]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
Sparc32: convert slavio interrupt controller to qdev
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
fad6cb1a 18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
54936004 19 */
67b915a5 20#include "config.h"
d5a8f07c
FB
21#ifdef _WIN32
22#include <windows.h>
23#else
a98d49b1 24#include <sys/types.h>
d5a8f07c
FB
25#include <sys/mman.h>
26#endif
54936004
FB
27#include <stdlib.h>
28#include <stdio.h>
29#include <stdarg.h>
30#include <string.h>
31#include <errno.h>
32#include <unistd.h>
33#include <inttypes.h>
34
6180a181
FB
35#include "cpu.h"
36#include "exec-all.h"
ca10f867 37#include "qemu-common.h"
b67d9a52 38#include "tcg.h"
b3c7724c 39#include "hw/hw.h"
74576198 40#include "osdep.h"
7ba1e619 41#include "kvm.h"
53a5960a
PB
42#if defined(CONFIG_USER_ONLY)
43#include <qemu.h>
44#endif
54936004 45
fd6ce8f6 46//#define DEBUG_TB_INVALIDATE
66e85a21 47//#define DEBUG_FLUSH
9fa3e853 48//#define DEBUG_TLB
67d3b957 49//#define DEBUG_UNASSIGNED
fd6ce8f6
FB
50
51/* make various TB consistency checks */
5fafdf24
TS
52//#define DEBUG_TB_CHECK
53//#define DEBUG_TLB_CHECK
fd6ce8f6 54
1196be37 55//#define DEBUG_IOPORT
db7b5426 56//#define DEBUG_SUBPAGE
1196be37 57
99773bd4
PB
58#if !defined(CONFIG_USER_ONLY)
59/* TB consistency checks only implemented for usermode emulation. */
60#undef DEBUG_TB_CHECK
61#endif
62
9fa3e853
FB
63#define SMC_BITMAP_USE_THRESHOLD 10
64
108c49b8
FB
65#if defined(TARGET_SPARC64)
66#define TARGET_PHYS_ADDR_SPACE_BITS 41
5dcb6b91
BS
67#elif defined(TARGET_SPARC)
68#define TARGET_PHYS_ADDR_SPACE_BITS 36
bedb69ea
JM
69#elif defined(TARGET_ALPHA)
70#define TARGET_PHYS_ADDR_SPACE_BITS 42
71#define TARGET_VIRT_ADDR_SPACE_BITS 42
108c49b8
FB
72#elif defined(TARGET_PPC64)
73#define TARGET_PHYS_ADDR_SPACE_BITS 42
640f42e4 74#elif defined(TARGET_X86_64) && !defined(CONFIG_KQEMU)
00f82b8a 75#define TARGET_PHYS_ADDR_SPACE_BITS 42
640f42e4 76#elif defined(TARGET_I386) && !defined(CONFIG_KQEMU)
00f82b8a 77#define TARGET_PHYS_ADDR_SPACE_BITS 36
108c49b8
FB
78#else
79/* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
80#define TARGET_PHYS_ADDR_SPACE_BITS 32
81#endif
82
bdaf78e0 83static TranslationBlock *tbs;
26a5f13b 84int code_gen_max_blocks;
9fa3e853 85TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
bdaf78e0 86static int nb_tbs;
eb51d102
FB
87/* any access to the tbs or the page table must use this lock */
88spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6 89
141ac468
BS
90#if defined(__arm__) || defined(__sparc_v9__)
91/* The prologue must be reachable with a direct jump. ARM and Sparc64
92 have limited branch ranges (possibly also PPC) so place it in a
d03d860b
BS
93 section close to code segment. */
94#define code_gen_section \
95 __attribute__((__section__(".gen_code"))) \
96 __attribute__((aligned (32)))
f8e2af11
SW
97#elif defined(_WIN32)
98/* Maximum alignment for Win32 is 16. */
99#define code_gen_section \
100 __attribute__((aligned (16)))
d03d860b
BS
101#else
102#define code_gen_section \
103 __attribute__((aligned (32)))
104#endif
105
106uint8_t code_gen_prologue[1024] code_gen_section;
bdaf78e0
BS
107static uint8_t *code_gen_buffer;
108static unsigned long code_gen_buffer_size;
26a5f13b 109/* threshold to flush the translated code buffer */
bdaf78e0 110static unsigned long code_gen_buffer_max_size;
fd6ce8f6
FB
111uint8_t *code_gen_ptr;
112
e2eef170 113#if !defined(CONFIG_USER_ONLY)
9fa3e853 114int phys_ram_fd;
1ccde1cb 115uint8_t *phys_ram_dirty;
74576198 116static int in_migration;
94a6b54f
PB
117
118typedef struct RAMBlock {
119 uint8_t *host;
120 ram_addr_t offset;
121 ram_addr_t length;
122 struct RAMBlock *next;
123} RAMBlock;
124
125static RAMBlock *ram_blocks;
126/* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
ccbb4d44 127 then we can no longer assume contiguous ram offsets, and external uses
94a6b54f
PB
128 of this variable will break. */
129ram_addr_t last_ram_offset;
e2eef170 130#endif
9fa3e853 131
6a00d601
FB
132CPUState *first_cpu;
133/* current CPU in the current thread. It is only valid inside
134 cpu_exec() */
5fafdf24 135CPUState *cpu_single_env;
2e70f6ef 136/* 0 = Do not count executed instructions.
bf20dc07 137 1 = Precise instruction counting.
2e70f6ef
PB
138 2 = Adaptive rate instruction counting. */
139int use_icount = 0;
140/* Current instruction counter. While executing translated code this may
141 include some instructions that have not yet been executed. */
142int64_t qemu_icount;
6a00d601 143
54936004 144typedef struct PageDesc {
92e873b9 145 /* list of TBs intersecting this ram page */
fd6ce8f6 146 TranslationBlock *first_tb;
9fa3e853
FB
147 /* in order to optimize self modifying code, we count the number
148 of lookups we do to a given page to use a bitmap */
149 unsigned int code_write_count;
150 uint8_t *code_bitmap;
151#if defined(CONFIG_USER_ONLY)
152 unsigned long flags;
153#endif
54936004
FB
154} PageDesc;
155
92e873b9 156typedef struct PhysPageDesc {
0f459d16 157 /* offset in host memory of the page + io_index in the low bits */
00f82b8a 158 ram_addr_t phys_offset;
8da3ff18 159 ram_addr_t region_offset;
92e873b9
FB
160} PhysPageDesc;
161
54936004 162#define L2_BITS 10
bedb69ea
JM
163#if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
164/* XXX: this is a temporary hack for alpha target.
165 * In the future, this is to be replaced by a multi-level table
166 * to actually be able to handle the complete 64 bits address space.
167 */
168#define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
169#else
03875444 170#define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
bedb69ea 171#endif
54936004
FB
172
173#define L1_SIZE (1 << L1_BITS)
174#define L2_SIZE (1 << L2_BITS)
175
83fb7adf
FB
176unsigned long qemu_real_host_page_size;
177unsigned long qemu_host_page_bits;
178unsigned long qemu_host_page_size;
179unsigned long qemu_host_page_mask;
54936004 180
92e873b9 181/* XXX: for system emulation, it could just be an array */
54936004 182static PageDesc *l1_map[L1_SIZE];
bdaf78e0 183static PhysPageDesc **l1_phys_map;
54936004 184
e2eef170
PB
185#if !defined(CONFIG_USER_ONLY)
186static void io_mem_init(void);
187
33417e70 188/* io memory support */
33417e70
FB
189CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
190CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
a4193c8a 191void *io_mem_opaque[IO_MEM_NB_ENTRIES];
511d2b14 192static char io_mem_used[IO_MEM_NB_ENTRIES];
6658ffb8
PB
193static int io_mem_watch;
194#endif
33417e70 195
34865134 196/* log support */
d9b630fd 197static const char *logfilename = "/tmp/qemu.log";
34865134
FB
198FILE *logfile;
199int loglevel;
e735b91c 200static int log_append = 0;
34865134 201
e3db7226
FB
202/* statistics */
203static int tlb_flush_count;
204static int tb_flush_count;
205static int tb_phys_invalidate_count;
206
db7b5426
BS
207#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
208typedef struct subpage_t {
209 target_phys_addr_t base;
3ee89922
BS
210 CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4];
211 CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4];
212 void *opaque[TARGET_PAGE_SIZE][2][4];
8da3ff18 213 ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4];
db7b5426
BS
214} subpage_t;
215
7cb69cae
FB
216#ifdef _WIN32
217static void map_exec(void *addr, long size)
218{
219 DWORD old_protect;
220 VirtualProtect(addr, size,
221 PAGE_EXECUTE_READWRITE, &old_protect);
222
223}
224#else
225static void map_exec(void *addr, long size)
226{
4369415f 227 unsigned long start, end, page_size;
7cb69cae 228
4369415f 229 page_size = getpagesize();
7cb69cae 230 start = (unsigned long)addr;
4369415f 231 start &= ~(page_size - 1);
7cb69cae
FB
232
233 end = (unsigned long)addr + size;
4369415f
FB
234 end += page_size - 1;
235 end &= ~(page_size - 1);
7cb69cae
FB
236
237 mprotect((void *)start, end - start,
238 PROT_READ | PROT_WRITE | PROT_EXEC);
239}
240#endif
241
b346ff46 242static void page_init(void)
54936004 243{
83fb7adf 244 /* NOTE: we can always suppose that qemu_host_page_size >=
54936004 245 TARGET_PAGE_SIZE */
c2b48b69
AL
246#ifdef _WIN32
247 {
248 SYSTEM_INFO system_info;
249
250 GetSystemInfo(&system_info);
251 qemu_real_host_page_size = system_info.dwPageSize;
252 }
253#else
254 qemu_real_host_page_size = getpagesize();
255#endif
83fb7adf
FB
256 if (qemu_host_page_size == 0)
257 qemu_host_page_size = qemu_real_host_page_size;
258 if (qemu_host_page_size < TARGET_PAGE_SIZE)
259 qemu_host_page_size = TARGET_PAGE_SIZE;
260 qemu_host_page_bits = 0;
261 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
262 qemu_host_page_bits++;
263 qemu_host_page_mask = ~(qemu_host_page_size - 1);
108c49b8
FB
264 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
265 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
50a9569b
AZ
266
267#if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
268 {
269 long long startaddr, endaddr;
270 FILE *f;
271 int n;
272
c8a706fe 273 mmap_lock();
0776590d 274 last_brk = (unsigned long)sbrk(0);
50a9569b
AZ
275 f = fopen("/proc/self/maps", "r");
276 if (f) {
277 do {
278 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
279 if (n == 2) {
e0b8d65a
BS
280 startaddr = MIN(startaddr,
281 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
282 endaddr = MIN(endaddr,
283 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
b5fc909e 284 page_set_flags(startaddr & TARGET_PAGE_MASK,
50a9569b
AZ
285 TARGET_PAGE_ALIGN(endaddr),
286 PAGE_RESERVED);
287 }
288 } while (!feof(f));
289 fclose(f);
290 }
c8a706fe 291 mmap_unlock();
50a9569b
AZ
292 }
293#endif
54936004
FB
294}
295
434929bf 296static inline PageDesc **page_l1_map(target_ulong index)
54936004 297{
17e2377a
PB
298#if TARGET_LONG_BITS > 32
299 /* Host memory outside guest VM. For 32-bit targets we have already
300 excluded high addresses. */
d8173e0f 301 if (index > ((target_ulong)L2_SIZE * L1_SIZE))
17e2377a
PB
302 return NULL;
303#endif
434929bf
AL
304 return &l1_map[index >> L2_BITS];
305}
306
307static inline PageDesc *page_find_alloc(target_ulong index)
308{
309 PageDesc **lp, *p;
310 lp = page_l1_map(index);
311 if (!lp)
312 return NULL;
313
54936004
FB
314 p = *lp;
315 if (!p) {
316 /* allocate if not found */
17e2377a 317#if defined(CONFIG_USER_ONLY)
17e2377a
PB
318 size_t len = sizeof(PageDesc) * L2_SIZE;
319 /* Don't use qemu_malloc because it may recurse. */
320 p = mmap(0, len, PROT_READ | PROT_WRITE,
321 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
54936004 322 *lp = p;
fb1c2cd7
AJ
323 if (h2g_valid(p)) {
324 unsigned long addr = h2g(p);
17e2377a
PB
325 page_set_flags(addr & TARGET_PAGE_MASK,
326 TARGET_PAGE_ALIGN(addr + len),
327 PAGE_RESERVED);
328 }
329#else
330 p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
331 *lp = p;
332#endif
54936004
FB
333 }
334 return p + (index & (L2_SIZE - 1));
335}
336
00f82b8a 337static inline PageDesc *page_find(target_ulong index)
54936004 338{
434929bf
AL
339 PageDesc **lp, *p;
340 lp = page_l1_map(index);
341 if (!lp)
342 return NULL;
54936004 343
434929bf 344 p = *lp;
54936004
FB
345 if (!p)
346 return 0;
fd6ce8f6
FB
347 return p + (index & (L2_SIZE - 1));
348}
349
108c49b8 350static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
92e873b9 351{
108c49b8 352 void **lp, **p;
e3f4e2a4 353 PhysPageDesc *pd;
92e873b9 354
108c49b8
FB
355 p = (void **)l1_phys_map;
356#if TARGET_PHYS_ADDR_SPACE_BITS > 32
357
358#if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
359#error unsupported TARGET_PHYS_ADDR_SPACE_BITS
360#endif
361 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
92e873b9
FB
362 p = *lp;
363 if (!p) {
364 /* allocate if not found */
108c49b8
FB
365 if (!alloc)
366 return NULL;
367 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
368 memset(p, 0, sizeof(void *) * L1_SIZE);
369 *lp = p;
370 }
371#endif
372 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
e3f4e2a4
PB
373 pd = *lp;
374 if (!pd) {
375 int i;
108c49b8
FB
376 /* allocate if not found */
377 if (!alloc)
378 return NULL;
e3f4e2a4
PB
379 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
380 *lp = pd;
67c4d23c 381 for (i = 0; i < L2_SIZE; i++) {
e3f4e2a4 382 pd[i].phys_offset = IO_MEM_UNASSIGNED;
67c4d23c
PB
383 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
384 }
92e873b9 385 }
e3f4e2a4 386 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
92e873b9
FB
387}
388
108c49b8 389static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
92e873b9 390{
108c49b8 391 return phys_page_find_alloc(index, 0);
92e873b9
FB
392}
393
9fa3e853 394#if !defined(CONFIG_USER_ONLY)
6a00d601 395static void tlb_protect_code(ram_addr_t ram_addr);
5fafdf24 396static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 397 target_ulong vaddr);
c8a706fe
PB
398#define mmap_lock() do { } while(0)
399#define mmap_unlock() do { } while(0)
9fa3e853 400#endif
fd6ce8f6 401
4369415f
FB
402#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
403
404#if defined(CONFIG_USER_ONLY)
ccbb4d44 405/* Currently it is not recommended to allocate big chunks of data in
4369415f
FB
406 user mode. It will change when a dedicated libc will be used */
407#define USE_STATIC_CODE_GEN_BUFFER
408#endif
409
410#ifdef USE_STATIC_CODE_GEN_BUFFER
411static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
412#endif
413
8fcd3692 414static void code_gen_alloc(unsigned long tb_size)
26a5f13b 415{
4369415f
FB
416#ifdef USE_STATIC_CODE_GEN_BUFFER
417 code_gen_buffer = static_code_gen_buffer;
418 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
419 map_exec(code_gen_buffer, code_gen_buffer_size);
420#else
26a5f13b
FB
421 code_gen_buffer_size = tb_size;
422 if (code_gen_buffer_size == 0) {
4369415f
FB
423#if defined(CONFIG_USER_ONLY)
424 /* in user mode, phys_ram_size is not meaningful */
425 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
426#else
ccbb4d44 427 /* XXX: needs adjustments */
94a6b54f 428 code_gen_buffer_size = (unsigned long)(ram_size / 4);
4369415f 429#endif
26a5f13b
FB
430 }
431 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
432 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
433 /* The code gen buffer location may have constraints depending on
434 the host cpu and OS */
435#if defined(__linux__)
436 {
437 int flags;
141ac468
BS
438 void *start = NULL;
439
26a5f13b
FB
440 flags = MAP_PRIVATE | MAP_ANONYMOUS;
441#if defined(__x86_64__)
442 flags |= MAP_32BIT;
443 /* Cannot map more than that */
444 if (code_gen_buffer_size > (800 * 1024 * 1024))
445 code_gen_buffer_size = (800 * 1024 * 1024);
141ac468
BS
446#elif defined(__sparc_v9__)
447 // Map the buffer below 2G, so we can use direct calls and branches
448 flags |= MAP_FIXED;
449 start = (void *) 0x60000000UL;
450 if (code_gen_buffer_size > (512 * 1024 * 1024))
451 code_gen_buffer_size = (512 * 1024 * 1024);
1cb0661e 452#elif defined(__arm__)
63d41246 453 /* Map the buffer below 32M, so we can use direct calls and branches */
1cb0661e
AZ
454 flags |= MAP_FIXED;
455 start = (void *) 0x01000000UL;
456 if (code_gen_buffer_size > 16 * 1024 * 1024)
457 code_gen_buffer_size = 16 * 1024 * 1024;
26a5f13b 458#endif
141ac468
BS
459 code_gen_buffer = mmap(start, code_gen_buffer_size,
460 PROT_WRITE | PROT_READ | PROT_EXEC,
26a5f13b
FB
461 flags, -1, 0);
462 if (code_gen_buffer == MAP_FAILED) {
463 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
464 exit(1);
465 }
466 }
c5e97233 467#elif defined(__FreeBSD__) || defined(__DragonFly__)
06e67a82
AL
468 {
469 int flags;
470 void *addr = NULL;
471 flags = MAP_PRIVATE | MAP_ANONYMOUS;
472#if defined(__x86_64__)
473 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
474 * 0x40000000 is free */
475 flags |= MAP_FIXED;
476 addr = (void *)0x40000000;
477 /* Cannot map more than that */
478 if (code_gen_buffer_size > (800 * 1024 * 1024))
479 code_gen_buffer_size = (800 * 1024 * 1024);
480#endif
481 code_gen_buffer = mmap(addr, code_gen_buffer_size,
482 PROT_WRITE | PROT_READ | PROT_EXEC,
483 flags, -1, 0);
484 if (code_gen_buffer == MAP_FAILED) {
485 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
486 exit(1);
487 }
488 }
26a5f13b
FB
489#else
490 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
26a5f13b
FB
491 map_exec(code_gen_buffer, code_gen_buffer_size);
492#endif
4369415f 493#endif /* !USE_STATIC_CODE_GEN_BUFFER */
26a5f13b
FB
494 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
495 code_gen_buffer_max_size = code_gen_buffer_size -
496 code_gen_max_block_size();
497 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
498 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
499}
500
501/* Must be called before using the QEMU cpus. 'tb_size' is the size
502 (in bytes) allocated to the translation buffer. Zero means default
503 size. */
504void cpu_exec_init_all(unsigned long tb_size)
505{
26a5f13b
FB
506 cpu_gen_init();
507 code_gen_alloc(tb_size);
508 code_gen_ptr = code_gen_buffer;
4369415f 509 page_init();
e2eef170 510#if !defined(CONFIG_USER_ONLY)
26a5f13b 511 io_mem_init();
e2eef170 512#endif
26a5f13b
FB
513}
514
9656f324
PB
515#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
516
517#define CPU_COMMON_SAVE_VERSION 1
518
519static void cpu_common_save(QEMUFile *f, void *opaque)
520{
521 CPUState *env = opaque;
522
b0a46a33
JK
523 cpu_synchronize_state(env, 0);
524
9656f324
PB
525 qemu_put_be32s(f, &env->halted);
526 qemu_put_be32s(f, &env->interrupt_request);
527}
528
529static int cpu_common_load(QEMUFile *f, void *opaque, int version_id)
530{
531 CPUState *env = opaque;
532
533 if (version_id != CPU_COMMON_SAVE_VERSION)
534 return -EINVAL;
535
536 qemu_get_be32s(f, &env->halted);
75f482ae 537 qemu_get_be32s(f, &env->interrupt_request);
3098dba0
AJ
538 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
539 version_id is increased. */
540 env->interrupt_request &= ~0x01;
9656f324 541 tlb_flush(env, 1);
b0a46a33 542 cpu_synchronize_state(env, 1);
9656f324
PB
543
544 return 0;
545}
546#endif
547
950f1472
GC
548CPUState *qemu_get_cpu(int cpu)
549{
550 CPUState *env = first_cpu;
551
552 while (env) {
553 if (env->cpu_index == cpu)
554 break;
555 env = env->next_cpu;
556 }
557
558 return env;
559}
560
6a00d601 561void cpu_exec_init(CPUState *env)
fd6ce8f6 562{
6a00d601
FB
563 CPUState **penv;
564 int cpu_index;
565
c2764719
PB
566#if defined(CONFIG_USER_ONLY)
567 cpu_list_lock();
568#endif
6a00d601
FB
569 env->next_cpu = NULL;
570 penv = &first_cpu;
571 cpu_index = 0;
572 while (*penv != NULL) {
1e9fa730 573 penv = &(*penv)->next_cpu;
6a00d601
FB
574 cpu_index++;
575 }
576 env->cpu_index = cpu_index;
268a362c 577 env->numa_node = 0;
c0ce998e
AL
578 TAILQ_INIT(&env->breakpoints);
579 TAILQ_INIT(&env->watchpoints);
6a00d601 580 *penv = env;
c2764719
PB
581#if defined(CONFIG_USER_ONLY)
582 cpu_list_unlock();
583#endif
b3c7724c 584#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
9656f324
PB
585 register_savevm("cpu_common", cpu_index, CPU_COMMON_SAVE_VERSION,
586 cpu_common_save, cpu_common_load, env);
b3c7724c
PB
587 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
588 cpu_save, cpu_load, env);
589#endif
fd6ce8f6
FB
590}
591
9fa3e853
FB
592static inline void invalidate_page_bitmap(PageDesc *p)
593{
594 if (p->code_bitmap) {
59817ccb 595 qemu_free(p->code_bitmap);
9fa3e853
FB
596 p->code_bitmap = NULL;
597 }
598 p->code_write_count = 0;
599}
600
fd6ce8f6
FB
601/* set to NULL all the 'first_tb' fields in all PageDescs */
602static void page_flush_tb(void)
603{
604 int i, j;
605 PageDesc *p;
606
607 for(i = 0; i < L1_SIZE; i++) {
608 p = l1_map[i];
609 if (p) {
9fa3e853
FB
610 for(j = 0; j < L2_SIZE; j++) {
611 p->first_tb = NULL;
612 invalidate_page_bitmap(p);
613 p++;
614 }
fd6ce8f6
FB
615 }
616 }
617}
618
619/* flush all the translation blocks */
d4e8164f 620/* XXX: tb_flush is currently not thread safe */
6a00d601 621void tb_flush(CPUState *env1)
fd6ce8f6 622{
6a00d601 623 CPUState *env;
0124311e 624#if defined(DEBUG_FLUSH)
ab3d1727
BS
625 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
626 (unsigned long)(code_gen_ptr - code_gen_buffer),
627 nb_tbs, nb_tbs > 0 ?
628 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
fd6ce8f6 629#endif
26a5f13b 630 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
a208e54a
PB
631 cpu_abort(env1, "Internal error: code buffer overflow\n");
632
fd6ce8f6 633 nb_tbs = 0;
3b46e624 634
6a00d601
FB
635 for(env = first_cpu; env != NULL; env = env->next_cpu) {
636 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
637 }
9fa3e853 638
8a8a608f 639 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
fd6ce8f6 640 page_flush_tb();
9fa3e853 641
fd6ce8f6 642 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
643 /* XXX: flush processor icache at this point if cache flush is
644 expensive */
e3db7226 645 tb_flush_count++;
fd6ce8f6
FB
646}
647
648#ifdef DEBUG_TB_CHECK
649
bc98a7ef 650static void tb_invalidate_check(target_ulong address)
fd6ce8f6
FB
651{
652 TranslationBlock *tb;
653 int i;
654 address &= TARGET_PAGE_MASK;
99773bd4
PB
655 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
656 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
657 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
658 address >= tb->pc + tb->size)) {
659 printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
99773bd4 660 address, (long)tb->pc, tb->size);
fd6ce8f6
FB
661 }
662 }
663 }
664}
665
666/* verify that all the pages have correct rights for code */
667static void tb_page_check(void)
668{
669 TranslationBlock *tb;
670 int i, flags1, flags2;
3b46e624 671
99773bd4
PB
672 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
673 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
674 flags1 = page_get_flags(tb->pc);
675 flags2 = page_get_flags(tb->pc + tb->size - 1);
676 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
677 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
99773bd4 678 (long)tb->pc, tb->size, flags1, flags2);
fd6ce8f6
FB
679 }
680 }
681 }
682}
683
bdaf78e0 684static void tb_jmp_check(TranslationBlock *tb)
d4e8164f
FB
685{
686 TranslationBlock *tb1;
687 unsigned int n1;
688
689 /* suppress any remaining jumps to this TB */
690 tb1 = tb->jmp_first;
691 for(;;) {
692 n1 = (long)tb1 & 3;
693 tb1 = (TranslationBlock *)((long)tb1 & ~3);
694 if (n1 == 2)
695 break;
696 tb1 = tb1->jmp_next[n1];
697 }
698 /* check end of list */
699 if (tb1 != tb) {
700 printf("ERROR: jmp_list from 0x%08lx\n", (long)tb);
701 }
702}
703
fd6ce8f6
FB
704#endif
705
706/* invalidate one TB */
707static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
708 int next_offset)
709{
710 TranslationBlock *tb1;
711 for(;;) {
712 tb1 = *ptb;
713 if (tb1 == tb) {
714 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
715 break;
716 }
717 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
718 }
719}
720
9fa3e853
FB
721static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
722{
723 TranslationBlock *tb1;
724 unsigned int n1;
725
726 for(;;) {
727 tb1 = *ptb;
728 n1 = (long)tb1 & 3;
729 tb1 = (TranslationBlock *)((long)tb1 & ~3);
730 if (tb1 == tb) {
731 *ptb = tb1->page_next[n1];
732 break;
733 }
734 ptb = &tb1->page_next[n1];
735 }
736}
737
d4e8164f
FB
738static inline void tb_jmp_remove(TranslationBlock *tb, int n)
739{
740 TranslationBlock *tb1, **ptb;
741 unsigned int n1;
742
743 ptb = &tb->jmp_next[n];
744 tb1 = *ptb;
745 if (tb1) {
746 /* find tb(n) in circular list */
747 for(;;) {
748 tb1 = *ptb;
749 n1 = (long)tb1 & 3;
750 tb1 = (TranslationBlock *)((long)tb1 & ~3);
751 if (n1 == n && tb1 == tb)
752 break;
753 if (n1 == 2) {
754 ptb = &tb1->jmp_first;
755 } else {
756 ptb = &tb1->jmp_next[n1];
757 }
758 }
759 /* now we can suppress tb(n) from the list */
760 *ptb = tb->jmp_next[n];
761
762 tb->jmp_next[n] = NULL;
763 }
764}
765
766/* reset the jump entry 'n' of a TB so that it is not chained to
767 another TB */
768static inline void tb_reset_jump(TranslationBlock *tb, int n)
769{
770 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
771}
772
2e70f6ef 773void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
fd6ce8f6 774{
6a00d601 775 CPUState *env;
8a40a180 776 PageDesc *p;
d4e8164f 777 unsigned int h, n1;
00f82b8a 778 target_phys_addr_t phys_pc;
8a40a180 779 TranslationBlock *tb1, *tb2;
3b46e624 780
8a40a180
FB
781 /* remove the TB from the hash list */
782 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
783 h = tb_phys_hash_func(phys_pc);
5fafdf24 784 tb_remove(&tb_phys_hash[h], tb,
8a40a180
FB
785 offsetof(TranslationBlock, phys_hash_next));
786
787 /* remove the TB from the page list */
788 if (tb->page_addr[0] != page_addr) {
789 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
790 tb_page_remove(&p->first_tb, tb);
791 invalidate_page_bitmap(p);
792 }
793 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
794 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
795 tb_page_remove(&p->first_tb, tb);
796 invalidate_page_bitmap(p);
797 }
798
36bdbe54 799 tb_invalidated_flag = 1;
59817ccb 800
fd6ce8f6 801 /* remove the TB from the hash list */
8a40a180 802 h = tb_jmp_cache_hash_func(tb->pc);
6a00d601
FB
803 for(env = first_cpu; env != NULL; env = env->next_cpu) {
804 if (env->tb_jmp_cache[h] == tb)
805 env->tb_jmp_cache[h] = NULL;
806 }
d4e8164f
FB
807
808 /* suppress this TB from the two jump lists */
809 tb_jmp_remove(tb, 0);
810 tb_jmp_remove(tb, 1);
811
812 /* suppress any remaining jumps to this TB */
813 tb1 = tb->jmp_first;
814 for(;;) {
815 n1 = (long)tb1 & 3;
816 if (n1 == 2)
817 break;
818 tb1 = (TranslationBlock *)((long)tb1 & ~3);
819 tb2 = tb1->jmp_next[n1];
820 tb_reset_jump(tb1, n1);
821 tb1->jmp_next[n1] = NULL;
822 tb1 = tb2;
823 }
824 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
9fa3e853 825
e3db7226 826 tb_phys_invalidate_count++;
9fa3e853
FB
827}
828
829static inline void set_bits(uint8_t *tab, int start, int len)
830{
831 int end, mask, end1;
832
833 end = start + len;
834 tab += start >> 3;
835 mask = 0xff << (start & 7);
836 if ((start & ~7) == (end & ~7)) {
837 if (start < end) {
838 mask &= ~(0xff << (end & 7));
839 *tab |= mask;
840 }
841 } else {
842 *tab++ |= mask;
843 start = (start + 8) & ~7;
844 end1 = end & ~7;
845 while (start < end1) {
846 *tab++ = 0xff;
847 start += 8;
848 }
849 if (start < end) {
850 mask = ~(0xff << (end & 7));
851 *tab |= mask;
852 }
853 }
854}
855
856static void build_page_bitmap(PageDesc *p)
857{
858 int n, tb_start, tb_end;
859 TranslationBlock *tb;
3b46e624 860
b2a7081a 861 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
862
863 tb = p->first_tb;
864 while (tb != NULL) {
865 n = (long)tb & 3;
866 tb = (TranslationBlock *)((long)tb & ~3);
867 /* NOTE: this is subtle as a TB may span two physical pages */
868 if (n == 0) {
869 /* NOTE: tb_end may be after the end of the page, but
870 it is not a problem */
871 tb_start = tb->pc & ~TARGET_PAGE_MASK;
872 tb_end = tb_start + tb->size;
873 if (tb_end > TARGET_PAGE_SIZE)
874 tb_end = TARGET_PAGE_SIZE;
875 } else {
876 tb_start = 0;
877 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
878 }
879 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
880 tb = tb->page_next[n];
881 }
882}
883
2e70f6ef
PB
884TranslationBlock *tb_gen_code(CPUState *env,
885 target_ulong pc, target_ulong cs_base,
886 int flags, int cflags)
d720b93d
FB
887{
888 TranslationBlock *tb;
889 uint8_t *tc_ptr;
890 target_ulong phys_pc, phys_page2, virt_page2;
891 int code_gen_size;
892
c27004ec
FB
893 phys_pc = get_phys_addr_code(env, pc);
894 tb = tb_alloc(pc);
d720b93d
FB
895 if (!tb) {
896 /* flush must be done */
897 tb_flush(env);
898 /* cannot fail at this point */
c27004ec 899 tb = tb_alloc(pc);
2e70f6ef
PB
900 /* Don't forget to invalidate previous TB info. */
901 tb_invalidated_flag = 1;
d720b93d
FB
902 }
903 tc_ptr = code_gen_ptr;
904 tb->tc_ptr = tc_ptr;
905 tb->cs_base = cs_base;
906 tb->flags = flags;
907 tb->cflags = cflags;
d07bde88 908 cpu_gen_code(env, tb, &code_gen_size);
d720b93d 909 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
3b46e624 910
d720b93d 911 /* check next page if needed */
c27004ec 912 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
d720b93d 913 phys_page2 = -1;
c27004ec 914 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
d720b93d
FB
915 phys_page2 = get_phys_addr_code(env, virt_page2);
916 }
917 tb_link_phys(tb, phys_pc, phys_page2);
2e70f6ef 918 return tb;
d720b93d 919}
3b46e624 920
9fa3e853
FB
921/* invalidate all TBs which intersect with the target physical page
922 starting in range [start;end[. NOTE: start and end must refer to
d720b93d
FB
923 the same physical page. 'is_cpu_write_access' should be true if called
924 from a real cpu write access: the virtual CPU will exit the current
925 TB if code is modified inside this TB. */
00f82b8a 926void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
d720b93d
FB
927 int is_cpu_write_access)
928{
6b917547 929 TranslationBlock *tb, *tb_next, *saved_tb;
d720b93d 930 CPUState *env = cpu_single_env;
9fa3e853 931 target_ulong tb_start, tb_end;
6b917547
AL
932 PageDesc *p;
933 int n;
934#ifdef TARGET_HAS_PRECISE_SMC
935 int current_tb_not_found = is_cpu_write_access;
936 TranslationBlock *current_tb = NULL;
937 int current_tb_modified = 0;
938 target_ulong current_pc = 0;
939 target_ulong current_cs_base = 0;
940 int current_flags = 0;
941#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
942
943 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 944 if (!p)
9fa3e853 945 return;
5fafdf24 946 if (!p->code_bitmap &&
d720b93d
FB
947 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
948 is_cpu_write_access) {
9fa3e853
FB
949 /* build code bitmap */
950 build_page_bitmap(p);
951 }
952
953 /* we remove all the TBs in the range [start, end[ */
954 /* XXX: see if in some cases it could be faster to invalidate all the code */
955 tb = p->first_tb;
956 while (tb != NULL) {
957 n = (long)tb & 3;
958 tb = (TranslationBlock *)((long)tb & ~3);
959 tb_next = tb->page_next[n];
960 /* NOTE: this is subtle as a TB may span two physical pages */
961 if (n == 0) {
962 /* NOTE: tb_end may be after the end of the page, but
963 it is not a problem */
964 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
965 tb_end = tb_start + tb->size;
966 } else {
967 tb_start = tb->page_addr[1];
968 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
969 }
970 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
971#ifdef TARGET_HAS_PRECISE_SMC
972 if (current_tb_not_found) {
973 current_tb_not_found = 0;
974 current_tb = NULL;
2e70f6ef 975 if (env->mem_io_pc) {
d720b93d 976 /* now we have a real cpu fault */
2e70f6ef 977 current_tb = tb_find_pc(env->mem_io_pc);
d720b93d
FB
978 }
979 }
980 if (current_tb == tb &&
2e70f6ef 981 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
982 /* If we are modifying the current TB, we must stop
983 its execution. We could be more precise by checking
984 that the modification is after the current PC, but it
985 would require a specialized function to partially
986 restore the CPU state */
3b46e624 987
d720b93d 988 current_tb_modified = 1;
5fafdf24 989 cpu_restore_state(current_tb, env,
2e70f6ef 990 env->mem_io_pc, NULL);
6b917547
AL
991 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
992 &current_flags);
d720b93d
FB
993 }
994#endif /* TARGET_HAS_PRECISE_SMC */
6f5a9f7e
FB
995 /* we need to do that to handle the case where a signal
996 occurs while doing tb_phys_invalidate() */
997 saved_tb = NULL;
998 if (env) {
999 saved_tb = env->current_tb;
1000 env->current_tb = NULL;
1001 }
9fa3e853 1002 tb_phys_invalidate(tb, -1);
6f5a9f7e
FB
1003 if (env) {
1004 env->current_tb = saved_tb;
1005 if (env->interrupt_request && env->current_tb)
1006 cpu_interrupt(env, env->interrupt_request);
1007 }
9fa3e853
FB
1008 }
1009 tb = tb_next;
1010 }
1011#if !defined(CONFIG_USER_ONLY)
1012 /* if no code remaining, no need to continue to use slow writes */
1013 if (!p->first_tb) {
1014 invalidate_page_bitmap(p);
d720b93d 1015 if (is_cpu_write_access) {
2e70f6ef 1016 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
d720b93d
FB
1017 }
1018 }
1019#endif
1020#ifdef TARGET_HAS_PRECISE_SMC
1021 if (current_tb_modified) {
1022 /* we generate a block containing just the instruction
1023 modifying the memory. It will ensure that it cannot modify
1024 itself */
ea1c1802 1025 env->current_tb = NULL;
2e70f6ef 1026 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d 1027 cpu_resume_from_signal(env, NULL);
9fa3e853 1028 }
fd6ce8f6 1029#endif
9fa3e853 1030}
fd6ce8f6 1031
9fa3e853 1032/* len must be <= 8 and start must be a multiple of len */
00f82b8a 1033static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
9fa3e853
FB
1034{
1035 PageDesc *p;
1036 int offset, b;
59817ccb 1037#if 0
a4193c8a 1038 if (1) {
93fcfe39
AL
1039 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1040 cpu_single_env->mem_io_vaddr, len,
1041 cpu_single_env->eip,
1042 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
59817ccb
FB
1043 }
1044#endif
9fa3e853 1045 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1046 if (!p)
9fa3e853
FB
1047 return;
1048 if (p->code_bitmap) {
1049 offset = start & ~TARGET_PAGE_MASK;
1050 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1051 if (b & ((1 << len) - 1))
1052 goto do_invalidate;
1053 } else {
1054 do_invalidate:
d720b93d 1055 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
1056 }
1057}
1058
9fa3e853 1059#if !defined(CONFIG_SOFTMMU)
00f82b8a 1060static void tb_invalidate_phys_page(target_phys_addr_t addr,
d720b93d 1061 unsigned long pc, void *puc)
9fa3e853 1062{
6b917547 1063 TranslationBlock *tb;
9fa3e853 1064 PageDesc *p;
6b917547 1065 int n;
d720b93d 1066#ifdef TARGET_HAS_PRECISE_SMC
6b917547 1067 TranslationBlock *current_tb = NULL;
d720b93d 1068 CPUState *env = cpu_single_env;
6b917547
AL
1069 int current_tb_modified = 0;
1070 target_ulong current_pc = 0;
1071 target_ulong current_cs_base = 0;
1072 int current_flags = 0;
d720b93d 1073#endif
9fa3e853
FB
1074
1075 addr &= TARGET_PAGE_MASK;
1076 p = page_find(addr >> TARGET_PAGE_BITS);
5fafdf24 1077 if (!p)
9fa3e853
FB
1078 return;
1079 tb = p->first_tb;
d720b93d
FB
1080#ifdef TARGET_HAS_PRECISE_SMC
1081 if (tb && pc != 0) {
1082 current_tb = tb_find_pc(pc);
1083 }
1084#endif
9fa3e853
FB
1085 while (tb != NULL) {
1086 n = (long)tb & 3;
1087 tb = (TranslationBlock *)((long)tb & ~3);
d720b93d
FB
1088#ifdef TARGET_HAS_PRECISE_SMC
1089 if (current_tb == tb &&
2e70f6ef 1090 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1091 /* If we are modifying the current TB, we must stop
1092 its execution. We could be more precise by checking
1093 that the modification is after the current PC, but it
1094 would require a specialized function to partially
1095 restore the CPU state */
3b46e624 1096
d720b93d
FB
1097 current_tb_modified = 1;
1098 cpu_restore_state(current_tb, env, pc, puc);
6b917547
AL
1099 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1100 &current_flags);
d720b93d
FB
1101 }
1102#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1103 tb_phys_invalidate(tb, addr);
1104 tb = tb->page_next[n];
1105 }
fd6ce8f6 1106 p->first_tb = NULL;
d720b93d
FB
1107#ifdef TARGET_HAS_PRECISE_SMC
1108 if (current_tb_modified) {
1109 /* we generate a block containing just the instruction
1110 modifying the memory. It will ensure that it cannot modify
1111 itself */
ea1c1802 1112 env->current_tb = NULL;
2e70f6ef 1113 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d
FB
1114 cpu_resume_from_signal(env, puc);
1115 }
1116#endif
fd6ce8f6 1117}
9fa3e853 1118#endif
fd6ce8f6
FB
1119
1120/* add the tb in the target page and protect it if necessary */
5fafdf24 1121static inline void tb_alloc_page(TranslationBlock *tb,
53a5960a 1122 unsigned int n, target_ulong page_addr)
fd6ce8f6
FB
1123{
1124 PageDesc *p;
9fa3e853
FB
1125 TranslationBlock *last_first_tb;
1126
1127 tb->page_addr[n] = page_addr;
3a7d929e 1128 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
9fa3e853
FB
1129 tb->page_next[n] = p->first_tb;
1130 last_first_tb = p->first_tb;
1131 p->first_tb = (TranslationBlock *)((long)tb | n);
1132 invalidate_page_bitmap(p);
fd6ce8f6 1133
107db443 1134#if defined(TARGET_HAS_SMC) || 1
d720b93d 1135
9fa3e853 1136#if defined(CONFIG_USER_ONLY)
fd6ce8f6 1137 if (p->flags & PAGE_WRITE) {
53a5960a
PB
1138 target_ulong addr;
1139 PageDesc *p2;
9fa3e853
FB
1140 int prot;
1141
fd6ce8f6
FB
1142 /* force the host page as non writable (writes will have a
1143 page fault + mprotect overhead) */
53a5960a 1144 page_addr &= qemu_host_page_mask;
fd6ce8f6 1145 prot = 0;
53a5960a
PB
1146 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1147 addr += TARGET_PAGE_SIZE) {
1148
1149 p2 = page_find (addr >> TARGET_PAGE_BITS);
1150 if (!p2)
1151 continue;
1152 prot |= p2->flags;
1153 p2->flags &= ~PAGE_WRITE;
1154 page_get_flags(addr);
1155 }
5fafdf24 1156 mprotect(g2h(page_addr), qemu_host_page_size,
fd6ce8f6
FB
1157 (prot & PAGE_BITS) & ~PAGE_WRITE);
1158#ifdef DEBUG_TB_INVALIDATE
ab3d1727 1159 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
53a5960a 1160 page_addr);
fd6ce8f6 1161#endif
fd6ce8f6 1162 }
9fa3e853
FB
1163#else
1164 /* if some code is already present, then the pages are already
1165 protected. So we handle the case where only the first TB is
1166 allocated in a physical page */
1167 if (!last_first_tb) {
6a00d601 1168 tlb_protect_code(page_addr);
9fa3e853
FB
1169 }
1170#endif
d720b93d
FB
1171
1172#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
1173}
1174
1175/* Allocate a new translation block. Flush the translation buffer if
1176 too many translation blocks or too much generated code. */
c27004ec 1177TranslationBlock *tb_alloc(target_ulong pc)
fd6ce8f6
FB
1178{
1179 TranslationBlock *tb;
fd6ce8f6 1180
26a5f13b
FB
1181 if (nb_tbs >= code_gen_max_blocks ||
1182 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
d4e8164f 1183 return NULL;
fd6ce8f6
FB
1184 tb = &tbs[nb_tbs++];
1185 tb->pc = pc;
b448f2f3 1186 tb->cflags = 0;
d4e8164f
FB
1187 return tb;
1188}
1189
2e70f6ef
PB
1190void tb_free(TranslationBlock *tb)
1191{
bf20dc07 1192 /* In practice this is mostly used for single use temporary TB
2e70f6ef
PB
1193 Ignore the hard cases and just back up if this TB happens to
1194 be the last one generated. */
1195 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1196 code_gen_ptr = tb->tc_ptr;
1197 nb_tbs--;
1198 }
1199}
1200
9fa3e853
FB
1201/* add a new TB and link it to the physical page tables. phys_page2 is
1202 (-1) to indicate that only one page contains the TB. */
5fafdf24 1203void tb_link_phys(TranslationBlock *tb,
9fa3e853 1204 target_ulong phys_pc, target_ulong phys_page2)
d4e8164f 1205{
9fa3e853
FB
1206 unsigned int h;
1207 TranslationBlock **ptb;
1208
c8a706fe
PB
1209 /* Grab the mmap lock to stop another thread invalidating this TB
1210 before we are done. */
1211 mmap_lock();
9fa3e853
FB
1212 /* add in the physical hash table */
1213 h = tb_phys_hash_func(phys_pc);
1214 ptb = &tb_phys_hash[h];
1215 tb->phys_hash_next = *ptb;
1216 *ptb = tb;
fd6ce8f6
FB
1217
1218 /* add in the page list */
9fa3e853
FB
1219 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1220 if (phys_page2 != -1)
1221 tb_alloc_page(tb, 1, phys_page2);
1222 else
1223 tb->page_addr[1] = -1;
9fa3e853 1224
d4e8164f
FB
1225 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1226 tb->jmp_next[0] = NULL;
1227 tb->jmp_next[1] = NULL;
1228
1229 /* init original jump addresses */
1230 if (tb->tb_next_offset[0] != 0xffff)
1231 tb_reset_jump(tb, 0);
1232 if (tb->tb_next_offset[1] != 0xffff)
1233 tb_reset_jump(tb, 1);
8a40a180
FB
1234
1235#ifdef DEBUG_TB_CHECK
1236 tb_page_check();
1237#endif
c8a706fe 1238 mmap_unlock();
fd6ce8f6
FB
1239}
1240
9fa3e853
FB
1241/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1242 tb[1].tc_ptr. Return NULL if not found */
1243TranslationBlock *tb_find_pc(unsigned long tc_ptr)
fd6ce8f6 1244{
9fa3e853
FB
1245 int m_min, m_max, m;
1246 unsigned long v;
1247 TranslationBlock *tb;
a513fe19
FB
1248
1249 if (nb_tbs <= 0)
1250 return NULL;
1251 if (tc_ptr < (unsigned long)code_gen_buffer ||
1252 tc_ptr >= (unsigned long)code_gen_ptr)
1253 return NULL;
1254 /* binary search (cf Knuth) */
1255 m_min = 0;
1256 m_max = nb_tbs - 1;
1257 while (m_min <= m_max) {
1258 m = (m_min + m_max) >> 1;
1259 tb = &tbs[m];
1260 v = (unsigned long)tb->tc_ptr;
1261 if (v == tc_ptr)
1262 return tb;
1263 else if (tc_ptr < v) {
1264 m_max = m - 1;
1265 } else {
1266 m_min = m + 1;
1267 }
5fafdf24 1268 }
a513fe19
FB
1269 return &tbs[m_max];
1270}
7501267e 1271
ea041c0e
FB
1272static void tb_reset_jump_recursive(TranslationBlock *tb);
1273
1274static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1275{
1276 TranslationBlock *tb1, *tb_next, **ptb;
1277 unsigned int n1;
1278
1279 tb1 = tb->jmp_next[n];
1280 if (tb1 != NULL) {
1281 /* find head of list */
1282 for(;;) {
1283 n1 = (long)tb1 & 3;
1284 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1285 if (n1 == 2)
1286 break;
1287 tb1 = tb1->jmp_next[n1];
1288 }
1289 /* we are now sure now that tb jumps to tb1 */
1290 tb_next = tb1;
1291
1292 /* remove tb from the jmp_first list */
1293 ptb = &tb_next->jmp_first;
1294 for(;;) {
1295 tb1 = *ptb;
1296 n1 = (long)tb1 & 3;
1297 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1298 if (n1 == n && tb1 == tb)
1299 break;
1300 ptb = &tb1->jmp_next[n1];
1301 }
1302 *ptb = tb->jmp_next[n];
1303 tb->jmp_next[n] = NULL;
3b46e624 1304
ea041c0e
FB
1305 /* suppress the jump to next tb in generated code */
1306 tb_reset_jump(tb, n);
1307
0124311e 1308 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1309 tb_reset_jump_recursive(tb_next);
1310 }
1311}
1312
1313static void tb_reset_jump_recursive(TranslationBlock *tb)
1314{
1315 tb_reset_jump_recursive2(tb, 0);
1316 tb_reset_jump_recursive2(tb, 1);
1317}
1318
1fddef4b 1319#if defined(TARGET_HAS_ICE)
d720b93d
FB
1320static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1321{
9b3c35e0
JM
1322 target_phys_addr_t addr;
1323 target_ulong pd;
c2f07f81
PB
1324 ram_addr_t ram_addr;
1325 PhysPageDesc *p;
d720b93d 1326
c2f07f81
PB
1327 addr = cpu_get_phys_page_debug(env, pc);
1328 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1329 if (!p) {
1330 pd = IO_MEM_UNASSIGNED;
1331 } else {
1332 pd = p->phys_offset;
1333 }
1334 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
706cd4b5 1335 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
d720b93d 1336}
c27004ec 1337#endif
d720b93d 1338
6658ffb8 1339/* Add a watchpoint. */
a1d1bb31
AL
1340int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1341 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1342{
b4051334 1343 target_ulong len_mask = ~(len - 1);
c0ce998e 1344 CPUWatchpoint *wp;
6658ffb8 1345
b4051334
AL
1346 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1347 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1348 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1349 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1350 return -EINVAL;
1351 }
a1d1bb31 1352 wp = qemu_malloc(sizeof(*wp));
a1d1bb31
AL
1353
1354 wp->vaddr = addr;
b4051334 1355 wp->len_mask = len_mask;
a1d1bb31
AL
1356 wp->flags = flags;
1357
2dc9f411 1358 /* keep all GDB-injected watchpoints in front */
c0ce998e
AL
1359 if (flags & BP_GDB)
1360 TAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1361 else
1362 TAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
6658ffb8 1363
6658ffb8 1364 tlb_flush_page(env, addr);
a1d1bb31
AL
1365
1366 if (watchpoint)
1367 *watchpoint = wp;
1368 return 0;
6658ffb8
PB
1369}
1370
a1d1bb31
AL
1371/* Remove a specific watchpoint. */
1372int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1373 int flags)
6658ffb8 1374{
b4051334 1375 target_ulong len_mask = ~(len - 1);
a1d1bb31 1376 CPUWatchpoint *wp;
6658ffb8 1377
c0ce998e 1378 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334 1379 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 1380 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 1381 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
1382 return 0;
1383 }
1384 }
a1d1bb31 1385 return -ENOENT;
6658ffb8
PB
1386}
1387
a1d1bb31
AL
1388/* Remove a specific watchpoint by reference. */
1389void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1390{
c0ce998e 1391 TAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
7d03f82f 1392
a1d1bb31
AL
1393 tlb_flush_page(env, watchpoint->vaddr);
1394
1395 qemu_free(watchpoint);
1396}
1397
1398/* Remove all matching watchpoints. */
1399void cpu_watchpoint_remove_all(CPUState *env, int mask)
1400{
c0ce998e 1401 CPUWatchpoint *wp, *next;
a1d1bb31 1402
c0ce998e 1403 TAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
a1d1bb31
AL
1404 if (wp->flags & mask)
1405 cpu_watchpoint_remove_by_ref(env, wp);
c0ce998e 1406 }
7d03f82f
EI
1407}
1408
a1d1bb31
AL
1409/* Add a breakpoint. */
1410int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1411 CPUBreakpoint **breakpoint)
4c3a88a2 1412{
1fddef4b 1413#if defined(TARGET_HAS_ICE)
c0ce998e 1414 CPUBreakpoint *bp;
3b46e624 1415
a1d1bb31 1416 bp = qemu_malloc(sizeof(*bp));
4c3a88a2 1417
a1d1bb31
AL
1418 bp->pc = pc;
1419 bp->flags = flags;
1420
2dc9f411 1421 /* keep all GDB-injected breakpoints in front */
c0ce998e
AL
1422 if (flags & BP_GDB)
1423 TAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1424 else
1425 TAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
3b46e624 1426
d720b93d 1427 breakpoint_invalidate(env, pc);
a1d1bb31
AL
1428
1429 if (breakpoint)
1430 *breakpoint = bp;
4c3a88a2
FB
1431 return 0;
1432#else
a1d1bb31 1433 return -ENOSYS;
4c3a88a2
FB
1434#endif
1435}
1436
a1d1bb31
AL
1437/* Remove a specific breakpoint. */
1438int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1439{
7d03f82f 1440#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
1441 CPUBreakpoint *bp;
1442
c0ce998e 1443 TAILQ_FOREACH(bp, &env->breakpoints, entry) {
a1d1bb31
AL
1444 if (bp->pc == pc && bp->flags == flags) {
1445 cpu_breakpoint_remove_by_ref(env, bp);
1446 return 0;
1447 }
7d03f82f 1448 }
a1d1bb31
AL
1449 return -ENOENT;
1450#else
1451 return -ENOSYS;
7d03f82f
EI
1452#endif
1453}
1454
a1d1bb31
AL
1455/* Remove a specific breakpoint by reference. */
1456void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
4c3a88a2 1457{
1fddef4b 1458#if defined(TARGET_HAS_ICE)
c0ce998e 1459 TAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
d720b93d 1460
a1d1bb31
AL
1461 breakpoint_invalidate(env, breakpoint->pc);
1462
1463 qemu_free(breakpoint);
1464#endif
1465}
1466
1467/* Remove all matching breakpoints. */
1468void cpu_breakpoint_remove_all(CPUState *env, int mask)
1469{
1470#if defined(TARGET_HAS_ICE)
c0ce998e 1471 CPUBreakpoint *bp, *next;
a1d1bb31 1472
c0ce998e 1473 TAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
a1d1bb31
AL
1474 if (bp->flags & mask)
1475 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 1476 }
4c3a88a2
FB
1477#endif
1478}
1479
c33a346e
FB
1480/* enable or disable single step mode. EXCP_DEBUG is returned by the
1481 CPU loop after each instruction */
1482void cpu_single_step(CPUState *env, int enabled)
1483{
1fddef4b 1484#if defined(TARGET_HAS_ICE)
c33a346e
FB
1485 if (env->singlestep_enabled != enabled) {
1486 env->singlestep_enabled = enabled;
e22a25c9
AL
1487 if (kvm_enabled())
1488 kvm_update_guest_debug(env, 0);
1489 else {
ccbb4d44 1490 /* must flush all the translated code to avoid inconsistencies */
e22a25c9
AL
1491 /* XXX: only flush what is necessary */
1492 tb_flush(env);
1493 }
c33a346e
FB
1494 }
1495#endif
1496}
1497
34865134
FB
1498/* enable or disable low levels log */
1499void cpu_set_log(int log_flags)
1500{
1501 loglevel = log_flags;
1502 if (loglevel && !logfile) {
11fcfab4 1503 logfile = fopen(logfilename, log_append ? "a" : "w");
34865134
FB
1504 if (!logfile) {
1505 perror(logfilename);
1506 _exit(1);
1507 }
9fa3e853
FB
1508#if !defined(CONFIG_SOFTMMU)
1509 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1510 {
b55266b5 1511 static char logfile_buf[4096];
9fa3e853
FB
1512 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1513 }
1514#else
34865134 1515 setvbuf(logfile, NULL, _IOLBF, 0);
9fa3e853 1516#endif
e735b91c
PB
1517 log_append = 1;
1518 }
1519 if (!loglevel && logfile) {
1520 fclose(logfile);
1521 logfile = NULL;
34865134
FB
1522 }
1523}
1524
1525void cpu_set_log_filename(const char *filename)
1526{
1527 logfilename = strdup(filename);
e735b91c
PB
1528 if (logfile) {
1529 fclose(logfile);
1530 logfile = NULL;
1531 }
1532 cpu_set_log(loglevel);
34865134 1533}
c33a346e 1534
3098dba0 1535static void cpu_unlink_tb(CPUState *env)
ea041c0e 1536{
3098dba0
AJ
1537#if defined(USE_NPTL)
1538 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1539 problem and hope the cpu will stop of its own accord. For userspace
1540 emulation this often isn't actually as bad as it sounds. Often
1541 signals are used primarily to interrupt blocking syscalls. */
1542#else
ea041c0e 1543 TranslationBlock *tb;
15a51156 1544 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
59817ccb 1545
3098dba0
AJ
1546 tb = env->current_tb;
1547 /* if the cpu is currently executing code, we must unlink it and
1548 all the potentially executing TB */
1549 if (tb && !testandset(&interrupt_lock)) {
1550 env->current_tb = NULL;
1551 tb_reset_jump_recursive(tb);
1552 resetlock(&interrupt_lock);
be214e6c 1553 }
3098dba0
AJ
1554#endif
1555}
1556
1557/* mask must never be zero, except for A20 change call */
1558void cpu_interrupt(CPUState *env, int mask)
1559{
1560 int old_mask;
be214e6c 1561
2e70f6ef 1562 old_mask = env->interrupt_request;
68a79315 1563 env->interrupt_request |= mask;
3098dba0 1564
8edac960
AL
1565#ifndef CONFIG_USER_ONLY
1566 /*
1567 * If called from iothread context, wake the target cpu in
1568 * case its halted.
1569 */
1570 if (!qemu_cpu_self(env)) {
1571 qemu_cpu_kick(env);
1572 return;
1573 }
1574#endif
1575
2e70f6ef 1576 if (use_icount) {
266910c4 1577 env->icount_decr.u16.high = 0xffff;
2e70f6ef 1578#ifndef CONFIG_USER_ONLY
2e70f6ef 1579 if (!can_do_io(env)
be214e6c 1580 && (mask & ~old_mask) != 0) {
2e70f6ef
PB
1581 cpu_abort(env, "Raised interrupt while not in I/O function");
1582 }
1583#endif
1584 } else {
3098dba0 1585 cpu_unlink_tb(env);
ea041c0e
FB
1586 }
1587}
1588
b54ad049
FB
1589void cpu_reset_interrupt(CPUState *env, int mask)
1590{
1591 env->interrupt_request &= ~mask;
1592}
1593
3098dba0
AJ
1594void cpu_exit(CPUState *env)
1595{
1596 env->exit_request = 1;
1597 cpu_unlink_tb(env);
1598}
1599
c7cd6a37 1600const CPULogItem cpu_log_items[] = {
5fafdf24 1601 { CPU_LOG_TB_OUT_ASM, "out_asm",
f193c797
FB
1602 "show generated host assembly code for each compiled TB" },
1603 { CPU_LOG_TB_IN_ASM, "in_asm",
1604 "show target assembly code for each compiled TB" },
5fafdf24 1605 { CPU_LOG_TB_OP, "op",
57fec1fe 1606 "show micro ops for each compiled TB" },
f193c797 1607 { CPU_LOG_TB_OP_OPT, "op_opt",
e01a1157
BS
1608 "show micro ops "
1609#ifdef TARGET_I386
1610 "before eflags optimization and "
f193c797 1611#endif
e01a1157 1612 "after liveness analysis" },
f193c797
FB
1613 { CPU_LOG_INT, "int",
1614 "show interrupts/exceptions in short format" },
1615 { CPU_LOG_EXEC, "exec",
1616 "show trace before each executed TB (lots of logs)" },
9fddaa0c 1617 { CPU_LOG_TB_CPU, "cpu",
e91c8a77 1618 "show CPU state before block translation" },
f193c797
FB
1619#ifdef TARGET_I386
1620 { CPU_LOG_PCALL, "pcall",
1621 "show protected mode far calls/returns/exceptions" },
eca1bdf4
AL
1622 { CPU_LOG_RESET, "cpu_reset",
1623 "show CPU state before CPU resets" },
f193c797 1624#endif
8e3a9fd2 1625#ifdef DEBUG_IOPORT
fd872598
FB
1626 { CPU_LOG_IOPORT, "ioport",
1627 "show all i/o ports accesses" },
8e3a9fd2 1628#endif
f193c797
FB
1629 { 0, NULL, NULL },
1630};
1631
1632static int cmp1(const char *s1, int n, const char *s2)
1633{
1634 if (strlen(s2) != n)
1635 return 0;
1636 return memcmp(s1, s2, n) == 0;
1637}
3b46e624 1638
f193c797
FB
1639/* takes a comma separated list of log masks. Return 0 if error. */
1640int cpu_str_to_log_mask(const char *str)
1641{
c7cd6a37 1642 const CPULogItem *item;
f193c797
FB
1643 int mask;
1644 const char *p, *p1;
1645
1646 p = str;
1647 mask = 0;
1648 for(;;) {
1649 p1 = strchr(p, ',');
1650 if (!p1)
1651 p1 = p + strlen(p);
8e3a9fd2
FB
1652 if(cmp1(p,p1-p,"all")) {
1653 for(item = cpu_log_items; item->mask != 0; item++) {
1654 mask |= item->mask;
1655 }
1656 } else {
f193c797
FB
1657 for(item = cpu_log_items; item->mask != 0; item++) {
1658 if (cmp1(p, p1 - p, item->name))
1659 goto found;
1660 }
1661 return 0;
8e3a9fd2 1662 }
f193c797
FB
1663 found:
1664 mask |= item->mask;
1665 if (*p1 != ',')
1666 break;
1667 p = p1 + 1;
1668 }
1669 return mask;
1670}
ea041c0e 1671
7501267e
FB
1672void cpu_abort(CPUState *env, const char *fmt, ...)
1673{
1674 va_list ap;
493ae1f0 1675 va_list ap2;
7501267e
FB
1676
1677 va_start(ap, fmt);
493ae1f0 1678 va_copy(ap2, ap);
7501267e
FB
1679 fprintf(stderr, "qemu: fatal: ");
1680 vfprintf(stderr, fmt, ap);
1681 fprintf(stderr, "\n");
1682#ifdef TARGET_I386
7fe48483
FB
1683 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1684#else
1685 cpu_dump_state(env, stderr, fprintf, 0);
7501267e 1686#endif
93fcfe39
AL
1687 if (qemu_log_enabled()) {
1688 qemu_log("qemu: fatal: ");
1689 qemu_log_vprintf(fmt, ap2);
1690 qemu_log("\n");
f9373291 1691#ifdef TARGET_I386
93fcfe39 1692 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
f9373291 1693#else
93fcfe39 1694 log_cpu_state(env, 0);
f9373291 1695#endif
31b1a7b4 1696 qemu_log_flush();
93fcfe39 1697 qemu_log_close();
924edcae 1698 }
493ae1f0 1699 va_end(ap2);
f9373291 1700 va_end(ap);
7501267e
FB
1701 abort();
1702}
1703
c5be9f08
TS
1704CPUState *cpu_copy(CPUState *env)
1705{
01ba9816 1706 CPUState *new_env = cpu_init(env->cpu_model_str);
c5be9f08
TS
1707 CPUState *next_cpu = new_env->next_cpu;
1708 int cpu_index = new_env->cpu_index;
5a38f081
AL
1709#if defined(TARGET_HAS_ICE)
1710 CPUBreakpoint *bp;
1711 CPUWatchpoint *wp;
1712#endif
1713
c5be9f08 1714 memcpy(new_env, env, sizeof(CPUState));
5a38f081
AL
1715
1716 /* Preserve chaining and index. */
c5be9f08
TS
1717 new_env->next_cpu = next_cpu;
1718 new_env->cpu_index = cpu_index;
5a38f081
AL
1719
1720 /* Clone all break/watchpoints.
1721 Note: Once we support ptrace with hw-debug register access, make sure
1722 BP_CPU break/watchpoints are handled correctly on clone. */
1723 TAILQ_INIT(&env->breakpoints);
1724 TAILQ_INIT(&env->watchpoints);
1725#if defined(TARGET_HAS_ICE)
1726 TAILQ_FOREACH(bp, &env->breakpoints, entry) {
1727 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1728 }
1729 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
1730 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1731 wp->flags, NULL);
1732 }
1733#endif
1734
c5be9f08
TS
1735 return new_env;
1736}
1737
0124311e
FB
1738#if !defined(CONFIG_USER_ONLY)
1739
5c751e99
EI
1740static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1741{
1742 unsigned int i;
1743
1744 /* Discard jump cache entries for any tb which might potentially
1745 overlap the flushed page. */
1746 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1747 memset (&env->tb_jmp_cache[i], 0,
1748 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1749
1750 i = tb_jmp_cache_hash_page(addr);
1751 memset (&env->tb_jmp_cache[i], 0,
1752 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1753}
1754
ee8b7021
FB
1755/* NOTE: if flush_global is true, also flush global entries (not
1756 implemented yet) */
1757void tlb_flush(CPUState *env, int flush_global)
33417e70 1758{
33417e70 1759 int i;
0124311e 1760
9fa3e853
FB
1761#if defined(DEBUG_TLB)
1762 printf("tlb_flush:\n");
1763#endif
0124311e
FB
1764 /* must reset current TB so that interrupts cannot modify the
1765 links while we are modifying them */
1766 env->current_tb = NULL;
1767
33417e70 1768 for(i = 0; i < CPU_TLB_SIZE; i++) {
cfde4bd9
IY
1769 int mmu_idx;
1770 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1771 env->tlb_table[mmu_idx][i].addr_read = -1;
1772 env->tlb_table[mmu_idx][i].addr_write = -1;
1773 env->tlb_table[mmu_idx][i].addr_code = -1;
1774 }
33417e70 1775 }
9fa3e853 1776
8a40a180 1777 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
9fa3e853 1778
640f42e4 1779#ifdef CONFIG_KQEMU
0a962c02
FB
1780 if (env->kqemu_enabled) {
1781 kqemu_flush(env, flush_global);
1782 }
9fa3e853 1783#endif
e3db7226 1784 tlb_flush_count++;
33417e70
FB
1785}
1786
274da6b2 1787static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
61382a50 1788{
5fafdf24 1789 if (addr == (tlb_entry->addr_read &
84b7b8e7 1790 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1791 addr == (tlb_entry->addr_write &
84b7b8e7 1792 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1793 addr == (tlb_entry->addr_code &
84b7b8e7
FB
1794 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1795 tlb_entry->addr_read = -1;
1796 tlb_entry->addr_write = -1;
1797 tlb_entry->addr_code = -1;
1798 }
61382a50
FB
1799}
1800
2e12669a 1801void tlb_flush_page(CPUState *env, target_ulong addr)
33417e70 1802{
8a40a180 1803 int i;
cfde4bd9 1804 int mmu_idx;
0124311e 1805
9fa3e853 1806#if defined(DEBUG_TLB)
108c49b8 1807 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
9fa3e853 1808#endif
0124311e
FB
1809 /* must reset current TB so that interrupts cannot modify the
1810 links while we are modifying them */
1811 env->current_tb = NULL;
61382a50
FB
1812
1813 addr &= TARGET_PAGE_MASK;
1814 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
1815 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1816 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
0124311e 1817
5c751e99 1818 tlb_flush_jmp_cache(env, addr);
9fa3e853 1819
640f42e4 1820#ifdef CONFIG_KQEMU
0a962c02
FB
1821 if (env->kqemu_enabled) {
1822 kqemu_flush_page(env, addr);
1823 }
1824#endif
9fa3e853
FB
1825}
1826
9fa3e853
FB
1827/* update the TLBs so that writes to code in the virtual page 'addr'
1828 can be detected */
6a00d601 1829static void tlb_protect_code(ram_addr_t ram_addr)
9fa3e853 1830{
5fafdf24 1831 cpu_physical_memory_reset_dirty(ram_addr,
6a00d601
FB
1832 ram_addr + TARGET_PAGE_SIZE,
1833 CODE_DIRTY_FLAG);
9fa3e853
FB
1834}
1835
9fa3e853 1836/* update the TLB so that writes in physical page 'phys_addr' are no longer
3a7d929e 1837 tested for self modifying code */
5fafdf24 1838static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 1839 target_ulong vaddr)
9fa3e853 1840{
3a7d929e 1841 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1ccde1cb
FB
1842}
1843
5fafdf24 1844static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1ccde1cb
FB
1845 unsigned long start, unsigned long length)
1846{
1847 unsigned long addr;
84b7b8e7
FB
1848 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1849 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1ccde1cb 1850 if ((addr - start) < length) {
0f459d16 1851 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1ccde1cb
FB
1852 }
1853 }
1854}
1855
5579c7f3 1856/* Note: start and end must be within the same ram block. */
3a7d929e 1857void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 1858 int dirty_flags)
1ccde1cb
FB
1859{
1860 CPUState *env;
4f2ac237 1861 unsigned long length, start1;
0a962c02
FB
1862 int i, mask, len;
1863 uint8_t *p;
1ccde1cb
FB
1864
1865 start &= TARGET_PAGE_MASK;
1866 end = TARGET_PAGE_ALIGN(end);
1867
1868 length = end - start;
1869 if (length == 0)
1870 return;
0a962c02 1871 len = length >> TARGET_PAGE_BITS;
640f42e4 1872#ifdef CONFIG_KQEMU
6a00d601
FB
1873 /* XXX: should not depend on cpu context */
1874 env = first_cpu;
3a7d929e 1875 if (env->kqemu_enabled) {
f23db169
FB
1876 ram_addr_t addr;
1877 addr = start;
1878 for(i = 0; i < len; i++) {
1879 kqemu_set_notdirty(env, addr);
1880 addr += TARGET_PAGE_SIZE;
1881 }
3a7d929e
FB
1882 }
1883#endif
f23db169
FB
1884 mask = ~dirty_flags;
1885 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1886 for(i = 0; i < len; i++)
1887 p[i] &= mask;
1888
1ccde1cb
FB
1889 /* we modify the TLB cache so that the dirty bit will be set again
1890 when accessing the range */
5579c7f3
PB
1891 start1 = (unsigned long)qemu_get_ram_ptr(start);
1892 /* Chek that we don't span multiple blocks - this breaks the
1893 address comparisons below. */
1894 if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
1895 != (end - 1) - start) {
1896 abort();
1897 }
1898
6a00d601 1899 for(env = first_cpu; env != NULL; env = env->next_cpu) {
cfde4bd9
IY
1900 int mmu_idx;
1901 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1902 for(i = 0; i < CPU_TLB_SIZE; i++)
1903 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
1904 start1, length);
1905 }
6a00d601 1906 }
1ccde1cb
FB
1907}
1908
74576198
AL
1909int cpu_physical_memory_set_dirty_tracking(int enable)
1910{
1911 in_migration = enable;
b0a46a33
JK
1912 if (kvm_enabled()) {
1913 return kvm_set_migration_log(enable);
1914 }
74576198
AL
1915 return 0;
1916}
1917
1918int cpu_physical_memory_get_dirty_tracking(void)
1919{
1920 return in_migration;
1921}
1922
151f7749
JK
1923int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
1924 target_phys_addr_t end_addr)
2bec46dc 1925{
151f7749
JK
1926 int ret = 0;
1927
2bec46dc 1928 if (kvm_enabled())
151f7749
JK
1929 ret = kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
1930 return ret;
2bec46dc
AL
1931}
1932
3a7d929e
FB
1933static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
1934{
1935 ram_addr_t ram_addr;
5579c7f3 1936 void *p;
3a7d929e 1937
84b7b8e7 1938 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
5579c7f3
PB
1939 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
1940 + tlb_entry->addend);
1941 ram_addr = qemu_ram_addr_from_host(p);
3a7d929e 1942 if (!cpu_physical_memory_is_dirty(ram_addr)) {
0f459d16 1943 tlb_entry->addr_write |= TLB_NOTDIRTY;
3a7d929e
FB
1944 }
1945 }
1946}
1947
1948/* update the TLB according to the current state of the dirty bits */
1949void cpu_tlb_update_dirty(CPUState *env)
1950{
1951 int i;
cfde4bd9
IY
1952 int mmu_idx;
1953 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1954 for(i = 0; i < CPU_TLB_SIZE; i++)
1955 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
1956 }
3a7d929e
FB
1957}
1958
0f459d16 1959static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1ccde1cb 1960{
0f459d16
PB
1961 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
1962 tlb_entry->addr_write = vaddr;
1ccde1cb
FB
1963}
1964
0f459d16
PB
1965/* update the TLB corresponding to virtual page vaddr
1966 so that it is no longer dirty */
1967static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1ccde1cb 1968{
1ccde1cb 1969 int i;
cfde4bd9 1970 int mmu_idx;
1ccde1cb 1971
0f459d16 1972 vaddr &= TARGET_PAGE_MASK;
1ccde1cb 1973 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
1974 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1975 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
9fa3e853
FB
1976}
1977
59817ccb
FB
1978/* add a new TLB entry. At most one entry for a given virtual address
1979 is permitted. Return 0 if OK or 2 if the page could not be mapped
1980 (can only happen in non SOFTMMU mode for I/O pages or pages
1981 conflicting with the host address space). */
5fafdf24
TS
1982int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1983 target_phys_addr_t paddr, int prot,
6ebbf390 1984 int mmu_idx, int is_softmmu)
9fa3e853 1985{
92e873b9 1986 PhysPageDesc *p;
4f2ac237 1987 unsigned long pd;
9fa3e853 1988 unsigned int index;
4f2ac237 1989 target_ulong address;
0f459d16 1990 target_ulong code_address;
108c49b8 1991 target_phys_addr_t addend;
9fa3e853 1992 int ret;
84b7b8e7 1993 CPUTLBEntry *te;
a1d1bb31 1994 CPUWatchpoint *wp;
0f459d16 1995 target_phys_addr_t iotlb;
9fa3e853 1996
92e873b9 1997 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
9fa3e853
FB
1998 if (!p) {
1999 pd = IO_MEM_UNASSIGNED;
9fa3e853
FB
2000 } else {
2001 pd = p->phys_offset;
9fa3e853
FB
2002 }
2003#if defined(DEBUG_TLB)
6ebbf390
JM
2004 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
2005 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
9fa3e853
FB
2006#endif
2007
2008 ret = 0;
0f459d16
PB
2009 address = vaddr;
2010 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2011 /* IO memory case (romd handled later) */
2012 address |= TLB_MMIO;
2013 }
5579c7f3 2014 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
0f459d16
PB
2015 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2016 /* Normal RAM. */
2017 iotlb = pd & TARGET_PAGE_MASK;
2018 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2019 iotlb |= IO_MEM_NOTDIRTY;
2020 else
2021 iotlb |= IO_MEM_ROM;
2022 } else {
ccbb4d44 2023 /* IO handlers are currently passed a physical address.
0f459d16
PB
2024 It would be nice to pass an offset from the base address
2025 of that region. This would avoid having to special case RAM,
2026 and avoid full address decoding in every device.
2027 We can't use the high bits of pd for this because
2028 IO_MEM_ROMD uses these as a ram address. */
8da3ff18
PB
2029 iotlb = (pd & ~TARGET_PAGE_MASK);
2030 if (p) {
8da3ff18
PB
2031 iotlb += p->region_offset;
2032 } else {
2033 iotlb += paddr;
2034 }
0f459d16
PB
2035 }
2036
2037 code_address = address;
2038 /* Make accesses to pages with watchpoints go via the
2039 watchpoint trap routines. */
c0ce998e 2040 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
a1d1bb31 2041 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
0f459d16
PB
2042 iotlb = io_mem_watch + paddr;
2043 /* TODO: The memory case can be optimized by not trapping
2044 reads of pages with a write breakpoint. */
2045 address |= TLB_MMIO;
6658ffb8 2046 }
0f459d16 2047 }
d79acba4 2048
0f459d16
PB
2049 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2050 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2051 te = &env->tlb_table[mmu_idx][index];
2052 te->addend = addend - vaddr;
2053 if (prot & PAGE_READ) {
2054 te->addr_read = address;
2055 } else {
2056 te->addr_read = -1;
2057 }
5c751e99 2058
0f459d16
PB
2059 if (prot & PAGE_EXEC) {
2060 te->addr_code = code_address;
2061 } else {
2062 te->addr_code = -1;
2063 }
2064 if (prot & PAGE_WRITE) {
2065 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2066 (pd & IO_MEM_ROMD)) {
2067 /* Write access calls the I/O callback. */
2068 te->addr_write = address | TLB_MMIO;
2069 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2070 !cpu_physical_memory_is_dirty(pd)) {
2071 te->addr_write = address | TLB_NOTDIRTY;
9fa3e853 2072 } else {
0f459d16 2073 te->addr_write = address;
9fa3e853 2074 }
0f459d16
PB
2075 } else {
2076 te->addr_write = -1;
9fa3e853 2077 }
9fa3e853
FB
2078 return ret;
2079}
2080
0124311e
FB
2081#else
2082
ee8b7021 2083void tlb_flush(CPUState *env, int flush_global)
0124311e
FB
2084{
2085}
2086
2e12669a 2087void tlb_flush_page(CPUState *env, target_ulong addr)
0124311e
FB
2088{
2089}
2090
5fafdf24
TS
2091int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
2092 target_phys_addr_t paddr, int prot,
6ebbf390 2093 int mmu_idx, int is_softmmu)
9fa3e853
FB
2094{
2095 return 0;
2096}
0124311e 2097
edf8e2af
MW
2098/*
2099 * Walks guest process memory "regions" one by one
2100 * and calls callback function 'fn' for each region.
2101 */
2102int walk_memory_regions(void *priv,
2103 int (*fn)(void *, unsigned long, unsigned long, unsigned long))
33417e70 2104{
9fa3e853 2105 unsigned long start, end;
edf8e2af 2106 PageDesc *p = NULL;
9fa3e853 2107 int i, j, prot, prot1;
edf8e2af 2108 int rc = 0;
33417e70 2109
edf8e2af 2110 start = end = -1;
9fa3e853 2111 prot = 0;
edf8e2af
MW
2112
2113 for (i = 0; i <= L1_SIZE; i++) {
2114 p = (i < L1_SIZE) ? l1_map[i] : NULL;
2115 for (j = 0; j < L2_SIZE; j++) {
2116 prot1 = (p == NULL) ? 0 : p[j].flags;
2117 /*
2118 * "region" is one continuous chunk of memory
2119 * that has same protection flags set.
2120 */
9fa3e853
FB
2121 if (prot1 != prot) {
2122 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
2123 if (start != -1) {
edf8e2af
MW
2124 rc = (*fn)(priv, start, end, prot);
2125 /* callback can stop iteration by returning != 0 */
2126 if (rc != 0)
2127 return (rc);
9fa3e853
FB
2128 }
2129 if (prot1 != 0)
2130 start = end;
2131 else
2132 start = -1;
2133 prot = prot1;
2134 }
edf8e2af 2135 if (p == NULL)
9fa3e853
FB
2136 break;
2137 }
33417e70 2138 }
edf8e2af
MW
2139 return (rc);
2140}
2141
2142static int dump_region(void *priv, unsigned long start,
2143 unsigned long end, unsigned long prot)
2144{
2145 FILE *f = (FILE *)priv;
2146
2147 (void) fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
2148 start, end, end - start,
2149 ((prot & PAGE_READ) ? 'r' : '-'),
2150 ((prot & PAGE_WRITE) ? 'w' : '-'),
2151 ((prot & PAGE_EXEC) ? 'x' : '-'));
2152
2153 return (0);
2154}
2155
2156/* dump memory mappings */
2157void page_dump(FILE *f)
2158{
2159 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2160 "start", "end", "size", "prot");
2161 walk_memory_regions(f, dump_region);
33417e70
FB
2162}
2163
53a5960a 2164int page_get_flags(target_ulong address)
33417e70 2165{
9fa3e853
FB
2166 PageDesc *p;
2167
2168 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 2169 if (!p)
9fa3e853
FB
2170 return 0;
2171 return p->flags;
2172}
2173
2174/* modify the flags of a page and invalidate the code if
ccbb4d44 2175 necessary. The flag PAGE_WRITE_ORG is positioned automatically
9fa3e853 2176 depending on PAGE_WRITE */
53a5960a 2177void page_set_flags(target_ulong start, target_ulong end, int flags)
9fa3e853
FB
2178{
2179 PageDesc *p;
53a5960a 2180 target_ulong addr;
9fa3e853 2181
c8a706fe 2182 /* mmap_lock should already be held. */
9fa3e853
FB
2183 start = start & TARGET_PAGE_MASK;
2184 end = TARGET_PAGE_ALIGN(end);
2185 if (flags & PAGE_WRITE)
2186 flags |= PAGE_WRITE_ORG;
9fa3e853
FB
2187 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2188 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
17e2377a
PB
2189 /* We may be called for host regions that are outside guest
2190 address space. */
2191 if (!p)
2192 return;
9fa3e853
FB
2193 /* if the write protection is set, then we invalidate the code
2194 inside */
5fafdf24 2195 if (!(p->flags & PAGE_WRITE) &&
9fa3e853
FB
2196 (flags & PAGE_WRITE) &&
2197 p->first_tb) {
d720b93d 2198 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
2199 }
2200 p->flags = flags;
2201 }
33417e70
FB
2202}
2203
3d97b40b
TS
2204int page_check_range(target_ulong start, target_ulong len, int flags)
2205{
2206 PageDesc *p;
2207 target_ulong end;
2208 target_ulong addr;
2209
55f280c9
AZ
2210 if (start + len < start)
2211 /* we've wrapped around */
2212 return -1;
2213
3d97b40b
TS
2214 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2215 start = start & TARGET_PAGE_MASK;
2216
3d97b40b
TS
2217 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2218 p = page_find(addr >> TARGET_PAGE_BITS);
2219 if( !p )
2220 return -1;
2221 if( !(p->flags & PAGE_VALID) )
2222 return -1;
2223
dae3270c 2224 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
3d97b40b 2225 return -1;
dae3270c
FB
2226 if (flags & PAGE_WRITE) {
2227 if (!(p->flags & PAGE_WRITE_ORG))
2228 return -1;
2229 /* unprotect the page if it was put read-only because it
2230 contains translated code */
2231 if (!(p->flags & PAGE_WRITE)) {
2232 if (!page_unprotect(addr, 0, NULL))
2233 return -1;
2234 }
2235 return 0;
2236 }
3d97b40b
TS
2237 }
2238 return 0;
2239}
2240
9fa3e853 2241/* called from signal handler: invalidate the code and unprotect the
ccbb4d44 2242 page. Return TRUE if the fault was successfully handled. */
53a5960a 2243int page_unprotect(target_ulong address, unsigned long pc, void *puc)
9fa3e853
FB
2244{
2245 unsigned int page_index, prot, pindex;
2246 PageDesc *p, *p1;
53a5960a 2247 target_ulong host_start, host_end, addr;
9fa3e853 2248
c8a706fe
PB
2249 /* Technically this isn't safe inside a signal handler. However we
2250 know this only ever happens in a synchronous SEGV handler, so in
2251 practice it seems to be ok. */
2252 mmap_lock();
2253
83fb7adf 2254 host_start = address & qemu_host_page_mask;
9fa3e853
FB
2255 page_index = host_start >> TARGET_PAGE_BITS;
2256 p1 = page_find(page_index);
c8a706fe
PB
2257 if (!p1) {
2258 mmap_unlock();
9fa3e853 2259 return 0;
c8a706fe 2260 }
83fb7adf 2261 host_end = host_start + qemu_host_page_size;
9fa3e853
FB
2262 p = p1;
2263 prot = 0;
2264 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2265 prot |= p->flags;
2266 p++;
2267 }
2268 /* if the page was really writable, then we change its
2269 protection back to writable */
2270 if (prot & PAGE_WRITE_ORG) {
2271 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2272 if (!(p1[pindex].flags & PAGE_WRITE)) {
5fafdf24 2273 mprotect((void *)g2h(host_start), qemu_host_page_size,
9fa3e853
FB
2274 (prot & PAGE_BITS) | PAGE_WRITE);
2275 p1[pindex].flags |= PAGE_WRITE;
2276 /* and since the content will be modified, we must invalidate
2277 the corresponding translated code. */
d720b93d 2278 tb_invalidate_phys_page(address, pc, puc);
9fa3e853
FB
2279#ifdef DEBUG_TB_CHECK
2280 tb_invalidate_check(address);
2281#endif
c8a706fe 2282 mmap_unlock();
9fa3e853
FB
2283 return 1;
2284 }
2285 }
c8a706fe 2286 mmap_unlock();
9fa3e853
FB
2287 return 0;
2288}
2289
6a00d601
FB
2290static inline void tlb_set_dirty(CPUState *env,
2291 unsigned long addr, target_ulong vaddr)
1ccde1cb
FB
2292{
2293}
9fa3e853
FB
2294#endif /* defined(CONFIG_USER_ONLY) */
2295
e2eef170 2296#if !defined(CONFIG_USER_ONLY)
8da3ff18 2297
db7b5426 2298static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
8da3ff18 2299 ram_addr_t memory, ram_addr_t region_offset);
00f82b8a 2300static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
8da3ff18 2301 ram_addr_t orig_memory, ram_addr_t region_offset);
db7b5426
BS
2302#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2303 need_subpage) \
2304 do { \
2305 if (addr > start_addr) \
2306 start_addr2 = 0; \
2307 else { \
2308 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2309 if (start_addr2 > 0) \
2310 need_subpage = 1; \
2311 } \
2312 \
49e9fba2 2313 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
db7b5426
BS
2314 end_addr2 = TARGET_PAGE_SIZE - 1; \
2315 else { \
2316 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2317 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2318 need_subpage = 1; \
2319 } \
2320 } while (0)
2321
33417e70
FB
2322/* register physical memory. 'size' must be a multiple of the target
2323 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
8da3ff18
PB
2324 io memory page. The address used when calling the IO function is
2325 the offset from the start of the region, plus region_offset. Both
ccbb4d44 2326 start_addr and region_offset are rounded down to a page boundary
8da3ff18
PB
2327 before calculating this offset. This should not be a problem unless
2328 the low bits of start_addr and region_offset differ. */
2329void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2330 ram_addr_t size,
2331 ram_addr_t phys_offset,
2332 ram_addr_t region_offset)
33417e70 2333{
108c49b8 2334 target_phys_addr_t addr, end_addr;
92e873b9 2335 PhysPageDesc *p;
9d42037b 2336 CPUState *env;
00f82b8a 2337 ram_addr_t orig_size = size;
db7b5426 2338 void *subpage;
33417e70 2339
640f42e4 2340#ifdef CONFIG_KQEMU
da260249
FB
2341 /* XXX: should not depend on cpu context */
2342 env = first_cpu;
2343 if (env->kqemu_enabled) {
2344 kqemu_set_phys_mem(start_addr, size, phys_offset);
2345 }
2346#endif
7ba1e619
AL
2347 if (kvm_enabled())
2348 kvm_set_phys_mem(start_addr, size, phys_offset);
2349
67c4d23c
PB
2350 if (phys_offset == IO_MEM_UNASSIGNED) {
2351 region_offset = start_addr;
2352 }
8da3ff18 2353 region_offset &= TARGET_PAGE_MASK;
5fd386f6 2354 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
49e9fba2
BS
2355 end_addr = start_addr + (target_phys_addr_t)size;
2356 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
db7b5426
BS
2357 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2358 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
00f82b8a 2359 ram_addr_t orig_memory = p->phys_offset;
db7b5426
BS
2360 target_phys_addr_t start_addr2, end_addr2;
2361 int need_subpage = 0;
2362
2363 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2364 need_subpage);
4254fab8 2365 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426
BS
2366 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2367 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18
PB
2368 &p->phys_offset, orig_memory,
2369 p->region_offset);
db7b5426
BS
2370 } else {
2371 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2372 >> IO_MEM_SHIFT];
2373 }
8da3ff18
PB
2374 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2375 region_offset);
2376 p->region_offset = 0;
db7b5426
BS
2377 } else {
2378 p->phys_offset = phys_offset;
2379 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2380 (phys_offset & IO_MEM_ROMD))
2381 phys_offset += TARGET_PAGE_SIZE;
2382 }
2383 } else {
2384 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2385 p->phys_offset = phys_offset;
8da3ff18 2386 p->region_offset = region_offset;
db7b5426 2387 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
8da3ff18 2388 (phys_offset & IO_MEM_ROMD)) {
db7b5426 2389 phys_offset += TARGET_PAGE_SIZE;
0e8f0967 2390 } else {
db7b5426
BS
2391 target_phys_addr_t start_addr2, end_addr2;
2392 int need_subpage = 0;
2393
2394 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2395 end_addr2, need_subpage);
2396
4254fab8 2397 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426 2398 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18 2399 &p->phys_offset, IO_MEM_UNASSIGNED,
67c4d23c 2400 addr & TARGET_PAGE_MASK);
db7b5426 2401 subpage_register(subpage, start_addr2, end_addr2,
8da3ff18
PB
2402 phys_offset, region_offset);
2403 p->region_offset = 0;
db7b5426
BS
2404 }
2405 }
2406 }
8da3ff18 2407 region_offset += TARGET_PAGE_SIZE;
33417e70 2408 }
3b46e624 2409
9d42037b
FB
2410 /* since each CPU stores ram addresses in its TLB cache, we must
2411 reset the modified entries */
2412 /* XXX: slow ! */
2413 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2414 tlb_flush(env, 1);
2415 }
33417e70
FB
2416}
2417
ba863458 2418/* XXX: temporary until new memory mapping API */
00f82b8a 2419ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
ba863458
FB
2420{
2421 PhysPageDesc *p;
2422
2423 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2424 if (!p)
2425 return IO_MEM_UNASSIGNED;
2426 return p->phys_offset;
2427}
2428
f65ed4c1
AL
2429void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2430{
2431 if (kvm_enabled())
2432 kvm_coalesce_mmio_region(addr, size);
2433}
2434
2435void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2436{
2437 if (kvm_enabled())
2438 kvm_uncoalesce_mmio_region(addr, size);
2439}
2440
640f42e4 2441#ifdef CONFIG_KQEMU
e9a1ab19 2442/* XXX: better than nothing */
94a6b54f 2443static ram_addr_t kqemu_ram_alloc(ram_addr_t size)
e9a1ab19
FB
2444{
2445 ram_addr_t addr;
94a6b54f 2446 if ((last_ram_offset + size) > kqemu_phys_ram_size) {
012a7045 2447 fprintf(stderr, "Not enough memory (requested_size = %" PRIu64 ", max memory = %" PRIu64 ")\n",
94a6b54f 2448 (uint64_t)size, (uint64_t)kqemu_phys_ram_size);
e9a1ab19
FB
2449 abort();
2450 }
94a6b54f
PB
2451 addr = last_ram_offset;
2452 last_ram_offset = TARGET_PAGE_ALIGN(last_ram_offset + size);
e9a1ab19
FB
2453 return addr;
2454}
94a6b54f
PB
2455#endif
2456
2457ram_addr_t qemu_ram_alloc(ram_addr_t size)
2458{
2459 RAMBlock *new_block;
2460
640f42e4 2461#ifdef CONFIG_KQEMU
94a6b54f
PB
2462 if (kqemu_phys_ram_base) {
2463 return kqemu_ram_alloc(size);
2464 }
2465#endif
2466
2467 size = TARGET_PAGE_ALIGN(size);
2468 new_block = qemu_malloc(sizeof(*new_block));
2469
2470 new_block->host = qemu_vmalloc(size);
2471 new_block->offset = last_ram_offset;
2472 new_block->length = size;
2473
2474 new_block->next = ram_blocks;
2475 ram_blocks = new_block;
2476
2477 phys_ram_dirty = qemu_realloc(phys_ram_dirty,
2478 (last_ram_offset + size) >> TARGET_PAGE_BITS);
2479 memset(phys_ram_dirty + (last_ram_offset >> TARGET_PAGE_BITS),
2480 0xff, size >> TARGET_PAGE_BITS);
2481
2482 last_ram_offset += size;
2483
6f0437e8
JK
2484 if (kvm_enabled())
2485 kvm_setup_guest_memory(new_block->host, size);
2486
94a6b54f
PB
2487 return new_block->offset;
2488}
e9a1ab19
FB
2489
2490void qemu_ram_free(ram_addr_t addr)
2491{
94a6b54f 2492 /* TODO: implement this. */
e9a1ab19
FB
2493}
2494
dc828ca1 2495/* Return a host pointer to ram allocated with qemu_ram_alloc.
5579c7f3
PB
2496 With the exception of the softmmu code in this file, this should
2497 only be used for local memory (e.g. video ram) that the device owns,
2498 and knows it isn't going to access beyond the end of the block.
2499
2500 It should not be used for general purpose DMA.
2501 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2502 */
dc828ca1
PB
2503void *qemu_get_ram_ptr(ram_addr_t addr)
2504{
94a6b54f
PB
2505 RAMBlock *prev;
2506 RAMBlock **prevp;
2507 RAMBlock *block;
2508
640f42e4 2509#ifdef CONFIG_KQEMU
94a6b54f
PB
2510 if (kqemu_phys_ram_base) {
2511 return kqemu_phys_ram_base + addr;
2512 }
2513#endif
2514
2515 prev = NULL;
2516 prevp = &ram_blocks;
2517 block = ram_blocks;
2518 while (block && (block->offset > addr
2519 || block->offset + block->length <= addr)) {
2520 if (prev)
2521 prevp = &prev->next;
2522 prev = block;
2523 block = block->next;
2524 }
2525 if (!block) {
2526 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2527 abort();
2528 }
2529 /* Move this entry to to start of the list. */
2530 if (prev) {
2531 prev->next = block->next;
2532 block->next = *prevp;
2533 *prevp = block;
2534 }
2535 return block->host + (addr - block->offset);
dc828ca1
PB
2536}
2537
5579c7f3
PB
2538/* Some of the softmmu routines need to translate from a host pointer
2539 (typically a TLB entry) back to a ram offset. */
2540ram_addr_t qemu_ram_addr_from_host(void *ptr)
2541{
94a6b54f
PB
2542 RAMBlock *prev;
2543 RAMBlock **prevp;
2544 RAMBlock *block;
2545 uint8_t *host = ptr;
2546
640f42e4 2547#ifdef CONFIG_KQEMU
94a6b54f
PB
2548 if (kqemu_phys_ram_base) {
2549 return host - kqemu_phys_ram_base;
2550 }
2551#endif
2552
2553 prev = NULL;
2554 prevp = &ram_blocks;
2555 block = ram_blocks;
2556 while (block && (block->host > host
2557 || block->host + block->length <= host)) {
2558 if (prev)
2559 prevp = &prev->next;
2560 prev = block;
2561 block = block->next;
2562 }
2563 if (!block) {
2564 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2565 abort();
2566 }
2567 return block->offset + (host - block->host);
5579c7f3
PB
2568}
2569
a4193c8a 2570static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
33417e70 2571{
67d3b957 2572#ifdef DEBUG_UNASSIGNED
ab3d1727 2573 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
b4f0a316 2574#endif
0a6f8a6d 2575#if defined(TARGET_SPARC)
e18231a3
BS
2576 do_unassigned_access(addr, 0, 0, 0, 1);
2577#endif
2578 return 0;
2579}
2580
2581static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
2582{
2583#ifdef DEBUG_UNASSIGNED
2584 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2585#endif
0a6f8a6d 2586#if defined(TARGET_SPARC)
e18231a3
BS
2587 do_unassigned_access(addr, 0, 0, 0, 2);
2588#endif
2589 return 0;
2590}
2591
2592static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
2593{
2594#ifdef DEBUG_UNASSIGNED
2595 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2596#endif
0a6f8a6d 2597#if defined(TARGET_SPARC)
e18231a3 2598 do_unassigned_access(addr, 0, 0, 0, 4);
67d3b957 2599#endif
33417e70
FB
2600 return 0;
2601}
2602
a4193c8a 2603static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
33417e70 2604{
67d3b957 2605#ifdef DEBUG_UNASSIGNED
ab3d1727 2606 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
67d3b957 2607#endif
0a6f8a6d 2608#if defined(TARGET_SPARC)
e18231a3
BS
2609 do_unassigned_access(addr, 1, 0, 0, 1);
2610#endif
2611}
2612
2613static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2614{
2615#ifdef DEBUG_UNASSIGNED
2616 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2617#endif
0a6f8a6d 2618#if defined(TARGET_SPARC)
e18231a3
BS
2619 do_unassigned_access(addr, 1, 0, 0, 2);
2620#endif
2621}
2622
2623static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2624{
2625#ifdef DEBUG_UNASSIGNED
2626 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2627#endif
0a6f8a6d 2628#if defined(TARGET_SPARC)
e18231a3 2629 do_unassigned_access(addr, 1, 0, 0, 4);
b4f0a316 2630#endif
33417e70
FB
2631}
2632
2633static CPUReadMemoryFunc *unassigned_mem_read[3] = {
2634 unassigned_mem_readb,
e18231a3
BS
2635 unassigned_mem_readw,
2636 unassigned_mem_readl,
33417e70
FB
2637};
2638
2639static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
2640 unassigned_mem_writeb,
e18231a3
BS
2641 unassigned_mem_writew,
2642 unassigned_mem_writel,
33417e70
FB
2643};
2644
0f459d16
PB
2645static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
2646 uint32_t val)
9fa3e853 2647{
3a7d929e 2648 int dirty_flags;
3a7d929e
FB
2649 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2650 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2651#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2652 tb_invalidate_phys_page_fast(ram_addr, 1);
2653 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2654#endif
3a7d929e 2655 }
5579c7f3 2656 stb_p(qemu_get_ram_ptr(ram_addr), val);
640f42e4 2657#ifdef CONFIG_KQEMU
f32fc648
FB
2658 if (cpu_single_env->kqemu_enabled &&
2659 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2660 kqemu_modify_page(cpu_single_env, ram_addr);
2661#endif
f23db169
FB
2662 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2663 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2664 /* we remove the notdirty callback only if the code has been
2665 flushed */
2666 if (dirty_flags == 0xff)
2e70f6ef 2667 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2668}
2669
0f459d16
PB
2670static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
2671 uint32_t val)
9fa3e853 2672{
3a7d929e 2673 int dirty_flags;
3a7d929e
FB
2674 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2675 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2676#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2677 tb_invalidate_phys_page_fast(ram_addr, 2);
2678 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2679#endif
3a7d929e 2680 }
5579c7f3 2681 stw_p(qemu_get_ram_ptr(ram_addr), val);
640f42e4 2682#ifdef CONFIG_KQEMU
f32fc648
FB
2683 if (cpu_single_env->kqemu_enabled &&
2684 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2685 kqemu_modify_page(cpu_single_env, ram_addr);
2686#endif
f23db169
FB
2687 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2688 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2689 /* we remove the notdirty callback only if the code has been
2690 flushed */
2691 if (dirty_flags == 0xff)
2e70f6ef 2692 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2693}
2694
0f459d16
PB
2695static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
2696 uint32_t val)
9fa3e853 2697{
3a7d929e 2698 int dirty_flags;
3a7d929e
FB
2699 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2700 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2701#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2702 tb_invalidate_phys_page_fast(ram_addr, 4);
2703 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2704#endif
3a7d929e 2705 }
5579c7f3 2706 stl_p(qemu_get_ram_ptr(ram_addr), val);
640f42e4 2707#ifdef CONFIG_KQEMU
f32fc648
FB
2708 if (cpu_single_env->kqemu_enabled &&
2709 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2710 kqemu_modify_page(cpu_single_env, ram_addr);
2711#endif
f23db169
FB
2712 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2713 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2714 /* we remove the notdirty callback only if the code has been
2715 flushed */
2716 if (dirty_flags == 0xff)
2e70f6ef 2717 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2718}
2719
3a7d929e 2720static CPUReadMemoryFunc *error_mem_read[3] = {
9fa3e853
FB
2721 NULL, /* never used */
2722 NULL, /* never used */
2723 NULL, /* never used */
2724};
2725
1ccde1cb
FB
2726static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
2727 notdirty_mem_writeb,
2728 notdirty_mem_writew,
2729 notdirty_mem_writel,
2730};
2731
0f459d16 2732/* Generate a debug exception if a watchpoint has been hit. */
b4051334 2733static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16
PB
2734{
2735 CPUState *env = cpu_single_env;
06d55cc1
AL
2736 target_ulong pc, cs_base;
2737 TranslationBlock *tb;
0f459d16 2738 target_ulong vaddr;
a1d1bb31 2739 CPUWatchpoint *wp;
06d55cc1 2740 int cpu_flags;
0f459d16 2741
06d55cc1
AL
2742 if (env->watchpoint_hit) {
2743 /* We re-entered the check after replacing the TB. Now raise
2744 * the debug interrupt so that is will trigger after the
2745 * current instruction. */
2746 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2747 return;
2748 }
2e70f6ef 2749 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
c0ce998e 2750 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334
AL
2751 if ((vaddr == (wp->vaddr & len_mask) ||
2752 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
2753 wp->flags |= BP_WATCHPOINT_HIT;
2754 if (!env->watchpoint_hit) {
2755 env->watchpoint_hit = wp;
2756 tb = tb_find_pc(env->mem_io_pc);
2757 if (!tb) {
2758 cpu_abort(env, "check_watchpoint: could not find TB for "
2759 "pc=%p", (void *)env->mem_io_pc);
2760 }
2761 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
2762 tb_phys_invalidate(tb, -1);
2763 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2764 env->exception_index = EXCP_DEBUG;
2765 } else {
2766 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2767 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
2768 }
2769 cpu_resume_from_signal(env, NULL);
06d55cc1 2770 }
6e140f28
AL
2771 } else {
2772 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2773 }
2774 }
2775}
2776
6658ffb8
PB
2777/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2778 so these check for a hit then pass through to the normal out-of-line
2779 phys routines. */
2780static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
2781{
b4051334 2782 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
6658ffb8
PB
2783 return ldub_phys(addr);
2784}
2785
2786static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
2787{
b4051334 2788 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
6658ffb8
PB
2789 return lduw_phys(addr);
2790}
2791
2792static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
2793{
b4051334 2794 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
6658ffb8
PB
2795 return ldl_phys(addr);
2796}
2797
6658ffb8
PB
2798static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
2799 uint32_t val)
2800{
b4051334 2801 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
6658ffb8
PB
2802 stb_phys(addr, val);
2803}
2804
2805static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
2806 uint32_t val)
2807{
b4051334 2808 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
6658ffb8
PB
2809 stw_phys(addr, val);
2810}
2811
2812static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
2813 uint32_t val)
2814{
b4051334 2815 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
6658ffb8
PB
2816 stl_phys(addr, val);
2817}
2818
2819static CPUReadMemoryFunc *watch_mem_read[3] = {
2820 watch_mem_readb,
2821 watch_mem_readw,
2822 watch_mem_readl,
2823};
2824
2825static CPUWriteMemoryFunc *watch_mem_write[3] = {
2826 watch_mem_writeb,
2827 watch_mem_writew,
2828 watch_mem_writel,
2829};
6658ffb8 2830
db7b5426
BS
2831static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
2832 unsigned int len)
2833{
db7b5426
BS
2834 uint32_t ret;
2835 unsigned int idx;
2836
8da3ff18 2837 idx = SUBPAGE_IDX(addr);
db7b5426
BS
2838#if defined(DEBUG_SUBPAGE)
2839 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2840 mmio, len, addr, idx);
2841#endif
8da3ff18
PB
2842 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len],
2843 addr + mmio->region_offset[idx][0][len]);
db7b5426
BS
2844
2845 return ret;
2846}
2847
2848static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
2849 uint32_t value, unsigned int len)
2850{
db7b5426
BS
2851 unsigned int idx;
2852
8da3ff18 2853 idx = SUBPAGE_IDX(addr);
db7b5426
BS
2854#if defined(DEBUG_SUBPAGE)
2855 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2856 mmio, len, addr, idx, value);
2857#endif
8da3ff18
PB
2858 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len],
2859 addr + mmio->region_offset[idx][1][len],
2860 value);
db7b5426
BS
2861}
2862
2863static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
2864{
2865#if defined(DEBUG_SUBPAGE)
2866 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2867#endif
2868
2869 return subpage_readlen(opaque, addr, 0);
2870}
2871
2872static void subpage_writeb (void *opaque, target_phys_addr_t addr,
2873 uint32_t value)
2874{
2875#if defined(DEBUG_SUBPAGE)
2876 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2877#endif
2878 subpage_writelen(opaque, addr, value, 0);
2879}
2880
2881static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
2882{
2883#if defined(DEBUG_SUBPAGE)
2884 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2885#endif
2886
2887 return subpage_readlen(opaque, addr, 1);
2888}
2889
2890static void subpage_writew (void *opaque, target_phys_addr_t addr,
2891 uint32_t value)
2892{
2893#if defined(DEBUG_SUBPAGE)
2894 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2895#endif
2896 subpage_writelen(opaque, addr, value, 1);
2897}
2898
2899static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
2900{
2901#if defined(DEBUG_SUBPAGE)
2902 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2903#endif
2904
2905 return subpage_readlen(opaque, addr, 2);
2906}
2907
2908static void subpage_writel (void *opaque,
2909 target_phys_addr_t addr, uint32_t value)
2910{
2911#if defined(DEBUG_SUBPAGE)
2912 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2913#endif
2914 subpage_writelen(opaque, addr, value, 2);
2915}
2916
2917static CPUReadMemoryFunc *subpage_read[] = {
2918 &subpage_readb,
2919 &subpage_readw,
2920 &subpage_readl,
2921};
2922
2923static CPUWriteMemoryFunc *subpage_write[] = {
2924 &subpage_writeb,
2925 &subpage_writew,
2926 &subpage_writel,
2927};
2928
2929static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
8da3ff18 2930 ram_addr_t memory, ram_addr_t region_offset)
db7b5426
BS
2931{
2932 int idx, eidx;
4254fab8 2933 unsigned int i;
db7b5426
BS
2934
2935 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2936 return -1;
2937 idx = SUBPAGE_IDX(start);
2938 eidx = SUBPAGE_IDX(end);
2939#if defined(DEBUG_SUBPAGE)
2940 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__,
2941 mmio, start, end, idx, eidx, memory);
2942#endif
2943 memory >>= IO_MEM_SHIFT;
2944 for (; idx <= eidx; idx++) {
4254fab8 2945 for (i = 0; i < 4; i++) {
3ee89922
BS
2946 if (io_mem_read[memory][i]) {
2947 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
2948 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
8da3ff18 2949 mmio->region_offset[idx][0][i] = region_offset;
3ee89922
BS
2950 }
2951 if (io_mem_write[memory][i]) {
2952 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
2953 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
8da3ff18 2954 mmio->region_offset[idx][1][i] = region_offset;
3ee89922 2955 }
4254fab8 2956 }
db7b5426
BS
2957 }
2958
2959 return 0;
2960}
2961
00f82b8a 2962static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
8da3ff18 2963 ram_addr_t orig_memory, ram_addr_t region_offset)
db7b5426
BS
2964{
2965 subpage_t *mmio;
2966 int subpage_memory;
2967
2968 mmio = qemu_mallocz(sizeof(subpage_t));
1eec614b
AL
2969
2970 mmio->base = base;
1eed09cb 2971 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
db7b5426 2972#if defined(DEBUG_SUBPAGE)
1eec614b
AL
2973 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
2974 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
db7b5426 2975#endif
1eec614b
AL
2976 *phys = subpage_memory | IO_MEM_SUBPAGE;
2977 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory,
8da3ff18 2978 region_offset);
db7b5426
BS
2979
2980 return mmio;
2981}
2982
88715657
AL
2983static int get_free_io_mem_idx(void)
2984{
2985 int i;
2986
2987 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
2988 if (!io_mem_used[i]) {
2989 io_mem_used[i] = 1;
2990 return i;
2991 }
2992
2993 return -1;
2994}
2995
33417e70
FB
2996/* mem_read and mem_write are arrays of functions containing the
2997 function to access byte (index 0), word (index 1) and dword (index
0b4e6e3e 2998 2). Functions can be omitted with a NULL function pointer.
3ee89922 2999 If io_index is non zero, the corresponding io zone is
4254fab8
BS
3000 modified. If it is zero, a new io zone is allocated. The return
3001 value can be used with cpu_register_physical_memory(). (-1) is
3002 returned if error. */
1eed09cb
AK
3003static int cpu_register_io_memory_fixed(int io_index,
3004 CPUReadMemoryFunc **mem_read,
3005 CPUWriteMemoryFunc **mem_write,
3006 void *opaque)
33417e70 3007{
4254fab8 3008 int i, subwidth = 0;
33417e70
FB
3009
3010 if (io_index <= 0) {
88715657
AL
3011 io_index = get_free_io_mem_idx();
3012 if (io_index == -1)
3013 return io_index;
33417e70 3014 } else {
1eed09cb 3015 io_index >>= IO_MEM_SHIFT;
33417e70
FB
3016 if (io_index >= IO_MEM_NB_ENTRIES)
3017 return -1;
3018 }
b5ff1b31 3019
33417e70 3020 for(i = 0;i < 3; i++) {
4254fab8
BS
3021 if (!mem_read[i] || !mem_write[i])
3022 subwidth = IO_MEM_SUBWIDTH;
33417e70
FB
3023 io_mem_read[io_index][i] = mem_read[i];
3024 io_mem_write[io_index][i] = mem_write[i];
3025 }
a4193c8a 3026 io_mem_opaque[io_index] = opaque;
4254fab8 3027 return (io_index << IO_MEM_SHIFT) | subwidth;
33417e70 3028}
61382a50 3029
1eed09cb
AK
3030int cpu_register_io_memory(CPUReadMemoryFunc **mem_read,
3031 CPUWriteMemoryFunc **mem_write,
3032 void *opaque)
3033{
3034 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
3035}
3036
88715657
AL
3037void cpu_unregister_io_memory(int io_table_address)
3038{
3039 int i;
3040 int io_index = io_table_address >> IO_MEM_SHIFT;
3041
3042 for (i=0;i < 3; i++) {
3043 io_mem_read[io_index][i] = unassigned_mem_read[i];
3044 io_mem_write[io_index][i] = unassigned_mem_write[i];
3045 }
3046 io_mem_opaque[io_index] = NULL;
3047 io_mem_used[io_index] = 0;
3048}
3049
e9179ce1
AK
3050static void io_mem_init(void)
3051{
3052 int i;
3053
3054 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
3055 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
3056 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
3057 for (i=0; i<5; i++)
3058 io_mem_used[i] = 1;
3059
3060 io_mem_watch = cpu_register_io_memory(watch_mem_read,
3061 watch_mem_write, NULL);
3062#ifdef CONFIG_KQEMU
3063 if (kqemu_phys_ram_base) {
3064 /* alloc dirty bits array */
3065 phys_ram_dirty = qemu_vmalloc(kqemu_phys_ram_size >> TARGET_PAGE_BITS);
3066 memset(phys_ram_dirty, 0xff, kqemu_phys_ram_size >> TARGET_PAGE_BITS);
3067 }
3068#endif
3069}
3070
e2eef170
PB
3071#endif /* !defined(CONFIG_USER_ONLY) */
3072
13eb76e0
FB
3073/* physical memory access (slow version, mainly for debug) */
3074#if defined(CONFIG_USER_ONLY)
5fafdf24 3075void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
3076 int len, int is_write)
3077{
3078 int l, flags;
3079 target_ulong page;
53a5960a 3080 void * p;
13eb76e0
FB
3081
3082 while (len > 0) {
3083 page = addr & TARGET_PAGE_MASK;
3084 l = (page + TARGET_PAGE_SIZE) - addr;
3085 if (l > len)
3086 l = len;
3087 flags = page_get_flags(page);
3088 if (!(flags & PAGE_VALID))
3089 return;
3090 if (is_write) {
3091 if (!(flags & PAGE_WRITE))
3092 return;
579a97f7 3093 /* XXX: this code should not depend on lock_user */
72fb7daa 3094 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
579a97f7
FB
3095 /* FIXME - should this return an error rather than just fail? */
3096 return;
72fb7daa
AJ
3097 memcpy(p, buf, l);
3098 unlock_user(p, addr, l);
13eb76e0
FB
3099 } else {
3100 if (!(flags & PAGE_READ))
3101 return;
579a97f7 3102 /* XXX: this code should not depend on lock_user */
72fb7daa 3103 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
579a97f7
FB
3104 /* FIXME - should this return an error rather than just fail? */
3105 return;
72fb7daa 3106 memcpy(buf, p, l);
5b257578 3107 unlock_user(p, addr, 0);
13eb76e0
FB
3108 }
3109 len -= l;
3110 buf += l;
3111 addr += l;
3112 }
3113}
8df1cd07 3114
13eb76e0 3115#else
5fafdf24 3116void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
3117 int len, int is_write)
3118{
3119 int l, io_index;
3120 uint8_t *ptr;
3121 uint32_t val;
2e12669a
FB
3122 target_phys_addr_t page;
3123 unsigned long pd;
92e873b9 3124 PhysPageDesc *p;
3b46e624 3125
13eb76e0
FB
3126 while (len > 0) {
3127 page = addr & TARGET_PAGE_MASK;
3128 l = (page + TARGET_PAGE_SIZE) - addr;
3129 if (l > len)
3130 l = len;
92e873b9 3131 p = phys_page_find(page >> TARGET_PAGE_BITS);
13eb76e0
FB
3132 if (!p) {
3133 pd = IO_MEM_UNASSIGNED;
3134 } else {
3135 pd = p->phys_offset;
3136 }
3b46e624 3137
13eb76e0 3138 if (is_write) {
3a7d929e 3139 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
6c2934db 3140 target_phys_addr_t addr1 = addr;
13eb76e0 3141 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3142 if (p)
6c2934db 3143 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
6a00d601
FB
3144 /* XXX: could force cpu_single_env to NULL to avoid
3145 potential bugs */
6c2934db 3146 if (l >= 4 && ((addr1 & 3) == 0)) {
1c213d19 3147 /* 32 bit write access */
c27004ec 3148 val = ldl_p(buf);
6c2934db 3149 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
13eb76e0 3150 l = 4;
6c2934db 3151 } else if (l >= 2 && ((addr1 & 1) == 0)) {
1c213d19 3152 /* 16 bit write access */
c27004ec 3153 val = lduw_p(buf);
6c2934db 3154 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3155 l = 2;
3156 } else {
1c213d19 3157 /* 8 bit write access */
c27004ec 3158 val = ldub_p(buf);
6c2934db 3159 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3160 l = 1;
3161 }
3162 } else {
b448f2f3
FB
3163 unsigned long addr1;
3164 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
13eb76e0 3165 /* RAM case */
5579c7f3 3166 ptr = qemu_get_ram_ptr(addr1);
13eb76e0 3167 memcpy(ptr, buf, l);
3a7d929e
FB
3168 if (!cpu_physical_memory_is_dirty(addr1)) {
3169 /* invalidate code */
3170 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3171 /* set dirty bit */
5fafdf24 3172 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
f23db169 3173 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 3174 }
13eb76e0
FB
3175 }
3176 } else {
5fafdf24 3177 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3178 !(pd & IO_MEM_ROMD)) {
6c2934db 3179 target_phys_addr_t addr1 = addr;
13eb76e0
FB
3180 /* I/O case */
3181 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3182 if (p)
6c2934db
AJ
3183 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3184 if (l >= 4 && ((addr1 & 3) == 0)) {
13eb76e0 3185 /* 32 bit read access */
6c2934db 3186 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
c27004ec 3187 stl_p(buf, val);
13eb76e0 3188 l = 4;
6c2934db 3189 } else if (l >= 2 && ((addr1 & 1) == 0)) {
13eb76e0 3190 /* 16 bit read access */
6c2934db 3191 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
c27004ec 3192 stw_p(buf, val);
13eb76e0
FB
3193 l = 2;
3194 } else {
1c213d19 3195 /* 8 bit read access */
6c2934db 3196 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
c27004ec 3197 stb_p(buf, val);
13eb76e0
FB
3198 l = 1;
3199 }
3200 } else {
3201 /* RAM case */
5579c7f3 3202 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
13eb76e0
FB
3203 (addr & ~TARGET_PAGE_MASK);
3204 memcpy(buf, ptr, l);
3205 }
3206 }
3207 len -= l;
3208 buf += l;
3209 addr += l;
3210 }
3211}
8df1cd07 3212
d0ecd2aa 3213/* used for ROM loading : can write in RAM and ROM */
5fafdf24 3214void cpu_physical_memory_write_rom(target_phys_addr_t addr,
d0ecd2aa
FB
3215 const uint8_t *buf, int len)
3216{
3217 int l;
3218 uint8_t *ptr;
3219 target_phys_addr_t page;
3220 unsigned long pd;
3221 PhysPageDesc *p;
3b46e624 3222
d0ecd2aa
FB
3223 while (len > 0) {
3224 page = addr & TARGET_PAGE_MASK;
3225 l = (page + TARGET_PAGE_SIZE) - addr;
3226 if (l > len)
3227 l = len;
3228 p = phys_page_find(page >> TARGET_PAGE_BITS);
3229 if (!p) {
3230 pd = IO_MEM_UNASSIGNED;
3231 } else {
3232 pd = p->phys_offset;
3233 }
3b46e624 3234
d0ecd2aa 3235 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2a4188a3
FB
3236 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3237 !(pd & IO_MEM_ROMD)) {
d0ecd2aa
FB
3238 /* do nothing */
3239 } else {
3240 unsigned long addr1;
3241 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3242 /* ROM/RAM case */
5579c7f3 3243 ptr = qemu_get_ram_ptr(addr1);
d0ecd2aa
FB
3244 memcpy(ptr, buf, l);
3245 }
3246 len -= l;
3247 buf += l;
3248 addr += l;
3249 }
3250}
3251
6d16c2f8
AL
3252typedef struct {
3253 void *buffer;
3254 target_phys_addr_t addr;
3255 target_phys_addr_t len;
3256} BounceBuffer;
3257
3258static BounceBuffer bounce;
3259
ba223c29
AL
3260typedef struct MapClient {
3261 void *opaque;
3262 void (*callback)(void *opaque);
3263 LIST_ENTRY(MapClient) link;
3264} MapClient;
3265
3266static LIST_HEAD(map_client_list, MapClient) map_client_list
3267 = LIST_HEAD_INITIALIZER(map_client_list);
3268
3269void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3270{
3271 MapClient *client = qemu_malloc(sizeof(*client));
3272
3273 client->opaque = opaque;
3274 client->callback = callback;
3275 LIST_INSERT_HEAD(&map_client_list, client, link);
3276 return client;
3277}
3278
3279void cpu_unregister_map_client(void *_client)
3280{
3281 MapClient *client = (MapClient *)_client;
3282
3283 LIST_REMOVE(client, link);
34d5e948 3284 qemu_free(client);
ba223c29
AL
3285}
3286
3287static void cpu_notify_map_clients(void)
3288{
3289 MapClient *client;
3290
3291 while (!LIST_EMPTY(&map_client_list)) {
3292 client = LIST_FIRST(&map_client_list);
3293 client->callback(client->opaque);
34d5e948 3294 cpu_unregister_map_client(client);
ba223c29
AL
3295 }
3296}
3297
6d16c2f8
AL
3298/* Map a physical memory region into a host virtual address.
3299 * May map a subset of the requested range, given by and returned in *plen.
3300 * May return NULL if resources needed to perform the mapping are exhausted.
3301 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3302 * Use cpu_register_map_client() to know when retrying the map operation is
3303 * likely to succeed.
6d16c2f8
AL
3304 */
3305void *cpu_physical_memory_map(target_phys_addr_t addr,
3306 target_phys_addr_t *plen,
3307 int is_write)
3308{
3309 target_phys_addr_t len = *plen;
3310 target_phys_addr_t done = 0;
3311 int l;
3312 uint8_t *ret = NULL;
3313 uint8_t *ptr;
3314 target_phys_addr_t page;
3315 unsigned long pd;
3316 PhysPageDesc *p;
3317 unsigned long addr1;
3318
3319 while (len > 0) {
3320 page = addr & TARGET_PAGE_MASK;
3321 l = (page + TARGET_PAGE_SIZE) - addr;
3322 if (l > len)
3323 l = len;
3324 p = phys_page_find(page >> TARGET_PAGE_BITS);
3325 if (!p) {
3326 pd = IO_MEM_UNASSIGNED;
3327 } else {
3328 pd = p->phys_offset;
3329 }
3330
3331 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3332 if (done || bounce.buffer) {
3333 break;
3334 }
3335 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3336 bounce.addr = addr;
3337 bounce.len = l;
3338 if (!is_write) {
3339 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3340 }
3341 ptr = bounce.buffer;
3342 } else {
3343 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3344 ptr = qemu_get_ram_ptr(addr1);
6d16c2f8
AL
3345 }
3346 if (!done) {
3347 ret = ptr;
3348 } else if (ret + done != ptr) {
3349 break;
3350 }
3351
3352 len -= l;
3353 addr += l;
3354 done += l;
3355 }
3356 *plen = done;
3357 return ret;
3358}
3359
3360/* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3361 * Will also mark the memory as dirty if is_write == 1. access_len gives
3362 * the amount of memory that was actually read or written by the caller.
3363 */
3364void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3365 int is_write, target_phys_addr_t access_len)
3366{
3367 if (buffer != bounce.buffer) {
3368 if (is_write) {
5579c7f3 3369 ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
6d16c2f8
AL
3370 while (access_len) {
3371 unsigned l;
3372 l = TARGET_PAGE_SIZE;
3373 if (l > access_len)
3374 l = access_len;
3375 if (!cpu_physical_memory_is_dirty(addr1)) {
3376 /* invalidate code */
3377 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3378 /* set dirty bit */
3379 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3380 (0xff & ~CODE_DIRTY_FLAG);
3381 }
3382 addr1 += l;
3383 access_len -= l;
3384 }
3385 }
3386 return;
3387 }
3388 if (is_write) {
3389 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3390 }
3391 qemu_free(bounce.buffer);
3392 bounce.buffer = NULL;
ba223c29 3393 cpu_notify_map_clients();
6d16c2f8 3394}
d0ecd2aa 3395
8df1cd07
FB
3396/* warning: addr must be aligned */
3397uint32_t ldl_phys(target_phys_addr_t addr)
3398{
3399 int io_index;
3400 uint8_t *ptr;
3401 uint32_t val;
3402 unsigned long pd;
3403 PhysPageDesc *p;
3404
3405 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3406 if (!p) {
3407 pd = IO_MEM_UNASSIGNED;
3408 } else {
3409 pd = p->phys_offset;
3410 }
3b46e624 3411
5fafdf24 3412 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3413 !(pd & IO_MEM_ROMD)) {
8df1cd07
FB
3414 /* I/O case */
3415 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3416 if (p)
3417 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3418 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3419 } else {
3420 /* RAM case */
5579c7f3 3421 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
8df1cd07
FB
3422 (addr & ~TARGET_PAGE_MASK);
3423 val = ldl_p(ptr);
3424 }
3425 return val;
3426}
3427
84b7b8e7
FB
3428/* warning: addr must be aligned */
3429uint64_t ldq_phys(target_phys_addr_t addr)
3430{
3431 int io_index;
3432 uint8_t *ptr;
3433 uint64_t val;
3434 unsigned long pd;
3435 PhysPageDesc *p;
3436
3437 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3438 if (!p) {
3439 pd = IO_MEM_UNASSIGNED;
3440 } else {
3441 pd = p->phys_offset;
3442 }
3b46e624 3443
2a4188a3
FB
3444 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3445 !(pd & IO_MEM_ROMD)) {
84b7b8e7
FB
3446 /* I/O case */
3447 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3448 if (p)
3449 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
84b7b8e7
FB
3450#ifdef TARGET_WORDS_BIGENDIAN
3451 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3452 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3453#else
3454 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3455 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3456#endif
3457 } else {
3458 /* RAM case */
5579c7f3 3459 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
84b7b8e7
FB
3460 (addr & ~TARGET_PAGE_MASK);
3461 val = ldq_p(ptr);
3462 }
3463 return val;
3464}
3465
aab33094
FB
3466/* XXX: optimize */
3467uint32_t ldub_phys(target_phys_addr_t addr)
3468{
3469 uint8_t val;
3470 cpu_physical_memory_read(addr, &val, 1);
3471 return val;
3472}
3473
3474/* XXX: optimize */
3475uint32_t lduw_phys(target_phys_addr_t addr)
3476{
3477 uint16_t val;
3478 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3479 return tswap16(val);
3480}
3481
8df1cd07
FB
3482/* warning: addr must be aligned. The ram page is not masked as dirty
3483 and the code inside is not invalidated. It is useful if the dirty
3484 bits are used to track modified PTEs */
3485void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3486{
3487 int io_index;
3488 uint8_t *ptr;
3489 unsigned long pd;
3490 PhysPageDesc *p;
3491
3492 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3493 if (!p) {
3494 pd = IO_MEM_UNASSIGNED;
3495 } else {
3496 pd = p->phys_offset;
3497 }
3b46e624 3498
3a7d929e 3499 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3500 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3501 if (p)
3502 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3503 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3504 } else {
74576198 3505 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3506 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3507 stl_p(ptr, val);
74576198
AL
3508
3509 if (unlikely(in_migration)) {
3510 if (!cpu_physical_memory_is_dirty(addr1)) {
3511 /* invalidate code */
3512 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3513 /* set dirty bit */
3514 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3515 (0xff & ~CODE_DIRTY_FLAG);
3516 }
3517 }
8df1cd07
FB
3518 }
3519}
3520
bc98a7ef
JM
3521void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3522{
3523 int io_index;
3524 uint8_t *ptr;
3525 unsigned long pd;
3526 PhysPageDesc *p;
3527
3528 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3529 if (!p) {
3530 pd = IO_MEM_UNASSIGNED;
3531 } else {
3532 pd = p->phys_offset;
3533 }
3b46e624 3534
bc98a7ef
JM
3535 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3536 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3537 if (p)
3538 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
bc98a7ef
JM
3539#ifdef TARGET_WORDS_BIGENDIAN
3540 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3541 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3542#else
3543 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3544 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3545#endif
3546 } else {
5579c7f3 3547 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
bc98a7ef
JM
3548 (addr & ~TARGET_PAGE_MASK);
3549 stq_p(ptr, val);
3550 }
3551}
3552
8df1cd07 3553/* warning: addr must be aligned */
8df1cd07
FB
3554void stl_phys(target_phys_addr_t addr, uint32_t val)
3555{
3556 int io_index;
3557 uint8_t *ptr;
3558 unsigned long pd;
3559 PhysPageDesc *p;
3560
3561 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3562 if (!p) {
3563 pd = IO_MEM_UNASSIGNED;
3564 } else {
3565 pd = p->phys_offset;
3566 }
3b46e624 3567
3a7d929e 3568 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3569 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3570 if (p)
3571 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3572 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3573 } else {
3574 unsigned long addr1;
3575 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3576 /* RAM case */
5579c7f3 3577 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3578 stl_p(ptr, val);
3a7d929e
FB
3579 if (!cpu_physical_memory_is_dirty(addr1)) {
3580 /* invalidate code */
3581 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3582 /* set dirty bit */
f23db169
FB
3583 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3584 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 3585 }
8df1cd07
FB
3586 }
3587}
3588
aab33094
FB
3589/* XXX: optimize */
3590void stb_phys(target_phys_addr_t addr, uint32_t val)
3591{
3592 uint8_t v = val;
3593 cpu_physical_memory_write(addr, &v, 1);
3594}
3595
3596/* XXX: optimize */
3597void stw_phys(target_phys_addr_t addr, uint32_t val)
3598{
3599 uint16_t v = tswap16(val);
3600 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3601}
3602
3603/* XXX: optimize */
3604void stq_phys(target_phys_addr_t addr, uint64_t val)
3605{
3606 val = tswap64(val);
3607 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3608}
3609
13eb76e0
FB
3610#endif
3611
5e2972fd 3612/* virtual memory access for debug (includes writing to ROM) */
5fafdf24 3613int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
b448f2f3 3614 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3615{
3616 int l;
9b3c35e0
JM
3617 target_phys_addr_t phys_addr;
3618 target_ulong page;
13eb76e0
FB
3619
3620 while (len > 0) {
3621 page = addr & TARGET_PAGE_MASK;
3622 phys_addr = cpu_get_phys_page_debug(env, page);
3623 /* if no physical page mapped, return an error */
3624 if (phys_addr == -1)
3625 return -1;
3626 l = (page + TARGET_PAGE_SIZE) - addr;
3627 if (l > len)
3628 l = len;
5e2972fd
AL
3629 phys_addr += (addr & ~TARGET_PAGE_MASK);
3630#if !defined(CONFIG_USER_ONLY)
3631 if (is_write)
3632 cpu_physical_memory_write_rom(phys_addr, buf, l);
3633 else
3634#endif
3635 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
13eb76e0
FB
3636 len -= l;
3637 buf += l;
3638 addr += l;
3639 }
3640 return 0;
3641}
3642
2e70f6ef
PB
3643/* in deterministic execution mode, instructions doing device I/Os
3644 must be at the end of the TB */
3645void cpu_io_recompile(CPUState *env, void *retaddr)
3646{
3647 TranslationBlock *tb;
3648 uint32_t n, cflags;
3649 target_ulong pc, cs_base;
3650 uint64_t flags;
3651
3652 tb = tb_find_pc((unsigned long)retaddr);
3653 if (!tb) {
3654 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3655 retaddr);
3656 }
3657 n = env->icount_decr.u16.low + tb->icount;
3658 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3659 /* Calculate how many instructions had been executed before the fault
bf20dc07 3660 occurred. */
2e70f6ef
PB
3661 n = n - env->icount_decr.u16.low;
3662 /* Generate a new TB ending on the I/O insn. */
3663 n++;
3664 /* On MIPS and SH, delay slot instructions can only be restarted if
3665 they were already the first instruction in the TB. If this is not
bf20dc07 3666 the first instruction in a TB then re-execute the preceding
2e70f6ef
PB
3667 branch. */
3668#if defined(TARGET_MIPS)
3669 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3670 env->active_tc.PC -= 4;
3671 env->icount_decr.u16.low++;
3672 env->hflags &= ~MIPS_HFLAG_BMASK;
3673 }
3674#elif defined(TARGET_SH4)
3675 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3676 && n > 1) {
3677 env->pc -= 2;
3678 env->icount_decr.u16.low++;
3679 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3680 }
3681#endif
3682 /* This should never happen. */
3683 if (n > CF_COUNT_MASK)
3684 cpu_abort(env, "TB too big during recompile");
3685
3686 cflags = n | CF_LAST_IO;
3687 pc = tb->pc;
3688 cs_base = tb->cs_base;
3689 flags = tb->flags;
3690 tb_phys_invalidate(tb, -1);
3691 /* FIXME: In theory this could raise an exception. In practice
3692 we have already translated the block once so it's probably ok. */
3693 tb_gen_code(env, pc, cs_base, flags, cflags);
bf20dc07 3694 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2e70f6ef
PB
3695 the first in the TB) then we end up generating a whole new TB and
3696 repeating the fault, which is horribly inefficient.
3697 Better would be to execute just this insn uncached, or generate a
3698 second new TB. */
3699 cpu_resume_from_signal(env, NULL);
3700}
3701
e3db7226
FB
3702void dump_exec_info(FILE *f,
3703 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3704{
3705 int i, target_code_size, max_target_code_size;
3706 int direct_jmp_count, direct_jmp2_count, cross_page;
3707 TranslationBlock *tb;
3b46e624 3708
e3db7226
FB
3709 target_code_size = 0;
3710 max_target_code_size = 0;
3711 cross_page = 0;
3712 direct_jmp_count = 0;
3713 direct_jmp2_count = 0;
3714 for(i = 0; i < nb_tbs; i++) {
3715 tb = &tbs[i];
3716 target_code_size += tb->size;
3717 if (tb->size > max_target_code_size)
3718 max_target_code_size = tb->size;
3719 if (tb->page_addr[1] != -1)
3720 cross_page++;
3721 if (tb->tb_next_offset[0] != 0xffff) {
3722 direct_jmp_count++;
3723 if (tb->tb_next_offset[1] != 0xffff) {
3724 direct_jmp2_count++;
3725 }
3726 }
3727 }
3728 /* XXX: avoid using doubles ? */
57fec1fe 3729 cpu_fprintf(f, "Translation buffer state:\n");
26a5f13b
FB
3730 cpu_fprintf(f, "gen code size %ld/%ld\n",
3731 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3732 cpu_fprintf(f, "TB count %d/%d\n",
3733 nb_tbs, code_gen_max_blocks);
5fafdf24 3734 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
e3db7226
FB
3735 nb_tbs ? target_code_size / nb_tbs : 0,
3736 max_target_code_size);
5fafdf24 3737 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
e3db7226
FB
3738 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3739 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
5fafdf24
TS
3740 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3741 cross_page,
e3db7226
FB
3742 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3743 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
5fafdf24 3744 direct_jmp_count,
e3db7226
FB
3745 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3746 direct_jmp2_count,
3747 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
57fec1fe 3748 cpu_fprintf(f, "\nStatistics:\n");
e3db7226
FB
3749 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3750 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3751 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
b67d9a52 3752 tcg_dump_info(f, cpu_fprintf);
e3db7226
FB
3753}
3754
5fafdf24 3755#if !defined(CONFIG_USER_ONLY)
61382a50
FB
3756
3757#define MMUSUFFIX _cmmu
3758#define GETPC() NULL
3759#define env cpu_single_env
b769d8fe 3760#define SOFTMMU_CODE_ACCESS
61382a50
FB
3761
3762#define SHIFT 0
3763#include "softmmu_template.h"
3764
3765#define SHIFT 1
3766#include "softmmu_template.h"
3767
3768#define SHIFT 2
3769#include "softmmu_template.h"
3770
3771#define SHIFT 3
3772#include "softmmu_template.h"
3773
3774#undef env
3775
3776#endif