]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
hw/moxie/moxiesim: Add support for loading a BIOS on moxiesim
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
5b6dd868 2 * Virtual page mapping
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
7b31bbc2 19#include "qemu/osdep.h"
da34e65c 20#include "qapi/error.h"
54936004 21
f348b6d1 22#include "qemu/cutils.h"
6180a181 23#include "cpu.h"
63c91552 24#include "exec/exec-all.h"
51180423 25#include "exec/target_page.h"
b67d9a52 26#include "tcg.h"
741da0d3 27#include "hw/qdev-core.h"
c7e002c5 28#include "hw/qdev-properties.h"
4485bd26 29#if !defined(CONFIG_USER_ONLY)
47c8ca53 30#include "hw/boards.h"
33c11879 31#include "hw/xen/xen.h"
4485bd26 32#endif
9c17d615 33#include "sysemu/kvm.h"
2ff3de68 34#include "sysemu/sysemu.h"
1de7afc9
PB
35#include "qemu/timer.h"
36#include "qemu/config-file.h"
75a34036 37#include "qemu/error-report.h"
53a5960a 38#if defined(CONFIG_USER_ONLY)
a9c94277 39#include "qemu.h"
432d268c 40#else /* !CONFIG_USER_ONLY */
741da0d3
PB
41#include "hw/hw.h"
42#include "exec/memory.h"
df43d49c 43#include "exec/ioport.h"
741da0d3 44#include "sysemu/dma.h"
9c607668 45#include "sysemu/numa.h"
79ca7a1b 46#include "sysemu/hw_accel.h"
741da0d3 47#include "exec/address-spaces.h"
9c17d615 48#include "sysemu/xen-mapcache.h"
0ab8ed18 49#include "trace-root.h"
d3a5038c 50
e2fa71f5 51#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
e2fa71f5
DDAG
52#include <linux/falloc.h>
53#endif
54
53a5960a 55#endif
0dc3f44a 56#include "qemu/rcu_queue.h"
4840f10e 57#include "qemu/main-loop.h"
5b6dd868 58#include "translate-all.h"
7615936e 59#include "sysemu/replay.h"
0cac1b66 60
022c62cb 61#include "exec/memory-internal.h"
220c3ebd 62#include "exec/ram_addr.h"
508127e2 63#include "exec/log.h"
67d95c15 64
9dfeca7c
BR
65#include "migration/vmstate.h"
66
b35ba30f 67#include "qemu/range.h"
794e8f30
MT
68#ifndef _WIN32
69#include "qemu/mmap-alloc.h"
70#endif
b35ba30f 71
be9b23c4
PX
72#include "monitor/monitor.h"
73
db7b5426 74//#define DEBUG_SUBPAGE
1196be37 75
e2eef170 76#if !defined(CONFIG_USER_ONLY)
0dc3f44a
MD
77/* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
78 * are protected by the ramlist lock.
79 */
0d53d9fe 80RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
81
82static MemoryRegion *system_memory;
309cb471 83static MemoryRegion *system_io;
62152b8a 84
f6790af6
AK
85AddressSpace address_space_io;
86AddressSpace address_space_memory;
2673a5da 87
0844e007 88MemoryRegion io_mem_rom, io_mem_notdirty;
acc9d80b 89static MemoryRegion io_mem_unassigned;
0e0df1e2 90
7bd4f430
PB
91/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
92#define RAM_PREALLOC (1 << 0)
93
dbcb8981
PB
94/* RAM is mmap-ed with MAP_SHARED */
95#define RAM_SHARED (1 << 1)
96
62be4e3a
MT
97/* Only a portion of RAM (used_length) is actually used, and migrated.
98 * This used_length size can change across reboots.
99 */
100#define RAM_RESIZEABLE (1 << 2)
101
e2eef170 102#endif
9fa3e853 103
20bccb82
PM
104#ifdef TARGET_PAGE_BITS_VARY
105int target_page_bits;
106bool target_page_bits_decided;
107#endif
108
bdc44640 109struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
6a00d601
FB
110/* current CPU in the current thread. It is only valid inside
111 cpu_exec() */
f240eb6f 112__thread CPUState *current_cpu;
2e70f6ef 113/* 0 = Do not count executed instructions.
bf20dc07 114 1 = Precise instruction counting.
2e70f6ef 115 2 = Adaptive rate instruction counting. */
5708fc66 116int use_icount;
6a00d601 117
a0be0c58
YZ
118uintptr_t qemu_host_page_size;
119intptr_t qemu_host_page_mask;
a0be0c58 120
20bccb82
PM
121bool set_preferred_target_page_bits(int bits)
122{
123 /* The target page size is the lowest common denominator for all
124 * the CPUs in the system, so we can only make it smaller, never
125 * larger. And we can't make it smaller once we've committed to
126 * a particular size.
127 */
128#ifdef TARGET_PAGE_BITS_VARY
129 assert(bits >= TARGET_PAGE_BITS_MIN);
130 if (target_page_bits == 0 || target_page_bits > bits) {
131 if (target_page_bits_decided) {
132 return false;
133 }
134 target_page_bits = bits;
135 }
136#endif
137 return true;
138}
139
e2eef170 140#if !defined(CONFIG_USER_ONLY)
4346ae3e 141
20bccb82
PM
142static void finalize_target_page_bits(void)
143{
144#ifdef TARGET_PAGE_BITS_VARY
145 if (target_page_bits == 0) {
146 target_page_bits = TARGET_PAGE_BITS_MIN;
147 }
148 target_page_bits_decided = true;
149#endif
150}
151
1db8abb1
PB
152typedef struct PhysPageEntry PhysPageEntry;
153
154struct PhysPageEntry {
9736e55b 155 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
8b795765 156 uint32_t skip : 6;
9736e55b 157 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
8b795765 158 uint32_t ptr : 26;
1db8abb1
PB
159};
160
8b795765
MT
161#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
162
03f49957 163/* Size of the L2 (and L3, etc) page tables. */
57271d63 164#define ADDR_SPACE_BITS 64
03f49957 165
026736ce 166#define P_L2_BITS 9
03f49957
PB
167#define P_L2_SIZE (1 << P_L2_BITS)
168
169#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
170
171typedef PhysPageEntry Node[P_L2_SIZE];
0475d94f 172
53cb28cb 173typedef struct PhysPageMap {
79e2b9ae
PB
174 struct rcu_head rcu;
175
53cb28cb
MA
176 unsigned sections_nb;
177 unsigned sections_nb_alloc;
178 unsigned nodes_nb;
179 unsigned nodes_nb_alloc;
180 Node *nodes;
181 MemoryRegionSection *sections;
182} PhysPageMap;
183
1db8abb1 184struct AddressSpaceDispatch {
729633c2 185 MemoryRegionSection *mru_section;
1db8abb1
PB
186 /* This is a multi-level map on the physical address space.
187 * The bottom level has pointers to MemoryRegionSections.
188 */
189 PhysPageEntry phys_map;
53cb28cb 190 PhysPageMap map;
1db8abb1
PB
191};
192
90260c6c
JK
193#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
194typedef struct subpage_t {
195 MemoryRegion iomem;
16620684 196 FlatView *fv;
90260c6c 197 hwaddr base;
2615fabd 198 uint16_t sub_section[];
90260c6c
JK
199} subpage_t;
200
b41aac4f
LPF
201#define PHYS_SECTION_UNASSIGNED 0
202#define PHYS_SECTION_NOTDIRTY 1
203#define PHYS_SECTION_ROM 2
204#define PHYS_SECTION_WATCH 3
5312bd8b 205
e2eef170 206static void io_mem_init(void);
62152b8a 207static void memory_map_init(void);
09daed84 208static void tcg_commit(MemoryListener *listener);
e2eef170 209
1ec9b909 210static MemoryRegion io_mem_watch;
32857f4d
PM
211
212/**
213 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
214 * @cpu: the CPU whose AddressSpace this is
215 * @as: the AddressSpace itself
216 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
217 * @tcg_as_listener: listener for tracking changes to the AddressSpace
218 */
219struct CPUAddressSpace {
220 CPUState *cpu;
221 AddressSpace *as;
222 struct AddressSpaceDispatch *memory_dispatch;
223 MemoryListener tcg_as_listener;
224};
225
8deaf12c
GH
226struct DirtyBitmapSnapshot {
227 ram_addr_t start;
228 ram_addr_t end;
229 unsigned long dirty[];
230};
231
6658ffb8 232#endif
fd6ce8f6 233
6d9a1304 234#if !defined(CONFIG_USER_ONLY)
d6f2ea22 235
53cb28cb 236static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
d6f2ea22 237{
101420b8 238 static unsigned alloc_hint = 16;
53cb28cb 239 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
101420b8 240 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
53cb28cb
MA
241 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
242 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
101420b8 243 alloc_hint = map->nodes_nb_alloc;
d6f2ea22 244 }
f7bf5461
AK
245}
246
db94604b 247static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
f7bf5461
AK
248{
249 unsigned i;
8b795765 250 uint32_t ret;
db94604b
PB
251 PhysPageEntry e;
252 PhysPageEntry *p;
f7bf5461 253
53cb28cb 254 ret = map->nodes_nb++;
db94604b 255 p = map->nodes[ret];
f7bf5461 256 assert(ret != PHYS_MAP_NODE_NIL);
53cb28cb 257 assert(ret != map->nodes_nb_alloc);
db94604b
PB
258
259 e.skip = leaf ? 0 : 1;
260 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
03f49957 261 for (i = 0; i < P_L2_SIZE; ++i) {
db94604b 262 memcpy(&p[i], &e, sizeof(e));
d6f2ea22 263 }
f7bf5461 264 return ret;
d6f2ea22
AK
265}
266
53cb28cb
MA
267static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
268 hwaddr *index, hwaddr *nb, uint16_t leaf,
2999097b 269 int level)
f7bf5461
AK
270{
271 PhysPageEntry *p;
03f49957 272 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
108c49b8 273
9736e55b 274 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
db94604b 275 lp->ptr = phys_map_node_alloc(map, level == 0);
92e873b9 276 }
db94604b 277 p = map->nodes[lp->ptr];
03f49957 278 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
f7bf5461 279
03f49957 280 while (*nb && lp < &p[P_L2_SIZE]) {
07f07b31 281 if ((*index & (step - 1)) == 0 && *nb >= step) {
9736e55b 282 lp->skip = 0;
c19e8800 283 lp->ptr = leaf;
07f07b31
AK
284 *index += step;
285 *nb -= step;
2999097b 286 } else {
53cb28cb 287 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
2999097b
AK
288 }
289 ++lp;
f7bf5461
AK
290 }
291}
292
ac1970fb 293static void phys_page_set(AddressSpaceDispatch *d,
a8170e5e 294 hwaddr index, hwaddr nb,
2999097b 295 uint16_t leaf)
f7bf5461 296{
2999097b 297 /* Wildly overreserve - it doesn't matter much. */
53cb28cb 298 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
5cd2c5b6 299
53cb28cb 300 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
301}
302
b35ba30f
MT
303/* Compact a non leaf page entry. Simply detect that the entry has a single child,
304 * and update our entry so we can skip it and go directly to the destination.
305 */
efee678d 306static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
b35ba30f
MT
307{
308 unsigned valid_ptr = P_L2_SIZE;
309 int valid = 0;
310 PhysPageEntry *p;
311 int i;
312
313 if (lp->ptr == PHYS_MAP_NODE_NIL) {
314 return;
315 }
316
317 p = nodes[lp->ptr];
318 for (i = 0; i < P_L2_SIZE; i++) {
319 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
320 continue;
321 }
322
323 valid_ptr = i;
324 valid++;
325 if (p[i].skip) {
efee678d 326 phys_page_compact(&p[i], nodes);
b35ba30f
MT
327 }
328 }
329
330 /* We can only compress if there's only one child. */
331 if (valid != 1) {
332 return;
333 }
334
335 assert(valid_ptr < P_L2_SIZE);
336
337 /* Don't compress if it won't fit in the # of bits we have. */
338 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
339 return;
340 }
341
342 lp->ptr = p[valid_ptr].ptr;
343 if (!p[valid_ptr].skip) {
344 /* If our only child is a leaf, make this a leaf. */
345 /* By design, we should have made this node a leaf to begin with so we
346 * should never reach here.
347 * But since it's so simple to handle this, let's do it just in case we
348 * change this rule.
349 */
350 lp->skip = 0;
351 } else {
352 lp->skip += p[valid_ptr].skip;
353 }
354}
355
8629d3fc 356void address_space_dispatch_compact(AddressSpaceDispatch *d)
b35ba30f 357{
b35ba30f 358 if (d->phys_map.skip) {
efee678d 359 phys_page_compact(&d->phys_map, d->map.nodes);
b35ba30f
MT
360 }
361}
362
29cb533d
FZ
363static inline bool section_covers_addr(const MemoryRegionSection *section,
364 hwaddr addr)
365{
366 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
367 * the section must cover the entire address space.
368 */
258dfaaa 369 return int128_gethi(section->size) ||
29cb533d 370 range_covers_byte(section->offset_within_address_space,
258dfaaa 371 int128_getlo(section->size), addr);
29cb533d
FZ
372}
373
003a0cf2 374static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
92e873b9 375{
003a0cf2
PX
376 PhysPageEntry lp = d->phys_map, *p;
377 Node *nodes = d->map.nodes;
378 MemoryRegionSection *sections = d->map.sections;
97115a8d 379 hwaddr index = addr >> TARGET_PAGE_BITS;
31ab2b4a 380 int i;
f1f6e3b8 381
9736e55b 382 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
c19e8800 383 if (lp.ptr == PHYS_MAP_NODE_NIL) {
9affd6fc 384 return &sections[PHYS_SECTION_UNASSIGNED];
31ab2b4a 385 }
9affd6fc 386 p = nodes[lp.ptr];
03f49957 387 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
5312bd8b 388 }
b35ba30f 389
29cb533d 390 if (section_covers_addr(&sections[lp.ptr], addr)) {
b35ba30f
MT
391 return &sections[lp.ptr];
392 } else {
393 return &sections[PHYS_SECTION_UNASSIGNED];
394 }
f3705d53
AK
395}
396
e5548617
BS
397bool memory_region_is_unassigned(MemoryRegion *mr)
398{
2a8e7499 399 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
5b6dd868 400 && mr != &io_mem_watch;
fd6ce8f6 401}
149f54b5 402
79e2b9ae 403/* Called from RCU critical section */
c7086b4a 404static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
90260c6c
JK
405 hwaddr addr,
406 bool resolve_subpage)
9f029603 407{
729633c2 408 MemoryRegionSection *section = atomic_read(&d->mru_section);
90260c6c
JK
409 subpage_t *subpage;
410
07c114bb
PB
411 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
412 !section_covers_addr(section, addr)) {
003a0cf2 413 section = phys_page_find(d, addr);
07c114bb 414 atomic_set(&d->mru_section, section);
729633c2 415 }
90260c6c
JK
416 if (resolve_subpage && section->mr->subpage) {
417 subpage = container_of(section->mr, subpage_t, iomem);
53cb28cb 418 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
90260c6c
JK
419 }
420 return section;
9f029603
JK
421}
422
79e2b9ae 423/* Called from RCU critical section */
90260c6c 424static MemoryRegionSection *
c7086b4a 425address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
90260c6c 426 hwaddr *plen, bool resolve_subpage)
149f54b5
PB
427{
428 MemoryRegionSection *section;
965eb2fc 429 MemoryRegion *mr;
a87f3954 430 Int128 diff;
149f54b5 431
c7086b4a 432 section = address_space_lookup_region(d, addr, resolve_subpage);
149f54b5
PB
433 /* Compute offset within MemoryRegionSection */
434 addr -= section->offset_within_address_space;
435
436 /* Compute offset within MemoryRegion */
437 *xlat = addr + section->offset_within_region;
438
965eb2fc 439 mr = section->mr;
b242e0e0
PB
440
441 /* MMIO registers can be expected to perform full-width accesses based only
442 * on their address, without considering adjacent registers that could
443 * decode to completely different MemoryRegions. When such registers
444 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
445 * regions overlap wildly. For this reason we cannot clamp the accesses
446 * here.
447 *
448 * If the length is small (as is the case for address_space_ldl/stl),
449 * everything works fine. If the incoming length is large, however,
450 * the caller really has to do the clamping through memory_access_size.
451 */
965eb2fc 452 if (memory_region_is_ram(mr)) {
e4a511f8 453 diff = int128_sub(section->size, int128_make64(addr));
965eb2fc
PB
454 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
455 }
149f54b5
PB
456 return section;
457}
90260c6c 458
d5e5fafd
PX
459/**
460 * flatview_do_translate - translate an address in FlatView
461 *
462 * @fv: the flat view that we want to translate on
463 * @addr: the address to be translated in above address space
464 * @xlat: the translated address offset within memory region. It
465 * cannot be @NULL.
466 * @plen_out: valid read/write length of the translated address. It
467 * can be @NULL when we don't care about it.
468 * @page_mask_out: page mask for the translated address. This
469 * should only be meaningful for IOMMU translated
470 * addresses, since there may be huge pages that this bit
471 * would tell. It can be @NULL if we don't care about it.
472 * @is_write: whether the translation operation is for write
473 * @is_mmio: whether this can be MMIO, set true if it can
474 *
475 * This function is called from RCU critical section
476 */
16620684
AK
477static MemoryRegionSection flatview_do_translate(FlatView *fv,
478 hwaddr addr,
479 hwaddr *xlat,
d5e5fafd
PX
480 hwaddr *plen_out,
481 hwaddr *page_mask_out,
16620684
AK
482 bool is_write,
483 bool is_mmio,
484 AddressSpace **target_as)
052c8fa9 485{
a764040c 486 IOMMUTLBEntry iotlb;
052c8fa9 487 MemoryRegionSection *section;
3df9d748 488 IOMMUMemoryRegion *iommu_mr;
1221a474 489 IOMMUMemoryRegionClass *imrc;
d5e5fafd
PX
490 hwaddr page_mask = (hwaddr)(-1);
491 hwaddr plen = (hwaddr)(-1);
492
493 if (plen_out) {
494 plen = *plen_out;
495 }
052c8fa9
JW
496
497 for (;;) {
16620684
AK
498 section = address_space_translate_internal(
499 flatview_to_dispatch(fv), addr, &addr,
d5e5fafd 500 &plen, is_mmio);
052c8fa9 501
3df9d748
AK
502 iommu_mr = memory_region_get_iommu(section->mr);
503 if (!iommu_mr) {
052c8fa9
JW
504 break;
505 }
1221a474 506 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
052c8fa9 507
1221a474
AK
508 iotlb = imrc->translate(iommu_mr, addr, is_write ?
509 IOMMU_WO : IOMMU_RO);
a764040c
PX
510 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
511 | (addr & iotlb.addr_mask));
d5e5fafd
PX
512 page_mask &= iotlb.addr_mask;
513 plen = MIN(plen, (addr | iotlb.addr_mask) - addr + 1);
052c8fa9 514 if (!(iotlb.perm & (1 << is_write))) {
a764040c 515 goto translate_fail;
052c8fa9
JW
516 }
517
16620684 518 fv = address_space_to_flatview(iotlb.target_as);
e76bb18f 519 *target_as = iotlb.target_as;
052c8fa9
JW
520 }
521
a764040c
PX
522 *xlat = addr;
523
d5e5fafd
PX
524 if (page_mask == (hwaddr)(-1)) {
525 /* Not behind an IOMMU, use default page size. */
526 page_mask = ~TARGET_PAGE_MASK;
527 }
528
529 if (page_mask_out) {
530 *page_mask_out = page_mask;
531 }
532
533 if (plen_out) {
534 *plen_out = plen;
535 }
536
a764040c
PX
537 return *section;
538
539translate_fail:
540 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
052c8fa9
JW
541}
542
543/* Called from RCU critical section */
a764040c
PX
544IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
545 bool is_write)
90260c6c 546{
a764040c 547 MemoryRegionSection section;
076a93d7 548 hwaddr xlat, page_mask;
30951157 549
076a93d7
PX
550 /*
551 * This can never be MMIO, and we don't really care about plen,
552 * but page mask.
553 */
554 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
555 NULL, &page_mask, is_write, false, &as);
30951157 556
a764040c
PX
557 /* Illegal translation */
558 if (section.mr == &io_mem_unassigned) {
559 goto iotlb_fail;
560 }
30951157 561
a764040c
PX
562 /* Convert memory region offset into address space offset */
563 xlat += section.offset_within_address_space -
564 section.offset_within_region;
565
a764040c 566 return (IOMMUTLBEntry) {
e76bb18f 567 .target_as = as,
076a93d7
PX
568 .iova = addr & ~page_mask,
569 .translated_addr = xlat & ~page_mask,
570 .addr_mask = page_mask,
a764040c
PX
571 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
572 .perm = IOMMU_RW,
573 };
574
575iotlb_fail:
576 return (IOMMUTLBEntry) {0};
577}
578
579/* Called from RCU critical section */
16620684
AK
580MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
581 hwaddr *plen, bool is_write)
a764040c
PX
582{
583 MemoryRegion *mr;
584 MemoryRegionSection section;
16620684 585 AddressSpace *as = NULL;
a764040c
PX
586
587 /* This can be MMIO, so setup MMIO bit. */
d5e5fafd
PX
588 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
589 is_write, true, &as);
a764040c
PX
590 mr = section.mr;
591
fe680d0d 592 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
a87f3954 593 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
23820dbf 594 *plen = MIN(page, *plen);
a87f3954
PB
595 }
596
30951157 597 return mr;
90260c6c
JK
598}
599
79e2b9ae 600/* Called from RCU critical section */
90260c6c 601MemoryRegionSection *
d7898cda 602address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
9d82b5a7 603 hwaddr *xlat, hwaddr *plen)
90260c6c 604{
30951157 605 MemoryRegionSection *section;
f35e44e7 606 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
d7898cda
PM
607
608 section = address_space_translate_internal(d, addr, xlat, plen, false);
30951157 609
3df9d748 610 assert(!memory_region_is_iommu(section->mr));
30951157 611 return section;
90260c6c 612}
5b6dd868 613#endif
fd6ce8f6 614
b170fce3 615#if !defined(CONFIG_USER_ONLY)
5b6dd868
BS
616
617static int cpu_common_post_load(void *opaque, int version_id)
fd6ce8f6 618{
259186a7 619 CPUState *cpu = opaque;
a513fe19 620
5b6dd868
BS
621 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
622 version_id is increased. */
259186a7 623 cpu->interrupt_request &= ~0x01;
d10eb08f 624 tlb_flush(cpu);
5b6dd868
BS
625
626 return 0;
a513fe19 627}
7501267e 628
6c3bff0e
PD
629static int cpu_common_pre_load(void *opaque)
630{
631 CPUState *cpu = opaque;
632
adee6424 633 cpu->exception_index = -1;
6c3bff0e
PD
634
635 return 0;
636}
637
638static bool cpu_common_exception_index_needed(void *opaque)
639{
640 CPUState *cpu = opaque;
641
adee6424 642 return tcg_enabled() && cpu->exception_index != -1;
6c3bff0e
PD
643}
644
645static const VMStateDescription vmstate_cpu_common_exception_index = {
646 .name = "cpu_common/exception_index",
647 .version_id = 1,
648 .minimum_version_id = 1,
5cd8cada 649 .needed = cpu_common_exception_index_needed,
6c3bff0e
PD
650 .fields = (VMStateField[]) {
651 VMSTATE_INT32(exception_index, CPUState),
652 VMSTATE_END_OF_LIST()
653 }
654};
655
bac05aa9
AS
656static bool cpu_common_crash_occurred_needed(void *opaque)
657{
658 CPUState *cpu = opaque;
659
660 return cpu->crash_occurred;
661}
662
663static const VMStateDescription vmstate_cpu_common_crash_occurred = {
664 .name = "cpu_common/crash_occurred",
665 .version_id = 1,
666 .minimum_version_id = 1,
667 .needed = cpu_common_crash_occurred_needed,
668 .fields = (VMStateField[]) {
669 VMSTATE_BOOL(crash_occurred, CPUState),
670 VMSTATE_END_OF_LIST()
671 }
672};
673
1a1562f5 674const VMStateDescription vmstate_cpu_common = {
5b6dd868
BS
675 .name = "cpu_common",
676 .version_id = 1,
677 .minimum_version_id = 1,
6c3bff0e 678 .pre_load = cpu_common_pre_load,
5b6dd868 679 .post_load = cpu_common_post_load,
35d08458 680 .fields = (VMStateField[]) {
259186a7
AF
681 VMSTATE_UINT32(halted, CPUState),
682 VMSTATE_UINT32(interrupt_request, CPUState),
5b6dd868 683 VMSTATE_END_OF_LIST()
6c3bff0e 684 },
5cd8cada
JQ
685 .subsections = (const VMStateDescription*[]) {
686 &vmstate_cpu_common_exception_index,
bac05aa9 687 &vmstate_cpu_common_crash_occurred,
5cd8cada 688 NULL
5b6dd868
BS
689 }
690};
1a1562f5 691
5b6dd868 692#endif
ea041c0e 693
38d8f5c8 694CPUState *qemu_get_cpu(int index)
ea041c0e 695{
bdc44640 696 CPUState *cpu;
ea041c0e 697
bdc44640 698 CPU_FOREACH(cpu) {
55e5c285 699 if (cpu->cpu_index == index) {
bdc44640 700 return cpu;
55e5c285 701 }
ea041c0e 702 }
5b6dd868 703
bdc44640 704 return NULL;
ea041c0e
FB
705}
706
09daed84 707#if !defined(CONFIG_USER_ONLY)
56943e8c 708void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx)
09daed84 709{
12ebc9a7
PM
710 CPUAddressSpace *newas;
711
712 /* Target code should have set num_ases before calling us */
713 assert(asidx < cpu->num_ases);
714
56943e8c
PM
715 if (asidx == 0) {
716 /* address space 0 gets the convenience alias */
717 cpu->as = as;
718 }
719
12ebc9a7
PM
720 /* KVM cannot currently support multiple address spaces. */
721 assert(asidx == 0 || !kvm_enabled());
09daed84 722
12ebc9a7
PM
723 if (!cpu->cpu_ases) {
724 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
09daed84 725 }
32857f4d 726
12ebc9a7
PM
727 newas = &cpu->cpu_ases[asidx];
728 newas->cpu = cpu;
729 newas->as = as;
56943e8c 730 if (tcg_enabled()) {
12ebc9a7
PM
731 newas->tcg_as_listener.commit = tcg_commit;
732 memory_listener_register(&newas->tcg_as_listener, as);
56943e8c 733 }
09daed84 734}
651a5bc0
PM
735
736AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
737{
738 /* Return the AddressSpace corresponding to the specified index */
739 return cpu->cpu_ases[asidx].as;
740}
09daed84
EI
741#endif
742
7bbc124e 743void cpu_exec_unrealizefn(CPUState *cpu)
1c59eb39 744{
9dfeca7c
BR
745 CPUClass *cc = CPU_GET_CLASS(cpu);
746
267f685b 747 cpu_list_remove(cpu);
9dfeca7c
BR
748
749 if (cc->vmsd != NULL) {
750 vmstate_unregister(NULL, cc->vmsd, cpu);
751 }
752 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
753 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
754 }
1c59eb39
BR
755}
756
c7e002c5
FZ
757Property cpu_common_props[] = {
758#ifndef CONFIG_USER_ONLY
759 /* Create a memory property for softmmu CPU object,
760 * so users can wire up its memory. (This can't go in qom/cpu.c
761 * because that file is compiled only once for both user-mode
762 * and system builds.) The default if no link is set up is to use
763 * the system address space.
764 */
765 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
766 MemoryRegion *),
767#endif
768 DEFINE_PROP_END_OF_LIST(),
769};
770
39e329e3 771void cpu_exec_initfn(CPUState *cpu)
ea041c0e 772{
56943e8c 773 cpu->as = NULL;
12ebc9a7 774 cpu->num_ases = 0;
56943e8c 775
291135b5 776#ifndef CONFIG_USER_ONLY
291135b5 777 cpu->thread_id = qemu_get_thread_id();
6731d864
PC
778 cpu->memory = system_memory;
779 object_ref(OBJECT(cpu->memory));
291135b5 780#endif
39e329e3
LV
781}
782
ce5b1bbf 783void cpu_exec_realizefn(CPUState *cpu, Error **errp)
39e329e3 784{
55c3ceef 785 CPUClass *cc = CPU_GET_CLASS(cpu);
2dda6354 786 static bool tcg_target_initialized;
291135b5 787
267f685b 788 cpu_list_add(cpu);
1bc7e522 789
2dda6354
EC
790 if (tcg_enabled() && !tcg_target_initialized) {
791 tcg_target_initialized = true;
55c3ceef
RH
792 cc->tcg_initialize();
793 }
794
1bc7e522 795#ifndef CONFIG_USER_ONLY
e0d47944 796 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
741da0d3 797 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
e0d47944 798 }
b170fce3 799 if (cc->vmsd != NULL) {
741da0d3 800 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
b170fce3 801 }
741da0d3 802#endif
ea041c0e
FB
803}
804
406bc339 805#if defined(CONFIG_USER_ONLY)
00b941e5 806static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1e7855a5 807{
406bc339
PK
808 mmap_lock();
809 tb_lock();
810 tb_invalidate_phys_page_range(pc, pc + 1, 0);
811 tb_unlock();
812 mmap_unlock();
813}
814#else
815static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
816{
817 MemTxAttrs attrs;
818 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
819 int asidx = cpu_asidx_from_attrs(cpu, attrs);
820 if (phys != -1) {
821 /* Locks grabbed by tb_invalidate_phys_addr */
822 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
823 phys | (pc & ~TARGET_PAGE_MASK));
824 }
1e7855a5 825}
406bc339 826#endif
d720b93d 827
c527ee8f 828#if defined(CONFIG_USER_ONLY)
75a34036 829void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
c527ee8f
PB
830
831{
832}
833
3ee887e8
PM
834int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
835 int flags)
836{
837 return -ENOSYS;
838}
839
840void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
841{
842}
843
75a34036 844int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
c527ee8f
PB
845 int flags, CPUWatchpoint **watchpoint)
846{
847 return -ENOSYS;
848}
849#else
6658ffb8 850/* Add a watchpoint. */
75a34036 851int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 852 int flags, CPUWatchpoint **watchpoint)
6658ffb8 853{
c0ce998e 854 CPUWatchpoint *wp;
6658ffb8 855
05068c0d 856 /* forbid ranges which are empty or run off the end of the address space */
07e2863d 857 if (len == 0 || (addr + len - 1) < addr) {
75a34036
AF
858 error_report("tried to set invalid watchpoint at %"
859 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
b4051334
AL
860 return -EINVAL;
861 }
7267c094 862 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
863
864 wp->vaddr = addr;
05068c0d 865 wp->len = len;
a1d1bb31
AL
866 wp->flags = flags;
867
2dc9f411 868 /* keep all GDB-injected watchpoints in front */
ff4700b0
AF
869 if (flags & BP_GDB) {
870 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
871 } else {
872 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
873 }
6658ffb8 874
31b030d4 875 tlb_flush_page(cpu, addr);
a1d1bb31
AL
876
877 if (watchpoint)
878 *watchpoint = wp;
879 return 0;
6658ffb8
PB
880}
881
a1d1bb31 882/* Remove a specific watchpoint. */
75a34036 883int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 884 int flags)
6658ffb8 885{
a1d1bb31 886 CPUWatchpoint *wp;
6658ffb8 887
ff4700b0 888 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 889 if (addr == wp->vaddr && len == wp->len
6e140f28 890 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
75a34036 891 cpu_watchpoint_remove_by_ref(cpu, wp);
6658ffb8
PB
892 return 0;
893 }
894 }
a1d1bb31 895 return -ENOENT;
6658ffb8
PB
896}
897
a1d1bb31 898/* Remove a specific watchpoint by reference. */
75a34036 899void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
a1d1bb31 900{
ff4700b0 901 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
7d03f82f 902
31b030d4 903 tlb_flush_page(cpu, watchpoint->vaddr);
a1d1bb31 904
7267c094 905 g_free(watchpoint);
a1d1bb31
AL
906}
907
908/* Remove all matching watchpoints. */
75a34036 909void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 910{
c0ce998e 911 CPUWatchpoint *wp, *next;
a1d1bb31 912
ff4700b0 913 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
75a34036
AF
914 if (wp->flags & mask) {
915 cpu_watchpoint_remove_by_ref(cpu, wp);
916 }
c0ce998e 917 }
7d03f82f 918}
05068c0d
PM
919
920/* Return true if this watchpoint address matches the specified
921 * access (ie the address range covered by the watchpoint overlaps
922 * partially or completely with the address range covered by the
923 * access).
924 */
925static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
926 vaddr addr,
927 vaddr len)
928{
929 /* We know the lengths are non-zero, but a little caution is
930 * required to avoid errors in the case where the range ends
931 * exactly at the top of the address space and so addr + len
932 * wraps round to zero.
933 */
934 vaddr wpend = wp->vaddr + wp->len - 1;
935 vaddr addrend = addr + len - 1;
936
937 return !(addr > wpend || wp->vaddr > addrend);
938}
939
c527ee8f 940#endif
7d03f82f 941
a1d1bb31 942/* Add a breakpoint. */
b3310ab3 943int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
a1d1bb31 944 CPUBreakpoint **breakpoint)
4c3a88a2 945{
c0ce998e 946 CPUBreakpoint *bp;
3b46e624 947
7267c094 948 bp = g_malloc(sizeof(*bp));
4c3a88a2 949
a1d1bb31
AL
950 bp->pc = pc;
951 bp->flags = flags;
952
2dc9f411 953 /* keep all GDB-injected breakpoints in front */
00b941e5 954 if (flags & BP_GDB) {
f0c3c505 955 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
00b941e5 956 } else {
f0c3c505 957 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
00b941e5 958 }
3b46e624 959
f0c3c505 960 breakpoint_invalidate(cpu, pc);
a1d1bb31 961
00b941e5 962 if (breakpoint) {
a1d1bb31 963 *breakpoint = bp;
00b941e5 964 }
4c3a88a2 965 return 0;
4c3a88a2
FB
966}
967
a1d1bb31 968/* Remove a specific breakpoint. */
b3310ab3 969int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
a1d1bb31 970{
a1d1bb31
AL
971 CPUBreakpoint *bp;
972
f0c3c505 973 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
a1d1bb31 974 if (bp->pc == pc && bp->flags == flags) {
b3310ab3 975 cpu_breakpoint_remove_by_ref(cpu, bp);
a1d1bb31
AL
976 return 0;
977 }
7d03f82f 978 }
a1d1bb31 979 return -ENOENT;
7d03f82f
EI
980}
981
a1d1bb31 982/* Remove a specific breakpoint by reference. */
b3310ab3 983void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
4c3a88a2 984{
f0c3c505
AF
985 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
986
987 breakpoint_invalidate(cpu, breakpoint->pc);
a1d1bb31 988
7267c094 989 g_free(breakpoint);
a1d1bb31
AL
990}
991
992/* Remove all matching breakpoints. */
b3310ab3 993void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 994{
c0ce998e 995 CPUBreakpoint *bp, *next;
a1d1bb31 996
f0c3c505 997 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
b3310ab3
AF
998 if (bp->flags & mask) {
999 cpu_breakpoint_remove_by_ref(cpu, bp);
1000 }
c0ce998e 1001 }
4c3a88a2
FB
1002}
1003
c33a346e
FB
1004/* enable or disable single step mode. EXCP_DEBUG is returned by the
1005 CPU loop after each instruction */
3825b28f 1006void cpu_single_step(CPUState *cpu, int enabled)
c33a346e 1007{
ed2803da
AF
1008 if (cpu->singlestep_enabled != enabled) {
1009 cpu->singlestep_enabled = enabled;
1010 if (kvm_enabled()) {
38e478ec 1011 kvm_update_guest_debug(cpu, 0);
ed2803da 1012 } else {
ccbb4d44 1013 /* must flush all the translated code to avoid inconsistencies */
e22a25c9 1014 /* XXX: only flush what is necessary */
bbd77c18 1015 tb_flush(cpu);
e22a25c9 1016 }
c33a346e 1017 }
c33a346e
FB
1018}
1019
a47dddd7 1020void cpu_abort(CPUState *cpu, const char *fmt, ...)
7501267e
FB
1021{
1022 va_list ap;
493ae1f0 1023 va_list ap2;
7501267e
FB
1024
1025 va_start(ap, fmt);
493ae1f0 1026 va_copy(ap2, ap);
7501267e
FB
1027 fprintf(stderr, "qemu: fatal: ");
1028 vfprintf(stderr, fmt, ap);
1029 fprintf(stderr, "\n");
878096ee 1030 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
013a2942 1031 if (qemu_log_separate()) {
1ee73216 1032 qemu_log_lock();
93fcfe39
AL
1033 qemu_log("qemu: fatal: ");
1034 qemu_log_vprintf(fmt, ap2);
1035 qemu_log("\n");
a0762859 1036 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
31b1a7b4 1037 qemu_log_flush();
1ee73216 1038 qemu_log_unlock();
93fcfe39 1039 qemu_log_close();
924edcae 1040 }
493ae1f0 1041 va_end(ap2);
f9373291 1042 va_end(ap);
7615936e 1043 replay_finish();
fd052bf6
RV
1044#if defined(CONFIG_USER_ONLY)
1045 {
1046 struct sigaction act;
1047 sigfillset(&act.sa_mask);
1048 act.sa_handler = SIG_DFL;
1049 sigaction(SIGABRT, &act, NULL);
1050 }
1051#endif
7501267e
FB
1052 abort();
1053}
1054
0124311e 1055#if !defined(CONFIG_USER_ONLY)
0dc3f44a 1056/* Called from RCU critical section */
041603fe
PB
1057static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1058{
1059 RAMBlock *block;
1060
43771539 1061 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 1062 if (block && addr - block->offset < block->max_length) {
68851b98 1063 return block;
041603fe 1064 }
99e15582 1065 RAMBLOCK_FOREACH(block) {
9b8424d5 1066 if (addr - block->offset < block->max_length) {
041603fe
PB
1067 goto found;
1068 }
1069 }
1070
1071 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1072 abort();
1073
1074found:
43771539
PB
1075 /* It is safe to write mru_block outside the iothread lock. This
1076 * is what happens:
1077 *
1078 * mru_block = xxx
1079 * rcu_read_unlock()
1080 * xxx removed from list
1081 * rcu_read_lock()
1082 * read mru_block
1083 * mru_block = NULL;
1084 * call_rcu(reclaim_ramblock, xxx);
1085 * rcu_read_unlock()
1086 *
1087 * atomic_rcu_set is not needed here. The block was already published
1088 * when it was placed into the list. Here we're just making an extra
1089 * copy of the pointer.
1090 */
041603fe
PB
1091 ram_list.mru_block = block;
1092 return block;
1093}
1094
a2f4d5be 1095static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
d24981d3 1096{
9a13565d 1097 CPUState *cpu;
041603fe 1098 ram_addr_t start1;
a2f4d5be
JQ
1099 RAMBlock *block;
1100 ram_addr_t end;
1101
1102 end = TARGET_PAGE_ALIGN(start + length);
1103 start &= TARGET_PAGE_MASK;
d24981d3 1104
0dc3f44a 1105 rcu_read_lock();
041603fe
PB
1106 block = qemu_get_ram_block(start);
1107 assert(block == qemu_get_ram_block(end - 1));
1240be24 1108 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
9a13565d
PC
1109 CPU_FOREACH(cpu) {
1110 tlb_reset_dirty(cpu, start1, length);
1111 }
0dc3f44a 1112 rcu_read_unlock();
d24981d3
JQ
1113}
1114
5579c7f3 1115/* Note: start and end must be within the same ram block. */
03eebc9e
SH
1116bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1117 ram_addr_t length,
1118 unsigned client)
1ccde1cb 1119{
5b82b703 1120 DirtyMemoryBlocks *blocks;
03eebc9e 1121 unsigned long end, page;
5b82b703 1122 bool dirty = false;
03eebc9e
SH
1123
1124 if (length == 0) {
1125 return false;
1126 }
f23db169 1127
03eebc9e
SH
1128 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1129 page = start >> TARGET_PAGE_BITS;
5b82b703
SH
1130
1131 rcu_read_lock();
1132
1133 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1134
1135 while (page < end) {
1136 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1137 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1138 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1139
1140 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1141 offset, num);
1142 page += num;
1143 }
1144
1145 rcu_read_unlock();
03eebc9e
SH
1146
1147 if (dirty && tcg_enabled()) {
a2f4d5be 1148 tlb_reset_dirty_range_all(start, length);
5579c7f3 1149 }
03eebc9e
SH
1150
1151 return dirty;
1ccde1cb
FB
1152}
1153
8deaf12c
GH
1154DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1155 (ram_addr_t start, ram_addr_t length, unsigned client)
1156{
1157 DirtyMemoryBlocks *blocks;
1158 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1159 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1160 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1161 DirtyBitmapSnapshot *snap;
1162 unsigned long page, end, dest;
1163
1164 snap = g_malloc0(sizeof(*snap) +
1165 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1166 snap->start = first;
1167 snap->end = last;
1168
1169 page = first >> TARGET_PAGE_BITS;
1170 end = last >> TARGET_PAGE_BITS;
1171 dest = 0;
1172
1173 rcu_read_lock();
1174
1175 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1176
1177 while (page < end) {
1178 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1179 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1180 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1181
1182 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1183 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1184 offset >>= BITS_PER_LEVEL;
1185
1186 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1187 blocks->blocks[idx] + offset,
1188 num);
1189 page += num;
1190 dest += num >> BITS_PER_LEVEL;
1191 }
1192
1193 rcu_read_unlock();
1194
1195 if (tcg_enabled()) {
1196 tlb_reset_dirty_range_all(start, length);
1197 }
1198
1199 return snap;
1200}
1201
1202bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1203 ram_addr_t start,
1204 ram_addr_t length)
1205{
1206 unsigned long page, end;
1207
1208 assert(start >= snap->start);
1209 assert(start + length <= snap->end);
1210
1211 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1212 page = (start - snap->start) >> TARGET_PAGE_BITS;
1213
1214 while (page < end) {
1215 if (test_bit(page, snap->dirty)) {
1216 return true;
1217 }
1218 page++;
1219 }
1220 return false;
1221}
1222
79e2b9ae 1223/* Called from RCU critical section */
bb0e627a 1224hwaddr memory_region_section_get_iotlb(CPUState *cpu,
149f54b5
PB
1225 MemoryRegionSection *section,
1226 target_ulong vaddr,
1227 hwaddr paddr, hwaddr xlat,
1228 int prot,
1229 target_ulong *address)
e5548617 1230{
a8170e5e 1231 hwaddr iotlb;
e5548617
BS
1232 CPUWatchpoint *wp;
1233
cc5bea60 1234 if (memory_region_is_ram(section->mr)) {
e5548617 1235 /* Normal RAM. */
e4e69794 1236 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
e5548617 1237 if (!section->readonly) {
b41aac4f 1238 iotlb |= PHYS_SECTION_NOTDIRTY;
e5548617 1239 } else {
b41aac4f 1240 iotlb |= PHYS_SECTION_ROM;
e5548617
BS
1241 }
1242 } else {
0b8e2c10
PM
1243 AddressSpaceDispatch *d;
1244
16620684 1245 d = flatview_to_dispatch(section->fv);
0b8e2c10 1246 iotlb = section - d->map.sections;
149f54b5 1247 iotlb += xlat;
e5548617
BS
1248 }
1249
1250 /* Make accesses to pages with watchpoints go via the
1251 watchpoint trap routines. */
ff4700b0 1252 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 1253 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
e5548617
BS
1254 /* Avoid trapping reads of pages with a write breakpoint. */
1255 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
b41aac4f 1256 iotlb = PHYS_SECTION_WATCH + paddr;
e5548617
BS
1257 *address |= TLB_MMIO;
1258 break;
1259 }
1260 }
1261 }
1262
1263 return iotlb;
1264}
9fa3e853
FB
1265#endif /* defined(CONFIG_USER_ONLY) */
1266
e2eef170 1267#if !defined(CONFIG_USER_ONLY)
8da3ff18 1268
c227f099 1269static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 1270 uint16_t section);
16620684 1271static subpage_t *subpage_init(FlatView *fv, hwaddr base);
54688b1e 1272
a2b257d6
IM
1273static void *(*phys_mem_alloc)(size_t size, uint64_t *align) =
1274 qemu_anon_ram_alloc;
91138037
MA
1275
1276/*
1277 * Set a custom physical guest memory alloator.
1278 * Accelerators with unusual needs may need this. Hopefully, we can
1279 * get rid of it eventually.
1280 */
a2b257d6 1281void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align))
91138037
MA
1282{
1283 phys_mem_alloc = alloc;
1284}
1285
53cb28cb
MA
1286static uint16_t phys_section_add(PhysPageMap *map,
1287 MemoryRegionSection *section)
5312bd8b 1288{
68f3f65b
PB
1289 /* The physical section number is ORed with a page-aligned
1290 * pointer to produce the iotlb entries. Thus it should
1291 * never overflow into the page-aligned value.
1292 */
53cb28cb 1293 assert(map->sections_nb < TARGET_PAGE_SIZE);
68f3f65b 1294
53cb28cb
MA
1295 if (map->sections_nb == map->sections_nb_alloc) {
1296 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1297 map->sections = g_renew(MemoryRegionSection, map->sections,
1298 map->sections_nb_alloc);
5312bd8b 1299 }
53cb28cb 1300 map->sections[map->sections_nb] = *section;
dfde4e6e 1301 memory_region_ref(section->mr);
53cb28cb 1302 return map->sections_nb++;
5312bd8b
AK
1303}
1304
058bc4b5
PB
1305static void phys_section_destroy(MemoryRegion *mr)
1306{
55b4e80b
DS
1307 bool have_sub_page = mr->subpage;
1308
dfde4e6e
PB
1309 memory_region_unref(mr);
1310
55b4e80b 1311 if (have_sub_page) {
058bc4b5 1312 subpage_t *subpage = container_of(mr, subpage_t, iomem);
b4fefef9 1313 object_unref(OBJECT(&subpage->iomem));
058bc4b5
PB
1314 g_free(subpage);
1315 }
1316}
1317
6092666e 1318static void phys_sections_free(PhysPageMap *map)
5312bd8b 1319{
9affd6fc
PB
1320 while (map->sections_nb > 0) {
1321 MemoryRegionSection *section = &map->sections[--map->sections_nb];
058bc4b5
PB
1322 phys_section_destroy(section->mr);
1323 }
9affd6fc
PB
1324 g_free(map->sections);
1325 g_free(map->nodes);
5312bd8b
AK
1326}
1327
9950322a 1328static void register_subpage(FlatView *fv, MemoryRegionSection *section)
0f0cb164 1329{
9950322a 1330 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
0f0cb164 1331 subpage_t *subpage;
a8170e5e 1332 hwaddr base = section->offset_within_address_space
0f0cb164 1333 & TARGET_PAGE_MASK;
003a0cf2 1334 MemoryRegionSection *existing = phys_page_find(d, base);
0f0cb164
AK
1335 MemoryRegionSection subsection = {
1336 .offset_within_address_space = base,
052e87b0 1337 .size = int128_make64(TARGET_PAGE_SIZE),
0f0cb164 1338 };
a8170e5e 1339 hwaddr start, end;
0f0cb164 1340
f3705d53 1341 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 1342
f3705d53 1343 if (!(existing->mr->subpage)) {
16620684
AK
1344 subpage = subpage_init(fv, base);
1345 subsection.fv = fv;
0f0cb164 1346 subsection.mr = &subpage->iomem;
ac1970fb 1347 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
53cb28cb 1348 phys_section_add(&d->map, &subsection));
0f0cb164 1349 } else {
f3705d53 1350 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
1351 }
1352 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
052e87b0 1353 end = start + int128_get64(section->size) - 1;
53cb28cb
MA
1354 subpage_register(subpage, start, end,
1355 phys_section_add(&d->map, section));
0f0cb164
AK
1356}
1357
1358
9950322a 1359static void register_multipage(FlatView *fv,
052e87b0 1360 MemoryRegionSection *section)
33417e70 1361{
9950322a 1362 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
a8170e5e 1363 hwaddr start_addr = section->offset_within_address_space;
53cb28cb 1364 uint16_t section_index = phys_section_add(&d->map, section);
052e87b0
PB
1365 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1366 TARGET_PAGE_BITS));
dd81124b 1367
733d5ef5
PB
1368 assert(num_pages);
1369 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
33417e70
FB
1370}
1371
8629d3fc 1372void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
0f0cb164 1373{
99b9cc06 1374 MemoryRegionSection now = *section, remain = *section;
052e87b0 1375 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
0f0cb164 1376
733d5ef5
PB
1377 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1378 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1379 - now.offset_within_address_space;
1380
052e87b0 1381 now.size = int128_min(int128_make64(left), now.size);
9950322a 1382 register_subpage(fv, &now);
733d5ef5 1383 } else {
052e87b0 1384 now.size = int128_zero();
733d5ef5 1385 }
052e87b0
PB
1386 while (int128_ne(remain.size, now.size)) {
1387 remain.size = int128_sub(remain.size, now.size);
1388 remain.offset_within_address_space += int128_get64(now.size);
1389 remain.offset_within_region += int128_get64(now.size);
69b67646 1390 now = remain;
052e87b0 1391 if (int128_lt(remain.size, page_size)) {
9950322a 1392 register_subpage(fv, &now);
88266249 1393 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
052e87b0 1394 now.size = page_size;
9950322a 1395 register_subpage(fv, &now);
69b67646 1396 } else {
052e87b0 1397 now.size = int128_and(now.size, int128_neg(page_size));
9950322a 1398 register_multipage(fv, &now);
69b67646 1399 }
0f0cb164
AK
1400 }
1401}
1402
62a2744c
SY
1403void qemu_flush_coalesced_mmio_buffer(void)
1404{
1405 if (kvm_enabled())
1406 kvm_flush_coalesced_mmio_buffer();
1407}
1408
b2a8658e
UD
1409void qemu_mutex_lock_ramlist(void)
1410{
1411 qemu_mutex_lock(&ram_list.mutex);
1412}
1413
1414void qemu_mutex_unlock_ramlist(void)
1415{
1416 qemu_mutex_unlock(&ram_list.mutex);
1417}
1418
be9b23c4
PX
1419void ram_block_dump(Monitor *mon)
1420{
1421 RAMBlock *block;
1422 char *psize;
1423
1424 rcu_read_lock();
1425 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1426 "Block Name", "PSize", "Offset", "Used", "Total");
1427 RAMBLOCK_FOREACH(block) {
1428 psize = size_to_str(block->page_size);
1429 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1430 " 0x%016" PRIx64 "\n", block->idstr, psize,
1431 (uint64_t)block->offset,
1432 (uint64_t)block->used_length,
1433 (uint64_t)block->max_length);
1434 g_free(psize);
1435 }
1436 rcu_read_unlock();
1437}
1438
9c607668
AK
1439#ifdef __linux__
1440/*
1441 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1442 * may or may not name the same files / on the same filesystem now as
1443 * when we actually open and map them. Iterate over the file
1444 * descriptors instead, and use qemu_fd_getpagesize().
1445 */
1446static int find_max_supported_pagesize(Object *obj, void *opaque)
1447{
1448 char *mem_path;
1449 long *hpsize_min = opaque;
1450
1451 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1452 mem_path = object_property_get_str(obj, "mem-path", NULL);
1453 if (mem_path) {
1454 long hpsize = qemu_mempath_getpagesize(mem_path);
1455 if (hpsize < *hpsize_min) {
1456 *hpsize_min = hpsize;
1457 }
1458 } else {
1459 *hpsize_min = getpagesize();
1460 }
1461 }
1462
1463 return 0;
1464}
1465
1466long qemu_getrampagesize(void)
1467{
1468 long hpsize = LONG_MAX;
1469 long mainrampagesize;
1470 Object *memdev_root;
1471
1472 if (mem_path) {
1473 mainrampagesize = qemu_mempath_getpagesize(mem_path);
1474 } else {
1475 mainrampagesize = getpagesize();
1476 }
1477
1478 /* it's possible we have memory-backend objects with
1479 * hugepage-backed RAM. these may get mapped into system
1480 * address space via -numa parameters or memory hotplug
1481 * hooks. we want to take these into account, but we
1482 * also want to make sure these supported hugepage
1483 * sizes are applicable across the entire range of memory
1484 * we may boot from, so we take the min across all
1485 * backends, and assume normal pages in cases where a
1486 * backend isn't backed by hugepages.
1487 */
1488 memdev_root = object_resolve_path("/objects", NULL);
1489 if (memdev_root) {
1490 object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
1491 }
1492 if (hpsize == LONG_MAX) {
1493 /* No additional memory regions found ==> Report main RAM page size */
1494 return mainrampagesize;
1495 }
1496
1497 /* If NUMA is disabled or the NUMA nodes are not backed with a
1498 * memory-backend, then there is at least one node using "normal" RAM,
1499 * so if its page size is smaller we have got to report that size instead.
1500 */
1501 if (hpsize > mainrampagesize &&
1502 (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1503 static bool warned;
1504 if (!warned) {
1505 error_report("Huge page support disabled (n/a for main memory).");
1506 warned = true;
1507 }
1508 return mainrampagesize;
1509 }
1510
1511 return hpsize;
1512}
1513#else
1514long qemu_getrampagesize(void)
1515{
1516 return getpagesize();
1517}
1518#endif
1519
e1e84ba0 1520#ifdef __linux__
d6af99c9
HZ
1521static int64_t get_file_size(int fd)
1522{
1523 int64_t size = lseek(fd, 0, SEEK_END);
1524 if (size < 0) {
1525 return -errno;
1526 }
1527 return size;
1528}
1529
8d37b030
MAL
1530static int file_ram_open(const char *path,
1531 const char *region_name,
1532 bool *created,
1533 Error **errp)
c902760f
MT
1534{
1535 char *filename;
8ca761f6
PF
1536 char *sanitized_name;
1537 char *c;
5c3ece79 1538 int fd = -1;
c902760f 1539
8d37b030 1540 *created = false;
fd97fd44
MA
1541 for (;;) {
1542 fd = open(path, O_RDWR);
1543 if (fd >= 0) {
1544 /* @path names an existing file, use it */
1545 break;
8d31d6b6 1546 }
fd97fd44
MA
1547 if (errno == ENOENT) {
1548 /* @path names a file that doesn't exist, create it */
1549 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1550 if (fd >= 0) {
8d37b030 1551 *created = true;
fd97fd44
MA
1552 break;
1553 }
1554 } else if (errno == EISDIR) {
1555 /* @path names a directory, create a file there */
1556 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
8d37b030 1557 sanitized_name = g_strdup(region_name);
fd97fd44
MA
1558 for (c = sanitized_name; *c != '\0'; c++) {
1559 if (*c == '/') {
1560 *c = '_';
1561 }
1562 }
8ca761f6 1563
fd97fd44
MA
1564 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1565 sanitized_name);
1566 g_free(sanitized_name);
8d31d6b6 1567
fd97fd44
MA
1568 fd = mkstemp(filename);
1569 if (fd >= 0) {
1570 unlink(filename);
1571 g_free(filename);
1572 break;
1573 }
1574 g_free(filename);
8d31d6b6 1575 }
fd97fd44
MA
1576 if (errno != EEXIST && errno != EINTR) {
1577 error_setg_errno(errp, errno,
1578 "can't open backing store %s for guest RAM",
1579 path);
8d37b030 1580 return -1;
fd97fd44
MA
1581 }
1582 /*
1583 * Try again on EINTR and EEXIST. The latter happens when
1584 * something else creates the file between our two open().
1585 */
8d31d6b6 1586 }
c902760f 1587
8d37b030
MAL
1588 return fd;
1589}
1590
1591static void *file_ram_alloc(RAMBlock *block,
1592 ram_addr_t memory,
1593 int fd,
1594 bool truncate,
1595 Error **errp)
1596{
1597 void *area;
1598
863e9621 1599 block->page_size = qemu_fd_getpagesize(fd);
8360668e
HZ
1600 block->mr->align = block->page_size;
1601#if defined(__s390x__)
1602 if (kvm_enabled()) {
1603 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1604 }
1605#endif
fd97fd44 1606
863e9621 1607 if (memory < block->page_size) {
fd97fd44 1608 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
863e9621
DDAG
1609 "or larger than page size 0x%zx",
1610 memory, block->page_size);
8d37b030 1611 return NULL;
1775f111
HZ
1612 }
1613
863e9621 1614 memory = ROUND_UP(memory, block->page_size);
c902760f
MT
1615
1616 /*
1617 * ftruncate is not supported by hugetlbfs in older
1618 * hosts, so don't bother bailing out on errors.
1619 * If anything goes wrong with it under other filesystems,
1620 * mmap will fail.
d6af99c9
HZ
1621 *
1622 * Do not truncate the non-empty backend file to avoid corrupting
1623 * the existing data in the file. Disabling shrinking is not
1624 * enough. For example, the current vNVDIMM implementation stores
1625 * the guest NVDIMM labels at the end of the backend file. If the
1626 * backend file is later extended, QEMU will not be able to find
1627 * those labels. Therefore, extending the non-empty backend file
1628 * is disabled as well.
c902760f 1629 */
8d37b030 1630 if (truncate && ftruncate(fd, memory)) {
9742bf26 1631 perror("ftruncate");
7f56e740 1632 }
c902760f 1633
d2f39add
DD
1634 area = qemu_ram_mmap(fd, memory, block->mr->align,
1635 block->flags & RAM_SHARED);
c902760f 1636 if (area == MAP_FAILED) {
7f56e740 1637 error_setg_errno(errp, errno,
fd97fd44 1638 "unable to map backing store for guest RAM");
8d37b030 1639 return NULL;
c902760f 1640 }
ef36fa14
MT
1641
1642 if (mem_prealloc) {
1e356fc1 1643 os_mem_prealloc(fd, area, memory, smp_cpus, errp);
056b68af 1644 if (errp && *errp) {
8d37b030
MAL
1645 qemu_ram_munmap(area, memory);
1646 return NULL;
056b68af 1647 }
ef36fa14
MT
1648 }
1649
04b16653 1650 block->fd = fd;
c902760f
MT
1651 return area;
1652}
1653#endif
1654
0dc3f44a 1655/* Called with the ramlist lock held. */
d17b5288 1656static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
1657{
1658 RAMBlock *block, *next_block;
3e837b2c 1659 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653 1660
49cd9ac6
SH
1661 assert(size != 0); /* it would hand out same offset multiple times */
1662
0dc3f44a 1663 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
04b16653 1664 return 0;
0d53d9fe 1665 }
04b16653 1666
99e15582 1667 RAMBLOCK_FOREACH(block) {
f15fbc4b 1668 ram_addr_t end, next = RAM_ADDR_MAX;
04b16653 1669
62be4e3a 1670 end = block->offset + block->max_length;
04b16653 1671
99e15582 1672 RAMBLOCK_FOREACH(next_block) {
04b16653
AW
1673 if (next_block->offset >= end) {
1674 next = MIN(next, next_block->offset);
1675 }
1676 }
1677 if (next - end >= size && next - end < mingap) {
3e837b2c 1678 offset = end;
04b16653
AW
1679 mingap = next - end;
1680 }
1681 }
3e837b2c
AW
1682
1683 if (offset == RAM_ADDR_MAX) {
1684 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1685 (uint64_t)size);
1686 abort();
1687 }
1688
04b16653
AW
1689 return offset;
1690}
1691
b8c48993 1692unsigned long last_ram_page(void)
d17b5288
AW
1693{
1694 RAMBlock *block;
1695 ram_addr_t last = 0;
1696
0dc3f44a 1697 rcu_read_lock();
99e15582 1698 RAMBLOCK_FOREACH(block) {
62be4e3a 1699 last = MAX(last, block->offset + block->max_length);
0d53d9fe 1700 }
0dc3f44a 1701 rcu_read_unlock();
b8c48993 1702 return last >> TARGET_PAGE_BITS;
d17b5288
AW
1703}
1704
ddb97f1d
JB
1705static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1706{
1707 int ret;
ddb97f1d
JB
1708
1709 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
47c8ca53 1710 if (!machine_dump_guest_core(current_machine)) {
ddb97f1d
JB
1711 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1712 if (ret) {
1713 perror("qemu_madvise");
1714 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1715 "but dump_guest_core=off specified\n");
1716 }
1717 }
1718}
1719
422148d3
DDAG
1720const char *qemu_ram_get_idstr(RAMBlock *rb)
1721{
1722 return rb->idstr;
1723}
1724
463a4ac2
DDAG
1725bool qemu_ram_is_shared(RAMBlock *rb)
1726{
1727 return rb->flags & RAM_SHARED;
1728}
1729
ae3a7047 1730/* Called with iothread lock held. */
fa53a0e5 1731void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
20cfe881 1732{
fa53a0e5 1733 RAMBlock *block;
20cfe881 1734
c5705a77
AK
1735 assert(new_block);
1736 assert(!new_block->idstr[0]);
84b89d78 1737
09e5ab63
AL
1738 if (dev) {
1739 char *id = qdev_get_dev_path(dev);
84b89d78
CM
1740 if (id) {
1741 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 1742 g_free(id);
84b89d78
CM
1743 }
1744 }
1745 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1746
ab0a9956 1747 rcu_read_lock();
99e15582 1748 RAMBLOCK_FOREACH(block) {
fa53a0e5
GA
1749 if (block != new_block &&
1750 !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
1751 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1752 new_block->idstr);
1753 abort();
1754 }
1755 }
0dc3f44a 1756 rcu_read_unlock();
c5705a77
AK
1757}
1758
ae3a7047 1759/* Called with iothread lock held. */
fa53a0e5 1760void qemu_ram_unset_idstr(RAMBlock *block)
20cfe881 1761{
ae3a7047
MD
1762 /* FIXME: arch_init.c assumes that this is not called throughout
1763 * migration. Ignore the problem since hot-unplug during migration
1764 * does not work anyway.
1765 */
20cfe881
HT
1766 if (block) {
1767 memset(block->idstr, 0, sizeof(block->idstr));
1768 }
1769}
1770
863e9621
DDAG
1771size_t qemu_ram_pagesize(RAMBlock *rb)
1772{
1773 return rb->page_size;
1774}
1775
67f11b5c
DDAG
1776/* Returns the largest size of page in use */
1777size_t qemu_ram_pagesize_largest(void)
1778{
1779 RAMBlock *block;
1780 size_t largest = 0;
1781
99e15582 1782 RAMBLOCK_FOREACH(block) {
67f11b5c
DDAG
1783 largest = MAX(largest, qemu_ram_pagesize(block));
1784 }
1785
1786 return largest;
1787}
1788
8490fc78
LC
1789static int memory_try_enable_merging(void *addr, size_t len)
1790{
75cc7f01 1791 if (!machine_mem_merge(current_machine)) {
8490fc78
LC
1792 /* disabled by the user */
1793 return 0;
1794 }
1795
1796 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1797}
1798
62be4e3a
MT
1799/* Only legal before guest might have detected the memory size: e.g. on
1800 * incoming migration, or right after reset.
1801 *
1802 * As memory core doesn't know how is memory accessed, it is up to
1803 * resize callback to update device state and/or add assertions to detect
1804 * misuse, if necessary.
1805 */
fa53a0e5 1806int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
62be4e3a 1807{
62be4e3a
MT
1808 assert(block);
1809
4ed023ce 1810 newsize = HOST_PAGE_ALIGN(newsize);
129ddaf3 1811
62be4e3a
MT
1812 if (block->used_length == newsize) {
1813 return 0;
1814 }
1815
1816 if (!(block->flags & RAM_RESIZEABLE)) {
1817 error_setg_errno(errp, EINVAL,
1818 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1819 " in != 0x" RAM_ADDR_FMT, block->idstr,
1820 newsize, block->used_length);
1821 return -EINVAL;
1822 }
1823
1824 if (block->max_length < newsize) {
1825 error_setg_errno(errp, EINVAL,
1826 "Length too large: %s: 0x" RAM_ADDR_FMT
1827 " > 0x" RAM_ADDR_FMT, block->idstr,
1828 newsize, block->max_length);
1829 return -EINVAL;
1830 }
1831
1832 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1833 block->used_length = newsize;
58d2707e
PB
1834 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1835 DIRTY_CLIENTS_ALL);
62be4e3a
MT
1836 memory_region_set_size(block->mr, newsize);
1837 if (block->resized) {
1838 block->resized(block->idstr, newsize, block->host);
1839 }
1840 return 0;
1841}
1842
5b82b703
SH
1843/* Called with ram_list.mutex held */
1844static void dirty_memory_extend(ram_addr_t old_ram_size,
1845 ram_addr_t new_ram_size)
1846{
1847 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1848 DIRTY_MEMORY_BLOCK_SIZE);
1849 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1850 DIRTY_MEMORY_BLOCK_SIZE);
1851 int i;
1852
1853 /* Only need to extend if block count increased */
1854 if (new_num_blocks <= old_num_blocks) {
1855 return;
1856 }
1857
1858 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1859 DirtyMemoryBlocks *old_blocks;
1860 DirtyMemoryBlocks *new_blocks;
1861 int j;
1862
1863 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
1864 new_blocks = g_malloc(sizeof(*new_blocks) +
1865 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1866
1867 if (old_num_blocks) {
1868 memcpy(new_blocks->blocks, old_blocks->blocks,
1869 old_num_blocks * sizeof(old_blocks->blocks[0]));
1870 }
1871
1872 for (j = old_num_blocks; j < new_num_blocks; j++) {
1873 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1874 }
1875
1876 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1877
1878 if (old_blocks) {
1879 g_free_rcu(old_blocks, rcu);
1880 }
1881 }
1882}
1883
528f46af 1884static void ram_block_add(RAMBlock *new_block, Error **errp)
c5705a77 1885{
e1c57ab8 1886 RAMBlock *block;
0d53d9fe 1887 RAMBlock *last_block = NULL;
2152f5ca 1888 ram_addr_t old_ram_size, new_ram_size;
37aa7a0e 1889 Error *err = NULL;
2152f5ca 1890
b8c48993 1891 old_ram_size = last_ram_page();
c5705a77 1892
b2a8658e 1893 qemu_mutex_lock_ramlist();
9b8424d5 1894 new_block->offset = find_ram_offset(new_block->max_length);
e1c57ab8
PB
1895
1896 if (!new_block->host) {
1897 if (xen_enabled()) {
9b8424d5 1898 xen_ram_alloc(new_block->offset, new_block->max_length,
37aa7a0e
MA
1899 new_block->mr, &err);
1900 if (err) {
1901 error_propagate(errp, err);
1902 qemu_mutex_unlock_ramlist();
39c350ee 1903 return;
37aa7a0e 1904 }
e1c57ab8 1905 } else {
9b8424d5 1906 new_block->host = phys_mem_alloc(new_block->max_length,
a2b257d6 1907 &new_block->mr->align);
39228250 1908 if (!new_block->host) {
ef701d7b
HT
1909 error_setg_errno(errp, errno,
1910 "cannot set up guest memory '%s'",
1911 memory_region_name(new_block->mr));
1912 qemu_mutex_unlock_ramlist();
39c350ee 1913 return;
39228250 1914 }
9b8424d5 1915 memory_try_enable_merging(new_block->host, new_block->max_length);
6977dfe6 1916 }
c902760f 1917 }
94a6b54f 1918
dd631697
LZ
1919 new_ram_size = MAX(old_ram_size,
1920 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1921 if (new_ram_size > old_ram_size) {
5b82b703 1922 dirty_memory_extend(old_ram_size, new_ram_size);
dd631697 1923 }
0d53d9fe
MD
1924 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1925 * QLIST (which has an RCU-friendly variant) does not have insertion at
1926 * tail, so save the last element in last_block.
1927 */
99e15582 1928 RAMBLOCK_FOREACH(block) {
0d53d9fe 1929 last_block = block;
9b8424d5 1930 if (block->max_length < new_block->max_length) {
abb26d63
PB
1931 break;
1932 }
1933 }
1934 if (block) {
0dc3f44a 1935 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
0d53d9fe 1936 } else if (last_block) {
0dc3f44a 1937 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
0d53d9fe 1938 } else { /* list is empty */
0dc3f44a 1939 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
abb26d63 1940 }
0d6d3c87 1941 ram_list.mru_block = NULL;
94a6b54f 1942
0dc3f44a
MD
1943 /* Write list before version */
1944 smp_wmb();
f798b07f 1945 ram_list.version++;
b2a8658e 1946 qemu_mutex_unlock_ramlist();
f798b07f 1947
9b8424d5 1948 cpu_physical_memory_set_dirty_range(new_block->offset,
58d2707e
PB
1949 new_block->used_length,
1950 DIRTY_CLIENTS_ALL);
94a6b54f 1951
a904c911
PB
1952 if (new_block->host) {
1953 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1954 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
c2cd627d 1955 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
a904c911 1956 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
0987d735 1957 ram_block_notify_add(new_block->host, new_block->max_length);
e1c57ab8 1958 }
94a6b54f 1959}
e9a1ab19 1960
0b183fc8 1961#ifdef __linux__
38b3362d
MAL
1962RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
1963 bool share, int fd,
1964 Error **errp)
e1c57ab8
PB
1965{
1966 RAMBlock *new_block;
ef701d7b 1967 Error *local_err = NULL;
8d37b030 1968 int64_t file_size;
e1c57ab8
PB
1969
1970 if (xen_enabled()) {
7f56e740 1971 error_setg(errp, "-mem-path not supported with Xen");
528f46af 1972 return NULL;
e1c57ab8
PB
1973 }
1974
e45e7ae2
MAL
1975 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1976 error_setg(errp,
1977 "host lacks kvm mmu notifiers, -mem-path unsupported");
1978 return NULL;
1979 }
1980
e1c57ab8
PB
1981 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1982 /*
1983 * file_ram_alloc() needs to allocate just like
1984 * phys_mem_alloc, but we haven't bothered to provide
1985 * a hook there.
1986 */
7f56e740
PB
1987 error_setg(errp,
1988 "-mem-path not supported with this accelerator");
528f46af 1989 return NULL;
e1c57ab8
PB
1990 }
1991
4ed023ce 1992 size = HOST_PAGE_ALIGN(size);
8d37b030
MAL
1993 file_size = get_file_size(fd);
1994 if (file_size > 0 && file_size < size) {
1995 error_setg(errp, "backing store %s size 0x%" PRIx64
1996 " does not match 'size' option 0x" RAM_ADDR_FMT,
1997 mem_path, file_size, size);
8d37b030
MAL
1998 return NULL;
1999 }
2000
e1c57ab8
PB
2001 new_block = g_malloc0(sizeof(*new_block));
2002 new_block->mr = mr;
9b8424d5
MT
2003 new_block->used_length = size;
2004 new_block->max_length = size;
dbcb8981 2005 new_block->flags = share ? RAM_SHARED : 0;
8d37b030 2006 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
7f56e740
PB
2007 if (!new_block->host) {
2008 g_free(new_block);
528f46af 2009 return NULL;
7f56e740
PB
2010 }
2011
528f46af 2012 ram_block_add(new_block, &local_err);
ef701d7b
HT
2013 if (local_err) {
2014 g_free(new_block);
2015 error_propagate(errp, local_err);
528f46af 2016 return NULL;
ef701d7b 2017 }
528f46af 2018 return new_block;
38b3362d
MAL
2019
2020}
2021
2022
2023RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2024 bool share, const char *mem_path,
2025 Error **errp)
2026{
2027 int fd;
2028 bool created;
2029 RAMBlock *block;
2030
2031 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2032 if (fd < 0) {
2033 return NULL;
2034 }
2035
2036 block = qemu_ram_alloc_from_fd(size, mr, share, fd, errp);
2037 if (!block) {
2038 if (created) {
2039 unlink(mem_path);
2040 }
2041 close(fd);
2042 return NULL;
2043 }
2044
2045 return block;
e1c57ab8 2046}
0b183fc8 2047#endif
e1c57ab8 2048
62be4e3a 2049static
528f46af
FZ
2050RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2051 void (*resized)(const char*,
2052 uint64_t length,
2053 void *host),
2054 void *host, bool resizeable,
2055 MemoryRegion *mr, Error **errp)
e1c57ab8
PB
2056{
2057 RAMBlock *new_block;
ef701d7b 2058 Error *local_err = NULL;
e1c57ab8 2059
4ed023ce
DDAG
2060 size = HOST_PAGE_ALIGN(size);
2061 max_size = HOST_PAGE_ALIGN(max_size);
e1c57ab8
PB
2062 new_block = g_malloc0(sizeof(*new_block));
2063 new_block->mr = mr;
62be4e3a 2064 new_block->resized = resized;
9b8424d5
MT
2065 new_block->used_length = size;
2066 new_block->max_length = max_size;
62be4e3a 2067 assert(max_size >= size);
e1c57ab8 2068 new_block->fd = -1;
863e9621 2069 new_block->page_size = getpagesize();
e1c57ab8
PB
2070 new_block->host = host;
2071 if (host) {
7bd4f430 2072 new_block->flags |= RAM_PREALLOC;
e1c57ab8 2073 }
62be4e3a
MT
2074 if (resizeable) {
2075 new_block->flags |= RAM_RESIZEABLE;
2076 }
528f46af 2077 ram_block_add(new_block, &local_err);
ef701d7b
HT
2078 if (local_err) {
2079 g_free(new_block);
2080 error_propagate(errp, local_err);
528f46af 2081 return NULL;
ef701d7b 2082 }
528f46af 2083 return new_block;
e1c57ab8
PB
2084}
2085
528f46af 2086RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
62be4e3a
MT
2087 MemoryRegion *mr, Error **errp)
2088{
2089 return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp);
2090}
2091
528f46af 2092RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp)
6977dfe6 2093{
62be4e3a
MT
2094 return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp);
2095}
2096
528f46af 2097RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
62be4e3a
MT
2098 void (*resized)(const char*,
2099 uint64_t length,
2100 void *host),
2101 MemoryRegion *mr, Error **errp)
2102{
2103 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp);
6977dfe6
YT
2104}
2105
43771539
PB
2106static void reclaim_ramblock(RAMBlock *block)
2107{
2108 if (block->flags & RAM_PREALLOC) {
2109 ;
2110 } else if (xen_enabled()) {
2111 xen_invalidate_map_cache_entry(block->host);
2112#ifndef _WIN32
2113 } else if (block->fd >= 0) {
2f3a2bb1 2114 qemu_ram_munmap(block->host, block->max_length);
43771539
PB
2115 close(block->fd);
2116#endif
2117 } else {
2118 qemu_anon_ram_free(block->host, block->max_length);
2119 }
2120 g_free(block);
2121}
2122
f1060c55 2123void qemu_ram_free(RAMBlock *block)
e9a1ab19 2124{
85bc2a15
MAL
2125 if (!block) {
2126 return;
2127 }
2128
0987d735
PB
2129 if (block->host) {
2130 ram_block_notify_remove(block->host, block->max_length);
2131 }
2132
b2a8658e 2133 qemu_mutex_lock_ramlist();
f1060c55
FZ
2134 QLIST_REMOVE_RCU(block, next);
2135 ram_list.mru_block = NULL;
2136 /* Write list before version */
2137 smp_wmb();
2138 ram_list.version++;
2139 call_rcu(block, reclaim_ramblock, rcu);
b2a8658e 2140 qemu_mutex_unlock_ramlist();
e9a1ab19
FB
2141}
2142
cd19cfa2
HY
2143#ifndef _WIN32
2144void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2145{
2146 RAMBlock *block;
2147 ram_addr_t offset;
2148 int flags;
2149 void *area, *vaddr;
2150
99e15582 2151 RAMBLOCK_FOREACH(block) {
cd19cfa2 2152 offset = addr - block->offset;
9b8424d5 2153 if (offset < block->max_length) {
1240be24 2154 vaddr = ramblock_ptr(block, offset);
7bd4f430 2155 if (block->flags & RAM_PREALLOC) {
cd19cfa2 2156 ;
dfeaf2ab
MA
2157 } else if (xen_enabled()) {
2158 abort();
cd19cfa2
HY
2159 } else {
2160 flags = MAP_FIXED;
3435f395 2161 if (block->fd >= 0) {
dbcb8981
PB
2162 flags |= (block->flags & RAM_SHARED ?
2163 MAP_SHARED : MAP_PRIVATE);
3435f395
MA
2164 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2165 flags, block->fd, offset);
cd19cfa2 2166 } else {
2eb9fbaa
MA
2167 /*
2168 * Remap needs to match alloc. Accelerators that
2169 * set phys_mem_alloc never remap. If they did,
2170 * we'd need a remap hook here.
2171 */
2172 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2173
cd19cfa2
HY
2174 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2175 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2176 flags, -1, 0);
cd19cfa2
HY
2177 }
2178 if (area != vaddr) {
f15fbc4b
AP
2179 fprintf(stderr, "Could not remap addr: "
2180 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
cd19cfa2
HY
2181 length, addr);
2182 exit(1);
2183 }
8490fc78 2184 memory_try_enable_merging(vaddr, length);
ddb97f1d 2185 qemu_ram_setup_dump(vaddr, length);
cd19cfa2 2186 }
cd19cfa2
HY
2187 }
2188 }
2189}
2190#endif /* !_WIN32 */
2191
1b5ec234 2192/* Return a host pointer to ram allocated with qemu_ram_alloc.
ae3a7047
MD
2193 * This should not be used for general purpose DMA. Use address_space_map
2194 * or address_space_rw instead. For local memory (e.g. video ram) that the
2195 * device owns, use memory_region_get_ram_ptr.
0dc3f44a 2196 *
49b24afc 2197 * Called within RCU critical section.
1b5ec234 2198 */
0878d0e1 2199void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
1b5ec234 2200{
3655cb9c
GA
2201 RAMBlock *block = ram_block;
2202
2203 if (block == NULL) {
2204 block = qemu_get_ram_block(addr);
0878d0e1 2205 addr -= block->offset;
3655cb9c 2206 }
ae3a7047
MD
2207
2208 if (xen_enabled() && block->host == NULL) {
0d6d3c87
PB
2209 /* We need to check if the requested address is in the RAM
2210 * because we don't want to map the entire memory in QEMU.
2211 * In that case just map until the end of the page.
2212 */
2213 if (block->offset == 0) {
1ff7c598 2214 return xen_map_cache(addr, 0, 0, false);
0d6d3c87 2215 }
ae3a7047 2216
1ff7c598 2217 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
0d6d3c87 2218 }
0878d0e1 2219 return ramblock_ptr(block, addr);
dc828ca1
PB
2220}
2221
0878d0e1 2222/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
ae3a7047 2223 * but takes a size argument.
0dc3f44a 2224 *
e81bcda5 2225 * Called within RCU critical section.
ae3a7047 2226 */
3655cb9c 2227static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
f5aa69bd 2228 hwaddr *size, bool lock)
38bee5dc 2229{
3655cb9c 2230 RAMBlock *block = ram_block;
8ab934f9
SS
2231 if (*size == 0) {
2232 return NULL;
2233 }
e81bcda5 2234
3655cb9c
GA
2235 if (block == NULL) {
2236 block = qemu_get_ram_block(addr);
0878d0e1 2237 addr -= block->offset;
3655cb9c 2238 }
0878d0e1 2239 *size = MIN(*size, block->max_length - addr);
e81bcda5
PB
2240
2241 if (xen_enabled() && block->host == NULL) {
2242 /* We need to check if the requested address is in the RAM
2243 * because we don't want to map the entire memory in QEMU.
2244 * In that case just map the requested area.
2245 */
2246 if (block->offset == 0) {
f5aa69bd 2247 return xen_map_cache(addr, *size, lock, lock);
38bee5dc
SS
2248 }
2249
f5aa69bd 2250 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
38bee5dc 2251 }
e81bcda5 2252
0878d0e1 2253 return ramblock_ptr(block, addr);
38bee5dc
SS
2254}
2255
422148d3
DDAG
2256/*
2257 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2258 * in that RAMBlock.
2259 *
2260 * ptr: Host pointer to look up
2261 * round_offset: If true round the result offset down to a page boundary
2262 * *ram_addr: set to result ram_addr
2263 * *offset: set to result offset within the RAMBlock
2264 *
2265 * Returns: RAMBlock (or NULL if not found)
ae3a7047
MD
2266 *
2267 * By the time this function returns, the returned pointer is not protected
2268 * by RCU anymore. If the caller is not within an RCU critical section and
2269 * does not hold the iothread lock, it must have other means of protecting the
2270 * pointer, such as a reference to the region that includes the incoming
2271 * ram_addr_t.
2272 */
422148d3 2273RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
422148d3 2274 ram_addr_t *offset)
5579c7f3 2275{
94a6b54f
PB
2276 RAMBlock *block;
2277 uint8_t *host = ptr;
2278
868bb33f 2279 if (xen_enabled()) {
f615f396 2280 ram_addr_t ram_addr;
0dc3f44a 2281 rcu_read_lock();
f615f396
PB
2282 ram_addr = xen_ram_addr_from_mapcache(ptr);
2283 block = qemu_get_ram_block(ram_addr);
422148d3 2284 if (block) {
d6b6aec4 2285 *offset = ram_addr - block->offset;
422148d3 2286 }
0dc3f44a 2287 rcu_read_unlock();
422148d3 2288 return block;
712c2b41
SS
2289 }
2290
0dc3f44a
MD
2291 rcu_read_lock();
2292 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 2293 if (block && block->host && host - block->host < block->max_length) {
23887b79
PB
2294 goto found;
2295 }
2296
99e15582 2297 RAMBLOCK_FOREACH(block) {
432d268c
JN
2298 /* This case append when the block is not mapped. */
2299 if (block->host == NULL) {
2300 continue;
2301 }
9b8424d5 2302 if (host - block->host < block->max_length) {
23887b79 2303 goto found;
f471a17e 2304 }
94a6b54f 2305 }
432d268c 2306
0dc3f44a 2307 rcu_read_unlock();
1b5ec234 2308 return NULL;
23887b79
PB
2309
2310found:
422148d3
DDAG
2311 *offset = (host - block->host);
2312 if (round_offset) {
2313 *offset &= TARGET_PAGE_MASK;
2314 }
0dc3f44a 2315 rcu_read_unlock();
422148d3
DDAG
2316 return block;
2317}
2318
e3dd7493
DDAG
2319/*
2320 * Finds the named RAMBlock
2321 *
2322 * name: The name of RAMBlock to find
2323 *
2324 * Returns: RAMBlock (or NULL if not found)
2325 */
2326RAMBlock *qemu_ram_block_by_name(const char *name)
2327{
2328 RAMBlock *block;
2329
99e15582 2330 RAMBLOCK_FOREACH(block) {
e3dd7493
DDAG
2331 if (!strcmp(name, block->idstr)) {
2332 return block;
2333 }
2334 }
2335
2336 return NULL;
2337}
2338
422148d3
DDAG
2339/* Some of the softmmu routines need to translate from a host pointer
2340 (typically a TLB entry) back to a ram offset. */
07bdaa41 2341ram_addr_t qemu_ram_addr_from_host(void *ptr)
422148d3
DDAG
2342{
2343 RAMBlock *block;
f615f396 2344 ram_addr_t offset;
422148d3 2345
f615f396 2346 block = qemu_ram_block_from_host(ptr, false, &offset);
422148d3 2347 if (!block) {
07bdaa41 2348 return RAM_ADDR_INVALID;
422148d3
DDAG
2349 }
2350
07bdaa41 2351 return block->offset + offset;
e890261f 2352}
f471a17e 2353
27266271
PM
2354/* Called within RCU critical section. */
2355void memory_notdirty_write_prepare(NotDirtyInfo *ndi,
2356 CPUState *cpu,
2357 vaddr mem_vaddr,
2358 ram_addr_t ram_addr,
2359 unsigned size)
2360{
2361 ndi->cpu = cpu;
2362 ndi->ram_addr = ram_addr;
2363 ndi->mem_vaddr = mem_vaddr;
2364 ndi->size = size;
2365 ndi->locked = false;
ba051fb5 2366
5aa1ef71 2367 assert(tcg_enabled());
52159192 2368 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
27266271 2369 ndi->locked = true;
ba051fb5 2370 tb_lock();
0e0df1e2 2371 tb_invalidate_phys_page_fast(ram_addr, size);
3a7d929e 2372 }
27266271
PM
2373}
2374
2375/* Called within RCU critical section. */
2376void memory_notdirty_write_complete(NotDirtyInfo *ndi)
2377{
2378 if (ndi->locked) {
2379 tb_unlock();
2380 }
2381
2382 /* Set both VGA and migration bits for simplicity and to remove
2383 * the notdirty callback faster.
2384 */
2385 cpu_physical_memory_set_dirty_range(ndi->ram_addr, ndi->size,
2386 DIRTY_CLIENTS_NOCODE);
2387 /* we remove the notdirty callback only if the code has been
2388 flushed */
2389 if (!cpu_physical_memory_is_clean(ndi->ram_addr)) {
2390 tlb_set_dirty(ndi->cpu, ndi->mem_vaddr);
2391 }
2392}
2393
2394/* Called within RCU critical section. */
2395static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2396 uint64_t val, unsigned size)
2397{
2398 NotDirtyInfo ndi;
2399
2400 memory_notdirty_write_prepare(&ndi, current_cpu, current_cpu->mem_io_vaddr,
2401 ram_addr, size);
2402
0e0df1e2
AK
2403 switch (size) {
2404 case 1:
0878d0e1 2405 stb_p(qemu_map_ram_ptr(NULL, ram_addr), val);
0e0df1e2
AK
2406 break;
2407 case 2:
0878d0e1 2408 stw_p(qemu_map_ram_ptr(NULL, ram_addr), val);
0e0df1e2
AK
2409 break;
2410 case 4:
0878d0e1 2411 stl_p(qemu_map_ram_ptr(NULL, ram_addr), val);
0e0df1e2 2412 break;
ad52878f
AB
2413 case 8:
2414 stq_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2415 break;
0e0df1e2
AK
2416 default:
2417 abort();
3a7d929e 2418 }
27266271 2419 memory_notdirty_write_complete(&ndi);
9fa3e853
FB
2420}
2421
b018ddf6
PB
2422static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2423 unsigned size, bool is_write)
2424{
2425 return is_write;
2426}
2427
0e0df1e2 2428static const MemoryRegionOps notdirty_mem_ops = {
0e0df1e2 2429 .write = notdirty_mem_write,
b018ddf6 2430 .valid.accepts = notdirty_mem_accepts,
0e0df1e2 2431 .endianness = DEVICE_NATIVE_ENDIAN,
ad52878f
AB
2432 .valid = {
2433 .min_access_size = 1,
2434 .max_access_size = 8,
2435 .unaligned = false,
2436 },
2437 .impl = {
2438 .min_access_size = 1,
2439 .max_access_size = 8,
2440 .unaligned = false,
2441 },
1ccde1cb
FB
2442};
2443
0f459d16 2444/* Generate a debug exception if a watchpoint has been hit. */
66b9b43c 2445static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
0f459d16 2446{
93afeade 2447 CPUState *cpu = current_cpu;
568496c0 2448 CPUClass *cc = CPU_GET_CLASS(cpu);
0f459d16 2449 target_ulong vaddr;
a1d1bb31 2450 CPUWatchpoint *wp;
0f459d16 2451
5aa1ef71 2452 assert(tcg_enabled());
ff4700b0 2453 if (cpu->watchpoint_hit) {
06d55cc1
AL
2454 /* We re-entered the check after replacing the TB. Now raise
2455 * the debug interrupt so that is will trigger after the
2456 * current instruction. */
93afeade 2457 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
06d55cc1
AL
2458 return;
2459 }
93afeade 2460 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
40612000 2461 vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
ff4700b0 2462 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d
PM
2463 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2464 && (wp->flags & flags)) {
08225676
PM
2465 if (flags == BP_MEM_READ) {
2466 wp->flags |= BP_WATCHPOINT_HIT_READ;
2467 } else {
2468 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2469 }
2470 wp->hitaddr = vaddr;
66b9b43c 2471 wp->hitattrs = attrs;
ff4700b0 2472 if (!cpu->watchpoint_hit) {
568496c0
SF
2473 if (wp->flags & BP_CPU &&
2474 !cc->debug_check_watchpoint(cpu, wp)) {
2475 wp->flags &= ~BP_WATCHPOINT_HIT;
2476 continue;
2477 }
ff4700b0 2478 cpu->watchpoint_hit = wp;
a5e99826 2479
8d04fb55
JK
2480 /* Both tb_lock and iothread_mutex will be reset when
2481 * cpu_loop_exit or cpu_loop_exit_noexc longjmp
2482 * back into the cpu_exec main loop.
a5e99826
FK
2483 */
2484 tb_lock();
239c51a5 2485 tb_check_watchpoint(cpu);
6e140f28 2486 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
27103424 2487 cpu->exception_index = EXCP_DEBUG;
5638d180 2488 cpu_loop_exit(cpu);
6e140f28 2489 } else {
9b990ee5
RH
2490 /* Force execution of one insn next time. */
2491 cpu->cflags_next_tb = 1 | curr_cflags();
6886b980 2492 cpu_loop_exit_noexc(cpu);
6e140f28 2493 }
06d55cc1 2494 }
6e140f28
AL
2495 } else {
2496 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2497 }
2498 }
2499}
2500
6658ffb8
PB
2501/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2502 so these check for a hit then pass through to the normal out-of-line
2503 phys routines. */
66b9b43c
PM
2504static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2505 unsigned size, MemTxAttrs attrs)
6658ffb8 2506{
66b9b43c
PM
2507 MemTxResult res;
2508 uint64_t data;
79ed0416
PM
2509 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2510 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2511
2512 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
1ec9b909 2513 switch (size) {
66b9b43c 2514 case 1:
79ed0416 2515 data = address_space_ldub(as, addr, attrs, &res);
66b9b43c
PM
2516 break;
2517 case 2:
79ed0416 2518 data = address_space_lduw(as, addr, attrs, &res);
66b9b43c
PM
2519 break;
2520 case 4:
79ed0416 2521 data = address_space_ldl(as, addr, attrs, &res);
66b9b43c 2522 break;
306526b5
PB
2523 case 8:
2524 data = address_space_ldq(as, addr, attrs, &res);
2525 break;
1ec9b909
AK
2526 default: abort();
2527 }
66b9b43c
PM
2528 *pdata = data;
2529 return res;
6658ffb8
PB
2530}
2531
66b9b43c
PM
2532static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2533 uint64_t val, unsigned size,
2534 MemTxAttrs attrs)
6658ffb8 2535{
66b9b43c 2536 MemTxResult res;
79ed0416
PM
2537 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2538 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2539
2540 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
1ec9b909 2541 switch (size) {
67364150 2542 case 1:
79ed0416 2543 address_space_stb(as, addr, val, attrs, &res);
67364150
MF
2544 break;
2545 case 2:
79ed0416 2546 address_space_stw(as, addr, val, attrs, &res);
67364150
MF
2547 break;
2548 case 4:
79ed0416 2549 address_space_stl(as, addr, val, attrs, &res);
67364150 2550 break;
306526b5
PB
2551 case 8:
2552 address_space_stq(as, addr, val, attrs, &res);
2553 break;
1ec9b909
AK
2554 default: abort();
2555 }
66b9b43c 2556 return res;
6658ffb8
PB
2557}
2558
1ec9b909 2559static const MemoryRegionOps watch_mem_ops = {
66b9b43c
PM
2560 .read_with_attrs = watch_mem_read,
2561 .write_with_attrs = watch_mem_write,
1ec9b909 2562 .endianness = DEVICE_NATIVE_ENDIAN,
306526b5
PB
2563 .valid = {
2564 .min_access_size = 1,
2565 .max_access_size = 8,
2566 .unaligned = false,
2567 },
2568 .impl = {
2569 .min_access_size = 1,
2570 .max_access_size = 8,
2571 .unaligned = false,
2572 },
6658ffb8 2573};
6658ffb8 2574
16620684
AK
2575static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2576 const uint8_t *buf, int len);
2577static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
2578 bool is_write);
2579
f25a49e0
PM
2580static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2581 unsigned len, MemTxAttrs attrs)
db7b5426 2582{
acc9d80b 2583 subpage_t *subpage = opaque;
ff6cff75 2584 uint8_t buf[8];
5c9eb028 2585 MemTxResult res;
791af8c8 2586
db7b5426 2587#if defined(DEBUG_SUBPAGE)
016e9d62 2588 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
acc9d80b 2589 subpage, len, addr);
db7b5426 2590#endif
16620684 2591 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
5c9eb028
PM
2592 if (res) {
2593 return res;
f25a49e0 2594 }
acc9d80b
JK
2595 switch (len) {
2596 case 1:
f25a49e0
PM
2597 *data = ldub_p(buf);
2598 return MEMTX_OK;
acc9d80b 2599 case 2:
f25a49e0
PM
2600 *data = lduw_p(buf);
2601 return MEMTX_OK;
acc9d80b 2602 case 4:
f25a49e0
PM
2603 *data = ldl_p(buf);
2604 return MEMTX_OK;
ff6cff75 2605 case 8:
f25a49e0
PM
2606 *data = ldq_p(buf);
2607 return MEMTX_OK;
acc9d80b
JK
2608 default:
2609 abort();
2610 }
db7b5426
BS
2611}
2612
f25a49e0
PM
2613static MemTxResult subpage_write(void *opaque, hwaddr addr,
2614 uint64_t value, unsigned len, MemTxAttrs attrs)
db7b5426 2615{
acc9d80b 2616 subpage_t *subpage = opaque;
ff6cff75 2617 uint8_t buf[8];
acc9d80b 2618
db7b5426 2619#if defined(DEBUG_SUBPAGE)
016e9d62 2620 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
acc9d80b
JK
2621 " value %"PRIx64"\n",
2622 __func__, subpage, len, addr, value);
db7b5426 2623#endif
acc9d80b
JK
2624 switch (len) {
2625 case 1:
2626 stb_p(buf, value);
2627 break;
2628 case 2:
2629 stw_p(buf, value);
2630 break;
2631 case 4:
2632 stl_p(buf, value);
2633 break;
ff6cff75
PB
2634 case 8:
2635 stq_p(buf, value);
2636 break;
acc9d80b
JK
2637 default:
2638 abort();
2639 }
16620684 2640 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
db7b5426
BS
2641}
2642
c353e4cc 2643static bool subpage_accepts(void *opaque, hwaddr addr,
016e9d62 2644 unsigned len, bool is_write)
c353e4cc 2645{
acc9d80b 2646 subpage_t *subpage = opaque;
c353e4cc 2647#if defined(DEBUG_SUBPAGE)
016e9d62 2648 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
acc9d80b 2649 __func__, subpage, is_write ? 'w' : 'r', len, addr);
c353e4cc
PB
2650#endif
2651
16620684
AK
2652 return flatview_access_valid(subpage->fv, addr + subpage->base,
2653 len, is_write);
c353e4cc
PB
2654}
2655
70c68e44 2656static const MemoryRegionOps subpage_ops = {
f25a49e0
PM
2657 .read_with_attrs = subpage_read,
2658 .write_with_attrs = subpage_write,
ff6cff75
PB
2659 .impl.min_access_size = 1,
2660 .impl.max_access_size = 8,
2661 .valid.min_access_size = 1,
2662 .valid.max_access_size = 8,
c353e4cc 2663 .valid.accepts = subpage_accepts,
70c68e44 2664 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
2665};
2666
c227f099 2667static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 2668 uint16_t section)
db7b5426
BS
2669{
2670 int idx, eidx;
2671
2672 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2673 return -1;
2674 idx = SUBPAGE_IDX(start);
2675 eidx = SUBPAGE_IDX(end);
2676#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2677 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2678 __func__, mmio, start, end, idx, eidx, section);
db7b5426 2679#endif
db7b5426 2680 for (; idx <= eidx; idx++) {
5312bd8b 2681 mmio->sub_section[idx] = section;
db7b5426
BS
2682 }
2683
2684 return 0;
2685}
2686
16620684 2687static subpage_t *subpage_init(FlatView *fv, hwaddr base)
db7b5426 2688{
c227f099 2689 subpage_t *mmio;
db7b5426 2690
2615fabd 2691 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
16620684 2692 mmio->fv = fv;
1eec614b 2693 mmio->base = base;
2c9b15ca 2694 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
b4fefef9 2695 NULL, TARGET_PAGE_SIZE);
b3b00c78 2696 mmio->iomem.subpage = true;
db7b5426 2697#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2698 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2699 mmio, base, TARGET_PAGE_SIZE);
db7b5426 2700#endif
b41aac4f 2701 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
db7b5426
BS
2702
2703 return mmio;
2704}
2705
16620684 2706static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
5312bd8b 2707{
16620684 2708 assert(fv);
5312bd8b 2709 MemoryRegionSection section = {
16620684 2710 .fv = fv,
5312bd8b
AK
2711 .mr = mr,
2712 .offset_within_address_space = 0,
2713 .offset_within_region = 0,
052e87b0 2714 .size = int128_2_64(),
5312bd8b
AK
2715 };
2716
53cb28cb 2717 return phys_section_add(map, &section);
5312bd8b
AK
2718}
2719
a54c87b6 2720MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs)
aa102231 2721{
a54c87b6
PM
2722 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2723 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
32857f4d 2724 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
79e2b9ae 2725 MemoryRegionSection *sections = d->map.sections;
9d82b5a7
PB
2726
2727 return sections[index & ~TARGET_PAGE_MASK].mr;
aa102231
AK
2728}
2729
e9179ce1
AK
2730static void io_mem_init(void)
2731{
1f6245e5 2732 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX);
2c9b15ca 2733 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1f6245e5 2734 NULL, UINT64_MAX);
8d04fb55
JK
2735
2736 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
2737 * which can be called without the iothread mutex.
2738 */
2c9b15ca 2739 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
1f6245e5 2740 NULL, UINT64_MAX);
8d04fb55
JK
2741 memory_region_clear_global_locking(&io_mem_notdirty);
2742
2c9b15ca 2743 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1f6245e5 2744 NULL, UINT64_MAX);
e9179ce1
AK
2745}
2746
8629d3fc 2747AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
00752703 2748{
53cb28cb
MA
2749 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2750 uint16_t n;
2751
16620684 2752 n = dummy_section(&d->map, fv, &io_mem_unassigned);
53cb28cb 2753 assert(n == PHYS_SECTION_UNASSIGNED);
16620684 2754 n = dummy_section(&d->map, fv, &io_mem_notdirty);
53cb28cb 2755 assert(n == PHYS_SECTION_NOTDIRTY);
16620684 2756 n = dummy_section(&d->map, fv, &io_mem_rom);
53cb28cb 2757 assert(n == PHYS_SECTION_ROM);
16620684 2758 n = dummy_section(&d->map, fv, &io_mem_watch);
53cb28cb 2759 assert(n == PHYS_SECTION_WATCH);
00752703 2760
9736e55b 2761 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
66a6df1d
AK
2762
2763 return d;
00752703
PB
2764}
2765
66a6df1d 2766void address_space_dispatch_free(AddressSpaceDispatch *d)
79e2b9ae
PB
2767{
2768 phys_sections_free(&d->map);
2769 g_free(d);
2770}
2771
1d71148e 2772static void tcg_commit(MemoryListener *listener)
50c1e149 2773{
32857f4d
PM
2774 CPUAddressSpace *cpuas;
2775 AddressSpaceDispatch *d;
117712c3
AK
2776
2777 /* since each CPU stores ram addresses in its TLB cache, we must
2778 reset the modified entries */
32857f4d
PM
2779 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2780 cpu_reloading_memory_map();
2781 /* The CPU and TLB are protected by the iothread lock.
2782 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2783 * may have split the RCU critical section.
2784 */
66a6df1d 2785 d = address_space_to_dispatch(cpuas->as);
f35e44e7 2786 atomic_rcu_set(&cpuas->memory_dispatch, d);
d10eb08f 2787 tlb_flush(cpuas->cpu);
50c1e149
AK
2788}
2789
62152b8a
AK
2790static void memory_map_init(void)
2791{
7267c094 2792 system_memory = g_malloc(sizeof(*system_memory));
03f49957 2793
57271d63 2794 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
7dca8043 2795 address_space_init(&address_space_memory, system_memory, "memory");
309cb471 2796
7267c094 2797 system_io = g_malloc(sizeof(*system_io));
3bb28b72
JK
2798 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2799 65536);
7dca8043 2800 address_space_init(&address_space_io, system_io, "I/O");
62152b8a
AK
2801}
2802
2803MemoryRegion *get_system_memory(void)
2804{
2805 return system_memory;
2806}
2807
309cb471
AK
2808MemoryRegion *get_system_io(void)
2809{
2810 return system_io;
2811}
2812
e2eef170
PB
2813#endif /* !defined(CONFIG_USER_ONLY) */
2814
13eb76e0
FB
2815/* physical memory access (slow version, mainly for debug) */
2816#if defined(CONFIG_USER_ONLY)
f17ec444 2817int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
a68fe89c 2818 uint8_t *buf, int len, int is_write)
13eb76e0
FB
2819{
2820 int l, flags;
2821 target_ulong page;
53a5960a 2822 void * p;
13eb76e0
FB
2823
2824 while (len > 0) {
2825 page = addr & TARGET_PAGE_MASK;
2826 l = (page + TARGET_PAGE_SIZE) - addr;
2827 if (l > len)
2828 l = len;
2829 flags = page_get_flags(page);
2830 if (!(flags & PAGE_VALID))
a68fe89c 2831 return -1;
13eb76e0
FB
2832 if (is_write) {
2833 if (!(flags & PAGE_WRITE))
a68fe89c 2834 return -1;
579a97f7 2835 /* XXX: this code should not depend on lock_user */
72fb7daa 2836 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 2837 return -1;
72fb7daa
AJ
2838 memcpy(p, buf, l);
2839 unlock_user(p, addr, l);
13eb76e0
FB
2840 } else {
2841 if (!(flags & PAGE_READ))
a68fe89c 2842 return -1;
579a97f7 2843 /* XXX: this code should not depend on lock_user */
72fb7daa 2844 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 2845 return -1;
72fb7daa 2846 memcpy(buf, p, l);
5b257578 2847 unlock_user(p, addr, 0);
13eb76e0
FB
2848 }
2849 len -= l;
2850 buf += l;
2851 addr += l;
2852 }
a68fe89c 2853 return 0;
13eb76e0 2854}
8df1cd07 2855
13eb76e0 2856#else
51d7a9eb 2857
845b6214 2858static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
a8170e5e 2859 hwaddr length)
51d7a9eb 2860{
e87f7778 2861 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
0878d0e1
PB
2862 addr += memory_region_get_ram_addr(mr);
2863
e87f7778
PB
2864 /* No early return if dirty_log_mask is or becomes 0, because
2865 * cpu_physical_memory_set_dirty_range will still call
2866 * xen_modified_memory.
2867 */
2868 if (dirty_log_mask) {
2869 dirty_log_mask =
2870 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2871 }
2872 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
5aa1ef71 2873 assert(tcg_enabled());
ba051fb5 2874 tb_lock();
e87f7778 2875 tb_invalidate_phys_range(addr, addr + length);
ba051fb5 2876 tb_unlock();
e87f7778 2877 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
51d7a9eb 2878 }
e87f7778 2879 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
51d7a9eb
AP
2880}
2881
23326164 2882static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
82f2563f 2883{
e1622f4b 2884 unsigned access_size_max = mr->ops->valid.max_access_size;
23326164
RH
2885
2886 /* Regions are assumed to support 1-4 byte accesses unless
2887 otherwise specified. */
23326164
RH
2888 if (access_size_max == 0) {
2889 access_size_max = 4;
2890 }
2891
2892 /* Bound the maximum access by the alignment of the address. */
2893 if (!mr->ops->impl.unaligned) {
2894 unsigned align_size_max = addr & -addr;
2895 if (align_size_max != 0 && align_size_max < access_size_max) {
2896 access_size_max = align_size_max;
2897 }
82f2563f 2898 }
23326164
RH
2899
2900 /* Don't attempt accesses larger than the maximum. */
2901 if (l > access_size_max) {
2902 l = access_size_max;
82f2563f 2903 }
6554f5c0 2904 l = pow2floor(l);
23326164
RH
2905
2906 return l;
82f2563f
PB
2907}
2908
4840f10e 2909static bool prepare_mmio_access(MemoryRegion *mr)
125b3806 2910{
4840f10e
JK
2911 bool unlocked = !qemu_mutex_iothread_locked();
2912 bool release_lock = false;
2913
2914 if (unlocked && mr->global_locking) {
2915 qemu_mutex_lock_iothread();
2916 unlocked = false;
2917 release_lock = true;
2918 }
125b3806 2919 if (mr->flush_coalesced_mmio) {
4840f10e
JK
2920 if (unlocked) {
2921 qemu_mutex_lock_iothread();
2922 }
125b3806 2923 qemu_flush_coalesced_mmio_buffer();
4840f10e
JK
2924 if (unlocked) {
2925 qemu_mutex_unlock_iothread();
2926 }
125b3806 2927 }
4840f10e
JK
2928
2929 return release_lock;
125b3806
PB
2930}
2931
a203ac70 2932/* Called within RCU critical section. */
16620684
AK
2933static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
2934 MemTxAttrs attrs,
2935 const uint8_t *buf,
2936 int len, hwaddr addr1,
2937 hwaddr l, MemoryRegion *mr)
13eb76e0 2938{
13eb76e0 2939 uint8_t *ptr;
791af8c8 2940 uint64_t val;
3b643495 2941 MemTxResult result = MEMTX_OK;
4840f10e 2942 bool release_lock = false;
3b46e624 2943
a203ac70 2944 for (;;) {
eb7eeb88
PB
2945 if (!memory_access_is_direct(mr, true)) {
2946 release_lock |= prepare_mmio_access(mr);
2947 l = memory_access_size(mr, l, addr1);
2948 /* XXX: could force current_cpu to NULL to avoid
2949 potential bugs */
2950 switch (l) {
2951 case 8:
2952 /* 64 bit write access */
2953 val = ldq_p(buf);
2954 result |= memory_region_dispatch_write(mr, addr1, val, 8,
2955 attrs);
2956 break;
2957 case 4:
2958 /* 32 bit write access */
6da67de6 2959 val = (uint32_t)ldl_p(buf);
eb7eeb88
PB
2960 result |= memory_region_dispatch_write(mr, addr1, val, 4,
2961 attrs);
2962 break;
2963 case 2:
2964 /* 16 bit write access */
2965 val = lduw_p(buf);
2966 result |= memory_region_dispatch_write(mr, addr1, val, 2,
2967 attrs);
2968 break;
2969 case 1:
2970 /* 8 bit write access */
2971 val = ldub_p(buf);
2972 result |= memory_region_dispatch_write(mr, addr1, val, 1,
2973 attrs);
2974 break;
2975 default:
2976 abort();
13eb76e0
FB
2977 }
2978 } else {
eb7eeb88 2979 /* RAM case */
f5aa69bd 2980 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
eb7eeb88
PB
2981 memcpy(ptr, buf, l);
2982 invalidate_and_set_dirty(mr, addr1, l);
13eb76e0 2983 }
4840f10e
JK
2984
2985 if (release_lock) {
2986 qemu_mutex_unlock_iothread();
2987 release_lock = false;
2988 }
2989
13eb76e0
FB
2990 len -= l;
2991 buf += l;
2992 addr += l;
a203ac70
PB
2993
2994 if (!len) {
2995 break;
2996 }
2997
2998 l = len;
16620684 2999 mr = flatview_translate(fv, addr, &addr1, &l, true);
13eb76e0 3000 }
fd8aaa76 3001
3b643495 3002 return result;
13eb76e0 3003}
8df1cd07 3004
16620684
AK
3005static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3006 const uint8_t *buf, int len)
ac1970fb 3007{
eb7eeb88 3008 hwaddr l;
eb7eeb88
PB
3009 hwaddr addr1;
3010 MemoryRegion *mr;
3011 MemTxResult result = MEMTX_OK;
eb7eeb88 3012
a203ac70
PB
3013 if (len > 0) {
3014 rcu_read_lock();
eb7eeb88 3015 l = len;
16620684
AK
3016 mr = flatview_translate(fv, addr, &addr1, &l, true);
3017 result = flatview_write_continue(fv, addr, attrs, buf, len,
3018 addr1, l, mr);
a203ac70
PB
3019 rcu_read_unlock();
3020 }
3021
3022 return result;
3023}
3024
16620684
AK
3025MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3026 MemTxAttrs attrs,
3027 const uint8_t *buf, int len)
3028{
3029 return flatview_write(address_space_to_flatview(as), addr, attrs, buf, len);
3030}
3031
a203ac70 3032/* Called within RCU critical section. */
16620684
AK
3033MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3034 MemTxAttrs attrs, uint8_t *buf,
3035 int len, hwaddr addr1, hwaddr l,
3036 MemoryRegion *mr)
a203ac70
PB
3037{
3038 uint8_t *ptr;
3039 uint64_t val;
3040 MemTxResult result = MEMTX_OK;
3041 bool release_lock = false;
eb7eeb88 3042
a203ac70 3043 for (;;) {
eb7eeb88
PB
3044 if (!memory_access_is_direct(mr, false)) {
3045 /* I/O case */
3046 release_lock |= prepare_mmio_access(mr);
3047 l = memory_access_size(mr, l, addr1);
3048 switch (l) {
3049 case 8:
3050 /* 64 bit read access */
3051 result |= memory_region_dispatch_read(mr, addr1, &val, 8,
3052 attrs);
3053 stq_p(buf, val);
3054 break;
3055 case 4:
3056 /* 32 bit read access */
3057 result |= memory_region_dispatch_read(mr, addr1, &val, 4,
3058 attrs);
3059 stl_p(buf, val);
3060 break;
3061 case 2:
3062 /* 16 bit read access */
3063 result |= memory_region_dispatch_read(mr, addr1, &val, 2,
3064 attrs);
3065 stw_p(buf, val);
3066 break;
3067 case 1:
3068 /* 8 bit read access */
3069 result |= memory_region_dispatch_read(mr, addr1, &val, 1,
3070 attrs);
3071 stb_p(buf, val);
3072 break;
3073 default:
3074 abort();
3075 }
3076 } else {
3077 /* RAM case */
f5aa69bd 3078 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
eb7eeb88
PB
3079 memcpy(buf, ptr, l);
3080 }
3081
3082 if (release_lock) {
3083 qemu_mutex_unlock_iothread();
3084 release_lock = false;
3085 }
3086
3087 len -= l;
3088 buf += l;
3089 addr += l;
a203ac70
PB
3090
3091 if (!len) {
3092 break;
3093 }
3094
3095 l = len;
16620684 3096 mr = flatview_translate(fv, addr, &addr1, &l, false);
a203ac70
PB
3097 }
3098
3099 return result;
3100}
3101
16620684
AK
3102MemTxResult flatview_read_full(FlatView *fv, hwaddr addr,
3103 MemTxAttrs attrs, uint8_t *buf, int len)
a203ac70
PB
3104{
3105 hwaddr l;
3106 hwaddr addr1;
3107 MemoryRegion *mr;
3108 MemTxResult result = MEMTX_OK;
3109
3110 if (len > 0) {
3111 rcu_read_lock();
3112 l = len;
16620684
AK
3113 mr = flatview_translate(fv, addr, &addr1, &l, false);
3114 result = flatview_read_continue(fv, addr, attrs, buf, len,
3115 addr1, l, mr);
a203ac70 3116 rcu_read_unlock();
eb7eeb88 3117 }
eb7eeb88
PB
3118
3119 return result;
ac1970fb
AK
3120}
3121
16620684
AK
3122static MemTxResult flatview_rw(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3123 uint8_t *buf, int len, bool is_write)
eb7eeb88
PB
3124{
3125 if (is_write) {
16620684 3126 return flatview_write(fv, addr, attrs, (uint8_t *)buf, len);
eb7eeb88 3127 } else {
16620684 3128 return flatview_read(fv, addr, attrs, (uint8_t *)buf, len);
eb7eeb88
PB
3129 }
3130}
ac1970fb 3131
16620684
AK
3132MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
3133 MemTxAttrs attrs, uint8_t *buf,
3134 int len, bool is_write)
3135{
3136 return flatview_rw(address_space_to_flatview(as),
3137 addr, attrs, buf, len, is_write);
3138}
3139
a8170e5e 3140void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
ac1970fb
AK
3141 int len, int is_write)
3142{
5c9eb028
PM
3143 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3144 buf, len, is_write);
ac1970fb
AK
3145}
3146
582b55a9
AG
3147enum write_rom_type {
3148 WRITE_DATA,
3149 FLUSH_CACHE,
3150};
3151
2a221651 3152static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
582b55a9 3153 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
d0ecd2aa 3154{
149f54b5 3155 hwaddr l;
d0ecd2aa 3156 uint8_t *ptr;
149f54b5 3157 hwaddr addr1;
5c8a00ce 3158 MemoryRegion *mr;
3b46e624 3159
41063e1e 3160 rcu_read_lock();
d0ecd2aa 3161 while (len > 0) {
149f54b5 3162 l = len;
2a221651 3163 mr = address_space_translate(as, addr, &addr1, &l, true);
3b46e624 3164
5c8a00ce
PB
3165 if (!(memory_region_is_ram(mr) ||
3166 memory_region_is_romd(mr))) {
b242e0e0 3167 l = memory_access_size(mr, l, addr1);
d0ecd2aa 3168 } else {
d0ecd2aa 3169 /* ROM/RAM case */
0878d0e1 3170 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
582b55a9
AG
3171 switch (type) {
3172 case WRITE_DATA:
3173 memcpy(ptr, buf, l);
845b6214 3174 invalidate_and_set_dirty(mr, addr1, l);
582b55a9
AG
3175 break;
3176 case FLUSH_CACHE:
3177 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3178 break;
3179 }
d0ecd2aa
FB
3180 }
3181 len -= l;
3182 buf += l;
3183 addr += l;
3184 }
41063e1e 3185 rcu_read_unlock();
d0ecd2aa
FB
3186}
3187
582b55a9 3188/* used for ROM loading : can write in RAM and ROM */
2a221651 3189void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
582b55a9
AG
3190 const uint8_t *buf, int len)
3191{
2a221651 3192 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
582b55a9
AG
3193}
3194
3195void cpu_flush_icache_range(hwaddr start, int len)
3196{
3197 /*
3198 * This function should do the same thing as an icache flush that was
3199 * triggered from within the guest. For TCG we are always cache coherent,
3200 * so there is no need to flush anything. For KVM / Xen we need to flush
3201 * the host's instruction cache at least.
3202 */
3203 if (tcg_enabled()) {
3204 return;
3205 }
3206
2a221651
EI
3207 cpu_physical_memory_write_rom_internal(&address_space_memory,
3208 start, NULL, len, FLUSH_CACHE);
582b55a9
AG
3209}
3210
6d16c2f8 3211typedef struct {
d3e71559 3212 MemoryRegion *mr;
6d16c2f8 3213 void *buffer;
a8170e5e
AK
3214 hwaddr addr;
3215 hwaddr len;
c2cba0ff 3216 bool in_use;
6d16c2f8
AL
3217} BounceBuffer;
3218
3219static BounceBuffer bounce;
3220
ba223c29 3221typedef struct MapClient {
e95205e1 3222 QEMUBH *bh;
72cf2d4f 3223 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3224} MapClient;
3225
38e047b5 3226QemuMutex map_client_list_lock;
72cf2d4f
BS
3227static QLIST_HEAD(map_client_list, MapClient) map_client_list
3228 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29 3229
e95205e1
FZ
3230static void cpu_unregister_map_client_do(MapClient *client)
3231{
3232 QLIST_REMOVE(client, link);
3233 g_free(client);
3234}
3235
33b6c2ed
FZ
3236static void cpu_notify_map_clients_locked(void)
3237{
3238 MapClient *client;
3239
3240 while (!QLIST_EMPTY(&map_client_list)) {
3241 client = QLIST_FIRST(&map_client_list);
e95205e1
FZ
3242 qemu_bh_schedule(client->bh);
3243 cpu_unregister_map_client_do(client);
33b6c2ed
FZ
3244 }
3245}
3246
e95205e1 3247void cpu_register_map_client(QEMUBH *bh)
ba223c29 3248{
7267c094 3249 MapClient *client = g_malloc(sizeof(*client));
ba223c29 3250
38e047b5 3251 qemu_mutex_lock(&map_client_list_lock);
e95205e1 3252 client->bh = bh;
72cf2d4f 3253 QLIST_INSERT_HEAD(&map_client_list, client, link);
33b6c2ed
FZ
3254 if (!atomic_read(&bounce.in_use)) {
3255 cpu_notify_map_clients_locked();
3256 }
38e047b5 3257 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3258}
3259
38e047b5 3260void cpu_exec_init_all(void)
ba223c29 3261{
38e047b5 3262 qemu_mutex_init(&ram_list.mutex);
20bccb82
PM
3263 /* The data structures we set up here depend on knowing the page size,
3264 * so no more changes can be made after this point.
3265 * In an ideal world, nothing we did before we had finished the
3266 * machine setup would care about the target page size, and we could
3267 * do this much later, rather than requiring board models to state
3268 * up front what their requirements are.
3269 */
3270 finalize_target_page_bits();
38e047b5 3271 io_mem_init();
680a4783 3272 memory_map_init();
38e047b5 3273 qemu_mutex_init(&map_client_list_lock);
ba223c29
AL
3274}
3275
e95205e1 3276void cpu_unregister_map_client(QEMUBH *bh)
ba223c29
AL
3277{
3278 MapClient *client;
3279
e95205e1
FZ
3280 qemu_mutex_lock(&map_client_list_lock);
3281 QLIST_FOREACH(client, &map_client_list, link) {
3282 if (client->bh == bh) {
3283 cpu_unregister_map_client_do(client);
3284 break;
3285 }
ba223c29 3286 }
e95205e1 3287 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3288}
3289
3290static void cpu_notify_map_clients(void)
3291{
38e047b5 3292 qemu_mutex_lock(&map_client_list_lock);
33b6c2ed 3293 cpu_notify_map_clients_locked();
38e047b5 3294 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3295}
3296
16620684
AK
3297static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
3298 bool is_write)
51644ab7 3299{
5c8a00ce 3300 MemoryRegion *mr;
51644ab7
PB
3301 hwaddr l, xlat;
3302
41063e1e 3303 rcu_read_lock();
51644ab7
PB
3304 while (len > 0) {
3305 l = len;
16620684 3306 mr = flatview_translate(fv, addr, &xlat, &l, is_write);
5c8a00ce
PB
3307 if (!memory_access_is_direct(mr, is_write)) {
3308 l = memory_access_size(mr, l, addr);
3309 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
5ad4a2b7 3310 rcu_read_unlock();
51644ab7
PB
3311 return false;
3312 }
3313 }
3314
3315 len -= l;
3316 addr += l;
3317 }
41063e1e 3318 rcu_read_unlock();
51644ab7
PB
3319 return true;
3320}
3321
16620684
AK
3322bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3323 int len, bool is_write)
3324{
3325 return flatview_access_valid(address_space_to_flatview(as),
3326 addr, len, is_write);
3327}
3328
715c31ec 3329static hwaddr
16620684
AK
3330flatview_extend_translation(FlatView *fv, hwaddr addr,
3331 hwaddr target_len,
715c31ec
PB
3332 MemoryRegion *mr, hwaddr base, hwaddr len,
3333 bool is_write)
3334{
3335 hwaddr done = 0;
3336 hwaddr xlat;
3337 MemoryRegion *this_mr;
3338
3339 for (;;) {
3340 target_len -= len;
3341 addr += len;
3342 done += len;
3343 if (target_len == 0) {
3344 return done;
3345 }
3346
3347 len = target_len;
16620684
AK
3348 this_mr = flatview_translate(fv, addr, &xlat,
3349 &len, is_write);
715c31ec
PB
3350 if (this_mr != mr || xlat != base + done) {
3351 return done;
3352 }
3353 }
3354}
3355
6d16c2f8
AL
3356/* Map a physical memory region into a host virtual address.
3357 * May map a subset of the requested range, given by and returned in *plen.
3358 * May return NULL if resources needed to perform the mapping are exhausted.
3359 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3360 * Use cpu_register_map_client() to know when retrying the map operation is
3361 * likely to succeed.
6d16c2f8 3362 */
ac1970fb 3363void *address_space_map(AddressSpace *as,
a8170e5e
AK
3364 hwaddr addr,
3365 hwaddr *plen,
ac1970fb 3366 bool is_write)
6d16c2f8 3367{
a8170e5e 3368 hwaddr len = *plen;
715c31ec
PB
3369 hwaddr l, xlat;
3370 MemoryRegion *mr;
e81bcda5 3371 void *ptr;
16620684 3372 FlatView *fv = address_space_to_flatview(as);
6d16c2f8 3373
e3127ae0
PB
3374 if (len == 0) {
3375 return NULL;
3376 }
38bee5dc 3377
e3127ae0 3378 l = len;
41063e1e 3379 rcu_read_lock();
16620684 3380 mr = flatview_translate(fv, addr, &xlat, &l, is_write);
41063e1e 3381
e3127ae0 3382 if (!memory_access_is_direct(mr, is_write)) {
c2cba0ff 3383 if (atomic_xchg(&bounce.in_use, true)) {
41063e1e 3384 rcu_read_unlock();
e3127ae0 3385 return NULL;
6d16c2f8 3386 }
e85d9db5
KW
3387 /* Avoid unbounded allocations */
3388 l = MIN(l, TARGET_PAGE_SIZE);
3389 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
e3127ae0
PB
3390 bounce.addr = addr;
3391 bounce.len = l;
d3e71559
PB
3392
3393 memory_region_ref(mr);
3394 bounce.mr = mr;
e3127ae0 3395 if (!is_write) {
16620684 3396 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
5c9eb028 3397 bounce.buffer, l);
8ab934f9 3398 }
6d16c2f8 3399
41063e1e 3400 rcu_read_unlock();
e3127ae0
PB
3401 *plen = l;
3402 return bounce.buffer;
3403 }
3404
e3127ae0 3405
d3e71559 3406 memory_region_ref(mr);
16620684
AK
3407 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3408 l, is_write);
f5aa69bd 3409 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
e81bcda5
PB
3410 rcu_read_unlock();
3411
3412 return ptr;
6d16c2f8
AL
3413}
3414
ac1970fb 3415/* Unmaps a memory region previously mapped by address_space_map().
6d16c2f8
AL
3416 * Will also mark the memory as dirty if is_write == 1. access_len gives
3417 * the amount of memory that was actually read or written by the caller.
3418 */
a8170e5e
AK
3419void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3420 int is_write, hwaddr access_len)
6d16c2f8
AL
3421{
3422 if (buffer != bounce.buffer) {
d3e71559
PB
3423 MemoryRegion *mr;
3424 ram_addr_t addr1;
3425
07bdaa41 3426 mr = memory_region_from_host(buffer, &addr1);
d3e71559 3427 assert(mr != NULL);
6d16c2f8 3428 if (is_write) {
845b6214 3429 invalidate_and_set_dirty(mr, addr1, access_len);
6d16c2f8 3430 }
868bb33f 3431 if (xen_enabled()) {
e41d7c69 3432 xen_invalidate_map_cache_entry(buffer);
050a0ddf 3433 }
d3e71559 3434 memory_region_unref(mr);
6d16c2f8
AL
3435 return;
3436 }
3437 if (is_write) {
5c9eb028
PM
3438 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3439 bounce.buffer, access_len);
6d16c2f8 3440 }
f8a83245 3441 qemu_vfree(bounce.buffer);
6d16c2f8 3442 bounce.buffer = NULL;
d3e71559 3443 memory_region_unref(bounce.mr);
c2cba0ff 3444 atomic_mb_set(&bounce.in_use, false);
ba223c29 3445 cpu_notify_map_clients();
6d16c2f8 3446}
d0ecd2aa 3447
a8170e5e
AK
3448void *cpu_physical_memory_map(hwaddr addr,
3449 hwaddr *plen,
ac1970fb
AK
3450 int is_write)
3451{
3452 return address_space_map(&address_space_memory, addr, plen, is_write);
3453}
3454
a8170e5e
AK
3455void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3456 int is_write, hwaddr access_len)
ac1970fb
AK
3457{
3458 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3459}
3460
0ce265ff
PB
3461#define ARG1_DECL AddressSpace *as
3462#define ARG1 as
3463#define SUFFIX
3464#define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3465#define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write)
3466#define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3467#define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3468#define RCU_READ_LOCK(...) rcu_read_lock()
3469#define RCU_READ_UNLOCK(...) rcu_read_unlock()
3470#include "memory_ldst.inc.c"
1e78bcc1 3471
1f4e496e
PB
3472int64_t address_space_cache_init(MemoryRegionCache *cache,
3473 AddressSpace *as,
3474 hwaddr addr,
3475 hwaddr len,
3476 bool is_write)
3477{
90c4fe5f
PB
3478 cache->len = len;
3479 cache->as = as;
3480 cache->xlat = addr;
3481 return len;
1f4e496e
PB
3482}
3483
3484void address_space_cache_invalidate(MemoryRegionCache *cache,
3485 hwaddr addr,
3486 hwaddr access_len)
3487{
1f4e496e
PB
3488}
3489
3490void address_space_cache_destroy(MemoryRegionCache *cache)
3491{
90c4fe5f 3492 cache->as = NULL;
1f4e496e
PB
3493}
3494
3495#define ARG1_DECL MemoryRegionCache *cache
3496#define ARG1 cache
3497#define SUFFIX _cached
90c4fe5f
PB
3498#define TRANSLATE(addr, ...) \
3499 address_space_translate(cache->as, cache->xlat + (addr), __VA_ARGS__)
1f4e496e 3500#define IS_DIRECT(mr, is_write) true
90c4fe5f
PB
3501#define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3502#define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3503#define RCU_READ_LOCK() rcu_read_lock()
3504#define RCU_READ_UNLOCK() rcu_read_unlock()
1f4e496e
PB
3505#include "memory_ldst.inc.c"
3506
5e2972fd 3507/* virtual memory access for debug (includes writing to ROM) */
f17ec444 3508int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
b448f2f3 3509 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3510{
3511 int l;
a8170e5e 3512 hwaddr phys_addr;
9b3c35e0 3513 target_ulong page;
13eb76e0 3514
79ca7a1b 3515 cpu_synchronize_state(cpu);
13eb76e0 3516 while (len > 0) {
5232e4c7
PM
3517 int asidx;
3518 MemTxAttrs attrs;
3519
13eb76e0 3520 page = addr & TARGET_PAGE_MASK;
5232e4c7
PM
3521 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3522 asidx = cpu_asidx_from_attrs(cpu, attrs);
13eb76e0
FB
3523 /* if no physical page mapped, return an error */
3524 if (phys_addr == -1)
3525 return -1;
3526 l = (page + TARGET_PAGE_SIZE) - addr;
3527 if (l > len)
3528 l = len;
5e2972fd 3529 phys_addr += (addr & ~TARGET_PAGE_MASK);
2e38847b 3530 if (is_write) {
5232e4c7
PM
3531 cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3532 phys_addr, buf, l);
2e38847b 3533 } else {
5232e4c7
PM
3534 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3535 MEMTXATTRS_UNSPECIFIED,
5c9eb028 3536 buf, l, 0);
2e38847b 3537 }
13eb76e0
FB
3538 len -= l;
3539 buf += l;
3540 addr += l;
3541 }
3542 return 0;
3543}
038629a6
DDAG
3544
3545/*
3546 * Allows code that needs to deal with migration bitmaps etc to still be built
3547 * target independent.
3548 */
20afaed9 3549size_t qemu_target_page_size(void)
038629a6 3550{
20afaed9 3551 return TARGET_PAGE_SIZE;
038629a6
DDAG
3552}
3553
46d702b1
JQ
3554int qemu_target_page_bits(void)
3555{
3556 return TARGET_PAGE_BITS;
3557}
3558
3559int qemu_target_page_bits_min(void)
3560{
3561 return TARGET_PAGE_BITS_MIN;
3562}
a68fe89c 3563#endif
13eb76e0 3564
8e4a424b
BS
3565/*
3566 * A helper function for the _utterly broken_ virtio device model to find out if
3567 * it's running on a big endian machine. Don't do this at home kids!
3568 */
98ed8ecf
GK
3569bool target_words_bigendian(void);
3570bool target_words_bigendian(void)
8e4a424b
BS
3571{
3572#if defined(TARGET_WORDS_BIGENDIAN)
3573 return true;
3574#else
3575 return false;
3576#endif
3577}
3578
76f35538 3579#ifndef CONFIG_USER_ONLY
a8170e5e 3580bool cpu_physical_memory_is_io(hwaddr phys_addr)
76f35538 3581{
5c8a00ce 3582 MemoryRegion*mr;
149f54b5 3583 hwaddr l = 1;
41063e1e 3584 bool res;
76f35538 3585
41063e1e 3586 rcu_read_lock();
5c8a00ce
PB
3587 mr = address_space_translate(&address_space_memory,
3588 phys_addr, &phys_addr, &l, false);
76f35538 3589
41063e1e
PB
3590 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3591 rcu_read_unlock();
3592 return res;
76f35538 3593}
bd2fa51f 3594
e3807054 3595int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
bd2fa51f
MH
3596{
3597 RAMBlock *block;
e3807054 3598 int ret = 0;
bd2fa51f 3599
0dc3f44a 3600 rcu_read_lock();
99e15582 3601 RAMBLOCK_FOREACH(block) {
e3807054
DDAG
3602 ret = func(block->idstr, block->host, block->offset,
3603 block->used_length, opaque);
3604 if (ret) {
3605 break;
3606 }
bd2fa51f 3607 }
0dc3f44a 3608 rcu_read_unlock();
e3807054 3609 return ret;
bd2fa51f 3610}
d3a5038c
DDAG
3611
3612/*
3613 * Unmap pages of memory from start to start+length such that
3614 * they a) read as 0, b) Trigger whatever fault mechanism
3615 * the OS provides for postcopy.
3616 * The pages must be unmapped by the end of the function.
3617 * Returns: 0 on success, none-0 on failure
3618 *
3619 */
3620int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3621{
3622 int ret = -1;
3623
3624 uint8_t *host_startaddr = rb->host + start;
3625
3626 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
3627 error_report("ram_block_discard_range: Unaligned start address: %p",
3628 host_startaddr);
3629 goto err;
3630 }
3631
3632 if ((start + length) <= rb->used_length) {
3633 uint8_t *host_endaddr = host_startaddr + length;
3634 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
3635 error_report("ram_block_discard_range: Unaligned end address: %p",
3636 host_endaddr);
3637 goto err;
3638 }
3639
3640 errno = ENOTSUP; /* If we are missing MADVISE etc */
3641
e2fa71f5 3642 if (rb->page_size == qemu_host_page_size) {
d3a5038c 3643#if defined(CONFIG_MADVISE)
e2fa71f5
DDAG
3644 /* Note: We need the madvise MADV_DONTNEED behaviour of definitely
3645 * freeing the page.
3646 */
3647 ret = madvise(host_startaddr, length, MADV_DONTNEED);
d3a5038c 3648#endif
e2fa71f5
DDAG
3649 } else {
3650 /* Huge page case - unfortunately it can't do DONTNEED, but
3651 * it can do the equivalent by FALLOC_FL_PUNCH_HOLE in the
3652 * huge page file.
3653 */
3654#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3655 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3656 start, length);
3657#endif
3658 }
d3a5038c
DDAG
3659 if (ret) {
3660 ret = -errno;
3661 error_report("ram_block_discard_range: Failed to discard range "
3662 "%s:%" PRIx64 " +%zx (%d)",
3663 rb->idstr, start, length, ret);
3664 }
3665 } else {
3666 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3667 "/%zx/" RAM_ADDR_FMT")",
3668 rb->idstr, start, length, rb->used_length);
3669 }
3670
3671err:
3672 return ret;
3673}
3674
ec3f8c99 3675#endif
a0be0c58
YZ
3676
3677void page_size_init(void)
3678{
3679 /* NOTE: we can always suppose that qemu_host_page_size >=
3680 TARGET_PAGE_SIZE */
a0be0c58
YZ
3681 if (qemu_host_page_size == 0) {
3682 qemu_host_page_size = qemu_real_host_page_size;
3683 }
3684 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
3685 qemu_host_page_size = TARGET_PAGE_SIZE;
3686 }
3687 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
3688}
5e8fd947
AK
3689
3690#if !defined(CONFIG_USER_ONLY)
3691
3692static void mtree_print_phys_entries(fprintf_function mon, void *f,
3693 int start, int end, int skip, int ptr)
3694{
3695 if (start == end - 1) {
3696 mon(f, "\t%3d ", start);
3697 } else {
3698 mon(f, "\t%3d..%-3d ", start, end - 1);
3699 }
3700 mon(f, " skip=%d ", skip);
3701 if (ptr == PHYS_MAP_NODE_NIL) {
3702 mon(f, " ptr=NIL");
3703 } else if (!skip) {
3704 mon(f, " ptr=#%d", ptr);
3705 } else {
3706 mon(f, " ptr=[%d]", ptr);
3707 }
3708 mon(f, "\n");
3709}
3710
3711#define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3712 int128_sub((size), int128_one())) : 0)
3713
3714void mtree_print_dispatch(fprintf_function mon, void *f,
3715 AddressSpaceDispatch *d, MemoryRegion *root)
3716{
3717 int i;
3718
3719 mon(f, " Dispatch\n");
3720 mon(f, " Physical sections\n");
3721
3722 for (i = 0; i < d->map.sections_nb; ++i) {
3723 MemoryRegionSection *s = d->map.sections + i;
3724 const char *names[] = { " [unassigned]", " [not dirty]",
3725 " [ROM]", " [watch]" };
3726
3727 mon(f, " #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx " %s%s%s%s%s",
3728 i,
3729 s->offset_within_address_space,
3730 s->offset_within_address_space + MR_SIZE(s->mr->size),
3731 s->mr->name ? s->mr->name : "(noname)",
3732 i < ARRAY_SIZE(names) ? names[i] : "",
3733 s->mr == root ? " [ROOT]" : "",
3734 s == d->mru_section ? " [MRU]" : "",
3735 s->mr->is_iommu ? " [iommu]" : "");
3736
3737 if (s->mr->alias) {
3738 mon(f, " alias=%s", s->mr->alias->name ?
3739 s->mr->alias->name : "noname");
3740 }
3741 mon(f, "\n");
3742 }
3743
3744 mon(f, " Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
3745 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
3746 for (i = 0; i < d->map.nodes_nb; ++i) {
3747 int j, jprev;
3748 PhysPageEntry prev;
3749 Node *n = d->map.nodes + i;
3750
3751 mon(f, " [%d]\n", i);
3752
3753 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
3754 PhysPageEntry *pe = *n + j;
3755
3756 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
3757 continue;
3758 }
3759
3760 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
3761
3762 jprev = j;
3763 prev = *pe;
3764 }
3765
3766 if (jprev != ARRAY_SIZE(*n)) {
3767 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
3768 }
3769 }
3770}
3771
3772#endif