]> git.proxmox.com Git - qemu.git/blame - exec.c
xen: flush queue when getting an event
[qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
67b915a5 19#include "config.h"
d5a8f07c
FB
20#ifdef _WIN32
21#include <windows.h>
22#else
a98d49b1 23#include <sys/types.h>
d5a8f07c
FB
24#include <sys/mman.h>
25#endif
54936004 26
055403b2 27#include "qemu-common.h"
6180a181 28#include "cpu.h"
b67d9a52 29#include "tcg.h"
b3c7724c 30#include "hw/hw.h"
cc9e98cb 31#include "hw/qdev.h"
74576198 32#include "osdep.h"
7ba1e619 33#include "kvm.h"
432d268c 34#include "hw/xen.h"
29e922b6 35#include "qemu-timer.h"
62152b8a
AK
36#include "memory.h"
37#include "exec-memory.h"
53a5960a
PB
38#if defined(CONFIG_USER_ONLY)
39#include <qemu.h>
f01576f1
JL
40#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
41#include <sys/param.h>
42#if __FreeBSD_version >= 700104
43#define HAVE_KINFO_GETVMMAP
44#define sigqueue sigqueue_freebsd /* avoid redefinition */
45#include <sys/time.h>
46#include <sys/proc.h>
47#include <machine/profile.h>
48#define _KERNEL
49#include <sys/user.h>
50#undef _KERNEL
51#undef sigqueue
52#include <libutil.h>
53#endif
54#endif
432d268c
JN
55#else /* !CONFIG_USER_ONLY */
56#include "xen-mapcache.h"
6506e4f9 57#include "trace.h"
53a5960a 58#endif
54936004 59
0cac1b66
BS
60#include "cputlb.h"
61
67d95c15
AK
62#define WANT_EXEC_OBSOLETE
63#include "exec-obsolete.h"
64
fd6ce8f6 65//#define DEBUG_TB_INVALIDATE
66e85a21 66//#define DEBUG_FLUSH
67d3b957 67//#define DEBUG_UNASSIGNED
fd6ce8f6
FB
68
69/* make various TB consistency checks */
5fafdf24 70//#define DEBUG_TB_CHECK
fd6ce8f6 71
1196be37 72//#define DEBUG_IOPORT
db7b5426 73//#define DEBUG_SUBPAGE
1196be37 74
99773bd4
PB
75#if !defined(CONFIG_USER_ONLY)
76/* TB consistency checks only implemented for usermode emulation. */
77#undef DEBUG_TB_CHECK
78#endif
79
9fa3e853
FB
80#define SMC_BITMAP_USE_THRESHOLD 10
81
bdaf78e0 82static TranslationBlock *tbs;
24ab68ac 83static int code_gen_max_blocks;
9fa3e853 84TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
bdaf78e0 85static int nb_tbs;
eb51d102 86/* any access to the tbs or the page table must use this lock */
c227f099 87spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6 88
181dd0b2 89#if defined(__arm__) || defined(__sparc__)
141ac468
BS
90/* The prologue must be reachable with a direct jump. ARM and Sparc64
91 have limited branch ranges (possibly also PPC) so place it in a
d03d860b
BS
92 section close to code segment. */
93#define code_gen_section \
94 __attribute__((__section__(".gen_code"))) \
95 __attribute__((aligned (32)))
6840981d 96#elif defined(_WIN32) && !defined(_WIN64)
f8e2af11
SW
97#define code_gen_section \
98 __attribute__((aligned (16)))
d03d860b
BS
99#else
100#define code_gen_section \
101 __attribute__((aligned (32)))
102#endif
103
104uint8_t code_gen_prologue[1024] code_gen_section;
bdaf78e0
BS
105static uint8_t *code_gen_buffer;
106static unsigned long code_gen_buffer_size;
26a5f13b 107/* threshold to flush the translated code buffer */
bdaf78e0 108static unsigned long code_gen_buffer_max_size;
24ab68ac 109static uint8_t *code_gen_ptr;
fd6ce8f6 110
e2eef170 111#if !defined(CONFIG_USER_ONLY)
9fa3e853 112int phys_ram_fd;
74576198 113static int in_migration;
94a6b54f 114
85d59fef 115RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
116
117static MemoryRegion *system_memory;
309cb471 118static MemoryRegion *system_io;
62152b8a 119
0e0df1e2 120MemoryRegion io_mem_ram, io_mem_rom, io_mem_unassigned, io_mem_notdirty;
de712f94 121static MemoryRegion io_mem_subpage_ram;
0e0df1e2 122
e2eef170 123#endif
9fa3e853 124
9349b4f9 125CPUArchState *first_cpu;
6a00d601
FB
126/* current CPU in the current thread. It is only valid inside
127 cpu_exec() */
9349b4f9 128DEFINE_TLS(CPUArchState *,cpu_single_env);
2e70f6ef 129/* 0 = Do not count executed instructions.
bf20dc07 130 1 = Precise instruction counting.
2e70f6ef
PB
131 2 = Adaptive rate instruction counting. */
132int use_icount = 0;
6a00d601 133
54936004 134typedef struct PageDesc {
92e873b9 135 /* list of TBs intersecting this ram page */
fd6ce8f6 136 TranslationBlock *first_tb;
9fa3e853
FB
137 /* in order to optimize self modifying code, we count the number
138 of lookups we do to a given page to use a bitmap */
139 unsigned int code_write_count;
140 uint8_t *code_bitmap;
141#if defined(CONFIG_USER_ONLY)
142 unsigned long flags;
143#endif
54936004
FB
144} PageDesc;
145
41c1b1c9 146/* In system mode we want L1_MAP to be based on ram offsets,
5cd2c5b6
RH
147 while in user mode we want it to be based on virtual addresses. */
148#if !defined(CONFIG_USER_ONLY)
41c1b1c9
PB
149#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
150# define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
151#else
5cd2c5b6 152# define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
41c1b1c9 153#endif
bedb69ea 154#else
5cd2c5b6 155# define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
bedb69ea 156#endif
54936004 157
5cd2c5b6
RH
158/* Size of the L2 (and L3, etc) page tables. */
159#define L2_BITS 10
54936004
FB
160#define L2_SIZE (1 << L2_BITS)
161
3eef53df
AK
162#define P_L2_LEVELS \
163 (((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / L2_BITS) + 1)
164
5cd2c5b6 165/* The bits remaining after N lower levels of page tables. */
5cd2c5b6
RH
166#define V_L1_BITS_REM \
167 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
168
5cd2c5b6
RH
169#if V_L1_BITS_REM < 4
170#define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
171#else
172#define V_L1_BITS V_L1_BITS_REM
173#endif
174
5cd2c5b6
RH
175#define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
176
5cd2c5b6
RH
177#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
178
c6d50674
SW
179uintptr_t qemu_real_host_page_size;
180uintptr_t qemu_host_page_size;
181uintptr_t qemu_host_page_mask;
54936004 182
5cd2c5b6
RH
183/* This is a multi-level map on the virtual address space.
184 The bottom level has pointers to PageDesc. */
185static void *l1_map[V_L1_SIZE];
54936004 186
e2eef170 187#if !defined(CONFIG_USER_ONLY)
4346ae3e
AK
188typedef struct PhysPageEntry PhysPageEntry;
189
5312bd8b
AK
190static MemoryRegionSection *phys_sections;
191static unsigned phys_sections_nb, phys_sections_nb_alloc;
192static uint16_t phys_section_unassigned;
aa102231
AK
193static uint16_t phys_section_notdirty;
194static uint16_t phys_section_rom;
195static uint16_t phys_section_watch;
5312bd8b 196
4346ae3e 197struct PhysPageEntry {
07f07b31
AK
198 uint16_t is_leaf : 1;
199 /* index into phys_sections (is_leaf) or phys_map_nodes (!is_leaf) */
200 uint16_t ptr : 15;
4346ae3e
AK
201};
202
d6f2ea22
AK
203/* Simple allocator for PhysPageEntry nodes */
204static PhysPageEntry (*phys_map_nodes)[L2_SIZE];
205static unsigned phys_map_nodes_nb, phys_map_nodes_nb_alloc;
206
07f07b31 207#define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
d6f2ea22 208
5cd2c5b6 209/* This is a multi-level map on the physical address space.
06ef3525 210 The bottom level has pointers to MemoryRegionSections. */
07f07b31 211static PhysPageEntry phys_map = { .ptr = PHYS_MAP_NODE_NIL, .is_leaf = 0 };
6d9a1304 212
e2eef170 213static void io_mem_init(void);
62152b8a 214static void memory_map_init(void);
e2eef170 215
1ec9b909 216static MemoryRegion io_mem_watch;
6658ffb8 217#endif
33417e70 218
e3db7226 219/* statistics */
e3db7226
FB
220static int tb_flush_count;
221static int tb_phys_invalidate_count;
222
7cb69cae
FB
223#ifdef _WIN32
224static void map_exec(void *addr, long size)
225{
226 DWORD old_protect;
227 VirtualProtect(addr, size,
228 PAGE_EXECUTE_READWRITE, &old_protect);
229
230}
231#else
232static void map_exec(void *addr, long size)
233{
4369415f 234 unsigned long start, end, page_size;
7cb69cae 235
4369415f 236 page_size = getpagesize();
7cb69cae 237 start = (unsigned long)addr;
4369415f 238 start &= ~(page_size - 1);
7cb69cae
FB
239
240 end = (unsigned long)addr + size;
4369415f
FB
241 end += page_size - 1;
242 end &= ~(page_size - 1);
7cb69cae
FB
243
244 mprotect((void *)start, end - start,
245 PROT_READ | PROT_WRITE | PROT_EXEC);
246}
247#endif
248
b346ff46 249static void page_init(void)
54936004 250{
83fb7adf 251 /* NOTE: we can always suppose that qemu_host_page_size >=
54936004 252 TARGET_PAGE_SIZE */
c2b48b69
AL
253#ifdef _WIN32
254 {
255 SYSTEM_INFO system_info;
256
257 GetSystemInfo(&system_info);
258 qemu_real_host_page_size = system_info.dwPageSize;
259 }
260#else
261 qemu_real_host_page_size = getpagesize();
262#endif
83fb7adf
FB
263 if (qemu_host_page_size == 0)
264 qemu_host_page_size = qemu_real_host_page_size;
265 if (qemu_host_page_size < TARGET_PAGE_SIZE)
266 qemu_host_page_size = TARGET_PAGE_SIZE;
83fb7adf 267 qemu_host_page_mask = ~(qemu_host_page_size - 1);
50a9569b 268
2e9a5713 269#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
50a9569b 270 {
f01576f1
JL
271#ifdef HAVE_KINFO_GETVMMAP
272 struct kinfo_vmentry *freep;
273 int i, cnt;
274
275 freep = kinfo_getvmmap(getpid(), &cnt);
276 if (freep) {
277 mmap_lock();
278 for (i = 0; i < cnt; i++) {
279 unsigned long startaddr, endaddr;
280
281 startaddr = freep[i].kve_start;
282 endaddr = freep[i].kve_end;
283 if (h2g_valid(startaddr)) {
284 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
285
286 if (h2g_valid(endaddr)) {
287 endaddr = h2g(endaddr);
fd436907 288 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
f01576f1
JL
289 } else {
290#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
291 endaddr = ~0ul;
fd436907 292 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
f01576f1
JL
293#endif
294 }
295 }
296 }
297 free(freep);
298 mmap_unlock();
299 }
300#else
50a9569b 301 FILE *f;
50a9569b 302
0776590d 303 last_brk = (unsigned long)sbrk(0);
5cd2c5b6 304
fd436907 305 f = fopen("/compat/linux/proc/self/maps", "r");
50a9569b 306 if (f) {
5cd2c5b6
RH
307 mmap_lock();
308
50a9569b 309 do {
5cd2c5b6
RH
310 unsigned long startaddr, endaddr;
311 int n;
312
313 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
314
315 if (n == 2 && h2g_valid(startaddr)) {
316 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
317
318 if (h2g_valid(endaddr)) {
319 endaddr = h2g(endaddr);
320 } else {
321 endaddr = ~0ul;
322 }
323 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
50a9569b
AZ
324 }
325 } while (!feof(f));
5cd2c5b6 326
50a9569b 327 fclose(f);
5cd2c5b6 328 mmap_unlock();
50a9569b 329 }
f01576f1 330#endif
50a9569b
AZ
331 }
332#endif
54936004
FB
333}
334
41c1b1c9 335static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
54936004 336{
41c1b1c9
PB
337 PageDesc *pd;
338 void **lp;
339 int i;
340
5cd2c5b6 341#if defined(CONFIG_USER_ONLY)
7267c094 342 /* We can't use g_malloc because it may recurse into a locked mutex. */
5cd2c5b6
RH
343# define ALLOC(P, SIZE) \
344 do { \
345 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
346 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
5cd2c5b6
RH
347 } while (0)
348#else
349# define ALLOC(P, SIZE) \
7267c094 350 do { P = g_malloc0(SIZE); } while (0)
17e2377a 351#endif
434929bf 352
5cd2c5b6
RH
353 /* Level 1. Always allocated. */
354 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
355
356 /* Level 2..N-1. */
357 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
358 void **p = *lp;
359
360 if (p == NULL) {
361 if (!alloc) {
362 return NULL;
363 }
364 ALLOC(p, sizeof(void *) * L2_SIZE);
365 *lp = p;
17e2377a 366 }
5cd2c5b6
RH
367
368 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
369 }
370
371 pd = *lp;
372 if (pd == NULL) {
373 if (!alloc) {
374 return NULL;
375 }
376 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
377 *lp = pd;
54936004 378 }
5cd2c5b6
RH
379
380#undef ALLOC
5cd2c5b6
RH
381
382 return pd + (index & (L2_SIZE - 1));
54936004
FB
383}
384
41c1b1c9 385static inline PageDesc *page_find(tb_page_addr_t index)
54936004 386{
5cd2c5b6 387 return page_find_alloc(index, 0);
fd6ce8f6
FB
388}
389
6d9a1304 390#if !defined(CONFIG_USER_ONLY)
d6f2ea22 391
f7bf5461 392static void phys_map_node_reserve(unsigned nodes)
d6f2ea22 393{
f7bf5461 394 if (phys_map_nodes_nb + nodes > phys_map_nodes_nb_alloc) {
d6f2ea22
AK
395 typedef PhysPageEntry Node[L2_SIZE];
396 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc * 2, 16);
f7bf5461
AK
397 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc,
398 phys_map_nodes_nb + nodes);
d6f2ea22
AK
399 phys_map_nodes = g_renew(Node, phys_map_nodes,
400 phys_map_nodes_nb_alloc);
401 }
f7bf5461
AK
402}
403
404static uint16_t phys_map_node_alloc(void)
405{
406 unsigned i;
407 uint16_t ret;
408
409 ret = phys_map_nodes_nb++;
410 assert(ret != PHYS_MAP_NODE_NIL);
411 assert(ret != phys_map_nodes_nb_alloc);
d6f2ea22 412 for (i = 0; i < L2_SIZE; ++i) {
07f07b31 413 phys_map_nodes[ret][i].is_leaf = 0;
c19e8800 414 phys_map_nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
d6f2ea22 415 }
f7bf5461 416 return ret;
d6f2ea22
AK
417}
418
419static void phys_map_nodes_reset(void)
420{
421 phys_map_nodes_nb = 0;
422}
423
92e873b9 424
2999097b
AK
425static void phys_page_set_level(PhysPageEntry *lp, target_phys_addr_t *index,
426 target_phys_addr_t *nb, uint16_t leaf,
427 int level)
f7bf5461
AK
428{
429 PhysPageEntry *p;
430 int i;
07f07b31 431 target_phys_addr_t step = (target_phys_addr_t)1 << (level * L2_BITS);
108c49b8 432
07f07b31 433 if (!lp->is_leaf && lp->ptr == PHYS_MAP_NODE_NIL) {
c19e8800
AK
434 lp->ptr = phys_map_node_alloc();
435 p = phys_map_nodes[lp->ptr];
f7bf5461
AK
436 if (level == 0) {
437 for (i = 0; i < L2_SIZE; i++) {
07f07b31 438 p[i].is_leaf = 1;
c19e8800 439 p[i].ptr = phys_section_unassigned;
4346ae3e 440 }
67c4d23c 441 }
f7bf5461 442 } else {
c19e8800 443 p = phys_map_nodes[lp->ptr];
92e873b9 444 }
2999097b 445 lp = &p[(*index >> (level * L2_BITS)) & (L2_SIZE - 1)];
f7bf5461 446
2999097b 447 while (*nb && lp < &p[L2_SIZE]) {
07f07b31
AK
448 if ((*index & (step - 1)) == 0 && *nb >= step) {
449 lp->is_leaf = true;
c19e8800 450 lp->ptr = leaf;
07f07b31
AK
451 *index += step;
452 *nb -= step;
2999097b
AK
453 } else {
454 phys_page_set_level(lp, index, nb, leaf, level - 1);
455 }
456 ++lp;
f7bf5461
AK
457 }
458}
459
2999097b
AK
460static void phys_page_set(target_phys_addr_t index, target_phys_addr_t nb,
461 uint16_t leaf)
f7bf5461 462{
2999097b 463 /* Wildly overreserve - it doesn't matter much. */
07f07b31 464 phys_map_node_reserve(3 * P_L2_LEVELS);
5cd2c5b6 465
2999097b 466 phys_page_set_level(&phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
467}
468
0cac1b66 469MemoryRegionSection *phys_page_find(target_phys_addr_t index)
92e873b9 470{
31ab2b4a
AK
471 PhysPageEntry lp = phys_map;
472 PhysPageEntry *p;
473 int i;
31ab2b4a 474 uint16_t s_index = phys_section_unassigned;
f1f6e3b8 475
07f07b31 476 for (i = P_L2_LEVELS - 1; i >= 0 && !lp.is_leaf; i--) {
c19e8800 477 if (lp.ptr == PHYS_MAP_NODE_NIL) {
31ab2b4a
AK
478 goto not_found;
479 }
c19e8800 480 p = phys_map_nodes[lp.ptr];
31ab2b4a 481 lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)];
5312bd8b 482 }
31ab2b4a 483
c19e8800 484 s_index = lp.ptr;
31ab2b4a 485not_found:
f3705d53
AK
486 return &phys_sections[s_index];
487}
488
e5548617
BS
489bool memory_region_is_unassigned(MemoryRegion *mr)
490{
491 return mr != &io_mem_ram && mr != &io_mem_rom
492 && mr != &io_mem_notdirty && !mr->rom_device
493 && mr != &io_mem_watch;
494}
495
c8a706fe
PB
496#define mmap_lock() do { } while(0)
497#define mmap_unlock() do { } while(0)
9fa3e853 498#endif
fd6ce8f6 499
4369415f
FB
500#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
501
502#if defined(CONFIG_USER_ONLY)
ccbb4d44 503/* Currently it is not recommended to allocate big chunks of data in
4369415f
FB
504 user mode. It will change when a dedicated libc will be used */
505#define USE_STATIC_CODE_GEN_BUFFER
506#endif
507
508#ifdef USE_STATIC_CODE_GEN_BUFFER
ebf50fb3
AJ
509static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
510 __attribute__((aligned (CODE_GEN_ALIGN)));
4369415f
FB
511#endif
512
8fcd3692 513static void code_gen_alloc(unsigned long tb_size)
26a5f13b 514{
4369415f
FB
515#ifdef USE_STATIC_CODE_GEN_BUFFER
516 code_gen_buffer = static_code_gen_buffer;
517 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
518 map_exec(code_gen_buffer, code_gen_buffer_size);
519#else
26a5f13b
FB
520 code_gen_buffer_size = tb_size;
521 if (code_gen_buffer_size == 0) {
4369415f 522#if defined(CONFIG_USER_ONLY)
4369415f
FB
523 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
524#else
ccbb4d44 525 /* XXX: needs adjustments */
94a6b54f 526 code_gen_buffer_size = (unsigned long)(ram_size / 4);
4369415f 527#endif
26a5f13b
FB
528 }
529 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
530 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
531 /* The code gen buffer location may have constraints depending on
532 the host cpu and OS */
533#if defined(__linux__)
534 {
535 int flags;
141ac468
BS
536 void *start = NULL;
537
26a5f13b
FB
538 flags = MAP_PRIVATE | MAP_ANONYMOUS;
539#if defined(__x86_64__)
540 flags |= MAP_32BIT;
541 /* Cannot map more than that */
542 if (code_gen_buffer_size > (800 * 1024 * 1024))
543 code_gen_buffer_size = (800 * 1024 * 1024);
181dd0b2 544#elif defined(__sparc__) && HOST_LONG_BITS == 64
141ac468 545 // Map the buffer below 2G, so we can use direct calls and branches
e1784a4c 546 start = (void *) 0x40000000UL;
141ac468
BS
547 if (code_gen_buffer_size > (512 * 1024 * 1024))
548 code_gen_buffer_size = (512 * 1024 * 1024);
1cb0661e 549#elif defined(__arm__)
5c84bd90 550 /* Keep the buffer no bigger than 16MB to branch between blocks */
1cb0661e
AZ
551 if (code_gen_buffer_size > 16 * 1024 * 1024)
552 code_gen_buffer_size = 16 * 1024 * 1024;
eba0b893
RH
553#elif defined(__s390x__)
554 /* Map the buffer so that we can use direct calls and branches. */
555 /* We have a +- 4GB range on the branches; leave some slop. */
556 if (code_gen_buffer_size > (3ul * 1024 * 1024 * 1024)) {
557 code_gen_buffer_size = 3ul * 1024 * 1024 * 1024;
558 }
559 start = (void *)0x90000000UL;
26a5f13b 560#endif
141ac468
BS
561 code_gen_buffer = mmap(start, code_gen_buffer_size,
562 PROT_WRITE | PROT_READ | PROT_EXEC,
26a5f13b
FB
563 flags, -1, 0);
564 if (code_gen_buffer == MAP_FAILED) {
565 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
566 exit(1);
567 }
568 }
cbb608a5 569#elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
9f4b09a4
TN
570 || defined(__DragonFly__) || defined(__OpenBSD__) \
571 || defined(__NetBSD__)
06e67a82
AL
572 {
573 int flags;
574 void *addr = NULL;
575 flags = MAP_PRIVATE | MAP_ANONYMOUS;
576#if defined(__x86_64__)
577 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
578 * 0x40000000 is free */
579 flags |= MAP_FIXED;
580 addr = (void *)0x40000000;
581 /* Cannot map more than that */
582 if (code_gen_buffer_size > (800 * 1024 * 1024))
583 code_gen_buffer_size = (800 * 1024 * 1024);
181dd0b2 584#elif defined(__sparc__) && HOST_LONG_BITS == 64
4cd31ad2 585 // Map the buffer below 2G, so we can use direct calls and branches
e1784a4c 586 addr = (void *) 0x40000000UL;
4cd31ad2
BS
587 if (code_gen_buffer_size > (512 * 1024 * 1024)) {
588 code_gen_buffer_size = (512 * 1024 * 1024);
589 }
06e67a82
AL
590#endif
591 code_gen_buffer = mmap(addr, code_gen_buffer_size,
592 PROT_WRITE | PROT_READ | PROT_EXEC,
593 flags, -1, 0);
594 if (code_gen_buffer == MAP_FAILED) {
595 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
596 exit(1);
597 }
598 }
26a5f13b 599#else
7267c094 600 code_gen_buffer = g_malloc(code_gen_buffer_size);
26a5f13b
FB
601 map_exec(code_gen_buffer, code_gen_buffer_size);
602#endif
4369415f 603#endif /* !USE_STATIC_CODE_GEN_BUFFER */
26a5f13b 604 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
a884da8a
PM
605 code_gen_buffer_max_size = code_gen_buffer_size -
606 (TCG_MAX_OP_SIZE * OPC_BUF_SIZE);
26a5f13b 607 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
7267c094 608 tbs = g_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
26a5f13b
FB
609}
610
611/* Must be called before using the QEMU cpus. 'tb_size' is the size
612 (in bytes) allocated to the translation buffer. Zero means default
613 size. */
d5ab9713 614void tcg_exec_init(unsigned long tb_size)
26a5f13b 615{
26a5f13b
FB
616 cpu_gen_init();
617 code_gen_alloc(tb_size);
618 code_gen_ptr = code_gen_buffer;
813da627 619 tcg_register_jit(code_gen_buffer, code_gen_buffer_size);
4369415f 620 page_init();
9002ec79
RH
621#if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
622 /* There's no guest base to take into account, so go ahead and
623 initialize the prologue now. */
624 tcg_prologue_init(&tcg_ctx);
625#endif
26a5f13b
FB
626}
627
d5ab9713
JK
628bool tcg_enabled(void)
629{
630 return code_gen_buffer != NULL;
631}
632
633void cpu_exec_init_all(void)
634{
635#if !defined(CONFIG_USER_ONLY)
636 memory_map_init();
637 io_mem_init();
638#endif
639}
640
9656f324
PB
641#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
642
e59fb374 643static int cpu_common_post_load(void *opaque, int version_id)
e7f4eff7 644{
9349b4f9 645 CPUArchState *env = opaque;
9656f324 646
3098dba0
AJ
647 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
648 version_id is increased. */
649 env->interrupt_request &= ~0x01;
9656f324
PB
650 tlb_flush(env, 1);
651
652 return 0;
653}
e7f4eff7
JQ
654
655static const VMStateDescription vmstate_cpu_common = {
656 .name = "cpu_common",
657 .version_id = 1,
658 .minimum_version_id = 1,
659 .minimum_version_id_old = 1,
e7f4eff7
JQ
660 .post_load = cpu_common_post_load,
661 .fields = (VMStateField []) {
9349b4f9
AF
662 VMSTATE_UINT32(halted, CPUArchState),
663 VMSTATE_UINT32(interrupt_request, CPUArchState),
e7f4eff7
JQ
664 VMSTATE_END_OF_LIST()
665 }
666};
9656f324
PB
667#endif
668
9349b4f9 669CPUArchState *qemu_get_cpu(int cpu)
950f1472 670{
9349b4f9 671 CPUArchState *env = first_cpu;
950f1472
GC
672
673 while (env) {
674 if (env->cpu_index == cpu)
675 break;
676 env = env->next_cpu;
677 }
678
679 return env;
680}
681
9349b4f9 682void cpu_exec_init(CPUArchState *env)
fd6ce8f6 683{
9349b4f9 684 CPUArchState **penv;
6a00d601
FB
685 int cpu_index;
686
c2764719
PB
687#if defined(CONFIG_USER_ONLY)
688 cpu_list_lock();
689#endif
6a00d601
FB
690 env->next_cpu = NULL;
691 penv = &first_cpu;
692 cpu_index = 0;
693 while (*penv != NULL) {
1e9fa730 694 penv = &(*penv)->next_cpu;
6a00d601
FB
695 cpu_index++;
696 }
697 env->cpu_index = cpu_index;
268a362c 698 env->numa_node = 0;
72cf2d4f
BS
699 QTAILQ_INIT(&env->breakpoints);
700 QTAILQ_INIT(&env->watchpoints);
dc7a09cf
JK
701#ifndef CONFIG_USER_ONLY
702 env->thread_id = qemu_get_thread_id();
703#endif
6a00d601 704 *penv = env;
c2764719
PB
705#if defined(CONFIG_USER_ONLY)
706 cpu_list_unlock();
707#endif
b3c7724c 708#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
0be71e32
AW
709 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, env);
710 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
b3c7724c
PB
711 cpu_save, cpu_load, env);
712#endif
fd6ce8f6
FB
713}
714
d1a1eb74
TG
715/* Allocate a new translation block. Flush the translation buffer if
716 too many translation blocks or too much generated code. */
717static TranslationBlock *tb_alloc(target_ulong pc)
718{
719 TranslationBlock *tb;
720
721 if (nb_tbs >= code_gen_max_blocks ||
722 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
723 return NULL;
724 tb = &tbs[nb_tbs++];
725 tb->pc = pc;
726 tb->cflags = 0;
727 return tb;
728}
729
730void tb_free(TranslationBlock *tb)
731{
732 /* In practice this is mostly used for single use temporary TB
733 Ignore the hard cases and just back up if this TB happens to
734 be the last one generated. */
735 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
736 code_gen_ptr = tb->tc_ptr;
737 nb_tbs--;
738 }
739}
740
9fa3e853
FB
741static inline void invalidate_page_bitmap(PageDesc *p)
742{
743 if (p->code_bitmap) {
7267c094 744 g_free(p->code_bitmap);
9fa3e853
FB
745 p->code_bitmap = NULL;
746 }
747 p->code_write_count = 0;
748}
749
5cd2c5b6
RH
750/* Set to NULL all the 'first_tb' fields in all PageDescs. */
751
752static void page_flush_tb_1 (int level, void **lp)
fd6ce8f6 753{
5cd2c5b6 754 int i;
fd6ce8f6 755
5cd2c5b6
RH
756 if (*lp == NULL) {
757 return;
758 }
759 if (level == 0) {
760 PageDesc *pd = *lp;
7296abac 761 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
762 pd[i].first_tb = NULL;
763 invalidate_page_bitmap(pd + i);
fd6ce8f6 764 }
5cd2c5b6
RH
765 } else {
766 void **pp = *lp;
7296abac 767 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
768 page_flush_tb_1 (level - 1, pp + i);
769 }
770 }
771}
772
773static void page_flush_tb(void)
774{
775 int i;
776 for (i = 0; i < V_L1_SIZE; i++) {
777 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
fd6ce8f6
FB
778 }
779}
780
781/* flush all the translation blocks */
d4e8164f 782/* XXX: tb_flush is currently not thread safe */
9349b4f9 783void tb_flush(CPUArchState *env1)
fd6ce8f6 784{
9349b4f9 785 CPUArchState *env;
0124311e 786#if defined(DEBUG_FLUSH)
ab3d1727
BS
787 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
788 (unsigned long)(code_gen_ptr - code_gen_buffer),
789 nb_tbs, nb_tbs > 0 ?
790 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
fd6ce8f6 791#endif
26a5f13b 792 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
a208e54a
PB
793 cpu_abort(env1, "Internal error: code buffer overflow\n");
794
fd6ce8f6 795 nb_tbs = 0;
3b46e624 796
6a00d601
FB
797 for(env = first_cpu; env != NULL; env = env->next_cpu) {
798 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
799 }
9fa3e853 800
8a8a608f 801 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
fd6ce8f6 802 page_flush_tb();
9fa3e853 803
fd6ce8f6 804 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
805 /* XXX: flush processor icache at this point if cache flush is
806 expensive */
e3db7226 807 tb_flush_count++;
fd6ce8f6
FB
808}
809
810#ifdef DEBUG_TB_CHECK
811
bc98a7ef 812static void tb_invalidate_check(target_ulong address)
fd6ce8f6
FB
813{
814 TranslationBlock *tb;
815 int i;
816 address &= TARGET_PAGE_MASK;
99773bd4
PB
817 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
818 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
819 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
820 address >= tb->pc + tb->size)) {
0bf9e31a
BS
821 printf("ERROR invalidate: address=" TARGET_FMT_lx
822 " PC=%08lx size=%04x\n",
99773bd4 823 address, (long)tb->pc, tb->size);
fd6ce8f6
FB
824 }
825 }
826 }
827}
828
829/* verify that all the pages have correct rights for code */
830static void tb_page_check(void)
831{
832 TranslationBlock *tb;
833 int i, flags1, flags2;
3b46e624 834
99773bd4
PB
835 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
836 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
837 flags1 = page_get_flags(tb->pc);
838 flags2 = page_get_flags(tb->pc + tb->size - 1);
839 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
840 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
99773bd4 841 (long)tb->pc, tb->size, flags1, flags2);
fd6ce8f6
FB
842 }
843 }
844 }
845}
846
847#endif
848
849/* invalidate one TB */
850static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
851 int next_offset)
852{
853 TranslationBlock *tb1;
854 for(;;) {
855 tb1 = *ptb;
856 if (tb1 == tb) {
857 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
858 break;
859 }
860 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
861 }
862}
863
9fa3e853
FB
864static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
865{
866 TranslationBlock *tb1;
867 unsigned int n1;
868
869 for(;;) {
870 tb1 = *ptb;
8efe0ca8
SW
871 n1 = (uintptr_t)tb1 & 3;
872 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
9fa3e853
FB
873 if (tb1 == tb) {
874 *ptb = tb1->page_next[n1];
875 break;
876 }
877 ptb = &tb1->page_next[n1];
878 }
879}
880
d4e8164f
FB
881static inline void tb_jmp_remove(TranslationBlock *tb, int n)
882{
883 TranslationBlock *tb1, **ptb;
884 unsigned int n1;
885
886 ptb = &tb->jmp_next[n];
887 tb1 = *ptb;
888 if (tb1) {
889 /* find tb(n) in circular list */
890 for(;;) {
891 tb1 = *ptb;
8efe0ca8
SW
892 n1 = (uintptr_t)tb1 & 3;
893 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
d4e8164f
FB
894 if (n1 == n && tb1 == tb)
895 break;
896 if (n1 == 2) {
897 ptb = &tb1->jmp_first;
898 } else {
899 ptb = &tb1->jmp_next[n1];
900 }
901 }
902 /* now we can suppress tb(n) from the list */
903 *ptb = tb->jmp_next[n];
904
905 tb->jmp_next[n] = NULL;
906 }
907}
908
909/* reset the jump entry 'n' of a TB so that it is not chained to
910 another TB */
911static inline void tb_reset_jump(TranslationBlock *tb, int n)
912{
8efe0ca8 913 tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n]));
d4e8164f
FB
914}
915
41c1b1c9 916void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
fd6ce8f6 917{
9349b4f9 918 CPUArchState *env;
8a40a180 919 PageDesc *p;
d4e8164f 920 unsigned int h, n1;
41c1b1c9 921 tb_page_addr_t phys_pc;
8a40a180 922 TranslationBlock *tb1, *tb2;
3b46e624 923
8a40a180
FB
924 /* remove the TB from the hash list */
925 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
926 h = tb_phys_hash_func(phys_pc);
5fafdf24 927 tb_remove(&tb_phys_hash[h], tb,
8a40a180
FB
928 offsetof(TranslationBlock, phys_hash_next));
929
930 /* remove the TB from the page list */
931 if (tb->page_addr[0] != page_addr) {
932 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
933 tb_page_remove(&p->first_tb, tb);
934 invalidate_page_bitmap(p);
935 }
936 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
937 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
938 tb_page_remove(&p->first_tb, tb);
939 invalidate_page_bitmap(p);
940 }
941
36bdbe54 942 tb_invalidated_flag = 1;
59817ccb 943
fd6ce8f6 944 /* remove the TB from the hash list */
8a40a180 945 h = tb_jmp_cache_hash_func(tb->pc);
6a00d601
FB
946 for(env = first_cpu; env != NULL; env = env->next_cpu) {
947 if (env->tb_jmp_cache[h] == tb)
948 env->tb_jmp_cache[h] = NULL;
949 }
d4e8164f
FB
950
951 /* suppress this TB from the two jump lists */
952 tb_jmp_remove(tb, 0);
953 tb_jmp_remove(tb, 1);
954
955 /* suppress any remaining jumps to this TB */
956 tb1 = tb->jmp_first;
957 for(;;) {
8efe0ca8 958 n1 = (uintptr_t)tb1 & 3;
d4e8164f
FB
959 if (n1 == 2)
960 break;
8efe0ca8 961 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
d4e8164f
FB
962 tb2 = tb1->jmp_next[n1];
963 tb_reset_jump(tb1, n1);
964 tb1->jmp_next[n1] = NULL;
965 tb1 = tb2;
966 }
8efe0ca8 967 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); /* fail safe */
9fa3e853 968
e3db7226 969 tb_phys_invalidate_count++;
9fa3e853
FB
970}
971
972static inline void set_bits(uint8_t *tab, int start, int len)
973{
974 int end, mask, end1;
975
976 end = start + len;
977 tab += start >> 3;
978 mask = 0xff << (start & 7);
979 if ((start & ~7) == (end & ~7)) {
980 if (start < end) {
981 mask &= ~(0xff << (end & 7));
982 *tab |= mask;
983 }
984 } else {
985 *tab++ |= mask;
986 start = (start + 8) & ~7;
987 end1 = end & ~7;
988 while (start < end1) {
989 *tab++ = 0xff;
990 start += 8;
991 }
992 if (start < end) {
993 mask = ~(0xff << (end & 7));
994 *tab |= mask;
995 }
996 }
997}
998
999static void build_page_bitmap(PageDesc *p)
1000{
1001 int n, tb_start, tb_end;
1002 TranslationBlock *tb;
3b46e624 1003
7267c094 1004 p->code_bitmap = g_malloc0(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
1005
1006 tb = p->first_tb;
1007 while (tb != NULL) {
8efe0ca8
SW
1008 n = (uintptr_t)tb & 3;
1009 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
9fa3e853
FB
1010 /* NOTE: this is subtle as a TB may span two physical pages */
1011 if (n == 0) {
1012 /* NOTE: tb_end may be after the end of the page, but
1013 it is not a problem */
1014 tb_start = tb->pc & ~TARGET_PAGE_MASK;
1015 tb_end = tb_start + tb->size;
1016 if (tb_end > TARGET_PAGE_SIZE)
1017 tb_end = TARGET_PAGE_SIZE;
1018 } else {
1019 tb_start = 0;
1020 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1021 }
1022 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
1023 tb = tb->page_next[n];
1024 }
1025}
1026
9349b4f9 1027TranslationBlock *tb_gen_code(CPUArchState *env,
2e70f6ef
PB
1028 target_ulong pc, target_ulong cs_base,
1029 int flags, int cflags)
d720b93d
FB
1030{
1031 TranslationBlock *tb;
1032 uint8_t *tc_ptr;
41c1b1c9
PB
1033 tb_page_addr_t phys_pc, phys_page2;
1034 target_ulong virt_page2;
d720b93d
FB
1035 int code_gen_size;
1036
41c1b1c9 1037 phys_pc = get_page_addr_code(env, pc);
c27004ec 1038 tb = tb_alloc(pc);
d720b93d
FB
1039 if (!tb) {
1040 /* flush must be done */
1041 tb_flush(env);
1042 /* cannot fail at this point */
c27004ec 1043 tb = tb_alloc(pc);
2e70f6ef
PB
1044 /* Don't forget to invalidate previous TB info. */
1045 tb_invalidated_flag = 1;
d720b93d
FB
1046 }
1047 tc_ptr = code_gen_ptr;
1048 tb->tc_ptr = tc_ptr;
1049 tb->cs_base = cs_base;
1050 tb->flags = flags;
1051 tb->cflags = cflags;
d07bde88 1052 cpu_gen_code(env, tb, &code_gen_size);
8efe0ca8
SW
1053 code_gen_ptr = (void *)(((uintptr_t)code_gen_ptr + code_gen_size +
1054 CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
3b46e624 1055
d720b93d 1056 /* check next page if needed */
c27004ec 1057 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
d720b93d 1058 phys_page2 = -1;
c27004ec 1059 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
41c1b1c9 1060 phys_page2 = get_page_addr_code(env, virt_page2);
d720b93d 1061 }
41c1b1c9 1062 tb_link_page(tb, phys_pc, phys_page2);
2e70f6ef 1063 return tb;
d720b93d 1064}
3b46e624 1065
77a8f1a5 1066/*
8e0fdce3
JK
1067 * Invalidate all TBs which intersect with the target physical address range
1068 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1069 * 'is_cpu_write_access' should be true if called from a real cpu write
1070 * access: the virtual CPU will exit the current TB if code is modified inside
1071 * this TB.
77a8f1a5
AG
1072 */
1073void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end,
1074 int is_cpu_write_access)
1075{
1076 while (start < end) {
1077 tb_invalidate_phys_page_range(start, end, is_cpu_write_access);
1078 start &= TARGET_PAGE_MASK;
1079 start += TARGET_PAGE_SIZE;
1080 }
1081}
1082
8e0fdce3
JK
1083/*
1084 * Invalidate all TBs which intersect with the target physical address range
1085 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1086 * 'is_cpu_write_access' should be true if called from a real cpu write
1087 * access: the virtual CPU will exit the current TB if code is modified inside
1088 * this TB.
1089 */
41c1b1c9 1090void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
d720b93d
FB
1091 int is_cpu_write_access)
1092{
6b917547 1093 TranslationBlock *tb, *tb_next, *saved_tb;
9349b4f9 1094 CPUArchState *env = cpu_single_env;
41c1b1c9 1095 tb_page_addr_t tb_start, tb_end;
6b917547
AL
1096 PageDesc *p;
1097 int n;
1098#ifdef TARGET_HAS_PRECISE_SMC
1099 int current_tb_not_found = is_cpu_write_access;
1100 TranslationBlock *current_tb = NULL;
1101 int current_tb_modified = 0;
1102 target_ulong current_pc = 0;
1103 target_ulong current_cs_base = 0;
1104 int current_flags = 0;
1105#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1106
1107 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1108 if (!p)
9fa3e853 1109 return;
5fafdf24 1110 if (!p->code_bitmap &&
d720b93d
FB
1111 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1112 is_cpu_write_access) {
9fa3e853
FB
1113 /* build code bitmap */
1114 build_page_bitmap(p);
1115 }
1116
1117 /* we remove all the TBs in the range [start, end[ */
1118 /* XXX: see if in some cases it could be faster to invalidate all the code */
1119 tb = p->first_tb;
1120 while (tb != NULL) {
8efe0ca8
SW
1121 n = (uintptr_t)tb & 3;
1122 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
9fa3e853
FB
1123 tb_next = tb->page_next[n];
1124 /* NOTE: this is subtle as a TB may span two physical pages */
1125 if (n == 0) {
1126 /* NOTE: tb_end may be after the end of the page, but
1127 it is not a problem */
1128 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1129 tb_end = tb_start + tb->size;
1130 } else {
1131 tb_start = tb->page_addr[1];
1132 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1133 }
1134 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
1135#ifdef TARGET_HAS_PRECISE_SMC
1136 if (current_tb_not_found) {
1137 current_tb_not_found = 0;
1138 current_tb = NULL;
2e70f6ef 1139 if (env->mem_io_pc) {
d720b93d 1140 /* now we have a real cpu fault */
2e70f6ef 1141 current_tb = tb_find_pc(env->mem_io_pc);
d720b93d
FB
1142 }
1143 }
1144 if (current_tb == tb &&
2e70f6ef 1145 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1146 /* If we are modifying the current TB, we must stop
1147 its execution. We could be more precise by checking
1148 that the modification is after the current PC, but it
1149 would require a specialized function to partially
1150 restore the CPU state */
3b46e624 1151
d720b93d 1152 current_tb_modified = 1;
618ba8e6 1153 cpu_restore_state(current_tb, env, env->mem_io_pc);
6b917547
AL
1154 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1155 &current_flags);
d720b93d
FB
1156 }
1157#endif /* TARGET_HAS_PRECISE_SMC */
6f5a9f7e
FB
1158 /* we need to do that to handle the case where a signal
1159 occurs while doing tb_phys_invalidate() */
1160 saved_tb = NULL;
1161 if (env) {
1162 saved_tb = env->current_tb;
1163 env->current_tb = NULL;
1164 }
9fa3e853 1165 tb_phys_invalidate(tb, -1);
6f5a9f7e
FB
1166 if (env) {
1167 env->current_tb = saved_tb;
1168 if (env->interrupt_request && env->current_tb)
1169 cpu_interrupt(env, env->interrupt_request);
1170 }
9fa3e853
FB
1171 }
1172 tb = tb_next;
1173 }
1174#if !defined(CONFIG_USER_ONLY)
1175 /* if no code remaining, no need to continue to use slow writes */
1176 if (!p->first_tb) {
1177 invalidate_page_bitmap(p);
d720b93d 1178 if (is_cpu_write_access) {
2e70f6ef 1179 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
d720b93d
FB
1180 }
1181 }
1182#endif
1183#ifdef TARGET_HAS_PRECISE_SMC
1184 if (current_tb_modified) {
1185 /* we generate a block containing just the instruction
1186 modifying the memory. It will ensure that it cannot modify
1187 itself */
ea1c1802 1188 env->current_tb = NULL;
2e70f6ef 1189 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d 1190 cpu_resume_from_signal(env, NULL);
9fa3e853 1191 }
fd6ce8f6 1192#endif
9fa3e853 1193}
fd6ce8f6 1194
9fa3e853 1195/* len must be <= 8 and start must be a multiple of len */
41c1b1c9 1196static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
9fa3e853
FB
1197{
1198 PageDesc *p;
1199 int offset, b;
59817ccb 1200#if 0
a4193c8a 1201 if (1) {
93fcfe39
AL
1202 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1203 cpu_single_env->mem_io_vaddr, len,
1204 cpu_single_env->eip,
8efe0ca8
SW
1205 cpu_single_env->eip +
1206 (intptr_t)cpu_single_env->segs[R_CS].base);
59817ccb
FB
1207 }
1208#endif
9fa3e853 1209 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1210 if (!p)
9fa3e853
FB
1211 return;
1212 if (p->code_bitmap) {
1213 offset = start & ~TARGET_PAGE_MASK;
1214 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1215 if (b & ((1 << len) - 1))
1216 goto do_invalidate;
1217 } else {
1218 do_invalidate:
d720b93d 1219 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
1220 }
1221}
1222
9fa3e853 1223#if !defined(CONFIG_SOFTMMU)
41c1b1c9 1224static void tb_invalidate_phys_page(tb_page_addr_t addr,
20503968 1225 uintptr_t pc, void *puc)
9fa3e853 1226{
6b917547 1227 TranslationBlock *tb;
9fa3e853 1228 PageDesc *p;
6b917547 1229 int n;
d720b93d 1230#ifdef TARGET_HAS_PRECISE_SMC
6b917547 1231 TranslationBlock *current_tb = NULL;
9349b4f9 1232 CPUArchState *env = cpu_single_env;
6b917547
AL
1233 int current_tb_modified = 0;
1234 target_ulong current_pc = 0;
1235 target_ulong current_cs_base = 0;
1236 int current_flags = 0;
d720b93d 1237#endif
9fa3e853
FB
1238
1239 addr &= TARGET_PAGE_MASK;
1240 p = page_find(addr >> TARGET_PAGE_BITS);
5fafdf24 1241 if (!p)
9fa3e853
FB
1242 return;
1243 tb = p->first_tb;
d720b93d
FB
1244#ifdef TARGET_HAS_PRECISE_SMC
1245 if (tb && pc != 0) {
1246 current_tb = tb_find_pc(pc);
1247 }
1248#endif
9fa3e853 1249 while (tb != NULL) {
8efe0ca8
SW
1250 n = (uintptr_t)tb & 3;
1251 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
d720b93d
FB
1252#ifdef TARGET_HAS_PRECISE_SMC
1253 if (current_tb == tb &&
2e70f6ef 1254 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1255 /* If we are modifying the current TB, we must stop
1256 its execution. We could be more precise by checking
1257 that the modification is after the current PC, but it
1258 would require a specialized function to partially
1259 restore the CPU state */
3b46e624 1260
d720b93d 1261 current_tb_modified = 1;
618ba8e6 1262 cpu_restore_state(current_tb, env, pc);
6b917547
AL
1263 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1264 &current_flags);
d720b93d
FB
1265 }
1266#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1267 tb_phys_invalidate(tb, addr);
1268 tb = tb->page_next[n];
1269 }
fd6ce8f6 1270 p->first_tb = NULL;
d720b93d
FB
1271#ifdef TARGET_HAS_PRECISE_SMC
1272 if (current_tb_modified) {
1273 /* we generate a block containing just the instruction
1274 modifying the memory. It will ensure that it cannot modify
1275 itself */
ea1c1802 1276 env->current_tb = NULL;
2e70f6ef 1277 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d
FB
1278 cpu_resume_from_signal(env, puc);
1279 }
1280#endif
fd6ce8f6 1281}
9fa3e853 1282#endif
fd6ce8f6
FB
1283
1284/* add the tb in the target page and protect it if necessary */
5fafdf24 1285static inline void tb_alloc_page(TranslationBlock *tb,
41c1b1c9 1286 unsigned int n, tb_page_addr_t page_addr)
fd6ce8f6
FB
1287{
1288 PageDesc *p;
4429ab44
JQ
1289#ifndef CONFIG_USER_ONLY
1290 bool page_already_protected;
1291#endif
9fa3e853
FB
1292
1293 tb->page_addr[n] = page_addr;
5cd2c5b6 1294 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
9fa3e853 1295 tb->page_next[n] = p->first_tb;
4429ab44
JQ
1296#ifndef CONFIG_USER_ONLY
1297 page_already_protected = p->first_tb != NULL;
1298#endif
8efe0ca8 1299 p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
9fa3e853 1300 invalidate_page_bitmap(p);
fd6ce8f6 1301
107db443 1302#if defined(TARGET_HAS_SMC) || 1
d720b93d 1303
9fa3e853 1304#if defined(CONFIG_USER_ONLY)
fd6ce8f6 1305 if (p->flags & PAGE_WRITE) {
53a5960a
PB
1306 target_ulong addr;
1307 PageDesc *p2;
9fa3e853
FB
1308 int prot;
1309
fd6ce8f6
FB
1310 /* force the host page as non writable (writes will have a
1311 page fault + mprotect overhead) */
53a5960a 1312 page_addr &= qemu_host_page_mask;
fd6ce8f6 1313 prot = 0;
53a5960a
PB
1314 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1315 addr += TARGET_PAGE_SIZE) {
1316
1317 p2 = page_find (addr >> TARGET_PAGE_BITS);
1318 if (!p2)
1319 continue;
1320 prot |= p2->flags;
1321 p2->flags &= ~PAGE_WRITE;
53a5960a 1322 }
5fafdf24 1323 mprotect(g2h(page_addr), qemu_host_page_size,
fd6ce8f6
FB
1324 (prot & PAGE_BITS) & ~PAGE_WRITE);
1325#ifdef DEBUG_TB_INVALIDATE
ab3d1727 1326 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
53a5960a 1327 page_addr);
fd6ce8f6 1328#endif
fd6ce8f6 1329 }
9fa3e853
FB
1330#else
1331 /* if some code is already present, then the pages are already
1332 protected. So we handle the case where only the first TB is
1333 allocated in a physical page */
4429ab44 1334 if (!page_already_protected) {
6a00d601 1335 tlb_protect_code(page_addr);
9fa3e853
FB
1336 }
1337#endif
d720b93d
FB
1338
1339#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
1340}
1341
9fa3e853
FB
1342/* add a new TB and link it to the physical page tables. phys_page2 is
1343 (-1) to indicate that only one page contains the TB. */
41c1b1c9
PB
1344void tb_link_page(TranslationBlock *tb,
1345 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
d4e8164f 1346{
9fa3e853
FB
1347 unsigned int h;
1348 TranslationBlock **ptb;
1349
c8a706fe
PB
1350 /* Grab the mmap lock to stop another thread invalidating this TB
1351 before we are done. */
1352 mmap_lock();
9fa3e853
FB
1353 /* add in the physical hash table */
1354 h = tb_phys_hash_func(phys_pc);
1355 ptb = &tb_phys_hash[h];
1356 tb->phys_hash_next = *ptb;
1357 *ptb = tb;
fd6ce8f6
FB
1358
1359 /* add in the page list */
9fa3e853
FB
1360 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1361 if (phys_page2 != -1)
1362 tb_alloc_page(tb, 1, phys_page2);
1363 else
1364 tb->page_addr[1] = -1;
9fa3e853 1365
8efe0ca8 1366 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2);
d4e8164f
FB
1367 tb->jmp_next[0] = NULL;
1368 tb->jmp_next[1] = NULL;
1369
1370 /* init original jump addresses */
1371 if (tb->tb_next_offset[0] != 0xffff)
1372 tb_reset_jump(tb, 0);
1373 if (tb->tb_next_offset[1] != 0xffff)
1374 tb_reset_jump(tb, 1);
8a40a180
FB
1375
1376#ifdef DEBUG_TB_CHECK
1377 tb_page_check();
1378#endif
c8a706fe 1379 mmap_unlock();
fd6ce8f6
FB
1380}
1381
9fa3e853
FB
1382/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1383 tb[1].tc_ptr. Return NULL if not found */
6375e09e 1384TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
fd6ce8f6 1385{
9fa3e853 1386 int m_min, m_max, m;
8efe0ca8 1387 uintptr_t v;
9fa3e853 1388 TranslationBlock *tb;
a513fe19
FB
1389
1390 if (nb_tbs <= 0)
1391 return NULL;
8efe0ca8
SW
1392 if (tc_ptr < (uintptr_t)code_gen_buffer ||
1393 tc_ptr >= (uintptr_t)code_gen_ptr) {
a513fe19 1394 return NULL;
8efe0ca8 1395 }
a513fe19
FB
1396 /* binary search (cf Knuth) */
1397 m_min = 0;
1398 m_max = nb_tbs - 1;
1399 while (m_min <= m_max) {
1400 m = (m_min + m_max) >> 1;
1401 tb = &tbs[m];
8efe0ca8 1402 v = (uintptr_t)tb->tc_ptr;
a513fe19
FB
1403 if (v == tc_ptr)
1404 return tb;
1405 else if (tc_ptr < v) {
1406 m_max = m - 1;
1407 } else {
1408 m_min = m + 1;
1409 }
5fafdf24 1410 }
a513fe19
FB
1411 return &tbs[m_max];
1412}
7501267e 1413
ea041c0e
FB
1414static void tb_reset_jump_recursive(TranslationBlock *tb);
1415
1416static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1417{
1418 TranslationBlock *tb1, *tb_next, **ptb;
1419 unsigned int n1;
1420
1421 tb1 = tb->jmp_next[n];
1422 if (tb1 != NULL) {
1423 /* find head of list */
1424 for(;;) {
8efe0ca8
SW
1425 n1 = (uintptr_t)tb1 & 3;
1426 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
ea041c0e
FB
1427 if (n1 == 2)
1428 break;
1429 tb1 = tb1->jmp_next[n1];
1430 }
1431 /* we are now sure now that tb jumps to tb1 */
1432 tb_next = tb1;
1433
1434 /* remove tb from the jmp_first list */
1435 ptb = &tb_next->jmp_first;
1436 for(;;) {
1437 tb1 = *ptb;
8efe0ca8
SW
1438 n1 = (uintptr_t)tb1 & 3;
1439 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
ea041c0e
FB
1440 if (n1 == n && tb1 == tb)
1441 break;
1442 ptb = &tb1->jmp_next[n1];
1443 }
1444 *ptb = tb->jmp_next[n];
1445 tb->jmp_next[n] = NULL;
3b46e624 1446
ea041c0e
FB
1447 /* suppress the jump to next tb in generated code */
1448 tb_reset_jump(tb, n);
1449
0124311e 1450 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1451 tb_reset_jump_recursive(tb_next);
1452 }
1453}
1454
1455static void tb_reset_jump_recursive(TranslationBlock *tb)
1456{
1457 tb_reset_jump_recursive2(tb, 0);
1458 tb_reset_jump_recursive2(tb, 1);
1459}
1460
1fddef4b 1461#if defined(TARGET_HAS_ICE)
94df27fd 1462#if defined(CONFIG_USER_ONLY)
9349b4f9 1463static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
94df27fd
PB
1464{
1465 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1466}
1467#else
1e7855a5 1468void tb_invalidate_phys_addr(target_phys_addr_t addr)
d720b93d 1469{
c227f099 1470 ram_addr_t ram_addr;
f3705d53 1471 MemoryRegionSection *section;
d720b93d 1472
06ef3525 1473 section = phys_page_find(addr >> TARGET_PAGE_BITS);
f3705d53
AK
1474 if (!(memory_region_is_ram(section->mr)
1475 || (section->mr->rom_device && section->mr->readable))) {
06ef3525
AK
1476 return;
1477 }
f3705d53 1478 ram_addr = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
cc5bea60 1479 + memory_region_section_addr(section, addr);
706cd4b5 1480 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
d720b93d 1481}
1e7855a5
MF
1482
1483static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
1484{
9d70c4b7
MF
1485 tb_invalidate_phys_addr(cpu_get_phys_page_debug(env, pc) |
1486 (pc & ~TARGET_PAGE_MASK));
1e7855a5 1487}
c27004ec 1488#endif
94df27fd 1489#endif /* TARGET_HAS_ICE */
d720b93d 1490
c527ee8f 1491#if defined(CONFIG_USER_ONLY)
9349b4f9 1492void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
c527ee8f
PB
1493
1494{
1495}
1496
9349b4f9 1497int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
c527ee8f
PB
1498 int flags, CPUWatchpoint **watchpoint)
1499{
1500 return -ENOSYS;
1501}
1502#else
6658ffb8 1503/* Add a watchpoint. */
9349b4f9 1504int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
a1d1bb31 1505 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1506{
b4051334 1507 target_ulong len_mask = ~(len - 1);
c0ce998e 1508 CPUWatchpoint *wp;
6658ffb8 1509
b4051334 1510 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
0dc23828
MF
1511 if ((len & (len - 1)) || (addr & ~len_mask) ||
1512 len == 0 || len > TARGET_PAGE_SIZE) {
b4051334
AL
1513 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1514 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1515 return -EINVAL;
1516 }
7267c094 1517 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
1518
1519 wp->vaddr = addr;
b4051334 1520 wp->len_mask = len_mask;
a1d1bb31
AL
1521 wp->flags = flags;
1522
2dc9f411 1523 /* keep all GDB-injected watchpoints in front */
c0ce998e 1524 if (flags & BP_GDB)
72cf2d4f 1525 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
c0ce998e 1526 else
72cf2d4f 1527 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
6658ffb8 1528
6658ffb8 1529 tlb_flush_page(env, addr);
a1d1bb31
AL
1530
1531 if (watchpoint)
1532 *watchpoint = wp;
1533 return 0;
6658ffb8
PB
1534}
1535
a1d1bb31 1536/* Remove a specific watchpoint. */
9349b4f9 1537int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
a1d1bb31 1538 int flags)
6658ffb8 1539{
b4051334 1540 target_ulong len_mask = ~(len - 1);
a1d1bb31 1541 CPUWatchpoint *wp;
6658ffb8 1542
72cf2d4f 1543 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334 1544 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 1545 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 1546 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
1547 return 0;
1548 }
1549 }
a1d1bb31 1550 return -ENOENT;
6658ffb8
PB
1551}
1552
a1d1bb31 1553/* Remove a specific watchpoint by reference. */
9349b4f9 1554void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
a1d1bb31 1555{
72cf2d4f 1556 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
7d03f82f 1557
a1d1bb31
AL
1558 tlb_flush_page(env, watchpoint->vaddr);
1559
7267c094 1560 g_free(watchpoint);
a1d1bb31
AL
1561}
1562
1563/* Remove all matching watchpoints. */
9349b4f9 1564void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
a1d1bb31 1565{
c0ce998e 1566 CPUWatchpoint *wp, *next;
a1d1bb31 1567
72cf2d4f 1568 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
a1d1bb31
AL
1569 if (wp->flags & mask)
1570 cpu_watchpoint_remove_by_ref(env, wp);
c0ce998e 1571 }
7d03f82f 1572}
c527ee8f 1573#endif
7d03f82f 1574
a1d1bb31 1575/* Add a breakpoint. */
9349b4f9 1576int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
a1d1bb31 1577 CPUBreakpoint **breakpoint)
4c3a88a2 1578{
1fddef4b 1579#if defined(TARGET_HAS_ICE)
c0ce998e 1580 CPUBreakpoint *bp;
3b46e624 1581
7267c094 1582 bp = g_malloc(sizeof(*bp));
4c3a88a2 1583
a1d1bb31
AL
1584 bp->pc = pc;
1585 bp->flags = flags;
1586
2dc9f411 1587 /* keep all GDB-injected breakpoints in front */
c0ce998e 1588 if (flags & BP_GDB)
72cf2d4f 1589 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
c0ce998e 1590 else
72cf2d4f 1591 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
3b46e624 1592
d720b93d 1593 breakpoint_invalidate(env, pc);
a1d1bb31
AL
1594
1595 if (breakpoint)
1596 *breakpoint = bp;
4c3a88a2
FB
1597 return 0;
1598#else
a1d1bb31 1599 return -ENOSYS;
4c3a88a2
FB
1600#endif
1601}
1602
a1d1bb31 1603/* Remove a specific breakpoint. */
9349b4f9 1604int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
a1d1bb31 1605{
7d03f82f 1606#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
1607 CPUBreakpoint *bp;
1608
72cf2d4f 1609 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
a1d1bb31
AL
1610 if (bp->pc == pc && bp->flags == flags) {
1611 cpu_breakpoint_remove_by_ref(env, bp);
1612 return 0;
1613 }
7d03f82f 1614 }
a1d1bb31
AL
1615 return -ENOENT;
1616#else
1617 return -ENOSYS;
7d03f82f
EI
1618#endif
1619}
1620
a1d1bb31 1621/* Remove a specific breakpoint by reference. */
9349b4f9 1622void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
4c3a88a2 1623{
1fddef4b 1624#if defined(TARGET_HAS_ICE)
72cf2d4f 1625 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
d720b93d 1626
a1d1bb31
AL
1627 breakpoint_invalidate(env, breakpoint->pc);
1628
7267c094 1629 g_free(breakpoint);
a1d1bb31
AL
1630#endif
1631}
1632
1633/* Remove all matching breakpoints. */
9349b4f9 1634void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
a1d1bb31
AL
1635{
1636#if defined(TARGET_HAS_ICE)
c0ce998e 1637 CPUBreakpoint *bp, *next;
a1d1bb31 1638
72cf2d4f 1639 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
a1d1bb31
AL
1640 if (bp->flags & mask)
1641 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 1642 }
4c3a88a2
FB
1643#endif
1644}
1645
c33a346e
FB
1646/* enable or disable single step mode. EXCP_DEBUG is returned by the
1647 CPU loop after each instruction */
9349b4f9 1648void cpu_single_step(CPUArchState *env, int enabled)
c33a346e 1649{
1fddef4b 1650#if defined(TARGET_HAS_ICE)
c33a346e
FB
1651 if (env->singlestep_enabled != enabled) {
1652 env->singlestep_enabled = enabled;
e22a25c9
AL
1653 if (kvm_enabled())
1654 kvm_update_guest_debug(env, 0);
1655 else {
ccbb4d44 1656 /* must flush all the translated code to avoid inconsistencies */
e22a25c9
AL
1657 /* XXX: only flush what is necessary */
1658 tb_flush(env);
1659 }
c33a346e
FB
1660 }
1661#endif
1662}
1663
9349b4f9 1664static void cpu_unlink_tb(CPUArchState *env)
ea041c0e 1665{
3098dba0
AJ
1666 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1667 problem and hope the cpu will stop of its own accord. For userspace
1668 emulation this often isn't actually as bad as it sounds. Often
1669 signals are used primarily to interrupt blocking syscalls. */
ea041c0e 1670 TranslationBlock *tb;
c227f099 1671 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
59817ccb 1672
cab1b4bd 1673 spin_lock(&interrupt_lock);
3098dba0
AJ
1674 tb = env->current_tb;
1675 /* if the cpu is currently executing code, we must unlink it and
1676 all the potentially executing TB */
f76cfe56 1677 if (tb) {
3098dba0
AJ
1678 env->current_tb = NULL;
1679 tb_reset_jump_recursive(tb);
be214e6c 1680 }
cab1b4bd 1681 spin_unlock(&interrupt_lock);
3098dba0
AJ
1682}
1683
97ffbd8d 1684#ifndef CONFIG_USER_ONLY
3098dba0 1685/* mask must never be zero, except for A20 change call */
9349b4f9 1686static void tcg_handle_interrupt(CPUArchState *env, int mask)
3098dba0
AJ
1687{
1688 int old_mask;
be214e6c 1689
2e70f6ef 1690 old_mask = env->interrupt_request;
68a79315 1691 env->interrupt_request |= mask;
3098dba0 1692
8edac960
AL
1693 /*
1694 * If called from iothread context, wake the target cpu in
1695 * case its halted.
1696 */
b7680cb6 1697 if (!qemu_cpu_is_self(env)) {
8edac960
AL
1698 qemu_cpu_kick(env);
1699 return;
1700 }
8edac960 1701
2e70f6ef 1702 if (use_icount) {
266910c4 1703 env->icount_decr.u16.high = 0xffff;
2e70f6ef 1704 if (!can_do_io(env)
be214e6c 1705 && (mask & ~old_mask) != 0) {
2e70f6ef
PB
1706 cpu_abort(env, "Raised interrupt while not in I/O function");
1707 }
2e70f6ef 1708 } else {
3098dba0 1709 cpu_unlink_tb(env);
ea041c0e
FB
1710 }
1711}
1712
ec6959d0
JK
1713CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt;
1714
97ffbd8d
JK
1715#else /* CONFIG_USER_ONLY */
1716
9349b4f9 1717void cpu_interrupt(CPUArchState *env, int mask)
97ffbd8d
JK
1718{
1719 env->interrupt_request |= mask;
1720 cpu_unlink_tb(env);
1721}
1722#endif /* CONFIG_USER_ONLY */
1723
9349b4f9 1724void cpu_reset_interrupt(CPUArchState *env, int mask)
b54ad049
FB
1725{
1726 env->interrupt_request &= ~mask;
1727}
1728
9349b4f9 1729void cpu_exit(CPUArchState *env)
3098dba0
AJ
1730{
1731 env->exit_request = 1;
1732 cpu_unlink_tb(env);
1733}
1734
9349b4f9 1735void cpu_abort(CPUArchState *env, const char *fmt, ...)
7501267e
FB
1736{
1737 va_list ap;
493ae1f0 1738 va_list ap2;
7501267e
FB
1739
1740 va_start(ap, fmt);
493ae1f0 1741 va_copy(ap2, ap);
7501267e
FB
1742 fprintf(stderr, "qemu: fatal: ");
1743 vfprintf(stderr, fmt, ap);
1744 fprintf(stderr, "\n");
1745#ifdef TARGET_I386
7fe48483
FB
1746 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1747#else
1748 cpu_dump_state(env, stderr, fprintf, 0);
7501267e 1749#endif
93fcfe39
AL
1750 if (qemu_log_enabled()) {
1751 qemu_log("qemu: fatal: ");
1752 qemu_log_vprintf(fmt, ap2);
1753 qemu_log("\n");
f9373291 1754#ifdef TARGET_I386
93fcfe39 1755 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
f9373291 1756#else
93fcfe39 1757 log_cpu_state(env, 0);
f9373291 1758#endif
31b1a7b4 1759 qemu_log_flush();
93fcfe39 1760 qemu_log_close();
924edcae 1761 }
493ae1f0 1762 va_end(ap2);
f9373291 1763 va_end(ap);
fd052bf6
RV
1764#if defined(CONFIG_USER_ONLY)
1765 {
1766 struct sigaction act;
1767 sigfillset(&act.sa_mask);
1768 act.sa_handler = SIG_DFL;
1769 sigaction(SIGABRT, &act, NULL);
1770 }
1771#endif
7501267e
FB
1772 abort();
1773}
1774
9349b4f9 1775CPUArchState *cpu_copy(CPUArchState *env)
c5be9f08 1776{
9349b4f9
AF
1777 CPUArchState *new_env = cpu_init(env->cpu_model_str);
1778 CPUArchState *next_cpu = new_env->next_cpu;
c5be9f08 1779 int cpu_index = new_env->cpu_index;
5a38f081
AL
1780#if defined(TARGET_HAS_ICE)
1781 CPUBreakpoint *bp;
1782 CPUWatchpoint *wp;
1783#endif
1784
9349b4f9 1785 memcpy(new_env, env, sizeof(CPUArchState));
5a38f081
AL
1786
1787 /* Preserve chaining and index. */
c5be9f08
TS
1788 new_env->next_cpu = next_cpu;
1789 new_env->cpu_index = cpu_index;
5a38f081
AL
1790
1791 /* Clone all break/watchpoints.
1792 Note: Once we support ptrace with hw-debug register access, make sure
1793 BP_CPU break/watchpoints are handled correctly on clone. */
72cf2d4f
BS
1794 QTAILQ_INIT(&env->breakpoints);
1795 QTAILQ_INIT(&env->watchpoints);
5a38f081 1796#if defined(TARGET_HAS_ICE)
72cf2d4f 1797 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
5a38f081
AL
1798 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1799 }
72cf2d4f 1800 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
5a38f081
AL
1801 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1802 wp->flags, NULL);
1803 }
1804#endif
1805
c5be9f08
TS
1806 return new_env;
1807}
1808
0124311e 1809#if !defined(CONFIG_USER_ONLY)
0cac1b66 1810void tb_flush_jmp_cache(CPUArchState *env, target_ulong addr)
5c751e99
EI
1811{
1812 unsigned int i;
1813
1814 /* Discard jump cache entries for any tb which might potentially
1815 overlap the flushed page. */
1816 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1817 memset (&env->tb_jmp_cache[i], 0,
9742bf26 1818 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
5c751e99
EI
1819
1820 i = tb_jmp_cache_hash_page(addr);
1821 memset (&env->tb_jmp_cache[i], 0,
9742bf26 1822 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
5c751e99
EI
1823}
1824
d24981d3
JQ
1825static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t end,
1826 uintptr_t length)
1827{
1828 uintptr_t start1;
1829
1830 /* we modify the TLB cache so that the dirty bit will be set again
1831 when accessing the range */
1832 start1 = (uintptr_t)qemu_safe_ram_ptr(start);
1833 /* Check that we don't span multiple blocks - this breaks the
1834 address comparisons below. */
1835 if ((uintptr_t)qemu_safe_ram_ptr(end - 1) - start1
1836 != (end - 1) - start) {
1837 abort();
1838 }
1839 cpu_tlb_reset_dirty_all(start1, length);
1840
1841}
1842
5579c7f3 1843/* Note: start and end must be within the same ram block. */
c227f099 1844void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 1845 int dirty_flags)
1ccde1cb 1846{
d24981d3 1847 uintptr_t length;
1ccde1cb
FB
1848
1849 start &= TARGET_PAGE_MASK;
1850 end = TARGET_PAGE_ALIGN(end);
1851
1852 length = end - start;
1853 if (length == 0)
1854 return;
f7c11b53 1855 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
f23db169 1856
d24981d3
JQ
1857 if (tcg_enabled()) {
1858 tlb_reset_dirty_range_all(start, end, length);
5579c7f3 1859 }
1ccde1cb
FB
1860}
1861
74576198
AL
1862int cpu_physical_memory_set_dirty_tracking(int enable)
1863{
f6f3fbca 1864 int ret = 0;
74576198 1865 in_migration = enable;
f6f3fbca 1866 return ret;
74576198
AL
1867}
1868
e5548617
BS
1869target_phys_addr_t memory_region_section_get_iotlb(CPUArchState *env,
1870 MemoryRegionSection *section,
1871 target_ulong vaddr,
1872 target_phys_addr_t paddr,
1873 int prot,
1874 target_ulong *address)
1875{
1876 target_phys_addr_t iotlb;
1877 CPUWatchpoint *wp;
1878
cc5bea60 1879 if (memory_region_is_ram(section->mr)) {
e5548617
BS
1880 /* Normal RAM. */
1881 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
cc5bea60 1882 + memory_region_section_addr(section, paddr);
e5548617
BS
1883 if (!section->readonly) {
1884 iotlb |= phys_section_notdirty;
1885 } else {
1886 iotlb |= phys_section_rom;
1887 }
1888 } else {
1889 /* IO handlers are currently passed a physical address.
1890 It would be nice to pass an offset from the base address
1891 of that region. This would avoid having to special case RAM,
1892 and avoid full address decoding in every device.
1893 We can't use the high bits of pd for this because
1894 IO_MEM_ROMD uses these as a ram address. */
1895 iotlb = section - phys_sections;
cc5bea60 1896 iotlb += memory_region_section_addr(section, paddr);
e5548617
BS
1897 }
1898
1899 /* Make accesses to pages with watchpoints go via the
1900 watchpoint trap routines. */
1901 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1902 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
1903 /* Avoid trapping reads of pages with a write breakpoint. */
1904 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1905 iotlb = phys_section_watch + paddr;
1906 *address |= TLB_MMIO;
1907 break;
1908 }
1909 }
1910 }
1911
1912 return iotlb;
1913}
1914
0124311e 1915#else
edf8e2af
MW
1916/*
1917 * Walks guest process memory "regions" one by one
1918 * and calls callback function 'fn' for each region.
1919 */
5cd2c5b6
RH
1920
1921struct walk_memory_regions_data
1922{
1923 walk_memory_regions_fn fn;
1924 void *priv;
8efe0ca8 1925 uintptr_t start;
5cd2c5b6
RH
1926 int prot;
1927};
1928
1929static int walk_memory_regions_end(struct walk_memory_regions_data *data,
b480d9b7 1930 abi_ulong end, int new_prot)
5cd2c5b6
RH
1931{
1932 if (data->start != -1ul) {
1933 int rc = data->fn(data->priv, data->start, end, data->prot);
1934 if (rc != 0) {
1935 return rc;
1936 }
1937 }
1938
1939 data->start = (new_prot ? end : -1ul);
1940 data->prot = new_prot;
1941
1942 return 0;
1943}
1944
1945static int walk_memory_regions_1(struct walk_memory_regions_data *data,
b480d9b7 1946 abi_ulong base, int level, void **lp)
5cd2c5b6 1947{
b480d9b7 1948 abi_ulong pa;
5cd2c5b6
RH
1949 int i, rc;
1950
1951 if (*lp == NULL) {
1952 return walk_memory_regions_end(data, base, 0);
1953 }
1954
1955 if (level == 0) {
1956 PageDesc *pd = *lp;
7296abac 1957 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
1958 int prot = pd[i].flags;
1959
1960 pa = base | (i << TARGET_PAGE_BITS);
1961 if (prot != data->prot) {
1962 rc = walk_memory_regions_end(data, pa, prot);
1963 if (rc != 0) {
1964 return rc;
9fa3e853 1965 }
9fa3e853 1966 }
5cd2c5b6
RH
1967 }
1968 } else {
1969 void **pp = *lp;
7296abac 1970 for (i = 0; i < L2_SIZE; ++i) {
b480d9b7
PB
1971 pa = base | ((abi_ulong)i <<
1972 (TARGET_PAGE_BITS + L2_BITS * level));
5cd2c5b6
RH
1973 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
1974 if (rc != 0) {
1975 return rc;
1976 }
1977 }
1978 }
1979
1980 return 0;
1981}
1982
1983int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
1984{
1985 struct walk_memory_regions_data data;
8efe0ca8 1986 uintptr_t i;
5cd2c5b6
RH
1987
1988 data.fn = fn;
1989 data.priv = priv;
1990 data.start = -1ul;
1991 data.prot = 0;
1992
1993 for (i = 0; i < V_L1_SIZE; i++) {
b480d9b7 1994 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
5cd2c5b6
RH
1995 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
1996 if (rc != 0) {
1997 return rc;
9fa3e853 1998 }
33417e70 1999 }
5cd2c5b6
RH
2000
2001 return walk_memory_regions_end(&data, 0, 0);
edf8e2af
MW
2002}
2003
b480d9b7
PB
2004static int dump_region(void *priv, abi_ulong start,
2005 abi_ulong end, unsigned long prot)
edf8e2af
MW
2006{
2007 FILE *f = (FILE *)priv;
2008
b480d9b7
PB
2009 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2010 " "TARGET_ABI_FMT_lx" %c%c%c\n",
edf8e2af
MW
2011 start, end, end - start,
2012 ((prot & PAGE_READ) ? 'r' : '-'),
2013 ((prot & PAGE_WRITE) ? 'w' : '-'),
2014 ((prot & PAGE_EXEC) ? 'x' : '-'));
2015
2016 return (0);
2017}
2018
2019/* dump memory mappings */
2020void page_dump(FILE *f)
2021{
2022 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2023 "start", "end", "size", "prot");
2024 walk_memory_regions(f, dump_region);
33417e70
FB
2025}
2026
53a5960a 2027int page_get_flags(target_ulong address)
33417e70 2028{
9fa3e853
FB
2029 PageDesc *p;
2030
2031 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 2032 if (!p)
9fa3e853
FB
2033 return 0;
2034 return p->flags;
2035}
2036
376a7909
RH
2037/* Modify the flags of a page and invalidate the code if necessary.
2038 The flag PAGE_WRITE_ORG is positioned automatically depending
2039 on PAGE_WRITE. The mmap_lock should already be held. */
53a5960a 2040void page_set_flags(target_ulong start, target_ulong end, int flags)
9fa3e853 2041{
376a7909
RH
2042 target_ulong addr, len;
2043
2044 /* This function should never be called with addresses outside the
2045 guest address space. If this assert fires, it probably indicates
2046 a missing call to h2g_valid. */
b480d9b7
PB
2047#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2048 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
376a7909
RH
2049#endif
2050 assert(start < end);
9fa3e853
FB
2051
2052 start = start & TARGET_PAGE_MASK;
2053 end = TARGET_PAGE_ALIGN(end);
376a7909
RH
2054
2055 if (flags & PAGE_WRITE) {
9fa3e853 2056 flags |= PAGE_WRITE_ORG;
376a7909
RH
2057 }
2058
2059 for (addr = start, len = end - start;
2060 len != 0;
2061 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2062 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2063
2064 /* If the write protection bit is set, then we invalidate
2065 the code inside. */
5fafdf24 2066 if (!(p->flags & PAGE_WRITE) &&
9fa3e853
FB
2067 (flags & PAGE_WRITE) &&
2068 p->first_tb) {
d720b93d 2069 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
2070 }
2071 p->flags = flags;
2072 }
33417e70
FB
2073}
2074
3d97b40b
TS
2075int page_check_range(target_ulong start, target_ulong len, int flags)
2076{
2077 PageDesc *p;
2078 target_ulong end;
2079 target_ulong addr;
2080
376a7909
RH
2081 /* This function should never be called with addresses outside the
2082 guest address space. If this assert fires, it probably indicates
2083 a missing call to h2g_valid. */
338e9e6c
BS
2084#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2085 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
376a7909
RH
2086#endif
2087
3e0650a9
RH
2088 if (len == 0) {
2089 return 0;
2090 }
376a7909
RH
2091 if (start + len - 1 < start) {
2092 /* We've wrapped around. */
55f280c9 2093 return -1;
376a7909 2094 }
55f280c9 2095
3d97b40b
TS
2096 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2097 start = start & TARGET_PAGE_MASK;
2098
376a7909
RH
2099 for (addr = start, len = end - start;
2100 len != 0;
2101 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
3d97b40b
TS
2102 p = page_find(addr >> TARGET_PAGE_BITS);
2103 if( !p )
2104 return -1;
2105 if( !(p->flags & PAGE_VALID) )
2106 return -1;
2107
dae3270c 2108 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
3d97b40b 2109 return -1;
dae3270c
FB
2110 if (flags & PAGE_WRITE) {
2111 if (!(p->flags & PAGE_WRITE_ORG))
2112 return -1;
2113 /* unprotect the page if it was put read-only because it
2114 contains translated code */
2115 if (!(p->flags & PAGE_WRITE)) {
2116 if (!page_unprotect(addr, 0, NULL))
2117 return -1;
2118 }
2119 return 0;
2120 }
3d97b40b
TS
2121 }
2122 return 0;
2123}
2124
9fa3e853 2125/* called from signal handler: invalidate the code and unprotect the
ccbb4d44 2126 page. Return TRUE if the fault was successfully handled. */
6375e09e 2127int page_unprotect(target_ulong address, uintptr_t pc, void *puc)
9fa3e853 2128{
45d679d6
AJ
2129 unsigned int prot;
2130 PageDesc *p;
53a5960a 2131 target_ulong host_start, host_end, addr;
9fa3e853 2132
c8a706fe
PB
2133 /* Technically this isn't safe inside a signal handler. However we
2134 know this only ever happens in a synchronous SEGV handler, so in
2135 practice it seems to be ok. */
2136 mmap_lock();
2137
45d679d6
AJ
2138 p = page_find(address >> TARGET_PAGE_BITS);
2139 if (!p) {
c8a706fe 2140 mmap_unlock();
9fa3e853 2141 return 0;
c8a706fe 2142 }
45d679d6 2143
9fa3e853
FB
2144 /* if the page was really writable, then we change its
2145 protection back to writable */
45d679d6
AJ
2146 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2147 host_start = address & qemu_host_page_mask;
2148 host_end = host_start + qemu_host_page_size;
2149
2150 prot = 0;
2151 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2152 p = page_find(addr >> TARGET_PAGE_BITS);
2153 p->flags |= PAGE_WRITE;
2154 prot |= p->flags;
2155
9fa3e853
FB
2156 /* and since the content will be modified, we must invalidate
2157 the corresponding translated code. */
45d679d6 2158 tb_invalidate_phys_page(addr, pc, puc);
9fa3e853 2159#ifdef DEBUG_TB_CHECK
45d679d6 2160 tb_invalidate_check(addr);
9fa3e853 2161#endif
9fa3e853 2162 }
45d679d6
AJ
2163 mprotect((void *)g2h(host_start), qemu_host_page_size,
2164 prot & PAGE_BITS);
2165
2166 mmap_unlock();
2167 return 1;
9fa3e853 2168 }
c8a706fe 2169 mmap_unlock();
9fa3e853
FB
2170 return 0;
2171}
9fa3e853
FB
2172#endif /* defined(CONFIG_USER_ONLY) */
2173
e2eef170 2174#if !defined(CONFIG_USER_ONLY)
8da3ff18 2175
c04b2b78
PB
2176#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2177typedef struct subpage_t {
70c68e44 2178 MemoryRegion iomem;
c04b2b78 2179 target_phys_addr_t base;
5312bd8b 2180 uint16_t sub_section[TARGET_PAGE_SIZE];
c04b2b78
PB
2181} subpage_t;
2182
c227f099 2183static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 2184 uint16_t section);
0f0cb164 2185static subpage_t *subpage_init(target_phys_addr_t base);
5312bd8b 2186static void destroy_page_desc(uint16_t section_index)
54688b1e 2187{
5312bd8b
AK
2188 MemoryRegionSection *section = &phys_sections[section_index];
2189 MemoryRegion *mr = section->mr;
54688b1e
AK
2190
2191 if (mr->subpage) {
2192 subpage_t *subpage = container_of(mr, subpage_t, iomem);
2193 memory_region_destroy(&subpage->iomem);
2194 g_free(subpage);
2195 }
2196}
2197
4346ae3e 2198static void destroy_l2_mapping(PhysPageEntry *lp, unsigned level)
54688b1e
AK
2199{
2200 unsigned i;
d6f2ea22 2201 PhysPageEntry *p;
54688b1e 2202
c19e8800 2203 if (lp->ptr == PHYS_MAP_NODE_NIL) {
54688b1e
AK
2204 return;
2205 }
2206
c19e8800 2207 p = phys_map_nodes[lp->ptr];
4346ae3e 2208 for (i = 0; i < L2_SIZE; ++i) {
07f07b31 2209 if (!p[i].is_leaf) {
54688b1e 2210 destroy_l2_mapping(&p[i], level - 1);
4346ae3e 2211 } else {
c19e8800 2212 destroy_page_desc(p[i].ptr);
54688b1e 2213 }
54688b1e 2214 }
07f07b31 2215 lp->is_leaf = 0;
c19e8800 2216 lp->ptr = PHYS_MAP_NODE_NIL;
54688b1e
AK
2217}
2218
2219static void destroy_all_mappings(void)
2220{
3eef53df 2221 destroy_l2_mapping(&phys_map, P_L2_LEVELS - 1);
d6f2ea22 2222 phys_map_nodes_reset();
54688b1e
AK
2223}
2224
5312bd8b
AK
2225static uint16_t phys_section_add(MemoryRegionSection *section)
2226{
2227 if (phys_sections_nb == phys_sections_nb_alloc) {
2228 phys_sections_nb_alloc = MAX(phys_sections_nb_alloc * 2, 16);
2229 phys_sections = g_renew(MemoryRegionSection, phys_sections,
2230 phys_sections_nb_alloc);
2231 }
2232 phys_sections[phys_sections_nb] = *section;
2233 return phys_sections_nb++;
2234}
2235
2236static void phys_sections_clear(void)
2237{
2238 phys_sections_nb = 0;
2239}
2240
0f0cb164
AK
2241static void register_subpage(MemoryRegionSection *section)
2242{
2243 subpage_t *subpage;
2244 target_phys_addr_t base = section->offset_within_address_space
2245 & TARGET_PAGE_MASK;
f3705d53 2246 MemoryRegionSection *existing = phys_page_find(base >> TARGET_PAGE_BITS);
0f0cb164
AK
2247 MemoryRegionSection subsection = {
2248 .offset_within_address_space = base,
2249 .size = TARGET_PAGE_SIZE,
2250 };
0f0cb164
AK
2251 target_phys_addr_t start, end;
2252
f3705d53 2253 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 2254
f3705d53 2255 if (!(existing->mr->subpage)) {
0f0cb164
AK
2256 subpage = subpage_init(base);
2257 subsection.mr = &subpage->iomem;
2999097b
AK
2258 phys_page_set(base >> TARGET_PAGE_BITS, 1,
2259 phys_section_add(&subsection));
0f0cb164 2260 } else {
f3705d53 2261 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
2262 }
2263 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
adb2a9b5 2264 end = start + section->size - 1;
0f0cb164
AK
2265 subpage_register(subpage, start, end, phys_section_add(section));
2266}
2267
2268
2269static void register_multipage(MemoryRegionSection *section)
33417e70 2270{
dd81124b
AK
2271 target_phys_addr_t start_addr = section->offset_within_address_space;
2272 ram_addr_t size = section->size;
2999097b 2273 target_phys_addr_t addr;
5312bd8b 2274 uint16_t section_index = phys_section_add(section);
dd81124b 2275
3b8e6a2d 2276 assert(size);
f6f3fbca 2277
3b8e6a2d 2278 addr = start_addr;
2999097b
AK
2279 phys_page_set(addr >> TARGET_PAGE_BITS, size >> TARGET_PAGE_BITS,
2280 section_index);
33417e70
FB
2281}
2282
0f0cb164
AK
2283void cpu_register_physical_memory_log(MemoryRegionSection *section,
2284 bool readonly)
2285{
2286 MemoryRegionSection now = *section, remain = *section;
2287
2288 if ((now.offset_within_address_space & ~TARGET_PAGE_MASK)
2289 || (now.size < TARGET_PAGE_SIZE)) {
2290 now.size = MIN(TARGET_PAGE_ALIGN(now.offset_within_address_space)
2291 - now.offset_within_address_space,
2292 now.size);
2293 register_subpage(&now);
2294 remain.size -= now.size;
2295 remain.offset_within_address_space += now.size;
2296 remain.offset_within_region += now.size;
2297 }
69b67646
TH
2298 while (remain.size >= TARGET_PAGE_SIZE) {
2299 now = remain;
2300 if (remain.offset_within_region & ~TARGET_PAGE_MASK) {
2301 now.size = TARGET_PAGE_SIZE;
2302 register_subpage(&now);
2303 } else {
2304 now.size &= TARGET_PAGE_MASK;
2305 register_multipage(&now);
2306 }
0f0cb164
AK
2307 remain.size -= now.size;
2308 remain.offset_within_address_space += now.size;
2309 remain.offset_within_region += now.size;
2310 }
2311 now = remain;
2312 if (now.size) {
2313 register_subpage(&now);
2314 }
2315}
2316
2317
c227f099 2318void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2319{
2320 if (kvm_enabled())
2321 kvm_coalesce_mmio_region(addr, size);
2322}
2323
c227f099 2324void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2325{
2326 if (kvm_enabled())
2327 kvm_uncoalesce_mmio_region(addr, size);
2328}
2329
62a2744c
SY
2330void qemu_flush_coalesced_mmio_buffer(void)
2331{
2332 if (kvm_enabled())
2333 kvm_flush_coalesced_mmio_buffer();
2334}
2335
c902760f
MT
2336#if defined(__linux__) && !defined(TARGET_S390X)
2337
2338#include <sys/vfs.h>
2339
2340#define HUGETLBFS_MAGIC 0x958458f6
2341
2342static long gethugepagesize(const char *path)
2343{
2344 struct statfs fs;
2345 int ret;
2346
2347 do {
9742bf26 2348 ret = statfs(path, &fs);
c902760f
MT
2349 } while (ret != 0 && errno == EINTR);
2350
2351 if (ret != 0) {
9742bf26
YT
2352 perror(path);
2353 return 0;
c902760f
MT
2354 }
2355
2356 if (fs.f_type != HUGETLBFS_MAGIC)
9742bf26 2357 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
c902760f
MT
2358
2359 return fs.f_bsize;
2360}
2361
04b16653
AW
2362static void *file_ram_alloc(RAMBlock *block,
2363 ram_addr_t memory,
2364 const char *path)
c902760f
MT
2365{
2366 char *filename;
2367 void *area;
2368 int fd;
2369#ifdef MAP_POPULATE
2370 int flags;
2371#endif
2372 unsigned long hpagesize;
2373
2374 hpagesize = gethugepagesize(path);
2375 if (!hpagesize) {
9742bf26 2376 return NULL;
c902760f
MT
2377 }
2378
2379 if (memory < hpagesize) {
2380 return NULL;
2381 }
2382
2383 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2384 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2385 return NULL;
2386 }
2387
2388 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
9742bf26 2389 return NULL;
c902760f
MT
2390 }
2391
2392 fd = mkstemp(filename);
2393 if (fd < 0) {
9742bf26
YT
2394 perror("unable to create backing store for hugepages");
2395 free(filename);
2396 return NULL;
c902760f
MT
2397 }
2398 unlink(filename);
2399 free(filename);
2400
2401 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2402
2403 /*
2404 * ftruncate is not supported by hugetlbfs in older
2405 * hosts, so don't bother bailing out on errors.
2406 * If anything goes wrong with it under other filesystems,
2407 * mmap will fail.
2408 */
2409 if (ftruncate(fd, memory))
9742bf26 2410 perror("ftruncate");
c902760f
MT
2411
2412#ifdef MAP_POPULATE
2413 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2414 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2415 * to sidestep this quirk.
2416 */
2417 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2418 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2419#else
2420 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2421#endif
2422 if (area == MAP_FAILED) {
9742bf26
YT
2423 perror("file_ram_alloc: can't mmap RAM pages");
2424 close(fd);
2425 return (NULL);
c902760f 2426 }
04b16653 2427 block->fd = fd;
c902760f
MT
2428 return area;
2429}
2430#endif
2431
d17b5288 2432static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
2433{
2434 RAMBlock *block, *next_block;
3e837b2c 2435 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653
AW
2436
2437 if (QLIST_EMPTY(&ram_list.blocks))
2438 return 0;
2439
2440 QLIST_FOREACH(block, &ram_list.blocks, next) {
f15fbc4b 2441 ram_addr_t end, next = RAM_ADDR_MAX;
04b16653
AW
2442
2443 end = block->offset + block->length;
2444
2445 QLIST_FOREACH(next_block, &ram_list.blocks, next) {
2446 if (next_block->offset >= end) {
2447 next = MIN(next, next_block->offset);
2448 }
2449 }
2450 if (next - end >= size && next - end < mingap) {
3e837b2c 2451 offset = end;
04b16653
AW
2452 mingap = next - end;
2453 }
2454 }
3e837b2c
AW
2455
2456 if (offset == RAM_ADDR_MAX) {
2457 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
2458 (uint64_t)size);
2459 abort();
2460 }
2461
04b16653
AW
2462 return offset;
2463}
2464
2465static ram_addr_t last_ram_offset(void)
d17b5288
AW
2466{
2467 RAMBlock *block;
2468 ram_addr_t last = 0;
2469
2470 QLIST_FOREACH(block, &ram_list.blocks, next)
2471 last = MAX(last, block->offset + block->length);
2472
2473 return last;
2474}
2475
ddb97f1d
JB
2476static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
2477{
2478 int ret;
2479 QemuOpts *machine_opts;
2480
2481 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
2482 machine_opts = qemu_opts_find(qemu_find_opts("machine"), 0);
2483 if (machine_opts &&
2484 !qemu_opt_get_bool(machine_opts, "dump-guest-core", true)) {
2485 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
2486 if (ret) {
2487 perror("qemu_madvise");
2488 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
2489 "but dump_guest_core=off specified\n");
2490 }
2491 }
2492}
2493
c5705a77 2494void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
84b89d78
CM
2495{
2496 RAMBlock *new_block, *block;
2497
c5705a77
AK
2498 new_block = NULL;
2499 QLIST_FOREACH(block, &ram_list.blocks, next) {
2500 if (block->offset == addr) {
2501 new_block = block;
2502 break;
2503 }
2504 }
2505 assert(new_block);
2506 assert(!new_block->idstr[0]);
84b89d78 2507
09e5ab63
AL
2508 if (dev) {
2509 char *id = qdev_get_dev_path(dev);
84b89d78
CM
2510 if (id) {
2511 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 2512 g_free(id);
84b89d78
CM
2513 }
2514 }
2515 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2516
2517 QLIST_FOREACH(block, &ram_list.blocks, next) {
c5705a77 2518 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
2519 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2520 new_block->idstr);
2521 abort();
2522 }
2523 }
c5705a77
AK
2524}
2525
2526ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2527 MemoryRegion *mr)
2528{
2529 RAMBlock *new_block;
2530
2531 size = TARGET_PAGE_ALIGN(size);
2532 new_block = g_malloc0(sizeof(*new_block));
84b89d78 2533
7c637366 2534 new_block->mr = mr;
432d268c 2535 new_block->offset = find_ram_offset(size);
6977dfe6
YT
2536 if (host) {
2537 new_block->host = host;
cd19cfa2 2538 new_block->flags |= RAM_PREALLOC_MASK;
6977dfe6
YT
2539 } else {
2540 if (mem_path) {
c902760f 2541#if defined (__linux__) && !defined(TARGET_S390X)
6977dfe6
YT
2542 new_block->host = file_ram_alloc(new_block, size, mem_path);
2543 if (!new_block->host) {
2544 new_block->host = qemu_vmalloc(size);
e78815a5 2545 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
6977dfe6 2546 }
c902760f 2547#else
6977dfe6
YT
2548 fprintf(stderr, "-mem-path option unsupported\n");
2549 exit(1);
c902760f 2550#endif
6977dfe6 2551 } else {
868bb33f 2552 if (xen_enabled()) {
fce537d4 2553 xen_ram_alloc(new_block->offset, size, mr);
fdec9918
CB
2554 } else if (kvm_enabled()) {
2555 /* some s390/kvm configurations have special constraints */
2556 new_block->host = kvm_vmalloc(size);
432d268c
JN
2557 } else {
2558 new_block->host = qemu_vmalloc(size);
2559 }
e78815a5 2560 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
6977dfe6 2561 }
c902760f 2562 }
94a6b54f
PB
2563 new_block->length = size;
2564
f471a17e 2565 QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next);
94a6b54f 2566
7267c094 2567 ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
04b16653 2568 last_ram_offset() >> TARGET_PAGE_BITS);
5fda043f
IM
2569 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
2570 0, size >> TARGET_PAGE_BITS);
1720aeee 2571 cpu_physical_memory_set_dirty_range(new_block->offset, size, 0xff);
94a6b54f 2572
ddb97f1d
JB
2573 qemu_ram_setup_dump(new_block->host, size);
2574
6f0437e8
JK
2575 if (kvm_enabled())
2576 kvm_setup_guest_memory(new_block->host, size);
2577
94a6b54f
PB
2578 return new_block->offset;
2579}
e9a1ab19 2580
c5705a77 2581ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
6977dfe6 2582{
c5705a77 2583 return qemu_ram_alloc_from_ptr(size, NULL, mr);
6977dfe6
YT
2584}
2585
1f2e98b6
AW
2586void qemu_ram_free_from_ptr(ram_addr_t addr)
2587{
2588 RAMBlock *block;
2589
2590 QLIST_FOREACH(block, &ram_list.blocks, next) {
2591 if (addr == block->offset) {
2592 QLIST_REMOVE(block, next);
7267c094 2593 g_free(block);
1f2e98b6
AW
2594 return;
2595 }
2596 }
2597}
2598
c227f099 2599void qemu_ram_free(ram_addr_t addr)
e9a1ab19 2600{
04b16653
AW
2601 RAMBlock *block;
2602
2603 QLIST_FOREACH(block, &ram_list.blocks, next) {
2604 if (addr == block->offset) {
2605 QLIST_REMOVE(block, next);
cd19cfa2
HY
2606 if (block->flags & RAM_PREALLOC_MASK) {
2607 ;
2608 } else if (mem_path) {
04b16653
AW
2609#if defined (__linux__) && !defined(TARGET_S390X)
2610 if (block->fd) {
2611 munmap(block->host, block->length);
2612 close(block->fd);
2613 } else {
2614 qemu_vfree(block->host);
2615 }
fd28aa13
JK
2616#else
2617 abort();
04b16653
AW
2618#endif
2619 } else {
2620#if defined(TARGET_S390X) && defined(CONFIG_KVM)
2621 munmap(block->host, block->length);
2622#else
868bb33f 2623 if (xen_enabled()) {
e41d7c69 2624 xen_invalidate_map_cache_entry(block->host);
432d268c
JN
2625 } else {
2626 qemu_vfree(block->host);
2627 }
04b16653
AW
2628#endif
2629 }
7267c094 2630 g_free(block);
04b16653
AW
2631 return;
2632 }
2633 }
2634
e9a1ab19
FB
2635}
2636
cd19cfa2
HY
2637#ifndef _WIN32
2638void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2639{
2640 RAMBlock *block;
2641 ram_addr_t offset;
2642 int flags;
2643 void *area, *vaddr;
2644
2645 QLIST_FOREACH(block, &ram_list.blocks, next) {
2646 offset = addr - block->offset;
2647 if (offset < block->length) {
2648 vaddr = block->host + offset;
2649 if (block->flags & RAM_PREALLOC_MASK) {
2650 ;
2651 } else {
2652 flags = MAP_FIXED;
2653 munmap(vaddr, length);
2654 if (mem_path) {
2655#if defined(__linux__) && !defined(TARGET_S390X)
2656 if (block->fd) {
2657#ifdef MAP_POPULATE
2658 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
2659 MAP_PRIVATE;
2660#else
2661 flags |= MAP_PRIVATE;
2662#endif
2663 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2664 flags, block->fd, offset);
2665 } else {
2666 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2667 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2668 flags, -1, 0);
2669 }
fd28aa13
JK
2670#else
2671 abort();
cd19cfa2
HY
2672#endif
2673 } else {
2674#if defined(TARGET_S390X) && defined(CONFIG_KVM)
2675 flags |= MAP_SHARED | MAP_ANONYMOUS;
2676 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
2677 flags, -1, 0);
2678#else
2679 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2680 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2681 flags, -1, 0);
2682#endif
2683 }
2684 if (area != vaddr) {
f15fbc4b
AP
2685 fprintf(stderr, "Could not remap addr: "
2686 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
cd19cfa2
HY
2687 length, addr);
2688 exit(1);
2689 }
2690 qemu_madvise(vaddr, length, QEMU_MADV_MERGEABLE);
ddb97f1d 2691 qemu_ram_setup_dump(vaddr, length);
cd19cfa2
HY
2692 }
2693 return;
2694 }
2695 }
2696}
2697#endif /* !_WIN32 */
2698
dc828ca1 2699/* Return a host pointer to ram allocated with qemu_ram_alloc.
5579c7f3
PB
2700 With the exception of the softmmu code in this file, this should
2701 only be used for local memory (e.g. video ram) that the device owns,
2702 and knows it isn't going to access beyond the end of the block.
2703
2704 It should not be used for general purpose DMA.
2705 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2706 */
c227f099 2707void *qemu_get_ram_ptr(ram_addr_t addr)
dc828ca1 2708{
94a6b54f
PB
2709 RAMBlock *block;
2710
f471a17e
AW
2711 QLIST_FOREACH(block, &ram_list.blocks, next) {
2712 if (addr - block->offset < block->length) {
7d82af38
VP
2713 /* Move this entry to to start of the list. */
2714 if (block != QLIST_FIRST(&ram_list.blocks)) {
2715 QLIST_REMOVE(block, next);
2716 QLIST_INSERT_HEAD(&ram_list.blocks, block, next);
2717 }
868bb33f 2718 if (xen_enabled()) {
432d268c
JN
2719 /* We need to check if the requested address is in the RAM
2720 * because we don't want to map the entire memory in QEMU.
712c2b41 2721 * In that case just map until the end of the page.
432d268c
JN
2722 */
2723 if (block->offset == 0) {
e41d7c69 2724 return xen_map_cache(addr, 0, 0);
432d268c 2725 } else if (block->host == NULL) {
e41d7c69
JK
2726 block->host =
2727 xen_map_cache(block->offset, block->length, 1);
432d268c
JN
2728 }
2729 }
f471a17e
AW
2730 return block->host + (addr - block->offset);
2731 }
94a6b54f 2732 }
f471a17e
AW
2733
2734 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2735 abort();
2736
2737 return NULL;
dc828ca1
PB
2738}
2739
b2e0a138
MT
2740/* Return a host pointer to ram allocated with qemu_ram_alloc.
2741 * Same as qemu_get_ram_ptr but avoid reordering ramblocks.
2742 */
2743void *qemu_safe_ram_ptr(ram_addr_t addr)
2744{
2745 RAMBlock *block;
2746
2747 QLIST_FOREACH(block, &ram_list.blocks, next) {
2748 if (addr - block->offset < block->length) {
868bb33f 2749 if (xen_enabled()) {
432d268c
JN
2750 /* We need to check if the requested address is in the RAM
2751 * because we don't want to map the entire memory in QEMU.
712c2b41 2752 * In that case just map until the end of the page.
432d268c
JN
2753 */
2754 if (block->offset == 0) {
e41d7c69 2755 return xen_map_cache(addr, 0, 0);
432d268c 2756 } else if (block->host == NULL) {
e41d7c69
JK
2757 block->host =
2758 xen_map_cache(block->offset, block->length, 1);
432d268c
JN
2759 }
2760 }
b2e0a138
MT
2761 return block->host + (addr - block->offset);
2762 }
2763 }
2764
2765 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2766 abort();
2767
2768 return NULL;
2769}
2770
38bee5dc
SS
2771/* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
2772 * but takes a size argument */
8ab934f9 2773void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size)
38bee5dc 2774{
8ab934f9
SS
2775 if (*size == 0) {
2776 return NULL;
2777 }
868bb33f 2778 if (xen_enabled()) {
e41d7c69 2779 return xen_map_cache(addr, *size, 1);
868bb33f 2780 } else {
38bee5dc
SS
2781 RAMBlock *block;
2782
2783 QLIST_FOREACH(block, &ram_list.blocks, next) {
2784 if (addr - block->offset < block->length) {
2785 if (addr - block->offset + *size > block->length)
2786 *size = block->length - addr + block->offset;
2787 return block->host + (addr - block->offset);
2788 }
2789 }
2790
2791 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2792 abort();
38bee5dc
SS
2793 }
2794}
2795
050a0ddf
AP
2796void qemu_put_ram_ptr(void *addr)
2797{
2798 trace_qemu_put_ram_ptr(addr);
050a0ddf
AP
2799}
2800
e890261f 2801int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
5579c7f3 2802{
94a6b54f
PB
2803 RAMBlock *block;
2804 uint8_t *host = ptr;
2805
868bb33f 2806 if (xen_enabled()) {
e41d7c69 2807 *ram_addr = xen_ram_addr_from_mapcache(ptr);
712c2b41
SS
2808 return 0;
2809 }
2810
f471a17e 2811 QLIST_FOREACH(block, &ram_list.blocks, next) {
432d268c
JN
2812 /* This case append when the block is not mapped. */
2813 if (block->host == NULL) {
2814 continue;
2815 }
f471a17e 2816 if (host - block->host < block->length) {
e890261f
MT
2817 *ram_addr = block->offset + (host - block->host);
2818 return 0;
f471a17e 2819 }
94a6b54f 2820 }
432d268c 2821
e890261f
MT
2822 return -1;
2823}
f471a17e 2824
e890261f
MT
2825/* Some of the softmmu routines need to translate from a host pointer
2826 (typically a TLB entry) back to a ram offset. */
2827ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
2828{
2829 ram_addr_t ram_addr;
f471a17e 2830
e890261f
MT
2831 if (qemu_ram_addr_from_host(ptr, &ram_addr)) {
2832 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2833 abort();
2834 }
2835 return ram_addr;
5579c7f3
PB
2836}
2837
0e0df1e2
AK
2838static uint64_t unassigned_mem_read(void *opaque, target_phys_addr_t addr,
2839 unsigned size)
e18231a3
BS
2840{
2841#ifdef DEBUG_UNASSIGNED
2842 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2843#endif
5b450407 2844#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
0e0df1e2 2845 cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, size);
e18231a3
BS
2846#endif
2847 return 0;
2848}
2849
0e0df1e2
AK
2850static void unassigned_mem_write(void *opaque, target_phys_addr_t addr,
2851 uint64_t val, unsigned size)
e18231a3
BS
2852{
2853#ifdef DEBUG_UNASSIGNED
0e0df1e2 2854 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
e18231a3 2855#endif
5b450407 2856#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
0e0df1e2 2857 cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, size);
67d3b957 2858#endif
33417e70
FB
2859}
2860
0e0df1e2
AK
2861static const MemoryRegionOps unassigned_mem_ops = {
2862 .read = unassigned_mem_read,
2863 .write = unassigned_mem_write,
2864 .endianness = DEVICE_NATIVE_ENDIAN,
2865};
e18231a3 2866
0e0df1e2
AK
2867static uint64_t error_mem_read(void *opaque, target_phys_addr_t addr,
2868 unsigned size)
e18231a3 2869{
0e0df1e2 2870 abort();
e18231a3
BS
2871}
2872
0e0df1e2
AK
2873static void error_mem_write(void *opaque, target_phys_addr_t addr,
2874 uint64_t value, unsigned size)
e18231a3 2875{
0e0df1e2 2876 abort();
33417e70
FB
2877}
2878
0e0df1e2
AK
2879static const MemoryRegionOps error_mem_ops = {
2880 .read = error_mem_read,
2881 .write = error_mem_write,
2882 .endianness = DEVICE_NATIVE_ENDIAN,
33417e70
FB
2883};
2884
0e0df1e2
AK
2885static const MemoryRegionOps rom_mem_ops = {
2886 .read = error_mem_read,
2887 .write = unassigned_mem_write,
2888 .endianness = DEVICE_NATIVE_ENDIAN,
33417e70
FB
2889};
2890
0e0df1e2
AK
2891static void notdirty_mem_write(void *opaque, target_phys_addr_t ram_addr,
2892 uint64_t val, unsigned size)
9fa3e853 2893{
3a7d929e 2894 int dirty_flags;
f7c11b53 2895 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 2896 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2897#if !defined(CONFIG_USER_ONLY)
0e0df1e2 2898 tb_invalidate_phys_page_fast(ram_addr, size);
f7c11b53 2899 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 2900#endif
3a7d929e 2901 }
0e0df1e2
AK
2902 switch (size) {
2903 case 1:
2904 stb_p(qemu_get_ram_ptr(ram_addr), val);
2905 break;
2906 case 2:
2907 stw_p(qemu_get_ram_ptr(ram_addr), val);
2908 break;
2909 case 4:
2910 stl_p(qemu_get_ram_ptr(ram_addr), val);
2911 break;
2912 default:
2913 abort();
3a7d929e 2914 }
f23db169 2915 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 2916 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
2917 /* we remove the notdirty callback only if the code has been
2918 flushed */
2919 if (dirty_flags == 0xff)
2e70f6ef 2920 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2921}
2922
0e0df1e2
AK
2923static const MemoryRegionOps notdirty_mem_ops = {
2924 .read = error_mem_read,
2925 .write = notdirty_mem_write,
2926 .endianness = DEVICE_NATIVE_ENDIAN,
1ccde1cb
FB
2927};
2928
0f459d16 2929/* Generate a debug exception if a watchpoint has been hit. */
b4051334 2930static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16 2931{
9349b4f9 2932 CPUArchState *env = cpu_single_env;
06d55cc1
AL
2933 target_ulong pc, cs_base;
2934 TranslationBlock *tb;
0f459d16 2935 target_ulong vaddr;
a1d1bb31 2936 CPUWatchpoint *wp;
06d55cc1 2937 int cpu_flags;
0f459d16 2938
06d55cc1
AL
2939 if (env->watchpoint_hit) {
2940 /* We re-entered the check after replacing the TB. Now raise
2941 * the debug interrupt so that is will trigger after the
2942 * current instruction. */
2943 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2944 return;
2945 }
2e70f6ef 2946 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
72cf2d4f 2947 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334
AL
2948 if ((vaddr == (wp->vaddr & len_mask) ||
2949 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
2950 wp->flags |= BP_WATCHPOINT_HIT;
2951 if (!env->watchpoint_hit) {
2952 env->watchpoint_hit = wp;
2953 tb = tb_find_pc(env->mem_io_pc);
2954 if (!tb) {
2955 cpu_abort(env, "check_watchpoint: could not find TB for "
2956 "pc=%p", (void *)env->mem_io_pc);
2957 }
618ba8e6 2958 cpu_restore_state(tb, env, env->mem_io_pc);
6e140f28
AL
2959 tb_phys_invalidate(tb, -1);
2960 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2961 env->exception_index = EXCP_DEBUG;
488d6577 2962 cpu_loop_exit(env);
6e140f28
AL
2963 } else {
2964 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2965 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
488d6577 2966 cpu_resume_from_signal(env, NULL);
6e140f28 2967 }
06d55cc1 2968 }
6e140f28
AL
2969 } else {
2970 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2971 }
2972 }
2973}
2974
6658ffb8
PB
2975/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2976 so these check for a hit then pass through to the normal out-of-line
2977 phys routines. */
1ec9b909
AK
2978static uint64_t watch_mem_read(void *opaque, target_phys_addr_t addr,
2979 unsigned size)
6658ffb8 2980{
1ec9b909
AK
2981 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
2982 switch (size) {
2983 case 1: return ldub_phys(addr);
2984 case 2: return lduw_phys(addr);
2985 case 4: return ldl_phys(addr);
2986 default: abort();
2987 }
6658ffb8
PB
2988}
2989
1ec9b909
AK
2990static void watch_mem_write(void *opaque, target_phys_addr_t addr,
2991 uint64_t val, unsigned size)
6658ffb8 2992{
1ec9b909
AK
2993 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
2994 switch (size) {
67364150
MF
2995 case 1:
2996 stb_phys(addr, val);
2997 break;
2998 case 2:
2999 stw_phys(addr, val);
3000 break;
3001 case 4:
3002 stl_phys(addr, val);
3003 break;
1ec9b909
AK
3004 default: abort();
3005 }
6658ffb8
PB
3006}
3007
1ec9b909
AK
3008static const MemoryRegionOps watch_mem_ops = {
3009 .read = watch_mem_read,
3010 .write = watch_mem_write,
3011 .endianness = DEVICE_NATIVE_ENDIAN,
6658ffb8 3012};
6658ffb8 3013
70c68e44
AK
3014static uint64_t subpage_read(void *opaque, target_phys_addr_t addr,
3015 unsigned len)
db7b5426 3016{
70c68e44 3017 subpage_t *mmio = opaque;
f6405247 3018 unsigned int idx = SUBPAGE_IDX(addr);
5312bd8b 3019 MemoryRegionSection *section;
db7b5426
BS
3020#if defined(DEBUG_SUBPAGE)
3021 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3022 mmio, len, addr, idx);
3023#endif
db7b5426 3024
5312bd8b
AK
3025 section = &phys_sections[mmio->sub_section[idx]];
3026 addr += mmio->base;
3027 addr -= section->offset_within_address_space;
3028 addr += section->offset_within_region;
37ec01d4 3029 return io_mem_read(section->mr, addr, len);
db7b5426
BS
3030}
3031
70c68e44
AK
3032static void subpage_write(void *opaque, target_phys_addr_t addr,
3033 uint64_t value, unsigned len)
db7b5426 3034{
70c68e44 3035 subpage_t *mmio = opaque;
f6405247 3036 unsigned int idx = SUBPAGE_IDX(addr);
5312bd8b 3037 MemoryRegionSection *section;
db7b5426 3038#if defined(DEBUG_SUBPAGE)
70c68e44
AK
3039 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
3040 " idx %d value %"PRIx64"\n",
f6405247 3041 __func__, mmio, len, addr, idx, value);
db7b5426 3042#endif
f6405247 3043
5312bd8b
AK
3044 section = &phys_sections[mmio->sub_section[idx]];
3045 addr += mmio->base;
3046 addr -= section->offset_within_address_space;
3047 addr += section->offset_within_region;
37ec01d4 3048 io_mem_write(section->mr, addr, value, len);
db7b5426
BS
3049}
3050
70c68e44
AK
3051static const MemoryRegionOps subpage_ops = {
3052 .read = subpage_read,
3053 .write = subpage_write,
3054 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
3055};
3056
de712f94
AK
3057static uint64_t subpage_ram_read(void *opaque, target_phys_addr_t addr,
3058 unsigned size)
56384e8b
AF
3059{
3060 ram_addr_t raddr = addr;
3061 void *ptr = qemu_get_ram_ptr(raddr);
de712f94
AK
3062 switch (size) {
3063 case 1: return ldub_p(ptr);
3064 case 2: return lduw_p(ptr);
3065 case 4: return ldl_p(ptr);
3066 default: abort();
3067 }
56384e8b
AF
3068}
3069
de712f94
AK
3070static void subpage_ram_write(void *opaque, target_phys_addr_t addr,
3071 uint64_t value, unsigned size)
56384e8b
AF
3072{
3073 ram_addr_t raddr = addr;
3074 void *ptr = qemu_get_ram_ptr(raddr);
de712f94
AK
3075 switch (size) {
3076 case 1: return stb_p(ptr, value);
3077 case 2: return stw_p(ptr, value);
3078 case 4: return stl_p(ptr, value);
3079 default: abort();
3080 }
56384e8b
AF
3081}
3082
de712f94
AK
3083static const MemoryRegionOps subpage_ram_ops = {
3084 .read = subpage_ram_read,
3085 .write = subpage_ram_write,
3086 .endianness = DEVICE_NATIVE_ENDIAN,
56384e8b
AF
3087};
3088
c227f099 3089static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 3090 uint16_t section)
db7b5426
BS
3091{
3092 int idx, eidx;
3093
3094 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3095 return -1;
3096 idx = SUBPAGE_IDX(start);
3097 eidx = SUBPAGE_IDX(end);
3098#if defined(DEBUG_SUBPAGE)
0bf9e31a 3099 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
db7b5426
BS
3100 mmio, start, end, idx, eidx, memory);
3101#endif
5312bd8b
AK
3102 if (memory_region_is_ram(phys_sections[section].mr)) {
3103 MemoryRegionSection new_section = phys_sections[section];
3104 new_section.mr = &io_mem_subpage_ram;
3105 section = phys_section_add(&new_section);
56384e8b 3106 }
db7b5426 3107 for (; idx <= eidx; idx++) {
5312bd8b 3108 mmio->sub_section[idx] = section;
db7b5426
BS
3109 }
3110
3111 return 0;
3112}
3113
0f0cb164 3114static subpage_t *subpage_init(target_phys_addr_t base)
db7b5426 3115{
c227f099 3116 subpage_t *mmio;
db7b5426 3117
7267c094 3118 mmio = g_malloc0(sizeof(subpage_t));
1eec614b
AL
3119
3120 mmio->base = base;
70c68e44
AK
3121 memory_region_init_io(&mmio->iomem, &subpage_ops, mmio,
3122 "subpage", TARGET_PAGE_SIZE);
b3b00c78 3123 mmio->iomem.subpage = true;
db7b5426 3124#if defined(DEBUG_SUBPAGE)
1eec614b
AL
3125 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3126 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
db7b5426 3127#endif
0f0cb164 3128 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, phys_section_unassigned);
db7b5426
BS
3129
3130 return mmio;
3131}
3132
5312bd8b
AK
3133static uint16_t dummy_section(MemoryRegion *mr)
3134{
3135 MemoryRegionSection section = {
3136 .mr = mr,
3137 .offset_within_address_space = 0,
3138 .offset_within_region = 0,
3139 .size = UINT64_MAX,
3140 };
3141
3142 return phys_section_add(&section);
3143}
3144
37ec01d4 3145MemoryRegion *iotlb_to_region(target_phys_addr_t index)
aa102231 3146{
37ec01d4 3147 return phys_sections[index & ~TARGET_PAGE_MASK].mr;
aa102231
AK
3148}
3149
e9179ce1
AK
3150static void io_mem_init(void)
3151{
0e0df1e2 3152 memory_region_init_io(&io_mem_ram, &error_mem_ops, NULL, "ram", UINT64_MAX);
0e0df1e2
AK
3153 memory_region_init_io(&io_mem_rom, &rom_mem_ops, NULL, "rom", UINT64_MAX);
3154 memory_region_init_io(&io_mem_unassigned, &unassigned_mem_ops, NULL,
3155 "unassigned", UINT64_MAX);
3156 memory_region_init_io(&io_mem_notdirty, &notdirty_mem_ops, NULL,
3157 "notdirty", UINT64_MAX);
de712f94
AK
3158 memory_region_init_io(&io_mem_subpage_ram, &subpage_ram_ops, NULL,
3159 "subpage-ram", UINT64_MAX);
1ec9b909
AK
3160 memory_region_init_io(&io_mem_watch, &watch_mem_ops, NULL,
3161 "watch", UINT64_MAX);
e9179ce1
AK
3162}
3163
50c1e149
AK
3164static void core_begin(MemoryListener *listener)
3165{
54688b1e 3166 destroy_all_mappings();
5312bd8b 3167 phys_sections_clear();
c19e8800 3168 phys_map.ptr = PHYS_MAP_NODE_NIL;
5312bd8b 3169 phys_section_unassigned = dummy_section(&io_mem_unassigned);
aa102231
AK
3170 phys_section_notdirty = dummy_section(&io_mem_notdirty);
3171 phys_section_rom = dummy_section(&io_mem_rom);
3172 phys_section_watch = dummy_section(&io_mem_watch);
50c1e149
AK
3173}
3174
3175static void core_commit(MemoryListener *listener)
3176{
9349b4f9 3177 CPUArchState *env;
117712c3
AK
3178
3179 /* since each CPU stores ram addresses in its TLB cache, we must
3180 reset the modified entries */
3181 /* XXX: slow ! */
3182 for(env = first_cpu; env != NULL; env = env->next_cpu) {
3183 tlb_flush(env, 1);
3184 }
50c1e149
AK
3185}
3186
93632747
AK
3187static void core_region_add(MemoryListener *listener,
3188 MemoryRegionSection *section)
3189{
4855d41a 3190 cpu_register_physical_memory_log(section, section->readonly);
93632747
AK
3191}
3192
3193static void core_region_del(MemoryListener *listener,
3194 MemoryRegionSection *section)
3195{
93632747
AK
3196}
3197
50c1e149
AK
3198static void core_region_nop(MemoryListener *listener,
3199 MemoryRegionSection *section)
3200{
54688b1e 3201 cpu_register_physical_memory_log(section, section->readonly);
50c1e149
AK
3202}
3203
93632747
AK
3204static void core_log_start(MemoryListener *listener,
3205 MemoryRegionSection *section)
3206{
3207}
3208
3209static void core_log_stop(MemoryListener *listener,
3210 MemoryRegionSection *section)
3211{
3212}
3213
3214static void core_log_sync(MemoryListener *listener,
3215 MemoryRegionSection *section)
3216{
3217}
3218
3219static void core_log_global_start(MemoryListener *listener)
3220{
3221 cpu_physical_memory_set_dirty_tracking(1);
3222}
3223
3224static void core_log_global_stop(MemoryListener *listener)
3225{
3226 cpu_physical_memory_set_dirty_tracking(0);
3227}
3228
3229static void core_eventfd_add(MemoryListener *listener,
3230 MemoryRegionSection *section,
753d5e14 3231 bool match_data, uint64_t data, EventNotifier *e)
93632747
AK
3232{
3233}
3234
3235static void core_eventfd_del(MemoryListener *listener,
3236 MemoryRegionSection *section,
753d5e14 3237 bool match_data, uint64_t data, EventNotifier *e)
93632747
AK
3238{
3239}
3240
50c1e149
AK
3241static void io_begin(MemoryListener *listener)
3242{
3243}
3244
3245static void io_commit(MemoryListener *listener)
3246{
3247}
3248
4855d41a
AK
3249static void io_region_add(MemoryListener *listener,
3250 MemoryRegionSection *section)
3251{
a2d33521
AK
3252 MemoryRegionIORange *mrio = g_new(MemoryRegionIORange, 1);
3253
3254 mrio->mr = section->mr;
3255 mrio->offset = section->offset_within_region;
3256 iorange_init(&mrio->iorange, &memory_region_iorange_ops,
4855d41a 3257 section->offset_within_address_space, section->size);
a2d33521 3258 ioport_register(&mrio->iorange);
4855d41a
AK
3259}
3260
3261static void io_region_del(MemoryListener *listener,
3262 MemoryRegionSection *section)
3263{
3264 isa_unassign_ioport(section->offset_within_address_space, section->size);
3265}
3266
50c1e149
AK
3267static void io_region_nop(MemoryListener *listener,
3268 MemoryRegionSection *section)
3269{
3270}
3271
4855d41a
AK
3272static void io_log_start(MemoryListener *listener,
3273 MemoryRegionSection *section)
3274{
3275}
3276
3277static void io_log_stop(MemoryListener *listener,
3278 MemoryRegionSection *section)
3279{
3280}
3281
3282static void io_log_sync(MemoryListener *listener,
3283 MemoryRegionSection *section)
3284{
3285}
3286
3287static void io_log_global_start(MemoryListener *listener)
3288{
3289}
3290
3291static void io_log_global_stop(MemoryListener *listener)
3292{
3293}
3294
3295static void io_eventfd_add(MemoryListener *listener,
3296 MemoryRegionSection *section,
753d5e14 3297 bool match_data, uint64_t data, EventNotifier *e)
4855d41a
AK
3298{
3299}
3300
3301static void io_eventfd_del(MemoryListener *listener,
3302 MemoryRegionSection *section,
753d5e14 3303 bool match_data, uint64_t data, EventNotifier *e)
4855d41a
AK
3304{
3305}
3306
93632747 3307static MemoryListener core_memory_listener = {
50c1e149
AK
3308 .begin = core_begin,
3309 .commit = core_commit,
93632747
AK
3310 .region_add = core_region_add,
3311 .region_del = core_region_del,
50c1e149 3312 .region_nop = core_region_nop,
93632747
AK
3313 .log_start = core_log_start,
3314 .log_stop = core_log_stop,
3315 .log_sync = core_log_sync,
3316 .log_global_start = core_log_global_start,
3317 .log_global_stop = core_log_global_stop,
3318 .eventfd_add = core_eventfd_add,
3319 .eventfd_del = core_eventfd_del,
3320 .priority = 0,
3321};
3322
4855d41a 3323static MemoryListener io_memory_listener = {
50c1e149
AK
3324 .begin = io_begin,
3325 .commit = io_commit,
4855d41a
AK
3326 .region_add = io_region_add,
3327 .region_del = io_region_del,
50c1e149 3328 .region_nop = io_region_nop,
4855d41a
AK
3329 .log_start = io_log_start,
3330 .log_stop = io_log_stop,
3331 .log_sync = io_log_sync,
3332 .log_global_start = io_log_global_start,
3333 .log_global_stop = io_log_global_stop,
3334 .eventfd_add = io_eventfd_add,
3335 .eventfd_del = io_eventfd_del,
3336 .priority = 0,
3337};
3338
62152b8a
AK
3339static void memory_map_init(void)
3340{
7267c094 3341 system_memory = g_malloc(sizeof(*system_memory));
8417cebf 3342 memory_region_init(system_memory, "system", INT64_MAX);
62152b8a 3343 set_system_memory_map(system_memory);
309cb471 3344
7267c094 3345 system_io = g_malloc(sizeof(*system_io));
309cb471
AK
3346 memory_region_init(system_io, "io", 65536);
3347 set_system_io_map(system_io);
93632747 3348
4855d41a
AK
3349 memory_listener_register(&core_memory_listener, system_memory);
3350 memory_listener_register(&io_memory_listener, system_io);
62152b8a
AK
3351}
3352
3353MemoryRegion *get_system_memory(void)
3354{
3355 return system_memory;
3356}
3357
309cb471
AK
3358MemoryRegion *get_system_io(void)
3359{
3360 return system_io;
3361}
3362
e2eef170
PB
3363#endif /* !defined(CONFIG_USER_ONLY) */
3364
13eb76e0
FB
3365/* physical memory access (slow version, mainly for debug) */
3366#if defined(CONFIG_USER_ONLY)
9349b4f9 3367int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
a68fe89c 3368 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3369{
3370 int l, flags;
3371 target_ulong page;
53a5960a 3372 void * p;
13eb76e0
FB
3373
3374 while (len > 0) {
3375 page = addr & TARGET_PAGE_MASK;
3376 l = (page + TARGET_PAGE_SIZE) - addr;
3377 if (l > len)
3378 l = len;
3379 flags = page_get_flags(page);
3380 if (!(flags & PAGE_VALID))
a68fe89c 3381 return -1;
13eb76e0
FB
3382 if (is_write) {
3383 if (!(flags & PAGE_WRITE))
a68fe89c 3384 return -1;
579a97f7 3385 /* XXX: this code should not depend on lock_user */
72fb7daa 3386 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 3387 return -1;
72fb7daa
AJ
3388 memcpy(p, buf, l);
3389 unlock_user(p, addr, l);
13eb76e0
FB
3390 } else {
3391 if (!(flags & PAGE_READ))
a68fe89c 3392 return -1;
579a97f7 3393 /* XXX: this code should not depend on lock_user */
72fb7daa 3394 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 3395 return -1;
72fb7daa 3396 memcpy(buf, p, l);
5b257578 3397 unlock_user(p, addr, 0);
13eb76e0
FB
3398 }
3399 len -= l;
3400 buf += l;
3401 addr += l;
3402 }
a68fe89c 3403 return 0;
13eb76e0 3404}
8df1cd07 3405
13eb76e0 3406#else
c227f099 3407void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
3408 int len, int is_write)
3409{
37ec01d4 3410 int l;
13eb76e0
FB
3411 uint8_t *ptr;
3412 uint32_t val;
c227f099 3413 target_phys_addr_t page;
f3705d53 3414 MemoryRegionSection *section;
3b46e624 3415
13eb76e0
FB
3416 while (len > 0) {
3417 page = addr & TARGET_PAGE_MASK;
3418 l = (page + TARGET_PAGE_SIZE) - addr;
3419 if (l > len)
3420 l = len;
06ef3525 3421 section = phys_page_find(page >> TARGET_PAGE_BITS);
3b46e624 3422
13eb76e0 3423 if (is_write) {
f3705d53 3424 if (!memory_region_is_ram(section->mr)) {
f1f6e3b8 3425 target_phys_addr_t addr1;
cc5bea60 3426 addr1 = memory_region_section_addr(section, addr);
6a00d601
FB
3427 /* XXX: could force cpu_single_env to NULL to avoid
3428 potential bugs */
6c2934db 3429 if (l >= 4 && ((addr1 & 3) == 0)) {
1c213d19 3430 /* 32 bit write access */
c27004ec 3431 val = ldl_p(buf);
37ec01d4 3432 io_mem_write(section->mr, addr1, val, 4);
13eb76e0 3433 l = 4;
6c2934db 3434 } else if (l >= 2 && ((addr1 & 1) == 0)) {
1c213d19 3435 /* 16 bit write access */
c27004ec 3436 val = lduw_p(buf);
37ec01d4 3437 io_mem_write(section->mr, addr1, val, 2);
13eb76e0
FB
3438 l = 2;
3439 } else {
1c213d19 3440 /* 8 bit write access */
c27004ec 3441 val = ldub_p(buf);
37ec01d4 3442 io_mem_write(section->mr, addr1, val, 1);
13eb76e0
FB
3443 l = 1;
3444 }
f3705d53 3445 } else if (!section->readonly) {
8ca5692d 3446 ram_addr_t addr1;
f3705d53 3447 addr1 = memory_region_get_ram_addr(section->mr)
cc5bea60 3448 + memory_region_section_addr(section, addr);
13eb76e0 3449 /* RAM case */
5579c7f3 3450 ptr = qemu_get_ram_ptr(addr1);
13eb76e0 3451 memcpy(ptr, buf, l);
3a7d929e
FB
3452 if (!cpu_physical_memory_is_dirty(addr1)) {
3453 /* invalidate code */
3454 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3455 /* set dirty bit */
f7c11b53
YT
3456 cpu_physical_memory_set_dirty_flags(
3457 addr1, (0xff & ~CODE_DIRTY_FLAG));
3a7d929e 3458 }
050a0ddf 3459 qemu_put_ram_ptr(ptr);
13eb76e0
FB
3460 }
3461 } else {
cc5bea60
BS
3462 if (!(memory_region_is_ram(section->mr) ||
3463 memory_region_is_romd(section->mr))) {
f1f6e3b8 3464 target_phys_addr_t addr1;
13eb76e0 3465 /* I/O case */
cc5bea60 3466 addr1 = memory_region_section_addr(section, addr);
6c2934db 3467 if (l >= 4 && ((addr1 & 3) == 0)) {
13eb76e0 3468 /* 32 bit read access */
37ec01d4 3469 val = io_mem_read(section->mr, addr1, 4);
c27004ec 3470 stl_p(buf, val);
13eb76e0 3471 l = 4;
6c2934db 3472 } else if (l >= 2 && ((addr1 & 1) == 0)) {
13eb76e0 3473 /* 16 bit read access */
37ec01d4 3474 val = io_mem_read(section->mr, addr1, 2);
c27004ec 3475 stw_p(buf, val);
13eb76e0
FB
3476 l = 2;
3477 } else {
1c213d19 3478 /* 8 bit read access */
37ec01d4 3479 val = io_mem_read(section->mr, addr1, 1);
c27004ec 3480 stb_p(buf, val);
13eb76e0
FB
3481 l = 1;
3482 }
3483 } else {
3484 /* RAM case */
0a1b357f 3485 ptr = qemu_get_ram_ptr(section->mr->ram_addr
cc5bea60
BS
3486 + memory_region_section_addr(section,
3487 addr));
f3705d53 3488 memcpy(buf, ptr, l);
050a0ddf 3489 qemu_put_ram_ptr(ptr);
13eb76e0
FB
3490 }
3491 }
3492 len -= l;
3493 buf += l;
3494 addr += l;
3495 }
3496}
8df1cd07 3497
d0ecd2aa 3498/* used for ROM loading : can write in RAM and ROM */
c227f099 3499void cpu_physical_memory_write_rom(target_phys_addr_t addr,
d0ecd2aa
FB
3500 const uint8_t *buf, int len)
3501{
3502 int l;
3503 uint8_t *ptr;
c227f099 3504 target_phys_addr_t page;
f3705d53 3505 MemoryRegionSection *section;
3b46e624 3506
d0ecd2aa
FB
3507 while (len > 0) {
3508 page = addr & TARGET_PAGE_MASK;
3509 l = (page + TARGET_PAGE_SIZE) - addr;
3510 if (l > len)
3511 l = len;
06ef3525 3512 section = phys_page_find(page >> TARGET_PAGE_BITS);
3b46e624 3513
cc5bea60
BS
3514 if (!(memory_region_is_ram(section->mr) ||
3515 memory_region_is_romd(section->mr))) {
d0ecd2aa
FB
3516 /* do nothing */
3517 } else {
3518 unsigned long addr1;
f3705d53 3519 addr1 = memory_region_get_ram_addr(section->mr)
cc5bea60 3520 + memory_region_section_addr(section, addr);
d0ecd2aa 3521 /* ROM/RAM case */
5579c7f3 3522 ptr = qemu_get_ram_ptr(addr1);
d0ecd2aa 3523 memcpy(ptr, buf, l);
050a0ddf 3524 qemu_put_ram_ptr(ptr);
d0ecd2aa
FB
3525 }
3526 len -= l;
3527 buf += l;
3528 addr += l;
3529 }
3530}
3531
6d16c2f8
AL
3532typedef struct {
3533 void *buffer;
c227f099
AL
3534 target_phys_addr_t addr;
3535 target_phys_addr_t len;
6d16c2f8
AL
3536} BounceBuffer;
3537
3538static BounceBuffer bounce;
3539
ba223c29
AL
3540typedef struct MapClient {
3541 void *opaque;
3542 void (*callback)(void *opaque);
72cf2d4f 3543 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3544} MapClient;
3545
72cf2d4f
BS
3546static QLIST_HEAD(map_client_list, MapClient) map_client_list
3547 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29
AL
3548
3549void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3550{
7267c094 3551 MapClient *client = g_malloc(sizeof(*client));
ba223c29
AL
3552
3553 client->opaque = opaque;
3554 client->callback = callback;
72cf2d4f 3555 QLIST_INSERT_HEAD(&map_client_list, client, link);
ba223c29
AL
3556 return client;
3557}
3558
3559void cpu_unregister_map_client(void *_client)
3560{
3561 MapClient *client = (MapClient *)_client;
3562
72cf2d4f 3563 QLIST_REMOVE(client, link);
7267c094 3564 g_free(client);
ba223c29
AL
3565}
3566
3567static void cpu_notify_map_clients(void)
3568{
3569 MapClient *client;
3570
72cf2d4f
BS
3571 while (!QLIST_EMPTY(&map_client_list)) {
3572 client = QLIST_FIRST(&map_client_list);
ba223c29 3573 client->callback(client->opaque);
34d5e948 3574 cpu_unregister_map_client(client);
ba223c29
AL
3575 }
3576}
3577
6d16c2f8
AL
3578/* Map a physical memory region into a host virtual address.
3579 * May map a subset of the requested range, given by and returned in *plen.
3580 * May return NULL if resources needed to perform the mapping are exhausted.
3581 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3582 * Use cpu_register_map_client() to know when retrying the map operation is
3583 * likely to succeed.
6d16c2f8 3584 */
c227f099
AL
3585void *cpu_physical_memory_map(target_phys_addr_t addr,
3586 target_phys_addr_t *plen,
6d16c2f8
AL
3587 int is_write)
3588{
c227f099 3589 target_phys_addr_t len = *plen;
38bee5dc 3590 target_phys_addr_t todo = 0;
6d16c2f8 3591 int l;
c227f099 3592 target_phys_addr_t page;
f3705d53 3593 MemoryRegionSection *section;
f15fbc4b 3594 ram_addr_t raddr = RAM_ADDR_MAX;
8ab934f9
SS
3595 ram_addr_t rlen;
3596 void *ret;
6d16c2f8
AL
3597
3598 while (len > 0) {
3599 page = addr & TARGET_PAGE_MASK;
3600 l = (page + TARGET_PAGE_SIZE) - addr;
3601 if (l > len)
3602 l = len;
06ef3525 3603 section = phys_page_find(page >> TARGET_PAGE_BITS);
6d16c2f8 3604
f3705d53 3605 if (!(memory_region_is_ram(section->mr) && !section->readonly)) {
38bee5dc 3606 if (todo || bounce.buffer) {
6d16c2f8
AL
3607 break;
3608 }
3609 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3610 bounce.addr = addr;
3611 bounce.len = l;
3612 if (!is_write) {
54f7b4a3 3613 cpu_physical_memory_read(addr, bounce.buffer, l);
6d16c2f8 3614 }
38bee5dc
SS
3615
3616 *plen = l;
3617 return bounce.buffer;
6d16c2f8 3618 }
8ab934f9 3619 if (!todo) {
f3705d53 3620 raddr = memory_region_get_ram_addr(section->mr)
cc5bea60 3621 + memory_region_section_addr(section, addr);
8ab934f9 3622 }
6d16c2f8
AL
3623
3624 len -= l;
3625 addr += l;
38bee5dc 3626 todo += l;
6d16c2f8 3627 }
8ab934f9
SS
3628 rlen = todo;
3629 ret = qemu_ram_ptr_length(raddr, &rlen);
3630 *plen = rlen;
3631 return ret;
6d16c2f8
AL
3632}
3633
3634/* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3635 * Will also mark the memory as dirty if is_write == 1. access_len gives
3636 * the amount of memory that was actually read or written by the caller.
3637 */
c227f099
AL
3638void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3639 int is_write, target_phys_addr_t access_len)
6d16c2f8
AL
3640{
3641 if (buffer != bounce.buffer) {
3642 if (is_write) {
e890261f 3643 ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer);
6d16c2f8
AL
3644 while (access_len) {
3645 unsigned l;
3646 l = TARGET_PAGE_SIZE;
3647 if (l > access_len)
3648 l = access_len;
3649 if (!cpu_physical_memory_is_dirty(addr1)) {
3650 /* invalidate code */
3651 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3652 /* set dirty bit */
f7c11b53
YT
3653 cpu_physical_memory_set_dirty_flags(
3654 addr1, (0xff & ~CODE_DIRTY_FLAG));
6d16c2f8
AL
3655 }
3656 addr1 += l;
3657 access_len -= l;
3658 }
3659 }
868bb33f 3660 if (xen_enabled()) {
e41d7c69 3661 xen_invalidate_map_cache_entry(buffer);
050a0ddf 3662 }
6d16c2f8
AL
3663 return;
3664 }
3665 if (is_write) {
3666 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3667 }
f8a83245 3668 qemu_vfree(bounce.buffer);
6d16c2f8 3669 bounce.buffer = NULL;
ba223c29 3670 cpu_notify_map_clients();
6d16c2f8 3671}
d0ecd2aa 3672
8df1cd07 3673/* warning: addr must be aligned */
1e78bcc1
AG
3674static inline uint32_t ldl_phys_internal(target_phys_addr_t addr,
3675 enum device_endian endian)
8df1cd07 3676{
8df1cd07
FB
3677 uint8_t *ptr;
3678 uint32_t val;
f3705d53 3679 MemoryRegionSection *section;
8df1cd07 3680
06ef3525 3681 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3b46e624 3682
cc5bea60
BS
3683 if (!(memory_region_is_ram(section->mr) ||
3684 memory_region_is_romd(section->mr))) {
8df1cd07 3685 /* I/O case */
cc5bea60 3686 addr = memory_region_section_addr(section, addr);
37ec01d4 3687 val = io_mem_read(section->mr, addr, 4);
1e78bcc1
AG
3688#if defined(TARGET_WORDS_BIGENDIAN)
3689 if (endian == DEVICE_LITTLE_ENDIAN) {
3690 val = bswap32(val);
3691 }
3692#else
3693 if (endian == DEVICE_BIG_ENDIAN) {
3694 val = bswap32(val);
3695 }
3696#endif
8df1cd07
FB
3697 } else {
3698 /* RAM case */
f3705d53 3699 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
06ef3525 3700 & TARGET_PAGE_MASK)
cc5bea60 3701 + memory_region_section_addr(section, addr));
1e78bcc1
AG
3702 switch (endian) {
3703 case DEVICE_LITTLE_ENDIAN:
3704 val = ldl_le_p(ptr);
3705 break;
3706 case DEVICE_BIG_ENDIAN:
3707 val = ldl_be_p(ptr);
3708 break;
3709 default:
3710 val = ldl_p(ptr);
3711 break;
3712 }
8df1cd07
FB
3713 }
3714 return val;
3715}
3716
1e78bcc1
AG
3717uint32_t ldl_phys(target_phys_addr_t addr)
3718{
3719 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
3720}
3721
3722uint32_t ldl_le_phys(target_phys_addr_t addr)
3723{
3724 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
3725}
3726
3727uint32_t ldl_be_phys(target_phys_addr_t addr)
3728{
3729 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
3730}
3731
84b7b8e7 3732/* warning: addr must be aligned */
1e78bcc1
AG
3733static inline uint64_t ldq_phys_internal(target_phys_addr_t addr,
3734 enum device_endian endian)
84b7b8e7 3735{
84b7b8e7
FB
3736 uint8_t *ptr;
3737 uint64_t val;
f3705d53 3738 MemoryRegionSection *section;
84b7b8e7 3739
06ef3525 3740 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3b46e624 3741
cc5bea60
BS
3742 if (!(memory_region_is_ram(section->mr) ||
3743 memory_region_is_romd(section->mr))) {
84b7b8e7 3744 /* I/O case */
cc5bea60 3745 addr = memory_region_section_addr(section, addr);
1e78bcc1
AG
3746
3747 /* XXX This is broken when device endian != cpu endian.
3748 Fix and add "endian" variable check */
84b7b8e7 3749#ifdef TARGET_WORDS_BIGENDIAN
37ec01d4
AK
3750 val = io_mem_read(section->mr, addr, 4) << 32;
3751 val |= io_mem_read(section->mr, addr + 4, 4);
84b7b8e7 3752#else
37ec01d4
AK
3753 val = io_mem_read(section->mr, addr, 4);
3754 val |= io_mem_read(section->mr, addr + 4, 4) << 32;
84b7b8e7
FB
3755#endif
3756 } else {
3757 /* RAM case */
f3705d53 3758 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
06ef3525 3759 & TARGET_PAGE_MASK)
cc5bea60 3760 + memory_region_section_addr(section, addr));
1e78bcc1
AG
3761 switch (endian) {
3762 case DEVICE_LITTLE_ENDIAN:
3763 val = ldq_le_p(ptr);
3764 break;
3765 case DEVICE_BIG_ENDIAN:
3766 val = ldq_be_p(ptr);
3767 break;
3768 default:
3769 val = ldq_p(ptr);
3770 break;
3771 }
84b7b8e7
FB
3772 }
3773 return val;
3774}
3775
1e78bcc1
AG
3776uint64_t ldq_phys(target_phys_addr_t addr)
3777{
3778 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
3779}
3780
3781uint64_t ldq_le_phys(target_phys_addr_t addr)
3782{
3783 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
3784}
3785
3786uint64_t ldq_be_phys(target_phys_addr_t addr)
3787{
3788 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
3789}
3790
aab33094 3791/* XXX: optimize */
c227f099 3792uint32_t ldub_phys(target_phys_addr_t addr)
aab33094
FB
3793{
3794 uint8_t val;
3795 cpu_physical_memory_read(addr, &val, 1);
3796 return val;
3797}
3798
733f0b02 3799/* warning: addr must be aligned */
1e78bcc1
AG
3800static inline uint32_t lduw_phys_internal(target_phys_addr_t addr,
3801 enum device_endian endian)
aab33094 3802{
733f0b02
MT
3803 uint8_t *ptr;
3804 uint64_t val;
f3705d53 3805 MemoryRegionSection *section;
733f0b02 3806
06ef3525 3807 section = phys_page_find(addr >> TARGET_PAGE_BITS);
733f0b02 3808
cc5bea60
BS
3809 if (!(memory_region_is_ram(section->mr) ||
3810 memory_region_is_romd(section->mr))) {
733f0b02 3811 /* I/O case */
cc5bea60 3812 addr = memory_region_section_addr(section, addr);
37ec01d4 3813 val = io_mem_read(section->mr, addr, 2);
1e78bcc1
AG
3814#if defined(TARGET_WORDS_BIGENDIAN)
3815 if (endian == DEVICE_LITTLE_ENDIAN) {
3816 val = bswap16(val);
3817 }
3818#else
3819 if (endian == DEVICE_BIG_ENDIAN) {
3820 val = bswap16(val);
3821 }
3822#endif
733f0b02
MT
3823 } else {
3824 /* RAM case */
f3705d53 3825 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
06ef3525 3826 & TARGET_PAGE_MASK)
cc5bea60 3827 + memory_region_section_addr(section, addr));
1e78bcc1
AG
3828 switch (endian) {
3829 case DEVICE_LITTLE_ENDIAN:
3830 val = lduw_le_p(ptr);
3831 break;
3832 case DEVICE_BIG_ENDIAN:
3833 val = lduw_be_p(ptr);
3834 break;
3835 default:
3836 val = lduw_p(ptr);
3837 break;
3838 }
733f0b02
MT
3839 }
3840 return val;
aab33094
FB
3841}
3842
1e78bcc1
AG
3843uint32_t lduw_phys(target_phys_addr_t addr)
3844{
3845 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
3846}
3847
3848uint32_t lduw_le_phys(target_phys_addr_t addr)
3849{
3850 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
3851}
3852
3853uint32_t lduw_be_phys(target_phys_addr_t addr)
3854{
3855 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
3856}
3857
8df1cd07
FB
3858/* warning: addr must be aligned. The ram page is not masked as dirty
3859 and the code inside is not invalidated. It is useful if the dirty
3860 bits are used to track modified PTEs */
c227f099 3861void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
8df1cd07 3862{
8df1cd07 3863 uint8_t *ptr;
f3705d53 3864 MemoryRegionSection *section;
8df1cd07 3865
06ef3525 3866 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3b46e624 3867
f3705d53 3868 if (!memory_region_is_ram(section->mr) || section->readonly) {
cc5bea60 3869 addr = memory_region_section_addr(section, addr);
f3705d53 3870 if (memory_region_is_ram(section->mr)) {
37ec01d4 3871 section = &phys_sections[phys_section_rom];
06ef3525 3872 }
37ec01d4 3873 io_mem_write(section->mr, addr, val, 4);
8df1cd07 3874 } else {
f3705d53 3875 unsigned long addr1 = (memory_region_get_ram_addr(section->mr)
06ef3525 3876 & TARGET_PAGE_MASK)
cc5bea60 3877 + memory_region_section_addr(section, addr);
5579c7f3 3878 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3879 stl_p(ptr, val);
74576198
AL
3880
3881 if (unlikely(in_migration)) {
3882 if (!cpu_physical_memory_is_dirty(addr1)) {
3883 /* invalidate code */
3884 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3885 /* set dirty bit */
f7c11b53
YT
3886 cpu_physical_memory_set_dirty_flags(
3887 addr1, (0xff & ~CODE_DIRTY_FLAG));
74576198
AL
3888 }
3889 }
8df1cd07
FB
3890 }
3891}
3892
c227f099 3893void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
bc98a7ef 3894{
bc98a7ef 3895 uint8_t *ptr;
f3705d53 3896 MemoryRegionSection *section;
bc98a7ef 3897
06ef3525 3898 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3b46e624 3899
f3705d53 3900 if (!memory_region_is_ram(section->mr) || section->readonly) {
cc5bea60 3901 addr = memory_region_section_addr(section, addr);
f3705d53 3902 if (memory_region_is_ram(section->mr)) {
37ec01d4 3903 section = &phys_sections[phys_section_rom];
06ef3525 3904 }
bc98a7ef 3905#ifdef TARGET_WORDS_BIGENDIAN
37ec01d4
AK
3906 io_mem_write(section->mr, addr, val >> 32, 4);
3907 io_mem_write(section->mr, addr + 4, (uint32_t)val, 4);
bc98a7ef 3908#else
37ec01d4
AK
3909 io_mem_write(section->mr, addr, (uint32_t)val, 4);
3910 io_mem_write(section->mr, addr + 4, val >> 32, 4);
bc98a7ef
JM
3911#endif
3912 } else {
f3705d53 3913 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
06ef3525 3914 & TARGET_PAGE_MASK)
cc5bea60 3915 + memory_region_section_addr(section, addr));
bc98a7ef
JM
3916 stq_p(ptr, val);
3917 }
3918}
3919
8df1cd07 3920/* warning: addr must be aligned */
1e78bcc1
AG
3921static inline void stl_phys_internal(target_phys_addr_t addr, uint32_t val,
3922 enum device_endian endian)
8df1cd07 3923{
8df1cd07 3924 uint8_t *ptr;
f3705d53 3925 MemoryRegionSection *section;
8df1cd07 3926
06ef3525 3927 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3b46e624 3928
f3705d53 3929 if (!memory_region_is_ram(section->mr) || section->readonly) {
cc5bea60 3930 addr = memory_region_section_addr(section, addr);
f3705d53 3931 if (memory_region_is_ram(section->mr)) {
37ec01d4 3932 section = &phys_sections[phys_section_rom];
06ef3525 3933 }
1e78bcc1
AG
3934#if defined(TARGET_WORDS_BIGENDIAN)
3935 if (endian == DEVICE_LITTLE_ENDIAN) {
3936 val = bswap32(val);
3937 }
3938#else
3939 if (endian == DEVICE_BIG_ENDIAN) {
3940 val = bswap32(val);
3941 }
3942#endif
37ec01d4 3943 io_mem_write(section->mr, addr, val, 4);
8df1cd07
FB
3944 } else {
3945 unsigned long addr1;
f3705d53 3946 addr1 = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
cc5bea60 3947 + memory_region_section_addr(section, addr);
8df1cd07 3948 /* RAM case */
5579c7f3 3949 ptr = qemu_get_ram_ptr(addr1);
1e78bcc1
AG
3950 switch (endian) {
3951 case DEVICE_LITTLE_ENDIAN:
3952 stl_le_p(ptr, val);
3953 break;
3954 case DEVICE_BIG_ENDIAN:
3955 stl_be_p(ptr, val);
3956 break;
3957 default:
3958 stl_p(ptr, val);
3959 break;
3960 }
3a7d929e
FB
3961 if (!cpu_physical_memory_is_dirty(addr1)) {
3962 /* invalidate code */
3963 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3964 /* set dirty bit */
f7c11b53
YT
3965 cpu_physical_memory_set_dirty_flags(addr1,
3966 (0xff & ~CODE_DIRTY_FLAG));
3a7d929e 3967 }
8df1cd07
FB
3968 }
3969}
3970
1e78bcc1
AG
3971void stl_phys(target_phys_addr_t addr, uint32_t val)
3972{
3973 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
3974}
3975
3976void stl_le_phys(target_phys_addr_t addr, uint32_t val)
3977{
3978 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
3979}
3980
3981void stl_be_phys(target_phys_addr_t addr, uint32_t val)
3982{
3983 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
3984}
3985
aab33094 3986/* XXX: optimize */
c227f099 3987void stb_phys(target_phys_addr_t addr, uint32_t val)
aab33094
FB
3988{
3989 uint8_t v = val;
3990 cpu_physical_memory_write(addr, &v, 1);
3991}
3992
733f0b02 3993/* warning: addr must be aligned */
1e78bcc1
AG
3994static inline void stw_phys_internal(target_phys_addr_t addr, uint32_t val,
3995 enum device_endian endian)
aab33094 3996{
733f0b02 3997 uint8_t *ptr;
f3705d53 3998 MemoryRegionSection *section;
733f0b02 3999
06ef3525 4000 section = phys_page_find(addr >> TARGET_PAGE_BITS);
733f0b02 4001
f3705d53 4002 if (!memory_region_is_ram(section->mr) || section->readonly) {
cc5bea60 4003 addr = memory_region_section_addr(section, addr);
f3705d53 4004 if (memory_region_is_ram(section->mr)) {
37ec01d4 4005 section = &phys_sections[phys_section_rom];
06ef3525 4006 }
1e78bcc1
AG
4007#if defined(TARGET_WORDS_BIGENDIAN)
4008 if (endian == DEVICE_LITTLE_ENDIAN) {
4009 val = bswap16(val);
4010 }
4011#else
4012 if (endian == DEVICE_BIG_ENDIAN) {
4013 val = bswap16(val);
4014 }
4015#endif
37ec01d4 4016 io_mem_write(section->mr, addr, val, 2);
733f0b02
MT
4017 } else {
4018 unsigned long addr1;
f3705d53 4019 addr1 = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
cc5bea60 4020 + memory_region_section_addr(section, addr);
733f0b02
MT
4021 /* RAM case */
4022 ptr = qemu_get_ram_ptr(addr1);
1e78bcc1
AG
4023 switch (endian) {
4024 case DEVICE_LITTLE_ENDIAN:
4025 stw_le_p(ptr, val);
4026 break;
4027 case DEVICE_BIG_ENDIAN:
4028 stw_be_p(ptr, val);
4029 break;
4030 default:
4031 stw_p(ptr, val);
4032 break;
4033 }
733f0b02
MT
4034 if (!cpu_physical_memory_is_dirty(addr1)) {
4035 /* invalidate code */
4036 tb_invalidate_phys_page_range(addr1, addr1 + 2, 0);
4037 /* set dirty bit */
4038 cpu_physical_memory_set_dirty_flags(addr1,
4039 (0xff & ~CODE_DIRTY_FLAG));
4040 }
4041 }
aab33094
FB
4042}
4043
1e78bcc1
AG
4044void stw_phys(target_phys_addr_t addr, uint32_t val)
4045{
4046 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
4047}
4048
4049void stw_le_phys(target_phys_addr_t addr, uint32_t val)
4050{
4051 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
4052}
4053
4054void stw_be_phys(target_phys_addr_t addr, uint32_t val)
4055{
4056 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
4057}
4058
aab33094 4059/* XXX: optimize */
c227f099 4060void stq_phys(target_phys_addr_t addr, uint64_t val)
aab33094
FB
4061{
4062 val = tswap64(val);
71d2b725 4063 cpu_physical_memory_write(addr, &val, 8);
aab33094
FB
4064}
4065
1e78bcc1
AG
4066void stq_le_phys(target_phys_addr_t addr, uint64_t val)
4067{
4068 val = cpu_to_le64(val);
4069 cpu_physical_memory_write(addr, &val, 8);
4070}
4071
4072void stq_be_phys(target_phys_addr_t addr, uint64_t val)
4073{
4074 val = cpu_to_be64(val);
4075 cpu_physical_memory_write(addr, &val, 8);
4076}
4077
5e2972fd 4078/* virtual memory access for debug (includes writing to ROM) */
9349b4f9 4079int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
b448f2f3 4080 uint8_t *buf, int len, int is_write)
13eb76e0
FB
4081{
4082 int l;
c227f099 4083 target_phys_addr_t phys_addr;
9b3c35e0 4084 target_ulong page;
13eb76e0
FB
4085
4086 while (len > 0) {
4087 page = addr & TARGET_PAGE_MASK;
4088 phys_addr = cpu_get_phys_page_debug(env, page);
4089 /* if no physical page mapped, return an error */
4090 if (phys_addr == -1)
4091 return -1;
4092 l = (page + TARGET_PAGE_SIZE) - addr;
4093 if (l > len)
4094 l = len;
5e2972fd 4095 phys_addr += (addr & ~TARGET_PAGE_MASK);
5e2972fd
AL
4096 if (is_write)
4097 cpu_physical_memory_write_rom(phys_addr, buf, l);
4098 else
5e2972fd 4099 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
13eb76e0
FB
4100 len -= l;
4101 buf += l;
4102 addr += l;
4103 }
4104 return 0;
4105}
a68fe89c 4106#endif
13eb76e0 4107
2e70f6ef
PB
4108/* in deterministic execution mode, instructions doing device I/Os
4109 must be at the end of the TB */
20503968 4110void cpu_io_recompile(CPUArchState *env, uintptr_t retaddr)
2e70f6ef
PB
4111{
4112 TranslationBlock *tb;
4113 uint32_t n, cflags;
4114 target_ulong pc, cs_base;
4115 uint64_t flags;
4116
20503968 4117 tb = tb_find_pc(retaddr);
2e70f6ef
PB
4118 if (!tb) {
4119 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
20503968 4120 (void *)retaddr);
2e70f6ef
PB
4121 }
4122 n = env->icount_decr.u16.low + tb->icount;
20503968 4123 cpu_restore_state(tb, env, retaddr);
2e70f6ef 4124 /* Calculate how many instructions had been executed before the fault
bf20dc07 4125 occurred. */
2e70f6ef
PB
4126 n = n - env->icount_decr.u16.low;
4127 /* Generate a new TB ending on the I/O insn. */
4128 n++;
4129 /* On MIPS and SH, delay slot instructions can only be restarted if
4130 they were already the first instruction in the TB. If this is not
bf20dc07 4131 the first instruction in a TB then re-execute the preceding
2e70f6ef
PB
4132 branch. */
4133#if defined(TARGET_MIPS)
4134 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
4135 env->active_tc.PC -= 4;
4136 env->icount_decr.u16.low++;
4137 env->hflags &= ~MIPS_HFLAG_BMASK;
4138 }
4139#elif defined(TARGET_SH4)
4140 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
4141 && n > 1) {
4142 env->pc -= 2;
4143 env->icount_decr.u16.low++;
4144 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
4145 }
4146#endif
4147 /* This should never happen. */
4148 if (n > CF_COUNT_MASK)
4149 cpu_abort(env, "TB too big during recompile");
4150
4151 cflags = n | CF_LAST_IO;
4152 pc = tb->pc;
4153 cs_base = tb->cs_base;
4154 flags = tb->flags;
4155 tb_phys_invalidate(tb, -1);
4156 /* FIXME: In theory this could raise an exception. In practice
4157 we have already translated the block once so it's probably ok. */
4158 tb_gen_code(env, pc, cs_base, flags, cflags);
bf20dc07 4159 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2e70f6ef
PB
4160 the first in the TB) then we end up generating a whole new TB and
4161 repeating the fault, which is horribly inefficient.
4162 Better would be to execute just this insn uncached, or generate a
4163 second new TB. */
4164 cpu_resume_from_signal(env, NULL);
4165}
4166
b3755a91
PB
4167#if !defined(CONFIG_USER_ONLY)
4168
055403b2 4169void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
e3db7226
FB
4170{
4171 int i, target_code_size, max_target_code_size;
4172 int direct_jmp_count, direct_jmp2_count, cross_page;
4173 TranslationBlock *tb;
3b46e624 4174
e3db7226
FB
4175 target_code_size = 0;
4176 max_target_code_size = 0;
4177 cross_page = 0;
4178 direct_jmp_count = 0;
4179 direct_jmp2_count = 0;
4180 for(i = 0; i < nb_tbs; i++) {
4181 tb = &tbs[i];
4182 target_code_size += tb->size;
4183 if (tb->size > max_target_code_size)
4184 max_target_code_size = tb->size;
4185 if (tb->page_addr[1] != -1)
4186 cross_page++;
4187 if (tb->tb_next_offset[0] != 0xffff) {
4188 direct_jmp_count++;
4189 if (tb->tb_next_offset[1] != 0xffff) {
4190 direct_jmp2_count++;
4191 }
4192 }
4193 }
4194 /* XXX: avoid using doubles ? */
57fec1fe 4195 cpu_fprintf(f, "Translation buffer state:\n");
055403b2 4196 cpu_fprintf(f, "gen code size %td/%ld\n",
26a5f13b
FB
4197 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
4198 cpu_fprintf(f, "TB count %d/%d\n",
4199 nb_tbs, code_gen_max_blocks);
5fafdf24 4200 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
e3db7226
FB
4201 nb_tbs ? target_code_size / nb_tbs : 0,
4202 max_target_code_size);
055403b2 4203 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
e3db7226
FB
4204 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
4205 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
5fafdf24
TS
4206 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
4207 cross_page,
e3db7226
FB
4208 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
4209 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
5fafdf24 4210 direct_jmp_count,
e3db7226
FB
4211 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
4212 direct_jmp2_count,
4213 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
57fec1fe 4214 cpu_fprintf(f, "\nStatistics:\n");
e3db7226
FB
4215 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
4216 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
4217 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
b67d9a52 4218 tcg_dump_info(f, cpu_fprintf);
e3db7226
FB
4219}
4220
82afa586
BH
4221/*
4222 * A helper function for the _utterly broken_ virtio device model to find out if
4223 * it's running on a big endian machine. Don't do this at home kids!
4224 */
4225bool virtio_is_big_endian(void);
4226bool virtio_is_big_endian(void)
4227{
4228#if defined(TARGET_WORDS_BIGENDIAN)
4229 return true;
4230#else
4231 return false;
4232#endif
4233}
4234
61382a50 4235#endif
76f35538
WC
4236
4237#ifndef CONFIG_USER_ONLY
4238bool cpu_physical_memory_is_io(target_phys_addr_t phys_addr)
4239{
4240 MemoryRegionSection *section;
4241
4242 section = phys_page_find(phys_addr >> TARGET_PAGE_BITS);
4243
4244 return !(memory_region_is_ram(section->mr) ||
4245 memory_region_is_romd(section->mr));
4246}
4247#endif