]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
Win: Install keymaps for Windows, too (needed for VNC).
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
fad6cb1a 18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
54936004 19 */
67b915a5 20#include "config.h"
d5a8f07c
FB
21#ifdef _WIN32
22#include <windows.h>
23#else
a98d49b1 24#include <sys/types.h>
d5a8f07c
FB
25#include <sys/mman.h>
26#endif
54936004
FB
27#include <stdlib.h>
28#include <stdio.h>
29#include <stdarg.h>
30#include <string.h>
31#include <errno.h>
32#include <unistd.h>
33#include <inttypes.h>
34
6180a181
FB
35#include "cpu.h"
36#include "exec-all.h"
ca10f867 37#include "qemu-common.h"
b67d9a52 38#include "tcg.h"
b3c7724c 39#include "hw/hw.h"
74576198 40#include "osdep.h"
7ba1e619 41#include "kvm.h"
53a5960a
PB
42#if defined(CONFIG_USER_ONLY)
43#include <qemu.h>
44#endif
54936004 45
fd6ce8f6 46//#define DEBUG_TB_INVALIDATE
66e85a21 47//#define DEBUG_FLUSH
9fa3e853 48//#define DEBUG_TLB
67d3b957 49//#define DEBUG_UNASSIGNED
fd6ce8f6
FB
50
51/* make various TB consistency checks */
5fafdf24
TS
52//#define DEBUG_TB_CHECK
53//#define DEBUG_TLB_CHECK
fd6ce8f6 54
1196be37 55//#define DEBUG_IOPORT
db7b5426 56//#define DEBUG_SUBPAGE
1196be37 57
99773bd4
PB
58#if !defined(CONFIG_USER_ONLY)
59/* TB consistency checks only implemented for usermode emulation. */
60#undef DEBUG_TB_CHECK
61#endif
62
9fa3e853
FB
63#define SMC_BITMAP_USE_THRESHOLD 10
64
108c49b8
FB
65#if defined(TARGET_SPARC64)
66#define TARGET_PHYS_ADDR_SPACE_BITS 41
5dcb6b91
BS
67#elif defined(TARGET_SPARC)
68#define TARGET_PHYS_ADDR_SPACE_BITS 36
bedb69ea
JM
69#elif defined(TARGET_ALPHA)
70#define TARGET_PHYS_ADDR_SPACE_BITS 42
71#define TARGET_VIRT_ADDR_SPACE_BITS 42
108c49b8
FB
72#elif defined(TARGET_PPC64)
73#define TARGET_PHYS_ADDR_SPACE_BITS 42
640f42e4 74#elif defined(TARGET_X86_64) && !defined(CONFIG_KQEMU)
00f82b8a 75#define TARGET_PHYS_ADDR_SPACE_BITS 42
640f42e4 76#elif defined(TARGET_I386) && !defined(CONFIG_KQEMU)
00f82b8a 77#define TARGET_PHYS_ADDR_SPACE_BITS 36
108c49b8
FB
78#else
79/* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
80#define TARGET_PHYS_ADDR_SPACE_BITS 32
81#endif
82
bdaf78e0 83static TranslationBlock *tbs;
26a5f13b 84int code_gen_max_blocks;
9fa3e853 85TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
bdaf78e0 86static int nb_tbs;
eb51d102
FB
87/* any access to the tbs or the page table must use this lock */
88spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6 89
141ac468
BS
90#if defined(__arm__) || defined(__sparc_v9__)
91/* The prologue must be reachable with a direct jump. ARM and Sparc64
92 have limited branch ranges (possibly also PPC) so place it in a
d03d860b
BS
93 section close to code segment. */
94#define code_gen_section \
95 __attribute__((__section__(".gen_code"))) \
96 __attribute__((aligned (32)))
97#else
98#define code_gen_section \
99 __attribute__((aligned (32)))
100#endif
101
102uint8_t code_gen_prologue[1024] code_gen_section;
bdaf78e0
BS
103static uint8_t *code_gen_buffer;
104static unsigned long code_gen_buffer_size;
26a5f13b 105/* threshold to flush the translated code buffer */
bdaf78e0 106static unsigned long code_gen_buffer_max_size;
fd6ce8f6
FB
107uint8_t *code_gen_ptr;
108
e2eef170 109#if !defined(CONFIG_USER_ONLY)
9fa3e853 110int phys_ram_fd;
1ccde1cb 111uint8_t *phys_ram_dirty;
74576198 112static int in_migration;
94a6b54f
PB
113
114typedef struct RAMBlock {
115 uint8_t *host;
116 ram_addr_t offset;
117 ram_addr_t length;
118 struct RAMBlock *next;
119} RAMBlock;
120
121static RAMBlock *ram_blocks;
122/* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
ccbb4d44 123 then we can no longer assume contiguous ram offsets, and external uses
94a6b54f
PB
124 of this variable will break. */
125ram_addr_t last_ram_offset;
e2eef170 126#endif
9fa3e853 127
6a00d601
FB
128CPUState *first_cpu;
129/* current CPU in the current thread. It is only valid inside
130 cpu_exec() */
5fafdf24 131CPUState *cpu_single_env;
2e70f6ef 132/* 0 = Do not count executed instructions.
bf20dc07 133 1 = Precise instruction counting.
2e70f6ef
PB
134 2 = Adaptive rate instruction counting. */
135int use_icount = 0;
136/* Current instruction counter. While executing translated code this may
137 include some instructions that have not yet been executed. */
138int64_t qemu_icount;
6a00d601 139
54936004 140typedef struct PageDesc {
92e873b9 141 /* list of TBs intersecting this ram page */
fd6ce8f6 142 TranslationBlock *first_tb;
9fa3e853
FB
143 /* in order to optimize self modifying code, we count the number
144 of lookups we do to a given page to use a bitmap */
145 unsigned int code_write_count;
146 uint8_t *code_bitmap;
147#if defined(CONFIG_USER_ONLY)
148 unsigned long flags;
149#endif
54936004
FB
150} PageDesc;
151
92e873b9 152typedef struct PhysPageDesc {
0f459d16 153 /* offset in host memory of the page + io_index in the low bits */
00f82b8a 154 ram_addr_t phys_offset;
8da3ff18 155 ram_addr_t region_offset;
92e873b9
FB
156} PhysPageDesc;
157
54936004 158#define L2_BITS 10
bedb69ea
JM
159#if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
160/* XXX: this is a temporary hack for alpha target.
161 * In the future, this is to be replaced by a multi-level table
162 * to actually be able to handle the complete 64 bits address space.
163 */
164#define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
165#else
03875444 166#define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
bedb69ea 167#endif
54936004
FB
168
169#define L1_SIZE (1 << L1_BITS)
170#define L2_SIZE (1 << L2_BITS)
171
83fb7adf
FB
172unsigned long qemu_real_host_page_size;
173unsigned long qemu_host_page_bits;
174unsigned long qemu_host_page_size;
175unsigned long qemu_host_page_mask;
54936004 176
92e873b9 177/* XXX: for system emulation, it could just be an array */
54936004 178static PageDesc *l1_map[L1_SIZE];
bdaf78e0 179static PhysPageDesc **l1_phys_map;
54936004 180
e2eef170
PB
181#if !defined(CONFIG_USER_ONLY)
182static void io_mem_init(void);
183
33417e70 184/* io memory support */
33417e70
FB
185CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
186CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
a4193c8a 187void *io_mem_opaque[IO_MEM_NB_ENTRIES];
511d2b14 188static char io_mem_used[IO_MEM_NB_ENTRIES];
6658ffb8
PB
189static int io_mem_watch;
190#endif
33417e70 191
34865134 192/* log support */
d9b630fd 193static const char *logfilename = "/tmp/qemu.log";
34865134
FB
194FILE *logfile;
195int loglevel;
e735b91c 196static int log_append = 0;
34865134 197
e3db7226
FB
198/* statistics */
199static int tlb_flush_count;
200static int tb_flush_count;
201static int tb_phys_invalidate_count;
202
db7b5426
BS
203#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
204typedef struct subpage_t {
205 target_phys_addr_t base;
3ee89922
BS
206 CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4];
207 CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4];
208 void *opaque[TARGET_PAGE_SIZE][2][4];
8da3ff18 209 ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4];
db7b5426
BS
210} subpage_t;
211
7cb69cae
FB
212#ifdef _WIN32
213static void map_exec(void *addr, long size)
214{
215 DWORD old_protect;
216 VirtualProtect(addr, size,
217 PAGE_EXECUTE_READWRITE, &old_protect);
218
219}
220#else
221static void map_exec(void *addr, long size)
222{
4369415f 223 unsigned long start, end, page_size;
7cb69cae 224
4369415f 225 page_size = getpagesize();
7cb69cae 226 start = (unsigned long)addr;
4369415f 227 start &= ~(page_size - 1);
7cb69cae
FB
228
229 end = (unsigned long)addr + size;
4369415f
FB
230 end += page_size - 1;
231 end &= ~(page_size - 1);
7cb69cae
FB
232
233 mprotect((void *)start, end - start,
234 PROT_READ | PROT_WRITE | PROT_EXEC);
235}
236#endif
237
b346ff46 238static void page_init(void)
54936004 239{
83fb7adf 240 /* NOTE: we can always suppose that qemu_host_page_size >=
54936004 241 TARGET_PAGE_SIZE */
c2b48b69
AL
242#ifdef _WIN32
243 {
244 SYSTEM_INFO system_info;
245
246 GetSystemInfo(&system_info);
247 qemu_real_host_page_size = system_info.dwPageSize;
248 }
249#else
250 qemu_real_host_page_size = getpagesize();
251#endif
83fb7adf
FB
252 if (qemu_host_page_size == 0)
253 qemu_host_page_size = qemu_real_host_page_size;
254 if (qemu_host_page_size < TARGET_PAGE_SIZE)
255 qemu_host_page_size = TARGET_PAGE_SIZE;
256 qemu_host_page_bits = 0;
257 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
258 qemu_host_page_bits++;
259 qemu_host_page_mask = ~(qemu_host_page_size - 1);
108c49b8
FB
260 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
261 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
50a9569b
AZ
262
263#if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
264 {
265 long long startaddr, endaddr;
266 FILE *f;
267 int n;
268
c8a706fe 269 mmap_lock();
0776590d 270 last_brk = (unsigned long)sbrk(0);
50a9569b
AZ
271 f = fopen("/proc/self/maps", "r");
272 if (f) {
273 do {
274 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
275 if (n == 2) {
e0b8d65a
BS
276 startaddr = MIN(startaddr,
277 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
278 endaddr = MIN(endaddr,
279 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
b5fc909e 280 page_set_flags(startaddr & TARGET_PAGE_MASK,
50a9569b
AZ
281 TARGET_PAGE_ALIGN(endaddr),
282 PAGE_RESERVED);
283 }
284 } while (!feof(f));
285 fclose(f);
286 }
c8a706fe 287 mmap_unlock();
50a9569b
AZ
288 }
289#endif
54936004
FB
290}
291
434929bf 292static inline PageDesc **page_l1_map(target_ulong index)
54936004 293{
17e2377a
PB
294#if TARGET_LONG_BITS > 32
295 /* Host memory outside guest VM. For 32-bit targets we have already
296 excluded high addresses. */
d8173e0f 297 if (index > ((target_ulong)L2_SIZE * L1_SIZE))
17e2377a
PB
298 return NULL;
299#endif
434929bf
AL
300 return &l1_map[index >> L2_BITS];
301}
302
303static inline PageDesc *page_find_alloc(target_ulong index)
304{
305 PageDesc **lp, *p;
306 lp = page_l1_map(index);
307 if (!lp)
308 return NULL;
309
54936004
FB
310 p = *lp;
311 if (!p) {
312 /* allocate if not found */
17e2377a 313#if defined(CONFIG_USER_ONLY)
17e2377a
PB
314 size_t len = sizeof(PageDesc) * L2_SIZE;
315 /* Don't use qemu_malloc because it may recurse. */
316 p = mmap(0, len, PROT_READ | PROT_WRITE,
317 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
54936004 318 *lp = p;
fb1c2cd7
AJ
319 if (h2g_valid(p)) {
320 unsigned long addr = h2g(p);
17e2377a
PB
321 page_set_flags(addr & TARGET_PAGE_MASK,
322 TARGET_PAGE_ALIGN(addr + len),
323 PAGE_RESERVED);
324 }
325#else
326 p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
327 *lp = p;
328#endif
54936004
FB
329 }
330 return p + (index & (L2_SIZE - 1));
331}
332
00f82b8a 333static inline PageDesc *page_find(target_ulong index)
54936004 334{
434929bf
AL
335 PageDesc **lp, *p;
336 lp = page_l1_map(index);
337 if (!lp)
338 return NULL;
54936004 339
434929bf 340 p = *lp;
54936004
FB
341 if (!p)
342 return 0;
fd6ce8f6
FB
343 return p + (index & (L2_SIZE - 1));
344}
345
108c49b8 346static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
92e873b9 347{
108c49b8 348 void **lp, **p;
e3f4e2a4 349 PhysPageDesc *pd;
92e873b9 350
108c49b8
FB
351 p = (void **)l1_phys_map;
352#if TARGET_PHYS_ADDR_SPACE_BITS > 32
353
354#if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
355#error unsupported TARGET_PHYS_ADDR_SPACE_BITS
356#endif
357 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
92e873b9
FB
358 p = *lp;
359 if (!p) {
360 /* allocate if not found */
108c49b8
FB
361 if (!alloc)
362 return NULL;
363 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
364 memset(p, 0, sizeof(void *) * L1_SIZE);
365 *lp = p;
366 }
367#endif
368 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
e3f4e2a4
PB
369 pd = *lp;
370 if (!pd) {
371 int i;
108c49b8
FB
372 /* allocate if not found */
373 if (!alloc)
374 return NULL;
e3f4e2a4
PB
375 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
376 *lp = pd;
67c4d23c 377 for (i = 0; i < L2_SIZE; i++) {
e3f4e2a4 378 pd[i].phys_offset = IO_MEM_UNASSIGNED;
67c4d23c
PB
379 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
380 }
92e873b9 381 }
e3f4e2a4 382 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
92e873b9
FB
383}
384
108c49b8 385static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
92e873b9 386{
108c49b8 387 return phys_page_find_alloc(index, 0);
92e873b9
FB
388}
389
9fa3e853 390#if !defined(CONFIG_USER_ONLY)
6a00d601 391static void tlb_protect_code(ram_addr_t ram_addr);
5fafdf24 392static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 393 target_ulong vaddr);
c8a706fe
PB
394#define mmap_lock() do { } while(0)
395#define mmap_unlock() do { } while(0)
9fa3e853 396#endif
fd6ce8f6 397
4369415f
FB
398#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
399
400#if defined(CONFIG_USER_ONLY)
ccbb4d44 401/* Currently it is not recommended to allocate big chunks of data in
4369415f
FB
402 user mode. It will change when a dedicated libc will be used */
403#define USE_STATIC_CODE_GEN_BUFFER
404#endif
405
406#ifdef USE_STATIC_CODE_GEN_BUFFER
407static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
408#endif
409
8fcd3692 410static void code_gen_alloc(unsigned long tb_size)
26a5f13b 411{
4369415f
FB
412#ifdef USE_STATIC_CODE_GEN_BUFFER
413 code_gen_buffer = static_code_gen_buffer;
414 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
415 map_exec(code_gen_buffer, code_gen_buffer_size);
416#else
26a5f13b
FB
417 code_gen_buffer_size = tb_size;
418 if (code_gen_buffer_size == 0) {
4369415f
FB
419#if defined(CONFIG_USER_ONLY)
420 /* in user mode, phys_ram_size is not meaningful */
421 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
422#else
ccbb4d44 423 /* XXX: needs adjustments */
94a6b54f 424 code_gen_buffer_size = (unsigned long)(ram_size / 4);
4369415f 425#endif
26a5f13b
FB
426 }
427 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
428 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
429 /* The code gen buffer location may have constraints depending on
430 the host cpu and OS */
431#if defined(__linux__)
432 {
433 int flags;
141ac468
BS
434 void *start = NULL;
435
26a5f13b
FB
436 flags = MAP_PRIVATE | MAP_ANONYMOUS;
437#if defined(__x86_64__)
438 flags |= MAP_32BIT;
439 /* Cannot map more than that */
440 if (code_gen_buffer_size > (800 * 1024 * 1024))
441 code_gen_buffer_size = (800 * 1024 * 1024);
141ac468
BS
442#elif defined(__sparc_v9__)
443 // Map the buffer below 2G, so we can use direct calls and branches
444 flags |= MAP_FIXED;
445 start = (void *) 0x60000000UL;
446 if (code_gen_buffer_size > (512 * 1024 * 1024))
447 code_gen_buffer_size = (512 * 1024 * 1024);
1cb0661e 448#elif defined(__arm__)
63d41246 449 /* Map the buffer below 32M, so we can use direct calls and branches */
1cb0661e
AZ
450 flags |= MAP_FIXED;
451 start = (void *) 0x01000000UL;
452 if (code_gen_buffer_size > 16 * 1024 * 1024)
453 code_gen_buffer_size = 16 * 1024 * 1024;
26a5f13b 454#endif
141ac468
BS
455 code_gen_buffer = mmap(start, code_gen_buffer_size,
456 PROT_WRITE | PROT_READ | PROT_EXEC,
26a5f13b
FB
457 flags, -1, 0);
458 if (code_gen_buffer == MAP_FAILED) {
459 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
460 exit(1);
461 }
462 }
c5e97233 463#elif defined(__FreeBSD__) || defined(__DragonFly__)
06e67a82
AL
464 {
465 int flags;
466 void *addr = NULL;
467 flags = MAP_PRIVATE | MAP_ANONYMOUS;
468#if defined(__x86_64__)
469 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
470 * 0x40000000 is free */
471 flags |= MAP_FIXED;
472 addr = (void *)0x40000000;
473 /* Cannot map more than that */
474 if (code_gen_buffer_size > (800 * 1024 * 1024))
475 code_gen_buffer_size = (800 * 1024 * 1024);
476#endif
477 code_gen_buffer = mmap(addr, code_gen_buffer_size,
478 PROT_WRITE | PROT_READ | PROT_EXEC,
479 flags, -1, 0);
480 if (code_gen_buffer == MAP_FAILED) {
481 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
482 exit(1);
483 }
484 }
26a5f13b
FB
485#else
486 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
26a5f13b
FB
487 map_exec(code_gen_buffer, code_gen_buffer_size);
488#endif
4369415f 489#endif /* !USE_STATIC_CODE_GEN_BUFFER */
26a5f13b
FB
490 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
491 code_gen_buffer_max_size = code_gen_buffer_size -
492 code_gen_max_block_size();
493 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
494 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
495}
496
497/* Must be called before using the QEMU cpus. 'tb_size' is the size
498 (in bytes) allocated to the translation buffer. Zero means default
499 size. */
500void cpu_exec_init_all(unsigned long tb_size)
501{
26a5f13b
FB
502 cpu_gen_init();
503 code_gen_alloc(tb_size);
504 code_gen_ptr = code_gen_buffer;
4369415f 505 page_init();
e2eef170 506#if !defined(CONFIG_USER_ONLY)
26a5f13b 507 io_mem_init();
e2eef170 508#endif
26a5f13b
FB
509}
510
9656f324
PB
511#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
512
513#define CPU_COMMON_SAVE_VERSION 1
514
515static void cpu_common_save(QEMUFile *f, void *opaque)
516{
517 CPUState *env = opaque;
518
b0a46a33
JK
519 cpu_synchronize_state(env, 0);
520
9656f324
PB
521 qemu_put_be32s(f, &env->halted);
522 qemu_put_be32s(f, &env->interrupt_request);
523}
524
525static int cpu_common_load(QEMUFile *f, void *opaque, int version_id)
526{
527 CPUState *env = opaque;
528
529 if (version_id != CPU_COMMON_SAVE_VERSION)
530 return -EINVAL;
531
532 qemu_get_be32s(f, &env->halted);
75f482ae 533 qemu_get_be32s(f, &env->interrupt_request);
3098dba0
AJ
534 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
535 version_id is increased. */
536 env->interrupt_request &= ~0x01;
9656f324 537 tlb_flush(env, 1);
b0a46a33 538 cpu_synchronize_state(env, 1);
9656f324
PB
539
540 return 0;
541}
542#endif
543
950f1472
GC
544CPUState *qemu_get_cpu(int cpu)
545{
546 CPUState *env = first_cpu;
547
548 while (env) {
549 if (env->cpu_index == cpu)
550 break;
551 env = env->next_cpu;
552 }
553
554 return env;
555}
556
6a00d601 557void cpu_exec_init(CPUState *env)
fd6ce8f6 558{
6a00d601
FB
559 CPUState **penv;
560 int cpu_index;
561
c2764719
PB
562#if defined(CONFIG_USER_ONLY)
563 cpu_list_lock();
564#endif
6a00d601
FB
565 env->next_cpu = NULL;
566 penv = &first_cpu;
567 cpu_index = 0;
568 while (*penv != NULL) {
1e9fa730 569 penv = &(*penv)->next_cpu;
6a00d601
FB
570 cpu_index++;
571 }
572 env->cpu_index = cpu_index;
268a362c 573 env->numa_node = 0;
c0ce998e
AL
574 TAILQ_INIT(&env->breakpoints);
575 TAILQ_INIT(&env->watchpoints);
6a00d601 576 *penv = env;
c2764719
PB
577#if defined(CONFIG_USER_ONLY)
578 cpu_list_unlock();
579#endif
b3c7724c 580#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
9656f324
PB
581 register_savevm("cpu_common", cpu_index, CPU_COMMON_SAVE_VERSION,
582 cpu_common_save, cpu_common_load, env);
b3c7724c
PB
583 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
584 cpu_save, cpu_load, env);
585#endif
fd6ce8f6
FB
586}
587
9fa3e853
FB
588static inline void invalidate_page_bitmap(PageDesc *p)
589{
590 if (p->code_bitmap) {
59817ccb 591 qemu_free(p->code_bitmap);
9fa3e853
FB
592 p->code_bitmap = NULL;
593 }
594 p->code_write_count = 0;
595}
596
fd6ce8f6
FB
597/* set to NULL all the 'first_tb' fields in all PageDescs */
598static void page_flush_tb(void)
599{
600 int i, j;
601 PageDesc *p;
602
603 for(i = 0; i < L1_SIZE; i++) {
604 p = l1_map[i];
605 if (p) {
9fa3e853
FB
606 for(j = 0; j < L2_SIZE; j++) {
607 p->first_tb = NULL;
608 invalidate_page_bitmap(p);
609 p++;
610 }
fd6ce8f6
FB
611 }
612 }
613}
614
615/* flush all the translation blocks */
d4e8164f 616/* XXX: tb_flush is currently not thread safe */
6a00d601 617void tb_flush(CPUState *env1)
fd6ce8f6 618{
6a00d601 619 CPUState *env;
0124311e 620#if defined(DEBUG_FLUSH)
ab3d1727
BS
621 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
622 (unsigned long)(code_gen_ptr - code_gen_buffer),
623 nb_tbs, nb_tbs > 0 ?
624 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
fd6ce8f6 625#endif
26a5f13b 626 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
a208e54a
PB
627 cpu_abort(env1, "Internal error: code buffer overflow\n");
628
fd6ce8f6 629 nb_tbs = 0;
3b46e624 630
6a00d601
FB
631 for(env = first_cpu; env != NULL; env = env->next_cpu) {
632 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
633 }
9fa3e853 634
8a8a608f 635 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
fd6ce8f6 636 page_flush_tb();
9fa3e853 637
fd6ce8f6 638 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
639 /* XXX: flush processor icache at this point if cache flush is
640 expensive */
e3db7226 641 tb_flush_count++;
fd6ce8f6
FB
642}
643
644#ifdef DEBUG_TB_CHECK
645
bc98a7ef 646static void tb_invalidate_check(target_ulong address)
fd6ce8f6
FB
647{
648 TranslationBlock *tb;
649 int i;
650 address &= TARGET_PAGE_MASK;
99773bd4
PB
651 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
652 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
653 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
654 address >= tb->pc + tb->size)) {
655 printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
99773bd4 656 address, (long)tb->pc, tb->size);
fd6ce8f6
FB
657 }
658 }
659 }
660}
661
662/* verify that all the pages have correct rights for code */
663static void tb_page_check(void)
664{
665 TranslationBlock *tb;
666 int i, flags1, flags2;
3b46e624 667
99773bd4
PB
668 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
669 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
670 flags1 = page_get_flags(tb->pc);
671 flags2 = page_get_flags(tb->pc + tb->size - 1);
672 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
673 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
99773bd4 674 (long)tb->pc, tb->size, flags1, flags2);
fd6ce8f6
FB
675 }
676 }
677 }
678}
679
bdaf78e0 680static void tb_jmp_check(TranslationBlock *tb)
d4e8164f
FB
681{
682 TranslationBlock *tb1;
683 unsigned int n1;
684
685 /* suppress any remaining jumps to this TB */
686 tb1 = tb->jmp_first;
687 for(;;) {
688 n1 = (long)tb1 & 3;
689 tb1 = (TranslationBlock *)((long)tb1 & ~3);
690 if (n1 == 2)
691 break;
692 tb1 = tb1->jmp_next[n1];
693 }
694 /* check end of list */
695 if (tb1 != tb) {
696 printf("ERROR: jmp_list from 0x%08lx\n", (long)tb);
697 }
698}
699
fd6ce8f6
FB
700#endif
701
702/* invalidate one TB */
703static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
704 int next_offset)
705{
706 TranslationBlock *tb1;
707 for(;;) {
708 tb1 = *ptb;
709 if (tb1 == tb) {
710 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
711 break;
712 }
713 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
714 }
715}
716
9fa3e853
FB
717static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
718{
719 TranslationBlock *tb1;
720 unsigned int n1;
721
722 for(;;) {
723 tb1 = *ptb;
724 n1 = (long)tb1 & 3;
725 tb1 = (TranslationBlock *)((long)tb1 & ~3);
726 if (tb1 == tb) {
727 *ptb = tb1->page_next[n1];
728 break;
729 }
730 ptb = &tb1->page_next[n1];
731 }
732}
733
d4e8164f
FB
734static inline void tb_jmp_remove(TranslationBlock *tb, int n)
735{
736 TranslationBlock *tb1, **ptb;
737 unsigned int n1;
738
739 ptb = &tb->jmp_next[n];
740 tb1 = *ptb;
741 if (tb1) {
742 /* find tb(n) in circular list */
743 for(;;) {
744 tb1 = *ptb;
745 n1 = (long)tb1 & 3;
746 tb1 = (TranslationBlock *)((long)tb1 & ~3);
747 if (n1 == n && tb1 == tb)
748 break;
749 if (n1 == 2) {
750 ptb = &tb1->jmp_first;
751 } else {
752 ptb = &tb1->jmp_next[n1];
753 }
754 }
755 /* now we can suppress tb(n) from the list */
756 *ptb = tb->jmp_next[n];
757
758 tb->jmp_next[n] = NULL;
759 }
760}
761
762/* reset the jump entry 'n' of a TB so that it is not chained to
763 another TB */
764static inline void tb_reset_jump(TranslationBlock *tb, int n)
765{
766 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
767}
768
2e70f6ef 769void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
fd6ce8f6 770{
6a00d601 771 CPUState *env;
8a40a180 772 PageDesc *p;
d4e8164f 773 unsigned int h, n1;
00f82b8a 774 target_phys_addr_t phys_pc;
8a40a180 775 TranslationBlock *tb1, *tb2;
3b46e624 776
8a40a180
FB
777 /* remove the TB from the hash list */
778 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
779 h = tb_phys_hash_func(phys_pc);
5fafdf24 780 tb_remove(&tb_phys_hash[h], tb,
8a40a180
FB
781 offsetof(TranslationBlock, phys_hash_next));
782
783 /* remove the TB from the page list */
784 if (tb->page_addr[0] != page_addr) {
785 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
786 tb_page_remove(&p->first_tb, tb);
787 invalidate_page_bitmap(p);
788 }
789 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
790 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
791 tb_page_remove(&p->first_tb, tb);
792 invalidate_page_bitmap(p);
793 }
794
36bdbe54 795 tb_invalidated_flag = 1;
59817ccb 796
fd6ce8f6 797 /* remove the TB from the hash list */
8a40a180 798 h = tb_jmp_cache_hash_func(tb->pc);
6a00d601
FB
799 for(env = first_cpu; env != NULL; env = env->next_cpu) {
800 if (env->tb_jmp_cache[h] == tb)
801 env->tb_jmp_cache[h] = NULL;
802 }
d4e8164f
FB
803
804 /* suppress this TB from the two jump lists */
805 tb_jmp_remove(tb, 0);
806 tb_jmp_remove(tb, 1);
807
808 /* suppress any remaining jumps to this TB */
809 tb1 = tb->jmp_first;
810 for(;;) {
811 n1 = (long)tb1 & 3;
812 if (n1 == 2)
813 break;
814 tb1 = (TranslationBlock *)((long)tb1 & ~3);
815 tb2 = tb1->jmp_next[n1];
816 tb_reset_jump(tb1, n1);
817 tb1->jmp_next[n1] = NULL;
818 tb1 = tb2;
819 }
820 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
9fa3e853 821
e3db7226 822 tb_phys_invalidate_count++;
9fa3e853
FB
823}
824
825static inline void set_bits(uint8_t *tab, int start, int len)
826{
827 int end, mask, end1;
828
829 end = start + len;
830 tab += start >> 3;
831 mask = 0xff << (start & 7);
832 if ((start & ~7) == (end & ~7)) {
833 if (start < end) {
834 mask &= ~(0xff << (end & 7));
835 *tab |= mask;
836 }
837 } else {
838 *tab++ |= mask;
839 start = (start + 8) & ~7;
840 end1 = end & ~7;
841 while (start < end1) {
842 *tab++ = 0xff;
843 start += 8;
844 }
845 if (start < end) {
846 mask = ~(0xff << (end & 7));
847 *tab |= mask;
848 }
849 }
850}
851
852static void build_page_bitmap(PageDesc *p)
853{
854 int n, tb_start, tb_end;
855 TranslationBlock *tb;
3b46e624 856
b2a7081a 857 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
858
859 tb = p->first_tb;
860 while (tb != NULL) {
861 n = (long)tb & 3;
862 tb = (TranslationBlock *)((long)tb & ~3);
863 /* NOTE: this is subtle as a TB may span two physical pages */
864 if (n == 0) {
865 /* NOTE: tb_end may be after the end of the page, but
866 it is not a problem */
867 tb_start = tb->pc & ~TARGET_PAGE_MASK;
868 tb_end = tb_start + tb->size;
869 if (tb_end > TARGET_PAGE_SIZE)
870 tb_end = TARGET_PAGE_SIZE;
871 } else {
872 tb_start = 0;
873 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
874 }
875 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
876 tb = tb->page_next[n];
877 }
878}
879
2e70f6ef
PB
880TranslationBlock *tb_gen_code(CPUState *env,
881 target_ulong pc, target_ulong cs_base,
882 int flags, int cflags)
d720b93d
FB
883{
884 TranslationBlock *tb;
885 uint8_t *tc_ptr;
886 target_ulong phys_pc, phys_page2, virt_page2;
887 int code_gen_size;
888
c27004ec
FB
889 phys_pc = get_phys_addr_code(env, pc);
890 tb = tb_alloc(pc);
d720b93d
FB
891 if (!tb) {
892 /* flush must be done */
893 tb_flush(env);
894 /* cannot fail at this point */
c27004ec 895 tb = tb_alloc(pc);
2e70f6ef
PB
896 /* Don't forget to invalidate previous TB info. */
897 tb_invalidated_flag = 1;
d720b93d
FB
898 }
899 tc_ptr = code_gen_ptr;
900 tb->tc_ptr = tc_ptr;
901 tb->cs_base = cs_base;
902 tb->flags = flags;
903 tb->cflags = cflags;
d07bde88 904 cpu_gen_code(env, tb, &code_gen_size);
d720b93d 905 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
3b46e624 906
d720b93d 907 /* check next page if needed */
c27004ec 908 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
d720b93d 909 phys_page2 = -1;
c27004ec 910 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
d720b93d
FB
911 phys_page2 = get_phys_addr_code(env, virt_page2);
912 }
913 tb_link_phys(tb, phys_pc, phys_page2);
2e70f6ef 914 return tb;
d720b93d 915}
3b46e624 916
9fa3e853
FB
917/* invalidate all TBs which intersect with the target physical page
918 starting in range [start;end[. NOTE: start and end must refer to
d720b93d
FB
919 the same physical page. 'is_cpu_write_access' should be true if called
920 from a real cpu write access: the virtual CPU will exit the current
921 TB if code is modified inside this TB. */
00f82b8a 922void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
d720b93d
FB
923 int is_cpu_write_access)
924{
6b917547 925 TranslationBlock *tb, *tb_next, *saved_tb;
d720b93d 926 CPUState *env = cpu_single_env;
9fa3e853 927 target_ulong tb_start, tb_end;
6b917547
AL
928 PageDesc *p;
929 int n;
930#ifdef TARGET_HAS_PRECISE_SMC
931 int current_tb_not_found = is_cpu_write_access;
932 TranslationBlock *current_tb = NULL;
933 int current_tb_modified = 0;
934 target_ulong current_pc = 0;
935 target_ulong current_cs_base = 0;
936 int current_flags = 0;
937#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
938
939 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 940 if (!p)
9fa3e853 941 return;
5fafdf24 942 if (!p->code_bitmap &&
d720b93d
FB
943 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
944 is_cpu_write_access) {
9fa3e853
FB
945 /* build code bitmap */
946 build_page_bitmap(p);
947 }
948
949 /* we remove all the TBs in the range [start, end[ */
950 /* XXX: see if in some cases it could be faster to invalidate all the code */
951 tb = p->first_tb;
952 while (tb != NULL) {
953 n = (long)tb & 3;
954 tb = (TranslationBlock *)((long)tb & ~3);
955 tb_next = tb->page_next[n];
956 /* NOTE: this is subtle as a TB may span two physical pages */
957 if (n == 0) {
958 /* NOTE: tb_end may be after the end of the page, but
959 it is not a problem */
960 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
961 tb_end = tb_start + tb->size;
962 } else {
963 tb_start = tb->page_addr[1];
964 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
965 }
966 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
967#ifdef TARGET_HAS_PRECISE_SMC
968 if (current_tb_not_found) {
969 current_tb_not_found = 0;
970 current_tb = NULL;
2e70f6ef 971 if (env->mem_io_pc) {
d720b93d 972 /* now we have a real cpu fault */
2e70f6ef 973 current_tb = tb_find_pc(env->mem_io_pc);
d720b93d
FB
974 }
975 }
976 if (current_tb == tb &&
2e70f6ef 977 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
978 /* If we are modifying the current TB, we must stop
979 its execution. We could be more precise by checking
980 that the modification is after the current PC, but it
981 would require a specialized function to partially
982 restore the CPU state */
3b46e624 983
d720b93d 984 current_tb_modified = 1;
5fafdf24 985 cpu_restore_state(current_tb, env,
2e70f6ef 986 env->mem_io_pc, NULL);
6b917547
AL
987 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
988 &current_flags);
d720b93d
FB
989 }
990#endif /* TARGET_HAS_PRECISE_SMC */
6f5a9f7e
FB
991 /* we need to do that to handle the case where a signal
992 occurs while doing tb_phys_invalidate() */
993 saved_tb = NULL;
994 if (env) {
995 saved_tb = env->current_tb;
996 env->current_tb = NULL;
997 }
9fa3e853 998 tb_phys_invalidate(tb, -1);
6f5a9f7e
FB
999 if (env) {
1000 env->current_tb = saved_tb;
1001 if (env->interrupt_request && env->current_tb)
1002 cpu_interrupt(env, env->interrupt_request);
1003 }
9fa3e853
FB
1004 }
1005 tb = tb_next;
1006 }
1007#if !defined(CONFIG_USER_ONLY)
1008 /* if no code remaining, no need to continue to use slow writes */
1009 if (!p->first_tb) {
1010 invalidate_page_bitmap(p);
d720b93d 1011 if (is_cpu_write_access) {
2e70f6ef 1012 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
d720b93d
FB
1013 }
1014 }
1015#endif
1016#ifdef TARGET_HAS_PRECISE_SMC
1017 if (current_tb_modified) {
1018 /* we generate a block containing just the instruction
1019 modifying the memory. It will ensure that it cannot modify
1020 itself */
ea1c1802 1021 env->current_tb = NULL;
2e70f6ef 1022 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d 1023 cpu_resume_from_signal(env, NULL);
9fa3e853 1024 }
fd6ce8f6 1025#endif
9fa3e853 1026}
fd6ce8f6 1027
9fa3e853 1028/* len must be <= 8 and start must be a multiple of len */
00f82b8a 1029static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
9fa3e853
FB
1030{
1031 PageDesc *p;
1032 int offset, b;
59817ccb 1033#if 0
a4193c8a 1034 if (1) {
93fcfe39
AL
1035 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1036 cpu_single_env->mem_io_vaddr, len,
1037 cpu_single_env->eip,
1038 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
59817ccb
FB
1039 }
1040#endif
9fa3e853 1041 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1042 if (!p)
9fa3e853
FB
1043 return;
1044 if (p->code_bitmap) {
1045 offset = start & ~TARGET_PAGE_MASK;
1046 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1047 if (b & ((1 << len) - 1))
1048 goto do_invalidate;
1049 } else {
1050 do_invalidate:
d720b93d 1051 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
1052 }
1053}
1054
9fa3e853 1055#if !defined(CONFIG_SOFTMMU)
00f82b8a 1056static void tb_invalidate_phys_page(target_phys_addr_t addr,
d720b93d 1057 unsigned long pc, void *puc)
9fa3e853 1058{
6b917547 1059 TranslationBlock *tb;
9fa3e853 1060 PageDesc *p;
6b917547 1061 int n;
d720b93d 1062#ifdef TARGET_HAS_PRECISE_SMC
6b917547 1063 TranslationBlock *current_tb = NULL;
d720b93d 1064 CPUState *env = cpu_single_env;
6b917547
AL
1065 int current_tb_modified = 0;
1066 target_ulong current_pc = 0;
1067 target_ulong current_cs_base = 0;
1068 int current_flags = 0;
d720b93d 1069#endif
9fa3e853
FB
1070
1071 addr &= TARGET_PAGE_MASK;
1072 p = page_find(addr >> TARGET_PAGE_BITS);
5fafdf24 1073 if (!p)
9fa3e853
FB
1074 return;
1075 tb = p->first_tb;
d720b93d
FB
1076#ifdef TARGET_HAS_PRECISE_SMC
1077 if (tb && pc != 0) {
1078 current_tb = tb_find_pc(pc);
1079 }
1080#endif
9fa3e853
FB
1081 while (tb != NULL) {
1082 n = (long)tb & 3;
1083 tb = (TranslationBlock *)((long)tb & ~3);
d720b93d
FB
1084#ifdef TARGET_HAS_PRECISE_SMC
1085 if (current_tb == tb &&
2e70f6ef 1086 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1087 /* If we are modifying the current TB, we must stop
1088 its execution. We could be more precise by checking
1089 that the modification is after the current PC, but it
1090 would require a specialized function to partially
1091 restore the CPU state */
3b46e624 1092
d720b93d
FB
1093 current_tb_modified = 1;
1094 cpu_restore_state(current_tb, env, pc, puc);
6b917547
AL
1095 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1096 &current_flags);
d720b93d
FB
1097 }
1098#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1099 tb_phys_invalidate(tb, addr);
1100 tb = tb->page_next[n];
1101 }
fd6ce8f6 1102 p->first_tb = NULL;
d720b93d
FB
1103#ifdef TARGET_HAS_PRECISE_SMC
1104 if (current_tb_modified) {
1105 /* we generate a block containing just the instruction
1106 modifying the memory. It will ensure that it cannot modify
1107 itself */
ea1c1802 1108 env->current_tb = NULL;
2e70f6ef 1109 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d
FB
1110 cpu_resume_from_signal(env, puc);
1111 }
1112#endif
fd6ce8f6 1113}
9fa3e853 1114#endif
fd6ce8f6
FB
1115
1116/* add the tb in the target page and protect it if necessary */
5fafdf24 1117static inline void tb_alloc_page(TranslationBlock *tb,
53a5960a 1118 unsigned int n, target_ulong page_addr)
fd6ce8f6
FB
1119{
1120 PageDesc *p;
9fa3e853
FB
1121 TranslationBlock *last_first_tb;
1122
1123 tb->page_addr[n] = page_addr;
3a7d929e 1124 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
9fa3e853
FB
1125 tb->page_next[n] = p->first_tb;
1126 last_first_tb = p->first_tb;
1127 p->first_tb = (TranslationBlock *)((long)tb | n);
1128 invalidate_page_bitmap(p);
fd6ce8f6 1129
107db443 1130#if defined(TARGET_HAS_SMC) || 1
d720b93d 1131
9fa3e853 1132#if defined(CONFIG_USER_ONLY)
fd6ce8f6 1133 if (p->flags & PAGE_WRITE) {
53a5960a
PB
1134 target_ulong addr;
1135 PageDesc *p2;
9fa3e853
FB
1136 int prot;
1137
fd6ce8f6
FB
1138 /* force the host page as non writable (writes will have a
1139 page fault + mprotect overhead) */
53a5960a 1140 page_addr &= qemu_host_page_mask;
fd6ce8f6 1141 prot = 0;
53a5960a
PB
1142 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1143 addr += TARGET_PAGE_SIZE) {
1144
1145 p2 = page_find (addr >> TARGET_PAGE_BITS);
1146 if (!p2)
1147 continue;
1148 prot |= p2->flags;
1149 p2->flags &= ~PAGE_WRITE;
1150 page_get_flags(addr);
1151 }
5fafdf24 1152 mprotect(g2h(page_addr), qemu_host_page_size,
fd6ce8f6
FB
1153 (prot & PAGE_BITS) & ~PAGE_WRITE);
1154#ifdef DEBUG_TB_INVALIDATE
ab3d1727 1155 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
53a5960a 1156 page_addr);
fd6ce8f6 1157#endif
fd6ce8f6 1158 }
9fa3e853
FB
1159#else
1160 /* if some code is already present, then the pages are already
1161 protected. So we handle the case where only the first TB is
1162 allocated in a physical page */
1163 if (!last_first_tb) {
6a00d601 1164 tlb_protect_code(page_addr);
9fa3e853
FB
1165 }
1166#endif
d720b93d
FB
1167
1168#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
1169}
1170
1171/* Allocate a new translation block. Flush the translation buffer if
1172 too many translation blocks or too much generated code. */
c27004ec 1173TranslationBlock *tb_alloc(target_ulong pc)
fd6ce8f6
FB
1174{
1175 TranslationBlock *tb;
fd6ce8f6 1176
26a5f13b
FB
1177 if (nb_tbs >= code_gen_max_blocks ||
1178 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
d4e8164f 1179 return NULL;
fd6ce8f6
FB
1180 tb = &tbs[nb_tbs++];
1181 tb->pc = pc;
b448f2f3 1182 tb->cflags = 0;
d4e8164f
FB
1183 return tb;
1184}
1185
2e70f6ef
PB
1186void tb_free(TranslationBlock *tb)
1187{
bf20dc07 1188 /* In practice this is mostly used for single use temporary TB
2e70f6ef
PB
1189 Ignore the hard cases and just back up if this TB happens to
1190 be the last one generated. */
1191 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1192 code_gen_ptr = tb->tc_ptr;
1193 nb_tbs--;
1194 }
1195}
1196
9fa3e853
FB
1197/* add a new TB and link it to the physical page tables. phys_page2 is
1198 (-1) to indicate that only one page contains the TB. */
5fafdf24 1199void tb_link_phys(TranslationBlock *tb,
9fa3e853 1200 target_ulong phys_pc, target_ulong phys_page2)
d4e8164f 1201{
9fa3e853
FB
1202 unsigned int h;
1203 TranslationBlock **ptb;
1204
c8a706fe
PB
1205 /* Grab the mmap lock to stop another thread invalidating this TB
1206 before we are done. */
1207 mmap_lock();
9fa3e853
FB
1208 /* add in the physical hash table */
1209 h = tb_phys_hash_func(phys_pc);
1210 ptb = &tb_phys_hash[h];
1211 tb->phys_hash_next = *ptb;
1212 *ptb = tb;
fd6ce8f6
FB
1213
1214 /* add in the page list */
9fa3e853
FB
1215 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1216 if (phys_page2 != -1)
1217 tb_alloc_page(tb, 1, phys_page2);
1218 else
1219 tb->page_addr[1] = -1;
9fa3e853 1220
d4e8164f
FB
1221 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1222 tb->jmp_next[0] = NULL;
1223 tb->jmp_next[1] = NULL;
1224
1225 /* init original jump addresses */
1226 if (tb->tb_next_offset[0] != 0xffff)
1227 tb_reset_jump(tb, 0);
1228 if (tb->tb_next_offset[1] != 0xffff)
1229 tb_reset_jump(tb, 1);
8a40a180
FB
1230
1231#ifdef DEBUG_TB_CHECK
1232 tb_page_check();
1233#endif
c8a706fe 1234 mmap_unlock();
fd6ce8f6
FB
1235}
1236
9fa3e853
FB
1237/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1238 tb[1].tc_ptr. Return NULL if not found */
1239TranslationBlock *tb_find_pc(unsigned long tc_ptr)
fd6ce8f6 1240{
9fa3e853
FB
1241 int m_min, m_max, m;
1242 unsigned long v;
1243 TranslationBlock *tb;
a513fe19
FB
1244
1245 if (nb_tbs <= 0)
1246 return NULL;
1247 if (tc_ptr < (unsigned long)code_gen_buffer ||
1248 tc_ptr >= (unsigned long)code_gen_ptr)
1249 return NULL;
1250 /* binary search (cf Knuth) */
1251 m_min = 0;
1252 m_max = nb_tbs - 1;
1253 while (m_min <= m_max) {
1254 m = (m_min + m_max) >> 1;
1255 tb = &tbs[m];
1256 v = (unsigned long)tb->tc_ptr;
1257 if (v == tc_ptr)
1258 return tb;
1259 else if (tc_ptr < v) {
1260 m_max = m - 1;
1261 } else {
1262 m_min = m + 1;
1263 }
5fafdf24 1264 }
a513fe19
FB
1265 return &tbs[m_max];
1266}
7501267e 1267
ea041c0e
FB
1268static void tb_reset_jump_recursive(TranslationBlock *tb);
1269
1270static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1271{
1272 TranslationBlock *tb1, *tb_next, **ptb;
1273 unsigned int n1;
1274
1275 tb1 = tb->jmp_next[n];
1276 if (tb1 != NULL) {
1277 /* find head of list */
1278 for(;;) {
1279 n1 = (long)tb1 & 3;
1280 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1281 if (n1 == 2)
1282 break;
1283 tb1 = tb1->jmp_next[n1];
1284 }
1285 /* we are now sure now that tb jumps to tb1 */
1286 tb_next = tb1;
1287
1288 /* remove tb from the jmp_first list */
1289 ptb = &tb_next->jmp_first;
1290 for(;;) {
1291 tb1 = *ptb;
1292 n1 = (long)tb1 & 3;
1293 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1294 if (n1 == n && tb1 == tb)
1295 break;
1296 ptb = &tb1->jmp_next[n1];
1297 }
1298 *ptb = tb->jmp_next[n];
1299 tb->jmp_next[n] = NULL;
3b46e624 1300
ea041c0e
FB
1301 /* suppress the jump to next tb in generated code */
1302 tb_reset_jump(tb, n);
1303
0124311e 1304 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1305 tb_reset_jump_recursive(tb_next);
1306 }
1307}
1308
1309static void tb_reset_jump_recursive(TranslationBlock *tb)
1310{
1311 tb_reset_jump_recursive2(tb, 0);
1312 tb_reset_jump_recursive2(tb, 1);
1313}
1314
1fddef4b 1315#if defined(TARGET_HAS_ICE)
d720b93d
FB
1316static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1317{
9b3c35e0
JM
1318 target_phys_addr_t addr;
1319 target_ulong pd;
c2f07f81
PB
1320 ram_addr_t ram_addr;
1321 PhysPageDesc *p;
d720b93d 1322
c2f07f81
PB
1323 addr = cpu_get_phys_page_debug(env, pc);
1324 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1325 if (!p) {
1326 pd = IO_MEM_UNASSIGNED;
1327 } else {
1328 pd = p->phys_offset;
1329 }
1330 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
706cd4b5 1331 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
d720b93d 1332}
c27004ec 1333#endif
d720b93d 1334
6658ffb8 1335/* Add a watchpoint. */
a1d1bb31
AL
1336int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1337 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1338{
b4051334 1339 target_ulong len_mask = ~(len - 1);
c0ce998e 1340 CPUWatchpoint *wp;
6658ffb8 1341
b4051334
AL
1342 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1343 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1344 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1345 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1346 return -EINVAL;
1347 }
a1d1bb31 1348 wp = qemu_malloc(sizeof(*wp));
a1d1bb31
AL
1349
1350 wp->vaddr = addr;
b4051334 1351 wp->len_mask = len_mask;
a1d1bb31
AL
1352 wp->flags = flags;
1353
2dc9f411 1354 /* keep all GDB-injected watchpoints in front */
c0ce998e
AL
1355 if (flags & BP_GDB)
1356 TAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1357 else
1358 TAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
6658ffb8 1359
6658ffb8 1360 tlb_flush_page(env, addr);
a1d1bb31
AL
1361
1362 if (watchpoint)
1363 *watchpoint = wp;
1364 return 0;
6658ffb8
PB
1365}
1366
a1d1bb31
AL
1367/* Remove a specific watchpoint. */
1368int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1369 int flags)
6658ffb8 1370{
b4051334 1371 target_ulong len_mask = ~(len - 1);
a1d1bb31 1372 CPUWatchpoint *wp;
6658ffb8 1373
c0ce998e 1374 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334 1375 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 1376 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 1377 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
1378 return 0;
1379 }
1380 }
a1d1bb31 1381 return -ENOENT;
6658ffb8
PB
1382}
1383
a1d1bb31
AL
1384/* Remove a specific watchpoint by reference. */
1385void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1386{
c0ce998e 1387 TAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
7d03f82f 1388
a1d1bb31
AL
1389 tlb_flush_page(env, watchpoint->vaddr);
1390
1391 qemu_free(watchpoint);
1392}
1393
1394/* Remove all matching watchpoints. */
1395void cpu_watchpoint_remove_all(CPUState *env, int mask)
1396{
c0ce998e 1397 CPUWatchpoint *wp, *next;
a1d1bb31 1398
c0ce998e 1399 TAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
a1d1bb31
AL
1400 if (wp->flags & mask)
1401 cpu_watchpoint_remove_by_ref(env, wp);
c0ce998e 1402 }
7d03f82f
EI
1403}
1404
a1d1bb31
AL
1405/* Add a breakpoint. */
1406int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1407 CPUBreakpoint **breakpoint)
4c3a88a2 1408{
1fddef4b 1409#if defined(TARGET_HAS_ICE)
c0ce998e 1410 CPUBreakpoint *bp;
3b46e624 1411
a1d1bb31 1412 bp = qemu_malloc(sizeof(*bp));
4c3a88a2 1413
a1d1bb31
AL
1414 bp->pc = pc;
1415 bp->flags = flags;
1416
2dc9f411 1417 /* keep all GDB-injected breakpoints in front */
c0ce998e
AL
1418 if (flags & BP_GDB)
1419 TAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1420 else
1421 TAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
3b46e624 1422
d720b93d 1423 breakpoint_invalidate(env, pc);
a1d1bb31
AL
1424
1425 if (breakpoint)
1426 *breakpoint = bp;
4c3a88a2
FB
1427 return 0;
1428#else
a1d1bb31 1429 return -ENOSYS;
4c3a88a2
FB
1430#endif
1431}
1432
a1d1bb31
AL
1433/* Remove a specific breakpoint. */
1434int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1435{
7d03f82f 1436#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
1437 CPUBreakpoint *bp;
1438
c0ce998e 1439 TAILQ_FOREACH(bp, &env->breakpoints, entry) {
a1d1bb31
AL
1440 if (bp->pc == pc && bp->flags == flags) {
1441 cpu_breakpoint_remove_by_ref(env, bp);
1442 return 0;
1443 }
7d03f82f 1444 }
a1d1bb31
AL
1445 return -ENOENT;
1446#else
1447 return -ENOSYS;
7d03f82f
EI
1448#endif
1449}
1450
a1d1bb31
AL
1451/* Remove a specific breakpoint by reference. */
1452void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
4c3a88a2 1453{
1fddef4b 1454#if defined(TARGET_HAS_ICE)
c0ce998e 1455 TAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
d720b93d 1456
a1d1bb31
AL
1457 breakpoint_invalidate(env, breakpoint->pc);
1458
1459 qemu_free(breakpoint);
1460#endif
1461}
1462
1463/* Remove all matching breakpoints. */
1464void cpu_breakpoint_remove_all(CPUState *env, int mask)
1465{
1466#if defined(TARGET_HAS_ICE)
c0ce998e 1467 CPUBreakpoint *bp, *next;
a1d1bb31 1468
c0ce998e 1469 TAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
a1d1bb31
AL
1470 if (bp->flags & mask)
1471 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 1472 }
4c3a88a2
FB
1473#endif
1474}
1475
c33a346e
FB
1476/* enable or disable single step mode. EXCP_DEBUG is returned by the
1477 CPU loop after each instruction */
1478void cpu_single_step(CPUState *env, int enabled)
1479{
1fddef4b 1480#if defined(TARGET_HAS_ICE)
c33a346e
FB
1481 if (env->singlestep_enabled != enabled) {
1482 env->singlestep_enabled = enabled;
e22a25c9
AL
1483 if (kvm_enabled())
1484 kvm_update_guest_debug(env, 0);
1485 else {
ccbb4d44 1486 /* must flush all the translated code to avoid inconsistencies */
e22a25c9
AL
1487 /* XXX: only flush what is necessary */
1488 tb_flush(env);
1489 }
c33a346e
FB
1490 }
1491#endif
1492}
1493
34865134
FB
1494/* enable or disable low levels log */
1495void cpu_set_log(int log_flags)
1496{
1497 loglevel = log_flags;
1498 if (loglevel && !logfile) {
11fcfab4 1499 logfile = fopen(logfilename, log_append ? "a" : "w");
34865134
FB
1500 if (!logfile) {
1501 perror(logfilename);
1502 _exit(1);
1503 }
9fa3e853
FB
1504#if !defined(CONFIG_SOFTMMU)
1505 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1506 {
b55266b5 1507 static char logfile_buf[4096];
9fa3e853
FB
1508 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1509 }
1510#else
34865134 1511 setvbuf(logfile, NULL, _IOLBF, 0);
9fa3e853 1512#endif
e735b91c
PB
1513 log_append = 1;
1514 }
1515 if (!loglevel && logfile) {
1516 fclose(logfile);
1517 logfile = NULL;
34865134
FB
1518 }
1519}
1520
1521void cpu_set_log_filename(const char *filename)
1522{
1523 logfilename = strdup(filename);
e735b91c
PB
1524 if (logfile) {
1525 fclose(logfile);
1526 logfile = NULL;
1527 }
1528 cpu_set_log(loglevel);
34865134 1529}
c33a346e 1530
3098dba0 1531static void cpu_unlink_tb(CPUState *env)
ea041c0e 1532{
3098dba0
AJ
1533#if defined(USE_NPTL)
1534 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1535 problem and hope the cpu will stop of its own accord. For userspace
1536 emulation this often isn't actually as bad as it sounds. Often
1537 signals are used primarily to interrupt blocking syscalls. */
1538#else
ea041c0e 1539 TranslationBlock *tb;
15a51156 1540 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
59817ccb 1541
3098dba0
AJ
1542 tb = env->current_tb;
1543 /* if the cpu is currently executing code, we must unlink it and
1544 all the potentially executing TB */
1545 if (tb && !testandset(&interrupt_lock)) {
1546 env->current_tb = NULL;
1547 tb_reset_jump_recursive(tb);
1548 resetlock(&interrupt_lock);
be214e6c 1549 }
3098dba0
AJ
1550#endif
1551}
1552
1553/* mask must never be zero, except for A20 change call */
1554void cpu_interrupt(CPUState *env, int mask)
1555{
1556 int old_mask;
be214e6c 1557
2e70f6ef 1558 old_mask = env->interrupt_request;
68a79315 1559 env->interrupt_request |= mask;
3098dba0 1560
8edac960
AL
1561#ifndef CONFIG_USER_ONLY
1562 /*
1563 * If called from iothread context, wake the target cpu in
1564 * case its halted.
1565 */
1566 if (!qemu_cpu_self(env)) {
1567 qemu_cpu_kick(env);
1568 return;
1569 }
1570#endif
1571
2e70f6ef 1572 if (use_icount) {
266910c4 1573 env->icount_decr.u16.high = 0xffff;
2e70f6ef 1574#ifndef CONFIG_USER_ONLY
2e70f6ef 1575 if (!can_do_io(env)
be214e6c 1576 && (mask & ~old_mask) != 0) {
2e70f6ef
PB
1577 cpu_abort(env, "Raised interrupt while not in I/O function");
1578 }
1579#endif
1580 } else {
3098dba0 1581 cpu_unlink_tb(env);
ea041c0e
FB
1582 }
1583}
1584
b54ad049
FB
1585void cpu_reset_interrupt(CPUState *env, int mask)
1586{
1587 env->interrupt_request &= ~mask;
1588}
1589
3098dba0
AJ
1590void cpu_exit(CPUState *env)
1591{
1592 env->exit_request = 1;
1593 cpu_unlink_tb(env);
1594}
1595
c7cd6a37 1596const CPULogItem cpu_log_items[] = {
5fafdf24 1597 { CPU_LOG_TB_OUT_ASM, "out_asm",
f193c797
FB
1598 "show generated host assembly code for each compiled TB" },
1599 { CPU_LOG_TB_IN_ASM, "in_asm",
1600 "show target assembly code for each compiled TB" },
5fafdf24 1601 { CPU_LOG_TB_OP, "op",
57fec1fe 1602 "show micro ops for each compiled TB" },
f193c797 1603 { CPU_LOG_TB_OP_OPT, "op_opt",
e01a1157
BS
1604 "show micro ops "
1605#ifdef TARGET_I386
1606 "before eflags optimization and "
f193c797 1607#endif
e01a1157 1608 "after liveness analysis" },
f193c797
FB
1609 { CPU_LOG_INT, "int",
1610 "show interrupts/exceptions in short format" },
1611 { CPU_LOG_EXEC, "exec",
1612 "show trace before each executed TB (lots of logs)" },
9fddaa0c 1613 { CPU_LOG_TB_CPU, "cpu",
e91c8a77 1614 "show CPU state before block translation" },
f193c797
FB
1615#ifdef TARGET_I386
1616 { CPU_LOG_PCALL, "pcall",
1617 "show protected mode far calls/returns/exceptions" },
eca1bdf4
AL
1618 { CPU_LOG_RESET, "cpu_reset",
1619 "show CPU state before CPU resets" },
f193c797 1620#endif
8e3a9fd2 1621#ifdef DEBUG_IOPORT
fd872598
FB
1622 { CPU_LOG_IOPORT, "ioport",
1623 "show all i/o ports accesses" },
8e3a9fd2 1624#endif
f193c797
FB
1625 { 0, NULL, NULL },
1626};
1627
1628static int cmp1(const char *s1, int n, const char *s2)
1629{
1630 if (strlen(s2) != n)
1631 return 0;
1632 return memcmp(s1, s2, n) == 0;
1633}
3b46e624 1634
f193c797
FB
1635/* takes a comma separated list of log masks. Return 0 if error. */
1636int cpu_str_to_log_mask(const char *str)
1637{
c7cd6a37 1638 const CPULogItem *item;
f193c797
FB
1639 int mask;
1640 const char *p, *p1;
1641
1642 p = str;
1643 mask = 0;
1644 for(;;) {
1645 p1 = strchr(p, ',');
1646 if (!p1)
1647 p1 = p + strlen(p);
8e3a9fd2
FB
1648 if(cmp1(p,p1-p,"all")) {
1649 for(item = cpu_log_items; item->mask != 0; item++) {
1650 mask |= item->mask;
1651 }
1652 } else {
f193c797
FB
1653 for(item = cpu_log_items; item->mask != 0; item++) {
1654 if (cmp1(p, p1 - p, item->name))
1655 goto found;
1656 }
1657 return 0;
8e3a9fd2 1658 }
f193c797
FB
1659 found:
1660 mask |= item->mask;
1661 if (*p1 != ',')
1662 break;
1663 p = p1 + 1;
1664 }
1665 return mask;
1666}
ea041c0e 1667
7501267e
FB
1668void cpu_abort(CPUState *env, const char *fmt, ...)
1669{
1670 va_list ap;
493ae1f0 1671 va_list ap2;
7501267e
FB
1672
1673 va_start(ap, fmt);
493ae1f0 1674 va_copy(ap2, ap);
7501267e
FB
1675 fprintf(stderr, "qemu: fatal: ");
1676 vfprintf(stderr, fmt, ap);
1677 fprintf(stderr, "\n");
1678#ifdef TARGET_I386
7fe48483
FB
1679 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1680#else
1681 cpu_dump_state(env, stderr, fprintf, 0);
7501267e 1682#endif
93fcfe39
AL
1683 if (qemu_log_enabled()) {
1684 qemu_log("qemu: fatal: ");
1685 qemu_log_vprintf(fmt, ap2);
1686 qemu_log("\n");
f9373291 1687#ifdef TARGET_I386
93fcfe39 1688 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
f9373291 1689#else
93fcfe39 1690 log_cpu_state(env, 0);
f9373291 1691#endif
31b1a7b4 1692 qemu_log_flush();
93fcfe39 1693 qemu_log_close();
924edcae 1694 }
493ae1f0 1695 va_end(ap2);
f9373291 1696 va_end(ap);
7501267e
FB
1697 abort();
1698}
1699
c5be9f08
TS
1700CPUState *cpu_copy(CPUState *env)
1701{
01ba9816 1702 CPUState *new_env = cpu_init(env->cpu_model_str);
c5be9f08
TS
1703 CPUState *next_cpu = new_env->next_cpu;
1704 int cpu_index = new_env->cpu_index;
5a38f081
AL
1705#if defined(TARGET_HAS_ICE)
1706 CPUBreakpoint *bp;
1707 CPUWatchpoint *wp;
1708#endif
1709
c5be9f08 1710 memcpy(new_env, env, sizeof(CPUState));
5a38f081
AL
1711
1712 /* Preserve chaining and index. */
c5be9f08
TS
1713 new_env->next_cpu = next_cpu;
1714 new_env->cpu_index = cpu_index;
5a38f081
AL
1715
1716 /* Clone all break/watchpoints.
1717 Note: Once we support ptrace with hw-debug register access, make sure
1718 BP_CPU break/watchpoints are handled correctly on clone. */
1719 TAILQ_INIT(&env->breakpoints);
1720 TAILQ_INIT(&env->watchpoints);
1721#if defined(TARGET_HAS_ICE)
1722 TAILQ_FOREACH(bp, &env->breakpoints, entry) {
1723 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1724 }
1725 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
1726 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1727 wp->flags, NULL);
1728 }
1729#endif
1730
c5be9f08
TS
1731 return new_env;
1732}
1733
0124311e
FB
1734#if !defined(CONFIG_USER_ONLY)
1735
5c751e99
EI
1736static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1737{
1738 unsigned int i;
1739
1740 /* Discard jump cache entries for any tb which might potentially
1741 overlap the flushed page. */
1742 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1743 memset (&env->tb_jmp_cache[i], 0,
1744 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1745
1746 i = tb_jmp_cache_hash_page(addr);
1747 memset (&env->tb_jmp_cache[i], 0,
1748 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1749}
1750
ee8b7021
FB
1751/* NOTE: if flush_global is true, also flush global entries (not
1752 implemented yet) */
1753void tlb_flush(CPUState *env, int flush_global)
33417e70 1754{
33417e70 1755 int i;
0124311e 1756
9fa3e853
FB
1757#if defined(DEBUG_TLB)
1758 printf("tlb_flush:\n");
1759#endif
0124311e
FB
1760 /* must reset current TB so that interrupts cannot modify the
1761 links while we are modifying them */
1762 env->current_tb = NULL;
1763
33417e70 1764 for(i = 0; i < CPU_TLB_SIZE; i++) {
cfde4bd9
IY
1765 int mmu_idx;
1766 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1767 env->tlb_table[mmu_idx][i].addr_read = -1;
1768 env->tlb_table[mmu_idx][i].addr_write = -1;
1769 env->tlb_table[mmu_idx][i].addr_code = -1;
1770 }
33417e70 1771 }
9fa3e853 1772
8a40a180 1773 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
9fa3e853 1774
640f42e4 1775#ifdef CONFIG_KQEMU
0a962c02
FB
1776 if (env->kqemu_enabled) {
1777 kqemu_flush(env, flush_global);
1778 }
9fa3e853 1779#endif
e3db7226 1780 tlb_flush_count++;
33417e70
FB
1781}
1782
274da6b2 1783static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
61382a50 1784{
5fafdf24 1785 if (addr == (tlb_entry->addr_read &
84b7b8e7 1786 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1787 addr == (tlb_entry->addr_write &
84b7b8e7 1788 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1789 addr == (tlb_entry->addr_code &
84b7b8e7
FB
1790 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1791 tlb_entry->addr_read = -1;
1792 tlb_entry->addr_write = -1;
1793 tlb_entry->addr_code = -1;
1794 }
61382a50
FB
1795}
1796
2e12669a 1797void tlb_flush_page(CPUState *env, target_ulong addr)
33417e70 1798{
8a40a180 1799 int i;
cfde4bd9 1800 int mmu_idx;
0124311e 1801
9fa3e853 1802#if defined(DEBUG_TLB)
108c49b8 1803 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
9fa3e853 1804#endif
0124311e
FB
1805 /* must reset current TB so that interrupts cannot modify the
1806 links while we are modifying them */
1807 env->current_tb = NULL;
61382a50
FB
1808
1809 addr &= TARGET_PAGE_MASK;
1810 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
1811 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1812 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
0124311e 1813
5c751e99 1814 tlb_flush_jmp_cache(env, addr);
9fa3e853 1815
640f42e4 1816#ifdef CONFIG_KQEMU
0a962c02
FB
1817 if (env->kqemu_enabled) {
1818 kqemu_flush_page(env, addr);
1819 }
1820#endif
9fa3e853
FB
1821}
1822
9fa3e853
FB
1823/* update the TLBs so that writes to code in the virtual page 'addr'
1824 can be detected */
6a00d601 1825static void tlb_protect_code(ram_addr_t ram_addr)
9fa3e853 1826{
5fafdf24 1827 cpu_physical_memory_reset_dirty(ram_addr,
6a00d601
FB
1828 ram_addr + TARGET_PAGE_SIZE,
1829 CODE_DIRTY_FLAG);
9fa3e853
FB
1830}
1831
9fa3e853 1832/* update the TLB so that writes in physical page 'phys_addr' are no longer
3a7d929e 1833 tested for self modifying code */
5fafdf24 1834static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 1835 target_ulong vaddr)
9fa3e853 1836{
3a7d929e 1837 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1ccde1cb
FB
1838}
1839
5fafdf24 1840static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1ccde1cb
FB
1841 unsigned long start, unsigned long length)
1842{
1843 unsigned long addr;
84b7b8e7
FB
1844 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1845 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1ccde1cb 1846 if ((addr - start) < length) {
0f459d16 1847 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1ccde1cb
FB
1848 }
1849 }
1850}
1851
5579c7f3 1852/* Note: start and end must be within the same ram block. */
3a7d929e 1853void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 1854 int dirty_flags)
1ccde1cb
FB
1855{
1856 CPUState *env;
4f2ac237 1857 unsigned long length, start1;
0a962c02
FB
1858 int i, mask, len;
1859 uint8_t *p;
1ccde1cb
FB
1860
1861 start &= TARGET_PAGE_MASK;
1862 end = TARGET_PAGE_ALIGN(end);
1863
1864 length = end - start;
1865 if (length == 0)
1866 return;
0a962c02 1867 len = length >> TARGET_PAGE_BITS;
640f42e4 1868#ifdef CONFIG_KQEMU
6a00d601
FB
1869 /* XXX: should not depend on cpu context */
1870 env = first_cpu;
3a7d929e 1871 if (env->kqemu_enabled) {
f23db169
FB
1872 ram_addr_t addr;
1873 addr = start;
1874 for(i = 0; i < len; i++) {
1875 kqemu_set_notdirty(env, addr);
1876 addr += TARGET_PAGE_SIZE;
1877 }
3a7d929e
FB
1878 }
1879#endif
f23db169
FB
1880 mask = ~dirty_flags;
1881 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1882 for(i = 0; i < len; i++)
1883 p[i] &= mask;
1884
1ccde1cb
FB
1885 /* we modify the TLB cache so that the dirty bit will be set again
1886 when accessing the range */
5579c7f3
PB
1887 start1 = (unsigned long)qemu_get_ram_ptr(start);
1888 /* Chek that we don't span multiple blocks - this breaks the
1889 address comparisons below. */
1890 if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
1891 != (end - 1) - start) {
1892 abort();
1893 }
1894
6a00d601 1895 for(env = first_cpu; env != NULL; env = env->next_cpu) {
cfde4bd9
IY
1896 int mmu_idx;
1897 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1898 for(i = 0; i < CPU_TLB_SIZE; i++)
1899 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
1900 start1, length);
1901 }
6a00d601 1902 }
1ccde1cb
FB
1903}
1904
74576198
AL
1905int cpu_physical_memory_set_dirty_tracking(int enable)
1906{
1907 in_migration = enable;
b0a46a33
JK
1908 if (kvm_enabled()) {
1909 return kvm_set_migration_log(enable);
1910 }
74576198
AL
1911 return 0;
1912}
1913
1914int cpu_physical_memory_get_dirty_tracking(void)
1915{
1916 return in_migration;
1917}
1918
151f7749
JK
1919int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
1920 target_phys_addr_t end_addr)
2bec46dc 1921{
151f7749
JK
1922 int ret = 0;
1923
2bec46dc 1924 if (kvm_enabled())
151f7749
JK
1925 ret = kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
1926 return ret;
2bec46dc
AL
1927}
1928
3a7d929e
FB
1929static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
1930{
1931 ram_addr_t ram_addr;
5579c7f3 1932 void *p;
3a7d929e 1933
84b7b8e7 1934 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
5579c7f3
PB
1935 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
1936 + tlb_entry->addend);
1937 ram_addr = qemu_ram_addr_from_host(p);
3a7d929e 1938 if (!cpu_physical_memory_is_dirty(ram_addr)) {
0f459d16 1939 tlb_entry->addr_write |= TLB_NOTDIRTY;
3a7d929e
FB
1940 }
1941 }
1942}
1943
1944/* update the TLB according to the current state of the dirty bits */
1945void cpu_tlb_update_dirty(CPUState *env)
1946{
1947 int i;
cfde4bd9
IY
1948 int mmu_idx;
1949 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1950 for(i = 0; i < CPU_TLB_SIZE; i++)
1951 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
1952 }
3a7d929e
FB
1953}
1954
0f459d16 1955static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1ccde1cb 1956{
0f459d16
PB
1957 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
1958 tlb_entry->addr_write = vaddr;
1ccde1cb
FB
1959}
1960
0f459d16
PB
1961/* update the TLB corresponding to virtual page vaddr
1962 so that it is no longer dirty */
1963static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1ccde1cb 1964{
1ccde1cb 1965 int i;
cfde4bd9 1966 int mmu_idx;
1ccde1cb 1967
0f459d16 1968 vaddr &= TARGET_PAGE_MASK;
1ccde1cb 1969 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
1970 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1971 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
9fa3e853
FB
1972}
1973
59817ccb
FB
1974/* add a new TLB entry. At most one entry for a given virtual address
1975 is permitted. Return 0 if OK or 2 if the page could not be mapped
1976 (can only happen in non SOFTMMU mode for I/O pages or pages
1977 conflicting with the host address space). */
5fafdf24
TS
1978int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1979 target_phys_addr_t paddr, int prot,
6ebbf390 1980 int mmu_idx, int is_softmmu)
9fa3e853 1981{
92e873b9 1982 PhysPageDesc *p;
4f2ac237 1983 unsigned long pd;
9fa3e853 1984 unsigned int index;
4f2ac237 1985 target_ulong address;
0f459d16 1986 target_ulong code_address;
108c49b8 1987 target_phys_addr_t addend;
9fa3e853 1988 int ret;
84b7b8e7 1989 CPUTLBEntry *te;
a1d1bb31 1990 CPUWatchpoint *wp;
0f459d16 1991 target_phys_addr_t iotlb;
9fa3e853 1992
92e873b9 1993 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
9fa3e853
FB
1994 if (!p) {
1995 pd = IO_MEM_UNASSIGNED;
9fa3e853
FB
1996 } else {
1997 pd = p->phys_offset;
9fa3e853
FB
1998 }
1999#if defined(DEBUG_TLB)
6ebbf390
JM
2000 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
2001 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
9fa3e853
FB
2002#endif
2003
2004 ret = 0;
0f459d16
PB
2005 address = vaddr;
2006 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2007 /* IO memory case (romd handled later) */
2008 address |= TLB_MMIO;
2009 }
5579c7f3 2010 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
0f459d16
PB
2011 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2012 /* Normal RAM. */
2013 iotlb = pd & TARGET_PAGE_MASK;
2014 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2015 iotlb |= IO_MEM_NOTDIRTY;
2016 else
2017 iotlb |= IO_MEM_ROM;
2018 } else {
ccbb4d44 2019 /* IO handlers are currently passed a physical address.
0f459d16
PB
2020 It would be nice to pass an offset from the base address
2021 of that region. This would avoid having to special case RAM,
2022 and avoid full address decoding in every device.
2023 We can't use the high bits of pd for this because
2024 IO_MEM_ROMD uses these as a ram address. */
8da3ff18
PB
2025 iotlb = (pd & ~TARGET_PAGE_MASK);
2026 if (p) {
8da3ff18
PB
2027 iotlb += p->region_offset;
2028 } else {
2029 iotlb += paddr;
2030 }
0f459d16
PB
2031 }
2032
2033 code_address = address;
2034 /* Make accesses to pages with watchpoints go via the
2035 watchpoint trap routines. */
c0ce998e 2036 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
a1d1bb31 2037 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
0f459d16
PB
2038 iotlb = io_mem_watch + paddr;
2039 /* TODO: The memory case can be optimized by not trapping
2040 reads of pages with a write breakpoint. */
2041 address |= TLB_MMIO;
6658ffb8 2042 }
0f459d16 2043 }
d79acba4 2044
0f459d16
PB
2045 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2046 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2047 te = &env->tlb_table[mmu_idx][index];
2048 te->addend = addend - vaddr;
2049 if (prot & PAGE_READ) {
2050 te->addr_read = address;
2051 } else {
2052 te->addr_read = -1;
2053 }
5c751e99 2054
0f459d16
PB
2055 if (prot & PAGE_EXEC) {
2056 te->addr_code = code_address;
2057 } else {
2058 te->addr_code = -1;
2059 }
2060 if (prot & PAGE_WRITE) {
2061 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2062 (pd & IO_MEM_ROMD)) {
2063 /* Write access calls the I/O callback. */
2064 te->addr_write = address | TLB_MMIO;
2065 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2066 !cpu_physical_memory_is_dirty(pd)) {
2067 te->addr_write = address | TLB_NOTDIRTY;
9fa3e853 2068 } else {
0f459d16 2069 te->addr_write = address;
9fa3e853 2070 }
0f459d16
PB
2071 } else {
2072 te->addr_write = -1;
9fa3e853 2073 }
9fa3e853
FB
2074 return ret;
2075}
2076
0124311e
FB
2077#else
2078
ee8b7021 2079void tlb_flush(CPUState *env, int flush_global)
0124311e
FB
2080{
2081}
2082
2e12669a 2083void tlb_flush_page(CPUState *env, target_ulong addr)
0124311e
FB
2084{
2085}
2086
5fafdf24
TS
2087int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
2088 target_phys_addr_t paddr, int prot,
6ebbf390 2089 int mmu_idx, int is_softmmu)
9fa3e853
FB
2090{
2091 return 0;
2092}
0124311e 2093
edf8e2af
MW
2094/*
2095 * Walks guest process memory "regions" one by one
2096 * and calls callback function 'fn' for each region.
2097 */
2098int walk_memory_regions(void *priv,
2099 int (*fn)(void *, unsigned long, unsigned long, unsigned long))
33417e70 2100{
9fa3e853 2101 unsigned long start, end;
edf8e2af 2102 PageDesc *p = NULL;
9fa3e853 2103 int i, j, prot, prot1;
edf8e2af 2104 int rc = 0;
33417e70 2105
edf8e2af 2106 start = end = -1;
9fa3e853 2107 prot = 0;
edf8e2af
MW
2108
2109 for (i = 0; i <= L1_SIZE; i++) {
2110 p = (i < L1_SIZE) ? l1_map[i] : NULL;
2111 for (j = 0; j < L2_SIZE; j++) {
2112 prot1 = (p == NULL) ? 0 : p[j].flags;
2113 /*
2114 * "region" is one continuous chunk of memory
2115 * that has same protection flags set.
2116 */
9fa3e853
FB
2117 if (prot1 != prot) {
2118 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
2119 if (start != -1) {
edf8e2af
MW
2120 rc = (*fn)(priv, start, end, prot);
2121 /* callback can stop iteration by returning != 0 */
2122 if (rc != 0)
2123 return (rc);
9fa3e853
FB
2124 }
2125 if (prot1 != 0)
2126 start = end;
2127 else
2128 start = -1;
2129 prot = prot1;
2130 }
edf8e2af 2131 if (p == NULL)
9fa3e853
FB
2132 break;
2133 }
33417e70 2134 }
edf8e2af
MW
2135 return (rc);
2136}
2137
2138static int dump_region(void *priv, unsigned long start,
2139 unsigned long end, unsigned long prot)
2140{
2141 FILE *f = (FILE *)priv;
2142
2143 (void) fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
2144 start, end, end - start,
2145 ((prot & PAGE_READ) ? 'r' : '-'),
2146 ((prot & PAGE_WRITE) ? 'w' : '-'),
2147 ((prot & PAGE_EXEC) ? 'x' : '-'));
2148
2149 return (0);
2150}
2151
2152/* dump memory mappings */
2153void page_dump(FILE *f)
2154{
2155 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2156 "start", "end", "size", "prot");
2157 walk_memory_regions(f, dump_region);
33417e70
FB
2158}
2159
53a5960a 2160int page_get_flags(target_ulong address)
33417e70 2161{
9fa3e853
FB
2162 PageDesc *p;
2163
2164 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 2165 if (!p)
9fa3e853
FB
2166 return 0;
2167 return p->flags;
2168}
2169
2170/* modify the flags of a page and invalidate the code if
ccbb4d44 2171 necessary. The flag PAGE_WRITE_ORG is positioned automatically
9fa3e853 2172 depending on PAGE_WRITE */
53a5960a 2173void page_set_flags(target_ulong start, target_ulong end, int flags)
9fa3e853
FB
2174{
2175 PageDesc *p;
53a5960a 2176 target_ulong addr;
9fa3e853 2177
c8a706fe 2178 /* mmap_lock should already be held. */
9fa3e853
FB
2179 start = start & TARGET_PAGE_MASK;
2180 end = TARGET_PAGE_ALIGN(end);
2181 if (flags & PAGE_WRITE)
2182 flags |= PAGE_WRITE_ORG;
9fa3e853
FB
2183 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2184 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
17e2377a
PB
2185 /* We may be called for host regions that are outside guest
2186 address space. */
2187 if (!p)
2188 return;
9fa3e853
FB
2189 /* if the write protection is set, then we invalidate the code
2190 inside */
5fafdf24 2191 if (!(p->flags & PAGE_WRITE) &&
9fa3e853
FB
2192 (flags & PAGE_WRITE) &&
2193 p->first_tb) {
d720b93d 2194 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
2195 }
2196 p->flags = flags;
2197 }
33417e70
FB
2198}
2199
3d97b40b
TS
2200int page_check_range(target_ulong start, target_ulong len, int flags)
2201{
2202 PageDesc *p;
2203 target_ulong end;
2204 target_ulong addr;
2205
55f280c9
AZ
2206 if (start + len < start)
2207 /* we've wrapped around */
2208 return -1;
2209
3d97b40b
TS
2210 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2211 start = start & TARGET_PAGE_MASK;
2212
3d97b40b
TS
2213 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2214 p = page_find(addr >> TARGET_PAGE_BITS);
2215 if( !p )
2216 return -1;
2217 if( !(p->flags & PAGE_VALID) )
2218 return -1;
2219
dae3270c 2220 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
3d97b40b 2221 return -1;
dae3270c
FB
2222 if (flags & PAGE_WRITE) {
2223 if (!(p->flags & PAGE_WRITE_ORG))
2224 return -1;
2225 /* unprotect the page if it was put read-only because it
2226 contains translated code */
2227 if (!(p->flags & PAGE_WRITE)) {
2228 if (!page_unprotect(addr, 0, NULL))
2229 return -1;
2230 }
2231 return 0;
2232 }
3d97b40b
TS
2233 }
2234 return 0;
2235}
2236
9fa3e853 2237/* called from signal handler: invalidate the code and unprotect the
ccbb4d44 2238 page. Return TRUE if the fault was successfully handled. */
53a5960a 2239int page_unprotect(target_ulong address, unsigned long pc, void *puc)
9fa3e853
FB
2240{
2241 unsigned int page_index, prot, pindex;
2242 PageDesc *p, *p1;
53a5960a 2243 target_ulong host_start, host_end, addr;
9fa3e853 2244
c8a706fe
PB
2245 /* Technically this isn't safe inside a signal handler. However we
2246 know this only ever happens in a synchronous SEGV handler, so in
2247 practice it seems to be ok. */
2248 mmap_lock();
2249
83fb7adf 2250 host_start = address & qemu_host_page_mask;
9fa3e853
FB
2251 page_index = host_start >> TARGET_PAGE_BITS;
2252 p1 = page_find(page_index);
c8a706fe
PB
2253 if (!p1) {
2254 mmap_unlock();
9fa3e853 2255 return 0;
c8a706fe 2256 }
83fb7adf 2257 host_end = host_start + qemu_host_page_size;
9fa3e853
FB
2258 p = p1;
2259 prot = 0;
2260 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2261 prot |= p->flags;
2262 p++;
2263 }
2264 /* if the page was really writable, then we change its
2265 protection back to writable */
2266 if (prot & PAGE_WRITE_ORG) {
2267 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2268 if (!(p1[pindex].flags & PAGE_WRITE)) {
5fafdf24 2269 mprotect((void *)g2h(host_start), qemu_host_page_size,
9fa3e853
FB
2270 (prot & PAGE_BITS) | PAGE_WRITE);
2271 p1[pindex].flags |= PAGE_WRITE;
2272 /* and since the content will be modified, we must invalidate
2273 the corresponding translated code. */
d720b93d 2274 tb_invalidate_phys_page(address, pc, puc);
9fa3e853
FB
2275#ifdef DEBUG_TB_CHECK
2276 tb_invalidate_check(address);
2277#endif
c8a706fe 2278 mmap_unlock();
9fa3e853
FB
2279 return 1;
2280 }
2281 }
c8a706fe 2282 mmap_unlock();
9fa3e853
FB
2283 return 0;
2284}
2285
6a00d601
FB
2286static inline void tlb_set_dirty(CPUState *env,
2287 unsigned long addr, target_ulong vaddr)
1ccde1cb
FB
2288{
2289}
9fa3e853
FB
2290#endif /* defined(CONFIG_USER_ONLY) */
2291
e2eef170 2292#if !defined(CONFIG_USER_ONLY)
8da3ff18 2293
db7b5426 2294static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
8da3ff18 2295 ram_addr_t memory, ram_addr_t region_offset);
00f82b8a 2296static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
8da3ff18 2297 ram_addr_t orig_memory, ram_addr_t region_offset);
db7b5426
BS
2298#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2299 need_subpage) \
2300 do { \
2301 if (addr > start_addr) \
2302 start_addr2 = 0; \
2303 else { \
2304 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2305 if (start_addr2 > 0) \
2306 need_subpage = 1; \
2307 } \
2308 \
49e9fba2 2309 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
db7b5426
BS
2310 end_addr2 = TARGET_PAGE_SIZE - 1; \
2311 else { \
2312 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2313 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2314 need_subpage = 1; \
2315 } \
2316 } while (0)
2317
33417e70
FB
2318/* register physical memory. 'size' must be a multiple of the target
2319 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
8da3ff18
PB
2320 io memory page. The address used when calling the IO function is
2321 the offset from the start of the region, plus region_offset. Both
ccbb4d44 2322 start_addr and region_offset are rounded down to a page boundary
8da3ff18
PB
2323 before calculating this offset. This should not be a problem unless
2324 the low bits of start_addr and region_offset differ. */
2325void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2326 ram_addr_t size,
2327 ram_addr_t phys_offset,
2328 ram_addr_t region_offset)
33417e70 2329{
108c49b8 2330 target_phys_addr_t addr, end_addr;
92e873b9 2331 PhysPageDesc *p;
9d42037b 2332 CPUState *env;
00f82b8a 2333 ram_addr_t orig_size = size;
db7b5426 2334 void *subpage;
33417e70 2335
640f42e4 2336#ifdef CONFIG_KQEMU
da260249
FB
2337 /* XXX: should not depend on cpu context */
2338 env = first_cpu;
2339 if (env->kqemu_enabled) {
2340 kqemu_set_phys_mem(start_addr, size, phys_offset);
2341 }
2342#endif
7ba1e619
AL
2343 if (kvm_enabled())
2344 kvm_set_phys_mem(start_addr, size, phys_offset);
2345
67c4d23c
PB
2346 if (phys_offset == IO_MEM_UNASSIGNED) {
2347 region_offset = start_addr;
2348 }
8da3ff18 2349 region_offset &= TARGET_PAGE_MASK;
5fd386f6 2350 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
49e9fba2
BS
2351 end_addr = start_addr + (target_phys_addr_t)size;
2352 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
db7b5426
BS
2353 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2354 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
00f82b8a 2355 ram_addr_t orig_memory = p->phys_offset;
db7b5426
BS
2356 target_phys_addr_t start_addr2, end_addr2;
2357 int need_subpage = 0;
2358
2359 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2360 need_subpage);
4254fab8 2361 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426
BS
2362 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2363 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18
PB
2364 &p->phys_offset, orig_memory,
2365 p->region_offset);
db7b5426
BS
2366 } else {
2367 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2368 >> IO_MEM_SHIFT];
2369 }
8da3ff18
PB
2370 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2371 region_offset);
2372 p->region_offset = 0;
db7b5426
BS
2373 } else {
2374 p->phys_offset = phys_offset;
2375 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2376 (phys_offset & IO_MEM_ROMD))
2377 phys_offset += TARGET_PAGE_SIZE;
2378 }
2379 } else {
2380 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2381 p->phys_offset = phys_offset;
8da3ff18 2382 p->region_offset = region_offset;
db7b5426 2383 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
8da3ff18 2384 (phys_offset & IO_MEM_ROMD)) {
db7b5426 2385 phys_offset += TARGET_PAGE_SIZE;
0e8f0967 2386 } else {
db7b5426
BS
2387 target_phys_addr_t start_addr2, end_addr2;
2388 int need_subpage = 0;
2389
2390 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2391 end_addr2, need_subpage);
2392
4254fab8 2393 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426 2394 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18 2395 &p->phys_offset, IO_MEM_UNASSIGNED,
67c4d23c 2396 addr & TARGET_PAGE_MASK);
db7b5426 2397 subpage_register(subpage, start_addr2, end_addr2,
8da3ff18
PB
2398 phys_offset, region_offset);
2399 p->region_offset = 0;
db7b5426
BS
2400 }
2401 }
2402 }
8da3ff18 2403 region_offset += TARGET_PAGE_SIZE;
33417e70 2404 }
3b46e624 2405
9d42037b
FB
2406 /* since each CPU stores ram addresses in its TLB cache, we must
2407 reset the modified entries */
2408 /* XXX: slow ! */
2409 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2410 tlb_flush(env, 1);
2411 }
33417e70
FB
2412}
2413
ba863458 2414/* XXX: temporary until new memory mapping API */
00f82b8a 2415ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
ba863458
FB
2416{
2417 PhysPageDesc *p;
2418
2419 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2420 if (!p)
2421 return IO_MEM_UNASSIGNED;
2422 return p->phys_offset;
2423}
2424
f65ed4c1
AL
2425void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2426{
2427 if (kvm_enabled())
2428 kvm_coalesce_mmio_region(addr, size);
2429}
2430
2431void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2432{
2433 if (kvm_enabled())
2434 kvm_uncoalesce_mmio_region(addr, size);
2435}
2436
640f42e4 2437#ifdef CONFIG_KQEMU
e9a1ab19 2438/* XXX: better than nothing */
94a6b54f 2439static ram_addr_t kqemu_ram_alloc(ram_addr_t size)
e9a1ab19
FB
2440{
2441 ram_addr_t addr;
94a6b54f 2442 if ((last_ram_offset + size) > kqemu_phys_ram_size) {
012a7045 2443 fprintf(stderr, "Not enough memory (requested_size = %" PRIu64 ", max memory = %" PRIu64 ")\n",
94a6b54f 2444 (uint64_t)size, (uint64_t)kqemu_phys_ram_size);
e9a1ab19
FB
2445 abort();
2446 }
94a6b54f
PB
2447 addr = last_ram_offset;
2448 last_ram_offset = TARGET_PAGE_ALIGN(last_ram_offset + size);
e9a1ab19
FB
2449 return addr;
2450}
94a6b54f
PB
2451#endif
2452
2453ram_addr_t qemu_ram_alloc(ram_addr_t size)
2454{
2455 RAMBlock *new_block;
2456
640f42e4 2457#ifdef CONFIG_KQEMU
94a6b54f
PB
2458 if (kqemu_phys_ram_base) {
2459 return kqemu_ram_alloc(size);
2460 }
2461#endif
2462
2463 size = TARGET_PAGE_ALIGN(size);
2464 new_block = qemu_malloc(sizeof(*new_block));
2465
2466 new_block->host = qemu_vmalloc(size);
2467 new_block->offset = last_ram_offset;
2468 new_block->length = size;
2469
2470 new_block->next = ram_blocks;
2471 ram_blocks = new_block;
2472
2473 phys_ram_dirty = qemu_realloc(phys_ram_dirty,
2474 (last_ram_offset + size) >> TARGET_PAGE_BITS);
2475 memset(phys_ram_dirty + (last_ram_offset >> TARGET_PAGE_BITS),
2476 0xff, size >> TARGET_PAGE_BITS);
2477
2478 last_ram_offset += size;
2479
6f0437e8
JK
2480 if (kvm_enabled())
2481 kvm_setup_guest_memory(new_block->host, size);
2482
94a6b54f
PB
2483 return new_block->offset;
2484}
e9a1ab19
FB
2485
2486void qemu_ram_free(ram_addr_t addr)
2487{
94a6b54f 2488 /* TODO: implement this. */
e9a1ab19
FB
2489}
2490
dc828ca1 2491/* Return a host pointer to ram allocated with qemu_ram_alloc.
5579c7f3
PB
2492 With the exception of the softmmu code in this file, this should
2493 only be used for local memory (e.g. video ram) that the device owns,
2494 and knows it isn't going to access beyond the end of the block.
2495
2496 It should not be used for general purpose DMA.
2497 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2498 */
dc828ca1
PB
2499void *qemu_get_ram_ptr(ram_addr_t addr)
2500{
94a6b54f
PB
2501 RAMBlock *prev;
2502 RAMBlock **prevp;
2503 RAMBlock *block;
2504
640f42e4 2505#ifdef CONFIG_KQEMU
94a6b54f
PB
2506 if (kqemu_phys_ram_base) {
2507 return kqemu_phys_ram_base + addr;
2508 }
2509#endif
2510
2511 prev = NULL;
2512 prevp = &ram_blocks;
2513 block = ram_blocks;
2514 while (block && (block->offset > addr
2515 || block->offset + block->length <= addr)) {
2516 if (prev)
2517 prevp = &prev->next;
2518 prev = block;
2519 block = block->next;
2520 }
2521 if (!block) {
2522 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2523 abort();
2524 }
2525 /* Move this entry to to start of the list. */
2526 if (prev) {
2527 prev->next = block->next;
2528 block->next = *prevp;
2529 *prevp = block;
2530 }
2531 return block->host + (addr - block->offset);
dc828ca1
PB
2532}
2533
5579c7f3
PB
2534/* Some of the softmmu routines need to translate from a host pointer
2535 (typically a TLB entry) back to a ram offset. */
2536ram_addr_t qemu_ram_addr_from_host(void *ptr)
2537{
94a6b54f
PB
2538 RAMBlock *prev;
2539 RAMBlock **prevp;
2540 RAMBlock *block;
2541 uint8_t *host = ptr;
2542
640f42e4 2543#ifdef CONFIG_KQEMU
94a6b54f
PB
2544 if (kqemu_phys_ram_base) {
2545 return host - kqemu_phys_ram_base;
2546 }
2547#endif
2548
2549 prev = NULL;
2550 prevp = &ram_blocks;
2551 block = ram_blocks;
2552 while (block && (block->host > host
2553 || block->host + block->length <= host)) {
2554 if (prev)
2555 prevp = &prev->next;
2556 prev = block;
2557 block = block->next;
2558 }
2559 if (!block) {
2560 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2561 abort();
2562 }
2563 return block->offset + (host - block->host);
5579c7f3
PB
2564}
2565
a4193c8a 2566static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
33417e70 2567{
67d3b957 2568#ifdef DEBUG_UNASSIGNED
ab3d1727 2569 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
b4f0a316 2570#endif
0a6f8a6d 2571#if defined(TARGET_SPARC)
e18231a3
BS
2572 do_unassigned_access(addr, 0, 0, 0, 1);
2573#endif
2574 return 0;
2575}
2576
2577static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
2578{
2579#ifdef DEBUG_UNASSIGNED
2580 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2581#endif
0a6f8a6d 2582#if defined(TARGET_SPARC)
e18231a3
BS
2583 do_unassigned_access(addr, 0, 0, 0, 2);
2584#endif
2585 return 0;
2586}
2587
2588static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
2589{
2590#ifdef DEBUG_UNASSIGNED
2591 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2592#endif
0a6f8a6d 2593#if defined(TARGET_SPARC)
e18231a3 2594 do_unassigned_access(addr, 0, 0, 0, 4);
67d3b957 2595#endif
33417e70
FB
2596 return 0;
2597}
2598
a4193c8a 2599static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
33417e70 2600{
67d3b957 2601#ifdef DEBUG_UNASSIGNED
ab3d1727 2602 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
67d3b957 2603#endif
0a6f8a6d 2604#if defined(TARGET_SPARC)
e18231a3
BS
2605 do_unassigned_access(addr, 1, 0, 0, 1);
2606#endif
2607}
2608
2609static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2610{
2611#ifdef DEBUG_UNASSIGNED
2612 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2613#endif
0a6f8a6d 2614#if defined(TARGET_SPARC)
e18231a3
BS
2615 do_unassigned_access(addr, 1, 0, 0, 2);
2616#endif
2617}
2618
2619static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2620{
2621#ifdef DEBUG_UNASSIGNED
2622 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2623#endif
0a6f8a6d 2624#if defined(TARGET_SPARC)
e18231a3 2625 do_unassigned_access(addr, 1, 0, 0, 4);
b4f0a316 2626#endif
33417e70
FB
2627}
2628
2629static CPUReadMemoryFunc *unassigned_mem_read[3] = {
2630 unassigned_mem_readb,
e18231a3
BS
2631 unassigned_mem_readw,
2632 unassigned_mem_readl,
33417e70
FB
2633};
2634
2635static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
2636 unassigned_mem_writeb,
e18231a3
BS
2637 unassigned_mem_writew,
2638 unassigned_mem_writel,
33417e70
FB
2639};
2640
0f459d16
PB
2641static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
2642 uint32_t val)
9fa3e853 2643{
3a7d929e 2644 int dirty_flags;
3a7d929e
FB
2645 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2646 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2647#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2648 tb_invalidate_phys_page_fast(ram_addr, 1);
2649 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2650#endif
3a7d929e 2651 }
5579c7f3 2652 stb_p(qemu_get_ram_ptr(ram_addr), val);
640f42e4 2653#ifdef CONFIG_KQEMU
f32fc648
FB
2654 if (cpu_single_env->kqemu_enabled &&
2655 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2656 kqemu_modify_page(cpu_single_env, ram_addr);
2657#endif
f23db169
FB
2658 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2659 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2660 /* we remove the notdirty callback only if the code has been
2661 flushed */
2662 if (dirty_flags == 0xff)
2e70f6ef 2663 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2664}
2665
0f459d16
PB
2666static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
2667 uint32_t val)
9fa3e853 2668{
3a7d929e 2669 int dirty_flags;
3a7d929e
FB
2670 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2671 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2672#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2673 tb_invalidate_phys_page_fast(ram_addr, 2);
2674 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2675#endif
3a7d929e 2676 }
5579c7f3 2677 stw_p(qemu_get_ram_ptr(ram_addr), val);
640f42e4 2678#ifdef CONFIG_KQEMU
f32fc648
FB
2679 if (cpu_single_env->kqemu_enabled &&
2680 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2681 kqemu_modify_page(cpu_single_env, ram_addr);
2682#endif
f23db169
FB
2683 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2684 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2685 /* we remove the notdirty callback only if the code has been
2686 flushed */
2687 if (dirty_flags == 0xff)
2e70f6ef 2688 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2689}
2690
0f459d16
PB
2691static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
2692 uint32_t val)
9fa3e853 2693{
3a7d929e 2694 int dirty_flags;
3a7d929e
FB
2695 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2696 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2697#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2698 tb_invalidate_phys_page_fast(ram_addr, 4);
2699 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2700#endif
3a7d929e 2701 }
5579c7f3 2702 stl_p(qemu_get_ram_ptr(ram_addr), val);
640f42e4 2703#ifdef CONFIG_KQEMU
f32fc648
FB
2704 if (cpu_single_env->kqemu_enabled &&
2705 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2706 kqemu_modify_page(cpu_single_env, ram_addr);
2707#endif
f23db169
FB
2708 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2709 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2710 /* we remove the notdirty callback only if the code has been
2711 flushed */
2712 if (dirty_flags == 0xff)
2e70f6ef 2713 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2714}
2715
3a7d929e 2716static CPUReadMemoryFunc *error_mem_read[3] = {
9fa3e853
FB
2717 NULL, /* never used */
2718 NULL, /* never used */
2719 NULL, /* never used */
2720};
2721
1ccde1cb
FB
2722static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
2723 notdirty_mem_writeb,
2724 notdirty_mem_writew,
2725 notdirty_mem_writel,
2726};
2727
0f459d16 2728/* Generate a debug exception if a watchpoint has been hit. */
b4051334 2729static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16
PB
2730{
2731 CPUState *env = cpu_single_env;
06d55cc1
AL
2732 target_ulong pc, cs_base;
2733 TranslationBlock *tb;
0f459d16 2734 target_ulong vaddr;
a1d1bb31 2735 CPUWatchpoint *wp;
06d55cc1 2736 int cpu_flags;
0f459d16 2737
06d55cc1
AL
2738 if (env->watchpoint_hit) {
2739 /* We re-entered the check after replacing the TB. Now raise
2740 * the debug interrupt so that is will trigger after the
2741 * current instruction. */
2742 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2743 return;
2744 }
2e70f6ef 2745 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
c0ce998e 2746 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334
AL
2747 if ((vaddr == (wp->vaddr & len_mask) ||
2748 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
2749 wp->flags |= BP_WATCHPOINT_HIT;
2750 if (!env->watchpoint_hit) {
2751 env->watchpoint_hit = wp;
2752 tb = tb_find_pc(env->mem_io_pc);
2753 if (!tb) {
2754 cpu_abort(env, "check_watchpoint: could not find TB for "
2755 "pc=%p", (void *)env->mem_io_pc);
2756 }
2757 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
2758 tb_phys_invalidate(tb, -1);
2759 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2760 env->exception_index = EXCP_DEBUG;
2761 } else {
2762 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2763 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
2764 }
2765 cpu_resume_from_signal(env, NULL);
06d55cc1 2766 }
6e140f28
AL
2767 } else {
2768 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2769 }
2770 }
2771}
2772
6658ffb8
PB
2773/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2774 so these check for a hit then pass through to the normal out-of-line
2775 phys routines. */
2776static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
2777{
b4051334 2778 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
6658ffb8
PB
2779 return ldub_phys(addr);
2780}
2781
2782static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
2783{
b4051334 2784 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
6658ffb8
PB
2785 return lduw_phys(addr);
2786}
2787
2788static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
2789{
b4051334 2790 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
6658ffb8
PB
2791 return ldl_phys(addr);
2792}
2793
6658ffb8
PB
2794static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
2795 uint32_t val)
2796{
b4051334 2797 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
6658ffb8
PB
2798 stb_phys(addr, val);
2799}
2800
2801static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
2802 uint32_t val)
2803{
b4051334 2804 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
6658ffb8
PB
2805 stw_phys(addr, val);
2806}
2807
2808static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
2809 uint32_t val)
2810{
b4051334 2811 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
6658ffb8
PB
2812 stl_phys(addr, val);
2813}
2814
2815static CPUReadMemoryFunc *watch_mem_read[3] = {
2816 watch_mem_readb,
2817 watch_mem_readw,
2818 watch_mem_readl,
2819};
2820
2821static CPUWriteMemoryFunc *watch_mem_write[3] = {
2822 watch_mem_writeb,
2823 watch_mem_writew,
2824 watch_mem_writel,
2825};
6658ffb8 2826
db7b5426
BS
2827static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
2828 unsigned int len)
2829{
db7b5426
BS
2830 uint32_t ret;
2831 unsigned int idx;
2832
8da3ff18 2833 idx = SUBPAGE_IDX(addr);
db7b5426
BS
2834#if defined(DEBUG_SUBPAGE)
2835 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2836 mmio, len, addr, idx);
2837#endif
8da3ff18
PB
2838 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len],
2839 addr + mmio->region_offset[idx][0][len]);
db7b5426
BS
2840
2841 return ret;
2842}
2843
2844static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
2845 uint32_t value, unsigned int len)
2846{
db7b5426
BS
2847 unsigned int idx;
2848
8da3ff18 2849 idx = SUBPAGE_IDX(addr);
db7b5426
BS
2850#if defined(DEBUG_SUBPAGE)
2851 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2852 mmio, len, addr, idx, value);
2853#endif
8da3ff18
PB
2854 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len],
2855 addr + mmio->region_offset[idx][1][len],
2856 value);
db7b5426
BS
2857}
2858
2859static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
2860{
2861#if defined(DEBUG_SUBPAGE)
2862 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2863#endif
2864
2865 return subpage_readlen(opaque, addr, 0);
2866}
2867
2868static void subpage_writeb (void *opaque, target_phys_addr_t addr,
2869 uint32_t value)
2870{
2871#if defined(DEBUG_SUBPAGE)
2872 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2873#endif
2874 subpage_writelen(opaque, addr, value, 0);
2875}
2876
2877static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
2878{
2879#if defined(DEBUG_SUBPAGE)
2880 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2881#endif
2882
2883 return subpage_readlen(opaque, addr, 1);
2884}
2885
2886static void subpage_writew (void *opaque, target_phys_addr_t addr,
2887 uint32_t value)
2888{
2889#if defined(DEBUG_SUBPAGE)
2890 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2891#endif
2892 subpage_writelen(opaque, addr, value, 1);
2893}
2894
2895static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
2896{
2897#if defined(DEBUG_SUBPAGE)
2898 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2899#endif
2900
2901 return subpage_readlen(opaque, addr, 2);
2902}
2903
2904static void subpage_writel (void *opaque,
2905 target_phys_addr_t addr, uint32_t value)
2906{
2907#if defined(DEBUG_SUBPAGE)
2908 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2909#endif
2910 subpage_writelen(opaque, addr, value, 2);
2911}
2912
2913static CPUReadMemoryFunc *subpage_read[] = {
2914 &subpage_readb,
2915 &subpage_readw,
2916 &subpage_readl,
2917};
2918
2919static CPUWriteMemoryFunc *subpage_write[] = {
2920 &subpage_writeb,
2921 &subpage_writew,
2922 &subpage_writel,
2923};
2924
2925static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
8da3ff18 2926 ram_addr_t memory, ram_addr_t region_offset)
db7b5426
BS
2927{
2928 int idx, eidx;
4254fab8 2929 unsigned int i;
db7b5426
BS
2930
2931 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2932 return -1;
2933 idx = SUBPAGE_IDX(start);
2934 eidx = SUBPAGE_IDX(end);
2935#if defined(DEBUG_SUBPAGE)
2936 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__,
2937 mmio, start, end, idx, eidx, memory);
2938#endif
2939 memory >>= IO_MEM_SHIFT;
2940 for (; idx <= eidx; idx++) {
4254fab8 2941 for (i = 0; i < 4; i++) {
3ee89922
BS
2942 if (io_mem_read[memory][i]) {
2943 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
2944 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
8da3ff18 2945 mmio->region_offset[idx][0][i] = region_offset;
3ee89922
BS
2946 }
2947 if (io_mem_write[memory][i]) {
2948 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
2949 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
8da3ff18 2950 mmio->region_offset[idx][1][i] = region_offset;
3ee89922 2951 }
4254fab8 2952 }
db7b5426
BS
2953 }
2954
2955 return 0;
2956}
2957
00f82b8a 2958static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
8da3ff18 2959 ram_addr_t orig_memory, ram_addr_t region_offset)
db7b5426
BS
2960{
2961 subpage_t *mmio;
2962 int subpage_memory;
2963
2964 mmio = qemu_mallocz(sizeof(subpage_t));
1eec614b
AL
2965
2966 mmio->base = base;
1eed09cb 2967 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
db7b5426 2968#if defined(DEBUG_SUBPAGE)
1eec614b
AL
2969 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
2970 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
db7b5426 2971#endif
1eec614b
AL
2972 *phys = subpage_memory | IO_MEM_SUBPAGE;
2973 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory,
8da3ff18 2974 region_offset);
db7b5426
BS
2975
2976 return mmio;
2977}
2978
88715657
AL
2979static int get_free_io_mem_idx(void)
2980{
2981 int i;
2982
2983 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
2984 if (!io_mem_used[i]) {
2985 io_mem_used[i] = 1;
2986 return i;
2987 }
2988
2989 return -1;
2990}
2991
33417e70
FB
2992/* mem_read and mem_write are arrays of functions containing the
2993 function to access byte (index 0), word (index 1) and dword (index
0b4e6e3e 2994 2). Functions can be omitted with a NULL function pointer.
3ee89922 2995 If io_index is non zero, the corresponding io zone is
4254fab8
BS
2996 modified. If it is zero, a new io zone is allocated. The return
2997 value can be used with cpu_register_physical_memory(). (-1) is
2998 returned if error. */
1eed09cb
AK
2999static int cpu_register_io_memory_fixed(int io_index,
3000 CPUReadMemoryFunc **mem_read,
3001 CPUWriteMemoryFunc **mem_write,
3002 void *opaque)
33417e70 3003{
4254fab8 3004 int i, subwidth = 0;
33417e70
FB
3005
3006 if (io_index <= 0) {
88715657
AL
3007 io_index = get_free_io_mem_idx();
3008 if (io_index == -1)
3009 return io_index;
33417e70 3010 } else {
1eed09cb 3011 io_index >>= IO_MEM_SHIFT;
33417e70
FB
3012 if (io_index >= IO_MEM_NB_ENTRIES)
3013 return -1;
3014 }
b5ff1b31 3015
33417e70 3016 for(i = 0;i < 3; i++) {
4254fab8
BS
3017 if (!mem_read[i] || !mem_write[i])
3018 subwidth = IO_MEM_SUBWIDTH;
33417e70
FB
3019 io_mem_read[io_index][i] = mem_read[i];
3020 io_mem_write[io_index][i] = mem_write[i];
3021 }
a4193c8a 3022 io_mem_opaque[io_index] = opaque;
4254fab8 3023 return (io_index << IO_MEM_SHIFT) | subwidth;
33417e70 3024}
61382a50 3025
1eed09cb
AK
3026int cpu_register_io_memory(CPUReadMemoryFunc **mem_read,
3027 CPUWriteMemoryFunc **mem_write,
3028 void *opaque)
3029{
3030 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
3031}
3032
88715657
AL
3033void cpu_unregister_io_memory(int io_table_address)
3034{
3035 int i;
3036 int io_index = io_table_address >> IO_MEM_SHIFT;
3037
3038 for (i=0;i < 3; i++) {
3039 io_mem_read[io_index][i] = unassigned_mem_read[i];
3040 io_mem_write[io_index][i] = unassigned_mem_write[i];
3041 }
3042 io_mem_opaque[io_index] = NULL;
3043 io_mem_used[io_index] = 0;
3044}
3045
e9179ce1
AK
3046static void io_mem_init(void)
3047{
3048 int i;
3049
3050 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
3051 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
3052 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
3053 for (i=0; i<5; i++)
3054 io_mem_used[i] = 1;
3055
3056 io_mem_watch = cpu_register_io_memory(watch_mem_read,
3057 watch_mem_write, NULL);
3058#ifdef CONFIG_KQEMU
3059 if (kqemu_phys_ram_base) {
3060 /* alloc dirty bits array */
3061 phys_ram_dirty = qemu_vmalloc(kqemu_phys_ram_size >> TARGET_PAGE_BITS);
3062 memset(phys_ram_dirty, 0xff, kqemu_phys_ram_size >> TARGET_PAGE_BITS);
3063 }
3064#endif
3065}
3066
e2eef170
PB
3067#endif /* !defined(CONFIG_USER_ONLY) */
3068
13eb76e0
FB
3069/* physical memory access (slow version, mainly for debug) */
3070#if defined(CONFIG_USER_ONLY)
5fafdf24 3071void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
3072 int len, int is_write)
3073{
3074 int l, flags;
3075 target_ulong page;
53a5960a 3076 void * p;
13eb76e0
FB
3077
3078 while (len > 0) {
3079 page = addr & TARGET_PAGE_MASK;
3080 l = (page + TARGET_PAGE_SIZE) - addr;
3081 if (l > len)
3082 l = len;
3083 flags = page_get_flags(page);
3084 if (!(flags & PAGE_VALID))
3085 return;
3086 if (is_write) {
3087 if (!(flags & PAGE_WRITE))
3088 return;
579a97f7 3089 /* XXX: this code should not depend on lock_user */
72fb7daa 3090 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
579a97f7
FB
3091 /* FIXME - should this return an error rather than just fail? */
3092 return;
72fb7daa
AJ
3093 memcpy(p, buf, l);
3094 unlock_user(p, addr, l);
13eb76e0
FB
3095 } else {
3096 if (!(flags & PAGE_READ))
3097 return;
579a97f7 3098 /* XXX: this code should not depend on lock_user */
72fb7daa 3099 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
579a97f7
FB
3100 /* FIXME - should this return an error rather than just fail? */
3101 return;
72fb7daa 3102 memcpy(buf, p, l);
5b257578 3103 unlock_user(p, addr, 0);
13eb76e0
FB
3104 }
3105 len -= l;
3106 buf += l;
3107 addr += l;
3108 }
3109}
8df1cd07 3110
13eb76e0 3111#else
5fafdf24 3112void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
3113 int len, int is_write)
3114{
3115 int l, io_index;
3116 uint8_t *ptr;
3117 uint32_t val;
2e12669a
FB
3118 target_phys_addr_t page;
3119 unsigned long pd;
92e873b9 3120 PhysPageDesc *p;
3b46e624 3121
13eb76e0
FB
3122 while (len > 0) {
3123 page = addr & TARGET_PAGE_MASK;
3124 l = (page + TARGET_PAGE_SIZE) - addr;
3125 if (l > len)
3126 l = len;
92e873b9 3127 p = phys_page_find(page >> TARGET_PAGE_BITS);
13eb76e0
FB
3128 if (!p) {
3129 pd = IO_MEM_UNASSIGNED;
3130 } else {
3131 pd = p->phys_offset;
3132 }
3b46e624 3133
13eb76e0 3134 if (is_write) {
3a7d929e 3135 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
6c2934db 3136 target_phys_addr_t addr1 = addr;
13eb76e0 3137 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3138 if (p)
6c2934db 3139 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
6a00d601
FB
3140 /* XXX: could force cpu_single_env to NULL to avoid
3141 potential bugs */
6c2934db 3142 if (l >= 4 && ((addr1 & 3) == 0)) {
1c213d19 3143 /* 32 bit write access */
c27004ec 3144 val = ldl_p(buf);
6c2934db 3145 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
13eb76e0 3146 l = 4;
6c2934db 3147 } else if (l >= 2 && ((addr1 & 1) == 0)) {
1c213d19 3148 /* 16 bit write access */
c27004ec 3149 val = lduw_p(buf);
6c2934db 3150 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3151 l = 2;
3152 } else {
1c213d19 3153 /* 8 bit write access */
c27004ec 3154 val = ldub_p(buf);
6c2934db 3155 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3156 l = 1;
3157 }
3158 } else {
b448f2f3
FB
3159 unsigned long addr1;
3160 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
13eb76e0 3161 /* RAM case */
5579c7f3 3162 ptr = qemu_get_ram_ptr(addr1);
13eb76e0 3163 memcpy(ptr, buf, l);
3a7d929e
FB
3164 if (!cpu_physical_memory_is_dirty(addr1)) {
3165 /* invalidate code */
3166 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3167 /* set dirty bit */
5fafdf24 3168 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
f23db169 3169 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 3170 }
13eb76e0
FB
3171 }
3172 } else {
5fafdf24 3173 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3174 !(pd & IO_MEM_ROMD)) {
6c2934db 3175 target_phys_addr_t addr1 = addr;
13eb76e0
FB
3176 /* I/O case */
3177 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3178 if (p)
6c2934db
AJ
3179 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3180 if (l >= 4 && ((addr1 & 3) == 0)) {
13eb76e0 3181 /* 32 bit read access */
6c2934db 3182 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
c27004ec 3183 stl_p(buf, val);
13eb76e0 3184 l = 4;
6c2934db 3185 } else if (l >= 2 && ((addr1 & 1) == 0)) {
13eb76e0 3186 /* 16 bit read access */
6c2934db 3187 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
c27004ec 3188 stw_p(buf, val);
13eb76e0
FB
3189 l = 2;
3190 } else {
1c213d19 3191 /* 8 bit read access */
6c2934db 3192 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
c27004ec 3193 stb_p(buf, val);
13eb76e0
FB
3194 l = 1;
3195 }
3196 } else {
3197 /* RAM case */
5579c7f3 3198 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
13eb76e0
FB
3199 (addr & ~TARGET_PAGE_MASK);
3200 memcpy(buf, ptr, l);
3201 }
3202 }
3203 len -= l;
3204 buf += l;
3205 addr += l;
3206 }
3207}
8df1cd07 3208
d0ecd2aa 3209/* used for ROM loading : can write in RAM and ROM */
5fafdf24 3210void cpu_physical_memory_write_rom(target_phys_addr_t addr,
d0ecd2aa
FB
3211 const uint8_t *buf, int len)
3212{
3213 int l;
3214 uint8_t *ptr;
3215 target_phys_addr_t page;
3216 unsigned long pd;
3217 PhysPageDesc *p;
3b46e624 3218
d0ecd2aa
FB
3219 while (len > 0) {
3220 page = addr & TARGET_PAGE_MASK;
3221 l = (page + TARGET_PAGE_SIZE) - addr;
3222 if (l > len)
3223 l = len;
3224 p = phys_page_find(page >> TARGET_PAGE_BITS);
3225 if (!p) {
3226 pd = IO_MEM_UNASSIGNED;
3227 } else {
3228 pd = p->phys_offset;
3229 }
3b46e624 3230
d0ecd2aa 3231 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2a4188a3
FB
3232 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3233 !(pd & IO_MEM_ROMD)) {
d0ecd2aa
FB
3234 /* do nothing */
3235 } else {
3236 unsigned long addr1;
3237 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3238 /* ROM/RAM case */
5579c7f3 3239 ptr = qemu_get_ram_ptr(addr1);
d0ecd2aa
FB
3240 memcpy(ptr, buf, l);
3241 }
3242 len -= l;
3243 buf += l;
3244 addr += l;
3245 }
3246}
3247
6d16c2f8
AL
3248typedef struct {
3249 void *buffer;
3250 target_phys_addr_t addr;
3251 target_phys_addr_t len;
3252} BounceBuffer;
3253
3254static BounceBuffer bounce;
3255
ba223c29
AL
3256typedef struct MapClient {
3257 void *opaque;
3258 void (*callback)(void *opaque);
3259 LIST_ENTRY(MapClient) link;
3260} MapClient;
3261
3262static LIST_HEAD(map_client_list, MapClient) map_client_list
3263 = LIST_HEAD_INITIALIZER(map_client_list);
3264
3265void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3266{
3267 MapClient *client = qemu_malloc(sizeof(*client));
3268
3269 client->opaque = opaque;
3270 client->callback = callback;
3271 LIST_INSERT_HEAD(&map_client_list, client, link);
3272 return client;
3273}
3274
3275void cpu_unregister_map_client(void *_client)
3276{
3277 MapClient *client = (MapClient *)_client;
3278
3279 LIST_REMOVE(client, link);
3280}
3281
3282static void cpu_notify_map_clients(void)
3283{
3284 MapClient *client;
3285
3286 while (!LIST_EMPTY(&map_client_list)) {
3287 client = LIST_FIRST(&map_client_list);
3288 client->callback(client->opaque);
3289 LIST_REMOVE(client, link);
3290 }
3291}
3292
6d16c2f8
AL
3293/* Map a physical memory region into a host virtual address.
3294 * May map a subset of the requested range, given by and returned in *plen.
3295 * May return NULL if resources needed to perform the mapping are exhausted.
3296 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3297 * Use cpu_register_map_client() to know when retrying the map operation is
3298 * likely to succeed.
6d16c2f8
AL
3299 */
3300void *cpu_physical_memory_map(target_phys_addr_t addr,
3301 target_phys_addr_t *plen,
3302 int is_write)
3303{
3304 target_phys_addr_t len = *plen;
3305 target_phys_addr_t done = 0;
3306 int l;
3307 uint8_t *ret = NULL;
3308 uint8_t *ptr;
3309 target_phys_addr_t page;
3310 unsigned long pd;
3311 PhysPageDesc *p;
3312 unsigned long addr1;
3313
3314 while (len > 0) {
3315 page = addr & TARGET_PAGE_MASK;
3316 l = (page + TARGET_PAGE_SIZE) - addr;
3317 if (l > len)
3318 l = len;
3319 p = phys_page_find(page >> TARGET_PAGE_BITS);
3320 if (!p) {
3321 pd = IO_MEM_UNASSIGNED;
3322 } else {
3323 pd = p->phys_offset;
3324 }
3325
3326 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3327 if (done || bounce.buffer) {
3328 break;
3329 }
3330 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3331 bounce.addr = addr;
3332 bounce.len = l;
3333 if (!is_write) {
3334 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3335 }
3336 ptr = bounce.buffer;
3337 } else {
3338 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3339 ptr = qemu_get_ram_ptr(addr1);
6d16c2f8
AL
3340 }
3341 if (!done) {
3342 ret = ptr;
3343 } else if (ret + done != ptr) {
3344 break;
3345 }
3346
3347 len -= l;
3348 addr += l;
3349 done += l;
3350 }
3351 *plen = done;
3352 return ret;
3353}
3354
3355/* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3356 * Will also mark the memory as dirty if is_write == 1. access_len gives
3357 * the amount of memory that was actually read or written by the caller.
3358 */
3359void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3360 int is_write, target_phys_addr_t access_len)
3361{
3362 if (buffer != bounce.buffer) {
3363 if (is_write) {
5579c7f3 3364 ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
6d16c2f8
AL
3365 while (access_len) {
3366 unsigned l;
3367 l = TARGET_PAGE_SIZE;
3368 if (l > access_len)
3369 l = access_len;
3370 if (!cpu_physical_memory_is_dirty(addr1)) {
3371 /* invalidate code */
3372 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3373 /* set dirty bit */
3374 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3375 (0xff & ~CODE_DIRTY_FLAG);
3376 }
3377 addr1 += l;
3378 access_len -= l;
3379 }
3380 }
3381 return;
3382 }
3383 if (is_write) {
3384 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3385 }
3386 qemu_free(bounce.buffer);
3387 bounce.buffer = NULL;
ba223c29 3388 cpu_notify_map_clients();
6d16c2f8 3389}
d0ecd2aa 3390
8df1cd07
FB
3391/* warning: addr must be aligned */
3392uint32_t ldl_phys(target_phys_addr_t addr)
3393{
3394 int io_index;
3395 uint8_t *ptr;
3396 uint32_t val;
3397 unsigned long pd;
3398 PhysPageDesc *p;
3399
3400 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3401 if (!p) {
3402 pd = IO_MEM_UNASSIGNED;
3403 } else {
3404 pd = p->phys_offset;
3405 }
3b46e624 3406
5fafdf24 3407 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3408 !(pd & IO_MEM_ROMD)) {
8df1cd07
FB
3409 /* I/O case */
3410 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3411 if (p)
3412 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3413 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3414 } else {
3415 /* RAM case */
5579c7f3 3416 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
8df1cd07
FB
3417 (addr & ~TARGET_PAGE_MASK);
3418 val = ldl_p(ptr);
3419 }
3420 return val;
3421}
3422
84b7b8e7
FB
3423/* warning: addr must be aligned */
3424uint64_t ldq_phys(target_phys_addr_t addr)
3425{
3426 int io_index;
3427 uint8_t *ptr;
3428 uint64_t val;
3429 unsigned long pd;
3430 PhysPageDesc *p;
3431
3432 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3433 if (!p) {
3434 pd = IO_MEM_UNASSIGNED;
3435 } else {
3436 pd = p->phys_offset;
3437 }
3b46e624 3438
2a4188a3
FB
3439 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3440 !(pd & IO_MEM_ROMD)) {
84b7b8e7
FB
3441 /* I/O case */
3442 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3443 if (p)
3444 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
84b7b8e7
FB
3445#ifdef TARGET_WORDS_BIGENDIAN
3446 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3447 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3448#else
3449 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3450 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3451#endif
3452 } else {
3453 /* RAM case */
5579c7f3 3454 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
84b7b8e7
FB
3455 (addr & ~TARGET_PAGE_MASK);
3456 val = ldq_p(ptr);
3457 }
3458 return val;
3459}
3460
aab33094
FB
3461/* XXX: optimize */
3462uint32_t ldub_phys(target_phys_addr_t addr)
3463{
3464 uint8_t val;
3465 cpu_physical_memory_read(addr, &val, 1);
3466 return val;
3467}
3468
3469/* XXX: optimize */
3470uint32_t lduw_phys(target_phys_addr_t addr)
3471{
3472 uint16_t val;
3473 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3474 return tswap16(val);
3475}
3476
8df1cd07
FB
3477/* warning: addr must be aligned. The ram page is not masked as dirty
3478 and the code inside is not invalidated. It is useful if the dirty
3479 bits are used to track modified PTEs */
3480void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3481{
3482 int io_index;
3483 uint8_t *ptr;
3484 unsigned long pd;
3485 PhysPageDesc *p;
3486
3487 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3488 if (!p) {
3489 pd = IO_MEM_UNASSIGNED;
3490 } else {
3491 pd = p->phys_offset;
3492 }
3b46e624 3493
3a7d929e 3494 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3495 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3496 if (p)
3497 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3498 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3499 } else {
74576198 3500 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3501 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3502 stl_p(ptr, val);
74576198
AL
3503
3504 if (unlikely(in_migration)) {
3505 if (!cpu_physical_memory_is_dirty(addr1)) {
3506 /* invalidate code */
3507 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3508 /* set dirty bit */
3509 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3510 (0xff & ~CODE_DIRTY_FLAG);
3511 }
3512 }
8df1cd07
FB
3513 }
3514}
3515
bc98a7ef
JM
3516void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3517{
3518 int io_index;
3519 uint8_t *ptr;
3520 unsigned long pd;
3521 PhysPageDesc *p;
3522
3523 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3524 if (!p) {
3525 pd = IO_MEM_UNASSIGNED;
3526 } else {
3527 pd = p->phys_offset;
3528 }
3b46e624 3529
bc98a7ef
JM
3530 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3531 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3532 if (p)
3533 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
bc98a7ef
JM
3534#ifdef TARGET_WORDS_BIGENDIAN
3535 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3536 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3537#else
3538 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3539 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3540#endif
3541 } else {
5579c7f3 3542 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
bc98a7ef
JM
3543 (addr & ~TARGET_PAGE_MASK);
3544 stq_p(ptr, val);
3545 }
3546}
3547
8df1cd07 3548/* warning: addr must be aligned */
8df1cd07
FB
3549void stl_phys(target_phys_addr_t addr, uint32_t val)
3550{
3551 int io_index;
3552 uint8_t *ptr;
3553 unsigned long pd;
3554 PhysPageDesc *p;
3555
3556 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3557 if (!p) {
3558 pd = IO_MEM_UNASSIGNED;
3559 } else {
3560 pd = p->phys_offset;
3561 }
3b46e624 3562
3a7d929e 3563 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3564 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3565 if (p)
3566 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3567 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3568 } else {
3569 unsigned long addr1;
3570 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3571 /* RAM case */
5579c7f3 3572 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3573 stl_p(ptr, val);
3a7d929e
FB
3574 if (!cpu_physical_memory_is_dirty(addr1)) {
3575 /* invalidate code */
3576 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3577 /* set dirty bit */
f23db169
FB
3578 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3579 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 3580 }
8df1cd07
FB
3581 }
3582}
3583
aab33094
FB
3584/* XXX: optimize */
3585void stb_phys(target_phys_addr_t addr, uint32_t val)
3586{
3587 uint8_t v = val;
3588 cpu_physical_memory_write(addr, &v, 1);
3589}
3590
3591/* XXX: optimize */
3592void stw_phys(target_phys_addr_t addr, uint32_t val)
3593{
3594 uint16_t v = tswap16(val);
3595 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3596}
3597
3598/* XXX: optimize */
3599void stq_phys(target_phys_addr_t addr, uint64_t val)
3600{
3601 val = tswap64(val);
3602 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3603}
3604
13eb76e0
FB
3605#endif
3606
5e2972fd 3607/* virtual memory access for debug (includes writing to ROM) */
5fafdf24 3608int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
b448f2f3 3609 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3610{
3611 int l;
9b3c35e0
JM
3612 target_phys_addr_t phys_addr;
3613 target_ulong page;
13eb76e0
FB
3614
3615 while (len > 0) {
3616 page = addr & TARGET_PAGE_MASK;
3617 phys_addr = cpu_get_phys_page_debug(env, page);
3618 /* if no physical page mapped, return an error */
3619 if (phys_addr == -1)
3620 return -1;
3621 l = (page + TARGET_PAGE_SIZE) - addr;
3622 if (l > len)
3623 l = len;
5e2972fd
AL
3624 phys_addr += (addr & ~TARGET_PAGE_MASK);
3625#if !defined(CONFIG_USER_ONLY)
3626 if (is_write)
3627 cpu_physical_memory_write_rom(phys_addr, buf, l);
3628 else
3629#endif
3630 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
13eb76e0
FB
3631 len -= l;
3632 buf += l;
3633 addr += l;
3634 }
3635 return 0;
3636}
3637
2e70f6ef
PB
3638/* in deterministic execution mode, instructions doing device I/Os
3639 must be at the end of the TB */
3640void cpu_io_recompile(CPUState *env, void *retaddr)
3641{
3642 TranslationBlock *tb;
3643 uint32_t n, cflags;
3644 target_ulong pc, cs_base;
3645 uint64_t flags;
3646
3647 tb = tb_find_pc((unsigned long)retaddr);
3648 if (!tb) {
3649 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3650 retaddr);
3651 }
3652 n = env->icount_decr.u16.low + tb->icount;
3653 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3654 /* Calculate how many instructions had been executed before the fault
bf20dc07 3655 occurred. */
2e70f6ef
PB
3656 n = n - env->icount_decr.u16.low;
3657 /* Generate a new TB ending on the I/O insn. */
3658 n++;
3659 /* On MIPS and SH, delay slot instructions can only be restarted if
3660 they were already the first instruction in the TB. If this is not
bf20dc07 3661 the first instruction in a TB then re-execute the preceding
2e70f6ef
PB
3662 branch. */
3663#if defined(TARGET_MIPS)
3664 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3665 env->active_tc.PC -= 4;
3666 env->icount_decr.u16.low++;
3667 env->hflags &= ~MIPS_HFLAG_BMASK;
3668 }
3669#elif defined(TARGET_SH4)
3670 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3671 && n > 1) {
3672 env->pc -= 2;
3673 env->icount_decr.u16.low++;
3674 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3675 }
3676#endif
3677 /* This should never happen. */
3678 if (n > CF_COUNT_MASK)
3679 cpu_abort(env, "TB too big during recompile");
3680
3681 cflags = n | CF_LAST_IO;
3682 pc = tb->pc;
3683 cs_base = tb->cs_base;
3684 flags = tb->flags;
3685 tb_phys_invalidate(tb, -1);
3686 /* FIXME: In theory this could raise an exception. In practice
3687 we have already translated the block once so it's probably ok. */
3688 tb_gen_code(env, pc, cs_base, flags, cflags);
bf20dc07 3689 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2e70f6ef
PB
3690 the first in the TB) then we end up generating a whole new TB and
3691 repeating the fault, which is horribly inefficient.
3692 Better would be to execute just this insn uncached, or generate a
3693 second new TB. */
3694 cpu_resume_from_signal(env, NULL);
3695}
3696
e3db7226
FB
3697void dump_exec_info(FILE *f,
3698 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3699{
3700 int i, target_code_size, max_target_code_size;
3701 int direct_jmp_count, direct_jmp2_count, cross_page;
3702 TranslationBlock *tb;
3b46e624 3703
e3db7226
FB
3704 target_code_size = 0;
3705 max_target_code_size = 0;
3706 cross_page = 0;
3707 direct_jmp_count = 0;
3708 direct_jmp2_count = 0;
3709 for(i = 0; i < nb_tbs; i++) {
3710 tb = &tbs[i];
3711 target_code_size += tb->size;
3712 if (tb->size > max_target_code_size)
3713 max_target_code_size = tb->size;
3714 if (tb->page_addr[1] != -1)
3715 cross_page++;
3716 if (tb->tb_next_offset[0] != 0xffff) {
3717 direct_jmp_count++;
3718 if (tb->tb_next_offset[1] != 0xffff) {
3719 direct_jmp2_count++;
3720 }
3721 }
3722 }
3723 /* XXX: avoid using doubles ? */
57fec1fe 3724 cpu_fprintf(f, "Translation buffer state:\n");
26a5f13b
FB
3725 cpu_fprintf(f, "gen code size %ld/%ld\n",
3726 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3727 cpu_fprintf(f, "TB count %d/%d\n",
3728 nb_tbs, code_gen_max_blocks);
5fafdf24 3729 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
e3db7226
FB
3730 nb_tbs ? target_code_size / nb_tbs : 0,
3731 max_target_code_size);
5fafdf24 3732 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
e3db7226
FB
3733 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3734 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
5fafdf24
TS
3735 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3736 cross_page,
e3db7226
FB
3737 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3738 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
5fafdf24 3739 direct_jmp_count,
e3db7226
FB
3740 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3741 direct_jmp2_count,
3742 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
57fec1fe 3743 cpu_fprintf(f, "\nStatistics:\n");
e3db7226
FB
3744 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3745 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3746 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
b67d9a52 3747 tcg_dump_info(f, cpu_fprintf);
e3db7226
FB
3748}
3749
5fafdf24 3750#if !defined(CONFIG_USER_ONLY)
61382a50
FB
3751
3752#define MMUSUFFIX _cmmu
3753#define GETPC() NULL
3754#define env cpu_single_env
b769d8fe 3755#define SOFTMMU_CODE_ACCESS
61382a50
FB
3756
3757#define SHIFT 0
3758#include "softmmu_template.h"
3759
3760#define SHIFT 1
3761#include "softmmu_template.h"
3762
3763#define SHIFT 2
3764#include "softmmu_template.h"
3765
3766#define SHIFT 3
3767#include "softmmu_template.h"
3768
3769#undef env
3770
3771#endif