]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
MAINTAINERS: Fix subsystem name for "Build and test automation"
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
5b6dd868 2 * Virtual page mapping
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
7b31bbc2 19#include "qemu/osdep.h"
da34e65c 20#include "qapi/error.h"
777872e5 21#ifndef _WIN32
d5a8f07c 22#endif
54936004 23
f348b6d1 24#include "qemu/cutils.h"
6180a181 25#include "cpu.h"
63c91552 26#include "exec/exec-all.h"
51180423 27#include "exec/target_page.h"
b67d9a52 28#include "tcg.h"
741da0d3 29#include "hw/qdev-core.h"
c7e002c5 30#include "hw/qdev-properties.h"
4485bd26 31#if !defined(CONFIG_USER_ONLY)
47c8ca53 32#include "hw/boards.h"
33c11879 33#include "hw/xen/xen.h"
4485bd26 34#endif
9c17d615 35#include "sysemu/kvm.h"
2ff3de68 36#include "sysemu/sysemu.h"
1de7afc9
PB
37#include "qemu/timer.h"
38#include "qemu/config-file.h"
75a34036 39#include "qemu/error-report.h"
53a5960a 40#if defined(CONFIG_USER_ONLY)
a9c94277 41#include "qemu.h"
432d268c 42#else /* !CONFIG_USER_ONLY */
741da0d3
PB
43#include "hw/hw.h"
44#include "exec/memory.h"
df43d49c 45#include "exec/ioport.h"
741da0d3 46#include "sysemu/dma.h"
9c607668 47#include "sysemu/numa.h"
79ca7a1b 48#include "sysemu/hw_accel.h"
741da0d3 49#include "exec/address-spaces.h"
9c17d615 50#include "sysemu/xen-mapcache.h"
0ab8ed18 51#include "trace-root.h"
d3a5038c 52
e2fa71f5
DDAG
53#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
54#include <fcntl.h>
55#include <linux/falloc.h>
56#endif
57
53a5960a 58#endif
0dc3f44a 59#include "qemu/rcu_queue.h"
4840f10e 60#include "qemu/main-loop.h"
5b6dd868 61#include "translate-all.h"
7615936e 62#include "sysemu/replay.h"
0cac1b66 63
022c62cb 64#include "exec/memory-internal.h"
220c3ebd 65#include "exec/ram_addr.h"
508127e2 66#include "exec/log.h"
67d95c15 67
9dfeca7c
BR
68#include "migration/vmstate.h"
69
b35ba30f 70#include "qemu/range.h"
794e8f30
MT
71#ifndef _WIN32
72#include "qemu/mmap-alloc.h"
73#endif
b35ba30f 74
be9b23c4
PX
75#include "monitor/monitor.h"
76
db7b5426 77//#define DEBUG_SUBPAGE
1196be37 78
e2eef170 79#if !defined(CONFIG_USER_ONLY)
0dc3f44a
MD
80/* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
81 * are protected by the ramlist lock.
82 */
0d53d9fe 83RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
84
85static MemoryRegion *system_memory;
309cb471 86static MemoryRegion *system_io;
62152b8a 87
f6790af6
AK
88AddressSpace address_space_io;
89AddressSpace address_space_memory;
2673a5da 90
0844e007 91MemoryRegion io_mem_rom, io_mem_notdirty;
acc9d80b 92static MemoryRegion io_mem_unassigned;
0e0df1e2 93
7bd4f430
PB
94/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
95#define RAM_PREALLOC (1 << 0)
96
dbcb8981
PB
97/* RAM is mmap-ed with MAP_SHARED */
98#define RAM_SHARED (1 << 1)
99
62be4e3a
MT
100/* Only a portion of RAM (used_length) is actually used, and migrated.
101 * This used_length size can change across reboots.
102 */
103#define RAM_RESIZEABLE (1 << 2)
104
e2eef170 105#endif
9fa3e853 106
20bccb82
PM
107#ifdef TARGET_PAGE_BITS_VARY
108int target_page_bits;
109bool target_page_bits_decided;
110#endif
111
bdc44640 112struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
6a00d601
FB
113/* current CPU in the current thread. It is only valid inside
114 cpu_exec() */
f240eb6f 115__thread CPUState *current_cpu;
2e70f6ef 116/* 0 = Do not count executed instructions.
bf20dc07 117 1 = Precise instruction counting.
2e70f6ef 118 2 = Adaptive rate instruction counting. */
5708fc66 119int use_icount;
6a00d601 120
a0be0c58
YZ
121uintptr_t qemu_host_page_size;
122intptr_t qemu_host_page_mask;
123uintptr_t qemu_real_host_page_size;
124intptr_t qemu_real_host_page_mask;
125
20bccb82
PM
126bool set_preferred_target_page_bits(int bits)
127{
128 /* The target page size is the lowest common denominator for all
129 * the CPUs in the system, so we can only make it smaller, never
130 * larger. And we can't make it smaller once we've committed to
131 * a particular size.
132 */
133#ifdef TARGET_PAGE_BITS_VARY
134 assert(bits >= TARGET_PAGE_BITS_MIN);
135 if (target_page_bits == 0 || target_page_bits > bits) {
136 if (target_page_bits_decided) {
137 return false;
138 }
139 target_page_bits = bits;
140 }
141#endif
142 return true;
143}
144
e2eef170 145#if !defined(CONFIG_USER_ONLY)
4346ae3e 146
20bccb82
PM
147static void finalize_target_page_bits(void)
148{
149#ifdef TARGET_PAGE_BITS_VARY
150 if (target_page_bits == 0) {
151 target_page_bits = TARGET_PAGE_BITS_MIN;
152 }
153 target_page_bits_decided = true;
154#endif
155}
156
1db8abb1
PB
157typedef struct PhysPageEntry PhysPageEntry;
158
159struct PhysPageEntry {
9736e55b 160 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
8b795765 161 uint32_t skip : 6;
9736e55b 162 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
8b795765 163 uint32_t ptr : 26;
1db8abb1
PB
164};
165
8b795765
MT
166#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
167
03f49957 168/* Size of the L2 (and L3, etc) page tables. */
57271d63 169#define ADDR_SPACE_BITS 64
03f49957 170
026736ce 171#define P_L2_BITS 9
03f49957
PB
172#define P_L2_SIZE (1 << P_L2_BITS)
173
174#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
175
176typedef PhysPageEntry Node[P_L2_SIZE];
0475d94f 177
53cb28cb 178typedef struct PhysPageMap {
79e2b9ae
PB
179 struct rcu_head rcu;
180
53cb28cb
MA
181 unsigned sections_nb;
182 unsigned sections_nb_alloc;
183 unsigned nodes_nb;
184 unsigned nodes_nb_alloc;
185 Node *nodes;
186 MemoryRegionSection *sections;
187} PhysPageMap;
188
1db8abb1 189struct AddressSpaceDispatch {
79e2b9ae
PB
190 struct rcu_head rcu;
191
729633c2 192 MemoryRegionSection *mru_section;
1db8abb1
PB
193 /* This is a multi-level map on the physical address space.
194 * The bottom level has pointers to MemoryRegionSections.
195 */
196 PhysPageEntry phys_map;
53cb28cb 197 PhysPageMap map;
acc9d80b 198 AddressSpace *as;
1db8abb1
PB
199};
200
90260c6c
JK
201#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
202typedef struct subpage_t {
203 MemoryRegion iomem;
acc9d80b 204 AddressSpace *as;
90260c6c 205 hwaddr base;
2615fabd 206 uint16_t sub_section[];
90260c6c
JK
207} subpage_t;
208
b41aac4f
LPF
209#define PHYS_SECTION_UNASSIGNED 0
210#define PHYS_SECTION_NOTDIRTY 1
211#define PHYS_SECTION_ROM 2
212#define PHYS_SECTION_WATCH 3
5312bd8b 213
e2eef170 214static void io_mem_init(void);
62152b8a 215static void memory_map_init(void);
09daed84 216static void tcg_commit(MemoryListener *listener);
e2eef170 217
1ec9b909 218static MemoryRegion io_mem_watch;
32857f4d
PM
219
220/**
221 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
222 * @cpu: the CPU whose AddressSpace this is
223 * @as: the AddressSpace itself
224 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
225 * @tcg_as_listener: listener for tracking changes to the AddressSpace
226 */
227struct CPUAddressSpace {
228 CPUState *cpu;
229 AddressSpace *as;
230 struct AddressSpaceDispatch *memory_dispatch;
231 MemoryListener tcg_as_listener;
232};
233
8deaf12c
GH
234struct DirtyBitmapSnapshot {
235 ram_addr_t start;
236 ram_addr_t end;
237 unsigned long dirty[];
238};
239
6658ffb8 240#endif
fd6ce8f6 241
6d9a1304 242#if !defined(CONFIG_USER_ONLY)
d6f2ea22 243
53cb28cb 244static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
d6f2ea22 245{
101420b8 246 static unsigned alloc_hint = 16;
53cb28cb 247 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
101420b8 248 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
53cb28cb
MA
249 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
250 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
101420b8 251 alloc_hint = map->nodes_nb_alloc;
d6f2ea22 252 }
f7bf5461
AK
253}
254
db94604b 255static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
f7bf5461
AK
256{
257 unsigned i;
8b795765 258 uint32_t ret;
db94604b
PB
259 PhysPageEntry e;
260 PhysPageEntry *p;
f7bf5461 261
53cb28cb 262 ret = map->nodes_nb++;
db94604b 263 p = map->nodes[ret];
f7bf5461 264 assert(ret != PHYS_MAP_NODE_NIL);
53cb28cb 265 assert(ret != map->nodes_nb_alloc);
db94604b
PB
266
267 e.skip = leaf ? 0 : 1;
268 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
03f49957 269 for (i = 0; i < P_L2_SIZE; ++i) {
db94604b 270 memcpy(&p[i], &e, sizeof(e));
d6f2ea22 271 }
f7bf5461 272 return ret;
d6f2ea22
AK
273}
274
53cb28cb
MA
275static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
276 hwaddr *index, hwaddr *nb, uint16_t leaf,
2999097b 277 int level)
f7bf5461
AK
278{
279 PhysPageEntry *p;
03f49957 280 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
108c49b8 281
9736e55b 282 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
db94604b 283 lp->ptr = phys_map_node_alloc(map, level == 0);
92e873b9 284 }
db94604b 285 p = map->nodes[lp->ptr];
03f49957 286 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
f7bf5461 287
03f49957 288 while (*nb && lp < &p[P_L2_SIZE]) {
07f07b31 289 if ((*index & (step - 1)) == 0 && *nb >= step) {
9736e55b 290 lp->skip = 0;
c19e8800 291 lp->ptr = leaf;
07f07b31
AK
292 *index += step;
293 *nb -= step;
2999097b 294 } else {
53cb28cb 295 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
2999097b
AK
296 }
297 ++lp;
f7bf5461
AK
298 }
299}
300
ac1970fb 301static void phys_page_set(AddressSpaceDispatch *d,
a8170e5e 302 hwaddr index, hwaddr nb,
2999097b 303 uint16_t leaf)
f7bf5461 304{
2999097b 305 /* Wildly overreserve - it doesn't matter much. */
53cb28cb 306 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
5cd2c5b6 307
53cb28cb 308 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
309}
310
b35ba30f
MT
311/* Compact a non leaf page entry. Simply detect that the entry has a single child,
312 * and update our entry so we can skip it and go directly to the destination.
313 */
efee678d 314static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
b35ba30f
MT
315{
316 unsigned valid_ptr = P_L2_SIZE;
317 int valid = 0;
318 PhysPageEntry *p;
319 int i;
320
321 if (lp->ptr == PHYS_MAP_NODE_NIL) {
322 return;
323 }
324
325 p = nodes[lp->ptr];
326 for (i = 0; i < P_L2_SIZE; i++) {
327 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
328 continue;
329 }
330
331 valid_ptr = i;
332 valid++;
333 if (p[i].skip) {
efee678d 334 phys_page_compact(&p[i], nodes);
b35ba30f
MT
335 }
336 }
337
338 /* We can only compress if there's only one child. */
339 if (valid != 1) {
340 return;
341 }
342
343 assert(valid_ptr < P_L2_SIZE);
344
345 /* Don't compress if it won't fit in the # of bits we have. */
346 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
347 return;
348 }
349
350 lp->ptr = p[valid_ptr].ptr;
351 if (!p[valid_ptr].skip) {
352 /* If our only child is a leaf, make this a leaf. */
353 /* By design, we should have made this node a leaf to begin with so we
354 * should never reach here.
355 * But since it's so simple to handle this, let's do it just in case we
356 * change this rule.
357 */
358 lp->skip = 0;
359 } else {
360 lp->skip += p[valid_ptr].skip;
361 }
362}
363
364static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb)
365{
b35ba30f 366 if (d->phys_map.skip) {
efee678d 367 phys_page_compact(&d->phys_map, d->map.nodes);
b35ba30f
MT
368 }
369}
370
29cb533d
FZ
371static inline bool section_covers_addr(const MemoryRegionSection *section,
372 hwaddr addr)
373{
374 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
375 * the section must cover the entire address space.
376 */
258dfaaa 377 return int128_gethi(section->size) ||
29cb533d 378 range_covers_byte(section->offset_within_address_space,
258dfaaa 379 int128_getlo(section->size), addr);
29cb533d
FZ
380}
381
003a0cf2 382static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
92e873b9 383{
003a0cf2
PX
384 PhysPageEntry lp = d->phys_map, *p;
385 Node *nodes = d->map.nodes;
386 MemoryRegionSection *sections = d->map.sections;
97115a8d 387 hwaddr index = addr >> TARGET_PAGE_BITS;
31ab2b4a 388 int i;
f1f6e3b8 389
9736e55b 390 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
c19e8800 391 if (lp.ptr == PHYS_MAP_NODE_NIL) {
9affd6fc 392 return &sections[PHYS_SECTION_UNASSIGNED];
31ab2b4a 393 }
9affd6fc 394 p = nodes[lp.ptr];
03f49957 395 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
5312bd8b 396 }
b35ba30f 397
29cb533d 398 if (section_covers_addr(&sections[lp.ptr], addr)) {
b35ba30f
MT
399 return &sections[lp.ptr];
400 } else {
401 return &sections[PHYS_SECTION_UNASSIGNED];
402 }
f3705d53
AK
403}
404
e5548617
BS
405bool memory_region_is_unassigned(MemoryRegion *mr)
406{
2a8e7499 407 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
5b6dd868 408 && mr != &io_mem_watch;
fd6ce8f6 409}
149f54b5 410
79e2b9ae 411/* Called from RCU critical section */
c7086b4a 412static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
90260c6c
JK
413 hwaddr addr,
414 bool resolve_subpage)
9f029603 415{
729633c2 416 MemoryRegionSection *section = atomic_read(&d->mru_section);
90260c6c 417 subpage_t *subpage;
729633c2 418 bool update;
90260c6c 419
729633c2
FZ
420 if (section && section != &d->map.sections[PHYS_SECTION_UNASSIGNED] &&
421 section_covers_addr(section, addr)) {
422 update = false;
423 } else {
003a0cf2 424 section = phys_page_find(d, addr);
729633c2
FZ
425 update = true;
426 }
90260c6c
JK
427 if (resolve_subpage && section->mr->subpage) {
428 subpage = container_of(section->mr, subpage_t, iomem);
53cb28cb 429 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
90260c6c 430 }
729633c2
FZ
431 if (update) {
432 atomic_set(&d->mru_section, section);
433 }
90260c6c 434 return section;
9f029603
JK
435}
436
79e2b9ae 437/* Called from RCU critical section */
90260c6c 438static MemoryRegionSection *
c7086b4a 439address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
90260c6c 440 hwaddr *plen, bool resolve_subpage)
149f54b5
PB
441{
442 MemoryRegionSection *section;
965eb2fc 443 MemoryRegion *mr;
a87f3954 444 Int128 diff;
149f54b5 445
c7086b4a 446 section = address_space_lookup_region(d, addr, resolve_subpage);
149f54b5
PB
447 /* Compute offset within MemoryRegionSection */
448 addr -= section->offset_within_address_space;
449
450 /* Compute offset within MemoryRegion */
451 *xlat = addr + section->offset_within_region;
452
965eb2fc 453 mr = section->mr;
b242e0e0
PB
454
455 /* MMIO registers can be expected to perform full-width accesses based only
456 * on their address, without considering adjacent registers that could
457 * decode to completely different MemoryRegions. When such registers
458 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
459 * regions overlap wildly. For this reason we cannot clamp the accesses
460 * here.
461 *
462 * If the length is small (as is the case for address_space_ldl/stl),
463 * everything works fine. If the incoming length is large, however,
464 * the caller really has to do the clamping through memory_access_size.
465 */
965eb2fc 466 if (memory_region_is_ram(mr)) {
e4a511f8 467 diff = int128_sub(section->size, int128_make64(addr));
965eb2fc
PB
468 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
469 }
149f54b5
PB
470 return section;
471}
90260c6c 472
41063e1e 473/* Called from RCU critical section */
a764040c
PX
474static MemoryRegionSection address_space_do_translate(AddressSpace *as,
475 hwaddr addr,
476 hwaddr *xlat,
477 hwaddr *plen,
478 bool is_write,
479 bool is_mmio)
052c8fa9 480{
a764040c 481 IOMMUTLBEntry iotlb;
052c8fa9 482 MemoryRegionSection *section;
3df9d748 483 IOMMUMemoryRegion *iommu_mr;
1221a474 484 IOMMUMemoryRegionClass *imrc;
052c8fa9
JW
485
486 for (;;) {
487 AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch);
a764040c 488 section = address_space_translate_internal(d, addr, &addr, plen, is_mmio);
052c8fa9 489
3df9d748
AK
490 iommu_mr = memory_region_get_iommu(section->mr);
491 if (!iommu_mr) {
052c8fa9
JW
492 break;
493 }
1221a474 494 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
052c8fa9 495
1221a474
AK
496 iotlb = imrc->translate(iommu_mr, addr, is_write ?
497 IOMMU_WO : IOMMU_RO);
a764040c
PX
498 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
499 | (addr & iotlb.addr_mask));
500 *plen = MIN(*plen, (addr | iotlb.addr_mask) - addr + 1);
052c8fa9 501 if (!(iotlb.perm & (1 << is_write))) {
a764040c 502 goto translate_fail;
052c8fa9
JW
503 }
504
052c8fa9
JW
505 as = iotlb.target_as;
506 }
507
a764040c
PX
508 *xlat = addr;
509
510 return *section;
511
512translate_fail:
513 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
052c8fa9
JW
514}
515
516/* Called from RCU critical section */
a764040c
PX
517IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
518 bool is_write)
90260c6c 519{
a764040c
PX
520 MemoryRegionSection section;
521 hwaddr xlat, plen;
30951157 522
a764040c
PX
523 /* Try to get maximum page mask during translation. */
524 plen = (hwaddr)-1;
30951157 525
a764040c
PX
526 /* This can never be MMIO. */
527 section = address_space_do_translate(as, addr, &xlat, &plen,
528 is_write, false);
30951157 529
a764040c
PX
530 /* Illegal translation */
531 if (section.mr == &io_mem_unassigned) {
532 goto iotlb_fail;
533 }
30951157 534
a764040c
PX
535 /* Convert memory region offset into address space offset */
536 xlat += section.offset_within_address_space -
537 section.offset_within_region;
538
539 if (plen == (hwaddr)-1) {
540 /*
541 * We use default page size here. Logically it only happens
542 * for identity mappings.
543 */
544 plen = TARGET_PAGE_SIZE;
30951157
AK
545 }
546
a764040c
PX
547 /* Convert to address mask */
548 plen -= 1;
549
550 return (IOMMUTLBEntry) {
551 .target_as = section.address_space,
552 .iova = addr & ~plen,
553 .translated_addr = xlat & ~plen,
554 .addr_mask = plen,
555 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
556 .perm = IOMMU_RW,
557 };
558
559iotlb_fail:
560 return (IOMMUTLBEntry) {0};
561}
562
563/* Called from RCU critical section */
564MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
565 hwaddr *xlat, hwaddr *plen,
566 bool is_write)
567{
568 MemoryRegion *mr;
569 MemoryRegionSection section;
570
571 /* This can be MMIO, so setup MMIO bit. */
572 section = address_space_do_translate(as, addr, xlat, plen, is_write, true);
573 mr = section.mr;
574
fe680d0d 575 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
a87f3954 576 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
23820dbf 577 *plen = MIN(page, *plen);
a87f3954
PB
578 }
579
30951157 580 return mr;
90260c6c
JK
581}
582
79e2b9ae 583/* Called from RCU critical section */
90260c6c 584MemoryRegionSection *
d7898cda 585address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
9d82b5a7 586 hwaddr *xlat, hwaddr *plen)
90260c6c 587{
30951157 588 MemoryRegionSection *section;
f35e44e7 589 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
d7898cda
PM
590
591 section = address_space_translate_internal(d, addr, xlat, plen, false);
30951157 592
3df9d748 593 assert(!memory_region_is_iommu(section->mr));
30951157 594 return section;
90260c6c 595}
5b6dd868 596#endif
fd6ce8f6 597
b170fce3 598#if !defined(CONFIG_USER_ONLY)
5b6dd868
BS
599
600static int cpu_common_post_load(void *opaque, int version_id)
fd6ce8f6 601{
259186a7 602 CPUState *cpu = opaque;
a513fe19 603
5b6dd868
BS
604 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
605 version_id is increased. */
259186a7 606 cpu->interrupt_request &= ~0x01;
d10eb08f 607 tlb_flush(cpu);
5b6dd868
BS
608
609 return 0;
a513fe19 610}
7501267e 611
6c3bff0e
PD
612static int cpu_common_pre_load(void *opaque)
613{
614 CPUState *cpu = opaque;
615
adee6424 616 cpu->exception_index = -1;
6c3bff0e
PD
617
618 return 0;
619}
620
621static bool cpu_common_exception_index_needed(void *opaque)
622{
623 CPUState *cpu = opaque;
624
adee6424 625 return tcg_enabled() && cpu->exception_index != -1;
6c3bff0e
PD
626}
627
628static const VMStateDescription vmstate_cpu_common_exception_index = {
629 .name = "cpu_common/exception_index",
630 .version_id = 1,
631 .minimum_version_id = 1,
5cd8cada 632 .needed = cpu_common_exception_index_needed,
6c3bff0e
PD
633 .fields = (VMStateField[]) {
634 VMSTATE_INT32(exception_index, CPUState),
635 VMSTATE_END_OF_LIST()
636 }
637};
638
bac05aa9
AS
639static bool cpu_common_crash_occurred_needed(void *opaque)
640{
641 CPUState *cpu = opaque;
642
643 return cpu->crash_occurred;
644}
645
646static const VMStateDescription vmstate_cpu_common_crash_occurred = {
647 .name = "cpu_common/crash_occurred",
648 .version_id = 1,
649 .minimum_version_id = 1,
650 .needed = cpu_common_crash_occurred_needed,
651 .fields = (VMStateField[]) {
652 VMSTATE_BOOL(crash_occurred, CPUState),
653 VMSTATE_END_OF_LIST()
654 }
655};
656
1a1562f5 657const VMStateDescription vmstate_cpu_common = {
5b6dd868
BS
658 .name = "cpu_common",
659 .version_id = 1,
660 .minimum_version_id = 1,
6c3bff0e 661 .pre_load = cpu_common_pre_load,
5b6dd868 662 .post_load = cpu_common_post_load,
35d08458 663 .fields = (VMStateField[]) {
259186a7
AF
664 VMSTATE_UINT32(halted, CPUState),
665 VMSTATE_UINT32(interrupt_request, CPUState),
5b6dd868 666 VMSTATE_END_OF_LIST()
6c3bff0e 667 },
5cd8cada
JQ
668 .subsections = (const VMStateDescription*[]) {
669 &vmstate_cpu_common_exception_index,
bac05aa9 670 &vmstate_cpu_common_crash_occurred,
5cd8cada 671 NULL
5b6dd868
BS
672 }
673};
1a1562f5 674
5b6dd868 675#endif
ea041c0e 676
38d8f5c8 677CPUState *qemu_get_cpu(int index)
ea041c0e 678{
bdc44640 679 CPUState *cpu;
ea041c0e 680
bdc44640 681 CPU_FOREACH(cpu) {
55e5c285 682 if (cpu->cpu_index == index) {
bdc44640 683 return cpu;
55e5c285 684 }
ea041c0e 685 }
5b6dd868 686
bdc44640 687 return NULL;
ea041c0e
FB
688}
689
09daed84 690#if !defined(CONFIG_USER_ONLY)
56943e8c 691void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx)
09daed84 692{
12ebc9a7
PM
693 CPUAddressSpace *newas;
694
695 /* Target code should have set num_ases before calling us */
696 assert(asidx < cpu->num_ases);
697
56943e8c
PM
698 if (asidx == 0) {
699 /* address space 0 gets the convenience alias */
700 cpu->as = as;
701 }
702
12ebc9a7
PM
703 /* KVM cannot currently support multiple address spaces. */
704 assert(asidx == 0 || !kvm_enabled());
09daed84 705
12ebc9a7
PM
706 if (!cpu->cpu_ases) {
707 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
09daed84 708 }
32857f4d 709
12ebc9a7
PM
710 newas = &cpu->cpu_ases[asidx];
711 newas->cpu = cpu;
712 newas->as = as;
56943e8c 713 if (tcg_enabled()) {
12ebc9a7
PM
714 newas->tcg_as_listener.commit = tcg_commit;
715 memory_listener_register(&newas->tcg_as_listener, as);
56943e8c 716 }
09daed84 717}
651a5bc0
PM
718
719AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
720{
721 /* Return the AddressSpace corresponding to the specified index */
722 return cpu->cpu_ases[asidx].as;
723}
09daed84
EI
724#endif
725
7bbc124e 726void cpu_exec_unrealizefn(CPUState *cpu)
1c59eb39 727{
9dfeca7c
BR
728 CPUClass *cc = CPU_GET_CLASS(cpu);
729
267f685b 730 cpu_list_remove(cpu);
9dfeca7c
BR
731
732 if (cc->vmsd != NULL) {
733 vmstate_unregister(NULL, cc->vmsd, cpu);
734 }
735 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
736 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
737 }
1c59eb39
BR
738}
739
c7e002c5
FZ
740Property cpu_common_props[] = {
741#ifndef CONFIG_USER_ONLY
742 /* Create a memory property for softmmu CPU object,
743 * so users can wire up its memory. (This can't go in qom/cpu.c
744 * because that file is compiled only once for both user-mode
745 * and system builds.) The default if no link is set up is to use
746 * the system address space.
747 */
748 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
749 MemoryRegion *),
750#endif
751 DEFINE_PROP_END_OF_LIST(),
752};
753
39e329e3 754void cpu_exec_initfn(CPUState *cpu)
ea041c0e 755{
56943e8c 756 cpu->as = NULL;
12ebc9a7 757 cpu->num_ases = 0;
56943e8c 758
291135b5 759#ifndef CONFIG_USER_ONLY
291135b5 760 cpu->thread_id = qemu_get_thread_id();
6731d864
PC
761 cpu->memory = system_memory;
762 object_ref(OBJECT(cpu->memory));
291135b5 763#endif
39e329e3
LV
764}
765
ce5b1bbf 766void cpu_exec_realizefn(CPUState *cpu, Error **errp)
39e329e3
LV
767{
768 CPUClass *cc ATTRIBUTE_UNUSED = CPU_GET_CLASS(cpu);
291135b5 769
267f685b 770 cpu_list_add(cpu);
1bc7e522
IM
771
772#ifndef CONFIG_USER_ONLY
e0d47944 773 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
741da0d3 774 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
e0d47944 775 }
b170fce3 776 if (cc->vmsd != NULL) {
741da0d3 777 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
b170fce3 778 }
741da0d3 779#endif
ea041c0e
FB
780}
781
406bc339 782#if defined(CONFIG_USER_ONLY)
00b941e5 783static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1e7855a5 784{
406bc339
PK
785 mmap_lock();
786 tb_lock();
787 tb_invalidate_phys_page_range(pc, pc + 1, 0);
788 tb_unlock();
789 mmap_unlock();
790}
791#else
792static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
793{
794 MemTxAttrs attrs;
795 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
796 int asidx = cpu_asidx_from_attrs(cpu, attrs);
797 if (phys != -1) {
798 /* Locks grabbed by tb_invalidate_phys_addr */
799 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
800 phys | (pc & ~TARGET_PAGE_MASK));
801 }
1e7855a5 802}
406bc339 803#endif
d720b93d 804
c527ee8f 805#if defined(CONFIG_USER_ONLY)
75a34036 806void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
c527ee8f
PB
807
808{
809}
810
3ee887e8
PM
811int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
812 int flags)
813{
814 return -ENOSYS;
815}
816
817void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
818{
819}
820
75a34036 821int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
c527ee8f
PB
822 int flags, CPUWatchpoint **watchpoint)
823{
824 return -ENOSYS;
825}
826#else
6658ffb8 827/* Add a watchpoint. */
75a34036 828int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 829 int flags, CPUWatchpoint **watchpoint)
6658ffb8 830{
c0ce998e 831 CPUWatchpoint *wp;
6658ffb8 832
05068c0d 833 /* forbid ranges which are empty or run off the end of the address space */
07e2863d 834 if (len == 0 || (addr + len - 1) < addr) {
75a34036
AF
835 error_report("tried to set invalid watchpoint at %"
836 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
b4051334
AL
837 return -EINVAL;
838 }
7267c094 839 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
840
841 wp->vaddr = addr;
05068c0d 842 wp->len = len;
a1d1bb31
AL
843 wp->flags = flags;
844
2dc9f411 845 /* keep all GDB-injected watchpoints in front */
ff4700b0
AF
846 if (flags & BP_GDB) {
847 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
848 } else {
849 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
850 }
6658ffb8 851
31b030d4 852 tlb_flush_page(cpu, addr);
a1d1bb31
AL
853
854 if (watchpoint)
855 *watchpoint = wp;
856 return 0;
6658ffb8
PB
857}
858
a1d1bb31 859/* Remove a specific watchpoint. */
75a34036 860int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 861 int flags)
6658ffb8 862{
a1d1bb31 863 CPUWatchpoint *wp;
6658ffb8 864
ff4700b0 865 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 866 if (addr == wp->vaddr && len == wp->len
6e140f28 867 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
75a34036 868 cpu_watchpoint_remove_by_ref(cpu, wp);
6658ffb8
PB
869 return 0;
870 }
871 }
a1d1bb31 872 return -ENOENT;
6658ffb8
PB
873}
874
a1d1bb31 875/* Remove a specific watchpoint by reference. */
75a34036 876void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
a1d1bb31 877{
ff4700b0 878 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
7d03f82f 879
31b030d4 880 tlb_flush_page(cpu, watchpoint->vaddr);
a1d1bb31 881
7267c094 882 g_free(watchpoint);
a1d1bb31
AL
883}
884
885/* Remove all matching watchpoints. */
75a34036 886void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 887{
c0ce998e 888 CPUWatchpoint *wp, *next;
a1d1bb31 889
ff4700b0 890 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
75a34036
AF
891 if (wp->flags & mask) {
892 cpu_watchpoint_remove_by_ref(cpu, wp);
893 }
c0ce998e 894 }
7d03f82f 895}
05068c0d
PM
896
897/* Return true if this watchpoint address matches the specified
898 * access (ie the address range covered by the watchpoint overlaps
899 * partially or completely with the address range covered by the
900 * access).
901 */
902static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
903 vaddr addr,
904 vaddr len)
905{
906 /* We know the lengths are non-zero, but a little caution is
907 * required to avoid errors in the case where the range ends
908 * exactly at the top of the address space and so addr + len
909 * wraps round to zero.
910 */
911 vaddr wpend = wp->vaddr + wp->len - 1;
912 vaddr addrend = addr + len - 1;
913
914 return !(addr > wpend || wp->vaddr > addrend);
915}
916
c527ee8f 917#endif
7d03f82f 918
a1d1bb31 919/* Add a breakpoint. */
b3310ab3 920int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
a1d1bb31 921 CPUBreakpoint **breakpoint)
4c3a88a2 922{
c0ce998e 923 CPUBreakpoint *bp;
3b46e624 924
7267c094 925 bp = g_malloc(sizeof(*bp));
4c3a88a2 926
a1d1bb31
AL
927 bp->pc = pc;
928 bp->flags = flags;
929
2dc9f411 930 /* keep all GDB-injected breakpoints in front */
00b941e5 931 if (flags & BP_GDB) {
f0c3c505 932 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
00b941e5 933 } else {
f0c3c505 934 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
00b941e5 935 }
3b46e624 936
f0c3c505 937 breakpoint_invalidate(cpu, pc);
a1d1bb31 938
00b941e5 939 if (breakpoint) {
a1d1bb31 940 *breakpoint = bp;
00b941e5 941 }
4c3a88a2 942 return 0;
4c3a88a2
FB
943}
944
a1d1bb31 945/* Remove a specific breakpoint. */
b3310ab3 946int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
a1d1bb31 947{
a1d1bb31
AL
948 CPUBreakpoint *bp;
949
f0c3c505 950 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
a1d1bb31 951 if (bp->pc == pc && bp->flags == flags) {
b3310ab3 952 cpu_breakpoint_remove_by_ref(cpu, bp);
a1d1bb31
AL
953 return 0;
954 }
7d03f82f 955 }
a1d1bb31 956 return -ENOENT;
7d03f82f
EI
957}
958
a1d1bb31 959/* Remove a specific breakpoint by reference. */
b3310ab3 960void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
4c3a88a2 961{
f0c3c505
AF
962 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
963
964 breakpoint_invalidate(cpu, breakpoint->pc);
a1d1bb31 965
7267c094 966 g_free(breakpoint);
a1d1bb31
AL
967}
968
969/* Remove all matching breakpoints. */
b3310ab3 970void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 971{
c0ce998e 972 CPUBreakpoint *bp, *next;
a1d1bb31 973
f0c3c505 974 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
b3310ab3
AF
975 if (bp->flags & mask) {
976 cpu_breakpoint_remove_by_ref(cpu, bp);
977 }
c0ce998e 978 }
4c3a88a2
FB
979}
980
c33a346e
FB
981/* enable or disable single step mode. EXCP_DEBUG is returned by the
982 CPU loop after each instruction */
3825b28f 983void cpu_single_step(CPUState *cpu, int enabled)
c33a346e 984{
ed2803da
AF
985 if (cpu->singlestep_enabled != enabled) {
986 cpu->singlestep_enabled = enabled;
987 if (kvm_enabled()) {
38e478ec 988 kvm_update_guest_debug(cpu, 0);
ed2803da 989 } else {
ccbb4d44 990 /* must flush all the translated code to avoid inconsistencies */
e22a25c9 991 /* XXX: only flush what is necessary */
bbd77c18 992 tb_flush(cpu);
e22a25c9 993 }
c33a346e 994 }
c33a346e
FB
995}
996
a47dddd7 997void cpu_abort(CPUState *cpu, const char *fmt, ...)
7501267e
FB
998{
999 va_list ap;
493ae1f0 1000 va_list ap2;
7501267e
FB
1001
1002 va_start(ap, fmt);
493ae1f0 1003 va_copy(ap2, ap);
7501267e
FB
1004 fprintf(stderr, "qemu: fatal: ");
1005 vfprintf(stderr, fmt, ap);
1006 fprintf(stderr, "\n");
878096ee 1007 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
013a2942 1008 if (qemu_log_separate()) {
1ee73216 1009 qemu_log_lock();
93fcfe39
AL
1010 qemu_log("qemu: fatal: ");
1011 qemu_log_vprintf(fmt, ap2);
1012 qemu_log("\n");
a0762859 1013 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
31b1a7b4 1014 qemu_log_flush();
1ee73216 1015 qemu_log_unlock();
93fcfe39 1016 qemu_log_close();
924edcae 1017 }
493ae1f0 1018 va_end(ap2);
f9373291 1019 va_end(ap);
7615936e 1020 replay_finish();
fd052bf6
RV
1021#if defined(CONFIG_USER_ONLY)
1022 {
1023 struct sigaction act;
1024 sigfillset(&act.sa_mask);
1025 act.sa_handler = SIG_DFL;
1026 sigaction(SIGABRT, &act, NULL);
1027 }
1028#endif
7501267e
FB
1029 abort();
1030}
1031
0124311e 1032#if !defined(CONFIG_USER_ONLY)
0dc3f44a 1033/* Called from RCU critical section */
041603fe
PB
1034static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1035{
1036 RAMBlock *block;
1037
43771539 1038 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 1039 if (block && addr - block->offset < block->max_length) {
68851b98 1040 return block;
041603fe 1041 }
99e15582 1042 RAMBLOCK_FOREACH(block) {
9b8424d5 1043 if (addr - block->offset < block->max_length) {
041603fe
PB
1044 goto found;
1045 }
1046 }
1047
1048 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1049 abort();
1050
1051found:
43771539
PB
1052 /* It is safe to write mru_block outside the iothread lock. This
1053 * is what happens:
1054 *
1055 * mru_block = xxx
1056 * rcu_read_unlock()
1057 * xxx removed from list
1058 * rcu_read_lock()
1059 * read mru_block
1060 * mru_block = NULL;
1061 * call_rcu(reclaim_ramblock, xxx);
1062 * rcu_read_unlock()
1063 *
1064 * atomic_rcu_set is not needed here. The block was already published
1065 * when it was placed into the list. Here we're just making an extra
1066 * copy of the pointer.
1067 */
041603fe
PB
1068 ram_list.mru_block = block;
1069 return block;
1070}
1071
a2f4d5be 1072static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
d24981d3 1073{
9a13565d 1074 CPUState *cpu;
041603fe 1075 ram_addr_t start1;
a2f4d5be
JQ
1076 RAMBlock *block;
1077 ram_addr_t end;
1078
1079 end = TARGET_PAGE_ALIGN(start + length);
1080 start &= TARGET_PAGE_MASK;
d24981d3 1081
0dc3f44a 1082 rcu_read_lock();
041603fe
PB
1083 block = qemu_get_ram_block(start);
1084 assert(block == qemu_get_ram_block(end - 1));
1240be24 1085 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
9a13565d
PC
1086 CPU_FOREACH(cpu) {
1087 tlb_reset_dirty(cpu, start1, length);
1088 }
0dc3f44a 1089 rcu_read_unlock();
d24981d3
JQ
1090}
1091
5579c7f3 1092/* Note: start and end must be within the same ram block. */
03eebc9e
SH
1093bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1094 ram_addr_t length,
1095 unsigned client)
1ccde1cb 1096{
5b82b703 1097 DirtyMemoryBlocks *blocks;
03eebc9e 1098 unsigned long end, page;
5b82b703 1099 bool dirty = false;
03eebc9e
SH
1100
1101 if (length == 0) {
1102 return false;
1103 }
f23db169 1104
03eebc9e
SH
1105 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1106 page = start >> TARGET_PAGE_BITS;
5b82b703
SH
1107
1108 rcu_read_lock();
1109
1110 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1111
1112 while (page < end) {
1113 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1114 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1115 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1116
1117 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1118 offset, num);
1119 page += num;
1120 }
1121
1122 rcu_read_unlock();
03eebc9e
SH
1123
1124 if (dirty && tcg_enabled()) {
a2f4d5be 1125 tlb_reset_dirty_range_all(start, length);
5579c7f3 1126 }
03eebc9e
SH
1127
1128 return dirty;
1ccde1cb
FB
1129}
1130
8deaf12c
GH
1131DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1132 (ram_addr_t start, ram_addr_t length, unsigned client)
1133{
1134 DirtyMemoryBlocks *blocks;
1135 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1136 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1137 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1138 DirtyBitmapSnapshot *snap;
1139 unsigned long page, end, dest;
1140
1141 snap = g_malloc0(sizeof(*snap) +
1142 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1143 snap->start = first;
1144 snap->end = last;
1145
1146 page = first >> TARGET_PAGE_BITS;
1147 end = last >> TARGET_PAGE_BITS;
1148 dest = 0;
1149
1150 rcu_read_lock();
1151
1152 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1153
1154 while (page < end) {
1155 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1156 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1157 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1158
1159 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1160 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1161 offset >>= BITS_PER_LEVEL;
1162
1163 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1164 blocks->blocks[idx] + offset,
1165 num);
1166 page += num;
1167 dest += num >> BITS_PER_LEVEL;
1168 }
1169
1170 rcu_read_unlock();
1171
1172 if (tcg_enabled()) {
1173 tlb_reset_dirty_range_all(start, length);
1174 }
1175
1176 return snap;
1177}
1178
1179bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1180 ram_addr_t start,
1181 ram_addr_t length)
1182{
1183 unsigned long page, end;
1184
1185 assert(start >= snap->start);
1186 assert(start + length <= snap->end);
1187
1188 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1189 page = (start - snap->start) >> TARGET_PAGE_BITS;
1190
1191 while (page < end) {
1192 if (test_bit(page, snap->dirty)) {
1193 return true;
1194 }
1195 page++;
1196 }
1197 return false;
1198}
1199
79e2b9ae 1200/* Called from RCU critical section */
bb0e627a 1201hwaddr memory_region_section_get_iotlb(CPUState *cpu,
149f54b5
PB
1202 MemoryRegionSection *section,
1203 target_ulong vaddr,
1204 hwaddr paddr, hwaddr xlat,
1205 int prot,
1206 target_ulong *address)
e5548617 1207{
a8170e5e 1208 hwaddr iotlb;
e5548617
BS
1209 CPUWatchpoint *wp;
1210
cc5bea60 1211 if (memory_region_is_ram(section->mr)) {
e5548617 1212 /* Normal RAM. */
e4e69794 1213 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
e5548617 1214 if (!section->readonly) {
b41aac4f 1215 iotlb |= PHYS_SECTION_NOTDIRTY;
e5548617 1216 } else {
b41aac4f 1217 iotlb |= PHYS_SECTION_ROM;
e5548617
BS
1218 }
1219 } else {
0b8e2c10
PM
1220 AddressSpaceDispatch *d;
1221
1222 d = atomic_rcu_read(&section->address_space->dispatch);
1223 iotlb = section - d->map.sections;
149f54b5 1224 iotlb += xlat;
e5548617
BS
1225 }
1226
1227 /* Make accesses to pages with watchpoints go via the
1228 watchpoint trap routines. */
ff4700b0 1229 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 1230 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
e5548617
BS
1231 /* Avoid trapping reads of pages with a write breakpoint. */
1232 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
b41aac4f 1233 iotlb = PHYS_SECTION_WATCH + paddr;
e5548617
BS
1234 *address |= TLB_MMIO;
1235 break;
1236 }
1237 }
1238 }
1239
1240 return iotlb;
1241}
9fa3e853
FB
1242#endif /* defined(CONFIG_USER_ONLY) */
1243
e2eef170 1244#if !defined(CONFIG_USER_ONLY)
8da3ff18 1245
c227f099 1246static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 1247 uint16_t section);
acc9d80b 1248static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
54688b1e 1249
a2b257d6
IM
1250static void *(*phys_mem_alloc)(size_t size, uint64_t *align) =
1251 qemu_anon_ram_alloc;
91138037
MA
1252
1253/*
1254 * Set a custom physical guest memory alloator.
1255 * Accelerators with unusual needs may need this. Hopefully, we can
1256 * get rid of it eventually.
1257 */
a2b257d6 1258void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align))
91138037
MA
1259{
1260 phys_mem_alloc = alloc;
1261}
1262
53cb28cb
MA
1263static uint16_t phys_section_add(PhysPageMap *map,
1264 MemoryRegionSection *section)
5312bd8b 1265{
68f3f65b
PB
1266 /* The physical section number is ORed with a page-aligned
1267 * pointer to produce the iotlb entries. Thus it should
1268 * never overflow into the page-aligned value.
1269 */
53cb28cb 1270 assert(map->sections_nb < TARGET_PAGE_SIZE);
68f3f65b 1271
53cb28cb
MA
1272 if (map->sections_nb == map->sections_nb_alloc) {
1273 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1274 map->sections = g_renew(MemoryRegionSection, map->sections,
1275 map->sections_nb_alloc);
5312bd8b 1276 }
53cb28cb 1277 map->sections[map->sections_nb] = *section;
dfde4e6e 1278 memory_region_ref(section->mr);
53cb28cb 1279 return map->sections_nb++;
5312bd8b
AK
1280}
1281
058bc4b5
PB
1282static void phys_section_destroy(MemoryRegion *mr)
1283{
55b4e80b
DS
1284 bool have_sub_page = mr->subpage;
1285
dfde4e6e
PB
1286 memory_region_unref(mr);
1287
55b4e80b 1288 if (have_sub_page) {
058bc4b5 1289 subpage_t *subpage = container_of(mr, subpage_t, iomem);
b4fefef9 1290 object_unref(OBJECT(&subpage->iomem));
058bc4b5
PB
1291 g_free(subpage);
1292 }
1293}
1294
6092666e 1295static void phys_sections_free(PhysPageMap *map)
5312bd8b 1296{
9affd6fc
PB
1297 while (map->sections_nb > 0) {
1298 MemoryRegionSection *section = &map->sections[--map->sections_nb];
058bc4b5
PB
1299 phys_section_destroy(section->mr);
1300 }
9affd6fc
PB
1301 g_free(map->sections);
1302 g_free(map->nodes);
5312bd8b
AK
1303}
1304
ac1970fb 1305static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
0f0cb164
AK
1306{
1307 subpage_t *subpage;
a8170e5e 1308 hwaddr base = section->offset_within_address_space
0f0cb164 1309 & TARGET_PAGE_MASK;
003a0cf2 1310 MemoryRegionSection *existing = phys_page_find(d, base);
0f0cb164
AK
1311 MemoryRegionSection subsection = {
1312 .offset_within_address_space = base,
052e87b0 1313 .size = int128_make64(TARGET_PAGE_SIZE),
0f0cb164 1314 };
a8170e5e 1315 hwaddr start, end;
0f0cb164 1316
f3705d53 1317 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 1318
f3705d53 1319 if (!(existing->mr->subpage)) {
acc9d80b 1320 subpage = subpage_init(d->as, base);
3be91e86 1321 subsection.address_space = d->as;
0f0cb164 1322 subsection.mr = &subpage->iomem;
ac1970fb 1323 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
53cb28cb 1324 phys_section_add(&d->map, &subsection));
0f0cb164 1325 } else {
f3705d53 1326 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
1327 }
1328 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
052e87b0 1329 end = start + int128_get64(section->size) - 1;
53cb28cb
MA
1330 subpage_register(subpage, start, end,
1331 phys_section_add(&d->map, section));
0f0cb164
AK
1332}
1333
1334
052e87b0
PB
1335static void register_multipage(AddressSpaceDispatch *d,
1336 MemoryRegionSection *section)
33417e70 1337{
a8170e5e 1338 hwaddr start_addr = section->offset_within_address_space;
53cb28cb 1339 uint16_t section_index = phys_section_add(&d->map, section);
052e87b0
PB
1340 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1341 TARGET_PAGE_BITS));
dd81124b 1342
733d5ef5
PB
1343 assert(num_pages);
1344 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
33417e70
FB
1345}
1346
ac1970fb 1347static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
0f0cb164 1348{
89ae337a 1349 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
00752703 1350 AddressSpaceDispatch *d = as->next_dispatch;
99b9cc06 1351 MemoryRegionSection now = *section, remain = *section;
052e87b0 1352 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
0f0cb164 1353
733d5ef5
PB
1354 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1355 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1356 - now.offset_within_address_space;
1357
052e87b0 1358 now.size = int128_min(int128_make64(left), now.size);
ac1970fb 1359 register_subpage(d, &now);
733d5ef5 1360 } else {
052e87b0 1361 now.size = int128_zero();
733d5ef5 1362 }
052e87b0
PB
1363 while (int128_ne(remain.size, now.size)) {
1364 remain.size = int128_sub(remain.size, now.size);
1365 remain.offset_within_address_space += int128_get64(now.size);
1366 remain.offset_within_region += int128_get64(now.size);
69b67646 1367 now = remain;
052e87b0 1368 if (int128_lt(remain.size, page_size)) {
733d5ef5 1369 register_subpage(d, &now);
88266249 1370 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
052e87b0 1371 now.size = page_size;
ac1970fb 1372 register_subpage(d, &now);
69b67646 1373 } else {
052e87b0 1374 now.size = int128_and(now.size, int128_neg(page_size));
ac1970fb 1375 register_multipage(d, &now);
69b67646 1376 }
0f0cb164
AK
1377 }
1378}
1379
62a2744c
SY
1380void qemu_flush_coalesced_mmio_buffer(void)
1381{
1382 if (kvm_enabled())
1383 kvm_flush_coalesced_mmio_buffer();
1384}
1385
b2a8658e
UD
1386void qemu_mutex_lock_ramlist(void)
1387{
1388 qemu_mutex_lock(&ram_list.mutex);
1389}
1390
1391void qemu_mutex_unlock_ramlist(void)
1392{
1393 qemu_mutex_unlock(&ram_list.mutex);
1394}
1395
be9b23c4
PX
1396void ram_block_dump(Monitor *mon)
1397{
1398 RAMBlock *block;
1399 char *psize;
1400
1401 rcu_read_lock();
1402 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1403 "Block Name", "PSize", "Offset", "Used", "Total");
1404 RAMBLOCK_FOREACH(block) {
1405 psize = size_to_str(block->page_size);
1406 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1407 " 0x%016" PRIx64 "\n", block->idstr, psize,
1408 (uint64_t)block->offset,
1409 (uint64_t)block->used_length,
1410 (uint64_t)block->max_length);
1411 g_free(psize);
1412 }
1413 rcu_read_unlock();
1414}
1415
9c607668
AK
1416#ifdef __linux__
1417/*
1418 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1419 * may or may not name the same files / on the same filesystem now as
1420 * when we actually open and map them. Iterate over the file
1421 * descriptors instead, and use qemu_fd_getpagesize().
1422 */
1423static int find_max_supported_pagesize(Object *obj, void *opaque)
1424{
1425 char *mem_path;
1426 long *hpsize_min = opaque;
1427
1428 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1429 mem_path = object_property_get_str(obj, "mem-path", NULL);
1430 if (mem_path) {
1431 long hpsize = qemu_mempath_getpagesize(mem_path);
1432 if (hpsize < *hpsize_min) {
1433 *hpsize_min = hpsize;
1434 }
1435 } else {
1436 *hpsize_min = getpagesize();
1437 }
1438 }
1439
1440 return 0;
1441}
1442
1443long qemu_getrampagesize(void)
1444{
1445 long hpsize = LONG_MAX;
1446 long mainrampagesize;
1447 Object *memdev_root;
1448
1449 if (mem_path) {
1450 mainrampagesize = qemu_mempath_getpagesize(mem_path);
1451 } else {
1452 mainrampagesize = getpagesize();
1453 }
1454
1455 /* it's possible we have memory-backend objects with
1456 * hugepage-backed RAM. these may get mapped into system
1457 * address space via -numa parameters or memory hotplug
1458 * hooks. we want to take these into account, but we
1459 * also want to make sure these supported hugepage
1460 * sizes are applicable across the entire range of memory
1461 * we may boot from, so we take the min across all
1462 * backends, and assume normal pages in cases where a
1463 * backend isn't backed by hugepages.
1464 */
1465 memdev_root = object_resolve_path("/objects", NULL);
1466 if (memdev_root) {
1467 object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
1468 }
1469 if (hpsize == LONG_MAX) {
1470 /* No additional memory regions found ==> Report main RAM page size */
1471 return mainrampagesize;
1472 }
1473
1474 /* If NUMA is disabled or the NUMA nodes are not backed with a
1475 * memory-backend, then there is at least one node using "normal" RAM,
1476 * so if its page size is smaller we have got to report that size instead.
1477 */
1478 if (hpsize > mainrampagesize &&
1479 (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1480 static bool warned;
1481 if (!warned) {
1482 error_report("Huge page support disabled (n/a for main memory).");
1483 warned = true;
1484 }
1485 return mainrampagesize;
1486 }
1487
1488 return hpsize;
1489}
1490#else
1491long qemu_getrampagesize(void)
1492{
1493 return getpagesize();
1494}
1495#endif
1496
e1e84ba0 1497#ifdef __linux__
d6af99c9
HZ
1498static int64_t get_file_size(int fd)
1499{
1500 int64_t size = lseek(fd, 0, SEEK_END);
1501 if (size < 0) {
1502 return -errno;
1503 }
1504 return size;
1505}
1506
8d37b030
MAL
1507static int file_ram_open(const char *path,
1508 const char *region_name,
1509 bool *created,
1510 Error **errp)
c902760f
MT
1511{
1512 char *filename;
8ca761f6
PF
1513 char *sanitized_name;
1514 char *c;
5c3ece79 1515 int fd = -1;
c902760f 1516
8d37b030 1517 *created = false;
fd97fd44
MA
1518 for (;;) {
1519 fd = open(path, O_RDWR);
1520 if (fd >= 0) {
1521 /* @path names an existing file, use it */
1522 break;
8d31d6b6 1523 }
fd97fd44
MA
1524 if (errno == ENOENT) {
1525 /* @path names a file that doesn't exist, create it */
1526 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1527 if (fd >= 0) {
8d37b030 1528 *created = true;
fd97fd44
MA
1529 break;
1530 }
1531 } else if (errno == EISDIR) {
1532 /* @path names a directory, create a file there */
1533 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
8d37b030 1534 sanitized_name = g_strdup(region_name);
fd97fd44
MA
1535 for (c = sanitized_name; *c != '\0'; c++) {
1536 if (*c == '/') {
1537 *c = '_';
1538 }
1539 }
8ca761f6 1540
fd97fd44
MA
1541 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1542 sanitized_name);
1543 g_free(sanitized_name);
8d31d6b6 1544
fd97fd44
MA
1545 fd = mkstemp(filename);
1546 if (fd >= 0) {
1547 unlink(filename);
1548 g_free(filename);
1549 break;
1550 }
1551 g_free(filename);
8d31d6b6 1552 }
fd97fd44
MA
1553 if (errno != EEXIST && errno != EINTR) {
1554 error_setg_errno(errp, errno,
1555 "can't open backing store %s for guest RAM",
1556 path);
8d37b030 1557 return -1;
fd97fd44
MA
1558 }
1559 /*
1560 * Try again on EINTR and EEXIST. The latter happens when
1561 * something else creates the file between our two open().
1562 */
8d31d6b6 1563 }
c902760f 1564
8d37b030
MAL
1565 return fd;
1566}
1567
1568static void *file_ram_alloc(RAMBlock *block,
1569 ram_addr_t memory,
1570 int fd,
1571 bool truncate,
1572 Error **errp)
1573{
1574 void *area;
1575
863e9621 1576 block->page_size = qemu_fd_getpagesize(fd);
8360668e
HZ
1577 block->mr->align = block->page_size;
1578#if defined(__s390x__)
1579 if (kvm_enabled()) {
1580 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1581 }
1582#endif
fd97fd44 1583
863e9621 1584 if (memory < block->page_size) {
fd97fd44 1585 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
863e9621
DDAG
1586 "or larger than page size 0x%zx",
1587 memory, block->page_size);
8d37b030 1588 return NULL;
1775f111
HZ
1589 }
1590
863e9621 1591 memory = ROUND_UP(memory, block->page_size);
c902760f
MT
1592
1593 /*
1594 * ftruncate is not supported by hugetlbfs in older
1595 * hosts, so don't bother bailing out on errors.
1596 * If anything goes wrong with it under other filesystems,
1597 * mmap will fail.
d6af99c9
HZ
1598 *
1599 * Do not truncate the non-empty backend file to avoid corrupting
1600 * the existing data in the file. Disabling shrinking is not
1601 * enough. For example, the current vNVDIMM implementation stores
1602 * the guest NVDIMM labels at the end of the backend file. If the
1603 * backend file is later extended, QEMU will not be able to find
1604 * those labels. Therefore, extending the non-empty backend file
1605 * is disabled as well.
c902760f 1606 */
8d37b030 1607 if (truncate && ftruncate(fd, memory)) {
9742bf26 1608 perror("ftruncate");
7f56e740 1609 }
c902760f 1610
d2f39add
DD
1611 area = qemu_ram_mmap(fd, memory, block->mr->align,
1612 block->flags & RAM_SHARED);
c902760f 1613 if (area == MAP_FAILED) {
7f56e740 1614 error_setg_errno(errp, errno,
fd97fd44 1615 "unable to map backing store for guest RAM");
8d37b030 1616 return NULL;
c902760f 1617 }
ef36fa14
MT
1618
1619 if (mem_prealloc) {
1e356fc1 1620 os_mem_prealloc(fd, area, memory, smp_cpus, errp);
056b68af 1621 if (errp && *errp) {
8d37b030
MAL
1622 qemu_ram_munmap(area, memory);
1623 return NULL;
056b68af 1624 }
ef36fa14
MT
1625 }
1626
04b16653 1627 block->fd = fd;
c902760f
MT
1628 return area;
1629}
1630#endif
1631
0dc3f44a 1632/* Called with the ramlist lock held. */
d17b5288 1633static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
1634{
1635 RAMBlock *block, *next_block;
3e837b2c 1636 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653 1637
49cd9ac6
SH
1638 assert(size != 0); /* it would hand out same offset multiple times */
1639
0dc3f44a 1640 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
04b16653 1641 return 0;
0d53d9fe 1642 }
04b16653 1643
99e15582 1644 RAMBLOCK_FOREACH(block) {
f15fbc4b 1645 ram_addr_t end, next = RAM_ADDR_MAX;
04b16653 1646
62be4e3a 1647 end = block->offset + block->max_length;
04b16653 1648
99e15582 1649 RAMBLOCK_FOREACH(next_block) {
04b16653
AW
1650 if (next_block->offset >= end) {
1651 next = MIN(next, next_block->offset);
1652 }
1653 }
1654 if (next - end >= size && next - end < mingap) {
3e837b2c 1655 offset = end;
04b16653
AW
1656 mingap = next - end;
1657 }
1658 }
3e837b2c
AW
1659
1660 if (offset == RAM_ADDR_MAX) {
1661 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1662 (uint64_t)size);
1663 abort();
1664 }
1665
04b16653
AW
1666 return offset;
1667}
1668
b8c48993 1669unsigned long last_ram_page(void)
d17b5288
AW
1670{
1671 RAMBlock *block;
1672 ram_addr_t last = 0;
1673
0dc3f44a 1674 rcu_read_lock();
99e15582 1675 RAMBLOCK_FOREACH(block) {
62be4e3a 1676 last = MAX(last, block->offset + block->max_length);
0d53d9fe 1677 }
0dc3f44a 1678 rcu_read_unlock();
b8c48993 1679 return last >> TARGET_PAGE_BITS;
d17b5288
AW
1680}
1681
ddb97f1d
JB
1682static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1683{
1684 int ret;
ddb97f1d
JB
1685
1686 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
47c8ca53 1687 if (!machine_dump_guest_core(current_machine)) {
ddb97f1d
JB
1688 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1689 if (ret) {
1690 perror("qemu_madvise");
1691 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1692 "but dump_guest_core=off specified\n");
1693 }
1694 }
1695}
1696
422148d3
DDAG
1697const char *qemu_ram_get_idstr(RAMBlock *rb)
1698{
1699 return rb->idstr;
1700}
1701
463a4ac2
DDAG
1702bool qemu_ram_is_shared(RAMBlock *rb)
1703{
1704 return rb->flags & RAM_SHARED;
1705}
1706
ae3a7047 1707/* Called with iothread lock held. */
fa53a0e5 1708void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
20cfe881 1709{
fa53a0e5 1710 RAMBlock *block;
20cfe881 1711
c5705a77
AK
1712 assert(new_block);
1713 assert(!new_block->idstr[0]);
84b89d78 1714
09e5ab63
AL
1715 if (dev) {
1716 char *id = qdev_get_dev_path(dev);
84b89d78
CM
1717 if (id) {
1718 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 1719 g_free(id);
84b89d78
CM
1720 }
1721 }
1722 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1723
ab0a9956 1724 rcu_read_lock();
99e15582 1725 RAMBLOCK_FOREACH(block) {
fa53a0e5
GA
1726 if (block != new_block &&
1727 !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
1728 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1729 new_block->idstr);
1730 abort();
1731 }
1732 }
0dc3f44a 1733 rcu_read_unlock();
c5705a77
AK
1734}
1735
ae3a7047 1736/* Called with iothread lock held. */
fa53a0e5 1737void qemu_ram_unset_idstr(RAMBlock *block)
20cfe881 1738{
ae3a7047
MD
1739 /* FIXME: arch_init.c assumes that this is not called throughout
1740 * migration. Ignore the problem since hot-unplug during migration
1741 * does not work anyway.
1742 */
20cfe881
HT
1743 if (block) {
1744 memset(block->idstr, 0, sizeof(block->idstr));
1745 }
1746}
1747
863e9621
DDAG
1748size_t qemu_ram_pagesize(RAMBlock *rb)
1749{
1750 return rb->page_size;
1751}
1752
67f11b5c
DDAG
1753/* Returns the largest size of page in use */
1754size_t qemu_ram_pagesize_largest(void)
1755{
1756 RAMBlock *block;
1757 size_t largest = 0;
1758
99e15582 1759 RAMBLOCK_FOREACH(block) {
67f11b5c
DDAG
1760 largest = MAX(largest, qemu_ram_pagesize(block));
1761 }
1762
1763 return largest;
1764}
1765
8490fc78
LC
1766static int memory_try_enable_merging(void *addr, size_t len)
1767{
75cc7f01 1768 if (!machine_mem_merge(current_machine)) {
8490fc78
LC
1769 /* disabled by the user */
1770 return 0;
1771 }
1772
1773 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1774}
1775
62be4e3a
MT
1776/* Only legal before guest might have detected the memory size: e.g. on
1777 * incoming migration, or right after reset.
1778 *
1779 * As memory core doesn't know how is memory accessed, it is up to
1780 * resize callback to update device state and/or add assertions to detect
1781 * misuse, if necessary.
1782 */
fa53a0e5 1783int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
62be4e3a 1784{
62be4e3a
MT
1785 assert(block);
1786
4ed023ce 1787 newsize = HOST_PAGE_ALIGN(newsize);
129ddaf3 1788
62be4e3a
MT
1789 if (block->used_length == newsize) {
1790 return 0;
1791 }
1792
1793 if (!(block->flags & RAM_RESIZEABLE)) {
1794 error_setg_errno(errp, EINVAL,
1795 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1796 " in != 0x" RAM_ADDR_FMT, block->idstr,
1797 newsize, block->used_length);
1798 return -EINVAL;
1799 }
1800
1801 if (block->max_length < newsize) {
1802 error_setg_errno(errp, EINVAL,
1803 "Length too large: %s: 0x" RAM_ADDR_FMT
1804 " > 0x" RAM_ADDR_FMT, block->idstr,
1805 newsize, block->max_length);
1806 return -EINVAL;
1807 }
1808
1809 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1810 block->used_length = newsize;
58d2707e
PB
1811 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1812 DIRTY_CLIENTS_ALL);
62be4e3a
MT
1813 memory_region_set_size(block->mr, newsize);
1814 if (block->resized) {
1815 block->resized(block->idstr, newsize, block->host);
1816 }
1817 return 0;
1818}
1819
5b82b703
SH
1820/* Called with ram_list.mutex held */
1821static void dirty_memory_extend(ram_addr_t old_ram_size,
1822 ram_addr_t new_ram_size)
1823{
1824 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1825 DIRTY_MEMORY_BLOCK_SIZE);
1826 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1827 DIRTY_MEMORY_BLOCK_SIZE);
1828 int i;
1829
1830 /* Only need to extend if block count increased */
1831 if (new_num_blocks <= old_num_blocks) {
1832 return;
1833 }
1834
1835 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1836 DirtyMemoryBlocks *old_blocks;
1837 DirtyMemoryBlocks *new_blocks;
1838 int j;
1839
1840 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
1841 new_blocks = g_malloc(sizeof(*new_blocks) +
1842 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1843
1844 if (old_num_blocks) {
1845 memcpy(new_blocks->blocks, old_blocks->blocks,
1846 old_num_blocks * sizeof(old_blocks->blocks[0]));
1847 }
1848
1849 for (j = old_num_blocks; j < new_num_blocks; j++) {
1850 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1851 }
1852
1853 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1854
1855 if (old_blocks) {
1856 g_free_rcu(old_blocks, rcu);
1857 }
1858 }
1859}
1860
528f46af 1861static void ram_block_add(RAMBlock *new_block, Error **errp)
c5705a77 1862{
e1c57ab8 1863 RAMBlock *block;
0d53d9fe 1864 RAMBlock *last_block = NULL;
2152f5ca 1865 ram_addr_t old_ram_size, new_ram_size;
37aa7a0e 1866 Error *err = NULL;
2152f5ca 1867
b8c48993 1868 old_ram_size = last_ram_page();
c5705a77 1869
b2a8658e 1870 qemu_mutex_lock_ramlist();
9b8424d5 1871 new_block->offset = find_ram_offset(new_block->max_length);
e1c57ab8
PB
1872
1873 if (!new_block->host) {
1874 if (xen_enabled()) {
9b8424d5 1875 xen_ram_alloc(new_block->offset, new_block->max_length,
37aa7a0e
MA
1876 new_block->mr, &err);
1877 if (err) {
1878 error_propagate(errp, err);
1879 qemu_mutex_unlock_ramlist();
39c350ee 1880 return;
37aa7a0e 1881 }
e1c57ab8 1882 } else {
9b8424d5 1883 new_block->host = phys_mem_alloc(new_block->max_length,
a2b257d6 1884 &new_block->mr->align);
39228250 1885 if (!new_block->host) {
ef701d7b
HT
1886 error_setg_errno(errp, errno,
1887 "cannot set up guest memory '%s'",
1888 memory_region_name(new_block->mr));
1889 qemu_mutex_unlock_ramlist();
39c350ee 1890 return;
39228250 1891 }
9b8424d5 1892 memory_try_enable_merging(new_block->host, new_block->max_length);
6977dfe6 1893 }
c902760f 1894 }
94a6b54f 1895
dd631697
LZ
1896 new_ram_size = MAX(old_ram_size,
1897 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1898 if (new_ram_size > old_ram_size) {
5b82b703 1899 dirty_memory_extend(old_ram_size, new_ram_size);
dd631697 1900 }
0d53d9fe
MD
1901 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1902 * QLIST (which has an RCU-friendly variant) does not have insertion at
1903 * tail, so save the last element in last_block.
1904 */
99e15582 1905 RAMBLOCK_FOREACH(block) {
0d53d9fe 1906 last_block = block;
9b8424d5 1907 if (block->max_length < new_block->max_length) {
abb26d63
PB
1908 break;
1909 }
1910 }
1911 if (block) {
0dc3f44a 1912 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
0d53d9fe 1913 } else if (last_block) {
0dc3f44a 1914 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
0d53d9fe 1915 } else { /* list is empty */
0dc3f44a 1916 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
abb26d63 1917 }
0d6d3c87 1918 ram_list.mru_block = NULL;
94a6b54f 1919
0dc3f44a
MD
1920 /* Write list before version */
1921 smp_wmb();
f798b07f 1922 ram_list.version++;
b2a8658e 1923 qemu_mutex_unlock_ramlist();
f798b07f 1924
9b8424d5 1925 cpu_physical_memory_set_dirty_range(new_block->offset,
58d2707e
PB
1926 new_block->used_length,
1927 DIRTY_CLIENTS_ALL);
94a6b54f 1928
a904c911
PB
1929 if (new_block->host) {
1930 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1931 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
c2cd627d 1932 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
a904c911 1933 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
0987d735 1934 ram_block_notify_add(new_block->host, new_block->max_length);
e1c57ab8 1935 }
94a6b54f 1936}
e9a1ab19 1937
0b183fc8 1938#ifdef __linux__
38b3362d
MAL
1939RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
1940 bool share, int fd,
1941 Error **errp)
e1c57ab8
PB
1942{
1943 RAMBlock *new_block;
ef701d7b 1944 Error *local_err = NULL;
8d37b030 1945 int64_t file_size;
e1c57ab8
PB
1946
1947 if (xen_enabled()) {
7f56e740 1948 error_setg(errp, "-mem-path not supported with Xen");
528f46af 1949 return NULL;
e1c57ab8
PB
1950 }
1951
e45e7ae2
MAL
1952 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1953 error_setg(errp,
1954 "host lacks kvm mmu notifiers, -mem-path unsupported");
1955 return NULL;
1956 }
1957
e1c57ab8
PB
1958 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1959 /*
1960 * file_ram_alloc() needs to allocate just like
1961 * phys_mem_alloc, but we haven't bothered to provide
1962 * a hook there.
1963 */
7f56e740
PB
1964 error_setg(errp,
1965 "-mem-path not supported with this accelerator");
528f46af 1966 return NULL;
e1c57ab8
PB
1967 }
1968
4ed023ce 1969 size = HOST_PAGE_ALIGN(size);
8d37b030
MAL
1970 file_size = get_file_size(fd);
1971 if (file_size > 0 && file_size < size) {
1972 error_setg(errp, "backing store %s size 0x%" PRIx64
1973 " does not match 'size' option 0x" RAM_ADDR_FMT,
1974 mem_path, file_size, size);
8d37b030
MAL
1975 return NULL;
1976 }
1977
e1c57ab8
PB
1978 new_block = g_malloc0(sizeof(*new_block));
1979 new_block->mr = mr;
9b8424d5
MT
1980 new_block->used_length = size;
1981 new_block->max_length = size;
dbcb8981 1982 new_block->flags = share ? RAM_SHARED : 0;
8d37b030 1983 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
7f56e740
PB
1984 if (!new_block->host) {
1985 g_free(new_block);
528f46af 1986 return NULL;
7f56e740
PB
1987 }
1988
528f46af 1989 ram_block_add(new_block, &local_err);
ef701d7b
HT
1990 if (local_err) {
1991 g_free(new_block);
1992 error_propagate(errp, local_err);
528f46af 1993 return NULL;
ef701d7b 1994 }
528f46af 1995 return new_block;
38b3362d
MAL
1996
1997}
1998
1999
2000RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2001 bool share, const char *mem_path,
2002 Error **errp)
2003{
2004 int fd;
2005 bool created;
2006 RAMBlock *block;
2007
2008 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2009 if (fd < 0) {
2010 return NULL;
2011 }
2012
2013 block = qemu_ram_alloc_from_fd(size, mr, share, fd, errp);
2014 if (!block) {
2015 if (created) {
2016 unlink(mem_path);
2017 }
2018 close(fd);
2019 return NULL;
2020 }
2021
2022 return block;
e1c57ab8 2023}
0b183fc8 2024#endif
e1c57ab8 2025
62be4e3a 2026static
528f46af
FZ
2027RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2028 void (*resized)(const char*,
2029 uint64_t length,
2030 void *host),
2031 void *host, bool resizeable,
2032 MemoryRegion *mr, Error **errp)
e1c57ab8
PB
2033{
2034 RAMBlock *new_block;
ef701d7b 2035 Error *local_err = NULL;
e1c57ab8 2036
4ed023ce
DDAG
2037 size = HOST_PAGE_ALIGN(size);
2038 max_size = HOST_PAGE_ALIGN(max_size);
e1c57ab8
PB
2039 new_block = g_malloc0(sizeof(*new_block));
2040 new_block->mr = mr;
62be4e3a 2041 new_block->resized = resized;
9b8424d5
MT
2042 new_block->used_length = size;
2043 new_block->max_length = max_size;
62be4e3a 2044 assert(max_size >= size);
e1c57ab8 2045 new_block->fd = -1;
863e9621 2046 new_block->page_size = getpagesize();
e1c57ab8
PB
2047 new_block->host = host;
2048 if (host) {
7bd4f430 2049 new_block->flags |= RAM_PREALLOC;
e1c57ab8 2050 }
62be4e3a
MT
2051 if (resizeable) {
2052 new_block->flags |= RAM_RESIZEABLE;
2053 }
528f46af 2054 ram_block_add(new_block, &local_err);
ef701d7b
HT
2055 if (local_err) {
2056 g_free(new_block);
2057 error_propagate(errp, local_err);
528f46af 2058 return NULL;
ef701d7b 2059 }
528f46af 2060 return new_block;
e1c57ab8
PB
2061}
2062
528f46af 2063RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
62be4e3a
MT
2064 MemoryRegion *mr, Error **errp)
2065{
2066 return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp);
2067}
2068
528f46af 2069RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp)
6977dfe6 2070{
62be4e3a
MT
2071 return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp);
2072}
2073
528f46af 2074RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
62be4e3a
MT
2075 void (*resized)(const char*,
2076 uint64_t length,
2077 void *host),
2078 MemoryRegion *mr, Error **errp)
2079{
2080 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp);
6977dfe6
YT
2081}
2082
43771539
PB
2083static void reclaim_ramblock(RAMBlock *block)
2084{
2085 if (block->flags & RAM_PREALLOC) {
2086 ;
2087 } else if (xen_enabled()) {
2088 xen_invalidate_map_cache_entry(block->host);
2089#ifndef _WIN32
2090 } else if (block->fd >= 0) {
2f3a2bb1 2091 qemu_ram_munmap(block->host, block->max_length);
43771539
PB
2092 close(block->fd);
2093#endif
2094 } else {
2095 qemu_anon_ram_free(block->host, block->max_length);
2096 }
2097 g_free(block);
2098}
2099
f1060c55 2100void qemu_ram_free(RAMBlock *block)
e9a1ab19 2101{
85bc2a15
MAL
2102 if (!block) {
2103 return;
2104 }
2105
0987d735
PB
2106 if (block->host) {
2107 ram_block_notify_remove(block->host, block->max_length);
2108 }
2109
b2a8658e 2110 qemu_mutex_lock_ramlist();
f1060c55
FZ
2111 QLIST_REMOVE_RCU(block, next);
2112 ram_list.mru_block = NULL;
2113 /* Write list before version */
2114 smp_wmb();
2115 ram_list.version++;
2116 call_rcu(block, reclaim_ramblock, rcu);
b2a8658e 2117 qemu_mutex_unlock_ramlist();
e9a1ab19
FB
2118}
2119
cd19cfa2
HY
2120#ifndef _WIN32
2121void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2122{
2123 RAMBlock *block;
2124 ram_addr_t offset;
2125 int flags;
2126 void *area, *vaddr;
2127
99e15582 2128 RAMBLOCK_FOREACH(block) {
cd19cfa2 2129 offset = addr - block->offset;
9b8424d5 2130 if (offset < block->max_length) {
1240be24 2131 vaddr = ramblock_ptr(block, offset);
7bd4f430 2132 if (block->flags & RAM_PREALLOC) {
cd19cfa2 2133 ;
dfeaf2ab
MA
2134 } else if (xen_enabled()) {
2135 abort();
cd19cfa2
HY
2136 } else {
2137 flags = MAP_FIXED;
3435f395 2138 if (block->fd >= 0) {
dbcb8981
PB
2139 flags |= (block->flags & RAM_SHARED ?
2140 MAP_SHARED : MAP_PRIVATE);
3435f395
MA
2141 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2142 flags, block->fd, offset);
cd19cfa2 2143 } else {
2eb9fbaa
MA
2144 /*
2145 * Remap needs to match alloc. Accelerators that
2146 * set phys_mem_alloc never remap. If they did,
2147 * we'd need a remap hook here.
2148 */
2149 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2150
cd19cfa2
HY
2151 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2152 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2153 flags, -1, 0);
cd19cfa2
HY
2154 }
2155 if (area != vaddr) {
f15fbc4b
AP
2156 fprintf(stderr, "Could not remap addr: "
2157 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
cd19cfa2
HY
2158 length, addr);
2159 exit(1);
2160 }
8490fc78 2161 memory_try_enable_merging(vaddr, length);
ddb97f1d 2162 qemu_ram_setup_dump(vaddr, length);
cd19cfa2 2163 }
cd19cfa2
HY
2164 }
2165 }
2166}
2167#endif /* !_WIN32 */
2168
1b5ec234 2169/* Return a host pointer to ram allocated with qemu_ram_alloc.
ae3a7047
MD
2170 * This should not be used for general purpose DMA. Use address_space_map
2171 * or address_space_rw instead. For local memory (e.g. video ram) that the
2172 * device owns, use memory_region_get_ram_ptr.
0dc3f44a 2173 *
49b24afc 2174 * Called within RCU critical section.
1b5ec234 2175 */
0878d0e1 2176void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
1b5ec234 2177{
3655cb9c
GA
2178 RAMBlock *block = ram_block;
2179
2180 if (block == NULL) {
2181 block = qemu_get_ram_block(addr);
0878d0e1 2182 addr -= block->offset;
3655cb9c 2183 }
ae3a7047
MD
2184
2185 if (xen_enabled() && block->host == NULL) {
0d6d3c87
PB
2186 /* We need to check if the requested address is in the RAM
2187 * because we don't want to map the entire memory in QEMU.
2188 * In that case just map until the end of the page.
2189 */
2190 if (block->offset == 0) {
1ff7c598 2191 return xen_map_cache(addr, 0, 0, false);
0d6d3c87 2192 }
ae3a7047 2193
1ff7c598 2194 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
0d6d3c87 2195 }
0878d0e1 2196 return ramblock_ptr(block, addr);
dc828ca1
PB
2197}
2198
0878d0e1 2199/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
ae3a7047 2200 * but takes a size argument.
0dc3f44a 2201 *
e81bcda5 2202 * Called within RCU critical section.
ae3a7047 2203 */
3655cb9c 2204static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
f5aa69bd 2205 hwaddr *size, bool lock)
38bee5dc 2206{
3655cb9c 2207 RAMBlock *block = ram_block;
8ab934f9
SS
2208 if (*size == 0) {
2209 return NULL;
2210 }
e81bcda5 2211
3655cb9c
GA
2212 if (block == NULL) {
2213 block = qemu_get_ram_block(addr);
0878d0e1 2214 addr -= block->offset;
3655cb9c 2215 }
0878d0e1 2216 *size = MIN(*size, block->max_length - addr);
e81bcda5
PB
2217
2218 if (xen_enabled() && block->host == NULL) {
2219 /* We need to check if the requested address is in the RAM
2220 * because we don't want to map the entire memory in QEMU.
2221 * In that case just map the requested area.
2222 */
2223 if (block->offset == 0) {
f5aa69bd 2224 return xen_map_cache(addr, *size, lock, lock);
38bee5dc
SS
2225 }
2226
f5aa69bd 2227 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
38bee5dc 2228 }
e81bcda5 2229
0878d0e1 2230 return ramblock_ptr(block, addr);
38bee5dc
SS
2231}
2232
422148d3
DDAG
2233/*
2234 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2235 * in that RAMBlock.
2236 *
2237 * ptr: Host pointer to look up
2238 * round_offset: If true round the result offset down to a page boundary
2239 * *ram_addr: set to result ram_addr
2240 * *offset: set to result offset within the RAMBlock
2241 *
2242 * Returns: RAMBlock (or NULL if not found)
ae3a7047
MD
2243 *
2244 * By the time this function returns, the returned pointer is not protected
2245 * by RCU anymore. If the caller is not within an RCU critical section and
2246 * does not hold the iothread lock, it must have other means of protecting the
2247 * pointer, such as a reference to the region that includes the incoming
2248 * ram_addr_t.
2249 */
422148d3 2250RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
422148d3 2251 ram_addr_t *offset)
5579c7f3 2252{
94a6b54f
PB
2253 RAMBlock *block;
2254 uint8_t *host = ptr;
2255
868bb33f 2256 if (xen_enabled()) {
f615f396 2257 ram_addr_t ram_addr;
0dc3f44a 2258 rcu_read_lock();
f615f396
PB
2259 ram_addr = xen_ram_addr_from_mapcache(ptr);
2260 block = qemu_get_ram_block(ram_addr);
422148d3 2261 if (block) {
d6b6aec4 2262 *offset = ram_addr - block->offset;
422148d3 2263 }
0dc3f44a 2264 rcu_read_unlock();
422148d3 2265 return block;
712c2b41
SS
2266 }
2267
0dc3f44a
MD
2268 rcu_read_lock();
2269 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 2270 if (block && block->host && host - block->host < block->max_length) {
23887b79
PB
2271 goto found;
2272 }
2273
99e15582 2274 RAMBLOCK_FOREACH(block) {
432d268c
JN
2275 /* This case append when the block is not mapped. */
2276 if (block->host == NULL) {
2277 continue;
2278 }
9b8424d5 2279 if (host - block->host < block->max_length) {
23887b79 2280 goto found;
f471a17e 2281 }
94a6b54f 2282 }
432d268c 2283
0dc3f44a 2284 rcu_read_unlock();
1b5ec234 2285 return NULL;
23887b79
PB
2286
2287found:
422148d3
DDAG
2288 *offset = (host - block->host);
2289 if (round_offset) {
2290 *offset &= TARGET_PAGE_MASK;
2291 }
0dc3f44a 2292 rcu_read_unlock();
422148d3
DDAG
2293 return block;
2294}
2295
e3dd7493
DDAG
2296/*
2297 * Finds the named RAMBlock
2298 *
2299 * name: The name of RAMBlock to find
2300 *
2301 * Returns: RAMBlock (or NULL if not found)
2302 */
2303RAMBlock *qemu_ram_block_by_name(const char *name)
2304{
2305 RAMBlock *block;
2306
99e15582 2307 RAMBLOCK_FOREACH(block) {
e3dd7493
DDAG
2308 if (!strcmp(name, block->idstr)) {
2309 return block;
2310 }
2311 }
2312
2313 return NULL;
2314}
2315
422148d3
DDAG
2316/* Some of the softmmu routines need to translate from a host pointer
2317 (typically a TLB entry) back to a ram offset. */
07bdaa41 2318ram_addr_t qemu_ram_addr_from_host(void *ptr)
422148d3
DDAG
2319{
2320 RAMBlock *block;
f615f396 2321 ram_addr_t offset;
422148d3 2322
f615f396 2323 block = qemu_ram_block_from_host(ptr, false, &offset);
422148d3 2324 if (!block) {
07bdaa41 2325 return RAM_ADDR_INVALID;
422148d3
DDAG
2326 }
2327
07bdaa41 2328 return block->offset + offset;
e890261f 2329}
f471a17e 2330
49b24afc 2331/* Called within RCU critical section. */
a8170e5e 2332static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
0e0df1e2 2333 uint64_t val, unsigned size)
9fa3e853 2334{
ba051fb5
AB
2335 bool locked = false;
2336
5aa1ef71 2337 assert(tcg_enabled());
52159192 2338 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
ba051fb5
AB
2339 locked = true;
2340 tb_lock();
0e0df1e2 2341 tb_invalidate_phys_page_fast(ram_addr, size);
3a7d929e 2342 }
0e0df1e2
AK
2343 switch (size) {
2344 case 1:
0878d0e1 2345 stb_p(qemu_map_ram_ptr(NULL, ram_addr), val);
0e0df1e2
AK
2346 break;
2347 case 2:
0878d0e1 2348 stw_p(qemu_map_ram_ptr(NULL, ram_addr), val);
0e0df1e2
AK
2349 break;
2350 case 4:
0878d0e1 2351 stl_p(qemu_map_ram_ptr(NULL, ram_addr), val);
0e0df1e2
AK
2352 break;
2353 default:
2354 abort();
3a7d929e 2355 }
ba051fb5
AB
2356
2357 if (locked) {
2358 tb_unlock();
2359 }
2360
58d2707e
PB
2361 /* Set both VGA and migration bits for simplicity and to remove
2362 * the notdirty callback faster.
2363 */
2364 cpu_physical_memory_set_dirty_range(ram_addr, size,
2365 DIRTY_CLIENTS_NOCODE);
f23db169
FB
2366 /* we remove the notdirty callback only if the code has been
2367 flushed */
a2cd8c85 2368 if (!cpu_physical_memory_is_clean(ram_addr)) {
bcae01e4 2369 tlb_set_dirty(current_cpu, current_cpu->mem_io_vaddr);
4917cf44 2370 }
9fa3e853
FB
2371}
2372
b018ddf6
PB
2373static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2374 unsigned size, bool is_write)
2375{
2376 return is_write;
2377}
2378
0e0df1e2 2379static const MemoryRegionOps notdirty_mem_ops = {
0e0df1e2 2380 .write = notdirty_mem_write,
b018ddf6 2381 .valid.accepts = notdirty_mem_accepts,
0e0df1e2 2382 .endianness = DEVICE_NATIVE_ENDIAN,
1ccde1cb
FB
2383};
2384
0f459d16 2385/* Generate a debug exception if a watchpoint has been hit. */
66b9b43c 2386static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
0f459d16 2387{
93afeade 2388 CPUState *cpu = current_cpu;
568496c0 2389 CPUClass *cc = CPU_GET_CLASS(cpu);
93afeade 2390 CPUArchState *env = cpu->env_ptr;
06d55cc1 2391 target_ulong pc, cs_base;
0f459d16 2392 target_ulong vaddr;
a1d1bb31 2393 CPUWatchpoint *wp;
89fee74a 2394 uint32_t cpu_flags;
0f459d16 2395
5aa1ef71 2396 assert(tcg_enabled());
ff4700b0 2397 if (cpu->watchpoint_hit) {
06d55cc1
AL
2398 /* We re-entered the check after replacing the TB. Now raise
2399 * the debug interrupt so that is will trigger after the
2400 * current instruction. */
93afeade 2401 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
06d55cc1
AL
2402 return;
2403 }
93afeade 2404 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
40612000 2405 vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
ff4700b0 2406 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d
PM
2407 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2408 && (wp->flags & flags)) {
08225676
PM
2409 if (flags == BP_MEM_READ) {
2410 wp->flags |= BP_WATCHPOINT_HIT_READ;
2411 } else {
2412 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2413 }
2414 wp->hitaddr = vaddr;
66b9b43c 2415 wp->hitattrs = attrs;
ff4700b0 2416 if (!cpu->watchpoint_hit) {
568496c0
SF
2417 if (wp->flags & BP_CPU &&
2418 !cc->debug_check_watchpoint(cpu, wp)) {
2419 wp->flags &= ~BP_WATCHPOINT_HIT;
2420 continue;
2421 }
ff4700b0 2422 cpu->watchpoint_hit = wp;
a5e99826 2423
8d04fb55
JK
2424 /* Both tb_lock and iothread_mutex will be reset when
2425 * cpu_loop_exit or cpu_loop_exit_noexc longjmp
2426 * back into the cpu_exec main loop.
a5e99826
FK
2427 */
2428 tb_lock();
239c51a5 2429 tb_check_watchpoint(cpu);
6e140f28 2430 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
27103424 2431 cpu->exception_index = EXCP_DEBUG;
5638d180 2432 cpu_loop_exit(cpu);
6e140f28
AL
2433 } else {
2434 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
648f034c 2435 tb_gen_code(cpu, pc, cs_base, cpu_flags, 1);
6886b980 2436 cpu_loop_exit_noexc(cpu);
6e140f28 2437 }
06d55cc1 2438 }
6e140f28
AL
2439 } else {
2440 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2441 }
2442 }
2443}
2444
6658ffb8
PB
2445/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2446 so these check for a hit then pass through to the normal out-of-line
2447 phys routines. */
66b9b43c
PM
2448static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2449 unsigned size, MemTxAttrs attrs)
6658ffb8 2450{
66b9b43c
PM
2451 MemTxResult res;
2452 uint64_t data;
79ed0416
PM
2453 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2454 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2455
2456 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
1ec9b909 2457 switch (size) {
66b9b43c 2458 case 1:
79ed0416 2459 data = address_space_ldub(as, addr, attrs, &res);
66b9b43c
PM
2460 break;
2461 case 2:
79ed0416 2462 data = address_space_lduw(as, addr, attrs, &res);
66b9b43c
PM
2463 break;
2464 case 4:
79ed0416 2465 data = address_space_ldl(as, addr, attrs, &res);
66b9b43c 2466 break;
1ec9b909
AK
2467 default: abort();
2468 }
66b9b43c
PM
2469 *pdata = data;
2470 return res;
6658ffb8
PB
2471}
2472
66b9b43c
PM
2473static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2474 uint64_t val, unsigned size,
2475 MemTxAttrs attrs)
6658ffb8 2476{
66b9b43c 2477 MemTxResult res;
79ed0416
PM
2478 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2479 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2480
2481 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
1ec9b909 2482 switch (size) {
67364150 2483 case 1:
79ed0416 2484 address_space_stb(as, addr, val, attrs, &res);
67364150
MF
2485 break;
2486 case 2:
79ed0416 2487 address_space_stw(as, addr, val, attrs, &res);
67364150
MF
2488 break;
2489 case 4:
79ed0416 2490 address_space_stl(as, addr, val, attrs, &res);
67364150 2491 break;
1ec9b909
AK
2492 default: abort();
2493 }
66b9b43c 2494 return res;
6658ffb8
PB
2495}
2496
1ec9b909 2497static const MemoryRegionOps watch_mem_ops = {
66b9b43c
PM
2498 .read_with_attrs = watch_mem_read,
2499 .write_with_attrs = watch_mem_write,
1ec9b909 2500 .endianness = DEVICE_NATIVE_ENDIAN,
6658ffb8 2501};
6658ffb8 2502
f25a49e0
PM
2503static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2504 unsigned len, MemTxAttrs attrs)
db7b5426 2505{
acc9d80b 2506 subpage_t *subpage = opaque;
ff6cff75 2507 uint8_t buf[8];
5c9eb028 2508 MemTxResult res;
791af8c8 2509
db7b5426 2510#if defined(DEBUG_SUBPAGE)
016e9d62 2511 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
acc9d80b 2512 subpage, len, addr);
db7b5426 2513#endif
5c9eb028
PM
2514 res = address_space_read(subpage->as, addr + subpage->base,
2515 attrs, buf, len);
2516 if (res) {
2517 return res;
f25a49e0 2518 }
acc9d80b
JK
2519 switch (len) {
2520 case 1:
f25a49e0
PM
2521 *data = ldub_p(buf);
2522 return MEMTX_OK;
acc9d80b 2523 case 2:
f25a49e0
PM
2524 *data = lduw_p(buf);
2525 return MEMTX_OK;
acc9d80b 2526 case 4:
f25a49e0
PM
2527 *data = ldl_p(buf);
2528 return MEMTX_OK;
ff6cff75 2529 case 8:
f25a49e0
PM
2530 *data = ldq_p(buf);
2531 return MEMTX_OK;
acc9d80b
JK
2532 default:
2533 abort();
2534 }
db7b5426
BS
2535}
2536
f25a49e0
PM
2537static MemTxResult subpage_write(void *opaque, hwaddr addr,
2538 uint64_t value, unsigned len, MemTxAttrs attrs)
db7b5426 2539{
acc9d80b 2540 subpage_t *subpage = opaque;
ff6cff75 2541 uint8_t buf[8];
acc9d80b 2542
db7b5426 2543#if defined(DEBUG_SUBPAGE)
016e9d62 2544 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
acc9d80b
JK
2545 " value %"PRIx64"\n",
2546 __func__, subpage, len, addr, value);
db7b5426 2547#endif
acc9d80b
JK
2548 switch (len) {
2549 case 1:
2550 stb_p(buf, value);
2551 break;
2552 case 2:
2553 stw_p(buf, value);
2554 break;
2555 case 4:
2556 stl_p(buf, value);
2557 break;
ff6cff75
PB
2558 case 8:
2559 stq_p(buf, value);
2560 break;
acc9d80b
JK
2561 default:
2562 abort();
2563 }
5c9eb028
PM
2564 return address_space_write(subpage->as, addr + subpage->base,
2565 attrs, buf, len);
db7b5426
BS
2566}
2567
c353e4cc 2568static bool subpage_accepts(void *opaque, hwaddr addr,
016e9d62 2569 unsigned len, bool is_write)
c353e4cc 2570{
acc9d80b 2571 subpage_t *subpage = opaque;
c353e4cc 2572#if defined(DEBUG_SUBPAGE)
016e9d62 2573 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
acc9d80b 2574 __func__, subpage, is_write ? 'w' : 'r', len, addr);
c353e4cc
PB
2575#endif
2576
acc9d80b 2577 return address_space_access_valid(subpage->as, addr + subpage->base,
016e9d62 2578 len, is_write);
c353e4cc
PB
2579}
2580
70c68e44 2581static const MemoryRegionOps subpage_ops = {
f25a49e0
PM
2582 .read_with_attrs = subpage_read,
2583 .write_with_attrs = subpage_write,
ff6cff75
PB
2584 .impl.min_access_size = 1,
2585 .impl.max_access_size = 8,
2586 .valid.min_access_size = 1,
2587 .valid.max_access_size = 8,
c353e4cc 2588 .valid.accepts = subpage_accepts,
70c68e44 2589 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
2590};
2591
c227f099 2592static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 2593 uint16_t section)
db7b5426
BS
2594{
2595 int idx, eidx;
2596
2597 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2598 return -1;
2599 idx = SUBPAGE_IDX(start);
2600 eidx = SUBPAGE_IDX(end);
2601#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2602 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2603 __func__, mmio, start, end, idx, eidx, section);
db7b5426 2604#endif
db7b5426 2605 for (; idx <= eidx; idx++) {
5312bd8b 2606 mmio->sub_section[idx] = section;
db7b5426
BS
2607 }
2608
2609 return 0;
2610}
2611
acc9d80b 2612static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
db7b5426 2613{
c227f099 2614 subpage_t *mmio;
db7b5426 2615
2615fabd 2616 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
acc9d80b 2617 mmio->as = as;
1eec614b 2618 mmio->base = base;
2c9b15ca 2619 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
b4fefef9 2620 NULL, TARGET_PAGE_SIZE);
b3b00c78 2621 mmio->iomem.subpage = true;
db7b5426 2622#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2623 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2624 mmio, base, TARGET_PAGE_SIZE);
db7b5426 2625#endif
b41aac4f 2626 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
db7b5426
BS
2627
2628 return mmio;
2629}
2630
a656e22f
PC
2631static uint16_t dummy_section(PhysPageMap *map, AddressSpace *as,
2632 MemoryRegion *mr)
5312bd8b 2633{
a656e22f 2634 assert(as);
5312bd8b 2635 MemoryRegionSection section = {
a656e22f 2636 .address_space = as,
5312bd8b
AK
2637 .mr = mr,
2638 .offset_within_address_space = 0,
2639 .offset_within_region = 0,
052e87b0 2640 .size = int128_2_64(),
5312bd8b
AK
2641 };
2642
53cb28cb 2643 return phys_section_add(map, &section);
5312bd8b
AK
2644}
2645
a54c87b6 2646MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs)
aa102231 2647{
a54c87b6
PM
2648 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2649 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
32857f4d 2650 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
79e2b9ae 2651 MemoryRegionSection *sections = d->map.sections;
9d82b5a7
PB
2652
2653 return sections[index & ~TARGET_PAGE_MASK].mr;
aa102231
AK
2654}
2655
e9179ce1
AK
2656static void io_mem_init(void)
2657{
1f6245e5 2658 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX);
2c9b15ca 2659 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1f6245e5 2660 NULL, UINT64_MAX);
8d04fb55
JK
2661
2662 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
2663 * which can be called without the iothread mutex.
2664 */
2c9b15ca 2665 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
1f6245e5 2666 NULL, UINT64_MAX);
8d04fb55
JK
2667 memory_region_clear_global_locking(&io_mem_notdirty);
2668
2c9b15ca 2669 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1f6245e5 2670 NULL, UINT64_MAX);
e9179ce1
AK
2671}
2672
ac1970fb 2673static void mem_begin(MemoryListener *listener)
00752703
PB
2674{
2675 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
53cb28cb
MA
2676 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2677 uint16_t n;
2678
a656e22f 2679 n = dummy_section(&d->map, as, &io_mem_unassigned);
53cb28cb 2680 assert(n == PHYS_SECTION_UNASSIGNED);
a656e22f 2681 n = dummy_section(&d->map, as, &io_mem_notdirty);
53cb28cb 2682 assert(n == PHYS_SECTION_NOTDIRTY);
a656e22f 2683 n = dummy_section(&d->map, as, &io_mem_rom);
53cb28cb 2684 assert(n == PHYS_SECTION_ROM);
a656e22f 2685 n = dummy_section(&d->map, as, &io_mem_watch);
53cb28cb 2686 assert(n == PHYS_SECTION_WATCH);
00752703 2687
9736e55b 2688 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
00752703
PB
2689 d->as = as;
2690 as->next_dispatch = d;
2691}
2692
79e2b9ae
PB
2693static void address_space_dispatch_free(AddressSpaceDispatch *d)
2694{
2695 phys_sections_free(&d->map);
2696 g_free(d);
2697}
2698
00752703 2699static void mem_commit(MemoryListener *listener)
ac1970fb 2700{
89ae337a 2701 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
0475d94f
PB
2702 AddressSpaceDispatch *cur = as->dispatch;
2703 AddressSpaceDispatch *next = as->next_dispatch;
2704
53cb28cb 2705 phys_page_compact_all(next, next->map.nodes_nb);
b35ba30f 2706
79e2b9ae 2707 atomic_rcu_set(&as->dispatch, next);
53cb28cb 2708 if (cur) {
79e2b9ae 2709 call_rcu(cur, address_space_dispatch_free, rcu);
53cb28cb 2710 }
9affd6fc
PB
2711}
2712
1d71148e 2713static void tcg_commit(MemoryListener *listener)
50c1e149 2714{
32857f4d
PM
2715 CPUAddressSpace *cpuas;
2716 AddressSpaceDispatch *d;
117712c3
AK
2717
2718 /* since each CPU stores ram addresses in its TLB cache, we must
2719 reset the modified entries */
32857f4d
PM
2720 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2721 cpu_reloading_memory_map();
2722 /* The CPU and TLB are protected by the iothread lock.
2723 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2724 * may have split the RCU critical section.
2725 */
2726 d = atomic_rcu_read(&cpuas->as->dispatch);
f35e44e7 2727 atomic_rcu_set(&cpuas->memory_dispatch, d);
d10eb08f 2728 tlb_flush(cpuas->cpu);
50c1e149
AK
2729}
2730
ac1970fb
AK
2731void address_space_init_dispatch(AddressSpace *as)
2732{
00752703 2733 as->dispatch = NULL;
89ae337a 2734 as->dispatch_listener = (MemoryListener) {
ac1970fb 2735 .begin = mem_begin,
00752703 2736 .commit = mem_commit,
ac1970fb
AK
2737 .region_add = mem_add,
2738 .region_nop = mem_add,
2739 .priority = 0,
2740 };
89ae337a 2741 memory_listener_register(&as->dispatch_listener, as);
ac1970fb
AK
2742}
2743
6e48e8f9
PB
2744void address_space_unregister(AddressSpace *as)
2745{
2746 memory_listener_unregister(&as->dispatch_listener);
2747}
2748
83f3c251
AK
2749void address_space_destroy_dispatch(AddressSpace *as)
2750{
2751 AddressSpaceDispatch *d = as->dispatch;
2752
79e2b9ae
PB
2753 atomic_rcu_set(&as->dispatch, NULL);
2754 if (d) {
2755 call_rcu(d, address_space_dispatch_free, rcu);
2756 }
83f3c251
AK
2757}
2758
62152b8a
AK
2759static void memory_map_init(void)
2760{
7267c094 2761 system_memory = g_malloc(sizeof(*system_memory));
03f49957 2762
57271d63 2763 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
7dca8043 2764 address_space_init(&address_space_memory, system_memory, "memory");
309cb471 2765
7267c094 2766 system_io = g_malloc(sizeof(*system_io));
3bb28b72
JK
2767 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2768 65536);
7dca8043 2769 address_space_init(&address_space_io, system_io, "I/O");
62152b8a
AK
2770}
2771
2772MemoryRegion *get_system_memory(void)
2773{
2774 return system_memory;
2775}
2776
309cb471
AK
2777MemoryRegion *get_system_io(void)
2778{
2779 return system_io;
2780}
2781
e2eef170
PB
2782#endif /* !defined(CONFIG_USER_ONLY) */
2783
13eb76e0
FB
2784/* physical memory access (slow version, mainly for debug) */
2785#if defined(CONFIG_USER_ONLY)
f17ec444 2786int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
a68fe89c 2787 uint8_t *buf, int len, int is_write)
13eb76e0
FB
2788{
2789 int l, flags;
2790 target_ulong page;
53a5960a 2791 void * p;
13eb76e0
FB
2792
2793 while (len > 0) {
2794 page = addr & TARGET_PAGE_MASK;
2795 l = (page + TARGET_PAGE_SIZE) - addr;
2796 if (l > len)
2797 l = len;
2798 flags = page_get_flags(page);
2799 if (!(flags & PAGE_VALID))
a68fe89c 2800 return -1;
13eb76e0
FB
2801 if (is_write) {
2802 if (!(flags & PAGE_WRITE))
a68fe89c 2803 return -1;
579a97f7 2804 /* XXX: this code should not depend on lock_user */
72fb7daa 2805 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 2806 return -1;
72fb7daa
AJ
2807 memcpy(p, buf, l);
2808 unlock_user(p, addr, l);
13eb76e0
FB
2809 } else {
2810 if (!(flags & PAGE_READ))
a68fe89c 2811 return -1;
579a97f7 2812 /* XXX: this code should not depend on lock_user */
72fb7daa 2813 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 2814 return -1;
72fb7daa 2815 memcpy(buf, p, l);
5b257578 2816 unlock_user(p, addr, 0);
13eb76e0
FB
2817 }
2818 len -= l;
2819 buf += l;
2820 addr += l;
2821 }
a68fe89c 2822 return 0;
13eb76e0 2823}
8df1cd07 2824
13eb76e0 2825#else
51d7a9eb 2826
845b6214 2827static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
a8170e5e 2828 hwaddr length)
51d7a9eb 2829{
e87f7778 2830 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
0878d0e1
PB
2831 addr += memory_region_get_ram_addr(mr);
2832
e87f7778
PB
2833 /* No early return if dirty_log_mask is or becomes 0, because
2834 * cpu_physical_memory_set_dirty_range will still call
2835 * xen_modified_memory.
2836 */
2837 if (dirty_log_mask) {
2838 dirty_log_mask =
2839 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2840 }
2841 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
5aa1ef71 2842 assert(tcg_enabled());
ba051fb5 2843 tb_lock();
e87f7778 2844 tb_invalidate_phys_range(addr, addr + length);
ba051fb5 2845 tb_unlock();
e87f7778 2846 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
51d7a9eb 2847 }
e87f7778 2848 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
51d7a9eb
AP
2849}
2850
23326164 2851static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
82f2563f 2852{
e1622f4b 2853 unsigned access_size_max = mr->ops->valid.max_access_size;
23326164
RH
2854
2855 /* Regions are assumed to support 1-4 byte accesses unless
2856 otherwise specified. */
23326164
RH
2857 if (access_size_max == 0) {
2858 access_size_max = 4;
2859 }
2860
2861 /* Bound the maximum access by the alignment of the address. */
2862 if (!mr->ops->impl.unaligned) {
2863 unsigned align_size_max = addr & -addr;
2864 if (align_size_max != 0 && align_size_max < access_size_max) {
2865 access_size_max = align_size_max;
2866 }
82f2563f 2867 }
23326164
RH
2868
2869 /* Don't attempt accesses larger than the maximum. */
2870 if (l > access_size_max) {
2871 l = access_size_max;
82f2563f 2872 }
6554f5c0 2873 l = pow2floor(l);
23326164
RH
2874
2875 return l;
82f2563f
PB
2876}
2877
4840f10e 2878static bool prepare_mmio_access(MemoryRegion *mr)
125b3806 2879{
4840f10e
JK
2880 bool unlocked = !qemu_mutex_iothread_locked();
2881 bool release_lock = false;
2882
2883 if (unlocked && mr->global_locking) {
2884 qemu_mutex_lock_iothread();
2885 unlocked = false;
2886 release_lock = true;
2887 }
125b3806 2888 if (mr->flush_coalesced_mmio) {
4840f10e
JK
2889 if (unlocked) {
2890 qemu_mutex_lock_iothread();
2891 }
125b3806 2892 qemu_flush_coalesced_mmio_buffer();
4840f10e
JK
2893 if (unlocked) {
2894 qemu_mutex_unlock_iothread();
2895 }
125b3806 2896 }
4840f10e
JK
2897
2898 return release_lock;
125b3806
PB
2899}
2900
a203ac70
PB
2901/* Called within RCU critical section. */
2902static MemTxResult address_space_write_continue(AddressSpace *as, hwaddr addr,
2903 MemTxAttrs attrs,
2904 const uint8_t *buf,
2905 int len, hwaddr addr1,
2906 hwaddr l, MemoryRegion *mr)
13eb76e0 2907{
13eb76e0 2908 uint8_t *ptr;
791af8c8 2909 uint64_t val;
3b643495 2910 MemTxResult result = MEMTX_OK;
4840f10e 2911 bool release_lock = false;
3b46e624 2912
a203ac70 2913 for (;;) {
eb7eeb88
PB
2914 if (!memory_access_is_direct(mr, true)) {
2915 release_lock |= prepare_mmio_access(mr);
2916 l = memory_access_size(mr, l, addr1);
2917 /* XXX: could force current_cpu to NULL to avoid
2918 potential bugs */
2919 switch (l) {
2920 case 8:
2921 /* 64 bit write access */
2922 val = ldq_p(buf);
2923 result |= memory_region_dispatch_write(mr, addr1, val, 8,
2924 attrs);
2925 break;
2926 case 4:
2927 /* 32 bit write access */
6da67de6 2928 val = (uint32_t)ldl_p(buf);
eb7eeb88
PB
2929 result |= memory_region_dispatch_write(mr, addr1, val, 4,
2930 attrs);
2931 break;
2932 case 2:
2933 /* 16 bit write access */
2934 val = lduw_p(buf);
2935 result |= memory_region_dispatch_write(mr, addr1, val, 2,
2936 attrs);
2937 break;
2938 case 1:
2939 /* 8 bit write access */
2940 val = ldub_p(buf);
2941 result |= memory_region_dispatch_write(mr, addr1, val, 1,
2942 attrs);
2943 break;
2944 default:
2945 abort();
13eb76e0
FB
2946 }
2947 } else {
eb7eeb88 2948 /* RAM case */
f5aa69bd 2949 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
eb7eeb88
PB
2950 memcpy(ptr, buf, l);
2951 invalidate_and_set_dirty(mr, addr1, l);
13eb76e0 2952 }
4840f10e
JK
2953
2954 if (release_lock) {
2955 qemu_mutex_unlock_iothread();
2956 release_lock = false;
2957 }
2958
13eb76e0
FB
2959 len -= l;
2960 buf += l;
2961 addr += l;
a203ac70
PB
2962
2963 if (!len) {
2964 break;
2965 }
2966
2967 l = len;
2968 mr = address_space_translate(as, addr, &addr1, &l, true);
13eb76e0 2969 }
fd8aaa76 2970
3b643495 2971 return result;
13eb76e0 2972}
8df1cd07 2973
a203ac70
PB
2974MemTxResult address_space_write(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2975 const uint8_t *buf, int len)
ac1970fb 2976{
eb7eeb88 2977 hwaddr l;
eb7eeb88
PB
2978 hwaddr addr1;
2979 MemoryRegion *mr;
2980 MemTxResult result = MEMTX_OK;
eb7eeb88 2981
a203ac70
PB
2982 if (len > 0) {
2983 rcu_read_lock();
eb7eeb88 2984 l = len;
a203ac70
PB
2985 mr = address_space_translate(as, addr, &addr1, &l, true);
2986 result = address_space_write_continue(as, addr, attrs, buf, len,
2987 addr1, l, mr);
2988 rcu_read_unlock();
2989 }
2990
2991 return result;
2992}
2993
2994/* Called within RCU critical section. */
2995MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr,
2996 MemTxAttrs attrs, uint8_t *buf,
2997 int len, hwaddr addr1, hwaddr l,
2998 MemoryRegion *mr)
2999{
3000 uint8_t *ptr;
3001 uint64_t val;
3002 MemTxResult result = MEMTX_OK;
3003 bool release_lock = false;
eb7eeb88 3004
a203ac70 3005 for (;;) {
eb7eeb88
PB
3006 if (!memory_access_is_direct(mr, false)) {
3007 /* I/O case */
3008 release_lock |= prepare_mmio_access(mr);
3009 l = memory_access_size(mr, l, addr1);
3010 switch (l) {
3011 case 8:
3012 /* 64 bit read access */
3013 result |= memory_region_dispatch_read(mr, addr1, &val, 8,
3014 attrs);
3015 stq_p(buf, val);
3016 break;
3017 case 4:
3018 /* 32 bit read access */
3019 result |= memory_region_dispatch_read(mr, addr1, &val, 4,
3020 attrs);
3021 stl_p(buf, val);
3022 break;
3023 case 2:
3024 /* 16 bit read access */
3025 result |= memory_region_dispatch_read(mr, addr1, &val, 2,
3026 attrs);
3027 stw_p(buf, val);
3028 break;
3029 case 1:
3030 /* 8 bit read access */
3031 result |= memory_region_dispatch_read(mr, addr1, &val, 1,
3032 attrs);
3033 stb_p(buf, val);
3034 break;
3035 default:
3036 abort();
3037 }
3038 } else {
3039 /* RAM case */
f5aa69bd 3040 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
eb7eeb88
PB
3041 memcpy(buf, ptr, l);
3042 }
3043
3044 if (release_lock) {
3045 qemu_mutex_unlock_iothread();
3046 release_lock = false;
3047 }
3048
3049 len -= l;
3050 buf += l;
3051 addr += l;
a203ac70
PB
3052
3053 if (!len) {
3054 break;
3055 }
3056
3057 l = len;
3058 mr = address_space_translate(as, addr, &addr1, &l, false);
3059 }
3060
3061 return result;
3062}
3063
3cc8f884
PB
3064MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3065 MemTxAttrs attrs, uint8_t *buf, int len)
a203ac70
PB
3066{
3067 hwaddr l;
3068 hwaddr addr1;
3069 MemoryRegion *mr;
3070 MemTxResult result = MEMTX_OK;
3071
3072 if (len > 0) {
3073 rcu_read_lock();
3074 l = len;
3075 mr = address_space_translate(as, addr, &addr1, &l, false);
3076 result = address_space_read_continue(as, addr, attrs, buf, len,
3077 addr1, l, mr);
3078 rcu_read_unlock();
eb7eeb88 3079 }
eb7eeb88
PB
3080
3081 return result;
ac1970fb
AK
3082}
3083
eb7eeb88
PB
3084MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3085 uint8_t *buf, int len, bool is_write)
3086{
3087 if (is_write) {
3088 return address_space_write(as, addr, attrs, (uint8_t *)buf, len);
3089 } else {
3090 return address_space_read(as, addr, attrs, (uint8_t *)buf, len);
3091 }
3092}
ac1970fb 3093
a8170e5e 3094void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
ac1970fb
AK
3095 int len, int is_write)
3096{
5c9eb028
PM
3097 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3098 buf, len, is_write);
ac1970fb
AK
3099}
3100
582b55a9
AG
3101enum write_rom_type {
3102 WRITE_DATA,
3103 FLUSH_CACHE,
3104};
3105
2a221651 3106static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
582b55a9 3107 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
d0ecd2aa 3108{
149f54b5 3109 hwaddr l;
d0ecd2aa 3110 uint8_t *ptr;
149f54b5 3111 hwaddr addr1;
5c8a00ce 3112 MemoryRegion *mr;
3b46e624 3113
41063e1e 3114 rcu_read_lock();
d0ecd2aa 3115 while (len > 0) {
149f54b5 3116 l = len;
2a221651 3117 mr = address_space_translate(as, addr, &addr1, &l, true);
3b46e624 3118
5c8a00ce
PB
3119 if (!(memory_region_is_ram(mr) ||
3120 memory_region_is_romd(mr))) {
b242e0e0 3121 l = memory_access_size(mr, l, addr1);
d0ecd2aa 3122 } else {
d0ecd2aa 3123 /* ROM/RAM case */
0878d0e1 3124 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
582b55a9
AG
3125 switch (type) {
3126 case WRITE_DATA:
3127 memcpy(ptr, buf, l);
845b6214 3128 invalidate_and_set_dirty(mr, addr1, l);
582b55a9
AG
3129 break;
3130 case FLUSH_CACHE:
3131 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3132 break;
3133 }
d0ecd2aa
FB
3134 }
3135 len -= l;
3136 buf += l;
3137 addr += l;
3138 }
41063e1e 3139 rcu_read_unlock();
d0ecd2aa
FB
3140}
3141
582b55a9 3142/* used for ROM loading : can write in RAM and ROM */
2a221651 3143void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
582b55a9
AG
3144 const uint8_t *buf, int len)
3145{
2a221651 3146 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
582b55a9
AG
3147}
3148
3149void cpu_flush_icache_range(hwaddr start, int len)
3150{
3151 /*
3152 * This function should do the same thing as an icache flush that was
3153 * triggered from within the guest. For TCG we are always cache coherent,
3154 * so there is no need to flush anything. For KVM / Xen we need to flush
3155 * the host's instruction cache at least.
3156 */
3157 if (tcg_enabled()) {
3158 return;
3159 }
3160
2a221651
EI
3161 cpu_physical_memory_write_rom_internal(&address_space_memory,
3162 start, NULL, len, FLUSH_CACHE);
582b55a9
AG
3163}
3164
6d16c2f8 3165typedef struct {
d3e71559 3166 MemoryRegion *mr;
6d16c2f8 3167 void *buffer;
a8170e5e
AK
3168 hwaddr addr;
3169 hwaddr len;
c2cba0ff 3170 bool in_use;
6d16c2f8
AL
3171} BounceBuffer;
3172
3173static BounceBuffer bounce;
3174
ba223c29 3175typedef struct MapClient {
e95205e1 3176 QEMUBH *bh;
72cf2d4f 3177 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3178} MapClient;
3179
38e047b5 3180QemuMutex map_client_list_lock;
72cf2d4f
BS
3181static QLIST_HEAD(map_client_list, MapClient) map_client_list
3182 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29 3183
e95205e1
FZ
3184static void cpu_unregister_map_client_do(MapClient *client)
3185{
3186 QLIST_REMOVE(client, link);
3187 g_free(client);
3188}
3189
33b6c2ed
FZ
3190static void cpu_notify_map_clients_locked(void)
3191{
3192 MapClient *client;
3193
3194 while (!QLIST_EMPTY(&map_client_list)) {
3195 client = QLIST_FIRST(&map_client_list);
e95205e1
FZ
3196 qemu_bh_schedule(client->bh);
3197 cpu_unregister_map_client_do(client);
33b6c2ed
FZ
3198 }
3199}
3200
e95205e1 3201void cpu_register_map_client(QEMUBH *bh)
ba223c29 3202{
7267c094 3203 MapClient *client = g_malloc(sizeof(*client));
ba223c29 3204
38e047b5 3205 qemu_mutex_lock(&map_client_list_lock);
e95205e1 3206 client->bh = bh;
72cf2d4f 3207 QLIST_INSERT_HEAD(&map_client_list, client, link);
33b6c2ed
FZ
3208 if (!atomic_read(&bounce.in_use)) {
3209 cpu_notify_map_clients_locked();
3210 }
38e047b5 3211 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3212}
3213
38e047b5 3214void cpu_exec_init_all(void)
ba223c29 3215{
38e047b5 3216 qemu_mutex_init(&ram_list.mutex);
20bccb82
PM
3217 /* The data structures we set up here depend on knowing the page size,
3218 * so no more changes can be made after this point.
3219 * In an ideal world, nothing we did before we had finished the
3220 * machine setup would care about the target page size, and we could
3221 * do this much later, rather than requiring board models to state
3222 * up front what their requirements are.
3223 */
3224 finalize_target_page_bits();
38e047b5 3225 io_mem_init();
680a4783 3226 memory_map_init();
38e047b5 3227 qemu_mutex_init(&map_client_list_lock);
ba223c29
AL
3228}
3229
e95205e1 3230void cpu_unregister_map_client(QEMUBH *bh)
ba223c29
AL
3231{
3232 MapClient *client;
3233
e95205e1
FZ
3234 qemu_mutex_lock(&map_client_list_lock);
3235 QLIST_FOREACH(client, &map_client_list, link) {
3236 if (client->bh == bh) {
3237 cpu_unregister_map_client_do(client);
3238 break;
3239 }
ba223c29 3240 }
e95205e1 3241 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3242}
3243
3244static void cpu_notify_map_clients(void)
3245{
38e047b5 3246 qemu_mutex_lock(&map_client_list_lock);
33b6c2ed 3247 cpu_notify_map_clients_locked();
38e047b5 3248 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3249}
3250
51644ab7
PB
3251bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
3252{
5c8a00ce 3253 MemoryRegion *mr;
51644ab7
PB
3254 hwaddr l, xlat;
3255
41063e1e 3256 rcu_read_lock();
51644ab7
PB
3257 while (len > 0) {
3258 l = len;
5c8a00ce
PB
3259 mr = address_space_translate(as, addr, &xlat, &l, is_write);
3260 if (!memory_access_is_direct(mr, is_write)) {
3261 l = memory_access_size(mr, l, addr);
3262 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
5ad4a2b7 3263 rcu_read_unlock();
51644ab7
PB
3264 return false;
3265 }
3266 }
3267
3268 len -= l;
3269 addr += l;
3270 }
41063e1e 3271 rcu_read_unlock();
51644ab7
PB
3272 return true;
3273}
3274
715c31ec
PB
3275static hwaddr
3276address_space_extend_translation(AddressSpace *as, hwaddr addr, hwaddr target_len,
3277 MemoryRegion *mr, hwaddr base, hwaddr len,
3278 bool is_write)
3279{
3280 hwaddr done = 0;
3281 hwaddr xlat;
3282 MemoryRegion *this_mr;
3283
3284 for (;;) {
3285 target_len -= len;
3286 addr += len;
3287 done += len;
3288 if (target_len == 0) {
3289 return done;
3290 }
3291
3292 len = target_len;
3293 this_mr = address_space_translate(as, addr, &xlat, &len, is_write);
3294 if (this_mr != mr || xlat != base + done) {
3295 return done;
3296 }
3297 }
3298}
3299
6d16c2f8
AL
3300/* Map a physical memory region into a host virtual address.
3301 * May map a subset of the requested range, given by and returned in *plen.
3302 * May return NULL if resources needed to perform the mapping are exhausted.
3303 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3304 * Use cpu_register_map_client() to know when retrying the map operation is
3305 * likely to succeed.
6d16c2f8 3306 */
ac1970fb 3307void *address_space_map(AddressSpace *as,
a8170e5e
AK
3308 hwaddr addr,
3309 hwaddr *plen,
ac1970fb 3310 bool is_write)
6d16c2f8 3311{
a8170e5e 3312 hwaddr len = *plen;
715c31ec
PB
3313 hwaddr l, xlat;
3314 MemoryRegion *mr;
e81bcda5 3315 void *ptr;
6d16c2f8 3316
e3127ae0
PB
3317 if (len == 0) {
3318 return NULL;
3319 }
38bee5dc 3320
e3127ae0 3321 l = len;
41063e1e 3322 rcu_read_lock();
e3127ae0 3323 mr = address_space_translate(as, addr, &xlat, &l, is_write);
41063e1e 3324
e3127ae0 3325 if (!memory_access_is_direct(mr, is_write)) {
c2cba0ff 3326 if (atomic_xchg(&bounce.in_use, true)) {
41063e1e 3327 rcu_read_unlock();
e3127ae0 3328 return NULL;
6d16c2f8 3329 }
e85d9db5
KW
3330 /* Avoid unbounded allocations */
3331 l = MIN(l, TARGET_PAGE_SIZE);
3332 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
e3127ae0
PB
3333 bounce.addr = addr;
3334 bounce.len = l;
d3e71559
PB
3335
3336 memory_region_ref(mr);
3337 bounce.mr = mr;
e3127ae0 3338 if (!is_write) {
5c9eb028
PM
3339 address_space_read(as, addr, MEMTXATTRS_UNSPECIFIED,
3340 bounce.buffer, l);
8ab934f9 3341 }
6d16c2f8 3342
41063e1e 3343 rcu_read_unlock();
e3127ae0
PB
3344 *plen = l;
3345 return bounce.buffer;
3346 }
3347
e3127ae0 3348
d3e71559 3349 memory_region_ref(mr);
715c31ec 3350 *plen = address_space_extend_translation(as, addr, len, mr, xlat, l, is_write);
f5aa69bd 3351 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
e81bcda5
PB
3352 rcu_read_unlock();
3353
3354 return ptr;
6d16c2f8
AL
3355}
3356
ac1970fb 3357/* Unmaps a memory region previously mapped by address_space_map().
6d16c2f8
AL
3358 * Will also mark the memory as dirty if is_write == 1. access_len gives
3359 * the amount of memory that was actually read or written by the caller.
3360 */
a8170e5e
AK
3361void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3362 int is_write, hwaddr access_len)
6d16c2f8
AL
3363{
3364 if (buffer != bounce.buffer) {
d3e71559
PB
3365 MemoryRegion *mr;
3366 ram_addr_t addr1;
3367
07bdaa41 3368 mr = memory_region_from_host(buffer, &addr1);
d3e71559 3369 assert(mr != NULL);
6d16c2f8 3370 if (is_write) {
845b6214 3371 invalidate_and_set_dirty(mr, addr1, access_len);
6d16c2f8 3372 }
868bb33f 3373 if (xen_enabled()) {
e41d7c69 3374 xen_invalidate_map_cache_entry(buffer);
050a0ddf 3375 }
d3e71559 3376 memory_region_unref(mr);
6d16c2f8
AL
3377 return;
3378 }
3379 if (is_write) {
5c9eb028
PM
3380 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3381 bounce.buffer, access_len);
6d16c2f8 3382 }
f8a83245 3383 qemu_vfree(bounce.buffer);
6d16c2f8 3384 bounce.buffer = NULL;
d3e71559 3385 memory_region_unref(bounce.mr);
c2cba0ff 3386 atomic_mb_set(&bounce.in_use, false);
ba223c29 3387 cpu_notify_map_clients();
6d16c2f8 3388}
d0ecd2aa 3389
a8170e5e
AK
3390void *cpu_physical_memory_map(hwaddr addr,
3391 hwaddr *plen,
ac1970fb
AK
3392 int is_write)
3393{
3394 return address_space_map(&address_space_memory, addr, plen, is_write);
3395}
3396
a8170e5e
AK
3397void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3398 int is_write, hwaddr access_len)
ac1970fb
AK
3399{
3400 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3401}
3402
0ce265ff
PB
3403#define ARG1_DECL AddressSpace *as
3404#define ARG1 as
3405#define SUFFIX
3406#define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3407#define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write)
3408#define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3409#define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3410#define RCU_READ_LOCK(...) rcu_read_lock()
3411#define RCU_READ_UNLOCK(...) rcu_read_unlock()
3412#include "memory_ldst.inc.c"
1e78bcc1 3413
1f4e496e
PB
3414int64_t address_space_cache_init(MemoryRegionCache *cache,
3415 AddressSpace *as,
3416 hwaddr addr,
3417 hwaddr len,
3418 bool is_write)
3419{
90c4fe5f
PB
3420 cache->len = len;
3421 cache->as = as;
3422 cache->xlat = addr;
3423 return len;
1f4e496e
PB
3424}
3425
3426void address_space_cache_invalidate(MemoryRegionCache *cache,
3427 hwaddr addr,
3428 hwaddr access_len)
3429{
1f4e496e
PB
3430}
3431
3432void address_space_cache_destroy(MemoryRegionCache *cache)
3433{
90c4fe5f 3434 cache->as = NULL;
1f4e496e
PB
3435}
3436
3437#define ARG1_DECL MemoryRegionCache *cache
3438#define ARG1 cache
3439#define SUFFIX _cached
90c4fe5f
PB
3440#define TRANSLATE(addr, ...) \
3441 address_space_translate(cache->as, cache->xlat + (addr), __VA_ARGS__)
1f4e496e 3442#define IS_DIRECT(mr, is_write) true
90c4fe5f
PB
3443#define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3444#define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3445#define RCU_READ_LOCK() rcu_read_lock()
3446#define RCU_READ_UNLOCK() rcu_read_unlock()
1f4e496e
PB
3447#include "memory_ldst.inc.c"
3448
5e2972fd 3449/* virtual memory access for debug (includes writing to ROM) */
f17ec444 3450int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
b448f2f3 3451 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3452{
3453 int l;
a8170e5e 3454 hwaddr phys_addr;
9b3c35e0 3455 target_ulong page;
13eb76e0 3456
79ca7a1b 3457 cpu_synchronize_state(cpu);
13eb76e0 3458 while (len > 0) {
5232e4c7
PM
3459 int asidx;
3460 MemTxAttrs attrs;
3461
13eb76e0 3462 page = addr & TARGET_PAGE_MASK;
5232e4c7
PM
3463 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3464 asidx = cpu_asidx_from_attrs(cpu, attrs);
13eb76e0
FB
3465 /* if no physical page mapped, return an error */
3466 if (phys_addr == -1)
3467 return -1;
3468 l = (page + TARGET_PAGE_SIZE) - addr;
3469 if (l > len)
3470 l = len;
5e2972fd 3471 phys_addr += (addr & ~TARGET_PAGE_MASK);
2e38847b 3472 if (is_write) {
5232e4c7
PM
3473 cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3474 phys_addr, buf, l);
2e38847b 3475 } else {
5232e4c7
PM
3476 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3477 MEMTXATTRS_UNSPECIFIED,
5c9eb028 3478 buf, l, 0);
2e38847b 3479 }
13eb76e0
FB
3480 len -= l;
3481 buf += l;
3482 addr += l;
3483 }
3484 return 0;
3485}
038629a6
DDAG
3486
3487/*
3488 * Allows code that needs to deal with migration bitmaps etc to still be built
3489 * target independent.
3490 */
20afaed9 3491size_t qemu_target_page_size(void)
038629a6 3492{
20afaed9 3493 return TARGET_PAGE_SIZE;
038629a6
DDAG
3494}
3495
46d702b1
JQ
3496int qemu_target_page_bits(void)
3497{
3498 return TARGET_PAGE_BITS;
3499}
3500
3501int qemu_target_page_bits_min(void)
3502{
3503 return TARGET_PAGE_BITS_MIN;
3504}
a68fe89c 3505#endif
13eb76e0 3506
8e4a424b
BS
3507/*
3508 * A helper function for the _utterly broken_ virtio device model to find out if
3509 * it's running on a big endian machine. Don't do this at home kids!
3510 */
98ed8ecf
GK
3511bool target_words_bigendian(void);
3512bool target_words_bigendian(void)
8e4a424b
BS
3513{
3514#if defined(TARGET_WORDS_BIGENDIAN)
3515 return true;
3516#else
3517 return false;
3518#endif
3519}
3520
76f35538 3521#ifndef CONFIG_USER_ONLY
a8170e5e 3522bool cpu_physical_memory_is_io(hwaddr phys_addr)
76f35538 3523{
5c8a00ce 3524 MemoryRegion*mr;
149f54b5 3525 hwaddr l = 1;
41063e1e 3526 bool res;
76f35538 3527
41063e1e 3528 rcu_read_lock();
5c8a00ce
PB
3529 mr = address_space_translate(&address_space_memory,
3530 phys_addr, &phys_addr, &l, false);
76f35538 3531
41063e1e
PB
3532 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3533 rcu_read_unlock();
3534 return res;
76f35538 3535}
bd2fa51f 3536
e3807054 3537int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
bd2fa51f
MH
3538{
3539 RAMBlock *block;
e3807054 3540 int ret = 0;
bd2fa51f 3541
0dc3f44a 3542 rcu_read_lock();
99e15582 3543 RAMBLOCK_FOREACH(block) {
e3807054
DDAG
3544 ret = func(block->idstr, block->host, block->offset,
3545 block->used_length, opaque);
3546 if (ret) {
3547 break;
3548 }
bd2fa51f 3549 }
0dc3f44a 3550 rcu_read_unlock();
e3807054 3551 return ret;
bd2fa51f 3552}
d3a5038c
DDAG
3553
3554/*
3555 * Unmap pages of memory from start to start+length such that
3556 * they a) read as 0, b) Trigger whatever fault mechanism
3557 * the OS provides for postcopy.
3558 * The pages must be unmapped by the end of the function.
3559 * Returns: 0 on success, none-0 on failure
3560 *
3561 */
3562int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3563{
3564 int ret = -1;
3565
3566 uint8_t *host_startaddr = rb->host + start;
3567
3568 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
3569 error_report("ram_block_discard_range: Unaligned start address: %p",
3570 host_startaddr);
3571 goto err;
3572 }
3573
3574 if ((start + length) <= rb->used_length) {
3575 uint8_t *host_endaddr = host_startaddr + length;
3576 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
3577 error_report("ram_block_discard_range: Unaligned end address: %p",
3578 host_endaddr);
3579 goto err;
3580 }
3581
3582 errno = ENOTSUP; /* If we are missing MADVISE etc */
3583
e2fa71f5 3584 if (rb->page_size == qemu_host_page_size) {
d3a5038c 3585#if defined(CONFIG_MADVISE)
e2fa71f5
DDAG
3586 /* Note: We need the madvise MADV_DONTNEED behaviour of definitely
3587 * freeing the page.
3588 */
3589 ret = madvise(host_startaddr, length, MADV_DONTNEED);
d3a5038c 3590#endif
e2fa71f5
DDAG
3591 } else {
3592 /* Huge page case - unfortunately it can't do DONTNEED, but
3593 * it can do the equivalent by FALLOC_FL_PUNCH_HOLE in the
3594 * huge page file.
3595 */
3596#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3597 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3598 start, length);
3599#endif
3600 }
d3a5038c
DDAG
3601 if (ret) {
3602 ret = -errno;
3603 error_report("ram_block_discard_range: Failed to discard range "
3604 "%s:%" PRIx64 " +%zx (%d)",
3605 rb->idstr, start, length, ret);
3606 }
3607 } else {
3608 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3609 "/%zx/" RAM_ADDR_FMT")",
3610 rb->idstr, start, length, rb->used_length);
3611 }
3612
3613err:
3614 return ret;
3615}
3616
ec3f8c99 3617#endif
a0be0c58
YZ
3618
3619void page_size_init(void)
3620{
3621 /* NOTE: we can always suppose that qemu_host_page_size >=
3622 TARGET_PAGE_SIZE */
3623 qemu_real_host_page_size = getpagesize();
3624 qemu_real_host_page_mask = -(intptr_t)qemu_real_host_page_size;
3625 if (qemu_host_page_size == 0) {
3626 qemu_host_page_size = qemu_real_host_page_size;
3627 }
3628 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
3629 qemu_host_page_size = TARGET_PAGE_SIZE;
3630 }
3631 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
3632}