]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
Remove useless Win32 include files and unused function in net.c.
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
67b915a5 19#include "config.h"
d5a8f07c
FB
20#ifdef _WIN32
21#include <windows.h>
22#else
a98d49b1 23#include <sys/types.h>
d5a8f07c
FB
24#include <sys/mman.h>
25#endif
54936004
FB
26#include <stdlib.h>
27#include <stdio.h>
28#include <stdarg.h>
29#include <string.h>
30#include <errno.h>
31#include <unistd.h>
32#include <inttypes.h>
33
6180a181
FB
34#include "cpu.h"
35#include "exec-all.h"
ca10f867 36#include "qemu-common.h"
b67d9a52 37#include "tcg.h"
b3c7724c 38#include "hw/hw.h"
74576198 39#include "osdep.h"
7ba1e619 40#include "kvm.h"
53a5960a
PB
41#if defined(CONFIG_USER_ONLY)
42#include <qemu.h>
43#endif
54936004 44
fd6ce8f6 45//#define DEBUG_TB_INVALIDATE
66e85a21 46//#define DEBUG_FLUSH
9fa3e853 47//#define DEBUG_TLB
67d3b957 48//#define DEBUG_UNASSIGNED
fd6ce8f6
FB
49
50/* make various TB consistency checks */
5fafdf24
TS
51//#define DEBUG_TB_CHECK
52//#define DEBUG_TLB_CHECK
fd6ce8f6 53
1196be37 54//#define DEBUG_IOPORT
db7b5426 55//#define DEBUG_SUBPAGE
1196be37 56
99773bd4
PB
57#if !defined(CONFIG_USER_ONLY)
58/* TB consistency checks only implemented for usermode emulation. */
59#undef DEBUG_TB_CHECK
60#endif
61
9fa3e853
FB
62#define SMC_BITMAP_USE_THRESHOLD 10
63
108c49b8
FB
64#if defined(TARGET_SPARC64)
65#define TARGET_PHYS_ADDR_SPACE_BITS 41
5dcb6b91
BS
66#elif defined(TARGET_SPARC)
67#define TARGET_PHYS_ADDR_SPACE_BITS 36
bedb69ea
JM
68#elif defined(TARGET_ALPHA)
69#define TARGET_PHYS_ADDR_SPACE_BITS 42
70#define TARGET_VIRT_ADDR_SPACE_BITS 42
108c49b8
FB
71#elif defined(TARGET_PPC64)
72#define TARGET_PHYS_ADDR_SPACE_BITS 42
640f42e4 73#elif defined(TARGET_X86_64) && !defined(CONFIG_KQEMU)
00f82b8a 74#define TARGET_PHYS_ADDR_SPACE_BITS 42
640f42e4 75#elif defined(TARGET_I386) && !defined(CONFIG_KQEMU)
00f82b8a 76#define TARGET_PHYS_ADDR_SPACE_BITS 36
108c49b8
FB
77#else
78/* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
79#define TARGET_PHYS_ADDR_SPACE_BITS 32
80#endif
81
bdaf78e0 82static TranslationBlock *tbs;
26a5f13b 83int code_gen_max_blocks;
9fa3e853 84TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
bdaf78e0 85static int nb_tbs;
eb51d102
FB
86/* any access to the tbs or the page table must use this lock */
87spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6 88
141ac468
BS
89#if defined(__arm__) || defined(__sparc_v9__)
90/* The prologue must be reachable with a direct jump. ARM and Sparc64
91 have limited branch ranges (possibly also PPC) so place it in a
d03d860b
BS
92 section close to code segment. */
93#define code_gen_section \
94 __attribute__((__section__(".gen_code"))) \
95 __attribute__((aligned (32)))
f8e2af11
SW
96#elif defined(_WIN32)
97/* Maximum alignment for Win32 is 16. */
98#define code_gen_section \
99 __attribute__((aligned (16)))
d03d860b
BS
100#else
101#define code_gen_section \
102 __attribute__((aligned (32)))
103#endif
104
105uint8_t code_gen_prologue[1024] code_gen_section;
bdaf78e0
BS
106static uint8_t *code_gen_buffer;
107static unsigned long code_gen_buffer_size;
26a5f13b 108/* threshold to flush the translated code buffer */
bdaf78e0 109static unsigned long code_gen_buffer_max_size;
fd6ce8f6
FB
110uint8_t *code_gen_ptr;
111
e2eef170 112#if !defined(CONFIG_USER_ONLY)
9fa3e853 113int phys_ram_fd;
1ccde1cb 114uint8_t *phys_ram_dirty;
74576198 115static int in_migration;
94a6b54f
PB
116
117typedef struct RAMBlock {
118 uint8_t *host;
119 ram_addr_t offset;
120 ram_addr_t length;
121 struct RAMBlock *next;
122} RAMBlock;
123
124static RAMBlock *ram_blocks;
125/* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
ccbb4d44 126 then we can no longer assume contiguous ram offsets, and external uses
94a6b54f
PB
127 of this variable will break. */
128ram_addr_t last_ram_offset;
e2eef170 129#endif
9fa3e853 130
6a00d601
FB
131CPUState *first_cpu;
132/* current CPU in the current thread. It is only valid inside
133 cpu_exec() */
5fafdf24 134CPUState *cpu_single_env;
2e70f6ef 135/* 0 = Do not count executed instructions.
bf20dc07 136 1 = Precise instruction counting.
2e70f6ef
PB
137 2 = Adaptive rate instruction counting. */
138int use_icount = 0;
139/* Current instruction counter. While executing translated code this may
140 include some instructions that have not yet been executed. */
141int64_t qemu_icount;
6a00d601 142
54936004 143typedef struct PageDesc {
92e873b9 144 /* list of TBs intersecting this ram page */
fd6ce8f6 145 TranslationBlock *first_tb;
9fa3e853
FB
146 /* in order to optimize self modifying code, we count the number
147 of lookups we do to a given page to use a bitmap */
148 unsigned int code_write_count;
149 uint8_t *code_bitmap;
150#if defined(CONFIG_USER_ONLY)
151 unsigned long flags;
152#endif
54936004
FB
153} PageDesc;
154
92e873b9 155typedef struct PhysPageDesc {
0f459d16 156 /* offset in host memory of the page + io_index in the low bits */
00f82b8a 157 ram_addr_t phys_offset;
8da3ff18 158 ram_addr_t region_offset;
92e873b9
FB
159} PhysPageDesc;
160
54936004 161#define L2_BITS 10
bedb69ea
JM
162#if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
163/* XXX: this is a temporary hack for alpha target.
164 * In the future, this is to be replaced by a multi-level table
165 * to actually be able to handle the complete 64 bits address space.
166 */
167#define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
168#else
03875444 169#define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
bedb69ea 170#endif
54936004
FB
171
172#define L1_SIZE (1 << L1_BITS)
173#define L2_SIZE (1 << L2_BITS)
174
83fb7adf
FB
175unsigned long qemu_real_host_page_size;
176unsigned long qemu_host_page_bits;
177unsigned long qemu_host_page_size;
178unsigned long qemu_host_page_mask;
54936004 179
92e873b9 180/* XXX: for system emulation, it could just be an array */
54936004 181static PageDesc *l1_map[L1_SIZE];
bdaf78e0 182static PhysPageDesc **l1_phys_map;
54936004 183
e2eef170
PB
184#if !defined(CONFIG_USER_ONLY)
185static void io_mem_init(void);
186
33417e70 187/* io memory support */
33417e70
FB
188CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
189CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
a4193c8a 190void *io_mem_opaque[IO_MEM_NB_ENTRIES];
511d2b14 191static char io_mem_used[IO_MEM_NB_ENTRIES];
6658ffb8
PB
192static int io_mem_watch;
193#endif
33417e70 194
34865134 195/* log support */
d9b630fd 196static const char *logfilename = "/tmp/qemu.log";
34865134
FB
197FILE *logfile;
198int loglevel;
e735b91c 199static int log_append = 0;
34865134 200
e3db7226
FB
201/* statistics */
202static int tlb_flush_count;
203static int tb_flush_count;
204static int tb_phys_invalidate_count;
205
db7b5426
BS
206#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
207typedef struct subpage_t {
208 target_phys_addr_t base;
3ee89922
BS
209 CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4];
210 CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4];
211 void *opaque[TARGET_PAGE_SIZE][2][4];
8da3ff18 212 ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4];
db7b5426
BS
213} subpage_t;
214
7cb69cae
FB
215#ifdef _WIN32
216static void map_exec(void *addr, long size)
217{
218 DWORD old_protect;
219 VirtualProtect(addr, size,
220 PAGE_EXECUTE_READWRITE, &old_protect);
221
222}
223#else
224static void map_exec(void *addr, long size)
225{
4369415f 226 unsigned long start, end, page_size;
7cb69cae 227
4369415f 228 page_size = getpagesize();
7cb69cae 229 start = (unsigned long)addr;
4369415f 230 start &= ~(page_size - 1);
7cb69cae
FB
231
232 end = (unsigned long)addr + size;
4369415f
FB
233 end += page_size - 1;
234 end &= ~(page_size - 1);
7cb69cae
FB
235
236 mprotect((void *)start, end - start,
237 PROT_READ | PROT_WRITE | PROT_EXEC);
238}
239#endif
240
b346ff46 241static void page_init(void)
54936004 242{
83fb7adf 243 /* NOTE: we can always suppose that qemu_host_page_size >=
54936004 244 TARGET_PAGE_SIZE */
c2b48b69
AL
245#ifdef _WIN32
246 {
247 SYSTEM_INFO system_info;
248
249 GetSystemInfo(&system_info);
250 qemu_real_host_page_size = system_info.dwPageSize;
251 }
252#else
253 qemu_real_host_page_size = getpagesize();
254#endif
83fb7adf
FB
255 if (qemu_host_page_size == 0)
256 qemu_host_page_size = qemu_real_host_page_size;
257 if (qemu_host_page_size < TARGET_PAGE_SIZE)
258 qemu_host_page_size = TARGET_PAGE_SIZE;
259 qemu_host_page_bits = 0;
260 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
261 qemu_host_page_bits++;
262 qemu_host_page_mask = ~(qemu_host_page_size - 1);
108c49b8
FB
263 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
264 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
50a9569b
AZ
265
266#if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
267 {
268 long long startaddr, endaddr;
269 FILE *f;
270 int n;
271
c8a706fe 272 mmap_lock();
0776590d 273 last_brk = (unsigned long)sbrk(0);
50a9569b
AZ
274 f = fopen("/proc/self/maps", "r");
275 if (f) {
276 do {
277 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
278 if (n == 2) {
e0b8d65a
BS
279 startaddr = MIN(startaddr,
280 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
281 endaddr = MIN(endaddr,
282 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
b5fc909e 283 page_set_flags(startaddr & TARGET_PAGE_MASK,
50a9569b
AZ
284 TARGET_PAGE_ALIGN(endaddr),
285 PAGE_RESERVED);
286 }
287 } while (!feof(f));
288 fclose(f);
289 }
c8a706fe 290 mmap_unlock();
50a9569b
AZ
291 }
292#endif
54936004
FB
293}
294
434929bf 295static inline PageDesc **page_l1_map(target_ulong index)
54936004 296{
17e2377a
PB
297#if TARGET_LONG_BITS > 32
298 /* Host memory outside guest VM. For 32-bit targets we have already
299 excluded high addresses. */
d8173e0f 300 if (index > ((target_ulong)L2_SIZE * L1_SIZE))
17e2377a
PB
301 return NULL;
302#endif
434929bf
AL
303 return &l1_map[index >> L2_BITS];
304}
305
306static inline PageDesc *page_find_alloc(target_ulong index)
307{
308 PageDesc **lp, *p;
309 lp = page_l1_map(index);
310 if (!lp)
311 return NULL;
312
54936004
FB
313 p = *lp;
314 if (!p) {
315 /* allocate if not found */
17e2377a 316#if defined(CONFIG_USER_ONLY)
17e2377a
PB
317 size_t len = sizeof(PageDesc) * L2_SIZE;
318 /* Don't use qemu_malloc because it may recurse. */
319 p = mmap(0, len, PROT_READ | PROT_WRITE,
320 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
54936004 321 *lp = p;
fb1c2cd7
AJ
322 if (h2g_valid(p)) {
323 unsigned long addr = h2g(p);
17e2377a
PB
324 page_set_flags(addr & TARGET_PAGE_MASK,
325 TARGET_PAGE_ALIGN(addr + len),
326 PAGE_RESERVED);
327 }
328#else
329 p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
330 *lp = p;
331#endif
54936004
FB
332 }
333 return p + (index & (L2_SIZE - 1));
334}
335
00f82b8a 336static inline PageDesc *page_find(target_ulong index)
54936004 337{
434929bf
AL
338 PageDesc **lp, *p;
339 lp = page_l1_map(index);
340 if (!lp)
341 return NULL;
54936004 342
434929bf 343 p = *lp;
54936004
FB
344 if (!p)
345 return 0;
fd6ce8f6
FB
346 return p + (index & (L2_SIZE - 1));
347}
348
108c49b8 349static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
92e873b9 350{
108c49b8 351 void **lp, **p;
e3f4e2a4 352 PhysPageDesc *pd;
92e873b9 353
108c49b8
FB
354 p = (void **)l1_phys_map;
355#if TARGET_PHYS_ADDR_SPACE_BITS > 32
356
357#if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
358#error unsupported TARGET_PHYS_ADDR_SPACE_BITS
359#endif
360 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
92e873b9
FB
361 p = *lp;
362 if (!p) {
363 /* allocate if not found */
108c49b8
FB
364 if (!alloc)
365 return NULL;
366 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
367 memset(p, 0, sizeof(void *) * L1_SIZE);
368 *lp = p;
369 }
370#endif
371 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
e3f4e2a4
PB
372 pd = *lp;
373 if (!pd) {
374 int i;
108c49b8
FB
375 /* allocate if not found */
376 if (!alloc)
377 return NULL;
e3f4e2a4
PB
378 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
379 *lp = pd;
67c4d23c 380 for (i = 0; i < L2_SIZE; i++) {
e3f4e2a4 381 pd[i].phys_offset = IO_MEM_UNASSIGNED;
67c4d23c
PB
382 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
383 }
92e873b9 384 }
e3f4e2a4 385 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
92e873b9
FB
386}
387
108c49b8 388static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
92e873b9 389{
108c49b8 390 return phys_page_find_alloc(index, 0);
92e873b9
FB
391}
392
9fa3e853 393#if !defined(CONFIG_USER_ONLY)
6a00d601 394static void tlb_protect_code(ram_addr_t ram_addr);
5fafdf24 395static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 396 target_ulong vaddr);
c8a706fe
PB
397#define mmap_lock() do { } while(0)
398#define mmap_unlock() do { } while(0)
9fa3e853 399#endif
fd6ce8f6 400
4369415f
FB
401#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
402
403#if defined(CONFIG_USER_ONLY)
ccbb4d44 404/* Currently it is not recommended to allocate big chunks of data in
4369415f
FB
405 user mode. It will change when a dedicated libc will be used */
406#define USE_STATIC_CODE_GEN_BUFFER
407#endif
408
409#ifdef USE_STATIC_CODE_GEN_BUFFER
410static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
411#endif
412
8fcd3692 413static void code_gen_alloc(unsigned long tb_size)
26a5f13b 414{
4369415f
FB
415#ifdef USE_STATIC_CODE_GEN_BUFFER
416 code_gen_buffer = static_code_gen_buffer;
417 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
418 map_exec(code_gen_buffer, code_gen_buffer_size);
419#else
26a5f13b
FB
420 code_gen_buffer_size = tb_size;
421 if (code_gen_buffer_size == 0) {
4369415f
FB
422#if defined(CONFIG_USER_ONLY)
423 /* in user mode, phys_ram_size is not meaningful */
424 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
425#else
ccbb4d44 426 /* XXX: needs adjustments */
94a6b54f 427 code_gen_buffer_size = (unsigned long)(ram_size / 4);
4369415f 428#endif
26a5f13b
FB
429 }
430 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
431 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
432 /* The code gen buffer location may have constraints depending on
433 the host cpu and OS */
434#if defined(__linux__)
435 {
436 int flags;
141ac468
BS
437 void *start = NULL;
438
26a5f13b
FB
439 flags = MAP_PRIVATE | MAP_ANONYMOUS;
440#if defined(__x86_64__)
441 flags |= MAP_32BIT;
442 /* Cannot map more than that */
443 if (code_gen_buffer_size > (800 * 1024 * 1024))
444 code_gen_buffer_size = (800 * 1024 * 1024);
141ac468
BS
445#elif defined(__sparc_v9__)
446 // Map the buffer below 2G, so we can use direct calls and branches
447 flags |= MAP_FIXED;
448 start = (void *) 0x60000000UL;
449 if (code_gen_buffer_size > (512 * 1024 * 1024))
450 code_gen_buffer_size = (512 * 1024 * 1024);
1cb0661e 451#elif defined(__arm__)
63d41246 452 /* Map the buffer below 32M, so we can use direct calls and branches */
1cb0661e
AZ
453 flags |= MAP_FIXED;
454 start = (void *) 0x01000000UL;
455 if (code_gen_buffer_size > 16 * 1024 * 1024)
456 code_gen_buffer_size = 16 * 1024 * 1024;
26a5f13b 457#endif
141ac468
BS
458 code_gen_buffer = mmap(start, code_gen_buffer_size,
459 PROT_WRITE | PROT_READ | PROT_EXEC,
26a5f13b
FB
460 flags, -1, 0);
461 if (code_gen_buffer == MAP_FAILED) {
462 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
463 exit(1);
464 }
465 }
c5e97233 466#elif defined(__FreeBSD__) || defined(__DragonFly__)
06e67a82
AL
467 {
468 int flags;
469 void *addr = NULL;
470 flags = MAP_PRIVATE | MAP_ANONYMOUS;
471#if defined(__x86_64__)
472 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
473 * 0x40000000 is free */
474 flags |= MAP_FIXED;
475 addr = (void *)0x40000000;
476 /* Cannot map more than that */
477 if (code_gen_buffer_size > (800 * 1024 * 1024))
478 code_gen_buffer_size = (800 * 1024 * 1024);
479#endif
480 code_gen_buffer = mmap(addr, code_gen_buffer_size,
481 PROT_WRITE | PROT_READ | PROT_EXEC,
482 flags, -1, 0);
483 if (code_gen_buffer == MAP_FAILED) {
484 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
485 exit(1);
486 }
487 }
26a5f13b
FB
488#else
489 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
26a5f13b
FB
490 map_exec(code_gen_buffer, code_gen_buffer_size);
491#endif
4369415f 492#endif /* !USE_STATIC_CODE_GEN_BUFFER */
26a5f13b
FB
493 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
494 code_gen_buffer_max_size = code_gen_buffer_size -
495 code_gen_max_block_size();
496 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
497 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
498}
499
500/* Must be called before using the QEMU cpus. 'tb_size' is the size
501 (in bytes) allocated to the translation buffer. Zero means default
502 size. */
503void cpu_exec_init_all(unsigned long tb_size)
504{
26a5f13b
FB
505 cpu_gen_init();
506 code_gen_alloc(tb_size);
507 code_gen_ptr = code_gen_buffer;
4369415f 508 page_init();
e2eef170 509#if !defined(CONFIG_USER_ONLY)
26a5f13b 510 io_mem_init();
e2eef170 511#endif
26a5f13b
FB
512}
513
9656f324
PB
514#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
515
516#define CPU_COMMON_SAVE_VERSION 1
517
518static void cpu_common_save(QEMUFile *f, void *opaque)
519{
520 CPUState *env = opaque;
521
b0a46a33
JK
522 cpu_synchronize_state(env, 0);
523
9656f324
PB
524 qemu_put_be32s(f, &env->halted);
525 qemu_put_be32s(f, &env->interrupt_request);
526}
527
528static int cpu_common_load(QEMUFile *f, void *opaque, int version_id)
529{
530 CPUState *env = opaque;
531
532 if (version_id != CPU_COMMON_SAVE_VERSION)
533 return -EINVAL;
534
535 qemu_get_be32s(f, &env->halted);
75f482ae 536 qemu_get_be32s(f, &env->interrupt_request);
3098dba0
AJ
537 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
538 version_id is increased. */
539 env->interrupt_request &= ~0x01;
9656f324 540 tlb_flush(env, 1);
b0a46a33 541 cpu_synchronize_state(env, 1);
9656f324
PB
542
543 return 0;
544}
545#endif
546
950f1472
GC
547CPUState *qemu_get_cpu(int cpu)
548{
549 CPUState *env = first_cpu;
550
551 while (env) {
552 if (env->cpu_index == cpu)
553 break;
554 env = env->next_cpu;
555 }
556
557 return env;
558}
559
6a00d601 560void cpu_exec_init(CPUState *env)
fd6ce8f6 561{
6a00d601
FB
562 CPUState **penv;
563 int cpu_index;
564
c2764719
PB
565#if defined(CONFIG_USER_ONLY)
566 cpu_list_lock();
567#endif
6a00d601
FB
568 env->next_cpu = NULL;
569 penv = &first_cpu;
570 cpu_index = 0;
571 while (*penv != NULL) {
1e9fa730 572 penv = &(*penv)->next_cpu;
6a00d601
FB
573 cpu_index++;
574 }
575 env->cpu_index = cpu_index;
268a362c 576 env->numa_node = 0;
c0ce998e
AL
577 TAILQ_INIT(&env->breakpoints);
578 TAILQ_INIT(&env->watchpoints);
6a00d601 579 *penv = env;
c2764719
PB
580#if defined(CONFIG_USER_ONLY)
581 cpu_list_unlock();
582#endif
b3c7724c 583#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
9656f324
PB
584 register_savevm("cpu_common", cpu_index, CPU_COMMON_SAVE_VERSION,
585 cpu_common_save, cpu_common_load, env);
b3c7724c
PB
586 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
587 cpu_save, cpu_load, env);
588#endif
fd6ce8f6
FB
589}
590
9fa3e853
FB
591static inline void invalidate_page_bitmap(PageDesc *p)
592{
593 if (p->code_bitmap) {
59817ccb 594 qemu_free(p->code_bitmap);
9fa3e853
FB
595 p->code_bitmap = NULL;
596 }
597 p->code_write_count = 0;
598}
599
fd6ce8f6
FB
600/* set to NULL all the 'first_tb' fields in all PageDescs */
601static void page_flush_tb(void)
602{
603 int i, j;
604 PageDesc *p;
605
606 for(i = 0; i < L1_SIZE; i++) {
607 p = l1_map[i];
608 if (p) {
9fa3e853
FB
609 for(j = 0; j < L2_SIZE; j++) {
610 p->first_tb = NULL;
611 invalidate_page_bitmap(p);
612 p++;
613 }
fd6ce8f6
FB
614 }
615 }
616}
617
618/* flush all the translation blocks */
d4e8164f 619/* XXX: tb_flush is currently not thread safe */
6a00d601 620void tb_flush(CPUState *env1)
fd6ce8f6 621{
6a00d601 622 CPUState *env;
0124311e 623#if defined(DEBUG_FLUSH)
ab3d1727
BS
624 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
625 (unsigned long)(code_gen_ptr - code_gen_buffer),
626 nb_tbs, nb_tbs > 0 ?
627 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
fd6ce8f6 628#endif
26a5f13b 629 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
a208e54a
PB
630 cpu_abort(env1, "Internal error: code buffer overflow\n");
631
fd6ce8f6 632 nb_tbs = 0;
3b46e624 633
6a00d601
FB
634 for(env = first_cpu; env != NULL; env = env->next_cpu) {
635 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
636 }
9fa3e853 637
8a8a608f 638 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
fd6ce8f6 639 page_flush_tb();
9fa3e853 640
fd6ce8f6 641 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
642 /* XXX: flush processor icache at this point if cache flush is
643 expensive */
e3db7226 644 tb_flush_count++;
fd6ce8f6
FB
645}
646
647#ifdef DEBUG_TB_CHECK
648
bc98a7ef 649static void tb_invalidate_check(target_ulong address)
fd6ce8f6
FB
650{
651 TranslationBlock *tb;
652 int i;
653 address &= TARGET_PAGE_MASK;
99773bd4
PB
654 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
655 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
656 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
657 address >= tb->pc + tb->size)) {
0bf9e31a
BS
658 printf("ERROR invalidate: address=" TARGET_FMT_lx
659 " PC=%08lx size=%04x\n",
99773bd4 660 address, (long)tb->pc, tb->size);
fd6ce8f6
FB
661 }
662 }
663 }
664}
665
666/* verify that all the pages have correct rights for code */
667static void tb_page_check(void)
668{
669 TranslationBlock *tb;
670 int i, flags1, flags2;
3b46e624 671
99773bd4
PB
672 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
673 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
674 flags1 = page_get_flags(tb->pc);
675 flags2 = page_get_flags(tb->pc + tb->size - 1);
676 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
677 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
99773bd4 678 (long)tb->pc, tb->size, flags1, flags2);
fd6ce8f6
FB
679 }
680 }
681 }
682}
683
684#endif
685
686/* invalidate one TB */
687static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
688 int next_offset)
689{
690 TranslationBlock *tb1;
691 for(;;) {
692 tb1 = *ptb;
693 if (tb1 == tb) {
694 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
695 break;
696 }
697 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
698 }
699}
700
9fa3e853
FB
701static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
702{
703 TranslationBlock *tb1;
704 unsigned int n1;
705
706 for(;;) {
707 tb1 = *ptb;
708 n1 = (long)tb1 & 3;
709 tb1 = (TranslationBlock *)((long)tb1 & ~3);
710 if (tb1 == tb) {
711 *ptb = tb1->page_next[n1];
712 break;
713 }
714 ptb = &tb1->page_next[n1];
715 }
716}
717
d4e8164f
FB
718static inline void tb_jmp_remove(TranslationBlock *tb, int n)
719{
720 TranslationBlock *tb1, **ptb;
721 unsigned int n1;
722
723 ptb = &tb->jmp_next[n];
724 tb1 = *ptb;
725 if (tb1) {
726 /* find tb(n) in circular list */
727 for(;;) {
728 tb1 = *ptb;
729 n1 = (long)tb1 & 3;
730 tb1 = (TranslationBlock *)((long)tb1 & ~3);
731 if (n1 == n && tb1 == tb)
732 break;
733 if (n1 == 2) {
734 ptb = &tb1->jmp_first;
735 } else {
736 ptb = &tb1->jmp_next[n1];
737 }
738 }
739 /* now we can suppress tb(n) from the list */
740 *ptb = tb->jmp_next[n];
741
742 tb->jmp_next[n] = NULL;
743 }
744}
745
746/* reset the jump entry 'n' of a TB so that it is not chained to
747 another TB */
748static inline void tb_reset_jump(TranslationBlock *tb, int n)
749{
750 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
751}
752
2e70f6ef 753void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
fd6ce8f6 754{
6a00d601 755 CPUState *env;
8a40a180 756 PageDesc *p;
d4e8164f 757 unsigned int h, n1;
00f82b8a 758 target_phys_addr_t phys_pc;
8a40a180 759 TranslationBlock *tb1, *tb2;
3b46e624 760
8a40a180
FB
761 /* remove the TB from the hash list */
762 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
763 h = tb_phys_hash_func(phys_pc);
5fafdf24 764 tb_remove(&tb_phys_hash[h], tb,
8a40a180
FB
765 offsetof(TranslationBlock, phys_hash_next));
766
767 /* remove the TB from the page list */
768 if (tb->page_addr[0] != page_addr) {
769 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
770 tb_page_remove(&p->first_tb, tb);
771 invalidate_page_bitmap(p);
772 }
773 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
774 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
775 tb_page_remove(&p->first_tb, tb);
776 invalidate_page_bitmap(p);
777 }
778
36bdbe54 779 tb_invalidated_flag = 1;
59817ccb 780
fd6ce8f6 781 /* remove the TB from the hash list */
8a40a180 782 h = tb_jmp_cache_hash_func(tb->pc);
6a00d601
FB
783 for(env = first_cpu; env != NULL; env = env->next_cpu) {
784 if (env->tb_jmp_cache[h] == tb)
785 env->tb_jmp_cache[h] = NULL;
786 }
d4e8164f
FB
787
788 /* suppress this TB from the two jump lists */
789 tb_jmp_remove(tb, 0);
790 tb_jmp_remove(tb, 1);
791
792 /* suppress any remaining jumps to this TB */
793 tb1 = tb->jmp_first;
794 for(;;) {
795 n1 = (long)tb1 & 3;
796 if (n1 == 2)
797 break;
798 tb1 = (TranslationBlock *)((long)tb1 & ~3);
799 tb2 = tb1->jmp_next[n1];
800 tb_reset_jump(tb1, n1);
801 tb1->jmp_next[n1] = NULL;
802 tb1 = tb2;
803 }
804 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
9fa3e853 805
e3db7226 806 tb_phys_invalidate_count++;
9fa3e853
FB
807}
808
809static inline void set_bits(uint8_t *tab, int start, int len)
810{
811 int end, mask, end1;
812
813 end = start + len;
814 tab += start >> 3;
815 mask = 0xff << (start & 7);
816 if ((start & ~7) == (end & ~7)) {
817 if (start < end) {
818 mask &= ~(0xff << (end & 7));
819 *tab |= mask;
820 }
821 } else {
822 *tab++ |= mask;
823 start = (start + 8) & ~7;
824 end1 = end & ~7;
825 while (start < end1) {
826 *tab++ = 0xff;
827 start += 8;
828 }
829 if (start < end) {
830 mask = ~(0xff << (end & 7));
831 *tab |= mask;
832 }
833 }
834}
835
836static void build_page_bitmap(PageDesc *p)
837{
838 int n, tb_start, tb_end;
839 TranslationBlock *tb;
3b46e624 840
b2a7081a 841 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
842
843 tb = p->first_tb;
844 while (tb != NULL) {
845 n = (long)tb & 3;
846 tb = (TranslationBlock *)((long)tb & ~3);
847 /* NOTE: this is subtle as a TB may span two physical pages */
848 if (n == 0) {
849 /* NOTE: tb_end may be after the end of the page, but
850 it is not a problem */
851 tb_start = tb->pc & ~TARGET_PAGE_MASK;
852 tb_end = tb_start + tb->size;
853 if (tb_end > TARGET_PAGE_SIZE)
854 tb_end = TARGET_PAGE_SIZE;
855 } else {
856 tb_start = 0;
857 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
858 }
859 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
860 tb = tb->page_next[n];
861 }
862}
863
2e70f6ef
PB
864TranslationBlock *tb_gen_code(CPUState *env,
865 target_ulong pc, target_ulong cs_base,
866 int flags, int cflags)
d720b93d
FB
867{
868 TranslationBlock *tb;
869 uint8_t *tc_ptr;
870 target_ulong phys_pc, phys_page2, virt_page2;
871 int code_gen_size;
872
c27004ec
FB
873 phys_pc = get_phys_addr_code(env, pc);
874 tb = tb_alloc(pc);
d720b93d
FB
875 if (!tb) {
876 /* flush must be done */
877 tb_flush(env);
878 /* cannot fail at this point */
c27004ec 879 tb = tb_alloc(pc);
2e70f6ef
PB
880 /* Don't forget to invalidate previous TB info. */
881 tb_invalidated_flag = 1;
d720b93d
FB
882 }
883 tc_ptr = code_gen_ptr;
884 tb->tc_ptr = tc_ptr;
885 tb->cs_base = cs_base;
886 tb->flags = flags;
887 tb->cflags = cflags;
d07bde88 888 cpu_gen_code(env, tb, &code_gen_size);
d720b93d 889 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
3b46e624 890
d720b93d 891 /* check next page if needed */
c27004ec 892 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
d720b93d 893 phys_page2 = -1;
c27004ec 894 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
d720b93d
FB
895 phys_page2 = get_phys_addr_code(env, virt_page2);
896 }
897 tb_link_phys(tb, phys_pc, phys_page2);
2e70f6ef 898 return tb;
d720b93d 899}
3b46e624 900
9fa3e853
FB
901/* invalidate all TBs which intersect with the target physical page
902 starting in range [start;end[. NOTE: start and end must refer to
d720b93d
FB
903 the same physical page. 'is_cpu_write_access' should be true if called
904 from a real cpu write access: the virtual CPU will exit the current
905 TB if code is modified inside this TB. */
00f82b8a 906void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
d720b93d
FB
907 int is_cpu_write_access)
908{
6b917547 909 TranslationBlock *tb, *tb_next, *saved_tb;
d720b93d 910 CPUState *env = cpu_single_env;
9fa3e853 911 target_ulong tb_start, tb_end;
6b917547
AL
912 PageDesc *p;
913 int n;
914#ifdef TARGET_HAS_PRECISE_SMC
915 int current_tb_not_found = is_cpu_write_access;
916 TranslationBlock *current_tb = NULL;
917 int current_tb_modified = 0;
918 target_ulong current_pc = 0;
919 target_ulong current_cs_base = 0;
920 int current_flags = 0;
921#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
922
923 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 924 if (!p)
9fa3e853 925 return;
5fafdf24 926 if (!p->code_bitmap &&
d720b93d
FB
927 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
928 is_cpu_write_access) {
9fa3e853
FB
929 /* build code bitmap */
930 build_page_bitmap(p);
931 }
932
933 /* we remove all the TBs in the range [start, end[ */
934 /* XXX: see if in some cases it could be faster to invalidate all the code */
935 tb = p->first_tb;
936 while (tb != NULL) {
937 n = (long)tb & 3;
938 tb = (TranslationBlock *)((long)tb & ~3);
939 tb_next = tb->page_next[n];
940 /* NOTE: this is subtle as a TB may span two physical pages */
941 if (n == 0) {
942 /* NOTE: tb_end may be after the end of the page, but
943 it is not a problem */
944 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
945 tb_end = tb_start + tb->size;
946 } else {
947 tb_start = tb->page_addr[1];
948 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
949 }
950 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
951#ifdef TARGET_HAS_PRECISE_SMC
952 if (current_tb_not_found) {
953 current_tb_not_found = 0;
954 current_tb = NULL;
2e70f6ef 955 if (env->mem_io_pc) {
d720b93d 956 /* now we have a real cpu fault */
2e70f6ef 957 current_tb = tb_find_pc(env->mem_io_pc);
d720b93d
FB
958 }
959 }
960 if (current_tb == tb &&
2e70f6ef 961 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
962 /* If we are modifying the current TB, we must stop
963 its execution. We could be more precise by checking
964 that the modification is after the current PC, but it
965 would require a specialized function to partially
966 restore the CPU state */
3b46e624 967
d720b93d 968 current_tb_modified = 1;
5fafdf24 969 cpu_restore_state(current_tb, env,
2e70f6ef 970 env->mem_io_pc, NULL);
6b917547
AL
971 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
972 &current_flags);
d720b93d
FB
973 }
974#endif /* TARGET_HAS_PRECISE_SMC */
6f5a9f7e
FB
975 /* we need to do that to handle the case where a signal
976 occurs while doing tb_phys_invalidate() */
977 saved_tb = NULL;
978 if (env) {
979 saved_tb = env->current_tb;
980 env->current_tb = NULL;
981 }
9fa3e853 982 tb_phys_invalidate(tb, -1);
6f5a9f7e
FB
983 if (env) {
984 env->current_tb = saved_tb;
985 if (env->interrupt_request && env->current_tb)
986 cpu_interrupt(env, env->interrupt_request);
987 }
9fa3e853
FB
988 }
989 tb = tb_next;
990 }
991#if !defined(CONFIG_USER_ONLY)
992 /* if no code remaining, no need to continue to use slow writes */
993 if (!p->first_tb) {
994 invalidate_page_bitmap(p);
d720b93d 995 if (is_cpu_write_access) {
2e70f6ef 996 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
d720b93d
FB
997 }
998 }
999#endif
1000#ifdef TARGET_HAS_PRECISE_SMC
1001 if (current_tb_modified) {
1002 /* we generate a block containing just the instruction
1003 modifying the memory. It will ensure that it cannot modify
1004 itself */
ea1c1802 1005 env->current_tb = NULL;
2e70f6ef 1006 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d 1007 cpu_resume_from_signal(env, NULL);
9fa3e853 1008 }
fd6ce8f6 1009#endif
9fa3e853 1010}
fd6ce8f6 1011
9fa3e853 1012/* len must be <= 8 and start must be a multiple of len */
00f82b8a 1013static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
9fa3e853
FB
1014{
1015 PageDesc *p;
1016 int offset, b;
59817ccb 1017#if 0
a4193c8a 1018 if (1) {
93fcfe39
AL
1019 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1020 cpu_single_env->mem_io_vaddr, len,
1021 cpu_single_env->eip,
1022 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
59817ccb
FB
1023 }
1024#endif
9fa3e853 1025 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1026 if (!p)
9fa3e853
FB
1027 return;
1028 if (p->code_bitmap) {
1029 offset = start & ~TARGET_PAGE_MASK;
1030 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1031 if (b & ((1 << len) - 1))
1032 goto do_invalidate;
1033 } else {
1034 do_invalidate:
d720b93d 1035 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
1036 }
1037}
1038
9fa3e853 1039#if !defined(CONFIG_SOFTMMU)
00f82b8a 1040static void tb_invalidate_phys_page(target_phys_addr_t addr,
d720b93d 1041 unsigned long pc, void *puc)
9fa3e853 1042{
6b917547 1043 TranslationBlock *tb;
9fa3e853 1044 PageDesc *p;
6b917547 1045 int n;
d720b93d 1046#ifdef TARGET_HAS_PRECISE_SMC
6b917547 1047 TranslationBlock *current_tb = NULL;
d720b93d 1048 CPUState *env = cpu_single_env;
6b917547
AL
1049 int current_tb_modified = 0;
1050 target_ulong current_pc = 0;
1051 target_ulong current_cs_base = 0;
1052 int current_flags = 0;
d720b93d 1053#endif
9fa3e853
FB
1054
1055 addr &= TARGET_PAGE_MASK;
1056 p = page_find(addr >> TARGET_PAGE_BITS);
5fafdf24 1057 if (!p)
9fa3e853
FB
1058 return;
1059 tb = p->first_tb;
d720b93d
FB
1060#ifdef TARGET_HAS_PRECISE_SMC
1061 if (tb && pc != 0) {
1062 current_tb = tb_find_pc(pc);
1063 }
1064#endif
9fa3e853
FB
1065 while (tb != NULL) {
1066 n = (long)tb & 3;
1067 tb = (TranslationBlock *)((long)tb & ~3);
d720b93d
FB
1068#ifdef TARGET_HAS_PRECISE_SMC
1069 if (current_tb == tb &&
2e70f6ef 1070 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1071 /* If we are modifying the current TB, we must stop
1072 its execution. We could be more precise by checking
1073 that the modification is after the current PC, but it
1074 would require a specialized function to partially
1075 restore the CPU state */
3b46e624 1076
d720b93d
FB
1077 current_tb_modified = 1;
1078 cpu_restore_state(current_tb, env, pc, puc);
6b917547
AL
1079 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1080 &current_flags);
d720b93d
FB
1081 }
1082#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1083 tb_phys_invalidate(tb, addr);
1084 tb = tb->page_next[n];
1085 }
fd6ce8f6 1086 p->first_tb = NULL;
d720b93d
FB
1087#ifdef TARGET_HAS_PRECISE_SMC
1088 if (current_tb_modified) {
1089 /* we generate a block containing just the instruction
1090 modifying the memory. It will ensure that it cannot modify
1091 itself */
ea1c1802 1092 env->current_tb = NULL;
2e70f6ef 1093 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d
FB
1094 cpu_resume_from_signal(env, puc);
1095 }
1096#endif
fd6ce8f6 1097}
9fa3e853 1098#endif
fd6ce8f6
FB
1099
1100/* add the tb in the target page and protect it if necessary */
5fafdf24 1101static inline void tb_alloc_page(TranslationBlock *tb,
53a5960a 1102 unsigned int n, target_ulong page_addr)
fd6ce8f6
FB
1103{
1104 PageDesc *p;
9fa3e853
FB
1105 TranslationBlock *last_first_tb;
1106
1107 tb->page_addr[n] = page_addr;
3a7d929e 1108 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
9fa3e853
FB
1109 tb->page_next[n] = p->first_tb;
1110 last_first_tb = p->first_tb;
1111 p->first_tb = (TranslationBlock *)((long)tb | n);
1112 invalidate_page_bitmap(p);
fd6ce8f6 1113
107db443 1114#if defined(TARGET_HAS_SMC) || 1
d720b93d 1115
9fa3e853 1116#if defined(CONFIG_USER_ONLY)
fd6ce8f6 1117 if (p->flags & PAGE_WRITE) {
53a5960a
PB
1118 target_ulong addr;
1119 PageDesc *p2;
9fa3e853
FB
1120 int prot;
1121
fd6ce8f6
FB
1122 /* force the host page as non writable (writes will have a
1123 page fault + mprotect overhead) */
53a5960a 1124 page_addr &= qemu_host_page_mask;
fd6ce8f6 1125 prot = 0;
53a5960a
PB
1126 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1127 addr += TARGET_PAGE_SIZE) {
1128
1129 p2 = page_find (addr >> TARGET_PAGE_BITS);
1130 if (!p2)
1131 continue;
1132 prot |= p2->flags;
1133 p2->flags &= ~PAGE_WRITE;
1134 page_get_flags(addr);
1135 }
5fafdf24 1136 mprotect(g2h(page_addr), qemu_host_page_size,
fd6ce8f6
FB
1137 (prot & PAGE_BITS) & ~PAGE_WRITE);
1138#ifdef DEBUG_TB_INVALIDATE
ab3d1727 1139 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
53a5960a 1140 page_addr);
fd6ce8f6 1141#endif
fd6ce8f6 1142 }
9fa3e853
FB
1143#else
1144 /* if some code is already present, then the pages are already
1145 protected. So we handle the case where only the first TB is
1146 allocated in a physical page */
1147 if (!last_first_tb) {
6a00d601 1148 tlb_protect_code(page_addr);
9fa3e853
FB
1149 }
1150#endif
d720b93d
FB
1151
1152#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
1153}
1154
1155/* Allocate a new translation block. Flush the translation buffer if
1156 too many translation blocks or too much generated code. */
c27004ec 1157TranslationBlock *tb_alloc(target_ulong pc)
fd6ce8f6
FB
1158{
1159 TranslationBlock *tb;
fd6ce8f6 1160
26a5f13b
FB
1161 if (nb_tbs >= code_gen_max_blocks ||
1162 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
d4e8164f 1163 return NULL;
fd6ce8f6
FB
1164 tb = &tbs[nb_tbs++];
1165 tb->pc = pc;
b448f2f3 1166 tb->cflags = 0;
d4e8164f
FB
1167 return tb;
1168}
1169
2e70f6ef
PB
1170void tb_free(TranslationBlock *tb)
1171{
bf20dc07 1172 /* In practice this is mostly used for single use temporary TB
2e70f6ef
PB
1173 Ignore the hard cases and just back up if this TB happens to
1174 be the last one generated. */
1175 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1176 code_gen_ptr = tb->tc_ptr;
1177 nb_tbs--;
1178 }
1179}
1180
9fa3e853
FB
1181/* add a new TB and link it to the physical page tables. phys_page2 is
1182 (-1) to indicate that only one page contains the TB. */
5fafdf24 1183void tb_link_phys(TranslationBlock *tb,
9fa3e853 1184 target_ulong phys_pc, target_ulong phys_page2)
d4e8164f 1185{
9fa3e853
FB
1186 unsigned int h;
1187 TranslationBlock **ptb;
1188
c8a706fe
PB
1189 /* Grab the mmap lock to stop another thread invalidating this TB
1190 before we are done. */
1191 mmap_lock();
9fa3e853
FB
1192 /* add in the physical hash table */
1193 h = tb_phys_hash_func(phys_pc);
1194 ptb = &tb_phys_hash[h];
1195 tb->phys_hash_next = *ptb;
1196 *ptb = tb;
fd6ce8f6
FB
1197
1198 /* add in the page list */
9fa3e853
FB
1199 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1200 if (phys_page2 != -1)
1201 tb_alloc_page(tb, 1, phys_page2);
1202 else
1203 tb->page_addr[1] = -1;
9fa3e853 1204
d4e8164f
FB
1205 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1206 tb->jmp_next[0] = NULL;
1207 tb->jmp_next[1] = NULL;
1208
1209 /* init original jump addresses */
1210 if (tb->tb_next_offset[0] != 0xffff)
1211 tb_reset_jump(tb, 0);
1212 if (tb->tb_next_offset[1] != 0xffff)
1213 tb_reset_jump(tb, 1);
8a40a180
FB
1214
1215#ifdef DEBUG_TB_CHECK
1216 tb_page_check();
1217#endif
c8a706fe 1218 mmap_unlock();
fd6ce8f6
FB
1219}
1220
9fa3e853
FB
1221/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1222 tb[1].tc_ptr. Return NULL if not found */
1223TranslationBlock *tb_find_pc(unsigned long tc_ptr)
fd6ce8f6 1224{
9fa3e853
FB
1225 int m_min, m_max, m;
1226 unsigned long v;
1227 TranslationBlock *tb;
a513fe19
FB
1228
1229 if (nb_tbs <= 0)
1230 return NULL;
1231 if (tc_ptr < (unsigned long)code_gen_buffer ||
1232 tc_ptr >= (unsigned long)code_gen_ptr)
1233 return NULL;
1234 /* binary search (cf Knuth) */
1235 m_min = 0;
1236 m_max = nb_tbs - 1;
1237 while (m_min <= m_max) {
1238 m = (m_min + m_max) >> 1;
1239 tb = &tbs[m];
1240 v = (unsigned long)tb->tc_ptr;
1241 if (v == tc_ptr)
1242 return tb;
1243 else if (tc_ptr < v) {
1244 m_max = m - 1;
1245 } else {
1246 m_min = m + 1;
1247 }
5fafdf24 1248 }
a513fe19
FB
1249 return &tbs[m_max];
1250}
7501267e 1251
ea041c0e
FB
1252static void tb_reset_jump_recursive(TranslationBlock *tb);
1253
1254static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1255{
1256 TranslationBlock *tb1, *tb_next, **ptb;
1257 unsigned int n1;
1258
1259 tb1 = tb->jmp_next[n];
1260 if (tb1 != NULL) {
1261 /* find head of list */
1262 for(;;) {
1263 n1 = (long)tb1 & 3;
1264 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1265 if (n1 == 2)
1266 break;
1267 tb1 = tb1->jmp_next[n1];
1268 }
1269 /* we are now sure now that tb jumps to tb1 */
1270 tb_next = tb1;
1271
1272 /* remove tb from the jmp_first list */
1273 ptb = &tb_next->jmp_first;
1274 for(;;) {
1275 tb1 = *ptb;
1276 n1 = (long)tb1 & 3;
1277 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1278 if (n1 == n && tb1 == tb)
1279 break;
1280 ptb = &tb1->jmp_next[n1];
1281 }
1282 *ptb = tb->jmp_next[n];
1283 tb->jmp_next[n] = NULL;
3b46e624 1284
ea041c0e
FB
1285 /* suppress the jump to next tb in generated code */
1286 tb_reset_jump(tb, n);
1287
0124311e 1288 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1289 tb_reset_jump_recursive(tb_next);
1290 }
1291}
1292
1293static void tb_reset_jump_recursive(TranslationBlock *tb)
1294{
1295 tb_reset_jump_recursive2(tb, 0);
1296 tb_reset_jump_recursive2(tb, 1);
1297}
1298
1fddef4b 1299#if defined(TARGET_HAS_ICE)
d720b93d
FB
1300static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1301{
9b3c35e0
JM
1302 target_phys_addr_t addr;
1303 target_ulong pd;
c2f07f81
PB
1304 ram_addr_t ram_addr;
1305 PhysPageDesc *p;
d720b93d 1306
c2f07f81
PB
1307 addr = cpu_get_phys_page_debug(env, pc);
1308 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1309 if (!p) {
1310 pd = IO_MEM_UNASSIGNED;
1311 } else {
1312 pd = p->phys_offset;
1313 }
1314 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
706cd4b5 1315 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
d720b93d 1316}
c27004ec 1317#endif
d720b93d 1318
6658ffb8 1319/* Add a watchpoint. */
a1d1bb31
AL
1320int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1321 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1322{
b4051334 1323 target_ulong len_mask = ~(len - 1);
c0ce998e 1324 CPUWatchpoint *wp;
6658ffb8 1325
b4051334
AL
1326 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1327 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1328 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1329 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1330 return -EINVAL;
1331 }
a1d1bb31 1332 wp = qemu_malloc(sizeof(*wp));
a1d1bb31
AL
1333
1334 wp->vaddr = addr;
b4051334 1335 wp->len_mask = len_mask;
a1d1bb31
AL
1336 wp->flags = flags;
1337
2dc9f411 1338 /* keep all GDB-injected watchpoints in front */
c0ce998e
AL
1339 if (flags & BP_GDB)
1340 TAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1341 else
1342 TAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
6658ffb8 1343
6658ffb8 1344 tlb_flush_page(env, addr);
a1d1bb31
AL
1345
1346 if (watchpoint)
1347 *watchpoint = wp;
1348 return 0;
6658ffb8
PB
1349}
1350
a1d1bb31
AL
1351/* Remove a specific watchpoint. */
1352int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1353 int flags)
6658ffb8 1354{
b4051334 1355 target_ulong len_mask = ~(len - 1);
a1d1bb31 1356 CPUWatchpoint *wp;
6658ffb8 1357
c0ce998e 1358 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334 1359 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 1360 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 1361 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
1362 return 0;
1363 }
1364 }
a1d1bb31 1365 return -ENOENT;
6658ffb8
PB
1366}
1367
a1d1bb31
AL
1368/* Remove a specific watchpoint by reference. */
1369void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1370{
c0ce998e 1371 TAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
7d03f82f 1372
a1d1bb31
AL
1373 tlb_flush_page(env, watchpoint->vaddr);
1374
1375 qemu_free(watchpoint);
1376}
1377
1378/* Remove all matching watchpoints. */
1379void cpu_watchpoint_remove_all(CPUState *env, int mask)
1380{
c0ce998e 1381 CPUWatchpoint *wp, *next;
a1d1bb31 1382
c0ce998e 1383 TAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
a1d1bb31
AL
1384 if (wp->flags & mask)
1385 cpu_watchpoint_remove_by_ref(env, wp);
c0ce998e 1386 }
7d03f82f
EI
1387}
1388
a1d1bb31
AL
1389/* Add a breakpoint. */
1390int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1391 CPUBreakpoint **breakpoint)
4c3a88a2 1392{
1fddef4b 1393#if defined(TARGET_HAS_ICE)
c0ce998e 1394 CPUBreakpoint *bp;
3b46e624 1395
a1d1bb31 1396 bp = qemu_malloc(sizeof(*bp));
4c3a88a2 1397
a1d1bb31
AL
1398 bp->pc = pc;
1399 bp->flags = flags;
1400
2dc9f411 1401 /* keep all GDB-injected breakpoints in front */
c0ce998e
AL
1402 if (flags & BP_GDB)
1403 TAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1404 else
1405 TAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
3b46e624 1406
d720b93d 1407 breakpoint_invalidate(env, pc);
a1d1bb31
AL
1408
1409 if (breakpoint)
1410 *breakpoint = bp;
4c3a88a2
FB
1411 return 0;
1412#else
a1d1bb31 1413 return -ENOSYS;
4c3a88a2
FB
1414#endif
1415}
1416
a1d1bb31
AL
1417/* Remove a specific breakpoint. */
1418int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1419{
7d03f82f 1420#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
1421 CPUBreakpoint *bp;
1422
c0ce998e 1423 TAILQ_FOREACH(bp, &env->breakpoints, entry) {
a1d1bb31
AL
1424 if (bp->pc == pc && bp->flags == flags) {
1425 cpu_breakpoint_remove_by_ref(env, bp);
1426 return 0;
1427 }
7d03f82f 1428 }
a1d1bb31
AL
1429 return -ENOENT;
1430#else
1431 return -ENOSYS;
7d03f82f
EI
1432#endif
1433}
1434
a1d1bb31
AL
1435/* Remove a specific breakpoint by reference. */
1436void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
4c3a88a2 1437{
1fddef4b 1438#if defined(TARGET_HAS_ICE)
c0ce998e 1439 TAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
d720b93d 1440
a1d1bb31
AL
1441 breakpoint_invalidate(env, breakpoint->pc);
1442
1443 qemu_free(breakpoint);
1444#endif
1445}
1446
1447/* Remove all matching breakpoints. */
1448void cpu_breakpoint_remove_all(CPUState *env, int mask)
1449{
1450#if defined(TARGET_HAS_ICE)
c0ce998e 1451 CPUBreakpoint *bp, *next;
a1d1bb31 1452
c0ce998e 1453 TAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
a1d1bb31
AL
1454 if (bp->flags & mask)
1455 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 1456 }
4c3a88a2
FB
1457#endif
1458}
1459
c33a346e
FB
1460/* enable or disable single step mode. EXCP_DEBUG is returned by the
1461 CPU loop after each instruction */
1462void cpu_single_step(CPUState *env, int enabled)
1463{
1fddef4b 1464#if defined(TARGET_HAS_ICE)
c33a346e
FB
1465 if (env->singlestep_enabled != enabled) {
1466 env->singlestep_enabled = enabled;
e22a25c9
AL
1467 if (kvm_enabled())
1468 kvm_update_guest_debug(env, 0);
1469 else {
ccbb4d44 1470 /* must flush all the translated code to avoid inconsistencies */
e22a25c9
AL
1471 /* XXX: only flush what is necessary */
1472 tb_flush(env);
1473 }
c33a346e
FB
1474 }
1475#endif
1476}
1477
34865134
FB
1478/* enable or disable low levels log */
1479void cpu_set_log(int log_flags)
1480{
1481 loglevel = log_flags;
1482 if (loglevel && !logfile) {
11fcfab4 1483 logfile = fopen(logfilename, log_append ? "a" : "w");
34865134
FB
1484 if (!logfile) {
1485 perror(logfilename);
1486 _exit(1);
1487 }
9fa3e853
FB
1488#if !defined(CONFIG_SOFTMMU)
1489 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1490 {
b55266b5 1491 static char logfile_buf[4096];
9fa3e853
FB
1492 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1493 }
1494#else
34865134 1495 setvbuf(logfile, NULL, _IOLBF, 0);
9fa3e853 1496#endif
e735b91c
PB
1497 log_append = 1;
1498 }
1499 if (!loglevel && logfile) {
1500 fclose(logfile);
1501 logfile = NULL;
34865134
FB
1502 }
1503}
1504
1505void cpu_set_log_filename(const char *filename)
1506{
1507 logfilename = strdup(filename);
e735b91c
PB
1508 if (logfile) {
1509 fclose(logfile);
1510 logfile = NULL;
1511 }
1512 cpu_set_log(loglevel);
34865134 1513}
c33a346e 1514
3098dba0 1515static void cpu_unlink_tb(CPUState *env)
ea041c0e 1516{
3098dba0
AJ
1517#if defined(USE_NPTL)
1518 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1519 problem and hope the cpu will stop of its own accord. For userspace
1520 emulation this often isn't actually as bad as it sounds. Often
1521 signals are used primarily to interrupt blocking syscalls. */
1522#else
ea041c0e 1523 TranslationBlock *tb;
15a51156 1524 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
59817ccb 1525
3098dba0
AJ
1526 tb = env->current_tb;
1527 /* if the cpu is currently executing code, we must unlink it and
1528 all the potentially executing TB */
1529 if (tb && !testandset(&interrupt_lock)) {
1530 env->current_tb = NULL;
1531 tb_reset_jump_recursive(tb);
1532 resetlock(&interrupt_lock);
be214e6c 1533 }
3098dba0
AJ
1534#endif
1535}
1536
1537/* mask must never be zero, except for A20 change call */
1538void cpu_interrupt(CPUState *env, int mask)
1539{
1540 int old_mask;
be214e6c 1541
2e70f6ef 1542 old_mask = env->interrupt_request;
68a79315 1543 env->interrupt_request |= mask;
3098dba0 1544
8edac960
AL
1545#ifndef CONFIG_USER_ONLY
1546 /*
1547 * If called from iothread context, wake the target cpu in
1548 * case its halted.
1549 */
1550 if (!qemu_cpu_self(env)) {
1551 qemu_cpu_kick(env);
1552 return;
1553 }
1554#endif
1555
2e70f6ef 1556 if (use_icount) {
266910c4 1557 env->icount_decr.u16.high = 0xffff;
2e70f6ef 1558#ifndef CONFIG_USER_ONLY
2e70f6ef 1559 if (!can_do_io(env)
be214e6c 1560 && (mask & ~old_mask) != 0) {
2e70f6ef
PB
1561 cpu_abort(env, "Raised interrupt while not in I/O function");
1562 }
1563#endif
1564 } else {
3098dba0 1565 cpu_unlink_tb(env);
ea041c0e
FB
1566 }
1567}
1568
b54ad049
FB
1569void cpu_reset_interrupt(CPUState *env, int mask)
1570{
1571 env->interrupt_request &= ~mask;
1572}
1573
3098dba0
AJ
1574void cpu_exit(CPUState *env)
1575{
1576 env->exit_request = 1;
1577 cpu_unlink_tb(env);
1578}
1579
c7cd6a37 1580const CPULogItem cpu_log_items[] = {
5fafdf24 1581 { CPU_LOG_TB_OUT_ASM, "out_asm",
f193c797
FB
1582 "show generated host assembly code for each compiled TB" },
1583 { CPU_LOG_TB_IN_ASM, "in_asm",
1584 "show target assembly code for each compiled TB" },
5fafdf24 1585 { CPU_LOG_TB_OP, "op",
57fec1fe 1586 "show micro ops for each compiled TB" },
f193c797 1587 { CPU_LOG_TB_OP_OPT, "op_opt",
e01a1157
BS
1588 "show micro ops "
1589#ifdef TARGET_I386
1590 "before eflags optimization and "
f193c797 1591#endif
e01a1157 1592 "after liveness analysis" },
f193c797
FB
1593 { CPU_LOG_INT, "int",
1594 "show interrupts/exceptions in short format" },
1595 { CPU_LOG_EXEC, "exec",
1596 "show trace before each executed TB (lots of logs)" },
9fddaa0c 1597 { CPU_LOG_TB_CPU, "cpu",
e91c8a77 1598 "show CPU state before block translation" },
f193c797
FB
1599#ifdef TARGET_I386
1600 { CPU_LOG_PCALL, "pcall",
1601 "show protected mode far calls/returns/exceptions" },
eca1bdf4
AL
1602 { CPU_LOG_RESET, "cpu_reset",
1603 "show CPU state before CPU resets" },
f193c797 1604#endif
8e3a9fd2 1605#ifdef DEBUG_IOPORT
fd872598
FB
1606 { CPU_LOG_IOPORT, "ioport",
1607 "show all i/o ports accesses" },
8e3a9fd2 1608#endif
f193c797
FB
1609 { 0, NULL, NULL },
1610};
1611
1612static int cmp1(const char *s1, int n, const char *s2)
1613{
1614 if (strlen(s2) != n)
1615 return 0;
1616 return memcmp(s1, s2, n) == 0;
1617}
3b46e624 1618
f193c797
FB
1619/* takes a comma separated list of log masks. Return 0 if error. */
1620int cpu_str_to_log_mask(const char *str)
1621{
c7cd6a37 1622 const CPULogItem *item;
f193c797
FB
1623 int mask;
1624 const char *p, *p1;
1625
1626 p = str;
1627 mask = 0;
1628 for(;;) {
1629 p1 = strchr(p, ',');
1630 if (!p1)
1631 p1 = p + strlen(p);
8e3a9fd2
FB
1632 if(cmp1(p,p1-p,"all")) {
1633 for(item = cpu_log_items; item->mask != 0; item++) {
1634 mask |= item->mask;
1635 }
1636 } else {
f193c797
FB
1637 for(item = cpu_log_items; item->mask != 0; item++) {
1638 if (cmp1(p, p1 - p, item->name))
1639 goto found;
1640 }
1641 return 0;
8e3a9fd2 1642 }
f193c797
FB
1643 found:
1644 mask |= item->mask;
1645 if (*p1 != ',')
1646 break;
1647 p = p1 + 1;
1648 }
1649 return mask;
1650}
ea041c0e 1651
7501267e
FB
1652void cpu_abort(CPUState *env, const char *fmt, ...)
1653{
1654 va_list ap;
493ae1f0 1655 va_list ap2;
7501267e
FB
1656
1657 va_start(ap, fmt);
493ae1f0 1658 va_copy(ap2, ap);
7501267e
FB
1659 fprintf(stderr, "qemu: fatal: ");
1660 vfprintf(stderr, fmt, ap);
1661 fprintf(stderr, "\n");
1662#ifdef TARGET_I386
7fe48483
FB
1663 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1664#else
1665 cpu_dump_state(env, stderr, fprintf, 0);
7501267e 1666#endif
93fcfe39
AL
1667 if (qemu_log_enabled()) {
1668 qemu_log("qemu: fatal: ");
1669 qemu_log_vprintf(fmt, ap2);
1670 qemu_log("\n");
f9373291 1671#ifdef TARGET_I386
93fcfe39 1672 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
f9373291 1673#else
93fcfe39 1674 log_cpu_state(env, 0);
f9373291 1675#endif
31b1a7b4 1676 qemu_log_flush();
93fcfe39 1677 qemu_log_close();
924edcae 1678 }
493ae1f0 1679 va_end(ap2);
f9373291 1680 va_end(ap);
7501267e
FB
1681 abort();
1682}
1683
c5be9f08
TS
1684CPUState *cpu_copy(CPUState *env)
1685{
01ba9816 1686 CPUState *new_env = cpu_init(env->cpu_model_str);
c5be9f08
TS
1687 CPUState *next_cpu = new_env->next_cpu;
1688 int cpu_index = new_env->cpu_index;
5a38f081
AL
1689#if defined(TARGET_HAS_ICE)
1690 CPUBreakpoint *bp;
1691 CPUWatchpoint *wp;
1692#endif
1693
c5be9f08 1694 memcpy(new_env, env, sizeof(CPUState));
5a38f081
AL
1695
1696 /* Preserve chaining and index. */
c5be9f08
TS
1697 new_env->next_cpu = next_cpu;
1698 new_env->cpu_index = cpu_index;
5a38f081
AL
1699
1700 /* Clone all break/watchpoints.
1701 Note: Once we support ptrace with hw-debug register access, make sure
1702 BP_CPU break/watchpoints are handled correctly on clone. */
1703 TAILQ_INIT(&env->breakpoints);
1704 TAILQ_INIT(&env->watchpoints);
1705#if defined(TARGET_HAS_ICE)
1706 TAILQ_FOREACH(bp, &env->breakpoints, entry) {
1707 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1708 }
1709 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
1710 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1711 wp->flags, NULL);
1712 }
1713#endif
1714
c5be9f08
TS
1715 return new_env;
1716}
1717
0124311e
FB
1718#if !defined(CONFIG_USER_ONLY)
1719
5c751e99
EI
1720static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1721{
1722 unsigned int i;
1723
1724 /* Discard jump cache entries for any tb which might potentially
1725 overlap the flushed page. */
1726 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1727 memset (&env->tb_jmp_cache[i], 0,
1728 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1729
1730 i = tb_jmp_cache_hash_page(addr);
1731 memset (&env->tb_jmp_cache[i], 0,
1732 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1733}
1734
08738984
IK
1735static CPUTLBEntry s_cputlb_empty_entry = {
1736 .addr_read = -1,
1737 .addr_write = -1,
1738 .addr_code = -1,
1739 .addend = -1,
1740};
1741
ee8b7021
FB
1742/* NOTE: if flush_global is true, also flush global entries (not
1743 implemented yet) */
1744void tlb_flush(CPUState *env, int flush_global)
33417e70 1745{
33417e70 1746 int i;
0124311e 1747
9fa3e853
FB
1748#if defined(DEBUG_TLB)
1749 printf("tlb_flush:\n");
1750#endif
0124311e
FB
1751 /* must reset current TB so that interrupts cannot modify the
1752 links while we are modifying them */
1753 env->current_tb = NULL;
1754
33417e70 1755 for(i = 0; i < CPU_TLB_SIZE; i++) {
cfde4bd9
IY
1756 int mmu_idx;
1757 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
08738984 1758 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
cfde4bd9 1759 }
33417e70 1760 }
9fa3e853 1761
8a40a180 1762 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
9fa3e853 1763
640f42e4 1764#ifdef CONFIG_KQEMU
0a962c02
FB
1765 if (env->kqemu_enabled) {
1766 kqemu_flush(env, flush_global);
1767 }
9fa3e853 1768#endif
e3db7226 1769 tlb_flush_count++;
33417e70
FB
1770}
1771
274da6b2 1772static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
61382a50 1773{
5fafdf24 1774 if (addr == (tlb_entry->addr_read &
84b7b8e7 1775 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1776 addr == (tlb_entry->addr_write &
84b7b8e7 1777 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1778 addr == (tlb_entry->addr_code &
84b7b8e7 1779 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
08738984 1780 *tlb_entry = s_cputlb_empty_entry;
84b7b8e7 1781 }
61382a50
FB
1782}
1783
2e12669a 1784void tlb_flush_page(CPUState *env, target_ulong addr)
33417e70 1785{
8a40a180 1786 int i;
cfde4bd9 1787 int mmu_idx;
0124311e 1788
9fa3e853 1789#if defined(DEBUG_TLB)
108c49b8 1790 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
9fa3e853 1791#endif
0124311e
FB
1792 /* must reset current TB so that interrupts cannot modify the
1793 links while we are modifying them */
1794 env->current_tb = NULL;
61382a50
FB
1795
1796 addr &= TARGET_PAGE_MASK;
1797 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
1798 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1799 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
0124311e 1800
5c751e99 1801 tlb_flush_jmp_cache(env, addr);
9fa3e853 1802
640f42e4 1803#ifdef CONFIG_KQEMU
0a962c02
FB
1804 if (env->kqemu_enabled) {
1805 kqemu_flush_page(env, addr);
1806 }
1807#endif
9fa3e853
FB
1808}
1809
9fa3e853
FB
1810/* update the TLBs so that writes to code in the virtual page 'addr'
1811 can be detected */
6a00d601 1812static void tlb_protect_code(ram_addr_t ram_addr)
9fa3e853 1813{
5fafdf24 1814 cpu_physical_memory_reset_dirty(ram_addr,
6a00d601
FB
1815 ram_addr + TARGET_PAGE_SIZE,
1816 CODE_DIRTY_FLAG);
9fa3e853
FB
1817}
1818
9fa3e853 1819/* update the TLB so that writes in physical page 'phys_addr' are no longer
3a7d929e 1820 tested for self modifying code */
5fafdf24 1821static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 1822 target_ulong vaddr)
9fa3e853 1823{
3a7d929e 1824 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1ccde1cb
FB
1825}
1826
5fafdf24 1827static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1ccde1cb
FB
1828 unsigned long start, unsigned long length)
1829{
1830 unsigned long addr;
84b7b8e7
FB
1831 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1832 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1ccde1cb 1833 if ((addr - start) < length) {
0f459d16 1834 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1ccde1cb
FB
1835 }
1836 }
1837}
1838
5579c7f3 1839/* Note: start and end must be within the same ram block. */
3a7d929e 1840void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 1841 int dirty_flags)
1ccde1cb
FB
1842{
1843 CPUState *env;
4f2ac237 1844 unsigned long length, start1;
0a962c02
FB
1845 int i, mask, len;
1846 uint8_t *p;
1ccde1cb
FB
1847
1848 start &= TARGET_PAGE_MASK;
1849 end = TARGET_PAGE_ALIGN(end);
1850
1851 length = end - start;
1852 if (length == 0)
1853 return;
0a962c02 1854 len = length >> TARGET_PAGE_BITS;
640f42e4 1855#ifdef CONFIG_KQEMU
6a00d601
FB
1856 /* XXX: should not depend on cpu context */
1857 env = first_cpu;
3a7d929e 1858 if (env->kqemu_enabled) {
f23db169
FB
1859 ram_addr_t addr;
1860 addr = start;
1861 for(i = 0; i < len; i++) {
1862 kqemu_set_notdirty(env, addr);
1863 addr += TARGET_PAGE_SIZE;
1864 }
3a7d929e
FB
1865 }
1866#endif
f23db169
FB
1867 mask = ~dirty_flags;
1868 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1869 for(i = 0; i < len; i++)
1870 p[i] &= mask;
1871
1ccde1cb
FB
1872 /* we modify the TLB cache so that the dirty bit will be set again
1873 when accessing the range */
5579c7f3
PB
1874 start1 = (unsigned long)qemu_get_ram_ptr(start);
1875 /* Chek that we don't span multiple blocks - this breaks the
1876 address comparisons below. */
1877 if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
1878 != (end - 1) - start) {
1879 abort();
1880 }
1881
6a00d601 1882 for(env = first_cpu; env != NULL; env = env->next_cpu) {
cfde4bd9
IY
1883 int mmu_idx;
1884 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1885 for(i = 0; i < CPU_TLB_SIZE; i++)
1886 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
1887 start1, length);
1888 }
6a00d601 1889 }
1ccde1cb
FB
1890}
1891
74576198
AL
1892int cpu_physical_memory_set_dirty_tracking(int enable)
1893{
1894 in_migration = enable;
b0a46a33
JK
1895 if (kvm_enabled()) {
1896 return kvm_set_migration_log(enable);
1897 }
74576198
AL
1898 return 0;
1899}
1900
1901int cpu_physical_memory_get_dirty_tracking(void)
1902{
1903 return in_migration;
1904}
1905
151f7749
JK
1906int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
1907 target_phys_addr_t end_addr)
2bec46dc 1908{
151f7749
JK
1909 int ret = 0;
1910
2bec46dc 1911 if (kvm_enabled())
151f7749
JK
1912 ret = kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
1913 return ret;
2bec46dc
AL
1914}
1915
3a7d929e
FB
1916static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
1917{
1918 ram_addr_t ram_addr;
5579c7f3 1919 void *p;
3a7d929e 1920
84b7b8e7 1921 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
5579c7f3
PB
1922 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
1923 + tlb_entry->addend);
1924 ram_addr = qemu_ram_addr_from_host(p);
3a7d929e 1925 if (!cpu_physical_memory_is_dirty(ram_addr)) {
0f459d16 1926 tlb_entry->addr_write |= TLB_NOTDIRTY;
3a7d929e
FB
1927 }
1928 }
1929}
1930
1931/* update the TLB according to the current state of the dirty bits */
1932void cpu_tlb_update_dirty(CPUState *env)
1933{
1934 int i;
cfde4bd9
IY
1935 int mmu_idx;
1936 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1937 for(i = 0; i < CPU_TLB_SIZE; i++)
1938 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
1939 }
3a7d929e
FB
1940}
1941
0f459d16 1942static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1ccde1cb 1943{
0f459d16
PB
1944 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
1945 tlb_entry->addr_write = vaddr;
1ccde1cb
FB
1946}
1947
0f459d16
PB
1948/* update the TLB corresponding to virtual page vaddr
1949 so that it is no longer dirty */
1950static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1ccde1cb 1951{
1ccde1cb 1952 int i;
cfde4bd9 1953 int mmu_idx;
1ccde1cb 1954
0f459d16 1955 vaddr &= TARGET_PAGE_MASK;
1ccde1cb 1956 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
1957 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1958 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
9fa3e853
FB
1959}
1960
59817ccb
FB
1961/* add a new TLB entry. At most one entry for a given virtual address
1962 is permitted. Return 0 if OK or 2 if the page could not be mapped
1963 (can only happen in non SOFTMMU mode for I/O pages or pages
1964 conflicting with the host address space). */
5fafdf24
TS
1965int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1966 target_phys_addr_t paddr, int prot,
6ebbf390 1967 int mmu_idx, int is_softmmu)
9fa3e853 1968{
92e873b9 1969 PhysPageDesc *p;
4f2ac237 1970 unsigned long pd;
9fa3e853 1971 unsigned int index;
4f2ac237 1972 target_ulong address;
0f459d16 1973 target_ulong code_address;
108c49b8 1974 target_phys_addr_t addend;
9fa3e853 1975 int ret;
84b7b8e7 1976 CPUTLBEntry *te;
a1d1bb31 1977 CPUWatchpoint *wp;
0f459d16 1978 target_phys_addr_t iotlb;
9fa3e853 1979
92e873b9 1980 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
9fa3e853
FB
1981 if (!p) {
1982 pd = IO_MEM_UNASSIGNED;
9fa3e853
FB
1983 } else {
1984 pd = p->phys_offset;
9fa3e853
FB
1985 }
1986#if defined(DEBUG_TLB)
6ebbf390
JM
1987 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
1988 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
9fa3e853
FB
1989#endif
1990
1991 ret = 0;
0f459d16
PB
1992 address = vaddr;
1993 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
1994 /* IO memory case (romd handled later) */
1995 address |= TLB_MMIO;
1996 }
5579c7f3 1997 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
0f459d16
PB
1998 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
1999 /* Normal RAM. */
2000 iotlb = pd & TARGET_PAGE_MASK;
2001 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2002 iotlb |= IO_MEM_NOTDIRTY;
2003 else
2004 iotlb |= IO_MEM_ROM;
2005 } else {
ccbb4d44 2006 /* IO handlers are currently passed a physical address.
0f459d16
PB
2007 It would be nice to pass an offset from the base address
2008 of that region. This would avoid having to special case RAM,
2009 and avoid full address decoding in every device.
2010 We can't use the high bits of pd for this because
2011 IO_MEM_ROMD uses these as a ram address. */
8da3ff18
PB
2012 iotlb = (pd & ~TARGET_PAGE_MASK);
2013 if (p) {
8da3ff18
PB
2014 iotlb += p->region_offset;
2015 } else {
2016 iotlb += paddr;
2017 }
0f459d16
PB
2018 }
2019
2020 code_address = address;
2021 /* Make accesses to pages with watchpoints go via the
2022 watchpoint trap routines. */
c0ce998e 2023 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
a1d1bb31 2024 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
0f459d16
PB
2025 iotlb = io_mem_watch + paddr;
2026 /* TODO: The memory case can be optimized by not trapping
2027 reads of pages with a write breakpoint. */
2028 address |= TLB_MMIO;
6658ffb8 2029 }
0f459d16 2030 }
d79acba4 2031
0f459d16
PB
2032 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2033 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2034 te = &env->tlb_table[mmu_idx][index];
2035 te->addend = addend - vaddr;
2036 if (prot & PAGE_READ) {
2037 te->addr_read = address;
2038 } else {
2039 te->addr_read = -1;
2040 }
5c751e99 2041
0f459d16
PB
2042 if (prot & PAGE_EXEC) {
2043 te->addr_code = code_address;
2044 } else {
2045 te->addr_code = -1;
2046 }
2047 if (prot & PAGE_WRITE) {
2048 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2049 (pd & IO_MEM_ROMD)) {
2050 /* Write access calls the I/O callback. */
2051 te->addr_write = address | TLB_MMIO;
2052 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2053 !cpu_physical_memory_is_dirty(pd)) {
2054 te->addr_write = address | TLB_NOTDIRTY;
9fa3e853 2055 } else {
0f459d16 2056 te->addr_write = address;
9fa3e853 2057 }
0f459d16
PB
2058 } else {
2059 te->addr_write = -1;
9fa3e853 2060 }
9fa3e853
FB
2061 return ret;
2062}
2063
0124311e
FB
2064#else
2065
ee8b7021 2066void tlb_flush(CPUState *env, int flush_global)
0124311e
FB
2067{
2068}
2069
2e12669a 2070void tlb_flush_page(CPUState *env, target_ulong addr)
0124311e
FB
2071{
2072}
2073
5fafdf24
TS
2074int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
2075 target_phys_addr_t paddr, int prot,
6ebbf390 2076 int mmu_idx, int is_softmmu)
9fa3e853
FB
2077{
2078 return 0;
2079}
0124311e 2080
edf8e2af
MW
2081/*
2082 * Walks guest process memory "regions" one by one
2083 * and calls callback function 'fn' for each region.
2084 */
2085int walk_memory_regions(void *priv,
2086 int (*fn)(void *, unsigned long, unsigned long, unsigned long))
33417e70 2087{
9fa3e853 2088 unsigned long start, end;
edf8e2af 2089 PageDesc *p = NULL;
9fa3e853 2090 int i, j, prot, prot1;
edf8e2af 2091 int rc = 0;
33417e70 2092
edf8e2af 2093 start = end = -1;
9fa3e853 2094 prot = 0;
edf8e2af
MW
2095
2096 for (i = 0; i <= L1_SIZE; i++) {
2097 p = (i < L1_SIZE) ? l1_map[i] : NULL;
2098 for (j = 0; j < L2_SIZE; j++) {
2099 prot1 = (p == NULL) ? 0 : p[j].flags;
2100 /*
2101 * "region" is one continuous chunk of memory
2102 * that has same protection flags set.
2103 */
9fa3e853
FB
2104 if (prot1 != prot) {
2105 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
2106 if (start != -1) {
edf8e2af
MW
2107 rc = (*fn)(priv, start, end, prot);
2108 /* callback can stop iteration by returning != 0 */
2109 if (rc != 0)
2110 return (rc);
9fa3e853
FB
2111 }
2112 if (prot1 != 0)
2113 start = end;
2114 else
2115 start = -1;
2116 prot = prot1;
2117 }
edf8e2af 2118 if (p == NULL)
9fa3e853
FB
2119 break;
2120 }
33417e70 2121 }
edf8e2af
MW
2122 return (rc);
2123}
2124
2125static int dump_region(void *priv, unsigned long start,
2126 unsigned long end, unsigned long prot)
2127{
2128 FILE *f = (FILE *)priv;
2129
2130 (void) fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
2131 start, end, end - start,
2132 ((prot & PAGE_READ) ? 'r' : '-'),
2133 ((prot & PAGE_WRITE) ? 'w' : '-'),
2134 ((prot & PAGE_EXEC) ? 'x' : '-'));
2135
2136 return (0);
2137}
2138
2139/* dump memory mappings */
2140void page_dump(FILE *f)
2141{
2142 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2143 "start", "end", "size", "prot");
2144 walk_memory_regions(f, dump_region);
33417e70
FB
2145}
2146
53a5960a 2147int page_get_flags(target_ulong address)
33417e70 2148{
9fa3e853
FB
2149 PageDesc *p;
2150
2151 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 2152 if (!p)
9fa3e853
FB
2153 return 0;
2154 return p->flags;
2155}
2156
2157/* modify the flags of a page and invalidate the code if
ccbb4d44 2158 necessary. The flag PAGE_WRITE_ORG is positioned automatically
9fa3e853 2159 depending on PAGE_WRITE */
53a5960a 2160void page_set_flags(target_ulong start, target_ulong end, int flags)
9fa3e853
FB
2161{
2162 PageDesc *p;
53a5960a 2163 target_ulong addr;
9fa3e853 2164
c8a706fe 2165 /* mmap_lock should already be held. */
9fa3e853
FB
2166 start = start & TARGET_PAGE_MASK;
2167 end = TARGET_PAGE_ALIGN(end);
2168 if (flags & PAGE_WRITE)
2169 flags |= PAGE_WRITE_ORG;
9fa3e853
FB
2170 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2171 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
17e2377a
PB
2172 /* We may be called for host regions that are outside guest
2173 address space. */
2174 if (!p)
2175 return;
9fa3e853
FB
2176 /* if the write protection is set, then we invalidate the code
2177 inside */
5fafdf24 2178 if (!(p->flags & PAGE_WRITE) &&
9fa3e853
FB
2179 (flags & PAGE_WRITE) &&
2180 p->first_tb) {
d720b93d 2181 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
2182 }
2183 p->flags = flags;
2184 }
33417e70
FB
2185}
2186
3d97b40b
TS
2187int page_check_range(target_ulong start, target_ulong len, int flags)
2188{
2189 PageDesc *p;
2190 target_ulong end;
2191 target_ulong addr;
2192
55f280c9
AZ
2193 if (start + len < start)
2194 /* we've wrapped around */
2195 return -1;
2196
3d97b40b
TS
2197 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2198 start = start & TARGET_PAGE_MASK;
2199
3d97b40b
TS
2200 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2201 p = page_find(addr >> TARGET_PAGE_BITS);
2202 if( !p )
2203 return -1;
2204 if( !(p->flags & PAGE_VALID) )
2205 return -1;
2206
dae3270c 2207 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
3d97b40b 2208 return -1;
dae3270c
FB
2209 if (flags & PAGE_WRITE) {
2210 if (!(p->flags & PAGE_WRITE_ORG))
2211 return -1;
2212 /* unprotect the page if it was put read-only because it
2213 contains translated code */
2214 if (!(p->flags & PAGE_WRITE)) {
2215 if (!page_unprotect(addr, 0, NULL))
2216 return -1;
2217 }
2218 return 0;
2219 }
3d97b40b
TS
2220 }
2221 return 0;
2222}
2223
9fa3e853 2224/* called from signal handler: invalidate the code and unprotect the
ccbb4d44 2225 page. Return TRUE if the fault was successfully handled. */
53a5960a 2226int page_unprotect(target_ulong address, unsigned long pc, void *puc)
9fa3e853
FB
2227{
2228 unsigned int page_index, prot, pindex;
2229 PageDesc *p, *p1;
53a5960a 2230 target_ulong host_start, host_end, addr;
9fa3e853 2231
c8a706fe
PB
2232 /* Technically this isn't safe inside a signal handler. However we
2233 know this only ever happens in a synchronous SEGV handler, so in
2234 practice it seems to be ok. */
2235 mmap_lock();
2236
83fb7adf 2237 host_start = address & qemu_host_page_mask;
9fa3e853
FB
2238 page_index = host_start >> TARGET_PAGE_BITS;
2239 p1 = page_find(page_index);
c8a706fe
PB
2240 if (!p1) {
2241 mmap_unlock();
9fa3e853 2242 return 0;
c8a706fe 2243 }
83fb7adf 2244 host_end = host_start + qemu_host_page_size;
9fa3e853
FB
2245 p = p1;
2246 prot = 0;
2247 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2248 prot |= p->flags;
2249 p++;
2250 }
2251 /* if the page was really writable, then we change its
2252 protection back to writable */
2253 if (prot & PAGE_WRITE_ORG) {
2254 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2255 if (!(p1[pindex].flags & PAGE_WRITE)) {
5fafdf24 2256 mprotect((void *)g2h(host_start), qemu_host_page_size,
9fa3e853
FB
2257 (prot & PAGE_BITS) | PAGE_WRITE);
2258 p1[pindex].flags |= PAGE_WRITE;
2259 /* and since the content will be modified, we must invalidate
2260 the corresponding translated code. */
d720b93d 2261 tb_invalidate_phys_page(address, pc, puc);
9fa3e853
FB
2262#ifdef DEBUG_TB_CHECK
2263 tb_invalidate_check(address);
2264#endif
c8a706fe 2265 mmap_unlock();
9fa3e853
FB
2266 return 1;
2267 }
2268 }
c8a706fe 2269 mmap_unlock();
9fa3e853
FB
2270 return 0;
2271}
2272
6a00d601
FB
2273static inline void tlb_set_dirty(CPUState *env,
2274 unsigned long addr, target_ulong vaddr)
1ccde1cb
FB
2275{
2276}
9fa3e853
FB
2277#endif /* defined(CONFIG_USER_ONLY) */
2278
e2eef170 2279#if !defined(CONFIG_USER_ONLY)
8da3ff18 2280
db7b5426 2281static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
8da3ff18 2282 ram_addr_t memory, ram_addr_t region_offset);
00f82b8a 2283static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
8da3ff18 2284 ram_addr_t orig_memory, ram_addr_t region_offset);
db7b5426
BS
2285#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2286 need_subpage) \
2287 do { \
2288 if (addr > start_addr) \
2289 start_addr2 = 0; \
2290 else { \
2291 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2292 if (start_addr2 > 0) \
2293 need_subpage = 1; \
2294 } \
2295 \
49e9fba2 2296 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
db7b5426
BS
2297 end_addr2 = TARGET_PAGE_SIZE - 1; \
2298 else { \
2299 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2300 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2301 need_subpage = 1; \
2302 } \
2303 } while (0)
2304
33417e70
FB
2305/* register physical memory. 'size' must be a multiple of the target
2306 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
8da3ff18
PB
2307 io memory page. The address used when calling the IO function is
2308 the offset from the start of the region, plus region_offset. Both
ccbb4d44 2309 start_addr and region_offset are rounded down to a page boundary
8da3ff18
PB
2310 before calculating this offset. This should not be a problem unless
2311 the low bits of start_addr and region_offset differ. */
2312void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2313 ram_addr_t size,
2314 ram_addr_t phys_offset,
2315 ram_addr_t region_offset)
33417e70 2316{
108c49b8 2317 target_phys_addr_t addr, end_addr;
92e873b9 2318 PhysPageDesc *p;
9d42037b 2319 CPUState *env;
00f82b8a 2320 ram_addr_t orig_size = size;
db7b5426 2321 void *subpage;
33417e70 2322
640f42e4 2323#ifdef CONFIG_KQEMU
da260249
FB
2324 /* XXX: should not depend on cpu context */
2325 env = first_cpu;
2326 if (env->kqemu_enabled) {
2327 kqemu_set_phys_mem(start_addr, size, phys_offset);
2328 }
2329#endif
7ba1e619
AL
2330 if (kvm_enabled())
2331 kvm_set_phys_mem(start_addr, size, phys_offset);
2332
67c4d23c
PB
2333 if (phys_offset == IO_MEM_UNASSIGNED) {
2334 region_offset = start_addr;
2335 }
8da3ff18 2336 region_offset &= TARGET_PAGE_MASK;
5fd386f6 2337 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
49e9fba2
BS
2338 end_addr = start_addr + (target_phys_addr_t)size;
2339 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
db7b5426
BS
2340 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2341 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
00f82b8a 2342 ram_addr_t orig_memory = p->phys_offset;
db7b5426
BS
2343 target_phys_addr_t start_addr2, end_addr2;
2344 int need_subpage = 0;
2345
2346 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2347 need_subpage);
4254fab8 2348 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426
BS
2349 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2350 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18
PB
2351 &p->phys_offset, orig_memory,
2352 p->region_offset);
db7b5426
BS
2353 } else {
2354 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2355 >> IO_MEM_SHIFT];
2356 }
8da3ff18
PB
2357 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2358 region_offset);
2359 p->region_offset = 0;
db7b5426
BS
2360 } else {
2361 p->phys_offset = phys_offset;
2362 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2363 (phys_offset & IO_MEM_ROMD))
2364 phys_offset += TARGET_PAGE_SIZE;
2365 }
2366 } else {
2367 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2368 p->phys_offset = phys_offset;
8da3ff18 2369 p->region_offset = region_offset;
db7b5426 2370 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
8da3ff18 2371 (phys_offset & IO_MEM_ROMD)) {
db7b5426 2372 phys_offset += TARGET_PAGE_SIZE;
0e8f0967 2373 } else {
db7b5426
BS
2374 target_phys_addr_t start_addr2, end_addr2;
2375 int need_subpage = 0;
2376
2377 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2378 end_addr2, need_subpage);
2379
4254fab8 2380 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426 2381 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18 2382 &p->phys_offset, IO_MEM_UNASSIGNED,
67c4d23c 2383 addr & TARGET_PAGE_MASK);
db7b5426 2384 subpage_register(subpage, start_addr2, end_addr2,
8da3ff18
PB
2385 phys_offset, region_offset);
2386 p->region_offset = 0;
db7b5426
BS
2387 }
2388 }
2389 }
8da3ff18 2390 region_offset += TARGET_PAGE_SIZE;
33417e70 2391 }
3b46e624 2392
9d42037b
FB
2393 /* since each CPU stores ram addresses in its TLB cache, we must
2394 reset the modified entries */
2395 /* XXX: slow ! */
2396 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2397 tlb_flush(env, 1);
2398 }
33417e70
FB
2399}
2400
ba863458 2401/* XXX: temporary until new memory mapping API */
00f82b8a 2402ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
ba863458
FB
2403{
2404 PhysPageDesc *p;
2405
2406 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2407 if (!p)
2408 return IO_MEM_UNASSIGNED;
2409 return p->phys_offset;
2410}
2411
f65ed4c1
AL
2412void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2413{
2414 if (kvm_enabled())
2415 kvm_coalesce_mmio_region(addr, size);
2416}
2417
2418void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2419{
2420 if (kvm_enabled())
2421 kvm_uncoalesce_mmio_region(addr, size);
2422}
2423
640f42e4 2424#ifdef CONFIG_KQEMU
e9a1ab19 2425/* XXX: better than nothing */
94a6b54f 2426static ram_addr_t kqemu_ram_alloc(ram_addr_t size)
e9a1ab19
FB
2427{
2428 ram_addr_t addr;
94a6b54f 2429 if ((last_ram_offset + size) > kqemu_phys_ram_size) {
012a7045 2430 fprintf(stderr, "Not enough memory (requested_size = %" PRIu64 ", max memory = %" PRIu64 ")\n",
94a6b54f 2431 (uint64_t)size, (uint64_t)kqemu_phys_ram_size);
e9a1ab19
FB
2432 abort();
2433 }
94a6b54f
PB
2434 addr = last_ram_offset;
2435 last_ram_offset = TARGET_PAGE_ALIGN(last_ram_offset + size);
e9a1ab19
FB
2436 return addr;
2437}
94a6b54f
PB
2438#endif
2439
2440ram_addr_t qemu_ram_alloc(ram_addr_t size)
2441{
2442 RAMBlock *new_block;
2443
640f42e4 2444#ifdef CONFIG_KQEMU
94a6b54f
PB
2445 if (kqemu_phys_ram_base) {
2446 return kqemu_ram_alloc(size);
2447 }
2448#endif
2449
2450 size = TARGET_PAGE_ALIGN(size);
2451 new_block = qemu_malloc(sizeof(*new_block));
2452
2453 new_block->host = qemu_vmalloc(size);
2454 new_block->offset = last_ram_offset;
2455 new_block->length = size;
2456
2457 new_block->next = ram_blocks;
2458 ram_blocks = new_block;
2459
2460 phys_ram_dirty = qemu_realloc(phys_ram_dirty,
2461 (last_ram_offset + size) >> TARGET_PAGE_BITS);
2462 memset(phys_ram_dirty + (last_ram_offset >> TARGET_PAGE_BITS),
2463 0xff, size >> TARGET_PAGE_BITS);
2464
2465 last_ram_offset += size;
2466
6f0437e8
JK
2467 if (kvm_enabled())
2468 kvm_setup_guest_memory(new_block->host, size);
2469
94a6b54f
PB
2470 return new_block->offset;
2471}
e9a1ab19
FB
2472
2473void qemu_ram_free(ram_addr_t addr)
2474{
94a6b54f 2475 /* TODO: implement this. */
e9a1ab19
FB
2476}
2477
dc828ca1 2478/* Return a host pointer to ram allocated with qemu_ram_alloc.
5579c7f3
PB
2479 With the exception of the softmmu code in this file, this should
2480 only be used for local memory (e.g. video ram) that the device owns,
2481 and knows it isn't going to access beyond the end of the block.
2482
2483 It should not be used for general purpose DMA.
2484 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2485 */
dc828ca1
PB
2486void *qemu_get_ram_ptr(ram_addr_t addr)
2487{
94a6b54f
PB
2488 RAMBlock *prev;
2489 RAMBlock **prevp;
2490 RAMBlock *block;
2491
640f42e4 2492#ifdef CONFIG_KQEMU
94a6b54f
PB
2493 if (kqemu_phys_ram_base) {
2494 return kqemu_phys_ram_base + addr;
2495 }
2496#endif
2497
2498 prev = NULL;
2499 prevp = &ram_blocks;
2500 block = ram_blocks;
2501 while (block && (block->offset > addr
2502 || block->offset + block->length <= addr)) {
2503 if (prev)
2504 prevp = &prev->next;
2505 prev = block;
2506 block = block->next;
2507 }
2508 if (!block) {
2509 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2510 abort();
2511 }
2512 /* Move this entry to to start of the list. */
2513 if (prev) {
2514 prev->next = block->next;
2515 block->next = *prevp;
2516 *prevp = block;
2517 }
2518 return block->host + (addr - block->offset);
dc828ca1
PB
2519}
2520
5579c7f3
PB
2521/* Some of the softmmu routines need to translate from a host pointer
2522 (typically a TLB entry) back to a ram offset. */
2523ram_addr_t qemu_ram_addr_from_host(void *ptr)
2524{
94a6b54f
PB
2525 RAMBlock *prev;
2526 RAMBlock **prevp;
2527 RAMBlock *block;
2528 uint8_t *host = ptr;
2529
640f42e4 2530#ifdef CONFIG_KQEMU
94a6b54f
PB
2531 if (kqemu_phys_ram_base) {
2532 return host - kqemu_phys_ram_base;
2533 }
2534#endif
2535
2536 prev = NULL;
2537 prevp = &ram_blocks;
2538 block = ram_blocks;
2539 while (block && (block->host > host
2540 || block->host + block->length <= host)) {
2541 if (prev)
2542 prevp = &prev->next;
2543 prev = block;
2544 block = block->next;
2545 }
2546 if (!block) {
2547 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2548 abort();
2549 }
2550 return block->offset + (host - block->host);
5579c7f3
PB
2551}
2552
a4193c8a 2553static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
33417e70 2554{
67d3b957 2555#ifdef DEBUG_UNASSIGNED
ab3d1727 2556 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
b4f0a316 2557#endif
0a6f8a6d 2558#if defined(TARGET_SPARC)
e18231a3
BS
2559 do_unassigned_access(addr, 0, 0, 0, 1);
2560#endif
2561 return 0;
2562}
2563
2564static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
2565{
2566#ifdef DEBUG_UNASSIGNED
2567 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2568#endif
0a6f8a6d 2569#if defined(TARGET_SPARC)
e18231a3
BS
2570 do_unassigned_access(addr, 0, 0, 0, 2);
2571#endif
2572 return 0;
2573}
2574
2575static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
2576{
2577#ifdef DEBUG_UNASSIGNED
2578 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2579#endif
0a6f8a6d 2580#if defined(TARGET_SPARC)
e18231a3 2581 do_unassigned_access(addr, 0, 0, 0, 4);
67d3b957 2582#endif
33417e70
FB
2583 return 0;
2584}
2585
a4193c8a 2586static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
33417e70 2587{
67d3b957 2588#ifdef DEBUG_UNASSIGNED
ab3d1727 2589 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
67d3b957 2590#endif
0a6f8a6d 2591#if defined(TARGET_SPARC)
e18231a3
BS
2592 do_unassigned_access(addr, 1, 0, 0, 1);
2593#endif
2594}
2595
2596static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2597{
2598#ifdef DEBUG_UNASSIGNED
2599 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2600#endif
0a6f8a6d 2601#if defined(TARGET_SPARC)
e18231a3
BS
2602 do_unassigned_access(addr, 1, 0, 0, 2);
2603#endif
2604}
2605
2606static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2607{
2608#ifdef DEBUG_UNASSIGNED
2609 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2610#endif
0a6f8a6d 2611#if defined(TARGET_SPARC)
e18231a3 2612 do_unassigned_access(addr, 1, 0, 0, 4);
b4f0a316 2613#endif
33417e70
FB
2614}
2615
2616static CPUReadMemoryFunc *unassigned_mem_read[3] = {
2617 unassigned_mem_readb,
e18231a3
BS
2618 unassigned_mem_readw,
2619 unassigned_mem_readl,
33417e70
FB
2620};
2621
2622static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
2623 unassigned_mem_writeb,
e18231a3
BS
2624 unassigned_mem_writew,
2625 unassigned_mem_writel,
33417e70
FB
2626};
2627
0f459d16
PB
2628static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
2629 uint32_t val)
9fa3e853 2630{
3a7d929e 2631 int dirty_flags;
3a7d929e
FB
2632 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2633 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2634#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2635 tb_invalidate_phys_page_fast(ram_addr, 1);
2636 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2637#endif
3a7d929e 2638 }
5579c7f3 2639 stb_p(qemu_get_ram_ptr(ram_addr), val);
640f42e4 2640#ifdef CONFIG_KQEMU
f32fc648
FB
2641 if (cpu_single_env->kqemu_enabled &&
2642 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2643 kqemu_modify_page(cpu_single_env, ram_addr);
2644#endif
f23db169
FB
2645 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2646 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2647 /* we remove the notdirty callback only if the code has been
2648 flushed */
2649 if (dirty_flags == 0xff)
2e70f6ef 2650 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2651}
2652
0f459d16
PB
2653static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
2654 uint32_t val)
9fa3e853 2655{
3a7d929e 2656 int dirty_flags;
3a7d929e
FB
2657 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2658 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2659#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2660 tb_invalidate_phys_page_fast(ram_addr, 2);
2661 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2662#endif
3a7d929e 2663 }
5579c7f3 2664 stw_p(qemu_get_ram_ptr(ram_addr), val);
640f42e4 2665#ifdef CONFIG_KQEMU
f32fc648
FB
2666 if (cpu_single_env->kqemu_enabled &&
2667 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2668 kqemu_modify_page(cpu_single_env, ram_addr);
2669#endif
f23db169
FB
2670 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2671 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2672 /* we remove the notdirty callback only if the code has been
2673 flushed */
2674 if (dirty_flags == 0xff)
2e70f6ef 2675 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2676}
2677
0f459d16
PB
2678static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
2679 uint32_t val)
9fa3e853 2680{
3a7d929e 2681 int dirty_flags;
3a7d929e
FB
2682 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2683 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2684#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2685 tb_invalidate_phys_page_fast(ram_addr, 4);
2686 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2687#endif
3a7d929e 2688 }
5579c7f3 2689 stl_p(qemu_get_ram_ptr(ram_addr), val);
640f42e4 2690#ifdef CONFIG_KQEMU
f32fc648
FB
2691 if (cpu_single_env->kqemu_enabled &&
2692 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2693 kqemu_modify_page(cpu_single_env, ram_addr);
2694#endif
f23db169
FB
2695 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2696 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2697 /* we remove the notdirty callback only if the code has been
2698 flushed */
2699 if (dirty_flags == 0xff)
2e70f6ef 2700 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2701}
2702
3a7d929e 2703static CPUReadMemoryFunc *error_mem_read[3] = {
9fa3e853
FB
2704 NULL, /* never used */
2705 NULL, /* never used */
2706 NULL, /* never used */
2707};
2708
1ccde1cb
FB
2709static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
2710 notdirty_mem_writeb,
2711 notdirty_mem_writew,
2712 notdirty_mem_writel,
2713};
2714
0f459d16 2715/* Generate a debug exception if a watchpoint has been hit. */
b4051334 2716static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16
PB
2717{
2718 CPUState *env = cpu_single_env;
06d55cc1
AL
2719 target_ulong pc, cs_base;
2720 TranslationBlock *tb;
0f459d16 2721 target_ulong vaddr;
a1d1bb31 2722 CPUWatchpoint *wp;
06d55cc1 2723 int cpu_flags;
0f459d16 2724
06d55cc1
AL
2725 if (env->watchpoint_hit) {
2726 /* We re-entered the check after replacing the TB. Now raise
2727 * the debug interrupt so that is will trigger after the
2728 * current instruction. */
2729 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2730 return;
2731 }
2e70f6ef 2732 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
c0ce998e 2733 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334
AL
2734 if ((vaddr == (wp->vaddr & len_mask) ||
2735 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
2736 wp->flags |= BP_WATCHPOINT_HIT;
2737 if (!env->watchpoint_hit) {
2738 env->watchpoint_hit = wp;
2739 tb = tb_find_pc(env->mem_io_pc);
2740 if (!tb) {
2741 cpu_abort(env, "check_watchpoint: could not find TB for "
2742 "pc=%p", (void *)env->mem_io_pc);
2743 }
2744 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
2745 tb_phys_invalidate(tb, -1);
2746 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2747 env->exception_index = EXCP_DEBUG;
2748 } else {
2749 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2750 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
2751 }
2752 cpu_resume_from_signal(env, NULL);
06d55cc1 2753 }
6e140f28
AL
2754 } else {
2755 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2756 }
2757 }
2758}
2759
6658ffb8
PB
2760/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2761 so these check for a hit then pass through to the normal out-of-line
2762 phys routines. */
2763static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
2764{
b4051334 2765 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
6658ffb8
PB
2766 return ldub_phys(addr);
2767}
2768
2769static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
2770{
b4051334 2771 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
6658ffb8
PB
2772 return lduw_phys(addr);
2773}
2774
2775static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
2776{
b4051334 2777 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
6658ffb8
PB
2778 return ldl_phys(addr);
2779}
2780
6658ffb8
PB
2781static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
2782 uint32_t val)
2783{
b4051334 2784 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
6658ffb8
PB
2785 stb_phys(addr, val);
2786}
2787
2788static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
2789 uint32_t val)
2790{
b4051334 2791 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
6658ffb8
PB
2792 stw_phys(addr, val);
2793}
2794
2795static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
2796 uint32_t val)
2797{
b4051334 2798 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
6658ffb8
PB
2799 stl_phys(addr, val);
2800}
2801
2802static CPUReadMemoryFunc *watch_mem_read[3] = {
2803 watch_mem_readb,
2804 watch_mem_readw,
2805 watch_mem_readl,
2806};
2807
2808static CPUWriteMemoryFunc *watch_mem_write[3] = {
2809 watch_mem_writeb,
2810 watch_mem_writew,
2811 watch_mem_writel,
2812};
6658ffb8 2813
db7b5426
BS
2814static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
2815 unsigned int len)
2816{
db7b5426
BS
2817 uint32_t ret;
2818 unsigned int idx;
2819
8da3ff18 2820 idx = SUBPAGE_IDX(addr);
db7b5426
BS
2821#if defined(DEBUG_SUBPAGE)
2822 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2823 mmio, len, addr, idx);
2824#endif
8da3ff18
PB
2825 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len],
2826 addr + mmio->region_offset[idx][0][len]);
db7b5426
BS
2827
2828 return ret;
2829}
2830
2831static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
2832 uint32_t value, unsigned int len)
2833{
db7b5426
BS
2834 unsigned int idx;
2835
8da3ff18 2836 idx = SUBPAGE_IDX(addr);
db7b5426
BS
2837#if defined(DEBUG_SUBPAGE)
2838 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2839 mmio, len, addr, idx, value);
2840#endif
8da3ff18
PB
2841 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len],
2842 addr + mmio->region_offset[idx][1][len],
2843 value);
db7b5426
BS
2844}
2845
2846static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
2847{
2848#if defined(DEBUG_SUBPAGE)
2849 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2850#endif
2851
2852 return subpage_readlen(opaque, addr, 0);
2853}
2854
2855static void subpage_writeb (void *opaque, target_phys_addr_t addr,
2856 uint32_t value)
2857{
2858#if defined(DEBUG_SUBPAGE)
2859 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2860#endif
2861 subpage_writelen(opaque, addr, value, 0);
2862}
2863
2864static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
2865{
2866#if defined(DEBUG_SUBPAGE)
2867 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2868#endif
2869
2870 return subpage_readlen(opaque, addr, 1);
2871}
2872
2873static void subpage_writew (void *opaque, target_phys_addr_t addr,
2874 uint32_t value)
2875{
2876#if defined(DEBUG_SUBPAGE)
2877 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2878#endif
2879 subpage_writelen(opaque, addr, value, 1);
2880}
2881
2882static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
2883{
2884#if defined(DEBUG_SUBPAGE)
2885 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2886#endif
2887
2888 return subpage_readlen(opaque, addr, 2);
2889}
2890
2891static void subpage_writel (void *opaque,
2892 target_phys_addr_t addr, uint32_t value)
2893{
2894#if defined(DEBUG_SUBPAGE)
2895 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2896#endif
2897 subpage_writelen(opaque, addr, value, 2);
2898}
2899
2900static CPUReadMemoryFunc *subpage_read[] = {
2901 &subpage_readb,
2902 &subpage_readw,
2903 &subpage_readl,
2904};
2905
2906static CPUWriteMemoryFunc *subpage_write[] = {
2907 &subpage_writeb,
2908 &subpage_writew,
2909 &subpage_writel,
2910};
2911
2912static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
8da3ff18 2913 ram_addr_t memory, ram_addr_t region_offset)
db7b5426
BS
2914{
2915 int idx, eidx;
4254fab8 2916 unsigned int i;
db7b5426
BS
2917
2918 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2919 return -1;
2920 idx = SUBPAGE_IDX(start);
2921 eidx = SUBPAGE_IDX(end);
2922#if defined(DEBUG_SUBPAGE)
0bf9e31a 2923 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
db7b5426
BS
2924 mmio, start, end, idx, eidx, memory);
2925#endif
2926 memory >>= IO_MEM_SHIFT;
2927 for (; idx <= eidx; idx++) {
4254fab8 2928 for (i = 0; i < 4; i++) {
3ee89922
BS
2929 if (io_mem_read[memory][i]) {
2930 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
2931 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
8da3ff18 2932 mmio->region_offset[idx][0][i] = region_offset;
3ee89922
BS
2933 }
2934 if (io_mem_write[memory][i]) {
2935 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
2936 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
8da3ff18 2937 mmio->region_offset[idx][1][i] = region_offset;
3ee89922 2938 }
4254fab8 2939 }
db7b5426
BS
2940 }
2941
2942 return 0;
2943}
2944
00f82b8a 2945static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
8da3ff18 2946 ram_addr_t orig_memory, ram_addr_t region_offset)
db7b5426
BS
2947{
2948 subpage_t *mmio;
2949 int subpage_memory;
2950
2951 mmio = qemu_mallocz(sizeof(subpage_t));
1eec614b
AL
2952
2953 mmio->base = base;
1eed09cb 2954 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
db7b5426 2955#if defined(DEBUG_SUBPAGE)
1eec614b
AL
2956 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
2957 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
db7b5426 2958#endif
1eec614b
AL
2959 *phys = subpage_memory | IO_MEM_SUBPAGE;
2960 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory,
8da3ff18 2961 region_offset);
db7b5426
BS
2962
2963 return mmio;
2964}
2965
88715657
AL
2966static int get_free_io_mem_idx(void)
2967{
2968 int i;
2969
2970 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
2971 if (!io_mem_used[i]) {
2972 io_mem_used[i] = 1;
2973 return i;
2974 }
2975
2976 return -1;
2977}
2978
33417e70
FB
2979/* mem_read and mem_write are arrays of functions containing the
2980 function to access byte (index 0), word (index 1) and dword (index
0b4e6e3e 2981 2). Functions can be omitted with a NULL function pointer.
3ee89922 2982 If io_index is non zero, the corresponding io zone is
4254fab8
BS
2983 modified. If it is zero, a new io zone is allocated. The return
2984 value can be used with cpu_register_physical_memory(). (-1) is
2985 returned if error. */
1eed09cb
AK
2986static int cpu_register_io_memory_fixed(int io_index,
2987 CPUReadMemoryFunc **mem_read,
2988 CPUWriteMemoryFunc **mem_write,
2989 void *opaque)
33417e70 2990{
4254fab8 2991 int i, subwidth = 0;
33417e70
FB
2992
2993 if (io_index <= 0) {
88715657
AL
2994 io_index = get_free_io_mem_idx();
2995 if (io_index == -1)
2996 return io_index;
33417e70 2997 } else {
1eed09cb 2998 io_index >>= IO_MEM_SHIFT;
33417e70
FB
2999 if (io_index >= IO_MEM_NB_ENTRIES)
3000 return -1;
3001 }
b5ff1b31 3002
33417e70 3003 for(i = 0;i < 3; i++) {
4254fab8
BS
3004 if (!mem_read[i] || !mem_write[i])
3005 subwidth = IO_MEM_SUBWIDTH;
33417e70
FB
3006 io_mem_read[io_index][i] = mem_read[i];
3007 io_mem_write[io_index][i] = mem_write[i];
3008 }
a4193c8a 3009 io_mem_opaque[io_index] = opaque;
4254fab8 3010 return (io_index << IO_MEM_SHIFT) | subwidth;
33417e70 3011}
61382a50 3012
1eed09cb
AK
3013int cpu_register_io_memory(CPUReadMemoryFunc **mem_read,
3014 CPUWriteMemoryFunc **mem_write,
3015 void *opaque)
3016{
3017 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
3018}
3019
88715657
AL
3020void cpu_unregister_io_memory(int io_table_address)
3021{
3022 int i;
3023 int io_index = io_table_address >> IO_MEM_SHIFT;
3024
3025 for (i=0;i < 3; i++) {
3026 io_mem_read[io_index][i] = unassigned_mem_read[i];
3027 io_mem_write[io_index][i] = unassigned_mem_write[i];
3028 }
3029 io_mem_opaque[io_index] = NULL;
3030 io_mem_used[io_index] = 0;
3031}
3032
e9179ce1
AK
3033static void io_mem_init(void)
3034{
3035 int i;
3036
3037 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
3038 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
3039 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
3040 for (i=0; i<5; i++)
3041 io_mem_used[i] = 1;
3042
3043 io_mem_watch = cpu_register_io_memory(watch_mem_read,
3044 watch_mem_write, NULL);
3045#ifdef CONFIG_KQEMU
3046 if (kqemu_phys_ram_base) {
3047 /* alloc dirty bits array */
3048 phys_ram_dirty = qemu_vmalloc(kqemu_phys_ram_size >> TARGET_PAGE_BITS);
3049 memset(phys_ram_dirty, 0xff, kqemu_phys_ram_size >> TARGET_PAGE_BITS);
3050 }
3051#endif
3052}
3053
e2eef170
PB
3054#endif /* !defined(CONFIG_USER_ONLY) */
3055
13eb76e0
FB
3056/* physical memory access (slow version, mainly for debug) */
3057#if defined(CONFIG_USER_ONLY)
5fafdf24 3058void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
3059 int len, int is_write)
3060{
3061 int l, flags;
3062 target_ulong page;
53a5960a 3063 void * p;
13eb76e0
FB
3064
3065 while (len > 0) {
3066 page = addr & TARGET_PAGE_MASK;
3067 l = (page + TARGET_PAGE_SIZE) - addr;
3068 if (l > len)
3069 l = len;
3070 flags = page_get_flags(page);
3071 if (!(flags & PAGE_VALID))
3072 return;
3073 if (is_write) {
3074 if (!(flags & PAGE_WRITE))
3075 return;
579a97f7 3076 /* XXX: this code should not depend on lock_user */
72fb7daa 3077 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
579a97f7
FB
3078 /* FIXME - should this return an error rather than just fail? */
3079 return;
72fb7daa
AJ
3080 memcpy(p, buf, l);
3081 unlock_user(p, addr, l);
13eb76e0
FB
3082 } else {
3083 if (!(flags & PAGE_READ))
3084 return;
579a97f7 3085 /* XXX: this code should not depend on lock_user */
72fb7daa 3086 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
579a97f7
FB
3087 /* FIXME - should this return an error rather than just fail? */
3088 return;
72fb7daa 3089 memcpy(buf, p, l);
5b257578 3090 unlock_user(p, addr, 0);
13eb76e0
FB
3091 }
3092 len -= l;
3093 buf += l;
3094 addr += l;
3095 }
3096}
8df1cd07 3097
13eb76e0 3098#else
5fafdf24 3099void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
3100 int len, int is_write)
3101{
3102 int l, io_index;
3103 uint8_t *ptr;
3104 uint32_t val;
2e12669a
FB
3105 target_phys_addr_t page;
3106 unsigned long pd;
92e873b9 3107 PhysPageDesc *p;
3b46e624 3108
13eb76e0
FB
3109 while (len > 0) {
3110 page = addr & TARGET_PAGE_MASK;
3111 l = (page + TARGET_PAGE_SIZE) - addr;
3112 if (l > len)
3113 l = len;
92e873b9 3114 p = phys_page_find(page >> TARGET_PAGE_BITS);
13eb76e0
FB
3115 if (!p) {
3116 pd = IO_MEM_UNASSIGNED;
3117 } else {
3118 pd = p->phys_offset;
3119 }
3b46e624 3120
13eb76e0 3121 if (is_write) {
3a7d929e 3122 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
6c2934db 3123 target_phys_addr_t addr1 = addr;
13eb76e0 3124 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3125 if (p)
6c2934db 3126 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
6a00d601
FB
3127 /* XXX: could force cpu_single_env to NULL to avoid
3128 potential bugs */
6c2934db 3129 if (l >= 4 && ((addr1 & 3) == 0)) {
1c213d19 3130 /* 32 bit write access */
c27004ec 3131 val = ldl_p(buf);
6c2934db 3132 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
13eb76e0 3133 l = 4;
6c2934db 3134 } else if (l >= 2 && ((addr1 & 1) == 0)) {
1c213d19 3135 /* 16 bit write access */
c27004ec 3136 val = lduw_p(buf);
6c2934db 3137 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3138 l = 2;
3139 } else {
1c213d19 3140 /* 8 bit write access */
c27004ec 3141 val = ldub_p(buf);
6c2934db 3142 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3143 l = 1;
3144 }
3145 } else {
b448f2f3
FB
3146 unsigned long addr1;
3147 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
13eb76e0 3148 /* RAM case */
5579c7f3 3149 ptr = qemu_get_ram_ptr(addr1);
13eb76e0 3150 memcpy(ptr, buf, l);
3a7d929e
FB
3151 if (!cpu_physical_memory_is_dirty(addr1)) {
3152 /* invalidate code */
3153 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3154 /* set dirty bit */
5fafdf24 3155 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
f23db169 3156 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 3157 }
13eb76e0
FB
3158 }
3159 } else {
5fafdf24 3160 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3161 !(pd & IO_MEM_ROMD)) {
6c2934db 3162 target_phys_addr_t addr1 = addr;
13eb76e0
FB
3163 /* I/O case */
3164 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3165 if (p)
6c2934db
AJ
3166 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3167 if (l >= 4 && ((addr1 & 3) == 0)) {
13eb76e0 3168 /* 32 bit read access */
6c2934db 3169 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
c27004ec 3170 stl_p(buf, val);
13eb76e0 3171 l = 4;
6c2934db 3172 } else if (l >= 2 && ((addr1 & 1) == 0)) {
13eb76e0 3173 /* 16 bit read access */
6c2934db 3174 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
c27004ec 3175 stw_p(buf, val);
13eb76e0
FB
3176 l = 2;
3177 } else {
1c213d19 3178 /* 8 bit read access */
6c2934db 3179 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
c27004ec 3180 stb_p(buf, val);
13eb76e0
FB
3181 l = 1;
3182 }
3183 } else {
3184 /* RAM case */
5579c7f3 3185 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
13eb76e0
FB
3186 (addr & ~TARGET_PAGE_MASK);
3187 memcpy(buf, ptr, l);
3188 }
3189 }
3190 len -= l;
3191 buf += l;
3192 addr += l;
3193 }
3194}
8df1cd07 3195
d0ecd2aa 3196/* used for ROM loading : can write in RAM and ROM */
5fafdf24 3197void cpu_physical_memory_write_rom(target_phys_addr_t addr,
d0ecd2aa
FB
3198 const uint8_t *buf, int len)
3199{
3200 int l;
3201 uint8_t *ptr;
3202 target_phys_addr_t page;
3203 unsigned long pd;
3204 PhysPageDesc *p;
3b46e624 3205
d0ecd2aa
FB
3206 while (len > 0) {
3207 page = addr & TARGET_PAGE_MASK;
3208 l = (page + TARGET_PAGE_SIZE) - addr;
3209 if (l > len)
3210 l = len;
3211 p = phys_page_find(page >> TARGET_PAGE_BITS);
3212 if (!p) {
3213 pd = IO_MEM_UNASSIGNED;
3214 } else {
3215 pd = p->phys_offset;
3216 }
3b46e624 3217
d0ecd2aa 3218 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2a4188a3
FB
3219 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3220 !(pd & IO_MEM_ROMD)) {
d0ecd2aa
FB
3221 /* do nothing */
3222 } else {
3223 unsigned long addr1;
3224 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3225 /* ROM/RAM case */
5579c7f3 3226 ptr = qemu_get_ram_ptr(addr1);
d0ecd2aa
FB
3227 memcpy(ptr, buf, l);
3228 }
3229 len -= l;
3230 buf += l;
3231 addr += l;
3232 }
3233}
3234
6d16c2f8
AL
3235typedef struct {
3236 void *buffer;
3237 target_phys_addr_t addr;
3238 target_phys_addr_t len;
3239} BounceBuffer;
3240
3241static BounceBuffer bounce;
3242
ba223c29
AL
3243typedef struct MapClient {
3244 void *opaque;
3245 void (*callback)(void *opaque);
3246 LIST_ENTRY(MapClient) link;
3247} MapClient;
3248
3249static LIST_HEAD(map_client_list, MapClient) map_client_list
3250 = LIST_HEAD_INITIALIZER(map_client_list);
3251
3252void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3253{
3254 MapClient *client = qemu_malloc(sizeof(*client));
3255
3256 client->opaque = opaque;
3257 client->callback = callback;
3258 LIST_INSERT_HEAD(&map_client_list, client, link);
3259 return client;
3260}
3261
3262void cpu_unregister_map_client(void *_client)
3263{
3264 MapClient *client = (MapClient *)_client;
3265
3266 LIST_REMOVE(client, link);
34d5e948 3267 qemu_free(client);
ba223c29
AL
3268}
3269
3270static void cpu_notify_map_clients(void)
3271{
3272 MapClient *client;
3273
3274 while (!LIST_EMPTY(&map_client_list)) {
3275 client = LIST_FIRST(&map_client_list);
3276 client->callback(client->opaque);
34d5e948 3277 cpu_unregister_map_client(client);
ba223c29
AL
3278 }
3279}
3280
6d16c2f8
AL
3281/* Map a physical memory region into a host virtual address.
3282 * May map a subset of the requested range, given by and returned in *plen.
3283 * May return NULL if resources needed to perform the mapping are exhausted.
3284 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3285 * Use cpu_register_map_client() to know when retrying the map operation is
3286 * likely to succeed.
6d16c2f8
AL
3287 */
3288void *cpu_physical_memory_map(target_phys_addr_t addr,
3289 target_phys_addr_t *plen,
3290 int is_write)
3291{
3292 target_phys_addr_t len = *plen;
3293 target_phys_addr_t done = 0;
3294 int l;
3295 uint8_t *ret = NULL;
3296 uint8_t *ptr;
3297 target_phys_addr_t page;
3298 unsigned long pd;
3299 PhysPageDesc *p;
3300 unsigned long addr1;
3301
3302 while (len > 0) {
3303 page = addr & TARGET_PAGE_MASK;
3304 l = (page + TARGET_PAGE_SIZE) - addr;
3305 if (l > len)
3306 l = len;
3307 p = phys_page_find(page >> TARGET_PAGE_BITS);
3308 if (!p) {
3309 pd = IO_MEM_UNASSIGNED;
3310 } else {
3311 pd = p->phys_offset;
3312 }
3313
3314 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3315 if (done || bounce.buffer) {
3316 break;
3317 }
3318 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3319 bounce.addr = addr;
3320 bounce.len = l;
3321 if (!is_write) {
3322 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3323 }
3324 ptr = bounce.buffer;
3325 } else {
3326 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3327 ptr = qemu_get_ram_ptr(addr1);
6d16c2f8
AL
3328 }
3329 if (!done) {
3330 ret = ptr;
3331 } else if (ret + done != ptr) {
3332 break;
3333 }
3334
3335 len -= l;
3336 addr += l;
3337 done += l;
3338 }
3339 *plen = done;
3340 return ret;
3341}
3342
3343/* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3344 * Will also mark the memory as dirty if is_write == 1. access_len gives
3345 * the amount of memory that was actually read or written by the caller.
3346 */
3347void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3348 int is_write, target_phys_addr_t access_len)
3349{
3350 if (buffer != bounce.buffer) {
3351 if (is_write) {
5579c7f3 3352 ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
6d16c2f8
AL
3353 while (access_len) {
3354 unsigned l;
3355 l = TARGET_PAGE_SIZE;
3356 if (l > access_len)
3357 l = access_len;
3358 if (!cpu_physical_memory_is_dirty(addr1)) {
3359 /* invalidate code */
3360 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3361 /* set dirty bit */
3362 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3363 (0xff & ~CODE_DIRTY_FLAG);
3364 }
3365 addr1 += l;
3366 access_len -= l;
3367 }
3368 }
3369 return;
3370 }
3371 if (is_write) {
3372 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3373 }
3374 qemu_free(bounce.buffer);
3375 bounce.buffer = NULL;
ba223c29 3376 cpu_notify_map_clients();
6d16c2f8 3377}
d0ecd2aa 3378
8df1cd07
FB
3379/* warning: addr must be aligned */
3380uint32_t ldl_phys(target_phys_addr_t addr)
3381{
3382 int io_index;
3383 uint8_t *ptr;
3384 uint32_t val;
3385 unsigned long pd;
3386 PhysPageDesc *p;
3387
3388 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3389 if (!p) {
3390 pd = IO_MEM_UNASSIGNED;
3391 } else {
3392 pd = p->phys_offset;
3393 }
3b46e624 3394
5fafdf24 3395 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3396 !(pd & IO_MEM_ROMD)) {
8df1cd07
FB
3397 /* I/O case */
3398 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3399 if (p)
3400 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3401 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3402 } else {
3403 /* RAM case */
5579c7f3 3404 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
8df1cd07
FB
3405 (addr & ~TARGET_PAGE_MASK);
3406 val = ldl_p(ptr);
3407 }
3408 return val;
3409}
3410
84b7b8e7
FB
3411/* warning: addr must be aligned */
3412uint64_t ldq_phys(target_phys_addr_t addr)
3413{
3414 int io_index;
3415 uint8_t *ptr;
3416 uint64_t val;
3417 unsigned long pd;
3418 PhysPageDesc *p;
3419
3420 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3421 if (!p) {
3422 pd = IO_MEM_UNASSIGNED;
3423 } else {
3424 pd = p->phys_offset;
3425 }
3b46e624 3426
2a4188a3
FB
3427 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3428 !(pd & IO_MEM_ROMD)) {
84b7b8e7
FB
3429 /* I/O case */
3430 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3431 if (p)
3432 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
84b7b8e7
FB
3433#ifdef TARGET_WORDS_BIGENDIAN
3434 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3435 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3436#else
3437 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3438 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3439#endif
3440 } else {
3441 /* RAM case */
5579c7f3 3442 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
84b7b8e7
FB
3443 (addr & ~TARGET_PAGE_MASK);
3444 val = ldq_p(ptr);
3445 }
3446 return val;
3447}
3448
aab33094
FB
3449/* XXX: optimize */
3450uint32_t ldub_phys(target_phys_addr_t addr)
3451{
3452 uint8_t val;
3453 cpu_physical_memory_read(addr, &val, 1);
3454 return val;
3455}
3456
3457/* XXX: optimize */
3458uint32_t lduw_phys(target_phys_addr_t addr)
3459{
3460 uint16_t val;
3461 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3462 return tswap16(val);
3463}
3464
8df1cd07
FB
3465/* warning: addr must be aligned. The ram page is not masked as dirty
3466 and the code inside is not invalidated. It is useful if the dirty
3467 bits are used to track modified PTEs */
3468void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3469{
3470 int io_index;
3471 uint8_t *ptr;
3472 unsigned long pd;
3473 PhysPageDesc *p;
3474
3475 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3476 if (!p) {
3477 pd = IO_MEM_UNASSIGNED;
3478 } else {
3479 pd = p->phys_offset;
3480 }
3b46e624 3481
3a7d929e 3482 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3483 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3484 if (p)
3485 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3486 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3487 } else {
74576198 3488 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3489 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3490 stl_p(ptr, val);
74576198
AL
3491
3492 if (unlikely(in_migration)) {
3493 if (!cpu_physical_memory_is_dirty(addr1)) {
3494 /* invalidate code */
3495 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3496 /* set dirty bit */
3497 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3498 (0xff & ~CODE_DIRTY_FLAG);
3499 }
3500 }
8df1cd07
FB
3501 }
3502}
3503
bc98a7ef
JM
3504void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3505{
3506 int io_index;
3507 uint8_t *ptr;
3508 unsigned long pd;
3509 PhysPageDesc *p;
3510
3511 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3512 if (!p) {
3513 pd = IO_MEM_UNASSIGNED;
3514 } else {
3515 pd = p->phys_offset;
3516 }
3b46e624 3517
bc98a7ef
JM
3518 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3519 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3520 if (p)
3521 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
bc98a7ef
JM
3522#ifdef TARGET_WORDS_BIGENDIAN
3523 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3524 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3525#else
3526 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3527 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3528#endif
3529 } else {
5579c7f3 3530 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
bc98a7ef
JM
3531 (addr & ~TARGET_PAGE_MASK);
3532 stq_p(ptr, val);
3533 }
3534}
3535
8df1cd07 3536/* warning: addr must be aligned */
8df1cd07
FB
3537void stl_phys(target_phys_addr_t addr, uint32_t val)
3538{
3539 int io_index;
3540 uint8_t *ptr;
3541 unsigned long pd;
3542 PhysPageDesc *p;
3543
3544 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3545 if (!p) {
3546 pd = IO_MEM_UNASSIGNED;
3547 } else {
3548 pd = p->phys_offset;
3549 }
3b46e624 3550
3a7d929e 3551 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3552 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3553 if (p)
3554 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3555 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3556 } else {
3557 unsigned long addr1;
3558 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3559 /* RAM case */
5579c7f3 3560 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3561 stl_p(ptr, val);
3a7d929e
FB
3562 if (!cpu_physical_memory_is_dirty(addr1)) {
3563 /* invalidate code */
3564 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3565 /* set dirty bit */
f23db169
FB
3566 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3567 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 3568 }
8df1cd07
FB
3569 }
3570}
3571
aab33094
FB
3572/* XXX: optimize */
3573void stb_phys(target_phys_addr_t addr, uint32_t val)
3574{
3575 uint8_t v = val;
3576 cpu_physical_memory_write(addr, &v, 1);
3577}
3578
3579/* XXX: optimize */
3580void stw_phys(target_phys_addr_t addr, uint32_t val)
3581{
3582 uint16_t v = tswap16(val);
3583 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3584}
3585
3586/* XXX: optimize */
3587void stq_phys(target_phys_addr_t addr, uint64_t val)
3588{
3589 val = tswap64(val);
3590 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3591}
3592
13eb76e0
FB
3593#endif
3594
5e2972fd 3595/* virtual memory access for debug (includes writing to ROM) */
5fafdf24 3596int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
b448f2f3 3597 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3598{
3599 int l;
9b3c35e0
JM
3600 target_phys_addr_t phys_addr;
3601 target_ulong page;
13eb76e0
FB
3602
3603 while (len > 0) {
3604 page = addr & TARGET_PAGE_MASK;
3605 phys_addr = cpu_get_phys_page_debug(env, page);
3606 /* if no physical page mapped, return an error */
3607 if (phys_addr == -1)
3608 return -1;
3609 l = (page + TARGET_PAGE_SIZE) - addr;
3610 if (l > len)
3611 l = len;
5e2972fd
AL
3612 phys_addr += (addr & ~TARGET_PAGE_MASK);
3613#if !defined(CONFIG_USER_ONLY)
3614 if (is_write)
3615 cpu_physical_memory_write_rom(phys_addr, buf, l);
3616 else
3617#endif
3618 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
13eb76e0
FB
3619 len -= l;
3620 buf += l;
3621 addr += l;
3622 }
3623 return 0;
3624}
3625
2e70f6ef
PB
3626/* in deterministic execution mode, instructions doing device I/Os
3627 must be at the end of the TB */
3628void cpu_io_recompile(CPUState *env, void *retaddr)
3629{
3630 TranslationBlock *tb;
3631 uint32_t n, cflags;
3632 target_ulong pc, cs_base;
3633 uint64_t flags;
3634
3635 tb = tb_find_pc((unsigned long)retaddr);
3636 if (!tb) {
3637 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3638 retaddr);
3639 }
3640 n = env->icount_decr.u16.low + tb->icount;
3641 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3642 /* Calculate how many instructions had been executed before the fault
bf20dc07 3643 occurred. */
2e70f6ef
PB
3644 n = n - env->icount_decr.u16.low;
3645 /* Generate a new TB ending on the I/O insn. */
3646 n++;
3647 /* On MIPS and SH, delay slot instructions can only be restarted if
3648 they were already the first instruction in the TB. If this is not
bf20dc07 3649 the first instruction in a TB then re-execute the preceding
2e70f6ef
PB
3650 branch. */
3651#if defined(TARGET_MIPS)
3652 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3653 env->active_tc.PC -= 4;
3654 env->icount_decr.u16.low++;
3655 env->hflags &= ~MIPS_HFLAG_BMASK;
3656 }
3657#elif defined(TARGET_SH4)
3658 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3659 && n > 1) {
3660 env->pc -= 2;
3661 env->icount_decr.u16.low++;
3662 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3663 }
3664#endif
3665 /* This should never happen. */
3666 if (n > CF_COUNT_MASK)
3667 cpu_abort(env, "TB too big during recompile");
3668
3669 cflags = n | CF_LAST_IO;
3670 pc = tb->pc;
3671 cs_base = tb->cs_base;
3672 flags = tb->flags;
3673 tb_phys_invalidate(tb, -1);
3674 /* FIXME: In theory this could raise an exception. In practice
3675 we have already translated the block once so it's probably ok. */
3676 tb_gen_code(env, pc, cs_base, flags, cflags);
bf20dc07 3677 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2e70f6ef
PB
3678 the first in the TB) then we end up generating a whole new TB and
3679 repeating the fault, which is horribly inefficient.
3680 Better would be to execute just this insn uncached, or generate a
3681 second new TB. */
3682 cpu_resume_from_signal(env, NULL);
3683}
3684
e3db7226
FB
3685void dump_exec_info(FILE *f,
3686 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3687{
3688 int i, target_code_size, max_target_code_size;
3689 int direct_jmp_count, direct_jmp2_count, cross_page;
3690 TranslationBlock *tb;
3b46e624 3691
e3db7226
FB
3692 target_code_size = 0;
3693 max_target_code_size = 0;
3694 cross_page = 0;
3695 direct_jmp_count = 0;
3696 direct_jmp2_count = 0;
3697 for(i = 0; i < nb_tbs; i++) {
3698 tb = &tbs[i];
3699 target_code_size += tb->size;
3700 if (tb->size > max_target_code_size)
3701 max_target_code_size = tb->size;
3702 if (tb->page_addr[1] != -1)
3703 cross_page++;
3704 if (tb->tb_next_offset[0] != 0xffff) {
3705 direct_jmp_count++;
3706 if (tb->tb_next_offset[1] != 0xffff) {
3707 direct_jmp2_count++;
3708 }
3709 }
3710 }
3711 /* XXX: avoid using doubles ? */
57fec1fe 3712 cpu_fprintf(f, "Translation buffer state:\n");
26a5f13b
FB
3713 cpu_fprintf(f, "gen code size %ld/%ld\n",
3714 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3715 cpu_fprintf(f, "TB count %d/%d\n",
3716 nb_tbs, code_gen_max_blocks);
5fafdf24 3717 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
e3db7226
FB
3718 nb_tbs ? target_code_size / nb_tbs : 0,
3719 max_target_code_size);
5fafdf24 3720 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
e3db7226
FB
3721 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3722 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
5fafdf24
TS
3723 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3724 cross_page,
e3db7226
FB
3725 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3726 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
5fafdf24 3727 direct_jmp_count,
e3db7226
FB
3728 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3729 direct_jmp2_count,
3730 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
57fec1fe 3731 cpu_fprintf(f, "\nStatistics:\n");
e3db7226
FB
3732 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3733 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3734 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
b67d9a52 3735 tcg_dump_info(f, cpu_fprintf);
e3db7226
FB
3736}
3737
5fafdf24 3738#if !defined(CONFIG_USER_ONLY)
61382a50
FB
3739
3740#define MMUSUFFIX _cmmu
3741#define GETPC() NULL
3742#define env cpu_single_env
b769d8fe 3743#define SOFTMMU_CODE_ACCESS
61382a50
FB
3744
3745#define SHIFT 0
3746#include "softmmu_template.h"
3747
3748#define SHIFT 1
3749#include "softmmu_template.h"
3750
3751#define SHIFT 2
3752#include "softmmu_template.h"
3753
3754#define SHIFT 3
3755#include "softmmu_template.h"
3756
3757#undef env
3758
3759#endif