]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - fs/namespace.c
mnt: In umount_tree reuse mnt_list instead of mnt_hash
[mirror_ubuntu-zesty-kernel.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4 11#include <linux/syscalls.h>
d10577a8 12#include <linux/export.h>
16f7e0fe 13#include <linux/capability.h>
6b3286ed 14#include <linux/mnt_namespace.h>
771b1371 15#include <linux/user_namespace.h>
1da177e4
LT
16#include <linux/namei.h>
17#include <linux/security.h>
73cd49ec 18#include <linux/idr.h>
57f150a5 19#include <linux/init.h> /* init_rootfs */
d10577a8
AV
20#include <linux/fs_struct.h> /* get_fs_root et.al. */
21#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22#include <linux/uaccess.h>
0bb80f24 23#include <linux/proc_ns.h>
20b4fb48 24#include <linux/magic.h>
0818bf27 25#include <linux/bootmem.h>
9ea459e1 26#include <linux/task_work.h>
07b20889 27#include "pnode.h"
948730b0 28#include "internal.h"
1da177e4 29
0818bf27
AV
30static unsigned int m_hash_mask __read_mostly;
31static unsigned int m_hash_shift __read_mostly;
32static unsigned int mp_hash_mask __read_mostly;
33static unsigned int mp_hash_shift __read_mostly;
34
35static __initdata unsigned long mhash_entries;
36static int __init set_mhash_entries(char *str)
37{
38 if (!str)
39 return 0;
40 mhash_entries = simple_strtoul(str, &str, 0);
41 return 1;
42}
43__setup("mhash_entries=", set_mhash_entries);
44
45static __initdata unsigned long mphash_entries;
46static int __init set_mphash_entries(char *str)
47{
48 if (!str)
49 return 0;
50 mphash_entries = simple_strtoul(str, &str, 0);
51 return 1;
52}
53__setup("mphash_entries=", set_mphash_entries);
13f14b4d 54
c7999c36 55static u64 event;
73cd49ec 56static DEFINE_IDA(mnt_id_ida);
719f5d7f 57static DEFINE_IDA(mnt_group_ida);
99b7db7b 58static DEFINE_SPINLOCK(mnt_id_lock);
f21f6220
AV
59static int mnt_id_start = 0;
60static int mnt_group_start = 1;
1da177e4 61
38129a13 62static struct hlist_head *mount_hashtable __read_mostly;
0818bf27 63static struct hlist_head *mountpoint_hashtable __read_mostly;
e18b890b 64static struct kmem_cache *mnt_cache __read_mostly;
59aa0da8 65static DECLARE_RWSEM(namespace_sem);
1da177e4 66
f87fd4c2 67/* /sys/fs */
00d26666
GKH
68struct kobject *fs_kobj;
69EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 70
99b7db7b
NP
71/*
72 * vfsmount lock may be taken for read to prevent changes to the
73 * vfsmount hash, ie. during mountpoint lookups or walking back
74 * up the tree.
75 *
76 * It should be taken for write in all cases where the vfsmount
77 * tree or hash is modified or when a vfsmount structure is modified.
78 */
48a066e7 79__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
99b7db7b 80
38129a13 81static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 82{
b58fed8b
RP
83 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
84 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
0818bf27
AV
85 tmp = tmp + (tmp >> m_hash_shift);
86 return &mount_hashtable[tmp & m_hash_mask];
87}
88
89static inline struct hlist_head *mp_hash(struct dentry *dentry)
90{
91 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
92 tmp = tmp + (tmp >> mp_hash_shift);
93 return &mountpoint_hashtable[tmp & mp_hash_mask];
1da177e4
LT
94}
95
99b7db7b
NP
96/*
97 * allocation is serialized by namespace_sem, but we need the spinlock to
98 * serialize with freeing.
99 */
b105e270 100static int mnt_alloc_id(struct mount *mnt)
73cd49ec
MS
101{
102 int res;
103
104retry:
105 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
99b7db7b 106 spin_lock(&mnt_id_lock);
15169fe7 107 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
f21f6220 108 if (!res)
15169fe7 109 mnt_id_start = mnt->mnt_id + 1;
99b7db7b 110 spin_unlock(&mnt_id_lock);
73cd49ec
MS
111 if (res == -EAGAIN)
112 goto retry;
113
114 return res;
115}
116
b105e270 117static void mnt_free_id(struct mount *mnt)
73cd49ec 118{
15169fe7 119 int id = mnt->mnt_id;
99b7db7b 120 spin_lock(&mnt_id_lock);
f21f6220
AV
121 ida_remove(&mnt_id_ida, id);
122 if (mnt_id_start > id)
123 mnt_id_start = id;
99b7db7b 124 spin_unlock(&mnt_id_lock);
73cd49ec
MS
125}
126
719f5d7f
MS
127/*
128 * Allocate a new peer group ID
129 *
130 * mnt_group_ida is protected by namespace_sem
131 */
4b8b21f4 132static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 133{
f21f6220
AV
134 int res;
135
719f5d7f
MS
136 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
137 return -ENOMEM;
138
f21f6220
AV
139 res = ida_get_new_above(&mnt_group_ida,
140 mnt_group_start,
15169fe7 141 &mnt->mnt_group_id);
f21f6220 142 if (!res)
15169fe7 143 mnt_group_start = mnt->mnt_group_id + 1;
f21f6220
AV
144
145 return res;
719f5d7f
MS
146}
147
148/*
149 * Release a peer group ID
150 */
4b8b21f4 151void mnt_release_group_id(struct mount *mnt)
719f5d7f 152{
15169fe7 153 int id = mnt->mnt_group_id;
f21f6220
AV
154 ida_remove(&mnt_group_ida, id);
155 if (mnt_group_start > id)
156 mnt_group_start = id;
15169fe7 157 mnt->mnt_group_id = 0;
719f5d7f
MS
158}
159
b3e19d92
NP
160/*
161 * vfsmount lock must be held for read
162 */
83adc753 163static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
164{
165#ifdef CONFIG_SMP
68e8a9fe 166 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
167#else
168 preempt_disable();
68e8a9fe 169 mnt->mnt_count += n;
b3e19d92
NP
170 preempt_enable();
171#endif
172}
173
b3e19d92
NP
174/*
175 * vfsmount lock must be held for write
176 */
83adc753 177unsigned int mnt_get_count(struct mount *mnt)
b3e19d92
NP
178{
179#ifdef CONFIG_SMP
f03c6599 180 unsigned int count = 0;
b3e19d92
NP
181 int cpu;
182
183 for_each_possible_cpu(cpu) {
68e8a9fe 184 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
185 }
186
187 return count;
188#else
68e8a9fe 189 return mnt->mnt_count;
b3e19d92
NP
190#endif
191}
192
87b95ce0
AV
193static void drop_mountpoint(struct fs_pin *p)
194{
195 struct mount *m = container_of(p, struct mount, mnt_umount);
196 dput(m->mnt_ex_mountpoint);
197 pin_remove(p);
198 mntput(&m->mnt);
199}
200
b105e270 201static struct mount *alloc_vfsmnt(const char *name)
1da177e4 202{
c63181e6
AV
203 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
204 if (mnt) {
73cd49ec
MS
205 int err;
206
c63181e6 207 err = mnt_alloc_id(mnt);
88b38782
LZ
208 if (err)
209 goto out_free_cache;
210
211 if (name) {
fcc139ae 212 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
c63181e6 213 if (!mnt->mnt_devname)
88b38782 214 goto out_free_id;
73cd49ec
MS
215 }
216
b3e19d92 217#ifdef CONFIG_SMP
c63181e6
AV
218 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
219 if (!mnt->mnt_pcp)
b3e19d92
NP
220 goto out_free_devname;
221
c63181e6 222 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 223#else
c63181e6
AV
224 mnt->mnt_count = 1;
225 mnt->mnt_writers = 0;
b3e19d92
NP
226#endif
227
38129a13 228 INIT_HLIST_NODE(&mnt->mnt_hash);
c63181e6
AV
229 INIT_LIST_HEAD(&mnt->mnt_child);
230 INIT_LIST_HEAD(&mnt->mnt_mounts);
231 INIT_LIST_HEAD(&mnt->mnt_list);
232 INIT_LIST_HEAD(&mnt->mnt_expire);
233 INIT_LIST_HEAD(&mnt->mnt_share);
234 INIT_LIST_HEAD(&mnt->mnt_slave_list);
235 INIT_LIST_HEAD(&mnt->mnt_slave);
0a5eb7c8 236 INIT_HLIST_NODE(&mnt->mnt_mp_list);
2504c5d6
AG
237#ifdef CONFIG_FSNOTIFY
238 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
d3ef3d73 239#endif
87b95ce0 240 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
1da177e4 241 }
c63181e6 242 return mnt;
88b38782 243
d3ef3d73 244#ifdef CONFIG_SMP
245out_free_devname:
fcc139ae 246 kfree_const(mnt->mnt_devname);
d3ef3d73 247#endif
88b38782 248out_free_id:
c63181e6 249 mnt_free_id(mnt);
88b38782 250out_free_cache:
c63181e6 251 kmem_cache_free(mnt_cache, mnt);
88b38782 252 return NULL;
1da177e4
LT
253}
254
3d733633
DH
255/*
256 * Most r/o checks on a fs are for operations that take
257 * discrete amounts of time, like a write() or unlink().
258 * We must keep track of when those operations start
259 * (for permission checks) and when they end, so that
260 * we can determine when writes are able to occur to
261 * a filesystem.
262 */
263/*
264 * __mnt_is_readonly: check whether a mount is read-only
265 * @mnt: the mount to check for its write status
266 *
267 * This shouldn't be used directly ouside of the VFS.
268 * It does not guarantee that the filesystem will stay
269 * r/w, just that it is right *now*. This can not and
270 * should not be used in place of IS_RDONLY(inode).
271 * mnt_want/drop_write() will _keep_ the filesystem
272 * r/w.
273 */
274int __mnt_is_readonly(struct vfsmount *mnt)
275{
2e4b7fcd
DH
276 if (mnt->mnt_flags & MNT_READONLY)
277 return 1;
278 if (mnt->mnt_sb->s_flags & MS_RDONLY)
279 return 1;
280 return 0;
3d733633
DH
281}
282EXPORT_SYMBOL_GPL(__mnt_is_readonly);
283
83adc753 284static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73 285{
286#ifdef CONFIG_SMP
68e8a9fe 287 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 288#else
68e8a9fe 289 mnt->mnt_writers++;
d3ef3d73 290#endif
291}
3d733633 292
83adc753 293static inline void mnt_dec_writers(struct mount *mnt)
3d733633 294{
d3ef3d73 295#ifdef CONFIG_SMP
68e8a9fe 296 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 297#else
68e8a9fe 298 mnt->mnt_writers--;
d3ef3d73 299#endif
3d733633 300}
3d733633 301
83adc753 302static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 303{
d3ef3d73 304#ifdef CONFIG_SMP
305 unsigned int count = 0;
3d733633 306 int cpu;
3d733633
DH
307
308 for_each_possible_cpu(cpu) {
68e8a9fe 309 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 310 }
3d733633 311
d3ef3d73 312 return count;
313#else
314 return mnt->mnt_writers;
315#endif
3d733633
DH
316}
317
4ed5e82f
MS
318static int mnt_is_readonly(struct vfsmount *mnt)
319{
320 if (mnt->mnt_sb->s_readonly_remount)
321 return 1;
322 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
323 smp_rmb();
324 return __mnt_is_readonly(mnt);
325}
326
8366025e 327/*
eb04c282
JK
328 * Most r/o & frozen checks on a fs are for operations that take discrete
329 * amounts of time, like a write() or unlink(). We must keep track of when
330 * those operations start (for permission checks) and when they end, so that we
331 * can determine when writes are able to occur to a filesystem.
8366025e
DH
332 */
333/**
eb04c282 334 * __mnt_want_write - get write access to a mount without freeze protection
83adc753 335 * @m: the mount on which to take a write
8366025e 336 *
eb04c282
JK
337 * This tells the low-level filesystem that a write is about to be performed to
338 * it, and makes sure that writes are allowed (mnt it read-write) before
339 * returning success. This operation does not protect against filesystem being
340 * frozen. When the write operation is finished, __mnt_drop_write() must be
341 * called. This is effectively a refcount.
8366025e 342 */
eb04c282 343int __mnt_want_write(struct vfsmount *m)
8366025e 344{
83adc753 345 struct mount *mnt = real_mount(m);
3d733633 346 int ret = 0;
3d733633 347
d3ef3d73 348 preempt_disable();
c6653a83 349 mnt_inc_writers(mnt);
d3ef3d73 350 /*
c6653a83 351 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73 352 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
353 * incremented count after it has set MNT_WRITE_HOLD.
354 */
355 smp_mb();
1e75529e 356 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
d3ef3d73 357 cpu_relax();
358 /*
359 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
360 * be set to match its requirements. So we must not load that until
361 * MNT_WRITE_HOLD is cleared.
362 */
363 smp_rmb();
4ed5e82f 364 if (mnt_is_readonly(m)) {
c6653a83 365 mnt_dec_writers(mnt);
3d733633 366 ret = -EROFS;
3d733633 367 }
d3ef3d73 368 preempt_enable();
eb04c282
JK
369
370 return ret;
371}
372
373/**
374 * mnt_want_write - get write access to a mount
375 * @m: the mount on which to take a write
376 *
377 * This tells the low-level filesystem that a write is about to be performed to
378 * it, and makes sure that writes are allowed (mount is read-write, filesystem
379 * is not frozen) before returning success. When the write operation is
380 * finished, mnt_drop_write() must be called. This is effectively a refcount.
381 */
382int mnt_want_write(struct vfsmount *m)
383{
384 int ret;
385
386 sb_start_write(m->mnt_sb);
387 ret = __mnt_want_write(m);
388 if (ret)
389 sb_end_write(m->mnt_sb);
3d733633 390 return ret;
8366025e
DH
391}
392EXPORT_SYMBOL_GPL(mnt_want_write);
393
96029c4e 394/**
395 * mnt_clone_write - get write access to a mount
396 * @mnt: the mount on which to take a write
397 *
398 * This is effectively like mnt_want_write, except
399 * it must only be used to take an extra write reference
400 * on a mountpoint that we already know has a write reference
401 * on it. This allows some optimisation.
402 *
403 * After finished, mnt_drop_write must be called as usual to
404 * drop the reference.
405 */
406int mnt_clone_write(struct vfsmount *mnt)
407{
408 /* superblock may be r/o */
409 if (__mnt_is_readonly(mnt))
410 return -EROFS;
411 preempt_disable();
83adc753 412 mnt_inc_writers(real_mount(mnt));
96029c4e 413 preempt_enable();
414 return 0;
415}
416EXPORT_SYMBOL_GPL(mnt_clone_write);
417
418/**
eb04c282 419 * __mnt_want_write_file - get write access to a file's mount
96029c4e 420 * @file: the file who's mount on which to take a write
421 *
eb04c282 422 * This is like __mnt_want_write, but it takes a file and can
96029c4e 423 * do some optimisations if the file is open for write already
424 */
eb04c282 425int __mnt_want_write_file(struct file *file)
96029c4e 426{
83f936c7 427 if (!(file->f_mode & FMODE_WRITER))
eb04c282 428 return __mnt_want_write(file->f_path.mnt);
96029c4e 429 else
430 return mnt_clone_write(file->f_path.mnt);
431}
eb04c282
JK
432
433/**
434 * mnt_want_write_file - get write access to a file's mount
435 * @file: the file who's mount on which to take a write
436 *
437 * This is like mnt_want_write, but it takes a file and can
438 * do some optimisations if the file is open for write already
439 */
440int mnt_want_write_file(struct file *file)
441{
442 int ret;
443
444 sb_start_write(file->f_path.mnt->mnt_sb);
445 ret = __mnt_want_write_file(file);
446 if (ret)
447 sb_end_write(file->f_path.mnt->mnt_sb);
448 return ret;
449}
96029c4e 450EXPORT_SYMBOL_GPL(mnt_want_write_file);
451
8366025e 452/**
eb04c282 453 * __mnt_drop_write - give up write access to a mount
8366025e
DH
454 * @mnt: the mount on which to give up write access
455 *
456 * Tells the low-level filesystem that we are done
457 * performing writes to it. Must be matched with
eb04c282 458 * __mnt_want_write() call above.
8366025e 459 */
eb04c282 460void __mnt_drop_write(struct vfsmount *mnt)
8366025e 461{
d3ef3d73 462 preempt_disable();
83adc753 463 mnt_dec_writers(real_mount(mnt));
d3ef3d73 464 preempt_enable();
8366025e 465}
eb04c282
JK
466
467/**
468 * mnt_drop_write - give up write access to a mount
469 * @mnt: the mount on which to give up write access
470 *
471 * Tells the low-level filesystem that we are done performing writes to it and
472 * also allows filesystem to be frozen again. Must be matched with
473 * mnt_want_write() call above.
474 */
475void mnt_drop_write(struct vfsmount *mnt)
476{
477 __mnt_drop_write(mnt);
478 sb_end_write(mnt->mnt_sb);
479}
8366025e
DH
480EXPORT_SYMBOL_GPL(mnt_drop_write);
481
eb04c282
JK
482void __mnt_drop_write_file(struct file *file)
483{
484 __mnt_drop_write(file->f_path.mnt);
485}
486
2a79f17e
AV
487void mnt_drop_write_file(struct file *file)
488{
489 mnt_drop_write(file->f_path.mnt);
490}
491EXPORT_SYMBOL(mnt_drop_write_file);
492
83adc753 493static int mnt_make_readonly(struct mount *mnt)
8366025e 494{
3d733633
DH
495 int ret = 0;
496
719ea2fb 497 lock_mount_hash();
83adc753 498 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 499 /*
d3ef3d73 500 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
501 * should be visible before we do.
3d733633 502 */
d3ef3d73 503 smp_mb();
504
3d733633 505 /*
d3ef3d73 506 * With writers on hold, if this value is zero, then there are
507 * definitely no active writers (although held writers may subsequently
508 * increment the count, they'll have to wait, and decrement it after
509 * seeing MNT_READONLY).
510 *
511 * It is OK to have counter incremented on one CPU and decremented on
512 * another: the sum will add up correctly. The danger would be when we
513 * sum up each counter, if we read a counter before it is incremented,
514 * but then read another CPU's count which it has been subsequently
515 * decremented from -- we would see more decrements than we should.
516 * MNT_WRITE_HOLD protects against this scenario, because
517 * mnt_want_write first increments count, then smp_mb, then spins on
518 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
519 * we're counting up here.
3d733633 520 */
c6653a83 521 if (mnt_get_writers(mnt) > 0)
d3ef3d73 522 ret = -EBUSY;
523 else
83adc753 524 mnt->mnt.mnt_flags |= MNT_READONLY;
d3ef3d73 525 /*
526 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
527 * that become unheld will see MNT_READONLY.
528 */
529 smp_wmb();
83adc753 530 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
719ea2fb 531 unlock_mount_hash();
3d733633 532 return ret;
8366025e 533}
8366025e 534
83adc753 535static void __mnt_unmake_readonly(struct mount *mnt)
2e4b7fcd 536{
719ea2fb 537 lock_mount_hash();
83adc753 538 mnt->mnt.mnt_flags &= ~MNT_READONLY;
719ea2fb 539 unlock_mount_hash();
2e4b7fcd
DH
540}
541
4ed5e82f
MS
542int sb_prepare_remount_readonly(struct super_block *sb)
543{
544 struct mount *mnt;
545 int err = 0;
546
8e8b8796
MS
547 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
548 if (atomic_long_read(&sb->s_remove_count))
549 return -EBUSY;
550
719ea2fb 551 lock_mount_hash();
4ed5e82f
MS
552 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
553 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
554 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
555 smp_mb();
556 if (mnt_get_writers(mnt) > 0) {
557 err = -EBUSY;
558 break;
559 }
560 }
561 }
8e8b8796
MS
562 if (!err && atomic_long_read(&sb->s_remove_count))
563 err = -EBUSY;
564
4ed5e82f
MS
565 if (!err) {
566 sb->s_readonly_remount = 1;
567 smp_wmb();
568 }
569 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
570 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
571 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
572 }
719ea2fb 573 unlock_mount_hash();
4ed5e82f
MS
574
575 return err;
576}
577
b105e270 578static void free_vfsmnt(struct mount *mnt)
1da177e4 579{
fcc139ae 580 kfree_const(mnt->mnt_devname);
d3ef3d73 581#ifdef CONFIG_SMP
68e8a9fe 582 free_percpu(mnt->mnt_pcp);
d3ef3d73 583#endif
b105e270 584 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
585}
586
8ffcb32e
DH
587static void delayed_free_vfsmnt(struct rcu_head *head)
588{
589 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
590}
591
48a066e7
AV
592/* call under rcu_read_lock */
593bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
594{
595 struct mount *mnt;
596 if (read_seqretry(&mount_lock, seq))
597 return false;
598 if (bastard == NULL)
599 return true;
600 mnt = real_mount(bastard);
601 mnt_add_count(mnt, 1);
602 if (likely(!read_seqretry(&mount_lock, seq)))
603 return true;
604 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
605 mnt_add_count(mnt, -1);
606 return false;
607 }
608 rcu_read_unlock();
609 mntput(bastard);
610 rcu_read_lock();
611 return false;
612}
613
1da177e4 614/*
474279dc 615 * find the first mount at @dentry on vfsmount @mnt.
48a066e7 616 * call under rcu_read_lock()
1da177e4 617 */
474279dc 618struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 619{
38129a13 620 struct hlist_head *head = m_hash(mnt, dentry);
474279dc
AV
621 struct mount *p;
622
38129a13 623 hlist_for_each_entry_rcu(p, head, mnt_hash)
474279dc
AV
624 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
625 return p;
626 return NULL;
627}
628
629/*
630 * find the last mount at @dentry on vfsmount @mnt.
48a066e7 631 * mount_lock must be held.
474279dc
AV
632 */
633struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
634{
38129a13
AV
635 struct mount *p, *res;
636 res = p = __lookup_mnt(mnt, dentry);
637 if (!p)
638 goto out;
639 hlist_for_each_entry_continue(p, mnt_hash) {
1d6a32ac
AV
640 if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
641 break;
642 res = p;
643 }
38129a13 644out:
1d6a32ac 645 return res;
1da177e4
LT
646}
647
a05964f3 648/*
f015f126
DH
649 * lookup_mnt - Return the first child mount mounted at path
650 *
651 * "First" means first mounted chronologically. If you create the
652 * following mounts:
653 *
654 * mount /dev/sda1 /mnt
655 * mount /dev/sda2 /mnt
656 * mount /dev/sda3 /mnt
657 *
658 * Then lookup_mnt() on the base /mnt dentry in the root mount will
659 * return successively the root dentry and vfsmount of /dev/sda1, then
660 * /dev/sda2, then /dev/sda3, then NULL.
661 *
662 * lookup_mnt takes a reference to the found vfsmount.
a05964f3 663 */
1c755af4 664struct vfsmount *lookup_mnt(struct path *path)
a05964f3 665{
c7105365 666 struct mount *child_mnt;
48a066e7
AV
667 struct vfsmount *m;
668 unsigned seq;
99b7db7b 669
48a066e7
AV
670 rcu_read_lock();
671 do {
672 seq = read_seqbegin(&mount_lock);
673 child_mnt = __lookup_mnt(path->mnt, path->dentry);
674 m = child_mnt ? &child_mnt->mnt : NULL;
675 } while (!legitimize_mnt(m, seq));
676 rcu_read_unlock();
677 return m;
a05964f3
RP
678}
679
7af1364f
EB
680/*
681 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
682 * current mount namespace.
683 *
684 * The common case is dentries are not mountpoints at all and that
685 * test is handled inline. For the slow case when we are actually
686 * dealing with a mountpoint of some kind, walk through all of the
687 * mounts in the current mount namespace and test to see if the dentry
688 * is a mountpoint.
689 *
690 * The mount_hashtable is not usable in the context because we
691 * need to identify all mounts that may be in the current mount
692 * namespace not just a mount that happens to have some specified
693 * parent mount.
694 */
695bool __is_local_mountpoint(struct dentry *dentry)
696{
697 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
698 struct mount *mnt;
699 bool is_covered = false;
700
701 if (!d_mountpoint(dentry))
702 goto out;
703
704 down_read(&namespace_sem);
705 list_for_each_entry(mnt, &ns->list, mnt_list) {
706 is_covered = (mnt->mnt_mountpoint == dentry);
707 if (is_covered)
708 break;
709 }
710 up_read(&namespace_sem);
711out:
712 return is_covered;
713}
714
e2dfa935 715static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
84d17192 716{
0818bf27 717 struct hlist_head *chain = mp_hash(dentry);
84d17192
AV
718 struct mountpoint *mp;
719
0818bf27 720 hlist_for_each_entry(mp, chain, m_hash) {
84d17192
AV
721 if (mp->m_dentry == dentry) {
722 /* might be worth a WARN_ON() */
723 if (d_unlinked(dentry))
724 return ERR_PTR(-ENOENT);
725 mp->m_count++;
726 return mp;
727 }
728 }
e2dfa935
EB
729 return NULL;
730}
731
732static struct mountpoint *new_mountpoint(struct dentry *dentry)
733{
734 struct hlist_head *chain = mp_hash(dentry);
735 struct mountpoint *mp;
736 int ret;
84d17192
AV
737
738 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
739 if (!mp)
740 return ERR_PTR(-ENOMEM);
741
eed81007
MS
742 ret = d_set_mounted(dentry);
743 if (ret) {
84d17192 744 kfree(mp);
eed81007 745 return ERR_PTR(ret);
84d17192 746 }
eed81007 747
84d17192
AV
748 mp->m_dentry = dentry;
749 mp->m_count = 1;
0818bf27 750 hlist_add_head(&mp->m_hash, chain);
0a5eb7c8 751 INIT_HLIST_HEAD(&mp->m_list);
84d17192
AV
752 return mp;
753}
754
755static void put_mountpoint(struct mountpoint *mp)
756{
757 if (!--mp->m_count) {
758 struct dentry *dentry = mp->m_dentry;
0a5eb7c8 759 BUG_ON(!hlist_empty(&mp->m_list));
84d17192
AV
760 spin_lock(&dentry->d_lock);
761 dentry->d_flags &= ~DCACHE_MOUNTED;
762 spin_unlock(&dentry->d_lock);
0818bf27 763 hlist_del(&mp->m_hash);
84d17192
AV
764 kfree(mp);
765 }
766}
767
143c8c91 768static inline int check_mnt(struct mount *mnt)
1da177e4 769{
6b3286ed 770 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
771}
772
99b7db7b
NP
773/*
774 * vfsmount lock must be held for write
775 */
6b3286ed 776static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
777{
778 if (ns) {
779 ns->event = ++event;
780 wake_up_interruptible(&ns->poll);
781 }
782}
783
99b7db7b
NP
784/*
785 * vfsmount lock must be held for write
786 */
6b3286ed 787static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
788{
789 if (ns && ns->event != event) {
790 ns->event = event;
791 wake_up_interruptible(&ns->poll);
792 }
793}
794
99b7db7b
NP
795/*
796 * vfsmount lock must be held for write
797 */
419148da
AV
798static void detach_mnt(struct mount *mnt, struct path *old_path)
799{
a73324da 800 old_path->dentry = mnt->mnt_mountpoint;
0714a533
AV
801 old_path->mnt = &mnt->mnt_parent->mnt;
802 mnt->mnt_parent = mnt;
a73324da 803 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 804 list_del_init(&mnt->mnt_child);
38129a13 805 hlist_del_init_rcu(&mnt->mnt_hash);
0a5eb7c8 806 hlist_del_init(&mnt->mnt_mp_list);
84d17192
AV
807 put_mountpoint(mnt->mnt_mp);
808 mnt->mnt_mp = NULL;
1da177e4
LT
809}
810
99b7db7b
NP
811/*
812 * vfsmount lock must be held for write
813 */
84d17192
AV
814void mnt_set_mountpoint(struct mount *mnt,
815 struct mountpoint *mp,
44d964d6 816 struct mount *child_mnt)
b90fa9ae 817{
84d17192 818 mp->m_count++;
3a2393d7 819 mnt_add_count(mnt, 1); /* essentially, that's mntget */
84d17192 820 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
3a2393d7 821 child_mnt->mnt_parent = mnt;
84d17192 822 child_mnt->mnt_mp = mp;
0a5eb7c8 823 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
b90fa9ae
RP
824}
825
99b7db7b
NP
826/*
827 * vfsmount lock must be held for write
828 */
84d17192
AV
829static void attach_mnt(struct mount *mnt,
830 struct mount *parent,
831 struct mountpoint *mp)
1da177e4 832{
84d17192 833 mnt_set_mountpoint(parent, mp, mnt);
38129a13 834 hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
84d17192 835 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
b90fa9ae
RP
836}
837
12a5b529
AV
838static void attach_shadowed(struct mount *mnt,
839 struct mount *parent,
840 struct mount *shadows)
841{
842 if (shadows) {
f6f99332 843 hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash);
12a5b529
AV
844 list_add(&mnt->mnt_child, &shadows->mnt_child);
845 } else {
846 hlist_add_head_rcu(&mnt->mnt_hash,
847 m_hash(&parent->mnt, mnt->mnt_mountpoint));
848 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
849 }
850}
851
b90fa9ae 852/*
99b7db7b 853 * vfsmount lock must be held for write
b90fa9ae 854 */
1d6a32ac 855static void commit_tree(struct mount *mnt, struct mount *shadows)
b90fa9ae 856{
0714a533 857 struct mount *parent = mnt->mnt_parent;
83adc753 858 struct mount *m;
b90fa9ae 859 LIST_HEAD(head);
143c8c91 860 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 861
0714a533 862 BUG_ON(parent == mnt);
b90fa9ae 863
1a4eeaf2 864 list_add_tail(&head, &mnt->mnt_list);
f7a99c5b 865 list_for_each_entry(m, &head, mnt_list)
143c8c91 866 m->mnt_ns = n;
f03c6599 867
b90fa9ae
RP
868 list_splice(&head, n->list.prev);
869
12a5b529 870 attach_shadowed(mnt, parent, shadows);
6b3286ed 871 touch_mnt_namespace(n);
1da177e4
LT
872}
873
909b0a88 874static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 875{
6b41d536
AV
876 struct list_head *next = p->mnt_mounts.next;
877 if (next == &p->mnt_mounts) {
1da177e4 878 while (1) {
909b0a88 879 if (p == root)
1da177e4 880 return NULL;
6b41d536
AV
881 next = p->mnt_child.next;
882 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 883 break;
0714a533 884 p = p->mnt_parent;
1da177e4
LT
885 }
886 }
6b41d536 887 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
888}
889
315fc83e 890static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 891{
6b41d536
AV
892 struct list_head *prev = p->mnt_mounts.prev;
893 while (prev != &p->mnt_mounts) {
894 p = list_entry(prev, struct mount, mnt_child);
895 prev = p->mnt_mounts.prev;
9676f0c6
RP
896 }
897 return p;
898}
899
9d412a43
AV
900struct vfsmount *
901vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
902{
b105e270 903 struct mount *mnt;
9d412a43
AV
904 struct dentry *root;
905
906 if (!type)
907 return ERR_PTR(-ENODEV);
908
909 mnt = alloc_vfsmnt(name);
910 if (!mnt)
911 return ERR_PTR(-ENOMEM);
912
913 if (flags & MS_KERNMOUNT)
b105e270 914 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43
AV
915
916 root = mount_fs(type, flags, name, data);
917 if (IS_ERR(root)) {
8ffcb32e 918 mnt_free_id(mnt);
9d412a43
AV
919 free_vfsmnt(mnt);
920 return ERR_CAST(root);
921 }
922
b105e270
AV
923 mnt->mnt.mnt_root = root;
924 mnt->mnt.mnt_sb = root->d_sb;
a73324da 925 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 926 mnt->mnt_parent = mnt;
719ea2fb 927 lock_mount_hash();
39f7c4db 928 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
719ea2fb 929 unlock_mount_hash();
b105e270 930 return &mnt->mnt;
9d412a43
AV
931}
932EXPORT_SYMBOL_GPL(vfs_kern_mount);
933
87129cc0 934static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 935 int flag)
1da177e4 936{
87129cc0 937 struct super_block *sb = old->mnt.mnt_sb;
be34d1a3
DH
938 struct mount *mnt;
939 int err;
1da177e4 940
be34d1a3
DH
941 mnt = alloc_vfsmnt(old->mnt_devname);
942 if (!mnt)
943 return ERR_PTR(-ENOMEM);
719f5d7f 944
7a472ef4 945 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
be34d1a3
DH
946 mnt->mnt_group_id = 0; /* not a peer of original */
947 else
948 mnt->mnt_group_id = old->mnt_group_id;
b90fa9ae 949
be34d1a3
DH
950 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
951 err = mnt_alloc_group_id(mnt);
952 if (err)
953 goto out_free;
1da177e4 954 }
be34d1a3 955
f2ebb3a9 956 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
132c94e3 957 /* Don't allow unprivileged users to change mount flags */
9566d674
EB
958 if (flag & CL_UNPRIVILEGED) {
959 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
960
961 if (mnt->mnt.mnt_flags & MNT_READONLY)
962 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
963
964 if (mnt->mnt.mnt_flags & MNT_NODEV)
965 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
966
967 if (mnt->mnt.mnt_flags & MNT_NOSUID)
968 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
969
970 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
971 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
972 }
132c94e3 973
5ff9d8a6 974 /* Don't allow unprivileged users to reveal what is under a mount */
381cacb1
EB
975 if ((flag & CL_UNPRIVILEGED) &&
976 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
5ff9d8a6
EB
977 mnt->mnt.mnt_flags |= MNT_LOCKED;
978
be34d1a3
DH
979 atomic_inc(&sb->s_active);
980 mnt->mnt.mnt_sb = sb;
981 mnt->mnt.mnt_root = dget(root);
982 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
983 mnt->mnt_parent = mnt;
719ea2fb 984 lock_mount_hash();
be34d1a3 985 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
719ea2fb 986 unlock_mount_hash();
be34d1a3 987
7a472ef4
EB
988 if ((flag & CL_SLAVE) ||
989 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
be34d1a3
DH
990 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
991 mnt->mnt_master = old;
992 CLEAR_MNT_SHARED(mnt);
993 } else if (!(flag & CL_PRIVATE)) {
994 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
995 list_add(&mnt->mnt_share, &old->mnt_share);
996 if (IS_MNT_SLAVE(old))
997 list_add(&mnt->mnt_slave, &old->mnt_slave);
998 mnt->mnt_master = old->mnt_master;
999 }
1000 if (flag & CL_MAKE_SHARED)
1001 set_mnt_shared(mnt);
1002
1003 /* stick the duplicate mount on the same expiry list
1004 * as the original if that was on one */
1005 if (flag & CL_EXPIRE) {
1006 if (!list_empty(&old->mnt_expire))
1007 list_add(&mnt->mnt_expire, &old->mnt_expire);
1008 }
1009
cb338d06 1010 return mnt;
719f5d7f
MS
1011
1012 out_free:
8ffcb32e 1013 mnt_free_id(mnt);
719f5d7f 1014 free_vfsmnt(mnt);
be34d1a3 1015 return ERR_PTR(err);
1da177e4
LT
1016}
1017
9ea459e1
AV
1018static void cleanup_mnt(struct mount *mnt)
1019{
1020 /*
1021 * This probably indicates that somebody messed
1022 * up a mnt_want/drop_write() pair. If this
1023 * happens, the filesystem was probably unable
1024 * to make r/w->r/o transitions.
1025 */
1026 /*
1027 * The locking used to deal with mnt_count decrement provides barriers,
1028 * so mnt_get_writers() below is safe.
1029 */
1030 WARN_ON(mnt_get_writers(mnt));
1031 if (unlikely(mnt->mnt_pins.first))
1032 mnt_pin_kill(mnt);
1033 fsnotify_vfsmount_delete(&mnt->mnt);
1034 dput(mnt->mnt.mnt_root);
1035 deactivate_super(mnt->mnt.mnt_sb);
1036 mnt_free_id(mnt);
1037 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1038}
1039
1040static void __cleanup_mnt(struct rcu_head *head)
1041{
1042 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1043}
1044
1045static LLIST_HEAD(delayed_mntput_list);
1046static void delayed_mntput(struct work_struct *unused)
1047{
1048 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1049 struct llist_node *next;
1050
1051 for (; node; node = next) {
1052 next = llist_next(node);
1053 cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
1054 }
1055}
1056static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1057
900148dc 1058static void mntput_no_expire(struct mount *mnt)
b3e19d92 1059{
48a066e7
AV
1060 rcu_read_lock();
1061 mnt_add_count(mnt, -1);
1062 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1063 rcu_read_unlock();
f03c6599 1064 return;
b3e19d92 1065 }
719ea2fb 1066 lock_mount_hash();
b3e19d92 1067 if (mnt_get_count(mnt)) {
48a066e7 1068 rcu_read_unlock();
719ea2fb 1069 unlock_mount_hash();
99b7db7b
NP
1070 return;
1071 }
48a066e7
AV
1072 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1073 rcu_read_unlock();
1074 unlock_mount_hash();
1075 return;
1076 }
1077 mnt->mnt.mnt_flags |= MNT_DOOMED;
1078 rcu_read_unlock();
962830df 1079
39f7c4db 1080 list_del(&mnt->mnt_instance);
719ea2fb 1081 unlock_mount_hash();
649a795a 1082
9ea459e1
AV
1083 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1084 struct task_struct *task = current;
1085 if (likely(!(task->flags & PF_KTHREAD))) {
1086 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1087 if (!task_work_add(task, &mnt->mnt_rcu, true))
1088 return;
1089 }
1090 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1091 schedule_delayed_work(&delayed_mntput_work, 1);
1092 return;
1093 }
1094 cleanup_mnt(mnt);
b3e19d92 1095}
b3e19d92
NP
1096
1097void mntput(struct vfsmount *mnt)
1098{
1099 if (mnt) {
863d684f 1100 struct mount *m = real_mount(mnt);
b3e19d92 1101 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
1102 if (unlikely(m->mnt_expiry_mark))
1103 m->mnt_expiry_mark = 0;
1104 mntput_no_expire(m);
b3e19d92
NP
1105 }
1106}
1107EXPORT_SYMBOL(mntput);
1108
1109struct vfsmount *mntget(struct vfsmount *mnt)
1110{
1111 if (mnt)
83adc753 1112 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
1113 return mnt;
1114}
1115EXPORT_SYMBOL(mntget);
1116
3064c356 1117struct vfsmount *mnt_clone_internal(struct path *path)
7b7b1ace 1118{
3064c356
AV
1119 struct mount *p;
1120 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1121 if (IS_ERR(p))
1122 return ERR_CAST(p);
1123 p->mnt.mnt_flags |= MNT_INTERNAL;
1124 return &p->mnt;
7b7b1ace 1125}
1da177e4 1126
b3b304a2
MS
1127static inline void mangle(struct seq_file *m, const char *s)
1128{
1129 seq_escape(m, s, " \t\n\\");
1130}
1131
1132/*
1133 * Simple .show_options callback for filesystems which don't want to
1134 * implement more complex mount option showing.
1135 *
1136 * See also save_mount_options().
1137 */
34c80b1d 1138int generic_show_options(struct seq_file *m, struct dentry *root)
b3b304a2 1139{
2a32cebd
AV
1140 const char *options;
1141
1142 rcu_read_lock();
34c80b1d 1143 options = rcu_dereference(root->d_sb->s_options);
b3b304a2
MS
1144
1145 if (options != NULL && options[0]) {
1146 seq_putc(m, ',');
1147 mangle(m, options);
1148 }
2a32cebd 1149 rcu_read_unlock();
b3b304a2
MS
1150
1151 return 0;
1152}
1153EXPORT_SYMBOL(generic_show_options);
1154
1155/*
1156 * If filesystem uses generic_show_options(), this function should be
1157 * called from the fill_super() callback.
1158 *
1159 * The .remount_fs callback usually needs to be handled in a special
1160 * way, to make sure, that previous options are not overwritten if the
1161 * remount fails.
1162 *
1163 * Also note, that if the filesystem's .remount_fs function doesn't
1164 * reset all options to their default value, but changes only newly
1165 * given options, then the displayed options will not reflect reality
1166 * any more.
1167 */
1168void save_mount_options(struct super_block *sb, char *options)
1169{
2a32cebd
AV
1170 BUG_ON(sb->s_options);
1171 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
b3b304a2
MS
1172}
1173EXPORT_SYMBOL(save_mount_options);
1174
2a32cebd
AV
1175void replace_mount_options(struct super_block *sb, char *options)
1176{
1177 char *old = sb->s_options;
1178 rcu_assign_pointer(sb->s_options, options);
1179 if (old) {
1180 synchronize_rcu();
1181 kfree(old);
1182 }
1183}
1184EXPORT_SYMBOL(replace_mount_options);
1185
a1a2c409 1186#ifdef CONFIG_PROC_FS
0226f492 1187/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
1188static void *m_start(struct seq_file *m, loff_t *pos)
1189{
6ce6e24e 1190 struct proc_mounts *p = proc_mounts(m);
1da177e4 1191
390c6843 1192 down_read(&namespace_sem);
c7999c36
AV
1193 if (p->cached_event == p->ns->event) {
1194 void *v = p->cached_mount;
1195 if (*pos == p->cached_index)
1196 return v;
1197 if (*pos == p->cached_index + 1) {
1198 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1199 return p->cached_mount = v;
1200 }
1201 }
1202
1203 p->cached_event = p->ns->event;
1204 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1205 p->cached_index = *pos;
1206 return p->cached_mount;
1da177e4
LT
1207}
1208
1209static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1210{
6ce6e24e 1211 struct proc_mounts *p = proc_mounts(m);
b0765fb8 1212
c7999c36
AV
1213 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1214 p->cached_index = *pos;
1215 return p->cached_mount;
1da177e4
LT
1216}
1217
1218static void m_stop(struct seq_file *m, void *v)
1219{
390c6843 1220 up_read(&namespace_sem);
1da177e4
LT
1221}
1222
0226f492 1223static int m_show(struct seq_file *m, void *v)
2d4d4864 1224{
6ce6e24e 1225 struct proc_mounts *p = proc_mounts(m);
1a4eeaf2 1226 struct mount *r = list_entry(v, struct mount, mnt_list);
0226f492 1227 return p->show(m, &r->mnt);
1da177e4
LT
1228}
1229
a1a2c409 1230const struct seq_operations mounts_op = {
1da177e4
LT
1231 .start = m_start,
1232 .next = m_next,
1233 .stop = m_stop,
0226f492 1234 .show = m_show,
b4629fe2 1235};
a1a2c409 1236#endif /* CONFIG_PROC_FS */
b4629fe2 1237
1da177e4
LT
1238/**
1239 * may_umount_tree - check if a mount tree is busy
1240 * @mnt: root of mount tree
1241 *
1242 * This is called to check if a tree of mounts has any
1243 * open files, pwds, chroots or sub mounts that are
1244 * busy.
1245 */
909b0a88 1246int may_umount_tree(struct vfsmount *m)
1da177e4 1247{
909b0a88 1248 struct mount *mnt = real_mount(m);
36341f64
RP
1249 int actual_refs = 0;
1250 int minimum_refs = 0;
315fc83e 1251 struct mount *p;
909b0a88 1252 BUG_ON(!m);
1da177e4 1253
b3e19d92 1254 /* write lock needed for mnt_get_count */
719ea2fb 1255 lock_mount_hash();
909b0a88 1256 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 1257 actual_refs += mnt_get_count(p);
1da177e4 1258 minimum_refs += 2;
1da177e4 1259 }
719ea2fb 1260 unlock_mount_hash();
1da177e4
LT
1261
1262 if (actual_refs > minimum_refs)
e3474a8e 1263 return 0;
1da177e4 1264
e3474a8e 1265 return 1;
1da177e4
LT
1266}
1267
1268EXPORT_SYMBOL(may_umount_tree);
1269
1270/**
1271 * may_umount - check if a mount point is busy
1272 * @mnt: root of mount
1273 *
1274 * This is called to check if a mount point has any
1275 * open files, pwds, chroots or sub mounts. If the
1276 * mount has sub mounts this will return busy
1277 * regardless of whether the sub mounts are busy.
1278 *
1279 * Doesn't take quota and stuff into account. IOW, in some cases it will
1280 * give false negatives. The main reason why it's here is that we need
1281 * a non-destructive way to look for easily umountable filesystems.
1282 */
1283int may_umount(struct vfsmount *mnt)
1284{
e3474a8e 1285 int ret = 1;
8ad08d8a 1286 down_read(&namespace_sem);
719ea2fb 1287 lock_mount_hash();
1ab59738 1288 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1289 ret = 0;
719ea2fb 1290 unlock_mount_hash();
8ad08d8a 1291 up_read(&namespace_sem);
a05964f3 1292 return ret;
1da177e4
LT
1293}
1294
1295EXPORT_SYMBOL(may_umount);
1296
38129a13 1297static HLIST_HEAD(unmounted); /* protected by namespace_sem */
e3197d83 1298
97216be0 1299static void namespace_unlock(void)
70fbcdf4 1300{
a3b3c562 1301 struct hlist_head head;
97216be0 1302
a3b3c562 1303 hlist_move_list(&unmounted, &head);
97216be0 1304
97216be0
AV
1305 up_write(&namespace_sem);
1306
a3b3c562
EB
1307 if (likely(hlist_empty(&head)))
1308 return;
1309
48a066e7
AV
1310 synchronize_rcu();
1311
87b95ce0 1312 group_pin_kill(&head);
70fbcdf4
RP
1313}
1314
97216be0 1315static inline void namespace_lock(void)
e3197d83 1316{
97216be0 1317 down_write(&namespace_sem);
e3197d83
AV
1318}
1319
e819f152
EB
1320enum umount_tree_flags {
1321 UMOUNT_SYNC = 1,
1322 UMOUNT_PROPAGATE = 2,
1323};
99b7db7b 1324/*
48a066e7 1325 * mount_lock must be held
99b7db7b
NP
1326 * namespace_sem must be held for write
1327 */
e819f152 1328static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1da177e4 1329{
c003b26f 1330 LIST_HEAD(tmp_list);
315fc83e 1331 struct mount *p;
1da177e4 1332
c003b26f
EB
1333 /* Gather the mounts to umount */
1334 for (p = mnt; p; p = next_mnt(p, mnt))
1335 list_move(&p->mnt_list, &tmp_list);
1da177e4 1336
c003b26f
EB
1337 /* Hide the mounts from lookup_mnt and mnt_mounts */
1338 list_for_each_entry(p, &tmp_list, mnt_list) {
1339 hlist_del_init_rcu(&p->mnt_hash);
88b368f2 1340 list_del_init(&p->mnt_child);
c003b26f 1341 }
88b368f2 1342
c003b26f 1343 /* Add propogated mounts to the tmp_list */
e819f152 1344 if (how & UMOUNT_PROPAGATE)
7b8a53fd 1345 propagate_umount(&tmp_list);
a05964f3 1346
c003b26f
EB
1347 while (!list_empty(&tmp_list)) {
1348 p = list_first_entry(&tmp_list, struct mount, mnt_list);
6776db3d 1349 list_del_init(&p->mnt_expire);
1a4eeaf2 1350 list_del_init(&p->mnt_list);
143c8c91
AV
1351 __touch_mnt_namespace(p->mnt_ns);
1352 p->mnt_ns = NULL;
e819f152 1353 if (how & UMOUNT_SYNC)
48a066e7 1354 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
87b95ce0
AV
1355
1356 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt, &unmounted);
676da58d 1357 if (mnt_has_parent(p)) {
0a5eb7c8 1358 hlist_del_init(&p->mnt_mp_list);
84d17192 1359 put_mountpoint(p->mnt_mp);
81b6b061 1360 mnt_add_count(p->mnt_parent, -1);
87b95ce0
AV
1361 /* old mountpoint will be dropped when we can do that */
1362 p->mnt_ex_mountpoint = p->mnt_mountpoint;
aba809cf
AV
1363 p->mnt_mountpoint = p->mnt.mnt_root;
1364 p->mnt_parent = p;
84d17192 1365 p->mnt_mp = NULL;
7c4b93d8 1366 }
0f0afb1d 1367 change_mnt_propagation(p, MS_PRIVATE);
1da177e4
LT
1368 }
1369}
1370
b54b9be7 1371static void shrink_submounts(struct mount *mnt);
c35038be 1372
1ab59738 1373static int do_umount(struct mount *mnt, int flags)
1da177e4 1374{
1ab59738 1375 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4
LT
1376 int retval;
1377
1ab59738 1378 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1379 if (retval)
1380 return retval;
1381
1382 /*
1383 * Allow userspace to request a mountpoint be expired rather than
1384 * unmounting unconditionally. Unmount only happens if:
1385 * (1) the mark is already set (the mark is cleared by mntput())
1386 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1387 */
1388 if (flags & MNT_EXPIRE) {
1ab59738 1389 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1390 flags & (MNT_FORCE | MNT_DETACH))
1391 return -EINVAL;
1392
b3e19d92
NP
1393 /*
1394 * probably don't strictly need the lock here if we examined
1395 * all race cases, but it's a slowpath.
1396 */
719ea2fb 1397 lock_mount_hash();
83adc753 1398 if (mnt_get_count(mnt) != 2) {
719ea2fb 1399 unlock_mount_hash();
1da177e4 1400 return -EBUSY;
b3e19d92 1401 }
719ea2fb 1402 unlock_mount_hash();
1da177e4 1403
863d684f 1404 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1405 return -EAGAIN;
1406 }
1407
1408 /*
1409 * If we may have to abort operations to get out of this
1410 * mount, and they will themselves hold resources we must
1411 * allow the fs to do things. In the Unix tradition of
1412 * 'Gee thats tricky lets do it in userspace' the umount_begin
1413 * might fail to complete on the first run through as other tasks
1414 * must return, and the like. Thats for the mount program to worry
1415 * about for the moment.
1416 */
1417
42faad99 1418 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1419 sb->s_op->umount_begin(sb);
42faad99 1420 }
1da177e4
LT
1421
1422 /*
1423 * No sense to grab the lock for this test, but test itself looks
1424 * somewhat bogus. Suggestions for better replacement?
1425 * Ho-hum... In principle, we might treat that as umount + switch
1426 * to rootfs. GC would eventually take care of the old vfsmount.
1427 * Actually it makes sense, especially if rootfs would contain a
1428 * /reboot - static binary that would close all descriptors and
1429 * call reboot(9). Then init(8) could umount root and exec /reboot.
1430 */
1ab59738 1431 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1432 /*
1433 * Special case for "unmounting" root ...
1434 * we just try to remount it readonly.
1435 */
a1480dcc
AL
1436 if (!capable(CAP_SYS_ADMIN))
1437 return -EPERM;
1da177e4 1438 down_write(&sb->s_umount);
4aa98cf7 1439 if (!(sb->s_flags & MS_RDONLY))
1da177e4 1440 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1da177e4
LT
1441 up_write(&sb->s_umount);
1442 return retval;
1443 }
1444
97216be0 1445 namespace_lock();
719ea2fb 1446 lock_mount_hash();
5addc5dd 1447 event++;
1da177e4 1448
48a066e7 1449 if (flags & MNT_DETACH) {
1a4eeaf2 1450 if (!list_empty(&mnt->mnt_list))
e819f152 1451 umount_tree(mnt, UMOUNT_PROPAGATE);
1da177e4 1452 retval = 0;
48a066e7
AV
1453 } else {
1454 shrink_submounts(mnt);
1455 retval = -EBUSY;
1456 if (!propagate_mount_busy(mnt, 2)) {
1457 if (!list_empty(&mnt->mnt_list))
e819f152 1458 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
48a066e7
AV
1459 retval = 0;
1460 }
1da177e4 1461 }
719ea2fb 1462 unlock_mount_hash();
e3197d83 1463 namespace_unlock();
1da177e4
LT
1464 return retval;
1465}
1466
80b5dce8
EB
1467/*
1468 * __detach_mounts - lazily unmount all mounts on the specified dentry
1469 *
1470 * During unlink, rmdir, and d_drop it is possible to loose the path
1471 * to an existing mountpoint, and wind up leaking the mount.
1472 * detach_mounts allows lazily unmounting those mounts instead of
1473 * leaking them.
1474 *
1475 * The caller may hold dentry->d_inode->i_mutex.
1476 */
1477void __detach_mounts(struct dentry *dentry)
1478{
1479 struct mountpoint *mp;
1480 struct mount *mnt;
1481
1482 namespace_lock();
1483 mp = lookup_mountpoint(dentry);
1484 if (!mp)
1485 goto out_unlock;
1486
1487 lock_mount_hash();
1488 while (!hlist_empty(&mp->m_list)) {
1489 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
8318e667 1490 umount_tree(mnt, 0);
80b5dce8
EB
1491 }
1492 unlock_mount_hash();
1493 put_mountpoint(mp);
1494out_unlock:
1495 namespace_unlock();
1496}
1497
9b40bc90
AV
1498/*
1499 * Is the caller allowed to modify his namespace?
1500 */
1501static inline bool may_mount(void)
1502{
1503 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1504}
1505
1da177e4
LT
1506/*
1507 * Now umount can handle mount points as well as block devices.
1508 * This is important for filesystems which use unnamed block devices.
1509 *
1510 * We now support a flag for forced unmount like the other 'big iron'
1511 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1512 */
1513
bdc480e3 1514SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1da177e4 1515{
2d8f3038 1516 struct path path;
900148dc 1517 struct mount *mnt;
1da177e4 1518 int retval;
db1f05bb 1519 int lookup_flags = 0;
1da177e4 1520
db1f05bb
MS
1521 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1522 return -EINVAL;
1523
9b40bc90
AV
1524 if (!may_mount())
1525 return -EPERM;
1526
db1f05bb
MS
1527 if (!(flags & UMOUNT_NOFOLLOW))
1528 lookup_flags |= LOOKUP_FOLLOW;
1529
197df04c 1530 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1531 if (retval)
1532 goto out;
900148dc 1533 mnt = real_mount(path.mnt);
1da177e4 1534 retval = -EINVAL;
2d8f3038 1535 if (path.dentry != path.mnt->mnt_root)
1da177e4 1536 goto dput_and_out;
143c8c91 1537 if (!check_mnt(mnt))
1da177e4 1538 goto dput_and_out;
5ff9d8a6
EB
1539 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1540 goto dput_and_out;
b2f5d4dc
EB
1541 retval = -EPERM;
1542 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1543 goto dput_and_out;
1da177e4 1544
900148dc 1545 retval = do_umount(mnt, flags);
1da177e4 1546dput_and_out:
429731b1 1547 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038 1548 dput(path.dentry);
900148dc 1549 mntput_no_expire(mnt);
1da177e4
LT
1550out:
1551 return retval;
1552}
1553
1554#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1555
1556/*
b58fed8b 1557 * The 2.0 compatible umount. No flags.
1da177e4 1558 */
bdc480e3 1559SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1560{
b58fed8b 1561 return sys_umount(name, 0);
1da177e4
LT
1562}
1563
1564#endif
1565
4ce5d2b1 1566static bool is_mnt_ns_file(struct dentry *dentry)
8823c079 1567{
4ce5d2b1 1568 /* Is this a proxy for a mount namespace? */
e149ed2b
AV
1569 return dentry->d_op == &ns_dentry_operations &&
1570 dentry->d_fsdata == &mntns_operations;
4ce5d2b1
EB
1571}
1572
58be2825
AV
1573struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1574{
1575 return container_of(ns, struct mnt_namespace, ns);
1576}
1577
4ce5d2b1
EB
1578static bool mnt_ns_loop(struct dentry *dentry)
1579{
1580 /* Could bind mounting the mount namespace inode cause a
1581 * mount namespace loop?
1582 */
1583 struct mnt_namespace *mnt_ns;
1584 if (!is_mnt_ns_file(dentry))
1585 return false;
1586
f77c8014 1587 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
8823c079
EB
1588 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1589}
1590
87129cc0 1591struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1592 int flag)
1da177e4 1593{
84d17192 1594 struct mount *res, *p, *q, *r, *parent;
1da177e4 1595
4ce5d2b1
EB
1596 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1597 return ERR_PTR(-EINVAL);
1598
1599 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
be34d1a3 1600 return ERR_PTR(-EINVAL);
9676f0c6 1601
36341f64 1602 res = q = clone_mnt(mnt, dentry, flag);
be34d1a3
DH
1603 if (IS_ERR(q))
1604 return q;
1605
a73324da 1606 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1607
1608 p = mnt;
6b41d536 1609 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1610 struct mount *s;
7ec02ef1 1611 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1612 continue;
1613
909b0a88 1614 for (s = r; s; s = next_mnt(s, r)) {
12a5b529 1615 struct mount *t = NULL;
4ce5d2b1
EB
1616 if (!(flag & CL_COPY_UNBINDABLE) &&
1617 IS_MNT_UNBINDABLE(s)) {
1618 s = skip_mnt_tree(s);
1619 continue;
1620 }
1621 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1622 is_mnt_ns_file(s->mnt.mnt_root)) {
9676f0c6
RP
1623 s = skip_mnt_tree(s);
1624 continue;
1625 }
0714a533
AV
1626 while (p != s->mnt_parent) {
1627 p = p->mnt_parent;
1628 q = q->mnt_parent;
1da177e4 1629 }
87129cc0 1630 p = s;
84d17192 1631 parent = q;
87129cc0 1632 q = clone_mnt(p, p->mnt.mnt_root, flag);
be34d1a3
DH
1633 if (IS_ERR(q))
1634 goto out;
719ea2fb 1635 lock_mount_hash();
1a4eeaf2 1636 list_add_tail(&q->mnt_list, &res->mnt_list);
12a5b529
AV
1637 mnt_set_mountpoint(parent, p->mnt_mp, q);
1638 if (!list_empty(&parent->mnt_mounts)) {
1639 t = list_last_entry(&parent->mnt_mounts,
1640 struct mount, mnt_child);
1641 if (t->mnt_mp != p->mnt_mp)
1642 t = NULL;
1643 }
1644 attach_shadowed(q, parent, t);
719ea2fb 1645 unlock_mount_hash();
1da177e4
LT
1646 }
1647 }
1648 return res;
be34d1a3 1649out:
1da177e4 1650 if (res) {
719ea2fb 1651 lock_mount_hash();
e819f152 1652 umount_tree(res, UMOUNT_SYNC);
719ea2fb 1653 unlock_mount_hash();
1da177e4 1654 }
be34d1a3 1655 return q;
1da177e4
LT
1656}
1657
be34d1a3
DH
1658/* Caller should check returned pointer for errors */
1659
589ff870 1660struct vfsmount *collect_mounts(struct path *path)
8aec0809 1661{
cb338d06 1662 struct mount *tree;
97216be0 1663 namespace_lock();
87129cc0
AV
1664 tree = copy_tree(real_mount(path->mnt), path->dentry,
1665 CL_COPY_ALL | CL_PRIVATE);
328e6d90 1666 namespace_unlock();
be34d1a3 1667 if (IS_ERR(tree))
52e220d3 1668 return ERR_CAST(tree);
be34d1a3 1669 return &tree->mnt;
8aec0809
AV
1670}
1671
1672void drop_collected_mounts(struct vfsmount *mnt)
1673{
97216be0 1674 namespace_lock();
719ea2fb 1675 lock_mount_hash();
e819f152 1676 umount_tree(real_mount(mnt), UMOUNT_SYNC);
719ea2fb 1677 unlock_mount_hash();
3ab6abee 1678 namespace_unlock();
8aec0809
AV
1679}
1680
c771d683
MS
1681/**
1682 * clone_private_mount - create a private clone of a path
1683 *
1684 * This creates a new vfsmount, which will be the clone of @path. The new will
1685 * not be attached anywhere in the namespace and will be private (i.e. changes
1686 * to the originating mount won't be propagated into this).
1687 *
1688 * Release with mntput().
1689 */
1690struct vfsmount *clone_private_mount(struct path *path)
1691{
1692 struct mount *old_mnt = real_mount(path->mnt);
1693 struct mount *new_mnt;
1694
1695 if (IS_MNT_UNBINDABLE(old_mnt))
1696 return ERR_PTR(-EINVAL);
1697
1698 down_read(&namespace_sem);
1699 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1700 up_read(&namespace_sem);
1701 if (IS_ERR(new_mnt))
1702 return ERR_CAST(new_mnt);
1703
1704 return &new_mnt->mnt;
1705}
1706EXPORT_SYMBOL_GPL(clone_private_mount);
1707
1f707137
AV
1708int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1709 struct vfsmount *root)
1710{
1a4eeaf2 1711 struct mount *mnt;
1f707137
AV
1712 int res = f(root, arg);
1713 if (res)
1714 return res;
1a4eeaf2
AV
1715 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1716 res = f(&mnt->mnt, arg);
1f707137
AV
1717 if (res)
1718 return res;
1719 }
1720 return 0;
1721}
1722
4b8b21f4 1723static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 1724{
315fc83e 1725 struct mount *p;
719f5d7f 1726
909b0a88 1727 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 1728 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 1729 mnt_release_group_id(p);
719f5d7f
MS
1730 }
1731}
1732
4b8b21f4 1733static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 1734{
315fc83e 1735 struct mount *p;
719f5d7f 1736
909b0a88 1737 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 1738 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 1739 int err = mnt_alloc_group_id(p);
719f5d7f 1740 if (err) {
4b8b21f4 1741 cleanup_group_ids(mnt, p);
719f5d7f
MS
1742 return err;
1743 }
1744 }
1745 }
1746
1747 return 0;
1748}
1749
b90fa9ae
RP
1750/*
1751 * @source_mnt : mount tree to be attached
21444403
RP
1752 * @nd : place the mount tree @source_mnt is attached
1753 * @parent_nd : if non-null, detach the source_mnt from its parent and
1754 * store the parent mount and mountpoint dentry.
1755 * (done when source_mnt is moved)
b90fa9ae
RP
1756 *
1757 * NOTE: in the table below explains the semantics when a source mount
1758 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1759 * ---------------------------------------------------------------------------
1760 * | BIND MOUNT OPERATION |
1761 * |**************************************************************************
1762 * | source-->| shared | private | slave | unbindable |
1763 * | dest | | | | |
1764 * | | | | | | |
1765 * | v | | | | |
1766 * |**************************************************************************
1767 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1768 * | | | | | |
1769 * |non-shared| shared (+) | private | slave (*) | invalid |
1770 * ***************************************************************************
b90fa9ae
RP
1771 * A bind operation clones the source mount and mounts the clone on the
1772 * destination mount.
1773 *
1774 * (++) the cloned mount is propagated to all the mounts in the propagation
1775 * tree of the destination mount and the cloned mount is added to
1776 * the peer group of the source mount.
1777 * (+) the cloned mount is created under the destination mount and is marked
1778 * as shared. The cloned mount is added to the peer group of the source
1779 * mount.
5afe0022
RP
1780 * (+++) the mount is propagated to all the mounts in the propagation tree
1781 * of the destination mount and the cloned mount is made slave
1782 * of the same master as that of the source mount. The cloned mount
1783 * is marked as 'shared and slave'.
1784 * (*) the cloned mount is made a slave of the same master as that of the
1785 * source mount.
1786 *
9676f0c6
RP
1787 * ---------------------------------------------------------------------------
1788 * | MOVE MOUNT OPERATION |
1789 * |**************************************************************************
1790 * | source-->| shared | private | slave | unbindable |
1791 * | dest | | | | |
1792 * | | | | | | |
1793 * | v | | | | |
1794 * |**************************************************************************
1795 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1796 * | | | | | |
1797 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1798 * ***************************************************************************
5afe0022
RP
1799 *
1800 * (+) the mount is moved to the destination. And is then propagated to
1801 * all the mounts in the propagation tree of the destination mount.
21444403 1802 * (+*) the mount is moved to the destination.
5afe0022
RP
1803 * (+++) the mount is moved to the destination and is then propagated to
1804 * all the mounts belonging to the destination mount's propagation tree.
1805 * the mount is marked as 'shared and slave'.
1806 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1807 *
1808 * if the source mount is a tree, the operations explained above is
1809 * applied to each mount in the tree.
1810 * Must be called without spinlocks held, since this function can sleep
1811 * in allocations.
1812 */
0fb54e50 1813static int attach_recursive_mnt(struct mount *source_mnt,
84d17192
AV
1814 struct mount *dest_mnt,
1815 struct mountpoint *dest_mp,
1816 struct path *parent_path)
b90fa9ae 1817{
38129a13 1818 HLIST_HEAD(tree_list);
315fc83e 1819 struct mount *child, *p;
38129a13 1820 struct hlist_node *n;
719f5d7f 1821 int err;
b90fa9ae 1822
fc7be130 1823 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 1824 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
1825 if (err)
1826 goto out;
0b1b901b 1827 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
f2ebb3a9 1828 lock_mount_hash();
0b1b901b
AV
1829 if (err)
1830 goto out_cleanup_ids;
909b0a88 1831 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 1832 set_mnt_shared(p);
0b1b901b
AV
1833 } else {
1834 lock_mount_hash();
b90fa9ae 1835 }
1a390689 1836 if (parent_path) {
0fb54e50 1837 detach_mnt(source_mnt, parent_path);
84d17192 1838 attach_mnt(source_mnt, dest_mnt, dest_mp);
143c8c91 1839 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 1840 } else {
84d17192 1841 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1d6a32ac 1842 commit_tree(source_mnt, NULL);
21444403 1843 }
b90fa9ae 1844
38129a13 1845 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1d6a32ac 1846 struct mount *q;
38129a13 1847 hlist_del_init(&child->mnt_hash);
1d6a32ac
AV
1848 q = __lookup_mnt_last(&child->mnt_parent->mnt,
1849 child->mnt_mountpoint);
1850 commit_tree(child, q);
b90fa9ae 1851 }
719ea2fb 1852 unlock_mount_hash();
99b7db7b 1853
b90fa9ae 1854 return 0;
719f5d7f
MS
1855
1856 out_cleanup_ids:
f2ebb3a9
AV
1857 while (!hlist_empty(&tree_list)) {
1858 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
e819f152 1859 umount_tree(child, UMOUNT_SYNC);
f2ebb3a9
AV
1860 }
1861 unlock_mount_hash();
0b1b901b 1862 cleanup_group_ids(source_mnt, NULL);
719f5d7f
MS
1863 out:
1864 return err;
b90fa9ae
RP
1865}
1866
84d17192 1867static struct mountpoint *lock_mount(struct path *path)
b12cea91
AV
1868{
1869 struct vfsmount *mnt;
84d17192 1870 struct dentry *dentry = path->dentry;
b12cea91 1871retry:
84d17192
AV
1872 mutex_lock(&dentry->d_inode->i_mutex);
1873 if (unlikely(cant_mount(dentry))) {
1874 mutex_unlock(&dentry->d_inode->i_mutex);
1875 return ERR_PTR(-ENOENT);
b12cea91 1876 }
97216be0 1877 namespace_lock();
b12cea91 1878 mnt = lookup_mnt(path);
84d17192 1879 if (likely(!mnt)) {
e2dfa935
EB
1880 struct mountpoint *mp = lookup_mountpoint(dentry);
1881 if (!mp)
1882 mp = new_mountpoint(dentry);
84d17192 1883 if (IS_ERR(mp)) {
97216be0 1884 namespace_unlock();
84d17192
AV
1885 mutex_unlock(&dentry->d_inode->i_mutex);
1886 return mp;
1887 }
1888 return mp;
1889 }
97216be0 1890 namespace_unlock();
b12cea91
AV
1891 mutex_unlock(&path->dentry->d_inode->i_mutex);
1892 path_put(path);
1893 path->mnt = mnt;
84d17192 1894 dentry = path->dentry = dget(mnt->mnt_root);
b12cea91
AV
1895 goto retry;
1896}
1897
84d17192 1898static void unlock_mount(struct mountpoint *where)
b12cea91 1899{
84d17192
AV
1900 struct dentry *dentry = where->m_dentry;
1901 put_mountpoint(where);
328e6d90 1902 namespace_unlock();
84d17192 1903 mutex_unlock(&dentry->d_inode->i_mutex);
b12cea91
AV
1904}
1905
84d17192 1906static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1da177e4 1907{
95bc5f25 1908 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1da177e4
LT
1909 return -EINVAL;
1910
e36cb0b8
DH
1911 if (d_is_dir(mp->m_dentry) !=
1912 d_is_dir(mnt->mnt.mnt_root))
1da177e4
LT
1913 return -ENOTDIR;
1914
84d17192 1915 return attach_recursive_mnt(mnt, p, mp, NULL);
1da177e4
LT
1916}
1917
7a2e8a8f
VA
1918/*
1919 * Sanity check the flags to change_mnt_propagation.
1920 */
1921
1922static int flags_to_propagation_type(int flags)
1923{
7c6e984d 1924 int type = flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
1925
1926 /* Fail if any non-propagation flags are set */
1927 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1928 return 0;
1929 /* Only one propagation flag should be set */
1930 if (!is_power_of_2(type))
1931 return 0;
1932 return type;
1933}
1934
07b20889
RP
1935/*
1936 * recursively change the type of the mountpoint.
1937 */
0a0d8a46 1938static int do_change_type(struct path *path, int flag)
07b20889 1939{
315fc83e 1940 struct mount *m;
4b8b21f4 1941 struct mount *mnt = real_mount(path->mnt);
07b20889 1942 int recurse = flag & MS_REC;
7a2e8a8f 1943 int type;
719f5d7f 1944 int err = 0;
07b20889 1945
2d92ab3c 1946 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
1947 return -EINVAL;
1948
7a2e8a8f
VA
1949 type = flags_to_propagation_type(flag);
1950 if (!type)
1951 return -EINVAL;
1952
97216be0 1953 namespace_lock();
719f5d7f
MS
1954 if (type == MS_SHARED) {
1955 err = invent_group_ids(mnt, recurse);
1956 if (err)
1957 goto out_unlock;
1958 }
1959
719ea2fb 1960 lock_mount_hash();
909b0a88 1961 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 1962 change_mnt_propagation(m, type);
719ea2fb 1963 unlock_mount_hash();
719f5d7f
MS
1964
1965 out_unlock:
97216be0 1966 namespace_unlock();
719f5d7f 1967 return err;
07b20889
RP
1968}
1969
5ff9d8a6
EB
1970static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1971{
1972 struct mount *child;
1973 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1974 if (!is_subdir(child->mnt_mountpoint, dentry))
1975 continue;
1976
1977 if (child->mnt.mnt_flags & MNT_LOCKED)
1978 return true;
1979 }
1980 return false;
1981}
1982
1da177e4
LT
1983/*
1984 * do loopback mount.
1985 */
808d4e3c 1986static int do_loopback(struct path *path, const char *old_name,
2dafe1c4 1987 int recurse)
1da177e4 1988{
2d92ab3c 1989 struct path old_path;
84d17192
AV
1990 struct mount *mnt = NULL, *old, *parent;
1991 struct mountpoint *mp;
57eccb83 1992 int err;
1da177e4
LT
1993 if (!old_name || !*old_name)
1994 return -EINVAL;
815d405c 1995 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
1996 if (err)
1997 return err;
1998
8823c079 1999 err = -EINVAL;
4ce5d2b1 2000 if (mnt_ns_loop(old_path.dentry))
8823c079
EB
2001 goto out;
2002
84d17192
AV
2003 mp = lock_mount(path);
2004 err = PTR_ERR(mp);
2005 if (IS_ERR(mp))
b12cea91
AV
2006 goto out;
2007
87129cc0 2008 old = real_mount(old_path.mnt);
84d17192 2009 parent = real_mount(path->mnt);
87129cc0 2010
1da177e4 2011 err = -EINVAL;
fc7be130 2012 if (IS_MNT_UNBINDABLE(old))
b12cea91 2013 goto out2;
9676f0c6 2014
e149ed2b
AV
2015 if (!check_mnt(parent))
2016 goto out2;
2017
2018 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
b12cea91 2019 goto out2;
1da177e4 2020
5ff9d8a6
EB
2021 if (!recurse && has_locked_children(old, old_path.dentry))
2022 goto out2;
2023
ccd48bc7 2024 if (recurse)
4ce5d2b1 2025 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
ccd48bc7 2026 else
87129cc0 2027 mnt = clone_mnt(old, old_path.dentry, 0);
ccd48bc7 2028
be34d1a3
DH
2029 if (IS_ERR(mnt)) {
2030 err = PTR_ERR(mnt);
e9c5d8a5 2031 goto out2;
be34d1a3 2032 }
ccd48bc7 2033
5ff9d8a6
EB
2034 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2035
84d17192 2036 err = graft_tree(mnt, parent, mp);
ccd48bc7 2037 if (err) {
719ea2fb 2038 lock_mount_hash();
e819f152 2039 umount_tree(mnt, UMOUNT_SYNC);
719ea2fb 2040 unlock_mount_hash();
5b83d2c5 2041 }
b12cea91 2042out2:
84d17192 2043 unlock_mount(mp);
ccd48bc7 2044out:
2d92ab3c 2045 path_put(&old_path);
1da177e4
LT
2046 return err;
2047}
2048
2e4b7fcd
DH
2049static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2050{
2051 int error = 0;
2052 int readonly_request = 0;
2053
2054 if (ms_flags & MS_RDONLY)
2055 readonly_request = 1;
2056 if (readonly_request == __mnt_is_readonly(mnt))
2057 return 0;
2058
2059 if (readonly_request)
83adc753 2060 error = mnt_make_readonly(real_mount(mnt));
2e4b7fcd 2061 else
83adc753 2062 __mnt_unmake_readonly(real_mount(mnt));
2e4b7fcd
DH
2063 return error;
2064}
2065
1da177e4
LT
2066/*
2067 * change filesystem flags. dir should be a physical root of filesystem.
2068 * If you've mounted a non-root directory somewhere and want to do remount
2069 * on it - tough luck.
2070 */
0a0d8a46 2071static int do_remount(struct path *path, int flags, int mnt_flags,
1da177e4
LT
2072 void *data)
2073{
2074 int err;
2d92ab3c 2075 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 2076 struct mount *mnt = real_mount(path->mnt);
1da177e4 2077
143c8c91 2078 if (!check_mnt(mnt))
1da177e4
LT
2079 return -EINVAL;
2080
2d92ab3c 2081 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
2082 return -EINVAL;
2083
07b64558
EB
2084 /* Don't allow changing of locked mnt flags.
2085 *
2086 * No locks need to be held here while testing the various
2087 * MNT_LOCK flags because those flags can never be cleared
2088 * once they are set.
2089 */
2090 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2091 !(mnt_flags & MNT_READONLY)) {
2092 return -EPERM;
2093 }
9566d674
EB
2094 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2095 !(mnt_flags & MNT_NODEV)) {
3e186641
EB
2096 /* Was the nodev implicitly added in mount? */
2097 if ((mnt->mnt_ns->user_ns != &init_user_ns) &&
2098 !(sb->s_type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2099 mnt_flags |= MNT_NODEV;
2100 } else {
2101 return -EPERM;
2102 }
9566d674
EB
2103 }
2104 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2105 !(mnt_flags & MNT_NOSUID)) {
2106 return -EPERM;
2107 }
2108 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2109 !(mnt_flags & MNT_NOEXEC)) {
2110 return -EPERM;
2111 }
2112 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2113 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2114 return -EPERM;
2115 }
2116
ff36fe2c
EP
2117 err = security_sb_remount(sb, data);
2118 if (err)
2119 return err;
2120
1da177e4 2121 down_write(&sb->s_umount);
2e4b7fcd 2122 if (flags & MS_BIND)
2d92ab3c 2123 err = change_mount_flags(path->mnt, flags);
57eccb83
AV
2124 else if (!capable(CAP_SYS_ADMIN))
2125 err = -EPERM;
4aa98cf7 2126 else
2e4b7fcd 2127 err = do_remount_sb(sb, flags, data, 0);
7b43a79f 2128 if (!err) {
719ea2fb 2129 lock_mount_hash();
a6138db8 2130 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
143c8c91 2131 mnt->mnt.mnt_flags = mnt_flags;
143c8c91 2132 touch_mnt_namespace(mnt->mnt_ns);
719ea2fb 2133 unlock_mount_hash();
0e55a7cc 2134 }
6339dab8 2135 up_write(&sb->s_umount);
1da177e4
LT
2136 return err;
2137}
2138
cbbe362c 2139static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 2140{
315fc83e 2141 struct mount *p;
909b0a88 2142 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 2143 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
2144 return 1;
2145 }
2146 return 0;
2147}
2148
808d4e3c 2149static int do_move_mount(struct path *path, const char *old_name)
1da177e4 2150{
2d92ab3c 2151 struct path old_path, parent_path;
676da58d 2152 struct mount *p;
0fb54e50 2153 struct mount *old;
84d17192 2154 struct mountpoint *mp;
57eccb83 2155 int err;
1da177e4
LT
2156 if (!old_name || !*old_name)
2157 return -EINVAL;
2d92ab3c 2158 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
2159 if (err)
2160 return err;
2161
84d17192
AV
2162 mp = lock_mount(path);
2163 err = PTR_ERR(mp);
2164 if (IS_ERR(mp))
cc53ce53
DH
2165 goto out;
2166
143c8c91 2167 old = real_mount(old_path.mnt);
fc7be130 2168 p = real_mount(path->mnt);
143c8c91 2169
1da177e4 2170 err = -EINVAL;
fc7be130 2171 if (!check_mnt(p) || !check_mnt(old))
1da177e4
LT
2172 goto out1;
2173
5ff9d8a6
EB
2174 if (old->mnt.mnt_flags & MNT_LOCKED)
2175 goto out1;
2176
1da177e4 2177 err = -EINVAL;
2d92ab3c 2178 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 2179 goto out1;
1da177e4 2180
676da58d 2181 if (!mnt_has_parent(old))
21444403 2182 goto out1;
1da177e4 2183
e36cb0b8
DH
2184 if (d_is_dir(path->dentry) !=
2185 d_is_dir(old_path.dentry))
21444403
RP
2186 goto out1;
2187 /*
2188 * Don't move a mount residing in a shared parent.
2189 */
fc7be130 2190 if (IS_MNT_SHARED(old->mnt_parent))
21444403 2191 goto out1;
9676f0c6
RP
2192 /*
2193 * Don't move a mount tree containing unbindable mounts to a destination
2194 * mount which is shared.
2195 */
fc7be130 2196 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
9676f0c6 2197 goto out1;
1da177e4 2198 err = -ELOOP;
fc7be130 2199 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 2200 if (p == old)
21444403 2201 goto out1;
1da177e4 2202
84d17192 2203 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
4ac91378 2204 if (err)
21444403 2205 goto out1;
1da177e4
LT
2206
2207 /* if the mount is moved, it should no longer be expire
2208 * automatically */
6776db3d 2209 list_del_init(&old->mnt_expire);
1da177e4 2210out1:
84d17192 2211 unlock_mount(mp);
1da177e4 2212out:
1da177e4 2213 if (!err)
1a390689 2214 path_put(&parent_path);
2d92ab3c 2215 path_put(&old_path);
1da177e4
LT
2216 return err;
2217}
2218
9d412a43
AV
2219static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2220{
2221 int err;
2222 const char *subtype = strchr(fstype, '.');
2223 if (subtype) {
2224 subtype++;
2225 err = -EINVAL;
2226 if (!subtype[0])
2227 goto err;
2228 } else
2229 subtype = "";
2230
2231 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2232 err = -ENOMEM;
2233 if (!mnt->mnt_sb->s_subtype)
2234 goto err;
2235 return mnt;
2236
2237 err:
2238 mntput(mnt);
2239 return ERR_PTR(err);
2240}
2241
9d412a43
AV
2242/*
2243 * add a mount into a namespace's mount tree
2244 */
95bc5f25 2245static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
9d412a43 2246{
84d17192
AV
2247 struct mountpoint *mp;
2248 struct mount *parent;
9d412a43
AV
2249 int err;
2250
f2ebb3a9 2251 mnt_flags &= ~MNT_INTERNAL_FLAGS;
9d412a43 2252
84d17192
AV
2253 mp = lock_mount(path);
2254 if (IS_ERR(mp))
2255 return PTR_ERR(mp);
9d412a43 2256
84d17192 2257 parent = real_mount(path->mnt);
9d412a43 2258 err = -EINVAL;
84d17192 2259 if (unlikely(!check_mnt(parent))) {
156cacb1
AV
2260 /* that's acceptable only for automounts done in private ns */
2261 if (!(mnt_flags & MNT_SHRINKABLE))
2262 goto unlock;
2263 /* ... and for those we'd better have mountpoint still alive */
84d17192 2264 if (!parent->mnt_ns)
156cacb1
AV
2265 goto unlock;
2266 }
9d412a43
AV
2267
2268 /* Refuse the same filesystem on the same mount point */
2269 err = -EBUSY;
95bc5f25 2270 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43
AV
2271 path->mnt->mnt_root == path->dentry)
2272 goto unlock;
2273
2274 err = -EINVAL;
e36cb0b8 2275 if (d_is_symlink(newmnt->mnt.mnt_root))
9d412a43
AV
2276 goto unlock;
2277
95bc5f25 2278 newmnt->mnt.mnt_flags = mnt_flags;
84d17192 2279 err = graft_tree(newmnt, parent, mp);
9d412a43
AV
2280
2281unlock:
84d17192 2282 unlock_mount(mp);
9d412a43
AV
2283 return err;
2284}
b1e75df4 2285
1da177e4
LT
2286/*
2287 * create a new mount for userspace and request it to be added into the
2288 * namespace's tree
2289 */
0c55cfc4 2290static int do_new_mount(struct path *path, const char *fstype, int flags,
808d4e3c 2291 int mnt_flags, const char *name, void *data)
1da177e4 2292{
0c55cfc4 2293 struct file_system_type *type;
9b40bc90 2294 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
1da177e4 2295 struct vfsmount *mnt;
15f9a3f3 2296 int err;
1da177e4 2297
0c55cfc4 2298 if (!fstype)
1da177e4
LT
2299 return -EINVAL;
2300
0c55cfc4
EB
2301 type = get_fs_type(fstype);
2302 if (!type)
2303 return -ENODEV;
2304
2305 if (user_ns != &init_user_ns) {
2306 if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2307 put_filesystem(type);
2308 return -EPERM;
2309 }
2310 /* Only in special cases allow devices from mounts
2311 * created outside the initial user namespace.
2312 */
2313 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2314 flags |= MS_NODEV;
9566d674 2315 mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV;
0c55cfc4
EB
2316 }
2317 }
2318
2319 mnt = vfs_kern_mount(type, flags, name, data);
2320 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2321 !mnt->mnt_sb->s_subtype)
2322 mnt = fs_set_subtype(mnt, fstype);
2323
2324 put_filesystem(type);
1da177e4
LT
2325 if (IS_ERR(mnt))
2326 return PTR_ERR(mnt);
2327
95bc5f25 2328 err = do_add_mount(real_mount(mnt), path, mnt_flags);
15f9a3f3
AV
2329 if (err)
2330 mntput(mnt);
2331 return err;
1da177e4
LT
2332}
2333
19a167af
AV
2334int finish_automount(struct vfsmount *m, struct path *path)
2335{
6776db3d 2336 struct mount *mnt = real_mount(m);
19a167af
AV
2337 int err;
2338 /* The new mount record should have at least 2 refs to prevent it being
2339 * expired before we get a chance to add it
2340 */
6776db3d 2341 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
2342
2343 if (m->mnt_sb == path->mnt->mnt_sb &&
2344 m->mnt_root == path->dentry) {
b1e75df4
AV
2345 err = -ELOOP;
2346 goto fail;
19a167af
AV
2347 }
2348
95bc5f25 2349 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
2350 if (!err)
2351 return 0;
2352fail:
2353 /* remove m from any expiration list it may be on */
6776db3d 2354 if (!list_empty(&mnt->mnt_expire)) {
97216be0 2355 namespace_lock();
6776db3d 2356 list_del_init(&mnt->mnt_expire);
97216be0 2357 namespace_unlock();
19a167af 2358 }
b1e75df4
AV
2359 mntput(m);
2360 mntput(m);
19a167af
AV
2361 return err;
2362}
2363
ea5b778a
DH
2364/**
2365 * mnt_set_expiry - Put a mount on an expiration list
2366 * @mnt: The mount to list.
2367 * @expiry_list: The list to add the mount to.
2368 */
2369void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2370{
97216be0 2371 namespace_lock();
ea5b778a 2372
6776db3d 2373 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a 2374
97216be0 2375 namespace_unlock();
ea5b778a
DH
2376}
2377EXPORT_SYMBOL(mnt_set_expiry);
2378
1da177e4
LT
2379/*
2380 * process a list of expirable mountpoints with the intent of discarding any
2381 * mountpoints that aren't in use and haven't been touched since last we came
2382 * here
2383 */
2384void mark_mounts_for_expiry(struct list_head *mounts)
2385{
761d5c38 2386 struct mount *mnt, *next;
1da177e4
LT
2387 LIST_HEAD(graveyard);
2388
2389 if (list_empty(mounts))
2390 return;
2391
97216be0 2392 namespace_lock();
719ea2fb 2393 lock_mount_hash();
1da177e4
LT
2394
2395 /* extract from the expiration list every vfsmount that matches the
2396 * following criteria:
2397 * - only referenced by its parent vfsmount
2398 * - still marked for expiry (marked on the last call here; marks are
2399 * cleared by mntput())
2400 */
6776db3d 2401 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 2402 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 2403 propagate_mount_busy(mnt, 1))
1da177e4 2404 continue;
6776db3d 2405 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 2406 }
bcc5c7d2 2407 while (!list_empty(&graveyard)) {
6776db3d 2408 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 2409 touch_mnt_namespace(mnt->mnt_ns);
e819f152 2410 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
bcc5c7d2 2411 }
719ea2fb 2412 unlock_mount_hash();
3ab6abee 2413 namespace_unlock();
5528f911
TM
2414}
2415
2416EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2417
2418/*
2419 * Ripoff of 'select_parent()'
2420 *
2421 * search the list of submounts for a given mountpoint, and move any
2422 * shrinkable submounts to the 'graveyard' list.
2423 */
692afc31 2424static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 2425{
692afc31 2426 struct mount *this_parent = parent;
5528f911
TM
2427 struct list_head *next;
2428 int found = 0;
2429
2430repeat:
6b41d536 2431 next = this_parent->mnt_mounts.next;
5528f911 2432resume:
6b41d536 2433 while (next != &this_parent->mnt_mounts) {
5528f911 2434 struct list_head *tmp = next;
6b41d536 2435 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
2436
2437 next = tmp->next;
692afc31 2438 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 2439 continue;
5528f911
TM
2440 /*
2441 * Descend a level if the d_mounts list is non-empty.
2442 */
6b41d536 2443 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
2444 this_parent = mnt;
2445 goto repeat;
2446 }
1da177e4 2447
1ab59738 2448 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 2449 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
2450 found++;
2451 }
1da177e4 2452 }
5528f911
TM
2453 /*
2454 * All done at this level ... ascend and resume the search
2455 */
2456 if (this_parent != parent) {
6b41d536 2457 next = this_parent->mnt_child.next;
0714a533 2458 this_parent = this_parent->mnt_parent;
5528f911
TM
2459 goto resume;
2460 }
2461 return found;
2462}
2463
2464/*
2465 * process a list of expirable mountpoints with the intent of discarding any
2466 * submounts of a specific parent mountpoint
99b7db7b 2467 *
48a066e7 2468 * mount_lock must be held for write
5528f911 2469 */
b54b9be7 2470static void shrink_submounts(struct mount *mnt)
5528f911
TM
2471{
2472 LIST_HEAD(graveyard);
761d5c38 2473 struct mount *m;
5528f911 2474
5528f911 2475 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 2476 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 2477 while (!list_empty(&graveyard)) {
761d5c38 2478 m = list_first_entry(&graveyard, struct mount,
6776db3d 2479 mnt_expire);
143c8c91 2480 touch_mnt_namespace(m->mnt_ns);
e819f152 2481 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
bcc5c7d2
AV
2482 }
2483 }
1da177e4
LT
2484}
2485
1da177e4
LT
2486/*
2487 * Some copy_from_user() implementations do not return the exact number of
2488 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2489 * Note that this function differs from copy_from_user() in that it will oops
2490 * on bad values of `to', rather than returning a short copy.
2491 */
b58fed8b
RP
2492static long exact_copy_from_user(void *to, const void __user * from,
2493 unsigned long n)
1da177e4
LT
2494{
2495 char *t = to;
2496 const char __user *f = from;
2497 char c;
2498
2499 if (!access_ok(VERIFY_READ, from, n))
2500 return n;
2501
2502 while (n) {
2503 if (__get_user(c, f)) {
2504 memset(t, 0, n);
2505 break;
2506 }
2507 *t++ = c;
2508 f++;
2509 n--;
2510 }
2511 return n;
2512}
2513
b58fed8b 2514int copy_mount_options(const void __user * data, unsigned long *where)
1da177e4
LT
2515{
2516 int i;
2517 unsigned long page;
2518 unsigned long size;
b58fed8b 2519
1da177e4
LT
2520 *where = 0;
2521 if (!data)
2522 return 0;
2523
2524 if (!(page = __get_free_page(GFP_KERNEL)))
2525 return -ENOMEM;
2526
2527 /* We only care that *some* data at the address the user
2528 * gave us is valid. Just in case, we'll zero
2529 * the remainder of the page.
2530 */
2531 /* copy_from_user cannot cross TASK_SIZE ! */
2532 size = TASK_SIZE - (unsigned long)data;
2533 if (size > PAGE_SIZE)
2534 size = PAGE_SIZE;
2535
2536 i = size - exact_copy_from_user((void *)page, data, size);
2537 if (!i) {
b58fed8b 2538 free_page(page);
1da177e4
LT
2539 return -EFAULT;
2540 }
2541 if (i != PAGE_SIZE)
2542 memset((char *)page + i, 0, PAGE_SIZE - i);
2543 *where = page;
2544 return 0;
2545}
2546
b8850d1f 2547char *copy_mount_string(const void __user *data)
eca6f534 2548{
b8850d1f 2549 return data ? strndup_user(data, PAGE_SIZE) : NULL;
eca6f534
VN
2550}
2551
1da177e4
LT
2552/*
2553 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2554 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2555 *
2556 * data is a (void *) that can point to any structure up to
2557 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2558 * information (or be NULL).
2559 *
2560 * Pre-0.97 versions of mount() didn't have a flags word.
2561 * When the flags word was introduced its top half was required
2562 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2563 * Therefore, if this magic number is present, it carries no information
2564 * and must be discarded.
2565 */
5e6123f3 2566long do_mount(const char *dev_name, const char __user *dir_name,
808d4e3c 2567 const char *type_page, unsigned long flags, void *data_page)
1da177e4 2568{
2d92ab3c 2569 struct path path;
1da177e4
LT
2570 int retval = 0;
2571 int mnt_flags = 0;
2572
2573 /* Discard magic */
2574 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2575 flags &= ~MS_MGC_MSK;
2576
2577 /* Basic sanity checks */
1da177e4
LT
2578 if (data_page)
2579 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2580
a27ab9f2 2581 /* ... and get the mountpoint */
5e6123f3 2582 retval = user_path(dir_name, &path);
a27ab9f2
TH
2583 if (retval)
2584 return retval;
2585
2586 retval = security_sb_mount(dev_name, &path,
2587 type_page, flags, data_page);
0d5cadb8
AV
2588 if (!retval && !may_mount())
2589 retval = -EPERM;
a27ab9f2
TH
2590 if (retval)
2591 goto dput_out;
2592
613cbe3d
AK
2593 /* Default to relatime unless overriden */
2594 if (!(flags & MS_NOATIME))
2595 mnt_flags |= MNT_RELATIME;
0a1c01c9 2596
1da177e4
LT
2597 /* Separate the per-mountpoint flags */
2598 if (flags & MS_NOSUID)
2599 mnt_flags |= MNT_NOSUID;
2600 if (flags & MS_NODEV)
2601 mnt_flags |= MNT_NODEV;
2602 if (flags & MS_NOEXEC)
2603 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
2604 if (flags & MS_NOATIME)
2605 mnt_flags |= MNT_NOATIME;
2606 if (flags & MS_NODIRATIME)
2607 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
2608 if (flags & MS_STRICTATIME)
2609 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2e4b7fcd
DH
2610 if (flags & MS_RDONLY)
2611 mnt_flags |= MNT_READONLY;
fc33a7bb 2612
ffbc6f0e
EB
2613 /* The default atime for remount is preservation */
2614 if ((flags & MS_REMOUNT) &&
2615 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2616 MS_STRICTATIME)) == 0)) {
2617 mnt_flags &= ~MNT_ATIME_MASK;
2618 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2619 }
2620
7a4dec53 2621 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
d0adde57
MG
2622 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2623 MS_STRICTATIME);
1da177e4 2624
1da177e4 2625 if (flags & MS_REMOUNT)
2d92ab3c 2626 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1da177e4
LT
2627 data_page);
2628 else if (flags & MS_BIND)
2d92ab3c 2629 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2630 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2631 retval = do_change_type(&path, flags);
1da177e4 2632 else if (flags & MS_MOVE)
2d92ab3c 2633 retval = do_move_mount(&path, dev_name);
1da177e4 2634 else
2d92ab3c 2635 retval = do_new_mount(&path, type_page, flags, mnt_flags,
1da177e4
LT
2636 dev_name, data_page);
2637dput_out:
2d92ab3c 2638 path_put(&path);
1da177e4
LT
2639 return retval;
2640}
2641
771b1371
EB
2642static void free_mnt_ns(struct mnt_namespace *ns)
2643{
6344c433 2644 ns_free_inum(&ns->ns);
771b1371
EB
2645 put_user_ns(ns->user_ns);
2646 kfree(ns);
2647}
2648
8823c079
EB
2649/*
2650 * Assign a sequence number so we can detect when we attempt to bind
2651 * mount a reference to an older mount namespace into the current
2652 * mount namespace, preventing reference counting loops. A 64bit
2653 * number incrementing at 10Ghz will take 12,427 years to wrap which
2654 * is effectively never, so we can ignore the possibility.
2655 */
2656static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2657
771b1371 2658static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
cf8d2c11
TM
2659{
2660 struct mnt_namespace *new_ns;
98f842e6 2661 int ret;
cf8d2c11
TM
2662
2663 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2664 if (!new_ns)
2665 return ERR_PTR(-ENOMEM);
6344c433 2666 ret = ns_alloc_inum(&new_ns->ns);
98f842e6
EB
2667 if (ret) {
2668 kfree(new_ns);
2669 return ERR_PTR(ret);
2670 }
33c42940 2671 new_ns->ns.ops = &mntns_operations;
8823c079 2672 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
cf8d2c11
TM
2673 atomic_set(&new_ns->count, 1);
2674 new_ns->root = NULL;
2675 INIT_LIST_HEAD(&new_ns->list);
2676 init_waitqueue_head(&new_ns->poll);
2677 new_ns->event = 0;
771b1371 2678 new_ns->user_ns = get_user_ns(user_ns);
cf8d2c11
TM
2679 return new_ns;
2680}
2681
9559f689
AV
2682struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2683 struct user_namespace *user_ns, struct fs_struct *new_fs)
1da177e4 2684{
6b3286ed 2685 struct mnt_namespace *new_ns;
7f2da1e7 2686 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 2687 struct mount *p, *q;
9559f689 2688 struct mount *old;
cb338d06 2689 struct mount *new;
7a472ef4 2690 int copy_flags;
1da177e4 2691
9559f689
AV
2692 BUG_ON(!ns);
2693
2694 if (likely(!(flags & CLONE_NEWNS))) {
2695 get_mnt_ns(ns);
2696 return ns;
2697 }
2698
2699 old = ns->root;
2700
771b1371 2701 new_ns = alloc_mnt_ns(user_ns);
cf8d2c11
TM
2702 if (IS_ERR(new_ns))
2703 return new_ns;
1da177e4 2704
97216be0 2705 namespace_lock();
1da177e4 2706 /* First pass: copy the tree topology */
4ce5d2b1 2707 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
9559f689 2708 if (user_ns != ns->user_ns)
132c94e3 2709 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
7a472ef4 2710 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
be34d1a3 2711 if (IS_ERR(new)) {
328e6d90 2712 namespace_unlock();
771b1371 2713 free_mnt_ns(new_ns);
be34d1a3 2714 return ERR_CAST(new);
1da177e4 2715 }
be08d6d2 2716 new_ns->root = new;
1a4eeaf2 2717 list_add_tail(&new_ns->list, &new->mnt_list);
1da177e4
LT
2718
2719 /*
2720 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2721 * as belonging to new namespace. We have already acquired a private
2722 * fs_struct, so tsk->fs->lock is not needed.
2723 */
909b0a88 2724 p = old;
cb338d06 2725 q = new;
1da177e4 2726 while (p) {
143c8c91 2727 q->mnt_ns = new_ns;
9559f689
AV
2728 if (new_fs) {
2729 if (&p->mnt == new_fs->root.mnt) {
2730 new_fs->root.mnt = mntget(&q->mnt);
315fc83e 2731 rootmnt = &p->mnt;
1da177e4 2732 }
9559f689
AV
2733 if (&p->mnt == new_fs->pwd.mnt) {
2734 new_fs->pwd.mnt = mntget(&q->mnt);
315fc83e 2735 pwdmnt = &p->mnt;
1da177e4 2736 }
1da177e4 2737 }
909b0a88
AV
2738 p = next_mnt(p, old);
2739 q = next_mnt(q, new);
4ce5d2b1
EB
2740 if (!q)
2741 break;
2742 while (p->mnt.mnt_root != q->mnt.mnt_root)
2743 p = next_mnt(p, old);
1da177e4 2744 }
328e6d90 2745 namespace_unlock();
1da177e4 2746
1da177e4 2747 if (rootmnt)
f03c6599 2748 mntput(rootmnt);
1da177e4 2749 if (pwdmnt)
f03c6599 2750 mntput(pwdmnt);
1da177e4 2751
741a2951 2752 return new_ns;
1da177e4
LT
2753}
2754
cf8d2c11
TM
2755/**
2756 * create_mnt_ns - creates a private namespace and adds a root filesystem
2757 * @mnt: pointer to the new root filesystem mountpoint
2758 */
1a4eeaf2 2759static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
cf8d2c11 2760{
771b1371 2761 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
cf8d2c11 2762 if (!IS_ERR(new_ns)) {
1a4eeaf2
AV
2763 struct mount *mnt = real_mount(m);
2764 mnt->mnt_ns = new_ns;
be08d6d2 2765 new_ns->root = mnt;
b1983cd8 2766 list_add(&mnt->mnt_list, &new_ns->list);
c1334495 2767 } else {
1a4eeaf2 2768 mntput(m);
cf8d2c11
TM
2769 }
2770 return new_ns;
2771}
cf8d2c11 2772
ea441d11
AV
2773struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2774{
2775 struct mnt_namespace *ns;
d31da0f0 2776 struct super_block *s;
ea441d11
AV
2777 struct path path;
2778 int err;
2779
2780 ns = create_mnt_ns(mnt);
2781 if (IS_ERR(ns))
2782 return ERR_CAST(ns);
2783
2784 err = vfs_path_lookup(mnt->mnt_root, mnt,
2785 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2786
2787 put_mnt_ns(ns);
2788
2789 if (err)
2790 return ERR_PTR(err);
2791
2792 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
2793 s = path.mnt->mnt_sb;
2794 atomic_inc(&s->s_active);
ea441d11
AV
2795 mntput(path.mnt);
2796 /* lock the sucker */
d31da0f0 2797 down_write(&s->s_umount);
ea441d11
AV
2798 /* ... and return the root of (sub)tree on it */
2799 return path.dentry;
2800}
2801EXPORT_SYMBOL(mount_subtree);
2802
bdc480e3
HC
2803SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2804 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 2805{
eca6f534
VN
2806 int ret;
2807 char *kernel_type;
eca6f534 2808 char *kernel_dev;
1da177e4 2809 unsigned long data_page;
1da177e4 2810
b8850d1f
TG
2811 kernel_type = copy_mount_string(type);
2812 ret = PTR_ERR(kernel_type);
2813 if (IS_ERR(kernel_type))
eca6f534 2814 goto out_type;
1da177e4 2815
b8850d1f
TG
2816 kernel_dev = copy_mount_string(dev_name);
2817 ret = PTR_ERR(kernel_dev);
2818 if (IS_ERR(kernel_dev))
eca6f534 2819 goto out_dev;
1da177e4 2820
eca6f534
VN
2821 ret = copy_mount_options(data, &data_page);
2822 if (ret < 0)
2823 goto out_data;
1da177e4 2824
5e6123f3 2825 ret = do_mount(kernel_dev, dir_name, kernel_type, flags,
eca6f534 2826 (void *) data_page);
1da177e4 2827
eca6f534
VN
2828 free_page(data_page);
2829out_data:
2830 kfree(kernel_dev);
2831out_dev:
eca6f534
VN
2832 kfree(kernel_type);
2833out_type:
2834 return ret;
1da177e4
LT
2835}
2836
afac7cba
AV
2837/*
2838 * Return true if path is reachable from root
2839 *
48a066e7 2840 * namespace_sem or mount_lock is held
afac7cba 2841 */
643822b4 2842bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
2843 const struct path *root)
2844{
643822b4 2845 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 2846 dentry = mnt->mnt_mountpoint;
0714a533 2847 mnt = mnt->mnt_parent;
afac7cba 2848 }
643822b4 2849 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
2850}
2851
2852int path_is_under(struct path *path1, struct path *path2)
2853{
2854 int res;
48a066e7 2855 read_seqlock_excl(&mount_lock);
643822b4 2856 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
48a066e7 2857 read_sequnlock_excl(&mount_lock);
afac7cba
AV
2858 return res;
2859}
2860EXPORT_SYMBOL(path_is_under);
2861
1da177e4
LT
2862/*
2863 * pivot_root Semantics:
2864 * Moves the root file system of the current process to the directory put_old,
2865 * makes new_root as the new root file system of the current process, and sets
2866 * root/cwd of all processes which had them on the current root to new_root.
2867 *
2868 * Restrictions:
2869 * The new_root and put_old must be directories, and must not be on the
2870 * same file system as the current process root. The put_old must be
2871 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2872 * pointed to by put_old must yield the same directory as new_root. No other
2873 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2874 *
4a0d11fa
NB
2875 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2876 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2877 * in this situation.
2878 *
1da177e4
LT
2879 * Notes:
2880 * - we don't move root/cwd if they are not at the root (reason: if something
2881 * cared enough to change them, it's probably wrong to force them elsewhere)
2882 * - it's okay to pick a root that isn't the root of a file system, e.g.
2883 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2884 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2885 * first.
2886 */
3480b257
HC
2887SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2888 const char __user *, put_old)
1da177e4 2889{
2d8f3038 2890 struct path new, old, parent_path, root_parent, root;
84d17192
AV
2891 struct mount *new_mnt, *root_mnt, *old_mnt;
2892 struct mountpoint *old_mp, *root_mp;
1da177e4
LT
2893 int error;
2894
9b40bc90 2895 if (!may_mount())
1da177e4
LT
2896 return -EPERM;
2897
2d8f3038 2898 error = user_path_dir(new_root, &new);
1da177e4
LT
2899 if (error)
2900 goto out0;
1da177e4 2901
2d8f3038 2902 error = user_path_dir(put_old, &old);
1da177e4
LT
2903 if (error)
2904 goto out1;
2905
2d8f3038 2906 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
2907 if (error)
2908 goto out2;
1da177e4 2909
f7ad3c6b 2910 get_fs_root(current->fs, &root);
84d17192
AV
2911 old_mp = lock_mount(&old);
2912 error = PTR_ERR(old_mp);
2913 if (IS_ERR(old_mp))
b12cea91
AV
2914 goto out3;
2915
1da177e4 2916 error = -EINVAL;
419148da
AV
2917 new_mnt = real_mount(new.mnt);
2918 root_mnt = real_mount(root.mnt);
84d17192
AV
2919 old_mnt = real_mount(old.mnt);
2920 if (IS_MNT_SHARED(old_mnt) ||
fc7be130
AV
2921 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2922 IS_MNT_SHARED(root_mnt->mnt_parent))
b12cea91 2923 goto out4;
143c8c91 2924 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 2925 goto out4;
5ff9d8a6
EB
2926 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
2927 goto out4;
1da177e4 2928 error = -ENOENT;
f3da392e 2929 if (d_unlinked(new.dentry))
b12cea91 2930 goto out4;
1da177e4 2931 error = -EBUSY;
84d17192 2932 if (new_mnt == root_mnt || old_mnt == root_mnt)
b12cea91 2933 goto out4; /* loop, on the same file system */
1da177e4 2934 error = -EINVAL;
8c3ee42e 2935 if (root.mnt->mnt_root != root.dentry)
b12cea91 2936 goto out4; /* not a mountpoint */
676da58d 2937 if (!mnt_has_parent(root_mnt))
b12cea91 2938 goto out4; /* not attached */
84d17192 2939 root_mp = root_mnt->mnt_mp;
2d8f3038 2940 if (new.mnt->mnt_root != new.dentry)
b12cea91 2941 goto out4; /* not a mountpoint */
676da58d 2942 if (!mnt_has_parent(new_mnt))
b12cea91 2943 goto out4; /* not attached */
4ac91378 2944 /* make sure we can reach put_old from new_root */
84d17192 2945 if (!is_path_reachable(old_mnt, old.dentry, &new))
b12cea91 2946 goto out4;
0d082601
EB
2947 /* make certain new is below the root */
2948 if (!is_path_reachable(new_mnt, new.dentry, &root))
2949 goto out4;
84d17192 2950 root_mp->m_count++; /* pin it so it won't go away */
719ea2fb 2951 lock_mount_hash();
419148da
AV
2952 detach_mnt(new_mnt, &parent_path);
2953 detach_mnt(root_mnt, &root_parent);
5ff9d8a6
EB
2954 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
2955 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
2956 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2957 }
4ac91378 2958 /* mount old root on put_old */
84d17192 2959 attach_mnt(root_mnt, old_mnt, old_mp);
4ac91378 2960 /* mount new_root on / */
84d17192 2961 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
6b3286ed 2962 touch_mnt_namespace(current->nsproxy->mnt_ns);
4fed655c
EB
2963 /* A moved mount should not expire automatically */
2964 list_del_init(&new_mnt->mnt_expire);
719ea2fb 2965 unlock_mount_hash();
2d8f3038 2966 chroot_fs_refs(&root, &new);
84d17192 2967 put_mountpoint(root_mp);
1da177e4 2968 error = 0;
b12cea91 2969out4:
84d17192 2970 unlock_mount(old_mp);
b12cea91
AV
2971 if (!error) {
2972 path_put(&root_parent);
2973 path_put(&parent_path);
2974 }
2975out3:
8c3ee42e 2976 path_put(&root);
b12cea91 2977out2:
2d8f3038 2978 path_put(&old);
1da177e4 2979out1:
2d8f3038 2980 path_put(&new);
1da177e4 2981out0:
1da177e4 2982 return error;
1da177e4
LT
2983}
2984
2985static void __init init_mount_tree(void)
2986{
2987 struct vfsmount *mnt;
6b3286ed 2988 struct mnt_namespace *ns;
ac748a09 2989 struct path root;
0c55cfc4 2990 struct file_system_type *type;
1da177e4 2991
0c55cfc4
EB
2992 type = get_fs_type("rootfs");
2993 if (!type)
2994 panic("Can't find rootfs type");
2995 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
2996 put_filesystem(type);
1da177e4
LT
2997 if (IS_ERR(mnt))
2998 panic("Can't create rootfs");
b3e19d92 2999
3b22edc5
TM
3000 ns = create_mnt_ns(mnt);
3001 if (IS_ERR(ns))
1da177e4 3002 panic("Can't allocate initial namespace");
6b3286ed
KK
3003
3004 init_task.nsproxy->mnt_ns = ns;
3005 get_mnt_ns(ns);
3006
be08d6d2
AV
3007 root.mnt = mnt;
3008 root.dentry = mnt->mnt_root;
da362b09 3009 mnt->mnt_flags |= MNT_LOCKED;
ac748a09
JB
3010
3011 set_fs_pwd(current->fs, &root);
3012 set_fs_root(current->fs, &root);
1da177e4
LT
3013}
3014
74bf17cf 3015void __init mnt_init(void)
1da177e4 3016{
13f14b4d 3017 unsigned u;
15a67dd8 3018 int err;
1da177e4 3019
7d6fec45 3020 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 3021 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 3022
0818bf27 3023 mount_hashtable = alloc_large_system_hash("Mount-cache",
38129a13 3024 sizeof(struct hlist_head),
0818bf27
AV
3025 mhash_entries, 19,
3026 0,
3027 &m_hash_shift, &m_hash_mask, 0, 0);
3028 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3029 sizeof(struct hlist_head),
3030 mphash_entries, 19,
3031 0,
3032 &mp_hash_shift, &mp_hash_mask, 0, 0);
1da177e4 3033
84d17192 3034 if (!mount_hashtable || !mountpoint_hashtable)
1da177e4
LT
3035 panic("Failed to allocate mount hash table\n");
3036
0818bf27 3037 for (u = 0; u <= m_hash_mask; u++)
38129a13 3038 INIT_HLIST_HEAD(&mount_hashtable[u]);
0818bf27
AV
3039 for (u = 0; u <= mp_hash_mask; u++)
3040 INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
1da177e4 3041
4b93dc9b
TH
3042 kernfs_init();
3043
15a67dd8
RD
3044 err = sysfs_init();
3045 if (err)
3046 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 3047 __func__, err);
00d26666
GKH
3048 fs_kobj = kobject_create_and_add("fs", NULL);
3049 if (!fs_kobj)
8e24eea7 3050 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
3051 init_rootfs();
3052 init_mount_tree();
3053}
3054
616511d0 3055void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 3056{
d498b25a 3057 if (!atomic_dec_and_test(&ns->count))
616511d0 3058 return;
7b00ed6f 3059 drop_collected_mounts(&ns->root->mnt);
771b1371 3060 free_mnt_ns(ns);
1da177e4 3061}
9d412a43
AV
3062
3063struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3064{
423e0ab0
TC
3065 struct vfsmount *mnt;
3066 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
3067 if (!IS_ERR(mnt)) {
3068 /*
3069 * it is a longterm mount, don't release mnt until
3070 * we unmount before file sys is unregistered
3071 */
f7a99c5b 3072 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
423e0ab0
TC
3073 }
3074 return mnt;
9d412a43
AV
3075}
3076EXPORT_SYMBOL_GPL(kern_mount_data);
423e0ab0
TC
3077
3078void kern_unmount(struct vfsmount *mnt)
3079{
3080 /* release long term mount so mount point can be released */
3081 if (!IS_ERR_OR_NULL(mnt)) {
f7a99c5b 3082 real_mount(mnt)->mnt_ns = NULL;
48a066e7 3083 synchronize_rcu(); /* yecchhh... */
423e0ab0
TC
3084 mntput(mnt);
3085 }
3086}
3087EXPORT_SYMBOL(kern_unmount);
02125a82
AV
3088
3089bool our_mnt(struct vfsmount *mnt)
3090{
143c8c91 3091 return check_mnt(real_mount(mnt));
02125a82 3092}
8823c079 3093
3151527e
EB
3094bool current_chrooted(void)
3095{
3096 /* Does the current process have a non-standard root */
3097 struct path ns_root;
3098 struct path fs_root;
3099 bool chrooted;
3100
3101 /* Find the namespace root */
3102 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3103 ns_root.dentry = ns_root.mnt->mnt_root;
3104 path_get(&ns_root);
3105 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3106 ;
3107
3108 get_fs_root(current->fs, &fs_root);
3109
3110 chrooted = !path_equal(&fs_root, &ns_root);
3111
3112 path_put(&fs_root);
3113 path_put(&ns_root);
3114
3115 return chrooted;
3116}
3117
e51db735 3118bool fs_fully_visible(struct file_system_type *type)
87a8ebd6
EB
3119{
3120 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3121 struct mount *mnt;
e51db735 3122 bool visible = false;
87a8ebd6 3123
e51db735
EB
3124 if (unlikely(!ns))
3125 return false;
3126
44bb4385 3127 down_read(&namespace_sem);
87a8ebd6 3128 list_for_each_entry(mnt, &ns->list, mnt_list) {
e51db735
EB
3129 struct mount *child;
3130 if (mnt->mnt.mnt_sb->s_type != type)
3131 continue;
3132
3133 /* This mount is not fully visible if there are any child mounts
3134 * that cover anything except for empty directories.
3135 */
3136 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3137 struct inode *inode = child->mnt_mountpoint->d_inode;
3138 if (!S_ISDIR(inode->i_mode))
3139 goto next;
41301ae7 3140 if (inode->i_nlink > 2)
e51db735 3141 goto next;
87a8ebd6 3142 }
e51db735
EB
3143 visible = true;
3144 goto found;
3145 next: ;
87a8ebd6 3146 }
e51db735 3147found:
44bb4385 3148 up_read(&namespace_sem);
e51db735 3149 return visible;
87a8ebd6
EB
3150}
3151
64964528 3152static struct ns_common *mntns_get(struct task_struct *task)
8823c079 3153{
58be2825 3154 struct ns_common *ns = NULL;
8823c079
EB
3155 struct nsproxy *nsproxy;
3156
728dba3a
EB
3157 task_lock(task);
3158 nsproxy = task->nsproxy;
8823c079 3159 if (nsproxy) {
58be2825
AV
3160 ns = &nsproxy->mnt_ns->ns;
3161 get_mnt_ns(to_mnt_ns(ns));
8823c079 3162 }
728dba3a 3163 task_unlock(task);
8823c079
EB
3164
3165 return ns;
3166}
3167
64964528 3168static void mntns_put(struct ns_common *ns)
8823c079 3169{
58be2825 3170 put_mnt_ns(to_mnt_ns(ns));
8823c079
EB
3171}
3172
64964528 3173static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
8823c079
EB
3174{
3175 struct fs_struct *fs = current->fs;
58be2825 3176 struct mnt_namespace *mnt_ns = to_mnt_ns(ns);
8823c079
EB
3177 struct path root;
3178
0c55cfc4 3179 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
c7b96acf
EB
3180 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3181 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
ae11e0f1 3182 return -EPERM;
8823c079
EB
3183
3184 if (fs->users != 1)
3185 return -EINVAL;
3186
3187 get_mnt_ns(mnt_ns);
3188 put_mnt_ns(nsproxy->mnt_ns);
3189 nsproxy->mnt_ns = mnt_ns;
3190
3191 /* Find the root */
3192 root.mnt = &mnt_ns->root->mnt;
3193 root.dentry = mnt_ns->root->mnt.mnt_root;
3194 path_get(&root);
3195 while(d_mountpoint(root.dentry) && follow_down_one(&root))
3196 ;
3197
3198 /* Update the pwd and root */
3199 set_fs_pwd(fs, &root);
3200 set_fs_root(fs, &root);
3201
3202 path_put(&root);
3203 return 0;
3204}
3205
3206const struct proc_ns_operations mntns_operations = {
3207 .name = "mnt",
3208 .type = CLONE_NEWNS,
3209 .get = mntns_get,
3210 .put = mntns_put,
3211 .install = mntns_install,
3212};