]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
Generate config-host.h from config-host.mak
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
67b915a5 19#include "config.h"
d5a8f07c
FB
20#ifdef _WIN32
21#include <windows.h>
22#else
a98d49b1 23#include <sys/types.h>
d5a8f07c
FB
24#include <sys/mman.h>
25#endif
54936004
FB
26#include <stdlib.h>
27#include <stdio.h>
28#include <stdarg.h>
29#include <string.h>
30#include <errno.h>
31#include <unistd.h>
32#include <inttypes.h>
33
6180a181
FB
34#include "cpu.h"
35#include "exec-all.h"
ca10f867 36#include "qemu-common.h"
b67d9a52 37#include "tcg.h"
b3c7724c 38#include "hw/hw.h"
74576198 39#include "osdep.h"
7ba1e619 40#include "kvm.h"
53a5960a
PB
41#if defined(CONFIG_USER_ONLY)
42#include <qemu.h>
43#endif
54936004 44
fd6ce8f6 45//#define DEBUG_TB_INVALIDATE
66e85a21 46//#define DEBUG_FLUSH
9fa3e853 47//#define DEBUG_TLB
67d3b957 48//#define DEBUG_UNASSIGNED
fd6ce8f6
FB
49
50/* make various TB consistency checks */
5fafdf24
TS
51//#define DEBUG_TB_CHECK
52//#define DEBUG_TLB_CHECK
fd6ce8f6 53
1196be37 54//#define DEBUG_IOPORT
db7b5426 55//#define DEBUG_SUBPAGE
1196be37 56
99773bd4
PB
57#if !defined(CONFIG_USER_ONLY)
58/* TB consistency checks only implemented for usermode emulation. */
59#undef DEBUG_TB_CHECK
60#endif
61
9fa3e853
FB
62#define SMC_BITMAP_USE_THRESHOLD 10
63
108c49b8
FB
64#if defined(TARGET_SPARC64)
65#define TARGET_PHYS_ADDR_SPACE_BITS 41
5dcb6b91
BS
66#elif defined(TARGET_SPARC)
67#define TARGET_PHYS_ADDR_SPACE_BITS 36
bedb69ea
JM
68#elif defined(TARGET_ALPHA)
69#define TARGET_PHYS_ADDR_SPACE_BITS 42
70#define TARGET_VIRT_ADDR_SPACE_BITS 42
108c49b8
FB
71#elif defined(TARGET_PPC64)
72#define TARGET_PHYS_ADDR_SPACE_BITS 42
640f42e4 73#elif defined(TARGET_X86_64) && !defined(CONFIG_KQEMU)
00f82b8a 74#define TARGET_PHYS_ADDR_SPACE_BITS 42
640f42e4 75#elif defined(TARGET_I386) && !defined(CONFIG_KQEMU)
00f82b8a 76#define TARGET_PHYS_ADDR_SPACE_BITS 36
108c49b8
FB
77#else
78/* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
79#define TARGET_PHYS_ADDR_SPACE_BITS 32
80#endif
81
bdaf78e0 82static TranslationBlock *tbs;
26a5f13b 83int code_gen_max_blocks;
9fa3e853 84TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
bdaf78e0 85static int nb_tbs;
eb51d102
FB
86/* any access to the tbs or the page table must use this lock */
87spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6 88
141ac468
BS
89#if defined(__arm__) || defined(__sparc_v9__)
90/* The prologue must be reachable with a direct jump. ARM and Sparc64
91 have limited branch ranges (possibly also PPC) so place it in a
d03d860b
BS
92 section close to code segment. */
93#define code_gen_section \
94 __attribute__((__section__(".gen_code"))) \
95 __attribute__((aligned (32)))
f8e2af11
SW
96#elif defined(_WIN32)
97/* Maximum alignment for Win32 is 16. */
98#define code_gen_section \
99 __attribute__((aligned (16)))
d03d860b
BS
100#else
101#define code_gen_section \
102 __attribute__((aligned (32)))
103#endif
104
105uint8_t code_gen_prologue[1024] code_gen_section;
bdaf78e0
BS
106static uint8_t *code_gen_buffer;
107static unsigned long code_gen_buffer_size;
26a5f13b 108/* threshold to flush the translated code buffer */
bdaf78e0 109static unsigned long code_gen_buffer_max_size;
fd6ce8f6
FB
110uint8_t *code_gen_ptr;
111
e2eef170 112#if !defined(CONFIG_USER_ONLY)
9fa3e853 113int phys_ram_fd;
1ccde1cb 114uint8_t *phys_ram_dirty;
74576198 115static int in_migration;
94a6b54f
PB
116
117typedef struct RAMBlock {
118 uint8_t *host;
119 ram_addr_t offset;
120 ram_addr_t length;
121 struct RAMBlock *next;
122} RAMBlock;
123
124static RAMBlock *ram_blocks;
125/* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
ccbb4d44 126 then we can no longer assume contiguous ram offsets, and external uses
94a6b54f
PB
127 of this variable will break. */
128ram_addr_t last_ram_offset;
e2eef170 129#endif
9fa3e853 130
6a00d601
FB
131CPUState *first_cpu;
132/* current CPU in the current thread. It is only valid inside
133 cpu_exec() */
5fafdf24 134CPUState *cpu_single_env;
2e70f6ef 135/* 0 = Do not count executed instructions.
bf20dc07 136 1 = Precise instruction counting.
2e70f6ef
PB
137 2 = Adaptive rate instruction counting. */
138int use_icount = 0;
139/* Current instruction counter. While executing translated code this may
140 include some instructions that have not yet been executed. */
141int64_t qemu_icount;
6a00d601 142
54936004 143typedef struct PageDesc {
92e873b9 144 /* list of TBs intersecting this ram page */
fd6ce8f6 145 TranslationBlock *first_tb;
9fa3e853
FB
146 /* in order to optimize self modifying code, we count the number
147 of lookups we do to a given page to use a bitmap */
148 unsigned int code_write_count;
149 uint8_t *code_bitmap;
150#if defined(CONFIG_USER_ONLY)
151 unsigned long flags;
152#endif
54936004
FB
153} PageDesc;
154
92e873b9 155typedef struct PhysPageDesc {
0f459d16 156 /* offset in host memory of the page + io_index in the low bits */
00f82b8a 157 ram_addr_t phys_offset;
8da3ff18 158 ram_addr_t region_offset;
92e873b9
FB
159} PhysPageDesc;
160
54936004 161#define L2_BITS 10
bedb69ea
JM
162#if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
163/* XXX: this is a temporary hack for alpha target.
164 * In the future, this is to be replaced by a multi-level table
165 * to actually be able to handle the complete 64 bits address space.
166 */
167#define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
168#else
03875444 169#define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
bedb69ea 170#endif
54936004
FB
171
172#define L1_SIZE (1 << L1_BITS)
173#define L2_SIZE (1 << L2_BITS)
174
83fb7adf
FB
175unsigned long qemu_real_host_page_size;
176unsigned long qemu_host_page_bits;
177unsigned long qemu_host_page_size;
178unsigned long qemu_host_page_mask;
54936004 179
92e873b9 180/* XXX: for system emulation, it could just be an array */
54936004 181static PageDesc *l1_map[L1_SIZE];
bdaf78e0 182static PhysPageDesc **l1_phys_map;
54936004 183
e2eef170
PB
184#if !defined(CONFIG_USER_ONLY)
185static void io_mem_init(void);
186
33417e70 187/* io memory support */
33417e70
FB
188CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
189CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
a4193c8a 190void *io_mem_opaque[IO_MEM_NB_ENTRIES];
511d2b14 191static char io_mem_used[IO_MEM_NB_ENTRIES];
6658ffb8
PB
192static int io_mem_watch;
193#endif
33417e70 194
34865134 195/* log support */
d9b630fd 196static const char *logfilename = "/tmp/qemu.log";
34865134
FB
197FILE *logfile;
198int loglevel;
e735b91c 199static int log_append = 0;
34865134 200
e3db7226
FB
201/* statistics */
202static int tlb_flush_count;
203static int tb_flush_count;
204static int tb_phys_invalidate_count;
205
db7b5426
BS
206#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
207typedef struct subpage_t {
208 target_phys_addr_t base;
3ee89922
BS
209 CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4];
210 CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4];
211 void *opaque[TARGET_PAGE_SIZE][2][4];
8da3ff18 212 ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4];
db7b5426
BS
213} subpage_t;
214
7cb69cae
FB
215#ifdef _WIN32
216static void map_exec(void *addr, long size)
217{
218 DWORD old_protect;
219 VirtualProtect(addr, size,
220 PAGE_EXECUTE_READWRITE, &old_protect);
221
222}
223#else
224static void map_exec(void *addr, long size)
225{
4369415f 226 unsigned long start, end, page_size;
7cb69cae 227
4369415f 228 page_size = getpagesize();
7cb69cae 229 start = (unsigned long)addr;
4369415f 230 start &= ~(page_size - 1);
7cb69cae
FB
231
232 end = (unsigned long)addr + size;
4369415f
FB
233 end += page_size - 1;
234 end &= ~(page_size - 1);
7cb69cae
FB
235
236 mprotect((void *)start, end - start,
237 PROT_READ | PROT_WRITE | PROT_EXEC);
238}
239#endif
240
b346ff46 241static void page_init(void)
54936004 242{
83fb7adf 243 /* NOTE: we can always suppose that qemu_host_page_size >=
54936004 244 TARGET_PAGE_SIZE */
c2b48b69
AL
245#ifdef _WIN32
246 {
247 SYSTEM_INFO system_info;
248
249 GetSystemInfo(&system_info);
250 qemu_real_host_page_size = system_info.dwPageSize;
251 }
252#else
253 qemu_real_host_page_size = getpagesize();
254#endif
83fb7adf
FB
255 if (qemu_host_page_size == 0)
256 qemu_host_page_size = qemu_real_host_page_size;
257 if (qemu_host_page_size < TARGET_PAGE_SIZE)
258 qemu_host_page_size = TARGET_PAGE_SIZE;
259 qemu_host_page_bits = 0;
260 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
261 qemu_host_page_bits++;
262 qemu_host_page_mask = ~(qemu_host_page_size - 1);
108c49b8
FB
263 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
264 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
50a9569b
AZ
265
266#if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
267 {
268 long long startaddr, endaddr;
269 FILE *f;
270 int n;
271
c8a706fe 272 mmap_lock();
0776590d 273 last_brk = (unsigned long)sbrk(0);
50a9569b
AZ
274 f = fopen("/proc/self/maps", "r");
275 if (f) {
276 do {
277 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
278 if (n == 2) {
e0b8d65a
BS
279 startaddr = MIN(startaddr,
280 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
281 endaddr = MIN(endaddr,
282 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
b5fc909e 283 page_set_flags(startaddr & TARGET_PAGE_MASK,
50a9569b
AZ
284 TARGET_PAGE_ALIGN(endaddr),
285 PAGE_RESERVED);
286 }
287 } while (!feof(f));
288 fclose(f);
289 }
c8a706fe 290 mmap_unlock();
50a9569b
AZ
291 }
292#endif
54936004
FB
293}
294
434929bf 295static inline PageDesc **page_l1_map(target_ulong index)
54936004 296{
17e2377a
PB
297#if TARGET_LONG_BITS > 32
298 /* Host memory outside guest VM. For 32-bit targets we have already
299 excluded high addresses. */
d8173e0f 300 if (index > ((target_ulong)L2_SIZE * L1_SIZE))
17e2377a
PB
301 return NULL;
302#endif
434929bf
AL
303 return &l1_map[index >> L2_BITS];
304}
305
306static inline PageDesc *page_find_alloc(target_ulong index)
307{
308 PageDesc **lp, *p;
309 lp = page_l1_map(index);
310 if (!lp)
311 return NULL;
312
54936004
FB
313 p = *lp;
314 if (!p) {
315 /* allocate if not found */
17e2377a 316#if defined(CONFIG_USER_ONLY)
17e2377a
PB
317 size_t len = sizeof(PageDesc) * L2_SIZE;
318 /* Don't use qemu_malloc because it may recurse. */
319 p = mmap(0, len, PROT_READ | PROT_WRITE,
320 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
54936004 321 *lp = p;
fb1c2cd7
AJ
322 if (h2g_valid(p)) {
323 unsigned long addr = h2g(p);
17e2377a
PB
324 page_set_flags(addr & TARGET_PAGE_MASK,
325 TARGET_PAGE_ALIGN(addr + len),
326 PAGE_RESERVED);
327 }
328#else
329 p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
330 *lp = p;
331#endif
54936004
FB
332 }
333 return p + (index & (L2_SIZE - 1));
334}
335
00f82b8a 336static inline PageDesc *page_find(target_ulong index)
54936004 337{
434929bf
AL
338 PageDesc **lp, *p;
339 lp = page_l1_map(index);
340 if (!lp)
341 return NULL;
54936004 342
434929bf 343 p = *lp;
54936004
FB
344 if (!p)
345 return 0;
fd6ce8f6
FB
346 return p + (index & (L2_SIZE - 1));
347}
348
108c49b8 349static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
92e873b9 350{
108c49b8 351 void **lp, **p;
e3f4e2a4 352 PhysPageDesc *pd;
92e873b9 353
108c49b8
FB
354 p = (void **)l1_phys_map;
355#if TARGET_PHYS_ADDR_SPACE_BITS > 32
356
357#if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
358#error unsupported TARGET_PHYS_ADDR_SPACE_BITS
359#endif
360 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
92e873b9
FB
361 p = *lp;
362 if (!p) {
363 /* allocate if not found */
108c49b8
FB
364 if (!alloc)
365 return NULL;
366 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
367 memset(p, 0, sizeof(void *) * L1_SIZE);
368 *lp = p;
369 }
370#endif
371 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
e3f4e2a4
PB
372 pd = *lp;
373 if (!pd) {
374 int i;
108c49b8
FB
375 /* allocate if not found */
376 if (!alloc)
377 return NULL;
e3f4e2a4
PB
378 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
379 *lp = pd;
67c4d23c 380 for (i = 0; i < L2_SIZE; i++) {
e3f4e2a4 381 pd[i].phys_offset = IO_MEM_UNASSIGNED;
67c4d23c
PB
382 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
383 }
92e873b9 384 }
e3f4e2a4 385 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
92e873b9
FB
386}
387
108c49b8 388static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
92e873b9 389{
108c49b8 390 return phys_page_find_alloc(index, 0);
92e873b9
FB
391}
392
9fa3e853 393#if !defined(CONFIG_USER_ONLY)
6a00d601 394static void tlb_protect_code(ram_addr_t ram_addr);
5fafdf24 395static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 396 target_ulong vaddr);
c8a706fe
PB
397#define mmap_lock() do { } while(0)
398#define mmap_unlock() do { } while(0)
9fa3e853 399#endif
fd6ce8f6 400
4369415f
FB
401#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
402
403#if defined(CONFIG_USER_ONLY)
ccbb4d44 404/* Currently it is not recommended to allocate big chunks of data in
4369415f
FB
405 user mode. It will change when a dedicated libc will be used */
406#define USE_STATIC_CODE_GEN_BUFFER
407#endif
408
409#ifdef USE_STATIC_CODE_GEN_BUFFER
410static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
411#endif
412
8fcd3692 413static void code_gen_alloc(unsigned long tb_size)
26a5f13b 414{
4369415f
FB
415#ifdef USE_STATIC_CODE_GEN_BUFFER
416 code_gen_buffer = static_code_gen_buffer;
417 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
418 map_exec(code_gen_buffer, code_gen_buffer_size);
419#else
26a5f13b
FB
420 code_gen_buffer_size = tb_size;
421 if (code_gen_buffer_size == 0) {
4369415f
FB
422#if defined(CONFIG_USER_ONLY)
423 /* in user mode, phys_ram_size is not meaningful */
424 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
425#else
ccbb4d44 426 /* XXX: needs adjustments */
94a6b54f 427 code_gen_buffer_size = (unsigned long)(ram_size / 4);
4369415f 428#endif
26a5f13b
FB
429 }
430 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
431 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
432 /* The code gen buffer location may have constraints depending on
433 the host cpu and OS */
434#if defined(__linux__)
435 {
436 int flags;
141ac468
BS
437 void *start = NULL;
438
26a5f13b
FB
439 flags = MAP_PRIVATE | MAP_ANONYMOUS;
440#if defined(__x86_64__)
441 flags |= MAP_32BIT;
442 /* Cannot map more than that */
443 if (code_gen_buffer_size > (800 * 1024 * 1024))
444 code_gen_buffer_size = (800 * 1024 * 1024);
141ac468
BS
445#elif defined(__sparc_v9__)
446 // Map the buffer below 2G, so we can use direct calls and branches
447 flags |= MAP_FIXED;
448 start = (void *) 0x60000000UL;
449 if (code_gen_buffer_size > (512 * 1024 * 1024))
450 code_gen_buffer_size = (512 * 1024 * 1024);
1cb0661e 451#elif defined(__arm__)
63d41246 452 /* Map the buffer below 32M, so we can use direct calls and branches */
1cb0661e
AZ
453 flags |= MAP_FIXED;
454 start = (void *) 0x01000000UL;
455 if (code_gen_buffer_size > 16 * 1024 * 1024)
456 code_gen_buffer_size = 16 * 1024 * 1024;
26a5f13b 457#endif
141ac468
BS
458 code_gen_buffer = mmap(start, code_gen_buffer_size,
459 PROT_WRITE | PROT_READ | PROT_EXEC,
26a5f13b
FB
460 flags, -1, 0);
461 if (code_gen_buffer == MAP_FAILED) {
462 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
463 exit(1);
464 }
465 }
c5e97233 466#elif defined(__FreeBSD__) || defined(__DragonFly__)
06e67a82
AL
467 {
468 int flags;
469 void *addr = NULL;
470 flags = MAP_PRIVATE | MAP_ANONYMOUS;
471#if defined(__x86_64__)
472 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
473 * 0x40000000 is free */
474 flags |= MAP_FIXED;
475 addr = (void *)0x40000000;
476 /* Cannot map more than that */
477 if (code_gen_buffer_size > (800 * 1024 * 1024))
478 code_gen_buffer_size = (800 * 1024 * 1024);
479#endif
480 code_gen_buffer = mmap(addr, code_gen_buffer_size,
481 PROT_WRITE | PROT_READ | PROT_EXEC,
482 flags, -1, 0);
483 if (code_gen_buffer == MAP_FAILED) {
484 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
485 exit(1);
486 }
487 }
26a5f13b
FB
488#else
489 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
26a5f13b
FB
490 map_exec(code_gen_buffer, code_gen_buffer_size);
491#endif
4369415f 492#endif /* !USE_STATIC_CODE_GEN_BUFFER */
26a5f13b
FB
493 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
494 code_gen_buffer_max_size = code_gen_buffer_size -
495 code_gen_max_block_size();
496 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
497 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
498}
499
500/* Must be called before using the QEMU cpus. 'tb_size' is the size
501 (in bytes) allocated to the translation buffer. Zero means default
502 size. */
503void cpu_exec_init_all(unsigned long tb_size)
504{
26a5f13b
FB
505 cpu_gen_init();
506 code_gen_alloc(tb_size);
507 code_gen_ptr = code_gen_buffer;
4369415f 508 page_init();
e2eef170 509#if !defined(CONFIG_USER_ONLY)
26a5f13b 510 io_mem_init();
e2eef170 511#endif
26a5f13b
FB
512}
513
9656f324
PB
514#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
515
516#define CPU_COMMON_SAVE_VERSION 1
517
518static void cpu_common_save(QEMUFile *f, void *opaque)
519{
520 CPUState *env = opaque;
521
b0a46a33
JK
522 cpu_synchronize_state(env, 0);
523
9656f324
PB
524 qemu_put_be32s(f, &env->halted);
525 qemu_put_be32s(f, &env->interrupt_request);
526}
527
528static int cpu_common_load(QEMUFile *f, void *opaque, int version_id)
529{
530 CPUState *env = opaque;
531
532 if (version_id != CPU_COMMON_SAVE_VERSION)
533 return -EINVAL;
534
535 qemu_get_be32s(f, &env->halted);
75f482ae 536 qemu_get_be32s(f, &env->interrupt_request);
3098dba0
AJ
537 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
538 version_id is increased. */
539 env->interrupt_request &= ~0x01;
9656f324 540 tlb_flush(env, 1);
b0a46a33 541 cpu_synchronize_state(env, 1);
9656f324
PB
542
543 return 0;
544}
545#endif
546
950f1472
GC
547CPUState *qemu_get_cpu(int cpu)
548{
549 CPUState *env = first_cpu;
550
551 while (env) {
552 if (env->cpu_index == cpu)
553 break;
554 env = env->next_cpu;
555 }
556
557 return env;
558}
559
6a00d601 560void cpu_exec_init(CPUState *env)
fd6ce8f6 561{
6a00d601
FB
562 CPUState **penv;
563 int cpu_index;
564
c2764719
PB
565#if defined(CONFIG_USER_ONLY)
566 cpu_list_lock();
567#endif
6a00d601
FB
568 env->next_cpu = NULL;
569 penv = &first_cpu;
570 cpu_index = 0;
571 while (*penv != NULL) {
1e9fa730 572 penv = &(*penv)->next_cpu;
6a00d601
FB
573 cpu_index++;
574 }
575 env->cpu_index = cpu_index;
268a362c 576 env->numa_node = 0;
c0ce998e
AL
577 TAILQ_INIT(&env->breakpoints);
578 TAILQ_INIT(&env->watchpoints);
6a00d601 579 *penv = env;
c2764719
PB
580#if defined(CONFIG_USER_ONLY)
581 cpu_list_unlock();
582#endif
b3c7724c 583#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
9656f324
PB
584 register_savevm("cpu_common", cpu_index, CPU_COMMON_SAVE_VERSION,
585 cpu_common_save, cpu_common_load, env);
b3c7724c
PB
586 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
587 cpu_save, cpu_load, env);
588#endif
fd6ce8f6
FB
589}
590
9fa3e853
FB
591static inline void invalidate_page_bitmap(PageDesc *p)
592{
593 if (p->code_bitmap) {
59817ccb 594 qemu_free(p->code_bitmap);
9fa3e853
FB
595 p->code_bitmap = NULL;
596 }
597 p->code_write_count = 0;
598}
599
fd6ce8f6
FB
600/* set to NULL all the 'first_tb' fields in all PageDescs */
601static void page_flush_tb(void)
602{
603 int i, j;
604 PageDesc *p;
605
606 for(i = 0; i < L1_SIZE; i++) {
607 p = l1_map[i];
608 if (p) {
9fa3e853
FB
609 for(j = 0; j < L2_SIZE; j++) {
610 p->first_tb = NULL;
611 invalidate_page_bitmap(p);
612 p++;
613 }
fd6ce8f6
FB
614 }
615 }
616}
617
618/* flush all the translation blocks */
d4e8164f 619/* XXX: tb_flush is currently not thread safe */
6a00d601 620void tb_flush(CPUState *env1)
fd6ce8f6 621{
6a00d601 622 CPUState *env;
0124311e 623#if defined(DEBUG_FLUSH)
ab3d1727
BS
624 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
625 (unsigned long)(code_gen_ptr - code_gen_buffer),
626 nb_tbs, nb_tbs > 0 ?
627 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
fd6ce8f6 628#endif
26a5f13b 629 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
a208e54a
PB
630 cpu_abort(env1, "Internal error: code buffer overflow\n");
631
fd6ce8f6 632 nb_tbs = 0;
3b46e624 633
6a00d601
FB
634 for(env = first_cpu; env != NULL; env = env->next_cpu) {
635 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
636 }
9fa3e853 637
8a8a608f 638 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
fd6ce8f6 639 page_flush_tb();
9fa3e853 640
fd6ce8f6 641 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
642 /* XXX: flush processor icache at this point if cache flush is
643 expensive */
e3db7226 644 tb_flush_count++;
fd6ce8f6
FB
645}
646
647#ifdef DEBUG_TB_CHECK
648
bc98a7ef 649static void tb_invalidate_check(target_ulong address)
fd6ce8f6
FB
650{
651 TranslationBlock *tb;
652 int i;
653 address &= TARGET_PAGE_MASK;
99773bd4
PB
654 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
655 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
656 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
657 address >= tb->pc + tb->size)) {
0bf9e31a
BS
658 printf("ERROR invalidate: address=" TARGET_FMT_lx
659 " PC=%08lx size=%04x\n",
99773bd4 660 address, (long)tb->pc, tb->size);
fd6ce8f6
FB
661 }
662 }
663 }
664}
665
666/* verify that all the pages have correct rights for code */
667static void tb_page_check(void)
668{
669 TranslationBlock *tb;
670 int i, flags1, flags2;
3b46e624 671
99773bd4
PB
672 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
673 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
674 flags1 = page_get_flags(tb->pc);
675 flags2 = page_get_flags(tb->pc + tb->size - 1);
676 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
677 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
99773bd4 678 (long)tb->pc, tb->size, flags1, flags2);
fd6ce8f6
FB
679 }
680 }
681 }
682}
683
684#endif
685
686/* invalidate one TB */
687static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
688 int next_offset)
689{
690 TranslationBlock *tb1;
691 for(;;) {
692 tb1 = *ptb;
693 if (tb1 == tb) {
694 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
695 break;
696 }
697 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
698 }
699}
700
9fa3e853
FB
701static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
702{
703 TranslationBlock *tb1;
704 unsigned int n1;
705
706 for(;;) {
707 tb1 = *ptb;
708 n1 = (long)tb1 & 3;
709 tb1 = (TranslationBlock *)((long)tb1 & ~3);
710 if (tb1 == tb) {
711 *ptb = tb1->page_next[n1];
712 break;
713 }
714 ptb = &tb1->page_next[n1];
715 }
716}
717
d4e8164f
FB
718static inline void tb_jmp_remove(TranslationBlock *tb, int n)
719{
720 TranslationBlock *tb1, **ptb;
721 unsigned int n1;
722
723 ptb = &tb->jmp_next[n];
724 tb1 = *ptb;
725 if (tb1) {
726 /* find tb(n) in circular list */
727 for(;;) {
728 tb1 = *ptb;
729 n1 = (long)tb1 & 3;
730 tb1 = (TranslationBlock *)((long)tb1 & ~3);
731 if (n1 == n && tb1 == tb)
732 break;
733 if (n1 == 2) {
734 ptb = &tb1->jmp_first;
735 } else {
736 ptb = &tb1->jmp_next[n1];
737 }
738 }
739 /* now we can suppress tb(n) from the list */
740 *ptb = tb->jmp_next[n];
741
742 tb->jmp_next[n] = NULL;
743 }
744}
745
746/* reset the jump entry 'n' of a TB so that it is not chained to
747 another TB */
748static inline void tb_reset_jump(TranslationBlock *tb, int n)
749{
750 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
751}
752
2e70f6ef 753void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
fd6ce8f6 754{
6a00d601 755 CPUState *env;
8a40a180 756 PageDesc *p;
d4e8164f 757 unsigned int h, n1;
00f82b8a 758 target_phys_addr_t phys_pc;
8a40a180 759 TranslationBlock *tb1, *tb2;
3b46e624 760
8a40a180
FB
761 /* remove the TB from the hash list */
762 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
763 h = tb_phys_hash_func(phys_pc);
5fafdf24 764 tb_remove(&tb_phys_hash[h], tb,
8a40a180
FB
765 offsetof(TranslationBlock, phys_hash_next));
766
767 /* remove the TB from the page list */
768 if (tb->page_addr[0] != page_addr) {
769 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
770 tb_page_remove(&p->first_tb, tb);
771 invalidate_page_bitmap(p);
772 }
773 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
774 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
775 tb_page_remove(&p->first_tb, tb);
776 invalidate_page_bitmap(p);
777 }
778
36bdbe54 779 tb_invalidated_flag = 1;
59817ccb 780
fd6ce8f6 781 /* remove the TB from the hash list */
8a40a180 782 h = tb_jmp_cache_hash_func(tb->pc);
6a00d601
FB
783 for(env = first_cpu; env != NULL; env = env->next_cpu) {
784 if (env->tb_jmp_cache[h] == tb)
785 env->tb_jmp_cache[h] = NULL;
786 }
d4e8164f
FB
787
788 /* suppress this TB from the two jump lists */
789 tb_jmp_remove(tb, 0);
790 tb_jmp_remove(tb, 1);
791
792 /* suppress any remaining jumps to this TB */
793 tb1 = tb->jmp_first;
794 for(;;) {
795 n1 = (long)tb1 & 3;
796 if (n1 == 2)
797 break;
798 tb1 = (TranslationBlock *)((long)tb1 & ~3);
799 tb2 = tb1->jmp_next[n1];
800 tb_reset_jump(tb1, n1);
801 tb1->jmp_next[n1] = NULL;
802 tb1 = tb2;
803 }
804 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
9fa3e853 805
e3db7226 806 tb_phys_invalidate_count++;
9fa3e853
FB
807}
808
809static inline void set_bits(uint8_t *tab, int start, int len)
810{
811 int end, mask, end1;
812
813 end = start + len;
814 tab += start >> 3;
815 mask = 0xff << (start & 7);
816 if ((start & ~7) == (end & ~7)) {
817 if (start < end) {
818 mask &= ~(0xff << (end & 7));
819 *tab |= mask;
820 }
821 } else {
822 *tab++ |= mask;
823 start = (start + 8) & ~7;
824 end1 = end & ~7;
825 while (start < end1) {
826 *tab++ = 0xff;
827 start += 8;
828 }
829 if (start < end) {
830 mask = ~(0xff << (end & 7));
831 *tab |= mask;
832 }
833 }
834}
835
836static void build_page_bitmap(PageDesc *p)
837{
838 int n, tb_start, tb_end;
839 TranslationBlock *tb;
3b46e624 840
b2a7081a 841 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
842
843 tb = p->first_tb;
844 while (tb != NULL) {
845 n = (long)tb & 3;
846 tb = (TranslationBlock *)((long)tb & ~3);
847 /* NOTE: this is subtle as a TB may span two physical pages */
848 if (n == 0) {
849 /* NOTE: tb_end may be after the end of the page, but
850 it is not a problem */
851 tb_start = tb->pc & ~TARGET_PAGE_MASK;
852 tb_end = tb_start + tb->size;
853 if (tb_end > TARGET_PAGE_SIZE)
854 tb_end = TARGET_PAGE_SIZE;
855 } else {
856 tb_start = 0;
857 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
858 }
859 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
860 tb = tb->page_next[n];
861 }
862}
863
2e70f6ef
PB
864TranslationBlock *tb_gen_code(CPUState *env,
865 target_ulong pc, target_ulong cs_base,
866 int flags, int cflags)
d720b93d
FB
867{
868 TranslationBlock *tb;
869 uint8_t *tc_ptr;
870 target_ulong phys_pc, phys_page2, virt_page2;
871 int code_gen_size;
872
c27004ec
FB
873 phys_pc = get_phys_addr_code(env, pc);
874 tb = tb_alloc(pc);
d720b93d
FB
875 if (!tb) {
876 /* flush must be done */
877 tb_flush(env);
878 /* cannot fail at this point */
c27004ec 879 tb = tb_alloc(pc);
2e70f6ef
PB
880 /* Don't forget to invalidate previous TB info. */
881 tb_invalidated_flag = 1;
d720b93d
FB
882 }
883 tc_ptr = code_gen_ptr;
884 tb->tc_ptr = tc_ptr;
885 tb->cs_base = cs_base;
886 tb->flags = flags;
887 tb->cflags = cflags;
d07bde88 888 cpu_gen_code(env, tb, &code_gen_size);
d720b93d 889 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
3b46e624 890
d720b93d 891 /* check next page if needed */
c27004ec 892 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
d720b93d 893 phys_page2 = -1;
c27004ec 894 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
d720b93d
FB
895 phys_page2 = get_phys_addr_code(env, virt_page2);
896 }
897 tb_link_phys(tb, phys_pc, phys_page2);
2e70f6ef 898 return tb;
d720b93d 899}
3b46e624 900
9fa3e853
FB
901/* invalidate all TBs which intersect with the target physical page
902 starting in range [start;end[. NOTE: start and end must refer to
d720b93d
FB
903 the same physical page. 'is_cpu_write_access' should be true if called
904 from a real cpu write access: the virtual CPU will exit the current
905 TB if code is modified inside this TB. */
00f82b8a 906void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
d720b93d
FB
907 int is_cpu_write_access)
908{
6b917547 909 TranslationBlock *tb, *tb_next, *saved_tb;
d720b93d 910 CPUState *env = cpu_single_env;
9fa3e853 911 target_ulong tb_start, tb_end;
6b917547
AL
912 PageDesc *p;
913 int n;
914#ifdef TARGET_HAS_PRECISE_SMC
915 int current_tb_not_found = is_cpu_write_access;
916 TranslationBlock *current_tb = NULL;
917 int current_tb_modified = 0;
918 target_ulong current_pc = 0;
919 target_ulong current_cs_base = 0;
920 int current_flags = 0;
921#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
922
923 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 924 if (!p)
9fa3e853 925 return;
5fafdf24 926 if (!p->code_bitmap &&
d720b93d
FB
927 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
928 is_cpu_write_access) {
9fa3e853
FB
929 /* build code bitmap */
930 build_page_bitmap(p);
931 }
932
933 /* we remove all the TBs in the range [start, end[ */
934 /* XXX: see if in some cases it could be faster to invalidate all the code */
935 tb = p->first_tb;
936 while (tb != NULL) {
937 n = (long)tb & 3;
938 tb = (TranslationBlock *)((long)tb & ~3);
939 tb_next = tb->page_next[n];
940 /* NOTE: this is subtle as a TB may span two physical pages */
941 if (n == 0) {
942 /* NOTE: tb_end may be after the end of the page, but
943 it is not a problem */
944 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
945 tb_end = tb_start + tb->size;
946 } else {
947 tb_start = tb->page_addr[1];
948 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
949 }
950 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
951#ifdef TARGET_HAS_PRECISE_SMC
952 if (current_tb_not_found) {
953 current_tb_not_found = 0;
954 current_tb = NULL;
2e70f6ef 955 if (env->mem_io_pc) {
d720b93d 956 /* now we have a real cpu fault */
2e70f6ef 957 current_tb = tb_find_pc(env->mem_io_pc);
d720b93d
FB
958 }
959 }
960 if (current_tb == tb &&
2e70f6ef 961 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
962 /* If we are modifying the current TB, we must stop
963 its execution. We could be more precise by checking
964 that the modification is after the current PC, but it
965 would require a specialized function to partially
966 restore the CPU state */
3b46e624 967
d720b93d 968 current_tb_modified = 1;
5fafdf24 969 cpu_restore_state(current_tb, env,
2e70f6ef 970 env->mem_io_pc, NULL);
6b917547
AL
971 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
972 &current_flags);
d720b93d
FB
973 }
974#endif /* TARGET_HAS_PRECISE_SMC */
6f5a9f7e
FB
975 /* we need to do that to handle the case where a signal
976 occurs while doing tb_phys_invalidate() */
977 saved_tb = NULL;
978 if (env) {
979 saved_tb = env->current_tb;
980 env->current_tb = NULL;
981 }
9fa3e853 982 tb_phys_invalidate(tb, -1);
6f5a9f7e
FB
983 if (env) {
984 env->current_tb = saved_tb;
985 if (env->interrupt_request && env->current_tb)
986 cpu_interrupt(env, env->interrupt_request);
987 }
9fa3e853
FB
988 }
989 tb = tb_next;
990 }
991#if !defined(CONFIG_USER_ONLY)
992 /* if no code remaining, no need to continue to use slow writes */
993 if (!p->first_tb) {
994 invalidate_page_bitmap(p);
d720b93d 995 if (is_cpu_write_access) {
2e70f6ef 996 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
d720b93d
FB
997 }
998 }
999#endif
1000#ifdef TARGET_HAS_PRECISE_SMC
1001 if (current_tb_modified) {
1002 /* we generate a block containing just the instruction
1003 modifying the memory. It will ensure that it cannot modify
1004 itself */
ea1c1802 1005 env->current_tb = NULL;
2e70f6ef 1006 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d 1007 cpu_resume_from_signal(env, NULL);
9fa3e853 1008 }
fd6ce8f6 1009#endif
9fa3e853 1010}
fd6ce8f6 1011
9fa3e853 1012/* len must be <= 8 and start must be a multiple of len */
00f82b8a 1013static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
9fa3e853
FB
1014{
1015 PageDesc *p;
1016 int offset, b;
59817ccb 1017#if 0
a4193c8a 1018 if (1) {
93fcfe39
AL
1019 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1020 cpu_single_env->mem_io_vaddr, len,
1021 cpu_single_env->eip,
1022 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
59817ccb
FB
1023 }
1024#endif
9fa3e853 1025 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1026 if (!p)
9fa3e853
FB
1027 return;
1028 if (p->code_bitmap) {
1029 offset = start & ~TARGET_PAGE_MASK;
1030 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1031 if (b & ((1 << len) - 1))
1032 goto do_invalidate;
1033 } else {
1034 do_invalidate:
d720b93d 1035 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
1036 }
1037}
1038
9fa3e853 1039#if !defined(CONFIG_SOFTMMU)
00f82b8a 1040static void tb_invalidate_phys_page(target_phys_addr_t addr,
d720b93d 1041 unsigned long pc, void *puc)
9fa3e853 1042{
6b917547 1043 TranslationBlock *tb;
9fa3e853 1044 PageDesc *p;
6b917547 1045 int n;
d720b93d 1046#ifdef TARGET_HAS_PRECISE_SMC
6b917547 1047 TranslationBlock *current_tb = NULL;
d720b93d 1048 CPUState *env = cpu_single_env;
6b917547
AL
1049 int current_tb_modified = 0;
1050 target_ulong current_pc = 0;
1051 target_ulong current_cs_base = 0;
1052 int current_flags = 0;
d720b93d 1053#endif
9fa3e853
FB
1054
1055 addr &= TARGET_PAGE_MASK;
1056 p = page_find(addr >> TARGET_PAGE_BITS);
5fafdf24 1057 if (!p)
9fa3e853
FB
1058 return;
1059 tb = p->first_tb;
d720b93d
FB
1060#ifdef TARGET_HAS_PRECISE_SMC
1061 if (tb && pc != 0) {
1062 current_tb = tb_find_pc(pc);
1063 }
1064#endif
9fa3e853
FB
1065 while (tb != NULL) {
1066 n = (long)tb & 3;
1067 tb = (TranslationBlock *)((long)tb & ~3);
d720b93d
FB
1068#ifdef TARGET_HAS_PRECISE_SMC
1069 if (current_tb == tb &&
2e70f6ef 1070 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1071 /* If we are modifying the current TB, we must stop
1072 its execution. We could be more precise by checking
1073 that the modification is after the current PC, but it
1074 would require a specialized function to partially
1075 restore the CPU state */
3b46e624 1076
d720b93d
FB
1077 current_tb_modified = 1;
1078 cpu_restore_state(current_tb, env, pc, puc);
6b917547
AL
1079 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1080 &current_flags);
d720b93d
FB
1081 }
1082#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1083 tb_phys_invalidate(tb, addr);
1084 tb = tb->page_next[n];
1085 }
fd6ce8f6 1086 p->first_tb = NULL;
d720b93d
FB
1087#ifdef TARGET_HAS_PRECISE_SMC
1088 if (current_tb_modified) {
1089 /* we generate a block containing just the instruction
1090 modifying the memory. It will ensure that it cannot modify
1091 itself */
ea1c1802 1092 env->current_tb = NULL;
2e70f6ef 1093 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d
FB
1094 cpu_resume_from_signal(env, puc);
1095 }
1096#endif
fd6ce8f6 1097}
9fa3e853 1098#endif
fd6ce8f6
FB
1099
1100/* add the tb in the target page and protect it if necessary */
5fafdf24 1101static inline void tb_alloc_page(TranslationBlock *tb,
53a5960a 1102 unsigned int n, target_ulong page_addr)
fd6ce8f6
FB
1103{
1104 PageDesc *p;
9fa3e853
FB
1105 TranslationBlock *last_first_tb;
1106
1107 tb->page_addr[n] = page_addr;
3a7d929e 1108 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
9fa3e853
FB
1109 tb->page_next[n] = p->first_tb;
1110 last_first_tb = p->first_tb;
1111 p->first_tb = (TranslationBlock *)((long)tb | n);
1112 invalidate_page_bitmap(p);
fd6ce8f6 1113
107db443 1114#if defined(TARGET_HAS_SMC) || 1
d720b93d 1115
9fa3e853 1116#if defined(CONFIG_USER_ONLY)
fd6ce8f6 1117 if (p->flags & PAGE_WRITE) {
53a5960a
PB
1118 target_ulong addr;
1119 PageDesc *p2;
9fa3e853
FB
1120 int prot;
1121
fd6ce8f6
FB
1122 /* force the host page as non writable (writes will have a
1123 page fault + mprotect overhead) */
53a5960a 1124 page_addr &= qemu_host_page_mask;
fd6ce8f6 1125 prot = 0;
53a5960a
PB
1126 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1127 addr += TARGET_PAGE_SIZE) {
1128
1129 p2 = page_find (addr >> TARGET_PAGE_BITS);
1130 if (!p2)
1131 continue;
1132 prot |= p2->flags;
1133 p2->flags &= ~PAGE_WRITE;
1134 page_get_flags(addr);
1135 }
5fafdf24 1136 mprotect(g2h(page_addr), qemu_host_page_size,
fd6ce8f6
FB
1137 (prot & PAGE_BITS) & ~PAGE_WRITE);
1138#ifdef DEBUG_TB_INVALIDATE
ab3d1727 1139 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
53a5960a 1140 page_addr);
fd6ce8f6 1141#endif
fd6ce8f6 1142 }
9fa3e853
FB
1143#else
1144 /* if some code is already present, then the pages are already
1145 protected. So we handle the case where only the first TB is
1146 allocated in a physical page */
1147 if (!last_first_tb) {
6a00d601 1148 tlb_protect_code(page_addr);
9fa3e853
FB
1149 }
1150#endif
d720b93d
FB
1151
1152#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
1153}
1154
1155/* Allocate a new translation block. Flush the translation buffer if
1156 too many translation blocks or too much generated code. */
c27004ec 1157TranslationBlock *tb_alloc(target_ulong pc)
fd6ce8f6
FB
1158{
1159 TranslationBlock *tb;
fd6ce8f6 1160
26a5f13b
FB
1161 if (nb_tbs >= code_gen_max_blocks ||
1162 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
d4e8164f 1163 return NULL;
fd6ce8f6
FB
1164 tb = &tbs[nb_tbs++];
1165 tb->pc = pc;
b448f2f3 1166 tb->cflags = 0;
d4e8164f
FB
1167 return tb;
1168}
1169
2e70f6ef
PB
1170void tb_free(TranslationBlock *tb)
1171{
bf20dc07 1172 /* In practice this is mostly used for single use temporary TB
2e70f6ef
PB
1173 Ignore the hard cases and just back up if this TB happens to
1174 be the last one generated. */
1175 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1176 code_gen_ptr = tb->tc_ptr;
1177 nb_tbs--;
1178 }
1179}
1180
9fa3e853
FB
1181/* add a new TB and link it to the physical page tables. phys_page2 is
1182 (-1) to indicate that only one page contains the TB. */
5fafdf24 1183void tb_link_phys(TranslationBlock *tb,
9fa3e853 1184 target_ulong phys_pc, target_ulong phys_page2)
d4e8164f 1185{
9fa3e853
FB
1186 unsigned int h;
1187 TranslationBlock **ptb;
1188
c8a706fe
PB
1189 /* Grab the mmap lock to stop another thread invalidating this TB
1190 before we are done. */
1191 mmap_lock();
9fa3e853
FB
1192 /* add in the physical hash table */
1193 h = tb_phys_hash_func(phys_pc);
1194 ptb = &tb_phys_hash[h];
1195 tb->phys_hash_next = *ptb;
1196 *ptb = tb;
fd6ce8f6
FB
1197
1198 /* add in the page list */
9fa3e853
FB
1199 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1200 if (phys_page2 != -1)
1201 tb_alloc_page(tb, 1, phys_page2);
1202 else
1203 tb->page_addr[1] = -1;
9fa3e853 1204
d4e8164f
FB
1205 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1206 tb->jmp_next[0] = NULL;
1207 tb->jmp_next[1] = NULL;
1208
1209 /* init original jump addresses */
1210 if (tb->tb_next_offset[0] != 0xffff)
1211 tb_reset_jump(tb, 0);
1212 if (tb->tb_next_offset[1] != 0xffff)
1213 tb_reset_jump(tb, 1);
8a40a180
FB
1214
1215#ifdef DEBUG_TB_CHECK
1216 tb_page_check();
1217#endif
c8a706fe 1218 mmap_unlock();
fd6ce8f6
FB
1219}
1220
9fa3e853
FB
1221/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1222 tb[1].tc_ptr. Return NULL if not found */
1223TranslationBlock *tb_find_pc(unsigned long tc_ptr)
fd6ce8f6 1224{
9fa3e853
FB
1225 int m_min, m_max, m;
1226 unsigned long v;
1227 TranslationBlock *tb;
a513fe19
FB
1228
1229 if (nb_tbs <= 0)
1230 return NULL;
1231 if (tc_ptr < (unsigned long)code_gen_buffer ||
1232 tc_ptr >= (unsigned long)code_gen_ptr)
1233 return NULL;
1234 /* binary search (cf Knuth) */
1235 m_min = 0;
1236 m_max = nb_tbs - 1;
1237 while (m_min <= m_max) {
1238 m = (m_min + m_max) >> 1;
1239 tb = &tbs[m];
1240 v = (unsigned long)tb->tc_ptr;
1241 if (v == tc_ptr)
1242 return tb;
1243 else if (tc_ptr < v) {
1244 m_max = m - 1;
1245 } else {
1246 m_min = m + 1;
1247 }
5fafdf24 1248 }
a513fe19
FB
1249 return &tbs[m_max];
1250}
7501267e 1251
ea041c0e
FB
1252static void tb_reset_jump_recursive(TranslationBlock *tb);
1253
1254static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1255{
1256 TranslationBlock *tb1, *tb_next, **ptb;
1257 unsigned int n1;
1258
1259 tb1 = tb->jmp_next[n];
1260 if (tb1 != NULL) {
1261 /* find head of list */
1262 for(;;) {
1263 n1 = (long)tb1 & 3;
1264 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1265 if (n1 == 2)
1266 break;
1267 tb1 = tb1->jmp_next[n1];
1268 }
1269 /* we are now sure now that tb jumps to tb1 */
1270 tb_next = tb1;
1271
1272 /* remove tb from the jmp_first list */
1273 ptb = &tb_next->jmp_first;
1274 for(;;) {
1275 tb1 = *ptb;
1276 n1 = (long)tb1 & 3;
1277 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1278 if (n1 == n && tb1 == tb)
1279 break;
1280 ptb = &tb1->jmp_next[n1];
1281 }
1282 *ptb = tb->jmp_next[n];
1283 tb->jmp_next[n] = NULL;
3b46e624 1284
ea041c0e
FB
1285 /* suppress the jump to next tb in generated code */
1286 tb_reset_jump(tb, n);
1287
0124311e 1288 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1289 tb_reset_jump_recursive(tb_next);
1290 }
1291}
1292
1293static void tb_reset_jump_recursive(TranslationBlock *tb)
1294{
1295 tb_reset_jump_recursive2(tb, 0);
1296 tb_reset_jump_recursive2(tb, 1);
1297}
1298
1fddef4b 1299#if defined(TARGET_HAS_ICE)
d720b93d
FB
1300static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1301{
9b3c35e0
JM
1302 target_phys_addr_t addr;
1303 target_ulong pd;
c2f07f81
PB
1304 ram_addr_t ram_addr;
1305 PhysPageDesc *p;
d720b93d 1306
c2f07f81
PB
1307 addr = cpu_get_phys_page_debug(env, pc);
1308 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1309 if (!p) {
1310 pd = IO_MEM_UNASSIGNED;
1311 } else {
1312 pd = p->phys_offset;
1313 }
1314 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
706cd4b5 1315 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
d720b93d 1316}
c27004ec 1317#endif
d720b93d 1318
6658ffb8 1319/* Add a watchpoint. */
a1d1bb31
AL
1320int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1321 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1322{
b4051334 1323 target_ulong len_mask = ~(len - 1);
c0ce998e 1324 CPUWatchpoint *wp;
6658ffb8 1325
b4051334
AL
1326 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1327 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1328 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1329 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1330 return -EINVAL;
1331 }
a1d1bb31 1332 wp = qemu_malloc(sizeof(*wp));
a1d1bb31
AL
1333
1334 wp->vaddr = addr;
b4051334 1335 wp->len_mask = len_mask;
a1d1bb31
AL
1336 wp->flags = flags;
1337
2dc9f411 1338 /* keep all GDB-injected watchpoints in front */
c0ce998e
AL
1339 if (flags & BP_GDB)
1340 TAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1341 else
1342 TAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
6658ffb8 1343
6658ffb8 1344 tlb_flush_page(env, addr);
a1d1bb31
AL
1345
1346 if (watchpoint)
1347 *watchpoint = wp;
1348 return 0;
6658ffb8
PB
1349}
1350
a1d1bb31
AL
1351/* Remove a specific watchpoint. */
1352int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1353 int flags)
6658ffb8 1354{
b4051334 1355 target_ulong len_mask = ~(len - 1);
a1d1bb31 1356 CPUWatchpoint *wp;
6658ffb8 1357
c0ce998e 1358 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334 1359 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 1360 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 1361 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
1362 return 0;
1363 }
1364 }
a1d1bb31 1365 return -ENOENT;
6658ffb8
PB
1366}
1367
a1d1bb31
AL
1368/* Remove a specific watchpoint by reference. */
1369void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1370{
c0ce998e 1371 TAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
7d03f82f 1372
a1d1bb31
AL
1373 tlb_flush_page(env, watchpoint->vaddr);
1374
1375 qemu_free(watchpoint);
1376}
1377
1378/* Remove all matching watchpoints. */
1379void cpu_watchpoint_remove_all(CPUState *env, int mask)
1380{
c0ce998e 1381 CPUWatchpoint *wp, *next;
a1d1bb31 1382
c0ce998e 1383 TAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
a1d1bb31
AL
1384 if (wp->flags & mask)
1385 cpu_watchpoint_remove_by_ref(env, wp);
c0ce998e 1386 }
7d03f82f
EI
1387}
1388
a1d1bb31
AL
1389/* Add a breakpoint. */
1390int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1391 CPUBreakpoint **breakpoint)
4c3a88a2 1392{
1fddef4b 1393#if defined(TARGET_HAS_ICE)
c0ce998e 1394 CPUBreakpoint *bp;
3b46e624 1395
a1d1bb31 1396 bp = qemu_malloc(sizeof(*bp));
4c3a88a2 1397
a1d1bb31
AL
1398 bp->pc = pc;
1399 bp->flags = flags;
1400
2dc9f411 1401 /* keep all GDB-injected breakpoints in front */
c0ce998e
AL
1402 if (flags & BP_GDB)
1403 TAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1404 else
1405 TAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
3b46e624 1406
d720b93d 1407 breakpoint_invalidate(env, pc);
a1d1bb31
AL
1408
1409 if (breakpoint)
1410 *breakpoint = bp;
4c3a88a2
FB
1411 return 0;
1412#else
a1d1bb31 1413 return -ENOSYS;
4c3a88a2
FB
1414#endif
1415}
1416
a1d1bb31
AL
1417/* Remove a specific breakpoint. */
1418int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1419{
7d03f82f 1420#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
1421 CPUBreakpoint *bp;
1422
c0ce998e 1423 TAILQ_FOREACH(bp, &env->breakpoints, entry) {
a1d1bb31
AL
1424 if (bp->pc == pc && bp->flags == flags) {
1425 cpu_breakpoint_remove_by_ref(env, bp);
1426 return 0;
1427 }
7d03f82f 1428 }
a1d1bb31
AL
1429 return -ENOENT;
1430#else
1431 return -ENOSYS;
7d03f82f
EI
1432#endif
1433}
1434
a1d1bb31
AL
1435/* Remove a specific breakpoint by reference. */
1436void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
4c3a88a2 1437{
1fddef4b 1438#if defined(TARGET_HAS_ICE)
c0ce998e 1439 TAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
d720b93d 1440
a1d1bb31
AL
1441 breakpoint_invalidate(env, breakpoint->pc);
1442
1443 qemu_free(breakpoint);
1444#endif
1445}
1446
1447/* Remove all matching breakpoints. */
1448void cpu_breakpoint_remove_all(CPUState *env, int mask)
1449{
1450#if defined(TARGET_HAS_ICE)
c0ce998e 1451 CPUBreakpoint *bp, *next;
a1d1bb31 1452
c0ce998e 1453 TAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
a1d1bb31
AL
1454 if (bp->flags & mask)
1455 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 1456 }
4c3a88a2
FB
1457#endif
1458}
1459
c33a346e
FB
1460/* enable or disable single step mode. EXCP_DEBUG is returned by the
1461 CPU loop after each instruction */
1462void cpu_single_step(CPUState *env, int enabled)
1463{
1fddef4b 1464#if defined(TARGET_HAS_ICE)
c33a346e
FB
1465 if (env->singlestep_enabled != enabled) {
1466 env->singlestep_enabled = enabled;
e22a25c9
AL
1467 if (kvm_enabled())
1468 kvm_update_guest_debug(env, 0);
1469 else {
ccbb4d44 1470 /* must flush all the translated code to avoid inconsistencies */
e22a25c9
AL
1471 /* XXX: only flush what is necessary */
1472 tb_flush(env);
1473 }
c33a346e
FB
1474 }
1475#endif
1476}
1477
34865134
FB
1478/* enable or disable low levels log */
1479void cpu_set_log(int log_flags)
1480{
1481 loglevel = log_flags;
1482 if (loglevel && !logfile) {
11fcfab4 1483 logfile = fopen(logfilename, log_append ? "a" : "w");
34865134
FB
1484 if (!logfile) {
1485 perror(logfilename);
1486 _exit(1);
1487 }
9fa3e853
FB
1488#if !defined(CONFIG_SOFTMMU)
1489 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1490 {
b55266b5 1491 static char logfile_buf[4096];
9fa3e853
FB
1492 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1493 }
bf65f53f
FN
1494#elif !defined(_WIN32)
1495 /* Win32 doesn't support line-buffering and requires size >= 2 */
34865134 1496 setvbuf(logfile, NULL, _IOLBF, 0);
9fa3e853 1497#endif
e735b91c
PB
1498 log_append = 1;
1499 }
1500 if (!loglevel && logfile) {
1501 fclose(logfile);
1502 logfile = NULL;
34865134
FB
1503 }
1504}
1505
1506void cpu_set_log_filename(const char *filename)
1507{
1508 logfilename = strdup(filename);
e735b91c
PB
1509 if (logfile) {
1510 fclose(logfile);
1511 logfile = NULL;
1512 }
1513 cpu_set_log(loglevel);
34865134 1514}
c33a346e 1515
3098dba0 1516static void cpu_unlink_tb(CPUState *env)
ea041c0e 1517{
2f7bb878 1518#if defined(CONFIG_USE_NPTL)
3098dba0
AJ
1519 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1520 problem and hope the cpu will stop of its own accord. For userspace
1521 emulation this often isn't actually as bad as it sounds. Often
1522 signals are used primarily to interrupt blocking syscalls. */
1523#else
ea041c0e 1524 TranslationBlock *tb;
15a51156 1525 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
59817ccb 1526
3098dba0
AJ
1527 tb = env->current_tb;
1528 /* if the cpu is currently executing code, we must unlink it and
1529 all the potentially executing TB */
1530 if (tb && !testandset(&interrupt_lock)) {
1531 env->current_tb = NULL;
1532 tb_reset_jump_recursive(tb);
1533 resetlock(&interrupt_lock);
be214e6c 1534 }
3098dba0
AJ
1535#endif
1536}
1537
1538/* mask must never be zero, except for A20 change call */
1539void cpu_interrupt(CPUState *env, int mask)
1540{
1541 int old_mask;
be214e6c 1542
2e70f6ef 1543 old_mask = env->interrupt_request;
68a79315 1544 env->interrupt_request |= mask;
3098dba0 1545
8edac960
AL
1546#ifndef CONFIG_USER_ONLY
1547 /*
1548 * If called from iothread context, wake the target cpu in
1549 * case its halted.
1550 */
1551 if (!qemu_cpu_self(env)) {
1552 qemu_cpu_kick(env);
1553 return;
1554 }
1555#endif
1556
2e70f6ef 1557 if (use_icount) {
266910c4 1558 env->icount_decr.u16.high = 0xffff;
2e70f6ef 1559#ifndef CONFIG_USER_ONLY
2e70f6ef 1560 if (!can_do_io(env)
be214e6c 1561 && (mask & ~old_mask) != 0) {
2e70f6ef
PB
1562 cpu_abort(env, "Raised interrupt while not in I/O function");
1563 }
1564#endif
1565 } else {
3098dba0 1566 cpu_unlink_tb(env);
ea041c0e
FB
1567 }
1568}
1569
b54ad049
FB
1570void cpu_reset_interrupt(CPUState *env, int mask)
1571{
1572 env->interrupt_request &= ~mask;
1573}
1574
3098dba0
AJ
1575void cpu_exit(CPUState *env)
1576{
1577 env->exit_request = 1;
1578 cpu_unlink_tb(env);
1579}
1580
c7cd6a37 1581const CPULogItem cpu_log_items[] = {
5fafdf24 1582 { CPU_LOG_TB_OUT_ASM, "out_asm",
f193c797
FB
1583 "show generated host assembly code for each compiled TB" },
1584 { CPU_LOG_TB_IN_ASM, "in_asm",
1585 "show target assembly code for each compiled TB" },
5fafdf24 1586 { CPU_LOG_TB_OP, "op",
57fec1fe 1587 "show micro ops for each compiled TB" },
f193c797 1588 { CPU_LOG_TB_OP_OPT, "op_opt",
e01a1157
BS
1589 "show micro ops "
1590#ifdef TARGET_I386
1591 "before eflags optimization and "
f193c797 1592#endif
e01a1157 1593 "after liveness analysis" },
f193c797
FB
1594 { CPU_LOG_INT, "int",
1595 "show interrupts/exceptions in short format" },
1596 { CPU_LOG_EXEC, "exec",
1597 "show trace before each executed TB (lots of logs)" },
9fddaa0c 1598 { CPU_LOG_TB_CPU, "cpu",
e91c8a77 1599 "show CPU state before block translation" },
f193c797
FB
1600#ifdef TARGET_I386
1601 { CPU_LOG_PCALL, "pcall",
1602 "show protected mode far calls/returns/exceptions" },
eca1bdf4
AL
1603 { CPU_LOG_RESET, "cpu_reset",
1604 "show CPU state before CPU resets" },
f193c797 1605#endif
8e3a9fd2 1606#ifdef DEBUG_IOPORT
fd872598
FB
1607 { CPU_LOG_IOPORT, "ioport",
1608 "show all i/o ports accesses" },
8e3a9fd2 1609#endif
f193c797
FB
1610 { 0, NULL, NULL },
1611};
1612
1613static int cmp1(const char *s1, int n, const char *s2)
1614{
1615 if (strlen(s2) != n)
1616 return 0;
1617 return memcmp(s1, s2, n) == 0;
1618}
3b46e624 1619
f193c797
FB
1620/* takes a comma separated list of log masks. Return 0 if error. */
1621int cpu_str_to_log_mask(const char *str)
1622{
c7cd6a37 1623 const CPULogItem *item;
f193c797
FB
1624 int mask;
1625 const char *p, *p1;
1626
1627 p = str;
1628 mask = 0;
1629 for(;;) {
1630 p1 = strchr(p, ',');
1631 if (!p1)
1632 p1 = p + strlen(p);
8e3a9fd2
FB
1633 if(cmp1(p,p1-p,"all")) {
1634 for(item = cpu_log_items; item->mask != 0; item++) {
1635 mask |= item->mask;
1636 }
1637 } else {
f193c797
FB
1638 for(item = cpu_log_items; item->mask != 0; item++) {
1639 if (cmp1(p, p1 - p, item->name))
1640 goto found;
1641 }
1642 return 0;
8e3a9fd2 1643 }
f193c797
FB
1644 found:
1645 mask |= item->mask;
1646 if (*p1 != ',')
1647 break;
1648 p = p1 + 1;
1649 }
1650 return mask;
1651}
ea041c0e 1652
7501267e
FB
1653void cpu_abort(CPUState *env, const char *fmt, ...)
1654{
1655 va_list ap;
493ae1f0 1656 va_list ap2;
7501267e
FB
1657
1658 va_start(ap, fmt);
493ae1f0 1659 va_copy(ap2, ap);
7501267e
FB
1660 fprintf(stderr, "qemu: fatal: ");
1661 vfprintf(stderr, fmt, ap);
1662 fprintf(stderr, "\n");
1663#ifdef TARGET_I386
7fe48483
FB
1664 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1665#else
1666 cpu_dump_state(env, stderr, fprintf, 0);
7501267e 1667#endif
93fcfe39
AL
1668 if (qemu_log_enabled()) {
1669 qemu_log("qemu: fatal: ");
1670 qemu_log_vprintf(fmt, ap2);
1671 qemu_log("\n");
f9373291 1672#ifdef TARGET_I386
93fcfe39 1673 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
f9373291 1674#else
93fcfe39 1675 log_cpu_state(env, 0);
f9373291 1676#endif
31b1a7b4 1677 qemu_log_flush();
93fcfe39 1678 qemu_log_close();
924edcae 1679 }
493ae1f0 1680 va_end(ap2);
f9373291 1681 va_end(ap);
7501267e
FB
1682 abort();
1683}
1684
c5be9f08
TS
1685CPUState *cpu_copy(CPUState *env)
1686{
01ba9816 1687 CPUState *new_env = cpu_init(env->cpu_model_str);
c5be9f08
TS
1688 CPUState *next_cpu = new_env->next_cpu;
1689 int cpu_index = new_env->cpu_index;
5a38f081
AL
1690#if defined(TARGET_HAS_ICE)
1691 CPUBreakpoint *bp;
1692 CPUWatchpoint *wp;
1693#endif
1694
c5be9f08 1695 memcpy(new_env, env, sizeof(CPUState));
5a38f081
AL
1696
1697 /* Preserve chaining and index. */
c5be9f08
TS
1698 new_env->next_cpu = next_cpu;
1699 new_env->cpu_index = cpu_index;
5a38f081
AL
1700
1701 /* Clone all break/watchpoints.
1702 Note: Once we support ptrace with hw-debug register access, make sure
1703 BP_CPU break/watchpoints are handled correctly on clone. */
1704 TAILQ_INIT(&env->breakpoints);
1705 TAILQ_INIT(&env->watchpoints);
1706#if defined(TARGET_HAS_ICE)
1707 TAILQ_FOREACH(bp, &env->breakpoints, entry) {
1708 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1709 }
1710 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
1711 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1712 wp->flags, NULL);
1713 }
1714#endif
1715
c5be9f08
TS
1716 return new_env;
1717}
1718
0124311e
FB
1719#if !defined(CONFIG_USER_ONLY)
1720
5c751e99
EI
1721static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1722{
1723 unsigned int i;
1724
1725 /* Discard jump cache entries for any tb which might potentially
1726 overlap the flushed page. */
1727 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1728 memset (&env->tb_jmp_cache[i], 0,
1729 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1730
1731 i = tb_jmp_cache_hash_page(addr);
1732 memset (&env->tb_jmp_cache[i], 0,
1733 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1734}
1735
08738984
IK
1736static CPUTLBEntry s_cputlb_empty_entry = {
1737 .addr_read = -1,
1738 .addr_write = -1,
1739 .addr_code = -1,
1740 .addend = -1,
1741};
1742
ee8b7021
FB
1743/* NOTE: if flush_global is true, also flush global entries (not
1744 implemented yet) */
1745void tlb_flush(CPUState *env, int flush_global)
33417e70 1746{
33417e70 1747 int i;
0124311e 1748
9fa3e853
FB
1749#if defined(DEBUG_TLB)
1750 printf("tlb_flush:\n");
1751#endif
0124311e
FB
1752 /* must reset current TB so that interrupts cannot modify the
1753 links while we are modifying them */
1754 env->current_tb = NULL;
1755
33417e70 1756 for(i = 0; i < CPU_TLB_SIZE; i++) {
cfde4bd9
IY
1757 int mmu_idx;
1758 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
08738984 1759 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
cfde4bd9 1760 }
33417e70 1761 }
9fa3e853 1762
8a40a180 1763 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
9fa3e853 1764
640f42e4 1765#ifdef CONFIG_KQEMU
0a962c02
FB
1766 if (env->kqemu_enabled) {
1767 kqemu_flush(env, flush_global);
1768 }
9fa3e853 1769#endif
e3db7226 1770 tlb_flush_count++;
33417e70
FB
1771}
1772
274da6b2 1773static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
61382a50 1774{
5fafdf24 1775 if (addr == (tlb_entry->addr_read &
84b7b8e7 1776 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1777 addr == (tlb_entry->addr_write &
84b7b8e7 1778 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1779 addr == (tlb_entry->addr_code &
84b7b8e7 1780 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
08738984 1781 *tlb_entry = s_cputlb_empty_entry;
84b7b8e7 1782 }
61382a50
FB
1783}
1784
2e12669a 1785void tlb_flush_page(CPUState *env, target_ulong addr)
33417e70 1786{
8a40a180 1787 int i;
cfde4bd9 1788 int mmu_idx;
0124311e 1789
9fa3e853 1790#if defined(DEBUG_TLB)
108c49b8 1791 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
9fa3e853 1792#endif
0124311e
FB
1793 /* must reset current TB so that interrupts cannot modify the
1794 links while we are modifying them */
1795 env->current_tb = NULL;
61382a50
FB
1796
1797 addr &= TARGET_PAGE_MASK;
1798 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
1799 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1800 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
0124311e 1801
5c751e99 1802 tlb_flush_jmp_cache(env, addr);
9fa3e853 1803
640f42e4 1804#ifdef CONFIG_KQEMU
0a962c02
FB
1805 if (env->kqemu_enabled) {
1806 kqemu_flush_page(env, addr);
1807 }
1808#endif
9fa3e853
FB
1809}
1810
9fa3e853
FB
1811/* update the TLBs so that writes to code in the virtual page 'addr'
1812 can be detected */
6a00d601 1813static void tlb_protect_code(ram_addr_t ram_addr)
9fa3e853 1814{
5fafdf24 1815 cpu_physical_memory_reset_dirty(ram_addr,
6a00d601
FB
1816 ram_addr + TARGET_PAGE_SIZE,
1817 CODE_DIRTY_FLAG);
9fa3e853
FB
1818}
1819
9fa3e853 1820/* update the TLB so that writes in physical page 'phys_addr' are no longer
3a7d929e 1821 tested for self modifying code */
5fafdf24 1822static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 1823 target_ulong vaddr)
9fa3e853 1824{
3a7d929e 1825 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1ccde1cb
FB
1826}
1827
5fafdf24 1828static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1ccde1cb
FB
1829 unsigned long start, unsigned long length)
1830{
1831 unsigned long addr;
84b7b8e7
FB
1832 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1833 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1ccde1cb 1834 if ((addr - start) < length) {
0f459d16 1835 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1ccde1cb
FB
1836 }
1837 }
1838}
1839
5579c7f3 1840/* Note: start and end must be within the same ram block. */
3a7d929e 1841void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 1842 int dirty_flags)
1ccde1cb
FB
1843{
1844 CPUState *env;
4f2ac237 1845 unsigned long length, start1;
0a962c02
FB
1846 int i, mask, len;
1847 uint8_t *p;
1ccde1cb
FB
1848
1849 start &= TARGET_PAGE_MASK;
1850 end = TARGET_PAGE_ALIGN(end);
1851
1852 length = end - start;
1853 if (length == 0)
1854 return;
0a962c02 1855 len = length >> TARGET_PAGE_BITS;
640f42e4 1856#ifdef CONFIG_KQEMU
6a00d601
FB
1857 /* XXX: should not depend on cpu context */
1858 env = first_cpu;
3a7d929e 1859 if (env->kqemu_enabled) {
f23db169
FB
1860 ram_addr_t addr;
1861 addr = start;
1862 for(i = 0; i < len; i++) {
1863 kqemu_set_notdirty(env, addr);
1864 addr += TARGET_PAGE_SIZE;
1865 }
3a7d929e
FB
1866 }
1867#endif
f23db169
FB
1868 mask = ~dirty_flags;
1869 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1870 for(i = 0; i < len; i++)
1871 p[i] &= mask;
1872
1ccde1cb
FB
1873 /* we modify the TLB cache so that the dirty bit will be set again
1874 when accessing the range */
5579c7f3
PB
1875 start1 = (unsigned long)qemu_get_ram_ptr(start);
1876 /* Chek that we don't span multiple blocks - this breaks the
1877 address comparisons below. */
1878 if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
1879 != (end - 1) - start) {
1880 abort();
1881 }
1882
6a00d601 1883 for(env = first_cpu; env != NULL; env = env->next_cpu) {
cfde4bd9
IY
1884 int mmu_idx;
1885 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1886 for(i = 0; i < CPU_TLB_SIZE; i++)
1887 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
1888 start1, length);
1889 }
6a00d601 1890 }
1ccde1cb
FB
1891}
1892
74576198
AL
1893int cpu_physical_memory_set_dirty_tracking(int enable)
1894{
1895 in_migration = enable;
b0a46a33
JK
1896 if (kvm_enabled()) {
1897 return kvm_set_migration_log(enable);
1898 }
74576198
AL
1899 return 0;
1900}
1901
1902int cpu_physical_memory_get_dirty_tracking(void)
1903{
1904 return in_migration;
1905}
1906
151f7749
JK
1907int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
1908 target_phys_addr_t end_addr)
2bec46dc 1909{
151f7749
JK
1910 int ret = 0;
1911
2bec46dc 1912 if (kvm_enabled())
151f7749
JK
1913 ret = kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
1914 return ret;
2bec46dc
AL
1915}
1916
3a7d929e
FB
1917static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
1918{
1919 ram_addr_t ram_addr;
5579c7f3 1920 void *p;
3a7d929e 1921
84b7b8e7 1922 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
5579c7f3
PB
1923 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
1924 + tlb_entry->addend);
1925 ram_addr = qemu_ram_addr_from_host(p);
3a7d929e 1926 if (!cpu_physical_memory_is_dirty(ram_addr)) {
0f459d16 1927 tlb_entry->addr_write |= TLB_NOTDIRTY;
3a7d929e
FB
1928 }
1929 }
1930}
1931
1932/* update the TLB according to the current state of the dirty bits */
1933void cpu_tlb_update_dirty(CPUState *env)
1934{
1935 int i;
cfde4bd9
IY
1936 int mmu_idx;
1937 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1938 for(i = 0; i < CPU_TLB_SIZE; i++)
1939 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
1940 }
3a7d929e
FB
1941}
1942
0f459d16 1943static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1ccde1cb 1944{
0f459d16
PB
1945 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
1946 tlb_entry->addr_write = vaddr;
1ccde1cb
FB
1947}
1948
0f459d16
PB
1949/* update the TLB corresponding to virtual page vaddr
1950 so that it is no longer dirty */
1951static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1ccde1cb 1952{
1ccde1cb 1953 int i;
cfde4bd9 1954 int mmu_idx;
1ccde1cb 1955
0f459d16 1956 vaddr &= TARGET_PAGE_MASK;
1ccde1cb 1957 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
1958 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1959 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
9fa3e853
FB
1960}
1961
59817ccb
FB
1962/* add a new TLB entry. At most one entry for a given virtual address
1963 is permitted. Return 0 if OK or 2 if the page could not be mapped
1964 (can only happen in non SOFTMMU mode for I/O pages or pages
1965 conflicting with the host address space). */
5fafdf24
TS
1966int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1967 target_phys_addr_t paddr, int prot,
6ebbf390 1968 int mmu_idx, int is_softmmu)
9fa3e853 1969{
92e873b9 1970 PhysPageDesc *p;
4f2ac237 1971 unsigned long pd;
9fa3e853 1972 unsigned int index;
4f2ac237 1973 target_ulong address;
0f459d16 1974 target_ulong code_address;
108c49b8 1975 target_phys_addr_t addend;
9fa3e853 1976 int ret;
84b7b8e7 1977 CPUTLBEntry *te;
a1d1bb31 1978 CPUWatchpoint *wp;
0f459d16 1979 target_phys_addr_t iotlb;
9fa3e853 1980
92e873b9 1981 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
9fa3e853
FB
1982 if (!p) {
1983 pd = IO_MEM_UNASSIGNED;
9fa3e853
FB
1984 } else {
1985 pd = p->phys_offset;
9fa3e853
FB
1986 }
1987#if defined(DEBUG_TLB)
6ebbf390
JM
1988 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
1989 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
9fa3e853
FB
1990#endif
1991
1992 ret = 0;
0f459d16
PB
1993 address = vaddr;
1994 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
1995 /* IO memory case (romd handled later) */
1996 address |= TLB_MMIO;
1997 }
5579c7f3 1998 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
0f459d16
PB
1999 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2000 /* Normal RAM. */
2001 iotlb = pd & TARGET_PAGE_MASK;
2002 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2003 iotlb |= IO_MEM_NOTDIRTY;
2004 else
2005 iotlb |= IO_MEM_ROM;
2006 } else {
ccbb4d44 2007 /* IO handlers are currently passed a physical address.
0f459d16
PB
2008 It would be nice to pass an offset from the base address
2009 of that region. This would avoid having to special case RAM,
2010 and avoid full address decoding in every device.
2011 We can't use the high bits of pd for this because
2012 IO_MEM_ROMD uses these as a ram address. */
8da3ff18
PB
2013 iotlb = (pd & ~TARGET_PAGE_MASK);
2014 if (p) {
8da3ff18
PB
2015 iotlb += p->region_offset;
2016 } else {
2017 iotlb += paddr;
2018 }
0f459d16
PB
2019 }
2020
2021 code_address = address;
2022 /* Make accesses to pages with watchpoints go via the
2023 watchpoint trap routines. */
c0ce998e 2024 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
a1d1bb31 2025 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
0f459d16
PB
2026 iotlb = io_mem_watch + paddr;
2027 /* TODO: The memory case can be optimized by not trapping
2028 reads of pages with a write breakpoint. */
2029 address |= TLB_MMIO;
6658ffb8 2030 }
0f459d16 2031 }
d79acba4 2032
0f459d16
PB
2033 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2034 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2035 te = &env->tlb_table[mmu_idx][index];
2036 te->addend = addend - vaddr;
2037 if (prot & PAGE_READ) {
2038 te->addr_read = address;
2039 } else {
2040 te->addr_read = -1;
2041 }
5c751e99 2042
0f459d16
PB
2043 if (prot & PAGE_EXEC) {
2044 te->addr_code = code_address;
2045 } else {
2046 te->addr_code = -1;
2047 }
2048 if (prot & PAGE_WRITE) {
2049 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2050 (pd & IO_MEM_ROMD)) {
2051 /* Write access calls the I/O callback. */
2052 te->addr_write = address | TLB_MMIO;
2053 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2054 !cpu_physical_memory_is_dirty(pd)) {
2055 te->addr_write = address | TLB_NOTDIRTY;
9fa3e853 2056 } else {
0f459d16 2057 te->addr_write = address;
9fa3e853 2058 }
0f459d16
PB
2059 } else {
2060 te->addr_write = -1;
9fa3e853 2061 }
9fa3e853
FB
2062 return ret;
2063}
2064
0124311e
FB
2065#else
2066
ee8b7021 2067void tlb_flush(CPUState *env, int flush_global)
0124311e
FB
2068{
2069}
2070
2e12669a 2071void tlb_flush_page(CPUState *env, target_ulong addr)
0124311e
FB
2072{
2073}
2074
5fafdf24
TS
2075int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
2076 target_phys_addr_t paddr, int prot,
6ebbf390 2077 int mmu_idx, int is_softmmu)
9fa3e853
FB
2078{
2079 return 0;
2080}
0124311e 2081
edf8e2af
MW
2082/*
2083 * Walks guest process memory "regions" one by one
2084 * and calls callback function 'fn' for each region.
2085 */
2086int walk_memory_regions(void *priv,
2087 int (*fn)(void *, unsigned long, unsigned long, unsigned long))
33417e70 2088{
9fa3e853 2089 unsigned long start, end;
edf8e2af 2090 PageDesc *p = NULL;
9fa3e853 2091 int i, j, prot, prot1;
edf8e2af 2092 int rc = 0;
33417e70 2093
edf8e2af 2094 start = end = -1;
9fa3e853 2095 prot = 0;
edf8e2af
MW
2096
2097 for (i = 0; i <= L1_SIZE; i++) {
2098 p = (i < L1_SIZE) ? l1_map[i] : NULL;
2099 for (j = 0; j < L2_SIZE; j++) {
2100 prot1 = (p == NULL) ? 0 : p[j].flags;
2101 /*
2102 * "region" is one continuous chunk of memory
2103 * that has same protection flags set.
2104 */
9fa3e853
FB
2105 if (prot1 != prot) {
2106 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
2107 if (start != -1) {
edf8e2af
MW
2108 rc = (*fn)(priv, start, end, prot);
2109 /* callback can stop iteration by returning != 0 */
2110 if (rc != 0)
2111 return (rc);
9fa3e853
FB
2112 }
2113 if (prot1 != 0)
2114 start = end;
2115 else
2116 start = -1;
2117 prot = prot1;
2118 }
edf8e2af 2119 if (p == NULL)
9fa3e853
FB
2120 break;
2121 }
33417e70 2122 }
edf8e2af
MW
2123 return (rc);
2124}
2125
2126static int dump_region(void *priv, unsigned long start,
2127 unsigned long end, unsigned long prot)
2128{
2129 FILE *f = (FILE *)priv;
2130
2131 (void) fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
2132 start, end, end - start,
2133 ((prot & PAGE_READ) ? 'r' : '-'),
2134 ((prot & PAGE_WRITE) ? 'w' : '-'),
2135 ((prot & PAGE_EXEC) ? 'x' : '-'));
2136
2137 return (0);
2138}
2139
2140/* dump memory mappings */
2141void page_dump(FILE *f)
2142{
2143 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2144 "start", "end", "size", "prot");
2145 walk_memory_regions(f, dump_region);
33417e70
FB
2146}
2147
53a5960a 2148int page_get_flags(target_ulong address)
33417e70 2149{
9fa3e853
FB
2150 PageDesc *p;
2151
2152 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 2153 if (!p)
9fa3e853
FB
2154 return 0;
2155 return p->flags;
2156}
2157
2158/* modify the flags of a page and invalidate the code if
ccbb4d44 2159 necessary. The flag PAGE_WRITE_ORG is positioned automatically
9fa3e853 2160 depending on PAGE_WRITE */
53a5960a 2161void page_set_flags(target_ulong start, target_ulong end, int flags)
9fa3e853
FB
2162{
2163 PageDesc *p;
53a5960a 2164 target_ulong addr;
9fa3e853 2165
c8a706fe 2166 /* mmap_lock should already be held. */
9fa3e853
FB
2167 start = start & TARGET_PAGE_MASK;
2168 end = TARGET_PAGE_ALIGN(end);
2169 if (flags & PAGE_WRITE)
2170 flags |= PAGE_WRITE_ORG;
9fa3e853
FB
2171 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2172 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
17e2377a
PB
2173 /* We may be called for host regions that are outside guest
2174 address space. */
2175 if (!p)
2176 return;
9fa3e853
FB
2177 /* if the write protection is set, then we invalidate the code
2178 inside */
5fafdf24 2179 if (!(p->flags & PAGE_WRITE) &&
9fa3e853
FB
2180 (flags & PAGE_WRITE) &&
2181 p->first_tb) {
d720b93d 2182 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
2183 }
2184 p->flags = flags;
2185 }
33417e70
FB
2186}
2187
3d97b40b
TS
2188int page_check_range(target_ulong start, target_ulong len, int flags)
2189{
2190 PageDesc *p;
2191 target_ulong end;
2192 target_ulong addr;
2193
55f280c9
AZ
2194 if (start + len < start)
2195 /* we've wrapped around */
2196 return -1;
2197
3d97b40b
TS
2198 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2199 start = start & TARGET_PAGE_MASK;
2200
3d97b40b
TS
2201 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2202 p = page_find(addr >> TARGET_PAGE_BITS);
2203 if( !p )
2204 return -1;
2205 if( !(p->flags & PAGE_VALID) )
2206 return -1;
2207
dae3270c 2208 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
3d97b40b 2209 return -1;
dae3270c
FB
2210 if (flags & PAGE_WRITE) {
2211 if (!(p->flags & PAGE_WRITE_ORG))
2212 return -1;
2213 /* unprotect the page if it was put read-only because it
2214 contains translated code */
2215 if (!(p->flags & PAGE_WRITE)) {
2216 if (!page_unprotect(addr, 0, NULL))
2217 return -1;
2218 }
2219 return 0;
2220 }
3d97b40b
TS
2221 }
2222 return 0;
2223}
2224
9fa3e853 2225/* called from signal handler: invalidate the code and unprotect the
ccbb4d44 2226 page. Return TRUE if the fault was successfully handled. */
53a5960a 2227int page_unprotect(target_ulong address, unsigned long pc, void *puc)
9fa3e853
FB
2228{
2229 unsigned int page_index, prot, pindex;
2230 PageDesc *p, *p1;
53a5960a 2231 target_ulong host_start, host_end, addr;
9fa3e853 2232
c8a706fe
PB
2233 /* Technically this isn't safe inside a signal handler. However we
2234 know this only ever happens in a synchronous SEGV handler, so in
2235 practice it seems to be ok. */
2236 mmap_lock();
2237
83fb7adf 2238 host_start = address & qemu_host_page_mask;
9fa3e853
FB
2239 page_index = host_start >> TARGET_PAGE_BITS;
2240 p1 = page_find(page_index);
c8a706fe
PB
2241 if (!p1) {
2242 mmap_unlock();
9fa3e853 2243 return 0;
c8a706fe 2244 }
83fb7adf 2245 host_end = host_start + qemu_host_page_size;
9fa3e853
FB
2246 p = p1;
2247 prot = 0;
2248 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2249 prot |= p->flags;
2250 p++;
2251 }
2252 /* if the page was really writable, then we change its
2253 protection back to writable */
2254 if (prot & PAGE_WRITE_ORG) {
2255 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2256 if (!(p1[pindex].flags & PAGE_WRITE)) {
5fafdf24 2257 mprotect((void *)g2h(host_start), qemu_host_page_size,
9fa3e853
FB
2258 (prot & PAGE_BITS) | PAGE_WRITE);
2259 p1[pindex].flags |= PAGE_WRITE;
2260 /* and since the content will be modified, we must invalidate
2261 the corresponding translated code. */
d720b93d 2262 tb_invalidate_phys_page(address, pc, puc);
9fa3e853
FB
2263#ifdef DEBUG_TB_CHECK
2264 tb_invalidate_check(address);
2265#endif
c8a706fe 2266 mmap_unlock();
9fa3e853
FB
2267 return 1;
2268 }
2269 }
c8a706fe 2270 mmap_unlock();
9fa3e853
FB
2271 return 0;
2272}
2273
6a00d601
FB
2274static inline void tlb_set_dirty(CPUState *env,
2275 unsigned long addr, target_ulong vaddr)
1ccde1cb
FB
2276{
2277}
9fa3e853
FB
2278#endif /* defined(CONFIG_USER_ONLY) */
2279
e2eef170 2280#if !defined(CONFIG_USER_ONLY)
8da3ff18 2281
db7b5426 2282static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
8da3ff18 2283 ram_addr_t memory, ram_addr_t region_offset);
00f82b8a 2284static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
8da3ff18 2285 ram_addr_t orig_memory, ram_addr_t region_offset);
db7b5426
BS
2286#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2287 need_subpage) \
2288 do { \
2289 if (addr > start_addr) \
2290 start_addr2 = 0; \
2291 else { \
2292 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2293 if (start_addr2 > 0) \
2294 need_subpage = 1; \
2295 } \
2296 \
49e9fba2 2297 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
db7b5426
BS
2298 end_addr2 = TARGET_PAGE_SIZE - 1; \
2299 else { \
2300 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2301 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2302 need_subpage = 1; \
2303 } \
2304 } while (0)
2305
33417e70
FB
2306/* register physical memory. 'size' must be a multiple of the target
2307 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
8da3ff18
PB
2308 io memory page. The address used when calling the IO function is
2309 the offset from the start of the region, plus region_offset. Both
ccbb4d44 2310 start_addr and region_offset are rounded down to a page boundary
8da3ff18
PB
2311 before calculating this offset. This should not be a problem unless
2312 the low bits of start_addr and region_offset differ. */
2313void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2314 ram_addr_t size,
2315 ram_addr_t phys_offset,
2316 ram_addr_t region_offset)
33417e70 2317{
108c49b8 2318 target_phys_addr_t addr, end_addr;
92e873b9 2319 PhysPageDesc *p;
9d42037b 2320 CPUState *env;
00f82b8a 2321 ram_addr_t orig_size = size;
db7b5426 2322 void *subpage;
33417e70 2323
640f42e4 2324#ifdef CONFIG_KQEMU
da260249
FB
2325 /* XXX: should not depend on cpu context */
2326 env = first_cpu;
2327 if (env->kqemu_enabled) {
2328 kqemu_set_phys_mem(start_addr, size, phys_offset);
2329 }
2330#endif
7ba1e619
AL
2331 if (kvm_enabled())
2332 kvm_set_phys_mem(start_addr, size, phys_offset);
2333
67c4d23c
PB
2334 if (phys_offset == IO_MEM_UNASSIGNED) {
2335 region_offset = start_addr;
2336 }
8da3ff18 2337 region_offset &= TARGET_PAGE_MASK;
5fd386f6 2338 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
49e9fba2
BS
2339 end_addr = start_addr + (target_phys_addr_t)size;
2340 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
db7b5426
BS
2341 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2342 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
00f82b8a 2343 ram_addr_t orig_memory = p->phys_offset;
db7b5426
BS
2344 target_phys_addr_t start_addr2, end_addr2;
2345 int need_subpage = 0;
2346
2347 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2348 need_subpage);
4254fab8 2349 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426
BS
2350 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2351 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18
PB
2352 &p->phys_offset, orig_memory,
2353 p->region_offset);
db7b5426
BS
2354 } else {
2355 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2356 >> IO_MEM_SHIFT];
2357 }
8da3ff18
PB
2358 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2359 region_offset);
2360 p->region_offset = 0;
db7b5426
BS
2361 } else {
2362 p->phys_offset = phys_offset;
2363 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2364 (phys_offset & IO_MEM_ROMD))
2365 phys_offset += TARGET_PAGE_SIZE;
2366 }
2367 } else {
2368 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2369 p->phys_offset = phys_offset;
8da3ff18 2370 p->region_offset = region_offset;
db7b5426 2371 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
8da3ff18 2372 (phys_offset & IO_MEM_ROMD)) {
db7b5426 2373 phys_offset += TARGET_PAGE_SIZE;
0e8f0967 2374 } else {
db7b5426
BS
2375 target_phys_addr_t start_addr2, end_addr2;
2376 int need_subpage = 0;
2377
2378 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2379 end_addr2, need_subpage);
2380
4254fab8 2381 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426 2382 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18 2383 &p->phys_offset, IO_MEM_UNASSIGNED,
67c4d23c 2384 addr & TARGET_PAGE_MASK);
db7b5426 2385 subpage_register(subpage, start_addr2, end_addr2,
8da3ff18
PB
2386 phys_offset, region_offset);
2387 p->region_offset = 0;
db7b5426
BS
2388 }
2389 }
2390 }
8da3ff18 2391 region_offset += TARGET_PAGE_SIZE;
33417e70 2392 }
3b46e624 2393
9d42037b
FB
2394 /* since each CPU stores ram addresses in its TLB cache, we must
2395 reset the modified entries */
2396 /* XXX: slow ! */
2397 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2398 tlb_flush(env, 1);
2399 }
33417e70
FB
2400}
2401
ba863458 2402/* XXX: temporary until new memory mapping API */
00f82b8a 2403ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
ba863458
FB
2404{
2405 PhysPageDesc *p;
2406
2407 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2408 if (!p)
2409 return IO_MEM_UNASSIGNED;
2410 return p->phys_offset;
2411}
2412
f65ed4c1
AL
2413void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2414{
2415 if (kvm_enabled())
2416 kvm_coalesce_mmio_region(addr, size);
2417}
2418
2419void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2420{
2421 if (kvm_enabled())
2422 kvm_uncoalesce_mmio_region(addr, size);
2423}
2424
640f42e4 2425#ifdef CONFIG_KQEMU
e9a1ab19 2426/* XXX: better than nothing */
94a6b54f 2427static ram_addr_t kqemu_ram_alloc(ram_addr_t size)
e9a1ab19
FB
2428{
2429 ram_addr_t addr;
94a6b54f 2430 if ((last_ram_offset + size) > kqemu_phys_ram_size) {
012a7045 2431 fprintf(stderr, "Not enough memory (requested_size = %" PRIu64 ", max memory = %" PRIu64 ")\n",
94a6b54f 2432 (uint64_t)size, (uint64_t)kqemu_phys_ram_size);
e9a1ab19
FB
2433 abort();
2434 }
94a6b54f
PB
2435 addr = last_ram_offset;
2436 last_ram_offset = TARGET_PAGE_ALIGN(last_ram_offset + size);
e9a1ab19
FB
2437 return addr;
2438}
94a6b54f
PB
2439#endif
2440
2441ram_addr_t qemu_ram_alloc(ram_addr_t size)
2442{
2443 RAMBlock *new_block;
2444
640f42e4 2445#ifdef CONFIG_KQEMU
94a6b54f
PB
2446 if (kqemu_phys_ram_base) {
2447 return kqemu_ram_alloc(size);
2448 }
2449#endif
2450
2451 size = TARGET_PAGE_ALIGN(size);
2452 new_block = qemu_malloc(sizeof(*new_block));
2453
2454 new_block->host = qemu_vmalloc(size);
2455 new_block->offset = last_ram_offset;
2456 new_block->length = size;
2457
2458 new_block->next = ram_blocks;
2459 ram_blocks = new_block;
2460
2461 phys_ram_dirty = qemu_realloc(phys_ram_dirty,
2462 (last_ram_offset + size) >> TARGET_PAGE_BITS);
2463 memset(phys_ram_dirty + (last_ram_offset >> TARGET_PAGE_BITS),
2464 0xff, size >> TARGET_PAGE_BITS);
2465
2466 last_ram_offset += size;
2467
6f0437e8
JK
2468 if (kvm_enabled())
2469 kvm_setup_guest_memory(new_block->host, size);
2470
94a6b54f
PB
2471 return new_block->offset;
2472}
e9a1ab19
FB
2473
2474void qemu_ram_free(ram_addr_t addr)
2475{
94a6b54f 2476 /* TODO: implement this. */
e9a1ab19
FB
2477}
2478
dc828ca1 2479/* Return a host pointer to ram allocated with qemu_ram_alloc.
5579c7f3
PB
2480 With the exception of the softmmu code in this file, this should
2481 only be used for local memory (e.g. video ram) that the device owns,
2482 and knows it isn't going to access beyond the end of the block.
2483
2484 It should not be used for general purpose DMA.
2485 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2486 */
dc828ca1
PB
2487void *qemu_get_ram_ptr(ram_addr_t addr)
2488{
94a6b54f
PB
2489 RAMBlock *prev;
2490 RAMBlock **prevp;
2491 RAMBlock *block;
2492
640f42e4 2493#ifdef CONFIG_KQEMU
94a6b54f
PB
2494 if (kqemu_phys_ram_base) {
2495 return kqemu_phys_ram_base + addr;
2496 }
2497#endif
2498
2499 prev = NULL;
2500 prevp = &ram_blocks;
2501 block = ram_blocks;
2502 while (block && (block->offset > addr
2503 || block->offset + block->length <= addr)) {
2504 if (prev)
2505 prevp = &prev->next;
2506 prev = block;
2507 block = block->next;
2508 }
2509 if (!block) {
2510 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2511 abort();
2512 }
2513 /* Move this entry to to start of the list. */
2514 if (prev) {
2515 prev->next = block->next;
2516 block->next = *prevp;
2517 *prevp = block;
2518 }
2519 return block->host + (addr - block->offset);
dc828ca1
PB
2520}
2521
5579c7f3
PB
2522/* Some of the softmmu routines need to translate from a host pointer
2523 (typically a TLB entry) back to a ram offset. */
2524ram_addr_t qemu_ram_addr_from_host(void *ptr)
2525{
94a6b54f
PB
2526 RAMBlock *prev;
2527 RAMBlock **prevp;
2528 RAMBlock *block;
2529 uint8_t *host = ptr;
2530
640f42e4 2531#ifdef CONFIG_KQEMU
94a6b54f
PB
2532 if (kqemu_phys_ram_base) {
2533 return host - kqemu_phys_ram_base;
2534 }
2535#endif
2536
2537 prev = NULL;
2538 prevp = &ram_blocks;
2539 block = ram_blocks;
2540 while (block && (block->host > host
2541 || block->host + block->length <= host)) {
2542 if (prev)
2543 prevp = &prev->next;
2544 prev = block;
2545 block = block->next;
2546 }
2547 if (!block) {
2548 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2549 abort();
2550 }
2551 return block->offset + (host - block->host);
5579c7f3
PB
2552}
2553
a4193c8a 2554static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
33417e70 2555{
67d3b957 2556#ifdef DEBUG_UNASSIGNED
ab3d1727 2557 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
b4f0a316 2558#endif
0a6f8a6d 2559#if defined(TARGET_SPARC)
e18231a3
BS
2560 do_unassigned_access(addr, 0, 0, 0, 1);
2561#endif
2562 return 0;
2563}
2564
2565static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
2566{
2567#ifdef DEBUG_UNASSIGNED
2568 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2569#endif
0a6f8a6d 2570#if defined(TARGET_SPARC)
e18231a3
BS
2571 do_unassigned_access(addr, 0, 0, 0, 2);
2572#endif
2573 return 0;
2574}
2575
2576static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
2577{
2578#ifdef DEBUG_UNASSIGNED
2579 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2580#endif
0a6f8a6d 2581#if defined(TARGET_SPARC)
e18231a3 2582 do_unassigned_access(addr, 0, 0, 0, 4);
67d3b957 2583#endif
33417e70
FB
2584 return 0;
2585}
2586
a4193c8a 2587static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
33417e70 2588{
67d3b957 2589#ifdef DEBUG_UNASSIGNED
ab3d1727 2590 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
67d3b957 2591#endif
0a6f8a6d 2592#if defined(TARGET_SPARC)
e18231a3
BS
2593 do_unassigned_access(addr, 1, 0, 0, 1);
2594#endif
2595}
2596
2597static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2598{
2599#ifdef DEBUG_UNASSIGNED
2600 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2601#endif
0a6f8a6d 2602#if defined(TARGET_SPARC)
e18231a3
BS
2603 do_unassigned_access(addr, 1, 0, 0, 2);
2604#endif
2605}
2606
2607static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2608{
2609#ifdef DEBUG_UNASSIGNED
2610 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2611#endif
0a6f8a6d 2612#if defined(TARGET_SPARC)
e18231a3 2613 do_unassigned_access(addr, 1, 0, 0, 4);
b4f0a316 2614#endif
33417e70
FB
2615}
2616
2617static CPUReadMemoryFunc *unassigned_mem_read[3] = {
2618 unassigned_mem_readb,
e18231a3
BS
2619 unassigned_mem_readw,
2620 unassigned_mem_readl,
33417e70
FB
2621};
2622
2623static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
2624 unassigned_mem_writeb,
e18231a3
BS
2625 unassigned_mem_writew,
2626 unassigned_mem_writel,
33417e70
FB
2627};
2628
0f459d16
PB
2629static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
2630 uint32_t val)
9fa3e853 2631{
3a7d929e 2632 int dirty_flags;
3a7d929e
FB
2633 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2634 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2635#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2636 tb_invalidate_phys_page_fast(ram_addr, 1);
2637 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2638#endif
3a7d929e 2639 }
5579c7f3 2640 stb_p(qemu_get_ram_ptr(ram_addr), val);
640f42e4 2641#ifdef CONFIG_KQEMU
f32fc648
FB
2642 if (cpu_single_env->kqemu_enabled &&
2643 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2644 kqemu_modify_page(cpu_single_env, ram_addr);
2645#endif
f23db169
FB
2646 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2647 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2648 /* we remove the notdirty callback only if the code has been
2649 flushed */
2650 if (dirty_flags == 0xff)
2e70f6ef 2651 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2652}
2653
0f459d16
PB
2654static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
2655 uint32_t val)
9fa3e853 2656{
3a7d929e 2657 int dirty_flags;
3a7d929e
FB
2658 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2659 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2660#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2661 tb_invalidate_phys_page_fast(ram_addr, 2);
2662 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2663#endif
3a7d929e 2664 }
5579c7f3 2665 stw_p(qemu_get_ram_ptr(ram_addr), val);
640f42e4 2666#ifdef CONFIG_KQEMU
f32fc648
FB
2667 if (cpu_single_env->kqemu_enabled &&
2668 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2669 kqemu_modify_page(cpu_single_env, ram_addr);
2670#endif
f23db169
FB
2671 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2672 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2673 /* we remove the notdirty callback only if the code has been
2674 flushed */
2675 if (dirty_flags == 0xff)
2e70f6ef 2676 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2677}
2678
0f459d16
PB
2679static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
2680 uint32_t val)
9fa3e853 2681{
3a7d929e 2682 int dirty_flags;
3a7d929e
FB
2683 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2684 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2685#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2686 tb_invalidate_phys_page_fast(ram_addr, 4);
2687 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2688#endif
3a7d929e 2689 }
5579c7f3 2690 stl_p(qemu_get_ram_ptr(ram_addr), val);
640f42e4 2691#ifdef CONFIG_KQEMU
f32fc648
FB
2692 if (cpu_single_env->kqemu_enabled &&
2693 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2694 kqemu_modify_page(cpu_single_env, ram_addr);
2695#endif
f23db169
FB
2696 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2697 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2698 /* we remove the notdirty callback only if the code has been
2699 flushed */
2700 if (dirty_flags == 0xff)
2e70f6ef 2701 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2702}
2703
3a7d929e 2704static CPUReadMemoryFunc *error_mem_read[3] = {
9fa3e853
FB
2705 NULL, /* never used */
2706 NULL, /* never used */
2707 NULL, /* never used */
2708};
2709
1ccde1cb
FB
2710static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
2711 notdirty_mem_writeb,
2712 notdirty_mem_writew,
2713 notdirty_mem_writel,
2714};
2715
0f459d16 2716/* Generate a debug exception if a watchpoint has been hit. */
b4051334 2717static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16
PB
2718{
2719 CPUState *env = cpu_single_env;
06d55cc1
AL
2720 target_ulong pc, cs_base;
2721 TranslationBlock *tb;
0f459d16 2722 target_ulong vaddr;
a1d1bb31 2723 CPUWatchpoint *wp;
06d55cc1 2724 int cpu_flags;
0f459d16 2725
06d55cc1
AL
2726 if (env->watchpoint_hit) {
2727 /* We re-entered the check after replacing the TB. Now raise
2728 * the debug interrupt so that is will trigger after the
2729 * current instruction. */
2730 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2731 return;
2732 }
2e70f6ef 2733 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
c0ce998e 2734 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334
AL
2735 if ((vaddr == (wp->vaddr & len_mask) ||
2736 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
2737 wp->flags |= BP_WATCHPOINT_HIT;
2738 if (!env->watchpoint_hit) {
2739 env->watchpoint_hit = wp;
2740 tb = tb_find_pc(env->mem_io_pc);
2741 if (!tb) {
2742 cpu_abort(env, "check_watchpoint: could not find TB for "
2743 "pc=%p", (void *)env->mem_io_pc);
2744 }
2745 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
2746 tb_phys_invalidate(tb, -1);
2747 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2748 env->exception_index = EXCP_DEBUG;
2749 } else {
2750 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2751 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
2752 }
2753 cpu_resume_from_signal(env, NULL);
06d55cc1 2754 }
6e140f28
AL
2755 } else {
2756 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2757 }
2758 }
2759}
2760
6658ffb8
PB
2761/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2762 so these check for a hit then pass through to the normal out-of-line
2763 phys routines. */
2764static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
2765{
b4051334 2766 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
6658ffb8
PB
2767 return ldub_phys(addr);
2768}
2769
2770static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
2771{
b4051334 2772 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
6658ffb8
PB
2773 return lduw_phys(addr);
2774}
2775
2776static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
2777{
b4051334 2778 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
6658ffb8
PB
2779 return ldl_phys(addr);
2780}
2781
6658ffb8
PB
2782static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
2783 uint32_t val)
2784{
b4051334 2785 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
6658ffb8
PB
2786 stb_phys(addr, val);
2787}
2788
2789static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
2790 uint32_t val)
2791{
b4051334 2792 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
6658ffb8
PB
2793 stw_phys(addr, val);
2794}
2795
2796static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
2797 uint32_t val)
2798{
b4051334 2799 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
6658ffb8
PB
2800 stl_phys(addr, val);
2801}
2802
2803static CPUReadMemoryFunc *watch_mem_read[3] = {
2804 watch_mem_readb,
2805 watch_mem_readw,
2806 watch_mem_readl,
2807};
2808
2809static CPUWriteMemoryFunc *watch_mem_write[3] = {
2810 watch_mem_writeb,
2811 watch_mem_writew,
2812 watch_mem_writel,
2813};
6658ffb8 2814
db7b5426
BS
2815static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
2816 unsigned int len)
2817{
db7b5426
BS
2818 uint32_t ret;
2819 unsigned int idx;
2820
8da3ff18 2821 idx = SUBPAGE_IDX(addr);
db7b5426
BS
2822#if defined(DEBUG_SUBPAGE)
2823 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2824 mmio, len, addr, idx);
2825#endif
8da3ff18
PB
2826 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len],
2827 addr + mmio->region_offset[idx][0][len]);
db7b5426
BS
2828
2829 return ret;
2830}
2831
2832static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
2833 uint32_t value, unsigned int len)
2834{
db7b5426
BS
2835 unsigned int idx;
2836
8da3ff18 2837 idx = SUBPAGE_IDX(addr);
db7b5426
BS
2838#if defined(DEBUG_SUBPAGE)
2839 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2840 mmio, len, addr, idx, value);
2841#endif
8da3ff18
PB
2842 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len],
2843 addr + mmio->region_offset[idx][1][len],
2844 value);
db7b5426
BS
2845}
2846
2847static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
2848{
2849#if defined(DEBUG_SUBPAGE)
2850 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2851#endif
2852
2853 return subpage_readlen(opaque, addr, 0);
2854}
2855
2856static void subpage_writeb (void *opaque, target_phys_addr_t addr,
2857 uint32_t value)
2858{
2859#if defined(DEBUG_SUBPAGE)
2860 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2861#endif
2862 subpage_writelen(opaque, addr, value, 0);
2863}
2864
2865static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
2866{
2867#if defined(DEBUG_SUBPAGE)
2868 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2869#endif
2870
2871 return subpage_readlen(opaque, addr, 1);
2872}
2873
2874static void subpage_writew (void *opaque, target_phys_addr_t addr,
2875 uint32_t value)
2876{
2877#if defined(DEBUG_SUBPAGE)
2878 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2879#endif
2880 subpage_writelen(opaque, addr, value, 1);
2881}
2882
2883static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
2884{
2885#if defined(DEBUG_SUBPAGE)
2886 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2887#endif
2888
2889 return subpage_readlen(opaque, addr, 2);
2890}
2891
2892static void subpage_writel (void *opaque,
2893 target_phys_addr_t addr, uint32_t value)
2894{
2895#if defined(DEBUG_SUBPAGE)
2896 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2897#endif
2898 subpage_writelen(opaque, addr, value, 2);
2899}
2900
2901static CPUReadMemoryFunc *subpage_read[] = {
2902 &subpage_readb,
2903 &subpage_readw,
2904 &subpage_readl,
2905};
2906
2907static CPUWriteMemoryFunc *subpage_write[] = {
2908 &subpage_writeb,
2909 &subpage_writew,
2910 &subpage_writel,
2911};
2912
2913static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
8da3ff18 2914 ram_addr_t memory, ram_addr_t region_offset)
db7b5426
BS
2915{
2916 int idx, eidx;
4254fab8 2917 unsigned int i;
db7b5426
BS
2918
2919 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2920 return -1;
2921 idx = SUBPAGE_IDX(start);
2922 eidx = SUBPAGE_IDX(end);
2923#if defined(DEBUG_SUBPAGE)
0bf9e31a 2924 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
db7b5426
BS
2925 mmio, start, end, idx, eidx, memory);
2926#endif
2927 memory >>= IO_MEM_SHIFT;
2928 for (; idx <= eidx; idx++) {
4254fab8 2929 for (i = 0; i < 4; i++) {
3ee89922
BS
2930 if (io_mem_read[memory][i]) {
2931 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
2932 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
8da3ff18 2933 mmio->region_offset[idx][0][i] = region_offset;
3ee89922
BS
2934 }
2935 if (io_mem_write[memory][i]) {
2936 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
2937 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
8da3ff18 2938 mmio->region_offset[idx][1][i] = region_offset;
3ee89922 2939 }
4254fab8 2940 }
db7b5426
BS
2941 }
2942
2943 return 0;
2944}
2945
00f82b8a 2946static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
8da3ff18 2947 ram_addr_t orig_memory, ram_addr_t region_offset)
db7b5426
BS
2948{
2949 subpage_t *mmio;
2950 int subpage_memory;
2951
2952 mmio = qemu_mallocz(sizeof(subpage_t));
1eec614b
AL
2953
2954 mmio->base = base;
1eed09cb 2955 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
db7b5426 2956#if defined(DEBUG_SUBPAGE)
1eec614b
AL
2957 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
2958 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
db7b5426 2959#endif
1eec614b
AL
2960 *phys = subpage_memory | IO_MEM_SUBPAGE;
2961 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory,
8da3ff18 2962 region_offset);
db7b5426
BS
2963
2964 return mmio;
2965}
2966
88715657
AL
2967static int get_free_io_mem_idx(void)
2968{
2969 int i;
2970
2971 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
2972 if (!io_mem_used[i]) {
2973 io_mem_used[i] = 1;
2974 return i;
2975 }
2976
2977 return -1;
2978}
2979
33417e70
FB
2980/* mem_read and mem_write are arrays of functions containing the
2981 function to access byte (index 0), word (index 1) and dword (index
0b4e6e3e 2982 2). Functions can be omitted with a NULL function pointer.
3ee89922 2983 If io_index is non zero, the corresponding io zone is
4254fab8
BS
2984 modified. If it is zero, a new io zone is allocated. The return
2985 value can be used with cpu_register_physical_memory(). (-1) is
2986 returned if error. */
1eed09cb
AK
2987static int cpu_register_io_memory_fixed(int io_index,
2988 CPUReadMemoryFunc **mem_read,
2989 CPUWriteMemoryFunc **mem_write,
2990 void *opaque)
33417e70 2991{
4254fab8 2992 int i, subwidth = 0;
33417e70
FB
2993
2994 if (io_index <= 0) {
88715657
AL
2995 io_index = get_free_io_mem_idx();
2996 if (io_index == -1)
2997 return io_index;
33417e70 2998 } else {
1eed09cb 2999 io_index >>= IO_MEM_SHIFT;
33417e70
FB
3000 if (io_index >= IO_MEM_NB_ENTRIES)
3001 return -1;
3002 }
b5ff1b31 3003
33417e70 3004 for(i = 0;i < 3; i++) {
4254fab8
BS
3005 if (!mem_read[i] || !mem_write[i])
3006 subwidth = IO_MEM_SUBWIDTH;
33417e70
FB
3007 io_mem_read[io_index][i] = mem_read[i];
3008 io_mem_write[io_index][i] = mem_write[i];
3009 }
a4193c8a 3010 io_mem_opaque[io_index] = opaque;
4254fab8 3011 return (io_index << IO_MEM_SHIFT) | subwidth;
33417e70 3012}
61382a50 3013
1eed09cb
AK
3014int cpu_register_io_memory(CPUReadMemoryFunc **mem_read,
3015 CPUWriteMemoryFunc **mem_write,
3016 void *opaque)
3017{
3018 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
3019}
3020
88715657
AL
3021void cpu_unregister_io_memory(int io_table_address)
3022{
3023 int i;
3024 int io_index = io_table_address >> IO_MEM_SHIFT;
3025
3026 for (i=0;i < 3; i++) {
3027 io_mem_read[io_index][i] = unassigned_mem_read[i];
3028 io_mem_write[io_index][i] = unassigned_mem_write[i];
3029 }
3030 io_mem_opaque[io_index] = NULL;
3031 io_mem_used[io_index] = 0;
3032}
3033
e9179ce1
AK
3034static void io_mem_init(void)
3035{
3036 int i;
3037
3038 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
3039 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
3040 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
3041 for (i=0; i<5; i++)
3042 io_mem_used[i] = 1;
3043
3044 io_mem_watch = cpu_register_io_memory(watch_mem_read,
3045 watch_mem_write, NULL);
3046#ifdef CONFIG_KQEMU
3047 if (kqemu_phys_ram_base) {
3048 /* alloc dirty bits array */
3049 phys_ram_dirty = qemu_vmalloc(kqemu_phys_ram_size >> TARGET_PAGE_BITS);
3050 memset(phys_ram_dirty, 0xff, kqemu_phys_ram_size >> TARGET_PAGE_BITS);
3051 }
3052#endif
3053}
3054
e2eef170
PB
3055#endif /* !defined(CONFIG_USER_ONLY) */
3056
13eb76e0
FB
3057/* physical memory access (slow version, mainly for debug) */
3058#if defined(CONFIG_USER_ONLY)
5fafdf24 3059void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
3060 int len, int is_write)
3061{
3062 int l, flags;
3063 target_ulong page;
53a5960a 3064 void * p;
13eb76e0
FB
3065
3066 while (len > 0) {
3067 page = addr & TARGET_PAGE_MASK;
3068 l = (page + TARGET_PAGE_SIZE) - addr;
3069 if (l > len)
3070 l = len;
3071 flags = page_get_flags(page);
3072 if (!(flags & PAGE_VALID))
3073 return;
3074 if (is_write) {
3075 if (!(flags & PAGE_WRITE))
3076 return;
579a97f7 3077 /* XXX: this code should not depend on lock_user */
72fb7daa 3078 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
579a97f7
FB
3079 /* FIXME - should this return an error rather than just fail? */
3080 return;
72fb7daa
AJ
3081 memcpy(p, buf, l);
3082 unlock_user(p, addr, l);
13eb76e0
FB
3083 } else {
3084 if (!(flags & PAGE_READ))
3085 return;
579a97f7 3086 /* XXX: this code should not depend on lock_user */
72fb7daa 3087 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
579a97f7
FB
3088 /* FIXME - should this return an error rather than just fail? */
3089 return;
72fb7daa 3090 memcpy(buf, p, l);
5b257578 3091 unlock_user(p, addr, 0);
13eb76e0
FB
3092 }
3093 len -= l;
3094 buf += l;
3095 addr += l;
3096 }
3097}
8df1cd07 3098
13eb76e0 3099#else
5fafdf24 3100void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
3101 int len, int is_write)
3102{
3103 int l, io_index;
3104 uint8_t *ptr;
3105 uint32_t val;
2e12669a
FB
3106 target_phys_addr_t page;
3107 unsigned long pd;
92e873b9 3108 PhysPageDesc *p;
3b46e624 3109
13eb76e0
FB
3110 while (len > 0) {
3111 page = addr & TARGET_PAGE_MASK;
3112 l = (page + TARGET_PAGE_SIZE) - addr;
3113 if (l > len)
3114 l = len;
92e873b9 3115 p = phys_page_find(page >> TARGET_PAGE_BITS);
13eb76e0
FB
3116 if (!p) {
3117 pd = IO_MEM_UNASSIGNED;
3118 } else {
3119 pd = p->phys_offset;
3120 }
3b46e624 3121
13eb76e0 3122 if (is_write) {
3a7d929e 3123 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
6c2934db 3124 target_phys_addr_t addr1 = addr;
13eb76e0 3125 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3126 if (p)
6c2934db 3127 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
6a00d601
FB
3128 /* XXX: could force cpu_single_env to NULL to avoid
3129 potential bugs */
6c2934db 3130 if (l >= 4 && ((addr1 & 3) == 0)) {
1c213d19 3131 /* 32 bit write access */
c27004ec 3132 val = ldl_p(buf);
6c2934db 3133 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
13eb76e0 3134 l = 4;
6c2934db 3135 } else if (l >= 2 && ((addr1 & 1) == 0)) {
1c213d19 3136 /* 16 bit write access */
c27004ec 3137 val = lduw_p(buf);
6c2934db 3138 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3139 l = 2;
3140 } else {
1c213d19 3141 /* 8 bit write access */
c27004ec 3142 val = ldub_p(buf);
6c2934db 3143 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3144 l = 1;
3145 }
3146 } else {
b448f2f3
FB
3147 unsigned long addr1;
3148 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
13eb76e0 3149 /* RAM case */
5579c7f3 3150 ptr = qemu_get_ram_ptr(addr1);
13eb76e0 3151 memcpy(ptr, buf, l);
3a7d929e
FB
3152 if (!cpu_physical_memory_is_dirty(addr1)) {
3153 /* invalidate code */
3154 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3155 /* set dirty bit */
5fafdf24 3156 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
f23db169 3157 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 3158 }
13eb76e0
FB
3159 }
3160 } else {
5fafdf24 3161 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3162 !(pd & IO_MEM_ROMD)) {
6c2934db 3163 target_phys_addr_t addr1 = addr;
13eb76e0
FB
3164 /* I/O case */
3165 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3166 if (p)
6c2934db
AJ
3167 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3168 if (l >= 4 && ((addr1 & 3) == 0)) {
13eb76e0 3169 /* 32 bit read access */
6c2934db 3170 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
c27004ec 3171 stl_p(buf, val);
13eb76e0 3172 l = 4;
6c2934db 3173 } else if (l >= 2 && ((addr1 & 1) == 0)) {
13eb76e0 3174 /* 16 bit read access */
6c2934db 3175 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
c27004ec 3176 stw_p(buf, val);
13eb76e0
FB
3177 l = 2;
3178 } else {
1c213d19 3179 /* 8 bit read access */
6c2934db 3180 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
c27004ec 3181 stb_p(buf, val);
13eb76e0
FB
3182 l = 1;
3183 }
3184 } else {
3185 /* RAM case */
5579c7f3 3186 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
13eb76e0
FB
3187 (addr & ~TARGET_PAGE_MASK);
3188 memcpy(buf, ptr, l);
3189 }
3190 }
3191 len -= l;
3192 buf += l;
3193 addr += l;
3194 }
3195}
8df1cd07 3196
d0ecd2aa 3197/* used for ROM loading : can write in RAM and ROM */
5fafdf24 3198void cpu_physical_memory_write_rom(target_phys_addr_t addr,
d0ecd2aa
FB
3199 const uint8_t *buf, int len)
3200{
3201 int l;
3202 uint8_t *ptr;
3203 target_phys_addr_t page;
3204 unsigned long pd;
3205 PhysPageDesc *p;
3b46e624 3206
d0ecd2aa
FB
3207 while (len > 0) {
3208 page = addr & TARGET_PAGE_MASK;
3209 l = (page + TARGET_PAGE_SIZE) - addr;
3210 if (l > len)
3211 l = len;
3212 p = phys_page_find(page >> TARGET_PAGE_BITS);
3213 if (!p) {
3214 pd = IO_MEM_UNASSIGNED;
3215 } else {
3216 pd = p->phys_offset;
3217 }
3b46e624 3218
d0ecd2aa 3219 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2a4188a3
FB
3220 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3221 !(pd & IO_MEM_ROMD)) {
d0ecd2aa
FB
3222 /* do nothing */
3223 } else {
3224 unsigned long addr1;
3225 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3226 /* ROM/RAM case */
5579c7f3 3227 ptr = qemu_get_ram_ptr(addr1);
d0ecd2aa
FB
3228 memcpy(ptr, buf, l);
3229 }
3230 len -= l;
3231 buf += l;
3232 addr += l;
3233 }
3234}
3235
6d16c2f8
AL
3236typedef struct {
3237 void *buffer;
3238 target_phys_addr_t addr;
3239 target_phys_addr_t len;
3240} BounceBuffer;
3241
3242static BounceBuffer bounce;
3243
ba223c29
AL
3244typedef struct MapClient {
3245 void *opaque;
3246 void (*callback)(void *opaque);
3247 LIST_ENTRY(MapClient) link;
3248} MapClient;
3249
3250static LIST_HEAD(map_client_list, MapClient) map_client_list
3251 = LIST_HEAD_INITIALIZER(map_client_list);
3252
3253void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3254{
3255 MapClient *client = qemu_malloc(sizeof(*client));
3256
3257 client->opaque = opaque;
3258 client->callback = callback;
3259 LIST_INSERT_HEAD(&map_client_list, client, link);
3260 return client;
3261}
3262
3263void cpu_unregister_map_client(void *_client)
3264{
3265 MapClient *client = (MapClient *)_client;
3266
3267 LIST_REMOVE(client, link);
34d5e948 3268 qemu_free(client);
ba223c29
AL
3269}
3270
3271static void cpu_notify_map_clients(void)
3272{
3273 MapClient *client;
3274
3275 while (!LIST_EMPTY(&map_client_list)) {
3276 client = LIST_FIRST(&map_client_list);
3277 client->callback(client->opaque);
34d5e948 3278 cpu_unregister_map_client(client);
ba223c29
AL
3279 }
3280}
3281
6d16c2f8
AL
3282/* Map a physical memory region into a host virtual address.
3283 * May map a subset of the requested range, given by and returned in *plen.
3284 * May return NULL if resources needed to perform the mapping are exhausted.
3285 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3286 * Use cpu_register_map_client() to know when retrying the map operation is
3287 * likely to succeed.
6d16c2f8
AL
3288 */
3289void *cpu_physical_memory_map(target_phys_addr_t addr,
3290 target_phys_addr_t *plen,
3291 int is_write)
3292{
3293 target_phys_addr_t len = *plen;
3294 target_phys_addr_t done = 0;
3295 int l;
3296 uint8_t *ret = NULL;
3297 uint8_t *ptr;
3298 target_phys_addr_t page;
3299 unsigned long pd;
3300 PhysPageDesc *p;
3301 unsigned long addr1;
3302
3303 while (len > 0) {
3304 page = addr & TARGET_PAGE_MASK;
3305 l = (page + TARGET_PAGE_SIZE) - addr;
3306 if (l > len)
3307 l = len;
3308 p = phys_page_find(page >> TARGET_PAGE_BITS);
3309 if (!p) {
3310 pd = IO_MEM_UNASSIGNED;
3311 } else {
3312 pd = p->phys_offset;
3313 }
3314
3315 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3316 if (done || bounce.buffer) {
3317 break;
3318 }
3319 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3320 bounce.addr = addr;
3321 bounce.len = l;
3322 if (!is_write) {
3323 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3324 }
3325 ptr = bounce.buffer;
3326 } else {
3327 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3328 ptr = qemu_get_ram_ptr(addr1);
6d16c2f8
AL
3329 }
3330 if (!done) {
3331 ret = ptr;
3332 } else if (ret + done != ptr) {
3333 break;
3334 }
3335
3336 len -= l;
3337 addr += l;
3338 done += l;
3339 }
3340 *plen = done;
3341 return ret;
3342}
3343
3344/* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3345 * Will also mark the memory as dirty if is_write == 1. access_len gives
3346 * the amount of memory that was actually read or written by the caller.
3347 */
3348void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3349 int is_write, target_phys_addr_t access_len)
3350{
3351 if (buffer != bounce.buffer) {
3352 if (is_write) {
5579c7f3 3353 ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
6d16c2f8
AL
3354 while (access_len) {
3355 unsigned l;
3356 l = TARGET_PAGE_SIZE;
3357 if (l > access_len)
3358 l = access_len;
3359 if (!cpu_physical_memory_is_dirty(addr1)) {
3360 /* invalidate code */
3361 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3362 /* set dirty bit */
3363 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3364 (0xff & ~CODE_DIRTY_FLAG);
3365 }
3366 addr1 += l;
3367 access_len -= l;
3368 }
3369 }
3370 return;
3371 }
3372 if (is_write) {
3373 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3374 }
3375 qemu_free(bounce.buffer);
3376 bounce.buffer = NULL;
ba223c29 3377 cpu_notify_map_clients();
6d16c2f8 3378}
d0ecd2aa 3379
8df1cd07
FB
3380/* warning: addr must be aligned */
3381uint32_t ldl_phys(target_phys_addr_t addr)
3382{
3383 int io_index;
3384 uint8_t *ptr;
3385 uint32_t val;
3386 unsigned long pd;
3387 PhysPageDesc *p;
3388
3389 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3390 if (!p) {
3391 pd = IO_MEM_UNASSIGNED;
3392 } else {
3393 pd = p->phys_offset;
3394 }
3b46e624 3395
5fafdf24 3396 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3397 !(pd & IO_MEM_ROMD)) {
8df1cd07
FB
3398 /* I/O case */
3399 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3400 if (p)
3401 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3402 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3403 } else {
3404 /* RAM case */
5579c7f3 3405 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
8df1cd07
FB
3406 (addr & ~TARGET_PAGE_MASK);
3407 val = ldl_p(ptr);
3408 }
3409 return val;
3410}
3411
84b7b8e7
FB
3412/* warning: addr must be aligned */
3413uint64_t ldq_phys(target_phys_addr_t addr)
3414{
3415 int io_index;
3416 uint8_t *ptr;
3417 uint64_t val;
3418 unsigned long pd;
3419 PhysPageDesc *p;
3420
3421 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3422 if (!p) {
3423 pd = IO_MEM_UNASSIGNED;
3424 } else {
3425 pd = p->phys_offset;
3426 }
3b46e624 3427
2a4188a3
FB
3428 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3429 !(pd & IO_MEM_ROMD)) {
84b7b8e7
FB
3430 /* I/O case */
3431 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3432 if (p)
3433 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
84b7b8e7
FB
3434#ifdef TARGET_WORDS_BIGENDIAN
3435 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3436 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3437#else
3438 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3439 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3440#endif
3441 } else {
3442 /* RAM case */
5579c7f3 3443 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
84b7b8e7
FB
3444 (addr & ~TARGET_PAGE_MASK);
3445 val = ldq_p(ptr);
3446 }
3447 return val;
3448}
3449
aab33094
FB
3450/* XXX: optimize */
3451uint32_t ldub_phys(target_phys_addr_t addr)
3452{
3453 uint8_t val;
3454 cpu_physical_memory_read(addr, &val, 1);
3455 return val;
3456}
3457
3458/* XXX: optimize */
3459uint32_t lduw_phys(target_phys_addr_t addr)
3460{
3461 uint16_t val;
3462 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3463 return tswap16(val);
3464}
3465
8df1cd07
FB
3466/* warning: addr must be aligned. The ram page is not masked as dirty
3467 and the code inside is not invalidated. It is useful if the dirty
3468 bits are used to track modified PTEs */
3469void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3470{
3471 int io_index;
3472 uint8_t *ptr;
3473 unsigned long pd;
3474 PhysPageDesc *p;
3475
3476 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3477 if (!p) {
3478 pd = IO_MEM_UNASSIGNED;
3479 } else {
3480 pd = p->phys_offset;
3481 }
3b46e624 3482
3a7d929e 3483 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3484 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3485 if (p)
3486 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3487 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3488 } else {
74576198 3489 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3490 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3491 stl_p(ptr, val);
74576198
AL
3492
3493 if (unlikely(in_migration)) {
3494 if (!cpu_physical_memory_is_dirty(addr1)) {
3495 /* invalidate code */
3496 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3497 /* set dirty bit */
3498 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3499 (0xff & ~CODE_DIRTY_FLAG);
3500 }
3501 }
8df1cd07
FB
3502 }
3503}
3504
bc98a7ef
JM
3505void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3506{
3507 int io_index;
3508 uint8_t *ptr;
3509 unsigned long pd;
3510 PhysPageDesc *p;
3511
3512 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3513 if (!p) {
3514 pd = IO_MEM_UNASSIGNED;
3515 } else {
3516 pd = p->phys_offset;
3517 }
3b46e624 3518
bc98a7ef
JM
3519 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3520 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3521 if (p)
3522 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
bc98a7ef
JM
3523#ifdef TARGET_WORDS_BIGENDIAN
3524 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3525 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3526#else
3527 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3528 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3529#endif
3530 } else {
5579c7f3 3531 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
bc98a7ef
JM
3532 (addr & ~TARGET_PAGE_MASK);
3533 stq_p(ptr, val);
3534 }
3535}
3536
8df1cd07 3537/* warning: addr must be aligned */
8df1cd07
FB
3538void stl_phys(target_phys_addr_t addr, uint32_t val)
3539{
3540 int io_index;
3541 uint8_t *ptr;
3542 unsigned long pd;
3543 PhysPageDesc *p;
3544
3545 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3546 if (!p) {
3547 pd = IO_MEM_UNASSIGNED;
3548 } else {
3549 pd = p->phys_offset;
3550 }
3b46e624 3551
3a7d929e 3552 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3553 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3554 if (p)
3555 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3556 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3557 } else {
3558 unsigned long addr1;
3559 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3560 /* RAM case */
5579c7f3 3561 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3562 stl_p(ptr, val);
3a7d929e
FB
3563 if (!cpu_physical_memory_is_dirty(addr1)) {
3564 /* invalidate code */
3565 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3566 /* set dirty bit */
f23db169
FB
3567 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3568 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 3569 }
8df1cd07
FB
3570 }
3571}
3572
aab33094
FB
3573/* XXX: optimize */
3574void stb_phys(target_phys_addr_t addr, uint32_t val)
3575{
3576 uint8_t v = val;
3577 cpu_physical_memory_write(addr, &v, 1);
3578}
3579
3580/* XXX: optimize */
3581void stw_phys(target_phys_addr_t addr, uint32_t val)
3582{
3583 uint16_t v = tswap16(val);
3584 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3585}
3586
3587/* XXX: optimize */
3588void stq_phys(target_phys_addr_t addr, uint64_t val)
3589{
3590 val = tswap64(val);
3591 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3592}
3593
13eb76e0
FB
3594#endif
3595
5e2972fd 3596/* virtual memory access for debug (includes writing to ROM) */
5fafdf24 3597int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
b448f2f3 3598 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3599{
3600 int l;
9b3c35e0
JM
3601 target_phys_addr_t phys_addr;
3602 target_ulong page;
13eb76e0
FB
3603
3604 while (len > 0) {
3605 page = addr & TARGET_PAGE_MASK;
3606 phys_addr = cpu_get_phys_page_debug(env, page);
3607 /* if no physical page mapped, return an error */
3608 if (phys_addr == -1)
3609 return -1;
3610 l = (page + TARGET_PAGE_SIZE) - addr;
3611 if (l > len)
3612 l = len;
5e2972fd
AL
3613 phys_addr += (addr & ~TARGET_PAGE_MASK);
3614#if !defined(CONFIG_USER_ONLY)
3615 if (is_write)
3616 cpu_physical_memory_write_rom(phys_addr, buf, l);
3617 else
3618#endif
3619 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
13eb76e0
FB
3620 len -= l;
3621 buf += l;
3622 addr += l;
3623 }
3624 return 0;
3625}
3626
2e70f6ef
PB
3627/* in deterministic execution mode, instructions doing device I/Os
3628 must be at the end of the TB */
3629void cpu_io_recompile(CPUState *env, void *retaddr)
3630{
3631 TranslationBlock *tb;
3632 uint32_t n, cflags;
3633 target_ulong pc, cs_base;
3634 uint64_t flags;
3635
3636 tb = tb_find_pc((unsigned long)retaddr);
3637 if (!tb) {
3638 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3639 retaddr);
3640 }
3641 n = env->icount_decr.u16.low + tb->icount;
3642 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3643 /* Calculate how many instructions had been executed before the fault
bf20dc07 3644 occurred. */
2e70f6ef
PB
3645 n = n - env->icount_decr.u16.low;
3646 /* Generate a new TB ending on the I/O insn. */
3647 n++;
3648 /* On MIPS and SH, delay slot instructions can only be restarted if
3649 they were already the first instruction in the TB. If this is not
bf20dc07 3650 the first instruction in a TB then re-execute the preceding
2e70f6ef
PB
3651 branch. */
3652#if defined(TARGET_MIPS)
3653 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3654 env->active_tc.PC -= 4;
3655 env->icount_decr.u16.low++;
3656 env->hflags &= ~MIPS_HFLAG_BMASK;
3657 }
3658#elif defined(TARGET_SH4)
3659 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3660 && n > 1) {
3661 env->pc -= 2;
3662 env->icount_decr.u16.low++;
3663 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3664 }
3665#endif
3666 /* This should never happen. */
3667 if (n > CF_COUNT_MASK)
3668 cpu_abort(env, "TB too big during recompile");
3669
3670 cflags = n | CF_LAST_IO;
3671 pc = tb->pc;
3672 cs_base = tb->cs_base;
3673 flags = tb->flags;
3674 tb_phys_invalidate(tb, -1);
3675 /* FIXME: In theory this could raise an exception. In practice
3676 we have already translated the block once so it's probably ok. */
3677 tb_gen_code(env, pc, cs_base, flags, cflags);
bf20dc07 3678 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2e70f6ef
PB
3679 the first in the TB) then we end up generating a whole new TB and
3680 repeating the fault, which is horribly inefficient.
3681 Better would be to execute just this insn uncached, or generate a
3682 second new TB. */
3683 cpu_resume_from_signal(env, NULL);
3684}
3685
e3db7226
FB
3686void dump_exec_info(FILE *f,
3687 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3688{
3689 int i, target_code_size, max_target_code_size;
3690 int direct_jmp_count, direct_jmp2_count, cross_page;
3691 TranslationBlock *tb;
3b46e624 3692
e3db7226
FB
3693 target_code_size = 0;
3694 max_target_code_size = 0;
3695 cross_page = 0;
3696 direct_jmp_count = 0;
3697 direct_jmp2_count = 0;
3698 for(i = 0; i < nb_tbs; i++) {
3699 tb = &tbs[i];
3700 target_code_size += tb->size;
3701 if (tb->size > max_target_code_size)
3702 max_target_code_size = tb->size;
3703 if (tb->page_addr[1] != -1)
3704 cross_page++;
3705 if (tb->tb_next_offset[0] != 0xffff) {
3706 direct_jmp_count++;
3707 if (tb->tb_next_offset[1] != 0xffff) {
3708 direct_jmp2_count++;
3709 }
3710 }
3711 }
3712 /* XXX: avoid using doubles ? */
57fec1fe 3713 cpu_fprintf(f, "Translation buffer state:\n");
26a5f13b
FB
3714 cpu_fprintf(f, "gen code size %ld/%ld\n",
3715 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3716 cpu_fprintf(f, "TB count %d/%d\n",
3717 nb_tbs, code_gen_max_blocks);
5fafdf24 3718 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
e3db7226
FB
3719 nb_tbs ? target_code_size / nb_tbs : 0,
3720 max_target_code_size);
5fafdf24 3721 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
e3db7226
FB
3722 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3723 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
5fafdf24
TS
3724 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3725 cross_page,
e3db7226
FB
3726 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3727 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
5fafdf24 3728 direct_jmp_count,
e3db7226
FB
3729 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3730 direct_jmp2_count,
3731 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
57fec1fe 3732 cpu_fprintf(f, "\nStatistics:\n");
e3db7226
FB
3733 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3734 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3735 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
b67d9a52 3736 tcg_dump_info(f, cpu_fprintf);
e3db7226
FB
3737}
3738
5fafdf24 3739#if !defined(CONFIG_USER_ONLY)
61382a50
FB
3740
3741#define MMUSUFFIX _cmmu
3742#define GETPC() NULL
3743#define env cpu_single_env
b769d8fe 3744#define SOFTMMU_CODE_ACCESS
61382a50
FB
3745
3746#define SHIFT 0
3747#include "softmmu_template.h"
3748
3749#define SHIFT 1
3750#include "softmmu_template.h"
3751
3752#define SHIFT 2
3753#include "softmmu_template.h"
3754
3755#define SHIFT 3
3756#include "softmmu_template.h"
3757
3758#undef env
3759
3760#endif