]> git.proxmox.com Git - qemu.git/blame - exec.c
Merge remote-tracking branch 'kraxel/usb.55' into staging
[qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
67b915a5 19#include "config.h"
d5a8f07c
FB
20#ifdef _WIN32
21#include <windows.h>
22#else
a98d49b1 23#include <sys/types.h>
d5a8f07c
FB
24#include <sys/mman.h>
25#endif
54936004 26
055403b2 27#include "qemu-common.h"
6180a181 28#include "cpu.h"
b67d9a52 29#include "tcg.h"
b3c7724c 30#include "hw/hw.h"
cc9e98cb 31#include "hw/qdev.h"
74576198 32#include "osdep.h"
7ba1e619 33#include "kvm.h"
432d268c 34#include "hw/xen.h"
29e922b6 35#include "qemu-timer.h"
62152b8a
AK
36#include "memory.h"
37#include "exec-memory.h"
53a5960a
PB
38#if defined(CONFIG_USER_ONLY)
39#include <qemu.h>
f01576f1
JL
40#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
41#include <sys/param.h>
42#if __FreeBSD_version >= 700104
43#define HAVE_KINFO_GETVMMAP
44#define sigqueue sigqueue_freebsd /* avoid redefinition */
45#include <sys/time.h>
46#include <sys/proc.h>
47#include <machine/profile.h>
48#define _KERNEL
49#include <sys/user.h>
50#undef _KERNEL
51#undef sigqueue
52#include <libutil.h>
53#endif
54#endif
432d268c
JN
55#else /* !CONFIG_USER_ONLY */
56#include "xen-mapcache.h"
6506e4f9 57#include "trace.h"
53a5960a 58#endif
54936004 59
0cac1b66
BS
60#include "cputlb.h"
61
67d95c15
AK
62#define WANT_EXEC_OBSOLETE
63#include "exec-obsolete.h"
64
fd6ce8f6 65//#define DEBUG_TB_INVALIDATE
66e85a21 66//#define DEBUG_FLUSH
67d3b957 67//#define DEBUG_UNASSIGNED
fd6ce8f6
FB
68
69/* make various TB consistency checks */
5fafdf24 70//#define DEBUG_TB_CHECK
fd6ce8f6 71
1196be37 72//#define DEBUG_IOPORT
db7b5426 73//#define DEBUG_SUBPAGE
1196be37 74
99773bd4
PB
75#if !defined(CONFIG_USER_ONLY)
76/* TB consistency checks only implemented for usermode emulation. */
77#undef DEBUG_TB_CHECK
78#endif
79
9fa3e853
FB
80#define SMC_BITMAP_USE_THRESHOLD 10
81
bdaf78e0 82static TranslationBlock *tbs;
24ab68ac 83static int code_gen_max_blocks;
9fa3e853 84TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
bdaf78e0 85static int nb_tbs;
eb51d102 86/* any access to the tbs or the page table must use this lock */
c227f099 87spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6 88
141ac468
BS
89#if defined(__arm__) || defined(__sparc_v9__)
90/* The prologue must be reachable with a direct jump. ARM and Sparc64
91 have limited branch ranges (possibly also PPC) so place it in a
d03d860b
BS
92 section close to code segment. */
93#define code_gen_section \
94 __attribute__((__section__(".gen_code"))) \
95 __attribute__((aligned (32)))
6840981d 96#elif defined(_WIN32) && !defined(_WIN64)
f8e2af11
SW
97#define code_gen_section \
98 __attribute__((aligned (16)))
d03d860b
BS
99#else
100#define code_gen_section \
101 __attribute__((aligned (32)))
102#endif
103
104uint8_t code_gen_prologue[1024] code_gen_section;
bdaf78e0
BS
105static uint8_t *code_gen_buffer;
106static unsigned long code_gen_buffer_size;
26a5f13b 107/* threshold to flush the translated code buffer */
bdaf78e0 108static unsigned long code_gen_buffer_max_size;
24ab68ac 109static uint8_t *code_gen_ptr;
fd6ce8f6 110
e2eef170 111#if !defined(CONFIG_USER_ONLY)
9fa3e853 112int phys_ram_fd;
74576198 113static int in_migration;
94a6b54f 114
85d59fef 115RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
116
117static MemoryRegion *system_memory;
309cb471 118static MemoryRegion *system_io;
62152b8a 119
0e0df1e2 120MemoryRegion io_mem_ram, io_mem_rom, io_mem_unassigned, io_mem_notdirty;
de712f94 121static MemoryRegion io_mem_subpage_ram;
0e0df1e2 122
e2eef170 123#endif
9fa3e853 124
9349b4f9 125CPUArchState *first_cpu;
6a00d601
FB
126/* current CPU in the current thread. It is only valid inside
127 cpu_exec() */
9349b4f9 128DEFINE_TLS(CPUArchState *,cpu_single_env);
2e70f6ef 129/* 0 = Do not count executed instructions.
bf20dc07 130 1 = Precise instruction counting.
2e70f6ef
PB
131 2 = Adaptive rate instruction counting. */
132int use_icount = 0;
6a00d601 133
54936004 134typedef struct PageDesc {
92e873b9 135 /* list of TBs intersecting this ram page */
fd6ce8f6 136 TranslationBlock *first_tb;
9fa3e853
FB
137 /* in order to optimize self modifying code, we count the number
138 of lookups we do to a given page to use a bitmap */
139 unsigned int code_write_count;
140 uint8_t *code_bitmap;
141#if defined(CONFIG_USER_ONLY)
142 unsigned long flags;
143#endif
54936004
FB
144} PageDesc;
145
41c1b1c9 146/* In system mode we want L1_MAP to be based on ram offsets,
5cd2c5b6
RH
147 while in user mode we want it to be based on virtual addresses. */
148#if !defined(CONFIG_USER_ONLY)
41c1b1c9
PB
149#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
150# define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
151#else
5cd2c5b6 152# define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
41c1b1c9 153#endif
bedb69ea 154#else
5cd2c5b6 155# define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
bedb69ea 156#endif
54936004 157
5cd2c5b6
RH
158/* Size of the L2 (and L3, etc) page tables. */
159#define L2_BITS 10
54936004
FB
160#define L2_SIZE (1 << L2_BITS)
161
3eef53df
AK
162#define P_L2_LEVELS \
163 (((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / L2_BITS) + 1)
164
5cd2c5b6 165/* The bits remaining after N lower levels of page tables. */
5cd2c5b6
RH
166#define V_L1_BITS_REM \
167 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
168
5cd2c5b6
RH
169#if V_L1_BITS_REM < 4
170#define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
171#else
172#define V_L1_BITS V_L1_BITS_REM
173#endif
174
5cd2c5b6
RH
175#define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
176
5cd2c5b6
RH
177#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
178
c6d50674
SW
179uintptr_t qemu_real_host_page_size;
180uintptr_t qemu_host_page_size;
181uintptr_t qemu_host_page_mask;
54936004 182
5cd2c5b6
RH
183/* This is a multi-level map on the virtual address space.
184 The bottom level has pointers to PageDesc. */
185static void *l1_map[V_L1_SIZE];
54936004 186
e2eef170 187#if !defined(CONFIG_USER_ONLY)
4346ae3e
AK
188typedef struct PhysPageEntry PhysPageEntry;
189
5312bd8b
AK
190static MemoryRegionSection *phys_sections;
191static unsigned phys_sections_nb, phys_sections_nb_alloc;
192static uint16_t phys_section_unassigned;
aa102231
AK
193static uint16_t phys_section_notdirty;
194static uint16_t phys_section_rom;
195static uint16_t phys_section_watch;
5312bd8b 196
4346ae3e 197struct PhysPageEntry {
07f07b31
AK
198 uint16_t is_leaf : 1;
199 /* index into phys_sections (is_leaf) or phys_map_nodes (!is_leaf) */
200 uint16_t ptr : 15;
4346ae3e
AK
201};
202
d6f2ea22
AK
203/* Simple allocator for PhysPageEntry nodes */
204static PhysPageEntry (*phys_map_nodes)[L2_SIZE];
205static unsigned phys_map_nodes_nb, phys_map_nodes_nb_alloc;
206
07f07b31 207#define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
d6f2ea22 208
5cd2c5b6 209/* This is a multi-level map on the physical address space.
06ef3525 210 The bottom level has pointers to MemoryRegionSections. */
07f07b31 211static PhysPageEntry phys_map = { .ptr = PHYS_MAP_NODE_NIL, .is_leaf = 0 };
6d9a1304 212
e2eef170 213static void io_mem_init(void);
62152b8a 214static void memory_map_init(void);
e2eef170 215
1ec9b909 216static MemoryRegion io_mem_watch;
6658ffb8 217#endif
33417e70 218
e3db7226 219/* statistics */
e3db7226
FB
220static int tb_flush_count;
221static int tb_phys_invalidate_count;
222
7cb69cae
FB
223#ifdef _WIN32
224static void map_exec(void *addr, long size)
225{
226 DWORD old_protect;
227 VirtualProtect(addr, size,
228 PAGE_EXECUTE_READWRITE, &old_protect);
229
230}
231#else
232static void map_exec(void *addr, long size)
233{
4369415f 234 unsigned long start, end, page_size;
7cb69cae 235
4369415f 236 page_size = getpagesize();
7cb69cae 237 start = (unsigned long)addr;
4369415f 238 start &= ~(page_size - 1);
7cb69cae
FB
239
240 end = (unsigned long)addr + size;
4369415f
FB
241 end += page_size - 1;
242 end &= ~(page_size - 1);
7cb69cae
FB
243
244 mprotect((void *)start, end - start,
245 PROT_READ | PROT_WRITE | PROT_EXEC);
246}
247#endif
248
b346ff46 249static void page_init(void)
54936004 250{
83fb7adf 251 /* NOTE: we can always suppose that qemu_host_page_size >=
54936004 252 TARGET_PAGE_SIZE */
c2b48b69
AL
253#ifdef _WIN32
254 {
255 SYSTEM_INFO system_info;
256
257 GetSystemInfo(&system_info);
258 qemu_real_host_page_size = system_info.dwPageSize;
259 }
260#else
261 qemu_real_host_page_size = getpagesize();
262#endif
83fb7adf
FB
263 if (qemu_host_page_size == 0)
264 qemu_host_page_size = qemu_real_host_page_size;
265 if (qemu_host_page_size < TARGET_PAGE_SIZE)
266 qemu_host_page_size = TARGET_PAGE_SIZE;
83fb7adf 267 qemu_host_page_mask = ~(qemu_host_page_size - 1);
50a9569b 268
2e9a5713 269#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
50a9569b 270 {
f01576f1
JL
271#ifdef HAVE_KINFO_GETVMMAP
272 struct kinfo_vmentry *freep;
273 int i, cnt;
274
275 freep = kinfo_getvmmap(getpid(), &cnt);
276 if (freep) {
277 mmap_lock();
278 for (i = 0; i < cnt; i++) {
279 unsigned long startaddr, endaddr;
280
281 startaddr = freep[i].kve_start;
282 endaddr = freep[i].kve_end;
283 if (h2g_valid(startaddr)) {
284 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
285
286 if (h2g_valid(endaddr)) {
287 endaddr = h2g(endaddr);
fd436907 288 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
f01576f1
JL
289 } else {
290#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
291 endaddr = ~0ul;
fd436907 292 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
f01576f1
JL
293#endif
294 }
295 }
296 }
297 free(freep);
298 mmap_unlock();
299 }
300#else
50a9569b 301 FILE *f;
50a9569b 302
0776590d 303 last_brk = (unsigned long)sbrk(0);
5cd2c5b6 304
fd436907 305 f = fopen("/compat/linux/proc/self/maps", "r");
50a9569b 306 if (f) {
5cd2c5b6
RH
307 mmap_lock();
308
50a9569b 309 do {
5cd2c5b6
RH
310 unsigned long startaddr, endaddr;
311 int n;
312
313 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
314
315 if (n == 2 && h2g_valid(startaddr)) {
316 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
317
318 if (h2g_valid(endaddr)) {
319 endaddr = h2g(endaddr);
320 } else {
321 endaddr = ~0ul;
322 }
323 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
50a9569b
AZ
324 }
325 } while (!feof(f));
5cd2c5b6 326
50a9569b 327 fclose(f);
5cd2c5b6 328 mmap_unlock();
50a9569b 329 }
f01576f1 330#endif
50a9569b
AZ
331 }
332#endif
54936004
FB
333}
334
41c1b1c9 335static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
54936004 336{
41c1b1c9
PB
337 PageDesc *pd;
338 void **lp;
339 int i;
340
5cd2c5b6 341#if defined(CONFIG_USER_ONLY)
7267c094 342 /* We can't use g_malloc because it may recurse into a locked mutex. */
5cd2c5b6
RH
343# define ALLOC(P, SIZE) \
344 do { \
345 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
346 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
5cd2c5b6
RH
347 } while (0)
348#else
349# define ALLOC(P, SIZE) \
7267c094 350 do { P = g_malloc0(SIZE); } while (0)
17e2377a 351#endif
434929bf 352
5cd2c5b6
RH
353 /* Level 1. Always allocated. */
354 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
355
356 /* Level 2..N-1. */
357 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
358 void **p = *lp;
359
360 if (p == NULL) {
361 if (!alloc) {
362 return NULL;
363 }
364 ALLOC(p, sizeof(void *) * L2_SIZE);
365 *lp = p;
17e2377a 366 }
5cd2c5b6
RH
367
368 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
369 }
370
371 pd = *lp;
372 if (pd == NULL) {
373 if (!alloc) {
374 return NULL;
375 }
376 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
377 *lp = pd;
54936004 378 }
5cd2c5b6
RH
379
380#undef ALLOC
5cd2c5b6
RH
381
382 return pd + (index & (L2_SIZE - 1));
54936004
FB
383}
384
41c1b1c9 385static inline PageDesc *page_find(tb_page_addr_t index)
54936004 386{
5cd2c5b6 387 return page_find_alloc(index, 0);
fd6ce8f6
FB
388}
389
6d9a1304 390#if !defined(CONFIG_USER_ONLY)
d6f2ea22 391
f7bf5461 392static void phys_map_node_reserve(unsigned nodes)
d6f2ea22 393{
f7bf5461 394 if (phys_map_nodes_nb + nodes > phys_map_nodes_nb_alloc) {
d6f2ea22
AK
395 typedef PhysPageEntry Node[L2_SIZE];
396 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc * 2, 16);
f7bf5461
AK
397 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc,
398 phys_map_nodes_nb + nodes);
d6f2ea22
AK
399 phys_map_nodes = g_renew(Node, phys_map_nodes,
400 phys_map_nodes_nb_alloc);
401 }
f7bf5461
AK
402}
403
404static uint16_t phys_map_node_alloc(void)
405{
406 unsigned i;
407 uint16_t ret;
408
409 ret = phys_map_nodes_nb++;
410 assert(ret != PHYS_MAP_NODE_NIL);
411 assert(ret != phys_map_nodes_nb_alloc);
d6f2ea22 412 for (i = 0; i < L2_SIZE; ++i) {
07f07b31 413 phys_map_nodes[ret][i].is_leaf = 0;
c19e8800 414 phys_map_nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
d6f2ea22 415 }
f7bf5461 416 return ret;
d6f2ea22
AK
417}
418
419static void phys_map_nodes_reset(void)
420{
421 phys_map_nodes_nb = 0;
422}
423
92e873b9 424
2999097b
AK
425static void phys_page_set_level(PhysPageEntry *lp, target_phys_addr_t *index,
426 target_phys_addr_t *nb, uint16_t leaf,
427 int level)
f7bf5461
AK
428{
429 PhysPageEntry *p;
430 int i;
07f07b31 431 target_phys_addr_t step = (target_phys_addr_t)1 << (level * L2_BITS);
108c49b8 432
07f07b31 433 if (!lp->is_leaf && lp->ptr == PHYS_MAP_NODE_NIL) {
c19e8800
AK
434 lp->ptr = phys_map_node_alloc();
435 p = phys_map_nodes[lp->ptr];
f7bf5461
AK
436 if (level == 0) {
437 for (i = 0; i < L2_SIZE; i++) {
07f07b31 438 p[i].is_leaf = 1;
c19e8800 439 p[i].ptr = phys_section_unassigned;
4346ae3e 440 }
67c4d23c 441 }
f7bf5461 442 } else {
c19e8800 443 p = phys_map_nodes[lp->ptr];
92e873b9 444 }
2999097b 445 lp = &p[(*index >> (level * L2_BITS)) & (L2_SIZE - 1)];
f7bf5461 446
2999097b 447 while (*nb && lp < &p[L2_SIZE]) {
07f07b31
AK
448 if ((*index & (step - 1)) == 0 && *nb >= step) {
449 lp->is_leaf = true;
c19e8800 450 lp->ptr = leaf;
07f07b31
AK
451 *index += step;
452 *nb -= step;
2999097b
AK
453 } else {
454 phys_page_set_level(lp, index, nb, leaf, level - 1);
455 }
456 ++lp;
f7bf5461
AK
457 }
458}
459
2999097b
AK
460static void phys_page_set(target_phys_addr_t index, target_phys_addr_t nb,
461 uint16_t leaf)
f7bf5461 462{
2999097b 463 /* Wildly overreserve - it doesn't matter much. */
07f07b31 464 phys_map_node_reserve(3 * P_L2_LEVELS);
5cd2c5b6 465
2999097b 466 phys_page_set_level(&phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
467}
468
0cac1b66 469MemoryRegionSection *phys_page_find(target_phys_addr_t index)
92e873b9 470{
31ab2b4a
AK
471 PhysPageEntry lp = phys_map;
472 PhysPageEntry *p;
473 int i;
31ab2b4a 474 uint16_t s_index = phys_section_unassigned;
f1f6e3b8 475
07f07b31 476 for (i = P_L2_LEVELS - 1; i >= 0 && !lp.is_leaf; i--) {
c19e8800 477 if (lp.ptr == PHYS_MAP_NODE_NIL) {
31ab2b4a
AK
478 goto not_found;
479 }
c19e8800 480 p = phys_map_nodes[lp.ptr];
31ab2b4a 481 lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)];
5312bd8b 482 }
31ab2b4a 483
c19e8800 484 s_index = lp.ptr;
31ab2b4a 485not_found:
f3705d53
AK
486 return &phys_sections[s_index];
487}
488
e5548617
BS
489bool memory_region_is_unassigned(MemoryRegion *mr)
490{
491 return mr != &io_mem_ram && mr != &io_mem_rom
492 && mr != &io_mem_notdirty && !mr->rom_device
493 && mr != &io_mem_watch;
494}
495
c8a706fe
PB
496#define mmap_lock() do { } while(0)
497#define mmap_unlock() do { } while(0)
9fa3e853 498#endif
fd6ce8f6 499
4369415f
FB
500#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
501
502#if defined(CONFIG_USER_ONLY)
ccbb4d44 503/* Currently it is not recommended to allocate big chunks of data in
4369415f
FB
504 user mode. It will change when a dedicated libc will be used */
505#define USE_STATIC_CODE_GEN_BUFFER
506#endif
507
508#ifdef USE_STATIC_CODE_GEN_BUFFER
ebf50fb3
AJ
509static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
510 __attribute__((aligned (CODE_GEN_ALIGN)));
4369415f
FB
511#endif
512
8fcd3692 513static void code_gen_alloc(unsigned long tb_size)
26a5f13b 514{
4369415f
FB
515#ifdef USE_STATIC_CODE_GEN_BUFFER
516 code_gen_buffer = static_code_gen_buffer;
517 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
518 map_exec(code_gen_buffer, code_gen_buffer_size);
519#else
26a5f13b
FB
520 code_gen_buffer_size = tb_size;
521 if (code_gen_buffer_size == 0) {
4369415f 522#if defined(CONFIG_USER_ONLY)
4369415f
FB
523 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
524#else
ccbb4d44 525 /* XXX: needs adjustments */
94a6b54f 526 code_gen_buffer_size = (unsigned long)(ram_size / 4);
4369415f 527#endif
26a5f13b
FB
528 }
529 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
530 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
531 /* The code gen buffer location may have constraints depending on
532 the host cpu and OS */
533#if defined(__linux__)
534 {
535 int flags;
141ac468
BS
536 void *start = NULL;
537
26a5f13b
FB
538 flags = MAP_PRIVATE | MAP_ANONYMOUS;
539#if defined(__x86_64__)
540 flags |= MAP_32BIT;
541 /* Cannot map more than that */
542 if (code_gen_buffer_size > (800 * 1024 * 1024))
543 code_gen_buffer_size = (800 * 1024 * 1024);
141ac468
BS
544#elif defined(__sparc_v9__)
545 // Map the buffer below 2G, so we can use direct calls and branches
546 flags |= MAP_FIXED;
547 start = (void *) 0x60000000UL;
548 if (code_gen_buffer_size > (512 * 1024 * 1024))
549 code_gen_buffer_size = (512 * 1024 * 1024);
1cb0661e 550#elif defined(__arm__)
5c84bd90 551 /* Keep the buffer no bigger than 16MB to branch between blocks */
1cb0661e
AZ
552 if (code_gen_buffer_size > 16 * 1024 * 1024)
553 code_gen_buffer_size = 16 * 1024 * 1024;
eba0b893
RH
554#elif defined(__s390x__)
555 /* Map the buffer so that we can use direct calls and branches. */
556 /* We have a +- 4GB range on the branches; leave some slop. */
557 if (code_gen_buffer_size > (3ul * 1024 * 1024 * 1024)) {
558 code_gen_buffer_size = 3ul * 1024 * 1024 * 1024;
559 }
560 start = (void *)0x90000000UL;
26a5f13b 561#endif
141ac468
BS
562 code_gen_buffer = mmap(start, code_gen_buffer_size,
563 PROT_WRITE | PROT_READ | PROT_EXEC,
26a5f13b
FB
564 flags, -1, 0);
565 if (code_gen_buffer == MAP_FAILED) {
566 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
567 exit(1);
568 }
569 }
cbb608a5 570#elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
9f4b09a4
TN
571 || defined(__DragonFly__) || defined(__OpenBSD__) \
572 || defined(__NetBSD__)
06e67a82
AL
573 {
574 int flags;
575 void *addr = NULL;
576 flags = MAP_PRIVATE | MAP_ANONYMOUS;
577#if defined(__x86_64__)
578 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
579 * 0x40000000 is free */
580 flags |= MAP_FIXED;
581 addr = (void *)0x40000000;
582 /* Cannot map more than that */
583 if (code_gen_buffer_size > (800 * 1024 * 1024))
584 code_gen_buffer_size = (800 * 1024 * 1024);
4cd31ad2
BS
585#elif defined(__sparc_v9__)
586 // Map the buffer below 2G, so we can use direct calls and branches
587 flags |= MAP_FIXED;
588 addr = (void *) 0x60000000UL;
589 if (code_gen_buffer_size > (512 * 1024 * 1024)) {
590 code_gen_buffer_size = (512 * 1024 * 1024);
591 }
06e67a82
AL
592#endif
593 code_gen_buffer = mmap(addr, code_gen_buffer_size,
594 PROT_WRITE | PROT_READ | PROT_EXEC,
595 flags, -1, 0);
596 if (code_gen_buffer == MAP_FAILED) {
597 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
598 exit(1);
599 }
600 }
26a5f13b 601#else
7267c094 602 code_gen_buffer = g_malloc(code_gen_buffer_size);
26a5f13b
FB
603 map_exec(code_gen_buffer, code_gen_buffer_size);
604#endif
4369415f 605#endif /* !USE_STATIC_CODE_GEN_BUFFER */
26a5f13b 606 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
a884da8a
PM
607 code_gen_buffer_max_size = code_gen_buffer_size -
608 (TCG_MAX_OP_SIZE * OPC_BUF_SIZE);
26a5f13b 609 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
7267c094 610 tbs = g_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
26a5f13b
FB
611}
612
613/* Must be called before using the QEMU cpus. 'tb_size' is the size
614 (in bytes) allocated to the translation buffer. Zero means default
615 size. */
d5ab9713 616void tcg_exec_init(unsigned long tb_size)
26a5f13b 617{
26a5f13b
FB
618 cpu_gen_init();
619 code_gen_alloc(tb_size);
620 code_gen_ptr = code_gen_buffer;
813da627 621 tcg_register_jit(code_gen_buffer, code_gen_buffer_size);
4369415f 622 page_init();
9002ec79
RH
623#if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
624 /* There's no guest base to take into account, so go ahead and
625 initialize the prologue now. */
626 tcg_prologue_init(&tcg_ctx);
627#endif
26a5f13b
FB
628}
629
d5ab9713
JK
630bool tcg_enabled(void)
631{
632 return code_gen_buffer != NULL;
633}
634
635void cpu_exec_init_all(void)
636{
637#if !defined(CONFIG_USER_ONLY)
638 memory_map_init();
639 io_mem_init();
640#endif
641}
642
9656f324
PB
643#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
644
e59fb374 645static int cpu_common_post_load(void *opaque, int version_id)
e7f4eff7 646{
9349b4f9 647 CPUArchState *env = opaque;
9656f324 648
3098dba0
AJ
649 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
650 version_id is increased. */
651 env->interrupt_request &= ~0x01;
9656f324
PB
652 tlb_flush(env, 1);
653
654 return 0;
655}
e7f4eff7
JQ
656
657static const VMStateDescription vmstate_cpu_common = {
658 .name = "cpu_common",
659 .version_id = 1,
660 .minimum_version_id = 1,
661 .minimum_version_id_old = 1,
e7f4eff7
JQ
662 .post_load = cpu_common_post_load,
663 .fields = (VMStateField []) {
9349b4f9
AF
664 VMSTATE_UINT32(halted, CPUArchState),
665 VMSTATE_UINT32(interrupt_request, CPUArchState),
e7f4eff7
JQ
666 VMSTATE_END_OF_LIST()
667 }
668};
9656f324
PB
669#endif
670
9349b4f9 671CPUArchState *qemu_get_cpu(int cpu)
950f1472 672{
9349b4f9 673 CPUArchState *env = first_cpu;
950f1472
GC
674
675 while (env) {
676 if (env->cpu_index == cpu)
677 break;
678 env = env->next_cpu;
679 }
680
681 return env;
682}
683
9349b4f9 684void cpu_exec_init(CPUArchState *env)
fd6ce8f6 685{
9349b4f9 686 CPUArchState **penv;
6a00d601
FB
687 int cpu_index;
688
c2764719
PB
689#if defined(CONFIG_USER_ONLY)
690 cpu_list_lock();
691#endif
6a00d601
FB
692 env->next_cpu = NULL;
693 penv = &first_cpu;
694 cpu_index = 0;
695 while (*penv != NULL) {
1e9fa730 696 penv = &(*penv)->next_cpu;
6a00d601
FB
697 cpu_index++;
698 }
699 env->cpu_index = cpu_index;
268a362c 700 env->numa_node = 0;
72cf2d4f
BS
701 QTAILQ_INIT(&env->breakpoints);
702 QTAILQ_INIT(&env->watchpoints);
dc7a09cf
JK
703#ifndef CONFIG_USER_ONLY
704 env->thread_id = qemu_get_thread_id();
705#endif
6a00d601 706 *penv = env;
c2764719
PB
707#if defined(CONFIG_USER_ONLY)
708 cpu_list_unlock();
709#endif
b3c7724c 710#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
0be71e32
AW
711 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, env);
712 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
b3c7724c
PB
713 cpu_save, cpu_load, env);
714#endif
fd6ce8f6
FB
715}
716
d1a1eb74
TG
717/* Allocate a new translation block. Flush the translation buffer if
718 too many translation blocks or too much generated code. */
719static TranslationBlock *tb_alloc(target_ulong pc)
720{
721 TranslationBlock *tb;
722
723 if (nb_tbs >= code_gen_max_blocks ||
724 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
725 return NULL;
726 tb = &tbs[nb_tbs++];
727 tb->pc = pc;
728 tb->cflags = 0;
729 return tb;
730}
731
732void tb_free(TranslationBlock *tb)
733{
734 /* In practice this is mostly used for single use temporary TB
735 Ignore the hard cases and just back up if this TB happens to
736 be the last one generated. */
737 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
738 code_gen_ptr = tb->tc_ptr;
739 nb_tbs--;
740 }
741}
742
9fa3e853
FB
743static inline void invalidate_page_bitmap(PageDesc *p)
744{
745 if (p->code_bitmap) {
7267c094 746 g_free(p->code_bitmap);
9fa3e853
FB
747 p->code_bitmap = NULL;
748 }
749 p->code_write_count = 0;
750}
751
5cd2c5b6
RH
752/* Set to NULL all the 'first_tb' fields in all PageDescs. */
753
754static void page_flush_tb_1 (int level, void **lp)
fd6ce8f6 755{
5cd2c5b6 756 int i;
fd6ce8f6 757
5cd2c5b6
RH
758 if (*lp == NULL) {
759 return;
760 }
761 if (level == 0) {
762 PageDesc *pd = *lp;
7296abac 763 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
764 pd[i].first_tb = NULL;
765 invalidate_page_bitmap(pd + i);
fd6ce8f6 766 }
5cd2c5b6
RH
767 } else {
768 void **pp = *lp;
7296abac 769 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
770 page_flush_tb_1 (level - 1, pp + i);
771 }
772 }
773}
774
775static void page_flush_tb(void)
776{
777 int i;
778 for (i = 0; i < V_L1_SIZE; i++) {
779 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
fd6ce8f6
FB
780 }
781}
782
783/* flush all the translation blocks */
d4e8164f 784/* XXX: tb_flush is currently not thread safe */
9349b4f9 785void tb_flush(CPUArchState *env1)
fd6ce8f6 786{
9349b4f9 787 CPUArchState *env;
0124311e 788#if defined(DEBUG_FLUSH)
ab3d1727
BS
789 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
790 (unsigned long)(code_gen_ptr - code_gen_buffer),
791 nb_tbs, nb_tbs > 0 ?
792 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
fd6ce8f6 793#endif
26a5f13b 794 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
a208e54a
PB
795 cpu_abort(env1, "Internal error: code buffer overflow\n");
796
fd6ce8f6 797 nb_tbs = 0;
3b46e624 798
6a00d601
FB
799 for(env = first_cpu; env != NULL; env = env->next_cpu) {
800 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
801 }
9fa3e853 802
8a8a608f 803 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
fd6ce8f6 804 page_flush_tb();
9fa3e853 805
fd6ce8f6 806 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
807 /* XXX: flush processor icache at this point if cache flush is
808 expensive */
e3db7226 809 tb_flush_count++;
fd6ce8f6
FB
810}
811
812#ifdef DEBUG_TB_CHECK
813
bc98a7ef 814static void tb_invalidate_check(target_ulong address)
fd6ce8f6
FB
815{
816 TranslationBlock *tb;
817 int i;
818 address &= TARGET_PAGE_MASK;
99773bd4
PB
819 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
820 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
821 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
822 address >= tb->pc + tb->size)) {
0bf9e31a
BS
823 printf("ERROR invalidate: address=" TARGET_FMT_lx
824 " PC=%08lx size=%04x\n",
99773bd4 825 address, (long)tb->pc, tb->size);
fd6ce8f6
FB
826 }
827 }
828 }
829}
830
831/* verify that all the pages have correct rights for code */
832static void tb_page_check(void)
833{
834 TranslationBlock *tb;
835 int i, flags1, flags2;
3b46e624 836
99773bd4
PB
837 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
838 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
839 flags1 = page_get_flags(tb->pc);
840 flags2 = page_get_flags(tb->pc + tb->size - 1);
841 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
842 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
99773bd4 843 (long)tb->pc, tb->size, flags1, flags2);
fd6ce8f6
FB
844 }
845 }
846 }
847}
848
849#endif
850
851/* invalidate one TB */
852static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
853 int next_offset)
854{
855 TranslationBlock *tb1;
856 for(;;) {
857 tb1 = *ptb;
858 if (tb1 == tb) {
859 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
860 break;
861 }
862 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
863 }
864}
865
9fa3e853
FB
866static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
867{
868 TranslationBlock *tb1;
869 unsigned int n1;
870
871 for(;;) {
872 tb1 = *ptb;
8efe0ca8
SW
873 n1 = (uintptr_t)tb1 & 3;
874 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
9fa3e853
FB
875 if (tb1 == tb) {
876 *ptb = tb1->page_next[n1];
877 break;
878 }
879 ptb = &tb1->page_next[n1];
880 }
881}
882
d4e8164f
FB
883static inline void tb_jmp_remove(TranslationBlock *tb, int n)
884{
885 TranslationBlock *tb1, **ptb;
886 unsigned int n1;
887
888 ptb = &tb->jmp_next[n];
889 tb1 = *ptb;
890 if (tb1) {
891 /* find tb(n) in circular list */
892 for(;;) {
893 tb1 = *ptb;
8efe0ca8
SW
894 n1 = (uintptr_t)tb1 & 3;
895 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
d4e8164f
FB
896 if (n1 == n && tb1 == tb)
897 break;
898 if (n1 == 2) {
899 ptb = &tb1->jmp_first;
900 } else {
901 ptb = &tb1->jmp_next[n1];
902 }
903 }
904 /* now we can suppress tb(n) from the list */
905 *ptb = tb->jmp_next[n];
906
907 tb->jmp_next[n] = NULL;
908 }
909}
910
911/* reset the jump entry 'n' of a TB so that it is not chained to
912 another TB */
913static inline void tb_reset_jump(TranslationBlock *tb, int n)
914{
8efe0ca8 915 tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n]));
d4e8164f
FB
916}
917
41c1b1c9 918void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
fd6ce8f6 919{
9349b4f9 920 CPUArchState *env;
8a40a180 921 PageDesc *p;
d4e8164f 922 unsigned int h, n1;
41c1b1c9 923 tb_page_addr_t phys_pc;
8a40a180 924 TranslationBlock *tb1, *tb2;
3b46e624 925
8a40a180
FB
926 /* remove the TB from the hash list */
927 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
928 h = tb_phys_hash_func(phys_pc);
5fafdf24 929 tb_remove(&tb_phys_hash[h], tb,
8a40a180
FB
930 offsetof(TranslationBlock, phys_hash_next));
931
932 /* remove the TB from the page list */
933 if (tb->page_addr[0] != page_addr) {
934 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
935 tb_page_remove(&p->first_tb, tb);
936 invalidate_page_bitmap(p);
937 }
938 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
939 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
940 tb_page_remove(&p->first_tb, tb);
941 invalidate_page_bitmap(p);
942 }
943
36bdbe54 944 tb_invalidated_flag = 1;
59817ccb 945
fd6ce8f6 946 /* remove the TB from the hash list */
8a40a180 947 h = tb_jmp_cache_hash_func(tb->pc);
6a00d601
FB
948 for(env = first_cpu; env != NULL; env = env->next_cpu) {
949 if (env->tb_jmp_cache[h] == tb)
950 env->tb_jmp_cache[h] = NULL;
951 }
d4e8164f
FB
952
953 /* suppress this TB from the two jump lists */
954 tb_jmp_remove(tb, 0);
955 tb_jmp_remove(tb, 1);
956
957 /* suppress any remaining jumps to this TB */
958 tb1 = tb->jmp_first;
959 for(;;) {
8efe0ca8 960 n1 = (uintptr_t)tb1 & 3;
d4e8164f
FB
961 if (n1 == 2)
962 break;
8efe0ca8 963 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
d4e8164f
FB
964 tb2 = tb1->jmp_next[n1];
965 tb_reset_jump(tb1, n1);
966 tb1->jmp_next[n1] = NULL;
967 tb1 = tb2;
968 }
8efe0ca8 969 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); /* fail safe */
9fa3e853 970
e3db7226 971 tb_phys_invalidate_count++;
9fa3e853
FB
972}
973
974static inline void set_bits(uint8_t *tab, int start, int len)
975{
976 int end, mask, end1;
977
978 end = start + len;
979 tab += start >> 3;
980 mask = 0xff << (start & 7);
981 if ((start & ~7) == (end & ~7)) {
982 if (start < end) {
983 mask &= ~(0xff << (end & 7));
984 *tab |= mask;
985 }
986 } else {
987 *tab++ |= mask;
988 start = (start + 8) & ~7;
989 end1 = end & ~7;
990 while (start < end1) {
991 *tab++ = 0xff;
992 start += 8;
993 }
994 if (start < end) {
995 mask = ~(0xff << (end & 7));
996 *tab |= mask;
997 }
998 }
999}
1000
1001static void build_page_bitmap(PageDesc *p)
1002{
1003 int n, tb_start, tb_end;
1004 TranslationBlock *tb;
3b46e624 1005
7267c094 1006 p->code_bitmap = g_malloc0(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
1007
1008 tb = p->first_tb;
1009 while (tb != NULL) {
8efe0ca8
SW
1010 n = (uintptr_t)tb & 3;
1011 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
9fa3e853
FB
1012 /* NOTE: this is subtle as a TB may span two physical pages */
1013 if (n == 0) {
1014 /* NOTE: tb_end may be after the end of the page, but
1015 it is not a problem */
1016 tb_start = tb->pc & ~TARGET_PAGE_MASK;
1017 tb_end = tb_start + tb->size;
1018 if (tb_end > TARGET_PAGE_SIZE)
1019 tb_end = TARGET_PAGE_SIZE;
1020 } else {
1021 tb_start = 0;
1022 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1023 }
1024 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
1025 tb = tb->page_next[n];
1026 }
1027}
1028
9349b4f9 1029TranslationBlock *tb_gen_code(CPUArchState *env,
2e70f6ef
PB
1030 target_ulong pc, target_ulong cs_base,
1031 int flags, int cflags)
d720b93d
FB
1032{
1033 TranslationBlock *tb;
1034 uint8_t *tc_ptr;
41c1b1c9
PB
1035 tb_page_addr_t phys_pc, phys_page2;
1036 target_ulong virt_page2;
d720b93d
FB
1037 int code_gen_size;
1038
41c1b1c9 1039 phys_pc = get_page_addr_code(env, pc);
c27004ec 1040 tb = tb_alloc(pc);
d720b93d
FB
1041 if (!tb) {
1042 /* flush must be done */
1043 tb_flush(env);
1044 /* cannot fail at this point */
c27004ec 1045 tb = tb_alloc(pc);
2e70f6ef
PB
1046 /* Don't forget to invalidate previous TB info. */
1047 tb_invalidated_flag = 1;
d720b93d
FB
1048 }
1049 tc_ptr = code_gen_ptr;
1050 tb->tc_ptr = tc_ptr;
1051 tb->cs_base = cs_base;
1052 tb->flags = flags;
1053 tb->cflags = cflags;
d07bde88 1054 cpu_gen_code(env, tb, &code_gen_size);
8efe0ca8
SW
1055 code_gen_ptr = (void *)(((uintptr_t)code_gen_ptr + code_gen_size +
1056 CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
3b46e624 1057
d720b93d 1058 /* check next page if needed */
c27004ec 1059 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
d720b93d 1060 phys_page2 = -1;
c27004ec 1061 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
41c1b1c9 1062 phys_page2 = get_page_addr_code(env, virt_page2);
d720b93d 1063 }
41c1b1c9 1064 tb_link_page(tb, phys_pc, phys_page2);
2e70f6ef 1065 return tb;
d720b93d 1066}
3b46e624 1067
77a8f1a5 1068/*
8e0fdce3
JK
1069 * Invalidate all TBs which intersect with the target physical address range
1070 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1071 * 'is_cpu_write_access' should be true if called from a real cpu write
1072 * access: the virtual CPU will exit the current TB if code is modified inside
1073 * this TB.
77a8f1a5
AG
1074 */
1075void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end,
1076 int is_cpu_write_access)
1077{
1078 while (start < end) {
1079 tb_invalidate_phys_page_range(start, end, is_cpu_write_access);
1080 start &= TARGET_PAGE_MASK;
1081 start += TARGET_PAGE_SIZE;
1082 }
1083}
1084
8e0fdce3
JK
1085/*
1086 * Invalidate all TBs which intersect with the target physical address range
1087 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1088 * 'is_cpu_write_access' should be true if called from a real cpu write
1089 * access: the virtual CPU will exit the current TB if code is modified inside
1090 * this TB.
1091 */
41c1b1c9 1092void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
d720b93d
FB
1093 int is_cpu_write_access)
1094{
6b917547 1095 TranslationBlock *tb, *tb_next, *saved_tb;
9349b4f9 1096 CPUArchState *env = cpu_single_env;
41c1b1c9 1097 tb_page_addr_t tb_start, tb_end;
6b917547
AL
1098 PageDesc *p;
1099 int n;
1100#ifdef TARGET_HAS_PRECISE_SMC
1101 int current_tb_not_found = is_cpu_write_access;
1102 TranslationBlock *current_tb = NULL;
1103 int current_tb_modified = 0;
1104 target_ulong current_pc = 0;
1105 target_ulong current_cs_base = 0;
1106 int current_flags = 0;
1107#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1108
1109 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1110 if (!p)
9fa3e853 1111 return;
5fafdf24 1112 if (!p->code_bitmap &&
d720b93d
FB
1113 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1114 is_cpu_write_access) {
9fa3e853
FB
1115 /* build code bitmap */
1116 build_page_bitmap(p);
1117 }
1118
1119 /* we remove all the TBs in the range [start, end[ */
1120 /* XXX: see if in some cases it could be faster to invalidate all the code */
1121 tb = p->first_tb;
1122 while (tb != NULL) {
8efe0ca8
SW
1123 n = (uintptr_t)tb & 3;
1124 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
9fa3e853
FB
1125 tb_next = tb->page_next[n];
1126 /* NOTE: this is subtle as a TB may span two physical pages */
1127 if (n == 0) {
1128 /* NOTE: tb_end may be after the end of the page, but
1129 it is not a problem */
1130 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1131 tb_end = tb_start + tb->size;
1132 } else {
1133 tb_start = tb->page_addr[1];
1134 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1135 }
1136 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
1137#ifdef TARGET_HAS_PRECISE_SMC
1138 if (current_tb_not_found) {
1139 current_tb_not_found = 0;
1140 current_tb = NULL;
2e70f6ef 1141 if (env->mem_io_pc) {
d720b93d 1142 /* now we have a real cpu fault */
2e70f6ef 1143 current_tb = tb_find_pc(env->mem_io_pc);
d720b93d
FB
1144 }
1145 }
1146 if (current_tb == tb &&
2e70f6ef 1147 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1148 /* If we are modifying the current TB, we must stop
1149 its execution. We could be more precise by checking
1150 that the modification is after the current PC, but it
1151 would require a specialized function to partially
1152 restore the CPU state */
3b46e624 1153
d720b93d 1154 current_tb_modified = 1;
618ba8e6 1155 cpu_restore_state(current_tb, env, env->mem_io_pc);
6b917547
AL
1156 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1157 &current_flags);
d720b93d
FB
1158 }
1159#endif /* TARGET_HAS_PRECISE_SMC */
6f5a9f7e
FB
1160 /* we need to do that to handle the case where a signal
1161 occurs while doing tb_phys_invalidate() */
1162 saved_tb = NULL;
1163 if (env) {
1164 saved_tb = env->current_tb;
1165 env->current_tb = NULL;
1166 }
9fa3e853 1167 tb_phys_invalidate(tb, -1);
6f5a9f7e
FB
1168 if (env) {
1169 env->current_tb = saved_tb;
1170 if (env->interrupt_request && env->current_tb)
1171 cpu_interrupt(env, env->interrupt_request);
1172 }
9fa3e853
FB
1173 }
1174 tb = tb_next;
1175 }
1176#if !defined(CONFIG_USER_ONLY)
1177 /* if no code remaining, no need to continue to use slow writes */
1178 if (!p->first_tb) {
1179 invalidate_page_bitmap(p);
d720b93d 1180 if (is_cpu_write_access) {
2e70f6ef 1181 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
d720b93d
FB
1182 }
1183 }
1184#endif
1185#ifdef TARGET_HAS_PRECISE_SMC
1186 if (current_tb_modified) {
1187 /* we generate a block containing just the instruction
1188 modifying the memory. It will ensure that it cannot modify
1189 itself */
ea1c1802 1190 env->current_tb = NULL;
2e70f6ef 1191 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d 1192 cpu_resume_from_signal(env, NULL);
9fa3e853 1193 }
fd6ce8f6 1194#endif
9fa3e853 1195}
fd6ce8f6 1196
9fa3e853 1197/* len must be <= 8 and start must be a multiple of len */
41c1b1c9 1198static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
9fa3e853
FB
1199{
1200 PageDesc *p;
1201 int offset, b;
59817ccb 1202#if 0
a4193c8a 1203 if (1) {
93fcfe39
AL
1204 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1205 cpu_single_env->mem_io_vaddr, len,
1206 cpu_single_env->eip,
8efe0ca8
SW
1207 cpu_single_env->eip +
1208 (intptr_t)cpu_single_env->segs[R_CS].base);
59817ccb
FB
1209 }
1210#endif
9fa3e853 1211 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1212 if (!p)
9fa3e853
FB
1213 return;
1214 if (p->code_bitmap) {
1215 offset = start & ~TARGET_PAGE_MASK;
1216 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1217 if (b & ((1 << len) - 1))
1218 goto do_invalidate;
1219 } else {
1220 do_invalidate:
d720b93d 1221 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
1222 }
1223}
1224
9fa3e853 1225#if !defined(CONFIG_SOFTMMU)
41c1b1c9 1226static void tb_invalidate_phys_page(tb_page_addr_t addr,
20503968 1227 uintptr_t pc, void *puc)
9fa3e853 1228{
6b917547 1229 TranslationBlock *tb;
9fa3e853 1230 PageDesc *p;
6b917547 1231 int n;
d720b93d 1232#ifdef TARGET_HAS_PRECISE_SMC
6b917547 1233 TranslationBlock *current_tb = NULL;
9349b4f9 1234 CPUArchState *env = cpu_single_env;
6b917547
AL
1235 int current_tb_modified = 0;
1236 target_ulong current_pc = 0;
1237 target_ulong current_cs_base = 0;
1238 int current_flags = 0;
d720b93d 1239#endif
9fa3e853
FB
1240
1241 addr &= TARGET_PAGE_MASK;
1242 p = page_find(addr >> TARGET_PAGE_BITS);
5fafdf24 1243 if (!p)
9fa3e853
FB
1244 return;
1245 tb = p->first_tb;
d720b93d
FB
1246#ifdef TARGET_HAS_PRECISE_SMC
1247 if (tb && pc != 0) {
1248 current_tb = tb_find_pc(pc);
1249 }
1250#endif
9fa3e853 1251 while (tb != NULL) {
8efe0ca8
SW
1252 n = (uintptr_t)tb & 3;
1253 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
d720b93d
FB
1254#ifdef TARGET_HAS_PRECISE_SMC
1255 if (current_tb == tb &&
2e70f6ef 1256 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1257 /* If we are modifying the current TB, we must stop
1258 its execution. We could be more precise by checking
1259 that the modification is after the current PC, but it
1260 would require a specialized function to partially
1261 restore the CPU state */
3b46e624 1262
d720b93d 1263 current_tb_modified = 1;
618ba8e6 1264 cpu_restore_state(current_tb, env, pc);
6b917547
AL
1265 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1266 &current_flags);
d720b93d
FB
1267 }
1268#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1269 tb_phys_invalidate(tb, addr);
1270 tb = tb->page_next[n];
1271 }
fd6ce8f6 1272 p->first_tb = NULL;
d720b93d
FB
1273#ifdef TARGET_HAS_PRECISE_SMC
1274 if (current_tb_modified) {
1275 /* we generate a block containing just the instruction
1276 modifying the memory. It will ensure that it cannot modify
1277 itself */
ea1c1802 1278 env->current_tb = NULL;
2e70f6ef 1279 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d
FB
1280 cpu_resume_from_signal(env, puc);
1281 }
1282#endif
fd6ce8f6 1283}
9fa3e853 1284#endif
fd6ce8f6
FB
1285
1286/* add the tb in the target page and protect it if necessary */
5fafdf24 1287static inline void tb_alloc_page(TranslationBlock *tb,
41c1b1c9 1288 unsigned int n, tb_page_addr_t page_addr)
fd6ce8f6
FB
1289{
1290 PageDesc *p;
4429ab44
JQ
1291#ifndef CONFIG_USER_ONLY
1292 bool page_already_protected;
1293#endif
9fa3e853
FB
1294
1295 tb->page_addr[n] = page_addr;
5cd2c5b6 1296 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
9fa3e853 1297 tb->page_next[n] = p->first_tb;
4429ab44
JQ
1298#ifndef CONFIG_USER_ONLY
1299 page_already_protected = p->first_tb != NULL;
1300#endif
8efe0ca8 1301 p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
9fa3e853 1302 invalidate_page_bitmap(p);
fd6ce8f6 1303
107db443 1304#if defined(TARGET_HAS_SMC) || 1
d720b93d 1305
9fa3e853 1306#if defined(CONFIG_USER_ONLY)
fd6ce8f6 1307 if (p->flags & PAGE_WRITE) {
53a5960a
PB
1308 target_ulong addr;
1309 PageDesc *p2;
9fa3e853
FB
1310 int prot;
1311
fd6ce8f6
FB
1312 /* force the host page as non writable (writes will have a
1313 page fault + mprotect overhead) */
53a5960a 1314 page_addr &= qemu_host_page_mask;
fd6ce8f6 1315 prot = 0;
53a5960a
PB
1316 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1317 addr += TARGET_PAGE_SIZE) {
1318
1319 p2 = page_find (addr >> TARGET_PAGE_BITS);
1320 if (!p2)
1321 continue;
1322 prot |= p2->flags;
1323 p2->flags &= ~PAGE_WRITE;
53a5960a 1324 }
5fafdf24 1325 mprotect(g2h(page_addr), qemu_host_page_size,
fd6ce8f6
FB
1326 (prot & PAGE_BITS) & ~PAGE_WRITE);
1327#ifdef DEBUG_TB_INVALIDATE
ab3d1727 1328 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
53a5960a 1329 page_addr);
fd6ce8f6 1330#endif
fd6ce8f6 1331 }
9fa3e853
FB
1332#else
1333 /* if some code is already present, then the pages are already
1334 protected. So we handle the case where only the first TB is
1335 allocated in a physical page */
4429ab44 1336 if (!page_already_protected) {
6a00d601 1337 tlb_protect_code(page_addr);
9fa3e853
FB
1338 }
1339#endif
d720b93d
FB
1340
1341#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
1342}
1343
9fa3e853
FB
1344/* add a new TB and link it to the physical page tables. phys_page2 is
1345 (-1) to indicate that only one page contains the TB. */
41c1b1c9
PB
1346void tb_link_page(TranslationBlock *tb,
1347 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
d4e8164f 1348{
9fa3e853
FB
1349 unsigned int h;
1350 TranslationBlock **ptb;
1351
c8a706fe
PB
1352 /* Grab the mmap lock to stop another thread invalidating this TB
1353 before we are done. */
1354 mmap_lock();
9fa3e853
FB
1355 /* add in the physical hash table */
1356 h = tb_phys_hash_func(phys_pc);
1357 ptb = &tb_phys_hash[h];
1358 tb->phys_hash_next = *ptb;
1359 *ptb = tb;
fd6ce8f6
FB
1360
1361 /* add in the page list */
9fa3e853
FB
1362 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1363 if (phys_page2 != -1)
1364 tb_alloc_page(tb, 1, phys_page2);
1365 else
1366 tb->page_addr[1] = -1;
9fa3e853 1367
8efe0ca8 1368 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2);
d4e8164f
FB
1369 tb->jmp_next[0] = NULL;
1370 tb->jmp_next[1] = NULL;
1371
1372 /* init original jump addresses */
1373 if (tb->tb_next_offset[0] != 0xffff)
1374 tb_reset_jump(tb, 0);
1375 if (tb->tb_next_offset[1] != 0xffff)
1376 tb_reset_jump(tb, 1);
8a40a180
FB
1377
1378#ifdef DEBUG_TB_CHECK
1379 tb_page_check();
1380#endif
c8a706fe 1381 mmap_unlock();
fd6ce8f6
FB
1382}
1383
9fa3e853
FB
1384/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1385 tb[1].tc_ptr. Return NULL if not found */
6375e09e 1386TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
fd6ce8f6 1387{
9fa3e853 1388 int m_min, m_max, m;
8efe0ca8 1389 uintptr_t v;
9fa3e853 1390 TranslationBlock *tb;
a513fe19
FB
1391
1392 if (nb_tbs <= 0)
1393 return NULL;
8efe0ca8
SW
1394 if (tc_ptr < (uintptr_t)code_gen_buffer ||
1395 tc_ptr >= (uintptr_t)code_gen_ptr) {
a513fe19 1396 return NULL;
8efe0ca8 1397 }
a513fe19
FB
1398 /* binary search (cf Knuth) */
1399 m_min = 0;
1400 m_max = nb_tbs - 1;
1401 while (m_min <= m_max) {
1402 m = (m_min + m_max) >> 1;
1403 tb = &tbs[m];
8efe0ca8 1404 v = (uintptr_t)tb->tc_ptr;
a513fe19
FB
1405 if (v == tc_ptr)
1406 return tb;
1407 else if (tc_ptr < v) {
1408 m_max = m - 1;
1409 } else {
1410 m_min = m + 1;
1411 }
5fafdf24 1412 }
a513fe19
FB
1413 return &tbs[m_max];
1414}
7501267e 1415
ea041c0e
FB
1416static void tb_reset_jump_recursive(TranslationBlock *tb);
1417
1418static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1419{
1420 TranslationBlock *tb1, *tb_next, **ptb;
1421 unsigned int n1;
1422
1423 tb1 = tb->jmp_next[n];
1424 if (tb1 != NULL) {
1425 /* find head of list */
1426 for(;;) {
8efe0ca8
SW
1427 n1 = (uintptr_t)tb1 & 3;
1428 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
ea041c0e
FB
1429 if (n1 == 2)
1430 break;
1431 tb1 = tb1->jmp_next[n1];
1432 }
1433 /* we are now sure now that tb jumps to tb1 */
1434 tb_next = tb1;
1435
1436 /* remove tb from the jmp_first list */
1437 ptb = &tb_next->jmp_first;
1438 for(;;) {
1439 tb1 = *ptb;
8efe0ca8
SW
1440 n1 = (uintptr_t)tb1 & 3;
1441 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
ea041c0e
FB
1442 if (n1 == n && tb1 == tb)
1443 break;
1444 ptb = &tb1->jmp_next[n1];
1445 }
1446 *ptb = tb->jmp_next[n];
1447 tb->jmp_next[n] = NULL;
3b46e624 1448
ea041c0e
FB
1449 /* suppress the jump to next tb in generated code */
1450 tb_reset_jump(tb, n);
1451
0124311e 1452 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1453 tb_reset_jump_recursive(tb_next);
1454 }
1455}
1456
1457static void tb_reset_jump_recursive(TranslationBlock *tb)
1458{
1459 tb_reset_jump_recursive2(tb, 0);
1460 tb_reset_jump_recursive2(tb, 1);
1461}
1462
1fddef4b 1463#if defined(TARGET_HAS_ICE)
94df27fd 1464#if defined(CONFIG_USER_ONLY)
9349b4f9 1465static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
94df27fd
PB
1466{
1467 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1468}
1469#else
1e7855a5 1470void tb_invalidate_phys_addr(target_phys_addr_t addr)
d720b93d 1471{
c227f099 1472 ram_addr_t ram_addr;
f3705d53 1473 MemoryRegionSection *section;
d720b93d 1474
06ef3525 1475 section = phys_page_find(addr >> TARGET_PAGE_BITS);
f3705d53
AK
1476 if (!(memory_region_is_ram(section->mr)
1477 || (section->mr->rom_device && section->mr->readable))) {
06ef3525
AK
1478 return;
1479 }
f3705d53 1480 ram_addr = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
cc5bea60 1481 + memory_region_section_addr(section, addr);
706cd4b5 1482 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
d720b93d 1483}
1e7855a5
MF
1484
1485static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
1486{
9d70c4b7
MF
1487 tb_invalidate_phys_addr(cpu_get_phys_page_debug(env, pc) |
1488 (pc & ~TARGET_PAGE_MASK));
1e7855a5 1489}
c27004ec 1490#endif
94df27fd 1491#endif /* TARGET_HAS_ICE */
d720b93d 1492
c527ee8f 1493#if defined(CONFIG_USER_ONLY)
9349b4f9 1494void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
c527ee8f
PB
1495
1496{
1497}
1498
9349b4f9 1499int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
c527ee8f
PB
1500 int flags, CPUWatchpoint **watchpoint)
1501{
1502 return -ENOSYS;
1503}
1504#else
6658ffb8 1505/* Add a watchpoint. */
9349b4f9 1506int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
a1d1bb31 1507 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1508{
b4051334 1509 target_ulong len_mask = ~(len - 1);
c0ce998e 1510 CPUWatchpoint *wp;
6658ffb8 1511
b4051334 1512 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
0dc23828
MF
1513 if ((len & (len - 1)) || (addr & ~len_mask) ||
1514 len == 0 || len > TARGET_PAGE_SIZE) {
b4051334
AL
1515 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1516 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1517 return -EINVAL;
1518 }
7267c094 1519 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
1520
1521 wp->vaddr = addr;
b4051334 1522 wp->len_mask = len_mask;
a1d1bb31
AL
1523 wp->flags = flags;
1524
2dc9f411 1525 /* keep all GDB-injected watchpoints in front */
c0ce998e 1526 if (flags & BP_GDB)
72cf2d4f 1527 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
c0ce998e 1528 else
72cf2d4f 1529 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
6658ffb8 1530
6658ffb8 1531 tlb_flush_page(env, addr);
a1d1bb31
AL
1532
1533 if (watchpoint)
1534 *watchpoint = wp;
1535 return 0;
6658ffb8
PB
1536}
1537
a1d1bb31 1538/* Remove a specific watchpoint. */
9349b4f9 1539int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
a1d1bb31 1540 int flags)
6658ffb8 1541{
b4051334 1542 target_ulong len_mask = ~(len - 1);
a1d1bb31 1543 CPUWatchpoint *wp;
6658ffb8 1544
72cf2d4f 1545 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334 1546 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 1547 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 1548 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
1549 return 0;
1550 }
1551 }
a1d1bb31 1552 return -ENOENT;
6658ffb8
PB
1553}
1554
a1d1bb31 1555/* Remove a specific watchpoint by reference. */
9349b4f9 1556void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
a1d1bb31 1557{
72cf2d4f 1558 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
7d03f82f 1559
a1d1bb31
AL
1560 tlb_flush_page(env, watchpoint->vaddr);
1561
7267c094 1562 g_free(watchpoint);
a1d1bb31
AL
1563}
1564
1565/* Remove all matching watchpoints. */
9349b4f9 1566void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
a1d1bb31 1567{
c0ce998e 1568 CPUWatchpoint *wp, *next;
a1d1bb31 1569
72cf2d4f 1570 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
a1d1bb31
AL
1571 if (wp->flags & mask)
1572 cpu_watchpoint_remove_by_ref(env, wp);
c0ce998e 1573 }
7d03f82f 1574}
c527ee8f 1575#endif
7d03f82f 1576
a1d1bb31 1577/* Add a breakpoint. */
9349b4f9 1578int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
a1d1bb31 1579 CPUBreakpoint **breakpoint)
4c3a88a2 1580{
1fddef4b 1581#if defined(TARGET_HAS_ICE)
c0ce998e 1582 CPUBreakpoint *bp;
3b46e624 1583
7267c094 1584 bp = g_malloc(sizeof(*bp));
4c3a88a2 1585
a1d1bb31
AL
1586 bp->pc = pc;
1587 bp->flags = flags;
1588
2dc9f411 1589 /* keep all GDB-injected breakpoints in front */
c0ce998e 1590 if (flags & BP_GDB)
72cf2d4f 1591 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
c0ce998e 1592 else
72cf2d4f 1593 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
3b46e624 1594
d720b93d 1595 breakpoint_invalidate(env, pc);
a1d1bb31
AL
1596
1597 if (breakpoint)
1598 *breakpoint = bp;
4c3a88a2
FB
1599 return 0;
1600#else
a1d1bb31 1601 return -ENOSYS;
4c3a88a2
FB
1602#endif
1603}
1604
a1d1bb31 1605/* Remove a specific breakpoint. */
9349b4f9 1606int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
a1d1bb31 1607{
7d03f82f 1608#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
1609 CPUBreakpoint *bp;
1610
72cf2d4f 1611 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
a1d1bb31
AL
1612 if (bp->pc == pc && bp->flags == flags) {
1613 cpu_breakpoint_remove_by_ref(env, bp);
1614 return 0;
1615 }
7d03f82f 1616 }
a1d1bb31
AL
1617 return -ENOENT;
1618#else
1619 return -ENOSYS;
7d03f82f
EI
1620#endif
1621}
1622
a1d1bb31 1623/* Remove a specific breakpoint by reference. */
9349b4f9 1624void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
4c3a88a2 1625{
1fddef4b 1626#if defined(TARGET_HAS_ICE)
72cf2d4f 1627 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
d720b93d 1628
a1d1bb31
AL
1629 breakpoint_invalidate(env, breakpoint->pc);
1630
7267c094 1631 g_free(breakpoint);
a1d1bb31
AL
1632#endif
1633}
1634
1635/* Remove all matching breakpoints. */
9349b4f9 1636void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
a1d1bb31
AL
1637{
1638#if defined(TARGET_HAS_ICE)
c0ce998e 1639 CPUBreakpoint *bp, *next;
a1d1bb31 1640
72cf2d4f 1641 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
a1d1bb31
AL
1642 if (bp->flags & mask)
1643 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 1644 }
4c3a88a2
FB
1645#endif
1646}
1647
c33a346e
FB
1648/* enable or disable single step mode. EXCP_DEBUG is returned by the
1649 CPU loop after each instruction */
9349b4f9 1650void cpu_single_step(CPUArchState *env, int enabled)
c33a346e 1651{
1fddef4b 1652#if defined(TARGET_HAS_ICE)
c33a346e
FB
1653 if (env->singlestep_enabled != enabled) {
1654 env->singlestep_enabled = enabled;
e22a25c9
AL
1655 if (kvm_enabled())
1656 kvm_update_guest_debug(env, 0);
1657 else {
ccbb4d44 1658 /* must flush all the translated code to avoid inconsistencies */
e22a25c9
AL
1659 /* XXX: only flush what is necessary */
1660 tb_flush(env);
1661 }
c33a346e
FB
1662 }
1663#endif
1664}
1665
9349b4f9 1666static void cpu_unlink_tb(CPUArchState *env)
ea041c0e 1667{
3098dba0
AJ
1668 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1669 problem and hope the cpu will stop of its own accord. For userspace
1670 emulation this often isn't actually as bad as it sounds. Often
1671 signals are used primarily to interrupt blocking syscalls. */
ea041c0e 1672 TranslationBlock *tb;
c227f099 1673 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
59817ccb 1674
cab1b4bd 1675 spin_lock(&interrupt_lock);
3098dba0
AJ
1676 tb = env->current_tb;
1677 /* if the cpu is currently executing code, we must unlink it and
1678 all the potentially executing TB */
f76cfe56 1679 if (tb) {
3098dba0
AJ
1680 env->current_tb = NULL;
1681 tb_reset_jump_recursive(tb);
be214e6c 1682 }
cab1b4bd 1683 spin_unlock(&interrupt_lock);
3098dba0
AJ
1684}
1685
97ffbd8d 1686#ifndef CONFIG_USER_ONLY
3098dba0 1687/* mask must never be zero, except for A20 change call */
9349b4f9 1688static void tcg_handle_interrupt(CPUArchState *env, int mask)
3098dba0
AJ
1689{
1690 int old_mask;
be214e6c 1691
2e70f6ef 1692 old_mask = env->interrupt_request;
68a79315 1693 env->interrupt_request |= mask;
3098dba0 1694
8edac960
AL
1695 /*
1696 * If called from iothread context, wake the target cpu in
1697 * case its halted.
1698 */
b7680cb6 1699 if (!qemu_cpu_is_self(env)) {
8edac960
AL
1700 qemu_cpu_kick(env);
1701 return;
1702 }
8edac960 1703
2e70f6ef 1704 if (use_icount) {
266910c4 1705 env->icount_decr.u16.high = 0xffff;
2e70f6ef 1706 if (!can_do_io(env)
be214e6c 1707 && (mask & ~old_mask) != 0) {
2e70f6ef
PB
1708 cpu_abort(env, "Raised interrupt while not in I/O function");
1709 }
2e70f6ef 1710 } else {
3098dba0 1711 cpu_unlink_tb(env);
ea041c0e
FB
1712 }
1713}
1714
ec6959d0
JK
1715CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt;
1716
97ffbd8d
JK
1717#else /* CONFIG_USER_ONLY */
1718
9349b4f9 1719void cpu_interrupt(CPUArchState *env, int mask)
97ffbd8d
JK
1720{
1721 env->interrupt_request |= mask;
1722 cpu_unlink_tb(env);
1723}
1724#endif /* CONFIG_USER_ONLY */
1725
9349b4f9 1726void cpu_reset_interrupt(CPUArchState *env, int mask)
b54ad049
FB
1727{
1728 env->interrupt_request &= ~mask;
1729}
1730
9349b4f9 1731void cpu_exit(CPUArchState *env)
3098dba0
AJ
1732{
1733 env->exit_request = 1;
1734 cpu_unlink_tb(env);
1735}
1736
9349b4f9 1737void cpu_abort(CPUArchState *env, const char *fmt, ...)
7501267e
FB
1738{
1739 va_list ap;
493ae1f0 1740 va_list ap2;
7501267e
FB
1741
1742 va_start(ap, fmt);
493ae1f0 1743 va_copy(ap2, ap);
7501267e
FB
1744 fprintf(stderr, "qemu: fatal: ");
1745 vfprintf(stderr, fmt, ap);
1746 fprintf(stderr, "\n");
1747#ifdef TARGET_I386
7fe48483
FB
1748 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1749#else
1750 cpu_dump_state(env, stderr, fprintf, 0);
7501267e 1751#endif
93fcfe39
AL
1752 if (qemu_log_enabled()) {
1753 qemu_log("qemu: fatal: ");
1754 qemu_log_vprintf(fmt, ap2);
1755 qemu_log("\n");
f9373291 1756#ifdef TARGET_I386
93fcfe39 1757 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
f9373291 1758#else
93fcfe39 1759 log_cpu_state(env, 0);
f9373291 1760#endif
31b1a7b4 1761 qemu_log_flush();
93fcfe39 1762 qemu_log_close();
924edcae 1763 }
493ae1f0 1764 va_end(ap2);
f9373291 1765 va_end(ap);
fd052bf6
RV
1766#if defined(CONFIG_USER_ONLY)
1767 {
1768 struct sigaction act;
1769 sigfillset(&act.sa_mask);
1770 act.sa_handler = SIG_DFL;
1771 sigaction(SIGABRT, &act, NULL);
1772 }
1773#endif
7501267e
FB
1774 abort();
1775}
1776
9349b4f9 1777CPUArchState *cpu_copy(CPUArchState *env)
c5be9f08 1778{
9349b4f9
AF
1779 CPUArchState *new_env = cpu_init(env->cpu_model_str);
1780 CPUArchState *next_cpu = new_env->next_cpu;
c5be9f08 1781 int cpu_index = new_env->cpu_index;
5a38f081
AL
1782#if defined(TARGET_HAS_ICE)
1783 CPUBreakpoint *bp;
1784 CPUWatchpoint *wp;
1785#endif
1786
9349b4f9 1787 memcpy(new_env, env, sizeof(CPUArchState));
5a38f081
AL
1788
1789 /* Preserve chaining and index. */
c5be9f08
TS
1790 new_env->next_cpu = next_cpu;
1791 new_env->cpu_index = cpu_index;
5a38f081
AL
1792
1793 /* Clone all break/watchpoints.
1794 Note: Once we support ptrace with hw-debug register access, make sure
1795 BP_CPU break/watchpoints are handled correctly on clone. */
72cf2d4f
BS
1796 QTAILQ_INIT(&env->breakpoints);
1797 QTAILQ_INIT(&env->watchpoints);
5a38f081 1798#if defined(TARGET_HAS_ICE)
72cf2d4f 1799 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
5a38f081
AL
1800 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1801 }
72cf2d4f 1802 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
5a38f081
AL
1803 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1804 wp->flags, NULL);
1805 }
1806#endif
1807
c5be9f08
TS
1808 return new_env;
1809}
1810
0124311e 1811#if !defined(CONFIG_USER_ONLY)
0cac1b66 1812void tb_flush_jmp_cache(CPUArchState *env, target_ulong addr)
5c751e99
EI
1813{
1814 unsigned int i;
1815
1816 /* Discard jump cache entries for any tb which might potentially
1817 overlap the flushed page. */
1818 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1819 memset (&env->tb_jmp_cache[i], 0,
9742bf26 1820 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
5c751e99
EI
1821
1822 i = tb_jmp_cache_hash_page(addr);
1823 memset (&env->tb_jmp_cache[i], 0,
9742bf26 1824 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
5c751e99
EI
1825}
1826
5579c7f3 1827/* Note: start and end must be within the same ram block. */
c227f099 1828void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 1829 int dirty_flags)
1ccde1cb 1830{
8efe0ca8 1831 uintptr_t length, start1;
1ccde1cb
FB
1832
1833 start &= TARGET_PAGE_MASK;
1834 end = TARGET_PAGE_ALIGN(end);
1835
1836 length = end - start;
1837 if (length == 0)
1838 return;
f7c11b53 1839 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
f23db169 1840
1ccde1cb
FB
1841 /* we modify the TLB cache so that the dirty bit will be set again
1842 when accessing the range */
8efe0ca8 1843 start1 = (uintptr_t)qemu_safe_ram_ptr(start);
a57d23e4 1844 /* Check that we don't span multiple blocks - this breaks the
5579c7f3 1845 address comparisons below. */
8efe0ca8 1846 if ((uintptr_t)qemu_safe_ram_ptr(end - 1) - start1
5579c7f3
PB
1847 != (end - 1) - start) {
1848 abort();
1849 }
e5548617 1850 cpu_tlb_reset_dirty_all(start1, length);
1ccde1cb
FB
1851}
1852
74576198
AL
1853int cpu_physical_memory_set_dirty_tracking(int enable)
1854{
f6f3fbca 1855 int ret = 0;
74576198 1856 in_migration = enable;
f6f3fbca 1857 return ret;
74576198
AL
1858}
1859
e5548617
BS
1860target_phys_addr_t memory_region_section_get_iotlb(CPUArchState *env,
1861 MemoryRegionSection *section,
1862 target_ulong vaddr,
1863 target_phys_addr_t paddr,
1864 int prot,
1865 target_ulong *address)
1866{
1867 target_phys_addr_t iotlb;
1868 CPUWatchpoint *wp;
1869
cc5bea60 1870 if (memory_region_is_ram(section->mr)) {
e5548617
BS
1871 /* Normal RAM. */
1872 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
cc5bea60 1873 + memory_region_section_addr(section, paddr);
e5548617
BS
1874 if (!section->readonly) {
1875 iotlb |= phys_section_notdirty;
1876 } else {
1877 iotlb |= phys_section_rom;
1878 }
1879 } else {
1880 /* IO handlers are currently passed a physical address.
1881 It would be nice to pass an offset from the base address
1882 of that region. This would avoid having to special case RAM,
1883 and avoid full address decoding in every device.
1884 We can't use the high bits of pd for this because
1885 IO_MEM_ROMD uses these as a ram address. */
1886 iotlb = section - phys_sections;
cc5bea60 1887 iotlb += memory_region_section_addr(section, paddr);
e5548617
BS
1888 }
1889
1890 /* Make accesses to pages with watchpoints go via the
1891 watchpoint trap routines. */
1892 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1893 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
1894 /* Avoid trapping reads of pages with a write breakpoint. */
1895 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1896 iotlb = phys_section_watch + paddr;
1897 *address |= TLB_MMIO;
1898 break;
1899 }
1900 }
1901 }
1902
1903 return iotlb;
1904}
1905
0124311e 1906#else
edf8e2af
MW
1907/*
1908 * Walks guest process memory "regions" one by one
1909 * and calls callback function 'fn' for each region.
1910 */
5cd2c5b6
RH
1911
1912struct walk_memory_regions_data
1913{
1914 walk_memory_regions_fn fn;
1915 void *priv;
8efe0ca8 1916 uintptr_t start;
5cd2c5b6
RH
1917 int prot;
1918};
1919
1920static int walk_memory_regions_end(struct walk_memory_regions_data *data,
b480d9b7 1921 abi_ulong end, int new_prot)
5cd2c5b6
RH
1922{
1923 if (data->start != -1ul) {
1924 int rc = data->fn(data->priv, data->start, end, data->prot);
1925 if (rc != 0) {
1926 return rc;
1927 }
1928 }
1929
1930 data->start = (new_prot ? end : -1ul);
1931 data->prot = new_prot;
1932
1933 return 0;
1934}
1935
1936static int walk_memory_regions_1(struct walk_memory_regions_data *data,
b480d9b7 1937 abi_ulong base, int level, void **lp)
5cd2c5b6 1938{
b480d9b7 1939 abi_ulong pa;
5cd2c5b6
RH
1940 int i, rc;
1941
1942 if (*lp == NULL) {
1943 return walk_memory_regions_end(data, base, 0);
1944 }
1945
1946 if (level == 0) {
1947 PageDesc *pd = *lp;
7296abac 1948 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
1949 int prot = pd[i].flags;
1950
1951 pa = base | (i << TARGET_PAGE_BITS);
1952 if (prot != data->prot) {
1953 rc = walk_memory_regions_end(data, pa, prot);
1954 if (rc != 0) {
1955 return rc;
9fa3e853 1956 }
9fa3e853 1957 }
5cd2c5b6
RH
1958 }
1959 } else {
1960 void **pp = *lp;
7296abac 1961 for (i = 0; i < L2_SIZE; ++i) {
b480d9b7
PB
1962 pa = base | ((abi_ulong)i <<
1963 (TARGET_PAGE_BITS + L2_BITS * level));
5cd2c5b6
RH
1964 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
1965 if (rc != 0) {
1966 return rc;
1967 }
1968 }
1969 }
1970
1971 return 0;
1972}
1973
1974int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
1975{
1976 struct walk_memory_regions_data data;
8efe0ca8 1977 uintptr_t i;
5cd2c5b6
RH
1978
1979 data.fn = fn;
1980 data.priv = priv;
1981 data.start = -1ul;
1982 data.prot = 0;
1983
1984 for (i = 0; i < V_L1_SIZE; i++) {
b480d9b7 1985 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
5cd2c5b6
RH
1986 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
1987 if (rc != 0) {
1988 return rc;
9fa3e853 1989 }
33417e70 1990 }
5cd2c5b6
RH
1991
1992 return walk_memory_regions_end(&data, 0, 0);
edf8e2af
MW
1993}
1994
b480d9b7
PB
1995static int dump_region(void *priv, abi_ulong start,
1996 abi_ulong end, unsigned long prot)
edf8e2af
MW
1997{
1998 FILE *f = (FILE *)priv;
1999
b480d9b7
PB
2000 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2001 " "TARGET_ABI_FMT_lx" %c%c%c\n",
edf8e2af
MW
2002 start, end, end - start,
2003 ((prot & PAGE_READ) ? 'r' : '-'),
2004 ((prot & PAGE_WRITE) ? 'w' : '-'),
2005 ((prot & PAGE_EXEC) ? 'x' : '-'));
2006
2007 return (0);
2008}
2009
2010/* dump memory mappings */
2011void page_dump(FILE *f)
2012{
2013 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2014 "start", "end", "size", "prot");
2015 walk_memory_regions(f, dump_region);
33417e70
FB
2016}
2017
53a5960a 2018int page_get_flags(target_ulong address)
33417e70 2019{
9fa3e853
FB
2020 PageDesc *p;
2021
2022 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 2023 if (!p)
9fa3e853
FB
2024 return 0;
2025 return p->flags;
2026}
2027
376a7909
RH
2028/* Modify the flags of a page and invalidate the code if necessary.
2029 The flag PAGE_WRITE_ORG is positioned automatically depending
2030 on PAGE_WRITE. The mmap_lock should already be held. */
53a5960a 2031void page_set_flags(target_ulong start, target_ulong end, int flags)
9fa3e853 2032{
376a7909
RH
2033 target_ulong addr, len;
2034
2035 /* This function should never be called with addresses outside the
2036 guest address space. If this assert fires, it probably indicates
2037 a missing call to h2g_valid. */
b480d9b7
PB
2038#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2039 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
376a7909
RH
2040#endif
2041 assert(start < end);
9fa3e853
FB
2042
2043 start = start & TARGET_PAGE_MASK;
2044 end = TARGET_PAGE_ALIGN(end);
376a7909
RH
2045
2046 if (flags & PAGE_WRITE) {
9fa3e853 2047 flags |= PAGE_WRITE_ORG;
376a7909
RH
2048 }
2049
2050 for (addr = start, len = end - start;
2051 len != 0;
2052 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2053 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2054
2055 /* If the write protection bit is set, then we invalidate
2056 the code inside. */
5fafdf24 2057 if (!(p->flags & PAGE_WRITE) &&
9fa3e853
FB
2058 (flags & PAGE_WRITE) &&
2059 p->first_tb) {
d720b93d 2060 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
2061 }
2062 p->flags = flags;
2063 }
33417e70
FB
2064}
2065
3d97b40b
TS
2066int page_check_range(target_ulong start, target_ulong len, int flags)
2067{
2068 PageDesc *p;
2069 target_ulong end;
2070 target_ulong addr;
2071
376a7909
RH
2072 /* This function should never be called with addresses outside the
2073 guest address space. If this assert fires, it probably indicates
2074 a missing call to h2g_valid. */
338e9e6c
BS
2075#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2076 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
376a7909
RH
2077#endif
2078
3e0650a9
RH
2079 if (len == 0) {
2080 return 0;
2081 }
376a7909
RH
2082 if (start + len - 1 < start) {
2083 /* We've wrapped around. */
55f280c9 2084 return -1;
376a7909 2085 }
55f280c9 2086
3d97b40b
TS
2087 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2088 start = start & TARGET_PAGE_MASK;
2089
376a7909
RH
2090 for (addr = start, len = end - start;
2091 len != 0;
2092 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
3d97b40b
TS
2093 p = page_find(addr >> TARGET_PAGE_BITS);
2094 if( !p )
2095 return -1;
2096 if( !(p->flags & PAGE_VALID) )
2097 return -1;
2098
dae3270c 2099 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
3d97b40b 2100 return -1;
dae3270c
FB
2101 if (flags & PAGE_WRITE) {
2102 if (!(p->flags & PAGE_WRITE_ORG))
2103 return -1;
2104 /* unprotect the page if it was put read-only because it
2105 contains translated code */
2106 if (!(p->flags & PAGE_WRITE)) {
2107 if (!page_unprotect(addr, 0, NULL))
2108 return -1;
2109 }
2110 return 0;
2111 }
3d97b40b
TS
2112 }
2113 return 0;
2114}
2115
9fa3e853 2116/* called from signal handler: invalidate the code and unprotect the
ccbb4d44 2117 page. Return TRUE if the fault was successfully handled. */
6375e09e 2118int page_unprotect(target_ulong address, uintptr_t pc, void *puc)
9fa3e853 2119{
45d679d6
AJ
2120 unsigned int prot;
2121 PageDesc *p;
53a5960a 2122 target_ulong host_start, host_end, addr;
9fa3e853 2123
c8a706fe
PB
2124 /* Technically this isn't safe inside a signal handler. However we
2125 know this only ever happens in a synchronous SEGV handler, so in
2126 practice it seems to be ok. */
2127 mmap_lock();
2128
45d679d6
AJ
2129 p = page_find(address >> TARGET_PAGE_BITS);
2130 if (!p) {
c8a706fe 2131 mmap_unlock();
9fa3e853 2132 return 0;
c8a706fe 2133 }
45d679d6 2134
9fa3e853
FB
2135 /* if the page was really writable, then we change its
2136 protection back to writable */
45d679d6
AJ
2137 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2138 host_start = address & qemu_host_page_mask;
2139 host_end = host_start + qemu_host_page_size;
2140
2141 prot = 0;
2142 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2143 p = page_find(addr >> TARGET_PAGE_BITS);
2144 p->flags |= PAGE_WRITE;
2145 prot |= p->flags;
2146
9fa3e853
FB
2147 /* and since the content will be modified, we must invalidate
2148 the corresponding translated code. */
45d679d6 2149 tb_invalidate_phys_page(addr, pc, puc);
9fa3e853 2150#ifdef DEBUG_TB_CHECK
45d679d6 2151 tb_invalidate_check(addr);
9fa3e853 2152#endif
9fa3e853 2153 }
45d679d6
AJ
2154 mprotect((void *)g2h(host_start), qemu_host_page_size,
2155 prot & PAGE_BITS);
2156
2157 mmap_unlock();
2158 return 1;
9fa3e853 2159 }
c8a706fe 2160 mmap_unlock();
9fa3e853
FB
2161 return 0;
2162}
9fa3e853
FB
2163#endif /* defined(CONFIG_USER_ONLY) */
2164
e2eef170 2165#if !defined(CONFIG_USER_ONLY)
8da3ff18 2166
c04b2b78
PB
2167#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2168typedef struct subpage_t {
70c68e44 2169 MemoryRegion iomem;
c04b2b78 2170 target_phys_addr_t base;
5312bd8b 2171 uint16_t sub_section[TARGET_PAGE_SIZE];
c04b2b78
PB
2172} subpage_t;
2173
c227f099 2174static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 2175 uint16_t section);
0f0cb164 2176static subpage_t *subpage_init(target_phys_addr_t base);
5312bd8b 2177static void destroy_page_desc(uint16_t section_index)
54688b1e 2178{
5312bd8b
AK
2179 MemoryRegionSection *section = &phys_sections[section_index];
2180 MemoryRegion *mr = section->mr;
54688b1e
AK
2181
2182 if (mr->subpage) {
2183 subpage_t *subpage = container_of(mr, subpage_t, iomem);
2184 memory_region_destroy(&subpage->iomem);
2185 g_free(subpage);
2186 }
2187}
2188
4346ae3e 2189static void destroy_l2_mapping(PhysPageEntry *lp, unsigned level)
54688b1e
AK
2190{
2191 unsigned i;
d6f2ea22 2192 PhysPageEntry *p;
54688b1e 2193
c19e8800 2194 if (lp->ptr == PHYS_MAP_NODE_NIL) {
54688b1e
AK
2195 return;
2196 }
2197
c19e8800 2198 p = phys_map_nodes[lp->ptr];
4346ae3e 2199 for (i = 0; i < L2_SIZE; ++i) {
07f07b31 2200 if (!p[i].is_leaf) {
54688b1e 2201 destroy_l2_mapping(&p[i], level - 1);
4346ae3e 2202 } else {
c19e8800 2203 destroy_page_desc(p[i].ptr);
54688b1e 2204 }
54688b1e 2205 }
07f07b31 2206 lp->is_leaf = 0;
c19e8800 2207 lp->ptr = PHYS_MAP_NODE_NIL;
54688b1e
AK
2208}
2209
2210static void destroy_all_mappings(void)
2211{
3eef53df 2212 destroy_l2_mapping(&phys_map, P_L2_LEVELS - 1);
d6f2ea22 2213 phys_map_nodes_reset();
54688b1e
AK
2214}
2215
5312bd8b
AK
2216static uint16_t phys_section_add(MemoryRegionSection *section)
2217{
2218 if (phys_sections_nb == phys_sections_nb_alloc) {
2219 phys_sections_nb_alloc = MAX(phys_sections_nb_alloc * 2, 16);
2220 phys_sections = g_renew(MemoryRegionSection, phys_sections,
2221 phys_sections_nb_alloc);
2222 }
2223 phys_sections[phys_sections_nb] = *section;
2224 return phys_sections_nb++;
2225}
2226
2227static void phys_sections_clear(void)
2228{
2229 phys_sections_nb = 0;
2230}
2231
8f2498f9
MT
2232/* register physical memory.
2233 For RAM, 'size' must be a multiple of the target page size.
2234 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
8da3ff18
PB
2235 io memory page. The address used when calling the IO function is
2236 the offset from the start of the region, plus region_offset. Both
ccbb4d44 2237 start_addr and region_offset are rounded down to a page boundary
8da3ff18
PB
2238 before calculating this offset. This should not be a problem unless
2239 the low bits of start_addr and region_offset differ. */
0f0cb164
AK
2240static void register_subpage(MemoryRegionSection *section)
2241{
2242 subpage_t *subpage;
2243 target_phys_addr_t base = section->offset_within_address_space
2244 & TARGET_PAGE_MASK;
f3705d53 2245 MemoryRegionSection *existing = phys_page_find(base >> TARGET_PAGE_BITS);
0f0cb164
AK
2246 MemoryRegionSection subsection = {
2247 .offset_within_address_space = base,
2248 .size = TARGET_PAGE_SIZE,
2249 };
0f0cb164
AK
2250 target_phys_addr_t start, end;
2251
f3705d53 2252 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 2253
f3705d53 2254 if (!(existing->mr->subpage)) {
0f0cb164
AK
2255 subpage = subpage_init(base);
2256 subsection.mr = &subpage->iomem;
2999097b
AK
2257 phys_page_set(base >> TARGET_PAGE_BITS, 1,
2258 phys_section_add(&subsection));
0f0cb164 2259 } else {
f3705d53 2260 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
2261 }
2262 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
2263 end = start + section->size;
2264 subpage_register(subpage, start, end, phys_section_add(section));
2265}
2266
2267
2268static void register_multipage(MemoryRegionSection *section)
33417e70 2269{
dd81124b
AK
2270 target_phys_addr_t start_addr = section->offset_within_address_space;
2271 ram_addr_t size = section->size;
2999097b 2272 target_phys_addr_t addr;
5312bd8b 2273 uint16_t section_index = phys_section_add(section);
dd81124b 2274
3b8e6a2d 2275 assert(size);
f6f3fbca 2276
3b8e6a2d 2277 addr = start_addr;
2999097b
AK
2278 phys_page_set(addr >> TARGET_PAGE_BITS, size >> TARGET_PAGE_BITS,
2279 section_index);
33417e70
FB
2280}
2281
0f0cb164
AK
2282void cpu_register_physical_memory_log(MemoryRegionSection *section,
2283 bool readonly)
2284{
2285 MemoryRegionSection now = *section, remain = *section;
2286
2287 if ((now.offset_within_address_space & ~TARGET_PAGE_MASK)
2288 || (now.size < TARGET_PAGE_SIZE)) {
2289 now.size = MIN(TARGET_PAGE_ALIGN(now.offset_within_address_space)
2290 - now.offset_within_address_space,
2291 now.size);
2292 register_subpage(&now);
2293 remain.size -= now.size;
2294 remain.offset_within_address_space += now.size;
2295 remain.offset_within_region += now.size;
2296 }
2297 now = remain;
2298 now.size &= TARGET_PAGE_MASK;
2299 if (now.size) {
2300 register_multipage(&now);
2301 remain.size -= now.size;
2302 remain.offset_within_address_space += now.size;
2303 remain.offset_within_region += now.size;
2304 }
2305 now = remain;
2306 if (now.size) {
2307 register_subpage(&now);
2308 }
2309}
2310
2311
c227f099 2312void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2313{
2314 if (kvm_enabled())
2315 kvm_coalesce_mmio_region(addr, size);
2316}
2317
c227f099 2318void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2319{
2320 if (kvm_enabled())
2321 kvm_uncoalesce_mmio_region(addr, size);
2322}
2323
62a2744c
SY
2324void qemu_flush_coalesced_mmio_buffer(void)
2325{
2326 if (kvm_enabled())
2327 kvm_flush_coalesced_mmio_buffer();
2328}
2329
c902760f
MT
2330#if defined(__linux__) && !defined(TARGET_S390X)
2331
2332#include <sys/vfs.h>
2333
2334#define HUGETLBFS_MAGIC 0x958458f6
2335
2336static long gethugepagesize(const char *path)
2337{
2338 struct statfs fs;
2339 int ret;
2340
2341 do {
9742bf26 2342 ret = statfs(path, &fs);
c902760f
MT
2343 } while (ret != 0 && errno == EINTR);
2344
2345 if (ret != 0) {
9742bf26
YT
2346 perror(path);
2347 return 0;
c902760f
MT
2348 }
2349
2350 if (fs.f_type != HUGETLBFS_MAGIC)
9742bf26 2351 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
c902760f
MT
2352
2353 return fs.f_bsize;
2354}
2355
04b16653
AW
2356static void *file_ram_alloc(RAMBlock *block,
2357 ram_addr_t memory,
2358 const char *path)
c902760f
MT
2359{
2360 char *filename;
2361 void *area;
2362 int fd;
2363#ifdef MAP_POPULATE
2364 int flags;
2365#endif
2366 unsigned long hpagesize;
2367
2368 hpagesize = gethugepagesize(path);
2369 if (!hpagesize) {
9742bf26 2370 return NULL;
c902760f
MT
2371 }
2372
2373 if (memory < hpagesize) {
2374 return NULL;
2375 }
2376
2377 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2378 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2379 return NULL;
2380 }
2381
2382 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
9742bf26 2383 return NULL;
c902760f
MT
2384 }
2385
2386 fd = mkstemp(filename);
2387 if (fd < 0) {
9742bf26
YT
2388 perror("unable to create backing store for hugepages");
2389 free(filename);
2390 return NULL;
c902760f
MT
2391 }
2392 unlink(filename);
2393 free(filename);
2394
2395 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2396
2397 /*
2398 * ftruncate is not supported by hugetlbfs in older
2399 * hosts, so don't bother bailing out on errors.
2400 * If anything goes wrong with it under other filesystems,
2401 * mmap will fail.
2402 */
2403 if (ftruncate(fd, memory))
9742bf26 2404 perror("ftruncate");
c902760f
MT
2405
2406#ifdef MAP_POPULATE
2407 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2408 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2409 * to sidestep this quirk.
2410 */
2411 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2412 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2413#else
2414 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2415#endif
2416 if (area == MAP_FAILED) {
9742bf26
YT
2417 perror("file_ram_alloc: can't mmap RAM pages");
2418 close(fd);
2419 return (NULL);
c902760f 2420 }
04b16653 2421 block->fd = fd;
c902760f
MT
2422 return area;
2423}
2424#endif
2425
d17b5288 2426static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
2427{
2428 RAMBlock *block, *next_block;
3e837b2c 2429 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653
AW
2430
2431 if (QLIST_EMPTY(&ram_list.blocks))
2432 return 0;
2433
2434 QLIST_FOREACH(block, &ram_list.blocks, next) {
f15fbc4b 2435 ram_addr_t end, next = RAM_ADDR_MAX;
04b16653
AW
2436
2437 end = block->offset + block->length;
2438
2439 QLIST_FOREACH(next_block, &ram_list.blocks, next) {
2440 if (next_block->offset >= end) {
2441 next = MIN(next, next_block->offset);
2442 }
2443 }
2444 if (next - end >= size && next - end < mingap) {
3e837b2c 2445 offset = end;
04b16653
AW
2446 mingap = next - end;
2447 }
2448 }
3e837b2c
AW
2449
2450 if (offset == RAM_ADDR_MAX) {
2451 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
2452 (uint64_t)size);
2453 abort();
2454 }
2455
04b16653
AW
2456 return offset;
2457}
2458
2459static ram_addr_t last_ram_offset(void)
d17b5288
AW
2460{
2461 RAMBlock *block;
2462 ram_addr_t last = 0;
2463
2464 QLIST_FOREACH(block, &ram_list.blocks, next)
2465 last = MAX(last, block->offset + block->length);
2466
2467 return last;
2468}
2469
c5705a77 2470void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
84b89d78
CM
2471{
2472 RAMBlock *new_block, *block;
2473
c5705a77
AK
2474 new_block = NULL;
2475 QLIST_FOREACH(block, &ram_list.blocks, next) {
2476 if (block->offset == addr) {
2477 new_block = block;
2478 break;
2479 }
2480 }
2481 assert(new_block);
2482 assert(!new_block->idstr[0]);
84b89d78 2483
09e5ab63
AL
2484 if (dev) {
2485 char *id = qdev_get_dev_path(dev);
84b89d78
CM
2486 if (id) {
2487 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 2488 g_free(id);
84b89d78
CM
2489 }
2490 }
2491 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2492
2493 QLIST_FOREACH(block, &ram_list.blocks, next) {
c5705a77 2494 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
2495 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2496 new_block->idstr);
2497 abort();
2498 }
2499 }
c5705a77
AK
2500}
2501
2502ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2503 MemoryRegion *mr)
2504{
2505 RAMBlock *new_block;
2506
2507 size = TARGET_PAGE_ALIGN(size);
2508 new_block = g_malloc0(sizeof(*new_block));
84b89d78 2509
7c637366 2510 new_block->mr = mr;
432d268c 2511 new_block->offset = find_ram_offset(size);
6977dfe6
YT
2512 if (host) {
2513 new_block->host = host;
cd19cfa2 2514 new_block->flags |= RAM_PREALLOC_MASK;
6977dfe6
YT
2515 } else {
2516 if (mem_path) {
c902760f 2517#if defined (__linux__) && !defined(TARGET_S390X)
6977dfe6
YT
2518 new_block->host = file_ram_alloc(new_block, size, mem_path);
2519 if (!new_block->host) {
2520 new_block->host = qemu_vmalloc(size);
e78815a5 2521 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
6977dfe6 2522 }
c902760f 2523#else
6977dfe6
YT
2524 fprintf(stderr, "-mem-path option unsupported\n");
2525 exit(1);
c902760f 2526#endif
6977dfe6 2527 } else {
6b02494d 2528#if defined(TARGET_S390X) && defined(CONFIG_KVM)
ff83678a
CB
2529 /* S390 KVM requires the topmost vma of the RAM to be smaller than
2530 an system defined value, which is at least 256GB. Larger systems
2531 have larger values. We put the guest between the end of data
2532 segment (system break) and this value. We use 32GB as a base to
2533 have enough room for the system break to grow. */
2534 new_block->host = mmap((void*)0x800000000, size,
6977dfe6 2535 PROT_EXEC|PROT_READ|PROT_WRITE,
ff83678a 2536 MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
fb8b2735
AG
2537 if (new_block->host == MAP_FAILED) {
2538 fprintf(stderr, "Allocating RAM failed\n");
2539 abort();
2540 }
6b02494d 2541#else
868bb33f 2542 if (xen_enabled()) {
fce537d4 2543 xen_ram_alloc(new_block->offset, size, mr);
432d268c
JN
2544 } else {
2545 new_block->host = qemu_vmalloc(size);
2546 }
6b02494d 2547#endif
e78815a5 2548 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
6977dfe6 2549 }
c902760f 2550 }
94a6b54f
PB
2551 new_block->length = size;
2552
f471a17e 2553 QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next);
94a6b54f 2554
7267c094 2555 ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
04b16653 2556 last_ram_offset() >> TARGET_PAGE_BITS);
d17b5288 2557 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
94a6b54f
PB
2558 0xff, size >> TARGET_PAGE_BITS);
2559
6f0437e8
JK
2560 if (kvm_enabled())
2561 kvm_setup_guest_memory(new_block->host, size);
2562
94a6b54f
PB
2563 return new_block->offset;
2564}
e9a1ab19 2565
c5705a77 2566ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
6977dfe6 2567{
c5705a77 2568 return qemu_ram_alloc_from_ptr(size, NULL, mr);
6977dfe6
YT
2569}
2570
1f2e98b6
AW
2571void qemu_ram_free_from_ptr(ram_addr_t addr)
2572{
2573 RAMBlock *block;
2574
2575 QLIST_FOREACH(block, &ram_list.blocks, next) {
2576 if (addr == block->offset) {
2577 QLIST_REMOVE(block, next);
7267c094 2578 g_free(block);
1f2e98b6
AW
2579 return;
2580 }
2581 }
2582}
2583
c227f099 2584void qemu_ram_free(ram_addr_t addr)
e9a1ab19 2585{
04b16653
AW
2586 RAMBlock *block;
2587
2588 QLIST_FOREACH(block, &ram_list.blocks, next) {
2589 if (addr == block->offset) {
2590 QLIST_REMOVE(block, next);
cd19cfa2
HY
2591 if (block->flags & RAM_PREALLOC_MASK) {
2592 ;
2593 } else if (mem_path) {
04b16653
AW
2594#if defined (__linux__) && !defined(TARGET_S390X)
2595 if (block->fd) {
2596 munmap(block->host, block->length);
2597 close(block->fd);
2598 } else {
2599 qemu_vfree(block->host);
2600 }
fd28aa13
JK
2601#else
2602 abort();
04b16653
AW
2603#endif
2604 } else {
2605#if defined(TARGET_S390X) && defined(CONFIG_KVM)
2606 munmap(block->host, block->length);
2607#else
868bb33f 2608 if (xen_enabled()) {
e41d7c69 2609 xen_invalidate_map_cache_entry(block->host);
432d268c
JN
2610 } else {
2611 qemu_vfree(block->host);
2612 }
04b16653
AW
2613#endif
2614 }
7267c094 2615 g_free(block);
04b16653
AW
2616 return;
2617 }
2618 }
2619
e9a1ab19
FB
2620}
2621
cd19cfa2
HY
2622#ifndef _WIN32
2623void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2624{
2625 RAMBlock *block;
2626 ram_addr_t offset;
2627 int flags;
2628 void *area, *vaddr;
2629
2630 QLIST_FOREACH(block, &ram_list.blocks, next) {
2631 offset = addr - block->offset;
2632 if (offset < block->length) {
2633 vaddr = block->host + offset;
2634 if (block->flags & RAM_PREALLOC_MASK) {
2635 ;
2636 } else {
2637 flags = MAP_FIXED;
2638 munmap(vaddr, length);
2639 if (mem_path) {
2640#if defined(__linux__) && !defined(TARGET_S390X)
2641 if (block->fd) {
2642#ifdef MAP_POPULATE
2643 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
2644 MAP_PRIVATE;
2645#else
2646 flags |= MAP_PRIVATE;
2647#endif
2648 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2649 flags, block->fd, offset);
2650 } else {
2651 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2652 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2653 flags, -1, 0);
2654 }
fd28aa13
JK
2655#else
2656 abort();
cd19cfa2
HY
2657#endif
2658 } else {
2659#if defined(TARGET_S390X) && defined(CONFIG_KVM)
2660 flags |= MAP_SHARED | MAP_ANONYMOUS;
2661 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
2662 flags, -1, 0);
2663#else
2664 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2665 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2666 flags, -1, 0);
2667#endif
2668 }
2669 if (area != vaddr) {
f15fbc4b
AP
2670 fprintf(stderr, "Could not remap addr: "
2671 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
cd19cfa2
HY
2672 length, addr);
2673 exit(1);
2674 }
2675 qemu_madvise(vaddr, length, QEMU_MADV_MERGEABLE);
2676 }
2677 return;
2678 }
2679 }
2680}
2681#endif /* !_WIN32 */
2682
dc828ca1 2683/* Return a host pointer to ram allocated with qemu_ram_alloc.
5579c7f3
PB
2684 With the exception of the softmmu code in this file, this should
2685 only be used for local memory (e.g. video ram) that the device owns,
2686 and knows it isn't going to access beyond the end of the block.
2687
2688 It should not be used for general purpose DMA.
2689 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2690 */
c227f099 2691void *qemu_get_ram_ptr(ram_addr_t addr)
dc828ca1 2692{
94a6b54f
PB
2693 RAMBlock *block;
2694
f471a17e
AW
2695 QLIST_FOREACH(block, &ram_list.blocks, next) {
2696 if (addr - block->offset < block->length) {
7d82af38
VP
2697 /* Move this entry to to start of the list. */
2698 if (block != QLIST_FIRST(&ram_list.blocks)) {
2699 QLIST_REMOVE(block, next);
2700 QLIST_INSERT_HEAD(&ram_list.blocks, block, next);
2701 }
868bb33f 2702 if (xen_enabled()) {
432d268c
JN
2703 /* We need to check if the requested address is in the RAM
2704 * because we don't want to map the entire memory in QEMU.
712c2b41 2705 * In that case just map until the end of the page.
432d268c
JN
2706 */
2707 if (block->offset == 0) {
e41d7c69 2708 return xen_map_cache(addr, 0, 0);
432d268c 2709 } else if (block->host == NULL) {
e41d7c69
JK
2710 block->host =
2711 xen_map_cache(block->offset, block->length, 1);
432d268c
JN
2712 }
2713 }
f471a17e
AW
2714 return block->host + (addr - block->offset);
2715 }
94a6b54f 2716 }
f471a17e
AW
2717
2718 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2719 abort();
2720
2721 return NULL;
dc828ca1
PB
2722}
2723
b2e0a138
MT
2724/* Return a host pointer to ram allocated with qemu_ram_alloc.
2725 * Same as qemu_get_ram_ptr but avoid reordering ramblocks.
2726 */
2727void *qemu_safe_ram_ptr(ram_addr_t addr)
2728{
2729 RAMBlock *block;
2730
2731 QLIST_FOREACH(block, &ram_list.blocks, next) {
2732 if (addr - block->offset < block->length) {
868bb33f 2733 if (xen_enabled()) {
432d268c
JN
2734 /* We need to check if the requested address is in the RAM
2735 * because we don't want to map the entire memory in QEMU.
712c2b41 2736 * In that case just map until the end of the page.
432d268c
JN
2737 */
2738 if (block->offset == 0) {
e41d7c69 2739 return xen_map_cache(addr, 0, 0);
432d268c 2740 } else if (block->host == NULL) {
e41d7c69
JK
2741 block->host =
2742 xen_map_cache(block->offset, block->length, 1);
432d268c
JN
2743 }
2744 }
b2e0a138
MT
2745 return block->host + (addr - block->offset);
2746 }
2747 }
2748
2749 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2750 abort();
2751
2752 return NULL;
2753}
2754
38bee5dc
SS
2755/* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
2756 * but takes a size argument */
8ab934f9 2757void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size)
38bee5dc 2758{
8ab934f9
SS
2759 if (*size == 0) {
2760 return NULL;
2761 }
868bb33f 2762 if (xen_enabled()) {
e41d7c69 2763 return xen_map_cache(addr, *size, 1);
868bb33f 2764 } else {
38bee5dc
SS
2765 RAMBlock *block;
2766
2767 QLIST_FOREACH(block, &ram_list.blocks, next) {
2768 if (addr - block->offset < block->length) {
2769 if (addr - block->offset + *size > block->length)
2770 *size = block->length - addr + block->offset;
2771 return block->host + (addr - block->offset);
2772 }
2773 }
2774
2775 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2776 abort();
38bee5dc
SS
2777 }
2778}
2779
050a0ddf
AP
2780void qemu_put_ram_ptr(void *addr)
2781{
2782 trace_qemu_put_ram_ptr(addr);
050a0ddf
AP
2783}
2784
e890261f 2785int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
5579c7f3 2786{
94a6b54f
PB
2787 RAMBlock *block;
2788 uint8_t *host = ptr;
2789
868bb33f 2790 if (xen_enabled()) {
e41d7c69 2791 *ram_addr = xen_ram_addr_from_mapcache(ptr);
712c2b41
SS
2792 return 0;
2793 }
2794
f471a17e 2795 QLIST_FOREACH(block, &ram_list.blocks, next) {
432d268c
JN
2796 /* This case append when the block is not mapped. */
2797 if (block->host == NULL) {
2798 continue;
2799 }
f471a17e 2800 if (host - block->host < block->length) {
e890261f
MT
2801 *ram_addr = block->offset + (host - block->host);
2802 return 0;
f471a17e 2803 }
94a6b54f 2804 }
432d268c 2805
e890261f
MT
2806 return -1;
2807}
f471a17e 2808
e890261f
MT
2809/* Some of the softmmu routines need to translate from a host pointer
2810 (typically a TLB entry) back to a ram offset. */
2811ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
2812{
2813 ram_addr_t ram_addr;
f471a17e 2814
e890261f
MT
2815 if (qemu_ram_addr_from_host(ptr, &ram_addr)) {
2816 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2817 abort();
2818 }
2819 return ram_addr;
5579c7f3
PB
2820}
2821
0e0df1e2
AK
2822static uint64_t unassigned_mem_read(void *opaque, target_phys_addr_t addr,
2823 unsigned size)
e18231a3
BS
2824{
2825#ifdef DEBUG_UNASSIGNED
2826 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2827#endif
5b450407 2828#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
0e0df1e2 2829 cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, size);
e18231a3
BS
2830#endif
2831 return 0;
2832}
2833
0e0df1e2
AK
2834static void unassigned_mem_write(void *opaque, target_phys_addr_t addr,
2835 uint64_t val, unsigned size)
e18231a3
BS
2836{
2837#ifdef DEBUG_UNASSIGNED
0e0df1e2 2838 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
e18231a3 2839#endif
5b450407 2840#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
0e0df1e2 2841 cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, size);
67d3b957 2842#endif
33417e70
FB
2843}
2844
0e0df1e2
AK
2845static const MemoryRegionOps unassigned_mem_ops = {
2846 .read = unassigned_mem_read,
2847 .write = unassigned_mem_write,
2848 .endianness = DEVICE_NATIVE_ENDIAN,
2849};
e18231a3 2850
0e0df1e2
AK
2851static uint64_t error_mem_read(void *opaque, target_phys_addr_t addr,
2852 unsigned size)
e18231a3 2853{
0e0df1e2 2854 abort();
e18231a3
BS
2855}
2856
0e0df1e2
AK
2857static void error_mem_write(void *opaque, target_phys_addr_t addr,
2858 uint64_t value, unsigned size)
e18231a3 2859{
0e0df1e2 2860 abort();
33417e70
FB
2861}
2862
0e0df1e2
AK
2863static const MemoryRegionOps error_mem_ops = {
2864 .read = error_mem_read,
2865 .write = error_mem_write,
2866 .endianness = DEVICE_NATIVE_ENDIAN,
33417e70
FB
2867};
2868
0e0df1e2
AK
2869static const MemoryRegionOps rom_mem_ops = {
2870 .read = error_mem_read,
2871 .write = unassigned_mem_write,
2872 .endianness = DEVICE_NATIVE_ENDIAN,
33417e70
FB
2873};
2874
0e0df1e2
AK
2875static void notdirty_mem_write(void *opaque, target_phys_addr_t ram_addr,
2876 uint64_t val, unsigned size)
9fa3e853 2877{
3a7d929e 2878 int dirty_flags;
f7c11b53 2879 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 2880 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2881#if !defined(CONFIG_USER_ONLY)
0e0df1e2 2882 tb_invalidate_phys_page_fast(ram_addr, size);
f7c11b53 2883 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 2884#endif
3a7d929e 2885 }
0e0df1e2
AK
2886 switch (size) {
2887 case 1:
2888 stb_p(qemu_get_ram_ptr(ram_addr), val);
2889 break;
2890 case 2:
2891 stw_p(qemu_get_ram_ptr(ram_addr), val);
2892 break;
2893 case 4:
2894 stl_p(qemu_get_ram_ptr(ram_addr), val);
2895 break;
2896 default:
2897 abort();
3a7d929e 2898 }
f23db169 2899 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 2900 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
2901 /* we remove the notdirty callback only if the code has been
2902 flushed */
2903 if (dirty_flags == 0xff)
2e70f6ef 2904 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2905}
2906
0e0df1e2
AK
2907static const MemoryRegionOps notdirty_mem_ops = {
2908 .read = error_mem_read,
2909 .write = notdirty_mem_write,
2910 .endianness = DEVICE_NATIVE_ENDIAN,
1ccde1cb
FB
2911};
2912
0f459d16 2913/* Generate a debug exception if a watchpoint has been hit. */
b4051334 2914static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16 2915{
9349b4f9 2916 CPUArchState *env = cpu_single_env;
06d55cc1
AL
2917 target_ulong pc, cs_base;
2918 TranslationBlock *tb;
0f459d16 2919 target_ulong vaddr;
a1d1bb31 2920 CPUWatchpoint *wp;
06d55cc1 2921 int cpu_flags;
0f459d16 2922
06d55cc1
AL
2923 if (env->watchpoint_hit) {
2924 /* We re-entered the check after replacing the TB. Now raise
2925 * the debug interrupt so that is will trigger after the
2926 * current instruction. */
2927 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2928 return;
2929 }
2e70f6ef 2930 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
72cf2d4f 2931 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334
AL
2932 if ((vaddr == (wp->vaddr & len_mask) ||
2933 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
2934 wp->flags |= BP_WATCHPOINT_HIT;
2935 if (!env->watchpoint_hit) {
2936 env->watchpoint_hit = wp;
2937 tb = tb_find_pc(env->mem_io_pc);
2938 if (!tb) {
2939 cpu_abort(env, "check_watchpoint: could not find TB for "
2940 "pc=%p", (void *)env->mem_io_pc);
2941 }
618ba8e6 2942 cpu_restore_state(tb, env, env->mem_io_pc);
6e140f28
AL
2943 tb_phys_invalidate(tb, -1);
2944 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2945 env->exception_index = EXCP_DEBUG;
488d6577 2946 cpu_loop_exit(env);
6e140f28
AL
2947 } else {
2948 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2949 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
488d6577 2950 cpu_resume_from_signal(env, NULL);
6e140f28 2951 }
06d55cc1 2952 }
6e140f28
AL
2953 } else {
2954 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2955 }
2956 }
2957}
2958
6658ffb8
PB
2959/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2960 so these check for a hit then pass through to the normal out-of-line
2961 phys routines. */
1ec9b909
AK
2962static uint64_t watch_mem_read(void *opaque, target_phys_addr_t addr,
2963 unsigned size)
6658ffb8 2964{
1ec9b909
AK
2965 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
2966 switch (size) {
2967 case 1: return ldub_phys(addr);
2968 case 2: return lduw_phys(addr);
2969 case 4: return ldl_phys(addr);
2970 default: abort();
2971 }
6658ffb8
PB
2972}
2973
1ec9b909
AK
2974static void watch_mem_write(void *opaque, target_phys_addr_t addr,
2975 uint64_t val, unsigned size)
6658ffb8 2976{
1ec9b909
AK
2977 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
2978 switch (size) {
67364150
MF
2979 case 1:
2980 stb_phys(addr, val);
2981 break;
2982 case 2:
2983 stw_phys(addr, val);
2984 break;
2985 case 4:
2986 stl_phys(addr, val);
2987 break;
1ec9b909
AK
2988 default: abort();
2989 }
6658ffb8
PB
2990}
2991
1ec9b909
AK
2992static const MemoryRegionOps watch_mem_ops = {
2993 .read = watch_mem_read,
2994 .write = watch_mem_write,
2995 .endianness = DEVICE_NATIVE_ENDIAN,
6658ffb8 2996};
6658ffb8 2997
70c68e44
AK
2998static uint64_t subpage_read(void *opaque, target_phys_addr_t addr,
2999 unsigned len)
db7b5426 3000{
70c68e44 3001 subpage_t *mmio = opaque;
f6405247 3002 unsigned int idx = SUBPAGE_IDX(addr);
5312bd8b 3003 MemoryRegionSection *section;
db7b5426
BS
3004#if defined(DEBUG_SUBPAGE)
3005 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3006 mmio, len, addr, idx);
3007#endif
db7b5426 3008
5312bd8b
AK
3009 section = &phys_sections[mmio->sub_section[idx]];
3010 addr += mmio->base;
3011 addr -= section->offset_within_address_space;
3012 addr += section->offset_within_region;
37ec01d4 3013 return io_mem_read(section->mr, addr, len);
db7b5426
BS
3014}
3015
70c68e44
AK
3016static void subpage_write(void *opaque, target_phys_addr_t addr,
3017 uint64_t value, unsigned len)
db7b5426 3018{
70c68e44 3019 subpage_t *mmio = opaque;
f6405247 3020 unsigned int idx = SUBPAGE_IDX(addr);
5312bd8b 3021 MemoryRegionSection *section;
db7b5426 3022#if defined(DEBUG_SUBPAGE)
70c68e44
AK
3023 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
3024 " idx %d value %"PRIx64"\n",
f6405247 3025 __func__, mmio, len, addr, idx, value);
db7b5426 3026#endif
f6405247 3027
5312bd8b
AK
3028 section = &phys_sections[mmio->sub_section[idx]];
3029 addr += mmio->base;
3030 addr -= section->offset_within_address_space;
3031 addr += section->offset_within_region;
37ec01d4 3032 io_mem_write(section->mr, addr, value, len);
db7b5426
BS
3033}
3034
70c68e44
AK
3035static const MemoryRegionOps subpage_ops = {
3036 .read = subpage_read,
3037 .write = subpage_write,
3038 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
3039};
3040
de712f94
AK
3041static uint64_t subpage_ram_read(void *opaque, target_phys_addr_t addr,
3042 unsigned size)
56384e8b
AF
3043{
3044 ram_addr_t raddr = addr;
3045 void *ptr = qemu_get_ram_ptr(raddr);
de712f94
AK
3046 switch (size) {
3047 case 1: return ldub_p(ptr);
3048 case 2: return lduw_p(ptr);
3049 case 4: return ldl_p(ptr);
3050 default: abort();
3051 }
56384e8b
AF
3052}
3053
de712f94
AK
3054static void subpage_ram_write(void *opaque, target_phys_addr_t addr,
3055 uint64_t value, unsigned size)
56384e8b
AF
3056{
3057 ram_addr_t raddr = addr;
3058 void *ptr = qemu_get_ram_ptr(raddr);
de712f94
AK
3059 switch (size) {
3060 case 1: return stb_p(ptr, value);
3061 case 2: return stw_p(ptr, value);
3062 case 4: return stl_p(ptr, value);
3063 default: abort();
3064 }
56384e8b
AF
3065}
3066
de712f94
AK
3067static const MemoryRegionOps subpage_ram_ops = {
3068 .read = subpage_ram_read,
3069 .write = subpage_ram_write,
3070 .endianness = DEVICE_NATIVE_ENDIAN,
56384e8b
AF
3071};
3072
c227f099 3073static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 3074 uint16_t section)
db7b5426
BS
3075{
3076 int idx, eidx;
3077
3078 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3079 return -1;
3080 idx = SUBPAGE_IDX(start);
3081 eidx = SUBPAGE_IDX(end);
3082#if defined(DEBUG_SUBPAGE)
0bf9e31a 3083 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
db7b5426
BS
3084 mmio, start, end, idx, eidx, memory);
3085#endif
5312bd8b
AK
3086 if (memory_region_is_ram(phys_sections[section].mr)) {
3087 MemoryRegionSection new_section = phys_sections[section];
3088 new_section.mr = &io_mem_subpage_ram;
3089 section = phys_section_add(&new_section);
56384e8b 3090 }
db7b5426 3091 for (; idx <= eidx; idx++) {
5312bd8b 3092 mmio->sub_section[idx] = section;
db7b5426
BS
3093 }
3094
3095 return 0;
3096}
3097
0f0cb164 3098static subpage_t *subpage_init(target_phys_addr_t base)
db7b5426 3099{
c227f099 3100 subpage_t *mmio;
db7b5426 3101
7267c094 3102 mmio = g_malloc0(sizeof(subpage_t));
1eec614b
AL
3103
3104 mmio->base = base;
70c68e44
AK
3105 memory_region_init_io(&mmio->iomem, &subpage_ops, mmio,
3106 "subpage", TARGET_PAGE_SIZE);
b3b00c78 3107 mmio->iomem.subpage = true;
db7b5426 3108#if defined(DEBUG_SUBPAGE)
1eec614b
AL
3109 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3110 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
db7b5426 3111#endif
0f0cb164 3112 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, phys_section_unassigned);
db7b5426
BS
3113
3114 return mmio;
3115}
3116
5312bd8b
AK
3117static uint16_t dummy_section(MemoryRegion *mr)
3118{
3119 MemoryRegionSection section = {
3120 .mr = mr,
3121 .offset_within_address_space = 0,
3122 .offset_within_region = 0,
3123 .size = UINT64_MAX,
3124 };
3125
3126 return phys_section_add(&section);
3127}
3128
37ec01d4 3129MemoryRegion *iotlb_to_region(target_phys_addr_t index)
aa102231 3130{
37ec01d4 3131 return phys_sections[index & ~TARGET_PAGE_MASK].mr;
aa102231
AK
3132}
3133
e9179ce1
AK
3134static void io_mem_init(void)
3135{
0e0df1e2 3136 memory_region_init_io(&io_mem_ram, &error_mem_ops, NULL, "ram", UINT64_MAX);
0e0df1e2
AK
3137 memory_region_init_io(&io_mem_rom, &rom_mem_ops, NULL, "rom", UINT64_MAX);
3138 memory_region_init_io(&io_mem_unassigned, &unassigned_mem_ops, NULL,
3139 "unassigned", UINT64_MAX);
3140 memory_region_init_io(&io_mem_notdirty, &notdirty_mem_ops, NULL,
3141 "notdirty", UINT64_MAX);
de712f94
AK
3142 memory_region_init_io(&io_mem_subpage_ram, &subpage_ram_ops, NULL,
3143 "subpage-ram", UINT64_MAX);
1ec9b909
AK
3144 memory_region_init_io(&io_mem_watch, &watch_mem_ops, NULL,
3145 "watch", UINT64_MAX);
e9179ce1
AK
3146}
3147
50c1e149
AK
3148static void core_begin(MemoryListener *listener)
3149{
54688b1e 3150 destroy_all_mappings();
5312bd8b 3151 phys_sections_clear();
c19e8800 3152 phys_map.ptr = PHYS_MAP_NODE_NIL;
5312bd8b 3153 phys_section_unassigned = dummy_section(&io_mem_unassigned);
aa102231
AK
3154 phys_section_notdirty = dummy_section(&io_mem_notdirty);
3155 phys_section_rom = dummy_section(&io_mem_rom);
3156 phys_section_watch = dummy_section(&io_mem_watch);
50c1e149
AK
3157}
3158
3159static void core_commit(MemoryListener *listener)
3160{
9349b4f9 3161 CPUArchState *env;
117712c3
AK
3162
3163 /* since each CPU stores ram addresses in its TLB cache, we must
3164 reset the modified entries */
3165 /* XXX: slow ! */
3166 for(env = first_cpu; env != NULL; env = env->next_cpu) {
3167 tlb_flush(env, 1);
3168 }
50c1e149
AK
3169}
3170
93632747
AK
3171static void core_region_add(MemoryListener *listener,
3172 MemoryRegionSection *section)
3173{
4855d41a 3174 cpu_register_physical_memory_log(section, section->readonly);
93632747
AK
3175}
3176
3177static void core_region_del(MemoryListener *listener,
3178 MemoryRegionSection *section)
3179{
93632747
AK
3180}
3181
50c1e149
AK
3182static void core_region_nop(MemoryListener *listener,
3183 MemoryRegionSection *section)
3184{
54688b1e 3185 cpu_register_physical_memory_log(section, section->readonly);
50c1e149
AK
3186}
3187
93632747
AK
3188static void core_log_start(MemoryListener *listener,
3189 MemoryRegionSection *section)
3190{
3191}
3192
3193static void core_log_stop(MemoryListener *listener,
3194 MemoryRegionSection *section)
3195{
3196}
3197
3198static void core_log_sync(MemoryListener *listener,
3199 MemoryRegionSection *section)
3200{
3201}
3202
3203static void core_log_global_start(MemoryListener *listener)
3204{
3205 cpu_physical_memory_set_dirty_tracking(1);
3206}
3207
3208static void core_log_global_stop(MemoryListener *listener)
3209{
3210 cpu_physical_memory_set_dirty_tracking(0);
3211}
3212
3213static void core_eventfd_add(MemoryListener *listener,
3214 MemoryRegionSection *section,
3215 bool match_data, uint64_t data, int fd)
3216{
3217}
3218
3219static void core_eventfd_del(MemoryListener *listener,
3220 MemoryRegionSection *section,
3221 bool match_data, uint64_t data, int fd)
3222{
3223}
3224
50c1e149
AK
3225static void io_begin(MemoryListener *listener)
3226{
3227}
3228
3229static void io_commit(MemoryListener *listener)
3230{
3231}
3232
4855d41a
AK
3233static void io_region_add(MemoryListener *listener,
3234 MemoryRegionSection *section)
3235{
a2d33521
AK
3236 MemoryRegionIORange *mrio = g_new(MemoryRegionIORange, 1);
3237
3238 mrio->mr = section->mr;
3239 mrio->offset = section->offset_within_region;
3240 iorange_init(&mrio->iorange, &memory_region_iorange_ops,
4855d41a 3241 section->offset_within_address_space, section->size);
a2d33521 3242 ioport_register(&mrio->iorange);
4855d41a
AK
3243}
3244
3245static void io_region_del(MemoryListener *listener,
3246 MemoryRegionSection *section)
3247{
3248 isa_unassign_ioport(section->offset_within_address_space, section->size);
3249}
3250
50c1e149
AK
3251static void io_region_nop(MemoryListener *listener,
3252 MemoryRegionSection *section)
3253{
3254}
3255
4855d41a
AK
3256static void io_log_start(MemoryListener *listener,
3257 MemoryRegionSection *section)
3258{
3259}
3260
3261static void io_log_stop(MemoryListener *listener,
3262 MemoryRegionSection *section)
3263{
3264}
3265
3266static void io_log_sync(MemoryListener *listener,
3267 MemoryRegionSection *section)
3268{
3269}
3270
3271static void io_log_global_start(MemoryListener *listener)
3272{
3273}
3274
3275static void io_log_global_stop(MemoryListener *listener)
3276{
3277}
3278
3279static void io_eventfd_add(MemoryListener *listener,
3280 MemoryRegionSection *section,
3281 bool match_data, uint64_t data, int fd)
3282{
3283}
3284
3285static void io_eventfd_del(MemoryListener *listener,
3286 MemoryRegionSection *section,
3287 bool match_data, uint64_t data, int fd)
3288{
3289}
3290
93632747 3291static MemoryListener core_memory_listener = {
50c1e149
AK
3292 .begin = core_begin,
3293 .commit = core_commit,
93632747
AK
3294 .region_add = core_region_add,
3295 .region_del = core_region_del,
50c1e149 3296 .region_nop = core_region_nop,
93632747
AK
3297 .log_start = core_log_start,
3298 .log_stop = core_log_stop,
3299 .log_sync = core_log_sync,
3300 .log_global_start = core_log_global_start,
3301 .log_global_stop = core_log_global_stop,
3302 .eventfd_add = core_eventfd_add,
3303 .eventfd_del = core_eventfd_del,
3304 .priority = 0,
3305};
3306
4855d41a 3307static MemoryListener io_memory_listener = {
50c1e149
AK
3308 .begin = io_begin,
3309 .commit = io_commit,
4855d41a
AK
3310 .region_add = io_region_add,
3311 .region_del = io_region_del,
50c1e149 3312 .region_nop = io_region_nop,
4855d41a
AK
3313 .log_start = io_log_start,
3314 .log_stop = io_log_stop,
3315 .log_sync = io_log_sync,
3316 .log_global_start = io_log_global_start,
3317 .log_global_stop = io_log_global_stop,
3318 .eventfd_add = io_eventfd_add,
3319 .eventfd_del = io_eventfd_del,
3320 .priority = 0,
3321};
3322
62152b8a
AK
3323static void memory_map_init(void)
3324{
7267c094 3325 system_memory = g_malloc(sizeof(*system_memory));
8417cebf 3326 memory_region_init(system_memory, "system", INT64_MAX);
62152b8a 3327 set_system_memory_map(system_memory);
309cb471 3328
7267c094 3329 system_io = g_malloc(sizeof(*system_io));
309cb471
AK
3330 memory_region_init(system_io, "io", 65536);
3331 set_system_io_map(system_io);
93632747 3332
4855d41a
AK
3333 memory_listener_register(&core_memory_listener, system_memory);
3334 memory_listener_register(&io_memory_listener, system_io);
62152b8a
AK
3335}
3336
3337MemoryRegion *get_system_memory(void)
3338{
3339 return system_memory;
3340}
3341
309cb471
AK
3342MemoryRegion *get_system_io(void)
3343{
3344 return system_io;
3345}
3346
e2eef170
PB
3347#endif /* !defined(CONFIG_USER_ONLY) */
3348
13eb76e0
FB
3349/* physical memory access (slow version, mainly for debug) */
3350#if defined(CONFIG_USER_ONLY)
9349b4f9 3351int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
a68fe89c 3352 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3353{
3354 int l, flags;
3355 target_ulong page;
53a5960a 3356 void * p;
13eb76e0
FB
3357
3358 while (len > 0) {
3359 page = addr & TARGET_PAGE_MASK;
3360 l = (page + TARGET_PAGE_SIZE) - addr;
3361 if (l > len)
3362 l = len;
3363 flags = page_get_flags(page);
3364 if (!(flags & PAGE_VALID))
a68fe89c 3365 return -1;
13eb76e0
FB
3366 if (is_write) {
3367 if (!(flags & PAGE_WRITE))
a68fe89c 3368 return -1;
579a97f7 3369 /* XXX: this code should not depend on lock_user */
72fb7daa 3370 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 3371 return -1;
72fb7daa
AJ
3372 memcpy(p, buf, l);
3373 unlock_user(p, addr, l);
13eb76e0
FB
3374 } else {
3375 if (!(flags & PAGE_READ))
a68fe89c 3376 return -1;
579a97f7 3377 /* XXX: this code should not depend on lock_user */
72fb7daa 3378 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 3379 return -1;
72fb7daa 3380 memcpy(buf, p, l);
5b257578 3381 unlock_user(p, addr, 0);
13eb76e0
FB
3382 }
3383 len -= l;
3384 buf += l;
3385 addr += l;
3386 }
a68fe89c 3387 return 0;
13eb76e0 3388}
8df1cd07 3389
13eb76e0 3390#else
c227f099 3391void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
3392 int len, int is_write)
3393{
37ec01d4 3394 int l;
13eb76e0
FB
3395 uint8_t *ptr;
3396 uint32_t val;
c227f099 3397 target_phys_addr_t page;
f3705d53 3398 MemoryRegionSection *section;
3b46e624 3399
13eb76e0
FB
3400 while (len > 0) {
3401 page = addr & TARGET_PAGE_MASK;
3402 l = (page + TARGET_PAGE_SIZE) - addr;
3403 if (l > len)
3404 l = len;
06ef3525 3405 section = phys_page_find(page >> TARGET_PAGE_BITS);
3b46e624 3406
13eb76e0 3407 if (is_write) {
f3705d53 3408 if (!memory_region_is_ram(section->mr)) {
f1f6e3b8 3409 target_phys_addr_t addr1;
cc5bea60 3410 addr1 = memory_region_section_addr(section, addr);
6a00d601
FB
3411 /* XXX: could force cpu_single_env to NULL to avoid
3412 potential bugs */
6c2934db 3413 if (l >= 4 && ((addr1 & 3) == 0)) {
1c213d19 3414 /* 32 bit write access */
c27004ec 3415 val = ldl_p(buf);
37ec01d4 3416 io_mem_write(section->mr, addr1, val, 4);
13eb76e0 3417 l = 4;
6c2934db 3418 } else if (l >= 2 && ((addr1 & 1) == 0)) {
1c213d19 3419 /* 16 bit write access */
c27004ec 3420 val = lduw_p(buf);
37ec01d4 3421 io_mem_write(section->mr, addr1, val, 2);
13eb76e0
FB
3422 l = 2;
3423 } else {
1c213d19 3424 /* 8 bit write access */
c27004ec 3425 val = ldub_p(buf);
37ec01d4 3426 io_mem_write(section->mr, addr1, val, 1);
13eb76e0
FB
3427 l = 1;
3428 }
f3705d53 3429 } else if (!section->readonly) {
8ca5692d 3430 ram_addr_t addr1;
f3705d53 3431 addr1 = memory_region_get_ram_addr(section->mr)
cc5bea60 3432 + memory_region_section_addr(section, addr);
13eb76e0 3433 /* RAM case */
5579c7f3 3434 ptr = qemu_get_ram_ptr(addr1);
13eb76e0 3435 memcpy(ptr, buf, l);
3a7d929e
FB
3436 if (!cpu_physical_memory_is_dirty(addr1)) {
3437 /* invalidate code */
3438 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3439 /* set dirty bit */
f7c11b53
YT
3440 cpu_physical_memory_set_dirty_flags(
3441 addr1, (0xff & ~CODE_DIRTY_FLAG));
3a7d929e 3442 }
050a0ddf 3443 qemu_put_ram_ptr(ptr);
13eb76e0
FB
3444 }
3445 } else {
cc5bea60
BS
3446 if (!(memory_region_is_ram(section->mr) ||
3447 memory_region_is_romd(section->mr))) {
f1f6e3b8 3448 target_phys_addr_t addr1;
13eb76e0 3449 /* I/O case */
cc5bea60 3450 addr1 = memory_region_section_addr(section, addr);
6c2934db 3451 if (l >= 4 && ((addr1 & 3) == 0)) {
13eb76e0 3452 /* 32 bit read access */
37ec01d4 3453 val = io_mem_read(section->mr, addr1, 4);
c27004ec 3454 stl_p(buf, val);
13eb76e0 3455 l = 4;
6c2934db 3456 } else if (l >= 2 && ((addr1 & 1) == 0)) {
13eb76e0 3457 /* 16 bit read access */
37ec01d4 3458 val = io_mem_read(section->mr, addr1, 2);
c27004ec 3459 stw_p(buf, val);
13eb76e0
FB
3460 l = 2;
3461 } else {
1c213d19 3462 /* 8 bit read access */
37ec01d4 3463 val = io_mem_read(section->mr, addr1, 1);
c27004ec 3464 stb_p(buf, val);
13eb76e0
FB
3465 l = 1;
3466 }
3467 } else {
3468 /* RAM case */
0a1b357f 3469 ptr = qemu_get_ram_ptr(section->mr->ram_addr
cc5bea60
BS
3470 + memory_region_section_addr(section,
3471 addr));
f3705d53 3472 memcpy(buf, ptr, l);
050a0ddf 3473 qemu_put_ram_ptr(ptr);
13eb76e0
FB
3474 }
3475 }
3476 len -= l;
3477 buf += l;
3478 addr += l;
3479 }
3480}
8df1cd07 3481
d0ecd2aa 3482/* used for ROM loading : can write in RAM and ROM */
c227f099 3483void cpu_physical_memory_write_rom(target_phys_addr_t addr,
d0ecd2aa
FB
3484 const uint8_t *buf, int len)
3485{
3486 int l;
3487 uint8_t *ptr;
c227f099 3488 target_phys_addr_t page;
f3705d53 3489 MemoryRegionSection *section;
3b46e624 3490
d0ecd2aa
FB
3491 while (len > 0) {
3492 page = addr & TARGET_PAGE_MASK;
3493 l = (page + TARGET_PAGE_SIZE) - addr;
3494 if (l > len)
3495 l = len;
06ef3525 3496 section = phys_page_find(page >> TARGET_PAGE_BITS);
3b46e624 3497
cc5bea60
BS
3498 if (!(memory_region_is_ram(section->mr) ||
3499 memory_region_is_romd(section->mr))) {
d0ecd2aa
FB
3500 /* do nothing */
3501 } else {
3502 unsigned long addr1;
f3705d53 3503 addr1 = memory_region_get_ram_addr(section->mr)
cc5bea60 3504 + memory_region_section_addr(section, addr);
d0ecd2aa 3505 /* ROM/RAM case */
5579c7f3 3506 ptr = qemu_get_ram_ptr(addr1);
d0ecd2aa 3507 memcpy(ptr, buf, l);
050a0ddf 3508 qemu_put_ram_ptr(ptr);
d0ecd2aa
FB
3509 }
3510 len -= l;
3511 buf += l;
3512 addr += l;
3513 }
3514}
3515
6d16c2f8
AL
3516typedef struct {
3517 void *buffer;
c227f099
AL
3518 target_phys_addr_t addr;
3519 target_phys_addr_t len;
6d16c2f8
AL
3520} BounceBuffer;
3521
3522static BounceBuffer bounce;
3523
ba223c29
AL
3524typedef struct MapClient {
3525 void *opaque;
3526 void (*callback)(void *opaque);
72cf2d4f 3527 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3528} MapClient;
3529
72cf2d4f
BS
3530static QLIST_HEAD(map_client_list, MapClient) map_client_list
3531 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29
AL
3532
3533void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3534{
7267c094 3535 MapClient *client = g_malloc(sizeof(*client));
ba223c29
AL
3536
3537 client->opaque = opaque;
3538 client->callback = callback;
72cf2d4f 3539 QLIST_INSERT_HEAD(&map_client_list, client, link);
ba223c29
AL
3540 return client;
3541}
3542
3543void cpu_unregister_map_client(void *_client)
3544{
3545 MapClient *client = (MapClient *)_client;
3546
72cf2d4f 3547 QLIST_REMOVE(client, link);
7267c094 3548 g_free(client);
ba223c29
AL
3549}
3550
3551static void cpu_notify_map_clients(void)
3552{
3553 MapClient *client;
3554
72cf2d4f
BS
3555 while (!QLIST_EMPTY(&map_client_list)) {
3556 client = QLIST_FIRST(&map_client_list);
ba223c29 3557 client->callback(client->opaque);
34d5e948 3558 cpu_unregister_map_client(client);
ba223c29
AL
3559 }
3560}
3561
6d16c2f8
AL
3562/* Map a physical memory region into a host virtual address.
3563 * May map a subset of the requested range, given by and returned in *plen.
3564 * May return NULL if resources needed to perform the mapping are exhausted.
3565 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3566 * Use cpu_register_map_client() to know when retrying the map operation is
3567 * likely to succeed.
6d16c2f8 3568 */
c227f099
AL
3569void *cpu_physical_memory_map(target_phys_addr_t addr,
3570 target_phys_addr_t *plen,
6d16c2f8
AL
3571 int is_write)
3572{
c227f099 3573 target_phys_addr_t len = *plen;
38bee5dc 3574 target_phys_addr_t todo = 0;
6d16c2f8 3575 int l;
c227f099 3576 target_phys_addr_t page;
f3705d53 3577 MemoryRegionSection *section;
f15fbc4b 3578 ram_addr_t raddr = RAM_ADDR_MAX;
8ab934f9
SS
3579 ram_addr_t rlen;
3580 void *ret;
6d16c2f8
AL
3581
3582 while (len > 0) {
3583 page = addr & TARGET_PAGE_MASK;
3584 l = (page + TARGET_PAGE_SIZE) - addr;
3585 if (l > len)
3586 l = len;
06ef3525 3587 section = phys_page_find(page >> TARGET_PAGE_BITS);
6d16c2f8 3588
f3705d53 3589 if (!(memory_region_is_ram(section->mr) && !section->readonly)) {
38bee5dc 3590 if (todo || bounce.buffer) {
6d16c2f8
AL
3591 break;
3592 }
3593 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3594 bounce.addr = addr;
3595 bounce.len = l;
3596 if (!is_write) {
54f7b4a3 3597 cpu_physical_memory_read(addr, bounce.buffer, l);
6d16c2f8 3598 }
38bee5dc
SS
3599
3600 *plen = l;
3601 return bounce.buffer;
6d16c2f8 3602 }
8ab934f9 3603 if (!todo) {
f3705d53 3604 raddr = memory_region_get_ram_addr(section->mr)
cc5bea60 3605 + memory_region_section_addr(section, addr);
8ab934f9 3606 }
6d16c2f8
AL
3607
3608 len -= l;
3609 addr += l;
38bee5dc 3610 todo += l;
6d16c2f8 3611 }
8ab934f9
SS
3612 rlen = todo;
3613 ret = qemu_ram_ptr_length(raddr, &rlen);
3614 *plen = rlen;
3615 return ret;
6d16c2f8
AL
3616}
3617
3618/* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3619 * Will also mark the memory as dirty if is_write == 1. access_len gives
3620 * the amount of memory that was actually read or written by the caller.
3621 */
c227f099
AL
3622void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3623 int is_write, target_phys_addr_t access_len)
6d16c2f8
AL
3624{
3625 if (buffer != bounce.buffer) {
3626 if (is_write) {
e890261f 3627 ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer);
6d16c2f8
AL
3628 while (access_len) {
3629 unsigned l;
3630 l = TARGET_PAGE_SIZE;
3631 if (l > access_len)
3632 l = access_len;
3633 if (!cpu_physical_memory_is_dirty(addr1)) {
3634 /* invalidate code */
3635 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3636 /* set dirty bit */
f7c11b53
YT
3637 cpu_physical_memory_set_dirty_flags(
3638 addr1, (0xff & ~CODE_DIRTY_FLAG));
6d16c2f8
AL
3639 }
3640 addr1 += l;
3641 access_len -= l;
3642 }
3643 }
868bb33f 3644 if (xen_enabled()) {
e41d7c69 3645 xen_invalidate_map_cache_entry(buffer);
050a0ddf 3646 }
6d16c2f8
AL
3647 return;
3648 }
3649 if (is_write) {
3650 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3651 }
f8a83245 3652 qemu_vfree(bounce.buffer);
6d16c2f8 3653 bounce.buffer = NULL;
ba223c29 3654 cpu_notify_map_clients();
6d16c2f8 3655}
d0ecd2aa 3656
8df1cd07 3657/* warning: addr must be aligned */
1e78bcc1
AG
3658static inline uint32_t ldl_phys_internal(target_phys_addr_t addr,
3659 enum device_endian endian)
8df1cd07 3660{
8df1cd07
FB
3661 uint8_t *ptr;
3662 uint32_t val;
f3705d53 3663 MemoryRegionSection *section;
8df1cd07 3664
06ef3525 3665 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3b46e624 3666
cc5bea60
BS
3667 if (!(memory_region_is_ram(section->mr) ||
3668 memory_region_is_romd(section->mr))) {
8df1cd07 3669 /* I/O case */
cc5bea60 3670 addr = memory_region_section_addr(section, addr);
37ec01d4 3671 val = io_mem_read(section->mr, addr, 4);
1e78bcc1
AG
3672#if defined(TARGET_WORDS_BIGENDIAN)
3673 if (endian == DEVICE_LITTLE_ENDIAN) {
3674 val = bswap32(val);
3675 }
3676#else
3677 if (endian == DEVICE_BIG_ENDIAN) {
3678 val = bswap32(val);
3679 }
3680#endif
8df1cd07
FB
3681 } else {
3682 /* RAM case */
f3705d53 3683 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
06ef3525 3684 & TARGET_PAGE_MASK)
cc5bea60 3685 + memory_region_section_addr(section, addr));
1e78bcc1
AG
3686 switch (endian) {
3687 case DEVICE_LITTLE_ENDIAN:
3688 val = ldl_le_p(ptr);
3689 break;
3690 case DEVICE_BIG_ENDIAN:
3691 val = ldl_be_p(ptr);
3692 break;
3693 default:
3694 val = ldl_p(ptr);
3695 break;
3696 }
8df1cd07
FB
3697 }
3698 return val;
3699}
3700
1e78bcc1
AG
3701uint32_t ldl_phys(target_phys_addr_t addr)
3702{
3703 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
3704}
3705
3706uint32_t ldl_le_phys(target_phys_addr_t addr)
3707{
3708 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
3709}
3710
3711uint32_t ldl_be_phys(target_phys_addr_t addr)
3712{
3713 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
3714}
3715
84b7b8e7 3716/* warning: addr must be aligned */
1e78bcc1
AG
3717static inline uint64_t ldq_phys_internal(target_phys_addr_t addr,
3718 enum device_endian endian)
84b7b8e7 3719{
84b7b8e7
FB
3720 uint8_t *ptr;
3721 uint64_t val;
f3705d53 3722 MemoryRegionSection *section;
84b7b8e7 3723
06ef3525 3724 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3b46e624 3725
cc5bea60
BS
3726 if (!(memory_region_is_ram(section->mr) ||
3727 memory_region_is_romd(section->mr))) {
84b7b8e7 3728 /* I/O case */
cc5bea60 3729 addr = memory_region_section_addr(section, addr);
1e78bcc1
AG
3730
3731 /* XXX This is broken when device endian != cpu endian.
3732 Fix and add "endian" variable check */
84b7b8e7 3733#ifdef TARGET_WORDS_BIGENDIAN
37ec01d4
AK
3734 val = io_mem_read(section->mr, addr, 4) << 32;
3735 val |= io_mem_read(section->mr, addr + 4, 4);
84b7b8e7 3736#else
37ec01d4
AK
3737 val = io_mem_read(section->mr, addr, 4);
3738 val |= io_mem_read(section->mr, addr + 4, 4) << 32;
84b7b8e7
FB
3739#endif
3740 } else {
3741 /* RAM case */
f3705d53 3742 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
06ef3525 3743 & TARGET_PAGE_MASK)
cc5bea60 3744 + memory_region_section_addr(section, addr));
1e78bcc1
AG
3745 switch (endian) {
3746 case DEVICE_LITTLE_ENDIAN:
3747 val = ldq_le_p(ptr);
3748 break;
3749 case DEVICE_BIG_ENDIAN:
3750 val = ldq_be_p(ptr);
3751 break;
3752 default:
3753 val = ldq_p(ptr);
3754 break;
3755 }
84b7b8e7
FB
3756 }
3757 return val;
3758}
3759
1e78bcc1
AG
3760uint64_t ldq_phys(target_phys_addr_t addr)
3761{
3762 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
3763}
3764
3765uint64_t ldq_le_phys(target_phys_addr_t addr)
3766{
3767 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
3768}
3769
3770uint64_t ldq_be_phys(target_phys_addr_t addr)
3771{
3772 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
3773}
3774
aab33094 3775/* XXX: optimize */
c227f099 3776uint32_t ldub_phys(target_phys_addr_t addr)
aab33094
FB
3777{
3778 uint8_t val;
3779 cpu_physical_memory_read(addr, &val, 1);
3780 return val;
3781}
3782
733f0b02 3783/* warning: addr must be aligned */
1e78bcc1
AG
3784static inline uint32_t lduw_phys_internal(target_phys_addr_t addr,
3785 enum device_endian endian)
aab33094 3786{
733f0b02
MT
3787 uint8_t *ptr;
3788 uint64_t val;
f3705d53 3789 MemoryRegionSection *section;
733f0b02 3790
06ef3525 3791 section = phys_page_find(addr >> TARGET_PAGE_BITS);
733f0b02 3792
cc5bea60
BS
3793 if (!(memory_region_is_ram(section->mr) ||
3794 memory_region_is_romd(section->mr))) {
733f0b02 3795 /* I/O case */
cc5bea60 3796 addr = memory_region_section_addr(section, addr);
37ec01d4 3797 val = io_mem_read(section->mr, addr, 2);
1e78bcc1
AG
3798#if defined(TARGET_WORDS_BIGENDIAN)
3799 if (endian == DEVICE_LITTLE_ENDIAN) {
3800 val = bswap16(val);
3801 }
3802#else
3803 if (endian == DEVICE_BIG_ENDIAN) {
3804 val = bswap16(val);
3805 }
3806#endif
733f0b02
MT
3807 } else {
3808 /* RAM case */
f3705d53 3809 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
06ef3525 3810 & TARGET_PAGE_MASK)
cc5bea60 3811 + memory_region_section_addr(section, addr));
1e78bcc1
AG
3812 switch (endian) {
3813 case DEVICE_LITTLE_ENDIAN:
3814 val = lduw_le_p(ptr);
3815 break;
3816 case DEVICE_BIG_ENDIAN:
3817 val = lduw_be_p(ptr);
3818 break;
3819 default:
3820 val = lduw_p(ptr);
3821 break;
3822 }
733f0b02
MT
3823 }
3824 return val;
aab33094
FB
3825}
3826
1e78bcc1
AG
3827uint32_t lduw_phys(target_phys_addr_t addr)
3828{
3829 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
3830}
3831
3832uint32_t lduw_le_phys(target_phys_addr_t addr)
3833{
3834 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
3835}
3836
3837uint32_t lduw_be_phys(target_phys_addr_t addr)
3838{
3839 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
3840}
3841
8df1cd07
FB
3842/* warning: addr must be aligned. The ram page is not masked as dirty
3843 and the code inside is not invalidated. It is useful if the dirty
3844 bits are used to track modified PTEs */
c227f099 3845void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
8df1cd07 3846{
8df1cd07 3847 uint8_t *ptr;
f3705d53 3848 MemoryRegionSection *section;
8df1cd07 3849
06ef3525 3850 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3b46e624 3851
f3705d53 3852 if (!memory_region_is_ram(section->mr) || section->readonly) {
cc5bea60 3853 addr = memory_region_section_addr(section, addr);
f3705d53 3854 if (memory_region_is_ram(section->mr)) {
37ec01d4 3855 section = &phys_sections[phys_section_rom];
06ef3525 3856 }
37ec01d4 3857 io_mem_write(section->mr, addr, val, 4);
8df1cd07 3858 } else {
f3705d53 3859 unsigned long addr1 = (memory_region_get_ram_addr(section->mr)
06ef3525 3860 & TARGET_PAGE_MASK)
cc5bea60 3861 + memory_region_section_addr(section, addr);
5579c7f3 3862 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3863 stl_p(ptr, val);
74576198
AL
3864
3865 if (unlikely(in_migration)) {
3866 if (!cpu_physical_memory_is_dirty(addr1)) {
3867 /* invalidate code */
3868 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3869 /* set dirty bit */
f7c11b53
YT
3870 cpu_physical_memory_set_dirty_flags(
3871 addr1, (0xff & ~CODE_DIRTY_FLAG));
74576198
AL
3872 }
3873 }
8df1cd07
FB
3874 }
3875}
3876
c227f099 3877void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
bc98a7ef 3878{
bc98a7ef 3879 uint8_t *ptr;
f3705d53 3880 MemoryRegionSection *section;
bc98a7ef 3881
06ef3525 3882 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3b46e624 3883
f3705d53 3884 if (!memory_region_is_ram(section->mr) || section->readonly) {
cc5bea60 3885 addr = memory_region_section_addr(section, addr);
f3705d53 3886 if (memory_region_is_ram(section->mr)) {
37ec01d4 3887 section = &phys_sections[phys_section_rom];
06ef3525 3888 }
bc98a7ef 3889#ifdef TARGET_WORDS_BIGENDIAN
37ec01d4
AK
3890 io_mem_write(section->mr, addr, val >> 32, 4);
3891 io_mem_write(section->mr, addr + 4, (uint32_t)val, 4);
bc98a7ef 3892#else
37ec01d4
AK
3893 io_mem_write(section->mr, addr, (uint32_t)val, 4);
3894 io_mem_write(section->mr, addr + 4, val >> 32, 4);
bc98a7ef
JM
3895#endif
3896 } else {
f3705d53 3897 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
06ef3525 3898 & TARGET_PAGE_MASK)
cc5bea60 3899 + memory_region_section_addr(section, addr));
bc98a7ef
JM
3900 stq_p(ptr, val);
3901 }
3902}
3903
8df1cd07 3904/* warning: addr must be aligned */
1e78bcc1
AG
3905static inline void stl_phys_internal(target_phys_addr_t addr, uint32_t val,
3906 enum device_endian endian)
8df1cd07 3907{
8df1cd07 3908 uint8_t *ptr;
f3705d53 3909 MemoryRegionSection *section;
8df1cd07 3910
06ef3525 3911 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3b46e624 3912
f3705d53 3913 if (!memory_region_is_ram(section->mr) || section->readonly) {
cc5bea60 3914 addr = memory_region_section_addr(section, addr);
f3705d53 3915 if (memory_region_is_ram(section->mr)) {
37ec01d4 3916 section = &phys_sections[phys_section_rom];
06ef3525 3917 }
1e78bcc1
AG
3918#if defined(TARGET_WORDS_BIGENDIAN)
3919 if (endian == DEVICE_LITTLE_ENDIAN) {
3920 val = bswap32(val);
3921 }
3922#else
3923 if (endian == DEVICE_BIG_ENDIAN) {
3924 val = bswap32(val);
3925 }
3926#endif
37ec01d4 3927 io_mem_write(section->mr, addr, val, 4);
8df1cd07
FB
3928 } else {
3929 unsigned long addr1;
f3705d53 3930 addr1 = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
cc5bea60 3931 + memory_region_section_addr(section, addr);
8df1cd07 3932 /* RAM case */
5579c7f3 3933 ptr = qemu_get_ram_ptr(addr1);
1e78bcc1
AG
3934 switch (endian) {
3935 case DEVICE_LITTLE_ENDIAN:
3936 stl_le_p(ptr, val);
3937 break;
3938 case DEVICE_BIG_ENDIAN:
3939 stl_be_p(ptr, val);
3940 break;
3941 default:
3942 stl_p(ptr, val);
3943 break;
3944 }
3a7d929e
FB
3945 if (!cpu_physical_memory_is_dirty(addr1)) {
3946 /* invalidate code */
3947 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3948 /* set dirty bit */
f7c11b53
YT
3949 cpu_physical_memory_set_dirty_flags(addr1,
3950 (0xff & ~CODE_DIRTY_FLAG));
3a7d929e 3951 }
8df1cd07
FB
3952 }
3953}
3954
1e78bcc1
AG
3955void stl_phys(target_phys_addr_t addr, uint32_t val)
3956{
3957 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
3958}
3959
3960void stl_le_phys(target_phys_addr_t addr, uint32_t val)
3961{
3962 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
3963}
3964
3965void stl_be_phys(target_phys_addr_t addr, uint32_t val)
3966{
3967 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
3968}
3969
aab33094 3970/* XXX: optimize */
c227f099 3971void stb_phys(target_phys_addr_t addr, uint32_t val)
aab33094
FB
3972{
3973 uint8_t v = val;
3974 cpu_physical_memory_write(addr, &v, 1);
3975}
3976
733f0b02 3977/* warning: addr must be aligned */
1e78bcc1
AG
3978static inline void stw_phys_internal(target_phys_addr_t addr, uint32_t val,
3979 enum device_endian endian)
aab33094 3980{
733f0b02 3981 uint8_t *ptr;
f3705d53 3982 MemoryRegionSection *section;
733f0b02 3983
06ef3525 3984 section = phys_page_find(addr >> TARGET_PAGE_BITS);
733f0b02 3985
f3705d53 3986 if (!memory_region_is_ram(section->mr) || section->readonly) {
cc5bea60 3987 addr = memory_region_section_addr(section, addr);
f3705d53 3988 if (memory_region_is_ram(section->mr)) {
37ec01d4 3989 section = &phys_sections[phys_section_rom];
06ef3525 3990 }
1e78bcc1
AG
3991#if defined(TARGET_WORDS_BIGENDIAN)
3992 if (endian == DEVICE_LITTLE_ENDIAN) {
3993 val = bswap16(val);
3994 }
3995#else
3996 if (endian == DEVICE_BIG_ENDIAN) {
3997 val = bswap16(val);
3998 }
3999#endif
37ec01d4 4000 io_mem_write(section->mr, addr, val, 2);
733f0b02
MT
4001 } else {
4002 unsigned long addr1;
f3705d53 4003 addr1 = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
cc5bea60 4004 + memory_region_section_addr(section, addr);
733f0b02
MT
4005 /* RAM case */
4006 ptr = qemu_get_ram_ptr(addr1);
1e78bcc1
AG
4007 switch (endian) {
4008 case DEVICE_LITTLE_ENDIAN:
4009 stw_le_p(ptr, val);
4010 break;
4011 case DEVICE_BIG_ENDIAN:
4012 stw_be_p(ptr, val);
4013 break;
4014 default:
4015 stw_p(ptr, val);
4016 break;
4017 }
733f0b02
MT
4018 if (!cpu_physical_memory_is_dirty(addr1)) {
4019 /* invalidate code */
4020 tb_invalidate_phys_page_range(addr1, addr1 + 2, 0);
4021 /* set dirty bit */
4022 cpu_physical_memory_set_dirty_flags(addr1,
4023 (0xff & ~CODE_DIRTY_FLAG));
4024 }
4025 }
aab33094
FB
4026}
4027
1e78bcc1
AG
4028void stw_phys(target_phys_addr_t addr, uint32_t val)
4029{
4030 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
4031}
4032
4033void stw_le_phys(target_phys_addr_t addr, uint32_t val)
4034{
4035 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
4036}
4037
4038void stw_be_phys(target_phys_addr_t addr, uint32_t val)
4039{
4040 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
4041}
4042
aab33094 4043/* XXX: optimize */
c227f099 4044void stq_phys(target_phys_addr_t addr, uint64_t val)
aab33094
FB
4045{
4046 val = tswap64(val);
71d2b725 4047 cpu_physical_memory_write(addr, &val, 8);
aab33094
FB
4048}
4049
1e78bcc1
AG
4050void stq_le_phys(target_phys_addr_t addr, uint64_t val)
4051{
4052 val = cpu_to_le64(val);
4053 cpu_physical_memory_write(addr, &val, 8);
4054}
4055
4056void stq_be_phys(target_phys_addr_t addr, uint64_t val)
4057{
4058 val = cpu_to_be64(val);
4059 cpu_physical_memory_write(addr, &val, 8);
4060}
4061
5e2972fd 4062/* virtual memory access for debug (includes writing to ROM) */
9349b4f9 4063int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
b448f2f3 4064 uint8_t *buf, int len, int is_write)
13eb76e0
FB
4065{
4066 int l;
c227f099 4067 target_phys_addr_t phys_addr;
9b3c35e0 4068 target_ulong page;
13eb76e0
FB
4069
4070 while (len > 0) {
4071 page = addr & TARGET_PAGE_MASK;
4072 phys_addr = cpu_get_phys_page_debug(env, page);
4073 /* if no physical page mapped, return an error */
4074 if (phys_addr == -1)
4075 return -1;
4076 l = (page + TARGET_PAGE_SIZE) - addr;
4077 if (l > len)
4078 l = len;
5e2972fd 4079 phys_addr += (addr & ~TARGET_PAGE_MASK);
5e2972fd
AL
4080 if (is_write)
4081 cpu_physical_memory_write_rom(phys_addr, buf, l);
4082 else
5e2972fd 4083 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
13eb76e0
FB
4084 len -= l;
4085 buf += l;
4086 addr += l;
4087 }
4088 return 0;
4089}
a68fe89c 4090#endif
13eb76e0 4091
2e70f6ef
PB
4092/* in deterministic execution mode, instructions doing device I/Os
4093 must be at the end of the TB */
20503968 4094void cpu_io_recompile(CPUArchState *env, uintptr_t retaddr)
2e70f6ef
PB
4095{
4096 TranslationBlock *tb;
4097 uint32_t n, cflags;
4098 target_ulong pc, cs_base;
4099 uint64_t flags;
4100
20503968 4101 tb = tb_find_pc(retaddr);
2e70f6ef
PB
4102 if (!tb) {
4103 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
20503968 4104 (void *)retaddr);
2e70f6ef
PB
4105 }
4106 n = env->icount_decr.u16.low + tb->icount;
20503968 4107 cpu_restore_state(tb, env, retaddr);
2e70f6ef 4108 /* Calculate how many instructions had been executed before the fault
bf20dc07 4109 occurred. */
2e70f6ef
PB
4110 n = n - env->icount_decr.u16.low;
4111 /* Generate a new TB ending on the I/O insn. */
4112 n++;
4113 /* On MIPS and SH, delay slot instructions can only be restarted if
4114 they were already the first instruction in the TB. If this is not
bf20dc07 4115 the first instruction in a TB then re-execute the preceding
2e70f6ef
PB
4116 branch. */
4117#if defined(TARGET_MIPS)
4118 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
4119 env->active_tc.PC -= 4;
4120 env->icount_decr.u16.low++;
4121 env->hflags &= ~MIPS_HFLAG_BMASK;
4122 }
4123#elif defined(TARGET_SH4)
4124 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
4125 && n > 1) {
4126 env->pc -= 2;
4127 env->icount_decr.u16.low++;
4128 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
4129 }
4130#endif
4131 /* This should never happen. */
4132 if (n > CF_COUNT_MASK)
4133 cpu_abort(env, "TB too big during recompile");
4134
4135 cflags = n | CF_LAST_IO;
4136 pc = tb->pc;
4137 cs_base = tb->cs_base;
4138 flags = tb->flags;
4139 tb_phys_invalidate(tb, -1);
4140 /* FIXME: In theory this could raise an exception. In practice
4141 we have already translated the block once so it's probably ok. */
4142 tb_gen_code(env, pc, cs_base, flags, cflags);
bf20dc07 4143 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2e70f6ef
PB
4144 the first in the TB) then we end up generating a whole new TB and
4145 repeating the fault, which is horribly inefficient.
4146 Better would be to execute just this insn uncached, or generate a
4147 second new TB. */
4148 cpu_resume_from_signal(env, NULL);
4149}
4150
b3755a91
PB
4151#if !defined(CONFIG_USER_ONLY)
4152
055403b2 4153void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
e3db7226
FB
4154{
4155 int i, target_code_size, max_target_code_size;
4156 int direct_jmp_count, direct_jmp2_count, cross_page;
4157 TranslationBlock *tb;
3b46e624 4158
e3db7226
FB
4159 target_code_size = 0;
4160 max_target_code_size = 0;
4161 cross_page = 0;
4162 direct_jmp_count = 0;
4163 direct_jmp2_count = 0;
4164 for(i = 0; i < nb_tbs; i++) {
4165 tb = &tbs[i];
4166 target_code_size += tb->size;
4167 if (tb->size > max_target_code_size)
4168 max_target_code_size = tb->size;
4169 if (tb->page_addr[1] != -1)
4170 cross_page++;
4171 if (tb->tb_next_offset[0] != 0xffff) {
4172 direct_jmp_count++;
4173 if (tb->tb_next_offset[1] != 0xffff) {
4174 direct_jmp2_count++;
4175 }
4176 }
4177 }
4178 /* XXX: avoid using doubles ? */
57fec1fe 4179 cpu_fprintf(f, "Translation buffer state:\n");
055403b2 4180 cpu_fprintf(f, "gen code size %td/%ld\n",
26a5f13b
FB
4181 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
4182 cpu_fprintf(f, "TB count %d/%d\n",
4183 nb_tbs, code_gen_max_blocks);
5fafdf24 4184 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
e3db7226
FB
4185 nb_tbs ? target_code_size / nb_tbs : 0,
4186 max_target_code_size);
055403b2 4187 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
e3db7226
FB
4188 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
4189 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
5fafdf24
TS
4190 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
4191 cross_page,
e3db7226
FB
4192 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
4193 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
5fafdf24 4194 direct_jmp_count,
e3db7226
FB
4195 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
4196 direct_jmp2_count,
4197 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
57fec1fe 4198 cpu_fprintf(f, "\nStatistics:\n");
e3db7226
FB
4199 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
4200 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
4201 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
b67d9a52 4202 tcg_dump_info(f, cpu_fprintf);
e3db7226
FB
4203}
4204
82afa586
BH
4205/*
4206 * A helper function for the _utterly broken_ virtio device model to find out if
4207 * it's running on a big endian machine. Don't do this at home kids!
4208 */
4209bool virtio_is_big_endian(void);
4210bool virtio_is_big_endian(void)
4211{
4212#if defined(TARGET_WORDS_BIGENDIAN)
4213 return true;
4214#else
4215 return false;
4216#endif
4217}
4218
61382a50 4219#endif
76f35538
WC
4220
4221#ifndef CONFIG_USER_ONLY
4222bool cpu_physical_memory_is_io(target_phys_addr_t phys_addr)
4223{
4224 MemoryRegionSection *section;
4225
4226 section = phys_page_find(phys_addr >> TARGET_PAGE_BITS);
4227
4228 return !(memory_region_is_ram(section->mr) ||
4229 memory_region_is_romd(section->mr));
4230}
4231#endif