipe pipe = crtc->pipe;
f0f59a00 2058 i915_reg_t reg;
b24e7179
JB
2059 u32 val;
2060
9e2ee2dd
VS
2061 DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2062
b24e7179
JB
2063 /*
2064 * Make sure planes won't keep trying to pump pixels to us,
2065 * or we might hang the display.
2066 */
2067 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2068 assert_cursor_disabled(dev_priv, pipe);
19332d7a 2069 assert_sprites_disabled(dev_priv, pipe);
b24e7179 2070
702e7a56 2071 reg = PIPECONF(cpu_transcoder);
b24e7179 2072 val = I915_READ(reg);
00d70b15
CW
2073 if ((val & PIPECONF_ENABLE) == 0)
2074 return;
2075
67adc644
VS
2076 /*
2077 * Double wide has implications for planes
2078 * so best keep it disabled when not needed.
2079 */
6e3c9717 2080 if (crtc->config->double_wide)
67adc644
VS
2081 val &= ~PIPECONF_DOUBLE_WIDE;
2082
2083 /* Don't disable pipe or pipe PLLs if needed */
b6b5d049
VS
2084 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2085 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
67adc644
VS
2086 val &= ~PIPECONF_ENABLE;
2087
2088 I915_WRITE(reg, val);
2089 if ((val & PIPECONF_ENABLE) == 0)
2090 intel_wait_for_pipe_off(crtc);
b24e7179
JB
2091}
2092
693db184
CW
2093static bool need_vtd_wa(struct drm_device *dev)
2094{
2095#ifdef CONFIG_INTEL_IOMMU
2096 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2097 return true;
2098#endif
2099 return false;
2100}
2101
832be82f
VS
2102static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
2103{
2104 return IS_GEN2(dev_priv) ? 2048 : 4096;
2105}
2106
27ba3910
VS
2107static unsigned int intel_tile_width_bytes(const struct drm_i915_private *dev_priv,
2108 uint64_t fb_modifier, unsigned int cpp)
7b49f948
VS
2109{
2110 switch (fb_modifier) {
2111 case DRM_FORMAT_MOD_NONE:
2112 return cpp;
2113 case I915_FORMAT_MOD_X_TILED:
2114 if (IS_GEN2(dev_priv))
2115 return 128;
2116 else
2117 return 512;
2118 case I915_FORMAT_MOD_Y_TILED:
2119 if (IS_GEN2(dev_priv) || HAS_128_BYTE_Y_TILING(dev_priv))
2120 return 128;
2121 else
2122 return 512;
2123 case I915_FORMAT_MOD_Yf_TILED:
2124 switch (cpp) {
2125 case 1:
2126 return 64;
2127 case 2:
2128 case 4:
2129 return 128;
2130 case 8:
2131 case 16:
2132 return 256;
2133 default:
2134 MISSING_CASE(cpp);
2135 return cpp;
2136 }
2137 break;
2138 default:
2139 MISSING_CASE(fb_modifier);
2140 return cpp;
2141 }
2142}
2143
832be82f
VS
2144unsigned int intel_tile_height(const struct drm_i915_private *dev_priv,
2145 uint64_t fb_modifier, unsigned int cpp)
a57ce0b2 2146{
832be82f
VS
2147 if (fb_modifier == DRM_FORMAT_MOD_NONE)
2148 return 1;
2149 else
2150 return intel_tile_size(dev_priv) /
27ba3910 2151 intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
6761dd31
TU
2152}
2153
8d0deca8
VS
2154/* Return the tile dimensions in pixel units */
2155static void intel_tile_dims(const struct drm_i915_private *dev_priv,
2156 unsigned int *tile_width,
2157 unsigned int *tile_height,
2158 uint64_t fb_modifier,
2159 unsigned int cpp)
2160{
2161 unsigned int tile_width_bytes =
2162 intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2163
2164 *tile_width = tile_width_bytes / cpp;
2165 *tile_height = intel_tile_size(dev_priv) / tile_width_bytes;
2166}
2167
6761dd31
TU
2168unsigned int
2169intel_fb_align_height(struct drm_device *dev, unsigned int height,
832be82f 2170 uint32_t pixel_format, uint64_t fb_modifier)
6761dd31 2171{
832be82f
VS
2172 unsigned int cpp = drm_format_plane_cpp(pixel_format, 0);
2173 unsigned int tile_height = intel_tile_height(to_i915(dev), fb_modifier, cpp);
2174
2175 return ALIGN(height, tile_height);
a57ce0b2
JB
2176}
2177
1663b9d6
VS
2178unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
2179{
2180 unsigned int size = 0;
2181 int i;
2182
2183 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
2184 size += rot_info->plane[i].width * rot_info->plane[i].height;
2185
2186 return size;
2187}
2188
75c82a53 2189static void
3465c580
VS
2190intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
2191 const struct drm_framebuffer *fb,
2192 unsigned int rotation)
f64b98cd 2193{
2d7a215f
VS
2194 if (intel_rotation_90_or_270(rotation)) {
2195 *view = i915_ggtt_view_rotated;
2196 view->params.rotated = to_intel_framebuffer(fb)->rot_info;
2197 } else {
2198 *view = i915_ggtt_view_normal;
2199 }
2200}
50470bb0 2201
2d7a215f
VS
2202static void
2203intel_fill_fb_info(struct drm_i915_private *dev_priv,
2204 struct drm_framebuffer *fb)
2205{
2206 struct intel_rotation_info *info = &to_intel_framebuffer(fb)->rot_info;
2207 unsigned int tile_size, tile_width, tile_height, cpp;
50470bb0 2208
d9b3288e
VS
2209 tile_size = intel_tile_size(dev_priv);
2210
2211 cpp = drm_format_plane_cpp(fb->pixel_format, 0);
8d0deca8
VS
2212 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2213 fb->modifier[0], cpp);
d9b3288e 2214
1663b9d6
VS
2215 info->plane[0].width = DIV_ROUND_UP(fb->pitches[0], tile_width * cpp);
2216 info->plane[0].height = DIV_ROUND_UP(fb->height, tile_height);
84fe03f7 2217
89e3e142 2218 if (info->pixel_format == DRM_FORMAT_NV12) {
832be82f 2219 cpp = drm_format_plane_cpp(fb->pixel_format, 1);
8d0deca8
VS
2220 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2221 fb->modifier[1], cpp);
d9b3288e 2222
2d7a215f 2223 info->uv_offset = fb->offsets[1];
1663b9d6
VS
2224 info->plane[1].width = DIV_ROUND_UP(fb->pitches[1], tile_width * cpp);
2225 info->plane[1].height = DIV_ROUND_UP(fb->height / 2, tile_height);
89e3e142 2226 }
f64b98cd
TU
2227}
2228
603525d7 2229static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
4e9a86b6
VS
2230{
2231 if (INTEL_INFO(dev_priv)->gen >= 9)
2232 return 256 * 1024;
985b8bb4 2233 else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
666a4537 2234 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4e9a86b6
VS
2235 return 128 * 1024;
2236 else if (INTEL_INFO(dev_priv)->gen >= 4)
2237 return 4 * 1024;
2238 else
44c5905e 2239 return 0;
4e9a86b6
VS
2240}
2241
603525d7
VS
2242static unsigned int intel_surf_alignment(const struct drm_i915_private *dev_priv,
2243 uint64_t fb_modifier)
2244{
2245 switch (fb_modifier) {
2246 case DRM_FORMAT_MOD_NONE:
2247 return intel_linear_alignment(dev_priv);
2248 case I915_FORMAT_MOD_X_TILED:
2249 if (INTEL_INFO(dev_priv)->gen >= 9)
2250 return 256 * 1024;
2251 return 0;
2252 case I915_FORMAT_MOD_Y_TILED:
2253 case I915_FORMAT_MOD_Yf_TILED:
2254 return 1 * 1024 * 1024;
2255 default:
2256 MISSING_CASE(fb_modifier);
2257 return 0;
2258 }
2259}
2260
127bd2ac 2261int
3465c580
VS
2262intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb,
2263 unsigned int rotation)
6b95a207 2264{
850c4cdc 2265 struct drm_device *dev = fb->dev;
ce453d81 2266 struct drm_i915_private *dev_priv = dev->dev_private;
850c4cdc 2267 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
f64b98cd 2268 struct i915_ggtt_view view;
6b95a207
KH
2269 u32 alignment;
2270 int ret;
2271
ebcdd39e
MR
2272 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2273
603525d7 2274 alignment = intel_surf_alignment(dev_priv, fb->modifier[0]);
6b95a207 2275
3465c580 2276 intel_fill_fb_ggtt_view(&view, fb, rotation);
f64b98cd 2277
693db184
CW
2278 /* Note that the w/a also requires 64 PTE of padding following the
2279 * bo. We currently fill all unused PTE with the shadow page and so
2280 * we should always have valid PTE following the scanout preventing
2281 * the VT-d warning.
2282 */
2283 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2284 alignment = 256 * 1024;
2285
d6dd6843
PZ
2286 /*
2287 * Global gtt pte registers are special registers which actually forward
2288 * writes to a chunk of system memory. Which means that there is no risk
2289 * that the register values disappear as soon as we call
2290 * intel_runtime_pm_put(), so it is correct to wrap only the
2291 * pin/unpin/fence and not more.
2292 */
2293 intel_runtime_pm_get(dev_priv);
2294
7580d774
ML
2295 ret = i915_gem_object_pin_to_display_plane(obj, alignment,
2296 &view);
48b956c5 2297 if (ret)
b26a6b35 2298 goto err_pm;
6b95a207
KH
2299
2300 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2301 * fence, whereas 965+ only requires a fence if using
2302 * framebuffer compression. For simplicity, we always install
2303 * a fence as the cost is not that onerous.
2304 */
9807216f
VK
2305 if (view.type == I915_GGTT_VIEW_NORMAL) {
2306 ret = i915_gem_object_get_fence(obj);
2307 if (ret == -EDEADLK) {
2308 /*
2309 * -EDEADLK means there are no free fences
2310 * no pending flips.
2311 *
2312 * This is propagated to atomic, but it uses
2313 * -EDEADLK to force a locking recovery, so
2314 * change the returned error to -EBUSY.
2315 */
2316 ret = -EBUSY;
2317 goto err_unpin;
2318 } else if (ret)
2319 goto err_unpin;
1690e1eb 2320
9807216f
VK
2321 i915_gem_object_pin_fence(obj);
2322 }
6b95a207 2323
d6dd6843 2324 intel_runtime_pm_put(dev_priv);
6b95a207 2325 return 0;
48b956c5
CW
2326
2327err_unpin:
f64b98cd 2328 i915_gem_object_unpin_from_display_plane(obj, &view);
b26a6b35 2329err_pm:
d6dd6843 2330 intel_runtime_pm_put(dev_priv);
48b956c5 2331 return ret;
6b95a207
KH
2332}
2333
3465c580 2334static void intel_unpin_fb_obj(struct drm_framebuffer *fb, unsigned int rotation)
1690e1eb 2335{
82bc3b2d 2336 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
f64b98cd 2337 struct i915_ggtt_view view;
82bc3b2d 2338
ebcdd39e
MR
2339 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2340
3465c580 2341 intel_fill_fb_ggtt_view(&view, fb, rotation);
f64b98cd 2342
9807216f
VK
2343 if (view.type == I915_GGTT_VIEW_NORMAL)
2344 i915_gem_object_unpin_fence(obj);
2345
f64b98cd 2346 i915_gem_object_unpin_from_display_plane(obj, &view);
1690e1eb
CW
2347}
2348
29cf9491
VS
2349/*
2350 * Adjust the tile offset by moving the difference into
2351 * the x/y offsets.
2352 *
2353 * Input tile dimensions and pitch must already be
2354 * rotated to match x and y, and in pixel units.
2355 */
2356static u32 intel_adjust_tile_offset(int *x, int *y,
2357 unsigned int tile_width,
2358 unsigned int tile_height,
2359 unsigned int tile_size,
2360 unsigned int pitch_tiles,
2361 u32 old_offset,
2362 u32 new_offset)
2363{
2364 unsigned int tiles;
2365
2366 WARN_ON(old_offset & (tile_size - 1));
2367 WARN_ON(new_offset & (tile_size - 1));
2368 WARN_ON(new_offset > old_offset);
2369
2370 tiles = (old_offset - new_offset) / tile_size;
2371
2372 *y += tiles / pitch_tiles * tile_height;
2373 *x += tiles % pitch_tiles * tile_width;
2374
2375 return new_offset;
2376}
2377
8d0deca8
VS
2378/*
2379 * Computes the linear offset to the base tile and adjusts
2380 * x, y. bytes per pixel is assumed to be a power-of-two.
2381 *
2382 * In the 90/270 rotated case, x and y are assumed
2383 * to be already rotated to match the rotated GTT view, and
2384 * pitch is the tile_height aligned framebuffer height.
2385 */
4f2d9934
VS
2386u32 intel_compute_tile_offset(int *x, int *y,
2387 const struct drm_framebuffer *fb, int plane,
8d0deca8
VS
2388 unsigned int pitch,
2389 unsigned int rotation)
c2c75131 2390{
4f2d9934
VS
2391 const struct drm_i915_private *dev_priv = to_i915(fb->dev);
2392 uint64_t fb_modifier = fb->modifier[plane];
2393 unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
29cf9491
VS
2394 u32 offset, offset_aligned, alignment;
2395
2396 alignment = intel_surf_alignment(dev_priv, fb_modifier);
2397 if (alignment)
2398 alignment--;
2399
b5c65338 2400 if (fb_modifier != DRM_FORMAT_MOD_NONE) {
8d0deca8
VS
2401 unsigned int tile_size, tile_width, tile_height;
2402 unsigned int tile_rows, tiles, pitch_tiles;
c2c75131 2403
d843310d 2404 tile_size = intel_tile_size(dev_priv);
8d0deca8
VS
2405 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2406 fb_modifier, cpp);
2407
2408 if (intel_rotation_90_or_270(rotation)) {
2409 pitch_tiles = pitch / tile_height;
2410 swap(tile_width, tile_height);
2411 } else {
2412 pitch_tiles = pitch / (tile_width * cpp);
2413 }
d843310d
VS
2414
2415 tile_rows = *y / tile_height;
2416 *y %= tile_height;
c2c75131 2417
8d0deca8
VS
2418 tiles = *x / tile_width;
2419 *x %= tile_width;
bc752862 2420
29cf9491
VS
2421 offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2422 offset_aligned = offset & ~alignment;
bc752862 2423
29cf9491
VS
2424 intel_adjust_tile_offset(x, y, tile_width, tile_height,
2425 tile_size, pitch_tiles,
2426 offset, offset_aligned);
2427 } else {
bc752862 2428 offset = *y * pitch + *x * cpp;
29cf9491
VS
2429 offset_aligned = offset & ~alignment;
2430
4e9a86b6
VS
2431 *y = (offset & alignment) / pitch;
2432 *x = ((offset & alignment) - *y * pitch) / cpp;
bc752862 2433 }
29cf9491
VS
2434
2435 return offset_aligned;
c2c75131
DV
2436}
2437
b35d63fa 2438static int i9xx_format_to_fourcc(int format)
46f297fb
JB
2439{
2440 switch (format) {
2441 case DISPPLANE_8BPP:
2442 return DRM_FORMAT_C8;
2443 case DISPPLANE_BGRX555:
2444 return DRM_FORMAT_XRGB1555;
2445 case DISPPLANE_BGRX565:
2446 return DRM_FORMAT_RGB565;
2447 default:
2448 case DISPPLANE_BGRX888:
2449 return DRM_FORMAT_XRGB8888;
2450 case DISPPLANE_RGBX888:
2451 return DRM_FORMAT_XBGR8888;
2452 case DISPPLANE_BGRX101010:
2453 return DRM_FORMAT_XRGB2101010;
2454 case DISPPLANE_RGBX101010:
2455 return DRM_FORMAT_XBGR2101010;
2456 }
2457}
2458
bc8d7dff
DL
2459static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2460{
2461 switch (format) {
2462 case PLANE_CTL_FORMAT_RGB_565:
2463 return DRM_FORMAT_RGB565;
2464 default:
2465 case PLANE_CTL_FORMAT_XRGB_8888:
2466 if (rgb_order) {
2467 if (alpha)
2468 return DRM_FORMAT_ABGR8888;
2469 else
2470 return DRM_FORMAT_XBGR8888;
2471 } else {
2472 if (alpha)
2473 return DRM_FORMAT_ARGB8888;
2474 else
2475 return DRM_FORMAT_XRGB8888;
2476 }
2477 case PLANE_CTL_FORMAT_XRGB_2101010:
2478 if (rgb_order)
2479 return DRM_FORMAT_XBGR2101010;
2480 else
2481 return DRM_FORMAT_XRGB2101010;
2482 }
2483}
2484
5724dbd1 2485static bool
f6936e29
DV
2486intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2487 struct intel_initial_plane_config *plane_config)
46f297fb
JB
2488{
2489 struct drm_device *dev = crtc->base.dev;
3badb49f 2490 struct drm_i915_private *dev_priv = to_i915(dev);
46f297fb
JB
2491 struct drm_i915_gem_object *obj = NULL;
2492 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2d14030b 2493 struct drm_framebuffer *fb = &plane_config->fb->base;
f37b5c2b
DV
2494 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2495 u32 size_aligned = round_up(plane_config->base + plane_config->size,
2496 PAGE_SIZE);
2497
2498 size_aligned -= base_aligned;
46f297fb 2499
ff2652ea
CW
2500 if (plane_config->size == 0)
2501 return false;
2502
3badb49f
PZ
2503 /* If the FB is too big, just don't use it since fbdev is not very
2504 * important and we should probably use that space with FBC or other
2505 * features. */
2506 if (size_aligned * 2 > dev_priv->gtt.stolen_usable_size)
2507 return false;
2508
12c83d99
TU
2509 mutex_lock(&dev->struct_mutex);
2510
f37b5c2b
DV
2511 obj = i915_gem_object_create_stolen_for_preallocated(dev,
2512 base_aligned,
2513 base_aligned,
2514 size_aligned);
12c83d99
TU
2515 if (!obj) {
2516 mutex_unlock(&dev->struct_mutex);
484b41dd 2517 return false;
12c83d99 2518 }
46f297fb 2519
49af449b
DL
2520 obj->tiling_mode = plane_config->tiling;
2521 if (obj->tiling_mode == I915_TILING_X)
6bf129df 2522 obj->stride = fb->pitches[0];
46f297fb 2523
6bf129df
DL
2524 mode_cmd.pixel_format = fb->pixel_format;
2525 mode_cmd.width = fb->width;
2526 mode_cmd.height = fb->height;
2527 mode_cmd.pitches[0] = fb->pitches[0];
18c5247e
DV
2528 mode_cmd.modifier[0] = fb->modifier[0];
2529 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
46f297fb 2530
6bf129df 2531 if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
484b41dd 2532 &mode_cmd, obj)) {
46f297fb
JB
2533 DRM_DEBUG_KMS("intel fb init failed\n");
2534 goto out_unref_obj;
2535 }
12c83d99 2536
46f297fb 2537 mutex_unlock(&dev->struct_mutex);
484b41dd 2538
f6936e29 2539 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
484b41dd 2540 return true;
46f297fb
JB
2541
2542out_unref_obj:
2543 drm_gem_object_unreference(&obj->base);
2544 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2545 return false;
2546}
2547
afd65eb4
MR
2548/* Update plane->state->fb to match plane->fb after driver-internal updates */
2549static void
2550update_state_fb(struct drm_plane *plane)
2551{
2552 if (plane->fb == plane->state->fb)
2553 return;
2554
2555 if (plane->state->fb)
2556 drm_framebuffer_unreference(plane->state->fb);
2557 plane->state->fb = plane->fb;
2558 if (plane->state->fb)
2559 drm_framebuffer_reference(plane->state->fb);
2560}
2561
5724dbd1 2562static void
f6936e29
DV
2563intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2564 struct intel_initial_plane_config *plane_config)
484b41dd
JB
2565{
2566 struct drm_device *dev = intel_crtc->base.dev;
d9ceb816 2567 struct drm_i915_private *dev_priv = dev->dev_private;
484b41dd
JB
2568 struct drm_crtc *c;
2569 struct intel_crtc *i;
2ff8fde1 2570 struct drm_i915_gem_object *obj;
88595ac9 2571 struct drm_plane *primary = intel_crtc->base.primary;
be5651f2 2572 struct drm_plane_state *plane_state = primary->state;
200757f5
MR
2573 struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2574 struct intel_plane *intel_plane = to_intel_plane(primary);
0a8d8a86
MR
2575 struct intel_plane_state *intel_state =
2576 to_intel_plane_state(plane_state);
88595ac9 2577 struct drm_framebuffer *fb;
484b41dd 2578
2d14030b 2579 if (!plane_config->fb)
484b41dd
JB
2580 return;
2581
f6936e29 2582 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
88595ac9
DV
2583 fb = &plane_config->fb->base;
2584 goto valid_fb;
f55548b5 2585 }
484b41dd 2586
2d14030b 2587 kfree(plane_config->fb);
484b41dd
JB
2588
2589 /*
2590 * Failed to alloc the obj, check to see if we should share
2591 * an fb with another CRTC instead
2592 */
70e1e0ec 2593 for_each_crtc(dev, c) {
484b41dd
JB
2594 i = to_intel_crtc(c);
2595
2596 if (c == &intel_crtc->base)
2597 continue;
2598
2ff8fde1
MR
2599 if (!i->active)
2600 continue;
2601
88595ac9
DV
2602 fb = c->primary->fb;
2603 if (!fb)
484b41dd
JB
2604 continue;
2605
88595ac9 2606 obj = intel_fb_obj(fb);
2ff8fde1 2607 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
88595ac9
DV
2608 drm_framebuffer_reference(fb);
2609 goto valid_fb;
484b41dd
JB
2610 }
2611 }
88595ac9 2612
200757f5
MR
2613 /*
2614 * We've failed to reconstruct the BIOS FB. Current display state
2615 * indicates that the primary plane is visible, but has a NULL FB,
2616 * which will lead to problems later if we don't fix it up. The
2617 * simplest solution is to just disable the primary plane now and
2618 * pretend the BIOS never had it enabled.
2619 */
2620 to_intel_plane_state(plane_state)->visible = false;
2621 crtc_state->plane_mask &= ~(1 << drm_plane_index(primary));
2622a081 2622 intel_pre_disable_primary_noatomic(&intel_crtc->base);
200757f5
MR
2623 intel_plane->disable_plane(primary, &intel_crtc->base);
2624
88595ac9
DV
2625 return;
2626
2627valid_fb:
f44e2659
VS
2628 plane_state->src_x = 0;
2629 plane_state->src_y = 0;
be5651f2
ML
2630 plane_state->src_w = fb->width << 16;
2631 plane_state->src_h = fb->height << 16;
2632
f44e2659
VS
2633 plane_state->crtc_x = 0;
2634 plane_state->crtc_y = 0;
be5651f2
ML
2635 plane_state->crtc_w = fb->width;
2636 plane_state->crtc_h = fb->height;
2637
0a8d8a86
MR
2638 intel_state->src.x1 = plane_state->src_x;
2639 intel_state->src.y1 = plane_state->src_y;
2640 intel_state->src.x2 = plane_state->src_x + plane_state->src_w;
2641 intel_state->src.y2 = plane_state->src_y + plane_state->src_h;
2642 intel_state->dst.x1 = plane_state->crtc_x;
2643 intel_state->dst.y1 = plane_state->crtc_y;
2644 intel_state->dst.x2 = plane_state->crtc_x + plane_state->crtc_w;
2645 intel_state->dst.y2 = plane_state->crtc_y + plane_state->crtc_h;
2646
88595ac9
DV
2647 obj = intel_fb_obj(fb);
2648 if (obj->tiling_mode != I915_TILING_NONE)
2649 dev_priv->preserve_bios_swizzle = true;
2650
be5651f2
ML
2651 drm_framebuffer_reference(fb);
2652 primary->fb = primary->state->fb = fb;
36750f28 2653 primary->crtc = primary->state->crtc = &intel_crtc->base;
36750f28 2654 intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
a9ff8714 2655 obj->frontbuffer_bits |= to_intel_plane(primary)->frontbuffer_bit;
46f297fb
JB
2656}
2657
a8d201af
ML
2658static void i9xx_update_primary_plane(struct drm_plane *primary,
2659 const struct intel_crtc_state *crtc_state,
2660 const struct intel_plane_state *plane_state)
81255565 2661{
a8d201af 2662 struct drm_device *dev = primary->dev;
81255565 2663 struct drm_i915_private *dev_priv = dev->dev_private;
a8d201af
ML
2664 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2665 struct drm_framebuffer *fb = plane_state->base.fb;
2666 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
81255565 2667 int plane = intel_crtc->plane;
54ea9da8 2668 u32 linear_offset;
81255565 2669 u32 dspcntr;
f0f59a00 2670 i915_reg_t reg = DSPCNTR(plane);
8d0deca8 2671 unsigned int rotation = plane_state->base.rotation;
ac484963 2672 int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
54ea9da8
VS
2673 int x = plane_state->src.x1 >> 16;
2674 int y = plane_state->src.y1 >> 16;
c9ba6fad 2675
f45651ba
VS
2676 dspcntr = DISPPLANE_GAMMA_ENABLE;
2677
fdd508a6 2678 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2679
2680 if (INTEL_INFO(dev)->gen < 4) {
2681 if (intel_crtc->pipe == PIPE_B)
2682 dspcntr |= DISPPLANE_SEL_PIPE_B;
2683
2684 /* pipesrc and dspsize control the size that is scaled from,
2685 * which should always be the user's requested size.
2686 */
2687 I915_WRITE(DSPSIZE(plane),
a8d201af
ML
2688 ((crtc_state->pipe_src_h - 1) << 16) |
2689 (crtc_state->pipe_src_w - 1));
f45651ba 2690 I915_WRITE(DSPPOS(plane), 0);
c14b0485
VS
2691 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2692 I915_WRITE(PRIMSIZE(plane),
a8d201af
ML
2693 ((crtc_state->pipe_src_h - 1) << 16) |
2694 (crtc_state->pipe_src_w - 1));
c14b0485
VS
2695 I915_WRITE(PRIMPOS(plane), 0);
2696 I915_WRITE(PRIMCNSTALPHA(plane), 0);
f45651ba 2697 }
81255565 2698
57779d06
VS
2699 switch (fb->pixel_format) {
2700 case DRM_FORMAT_C8:
81255565
JB
2701 dspcntr |= DISPPLANE_8BPP;
2702 break;
57779d06 2703 case DRM_FORMAT_XRGB1555:
57779d06 2704 dspcntr |= DISPPLANE_BGRX555;
81255565 2705 break;
57779d06
VS
2706 case DRM_FORMAT_RGB565:
2707 dspcntr |= DISPPLANE_BGRX565;
2708 break;
2709 case DRM_FORMAT_XRGB8888:
57779d06
VS
2710 dspcntr |= DISPPLANE_BGRX888;
2711 break;
2712 case DRM_FORMAT_XBGR8888:
57779d06
VS
2713 dspcntr |= DISPPLANE_RGBX888;
2714 break;
2715 case DRM_FORMAT_XRGB2101010:
57779d06
VS
2716 dspcntr |= DISPPLANE_BGRX101010;
2717 break;
2718 case DRM_FORMAT_XBGR2101010:
57779d06 2719 dspcntr |= DISPPLANE_RGBX101010;
81255565
JB
2720 break;
2721 default:
baba133a 2722 BUG();
81255565 2723 }
57779d06 2724
f45651ba
VS
2725 if (INTEL_INFO(dev)->gen >= 4 &&
2726 obj->tiling_mode != I915_TILING_NONE)
2727 dspcntr |= DISPPLANE_TILED;
81255565 2728
de1aa629
VS
2729 if (IS_G4X(dev))
2730 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2731
ac484963 2732 linear_offset = y * fb->pitches[0] + x * cpp;
81255565 2733
c2c75131
DV
2734 if (INTEL_INFO(dev)->gen >= 4) {
2735 intel_crtc->dspaddr_offset =
4f2d9934 2736 intel_compute_tile_offset(&x, &y, fb, 0,
8d0deca8 2737 fb->pitches[0], rotation);
c2c75131
DV
2738 linear_offset -= intel_crtc->dspaddr_offset;
2739 } else {
e506a0c6 2740 intel_crtc->dspaddr_offset = linear_offset;
c2c75131 2741 }
e506a0c6 2742
8d0deca8 2743 if (rotation == BIT(DRM_ROTATE_180)) {
48404c1e
SJ
2744 dspcntr |= DISPPLANE_ROTATE_180;
2745
a8d201af
ML
2746 x += (crtc_state->pipe_src_w - 1);
2747 y += (crtc_state->pipe_src_h - 1);
48404c1e
SJ
2748
2749 /* Finding the last pixel of the last line of the display
2750 data and adding to linear_offset*/
2751 linear_offset +=
a8d201af 2752 (crtc_state->pipe_src_h - 1) * fb->pitches[0] +
ac484963 2753 (crtc_state->pipe_src_w - 1) * cpp;
48404c1e
SJ
2754 }
2755
2db3366b
PZ
2756 intel_crtc->adjusted_x = x;
2757 intel_crtc->adjusted_y = y;
2758
48404c1e
SJ
2759 I915_WRITE(reg, dspcntr);
2760
01f2c773 2761 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
a6c45cf0 2762 if (INTEL_INFO(dev)->gen >= 4) {
85ba7b7d
DV
2763 I915_WRITE(DSPSURF(plane),
2764 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
5eddb70b 2765 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 2766 I915_WRITE(DSPLINOFF(plane), linear_offset);
5eddb70b 2767 } else
f343c5f6 2768 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
5eddb70b 2769 POSTING_READ(reg);
17638cd6
JB
2770}
2771
a8d201af
ML
2772static void i9xx_disable_primary_plane(struct drm_plane *primary,
2773 struct drm_crtc *crtc)
17638cd6
JB
2774{
2775 struct drm_device *dev = crtc->dev;
2776 struct drm_i915_private *dev_priv = dev->dev_private;
2777 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
17638cd6 2778 int plane = intel_crtc->plane;
f45651ba 2779
a8d201af
ML
2780 I915_WRITE(DSPCNTR(plane), 0);
2781 if (INTEL_INFO(dev_priv)->gen >= 4)
fdd508a6 2782 I915_WRITE(DSPSURF(plane), 0);
a8d201af
ML
2783 else
2784 I915_WRITE(DSPADDR(plane), 0);
2785 POSTING_READ(DSPCNTR(plane));
2786}
c9ba6fad 2787
a8d201af
ML
2788static void ironlake_update_primary_plane(struct drm_plane *primary,
2789 const struct intel_crtc_state *crtc_state,
2790 const struct intel_plane_state *plane_state)
2791{
2792 struct drm_device *dev = primary->dev;
2793 struct drm_i915_private *dev_priv = dev->dev_private;
2794 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2795 struct drm_framebuffer *fb = plane_state->base.fb;
2796 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2797 int plane = intel_crtc->plane;
54ea9da8 2798 u32 linear_offset;
a8d201af
ML
2799 u32 dspcntr;
2800 i915_reg_t reg = DSPCNTR(plane);
8d0deca8 2801 unsigned int rotation = plane_state->base.rotation;
ac484963 2802 int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
a8d201af
ML
2803 int x = plane_state->src.x1 >> 16;
2804 int y = plane_state->src.y1 >> 16;
c9ba6fad 2805
f45651ba 2806 dspcntr = DISPPLANE_GAMMA_ENABLE;
fdd508a6 2807 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2808
2809 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2810 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
17638cd6 2811
57779d06
VS
2812 switch (fb->pixel_format) {
2813 case DRM_FORMAT_C8:
17638cd6
JB
2814 dspcntr |= DISPPLANE_8BPP;
2815 break;
57779d06
VS
2816 case DRM_FORMAT_RGB565:
2817 dspcntr |= DISPPLANE_BGRX565;
17638cd6 2818 break;
57779d06 2819 case DRM_FORMAT_XRGB8888:
57779d06
VS
2820 dspcntr |= DISPPLANE_BGRX888;
2821 break;
2822 case DRM_FORMAT_XBGR8888:
57779d06
VS
2823 dspcntr |= DISPPLANE_RGBX888;
2824 break;
2825 case DRM_FORMAT_XRGB2101010:
57779d06
VS
2826 dspcntr |= DISPPLANE_BGRX101010;
2827 break;
2828 case DRM_FORMAT_XBGR2101010:
57779d06 2829 dspcntr |= DISPPLANE_RGBX101010;
17638cd6
JB
2830 break;
2831 default:
baba133a 2832 BUG();
17638cd6
JB
2833 }
2834
2835 if (obj->tiling_mode != I915_TILING_NONE)
2836 dspcntr |= DISPPLANE_TILED;
17638cd6 2837
f45651ba 2838 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
1f5d76db 2839 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
17638cd6 2840
ac484963 2841 linear_offset = y * fb->pitches[0] + x * cpp;
c2c75131 2842 intel_crtc->dspaddr_offset =
4f2d9934 2843 intel_compute_tile_offset(&x, &y, fb, 0,
8d0deca8 2844 fb->pitches[0], rotation);
c2c75131 2845 linear_offset -= intel_crtc->dspaddr_offset;
8d0deca8 2846 if (rotation == BIT(DRM_ROTATE_180)) {
48404c1e
SJ
2847 dspcntr |= DISPPLANE_ROTATE_180;
2848
2849 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
a8d201af
ML
2850 x += (crtc_state->pipe_src_w - 1);
2851 y += (crtc_state->pipe_src_h - 1);
48404c1e
SJ
2852
2853 /* Finding the last pixel of the last line of the display
2854 data and adding to linear_offset*/
2855 linear_offset +=
a8d201af 2856 (crtc_state->pipe_src_h - 1) * fb->pitches[0] +
ac484963 2857 (crtc_state->pipe_src_w - 1) * cpp;
48404c1e
SJ
2858 }
2859 }
2860
2db3366b
PZ
2861 intel_crtc->adjusted_x = x;
2862 intel_crtc->adjusted_y = y;
2863
48404c1e 2864 I915_WRITE(reg, dspcntr);
17638cd6 2865
01f2c773 2866 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
85ba7b7d
DV
2867 I915_WRITE(DSPSURF(plane),
2868 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
b3dc685e 2869 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
bc1c91eb
DL
2870 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2871 } else {
2872 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2873 I915_WRITE(DSPLINOFF(plane), linear_offset);
2874 }
17638cd6 2875 POSTING_READ(reg);
17638cd6
JB
2876}
2877
7b49f948
VS
2878u32 intel_fb_stride_alignment(const struct drm_i915_private *dev_priv,
2879 uint64_t fb_modifier, uint32_t pixel_format)
b321803d 2880{
7b49f948 2881 if (fb_modifier == DRM_FORMAT_MOD_NONE) {
b321803d 2882 return 64;
7b49f948
VS
2883 } else {
2884 int cpp = drm_format_plane_cpp(pixel_format, 0);
2885
27ba3910 2886 return intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
b321803d
DL
2887 }
2888}
2889
44eb0cb9
MK
2890u32 intel_plane_obj_offset(struct intel_plane *intel_plane,
2891 struct drm_i915_gem_object *obj,
2892 unsigned int plane)
121920fa 2893{
ce7f1728 2894 struct i915_ggtt_view view;
dedf278c 2895 struct i915_vma *vma;
44eb0cb9 2896 u64 offset;
121920fa 2897
e7941294 2898 intel_fill_fb_ggtt_view(&view, intel_plane->base.state->fb,
3465c580 2899 intel_plane->base.state->rotation);
121920fa 2900
ce7f1728 2901 vma = i915_gem_obj_to_ggtt_view(obj, &view);
dedf278c 2902 if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n",
ce7f1728 2903 view.type))
dedf278c
TU
2904 return -1;
2905
44eb0cb9 2906 offset = vma->node.start;
dedf278c
TU
2907
2908 if (plane == 1) {
7723f47d 2909 offset += vma->ggtt_view.params.rotated.uv_start_page *
dedf278c
TU
2910 PAGE_SIZE;
2911 }
2912
44eb0cb9
MK
2913 WARN_ON(upper_32_bits(offset));
2914
2915 return lower_32_bits(offset);
121920fa
TU
2916}
2917
e435d6e5
ML
2918static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
2919{
2920 struct drm_device *dev = intel_crtc->base.dev;
2921 struct drm_i915_private *dev_priv = dev->dev_private;
2922
2923 I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
2924 I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
2925 I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
e435d6e5
ML
2926}
2927
a1b2278e
CK
2928/*
2929 * This function detaches (aka. unbinds) unused scalers in hardware
2930 */
0583236e 2931static void skl_detach_scalers(struct intel_crtc *intel_crtc)
a1b2278e 2932{
a1b2278e
CK
2933 struct intel_crtc_scaler_state *scaler_state;
2934 int i;
2935
a1b2278e
CK
2936 scaler_state = &intel_crtc->config->scaler_state;
2937
2938 /* loop through and disable scalers that aren't in use */
2939 for (i = 0; i < intel_crtc->num_scalers; i++) {
e435d6e5
ML
2940 if (!scaler_state->scalers[i].in_use)
2941 skl_detach_scaler(intel_crtc, i);
a1b2278e
CK
2942 }
2943}
2944
6156a456 2945u32 skl_plane_ctl_format(uint32_t pixel_format)
70d21f0e 2946{
6156a456 2947 switch (pixel_format) {
d161cf7a 2948 case DRM_FORMAT_C8:
c34ce3d1 2949 return PLANE_CTL_FORMAT_INDEXED;
70d21f0e 2950 case DRM_FORMAT_RGB565:
c34ce3d1 2951 return PLANE_CTL_FORMAT_RGB_565;
70d21f0e 2952 case DRM_FORMAT_XBGR8888:
c34ce3d1 2953 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
6156a456 2954 case DRM_FORMAT_XRGB8888:
c34ce3d1 2955 return PLANE_CTL_FORMAT_XRGB_8888;
6156a456
CK
2956 /*
2957 * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
2958 * to be already pre-multiplied. We need to add a knob (or a different
2959 * DRM_FORMAT) for user-space to configure that.
2960 */
f75fb42a 2961 case DRM_FORMAT_ABGR8888:
c34ce3d1 2962 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
6156a456 2963 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
6156a456 2964 case DRM_FORMAT_ARGB8888:
c34ce3d1 2965 return PLANE_CTL_FORMAT_XRGB_8888 |
6156a456 2966 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
70d21f0e 2967 case DRM_FORMAT_XRGB2101010:
c34ce3d1 2968 return PLANE_CTL_FORMAT_XRGB_2101010;
70d21f0e 2969 case DRM_FORMAT_XBGR2101010:
c34ce3d1 2970 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
6156a456 2971 case DRM_FORMAT_YUYV:
c34ce3d1 2972 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
6156a456 2973 case DRM_FORMAT_YVYU:
c34ce3d1 2974 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
6156a456 2975 case DRM_FORMAT_UYVY:
c34ce3d1 2976 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
6156a456 2977 case DRM_FORMAT_VYUY:
c34ce3d1 2978 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
70d21f0e 2979 default:
4249eeef 2980 MISSING_CASE(pixel_format);
70d21f0e 2981 }
8cfcba41 2982
c34ce3d1 2983 return 0;
6156a456 2984}
70d21f0e 2985
6156a456
CK
2986u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
2987{
6156a456 2988 switch (fb_modifier) {
30af77c4 2989 case DRM_FORMAT_MOD_NONE:
70d21f0e 2990 break;
30af77c4 2991 case I915_FORMAT_MOD_X_TILED:
c34ce3d1 2992 return PLANE_CTL_TILED_X;
b321803d 2993 case I915_FORMAT_MOD_Y_TILED:
c34ce3d1 2994 return PLANE_CTL_TILED_Y;
b321803d 2995 case I915_FORMAT_MOD_Yf_TILED:
c34ce3d1 2996 return PLANE_CTL_TILED_YF;
70d21f0e 2997 default:
6156a456 2998 MISSING_CASE(fb_modifier);
70d21f0e 2999 }
8cfcba41 3000
c34ce3d1 3001 return 0;
6156a456 3002}
70d21f0e 3003
6156a456
CK
3004u32 skl_plane_ctl_rotation(unsigned int rotation)
3005{
3b7a5119 3006 switch (rotation) {
6156a456
CK
3007 case BIT(DRM_ROTATE_0):
3008 break;
1e8df167
SJ
3009 /*
3010 * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3011 * while i915 HW rotation is clockwise, thats why this swapping.
3012 */
3b7a5119 3013 case BIT(DRM_ROTATE_90):
1e8df167 3014 return PLANE_CTL_ROTATE_270;
3b7a5119 3015 case BIT(DRM_ROTATE_180):
c34ce3d1 3016 return PLANE_CTL_ROTATE_180;
3b7a5119 3017 case BIT(DRM_ROTATE_270):
1e8df167 3018 return PLANE_CTL_ROTATE_90;
6156a456
CK
3019 default:
3020 MISSING_CASE(rotation);
3021 }
3022
c34ce3d1 3023 return 0;
6156a456
CK
3024}
3025
a8d201af
ML
3026static void skylake_update_primary_plane(struct drm_plane *plane,
3027 const struct intel_crtc_state *crtc_state,
3028 const struct intel_plane_state *plane_state)
6156a456 3029{
a8d201af 3030 struct drm_device *dev = plane->dev;
6156a456 3031 struct drm_i915_private *dev_priv = dev->dev_private;
a8d201af
ML
3032 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3033 struct drm_framebuffer *fb = plane_state->base.fb;
3034 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
6156a456
CK
3035 int pipe = intel_crtc->pipe;
3036 u32 plane_ctl, stride_div, stride;
3037 u32 tile_height, plane_offset, plane_size;
a8d201af 3038 unsigned int rotation = plane_state->base.rotation;
6156a456 3039 int x_offset, y_offset;
44eb0cb9 3040 u32 surf_addr;
a8d201af
ML
3041 int scaler_id = plane_state->scaler_id;
3042 int src_x = plane_state->src.x1 >> 16;
3043 int src_y = plane_state->src.y1 >> 16;
3044 int src_w = drm_rect_width(&plane_state->src) >> 16;
3045 int src_h = drm_rect_height(&plane_state->src) >> 16;
3046 int dst_x = plane_state->dst.x1;
3047 int dst_y = plane_state->dst.y1;
3048 int dst_w = drm_rect_width(&plane_state->dst);
3049 int dst_h = drm_rect_height(&plane_state->dst);
70d21f0e 3050
6156a456
CK
3051 plane_ctl = PLANE_CTL_ENABLE |
3052 PLANE_CTL_PIPE_GAMMA_ENABLE |
3053 PLANE_CTL_PIPE_CSC_ENABLE;
3054
3055 plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3056 plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3057 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
6156a456
CK
3058 plane_ctl |= skl_plane_ctl_rotation(rotation);
3059
7b49f948 3060 stride_div = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
b321803d 3061 fb->pixel_format);
dedf278c 3062 surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj, 0);
3b7a5119 3063
a42e5a23
PZ
3064 WARN_ON(drm_rect_width(&plane_state->src) == 0);
3065
3b7a5119 3066 if (intel_rotation_90_or_270(rotation)) {
832be82f
VS
3067 int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3068
3b7a5119 3069 /* stride = Surface height in tiles */
832be82f 3070 tile_height = intel_tile_height(dev_priv, fb->modifier[0], cpp);
3b7a5119 3071 stride = DIV_ROUND_UP(fb->height, tile_height);
a8d201af
ML
3072 x_offset = stride * tile_height - src_y - src_h;
3073 y_offset = src_x;
6156a456 3074 plane_size = (src_w - 1) << 16 | (src_h - 1);
3b7a5119
SJ
3075 } else {
3076 stride = fb->pitches[0] / stride_div;
a8d201af
ML
3077 x_offset = src_x;
3078 y_offset = src_y;
6156a456 3079 plane_size = (src_h - 1) << 16 | (src_w - 1);
3b7a5119
SJ
3080 }
3081 plane_offset = y_offset << 16 | x_offset;
b321803d 3082
2db3366b
PZ
3083 intel_crtc->adjusted_x = x_offset;
3084 intel_crtc->adjusted_y = y_offset;
3085
70d21f0e 3086 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3b7a5119
SJ
3087 I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3088 I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3089 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
6156a456
CK
3090
3091 if (scaler_id >= 0) {
3092 uint32_t ps_ctrl = 0;
3093
3094 WARN_ON(!dst_w || !dst_h);
3095 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3096 crtc_state->scaler_state.scalers[scaler_id].mode;
3097 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3098 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3099 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3100 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3101 I915_WRITE(PLANE_POS(pipe, 0), 0);
3102 } else {
3103 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3104 }
3105
121920fa 3106 I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
70d21f0e
DL
3107
3108 POSTING_READ(PLANE_SURF(pipe, 0));
3109}
3110
a8d201af
ML
3111static void skylake_disable_primary_plane(struct drm_plane *primary,
3112 struct drm_crtc *crtc)
17638cd6
JB
3113{
3114 struct drm_device *dev = crtc->dev;
3115 struct drm_i915_private *dev_priv = dev->dev_private;
a8d201af 3116 int pipe = to_intel_crtc(crtc)->pipe;
17638cd6 3117
a8d201af
ML
3118 I915_WRITE(PLANE_CTL(pipe, 0), 0);
3119 I915_WRITE(PLANE_SURF(pipe, 0), 0);
3120 POSTING_READ(PLANE_SURF(pipe, 0));
3121}
29b9bde6 3122
a8d201af
ML
3123/* Assume fb object is pinned & idle & fenced and just update base pointers */
3124static int
3125intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3126 int x, int y, enum mode_set_atomic state)
3127{
3128 /* Support for kgdboc is disabled, this needs a major rework. */
3129 DRM_ERROR("legacy panic handler not supported any more.\n");
3130
3131 return -ENODEV;
81255565
JB
3132}
3133
7514747d 3134static void intel_complete_page_flips(struct drm_device *dev)
96a02917 3135{
96a02917
VS
3136 struct drm_crtc *crtc;
3137
70e1e0ec 3138 for_each_crtc(dev, crtc) {
96a02917
VS
3139 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3140 enum plane plane = intel_crtc->plane;
3141
3142 intel_prepare_page_flip(dev, plane);
3143 intel_finish_page_flip_plane(dev, plane);
3144 }
7514747d
VS
3145}
3146
3147static void intel_update_primary_planes(struct drm_device *dev)
3148{
7514747d 3149 struct drm_crtc *crtc;
96a02917 3150
70e1e0ec 3151 for_each_crtc(dev, crtc) {
11c22da6
ML
3152 struct intel_plane *plane = to_intel_plane(crtc->primary);
3153 struct intel_plane_state *plane_state;
96a02917 3154
11c22da6 3155 drm_modeset_lock_crtc(crtc, &plane->base);
11c22da6
ML
3156 plane_state = to_intel_plane_state(plane->base.state);
3157
a8d201af
ML
3158 if (plane_state->visible)
3159 plane->update_plane(&plane->base,
3160 to_intel_crtc_state(crtc->state),
3161 plane_state);
11c22da6
ML
3162
3163 drm_modeset_unlock_crtc(crtc);
96a02917
VS
3164 }
3165}
3166
7514747d
VS
3167void intel_prepare_reset(struct drm_device *dev)
3168{
3169 /* no reset support for gen2 */
3170 if (IS_GEN2(dev))
3171 return;
3172
3173 /* reset doesn't touch the display */
3174 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3175 return;
3176
3177 drm_modeset_lock_all(dev);
f98ce92f
VS
3178 /*
3179 * Disabling the crtcs gracefully seems nicer. Also the
3180 * g33 docs say we should at least disable all the planes.
3181 */
6b72d486 3182 intel_display_suspend(dev);
7514747d
VS
3183}
3184
3185void intel_finish_reset(struct drm_device *dev)
3186{
3187 struct drm_i915_private *dev_priv = to_i915(dev);
3188
3189 /*
3190 * Flips in the rings will be nuked by the reset,
3191 * so complete all pending flips so that user space
3192 * will get its events and not get stuck.
3193 */
3194 intel_complete_page_flips(dev);
3195
3196 /* no reset support for gen2 */
3197 if (IS_GEN2(dev))
3198 return;
3199
3200 /* reset doesn't touch the display */
3201 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3202 /*
3203 * Flips in the rings have been nuked by the reset,
3204 * so update the base address of all primary
3205 * planes to the the last fb to make sure we're
3206 * showing the correct fb after a reset.
11c22da6
ML
3207 *
3208 * FIXME: Atomic will make this obsolete since we won't schedule
3209 * CS-based flips (which might get lost in gpu resets) any more.
7514747d
VS
3210 */
3211 intel_update_primary_planes(dev);
3212 return;
3213 }
3214
3215 /*
3216 * The display has been reset as well,
3217 * so need a full re-initialization.
3218 */
3219 intel_runtime_pm_disable_interrupts(dev_priv);
3220 intel_runtime_pm_enable_interrupts(dev_priv);
3221
3222 intel_modeset_init_hw(dev);
3223
3224 spin_lock_irq(&dev_priv->irq_lock);
3225 if (dev_priv->display.hpd_irq_setup)
3226 dev_priv->display.hpd_irq_setup(dev);
3227 spin_unlock_irq(&dev_priv->irq_lock);
3228
043e9bda 3229 intel_display_resume(dev);
7514747d
VS
3230
3231 intel_hpd_init(dev_priv);
3232
3233 drm_modeset_unlock_all(dev);
3234}
3235
7d5e3799
CW
3236static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3237{
3238 struct drm_device *dev = crtc->dev;
3239 struct drm_i915_private *dev_priv = dev->dev_private;
3240 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7d5e3799
CW
3241 bool pending;
3242
3243 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3244 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3245 return false;
3246
5e2d7afc 3247 spin_lock_irq(&dev->event_lock);
7d5e3799 3248 pending = to_intel_crtc(crtc)->unpin_work != NULL;
5e2d7afc 3249 spin_unlock_irq(&dev->event_lock);
7d5e3799
CW
3250
3251 return pending;
3252}
3253
bfd16b2a
ML
3254static void intel_update_pipe_config(struct intel_crtc *crtc,
3255 struct intel_crtc_state *old_crtc_state)
e30e8f75
GP
3256{
3257 struct drm_device *dev = crtc->base.dev;
3258 struct drm_i915_private *dev_priv = dev->dev_private;
bfd16b2a
ML
3259 struct intel_crtc_state *pipe_config =
3260 to_intel_crtc_state(crtc->base.state);
e30e8f75 3261
bfd16b2a
ML
3262 /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3263 crtc->base.mode = crtc->base.state->mode;
3264
3265 DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
3266 old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
3267 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
e30e8f75 3268
44522d85
ML
3269 if (HAS_DDI(dev))
3270 intel_set_pipe_csc(&crtc->base);
3271
e30e8f75
GP
3272 /*
3273 * Update pipe size and adjust fitter if needed: the reason for this is
3274 * that in compute_mode_changes we check the native mode (not the pfit
3275 * mode) to see if we can flip rather than do a full mode set. In the
3276 * fastboot case, we'll flip, but if we don't update the pipesrc and
3277 * pfit state, we'll end up with a big fb scanned out into the wrong
3278 * sized surface.
e30e8f75
GP
3279 */
3280
e30e8f75 3281 I915_WRITE(PIPESRC(crtc->pipe),
bfd16b2a
ML
3282 ((pipe_config->pipe_src_w - 1) << 16) |
3283 (pipe_config->pipe_src_h - 1));
3284
3285 /* on skylake this is done by detaching scalers */
3286 if (INTEL_INFO(dev)->gen >= 9) {
3287 skl_detach_scalers(crtc);
3288
3289 if (pipe_config->pch_pfit.enabled)
3290 skylake_pfit_enable(crtc);
3291 } else if (HAS_PCH_SPLIT(dev)) {
3292 if (pipe_config->pch_pfit.enabled)
3293 ironlake_pfit_enable(crtc);
3294 else if (old_crtc_state->pch_pfit.enabled)
3295 ironlake_pfit_disable(crtc, true);
e30e8f75 3296 }
e30e8f75
GP
3297}
3298
5e84e1a4
ZW
3299static void intel_fdi_normal_train(struct drm_crtc *crtc)
3300{
3301 struct drm_device *dev = crtc->dev;
3302 struct drm_i915_private *dev_priv = dev->dev_private;
3303 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3304 int pipe = intel_crtc->pipe;
f0f59a00
VS
3305 i915_reg_t reg;
3306 u32 temp;
5e84e1a4
ZW
3307
3308 /* enable normal train */
3309 reg = FDI_TX_CTL(pipe);
3310 temp = I915_READ(reg);
61e499bf 3311 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
3312 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3313 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
3314 } else {
3315 temp &= ~FDI_LINK_TRAIN_NONE;
3316 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 3317 }
5e84e1a4
ZW
3318 I915_WRITE(reg, temp);
3319
3320 reg = FDI_RX_CTL(pipe);
3321 temp = I915_READ(reg);
3322 if (HAS_PCH_CPT(dev)) {
3323 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3324 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3325 } else {
3326 temp &= ~FDI_LINK_TRAIN_NONE;
3327 temp |= FDI_LINK_TRAIN_NONE;
3328 }
3329 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3330
3331 /* wait one idle pattern time */
3332 POSTING_READ(reg);
3333 udelay(1000);
357555c0
JB
3334
3335 /* IVB wants error correction enabled */
3336 if (IS_IVYBRIDGE(dev))
3337 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3338 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
3339}
3340
8db9d77b
ZW
3341/* The FDI link training functions for ILK/Ibexpeak. */
3342static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3343{
3344 struct drm_device *dev = crtc->dev;
3345 struct drm_i915_private *dev_priv = dev->dev_private;
3346 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3347 int pipe = intel_crtc->pipe;
f0f59a00
VS
3348 i915_reg_t reg;
3349 u32 temp, tries;
8db9d77b 3350
1c8562f6 3351 /* FDI needs bits from pipe first */
0fc932b8 3352 assert_pipe_enabled(dev_priv, pipe);
0fc932b8 3353
e1a44743
AJ
3354 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3355 for train result */
5eddb70b
CW
3356 reg = FDI_RX_IMR(pipe);
3357 temp = I915_READ(reg);
e1a44743
AJ
3358 temp &= ~FDI_RX_SYMBOL_LOCK;
3359 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
3360 I915_WRITE(reg, temp);
3361 I915_READ(reg);
e1a44743
AJ
3362 udelay(150);
3363
8db9d77b 3364 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
3365 reg = FDI_TX_CTL(pipe);
3366 temp = I915_READ(reg);
627eb5a3 3367 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3368 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
8db9d77b
ZW
3369 temp &= ~FDI_LINK_TRAIN_NONE;
3370 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 3371 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 3372
5eddb70b
CW
3373 reg = FDI_RX_CTL(pipe);
3374 temp = I915_READ(reg);
8db9d77b
ZW
3375 temp &= ~FDI_LINK_TRAIN_NONE;
3376 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
3377 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3378
3379 POSTING_READ(reg);
8db9d77b
ZW
3380 udelay(150);
3381
5b2adf89 3382 /* Ironlake workaround, enable clock pointer after FDI enable*/
8f5718a6
DV
3383 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3384 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3385 FDI_RX_PHASE_SYNC_POINTER_EN);
5b2adf89 3386
5eddb70b 3387 reg = FDI_RX_IIR(pipe);
e1a44743 3388 for (tries = 0; tries < 5; tries++) {
5eddb70b 3389 temp = I915_READ(reg);
8db9d77b
ZW
3390 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3391
3392 if ((temp & FDI_RX_BIT_LOCK)) {
3393 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 3394 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
3395 break;
3396 }
8db9d77b 3397 }
e1a44743 3398 if (tries == 5)
5eddb70b 3399 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3400
3401 /* Train 2 */
5eddb70b
CW
3402 reg = FDI_TX_CTL(pipe);
3403 temp = I915_READ(reg);
8db9d77b
ZW
3404 temp &= ~FDI_LINK_TRAIN_NONE;
3405 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 3406 I915_WRITE(reg, temp);
8db9d77b 3407
5eddb70b
CW
3408 reg = FDI_RX_CTL(pipe);
3409 temp = I915_READ(reg);
8db9d77b
ZW
3410 temp &= ~FDI_LINK_TRAIN_NONE;
3411 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 3412 I915_WRITE(reg, temp);
8db9d77b 3413
5eddb70b
CW
3414 POSTING_READ(reg);
3415 udelay(150);
8db9d77b 3416
5eddb70b 3417 reg = FDI_RX_IIR(pipe);
e1a44743 3418 for (tries = 0; tries < 5; tries++) {
5eddb70b 3419 temp = I915_READ(reg);
8db9d77b
ZW
3420 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3421
3422 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 3423 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
3424 DRM_DEBUG_KMS("FDI train 2 done.\n");
3425 break;
3426 }
8db9d77b 3427 }
e1a44743 3428 if (tries == 5)
5eddb70b 3429 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3430
3431 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 3432
8db9d77b
ZW
3433}
3434
0206e353 3435static const int snb_b_fdi_train_param[] = {
8db9d77b
ZW
3436 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3437 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3438 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3439 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3440};
3441
3442/* The FDI link training functions for SNB/Cougarpoint. */
3443static void gen6_fdi_link_train(struct drm_crtc *crtc)
3444{
3445 struct drm_device *dev = crtc->dev;
3446 struct drm_i915_private *dev_priv = dev->dev_private;
3447 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3448 int pipe = intel_crtc->pipe;
f0f59a00
VS
3449 i915_reg_t reg;
3450 u32 temp, i, retry;
8db9d77b 3451
e1a44743
AJ
3452 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3453 for train result */
5eddb70b
CW
3454 reg = FDI_RX_IMR(pipe);
3455 temp = I915_READ(reg);
e1a44743
AJ
3456 temp &= ~FDI_RX_SYMBOL_LOCK;
3457 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
3458 I915_WRITE(reg, temp);
3459
3460 POSTING_READ(reg);
e1a44743
AJ
3461 udelay(150);
3462
8db9d77b 3463 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
3464 reg = FDI_TX_CTL(pipe);
3465 temp = I915_READ(reg);
627eb5a3 3466 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3467 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
8db9d77b
ZW
3468 temp &= ~FDI_LINK_TRAIN_NONE;
3469 temp |= FDI_LINK_TRAIN_PATTERN_1;
3470 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3471 /* SNB-B */
3472 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 3473 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 3474
d74cf324
DV
3475 I915_WRITE(FDI_RX_MISC(pipe),
3476 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3477
5eddb70b
CW
3478 reg = FDI_RX_CTL(pipe);
3479 temp = I915_READ(reg);
8db9d77b
ZW
3480 if (HAS_PCH_CPT(dev)) {
3481 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3482 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3483 } else {
3484 temp &= ~FDI_LINK_TRAIN_NONE;
3485 temp |= FDI_LINK_TRAIN_PATTERN_1;
3486 }
5eddb70b
CW
3487 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3488
3489 POSTING_READ(reg);
8db9d77b
ZW
3490 udelay(150);
3491
0206e353 3492 for (i = 0; i < 4; i++) {
5eddb70b
CW
3493 reg = FDI_TX_CTL(pipe);
3494 temp = I915_READ(reg);
8db9d77b
ZW
3495 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3496 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3497 I915_WRITE(reg, temp);
3498
3499 POSTING_READ(reg);
8db9d77b
ZW
3500 udelay(500);
3501
fa37d39e
SP
3502 for (retry = 0; retry < 5; retry++) {
3503 reg = FDI_RX_IIR(pipe);
3504 temp = I915_READ(reg);
3505 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3506 if (temp & FDI_RX_BIT_LOCK) {
3507 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3508 DRM_DEBUG_KMS("FDI train 1 done.\n");
3509 break;
3510 }
3511 udelay(50);
8db9d77b 3512 }
fa37d39e
SP
3513 if (retry < 5)
3514 break;
8db9d77b
ZW
3515 }
3516 if (i == 4)
5eddb70b 3517 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3518
3519 /* Train 2 */
5eddb70b
CW
3520 reg = FDI_TX_CTL(pipe);
3521 temp = I915_READ(reg);
8db9d77b
ZW
3522 temp &= ~FDI_LINK_TRAIN_NONE;
3523 temp |= FDI_LINK_TRAIN_PATTERN_2;
3524 if (IS_GEN6(dev)) {
3525 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3526 /* SNB-B */
3527 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3528 }
5eddb70b 3529 I915_WRITE(reg, temp);
8db9d77b 3530
5eddb70b
CW
3531 reg = FDI_RX_CTL(pipe);
3532 temp = I915_READ(reg);
8db9d77b
ZW
3533 if (HAS_PCH_CPT(dev)) {
3534 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3535 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3536 } else {
3537 temp &= ~FDI_LINK_TRAIN_NONE;
3538 temp |= FDI_LINK_TRAIN_PATTERN_2;
3539 }
5eddb70b
CW
3540 I915_WRITE(reg, temp);
3541
3542 POSTING_READ(reg);
8db9d77b
ZW
3543 udelay(150);
3544
0206e353 3545 for (i = 0; i < 4; i++) {
5eddb70b
CW
3546 reg = FDI_TX_CTL(pipe);
3547 temp = I915_READ(reg);
8db9d77b
ZW
3548 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3549 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3550 I915_WRITE(reg, temp);
3551
3552 POSTING_READ(reg);
8db9d77b
ZW
3553 udelay(500);
3554
fa37d39e
SP
3555 for (retry = 0; retry < 5; retry++) {
3556 reg = FDI_RX_IIR(pipe);
3557 temp = I915_READ(reg);
3558 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3559 if (temp & FDI_RX_SYMBOL_LOCK) {
3560 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3561 DRM_DEBUG_KMS("FDI train 2 done.\n");
3562 break;
3563 }
3564 udelay(50);
8db9d77b 3565 }
fa37d39e
SP
3566 if (retry < 5)
3567 break;
8db9d77b
ZW
3568 }
3569 if (i == 4)
5eddb70b 3570 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3571
3572 DRM_DEBUG_KMS("FDI train done.\n");
3573}
3574
357555c0
JB
3575/* Manual link training for Ivy Bridge A0 parts */
3576static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3577{
3578 struct drm_device *dev = crtc->dev;
3579 struct drm_i915_private *dev_priv = dev->dev_private;
3580 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3581 int pipe = intel_crtc->pipe;
f0f59a00
VS
3582 i915_reg_t reg;
3583 u32 temp, i, j;
357555c0
JB
3584
3585 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3586 for train result */
3587 reg = FDI_RX_IMR(pipe);
3588 temp = I915_READ(reg);
3589 temp &= ~FDI_RX_SYMBOL_LOCK;
3590 temp &= ~FDI_RX_BIT_LOCK;
3591 I915_WRITE(reg, temp);
3592
3593 POSTING_READ(reg);
3594 udelay(150);
3595
01a415fd
DV
3596 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3597 I915_READ(FDI_RX_IIR(pipe)));
3598
139ccd3f
JB
3599 /* Try each vswing and preemphasis setting twice before moving on */
3600 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3601 /* disable first in case we need to retry */
3602 reg = FDI_TX_CTL(pipe);
3603 temp = I915_READ(reg);
3604 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3605 temp &= ~FDI_TX_ENABLE;
3606 I915_WRITE(reg, temp);
357555c0 3607
139ccd3f
JB
3608 reg = FDI_RX_CTL(pipe);
3609 temp = I915_READ(reg);
3610 temp &= ~FDI_LINK_TRAIN_AUTO;
3611 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3612 temp &= ~FDI_RX_ENABLE;
3613 I915_WRITE(reg, temp);
357555c0 3614
139ccd3f 3615 /* enable CPU FDI TX and PCH FDI RX */
357555c0
JB
3616 reg = FDI_TX_CTL(pipe);
3617 temp = I915_READ(reg);
139ccd3f 3618 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3619 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
139ccd3f 3620 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
357555c0 3621 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
139ccd3f
JB
3622 temp |= snb_b_fdi_train_param[j/2];
3623 temp |= FDI_COMPOSITE_SYNC;
3624 I915_WRITE(reg, temp | FDI_TX_ENABLE);
357555c0 3625
139ccd3f
JB
3626 I915_WRITE(FDI_RX_MISC(pipe),
3627 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
357555c0 3628
139ccd3f 3629 reg = FDI_RX_CTL(pipe);
357555c0 3630 temp = I915_READ(reg);
139ccd3f
JB
3631 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3632 temp |= FDI_COMPOSITE_SYNC;
3633 I915_WRITE(reg, temp | FDI_RX_ENABLE);
357555c0 3634
139ccd3f
JB
3635 POSTING_READ(reg);
3636 udelay(1); /* should be 0.5us */
357555c0 3637
139ccd3f
JB
3638 for (i = 0; i < 4; i++) {
3639 reg = FDI_RX_IIR(pipe);
3640 temp = I915_READ(reg);
3641 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3642
139ccd3f
JB
3643 if (temp & FDI_RX_BIT_LOCK ||
3644 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3645 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3646 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3647 i);
3648 break;
3649 }
3650 udelay(1); /* should be 0.5us */
3651 }
3652 if (i == 4) {
3653 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3654 continue;
3655 }
357555c0 3656
139ccd3f 3657 /* Train 2 */
357555c0
JB
3658 reg = FDI_TX_CTL(pipe);
3659 temp = I915_READ(reg);
139ccd3f
JB
3660 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3661 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3662 I915_WRITE(reg, temp);
3663
3664 reg = FDI_RX_CTL(pipe);
3665 temp = I915_READ(reg);
3666 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3667 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
357555c0
JB
3668 I915_WRITE(reg, temp);
3669
3670 POSTING_READ(reg);
139ccd3f 3671 udelay(2); /* should be 1.5us */
357555c0 3672
139ccd3f
JB
3673 for (i = 0; i < 4; i++) {
3674 reg = FDI_RX_IIR(pipe);
3675 temp = I915_READ(reg);
3676 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3677
139ccd3f
JB
3678 if (temp & FDI_RX_SYMBOL_LOCK ||
3679 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3680 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3681 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3682 i);
3683 goto train_done;
3684 }
3685 udelay(2); /* should be 1.5us */
357555c0 3686 }
139ccd3f
JB
3687 if (i == 4)
3688 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
357555c0 3689 }
357555c0 3690
139ccd3f 3691train_done:
357555c0
JB
3692 DRM_DEBUG_KMS("FDI train done.\n");
3693}
3694
88cefb6c 3695static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2c07245f 3696{
88cefb6c 3697 struct drm_device *dev = intel_crtc->base.dev;
2c07245f 3698 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 3699 int pipe = intel_crtc->pipe;
f0f59a00
VS
3700 i915_reg_t reg;
3701 u32 temp;
c64e311e 3702
c98e9dcf 3703 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
3704 reg = FDI_RX_CTL(pipe);
3705 temp = I915_READ(reg);
627eb5a3 3706 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
6e3c9717 3707 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
dfd07d72 3708 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5eddb70b
CW
3709 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3710
3711 POSTING_READ(reg);
c98e9dcf
JB
3712 udelay(200);
3713
3714 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
3715 temp = I915_READ(reg);
3716 I915_WRITE(reg, temp | FDI_PCDCLK);
3717
3718 POSTING_READ(reg);
c98e9dcf
JB
3719 udelay(200);
3720
20749730
PZ
3721 /* Enable CPU FDI TX PLL, always on for Ironlake */
3722 reg = FDI_TX_CTL(pipe);
3723 temp = I915_READ(reg);
3724 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3725 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
5eddb70b 3726
20749730
PZ
3727 POSTING_READ(reg);
3728 udelay(100);
6be4a607 3729 }
0e23b99d
JB
3730}
3731
88cefb6c
DV
3732static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3733{
3734 struct drm_device *dev = intel_crtc->base.dev;
3735 struct drm_i915_private *dev_priv = dev->dev_private;
3736 int pipe = intel_crtc->pipe;
f0f59a00
VS
3737 i915_reg_t reg;
3738 u32 temp;
88cefb6c
DV
3739
3740 /* Switch from PCDclk to Rawclk */
3741 reg = FDI_RX_CTL(pipe);
3742 temp = I915_READ(reg);
3743 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3744
3745 /* Disable CPU FDI TX PLL */
3746 reg = FDI_TX_CTL(pipe);
3747 temp = I915_READ(reg);
3748 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3749
3750 POSTING_READ(reg);
3751 udelay(100);
3752
3753 reg = FDI_RX_CTL(pipe);
3754 temp = I915_READ(reg);
3755 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3756
3757 /* Wait for the clocks to turn off. */
3758 POSTING_READ(reg);
3759 udelay(100);
3760}
3761
0fc932b8
JB
3762static void ironlake_fdi_disable(struct drm_crtc *crtc)
3763{
3764 struct drm_device *dev = crtc->dev;
3765 struct drm_i915_private *dev_priv = dev->dev_private;
3766 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3767 int pipe = intel_crtc->pipe;
f0f59a00
VS
3768 i915_reg_t reg;
3769 u32 temp;
0fc932b8
JB
3770
3771 /* disable CPU FDI tx and PCH FDI rx */
3772 reg = FDI_TX_CTL(pipe);
3773 temp = I915_READ(reg);
3774 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3775 POSTING_READ(reg);
3776
3777 reg = FDI_RX_CTL(pipe);
3778 temp = I915_READ(reg);
3779 temp &= ~(0x7 << 16);
dfd07d72 3780 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3781 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3782
3783 POSTING_READ(reg);
3784 udelay(100);
3785
3786 /* Ironlake workaround, disable clock pointer after downing FDI */
eba905b2 3787 if (HAS_PCH_IBX(dev))
6f06ce18 3788 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
0fc932b8
JB
3789
3790 /* still set train pattern 1 */
3791 reg = FDI_TX_CTL(pipe);
3792 temp = I915_READ(reg);
3793 temp &= ~FDI_LINK_TRAIN_NONE;
3794 temp |= FDI_LINK_TRAIN_PATTERN_1;
3795 I915_WRITE(reg, temp);
3796
3797 reg = FDI_RX_CTL(pipe);
3798 temp = I915_READ(reg);
3799 if (HAS_PCH_CPT(dev)) {
3800 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3801 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3802 } else {
3803 temp &= ~FDI_LINK_TRAIN_NONE;
3804 temp |= FDI_LINK_TRAIN_PATTERN_1;
3805 }
3806 /* BPC in FDI rx is consistent with that in PIPECONF */
3807 temp &= ~(0x07 << 16);
dfd07d72 3808 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3809 I915_WRITE(reg, temp);
3810
3811 POSTING_READ(reg);
3812 udelay(100);
3813}
3814
5dce5b93
CW
3815bool intel_has_pending_fb_unpin(struct drm_device *dev)
3816{
3817 struct intel_crtc *crtc;
3818
3819 /* Note that we don't need to be called with mode_config.lock here
3820 * as our list of CRTC objects is static for the lifetime of the
3821 * device and so cannot disappear as we iterate. Similarly, we can
3822 * happily treat the predicates as racy, atomic checks as userspace
3823 * cannot claim and pin a new fb without at least acquring the
3824 * struct_mutex and so serialising with us.
3825 */
d3fcc808 3826 for_each_intel_crtc(dev, crtc) {
5dce5b93
CW
3827 if (atomic_read(&crtc->unpin_work_count) == 0)
3828 continue;
3829
3830 if (crtc->unpin_work)
3831 intel_wait_for_vblank(dev, crtc->pipe);
3832
3833 return true;
3834 }
3835
3836 return false;
3837}
3838
d6bbafa1
CW
3839static void page_flip_completed(struct intel_crtc *intel_crtc)
3840{
3841 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3842 struct intel_unpin_work *work = intel_crtc->unpin_work;
3843
3844 /* ensure that the unpin work is consistent wrt ->pending. */
3845 smp_rmb();
3846 intel_crtc->unpin_work = NULL;
3847
3848 if (work->event)
3849 drm_send_vblank_event(intel_crtc->base.dev,
3850 intel_crtc->pipe,
3851 work->event);
3852
3853 drm_crtc_vblank_put(&intel_crtc->base);
3854
3855 wake_up_all(&dev_priv->pending_flip_queue);
3856 queue_work(dev_priv->wq, &work->work);
3857
3858 trace_i915_flip_complete(intel_crtc->plane,
3859 work->pending_flip_obj);
3860}
3861
5008e874 3862static int intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
e6c3a2a6 3863{
0f91128d 3864 struct drm_device *dev = crtc->dev;
5bb61643 3865 struct drm_i915_private *dev_priv = dev->dev_private;
5008e874 3866 long ret;
e6c3a2a6 3867
2c10d571 3868 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
5008e874
ML
3869
3870 ret = wait_event_interruptible_timeout(
3871 dev_priv->pending_flip_queue,
3872 !intel_crtc_has_pending_flip(crtc),
3873 60*HZ);
3874
3875 if (ret < 0)
3876 return ret;
3877
3878 if (ret == 0) {
9c787942 3879 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2c10d571 3880
5e2d7afc 3881 spin_lock_irq(&dev->event_lock);
9c787942
CW
3882 if (intel_crtc->unpin_work) {
3883 WARN_ONCE(1, "Removing stuck page flip\n");
3884 page_flip_completed(intel_crtc);
3885 }
5e2d7afc 3886 spin_unlock_irq(&dev->event_lock);
9c787942 3887 }
5bb61643 3888
5008e874 3889 return 0;
e6c3a2a6
CW
3890}
3891
060f02d8
VS
3892static void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
3893{
3894 u32 temp;
3895
3896 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3897
3898 mutex_lock(&dev_priv->sb_lock);
3899
3900 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3901 temp |= SBI_SSCCTL_DISABLE;
3902 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3903
3904 mutex_unlock(&dev_priv->sb_lock);
3905}
3906
e615efe4
ED
3907/* Program iCLKIP clock to the desired frequency */
3908static void lpt_program_iclkip(struct drm_crtc *crtc)
3909{
64b46a06 3910 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6e3c9717 3911 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
e615efe4
ED
3912 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3913 u32 temp;
3914
060f02d8 3915 lpt_disable_iclkip(dev_priv);
e615efe4 3916
64b46a06
VS
3917 /* The iCLK virtual clock root frequency is in MHz,
3918 * but the adjusted_mode->crtc_clock in in KHz. To get the
3919 * divisors, it is necessary to divide one by another, so we
3920 * convert the virtual clock precision to KHz here for higher
3921 * precision.
3922 */
3923 for (auxdiv = 0; auxdiv < 2; auxdiv++) {
e615efe4
ED
3924 u32 iclk_virtual_root_freq = 172800 * 1000;
3925 u32 iclk_pi_range = 64;
64b46a06 3926 u32 desired_divisor;
e615efe4 3927
64b46a06
VS
3928 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
3929 clock << auxdiv);
3930 divsel = (desired_divisor / iclk_pi_range) - 2;
3931 phaseinc = desired_divisor % iclk_pi_range;
e615efe4 3932
64b46a06
VS
3933 /*
3934 * Near 20MHz is a corner case which is
3935 * out of range for the 7-bit divisor
3936 */
3937 if (divsel <= 0x7f)
3938 break;
e615efe4
ED
3939 }
3940
3941 /* This should not happen with any sane values */
3942 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3943 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3944 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3945 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3946
3947 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
12d7ceed 3948 clock,
e615efe4
ED
3949 auxdiv,
3950 divsel,
3951 phasedir,
3952 phaseinc);
3953
060f02d8
VS
3954 mutex_lock(&dev_priv->sb_lock);
3955
e615efe4 3956 /* Program SSCDIVINTPHASE6 */
988d6ee8 3957 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
e615efe4
ED
3958 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3959 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3960 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3961 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3962 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3963 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
988d6ee8 3964 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
e615efe4
ED
3965
3966 /* Program SSCAUXDIV */
988d6ee8 3967 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
e615efe4
ED
3968 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3969 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
988d6ee8 3970 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
e615efe4
ED
3971
3972 /* Enable modulator and associated divider */
988d6ee8 3973 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
e615efe4 3974 temp &= ~SBI_SSCCTL_DISABLE;
988d6ee8 3975 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
e615efe4 3976
060f02d8
VS
3977 mutex_unlock(&dev_priv->sb_lock);
3978
e615efe4
ED
3979 /* Wait for initialization time */
3980 udelay(24);
3981
3982 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3983}
3984
8802e5b6
VS
3985int lpt_get_iclkip(struct drm_i915_private *dev_priv)
3986{
3987 u32 divsel, phaseinc, auxdiv;
3988 u32 iclk_virtual_root_freq = 172800 * 1000;
3989 u32 iclk_pi_range = 64;
3990 u32 desired_divisor;
3991 u32 temp;
3992
3993 if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
3994 return 0;
3995
3996 mutex_lock(&dev_priv->sb_lock);
3997
3998 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3999 if (temp & SBI_SSCCTL_DISABLE) {
4000 mutex_unlock(&dev_priv->sb_lock);
4001 return 0;
4002 }
4003
4004 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4005 divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
4006 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
4007 phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
4008 SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
4009
4010 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4011 auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
4012 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
4013
4014 mutex_unlock(&dev_priv->sb_lock);
4015
4016 desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
4017
4018 return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4019 desired_divisor << auxdiv);
4020}
4021
275f01b2
DV
4022static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4023 enum pipe pch_transcoder)
4024{
4025 struct drm_device *dev = crtc->base.dev;
4026 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 4027 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
275f01b2
DV
4028
4029 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4030 I915_READ(HTOTAL(cpu_transcoder)));
4031 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4032 I915_READ(HBLANK(cpu_transcoder)));
4033 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4034 I915_READ(HSYNC(cpu_transcoder)));
4035
4036 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4037 I915_READ(VTOTAL(cpu_transcoder)));
4038 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4039 I915_READ(VBLANK(cpu_transcoder)));
4040 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4041 I915_READ(VSYNC(cpu_transcoder)));
4042 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4043 I915_READ(VSYNCSHIFT(cpu_transcoder)));
4044}
4045
003632d9 4046static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
1fbc0d78
DV
4047{
4048 struct drm_i915_private *dev_priv = dev->dev_private;
4049 uint32_t temp;
4050
4051 temp = I915_READ(SOUTH_CHICKEN1);
003632d9 4052 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
1fbc0d78
DV
4053 return;
4054
4055 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4056 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4057
003632d9
ACO
4058 temp &= ~FDI_BC_BIFURCATION_SELECT;
4059 if (enable)
4060 temp |= FDI_BC_BIFURCATION_SELECT;
4061
4062 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
1fbc0d78
DV
4063 I915_WRITE(SOUTH_CHICKEN1, temp);
4064 POSTING_READ(SOUTH_CHICKEN1);
4065}
4066
4067static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4068{
4069 struct drm_device *dev = intel_crtc->base.dev;
1fbc0d78
DV
4070
4071 switch (intel_crtc->pipe) {
4072 case PIPE_A:
4073 break;
4074 case PIPE_B:
6e3c9717 4075 if (intel_crtc->config->fdi_lanes > 2)
003632d9 4076 cpt_set_fdi_bc_bifurcation(dev, false);
1fbc0d78 4077 else
003632d9 4078 cpt_set_fdi_bc_bifurcation(dev, true);
1fbc0d78
DV
4079
4080 break;
4081 case PIPE_C:
003632d9 4082 cpt_set_fdi_bc_bifurcation(dev, true);
1fbc0d78
DV
4083
4084 break;
4085 default:
4086 BUG();
4087 }
4088}
4089
c48b5305
VS
4090/* Return which DP Port should be selected for Transcoder DP control */
4091static enum port
4092intel_trans_dp_port_sel(struct drm_crtc *crtc)
4093{
4094 struct drm_device *dev = crtc->dev;
4095 struct intel_encoder *encoder;
4096
4097 for_each_encoder_on_crtc(dev, crtc, encoder) {
4098 if (encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
4099 encoder->type == INTEL_OUTPUT_EDP)
4100 return enc_to_dig_port(&encoder->base)->port;
4101 }
4102
4103 return -1;
4104}
4105
f67a559d
JB
4106/*
4107 * Enable PCH resources required for PCH ports:
4108 * - PCH PLLs
4109 * - FDI training & RX/TX
4110 * - update transcoder timings
4111 * - DP transcoding bits
4112 * - transcoder
4113 */
4114static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
4115{
4116 struct drm_device *dev = crtc->dev;
4117 struct drm_i915_private *dev_priv = dev->dev_private;
4118 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4119 int pipe = intel_crtc->pipe;
f0f59a00 4120 u32 temp;
2c07245f 4121
ab9412ba 4122 assert_pch_transcoder_disabled(dev_priv, pipe);
e7e164db 4123
1fbc0d78
DV
4124 if (IS_IVYBRIDGE(dev))
4125 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4126
cd986abb
DV
4127 /* Write the TU size bits before fdi link training, so that error
4128 * detection works. */
4129 I915_WRITE(FDI_RX_TUSIZE1(pipe),
4130 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4131
3860b2ec
VS
4132 /*
4133 * Sometimes spurious CPU pipe underruns happen during FDI
4134 * training, at least with VGA+HDMI cloning. Suppress them.
4135 */
4136 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4137
c98e9dcf 4138 /* For PCH output, training FDI link */
674cf967 4139 dev_priv->display.fdi_link_train(crtc);
2c07245f 4140
3ad8a208
DV
4141 /* We need to program the right clock selection before writing the pixel
4142 * mutliplier into the DPLL. */
303b81e0 4143 if (HAS_PCH_CPT(dev)) {
ee7b9f93 4144 u32 sel;
4b645f14 4145
c98e9dcf 4146 temp = I915_READ(PCH_DPLL_SEL);
11887397
DV
4147 temp |= TRANS_DPLL_ENABLE(pipe);
4148 sel = TRANS_DPLLB_SEL(pipe);
8106ddbd
ACO
4149 if (intel_crtc->config->shared_dpll ==
4150 intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
ee7b9f93
JB
4151 temp |= sel;
4152 else
4153 temp &= ~sel;
c98e9dcf 4154 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 4155 }
5eddb70b 4156
3ad8a208
DV
4157 /* XXX: pch pll's can be enabled any time before we enable the PCH
4158 * transcoder, and we actually should do this to not upset any PCH
4159 * transcoder that already use the clock when we share it.
4160 *
4161 * Note that enable_shared_dpll tries to do the right thing, but
4162 * get_shared_dpll unconditionally resets the pll - we need that to have
4163 * the right LVDS enable sequence. */
85b3894f 4164 intel_enable_shared_dpll(intel_crtc);
3ad8a208 4165
d9b6cb56
JB
4166 /* set transcoder timing, panel must allow it */
4167 assert_panel_unlocked(dev_priv, pipe);
275f01b2 4168 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
8db9d77b 4169
303b81e0 4170 intel_fdi_normal_train(crtc);
5e84e1a4 4171
3860b2ec
VS
4172 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4173
c98e9dcf 4174 /* For PCH DP, enable TRANS_DP_CTL */
6e3c9717 4175 if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
9c4edaee
VS
4176 const struct drm_display_mode *adjusted_mode =
4177 &intel_crtc->config->base.adjusted_mode;
dfd07d72 4178 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
f0f59a00 4179 i915_reg_t reg = TRANS_DP_CTL(pipe);
5eddb70b
CW
4180 temp = I915_READ(reg);
4181 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
4182 TRANS_DP_SYNC_MASK |
4183 TRANS_DP_BPC_MASK);
e3ef4479 4184 temp |= TRANS_DP_OUTPUT_ENABLE;
9325c9f0 4185 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf 4186
9c4edaee 4187 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 4188 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
9c4edaee 4189 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 4190 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
4191
4192 switch (intel_trans_dp_port_sel(crtc)) {
c48b5305 4193 case PORT_B:
5eddb70b 4194 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf 4195 break;
c48b5305 4196 case PORT_C:
5eddb70b 4197 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf 4198 break;
c48b5305 4199 case PORT_D:
5eddb70b 4200 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
4201 break;
4202 default:
e95d41e1 4203 BUG();
32f9d658 4204 }
2c07245f 4205
5eddb70b 4206 I915_WRITE(reg, temp);
6be4a607 4207 }
b52eb4dc 4208
b8a4f404 4209 ironlake_enable_pch_transcoder(dev_priv, pipe);
f67a559d
JB
4210}
4211
1507e5bd
PZ
4212static void lpt_pch_enable(struct drm_crtc *crtc)
4213{
4214 struct drm_device *dev = crtc->dev;
4215 struct drm_i915_private *dev_priv = dev->dev_private;
4216 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6e3c9717 4217 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1507e5bd 4218
ab9412ba 4219 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
1507e5bd 4220
8c52b5e8 4221 lpt_program_iclkip(crtc);
1507e5bd 4222
0540e488 4223 /* Set transcoder timing. */
275f01b2 4224 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
1507e5bd 4225
937bb610 4226 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
f67a559d
JB
4227}
4228
a1520318 4229static void cpt_verify_modeset(struct drm_device *dev, int pipe)
d4270e57
JB
4230{
4231 struct drm_i915_private *dev_priv = dev->dev_private;
f0f59a00 4232 i915_reg_t dslreg = PIPEDSL(pipe);
d4270e57
JB
4233 u32 temp;
4234
4235 temp = I915_READ(dslreg);
4236 udelay(500);
4237 if (wait_for(I915_READ(dslreg) != temp, 5)) {
d4270e57 4238 if (wait_for(I915_READ(dslreg) != temp, 5))
84f44ce7 4239 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
d4270e57
JB
4240 }
4241}
4242
86adf9d7
ML
4243static int
4244skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4245 unsigned scaler_user, int *scaler_id, unsigned int rotation,
4246 int src_w, int src_h, int dst_w, int dst_h)
a1b2278e 4247{
86adf9d7
ML
4248 struct intel_crtc_scaler_state *scaler_state =
4249 &crtc_state->scaler_state;
4250 struct intel_crtc *intel_crtc =
4251 to_intel_crtc(crtc_state->base.crtc);
a1b2278e 4252 int need_scaling;
6156a456
CK
4253
4254 need_scaling = intel_rotation_90_or_270(rotation) ?
4255 (src_h != dst_w || src_w != dst_h):
4256 (src_w != dst_w || src_h != dst_h);
a1b2278e
CK
4257
4258 /*
4259 * if plane is being disabled or scaler is no more required or force detach
4260 * - free scaler binded to this plane/crtc
4261 * - in order to do this, update crtc->scaler_usage
4262 *
4263 * Here scaler state in crtc_state is set free so that
4264 * scaler can be assigned to other user. Actual register
4265 * update to free the scaler is done in plane/panel-fit programming.
4266 * For this purpose crtc/plane_state->scaler_id isn't reset here.
4267 */
86adf9d7 4268 if (force_detach || !need_scaling) {
a1b2278e 4269 if (*scaler_id >= 0) {
86adf9d7 4270 scaler_state->scaler_users &= ~(1 << scaler_user);
a1b2278e
CK
4271 scaler_state->scalers[*scaler_id].in_use = 0;
4272
86adf9d7
ML
4273 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4274 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4275 intel_crtc->pipe, scaler_user, *scaler_id,
a1b2278e
CK
4276 scaler_state->scaler_users);
4277 *scaler_id = -1;
4278 }
4279 return 0;
4280 }
4281
4282 /* range checks */
4283 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4284 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4285
4286 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4287 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
86adf9d7 4288 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
a1b2278e 4289 "size is out of scaler range\n",
86adf9d7 4290 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
a1b2278e
CK
4291 return -EINVAL;
4292 }
4293
86adf9d7
ML
4294 /* mark this plane as a scaler user in crtc_state */
4295 scaler_state->scaler_users |= (1 << scaler_user);
4296 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4297 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4298 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4299 scaler_state->scaler_users);
4300
4301 return 0;
4302}
4303
4304/**
4305 * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4306 *
4307 * @state: crtc's scaler state
86adf9d7
ML
4308 *
4309 * Return
4310 * 0 - scaler_usage updated successfully
4311 * error - requested scaling cannot be supported or other error condition
4312 */
e435d6e5 4313int skl_update_scaler_crtc(struct intel_crtc_state *state)
86adf9d7
ML
4314{
4315 struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
7c5f93b0 4316 const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
86adf9d7
ML
4317
4318 DRM_DEBUG_KMS("Updating scaler for [CRTC:%i] scaler_user index %u.%u\n",
4319 intel_crtc->base.base.id, intel_crtc->pipe, SKL_CRTC_INDEX);
4320
e435d6e5 4321 return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
fa5a7970 4322 &state->scaler_state.scaler_id, BIT(DRM_ROTATE_0),
86adf9d7 4323 state->pipe_src_w, state->pipe_src_h,
aad941d5 4324 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
86adf9d7
ML
4325}
4326
4327/**
4328 * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4329 *
4330 * @state: crtc's scaler state
86adf9d7
ML
4331 * @plane_state: atomic plane state to update
4332 *
4333 * Return
4334 * 0 - scaler_usage updated successfully
4335 * error - requested scaling cannot be supported or other error condition
4336 */
da20eabd
ML
4337static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4338 struct intel_plane_state *plane_state)
86adf9d7
ML
4339{
4340
4341 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
da20eabd
ML
4342 struct intel_plane *intel_plane =
4343 to_intel_plane(plane_state->base.plane);
86adf9d7
ML
4344 struct drm_framebuffer *fb = plane_state->base.fb;
4345 int ret;
4346
4347 bool force_detach = !fb || !plane_state->visible;
4348
4349 DRM_DEBUG_KMS("Updating scaler for [PLANE:%d] scaler_user index %u.%u\n",
4350 intel_plane->base.base.id, intel_crtc->pipe,
4351 drm_plane_index(&intel_plane->base));
4352
4353 ret = skl_update_scaler(crtc_state, force_detach,
4354 drm_plane_index(&intel_plane->base),
4355 &plane_state->scaler_id,
4356 plane_state->base.rotation,
4357 drm_rect_width(&plane_state->src) >> 16,
4358 drm_rect_height(&plane_state->src) >> 16,
4359 drm_rect_width(&plane_state->dst),
4360 drm_rect_height(&plane_state->dst));
4361
4362 if (ret || plane_state->scaler_id < 0)
4363 return ret;
4364
a1b2278e 4365 /* check colorkey */
818ed961 4366 if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
86adf9d7 4367 DRM_DEBUG_KMS("[PLANE:%d] scaling with color key not allowed",
818ed961 4368 intel_plane->base.base.id);
a1b2278e
CK
4369 return -EINVAL;
4370 }
4371
4372 /* Check src format */
86adf9d7
ML
4373 switch (fb->pixel_format) {
4374 case DRM_FORMAT_RGB565:
4375 case DRM_FORMAT_XBGR8888:
4376 case DRM_FORMAT_XRGB8888:
4377 case DRM_FORMAT_ABGR8888:
4378 case DRM_FORMAT_ARGB8888:
4379 case DRM_FORMAT_XRGB2101010:
4380 case DRM_FORMAT_XBGR2101010:
4381 case DRM_FORMAT_YUYV:
4382 case DRM_FORMAT_YVYU:
4383 case DRM_FORMAT_UYVY:
4384 case DRM_FORMAT_VYUY:
4385 break;
4386 default:
4387 DRM_DEBUG_KMS("[PLANE:%d] FB:%d unsupported scaling format 0x%x\n",
4388 intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4389 return -EINVAL;
a1b2278e
CK
4390 }
4391
a1b2278e
CK
4392 return 0;
4393}
4394
e435d6e5
ML
4395static void skylake_scaler_disable(struct intel_crtc *crtc)
4396{
4397 int i;
4398
4399 for (i = 0; i < crtc->num_scalers; i++)
4400 skl_detach_scaler(crtc, i);
4401}
4402
4403static void skylake_pfit_enable(struct intel_crtc *crtc)
bd2e244f
JB
4404{
4405 struct drm_device *dev = crtc->base.dev;
4406 struct drm_i915_private *dev_priv = dev->dev_private;
4407 int pipe = crtc->pipe;
a1b2278e
CK
4408 struct intel_crtc_scaler_state *scaler_state =
4409 &crtc->config->scaler_state;
4410
4411 DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4412
6e3c9717 4413 if (crtc->config->pch_pfit.enabled) {
a1b2278e
CK
4414 int id;
4415
4416 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4417 DRM_ERROR("Requesting pfit without getting a scaler first\n");
4418 return;
4419 }
4420
4421 id = scaler_state->scaler_id;
4422 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4423 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4424 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4425 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4426
4427 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
bd2e244f
JB
4428 }
4429}
4430
b074cec8
JB
4431static void ironlake_pfit_enable(struct intel_crtc *crtc)
4432{
4433 struct drm_device *dev = crtc->base.dev;
4434 struct drm_i915_private *dev_priv = dev->dev_private;
4435 int pipe = crtc->pipe;
4436
6e3c9717 4437 if (crtc->config->pch_pfit.enabled) {
b074cec8
JB
4438 /* Force use of hard-coded filter coefficients
4439 * as some pre-programmed values are broken,
4440 * e.g. x201.
4441 */
4442 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4443 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4444 PF_PIPE_SEL_IVB(pipe));
4445 else
4446 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
6e3c9717
ACO
4447 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4448 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
d4270e57
JB
4449 }
4450}
4451
20bc8673 4452void hsw_enable_ips(struct intel_crtc *crtc)
d77e4531 4453{
cea165c3
VS
4454 struct drm_device *dev = crtc->base.dev;
4455 struct drm_i915_private *dev_priv = dev->dev_private;
d77e4531 4456
6e3c9717 4457 if (!crtc->config->ips_enabled)
d77e4531
PZ
4458 return;
4459
cea165c3
VS
4460 /* We can only enable IPS after we enable a plane and wait for a vblank */
4461 intel_wait_for_vblank(dev, crtc->pipe);
4462
d77e4531 4463 assert_plane_enabled(dev_priv, crtc->plane);
cea165c3 4464 if (IS_BROADWELL(dev)) {
2a114cc1
BW
4465 mutex_lock(&dev_priv->rps.hw_lock);
4466 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4467 mutex_unlock(&dev_priv->rps.hw_lock);
4468 /* Quoting Art Runyan: "its not safe to expect any particular
4469 * value in IPS_CTL bit 31 after enabling IPS through the
e59150dc
JB
4470 * mailbox." Moreover, the mailbox may return a bogus state,
4471 * so we need to just enable it and continue on.
2a114cc1
BW
4472 */
4473 } else {
4474 I915_WRITE(IPS_CTL, IPS_ENABLE);
4475 /* The bit only becomes 1 in the next vblank, so this wait here
4476 * is essentially intel_wait_for_vblank. If we don't have this
4477 * and don't wait for vblanks until the end of crtc_enable, then
4478 * the HW state readout code will complain that the expected
4479 * IPS_CTL value is not the one we read. */
4480 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4481 DRM_ERROR("Timed out waiting for IPS enable\n");
4482 }
d77e4531
PZ
4483}
4484
20bc8673 4485void hsw_disable_ips(struct intel_crtc *crtc)
d77e4531
PZ
4486{
4487 struct drm_device *dev = crtc->base.dev;
4488 struct drm_i915_private *dev_priv = dev->dev_private;
4489
6e3c9717 4490 if (!crtc->config->ips_enabled)
d77e4531
PZ
4491 return;
4492
4493 assert_plane_enabled(dev_priv, crtc->plane);
23d0b130 4494 if (IS_BROADWELL(dev)) {
2a114cc1
BW
4495 mutex_lock(&dev_priv->rps.hw_lock);
4496 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4497 mutex_unlock(&dev_priv->rps.hw_lock);
23d0b130
BW
4498 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4499 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4500 DRM_ERROR("Timed out waiting for IPS disable\n");
e59150dc 4501 } else {
2a114cc1 4502 I915_WRITE(IPS_CTL, 0);
e59150dc
JB
4503 POSTING_READ(IPS_CTL);
4504 }
d77e4531
PZ
4505
4506 /* We need to wait for a vblank before we can disable the plane. */
4507 intel_wait_for_vblank(dev, crtc->pipe);
4508}
4509
4510/** Loads the palette/gamma unit for the CRTC with the prepared values */
4511static void intel_crtc_load_lut(struct drm_crtc *crtc)
4512{
4513 struct drm_device *dev = crtc->dev;
4514 struct drm_i915_private *dev_priv = dev->dev_private;
4515 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4516 enum pipe pipe = intel_crtc->pipe;
d77e4531
PZ
4517 int i;
4518 bool reenable_ips = false;
4519
4520 /* The clocks have to be on to load the palette. */
53d9f4e9 4521 if (!crtc->state->active)
d77e4531
PZ
4522 return;
4523
50360403 4524 if (HAS_GMCH_DISPLAY(dev_priv->dev)) {
a65347ba 4525 if (intel_crtc->config->has_dsi_encoder)
d77e4531
PZ
4526 assert_dsi_pll_enabled(dev_priv);
4527 else
4528 assert_pll_enabled(dev_priv, pipe);
4529 }
4530
d77e4531
PZ
4531 /* Workaround : Do not read or write the pipe palette/gamma data while
4532 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4533 */
6e3c9717 4534 if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
d77e4531
PZ
4535 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4536 GAMMA_MODE_MODE_SPLIT)) {
4537 hsw_disable_ips(intel_crtc);
4538 reenable_ips = true;
4539 }
4540
4541 for (i = 0; i < 256; i++) {
f0f59a00 4542 i915_reg_t palreg;
f65a9c5b
VS
4543
4544 if (HAS_GMCH_DISPLAY(dev))
4545 palreg = PALETTE(pipe, i);
4546 else
4547 palreg = LGC_PALETTE(pipe, i);
4548
4549 I915_WRITE(palreg,
d77e4531
PZ
4550 (intel_crtc->lut_r[i] << 16) |
4551 (intel_crtc->lut_g[i] << 8) |
4552 intel_crtc->lut_b[i]);
4553 }
4554
4555 if (reenable_ips)
4556 hsw_enable_ips(intel_crtc);
4557}
4558
7cac945f 4559static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
d3eedb1a 4560{
7cac945f 4561 if (intel_crtc->overlay) {
d3eedb1a
VS
4562 struct drm_device *dev = intel_crtc->base.dev;
4563 struct drm_i915_private *dev_priv = dev->dev_private;
4564
4565 mutex_lock(&dev->struct_mutex);
4566 dev_priv->mm.interruptible = false;
4567 (void) intel_overlay_switch_off(intel_crtc->overlay);
4568 dev_priv->mm.interruptible = true;
4569 mutex_unlock(&dev->struct_mutex);
4570 }
4571
4572 /* Let userspace switch the overlay on again. In most cases userspace
4573 * has to recompute where to put it anyway.
4574 */
4575}
4576
87d4300a
ML
4577/**
4578 * intel_post_enable_primary - Perform operations after enabling primary plane
4579 * @crtc: the CRTC whose primary plane was just enabled
4580 *
4581 * Performs potentially sleeping operations that must be done after the primary
4582 * plane is enabled, such as updating FBC and IPS. Note that this may be
4583 * called due to an explicit primary plane update, or due to an implicit
4584 * re-enable that is caused when a sprite plane is updated to no longer
4585 * completely hide the primary plane.
4586 */
4587static void
4588intel_post_enable_primary(struct drm_crtc *crtc)
a5c4d7bc
VS
4589{
4590 struct drm_device *dev = crtc->dev;
87d4300a 4591 struct drm_i915_private *dev_priv = dev->dev_private;
a5c4d7bc
VS
4592 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4593 int pipe = intel_crtc->pipe;
a5c4d7bc 4594
87d4300a
ML
4595 /*
4596 * FIXME IPS should be fine as long as one plane is
4597 * enabled, but in practice it seems to have problems
4598 * when going from primary only to sprite only and vice
4599 * versa.
4600 */
a5c4d7bc
VS
4601 hsw_enable_ips(intel_crtc);
4602
f99d7069 4603 /*
87d4300a
ML
4604 * Gen2 reports pipe underruns whenever all planes are disabled.
4605 * So don't enable underrun reporting before at least some planes
4606 * are enabled.
4607 * FIXME: Need to fix the logic to work when we turn off all planes
4608 * but leave the pipe running.
f99d7069 4609 */
87d4300a
ML
4610 if (IS_GEN2(dev))
4611 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4612
aca7b684
VS
4613 /* Underruns don't always raise interrupts, so check manually. */
4614 intel_check_cpu_fifo_underruns(dev_priv);
4615 intel_check_pch_fifo_underruns(dev_priv);
a5c4d7bc
VS
4616}
4617
2622a081 4618/* FIXME move all this to pre_plane_update() with proper state tracking */
87d4300a
ML
4619static void
4620intel_pre_disable_primary(struct drm_crtc *crtc)
a5c4d7bc
VS
4621{
4622 struct drm_device *dev = crtc->dev;
4623 struct drm_i915_private *dev_priv = dev->dev_private;
4624 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4625 int pipe = intel_crtc->pipe;
a5c4d7bc 4626
87d4300a
ML
4627 /*
4628 * Gen2 reports pipe underruns whenever all planes are disabled.
4629 * So diasble underrun reporting before all the planes get disabled.
4630 * FIXME: Need to fix the logic to work when we turn off all planes
4631 * but leave the pipe running.
4632 */
4633 if (IS_GEN2(dev))
4634 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
a5c4d7bc 4635
2622a081
VS
4636 /*
4637 * FIXME IPS should be fine as long as one plane is
4638 * enabled, but in practice it seems to have problems
4639 * when going from primary only to sprite only and vice
4640 * versa.
4641 */
4642 hsw_disable_ips(intel_crtc);
4643}
4644
4645/* FIXME get rid of this and use pre_plane_update */
4646static void
4647intel_pre_disable_primary_noatomic(struct drm_crtc *crtc)
4648{
4649 struct drm_device *dev = crtc->dev;
4650 struct drm_i915_private *dev_priv = dev->dev_private;
4651 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4652 int pipe = intel_crtc->pipe;
4653
4654 intel_pre_disable_primary(crtc);
4655
87d4300a
ML
4656 /*
4657 * Vblank time updates from the shadow to live plane control register
4658 * are blocked if the memory self-refresh mode is active at that
4659 * moment. So to make sure the plane gets truly disabled, disable
4660 * first the self-refresh mode. The self-refresh enable bit in turn
4661 * will be checked/applied by the HW only at the next frame start
4662 * event which is after the vblank start event, so we need to have a
4663 * wait-for-vblank between disabling the plane and the pipe.
4664 */
262cd2e1 4665 if (HAS_GMCH_DISPLAY(dev)) {
87d4300a 4666 intel_set_memory_cxsr(dev_priv, false);
262cd2e1
VS
4667 dev_priv->wm.vlv.cxsr = false;
4668 intel_wait_for_vblank(dev, pipe);
4669 }
87d4300a
ML
4670}
4671
cd202f69 4672static void intel_post_plane_update(struct intel_crtc_state *old_crtc_state)
ac21b225 4673{
cd202f69
ML
4674 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
4675 struct drm_atomic_state *old_state = old_crtc_state->base.state;
92826fcd
ML
4676 struct intel_crtc_state *pipe_config =
4677 to_intel_crtc_state(crtc->base.state);
ac21b225 4678 struct drm_device *dev = crtc->base.dev;
cd202f69
ML
4679 struct drm_plane *primary = crtc->base.primary;
4680 struct drm_plane_state *old_pri_state =
4681 drm_atomic_get_existing_plane_state(old_state, primary);
ac21b225 4682
cd202f69 4683 intel_frontbuffer_flip(dev, pipe_config->fb_bits);
ac21b225 4684
ab1d3a0e 4685 crtc->wm.cxsr_allowed = true;
852eb00d 4686
caed361d 4687 if (pipe_config->update_wm_post && pipe_config->base.active)
f015c551
VS
4688 intel_update_watermarks(&crtc->base);
4689
cd202f69
ML
4690 if (old_pri_state) {
4691 struct intel_plane_state *primary_state =
4692 to_intel_plane_state(primary->state);
4693 struct intel_plane_state *old_primary_state =
4694 to_intel_plane_state(old_pri_state);
4695
31ae71fc
ML
4696 intel_fbc_post_update(crtc);
4697
cd202f69
ML
4698 if (primary_state->visible &&
4699 (needs_modeset(&pipe_config->base) ||
4700 !old_primary_state->visible))
4701 intel_post_enable_primary(&crtc->base);
4702 }
ac21b225
ML
4703}
4704
5c74cd73 4705static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state)
ac21b225 4706{
5c74cd73 4707 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
ac21b225 4708 struct drm_device *dev = crtc->base.dev;
eddfcbcd 4709 struct drm_i915_private *dev_priv = dev->dev_private;
ab1d3a0e
ML
4710 struct intel_crtc_state *pipe_config =
4711 to_intel_crtc_state(crtc->base.state);
5c74cd73
ML
4712 struct drm_atomic_state *old_state = old_crtc_state->base.state;
4713 struct drm_plane *primary = crtc->base.primary;
4714 struct drm_plane_state *old_pri_state =
4715 drm_atomic_get_existing_plane_state(old_state, primary);
4716 bool modeset = needs_modeset(&pipe_config->base);
ac21b225 4717
5c74cd73
ML
4718 if (old_pri_state) {
4719 struct intel_plane_state *primary_state =
4720 to_intel_plane_state(primary->state);
4721 struct intel_plane_state *old_primary_state =
4722 to_intel_plane_state(old_pri_state);
4723
31ae71fc
ML
4724 intel_fbc_pre_update(crtc);
4725
5c74cd73
ML
4726 if (old_primary_state->visible &&
4727 (modeset || !primary_state->visible))
4728 intel_pre_disable_primary(&crtc->base);
4729 }
852eb00d 4730
ab1d3a0e 4731 if (pipe_config->disable_cxsr) {
852eb00d 4732 crtc->wm.cxsr_allowed = false;
2dfd178d 4733
2622a081
VS
4734 /*
4735 * Vblank time updates from the shadow to live plane control register
4736 * are blocked if the memory self-refresh mode is active at that
4737 * moment. So to make sure the plane gets truly disabled, disable
4738 * first the self-refresh mode. The self-refresh enable bit in turn
4739 * will be checked/applied by the HW only at the next frame start
4740 * event which is after the vblank start event, so we need to have a
4741 * wait-for-vblank between disabling the plane and the pipe.
4742 */
4743 if (old_crtc_state->base.active) {
2dfd178d 4744 intel_set_memory_cxsr(dev_priv, false);
2622a081
VS
4745 dev_priv->wm.vlv.cxsr = false;
4746 intel_wait_for_vblank(dev, crtc->pipe);
4747 }
852eb00d 4748 }
92826fcd 4749
ed4a6a7c
MR
4750 /*
4751 * IVB workaround: must disable low power watermarks for at least
4752 * one frame before enabling scaling. LP watermarks can be re-enabled
4753 * when scaling is disabled.
4754 *
4755 * WaCxSRDisabledForSpriteScaling:ivb
4756 */
4757 if (pipe_config->disable_lp_wm) {
4758 ilk_disable_lp_wm(dev);
4759 intel_wait_for_vblank(dev, crtc->pipe);
4760 }
4761
4762 /*
4763 * If we're doing a modeset, we're done. No need to do any pre-vblank
4764 * watermark programming here.
4765 */
4766 if (needs_modeset(&pipe_config->base))
4767 return;
4768
4769 /*
4770 * For platforms that support atomic watermarks, program the
4771 * 'intermediate' watermarks immediately. On pre-gen9 platforms, these
4772 * will be the intermediate values that are safe for both pre- and
4773 * post- vblank; when vblank happens, the 'active' values will be set
4774 * to the final 'target' values and we'll do this again to get the
4775 * optimal watermarks. For gen9+ platforms, the values we program here
4776 * will be the final target values which will get automatically latched
4777 * at vblank time; no further programming will be necessary.
4778 *
4779 * If a platform hasn't been transitioned to atomic watermarks yet,
4780 * we'll continue to update watermarks the old way, if flags tell
4781 * us to.
4782 */
4783 if (dev_priv->display.initial_watermarks != NULL)
4784 dev_priv->display.initial_watermarks(pipe_config);
caed361d 4785 else if (pipe_config->update_wm_pre)
92826fcd 4786 intel_update_watermarks(&crtc->base);
ac21b225
ML
4787}
4788
d032ffa0 4789static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
87d4300a
ML
4790{
4791 struct drm_device *dev = crtc->dev;
4792 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
d032ffa0 4793 struct drm_plane *p;
87d4300a
ML
4794 int pipe = intel_crtc->pipe;
4795
7cac945f 4796 intel_crtc_dpms_overlay_disable(intel_crtc);
27321ae8 4797
d032ffa0
ML
4798 drm_for_each_plane_mask(p, dev, plane_mask)
4799 to_intel_plane(p)->disable_plane(p, crtc);
f98551ae 4800
f99d7069
DV
4801 /*
4802 * FIXME: Once we grow proper nuclear flip support out of this we need
4803 * to compute the mask of flip planes precisely. For the time being
4804 * consider this a flip to a NULL plane.
4805 */
4806 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
a5c4d7bc
VS
4807}
4808
f67a559d
JB
4809static void ironlake_crtc_enable(struct drm_crtc *crtc)
4810{
4811 struct drm_device *dev = crtc->dev;
4812 struct drm_i915_private *dev_priv = dev->dev_private;
4813 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4814 struct intel_encoder *encoder;
f67a559d 4815 int pipe = intel_crtc->pipe;
f67a559d 4816
53d9f4e9 4817 if (WARN_ON(intel_crtc->active))
f67a559d
JB
4818 return;
4819
81b088ca
VS
4820 if (intel_crtc->config->has_pch_encoder)
4821 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4822
6e3c9717 4823 if (intel_crtc->config->has_pch_encoder)
b14b1055
DV
4824 intel_prepare_shared_dpll(intel_crtc);
4825
6e3c9717 4826 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 4827 intel_dp_set_m_n(intel_crtc, M1_N1);
29407aab
DV
4828
4829 intel_set_pipe_timings(intel_crtc);
4830
6e3c9717 4831 if (intel_crtc->config->has_pch_encoder) {
29407aab 4832 intel_cpu_transcoder_set_m_n(intel_crtc,
6e3c9717 4833 &intel_crtc->config->fdi_m_n, NULL);
29407aab
DV
4834 }
4835
4836 ironlake_set_pipeconf(crtc);
4837
f67a559d 4838 intel_crtc->active = true;
8664281b 4839
a72e4c9f 4840 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
8664281b 4841
f6736a1a 4842 for_each_encoder_on_crtc(dev, crtc, encoder)
952735ee
DV
4843 if (encoder->pre_enable)
4844 encoder->pre_enable(encoder);
f67a559d 4845
6e3c9717 4846 if (intel_crtc->config->has_pch_encoder) {
fff367c7
DV
4847 /* Note: FDI PLL enabling _must_ be done before we enable the
4848 * cpu pipes, hence this is separate from all the other fdi/pch
4849 * enabling. */
88cefb6c 4850 ironlake_fdi_pll_enable(intel_crtc);
46b6f814
DV
4851 } else {
4852 assert_fdi_tx_disabled(dev_priv, pipe);
4853 assert_fdi_rx_disabled(dev_priv, pipe);
4854 }
f67a559d 4855
b074cec8 4856 ironlake_pfit_enable(intel_crtc);
f67a559d 4857
9c54c0dd
JB
4858 /*
4859 * On ILK+ LUT must be loaded before the pipe is running but with
4860 * clocks enabled
4861 */
4862 intel_crtc_load_lut(crtc);
4863
1d5bf5d9
ID
4864 if (dev_priv->display.initial_watermarks != NULL)
4865 dev_priv->display.initial_watermarks(intel_crtc->config);
e1fdc473 4866 intel_enable_pipe(intel_crtc);
f67a559d 4867
6e3c9717 4868 if (intel_crtc->config->has_pch_encoder)
f67a559d 4869 ironlake_pch_enable(crtc);
c98e9dcf 4870
f9b61ff6
DV
4871 assert_vblank_disabled(crtc);
4872 drm_crtc_vblank_on(crtc);
4873
fa5c73b1
DV
4874 for_each_encoder_on_crtc(dev, crtc, encoder)
4875 encoder->enable(encoder);
61b77ddd
DV
4876
4877 if (HAS_PCH_CPT(dev))
a1520318 4878 cpt_verify_modeset(dev, intel_crtc->pipe);
37ca8d4c
VS
4879
4880 /* Must wait for vblank to avoid spurious PCH FIFO underruns */
4881 if (intel_crtc->config->has_pch_encoder)
4882 intel_wait_for_vblank(dev, pipe);
4883 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
6be4a607
JB
4884}
4885
42db64ef
PZ
4886/* IPS only exists on ULT machines and is tied to pipe A. */
4887static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4888{
f5adf94e 4889 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
42db64ef
PZ
4890}
4891
4f771f10
PZ
4892static void haswell_crtc_enable(struct drm_crtc *crtc)
4893{
4894 struct drm_device *dev = crtc->dev;
4895 struct drm_i915_private *dev_priv = dev->dev_private;
4896 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4897 struct intel_encoder *encoder;
99d736a2
ML
4898 int pipe = intel_crtc->pipe, hsw_workaround_pipe;
4899 struct intel_crtc_state *pipe_config =
4900 to_intel_crtc_state(crtc->state);
4f771f10 4901
53d9f4e9 4902 if (WARN_ON(intel_crtc->active))
4f771f10
PZ
4903 return;
4904
81b088ca
VS
4905 if (intel_crtc->config->has_pch_encoder)
4906 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4907 false);
4908
8106ddbd 4909 if (intel_crtc->config->shared_dpll)
df8ad70c
DV
4910 intel_enable_shared_dpll(intel_crtc);
4911
6e3c9717 4912 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 4913 intel_dp_set_m_n(intel_crtc, M1_N1);
229fca97
DV
4914
4915 intel_set_pipe_timings(intel_crtc);
4916
6e3c9717
ACO
4917 if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4918 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4919 intel_crtc->config->pixel_multiplier - 1);
ebb69c95
CT
4920 }
4921
6e3c9717 4922 if (intel_crtc->config->has_pch_encoder) {
229fca97 4923 intel_cpu_transcoder_set_m_n(intel_crtc,
6e3c9717 4924 &intel_crtc->config->fdi_m_n, NULL);
229fca97
DV
4925 }
4926
4927 haswell_set_pipeconf(crtc);
4928
4929 intel_set_pipe_csc(crtc);
4930
4f771f10 4931 intel_crtc->active = true;
8664281b 4932
6b698516
DV
4933 if (intel_crtc->config->has_pch_encoder)
4934 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4935 else
4936 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4937
7d4aefd0 4938 for_each_encoder_on_crtc(dev, crtc, encoder) {
4f771f10
PZ
4939 if (encoder->pre_enable)
4940 encoder->pre_enable(encoder);
7d4aefd0 4941 }
4f771f10 4942
d2d65408 4943 if (intel_crtc->config->has_pch_encoder)
4fe9467d 4944 dev_priv->display.fdi_link_train(crtc);
4fe9467d 4945
a65347ba 4946 if (!intel_crtc->config->has_dsi_encoder)
7d4aefd0 4947 intel_ddi_enable_pipe_clock(intel_crtc);
4f771f10 4948
1c132b44 4949 if (INTEL_INFO(dev)->gen >= 9)
e435d6e5 4950 skylake_pfit_enable(intel_crtc);
ff6d9f55 4951 else
1c132b44 4952 ironlake_pfit_enable(intel_crtc);
4f771f10
PZ
4953
4954 /*
4955 * On ILK+ LUT must be loaded before the pipe is running but with
4956 * clocks enabled
4957 */
4958 intel_crtc_load_lut(crtc);
4959
1f544388 4960 intel_ddi_set_pipe_settings(crtc);
a65347ba 4961 if (!intel_crtc->config->has_dsi_encoder)
7d4aefd0 4962 intel_ddi_enable_transcoder_func(crtc);
4f771f10 4963
1d5bf5d9
ID
4964 if (dev_priv->display.initial_watermarks != NULL)
4965 dev_priv->display.initial_watermarks(pipe_config);
4966 else
4967 intel_update_watermarks(crtc);
e1fdc473 4968 intel_enable_pipe(intel_crtc);
42db64ef 4969
6e3c9717 4970 if (intel_crtc->config->has_pch_encoder)
1507e5bd 4971 lpt_pch_enable(crtc);
4f771f10 4972
a65347ba 4973 if (intel_crtc->config->dp_encoder_is_mst)
0e32b39c
DA
4974 intel_ddi_set_vc_payload_alloc(crtc, true);
4975
f9b61ff6
DV
4976 assert_vblank_disabled(crtc);
4977 drm_crtc_vblank_on(crtc);
4978
8807e55b 4979 for_each_encoder_on_crtc(dev, crtc, encoder) {
4f771f10 4980 encoder->enable(encoder);
8807e55b
JN
4981 intel_opregion_notify_encoder(encoder, true);
4982 }
4f771f10 4983
6b698516
DV
4984 if (intel_crtc->config->has_pch_encoder) {
4985 intel_wait_for_vblank(dev, pipe);
4986 intel_wait_for_vblank(dev, pipe);
4987 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
d2d65408
VS
4988 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4989 true);
6b698516 4990 }
d2d65408 4991
e4916946
PZ
4992 /* If we change the relative order between pipe/planes enabling, we need
4993 * to change the workaround. */
99d736a2
ML
4994 hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
4995 if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
4996 intel_wait_for_vblank(dev, hsw_workaround_pipe);
4997 intel_wait_for_vblank(dev, hsw_workaround_pipe);
4998 }
4f771f10
PZ
4999}
5000
bfd16b2a 5001static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
3f8dce3a
DV
5002{
5003 struct drm_device *dev = crtc->base.dev;
5004 struct drm_i915_private *dev_priv = dev->dev_private;
5005 int pipe = crtc->pipe;
5006
5007 /* To avoid upsetting the power well on haswell only disable the pfit if
5008 * it's in use. The hw state code will make sure we get this right. */
bfd16b2a 5009 if (force || crtc->config->pch_pfit.enabled) {
3f8dce3a
DV
5010 I915_WRITE(PF_CTL(pipe), 0);
5011 I915_WRITE(PF_WIN_POS(pipe), 0);
5012 I915_WRITE(PF_WIN_SZ(pipe), 0);
5013 }
5014}
5015
6be4a607
JB
5016static void ironlake_crtc_disable(struct drm_crtc *crtc)
5017{
5018 struct drm_device *dev = crtc->dev;
5019 struct drm_i915_private *dev_priv = dev->dev_private;
5020 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 5021 struct intel_encoder *encoder;
6be4a607 5022 int pipe = intel_crtc->pipe;
b52eb4dc 5023
37ca8d4c
VS
5024 if (intel_crtc->config->has_pch_encoder)
5025 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5026
ea9d758d
DV
5027 for_each_encoder_on_crtc(dev, crtc, encoder)
5028 encoder->disable(encoder);
5029
f9b61ff6
DV
5030 drm_crtc_vblank_off(crtc);
5031 assert_vblank_disabled(crtc);
5032
3860b2ec
VS
5033 /*
5034 * Sometimes spurious CPU pipe underruns happen when the
5035 * pipe is already disabled, but FDI RX/TX is still enabled.
5036 * Happens at least with VGA+HDMI cloning. Suppress them.
5037 */
5038 if (intel_crtc->config->has_pch_encoder)
5039 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5040
575f7ab7 5041 intel_disable_pipe(intel_crtc);
32f9d658 5042
bfd16b2a 5043 ironlake_pfit_disable(intel_crtc, false);
2c07245f 5044
3860b2ec 5045 if (intel_crtc->config->has_pch_encoder) {
5a74f70a 5046 ironlake_fdi_disable(crtc);
3860b2ec
VS
5047 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5048 }
5a74f70a 5049
bf49ec8c
DV
5050 for_each_encoder_on_crtc(dev, crtc, encoder)
5051 if (encoder->post_disable)
5052 encoder->post_disable(encoder);
2c07245f 5053
6e3c9717 5054 if (intel_crtc->config->has_pch_encoder) {
d925c59a 5055 ironlake_disable_pch_transcoder(dev_priv, pipe);
6be4a607 5056
d925c59a 5057 if (HAS_PCH_CPT(dev)) {
f0f59a00
VS
5058 i915_reg_t reg;
5059 u32 temp;
5060
d925c59a
DV
5061 /* disable TRANS_DP_CTL */
5062 reg = TRANS_DP_CTL(pipe);
5063 temp = I915_READ(reg);
5064 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5065 TRANS_DP_PORT_SEL_MASK);
5066 temp |= TRANS_DP_PORT_SEL_NONE;
5067 I915_WRITE(reg, temp);
5068
5069 /* disable DPLL_SEL */
5070 temp = I915_READ(PCH_DPLL_SEL);
11887397 5071 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
d925c59a 5072 I915_WRITE(PCH_DPLL_SEL, temp);
9db4a9c7 5073 }
e3421a18 5074
d925c59a
DV
5075 ironlake_fdi_pll_disable(intel_crtc);
5076 }
81b088ca
VS
5077
5078 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
6be4a607 5079}
1b3c7a47 5080
4f771f10 5081static void haswell_crtc_disable(struct drm_crtc *crtc)
ee7b9f93 5082{
4f771f10
PZ
5083 struct drm_device *dev = crtc->dev;
5084 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93 5085 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4f771f10 5086 struct intel_encoder *encoder;
6e3c9717 5087 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
ee7b9f93 5088
d2d65408
VS
5089 if (intel_crtc->config->has_pch_encoder)
5090 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5091 false);
5092
8807e55b
JN
5093 for_each_encoder_on_crtc(dev, crtc, encoder) {
5094 intel_opregion_notify_encoder(encoder, false);
4f771f10 5095 encoder->disable(encoder);
8807e55b 5096 }
4f771f10 5097
f9b61ff6
DV
5098 drm_crtc_vblank_off(crtc);
5099 assert_vblank_disabled(crtc);
5100
575f7ab7 5101 intel_disable_pipe(intel_crtc);
4f771f10 5102
6e3c9717 5103 if (intel_crtc->config->dp_encoder_is_mst)
a4bf214f
VS
5104 intel_ddi_set_vc_payload_alloc(crtc, false);
5105
a65347ba 5106 if (!intel_crtc->config->has_dsi_encoder)
7d4aefd0 5107 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4f771f10 5108
1c132b44 5109 if (INTEL_INFO(dev)->gen >= 9)
e435d6e5 5110 skylake_scaler_disable(intel_crtc);
ff6d9f55 5111 else
bfd16b2a 5112 ironlake_pfit_disable(intel_crtc, false);
4f771f10 5113
a65347ba 5114 if (!intel_crtc->config->has_dsi_encoder)
7d4aefd0 5115 intel_ddi_disable_pipe_clock(intel_crtc);
4f771f10 5116
97b040aa
ID
5117 for_each_encoder_on_crtc(dev, crtc, encoder)
5118 if (encoder->post_disable)
5119 encoder->post_disable(encoder);
81b088ca 5120
92966a37
VS
5121 if (intel_crtc->config->has_pch_encoder) {
5122 lpt_disable_pch_transcoder(dev_priv);
503a74e9 5123 lpt_disable_iclkip(dev_priv);
92966a37
VS
5124 intel_ddi_fdi_disable(crtc);
5125
81b088ca
VS
5126 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5127 true);
92966a37 5128 }
4f771f10
PZ
5129}
5130
2dd24552
JB
5131static void i9xx_pfit_enable(struct intel_crtc *crtc)
5132{
5133 struct drm_device *dev = crtc->base.dev;
5134 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 5135 struct intel_crtc_state *pipe_config = crtc->config;
2dd24552 5136
681a8504 5137 if (!pipe_config->gmch_pfit.control)
2dd24552
JB
5138 return;
5139
2dd24552 5140 /*
c0b03411
DV
5141 * The panel fitter should only be adjusted whilst the pipe is disabled,
5142 * according to register description and PRM.
2dd24552 5143 */
c0b03411
DV
5144 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5145 assert_pipe_disabled(dev_priv, crtc->pipe);
2dd24552 5146
b074cec8
JB
5147 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5148 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5a80c45c
DV
5149
5150 /* Border color in case we don't scale up to the full screen. Black by
5151 * default, change to something else for debugging. */
5152 I915_WRITE(BCLRPAT(crtc->pipe), 0);
2dd24552
JB
5153}
5154
d05410f9
DA
5155static enum intel_display_power_domain port_to_power_domain(enum port port)
5156{
5157 switch (port) {
5158 case PORT_A:
6331a704 5159 return POWER_DOMAIN_PORT_DDI_A_LANES;
d05410f9 5160 case PORT_B:
6331a704 5161 return POWER_DOMAIN_PORT_DDI_B_LANES;
d05410f9 5162 case PORT_C:
6331a704 5163 return POWER_DOMAIN_PORT_DDI_C_LANES;
d05410f9 5164 case PORT_D:
6331a704 5165 return POWER_DOMAIN_PORT_DDI_D_LANES;
d8e19f99 5166 case PORT_E:
6331a704 5167 return POWER_DOMAIN_PORT_DDI_E_LANES;
d05410f9 5168 default:
b9fec167 5169 MISSING_CASE(port);
d05410f9
DA
5170 return POWER_DOMAIN_PORT_OTHER;
5171 }
5172}
5173
25f78f58
VS
5174static enum intel_display_power_domain port_to_aux_power_domain(enum port port)
5175{
5176 switch (port) {
5177 case PORT_A:
5178 return POWER_DOMAIN_AUX_A;
5179 case PORT_B:
5180 return POWER_DOMAIN_AUX_B;
5181 case PORT_C:
5182 return POWER_DOMAIN_AUX_C;
5183 case PORT_D:
5184 return POWER_DOMAIN_AUX_D;
5185 case PORT_E:
5186 /* FIXME: Check VBT for actual wiring of PORT E */
5187 return POWER_DOMAIN_AUX_D;
5188 default:
b9fec167 5189 MISSING_CASE(port);
25f78f58
VS
5190 return POWER_DOMAIN_AUX_A;
5191 }
5192}
5193
319be8ae
ID
5194enum intel_display_power_domain
5195intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5196{
5197 struct drm_device *dev = intel_encoder->base.dev;
5198 struct intel_digital_port *intel_dig_port;
5199
5200 switch (intel_encoder->type) {
5201 case INTEL_OUTPUT_UNKNOWN:
5202 /* Only DDI platforms should ever use this output type */
5203 WARN_ON_ONCE(!HAS_DDI(dev));
5204 case INTEL_OUTPUT_DISPLAYPORT:
5205 case INTEL_OUTPUT_HDMI:
5206 case INTEL_OUTPUT_EDP:
5207 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
d05410f9 5208 return port_to_power_domain(intel_dig_port->port);
0e32b39c
DA
5209 case INTEL_OUTPUT_DP_MST:
5210 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5211 return port_to_power_domain(intel_dig_port->port);
319be8ae
ID
5212 case INTEL_OUTPUT_ANALOG:
5213 return POWER_DOMAIN_PORT_CRT;
5214 case INTEL_OUTPUT_DSI:
5215 return POWER_DOMAIN_PORT_DSI;
5216 default:
5217 return POWER_DOMAIN_PORT_OTHER;
5218 }
5219}
5220
25f78f58
VS
5221enum intel_display_power_domain
5222intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder)
5223{
5224 struct drm_device *dev = intel_encoder->base.dev;
5225 struct intel_digital_port *intel_dig_port;
5226
5227 switch (intel_encoder->type) {
5228 case INTEL_OUTPUT_UNKNOWN:
651174a4
ID
5229 case INTEL_OUTPUT_HDMI:
5230 /*
5231 * Only DDI platforms should ever use these output types.
5232 * We can get here after the HDMI detect code has already set
5233 * the type of the shared encoder. Since we can't be sure
5234 * what's the status of the given connectors, play safe and
5235 * run the DP detection too.
5236 */
25f78f58
VS
5237 WARN_ON_ONCE(!HAS_DDI(dev));
5238 case INTEL_OUTPUT_DISPLAYPORT:
5239 case INTEL_OUTPUT_EDP:
5240 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5241 return port_to_aux_power_domain(intel_dig_port->port);
5242 case INTEL_OUTPUT_DP_MST:
5243 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5244 return port_to_aux_power_domain(intel_dig_port->port);
5245 default:
b9fec167 5246 MISSING_CASE(intel_encoder->type);
25f78f58
VS
5247 return POWER_DOMAIN_AUX_A;
5248 }
5249}
5250
74bff5f9
ML
5251static unsigned long get_crtc_power_domains(struct drm_crtc *crtc,
5252 struct intel_crtc_state *crtc_state)
77d22dca 5253{
319be8ae 5254 struct drm_device *dev = crtc->dev;
74bff5f9 5255 struct drm_encoder *encoder;
319be8ae
ID
5256 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5257 enum pipe pipe = intel_crtc->pipe;
77d22dca 5258 unsigned long mask;
74bff5f9 5259 enum transcoder transcoder = crtc_state->cpu_transcoder;
77d22dca 5260
74bff5f9 5261 if (!crtc_state->base.active)
292b990e
ML
5262 return 0;
5263
77d22dca
ID
5264 mask = BIT(POWER_DOMAIN_PIPE(pipe));
5265 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
74bff5f9
ML
5266 if (crtc_state->pch_pfit.enabled ||
5267 crtc_state->pch_pfit.force_thru)
77d22dca
ID
5268 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5269
74bff5f9
ML
5270 drm_for_each_encoder_mask(encoder, dev, crtc_state->base.encoder_mask) {
5271 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5272
319be8ae 5273 mask |= BIT(intel_display_port_power_domain(intel_encoder));
74bff5f9 5274 }
319be8ae 5275
77d22dca
ID
5276 return mask;
5277}
5278
74bff5f9
ML
5279static unsigned long
5280modeset_get_crtc_power_domains(struct drm_crtc *crtc,
5281 struct intel_crtc_state *crtc_state)
77d22dca 5282{
292b990e
ML
5283 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5284 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5285 enum intel_display_power_domain domain;
5286 unsigned long domains, new_domains, old_domains;
77d22dca 5287
292b990e 5288 old_domains = intel_crtc->enabled_power_domains;
74bff5f9
ML
5289 intel_crtc->enabled_power_domains = new_domains =
5290 get_crtc_power_domains(crtc, crtc_state);
77d22dca 5291
292b990e
ML
5292 domains = new_domains & ~old_domains;
5293
5294 for_each_power_domain(domain, domains)
5295 intel_display_power_get(dev_priv, domain);
5296
5297 return old_domains & ~new_domains;
5298}
5299
5300static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5301 unsigned long domains)
5302{
5303 enum intel_display_power_domain domain;
5304
5305 for_each_power_domain(domain, domains)
5306 intel_display_power_put(dev_priv, domain);
5307}
77d22dca 5308
adafdc6f
MK
5309static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
5310{
5311 int max_cdclk_freq = dev_priv->max_cdclk_freq;
5312
5313 if (INTEL_INFO(dev_priv)->gen >= 9 ||
5314 IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5315 return max_cdclk_freq;
5316 else if (IS_CHERRYVIEW(dev_priv))
5317 return max_cdclk_freq*95/100;
5318 else if (INTEL_INFO(dev_priv)->gen < 4)
5319 return 2*max_cdclk_freq*90/100;
5320 else
5321 return max_cdclk_freq*90/100;
5322}
5323
560a7ae4
DL
5324static void intel_update_max_cdclk(struct drm_device *dev)
5325{
5326 struct drm_i915_private *dev_priv = dev->dev_private;
5327
ef11bdb3 5328 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
560a7ae4
DL
5329 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5330
5331 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5332 dev_priv->max_cdclk_freq = 675000;
5333 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5334 dev_priv->max_cdclk_freq = 540000;
5335 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5336 dev_priv->max_cdclk_freq = 450000;
5337 else
5338 dev_priv->max_cdclk_freq = 337500;
5339 } else if (IS_BROADWELL(dev)) {
5340 /*
5341 * FIXME with extra cooling we can allow
5342 * 540 MHz for ULX and 675 Mhz for ULT.
5343 * How can we know if extra cooling is
5344 * available? PCI ID, VTB, something else?
5345 */
5346 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5347 dev_priv->max_cdclk_freq = 450000;
5348 else if (IS_BDW_ULX(dev))
5349 dev_priv->max_cdclk_freq = 450000;
5350 else if (IS_BDW_ULT(dev))
5351 dev_priv->max_cdclk_freq = 540000;
5352 else
5353 dev_priv->max_cdclk_freq = 675000;
0904deaf
MK
5354 } else if (IS_CHERRYVIEW(dev)) {
5355 dev_priv->max_cdclk_freq = 320000;
560a7ae4
DL
5356 } else if (IS_VALLEYVIEW(dev)) {
5357 dev_priv->max_cdclk_freq = 400000;
5358 } else {
5359 /* otherwise assume cdclk is fixed */
5360 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5361 }
5362
adafdc6f
MK
5363 dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
5364
560a7ae4
DL
5365 DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5366 dev_priv->max_cdclk_freq);
adafdc6f
MK
5367
5368 DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5369 dev_priv->max_dotclk_freq);
560a7ae4
DL
5370}
5371
5372static void intel_update_cdclk(struct drm_device *dev)
5373{
5374 struct drm_i915_private *dev_priv = dev->dev_private;
5375
5376 dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5377 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5378 dev_priv->cdclk_freq);
5379
5380 /*
5381 * Program the gmbus_freq based on the cdclk frequency.
5382 * BSpec erroneously claims we should aim for 4MHz, but
5383 * in fact 1MHz is the correct frequency.
5384 */
666a4537 5385 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
560a7ae4
DL
5386 /*
5387 * Program the gmbus_freq based on the cdclk frequency.
5388 * BSpec erroneously claims we should aim for 4MHz, but
5389 * in fact 1MHz is the correct frequency.
5390 */
5391 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5392 }
5393
5394 if (dev_priv->max_cdclk_freq == 0)
5395 intel_update_max_cdclk(dev);
5396}
5397
70d0c574 5398static void broxton_set_cdclk(struct drm_device *dev, int frequency)
f8437dd1
VK
5399{
5400 struct drm_i915_private *dev_priv = dev->dev_private;
5401 uint32_t divider;
5402 uint32_t ratio;
5403 uint32_t current_freq;
5404 int ret;
5405
5406 /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5407 switch (frequency) {
5408 case 144000:
5409 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5410 ratio = BXT_DE_PLL_RATIO(60);
5411 break;
5412 case 288000:
5413 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5414 ratio = BXT_DE_PLL_RATIO(60);
5415 break;
5416 case 384000:
5417 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5418 ratio = BXT_DE_PLL_RATIO(60);
5419 break;
5420 case 576000:
5421 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5422 ratio = BXT_DE_PLL_RATIO(60);
5423 break;
5424 case 624000:
5425 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5426 ratio = BXT_DE_PLL_RATIO(65);
5427 break;
5428 case 19200:
5429 /*
5430 * Bypass frequency with DE PLL disabled. Init ratio, divider
5431 * to suppress GCC warning.
5432 */
5433 ratio = 0;
5434 divider = 0;
5435 break;
5436 default:
5437 DRM_ERROR("unsupported CDCLK freq %d", frequency);
5438
5439 return;
5440 }
5441
5442 mutex_lock(&dev_priv->rps.hw_lock);
5443 /* Inform power controller of upcoming frequency change */
5444 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5445 0x80000000);
5446 mutex_unlock(&dev_priv->rps.hw_lock);
5447
5448 if (ret) {
5449 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5450 ret, frequency);
5451 return;
5452 }
5453
5454 current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5455 /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5456 current_freq = current_freq * 500 + 1000;
5457
5458 /*
5459 * DE PLL has to be disabled when
5460 * - setting to 19.2MHz (bypass, PLL isn't used)
5461 * - before setting to 624MHz (PLL needs toggling)
5462 * - before setting to any frequency from 624MHz (PLL needs toggling)
5463 */
5464 if (frequency == 19200 || frequency == 624000 ||
5465 current_freq == 624000) {
5466 I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5467 /* Timeout 200us */
5468 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5469 1))
5470 DRM_ERROR("timout waiting for DE PLL unlock\n");
5471 }
5472
5473 if (frequency != 19200) {
5474 uint32_t val;
5475
5476 val = I915_READ(BXT_DE_PLL_CTL);
5477 val &= ~BXT_DE_PLL_RATIO_MASK;
5478 val |= ratio;
5479 I915_WRITE(BXT_DE_PLL_CTL, val);
5480
5481 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5482 /* Timeout 200us */
5483 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5484 DRM_ERROR("timeout waiting for DE PLL lock\n");
5485
5486 val = I915_READ(CDCLK_CTL);
5487 val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
5488 val |= divider;
5489 /*
5490 * Disable SSA Precharge when CD clock frequency < 500 MHz,
5491 * enable otherwise.
5492 */
5493 val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5494 if (frequency >= 500000)
5495 val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5496
5497 val &= ~CDCLK_FREQ_DECIMAL_MASK;
5498 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5499 val |= (frequency - 1000) / 500;
5500 I915_WRITE(CDCLK_CTL, val);
5501 }
5502
5503 mutex_lock(&dev_priv->rps.hw_lock);
5504 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5505 DIV_ROUND_UP(frequency, 25000));
5506 mutex_unlock(&dev_priv->rps.hw_lock);
5507
5508 if (ret) {
5509 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5510 ret, frequency);
5511 return;
5512 }
5513
a47871bd 5514 intel_update_cdclk(dev);
f8437dd1
VK
5515}
5516
5517void broxton_init_cdclk(struct drm_device *dev)
5518{
5519 struct drm_i915_private *dev_priv = dev->dev_private;
5520 uint32_t val;
5521
5522 /*
5523 * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
5524 * or else the reset will hang because there is no PCH to respond.
5525 * Move the handshake programming to initialization sequence.
5526 * Previously was left up to BIOS.
5527 */
5528 val = I915_READ(HSW_NDE_RSTWRN_OPT);
5529 val &= ~RESET_PCH_HANDSHAKE_ENABLE;
5530 I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
5531
5532 /* Enable PG1 for cdclk */
5533 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5534
5535 /* check if cd clock is enabled */
5536 if (I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE) {
5537 DRM_DEBUG_KMS("Display already initialized\n");
5538 return;
5539 }
5540
5541 /*
5542 * FIXME:
5543 * - The initial CDCLK needs to be read from VBT.
5544 * Need to make this change after VBT has changes for BXT.
5545 * - check if setting the max (or any) cdclk freq is really necessary
5546 * here, it belongs to modeset time
5547 */
5548 broxton_set_cdclk(dev, 624000);
5549
5550 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
22e02c0b
VS
5551 POSTING_READ(DBUF_CTL);
5552
f8437dd1
VK
5553 udelay(10);
5554
5555 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5556 DRM_ERROR("DBuf power enable timeout!\n");
5557}
5558
5559void broxton_uninit_cdclk(struct drm_device *dev)
5560{
5561 struct drm_i915_private *dev_priv = dev->dev_private;
5562
5563 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
22e02c0b
VS
5564 POSTING_READ(DBUF_CTL);
5565
f8437dd1
VK
5566 udelay(10);
5567
5568 if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5569 DRM_ERROR("DBuf power disable timeout!\n");
5570
5571 /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5572 broxton_set_cdclk(dev, 19200);
5573
5574 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5575}
5576
5d96d8af
DL
5577static const struct skl_cdclk_entry {
5578 unsigned int freq;
5579 unsigned int vco;
5580} skl_cdclk_frequencies[] = {
5581 { .freq = 308570, .vco = 8640 },
5582 { .freq = 337500, .vco = 8100 },
5583 { .freq = 432000, .vco = 8640 },
5584 { .freq = 450000, .vco = 8100 },
5585 { .freq = 540000, .vco = 8100 },
5586 { .freq = 617140, .vco = 8640 },
5587 { .freq = 675000, .vco = 8100 },
5588};
5589
5590static unsigned int skl_cdclk_decimal(unsigned int freq)
5591{
5592 return (freq - 1000) / 500;
5593}
5594
5595static unsigned int skl_cdclk_get_vco(unsigned int freq)
5596{
5597 unsigned int i;
5598
5599 for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) {
5600 const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i];
5601
5602 if (e->freq == freq)
5603 return e->vco;
5604 }
5605
5606 return 8100;
5607}
5608
5609static void
5610skl_dpll0_enable(struct drm_i915_private *dev_priv, unsigned int required_vco)
5611{
5612 unsigned int min_freq;
5613 u32 val;
5614
5615 /* select the minimum CDCLK before enabling DPLL 0 */
5616 val = I915_READ(CDCLK_CTL);
5617 val &= ~CDCLK_FREQ_SEL_MASK | ~CDCLK_FREQ_DECIMAL_MASK;
5618 val |= CDCLK_FREQ_337_308;
5619
5620 if (required_vco == 8640)
5621 min_freq = 308570;
5622 else
5623 min_freq = 337500;
5624
5625 val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_freq);
5626
5627 I915_WRITE(CDCLK_CTL, val);
5628 POSTING_READ(CDCLK_CTL);
5629
5630 /*
5631 * We always enable DPLL0 with the lowest link rate possible, but still
5632 * taking into account the VCO required to operate the eDP panel at the
5633 * desired frequency. The usual DP link rates operate with a VCO of
5634 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5635 * The modeset code is responsible for the selection of the exact link
5636 * rate later on, with the constraint of choosing a frequency that
5637 * works with required_vco.
5638 */
5639 val = I915_READ(DPLL_CTRL1);
5640
5641 val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5642 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5643 val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5644 if (required_vco == 8640)
5645 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5646 SKL_DPLL0);
5647 else
5648 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5649 SKL_DPLL0);
5650
5651 I915_WRITE(DPLL_CTRL1, val);
5652 POSTING_READ(DPLL_CTRL1);
5653
5654 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5655
5656 if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
5657 DRM_ERROR("DPLL0 not locked\n");
5658}
5659
5660static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5661{
5662 int ret;
5663 u32 val;
5664
5665 /* inform PCU we want to change CDCLK */
5666 val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5667 mutex_lock(&dev_priv->rps.hw_lock);
5668 ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5669 mutex_unlock(&dev_priv->rps.hw_lock);
5670
5671 return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5672}
5673
5674static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5675{
5676 unsigned int i;
5677
5678 for (i = 0; i < 15; i++) {
5679 if (skl_cdclk_pcu_ready(dev_priv))
5680 return true;
5681 udelay(10);
5682 }
5683
5684 return false;
5685}
5686
5687static void skl_set_cdclk(struct drm_i915_private *dev_priv, unsigned int freq)
5688{
560a7ae4 5689 struct drm_device *dev = dev_priv->dev;
5d96d8af
DL
5690 u32 freq_select, pcu_ack;
5691
5692 DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq);
5693
5694 if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5695 DRM_ERROR("failed to inform PCU about cdclk change\n");
5696 return;
5697 }
5698
5699 /* set CDCLK_CTL */
5700 switch(freq) {
5701 case 450000:
5702 case 432000:
5703 freq_select = CDCLK_FREQ_450_432;
5704 pcu_ack = 1;
5705 break;
5706 case 540000:
5707 freq_select = CDCLK_FREQ_540;
5708 pcu_ack = 2;
5709 break;
5710 case 308570:
5711 case 337500:
5712 default:
5713 freq_select = CDCLK_FREQ_337_308;
5714 pcu_ack = 0;
5715 break;
5716 case 617140:
5717 case 675000:
5718 freq_select = CDCLK_FREQ_675_617;
5719 pcu_ack = 3;
5720 break;
5721 }
5722
5723 I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(freq));
5724 POSTING_READ(CDCLK_CTL);
5725
5726 /* inform PCU of the change */
5727 mutex_lock(&dev_priv->rps.hw_lock);
5728 sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5729 mutex_unlock(&dev_priv->rps.hw_lock);
560a7ae4
DL
5730
5731 intel_update_cdclk(dev);
5d96d8af
DL
5732}
5733
5734void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5735{
5736 /* disable DBUF power */
5737 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5738 POSTING_READ(DBUF_CTL);
5739
5740 udelay(10);
5741
5742 if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5743 DRM_ERROR("DBuf power disable timeout\n");
5744
ab96c1ee
ID
5745 /* disable DPLL0 */
5746 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
5747 if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
5748 DRM_ERROR("Couldn't disable DPLL0\n");
5d96d8af
DL
5749}
5750
5751void skl_init_cdclk(struct drm_i915_private *dev_priv)
5752{
5d96d8af
DL
5753 unsigned int required_vco;
5754
39d9b85a
GW
5755 /* DPLL0 not enabled (happens on early BIOS versions) */
5756 if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE)) {
5757 /* enable DPLL0 */
5758 required_vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk);
5759 skl_dpll0_enable(dev_priv, required_vco);
5d96d8af
DL
5760 }
5761
5d96d8af
DL
5762 /* set CDCLK to the frequency the BIOS chose */
5763 skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk);
5764
5765 /* enable DBUF power */
5766 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5767 POSTING_READ(DBUF_CTL);
5768
5769 udelay(10);
5770
5771 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5772 DRM_ERROR("DBuf power enable timeout\n");
5773}
5774
c73666f3
SK
5775int skl_sanitize_cdclk(struct drm_i915_private *dev_priv)
5776{
5777 uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
5778 uint32_t cdctl = I915_READ(CDCLK_CTL);
5779 int freq = dev_priv->skl_boot_cdclk;
5780
f1b391a5
SK
5781 /*
5782 * check if the pre-os intialized the display
5783 * There is SWF18 scratchpad register defined which is set by the
5784 * pre-os which can be used by the OS drivers to check the status
5785 */
5786 if ((I915_READ(SWF_ILK(0x18)) & 0x00FFFFFF) == 0)
5787 goto sanitize;
5788
c73666f3
SK
5789 /* Is PLL enabled and locked ? */
5790 if (!((lcpll1 & LCPLL_PLL_ENABLE) && (lcpll1 & LCPLL_PLL_LOCK)))
5791 goto sanitize;
5792
5793 /* DPLL okay; verify the cdclock
5794 *
5795 * Noticed in some instances that the freq selection is correct but
5796 * decimal part is programmed wrong from BIOS where pre-os does not
5797 * enable display. Verify the same as well.
5798 */
5799 if (cdctl == ((cdctl & CDCLK_FREQ_SEL_MASK) | skl_cdclk_decimal(freq)))
5800 /* All well; nothing to sanitize */
5801 return false;
5802sanitize:
5803 /*
5804 * As of now initialize with max cdclk till
5805 * we get dynamic cdclk support
5806 * */
5807 dev_priv->skl_boot_cdclk = dev_priv->max_cdclk_freq;
5808 skl_init_cdclk(dev_priv);
5809
5810 /* we did have to sanitize */
5811 return true;
5812}
5813
30a970c6
JB
5814/* Adjust CDclk dividers to allow high res or save power if possible */
5815static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5816{
5817 struct drm_i915_private *dev_priv = dev->dev_private;
5818 u32 val, cmd;
5819
164dfd28
VK
5820 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5821 != dev_priv->cdclk_freq);
d60c4473 5822
dfcab17e 5823 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
30a970c6 5824 cmd = 2;
dfcab17e 5825 else if (cdclk == 266667)
30a970c6
JB
5826 cmd = 1;
5827 else
5828 cmd = 0;
5829
5830 mutex_lock(&dev_priv->rps.hw_lock);
5831 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5832 val &= ~DSPFREQGUAR_MASK;
5833 val |= (cmd << DSPFREQGUAR_SHIFT);
5834 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5835 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5836 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5837 50)) {
5838 DRM_ERROR("timed out waiting for CDclk change\n");
5839 }
5840 mutex_unlock(&dev_priv->rps.hw_lock);
5841
54433e91
VS
5842 mutex_lock(&dev_priv->sb_lock);
5843
dfcab17e 5844 if (cdclk == 400000) {
6bcda4f0 5845 u32 divider;
30a970c6 5846
6bcda4f0 5847 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
30a970c6 5848
30a970c6
JB
5849 /* adjust cdclk divider */
5850 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
87d5d259 5851 val &= ~CCK_FREQUENCY_VALUES;
30a970c6
JB
5852 val |= divider;
5853 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
a877e801
VS
5854
5855 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
87d5d259 5856 CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
a877e801
VS
5857 50))
5858 DRM_ERROR("timed out waiting for CDclk change\n");
30a970c6
JB
5859 }
5860
30a970c6
JB
5861 /* adjust self-refresh exit latency value */
5862 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5863 val &= ~0x7f;
5864
5865 /*
5866 * For high bandwidth configs, we set a higher latency in the bunit
5867 * so that the core display fetch happens in time to avoid underruns.
5868 */
dfcab17e 5869 if (cdclk == 400000)
30a970c6
JB
5870 val |= 4500 / 250; /* 4.5 usec */
5871 else
5872 val |= 3000 / 250; /* 3.0 usec */
5873 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
54433e91 5874
a580516d 5875 mutex_unlock(&dev_priv->sb_lock);
30a970c6 5876
b6283055 5877 intel_update_cdclk(dev);
30a970c6
JB
5878}
5879
383c5a6a
VS
5880static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5881{
5882 struct drm_i915_private *dev_priv = dev->dev_private;
5883 u32 val, cmd;
5884
164dfd28
VK
5885 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5886 != dev_priv->cdclk_freq);
383c5a6a
VS
5887
5888 switch (cdclk) {
383c5a6a
VS
5889 case 333333:
5890 case 320000:
383c5a6a 5891 case 266667:
383c5a6a 5892 case 200000:
383c5a6a
VS
5893 break;
5894 default:
5f77eeb0 5895 MISSING_CASE(cdclk);
383c5a6a
VS
5896 return;
5897 }
5898
9d0d3fda
VS
5899 /*
5900 * Specs are full of misinformation, but testing on actual
5901 * hardware has shown that we just need to write the desired
5902 * CCK divider into the Punit register.
5903 */
5904 cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5905
383c5a6a
VS
5906 mutex_lock(&dev_priv->rps.hw_lock);
5907 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5908 val &= ~DSPFREQGUAR_MASK_CHV;
5909 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5910 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5911 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5912 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5913 50)) {
5914 DRM_ERROR("timed out waiting for CDclk change\n");
5915 }
5916 mutex_unlock(&dev_priv->rps.hw_lock);
5917
b6283055 5918 intel_update_cdclk(dev);
383c5a6a
VS
5919}
5920
30a970c6
JB
5921static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5922 int max_pixclk)
5923{
6bcda4f0 5924 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
6cca3195 5925 int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
29dc7ef3 5926
30a970c6
JB
5927 /*
5928 * Really only a few cases to deal with, as only 4 CDclks are supported:
5929 * 200MHz
5930 * 267MHz
29dc7ef3 5931 * 320/333MHz (depends on HPLL freq)
6cca3195
VS
5932 * 400MHz (VLV only)
5933 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5934 * of the lower bin and adjust if needed.
e37c67a1
VS
5935 *
5936 * We seem to get an unstable or solid color picture at 200MHz.
5937 * Not sure what's wrong. For now use 200MHz only when all pipes
5938 * are off.
30a970c6 5939 */
6cca3195
VS
5940 if (!IS_CHERRYVIEW(dev_priv) &&
5941 max_pixclk > freq_320*limit/100)
dfcab17e 5942 return 400000;
6cca3195 5943 else if (max_pixclk > 266667*limit/100)
29dc7ef3 5944 return freq_320;
e37c67a1 5945 else if (max_pixclk > 0)
dfcab17e 5946 return 266667;
e37c67a1
VS
5947 else
5948 return 200000;
30a970c6
JB
5949}
5950
f8437dd1
VK
5951static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
5952 int max_pixclk)
5953{
5954 /*
5955 * FIXME:
5956 * - remove the guardband, it's not needed on BXT
5957 * - set 19.2MHz bypass frequency if there are no active pipes
5958 */
5959 if (max_pixclk > 576000*9/10)
5960 return 624000;
5961 else if (max_pixclk > 384000*9/10)
5962 return 576000;
5963 else if (max_pixclk > 288000*9/10)
5964 return 384000;
5965 else if (max_pixclk > 144000*9/10)
5966 return 288000;
5967 else
5968 return 144000;
5969}
5970
e8788cbc 5971/* Compute the max pixel clock for new configuration. */
a821fc46
ACO
5972static int intel_mode_max_pixclk(struct drm_device *dev,
5973 struct drm_atomic_state *state)
30a970c6 5974{
565602d7
ML
5975 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
5976 struct drm_i915_private *dev_priv = dev->dev_private;
5977 struct drm_crtc *crtc;
5978 struct drm_crtc_state *crtc_state;
5979 unsigned max_pixclk = 0, i;
5980 enum pipe pipe;
30a970c6 5981
565602d7
ML
5982 memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
5983 sizeof(intel_state->min_pixclk));
304603f4 5984
565602d7
ML
5985 for_each_crtc_in_state(state, crtc, crtc_state, i) {
5986 int pixclk = 0;
5987
5988 if (crtc_state->enable)
5989 pixclk = crtc_state->adjusted_mode.crtc_clock;
304603f4 5990
565602d7 5991 intel_state->min_pixclk[i] = pixclk;
30a970c6
JB
5992 }
5993
565602d7
ML
5994 for_each_pipe(dev_priv, pipe)
5995 max_pixclk = max(intel_state->min_pixclk[pipe], max_pixclk);
5996
30a970c6
JB
5997 return max_pixclk;
5998}
5999
27c329ed 6000static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
30a970c6 6001{
27c329ed
ML
6002 struct drm_device *dev = state->dev;
6003 struct drm_i915_private *dev_priv = dev->dev_private;
6004 int max_pixclk = intel_mode_max_pixclk(dev, state);
1a617b77
ML
6005 struct intel_atomic_state *intel_state =
6006 to_intel_atomic_state(state);
30a970c6 6007
304603f4
ACO
6008 if (max_pixclk < 0)
6009 return max_pixclk;
30a970c6 6010
1a617b77 6011 intel_state->cdclk = intel_state->dev_cdclk =
27c329ed 6012 valleyview_calc_cdclk(dev_priv, max_pixclk);
0a9ab303 6013
1a617b77
ML
6014 if (!intel_state->active_crtcs)
6015 intel_state->dev_cdclk = valleyview_calc_cdclk(dev_priv, 0);
6016
27c329ed
ML
6017 return 0;
6018}
304603f4 6019
27c329ed
ML
6020static int broxton_modeset_calc_cdclk(struct drm_atomic_state *state)
6021{
6022 struct drm_device *dev = state->dev;
6023 struct drm_i915_private *dev_priv = dev->dev_private;
6024 int max_pixclk = intel_mode_max_pixclk(dev, state);
1a617b77
ML
6025 struct intel_atomic_state *intel_state =
6026 to_intel_atomic_state(state);
85a96e7a 6027
27c329ed
ML
6028 if (max_pixclk < 0)
6029 return max_pixclk;
85a96e7a 6030
1a617b77 6031 intel_state->cdclk = intel_state->dev_cdclk =
27c329ed 6032 broxton_calc_cdclk(dev_priv, max_pixclk);
85a96e7a 6033
1a617b77
ML
6034 if (!intel_state->active_crtcs)
6035 intel_state->dev_cdclk = broxton_calc_cdclk(dev_priv, 0);
6036
27c329ed 6037 return 0;
30a970c6
JB
6038}
6039
1e69cd74
VS
6040static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
6041{
6042 unsigned int credits, default_credits;
6043
6044 if (IS_CHERRYVIEW(dev_priv))
6045 default_credits = PFI_CREDIT(12);
6046 else
6047 default_credits = PFI_CREDIT(8);
6048
bfa7df01 6049 if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
1e69cd74
VS
6050 /* CHV suggested value is 31 or 63 */
6051 if (IS_CHERRYVIEW(dev_priv))
fcc0008f 6052 credits = PFI_CREDIT_63;
1e69cd74
VS
6053 else
6054 credits = PFI_CREDIT(15);
6055 } else {
6056 credits = default_credits;
6057 }
6058
6059 /*
6060 * WA - write default credits before re-programming
6061 * FIXME: should we also set the resend bit here?
6062 */
6063 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6064 default_credits);
6065
6066 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6067 credits | PFI_CREDIT_RESEND);
6068
6069 /*
6070 * FIXME is this guaranteed to clear
6071 * immediately or should we poll for it?
6072 */
6073 WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6074}
6075
27c329ed 6076static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
30a970c6 6077{
a821fc46 6078 struct drm_device *dev = old_state->dev;
30a970c6 6079 struct drm_i915_private *dev_priv = dev->dev_private;
1a617b77
ML
6080 struct intel_atomic_state *old_intel_state =
6081 to_intel_atomic_state(old_state);
6082 unsigned req_cdclk = old_intel_state->dev_cdclk;
30a970c6 6083
27c329ed
ML
6084 /*
6085 * FIXME: We can end up here with all power domains off, yet
6086 * with a CDCLK frequency other than the minimum. To account
6087 * for this take the PIPE-A power domain, which covers the HW
6088 * blocks needed for the following programming. This can be
6089 * removed once it's guaranteed that we get here either with
6090 * the minimum CDCLK set, or the required power domains
6091 * enabled.
6092 */
6093 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
738c05c0 6094
27c329ed
ML
6095 if (IS_CHERRYVIEW(dev))
6096 cherryview_set_cdclk(dev, req_cdclk);
6097 else
6098 valleyview_set_cdclk(dev, req_cdclk);
738c05c0 6099
27c329ed 6100 vlv_program_pfi_credits(dev_priv);
1e69cd74 6101
27c329ed 6102 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
30a970c6
JB
6103}
6104
89b667f8
JB
6105static void valleyview_crtc_enable(struct drm_crtc *crtc)
6106{
6107 struct drm_device *dev = crtc->dev;
a72e4c9f 6108 struct drm_i915_private *dev_priv = to_i915(dev);
89b667f8
JB
6109 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6110 struct intel_encoder *encoder;
6111 int pipe = intel_crtc->pipe;
89b667f8 6112
53d9f4e9 6113 if (WARN_ON(intel_crtc->active))
89b667f8
JB
6114 return;
6115
6e3c9717 6116 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 6117 intel_dp_set_m_n(intel_crtc, M1_N1);
5b18e57c
DV
6118
6119 intel_set_pipe_timings(intel_crtc);
6120
c14b0485
VS
6121 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6122 struct drm_i915_private *dev_priv = dev->dev_private;
6123
6124 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6125 I915_WRITE(CHV_CANVAS(pipe), 0);
6126 }
6127
5b18e57c
DV
6128 i9xx_set_pipeconf(intel_crtc);
6129
89b667f8 6130 intel_crtc->active = true;
89b667f8 6131
a72e4c9f 6132 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 6133
89b667f8
JB
6134 for_each_encoder_on_crtc(dev, crtc, encoder)
6135 if (encoder->pre_pll_enable)
6136 encoder->pre_pll_enable(encoder);
6137
a65347ba 6138 if (!intel_crtc->config->has_dsi_encoder) {
c0b4c660
VS
6139 if (IS_CHERRYVIEW(dev)) {
6140 chv_prepare_pll(intel_crtc, intel_crtc->config);
6e3c9717 6141 chv_enable_pll(intel_crtc, intel_crtc->config);
c0b4c660
VS
6142 } else {
6143 vlv_prepare_pll(intel_crtc, intel_crtc->config);
6e3c9717 6144 vlv_enable_pll(intel_crtc, intel_crtc->config);
c0b4c660 6145 }
9d556c99 6146 }
89b667f8
JB
6147
6148 for_each_encoder_on_crtc(dev, crtc, encoder)
6149 if (encoder->pre_enable)
6150 encoder->pre_enable(encoder);
6151
2dd24552
JB
6152 i9xx_pfit_enable(intel_crtc);
6153
63cbb074
VS
6154 intel_crtc_load_lut(crtc);
6155
caed361d 6156 intel_update_watermarks(crtc);
e1fdc473 6157 intel_enable_pipe(intel_crtc);
be6a6f8e 6158
4b3a9526
VS
6159 assert_vblank_disabled(crtc);
6160 drm_crtc_vblank_on(crtc);
6161
f9b61ff6
DV
6162 for_each_encoder_on_crtc(dev, crtc, encoder)
6163 encoder->enable(encoder);
89b667f8
JB
6164}
6165
f13c2ef3
DV
6166static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6167{
6168 struct drm_device *dev = crtc->base.dev;
6169 struct drm_i915_private *dev_priv = dev->dev_private;
6170
6e3c9717
ACO
6171 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6172 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
f13c2ef3
DV
6173}
6174
0b8765c6 6175static void i9xx_crtc_enable(struct drm_crtc *crtc)
79e53945
JB
6176{
6177 struct drm_device *dev = crtc->dev;
a72e4c9f 6178 struct drm_i915_private *dev_priv = to_i915(dev);
79e53945 6179 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 6180 struct intel_encoder *encoder;
79e53945 6181 int pipe = intel_crtc->pipe;
79e53945 6182
53d9f4e9 6183 if (WARN_ON(intel_crtc->active))
f7abfe8b
CW
6184 return;
6185
f13c2ef3
DV
6186 i9xx_set_pll_dividers(intel_crtc);
6187
6e3c9717 6188 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 6189 intel_dp_set_m_n(intel_crtc, M1_N1);
5b18e57c
DV
6190
6191 intel_set_pipe_timings(intel_crtc);
6192
5b18e57c
DV
6193 i9xx_set_pipeconf(intel_crtc);
6194
f7abfe8b 6195 intel_crtc->active = true;
6b383a7f 6196
4a3436e8 6197 if (!IS_GEN2(dev))
a72e4c9f 6198 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 6199
9d6d9f19
MK
6200 for_each_encoder_on_crtc(dev, crtc, encoder)
6201 if (encoder->pre_enable)
6202 encoder->pre_enable(encoder);
6203
f6736a1a
DV
6204 i9xx_enable_pll(intel_crtc);
6205
2dd24552
JB
6206 i9xx_pfit_enable(intel_crtc);
6207
63cbb074
VS
6208 intel_crtc_load_lut(crtc);
6209
f37fcc2a 6210 intel_update_watermarks(crtc);
e1fdc473 6211 intel_enable_pipe(intel_crtc);
be6a6f8e 6212
4b3a9526
VS
6213 assert_vblank_disabled(crtc);
6214 drm_crtc_vblank_on(crtc);
6215
f9b61ff6
DV
6216 for_each_encoder_on_crtc(dev, crtc, encoder)
6217 encoder->enable(encoder);
0b8765c6 6218}
79e53945 6219
87476d63
DV
6220static void i9xx_pfit_disable(struct intel_crtc *crtc)
6221{
6222 struct drm_device *dev = crtc->base.dev;
6223 struct drm_i915_private *dev_priv = dev->dev_private;
87476d63 6224
6e3c9717 6225 if (!crtc->config->gmch_pfit.control)
328d8e82 6226 return;
87476d63 6227
328d8e82 6228 assert_pipe_disabled(dev_priv, crtc->pipe);
87476d63 6229
328d8e82
DV
6230 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6231 I915_READ(PFIT_CONTROL));
6232 I915_WRITE(PFIT_CONTROL, 0);
87476d63
DV
6233}
6234
0b8765c6
JB
6235static void i9xx_crtc_disable(struct drm_crtc *crtc)
6236{
6237 struct drm_device *dev = crtc->dev;
6238 struct drm_i915_private *dev_priv = dev->dev_private;
6239 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 6240 struct intel_encoder *encoder;
0b8765c6 6241 int pipe = intel_crtc->pipe;
ef9c3aee 6242
6304cd91
VS
6243 /*
6244 * On gen2 planes are double buffered but the pipe isn't, so we must
6245 * wait for planes to fully turn off before disabling the pipe.
564ed191
ID
6246 * We also need to wait on all gmch platforms because of the
6247 * self-refresh mode constraint explained above.
6304cd91 6248 */
564ed191 6249 intel_wait_for_vblank(dev, pipe);
6304cd91 6250
4b3a9526
VS
6251 for_each_encoder_on_crtc(dev, crtc, encoder)
6252 encoder->disable(encoder);
6253
f9b61ff6
DV
6254 drm_crtc_vblank_off(crtc);
6255 assert_vblank_disabled(crtc);
6256
575f7ab7 6257 intel_disable_pipe(intel_crtc);
24a1f16d 6258
87476d63 6259 i9xx_pfit_disable(intel_crtc);
24a1f16d 6260
89b667f8
JB
6261 for_each_encoder_on_crtc(dev, crtc, encoder)
6262 if (encoder->post_disable)
6263 encoder->post_disable(encoder);
6264
a65347ba 6265 if (!intel_crtc->config->has_dsi_encoder) {
076ed3b2
CML
6266 if (IS_CHERRYVIEW(dev))
6267 chv_disable_pll(dev_priv, pipe);
6268 else if (IS_VALLEYVIEW(dev))
6269 vlv_disable_pll(dev_priv, pipe);
6270 else
1c4e0274 6271 i9xx_disable_pll(intel_crtc);
076ed3b2 6272 }
0b8765c6 6273
d6db995f
VS
6274 for_each_encoder_on_crtc(dev, crtc, encoder)
6275 if (encoder->post_pll_disable)
6276 encoder->post_pll_disable(encoder);
6277
4a3436e8 6278 if (!IS_GEN2(dev))
a72e4c9f 6279 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
0b8765c6
JB
6280}
6281
b17d48e2
ML
6282static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6283{
842e0307 6284 struct intel_encoder *encoder;
b17d48e2
ML
6285 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6286 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6287 enum intel_display_power_domain domain;
6288 unsigned long domains;
6289
6290 if (!intel_crtc->active)
6291 return;
6292
a539205a 6293 if (to_intel_plane_state(crtc->primary->state)->visible) {
fc32b1fd
ML
6294 WARN_ON(intel_crtc->unpin_work);
6295
2622a081 6296 intel_pre_disable_primary_noatomic(crtc);
54a41961
ML
6297
6298 intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
6299 to_intel_plane_state(crtc->primary->state)->visible = false;
a539205a
ML
6300 }
6301
b17d48e2 6302 dev_priv->display.crtc_disable(crtc);
842e0307
ML
6303
6304 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was enabled, now disabled\n",
6305 crtc->base.id);
6306
6307 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->state, NULL) < 0);
6308 crtc->state->active = false;
37d9078b 6309 intel_crtc->active = false;
842e0307
ML
6310 crtc->enabled = false;
6311 crtc->state->connector_mask = 0;
6312 crtc->state->encoder_mask = 0;
6313
6314 for_each_encoder_on_crtc(crtc->dev, crtc, encoder)
6315 encoder->base.crtc = NULL;
6316
58f9c0bc 6317 intel_fbc_disable(intel_crtc);
37d9078b 6318 intel_update_watermarks(crtc);
1f7457b1 6319 intel_disable_shared_dpll(intel_crtc);
b17d48e2
ML
6320
6321 domains = intel_crtc->enabled_power_domains;
6322 for_each_power_domain(domain, domains)
6323 intel_display_power_put(dev_priv, domain);
6324 intel_crtc->enabled_power_domains = 0;
565602d7
ML
6325
6326 dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe);
6327 dev_priv->min_pixclk[intel_crtc->pipe] = 0;
b17d48e2
ML
6328}
6329
6b72d486
ML
6330/*
6331 * turn all crtc's off, but do not adjust state
6332 * This has to be paired with a call to intel_modeset_setup_hw_state.
6333 */
70e0bd74 6334int intel_display_suspend(struct drm_device *dev)
ee7b9f93 6335{
e2c8b870 6336 struct drm_i915_private *dev_priv = to_i915(dev);
70e0bd74 6337 struct drm_atomic_state *state;
e2c8b870 6338 int ret;
70e0bd74 6339
e2c8b870
ML
6340 state = drm_atomic_helper_suspend(dev);
6341 ret = PTR_ERR_OR_ZERO(state);
70e0bd74
ML
6342 if (ret)
6343 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
e2c8b870
ML
6344 else
6345 dev_priv->modeset_restore_state = state;
70e0bd74 6346 return ret;
ee7b9f93
JB
6347}
6348
ea5b213a 6349void intel_encoder_destroy(struct drm_encoder *encoder)
7e7d76c3 6350{
4ef69c7a 6351 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 6352
ea5b213a
CW
6353 drm_encoder_cleanup(encoder);
6354 kfree(intel_encoder);
7e7d76c3
JB
6355}
6356
0a91ca29
DV
6357/* Cross check the actual hw state with our own modeset state tracking (and it's
6358 * internal consistency). */
b980514c 6359static void intel_connector_check_state(struct intel_connector *connector)
79e53945 6360{
35dd3c64
ML
6361 struct drm_crtc *crtc = connector->base.state->crtc;
6362
6363 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6364 connector->base.base.id,
6365 connector->base.name);
6366
0a91ca29 6367 if (connector->get_hw_state(connector)) {
e85376cb 6368 struct intel_encoder *encoder = connector->encoder;
35dd3c64 6369 struct drm_connector_state *conn_state = connector->base.state;
0a91ca29 6370
35dd3c64
ML
6371 I915_STATE_WARN(!crtc,
6372 "connector enabled without attached crtc\n");
0a91ca29 6373
35dd3c64
ML
6374 if (!crtc)
6375 return;
6376
6377 I915_STATE_WARN(!crtc->state->active,
6378 "connector is active, but attached crtc isn't\n");
6379
e85376cb 6380 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
35dd3c64
ML
6381 return;
6382
e85376cb 6383 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
35dd3c64
ML
6384 "atomic encoder doesn't match attached encoder\n");
6385
e85376cb 6386 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
35dd3c64
ML
6387 "attached encoder crtc differs from connector crtc\n");
6388 } else {
4d688a2a
ML
6389 I915_STATE_WARN(crtc && crtc->state->active,
6390 "attached crtc is active, but connector isn't\n");
35dd3c64
ML
6391 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
6392 "best encoder set without crtc!\n");
0a91ca29 6393 }
79e53945
JB
6394}
6395
08d9bc92
ACO
6396int intel_connector_init(struct intel_connector *connector)
6397{
5350a031 6398 drm_atomic_helper_connector_reset(&connector->base);
08d9bc92 6399
5350a031 6400 if (!connector->base.state)
08d9bc92
ACO
6401 return -ENOMEM;
6402
08d9bc92
ACO
6403 return 0;
6404}
6405
6406struct intel_connector *intel_connector_alloc(void)
6407{
6408 struct intel_connector *connector;
6409
6410 connector = kzalloc(sizeof *connector, GFP_KERNEL);
6411 if (!connector)
6412 return NULL;
6413
6414 if (intel_connector_init(connector) < 0) {
6415 kfree(connector);
6416 return NULL;
6417 }
6418
6419 return connector;
6420}
6421
f0947c37
DV
6422/* Simple connector->get_hw_state implementation for encoders that support only
6423 * one connector and no cloning and hence the encoder state determines the state
6424 * of the connector. */
6425bool intel_connector_get_hw_state(struct intel_connector *connector)
ea5b213a 6426{
24929352 6427 enum pipe pipe = 0;
f0947c37 6428 struct intel_encoder *encoder = connector->encoder;
ea5b213a 6429
f0947c37 6430 return encoder->get_hw_state(encoder, &pipe);
ea5b213a
CW
6431}
6432
6d293983 6433static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
d272ddfa 6434{
6d293983
ACO
6435 if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6436 return crtc_state->fdi_lanes;
d272ddfa
VS
6437
6438 return 0;
6439}
6440
6d293983 6441static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5cec258b 6442 struct intel_crtc_state *pipe_config)
1857e1da 6443{
6d293983
ACO
6444 struct drm_atomic_state *state = pipe_config->base.state;
6445 struct intel_crtc *other_crtc;
6446 struct intel_crtc_state *other_crtc_state;
6447
1857e1da
DV
6448 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6449 pipe_name(pipe), pipe_config->fdi_lanes);
6450 if (pipe_config->fdi_lanes > 4) {
6451 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6452 pipe_name(pipe), pipe_config->fdi_lanes);
6d293983 6453 return -EINVAL;
1857e1da
DV
6454 }
6455
bafb6553 6456 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1857e1da
DV
6457 if (pipe_config->fdi_lanes > 2) {
6458 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6459 pipe_config->fdi_lanes);
6d293983 6460 return -EINVAL;
1857e1da 6461 } else {
6d293983 6462 return 0;
1857e1da
DV
6463 }
6464 }
6465
6466 if (INTEL_INFO(dev)->num_pipes == 2)
6d293983 6467 return 0;
1857e1da
DV
6468
6469 /* Ivybridge 3 pipe is really complicated */
6470 switch (pipe) {
6471 case PIPE_A:
6d293983 6472 return 0;
1857e1da 6473 case PIPE_B:
6d293983
ACO
6474 if (pipe_config->fdi_lanes <= 2)
6475 return 0;
6476
6477 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6478 other_crtc_state =
6479 intel_atomic_get_crtc_state(state, other_crtc);
6480 if (IS_ERR(other_crtc_state))
6481 return PTR_ERR(other_crtc_state);
6482
6483 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
1857e1da
DV
6484 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6485 pipe_name(pipe), pipe_config->fdi_lanes);
6d293983 6486 return -EINVAL;
1857e1da 6487 }
6d293983 6488 return 0;
1857e1da 6489 case PIPE_C:
251cc67c
VS
6490 if (pipe_config->fdi_lanes > 2) {
6491 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6492 pipe_name(pipe), pipe_config->fdi_lanes);
6d293983 6493 return -EINVAL;
251cc67c 6494 }
6d293983
ACO
6495
6496 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6497 other_crtc_state =
6498 intel_atomic_get_crtc_state(state, other_crtc);
6499 if (IS_ERR(other_crtc_state))
6500 return PTR_ERR(other_crtc_state);
6501
6502 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
1857e1da 6503 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6d293983 6504 return -EINVAL;
1857e1da 6505 }
6d293983 6506 return 0;
1857e1da
DV
6507 default:
6508 BUG();
6509 }
6510}
6511
e29c22c0
DV
6512#define RETRY 1
6513static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5cec258b 6514 struct intel_crtc_state *pipe_config)
877d48d5 6515{
1857e1da 6516 struct drm_device *dev = intel_crtc->base.dev;
7c5f93b0 6517 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6d293983
ACO
6518 int lane, link_bw, fdi_dotclock, ret;
6519 bool needs_recompute = false;
877d48d5 6520
e29c22c0 6521retry:
877d48d5
DV
6522 /* FDI is a binary signal running at ~2.7GHz, encoding
6523 * each output octet as 10 bits. The actual frequency
6524 * is stored as a divider into a 100MHz clock, and the
6525 * mode pixel clock is stored in units of 1KHz.
6526 * Hence the bw of each lane in terms of the mode signal
6527 * is:
6528 */
21a727b3 6529 link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config);
877d48d5 6530
241bfc38 6531 fdi_dotclock = adjusted_mode->crtc_clock;
877d48d5 6532
2bd89a07 6533 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
877d48d5
DV
6534 pipe_config->pipe_bpp);
6535
6536 pipe_config->fdi_lanes = lane;
6537
2bd89a07 6538 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
877d48d5 6539 link_bw, &pipe_config->fdi_m_n);
1857e1da 6540
e3b247da 6541 ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
6d293983 6542 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
e29c22c0
DV
6543 pipe_config->pipe_bpp -= 2*3;
6544 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6545 pipe_config->pipe_bpp);
6546 needs_recompute = true;
6547 pipe_config->bw_constrained = true;
6548
6549 goto retry;
6550 }
6551
6552 if (needs_recompute)
6553 return RETRY;
6554
6d293983 6555 return ret;
877d48d5
DV
6556}
6557
8cfb3407
VS
6558static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6559 struct intel_crtc_state *pipe_config)
6560{
6561 if (pipe_config->pipe_bpp > 24)
6562 return false;
6563
6564 /* HSW can handle pixel rate up to cdclk? */
6565 if (IS_HASWELL(dev_priv->dev))
6566 return true;
6567
6568 /*
b432e5cf
VS
6569 * We compare against max which means we must take
6570 * the increased cdclk requirement into account when
6571 * calculating the new cdclk.
6572 *
6573 * Should measure whether using a lower cdclk w/o IPS
8cfb3407
VS
6574 */
6575 return ilk_pipe_pixel_rate(pipe_config) <=
6576 dev_priv->max_cdclk_freq * 95 / 100;
6577}
6578
42db64ef 6579static void hsw_compute_ips_config(struct intel_crtc *crtc,
5cec258b 6580 struct intel_crtc_state *pipe_config)
42db64ef 6581{
8cfb3407
VS
6582 struct drm_device *dev = crtc->base.dev;
6583 struct drm_i915_private *dev_priv = dev->dev_private;
6584
d330a953 6585 pipe_config->ips_enabled = i915.enable_ips &&
8cfb3407
VS
6586 hsw_crtc_supports_ips(crtc) &&
6587 pipe_config_supports_ips(dev_priv, pipe_config);
42db64ef
PZ
6588}
6589
39acb4aa
VS
6590static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
6591{
6592 const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6593
6594 /* GDG double wide on either pipe, otherwise pipe A only */
6595 return INTEL_INFO(dev_priv)->gen < 4 &&
6596 (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
6597}
6598
a43f6e0f 6599static int intel_crtc_compute_config(struct intel_crtc *crtc,
5cec258b 6600 struct intel_crtc_state *pipe_config)
79e53945 6601{
a43f6e0f 6602 struct drm_device *dev = crtc->base.dev;
8bd31e67 6603 struct drm_i915_private *dev_priv = dev->dev_private;
7c5f93b0 6604 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
89749350 6605
ad3a4479 6606 /* FIXME should check pixel clock limits on all platforms */
cf532bb2 6607 if (INTEL_INFO(dev)->gen < 4) {
39acb4aa 6608 int clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
cf532bb2
VS
6609
6610 /*
39acb4aa 6611 * Enable double wide mode when the dot clock
cf532bb2 6612 * is > 90% of the (display) core speed.
cf532bb2 6613 */
39acb4aa
VS
6614 if (intel_crtc_supports_double_wide(crtc) &&
6615 adjusted_mode->crtc_clock > clock_limit) {
ad3a4479 6616 clock_limit *= 2;
cf532bb2 6617 pipe_config->double_wide = true;
ad3a4479
VS
6618 }
6619
39acb4aa
VS
6620 if (adjusted_mode->crtc_clock > clock_limit) {
6621 DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
6622 adjusted_mode->crtc_clock, clock_limit,
6623 yesno(pipe_config->double_wide));
e29c22c0 6624 return -EINVAL;
39acb4aa 6625 }
2c07245f 6626 }
89749350 6627
1d1d0e27
VS
6628 /*
6629 * Pipe horizontal size must be even in:
6630 * - DVO ganged mode
6631 * - LVDS dual channel mode
6632 * - Double wide pipe
6633 */
a93e255f 6634 if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
1d1d0e27
VS
6635 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6636 pipe_config->pipe_src_w &= ~1;
6637
8693a824
DL
6638 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6639 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
44f46b42
CW
6640 */
6641 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
aad941d5 6642 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
e29c22c0 6643 return -EINVAL;
44f46b42 6644
f5adf94e 6645 if (HAS_IPS(dev))
a43f6e0f
DV
6646 hsw_compute_ips_config(crtc, pipe_config);
6647
877d48d5 6648 if (pipe_config->has_pch_encoder)
a43f6e0f 6649 return ironlake_fdi_compute_config(crtc, pipe_config);
877d48d5 6650
cf5a15be 6651 return 0;
79e53945
JB
6652}
6653
1652d19e
VS
6654static int skylake_get_display_clock_speed(struct drm_device *dev)
6655{
6656 struct drm_i915_private *dev_priv = to_i915(dev);
6657 uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
6658 uint32_t cdctl = I915_READ(CDCLK_CTL);
6659 uint32_t linkrate;
6660
414355a7 6661 if (!(lcpll1 & LCPLL_PLL_ENABLE))
1652d19e 6662 return 24000; /* 24MHz is the cd freq with NSSC ref */
1652d19e
VS
6663
6664 if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
6665 return 540000;
6666
6667 linkrate = (I915_READ(DPLL_CTRL1) &
71cd8423 6668 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
1652d19e 6669
71cd8423
DL
6670 if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
6671 linkrate == DPLL_CTRL1_LINK_RATE_1080) {
1652d19e
VS
6672 /* vco 8640 */
6673 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6674 case CDCLK_FREQ_450_432:
6675 return 432000;
6676 case CDCLK_FREQ_337_308:
6677 return 308570;
6678 case CDCLK_FREQ_675_617:
6679 return 617140;
6680 default:
6681 WARN(1, "Unknown cd freq selection\n");
6682 }
6683 } else {
6684 /* vco 8100 */
6685 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6686 case CDCLK_FREQ_450_432:
6687 return 450000;
6688 case CDCLK_FREQ_337_308:
6689 return 337500;
6690 case CDCLK_FREQ_675_617:
6691 return 675000;
6692 default:
6693 WARN(1, "Unknown cd freq selection\n");
6694 }
6695 }
6696
6697 /* error case, do as if DPLL0 isn't enabled */
6698 return 24000;
6699}
6700
acd3f3d3
BP
6701static int broxton_get_display_clock_speed(struct drm_device *dev)
6702{
6703 struct drm_i915_private *dev_priv = to_i915(dev);
6704 uint32_t cdctl = I915_READ(CDCLK_CTL);
6705 uint32_t pll_ratio = I915_READ(BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK;
6706 uint32_t pll_enab = I915_READ(BXT_DE_PLL_ENABLE);
6707 int cdclk;
6708
6709 if (!(pll_enab & BXT_DE_PLL_PLL_ENABLE))
6710 return 19200;
6711
6712 cdclk = 19200 * pll_ratio / 2;
6713
6714 switch (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) {
6715 case BXT_CDCLK_CD2X_DIV_SEL_1:
6716 return cdclk; /* 576MHz or 624MHz */
6717 case BXT_CDCLK_CD2X_DIV_SEL_1_5:
6718 return cdclk * 2 / 3; /* 384MHz */
6719 case BXT_CDCLK_CD2X_DIV_SEL_2:
6720 return cdclk / 2; /* 288MHz */
6721 case BXT_CDCLK_CD2X_DIV_SEL_4:
6722 return cdclk / 4; /* 144MHz */
6723 }
6724
6725 /* error case, do as if DE PLL isn't enabled */
6726 return 19200;
6727}
6728
1652d19e
VS
6729static int broadwell_get_display_clock_speed(struct drm_device *dev)
6730{
6731 struct drm_i915_private *dev_priv = dev->dev_private;
6732 uint32_t lcpll = I915_READ(LCPLL_CTL);
6733 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6734
6735 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6736 return 800000;
6737 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6738 return 450000;
6739 else if (freq == LCPLL_CLK_FREQ_450)
6740 return 450000;
6741 else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6742 return 540000;
6743 else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6744 return 337500;
6745 else
6746 return 675000;
6747}
6748
6749static int haswell_get_display_clock_speed(struct drm_device *dev)
6750{
6751 struct drm_i915_private *dev_priv = dev->dev_private;
6752 uint32_t lcpll = I915_READ(LCPLL_CTL);
6753 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6754
6755 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6756 return 800000;
6757 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6758 return 450000;
6759 else if (freq == LCPLL_CLK_FREQ_450)
6760 return 450000;
6761 else if (IS_HSW_ULT(dev))
6762 return 337500;
6763 else
6764 return 540000;
79e53945
JB
6765}
6766
25eb05fc
JB
6767static int valleyview_get_display_clock_speed(struct drm_device *dev)
6768{
bfa7df01
VS
6769 return vlv_get_cck_clock_hpll(to_i915(dev), "cdclk",
6770 CCK_DISPLAY_CLOCK_CONTROL);
25eb05fc
JB
6771}
6772
b37a6434
VS
6773static int ilk_get_display_clock_speed(struct drm_device *dev)
6774{
6775 return 450000;
6776}
6777
e70236a8
JB
6778static int i945_get_display_clock_speed(struct drm_device *dev)
6779{
6780 return 400000;
6781}
79e53945 6782
e70236a8 6783static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 6784{
e907f170 6785 return 333333;
e70236a8 6786}
79e53945 6787
e70236a8
JB
6788static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6789{
6790 return 200000;
6791}
79e53945 6792
257a7ffc
DV
6793static int pnv_get_display_clock_speed(struct drm_device *dev)
6794{
6795 u16 gcfgc = 0;
6796
6797 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6798
6799 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6800 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
e907f170 6801 return 266667;
257a7ffc 6802 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
e907f170 6803 return 333333;
257a7ffc 6804 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
e907f170 6805 return 444444;
257a7ffc
DV
6806 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6807 return 200000;
6808 default:
6809 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6810 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
e907f170 6811 return 133333;
257a7ffc 6812 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
e907f170 6813 return 166667;
257a7ffc
DV
6814 }
6815}
6816
e70236a8
JB
6817static int i915gm_get_display_clock_speed(struct drm_device *dev)
6818{
6819 u16 gcfgc = 0;
79e53945 6820
e70236a8
JB
6821 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6822
6823 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
e907f170 6824 return 133333;
e70236a8
JB
6825 else {
6826 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6827 case GC_DISPLAY_CLOCK_333_MHZ:
e907f170 6828 return 333333;
e70236a8
JB
6829 default:
6830 case GC_DISPLAY_CLOCK_190_200_MHZ:
6831 return 190000;
79e53945 6832 }
e70236a8
JB
6833 }
6834}
6835
6836static int i865_get_display_clock_speed(struct drm_device *dev)
6837{
e907f170 6838 return 266667;
e70236a8
JB
6839}
6840
1b1d2716 6841static int i85x_get_display_clock_speed(struct drm_device *dev)
e70236a8
JB
6842{
6843 u16 hpllcc = 0;
1b1d2716 6844
65cd2b3f
VS
6845 /*
6846 * 852GM/852GMV only supports 133 MHz and the HPLLCC
6847 * encoding is different :(
6848 * FIXME is this the right way to detect 852GM/852GMV?
6849 */
6850 if (dev->pdev->revision == 0x1)
6851 return 133333;
6852
1b1d2716
VS
6853 pci_bus_read_config_word(dev->pdev->bus,
6854 PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
6855
e70236a8
JB
6856 /* Assume that the hardware is in the high speed state. This
6857 * should be the default.
6858 */
6859 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6860 case GC_CLOCK_133_200:
1b1d2716 6861 case GC_CLOCK_133_200_2:
e70236a8
JB
6862 case GC_CLOCK_100_200:
6863 return 200000;
6864 case GC_CLOCK_166_250:
6865 return 250000;
6866 case GC_CLOCK_100_133:
e907f170 6867 return 133333;
1b1d2716
VS
6868 case GC_CLOCK_133_266:
6869 case GC_CLOCK_133_266_2:
6870 case GC_CLOCK_166_266:
6871 return 266667;
e70236a8 6872 }
79e53945 6873
e70236a8
JB
6874 /* Shouldn't happen */
6875 return 0;
6876}
79e53945 6877
e70236a8
JB
6878static int i830_get_display_clock_speed(struct drm_device *dev)
6879{
e907f170 6880 return 133333;
79e53945
JB
6881}
6882
34edce2f
VS
6883static unsigned int intel_hpll_vco(struct drm_device *dev)
6884{
6885 struct drm_i915_private *dev_priv = dev->dev_private;
6886 static const unsigned int blb_vco[8] = {
6887 [0] = 3200000,
6888 [1] = 4000000,
6889 [2] = 5333333,
6890 [3] = 4800000,
6891 [4] = 6400000,
6892 };
6893 static const unsigned int pnv_vco[8] = {
6894 [0] = 3200000,
6895 [1] = 4000000,
6896 [2] = 5333333,
6897 [3] = 4800000,
6898 [4] = 2666667,
6899 };
6900 static const unsigned int cl_vco[8] = {
6901 [0] = 3200000,
6902 [1] = 4000000,
6903 [2] = 5333333,
6904 [3] = 6400000,
6905 [4] = 3333333,
6906 [5] = 3566667,
6907 [6] = 4266667,
6908 };
6909 static const unsigned int elk_vco[8] = {
6910 [0] = 3200000,
6911 [1] = 4000000,
6912 [2] = 5333333,
6913 [3] = 4800000,
6914 };
6915 static const unsigned int ctg_vco[8] = {
6916 [0] = 3200000,
6917 [1] = 4000000,
6918 [2] = 5333333,
6919 [3] = 6400000,
6920 [4] = 2666667,
6921 [5] = 4266667,
6922 };
6923 const unsigned int *vco_table;
6924 unsigned int vco;
6925 uint8_t tmp = 0;
6926
6927 /* FIXME other chipsets? */
6928 if (IS_GM45(dev))
6929 vco_table = ctg_vco;
6930 else if (IS_G4X(dev))
6931 vco_table = elk_vco;
6932 else if (IS_CRESTLINE(dev))
6933 vco_table = cl_vco;
6934 else if (IS_PINEVIEW(dev))
6935 vco_table = pnv_vco;
6936 else if (IS_G33(dev))
6937 vco_table = blb_vco;
6938 else
6939 return 0;
6940
6941 tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
6942
6943 vco = vco_table[tmp & 0x7];
6944 if (vco == 0)
6945 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
6946 else
6947 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
6948
6949 return vco;
6950}
6951
6952static int gm45_get_display_clock_speed(struct drm_device *dev)
6953{
6954 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6955 uint16_t tmp = 0;
6956
6957 pci_read_config_word(dev->pdev, GCFGC, &tmp);
6958
6959 cdclk_sel = (tmp >> 12) & 0x1;
6960
6961 switch (vco) {
6962 case 2666667:
6963 case 4000000:
6964 case 5333333:
6965 return cdclk_sel ? 333333 : 222222;
6966 case 3200000:
6967 return cdclk_sel ? 320000 : 228571;
6968 default:
6969 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
6970 return 222222;
6971 }
6972}
6973
6974static int i965gm_get_display_clock_speed(struct drm_device *dev)
6975{
6976 static const uint8_t div_3200[] = { 16, 10, 8 };
6977 static const uint8_t div_4000[] = { 20, 12, 10 };
6978 static const uint8_t div_5333[] = { 24, 16, 14 };
6979 const uint8_t *div_table;
6980 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6981 uint16_t tmp = 0;
6982
6983 pci_read_config_word(dev->pdev, GCFGC, &tmp);
6984
6985 cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
6986
6987 if (cdclk_sel >= ARRAY_SIZE(div_3200))
6988 goto fail;
6989
6990 switch (vco) {
6991 case 3200000:
6992 div_table = div_3200;
6993 break;
6994 case 4000000:
6995 div_table = div_4000;
6996 break;
6997 case 5333333:
6998 div_table = div_5333;
6999 break;
7000 default:
7001 goto fail;
7002 }
7003
7004 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7005
caf4e252 7006fail:
34edce2f
VS
7007 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
7008 return 200000;
7009}
7010
7011static int g33_get_display_clock_speed(struct drm_device *dev)
7012{
7013 static const uint8_t div_3200[] = { 12, 10, 8, 7, 5, 16 };
7014 static const uint8_t div_4000[] = { 14, 12, 10, 8, 6, 20 };
7015 static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
7016 static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
7017 const uint8_t *div_table;
7018 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7019 uint16_t tmp = 0;
7020
7021 pci_read_config_word(dev->pdev, GCFGC, &tmp);
7022
7023 cdclk_sel = (tmp >> 4) & 0x7;
7024
7025 if (cdclk_sel >= ARRAY_SIZE(div_3200))
7026 goto fail;
7027
7028 switch (vco) {
7029 case 3200000:
7030 div_table = div_3200;
7031 break;
7032 case 4000000:
7033 div_table = div_4000;
7034 break;
7035 case 4800000:
7036 div_table = div_4800;
7037 break;
7038 case 5333333:
7039 div_table = div_5333;
7040 break;
7041 default:
7042 goto fail;
7043 }
7044
7045 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7046
caf4e252 7047fail:
34edce2f
VS
7048 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7049 return 190476;
7050}
7051
2c07245f 7052static void
a65851af 7053intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
2c07245f 7054{
a65851af
VS
7055 while (*num > DATA_LINK_M_N_MASK ||
7056 *den > DATA_LINK_M_N_MASK) {
2c07245f
ZW
7057 *num >>= 1;
7058 *den >>= 1;
7059 }
7060}
7061
a65851af
VS
7062static void compute_m_n(unsigned int m, unsigned int n,
7063 uint32_t *ret_m, uint32_t *ret_n)
7064{
7065 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7066 *ret_m = div_u64((uint64_t) m * *ret_n, n);
7067 intel_reduce_m_n_ratio(ret_m, ret_n);
7068}
7069
e69d0bc1
DV
7070void
7071intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7072 int pixel_clock, int link_clock,
7073 struct intel_link_m_n *m_n)
2c07245f 7074{
e69d0bc1 7075 m_n->tu = 64;
a65851af
VS
7076
7077 compute_m_n(bits_per_pixel * pixel_clock,
7078 link_clock * nlanes * 8,
7079 &m_n->gmch_m, &m_n->gmch_n);
7080
7081 compute_m_n(pixel_clock, link_clock,
7082 &m_n->link_m, &m_n->link_n);
2c07245f
ZW
7083}
7084
a7615030
CW
7085static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7086{
d330a953
JN
7087 if (i915.panel_use_ssc >= 0)
7088 return i915.panel_use_ssc != 0;
41aa3448 7089 return dev_priv->vbt.lvds_use_ssc
435793df 7090 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
7091}
7092
a93e255f
ACO
7093static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
7094 int num_connectors)
c65d77d8 7095{
a93e255f 7096 struct drm_device *dev = crtc_state->base.crtc->dev;
c65d77d8
JB
7097 struct drm_i915_private *dev_priv = dev->dev_private;
7098 int refclk;
7099
a93e255f
ACO
7100 WARN_ON(!crtc_state->base.state);
7101
666a4537 7102 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev) || IS_BROXTON(dev)) {
9a0ea498 7103 refclk = 100000;
a93e255f 7104 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
c65d77d8 7105 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b
VS
7106 refclk = dev_priv->vbt.lvds_ssc_freq;
7107 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
c65d77d8
JB
7108 } else if (!IS_GEN2(dev)) {
7109 refclk = 96000;
7110 } else {
7111 refclk = 48000;
7112 }
7113
7114 return refclk;
7115}
7116
7429e9d4 7117static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
c65d77d8 7118{
7df00d7a 7119 return (1 << dpll->n) << 16 | dpll->m2;
7429e9d4 7120}
f47709a9 7121
7429e9d4
DV
7122static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7123{
7124 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
c65d77d8
JB
7125}
7126
f47709a9 7127static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
190f68c5 7128 struct intel_crtc_state *crtc_state,
a7516a05
JB
7129 intel_clock_t *reduced_clock)
7130{
f47709a9 7131 struct drm_device *dev = crtc->base.dev;
a7516a05
JB
7132 u32 fp, fp2 = 0;
7133
7134 if (IS_PINEVIEW(dev)) {
190f68c5 7135 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
a7516a05 7136 if (reduced_clock)
7429e9d4 7137 fp2 = pnv_dpll_compute_fp(reduced_clock);
a7516a05 7138 } else {
190f68c5 7139 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
a7516a05 7140 if (reduced_clock)
7429e9d4 7141 fp2 = i9xx_dpll_compute_fp(reduced_clock);
a7516a05
JB
7142 }
7143
190f68c5 7144 crtc_state->dpll_hw_state.fp0 = fp;
a7516a05 7145
f47709a9 7146 crtc->lowfreq_avail = false;
a93e255f 7147 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
ab585dea 7148 reduced_clock) {
190f68c5 7149 crtc_state->dpll_hw_state.fp1 = fp2;
f47709a9 7150 crtc->lowfreq_avail = true;
a7516a05 7151 } else {
190f68c5 7152 crtc_state->dpll_hw_state.fp1 = fp;
a7516a05
JB
7153 }
7154}
7155
5e69f97f
CML
7156static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7157 pipe)
89b667f8
JB
7158{
7159 u32 reg_val;
7160
7161 /*
7162 * PLLB opamp always calibrates to max value of 0x3f, force enable it
7163 * and set it to a reasonable value instead.
7164 */
ab3c759a 7165 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8
JB
7166 reg_val &= 0xffffff00;
7167 reg_val |= 0x00000030;
ab3c759a 7168 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 7169
ab3c759a 7170 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
7171 reg_val &= 0x8cffffff;
7172 reg_val = 0x8c000000;
ab3c759a 7173 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8 7174
ab3c759a 7175 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8 7176 reg_val &= 0xffffff00;
ab3c759a 7177 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 7178
ab3c759a 7179 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
7180 reg_val &= 0x00ffffff;
7181 reg_val |= 0xb0000000;
ab3c759a 7182 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8
JB
7183}
7184
b551842d
DV
7185static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7186 struct intel_link_m_n *m_n)
7187{
7188 struct drm_device *dev = crtc->base.dev;
7189 struct drm_i915_private *dev_priv = dev->dev_private;
7190 int pipe = crtc->pipe;
7191
e3b95f1e
DV
7192 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7193 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7194 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7195 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
b551842d
DV
7196}
7197
7198static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
7199 struct intel_link_m_n *m_n,
7200 struct intel_link_m_n *m2_n2)
b551842d
DV
7201{
7202 struct drm_device *dev = crtc->base.dev;
7203 struct drm_i915_private *dev_priv = dev->dev_private;
7204 int pipe = crtc->pipe;
6e3c9717 7205 enum transcoder transcoder = crtc->config->cpu_transcoder;
b551842d
DV
7206
7207 if (INTEL_INFO(dev)->gen >= 5) {
7208 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7209 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7210 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7211 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
f769cd24
VK
7212 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7213 * for gen < 8) and if DRRS is supported (to make sure the
7214 * registers are not unnecessarily accessed).
7215 */
44395bfe 7216 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
6e3c9717 7217 crtc->config->has_drrs) {
f769cd24
VK
7218 I915_WRITE(PIPE_DATA_M2(transcoder),
7219 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7220 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7221 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7222 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7223 }
b551842d 7224 } else {
e3b95f1e
DV
7225 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7226 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7227 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7228 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
b551842d
DV
7229 }
7230}
7231
fe3cd48d 7232void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
03afc4a2 7233{
fe3cd48d
R
7234 struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7235
7236 if (m_n == M1_N1) {
7237 dp_m_n = &crtc->config->dp_m_n;
7238 dp_m2_n2 = &crtc->config->dp_m2_n2;
7239 } else if (m_n == M2_N2) {
7240
7241 /*
7242 * M2_N2 registers are not supported. Hence m2_n2 divider value
7243 * needs to be programmed into M1_N1.
7244 */
7245 dp_m_n = &crtc->config->dp_m2_n2;
7246 } else {
7247 DRM_ERROR("Unsupported divider value\n");
7248 return;
7249 }
7250
6e3c9717
ACO
7251 if (crtc->config->has_pch_encoder)
7252 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
03afc4a2 7253 else
fe3cd48d 7254 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
03afc4a2
DV
7255}
7256
251ac862
DV
7257static void vlv_compute_dpll(struct intel_crtc *crtc,
7258 struct intel_crtc_state *pipe_config)
bdd4b6a6
DV
7259{
7260 u32 dpll, dpll_md;
7261
7262 /*
7263 * Enable DPIO clock input. We should never disable the reference
7264 * clock for pipe B, since VGA hotplug / manual detection depends
7265 * on it.
7266 */
60bfe44f
VS
7267 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REF_CLK_ENABLE_VLV |
7268 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_REF_CLK_VLV;
bdd4b6a6
DV
7269 /* We should never disable this, set it here for state tracking */
7270 if (crtc->pipe == PIPE_B)
7271 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7272 dpll |= DPLL_VCO_ENABLE;
d288f65f 7273 pipe_config->dpll_hw_state.dpll = dpll;
bdd4b6a6 7274
d288f65f 7275 dpll_md = (pipe_config->pixel_multiplier - 1)
bdd4b6a6 7276 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
d288f65f 7277 pipe_config->dpll_hw_state.dpll_md = dpll_md;
bdd4b6a6
DV
7278}
7279
d288f65f 7280static void vlv_prepare_pll(struct intel_crtc *crtc,
5cec258b 7281 const struct intel_crtc_state *pipe_config)
a0c4da24 7282{
f47709a9 7283 struct drm_device *dev = crtc->base.dev;
a0c4da24 7284 struct drm_i915_private *dev_priv = dev->dev_private;
f47709a9 7285 int pipe = crtc->pipe;
bdd4b6a6 7286 u32 mdiv;
a0c4da24 7287 u32 bestn, bestm1, bestm2, bestp1, bestp2;
bdd4b6a6 7288 u32 coreclk, reg_val;
a0c4da24 7289
a580516d 7290 mutex_lock(&dev_priv->sb_lock);
09153000 7291
d288f65f
VS
7292 bestn = pipe_config->dpll.n;
7293 bestm1 = pipe_config->dpll.m1;
7294 bestm2 = pipe_config->dpll.m2;
7295 bestp1 = pipe_config->dpll.p1;
7296 bestp2 = pipe_config->dpll.p2;
a0c4da24 7297
89b667f8
JB
7298 /* See eDP HDMI DPIO driver vbios notes doc */
7299
7300 /* PLL B needs special handling */
bdd4b6a6 7301 if (pipe == PIPE_B)
5e69f97f 7302 vlv_pllb_recal_opamp(dev_priv, pipe);
89b667f8
JB
7303
7304 /* Set up Tx target for periodic Rcomp update */
ab3c759a 7305 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
89b667f8
JB
7306
7307 /* Disable target IRef on PLL */
ab3c759a 7308 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
89b667f8 7309 reg_val &= 0x00ffffff;
ab3c759a 7310 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
89b667f8
JB
7311
7312 /* Disable fast lock */
ab3c759a 7313 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
89b667f8
JB
7314
7315 /* Set idtafcrecal before PLL is enabled */
a0c4da24
JB
7316 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7317 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7318 mdiv |= ((bestn << DPIO_N_SHIFT));
a0c4da24 7319 mdiv |= (1 << DPIO_K_SHIFT);
7df5080b
JB
7320
7321 /*
7322 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7323 * but we don't support that).
7324 * Note: don't use the DAC post divider as it seems unstable.
7325 */
7326 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
ab3c759a 7327 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 7328
a0c4da24 7329 mdiv |= DPIO_ENABLE_CALIBRATION;
ab3c759a 7330 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 7331
89b667f8 7332 /* Set HBR and RBR LPF coefficients */
d288f65f 7333 if (pipe_config->port_clock == 162000 ||
409ee761
ACO
7334 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
7335 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
ab3c759a 7336 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
885b0120 7337 0x009f0003);
89b667f8 7338 else
ab3c759a 7339 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
89b667f8
JB
7340 0x00d0000f);
7341
681a8504 7342 if (pipe_config->has_dp_encoder) {
89b667f8 7343 /* Use SSC source */
bdd4b6a6 7344 if (pipe == PIPE_A)
ab3c759a 7345 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
7346 0x0df40000);
7347 else
ab3c759a 7348 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
7349 0x0df70000);
7350 } else { /* HDMI or VGA */
7351 /* Use bend source */
bdd4b6a6 7352 if (pipe == PIPE_A)
ab3c759a 7353 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
7354 0x0df70000);
7355 else
ab3c759a 7356 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
7357 0x0df40000);
7358 }
a0c4da24 7359
ab3c759a 7360 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
89b667f8 7361 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
409ee761
ACO
7362 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
7363 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
89b667f8 7364 coreclk |= 0x01000000;
ab3c759a 7365 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
a0c4da24 7366
ab3c759a 7367 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
a580516d 7368 mutex_unlock(&dev_priv->sb_lock);
a0c4da24
JB
7369}
7370
251ac862
DV
7371static void chv_compute_dpll(struct intel_crtc *crtc,
7372 struct intel_crtc_state *pipe_config)
1ae0d137 7373{
60bfe44f
VS
7374 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7375 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
1ae0d137
VS
7376 DPLL_VCO_ENABLE;
7377 if (crtc->pipe != PIPE_A)
d288f65f 7378 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
1ae0d137 7379
d288f65f
VS
7380 pipe_config->dpll_hw_state.dpll_md =
7381 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
1ae0d137
VS
7382}
7383
d288f65f 7384static void chv_prepare_pll(struct intel_crtc *crtc,
5cec258b 7385 const struct intel_crtc_state *pipe_config)
9d556c99
CML
7386{
7387 struct drm_device *dev = crtc->base.dev;
7388 struct drm_i915_private *dev_priv = dev->dev_private;
7389 int pipe = crtc->pipe;
f0f59a00 7390 i915_reg_t dpll_reg = DPLL(crtc->pipe);
9d556c99 7391 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9cbe40c1 7392 u32 loopfilter, tribuf_calcntr;
9d556c99 7393 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
a945ce7e 7394 u32 dpio_val;
9cbe40c1 7395 int vco;
9d556c99 7396
d288f65f
VS
7397 bestn = pipe_config->dpll.n;
7398 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7399 bestm1 = pipe_config->dpll.m1;
7400 bestm2 = pipe_config->dpll.m2 >> 22;
7401 bestp1 = pipe_config->dpll.p1;
7402 bestp2 = pipe_config->dpll.p2;
9cbe40c1 7403 vco = pipe_config->dpll.vco;
a945ce7e 7404 dpio_val = 0;
9cbe40c1 7405 loopfilter = 0;
9d556c99
CML
7406
7407 /*
7408 * Enable Refclk and SSC
7409 */
a11b0703 7410 I915_WRITE(dpll_reg,
d288f65f 7411 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
a11b0703 7412
a580516d 7413 mutex_lock(&dev_priv->sb_lock);
9d556c99 7414
9d556c99
CML
7415 /* p1 and p2 divider */
7416 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7417 5 << DPIO_CHV_S1_DIV_SHIFT |
7418 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7419 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7420 1 << DPIO_CHV_K_DIV_SHIFT);
7421
7422 /* Feedback post-divider - m2 */
7423 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7424
7425 /* Feedback refclk divider - n and m1 */
7426 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7427 DPIO_CHV_M1_DIV_BY_2 |
7428 1 << DPIO_CHV_N_DIV_SHIFT);
7429
7430 /* M2 fraction division */
25a25dfc 7431 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
9d556c99
CML
7432
7433 /* M2 fraction division enable */
a945ce7e
VP
7434 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7435 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7436 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7437 if (bestm2_frac)
7438 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7439 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
9d556c99 7440
de3a0fde
VP
7441 /* Program digital lock detect threshold */
7442 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7443 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7444 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7445 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7446 if (!bestm2_frac)
7447 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7448 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7449
9d556c99 7450 /* Loop filter */
9cbe40c1
VP
7451 if (vco == 5400000) {
7452 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7453 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7454 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7455 tribuf_calcntr = 0x9;
7456 } else if (vco <= 6200000) {
7457 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7458 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7459 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7460 tribuf_calcntr = 0x9;
7461 } else if (vco <= 6480000) {
7462 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7463 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7464 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7465 tribuf_calcntr = 0x8;
7466 } else {
7467 /* Not supported. Apply the same limits as in the max case */
7468 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7469 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7470 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7471 tribuf_calcntr = 0;
7472 }
9d556c99
CML
7473 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7474
968040b2 7475 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
9cbe40c1
VP
7476 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7477 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7478 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7479
9d556c99
CML
7480 /* AFC Recal */
7481 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7482 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7483 DPIO_AFC_RECAL);
7484
a580516d 7485 mutex_unlock(&dev_priv->sb_lock);
9d556c99
CML
7486}
7487
d288f65f
VS
7488/**
7489 * vlv_force_pll_on - forcibly enable just the PLL
7490 * @dev_priv: i915 private structure
7491 * @pipe: pipe PLL to enable
7492 * @dpll: PLL configuration
7493 *
7494 * Enable the PLL for @pipe using the supplied @dpll config. To be used
7495 * in cases where we need the PLL enabled even when @pipe is not going to
7496 * be enabled.
7497 */
3f36b937
TU
7498int vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7499 const struct dpll *dpll)
d288f65f
VS
7500{
7501 struct intel_crtc *crtc =
7502 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
3f36b937
TU
7503 struct intel_crtc_state *pipe_config;
7504
7505 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
7506 if (!pipe_config)
7507 return -ENOMEM;
7508
7509 pipe_config->base.crtc = &crtc->base;
7510 pipe_config->pixel_multiplier = 1;
7511 pipe_config->dpll = *dpll;
d288f65f
VS
7512
7513 if (IS_CHERRYVIEW(dev)) {
3f36b937
TU
7514 chv_compute_dpll(crtc, pipe_config);
7515 chv_prepare_pll(crtc, pipe_config);
7516 chv_enable_pll(crtc, pipe_config);
d288f65f 7517 } else {
3f36b937
TU
7518 vlv_compute_dpll(crtc, pipe_config);
7519 vlv_prepare_pll(crtc, pipe_config);
7520 vlv_enable_pll(crtc, pipe_config);
d288f65f 7521 }
3f36b937
TU
7522
7523 kfree(pipe_config);
7524
7525 return 0;
d288f65f
VS
7526}
7527
7528/**
7529 * vlv_force_pll_off - forcibly disable just the PLL
7530 * @dev_priv: i915 private structure
7531 * @pipe: pipe PLL to disable
7532 *
7533 * Disable the PLL for @pipe. To be used in cases where we need
7534 * the PLL enabled even when @pipe is not going to be enabled.
7535 */
7536void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7537{
7538 if (IS_CHERRYVIEW(dev))
7539 chv_disable_pll(to_i915(dev), pipe);
7540 else
7541 vlv_disable_pll(to_i915(dev), pipe);
7542}
7543
251ac862
DV
7544static void i9xx_compute_dpll(struct intel_crtc *crtc,
7545 struct intel_crtc_state *crtc_state,
7546 intel_clock_t *reduced_clock,
7547 int num_connectors)
eb1cbe48 7548{
f47709a9 7549 struct drm_device *dev = crtc->base.dev;
eb1cbe48 7550 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48
DV
7551 u32 dpll;
7552 bool is_sdvo;
190f68c5 7553 struct dpll *clock = &crtc_state->dpll;
eb1cbe48 7554
190f68c5 7555 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
2a8f64ca 7556
a93e255f
ACO
7557 is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7558 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
eb1cbe48
DV
7559
7560 dpll = DPLL_VGA_MODE_DIS;
7561
a93e255f 7562 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
eb1cbe48
DV
7563 dpll |= DPLLB_MODE_LVDS;
7564 else
7565 dpll |= DPLLB_MODE_DAC_SERIAL;
6cc5f341 7566
ef1b460d 7567 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
190f68c5 7568 dpll |= (crtc_state->pixel_multiplier - 1)
198a037f 7569 << SDVO_MULTIPLIER_SHIFT_HIRES;
eb1cbe48 7570 }
198a037f
DV
7571
7572 if (is_sdvo)
4a33e48d 7573 dpll |= DPLL_SDVO_HIGH_SPEED;
198a037f 7574
190f68c5 7575 if (crtc_state->has_dp_encoder)
4a33e48d 7576 dpll |= DPLL_SDVO_HIGH_SPEED;
eb1cbe48
DV
7577
7578 /* compute bitmask from p1 value */
7579 if (IS_PINEVIEW(dev))
7580 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7581 else {
7582 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7583 if (IS_G4X(dev) && reduced_clock)
7584 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7585 }
7586 switch (clock->p2) {
7587 case 5:
7588 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7589 break;
7590 case 7:
7591 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7592 break;
7593 case 10:
7594 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7595 break;
7596 case 14:
7597 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7598 break;
7599 }
7600 if (INTEL_INFO(dev)->gen >= 4)
7601 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7602
190f68c5 7603 if (crtc_state->sdvo_tv_clock)
eb1cbe48 7604 dpll |= PLL_REF_INPUT_TVCLKINBC;
a93e255f 7605 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
7606 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7607 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7608 else
7609 dpll |= PLL_REF_INPUT_DREFCLK;
7610
7611 dpll |= DPLL_VCO_ENABLE;
190f68c5 7612 crtc_state->dpll_hw_state.dpll = dpll;
8bcc2795 7613
eb1cbe48 7614 if (INTEL_INFO(dev)->gen >= 4) {
190f68c5 7615 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
ef1b460d 7616 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
190f68c5 7617 crtc_state->dpll_hw_state.dpll_md = dpll_md;
eb1cbe48
DV
7618 }
7619}
7620
251ac862
DV
7621static void i8xx_compute_dpll(struct intel_crtc *crtc,
7622 struct intel_crtc_state *crtc_state,
7623 intel_clock_t *reduced_clock,
7624 int num_connectors)
eb1cbe48 7625{
f47709a9 7626 struct drm_device *dev = crtc->base.dev;
eb1cbe48 7627 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48 7628 u32 dpll;
190f68c5 7629 struct dpll *clock = &crtc_state->dpll;
eb1cbe48 7630
190f68c5 7631 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
2a8f64ca 7632
eb1cbe48
DV
7633 dpll = DPLL_VGA_MODE_DIS;
7634
a93e255f 7635 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
eb1cbe48
DV
7636 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7637 } else {
7638 if (clock->p1 == 2)
7639 dpll |= PLL_P1_DIVIDE_BY_TWO;
7640 else
7641 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7642 if (clock->p2 == 4)
7643 dpll |= PLL_P2_DIVIDE_BY_4;
7644 }
7645
a93e255f 7646 if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
4a33e48d
DV
7647 dpll |= DPLL_DVO_2X_MODE;
7648
a93e255f 7649 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
7650 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7651 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7652 else
7653 dpll |= PLL_REF_INPUT_DREFCLK;
7654
7655 dpll |= DPLL_VCO_ENABLE;
190f68c5 7656 crtc_state->dpll_hw_state.dpll = dpll;
eb1cbe48
DV
7657}
7658
8a654f3b 7659static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
b0e77b9c
PZ
7660{
7661 struct drm_device *dev = intel_crtc->base.dev;
7662 struct drm_i915_private *dev_priv = dev->dev_private;
7663 enum pipe pipe = intel_crtc->pipe;
6e3c9717 7664 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7c5f93b0 7665 const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
1caea6e9
VS
7666 uint32_t crtc_vtotal, crtc_vblank_end;
7667 int vsyncshift = 0;
4d8a62ea
DV
7668
7669 /* We need to be careful not to changed the adjusted mode, for otherwise
7670 * the hw state checker will get angry at the mismatch. */
7671 crtc_vtotal = adjusted_mode->crtc_vtotal;
7672 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
b0e77b9c 7673
609aeaca 7674 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
b0e77b9c 7675 /* the chip adds 2 halflines automatically */
4d8a62ea
DV
7676 crtc_vtotal -= 1;
7677 crtc_vblank_end -= 1;
609aeaca 7678
409ee761 7679 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
609aeaca
VS
7680 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7681 else
7682 vsyncshift = adjusted_mode->crtc_hsync_start -
7683 adjusted_mode->crtc_htotal / 2;
1caea6e9
VS
7684 if (vsyncshift < 0)
7685 vsyncshift += adjusted_mode->crtc_htotal;
b0e77b9c
PZ
7686 }
7687
7688 if (INTEL_INFO(dev)->gen > 3)
fe2b8f9d 7689 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
b0e77b9c 7690
fe2b8f9d 7691 I915_WRITE(HTOTAL(cpu_transcoder),
b0e77b9c
PZ
7692 (adjusted_mode->crtc_hdisplay - 1) |
7693 ((adjusted_mode->crtc_htotal - 1) << 16));
fe2b8f9d 7694 I915_WRITE(HBLANK(cpu_transcoder),
b0e77b9c
PZ
7695 (adjusted_mode->crtc_hblank_start - 1) |
7696 ((adjusted_mode->crtc_hblank_end - 1) << 16));
fe2b8f9d 7697 I915_WRITE(HSYNC(cpu_transcoder),
b0e77b9c
PZ
7698 (adjusted_mode->crtc_hsync_start - 1) |
7699 ((adjusted_mode->crtc_hsync_end - 1) << 16));
7700
fe2b8f9d 7701 I915_WRITE(VTOTAL(cpu_transcoder),
b0e77b9c 7702 (adjusted_mode->crtc_vdisplay - 1) |
4d8a62ea 7703 ((crtc_vtotal - 1) << 16));
fe2b8f9d 7704 I915_WRITE(VBLANK(cpu_transcoder),
b0e77b9c 7705 (adjusted_mode->crtc_vblank_start - 1) |
4d8a62ea 7706 ((crtc_vblank_end - 1) << 16));
fe2b8f9d 7707 I915_WRITE(VSYNC(cpu_transcoder),
b0e77b9c
PZ
7708 (adjusted_mode->crtc_vsync_start - 1) |
7709 ((adjusted_mode->crtc_vsync_end - 1) << 16));
7710
b5e508d4
PZ
7711 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7712 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7713 * documented on the DDI_FUNC_CTL register description, EDP Input Select
7714 * bits. */
7715 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7716 (pipe == PIPE_B || pipe == PIPE_C))
7717 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7718
b0e77b9c
PZ
7719 /* pipesrc controls the size that is scaled from, which should
7720 * always be the user's requested size.
7721 */
7722 I915_WRITE(PIPESRC(pipe),
6e3c9717
ACO
7723 ((intel_crtc->config->pipe_src_w - 1) << 16) |
7724 (intel_crtc->config->pipe_src_h - 1));
b0e77b9c
PZ
7725}
7726
1bd1bd80 7727static void intel_get_pipe_timings(struct intel_crtc *crtc,
5cec258b 7728 struct intel_crtc_state *pipe_config)
1bd1bd80
DV
7729{
7730 struct drm_device *dev = crtc->base.dev;
7731 struct drm_i915_private *dev_priv = dev->dev_private;
7732 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7733 uint32_t tmp;
7734
7735 tmp = I915_READ(HTOTAL(cpu_transcoder));
2d112de7
ACO
7736 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7737 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 7738 tmp = I915_READ(HBLANK(cpu_transcoder));
2d112de7
ACO
7739 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7740 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 7741 tmp = I915_READ(HSYNC(cpu_transcoder));
2d112de7
ACO
7742 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7743 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80
DV
7744
7745 tmp = I915_READ(VTOTAL(cpu_transcoder));
2d112de7
ACO
7746 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7747 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 7748 tmp = I915_READ(VBLANK(cpu_transcoder));
2d112de7
ACO
7749 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7750 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 7751 tmp = I915_READ(VSYNC(cpu_transcoder));
2d112de7
ACO
7752 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7753 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80
DV
7754
7755 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
2d112de7
ACO
7756 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7757 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7758 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
1bd1bd80
DV
7759 }
7760
7761 tmp = I915_READ(PIPESRC(crtc->pipe));
37327abd
VS
7762 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7763 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7764
2d112de7
ACO
7765 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7766 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
1bd1bd80
DV
7767}
7768
f6a83288 7769void intel_mode_from_pipe_config(struct drm_display_mode *mode,
5cec258b 7770 struct intel_crtc_state *pipe_config)
babea61d 7771{
2d112de7
ACO
7772 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7773 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7774 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7775 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
babea61d 7776
2d112de7
ACO
7777 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7778 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7779 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7780 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
babea61d 7781
2d112de7 7782 mode->flags = pipe_config->base.adjusted_mode.flags;
cd13f5ab 7783 mode->type = DRM_MODE_TYPE_DRIVER;
babea61d 7784
2d112de7
ACO
7785 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7786 mode->flags |= pipe_config->base.adjusted_mode.flags;
cd13f5ab
ML
7787
7788 mode->hsync = drm_mode_hsync(mode);
7789 mode->vrefresh = drm_mode_vrefresh(mode);
7790 drm_mode_set_name(mode);
babea61d
JB
7791}
7792
84b046f3
DV
7793static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7794{
7795 struct drm_device *dev = intel_crtc->base.dev;
7796 struct drm_i915_private *dev_priv = dev->dev_private;
7797 uint32_t pipeconf;
7798
9f11a9e4 7799 pipeconf = 0;
84b046f3 7800
b6b5d049
VS
7801 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7802 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7803 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
67c72a12 7804
6e3c9717 7805 if (intel_crtc->config->double_wide)
cf532bb2 7806 pipeconf |= PIPECONF_DOUBLE_WIDE;
84b046f3 7807
ff9ce46e 7808 /* only g4x and later have fancy bpc/dither controls */
666a4537 7809 if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
ff9ce46e 7810 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6e3c9717 7811 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
ff9ce46e 7812 pipeconf |= PIPECONF_DITHER_EN |
84b046f3 7813 PIPECONF_DITHER_TYPE_SP;
84b046f3 7814
6e3c9717 7815 switch (intel_crtc->config->pipe_bpp) {
ff9ce46e
DV
7816 case 18:
7817 pipeconf |= PIPECONF_6BPC;
7818 break;
7819 case 24:
7820 pipeconf |= PIPECONF_8BPC;
7821 break;
7822 case 30:
7823 pipeconf |= PIPECONF_10BPC;
7824 break;
7825 default:
7826 /* Case prevented by intel_choose_pipe_bpp_dither. */
7827 BUG();
84b046f3
DV
7828 }
7829 }
7830
7831 if (HAS_PIPE_CXSR(dev)) {
7832 if (intel_crtc->lowfreq_avail) {
7833 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7834 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7835 } else {
7836 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
84b046f3
DV
7837 }
7838 }
7839
6e3c9717 7840 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
efc2cfff 7841 if (INTEL_INFO(dev)->gen < 4 ||
409ee761 7842 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
efc2cfff
VS
7843 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7844 else
7845 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7846 } else
84b046f3
DV
7847 pipeconf |= PIPECONF_PROGRESSIVE;
7848
666a4537
WB
7849 if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
7850 intel_crtc->config->limited_color_range)
9f11a9e4 7851 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
9c8e09b7 7852
84b046f3
DV
7853 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7854 POSTING_READ(PIPECONF(intel_crtc->pipe));
7855}
7856
190f68c5
ACO
7857static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7858 struct intel_crtc_state *crtc_state)
79e53945 7859{
c7653199 7860 struct drm_device *dev = crtc->base.dev;
79e53945 7861 struct drm_i915_private *dev_priv = dev->dev_private;
c751ce4f 7862 int refclk, num_connectors = 0;
c329a4ec
DV
7863 intel_clock_t clock;
7864 bool ok;
d4906093 7865 const intel_limit_t *limit;
55bb9992 7866 struct drm_atomic_state *state = crtc_state->base.state;
da3ced29 7867 struct drm_connector *connector;
55bb9992
ACO
7868 struct drm_connector_state *connector_state;
7869 int i;
79e53945 7870
dd3cd74a
ACO
7871 memset(&crtc_state->dpll_hw_state, 0,
7872 sizeof(crtc_state->dpll_hw_state));
7873
a65347ba
JN
7874 if (crtc_state->has_dsi_encoder)
7875 return 0;
43565a06 7876
a65347ba
JN
7877 for_each_connector_in_state(state, connector, connector_state, i) {
7878 if (connector_state->crtc == &crtc->base)
7879 num_connectors++;
79e53945
JB
7880 }
7881
190f68c5 7882 if (!crtc_state->clock_set) {
a93e255f 7883 refclk = i9xx_get_refclk(crtc_state, num_connectors);
79e53945 7884
e9fd1c02
JN
7885 /*
7886 * Returns a set of divisors for the desired target clock with
7887 * the given refclk, or FALSE. The returned values represent
7888 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
7889 * 2) / p1 / p2.
7890 */
a93e255f
ACO
7891 limit = intel_limit(crtc_state, refclk);
7892 ok = dev_priv->display.find_dpll(limit, crtc_state,
190f68c5 7893 crtc_state->port_clock,
e9fd1c02 7894 refclk, NULL, &clock);
f2335330 7895 if (!ok) {
e9fd1c02
JN
7896 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7897 return -EINVAL;
7898 }
79e53945 7899
f2335330 7900 /* Compat-code for transition, will disappear. */
190f68c5
ACO
7901 crtc_state->dpll.n = clock.n;
7902 crtc_state->dpll.m1 = clock.m1;
7903 crtc_state->dpll.m2 = clock.m2;
7904 crtc_state->dpll.p1 = clock.p1;
7905 crtc_state->dpll.p2 = clock.p2;
f47709a9 7906 }
7026d4ac 7907
e9fd1c02 7908 if (IS_GEN2(dev)) {
c329a4ec 7909 i8xx_compute_dpll(crtc, crtc_state, NULL,
251ac862 7910 num_connectors);
9d556c99 7911 } else if (IS_CHERRYVIEW(dev)) {
251ac862 7912 chv_compute_dpll(crtc, crtc_state);
e9fd1c02 7913 } else if (IS_VALLEYVIEW(dev)) {
251ac862 7914 vlv_compute_dpll(crtc, crtc_state);
e9fd1c02 7915 } else {
c329a4ec 7916 i9xx_compute_dpll(crtc, crtc_state, NULL,
251ac862 7917 num_connectors);
e9fd1c02 7918 }
79e53945 7919
c8f7a0db 7920 return 0;
f564048e
EA
7921}
7922
2fa2fe9a 7923static void i9xx_get_pfit_config(struct intel_crtc *crtc,
5cec258b 7924 struct intel_crtc_state *pipe_config)
2fa2fe9a
DV
7925{
7926 struct drm_device *dev = crtc->base.dev;
7927 struct drm_i915_private *dev_priv = dev->dev_private;
7928 uint32_t tmp;
7929
dc9e7dec
VS
7930 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
7931 return;
7932
2fa2fe9a 7933 tmp = I915_READ(PFIT_CONTROL);
06922821
DV
7934 if (!(tmp & PFIT_ENABLE))
7935 return;
2fa2fe9a 7936
06922821 7937 /* Check whether the pfit is attached to our pipe. */
2fa2fe9a
DV
7938 if (INTEL_INFO(dev)->gen < 4) {
7939 if (crtc->pipe != PIPE_B)
7940 return;
2fa2fe9a
DV
7941 } else {
7942 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
7943 return;
7944 }
7945
06922821 7946 pipe_config->gmch_pfit.control = tmp;
2fa2fe9a
DV
7947 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
7948 if (INTEL_INFO(dev)->gen < 5)
7949 pipe_config->gmch_pfit.lvds_border_bits =
7950 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
7951}
7952
acbec814 7953static void vlv_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 7954 struct intel_crtc_state *pipe_config)
acbec814
JB
7955{
7956 struct drm_device *dev = crtc->base.dev;
7957 struct drm_i915_private *dev_priv = dev->dev_private;
7958 int pipe = pipe_config->cpu_transcoder;
7959 intel_clock_t clock;
7960 u32 mdiv;
662c6ecb 7961 int refclk = 100000;
acbec814 7962
f573de5a
SK
7963 /* In case of MIPI DPLL will not even be used */
7964 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
7965 return;
7966
a580516d 7967 mutex_lock(&dev_priv->sb_lock);
ab3c759a 7968 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
a580516d 7969 mutex_unlock(&dev_priv->sb_lock);
acbec814
JB
7970
7971 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
7972 clock.m2 = mdiv & DPIO_M2DIV_MASK;
7973 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
7974 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
7975 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
7976
dccbea3b 7977 pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
acbec814
JB
7978}
7979
5724dbd1
DL
7980static void
7981i9xx_get_initial_plane_config(struct intel_crtc *crtc,
7982 struct intel_initial_plane_config *plane_config)
1ad292b5
JB
7983{
7984 struct drm_device *dev = crtc->base.dev;
7985 struct drm_i915_private *dev_priv = dev->dev_private;
7986 u32 val, base, offset;
7987 int pipe = crtc->pipe, plane = crtc->plane;
7988 int fourcc, pixel_format;
6761dd31 7989 unsigned int aligned_height;
b113d5ee 7990 struct drm_framebuffer *fb;
1b842c89 7991 struct intel_framebuffer *intel_fb;
1ad292b5 7992
42a7b088
DL
7993 val = I915_READ(DSPCNTR(plane));
7994 if (!(val & DISPLAY_PLANE_ENABLE))
7995 return;
7996
d9806c9f 7997 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 7998 if (!intel_fb) {
1ad292b5
JB
7999 DRM_DEBUG_KMS("failed to alloc fb\n");
8000 return;
8001 }
8002
1b842c89
DL
8003 fb = &intel_fb->base;
8004
18c5247e
DV
8005 if (INTEL_INFO(dev)->gen >= 4) {
8006 if (val & DISPPLANE_TILED) {
49af449b 8007 plane_config->tiling = I915_TILING_X;
18c5247e
DV
8008 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8009 }
8010 }
1ad292b5
JB
8011
8012 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
b35d63fa 8013 fourcc = i9xx_format_to_fourcc(pixel_format);
b113d5ee
DL
8014 fb->pixel_format = fourcc;
8015 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
1ad292b5
JB
8016
8017 if (INTEL_INFO(dev)->gen >= 4) {
49af449b 8018 if (plane_config->tiling)
1ad292b5
JB
8019 offset = I915_READ(DSPTILEOFF(plane));
8020 else
8021 offset = I915_READ(DSPLINOFF(plane));
8022 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8023 } else {
8024 base = I915_READ(DSPADDR(plane));
8025 }
8026 plane_config->base = base;
8027
8028 val = I915_READ(PIPESRC(pipe));
b113d5ee
DL
8029 fb->width = ((val >> 16) & 0xfff) + 1;
8030 fb->height = ((val >> 0) & 0xfff) + 1;
1ad292b5
JB
8031
8032 val = I915_READ(DSPSTRIDE(pipe));
b113d5ee 8033 fb->pitches[0] = val & 0xffffffc0;
1ad292b5 8034
b113d5ee 8035 aligned_height = intel_fb_align_height(dev, fb->height,
091df6cb
DV
8036 fb->pixel_format,
8037 fb->modifier[0]);
1ad292b5 8038
f37b5c2b 8039 plane_config->size = fb->pitches[0] * aligned_height;
1ad292b5 8040
2844a921
DL
8041 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8042 pipe_name(pipe), plane, fb->width, fb->height,
8043 fb->bits_per_pixel, base, fb->pitches[0],
8044 plane_config->size);
1ad292b5 8045
2d14030b 8046 plane_config->fb = intel_fb;
1ad292b5
JB
8047}
8048
70b23a98 8049static void chv_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 8050 struct intel_crtc_state *pipe_config)
70b23a98
VS
8051{
8052 struct drm_device *dev = crtc->base.dev;
8053 struct drm_i915_private *dev_priv = dev->dev_private;
8054 int pipe = pipe_config->cpu_transcoder;
8055 enum dpio_channel port = vlv_pipe_to_channel(pipe);
8056 intel_clock_t clock;
0d7b6b11 8057 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
70b23a98
VS
8058 int refclk = 100000;
8059
a580516d 8060 mutex_lock(&dev_priv->sb_lock);
70b23a98
VS
8061 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8062 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8063 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8064 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
0d7b6b11 8065 pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
a580516d 8066 mutex_unlock(&dev_priv->sb_lock);
70b23a98
VS
8067
8068 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
0d7b6b11
ID
8069 clock.m2 = (pll_dw0 & 0xff) << 22;
8070 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8071 clock.m2 |= pll_dw2 & 0x3fffff;
70b23a98
VS
8072 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8073 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8074 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8075
dccbea3b 8076 pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
70b23a98
VS
8077}
8078
0e8ffe1b 8079static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
5cec258b 8080 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
8081{
8082 struct drm_device *dev = crtc->base.dev;
8083 struct drm_i915_private *dev_priv = dev->dev_private;
1729050e 8084 enum intel_display_power_domain power_domain;
0e8ffe1b 8085 uint32_t tmp;
1729050e 8086 bool ret;
0e8ffe1b 8087
1729050e
ID
8088 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
8089 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
b5482bd0
ID
8090 return false;
8091
e143a21c 8092 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8106ddbd 8093 pipe_config->shared_dpll = NULL;
eccb140b 8094
1729050e
ID
8095 ret = false;
8096
0e8ffe1b
DV
8097 tmp = I915_READ(PIPECONF(crtc->pipe));
8098 if (!(tmp & PIPECONF_ENABLE))
1729050e 8099 goto out;
0e8ffe1b 8100
666a4537 8101 if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
42571aef
VS
8102 switch (tmp & PIPECONF_BPC_MASK) {
8103 case PIPECONF_6BPC:
8104 pipe_config->pipe_bpp = 18;
8105 break;
8106 case PIPECONF_8BPC:
8107 pipe_config->pipe_bpp = 24;
8108 break;
8109 case PIPECONF_10BPC:
8110 pipe_config->pipe_bpp = 30;
8111 break;
8112 default:
8113 break;
8114 }
8115 }
8116
666a4537
WB
8117 if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
8118 (tmp & PIPECONF_COLOR_RANGE_SELECT))
b5a9fa09
DV
8119 pipe_config->limited_color_range = true;
8120
282740f7
VS
8121 if (INTEL_INFO(dev)->gen < 4)
8122 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8123
1bd1bd80
DV
8124 intel_get_pipe_timings(crtc, pipe_config);
8125
2fa2fe9a
DV
8126 i9xx_get_pfit_config(crtc, pipe_config);
8127
6c49f241
DV
8128 if (INTEL_INFO(dev)->gen >= 4) {
8129 tmp = I915_READ(DPLL_MD(crtc->pipe));
8130 pipe_config->pixel_multiplier =
8131 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8132 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8bcc2795 8133 pipe_config->dpll_hw_state.dpll_md = tmp;
6c49f241
DV
8134 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8135 tmp = I915_READ(DPLL(crtc->pipe));
8136 pipe_config->pixel_multiplier =
8137 ((tmp & SDVO_MULTIPLIER_MASK)
8138 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8139 } else {
8140 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8141 * port and will be fixed up in the encoder->get_config
8142 * function. */
8143 pipe_config->pixel_multiplier = 1;
8144 }
8bcc2795 8145 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
666a4537 8146 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
1c4e0274
VS
8147 /*
8148 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8149 * on 830. Filter it out here so that we don't
8150 * report errors due to that.
8151 */
8152 if (IS_I830(dev))
8153 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8154
8bcc2795
DV
8155 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8156 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
165e901c
VS
8157 } else {
8158 /* Mask out read-only status bits. */
8159 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8160 DPLL_PORTC_READY_MASK |
8161 DPLL_PORTB_READY_MASK);
8bcc2795 8162 }
6c49f241 8163
70b23a98
VS
8164 if (IS_CHERRYVIEW(dev))
8165 chv_crtc_clock_get(crtc, pipe_config);
8166 else if (IS_VALLEYVIEW(dev))
acbec814
JB
8167 vlv_crtc_clock_get(crtc, pipe_config);
8168 else
8169 i9xx_crtc_clock_get(crtc, pipe_config);
18442d08 8170
0f64614d
VS
8171 /*
8172 * Normally the dotclock is filled in by the encoder .get_config()
8173 * but in case the pipe is enabled w/o any ports we need a sane
8174 * default.
8175 */
8176 pipe_config->base.adjusted_mode.crtc_clock =
8177 pipe_config->port_clock / pipe_config->pixel_multiplier;
8178
1729050e
ID
8179 ret = true;
8180
8181out:
8182 intel_display_power_put(dev_priv, power_domain);
8183
8184 return ret;
0e8ffe1b
DV
8185}
8186
dde86e2d 8187static void ironlake_init_pch_refclk(struct drm_device *dev)
13d83a67
JB
8188{
8189 struct drm_i915_private *dev_priv = dev->dev_private;
13d83a67 8190 struct intel_encoder *encoder;
74cfd7ac 8191 u32 val, final;
13d83a67 8192 bool has_lvds = false;
199e5d79 8193 bool has_cpu_edp = false;
199e5d79 8194 bool has_panel = false;
99eb6a01
KP
8195 bool has_ck505 = false;
8196 bool can_ssc = false;
13d83a67
JB
8197
8198 /* We need to take the global config into account */
b2784e15 8199 for_each_intel_encoder(dev, encoder) {
199e5d79
KP
8200 switch (encoder->type) {
8201 case INTEL_OUTPUT_LVDS:
8202 has_panel = true;
8203 has_lvds = true;
8204 break;
8205 case INTEL_OUTPUT_EDP:
8206 has_panel = true;
2de6905f 8207 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
199e5d79
KP
8208 has_cpu_edp = true;
8209 break;
6847d71b
PZ
8210 default:
8211 break;
13d83a67
JB
8212 }
8213 }
8214
99eb6a01 8215 if (HAS_PCH_IBX(dev)) {
41aa3448 8216 has_ck505 = dev_priv->vbt.display_clock_mode;
99eb6a01
KP
8217 can_ssc = has_ck505;
8218 } else {
8219 has_ck505 = false;
8220 can_ssc = true;
8221 }
8222
2de6905f
ID
8223 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
8224 has_panel, has_lvds, has_ck505);
13d83a67
JB
8225
8226 /* Ironlake: try to setup display ref clock before DPLL
8227 * enabling. This is only under driver's control after
8228 * PCH B stepping, previous chipset stepping should be
8229 * ignoring this setting.
8230 */
74cfd7ac
CW
8231 val = I915_READ(PCH_DREF_CONTROL);
8232
8233 /* As we must carefully and slowly disable/enable each source in turn,
8234 * compute the final state we want first and check if we need to
8235 * make any changes at all.
8236 */
8237 final = val;
8238 final &= ~DREF_NONSPREAD_SOURCE_MASK;
8239 if (has_ck505)
8240 final |= DREF_NONSPREAD_CK505_ENABLE;
8241 else
8242 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8243
8244 final &= ~DREF_SSC_SOURCE_MASK;
8245 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8246 final &= ~DREF_SSC1_ENABLE;
8247
8248 if (has_panel) {
8249 final |= DREF_SSC_SOURCE_ENABLE;
8250
8251 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8252 final |= DREF_SSC1_ENABLE;
8253
8254 if (has_cpu_edp) {
8255 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8256 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8257 else
8258 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8259 } else
8260 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8261 } else {
8262 final |= DREF_SSC_SOURCE_DISABLE;
8263 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8264 }
8265
8266 if (final == val)
8267 return;
8268
13d83a67 8269 /* Always enable nonspread source */
74cfd7ac 8270 val &= ~DREF_NONSPREAD_SOURCE_MASK;
13d83a67 8271
99eb6a01 8272 if (has_ck505)
74cfd7ac 8273 val |= DREF_NONSPREAD_CK505_ENABLE;
99eb6a01 8274 else
74cfd7ac 8275 val |= DREF_NONSPREAD_SOURCE_ENABLE;
13d83a67 8276
199e5d79 8277 if (has_panel) {
74cfd7ac
CW
8278 val &= ~DREF_SSC_SOURCE_MASK;
8279 val |= DREF_SSC_SOURCE_ENABLE;
13d83a67 8280
199e5d79 8281 /* SSC must be turned on before enabling the CPU output */
99eb6a01 8282 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 8283 DRM_DEBUG_KMS("Using SSC on panel\n");
74cfd7ac 8284 val |= DREF_SSC1_ENABLE;
e77166b5 8285 } else
74cfd7ac 8286 val &= ~DREF_SSC1_ENABLE;
199e5d79
KP
8287
8288 /* Get SSC going before enabling the outputs */
74cfd7ac 8289 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
8290 POSTING_READ(PCH_DREF_CONTROL);
8291 udelay(200);
8292
74cfd7ac 8293 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
13d83a67
JB
8294
8295 /* Enable CPU source on CPU attached eDP */
199e5d79 8296 if (has_cpu_edp) {
99eb6a01 8297 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 8298 DRM_DEBUG_KMS("Using SSC on eDP\n");
74cfd7ac 8299 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
eba905b2 8300 } else
74cfd7ac 8301 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
199e5d79 8302 } else
74cfd7ac 8303 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 8304
74cfd7ac 8305 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
8306 POSTING_READ(PCH_DREF_CONTROL);
8307 udelay(200);
8308 } else {
8309 DRM_DEBUG_KMS("Disabling SSC entirely\n");
8310
74cfd7ac 8311 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
199e5d79
KP
8312
8313 /* Turn off CPU output */
74cfd7ac 8314 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 8315
74cfd7ac 8316 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
8317 POSTING_READ(PCH_DREF_CONTROL);
8318 udelay(200);
8319
8320 /* Turn off the SSC source */
74cfd7ac
CW
8321 val &= ~DREF_SSC_SOURCE_MASK;
8322 val |= DREF_SSC_SOURCE_DISABLE;
199e5d79
KP
8323
8324 /* Turn off SSC1 */
74cfd7ac 8325 val &= ~DREF_SSC1_ENABLE;
199e5d79 8326
74cfd7ac 8327 I915_WRITE(PCH_DREF_CONTROL, val);
13d83a67
JB
8328 POSTING_READ(PCH_DREF_CONTROL);
8329 udelay(200);
8330 }
74cfd7ac
CW
8331
8332 BUG_ON(val != final);
13d83a67
JB
8333}
8334
f31f2d55 8335static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
dde86e2d 8336{
f31f2d55 8337 uint32_t tmp;
dde86e2d 8338
0ff066a9
PZ
8339 tmp = I915_READ(SOUTH_CHICKEN2);
8340 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8341 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 8342
0ff066a9
PZ
8343 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
8344 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8345 DRM_ERROR("FDI mPHY reset assert timeout\n");
dde86e2d 8346
0ff066a9
PZ
8347 tmp = I915_READ(SOUTH_CHICKEN2);
8348 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8349 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 8350
0ff066a9
PZ
8351 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
8352 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8353 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
f31f2d55
PZ
8354}
8355
8356/* WaMPhyProgramming:hsw */
8357static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8358{
8359 uint32_t tmp;
dde86e2d
PZ
8360
8361 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8362 tmp &= ~(0xFF << 24);
8363 tmp |= (0x12 << 24);
8364 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8365
dde86e2d
PZ
8366 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8367 tmp |= (1 << 11);
8368 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8369
8370 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8371 tmp |= (1 << 11);
8372 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8373
dde86e2d
PZ
8374 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8375 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8376 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8377
8378 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8379 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8380 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8381
0ff066a9
PZ
8382 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8383 tmp &= ~(7 << 13);
8384 tmp |= (5 << 13);
8385 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
dde86e2d 8386
0ff066a9
PZ
8387 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8388 tmp &= ~(7 << 13);
8389 tmp |= (5 << 13);
8390 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
dde86e2d
PZ
8391
8392 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8393 tmp &= ~0xFF;
8394 tmp |= 0x1C;
8395 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8396
8397 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8398 tmp &= ~0xFF;
8399 tmp |= 0x1C;
8400 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8401
8402 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8403 tmp &= ~(0xFF << 16);
8404 tmp |= (0x1C << 16);
8405 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8406
8407 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8408 tmp &= ~(0xFF << 16);
8409 tmp |= (0x1C << 16);
8410 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8411
0ff066a9
PZ
8412 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8413 tmp |= (1 << 27);
8414 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
dde86e2d 8415
0ff066a9
PZ
8416 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8417 tmp |= (1 << 27);
8418 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
dde86e2d 8419
0ff066a9
PZ
8420 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8421 tmp &= ~(0xF << 28);
8422 tmp |= (4 << 28);
8423 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
dde86e2d 8424
0ff066a9
PZ
8425 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8426 tmp &= ~(0xF << 28);
8427 tmp |= (4 << 28);
8428 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
f31f2d55
PZ
8429}
8430
2fa86a1f
PZ
8431/* Implements 3 different sequences from BSpec chapter "Display iCLK
8432 * Programming" based on the parameters passed:
8433 * - Sequence to enable CLKOUT_DP
8434 * - Sequence to enable CLKOUT_DP without spread
8435 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8436 */
8437static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8438 bool with_fdi)
f31f2d55
PZ
8439{
8440 struct drm_i915_private *dev_priv = dev->dev_private;
2fa86a1f
PZ
8441 uint32_t reg, tmp;
8442
8443 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8444 with_spread = true;
c2699524 8445 if (WARN(HAS_PCH_LPT_LP(dev) && with_fdi, "LP PCH doesn't have FDI\n"))
2fa86a1f 8446 with_fdi = false;
f31f2d55 8447
a580516d 8448 mutex_lock(&dev_priv->sb_lock);
f31f2d55
PZ
8449
8450 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8451 tmp &= ~SBI_SSCCTL_DISABLE;
8452 tmp |= SBI_SSCCTL_PATHALT;
8453 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8454
8455 udelay(24);
8456
2fa86a1f
PZ
8457 if (with_spread) {
8458 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8459 tmp &= ~SBI_SSCCTL_PATHALT;
8460 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
f31f2d55 8461
2fa86a1f
PZ
8462 if (with_fdi) {
8463 lpt_reset_fdi_mphy(dev_priv);
8464 lpt_program_fdi_mphy(dev_priv);
8465 }
8466 }
dde86e2d 8467
c2699524 8468 reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
2fa86a1f
PZ
8469 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8470 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8471 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
c00db246 8472
a580516d 8473 mutex_unlock(&dev_priv->sb_lock);
dde86e2d
PZ
8474}
8475
47701c3b
PZ
8476/* Sequence to disable CLKOUT_DP */
8477static void lpt_disable_clkout_dp(struct drm_device *dev)
8478{
8479 struct drm_i915_private *dev_priv = dev->dev_private;
8480 uint32_t reg, tmp;
8481
a580516d 8482 mutex_lock(&dev_priv->sb_lock);
47701c3b 8483
c2699524 8484 reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
47701c3b
PZ
8485 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8486 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8487 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8488
8489 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8490 if (!(tmp & SBI_SSCCTL_DISABLE)) {
8491 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8492 tmp |= SBI_SSCCTL_PATHALT;
8493 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8494 udelay(32);
8495 }
8496 tmp |= SBI_SSCCTL_DISABLE;
8497 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8498 }
8499
a580516d 8500 mutex_unlock(&dev_priv->sb_lock);
47701c3b
PZ
8501}
8502
f7be2c21
VS
8503#define BEND_IDX(steps) ((50 + (steps)) / 5)
8504
8505static const uint16_t sscdivintphase[] = {
8506 [BEND_IDX( 50)] = 0x3B23,
8507 [BEND_IDX( 45)] = 0x3B23,
8508 [BEND_IDX( 40)] = 0x3C23,
8509 [BEND_IDX( 35)] = 0x3C23,
8510 [BEND_IDX( 30)] = 0x3D23,
8511 [BEND_IDX( 25)] = 0x3D23,
8512 [BEND_IDX( 20)] = 0x3E23,
8513 [BEND_IDX( 15)] = 0x3E23,
8514 [BEND_IDX( 10)] = 0x3F23,
8515 [BEND_IDX( 5)] = 0x3F23,
8516 [BEND_IDX( 0)] = 0x0025,
8517 [BEND_IDX( -5)] = 0x0025,
8518 [BEND_IDX(-10)] = 0x0125,
8519 [BEND_IDX(-15)] = 0x0125,
8520 [BEND_IDX(-20)] = 0x0225,
8521 [BEND_IDX(-25)] = 0x0225,
8522 [BEND_IDX(-30)] = 0x0325,
8523 [BEND_IDX(-35)] = 0x0325,
8524 [BEND_IDX(-40)] = 0x0425,
8525 [BEND_IDX(-45)] = 0x0425,
8526 [BEND_IDX(-50)] = 0x0525,
8527};
8528
8529/*
8530 * Bend CLKOUT_DP
8531 * steps -50 to 50 inclusive, in steps of 5
8532 * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
8533 * change in clock period = -(steps / 10) * 5.787 ps
8534 */
8535static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
8536{
8537 uint32_t tmp;
8538 int idx = BEND_IDX(steps);
8539
8540 if (WARN_ON(steps % 5 != 0))
8541 return;
8542
8543 if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
8544 return;
8545
8546 mutex_lock(&dev_priv->sb_lock);
8547
8548 if (steps % 10 != 0)
8549 tmp = 0xAAAAAAAB;
8550 else
8551 tmp = 0x00000000;
8552 intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
8553
8554 tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
8555 tmp &= 0xffff0000;
8556 tmp |= sscdivintphase[idx];
8557 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
8558
8559 mutex_unlock(&dev_priv->sb_lock);
8560}
8561
8562#undef BEND_IDX
8563
bf8fa3d3
PZ
8564static void lpt_init_pch_refclk(struct drm_device *dev)
8565{
bf8fa3d3
PZ
8566 struct intel_encoder *encoder;
8567 bool has_vga = false;
8568
b2784e15 8569 for_each_intel_encoder(dev, encoder) {
bf8fa3d3
PZ
8570 switch (encoder->type) {
8571 case INTEL_OUTPUT_ANALOG:
8572 has_vga = true;
8573 break;
6847d71b
PZ
8574 default:
8575 break;
bf8fa3d3
PZ
8576 }
8577 }
8578
f7be2c21
VS
8579 if (has_vga) {
8580 lpt_bend_clkout_dp(to_i915(dev), 0);
47701c3b 8581 lpt_enable_clkout_dp(dev, true, true);
f7be2c21 8582 } else {
47701c3b 8583 lpt_disable_clkout_dp(dev);
f7be2c21 8584 }
bf8fa3d3
PZ
8585}
8586
dde86e2d
PZ
8587/*
8588 * Initialize reference clocks when the driver loads
8589 */
8590void intel_init_pch_refclk(struct drm_device *dev)
8591{
8592 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8593 ironlake_init_pch_refclk(dev);
8594 else if (HAS_PCH_LPT(dev))
8595 lpt_init_pch_refclk(dev);
8596}
8597
55bb9992 8598static int ironlake_get_refclk(struct intel_crtc_state *crtc_state)
d9d444cb 8599{
55bb9992 8600 struct drm_device *dev = crtc_state->base.crtc->dev;
d9d444cb 8601 struct drm_i915_private *dev_priv = dev->dev_private;
55bb9992 8602 struct drm_atomic_state *state = crtc_state->base.state;
da3ced29 8603 struct drm_connector *connector;
55bb9992 8604 struct drm_connector_state *connector_state;
d9d444cb 8605 struct intel_encoder *encoder;
55bb9992 8606 int num_connectors = 0, i;
d9d444cb
JB
8607 bool is_lvds = false;
8608
da3ced29 8609 for_each_connector_in_state(state, connector, connector_state, i) {
55bb9992
ACO
8610 if (connector_state->crtc != crtc_state->base.crtc)
8611 continue;
8612
8613 encoder = to_intel_encoder(connector_state->best_encoder);
8614
d9d444cb
JB
8615 switch (encoder->type) {
8616 case INTEL_OUTPUT_LVDS:
8617 is_lvds = true;
8618 break;
6847d71b
PZ
8619 default:
8620 break;
d9d444cb
JB
8621 }
8622 num_connectors++;
8623 }
8624
8625 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b 8626 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
41aa3448 8627 dev_priv->vbt.lvds_ssc_freq);
e91e941b 8628 return dev_priv->vbt.lvds_ssc_freq;
d9d444cb
JB
8629 }
8630
8631 return 120000;
8632}
8633
6ff93609 8634static void ironlake_set_pipeconf(struct drm_crtc *crtc)
79e53945 8635{
c8203565 8636 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
79e53945
JB
8637 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8638 int pipe = intel_crtc->pipe;
c8203565
PZ
8639 uint32_t val;
8640
78114071 8641 val = 0;
c8203565 8642
6e3c9717 8643 switch (intel_crtc->config->pipe_bpp) {
c8203565 8644 case 18:
dfd07d72 8645 val |= PIPECONF_6BPC;
c8203565
PZ
8646 break;
8647 case 24:
dfd07d72 8648 val |= PIPECONF_8BPC;
c8203565
PZ
8649 break;
8650 case 30:
dfd07d72 8651 val |= PIPECONF_10BPC;
c8203565
PZ
8652 break;
8653 case 36:
dfd07d72 8654 val |= PIPECONF_12BPC;
c8203565
PZ
8655 break;
8656 default:
cc769b62
PZ
8657 /* Case prevented by intel_choose_pipe_bpp_dither. */
8658 BUG();
c8203565
PZ
8659 }
8660
6e3c9717 8661 if (intel_crtc->config->dither)
c8203565
PZ
8662 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8663
6e3c9717 8664 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
c8203565
PZ
8665 val |= PIPECONF_INTERLACED_ILK;
8666 else
8667 val |= PIPECONF_PROGRESSIVE;
8668
6e3c9717 8669 if (intel_crtc->config->limited_color_range)
3685a8f3 8670 val |= PIPECONF_COLOR_RANGE_SELECT;
3685a8f3 8671
c8203565
PZ
8672 I915_WRITE(PIPECONF(pipe), val);
8673 POSTING_READ(PIPECONF(pipe));
8674}
8675
86d3efce
VS
8676/*
8677 * Set up the pipe CSC unit.
8678 *
8679 * Currently only full range RGB to limited range RGB conversion
8680 * is supported, but eventually this should handle various
8681 * RGB<->YCbCr scenarios as well.
8682 */
50f3b016 8683static void intel_set_pipe_csc(struct drm_crtc *crtc)
86d3efce
VS
8684{
8685 struct drm_device *dev = crtc->dev;
8686 struct drm_i915_private *dev_priv = dev->dev_private;
8687 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8688 int pipe = intel_crtc->pipe;
8689 uint16_t coeff = 0x7800; /* 1.0 */
8690
8691 /*
8692 * TODO: Check what kind of values actually come out of the pipe
8693 * with these coeff/postoff values and adjust to get the best
8694 * accuracy. Perhaps we even need to take the bpc value into
8695 * consideration.
8696 */
8697
6e3c9717 8698 if (intel_crtc->config->limited_color_range)
86d3efce
VS
8699 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
8700
8701 /*
8702 * GY/GU and RY/RU should be the other way around according
8703 * to BSpec, but reality doesn't agree. Just set them up in
8704 * a way that results in the correct picture.
8705 */
8706 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
8707 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
8708
8709 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
8710 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
8711
8712 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
8713 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
8714
8715 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
8716 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
8717 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
8718
8719 if (INTEL_INFO(dev)->gen > 6) {
8720 uint16_t postoff = 0;
8721
6e3c9717 8722 if (intel_crtc->config->limited_color_range)
32cf0cb0 8723 postoff = (16 * (1 << 12) / 255) & 0x1fff;
86d3efce
VS
8724
8725 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
8726 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
8727 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
8728
8729 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
8730 } else {
8731 uint32_t mode = CSC_MODE_YUV_TO_RGB;
8732
6e3c9717 8733 if (intel_crtc->config->limited_color_range)
86d3efce
VS
8734 mode |= CSC_BLACK_SCREEN_OFFSET;
8735
8736 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
8737 }
8738}
8739
6ff93609 8740static void haswell_set_pipeconf(struct drm_crtc *crtc)
ee2b0b38 8741{
756f85cf
PZ
8742 struct drm_device *dev = crtc->dev;
8743 struct drm_i915_private *dev_priv = dev->dev_private;
ee2b0b38 8744 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
756f85cf 8745 enum pipe pipe = intel_crtc->pipe;
6e3c9717 8746 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
ee2b0b38
PZ
8747 uint32_t val;
8748
3eff4faa 8749 val = 0;
ee2b0b38 8750
6e3c9717 8751 if (IS_HASWELL(dev) && intel_crtc->config->dither)
ee2b0b38
PZ
8752 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8753
6e3c9717 8754 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
ee2b0b38
PZ
8755 val |= PIPECONF_INTERLACED_ILK;
8756 else
8757 val |= PIPECONF_PROGRESSIVE;
8758
702e7a56
PZ
8759 I915_WRITE(PIPECONF(cpu_transcoder), val);
8760 POSTING_READ(PIPECONF(cpu_transcoder));
3eff4faa
DV
8761
8762 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
8763 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
756f85cf 8764
3cdf122c 8765 if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
756f85cf
PZ
8766 val = 0;
8767
6e3c9717 8768 switch (intel_crtc->config->pipe_bpp) {
756f85cf
PZ
8769 case 18:
8770 val |= PIPEMISC_DITHER_6_BPC;
8771 break;
8772 case 24:
8773 val |= PIPEMISC_DITHER_8_BPC;
8774 break;
8775 case 30:
8776 val |= PIPEMISC_DITHER_10_BPC;
8777 break;
8778 case 36:
8779 val |= PIPEMISC_DITHER_12_BPC;
8780 break;
8781 default:
8782 /* Case prevented by pipe_config_set_bpp. */
8783 BUG();
8784 }
8785
6e3c9717 8786 if (intel_crtc->config->dither)
756f85cf
PZ
8787 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8788
8789 I915_WRITE(PIPEMISC(pipe), val);
8790 }
ee2b0b38
PZ
8791}
8792
6591c6e4 8793static bool ironlake_compute_clocks(struct drm_crtc *crtc,
190f68c5 8794 struct intel_crtc_state *crtc_state,
6591c6e4
PZ
8795 intel_clock_t *clock,
8796 bool *has_reduced_clock,
8797 intel_clock_t *reduced_clock)
8798{
8799 struct drm_device *dev = crtc->dev;
8800 struct drm_i915_private *dev_priv = dev->dev_private;
6591c6e4 8801 int refclk;
d4906093 8802 const intel_limit_t *limit;
c329a4ec 8803 bool ret;
79e53945 8804
55bb9992 8805 refclk = ironlake_get_refclk(crtc_state);
79e53945 8806
d4906093
ML
8807 /*
8808 * Returns a set of divisors for the desired target clock with the given
8809 * refclk, or FALSE. The returned values represent the clock equation:
8810 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
8811 */
a93e255f
ACO
8812 limit = intel_limit(crtc_state, refclk);
8813 ret = dev_priv->display.find_dpll(limit, crtc_state,
190f68c5 8814 crtc_state->port_clock,
ee9300bb 8815 refclk, NULL, clock);
6591c6e4
PZ
8816 if (!ret)
8817 return false;
cda4b7d3 8818
6591c6e4
PZ
8819 return true;
8820}
8821
d4b1931c
PZ
8822int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8823{
8824 /*
8825 * Account for spread spectrum to avoid
8826 * oversubscribing the link. Max center spread
8827 * is 2.5%; use 5% for safety's sake.
8828 */
8829 u32 bps = target_clock * bpp * 21 / 20;
619d4d04 8830 return DIV_ROUND_UP(bps, link_bw * 8);
d4b1931c
PZ
8831}
8832
7429e9d4 8833static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6cf86a5e 8834{
7429e9d4 8835 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
f48d8f23
PZ
8836}
8837
de13a2e3 8838static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
190f68c5 8839 struct intel_crtc_state *crtc_state,
7429e9d4 8840 u32 *fp,
9a7c7890 8841 intel_clock_t *reduced_clock, u32 *fp2)
79e53945 8842{
de13a2e3 8843 struct drm_crtc *crtc = &intel_crtc->base;
79e53945
JB
8844 struct drm_device *dev = crtc->dev;
8845 struct drm_i915_private *dev_priv = dev->dev_private;
55bb9992 8846 struct drm_atomic_state *state = crtc_state->base.state;
da3ced29 8847 struct drm_connector *connector;
55bb9992
ACO
8848 struct drm_connector_state *connector_state;
8849 struct intel_encoder *encoder;
de13a2e3 8850 uint32_t dpll;
55bb9992 8851 int factor, num_connectors = 0, i;
09ede541 8852 bool is_lvds = false, is_sdvo = false;
79e53945 8853
da3ced29 8854 for_each_connector_in_state(state, connector, connector_state, i) {
55bb9992
ACO
8855 if (connector_state->crtc != crtc_state->base.crtc)
8856 continue;
8857
8858 encoder = to_intel_encoder(connector_state->best_encoder);
8859
8860 switch (encoder->type) {
79e53945
JB
8861 case INTEL_OUTPUT_LVDS:
8862 is_lvds = true;
8863 break;
8864 case INTEL_OUTPUT_SDVO:
7d57382e 8865 case INTEL_OUTPUT_HDMI:
79e53945 8866 is_sdvo = true;
79e53945 8867 break;
6847d71b
PZ
8868 default:
8869 break;
79e53945 8870 }
43565a06 8871
c751ce4f 8872 num_connectors++;
79e53945 8873 }
79e53945 8874
c1858123 8875 /* Enable autotuning of the PLL clock (if permissible) */
8febb297
EA
8876 factor = 21;
8877 if (is_lvds) {
8878 if ((intel_panel_use_ssc(dev_priv) &&
e91e941b 8879 dev_priv->vbt.lvds_ssc_freq == 100000) ||
f0b44056 8880 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8febb297 8881 factor = 25;
190f68c5 8882 } else if (crtc_state->sdvo_tv_clock)
8febb297 8883 factor = 20;
c1858123 8884
190f68c5 8885 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
7d0ac5b7 8886 *fp |= FP_CB_TUNE;
2c07245f 8887
9a7c7890
DV
8888 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
8889 *fp2 |= FP_CB_TUNE;
8890
5eddb70b 8891 dpll = 0;
2c07245f 8892
a07d6787
EA
8893 if (is_lvds)
8894 dpll |= DPLLB_MODE_LVDS;
8895 else
8896 dpll |= DPLLB_MODE_DAC_SERIAL;
198a037f 8897
190f68c5 8898 dpll |= (crtc_state->pixel_multiplier - 1)
ef1b460d 8899 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
198a037f
DV
8900
8901 if (is_sdvo)
4a33e48d 8902 dpll |= DPLL_SDVO_HIGH_SPEED;
190f68c5 8903 if (crtc_state->has_dp_encoder)
4a33e48d 8904 dpll |= DPLL_SDVO_HIGH_SPEED;
79e53945 8905
a07d6787 8906 /* compute bitmask from p1 value */
190f68c5 8907 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
a07d6787 8908 /* also FPA1 */
190f68c5 8909 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
a07d6787 8910
190f68c5 8911 switch (crtc_state->dpll.p2) {
a07d6787
EA
8912 case 5:
8913 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8914 break;
8915 case 7:
8916 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8917 break;
8918 case 10:
8919 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8920 break;
8921 case 14:
8922 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8923 break;
79e53945
JB
8924 }
8925
b4c09f3b 8926 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 8927 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
8928 else
8929 dpll |= PLL_REF_INPUT_DREFCLK;
8930
959e16d6 8931 return dpll | DPLL_VCO_ENABLE;
de13a2e3
PZ
8932}
8933
190f68c5
ACO
8934static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8935 struct intel_crtc_state *crtc_state)
de13a2e3 8936{
c7653199 8937 struct drm_device *dev = crtc->base.dev;
de13a2e3 8938 intel_clock_t clock, reduced_clock;
cbbab5bd 8939 u32 dpll = 0, fp = 0, fp2 = 0;
e2f12b07 8940 bool ok, has_reduced_clock = false;
8b47047b 8941 bool is_lvds = false;
e2b78267 8942 struct intel_shared_dpll *pll;
de13a2e3 8943
dd3cd74a
ACO
8944 memset(&crtc_state->dpll_hw_state, 0,
8945 sizeof(crtc_state->dpll_hw_state));
8946
7905df29 8947 is_lvds = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS);
79e53945 8948
5dc5298b
PZ
8949 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
8950 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
a07d6787 8951
190f68c5 8952 ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
de13a2e3 8953 &has_reduced_clock, &reduced_clock);
190f68c5 8954 if (!ok && !crtc_state->clock_set) {
de13a2e3
PZ
8955 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8956 return -EINVAL;
79e53945 8957 }
f47709a9 8958 /* Compat-code for transition, will disappear. */
190f68c5
ACO
8959 if (!crtc_state->clock_set) {
8960 crtc_state->dpll.n = clock.n;
8961 crtc_state->dpll.m1 = clock.m1;
8962 crtc_state->dpll.m2 = clock.m2;
8963 crtc_state->dpll.p1 = clock.p1;
8964 crtc_state->dpll.p2 = clock.p2;
f47709a9 8965 }
79e53945 8966
5dc5298b 8967 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
190f68c5
ACO
8968 if (crtc_state->has_pch_encoder) {
8969 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
cbbab5bd 8970 if (has_reduced_clock)
7429e9d4 8971 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
cbbab5bd 8972
190f68c5 8973 dpll = ironlake_compute_dpll(crtc, crtc_state,
cbbab5bd
DV
8974 &fp, &reduced_clock,
8975 has_reduced_clock ? &fp2 : NULL);
8976
190f68c5
ACO
8977 crtc_state->dpll_hw_state.dpll = dpll;
8978 crtc_state->dpll_hw_state.fp0 = fp;
66e985c0 8979 if (has_reduced_clock)
190f68c5 8980 crtc_state->dpll_hw_state.fp1 = fp2;
66e985c0 8981 else
190f68c5 8982 crtc_state->dpll_hw_state.fp1 = fp;
66e985c0 8983
daedf20a 8984 pll = intel_get_shared_dpll(crtc, crtc_state, NULL);
ee7b9f93 8985 if (pll == NULL) {
84f44ce7 8986 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
c7653199 8987 pipe_name(crtc->pipe));
4b645f14
JB
8988 return -EINVAL;
8989 }
3fb37703 8990 }
79e53945 8991
ab585dea 8992 if (is_lvds && has_reduced_clock)
c7653199 8993 crtc->lowfreq_avail = true;
bcd644e0 8994 else
c7653199 8995 crtc->lowfreq_avail = false;
e2b78267 8996
c8f7a0db 8997 return 0;
79e53945
JB
8998}
8999
eb14cb74
VS
9000static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
9001 struct intel_link_m_n *m_n)
9002{
9003 struct drm_device *dev = crtc->base.dev;
9004 struct drm_i915_private *dev_priv = dev->dev_private;
9005 enum pipe pipe = crtc->pipe;
9006
9007 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
9008 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
9009 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
9010 & ~TU_SIZE_MASK;
9011 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
9012 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
9013 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9014}
9015
9016static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
9017 enum transcoder transcoder,
b95af8be
VK
9018 struct intel_link_m_n *m_n,
9019 struct intel_link_m_n *m2_n2)
72419203
DV
9020{
9021 struct drm_device *dev = crtc->base.dev;
9022 struct drm_i915_private *dev_priv = dev->dev_private;
eb14cb74 9023 enum pipe pipe = crtc->pipe;
72419203 9024
eb14cb74
VS
9025 if (INTEL_INFO(dev)->gen >= 5) {
9026 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
9027 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
9028 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
9029 & ~TU_SIZE_MASK;
9030 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
9031 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
9032 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
b95af8be
VK
9033 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
9034 * gen < 8) and if DRRS is supported (to make sure the
9035 * registers are not unnecessarily read).
9036 */
9037 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
6e3c9717 9038 crtc->config->has_drrs) {
b95af8be
VK
9039 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
9040 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
9041 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
9042 & ~TU_SIZE_MASK;
9043 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
9044 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
9045 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9046 }
eb14cb74
VS
9047 } else {
9048 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
9049 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
9050 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
9051 & ~TU_SIZE_MASK;
9052 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
9053 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9054 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9055 }
9056}
9057
9058void intel_dp_get_m_n(struct intel_crtc *crtc,
5cec258b 9059 struct intel_crtc_state *pipe_config)
eb14cb74 9060{
681a8504 9061 if (pipe_config->has_pch_encoder)
eb14cb74
VS
9062 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9063 else
9064 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be
VK
9065 &pipe_config->dp_m_n,
9066 &pipe_config->dp_m2_n2);
eb14cb74 9067}
72419203 9068
eb14cb74 9069static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
5cec258b 9070 struct intel_crtc_state *pipe_config)
eb14cb74
VS
9071{
9072 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be 9073 &pipe_config->fdi_m_n, NULL);
72419203
DV
9074}
9075
bd2e244f 9076static void skylake_get_pfit_config(struct intel_crtc *crtc,
5cec258b 9077 struct intel_crtc_state *pipe_config)
bd2e244f
JB
9078{
9079 struct drm_device *dev = crtc->base.dev;
9080 struct drm_i915_private *dev_priv = dev->dev_private;
a1b2278e
CK
9081 struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9082 uint32_t ps_ctrl = 0;
9083 int id = -1;
9084 int i;
bd2e244f 9085
a1b2278e
CK
9086 /* find scaler attached to this pipe */
9087 for (i = 0; i < crtc->num_scalers; i++) {
9088 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9089 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9090 id = i;
9091 pipe_config->pch_pfit.enabled = true;
9092 pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9093 pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9094 break;
9095 }
9096 }
bd2e244f 9097
a1b2278e
CK
9098 scaler_state->scaler_id = id;
9099 if (id >= 0) {
9100 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9101 } else {
9102 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
bd2e244f
JB
9103 }
9104}
9105
5724dbd1
DL
9106static void
9107skylake_get_initial_plane_config(struct intel_crtc *crtc,
9108 struct intel_initial_plane_config *plane_config)
bc8d7dff
DL
9109{
9110 struct drm_device *dev = crtc->base.dev;
9111 struct drm_i915_private *dev_priv = dev->dev_private;
40f46283 9112 u32 val, base, offset, stride_mult, tiling;
bc8d7dff
DL
9113 int pipe = crtc->pipe;
9114 int fourcc, pixel_format;
6761dd31 9115 unsigned int aligned_height;
bc8d7dff 9116 struct drm_framebuffer *fb;
1b842c89 9117 struct intel_framebuffer *intel_fb;
bc8d7dff 9118
d9806c9f 9119 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 9120 if (!intel_fb) {
bc8d7dff
DL
9121 DRM_DEBUG_KMS("failed to alloc fb\n");
9122 return;
9123 }
9124
1b842c89
DL
9125 fb = &intel_fb->base;
9126
bc8d7dff 9127 val = I915_READ(PLANE_CTL(pipe, 0));
42a7b088
DL
9128 if (!(val & PLANE_CTL_ENABLE))
9129 goto error;
9130
bc8d7dff
DL
9131 pixel_format = val & PLANE_CTL_FORMAT_MASK;
9132 fourcc = skl_format_to_fourcc(pixel_format,
9133 val & PLANE_CTL_ORDER_RGBX,
9134 val & PLANE_CTL_ALPHA_MASK);
9135 fb->pixel_format = fourcc;
9136 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9137
40f46283
DL
9138 tiling = val & PLANE_CTL_TILED_MASK;
9139 switch (tiling) {
9140 case PLANE_CTL_TILED_LINEAR:
9141 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9142 break;
9143 case PLANE_CTL_TILED_X:
9144 plane_config->tiling = I915_TILING_X;
9145 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9146 break;
9147 case PLANE_CTL_TILED_Y:
9148 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9149 break;
9150 case PLANE_CTL_TILED_YF:
9151 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9152 break;
9153 default:
9154 MISSING_CASE(tiling);
9155 goto error;
9156 }
9157
bc8d7dff
DL
9158 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9159 plane_config->base = base;
9160
9161 offset = I915_READ(PLANE_OFFSET(pipe, 0));
9162
9163 val = I915_READ(PLANE_SIZE(pipe, 0));
9164 fb->height = ((val >> 16) & 0xfff) + 1;
9165 fb->width = ((val >> 0) & 0x1fff) + 1;
9166
9167 val = I915_READ(PLANE_STRIDE(pipe, 0));
7b49f948 9168 stride_mult = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
40f46283 9169 fb->pixel_format);
bc8d7dff
DL
9170 fb->pitches[0] = (val & 0x3ff) * stride_mult;
9171
9172 aligned_height = intel_fb_align_height(dev, fb->height,
091df6cb
DV
9173 fb->pixel_format,
9174 fb->modifier[0]);
bc8d7dff 9175
f37b5c2b 9176 plane_config->size = fb->pitches[0] * aligned_height;
bc8d7dff
DL
9177
9178 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9179 pipe_name(pipe), fb->width, fb->height,
9180 fb->bits_per_pixel, base, fb->pitches[0],
9181 plane_config->size);
9182
2d14030b 9183 plane_config->fb = intel_fb;
bc8d7dff
DL
9184 return;
9185
9186error:
9187 kfree(fb);
9188}
9189
2fa2fe9a 9190static void ironlake_get_pfit_config(struct intel_crtc *crtc,
5cec258b 9191 struct intel_crtc_state *pipe_config)
2fa2fe9a
DV
9192{
9193 struct drm_device *dev = crtc->base.dev;
9194 struct drm_i915_private *dev_priv = dev->dev_private;
9195 uint32_t tmp;
9196
9197 tmp = I915_READ(PF_CTL(crtc->pipe));
9198
9199 if (tmp & PF_ENABLE) {
fd4daa9c 9200 pipe_config->pch_pfit.enabled = true;
2fa2fe9a
DV
9201 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9202 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
cb8b2a30
DV
9203
9204 /* We currently do not free assignements of panel fitters on
9205 * ivb/hsw (since we don't use the higher upscaling modes which
9206 * differentiates them) so just WARN about this case for now. */
9207 if (IS_GEN7(dev)) {
9208 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9209 PF_PIPE_SEL_IVB(crtc->pipe));
9210 }
2fa2fe9a 9211 }
79e53945
JB
9212}
9213
5724dbd1
DL
9214static void
9215ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9216 struct intel_initial_plane_config *plane_config)
4c6baa59
JB
9217{
9218 struct drm_device *dev = crtc->base.dev;
9219 struct drm_i915_private *dev_priv = dev->dev_private;
9220 u32 val, base, offset;
aeee5a49 9221 int pipe = crtc->pipe;
4c6baa59 9222 int fourcc, pixel_format;
6761dd31 9223 unsigned int aligned_height;
b113d5ee 9224 struct drm_framebuffer *fb;
1b842c89 9225 struct intel_framebuffer *intel_fb;
4c6baa59 9226
42a7b088
DL
9227 val = I915_READ(DSPCNTR(pipe));
9228 if (!(val & DISPLAY_PLANE_ENABLE))
9229 return;
9230
d9806c9f 9231 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 9232 if (!intel_fb) {
4c6baa59
JB
9233 DRM_DEBUG_KMS("failed to alloc fb\n");
9234 return;
9235 }
9236
1b842c89
DL
9237 fb = &intel_fb->base;
9238
18c5247e
DV
9239 if (INTEL_INFO(dev)->gen >= 4) {
9240 if (val & DISPPLANE_TILED) {
49af449b 9241 plane_config->tiling = I915_TILING_X;
18c5247e
DV
9242 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9243 }
9244 }
4c6baa59
JB
9245
9246 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
b35d63fa 9247 fourcc = i9xx_format_to_fourcc(pixel_format);
b113d5ee
DL
9248 fb->pixel_format = fourcc;
9249 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
4c6baa59 9250
aeee5a49 9251 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
4c6baa59 9252 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
aeee5a49 9253 offset = I915_READ(DSPOFFSET(pipe));
4c6baa59 9254 } else {
49af449b 9255 if (plane_config->tiling)
aeee5a49 9256 offset = I915_READ(DSPTILEOFF(pipe));
4c6baa59 9257 else
aeee5a49 9258 offset = I915_READ(DSPLINOFF(pipe));
4c6baa59
JB
9259 }
9260 plane_config->base = base;
9261
9262 val = I915_READ(PIPESRC(pipe));
b113d5ee
DL
9263 fb->width = ((val >> 16) & 0xfff) + 1;
9264 fb->height = ((val >> 0) & 0xfff) + 1;
4c6baa59
JB
9265
9266 val = I915_READ(DSPSTRIDE(pipe));
b113d5ee 9267 fb->pitches[0] = val & 0xffffffc0;
4c6baa59 9268
b113d5ee 9269 aligned_height = intel_fb_align_height(dev, fb->height,
091df6cb
DV
9270 fb->pixel_format,
9271 fb->modifier[0]);
4c6baa59 9272
f37b5c2b 9273 plane_config->size = fb->pitches[0] * aligned_height;
4c6baa59 9274
2844a921
DL
9275 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9276 pipe_name(pipe), fb->width, fb->height,
9277 fb->bits_per_pixel, base, fb->pitches[0],
9278 plane_config->size);
b113d5ee 9279
2d14030b 9280 plane_config->fb = intel_fb;
4c6baa59
JB
9281}
9282
0e8ffe1b 9283static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
5cec258b 9284 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
9285{
9286 struct drm_device *dev = crtc->base.dev;
9287 struct drm_i915_private *dev_priv = dev->dev_private;
1729050e 9288 enum intel_display_power_domain power_domain;
0e8ffe1b 9289 uint32_t tmp;
1729050e 9290 bool ret;
0e8ffe1b 9291
1729050e
ID
9292 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9293 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
930e8c9e
PZ
9294 return false;
9295
e143a21c 9296 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8106ddbd 9297 pipe_config->shared_dpll = NULL;
eccb140b 9298
1729050e 9299 ret = false;
0e8ffe1b
DV
9300 tmp = I915_READ(PIPECONF(crtc->pipe));
9301 if (!(tmp & PIPECONF_ENABLE))
1729050e 9302 goto out;
0e8ffe1b 9303
42571aef
VS
9304 switch (tmp & PIPECONF_BPC_MASK) {
9305 case PIPECONF_6BPC:
9306 pipe_config->pipe_bpp = 18;
9307 break;
9308 case PIPECONF_8BPC:
9309 pipe_config->pipe_bpp = 24;
9310 break;
9311 case PIPECONF_10BPC:
9312 pipe_config->pipe_bpp = 30;
9313 break;
9314 case PIPECONF_12BPC:
9315 pipe_config->pipe_bpp = 36;
9316 break;
9317 default:
9318 break;
9319 }
9320
b5a9fa09
DV
9321 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9322 pipe_config->limited_color_range = true;
9323
ab9412ba 9324 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
66e985c0 9325 struct intel_shared_dpll *pll;
8106ddbd 9326 enum intel_dpll_id pll_id;
66e985c0 9327
88adfff1
DV
9328 pipe_config->has_pch_encoder = true;
9329
627eb5a3
DV
9330 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9331 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9332 FDI_DP_PORT_WIDTH_SHIFT) + 1;
72419203
DV
9333
9334 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6c49f241 9335
c0d43d62 9336 if (HAS_PCH_IBX(dev_priv->dev)) {
8106ddbd 9337 pll_id = (enum intel_dpll_id) crtc->pipe;
c0d43d62
DV
9338 } else {
9339 tmp = I915_READ(PCH_DPLL_SEL);
9340 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
8106ddbd 9341 pll_id = DPLL_ID_PCH_PLL_B;
c0d43d62 9342 else
8106ddbd 9343 pll_id= DPLL_ID_PCH_PLL_A;
c0d43d62 9344 }
66e985c0 9345
8106ddbd
ACO
9346 pipe_config->shared_dpll =
9347 intel_get_shared_dpll_by_id(dev_priv, pll_id);
9348 pll = pipe_config->shared_dpll;
66e985c0 9349
2edd6443
ACO
9350 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
9351 &pipe_config->dpll_hw_state));
c93f54cf
DV
9352
9353 tmp = pipe_config->dpll_hw_state.dpll;
9354 pipe_config->pixel_multiplier =
9355 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9356 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
18442d08
VS
9357
9358 ironlake_pch_clock_get(crtc, pipe_config);
6c49f241
DV
9359 } else {
9360 pipe_config->pixel_multiplier = 1;
627eb5a3
DV
9361 }
9362
1bd1bd80
DV
9363 intel_get_pipe_timings(crtc, pipe_config);
9364
2fa2fe9a
DV
9365 ironlake_get_pfit_config(crtc, pipe_config);
9366
1729050e
ID
9367 ret = true;
9368
9369out:
9370 intel_display_power_put(dev_priv, power_domain);
9371
9372 return ret;
0e8ffe1b
DV
9373}
9374
be256dc7
PZ
9375static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9376{
9377 struct drm_device *dev = dev_priv->dev;
be256dc7 9378 struct intel_crtc *crtc;
be256dc7 9379
d3fcc808 9380 for_each_intel_crtc(dev, crtc)
e2c719b7 9381 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
be256dc7
PZ
9382 pipe_name(crtc->pipe));
9383
e2c719b7
RC
9384 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9385 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
01403de3
VS
9386 I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9387 I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
e2c719b7
RC
9388 I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9389 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
be256dc7 9390 "CPU PWM1 enabled\n");
c5107b87 9391 if (IS_HASWELL(dev))
e2c719b7 9392 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
c5107b87 9393 "CPU PWM2 enabled\n");
e2c719b7 9394 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
be256dc7 9395 "PCH PWM1 enabled\n");
e2c719b7 9396 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
be256dc7 9397 "Utility pin enabled\n");
e2c719b7 9398 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
be256dc7 9399
9926ada1
PZ
9400 /*
9401 * In theory we can still leave IRQs enabled, as long as only the HPD
9402 * interrupts remain enabled. We used to check for that, but since it's
9403 * gen-specific and since we only disable LCPLL after we fully disable
9404 * the interrupts, the check below should be enough.
9405 */
e2c719b7 9406 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
be256dc7
PZ
9407}
9408
9ccd5aeb
PZ
9409static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9410{
9411 struct drm_device *dev = dev_priv->dev;
9412
9413 if (IS_HASWELL(dev))
9414 return I915_READ(D_COMP_HSW);
9415 else
9416 return I915_READ(D_COMP_BDW);
9417}
9418
3c4c9b81
PZ
9419static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9420{
9421 struct drm_device *dev = dev_priv->dev;
9422
9423 if (IS_HASWELL(dev)) {
9424 mutex_lock(&dev_priv->rps.hw_lock);
9425 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9426 val))
f475dadf 9427 DRM_ERROR("Failed to write to D_COMP\n");
3c4c9b81
PZ
9428 mutex_unlock(&dev_priv->rps.hw_lock);
9429 } else {
9ccd5aeb
PZ
9430 I915_WRITE(D_COMP_BDW, val);
9431 POSTING_READ(D_COMP_BDW);
3c4c9b81 9432 }
be256dc7
PZ
9433}
9434
9435/*
9436 * This function implements pieces of two sequences from BSpec:
9437 * - Sequence for display software to disable LCPLL
9438 * - Sequence for display software to allow package C8+
9439 * The steps implemented here are just the steps that actually touch the LCPLL
9440 * register. Callers should take care of disabling all the display engine
9441 * functions, doing the mode unset, fixing interrupts, etc.
9442 */
6ff58d53
PZ
9443static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9444 bool switch_to_fclk, bool allow_power_down)
be256dc7
PZ
9445{
9446 uint32_t val;
9447
9448 assert_can_disable_lcpll(dev_priv);
9449
9450 val = I915_READ(LCPLL_CTL);
9451
9452 if (switch_to_fclk) {
9453 val |= LCPLL_CD_SOURCE_FCLK;
9454 I915_WRITE(LCPLL_CTL, val);
9455
9456 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9457 LCPLL_CD_SOURCE_FCLK_DONE, 1))
9458 DRM_ERROR("Switching to FCLK failed\n");
9459
9460 val = I915_READ(LCPLL_CTL);
9461 }
9462
9463 val |= LCPLL_PLL_DISABLE;
9464 I915_WRITE(LCPLL_CTL, val);
9465 POSTING_READ(LCPLL_CTL);
9466
9467 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9468 DRM_ERROR("LCPLL still locked\n");
9469
9ccd5aeb 9470 val = hsw_read_dcomp(dev_priv);
be256dc7 9471 val |= D_COMP_COMP_DISABLE;
3c4c9b81 9472 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
9473 ndelay(100);
9474
9ccd5aeb
PZ
9475 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9476 1))
be256dc7
PZ
9477 DRM_ERROR("D_COMP RCOMP still in progress\n");
9478
9479 if (allow_power_down) {
9480 val = I915_READ(LCPLL_CTL);
9481 val |= LCPLL_POWER_DOWN_ALLOW;
9482 I915_WRITE(LCPLL_CTL, val);
9483 POSTING_READ(LCPLL_CTL);
9484 }
9485}
9486
9487/*
9488 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9489 * source.
9490 */
6ff58d53 9491static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
be256dc7
PZ
9492{
9493 uint32_t val;
9494
9495 val = I915_READ(LCPLL_CTL);
9496
9497 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9498 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9499 return;
9500
a8a8bd54
PZ
9501 /*
9502 * Make sure we're not on PC8 state before disabling PC8, otherwise
9503 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
a8a8bd54 9504 */
59bad947 9505 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
215733fa 9506
be256dc7
PZ
9507 if (val & LCPLL_POWER_DOWN_ALLOW) {
9508 val &= ~LCPLL_POWER_DOWN_ALLOW;
9509 I915_WRITE(LCPLL_CTL, val);
35d8f2eb 9510 POSTING_READ(LCPLL_CTL);
be256dc7
PZ
9511 }
9512
9ccd5aeb 9513 val = hsw_read_dcomp(dev_priv);
be256dc7
PZ
9514 val |= D_COMP_COMP_FORCE;
9515 val &= ~D_COMP_COMP_DISABLE;
3c4c9b81 9516 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
9517
9518 val = I915_READ(LCPLL_CTL);
9519 val &= ~LCPLL_PLL_DISABLE;
9520 I915_WRITE(LCPLL_CTL, val);
9521
9522 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9523 DRM_ERROR("LCPLL not locked yet\n");
9524
9525 if (val & LCPLL_CD_SOURCE_FCLK) {
9526 val = I915_READ(LCPLL_CTL);
9527 val &= ~LCPLL_CD_SOURCE_FCLK;
9528 I915_WRITE(LCPLL_CTL, val);
9529
9530 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9531 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9532 DRM_ERROR("Switching back to LCPLL failed\n");
9533 }
215733fa 9534
59bad947 9535 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
b6283055 9536 intel_update_cdclk(dev_priv->dev);
be256dc7
PZ
9537}
9538
765dab67
PZ
9539/*
9540 * Package states C8 and deeper are really deep PC states that can only be
9541 * reached when all the devices on the system allow it, so even if the graphics
9542 * device allows PC8+, it doesn't mean the system will actually get to these
9543 * states. Our driver only allows PC8+ when going into runtime PM.
9544 *
9545 * The requirements for PC8+ are that all the outputs are disabled, the power
9546 * well is disabled and most interrupts are disabled, and these are also
9547 * requirements for runtime PM. When these conditions are met, we manually do
9548 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9549 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9550 * hang the machine.
9551 *
9552 * When we really reach PC8 or deeper states (not just when we allow it) we lose
9553 * the state of some registers, so when we come back from PC8+ we need to
9554 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9555 * need to take care of the registers kept by RC6. Notice that this happens even
9556 * if we don't put the device in PCI D3 state (which is what currently happens
9557 * because of the runtime PM support).
9558 *
9559 * For more, read "Display Sequences for Package C8" on the hardware
9560 * documentation.
9561 */
a14cb6fc 9562void hsw_enable_pc8(struct drm_i915_private *dev_priv)
c67a470b 9563{
c67a470b
PZ
9564 struct drm_device *dev = dev_priv->dev;
9565 uint32_t val;
9566
c67a470b
PZ
9567 DRM_DEBUG_KMS("Enabling package C8+\n");
9568
c2699524 9569 if (HAS_PCH_LPT_LP(dev)) {
c67a470b
PZ
9570 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9571 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9572 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9573 }
9574
9575 lpt_disable_clkout_dp(dev);
c67a470b
PZ
9576 hsw_disable_lcpll(dev_priv, true, true);
9577}
9578
a14cb6fc 9579void hsw_disable_pc8(struct drm_i915_private *dev_priv)
c67a470b
PZ
9580{
9581 struct drm_device *dev = dev_priv->dev;
9582 uint32_t val;
9583
c67a470b
PZ
9584 DRM_DEBUG_KMS("Disabling package C8+\n");
9585
9586 hsw_restore_lcpll(dev_priv);
c67a470b
PZ
9587 lpt_init_pch_refclk(dev);
9588
c2699524 9589 if (HAS_PCH_LPT_LP(dev)) {
c67a470b
PZ
9590 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9591 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9592 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9593 }
c67a470b
PZ
9594}
9595
27c329ed 9596static void broxton_modeset_commit_cdclk(struct drm_atomic_state *old_state)
f8437dd1 9597{
a821fc46 9598 struct drm_device *dev = old_state->dev;
1a617b77
ML
9599 struct intel_atomic_state *old_intel_state =
9600 to_intel_atomic_state(old_state);
9601 unsigned int req_cdclk = old_intel_state->dev_cdclk;
f8437dd1 9602
27c329ed 9603 broxton_set_cdclk(dev, req_cdclk);
f8437dd1
VK
9604}
9605
b432e5cf 9606/* compute the max rate for new configuration */
27c329ed 9607static int ilk_max_pixel_rate(struct drm_atomic_state *state)
b432e5cf 9608{
565602d7
ML
9609 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
9610 struct drm_i915_private *dev_priv = state->dev->dev_private;
9611 struct drm_crtc *crtc;
9612 struct drm_crtc_state *cstate;
27c329ed 9613 struct intel_crtc_state *crtc_state;
565602d7
ML
9614 unsigned max_pixel_rate = 0, i;
9615 enum pipe pipe;
b432e5cf 9616
565602d7
ML
9617 memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
9618 sizeof(intel_state->min_pixclk));
27c329ed 9619
565602d7
ML
9620 for_each_crtc_in_state(state, crtc, cstate, i) {
9621 int pixel_rate;
27c329ed 9622
565602d7
ML
9623 crtc_state = to_intel_crtc_state(cstate);
9624 if (!crtc_state->base.enable) {
9625 intel_state->min_pixclk[i] = 0;
b432e5cf 9626 continue;
565602d7 9627 }
b432e5cf 9628
27c329ed 9629 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
b432e5cf
VS
9630
9631 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
565602d7 9632 if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
b432e5cf
VS
9633 pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
9634
565602d7 9635 intel_state->min_pixclk[i] = pixel_rate;
b432e5cf
VS
9636 }
9637
565602d7
ML
9638 for_each_pipe(dev_priv, pipe)
9639 max_pixel_rate = max(intel_state->min_pixclk[pipe], max_pixel_rate);
9640
b432e5cf
VS
9641 return max_pixel_rate;
9642}
9643
9644static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
9645{
9646 struct drm_i915_private *dev_priv = dev->dev_private;
9647 uint32_t val, data;
9648 int ret;
9649
9650 if (WARN((I915_READ(LCPLL_CTL) &
9651 (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
9652 LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
9653 LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
9654 LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
9655 "trying to change cdclk frequency with cdclk not enabled\n"))
9656 return;
9657
9658 mutex_lock(&dev_priv->rps.hw_lock);
9659 ret = sandybridge_pcode_write(dev_priv,
9660 BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
9661 mutex_unlock(&dev_priv->rps.hw_lock);
9662 if (ret) {
9663 DRM_ERROR("failed to inform pcode about cdclk change\n");
9664 return;
9665 }
9666
9667 val = I915_READ(LCPLL_CTL);
9668 val |= LCPLL_CD_SOURCE_FCLK;
9669 I915_WRITE(LCPLL_CTL, val);
9670
5ba00178
TU
9671 if (wait_for_us(I915_READ(LCPLL_CTL) &
9672 LCPLL_CD_SOURCE_FCLK_DONE, 1))
b432e5cf
VS
9673 DRM_ERROR("Switching to FCLK failed\n");
9674
9675 val = I915_READ(LCPLL_CTL);
9676 val &= ~LCPLL_CLK_FREQ_MASK;
9677
9678 switch (cdclk) {
9679 case 450000:
9680 val |= LCPLL_CLK_FREQ_450;
9681 data = 0;
9682 break;
9683 case 540000:
9684 val |= LCPLL_CLK_FREQ_54O_BDW;
9685 data = 1;
9686 break;
9687 case 337500:
9688 val |= LCPLL_CLK_FREQ_337_5_BDW;
9689 data = 2;
9690 break;
9691 case 675000:
9692 val |= LCPLL_CLK_FREQ_675_BDW;
9693 data = 3;
9694 break;
9695 default:
9696 WARN(1, "invalid cdclk frequency\n");
9697 return;
9698 }
9699
9700 I915_WRITE(LCPLL_CTL, val);
9701
9702 val = I915_READ(LCPLL_CTL);
9703 val &= ~LCPLL_CD_SOURCE_FCLK;
9704 I915_WRITE(LCPLL_CTL, val);
9705
5ba00178
TU
9706 if (wait_for_us((I915_READ(LCPLL_CTL) &
9707 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
b432e5cf
VS
9708 DRM_ERROR("Switching back to LCPLL failed\n");
9709
9710 mutex_lock(&dev_priv->rps.hw_lock);
9711 sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
9712 mutex_unlock(&dev_priv->rps.hw_lock);
9713
9714 intel_update_cdclk(dev);
9715
9716 WARN(cdclk != dev_priv->cdclk_freq,
9717 "cdclk requested %d kHz but got %d kHz\n",
9718 cdclk, dev_priv->cdclk_freq);
9719}
9720
27c329ed 9721static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
b432e5cf 9722{
27c329ed 9723 struct drm_i915_private *dev_priv = to_i915(state->dev);
1a617b77 9724 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
27c329ed 9725 int max_pixclk = ilk_max_pixel_rate(state);
b432e5cf
VS
9726 int cdclk;
9727
9728 /*
9729 * FIXME should also account for plane ratio
9730 * once 64bpp pixel formats are supported.
9731 */
27c329ed 9732 if (max_pixclk > 540000)
b432e5cf 9733 cdclk = 675000;
27c329ed 9734 else if (max_pixclk > 450000)
b432e5cf 9735 cdclk = 540000;
27c329ed 9736 else if (max_pixclk > 337500)
b432e5cf
VS
9737 cdclk = 450000;
9738 else
9739 cdclk = 337500;
9740
b432e5cf 9741 if (cdclk > dev_priv->max_cdclk_freq) {
63ba534e
ML
9742 DRM_DEBUG_KMS("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9743 cdclk, dev_priv->max_cdclk_freq);
9744 return -EINVAL;
b432e5cf
VS
9745 }
9746
1a617b77
ML
9747 intel_state->cdclk = intel_state->dev_cdclk = cdclk;
9748 if (!intel_state->active_crtcs)
9749 intel_state->dev_cdclk = 337500;
b432e5cf
VS
9750
9751 return 0;
9752}
9753
27c329ed 9754static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
b432e5cf 9755{
27c329ed 9756 struct drm_device *dev = old_state->dev;
1a617b77
ML
9757 struct intel_atomic_state *old_intel_state =
9758 to_intel_atomic_state(old_state);
9759 unsigned req_cdclk = old_intel_state->dev_cdclk;
b432e5cf 9760
27c329ed 9761 broadwell_set_cdclk(dev, req_cdclk);
b432e5cf
VS
9762}
9763
190f68c5
ACO
9764static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9765 struct intel_crtc_state *crtc_state)
09b4ddf9 9766{
af3997b5
MK
9767 struct intel_encoder *intel_encoder =
9768 intel_ddi_get_crtc_new_encoder(crtc_state);
9769
9770 if (intel_encoder->type != INTEL_OUTPUT_DSI) {
9771 if (!intel_ddi_pll_select(crtc, crtc_state))
9772 return -EINVAL;
9773 }
716c2e55 9774
c7653199 9775 crtc->lowfreq_avail = false;
644cef34 9776
c8f7a0db 9777 return 0;
79e53945
JB
9778}
9779
3760b59c
S
9780static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9781 enum port port,
9782 struct intel_crtc_state *pipe_config)
9783{
8106ddbd
ACO
9784 enum intel_dpll_id id;
9785
3760b59c
S
9786 switch (port) {
9787 case PORT_A:
9788 pipe_config->ddi_pll_sel = SKL_DPLL0;
08250c4b 9789 id = DPLL_ID_SKL_DPLL0;
3760b59c
S
9790 break;
9791 case PORT_B:
9792 pipe_config->ddi_pll_sel = SKL_DPLL1;
08250c4b 9793 id = DPLL_ID_SKL_DPLL1;
3760b59c
S
9794 break;
9795 case PORT_C:
9796 pipe_config->ddi_pll_sel = SKL_DPLL2;
08250c4b 9797 id = DPLL_ID_SKL_DPLL2;
3760b59c
S
9798 break;
9799 default:
9800 DRM_ERROR("Incorrect port type\n");
8106ddbd 9801 return;
3760b59c 9802 }
8106ddbd
ACO
9803
9804 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
3760b59c
S
9805}
9806
96b7dfb7
S
9807static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9808 enum port port,
5cec258b 9809 struct intel_crtc_state *pipe_config)
96b7dfb7 9810{
8106ddbd 9811 enum intel_dpll_id id;
a3c988ea 9812 u32 temp;
96b7dfb7
S
9813
9814 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9815 pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9816
9817 switch (pipe_config->ddi_pll_sel) {
3148ade7 9818 case SKL_DPLL0:
a3c988ea
ACO
9819 id = DPLL_ID_SKL_DPLL0;
9820 break;
96b7dfb7 9821 case SKL_DPLL1:
8106ddbd 9822 id = DPLL_ID_SKL_DPLL1;
96b7dfb7
S
9823 break;
9824 case SKL_DPLL2:
8106ddbd 9825 id = DPLL_ID_SKL_DPLL2;
96b7dfb7
S
9826 break;
9827 case SKL_DPLL3:
8106ddbd 9828 id = DPLL_ID_SKL_DPLL3;
96b7dfb7 9829 break;
8106ddbd
ACO
9830 default:
9831 MISSING_CASE(pipe_config->ddi_pll_sel);
9832 return;
96b7dfb7 9833 }
8106ddbd
ACO
9834
9835 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
96b7dfb7
S
9836}
9837
7d2c8175
DL
9838static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9839 enum port port,
5cec258b 9840 struct intel_crtc_state *pipe_config)
7d2c8175 9841{
8106ddbd
ACO
9842 enum intel_dpll_id id;
9843
7d2c8175
DL
9844 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9845
9846 switch (pipe_config->ddi_pll_sel) {
9847 case PORT_CLK_SEL_WRPLL1:
8106ddbd 9848 id = DPLL_ID_WRPLL1;
7d2c8175
DL
9849 break;
9850 case PORT_CLK_SEL_WRPLL2:
8106ddbd 9851 id = DPLL_ID_WRPLL2;
7d2c8175 9852 break;
00490c22 9853 case PORT_CLK_SEL_SPLL:
8106ddbd 9854 id = DPLL_ID_SPLL;
79bd23da 9855 break;
9d16da65
ACO
9856 case PORT_CLK_SEL_LCPLL_810:
9857 id = DPLL_ID_LCPLL_810;
9858 break;
9859 case PORT_CLK_SEL_LCPLL_1350:
9860 id = DPLL_ID_LCPLL_1350;
9861 break;
9862 case PORT_CLK_SEL_LCPLL_2700:
9863 id = DPLL_ID_LCPLL_2700;
9864 break;
8106ddbd
ACO
9865 default:
9866 MISSING_CASE(pipe_config->ddi_pll_sel);
9867 /* fall through */
9868 case PORT_CLK_SEL_NONE:
8106ddbd 9869 return;
7d2c8175 9870 }
8106ddbd
ACO
9871
9872 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
7d2c8175
DL
9873}
9874
26804afd 9875static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
5cec258b 9876 struct intel_crtc_state *pipe_config)
26804afd
DV
9877{
9878 struct drm_device *dev = crtc->base.dev;
9879 struct drm_i915_private *dev_priv = dev->dev_private;
d452c5b6 9880 struct intel_shared_dpll *pll;
26804afd
DV
9881 enum port port;
9882 uint32_t tmp;
9883
9884 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9885
9886 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9887
ef11bdb3 9888 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
96b7dfb7 9889 skylake_get_ddi_pll(dev_priv, port, pipe_config);
3760b59c
S
9890 else if (IS_BROXTON(dev))
9891 bxt_get_ddi_pll(dev_priv, port, pipe_config);
96b7dfb7
S
9892 else
9893 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9cd86933 9894
8106ddbd
ACO
9895 pll = pipe_config->shared_dpll;
9896 if (pll) {
2edd6443
ACO
9897 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
9898 &pipe_config->dpll_hw_state));
d452c5b6
DV
9899 }
9900
26804afd
DV
9901 /*
9902 * Haswell has only FDI/PCH transcoder A. It is which is connected to
9903 * DDI E. So just check whether this pipe is wired to DDI E and whether
9904 * the PCH transcoder is on.
9905 */
ca370455
DL
9906 if (INTEL_INFO(dev)->gen < 9 &&
9907 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
26804afd
DV
9908 pipe_config->has_pch_encoder = true;
9909
9910 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9911 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9912 FDI_DP_PORT_WIDTH_SHIFT) + 1;
9913
9914 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9915 }
9916}
9917
0e8ffe1b 9918static bool haswell_get_pipe_config(struct intel_crtc *crtc,
5cec258b 9919 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
9920{
9921 struct drm_device *dev = crtc->base.dev;
9922 struct drm_i915_private *dev_priv = dev->dev_private;
1729050e
ID
9923 enum intel_display_power_domain power_domain;
9924 unsigned long power_domain_mask;
0e8ffe1b 9925 uint32_t tmp;
1729050e 9926 bool ret;
0e8ffe1b 9927
1729050e
ID
9928 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9929 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
b5482bd0 9930 return false;
1729050e
ID
9931 power_domain_mask = BIT(power_domain);
9932
9933 ret = false;
b5482bd0 9934
e143a21c 9935 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8106ddbd 9936 pipe_config->shared_dpll = NULL;
c0d43d62 9937
eccb140b
DV
9938 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9939 if (tmp & TRANS_DDI_FUNC_ENABLE) {
9940 enum pipe trans_edp_pipe;
9941 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9942 default:
9943 WARN(1, "unknown pipe linked to edp transcoder\n");
9944 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9945 case TRANS_DDI_EDP_INPUT_A_ON:
9946 trans_edp_pipe = PIPE_A;
9947 break;
9948 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9949 trans_edp_pipe = PIPE_B;
9950 break;
9951 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9952 trans_edp_pipe = PIPE_C;
9953 break;
9954 }
9955
9956 if (trans_edp_pipe == crtc->pipe)
9957 pipe_config->cpu_transcoder = TRANSCODER_EDP;
9958 }
9959
1729050e
ID
9960 power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
9961 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9962 goto out;
9963 power_domain_mask |= BIT(power_domain);
2bfce950 9964
eccb140b 9965 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
0e8ffe1b 9966 if (!(tmp & PIPECONF_ENABLE))
1729050e 9967 goto out;
0e8ffe1b 9968
26804afd 9969 haswell_get_ddi_port_state(crtc, pipe_config);
627eb5a3 9970
1bd1bd80
DV
9971 intel_get_pipe_timings(crtc, pipe_config);
9972
a1b2278e
CK
9973 if (INTEL_INFO(dev)->gen >= 9) {
9974 skl_init_scalers(dev, crtc, pipe_config);
9975 }
9976
af99ceda
CK
9977 if (INTEL_INFO(dev)->gen >= 9) {
9978 pipe_config->scaler_state.scaler_id = -1;
9979 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
9980 }
9981
1729050e
ID
9982 power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
9983 if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
9984 power_domain_mask |= BIT(power_domain);
1c132b44 9985 if (INTEL_INFO(dev)->gen >= 9)
bd2e244f 9986 skylake_get_pfit_config(crtc, pipe_config);
ff6d9f55 9987 else
1c132b44 9988 ironlake_get_pfit_config(crtc, pipe_config);
bd2e244f 9989 }
88adfff1 9990
e59150dc
JB
9991 if (IS_HASWELL(dev))
9992 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
9993 (I915_READ(IPS_CTL) & IPS_ENABLE);
42db64ef 9994
ebb69c95
CT
9995 if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
9996 pipe_config->pixel_multiplier =
9997 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
9998 } else {
9999 pipe_config->pixel_multiplier = 1;
10000 }
6c49f241 10001
1729050e
ID
10002 ret = true;
10003
10004out:
10005 for_each_power_domain(power_domain, power_domain_mask)
10006 intel_display_power_put(dev_priv, power_domain);
10007
10008 return ret;
0e8ffe1b
DV
10009}
10010
55a08b3f
ML
10011static void i845_update_cursor(struct drm_crtc *crtc, u32 base,
10012 const struct intel_plane_state *plane_state)
560b85bb
CW
10013{
10014 struct drm_device *dev = crtc->dev;
10015 struct drm_i915_private *dev_priv = dev->dev_private;
10016 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
dc41c154 10017 uint32_t cntl = 0, size = 0;
560b85bb 10018
55a08b3f
ML
10019 if (plane_state && plane_state->visible) {
10020 unsigned int width = plane_state->base.crtc_w;
10021 unsigned int height = plane_state->base.crtc_h;
dc41c154
VS
10022 unsigned int stride = roundup_pow_of_two(width) * 4;
10023
10024 switch (stride) {
10025 default:
10026 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
10027 width, stride);
10028 stride = 256;
10029 /* fallthrough */
10030 case 256:
10031 case 512:
10032 case 1024:
10033 case 2048:
10034 break;
4b0e333e
CW
10035 }
10036
dc41c154
VS
10037 cntl |= CURSOR_ENABLE |
10038 CURSOR_GAMMA_ENABLE |
10039 CURSOR_FORMAT_ARGB |
10040 CURSOR_STRIDE(stride);
10041
10042 size = (height << 12) | width;
4b0e333e 10043 }
560b85bb 10044
dc41c154
VS
10045 if (intel_crtc->cursor_cntl != 0 &&
10046 (intel_crtc->cursor_base != base ||
10047 intel_crtc->cursor_size != size ||
10048 intel_crtc->cursor_cntl != cntl)) {
10049 /* On these chipsets we can only modify the base/size/stride
10050 * whilst the cursor is disabled.
10051 */
0b87c24e
VS
10052 I915_WRITE(CURCNTR(PIPE_A), 0);
10053 POSTING_READ(CURCNTR(PIPE_A));
dc41c154 10054 intel_crtc->cursor_cntl = 0;
4b0e333e 10055 }
560b85bb 10056
99d1f387 10057 if (intel_crtc->cursor_base != base) {
0b87c24e 10058 I915_WRITE(CURBASE(PIPE_A), base);
99d1f387
VS
10059 intel_crtc->cursor_base = base;
10060 }
4726e0b0 10061
dc41c154
VS
10062 if (intel_crtc->cursor_size != size) {
10063 I915_WRITE(CURSIZE, size);
10064 intel_crtc->cursor_size = size;
4b0e333e 10065 }
560b85bb 10066
4b0e333e 10067 if (intel_crtc->cursor_cntl != cntl) {
0b87c24e
VS
10068 I915_WRITE(CURCNTR(PIPE_A), cntl);
10069 POSTING_READ(CURCNTR(PIPE_A));
4b0e333e 10070 intel_crtc->cursor_cntl = cntl;
560b85bb 10071 }
560b85bb
CW
10072}
10073
55a08b3f
ML
10074static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base,
10075 const struct intel_plane_state *plane_state)
65a21cd6
JB
10076{
10077 struct drm_device *dev = crtc->dev;
10078 struct drm_i915_private *dev_priv = dev->dev_private;
10079 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10080 int pipe = intel_crtc->pipe;
663f3122 10081 uint32_t cntl = 0;
4b0e333e 10082
55a08b3f 10083 if (plane_state && plane_state->visible) {
4b0e333e 10084 cntl = MCURSOR_GAMMA_ENABLE;
55a08b3f 10085 switch (plane_state->base.crtc_w) {
4726e0b0
SK
10086 case 64:
10087 cntl |= CURSOR_MODE_64_ARGB_AX;
10088 break;
10089 case 128:
10090 cntl |= CURSOR_MODE_128_ARGB_AX;
10091 break;
10092 case 256:
10093 cntl |= CURSOR_MODE_256_ARGB_AX;
10094 break;
10095 default:
55a08b3f 10096 MISSING_CASE(plane_state->base.crtc_w);
4726e0b0 10097 return;
65a21cd6 10098 }
4b0e333e 10099 cntl |= pipe << 28; /* Connect to correct pipe */
47bf17a7 10100
fc6f93bc 10101 if (HAS_DDI(dev))
47bf17a7 10102 cntl |= CURSOR_PIPE_CSC_ENABLE;
65a21cd6 10103
55a08b3f
ML
10104 if (plane_state->base.rotation == BIT(DRM_ROTATE_180))
10105 cntl |= CURSOR_ROTATE_180;
10106 }
4398ad45 10107
4b0e333e
CW
10108 if (intel_crtc->cursor_cntl != cntl) {
10109 I915_WRITE(CURCNTR(pipe), cntl);
10110 POSTING_READ(CURCNTR(pipe));
10111 intel_crtc->cursor_cntl = cntl;
65a21cd6 10112 }
4b0e333e 10113
65a21cd6 10114 /* and commit changes on next vblank */
5efb3e28
VS
10115 I915_WRITE(CURBASE(pipe), base);
10116 POSTING_READ(CURBASE(pipe));
99d1f387
VS
10117
10118 intel_crtc->cursor_base = base;
65a21cd6
JB
10119}
10120
cda4b7d3 10121/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f 10122static void intel_crtc_update_cursor(struct drm_crtc *crtc,
55a08b3f 10123 const struct intel_plane_state *plane_state)
cda4b7d3
CW
10124{
10125 struct drm_device *dev = crtc->dev;
10126 struct drm_i915_private *dev_priv = dev->dev_private;
10127 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10128 int pipe = intel_crtc->pipe;
55a08b3f
ML
10129 u32 base = intel_crtc->cursor_addr;
10130 u32 pos = 0;
cda4b7d3 10131
55a08b3f
ML
10132 if (plane_state) {
10133 int x = plane_state->base.crtc_x;
10134 int y = plane_state->base.crtc_y;
cda4b7d3 10135
55a08b3f
ML
10136 if (x < 0) {
10137 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10138 x = -x;
10139 }
10140 pos |= x << CURSOR_X_SHIFT;
cda4b7d3 10141
55a08b3f
ML
10142 if (y < 0) {
10143 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10144 y = -y;
10145 }
10146 pos |= y << CURSOR_Y_SHIFT;
10147
10148 /* ILK+ do this automagically */
10149 if (HAS_GMCH_DISPLAY(dev) &&
10150 plane_state->base.rotation == BIT(DRM_ROTATE_180)) {
10151 base += (plane_state->base.crtc_h *
10152 plane_state->base.crtc_w - 1) * 4;
10153 }
cda4b7d3 10154 }
cda4b7d3 10155
5efb3e28
VS
10156 I915_WRITE(CURPOS(pipe), pos);
10157
8ac54669 10158 if (IS_845G(dev) || IS_I865G(dev))
55a08b3f 10159 i845_update_cursor(crtc, base, plane_state);
5efb3e28 10160 else
55a08b3f 10161 i9xx_update_cursor(crtc, base, plane_state);
cda4b7d3
CW
10162}
10163
dc41c154
VS
10164static bool cursor_size_ok(struct drm_device *dev,
10165 uint32_t width, uint32_t height)
10166{
10167 if (width == 0 || height == 0)
10168 return false;
10169
10170 /*
10171 * 845g/865g are special in that they are only limited by
10172 * the width of their cursors, the height is arbitrary up to
10173 * the precision of the register. Everything else requires
10174 * square cursors, limited to a few power-of-two sizes.
10175 */
10176 if (IS_845G(dev) || IS_I865G(dev)) {
10177 if ((width & 63) != 0)
10178 return false;
10179
10180 if (width > (IS_845G(dev) ? 64 : 512))
10181 return false;
10182
10183 if (height > 1023)
10184 return false;
10185 } else {
10186 switch (width | height) {
10187 case 256:
10188 case 128:
10189 if (IS_GEN2(dev))
10190 return false;
10191 case 64:
10192 break;
10193 default:
10194 return false;
10195 }
10196 }
10197
10198 return true;
10199}
10200
79e53945 10201static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7203425a 10202 u16 *blue, uint32_t start, uint32_t size)
79e53945 10203{
7203425a 10204 int end = (start + size > 256) ? 256 : start + size, i;
79e53945 10205 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 10206
7203425a 10207 for (i = start; i < end; i++) {
79e53945
JB
10208 intel_crtc->lut_r[i] = red[i] >> 8;
10209 intel_crtc->lut_g[i] = green[i] >> 8;
10210 intel_crtc->lut_b[i] = blue[i] >> 8;
10211 }
10212
10213 intel_crtc_load_lut(crtc);
10214}
10215
79e53945
JB
10216/* VESA 640x480x72Hz mode to set on the pipe */
10217static struct drm_display_mode load_detect_mode = {
10218 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10219 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10220};
10221
a8bb6818
DV
10222struct drm_framebuffer *
10223__intel_framebuffer_create(struct drm_device *dev,
10224 struct drm_mode_fb_cmd2 *mode_cmd,
10225 struct drm_i915_gem_object *obj)
d2dff872
CW
10226{
10227 struct intel_framebuffer *intel_fb;
10228 int ret;
10229
10230 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
dcb1394e 10231 if (!intel_fb)
d2dff872 10232 return ERR_PTR(-ENOMEM);
d2dff872
CW
10233
10234 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
dd4916c5
DV
10235 if (ret)
10236 goto err;
d2dff872
CW
10237
10238 return &intel_fb->base;
dcb1394e 10239
dd4916c5 10240err:
dd4916c5 10241 kfree(intel_fb);
dd4916c5 10242 return ERR_PTR(ret);
d2dff872
CW
10243}
10244
b5ea642a 10245static struct drm_framebuffer *
a8bb6818
DV
10246intel_framebuffer_create(struct drm_device *dev,
10247 struct drm_mode_fb_cmd2 *mode_cmd,
10248 struct drm_i915_gem_object *obj)
10249{
10250 struct drm_framebuffer *fb;
10251 int ret;
10252
10253 ret = i915_mutex_lock_interruptible(dev);
10254 if (ret)
10255 return ERR_PTR(ret);
10256 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10257 mutex_unlock(&dev->struct_mutex);
10258
10259 return fb;
10260}
10261
d2dff872
CW
10262static u32
10263intel_framebuffer_pitch_for_width(int width, int bpp)
10264{
10265 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10266 return ALIGN(pitch, 64);
10267}
10268
10269static u32
10270intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10271{
10272 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
1267a26b 10273 return PAGE_ALIGN(pitch * mode->vdisplay);
d2dff872
CW
10274}
10275
10276static struct drm_framebuffer *
10277intel_framebuffer_create_for_mode(struct drm_device *dev,
10278 struct drm_display_mode *mode,
10279 int depth, int bpp)
10280{
dcb1394e 10281 struct drm_framebuffer *fb;
d2dff872 10282 struct drm_i915_gem_object *obj;
0fed39bd 10283 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
d2dff872
CW
10284
10285 obj = i915_gem_alloc_object(dev,
10286 intel_framebuffer_size_for_mode(mode, bpp));
10287 if (obj == NULL)
10288 return ERR_PTR(-ENOMEM);
10289
10290 mode_cmd.width = mode->hdisplay;
10291 mode_cmd.height = mode->vdisplay;
308e5bcb
JB
10292 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10293 bpp);
5ca0c34a 10294 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
d2dff872 10295
dcb1394e
LW
10296 fb = intel_framebuffer_create(dev, &mode_cmd, obj);
10297 if (IS_ERR(fb))
10298 drm_gem_object_unreference_unlocked(&obj->base);
10299
10300 return fb;
d2dff872
CW
10301}
10302
10303static struct drm_framebuffer *
10304mode_fits_in_fbdev(struct drm_device *dev,
10305 struct drm_display_mode *mode)
10306{
0695726e 10307#ifdef CONFIG_DRM_FBDEV_EMULATION
d2dff872
CW
10308 struct drm_i915_private *dev_priv = dev->dev_private;
10309 struct drm_i915_gem_object *obj;
10310 struct drm_framebuffer *fb;
10311
4c0e5528 10312 if (!dev_priv->fbdev)
d2dff872
CW
10313 return NULL;
10314
4c0e5528 10315 if (!dev_priv->fbdev->fb)
d2dff872
CW
10316 return NULL;
10317
4c0e5528
DV
10318 obj = dev_priv->fbdev->fb->obj;
10319 BUG_ON(!obj);
10320
8bcd4553 10321 fb = &dev_priv->fbdev->fb->base;
01f2c773
VS
10322 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
10323 fb->bits_per_pixel))
d2dff872
CW
10324 return NULL;
10325
01f2c773 10326 if (obj->base.size < mode->vdisplay * fb->pitches[0])
d2dff872
CW
10327 return NULL;
10328
edde3617 10329 drm_framebuffer_reference(fb);
d2dff872 10330 return fb;
4520f53a
DV
10331#else
10332 return NULL;
10333#endif
d2dff872
CW
10334}
10335
d3a40d1b
ACO
10336static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
10337 struct drm_crtc *crtc,
10338 struct drm_display_mode *mode,
10339 struct drm_framebuffer *fb,
10340 int x, int y)
10341{
10342 struct drm_plane_state *plane_state;
10343 int hdisplay, vdisplay;
10344 int ret;
10345
10346 plane_state = drm_atomic_get_plane_state(state, crtc->primary);
10347 if (IS_ERR(plane_state))
10348 return PTR_ERR(plane_state);
10349
10350 if (mode)
10351 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
10352 else
10353 hdisplay = vdisplay = 0;
10354
10355 ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
10356 if (ret)
10357 return ret;
10358 drm_atomic_set_fb_for_plane(plane_state, fb);
10359 plane_state->crtc_x = 0;
10360 plane_state->crtc_y = 0;
10361 plane_state->crtc_w = hdisplay;
10362 plane_state->crtc_h = vdisplay;
10363 plane_state->src_x = x << 16;
10364 plane_state->src_y = y << 16;
10365 plane_state->src_w = hdisplay << 16;
10366 plane_state->src_h = vdisplay << 16;
10367
10368 return 0;
10369}
10370
d2434ab7 10371bool intel_get_load_detect_pipe(struct drm_connector *connector,
7173188d 10372 struct drm_display_mode *mode,
51fd371b
RC
10373 struct intel_load_detect_pipe *old,
10374 struct drm_modeset_acquire_ctx *ctx)
79e53945
JB
10375{
10376 struct intel_crtc *intel_crtc;
d2434ab7
DV
10377 struct intel_encoder *intel_encoder =
10378 intel_attached_encoder(connector);
79e53945 10379 struct drm_crtc *possible_crtc;
4ef69c7a 10380 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
10381 struct drm_crtc *crtc = NULL;
10382 struct drm_device *dev = encoder->dev;
94352cf9 10383 struct drm_framebuffer *fb;
51fd371b 10384 struct drm_mode_config *config = &dev->mode_config;
edde3617 10385 struct drm_atomic_state *state = NULL, *restore_state = NULL;
944b0c76 10386 struct drm_connector_state *connector_state;
4be07317 10387 struct intel_crtc_state *crtc_state;
51fd371b 10388 int ret, i = -1;
79e53945 10389
d2dff872 10390 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 10391 connector->base.id, connector->name,
8e329a03 10392 encoder->base.id, encoder->name);
d2dff872 10393
edde3617
ML
10394 old->restore_state = NULL;
10395
51fd371b
RC
10396retry:
10397 ret = drm_modeset_lock(&config->connection_mutex, ctx);
10398 if (ret)
ad3c558f 10399 goto fail;
6e9f798d 10400
79e53945
JB
10401 /*
10402 * Algorithm gets a little messy:
7a5e4805 10403 *
79e53945
JB
10404 * - if the connector already has an assigned crtc, use it (but make
10405 * sure it's on first)
7a5e4805 10406 *
79e53945
JB
10407 * - try to find the first unused crtc that can drive this connector,
10408 * and use that if we find one
79e53945
JB
10409 */
10410
10411 /* See if we already have a CRTC for this connector */
edde3617
ML
10412 if (connector->state->crtc) {
10413 crtc = connector->state->crtc;
8261b191 10414
51fd371b 10415 ret = drm_modeset_lock(&crtc->mutex, ctx);
4d02e2de 10416 if (ret)
ad3c558f 10417 goto fail;
8261b191
CW
10418
10419 /* Make sure the crtc and connector are running */
edde3617 10420 goto found;
79e53945
JB
10421 }
10422
10423 /* Find an unused one (if possible) */
70e1e0ec 10424 for_each_crtc(dev, possible_crtc) {
79e53945
JB
10425 i++;
10426 if (!(encoder->possible_crtcs & (1 << i)))
10427 continue;
edde3617
ML
10428
10429 ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
10430 if (ret)
10431 goto fail;
10432
10433 if (possible_crtc->state->enable) {
10434 drm_modeset_unlock(&possible_crtc->mutex);
a459249c 10435 continue;
edde3617 10436 }
a459249c
VS
10437
10438 crtc = possible_crtc;
10439 break;
79e53945
JB
10440 }
10441
10442 /*
10443 * If we didn't find an unused CRTC, don't use any.
10444 */
10445 if (!crtc) {
7173188d 10446 DRM_DEBUG_KMS("no pipe available for load-detect\n");
ad3c558f 10447 goto fail;
79e53945
JB
10448 }
10449
edde3617
ML
10450found:
10451 intel_crtc = to_intel_crtc(crtc);
10452
4d02e2de
DV
10453 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10454 if (ret)
ad3c558f 10455 goto fail;
79e53945 10456
83a57153 10457 state = drm_atomic_state_alloc(dev);
edde3617
ML
10458 restore_state = drm_atomic_state_alloc(dev);
10459 if (!state || !restore_state) {
10460 ret = -ENOMEM;
10461 goto fail;
10462 }
83a57153
ACO
10463
10464 state->acquire_ctx = ctx;
edde3617 10465 restore_state->acquire_ctx = ctx;
83a57153 10466
944b0c76
ACO
10467 connector_state = drm_atomic_get_connector_state(state, connector);
10468 if (IS_ERR(connector_state)) {
10469 ret = PTR_ERR(connector_state);
10470 goto fail;
10471 }
10472
edde3617
ML
10473 ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
10474 if (ret)
10475 goto fail;
944b0c76 10476
4be07317
ACO
10477 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10478 if (IS_ERR(crtc_state)) {
10479 ret = PTR_ERR(crtc_state);
10480 goto fail;
10481 }
10482
49d6fa21 10483 crtc_state->base.active = crtc_state->base.enable = true;
4be07317 10484
6492711d
CW
10485 if (!mode)
10486 mode = &load_detect_mode;
79e53945 10487
d2dff872
CW
10488 /* We need a framebuffer large enough to accommodate all accesses
10489 * that the plane may generate whilst we perform load detection.
10490 * We can not rely on the fbcon either being present (we get called
10491 * during its initialisation to detect all boot displays, or it may
10492 * not even exist) or that it is large enough to satisfy the
10493 * requested mode.
10494 */
94352cf9
DV
10495 fb = mode_fits_in_fbdev(dev, mode);
10496 if (fb == NULL) {
d2dff872 10497 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
94352cf9 10498 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
d2dff872
CW
10499 } else
10500 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
94352cf9 10501 if (IS_ERR(fb)) {
d2dff872 10502 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
412b61d8 10503 goto fail;
79e53945 10504 }
79e53945 10505
d3a40d1b
ACO
10506 ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10507 if (ret)
10508 goto fail;
10509
edde3617
ML
10510 drm_framebuffer_unreference(fb);
10511
10512 ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode);
10513 if (ret)
10514 goto fail;
10515
10516 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
10517 if (!ret)
10518 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
10519 if (!ret)
10520 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(restore_state, crtc->primary));
10521 if (ret) {
10522 DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
10523 goto fail;
10524 }
8c7b5ccb 10525
3ba86073
ML
10526 ret = drm_atomic_commit(state);
10527 if (ret) {
6492711d 10528 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
412b61d8 10529 goto fail;
79e53945 10530 }
edde3617
ML
10531
10532 old->restore_state = restore_state;
7173188d 10533
79e53945 10534 /* let the connector get through one full cycle before testing */
9d0498a2 10535 intel_wait_for_vblank(dev, intel_crtc->pipe);
7173188d 10536 return true;
412b61d8 10537
ad3c558f 10538fail:
e5d958ef 10539 drm_atomic_state_free(state);
edde3617
ML
10540 drm_atomic_state_free(restore_state);
10541 restore_state = state = NULL;
83a57153 10542
51fd371b
RC
10543 if (ret == -EDEADLK) {
10544 drm_modeset_backoff(ctx);
10545 goto retry;
10546 }
10547
412b61d8 10548 return false;
79e53945
JB
10549}
10550
d2434ab7 10551void intel_release_load_detect_pipe(struct drm_connector *connector,
49172fee
ACO
10552 struct intel_load_detect_pipe *old,
10553 struct drm_modeset_acquire_ctx *ctx)
79e53945 10554{
d2434ab7
DV
10555 struct intel_encoder *intel_encoder =
10556 intel_attached_encoder(connector);
4ef69c7a 10557 struct drm_encoder *encoder = &intel_encoder->base;
edde3617 10558 struct drm_atomic_state *state = old->restore_state;
d3a40d1b 10559 int ret;
79e53945 10560
d2dff872 10561 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 10562 connector->base.id, connector->name,
8e329a03 10563 encoder->base.id, encoder->name);
d2dff872 10564
edde3617 10565 if (!state)
0622a53c 10566 return;
79e53945 10567
edde3617
ML
10568 ret = drm_atomic_commit(state);
10569 if (ret) {
10570 DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
10571 drm_atomic_state_free(state);
10572 }
79e53945
JB
10573}
10574
da4a1efa 10575static int i9xx_pll_refclk(struct drm_device *dev,
5cec258b 10576 const struct intel_crtc_state *pipe_config)
da4a1efa
VS
10577{
10578 struct drm_i915_private *dev_priv = dev->dev_private;
10579 u32 dpll = pipe_config->dpll_hw_state.dpll;
10580
10581 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
e91e941b 10582 return dev_priv->vbt.lvds_ssc_freq;
da4a1efa
VS
10583 else if (HAS_PCH_SPLIT(dev))
10584 return 120000;
10585 else if (!IS_GEN2(dev))
10586 return 96000;
10587 else
10588 return 48000;
10589}
10590
79e53945 10591/* Returns the clock of the currently programmed mode of the given pipe. */
f1f644dc 10592static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 10593 struct intel_crtc_state *pipe_config)
79e53945 10594{
f1f644dc 10595 struct drm_device *dev = crtc->base.dev;
79e53945 10596 struct drm_i915_private *dev_priv = dev->dev_private;
f1f644dc 10597 int pipe = pipe_config->cpu_transcoder;
293623f7 10598 u32 dpll = pipe_config->dpll_hw_state.dpll;
79e53945
JB
10599 u32 fp;
10600 intel_clock_t clock;
dccbea3b 10601 int port_clock;
da4a1efa 10602 int refclk = i9xx_pll_refclk(dev, pipe_config);
79e53945
JB
10603
10604 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
293623f7 10605 fp = pipe_config->dpll_hw_state.fp0;
79e53945 10606 else
293623f7 10607 fp = pipe_config->dpll_hw_state.fp1;
79e53945
JB
10608
10609 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
10610 if (IS_PINEVIEW(dev)) {
10611 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10612 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
10613 } else {
10614 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10615 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10616 }
10617
a6c45cf0 10618 if (!IS_GEN2(dev)) {
f2b115e6
AJ
10619 if (IS_PINEVIEW(dev))
10620 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10621 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
10622 else
10623 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
10624 DPLL_FPA01_P1_POST_DIV_SHIFT);
10625
10626 switch (dpll & DPLL_MODE_MASK) {
10627 case DPLLB_MODE_DAC_SERIAL:
10628 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10629 5 : 10;
10630 break;
10631 case DPLLB_MODE_LVDS:
10632 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10633 7 : 14;
10634 break;
10635 default:
28c97730 10636 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945 10637 "mode\n", (int)(dpll & DPLL_MODE_MASK));
f1f644dc 10638 return;
79e53945
JB
10639 }
10640
ac58c3f0 10641 if (IS_PINEVIEW(dev))
dccbea3b 10642 port_clock = pnv_calc_dpll_params(refclk, &clock);
ac58c3f0 10643 else
dccbea3b 10644 port_clock = i9xx_calc_dpll_params(refclk, &clock);
79e53945 10645 } else {
0fb58223 10646 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
b1c560d1 10647 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
79e53945
JB
10648
10649 if (is_lvds) {
10650 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10651 DPLL_FPA01_P1_POST_DIV_SHIFT);
b1c560d1
VS
10652
10653 if (lvds & LVDS_CLKB_POWER_UP)
10654 clock.p2 = 7;
10655 else
10656 clock.p2 = 14;
79e53945
JB
10657 } else {
10658 if (dpll & PLL_P1_DIVIDE_BY_TWO)
10659 clock.p1 = 2;
10660 else {
10661 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10662 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10663 }
10664 if (dpll & PLL_P2_DIVIDE_BY_4)
10665 clock.p2 = 4;
10666 else
10667 clock.p2 = 2;
79e53945 10668 }
da4a1efa 10669
dccbea3b 10670 port_clock = i9xx_calc_dpll_params(refclk, &clock);
79e53945
JB
10671 }
10672
18442d08
VS
10673 /*
10674 * This value includes pixel_multiplier. We will use
241bfc38 10675 * port_clock to compute adjusted_mode.crtc_clock in the
18442d08
VS
10676 * encoder's get_config() function.
10677 */
dccbea3b 10678 pipe_config->port_clock = port_clock;
f1f644dc
JB
10679}
10680
6878da05
VS
10681int intel_dotclock_calculate(int link_freq,
10682 const struct intel_link_m_n *m_n)
f1f644dc 10683{
f1f644dc
JB
10684 /*
10685 * The calculation for the data clock is:
1041a02f 10686 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
f1f644dc 10687 * But we want to avoid losing precison if possible, so:
1041a02f 10688 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
f1f644dc
JB
10689 *
10690 * and the link clock is simpler:
1041a02f 10691 * link_clock = (m * link_clock) / n
f1f644dc
JB
10692 */
10693
6878da05
VS
10694 if (!m_n->link_n)
10695 return 0;
f1f644dc 10696
6878da05
VS
10697 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10698}
f1f644dc 10699
18442d08 10700static void ironlake_pch_clock_get(struct intel_crtc *crtc,
5cec258b 10701 struct intel_crtc_state *pipe_config)
6878da05 10702{
e3b247da 10703 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
79e53945 10704
18442d08
VS
10705 /* read out port_clock from the DPLL */
10706 i9xx_crtc_clock_get(crtc, pipe_config);
f1f644dc 10707
f1f644dc 10708 /*
e3b247da
VS
10709 * In case there is an active pipe without active ports,
10710 * we may need some idea for the dotclock anyway.
10711 * Calculate one based on the FDI configuration.
79e53945 10712 */
2d112de7 10713 pipe_config->base.adjusted_mode.crtc_clock =
21a727b3 10714 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
18442d08 10715 &pipe_config->fdi_m_n);
79e53945
JB
10716}
10717
10718/** Returns the currently programmed mode of the given pipe. */
10719struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10720 struct drm_crtc *crtc)
10721{
548f245b 10722 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 10723 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6e3c9717 10724 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
79e53945 10725 struct drm_display_mode *mode;
3f36b937 10726 struct intel_crtc_state *pipe_config;
fe2b8f9d
PZ
10727 int htot = I915_READ(HTOTAL(cpu_transcoder));
10728 int hsync = I915_READ(HSYNC(cpu_transcoder));
10729 int vtot = I915_READ(VTOTAL(cpu_transcoder));
10730 int vsync = I915_READ(VSYNC(cpu_transcoder));
293623f7 10731 enum pipe pipe = intel_crtc->pipe;
79e53945
JB
10732
10733 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10734 if (!mode)
10735 return NULL;
10736
3f36b937
TU
10737 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10738 if (!pipe_config) {
10739 kfree(mode);
10740 return NULL;
10741 }
10742
f1f644dc
JB
10743 /*
10744 * Construct a pipe_config sufficient for getting the clock info
10745 * back out of crtc_clock_get.
10746 *
10747 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10748 * to use a real value here instead.
10749 */
3f36b937
TU
10750 pipe_config->cpu_transcoder = (enum transcoder) pipe;
10751 pipe_config->pixel_multiplier = 1;
10752 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10753 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10754 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10755 i9xx_crtc_clock_get(intel_crtc, pipe_config);
10756
10757 mode->clock = pipe_config->port_clock / pipe_config->pixel_multiplier;
79e53945
JB
10758 mode->hdisplay = (htot & 0xffff) + 1;
10759 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10760 mode->hsync_start = (hsync & 0xffff) + 1;
10761 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10762 mode->vdisplay = (vtot & 0xffff) + 1;
10763 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10764 mode->vsync_start = (vsync & 0xffff) + 1;
10765 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10766
10767 drm_mode_set_name(mode);
79e53945 10768
3f36b937
TU
10769 kfree(pipe_config);
10770
79e53945
JB
10771 return mode;
10772}
10773
f047e395
CW
10774void intel_mark_busy(struct drm_device *dev)
10775{
c67a470b
PZ
10776 struct drm_i915_private *dev_priv = dev->dev_private;
10777
f62a0076
CW
10778 if (dev_priv->mm.busy)
10779 return;
10780
43694d69 10781 intel_runtime_pm_get(dev_priv);
c67a470b 10782 i915_update_gfx_val(dev_priv);
43cf3bf0
CW
10783 if (INTEL_INFO(dev)->gen >= 6)
10784 gen6_rps_busy(dev_priv);
f62a0076 10785 dev_priv->mm.busy = true;
f047e395
CW
10786}
10787
10788void intel_mark_idle(struct drm_device *dev)
652c393a 10789{
c67a470b 10790 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 10791
f62a0076
CW
10792 if (!dev_priv->mm.busy)
10793 return;
10794
10795 dev_priv->mm.busy = false;
10796
3d13ef2e 10797 if (INTEL_INFO(dev)->gen >= 6)
b29c19b6 10798 gen6_rps_idle(dev->dev_private);
bb4cdd53 10799
43694d69 10800 intel_runtime_pm_put(dev_priv);
652c393a
JB
10801}
10802
79e53945
JB
10803static void intel_crtc_destroy(struct drm_crtc *crtc)
10804{
10805 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a
DV
10806 struct drm_device *dev = crtc->dev;
10807 struct intel_unpin_work *work;
67e77c5a 10808
5e2d7afc 10809 spin_lock_irq(&dev->event_lock);
67e77c5a
DV
10810 work = intel_crtc->unpin_work;
10811 intel_crtc->unpin_work = NULL;
5e2d7afc 10812 spin_unlock_irq(&dev->event_lock);
67e77c5a
DV
10813
10814 if (work) {
10815 cancel_work_sync(&work->work);
10816 kfree(work);
10817 }
79e53945
JB
10818
10819 drm_crtc_cleanup(crtc);
67e77c5a 10820
79e53945
JB
10821 kfree(intel_crtc);
10822}
10823
6b95a207
KH
10824static void intel_unpin_work_fn(struct work_struct *__work)
10825{
10826 struct intel_unpin_work *work =
10827 container_of(__work, struct intel_unpin_work, work);
a9ff8714
VS
10828 struct intel_crtc *crtc = to_intel_crtc(work->crtc);
10829 struct drm_device *dev = crtc->base.dev;
10830 struct drm_plane *primary = crtc->base.primary;
6b95a207 10831
b4a98e57 10832 mutex_lock(&dev->struct_mutex);
3465c580 10833 intel_unpin_fb_obj(work->old_fb, primary->state->rotation);
05394f39 10834 drm_gem_object_unreference(&work->pending_flip_obj->base);
d9e86c0e 10835
f06cc1b9 10836 if (work->flip_queued_req)
146d84f0 10837 i915_gem_request_assign(&work->flip_queued_req, NULL);
b4a98e57
CW
10838 mutex_unlock(&dev->struct_mutex);
10839
a9ff8714 10840 intel_frontbuffer_flip_complete(dev, to_intel_plane(primary)->frontbuffer_bit);
1eb52238 10841 intel_fbc_post_update(crtc);
89ed88ba 10842 drm_framebuffer_unreference(work->old_fb);
f99d7069 10843
a9ff8714
VS
10844 BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
10845 atomic_dec(&crtc->unpin_work_count);
b4a98e57 10846
6b95a207
KH
10847 kfree(work);
10848}
10849
1afe3e9d 10850static void do_intel_finish_page_flip(struct drm_device *dev,
49b14a5c 10851 struct drm_crtc *crtc)
6b95a207 10852{
6b95a207
KH
10853 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10854 struct intel_unpin_work *work;
6b95a207
KH
10855 unsigned long flags;
10856
10857 /* Ignore early vblank irqs */
10858 if (intel_crtc == NULL)
10859 return;
10860
f326038a
DV
10861 /*
10862 * This is called both by irq handlers and the reset code (to complete
10863 * lost pageflips) so needs the full irqsave spinlocks.
10864 */
6b95a207
KH
10865 spin_lock_irqsave(&dev->event_lock, flags);
10866 work = intel_crtc->unpin_work;
e7d841ca
CW
10867
10868 /* Ensure we don't miss a work->pending update ... */
10869 smp_rmb();
10870
10871 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
6b95a207
KH
10872 spin_unlock_irqrestore(&dev->event_lock, flags);
10873 return;
10874 }
10875
d6bbafa1 10876 page_flip_completed(intel_crtc);
0af7e4df 10877
6b95a207 10878 spin_unlock_irqrestore(&dev->event_lock, flags);
6b95a207
KH
10879}
10880
1afe3e9d
JB
10881void intel_finish_page_flip(struct drm_device *dev, int pipe)
10882{
fbee40df 10883 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
10884 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10885
49b14a5c 10886 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
10887}
10888
10889void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
10890{
fbee40df 10891 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
10892 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
10893
49b14a5c 10894 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
10895}
10896
75f7f3ec
VS
10897/* Is 'a' after or equal to 'b'? */
10898static bool g4x_flip_count_after_eq(u32 a, u32 b)
10899{
10900 return !((a - b) & 0x80000000);
10901}
10902
10903static bool page_flip_finished(struct intel_crtc *crtc)
10904{
10905 struct drm_device *dev = crtc->base.dev;
10906 struct drm_i915_private *dev_priv = dev->dev_private;
10907
bdfa7542
VS
10908 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
10909 crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
10910 return true;
10911
75f7f3ec
VS
10912 /*
10913 * The relevant registers doen't exist on pre-ctg.
10914 * As the flip done interrupt doesn't trigger for mmio
10915 * flips on gmch platforms, a flip count check isn't
10916 * really needed there. But since ctg has the registers,
10917 * include it in the check anyway.
10918 */
10919 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10920 return true;
10921
e8861675
ML
10922 /*
10923 * BDW signals flip done immediately if the plane
10924 * is disabled, even if the plane enable is already
10925 * armed to occur at the next vblank :(
10926 */
10927
75f7f3ec
VS
10928 /*
10929 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10930 * used the same base address. In that case the mmio flip might
10931 * have completed, but the CS hasn't even executed the flip yet.
10932 *
10933 * A flip count check isn't enough as the CS might have updated
10934 * the base address just after start of vblank, but before we
10935 * managed to process the interrupt. This means we'd complete the
10936 * CS flip too soon.
10937 *
10938 * Combining both checks should get us a good enough result. It may
10939 * still happen that the CS flip has been executed, but has not
10940 * yet actually completed. But in case the base address is the same
10941 * anyway, we don't really care.
10942 */
10943 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
10944 crtc->unpin_work->gtt_offset &&
fd8f507c 10945 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
75f7f3ec
VS
10946 crtc->unpin_work->flip_count);
10947}
10948
6b95a207
KH
10949void intel_prepare_page_flip(struct drm_device *dev, int plane)
10950{
fbee40df 10951 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
10952 struct intel_crtc *intel_crtc =
10953 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
10954 unsigned long flags;
10955
f326038a
DV
10956
10957 /*
10958 * This is called both by irq handlers and the reset code (to complete
10959 * lost pageflips) so needs the full irqsave spinlocks.
10960 *
10961 * NB: An MMIO update of the plane base pointer will also
e7d841ca
CW
10962 * generate a page-flip completion irq, i.e. every modeset
10963 * is also accompanied by a spurious intel_prepare_page_flip().
10964 */
6b95a207 10965 spin_lock_irqsave(&dev->event_lock, flags);
75f7f3ec 10966 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
e7d841ca 10967 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
6b95a207
KH
10968 spin_unlock_irqrestore(&dev->event_lock, flags);
10969}
10970
6042639c 10971static inline void intel_mark_page_flip_active(struct intel_unpin_work *work)
e7d841ca
CW
10972{
10973 /* Ensure that the work item is consistent when activating it ... */
10974 smp_wmb();
6042639c 10975 atomic_set(&work->pending, INTEL_FLIP_PENDING);
e7d841ca
CW
10976 /* and that it is marked active as soon as the irq could fire. */
10977 smp_wmb();
10978}
10979
8c9f3aaf
JB
10980static int intel_gen2_queue_flip(struct drm_device *dev,
10981 struct drm_crtc *crtc,
10982 struct drm_framebuffer *fb,
ed8d1975 10983 struct drm_i915_gem_object *obj,
6258fbe2 10984 struct drm_i915_gem_request *req,
ed8d1975 10985 uint32_t flags)
8c9f3aaf 10986{
e2f80391 10987 struct intel_engine_cs *engine = req->ring;
8c9f3aaf 10988 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
10989 u32 flip_mask;
10990 int ret;
10991
5fb9de1a 10992 ret = intel_ring_begin(req, 6);
8c9f3aaf 10993 if (ret)
4fa62c89 10994 return ret;
8c9f3aaf
JB
10995
10996 /* Can't queue multiple flips, so wait for the previous
10997 * one to finish before executing the next.
10998 */
10999 if (intel_crtc->plane)
11000 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11001 else
11002 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
e2f80391
TU
11003 intel_ring_emit(engine, MI_WAIT_FOR_EVENT | flip_mask);
11004 intel_ring_emit(engine, MI_NOOP);
11005 intel_ring_emit(engine, MI_DISPLAY_FLIP |
6d90c952 11006 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
e2f80391
TU
11007 intel_ring_emit(engine, fb->pitches[0]);
11008 intel_ring_emit(engine, intel_crtc->unpin_work->gtt_offset);
11009 intel_ring_emit(engine, 0); /* aux display base address, unused */
e7d841ca 11010
6042639c 11011 intel_mark_page_flip_active(intel_crtc->unpin_work);
83d4092b 11012 return 0;
8c9f3aaf
JB
11013}
11014
11015static int intel_gen3_queue_flip(struct drm_device *dev,
11016 struct drm_crtc *crtc,
11017 struct drm_framebuffer *fb,
ed8d1975 11018 struct drm_i915_gem_object *obj,
6258fbe2 11019 struct drm_i915_gem_request *req,
ed8d1975 11020 uint32_t flags)
8c9f3aaf 11021{
e2f80391 11022 struct intel_engine_cs *engine = req->ring;
8c9f3aaf 11023 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
11024 u32 flip_mask;
11025 int ret;
11026
5fb9de1a 11027 ret = intel_ring_begin(req, 6);
8c9f3aaf 11028 if (ret)
4fa62c89 11029 return ret;
8c9f3aaf
JB
11030
11031 if (intel_crtc->plane)
11032 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11033 else
11034 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
e2f80391
TU
11035 intel_ring_emit(engine, MI_WAIT_FOR_EVENT | flip_mask);
11036 intel_ring_emit(engine, MI_NOOP);
11037 intel_ring_emit(engine, MI_DISPLAY_FLIP_I915 |
6d90c952 11038 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
e2f80391
TU
11039 intel_ring_emit(engine, fb->pitches[0]);
11040 intel_ring_emit(engine, intel_crtc->unpin_work->gtt_offset);
11041 intel_ring_emit(engine, MI_NOOP);
6d90c952 11042
6042639c 11043 intel_mark_page_flip_active(intel_crtc->unpin_work);
83d4092b 11044 return 0;
8c9f3aaf
JB
11045}
11046
11047static int intel_gen4_queue_flip(struct drm_device *dev,
11048 struct drm_crtc *crtc,
11049 struct drm_framebuffer *fb,
ed8d1975 11050 struct drm_i915_gem_object *obj,
6258fbe2 11051 struct drm_i915_gem_request *req,
ed8d1975 11052 uint32_t flags)
8c9f3aaf 11053{
e2f80391 11054 struct intel_engine_cs *engine = req->ring;
8c9f3aaf
JB
11055 struct drm_i915_private *dev_priv = dev->dev_private;
11056 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11057 uint32_t pf, pipesrc;
11058 int ret;
11059
5fb9de1a 11060 ret = intel_ring_begin(req, 4);
8c9f3aaf 11061 if (ret)
4fa62c89 11062 return ret;
8c9f3aaf
JB
11063
11064 /* i965+ uses the linear or tiled offsets from the
11065 * Display Registers (which do not change across a page-flip)
11066 * so we need only reprogram the base address.
11067 */
e2f80391 11068 intel_ring_emit(engine, MI_DISPLAY_FLIP |
6d90c952 11069 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
e2f80391
TU
11070 intel_ring_emit(engine, fb->pitches[0]);
11071 intel_ring_emit(engine, intel_crtc->unpin_work->gtt_offset |
c2c75131 11072 obj->tiling_mode);
8c9f3aaf
JB
11073
11074 /* XXX Enabling the panel-fitter across page-flip is so far
11075 * untested on non-native modes, so ignore it for now.
11076 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11077 */
11078 pf = 0;
11079 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
e2f80391 11080 intel_ring_emit(engine, pf | pipesrc);
e7d841ca 11081
6042639c 11082 intel_mark_page_flip_active(intel_crtc->unpin_work);
83d4092b 11083 return 0;
8c9f3aaf
JB
11084}
11085
11086static int intel_gen6_queue_flip(struct drm_device *dev,
11087 struct drm_crtc *crtc,
11088 struct drm_framebuffer *fb,
ed8d1975 11089 struct drm_i915_gem_object *obj,
6258fbe2 11090 struct drm_i915_gem_request *req,
ed8d1975 11091 uint32_t flags)
8c9f3aaf 11092{
e2f80391 11093 struct intel_engine_cs *engine = req->ring;
8c9f3aaf
JB
11094 struct drm_i915_private *dev_priv = dev->dev_private;
11095 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11096 uint32_t pf, pipesrc;
11097 int ret;
11098
5fb9de1a 11099 ret = intel_ring_begin(req, 4);
8c9f3aaf 11100 if (ret)
4fa62c89 11101 return ret;
8c9f3aaf 11102
e2f80391 11103 intel_ring_emit(engine, MI_DISPLAY_FLIP |
6d90c952 11104 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
e2f80391
TU
11105 intel_ring_emit(engine, fb->pitches[0] | obj->tiling_mode);
11106 intel_ring_emit(engine, intel_crtc->unpin_work->gtt_offset);
8c9f3aaf 11107
dc257cf1
DV
11108 /* Contrary to the suggestions in the documentation,
11109 * "Enable Panel Fitter" does not seem to be required when page
11110 * flipping with a non-native mode, and worse causes a normal
11111 * modeset to fail.
11112 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11113 */
11114 pf = 0;
8c9f3aaf 11115 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
e2f80391 11116 intel_ring_emit(engine, pf | pipesrc);
e7d841ca 11117
6042639c 11118 intel_mark_page_flip_active(intel_crtc->unpin_work);
83d4092b 11119 return 0;
8c9f3aaf
JB
11120}
11121
7c9017e5
JB
11122static int intel_gen7_queue_flip(struct drm_device *dev,
11123 struct drm_crtc *crtc,
11124 struct drm_framebuffer *fb,
ed8d1975 11125 struct drm_i915_gem_object *obj,
6258fbe2 11126 struct drm_i915_gem_request *req,
ed8d1975 11127 uint32_t flags)
7c9017e5 11128{
e2f80391 11129 struct intel_engine_cs *engine = req->ring;
7c9017e5 11130 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
cb05d8de 11131 uint32_t plane_bit = 0;
ffe74d75
CW
11132 int len, ret;
11133
eba905b2 11134 switch (intel_crtc->plane) {
cb05d8de
DV
11135 case PLANE_A:
11136 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11137 break;
11138 case PLANE_B:
11139 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11140 break;
11141 case PLANE_C:
11142 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11143 break;
11144 default:
11145 WARN_ONCE(1, "unknown plane in flip command\n");
4fa62c89 11146 return -ENODEV;
cb05d8de
DV
11147 }
11148
ffe74d75 11149 len = 4;
e2f80391 11150 if (engine->id == RCS) {
ffe74d75 11151 len += 6;
f476828a
DL
11152 /*
11153 * On Gen 8, SRM is now taking an extra dword to accommodate
11154 * 48bits addresses, and we need a NOOP for the batch size to
11155 * stay even.
11156 */
11157 if (IS_GEN8(dev))
11158 len += 2;
11159 }
ffe74d75 11160
f66fab8e
VS
11161 /*
11162 * BSpec MI_DISPLAY_FLIP for IVB:
11163 * "The full packet must be contained within the same cache line."
11164 *
11165 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11166 * cacheline, if we ever start emitting more commands before
11167 * the MI_DISPLAY_FLIP we may need to first emit everything else,
11168 * then do the cacheline alignment, and finally emit the
11169 * MI_DISPLAY_FLIP.
11170 */
bba09b12 11171 ret = intel_ring_cacheline_align(req);
f66fab8e 11172 if (ret)
4fa62c89 11173 return ret;
f66fab8e 11174
5fb9de1a 11175 ret = intel_ring_begin(req, len);
7c9017e5 11176 if (ret)
4fa62c89 11177 return ret;
7c9017e5 11178
ffe74d75
CW
11179 /* Unmask the flip-done completion message. Note that the bspec says that
11180 * we should do this for both the BCS and RCS, and that we must not unmask
11181 * more than one flip event at any time (or ensure that one flip message
11182 * can be sent by waiting for flip-done prior to queueing new flips).
11183 * Experimentation says that BCS works despite DERRMR masking all
11184 * flip-done completion events and that unmasking all planes at once
11185 * for the RCS also doesn't appear to drop events. Setting the DERRMR
11186 * to zero does lead to lockups within MI_DISPLAY_FLIP.
11187 */
e2f80391
TU
11188 if (engine->id == RCS) {
11189 intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
11190 intel_ring_emit_reg(engine, DERRMR);
11191 intel_ring_emit(engine, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11192 DERRMR_PIPEB_PRI_FLIP_DONE |
11193 DERRMR_PIPEC_PRI_FLIP_DONE));
f476828a 11194 if (IS_GEN8(dev))
e2f80391 11195 intel_ring_emit(engine, MI_STORE_REGISTER_MEM_GEN8 |
f476828a
DL
11196 MI_SRM_LRM_GLOBAL_GTT);
11197 else
e2f80391 11198 intel_ring_emit(engine, MI_STORE_REGISTER_MEM |
f476828a 11199 MI_SRM_LRM_GLOBAL_GTT);
e2f80391
TU
11200 intel_ring_emit_reg(engine, DERRMR);
11201 intel_ring_emit(engine, engine->scratch.gtt_offset + 256);
f476828a 11202 if (IS_GEN8(dev)) {
e2f80391
TU
11203 intel_ring_emit(engine, 0);
11204 intel_ring_emit(engine, MI_NOOP);
f476828a 11205 }
ffe74d75
CW
11206 }
11207
e2f80391
TU
11208 intel_ring_emit(engine, MI_DISPLAY_FLIP_I915 | plane_bit);
11209 intel_ring_emit(engine, (fb->pitches[0] | obj->tiling_mode));
11210 intel_ring_emit(engine, intel_crtc->unpin_work->gtt_offset);
11211 intel_ring_emit(engine, (MI_NOOP));
e7d841ca 11212
6042639c 11213 intel_mark_page_flip_active(intel_crtc->unpin_work);
83d4092b 11214 return 0;
7c9017e5
JB
11215}
11216
84c33a64
SG
11217static bool use_mmio_flip(struct intel_engine_cs *ring,
11218 struct drm_i915_gem_object *obj)
11219{
11220 /*
11221 * This is not being used for older platforms, because
11222 * non-availability of flip done interrupt forces us to use
11223 * CS flips. Older platforms derive flip done using some clever
11224 * tricks involving the flip_pending status bits and vblank irqs.
11225 * So using MMIO flips there would disrupt this mechanism.
11226 */
11227
8e09bf83
CW
11228 if (ring == NULL)
11229 return true;
11230
84c33a64
SG
11231 if (INTEL_INFO(ring->dev)->gen < 5)
11232 return false;
11233
11234 if (i915.use_mmio_flip < 0)
11235 return false;
11236 else if (i915.use_mmio_flip > 0)
11237 return true;
14bf993e
OM
11238 else if (i915.enable_execlists)
11239 return true;
fd8e058a
AG
11240 else if (obj->base.dma_buf &&
11241 !reservation_object_test_signaled_rcu(obj->base.dma_buf->resv,
11242 false))
11243 return true;
84c33a64 11244 else
b4716185 11245 return ring != i915_gem_request_get_ring(obj->last_write_req);
84c33a64
SG
11246}
11247
6042639c 11248static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
86efe24a 11249 unsigned int rotation,
6042639c 11250 struct intel_unpin_work *work)
ff944564
DL
11251{
11252 struct drm_device *dev = intel_crtc->base.dev;
11253 struct drm_i915_private *dev_priv = dev->dev_private;
11254 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
ff944564 11255 const enum pipe pipe = intel_crtc->pipe;
86efe24a 11256 u32 ctl, stride, tile_height;
ff944564
DL
11257
11258 ctl = I915_READ(PLANE_CTL(pipe, 0));
11259 ctl &= ~PLANE_CTL_TILED_MASK;
2ebef630
TU
11260 switch (fb->modifier[0]) {
11261 case DRM_FORMAT_MOD_NONE:
11262 break;
11263 case I915_FORMAT_MOD_X_TILED:
ff944564 11264 ctl |= PLANE_CTL_TILED_X;
2ebef630
TU
11265 break;
11266 case I915_FORMAT_MOD_Y_TILED:
11267 ctl |= PLANE_CTL_TILED_Y;
11268 break;
11269 case I915_FORMAT_MOD_Yf_TILED:
11270 ctl |= PLANE_CTL_TILED_YF;
11271 break;
11272 default:
11273 MISSING_CASE(fb->modifier[0]);
11274 }
ff944564
DL
11275
11276 /*
11277 * The stride is either expressed as a multiple of 64 bytes chunks for
11278 * linear buffers or in number of tiles for tiled buffers.
11279 */
86efe24a
TU
11280 if (intel_rotation_90_or_270(rotation)) {
11281 /* stride = Surface height in tiles */
832be82f 11282 tile_height = intel_tile_height(dev_priv, fb->modifier[0], 0);
86efe24a
TU
11283 stride = DIV_ROUND_UP(fb->height, tile_height);
11284 } else {
11285 stride = fb->pitches[0] /
7b49f948
VS
11286 intel_fb_stride_alignment(dev_priv, fb->modifier[0],
11287 fb->pixel_format);
86efe24a 11288 }
ff944564
DL
11289
11290 /*
11291 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11292 * PLANE_SURF updates, the update is then guaranteed to be atomic.
11293 */
11294 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11295 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11296
6042639c 11297 I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
ff944564
DL
11298 POSTING_READ(PLANE_SURF(pipe, 0));
11299}
11300
6042639c
CW
11301static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
11302 struct intel_unpin_work *work)
84c33a64
SG
11303{
11304 struct drm_device *dev = intel_crtc->base.dev;
11305 struct drm_i915_private *dev_priv = dev->dev_private;
11306 struct intel_framebuffer *intel_fb =
11307 to_intel_framebuffer(intel_crtc->base.primary->fb);
11308 struct drm_i915_gem_object *obj = intel_fb->obj;
f0f59a00 11309 i915_reg_t reg = DSPCNTR(intel_crtc->plane);
84c33a64 11310 u32 dspcntr;
84c33a64 11311
84c33a64
SG
11312 dspcntr = I915_READ(reg);
11313
c5d97472
DL
11314 if (obj->tiling_mode != I915_TILING_NONE)
11315 dspcntr |= DISPPLANE_TILED;
11316 else
11317 dspcntr &= ~DISPPLANE_TILED;
11318
84c33a64
SG
11319 I915_WRITE(reg, dspcntr);
11320
6042639c 11321 I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
84c33a64 11322 POSTING_READ(DSPSURF(intel_crtc->plane));
ff944564
DL
11323}
11324
11325/*
11326 * XXX: This is the temporary way to update the plane registers until we get
11327 * around to using the usual plane update functions for MMIO flips
11328 */
6042639c 11329static void intel_do_mmio_flip(struct intel_mmio_flip *mmio_flip)
ff944564 11330{
6042639c
CW
11331 struct intel_crtc *crtc = mmio_flip->crtc;
11332 struct intel_unpin_work *work;
11333
11334 spin_lock_irq(&crtc->base.dev->event_lock);
11335 work = crtc->unpin_work;
11336 spin_unlock_irq(&crtc->base.dev->event_lock);
11337 if (work == NULL)
11338 return;
ff944564 11339
6042639c 11340 intel_mark_page_flip_active(work);
ff944564 11341
6042639c 11342 intel_pipe_update_start(crtc);
ff944564 11343
6042639c 11344 if (INTEL_INFO(mmio_flip->i915)->gen >= 9)
86efe24a 11345 skl_do_mmio_flip(crtc, mmio_flip->rotation, work);
ff944564
DL
11346 else
11347 /* use_mmio_flip() retricts MMIO flips to ilk+ */
6042639c 11348 ilk_do_mmio_flip(crtc, work);
ff944564 11349
6042639c 11350 intel_pipe_update_end(crtc);
84c33a64
SG
11351}
11352
9362c7c5 11353static void intel_mmio_flip_work_func(struct work_struct *work)
84c33a64 11354{
b2cfe0ab
CW
11355 struct intel_mmio_flip *mmio_flip =
11356 container_of(work, struct intel_mmio_flip, work);
fd8e058a
AG
11357 struct intel_framebuffer *intel_fb =
11358 to_intel_framebuffer(mmio_flip->crtc->base.primary->fb);
11359 struct drm_i915_gem_object *obj = intel_fb->obj;
84c33a64 11360
6042639c 11361 if (mmio_flip->req) {
eed29a5b 11362 WARN_ON(__i915_wait_request(mmio_flip->req,
b2cfe0ab 11363 mmio_flip->crtc->reset_counter,
bcafc4e3
CW
11364 false, NULL,
11365 &mmio_flip->i915->rps.mmioflips));
6042639c
CW
11366 i915_gem_request_unreference__unlocked(mmio_flip->req);
11367 }
84c33a64 11368
fd8e058a
AG
11369 /* For framebuffer backed by dmabuf, wait for fence */
11370 if (obj->base.dma_buf)
11371 WARN_ON(reservation_object_wait_timeout_rcu(obj->base.dma_buf->resv,
11372 false, false,
11373 MAX_SCHEDULE_TIMEOUT) < 0);
11374
6042639c 11375 intel_do_mmio_flip(mmio_flip);
b2cfe0ab 11376 kfree(mmio_flip);
84c33a64
SG
11377}
11378
11379static int intel_queue_mmio_flip(struct drm_device *dev,
11380 struct drm_crtc *crtc,
86efe24a 11381 struct drm_i915_gem_object *obj)
84c33a64 11382{
b2cfe0ab
CW
11383 struct intel_mmio_flip *mmio_flip;
11384
11385 mmio_flip = kmalloc(sizeof(*mmio_flip), GFP_KERNEL);
11386 if (mmio_flip == NULL)
11387 return -ENOMEM;
84c33a64 11388
bcafc4e3 11389 mmio_flip->i915 = to_i915(dev);
eed29a5b 11390 mmio_flip->req = i915_gem_request_reference(obj->last_write_req);
b2cfe0ab 11391 mmio_flip->crtc = to_intel_crtc(crtc);
86efe24a 11392 mmio_flip->rotation = crtc->primary->state->rotation;
536f5b5e 11393
b2cfe0ab
CW
11394 INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func);
11395 schedule_work(&mmio_flip->work);
84c33a64 11396
84c33a64
SG
11397 return 0;
11398}
11399
8c9f3aaf
JB
11400static int intel_default_queue_flip(struct drm_device *dev,
11401 struct drm_crtc *crtc,
11402 struct drm_framebuffer *fb,
ed8d1975 11403 struct drm_i915_gem_object *obj,
6258fbe2 11404 struct drm_i915_gem_request *req,
ed8d1975 11405 uint32_t flags)
8c9f3aaf
JB
11406{
11407 return -ENODEV;
11408}
11409
d6bbafa1
CW
11410static bool __intel_pageflip_stall_check(struct drm_device *dev,
11411 struct drm_crtc *crtc)
11412{
11413 struct drm_i915_private *dev_priv = dev->dev_private;
11414 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11415 struct intel_unpin_work *work = intel_crtc->unpin_work;
11416 u32 addr;
11417
11418 if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
11419 return true;
11420
908565c2
CW
11421 if (atomic_read(&work->pending) < INTEL_FLIP_PENDING)
11422 return false;
11423
d6bbafa1
CW
11424 if (!work->enable_stall_check)
11425 return false;
11426
11427 if (work->flip_ready_vblank == 0) {
3a8a946e
DV
11428 if (work->flip_queued_req &&
11429 !i915_gem_request_completed(work->flip_queued_req, true))
d6bbafa1
CW
11430 return false;
11431
1e3feefd 11432 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
d6bbafa1
CW
11433 }
11434
1e3feefd 11435 if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
d6bbafa1
CW
11436 return false;
11437
11438 /* Potential stall - if we see that the flip has happened,
11439 * assume a missed interrupt. */
11440 if (INTEL_INFO(dev)->gen >= 4)
11441 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11442 else
11443 addr = I915_READ(DSPADDR(intel_crtc->plane));
11444
11445 /* There is a potential issue here with a false positive after a flip
11446 * to the same address. We could address this by checking for a
11447 * non-incrementing frame counter.
11448 */
11449 return addr == work->gtt_offset;
11450}
11451
11452void intel_check_page_flip(struct drm_device *dev, int pipe)
11453{
11454 struct drm_i915_private *dev_priv = dev->dev_private;
11455 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11456 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6ad790c0 11457 struct intel_unpin_work *work;
f326038a 11458
6c51d46f 11459 WARN_ON(!in_interrupt());
d6bbafa1
CW
11460
11461 if (crtc == NULL)
11462 return;
11463
f326038a 11464 spin_lock(&dev->event_lock);
6ad790c0
CW
11465 work = intel_crtc->unpin_work;
11466 if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
d6bbafa1 11467 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
6ad790c0 11468 work->flip_queued_vblank, drm_vblank_count(dev, pipe));
d6bbafa1 11469 page_flip_completed(intel_crtc);
6ad790c0 11470 work = NULL;
d6bbafa1 11471 }
6ad790c0
CW
11472 if (work != NULL &&
11473 drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
11474 intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
f326038a 11475 spin_unlock(&dev->event_lock);
d6bbafa1
CW
11476}
11477
6b95a207
KH
11478static int intel_crtc_page_flip(struct drm_crtc *crtc,
11479 struct drm_framebuffer *fb,
ed8d1975
KP
11480 struct drm_pending_vblank_event *event,
11481 uint32_t page_flip_flags)
6b95a207
KH
11482{
11483 struct drm_device *dev = crtc->dev;
11484 struct drm_i915_private *dev_priv = dev->dev_private;
f4510a27 11485 struct drm_framebuffer *old_fb = crtc->primary->fb;
2ff8fde1 11486 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
6b95a207 11487 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
455a6808 11488 struct drm_plane *primary = crtc->primary;
a071fa00 11489 enum pipe pipe = intel_crtc->pipe;
6b95a207 11490 struct intel_unpin_work *work;
e2f80391 11491 struct intel_engine_cs *engine;
cf5d8a46 11492 bool mmio_flip;
91af127f 11493 struct drm_i915_gem_request *request = NULL;
52e68630 11494 int ret;
6b95a207 11495
2ff8fde1
MR
11496 /*
11497 * drm_mode_page_flip_ioctl() should already catch this, but double
11498 * check to be safe. In the future we may enable pageflipping from
11499 * a disabled primary plane.
11500 */
11501 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11502 return -EBUSY;
11503
e6a595d2 11504 /* Can't change pixel format via MI display flips. */
f4510a27 11505 if (fb->pixel_format != crtc->primary->fb->pixel_format)
e6a595d2
VS
11506 return -EINVAL;
11507
11508 /*
11509 * TILEOFF/LINOFF registers can't be changed via MI display flips.
11510 * Note that pitch changes could also affect these register.
11511 */
11512 if (INTEL_INFO(dev)->gen > 3 &&
f4510a27
MR
11513 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11514 fb->pitches[0] != crtc->primary->fb->pitches[0]))
e6a595d2
VS
11515 return -EINVAL;
11516
f900db47
CW
11517 if (i915_terminally_wedged(&dev_priv->gpu_error))
11518 goto out_hang;
11519
b14c5679 11520 work = kzalloc(sizeof(*work), GFP_KERNEL);
6b95a207
KH
11521 if (work == NULL)
11522 return -ENOMEM;
11523
6b95a207 11524 work->event = event;
b4a98e57 11525 work->crtc = crtc;
ab8d6675 11526 work->old_fb = old_fb;
6b95a207
KH
11527 INIT_WORK(&work->work, intel_unpin_work_fn);
11528
87b6b101 11529 ret = drm_crtc_vblank_get(crtc);
7317c75e
JB
11530 if (ret)
11531 goto free_work;
11532
6b95a207 11533 /* We borrow the event spin lock for protecting unpin_work */
5e2d7afc 11534 spin_lock_irq(&dev->event_lock);
6b95a207 11535 if (intel_crtc->unpin_work) {
d6bbafa1
CW
11536 /* Before declaring the flip queue wedged, check if
11537 * the hardware completed the operation behind our backs.
11538 */
11539 if (__intel_pageflip_stall_check(dev, crtc)) {
11540 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11541 page_flip_completed(intel_crtc);
11542 } else {
11543 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
5e2d7afc 11544 spin_unlock_irq(&dev->event_lock);
468f0b44 11545
d6bbafa1
CW
11546 drm_crtc_vblank_put(crtc);
11547 kfree(work);
11548 return -EBUSY;
11549 }
6b95a207
KH
11550 }
11551 intel_crtc->unpin_work = work;
5e2d7afc 11552 spin_unlock_irq(&dev->event_lock);
6b95a207 11553
b4a98e57
CW
11554 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11555 flush_workqueue(dev_priv->wq);
11556
75dfca80 11557 /* Reference the objects for the scheduled work. */
ab8d6675 11558 drm_framebuffer_reference(work->old_fb);
05394f39 11559 drm_gem_object_reference(&obj->base);
6b95a207 11560
f4510a27 11561 crtc->primary->fb = fb;
afd65eb4 11562 update_state_fb(crtc->primary);
e8216e50 11563 intel_fbc_pre_update(intel_crtc);
1ed1f968 11564
e1f99ce6 11565 work->pending_flip_obj = obj;
e1f99ce6 11566
89ed88ba
CW
11567 ret = i915_mutex_lock_interruptible(dev);
11568 if (ret)
11569 goto cleanup;
11570
b4a98e57 11571 atomic_inc(&intel_crtc->unpin_work_count);
10d83730 11572 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
e1f99ce6 11573
75f7f3ec 11574 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
fd8f507c 11575 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
75f7f3ec 11576
666a4537 11577 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
e2f80391 11578 engine = &dev_priv->ring[BCS];
ab8d6675 11579 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
8e09bf83 11580 /* vlv: DISPLAY_FLIP fails to change tiling */
e2f80391 11581 engine = NULL;
48bf5b2d 11582 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
e2f80391 11583 engine = &dev_priv->ring[BCS];
4fa62c89 11584 } else if (INTEL_INFO(dev)->gen >= 7) {
e2f80391
TU
11585 engine = i915_gem_request_get_ring(obj->last_write_req);
11586 if (engine == NULL || engine->id != RCS)
11587 engine = &dev_priv->ring[BCS];
4fa62c89 11588 } else {
e2f80391 11589 engine = &dev_priv->ring[RCS];
4fa62c89
VS
11590 }
11591
e2f80391 11592 mmio_flip = use_mmio_flip(engine, obj);
cf5d8a46
CW
11593
11594 /* When using CS flips, we want to emit semaphores between rings.
11595 * However, when using mmio flips we will create a task to do the
11596 * synchronisation, so all we want here is to pin the framebuffer
11597 * into the display plane and skip any waits.
11598 */
7580d774 11599 if (!mmio_flip) {
e2f80391 11600 ret = i915_gem_object_sync(obj, engine, &request);
7580d774
ML
11601 if (ret)
11602 goto cleanup_pending;
11603 }
11604
3465c580 11605 ret = intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
8c9f3aaf
JB
11606 if (ret)
11607 goto cleanup_pending;
6b95a207 11608
dedf278c
TU
11609 work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary),
11610 obj, 0);
11611 work->gtt_offset += intel_crtc->dspaddr_offset;
4fa62c89 11612
cf5d8a46 11613 if (mmio_flip) {
86efe24a 11614 ret = intel_queue_mmio_flip(dev, crtc, obj);
d6bbafa1
CW
11615 if (ret)
11616 goto cleanup_unpin;
11617
f06cc1b9
JH
11618 i915_gem_request_assign(&work->flip_queued_req,
11619 obj->last_write_req);
d6bbafa1 11620 } else {
6258fbe2 11621 if (!request) {
e2f80391 11622 request = i915_gem_request_alloc(engine, NULL);
26827088
DG
11623 if (IS_ERR(request)) {
11624 ret = PTR_ERR(request);
6258fbe2 11625 goto cleanup_unpin;
26827088 11626 }
6258fbe2
JH
11627 }
11628
11629 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
d6bbafa1
CW
11630 page_flip_flags);
11631 if (ret)
11632 goto cleanup_unpin;
11633
6258fbe2 11634 i915_gem_request_assign(&work->flip_queued_req, request);
d6bbafa1
CW
11635 }
11636
91af127f 11637 if (request)
75289874 11638 i915_add_request_no_flush(request);
91af127f 11639
1e3feefd 11640 work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
d6bbafa1 11641 work->enable_stall_check = true;
4fa62c89 11642
ab8d6675 11643 i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
a9ff8714 11644 to_intel_plane(primary)->frontbuffer_bit);
c80ac854 11645 mutex_unlock(&dev->struct_mutex);
a071fa00 11646
a9ff8714
VS
11647 intel_frontbuffer_flip_prepare(dev,
11648 to_intel_plane(primary)->frontbuffer_bit);
6b95a207 11649
e5510fac
JB
11650 trace_i915_flip_request(intel_crtc->plane, obj);
11651
6b95a207 11652 return 0;
96b099fd 11653
4fa62c89 11654cleanup_unpin:
3465c580 11655 intel_unpin_fb_obj(fb, crtc->primary->state->rotation);
8c9f3aaf 11656cleanup_pending:
0aa498d5 11657 if (!IS_ERR_OR_NULL(request))
91af127f 11658 i915_gem_request_cancel(request);
b4a98e57 11659 atomic_dec(&intel_crtc->unpin_work_count);
89ed88ba
CW
11660 mutex_unlock(&dev->struct_mutex);
11661cleanup:
f4510a27 11662 crtc->primary->fb = old_fb;
afd65eb4 11663 update_state_fb(crtc->primary);
89ed88ba
CW
11664
11665 drm_gem_object_unreference_unlocked(&obj->base);
ab8d6675 11666 drm_framebuffer_unreference(work->old_fb);
96b099fd 11667
5e2d7afc 11668 spin_lock_irq(&dev->event_lock);
96b099fd 11669 intel_crtc->unpin_work = NULL;
5e2d7afc 11670 spin_unlock_irq(&dev->event_lock);
96b099fd 11671
87b6b101 11672 drm_crtc_vblank_put(crtc);
7317c75e 11673free_work:
96b099fd
CW
11674 kfree(work);
11675
f900db47 11676 if (ret == -EIO) {
02e0efb5
ML
11677 struct drm_atomic_state *state;
11678 struct drm_plane_state *plane_state;
11679
f900db47 11680out_hang:
02e0efb5
ML
11681 state = drm_atomic_state_alloc(dev);
11682 if (!state)
11683 return -ENOMEM;
11684 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
11685
11686retry:
11687 plane_state = drm_atomic_get_plane_state(state, primary);
11688 ret = PTR_ERR_OR_ZERO(plane_state);
11689 if (!ret) {
11690 drm_atomic_set_fb_for_plane(plane_state, fb);
11691
11692 ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
11693 if (!ret)
11694 ret = drm_atomic_commit(state);
11695 }
11696
11697 if (ret == -EDEADLK) {
11698 drm_modeset_backoff(state->acquire_ctx);
11699 drm_atomic_state_clear(state);
11700 goto retry;
11701 }
11702
11703 if (ret)
11704 drm_atomic_state_free(state);
11705
f0d3dad3 11706 if (ret == 0 && event) {
5e2d7afc 11707 spin_lock_irq(&dev->event_lock);
a071fa00 11708 drm_send_vblank_event(dev, pipe, event);
5e2d7afc 11709 spin_unlock_irq(&dev->event_lock);
f0d3dad3 11710 }
f900db47 11711 }
96b099fd 11712 return ret;
6b95a207
KH
11713}
11714
da20eabd
ML
11715
11716/**
11717 * intel_wm_need_update - Check whether watermarks need updating
11718 * @plane: drm plane
11719 * @state: new plane state
11720 *
11721 * Check current plane state versus the new one to determine whether
11722 * watermarks need to be recalculated.
11723 *
11724 * Returns true or false.
11725 */
11726static bool intel_wm_need_update(struct drm_plane *plane,
11727 struct drm_plane_state *state)
11728{
d21fbe87
MR
11729 struct intel_plane_state *new = to_intel_plane_state(state);
11730 struct intel_plane_state *cur = to_intel_plane_state(plane->state);
11731
11732 /* Update watermarks on tiling or size changes. */
92826fcd
ML
11733 if (new->visible != cur->visible)
11734 return true;
11735
11736 if (!cur->base.fb || !new->base.fb)
11737 return false;
11738
11739 if (cur->base.fb->modifier[0] != new->base.fb->modifier[0] ||
11740 cur->base.rotation != new->base.rotation ||
d21fbe87
MR
11741 drm_rect_width(&new->src) != drm_rect_width(&cur->src) ||
11742 drm_rect_height(&new->src) != drm_rect_height(&cur->src) ||
11743 drm_rect_width(&new->dst) != drm_rect_width(&cur->dst) ||
11744 drm_rect_height(&new->dst) != drm_rect_height(&cur->dst))
2791a16c 11745 return true;
7809e5ae 11746
2791a16c 11747 return false;
7809e5ae
MR
11748}
11749
d21fbe87
MR
11750static bool needs_scaling(struct intel_plane_state *state)
11751{
11752 int src_w = drm_rect_width(&state->src) >> 16;
11753 int src_h = drm_rect_height(&state->src) >> 16;
11754 int dst_w = drm_rect_width(&state->dst);
11755 int dst_h = drm_rect_height(&state->dst);
11756
11757 return (src_w != dst_w || src_h != dst_h);
11758}
11759
da20eabd
ML
11760int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
11761 struct drm_plane_state *plane_state)
11762{
ab1d3a0e 11763 struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
da20eabd
ML
11764 struct drm_crtc *crtc = crtc_state->crtc;
11765 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11766 struct drm_plane *plane = plane_state->plane;
11767 struct drm_device *dev = crtc->dev;
ed4a6a7c 11768 struct drm_i915_private *dev_priv = to_i915(dev);
da20eabd
ML
11769 struct intel_plane_state *old_plane_state =
11770 to_intel_plane_state(plane->state);
11771 int idx = intel_crtc->base.base.id, ret;
da20eabd
ML
11772 bool mode_changed = needs_modeset(crtc_state);
11773 bool was_crtc_enabled = crtc->state->active;
11774 bool is_crtc_enabled = crtc_state->active;
da20eabd
ML
11775 bool turn_off, turn_on, visible, was_visible;
11776 struct drm_framebuffer *fb = plane_state->fb;
11777
11778 if (crtc_state && INTEL_INFO(dev)->gen >= 9 &&
11779 plane->type != DRM_PLANE_TYPE_CURSOR) {
11780 ret = skl_update_scaler_plane(
11781 to_intel_crtc_state(crtc_state),
11782 to_intel_plane_state(plane_state));
11783 if (ret)
11784 return ret;
11785 }
11786
da20eabd
ML
11787 was_visible = old_plane_state->visible;
11788 visible = to_intel_plane_state(plane_state)->visible;
11789
11790 if (!was_crtc_enabled && WARN_ON(was_visible))
11791 was_visible = false;
11792
35c08f43
ML
11793 /*
11794 * Visibility is calculated as if the crtc was on, but
11795 * after scaler setup everything depends on it being off
11796 * when the crtc isn't active.
11797 */
11798 if (!is_crtc_enabled)
11799 to_intel_plane_state(plane_state)->visible = visible = false;
da20eabd
ML
11800
11801 if (!was_visible && !visible)
11802 return 0;
11803
e8861675
ML
11804 if (fb != old_plane_state->base.fb)
11805 pipe_config->fb_changed = true;
11806
da20eabd
ML
11807 turn_off = was_visible && (!visible || mode_changed);
11808 turn_on = visible && (!was_visible || mode_changed);
11809
11810 DRM_DEBUG_ATOMIC("[CRTC:%i] has [PLANE:%i] with fb %i\n", idx,
11811 plane->base.id, fb ? fb->base.id : -1);
11812
11813 DRM_DEBUG_ATOMIC("[PLANE:%i] visible %i -> %i, off %i, on %i, ms %i\n",
11814 plane->base.id, was_visible, visible,
11815 turn_off, turn_on, mode_changed);
11816
caed361d
VS
11817 if (turn_on) {
11818 pipe_config->update_wm_pre = true;
11819
11820 /* must disable cxsr around plane enable/disable */
11821 if (plane->type != DRM_PLANE_TYPE_CURSOR)
11822 pipe_config->disable_cxsr = true;
11823 } else if (turn_off) {
11824 pipe_config->update_wm_post = true;
92826fcd 11825
852eb00d 11826 /* must disable cxsr around plane enable/disable */
e8861675 11827 if (plane->type != DRM_PLANE_TYPE_CURSOR)
ab1d3a0e 11828 pipe_config->disable_cxsr = true;
852eb00d 11829 } else if (intel_wm_need_update(plane, plane_state)) {
caed361d
VS
11830 /* FIXME bollocks */
11831 pipe_config->update_wm_pre = true;
11832 pipe_config->update_wm_post = true;
852eb00d 11833 }
da20eabd 11834
ed4a6a7c 11835 /* Pre-gen9 platforms need two-step watermark updates */
caed361d
VS
11836 if ((pipe_config->update_wm_pre || pipe_config->update_wm_post) &&
11837 INTEL_INFO(dev)->gen < 9 && dev_priv->display.optimize_watermarks)
ed4a6a7c
MR
11838 to_intel_crtc_state(crtc_state)->wm.need_postvbl_update = true;
11839
8be6ca85 11840 if (visible || was_visible)
cd202f69 11841 pipe_config->fb_bits |= to_intel_plane(plane)->frontbuffer_bit;
a9ff8714 11842
31ae71fc
ML
11843 /*
11844 * WaCxSRDisabledForSpriteScaling:ivb
11845 *
11846 * cstate->update_wm was already set above, so this flag will
11847 * take effect when we commit and program watermarks.
11848 */
11849 if (plane->type == DRM_PLANE_TYPE_OVERLAY && IS_IVYBRIDGE(dev) &&
11850 needs_scaling(to_intel_plane_state(plane_state)) &&
11851 !needs_scaling(old_plane_state))
11852 pipe_config->disable_lp_wm = true;
d21fbe87 11853
da20eabd
ML
11854 return 0;
11855}
11856
6d3a1ce7
ML
11857static bool encoders_cloneable(const struct intel_encoder *a,
11858 const struct intel_encoder *b)
11859{
11860 /* masks could be asymmetric, so check both ways */
11861 return a == b || (a->cloneable & (1 << b->type) &&
11862 b->cloneable & (1 << a->type));
11863}
11864
11865static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11866 struct intel_crtc *crtc,
11867 struct intel_encoder *encoder)
11868{
11869 struct intel_encoder *source_encoder;
11870 struct drm_connector *connector;
11871 struct drm_connector_state *connector_state;
11872 int i;
11873
11874 for_each_connector_in_state(state, connector, connector_state, i) {
11875 if (connector_state->crtc != &crtc->base)
11876 continue;
11877
11878 source_encoder =
11879 to_intel_encoder(connector_state->best_encoder);
11880 if (!encoders_cloneable(encoder, source_encoder))
11881 return false;
11882 }
11883
11884 return true;
11885}
11886
11887static bool check_encoder_cloning(struct drm_atomic_state *state,
11888 struct intel_crtc *crtc)
11889{
11890 struct intel_encoder *encoder;
11891 struct drm_connector *connector;
11892 struct drm_connector_state *connector_state;
11893 int i;
11894
11895 for_each_connector_in_state(state, connector, connector_state, i) {
11896 if (connector_state->crtc != &crtc->base)
11897 continue;
11898
11899 encoder = to_intel_encoder(connector_state->best_encoder);
11900 if (!check_single_encoder_cloning(state, crtc, encoder))
11901 return false;
11902 }
11903
11904 return true;
11905}
11906
11907static int intel_crtc_atomic_check(struct drm_crtc *crtc,
11908 struct drm_crtc_state *crtc_state)
11909{
cf5a15be 11910 struct drm_device *dev = crtc->dev;
ad421372 11911 struct drm_i915_private *dev_priv = dev->dev_private;
6d3a1ce7 11912 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
cf5a15be
ML
11913 struct intel_crtc_state *pipe_config =
11914 to_intel_crtc_state(crtc_state);
6d3a1ce7 11915 struct drm_atomic_state *state = crtc_state->state;
4d20cd86 11916 int ret;
6d3a1ce7
ML
11917 bool mode_changed = needs_modeset(crtc_state);
11918
11919 if (mode_changed && !check_encoder_cloning(state, intel_crtc)) {
11920 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11921 return -EINVAL;
11922 }
11923
852eb00d 11924 if (mode_changed && !crtc_state->active)
caed361d 11925 pipe_config->update_wm_post = true;
eddfcbcd 11926
ad421372
ML
11927 if (mode_changed && crtc_state->enable &&
11928 dev_priv->display.crtc_compute_clock &&
8106ddbd 11929 !WARN_ON(pipe_config->shared_dpll)) {
ad421372
ML
11930 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11931 pipe_config);
11932 if (ret)
11933 return ret;
11934 }
11935
e435d6e5 11936 ret = 0;
86c8bbbe 11937 if (dev_priv->display.compute_pipe_wm) {
e3bddded 11938 ret = dev_priv->display.compute_pipe_wm(pipe_config);
ed4a6a7c
MR
11939 if (ret) {
11940 DRM_DEBUG_KMS("Target pipe watermarks are invalid\n");
11941 return ret;
11942 }
11943 }
11944
11945 if (dev_priv->display.compute_intermediate_wm &&
11946 !to_intel_atomic_state(state)->skip_intermediate_wm) {
11947 if (WARN_ON(!dev_priv->display.compute_pipe_wm))
11948 return 0;
11949
11950 /*
11951 * Calculate 'intermediate' watermarks that satisfy both the
11952 * old state and the new state. We can program these
11953 * immediately.
11954 */
11955 ret = dev_priv->display.compute_intermediate_wm(crtc->dev,
11956 intel_crtc,
11957 pipe_config);
11958 if (ret) {
11959 DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n");
86c8bbbe 11960 return ret;
ed4a6a7c 11961 }
86c8bbbe
MR
11962 }
11963
e435d6e5
ML
11964 if (INTEL_INFO(dev)->gen >= 9) {
11965 if (mode_changed)
11966 ret = skl_update_scaler_crtc(pipe_config);
11967
11968 if (!ret)
11969 ret = intel_atomic_setup_scalers(dev, intel_crtc,
11970 pipe_config);
11971 }
11972
11973 return ret;
6d3a1ce7
ML
11974}
11975
65b38e0d 11976static const struct drm_crtc_helper_funcs intel_helper_funcs = {
f6e5b160
CW
11977 .mode_set_base_atomic = intel_pipe_set_base_atomic,
11978 .load_lut = intel_crtc_load_lut,
ea2c67bb
MR
11979 .atomic_begin = intel_begin_crtc_commit,
11980 .atomic_flush = intel_finish_crtc_commit,
6d3a1ce7 11981 .atomic_check = intel_crtc_atomic_check,
f6e5b160
CW
11982};
11983
d29b2f9d
ACO
11984static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
11985{
11986 struct intel_connector *connector;
11987
11988 for_each_intel_connector(dev, connector) {
11989 if (connector->base.encoder) {
11990 connector->base.state->best_encoder =
11991 connector->base.encoder;
11992 connector->base.state->crtc =
11993 connector->base.encoder->crtc;
11994 } else {
11995 connector->base.state->best_encoder = NULL;
11996 connector->base.state->crtc = NULL;
11997 }
11998 }
11999}
12000
050f7aeb 12001static void
eba905b2 12002connected_sink_compute_bpp(struct intel_connector *connector,
5cec258b 12003 struct intel_crtc_state *pipe_config)
050f7aeb
DV
12004{
12005 int bpp = pipe_config->pipe_bpp;
12006
12007 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
12008 connector->base.base.id,
c23cc417 12009 connector->base.name);
050f7aeb
DV
12010
12011 /* Don't use an invalid EDID bpc value */
12012 if (connector->base.display_info.bpc &&
12013 connector->base.display_info.bpc * 3 < bpp) {
12014 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
12015 bpp, connector->base.display_info.bpc*3);
12016 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
12017 }
12018
013dd9e0
JN
12019 /* Clamp bpp to default limit on screens without EDID 1.4 */
12020 if (connector->base.display_info.bpc == 0) {
12021 int type = connector->base.connector_type;
12022 int clamp_bpp = 24;
12023
12024 /* Fall back to 18 bpp when DP sink capability is unknown. */
12025 if (type == DRM_MODE_CONNECTOR_DisplayPort ||
12026 type == DRM_MODE_CONNECTOR_eDP)
12027 clamp_bpp = 18;
12028
12029 if (bpp > clamp_bpp) {
12030 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of %d\n",
12031 bpp, clamp_bpp);
12032 pipe_config->pipe_bpp = clamp_bpp;
12033 }
050f7aeb
DV
12034 }
12035}
12036
4e53c2e0 12037static int
050f7aeb 12038compute_baseline_pipe_bpp(struct intel_crtc *crtc,
5cec258b 12039 struct intel_crtc_state *pipe_config)
4e53c2e0 12040{
050f7aeb 12041 struct drm_device *dev = crtc->base.dev;
1486017f 12042 struct drm_atomic_state *state;
da3ced29
ACO
12043 struct drm_connector *connector;
12044 struct drm_connector_state *connector_state;
1486017f 12045 int bpp, i;
4e53c2e0 12046
666a4537 12047 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)))
4e53c2e0 12048 bpp = 10*3;
d328c9d7
DV
12049 else if (INTEL_INFO(dev)->gen >= 5)
12050 bpp = 12*3;
12051 else
12052 bpp = 8*3;
12053
4e53c2e0 12054
4e53c2e0
DV
12055 pipe_config->pipe_bpp = bpp;
12056
1486017f
ACO
12057 state = pipe_config->base.state;
12058
4e53c2e0 12059 /* Clamp display bpp to EDID value */
da3ced29
ACO
12060 for_each_connector_in_state(state, connector, connector_state, i) {
12061 if (connector_state->crtc != &crtc->base)
4e53c2e0
DV
12062 continue;
12063
da3ced29
ACO
12064 connected_sink_compute_bpp(to_intel_connector(connector),
12065 pipe_config);
4e53c2e0
DV
12066 }
12067
12068 return bpp;
12069}
12070
644db711
DV
12071static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
12072{
12073 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
12074 "type: 0x%x flags: 0x%x\n",
1342830c 12075 mode->crtc_clock,
644db711
DV
12076 mode->crtc_hdisplay, mode->crtc_hsync_start,
12077 mode->crtc_hsync_end, mode->crtc_htotal,
12078 mode->crtc_vdisplay, mode->crtc_vsync_start,
12079 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
12080}
12081
c0b03411 12082static void intel_dump_pipe_config(struct intel_crtc *crtc,
5cec258b 12083 struct intel_crtc_state *pipe_config,
c0b03411
DV
12084 const char *context)
12085{
6a60cd87
CK
12086 struct drm_device *dev = crtc->base.dev;
12087 struct drm_plane *plane;
12088 struct intel_plane *intel_plane;
12089 struct intel_plane_state *state;
12090 struct drm_framebuffer *fb;
12091
12092 DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
12093 context, pipe_config, pipe_name(crtc->pipe));
c0b03411
DV
12094
12095 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
12096 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
12097 pipe_config->pipe_bpp, pipe_config->dither);
12098 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12099 pipe_config->has_pch_encoder,
12100 pipe_config->fdi_lanes,
12101 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
12102 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
12103 pipe_config->fdi_m_n.tu);
90a6b7b0 12104 DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
eb14cb74 12105 pipe_config->has_dp_encoder,
90a6b7b0 12106 pipe_config->lane_count,
eb14cb74
VS
12107 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
12108 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
12109 pipe_config->dp_m_n.tu);
b95af8be 12110
90a6b7b0 12111 DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
b95af8be 12112 pipe_config->has_dp_encoder,
90a6b7b0 12113 pipe_config->lane_count,
b95af8be
VK
12114 pipe_config->dp_m2_n2.gmch_m,
12115 pipe_config->dp_m2_n2.gmch_n,
12116 pipe_config->dp_m2_n2.link_m,
12117 pipe_config->dp_m2_n2.link_n,
12118 pipe_config->dp_m2_n2.tu);
12119
55072d19
DV
12120 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12121 pipe_config->has_audio,
12122 pipe_config->has_infoframe);
12123
c0b03411 12124 DRM_DEBUG_KMS("requested mode:\n");
2d112de7 12125 drm_mode_debug_printmodeline(&pipe_config->base.mode);
c0b03411 12126 DRM_DEBUG_KMS("adjusted mode:\n");
2d112de7
ACO
12127 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12128 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
d71b8d4a 12129 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
37327abd
VS
12130 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
12131 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
0ec463d3
TU
12132 DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12133 crtc->num_scalers,
12134 pipe_config->scaler_state.scaler_users,
12135 pipe_config->scaler_state.scaler_id);
c0b03411
DV
12136 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12137 pipe_config->gmch_pfit.control,
12138 pipe_config->gmch_pfit.pgm_ratios,
12139 pipe_config->gmch_pfit.lvds_border_bits);
fd4daa9c 12140 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
c0b03411 12141 pipe_config->pch_pfit.pos,
fd4daa9c
CW
12142 pipe_config->pch_pfit.size,
12143 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
42db64ef 12144 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
cf532bb2 12145 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
6a60cd87 12146
415ff0f6 12147 if (IS_BROXTON(dev)) {
05712c15 12148 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
415ff0f6 12149 "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
c8453338 12150 "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
415ff0f6
TU
12151 pipe_config->ddi_pll_sel,
12152 pipe_config->dpll_hw_state.ebb0,
05712c15 12153 pipe_config->dpll_hw_state.ebb4,
415ff0f6
TU
12154 pipe_config->dpll_hw_state.pll0,
12155 pipe_config->dpll_hw_state.pll1,
12156 pipe_config->dpll_hw_state.pll2,
12157 pipe_config->dpll_hw_state.pll3,
12158 pipe_config->dpll_hw_state.pll6,
12159 pipe_config->dpll_hw_state.pll8,
05712c15 12160 pipe_config->dpll_hw_state.pll9,
c8453338 12161 pipe_config->dpll_hw_state.pll10,
415ff0f6 12162 pipe_config->dpll_hw_state.pcsdw12);
ef11bdb3 12163 } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
415ff0f6
TU
12164 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
12165 "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12166 pipe_config->ddi_pll_sel,
12167 pipe_config->dpll_hw_state.ctrl1,
12168 pipe_config->dpll_hw_state.cfgcr1,
12169 pipe_config->dpll_hw_state.cfgcr2);
12170 } else if (HAS_DDI(dev)) {
1260f07e 12171 DRM_DEBUG_KMS("ddi_pll_sel: 0x%x; dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
415ff0f6 12172 pipe_config->ddi_pll_sel,
00490c22
ML
12173 pipe_config->dpll_hw_state.wrpll,
12174 pipe_config->dpll_hw_state.spll);
415ff0f6
TU
12175 } else {
12176 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12177 "fp0: 0x%x, fp1: 0x%x\n",
12178 pipe_config->dpll_hw_state.dpll,
12179 pipe_config->dpll_hw_state.dpll_md,
12180 pipe_config->dpll_hw_state.fp0,
12181 pipe_config->dpll_hw_state.fp1);
12182 }
12183
6a60cd87
CK
12184 DRM_DEBUG_KMS("planes on this crtc\n");
12185 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12186 intel_plane = to_intel_plane(plane);
12187 if (intel_plane->pipe != crtc->pipe)
12188 continue;
12189
12190 state = to_intel_plane_state(plane->state);
12191 fb = state->base.fb;
12192 if (!fb) {
12193 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
12194 "disabled, scaler_id = %d\n",
12195 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12196 plane->base.id, intel_plane->pipe,
12197 (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
12198 drm_plane_index(plane), state->scaler_id);
12199 continue;
12200 }
12201
12202 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
12203 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12204 plane->base.id, intel_plane->pipe,
12205 crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
12206 drm_plane_index(plane));
12207 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
12208 fb->base.id, fb->width, fb->height, fb->pixel_format);
12209 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
12210 state->scaler_id,
12211 state->src.x1 >> 16, state->src.y1 >> 16,
12212 drm_rect_width(&state->src) >> 16,
12213 drm_rect_height(&state->src) >> 16,
12214 state->dst.x1, state->dst.y1,
12215 drm_rect_width(&state->dst), drm_rect_height(&state->dst));
12216 }
c0b03411
DV
12217}
12218
5448a00d 12219static bool check_digital_port_conflicts(struct drm_atomic_state *state)
00f0b378 12220{
5448a00d 12221 struct drm_device *dev = state->dev;
da3ced29 12222 struct drm_connector *connector;
00f0b378
VS
12223 unsigned int used_ports = 0;
12224
12225 /*
12226 * Walk the connector list instead of the encoder
12227 * list to detect the problem on ddi platforms
12228 * where there's just one encoder per digital port.
12229 */
0bff4858
VS
12230 drm_for_each_connector(connector, dev) {
12231 struct drm_connector_state *connector_state;
12232 struct intel_encoder *encoder;
12233
12234 connector_state = drm_atomic_get_existing_connector_state(state, connector);
12235 if (!connector_state)
12236 connector_state = connector->state;
12237
5448a00d 12238 if (!connector_state->best_encoder)
00f0b378
VS
12239 continue;
12240
5448a00d
ACO
12241 encoder = to_intel_encoder(connector_state->best_encoder);
12242
12243 WARN_ON(!connector_state->crtc);
00f0b378
VS
12244
12245 switch (encoder->type) {
12246 unsigned int port_mask;
12247 case INTEL_OUTPUT_UNKNOWN:
12248 if (WARN_ON(!HAS_DDI(dev)))
12249 break;
12250 case INTEL_OUTPUT_DISPLAYPORT:
12251 case INTEL_OUTPUT_HDMI:
12252 case INTEL_OUTPUT_EDP:
12253 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12254
12255 /* the same port mustn't appear more than once */
12256 if (used_ports & port_mask)
12257 return false;
12258
12259 used_ports |= port_mask;
12260 default:
12261 break;
12262 }
12263 }
12264
12265 return true;
12266}
12267
83a57153
ACO
12268static void
12269clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12270{
12271 struct drm_crtc_state tmp_state;
663a3640 12272 struct intel_crtc_scaler_state scaler_state;
4978cc93 12273 struct intel_dpll_hw_state dpll_hw_state;
8106ddbd 12274 struct intel_shared_dpll *shared_dpll;
8504c74c 12275 uint32_t ddi_pll_sel;
c4e2d043 12276 bool force_thru;
83a57153 12277
7546a384
ACO
12278 /* FIXME: before the switch to atomic started, a new pipe_config was
12279 * kzalloc'd. Code that depends on any field being zero should be
12280 * fixed, so that the crtc_state can be safely duplicated. For now,
12281 * only fields that are know to not cause problems are preserved. */
12282
83a57153 12283 tmp_state = crtc_state->base;
663a3640 12284 scaler_state = crtc_state->scaler_state;
4978cc93
ACO
12285 shared_dpll = crtc_state->shared_dpll;
12286 dpll_hw_state = crtc_state->dpll_hw_state;
8504c74c 12287 ddi_pll_sel = crtc_state->ddi_pll_sel;
c4e2d043 12288 force_thru = crtc_state->pch_pfit.force_thru;
4978cc93 12289
83a57153 12290 memset(crtc_state, 0, sizeof *crtc_state);
4978cc93 12291
83a57153 12292 crtc_state->base = tmp_state;
663a3640 12293 crtc_state->scaler_state = scaler_state;
4978cc93
ACO
12294 crtc_state->shared_dpll = shared_dpll;
12295 crtc_state->dpll_hw_state = dpll_hw_state;
8504c74c 12296 crtc_state->ddi_pll_sel = ddi_pll_sel;
c4e2d043 12297 crtc_state->pch_pfit.force_thru = force_thru;
83a57153
ACO
12298}
12299
548ee15b 12300static int
b8cecdf5 12301intel_modeset_pipe_config(struct drm_crtc *crtc,
b359283a 12302 struct intel_crtc_state *pipe_config)
ee7b9f93 12303{
b359283a 12304 struct drm_atomic_state *state = pipe_config->base.state;
7758a113 12305 struct intel_encoder *encoder;
da3ced29 12306 struct drm_connector *connector;
0b901879 12307 struct drm_connector_state *connector_state;
d328c9d7 12308 int base_bpp, ret = -EINVAL;
0b901879 12309 int i;
e29c22c0 12310 bool retry = true;
ee7b9f93 12311
83a57153 12312 clear_intel_crtc_state(pipe_config);
7758a113 12313
e143a21c
DV
12314 pipe_config->cpu_transcoder =
12315 (enum transcoder) to_intel_crtc(crtc)->pipe;
b8cecdf5 12316
2960bc9c
ID
12317 /*
12318 * Sanitize sync polarity flags based on requested ones. If neither
12319 * positive or negative polarity is requested, treat this as meaning
12320 * negative polarity.
12321 */
2d112de7 12322 if (!(pipe_config->base.adjusted_mode.flags &
2960bc9c 12323 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
2d112de7 12324 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
2960bc9c 12325
2d112de7 12326 if (!(pipe_config->base.adjusted_mode.flags &
2960bc9c 12327 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
2d112de7 12328 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
2960bc9c 12329
d328c9d7
DV
12330 base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12331 pipe_config);
12332 if (base_bpp < 0)
4e53c2e0
DV
12333 goto fail;
12334
e41a56be
VS
12335 /*
12336 * Determine the real pipe dimensions. Note that stereo modes can
12337 * increase the actual pipe size due to the frame doubling and
12338 * insertion of additional space for blanks between the frame. This
12339 * is stored in the crtc timings. We use the requested mode to do this
12340 * computation to clearly distinguish it from the adjusted mode, which
12341 * can be changed by the connectors in the below retry loop.
12342 */
2d112de7 12343 drm_crtc_get_hv_timing(&pipe_config->base.mode,
ecb7e16b
GP
12344 &pipe_config->pipe_src_w,
12345 &pipe_config->pipe_src_h);
e41a56be 12346
e29c22c0 12347encoder_retry:
ef1b460d 12348 /* Ensure the port clock defaults are reset when retrying. */
ff9a6750 12349 pipe_config->port_clock = 0;
ef1b460d 12350 pipe_config->pixel_multiplier = 1;
ff9a6750 12351
135c81b8 12352 /* Fill in default crtc timings, allow encoders to overwrite them. */
2d112de7
ACO
12353 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12354 CRTC_STEREO_DOUBLE);
135c81b8 12355
7758a113
DV
12356 /* Pass our mode to the connectors and the CRTC to give them a chance to
12357 * adjust it according to limitations or connector properties, and also
12358 * a chance to reject the mode entirely.
47f1c6c9 12359 */
da3ced29 12360 for_each_connector_in_state(state, connector, connector_state, i) {
0b901879 12361 if (connector_state->crtc != crtc)
7758a113 12362 continue;
7ae89233 12363
0b901879
ACO
12364 encoder = to_intel_encoder(connector_state->best_encoder);
12365
efea6e8e
DV
12366 if (!(encoder->compute_config(encoder, pipe_config))) {
12367 DRM_DEBUG_KMS("Encoder config failure\n");
7758a113
DV
12368 goto fail;
12369 }
ee7b9f93 12370 }
47f1c6c9 12371
ff9a6750
DV
12372 /* Set default port clock if not overwritten by the encoder. Needs to be
12373 * done afterwards in case the encoder adjusts the mode. */
12374 if (!pipe_config->port_clock)
2d112de7 12375 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
241bfc38 12376 * pipe_config->pixel_multiplier;
ff9a6750 12377
a43f6e0f 12378 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
e29c22c0 12379 if (ret < 0) {
7758a113
DV
12380 DRM_DEBUG_KMS("CRTC fixup failed\n");
12381 goto fail;
ee7b9f93 12382 }
e29c22c0
DV
12383
12384 if (ret == RETRY) {
12385 if (WARN(!retry, "loop in pipe configuration computation\n")) {
12386 ret = -EINVAL;
12387 goto fail;
12388 }
12389
12390 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12391 retry = false;
12392 goto encoder_retry;
12393 }
12394
e8fa4270
DV
12395 /* Dithering seems to not pass-through bits correctly when it should, so
12396 * only enable it on 6bpc panels. */
12397 pipe_config->dither = pipe_config->pipe_bpp == 6*3;
62f0ace5 12398 DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
d328c9d7 12399 base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
4e53c2e0 12400
7758a113 12401fail:
548ee15b 12402 return ret;
ee7b9f93 12403}
47f1c6c9 12404
ea9d758d 12405static void
4740b0f2 12406intel_modeset_update_crtc_state(struct drm_atomic_state *state)
ea9d758d 12407{
0a9ab303
ACO
12408 struct drm_crtc *crtc;
12409 struct drm_crtc_state *crtc_state;
8a75d157 12410 int i;
ea9d758d 12411
7668851f 12412 /* Double check state. */
8a75d157 12413 for_each_crtc_in_state(state, crtc, crtc_state, i) {
3cb480bc 12414 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
fc467a22
ML
12415
12416 /* Update hwmode for vblank functions */
12417 if (crtc->state->active)
12418 crtc->hwmode = crtc->state->adjusted_mode;
12419 else
12420 crtc->hwmode.crtc_clock = 0;
61067a5e
ML
12421
12422 /*
12423 * Update legacy state to satisfy fbc code. This can
12424 * be removed when fbc uses the atomic state.
12425 */
12426 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
12427 struct drm_plane_state *plane_state = crtc->primary->state;
12428
12429 crtc->primary->fb = plane_state->fb;
12430 crtc->x = plane_state->src_x >> 16;
12431 crtc->y = plane_state->src_y >> 16;
12432 }
ea9d758d 12433 }
ea9d758d
DV
12434}
12435
3bd26263 12436static bool intel_fuzzy_clock_check(int clock1, int clock2)
f1f644dc 12437{
3bd26263 12438 int diff;
f1f644dc
JB
12439
12440 if (clock1 == clock2)
12441 return true;
12442
12443 if (!clock1 || !clock2)
12444 return false;
12445
12446 diff = abs(clock1 - clock2);
12447
12448 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12449 return true;
12450
12451 return false;
12452}
12453
25c5b266
DV
12454#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
12455 list_for_each_entry((intel_crtc), \
12456 &(dev)->mode_config.crtc_list, \
12457 base.head) \
95150bdf 12458 for_each_if (mask & (1 <<(intel_crtc)->pipe))
25c5b266 12459
cfb23ed6
ML
12460static bool
12461intel_compare_m_n(unsigned int m, unsigned int n,
12462 unsigned int m2, unsigned int n2,
12463 bool exact)
12464{
12465 if (m == m2 && n == n2)
12466 return true;
12467
12468 if (exact || !m || !n || !m2 || !n2)
12469 return false;
12470
12471 BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
12472
31d10b57
ML
12473 if (n > n2) {
12474 while (n > n2) {
cfb23ed6
ML
12475 m2 <<= 1;
12476 n2 <<= 1;
12477 }
31d10b57
ML
12478 } else if (n < n2) {
12479 while (n < n2) {
cfb23ed6
ML
12480 m <<= 1;
12481 n <<= 1;
12482 }
12483 }
12484
31d10b57
ML
12485 if (n != n2)
12486 return false;
12487
12488 return intel_fuzzy_clock_check(m, m2);
cfb23ed6
ML
12489}
12490
12491static bool
12492intel_compare_link_m_n(const struct intel_link_m_n *m_n,
12493 struct intel_link_m_n *m2_n2,
12494 bool adjust)
12495{
12496 if (m_n->tu == m2_n2->tu &&
12497 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
12498 m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
12499 intel_compare_m_n(m_n->link_m, m_n->link_n,
12500 m2_n2->link_m, m2_n2->link_n, !adjust)) {
12501 if (adjust)
12502 *m2_n2 = *m_n;
12503
12504 return true;
12505 }
12506
12507 return false;
12508}
12509
0e8ffe1b 12510static bool
2fa2fe9a 12511intel_pipe_config_compare(struct drm_device *dev,
5cec258b 12512 struct intel_crtc_state *current_config,
cfb23ed6
ML
12513 struct intel_crtc_state *pipe_config,
12514 bool adjust)
0e8ffe1b 12515{
cfb23ed6
ML
12516 bool ret = true;
12517
12518#define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
12519 do { \
12520 if (!adjust) \
12521 DRM_ERROR(fmt, ##__VA_ARGS__); \
12522 else \
12523 DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
12524 } while (0)
12525
66e985c0
DV
12526#define PIPE_CONF_CHECK_X(name) \
12527 if (current_config->name != pipe_config->name) { \
cfb23ed6 12528 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
66e985c0
DV
12529 "(expected 0x%08x, found 0x%08x)\n", \
12530 current_config->name, \
12531 pipe_config->name); \
cfb23ed6 12532 ret = false; \
66e985c0
DV
12533 }
12534
08a24034
DV
12535#define PIPE_CONF_CHECK_I(name) \
12536 if (current_config->name != pipe_config->name) { \
cfb23ed6 12537 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
08a24034
DV
12538 "(expected %i, found %i)\n", \
12539 current_config->name, \
12540 pipe_config->name); \
cfb23ed6
ML
12541 ret = false; \
12542 }
12543
8106ddbd
ACO
12544#define PIPE_CONF_CHECK_P(name) \
12545 if (current_config->name != pipe_config->name) { \
12546 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12547 "(expected %p, found %p)\n", \
12548 current_config->name, \
12549 pipe_config->name); \
12550 ret = false; \
12551 }
12552
cfb23ed6
ML
12553#define PIPE_CONF_CHECK_M_N(name) \
12554 if (!intel_compare_link_m_n(&current_config->name, \
12555 &pipe_config->name,\
12556 adjust)) { \
12557 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12558 "(expected tu %i gmch %i/%i link %i/%i, " \
12559 "found tu %i, gmch %i/%i link %i/%i)\n", \
12560 current_config->name.tu, \
12561 current_config->name.gmch_m, \
12562 current_config->name.gmch_n, \
12563 current_config->name.link_m, \
12564 current_config->name.link_n, \
12565 pipe_config->name.tu, \
12566 pipe_config->name.gmch_m, \
12567 pipe_config->name.gmch_n, \
12568 pipe_config->name.link_m, \
12569 pipe_config->name.link_n); \
12570 ret = false; \
12571 }
12572
12573#define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
12574 if (!intel_compare_link_m_n(&current_config->name, \
12575 &pipe_config->name, adjust) && \
12576 !intel_compare_link_m_n(&current_config->alt_name, \
12577 &pipe_config->name, adjust)) { \
12578 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12579 "(expected tu %i gmch %i/%i link %i/%i, " \
12580 "or tu %i gmch %i/%i link %i/%i, " \
12581 "found tu %i, gmch %i/%i link %i/%i)\n", \
12582 current_config->name.tu, \
12583 current_config->name.gmch_m, \
12584 current_config->name.gmch_n, \
12585 current_config->name.link_m, \
12586 current_config->name.link_n, \
12587 current_config->alt_name.tu, \
12588 current_config->alt_name.gmch_m, \
12589 current_config->alt_name.gmch_n, \
12590 current_config->alt_name.link_m, \
12591 current_config->alt_name.link_n, \
12592 pipe_config->name.tu, \
12593 pipe_config->name.gmch_m, \
12594 pipe_config->name.gmch_n, \
12595 pipe_config->name.link_m, \
12596 pipe_config->name.link_n); \
12597 ret = false; \
88adfff1
DV
12598 }
12599
b95af8be
VK
12600/* This is required for BDW+ where there is only one set of registers for
12601 * switching between high and low RR.
12602 * This macro can be used whenever a comparison has to be made between one
12603 * hw state and multiple sw state variables.
12604 */
12605#define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
12606 if ((current_config->name != pipe_config->name) && \
12607 (current_config->alt_name != pipe_config->name)) { \
cfb23ed6 12608 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
b95af8be
VK
12609 "(expected %i or %i, found %i)\n", \
12610 current_config->name, \
12611 current_config->alt_name, \
12612 pipe_config->name); \
cfb23ed6 12613 ret = false; \
b95af8be
VK
12614 }
12615
1bd1bd80
DV
12616#define PIPE_CONF_CHECK_FLAGS(name, mask) \
12617 if ((current_config->name ^ pipe_config->name) & (mask)) { \
cfb23ed6 12618 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
1bd1bd80
DV
12619 "(expected %i, found %i)\n", \
12620 current_config->name & (mask), \
12621 pipe_config->name & (mask)); \
cfb23ed6 12622 ret = false; \
1bd1bd80
DV
12623 }
12624
5e550656
VS
12625#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
12626 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
cfb23ed6 12627 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
5e550656
VS
12628 "(expected %i, found %i)\n", \
12629 current_config->name, \
12630 pipe_config->name); \
cfb23ed6 12631 ret = false; \
5e550656
VS
12632 }
12633
bb760063
DV
12634#define PIPE_CONF_QUIRK(quirk) \
12635 ((current_config->quirks | pipe_config->quirks) & (quirk))
12636
eccb140b
DV
12637 PIPE_CONF_CHECK_I(cpu_transcoder);
12638
08a24034
DV
12639 PIPE_CONF_CHECK_I(has_pch_encoder);
12640 PIPE_CONF_CHECK_I(fdi_lanes);
cfb23ed6 12641 PIPE_CONF_CHECK_M_N(fdi_m_n);
08a24034 12642
eb14cb74 12643 PIPE_CONF_CHECK_I(has_dp_encoder);
90a6b7b0 12644 PIPE_CONF_CHECK_I(lane_count);
b95af8be
VK
12645
12646 if (INTEL_INFO(dev)->gen < 8) {
cfb23ed6
ML
12647 PIPE_CONF_CHECK_M_N(dp_m_n);
12648
cfb23ed6
ML
12649 if (current_config->has_drrs)
12650 PIPE_CONF_CHECK_M_N(dp_m2_n2);
12651 } else
12652 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
eb14cb74 12653
a65347ba
JN
12654 PIPE_CONF_CHECK_I(has_dsi_encoder);
12655
2d112de7
ACO
12656 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12657 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12658 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12659 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12660 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12661 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
1bd1bd80 12662
2d112de7
ACO
12663 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12664 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12665 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12666 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12667 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12668 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
1bd1bd80 12669
c93f54cf 12670 PIPE_CONF_CHECK_I(pixel_multiplier);
6897b4b5 12671 PIPE_CONF_CHECK_I(has_hdmi_sink);
b5a9fa09 12672 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
666a4537 12673 IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
b5a9fa09 12674 PIPE_CONF_CHECK_I(limited_color_range);
e43823ec 12675 PIPE_CONF_CHECK_I(has_infoframe);
6c49f241 12676
9ed109a7
DV
12677 PIPE_CONF_CHECK_I(has_audio);
12678
2d112de7 12679 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
1bd1bd80
DV
12680 DRM_MODE_FLAG_INTERLACE);
12681
bb760063 12682 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
2d112de7 12683 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 12684 DRM_MODE_FLAG_PHSYNC);
2d112de7 12685 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 12686 DRM_MODE_FLAG_NHSYNC);
2d112de7 12687 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 12688 DRM_MODE_FLAG_PVSYNC);
2d112de7 12689 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063
DV
12690 DRM_MODE_FLAG_NVSYNC);
12691 }
045ac3b5 12692
333b8ca8 12693 PIPE_CONF_CHECK_X(gmch_pfit.control);
e2ff2d4a
DV
12694 /* pfit ratios are autocomputed by the hw on gen4+ */
12695 if (INTEL_INFO(dev)->gen < 4)
12696 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
333b8ca8 12697 PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
9953599b 12698
bfd16b2a
ML
12699 if (!adjust) {
12700 PIPE_CONF_CHECK_I(pipe_src_w);
12701 PIPE_CONF_CHECK_I(pipe_src_h);
12702
12703 PIPE_CONF_CHECK_I(pch_pfit.enabled);
12704 if (current_config->pch_pfit.enabled) {
12705 PIPE_CONF_CHECK_X(pch_pfit.pos);
12706 PIPE_CONF_CHECK_X(pch_pfit.size);
12707 }
2fa2fe9a 12708
7aefe2b5
ML
12709 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12710 }
a1b2278e 12711
e59150dc
JB
12712 /* BDW+ don't expose a synchronous way to read the state */
12713 if (IS_HASWELL(dev))
12714 PIPE_CONF_CHECK_I(ips_enabled);
42db64ef 12715
282740f7
VS
12716 PIPE_CONF_CHECK_I(double_wide);
12717
26804afd
DV
12718 PIPE_CONF_CHECK_X(ddi_pll_sel);
12719
8106ddbd 12720 PIPE_CONF_CHECK_P(shared_dpll);
66e985c0 12721 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8bcc2795 12722 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
66e985c0
DV
12723 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12724 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
d452c5b6 12725 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
00490c22 12726 PIPE_CONF_CHECK_X(dpll_hw_state.spll);
3f4cd19f
DL
12727 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12728 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12729 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
c0d43d62 12730
42571aef
VS
12731 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12732 PIPE_CONF_CHECK_I(pipe_bpp);
12733
2d112de7 12734 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
a9a7e98a 12735 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
5e550656 12736
66e985c0 12737#undef PIPE_CONF_CHECK_X
08a24034 12738#undef PIPE_CONF_CHECK_I
8106ddbd 12739#undef PIPE_CONF_CHECK_P
b95af8be 12740#undef PIPE_CONF_CHECK_I_ALT
1bd1bd80 12741#undef PIPE_CONF_CHECK_FLAGS
5e550656 12742#undef PIPE_CONF_CHECK_CLOCK_FUZZY
bb760063 12743#undef PIPE_CONF_QUIRK
cfb23ed6 12744#undef INTEL_ERR_OR_DBG_KMS
88adfff1 12745
cfb23ed6 12746 return ret;
0e8ffe1b
DV
12747}
12748
e3b247da
VS
12749static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
12750 const struct intel_crtc_state *pipe_config)
12751{
12752 if (pipe_config->has_pch_encoder) {
21a727b3 12753 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
e3b247da
VS
12754 &pipe_config->fdi_m_n);
12755 int dotclock = pipe_config->base.adjusted_mode.crtc_clock;
12756
12757 /*
12758 * FDI already provided one idea for the dotclock.
12759 * Yell if the encoder disagrees.
12760 */
12761 WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock),
12762 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12763 fdi_dotclock, dotclock);
12764 }
12765}
12766
08db6652
DL
12767static void check_wm_state(struct drm_device *dev)
12768{
12769 struct drm_i915_private *dev_priv = dev->dev_private;
12770 struct skl_ddb_allocation hw_ddb, *sw_ddb;
12771 struct intel_crtc *intel_crtc;
12772 int plane;
12773
12774 if (INTEL_INFO(dev)->gen < 9)
12775 return;
12776
12777 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12778 sw_ddb = &dev_priv->wm.skl_hw.ddb;
12779
12780 for_each_intel_crtc(dev, intel_crtc) {
12781 struct skl_ddb_entry *hw_entry, *sw_entry;
12782 const enum pipe pipe = intel_crtc->pipe;
12783
12784 if (!intel_crtc->active)
12785 continue;
12786
12787 /* planes */
dd740780 12788 for_each_plane(dev_priv, pipe, plane) {
08db6652
DL
12789 hw_entry = &hw_ddb.plane[pipe][plane];
12790 sw_entry = &sw_ddb->plane[pipe][plane];
12791
12792 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12793 continue;
12794
12795 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12796 "(expected (%u,%u), found (%u,%u))\n",
12797 pipe_name(pipe), plane + 1,
12798 sw_entry->start, sw_entry->end,
12799 hw_entry->start, hw_entry->end);
12800 }
12801
12802 /* cursor */
4969d33e
MR
12803 hw_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
12804 sw_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
08db6652
DL
12805
12806 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12807 continue;
12808
12809 DRM_ERROR("mismatch in DDB state pipe %c cursor "
12810 "(expected (%u,%u), found (%u,%u))\n",
12811 pipe_name(pipe),
12812 sw_entry->start, sw_entry->end,
12813 hw_entry->start, hw_entry->end);
12814 }
12815}
12816
91d1b4bd 12817static void
35dd3c64
ML
12818check_connector_state(struct drm_device *dev,
12819 struct drm_atomic_state *old_state)
8af6cf88 12820{
35dd3c64
ML
12821 struct drm_connector_state *old_conn_state;
12822 struct drm_connector *connector;
12823 int i;
8af6cf88 12824
35dd3c64
ML
12825 for_each_connector_in_state(old_state, connector, old_conn_state, i) {
12826 struct drm_encoder *encoder = connector->encoder;
12827 struct drm_connector_state *state = connector->state;
ad3c558f 12828
8af6cf88
DV
12829 /* This also checks the encoder/connector hw state with the
12830 * ->get_hw_state callbacks. */
35dd3c64 12831 intel_connector_check_state(to_intel_connector(connector));
8af6cf88 12832
ad3c558f 12833 I915_STATE_WARN(state->best_encoder != encoder,
35dd3c64 12834 "connector's atomic encoder doesn't match legacy encoder\n");
8af6cf88 12835 }
91d1b4bd
DV
12836}
12837
12838static void
12839check_encoder_state(struct drm_device *dev)
12840{
12841 struct intel_encoder *encoder;
12842 struct intel_connector *connector;
8af6cf88 12843
b2784e15 12844 for_each_intel_encoder(dev, encoder) {
8af6cf88 12845 bool enabled = false;
4d20cd86 12846 enum pipe pipe;
8af6cf88
DV
12847
12848 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12849 encoder->base.base.id,
8e329a03 12850 encoder->base.name);
8af6cf88 12851
3a3371ff 12852 for_each_intel_connector(dev, connector) {
4d20cd86 12853 if (connector->base.state->best_encoder != &encoder->base)
8af6cf88
DV
12854 continue;
12855 enabled = true;
ad3c558f
ML
12856
12857 I915_STATE_WARN(connector->base.state->crtc !=
12858 encoder->base.crtc,
12859 "connector's crtc doesn't match encoder crtc\n");
8af6cf88 12860 }
0e32b39c 12861
e2c719b7 12862 I915_STATE_WARN(!!encoder->base.crtc != enabled,
8af6cf88
DV
12863 "encoder's enabled state mismatch "
12864 "(expected %i, found %i)\n",
12865 !!encoder->base.crtc, enabled);
7c60d198
ML
12866
12867 if (!encoder->base.crtc) {
4d20cd86 12868 bool active;
7c60d198 12869
4d20cd86
ML
12870 active = encoder->get_hw_state(encoder, &pipe);
12871 I915_STATE_WARN(active,
12872 "encoder detached but still enabled on pipe %c.\n",
12873 pipe_name(pipe));
7c60d198 12874 }
8af6cf88 12875 }
91d1b4bd
DV
12876}
12877
12878static void
4d20cd86 12879check_crtc_state(struct drm_device *dev, struct drm_atomic_state *old_state)
91d1b4bd 12880{
fbee40df 12881 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd 12882 struct intel_encoder *encoder;
4d20cd86
ML
12883 struct drm_crtc_state *old_crtc_state;
12884 struct drm_crtc *crtc;
12885 int i;
8af6cf88 12886
4d20cd86
ML
12887 for_each_crtc_in_state(old_state, crtc, old_crtc_state, i) {
12888 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12889 struct intel_crtc_state *pipe_config, *sw_config;
7b89b8de 12890 bool active;
8af6cf88 12891
bfd16b2a
ML
12892 if (!needs_modeset(crtc->state) &&
12893 !to_intel_crtc_state(crtc->state)->update_pipe)
4d20cd86 12894 continue;
045ac3b5 12895
4d20cd86
ML
12896 __drm_atomic_helper_crtc_destroy_state(crtc, old_crtc_state);
12897 pipe_config = to_intel_crtc_state(old_crtc_state);
12898 memset(pipe_config, 0, sizeof(*pipe_config));
12899 pipe_config->base.crtc = crtc;
12900 pipe_config->base.state = old_state;
8af6cf88 12901
4d20cd86
ML
12902 DRM_DEBUG_KMS("[CRTC:%d]\n",
12903 crtc->base.id);
8af6cf88 12904
4d20cd86
ML
12905 active = dev_priv->display.get_pipe_config(intel_crtc,
12906 pipe_config);
d62cf62a 12907
b6b5d049 12908 /* hw state is inconsistent with the pipe quirk */
4d20cd86
ML
12909 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12910 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12911 active = crtc->state->active;
6c49f241 12912
4d20cd86 12913 I915_STATE_WARN(crtc->state->active != active,
0e8ffe1b 12914 "crtc active state doesn't match with hw state "
4d20cd86 12915 "(expected %i, found %i)\n", crtc->state->active, active);
0e8ffe1b 12916
4d20cd86 12917 I915_STATE_WARN(intel_crtc->active != crtc->state->active,
53d9f4e9 12918 "transitional active state does not match atomic hw state "
4d20cd86
ML
12919 "(expected %i, found %i)\n", crtc->state->active, intel_crtc->active);
12920
12921 for_each_encoder_on_crtc(dev, crtc, encoder) {
12922 enum pipe pipe;
12923
12924 active = encoder->get_hw_state(encoder, &pipe);
12925 I915_STATE_WARN(active != crtc->state->active,
12926 "[ENCODER:%i] active %i with crtc active %i\n",
12927 encoder->base.base.id, active, crtc->state->active);
12928
12929 I915_STATE_WARN(active && intel_crtc->pipe != pipe,
12930 "Encoder connected to wrong pipe %c\n",
12931 pipe_name(pipe));
12932
12933 if (active)
12934 encoder->get_config(encoder, pipe_config);
12935 }
53d9f4e9 12936
4d20cd86 12937 if (!crtc->state->active)
cfb23ed6
ML
12938 continue;
12939
e3b247da
VS
12940 intel_pipe_config_sanity_check(dev_priv, pipe_config);
12941
4d20cd86
ML
12942 sw_config = to_intel_crtc_state(crtc->state);
12943 if (!intel_pipe_config_compare(dev, sw_config,
12944 pipe_config, false)) {
e2c719b7 12945 I915_STATE_WARN(1, "pipe state doesn't match!\n");
4d20cd86 12946 intel_dump_pipe_config(intel_crtc, pipe_config,
c0b03411 12947 "[hw state]");
4d20cd86 12948 intel_dump_pipe_config(intel_crtc, sw_config,
c0b03411
DV
12949 "[sw state]");
12950 }
8af6cf88
DV
12951 }
12952}
12953
91d1b4bd
DV
12954static void
12955check_shared_dpll_state(struct drm_device *dev)
12956{
fbee40df 12957 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
12958 struct intel_crtc *crtc;
12959 struct intel_dpll_hw_state dpll_hw_state;
12960 int i;
5358901f
DV
12961
12962 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
8106ddbd
ACO
12963 struct intel_shared_dpll *pll =
12964 intel_get_shared_dpll_by_id(dev_priv, i);
5358901f
DV
12965 int enabled_crtcs = 0, active_crtcs = 0;
12966 bool active;
12967
12968 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12969
12970 DRM_DEBUG_KMS("%s\n", pll->name);
12971
2edd6443 12972 active = pll->funcs.get_hw_state(dev_priv, pll, &dpll_hw_state);
5358901f 12973
e2c719b7 12974 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
5358901f 12975 "more active pll users than references: %i vs %i\n",
3e369b76 12976 pll->active, hweight32(pll->config.crtc_mask));
e2c719b7 12977 I915_STATE_WARN(pll->active && !pll->on,
5358901f 12978 "pll in active use but not on in sw tracking\n");
9d16da65
ACO
12979
12980 if (!(pll->flags & INTEL_DPLL_ALWAYS_ON)) {
12981 I915_STATE_WARN(pll->on && !pll->active,
12982 "pll in on but not on in use in sw tracking\n");
12983 I915_STATE_WARN(pll->on != active,
12984 "pll on state mismatch (expected %i, found %i)\n",
12985 pll->on, active);
12986 }
5358901f 12987
d3fcc808 12988 for_each_intel_crtc(dev, crtc) {
8106ddbd 12989 if (crtc->base.state->enable && crtc->config->shared_dpll == pll)
5358901f 12990 enabled_crtcs++;
8106ddbd 12991 if (crtc->active && crtc->config->shared_dpll == pll)
5358901f
DV
12992 active_crtcs++;
12993 }
e2c719b7 12994 I915_STATE_WARN(pll->active != active_crtcs,
5358901f
DV
12995 "pll active crtcs mismatch (expected %i, found %i)\n",
12996 pll->active, active_crtcs);
e2c719b7 12997 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
5358901f 12998 "pll enabled crtcs mismatch (expected %i, found %i)\n",
3e369b76 12999 hweight32(pll->config.crtc_mask), enabled_crtcs);
66e985c0 13000
e2c719b7 13001 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
66e985c0
DV
13002 sizeof(dpll_hw_state)),
13003 "pll hw state mismatch\n");
5358901f 13004 }
8af6cf88
DV
13005}
13006
ee165b1a
ML
13007static void
13008intel_modeset_check_state(struct drm_device *dev,
13009 struct drm_atomic_state *old_state)
91d1b4bd 13010{
08db6652 13011 check_wm_state(dev);
35dd3c64 13012 check_connector_state(dev, old_state);
91d1b4bd 13013 check_encoder_state(dev);
4d20cd86 13014 check_crtc_state(dev, old_state);
91d1b4bd
DV
13015 check_shared_dpll_state(dev);
13016}
13017
80715b2f
VS
13018static void update_scanline_offset(struct intel_crtc *crtc)
13019{
13020 struct drm_device *dev = crtc->base.dev;
13021
13022 /*
13023 * The scanline counter increments at the leading edge of hsync.
13024 *
13025 * On most platforms it starts counting from vtotal-1 on the
13026 * first active line. That means the scanline counter value is
13027 * always one less than what we would expect. Ie. just after
13028 * start of vblank, which also occurs at start of hsync (on the
13029 * last active line), the scanline counter will read vblank_start-1.
13030 *
13031 * On gen2 the scanline counter starts counting from 1 instead
13032 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
13033 * to keep the value positive), instead of adding one.
13034 *
13035 * On HSW+ the behaviour of the scanline counter depends on the output
13036 * type. For DP ports it behaves like most other platforms, but on HDMI
13037 * there's an extra 1 line difference. So we need to add two instead of
13038 * one to the value.
13039 */
13040 if (IS_GEN2(dev)) {
124abe07 13041 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
80715b2f
VS
13042 int vtotal;
13043
124abe07
VS
13044 vtotal = adjusted_mode->crtc_vtotal;
13045 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
80715b2f
VS
13046 vtotal /= 2;
13047
13048 crtc->scanline_offset = vtotal - 1;
13049 } else if (HAS_DDI(dev) &&
409ee761 13050 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
80715b2f
VS
13051 crtc->scanline_offset = 2;
13052 } else
13053 crtc->scanline_offset = 1;
13054}
13055
ad421372 13056static void intel_modeset_clear_plls(struct drm_atomic_state *state)
ed6739ef 13057{
225da59b 13058 struct drm_device *dev = state->dev;
ed6739ef 13059 struct drm_i915_private *dev_priv = to_i915(dev);
ad421372 13060 struct intel_shared_dpll_config *shared_dpll = NULL;
0a9ab303
ACO
13061 struct drm_crtc *crtc;
13062 struct drm_crtc_state *crtc_state;
0a9ab303 13063 int i;
ed6739ef
ACO
13064
13065 if (!dev_priv->display.crtc_compute_clock)
ad421372 13066 return;
ed6739ef 13067
0a9ab303 13068 for_each_crtc_in_state(state, crtc, crtc_state, i) {
fb1a38a9 13069 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8106ddbd
ACO
13070 struct intel_shared_dpll *old_dpll =
13071 to_intel_crtc_state(crtc->state)->shared_dpll;
0a9ab303 13072
fb1a38a9 13073 if (!needs_modeset(crtc_state))
225da59b
ACO
13074 continue;
13075
8106ddbd 13076 to_intel_crtc_state(crtc_state)->shared_dpll = NULL;
fb1a38a9 13077
8106ddbd 13078 if (!old_dpll)
fb1a38a9 13079 continue;
0a9ab303 13080
ad421372
ML
13081 if (!shared_dpll)
13082 shared_dpll = intel_atomic_get_shared_dpll_state(state);
ed6739ef 13083
8106ddbd 13084 intel_shared_dpll_config_put(shared_dpll, old_dpll, intel_crtc);
ad421372 13085 }
ed6739ef
ACO
13086}
13087
99d736a2
ML
13088/*
13089 * This implements the workaround described in the "notes" section of the mode
13090 * set sequence documentation. When going from no pipes or single pipe to
13091 * multiple pipes, and planes are enabled after the pipe, we need to wait at
13092 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
13093 */
13094static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
13095{
13096 struct drm_crtc_state *crtc_state;
13097 struct intel_crtc *intel_crtc;
13098 struct drm_crtc *crtc;
13099 struct intel_crtc_state *first_crtc_state = NULL;
13100 struct intel_crtc_state *other_crtc_state = NULL;
13101 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
13102 int i;
13103
13104 /* look at all crtc's that are going to be enabled in during modeset */
13105 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13106 intel_crtc = to_intel_crtc(crtc);
13107
13108 if (!crtc_state->active || !needs_modeset(crtc_state))
13109 continue;
13110
13111 if (first_crtc_state) {
13112 other_crtc_state = to_intel_crtc_state(crtc_state);
13113 break;
13114 } else {
13115 first_crtc_state = to_intel_crtc_state(crtc_state);
13116 first_pipe = intel_crtc->pipe;
13117 }
13118 }
13119
13120 /* No workaround needed? */
13121 if (!first_crtc_state)
13122 return 0;
13123
13124 /* w/a possibly needed, check how many crtc's are already enabled. */
13125 for_each_intel_crtc(state->dev, intel_crtc) {
13126 struct intel_crtc_state *pipe_config;
13127
13128 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
13129 if (IS_ERR(pipe_config))
13130 return PTR_ERR(pipe_config);
13131
13132 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
13133
13134 if (!pipe_config->base.active ||
13135 needs_modeset(&pipe_config->base))
13136 continue;
13137
13138 /* 2 or more enabled crtcs means no need for w/a */
13139 if (enabled_pipe != INVALID_PIPE)
13140 return 0;
13141
13142 enabled_pipe = intel_crtc->pipe;
13143 }
13144
13145 if (enabled_pipe != INVALID_PIPE)
13146 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13147 else if (other_crtc_state)
13148 other_crtc_state->hsw_workaround_pipe = first_pipe;
13149
13150 return 0;
13151}
13152
27c329ed
ML
13153static int intel_modeset_all_pipes(struct drm_atomic_state *state)
13154{
13155 struct drm_crtc *crtc;
13156 struct drm_crtc_state *crtc_state;
13157 int ret = 0;
13158
13159 /* add all active pipes to the state */
13160 for_each_crtc(state->dev, crtc) {
13161 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13162 if (IS_ERR(crtc_state))
13163 return PTR_ERR(crtc_state);
13164
13165 if (!crtc_state->active || needs_modeset(crtc_state))
13166 continue;
13167
13168 crtc_state->mode_changed = true;
13169
13170 ret = drm_atomic_add_affected_connectors(state, crtc);
13171 if (ret)
13172 break;
13173
13174 ret = drm_atomic_add_affected_planes(state, crtc);
13175 if (ret)
13176 break;
13177 }
13178
13179 return ret;
13180}
13181
c347a676 13182static int intel_modeset_checks(struct drm_atomic_state *state)
054518dd 13183{
565602d7
ML
13184 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13185 struct drm_i915_private *dev_priv = state->dev->dev_private;
13186 struct drm_crtc *crtc;
13187 struct drm_crtc_state *crtc_state;
13188 int ret = 0, i;
054518dd 13189
b359283a
ML
13190 if (!check_digital_port_conflicts(state)) {
13191 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13192 return -EINVAL;
13193 }
13194
565602d7
ML
13195 intel_state->modeset = true;
13196 intel_state->active_crtcs = dev_priv->active_crtcs;
13197
13198 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13199 if (crtc_state->active)
13200 intel_state->active_crtcs |= 1 << i;
13201 else
13202 intel_state->active_crtcs &= ~(1 << i);
13203 }
13204
054518dd
ACO
13205 /*
13206 * See if the config requires any additional preparation, e.g.
13207 * to adjust global state with pipes off. We need to do this
13208 * here so we can get the modeset_pipe updated config for the new
13209 * mode set on this crtc. For other crtcs we need to use the
13210 * adjusted_mode bits in the crtc directly.
13211 */
27c329ed 13212 if (dev_priv->display.modeset_calc_cdclk) {
27c329ed
ML
13213 ret = dev_priv->display.modeset_calc_cdclk(state);
13214
1a617b77 13215 if (!ret && intel_state->dev_cdclk != dev_priv->cdclk_freq)
27c329ed
ML
13216 ret = intel_modeset_all_pipes(state);
13217
13218 if (ret < 0)
054518dd 13219 return ret;
e8788cbc
ML
13220
13221 DRM_DEBUG_KMS("New cdclk calculated to be atomic %u, actual %u\n",
13222 intel_state->cdclk, intel_state->dev_cdclk);
27c329ed 13223 } else
1a617b77 13224 to_intel_atomic_state(state)->cdclk = dev_priv->atomic_cdclk_freq;
054518dd 13225
ad421372 13226 intel_modeset_clear_plls(state);
054518dd 13227
565602d7 13228 if (IS_HASWELL(dev_priv))
ad421372 13229 return haswell_mode_set_planes_workaround(state);
99d736a2 13230
ad421372 13231 return 0;
c347a676
ACO
13232}
13233
aa363136
MR
13234/*
13235 * Handle calculation of various watermark data at the end of the atomic check
13236 * phase. The code here should be run after the per-crtc and per-plane 'check'
13237 * handlers to ensure that all derived state has been updated.
13238 */
13239static void calc_watermark_data(struct drm_atomic_state *state)
13240{
13241 struct drm_device *dev = state->dev;
13242 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13243 struct drm_crtc *crtc;
13244 struct drm_crtc_state *cstate;
13245 struct drm_plane *plane;
13246 struct drm_plane_state *pstate;
13247
13248 /*
13249 * Calculate watermark configuration details now that derived
13250 * plane/crtc state is all properly updated.
13251 */
13252 drm_for_each_crtc(crtc, dev) {
13253 cstate = drm_atomic_get_existing_crtc_state(state, crtc) ?:
13254 crtc->state;
13255
13256 if (cstate->active)
13257 intel_state->wm_config.num_pipes_active++;
13258 }
13259 drm_for_each_legacy_plane(plane, dev) {
13260 pstate = drm_atomic_get_existing_plane_state(state, plane) ?:
13261 plane->state;
13262
13263 if (!to_intel_plane_state(pstate)->visible)
13264 continue;
13265
13266 intel_state->wm_config.sprites_enabled = true;
13267 if (pstate->crtc_w != pstate->src_w >> 16 ||
13268 pstate->crtc_h != pstate->src_h >> 16)
13269 intel_state->wm_config.sprites_scaled = true;
13270 }
13271}
13272
74c090b1
ML
13273/**
13274 * intel_atomic_check - validate state object
13275 * @dev: drm device
13276 * @state: state to validate
13277 */
13278static int intel_atomic_check(struct drm_device *dev,
13279 struct drm_atomic_state *state)
c347a676 13280{
dd8b3bdb 13281 struct drm_i915_private *dev_priv = to_i915(dev);
aa363136 13282 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
c347a676
ACO
13283 struct drm_crtc *crtc;
13284 struct drm_crtc_state *crtc_state;
13285 int ret, i;
61333b60 13286 bool any_ms = false;
c347a676 13287
74c090b1 13288 ret = drm_atomic_helper_check_modeset(dev, state);
054518dd
ACO
13289 if (ret)
13290 return ret;
13291
c347a676 13292 for_each_crtc_in_state(state, crtc, crtc_state, i) {
cfb23ed6
ML
13293 struct intel_crtc_state *pipe_config =
13294 to_intel_crtc_state(crtc_state);
1ed51de9
DV
13295
13296 /* Catch I915_MODE_FLAG_INHERITED */
13297 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
13298 crtc_state->mode_changed = true;
cfb23ed6 13299
61333b60
ML
13300 if (!crtc_state->enable) {
13301 if (needs_modeset(crtc_state))
13302 any_ms = true;
c347a676 13303 continue;
61333b60 13304 }
c347a676 13305
26495481 13306 if (!needs_modeset(crtc_state))
cfb23ed6
ML
13307 continue;
13308
26495481
DV
13309 /* FIXME: For only active_changed we shouldn't need to do any
13310 * state recomputation at all. */
13311
1ed51de9
DV
13312 ret = drm_atomic_add_affected_connectors(state, crtc);
13313 if (ret)
13314 return ret;
b359283a 13315
cfb23ed6 13316 ret = intel_modeset_pipe_config(crtc, pipe_config);
c347a676
ACO
13317 if (ret)
13318 return ret;
13319
73831236 13320 if (i915.fastboot &&
dd8b3bdb 13321 intel_pipe_config_compare(dev,
cfb23ed6 13322 to_intel_crtc_state(crtc->state),
1ed51de9 13323 pipe_config, true)) {
26495481 13324 crtc_state->mode_changed = false;
bfd16b2a 13325 to_intel_crtc_state(crtc_state)->update_pipe = true;
26495481
DV
13326 }
13327
13328 if (needs_modeset(crtc_state)) {
13329 any_ms = true;
cfb23ed6
ML
13330
13331 ret = drm_atomic_add_affected_planes(state, crtc);
13332 if (ret)
13333 return ret;
13334 }
61333b60 13335
26495481
DV
13336 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
13337 needs_modeset(crtc_state) ?
13338 "[modeset]" : "[fastset]");
c347a676
ACO
13339 }
13340
61333b60
ML
13341 if (any_ms) {
13342 ret = intel_modeset_checks(state);
13343
13344 if (ret)
13345 return ret;
27c329ed 13346 } else
dd8b3bdb 13347 intel_state->cdclk = dev_priv->cdclk_freq;
76305b1a 13348
dd8b3bdb 13349 ret = drm_atomic_helper_check_planes(dev, state);
aa363136
MR
13350 if (ret)
13351 return ret;
13352
f51be2e0 13353 intel_fbc_choose_crtc(dev_priv, state);
aa363136
MR
13354 calc_watermark_data(state);
13355
13356 return 0;
054518dd
ACO
13357}
13358
5008e874
ML
13359static int intel_atomic_prepare_commit(struct drm_device *dev,
13360 struct drm_atomic_state *state,
13361 bool async)
13362{
7580d774
ML
13363 struct drm_i915_private *dev_priv = dev->dev_private;
13364 struct drm_plane_state *plane_state;
5008e874 13365 struct drm_crtc_state *crtc_state;
7580d774 13366 struct drm_plane *plane;
5008e874
ML
13367 struct drm_crtc *crtc;
13368 int i, ret;
13369
13370 if (async) {
13371 DRM_DEBUG_KMS("i915 does not yet support async commit\n");
13372 return -EINVAL;
13373 }
13374
13375 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13376 ret = intel_crtc_wait_for_pending_flips(crtc);
13377 if (ret)
13378 return ret;
7580d774
ML
13379
13380 if (atomic_read(&to_intel_crtc(crtc)->unpin_work_count) >= 2)
13381 flush_workqueue(dev_priv->wq);
5008e874
ML
13382 }
13383
f935675f
ML
13384 ret = mutex_lock_interruptible(&dev->struct_mutex);
13385 if (ret)
13386 return ret;
13387
5008e874 13388 ret = drm_atomic_helper_prepare_planes(dev, state);
7580d774
ML
13389 if (!ret && !async && !i915_reset_in_progress(&dev_priv->gpu_error)) {
13390 u32 reset_counter;
13391
13392 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
13393 mutex_unlock(&dev->struct_mutex);
13394
13395 for_each_plane_in_state(state, plane, plane_state, i) {
13396 struct intel_plane_state *intel_plane_state =
13397 to_intel_plane_state(plane_state);
13398
13399 if (!intel_plane_state->wait_req)
13400 continue;
13401
13402 ret = __i915_wait_request(intel_plane_state->wait_req,
13403 reset_counter, true,
13404 NULL, NULL);
13405
13406 /* Swallow -EIO errors to allow updates during hw lockup. */
13407 if (ret == -EIO)
13408 ret = 0;
13409
13410 if (ret)
13411 break;
13412 }
13413
13414 if (!ret)
13415 return 0;
13416
13417 mutex_lock(&dev->struct_mutex);
13418 drm_atomic_helper_cleanup_planes(dev, state);
13419 }
5008e874 13420
f935675f 13421 mutex_unlock(&dev->struct_mutex);
5008e874
ML
13422 return ret;
13423}
13424
e8861675
ML
13425static void intel_atomic_wait_for_vblanks(struct drm_device *dev,
13426 struct drm_i915_private *dev_priv,
13427 unsigned crtc_mask)
13428{
13429 unsigned last_vblank_count[I915_MAX_PIPES];
13430 enum pipe pipe;
13431 int ret;
13432
13433 if (!crtc_mask)
13434 return;
13435
13436 for_each_pipe(dev_priv, pipe) {
13437 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
13438
13439 if (!((1 << pipe) & crtc_mask))
13440 continue;
13441
13442 ret = drm_crtc_vblank_get(crtc);
13443 if (WARN_ON(ret != 0)) {
13444 crtc_mask &= ~(1 << pipe);
13445 continue;
13446 }
13447
13448 last_vblank_count[pipe] = drm_crtc_vblank_count(crtc);
13449 }
13450
13451 for_each_pipe(dev_priv, pipe) {
13452 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
13453 long lret;
13454
13455 if (!((1 << pipe) & crtc_mask))
13456 continue;
13457
13458 lret = wait_event_timeout(dev->vblank[pipe].queue,
13459 last_vblank_count[pipe] !=
13460 drm_crtc_vblank_count(crtc),
13461 msecs_to_jiffies(50));
13462
13463 WARN_ON(!lret);
13464
13465 drm_crtc_vblank_put(crtc);
13466 }
13467}
13468
13469static bool needs_vblank_wait(struct intel_crtc_state *crtc_state)
13470{
13471 /* fb updated, need to unpin old fb */
13472 if (crtc_state->fb_changed)
13473 return true;
13474
13475 /* wm changes, need vblank before final wm's */
caed361d 13476 if (crtc_state->update_wm_post)
e8861675
ML
13477 return true;
13478
13479 /*
13480 * cxsr is re-enabled after vblank.
caed361d 13481 * This is already handled by crtc_state->update_wm_post,
e8861675
ML
13482 * but added for clarity.
13483 */
13484 if (crtc_state->disable_cxsr)
13485 return true;
13486
13487 return false;
13488}
13489
74c090b1
ML
13490/**
13491 * intel_atomic_commit - commit validated state object
13492 * @dev: DRM device
13493 * @state: the top-level driver state object
13494 * @async: asynchronous commit
13495 *
13496 * This function commits a top-level state object that has been validated
13497 * with drm_atomic_helper_check().
13498 *
13499 * FIXME: Atomic modeset support for i915 is not yet complete. At the moment
13500 * we can only handle plane-related operations and do not yet support
13501 * asynchronous commit.
13502 *
13503 * RETURNS
13504 * Zero for success or -errno.
13505 */
13506static int intel_atomic_commit(struct drm_device *dev,
13507 struct drm_atomic_state *state,
13508 bool async)
a6778b3c 13509{
565602d7 13510 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
fbee40df 13511 struct drm_i915_private *dev_priv = dev->dev_private;
29ceb0e6 13512 struct drm_crtc_state *old_crtc_state;
7580d774 13513 struct drm_crtc *crtc;
ed4a6a7c 13514 struct intel_crtc_state *intel_cstate;
565602d7
ML
13515 int ret = 0, i;
13516 bool hw_check = intel_state->modeset;
33c8df89 13517 unsigned long put_domains[I915_MAX_PIPES] = {};
e8861675 13518 unsigned crtc_vblank_mask = 0;
a6778b3c 13519
5008e874 13520 ret = intel_atomic_prepare_commit(dev, state, async);
7580d774
ML
13521 if (ret) {
13522 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
d4afb8cc 13523 return ret;
7580d774 13524 }
d4afb8cc 13525
1c5e19f8 13526 drm_atomic_helper_swap_state(dev, state);
aa363136 13527 dev_priv->wm.config = to_intel_atomic_state(state)->wm_config;
1c5e19f8 13528
565602d7
ML
13529 if (intel_state->modeset) {
13530 memcpy(dev_priv->min_pixclk, intel_state->min_pixclk,
13531 sizeof(intel_state->min_pixclk));
13532 dev_priv->active_crtcs = intel_state->active_crtcs;
1a617b77 13533 dev_priv->atomic_cdclk_freq = intel_state->cdclk;
33c8df89
ML
13534
13535 intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
565602d7
ML
13536 }
13537
29ceb0e6 13538 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
a539205a
ML
13539 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13540
33c8df89
ML
13541 if (needs_modeset(crtc->state) ||
13542 to_intel_crtc_state(crtc->state)->update_pipe) {
13543 hw_check = true;
13544
13545 put_domains[to_intel_crtc(crtc)->pipe] =
13546 modeset_get_crtc_power_domains(crtc,
13547 to_intel_crtc_state(crtc->state));
13548 }
13549
61333b60
ML
13550 if (!needs_modeset(crtc->state))
13551 continue;
13552
29ceb0e6 13553 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
460da916 13554
29ceb0e6
VS
13555 if (old_crtc_state->active) {
13556 intel_crtc_disable_planes(crtc, old_crtc_state->plane_mask);
a539205a 13557 dev_priv->display.crtc_disable(crtc);
eddfcbcd 13558 intel_crtc->active = false;
58f9c0bc 13559 intel_fbc_disable(intel_crtc);
eddfcbcd 13560 intel_disable_shared_dpll(intel_crtc);
9bbc8258
VS
13561
13562 /*
13563 * Underruns don't always raise
13564 * interrupts, so check manually.
13565 */
13566 intel_check_cpu_fifo_underruns(dev_priv);
13567 intel_check_pch_fifo_underruns(dev_priv);
b9001114
ML
13568
13569 if (!crtc->state->active)
13570 intel_update_watermarks(crtc);
a539205a 13571 }
b8cecdf5 13572 }
7758a113 13573
ea9d758d
DV
13574 /* Only after disabling all output pipelines that will be changed can we
13575 * update the the output configuration. */
4740b0f2 13576 intel_modeset_update_crtc_state(state);
f6e5b160 13577
565602d7 13578 if (intel_state->modeset) {
4740b0f2
ML
13579 intel_shared_dpll_commit(state);
13580
13581 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
33c8df89
ML
13582
13583 if (dev_priv->display.modeset_commit_cdclk &&
13584 intel_state->dev_cdclk != dev_priv->cdclk_freq)
13585 dev_priv->display.modeset_commit_cdclk(state);
4740b0f2 13586 }
47fab737 13587
a6778b3c 13588 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
29ceb0e6 13589 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
f6ac4b2a
ML
13590 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13591 bool modeset = needs_modeset(crtc->state);
e8861675
ML
13592 struct intel_crtc_state *pipe_config =
13593 to_intel_crtc_state(crtc->state);
13594 bool update_pipe = !modeset && pipe_config->update_pipe;
9f836f90 13595
f6ac4b2a 13596 if (modeset && crtc->state->active) {
a539205a
ML
13597 update_scanline_offset(to_intel_crtc(crtc));
13598 dev_priv->display.crtc_enable(crtc);
13599 }
80715b2f 13600
f6ac4b2a 13601 if (!modeset)
29ceb0e6 13602 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
f6ac4b2a 13603
31ae71fc
ML
13604 if (crtc->state->active &&
13605 drm_atomic_get_existing_plane_state(state, crtc->primary))
49227c4a
PZ
13606 intel_fbc_enable(intel_crtc);
13607
6173ee28
ML
13608 if (crtc->state->active &&
13609 (crtc->state->planes_changed || update_pipe))
29ceb0e6 13610 drm_atomic_helper_commit_planes_on_crtc(old_crtc_state);
bfd16b2a 13611
e8861675
ML
13612 if (pipe_config->base.active && needs_vblank_wait(pipe_config))
13613 crtc_vblank_mask |= 1 << i;
80715b2f 13614 }
a6778b3c 13615
a6778b3c 13616 /* FIXME: add subpixel order */
83a57153 13617
e8861675
ML
13618 if (!state->legacy_cursor_update)
13619 intel_atomic_wait_for_vblanks(dev, dev_priv, crtc_vblank_mask);
f935675f 13620
29ceb0e6 13621 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
cd202f69 13622 intel_post_plane_update(to_intel_crtc_state(old_crtc_state));
e8861675 13623
33c8df89
ML
13624 if (put_domains[i])
13625 modeset_put_power_domains(dev_priv, put_domains[i]);
13626 }
13627
13628 if (intel_state->modeset)
13629 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
13630
ed4a6a7c
MR
13631 /*
13632 * Now that the vblank has passed, we can go ahead and program the
13633 * optimal watermarks on platforms that need two-step watermark
13634 * programming.
13635 *
13636 * TODO: Move this (and other cleanup) to an async worker eventually.
13637 */
29ceb0e6 13638 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
ed4a6a7c
MR
13639 intel_cstate = to_intel_crtc_state(crtc->state);
13640
13641 if (dev_priv->display.optimize_watermarks)
13642 dev_priv->display.optimize_watermarks(intel_cstate);
13643 }
13644
f935675f 13645 mutex_lock(&dev->struct_mutex);
d4afb8cc 13646 drm_atomic_helper_cleanup_planes(dev, state);
f935675f 13647 mutex_unlock(&dev->struct_mutex);
2bfb4627 13648
565602d7 13649 if (hw_check)
ee165b1a
ML
13650 intel_modeset_check_state(dev, state);
13651
13652 drm_atomic_state_free(state);
f30da187 13653
75714940
MK
13654 /* As one of the primary mmio accessors, KMS has a high likelihood
13655 * of triggering bugs in unclaimed access. After we finish
13656 * modesetting, see if an error has been flagged, and if so
13657 * enable debugging for the next modeset - and hope we catch
13658 * the culprit.
13659 *
13660 * XXX note that we assume display power is on at this point.
13661 * This might hold true now but we need to add pm helper to check
13662 * unclaimed only when the hardware is on, as atomic commits
13663 * can happen also when the device is completely off.
13664 */
13665 intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
13666
74c090b1 13667 return 0;
7f27126e
JB
13668}
13669
c0c36b94
CW
13670void intel_crtc_restore_mode(struct drm_crtc *crtc)
13671{
83a57153
ACO
13672 struct drm_device *dev = crtc->dev;
13673 struct drm_atomic_state *state;
e694eb02 13674 struct drm_crtc_state *crtc_state;
2bfb4627 13675 int ret;
83a57153
ACO
13676
13677 state = drm_atomic_state_alloc(dev);
13678 if (!state) {
e694eb02 13679 DRM_DEBUG_KMS("[CRTC:%d] crtc restore failed, out of memory",
83a57153
ACO
13680 crtc->base.id);
13681 return;
13682 }
13683
e694eb02 13684 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
83a57153 13685
e694eb02
ML
13686retry:
13687 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13688 ret = PTR_ERR_OR_ZERO(crtc_state);
13689 if (!ret) {
13690 if (!crtc_state->active)
13691 goto out;
83a57153 13692
e694eb02 13693 crtc_state->mode_changed = true;
74c090b1 13694 ret = drm_atomic_commit(state);
83a57153
ACO
13695 }
13696
e694eb02
ML
13697 if (ret == -EDEADLK) {
13698 drm_atomic_state_clear(state);
13699 drm_modeset_backoff(state->acquire_ctx);
13700 goto retry;
4ed9fb37 13701 }
4be07317 13702
2bfb4627 13703 if (ret)
e694eb02 13704out:
2bfb4627 13705 drm_atomic_state_free(state);
c0c36b94
CW
13706}
13707
25c5b266
DV
13708#undef for_each_intel_crtc_masked
13709
f6e5b160 13710static const struct drm_crtc_funcs intel_crtc_funcs = {
f6e5b160 13711 .gamma_set = intel_crtc_gamma_set,
74c090b1 13712 .set_config = drm_atomic_helper_set_config,
f6e5b160
CW
13713 .destroy = intel_crtc_destroy,
13714 .page_flip = intel_crtc_page_flip,
1356837e
MR
13715 .atomic_duplicate_state = intel_crtc_duplicate_state,
13716 .atomic_destroy_state = intel_crtc_destroy_state,
f6e5b160
CW
13717};
13718
6beb8c23
MR
13719/**
13720 * intel_prepare_plane_fb - Prepare fb for usage on plane
13721 * @plane: drm plane to prepare for
13722 * @fb: framebuffer to prepare for presentation
13723 *
13724 * Prepares a framebuffer for usage on a display plane. Generally this
13725 * involves pinning the underlying object and updating the frontbuffer tracking
13726 * bits. Some older platforms need special physical address handling for
13727 * cursor planes.
13728 *
f935675f
ML
13729 * Must be called with struct_mutex held.
13730 *
6beb8c23
MR
13731 * Returns 0 on success, negative error code on failure.
13732 */
13733int
13734intel_prepare_plane_fb(struct drm_plane *plane,
d136dfee 13735 const struct drm_plane_state *new_state)
465c120c
MR
13736{
13737 struct drm_device *dev = plane->dev;
844f9111 13738 struct drm_framebuffer *fb = new_state->fb;
6beb8c23 13739 struct intel_plane *intel_plane = to_intel_plane(plane);
6beb8c23 13740 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
1ee49399 13741 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
6beb8c23 13742 int ret = 0;
465c120c 13743
1ee49399 13744 if (!obj && !old_obj)
465c120c
MR
13745 return 0;
13746
5008e874
ML
13747 if (old_obj) {
13748 struct drm_crtc_state *crtc_state =
13749 drm_atomic_get_existing_crtc_state(new_state->state, plane->state->crtc);
13750
13751 /* Big Hammer, we also need to ensure that any pending
13752 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
13753 * current scanout is retired before unpinning the old
13754 * framebuffer. Note that we rely on userspace rendering
13755 * into the buffer attached to the pipe they are waiting
13756 * on. If not, userspace generates a GPU hang with IPEHR
13757 * point to the MI_WAIT_FOR_EVENT.
13758 *
13759 * This should only fail upon a hung GPU, in which case we
13760 * can safely continue.
13761 */
13762 if (needs_modeset(crtc_state))
13763 ret = i915_gem_object_wait_rendering(old_obj, true);
13764
13765 /* Swallow -EIO errors to allow updates during hw lockup. */
13766 if (ret && ret != -EIO)
f935675f 13767 return ret;
5008e874
ML
13768 }
13769
3c28ff22
AG
13770 /* For framebuffer backed by dmabuf, wait for fence */
13771 if (obj && obj->base.dma_buf) {
bcf8be27
ML
13772 long lret;
13773
13774 lret = reservation_object_wait_timeout_rcu(obj->base.dma_buf->resv,
13775 false, true,
13776 MAX_SCHEDULE_TIMEOUT);
13777 if (lret == -ERESTARTSYS)
13778 return lret;
3c28ff22 13779
bcf8be27 13780 WARN(lret < 0, "waiting returns %li\n", lret);
3c28ff22
AG
13781 }
13782
1ee49399
ML
13783 if (!obj) {
13784 ret = 0;
13785 } else if (plane->type == DRM_PLANE_TYPE_CURSOR &&
6beb8c23
MR
13786 INTEL_INFO(dev)->cursor_needs_physical) {
13787 int align = IS_I830(dev) ? 16 * 1024 : 256;
13788 ret = i915_gem_object_attach_phys(obj, align);
13789 if (ret)
13790 DRM_DEBUG_KMS("failed to attach phys object\n");
13791 } else {
3465c580 13792 ret = intel_pin_and_fence_fb_obj(fb, new_state->rotation);
6beb8c23 13793 }
465c120c 13794
7580d774
ML
13795 if (ret == 0) {
13796 if (obj) {
13797 struct intel_plane_state *plane_state =
13798 to_intel_plane_state(new_state);
13799
13800 i915_gem_request_assign(&plane_state->wait_req,
13801 obj->last_write_req);
13802 }
13803
a9ff8714 13804 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
7580d774 13805 }
fdd508a6 13806
6beb8c23
MR
13807 return ret;
13808}
13809
38f3ce3a
MR
13810/**
13811 * intel_cleanup_plane_fb - Cleans up an fb after plane use
13812 * @plane: drm plane to clean up for
13813 * @fb: old framebuffer that was on plane
13814 *
13815 * Cleans up a framebuffer that has just been removed from a plane.
f935675f
ML
13816 *
13817 * Must be called with struct_mutex held.
38f3ce3a
MR
13818 */
13819void
13820intel_cleanup_plane_fb(struct drm_plane *plane,
d136dfee 13821 const struct drm_plane_state *old_state)
38f3ce3a
MR
13822{
13823 struct drm_device *dev = plane->dev;
1ee49399 13824 struct intel_plane *intel_plane = to_intel_plane(plane);
7580d774 13825 struct intel_plane_state *old_intel_state;
1ee49399
ML
13826 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_state->fb);
13827 struct drm_i915_gem_object *obj = intel_fb_obj(plane->state->fb);
38f3ce3a 13828
7580d774
ML
13829 old_intel_state = to_intel_plane_state(old_state);
13830
1ee49399 13831 if (!obj && !old_obj)
38f3ce3a
MR
13832 return;
13833
1ee49399
ML
13834 if (old_obj && (plane->type != DRM_PLANE_TYPE_CURSOR ||
13835 !INTEL_INFO(dev)->cursor_needs_physical))
3465c580 13836 intel_unpin_fb_obj(old_state->fb, old_state->rotation);
1ee49399
ML
13837
13838 /* prepare_fb aborted? */
13839 if ((old_obj && (old_obj->frontbuffer_bits & intel_plane->frontbuffer_bit)) ||
13840 (obj && !(obj->frontbuffer_bits & intel_plane->frontbuffer_bit)))
13841 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
7580d774
ML
13842
13843 i915_gem_request_assign(&old_intel_state->wait_req, NULL);
465c120c
MR
13844}
13845
6156a456
CK
13846int
13847skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13848{
13849 int max_scale;
13850 struct drm_device *dev;
13851 struct drm_i915_private *dev_priv;
13852 int crtc_clock, cdclk;
13853
bf8a0af0 13854 if (!intel_crtc || !crtc_state->base.enable)
6156a456
CK
13855 return DRM_PLANE_HELPER_NO_SCALING;
13856
13857 dev = intel_crtc->base.dev;
13858 dev_priv = dev->dev_private;
13859 crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
27c329ed 13860 cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
6156a456 13861
54bf1ce6 13862 if (WARN_ON_ONCE(!crtc_clock || cdclk < crtc_clock))
6156a456
CK
13863 return DRM_PLANE_HELPER_NO_SCALING;
13864
13865 /*
13866 * skl max scale is lower of:
13867 * close to 3 but not 3, -1 is for that purpose
13868 * or
13869 * cdclk/crtc_clock
13870 */
13871 max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
13872
13873 return max_scale;
13874}
13875
465c120c 13876static int
3c692a41 13877intel_check_primary_plane(struct drm_plane *plane,
061e4b8d 13878 struct intel_crtc_state *crtc_state,
3c692a41
GP
13879 struct intel_plane_state *state)
13880{
2b875c22
MR
13881 struct drm_crtc *crtc = state->base.crtc;
13882 struct drm_framebuffer *fb = state->base.fb;
6156a456 13883 int min_scale = DRM_PLANE_HELPER_NO_SCALING;
061e4b8d
ML
13884 int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13885 bool can_position = false;
465c120c 13886
693bdc28
VS
13887 if (INTEL_INFO(plane->dev)->gen >= 9) {
13888 /* use scaler when colorkey is not required */
13889 if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
13890 min_scale = 1;
13891 max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
13892 }
d8106366 13893 can_position = true;
6156a456 13894 }
d8106366 13895
061e4b8d
ML
13896 return drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13897 &state->dst, &state->clip,
da20eabd
ML
13898 min_scale, max_scale,
13899 can_position, true,
13900 &state->visible);
14af293f
GP
13901}
13902
613d2b27
ML
13903static void intel_begin_crtc_commit(struct drm_crtc *crtc,
13904 struct drm_crtc_state *old_crtc_state)
3c692a41 13905{
32b7eeec 13906 struct drm_device *dev = crtc->dev;
3c692a41 13907 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
bfd16b2a
ML
13908 struct intel_crtc_state *old_intel_state =
13909 to_intel_crtc_state(old_crtc_state);
13910 bool modeset = needs_modeset(crtc->state);
3c692a41 13911
c34c9ee4 13912 /* Perform vblank evasion around commit operation */
62852622 13913 intel_pipe_update_start(intel_crtc);
0583236e 13914
bfd16b2a
ML
13915 if (modeset)
13916 return;
13917
13918 if (to_intel_crtc_state(crtc->state)->update_pipe)
13919 intel_update_pipe_config(intel_crtc, old_intel_state);
13920 else if (INTEL_INFO(dev)->gen >= 9)
0583236e 13921 skl_detach_scalers(intel_crtc);
32b7eeec
MR
13922}
13923
613d2b27
ML
13924static void intel_finish_crtc_commit(struct drm_crtc *crtc,
13925 struct drm_crtc_state *old_crtc_state)
32b7eeec 13926{
32b7eeec 13927 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
32b7eeec 13928
62852622 13929 intel_pipe_update_end(intel_crtc);
3c692a41
GP
13930}
13931
cf4c7c12 13932/**
4a3b8769
MR
13933 * intel_plane_destroy - destroy a plane
13934 * @plane: plane to destroy
cf4c7c12 13935 *
4a3b8769
MR
13936 * Common destruction function for all types of planes (primary, cursor,
13937 * sprite).
cf4c7c12 13938 */
4a3b8769 13939void intel_plane_destroy(struct drm_plane *plane)
465c120c
MR
13940{
13941 struct intel_plane *intel_plane = to_intel_plane(plane);
13942 drm_plane_cleanup(plane);
13943 kfree(intel_plane);
13944}
13945
65a3fea0 13946const struct drm_plane_funcs intel_plane_funcs = {
70a101f8
MR
13947 .update_plane = drm_atomic_helper_update_plane,
13948 .disable_plane = drm_atomic_helper_disable_plane,
3d7d6510 13949 .destroy = intel_plane_destroy,
c196e1d6 13950 .set_property = drm_atomic_helper_plane_set_property,
a98b3431
MR
13951 .atomic_get_property = intel_plane_atomic_get_property,
13952 .atomic_set_property = intel_plane_atomic_set_property,
ea2c67bb
MR
13953 .atomic_duplicate_state = intel_plane_duplicate_state,
13954 .atomic_destroy_state = intel_plane_destroy_state,
13955
465c120c
MR
13956};
13957
13958static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
13959 int pipe)
13960{
13961 struct intel_plane *primary;
8e7d688b 13962 struct intel_plane_state *state;
465c120c 13963 const uint32_t *intel_primary_formats;
45e3743a 13964 unsigned int num_formats;
465c120c
MR
13965
13966 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
13967 if (primary == NULL)
13968 return NULL;
13969
8e7d688b
MR
13970 state = intel_create_plane_state(&primary->base);
13971 if (!state) {
ea2c67bb
MR
13972 kfree(primary);
13973 return NULL;
13974 }
8e7d688b 13975 primary->base.state = &state->base;
ea2c67bb 13976
465c120c
MR
13977 primary->can_scale = false;
13978 primary->max_downscale = 1;
6156a456
CK
13979 if (INTEL_INFO(dev)->gen >= 9) {
13980 primary->can_scale = true;
af99ceda 13981 state->scaler_id = -1;
6156a456 13982 }
465c120c
MR
13983 primary->pipe = pipe;
13984 primary->plane = pipe;
a9ff8714 13985 primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
c59cb179 13986 primary->check_plane = intel_check_primary_plane;
465c120c
MR
13987 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
13988 primary->plane = !pipe;
13989
6c0fd451
DL
13990 if (INTEL_INFO(dev)->gen >= 9) {
13991 intel_primary_formats = skl_primary_formats;
13992 num_formats = ARRAY_SIZE(skl_primary_formats);
a8d201af
ML
13993
13994 primary->update_plane = skylake_update_primary_plane;
13995 primary->disable_plane = skylake_disable_primary_plane;
13996 } else if (HAS_PCH_SPLIT(dev)) {
13997 intel_primary_formats = i965_primary_formats;
13998 num_formats = ARRAY_SIZE(i965_primary_formats);
13999
14000 primary->update_plane = ironlake_update_primary_plane;
14001 primary->disable_plane = i9xx_disable_primary_plane;
6c0fd451 14002 } else if (INTEL_INFO(dev)->gen >= 4) {
568db4f2
DL
14003 intel_primary_formats = i965_primary_formats;
14004 num_formats = ARRAY_SIZE(i965_primary_formats);
a8d201af
ML
14005
14006 primary->update_plane = i9xx_update_primary_plane;
14007 primary->disable_plane = i9xx_disable_primary_plane;
6c0fd451
DL
14008 } else {
14009 intel_primary_formats = i8xx_primary_formats;
14010 num_formats = ARRAY_SIZE(i8xx_primary_formats);
a8d201af
ML
14011
14012 primary->update_plane = i9xx_update_primary_plane;
14013 primary->disable_plane = i9xx_disable_primary_plane;
465c120c
MR
14014 }
14015
14016 drm_universal_plane_init(dev, &primary->base, 0,
65a3fea0 14017 &intel_plane_funcs,
465c120c 14018 intel_primary_formats, num_formats,
b0b3b795 14019 DRM_PLANE_TYPE_PRIMARY, NULL);
48404c1e 14020
3b7a5119
SJ
14021 if (INTEL_INFO(dev)->gen >= 4)
14022 intel_create_rotation_property(dev, primary);
48404c1e 14023
ea2c67bb
MR
14024 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
14025
465c120c
MR
14026 return &primary->base;
14027}
14028
3b7a5119
SJ
14029void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
14030{
14031 if (!dev->mode_config.rotation_property) {
14032 unsigned long flags = BIT(DRM_ROTATE_0) |
14033 BIT(DRM_ROTATE_180);
14034
14035 if (INTEL_INFO(dev)->gen >= 9)
14036 flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
14037
14038 dev->mode_config.rotation_property =
14039 drm_mode_create_rotation_property(dev, flags);
14040 }
14041 if (dev->mode_config.rotation_property)
14042 drm_object_attach_property(&plane->base.base,
14043 dev->mode_config.rotation_property,
14044 plane->base.state->rotation);
14045}
14046
3d7d6510 14047static int
852e787c 14048intel_check_cursor_plane(struct drm_plane *plane,
061e4b8d 14049 struct intel_crtc_state *crtc_state,
852e787c 14050 struct intel_plane_state *state)
3d7d6510 14051{
061e4b8d 14052 struct drm_crtc *crtc = crtc_state->base.crtc;
2b875c22 14053 struct drm_framebuffer *fb = state->base.fb;
757f9a3e 14054 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
b29ec92c 14055 enum pipe pipe = to_intel_plane(plane)->pipe;
757f9a3e
GP
14056 unsigned stride;
14057 int ret;
3d7d6510 14058
061e4b8d
ML
14059 ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src,
14060 &state->dst, &state->clip,
3d7d6510
MR
14061 DRM_PLANE_HELPER_NO_SCALING,
14062 DRM_PLANE_HELPER_NO_SCALING,
852e787c 14063 true, true, &state->visible);
757f9a3e
GP
14064 if (ret)
14065 return ret;
14066
757f9a3e
GP
14067 /* if we want to turn off the cursor ignore width and height */
14068 if (!obj)
da20eabd 14069 return 0;
757f9a3e 14070
757f9a3e 14071 /* Check for which cursor types we support */
061e4b8d 14072 if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
ea2c67bb
MR
14073 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
14074 state->base.crtc_w, state->base.crtc_h);
757f9a3e
GP
14075 return -EINVAL;
14076 }
14077
ea2c67bb
MR
14078 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
14079 if (obj->base.size < stride * state->base.crtc_h) {
757f9a3e
GP
14080 DRM_DEBUG_KMS("buffer is too small\n");
14081 return -ENOMEM;
14082 }
14083
3a656b54 14084 if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
757f9a3e 14085 DRM_DEBUG_KMS("cursor cannot be tiled\n");
da20eabd 14086 return -EINVAL;
32b7eeec
MR
14087 }
14088
b29ec92c
VS
14089 /*
14090 * There's something wrong with the cursor on CHV pipe C.
14091 * If it straddles the left edge of the screen then
14092 * moving it away from the edge or disabling it often
14093 * results in a pipe underrun, and often that can lead to
14094 * dead pipe (constant underrun reported, and it scans
14095 * out just a solid color). To recover from that, the
14096 * display power well must be turned off and on again.
14097 * Refuse the put the cursor into that compromised position.
14098 */
14099 if (IS_CHERRYVIEW(plane->dev) && pipe == PIPE_C &&
14100 state->visible && state->base.crtc_x < 0) {
14101 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
14102 return -EINVAL;
14103 }
14104
da20eabd 14105 return 0;
852e787c 14106}
3d7d6510 14107
a8ad0d8e
ML
14108static void
14109intel_disable_cursor_plane(struct drm_plane *plane,
7fabf5ef 14110 struct drm_crtc *crtc)
a8ad0d8e 14111{
f2858021
ML
14112 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14113
14114 intel_crtc->cursor_addr = 0;
55a08b3f 14115 intel_crtc_update_cursor(crtc, NULL);
a8ad0d8e
ML
14116}
14117
f4a2cf29 14118static void
55a08b3f
ML
14119intel_update_cursor_plane(struct drm_plane *plane,
14120 const struct intel_crtc_state *crtc_state,
14121 const struct intel_plane_state *state)
852e787c 14122{
55a08b3f
ML
14123 struct drm_crtc *crtc = crtc_state->base.crtc;
14124 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ea2c67bb 14125 struct drm_device *dev = plane->dev;
2b875c22 14126 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
a912f12f 14127 uint32_t addr;
852e787c 14128
f4a2cf29 14129 if (!obj)
a912f12f 14130 addr = 0;
f4a2cf29 14131 else if (!INTEL_INFO(dev)->cursor_needs_physical)
a912f12f 14132 addr = i915_gem_obj_ggtt_offset(obj);
f4a2cf29 14133 else
a912f12f 14134 addr = obj->phys_handle->busaddr;
852e787c 14135
a912f12f 14136 intel_crtc->cursor_addr = addr;
55a08b3f 14137 intel_crtc_update_cursor(crtc, state);
852e787c
GP
14138}
14139
3d7d6510
MR
14140static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
14141 int pipe)
14142{
14143 struct intel_plane *cursor;
8e7d688b 14144 struct intel_plane_state *state;
3d7d6510
MR
14145
14146 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
14147 if (cursor == NULL)
14148 return NULL;
14149
8e7d688b
MR
14150 state = intel_create_plane_state(&cursor->base);
14151 if (!state) {
ea2c67bb
MR
14152 kfree(cursor);
14153 return NULL;
14154 }
8e7d688b 14155 cursor->base.state = &state->base;
ea2c67bb 14156
3d7d6510
MR
14157 cursor->can_scale = false;
14158 cursor->max_downscale = 1;
14159 cursor->pipe = pipe;
14160 cursor->plane = pipe;
a9ff8714 14161 cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
c59cb179 14162 cursor->check_plane = intel_check_cursor_plane;
55a08b3f 14163 cursor->update_plane = intel_update_cursor_plane;
a8ad0d8e 14164 cursor->disable_plane = intel_disable_cursor_plane;
3d7d6510
MR
14165
14166 drm_universal_plane_init(dev, &cursor->base, 0,
65a3fea0 14167 &intel_plane_funcs,
3d7d6510
MR
14168 intel_cursor_formats,
14169 ARRAY_SIZE(intel_cursor_formats),
b0b3b795 14170 DRM_PLANE_TYPE_CURSOR, NULL);
4398ad45
VS
14171
14172 if (INTEL_INFO(dev)->gen >= 4) {
14173 if (!dev->mode_config.rotation_property)
14174 dev->mode_config.rotation_property =
14175 drm_mode_create_rotation_property(dev,
14176 BIT(DRM_ROTATE_0) |
14177 BIT(DRM_ROTATE_180));
14178 if (dev->mode_config.rotation_property)
14179 drm_object_attach_property(&cursor->base.base,
14180 dev->mode_config.rotation_property,
8e7d688b 14181 state->base.rotation);
4398ad45
VS
14182 }
14183
af99ceda
CK
14184 if (INTEL_INFO(dev)->gen >=9)
14185 state->scaler_id = -1;
14186
ea2c67bb
MR
14187 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
14188
3d7d6510
MR
14189 return &cursor->base;
14190}
14191
549e2bfb
CK
14192static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
14193 struct intel_crtc_state *crtc_state)
14194{
14195 int i;
14196 struct intel_scaler *intel_scaler;
14197 struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
14198
14199 for (i = 0; i < intel_crtc->num_scalers; i++) {
14200 intel_scaler = &scaler_state->scalers[i];
14201 intel_scaler->in_use = 0;
549e2bfb
CK
14202 intel_scaler->mode = PS_SCALER_MODE_DYN;
14203 }
14204
14205 scaler_state->scaler_id = -1;
14206}
14207
b358d0a6 14208static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 14209{
fbee40df 14210 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 14211 struct intel_crtc *intel_crtc;
f5de6e07 14212 struct intel_crtc_state *crtc_state = NULL;
3d7d6510
MR
14213 struct drm_plane *primary = NULL;
14214 struct drm_plane *cursor = NULL;
465c120c 14215 int i, ret;
79e53945 14216
955382f3 14217 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
79e53945
JB
14218 if (intel_crtc == NULL)
14219 return;
14220
f5de6e07
ACO
14221 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
14222 if (!crtc_state)
14223 goto fail;
550acefd
ACO
14224 intel_crtc->config = crtc_state;
14225 intel_crtc->base.state = &crtc_state->base;
07878248 14226 crtc_state->base.crtc = &intel_crtc->base;
f5de6e07 14227
549e2bfb
CK
14228 /* initialize shared scalers */
14229 if (INTEL_INFO(dev)->gen >= 9) {
14230 if (pipe == PIPE_C)
14231 intel_crtc->num_scalers = 1;
14232 else
14233 intel_crtc->num_scalers = SKL_NUM_SCALERS;
14234
14235 skl_init_scalers(dev, intel_crtc, crtc_state);
14236 }
14237
465c120c 14238 primary = intel_primary_plane_create(dev, pipe);
3d7d6510
MR
14239 if (!primary)
14240 goto fail;
14241
14242 cursor = intel_cursor_plane_create(dev, pipe);
14243 if (!cursor)
14244 goto fail;
14245
465c120c 14246 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
f9882876 14247 cursor, &intel_crtc_funcs, NULL);
3d7d6510
MR
14248 if (ret)
14249 goto fail;
79e53945
JB
14250
14251 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
79e53945
JB
14252 for (i = 0; i < 256; i++) {
14253 intel_crtc->lut_r[i] = i;
14254 intel_crtc->lut_g[i] = i;
14255 intel_crtc->lut_b[i] = i;
14256 }
14257
1f1c2e24
VS
14258 /*
14259 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
8c0f92e1 14260 * is hooked to pipe B. Hence we want plane A feeding pipe B.
1f1c2e24 14261 */
80824003
JB
14262 intel_crtc->pipe = pipe;
14263 intel_crtc->plane = pipe;
3a77c4c4 14264 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
28c97730 14265 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 14266 intel_crtc->plane = !pipe;
80824003
JB
14267 }
14268
4b0e333e
CW
14269 intel_crtc->cursor_base = ~0;
14270 intel_crtc->cursor_cntl = ~0;
dc41c154 14271 intel_crtc->cursor_size = ~0;
8d7849db 14272
852eb00d
VS
14273 intel_crtc->wm.cxsr_allowed = true;
14274
22fd0fab
JB
14275 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
14276 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
14277 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
14278 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
14279
79e53945 14280 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
87b6b101
DV
14281
14282 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
3d7d6510
MR
14283 return;
14284
14285fail:
14286 if (primary)
14287 drm_plane_cleanup(primary);
14288 if (cursor)
14289 drm_plane_cleanup(cursor);
f5de6e07 14290 kfree(crtc_state);
3d7d6510 14291 kfree(intel_crtc);
79e53945
JB
14292}
14293
752aa88a
JB
14294enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
14295{
14296 struct drm_encoder *encoder = connector->base.encoder;
6e9f798d 14297 struct drm_device *dev = connector->base.dev;
752aa88a 14298
51fd371b 14299 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
752aa88a 14300
d3babd3f 14301 if (!encoder || WARN_ON(!encoder->crtc))
752aa88a
JB
14302 return INVALID_PIPE;
14303
14304 return to_intel_crtc(encoder->crtc)->pipe;
14305}
14306
08d7b3d1 14307int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 14308 struct drm_file *file)
08d7b3d1 14309{
08d7b3d1 14310 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7707e653 14311 struct drm_crtc *drmmode_crtc;
c05422d5 14312 struct intel_crtc *crtc;
08d7b3d1 14313
7707e653 14314 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
08d7b3d1 14315
7707e653 14316 if (!drmmode_crtc) {
08d7b3d1 14317 DRM_ERROR("no such CRTC id\n");
3f2c2057 14318 return -ENOENT;
08d7b3d1
CW
14319 }
14320
7707e653 14321 crtc = to_intel_crtc(drmmode_crtc);
c05422d5 14322 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 14323
c05422d5 14324 return 0;
08d7b3d1
CW
14325}
14326
66a9278e 14327static int intel_encoder_clones(struct intel_encoder *encoder)
79e53945 14328{
66a9278e
DV
14329 struct drm_device *dev = encoder->base.dev;
14330 struct intel_encoder *source_encoder;
79e53945 14331 int index_mask = 0;
79e53945
JB
14332 int entry = 0;
14333
b2784e15 14334 for_each_intel_encoder(dev, source_encoder) {
bc079e8b 14335 if (encoders_cloneable(encoder, source_encoder))
66a9278e
DV
14336 index_mask |= (1 << entry);
14337
79e53945
JB
14338 entry++;
14339 }
4ef69c7a 14340
79e53945
JB
14341 return index_mask;
14342}
14343
4d302442
CW
14344static bool has_edp_a(struct drm_device *dev)
14345{
14346 struct drm_i915_private *dev_priv = dev->dev_private;
14347
14348 if (!IS_MOBILE(dev))
14349 return false;
14350
14351 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
14352 return false;
14353
e3589908 14354 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
4d302442
CW
14355 return false;
14356
14357 return true;
14358}
14359
84b4e042
JB
14360static bool intel_crt_present(struct drm_device *dev)
14361{
14362 struct drm_i915_private *dev_priv = dev->dev_private;
14363
884497ed
DL
14364 if (INTEL_INFO(dev)->gen >= 9)
14365 return false;
14366
cf404ce4 14367 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
84b4e042
JB
14368 return false;
14369
14370 if (IS_CHERRYVIEW(dev))
14371 return false;
14372
65e472e4
VS
14373 if (HAS_PCH_LPT_H(dev) && I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
14374 return false;
14375
70ac54d0
VS
14376 /* DDI E can't be used if DDI A requires 4 lanes */
14377 if (HAS_DDI(dev) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
14378 return false;
14379
e4abb733 14380 if (!dev_priv->vbt.int_crt_support)
84b4e042
JB
14381 return false;
14382
14383 return true;
14384}
14385
79e53945
JB
14386static void intel_setup_outputs(struct drm_device *dev)
14387{
725e30ad 14388 struct drm_i915_private *dev_priv = dev->dev_private;
4ef69c7a 14389 struct intel_encoder *encoder;
cb0953d7 14390 bool dpd_is_edp = false;
79e53945 14391
c9093354 14392 intel_lvds_init(dev);
79e53945 14393
84b4e042 14394 if (intel_crt_present(dev))
79935fca 14395 intel_crt_init(dev);
cb0953d7 14396
c776eb2e
VK
14397 if (IS_BROXTON(dev)) {
14398 /*
14399 * FIXME: Broxton doesn't support port detection via the
14400 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
14401 * detect the ports.
14402 */
14403 intel_ddi_init(dev, PORT_A);
14404 intel_ddi_init(dev, PORT_B);
14405 intel_ddi_init(dev, PORT_C);
14406 } else if (HAS_DDI(dev)) {
0e72a5b5
ED
14407 int found;
14408
de31facd
JB
14409 /*
14410 * Haswell uses DDI functions to detect digital outputs.
14411 * On SKL pre-D0 the strap isn't connected, so we assume
14412 * it's there.
14413 */
77179400 14414 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
de31facd 14415 /* WaIgnoreDDIAStrap: skl */
ef11bdb3 14416 if (found || IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
0e72a5b5
ED
14417 intel_ddi_init(dev, PORT_A);
14418
14419 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
14420 * register */
14421 found = I915_READ(SFUSE_STRAP);
14422
14423 if (found & SFUSE_STRAP_DDIB_DETECTED)
14424 intel_ddi_init(dev, PORT_B);
14425 if (found & SFUSE_STRAP_DDIC_DETECTED)
14426 intel_ddi_init(dev, PORT_C);
14427 if (found & SFUSE_STRAP_DDID_DETECTED)
14428 intel_ddi_init(dev, PORT_D);
2800e4c2
RV
14429 /*
14430 * On SKL we don't have a way to detect DDI-E so we rely on VBT.
14431 */
ef11bdb3 14432 if ((IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) &&
2800e4c2
RV
14433 (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
14434 dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
14435 dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
14436 intel_ddi_init(dev, PORT_E);
14437
0e72a5b5 14438 } else if (HAS_PCH_SPLIT(dev)) {
cb0953d7 14439 int found;
5d8a7752 14440 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
270b3042
DV
14441
14442 if (has_edp_a(dev))
14443 intel_dp_init(dev, DP_A, PORT_A);
cb0953d7 14444
dc0fa718 14445 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
461ed3ca 14446 /* PCH SDVOB multiplex with HDMIB */
2a5c0832 14447 found = intel_sdvo_init(dev, PCH_SDVOB, PORT_B);
30ad48b7 14448 if (!found)
e2debe91 14449 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
5eb08b69 14450 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
ab9d7c30 14451 intel_dp_init(dev, PCH_DP_B, PORT_B);
30ad48b7
ZW
14452 }
14453
dc0fa718 14454 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
e2debe91 14455 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
30ad48b7 14456
dc0fa718 14457 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
e2debe91 14458 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
30ad48b7 14459
5eb08b69 14460 if (I915_READ(PCH_DP_C) & DP_DETECTED)
ab9d7c30 14461 intel_dp_init(dev, PCH_DP_C, PORT_C);
5eb08b69 14462
270b3042 14463 if (I915_READ(PCH_DP_D) & DP_DETECTED)
ab9d7c30 14464 intel_dp_init(dev, PCH_DP_D, PORT_D);
666a4537 14465 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
e17ac6db
VS
14466 /*
14467 * The DP_DETECTED bit is the latched state of the DDC
14468 * SDA pin at boot. However since eDP doesn't require DDC
14469 * (no way to plug in a DP->HDMI dongle) the DDC pins for
14470 * eDP ports may have been muxed to an alternate function.
14471 * Thus we can't rely on the DP_DETECTED bit alone to detect
14472 * eDP ports. Consult the VBT as well as DP_DETECTED to
14473 * detect eDP ports.
14474 */
e66eb81d 14475 if (I915_READ(VLV_HDMIB) & SDVO_DETECTED &&
d2182a66 14476 !intel_dp_is_edp(dev, PORT_B))
e66eb81d
VS
14477 intel_hdmi_init(dev, VLV_HDMIB, PORT_B);
14478 if (I915_READ(VLV_DP_B) & DP_DETECTED ||
e17ac6db 14479 intel_dp_is_edp(dev, PORT_B))
e66eb81d 14480 intel_dp_init(dev, VLV_DP_B, PORT_B);
585a94b8 14481
e66eb81d 14482 if (I915_READ(VLV_HDMIC) & SDVO_DETECTED &&
d2182a66 14483 !intel_dp_is_edp(dev, PORT_C))
e66eb81d
VS
14484 intel_hdmi_init(dev, VLV_HDMIC, PORT_C);
14485 if (I915_READ(VLV_DP_C) & DP_DETECTED ||
e17ac6db 14486 intel_dp_is_edp(dev, PORT_C))
e66eb81d 14487 intel_dp_init(dev, VLV_DP_C, PORT_C);
19c03924 14488
9418c1f1 14489 if (IS_CHERRYVIEW(dev)) {
e17ac6db 14490 /* eDP not supported on port D, so don't check VBT */
e66eb81d
VS
14491 if (I915_READ(CHV_HDMID) & SDVO_DETECTED)
14492 intel_hdmi_init(dev, CHV_HDMID, PORT_D);
14493 if (I915_READ(CHV_DP_D) & DP_DETECTED)
14494 intel_dp_init(dev, CHV_DP_D, PORT_D);
9418c1f1
VS
14495 }
14496
3cfca973 14497 intel_dsi_init(dev);
09da55dc 14498 } else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
27185ae1 14499 bool found = false;
7d57382e 14500
e2debe91 14501 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 14502 DRM_DEBUG_KMS("probing SDVOB\n");
2a5c0832 14503 found = intel_sdvo_init(dev, GEN3_SDVOB, PORT_B);
3fec3d2f 14504 if (!found && IS_G4X(dev)) {
b01f2c3a 14505 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
e2debe91 14506 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
b01f2c3a 14507 }
27185ae1 14508
3fec3d2f 14509 if (!found && IS_G4X(dev))
ab9d7c30 14510 intel_dp_init(dev, DP_B, PORT_B);
725e30ad 14511 }
13520b05
KH
14512
14513 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 14514
e2debe91 14515 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 14516 DRM_DEBUG_KMS("probing SDVOC\n");
2a5c0832 14517 found = intel_sdvo_init(dev, GEN3_SDVOC, PORT_C);
b01f2c3a 14518 }
27185ae1 14519
e2debe91 14520 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
27185ae1 14521
3fec3d2f 14522 if (IS_G4X(dev)) {
b01f2c3a 14523 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
e2debe91 14524 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
b01f2c3a 14525 }
3fec3d2f 14526 if (IS_G4X(dev))
ab9d7c30 14527 intel_dp_init(dev, DP_C, PORT_C);
725e30ad 14528 }
27185ae1 14529
3fec3d2f 14530 if (IS_G4X(dev) &&
e7281eab 14531 (I915_READ(DP_D) & DP_DETECTED))
ab9d7c30 14532 intel_dp_init(dev, DP_D, PORT_D);
bad720ff 14533 } else if (IS_GEN2(dev))
79e53945
JB
14534 intel_dvo_init(dev);
14535
103a196f 14536 if (SUPPORTS_TV(dev))
79e53945
JB
14537 intel_tv_init(dev);
14538
0bc12bcb 14539 intel_psr_init(dev);
7c8f8a70 14540
b2784e15 14541 for_each_intel_encoder(dev, encoder) {
4ef69c7a
CW
14542 encoder->base.possible_crtcs = encoder->crtc_mask;
14543 encoder->base.possible_clones =
66a9278e 14544 intel_encoder_clones(encoder);
79e53945 14545 }
47356eb6 14546
dde86e2d 14547 intel_init_pch_refclk(dev);
270b3042
DV
14548
14549 drm_helper_move_panel_connectors_to_head(dev);
79e53945
JB
14550}
14551
14552static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14553{
60a5ca01 14554 struct drm_device *dev = fb->dev;
79e53945 14555 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945 14556
ef2d633e 14557 drm_framebuffer_cleanup(fb);
60a5ca01 14558 mutex_lock(&dev->struct_mutex);
ef2d633e 14559 WARN_ON(!intel_fb->obj->framebuffer_references--);
60a5ca01
VS
14560 drm_gem_object_unreference(&intel_fb->obj->base);
14561 mutex_unlock(&dev->struct_mutex);
79e53945
JB
14562 kfree(intel_fb);
14563}
14564
14565static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 14566 struct drm_file *file,
79e53945
JB
14567 unsigned int *handle)
14568{
14569 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 14570 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 14571
cc917ab4
CW
14572 if (obj->userptr.mm) {
14573 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
14574 return -EINVAL;
14575 }
14576
05394f39 14577 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
14578}
14579
86c98588
RV
14580static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
14581 struct drm_file *file,
14582 unsigned flags, unsigned color,
14583 struct drm_clip_rect *clips,
14584 unsigned num_clips)
14585{
14586 struct drm_device *dev = fb->dev;
14587 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14588 struct drm_i915_gem_object *obj = intel_fb->obj;
14589
14590 mutex_lock(&dev->struct_mutex);
74b4ea1e 14591 intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
86c98588
RV
14592 mutex_unlock(&dev->struct_mutex);
14593
14594 return 0;
14595}
14596
79e53945
JB
14597static const struct drm_framebuffer_funcs intel_fb_funcs = {
14598 .destroy = intel_user_framebuffer_destroy,
14599 .create_handle = intel_user_framebuffer_create_handle,
86c98588 14600 .dirty = intel_user_framebuffer_dirty,
79e53945
JB
14601};
14602
b321803d
DL
14603static
14604u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14605 uint32_t pixel_format)
14606{
14607 u32 gen = INTEL_INFO(dev)->gen;
14608
14609 if (gen >= 9) {
ac484963
VS
14610 int cpp = drm_format_plane_cpp(pixel_format, 0);
14611
b321803d
DL
14612 /* "The stride in bytes must not exceed the of the size of 8K
14613 * pixels and 32K bytes."
14614 */
ac484963 14615 return min(8192 * cpp, 32768);
666a4537 14616 } else if (gen >= 5 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
b321803d
DL
14617 return 32*1024;
14618 } else if (gen >= 4) {
14619 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14620 return 16*1024;
14621 else
14622 return 32*1024;
14623 } else if (gen >= 3) {
14624 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14625 return 8*1024;
14626 else
14627 return 16*1024;
14628 } else {
14629 /* XXX DSPC is limited to 4k tiled */
14630 return 8*1024;
14631 }
14632}
14633
b5ea642a
DV
14634static int intel_framebuffer_init(struct drm_device *dev,
14635 struct intel_framebuffer *intel_fb,
14636 struct drm_mode_fb_cmd2 *mode_cmd,
14637 struct drm_i915_gem_object *obj)
79e53945 14638{
7b49f948 14639 struct drm_i915_private *dev_priv = to_i915(dev);
6761dd31 14640 unsigned int aligned_height;
79e53945 14641 int ret;
b321803d 14642 u32 pitch_limit, stride_alignment;
79e53945 14643
dd4916c5
DV
14644 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14645
2a80eada
DV
14646 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14647 /* Enforce that fb modifier and tiling mode match, but only for
14648 * X-tiled. This is needed for FBC. */
14649 if (!!(obj->tiling_mode == I915_TILING_X) !=
14650 !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14651 DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14652 return -EINVAL;
14653 }
14654 } else {
14655 if (obj->tiling_mode == I915_TILING_X)
14656 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14657 else if (obj->tiling_mode == I915_TILING_Y) {
14658 DRM_DEBUG("No Y tiling for legacy addfb\n");
14659 return -EINVAL;
14660 }
14661 }
14662
9a8f0a12
TU
14663 /* Passed in modifier sanity checking. */
14664 switch (mode_cmd->modifier[0]) {
14665 case I915_FORMAT_MOD_Y_TILED:
14666 case I915_FORMAT_MOD_Yf_TILED:
14667 if (INTEL_INFO(dev)->gen < 9) {
14668 DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14669 mode_cmd->modifier[0]);
14670 return -EINVAL;
14671 }
14672 case DRM_FORMAT_MOD_NONE:
14673 case I915_FORMAT_MOD_X_TILED:
14674 break;
14675 default:
c0f40428
JB
14676 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14677 mode_cmd->modifier[0]);
57cd6508 14678 return -EINVAL;
c16ed4be 14679 }
57cd6508 14680
7b49f948
VS
14681 stride_alignment = intel_fb_stride_alignment(dev_priv,
14682 mode_cmd->modifier[0],
b321803d
DL
14683 mode_cmd->pixel_format);
14684 if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14685 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14686 mode_cmd->pitches[0], stride_alignment);
57cd6508 14687 return -EINVAL;
c16ed4be 14688 }
57cd6508 14689
b321803d
DL
14690 pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14691 mode_cmd->pixel_format);
a35cdaa0 14692 if (mode_cmd->pitches[0] > pitch_limit) {
b321803d
DL
14693 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14694 mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
2a80eada 14695 "tiled" : "linear",
a35cdaa0 14696 mode_cmd->pitches[0], pitch_limit);
5d7bd705 14697 return -EINVAL;
c16ed4be 14698 }
5d7bd705 14699
2a80eada 14700 if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
c16ed4be
CW
14701 mode_cmd->pitches[0] != obj->stride) {
14702 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14703 mode_cmd->pitches[0], obj->stride);
5d7bd705 14704 return -EINVAL;
c16ed4be 14705 }
5d7bd705 14706
57779d06 14707 /* Reject formats not supported by any plane early. */
308e5bcb 14708 switch (mode_cmd->pixel_format) {
57779d06 14709 case DRM_FORMAT_C8:
04b3924d
VS
14710 case DRM_FORMAT_RGB565:
14711 case DRM_FORMAT_XRGB8888:
14712 case DRM_FORMAT_ARGB8888:
57779d06
VS
14713 break;
14714 case DRM_FORMAT_XRGB1555:
c16ed4be 14715 if (INTEL_INFO(dev)->gen > 3) {
4ee62c76
VS
14716 DRM_DEBUG("unsupported pixel format: %s\n",
14717 drm_get_format_name(mode_cmd->pixel_format));
57779d06 14718 return -EINVAL;
c16ed4be 14719 }
57779d06 14720 break;
57779d06 14721 case DRM_FORMAT_ABGR8888:
666a4537
WB
14722 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
14723 INTEL_INFO(dev)->gen < 9) {
6c0fd451
DL
14724 DRM_DEBUG("unsupported pixel format: %s\n",
14725 drm_get_format_name(mode_cmd->pixel_format));
14726 return -EINVAL;
14727 }
14728 break;
14729 case DRM_FORMAT_XBGR8888:
04b3924d 14730 case DRM_FORMAT_XRGB2101010:
57779d06 14731 case DRM_FORMAT_XBGR2101010:
c16ed4be 14732 if (INTEL_INFO(dev)->gen < 4) {
4ee62c76
VS
14733 DRM_DEBUG("unsupported pixel format: %s\n",
14734 drm_get_format_name(mode_cmd->pixel_format));
57779d06 14735 return -EINVAL;
c16ed4be 14736 }
b5626747 14737 break;
7531208b 14738 case DRM_FORMAT_ABGR2101010:
666a4537 14739 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
7531208b
DL
14740 DRM_DEBUG("unsupported pixel format: %s\n",
14741 drm_get_format_name(mode_cmd->pixel_format));
14742 return -EINVAL;
14743 }
14744 break;
04b3924d
VS
14745 case DRM_FORMAT_YUYV:
14746 case DRM_FORMAT_UYVY:
14747 case DRM_FORMAT_YVYU:
14748 case DRM_FORMAT_VYUY:
c16ed4be 14749 if (INTEL_INFO(dev)->gen < 5) {
4ee62c76
VS
14750 DRM_DEBUG("unsupported pixel format: %s\n",
14751 drm_get_format_name(mode_cmd->pixel_format));
57779d06 14752 return -EINVAL;
c16ed4be 14753 }
57cd6508
CW
14754 break;
14755 default:
4ee62c76
VS
14756 DRM_DEBUG("unsupported pixel format: %s\n",
14757 drm_get_format_name(mode_cmd->pixel_format));
57cd6508
CW
14758 return -EINVAL;
14759 }
14760
90f9a336
VS
14761 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14762 if (mode_cmd->offsets[0] != 0)
14763 return -EINVAL;
14764
ec2c981e 14765 aligned_height = intel_fb_align_height(dev, mode_cmd->height,
091df6cb
DV
14766 mode_cmd->pixel_format,
14767 mode_cmd->modifier[0]);
53155c0a
DV
14768 /* FIXME drm helper for size checks (especially planar formats)? */
14769 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14770 return -EINVAL;
14771
c7d73f6a
DV
14772 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14773 intel_fb->obj = obj;
14774
2d7a215f
VS
14775 intel_fill_fb_info(dev_priv, &intel_fb->base);
14776
79e53945
JB
14777 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14778 if (ret) {
14779 DRM_ERROR("framebuffer init failed %d\n", ret);
14780 return ret;
14781 }
14782
0b05e1e0
VS
14783 intel_fb->obj->framebuffer_references++;
14784
79e53945
JB
14785 return 0;
14786}
14787
79e53945
JB
14788static struct drm_framebuffer *
14789intel_user_framebuffer_create(struct drm_device *dev,
14790 struct drm_file *filp,
1eb83451 14791 const struct drm_mode_fb_cmd2 *user_mode_cmd)
79e53945 14792{
dcb1394e 14793 struct drm_framebuffer *fb;
05394f39 14794 struct drm_i915_gem_object *obj;
76dc3769 14795 struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
79e53945 14796
308e5bcb 14797 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
76dc3769 14798 mode_cmd.handles[0]));
c8725226 14799 if (&obj->base == NULL)
cce13ff7 14800 return ERR_PTR(-ENOENT);
79e53945 14801
92907cbb 14802 fb = intel_framebuffer_create(dev, &mode_cmd, obj);
dcb1394e
LW
14803 if (IS_ERR(fb))
14804 drm_gem_object_unreference_unlocked(&obj->base);
14805
14806 return fb;
79e53945
JB
14807}
14808
0695726e 14809#ifndef CONFIG_DRM_FBDEV_EMULATION
0632fef6 14810static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
4520f53a
DV
14811{
14812}
14813#endif
14814
79e53945 14815static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 14816 .fb_create = intel_user_framebuffer_create,
0632fef6 14817 .output_poll_changed = intel_fbdev_output_poll_changed,
5ee67f1c
MR
14818 .atomic_check = intel_atomic_check,
14819 .atomic_commit = intel_atomic_commit,
de419ab6
ML
14820 .atomic_state_alloc = intel_atomic_state_alloc,
14821 .atomic_state_clear = intel_atomic_state_clear,
79e53945
JB
14822};
14823
e70236a8
JB
14824/* Set up chip specific display functions */
14825static void intel_init_display(struct drm_device *dev)
14826{
14827 struct drm_i915_private *dev_priv = dev->dev_private;
14828
ee9300bb
DV
14829 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
14830 dev_priv->display.find_dpll = g4x_find_best_dpll;
ef9348c8
CML
14831 else if (IS_CHERRYVIEW(dev))
14832 dev_priv->display.find_dpll = chv_find_best_dpll;
ee9300bb
DV
14833 else if (IS_VALLEYVIEW(dev))
14834 dev_priv->display.find_dpll = vlv_find_best_dpll;
14835 else if (IS_PINEVIEW(dev))
14836 dev_priv->display.find_dpll = pnv_find_best_dpll;
14837 else
14838 dev_priv->display.find_dpll = i9xx_find_best_dpll;
14839
bc8d7dff
DL
14840 if (INTEL_INFO(dev)->gen >= 9) {
14841 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
5724dbd1
DL
14842 dev_priv->display.get_initial_plane_config =
14843 skylake_get_initial_plane_config;
bc8d7dff
DL
14844 dev_priv->display.crtc_compute_clock =
14845 haswell_crtc_compute_clock;
14846 dev_priv->display.crtc_enable = haswell_crtc_enable;
14847 dev_priv->display.crtc_disable = haswell_crtc_disable;
bc8d7dff 14848 } else if (HAS_DDI(dev)) {
0e8ffe1b 14849 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
5724dbd1
DL
14850 dev_priv->display.get_initial_plane_config =
14851 ironlake_get_initial_plane_config;
797d0259
ACO
14852 dev_priv->display.crtc_compute_clock =
14853 haswell_crtc_compute_clock;
4f771f10
PZ
14854 dev_priv->display.crtc_enable = haswell_crtc_enable;
14855 dev_priv->display.crtc_disable = haswell_crtc_disable;
09b4ddf9 14856 } else if (HAS_PCH_SPLIT(dev)) {
0e8ffe1b 14857 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
5724dbd1
DL
14858 dev_priv->display.get_initial_plane_config =
14859 ironlake_get_initial_plane_config;
3fb37703
ACO
14860 dev_priv->display.crtc_compute_clock =
14861 ironlake_crtc_compute_clock;
76e5a89c
DV
14862 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14863 dev_priv->display.crtc_disable = ironlake_crtc_disable;
666a4537 14864 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
89b667f8 14865 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
5724dbd1
DL
14866 dev_priv->display.get_initial_plane_config =
14867 i9xx_get_initial_plane_config;
d6dfee7a 14868 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
89b667f8
JB
14869 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14870 dev_priv->display.crtc_disable = i9xx_crtc_disable;
f564048e 14871 } else {
0e8ffe1b 14872 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
5724dbd1
DL
14873 dev_priv->display.get_initial_plane_config =
14874 i9xx_get_initial_plane_config;
d6dfee7a 14875 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
76e5a89c
DV
14876 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14877 dev_priv->display.crtc_disable = i9xx_crtc_disable;
f564048e 14878 }
e70236a8 14879
e70236a8 14880 /* Returns the core display clock speed */
ef11bdb3 14881 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
1652d19e
VS
14882 dev_priv->display.get_display_clock_speed =
14883 skylake_get_display_clock_speed;
acd3f3d3
BP
14884 else if (IS_BROXTON(dev))
14885 dev_priv->display.get_display_clock_speed =
14886 broxton_get_display_clock_speed;
1652d19e
VS
14887 else if (IS_BROADWELL(dev))
14888 dev_priv->display.get_display_clock_speed =
14889 broadwell_get_display_clock_speed;
14890 else if (IS_HASWELL(dev))
14891 dev_priv->display.get_display_clock_speed =
14892 haswell_get_display_clock_speed;
666a4537 14893 else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
25eb05fc
JB
14894 dev_priv->display.get_display_clock_speed =
14895 valleyview_get_display_clock_speed;
b37a6434
VS
14896 else if (IS_GEN5(dev))
14897 dev_priv->display.get_display_clock_speed =
14898 ilk_get_display_clock_speed;
a7c66cd8 14899 else if (IS_I945G(dev) || IS_BROADWATER(dev) ||
34edce2f 14900 IS_GEN6(dev) || IS_IVYBRIDGE(dev))
e70236a8
JB
14901 dev_priv->display.get_display_clock_speed =
14902 i945_get_display_clock_speed;
34edce2f
VS
14903 else if (IS_GM45(dev))
14904 dev_priv->display.get_display_clock_speed =
14905 gm45_get_display_clock_speed;
14906 else if (IS_CRESTLINE(dev))
14907 dev_priv->display.get_display_clock_speed =
14908 i965gm_get_display_clock_speed;
14909 else if (IS_PINEVIEW(dev))
14910 dev_priv->display.get_display_clock_speed =
14911 pnv_get_display_clock_speed;
14912 else if (IS_G33(dev) || IS_G4X(dev))
14913 dev_priv->display.get_display_clock_speed =
14914 g33_get_display_clock_speed;
e70236a8
JB
14915 else if (IS_I915G(dev))
14916 dev_priv->display.get_display_clock_speed =
14917 i915_get_display_clock_speed;
257a7ffc 14918 else if (IS_I945GM(dev) || IS_845G(dev))
e70236a8
JB
14919 dev_priv->display.get_display_clock_speed =
14920 i9xx_misc_get_display_clock_speed;
14921 else if (IS_I915GM(dev))
14922 dev_priv->display.get_display_clock_speed =
14923 i915gm_get_display_clock_speed;
14924 else if (IS_I865G(dev))
14925 dev_priv->display.get_display_clock_speed =
14926 i865_get_display_clock_speed;
f0f8a9ce 14927 else if (IS_I85X(dev))
e70236a8 14928 dev_priv->display.get_display_clock_speed =
1b1d2716 14929 i85x_get_display_clock_speed;
623e01e5
VS
14930 else { /* 830 */
14931 WARN(!IS_I830(dev), "Unknown platform. Assuming 133 MHz CDCLK\n");
e70236a8
JB
14932 dev_priv->display.get_display_clock_speed =
14933 i830_get_display_clock_speed;
623e01e5 14934 }
e70236a8 14935
7c10a2b5 14936 if (IS_GEN5(dev)) {
3bb11b53 14937 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
3bb11b53
SJ
14938 } else if (IS_GEN6(dev)) {
14939 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
3bb11b53
SJ
14940 } else if (IS_IVYBRIDGE(dev)) {
14941 /* FIXME: detect B0+ stepping and use auto training */
14942 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
059b2fe9 14943 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3bb11b53 14944 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
27c329ed
ML
14945 if (IS_BROADWELL(dev)) {
14946 dev_priv->display.modeset_commit_cdclk =
14947 broadwell_modeset_commit_cdclk;
14948 dev_priv->display.modeset_calc_cdclk =
14949 broadwell_modeset_calc_cdclk;
14950 }
666a4537 14951 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
27c329ed
ML
14952 dev_priv->display.modeset_commit_cdclk =
14953 valleyview_modeset_commit_cdclk;
14954 dev_priv->display.modeset_calc_cdclk =
14955 valleyview_modeset_calc_cdclk;
f8437dd1 14956 } else if (IS_BROXTON(dev)) {
27c329ed
ML
14957 dev_priv->display.modeset_commit_cdclk =
14958 broxton_modeset_commit_cdclk;
14959 dev_priv->display.modeset_calc_cdclk =
14960 broxton_modeset_calc_cdclk;
e70236a8 14961 }
8c9f3aaf 14962
8c9f3aaf
JB
14963 switch (INTEL_INFO(dev)->gen) {
14964 case 2:
14965 dev_priv->display.queue_flip = intel_gen2_queue_flip;
14966 break;
14967
14968 case 3:
14969 dev_priv->display.queue_flip = intel_gen3_queue_flip;
14970 break;
14971
14972 case 4:
14973 case 5:
14974 dev_priv->display.queue_flip = intel_gen4_queue_flip;
14975 break;
14976
14977 case 6:
14978 dev_priv->display.queue_flip = intel_gen6_queue_flip;
14979 break;
7c9017e5 14980 case 7:
4e0bbc31 14981 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
7c9017e5
JB
14982 dev_priv->display.queue_flip = intel_gen7_queue_flip;
14983 break;
830c81db 14984 case 9:
ba343e02
TU
14985 /* Drop through - unsupported since execlist only. */
14986 default:
14987 /* Default just returns -ENODEV to indicate unsupported */
14988 dev_priv->display.queue_flip = intel_default_queue_flip;
8c9f3aaf 14989 }
7bd688cd 14990
e39b999a 14991 mutex_init(&dev_priv->pps_mutex);
e70236a8
JB
14992}
14993
b690e96c
JB
14994/*
14995 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
14996 * resume, or other times. This quirk makes sure that's the case for
14997 * affected systems.
14998 */
0206e353 14999static void quirk_pipea_force(struct drm_device *dev)
b690e96c
JB
15000{
15001 struct drm_i915_private *dev_priv = dev->dev_private;
15002
15003 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
bc0daf48 15004 DRM_INFO("applying pipe a force quirk\n");
b690e96c
JB
15005}
15006
b6b5d049
VS
15007static void quirk_pipeb_force(struct drm_device *dev)
15008{
15009 struct drm_i915_private *dev_priv = dev->dev_private;
15010
15011 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
15012 DRM_INFO("applying pipe b force quirk\n");
15013}
15014
435793df
KP
15015/*
15016 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
15017 */
15018static void quirk_ssc_force_disable(struct drm_device *dev)
15019{
15020 struct drm_i915_private *dev_priv = dev->dev_private;
15021 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
bc0daf48 15022 DRM_INFO("applying lvds SSC disable quirk\n");
435793df
KP
15023}
15024
4dca20ef 15025/*
5a15ab5b
CE
15026 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
15027 * brightness value
4dca20ef
CE
15028 */
15029static void quirk_invert_brightness(struct drm_device *dev)
15030{
15031 struct drm_i915_private *dev_priv = dev->dev_private;
15032 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
bc0daf48 15033 DRM_INFO("applying inverted panel brightness quirk\n");
435793df
KP
15034}
15035
9c72cc6f
SD
15036/* Some VBT's incorrectly indicate no backlight is present */
15037static void quirk_backlight_present(struct drm_device *dev)
15038{
15039 struct drm_i915_private *dev_priv = dev->dev_private;
15040 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
15041 DRM_INFO("applying backlight present quirk\n");
15042}
15043
b690e96c
JB
15044struct intel_quirk {
15045 int device;
15046 int subsystem_vendor;
15047 int subsystem_device;
15048 void (*hook)(struct drm_device *dev);
15049};
15050
5f85f176
EE
15051/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
15052struct intel_dmi_quirk {
15053 void (*hook)(struct drm_device *dev);
15054 const struct dmi_system_id (*dmi_id_list)[];
15055};
15056
15057static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
15058{
15059 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
15060 return 1;
15061}
15062
15063static const struct intel_dmi_quirk intel_dmi_quirks[] = {
15064 {
15065 .dmi_id_list = &(const struct dmi_system_id[]) {
15066 {
15067 .callback = intel_dmi_reverse_brightness,
15068 .ident = "NCR Corporation",
15069 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
15070 DMI_MATCH(DMI_PRODUCT_NAME, ""),
15071 },
15072 },
15073 { } /* terminating entry */
15074 },
15075 .hook = quirk_invert_brightness,
15076 },
15077};
15078
c43b5634 15079static struct intel_quirk intel_quirks[] = {
b690e96c
JB
15080 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
15081 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
15082
b690e96c
JB
15083 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
15084 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
15085
5f080c0f
VS
15086 /* 830 needs to leave pipe A & dpll A up */
15087 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
15088
b6b5d049
VS
15089 /* 830 needs to leave pipe B & dpll B up */
15090 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
15091
435793df
KP
15092 /* Lenovo U160 cannot use SSC on LVDS */
15093 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
15094
15095 /* Sony Vaio Y cannot use SSC on LVDS */
15096 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
5a15ab5b 15097
be505f64
AH
15098 /* Acer Aspire 5734Z must invert backlight brightness */
15099 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
15100
15101 /* Acer/eMachines G725 */
15102 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
15103
15104 /* Acer/eMachines e725 */
15105 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
15106
15107 /* Acer/Packard Bell NCL20 */
15108 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
15109
15110 /* Acer Aspire 4736Z */
15111 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
0f540c3a
JN
15112
15113 /* Acer Aspire 5336 */
15114 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
2e93a1aa
SD
15115
15116 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
15117 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
d4967d8c 15118
dfb3d47b
SD
15119 /* Acer C720 Chromebook (Core i3 4005U) */
15120 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
15121
b2a9601c 15122 /* Apple Macbook 2,1 (Core 2 T7400) */
15123 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
15124
1b9448b0
JN
15125 /* Apple Macbook 4,1 */
15126 { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
15127
d4967d8c
SD
15128 /* Toshiba CB35 Chromebook (Celeron 2955U) */
15129 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
724cb06f
SD
15130
15131 /* HP Chromebook 14 (Celeron 2955U) */
15132 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
cf6f0af9
JN
15133
15134 /* Dell Chromebook 11 */
15135 { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
9be64eee
JN
15136
15137 /* Dell Chromebook 11 (2015 version) */
15138 { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
b690e96c
JB
15139};
15140
15141static void intel_init_quirks(struct drm_device *dev)
15142{
15143 struct pci_dev *d = dev->pdev;
15144 int i;
15145
15146 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
15147 struct intel_quirk *q = &intel_quirks[i];
15148
15149 if (d->device == q->device &&
15150 (d->subsystem_vendor == q->subsystem_vendor ||
15151 q->subsystem_vendor == PCI_ANY_ID) &&
15152 (d->subsystem_device == q->subsystem_device ||
15153 q->subsystem_device == PCI_ANY_ID))
15154 q->hook(dev);
15155 }
5f85f176
EE
15156 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
15157 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
15158 intel_dmi_quirks[i].hook(dev);
15159 }
b690e96c
JB
15160}
15161
9cce37f4
JB
15162/* Disable the VGA plane that we never use */
15163static void i915_disable_vga(struct drm_device *dev)
15164{
15165 struct drm_i915_private *dev_priv = dev->dev_private;
15166 u8 sr1;
f0f59a00 15167 i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
9cce37f4 15168
2b37c616 15169 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
9cce37f4 15170 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
3fdcf431 15171 outb(SR01, VGA_SR_INDEX);
9cce37f4
JB
15172 sr1 = inb(VGA_SR_DATA);
15173 outb(sr1 | 1<<5, VGA_SR_DATA);
15174 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
15175 udelay(300);
15176
01f5a626 15177 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
9cce37f4
JB
15178 POSTING_READ(vga_reg);
15179}
15180
f817586c
DV
15181void intel_modeset_init_hw(struct drm_device *dev)
15182{
1a617b77
ML
15183 struct drm_i915_private *dev_priv = dev->dev_private;
15184
b6283055 15185 intel_update_cdclk(dev);
1a617b77
ML
15186
15187 dev_priv->atomic_cdclk_freq = dev_priv->cdclk_freq;
15188
f817586c 15189 intel_init_clock_gating(dev);
8090c6b9 15190 intel_enable_gt_powersave(dev);
f817586c
DV
15191}
15192
d93c0372
MR
15193/*
15194 * Calculate what we think the watermarks should be for the state we've read
15195 * out of the hardware and then immediately program those watermarks so that
15196 * we ensure the hardware settings match our internal state.
15197 *
15198 * We can calculate what we think WM's should be by creating a duplicate of the
15199 * current state (which was constructed during hardware readout) and running it
15200 * through the atomic check code to calculate new watermark values in the
15201 * state object.
15202 */
15203static void sanitize_watermarks(struct drm_device *dev)
15204{
15205 struct drm_i915_private *dev_priv = to_i915(dev);
15206 struct drm_atomic_state *state;
15207 struct drm_crtc *crtc;
15208 struct drm_crtc_state *cstate;
15209 struct drm_modeset_acquire_ctx ctx;
15210 int ret;
15211 int i;
15212
15213 /* Only supported on platforms that use atomic watermark design */
ed4a6a7c 15214 if (!dev_priv->display.optimize_watermarks)
d93c0372
MR
15215 return;
15216
15217 /*
15218 * We need to hold connection_mutex before calling duplicate_state so
15219 * that the connector loop is protected.
15220 */
15221 drm_modeset_acquire_init(&ctx, 0);
15222retry:
0cd1262d 15223 ret = drm_modeset_lock_all_ctx(dev, &ctx);
d93c0372
MR
15224 if (ret == -EDEADLK) {
15225 drm_modeset_backoff(&ctx);
15226 goto retry;
15227 } else if (WARN_ON(ret)) {
0cd1262d 15228 goto fail;
d93c0372
MR
15229 }
15230
15231 state = drm_atomic_helper_duplicate_state(dev, &ctx);
15232 if (WARN_ON(IS_ERR(state)))
0cd1262d 15233 goto fail;
d93c0372 15234
ed4a6a7c
MR
15235 /*
15236 * Hardware readout is the only time we don't want to calculate
15237 * intermediate watermarks (since we don't trust the current
15238 * watermarks).
15239 */
15240 to_intel_atomic_state(state)->skip_intermediate_wm = true;
15241
d93c0372
MR
15242 ret = intel_atomic_check(dev, state);
15243 if (ret) {
15244 /*
15245 * If we fail here, it means that the hardware appears to be
15246 * programmed in a way that shouldn't be possible, given our
15247 * understanding of watermark requirements. This might mean a
15248 * mistake in the hardware readout code or a mistake in the
15249 * watermark calculations for a given platform. Raise a WARN
15250 * so that this is noticeable.
15251 *
15252 * If this actually happens, we'll have to just leave the
15253 * BIOS-programmed watermarks untouched and hope for the best.
15254 */
15255 WARN(true, "Could not determine valid watermarks for inherited state\n");
0cd1262d 15256 goto fail;
d93c0372
MR
15257 }
15258
15259 /* Write calculated watermark values back */
15260 to_i915(dev)->wm.config = to_intel_atomic_state(state)->wm_config;
15261 for_each_crtc_in_state(state, crtc, cstate, i) {
15262 struct intel_crtc_state *cs = to_intel_crtc_state(cstate);
15263
ed4a6a7c
MR
15264 cs->wm.need_postvbl_update = true;
15265 dev_priv->display.optimize_watermarks(cs);
d93c0372
MR
15266 }
15267
15268 drm_atomic_state_free(state);
0cd1262d 15269fail:
d93c0372
MR
15270 drm_modeset_drop_locks(&ctx);
15271 drm_modeset_acquire_fini(&ctx);
15272}
15273
79e53945
JB
15274void intel_modeset_init(struct drm_device *dev)
15275{
652c393a 15276 struct drm_i915_private *dev_priv = dev->dev_private;
1fe47785 15277 int sprite, ret;
8cc87b75 15278 enum pipe pipe;
46f297fb 15279 struct intel_crtc *crtc;
79e53945
JB
15280
15281 drm_mode_config_init(dev);
15282
15283 dev->mode_config.min_width = 0;
15284 dev->mode_config.min_height = 0;
15285
019d96cb
DA
15286 dev->mode_config.preferred_depth = 24;
15287 dev->mode_config.prefer_shadow = 1;
15288
25bab385
TU
15289 dev->mode_config.allow_fb_modifiers = true;
15290
e6ecefaa 15291 dev->mode_config.funcs = &intel_mode_funcs;
79e53945 15292
b690e96c
JB
15293 intel_init_quirks(dev);
15294
1fa61106
ED
15295 intel_init_pm(dev);
15296
e3c74757
BW
15297 if (INTEL_INFO(dev)->num_pipes == 0)
15298 return;
15299
69f92f67
LW
15300 /*
15301 * There may be no VBT; and if the BIOS enabled SSC we can
15302 * just keep using it to avoid unnecessary flicker. Whereas if the
15303 * BIOS isn't using it, don't assume it will work even if the VBT
15304 * indicates as much.
15305 */
15306 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
15307 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
15308 DREF_SSC1_ENABLE);
15309
15310 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
15311 DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
15312 bios_lvds_use_ssc ? "en" : "dis",
15313 dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
15314 dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
15315 }
15316 }
15317
e70236a8 15318 intel_init_display(dev);
7c10a2b5 15319 intel_init_audio(dev);
e70236a8 15320
a6c45cf0
CW
15321 if (IS_GEN2(dev)) {
15322 dev->mode_config.max_width = 2048;
15323 dev->mode_config.max_height = 2048;
15324 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
15325 dev->mode_config.max_width = 4096;
15326 dev->mode_config.max_height = 4096;
79e53945 15327 } else {
a6c45cf0
CW
15328 dev->mode_config.max_width = 8192;
15329 dev->mode_config.max_height = 8192;
79e53945 15330 }
068be561 15331
dc41c154
VS
15332 if (IS_845G(dev) || IS_I865G(dev)) {
15333 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
15334 dev->mode_config.cursor_height = 1023;
15335 } else if (IS_GEN2(dev)) {
068be561
DL
15336 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
15337 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
15338 } else {
15339 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
15340 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
15341 }
15342
5d4545ae 15343 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
79e53945 15344
28c97730 15345 DRM_DEBUG_KMS("%d display pipe%s available.\n",
7eb552ae
BW
15346 INTEL_INFO(dev)->num_pipes,
15347 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
79e53945 15348
055e393f 15349 for_each_pipe(dev_priv, pipe) {
8cc87b75 15350 intel_crtc_init(dev, pipe);
3bdcfc0c 15351 for_each_sprite(dev_priv, pipe, sprite) {
1fe47785 15352 ret = intel_plane_init(dev, pipe, sprite);
7f1f3851 15353 if (ret)
06da8da2 15354 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
1fe47785 15355 pipe_name(pipe), sprite_name(pipe, sprite), ret);
7f1f3851 15356 }
79e53945
JB
15357 }
15358
bfa7df01 15359 intel_update_czclk(dev_priv);
e7dc33f3 15360 intel_update_rawclk(dev_priv);
bfa7df01
VS
15361 intel_update_cdclk(dev);
15362
e72f9fbf 15363 intel_shared_dpll_init(dev);
ee7b9f93 15364
9cce37f4
JB
15365 /* Just disable it once at startup */
15366 i915_disable_vga(dev);
79e53945 15367 intel_setup_outputs(dev);
11be49eb 15368
6e9f798d 15369 drm_modeset_lock_all(dev);
043e9bda 15370 intel_modeset_setup_hw_state(dev);
6e9f798d 15371 drm_modeset_unlock_all(dev);
46f297fb 15372
d3fcc808 15373 for_each_intel_crtc(dev, crtc) {
eeebeac5
ML
15374 struct intel_initial_plane_config plane_config = {};
15375
46f297fb
JB
15376 if (!crtc->active)
15377 continue;
15378
46f297fb 15379 /*
46f297fb
JB
15380 * Note that reserving the BIOS fb up front prevents us
15381 * from stuffing other stolen allocations like the ring
15382 * on top. This prevents some ugliness at boot time, and
15383 * can even allow for smooth boot transitions if the BIOS
15384 * fb is large enough for the active pipe configuration.
15385 */
eeebeac5
ML
15386 dev_priv->display.get_initial_plane_config(crtc,
15387 &plane_config);
15388
15389 /*
15390 * If the fb is shared between multiple heads, we'll
15391 * just get the first one.
15392 */
15393 intel_find_initial_plane_obj(crtc, &plane_config);
46f297fb 15394 }
d93c0372
MR
15395
15396 /*
15397 * Make sure hardware watermarks really match the state we read out.
15398 * Note that we need to do this after reconstructing the BIOS fb's
15399 * since the watermark calculation done here will use pstate->fb.
15400 */
15401 sanitize_watermarks(dev);
2c7111db
CW
15402}
15403
7fad798e
DV
15404static void intel_enable_pipe_a(struct drm_device *dev)
15405{
15406 struct intel_connector *connector;
15407 struct drm_connector *crt = NULL;
15408 struct intel_load_detect_pipe load_detect_temp;
208bf9fd 15409 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
7fad798e
DV
15410
15411 /* We can't just switch on the pipe A, we need to set things up with a
15412 * proper mode and output configuration. As a gross hack, enable pipe A
15413 * by enabling the load detect pipe once. */
3a3371ff 15414 for_each_intel_connector(dev, connector) {
7fad798e
DV
15415 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
15416 crt = &connector->base;
15417 break;
15418 }
15419 }
15420
15421 if (!crt)
15422 return;
15423
208bf9fd 15424 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
49172fee 15425 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
7fad798e
DV
15426}
15427
fa555837
DV
15428static bool
15429intel_check_plane_mapping(struct intel_crtc *crtc)
15430{
7eb552ae
BW
15431 struct drm_device *dev = crtc->base.dev;
15432 struct drm_i915_private *dev_priv = dev->dev_private;
649636ef 15433 u32 val;
fa555837 15434
7eb552ae 15435 if (INTEL_INFO(dev)->num_pipes == 1)
fa555837
DV
15436 return true;
15437
649636ef 15438 val = I915_READ(DSPCNTR(!crtc->plane));
fa555837
DV
15439
15440 if ((val & DISPLAY_PLANE_ENABLE) &&
15441 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
15442 return false;
15443
15444 return true;
15445}
15446
02e93c35
VS
15447static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
15448{
15449 struct drm_device *dev = crtc->base.dev;
15450 struct intel_encoder *encoder;
15451
15452 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15453 return true;
15454
15455 return false;
15456}
15457
dd756198
VS
15458static bool intel_encoder_has_connectors(struct intel_encoder *encoder)
15459{
15460 struct drm_device *dev = encoder->base.dev;
15461 struct intel_connector *connector;
15462
15463 for_each_connector_on_encoder(dev, &encoder->base, connector)
15464 return true;
15465
15466 return false;
15467}
15468
24929352
DV
15469static void intel_sanitize_crtc(struct intel_crtc *crtc)
15470{
15471 struct drm_device *dev = crtc->base.dev;
15472 struct drm_i915_private *dev_priv = dev->dev_private;
f0f59a00 15473 i915_reg_t reg = PIPECONF(crtc->config->cpu_transcoder);
24929352 15474
24929352 15475 /* Clear any frame start delays used for debugging left by the BIOS */
24929352
DV
15476 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
15477
d3eaf884 15478 /* restore vblank interrupts to correct state */
9625604c 15479 drm_crtc_vblank_reset(&crtc->base);
d297e103 15480 if (crtc->active) {
f9cd7b88
VS
15481 struct intel_plane *plane;
15482
9625604c 15483 drm_crtc_vblank_on(&crtc->base);
f9cd7b88
VS
15484
15485 /* Disable everything but the primary plane */
15486 for_each_intel_plane_on_crtc(dev, crtc, plane) {
15487 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
15488 continue;
15489
15490 plane->disable_plane(&plane->base, &crtc->base);
15491 }
9625604c 15492 }
d3eaf884 15493
24929352 15494 /* We need to sanitize the plane -> pipe mapping first because this will
fa555837
DV
15495 * disable the crtc (and hence change the state) if it is wrong. Note
15496 * that gen4+ has a fixed plane -> pipe mapping. */
15497 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
24929352
DV
15498 bool plane;
15499
24929352
DV
15500 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
15501 crtc->base.base.id);
15502
15503 /* Pipe has the wrong plane attached and the plane is active.
15504 * Temporarily change the plane mapping and disable everything
15505 * ... */
15506 plane = crtc->plane;
b70709a6 15507 to_intel_plane_state(crtc->base.primary->state)->visible = true;
24929352 15508 crtc->plane = !plane;
b17d48e2 15509 intel_crtc_disable_noatomic(&crtc->base);
24929352 15510 crtc->plane = plane;
24929352 15511 }
24929352 15512
7fad798e
DV
15513 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
15514 crtc->pipe == PIPE_A && !crtc->active) {
15515 /* BIOS forgot to enable pipe A, this mostly happens after
15516 * resume. Force-enable the pipe to fix this, the update_dpms
15517 * call below we restore the pipe to the right state, but leave
15518 * the required bits on. */
15519 intel_enable_pipe_a(dev);
15520 }
15521
24929352
DV
15522 /* Adjust the state of the output pipe according to whether we
15523 * have active connectors/encoders. */
842e0307 15524 if (crtc->active && !intel_crtc_has_encoders(crtc))
b17d48e2 15525 intel_crtc_disable_noatomic(&crtc->base);
24929352 15526
a3ed6aad 15527 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
4cc31489
DV
15528 /*
15529 * We start out with underrun reporting disabled to avoid races.
15530 * For correct bookkeeping mark this on active crtcs.
15531 *
c5ab3bc0
DV
15532 * Also on gmch platforms we dont have any hardware bits to
15533 * disable the underrun reporting. Which means we need to start
15534 * out with underrun reporting disabled also on inactive pipes,
15535 * since otherwise we'll complain about the garbage we read when
15536 * e.g. coming up after runtime pm.
15537 *
4cc31489
DV
15538 * No protection against concurrent access is required - at
15539 * worst a fifo underrun happens which also sets this to false.
15540 */
15541 crtc->cpu_fifo_underrun_disabled = true;
15542 crtc->pch_fifo_underrun_disabled = true;
15543 }
24929352
DV
15544}
15545
15546static void intel_sanitize_encoder(struct intel_encoder *encoder)
15547{
15548 struct intel_connector *connector;
15549 struct drm_device *dev = encoder->base.dev;
15550
15551 /* We need to check both for a crtc link (meaning that the
15552 * encoder is active and trying to read from a pipe) and the
15553 * pipe itself being active. */
15554 bool has_active_crtc = encoder->base.crtc &&
15555 to_intel_crtc(encoder->base.crtc)->active;
15556
dd756198 15557 if (intel_encoder_has_connectors(encoder) && !has_active_crtc) {
24929352
DV
15558 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15559 encoder->base.base.id,
8e329a03 15560 encoder->base.name);
24929352
DV
15561
15562 /* Connector is active, but has no active pipe. This is
15563 * fallout from our resume register restoring. Disable
15564 * the encoder manually again. */
15565 if (encoder->base.crtc) {
15566 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15567 encoder->base.base.id,
8e329a03 15568 encoder->base.name);
24929352 15569 encoder->disable(encoder);
a62d1497
VS
15570 if (encoder->post_disable)
15571 encoder->post_disable(encoder);
24929352 15572 }
7f1950fb 15573 encoder->base.crtc = NULL;
24929352
DV
15574
15575 /* Inconsistent output/port/pipe state happens presumably due to
15576 * a bug in one of the get_hw_state functions. Or someplace else
15577 * in our code, like the register restore mess on resume. Clamp
15578 * things to off as a safer default. */
3a3371ff 15579 for_each_intel_connector(dev, connector) {
24929352
DV
15580 if (connector->encoder != encoder)
15581 continue;
7f1950fb
EE
15582 connector->base.dpms = DRM_MODE_DPMS_OFF;
15583 connector->base.encoder = NULL;
24929352
DV
15584 }
15585 }
15586 /* Enabled encoders without active connectors will be fixed in
15587 * the crtc fixup. */
15588}
15589
04098753 15590void i915_redisable_vga_power_on(struct drm_device *dev)
0fde901f
KM
15591{
15592 struct drm_i915_private *dev_priv = dev->dev_private;
f0f59a00 15593 i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
0fde901f 15594
04098753
ID
15595 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15596 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15597 i915_disable_vga(dev);
15598 }
15599}
15600
15601void i915_redisable_vga(struct drm_device *dev)
15602{
15603 struct drm_i915_private *dev_priv = dev->dev_private;
15604
8dc8a27c
PZ
15605 /* This function can be called both from intel_modeset_setup_hw_state or
15606 * at a very early point in our resume sequence, where the power well
15607 * structures are not yet restored. Since this function is at a very
15608 * paranoid "someone might have enabled VGA while we were not looking"
15609 * level, just check if the power well is enabled instead of trying to
15610 * follow the "don't touch the power well if we don't need it" policy
15611 * the rest of the driver uses. */
6392f847 15612 if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_VGA))
8dc8a27c
PZ
15613 return;
15614
04098753 15615 i915_redisable_vga_power_on(dev);
6392f847
ID
15616
15617 intel_display_power_put(dev_priv, POWER_DOMAIN_VGA);
0fde901f
KM
15618}
15619
f9cd7b88 15620static bool primary_get_hw_state(struct intel_plane *plane)
98ec7739 15621{
f9cd7b88 15622 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
98ec7739 15623
f9cd7b88 15624 return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
d032ffa0
ML
15625}
15626
f9cd7b88
VS
15627/* FIXME read out full plane state for all planes */
15628static void readout_plane_state(struct intel_crtc *crtc)
d032ffa0 15629{
b26d3ea3 15630 struct drm_plane *primary = crtc->base.primary;
f9cd7b88 15631 struct intel_plane_state *plane_state =
b26d3ea3 15632 to_intel_plane_state(primary->state);
d032ffa0 15633
19b8d387 15634 plane_state->visible = crtc->active &&
b26d3ea3
ML
15635 primary_get_hw_state(to_intel_plane(primary));
15636
15637 if (plane_state->visible)
15638 crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
98ec7739
VS
15639}
15640
30e984df 15641static void intel_modeset_readout_hw_state(struct drm_device *dev)
24929352
DV
15642{
15643 struct drm_i915_private *dev_priv = dev->dev_private;
15644 enum pipe pipe;
24929352
DV
15645 struct intel_crtc *crtc;
15646 struct intel_encoder *encoder;
15647 struct intel_connector *connector;
5358901f 15648 int i;
24929352 15649
565602d7
ML
15650 dev_priv->active_crtcs = 0;
15651
d3fcc808 15652 for_each_intel_crtc(dev, crtc) {
565602d7
ML
15653 struct intel_crtc_state *crtc_state = crtc->config;
15654 int pixclk = 0;
3b117c8f 15655
565602d7
ML
15656 __drm_atomic_helper_crtc_destroy_state(&crtc->base, &crtc_state->base);
15657 memset(crtc_state, 0, sizeof(*crtc_state));
15658 crtc_state->base.crtc = &crtc->base;
24929352 15659
565602d7
ML
15660 crtc_state->base.active = crtc_state->base.enable =
15661 dev_priv->display.get_pipe_config(crtc, crtc_state);
15662
15663 crtc->base.enabled = crtc_state->base.enable;
15664 crtc->active = crtc_state->base.active;
15665
15666 if (crtc_state->base.active) {
15667 dev_priv->active_crtcs |= 1 << crtc->pipe;
15668
15669 if (IS_BROADWELL(dev_priv)) {
15670 pixclk = ilk_pipe_pixel_rate(crtc_state);
15671
15672 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
15673 if (crtc_state->ips_enabled)
15674 pixclk = DIV_ROUND_UP(pixclk * 100, 95);
15675 } else if (IS_VALLEYVIEW(dev_priv) ||
15676 IS_CHERRYVIEW(dev_priv) ||
15677 IS_BROXTON(dev_priv))
15678 pixclk = crtc_state->base.adjusted_mode.crtc_clock;
15679 else
15680 WARN_ON(dev_priv->display.modeset_calc_cdclk);
15681 }
15682
15683 dev_priv->min_pixclk[crtc->pipe] = pixclk;
b70709a6 15684
f9cd7b88 15685 readout_plane_state(crtc);
24929352
DV
15686
15687 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
15688 crtc->base.base.id,
15689 crtc->active ? "enabled" : "disabled");
15690 }
15691
5358901f
DV
15692 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15693 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15694
2edd6443
ACO
15695 pll->on = pll->funcs.get_hw_state(dev_priv, pll,
15696 &pll->config.hw_state);
5358901f 15697 pll->active = 0;
3e369b76 15698 pll->config.crtc_mask = 0;
d3fcc808 15699 for_each_intel_crtc(dev, crtc) {
8106ddbd 15700 if (crtc->active && crtc->config->shared_dpll == pll) {
5358901f 15701 pll->active++;
3e369b76 15702 pll->config.crtc_mask |= 1 << crtc->pipe;
1e6f2ddc 15703 }
5358901f 15704 }
5358901f 15705
1e6f2ddc 15706 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
3e369b76 15707 pll->name, pll->config.crtc_mask, pll->on);
bd2bb1b9 15708
3e369b76 15709 if (pll->config.crtc_mask)
bd2bb1b9 15710 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5358901f
DV
15711 }
15712
b2784e15 15713 for_each_intel_encoder(dev, encoder) {
24929352
DV
15714 pipe = 0;
15715
15716 if (encoder->get_hw_state(encoder, &pipe)) {
045ac3b5
JB
15717 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15718 encoder->base.crtc = &crtc->base;
6e3c9717 15719 encoder->get_config(encoder, crtc->config);
24929352
DV
15720 } else {
15721 encoder->base.crtc = NULL;
15722 }
15723
6f2bcceb 15724 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
24929352 15725 encoder->base.base.id,
8e329a03 15726 encoder->base.name,
24929352 15727 encoder->base.crtc ? "enabled" : "disabled",
6f2bcceb 15728 pipe_name(pipe));
24929352
DV
15729 }
15730
3a3371ff 15731 for_each_intel_connector(dev, connector) {
24929352
DV
15732 if (connector->get_hw_state(connector)) {
15733 connector->base.dpms = DRM_MODE_DPMS_ON;
2aa974c9
ML
15734
15735 encoder = connector->encoder;
15736 connector->base.encoder = &encoder->base;
15737
15738 if (encoder->base.crtc &&
15739 encoder->base.crtc->state->active) {
15740 /*
15741 * This has to be done during hardware readout
15742 * because anything calling .crtc_disable may
15743 * rely on the connector_mask being accurate.
15744 */
15745 encoder->base.crtc->state->connector_mask |=
15746 1 << drm_connector_index(&connector->base);
e87a52b3
ML
15747 encoder->base.crtc->state->encoder_mask |=
15748 1 << drm_encoder_index(&encoder->base);
2aa974c9
ML
15749 }
15750
24929352
DV
15751 } else {
15752 connector->base.dpms = DRM_MODE_DPMS_OFF;
15753 connector->base.encoder = NULL;
15754 }
15755 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15756 connector->base.base.id,
c23cc417 15757 connector->base.name,
24929352
DV
15758 connector->base.encoder ? "enabled" : "disabled");
15759 }
7f4c6284
VS
15760
15761 for_each_intel_crtc(dev, crtc) {
15762 crtc->base.hwmode = crtc->config->base.adjusted_mode;
15763
15764 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
15765 if (crtc->base.state->active) {
15766 intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
15767 intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
15768 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
15769
15770 /*
15771 * The initial mode needs to be set in order to keep
15772 * the atomic core happy. It wants a valid mode if the
15773 * crtc's enabled, so we do the above call.
15774 *
15775 * At this point some state updated by the connectors
15776 * in their ->detect() callback has not run yet, so
15777 * no recalculation can be done yet.
15778 *
15779 * Even if we could do a recalculation and modeset
15780 * right now it would cause a double modeset if
15781 * fbdev or userspace chooses a different initial mode.
15782 *
15783 * If that happens, someone indicated they wanted a
15784 * mode change, which means it's safe to do a full
15785 * recalculation.
15786 */
15787 crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
9eca6832
VS
15788
15789 drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
15790 update_scanline_offset(crtc);
7f4c6284 15791 }
e3b247da
VS
15792
15793 intel_pipe_config_sanity_check(dev_priv, crtc->config);
7f4c6284 15794 }
30e984df
DV
15795}
15796
043e9bda
ML
15797/* Scan out the current hw modeset state,
15798 * and sanitizes it to the current state
15799 */
15800static void
15801intel_modeset_setup_hw_state(struct drm_device *dev)
30e984df
DV
15802{
15803 struct drm_i915_private *dev_priv = dev->dev_private;
15804 enum pipe pipe;
30e984df
DV
15805 struct intel_crtc *crtc;
15806 struct intel_encoder *encoder;
35c95375 15807 int i;
30e984df
DV
15808
15809 intel_modeset_readout_hw_state(dev);
24929352
DV
15810
15811 /* HW state is read out, now we need to sanitize this mess. */
b2784e15 15812 for_each_intel_encoder(dev, encoder) {
24929352
DV
15813 intel_sanitize_encoder(encoder);
15814 }
15815
055e393f 15816 for_each_pipe(dev_priv, pipe) {
24929352
DV
15817 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15818 intel_sanitize_crtc(crtc);
6e3c9717
ACO
15819 intel_dump_pipe_config(crtc, crtc->config,
15820 "[setup_hw_state]");
24929352 15821 }
9a935856 15822
d29b2f9d
ACO
15823 intel_modeset_update_connector_atomic_state(dev);
15824
35c95375
DV
15825 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15826 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15827
15828 if (!pll->on || pll->active)
15829 continue;
15830
15831 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15832
2edd6443 15833 pll->funcs.disable(dev_priv, pll);
35c95375
DV
15834 pll->on = false;
15835 }
15836
666a4537 15837 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
6eb1a681
VS
15838 vlv_wm_get_hw_state(dev);
15839 else if (IS_GEN9(dev))
3078999f
PB
15840 skl_wm_get_hw_state(dev);
15841 else if (HAS_PCH_SPLIT(dev))
243e6a44 15842 ilk_wm_get_hw_state(dev);
292b990e
ML
15843
15844 for_each_intel_crtc(dev, crtc) {
15845 unsigned long put_domains;
15846
74bff5f9 15847 put_domains = modeset_get_crtc_power_domains(&crtc->base, crtc->config);
292b990e
ML
15848 if (WARN_ON(put_domains))
15849 modeset_put_power_domains(dev_priv, put_domains);
15850 }
15851 intel_display_set_init_power(dev_priv, false);
010cf73d
PZ
15852
15853 intel_fbc_init_pipe_state(dev_priv);
043e9bda 15854}
7d0bc1ea 15855
043e9bda
ML
15856void intel_display_resume(struct drm_device *dev)
15857{
e2c8b870
ML
15858 struct drm_i915_private *dev_priv = to_i915(dev);
15859 struct drm_atomic_state *state = dev_priv->modeset_restore_state;
15860 struct drm_modeset_acquire_ctx ctx;
043e9bda 15861 int ret;
e2c8b870 15862 bool setup = false;
f30da187 15863
e2c8b870 15864 dev_priv->modeset_restore_state = NULL;
043e9bda 15865
ea49c9ac
ML
15866 /*
15867 * This is a cludge because with real atomic modeset mode_config.mutex
15868 * won't be taken. Unfortunately some probed state like
15869 * audio_codec_enable is still protected by mode_config.mutex, so lock
15870 * it here for now.
15871 */
15872 mutex_lock(&dev->mode_config.mutex);
e2c8b870 15873 drm_modeset_acquire_init(&ctx, 0);
043e9bda 15874
e2c8b870
ML
15875retry:
15876 ret = drm_modeset_lock_all_ctx(dev, &ctx);
043e9bda 15877
e2c8b870
ML
15878 if (ret == 0 && !setup) {
15879 setup = true;
043e9bda 15880
e2c8b870
ML
15881 intel_modeset_setup_hw_state(dev);
15882 i915_redisable_vga(dev);
45e2b5f6 15883 }
8af6cf88 15884
e2c8b870
ML
15885 if (ret == 0 && state) {
15886 struct drm_crtc_state *crtc_state;
15887 struct drm_crtc *crtc;
15888 int i;
043e9bda 15889
e2c8b870
ML
15890 state->acquire_ctx = &ctx;
15891
15892 for_each_crtc_in_state(state, crtc, crtc_state, i) {
15893 /*
15894 * Force recalculation even if we restore
15895 * current state. With fast modeset this may not result
15896 * in a modeset when the state is compatible.
15897 */
15898 crtc_state->mode_changed = true;
15899 }
15900
15901 ret = drm_atomic_commit(state);
043e9bda
ML
15902 }
15903
e2c8b870
ML
15904 if (ret == -EDEADLK) {
15905 drm_modeset_backoff(&ctx);
15906 goto retry;
15907 }
043e9bda 15908
e2c8b870
ML
15909 drm_modeset_drop_locks(&ctx);
15910 drm_modeset_acquire_fini(&ctx);
ea49c9ac 15911 mutex_unlock(&dev->mode_config.mutex);
043e9bda 15912
e2c8b870
ML
15913 if (ret) {
15914 DRM_ERROR("Restoring old state failed with %i\n", ret);
15915 drm_atomic_state_free(state);
15916 }
2c7111db
CW
15917}
15918
15919void intel_modeset_gem_init(struct drm_device *dev)
15920{
484b41dd 15921 struct drm_crtc *c;
2ff8fde1 15922 struct drm_i915_gem_object *obj;
e0d6149b 15923 int ret;
484b41dd 15924
ae48434c 15925 intel_init_gt_powersave(dev);
ae48434c 15926
1833b134 15927 intel_modeset_init_hw(dev);
02e792fb
DV
15928
15929 intel_setup_overlay(dev);
484b41dd
JB
15930
15931 /*
15932 * Make sure any fbs we allocated at startup are properly
15933 * pinned & fenced. When we do the allocation it's too early
15934 * for this.
15935 */
70e1e0ec 15936 for_each_crtc(dev, c) {
2ff8fde1
MR
15937 obj = intel_fb_obj(c->primary->fb);
15938 if (obj == NULL)
484b41dd
JB
15939 continue;
15940
e0d6149b 15941 mutex_lock(&dev->struct_mutex);
3465c580
VS
15942 ret = intel_pin_and_fence_fb_obj(c->primary->fb,
15943 c->primary->state->rotation);
e0d6149b
TU
15944 mutex_unlock(&dev->struct_mutex);
15945 if (ret) {
484b41dd
JB
15946 DRM_ERROR("failed to pin boot fb on pipe %d\n",
15947 to_intel_crtc(c)->pipe);
66e514c1
DA
15948 drm_framebuffer_unreference(c->primary->fb);
15949 c->primary->fb = NULL;
36750f28 15950 c->primary->crtc = c->primary->state->crtc = NULL;
afd65eb4 15951 update_state_fb(c->primary);
36750f28 15952 c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
484b41dd
JB
15953 }
15954 }
0962c3c9
VS
15955
15956 intel_backlight_register(dev);
79e53945
JB
15957}
15958
4932e2c3
ID
15959void intel_connector_unregister(struct intel_connector *intel_connector)
15960{
15961 struct drm_connector *connector = &intel_connector->base;
15962
15963 intel_panel_destroy_backlight(connector);
34ea3d38 15964 drm_connector_unregister(connector);
4932e2c3
ID
15965}
15966
79e53945
JB
15967void intel_modeset_cleanup(struct drm_device *dev)
15968{
652c393a 15969 struct drm_i915_private *dev_priv = dev->dev_private;
19c8054c 15970 struct intel_connector *connector;
652c393a 15971
2eb5252e
ID
15972 intel_disable_gt_powersave(dev);
15973
0962c3c9
VS
15974 intel_backlight_unregister(dev);
15975
fd0c0642
DV
15976 /*
15977 * Interrupts and polling as the first thing to avoid creating havoc.
2eb5252e 15978 * Too much stuff here (turning of connectors, ...) would
fd0c0642
DV
15979 * experience fancy races otherwise.
15980 */
2aeb7d3a 15981 intel_irq_uninstall(dev_priv);
eb21b92b 15982
fd0c0642
DV
15983 /*
15984 * Due to the hpd irq storm handling the hotplug work can re-arm the
15985 * poll handlers. Hence disable polling after hpd handling is shut down.
15986 */
f87ea761 15987 drm_kms_helper_poll_fini(dev);
fd0c0642 15988
723bfd70
JB
15989 intel_unregister_dsm_handler();
15990
c937ab3e 15991 intel_fbc_global_disable(dev_priv);
69341a5e 15992
1630fe75
CW
15993 /* flush any delayed tasks or pending work */
15994 flush_scheduled_work();
15995
db31af1d 15996 /* destroy the backlight and sysfs files before encoders/connectors */
19c8054c
JN
15997 for_each_intel_connector(dev, connector)
15998 connector->unregister(connector);
d9255d57 15999
79e53945 16000 drm_mode_config_cleanup(dev);
4d7bb011
DV
16001
16002 intel_cleanup_overlay(dev);
ae48434c 16003
ae48434c 16004 intel_cleanup_gt_powersave(dev);
f5949141
DV
16005
16006 intel_teardown_gmbus(dev);
79e53945
JB
16007}
16008
f1c79df3
ZW
16009/*
16010 * Return which encoder is currently attached for connector.
16011 */
df0e9248 16012struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
79e53945 16013{
df0e9248
CW
16014 return &intel_attached_encoder(connector)->base;
16015}
f1c79df3 16016
df0e9248
CW
16017void intel_connector_attach_encoder(struct intel_connector *connector,
16018 struct intel_encoder *encoder)
16019{
16020 connector->encoder = encoder;
16021 drm_mode_connector_attach_encoder(&connector->base,
16022 &encoder->base);
79e53945 16023}
28d52043
DA
16024
16025/*
16026 * set vga decode state - true == enable VGA decode
16027 */
16028int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
16029{
16030 struct drm_i915_private *dev_priv = dev->dev_private;
a885b3cc 16031 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
28d52043
DA
16032 u16 gmch_ctrl;
16033
75fa041d
CW
16034 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
16035 DRM_ERROR("failed to read control word\n");
16036 return -EIO;
16037 }
16038
c0cc8a55
CW
16039 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
16040 return 0;
16041
28d52043
DA
16042 if (state)
16043 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
16044 else
16045 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
75fa041d
CW
16046
16047 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
16048 DRM_ERROR("failed to write control word\n");
16049 return -EIO;
16050 }
16051
28d52043
DA
16052 return 0;
16053}
c4a1d9e4 16054
c4a1d9e4 16055struct intel_display_error_state {
ff57f1b0
PZ
16056
16057 u32 power_well_driver;
16058
63b66e5b
CW
16059 int num_transcoders;
16060
c4a1d9e4
CW
16061 struct intel_cursor_error_state {
16062 u32 control;
16063 u32 position;
16064 u32 base;
16065 u32 size;
52331309 16066 } cursor[I915_MAX_PIPES];
c4a1d9e4
CW
16067
16068 struct intel_pipe_error_state {
ddf9c536 16069 bool power_domain_on;
c4a1d9e4 16070 u32 source;
f301b1e1 16071 u32 stat;
52331309 16072 } pipe[I915_MAX_PIPES];
c4a1d9e4
CW
16073
16074 struct intel_plane_error_state {
16075 u32 control;
16076 u32 stride;
16077 u32 size;
16078 u32 pos;
16079 u32 addr;
16080 u32 surface;
16081 u32 tile_offset;
52331309 16082 } plane[I915_MAX_PIPES];
63b66e5b
CW
16083
16084 struct intel_transcoder_error_state {
ddf9c536 16085 bool power_domain_on;
63b66e5b
CW
16086 enum transcoder cpu_transcoder;
16087
16088 u32 conf;
16089
16090 u32 htotal;
16091 u32 hblank;
16092 u32 hsync;
16093 u32 vtotal;
16094 u32 vblank;
16095 u32 vsync;
16096 } transcoder[4];
c4a1d9e4
CW
16097};
16098
16099struct intel_display_error_state *
16100intel_display_capture_error_state(struct drm_device *dev)
16101{
fbee40df 16102 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4 16103 struct intel_display_error_state *error;
63b66e5b
CW
16104 int transcoders[] = {
16105 TRANSCODER_A,
16106 TRANSCODER_B,
16107 TRANSCODER_C,
16108 TRANSCODER_EDP,
16109 };
c4a1d9e4
CW
16110 int i;
16111
63b66e5b
CW
16112 if (INTEL_INFO(dev)->num_pipes == 0)
16113 return NULL;
16114
9d1cb914 16115 error = kzalloc(sizeof(*error), GFP_ATOMIC);
c4a1d9e4
CW
16116 if (error == NULL)
16117 return NULL;
16118
190be112 16119 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
ff57f1b0
PZ
16120 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
16121
055e393f 16122 for_each_pipe(dev_priv, i) {
ddf9c536 16123 error->pipe[i].power_domain_on =
f458ebbc
DV
16124 __intel_display_power_is_enabled(dev_priv,
16125 POWER_DOMAIN_PIPE(i));
ddf9c536 16126 if (!error->pipe[i].power_domain_on)
9d1cb914
PZ
16127 continue;
16128
5efb3e28
VS
16129 error->cursor[i].control = I915_READ(CURCNTR(i));
16130 error->cursor[i].position = I915_READ(CURPOS(i));
16131 error->cursor[i].base = I915_READ(CURBASE(i));
c4a1d9e4
CW
16132
16133 error->plane[i].control = I915_READ(DSPCNTR(i));
16134 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
80ca378b 16135 if (INTEL_INFO(dev)->gen <= 3) {
51889b35 16136 error->plane[i].size = I915_READ(DSPSIZE(i));
80ca378b
PZ
16137 error->plane[i].pos = I915_READ(DSPPOS(i));
16138 }
ca291363
PZ
16139 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
16140 error->plane[i].addr = I915_READ(DSPADDR(i));
c4a1d9e4
CW
16141 if (INTEL_INFO(dev)->gen >= 4) {
16142 error->plane[i].surface = I915_READ(DSPSURF(i));
16143 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
16144 }
16145
c4a1d9e4 16146 error->pipe[i].source = I915_READ(PIPESRC(i));
f301b1e1 16147
3abfce77 16148 if (HAS_GMCH_DISPLAY(dev))
f301b1e1 16149 error->pipe[i].stat = I915_READ(PIPESTAT(i));
63b66e5b
CW
16150 }
16151
16152 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
16153 if (HAS_DDI(dev_priv->dev))
16154 error->num_transcoders++; /* Account for eDP. */
16155
16156 for (i = 0; i < error->num_transcoders; i++) {
16157 enum transcoder cpu_transcoder = transcoders[i];
16158
ddf9c536 16159 error->transcoder[i].power_domain_on =
f458ebbc 16160 __intel_display_power_is_enabled(dev_priv,
38cc1daf 16161 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
ddf9c536 16162 if (!error->transcoder[i].power_domain_on)
9d1cb914
PZ
16163 continue;
16164
63b66e5b
CW
16165 error->transcoder[i].cpu_transcoder = cpu_transcoder;
16166
16167 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
16168 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
16169 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
16170 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
16171 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
16172 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
16173 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
c4a1d9e4
CW
16174 }
16175
16176 return error;
16177}
16178
edc3d884
MK
16179#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
16180
c4a1d9e4 16181void
edc3d884 16182intel_display_print_error_state(struct drm_i915_error_state_buf *m,
c4a1d9e4
CW
16183 struct drm_device *dev,
16184 struct intel_display_error_state *error)
16185{
055e393f 16186 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4
CW
16187 int i;
16188
63b66e5b
CW
16189 if (!error)
16190 return;
16191
edc3d884 16192 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
190be112 16193 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
edc3d884 16194 err_printf(m, "PWR_WELL_CTL2: %08x\n",
ff57f1b0 16195 error->power_well_driver);
055e393f 16196 for_each_pipe(dev_priv, i) {
edc3d884 16197 err_printf(m, "Pipe [%d]:\n", i);
ddf9c536 16198 err_printf(m, " Power: %s\n",
87ad3212 16199 onoff(error->pipe[i].power_domain_on));
edc3d884 16200 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
f301b1e1 16201 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
edc3d884
MK
16202
16203 err_printf(m, "Plane [%d]:\n", i);
16204 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
16205 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
80ca378b 16206 if (INTEL_INFO(dev)->gen <= 3) {
edc3d884
MK
16207 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
16208 err_printf(m, " POS: %08x\n", error->plane[i].pos);
80ca378b 16209 }
4b71a570 16210 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
edc3d884 16211 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
c4a1d9e4 16212 if (INTEL_INFO(dev)->gen >= 4) {
edc3d884
MK
16213 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
16214 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
c4a1d9e4
CW
16215 }
16216
edc3d884
MK
16217 err_printf(m, "Cursor [%d]:\n", i);
16218 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
16219 err_printf(m, " POS: %08x\n", error->cursor[i].position);
16220 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
c4a1d9e4 16221 }
63b66e5b
CW
16222
16223 for (i = 0; i < error->num_transcoders; i++) {
1cf84bb6 16224 err_printf(m, "CPU transcoder: %c\n",
63b66e5b 16225 transcoder_name(error->transcoder[i].cpu_transcoder));
ddf9c536 16226 err_printf(m, " Power: %s\n",
87ad3212 16227 onoff(error->transcoder[i].power_domain_on));
63b66e5b
CW
16228 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
16229 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
16230 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
16231 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
16232 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
16233 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
16234 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
16235 }
c4a1d9e4 16236}