]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/direct-io.c
fs: Introduce IOMAP_NOWAIT
[mirror_ubuntu-artful-kernel.git] / fs / direct-io.c
CommitLineData
1da177e4
LT
1/*
2 * fs/direct-io.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * O_DIRECT
7 *
e1f8e874 8 * 04Jul2002 Andrew Morton
1da177e4
LT
9 * Initial version
10 * 11Sep2002 janetinc@us.ibm.com
11 * added readv/writev support.
e1f8e874 12 * 29Oct2002 Andrew Morton
1da177e4
LT
13 * rewrote bio_add_page() support.
14 * 30Oct2002 pbadari@us.ibm.com
15 * added support for non-aligned IO.
16 * 06Nov2002 pbadari@us.ibm.com
17 * added asynchronous IO support.
18 * 21Jul2003 nathans@sgi.com
19 * added IO completion notifier.
20 */
21
22#include <linux/kernel.h>
23#include <linux/module.h>
24#include <linux/types.h>
25#include <linux/fs.h>
26#include <linux/mm.h>
27#include <linux/slab.h>
28#include <linux/highmem.h>
29#include <linux/pagemap.h>
98c4d57d 30#include <linux/task_io_accounting_ops.h>
1da177e4
LT
31#include <linux/bio.h>
32#include <linux/wait.h>
33#include <linux/err.h>
34#include <linux/blkdev.h>
35#include <linux/buffer_head.h>
36#include <linux/rwsem.h>
37#include <linux/uio.h>
60063497 38#include <linux/atomic.h>
65dd2aa9 39#include <linux/prefetch.h>
1da177e4
LT
40
41/*
42 * How many user pages to map in one call to get_user_pages(). This determines
cde1ecb3 43 * the size of a structure in the slab cache
1da177e4
LT
44 */
45#define DIO_PAGES 64
46
47/*
48 * This code generally works in units of "dio_blocks". A dio_block is
49 * somewhere between the hard sector size and the filesystem block size. it
50 * is determined on a per-invocation basis. When talking to the filesystem
51 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
52 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted
53 * to bio_block quantities by shifting left by blkfactor.
54 *
55 * If blkfactor is zero then the user's request was aligned to the filesystem's
56 * blocksize.
1da177e4
LT
57 */
58
eb28be2b
AK
59/* dio_state only used in the submission path */
60
61struct dio_submit {
1da177e4 62 struct bio *bio; /* bio under assembly */
1da177e4
LT
63 unsigned blkbits; /* doesn't change */
64 unsigned blkfactor; /* When we're using an alignment which
65 is finer than the filesystem's soft
66 blocksize, this specifies how much
67 finer. blkfactor=2 means 1/4-block
68 alignment. Does not change */
69 unsigned start_zero_done; /* flag: sub-blocksize zeroing has
70 been performed at the start of a
71 write */
72 int pages_in_io; /* approximate total IO pages */
1da177e4
LT
73 sector_t block_in_file; /* Current offset into the underlying
74 file in dio_block units. */
75 unsigned blocks_available; /* At block_in_file. changes */
0dc2bc49 76 int reap_counter; /* rate limit reaping */
1da177e4 77 sector_t final_block_in_request;/* doesn't change */
1da177e4 78 int boundary; /* prev block is at a boundary */
1d8fa7a2 79 get_block_t *get_block; /* block mapping function */
facd07b0 80 dio_submit_t *submit_io; /* IO submition function */
eb28be2b 81
facd07b0 82 loff_t logical_offset_in_bio; /* current first logical block in bio */
1da177e4
LT
83 sector_t final_block_in_bio; /* current final block in bio + 1 */
84 sector_t next_block_for_io; /* next block to be put under IO,
85 in dio_blocks units */
1da177e4
LT
86
87 /*
88 * Deferred addition of a page to the dio. These variables are
89 * private to dio_send_cur_page(), submit_page_section() and
90 * dio_bio_add_page().
91 */
92 struct page *cur_page; /* The page */
93 unsigned cur_page_offset; /* Offset into it, in bytes */
94 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */
95 sector_t cur_page_block; /* Where it starts */
facd07b0 96 loff_t cur_page_fs_offset; /* Offset in file */
1da177e4 97
7b2c99d1 98 struct iov_iter *iter;
1da177e4
LT
99 /*
100 * Page queue. These variables belong to dio_refill_pages() and
101 * dio_get_page().
102 */
1da177e4
LT
103 unsigned head; /* next page to process */
104 unsigned tail; /* last valid page + 1 */
7b2c99d1 105 size_t from, to;
eb28be2b
AK
106};
107
108/* dio_state communicated between submission path and end_io */
109struct dio {
110 int flags; /* doesn't change */
8a4c1e42
MC
111 int op;
112 int op_flags;
15c4f638
JA
113 blk_qc_t bio_cookie;
114 struct block_device *bio_bdev;
0dc2bc49 115 struct inode *inode;
eb28be2b
AK
116 loff_t i_size; /* i_size when submitted */
117 dio_iodone_t *end_io; /* IO completion function */
eb28be2b 118
18772641 119 void *private; /* copy from map_bh.b_private */
eb28be2b
AK
120
121 /* BIO completion state */
122 spinlock_t bio_lock; /* protects BIO fields below */
0dc2bc49
AK
123 int page_errors; /* errno from get_user_pages() */
124 int is_async; /* is IO async ? */
7b7a8665 125 bool defer_completion; /* defer AIO completion to workqueue? */
53cbf3b1 126 bool should_dirty; /* if pages should be dirtied */
0dc2bc49 127 int io_error; /* IO error in completion path */
eb28be2b
AK
128 unsigned long refcount; /* direct_io_worker() and bios */
129 struct bio *bio_list; /* singly linked via bi_private */
130 struct task_struct *waiter; /* waiting task (NULL if none) */
131
132 /* AIO related stuff */
133 struct kiocb *iocb; /* kiocb */
eb28be2b
AK
134 ssize_t result; /* IO result */
135
23aee091
JM
136 /*
137 * pages[] (and any fields placed after it) are not zeroed out at
138 * allocation time. Don't add new fields after pages[] unless you
139 * wish that they not be zeroed.
140 */
7b7a8665
CH
141 union {
142 struct page *pages[DIO_PAGES]; /* page buffer */
143 struct work_struct complete_work;/* deferred AIO completion */
144 };
6e8267f5
AK
145} ____cacheline_aligned_in_smp;
146
147static struct kmem_cache *dio_cache __read_mostly;
1da177e4
LT
148
149/*
150 * How many pages are in the queue?
151 */
eb28be2b 152static inline unsigned dio_pages_present(struct dio_submit *sdio)
1da177e4 153{
eb28be2b 154 return sdio->tail - sdio->head;
1da177e4
LT
155}
156
157/*
158 * Go grab and pin some userspace pages. Typically we'll get 64 at a time.
159 */
ba253fbf 160static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
1da177e4 161{
7b2c99d1 162 ssize_t ret;
1da177e4 163
2c80929c 164 ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES,
7b2c99d1 165 &sdio->from);
1da177e4 166
8a4c1e42 167 if (ret < 0 && sdio->blocks_available && (dio->op == REQ_OP_WRITE)) {
557ed1fa 168 struct page *page = ZERO_PAGE(0);
1da177e4
LT
169 /*
170 * A memory fault, but the filesystem has some outstanding
171 * mapped blocks. We need to use those blocks up to avoid
172 * leaking stale data in the file.
173 */
174 if (dio->page_errors == 0)
175 dio->page_errors = ret;
09cbfeaf 176 get_page(page);
b5810039 177 dio->pages[0] = page;
eb28be2b
AK
178 sdio->head = 0;
179 sdio->tail = 1;
7b2c99d1
AV
180 sdio->from = 0;
181 sdio->to = PAGE_SIZE;
182 return 0;
1da177e4
LT
183 }
184
185 if (ret >= 0) {
7b2c99d1
AV
186 iov_iter_advance(sdio->iter, ret);
187 ret += sdio->from;
eb28be2b 188 sdio->head = 0;
7b2c99d1
AV
189 sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
190 sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
191 return 0;
1da177e4 192 }
1da177e4
LT
193 return ret;
194}
195
196/*
197 * Get another userspace page. Returns an ERR_PTR on error. Pages are
198 * buffered inside the dio so that we can call get_user_pages() against a
199 * decent number of pages, less frequently. To provide nicer use of the
200 * L1 cache.
201 */
ba253fbf 202static inline struct page *dio_get_page(struct dio *dio,
6fcc5420 203 struct dio_submit *sdio)
1da177e4 204{
eb28be2b 205 if (dio_pages_present(sdio) == 0) {
1da177e4
LT
206 int ret;
207
eb28be2b 208 ret = dio_refill_pages(dio, sdio);
1da177e4
LT
209 if (ret)
210 return ERR_PTR(ret);
eb28be2b 211 BUG_ON(dio_pages_present(sdio) == 0);
1da177e4 212 }
6fcc5420 213 return dio->pages[sdio->head];
1da177e4
LT
214}
215
6d544bb4
ZB
216/**
217 * dio_complete() - called when all DIO BIO I/O has been completed
218 * @offset: the byte offset in the file of the completed operation
219 *
7b7a8665
CH
220 * This drops i_dio_count, lets interested parties know that a DIO operation
221 * has completed, and calculates the resulting return code for the operation.
6d544bb4
ZB
222 *
223 * It lets the filesystem know if it registered an interest earlier via
224 * get_block. Pass the private field of the map buffer_head so that
225 * filesystems can use it to hold additional state between get_block calls and
226 * dio_complete.
1da177e4 227 */
716b9bc0 228static ssize_t dio_complete(struct dio *dio, ssize_t ret, bool is_async)
1da177e4 229{
716b9bc0 230 loff_t offset = dio->iocb->ki_pos;
6d544bb4
ZB
231 ssize_t transferred = 0;
232
8459d86a
ZB
233 /*
234 * AIO submission can race with bio completion to get here while
235 * expecting to have the last io completed by bio completion.
236 * In that case -EIOCBQUEUED is in fact not an error we want
237 * to preserve through this call.
238 */
239 if (ret == -EIOCBQUEUED)
240 ret = 0;
241
6d544bb4
ZB
242 if (dio->result) {
243 transferred = dio->result;
244
245 /* Check for short read case */
8a4c1e42
MC
246 if ((dio->op == REQ_OP_READ) &&
247 ((offset + transferred) > dio->i_size))
6d544bb4 248 transferred = dio->i_size - offset;
4038acdb
AV
249 /* ignore EFAULT if some IO has been done */
250 if (unlikely(ret == -EFAULT) && transferred)
251 ret = 0;
6d544bb4
ZB
252 }
253
6d544bb4
ZB
254 if (ret == 0)
255 ret = dio->page_errors;
256 if (ret == 0)
257 ret = dio->io_error;
258 if (ret == 0)
259 ret = transferred;
260
187372a3
CH
261 if (dio->end_io) {
262 int err;
263
e2592217 264 // XXX: ki_pos??
187372a3
CH
265 err = dio->end_io(dio->iocb, offset, ret, dio->private);
266 if (err)
267 ret = err;
268 }
7b7a8665 269
fe0f07d0
JA
270 if (!(dio->flags & DIO_SKIP_DIO_COUNT))
271 inode_dio_end(dio->inode);
272
02afc27f 273 if (is_async) {
e2592217
CH
274 /*
275 * generic_write_sync expects ki_pos to have been updated
276 * already, but the submission path only does this for
277 * synchronous I/O.
278 */
279 dio->iocb->ki_pos += transferred;
02afc27f 280
8a4c1e42 281 if (dio->op == REQ_OP_WRITE)
e2592217 282 ret = generic_write_sync(dio->iocb, transferred);
04b2fa9f 283 dio->iocb->ki_complete(dio->iocb, ret, 0);
02afc27f 284 }
40e2e973 285
7b7a8665 286 kmem_cache_free(dio_cache, dio);
6d544bb4 287 return ret;
1da177e4
LT
288}
289
7b7a8665
CH
290static void dio_aio_complete_work(struct work_struct *work)
291{
292 struct dio *dio = container_of(work, struct dio, complete_work);
293
716b9bc0 294 dio_complete(dio, 0, true);
7b7a8665
CH
295}
296
4e4cbee9 297static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio);
7b7a8665 298
1da177e4
LT
299/*
300 * Asynchronous IO callback.
301 */
4246a0b6 302static void dio_bio_end_aio(struct bio *bio)
1da177e4
LT
303{
304 struct dio *dio = bio->bi_private;
5eb6c7a2
ZB
305 unsigned long remaining;
306 unsigned long flags;
1da177e4 307
1da177e4
LT
308 /* cleanup the bio */
309 dio_bio_complete(dio, bio);
0273201e 310
5eb6c7a2
ZB
311 spin_lock_irqsave(&dio->bio_lock, flags);
312 remaining = --dio->refcount;
313 if (remaining == 1 && dio->waiter)
20258b2b 314 wake_up_process(dio->waiter);
5eb6c7a2 315 spin_unlock_irqrestore(&dio->bio_lock, flags);
20258b2b 316
8459d86a 317 if (remaining == 0) {
7b7a8665
CH
318 if (dio->result && dio->defer_completion) {
319 INIT_WORK(&dio->complete_work, dio_aio_complete_work);
320 queue_work(dio->inode->i_sb->s_dio_done_wq,
321 &dio->complete_work);
322 } else {
716b9bc0 323 dio_complete(dio, 0, true);
7b7a8665 324 }
8459d86a 325 }
1da177e4
LT
326}
327
328/*
329 * The BIO completion handler simply queues the BIO up for the process-context
330 * handler.
331 *
332 * During I/O bi_private points at the dio. After I/O, bi_private is used to
333 * implement a singly-linked list of completed BIOs, at dio->bio_list.
334 */
4246a0b6 335static void dio_bio_end_io(struct bio *bio)
1da177e4
LT
336{
337 struct dio *dio = bio->bi_private;
338 unsigned long flags;
339
1da177e4
LT
340 spin_lock_irqsave(&dio->bio_lock, flags);
341 bio->bi_private = dio->bio_list;
342 dio->bio_list = bio;
5eb6c7a2 343 if (--dio->refcount == 1 && dio->waiter)
1da177e4
LT
344 wake_up_process(dio->waiter);
345 spin_unlock_irqrestore(&dio->bio_lock, flags);
1da177e4
LT
346}
347
facd07b0
JB
348/**
349 * dio_end_io - handle the end io action for the given bio
350 * @bio: The direct io bio thats being completed
facd07b0
JB
351 *
352 * This is meant to be called by any filesystem that uses their own dio_submit_t
353 * so that the DIO specific endio actions are dealt with after the filesystem
354 * has done it's completion work.
355 */
4055351c 356void dio_end_io(struct bio *bio)
facd07b0
JB
357{
358 struct dio *dio = bio->bi_private;
359
360 if (dio->is_async)
4246a0b6 361 dio_bio_end_aio(bio);
facd07b0 362 else
4246a0b6 363 dio_bio_end_io(bio);
facd07b0
JB
364}
365EXPORT_SYMBOL_GPL(dio_end_io);
366
ba253fbf 367static inline void
eb28be2b
AK
368dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
369 struct block_device *bdev,
370 sector_t first_sector, int nr_vecs)
1da177e4
LT
371{
372 struct bio *bio;
373
20d9600c
DD
374 /*
375 * bio_alloc() is guaranteed to return a bio when called with
71baba4b 376 * __GFP_RECLAIM and we request a valid number of vectors.
20d9600c 377 */
1da177e4 378 bio = bio_alloc(GFP_KERNEL, nr_vecs);
1da177e4
LT
379
380 bio->bi_bdev = bdev;
4f024f37 381 bio->bi_iter.bi_sector = first_sector;
8a4c1e42 382 bio_set_op_attrs(bio, dio->op, dio->op_flags);
1da177e4
LT
383 if (dio->is_async)
384 bio->bi_end_io = dio_bio_end_aio;
385 else
386 bio->bi_end_io = dio_bio_end_io;
387
eb28be2b
AK
388 sdio->bio = bio;
389 sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
1da177e4
LT
390}
391
392/*
393 * In the AIO read case we speculatively dirty the pages before starting IO.
394 * During IO completion, any of these pages which happen to have been written
395 * back will be redirtied by bio_check_pages_dirty().
0273201e
ZB
396 *
397 * bios hold a dio reference between submit_bio and ->end_io.
1da177e4 398 */
ba253fbf 399static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
1da177e4 400{
eb28be2b 401 struct bio *bio = sdio->bio;
5eb6c7a2 402 unsigned long flags;
1da177e4
LT
403
404 bio->bi_private = dio;
5eb6c7a2
ZB
405
406 spin_lock_irqsave(&dio->bio_lock, flags);
407 dio->refcount++;
408 spin_unlock_irqrestore(&dio->bio_lock, flags);
409
8a4c1e42 410 if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty)
1da177e4 411 bio_set_pages_dirty(bio);
5eb6c7a2 412
c1c53460
JA
413 dio->bio_bdev = bio->bi_bdev;
414
15c4f638 415 if (sdio->submit_io) {
8a4c1e42 416 sdio->submit_io(bio, dio->inode, sdio->logical_offset_in_bio);
15c4f638 417 dio->bio_cookie = BLK_QC_T_NONE;
c1c53460 418 } else
4e49ea4a 419 dio->bio_cookie = submit_bio(bio);
1da177e4 420
eb28be2b
AK
421 sdio->bio = NULL;
422 sdio->boundary = 0;
423 sdio->logical_offset_in_bio = 0;
1da177e4
LT
424}
425
426/*
427 * Release any resources in case of a failure
428 */
ba253fbf 429static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
1da177e4 430{
7b2c99d1 431 while (sdio->head < sdio->tail)
09cbfeaf 432 put_page(dio->pages[sdio->head++]);
1da177e4
LT
433}
434
435/*
0273201e
ZB
436 * Wait for the next BIO to complete. Remove it and return it. NULL is
437 * returned once all BIOs have been completed. This must only be called once
438 * all bios have been issued so that dio->refcount can only decrease. This
439 * requires that that the caller hold a reference on the dio.
1da177e4
LT
440 */
441static struct bio *dio_await_one(struct dio *dio)
442{
443 unsigned long flags;
0273201e 444 struct bio *bio = NULL;
1da177e4
LT
445
446 spin_lock_irqsave(&dio->bio_lock, flags);
5eb6c7a2
ZB
447
448 /*
449 * Wait as long as the list is empty and there are bios in flight. bio
450 * completion drops the count, maybe adds to the list, and wakes while
451 * holding the bio_lock so we don't need set_current_state()'s barrier
452 * and can call it after testing our condition.
453 */
454 while (dio->refcount > 1 && dio->bio_list == NULL) {
455 __set_current_state(TASK_UNINTERRUPTIBLE);
456 dio->waiter = current;
457 spin_unlock_irqrestore(&dio->bio_lock, flags);
c43c83a2 458 if (!(dio->iocb->ki_flags & IOCB_HIPRI) ||
bbd7bb70 459 !blk_mq_poll(bdev_get_queue(dio->bio_bdev), dio->bio_cookie))
15c4f638 460 io_schedule();
5eb6c7a2
ZB
461 /* wake up sets us TASK_RUNNING */
462 spin_lock_irqsave(&dio->bio_lock, flags);
463 dio->waiter = NULL;
1da177e4 464 }
0273201e
ZB
465 if (dio->bio_list) {
466 bio = dio->bio_list;
467 dio->bio_list = bio->bi_private;
468 }
1da177e4
LT
469 spin_unlock_irqrestore(&dio->bio_lock, flags);
470 return bio;
471}
472
473/*
474 * Process one completed BIO. No locks are held.
475 */
4e4cbee9 476static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio)
1da177e4 477{
cb34e057
KO
478 struct bio_vec *bvec;
479 unsigned i;
4e4cbee9 480 blk_status_t err = bio->bi_status;
1da177e4 481
d5245d76 482 if (err)
174e27c6 483 dio->io_error = -EIO;
1da177e4 484
8a4c1e42 485 if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty) {
7ddc971f 486 bio_check_pages_dirty(bio); /* transfers ownership */
1da177e4 487 } else {
cb34e057
KO
488 bio_for_each_segment_all(bvec, bio, i) {
489 struct page *page = bvec->bv_page;
1da177e4 490
8a4c1e42 491 if (dio->op == REQ_OP_READ && !PageCompound(page) &&
53cbf3b1 492 dio->should_dirty)
1da177e4 493 set_page_dirty_lock(page);
09cbfeaf 494 put_page(page);
1da177e4
LT
495 }
496 bio_put(bio);
497 }
9b81c842 498 return err;
1da177e4
LT
499}
500
501/*
0273201e
ZB
502 * Wait on and process all in-flight BIOs. This must only be called once
503 * all bios have been issued so that the refcount can only decrease.
504 * This just waits for all bios to make it through dio_bio_complete. IO
beb7dd86 505 * errors are propagated through dio->io_error and should be propagated via
0273201e 506 * dio_complete().
1da177e4 507 */
6d544bb4 508static void dio_await_completion(struct dio *dio)
1da177e4 509{
0273201e
ZB
510 struct bio *bio;
511 do {
512 bio = dio_await_one(dio);
513 if (bio)
514 dio_bio_complete(dio, bio);
515 } while (bio);
1da177e4
LT
516}
517
518/*
519 * A really large O_DIRECT read or write can generate a lot of BIOs. So
520 * to keep the memory consumption sane we periodically reap any completed BIOs
521 * during the BIO generation phase.
522 *
523 * This also helps to limit the peak amount of pinned userspace memory.
524 */
ba253fbf 525static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
1da177e4
LT
526{
527 int ret = 0;
528
eb28be2b 529 if (sdio->reap_counter++ >= 64) {
1da177e4
LT
530 while (dio->bio_list) {
531 unsigned long flags;
532 struct bio *bio;
533 int ret2;
534
535 spin_lock_irqsave(&dio->bio_lock, flags);
536 bio = dio->bio_list;
537 dio->bio_list = bio->bi_private;
538 spin_unlock_irqrestore(&dio->bio_lock, flags);
4e4cbee9 539 ret2 = blk_status_to_errno(dio_bio_complete(dio, bio));
1da177e4
LT
540 if (ret == 0)
541 ret = ret2;
542 }
eb28be2b 543 sdio->reap_counter = 0;
1da177e4
LT
544 }
545 return ret;
546}
547
7b7a8665
CH
548/*
549 * Create workqueue for deferred direct IO completions. We allocate the
550 * workqueue when it's first needed. This avoids creating workqueue for
551 * filesystems that don't need it and also allows us to create the workqueue
552 * late enough so the we can include s_id in the name of the workqueue.
553 */
ec1b8260 554int sb_init_dio_done_wq(struct super_block *sb)
7b7a8665 555{
45150c43 556 struct workqueue_struct *old;
7b7a8665
CH
557 struct workqueue_struct *wq = alloc_workqueue("dio/%s",
558 WQ_MEM_RECLAIM, 0,
559 sb->s_id);
560 if (!wq)
561 return -ENOMEM;
562 /*
563 * This has to be atomic as more DIOs can race to create the workqueue
564 */
45150c43 565 old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
7b7a8665 566 /* Someone created workqueue before us? Free ours... */
45150c43 567 if (old)
7b7a8665
CH
568 destroy_workqueue(wq);
569 return 0;
570}
571
572static int dio_set_defer_completion(struct dio *dio)
573{
574 struct super_block *sb = dio->inode->i_sb;
575
576 if (dio->defer_completion)
577 return 0;
578 dio->defer_completion = true;
579 if (!sb->s_dio_done_wq)
580 return sb_init_dio_done_wq(sb);
581 return 0;
582}
583
1da177e4
LT
584/*
585 * Call into the fs to map some more disk blocks. We record the current number
eb28be2b 586 * of available blocks at sdio->blocks_available. These are in units of the
93407472 587 * fs blocksize, i_blocksize(inode).
1da177e4
LT
588 *
589 * The fs is allowed to map lots of blocks at once. If it wants to do that,
590 * it uses the passed inode-relative block number as the file offset, as usual.
591 *
1d8fa7a2 592 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
1da177e4
LT
593 * has remaining to do. The fs should not map more than this number of blocks.
594 *
595 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
596 * indicate how much contiguous disk space has been made available at
597 * bh->b_blocknr.
598 *
599 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
600 * This isn't very efficient...
601 *
602 * In the case of filesystem holes: the fs may return an arbitrarily-large
603 * hole by returning an appropriate value in b_size and by clearing
604 * buffer_mapped(). However the direct-io code will only process holes one
1d8fa7a2 605 * block at a time - it will repeatedly call get_block() as it walks the hole.
1da177e4 606 */
18772641
AK
607static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
608 struct buffer_head *map_bh)
1da177e4
LT
609{
610 int ret;
1da177e4 611 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */
ae55e1aa 612 sector_t fs_endblk; /* Into file, in filesystem-sized blocks */
1da177e4 613 unsigned long fs_count; /* Number of filesystem-sized blocks */
1da177e4 614 int create;
ab73857e 615 unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
1da177e4
LT
616
617 /*
618 * If there was a memory error and we've overwritten all the
619 * mapped blocks then we can now return that memory error
620 */
621 ret = dio->page_errors;
622 if (ret == 0) {
eb28be2b
AK
623 BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
624 fs_startblk = sdio->block_in_file >> sdio->blkfactor;
ae55e1aa
TM
625 fs_endblk = (sdio->final_block_in_request - 1) >>
626 sdio->blkfactor;
627 fs_count = fs_endblk - fs_startblk + 1;
1da177e4 628
3c674e74 629 map_bh->b_state = 0;
ab73857e 630 map_bh->b_size = fs_count << i_blkbits;
3c674e74 631
5fe878ae 632 /*
9ecd10b7
EG
633 * For writes that could fill holes inside i_size on a
634 * DIO_SKIP_HOLES filesystem we forbid block creations: only
635 * overwrites are permitted. We will return early to the caller
636 * once we see an unmapped buffer head returned, and the caller
637 * will fall back to buffered I/O.
5fe878ae
CH
638 *
639 * Otherwise the decision is left to the get_blocks method,
640 * which may decide to handle it or also return an unmapped
641 * buffer head.
642 */
8a4c1e42 643 create = dio->op == REQ_OP_WRITE;
5fe878ae 644 if (dio->flags & DIO_SKIP_HOLES) {
9ecd10b7
EG
645 if (fs_startblk <= ((i_size_read(dio->inode) - 1) >>
646 i_blkbits))
1da177e4 647 create = 0;
1da177e4 648 }
3c674e74 649
eb28be2b 650 ret = (*sdio->get_block)(dio->inode, fs_startblk,
1da177e4 651 map_bh, create);
18772641
AK
652
653 /* Store for completion */
654 dio->private = map_bh->b_private;
7b7a8665
CH
655
656 if (ret == 0 && buffer_defer_completion(map_bh))
657 ret = dio_set_defer_completion(dio);
1da177e4
LT
658 }
659 return ret;
660}
661
662/*
663 * There is no bio. Make one now.
664 */
ba253fbf
AK
665static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
666 sector_t start_sector, struct buffer_head *map_bh)
1da177e4
LT
667{
668 sector_t sector;
669 int ret, nr_pages;
670
eb28be2b 671 ret = dio_bio_reap(dio, sdio);
1da177e4
LT
672 if (ret)
673 goto out;
eb28be2b 674 sector = start_sector << (sdio->blkbits - 9);
b54ffb73 675 nr_pages = min(sdio->pages_in_io, BIO_MAX_PAGES);
1da177e4 676 BUG_ON(nr_pages <= 0);
18772641 677 dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
eb28be2b 678 sdio->boundary = 0;
1da177e4
LT
679out:
680 return ret;
681}
682
683/*
684 * Attempt to put the current chunk of 'cur_page' into the current BIO. If
685 * that was successful then update final_block_in_bio and take a ref against
686 * the just-added page.
687 *
688 * Return zero on success. Non-zero means the caller needs to start a new BIO.
689 */
ba253fbf 690static inline int dio_bio_add_page(struct dio_submit *sdio)
1da177e4
LT
691{
692 int ret;
693
eb28be2b
AK
694 ret = bio_add_page(sdio->bio, sdio->cur_page,
695 sdio->cur_page_len, sdio->cur_page_offset);
696 if (ret == sdio->cur_page_len) {
1da177e4
LT
697 /*
698 * Decrement count only, if we are done with this page
699 */
eb28be2b
AK
700 if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
701 sdio->pages_in_io--;
09cbfeaf 702 get_page(sdio->cur_page);
eb28be2b
AK
703 sdio->final_block_in_bio = sdio->cur_page_block +
704 (sdio->cur_page_len >> sdio->blkbits);
1da177e4
LT
705 ret = 0;
706 } else {
707 ret = 1;
708 }
709 return ret;
710}
711
712/*
713 * Put cur_page under IO. The section of cur_page which is described by
714 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page
715 * starts on-disk at cur_page_block.
716 *
717 * We take a ref against the page here (on behalf of its presence in the bio).
718 *
719 * The caller of this function is responsible for removing cur_page from the
720 * dio, and for dropping the refcount which came from that presence.
721 */
ba253fbf
AK
722static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
723 struct buffer_head *map_bh)
1da177e4
LT
724{
725 int ret = 0;
726
eb28be2b
AK
727 if (sdio->bio) {
728 loff_t cur_offset = sdio->cur_page_fs_offset;
729 loff_t bio_next_offset = sdio->logical_offset_in_bio +
4f024f37 730 sdio->bio->bi_iter.bi_size;
c2c6ca41 731
1da177e4 732 /*
c2c6ca41
JB
733 * See whether this new request is contiguous with the old.
734 *
f0940cee
NK
735 * Btrfs cannot handle having logically non-contiguous requests
736 * submitted. For example if you have
c2c6ca41
JB
737 *
738 * Logical: [0-4095][HOLE][8192-12287]
f0940cee 739 * Physical: [0-4095] [4096-8191]
c2c6ca41
JB
740 *
741 * We cannot submit those pages together as one BIO. So if our
742 * current logical offset in the file does not equal what would
743 * be the next logical offset in the bio, submit the bio we
744 * have.
1da177e4 745 */
eb28be2b 746 if (sdio->final_block_in_bio != sdio->cur_page_block ||
c2c6ca41 747 cur_offset != bio_next_offset)
eb28be2b 748 dio_bio_submit(dio, sdio);
1da177e4
LT
749 }
750
eb28be2b 751 if (sdio->bio == NULL) {
18772641 752 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
1da177e4
LT
753 if (ret)
754 goto out;
755 }
756
eb28be2b
AK
757 if (dio_bio_add_page(sdio) != 0) {
758 dio_bio_submit(dio, sdio);
18772641 759 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
1da177e4 760 if (ret == 0) {
eb28be2b 761 ret = dio_bio_add_page(sdio);
1da177e4
LT
762 BUG_ON(ret != 0);
763 }
764 }
765out:
766 return ret;
767}
768
769/*
770 * An autonomous function to put a chunk of a page under deferred IO.
771 *
772 * The caller doesn't actually know (or care) whether this piece of page is in
773 * a BIO, or is under IO or whatever. We just take care of all possible
774 * situations here. The separation between the logic of do_direct_IO() and
775 * that of submit_page_section() is important for clarity. Please don't break.
776 *
777 * The chunk of page starts on-disk at blocknr.
778 *
779 * We perform deferred IO, by recording the last-submitted page inside our
780 * private part of the dio structure. If possible, we just expand the IO
781 * across that page here.
782 *
783 * If that doesn't work out then we put the old page into the bio and add this
784 * page to the dio instead.
785 */
ba253fbf 786static inline int
eb28be2b 787submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
18772641
AK
788 unsigned offset, unsigned len, sector_t blocknr,
789 struct buffer_head *map_bh)
1da177e4
LT
790{
791 int ret = 0;
792
8a4c1e42 793 if (dio->op == REQ_OP_WRITE) {
98c4d57d
AM
794 /*
795 * Read accounting is performed in submit_bio()
796 */
797 task_io_account_write(len);
798 }
799
1da177e4
LT
800 /*
801 * Can we just grow the current page's presence in the dio?
802 */
eb28be2b
AK
803 if (sdio->cur_page == page &&
804 sdio->cur_page_offset + sdio->cur_page_len == offset &&
805 sdio->cur_page_block +
806 (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
807 sdio->cur_page_len += len;
1da177e4
LT
808 goto out;
809 }
810
811 /*
812 * If there's a deferred page already there then send it.
813 */
eb28be2b 814 if (sdio->cur_page) {
18772641 815 ret = dio_send_cur_page(dio, sdio, map_bh);
09cbfeaf 816 put_page(sdio->cur_page);
eb28be2b 817 sdio->cur_page = NULL;
1da177e4 818 if (ret)
b1058b98 819 return ret;
1da177e4
LT
820 }
821
09cbfeaf 822 get_page(page); /* It is in dio */
eb28be2b
AK
823 sdio->cur_page = page;
824 sdio->cur_page_offset = offset;
825 sdio->cur_page_len = len;
826 sdio->cur_page_block = blocknr;
827 sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
1da177e4 828out:
b1058b98
JK
829 /*
830 * If sdio->boundary then we want to schedule the IO now to
831 * avoid metadata seeks.
832 */
833 if (sdio->boundary) {
834 ret = dio_send_cur_page(dio, sdio, map_bh);
835 dio_bio_submit(dio, sdio);
09cbfeaf 836 put_page(sdio->cur_page);
b1058b98
JK
837 sdio->cur_page = NULL;
838 }
1da177e4
LT
839 return ret;
840}
841
1da177e4
LT
842/*
843 * If we are not writing the entire block and get_block() allocated
844 * the block for us, we need to fill-in the unused portion of the
845 * block with zeros. This happens only if user-buffer, fileoffset or
846 * io length is not filesystem block-size multiple.
847 *
848 * `end' is zero if we're doing the start of the IO, 1 at the end of the
849 * IO.
850 */
ba253fbf
AK
851static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
852 int end, struct buffer_head *map_bh)
1da177e4
LT
853{
854 unsigned dio_blocks_per_fs_block;
855 unsigned this_chunk_blocks; /* In dio_blocks */
856 unsigned this_chunk_bytes;
857 struct page *page;
858
eb28be2b 859 sdio->start_zero_done = 1;
18772641 860 if (!sdio->blkfactor || !buffer_new(map_bh))
1da177e4
LT
861 return;
862
eb28be2b
AK
863 dio_blocks_per_fs_block = 1 << sdio->blkfactor;
864 this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
1da177e4
LT
865
866 if (!this_chunk_blocks)
867 return;
868
869 /*
870 * We need to zero out part of an fs block. It is either at the
871 * beginning or the end of the fs block.
872 */
873 if (end)
874 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
875
eb28be2b 876 this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
1da177e4 877
557ed1fa 878 page = ZERO_PAGE(0);
eb28be2b 879 if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
18772641 880 sdio->next_block_for_io, map_bh))
1da177e4
LT
881 return;
882
eb28be2b 883 sdio->next_block_for_io += this_chunk_blocks;
1da177e4
LT
884}
885
886/*
887 * Walk the user pages, and the file, mapping blocks to disk and generating
888 * a sequence of (page,offset,len,block) mappings. These mappings are injected
889 * into submit_page_section(), which takes care of the next stage of submission
890 *
891 * Direct IO against a blockdev is different from a file. Because we can
892 * happily perform page-sized but 512-byte aligned IOs. It is important that
893 * blockdev IO be able to have fine alignment and large sizes.
894 *
1d8fa7a2 895 * So what we do is to permit the ->get_block function to populate bh.b_size
1da177e4
LT
896 * with the size of IO which is permitted at this offset and this i_blkbits.
897 *
898 * For best results, the blockdev should be set up with 512-byte i_blkbits and
1d8fa7a2 899 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives
1da177e4
LT
900 * fine alignment but still allows this function to work in PAGE_SIZE units.
901 */
18772641
AK
902static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
903 struct buffer_head *map_bh)
1da177e4 904{
eb28be2b 905 const unsigned blkbits = sdio->blkbits;
dd545b52 906 const unsigned i_blkbits = blkbits + sdio->blkfactor;
1da177e4
LT
907 int ret = 0;
908
eb28be2b 909 while (sdio->block_in_file < sdio->final_block_in_request) {
7b2c99d1
AV
910 struct page *page;
911 size_t from, to;
6fcc5420
BH
912
913 page = dio_get_page(dio, sdio);
1da177e4
LT
914 if (IS_ERR(page)) {
915 ret = PTR_ERR(page);
916 goto out;
917 }
6fcc5420
BH
918 from = sdio->head ? 0 : sdio->from;
919 to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
920 sdio->head++;
1da177e4 921
7b2c99d1 922 while (from < to) {
1da177e4
LT
923 unsigned this_chunk_bytes; /* # of bytes mapped */
924 unsigned this_chunk_blocks; /* # of blocks */
925 unsigned u;
926
eb28be2b 927 if (sdio->blocks_available == 0) {
1da177e4
LT
928 /*
929 * Need to go and map some more disk
930 */
931 unsigned long blkmask;
932 unsigned long dio_remainder;
933
18772641 934 ret = get_more_blocks(dio, sdio, map_bh);
1da177e4 935 if (ret) {
09cbfeaf 936 put_page(page);
1da177e4
LT
937 goto out;
938 }
939 if (!buffer_mapped(map_bh))
940 goto do_holes;
941
eb28be2b 942 sdio->blocks_available =
f734c89c 943 map_bh->b_size >> blkbits;
eb28be2b
AK
944 sdio->next_block_for_io =
945 map_bh->b_blocknr << sdio->blkfactor;
f734c89c
JK
946 if (buffer_new(map_bh)) {
947 clean_bdev_aliases(
948 map_bh->b_bdev,
949 map_bh->b_blocknr,
dd545b52 950 map_bh->b_size >> i_blkbits);
f734c89c 951 }
1da177e4 952
eb28be2b 953 if (!sdio->blkfactor)
1da177e4
LT
954 goto do_holes;
955
eb28be2b
AK
956 blkmask = (1 << sdio->blkfactor) - 1;
957 dio_remainder = (sdio->block_in_file & blkmask);
1da177e4
LT
958
959 /*
960 * If we are at the start of IO and that IO
961 * starts partway into a fs-block,
962 * dio_remainder will be non-zero. If the IO
963 * is a read then we can simply advance the IO
964 * cursor to the first block which is to be
965 * read. But if the IO is a write and the
966 * block was newly allocated we cannot do that;
967 * the start of the fs block must be zeroed out
968 * on-disk
969 */
970 if (!buffer_new(map_bh))
eb28be2b
AK
971 sdio->next_block_for_io += dio_remainder;
972 sdio->blocks_available -= dio_remainder;
1da177e4
LT
973 }
974do_holes:
975 /* Handle holes */
976 if (!buffer_mapped(map_bh)) {
35dc8161 977 loff_t i_size_aligned;
1da177e4
LT
978
979 /* AKPM: eargh, -ENOTBLK is a hack */
8a4c1e42 980 if (dio->op == REQ_OP_WRITE) {
09cbfeaf 981 put_page(page);
1da177e4
LT
982 return -ENOTBLK;
983 }
984
35dc8161
JM
985 /*
986 * Be sure to account for a partial block as the
987 * last block in the file
988 */
989 i_size_aligned = ALIGN(i_size_read(dio->inode),
990 1 << blkbits);
eb28be2b 991 if (sdio->block_in_file >=
35dc8161 992 i_size_aligned >> blkbits) {
1da177e4 993 /* We hit eof */
09cbfeaf 994 put_page(page);
1da177e4
LT
995 goto out;
996 }
7b2c99d1 997 zero_user(page, from, 1 << blkbits);
eb28be2b 998 sdio->block_in_file++;
7b2c99d1 999 from += 1 << blkbits;
3320c60b 1000 dio->result += 1 << blkbits;
1da177e4
LT
1001 goto next_block;
1002 }
1003
1004 /*
1005 * If we're performing IO which has an alignment which
1006 * is finer than the underlying fs, go check to see if
1007 * we must zero out the start of this block.
1008 */
eb28be2b 1009 if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
18772641 1010 dio_zero_block(dio, sdio, 0, map_bh);
1da177e4
LT
1011
1012 /*
1013 * Work out, in this_chunk_blocks, how much disk we
1014 * can add to this page
1015 */
eb28be2b 1016 this_chunk_blocks = sdio->blocks_available;
7b2c99d1 1017 u = (to - from) >> blkbits;
1da177e4
LT
1018 if (this_chunk_blocks > u)
1019 this_chunk_blocks = u;
eb28be2b 1020 u = sdio->final_block_in_request - sdio->block_in_file;
1da177e4
LT
1021 if (this_chunk_blocks > u)
1022 this_chunk_blocks = u;
1023 this_chunk_bytes = this_chunk_blocks << blkbits;
1024 BUG_ON(this_chunk_bytes == 0);
1025
092c8d46
JK
1026 if (this_chunk_blocks == sdio->blocks_available)
1027 sdio->boundary = buffer_boundary(map_bh);
eb28be2b 1028 ret = submit_page_section(dio, sdio, page,
7b2c99d1 1029 from,
eb28be2b 1030 this_chunk_bytes,
18772641
AK
1031 sdio->next_block_for_io,
1032 map_bh);
1da177e4 1033 if (ret) {
09cbfeaf 1034 put_page(page);
1da177e4
LT
1035 goto out;
1036 }
eb28be2b 1037 sdio->next_block_for_io += this_chunk_blocks;
1da177e4 1038
eb28be2b 1039 sdio->block_in_file += this_chunk_blocks;
7b2c99d1
AV
1040 from += this_chunk_bytes;
1041 dio->result += this_chunk_bytes;
eb28be2b 1042 sdio->blocks_available -= this_chunk_blocks;
1da177e4 1043next_block:
eb28be2b
AK
1044 BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1045 if (sdio->block_in_file == sdio->final_block_in_request)
1da177e4
LT
1046 break;
1047 }
1048
1049 /* Drop the ref which was taken in get_user_pages() */
09cbfeaf 1050 put_page(page);
1da177e4
LT
1051 }
1052out:
1053 return ret;
1054}
1055
847cc637 1056static inline int drop_refcount(struct dio *dio)
1da177e4 1057{
847cc637 1058 int ret2;
5eb6c7a2 1059 unsigned long flags;
1da177e4 1060
8459d86a
ZB
1061 /*
1062 * Sync will always be dropping the final ref and completing the
5eb6c7a2
ZB
1063 * operation. AIO can if it was a broken operation described above or
1064 * in fact if all the bios race to complete before we get here. In
1065 * that case dio_complete() translates the EIOCBQUEUED into the proper
04b2fa9f 1066 * return code that the caller will hand to ->complete().
5eb6c7a2
ZB
1067 *
1068 * This is managed by the bio_lock instead of being an atomic_t so that
1069 * completion paths can drop their ref and use the remaining count to
1070 * decide to wake the submission path atomically.
8459d86a 1071 */
5eb6c7a2
ZB
1072 spin_lock_irqsave(&dio->bio_lock, flags);
1073 ret2 = --dio->refcount;
1074 spin_unlock_irqrestore(&dio->bio_lock, flags);
847cc637 1075 return ret2;
1da177e4
LT
1076}
1077
eafdc7d1
CH
1078/*
1079 * This is a library function for use by filesystem drivers.
1080 *
1081 * The locking rules are governed by the flags parameter:
1082 * - if the flags value contains DIO_LOCKING we use a fancy locking
1083 * scheme for dumb filesystems.
1084 * For writes this function is called under i_mutex and returns with
1085 * i_mutex held, for reads, i_mutex is not held on entry, but it is
1086 * taken and dropped again before returning.
eafdc7d1
CH
1087 * - if the flags value does NOT contain DIO_LOCKING we don't use any
1088 * internal locking but rather rely on the filesystem to synchronize
1089 * direct I/O reads/writes versus each other and truncate.
df2d6f26
CH
1090 *
1091 * To help with locking against truncate we incremented the i_dio_count
1092 * counter before starting direct I/O, and decrement it once we are done.
1093 * Truncate can wait for it to reach zero to provide exclusion. It is
1094 * expected that filesystem provide exclusion between new direct I/O
1095 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex,
1096 * but other filesystems need to take care of this on their own.
ba253fbf
AK
1097 *
1098 * NOTE: if you pass "sdio" to anything by pointer make sure that function
1099 * is always inlined. Otherwise gcc is unable to split the structure into
1100 * individual fields and will generate much worse code. This is important
1101 * for the whole file.
eafdc7d1 1102 */
65dd2aa9 1103static inline ssize_t
17f8c842
OS
1104do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1105 struct block_device *bdev, struct iov_iter *iter,
c8b8e32d 1106 get_block_t get_block, dio_iodone_t end_io,
17f8c842 1107 dio_submit_t submit_io, int flags)
1da177e4 1108{
ab73857e
LT
1109 unsigned i_blkbits = ACCESS_ONCE(inode->i_blkbits);
1110 unsigned blkbits = i_blkbits;
1da177e4
LT
1111 unsigned blocksize_mask = (1 << blkbits) - 1;
1112 ssize_t retval = -EINVAL;
af436472 1113 size_t count = iov_iter_count(iter);
c8b8e32d 1114 loff_t offset = iocb->ki_pos;
af436472 1115 loff_t end = offset + count;
1da177e4 1116 struct dio *dio;
eb28be2b 1117 struct dio_submit sdio = { 0, };
847cc637 1118 struct buffer_head map_bh = { 0, };
647d1e4c 1119 struct blk_plug plug;
886a3911 1120 unsigned long align = offset | iov_iter_alignment(iter);
1da177e4 1121
65dd2aa9
AK
1122 /*
1123 * Avoid references to bdev if not absolutely needed to give
1124 * the early prefetch in the caller enough time.
1125 */
1da177e4 1126
886a3911 1127 if (align & blocksize_mask) {
1da177e4 1128 if (bdev)
65dd2aa9 1129 blkbits = blksize_bits(bdev_logical_block_size(bdev));
1da177e4 1130 blocksize_mask = (1 << blkbits) - 1;
886a3911 1131 if (align & blocksize_mask)
1da177e4
LT
1132 goto out;
1133 }
1134
f9b5570d 1135 /* watch out for a 0 len io from a tricksy fs */
17f8c842 1136 if (iov_iter_rw(iter) == READ && !iov_iter_count(iter))
f9b5570d
CH
1137 return 0;
1138
6e8267f5 1139 dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1da177e4
LT
1140 retval = -ENOMEM;
1141 if (!dio)
1142 goto out;
23aee091
JM
1143 /*
1144 * Believe it or not, zeroing out the page array caused a .5%
1145 * performance regression in a database benchmark. So, we take
1146 * care to only zero out what's needed.
1147 */
1148 memset(dio, 0, offsetof(struct dio, pages));
1da177e4 1149
5fe878ae
CH
1150 dio->flags = flags;
1151 if (dio->flags & DIO_LOCKING) {
17f8c842 1152 if (iov_iter_rw(iter) == READ) {
5fe878ae
CH
1153 struct address_space *mapping =
1154 iocb->ki_filp->f_mapping;
1da177e4 1155
5fe878ae 1156 /* will be released by direct_io_worker */
5955102c 1157 inode_lock(inode);
1da177e4
LT
1158
1159 retval = filemap_write_and_wait_range(mapping, offset,
1160 end - 1);
1161 if (retval) {
5955102c 1162 inode_unlock(inode);
6e8267f5 1163 kmem_cache_free(dio_cache, dio);
1da177e4
LT
1164 goto out;
1165 }
1da177e4 1166 }
1da177e4
LT
1167 }
1168
74cedf9b
JK
1169 /* Once we sampled i_size check for reads beyond EOF */
1170 dio->i_size = i_size_read(inode);
1171 if (iov_iter_rw(iter) == READ && offset >= dio->i_size) {
1172 if (dio->flags & DIO_LOCKING)
5955102c 1173 inode_unlock(inode);
74cedf9b 1174 kmem_cache_free(dio_cache, dio);
2d4594ac 1175 retval = 0;
74cedf9b
JK
1176 goto out;
1177 }
1178
1da177e4 1179 /*
60392573
CH
1180 * For file extending writes updating i_size before data writeouts
1181 * complete can expose uninitialized blocks in dumb filesystems.
1182 * In that case we need to wait for I/O completion even if asked
1183 * for an asynchronous write.
1da177e4 1184 */
60392573
CH
1185 if (is_sync_kiocb(iocb))
1186 dio->is_async = false;
1187 else if (!(dio->flags & DIO_ASYNC_EXTEND) &&
17f8c842 1188 iov_iter_rw(iter) == WRITE && end > i_size_read(inode))
60392573
CH
1189 dio->is_async = false;
1190 else
1191 dio->is_async = true;
1192
847cc637 1193 dio->inode = inode;
8a4c1e42
MC
1194 if (iov_iter_rw(iter) == WRITE) {
1195 dio->op = REQ_OP_WRITE;
70fd7614 1196 dio->op_flags = REQ_SYNC | REQ_IDLE;
8a4c1e42
MC
1197 } else {
1198 dio->op = REQ_OP_READ;
1199 }
02afc27f
CH
1200
1201 /*
1202 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1203 * so that we can call ->fsync.
1204 */
17f8c842 1205 if (dio->is_async && iov_iter_rw(iter) == WRITE &&
02afc27f
CH
1206 ((iocb->ki_filp->f_flags & O_DSYNC) ||
1207 IS_SYNC(iocb->ki_filp->f_mapping->host))) {
1208 retval = dio_set_defer_completion(dio);
1209 if (retval) {
1210 /*
1211 * We grab i_mutex only for reads so we don't have
1212 * to release it here
1213 */
1214 kmem_cache_free(dio_cache, dio);
1215 goto out;
1216 }
1217 }
1218
1219 /*
1220 * Will be decremented at I/O completion time.
1221 */
fe0f07d0
JA
1222 if (!(dio->flags & DIO_SKIP_DIO_COUNT))
1223 inode_dio_begin(inode);
02afc27f
CH
1224
1225 retval = 0;
847cc637 1226 sdio.blkbits = blkbits;
ab73857e 1227 sdio.blkfactor = i_blkbits - blkbits;
847cc637
AK
1228 sdio.block_in_file = offset >> blkbits;
1229
1230 sdio.get_block = get_block;
1231 dio->end_io = end_io;
1232 sdio.submit_io = submit_io;
1233 sdio.final_block_in_bio = -1;
1234 sdio.next_block_for_io = -1;
1235
1236 dio->iocb = iocb;
847cc637
AK
1237
1238 spin_lock_init(&dio->bio_lock);
1239 dio->refcount = 1;
1240
53cbf3b1 1241 dio->should_dirty = (iter->type == ITER_IOVEC);
7b2c99d1
AV
1242 sdio.iter = iter;
1243 sdio.final_block_in_request =
1244 (offset + iov_iter_count(iter)) >> blkbits;
1245
847cc637
AK
1246 /*
1247 * In case of non-aligned buffers, we may need 2 more
1248 * pages since we need to zero out first and last block.
1249 */
1250 if (unlikely(sdio.blkfactor))
1251 sdio.pages_in_io = 2;
1252
f67da30c 1253 sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
847cc637 1254
647d1e4c
FW
1255 blk_start_plug(&plug);
1256
7b2c99d1
AV
1257 retval = do_direct_IO(dio, &sdio, &map_bh);
1258 if (retval)
1259 dio_cleanup(dio, &sdio);
847cc637
AK
1260
1261 if (retval == -ENOTBLK) {
1262 /*
1263 * The remaining part of the request will be
1264 * be handled by buffered I/O when we return
1265 */
1266 retval = 0;
1267 }
1268 /*
1269 * There may be some unwritten disk at the end of a part-written
1270 * fs-block-sized block. Go zero that now.
1271 */
1272 dio_zero_block(dio, &sdio, 1, &map_bh);
1273
1274 if (sdio.cur_page) {
1275 ssize_t ret2;
1276
1277 ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1278 if (retval == 0)
1279 retval = ret2;
09cbfeaf 1280 put_page(sdio.cur_page);
847cc637
AK
1281 sdio.cur_page = NULL;
1282 }
1283 if (sdio.bio)
1284 dio_bio_submit(dio, &sdio);
1285
647d1e4c
FW
1286 blk_finish_plug(&plug);
1287
847cc637
AK
1288 /*
1289 * It is possible that, we return short IO due to end of file.
1290 * In that case, we need to release all the pages we got hold on.
1291 */
1292 dio_cleanup(dio, &sdio);
1293
1294 /*
1295 * All block lookups have been performed. For READ requests
1296 * we can let i_mutex go now that its achieved its purpose
1297 * of protecting us from looking up uninitialized blocks.
1298 */
17f8c842 1299 if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING))
5955102c 1300 inode_unlock(dio->inode);
847cc637
AK
1301
1302 /*
1303 * The only time we want to leave bios in flight is when a successful
1304 * partial aio read or full aio write have been setup. In that case
1305 * bio completion will call aio_complete. The only time it's safe to
1306 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1307 * This had *better* be the only place that raises -EIOCBQUEUED.
1308 */
1309 BUG_ON(retval == -EIOCBQUEUED);
1310 if (dio->is_async && retval == 0 && dio->result &&
17f8c842 1311 (iov_iter_rw(iter) == READ || dio->result == count))
847cc637 1312 retval = -EIOCBQUEUED;
af436472 1313 else
847cc637
AK
1314 dio_await_completion(dio);
1315
1316 if (drop_refcount(dio) == 0) {
716b9bc0 1317 retval = dio_complete(dio, retval, false);
847cc637
AK
1318 } else
1319 BUG_ON(retval != -EIOCBQUEUED);
1da177e4 1320
7bb46a67 1321out:
1322 return retval;
1323}
65dd2aa9 1324
17f8c842
OS
1325ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1326 struct block_device *bdev, struct iov_iter *iter,
c8b8e32d 1327 get_block_t get_block,
17f8c842
OS
1328 dio_iodone_t end_io, dio_submit_t submit_io,
1329 int flags)
65dd2aa9
AK
1330{
1331 /*
1332 * The block device state is needed in the end to finally
1333 * submit everything. Since it's likely to be cache cold
1334 * prefetch it here as first thing to hide some of the
1335 * latency.
1336 *
1337 * Attempt to prefetch the pieces we likely need later.
1338 */
1339 prefetch(&bdev->bd_disk->part_tbl);
1340 prefetch(bdev->bd_queue);
1341 prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES);
1342
c8b8e32d 1343 return do_blockdev_direct_IO(iocb, inode, bdev, iter, get_block,
17f8c842 1344 end_io, submit_io, flags);
65dd2aa9
AK
1345}
1346
1da177e4 1347EXPORT_SYMBOL(__blockdev_direct_IO);
6e8267f5
AK
1348
1349static __init int dio_init(void)
1350{
1351 dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1352 return 0;
1353}
1354module_init(dio_init)