]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
memory: Move FlatView allocation to a helper
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
5b6dd868 2 * Virtual page mapping
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
7b31bbc2 19#include "qemu/osdep.h"
da34e65c 20#include "qapi/error.h"
777872e5 21#ifndef _WIN32
d5a8f07c 22#endif
54936004 23
f348b6d1 24#include "qemu/cutils.h"
6180a181 25#include "cpu.h"
63c91552 26#include "exec/exec-all.h"
51180423 27#include "exec/target_page.h"
b67d9a52 28#include "tcg.h"
741da0d3 29#include "hw/qdev-core.h"
c7e002c5 30#include "hw/qdev-properties.h"
4485bd26 31#if !defined(CONFIG_USER_ONLY)
47c8ca53 32#include "hw/boards.h"
33c11879 33#include "hw/xen/xen.h"
4485bd26 34#endif
9c17d615 35#include "sysemu/kvm.h"
2ff3de68 36#include "sysemu/sysemu.h"
1de7afc9
PB
37#include "qemu/timer.h"
38#include "qemu/config-file.h"
75a34036 39#include "qemu/error-report.h"
53a5960a 40#if defined(CONFIG_USER_ONLY)
a9c94277 41#include "qemu.h"
432d268c 42#else /* !CONFIG_USER_ONLY */
741da0d3
PB
43#include "hw/hw.h"
44#include "exec/memory.h"
df43d49c 45#include "exec/ioport.h"
741da0d3 46#include "sysemu/dma.h"
9c607668 47#include "sysemu/numa.h"
79ca7a1b 48#include "sysemu/hw_accel.h"
741da0d3 49#include "exec/address-spaces.h"
9c17d615 50#include "sysemu/xen-mapcache.h"
0ab8ed18 51#include "trace-root.h"
d3a5038c 52
e2fa71f5
DDAG
53#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
54#include <fcntl.h>
55#include <linux/falloc.h>
56#endif
57
53a5960a 58#endif
0dc3f44a 59#include "qemu/rcu_queue.h"
4840f10e 60#include "qemu/main-loop.h"
5b6dd868 61#include "translate-all.h"
7615936e 62#include "sysemu/replay.h"
0cac1b66 63
022c62cb 64#include "exec/memory-internal.h"
220c3ebd 65#include "exec/ram_addr.h"
508127e2 66#include "exec/log.h"
67d95c15 67
9dfeca7c
BR
68#include "migration/vmstate.h"
69
b35ba30f 70#include "qemu/range.h"
794e8f30
MT
71#ifndef _WIN32
72#include "qemu/mmap-alloc.h"
73#endif
b35ba30f 74
be9b23c4
PX
75#include "monitor/monitor.h"
76
db7b5426 77//#define DEBUG_SUBPAGE
1196be37 78
e2eef170 79#if !defined(CONFIG_USER_ONLY)
0dc3f44a
MD
80/* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
81 * are protected by the ramlist lock.
82 */
0d53d9fe 83RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
84
85static MemoryRegion *system_memory;
309cb471 86static MemoryRegion *system_io;
62152b8a 87
f6790af6
AK
88AddressSpace address_space_io;
89AddressSpace address_space_memory;
2673a5da 90
0844e007 91MemoryRegion io_mem_rom, io_mem_notdirty;
acc9d80b 92static MemoryRegion io_mem_unassigned;
0e0df1e2 93
7bd4f430
PB
94/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
95#define RAM_PREALLOC (1 << 0)
96
dbcb8981
PB
97/* RAM is mmap-ed with MAP_SHARED */
98#define RAM_SHARED (1 << 1)
99
62be4e3a
MT
100/* Only a portion of RAM (used_length) is actually used, and migrated.
101 * This used_length size can change across reboots.
102 */
103#define RAM_RESIZEABLE (1 << 2)
104
e2eef170 105#endif
9fa3e853 106
20bccb82
PM
107#ifdef TARGET_PAGE_BITS_VARY
108int target_page_bits;
109bool target_page_bits_decided;
110#endif
111
bdc44640 112struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
6a00d601
FB
113/* current CPU in the current thread. It is only valid inside
114 cpu_exec() */
f240eb6f 115__thread CPUState *current_cpu;
2e70f6ef 116/* 0 = Do not count executed instructions.
bf20dc07 117 1 = Precise instruction counting.
2e70f6ef 118 2 = Adaptive rate instruction counting. */
5708fc66 119int use_icount;
6a00d601 120
a0be0c58
YZ
121uintptr_t qemu_host_page_size;
122intptr_t qemu_host_page_mask;
123uintptr_t qemu_real_host_page_size;
124intptr_t qemu_real_host_page_mask;
125
20bccb82
PM
126bool set_preferred_target_page_bits(int bits)
127{
128 /* The target page size is the lowest common denominator for all
129 * the CPUs in the system, so we can only make it smaller, never
130 * larger. And we can't make it smaller once we've committed to
131 * a particular size.
132 */
133#ifdef TARGET_PAGE_BITS_VARY
134 assert(bits >= TARGET_PAGE_BITS_MIN);
135 if (target_page_bits == 0 || target_page_bits > bits) {
136 if (target_page_bits_decided) {
137 return false;
138 }
139 target_page_bits = bits;
140 }
141#endif
142 return true;
143}
144
e2eef170 145#if !defined(CONFIG_USER_ONLY)
4346ae3e 146
20bccb82
PM
147static void finalize_target_page_bits(void)
148{
149#ifdef TARGET_PAGE_BITS_VARY
150 if (target_page_bits == 0) {
151 target_page_bits = TARGET_PAGE_BITS_MIN;
152 }
153 target_page_bits_decided = true;
154#endif
155}
156
1db8abb1
PB
157typedef struct PhysPageEntry PhysPageEntry;
158
159struct PhysPageEntry {
9736e55b 160 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
8b795765 161 uint32_t skip : 6;
9736e55b 162 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
8b795765 163 uint32_t ptr : 26;
1db8abb1
PB
164};
165
8b795765
MT
166#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
167
03f49957 168/* Size of the L2 (and L3, etc) page tables. */
57271d63 169#define ADDR_SPACE_BITS 64
03f49957 170
026736ce 171#define P_L2_BITS 9
03f49957
PB
172#define P_L2_SIZE (1 << P_L2_BITS)
173
174#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
175
176typedef PhysPageEntry Node[P_L2_SIZE];
0475d94f 177
53cb28cb 178typedef struct PhysPageMap {
79e2b9ae
PB
179 struct rcu_head rcu;
180
53cb28cb
MA
181 unsigned sections_nb;
182 unsigned sections_nb_alloc;
183 unsigned nodes_nb;
184 unsigned nodes_nb_alloc;
185 Node *nodes;
186 MemoryRegionSection *sections;
187} PhysPageMap;
188
1db8abb1 189struct AddressSpaceDispatch {
79e2b9ae
PB
190 struct rcu_head rcu;
191
729633c2 192 MemoryRegionSection *mru_section;
1db8abb1
PB
193 /* This is a multi-level map on the physical address space.
194 * The bottom level has pointers to MemoryRegionSections.
195 */
196 PhysPageEntry phys_map;
53cb28cb 197 PhysPageMap map;
acc9d80b 198 AddressSpace *as;
1db8abb1
PB
199};
200
90260c6c
JK
201#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
202typedef struct subpage_t {
203 MemoryRegion iomem;
acc9d80b 204 AddressSpace *as;
90260c6c 205 hwaddr base;
2615fabd 206 uint16_t sub_section[];
90260c6c
JK
207} subpage_t;
208
b41aac4f
LPF
209#define PHYS_SECTION_UNASSIGNED 0
210#define PHYS_SECTION_NOTDIRTY 1
211#define PHYS_SECTION_ROM 2
212#define PHYS_SECTION_WATCH 3
5312bd8b 213
e2eef170 214static void io_mem_init(void);
62152b8a 215static void memory_map_init(void);
09daed84 216static void tcg_commit(MemoryListener *listener);
e2eef170 217
1ec9b909 218static MemoryRegion io_mem_watch;
32857f4d
PM
219
220/**
221 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
222 * @cpu: the CPU whose AddressSpace this is
223 * @as: the AddressSpace itself
224 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
225 * @tcg_as_listener: listener for tracking changes to the AddressSpace
226 */
227struct CPUAddressSpace {
228 CPUState *cpu;
229 AddressSpace *as;
230 struct AddressSpaceDispatch *memory_dispatch;
231 MemoryListener tcg_as_listener;
232};
233
8deaf12c
GH
234struct DirtyBitmapSnapshot {
235 ram_addr_t start;
236 ram_addr_t end;
237 unsigned long dirty[];
238};
239
6658ffb8 240#endif
fd6ce8f6 241
6d9a1304 242#if !defined(CONFIG_USER_ONLY)
d6f2ea22 243
53cb28cb 244static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
d6f2ea22 245{
101420b8 246 static unsigned alloc_hint = 16;
53cb28cb 247 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
101420b8 248 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
53cb28cb
MA
249 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
250 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
101420b8 251 alloc_hint = map->nodes_nb_alloc;
d6f2ea22 252 }
f7bf5461
AK
253}
254
db94604b 255static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
f7bf5461
AK
256{
257 unsigned i;
8b795765 258 uint32_t ret;
db94604b
PB
259 PhysPageEntry e;
260 PhysPageEntry *p;
f7bf5461 261
53cb28cb 262 ret = map->nodes_nb++;
db94604b 263 p = map->nodes[ret];
f7bf5461 264 assert(ret != PHYS_MAP_NODE_NIL);
53cb28cb 265 assert(ret != map->nodes_nb_alloc);
db94604b
PB
266
267 e.skip = leaf ? 0 : 1;
268 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
03f49957 269 for (i = 0; i < P_L2_SIZE; ++i) {
db94604b 270 memcpy(&p[i], &e, sizeof(e));
d6f2ea22 271 }
f7bf5461 272 return ret;
d6f2ea22
AK
273}
274
53cb28cb
MA
275static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
276 hwaddr *index, hwaddr *nb, uint16_t leaf,
2999097b 277 int level)
f7bf5461
AK
278{
279 PhysPageEntry *p;
03f49957 280 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
108c49b8 281
9736e55b 282 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
db94604b 283 lp->ptr = phys_map_node_alloc(map, level == 0);
92e873b9 284 }
db94604b 285 p = map->nodes[lp->ptr];
03f49957 286 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
f7bf5461 287
03f49957 288 while (*nb && lp < &p[P_L2_SIZE]) {
07f07b31 289 if ((*index & (step - 1)) == 0 && *nb >= step) {
9736e55b 290 lp->skip = 0;
c19e8800 291 lp->ptr = leaf;
07f07b31
AK
292 *index += step;
293 *nb -= step;
2999097b 294 } else {
53cb28cb 295 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
2999097b
AK
296 }
297 ++lp;
f7bf5461
AK
298 }
299}
300
ac1970fb 301static void phys_page_set(AddressSpaceDispatch *d,
a8170e5e 302 hwaddr index, hwaddr nb,
2999097b 303 uint16_t leaf)
f7bf5461 304{
2999097b 305 /* Wildly overreserve - it doesn't matter much. */
53cb28cb 306 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
5cd2c5b6 307
53cb28cb 308 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
309}
310
b35ba30f
MT
311/* Compact a non leaf page entry. Simply detect that the entry has a single child,
312 * and update our entry so we can skip it and go directly to the destination.
313 */
efee678d 314static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
b35ba30f
MT
315{
316 unsigned valid_ptr = P_L2_SIZE;
317 int valid = 0;
318 PhysPageEntry *p;
319 int i;
320
321 if (lp->ptr == PHYS_MAP_NODE_NIL) {
322 return;
323 }
324
325 p = nodes[lp->ptr];
326 for (i = 0; i < P_L2_SIZE; i++) {
327 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
328 continue;
329 }
330
331 valid_ptr = i;
332 valid++;
333 if (p[i].skip) {
efee678d 334 phys_page_compact(&p[i], nodes);
b35ba30f
MT
335 }
336 }
337
338 /* We can only compress if there's only one child. */
339 if (valid != 1) {
340 return;
341 }
342
343 assert(valid_ptr < P_L2_SIZE);
344
345 /* Don't compress if it won't fit in the # of bits we have. */
346 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
347 return;
348 }
349
350 lp->ptr = p[valid_ptr].ptr;
351 if (!p[valid_ptr].skip) {
352 /* If our only child is a leaf, make this a leaf. */
353 /* By design, we should have made this node a leaf to begin with so we
354 * should never reach here.
355 * But since it's so simple to handle this, let's do it just in case we
356 * change this rule.
357 */
358 lp->skip = 0;
359 } else {
360 lp->skip += p[valid_ptr].skip;
361 }
362}
363
364static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb)
365{
b35ba30f 366 if (d->phys_map.skip) {
efee678d 367 phys_page_compact(&d->phys_map, d->map.nodes);
b35ba30f
MT
368 }
369}
370
29cb533d
FZ
371static inline bool section_covers_addr(const MemoryRegionSection *section,
372 hwaddr addr)
373{
374 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
375 * the section must cover the entire address space.
376 */
258dfaaa 377 return int128_gethi(section->size) ||
29cb533d 378 range_covers_byte(section->offset_within_address_space,
258dfaaa 379 int128_getlo(section->size), addr);
29cb533d
FZ
380}
381
003a0cf2 382static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
92e873b9 383{
003a0cf2
PX
384 PhysPageEntry lp = d->phys_map, *p;
385 Node *nodes = d->map.nodes;
386 MemoryRegionSection *sections = d->map.sections;
97115a8d 387 hwaddr index = addr >> TARGET_PAGE_BITS;
31ab2b4a 388 int i;
f1f6e3b8 389
9736e55b 390 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
c19e8800 391 if (lp.ptr == PHYS_MAP_NODE_NIL) {
9affd6fc 392 return &sections[PHYS_SECTION_UNASSIGNED];
31ab2b4a 393 }
9affd6fc 394 p = nodes[lp.ptr];
03f49957 395 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
5312bd8b 396 }
b35ba30f 397
29cb533d 398 if (section_covers_addr(&sections[lp.ptr], addr)) {
b35ba30f
MT
399 return &sections[lp.ptr];
400 } else {
401 return &sections[PHYS_SECTION_UNASSIGNED];
402 }
f3705d53
AK
403}
404
e5548617
BS
405bool memory_region_is_unassigned(MemoryRegion *mr)
406{
2a8e7499 407 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
5b6dd868 408 && mr != &io_mem_watch;
fd6ce8f6 409}
149f54b5 410
79e2b9ae 411/* Called from RCU critical section */
c7086b4a 412static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
90260c6c
JK
413 hwaddr addr,
414 bool resolve_subpage)
9f029603 415{
729633c2 416 MemoryRegionSection *section = atomic_read(&d->mru_section);
90260c6c 417 subpage_t *subpage;
729633c2 418 bool update;
90260c6c 419
729633c2
FZ
420 if (section && section != &d->map.sections[PHYS_SECTION_UNASSIGNED] &&
421 section_covers_addr(section, addr)) {
422 update = false;
423 } else {
003a0cf2 424 section = phys_page_find(d, addr);
729633c2
FZ
425 update = true;
426 }
90260c6c
JK
427 if (resolve_subpage && section->mr->subpage) {
428 subpage = container_of(section->mr, subpage_t, iomem);
53cb28cb 429 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
90260c6c 430 }
729633c2
FZ
431 if (update) {
432 atomic_set(&d->mru_section, section);
433 }
90260c6c 434 return section;
9f029603
JK
435}
436
79e2b9ae 437/* Called from RCU critical section */
90260c6c 438static MemoryRegionSection *
c7086b4a 439address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
90260c6c 440 hwaddr *plen, bool resolve_subpage)
149f54b5
PB
441{
442 MemoryRegionSection *section;
965eb2fc 443 MemoryRegion *mr;
a87f3954 444 Int128 diff;
149f54b5 445
c7086b4a 446 section = address_space_lookup_region(d, addr, resolve_subpage);
149f54b5
PB
447 /* Compute offset within MemoryRegionSection */
448 addr -= section->offset_within_address_space;
449
450 /* Compute offset within MemoryRegion */
451 *xlat = addr + section->offset_within_region;
452
965eb2fc 453 mr = section->mr;
b242e0e0
PB
454
455 /* MMIO registers can be expected to perform full-width accesses based only
456 * on their address, without considering adjacent registers that could
457 * decode to completely different MemoryRegions. When such registers
458 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
459 * regions overlap wildly. For this reason we cannot clamp the accesses
460 * here.
461 *
462 * If the length is small (as is the case for address_space_ldl/stl),
463 * everything works fine. If the incoming length is large, however,
464 * the caller really has to do the clamping through memory_access_size.
465 */
965eb2fc 466 if (memory_region_is_ram(mr)) {
e4a511f8 467 diff = int128_sub(section->size, int128_make64(addr));
965eb2fc
PB
468 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
469 }
149f54b5
PB
470 return section;
471}
90260c6c 472
41063e1e 473/* Called from RCU critical section */
a764040c
PX
474static MemoryRegionSection address_space_do_translate(AddressSpace *as,
475 hwaddr addr,
476 hwaddr *xlat,
477 hwaddr *plen,
478 bool is_write,
e76bb18f
AK
479 bool is_mmio,
480 AddressSpace **target_as)
052c8fa9 481{
a764040c 482 IOMMUTLBEntry iotlb;
052c8fa9 483 MemoryRegionSection *section;
3df9d748 484 IOMMUMemoryRegion *iommu_mr;
1221a474 485 IOMMUMemoryRegionClass *imrc;
052c8fa9
JW
486
487 for (;;) {
488 AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch);
a764040c 489 section = address_space_translate_internal(d, addr, &addr, plen, is_mmio);
052c8fa9 490
3df9d748
AK
491 iommu_mr = memory_region_get_iommu(section->mr);
492 if (!iommu_mr) {
052c8fa9
JW
493 break;
494 }
1221a474 495 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
052c8fa9 496
1221a474
AK
497 iotlb = imrc->translate(iommu_mr, addr, is_write ?
498 IOMMU_WO : IOMMU_RO);
a764040c
PX
499 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
500 | (addr & iotlb.addr_mask));
501 *plen = MIN(*plen, (addr | iotlb.addr_mask) - addr + 1);
052c8fa9 502 if (!(iotlb.perm & (1 << is_write))) {
a764040c 503 goto translate_fail;
052c8fa9
JW
504 }
505
052c8fa9 506 as = iotlb.target_as;
e76bb18f 507 *target_as = iotlb.target_as;
052c8fa9
JW
508 }
509
a764040c
PX
510 *xlat = addr;
511
512 return *section;
513
514translate_fail:
515 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
052c8fa9
JW
516}
517
518/* Called from RCU critical section */
a764040c
PX
519IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
520 bool is_write)
90260c6c 521{
a764040c
PX
522 MemoryRegionSection section;
523 hwaddr xlat, plen;
30951157 524
a764040c
PX
525 /* Try to get maximum page mask during translation. */
526 plen = (hwaddr)-1;
30951157 527
a764040c
PX
528 /* This can never be MMIO. */
529 section = address_space_do_translate(as, addr, &xlat, &plen,
e76bb18f 530 is_write, false, &as);
30951157 531
a764040c
PX
532 /* Illegal translation */
533 if (section.mr == &io_mem_unassigned) {
534 goto iotlb_fail;
535 }
30951157 536
a764040c
PX
537 /* Convert memory region offset into address space offset */
538 xlat += section.offset_within_address_space -
539 section.offset_within_region;
540
541 if (plen == (hwaddr)-1) {
542 /*
543 * We use default page size here. Logically it only happens
544 * for identity mappings.
545 */
546 plen = TARGET_PAGE_SIZE;
30951157
AK
547 }
548
a764040c
PX
549 /* Convert to address mask */
550 plen -= 1;
551
552 return (IOMMUTLBEntry) {
e76bb18f 553 .target_as = as,
a764040c
PX
554 .iova = addr & ~plen,
555 .translated_addr = xlat & ~plen,
556 .addr_mask = plen,
557 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
558 .perm = IOMMU_RW,
559 };
560
561iotlb_fail:
562 return (IOMMUTLBEntry) {0};
563}
564
565/* Called from RCU critical section */
566MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
567 hwaddr *xlat, hwaddr *plen,
568 bool is_write)
569{
570 MemoryRegion *mr;
571 MemoryRegionSection section;
572
573 /* This can be MMIO, so setup MMIO bit. */
e76bb18f
AK
574 section = address_space_do_translate(as, addr, xlat, plen, is_write, true,
575 &as);
a764040c
PX
576 mr = section.mr;
577
fe680d0d 578 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
a87f3954 579 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
23820dbf 580 *plen = MIN(page, *plen);
a87f3954
PB
581 }
582
30951157 583 return mr;
90260c6c
JK
584}
585
79e2b9ae 586/* Called from RCU critical section */
90260c6c 587MemoryRegionSection *
d7898cda 588address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
9d82b5a7 589 hwaddr *xlat, hwaddr *plen)
90260c6c 590{
30951157 591 MemoryRegionSection *section;
f35e44e7 592 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
d7898cda
PM
593
594 section = address_space_translate_internal(d, addr, xlat, plen, false);
30951157 595
3df9d748 596 assert(!memory_region_is_iommu(section->mr));
30951157 597 return section;
90260c6c 598}
5b6dd868 599#endif
fd6ce8f6 600
b170fce3 601#if !defined(CONFIG_USER_ONLY)
5b6dd868
BS
602
603static int cpu_common_post_load(void *opaque, int version_id)
fd6ce8f6 604{
259186a7 605 CPUState *cpu = opaque;
a513fe19 606
5b6dd868
BS
607 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
608 version_id is increased. */
259186a7 609 cpu->interrupt_request &= ~0x01;
d10eb08f 610 tlb_flush(cpu);
5b6dd868
BS
611
612 return 0;
a513fe19 613}
7501267e 614
6c3bff0e
PD
615static int cpu_common_pre_load(void *opaque)
616{
617 CPUState *cpu = opaque;
618
adee6424 619 cpu->exception_index = -1;
6c3bff0e
PD
620
621 return 0;
622}
623
624static bool cpu_common_exception_index_needed(void *opaque)
625{
626 CPUState *cpu = opaque;
627
adee6424 628 return tcg_enabled() && cpu->exception_index != -1;
6c3bff0e
PD
629}
630
631static const VMStateDescription vmstate_cpu_common_exception_index = {
632 .name = "cpu_common/exception_index",
633 .version_id = 1,
634 .minimum_version_id = 1,
5cd8cada 635 .needed = cpu_common_exception_index_needed,
6c3bff0e
PD
636 .fields = (VMStateField[]) {
637 VMSTATE_INT32(exception_index, CPUState),
638 VMSTATE_END_OF_LIST()
639 }
640};
641
bac05aa9
AS
642static bool cpu_common_crash_occurred_needed(void *opaque)
643{
644 CPUState *cpu = opaque;
645
646 return cpu->crash_occurred;
647}
648
649static const VMStateDescription vmstate_cpu_common_crash_occurred = {
650 .name = "cpu_common/crash_occurred",
651 .version_id = 1,
652 .minimum_version_id = 1,
653 .needed = cpu_common_crash_occurred_needed,
654 .fields = (VMStateField[]) {
655 VMSTATE_BOOL(crash_occurred, CPUState),
656 VMSTATE_END_OF_LIST()
657 }
658};
659
1a1562f5 660const VMStateDescription vmstate_cpu_common = {
5b6dd868
BS
661 .name = "cpu_common",
662 .version_id = 1,
663 .minimum_version_id = 1,
6c3bff0e 664 .pre_load = cpu_common_pre_load,
5b6dd868 665 .post_load = cpu_common_post_load,
35d08458 666 .fields = (VMStateField[]) {
259186a7
AF
667 VMSTATE_UINT32(halted, CPUState),
668 VMSTATE_UINT32(interrupt_request, CPUState),
5b6dd868 669 VMSTATE_END_OF_LIST()
6c3bff0e 670 },
5cd8cada
JQ
671 .subsections = (const VMStateDescription*[]) {
672 &vmstate_cpu_common_exception_index,
bac05aa9 673 &vmstate_cpu_common_crash_occurred,
5cd8cada 674 NULL
5b6dd868
BS
675 }
676};
1a1562f5 677
5b6dd868 678#endif
ea041c0e 679
38d8f5c8 680CPUState *qemu_get_cpu(int index)
ea041c0e 681{
bdc44640 682 CPUState *cpu;
ea041c0e 683
bdc44640 684 CPU_FOREACH(cpu) {
55e5c285 685 if (cpu->cpu_index == index) {
bdc44640 686 return cpu;
55e5c285 687 }
ea041c0e 688 }
5b6dd868 689
bdc44640 690 return NULL;
ea041c0e
FB
691}
692
09daed84 693#if !defined(CONFIG_USER_ONLY)
56943e8c 694void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx)
09daed84 695{
12ebc9a7
PM
696 CPUAddressSpace *newas;
697
698 /* Target code should have set num_ases before calling us */
699 assert(asidx < cpu->num_ases);
700
56943e8c
PM
701 if (asidx == 0) {
702 /* address space 0 gets the convenience alias */
703 cpu->as = as;
704 }
705
12ebc9a7
PM
706 /* KVM cannot currently support multiple address spaces. */
707 assert(asidx == 0 || !kvm_enabled());
09daed84 708
12ebc9a7
PM
709 if (!cpu->cpu_ases) {
710 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
09daed84 711 }
32857f4d 712
12ebc9a7
PM
713 newas = &cpu->cpu_ases[asidx];
714 newas->cpu = cpu;
715 newas->as = as;
56943e8c 716 if (tcg_enabled()) {
12ebc9a7
PM
717 newas->tcg_as_listener.commit = tcg_commit;
718 memory_listener_register(&newas->tcg_as_listener, as);
56943e8c 719 }
09daed84 720}
651a5bc0
PM
721
722AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
723{
724 /* Return the AddressSpace corresponding to the specified index */
725 return cpu->cpu_ases[asidx].as;
726}
09daed84
EI
727#endif
728
7bbc124e 729void cpu_exec_unrealizefn(CPUState *cpu)
1c59eb39 730{
9dfeca7c
BR
731 CPUClass *cc = CPU_GET_CLASS(cpu);
732
267f685b 733 cpu_list_remove(cpu);
9dfeca7c
BR
734
735 if (cc->vmsd != NULL) {
736 vmstate_unregister(NULL, cc->vmsd, cpu);
737 }
738 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
739 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
740 }
1c59eb39
BR
741}
742
c7e002c5
FZ
743Property cpu_common_props[] = {
744#ifndef CONFIG_USER_ONLY
745 /* Create a memory property for softmmu CPU object,
746 * so users can wire up its memory. (This can't go in qom/cpu.c
747 * because that file is compiled only once for both user-mode
748 * and system builds.) The default if no link is set up is to use
749 * the system address space.
750 */
751 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
752 MemoryRegion *),
753#endif
754 DEFINE_PROP_END_OF_LIST(),
755};
756
39e329e3 757void cpu_exec_initfn(CPUState *cpu)
ea041c0e 758{
56943e8c 759 cpu->as = NULL;
12ebc9a7 760 cpu->num_ases = 0;
56943e8c 761
291135b5 762#ifndef CONFIG_USER_ONLY
291135b5 763 cpu->thread_id = qemu_get_thread_id();
6731d864
PC
764 cpu->memory = system_memory;
765 object_ref(OBJECT(cpu->memory));
291135b5 766#endif
39e329e3
LV
767}
768
ce5b1bbf 769void cpu_exec_realizefn(CPUState *cpu, Error **errp)
39e329e3
LV
770{
771 CPUClass *cc ATTRIBUTE_UNUSED = CPU_GET_CLASS(cpu);
291135b5 772
267f685b 773 cpu_list_add(cpu);
1bc7e522
IM
774
775#ifndef CONFIG_USER_ONLY
e0d47944 776 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
741da0d3 777 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
e0d47944 778 }
b170fce3 779 if (cc->vmsd != NULL) {
741da0d3 780 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
b170fce3 781 }
741da0d3 782#endif
ea041c0e
FB
783}
784
406bc339 785#if defined(CONFIG_USER_ONLY)
00b941e5 786static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1e7855a5 787{
406bc339
PK
788 mmap_lock();
789 tb_lock();
790 tb_invalidate_phys_page_range(pc, pc + 1, 0);
791 tb_unlock();
792 mmap_unlock();
793}
794#else
795static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
796{
797 MemTxAttrs attrs;
798 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
799 int asidx = cpu_asidx_from_attrs(cpu, attrs);
800 if (phys != -1) {
801 /* Locks grabbed by tb_invalidate_phys_addr */
802 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
803 phys | (pc & ~TARGET_PAGE_MASK));
804 }
1e7855a5 805}
406bc339 806#endif
d720b93d 807
c527ee8f 808#if defined(CONFIG_USER_ONLY)
75a34036 809void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
c527ee8f
PB
810
811{
812}
813
3ee887e8
PM
814int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
815 int flags)
816{
817 return -ENOSYS;
818}
819
820void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
821{
822}
823
75a34036 824int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
c527ee8f
PB
825 int flags, CPUWatchpoint **watchpoint)
826{
827 return -ENOSYS;
828}
829#else
6658ffb8 830/* Add a watchpoint. */
75a34036 831int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 832 int flags, CPUWatchpoint **watchpoint)
6658ffb8 833{
c0ce998e 834 CPUWatchpoint *wp;
6658ffb8 835
05068c0d 836 /* forbid ranges which are empty or run off the end of the address space */
07e2863d 837 if (len == 0 || (addr + len - 1) < addr) {
75a34036
AF
838 error_report("tried to set invalid watchpoint at %"
839 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
b4051334
AL
840 return -EINVAL;
841 }
7267c094 842 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
843
844 wp->vaddr = addr;
05068c0d 845 wp->len = len;
a1d1bb31
AL
846 wp->flags = flags;
847
2dc9f411 848 /* keep all GDB-injected watchpoints in front */
ff4700b0
AF
849 if (flags & BP_GDB) {
850 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
851 } else {
852 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
853 }
6658ffb8 854
31b030d4 855 tlb_flush_page(cpu, addr);
a1d1bb31
AL
856
857 if (watchpoint)
858 *watchpoint = wp;
859 return 0;
6658ffb8
PB
860}
861
a1d1bb31 862/* Remove a specific watchpoint. */
75a34036 863int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 864 int flags)
6658ffb8 865{
a1d1bb31 866 CPUWatchpoint *wp;
6658ffb8 867
ff4700b0 868 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 869 if (addr == wp->vaddr && len == wp->len
6e140f28 870 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
75a34036 871 cpu_watchpoint_remove_by_ref(cpu, wp);
6658ffb8
PB
872 return 0;
873 }
874 }
a1d1bb31 875 return -ENOENT;
6658ffb8
PB
876}
877
a1d1bb31 878/* Remove a specific watchpoint by reference. */
75a34036 879void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
a1d1bb31 880{
ff4700b0 881 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
7d03f82f 882
31b030d4 883 tlb_flush_page(cpu, watchpoint->vaddr);
a1d1bb31 884
7267c094 885 g_free(watchpoint);
a1d1bb31
AL
886}
887
888/* Remove all matching watchpoints. */
75a34036 889void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 890{
c0ce998e 891 CPUWatchpoint *wp, *next;
a1d1bb31 892
ff4700b0 893 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
75a34036
AF
894 if (wp->flags & mask) {
895 cpu_watchpoint_remove_by_ref(cpu, wp);
896 }
c0ce998e 897 }
7d03f82f 898}
05068c0d
PM
899
900/* Return true if this watchpoint address matches the specified
901 * access (ie the address range covered by the watchpoint overlaps
902 * partially or completely with the address range covered by the
903 * access).
904 */
905static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
906 vaddr addr,
907 vaddr len)
908{
909 /* We know the lengths are non-zero, but a little caution is
910 * required to avoid errors in the case where the range ends
911 * exactly at the top of the address space and so addr + len
912 * wraps round to zero.
913 */
914 vaddr wpend = wp->vaddr + wp->len - 1;
915 vaddr addrend = addr + len - 1;
916
917 return !(addr > wpend || wp->vaddr > addrend);
918}
919
c527ee8f 920#endif
7d03f82f 921
a1d1bb31 922/* Add a breakpoint. */
b3310ab3 923int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
a1d1bb31 924 CPUBreakpoint **breakpoint)
4c3a88a2 925{
c0ce998e 926 CPUBreakpoint *bp;
3b46e624 927
7267c094 928 bp = g_malloc(sizeof(*bp));
4c3a88a2 929
a1d1bb31
AL
930 bp->pc = pc;
931 bp->flags = flags;
932
2dc9f411 933 /* keep all GDB-injected breakpoints in front */
00b941e5 934 if (flags & BP_GDB) {
f0c3c505 935 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
00b941e5 936 } else {
f0c3c505 937 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
00b941e5 938 }
3b46e624 939
f0c3c505 940 breakpoint_invalidate(cpu, pc);
a1d1bb31 941
00b941e5 942 if (breakpoint) {
a1d1bb31 943 *breakpoint = bp;
00b941e5 944 }
4c3a88a2 945 return 0;
4c3a88a2
FB
946}
947
a1d1bb31 948/* Remove a specific breakpoint. */
b3310ab3 949int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
a1d1bb31 950{
a1d1bb31
AL
951 CPUBreakpoint *bp;
952
f0c3c505 953 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
a1d1bb31 954 if (bp->pc == pc && bp->flags == flags) {
b3310ab3 955 cpu_breakpoint_remove_by_ref(cpu, bp);
a1d1bb31
AL
956 return 0;
957 }
7d03f82f 958 }
a1d1bb31 959 return -ENOENT;
7d03f82f
EI
960}
961
a1d1bb31 962/* Remove a specific breakpoint by reference. */
b3310ab3 963void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
4c3a88a2 964{
f0c3c505
AF
965 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
966
967 breakpoint_invalidate(cpu, breakpoint->pc);
a1d1bb31 968
7267c094 969 g_free(breakpoint);
a1d1bb31
AL
970}
971
972/* Remove all matching breakpoints. */
b3310ab3 973void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 974{
c0ce998e 975 CPUBreakpoint *bp, *next;
a1d1bb31 976
f0c3c505 977 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
b3310ab3
AF
978 if (bp->flags & mask) {
979 cpu_breakpoint_remove_by_ref(cpu, bp);
980 }
c0ce998e 981 }
4c3a88a2
FB
982}
983
c33a346e
FB
984/* enable or disable single step mode. EXCP_DEBUG is returned by the
985 CPU loop after each instruction */
3825b28f 986void cpu_single_step(CPUState *cpu, int enabled)
c33a346e 987{
ed2803da
AF
988 if (cpu->singlestep_enabled != enabled) {
989 cpu->singlestep_enabled = enabled;
990 if (kvm_enabled()) {
38e478ec 991 kvm_update_guest_debug(cpu, 0);
ed2803da 992 } else {
ccbb4d44 993 /* must flush all the translated code to avoid inconsistencies */
e22a25c9 994 /* XXX: only flush what is necessary */
bbd77c18 995 tb_flush(cpu);
e22a25c9 996 }
c33a346e 997 }
c33a346e
FB
998}
999
a47dddd7 1000void cpu_abort(CPUState *cpu, const char *fmt, ...)
7501267e
FB
1001{
1002 va_list ap;
493ae1f0 1003 va_list ap2;
7501267e
FB
1004
1005 va_start(ap, fmt);
493ae1f0 1006 va_copy(ap2, ap);
7501267e
FB
1007 fprintf(stderr, "qemu: fatal: ");
1008 vfprintf(stderr, fmt, ap);
1009 fprintf(stderr, "\n");
878096ee 1010 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
013a2942 1011 if (qemu_log_separate()) {
1ee73216 1012 qemu_log_lock();
93fcfe39
AL
1013 qemu_log("qemu: fatal: ");
1014 qemu_log_vprintf(fmt, ap2);
1015 qemu_log("\n");
a0762859 1016 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
31b1a7b4 1017 qemu_log_flush();
1ee73216 1018 qemu_log_unlock();
93fcfe39 1019 qemu_log_close();
924edcae 1020 }
493ae1f0 1021 va_end(ap2);
f9373291 1022 va_end(ap);
7615936e 1023 replay_finish();
fd052bf6
RV
1024#if defined(CONFIG_USER_ONLY)
1025 {
1026 struct sigaction act;
1027 sigfillset(&act.sa_mask);
1028 act.sa_handler = SIG_DFL;
1029 sigaction(SIGABRT, &act, NULL);
1030 }
1031#endif
7501267e
FB
1032 abort();
1033}
1034
0124311e 1035#if !defined(CONFIG_USER_ONLY)
0dc3f44a 1036/* Called from RCU critical section */
041603fe
PB
1037static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1038{
1039 RAMBlock *block;
1040
43771539 1041 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 1042 if (block && addr - block->offset < block->max_length) {
68851b98 1043 return block;
041603fe 1044 }
99e15582 1045 RAMBLOCK_FOREACH(block) {
9b8424d5 1046 if (addr - block->offset < block->max_length) {
041603fe
PB
1047 goto found;
1048 }
1049 }
1050
1051 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1052 abort();
1053
1054found:
43771539
PB
1055 /* It is safe to write mru_block outside the iothread lock. This
1056 * is what happens:
1057 *
1058 * mru_block = xxx
1059 * rcu_read_unlock()
1060 * xxx removed from list
1061 * rcu_read_lock()
1062 * read mru_block
1063 * mru_block = NULL;
1064 * call_rcu(reclaim_ramblock, xxx);
1065 * rcu_read_unlock()
1066 *
1067 * atomic_rcu_set is not needed here. The block was already published
1068 * when it was placed into the list. Here we're just making an extra
1069 * copy of the pointer.
1070 */
041603fe
PB
1071 ram_list.mru_block = block;
1072 return block;
1073}
1074
a2f4d5be 1075static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
d24981d3 1076{
9a13565d 1077 CPUState *cpu;
041603fe 1078 ram_addr_t start1;
a2f4d5be
JQ
1079 RAMBlock *block;
1080 ram_addr_t end;
1081
1082 end = TARGET_PAGE_ALIGN(start + length);
1083 start &= TARGET_PAGE_MASK;
d24981d3 1084
0dc3f44a 1085 rcu_read_lock();
041603fe
PB
1086 block = qemu_get_ram_block(start);
1087 assert(block == qemu_get_ram_block(end - 1));
1240be24 1088 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
9a13565d
PC
1089 CPU_FOREACH(cpu) {
1090 tlb_reset_dirty(cpu, start1, length);
1091 }
0dc3f44a 1092 rcu_read_unlock();
d24981d3
JQ
1093}
1094
5579c7f3 1095/* Note: start and end must be within the same ram block. */
03eebc9e
SH
1096bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1097 ram_addr_t length,
1098 unsigned client)
1ccde1cb 1099{
5b82b703 1100 DirtyMemoryBlocks *blocks;
03eebc9e 1101 unsigned long end, page;
5b82b703 1102 bool dirty = false;
03eebc9e
SH
1103
1104 if (length == 0) {
1105 return false;
1106 }
f23db169 1107
03eebc9e
SH
1108 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1109 page = start >> TARGET_PAGE_BITS;
5b82b703
SH
1110
1111 rcu_read_lock();
1112
1113 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1114
1115 while (page < end) {
1116 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1117 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1118 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1119
1120 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1121 offset, num);
1122 page += num;
1123 }
1124
1125 rcu_read_unlock();
03eebc9e
SH
1126
1127 if (dirty && tcg_enabled()) {
a2f4d5be 1128 tlb_reset_dirty_range_all(start, length);
5579c7f3 1129 }
03eebc9e
SH
1130
1131 return dirty;
1ccde1cb
FB
1132}
1133
8deaf12c
GH
1134DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1135 (ram_addr_t start, ram_addr_t length, unsigned client)
1136{
1137 DirtyMemoryBlocks *blocks;
1138 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1139 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1140 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1141 DirtyBitmapSnapshot *snap;
1142 unsigned long page, end, dest;
1143
1144 snap = g_malloc0(sizeof(*snap) +
1145 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1146 snap->start = first;
1147 snap->end = last;
1148
1149 page = first >> TARGET_PAGE_BITS;
1150 end = last >> TARGET_PAGE_BITS;
1151 dest = 0;
1152
1153 rcu_read_lock();
1154
1155 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1156
1157 while (page < end) {
1158 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1159 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1160 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1161
1162 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1163 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1164 offset >>= BITS_PER_LEVEL;
1165
1166 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1167 blocks->blocks[idx] + offset,
1168 num);
1169 page += num;
1170 dest += num >> BITS_PER_LEVEL;
1171 }
1172
1173 rcu_read_unlock();
1174
1175 if (tcg_enabled()) {
1176 tlb_reset_dirty_range_all(start, length);
1177 }
1178
1179 return snap;
1180}
1181
1182bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1183 ram_addr_t start,
1184 ram_addr_t length)
1185{
1186 unsigned long page, end;
1187
1188 assert(start >= snap->start);
1189 assert(start + length <= snap->end);
1190
1191 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1192 page = (start - snap->start) >> TARGET_PAGE_BITS;
1193
1194 while (page < end) {
1195 if (test_bit(page, snap->dirty)) {
1196 return true;
1197 }
1198 page++;
1199 }
1200 return false;
1201}
1202
79e2b9ae 1203/* Called from RCU critical section */
bb0e627a 1204hwaddr memory_region_section_get_iotlb(CPUState *cpu,
149f54b5
PB
1205 MemoryRegionSection *section,
1206 target_ulong vaddr,
1207 hwaddr paddr, hwaddr xlat,
1208 int prot,
1209 target_ulong *address)
e5548617 1210{
a8170e5e 1211 hwaddr iotlb;
e5548617
BS
1212 CPUWatchpoint *wp;
1213
cc5bea60 1214 if (memory_region_is_ram(section->mr)) {
e5548617 1215 /* Normal RAM. */
e4e69794 1216 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
e5548617 1217 if (!section->readonly) {
b41aac4f 1218 iotlb |= PHYS_SECTION_NOTDIRTY;
e5548617 1219 } else {
b41aac4f 1220 iotlb |= PHYS_SECTION_ROM;
e5548617
BS
1221 }
1222 } else {
0b8e2c10
PM
1223 AddressSpaceDispatch *d;
1224
1225 d = atomic_rcu_read(&section->address_space->dispatch);
1226 iotlb = section - d->map.sections;
149f54b5 1227 iotlb += xlat;
e5548617
BS
1228 }
1229
1230 /* Make accesses to pages with watchpoints go via the
1231 watchpoint trap routines. */
ff4700b0 1232 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 1233 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
e5548617
BS
1234 /* Avoid trapping reads of pages with a write breakpoint. */
1235 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
b41aac4f 1236 iotlb = PHYS_SECTION_WATCH + paddr;
e5548617
BS
1237 *address |= TLB_MMIO;
1238 break;
1239 }
1240 }
1241 }
1242
1243 return iotlb;
1244}
9fa3e853
FB
1245#endif /* defined(CONFIG_USER_ONLY) */
1246
e2eef170 1247#if !defined(CONFIG_USER_ONLY)
8da3ff18 1248
c227f099 1249static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 1250 uint16_t section);
acc9d80b 1251static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
54688b1e 1252
a2b257d6
IM
1253static void *(*phys_mem_alloc)(size_t size, uint64_t *align) =
1254 qemu_anon_ram_alloc;
91138037
MA
1255
1256/*
1257 * Set a custom physical guest memory alloator.
1258 * Accelerators with unusual needs may need this. Hopefully, we can
1259 * get rid of it eventually.
1260 */
a2b257d6 1261void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align))
91138037
MA
1262{
1263 phys_mem_alloc = alloc;
1264}
1265
53cb28cb
MA
1266static uint16_t phys_section_add(PhysPageMap *map,
1267 MemoryRegionSection *section)
5312bd8b 1268{
68f3f65b
PB
1269 /* The physical section number is ORed with a page-aligned
1270 * pointer to produce the iotlb entries. Thus it should
1271 * never overflow into the page-aligned value.
1272 */
53cb28cb 1273 assert(map->sections_nb < TARGET_PAGE_SIZE);
68f3f65b 1274
53cb28cb
MA
1275 if (map->sections_nb == map->sections_nb_alloc) {
1276 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1277 map->sections = g_renew(MemoryRegionSection, map->sections,
1278 map->sections_nb_alloc);
5312bd8b 1279 }
53cb28cb 1280 map->sections[map->sections_nb] = *section;
dfde4e6e 1281 memory_region_ref(section->mr);
53cb28cb 1282 return map->sections_nb++;
5312bd8b
AK
1283}
1284
058bc4b5
PB
1285static void phys_section_destroy(MemoryRegion *mr)
1286{
55b4e80b
DS
1287 bool have_sub_page = mr->subpage;
1288
dfde4e6e
PB
1289 memory_region_unref(mr);
1290
55b4e80b 1291 if (have_sub_page) {
058bc4b5 1292 subpage_t *subpage = container_of(mr, subpage_t, iomem);
b4fefef9 1293 object_unref(OBJECT(&subpage->iomem));
058bc4b5
PB
1294 g_free(subpage);
1295 }
1296}
1297
6092666e 1298static void phys_sections_free(PhysPageMap *map)
5312bd8b 1299{
9affd6fc
PB
1300 while (map->sections_nb > 0) {
1301 MemoryRegionSection *section = &map->sections[--map->sections_nb];
058bc4b5
PB
1302 phys_section_destroy(section->mr);
1303 }
9affd6fc
PB
1304 g_free(map->sections);
1305 g_free(map->nodes);
5312bd8b
AK
1306}
1307
ac1970fb 1308static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
0f0cb164
AK
1309{
1310 subpage_t *subpage;
a8170e5e 1311 hwaddr base = section->offset_within_address_space
0f0cb164 1312 & TARGET_PAGE_MASK;
003a0cf2 1313 MemoryRegionSection *existing = phys_page_find(d, base);
0f0cb164
AK
1314 MemoryRegionSection subsection = {
1315 .offset_within_address_space = base,
052e87b0 1316 .size = int128_make64(TARGET_PAGE_SIZE),
0f0cb164 1317 };
a8170e5e 1318 hwaddr start, end;
0f0cb164 1319
f3705d53 1320 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 1321
f3705d53 1322 if (!(existing->mr->subpage)) {
acc9d80b 1323 subpage = subpage_init(d->as, base);
3be91e86 1324 subsection.address_space = d->as;
0f0cb164 1325 subsection.mr = &subpage->iomem;
ac1970fb 1326 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
53cb28cb 1327 phys_section_add(&d->map, &subsection));
0f0cb164 1328 } else {
f3705d53 1329 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
1330 }
1331 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
052e87b0 1332 end = start + int128_get64(section->size) - 1;
53cb28cb
MA
1333 subpage_register(subpage, start, end,
1334 phys_section_add(&d->map, section));
0f0cb164
AK
1335}
1336
1337
052e87b0
PB
1338static void register_multipage(AddressSpaceDispatch *d,
1339 MemoryRegionSection *section)
33417e70 1340{
a8170e5e 1341 hwaddr start_addr = section->offset_within_address_space;
53cb28cb 1342 uint16_t section_index = phys_section_add(&d->map, section);
052e87b0
PB
1343 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1344 TARGET_PAGE_BITS));
dd81124b 1345
733d5ef5
PB
1346 assert(num_pages);
1347 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
33417e70
FB
1348}
1349
9a62e24f 1350void mem_add(AddressSpace *as, MemoryRegionSection *section)
0f0cb164 1351{
00752703 1352 AddressSpaceDispatch *d = as->next_dispatch;
99b9cc06 1353 MemoryRegionSection now = *section, remain = *section;
052e87b0 1354 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
0f0cb164 1355
733d5ef5
PB
1356 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1357 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1358 - now.offset_within_address_space;
1359
052e87b0 1360 now.size = int128_min(int128_make64(left), now.size);
ac1970fb 1361 register_subpage(d, &now);
733d5ef5 1362 } else {
052e87b0 1363 now.size = int128_zero();
733d5ef5 1364 }
052e87b0
PB
1365 while (int128_ne(remain.size, now.size)) {
1366 remain.size = int128_sub(remain.size, now.size);
1367 remain.offset_within_address_space += int128_get64(now.size);
1368 remain.offset_within_region += int128_get64(now.size);
69b67646 1369 now = remain;
052e87b0 1370 if (int128_lt(remain.size, page_size)) {
733d5ef5 1371 register_subpage(d, &now);
88266249 1372 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
052e87b0 1373 now.size = page_size;
ac1970fb 1374 register_subpage(d, &now);
69b67646 1375 } else {
052e87b0 1376 now.size = int128_and(now.size, int128_neg(page_size));
ac1970fb 1377 register_multipage(d, &now);
69b67646 1378 }
0f0cb164
AK
1379 }
1380}
1381
62a2744c
SY
1382void qemu_flush_coalesced_mmio_buffer(void)
1383{
1384 if (kvm_enabled())
1385 kvm_flush_coalesced_mmio_buffer();
1386}
1387
b2a8658e
UD
1388void qemu_mutex_lock_ramlist(void)
1389{
1390 qemu_mutex_lock(&ram_list.mutex);
1391}
1392
1393void qemu_mutex_unlock_ramlist(void)
1394{
1395 qemu_mutex_unlock(&ram_list.mutex);
1396}
1397
be9b23c4
PX
1398void ram_block_dump(Monitor *mon)
1399{
1400 RAMBlock *block;
1401 char *psize;
1402
1403 rcu_read_lock();
1404 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1405 "Block Name", "PSize", "Offset", "Used", "Total");
1406 RAMBLOCK_FOREACH(block) {
1407 psize = size_to_str(block->page_size);
1408 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1409 " 0x%016" PRIx64 "\n", block->idstr, psize,
1410 (uint64_t)block->offset,
1411 (uint64_t)block->used_length,
1412 (uint64_t)block->max_length);
1413 g_free(psize);
1414 }
1415 rcu_read_unlock();
1416}
1417
9c607668
AK
1418#ifdef __linux__
1419/*
1420 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1421 * may or may not name the same files / on the same filesystem now as
1422 * when we actually open and map them. Iterate over the file
1423 * descriptors instead, and use qemu_fd_getpagesize().
1424 */
1425static int find_max_supported_pagesize(Object *obj, void *opaque)
1426{
1427 char *mem_path;
1428 long *hpsize_min = opaque;
1429
1430 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1431 mem_path = object_property_get_str(obj, "mem-path", NULL);
1432 if (mem_path) {
1433 long hpsize = qemu_mempath_getpagesize(mem_path);
1434 if (hpsize < *hpsize_min) {
1435 *hpsize_min = hpsize;
1436 }
1437 } else {
1438 *hpsize_min = getpagesize();
1439 }
1440 }
1441
1442 return 0;
1443}
1444
1445long qemu_getrampagesize(void)
1446{
1447 long hpsize = LONG_MAX;
1448 long mainrampagesize;
1449 Object *memdev_root;
1450
1451 if (mem_path) {
1452 mainrampagesize = qemu_mempath_getpagesize(mem_path);
1453 } else {
1454 mainrampagesize = getpagesize();
1455 }
1456
1457 /* it's possible we have memory-backend objects with
1458 * hugepage-backed RAM. these may get mapped into system
1459 * address space via -numa parameters or memory hotplug
1460 * hooks. we want to take these into account, but we
1461 * also want to make sure these supported hugepage
1462 * sizes are applicable across the entire range of memory
1463 * we may boot from, so we take the min across all
1464 * backends, and assume normal pages in cases where a
1465 * backend isn't backed by hugepages.
1466 */
1467 memdev_root = object_resolve_path("/objects", NULL);
1468 if (memdev_root) {
1469 object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
1470 }
1471 if (hpsize == LONG_MAX) {
1472 /* No additional memory regions found ==> Report main RAM page size */
1473 return mainrampagesize;
1474 }
1475
1476 /* If NUMA is disabled or the NUMA nodes are not backed with a
1477 * memory-backend, then there is at least one node using "normal" RAM,
1478 * so if its page size is smaller we have got to report that size instead.
1479 */
1480 if (hpsize > mainrampagesize &&
1481 (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1482 static bool warned;
1483 if (!warned) {
1484 error_report("Huge page support disabled (n/a for main memory).");
1485 warned = true;
1486 }
1487 return mainrampagesize;
1488 }
1489
1490 return hpsize;
1491}
1492#else
1493long qemu_getrampagesize(void)
1494{
1495 return getpagesize();
1496}
1497#endif
1498
e1e84ba0 1499#ifdef __linux__
d6af99c9
HZ
1500static int64_t get_file_size(int fd)
1501{
1502 int64_t size = lseek(fd, 0, SEEK_END);
1503 if (size < 0) {
1504 return -errno;
1505 }
1506 return size;
1507}
1508
8d37b030
MAL
1509static int file_ram_open(const char *path,
1510 const char *region_name,
1511 bool *created,
1512 Error **errp)
c902760f
MT
1513{
1514 char *filename;
8ca761f6
PF
1515 char *sanitized_name;
1516 char *c;
5c3ece79 1517 int fd = -1;
c902760f 1518
8d37b030 1519 *created = false;
fd97fd44
MA
1520 for (;;) {
1521 fd = open(path, O_RDWR);
1522 if (fd >= 0) {
1523 /* @path names an existing file, use it */
1524 break;
8d31d6b6 1525 }
fd97fd44
MA
1526 if (errno == ENOENT) {
1527 /* @path names a file that doesn't exist, create it */
1528 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1529 if (fd >= 0) {
8d37b030 1530 *created = true;
fd97fd44
MA
1531 break;
1532 }
1533 } else if (errno == EISDIR) {
1534 /* @path names a directory, create a file there */
1535 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
8d37b030 1536 sanitized_name = g_strdup(region_name);
fd97fd44
MA
1537 for (c = sanitized_name; *c != '\0'; c++) {
1538 if (*c == '/') {
1539 *c = '_';
1540 }
1541 }
8ca761f6 1542
fd97fd44
MA
1543 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1544 sanitized_name);
1545 g_free(sanitized_name);
8d31d6b6 1546
fd97fd44
MA
1547 fd = mkstemp(filename);
1548 if (fd >= 0) {
1549 unlink(filename);
1550 g_free(filename);
1551 break;
1552 }
1553 g_free(filename);
8d31d6b6 1554 }
fd97fd44
MA
1555 if (errno != EEXIST && errno != EINTR) {
1556 error_setg_errno(errp, errno,
1557 "can't open backing store %s for guest RAM",
1558 path);
8d37b030 1559 return -1;
fd97fd44
MA
1560 }
1561 /*
1562 * Try again on EINTR and EEXIST. The latter happens when
1563 * something else creates the file between our two open().
1564 */
8d31d6b6 1565 }
c902760f 1566
8d37b030
MAL
1567 return fd;
1568}
1569
1570static void *file_ram_alloc(RAMBlock *block,
1571 ram_addr_t memory,
1572 int fd,
1573 bool truncate,
1574 Error **errp)
1575{
1576 void *area;
1577
863e9621 1578 block->page_size = qemu_fd_getpagesize(fd);
8360668e
HZ
1579 block->mr->align = block->page_size;
1580#if defined(__s390x__)
1581 if (kvm_enabled()) {
1582 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1583 }
1584#endif
fd97fd44 1585
863e9621 1586 if (memory < block->page_size) {
fd97fd44 1587 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
863e9621
DDAG
1588 "or larger than page size 0x%zx",
1589 memory, block->page_size);
8d37b030 1590 return NULL;
1775f111
HZ
1591 }
1592
863e9621 1593 memory = ROUND_UP(memory, block->page_size);
c902760f
MT
1594
1595 /*
1596 * ftruncate is not supported by hugetlbfs in older
1597 * hosts, so don't bother bailing out on errors.
1598 * If anything goes wrong with it under other filesystems,
1599 * mmap will fail.
d6af99c9
HZ
1600 *
1601 * Do not truncate the non-empty backend file to avoid corrupting
1602 * the existing data in the file. Disabling shrinking is not
1603 * enough. For example, the current vNVDIMM implementation stores
1604 * the guest NVDIMM labels at the end of the backend file. If the
1605 * backend file is later extended, QEMU will not be able to find
1606 * those labels. Therefore, extending the non-empty backend file
1607 * is disabled as well.
c902760f 1608 */
8d37b030 1609 if (truncate && ftruncate(fd, memory)) {
9742bf26 1610 perror("ftruncate");
7f56e740 1611 }
c902760f 1612
d2f39add
DD
1613 area = qemu_ram_mmap(fd, memory, block->mr->align,
1614 block->flags & RAM_SHARED);
c902760f 1615 if (area == MAP_FAILED) {
7f56e740 1616 error_setg_errno(errp, errno,
fd97fd44 1617 "unable to map backing store for guest RAM");
8d37b030 1618 return NULL;
c902760f 1619 }
ef36fa14
MT
1620
1621 if (mem_prealloc) {
1e356fc1 1622 os_mem_prealloc(fd, area, memory, smp_cpus, errp);
056b68af 1623 if (errp && *errp) {
8d37b030
MAL
1624 qemu_ram_munmap(area, memory);
1625 return NULL;
056b68af 1626 }
ef36fa14
MT
1627 }
1628
04b16653 1629 block->fd = fd;
c902760f
MT
1630 return area;
1631}
1632#endif
1633
0dc3f44a 1634/* Called with the ramlist lock held. */
d17b5288 1635static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
1636{
1637 RAMBlock *block, *next_block;
3e837b2c 1638 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653 1639
49cd9ac6
SH
1640 assert(size != 0); /* it would hand out same offset multiple times */
1641
0dc3f44a 1642 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
04b16653 1643 return 0;
0d53d9fe 1644 }
04b16653 1645
99e15582 1646 RAMBLOCK_FOREACH(block) {
f15fbc4b 1647 ram_addr_t end, next = RAM_ADDR_MAX;
04b16653 1648
62be4e3a 1649 end = block->offset + block->max_length;
04b16653 1650
99e15582 1651 RAMBLOCK_FOREACH(next_block) {
04b16653
AW
1652 if (next_block->offset >= end) {
1653 next = MIN(next, next_block->offset);
1654 }
1655 }
1656 if (next - end >= size && next - end < mingap) {
3e837b2c 1657 offset = end;
04b16653
AW
1658 mingap = next - end;
1659 }
1660 }
3e837b2c
AW
1661
1662 if (offset == RAM_ADDR_MAX) {
1663 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1664 (uint64_t)size);
1665 abort();
1666 }
1667
04b16653
AW
1668 return offset;
1669}
1670
b8c48993 1671unsigned long last_ram_page(void)
d17b5288
AW
1672{
1673 RAMBlock *block;
1674 ram_addr_t last = 0;
1675
0dc3f44a 1676 rcu_read_lock();
99e15582 1677 RAMBLOCK_FOREACH(block) {
62be4e3a 1678 last = MAX(last, block->offset + block->max_length);
0d53d9fe 1679 }
0dc3f44a 1680 rcu_read_unlock();
b8c48993 1681 return last >> TARGET_PAGE_BITS;
d17b5288
AW
1682}
1683
ddb97f1d
JB
1684static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1685{
1686 int ret;
ddb97f1d
JB
1687
1688 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
47c8ca53 1689 if (!machine_dump_guest_core(current_machine)) {
ddb97f1d
JB
1690 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1691 if (ret) {
1692 perror("qemu_madvise");
1693 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1694 "but dump_guest_core=off specified\n");
1695 }
1696 }
1697}
1698
422148d3
DDAG
1699const char *qemu_ram_get_idstr(RAMBlock *rb)
1700{
1701 return rb->idstr;
1702}
1703
463a4ac2
DDAG
1704bool qemu_ram_is_shared(RAMBlock *rb)
1705{
1706 return rb->flags & RAM_SHARED;
1707}
1708
ae3a7047 1709/* Called with iothread lock held. */
fa53a0e5 1710void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
20cfe881 1711{
fa53a0e5 1712 RAMBlock *block;
20cfe881 1713
c5705a77
AK
1714 assert(new_block);
1715 assert(!new_block->idstr[0]);
84b89d78 1716
09e5ab63
AL
1717 if (dev) {
1718 char *id = qdev_get_dev_path(dev);
84b89d78
CM
1719 if (id) {
1720 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 1721 g_free(id);
84b89d78
CM
1722 }
1723 }
1724 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1725
ab0a9956 1726 rcu_read_lock();
99e15582 1727 RAMBLOCK_FOREACH(block) {
fa53a0e5
GA
1728 if (block != new_block &&
1729 !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
1730 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1731 new_block->idstr);
1732 abort();
1733 }
1734 }
0dc3f44a 1735 rcu_read_unlock();
c5705a77
AK
1736}
1737
ae3a7047 1738/* Called with iothread lock held. */
fa53a0e5 1739void qemu_ram_unset_idstr(RAMBlock *block)
20cfe881 1740{
ae3a7047
MD
1741 /* FIXME: arch_init.c assumes that this is not called throughout
1742 * migration. Ignore the problem since hot-unplug during migration
1743 * does not work anyway.
1744 */
20cfe881
HT
1745 if (block) {
1746 memset(block->idstr, 0, sizeof(block->idstr));
1747 }
1748}
1749
863e9621
DDAG
1750size_t qemu_ram_pagesize(RAMBlock *rb)
1751{
1752 return rb->page_size;
1753}
1754
67f11b5c
DDAG
1755/* Returns the largest size of page in use */
1756size_t qemu_ram_pagesize_largest(void)
1757{
1758 RAMBlock *block;
1759 size_t largest = 0;
1760
99e15582 1761 RAMBLOCK_FOREACH(block) {
67f11b5c
DDAG
1762 largest = MAX(largest, qemu_ram_pagesize(block));
1763 }
1764
1765 return largest;
1766}
1767
8490fc78
LC
1768static int memory_try_enable_merging(void *addr, size_t len)
1769{
75cc7f01 1770 if (!machine_mem_merge(current_machine)) {
8490fc78
LC
1771 /* disabled by the user */
1772 return 0;
1773 }
1774
1775 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1776}
1777
62be4e3a
MT
1778/* Only legal before guest might have detected the memory size: e.g. on
1779 * incoming migration, or right after reset.
1780 *
1781 * As memory core doesn't know how is memory accessed, it is up to
1782 * resize callback to update device state and/or add assertions to detect
1783 * misuse, if necessary.
1784 */
fa53a0e5 1785int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
62be4e3a 1786{
62be4e3a
MT
1787 assert(block);
1788
4ed023ce 1789 newsize = HOST_PAGE_ALIGN(newsize);
129ddaf3 1790
62be4e3a
MT
1791 if (block->used_length == newsize) {
1792 return 0;
1793 }
1794
1795 if (!(block->flags & RAM_RESIZEABLE)) {
1796 error_setg_errno(errp, EINVAL,
1797 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1798 " in != 0x" RAM_ADDR_FMT, block->idstr,
1799 newsize, block->used_length);
1800 return -EINVAL;
1801 }
1802
1803 if (block->max_length < newsize) {
1804 error_setg_errno(errp, EINVAL,
1805 "Length too large: %s: 0x" RAM_ADDR_FMT
1806 " > 0x" RAM_ADDR_FMT, block->idstr,
1807 newsize, block->max_length);
1808 return -EINVAL;
1809 }
1810
1811 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1812 block->used_length = newsize;
58d2707e
PB
1813 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1814 DIRTY_CLIENTS_ALL);
62be4e3a
MT
1815 memory_region_set_size(block->mr, newsize);
1816 if (block->resized) {
1817 block->resized(block->idstr, newsize, block->host);
1818 }
1819 return 0;
1820}
1821
5b82b703
SH
1822/* Called with ram_list.mutex held */
1823static void dirty_memory_extend(ram_addr_t old_ram_size,
1824 ram_addr_t new_ram_size)
1825{
1826 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1827 DIRTY_MEMORY_BLOCK_SIZE);
1828 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1829 DIRTY_MEMORY_BLOCK_SIZE);
1830 int i;
1831
1832 /* Only need to extend if block count increased */
1833 if (new_num_blocks <= old_num_blocks) {
1834 return;
1835 }
1836
1837 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1838 DirtyMemoryBlocks *old_blocks;
1839 DirtyMemoryBlocks *new_blocks;
1840 int j;
1841
1842 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
1843 new_blocks = g_malloc(sizeof(*new_blocks) +
1844 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1845
1846 if (old_num_blocks) {
1847 memcpy(new_blocks->blocks, old_blocks->blocks,
1848 old_num_blocks * sizeof(old_blocks->blocks[0]));
1849 }
1850
1851 for (j = old_num_blocks; j < new_num_blocks; j++) {
1852 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1853 }
1854
1855 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1856
1857 if (old_blocks) {
1858 g_free_rcu(old_blocks, rcu);
1859 }
1860 }
1861}
1862
528f46af 1863static void ram_block_add(RAMBlock *new_block, Error **errp)
c5705a77 1864{
e1c57ab8 1865 RAMBlock *block;
0d53d9fe 1866 RAMBlock *last_block = NULL;
2152f5ca 1867 ram_addr_t old_ram_size, new_ram_size;
37aa7a0e 1868 Error *err = NULL;
2152f5ca 1869
b8c48993 1870 old_ram_size = last_ram_page();
c5705a77 1871
b2a8658e 1872 qemu_mutex_lock_ramlist();
9b8424d5 1873 new_block->offset = find_ram_offset(new_block->max_length);
e1c57ab8
PB
1874
1875 if (!new_block->host) {
1876 if (xen_enabled()) {
9b8424d5 1877 xen_ram_alloc(new_block->offset, new_block->max_length,
37aa7a0e
MA
1878 new_block->mr, &err);
1879 if (err) {
1880 error_propagate(errp, err);
1881 qemu_mutex_unlock_ramlist();
39c350ee 1882 return;
37aa7a0e 1883 }
e1c57ab8 1884 } else {
9b8424d5 1885 new_block->host = phys_mem_alloc(new_block->max_length,
a2b257d6 1886 &new_block->mr->align);
39228250 1887 if (!new_block->host) {
ef701d7b
HT
1888 error_setg_errno(errp, errno,
1889 "cannot set up guest memory '%s'",
1890 memory_region_name(new_block->mr));
1891 qemu_mutex_unlock_ramlist();
39c350ee 1892 return;
39228250 1893 }
9b8424d5 1894 memory_try_enable_merging(new_block->host, new_block->max_length);
6977dfe6 1895 }
c902760f 1896 }
94a6b54f 1897
dd631697
LZ
1898 new_ram_size = MAX(old_ram_size,
1899 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1900 if (new_ram_size > old_ram_size) {
5b82b703 1901 dirty_memory_extend(old_ram_size, new_ram_size);
dd631697 1902 }
0d53d9fe
MD
1903 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1904 * QLIST (which has an RCU-friendly variant) does not have insertion at
1905 * tail, so save the last element in last_block.
1906 */
99e15582 1907 RAMBLOCK_FOREACH(block) {
0d53d9fe 1908 last_block = block;
9b8424d5 1909 if (block->max_length < new_block->max_length) {
abb26d63
PB
1910 break;
1911 }
1912 }
1913 if (block) {
0dc3f44a 1914 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
0d53d9fe 1915 } else if (last_block) {
0dc3f44a 1916 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
0d53d9fe 1917 } else { /* list is empty */
0dc3f44a 1918 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
abb26d63 1919 }
0d6d3c87 1920 ram_list.mru_block = NULL;
94a6b54f 1921
0dc3f44a
MD
1922 /* Write list before version */
1923 smp_wmb();
f798b07f 1924 ram_list.version++;
b2a8658e 1925 qemu_mutex_unlock_ramlist();
f798b07f 1926
9b8424d5 1927 cpu_physical_memory_set_dirty_range(new_block->offset,
58d2707e
PB
1928 new_block->used_length,
1929 DIRTY_CLIENTS_ALL);
94a6b54f 1930
a904c911
PB
1931 if (new_block->host) {
1932 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1933 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
c2cd627d 1934 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
a904c911 1935 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
0987d735 1936 ram_block_notify_add(new_block->host, new_block->max_length);
e1c57ab8 1937 }
94a6b54f 1938}
e9a1ab19 1939
0b183fc8 1940#ifdef __linux__
38b3362d
MAL
1941RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
1942 bool share, int fd,
1943 Error **errp)
e1c57ab8
PB
1944{
1945 RAMBlock *new_block;
ef701d7b 1946 Error *local_err = NULL;
8d37b030 1947 int64_t file_size;
e1c57ab8
PB
1948
1949 if (xen_enabled()) {
7f56e740 1950 error_setg(errp, "-mem-path not supported with Xen");
528f46af 1951 return NULL;
e1c57ab8
PB
1952 }
1953
e45e7ae2
MAL
1954 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1955 error_setg(errp,
1956 "host lacks kvm mmu notifiers, -mem-path unsupported");
1957 return NULL;
1958 }
1959
e1c57ab8
PB
1960 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1961 /*
1962 * file_ram_alloc() needs to allocate just like
1963 * phys_mem_alloc, but we haven't bothered to provide
1964 * a hook there.
1965 */
7f56e740
PB
1966 error_setg(errp,
1967 "-mem-path not supported with this accelerator");
528f46af 1968 return NULL;
e1c57ab8
PB
1969 }
1970
4ed023ce 1971 size = HOST_PAGE_ALIGN(size);
8d37b030
MAL
1972 file_size = get_file_size(fd);
1973 if (file_size > 0 && file_size < size) {
1974 error_setg(errp, "backing store %s size 0x%" PRIx64
1975 " does not match 'size' option 0x" RAM_ADDR_FMT,
1976 mem_path, file_size, size);
8d37b030
MAL
1977 return NULL;
1978 }
1979
e1c57ab8
PB
1980 new_block = g_malloc0(sizeof(*new_block));
1981 new_block->mr = mr;
9b8424d5
MT
1982 new_block->used_length = size;
1983 new_block->max_length = size;
dbcb8981 1984 new_block->flags = share ? RAM_SHARED : 0;
8d37b030 1985 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
7f56e740
PB
1986 if (!new_block->host) {
1987 g_free(new_block);
528f46af 1988 return NULL;
7f56e740
PB
1989 }
1990
528f46af 1991 ram_block_add(new_block, &local_err);
ef701d7b
HT
1992 if (local_err) {
1993 g_free(new_block);
1994 error_propagate(errp, local_err);
528f46af 1995 return NULL;
ef701d7b 1996 }
528f46af 1997 return new_block;
38b3362d
MAL
1998
1999}
2000
2001
2002RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2003 bool share, const char *mem_path,
2004 Error **errp)
2005{
2006 int fd;
2007 bool created;
2008 RAMBlock *block;
2009
2010 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2011 if (fd < 0) {
2012 return NULL;
2013 }
2014
2015 block = qemu_ram_alloc_from_fd(size, mr, share, fd, errp);
2016 if (!block) {
2017 if (created) {
2018 unlink(mem_path);
2019 }
2020 close(fd);
2021 return NULL;
2022 }
2023
2024 return block;
e1c57ab8 2025}
0b183fc8 2026#endif
e1c57ab8 2027
62be4e3a 2028static
528f46af
FZ
2029RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2030 void (*resized)(const char*,
2031 uint64_t length,
2032 void *host),
2033 void *host, bool resizeable,
2034 MemoryRegion *mr, Error **errp)
e1c57ab8
PB
2035{
2036 RAMBlock *new_block;
ef701d7b 2037 Error *local_err = NULL;
e1c57ab8 2038
4ed023ce
DDAG
2039 size = HOST_PAGE_ALIGN(size);
2040 max_size = HOST_PAGE_ALIGN(max_size);
e1c57ab8
PB
2041 new_block = g_malloc0(sizeof(*new_block));
2042 new_block->mr = mr;
62be4e3a 2043 new_block->resized = resized;
9b8424d5
MT
2044 new_block->used_length = size;
2045 new_block->max_length = max_size;
62be4e3a 2046 assert(max_size >= size);
e1c57ab8 2047 new_block->fd = -1;
863e9621 2048 new_block->page_size = getpagesize();
e1c57ab8
PB
2049 new_block->host = host;
2050 if (host) {
7bd4f430 2051 new_block->flags |= RAM_PREALLOC;
e1c57ab8 2052 }
62be4e3a
MT
2053 if (resizeable) {
2054 new_block->flags |= RAM_RESIZEABLE;
2055 }
528f46af 2056 ram_block_add(new_block, &local_err);
ef701d7b
HT
2057 if (local_err) {
2058 g_free(new_block);
2059 error_propagate(errp, local_err);
528f46af 2060 return NULL;
ef701d7b 2061 }
528f46af 2062 return new_block;
e1c57ab8
PB
2063}
2064
528f46af 2065RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
62be4e3a
MT
2066 MemoryRegion *mr, Error **errp)
2067{
2068 return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp);
2069}
2070
528f46af 2071RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp)
6977dfe6 2072{
62be4e3a
MT
2073 return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp);
2074}
2075
528f46af 2076RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
62be4e3a
MT
2077 void (*resized)(const char*,
2078 uint64_t length,
2079 void *host),
2080 MemoryRegion *mr, Error **errp)
2081{
2082 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp);
6977dfe6
YT
2083}
2084
43771539
PB
2085static void reclaim_ramblock(RAMBlock *block)
2086{
2087 if (block->flags & RAM_PREALLOC) {
2088 ;
2089 } else if (xen_enabled()) {
2090 xen_invalidate_map_cache_entry(block->host);
2091#ifndef _WIN32
2092 } else if (block->fd >= 0) {
2f3a2bb1 2093 qemu_ram_munmap(block->host, block->max_length);
43771539
PB
2094 close(block->fd);
2095#endif
2096 } else {
2097 qemu_anon_ram_free(block->host, block->max_length);
2098 }
2099 g_free(block);
2100}
2101
f1060c55 2102void qemu_ram_free(RAMBlock *block)
e9a1ab19 2103{
85bc2a15
MAL
2104 if (!block) {
2105 return;
2106 }
2107
0987d735
PB
2108 if (block->host) {
2109 ram_block_notify_remove(block->host, block->max_length);
2110 }
2111
b2a8658e 2112 qemu_mutex_lock_ramlist();
f1060c55
FZ
2113 QLIST_REMOVE_RCU(block, next);
2114 ram_list.mru_block = NULL;
2115 /* Write list before version */
2116 smp_wmb();
2117 ram_list.version++;
2118 call_rcu(block, reclaim_ramblock, rcu);
b2a8658e 2119 qemu_mutex_unlock_ramlist();
e9a1ab19
FB
2120}
2121
cd19cfa2
HY
2122#ifndef _WIN32
2123void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2124{
2125 RAMBlock *block;
2126 ram_addr_t offset;
2127 int flags;
2128 void *area, *vaddr;
2129
99e15582 2130 RAMBLOCK_FOREACH(block) {
cd19cfa2 2131 offset = addr - block->offset;
9b8424d5 2132 if (offset < block->max_length) {
1240be24 2133 vaddr = ramblock_ptr(block, offset);
7bd4f430 2134 if (block->flags & RAM_PREALLOC) {
cd19cfa2 2135 ;
dfeaf2ab
MA
2136 } else if (xen_enabled()) {
2137 abort();
cd19cfa2
HY
2138 } else {
2139 flags = MAP_FIXED;
3435f395 2140 if (block->fd >= 0) {
dbcb8981
PB
2141 flags |= (block->flags & RAM_SHARED ?
2142 MAP_SHARED : MAP_PRIVATE);
3435f395
MA
2143 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2144 flags, block->fd, offset);
cd19cfa2 2145 } else {
2eb9fbaa
MA
2146 /*
2147 * Remap needs to match alloc. Accelerators that
2148 * set phys_mem_alloc never remap. If they did,
2149 * we'd need a remap hook here.
2150 */
2151 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2152
cd19cfa2
HY
2153 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2154 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2155 flags, -1, 0);
cd19cfa2
HY
2156 }
2157 if (area != vaddr) {
f15fbc4b
AP
2158 fprintf(stderr, "Could not remap addr: "
2159 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
cd19cfa2
HY
2160 length, addr);
2161 exit(1);
2162 }
8490fc78 2163 memory_try_enable_merging(vaddr, length);
ddb97f1d 2164 qemu_ram_setup_dump(vaddr, length);
cd19cfa2 2165 }
cd19cfa2
HY
2166 }
2167 }
2168}
2169#endif /* !_WIN32 */
2170
1b5ec234 2171/* Return a host pointer to ram allocated with qemu_ram_alloc.
ae3a7047
MD
2172 * This should not be used for general purpose DMA. Use address_space_map
2173 * or address_space_rw instead. For local memory (e.g. video ram) that the
2174 * device owns, use memory_region_get_ram_ptr.
0dc3f44a 2175 *
49b24afc 2176 * Called within RCU critical section.
1b5ec234 2177 */
0878d0e1 2178void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
1b5ec234 2179{
3655cb9c
GA
2180 RAMBlock *block = ram_block;
2181
2182 if (block == NULL) {
2183 block = qemu_get_ram_block(addr);
0878d0e1 2184 addr -= block->offset;
3655cb9c 2185 }
ae3a7047
MD
2186
2187 if (xen_enabled() && block->host == NULL) {
0d6d3c87
PB
2188 /* We need to check if the requested address is in the RAM
2189 * because we don't want to map the entire memory in QEMU.
2190 * In that case just map until the end of the page.
2191 */
2192 if (block->offset == 0) {
1ff7c598 2193 return xen_map_cache(addr, 0, 0, false);
0d6d3c87 2194 }
ae3a7047 2195
1ff7c598 2196 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
0d6d3c87 2197 }
0878d0e1 2198 return ramblock_ptr(block, addr);
dc828ca1
PB
2199}
2200
0878d0e1 2201/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
ae3a7047 2202 * but takes a size argument.
0dc3f44a 2203 *
e81bcda5 2204 * Called within RCU critical section.
ae3a7047 2205 */
3655cb9c 2206static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
f5aa69bd 2207 hwaddr *size, bool lock)
38bee5dc 2208{
3655cb9c 2209 RAMBlock *block = ram_block;
8ab934f9
SS
2210 if (*size == 0) {
2211 return NULL;
2212 }
e81bcda5 2213
3655cb9c
GA
2214 if (block == NULL) {
2215 block = qemu_get_ram_block(addr);
0878d0e1 2216 addr -= block->offset;
3655cb9c 2217 }
0878d0e1 2218 *size = MIN(*size, block->max_length - addr);
e81bcda5
PB
2219
2220 if (xen_enabled() && block->host == NULL) {
2221 /* We need to check if the requested address is in the RAM
2222 * because we don't want to map the entire memory in QEMU.
2223 * In that case just map the requested area.
2224 */
2225 if (block->offset == 0) {
f5aa69bd 2226 return xen_map_cache(addr, *size, lock, lock);
38bee5dc
SS
2227 }
2228
f5aa69bd 2229 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
38bee5dc 2230 }
e81bcda5 2231
0878d0e1 2232 return ramblock_ptr(block, addr);
38bee5dc
SS
2233}
2234
422148d3
DDAG
2235/*
2236 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2237 * in that RAMBlock.
2238 *
2239 * ptr: Host pointer to look up
2240 * round_offset: If true round the result offset down to a page boundary
2241 * *ram_addr: set to result ram_addr
2242 * *offset: set to result offset within the RAMBlock
2243 *
2244 * Returns: RAMBlock (or NULL if not found)
ae3a7047
MD
2245 *
2246 * By the time this function returns, the returned pointer is not protected
2247 * by RCU anymore. If the caller is not within an RCU critical section and
2248 * does not hold the iothread lock, it must have other means of protecting the
2249 * pointer, such as a reference to the region that includes the incoming
2250 * ram_addr_t.
2251 */
422148d3 2252RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
422148d3 2253 ram_addr_t *offset)
5579c7f3 2254{
94a6b54f
PB
2255 RAMBlock *block;
2256 uint8_t *host = ptr;
2257
868bb33f 2258 if (xen_enabled()) {
f615f396 2259 ram_addr_t ram_addr;
0dc3f44a 2260 rcu_read_lock();
f615f396
PB
2261 ram_addr = xen_ram_addr_from_mapcache(ptr);
2262 block = qemu_get_ram_block(ram_addr);
422148d3 2263 if (block) {
d6b6aec4 2264 *offset = ram_addr - block->offset;
422148d3 2265 }
0dc3f44a 2266 rcu_read_unlock();
422148d3 2267 return block;
712c2b41
SS
2268 }
2269
0dc3f44a
MD
2270 rcu_read_lock();
2271 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 2272 if (block && block->host && host - block->host < block->max_length) {
23887b79
PB
2273 goto found;
2274 }
2275
99e15582 2276 RAMBLOCK_FOREACH(block) {
432d268c
JN
2277 /* This case append when the block is not mapped. */
2278 if (block->host == NULL) {
2279 continue;
2280 }
9b8424d5 2281 if (host - block->host < block->max_length) {
23887b79 2282 goto found;
f471a17e 2283 }
94a6b54f 2284 }
432d268c 2285
0dc3f44a 2286 rcu_read_unlock();
1b5ec234 2287 return NULL;
23887b79
PB
2288
2289found:
422148d3
DDAG
2290 *offset = (host - block->host);
2291 if (round_offset) {
2292 *offset &= TARGET_PAGE_MASK;
2293 }
0dc3f44a 2294 rcu_read_unlock();
422148d3
DDAG
2295 return block;
2296}
2297
e3dd7493
DDAG
2298/*
2299 * Finds the named RAMBlock
2300 *
2301 * name: The name of RAMBlock to find
2302 *
2303 * Returns: RAMBlock (or NULL if not found)
2304 */
2305RAMBlock *qemu_ram_block_by_name(const char *name)
2306{
2307 RAMBlock *block;
2308
99e15582 2309 RAMBLOCK_FOREACH(block) {
e3dd7493
DDAG
2310 if (!strcmp(name, block->idstr)) {
2311 return block;
2312 }
2313 }
2314
2315 return NULL;
2316}
2317
422148d3
DDAG
2318/* Some of the softmmu routines need to translate from a host pointer
2319 (typically a TLB entry) back to a ram offset. */
07bdaa41 2320ram_addr_t qemu_ram_addr_from_host(void *ptr)
422148d3
DDAG
2321{
2322 RAMBlock *block;
f615f396 2323 ram_addr_t offset;
422148d3 2324
f615f396 2325 block = qemu_ram_block_from_host(ptr, false, &offset);
422148d3 2326 if (!block) {
07bdaa41 2327 return RAM_ADDR_INVALID;
422148d3
DDAG
2328 }
2329
07bdaa41 2330 return block->offset + offset;
e890261f 2331}
f471a17e 2332
49b24afc 2333/* Called within RCU critical section. */
a8170e5e 2334static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
0e0df1e2 2335 uint64_t val, unsigned size)
9fa3e853 2336{
ba051fb5
AB
2337 bool locked = false;
2338
5aa1ef71 2339 assert(tcg_enabled());
52159192 2340 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
ba051fb5
AB
2341 locked = true;
2342 tb_lock();
0e0df1e2 2343 tb_invalidate_phys_page_fast(ram_addr, size);
3a7d929e 2344 }
0e0df1e2
AK
2345 switch (size) {
2346 case 1:
0878d0e1 2347 stb_p(qemu_map_ram_ptr(NULL, ram_addr), val);
0e0df1e2
AK
2348 break;
2349 case 2:
0878d0e1 2350 stw_p(qemu_map_ram_ptr(NULL, ram_addr), val);
0e0df1e2
AK
2351 break;
2352 case 4:
0878d0e1 2353 stl_p(qemu_map_ram_ptr(NULL, ram_addr), val);
0e0df1e2
AK
2354 break;
2355 default:
2356 abort();
3a7d929e 2357 }
ba051fb5
AB
2358
2359 if (locked) {
2360 tb_unlock();
2361 }
2362
58d2707e
PB
2363 /* Set both VGA and migration bits for simplicity and to remove
2364 * the notdirty callback faster.
2365 */
2366 cpu_physical_memory_set_dirty_range(ram_addr, size,
2367 DIRTY_CLIENTS_NOCODE);
f23db169
FB
2368 /* we remove the notdirty callback only if the code has been
2369 flushed */
a2cd8c85 2370 if (!cpu_physical_memory_is_clean(ram_addr)) {
bcae01e4 2371 tlb_set_dirty(current_cpu, current_cpu->mem_io_vaddr);
4917cf44 2372 }
9fa3e853
FB
2373}
2374
b018ddf6
PB
2375static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2376 unsigned size, bool is_write)
2377{
2378 return is_write;
2379}
2380
0e0df1e2 2381static const MemoryRegionOps notdirty_mem_ops = {
0e0df1e2 2382 .write = notdirty_mem_write,
b018ddf6 2383 .valid.accepts = notdirty_mem_accepts,
0e0df1e2 2384 .endianness = DEVICE_NATIVE_ENDIAN,
1ccde1cb
FB
2385};
2386
0f459d16 2387/* Generate a debug exception if a watchpoint has been hit. */
66b9b43c 2388static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
0f459d16 2389{
93afeade 2390 CPUState *cpu = current_cpu;
568496c0 2391 CPUClass *cc = CPU_GET_CLASS(cpu);
93afeade 2392 CPUArchState *env = cpu->env_ptr;
06d55cc1 2393 target_ulong pc, cs_base;
0f459d16 2394 target_ulong vaddr;
a1d1bb31 2395 CPUWatchpoint *wp;
89fee74a 2396 uint32_t cpu_flags;
0f459d16 2397
5aa1ef71 2398 assert(tcg_enabled());
ff4700b0 2399 if (cpu->watchpoint_hit) {
06d55cc1
AL
2400 /* We re-entered the check after replacing the TB. Now raise
2401 * the debug interrupt so that is will trigger after the
2402 * current instruction. */
93afeade 2403 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
06d55cc1
AL
2404 return;
2405 }
93afeade 2406 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
40612000 2407 vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
ff4700b0 2408 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d
PM
2409 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2410 && (wp->flags & flags)) {
08225676
PM
2411 if (flags == BP_MEM_READ) {
2412 wp->flags |= BP_WATCHPOINT_HIT_READ;
2413 } else {
2414 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2415 }
2416 wp->hitaddr = vaddr;
66b9b43c 2417 wp->hitattrs = attrs;
ff4700b0 2418 if (!cpu->watchpoint_hit) {
568496c0
SF
2419 if (wp->flags & BP_CPU &&
2420 !cc->debug_check_watchpoint(cpu, wp)) {
2421 wp->flags &= ~BP_WATCHPOINT_HIT;
2422 continue;
2423 }
ff4700b0 2424 cpu->watchpoint_hit = wp;
a5e99826 2425
8d04fb55
JK
2426 /* Both tb_lock and iothread_mutex will be reset when
2427 * cpu_loop_exit or cpu_loop_exit_noexc longjmp
2428 * back into the cpu_exec main loop.
a5e99826
FK
2429 */
2430 tb_lock();
239c51a5 2431 tb_check_watchpoint(cpu);
6e140f28 2432 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
27103424 2433 cpu->exception_index = EXCP_DEBUG;
5638d180 2434 cpu_loop_exit(cpu);
6e140f28
AL
2435 } else {
2436 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
648f034c 2437 tb_gen_code(cpu, pc, cs_base, cpu_flags, 1);
6886b980 2438 cpu_loop_exit_noexc(cpu);
6e140f28 2439 }
06d55cc1 2440 }
6e140f28
AL
2441 } else {
2442 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2443 }
2444 }
2445}
2446
6658ffb8
PB
2447/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2448 so these check for a hit then pass through to the normal out-of-line
2449 phys routines. */
66b9b43c
PM
2450static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2451 unsigned size, MemTxAttrs attrs)
6658ffb8 2452{
66b9b43c
PM
2453 MemTxResult res;
2454 uint64_t data;
79ed0416
PM
2455 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2456 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2457
2458 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
1ec9b909 2459 switch (size) {
66b9b43c 2460 case 1:
79ed0416 2461 data = address_space_ldub(as, addr, attrs, &res);
66b9b43c
PM
2462 break;
2463 case 2:
79ed0416 2464 data = address_space_lduw(as, addr, attrs, &res);
66b9b43c
PM
2465 break;
2466 case 4:
79ed0416 2467 data = address_space_ldl(as, addr, attrs, &res);
66b9b43c 2468 break;
1ec9b909
AK
2469 default: abort();
2470 }
66b9b43c
PM
2471 *pdata = data;
2472 return res;
6658ffb8
PB
2473}
2474
66b9b43c
PM
2475static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2476 uint64_t val, unsigned size,
2477 MemTxAttrs attrs)
6658ffb8 2478{
66b9b43c 2479 MemTxResult res;
79ed0416
PM
2480 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2481 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2482
2483 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
1ec9b909 2484 switch (size) {
67364150 2485 case 1:
79ed0416 2486 address_space_stb(as, addr, val, attrs, &res);
67364150
MF
2487 break;
2488 case 2:
79ed0416 2489 address_space_stw(as, addr, val, attrs, &res);
67364150
MF
2490 break;
2491 case 4:
79ed0416 2492 address_space_stl(as, addr, val, attrs, &res);
67364150 2493 break;
1ec9b909
AK
2494 default: abort();
2495 }
66b9b43c 2496 return res;
6658ffb8
PB
2497}
2498
1ec9b909 2499static const MemoryRegionOps watch_mem_ops = {
66b9b43c
PM
2500 .read_with_attrs = watch_mem_read,
2501 .write_with_attrs = watch_mem_write,
1ec9b909 2502 .endianness = DEVICE_NATIVE_ENDIAN,
6658ffb8 2503};
6658ffb8 2504
f25a49e0
PM
2505static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2506 unsigned len, MemTxAttrs attrs)
db7b5426 2507{
acc9d80b 2508 subpage_t *subpage = opaque;
ff6cff75 2509 uint8_t buf[8];
5c9eb028 2510 MemTxResult res;
791af8c8 2511
db7b5426 2512#if defined(DEBUG_SUBPAGE)
016e9d62 2513 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
acc9d80b 2514 subpage, len, addr);
db7b5426 2515#endif
5c9eb028
PM
2516 res = address_space_read(subpage->as, addr + subpage->base,
2517 attrs, buf, len);
2518 if (res) {
2519 return res;
f25a49e0 2520 }
acc9d80b
JK
2521 switch (len) {
2522 case 1:
f25a49e0
PM
2523 *data = ldub_p(buf);
2524 return MEMTX_OK;
acc9d80b 2525 case 2:
f25a49e0
PM
2526 *data = lduw_p(buf);
2527 return MEMTX_OK;
acc9d80b 2528 case 4:
f25a49e0
PM
2529 *data = ldl_p(buf);
2530 return MEMTX_OK;
ff6cff75 2531 case 8:
f25a49e0
PM
2532 *data = ldq_p(buf);
2533 return MEMTX_OK;
acc9d80b
JK
2534 default:
2535 abort();
2536 }
db7b5426
BS
2537}
2538
f25a49e0
PM
2539static MemTxResult subpage_write(void *opaque, hwaddr addr,
2540 uint64_t value, unsigned len, MemTxAttrs attrs)
db7b5426 2541{
acc9d80b 2542 subpage_t *subpage = opaque;
ff6cff75 2543 uint8_t buf[8];
acc9d80b 2544
db7b5426 2545#if defined(DEBUG_SUBPAGE)
016e9d62 2546 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
acc9d80b
JK
2547 " value %"PRIx64"\n",
2548 __func__, subpage, len, addr, value);
db7b5426 2549#endif
acc9d80b
JK
2550 switch (len) {
2551 case 1:
2552 stb_p(buf, value);
2553 break;
2554 case 2:
2555 stw_p(buf, value);
2556 break;
2557 case 4:
2558 stl_p(buf, value);
2559 break;
ff6cff75
PB
2560 case 8:
2561 stq_p(buf, value);
2562 break;
acc9d80b
JK
2563 default:
2564 abort();
2565 }
5c9eb028
PM
2566 return address_space_write(subpage->as, addr + subpage->base,
2567 attrs, buf, len);
db7b5426
BS
2568}
2569
c353e4cc 2570static bool subpage_accepts(void *opaque, hwaddr addr,
016e9d62 2571 unsigned len, bool is_write)
c353e4cc 2572{
acc9d80b 2573 subpage_t *subpage = opaque;
c353e4cc 2574#if defined(DEBUG_SUBPAGE)
016e9d62 2575 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
acc9d80b 2576 __func__, subpage, is_write ? 'w' : 'r', len, addr);
c353e4cc
PB
2577#endif
2578
acc9d80b 2579 return address_space_access_valid(subpage->as, addr + subpage->base,
016e9d62 2580 len, is_write);
c353e4cc
PB
2581}
2582
70c68e44 2583static const MemoryRegionOps subpage_ops = {
f25a49e0
PM
2584 .read_with_attrs = subpage_read,
2585 .write_with_attrs = subpage_write,
ff6cff75
PB
2586 .impl.min_access_size = 1,
2587 .impl.max_access_size = 8,
2588 .valid.min_access_size = 1,
2589 .valid.max_access_size = 8,
c353e4cc 2590 .valid.accepts = subpage_accepts,
70c68e44 2591 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
2592};
2593
c227f099 2594static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 2595 uint16_t section)
db7b5426
BS
2596{
2597 int idx, eidx;
2598
2599 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2600 return -1;
2601 idx = SUBPAGE_IDX(start);
2602 eidx = SUBPAGE_IDX(end);
2603#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2604 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2605 __func__, mmio, start, end, idx, eidx, section);
db7b5426 2606#endif
db7b5426 2607 for (; idx <= eidx; idx++) {
5312bd8b 2608 mmio->sub_section[idx] = section;
db7b5426
BS
2609 }
2610
2611 return 0;
2612}
2613
acc9d80b 2614static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
db7b5426 2615{
c227f099 2616 subpage_t *mmio;
db7b5426 2617
2615fabd 2618 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
acc9d80b 2619 mmio->as = as;
1eec614b 2620 mmio->base = base;
2c9b15ca 2621 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
b4fefef9 2622 NULL, TARGET_PAGE_SIZE);
b3b00c78 2623 mmio->iomem.subpage = true;
db7b5426 2624#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2625 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2626 mmio, base, TARGET_PAGE_SIZE);
db7b5426 2627#endif
b41aac4f 2628 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
db7b5426
BS
2629
2630 return mmio;
2631}
2632
a656e22f
PC
2633static uint16_t dummy_section(PhysPageMap *map, AddressSpace *as,
2634 MemoryRegion *mr)
5312bd8b 2635{
a656e22f 2636 assert(as);
5312bd8b 2637 MemoryRegionSection section = {
a656e22f 2638 .address_space = as,
5312bd8b
AK
2639 .mr = mr,
2640 .offset_within_address_space = 0,
2641 .offset_within_region = 0,
052e87b0 2642 .size = int128_2_64(),
5312bd8b
AK
2643 };
2644
53cb28cb 2645 return phys_section_add(map, &section);
5312bd8b
AK
2646}
2647
a54c87b6 2648MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs)
aa102231 2649{
a54c87b6
PM
2650 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2651 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
32857f4d 2652 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
79e2b9ae 2653 MemoryRegionSection *sections = d->map.sections;
9d82b5a7
PB
2654
2655 return sections[index & ~TARGET_PAGE_MASK].mr;
aa102231
AK
2656}
2657
e9179ce1
AK
2658static void io_mem_init(void)
2659{
1f6245e5 2660 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX);
2c9b15ca 2661 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1f6245e5 2662 NULL, UINT64_MAX);
8d04fb55
JK
2663
2664 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
2665 * which can be called without the iothread mutex.
2666 */
2c9b15ca 2667 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
1f6245e5 2668 NULL, UINT64_MAX);
8d04fb55
JK
2669 memory_region_clear_global_locking(&io_mem_notdirty);
2670
2c9b15ca 2671 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1f6245e5 2672 NULL, UINT64_MAX);
e9179ce1
AK
2673}
2674
9a62e24f 2675void mem_begin(AddressSpace *as)
00752703 2676{
53cb28cb
MA
2677 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2678 uint16_t n;
2679
a656e22f 2680 n = dummy_section(&d->map, as, &io_mem_unassigned);
53cb28cb 2681 assert(n == PHYS_SECTION_UNASSIGNED);
a656e22f 2682 n = dummy_section(&d->map, as, &io_mem_notdirty);
53cb28cb 2683 assert(n == PHYS_SECTION_NOTDIRTY);
a656e22f 2684 n = dummy_section(&d->map, as, &io_mem_rom);
53cb28cb 2685 assert(n == PHYS_SECTION_ROM);
a656e22f 2686 n = dummy_section(&d->map, as, &io_mem_watch);
53cb28cb 2687 assert(n == PHYS_SECTION_WATCH);
00752703 2688
9736e55b 2689 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
00752703
PB
2690 d->as = as;
2691 as->next_dispatch = d;
2692}
2693
79e2b9ae
PB
2694static void address_space_dispatch_free(AddressSpaceDispatch *d)
2695{
2696 phys_sections_free(&d->map);
2697 g_free(d);
2698}
2699
9a62e24f 2700void mem_commit(AddressSpace *as)
ac1970fb 2701{
0475d94f
PB
2702 AddressSpaceDispatch *cur = as->dispatch;
2703 AddressSpaceDispatch *next = as->next_dispatch;
2704
53cb28cb 2705 phys_page_compact_all(next, next->map.nodes_nb);
b35ba30f 2706
79e2b9ae 2707 atomic_rcu_set(&as->dispatch, next);
53cb28cb 2708 if (cur) {
79e2b9ae 2709 call_rcu(cur, address_space_dispatch_free, rcu);
53cb28cb 2710 }
9affd6fc
PB
2711}
2712
1d71148e 2713static void tcg_commit(MemoryListener *listener)
50c1e149 2714{
32857f4d
PM
2715 CPUAddressSpace *cpuas;
2716 AddressSpaceDispatch *d;
117712c3
AK
2717
2718 /* since each CPU stores ram addresses in its TLB cache, we must
2719 reset the modified entries */
32857f4d
PM
2720 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2721 cpu_reloading_memory_map();
2722 /* The CPU and TLB are protected by the iothread lock.
2723 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2724 * may have split the RCU critical section.
2725 */
2726 d = atomic_rcu_read(&cpuas->as->dispatch);
f35e44e7 2727 atomic_rcu_set(&cpuas->memory_dispatch, d);
d10eb08f 2728 tlb_flush(cpuas->cpu);
50c1e149
AK
2729}
2730
83f3c251
AK
2731void address_space_destroy_dispatch(AddressSpace *as)
2732{
2733 AddressSpaceDispatch *d = as->dispatch;
2734
79e2b9ae
PB
2735 atomic_rcu_set(&as->dispatch, NULL);
2736 if (d) {
2737 call_rcu(d, address_space_dispatch_free, rcu);
2738 }
83f3c251
AK
2739}
2740
62152b8a
AK
2741static void memory_map_init(void)
2742{
7267c094 2743 system_memory = g_malloc(sizeof(*system_memory));
03f49957 2744
57271d63 2745 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
7dca8043 2746 address_space_init(&address_space_memory, system_memory, "memory");
309cb471 2747
7267c094 2748 system_io = g_malloc(sizeof(*system_io));
3bb28b72
JK
2749 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2750 65536);
7dca8043 2751 address_space_init(&address_space_io, system_io, "I/O");
62152b8a
AK
2752}
2753
2754MemoryRegion *get_system_memory(void)
2755{
2756 return system_memory;
2757}
2758
309cb471
AK
2759MemoryRegion *get_system_io(void)
2760{
2761 return system_io;
2762}
2763
e2eef170
PB
2764#endif /* !defined(CONFIG_USER_ONLY) */
2765
13eb76e0
FB
2766/* physical memory access (slow version, mainly for debug) */
2767#if defined(CONFIG_USER_ONLY)
f17ec444 2768int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
a68fe89c 2769 uint8_t *buf, int len, int is_write)
13eb76e0
FB
2770{
2771 int l, flags;
2772 target_ulong page;
53a5960a 2773 void * p;
13eb76e0
FB
2774
2775 while (len > 0) {
2776 page = addr & TARGET_PAGE_MASK;
2777 l = (page + TARGET_PAGE_SIZE) - addr;
2778 if (l > len)
2779 l = len;
2780 flags = page_get_flags(page);
2781 if (!(flags & PAGE_VALID))
a68fe89c 2782 return -1;
13eb76e0
FB
2783 if (is_write) {
2784 if (!(flags & PAGE_WRITE))
a68fe89c 2785 return -1;
579a97f7 2786 /* XXX: this code should not depend on lock_user */
72fb7daa 2787 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 2788 return -1;
72fb7daa
AJ
2789 memcpy(p, buf, l);
2790 unlock_user(p, addr, l);
13eb76e0
FB
2791 } else {
2792 if (!(flags & PAGE_READ))
a68fe89c 2793 return -1;
579a97f7 2794 /* XXX: this code should not depend on lock_user */
72fb7daa 2795 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 2796 return -1;
72fb7daa 2797 memcpy(buf, p, l);
5b257578 2798 unlock_user(p, addr, 0);
13eb76e0
FB
2799 }
2800 len -= l;
2801 buf += l;
2802 addr += l;
2803 }
a68fe89c 2804 return 0;
13eb76e0 2805}
8df1cd07 2806
13eb76e0 2807#else
51d7a9eb 2808
845b6214 2809static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
a8170e5e 2810 hwaddr length)
51d7a9eb 2811{
e87f7778 2812 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
0878d0e1
PB
2813 addr += memory_region_get_ram_addr(mr);
2814
e87f7778
PB
2815 /* No early return if dirty_log_mask is or becomes 0, because
2816 * cpu_physical_memory_set_dirty_range will still call
2817 * xen_modified_memory.
2818 */
2819 if (dirty_log_mask) {
2820 dirty_log_mask =
2821 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2822 }
2823 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
5aa1ef71 2824 assert(tcg_enabled());
ba051fb5 2825 tb_lock();
e87f7778 2826 tb_invalidate_phys_range(addr, addr + length);
ba051fb5 2827 tb_unlock();
e87f7778 2828 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
51d7a9eb 2829 }
e87f7778 2830 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
51d7a9eb
AP
2831}
2832
23326164 2833static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
82f2563f 2834{
e1622f4b 2835 unsigned access_size_max = mr->ops->valid.max_access_size;
23326164
RH
2836
2837 /* Regions are assumed to support 1-4 byte accesses unless
2838 otherwise specified. */
23326164
RH
2839 if (access_size_max == 0) {
2840 access_size_max = 4;
2841 }
2842
2843 /* Bound the maximum access by the alignment of the address. */
2844 if (!mr->ops->impl.unaligned) {
2845 unsigned align_size_max = addr & -addr;
2846 if (align_size_max != 0 && align_size_max < access_size_max) {
2847 access_size_max = align_size_max;
2848 }
82f2563f 2849 }
23326164
RH
2850
2851 /* Don't attempt accesses larger than the maximum. */
2852 if (l > access_size_max) {
2853 l = access_size_max;
82f2563f 2854 }
6554f5c0 2855 l = pow2floor(l);
23326164
RH
2856
2857 return l;
82f2563f
PB
2858}
2859
4840f10e 2860static bool prepare_mmio_access(MemoryRegion *mr)
125b3806 2861{
4840f10e
JK
2862 bool unlocked = !qemu_mutex_iothread_locked();
2863 bool release_lock = false;
2864
2865 if (unlocked && mr->global_locking) {
2866 qemu_mutex_lock_iothread();
2867 unlocked = false;
2868 release_lock = true;
2869 }
125b3806 2870 if (mr->flush_coalesced_mmio) {
4840f10e
JK
2871 if (unlocked) {
2872 qemu_mutex_lock_iothread();
2873 }
125b3806 2874 qemu_flush_coalesced_mmio_buffer();
4840f10e
JK
2875 if (unlocked) {
2876 qemu_mutex_unlock_iothread();
2877 }
125b3806 2878 }
4840f10e
JK
2879
2880 return release_lock;
125b3806
PB
2881}
2882
a203ac70
PB
2883/* Called within RCU critical section. */
2884static MemTxResult address_space_write_continue(AddressSpace *as, hwaddr addr,
2885 MemTxAttrs attrs,
2886 const uint8_t *buf,
2887 int len, hwaddr addr1,
2888 hwaddr l, MemoryRegion *mr)
13eb76e0 2889{
13eb76e0 2890 uint8_t *ptr;
791af8c8 2891 uint64_t val;
3b643495 2892 MemTxResult result = MEMTX_OK;
4840f10e 2893 bool release_lock = false;
3b46e624 2894
a203ac70 2895 for (;;) {
eb7eeb88
PB
2896 if (!memory_access_is_direct(mr, true)) {
2897 release_lock |= prepare_mmio_access(mr);
2898 l = memory_access_size(mr, l, addr1);
2899 /* XXX: could force current_cpu to NULL to avoid
2900 potential bugs */
2901 switch (l) {
2902 case 8:
2903 /* 64 bit write access */
2904 val = ldq_p(buf);
2905 result |= memory_region_dispatch_write(mr, addr1, val, 8,
2906 attrs);
2907 break;
2908 case 4:
2909 /* 32 bit write access */
6da67de6 2910 val = (uint32_t)ldl_p(buf);
eb7eeb88
PB
2911 result |= memory_region_dispatch_write(mr, addr1, val, 4,
2912 attrs);
2913 break;
2914 case 2:
2915 /* 16 bit write access */
2916 val = lduw_p(buf);
2917 result |= memory_region_dispatch_write(mr, addr1, val, 2,
2918 attrs);
2919 break;
2920 case 1:
2921 /* 8 bit write access */
2922 val = ldub_p(buf);
2923 result |= memory_region_dispatch_write(mr, addr1, val, 1,
2924 attrs);
2925 break;
2926 default:
2927 abort();
13eb76e0
FB
2928 }
2929 } else {
eb7eeb88 2930 /* RAM case */
f5aa69bd 2931 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
eb7eeb88
PB
2932 memcpy(ptr, buf, l);
2933 invalidate_and_set_dirty(mr, addr1, l);
13eb76e0 2934 }
4840f10e
JK
2935
2936 if (release_lock) {
2937 qemu_mutex_unlock_iothread();
2938 release_lock = false;
2939 }
2940
13eb76e0
FB
2941 len -= l;
2942 buf += l;
2943 addr += l;
a203ac70
PB
2944
2945 if (!len) {
2946 break;
2947 }
2948
2949 l = len;
2950 mr = address_space_translate(as, addr, &addr1, &l, true);
13eb76e0 2951 }
fd8aaa76 2952
3b643495 2953 return result;
13eb76e0 2954}
8df1cd07 2955
a203ac70
PB
2956MemTxResult address_space_write(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2957 const uint8_t *buf, int len)
ac1970fb 2958{
eb7eeb88 2959 hwaddr l;
eb7eeb88
PB
2960 hwaddr addr1;
2961 MemoryRegion *mr;
2962 MemTxResult result = MEMTX_OK;
eb7eeb88 2963
a203ac70
PB
2964 if (len > 0) {
2965 rcu_read_lock();
eb7eeb88 2966 l = len;
a203ac70
PB
2967 mr = address_space_translate(as, addr, &addr1, &l, true);
2968 result = address_space_write_continue(as, addr, attrs, buf, len,
2969 addr1, l, mr);
2970 rcu_read_unlock();
2971 }
2972
2973 return result;
2974}
2975
2976/* Called within RCU critical section. */
2977MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr,
2978 MemTxAttrs attrs, uint8_t *buf,
2979 int len, hwaddr addr1, hwaddr l,
2980 MemoryRegion *mr)
2981{
2982 uint8_t *ptr;
2983 uint64_t val;
2984 MemTxResult result = MEMTX_OK;
2985 bool release_lock = false;
eb7eeb88 2986
a203ac70 2987 for (;;) {
eb7eeb88
PB
2988 if (!memory_access_is_direct(mr, false)) {
2989 /* I/O case */
2990 release_lock |= prepare_mmio_access(mr);
2991 l = memory_access_size(mr, l, addr1);
2992 switch (l) {
2993 case 8:
2994 /* 64 bit read access */
2995 result |= memory_region_dispatch_read(mr, addr1, &val, 8,
2996 attrs);
2997 stq_p(buf, val);
2998 break;
2999 case 4:
3000 /* 32 bit read access */
3001 result |= memory_region_dispatch_read(mr, addr1, &val, 4,
3002 attrs);
3003 stl_p(buf, val);
3004 break;
3005 case 2:
3006 /* 16 bit read access */
3007 result |= memory_region_dispatch_read(mr, addr1, &val, 2,
3008 attrs);
3009 stw_p(buf, val);
3010 break;
3011 case 1:
3012 /* 8 bit read access */
3013 result |= memory_region_dispatch_read(mr, addr1, &val, 1,
3014 attrs);
3015 stb_p(buf, val);
3016 break;
3017 default:
3018 abort();
3019 }
3020 } else {
3021 /* RAM case */
f5aa69bd 3022 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
eb7eeb88
PB
3023 memcpy(buf, ptr, l);
3024 }
3025
3026 if (release_lock) {
3027 qemu_mutex_unlock_iothread();
3028 release_lock = false;
3029 }
3030
3031 len -= l;
3032 buf += l;
3033 addr += l;
a203ac70
PB
3034
3035 if (!len) {
3036 break;
3037 }
3038
3039 l = len;
3040 mr = address_space_translate(as, addr, &addr1, &l, false);
3041 }
3042
3043 return result;
3044}
3045
3cc8f884
PB
3046MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3047 MemTxAttrs attrs, uint8_t *buf, int len)
a203ac70
PB
3048{
3049 hwaddr l;
3050 hwaddr addr1;
3051 MemoryRegion *mr;
3052 MemTxResult result = MEMTX_OK;
3053
3054 if (len > 0) {
3055 rcu_read_lock();
3056 l = len;
3057 mr = address_space_translate(as, addr, &addr1, &l, false);
3058 result = address_space_read_continue(as, addr, attrs, buf, len,
3059 addr1, l, mr);
3060 rcu_read_unlock();
eb7eeb88 3061 }
eb7eeb88
PB
3062
3063 return result;
ac1970fb
AK
3064}
3065
eb7eeb88
PB
3066MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3067 uint8_t *buf, int len, bool is_write)
3068{
3069 if (is_write) {
3070 return address_space_write(as, addr, attrs, (uint8_t *)buf, len);
3071 } else {
3072 return address_space_read(as, addr, attrs, (uint8_t *)buf, len);
3073 }
3074}
ac1970fb 3075
a8170e5e 3076void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
ac1970fb
AK
3077 int len, int is_write)
3078{
5c9eb028
PM
3079 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3080 buf, len, is_write);
ac1970fb
AK
3081}
3082
582b55a9
AG
3083enum write_rom_type {
3084 WRITE_DATA,
3085 FLUSH_CACHE,
3086};
3087
2a221651 3088static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
582b55a9 3089 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
d0ecd2aa 3090{
149f54b5 3091 hwaddr l;
d0ecd2aa 3092 uint8_t *ptr;
149f54b5 3093 hwaddr addr1;
5c8a00ce 3094 MemoryRegion *mr;
3b46e624 3095
41063e1e 3096 rcu_read_lock();
d0ecd2aa 3097 while (len > 0) {
149f54b5 3098 l = len;
2a221651 3099 mr = address_space_translate(as, addr, &addr1, &l, true);
3b46e624 3100
5c8a00ce
PB
3101 if (!(memory_region_is_ram(mr) ||
3102 memory_region_is_romd(mr))) {
b242e0e0 3103 l = memory_access_size(mr, l, addr1);
d0ecd2aa 3104 } else {
d0ecd2aa 3105 /* ROM/RAM case */
0878d0e1 3106 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
582b55a9
AG
3107 switch (type) {
3108 case WRITE_DATA:
3109 memcpy(ptr, buf, l);
845b6214 3110 invalidate_and_set_dirty(mr, addr1, l);
582b55a9
AG
3111 break;
3112 case FLUSH_CACHE:
3113 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3114 break;
3115 }
d0ecd2aa
FB
3116 }
3117 len -= l;
3118 buf += l;
3119 addr += l;
3120 }
41063e1e 3121 rcu_read_unlock();
d0ecd2aa
FB
3122}
3123
582b55a9 3124/* used for ROM loading : can write in RAM and ROM */
2a221651 3125void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
582b55a9
AG
3126 const uint8_t *buf, int len)
3127{
2a221651 3128 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
582b55a9
AG
3129}
3130
3131void cpu_flush_icache_range(hwaddr start, int len)
3132{
3133 /*
3134 * This function should do the same thing as an icache flush that was
3135 * triggered from within the guest. For TCG we are always cache coherent,
3136 * so there is no need to flush anything. For KVM / Xen we need to flush
3137 * the host's instruction cache at least.
3138 */
3139 if (tcg_enabled()) {
3140 return;
3141 }
3142
2a221651
EI
3143 cpu_physical_memory_write_rom_internal(&address_space_memory,
3144 start, NULL, len, FLUSH_CACHE);
582b55a9
AG
3145}
3146
6d16c2f8 3147typedef struct {
d3e71559 3148 MemoryRegion *mr;
6d16c2f8 3149 void *buffer;
a8170e5e
AK
3150 hwaddr addr;
3151 hwaddr len;
c2cba0ff 3152 bool in_use;
6d16c2f8
AL
3153} BounceBuffer;
3154
3155static BounceBuffer bounce;
3156
ba223c29 3157typedef struct MapClient {
e95205e1 3158 QEMUBH *bh;
72cf2d4f 3159 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3160} MapClient;
3161
38e047b5 3162QemuMutex map_client_list_lock;
72cf2d4f
BS
3163static QLIST_HEAD(map_client_list, MapClient) map_client_list
3164 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29 3165
e95205e1
FZ
3166static void cpu_unregister_map_client_do(MapClient *client)
3167{
3168 QLIST_REMOVE(client, link);
3169 g_free(client);
3170}
3171
33b6c2ed
FZ
3172static void cpu_notify_map_clients_locked(void)
3173{
3174 MapClient *client;
3175
3176 while (!QLIST_EMPTY(&map_client_list)) {
3177 client = QLIST_FIRST(&map_client_list);
e95205e1
FZ
3178 qemu_bh_schedule(client->bh);
3179 cpu_unregister_map_client_do(client);
33b6c2ed
FZ
3180 }
3181}
3182
e95205e1 3183void cpu_register_map_client(QEMUBH *bh)
ba223c29 3184{
7267c094 3185 MapClient *client = g_malloc(sizeof(*client));
ba223c29 3186
38e047b5 3187 qemu_mutex_lock(&map_client_list_lock);
e95205e1 3188 client->bh = bh;
72cf2d4f 3189 QLIST_INSERT_HEAD(&map_client_list, client, link);
33b6c2ed
FZ
3190 if (!atomic_read(&bounce.in_use)) {
3191 cpu_notify_map_clients_locked();
3192 }
38e047b5 3193 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3194}
3195
38e047b5 3196void cpu_exec_init_all(void)
ba223c29 3197{
38e047b5 3198 qemu_mutex_init(&ram_list.mutex);
20bccb82
PM
3199 /* The data structures we set up here depend on knowing the page size,
3200 * so no more changes can be made after this point.
3201 * In an ideal world, nothing we did before we had finished the
3202 * machine setup would care about the target page size, and we could
3203 * do this much later, rather than requiring board models to state
3204 * up front what their requirements are.
3205 */
3206 finalize_target_page_bits();
38e047b5 3207 io_mem_init();
680a4783 3208 memory_map_init();
38e047b5 3209 qemu_mutex_init(&map_client_list_lock);
ba223c29
AL
3210}
3211
e95205e1 3212void cpu_unregister_map_client(QEMUBH *bh)
ba223c29
AL
3213{
3214 MapClient *client;
3215
e95205e1
FZ
3216 qemu_mutex_lock(&map_client_list_lock);
3217 QLIST_FOREACH(client, &map_client_list, link) {
3218 if (client->bh == bh) {
3219 cpu_unregister_map_client_do(client);
3220 break;
3221 }
ba223c29 3222 }
e95205e1 3223 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3224}
3225
3226static void cpu_notify_map_clients(void)
3227{
38e047b5 3228 qemu_mutex_lock(&map_client_list_lock);
33b6c2ed 3229 cpu_notify_map_clients_locked();
38e047b5 3230 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3231}
3232
51644ab7
PB
3233bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
3234{
5c8a00ce 3235 MemoryRegion *mr;
51644ab7
PB
3236 hwaddr l, xlat;
3237
41063e1e 3238 rcu_read_lock();
51644ab7
PB
3239 while (len > 0) {
3240 l = len;
5c8a00ce
PB
3241 mr = address_space_translate(as, addr, &xlat, &l, is_write);
3242 if (!memory_access_is_direct(mr, is_write)) {
3243 l = memory_access_size(mr, l, addr);
3244 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
5ad4a2b7 3245 rcu_read_unlock();
51644ab7
PB
3246 return false;
3247 }
3248 }
3249
3250 len -= l;
3251 addr += l;
3252 }
41063e1e 3253 rcu_read_unlock();
51644ab7
PB
3254 return true;
3255}
3256
715c31ec
PB
3257static hwaddr
3258address_space_extend_translation(AddressSpace *as, hwaddr addr, hwaddr target_len,
3259 MemoryRegion *mr, hwaddr base, hwaddr len,
3260 bool is_write)
3261{
3262 hwaddr done = 0;
3263 hwaddr xlat;
3264 MemoryRegion *this_mr;
3265
3266 for (;;) {
3267 target_len -= len;
3268 addr += len;
3269 done += len;
3270 if (target_len == 0) {
3271 return done;
3272 }
3273
3274 len = target_len;
3275 this_mr = address_space_translate(as, addr, &xlat, &len, is_write);
3276 if (this_mr != mr || xlat != base + done) {
3277 return done;
3278 }
3279 }
3280}
3281
6d16c2f8
AL
3282/* Map a physical memory region into a host virtual address.
3283 * May map a subset of the requested range, given by and returned in *plen.
3284 * May return NULL if resources needed to perform the mapping are exhausted.
3285 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3286 * Use cpu_register_map_client() to know when retrying the map operation is
3287 * likely to succeed.
6d16c2f8 3288 */
ac1970fb 3289void *address_space_map(AddressSpace *as,
a8170e5e
AK
3290 hwaddr addr,
3291 hwaddr *plen,
ac1970fb 3292 bool is_write)
6d16c2f8 3293{
a8170e5e 3294 hwaddr len = *plen;
715c31ec
PB
3295 hwaddr l, xlat;
3296 MemoryRegion *mr;
e81bcda5 3297 void *ptr;
6d16c2f8 3298
e3127ae0
PB
3299 if (len == 0) {
3300 return NULL;
3301 }
38bee5dc 3302
e3127ae0 3303 l = len;
41063e1e 3304 rcu_read_lock();
e3127ae0 3305 mr = address_space_translate(as, addr, &xlat, &l, is_write);
41063e1e 3306
e3127ae0 3307 if (!memory_access_is_direct(mr, is_write)) {
c2cba0ff 3308 if (atomic_xchg(&bounce.in_use, true)) {
41063e1e 3309 rcu_read_unlock();
e3127ae0 3310 return NULL;
6d16c2f8 3311 }
e85d9db5
KW
3312 /* Avoid unbounded allocations */
3313 l = MIN(l, TARGET_PAGE_SIZE);
3314 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
e3127ae0
PB
3315 bounce.addr = addr;
3316 bounce.len = l;
d3e71559
PB
3317
3318 memory_region_ref(mr);
3319 bounce.mr = mr;
e3127ae0 3320 if (!is_write) {
5c9eb028
PM
3321 address_space_read(as, addr, MEMTXATTRS_UNSPECIFIED,
3322 bounce.buffer, l);
8ab934f9 3323 }
6d16c2f8 3324
41063e1e 3325 rcu_read_unlock();
e3127ae0
PB
3326 *plen = l;
3327 return bounce.buffer;
3328 }
3329
e3127ae0 3330
d3e71559 3331 memory_region_ref(mr);
715c31ec 3332 *plen = address_space_extend_translation(as, addr, len, mr, xlat, l, is_write);
f5aa69bd 3333 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
e81bcda5
PB
3334 rcu_read_unlock();
3335
3336 return ptr;
6d16c2f8
AL
3337}
3338
ac1970fb 3339/* Unmaps a memory region previously mapped by address_space_map().
6d16c2f8
AL
3340 * Will also mark the memory as dirty if is_write == 1. access_len gives
3341 * the amount of memory that was actually read or written by the caller.
3342 */
a8170e5e
AK
3343void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3344 int is_write, hwaddr access_len)
6d16c2f8
AL
3345{
3346 if (buffer != bounce.buffer) {
d3e71559
PB
3347 MemoryRegion *mr;
3348 ram_addr_t addr1;
3349
07bdaa41 3350 mr = memory_region_from_host(buffer, &addr1);
d3e71559 3351 assert(mr != NULL);
6d16c2f8 3352 if (is_write) {
845b6214 3353 invalidate_and_set_dirty(mr, addr1, access_len);
6d16c2f8 3354 }
868bb33f 3355 if (xen_enabled()) {
e41d7c69 3356 xen_invalidate_map_cache_entry(buffer);
050a0ddf 3357 }
d3e71559 3358 memory_region_unref(mr);
6d16c2f8
AL
3359 return;
3360 }
3361 if (is_write) {
5c9eb028
PM
3362 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3363 bounce.buffer, access_len);
6d16c2f8 3364 }
f8a83245 3365 qemu_vfree(bounce.buffer);
6d16c2f8 3366 bounce.buffer = NULL;
d3e71559 3367 memory_region_unref(bounce.mr);
c2cba0ff 3368 atomic_mb_set(&bounce.in_use, false);
ba223c29 3369 cpu_notify_map_clients();
6d16c2f8 3370}
d0ecd2aa 3371
a8170e5e
AK
3372void *cpu_physical_memory_map(hwaddr addr,
3373 hwaddr *plen,
ac1970fb
AK
3374 int is_write)
3375{
3376 return address_space_map(&address_space_memory, addr, plen, is_write);
3377}
3378
a8170e5e
AK
3379void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3380 int is_write, hwaddr access_len)
ac1970fb
AK
3381{
3382 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3383}
3384
0ce265ff
PB
3385#define ARG1_DECL AddressSpace *as
3386#define ARG1 as
3387#define SUFFIX
3388#define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3389#define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write)
3390#define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3391#define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3392#define RCU_READ_LOCK(...) rcu_read_lock()
3393#define RCU_READ_UNLOCK(...) rcu_read_unlock()
3394#include "memory_ldst.inc.c"
1e78bcc1 3395
1f4e496e
PB
3396int64_t address_space_cache_init(MemoryRegionCache *cache,
3397 AddressSpace *as,
3398 hwaddr addr,
3399 hwaddr len,
3400 bool is_write)
3401{
90c4fe5f
PB
3402 cache->len = len;
3403 cache->as = as;
3404 cache->xlat = addr;
3405 return len;
1f4e496e
PB
3406}
3407
3408void address_space_cache_invalidate(MemoryRegionCache *cache,
3409 hwaddr addr,
3410 hwaddr access_len)
3411{
1f4e496e
PB
3412}
3413
3414void address_space_cache_destroy(MemoryRegionCache *cache)
3415{
90c4fe5f 3416 cache->as = NULL;
1f4e496e
PB
3417}
3418
3419#define ARG1_DECL MemoryRegionCache *cache
3420#define ARG1 cache
3421#define SUFFIX _cached
90c4fe5f
PB
3422#define TRANSLATE(addr, ...) \
3423 address_space_translate(cache->as, cache->xlat + (addr), __VA_ARGS__)
1f4e496e 3424#define IS_DIRECT(mr, is_write) true
90c4fe5f
PB
3425#define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3426#define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3427#define RCU_READ_LOCK() rcu_read_lock()
3428#define RCU_READ_UNLOCK() rcu_read_unlock()
1f4e496e
PB
3429#include "memory_ldst.inc.c"
3430
5e2972fd 3431/* virtual memory access for debug (includes writing to ROM) */
f17ec444 3432int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
b448f2f3 3433 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3434{
3435 int l;
a8170e5e 3436 hwaddr phys_addr;
9b3c35e0 3437 target_ulong page;
13eb76e0 3438
79ca7a1b 3439 cpu_synchronize_state(cpu);
13eb76e0 3440 while (len > 0) {
5232e4c7
PM
3441 int asidx;
3442 MemTxAttrs attrs;
3443
13eb76e0 3444 page = addr & TARGET_PAGE_MASK;
5232e4c7
PM
3445 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3446 asidx = cpu_asidx_from_attrs(cpu, attrs);
13eb76e0
FB
3447 /* if no physical page mapped, return an error */
3448 if (phys_addr == -1)
3449 return -1;
3450 l = (page + TARGET_PAGE_SIZE) - addr;
3451 if (l > len)
3452 l = len;
5e2972fd 3453 phys_addr += (addr & ~TARGET_PAGE_MASK);
2e38847b 3454 if (is_write) {
5232e4c7
PM
3455 cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3456 phys_addr, buf, l);
2e38847b 3457 } else {
5232e4c7
PM
3458 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3459 MEMTXATTRS_UNSPECIFIED,
5c9eb028 3460 buf, l, 0);
2e38847b 3461 }
13eb76e0
FB
3462 len -= l;
3463 buf += l;
3464 addr += l;
3465 }
3466 return 0;
3467}
038629a6
DDAG
3468
3469/*
3470 * Allows code that needs to deal with migration bitmaps etc to still be built
3471 * target independent.
3472 */
20afaed9 3473size_t qemu_target_page_size(void)
038629a6 3474{
20afaed9 3475 return TARGET_PAGE_SIZE;
038629a6
DDAG
3476}
3477
46d702b1
JQ
3478int qemu_target_page_bits(void)
3479{
3480 return TARGET_PAGE_BITS;
3481}
3482
3483int qemu_target_page_bits_min(void)
3484{
3485 return TARGET_PAGE_BITS_MIN;
3486}
a68fe89c 3487#endif
13eb76e0 3488
8e4a424b
BS
3489/*
3490 * A helper function for the _utterly broken_ virtio device model to find out if
3491 * it's running on a big endian machine. Don't do this at home kids!
3492 */
98ed8ecf
GK
3493bool target_words_bigendian(void);
3494bool target_words_bigendian(void)
8e4a424b
BS
3495{
3496#if defined(TARGET_WORDS_BIGENDIAN)
3497 return true;
3498#else
3499 return false;
3500#endif
3501}
3502
76f35538 3503#ifndef CONFIG_USER_ONLY
a8170e5e 3504bool cpu_physical_memory_is_io(hwaddr phys_addr)
76f35538 3505{
5c8a00ce 3506 MemoryRegion*mr;
149f54b5 3507 hwaddr l = 1;
41063e1e 3508 bool res;
76f35538 3509
41063e1e 3510 rcu_read_lock();
5c8a00ce
PB
3511 mr = address_space_translate(&address_space_memory,
3512 phys_addr, &phys_addr, &l, false);
76f35538 3513
41063e1e
PB
3514 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3515 rcu_read_unlock();
3516 return res;
76f35538 3517}
bd2fa51f 3518
e3807054 3519int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
bd2fa51f
MH
3520{
3521 RAMBlock *block;
e3807054 3522 int ret = 0;
bd2fa51f 3523
0dc3f44a 3524 rcu_read_lock();
99e15582 3525 RAMBLOCK_FOREACH(block) {
e3807054
DDAG
3526 ret = func(block->idstr, block->host, block->offset,
3527 block->used_length, opaque);
3528 if (ret) {
3529 break;
3530 }
bd2fa51f 3531 }
0dc3f44a 3532 rcu_read_unlock();
e3807054 3533 return ret;
bd2fa51f 3534}
d3a5038c
DDAG
3535
3536/*
3537 * Unmap pages of memory from start to start+length such that
3538 * they a) read as 0, b) Trigger whatever fault mechanism
3539 * the OS provides for postcopy.
3540 * The pages must be unmapped by the end of the function.
3541 * Returns: 0 on success, none-0 on failure
3542 *
3543 */
3544int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3545{
3546 int ret = -1;
3547
3548 uint8_t *host_startaddr = rb->host + start;
3549
3550 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
3551 error_report("ram_block_discard_range: Unaligned start address: %p",
3552 host_startaddr);
3553 goto err;
3554 }
3555
3556 if ((start + length) <= rb->used_length) {
3557 uint8_t *host_endaddr = host_startaddr + length;
3558 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
3559 error_report("ram_block_discard_range: Unaligned end address: %p",
3560 host_endaddr);
3561 goto err;
3562 }
3563
3564 errno = ENOTSUP; /* If we are missing MADVISE etc */
3565
e2fa71f5 3566 if (rb->page_size == qemu_host_page_size) {
d3a5038c 3567#if defined(CONFIG_MADVISE)
e2fa71f5
DDAG
3568 /* Note: We need the madvise MADV_DONTNEED behaviour of definitely
3569 * freeing the page.
3570 */
3571 ret = madvise(host_startaddr, length, MADV_DONTNEED);
d3a5038c 3572#endif
e2fa71f5
DDAG
3573 } else {
3574 /* Huge page case - unfortunately it can't do DONTNEED, but
3575 * it can do the equivalent by FALLOC_FL_PUNCH_HOLE in the
3576 * huge page file.
3577 */
3578#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3579 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3580 start, length);
3581#endif
3582 }
d3a5038c
DDAG
3583 if (ret) {
3584 ret = -errno;
3585 error_report("ram_block_discard_range: Failed to discard range "
3586 "%s:%" PRIx64 " +%zx (%d)",
3587 rb->idstr, start, length, ret);
3588 }
3589 } else {
3590 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3591 "/%zx/" RAM_ADDR_FMT")",
3592 rb->idstr, start, length, rb->used_length);
3593 }
3594
3595err:
3596 return ret;
3597}
3598
ec3f8c99 3599#endif
a0be0c58
YZ
3600
3601void page_size_init(void)
3602{
3603 /* NOTE: we can always suppose that qemu_host_page_size >=
3604 TARGET_PAGE_SIZE */
3605 qemu_real_host_page_size = getpagesize();
3606 qemu_real_host_page_mask = -(intptr_t)qemu_real_host_page_size;
3607 if (qemu_host_page_size == 0) {
3608 qemu_host_page_size = qemu_real_host_page_size;
3609 }
3610 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
3611 qemu_host_page_size = TARGET_PAGE_SIZE;
3612 }
3613 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
3614}