]> git.proxmox.com Git - qemu.git/blame - exec.c
memory: move tcg flush into a tcg memory listener
[qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
67b915a5 19#include "config.h"
d5a8f07c
FB
20#ifdef _WIN32
21#include <windows.h>
22#else
a98d49b1 23#include <sys/types.h>
d5a8f07c
FB
24#include <sys/mman.h>
25#endif
54936004 26
055403b2 27#include "qemu-common.h"
6180a181 28#include "cpu.h"
b67d9a52 29#include "tcg.h"
b3c7724c 30#include "hw/hw.h"
cc9e98cb 31#include "hw/qdev.h"
74576198 32#include "osdep.h"
7ba1e619 33#include "kvm.h"
432d268c 34#include "hw/xen.h"
29e922b6 35#include "qemu-timer.h"
62152b8a
AK
36#include "memory.h"
37#include "exec-memory.h"
53a5960a
PB
38#if defined(CONFIG_USER_ONLY)
39#include <qemu.h>
f01576f1
JL
40#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
41#include <sys/param.h>
42#if __FreeBSD_version >= 700104
43#define HAVE_KINFO_GETVMMAP
44#define sigqueue sigqueue_freebsd /* avoid redefinition */
45#include <sys/time.h>
46#include <sys/proc.h>
47#include <machine/profile.h>
48#define _KERNEL
49#include <sys/user.h>
50#undef _KERNEL
51#undef sigqueue
52#include <libutil.h>
53#endif
54#endif
432d268c
JN
55#else /* !CONFIG_USER_ONLY */
56#include "xen-mapcache.h"
6506e4f9 57#include "trace.h"
53a5960a 58#endif
54936004 59
0cac1b66
BS
60#include "cputlb.h"
61
7762c2c1 62#include "memory-internal.h"
67d95c15 63
fd6ce8f6 64//#define DEBUG_TB_INVALIDATE
66e85a21 65//#define DEBUG_FLUSH
67d3b957 66//#define DEBUG_UNASSIGNED
fd6ce8f6
FB
67
68/* make various TB consistency checks */
5fafdf24 69//#define DEBUG_TB_CHECK
fd6ce8f6 70
1196be37 71//#define DEBUG_IOPORT
db7b5426 72//#define DEBUG_SUBPAGE
1196be37 73
99773bd4
PB
74#if !defined(CONFIG_USER_ONLY)
75/* TB consistency checks only implemented for usermode emulation. */
76#undef DEBUG_TB_CHECK
77#endif
78
9fa3e853
FB
79#define SMC_BITMAP_USE_THRESHOLD 10
80
bdaf78e0 81static TranslationBlock *tbs;
24ab68ac 82static int code_gen_max_blocks;
9fa3e853 83TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
bdaf78e0 84static int nb_tbs;
eb51d102 85/* any access to the tbs or the page table must use this lock */
c227f099 86spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6 87
9b9c37c3 88#if defined(__arm__) || defined(__sparc__)
141ac468
BS
89/* The prologue must be reachable with a direct jump. ARM and Sparc64
90 have limited branch ranges (possibly also PPC) so place it in a
d03d860b
BS
91 section close to code segment. */
92#define code_gen_section \
93 __attribute__((__section__(".gen_code"))) \
94 __attribute__((aligned (32)))
6840981d 95#elif defined(_WIN32) && !defined(_WIN64)
f8e2af11
SW
96#define code_gen_section \
97 __attribute__((aligned (16)))
d03d860b
BS
98#else
99#define code_gen_section \
100 __attribute__((aligned (32)))
101#endif
102
103uint8_t code_gen_prologue[1024] code_gen_section;
bdaf78e0
BS
104static uint8_t *code_gen_buffer;
105static unsigned long code_gen_buffer_size;
26a5f13b 106/* threshold to flush the translated code buffer */
bdaf78e0 107static unsigned long code_gen_buffer_max_size;
24ab68ac 108static uint8_t *code_gen_ptr;
fd6ce8f6 109
e2eef170 110#if !defined(CONFIG_USER_ONLY)
9fa3e853 111int phys_ram_fd;
74576198 112static int in_migration;
94a6b54f 113
85d59fef 114RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
115
116static MemoryRegion *system_memory;
309cb471 117static MemoryRegion *system_io;
62152b8a 118
2673a5da
AK
119static AddressSpace address_space_io;
120static AddressSpace address_space_memory;
121
0e0df1e2 122MemoryRegion io_mem_ram, io_mem_rom, io_mem_unassigned, io_mem_notdirty;
de712f94 123static MemoryRegion io_mem_subpage_ram;
0e0df1e2 124
e2eef170 125#endif
9fa3e853 126
9349b4f9 127CPUArchState *first_cpu;
6a00d601
FB
128/* current CPU in the current thread. It is only valid inside
129 cpu_exec() */
9349b4f9 130DEFINE_TLS(CPUArchState *,cpu_single_env);
2e70f6ef 131/* 0 = Do not count executed instructions.
bf20dc07 132 1 = Precise instruction counting.
2e70f6ef
PB
133 2 = Adaptive rate instruction counting. */
134int use_icount = 0;
6a00d601 135
54936004 136typedef struct PageDesc {
92e873b9 137 /* list of TBs intersecting this ram page */
fd6ce8f6 138 TranslationBlock *first_tb;
9fa3e853
FB
139 /* in order to optimize self modifying code, we count the number
140 of lookups we do to a given page to use a bitmap */
141 unsigned int code_write_count;
142 uint8_t *code_bitmap;
143#if defined(CONFIG_USER_ONLY)
144 unsigned long flags;
145#endif
54936004
FB
146} PageDesc;
147
41c1b1c9 148/* In system mode we want L1_MAP to be based on ram offsets,
5cd2c5b6
RH
149 while in user mode we want it to be based on virtual addresses. */
150#if !defined(CONFIG_USER_ONLY)
41c1b1c9
PB
151#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
152# define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
153#else
5cd2c5b6 154# define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
41c1b1c9 155#endif
bedb69ea 156#else
5cd2c5b6 157# define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
bedb69ea 158#endif
54936004 159
5cd2c5b6
RH
160/* Size of the L2 (and L3, etc) page tables. */
161#define L2_BITS 10
54936004
FB
162#define L2_SIZE (1 << L2_BITS)
163
3eef53df
AK
164#define P_L2_LEVELS \
165 (((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / L2_BITS) + 1)
166
5cd2c5b6 167/* The bits remaining after N lower levels of page tables. */
5cd2c5b6
RH
168#define V_L1_BITS_REM \
169 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
170
5cd2c5b6
RH
171#if V_L1_BITS_REM < 4
172#define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
173#else
174#define V_L1_BITS V_L1_BITS_REM
175#endif
176
5cd2c5b6
RH
177#define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
178
5cd2c5b6
RH
179#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
180
c6d50674
SW
181uintptr_t qemu_real_host_page_size;
182uintptr_t qemu_host_page_size;
183uintptr_t qemu_host_page_mask;
54936004 184
5cd2c5b6
RH
185/* This is a multi-level map on the virtual address space.
186 The bottom level has pointers to PageDesc. */
187static void *l1_map[V_L1_SIZE];
54936004 188
e2eef170 189#if !defined(CONFIG_USER_ONLY)
4346ae3e
AK
190typedef struct PhysPageEntry PhysPageEntry;
191
5312bd8b
AK
192static MemoryRegionSection *phys_sections;
193static unsigned phys_sections_nb, phys_sections_nb_alloc;
194static uint16_t phys_section_unassigned;
aa102231
AK
195static uint16_t phys_section_notdirty;
196static uint16_t phys_section_rom;
197static uint16_t phys_section_watch;
5312bd8b 198
4346ae3e 199struct PhysPageEntry {
07f07b31
AK
200 uint16_t is_leaf : 1;
201 /* index into phys_sections (is_leaf) or phys_map_nodes (!is_leaf) */
202 uint16_t ptr : 15;
4346ae3e
AK
203};
204
d6f2ea22
AK
205/* Simple allocator for PhysPageEntry nodes */
206static PhysPageEntry (*phys_map_nodes)[L2_SIZE];
207static unsigned phys_map_nodes_nb, phys_map_nodes_nb_alloc;
208
07f07b31 209#define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
d6f2ea22 210
5cd2c5b6 211/* This is a multi-level map on the physical address space.
06ef3525 212 The bottom level has pointers to MemoryRegionSections. */
07f07b31 213static PhysPageEntry phys_map = { .ptr = PHYS_MAP_NODE_NIL, .is_leaf = 0 };
6d9a1304 214
e2eef170 215static void io_mem_init(void);
62152b8a 216static void memory_map_init(void);
e2eef170 217
1ec9b909 218static MemoryRegion io_mem_watch;
6658ffb8 219#endif
33417e70 220
e3db7226 221/* statistics */
e3db7226
FB
222static int tb_flush_count;
223static int tb_phys_invalidate_count;
224
7cb69cae
FB
225#ifdef _WIN32
226static void map_exec(void *addr, long size)
227{
228 DWORD old_protect;
229 VirtualProtect(addr, size,
230 PAGE_EXECUTE_READWRITE, &old_protect);
231
232}
233#else
234static void map_exec(void *addr, long size)
235{
4369415f 236 unsigned long start, end, page_size;
7cb69cae 237
4369415f 238 page_size = getpagesize();
7cb69cae 239 start = (unsigned long)addr;
4369415f 240 start &= ~(page_size - 1);
7cb69cae
FB
241
242 end = (unsigned long)addr + size;
4369415f
FB
243 end += page_size - 1;
244 end &= ~(page_size - 1);
7cb69cae
FB
245
246 mprotect((void *)start, end - start,
247 PROT_READ | PROT_WRITE | PROT_EXEC);
248}
249#endif
250
b346ff46 251static void page_init(void)
54936004 252{
83fb7adf 253 /* NOTE: we can always suppose that qemu_host_page_size >=
54936004 254 TARGET_PAGE_SIZE */
c2b48b69
AL
255#ifdef _WIN32
256 {
257 SYSTEM_INFO system_info;
258
259 GetSystemInfo(&system_info);
260 qemu_real_host_page_size = system_info.dwPageSize;
261 }
262#else
263 qemu_real_host_page_size = getpagesize();
264#endif
83fb7adf
FB
265 if (qemu_host_page_size == 0)
266 qemu_host_page_size = qemu_real_host_page_size;
267 if (qemu_host_page_size < TARGET_PAGE_SIZE)
268 qemu_host_page_size = TARGET_PAGE_SIZE;
83fb7adf 269 qemu_host_page_mask = ~(qemu_host_page_size - 1);
50a9569b 270
2e9a5713 271#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
50a9569b 272 {
f01576f1
JL
273#ifdef HAVE_KINFO_GETVMMAP
274 struct kinfo_vmentry *freep;
275 int i, cnt;
276
277 freep = kinfo_getvmmap(getpid(), &cnt);
278 if (freep) {
279 mmap_lock();
280 for (i = 0; i < cnt; i++) {
281 unsigned long startaddr, endaddr;
282
283 startaddr = freep[i].kve_start;
284 endaddr = freep[i].kve_end;
285 if (h2g_valid(startaddr)) {
286 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
287
288 if (h2g_valid(endaddr)) {
289 endaddr = h2g(endaddr);
fd436907 290 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
f01576f1
JL
291 } else {
292#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
293 endaddr = ~0ul;
fd436907 294 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
f01576f1
JL
295#endif
296 }
297 }
298 }
299 free(freep);
300 mmap_unlock();
301 }
302#else
50a9569b 303 FILE *f;
50a9569b 304
0776590d 305 last_brk = (unsigned long)sbrk(0);
5cd2c5b6 306
fd436907 307 f = fopen("/compat/linux/proc/self/maps", "r");
50a9569b 308 if (f) {
5cd2c5b6
RH
309 mmap_lock();
310
50a9569b 311 do {
5cd2c5b6
RH
312 unsigned long startaddr, endaddr;
313 int n;
314
315 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
316
317 if (n == 2 && h2g_valid(startaddr)) {
318 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
319
320 if (h2g_valid(endaddr)) {
321 endaddr = h2g(endaddr);
322 } else {
323 endaddr = ~0ul;
324 }
325 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
50a9569b
AZ
326 }
327 } while (!feof(f));
5cd2c5b6 328
50a9569b 329 fclose(f);
5cd2c5b6 330 mmap_unlock();
50a9569b 331 }
f01576f1 332#endif
50a9569b
AZ
333 }
334#endif
54936004
FB
335}
336
41c1b1c9 337static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
54936004 338{
41c1b1c9
PB
339 PageDesc *pd;
340 void **lp;
341 int i;
342
5cd2c5b6 343#if defined(CONFIG_USER_ONLY)
7267c094 344 /* We can't use g_malloc because it may recurse into a locked mutex. */
5cd2c5b6
RH
345# define ALLOC(P, SIZE) \
346 do { \
347 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
348 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
5cd2c5b6
RH
349 } while (0)
350#else
351# define ALLOC(P, SIZE) \
7267c094 352 do { P = g_malloc0(SIZE); } while (0)
17e2377a 353#endif
434929bf 354
5cd2c5b6
RH
355 /* Level 1. Always allocated. */
356 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
357
358 /* Level 2..N-1. */
359 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
360 void **p = *lp;
361
362 if (p == NULL) {
363 if (!alloc) {
364 return NULL;
365 }
366 ALLOC(p, sizeof(void *) * L2_SIZE);
367 *lp = p;
17e2377a 368 }
5cd2c5b6
RH
369
370 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
371 }
372
373 pd = *lp;
374 if (pd == NULL) {
375 if (!alloc) {
376 return NULL;
377 }
378 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
379 *lp = pd;
54936004 380 }
5cd2c5b6
RH
381
382#undef ALLOC
5cd2c5b6
RH
383
384 return pd + (index & (L2_SIZE - 1));
54936004
FB
385}
386
41c1b1c9 387static inline PageDesc *page_find(tb_page_addr_t index)
54936004 388{
5cd2c5b6 389 return page_find_alloc(index, 0);
fd6ce8f6
FB
390}
391
6d9a1304 392#if !defined(CONFIG_USER_ONLY)
d6f2ea22 393
f7bf5461 394static void phys_map_node_reserve(unsigned nodes)
d6f2ea22 395{
f7bf5461 396 if (phys_map_nodes_nb + nodes > phys_map_nodes_nb_alloc) {
d6f2ea22
AK
397 typedef PhysPageEntry Node[L2_SIZE];
398 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc * 2, 16);
f7bf5461
AK
399 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc,
400 phys_map_nodes_nb + nodes);
d6f2ea22
AK
401 phys_map_nodes = g_renew(Node, phys_map_nodes,
402 phys_map_nodes_nb_alloc);
403 }
f7bf5461
AK
404}
405
406static uint16_t phys_map_node_alloc(void)
407{
408 unsigned i;
409 uint16_t ret;
410
411 ret = phys_map_nodes_nb++;
412 assert(ret != PHYS_MAP_NODE_NIL);
413 assert(ret != phys_map_nodes_nb_alloc);
d6f2ea22 414 for (i = 0; i < L2_SIZE; ++i) {
07f07b31 415 phys_map_nodes[ret][i].is_leaf = 0;
c19e8800 416 phys_map_nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
d6f2ea22 417 }
f7bf5461 418 return ret;
d6f2ea22
AK
419}
420
421static void phys_map_nodes_reset(void)
422{
423 phys_map_nodes_nb = 0;
424}
425
92e873b9 426
2999097b
AK
427static void phys_page_set_level(PhysPageEntry *lp, target_phys_addr_t *index,
428 target_phys_addr_t *nb, uint16_t leaf,
429 int level)
f7bf5461
AK
430{
431 PhysPageEntry *p;
432 int i;
07f07b31 433 target_phys_addr_t step = (target_phys_addr_t)1 << (level * L2_BITS);
108c49b8 434
07f07b31 435 if (!lp->is_leaf && lp->ptr == PHYS_MAP_NODE_NIL) {
c19e8800
AK
436 lp->ptr = phys_map_node_alloc();
437 p = phys_map_nodes[lp->ptr];
f7bf5461
AK
438 if (level == 0) {
439 for (i = 0; i < L2_SIZE; i++) {
07f07b31 440 p[i].is_leaf = 1;
c19e8800 441 p[i].ptr = phys_section_unassigned;
4346ae3e 442 }
67c4d23c 443 }
f7bf5461 444 } else {
c19e8800 445 p = phys_map_nodes[lp->ptr];
92e873b9 446 }
2999097b 447 lp = &p[(*index >> (level * L2_BITS)) & (L2_SIZE - 1)];
f7bf5461 448
2999097b 449 while (*nb && lp < &p[L2_SIZE]) {
07f07b31
AK
450 if ((*index & (step - 1)) == 0 && *nb >= step) {
451 lp->is_leaf = true;
c19e8800 452 lp->ptr = leaf;
07f07b31
AK
453 *index += step;
454 *nb -= step;
2999097b
AK
455 } else {
456 phys_page_set_level(lp, index, nb, leaf, level - 1);
457 }
458 ++lp;
f7bf5461
AK
459 }
460}
461
2999097b
AK
462static void phys_page_set(target_phys_addr_t index, target_phys_addr_t nb,
463 uint16_t leaf)
f7bf5461 464{
2999097b 465 /* Wildly overreserve - it doesn't matter much. */
07f07b31 466 phys_map_node_reserve(3 * P_L2_LEVELS);
5cd2c5b6 467
2999097b 468 phys_page_set_level(&phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
469}
470
0cac1b66 471MemoryRegionSection *phys_page_find(target_phys_addr_t index)
92e873b9 472{
31ab2b4a
AK
473 PhysPageEntry lp = phys_map;
474 PhysPageEntry *p;
475 int i;
31ab2b4a 476 uint16_t s_index = phys_section_unassigned;
f1f6e3b8 477
07f07b31 478 for (i = P_L2_LEVELS - 1; i >= 0 && !lp.is_leaf; i--) {
c19e8800 479 if (lp.ptr == PHYS_MAP_NODE_NIL) {
31ab2b4a
AK
480 goto not_found;
481 }
c19e8800 482 p = phys_map_nodes[lp.ptr];
31ab2b4a 483 lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)];
5312bd8b 484 }
31ab2b4a 485
c19e8800 486 s_index = lp.ptr;
31ab2b4a 487not_found:
f3705d53
AK
488 return &phys_sections[s_index];
489}
490
e5548617
BS
491bool memory_region_is_unassigned(MemoryRegion *mr)
492{
493 return mr != &io_mem_ram && mr != &io_mem_rom
494 && mr != &io_mem_notdirty && !mr->rom_device
495 && mr != &io_mem_watch;
496}
497
c8a706fe
PB
498#define mmap_lock() do { } while(0)
499#define mmap_unlock() do { } while(0)
9fa3e853 500#endif
fd6ce8f6 501
4369415f
FB
502#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
503
504#if defined(CONFIG_USER_ONLY)
ccbb4d44 505/* Currently it is not recommended to allocate big chunks of data in
4369415f
FB
506 user mode. It will change when a dedicated libc will be used */
507#define USE_STATIC_CODE_GEN_BUFFER
508#endif
509
510#ifdef USE_STATIC_CODE_GEN_BUFFER
ebf50fb3
AJ
511static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
512 __attribute__((aligned (CODE_GEN_ALIGN)));
4369415f
FB
513#endif
514
8fcd3692 515static void code_gen_alloc(unsigned long tb_size)
26a5f13b 516{
4369415f
FB
517#ifdef USE_STATIC_CODE_GEN_BUFFER
518 code_gen_buffer = static_code_gen_buffer;
519 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
520 map_exec(code_gen_buffer, code_gen_buffer_size);
521#else
26a5f13b
FB
522 code_gen_buffer_size = tb_size;
523 if (code_gen_buffer_size == 0) {
4369415f 524#if defined(CONFIG_USER_ONLY)
4369415f
FB
525 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
526#else
ccbb4d44 527 /* XXX: needs adjustments */
94a6b54f 528 code_gen_buffer_size = (unsigned long)(ram_size / 4);
4369415f 529#endif
26a5f13b
FB
530 }
531 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
532 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
533 /* The code gen buffer location may have constraints depending on
534 the host cpu and OS */
535#if defined(__linux__)
536 {
537 int flags;
141ac468
BS
538 void *start = NULL;
539
26a5f13b
FB
540 flags = MAP_PRIVATE | MAP_ANONYMOUS;
541#if defined(__x86_64__)
542 flags |= MAP_32BIT;
543 /* Cannot map more than that */
544 if (code_gen_buffer_size > (800 * 1024 * 1024))
545 code_gen_buffer_size = (800 * 1024 * 1024);
9b9c37c3 546#elif defined(__sparc__) && HOST_LONG_BITS == 64
141ac468 547 // Map the buffer below 2G, so we can use direct calls and branches
d5dd696f 548 start = (void *) 0x40000000UL;
141ac468
BS
549 if (code_gen_buffer_size > (512 * 1024 * 1024))
550 code_gen_buffer_size = (512 * 1024 * 1024);
1cb0661e 551#elif defined(__arm__)
5c84bd90 552 /* Keep the buffer no bigger than 16MB to branch between blocks */
1cb0661e
AZ
553 if (code_gen_buffer_size > 16 * 1024 * 1024)
554 code_gen_buffer_size = 16 * 1024 * 1024;
eba0b893
RH
555#elif defined(__s390x__)
556 /* Map the buffer so that we can use direct calls and branches. */
557 /* We have a +- 4GB range on the branches; leave some slop. */
558 if (code_gen_buffer_size > (3ul * 1024 * 1024 * 1024)) {
559 code_gen_buffer_size = 3ul * 1024 * 1024 * 1024;
560 }
561 start = (void *)0x90000000UL;
26a5f13b 562#endif
141ac468
BS
563 code_gen_buffer = mmap(start, code_gen_buffer_size,
564 PROT_WRITE | PROT_READ | PROT_EXEC,
26a5f13b
FB
565 flags, -1, 0);
566 if (code_gen_buffer == MAP_FAILED) {
567 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
568 exit(1);
569 }
570 }
cbb608a5 571#elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
9f4b09a4
TN
572 || defined(__DragonFly__) || defined(__OpenBSD__) \
573 || defined(__NetBSD__)
06e67a82
AL
574 {
575 int flags;
576 void *addr = NULL;
577 flags = MAP_PRIVATE | MAP_ANONYMOUS;
578#if defined(__x86_64__)
579 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
580 * 0x40000000 is free */
581 flags |= MAP_FIXED;
582 addr = (void *)0x40000000;
583 /* Cannot map more than that */
584 if (code_gen_buffer_size > (800 * 1024 * 1024))
585 code_gen_buffer_size = (800 * 1024 * 1024);
9b9c37c3 586#elif defined(__sparc__) && HOST_LONG_BITS == 64
4cd31ad2 587 // Map the buffer below 2G, so we can use direct calls and branches
d5dd696f 588 addr = (void *) 0x40000000UL;
4cd31ad2
BS
589 if (code_gen_buffer_size > (512 * 1024 * 1024)) {
590 code_gen_buffer_size = (512 * 1024 * 1024);
591 }
06e67a82
AL
592#endif
593 code_gen_buffer = mmap(addr, code_gen_buffer_size,
594 PROT_WRITE | PROT_READ | PROT_EXEC,
595 flags, -1, 0);
596 if (code_gen_buffer == MAP_FAILED) {
597 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
598 exit(1);
599 }
600 }
26a5f13b 601#else
7267c094 602 code_gen_buffer = g_malloc(code_gen_buffer_size);
26a5f13b
FB
603 map_exec(code_gen_buffer, code_gen_buffer_size);
604#endif
4369415f 605#endif /* !USE_STATIC_CODE_GEN_BUFFER */
26a5f13b 606 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
a884da8a
PM
607 code_gen_buffer_max_size = code_gen_buffer_size -
608 (TCG_MAX_OP_SIZE * OPC_BUF_SIZE);
26a5f13b 609 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
7267c094 610 tbs = g_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
26a5f13b
FB
611}
612
613/* Must be called before using the QEMU cpus. 'tb_size' is the size
614 (in bytes) allocated to the translation buffer. Zero means default
615 size. */
d5ab9713 616void tcg_exec_init(unsigned long tb_size)
26a5f13b 617{
26a5f13b
FB
618 cpu_gen_init();
619 code_gen_alloc(tb_size);
620 code_gen_ptr = code_gen_buffer;
813da627 621 tcg_register_jit(code_gen_buffer, code_gen_buffer_size);
4369415f 622 page_init();
9002ec79
RH
623#if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
624 /* There's no guest base to take into account, so go ahead and
625 initialize the prologue now. */
626 tcg_prologue_init(&tcg_ctx);
627#endif
26a5f13b
FB
628}
629
d5ab9713
JK
630bool tcg_enabled(void)
631{
632 return code_gen_buffer != NULL;
633}
634
635void cpu_exec_init_all(void)
636{
637#if !defined(CONFIG_USER_ONLY)
638 memory_map_init();
639 io_mem_init();
640#endif
641}
642
9656f324
PB
643#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
644
e59fb374 645static int cpu_common_post_load(void *opaque, int version_id)
e7f4eff7 646{
9349b4f9 647 CPUArchState *env = opaque;
9656f324 648
3098dba0
AJ
649 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
650 version_id is increased. */
651 env->interrupt_request &= ~0x01;
9656f324
PB
652 tlb_flush(env, 1);
653
654 return 0;
655}
e7f4eff7
JQ
656
657static const VMStateDescription vmstate_cpu_common = {
658 .name = "cpu_common",
659 .version_id = 1,
660 .minimum_version_id = 1,
661 .minimum_version_id_old = 1,
e7f4eff7
JQ
662 .post_load = cpu_common_post_load,
663 .fields = (VMStateField []) {
9349b4f9
AF
664 VMSTATE_UINT32(halted, CPUArchState),
665 VMSTATE_UINT32(interrupt_request, CPUArchState),
e7f4eff7
JQ
666 VMSTATE_END_OF_LIST()
667 }
668};
9656f324
PB
669#endif
670
9349b4f9 671CPUArchState *qemu_get_cpu(int cpu)
950f1472 672{
9349b4f9 673 CPUArchState *env = first_cpu;
950f1472
GC
674
675 while (env) {
676 if (env->cpu_index == cpu)
677 break;
678 env = env->next_cpu;
679 }
680
681 return env;
682}
683
9349b4f9 684void cpu_exec_init(CPUArchState *env)
fd6ce8f6 685{
9349b4f9 686 CPUArchState **penv;
6a00d601
FB
687 int cpu_index;
688
c2764719
PB
689#if defined(CONFIG_USER_ONLY)
690 cpu_list_lock();
691#endif
6a00d601
FB
692 env->next_cpu = NULL;
693 penv = &first_cpu;
694 cpu_index = 0;
695 while (*penv != NULL) {
1e9fa730 696 penv = &(*penv)->next_cpu;
6a00d601
FB
697 cpu_index++;
698 }
699 env->cpu_index = cpu_index;
268a362c 700 env->numa_node = 0;
72cf2d4f
BS
701 QTAILQ_INIT(&env->breakpoints);
702 QTAILQ_INIT(&env->watchpoints);
dc7a09cf
JK
703#ifndef CONFIG_USER_ONLY
704 env->thread_id = qemu_get_thread_id();
705#endif
6a00d601 706 *penv = env;
c2764719
PB
707#if defined(CONFIG_USER_ONLY)
708 cpu_list_unlock();
709#endif
b3c7724c 710#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
0be71e32
AW
711 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, env);
712 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
b3c7724c
PB
713 cpu_save, cpu_load, env);
714#endif
fd6ce8f6
FB
715}
716
d1a1eb74
TG
717/* Allocate a new translation block. Flush the translation buffer if
718 too many translation blocks or too much generated code. */
719static TranslationBlock *tb_alloc(target_ulong pc)
720{
721 TranslationBlock *tb;
722
723 if (nb_tbs >= code_gen_max_blocks ||
724 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
725 return NULL;
726 tb = &tbs[nb_tbs++];
727 tb->pc = pc;
728 tb->cflags = 0;
729 return tb;
730}
731
732void tb_free(TranslationBlock *tb)
733{
734 /* In practice this is mostly used for single use temporary TB
735 Ignore the hard cases and just back up if this TB happens to
736 be the last one generated. */
737 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
738 code_gen_ptr = tb->tc_ptr;
739 nb_tbs--;
740 }
741}
742
9fa3e853
FB
743static inline void invalidate_page_bitmap(PageDesc *p)
744{
745 if (p->code_bitmap) {
7267c094 746 g_free(p->code_bitmap);
9fa3e853
FB
747 p->code_bitmap = NULL;
748 }
749 p->code_write_count = 0;
750}
751
5cd2c5b6
RH
752/* Set to NULL all the 'first_tb' fields in all PageDescs. */
753
754static void page_flush_tb_1 (int level, void **lp)
fd6ce8f6 755{
5cd2c5b6 756 int i;
fd6ce8f6 757
5cd2c5b6
RH
758 if (*lp == NULL) {
759 return;
760 }
761 if (level == 0) {
762 PageDesc *pd = *lp;
7296abac 763 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
764 pd[i].first_tb = NULL;
765 invalidate_page_bitmap(pd + i);
fd6ce8f6 766 }
5cd2c5b6
RH
767 } else {
768 void **pp = *lp;
7296abac 769 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
770 page_flush_tb_1 (level - 1, pp + i);
771 }
772 }
773}
774
775static void page_flush_tb(void)
776{
777 int i;
778 for (i = 0; i < V_L1_SIZE; i++) {
779 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
fd6ce8f6
FB
780 }
781}
782
783/* flush all the translation blocks */
d4e8164f 784/* XXX: tb_flush is currently not thread safe */
9349b4f9 785void tb_flush(CPUArchState *env1)
fd6ce8f6 786{
9349b4f9 787 CPUArchState *env;
0124311e 788#if defined(DEBUG_FLUSH)
ab3d1727
BS
789 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
790 (unsigned long)(code_gen_ptr - code_gen_buffer),
791 nb_tbs, nb_tbs > 0 ?
792 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
fd6ce8f6 793#endif
26a5f13b 794 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
a208e54a
PB
795 cpu_abort(env1, "Internal error: code buffer overflow\n");
796
fd6ce8f6 797 nb_tbs = 0;
3b46e624 798
6a00d601
FB
799 for(env = first_cpu; env != NULL; env = env->next_cpu) {
800 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
801 }
9fa3e853 802
8a8a608f 803 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
fd6ce8f6 804 page_flush_tb();
9fa3e853 805
fd6ce8f6 806 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
807 /* XXX: flush processor icache at this point if cache flush is
808 expensive */
e3db7226 809 tb_flush_count++;
fd6ce8f6
FB
810}
811
812#ifdef DEBUG_TB_CHECK
813
bc98a7ef 814static void tb_invalidate_check(target_ulong address)
fd6ce8f6
FB
815{
816 TranslationBlock *tb;
817 int i;
818 address &= TARGET_PAGE_MASK;
99773bd4
PB
819 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
820 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
821 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
822 address >= tb->pc + tb->size)) {
0bf9e31a
BS
823 printf("ERROR invalidate: address=" TARGET_FMT_lx
824 " PC=%08lx size=%04x\n",
99773bd4 825 address, (long)tb->pc, tb->size);
fd6ce8f6
FB
826 }
827 }
828 }
829}
830
831/* verify that all the pages have correct rights for code */
832static void tb_page_check(void)
833{
834 TranslationBlock *tb;
835 int i, flags1, flags2;
3b46e624 836
99773bd4
PB
837 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
838 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
839 flags1 = page_get_flags(tb->pc);
840 flags2 = page_get_flags(tb->pc + tb->size - 1);
841 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
842 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
99773bd4 843 (long)tb->pc, tb->size, flags1, flags2);
fd6ce8f6
FB
844 }
845 }
846 }
847}
848
849#endif
850
851/* invalidate one TB */
852static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
853 int next_offset)
854{
855 TranslationBlock *tb1;
856 for(;;) {
857 tb1 = *ptb;
858 if (tb1 == tb) {
859 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
860 break;
861 }
862 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
863 }
864}
865
9fa3e853
FB
866static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
867{
868 TranslationBlock *tb1;
869 unsigned int n1;
870
871 for(;;) {
872 tb1 = *ptb;
8efe0ca8
SW
873 n1 = (uintptr_t)tb1 & 3;
874 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
9fa3e853
FB
875 if (tb1 == tb) {
876 *ptb = tb1->page_next[n1];
877 break;
878 }
879 ptb = &tb1->page_next[n1];
880 }
881}
882
d4e8164f
FB
883static inline void tb_jmp_remove(TranslationBlock *tb, int n)
884{
885 TranslationBlock *tb1, **ptb;
886 unsigned int n1;
887
888 ptb = &tb->jmp_next[n];
889 tb1 = *ptb;
890 if (tb1) {
891 /* find tb(n) in circular list */
892 for(;;) {
893 tb1 = *ptb;
8efe0ca8
SW
894 n1 = (uintptr_t)tb1 & 3;
895 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
d4e8164f
FB
896 if (n1 == n && tb1 == tb)
897 break;
898 if (n1 == 2) {
899 ptb = &tb1->jmp_first;
900 } else {
901 ptb = &tb1->jmp_next[n1];
902 }
903 }
904 /* now we can suppress tb(n) from the list */
905 *ptb = tb->jmp_next[n];
906
907 tb->jmp_next[n] = NULL;
908 }
909}
910
911/* reset the jump entry 'n' of a TB so that it is not chained to
912 another TB */
913static inline void tb_reset_jump(TranslationBlock *tb, int n)
914{
8efe0ca8 915 tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n]));
d4e8164f
FB
916}
917
41c1b1c9 918void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
fd6ce8f6 919{
9349b4f9 920 CPUArchState *env;
8a40a180 921 PageDesc *p;
d4e8164f 922 unsigned int h, n1;
41c1b1c9 923 tb_page_addr_t phys_pc;
8a40a180 924 TranslationBlock *tb1, *tb2;
3b46e624 925
8a40a180
FB
926 /* remove the TB from the hash list */
927 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
928 h = tb_phys_hash_func(phys_pc);
5fafdf24 929 tb_remove(&tb_phys_hash[h], tb,
8a40a180
FB
930 offsetof(TranslationBlock, phys_hash_next));
931
932 /* remove the TB from the page list */
933 if (tb->page_addr[0] != page_addr) {
934 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
935 tb_page_remove(&p->first_tb, tb);
936 invalidate_page_bitmap(p);
937 }
938 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
939 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
940 tb_page_remove(&p->first_tb, tb);
941 invalidate_page_bitmap(p);
942 }
943
36bdbe54 944 tb_invalidated_flag = 1;
59817ccb 945
fd6ce8f6 946 /* remove the TB from the hash list */
8a40a180 947 h = tb_jmp_cache_hash_func(tb->pc);
6a00d601
FB
948 for(env = first_cpu; env != NULL; env = env->next_cpu) {
949 if (env->tb_jmp_cache[h] == tb)
950 env->tb_jmp_cache[h] = NULL;
951 }
d4e8164f
FB
952
953 /* suppress this TB from the two jump lists */
954 tb_jmp_remove(tb, 0);
955 tb_jmp_remove(tb, 1);
956
957 /* suppress any remaining jumps to this TB */
958 tb1 = tb->jmp_first;
959 for(;;) {
8efe0ca8 960 n1 = (uintptr_t)tb1 & 3;
d4e8164f
FB
961 if (n1 == 2)
962 break;
8efe0ca8 963 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
d4e8164f
FB
964 tb2 = tb1->jmp_next[n1];
965 tb_reset_jump(tb1, n1);
966 tb1->jmp_next[n1] = NULL;
967 tb1 = tb2;
968 }
8efe0ca8 969 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); /* fail safe */
9fa3e853 970
e3db7226 971 tb_phys_invalidate_count++;
9fa3e853
FB
972}
973
974static inline void set_bits(uint8_t *tab, int start, int len)
975{
976 int end, mask, end1;
977
978 end = start + len;
979 tab += start >> 3;
980 mask = 0xff << (start & 7);
981 if ((start & ~7) == (end & ~7)) {
982 if (start < end) {
983 mask &= ~(0xff << (end & 7));
984 *tab |= mask;
985 }
986 } else {
987 *tab++ |= mask;
988 start = (start + 8) & ~7;
989 end1 = end & ~7;
990 while (start < end1) {
991 *tab++ = 0xff;
992 start += 8;
993 }
994 if (start < end) {
995 mask = ~(0xff << (end & 7));
996 *tab |= mask;
997 }
998 }
999}
1000
1001static void build_page_bitmap(PageDesc *p)
1002{
1003 int n, tb_start, tb_end;
1004 TranslationBlock *tb;
3b46e624 1005
7267c094 1006 p->code_bitmap = g_malloc0(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
1007
1008 tb = p->first_tb;
1009 while (tb != NULL) {
8efe0ca8
SW
1010 n = (uintptr_t)tb & 3;
1011 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
9fa3e853
FB
1012 /* NOTE: this is subtle as a TB may span two physical pages */
1013 if (n == 0) {
1014 /* NOTE: tb_end may be after the end of the page, but
1015 it is not a problem */
1016 tb_start = tb->pc & ~TARGET_PAGE_MASK;
1017 tb_end = tb_start + tb->size;
1018 if (tb_end > TARGET_PAGE_SIZE)
1019 tb_end = TARGET_PAGE_SIZE;
1020 } else {
1021 tb_start = 0;
1022 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1023 }
1024 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
1025 tb = tb->page_next[n];
1026 }
1027}
1028
9349b4f9 1029TranslationBlock *tb_gen_code(CPUArchState *env,
2e70f6ef
PB
1030 target_ulong pc, target_ulong cs_base,
1031 int flags, int cflags)
d720b93d
FB
1032{
1033 TranslationBlock *tb;
1034 uint8_t *tc_ptr;
41c1b1c9
PB
1035 tb_page_addr_t phys_pc, phys_page2;
1036 target_ulong virt_page2;
d720b93d
FB
1037 int code_gen_size;
1038
41c1b1c9 1039 phys_pc = get_page_addr_code(env, pc);
c27004ec 1040 tb = tb_alloc(pc);
d720b93d
FB
1041 if (!tb) {
1042 /* flush must be done */
1043 tb_flush(env);
1044 /* cannot fail at this point */
c27004ec 1045 tb = tb_alloc(pc);
2e70f6ef
PB
1046 /* Don't forget to invalidate previous TB info. */
1047 tb_invalidated_flag = 1;
d720b93d
FB
1048 }
1049 tc_ptr = code_gen_ptr;
1050 tb->tc_ptr = tc_ptr;
1051 tb->cs_base = cs_base;
1052 tb->flags = flags;
1053 tb->cflags = cflags;
d07bde88 1054 cpu_gen_code(env, tb, &code_gen_size);
8efe0ca8
SW
1055 code_gen_ptr = (void *)(((uintptr_t)code_gen_ptr + code_gen_size +
1056 CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
3b46e624 1057
d720b93d 1058 /* check next page if needed */
c27004ec 1059 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
d720b93d 1060 phys_page2 = -1;
c27004ec 1061 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
41c1b1c9 1062 phys_page2 = get_page_addr_code(env, virt_page2);
d720b93d 1063 }
41c1b1c9 1064 tb_link_page(tb, phys_pc, phys_page2);
2e70f6ef 1065 return tb;
d720b93d 1066}
3b46e624 1067
77a8f1a5 1068/*
8e0fdce3
JK
1069 * Invalidate all TBs which intersect with the target physical address range
1070 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1071 * 'is_cpu_write_access' should be true if called from a real cpu write
1072 * access: the virtual CPU will exit the current TB if code is modified inside
1073 * this TB.
77a8f1a5
AG
1074 */
1075void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end,
1076 int is_cpu_write_access)
1077{
1078 while (start < end) {
1079 tb_invalidate_phys_page_range(start, end, is_cpu_write_access);
1080 start &= TARGET_PAGE_MASK;
1081 start += TARGET_PAGE_SIZE;
1082 }
1083}
1084
8e0fdce3
JK
1085/*
1086 * Invalidate all TBs which intersect with the target physical address range
1087 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1088 * 'is_cpu_write_access' should be true if called from a real cpu write
1089 * access: the virtual CPU will exit the current TB if code is modified inside
1090 * this TB.
1091 */
41c1b1c9 1092void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
d720b93d
FB
1093 int is_cpu_write_access)
1094{
6b917547 1095 TranslationBlock *tb, *tb_next, *saved_tb;
9349b4f9 1096 CPUArchState *env = cpu_single_env;
41c1b1c9 1097 tb_page_addr_t tb_start, tb_end;
6b917547
AL
1098 PageDesc *p;
1099 int n;
1100#ifdef TARGET_HAS_PRECISE_SMC
1101 int current_tb_not_found = is_cpu_write_access;
1102 TranslationBlock *current_tb = NULL;
1103 int current_tb_modified = 0;
1104 target_ulong current_pc = 0;
1105 target_ulong current_cs_base = 0;
1106 int current_flags = 0;
1107#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1108
1109 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1110 if (!p)
9fa3e853 1111 return;
5fafdf24 1112 if (!p->code_bitmap &&
d720b93d
FB
1113 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1114 is_cpu_write_access) {
9fa3e853
FB
1115 /* build code bitmap */
1116 build_page_bitmap(p);
1117 }
1118
1119 /* we remove all the TBs in the range [start, end[ */
1120 /* XXX: see if in some cases it could be faster to invalidate all the code */
1121 tb = p->first_tb;
1122 while (tb != NULL) {
8efe0ca8
SW
1123 n = (uintptr_t)tb & 3;
1124 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
9fa3e853
FB
1125 tb_next = tb->page_next[n];
1126 /* NOTE: this is subtle as a TB may span two physical pages */
1127 if (n == 0) {
1128 /* NOTE: tb_end may be after the end of the page, but
1129 it is not a problem */
1130 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1131 tb_end = tb_start + tb->size;
1132 } else {
1133 tb_start = tb->page_addr[1];
1134 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1135 }
1136 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
1137#ifdef TARGET_HAS_PRECISE_SMC
1138 if (current_tb_not_found) {
1139 current_tb_not_found = 0;
1140 current_tb = NULL;
2e70f6ef 1141 if (env->mem_io_pc) {
d720b93d 1142 /* now we have a real cpu fault */
2e70f6ef 1143 current_tb = tb_find_pc(env->mem_io_pc);
d720b93d
FB
1144 }
1145 }
1146 if (current_tb == tb &&
2e70f6ef 1147 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1148 /* If we are modifying the current TB, we must stop
1149 its execution. We could be more precise by checking
1150 that the modification is after the current PC, but it
1151 would require a specialized function to partially
1152 restore the CPU state */
3b46e624 1153
d720b93d 1154 current_tb_modified = 1;
618ba8e6 1155 cpu_restore_state(current_tb, env, env->mem_io_pc);
6b917547
AL
1156 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1157 &current_flags);
d720b93d
FB
1158 }
1159#endif /* TARGET_HAS_PRECISE_SMC */
6f5a9f7e
FB
1160 /* we need to do that to handle the case where a signal
1161 occurs while doing tb_phys_invalidate() */
1162 saved_tb = NULL;
1163 if (env) {
1164 saved_tb = env->current_tb;
1165 env->current_tb = NULL;
1166 }
9fa3e853 1167 tb_phys_invalidate(tb, -1);
6f5a9f7e
FB
1168 if (env) {
1169 env->current_tb = saved_tb;
1170 if (env->interrupt_request && env->current_tb)
1171 cpu_interrupt(env, env->interrupt_request);
1172 }
9fa3e853
FB
1173 }
1174 tb = tb_next;
1175 }
1176#if !defined(CONFIG_USER_ONLY)
1177 /* if no code remaining, no need to continue to use slow writes */
1178 if (!p->first_tb) {
1179 invalidate_page_bitmap(p);
d720b93d 1180 if (is_cpu_write_access) {
2e70f6ef 1181 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
d720b93d
FB
1182 }
1183 }
1184#endif
1185#ifdef TARGET_HAS_PRECISE_SMC
1186 if (current_tb_modified) {
1187 /* we generate a block containing just the instruction
1188 modifying the memory. It will ensure that it cannot modify
1189 itself */
ea1c1802 1190 env->current_tb = NULL;
2e70f6ef 1191 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d 1192 cpu_resume_from_signal(env, NULL);
9fa3e853 1193 }
fd6ce8f6 1194#endif
9fa3e853 1195}
fd6ce8f6 1196
9fa3e853 1197/* len must be <= 8 and start must be a multiple of len */
41c1b1c9 1198static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
9fa3e853
FB
1199{
1200 PageDesc *p;
1201 int offset, b;
59817ccb 1202#if 0
a4193c8a 1203 if (1) {
93fcfe39
AL
1204 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1205 cpu_single_env->mem_io_vaddr, len,
1206 cpu_single_env->eip,
8efe0ca8
SW
1207 cpu_single_env->eip +
1208 (intptr_t)cpu_single_env->segs[R_CS].base);
59817ccb
FB
1209 }
1210#endif
9fa3e853 1211 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1212 if (!p)
9fa3e853
FB
1213 return;
1214 if (p->code_bitmap) {
1215 offset = start & ~TARGET_PAGE_MASK;
1216 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1217 if (b & ((1 << len) - 1))
1218 goto do_invalidate;
1219 } else {
1220 do_invalidate:
d720b93d 1221 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
1222 }
1223}
1224
9fa3e853 1225#if !defined(CONFIG_SOFTMMU)
41c1b1c9 1226static void tb_invalidate_phys_page(tb_page_addr_t addr,
20503968 1227 uintptr_t pc, void *puc)
9fa3e853 1228{
6b917547 1229 TranslationBlock *tb;
9fa3e853 1230 PageDesc *p;
6b917547 1231 int n;
d720b93d 1232#ifdef TARGET_HAS_PRECISE_SMC
6b917547 1233 TranslationBlock *current_tb = NULL;
9349b4f9 1234 CPUArchState *env = cpu_single_env;
6b917547
AL
1235 int current_tb_modified = 0;
1236 target_ulong current_pc = 0;
1237 target_ulong current_cs_base = 0;
1238 int current_flags = 0;
d720b93d 1239#endif
9fa3e853
FB
1240
1241 addr &= TARGET_PAGE_MASK;
1242 p = page_find(addr >> TARGET_PAGE_BITS);
5fafdf24 1243 if (!p)
9fa3e853
FB
1244 return;
1245 tb = p->first_tb;
d720b93d
FB
1246#ifdef TARGET_HAS_PRECISE_SMC
1247 if (tb && pc != 0) {
1248 current_tb = tb_find_pc(pc);
1249 }
1250#endif
9fa3e853 1251 while (tb != NULL) {
8efe0ca8
SW
1252 n = (uintptr_t)tb & 3;
1253 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
d720b93d
FB
1254#ifdef TARGET_HAS_PRECISE_SMC
1255 if (current_tb == tb &&
2e70f6ef 1256 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1257 /* If we are modifying the current TB, we must stop
1258 its execution. We could be more precise by checking
1259 that the modification is after the current PC, but it
1260 would require a specialized function to partially
1261 restore the CPU state */
3b46e624 1262
d720b93d 1263 current_tb_modified = 1;
618ba8e6 1264 cpu_restore_state(current_tb, env, pc);
6b917547
AL
1265 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1266 &current_flags);
d720b93d
FB
1267 }
1268#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1269 tb_phys_invalidate(tb, addr);
1270 tb = tb->page_next[n];
1271 }
fd6ce8f6 1272 p->first_tb = NULL;
d720b93d
FB
1273#ifdef TARGET_HAS_PRECISE_SMC
1274 if (current_tb_modified) {
1275 /* we generate a block containing just the instruction
1276 modifying the memory. It will ensure that it cannot modify
1277 itself */
ea1c1802 1278 env->current_tb = NULL;
2e70f6ef 1279 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d
FB
1280 cpu_resume_from_signal(env, puc);
1281 }
1282#endif
fd6ce8f6 1283}
9fa3e853 1284#endif
fd6ce8f6
FB
1285
1286/* add the tb in the target page and protect it if necessary */
5fafdf24 1287static inline void tb_alloc_page(TranslationBlock *tb,
41c1b1c9 1288 unsigned int n, tb_page_addr_t page_addr)
fd6ce8f6
FB
1289{
1290 PageDesc *p;
4429ab44
JQ
1291#ifndef CONFIG_USER_ONLY
1292 bool page_already_protected;
1293#endif
9fa3e853
FB
1294
1295 tb->page_addr[n] = page_addr;
5cd2c5b6 1296 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
9fa3e853 1297 tb->page_next[n] = p->first_tb;
4429ab44
JQ
1298#ifndef CONFIG_USER_ONLY
1299 page_already_protected = p->first_tb != NULL;
1300#endif
8efe0ca8 1301 p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
9fa3e853 1302 invalidate_page_bitmap(p);
fd6ce8f6 1303
107db443 1304#if defined(TARGET_HAS_SMC) || 1
d720b93d 1305
9fa3e853 1306#if defined(CONFIG_USER_ONLY)
fd6ce8f6 1307 if (p->flags & PAGE_WRITE) {
53a5960a
PB
1308 target_ulong addr;
1309 PageDesc *p2;
9fa3e853
FB
1310 int prot;
1311
fd6ce8f6
FB
1312 /* force the host page as non writable (writes will have a
1313 page fault + mprotect overhead) */
53a5960a 1314 page_addr &= qemu_host_page_mask;
fd6ce8f6 1315 prot = 0;
53a5960a
PB
1316 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1317 addr += TARGET_PAGE_SIZE) {
1318
1319 p2 = page_find (addr >> TARGET_PAGE_BITS);
1320 if (!p2)
1321 continue;
1322 prot |= p2->flags;
1323 p2->flags &= ~PAGE_WRITE;
53a5960a 1324 }
5fafdf24 1325 mprotect(g2h(page_addr), qemu_host_page_size,
fd6ce8f6
FB
1326 (prot & PAGE_BITS) & ~PAGE_WRITE);
1327#ifdef DEBUG_TB_INVALIDATE
ab3d1727 1328 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
53a5960a 1329 page_addr);
fd6ce8f6 1330#endif
fd6ce8f6 1331 }
9fa3e853
FB
1332#else
1333 /* if some code is already present, then the pages are already
1334 protected. So we handle the case where only the first TB is
1335 allocated in a physical page */
4429ab44 1336 if (!page_already_protected) {
6a00d601 1337 tlb_protect_code(page_addr);
9fa3e853
FB
1338 }
1339#endif
d720b93d
FB
1340
1341#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
1342}
1343
9fa3e853
FB
1344/* add a new TB and link it to the physical page tables. phys_page2 is
1345 (-1) to indicate that only one page contains the TB. */
41c1b1c9
PB
1346void tb_link_page(TranslationBlock *tb,
1347 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
d4e8164f 1348{
9fa3e853
FB
1349 unsigned int h;
1350 TranslationBlock **ptb;
1351
c8a706fe
PB
1352 /* Grab the mmap lock to stop another thread invalidating this TB
1353 before we are done. */
1354 mmap_lock();
9fa3e853
FB
1355 /* add in the physical hash table */
1356 h = tb_phys_hash_func(phys_pc);
1357 ptb = &tb_phys_hash[h];
1358 tb->phys_hash_next = *ptb;
1359 *ptb = tb;
fd6ce8f6
FB
1360
1361 /* add in the page list */
9fa3e853
FB
1362 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1363 if (phys_page2 != -1)
1364 tb_alloc_page(tb, 1, phys_page2);
1365 else
1366 tb->page_addr[1] = -1;
9fa3e853 1367
8efe0ca8 1368 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2);
d4e8164f
FB
1369 tb->jmp_next[0] = NULL;
1370 tb->jmp_next[1] = NULL;
1371
1372 /* init original jump addresses */
1373 if (tb->tb_next_offset[0] != 0xffff)
1374 tb_reset_jump(tb, 0);
1375 if (tb->tb_next_offset[1] != 0xffff)
1376 tb_reset_jump(tb, 1);
8a40a180
FB
1377
1378#ifdef DEBUG_TB_CHECK
1379 tb_page_check();
1380#endif
c8a706fe 1381 mmap_unlock();
fd6ce8f6
FB
1382}
1383
9fa3e853
FB
1384/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1385 tb[1].tc_ptr. Return NULL if not found */
6375e09e 1386TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
fd6ce8f6 1387{
9fa3e853 1388 int m_min, m_max, m;
8efe0ca8 1389 uintptr_t v;
9fa3e853 1390 TranslationBlock *tb;
a513fe19
FB
1391
1392 if (nb_tbs <= 0)
1393 return NULL;
8efe0ca8
SW
1394 if (tc_ptr < (uintptr_t)code_gen_buffer ||
1395 tc_ptr >= (uintptr_t)code_gen_ptr) {
a513fe19 1396 return NULL;
8efe0ca8 1397 }
a513fe19
FB
1398 /* binary search (cf Knuth) */
1399 m_min = 0;
1400 m_max = nb_tbs - 1;
1401 while (m_min <= m_max) {
1402 m = (m_min + m_max) >> 1;
1403 tb = &tbs[m];
8efe0ca8 1404 v = (uintptr_t)tb->tc_ptr;
a513fe19
FB
1405 if (v == tc_ptr)
1406 return tb;
1407 else if (tc_ptr < v) {
1408 m_max = m - 1;
1409 } else {
1410 m_min = m + 1;
1411 }
5fafdf24 1412 }
a513fe19
FB
1413 return &tbs[m_max];
1414}
7501267e 1415
ea041c0e
FB
1416static void tb_reset_jump_recursive(TranslationBlock *tb);
1417
1418static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1419{
1420 TranslationBlock *tb1, *tb_next, **ptb;
1421 unsigned int n1;
1422
1423 tb1 = tb->jmp_next[n];
1424 if (tb1 != NULL) {
1425 /* find head of list */
1426 for(;;) {
8efe0ca8
SW
1427 n1 = (uintptr_t)tb1 & 3;
1428 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
ea041c0e
FB
1429 if (n1 == 2)
1430 break;
1431 tb1 = tb1->jmp_next[n1];
1432 }
1433 /* we are now sure now that tb jumps to tb1 */
1434 tb_next = tb1;
1435
1436 /* remove tb from the jmp_first list */
1437 ptb = &tb_next->jmp_first;
1438 for(;;) {
1439 tb1 = *ptb;
8efe0ca8
SW
1440 n1 = (uintptr_t)tb1 & 3;
1441 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
ea041c0e
FB
1442 if (n1 == n && tb1 == tb)
1443 break;
1444 ptb = &tb1->jmp_next[n1];
1445 }
1446 *ptb = tb->jmp_next[n];
1447 tb->jmp_next[n] = NULL;
3b46e624 1448
ea041c0e
FB
1449 /* suppress the jump to next tb in generated code */
1450 tb_reset_jump(tb, n);
1451
0124311e 1452 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1453 tb_reset_jump_recursive(tb_next);
1454 }
1455}
1456
1457static void tb_reset_jump_recursive(TranslationBlock *tb)
1458{
1459 tb_reset_jump_recursive2(tb, 0);
1460 tb_reset_jump_recursive2(tb, 1);
1461}
1462
1fddef4b 1463#if defined(TARGET_HAS_ICE)
94df27fd 1464#if defined(CONFIG_USER_ONLY)
9349b4f9 1465static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
94df27fd
PB
1466{
1467 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1468}
1469#else
1e7855a5 1470void tb_invalidate_phys_addr(target_phys_addr_t addr)
d720b93d 1471{
c227f099 1472 ram_addr_t ram_addr;
f3705d53 1473 MemoryRegionSection *section;
d720b93d 1474
06ef3525 1475 section = phys_page_find(addr >> TARGET_PAGE_BITS);
f3705d53
AK
1476 if (!(memory_region_is_ram(section->mr)
1477 || (section->mr->rom_device && section->mr->readable))) {
06ef3525
AK
1478 return;
1479 }
f3705d53 1480 ram_addr = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
cc5bea60 1481 + memory_region_section_addr(section, addr);
706cd4b5 1482 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
d720b93d 1483}
1e7855a5
MF
1484
1485static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
1486{
9d70c4b7
MF
1487 tb_invalidate_phys_addr(cpu_get_phys_page_debug(env, pc) |
1488 (pc & ~TARGET_PAGE_MASK));
1e7855a5 1489}
c27004ec 1490#endif
94df27fd 1491#endif /* TARGET_HAS_ICE */
d720b93d 1492
c527ee8f 1493#if defined(CONFIG_USER_ONLY)
9349b4f9 1494void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
c527ee8f
PB
1495
1496{
1497}
1498
9349b4f9 1499int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
c527ee8f
PB
1500 int flags, CPUWatchpoint **watchpoint)
1501{
1502 return -ENOSYS;
1503}
1504#else
6658ffb8 1505/* Add a watchpoint. */
9349b4f9 1506int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
a1d1bb31 1507 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1508{
b4051334 1509 target_ulong len_mask = ~(len - 1);
c0ce998e 1510 CPUWatchpoint *wp;
6658ffb8 1511
b4051334 1512 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
0dc23828
MF
1513 if ((len & (len - 1)) || (addr & ~len_mask) ||
1514 len == 0 || len > TARGET_PAGE_SIZE) {
b4051334
AL
1515 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1516 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1517 return -EINVAL;
1518 }
7267c094 1519 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
1520
1521 wp->vaddr = addr;
b4051334 1522 wp->len_mask = len_mask;
a1d1bb31
AL
1523 wp->flags = flags;
1524
2dc9f411 1525 /* keep all GDB-injected watchpoints in front */
c0ce998e 1526 if (flags & BP_GDB)
72cf2d4f 1527 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
c0ce998e 1528 else
72cf2d4f 1529 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
6658ffb8 1530
6658ffb8 1531 tlb_flush_page(env, addr);
a1d1bb31
AL
1532
1533 if (watchpoint)
1534 *watchpoint = wp;
1535 return 0;
6658ffb8
PB
1536}
1537
a1d1bb31 1538/* Remove a specific watchpoint. */
9349b4f9 1539int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
a1d1bb31 1540 int flags)
6658ffb8 1541{
b4051334 1542 target_ulong len_mask = ~(len - 1);
a1d1bb31 1543 CPUWatchpoint *wp;
6658ffb8 1544
72cf2d4f 1545 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334 1546 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 1547 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 1548 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
1549 return 0;
1550 }
1551 }
a1d1bb31 1552 return -ENOENT;
6658ffb8
PB
1553}
1554
a1d1bb31 1555/* Remove a specific watchpoint by reference. */
9349b4f9 1556void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
a1d1bb31 1557{
72cf2d4f 1558 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
7d03f82f 1559
a1d1bb31
AL
1560 tlb_flush_page(env, watchpoint->vaddr);
1561
7267c094 1562 g_free(watchpoint);
a1d1bb31
AL
1563}
1564
1565/* Remove all matching watchpoints. */
9349b4f9 1566void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
a1d1bb31 1567{
c0ce998e 1568 CPUWatchpoint *wp, *next;
a1d1bb31 1569
72cf2d4f 1570 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
a1d1bb31
AL
1571 if (wp->flags & mask)
1572 cpu_watchpoint_remove_by_ref(env, wp);
c0ce998e 1573 }
7d03f82f 1574}
c527ee8f 1575#endif
7d03f82f 1576
a1d1bb31 1577/* Add a breakpoint. */
9349b4f9 1578int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
a1d1bb31 1579 CPUBreakpoint **breakpoint)
4c3a88a2 1580{
1fddef4b 1581#if defined(TARGET_HAS_ICE)
c0ce998e 1582 CPUBreakpoint *bp;
3b46e624 1583
7267c094 1584 bp = g_malloc(sizeof(*bp));
4c3a88a2 1585
a1d1bb31
AL
1586 bp->pc = pc;
1587 bp->flags = flags;
1588
2dc9f411 1589 /* keep all GDB-injected breakpoints in front */
c0ce998e 1590 if (flags & BP_GDB)
72cf2d4f 1591 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
c0ce998e 1592 else
72cf2d4f 1593 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
3b46e624 1594
d720b93d 1595 breakpoint_invalidate(env, pc);
a1d1bb31
AL
1596
1597 if (breakpoint)
1598 *breakpoint = bp;
4c3a88a2
FB
1599 return 0;
1600#else
a1d1bb31 1601 return -ENOSYS;
4c3a88a2
FB
1602#endif
1603}
1604
a1d1bb31 1605/* Remove a specific breakpoint. */
9349b4f9 1606int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
a1d1bb31 1607{
7d03f82f 1608#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
1609 CPUBreakpoint *bp;
1610
72cf2d4f 1611 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
a1d1bb31
AL
1612 if (bp->pc == pc && bp->flags == flags) {
1613 cpu_breakpoint_remove_by_ref(env, bp);
1614 return 0;
1615 }
7d03f82f 1616 }
a1d1bb31
AL
1617 return -ENOENT;
1618#else
1619 return -ENOSYS;
7d03f82f
EI
1620#endif
1621}
1622
a1d1bb31 1623/* Remove a specific breakpoint by reference. */
9349b4f9 1624void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
4c3a88a2 1625{
1fddef4b 1626#if defined(TARGET_HAS_ICE)
72cf2d4f 1627 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
d720b93d 1628
a1d1bb31
AL
1629 breakpoint_invalidate(env, breakpoint->pc);
1630
7267c094 1631 g_free(breakpoint);
a1d1bb31
AL
1632#endif
1633}
1634
1635/* Remove all matching breakpoints. */
9349b4f9 1636void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
a1d1bb31
AL
1637{
1638#if defined(TARGET_HAS_ICE)
c0ce998e 1639 CPUBreakpoint *bp, *next;
a1d1bb31 1640
72cf2d4f 1641 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
a1d1bb31
AL
1642 if (bp->flags & mask)
1643 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 1644 }
4c3a88a2
FB
1645#endif
1646}
1647
c33a346e
FB
1648/* enable or disable single step mode. EXCP_DEBUG is returned by the
1649 CPU loop after each instruction */
9349b4f9 1650void cpu_single_step(CPUArchState *env, int enabled)
c33a346e 1651{
1fddef4b 1652#if defined(TARGET_HAS_ICE)
c33a346e
FB
1653 if (env->singlestep_enabled != enabled) {
1654 env->singlestep_enabled = enabled;
e22a25c9
AL
1655 if (kvm_enabled())
1656 kvm_update_guest_debug(env, 0);
1657 else {
ccbb4d44 1658 /* must flush all the translated code to avoid inconsistencies */
e22a25c9
AL
1659 /* XXX: only flush what is necessary */
1660 tb_flush(env);
1661 }
c33a346e
FB
1662 }
1663#endif
1664}
1665
9349b4f9 1666static void cpu_unlink_tb(CPUArchState *env)
ea041c0e 1667{
3098dba0
AJ
1668 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1669 problem and hope the cpu will stop of its own accord. For userspace
1670 emulation this often isn't actually as bad as it sounds. Often
1671 signals are used primarily to interrupt blocking syscalls. */
ea041c0e 1672 TranslationBlock *tb;
c227f099 1673 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
59817ccb 1674
cab1b4bd 1675 spin_lock(&interrupt_lock);
3098dba0
AJ
1676 tb = env->current_tb;
1677 /* if the cpu is currently executing code, we must unlink it and
1678 all the potentially executing TB */
f76cfe56 1679 if (tb) {
3098dba0
AJ
1680 env->current_tb = NULL;
1681 tb_reset_jump_recursive(tb);
be214e6c 1682 }
cab1b4bd 1683 spin_unlock(&interrupt_lock);
3098dba0
AJ
1684}
1685
97ffbd8d 1686#ifndef CONFIG_USER_ONLY
3098dba0 1687/* mask must never be zero, except for A20 change call */
9349b4f9 1688static void tcg_handle_interrupt(CPUArchState *env, int mask)
3098dba0
AJ
1689{
1690 int old_mask;
be214e6c 1691
2e70f6ef 1692 old_mask = env->interrupt_request;
68a79315 1693 env->interrupt_request |= mask;
3098dba0 1694
8edac960
AL
1695 /*
1696 * If called from iothread context, wake the target cpu in
1697 * case its halted.
1698 */
b7680cb6 1699 if (!qemu_cpu_is_self(env)) {
8edac960
AL
1700 qemu_cpu_kick(env);
1701 return;
1702 }
8edac960 1703
2e70f6ef 1704 if (use_icount) {
266910c4 1705 env->icount_decr.u16.high = 0xffff;
2e70f6ef 1706 if (!can_do_io(env)
be214e6c 1707 && (mask & ~old_mask) != 0) {
2e70f6ef
PB
1708 cpu_abort(env, "Raised interrupt while not in I/O function");
1709 }
2e70f6ef 1710 } else {
3098dba0 1711 cpu_unlink_tb(env);
ea041c0e
FB
1712 }
1713}
1714
ec6959d0
JK
1715CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt;
1716
97ffbd8d
JK
1717#else /* CONFIG_USER_ONLY */
1718
9349b4f9 1719void cpu_interrupt(CPUArchState *env, int mask)
97ffbd8d
JK
1720{
1721 env->interrupt_request |= mask;
1722 cpu_unlink_tb(env);
1723}
1724#endif /* CONFIG_USER_ONLY */
1725
9349b4f9 1726void cpu_reset_interrupt(CPUArchState *env, int mask)
b54ad049
FB
1727{
1728 env->interrupt_request &= ~mask;
1729}
1730
9349b4f9 1731void cpu_exit(CPUArchState *env)
3098dba0
AJ
1732{
1733 env->exit_request = 1;
1734 cpu_unlink_tb(env);
1735}
1736
9349b4f9 1737void cpu_abort(CPUArchState *env, const char *fmt, ...)
7501267e
FB
1738{
1739 va_list ap;
493ae1f0 1740 va_list ap2;
7501267e
FB
1741
1742 va_start(ap, fmt);
493ae1f0 1743 va_copy(ap2, ap);
7501267e
FB
1744 fprintf(stderr, "qemu: fatal: ");
1745 vfprintf(stderr, fmt, ap);
1746 fprintf(stderr, "\n");
6fd2a026 1747 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
93fcfe39
AL
1748 if (qemu_log_enabled()) {
1749 qemu_log("qemu: fatal: ");
1750 qemu_log_vprintf(fmt, ap2);
1751 qemu_log("\n");
6fd2a026 1752 log_cpu_state(env, CPU_DUMP_FPU | CPU_DUMP_CCOP);
31b1a7b4 1753 qemu_log_flush();
93fcfe39 1754 qemu_log_close();
924edcae 1755 }
493ae1f0 1756 va_end(ap2);
f9373291 1757 va_end(ap);
fd052bf6
RV
1758#if defined(CONFIG_USER_ONLY)
1759 {
1760 struct sigaction act;
1761 sigfillset(&act.sa_mask);
1762 act.sa_handler = SIG_DFL;
1763 sigaction(SIGABRT, &act, NULL);
1764 }
1765#endif
7501267e
FB
1766 abort();
1767}
1768
9349b4f9 1769CPUArchState *cpu_copy(CPUArchState *env)
c5be9f08 1770{
9349b4f9
AF
1771 CPUArchState *new_env = cpu_init(env->cpu_model_str);
1772 CPUArchState *next_cpu = new_env->next_cpu;
c5be9f08 1773 int cpu_index = new_env->cpu_index;
5a38f081
AL
1774#if defined(TARGET_HAS_ICE)
1775 CPUBreakpoint *bp;
1776 CPUWatchpoint *wp;
1777#endif
1778
9349b4f9 1779 memcpy(new_env, env, sizeof(CPUArchState));
5a38f081
AL
1780
1781 /* Preserve chaining and index. */
c5be9f08
TS
1782 new_env->next_cpu = next_cpu;
1783 new_env->cpu_index = cpu_index;
5a38f081
AL
1784
1785 /* Clone all break/watchpoints.
1786 Note: Once we support ptrace with hw-debug register access, make sure
1787 BP_CPU break/watchpoints are handled correctly on clone. */
72cf2d4f
BS
1788 QTAILQ_INIT(&env->breakpoints);
1789 QTAILQ_INIT(&env->watchpoints);
5a38f081 1790#if defined(TARGET_HAS_ICE)
72cf2d4f 1791 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
5a38f081
AL
1792 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1793 }
72cf2d4f 1794 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
5a38f081
AL
1795 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1796 wp->flags, NULL);
1797 }
1798#endif
1799
c5be9f08
TS
1800 return new_env;
1801}
1802
0124311e 1803#if !defined(CONFIG_USER_ONLY)
0cac1b66 1804void tb_flush_jmp_cache(CPUArchState *env, target_ulong addr)
5c751e99
EI
1805{
1806 unsigned int i;
1807
1808 /* Discard jump cache entries for any tb which might potentially
1809 overlap the flushed page. */
1810 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1811 memset (&env->tb_jmp_cache[i], 0,
9742bf26 1812 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
5c751e99
EI
1813
1814 i = tb_jmp_cache_hash_page(addr);
1815 memset (&env->tb_jmp_cache[i], 0,
9742bf26 1816 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
5c751e99
EI
1817}
1818
d24981d3
JQ
1819static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t end,
1820 uintptr_t length)
1821{
1822 uintptr_t start1;
1823
1824 /* we modify the TLB cache so that the dirty bit will be set again
1825 when accessing the range */
1826 start1 = (uintptr_t)qemu_safe_ram_ptr(start);
1827 /* Check that we don't span multiple blocks - this breaks the
1828 address comparisons below. */
1829 if ((uintptr_t)qemu_safe_ram_ptr(end - 1) - start1
1830 != (end - 1) - start) {
1831 abort();
1832 }
1833 cpu_tlb_reset_dirty_all(start1, length);
1834
1835}
1836
5579c7f3 1837/* Note: start and end must be within the same ram block. */
c227f099 1838void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 1839 int dirty_flags)
1ccde1cb 1840{
d24981d3 1841 uintptr_t length;
1ccde1cb
FB
1842
1843 start &= TARGET_PAGE_MASK;
1844 end = TARGET_PAGE_ALIGN(end);
1845
1846 length = end - start;
1847 if (length == 0)
1848 return;
f7c11b53 1849 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
f23db169 1850
d24981d3
JQ
1851 if (tcg_enabled()) {
1852 tlb_reset_dirty_range_all(start, end, length);
5579c7f3 1853 }
1ccde1cb
FB
1854}
1855
74576198
AL
1856int cpu_physical_memory_set_dirty_tracking(int enable)
1857{
f6f3fbca 1858 int ret = 0;
74576198 1859 in_migration = enable;
f6f3fbca 1860 return ret;
74576198
AL
1861}
1862
e5548617
BS
1863target_phys_addr_t memory_region_section_get_iotlb(CPUArchState *env,
1864 MemoryRegionSection *section,
1865 target_ulong vaddr,
1866 target_phys_addr_t paddr,
1867 int prot,
1868 target_ulong *address)
1869{
1870 target_phys_addr_t iotlb;
1871 CPUWatchpoint *wp;
1872
cc5bea60 1873 if (memory_region_is_ram(section->mr)) {
e5548617
BS
1874 /* Normal RAM. */
1875 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
cc5bea60 1876 + memory_region_section_addr(section, paddr);
e5548617
BS
1877 if (!section->readonly) {
1878 iotlb |= phys_section_notdirty;
1879 } else {
1880 iotlb |= phys_section_rom;
1881 }
1882 } else {
1883 /* IO handlers are currently passed a physical address.
1884 It would be nice to pass an offset from the base address
1885 of that region. This would avoid having to special case RAM,
1886 and avoid full address decoding in every device.
1887 We can't use the high bits of pd for this because
1888 IO_MEM_ROMD uses these as a ram address. */
1889 iotlb = section - phys_sections;
cc5bea60 1890 iotlb += memory_region_section_addr(section, paddr);
e5548617
BS
1891 }
1892
1893 /* Make accesses to pages with watchpoints go via the
1894 watchpoint trap routines. */
1895 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1896 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
1897 /* Avoid trapping reads of pages with a write breakpoint. */
1898 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1899 iotlb = phys_section_watch + paddr;
1900 *address |= TLB_MMIO;
1901 break;
1902 }
1903 }
1904 }
1905
1906 return iotlb;
1907}
1908
0124311e 1909#else
edf8e2af
MW
1910/*
1911 * Walks guest process memory "regions" one by one
1912 * and calls callback function 'fn' for each region.
1913 */
5cd2c5b6
RH
1914
1915struct walk_memory_regions_data
1916{
1917 walk_memory_regions_fn fn;
1918 void *priv;
8efe0ca8 1919 uintptr_t start;
5cd2c5b6
RH
1920 int prot;
1921};
1922
1923static int walk_memory_regions_end(struct walk_memory_regions_data *data,
b480d9b7 1924 abi_ulong end, int new_prot)
5cd2c5b6
RH
1925{
1926 if (data->start != -1ul) {
1927 int rc = data->fn(data->priv, data->start, end, data->prot);
1928 if (rc != 0) {
1929 return rc;
1930 }
1931 }
1932
1933 data->start = (new_prot ? end : -1ul);
1934 data->prot = new_prot;
1935
1936 return 0;
1937}
1938
1939static int walk_memory_regions_1(struct walk_memory_regions_data *data,
b480d9b7 1940 abi_ulong base, int level, void **lp)
5cd2c5b6 1941{
b480d9b7 1942 abi_ulong pa;
5cd2c5b6
RH
1943 int i, rc;
1944
1945 if (*lp == NULL) {
1946 return walk_memory_regions_end(data, base, 0);
1947 }
1948
1949 if (level == 0) {
1950 PageDesc *pd = *lp;
7296abac 1951 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
1952 int prot = pd[i].flags;
1953
1954 pa = base | (i << TARGET_PAGE_BITS);
1955 if (prot != data->prot) {
1956 rc = walk_memory_regions_end(data, pa, prot);
1957 if (rc != 0) {
1958 return rc;
9fa3e853 1959 }
9fa3e853 1960 }
5cd2c5b6
RH
1961 }
1962 } else {
1963 void **pp = *lp;
7296abac 1964 for (i = 0; i < L2_SIZE; ++i) {
b480d9b7
PB
1965 pa = base | ((abi_ulong)i <<
1966 (TARGET_PAGE_BITS + L2_BITS * level));
5cd2c5b6
RH
1967 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
1968 if (rc != 0) {
1969 return rc;
1970 }
1971 }
1972 }
1973
1974 return 0;
1975}
1976
1977int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
1978{
1979 struct walk_memory_regions_data data;
8efe0ca8 1980 uintptr_t i;
5cd2c5b6
RH
1981
1982 data.fn = fn;
1983 data.priv = priv;
1984 data.start = -1ul;
1985 data.prot = 0;
1986
1987 for (i = 0; i < V_L1_SIZE; i++) {
b480d9b7 1988 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
5cd2c5b6
RH
1989 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
1990 if (rc != 0) {
1991 return rc;
9fa3e853 1992 }
33417e70 1993 }
5cd2c5b6
RH
1994
1995 return walk_memory_regions_end(&data, 0, 0);
edf8e2af
MW
1996}
1997
b480d9b7
PB
1998static int dump_region(void *priv, abi_ulong start,
1999 abi_ulong end, unsigned long prot)
edf8e2af
MW
2000{
2001 FILE *f = (FILE *)priv;
2002
b480d9b7
PB
2003 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2004 " "TARGET_ABI_FMT_lx" %c%c%c\n",
edf8e2af
MW
2005 start, end, end - start,
2006 ((prot & PAGE_READ) ? 'r' : '-'),
2007 ((prot & PAGE_WRITE) ? 'w' : '-'),
2008 ((prot & PAGE_EXEC) ? 'x' : '-'));
2009
2010 return (0);
2011}
2012
2013/* dump memory mappings */
2014void page_dump(FILE *f)
2015{
2016 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2017 "start", "end", "size", "prot");
2018 walk_memory_regions(f, dump_region);
33417e70
FB
2019}
2020
53a5960a 2021int page_get_flags(target_ulong address)
33417e70 2022{
9fa3e853
FB
2023 PageDesc *p;
2024
2025 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 2026 if (!p)
9fa3e853
FB
2027 return 0;
2028 return p->flags;
2029}
2030
376a7909
RH
2031/* Modify the flags of a page and invalidate the code if necessary.
2032 The flag PAGE_WRITE_ORG is positioned automatically depending
2033 on PAGE_WRITE. The mmap_lock should already be held. */
53a5960a 2034void page_set_flags(target_ulong start, target_ulong end, int flags)
9fa3e853 2035{
376a7909
RH
2036 target_ulong addr, len;
2037
2038 /* This function should never be called with addresses outside the
2039 guest address space. If this assert fires, it probably indicates
2040 a missing call to h2g_valid. */
b480d9b7
PB
2041#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2042 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
376a7909
RH
2043#endif
2044 assert(start < end);
9fa3e853
FB
2045
2046 start = start & TARGET_PAGE_MASK;
2047 end = TARGET_PAGE_ALIGN(end);
376a7909
RH
2048
2049 if (flags & PAGE_WRITE) {
9fa3e853 2050 flags |= PAGE_WRITE_ORG;
376a7909
RH
2051 }
2052
2053 for (addr = start, len = end - start;
2054 len != 0;
2055 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2056 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2057
2058 /* If the write protection bit is set, then we invalidate
2059 the code inside. */
5fafdf24 2060 if (!(p->flags & PAGE_WRITE) &&
9fa3e853
FB
2061 (flags & PAGE_WRITE) &&
2062 p->first_tb) {
d720b93d 2063 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
2064 }
2065 p->flags = flags;
2066 }
33417e70
FB
2067}
2068
3d97b40b
TS
2069int page_check_range(target_ulong start, target_ulong len, int flags)
2070{
2071 PageDesc *p;
2072 target_ulong end;
2073 target_ulong addr;
2074
376a7909
RH
2075 /* This function should never be called with addresses outside the
2076 guest address space. If this assert fires, it probably indicates
2077 a missing call to h2g_valid. */
338e9e6c
BS
2078#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2079 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
376a7909
RH
2080#endif
2081
3e0650a9
RH
2082 if (len == 0) {
2083 return 0;
2084 }
376a7909
RH
2085 if (start + len - 1 < start) {
2086 /* We've wrapped around. */
55f280c9 2087 return -1;
376a7909 2088 }
55f280c9 2089
3d97b40b
TS
2090 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2091 start = start & TARGET_PAGE_MASK;
2092
376a7909
RH
2093 for (addr = start, len = end - start;
2094 len != 0;
2095 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
3d97b40b
TS
2096 p = page_find(addr >> TARGET_PAGE_BITS);
2097 if( !p )
2098 return -1;
2099 if( !(p->flags & PAGE_VALID) )
2100 return -1;
2101
dae3270c 2102 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
3d97b40b 2103 return -1;
dae3270c
FB
2104 if (flags & PAGE_WRITE) {
2105 if (!(p->flags & PAGE_WRITE_ORG))
2106 return -1;
2107 /* unprotect the page if it was put read-only because it
2108 contains translated code */
2109 if (!(p->flags & PAGE_WRITE)) {
2110 if (!page_unprotect(addr, 0, NULL))
2111 return -1;
2112 }
2113 return 0;
2114 }
3d97b40b
TS
2115 }
2116 return 0;
2117}
2118
9fa3e853 2119/* called from signal handler: invalidate the code and unprotect the
ccbb4d44 2120 page. Return TRUE if the fault was successfully handled. */
6375e09e 2121int page_unprotect(target_ulong address, uintptr_t pc, void *puc)
9fa3e853 2122{
45d679d6
AJ
2123 unsigned int prot;
2124 PageDesc *p;
53a5960a 2125 target_ulong host_start, host_end, addr;
9fa3e853 2126
c8a706fe
PB
2127 /* Technically this isn't safe inside a signal handler. However we
2128 know this only ever happens in a synchronous SEGV handler, so in
2129 practice it seems to be ok. */
2130 mmap_lock();
2131
45d679d6
AJ
2132 p = page_find(address >> TARGET_PAGE_BITS);
2133 if (!p) {
c8a706fe 2134 mmap_unlock();
9fa3e853 2135 return 0;
c8a706fe 2136 }
45d679d6 2137
9fa3e853
FB
2138 /* if the page was really writable, then we change its
2139 protection back to writable */
45d679d6
AJ
2140 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2141 host_start = address & qemu_host_page_mask;
2142 host_end = host_start + qemu_host_page_size;
2143
2144 prot = 0;
2145 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2146 p = page_find(addr >> TARGET_PAGE_BITS);
2147 p->flags |= PAGE_WRITE;
2148 prot |= p->flags;
2149
9fa3e853
FB
2150 /* and since the content will be modified, we must invalidate
2151 the corresponding translated code. */
45d679d6 2152 tb_invalidate_phys_page(addr, pc, puc);
9fa3e853 2153#ifdef DEBUG_TB_CHECK
45d679d6 2154 tb_invalidate_check(addr);
9fa3e853 2155#endif
9fa3e853 2156 }
45d679d6
AJ
2157 mprotect((void *)g2h(host_start), qemu_host_page_size,
2158 prot & PAGE_BITS);
2159
2160 mmap_unlock();
2161 return 1;
9fa3e853 2162 }
c8a706fe 2163 mmap_unlock();
9fa3e853
FB
2164 return 0;
2165}
9fa3e853
FB
2166#endif /* defined(CONFIG_USER_ONLY) */
2167
e2eef170 2168#if !defined(CONFIG_USER_ONLY)
8da3ff18 2169
c04b2b78
PB
2170#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2171typedef struct subpage_t {
70c68e44 2172 MemoryRegion iomem;
c04b2b78 2173 target_phys_addr_t base;
5312bd8b 2174 uint16_t sub_section[TARGET_PAGE_SIZE];
c04b2b78
PB
2175} subpage_t;
2176
c227f099 2177static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 2178 uint16_t section);
0f0cb164 2179static subpage_t *subpage_init(target_phys_addr_t base);
5312bd8b 2180static void destroy_page_desc(uint16_t section_index)
54688b1e 2181{
5312bd8b
AK
2182 MemoryRegionSection *section = &phys_sections[section_index];
2183 MemoryRegion *mr = section->mr;
54688b1e
AK
2184
2185 if (mr->subpage) {
2186 subpage_t *subpage = container_of(mr, subpage_t, iomem);
2187 memory_region_destroy(&subpage->iomem);
2188 g_free(subpage);
2189 }
2190}
2191
4346ae3e 2192static void destroy_l2_mapping(PhysPageEntry *lp, unsigned level)
54688b1e
AK
2193{
2194 unsigned i;
d6f2ea22 2195 PhysPageEntry *p;
54688b1e 2196
c19e8800 2197 if (lp->ptr == PHYS_MAP_NODE_NIL) {
54688b1e
AK
2198 return;
2199 }
2200
c19e8800 2201 p = phys_map_nodes[lp->ptr];
4346ae3e 2202 for (i = 0; i < L2_SIZE; ++i) {
07f07b31 2203 if (!p[i].is_leaf) {
54688b1e 2204 destroy_l2_mapping(&p[i], level - 1);
4346ae3e 2205 } else {
c19e8800 2206 destroy_page_desc(p[i].ptr);
54688b1e 2207 }
54688b1e 2208 }
07f07b31 2209 lp->is_leaf = 0;
c19e8800 2210 lp->ptr = PHYS_MAP_NODE_NIL;
54688b1e
AK
2211}
2212
2213static void destroy_all_mappings(void)
2214{
3eef53df 2215 destroy_l2_mapping(&phys_map, P_L2_LEVELS - 1);
d6f2ea22 2216 phys_map_nodes_reset();
54688b1e
AK
2217}
2218
5312bd8b
AK
2219static uint16_t phys_section_add(MemoryRegionSection *section)
2220{
2221 if (phys_sections_nb == phys_sections_nb_alloc) {
2222 phys_sections_nb_alloc = MAX(phys_sections_nb_alloc * 2, 16);
2223 phys_sections = g_renew(MemoryRegionSection, phys_sections,
2224 phys_sections_nb_alloc);
2225 }
2226 phys_sections[phys_sections_nb] = *section;
2227 return phys_sections_nb++;
2228}
2229
2230static void phys_sections_clear(void)
2231{
2232 phys_sections_nb = 0;
2233}
2234
0f0cb164
AK
2235static void register_subpage(MemoryRegionSection *section)
2236{
2237 subpage_t *subpage;
2238 target_phys_addr_t base = section->offset_within_address_space
2239 & TARGET_PAGE_MASK;
f3705d53 2240 MemoryRegionSection *existing = phys_page_find(base >> TARGET_PAGE_BITS);
0f0cb164
AK
2241 MemoryRegionSection subsection = {
2242 .offset_within_address_space = base,
2243 .size = TARGET_PAGE_SIZE,
2244 };
0f0cb164
AK
2245 target_phys_addr_t start, end;
2246
f3705d53 2247 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 2248
f3705d53 2249 if (!(existing->mr->subpage)) {
0f0cb164
AK
2250 subpage = subpage_init(base);
2251 subsection.mr = &subpage->iomem;
2999097b
AK
2252 phys_page_set(base >> TARGET_PAGE_BITS, 1,
2253 phys_section_add(&subsection));
0f0cb164 2254 } else {
f3705d53 2255 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
2256 }
2257 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
adb2a9b5 2258 end = start + section->size - 1;
0f0cb164
AK
2259 subpage_register(subpage, start, end, phys_section_add(section));
2260}
2261
2262
2263static void register_multipage(MemoryRegionSection *section)
33417e70 2264{
dd81124b
AK
2265 target_phys_addr_t start_addr = section->offset_within_address_space;
2266 ram_addr_t size = section->size;
2999097b 2267 target_phys_addr_t addr;
5312bd8b 2268 uint16_t section_index = phys_section_add(section);
dd81124b 2269
3b8e6a2d 2270 assert(size);
f6f3fbca 2271
3b8e6a2d 2272 addr = start_addr;
2999097b
AK
2273 phys_page_set(addr >> TARGET_PAGE_BITS, size >> TARGET_PAGE_BITS,
2274 section_index);
33417e70
FB
2275}
2276
0f0cb164
AK
2277void cpu_register_physical_memory_log(MemoryRegionSection *section,
2278 bool readonly)
2279{
2280 MemoryRegionSection now = *section, remain = *section;
2281
2282 if ((now.offset_within_address_space & ~TARGET_PAGE_MASK)
2283 || (now.size < TARGET_PAGE_SIZE)) {
2284 now.size = MIN(TARGET_PAGE_ALIGN(now.offset_within_address_space)
2285 - now.offset_within_address_space,
2286 now.size);
2287 register_subpage(&now);
2288 remain.size -= now.size;
2289 remain.offset_within_address_space += now.size;
2290 remain.offset_within_region += now.size;
2291 }
69b67646
TH
2292 while (remain.size >= TARGET_PAGE_SIZE) {
2293 now = remain;
2294 if (remain.offset_within_region & ~TARGET_PAGE_MASK) {
2295 now.size = TARGET_PAGE_SIZE;
2296 register_subpage(&now);
2297 } else {
2298 now.size &= TARGET_PAGE_MASK;
2299 register_multipage(&now);
2300 }
0f0cb164
AK
2301 remain.size -= now.size;
2302 remain.offset_within_address_space += now.size;
2303 remain.offset_within_region += now.size;
2304 }
2305 now = remain;
2306 if (now.size) {
2307 register_subpage(&now);
2308 }
2309}
2310
62a2744c
SY
2311void qemu_flush_coalesced_mmio_buffer(void)
2312{
2313 if (kvm_enabled())
2314 kvm_flush_coalesced_mmio_buffer();
2315}
2316
c902760f
MT
2317#if defined(__linux__) && !defined(TARGET_S390X)
2318
2319#include <sys/vfs.h>
2320
2321#define HUGETLBFS_MAGIC 0x958458f6
2322
2323static long gethugepagesize(const char *path)
2324{
2325 struct statfs fs;
2326 int ret;
2327
2328 do {
9742bf26 2329 ret = statfs(path, &fs);
c902760f
MT
2330 } while (ret != 0 && errno == EINTR);
2331
2332 if (ret != 0) {
9742bf26
YT
2333 perror(path);
2334 return 0;
c902760f
MT
2335 }
2336
2337 if (fs.f_type != HUGETLBFS_MAGIC)
9742bf26 2338 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
c902760f
MT
2339
2340 return fs.f_bsize;
2341}
2342
04b16653
AW
2343static void *file_ram_alloc(RAMBlock *block,
2344 ram_addr_t memory,
2345 const char *path)
c902760f
MT
2346{
2347 char *filename;
2348 void *area;
2349 int fd;
2350#ifdef MAP_POPULATE
2351 int flags;
2352#endif
2353 unsigned long hpagesize;
2354
2355 hpagesize = gethugepagesize(path);
2356 if (!hpagesize) {
9742bf26 2357 return NULL;
c902760f
MT
2358 }
2359
2360 if (memory < hpagesize) {
2361 return NULL;
2362 }
2363
2364 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2365 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2366 return NULL;
2367 }
2368
2369 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
9742bf26 2370 return NULL;
c902760f
MT
2371 }
2372
2373 fd = mkstemp(filename);
2374 if (fd < 0) {
9742bf26
YT
2375 perror("unable to create backing store for hugepages");
2376 free(filename);
2377 return NULL;
c902760f
MT
2378 }
2379 unlink(filename);
2380 free(filename);
2381
2382 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2383
2384 /*
2385 * ftruncate is not supported by hugetlbfs in older
2386 * hosts, so don't bother bailing out on errors.
2387 * If anything goes wrong with it under other filesystems,
2388 * mmap will fail.
2389 */
2390 if (ftruncate(fd, memory))
9742bf26 2391 perror("ftruncate");
c902760f
MT
2392
2393#ifdef MAP_POPULATE
2394 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2395 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2396 * to sidestep this quirk.
2397 */
2398 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2399 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2400#else
2401 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2402#endif
2403 if (area == MAP_FAILED) {
9742bf26
YT
2404 perror("file_ram_alloc: can't mmap RAM pages");
2405 close(fd);
2406 return (NULL);
c902760f 2407 }
04b16653 2408 block->fd = fd;
c902760f
MT
2409 return area;
2410}
2411#endif
2412
d17b5288 2413static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
2414{
2415 RAMBlock *block, *next_block;
3e837b2c 2416 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653
AW
2417
2418 if (QLIST_EMPTY(&ram_list.blocks))
2419 return 0;
2420
2421 QLIST_FOREACH(block, &ram_list.blocks, next) {
f15fbc4b 2422 ram_addr_t end, next = RAM_ADDR_MAX;
04b16653
AW
2423
2424 end = block->offset + block->length;
2425
2426 QLIST_FOREACH(next_block, &ram_list.blocks, next) {
2427 if (next_block->offset >= end) {
2428 next = MIN(next, next_block->offset);
2429 }
2430 }
2431 if (next - end >= size && next - end < mingap) {
3e837b2c 2432 offset = end;
04b16653
AW
2433 mingap = next - end;
2434 }
2435 }
3e837b2c
AW
2436
2437 if (offset == RAM_ADDR_MAX) {
2438 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
2439 (uint64_t)size);
2440 abort();
2441 }
2442
04b16653
AW
2443 return offset;
2444}
2445
2446static ram_addr_t last_ram_offset(void)
d17b5288
AW
2447{
2448 RAMBlock *block;
2449 ram_addr_t last = 0;
2450
2451 QLIST_FOREACH(block, &ram_list.blocks, next)
2452 last = MAX(last, block->offset + block->length);
2453
2454 return last;
2455}
2456
ddb97f1d
JB
2457static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
2458{
2459 int ret;
2460 QemuOpts *machine_opts;
2461
2462 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
2463 machine_opts = qemu_opts_find(qemu_find_opts("machine"), 0);
2464 if (machine_opts &&
2465 !qemu_opt_get_bool(machine_opts, "dump-guest-core", true)) {
2466 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
2467 if (ret) {
2468 perror("qemu_madvise");
2469 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
2470 "but dump_guest_core=off specified\n");
2471 }
2472 }
2473}
2474
c5705a77 2475void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
84b89d78
CM
2476{
2477 RAMBlock *new_block, *block;
2478
c5705a77
AK
2479 new_block = NULL;
2480 QLIST_FOREACH(block, &ram_list.blocks, next) {
2481 if (block->offset == addr) {
2482 new_block = block;
2483 break;
2484 }
2485 }
2486 assert(new_block);
2487 assert(!new_block->idstr[0]);
84b89d78 2488
09e5ab63
AL
2489 if (dev) {
2490 char *id = qdev_get_dev_path(dev);
84b89d78
CM
2491 if (id) {
2492 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 2493 g_free(id);
84b89d78
CM
2494 }
2495 }
2496 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2497
2498 QLIST_FOREACH(block, &ram_list.blocks, next) {
c5705a77 2499 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
2500 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2501 new_block->idstr);
2502 abort();
2503 }
2504 }
c5705a77
AK
2505}
2506
8490fc78
LC
2507static int memory_try_enable_merging(void *addr, size_t len)
2508{
2509 QemuOpts *opts;
2510
2511 opts = qemu_opts_find(qemu_find_opts("machine"), 0);
2512 if (opts && !qemu_opt_get_bool(opts, "mem-merge", true)) {
2513 /* disabled by the user */
2514 return 0;
2515 }
2516
2517 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
2518}
2519
c5705a77
AK
2520ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2521 MemoryRegion *mr)
2522{
2523 RAMBlock *new_block;
2524
2525 size = TARGET_PAGE_ALIGN(size);
2526 new_block = g_malloc0(sizeof(*new_block));
84b89d78 2527
7c637366 2528 new_block->mr = mr;
432d268c 2529 new_block->offset = find_ram_offset(size);
6977dfe6
YT
2530 if (host) {
2531 new_block->host = host;
cd19cfa2 2532 new_block->flags |= RAM_PREALLOC_MASK;
6977dfe6
YT
2533 } else {
2534 if (mem_path) {
c902760f 2535#if defined (__linux__) && !defined(TARGET_S390X)
6977dfe6
YT
2536 new_block->host = file_ram_alloc(new_block, size, mem_path);
2537 if (!new_block->host) {
2538 new_block->host = qemu_vmalloc(size);
8490fc78 2539 memory_try_enable_merging(new_block->host, size);
6977dfe6 2540 }
c902760f 2541#else
6977dfe6
YT
2542 fprintf(stderr, "-mem-path option unsupported\n");
2543 exit(1);
c902760f 2544#endif
6977dfe6 2545 } else {
868bb33f 2546 if (xen_enabled()) {
fce537d4 2547 xen_ram_alloc(new_block->offset, size, mr);
fdec9918
CB
2548 } else if (kvm_enabled()) {
2549 /* some s390/kvm configurations have special constraints */
2550 new_block->host = kvm_vmalloc(size);
432d268c
JN
2551 } else {
2552 new_block->host = qemu_vmalloc(size);
2553 }
8490fc78 2554 memory_try_enable_merging(new_block->host, size);
6977dfe6 2555 }
c902760f 2556 }
94a6b54f
PB
2557 new_block->length = size;
2558
f471a17e 2559 QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next);
94a6b54f 2560
7267c094 2561 ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
04b16653 2562 last_ram_offset() >> TARGET_PAGE_BITS);
5fda043f
IM
2563 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
2564 0, size >> TARGET_PAGE_BITS);
1720aeee 2565 cpu_physical_memory_set_dirty_range(new_block->offset, size, 0xff);
94a6b54f 2566
ddb97f1d
JB
2567 qemu_ram_setup_dump(new_block->host, size);
2568
6f0437e8
JK
2569 if (kvm_enabled())
2570 kvm_setup_guest_memory(new_block->host, size);
2571
94a6b54f
PB
2572 return new_block->offset;
2573}
e9a1ab19 2574
c5705a77 2575ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
6977dfe6 2576{
c5705a77 2577 return qemu_ram_alloc_from_ptr(size, NULL, mr);
6977dfe6
YT
2578}
2579
1f2e98b6
AW
2580void qemu_ram_free_from_ptr(ram_addr_t addr)
2581{
2582 RAMBlock *block;
2583
2584 QLIST_FOREACH(block, &ram_list.blocks, next) {
2585 if (addr == block->offset) {
2586 QLIST_REMOVE(block, next);
7267c094 2587 g_free(block);
1f2e98b6
AW
2588 return;
2589 }
2590 }
2591}
2592
c227f099 2593void qemu_ram_free(ram_addr_t addr)
e9a1ab19 2594{
04b16653
AW
2595 RAMBlock *block;
2596
2597 QLIST_FOREACH(block, &ram_list.blocks, next) {
2598 if (addr == block->offset) {
2599 QLIST_REMOVE(block, next);
cd19cfa2
HY
2600 if (block->flags & RAM_PREALLOC_MASK) {
2601 ;
2602 } else if (mem_path) {
04b16653
AW
2603#if defined (__linux__) && !defined(TARGET_S390X)
2604 if (block->fd) {
2605 munmap(block->host, block->length);
2606 close(block->fd);
2607 } else {
2608 qemu_vfree(block->host);
2609 }
fd28aa13
JK
2610#else
2611 abort();
04b16653
AW
2612#endif
2613 } else {
2614#if defined(TARGET_S390X) && defined(CONFIG_KVM)
2615 munmap(block->host, block->length);
2616#else
868bb33f 2617 if (xen_enabled()) {
e41d7c69 2618 xen_invalidate_map_cache_entry(block->host);
432d268c
JN
2619 } else {
2620 qemu_vfree(block->host);
2621 }
04b16653
AW
2622#endif
2623 }
7267c094 2624 g_free(block);
04b16653
AW
2625 return;
2626 }
2627 }
2628
e9a1ab19
FB
2629}
2630
cd19cfa2
HY
2631#ifndef _WIN32
2632void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2633{
2634 RAMBlock *block;
2635 ram_addr_t offset;
2636 int flags;
2637 void *area, *vaddr;
2638
2639 QLIST_FOREACH(block, &ram_list.blocks, next) {
2640 offset = addr - block->offset;
2641 if (offset < block->length) {
2642 vaddr = block->host + offset;
2643 if (block->flags & RAM_PREALLOC_MASK) {
2644 ;
2645 } else {
2646 flags = MAP_FIXED;
2647 munmap(vaddr, length);
2648 if (mem_path) {
2649#if defined(__linux__) && !defined(TARGET_S390X)
2650 if (block->fd) {
2651#ifdef MAP_POPULATE
2652 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
2653 MAP_PRIVATE;
2654#else
2655 flags |= MAP_PRIVATE;
2656#endif
2657 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2658 flags, block->fd, offset);
2659 } else {
2660 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2661 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2662 flags, -1, 0);
2663 }
fd28aa13
JK
2664#else
2665 abort();
cd19cfa2
HY
2666#endif
2667 } else {
2668#if defined(TARGET_S390X) && defined(CONFIG_KVM)
2669 flags |= MAP_SHARED | MAP_ANONYMOUS;
2670 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
2671 flags, -1, 0);
2672#else
2673 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2674 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2675 flags, -1, 0);
2676#endif
2677 }
2678 if (area != vaddr) {
f15fbc4b
AP
2679 fprintf(stderr, "Could not remap addr: "
2680 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
cd19cfa2
HY
2681 length, addr);
2682 exit(1);
2683 }
8490fc78 2684 memory_try_enable_merging(vaddr, length);
ddb97f1d 2685 qemu_ram_setup_dump(vaddr, length);
cd19cfa2
HY
2686 }
2687 return;
2688 }
2689 }
2690}
2691#endif /* !_WIN32 */
2692
dc828ca1 2693/* Return a host pointer to ram allocated with qemu_ram_alloc.
5579c7f3
PB
2694 With the exception of the softmmu code in this file, this should
2695 only be used for local memory (e.g. video ram) that the device owns,
2696 and knows it isn't going to access beyond the end of the block.
2697
2698 It should not be used for general purpose DMA.
2699 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2700 */
c227f099 2701void *qemu_get_ram_ptr(ram_addr_t addr)
dc828ca1 2702{
94a6b54f
PB
2703 RAMBlock *block;
2704
f471a17e
AW
2705 QLIST_FOREACH(block, &ram_list.blocks, next) {
2706 if (addr - block->offset < block->length) {
7d82af38
VP
2707 /* Move this entry to to start of the list. */
2708 if (block != QLIST_FIRST(&ram_list.blocks)) {
2709 QLIST_REMOVE(block, next);
2710 QLIST_INSERT_HEAD(&ram_list.blocks, block, next);
2711 }
868bb33f 2712 if (xen_enabled()) {
432d268c
JN
2713 /* We need to check if the requested address is in the RAM
2714 * because we don't want to map the entire memory in QEMU.
712c2b41 2715 * In that case just map until the end of the page.
432d268c
JN
2716 */
2717 if (block->offset == 0) {
e41d7c69 2718 return xen_map_cache(addr, 0, 0);
432d268c 2719 } else if (block->host == NULL) {
e41d7c69
JK
2720 block->host =
2721 xen_map_cache(block->offset, block->length, 1);
432d268c
JN
2722 }
2723 }
f471a17e
AW
2724 return block->host + (addr - block->offset);
2725 }
94a6b54f 2726 }
f471a17e
AW
2727
2728 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2729 abort();
2730
2731 return NULL;
dc828ca1
PB
2732}
2733
b2e0a138
MT
2734/* Return a host pointer to ram allocated with qemu_ram_alloc.
2735 * Same as qemu_get_ram_ptr but avoid reordering ramblocks.
2736 */
2737void *qemu_safe_ram_ptr(ram_addr_t addr)
2738{
2739 RAMBlock *block;
2740
2741 QLIST_FOREACH(block, &ram_list.blocks, next) {
2742 if (addr - block->offset < block->length) {
868bb33f 2743 if (xen_enabled()) {
432d268c
JN
2744 /* We need to check if the requested address is in the RAM
2745 * because we don't want to map the entire memory in QEMU.
712c2b41 2746 * In that case just map until the end of the page.
432d268c
JN
2747 */
2748 if (block->offset == 0) {
e41d7c69 2749 return xen_map_cache(addr, 0, 0);
432d268c 2750 } else if (block->host == NULL) {
e41d7c69
JK
2751 block->host =
2752 xen_map_cache(block->offset, block->length, 1);
432d268c
JN
2753 }
2754 }
b2e0a138
MT
2755 return block->host + (addr - block->offset);
2756 }
2757 }
2758
2759 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2760 abort();
2761
2762 return NULL;
2763}
2764
38bee5dc
SS
2765/* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
2766 * but takes a size argument */
8ab934f9 2767void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size)
38bee5dc 2768{
8ab934f9
SS
2769 if (*size == 0) {
2770 return NULL;
2771 }
868bb33f 2772 if (xen_enabled()) {
e41d7c69 2773 return xen_map_cache(addr, *size, 1);
868bb33f 2774 } else {
38bee5dc
SS
2775 RAMBlock *block;
2776
2777 QLIST_FOREACH(block, &ram_list.blocks, next) {
2778 if (addr - block->offset < block->length) {
2779 if (addr - block->offset + *size > block->length)
2780 *size = block->length - addr + block->offset;
2781 return block->host + (addr - block->offset);
2782 }
2783 }
2784
2785 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2786 abort();
38bee5dc
SS
2787 }
2788}
2789
050a0ddf
AP
2790void qemu_put_ram_ptr(void *addr)
2791{
2792 trace_qemu_put_ram_ptr(addr);
050a0ddf
AP
2793}
2794
e890261f 2795int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
5579c7f3 2796{
94a6b54f
PB
2797 RAMBlock *block;
2798 uint8_t *host = ptr;
2799
868bb33f 2800 if (xen_enabled()) {
e41d7c69 2801 *ram_addr = xen_ram_addr_from_mapcache(ptr);
712c2b41
SS
2802 return 0;
2803 }
2804
f471a17e 2805 QLIST_FOREACH(block, &ram_list.blocks, next) {
432d268c
JN
2806 /* This case append when the block is not mapped. */
2807 if (block->host == NULL) {
2808 continue;
2809 }
f471a17e 2810 if (host - block->host < block->length) {
e890261f
MT
2811 *ram_addr = block->offset + (host - block->host);
2812 return 0;
f471a17e 2813 }
94a6b54f 2814 }
432d268c 2815
e890261f
MT
2816 return -1;
2817}
f471a17e 2818
e890261f
MT
2819/* Some of the softmmu routines need to translate from a host pointer
2820 (typically a TLB entry) back to a ram offset. */
2821ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
2822{
2823 ram_addr_t ram_addr;
f471a17e 2824
e890261f
MT
2825 if (qemu_ram_addr_from_host(ptr, &ram_addr)) {
2826 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2827 abort();
2828 }
2829 return ram_addr;
5579c7f3
PB
2830}
2831
0e0df1e2
AK
2832static uint64_t unassigned_mem_read(void *opaque, target_phys_addr_t addr,
2833 unsigned size)
e18231a3
BS
2834{
2835#ifdef DEBUG_UNASSIGNED
2836 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2837#endif
5b450407 2838#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
0e0df1e2 2839 cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, size);
e18231a3
BS
2840#endif
2841 return 0;
2842}
2843
0e0df1e2
AK
2844static void unassigned_mem_write(void *opaque, target_phys_addr_t addr,
2845 uint64_t val, unsigned size)
e18231a3
BS
2846{
2847#ifdef DEBUG_UNASSIGNED
0e0df1e2 2848 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
e18231a3 2849#endif
5b450407 2850#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
0e0df1e2 2851 cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, size);
67d3b957 2852#endif
33417e70
FB
2853}
2854
0e0df1e2
AK
2855static const MemoryRegionOps unassigned_mem_ops = {
2856 .read = unassigned_mem_read,
2857 .write = unassigned_mem_write,
2858 .endianness = DEVICE_NATIVE_ENDIAN,
2859};
e18231a3 2860
0e0df1e2
AK
2861static uint64_t error_mem_read(void *opaque, target_phys_addr_t addr,
2862 unsigned size)
e18231a3 2863{
0e0df1e2 2864 abort();
e18231a3
BS
2865}
2866
0e0df1e2
AK
2867static void error_mem_write(void *opaque, target_phys_addr_t addr,
2868 uint64_t value, unsigned size)
e18231a3 2869{
0e0df1e2 2870 abort();
33417e70
FB
2871}
2872
0e0df1e2
AK
2873static const MemoryRegionOps error_mem_ops = {
2874 .read = error_mem_read,
2875 .write = error_mem_write,
2876 .endianness = DEVICE_NATIVE_ENDIAN,
33417e70
FB
2877};
2878
0e0df1e2
AK
2879static const MemoryRegionOps rom_mem_ops = {
2880 .read = error_mem_read,
2881 .write = unassigned_mem_write,
2882 .endianness = DEVICE_NATIVE_ENDIAN,
33417e70
FB
2883};
2884
0e0df1e2
AK
2885static void notdirty_mem_write(void *opaque, target_phys_addr_t ram_addr,
2886 uint64_t val, unsigned size)
9fa3e853 2887{
3a7d929e 2888 int dirty_flags;
f7c11b53 2889 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 2890 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2891#if !defined(CONFIG_USER_ONLY)
0e0df1e2 2892 tb_invalidate_phys_page_fast(ram_addr, size);
f7c11b53 2893 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 2894#endif
3a7d929e 2895 }
0e0df1e2
AK
2896 switch (size) {
2897 case 1:
2898 stb_p(qemu_get_ram_ptr(ram_addr), val);
2899 break;
2900 case 2:
2901 stw_p(qemu_get_ram_ptr(ram_addr), val);
2902 break;
2903 case 4:
2904 stl_p(qemu_get_ram_ptr(ram_addr), val);
2905 break;
2906 default:
2907 abort();
3a7d929e 2908 }
f23db169 2909 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 2910 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
2911 /* we remove the notdirty callback only if the code has been
2912 flushed */
2913 if (dirty_flags == 0xff)
2e70f6ef 2914 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2915}
2916
0e0df1e2
AK
2917static const MemoryRegionOps notdirty_mem_ops = {
2918 .read = error_mem_read,
2919 .write = notdirty_mem_write,
2920 .endianness = DEVICE_NATIVE_ENDIAN,
1ccde1cb
FB
2921};
2922
0f459d16 2923/* Generate a debug exception if a watchpoint has been hit. */
b4051334 2924static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16 2925{
9349b4f9 2926 CPUArchState *env = cpu_single_env;
06d55cc1
AL
2927 target_ulong pc, cs_base;
2928 TranslationBlock *tb;
0f459d16 2929 target_ulong vaddr;
a1d1bb31 2930 CPUWatchpoint *wp;
06d55cc1 2931 int cpu_flags;
0f459d16 2932
06d55cc1
AL
2933 if (env->watchpoint_hit) {
2934 /* We re-entered the check after replacing the TB. Now raise
2935 * the debug interrupt so that is will trigger after the
2936 * current instruction. */
2937 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2938 return;
2939 }
2e70f6ef 2940 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
72cf2d4f 2941 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334
AL
2942 if ((vaddr == (wp->vaddr & len_mask) ||
2943 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
2944 wp->flags |= BP_WATCHPOINT_HIT;
2945 if (!env->watchpoint_hit) {
2946 env->watchpoint_hit = wp;
2947 tb = tb_find_pc(env->mem_io_pc);
2948 if (!tb) {
2949 cpu_abort(env, "check_watchpoint: could not find TB for "
2950 "pc=%p", (void *)env->mem_io_pc);
2951 }
618ba8e6 2952 cpu_restore_state(tb, env, env->mem_io_pc);
6e140f28
AL
2953 tb_phys_invalidate(tb, -1);
2954 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2955 env->exception_index = EXCP_DEBUG;
488d6577 2956 cpu_loop_exit(env);
6e140f28
AL
2957 } else {
2958 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2959 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
488d6577 2960 cpu_resume_from_signal(env, NULL);
6e140f28 2961 }
06d55cc1 2962 }
6e140f28
AL
2963 } else {
2964 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2965 }
2966 }
2967}
2968
6658ffb8
PB
2969/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2970 so these check for a hit then pass through to the normal out-of-line
2971 phys routines. */
1ec9b909
AK
2972static uint64_t watch_mem_read(void *opaque, target_phys_addr_t addr,
2973 unsigned size)
6658ffb8 2974{
1ec9b909
AK
2975 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
2976 switch (size) {
2977 case 1: return ldub_phys(addr);
2978 case 2: return lduw_phys(addr);
2979 case 4: return ldl_phys(addr);
2980 default: abort();
2981 }
6658ffb8
PB
2982}
2983
1ec9b909
AK
2984static void watch_mem_write(void *opaque, target_phys_addr_t addr,
2985 uint64_t val, unsigned size)
6658ffb8 2986{
1ec9b909
AK
2987 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
2988 switch (size) {
67364150
MF
2989 case 1:
2990 stb_phys(addr, val);
2991 break;
2992 case 2:
2993 stw_phys(addr, val);
2994 break;
2995 case 4:
2996 stl_phys(addr, val);
2997 break;
1ec9b909
AK
2998 default: abort();
2999 }
6658ffb8
PB
3000}
3001
1ec9b909
AK
3002static const MemoryRegionOps watch_mem_ops = {
3003 .read = watch_mem_read,
3004 .write = watch_mem_write,
3005 .endianness = DEVICE_NATIVE_ENDIAN,
6658ffb8 3006};
6658ffb8 3007
70c68e44
AK
3008static uint64_t subpage_read(void *opaque, target_phys_addr_t addr,
3009 unsigned len)
db7b5426 3010{
70c68e44 3011 subpage_t *mmio = opaque;
f6405247 3012 unsigned int idx = SUBPAGE_IDX(addr);
5312bd8b 3013 MemoryRegionSection *section;
db7b5426
BS
3014#if defined(DEBUG_SUBPAGE)
3015 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3016 mmio, len, addr, idx);
3017#endif
db7b5426 3018
5312bd8b
AK
3019 section = &phys_sections[mmio->sub_section[idx]];
3020 addr += mmio->base;
3021 addr -= section->offset_within_address_space;
3022 addr += section->offset_within_region;
37ec01d4 3023 return io_mem_read(section->mr, addr, len);
db7b5426
BS
3024}
3025
70c68e44
AK
3026static void subpage_write(void *opaque, target_phys_addr_t addr,
3027 uint64_t value, unsigned len)
db7b5426 3028{
70c68e44 3029 subpage_t *mmio = opaque;
f6405247 3030 unsigned int idx = SUBPAGE_IDX(addr);
5312bd8b 3031 MemoryRegionSection *section;
db7b5426 3032#if defined(DEBUG_SUBPAGE)
70c68e44
AK
3033 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
3034 " idx %d value %"PRIx64"\n",
f6405247 3035 __func__, mmio, len, addr, idx, value);
db7b5426 3036#endif
f6405247 3037
5312bd8b
AK
3038 section = &phys_sections[mmio->sub_section[idx]];
3039 addr += mmio->base;
3040 addr -= section->offset_within_address_space;
3041 addr += section->offset_within_region;
37ec01d4 3042 io_mem_write(section->mr, addr, value, len);
db7b5426
BS
3043}
3044
70c68e44
AK
3045static const MemoryRegionOps subpage_ops = {
3046 .read = subpage_read,
3047 .write = subpage_write,
3048 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
3049};
3050
de712f94
AK
3051static uint64_t subpage_ram_read(void *opaque, target_phys_addr_t addr,
3052 unsigned size)
56384e8b
AF
3053{
3054 ram_addr_t raddr = addr;
3055 void *ptr = qemu_get_ram_ptr(raddr);
de712f94
AK
3056 switch (size) {
3057 case 1: return ldub_p(ptr);
3058 case 2: return lduw_p(ptr);
3059 case 4: return ldl_p(ptr);
3060 default: abort();
3061 }
56384e8b
AF
3062}
3063
de712f94
AK
3064static void subpage_ram_write(void *opaque, target_phys_addr_t addr,
3065 uint64_t value, unsigned size)
56384e8b
AF
3066{
3067 ram_addr_t raddr = addr;
3068 void *ptr = qemu_get_ram_ptr(raddr);
de712f94
AK
3069 switch (size) {
3070 case 1: return stb_p(ptr, value);
3071 case 2: return stw_p(ptr, value);
3072 case 4: return stl_p(ptr, value);
3073 default: abort();
3074 }
56384e8b
AF
3075}
3076
de712f94
AK
3077static const MemoryRegionOps subpage_ram_ops = {
3078 .read = subpage_ram_read,
3079 .write = subpage_ram_write,
3080 .endianness = DEVICE_NATIVE_ENDIAN,
56384e8b
AF
3081};
3082
c227f099 3083static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 3084 uint16_t section)
db7b5426
BS
3085{
3086 int idx, eidx;
3087
3088 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3089 return -1;
3090 idx = SUBPAGE_IDX(start);
3091 eidx = SUBPAGE_IDX(end);
3092#if defined(DEBUG_SUBPAGE)
0bf9e31a 3093 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
db7b5426
BS
3094 mmio, start, end, idx, eidx, memory);
3095#endif
5312bd8b
AK
3096 if (memory_region_is_ram(phys_sections[section].mr)) {
3097 MemoryRegionSection new_section = phys_sections[section];
3098 new_section.mr = &io_mem_subpage_ram;
3099 section = phys_section_add(&new_section);
56384e8b 3100 }
db7b5426 3101 for (; idx <= eidx; idx++) {
5312bd8b 3102 mmio->sub_section[idx] = section;
db7b5426
BS
3103 }
3104
3105 return 0;
3106}
3107
0f0cb164 3108static subpage_t *subpage_init(target_phys_addr_t base)
db7b5426 3109{
c227f099 3110 subpage_t *mmio;
db7b5426 3111
7267c094 3112 mmio = g_malloc0(sizeof(subpage_t));
1eec614b
AL
3113
3114 mmio->base = base;
70c68e44
AK
3115 memory_region_init_io(&mmio->iomem, &subpage_ops, mmio,
3116 "subpage", TARGET_PAGE_SIZE);
b3b00c78 3117 mmio->iomem.subpage = true;
db7b5426 3118#if defined(DEBUG_SUBPAGE)
1eec614b
AL
3119 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3120 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
db7b5426 3121#endif
0f0cb164 3122 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, phys_section_unassigned);
db7b5426
BS
3123
3124 return mmio;
3125}
3126
5312bd8b
AK
3127static uint16_t dummy_section(MemoryRegion *mr)
3128{
3129 MemoryRegionSection section = {
3130 .mr = mr,
3131 .offset_within_address_space = 0,
3132 .offset_within_region = 0,
3133 .size = UINT64_MAX,
3134 };
3135
3136 return phys_section_add(&section);
3137}
3138
37ec01d4 3139MemoryRegion *iotlb_to_region(target_phys_addr_t index)
aa102231 3140{
37ec01d4 3141 return phys_sections[index & ~TARGET_PAGE_MASK].mr;
aa102231
AK
3142}
3143
e9179ce1
AK
3144static void io_mem_init(void)
3145{
0e0df1e2 3146 memory_region_init_io(&io_mem_ram, &error_mem_ops, NULL, "ram", UINT64_MAX);
0e0df1e2
AK
3147 memory_region_init_io(&io_mem_rom, &rom_mem_ops, NULL, "rom", UINT64_MAX);
3148 memory_region_init_io(&io_mem_unassigned, &unassigned_mem_ops, NULL,
3149 "unassigned", UINT64_MAX);
3150 memory_region_init_io(&io_mem_notdirty, &notdirty_mem_ops, NULL,
3151 "notdirty", UINT64_MAX);
de712f94
AK
3152 memory_region_init_io(&io_mem_subpage_ram, &subpage_ram_ops, NULL,
3153 "subpage-ram", UINT64_MAX);
1ec9b909
AK
3154 memory_region_init_io(&io_mem_watch, &watch_mem_ops, NULL,
3155 "watch", UINT64_MAX);
e9179ce1
AK
3156}
3157
50c1e149
AK
3158static void core_begin(MemoryListener *listener)
3159{
54688b1e 3160 destroy_all_mappings();
5312bd8b 3161 phys_sections_clear();
c19e8800 3162 phys_map.ptr = PHYS_MAP_NODE_NIL;
5312bd8b 3163 phys_section_unassigned = dummy_section(&io_mem_unassigned);
aa102231
AK
3164 phys_section_notdirty = dummy_section(&io_mem_notdirty);
3165 phys_section_rom = dummy_section(&io_mem_rom);
3166 phys_section_watch = dummy_section(&io_mem_watch);
50c1e149
AK
3167}
3168
1d71148e 3169static void tcg_commit(MemoryListener *listener)
50c1e149 3170{
9349b4f9 3171 CPUArchState *env;
117712c3
AK
3172
3173 /* since each CPU stores ram addresses in its TLB cache, we must
3174 reset the modified entries */
3175 /* XXX: slow ! */
3176 for(env = first_cpu; env != NULL; env = env->next_cpu) {
3177 tlb_flush(env, 1);
3178 }
50c1e149
AK
3179}
3180
93632747
AK
3181static void core_region_add(MemoryListener *listener,
3182 MemoryRegionSection *section)
3183{
4855d41a 3184 cpu_register_physical_memory_log(section, section->readonly);
93632747
AK
3185}
3186
50c1e149
AK
3187static void core_region_nop(MemoryListener *listener,
3188 MemoryRegionSection *section)
3189{
54688b1e 3190 cpu_register_physical_memory_log(section, section->readonly);
50c1e149
AK
3191}
3192
93632747
AK
3193static void core_log_global_start(MemoryListener *listener)
3194{
3195 cpu_physical_memory_set_dirty_tracking(1);
3196}
3197
3198static void core_log_global_stop(MemoryListener *listener)
3199{
3200 cpu_physical_memory_set_dirty_tracking(0);
3201}
3202
4855d41a
AK
3203static void io_region_add(MemoryListener *listener,
3204 MemoryRegionSection *section)
3205{
a2d33521
AK
3206 MemoryRegionIORange *mrio = g_new(MemoryRegionIORange, 1);
3207
3208 mrio->mr = section->mr;
3209 mrio->offset = section->offset_within_region;
3210 iorange_init(&mrio->iorange, &memory_region_iorange_ops,
4855d41a 3211 section->offset_within_address_space, section->size);
a2d33521 3212 ioport_register(&mrio->iorange);
4855d41a
AK
3213}
3214
3215static void io_region_del(MemoryListener *listener,
3216 MemoryRegionSection *section)
3217{
3218 isa_unassign_ioport(section->offset_within_address_space, section->size);
3219}
3220
93632747 3221static MemoryListener core_memory_listener = {
50c1e149 3222 .begin = core_begin,
93632747 3223 .region_add = core_region_add,
50c1e149 3224 .region_nop = core_region_nop,
93632747
AK
3225 .log_global_start = core_log_global_start,
3226 .log_global_stop = core_log_global_stop,
93632747
AK
3227 .priority = 0,
3228};
3229
4855d41a
AK
3230static MemoryListener io_memory_listener = {
3231 .region_add = io_region_add,
3232 .region_del = io_region_del,
4855d41a
AK
3233 .priority = 0,
3234};
3235
1d71148e
AK
3236static MemoryListener tcg_memory_listener = {
3237 .commit = tcg_commit,
3238};
3239
62152b8a
AK
3240static void memory_map_init(void)
3241{
7267c094 3242 system_memory = g_malloc(sizeof(*system_memory));
8417cebf 3243 memory_region_init(system_memory, "system", INT64_MAX);
2673a5da
AK
3244 address_space_init(&address_space_memory, system_memory);
3245 address_space_memory.name = "memory";
309cb471 3246
7267c094 3247 system_io = g_malloc(sizeof(*system_io));
309cb471 3248 memory_region_init(system_io, "io", 65536);
2673a5da
AK
3249 address_space_init(&address_space_io, system_io);
3250 address_space_io.name = "I/O";
93632747 3251
4855d41a
AK
3252 memory_listener_register(&core_memory_listener, system_memory);
3253 memory_listener_register(&io_memory_listener, system_io);
1d71148e 3254 memory_listener_register(&tcg_memory_listener, system_memory);
62152b8a
AK
3255}
3256
3257MemoryRegion *get_system_memory(void)
3258{
3259 return system_memory;
3260}
3261
309cb471
AK
3262MemoryRegion *get_system_io(void)
3263{
3264 return system_io;
3265}
3266
e2eef170
PB
3267#endif /* !defined(CONFIG_USER_ONLY) */
3268
13eb76e0
FB
3269/* physical memory access (slow version, mainly for debug) */
3270#if defined(CONFIG_USER_ONLY)
9349b4f9 3271int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
a68fe89c 3272 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3273{
3274 int l, flags;
3275 target_ulong page;
53a5960a 3276 void * p;
13eb76e0
FB
3277
3278 while (len > 0) {
3279 page = addr & TARGET_PAGE_MASK;
3280 l = (page + TARGET_PAGE_SIZE) - addr;
3281 if (l > len)
3282 l = len;
3283 flags = page_get_flags(page);
3284 if (!(flags & PAGE_VALID))
a68fe89c 3285 return -1;
13eb76e0
FB
3286 if (is_write) {
3287 if (!(flags & PAGE_WRITE))
a68fe89c 3288 return -1;
579a97f7 3289 /* XXX: this code should not depend on lock_user */
72fb7daa 3290 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 3291 return -1;
72fb7daa
AJ
3292 memcpy(p, buf, l);
3293 unlock_user(p, addr, l);
13eb76e0
FB
3294 } else {
3295 if (!(flags & PAGE_READ))
a68fe89c 3296 return -1;
579a97f7 3297 /* XXX: this code should not depend on lock_user */
72fb7daa 3298 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 3299 return -1;
72fb7daa 3300 memcpy(buf, p, l);
5b257578 3301 unlock_user(p, addr, 0);
13eb76e0
FB
3302 }
3303 len -= l;
3304 buf += l;
3305 addr += l;
3306 }
a68fe89c 3307 return 0;
13eb76e0 3308}
8df1cd07 3309
13eb76e0 3310#else
51d7a9eb
AP
3311
3312static void invalidate_and_set_dirty(target_phys_addr_t addr,
3313 target_phys_addr_t length)
3314{
3315 if (!cpu_physical_memory_is_dirty(addr)) {
3316 /* invalidate code */
3317 tb_invalidate_phys_page_range(addr, addr + length, 0);
3318 /* set dirty bit */
3319 cpu_physical_memory_set_dirty_flags(addr, (0xff & ~CODE_DIRTY_FLAG));
3320 }
e226939d 3321 xen_modified_memory(addr, length);
51d7a9eb
AP
3322}
3323
c227f099 3324void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
3325 int len, int is_write)
3326{
37ec01d4 3327 int l;
13eb76e0
FB
3328 uint8_t *ptr;
3329 uint32_t val;
c227f099 3330 target_phys_addr_t page;
f3705d53 3331 MemoryRegionSection *section;
3b46e624 3332
13eb76e0
FB
3333 while (len > 0) {
3334 page = addr & TARGET_PAGE_MASK;
3335 l = (page + TARGET_PAGE_SIZE) - addr;
3336 if (l > len)
3337 l = len;
06ef3525 3338 section = phys_page_find(page >> TARGET_PAGE_BITS);
3b46e624 3339
13eb76e0 3340 if (is_write) {
f3705d53 3341 if (!memory_region_is_ram(section->mr)) {
f1f6e3b8 3342 target_phys_addr_t addr1;
cc5bea60 3343 addr1 = memory_region_section_addr(section, addr);
6a00d601
FB
3344 /* XXX: could force cpu_single_env to NULL to avoid
3345 potential bugs */
6c2934db 3346 if (l >= 4 && ((addr1 & 3) == 0)) {
1c213d19 3347 /* 32 bit write access */
c27004ec 3348 val = ldl_p(buf);
37ec01d4 3349 io_mem_write(section->mr, addr1, val, 4);
13eb76e0 3350 l = 4;
6c2934db 3351 } else if (l >= 2 && ((addr1 & 1) == 0)) {
1c213d19 3352 /* 16 bit write access */
c27004ec 3353 val = lduw_p(buf);
37ec01d4 3354 io_mem_write(section->mr, addr1, val, 2);
13eb76e0
FB
3355 l = 2;
3356 } else {
1c213d19 3357 /* 8 bit write access */
c27004ec 3358 val = ldub_p(buf);
37ec01d4 3359 io_mem_write(section->mr, addr1, val, 1);
13eb76e0
FB
3360 l = 1;
3361 }
f3705d53 3362 } else if (!section->readonly) {
8ca5692d 3363 ram_addr_t addr1;
f3705d53 3364 addr1 = memory_region_get_ram_addr(section->mr)
cc5bea60 3365 + memory_region_section_addr(section, addr);
13eb76e0 3366 /* RAM case */
5579c7f3 3367 ptr = qemu_get_ram_ptr(addr1);
13eb76e0 3368 memcpy(ptr, buf, l);
51d7a9eb 3369 invalidate_and_set_dirty(addr1, l);
050a0ddf 3370 qemu_put_ram_ptr(ptr);
13eb76e0
FB
3371 }
3372 } else {
cc5bea60
BS
3373 if (!(memory_region_is_ram(section->mr) ||
3374 memory_region_is_romd(section->mr))) {
f1f6e3b8 3375 target_phys_addr_t addr1;
13eb76e0 3376 /* I/O case */
cc5bea60 3377 addr1 = memory_region_section_addr(section, addr);
6c2934db 3378 if (l >= 4 && ((addr1 & 3) == 0)) {
13eb76e0 3379 /* 32 bit read access */
37ec01d4 3380 val = io_mem_read(section->mr, addr1, 4);
c27004ec 3381 stl_p(buf, val);
13eb76e0 3382 l = 4;
6c2934db 3383 } else if (l >= 2 && ((addr1 & 1) == 0)) {
13eb76e0 3384 /* 16 bit read access */
37ec01d4 3385 val = io_mem_read(section->mr, addr1, 2);
c27004ec 3386 stw_p(buf, val);
13eb76e0
FB
3387 l = 2;
3388 } else {
1c213d19 3389 /* 8 bit read access */
37ec01d4 3390 val = io_mem_read(section->mr, addr1, 1);
c27004ec 3391 stb_p(buf, val);
13eb76e0
FB
3392 l = 1;
3393 }
3394 } else {
3395 /* RAM case */
0a1b357f 3396 ptr = qemu_get_ram_ptr(section->mr->ram_addr
cc5bea60
BS
3397 + memory_region_section_addr(section,
3398 addr));
f3705d53 3399 memcpy(buf, ptr, l);
050a0ddf 3400 qemu_put_ram_ptr(ptr);
13eb76e0
FB
3401 }
3402 }
3403 len -= l;
3404 buf += l;
3405 addr += l;
3406 }
3407}
8df1cd07 3408
d0ecd2aa 3409/* used for ROM loading : can write in RAM and ROM */
c227f099 3410void cpu_physical_memory_write_rom(target_phys_addr_t addr,
d0ecd2aa
FB
3411 const uint8_t *buf, int len)
3412{
3413 int l;
3414 uint8_t *ptr;
c227f099 3415 target_phys_addr_t page;
f3705d53 3416 MemoryRegionSection *section;
3b46e624 3417
d0ecd2aa
FB
3418 while (len > 0) {
3419 page = addr & TARGET_PAGE_MASK;
3420 l = (page + TARGET_PAGE_SIZE) - addr;
3421 if (l > len)
3422 l = len;
06ef3525 3423 section = phys_page_find(page >> TARGET_PAGE_BITS);
3b46e624 3424
cc5bea60
BS
3425 if (!(memory_region_is_ram(section->mr) ||
3426 memory_region_is_romd(section->mr))) {
d0ecd2aa
FB
3427 /* do nothing */
3428 } else {
3429 unsigned long addr1;
f3705d53 3430 addr1 = memory_region_get_ram_addr(section->mr)
cc5bea60 3431 + memory_region_section_addr(section, addr);
d0ecd2aa 3432 /* ROM/RAM case */
5579c7f3 3433 ptr = qemu_get_ram_ptr(addr1);
d0ecd2aa 3434 memcpy(ptr, buf, l);
51d7a9eb 3435 invalidate_and_set_dirty(addr1, l);
050a0ddf 3436 qemu_put_ram_ptr(ptr);
d0ecd2aa
FB
3437 }
3438 len -= l;
3439 buf += l;
3440 addr += l;
3441 }
3442}
3443
6d16c2f8
AL
3444typedef struct {
3445 void *buffer;
c227f099
AL
3446 target_phys_addr_t addr;
3447 target_phys_addr_t len;
6d16c2f8
AL
3448} BounceBuffer;
3449
3450static BounceBuffer bounce;
3451
ba223c29
AL
3452typedef struct MapClient {
3453 void *opaque;
3454 void (*callback)(void *opaque);
72cf2d4f 3455 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3456} MapClient;
3457
72cf2d4f
BS
3458static QLIST_HEAD(map_client_list, MapClient) map_client_list
3459 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29
AL
3460
3461void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3462{
7267c094 3463 MapClient *client = g_malloc(sizeof(*client));
ba223c29
AL
3464
3465 client->opaque = opaque;
3466 client->callback = callback;
72cf2d4f 3467 QLIST_INSERT_HEAD(&map_client_list, client, link);
ba223c29
AL
3468 return client;
3469}
3470
3471void cpu_unregister_map_client(void *_client)
3472{
3473 MapClient *client = (MapClient *)_client;
3474
72cf2d4f 3475 QLIST_REMOVE(client, link);
7267c094 3476 g_free(client);
ba223c29
AL
3477}
3478
3479static void cpu_notify_map_clients(void)
3480{
3481 MapClient *client;
3482
72cf2d4f
BS
3483 while (!QLIST_EMPTY(&map_client_list)) {
3484 client = QLIST_FIRST(&map_client_list);
ba223c29 3485 client->callback(client->opaque);
34d5e948 3486 cpu_unregister_map_client(client);
ba223c29
AL
3487 }
3488}
3489
6d16c2f8
AL
3490/* Map a physical memory region into a host virtual address.
3491 * May map a subset of the requested range, given by and returned in *plen.
3492 * May return NULL if resources needed to perform the mapping are exhausted.
3493 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3494 * Use cpu_register_map_client() to know when retrying the map operation is
3495 * likely to succeed.
6d16c2f8 3496 */
c227f099
AL
3497void *cpu_physical_memory_map(target_phys_addr_t addr,
3498 target_phys_addr_t *plen,
6d16c2f8
AL
3499 int is_write)
3500{
c227f099 3501 target_phys_addr_t len = *plen;
38bee5dc 3502 target_phys_addr_t todo = 0;
6d16c2f8 3503 int l;
c227f099 3504 target_phys_addr_t page;
f3705d53 3505 MemoryRegionSection *section;
f15fbc4b 3506 ram_addr_t raddr = RAM_ADDR_MAX;
8ab934f9
SS
3507 ram_addr_t rlen;
3508 void *ret;
6d16c2f8
AL
3509
3510 while (len > 0) {
3511 page = addr & TARGET_PAGE_MASK;
3512 l = (page + TARGET_PAGE_SIZE) - addr;
3513 if (l > len)
3514 l = len;
06ef3525 3515 section = phys_page_find(page >> TARGET_PAGE_BITS);
6d16c2f8 3516
f3705d53 3517 if (!(memory_region_is_ram(section->mr) && !section->readonly)) {
38bee5dc 3518 if (todo || bounce.buffer) {
6d16c2f8
AL
3519 break;
3520 }
3521 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3522 bounce.addr = addr;
3523 bounce.len = l;
3524 if (!is_write) {
54f7b4a3 3525 cpu_physical_memory_read(addr, bounce.buffer, l);
6d16c2f8 3526 }
38bee5dc
SS
3527
3528 *plen = l;
3529 return bounce.buffer;
6d16c2f8 3530 }
8ab934f9 3531 if (!todo) {
f3705d53 3532 raddr = memory_region_get_ram_addr(section->mr)
cc5bea60 3533 + memory_region_section_addr(section, addr);
8ab934f9 3534 }
6d16c2f8
AL
3535
3536 len -= l;
3537 addr += l;
38bee5dc 3538 todo += l;
6d16c2f8 3539 }
8ab934f9
SS
3540 rlen = todo;
3541 ret = qemu_ram_ptr_length(raddr, &rlen);
3542 *plen = rlen;
3543 return ret;
6d16c2f8
AL
3544}
3545
3546/* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3547 * Will also mark the memory as dirty if is_write == 1. access_len gives
3548 * the amount of memory that was actually read or written by the caller.
3549 */
c227f099
AL
3550void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3551 int is_write, target_phys_addr_t access_len)
6d16c2f8
AL
3552{
3553 if (buffer != bounce.buffer) {
3554 if (is_write) {
e890261f 3555 ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer);
6d16c2f8
AL
3556 while (access_len) {
3557 unsigned l;
3558 l = TARGET_PAGE_SIZE;
3559 if (l > access_len)
3560 l = access_len;
51d7a9eb 3561 invalidate_and_set_dirty(addr1, l);
6d16c2f8
AL
3562 addr1 += l;
3563 access_len -= l;
3564 }
3565 }
868bb33f 3566 if (xen_enabled()) {
e41d7c69 3567 xen_invalidate_map_cache_entry(buffer);
050a0ddf 3568 }
6d16c2f8
AL
3569 return;
3570 }
3571 if (is_write) {
3572 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3573 }
f8a83245 3574 qemu_vfree(bounce.buffer);
6d16c2f8 3575 bounce.buffer = NULL;
ba223c29 3576 cpu_notify_map_clients();
6d16c2f8 3577}
d0ecd2aa 3578
8df1cd07 3579/* warning: addr must be aligned */
1e78bcc1
AG
3580static inline uint32_t ldl_phys_internal(target_phys_addr_t addr,
3581 enum device_endian endian)
8df1cd07 3582{
8df1cd07
FB
3583 uint8_t *ptr;
3584 uint32_t val;
f3705d53 3585 MemoryRegionSection *section;
8df1cd07 3586
06ef3525 3587 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3b46e624 3588
cc5bea60
BS
3589 if (!(memory_region_is_ram(section->mr) ||
3590 memory_region_is_romd(section->mr))) {
8df1cd07 3591 /* I/O case */
cc5bea60 3592 addr = memory_region_section_addr(section, addr);
37ec01d4 3593 val = io_mem_read(section->mr, addr, 4);
1e78bcc1
AG
3594#if defined(TARGET_WORDS_BIGENDIAN)
3595 if (endian == DEVICE_LITTLE_ENDIAN) {
3596 val = bswap32(val);
3597 }
3598#else
3599 if (endian == DEVICE_BIG_ENDIAN) {
3600 val = bswap32(val);
3601 }
3602#endif
8df1cd07
FB
3603 } else {
3604 /* RAM case */
f3705d53 3605 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
06ef3525 3606 & TARGET_PAGE_MASK)
cc5bea60 3607 + memory_region_section_addr(section, addr));
1e78bcc1
AG
3608 switch (endian) {
3609 case DEVICE_LITTLE_ENDIAN:
3610 val = ldl_le_p(ptr);
3611 break;
3612 case DEVICE_BIG_ENDIAN:
3613 val = ldl_be_p(ptr);
3614 break;
3615 default:
3616 val = ldl_p(ptr);
3617 break;
3618 }
8df1cd07
FB
3619 }
3620 return val;
3621}
3622
1e78bcc1
AG
3623uint32_t ldl_phys(target_phys_addr_t addr)
3624{
3625 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
3626}
3627
3628uint32_t ldl_le_phys(target_phys_addr_t addr)
3629{
3630 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
3631}
3632
3633uint32_t ldl_be_phys(target_phys_addr_t addr)
3634{
3635 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
3636}
3637
84b7b8e7 3638/* warning: addr must be aligned */
1e78bcc1
AG
3639static inline uint64_t ldq_phys_internal(target_phys_addr_t addr,
3640 enum device_endian endian)
84b7b8e7 3641{
84b7b8e7
FB
3642 uint8_t *ptr;
3643 uint64_t val;
f3705d53 3644 MemoryRegionSection *section;
84b7b8e7 3645
06ef3525 3646 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3b46e624 3647
cc5bea60
BS
3648 if (!(memory_region_is_ram(section->mr) ||
3649 memory_region_is_romd(section->mr))) {
84b7b8e7 3650 /* I/O case */
cc5bea60 3651 addr = memory_region_section_addr(section, addr);
1e78bcc1
AG
3652
3653 /* XXX This is broken when device endian != cpu endian.
3654 Fix and add "endian" variable check */
84b7b8e7 3655#ifdef TARGET_WORDS_BIGENDIAN
37ec01d4
AK
3656 val = io_mem_read(section->mr, addr, 4) << 32;
3657 val |= io_mem_read(section->mr, addr + 4, 4);
84b7b8e7 3658#else
37ec01d4
AK
3659 val = io_mem_read(section->mr, addr, 4);
3660 val |= io_mem_read(section->mr, addr + 4, 4) << 32;
84b7b8e7
FB
3661#endif
3662 } else {
3663 /* RAM case */
f3705d53 3664 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
06ef3525 3665 & TARGET_PAGE_MASK)
cc5bea60 3666 + memory_region_section_addr(section, addr));
1e78bcc1
AG
3667 switch (endian) {
3668 case DEVICE_LITTLE_ENDIAN:
3669 val = ldq_le_p(ptr);
3670 break;
3671 case DEVICE_BIG_ENDIAN:
3672 val = ldq_be_p(ptr);
3673 break;
3674 default:
3675 val = ldq_p(ptr);
3676 break;
3677 }
84b7b8e7
FB
3678 }
3679 return val;
3680}
3681
1e78bcc1
AG
3682uint64_t ldq_phys(target_phys_addr_t addr)
3683{
3684 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
3685}
3686
3687uint64_t ldq_le_phys(target_phys_addr_t addr)
3688{
3689 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
3690}
3691
3692uint64_t ldq_be_phys(target_phys_addr_t addr)
3693{
3694 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
3695}
3696
aab33094 3697/* XXX: optimize */
c227f099 3698uint32_t ldub_phys(target_phys_addr_t addr)
aab33094
FB
3699{
3700 uint8_t val;
3701 cpu_physical_memory_read(addr, &val, 1);
3702 return val;
3703}
3704
733f0b02 3705/* warning: addr must be aligned */
1e78bcc1
AG
3706static inline uint32_t lduw_phys_internal(target_phys_addr_t addr,
3707 enum device_endian endian)
aab33094 3708{
733f0b02
MT
3709 uint8_t *ptr;
3710 uint64_t val;
f3705d53 3711 MemoryRegionSection *section;
733f0b02 3712
06ef3525 3713 section = phys_page_find(addr >> TARGET_PAGE_BITS);
733f0b02 3714
cc5bea60
BS
3715 if (!(memory_region_is_ram(section->mr) ||
3716 memory_region_is_romd(section->mr))) {
733f0b02 3717 /* I/O case */
cc5bea60 3718 addr = memory_region_section_addr(section, addr);
37ec01d4 3719 val = io_mem_read(section->mr, addr, 2);
1e78bcc1
AG
3720#if defined(TARGET_WORDS_BIGENDIAN)
3721 if (endian == DEVICE_LITTLE_ENDIAN) {
3722 val = bswap16(val);
3723 }
3724#else
3725 if (endian == DEVICE_BIG_ENDIAN) {
3726 val = bswap16(val);
3727 }
3728#endif
733f0b02
MT
3729 } else {
3730 /* RAM case */
f3705d53 3731 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
06ef3525 3732 & TARGET_PAGE_MASK)
cc5bea60 3733 + memory_region_section_addr(section, addr));
1e78bcc1
AG
3734 switch (endian) {
3735 case DEVICE_LITTLE_ENDIAN:
3736 val = lduw_le_p(ptr);
3737 break;
3738 case DEVICE_BIG_ENDIAN:
3739 val = lduw_be_p(ptr);
3740 break;
3741 default:
3742 val = lduw_p(ptr);
3743 break;
3744 }
733f0b02
MT
3745 }
3746 return val;
aab33094
FB
3747}
3748
1e78bcc1
AG
3749uint32_t lduw_phys(target_phys_addr_t addr)
3750{
3751 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
3752}
3753
3754uint32_t lduw_le_phys(target_phys_addr_t addr)
3755{
3756 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
3757}
3758
3759uint32_t lduw_be_phys(target_phys_addr_t addr)
3760{
3761 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
3762}
3763
8df1cd07
FB
3764/* warning: addr must be aligned. The ram page is not masked as dirty
3765 and the code inside is not invalidated. It is useful if the dirty
3766 bits are used to track modified PTEs */
c227f099 3767void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
8df1cd07 3768{
8df1cd07 3769 uint8_t *ptr;
f3705d53 3770 MemoryRegionSection *section;
8df1cd07 3771
06ef3525 3772 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3b46e624 3773
f3705d53 3774 if (!memory_region_is_ram(section->mr) || section->readonly) {
cc5bea60 3775 addr = memory_region_section_addr(section, addr);
f3705d53 3776 if (memory_region_is_ram(section->mr)) {
37ec01d4 3777 section = &phys_sections[phys_section_rom];
06ef3525 3778 }
37ec01d4 3779 io_mem_write(section->mr, addr, val, 4);
8df1cd07 3780 } else {
f3705d53 3781 unsigned long addr1 = (memory_region_get_ram_addr(section->mr)
06ef3525 3782 & TARGET_PAGE_MASK)
cc5bea60 3783 + memory_region_section_addr(section, addr);
5579c7f3 3784 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3785 stl_p(ptr, val);
74576198
AL
3786
3787 if (unlikely(in_migration)) {
3788 if (!cpu_physical_memory_is_dirty(addr1)) {
3789 /* invalidate code */
3790 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3791 /* set dirty bit */
f7c11b53
YT
3792 cpu_physical_memory_set_dirty_flags(
3793 addr1, (0xff & ~CODE_DIRTY_FLAG));
74576198
AL
3794 }
3795 }
8df1cd07
FB
3796 }
3797}
3798
c227f099 3799void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
bc98a7ef 3800{
bc98a7ef 3801 uint8_t *ptr;
f3705d53 3802 MemoryRegionSection *section;
bc98a7ef 3803
06ef3525 3804 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3b46e624 3805
f3705d53 3806 if (!memory_region_is_ram(section->mr) || section->readonly) {
cc5bea60 3807 addr = memory_region_section_addr(section, addr);
f3705d53 3808 if (memory_region_is_ram(section->mr)) {
37ec01d4 3809 section = &phys_sections[phys_section_rom];
06ef3525 3810 }
bc98a7ef 3811#ifdef TARGET_WORDS_BIGENDIAN
37ec01d4
AK
3812 io_mem_write(section->mr, addr, val >> 32, 4);
3813 io_mem_write(section->mr, addr + 4, (uint32_t)val, 4);
bc98a7ef 3814#else
37ec01d4
AK
3815 io_mem_write(section->mr, addr, (uint32_t)val, 4);
3816 io_mem_write(section->mr, addr + 4, val >> 32, 4);
bc98a7ef
JM
3817#endif
3818 } else {
f3705d53 3819 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
06ef3525 3820 & TARGET_PAGE_MASK)
cc5bea60 3821 + memory_region_section_addr(section, addr));
bc98a7ef
JM
3822 stq_p(ptr, val);
3823 }
3824}
3825
8df1cd07 3826/* warning: addr must be aligned */
1e78bcc1
AG
3827static inline void stl_phys_internal(target_phys_addr_t addr, uint32_t val,
3828 enum device_endian endian)
8df1cd07 3829{
8df1cd07 3830 uint8_t *ptr;
f3705d53 3831 MemoryRegionSection *section;
8df1cd07 3832
06ef3525 3833 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3b46e624 3834
f3705d53 3835 if (!memory_region_is_ram(section->mr) || section->readonly) {
cc5bea60 3836 addr = memory_region_section_addr(section, addr);
f3705d53 3837 if (memory_region_is_ram(section->mr)) {
37ec01d4 3838 section = &phys_sections[phys_section_rom];
06ef3525 3839 }
1e78bcc1
AG
3840#if defined(TARGET_WORDS_BIGENDIAN)
3841 if (endian == DEVICE_LITTLE_ENDIAN) {
3842 val = bswap32(val);
3843 }
3844#else
3845 if (endian == DEVICE_BIG_ENDIAN) {
3846 val = bswap32(val);
3847 }
3848#endif
37ec01d4 3849 io_mem_write(section->mr, addr, val, 4);
8df1cd07
FB
3850 } else {
3851 unsigned long addr1;
f3705d53 3852 addr1 = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
cc5bea60 3853 + memory_region_section_addr(section, addr);
8df1cd07 3854 /* RAM case */
5579c7f3 3855 ptr = qemu_get_ram_ptr(addr1);
1e78bcc1
AG
3856 switch (endian) {
3857 case DEVICE_LITTLE_ENDIAN:
3858 stl_le_p(ptr, val);
3859 break;
3860 case DEVICE_BIG_ENDIAN:
3861 stl_be_p(ptr, val);
3862 break;
3863 default:
3864 stl_p(ptr, val);
3865 break;
3866 }
51d7a9eb 3867 invalidate_and_set_dirty(addr1, 4);
8df1cd07
FB
3868 }
3869}
3870
1e78bcc1
AG
3871void stl_phys(target_phys_addr_t addr, uint32_t val)
3872{
3873 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
3874}
3875
3876void stl_le_phys(target_phys_addr_t addr, uint32_t val)
3877{
3878 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
3879}
3880
3881void stl_be_phys(target_phys_addr_t addr, uint32_t val)
3882{
3883 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
3884}
3885
aab33094 3886/* XXX: optimize */
c227f099 3887void stb_phys(target_phys_addr_t addr, uint32_t val)
aab33094
FB
3888{
3889 uint8_t v = val;
3890 cpu_physical_memory_write(addr, &v, 1);
3891}
3892
733f0b02 3893/* warning: addr must be aligned */
1e78bcc1
AG
3894static inline void stw_phys_internal(target_phys_addr_t addr, uint32_t val,
3895 enum device_endian endian)
aab33094 3896{
733f0b02 3897 uint8_t *ptr;
f3705d53 3898 MemoryRegionSection *section;
733f0b02 3899
06ef3525 3900 section = phys_page_find(addr >> TARGET_PAGE_BITS);
733f0b02 3901
f3705d53 3902 if (!memory_region_is_ram(section->mr) || section->readonly) {
cc5bea60 3903 addr = memory_region_section_addr(section, addr);
f3705d53 3904 if (memory_region_is_ram(section->mr)) {
37ec01d4 3905 section = &phys_sections[phys_section_rom];
06ef3525 3906 }
1e78bcc1
AG
3907#if defined(TARGET_WORDS_BIGENDIAN)
3908 if (endian == DEVICE_LITTLE_ENDIAN) {
3909 val = bswap16(val);
3910 }
3911#else
3912 if (endian == DEVICE_BIG_ENDIAN) {
3913 val = bswap16(val);
3914 }
3915#endif
37ec01d4 3916 io_mem_write(section->mr, addr, val, 2);
733f0b02
MT
3917 } else {
3918 unsigned long addr1;
f3705d53 3919 addr1 = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
cc5bea60 3920 + memory_region_section_addr(section, addr);
733f0b02
MT
3921 /* RAM case */
3922 ptr = qemu_get_ram_ptr(addr1);
1e78bcc1
AG
3923 switch (endian) {
3924 case DEVICE_LITTLE_ENDIAN:
3925 stw_le_p(ptr, val);
3926 break;
3927 case DEVICE_BIG_ENDIAN:
3928 stw_be_p(ptr, val);
3929 break;
3930 default:
3931 stw_p(ptr, val);
3932 break;
3933 }
51d7a9eb 3934 invalidate_and_set_dirty(addr1, 2);
733f0b02 3935 }
aab33094
FB
3936}
3937
1e78bcc1
AG
3938void stw_phys(target_phys_addr_t addr, uint32_t val)
3939{
3940 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
3941}
3942
3943void stw_le_phys(target_phys_addr_t addr, uint32_t val)
3944{
3945 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
3946}
3947
3948void stw_be_phys(target_phys_addr_t addr, uint32_t val)
3949{
3950 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
3951}
3952
aab33094 3953/* XXX: optimize */
c227f099 3954void stq_phys(target_phys_addr_t addr, uint64_t val)
aab33094
FB
3955{
3956 val = tswap64(val);
71d2b725 3957 cpu_physical_memory_write(addr, &val, 8);
aab33094
FB
3958}
3959
1e78bcc1
AG
3960void stq_le_phys(target_phys_addr_t addr, uint64_t val)
3961{
3962 val = cpu_to_le64(val);
3963 cpu_physical_memory_write(addr, &val, 8);
3964}
3965
3966void stq_be_phys(target_phys_addr_t addr, uint64_t val)
3967{
3968 val = cpu_to_be64(val);
3969 cpu_physical_memory_write(addr, &val, 8);
3970}
3971
5e2972fd 3972/* virtual memory access for debug (includes writing to ROM) */
9349b4f9 3973int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
b448f2f3 3974 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3975{
3976 int l;
c227f099 3977 target_phys_addr_t phys_addr;
9b3c35e0 3978 target_ulong page;
13eb76e0
FB
3979
3980 while (len > 0) {
3981 page = addr & TARGET_PAGE_MASK;
3982 phys_addr = cpu_get_phys_page_debug(env, page);
3983 /* if no physical page mapped, return an error */
3984 if (phys_addr == -1)
3985 return -1;
3986 l = (page + TARGET_PAGE_SIZE) - addr;
3987 if (l > len)
3988 l = len;
5e2972fd 3989 phys_addr += (addr & ~TARGET_PAGE_MASK);
5e2972fd
AL
3990 if (is_write)
3991 cpu_physical_memory_write_rom(phys_addr, buf, l);
3992 else
5e2972fd 3993 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
13eb76e0
FB
3994 len -= l;
3995 buf += l;
3996 addr += l;
3997 }
3998 return 0;
3999}
a68fe89c 4000#endif
13eb76e0 4001
2e70f6ef
PB
4002/* in deterministic execution mode, instructions doing device I/Os
4003 must be at the end of the TB */
20503968 4004void cpu_io_recompile(CPUArchState *env, uintptr_t retaddr)
2e70f6ef
PB
4005{
4006 TranslationBlock *tb;
4007 uint32_t n, cflags;
4008 target_ulong pc, cs_base;
4009 uint64_t flags;
4010
20503968 4011 tb = tb_find_pc(retaddr);
2e70f6ef
PB
4012 if (!tb) {
4013 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
20503968 4014 (void *)retaddr);
2e70f6ef
PB
4015 }
4016 n = env->icount_decr.u16.low + tb->icount;
20503968 4017 cpu_restore_state(tb, env, retaddr);
2e70f6ef 4018 /* Calculate how many instructions had been executed before the fault
bf20dc07 4019 occurred. */
2e70f6ef
PB
4020 n = n - env->icount_decr.u16.low;
4021 /* Generate a new TB ending on the I/O insn. */
4022 n++;
4023 /* On MIPS and SH, delay slot instructions can only be restarted if
4024 they were already the first instruction in the TB. If this is not
bf20dc07 4025 the first instruction in a TB then re-execute the preceding
2e70f6ef
PB
4026 branch. */
4027#if defined(TARGET_MIPS)
4028 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
4029 env->active_tc.PC -= 4;
4030 env->icount_decr.u16.low++;
4031 env->hflags &= ~MIPS_HFLAG_BMASK;
4032 }
4033#elif defined(TARGET_SH4)
4034 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
4035 && n > 1) {
4036 env->pc -= 2;
4037 env->icount_decr.u16.low++;
4038 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
4039 }
4040#endif
4041 /* This should never happen. */
4042 if (n > CF_COUNT_MASK)
4043 cpu_abort(env, "TB too big during recompile");
4044
4045 cflags = n | CF_LAST_IO;
4046 pc = tb->pc;
4047 cs_base = tb->cs_base;
4048 flags = tb->flags;
4049 tb_phys_invalidate(tb, -1);
4050 /* FIXME: In theory this could raise an exception. In practice
4051 we have already translated the block once so it's probably ok. */
4052 tb_gen_code(env, pc, cs_base, flags, cflags);
bf20dc07 4053 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2e70f6ef
PB
4054 the first in the TB) then we end up generating a whole new TB and
4055 repeating the fault, which is horribly inefficient.
4056 Better would be to execute just this insn uncached, or generate a
4057 second new TB. */
4058 cpu_resume_from_signal(env, NULL);
4059}
4060
b3755a91
PB
4061#if !defined(CONFIG_USER_ONLY)
4062
055403b2 4063void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
e3db7226
FB
4064{
4065 int i, target_code_size, max_target_code_size;
4066 int direct_jmp_count, direct_jmp2_count, cross_page;
4067 TranslationBlock *tb;
3b46e624 4068
e3db7226
FB
4069 target_code_size = 0;
4070 max_target_code_size = 0;
4071 cross_page = 0;
4072 direct_jmp_count = 0;
4073 direct_jmp2_count = 0;
4074 for(i = 0; i < nb_tbs; i++) {
4075 tb = &tbs[i];
4076 target_code_size += tb->size;
4077 if (tb->size > max_target_code_size)
4078 max_target_code_size = tb->size;
4079 if (tb->page_addr[1] != -1)
4080 cross_page++;
4081 if (tb->tb_next_offset[0] != 0xffff) {
4082 direct_jmp_count++;
4083 if (tb->tb_next_offset[1] != 0xffff) {
4084 direct_jmp2_count++;
4085 }
4086 }
4087 }
4088 /* XXX: avoid using doubles ? */
57fec1fe 4089 cpu_fprintf(f, "Translation buffer state:\n");
055403b2 4090 cpu_fprintf(f, "gen code size %td/%ld\n",
26a5f13b
FB
4091 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
4092 cpu_fprintf(f, "TB count %d/%d\n",
4093 nb_tbs, code_gen_max_blocks);
5fafdf24 4094 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
e3db7226
FB
4095 nb_tbs ? target_code_size / nb_tbs : 0,
4096 max_target_code_size);
055403b2 4097 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
e3db7226
FB
4098 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
4099 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
5fafdf24
TS
4100 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
4101 cross_page,
e3db7226
FB
4102 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
4103 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
5fafdf24 4104 direct_jmp_count,
e3db7226
FB
4105 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
4106 direct_jmp2_count,
4107 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
57fec1fe 4108 cpu_fprintf(f, "\nStatistics:\n");
e3db7226
FB
4109 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
4110 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
4111 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
b67d9a52 4112 tcg_dump_info(f, cpu_fprintf);
e3db7226
FB
4113}
4114
82afa586
BH
4115/*
4116 * A helper function for the _utterly broken_ virtio device model to find out if
4117 * it's running on a big endian machine. Don't do this at home kids!
4118 */
4119bool virtio_is_big_endian(void);
4120bool virtio_is_big_endian(void)
4121{
4122#if defined(TARGET_WORDS_BIGENDIAN)
4123 return true;
4124#else
4125 return false;
4126#endif
4127}
4128
61382a50 4129#endif
76f35538
WC
4130
4131#ifndef CONFIG_USER_ONLY
4132bool cpu_physical_memory_is_io(target_phys_addr_t phys_addr)
4133{
4134 MemoryRegionSection *section;
4135
4136 section = phys_page_find(phys_addr >> TARGET_PAGE_BITS);
4137
4138 return !(memory_region_is_ram(section->mr) ||
4139 memory_region_is_romd(section->mr));
4140}
4141#endif