]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * Generic hugetlb support. | |
6d49e352 | 3 | * (C) Nadia Yvette Chambers, April 2004 |
1da177e4 | 4 | */ |
1da177e4 LT |
5 | #include <linux/list.h> |
6 | #include <linux/init.h> | |
1da177e4 | 7 | #include <linux/mm.h> |
e1759c21 | 8 | #include <linux/seq_file.h> |
1da177e4 LT |
9 | #include <linux/sysctl.h> |
10 | #include <linux/highmem.h> | |
cddb8a5c | 11 | #include <linux/mmu_notifier.h> |
1da177e4 | 12 | #include <linux/nodemask.h> |
63551ae0 | 13 | #include <linux/pagemap.h> |
5da7ca86 | 14 | #include <linux/mempolicy.h> |
3b32123d | 15 | #include <linux/compiler.h> |
aea47ff3 | 16 | #include <linux/cpuset.h> |
3935baa9 | 17 | #include <linux/mutex.h> |
aa888a74 | 18 | #include <linux/bootmem.h> |
a3437870 | 19 | #include <linux/sysfs.h> |
5a0e3ad6 | 20 | #include <linux/slab.h> |
1211d50a | 21 | #include <linux/mmdebug.h> |
174cd4b1 | 22 | #include <linux/sched/signal.h> |
0fe6e20b | 23 | #include <linux/rmap.h> |
c6247f72 | 24 | #include <linux/string_helpers.h> |
fd6a03ed NH |
25 | #include <linux/swap.h> |
26 | #include <linux/swapops.h> | |
8382d914 | 27 | #include <linux/jhash.h> |
d6606683 | 28 | |
63551ae0 DG |
29 | #include <asm/page.h> |
30 | #include <asm/pgtable.h> | |
24669e58 | 31 | #include <asm/tlb.h> |
63551ae0 | 32 | |
24669e58 | 33 | #include <linux/io.h> |
63551ae0 | 34 | #include <linux/hugetlb.h> |
9dd540e2 | 35 | #include <linux/hugetlb_cgroup.h> |
9a305230 | 36 | #include <linux/node.h> |
1a1aad8a | 37 | #include <linux/userfaultfd_k.h> |
7835e98b | 38 | #include "internal.h" |
1da177e4 | 39 | |
753162cd | 40 | int hugepages_treat_as_movable; |
a5516438 | 41 | |
c3f38a38 | 42 | int hugetlb_max_hstate __read_mostly; |
e5ff2159 AK |
43 | unsigned int default_hstate_idx; |
44 | struct hstate hstates[HUGE_MAX_HSTATE]; | |
641844f5 NH |
45 | /* |
46 | * Minimum page order among possible hugepage sizes, set to a proper value | |
47 | * at boot time. | |
48 | */ | |
49 | static unsigned int minimum_order __read_mostly = UINT_MAX; | |
e5ff2159 | 50 | |
53ba51d2 JT |
51 | __initdata LIST_HEAD(huge_boot_pages); |
52 | ||
e5ff2159 AK |
53 | /* for command line parsing */ |
54 | static struct hstate * __initdata parsed_hstate; | |
55 | static unsigned long __initdata default_hstate_max_huge_pages; | |
e11bfbfc | 56 | static unsigned long __initdata default_hstate_size; |
9fee021d | 57 | static bool __initdata parsed_valid_hugepagesz = true; |
e5ff2159 | 58 | |
3935baa9 | 59 | /* |
31caf665 NH |
60 | * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, |
61 | * free_huge_pages, and surplus_huge_pages. | |
3935baa9 | 62 | */ |
c3f38a38 | 63 | DEFINE_SPINLOCK(hugetlb_lock); |
0bd0f9fb | 64 | |
8382d914 DB |
65 | /* |
66 | * Serializes faults on the same logical page. This is used to | |
67 | * prevent spurious OOMs when the hugepage pool is fully utilized. | |
68 | */ | |
69 | static int num_fault_mutexes; | |
c672c7f2 | 70 | struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; |
8382d914 | 71 | |
7ca02d0a MK |
72 | /* Forward declaration */ |
73 | static int hugetlb_acct_memory(struct hstate *h, long delta); | |
74 | ||
90481622 DG |
75 | static inline void unlock_or_release_subpool(struct hugepage_subpool *spool) |
76 | { | |
77 | bool free = (spool->count == 0) && (spool->used_hpages == 0); | |
78 | ||
79 | spin_unlock(&spool->lock); | |
80 | ||
81 | /* If no pages are used, and no other handles to the subpool | |
7ca02d0a MK |
82 | * remain, give up any reservations mased on minimum size and |
83 | * free the subpool */ | |
84 | if (free) { | |
85 | if (spool->min_hpages != -1) | |
86 | hugetlb_acct_memory(spool->hstate, | |
87 | -spool->min_hpages); | |
90481622 | 88 | kfree(spool); |
7ca02d0a | 89 | } |
90481622 DG |
90 | } |
91 | ||
7ca02d0a MK |
92 | struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, |
93 | long min_hpages) | |
90481622 DG |
94 | { |
95 | struct hugepage_subpool *spool; | |
96 | ||
c6a91820 | 97 | spool = kzalloc(sizeof(*spool), GFP_KERNEL); |
90481622 DG |
98 | if (!spool) |
99 | return NULL; | |
100 | ||
101 | spin_lock_init(&spool->lock); | |
102 | spool->count = 1; | |
7ca02d0a MK |
103 | spool->max_hpages = max_hpages; |
104 | spool->hstate = h; | |
105 | spool->min_hpages = min_hpages; | |
106 | ||
107 | if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { | |
108 | kfree(spool); | |
109 | return NULL; | |
110 | } | |
111 | spool->rsv_hpages = min_hpages; | |
90481622 DG |
112 | |
113 | return spool; | |
114 | } | |
115 | ||
116 | void hugepage_put_subpool(struct hugepage_subpool *spool) | |
117 | { | |
118 | spin_lock(&spool->lock); | |
119 | BUG_ON(!spool->count); | |
120 | spool->count--; | |
121 | unlock_or_release_subpool(spool); | |
122 | } | |
123 | ||
1c5ecae3 MK |
124 | /* |
125 | * Subpool accounting for allocating and reserving pages. | |
126 | * Return -ENOMEM if there are not enough resources to satisfy the | |
127 | * the request. Otherwise, return the number of pages by which the | |
128 | * global pools must be adjusted (upward). The returned value may | |
129 | * only be different than the passed value (delta) in the case where | |
130 | * a subpool minimum size must be manitained. | |
131 | */ | |
132 | static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, | |
90481622 DG |
133 | long delta) |
134 | { | |
1c5ecae3 | 135 | long ret = delta; |
90481622 DG |
136 | |
137 | if (!spool) | |
1c5ecae3 | 138 | return ret; |
90481622 DG |
139 | |
140 | spin_lock(&spool->lock); | |
1c5ecae3 MK |
141 | |
142 | if (spool->max_hpages != -1) { /* maximum size accounting */ | |
143 | if ((spool->used_hpages + delta) <= spool->max_hpages) | |
144 | spool->used_hpages += delta; | |
145 | else { | |
146 | ret = -ENOMEM; | |
147 | goto unlock_ret; | |
148 | } | |
90481622 | 149 | } |
90481622 | 150 | |
09a95e29 MK |
151 | /* minimum size accounting */ |
152 | if (spool->min_hpages != -1 && spool->rsv_hpages) { | |
1c5ecae3 MK |
153 | if (delta > spool->rsv_hpages) { |
154 | /* | |
155 | * Asking for more reserves than those already taken on | |
156 | * behalf of subpool. Return difference. | |
157 | */ | |
158 | ret = delta - spool->rsv_hpages; | |
159 | spool->rsv_hpages = 0; | |
160 | } else { | |
161 | ret = 0; /* reserves already accounted for */ | |
162 | spool->rsv_hpages -= delta; | |
163 | } | |
164 | } | |
165 | ||
166 | unlock_ret: | |
167 | spin_unlock(&spool->lock); | |
90481622 DG |
168 | return ret; |
169 | } | |
170 | ||
1c5ecae3 MK |
171 | /* |
172 | * Subpool accounting for freeing and unreserving pages. | |
173 | * Return the number of global page reservations that must be dropped. | |
174 | * The return value may only be different than the passed value (delta) | |
175 | * in the case where a subpool minimum size must be maintained. | |
176 | */ | |
177 | static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, | |
90481622 DG |
178 | long delta) |
179 | { | |
1c5ecae3 MK |
180 | long ret = delta; |
181 | ||
90481622 | 182 | if (!spool) |
1c5ecae3 | 183 | return delta; |
90481622 DG |
184 | |
185 | spin_lock(&spool->lock); | |
1c5ecae3 MK |
186 | |
187 | if (spool->max_hpages != -1) /* maximum size accounting */ | |
188 | spool->used_hpages -= delta; | |
189 | ||
09a95e29 MK |
190 | /* minimum size accounting */ |
191 | if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { | |
1c5ecae3 MK |
192 | if (spool->rsv_hpages + delta <= spool->min_hpages) |
193 | ret = 0; | |
194 | else | |
195 | ret = spool->rsv_hpages + delta - spool->min_hpages; | |
196 | ||
197 | spool->rsv_hpages += delta; | |
198 | if (spool->rsv_hpages > spool->min_hpages) | |
199 | spool->rsv_hpages = spool->min_hpages; | |
200 | } | |
201 | ||
202 | /* | |
203 | * If hugetlbfs_put_super couldn't free spool due to an outstanding | |
204 | * quota reference, free it now. | |
205 | */ | |
90481622 | 206 | unlock_or_release_subpool(spool); |
1c5ecae3 MK |
207 | |
208 | return ret; | |
90481622 DG |
209 | } |
210 | ||
211 | static inline struct hugepage_subpool *subpool_inode(struct inode *inode) | |
212 | { | |
213 | return HUGETLBFS_SB(inode->i_sb)->spool; | |
214 | } | |
215 | ||
216 | static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) | |
217 | { | |
496ad9aa | 218 | return subpool_inode(file_inode(vma->vm_file)); |
90481622 DG |
219 | } |
220 | ||
96822904 AW |
221 | /* |
222 | * Region tracking -- allows tracking of reservations and instantiated pages | |
223 | * across the pages in a mapping. | |
84afd99b | 224 | * |
1dd308a7 MK |
225 | * The region data structures are embedded into a resv_map and protected |
226 | * by a resv_map's lock. The set of regions within the resv_map represent | |
227 | * reservations for huge pages, or huge pages that have already been | |
228 | * instantiated within the map. The from and to elements are huge page | |
229 | * indicies into the associated mapping. from indicates the starting index | |
230 | * of the region. to represents the first index past the end of the region. | |
231 | * | |
232 | * For example, a file region structure with from == 0 and to == 4 represents | |
233 | * four huge pages in a mapping. It is important to note that the to element | |
234 | * represents the first element past the end of the region. This is used in | |
235 | * arithmetic as 4(to) - 0(from) = 4 huge pages in the region. | |
236 | * | |
237 | * Interval notation of the form [from, to) will be used to indicate that | |
238 | * the endpoint from is inclusive and to is exclusive. | |
96822904 AW |
239 | */ |
240 | struct file_region { | |
241 | struct list_head link; | |
242 | long from; | |
243 | long to; | |
244 | }; | |
245 | ||
1dd308a7 MK |
246 | /* |
247 | * Add the huge page range represented by [f, t) to the reserve | |
5e911373 MK |
248 | * map. In the normal case, existing regions will be expanded |
249 | * to accommodate the specified range. Sufficient regions should | |
250 | * exist for expansion due to the previous call to region_chg | |
251 | * with the same range. However, it is possible that region_del | |
252 | * could have been called after region_chg and modifed the map | |
253 | * in such a way that no region exists to be expanded. In this | |
254 | * case, pull a region descriptor from the cache associated with | |
255 | * the map and use that for the new range. | |
cf3ad20b MK |
256 | * |
257 | * Return the number of new huge pages added to the map. This | |
258 | * number is greater than or equal to zero. | |
1dd308a7 | 259 | */ |
1406ec9b | 260 | static long region_add(struct resv_map *resv, long f, long t) |
96822904 | 261 | { |
1406ec9b | 262 | struct list_head *head = &resv->regions; |
96822904 | 263 | struct file_region *rg, *nrg, *trg; |
cf3ad20b | 264 | long add = 0; |
96822904 | 265 | |
7b24d861 | 266 | spin_lock(&resv->lock); |
96822904 AW |
267 | /* Locate the region we are either in or before. */ |
268 | list_for_each_entry(rg, head, link) | |
269 | if (f <= rg->to) | |
270 | break; | |
271 | ||
5e911373 MK |
272 | /* |
273 | * If no region exists which can be expanded to include the | |
274 | * specified range, the list must have been modified by an | |
275 | * interleving call to region_del(). Pull a region descriptor | |
276 | * from the cache and use it for this range. | |
277 | */ | |
278 | if (&rg->link == head || t < rg->from) { | |
279 | VM_BUG_ON(resv->region_cache_count <= 0); | |
280 | ||
281 | resv->region_cache_count--; | |
282 | nrg = list_first_entry(&resv->region_cache, struct file_region, | |
283 | link); | |
284 | list_del(&nrg->link); | |
285 | ||
286 | nrg->from = f; | |
287 | nrg->to = t; | |
288 | list_add(&nrg->link, rg->link.prev); | |
289 | ||
290 | add += t - f; | |
291 | goto out_locked; | |
292 | } | |
293 | ||
96822904 AW |
294 | /* Round our left edge to the current segment if it encloses us. */ |
295 | if (f > rg->from) | |
296 | f = rg->from; | |
297 | ||
298 | /* Check for and consume any regions we now overlap with. */ | |
299 | nrg = rg; | |
300 | list_for_each_entry_safe(rg, trg, rg->link.prev, link) { | |
301 | if (&rg->link == head) | |
302 | break; | |
303 | if (rg->from > t) | |
304 | break; | |
305 | ||
306 | /* If this area reaches higher then extend our area to | |
307 | * include it completely. If this is not the first area | |
308 | * which we intend to reuse, free it. */ | |
309 | if (rg->to > t) | |
310 | t = rg->to; | |
311 | if (rg != nrg) { | |
cf3ad20b MK |
312 | /* Decrement return value by the deleted range. |
313 | * Another range will span this area so that by | |
314 | * end of routine add will be >= zero | |
315 | */ | |
316 | add -= (rg->to - rg->from); | |
96822904 AW |
317 | list_del(&rg->link); |
318 | kfree(rg); | |
319 | } | |
320 | } | |
cf3ad20b MK |
321 | |
322 | add += (nrg->from - f); /* Added to beginning of region */ | |
96822904 | 323 | nrg->from = f; |
cf3ad20b | 324 | add += t - nrg->to; /* Added to end of region */ |
96822904 | 325 | nrg->to = t; |
cf3ad20b | 326 | |
5e911373 MK |
327 | out_locked: |
328 | resv->adds_in_progress--; | |
7b24d861 | 329 | spin_unlock(&resv->lock); |
cf3ad20b MK |
330 | VM_BUG_ON(add < 0); |
331 | return add; | |
96822904 AW |
332 | } |
333 | ||
1dd308a7 MK |
334 | /* |
335 | * Examine the existing reserve map and determine how many | |
336 | * huge pages in the specified range [f, t) are NOT currently | |
337 | * represented. This routine is called before a subsequent | |
338 | * call to region_add that will actually modify the reserve | |
339 | * map to add the specified range [f, t). region_chg does | |
340 | * not change the number of huge pages represented by the | |
341 | * map. However, if the existing regions in the map can not | |
342 | * be expanded to represent the new range, a new file_region | |
343 | * structure is added to the map as a placeholder. This is | |
344 | * so that the subsequent region_add call will have all the | |
345 | * regions it needs and will not fail. | |
346 | * | |
5e911373 MK |
347 | * Upon entry, region_chg will also examine the cache of region descriptors |
348 | * associated with the map. If there are not enough descriptors cached, one | |
349 | * will be allocated for the in progress add operation. | |
350 | * | |
351 | * Returns the number of huge pages that need to be added to the existing | |
352 | * reservation map for the range [f, t). This number is greater or equal to | |
353 | * zero. -ENOMEM is returned if a new file_region structure or cache entry | |
354 | * is needed and can not be allocated. | |
1dd308a7 | 355 | */ |
1406ec9b | 356 | static long region_chg(struct resv_map *resv, long f, long t) |
96822904 | 357 | { |
1406ec9b | 358 | struct list_head *head = &resv->regions; |
7b24d861 | 359 | struct file_region *rg, *nrg = NULL; |
96822904 AW |
360 | long chg = 0; |
361 | ||
7b24d861 DB |
362 | retry: |
363 | spin_lock(&resv->lock); | |
5e911373 MK |
364 | retry_locked: |
365 | resv->adds_in_progress++; | |
366 | ||
367 | /* | |
368 | * Check for sufficient descriptors in the cache to accommodate | |
369 | * the number of in progress add operations. | |
370 | */ | |
371 | if (resv->adds_in_progress > resv->region_cache_count) { | |
372 | struct file_region *trg; | |
373 | ||
374 | VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1); | |
375 | /* Must drop lock to allocate a new descriptor. */ | |
376 | resv->adds_in_progress--; | |
377 | spin_unlock(&resv->lock); | |
378 | ||
379 | trg = kmalloc(sizeof(*trg), GFP_KERNEL); | |
dbe409e4 MK |
380 | if (!trg) { |
381 | kfree(nrg); | |
5e911373 | 382 | return -ENOMEM; |
dbe409e4 | 383 | } |
5e911373 MK |
384 | |
385 | spin_lock(&resv->lock); | |
386 | list_add(&trg->link, &resv->region_cache); | |
387 | resv->region_cache_count++; | |
388 | goto retry_locked; | |
389 | } | |
390 | ||
96822904 AW |
391 | /* Locate the region we are before or in. */ |
392 | list_for_each_entry(rg, head, link) | |
393 | if (f <= rg->to) | |
394 | break; | |
395 | ||
396 | /* If we are below the current region then a new region is required. | |
397 | * Subtle, allocate a new region at the position but make it zero | |
398 | * size such that we can guarantee to record the reservation. */ | |
399 | if (&rg->link == head || t < rg->from) { | |
7b24d861 | 400 | if (!nrg) { |
5e911373 | 401 | resv->adds_in_progress--; |
7b24d861 DB |
402 | spin_unlock(&resv->lock); |
403 | nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); | |
404 | if (!nrg) | |
405 | return -ENOMEM; | |
406 | ||
407 | nrg->from = f; | |
408 | nrg->to = f; | |
409 | INIT_LIST_HEAD(&nrg->link); | |
410 | goto retry; | |
411 | } | |
96822904 | 412 | |
7b24d861 DB |
413 | list_add(&nrg->link, rg->link.prev); |
414 | chg = t - f; | |
415 | goto out_nrg; | |
96822904 AW |
416 | } |
417 | ||
418 | /* Round our left edge to the current segment if it encloses us. */ | |
419 | if (f > rg->from) | |
420 | f = rg->from; | |
421 | chg = t - f; | |
422 | ||
423 | /* Check for and consume any regions we now overlap with. */ | |
424 | list_for_each_entry(rg, rg->link.prev, link) { | |
425 | if (&rg->link == head) | |
426 | break; | |
427 | if (rg->from > t) | |
7b24d861 | 428 | goto out; |
96822904 | 429 | |
25985edc | 430 | /* We overlap with this area, if it extends further than |
96822904 AW |
431 | * us then we must extend ourselves. Account for its |
432 | * existing reservation. */ | |
433 | if (rg->to > t) { | |
434 | chg += rg->to - t; | |
435 | t = rg->to; | |
436 | } | |
437 | chg -= rg->to - rg->from; | |
438 | } | |
7b24d861 DB |
439 | |
440 | out: | |
441 | spin_unlock(&resv->lock); | |
442 | /* We already know we raced and no longer need the new region */ | |
443 | kfree(nrg); | |
444 | return chg; | |
445 | out_nrg: | |
446 | spin_unlock(&resv->lock); | |
96822904 AW |
447 | return chg; |
448 | } | |
449 | ||
5e911373 MK |
450 | /* |
451 | * Abort the in progress add operation. The adds_in_progress field | |
452 | * of the resv_map keeps track of the operations in progress between | |
453 | * calls to region_chg and region_add. Operations are sometimes | |
454 | * aborted after the call to region_chg. In such cases, region_abort | |
455 | * is called to decrement the adds_in_progress counter. | |
456 | * | |
457 | * NOTE: The range arguments [f, t) are not needed or used in this | |
458 | * routine. They are kept to make reading the calling code easier as | |
459 | * arguments will match the associated region_chg call. | |
460 | */ | |
461 | static void region_abort(struct resv_map *resv, long f, long t) | |
462 | { | |
463 | spin_lock(&resv->lock); | |
464 | VM_BUG_ON(!resv->region_cache_count); | |
465 | resv->adds_in_progress--; | |
466 | spin_unlock(&resv->lock); | |
467 | } | |
468 | ||
1dd308a7 | 469 | /* |
feba16e2 MK |
470 | * Delete the specified range [f, t) from the reserve map. If the |
471 | * t parameter is LONG_MAX, this indicates that ALL regions after f | |
472 | * should be deleted. Locate the regions which intersect [f, t) | |
473 | * and either trim, delete or split the existing regions. | |
474 | * | |
475 | * Returns the number of huge pages deleted from the reserve map. | |
476 | * In the normal case, the return value is zero or more. In the | |
477 | * case where a region must be split, a new region descriptor must | |
478 | * be allocated. If the allocation fails, -ENOMEM will be returned. | |
479 | * NOTE: If the parameter t == LONG_MAX, then we will never split | |
480 | * a region and possibly return -ENOMEM. Callers specifying | |
481 | * t == LONG_MAX do not need to check for -ENOMEM error. | |
1dd308a7 | 482 | */ |
feba16e2 | 483 | static long region_del(struct resv_map *resv, long f, long t) |
96822904 | 484 | { |
1406ec9b | 485 | struct list_head *head = &resv->regions; |
96822904 | 486 | struct file_region *rg, *trg; |
feba16e2 MK |
487 | struct file_region *nrg = NULL; |
488 | long del = 0; | |
96822904 | 489 | |
feba16e2 | 490 | retry: |
7b24d861 | 491 | spin_lock(&resv->lock); |
feba16e2 | 492 | list_for_each_entry_safe(rg, trg, head, link) { |
dbe409e4 MK |
493 | /* |
494 | * Skip regions before the range to be deleted. file_region | |
495 | * ranges are normally of the form [from, to). However, there | |
496 | * may be a "placeholder" entry in the map which is of the form | |
497 | * (from, to) with from == to. Check for placeholder entries | |
498 | * at the beginning of the range to be deleted. | |
499 | */ | |
500 | if (rg->to <= f && (rg->to != rg->from || rg->to != f)) | |
feba16e2 | 501 | continue; |
dbe409e4 | 502 | |
feba16e2 | 503 | if (rg->from >= t) |
96822904 | 504 | break; |
96822904 | 505 | |
feba16e2 MK |
506 | if (f > rg->from && t < rg->to) { /* Must split region */ |
507 | /* | |
508 | * Check for an entry in the cache before dropping | |
509 | * lock and attempting allocation. | |
510 | */ | |
511 | if (!nrg && | |
512 | resv->region_cache_count > resv->adds_in_progress) { | |
513 | nrg = list_first_entry(&resv->region_cache, | |
514 | struct file_region, | |
515 | link); | |
516 | list_del(&nrg->link); | |
517 | resv->region_cache_count--; | |
518 | } | |
96822904 | 519 | |
feba16e2 MK |
520 | if (!nrg) { |
521 | spin_unlock(&resv->lock); | |
522 | nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); | |
523 | if (!nrg) | |
524 | return -ENOMEM; | |
525 | goto retry; | |
526 | } | |
527 | ||
528 | del += t - f; | |
529 | ||
530 | /* New entry for end of split region */ | |
531 | nrg->from = t; | |
532 | nrg->to = rg->to; | |
533 | INIT_LIST_HEAD(&nrg->link); | |
534 | ||
535 | /* Original entry is trimmed */ | |
536 | rg->to = f; | |
537 | ||
538 | list_add(&nrg->link, &rg->link); | |
539 | nrg = NULL; | |
96822904 | 540 | break; |
feba16e2 MK |
541 | } |
542 | ||
543 | if (f <= rg->from && t >= rg->to) { /* Remove entire region */ | |
544 | del += rg->to - rg->from; | |
545 | list_del(&rg->link); | |
546 | kfree(rg); | |
547 | continue; | |
548 | } | |
549 | ||
550 | if (f <= rg->from) { /* Trim beginning of region */ | |
551 | del += t - rg->from; | |
552 | rg->from = t; | |
553 | } else { /* Trim end of region */ | |
554 | del += rg->to - f; | |
555 | rg->to = f; | |
556 | } | |
96822904 | 557 | } |
7b24d861 | 558 | |
7b24d861 | 559 | spin_unlock(&resv->lock); |
feba16e2 MK |
560 | kfree(nrg); |
561 | return del; | |
96822904 AW |
562 | } |
563 | ||
b5cec28d MK |
564 | /* |
565 | * A rare out of memory error was encountered which prevented removal of | |
566 | * the reserve map region for a page. The huge page itself was free'ed | |
567 | * and removed from the page cache. This routine will adjust the subpool | |
568 | * usage count, and the global reserve count if needed. By incrementing | |
569 | * these counts, the reserve map entry which could not be deleted will | |
570 | * appear as a "reserved" entry instead of simply dangling with incorrect | |
571 | * counts. | |
572 | */ | |
72e2936c | 573 | void hugetlb_fix_reserve_counts(struct inode *inode) |
b5cec28d MK |
574 | { |
575 | struct hugepage_subpool *spool = subpool_inode(inode); | |
576 | long rsv_adjust; | |
577 | ||
578 | rsv_adjust = hugepage_subpool_get_pages(spool, 1); | |
72e2936c | 579 | if (rsv_adjust) { |
b5cec28d MK |
580 | struct hstate *h = hstate_inode(inode); |
581 | ||
582 | hugetlb_acct_memory(h, 1); | |
583 | } | |
584 | } | |
585 | ||
1dd308a7 MK |
586 | /* |
587 | * Count and return the number of huge pages in the reserve map | |
588 | * that intersect with the range [f, t). | |
589 | */ | |
1406ec9b | 590 | static long region_count(struct resv_map *resv, long f, long t) |
84afd99b | 591 | { |
1406ec9b | 592 | struct list_head *head = &resv->regions; |
84afd99b AW |
593 | struct file_region *rg; |
594 | long chg = 0; | |
595 | ||
7b24d861 | 596 | spin_lock(&resv->lock); |
84afd99b AW |
597 | /* Locate each segment we overlap with, and count that overlap. */ |
598 | list_for_each_entry(rg, head, link) { | |
f2135a4a WSH |
599 | long seg_from; |
600 | long seg_to; | |
84afd99b AW |
601 | |
602 | if (rg->to <= f) | |
603 | continue; | |
604 | if (rg->from >= t) | |
605 | break; | |
606 | ||
607 | seg_from = max(rg->from, f); | |
608 | seg_to = min(rg->to, t); | |
609 | ||
610 | chg += seg_to - seg_from; | |
611 | } | |
7b24d861 | 612 | spin_unlock(&resv->lock); |
84afd99b AW |
613 | |
614 | return chg; | |
615 | } | |
616 | ||
e7c4b0bf AW |
617 | /* |
618 | * Convert the address within this vma to the page offset within | |
619 | * the mapping, in pagecache page units; huge pages here. | |
620 | */ | |
a5516438 AK |
621 | static pgoff_t vma_hugecache_offset(struct hstate *h, |
622 | struct vm_area_struct *vma, unsigned long address) | |
e7c4b0bf | 623 | { |
a5516438 AK |
624 | return ((address - vma->vm_start) >> huge_page_shift(h)) + |
625 | (vma->vm_pgoff >> huge_page_order(h)); | |
e7c4b0bf AW |
626 | } |
627 | ||
0fe6e20b NH |
628 | pgoff_t linear_hugepage_index(struct vm_area_struct *vma, |
629 | unsigned long address) | |
630 | { | |
631 | return vma_hugecache_offset(hstate_vma(vma), vma, address); | |
632 | } | |
dee41079 | 633 | EXPORT_SYMBOL_GPL(linear_hugepage_index); |
0fe6e20b | 634 | |
08fba699 MG |
635 | /* |
636 | * Return the size of the pages allocated when backing a VMA. In the majority | |
637 | * cases this will be same size as used by the page table entries. | |
638 | */ | |
639 | unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) | |
640 | { | |
641 | struct hstate *hstate; | |
642 | ||
643 | if (!is_vm_hugetlb_page(vma)) | |
644 | return PAGE_SIZE; | |
645 | ||
646 | hstate = hstate_vma(vma); | |
647 | ||
2415cf12 | 648 | return 1UL << huge_page_shift(hstate); |
08fba699 | 649 | } |
f340ca0f | 650 | EXPORT_SYMBOL_GPL(vma_kernel_pagesize); |
08fba699 | 651 | |
3340289d MG |
652 | /* |
653 | * Return the page size being used by the MMU to back a VMA. In the majority | |
654 | * of cases, the page size used by the kernel matches the MMU size. On | |
655 | * architectures where it differs, an architecture-specific version of this | |
656 | * function is required. | |
657 | */ | |
658 | #ifndef vma_mmu_pagesize | |
659 | unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) | |
660 | { | |
661 | return vma_kernel_pagesize(vma); | |
662 | } | |
663 | #endif | |
664 | ||
84afd99b AW |
665 | /* |
666 | * Flags for MAP_PRIVATE reservations. These are stored in the bottom | |
667 | * bits of the reservation map pointer, which are always clear due to | |
668 | * alignment. | |
669 | */ | |
670 | #define HPAGE_RESV_OWNER (1UL << 0) | |
671 | #define HPAGE_RESV_UNMAPPED (1UL << 1) | |
04f2cbe3 | 672 | #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) |
84afd99b | 673 | |
a1e78772 MG |
674 | /* |
675 | * These helpers are used to track how many pages are reserved for | |
676 | * faults in a MAP_PRIVATE mapping. Only the process that called mmap() | |
677 | * is guaranteed to have their future faults succeed. | |
678 | * | |
679 | * With the exception of reset_vma_resv_huge_pages() which is called at fork(), | |
680 | * the reserve counters are updated with the hugetlb_lock held. It is safe | |
681 | * to reset the VMA at fork() time as it is not in use yet and there is no | |
682 | * chance of the global counters getting corrupted as a result of the values. | |
84afd99b AW |
683 | * |
684 | * The private mapping reservation is represented in a subtly different | |
685 | * manner to a shared mapping. A shared mapping has a region map associated | |
686 | * with the underlying file, this region map represents the backing file | |
687 | * pages which have ever had a reservation assigned which this persists even | |
688 | * after the page is instantiated. A private mapping has a region map | |
689 | * associated with the original mmap which is attached to all VMAs which | |
690 | * reference it, this region map represents those offsets which have consumed | |
691 | * reservation ie. where pages have been instantiated. | |
a1e78772 | 692 | */ |
e7c4b0bf AW |
693 | static unsigned long get_vma_private_data(struct vm_area_struct *vma) |
694 | { | |
695 | return (unsigned long)vma->vm_private_data; | |
696 | } | |
697 | ||
698 | static void set_vma_private_data(struct vm_area_struct *vma, | |
699 | unsigned long value) | |
700 | { | |
701 | vma->vm_private_data = (void *)value; | |
702 | } | |
703 | ||
9119a41e | 704 | struct resv_map *resv_map_alloc(void) |
84afd99b AW |
705 | { |
706 | struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); | |
5e911373 MK |
707 | struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); |
708 | ||
709 | if (!resv_map || !rg) { | |
710 | kfree(resv_map); | |
711 | kfree(rg); | |
84afd99b | 712 | return NULL; |
5e911373 | 713 | } |
84afd99b AW |
714 | |
715 | kref_init(&resv_map->refs); | |
7b24d861 | 716 | spin_lock_init(&resv_map->lock); |
84afd99b AW |
717 | INIT_LIST_HEAD(&resv_map->regions); |
718 | ||
5e911373 MK |
719 | resv_map->adds_in_progress = 0; |
720 | ||
721 | INIT_LIST_HEAD(&resv_map->region_cache); | |
722 | list_add(&rg->link, &resv_map->region_cache); | |
723 | resv_map->region_cache_count = 1; | |
724 | ||
84afd99b AW |
725 | return resv_map; |
726 | } | |
727 | ||
9119a41e | 728 | void resv_map_release(struct kref *ref) |
84afd99b AW |
729 | { |
730 | struct resv_map *resv_map = container_of(ref, struct resv_map, refs); | |
5e911373 MK |
731 | struct list_head *head = &resv_map->region_cache; |
732 | struct file_region *rg, *trg; | |
84afd99b AW |
733 | |
734 | /* Clear out any active regions before we release the map. */ | |
feba16e2 | 735 | region_del(resv_map, 0, LONG_MAX); |
5e911373 MK |
736 | |
737 | /* ... and any entries left in the cache */ | |
738 | list_for_each_entry_safe(rg, trg, head, link) { | |
739 | list_del(&rg->link); | |
740 | kfree(rg); | |
741 | } | |
742 | ||
743 | VM_BUG_ON(resv_map->adds_in_progress); | |
744 | ||
84afd99b AW |
745 | kfree(resv_map); |
746 | } | |
747 | ||
4e35f483 JK |
748 | static inline struct resv_map *inode_resv_map(struct inode *inode) |
749 | { | |
750 | return inode->i_mapping->private_data; | |
751 | } | |
752 | ||
84afd99b | 753 | static struct resv_map *vma_resv_map(struct vm_area_struct *vma) |
a1e78772 | 754 | { |
81d1b09c | 755 | VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); |
4e35f483 JK |
756 | if (vma->vm_flags & VM_MAYSHARE) { |
757 | struct address_space *mapping = vma->vm_file->f_mapping; | |
758 | struct inode *inode = mapping->host; | |
759 | ||
760 | return inode_resv_map(inode); | |
761 | ||
762 | } else { | |
84afd99b AW |
763 | return (struct resv_map *)(get_vma_private_data(vma) & |
764 | ~HPAGE_RESV_MASK); | |
4e35f483 | 765 | } |
a1e78772 MG |
766 | } |
767 | ||
84afd99b | 768 | static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) |
a1e78772 | 769 | { |
81d1b09c SL |
770 | VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); |
771 | VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); | |
a1e78772 | 772 | |
84afd99b AW |
773 | set_vma_private_data(vma, (get_vma_private_data(vma) & |
774 | HPAGE_RESV_MASK) | (unsigned long)map); | |
04f2cbe3 MG |
775 | } |
776 | ||
777 | static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) | |
778 | { | |
81d1b09c SL |
779 | VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); |
780 | VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); | |
e7c4b0bf AW |
781 | |
782 | set_vma_private_data(vma, get_vma_private_data(vma) | flags); | |
04f2cbe3 MG |
783 | } |
784 | ||
785 | static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) | |
786 | { | |
81d1b09c | 787 | VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); |
e7c4b0bf AW |
788 | |
789 | return (get_vma_private_data(vma) & flag) != 0; | |
a1e78772 MG |
790 | } |
791 | ||
04f2cbe3 | 792 | /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ |
a1e78772 MG |
793 | void reset_vma_resv_huge_pages(struct vm_area_struct *vma) |
794 | { | |
81d1b09c | 795 | VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); |
f83a275d | 796 | if (!(vma->vm_flags & VM_MAYSHARE)) |
a1e78772 MG |
797 | vma->vm_private_data = (void *)0; |
798 | } | |
799 | ||
800 | /* Returns true if the VMA has associated reserve pages */ | |
559ec2f8 | 801 | static bool vma_has_reserves(struct vm_area_struct *vma, long chg) |
a1e78772 | 802 | { |
af0ed73e JK |
803 | if (vma->vm_flags & VM_NORESERVE) { |
804 | /* | |
805 | * This address is already reserved by other process(chg == 0), | |
806 | * so, we should decrement reserved count. Without decrementing, | |
807 | * reserve count remains after releasing inode, because this | |
808 | * allocated page will go into page cache and is regarded as | |
809 | * coming from reserved pool in releasing step. Currently, we | |
810 | * don't have any other solution to deal with this situation | |
811 | * properly, so add work-around here. | |
812 | */ | |
813 | if (vma->vm_flags & VM_MAYSHARE && chg == 0) | |
559ec2f8 | 814 | return true; |
af0ed73e | 815 | else |
559ec2f8 | 816 | return false; |
af0ed73e | 817 | } |
a63884e9 JK |
818 | |
819 | /* Shared mappings always use reserves */ | |
1fb1b0e9 MK |
820 | if (vma->vm_flags & VM_MAYSHARE) { |
821 | /* | |
822 | * We know VM_NORESERVE is not set. Therefore, there SHOULD | |
823 | * be a region map for all pages. The only situation where | |
824 | * there is no region map is if a hole was punched via | |
825 | * fallocate. In this case, there really are no reverves to | |
826 | * use. This situation is indicated if chg != 0. | |
827 | */ | |
828 | if (chg) | |
829 | return false; | |
830 | else | |
831 | return true; | |
832 | } | |
a63884e9 JK |
833 | |
834 | /* | |
835 | * Only the process that called mmap() has reserves for | |
836 | * private mappings. | |
837 | */ | |
67961f9d MK |
838 | if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { |
839 | /* | |
840 | * Like the shared case above, a hole punch or truncate | |
841 | * could have been performed on the private mapping. | |
842 | * Examine the value of chg to determine if reserves | |
843 | * actually exist or were previously consumed. | |
844 | * Very Subtle - The value of chg comes from a previous | |
845 | * call to vma_needs_reserves(). The reserve map for | |
846 | * private mappings has different (opposite) semantics | |
847 | * than that of shared mappings. vma_needs_reserves() | |
848 | * has already taken this difference in semantics into | |
849 | * account. Therefore, the meaning of chg is the same | |
850 | * as in the shared case above. Code could easily be | |
851 | * combined, but keeping it separate draws attention to | |
852 | * subtle differences. | |
853 | */ | |
854 | if (chg) | |
855 | return false; | |
856 | else | |
857 | return true; | |
858 | } | |
a63884e9 | 859 | |
559ec2f8 | 860 | return false; |
a1e78772 MG |
861 | } |
862 | ||
a5516438 | 863 | static void enqueue_huge_page(struct hstate *h, struct page *page) |
1da177e4 LT |
864 | { |
865 | int nid = page_to_nid(page); | |
0edaecfa | 866 | list_move(&page->lru, &h->hugepage_freelists[nid]); |
a5516438 AK |
867 | h->free_huge_pages++; |
868 | h->free_huge_pages_node[nid]++; | |
1da177e4 LT |
869 | } |
870 | ||
94310cbc | 871 | static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid) |
bf50bab2 NH |
872 | { |
873 | struct page *page; | |
874 | ||
c8721bbb | 875 | list_for_each_entry(page, &h->hugepage_freelists[nid], lru) |
243abd5b | 876 | if (!PageHWPoison(page)) |
c8721bbb NH |
877 | break; |
878 | /* | |
879 | * if 'non-isolated free hugepage' not found on the list, | |
880 | * the allocation fails. | |
881 | */ | |
882 | if (&h->hugepage_freelists[nid] == &page->lru) | |
bf50bab2 | 883 | return NULL; |
0edaecfa | 884 | list_move(&page->lru, &h->hugepage_activelist); |
a9869b83 | 885 | set_page_refcounted(page); |
bf50bab2 NH |
886 | h->free_huge_pages--; |
887 | h->free_huge_pages_node[nid]--; | |
888 | return page; | |
889 | } | |
890 | ||
3e59fcb0 MH |
891 | static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid, |
892 | nodemask_t *nmask) | |
94310cbc | 893 | { |
3e59fcb0 MH |
894 | unsigned int cpuset_mems_cookie; |
895 | struct zonelist *zonelist; | |
896 | struct zone *zone; | |
897 | struct zoneref *z; | |
898 | int node = -1; | |
94310cbc | 899 | |
3e59fcb0 MH |
900 | zonelist = node_zonelist(nid, gfp_mask); |
901 | ||
902 | retry_cpuset: | |
903 | cpuset_mems_cookie = read_mems_allowed_begin(); | |
904 | for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { | |
905 | struct page *page; | |
906 | ||
907 | if (!cpuset_zone_allowed(zone, gfp_mask)) | |
908 | continue; | |
909 | /* | |
910 | * no need to ask again on the same node. Pool is node rather than | |
911 | * zone aware | |
912 | */ | |
913 | if (zone_to_nid(zone) == node) | |
914 | continue; | |
915 | node = zone_to_nid(zone); | |
94310cbc | 916 | |
94310cbc AK |
917 | page = dequeue_huge_page_node_exact(h, node); |
918 | if (page) | |
919 | return page; | |
920 | } | |
3e59fcb0 MH |
921 | if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) |
922 | goto retry_cpuset; | |
923 | ||
94310cbc AK |
924 | return NULL; |
925 | } | |
926 | ||
86cdb465 NH |
927 | /* Movability of hugepages depends on migration support. */ |
928 | static inline gfp_t htlb_alloc_mask(struct hstate *h) | |
929 | { | |
100873d7 | 930 | if (hugepages_treat_as_movable || hugepage_migration_supported(h)) |
86cdb465 NH |
931 | return GFP_HIGHUSER_MOVABLE; |
932 | else | |
933 | return GFP_HIGHUSER; | |
934 | } | |
935 | ||
a5516438 AK |
936 | static struct page *dequeue_huge_page_vma(struct hstate *h, |
937 | struct vm_area_struct *vma, | |
af0ed73e JK |
938 | unsigned long address, int avoid_reserve, |
939 | long chg) | |
1da177e4 | 940 | { |
3e59fcb0 | 941 | struct page *page; |
480eccf9 | 942 | struct mempolicy *mpol; |
04ec6264 | 943 | gfp_t gfp_mask; |
3e59fcb0 | 944 | nodemask_t *nodemask; |
04ec6264 | 945 | int nid; |
1da177e4 | 946 | |
a1e78772 MG |
947 | /* |
948 | * A child process with MAP_PRIVATE mappings created by their parent | |
949 | * have no page reserves. This check ensures that reservations are | |
950 | * not "stolen". The child may still get SIGKILLed | |
951 | */ | |
af0ed73e | 952 | if (!vma_has_reserves(vma, chg) && |
a5516438 | 953 | h->free_huge_pages - h->resv_huge_pages == 0) |
c0ff7453 | 954 | goto err; |
a1e78772 | 955 | |
04f2cbe3 | 956 | /* If reserves cannot be used, ensure enough pages are in the pool */ |
a5516438 | 957 | if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) |
6eab04a8 | 958 | goto err; |
04f2cbe3 | 959 | |
04ec6264 VB |
960 | gfp_mask = htlb_alloc_mask(h); |
961 | nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); | |
3e59fcb0 MH |
962 | page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask); |
963 | if (page && !avoid_reserve && vma_has_reserves(vma, chg)) { | |
964 | SetPagePrivate(page); | |
965 | h->resv_huge_pages--; | |
1da177e4 | 966 | } |
cc9a6c87 | 967 | |
52cd3b07 | 968 | mpol_cond_put(mpol); |
1da177e4 | 969 | return page; |
cc9a6c87 MG |
970 | |
971 | err: | |
cc9a6c87 | 972 | return NULL; |
1da177e4 LT |
973 | } |
974 | ||
1cac6f2c LC |
975 | /* |
976 | * common helper functions for hstate_next_node_to_{alloc|free}. | |
977 | * We may have allocated or freed a huge page based on a different | |
978 | * nodes_allowed previously, so h->next_node_to_{alloc|free} might | |
979 | * be outside of *nodes_allowed. Ensure that we use an allowed | |
980 | * node for alloc or free. | |
981 | */ | |
982 | static int next_node_allowed(int nid, nodemask_t *nodes_allowed) | |
983 | { | |
0edaf86c | 984 | nid = next_node_in(nid, *nodes_allowed); |
1cac6f2c LC |
985 | VM_BUG_ON(nid >= MAX_NUMNODES); |
986 | ||
987 | return nid; | |
988 | } | |
989 | ||
990 | static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) | |
991 | { | |
992 | if (!node_isset(nid, *nodes_allowed)) | |
993 | nid = next_node_allowed(nid, nodes_allowed); | |
994 | return nid; | |
995 | } | |
996 | ||
997 | /* | |
998 | * returns the previously saved node ["this node"] from which to | |
999 | * allocate a persistent huge page for the pool and advance the | |
1000 | * next node from which to allocate, handling wrap at end of node | |
1001 | * mask. | |
1002 | */ | |
1003 | static int hstate_next_node_to_alloc(struct hstate *h, | |
1004 | nodemask_t *nodes_allowed) | |
1005 | { | |
1006 | int nid; | |
1007 | ||
1008 | VM_BUG_ON(!nodes_allowed); | |
1009 | ||
1010 | nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); | |
1011 | h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); | |
1012 | ||
1013 | return nid; | |
1014 | } | |
1015 | ||
1016 | /* | |
1017 | * helper for free_pool_huge_page() - return the previously saved | |
1018 | * node ["this node"] from which to free a huge page. Advance the | |
1019 | * next node id whether or not we find a free huge page to free so | |
1020 | * that the next attempt to free addresses the next node. | |
1021 | */ | |
1022 | static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) | |
1023 | { | |
1024 | int nid; | |
1025 | ||
1026 | VM_BUG_ON(!nodes_allowed); | |
1027 | ||
1028 | nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); | |
1029 | h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); | |
1030 | ||
1031 | return nid; | |
1032 | } | |
1033 | ||
1034 | #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ | |
1035 | for (nr_nodes = nodes_weight(*mask); \ | |
1036 | nr_nodes > 0 && \ | |
1037 | ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ | |
1038 | nr_nodes--) | |
1039 | ||
1040 | #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ | |
1041 | for (nr_nodes = nodes_weight(*mask); \ | |
1042 | nr_nodes > 0 && \ | |
1043 | ((node = hstate_next_node_to_free(hs, mask)) || 1); \ | |
1044 | nr_nodes--) | |
1045 | ||
e1073d1e | 1046 | #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE |
944d9fec | 1047 | static void destroy_compound_gigantic_page(struct page *page, |
d00181b9 | 1048 | unsigned int order) |
944d9fec LC |
1049 | { |
1050 | int i; | |
1051 | int nr_pages = 1 << order; | |
1052 | struct page *p = page + 1; | |
1053 | ||
c8cc708a | 1054 | atomic_set(compound_mapcount_ptr(page), 0); |
944d9fec | 1055 | for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { |
1d798ca3 | 1056 | clear_compound_head(p); |
944d9fec | 1057 | set_page_refcounted(p); |
944d9fec LC |
1058 | } |
1059 | ||
1060 | set_compound_order(page, 0); | |
1061 | __ClearPageHead(page); | |
1062 | } | |
1063 | ||
d00181b9 | 1064 | static void free_gigantic_page(struct page *page, unsigned int order) |
944d9fec LC |
1065 | { |
1066 | free_contig_range(page_to_pfn(page), 1 << order); | |
1067 | } | |
1068 | ||
1069 | static int __alloc_gigantic_page(unsigned long start_pfn, | |
79b63f12 | 1070 | unsigned long nr_pages, gfp_t gfp_mask) |
944d9fec LC |
1071 | { |
1072 | unsigned long end_pfn = start_pfn + nr_pages; | |
ca96b625 | 1073 | return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, |
79b63f12 | 1074 | gfp_mask); |
944d9fec LC |
1075 | } |
1076 | ||
f44b2dda JK |
1077 | static bool pfn_range_valid_gigantic(struct zone *z, |
1078 | unsigned long start_pfn, unsigned long nr_pages) | |
944d9fec LC |
1079 | { |
1080 | unsigned long i, end_pfn = start_pfn + nr_pages; | |
1081 | struct page *page; | |
1082 | ||
1083 | for (i = start_pfn; i < end_pfn; i++) { | |
1084 | if (!pfn_valid(i)) | |
1085 | return false; | |
1086 | ||
1087 | page = pfn_to_page(i); | |
1088 | ||
f44b2dda JK |
1089 | if (page_zone(page) != z) |
1090 | return false; | |
1091 | ||
944d9fec LC |
1092 | if (PageReserved(page)) |
1093 | return false; | |
1094 | ||
1095 | if (page_count(page) > 0) | |
1096 | return false; | |
1097 | ||
1098 | if (PageHuge(page)) | |
1099 | return false; | |
1100 | } | |
1101 | ||
1102 | return true; | |
1103 | } | |
1104 | ||
1105 | static bool zone_spans_last_pfn(const struct zone *zone, | |
1106 | unsigned long start_pfn, unsigned long nr_pages) | |
1107 | { | |
1108 | unsigned long last_pfn = start_pfn + nr_pages - 1; | |
1109 | return zone_spans_pfn(zone, last_pfn); | |
1110 | } | |
1111 | ||
79b63f12 | 1112 | static struct page *alloc_gigantic_page(int nid, struct hstate *h) |
944d9fec | 1113 | { |
79b63f12 | 1114 | unsigned int order = huge_page_order(h); |
944d9fec LC |
1115 | unsigned long nr_pages = 1 << order; |
1116 | unsigned long ret, pfn, flags; | |
79b63f12 MH |
1117 | struct zonelist *zonelist; |
1118 | struct zone *zone; | |
1119 | struct zoneref *z; | |
1120 | gfp_t gfp_mask; | |
944d9fec | 1121 | |
79b63f12 MH |
1122 | gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; |
1123 | zonelist = node_zonelist(nid, gfp_mask); | |
1124 | for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), NULL) { | |
1125 | spin_lock_irqsave(&zone->lock, flags); | |
944d9fec | 1126 | |
79b63f12 MH |
1127 | pfn = ALIGN(zone->zone_start_pfn, nr_pages); |
1128 | while (zone_spans_last_pfn(zone, pfn, nr_pages)) { | |
1129 | if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) { | |
944d9fec LC |
1130 | /* |
1131 | * We release the zone lock here because | |
1132 | * alloc_contig_range() will also lock the zone | |
1133 | * at some point. If there's an allocation | |
1134 | * spinning on this lock, it may win the race | |
1135 | * and cause alloc_contig_range() to fail... | |
1136 | */ | |
79b63f12 MH |
1137 | spin_unlock_irqrestore(&zone->lock, flags); |
1138 | ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask); | |
944d9fec LC |
1139 | if (!ret) |
1140 | return pfn_to_page(pfn); | |
79b63f12 | 1141 | spin_lock_irqsave(&zone->lock, flags); |
944d9fec LC |
1142 | } |
1143 | pfn += nr_pages; | |
1144 | } | |
1145 | ||
79b63f12 | 1146 | spin_unlock_irqrestore(&zone->lock, flags); |
944d9fec LC |
1147 | } |
1148 | ||
1149 | return NULL; | |
1150 | } | |
1151 | ||
1152 | static void prep_new_huge_page(struct hstate *h, struct page *page, int nid); | |
d00181b9 | 1153 | static void prep_compound_gigantic_page(struct page *page, unsigned int order); |
944d9fec LC |
1154 | |
1155 | static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid) | |
1156 | { | |
1157 | struct page *page; | |
1158 | ||
79b63f12 | 1159 | page = alloc_gigantic_page(nid, h); |
944d9fec LC |
1160 | if (page) { |
1161 | prep_compound_gigantic_page(page, huge_page_order(h)); | |
1162 | prep_new_huge_page(h, page, nid); | |
1163 | } | |
1164 | ||
1165 | return page; | |
1166 | } | |
1167 | ||
1168 | static int alloc_fresh_gigantic_page(struct hstate *h, | |
1169 | nodemask_t *nodes_allowed) | |
1170 | { | |
1171 | struct page *page = NULL; | |
1172 | int nr_nodes, node; | |
1173 | ||
1174 | for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { | |
1175 | page = alloc_fresh_gigantic_page_node(h, node); | |
1176 | if (page) | |
1177 | return 1; | |
1178 | } | |
1179 | ||
1180 | return 0; | |
1181 | } | |
1182 | ||
e1073d1e | 1183 | #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ |
944d9fec | 1184 | static inline bool gigantic_page_supported(void) { return false; } |
d00181b9 | 1185 | static inline void free_gigantic_page(struct page *page, unsigned int order) { } |
944d9fec | 1186 | static inline void destroy_compound_gigantic_page(struct page *page, |
d00181b9 | 1187 | unsigned int order) { } |
944d9fec LC |
1188 | static inline int alloc_fresh_gigantic_page(struct hstate *h, |
1189 | nodemask_t *nodes_allowed) { return 0; } | |
1190 | #endif | |
1191 | ||
a5516438 | 1192 | static void update_and_free_page(struct hstate *h, struct page *page) |
6af2acb6 AL |
1193 | { |
1194 | int i; | |
a5516438 | 1195 | |
944d9fec LC |
1196 | if (hstate_is_gigantic(h) && !gigantic_page_supported()) |
1197 | return; | |
18229df5 | 1198 | |
a5516438 AK |
1199 | h->nr_huge_pages--; |
1200 | h->nr_huge_pages_node[page_to_nid(page)]--; | |
1201 | for (i = 0; i < pages_per_huge_page(h); i++) { | |
32f84528 CF |
1202 | page[i].flags &= ~(1 << PG_locked | 1 << PG_error | |
1203 | 1 << PG_referenced | 1 << PG_dirty | | |
a7407a27 LC |
1204 | 1 << PG_active | 1 << PG_private | |
1205 | 1 << PG_writeback); | |
6af2acb6 | 1206 | } |
309381fe | 1207 | VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page); |
f1e61557 | 1208 | set_compound_page_dtor(page, NULL_COMPOUND_DTOR); |
6af2acb6 | 1209 | set_page_refcounted(page); |
944d9fec LC |
1210 | if (hstate_is_gigantic(h)) { |
1211 | destroy_compound_gigantic_page(page, huge_page_order(h)); | |
1212 | free_gigantic_page(page, huge_page_order(h)); | |
1213 | } else { | |
944d9fec LC |
1214 | __free_pages(page, huge_page_order(h)); |
1215 | } | |
6af2acb6 AL |
1216 | } |
1217 | ||
e5ff2159 AK |
1218 | struct hstate *size_to_hstate(unsigned long size) |
1219 | { | |
1220 | struct hstate *h; | |
1221 | ||
1222 | for_each_hstate(h) { | |
1223 | if (huge_page_size(h) == size) | |
1224 | return h; | |
1225 | } | |
1226 | return NULL; | |
1227 | } | |
1228 | ||
bcc54222 NH |
1229 | /* |
1230 | * Test to determine whether the hugepage is "active/in-use" (i.e. being linked | |
1231 | * to hstate->hugepage_activelist.) | |
1232 | * | |
1233 | * This function can be called for tail pages, but never returns true for them. | |
1234 | */ | |
1235 | bool page_huge_active(struct page *page) | |
1236 | { | |
1237 | VM_BUG_ON_PAGE(!PageHuge(page), page); | |
1238 | return PageHead(page) && PagePrivate(&page[1]); | |
1239 | } | |
1240 | ||
1241 | /* never called for tail page */ | |
1242 | static void set_page_huge_active(struct page *page) | |
1243 | { | |
1244 | VM_BUG_ON_PAGE(!PageHeadHuge(page), page); | |
1245 | SetPagePrivate(&page[1]); | |
1246 | } | |
1247 | ||
1248 | static void clear_page_huge_active(struct page *page) | |
1249 | { | |
1250 | VM_BUG_ON_PAGE(!PageHeadHuge(page), page); | |
1251 | ClearPagePrivate(&page[1]); | |
1252 | } | |
1253 | ||
8f1d26d0 | 1254 | void free_huge_page(struct page *page) |
27a85ef1 | 1255 | { |
a5516438 AK |
1256 | /* |
1257 | * Can't pass hstate in here because it is called from the | |
1258 | * compound page destructor. | |
1259 | */ | |
e5ff2159 | 1260 | struct hstate *h = page_hstate(page); |
7893d1d5 | 1261 | int nid = page_to_nid(page); |
90481622 DG |
1262 | struct hugepage_subpool *spool = |
1263 | (struct hugepage_subpool *)page_private(page); | |
07443a85 | 1264 | bool restore_reserve; |
27a85ef1 | 1265 | |
e5df70ab | 1266 | set_page_private(page, 0); |
23be7468 | 1267 | page->mapping = NULL; |
b4330afb MK |
1268 | VM_BUG_ON_PAGE(page_count(page), page); |
1269 | VM_BUG_ON_PAGE(page_mapcount(page), page); | |
07443a85 | 1270 | restore_reserve = PagePrivate(page); |
16c794b4 | 1271 | ClearPagePrivate(page); |
27a85ef1 | 1272 | |
1c5ecae3 MK |
1273 | /* |
1274 | * A return code of zero implies that the subpool will be under its | |
1275 | * minimum size if the reservation is not restored after page is free. | |
1276 | * Therefore, force restore_reserve operation. | |
1277 | */ | |
1278 | if (hugepage_subpool_put_pages(spool, 1) == 0) | |
1279 | restore_reserve = true; | |
1280 | ||
27a85ef1 | 1281 | spin_lock(&hugetlb_lock); |
bcc54222 | 1282 | clear_page_huge_active(page); |
6d76dcf4 AK |
1283 | hugetlb_cgroup_uncharge_page(hstate_index(h), |
1284 | pages_per_huge_page(h), page); | |
07443a85 JK |
1285 | if (restore_reserve) |
1286 | h->resv_huge_pages++; | |
1287 | ||
944d9fec | 1288 | if (h->surplus_huge_pages_node[nid]) { |
0edaecfa AK |
1289 | /* remove the page from active list */ |
1290 | list_del(&page->lru); | |
a5516438 AK |
1291 | update_and_free_page(h, page); |
1292 | h->surplus_huge_pages--; | |
1293 | h->surplus_huge_pages_node[nid]--; | |
7893d1d5 | 1294 | } else { |
5d3a551c | 1295 | arch_clear_hugepage_flags(page); |
a5516438 | 1296 | enqueue_huge_page(h, page); |
7893d1d5 | 1297 | } |
27a85ef1 DG |
1298 | spin_unlock(&hugetlb_lock); |
1299 | } | |
1300 | ||
a5516438 | 1301 | static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) |
b7ba30c6 | 1302 | { |
0edaecfa | 1303 | INIT_LIST_HEAD(&page->lru); |
f1e61557 | 1304 | set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); |
b7ba30c6 | 1305 | spin_lock(&hugetlb_lock); |
9dd540e2 | 1306 | set_hugetlb_cgroup(page, NULL); |
a5516438 AK |
1307 | h->nr_huge_pages++; |
1308 | h->nr_huge_pages_node[nid]++; | |
b7ba30c6 AK |
1309 | spin_unlock(&hugetlb_lock); |
1310 | put_page(page); /* free it into the hugepage allocator */ | |
1311 | } | |
1312 | ||
d00181b9 | 1313 | static void prep_compound_gigantic_page(struct page *page, unsigned int order) |
20a0307c WF |
1314 | { |
1315 | int i; | |
1316 | int nr_pages = 1 << order; | |
1317 | struct page *p = page + 1; | |
1318 | ||
1319 | /* we rely on prep_new_huge_page to set the destructor */ | |
1320 | set_compound_order(page, order); | |
ef5a22be | 1321 | __ClearPageReserved(page); |
de09d31d | 1322 | __SetPageHead(page); |
20a0307c | 1323 | for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { |
ef5a22be AA |
1324 | /* |
1325 | * For gigantic hugepages allocated through bootmem at | |
1326 | * boot, it's safer to be consistent with the not-gigantic | |
1327 | * hugepages and clear the PG_reserved bit from all tail pages | |
1328 | * too. Otherwse drivers using get_user_pages() to access tail | |
1329 | * pages may get the reference counting wrong if they see | |
1330 | * PG_reserved set on a tail page (despite the head page not | |
1331 | * having PG_reserved set). Enforcing this consistency between | |
1332 | * head and tail pages allows drivers to optimize away a check | |
1333 | * on the head page when they need know if put_page() is needed | |
1334 | * after get_user_pages(). | |
1335 | */ | |
1336 | __ClearPageReserved(p); | |
58a84aa9 | 1337 | set_page_count(p, 0); |
1d798ca3 | 1338 | set_compound_head(p, page); |
20a0307c | 1339 | } |
b4330afb | 1340 | atomic_set(compound_mapcount_ptr(page), -1); |
20a0307c WF |
1341 | } |
1342 | ||
7795912c AM |
1343 | /* |
1344 | * PageHuge() only returns true for hugetlbfs pages, but not for normal or | |
1345 | * transparent huge pages. See the PageTransHuge() documentation for more | |
1346 | * details. | |
1347 | */ | |
20a0307c WF |
1348 | int PageHuge(struct page *page) |
1349 | { | |
20a0307c WF |
1350 | if (!PageCompound(page)) |
1351 | return 0; | |
1352 | ||
1353 | page = compound_head(page); | |
f1e61557 | 1354 | return page[1].compound_dtor == HUGETLB_PAGE_DTOR; |
20a0307c | 1355 | } |
43131e14 NH |
1356 | EXPORT_SYMBOL_GPL(PageHuge); |
1357 | ||
27c73ae7 AA |
1358 | /* |
1359 | * PageHeadHuge() only returns true for hugetlbfs head page, but not for | |
1360 | * normal or transparent huge pages. | |
1361 | */ | |
1362 | int PageHeadHuge(struct page *page_head) | |
1363 | { | |
27c73ae7 AA |
1364 | if (!PageHead(page_head)) |
1365 | return 0; | |
1366 | ||
758f66a2 | 1367 | return get_compound_page_dtor(page_head) == free_huge_page; |
27c73ae7 | 1368 | } |
27c73ae7 | 1369 | |
13d60f4b ZY |
1370 | pgoff_t __basepage_index(struct page *page) |
1371 | { | |
1372 | struct page *page_head = compound_head(page); | |
1373 | pgoff_t index = page_index(page_head); | |
1374 | unsigned long compound_idx; | |
1375 | ||
1376 | if (!PageHuge(page_head)) | |
1377 | return page_index(page); | |
1378 | ||
1379 | if (compound_order(page_head) >= MAX_ORDER) | |
1380 | compound_idx = page_to_pfn(page) - page_to_pfn(page_head); | |
1381 | else | |
1382 | compound_idx = page - page_head; | |
1383 | ||
1384 | return (index << compound_order(page_head)) + compound_idx; | |
1385 | } | |
1386 | ||
a5516438 | 1387 | static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid) |
1da177e4 | 1388 | { |
1da177e4 | 1389 | struct page *page; |
f96efd58 | 1390 | |
96db800f | 1391 | page = __alloc_pages_node(nid, |
86cdb465 | 1392 | htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE| |
dcda9b04 | 1393 | __GFP_RETRY_MAYFAIL|__GFP_NOWARN, |
a5516438 | 1394 | huge_page_order(h)); |
1da177e4 | 1395 | if (page) { |
a5516438 | 1396 | prep_new_huge_page(h, page, nid); |
1da177e4 | 1397 | } |
63b4613c NA |
1398 | |
1399 | return page; | |
1400 | } | |
1401 | ||
b2261026 JK |
1402 | static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed) |
1403 | { | |
1404 | struct page *page; | |
1405 | int nr_nodes, node; | |
1406 | int ret = 0; | |
1407 | ||
1408 | for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { | |
1409 | page = alloc_fresh_huge_page_node(h, node); | |
1410 | if (page) { | |
1411 | ret = 1; | |
1412 | break; | |
1413 | } | |
1414 | } | |
1415 | ||
1416 | if (ret) | |
1417 | count_vm_event(HTLB_BUDDY_PGALLOC); | |
1418 | else | |
1419 | count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); | |
1420 | ||
1421 | return ret; | |
1422 | } | |
1423 | ||
e8c5c824 LS |
1424 | /* |
1425 | * Free huge page from pool from next node to free. | |
1426 | * Attempt to keep persistent huge pages more or less | |
1427 | * balanced over allowed nodes. | |
1428 | * Called with hugetlb_lock locked. | |
1429 | */ | |
6ae11b27 LS |
1430 | static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, |
1431 | bool acct_surplus) | |
e8c5c824 | 1432 | { |
b2261026 | 1433 | int nr_nodes, node; |
e8c5c824 LS |
1434 | int ret = 0; |
1435 | ||
b2261026 | 1436 | for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { |
685f3457 LS |
1437 | /* |
1438 | * If we're returning unused surplus pages, only examine | |
1439 | * nodes with surplus pages. | |
1440 | */ | |
b2261026 JK |
1441 | if ((!acct_surplus || h->surplus_huge_pages_node[node]) && |
1442 | !list_empty(&h->hugepage_freelists[node])) { | |
e8c5c824 | 1443 | struct page *page = |
b2261026 | 1444 | list_entry(h->hugepage_freelists[node].next, |
e8c5c824 LS |
1445 | struct page, lru); |
1446 | list_del(&page->lru); | |
1447 | h->free_huge_pages--; | |
b2261026 | 1448 | h->free_huge_pages_node[node]--; |
685f3457 LS |
1449 | if (acct_surplus) { |
1450 | h->surplus_huge_pages--; | |
b2261026 | 1451 | h->surplus_huge_pages_node[node]--; |
685f3457 | 1452 | } |
e8c5c824 LS |
1453 | update_and_free_page(h, page); |
1454 | ret = 1; | |
9a76db09 | 1455 | break; |
e8c5c824 | 1456 | } |
b2261026 | 1457 | } |
e8c5c824 LS |
1458 | |
1459 | return ret; | |
1460 | } | |
1461 | ||
c8721bbb NH |
1462 | /* |
1463 | * Dissolve a given free hugepage into free buddy pages. This function does | |
082d5b6b GS |
1464 | * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the |
1465 | * number of free hugepages would be reduced below the number of reserved | |
1466 | * hugepages. | |
c8721bbb | 1467 | */ |
c3114a84 | 1468 | int dissolve_free_huge_page(struct page *page) |
c8721bbb | 1469 | { |
082d5b6b GS |
1470 | int rc = 0; |
1471 | ||
c8721bbb NH |
1472 | spin_lock(&hugetlb_lock); |
1473 | if (PageHuge(page) && !page_count(page)) { | |
2247bb33 GS |
1474 | struct page *head = compound_head(page); |
1475 | struct hstate *h = page_hstate(head); | |
1476 | int nid = page_to_nid(head); | |
082d5b6b GS |
1477 | if (h->free_huge_pages - h->resv_huge_pages == 0) { |
1478 | rc = -EBUSY; | |
1479 | goto out; | |
1480 | } | |
c3114a84 AK |
1481 | /* |
1482 | * Move PageHWPoison flag from head page to the raw error page, | |
1483 | * which makes any subpages rather than the error page reusable. | |
1484 | */ | |
1485 | if (PageHWPoison(head) && page != head) { | |
1486 | SetPageHWPoison(page); | |
1487 | ClearPageHWPoison(head); | |
1488 | } | |
2247bb33 | 1489 | list_del(&head->lru); |
c8721bbb NH |
1490 | h->free_huge_pages--; |
1491 | h->free_huge_pages_node[nid]--; | |
c1470b33 | 1492 | h->max_huge_pages--; |
2247bb33 | 1493 | update_and_free_page(h, head); |
c8721bbb | 1494 | } |
082d5b6b | 1495 | out: |
c8721bbb | 1496 | spin_unlock(&hugetlb_lock); |
082d5b6b | 1497 | return rc; |
c8721bbb NH |
1498 | } |
1499 | ||
1500 | /* | |
1501 | * Dissolve free hugepages in a given pfn range. Used by memory hotplug to | |
1502 | * make specified memory blocks removable from the system. | |
2247bb33 GS |
1503 | * Note that this will dissolve a free gigantic hugepage completely, if any |
1504 | * part of it lies within the given range. | |
082d5b6b GS |
1505 | * Also note that if dissolve_free_huge_page() returns with an error, all |
1506 | * free hugepages that were dissolved before that error are lost. | |
c8721bbb | 1507 | */ |
082d5b6b | 1508 | int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) |
c8721bbb | 1509 | { |
c8721bbb | 1510 | unsigned long pfn; |
eb03aa00 | 1511 | struct page *page; |
082d5b6b | 1512 | int rc = 0; |
c8721bbb | 1513 | |
d0177639 | 1514 | if (!hugepages_supported()) |
082d5b6b | 1515 | return rc; |
d0177639 | 1516 | |
eb03aa00 GS |
1517 | for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) { |
1518 | page = pfn_to_page(pfn); | |
1519 | if (PageHuge(page) && !page_count(page)) { | |
1520 | rc = dissolve_free_huge_page(page); | |
1521 | if (rc) | |
1522 | break; | |
1523 | } | |
1524 | } | |
082d5b6b GS |
1525 | |
1526 | return rc; | |
c8721bbb NH |
1527 | } |
1528 | ||
099730d6 | 1529 | static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h, |
aaf14e40 | 1530 | gfp_t gfp_mask, int nid, nodemask_t *nmask) |
099730d6 DH |
1531 | { |
1532 | int order = huge_page_order(h); | |
099730d6 | 1533 | |
dcda9b04 | 1534 | gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN; |
aaf14e40 MH |
1535 | if (nid == NUMA_NO_NODE) |
1536 | nid = numa_mem_id(); | |
1537 | return __alloc_pages_nodemask(gfp_mask, order, nid, nmask); | |
099730d6 DH |
1538 | } |
1539 | ||
aaf14e40 MH |
1540 | static struct page *__alloc_buddy_huge_page(struct hstate *h, gfp_t gfp_mask, |
1541 | int nid, nodemask_t *nmask) | |
7893d1d5 AL |
1542 | { |
1543 | struct page *page; | |
bf50bab2 | 1544 | unsigned int r_nid; |
7893d1d5 | 1545 | |
bae7f4ae | 1546 | if (hstate_is_gigantic(h)) |
aa888a74 AK |
1547 | return NULL; |
1548 | ||
d1c3fb1f NA |
1549 | /* |
1550 | * Assume we will successfully allocate the surplus page to | |
1551 | * prevent racing processes from causing the surplus to exceed | |
1552 | * overcommit | |
1553 | * | |
1554 | * This however introduces a different race, where a process B | |
1555 | * tries to grow the static hugepage pool while alloc_pages() is | |
1556 | * called by process A. B will only examine the per-node | |
1557 | * counters in determining if surplus huge pages can be | |
1558 | * converted to normal huge pages in adjust_pool_surplus(). A | |
1559 | * won't be able to increment the per-node counter, until the | |
1560 | * lock is dropped by B, but B doesn't drop hugetlb_lock until | |
1561 | * no more huge pages can be converted from surplus to normal | |
1562 | * state (and doesn't try to convert again). Thus, we have a | |
1563 | * case where a surplus huge page exists, the pool is grown, and | |
1564 | * the surplus huge page still exists after, even though it | |
1565 | * should just have been converted to a normal huge page. This | |
1566 | * does not leak memory, though, as the hugepage will be freed | |
1567 | * once it is out of use. It also does not allow the counters to | |
1568 | * go out of whack in adjust_pool_surplus() as we don't modify | |
1569 | * the node values until we've gotten the hugepage and only the | |
1570 | * per-node value is checked there. | |
1571 | */ | |
1572 | spin_lock(&hugetlb_lock); | |
a5516438 | 1573 | if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { |
d1c3fb1f NA |
1574 | spin_unlock(&hugetlb_lock); |
1575 | return NULL; | |
1576 | } else { | |
a5516438 AK |
1577 | h->nr_huge_pages++; |
1578 | h->surplus_huge_pages++; | |
d1c3fb1f NA |
1579 | } |
1580 | spin_unlock(&hugetlb_lock); | |
1581 | ||
aaf14e40 | 1582 | page = __hugetlb_alloc_buddy_huge_page(h, gfp_mask, nid, nmask); |
d1c3fb1f NA |
1583 | |
1584 | spin_lock(&hugetlb_lock); | |
7893d1d5 | 1585 | if (page) { |
0edaecfa | 1586 | INIT_LIST_HEAD(&page->lru); |
bf50bab2 | 1587 | r_nid = page_to_nid(page); |
f1e61557 | 1588 | set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); |
9dd540e2 | 1589 | set_hugetlb_cgroup(page, NULL); |
d1c3fb1f NA |
1590 | /* |
1591 | * We incremented the global counters already | |
1592 | */ | |
bf50bab2 NH |
1593 | h->nr_huge_pages_node[r_nid]++; |
1594 | h->surplus_huge_pages_node[r_nid]++; | |
3b116300 | 1595 | __count_vm_event(HTLB_BUDDY_PGALLOC); |
d1c3fb1f | 1596 | } else { |
a5516438 AK |
1597 | h->nr_huge_pages--; |
1598 | h->surplus_huge_pages--; | |
3b116300 | 1599 | __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); |
7893d1d5 | 1600 | } |
d1c3fb1f | 1601 | spin_unlock(&hugetlb_lock); |
7893d1d5 AL |
1602 | |
1603 | return page; | |
1604 | } | |
1605 | ||
099730d6 DH |
1606 | /* |
1607 | * Use the VMA's mpolicy to allocate a huge page from the buddy. | |
1608 | */ | |
e0ec90ee | 1609 | static |
099730d6 DH |
1610 | struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h, |
1611 | struct vm_area_struct *vma, unsigned long addr) | |
1612 | { | |
aaf14e40 MH |
1613 | struct page *page; |
1614 | struct mempolicy *mpol; | |
1615 | gfp_t gfp_mask = htlb_alloc_mask(h); | |
1616 | int nid; | |
1617 | nodemask_t *nodemask; | |
1618 | ||
1619 | nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); | |
1620 | page = __alloc_buddy_huge_page(h, gfp_mask, nid, nodemask); | |
1621 | mpol_cond_put(mpol); | |
1622 | ||
1623 | return page; | |
099730d6 DH |
1624 | } |
1625 | ||
bf50bab2 NH |
1626 | /* |
1627 | * This allocation function is useful in the context where vma is irrelevant. | |
1628 | * E.g. soft-offlining uses this function because it only cares physical | |
1629 | * address of error page. | |
1630 | */ | |
1631 | struct page *alloc_huge_page_node(struct hstate *h, int nid) | |
1632 | { | |
aaf14e40 | 1633 | gfp_t gfp_mask = htlb_alloc_mask(h); |
4ef91848 | 1634 | struct page *page = NULL; |
bf50bab2 | 1635 | |
aaf14e40 MH |
1636 | if (nid != NUMA_NO_NODE) |
1637 | gfp_mask |= __GFP_THISNODE; | |
1638 | ||
bf50bab2 | 1639 | spin_lock(&hugetlb_lock); |
4ef91848 | 1640 | if (h->free_huge_pages - h->resv_huge_pages > 0) |
3e59fcb0 | 1641 | page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL); |
bf50bab2 NH |
1642 | spin_unlock(&hugetlb_lock); |
1643 | ||
94ae8ba7 | 1644 | if (!page) |
aaf14e40 | 1645 | page = __alloc_buddy_huge_page(h, gfp_mask, nid, NULL); |
bf50bab2 NH |
1646 | |
1647 | return page; | |
1648 | } | |
1649 | ||
3e59fcb0 MH |
1650 | |
1651 | struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid, | |
1652 | nodemask_t *nmask) | |
4db9b2ef | 1653 | { |
aaf14e40 | 1654 | gfp_t gfp_mask = htlb_alloc_mask(h); |
4db9b2ef MH |
1655 | |
1656 | spin_lock(&hugetlb_lock); | |
1657 | if (h->free_huge_pages - h->resv_huge_pages > 0) { | |
3e59fcb0 MH |
1658 | struct page *page; |
1659 | ||
1660 | page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask); | |
1661 | if (page) { | |
1662 | spin_unlock(&hugetlb_lock); | |
1663 | return page; | |
4db9b2ef MH |
1664 | } |
1665 | } | |
1666 | spin_unlock(&hugetlb_lock); | |
4db9b2ef MH |
1667 | |
1668 | /* No reservations, try to overcommit */ | |
3e59fcb0 MH |
1669 | |
1670 | return __alloc_buddy_huge_page(h, gfp_mask, preferred_nid, nmask); | |
4db9b2ef MH |
1671 | } |
1672 | ||
e4e574b7 | 1673 | /* |
25985edc | 1674 | * Increase the hugetlb pool such that it can accommodate a reservation |
e4e574b7 AL |
1675 | * of size 'delta'. |
1676 | */ | |
a5516438 | 1677 | static int gather_surplus_pages(struct hstate *h, int delta) |
e4e574b7 AL |
1678 | { |
1679 | struct list_head surplus_list; | |
1680 | struct page *page, *tmp; | |
1681 | int ret, i; | |
1682 | int needed, allocated; | |
28073b02 | 1683 | bool alloc_ok = true; |
e4e574b7 | 1684 | |
a5516438 | 1685 | needed = (h->resv_huge_pages + delta) - h->free_huge_pages; |
ac09b3a1 | 1686 | if (needed <= 0) { |
a5516438 | 1687 | h->resv_huge_pages += delta; |
e4e574b7 | 1688 | return 0; |
ac09b3a1 | 1689 | } |
e4e574b7 AL |
1690 | |
1691 | allocated = 0; | |
1692 | INIT_LIST_HEAD(&surplus_list); | |
1693 | ||
1694 | ret = -ENOMEM; | |
1695 | retry: | |
1696 | spin_unlock(&hugetlb_lock); | |
1697 | for (i = 0; i < needed; i++) { | |
aaf14e40 MH |
1698 | page = __alloc_buddy_huge_page(h, htlb_alloc_mask(h), |
1699 | NUMA_NO_NODE, NULL); | |
28073b02 HD |
1700 | if (!page) { |
1701 | alloc_ok = false; | |
1702 | break; | |
1703 | } | |
e4e574b7 | 1704 | list_add(&page->lru, &surplus_list); |
69ed779a | 1705 | cond_resched(); |
e4e574b7 | 1706 | } |
28073b02 | 1707 | allocated += i; |
e4e574b7 AL |
1708 | |
1709 | /* | |
1710 | * After retaking hugetlb_lock, we need to recalculate 'needed' | |
1711 | * because either resv_huge_pages or free_huge_pages may have changed. | |
1712 | */ | |
1713 | spin_lock(&hugetlb_lock); | |
a5516438 AK |
1714 | needed = (h->resv_huge_pages + delta) - |
1715 | (h->free_huge_pages + allocated); | |
28073b02 HD |
1716 | if (needed > 0) { |
1717 | if (alloc_ok) | |
1718 | goto retry; | |
1719 | /* | |
1720 | * We were not able to allocate enough pages to | |
1721 | * satisfy the entire reservation so we free what | |
1722 | * we've allocated so far. | |
1723 | */ | |
1724 | goto free; | |
1725 | } | |
e4e574b7 AL |
1726 | /* |
1727 | * The surplus_list now contains _at_least_ the number of extra pages | |
25985edc | 1728 | * needed to accommodate the reservation. Add the appropriate number |
e4e574b7 | 1729 | * of pages to the hugetlb pool and free the extras back to the buddy |
ac09b3a1 AL |
1730 | * allocator. Commit the entire reservation here to prevent another |
1731 | * process from stealing the pages as they are added to the pool but | |
1732 | * before they are reserved. | |
e4e574b7 AL |
1733 | */ |
1734 | needed += allocated; | |
a5516438 | 1735 | h->resv_huge_pages += delta; |
e4e574b7 | 1736 | ret = 0; |
a9869b83 | 1737 | |
19fc3f0a | 1738 | /* Free the needed pages to the hugetlb pool */ |
e4e574b7 | 1739 | list_for_each_entry_safe(page, tmp, &surplus_list, lru) { |
19fc3f0a AL |
1740 | if ((--needed) < 0) |
1741 | break; | |
a9869b83 NH |
1742 | /* |
1743 | * This page is now managed by the hugetlb allocator and has | |
1744 | * no users -- drop the buddy allocator's reference. | |
1745 | */ | |
1746 | put_page_testzero(page); | |
309381fe | 1747 | VM_BUG_ON_PAGE(page_count(page), page); |
a5516438 | 1748 | enqueue_huge_page(h, page); |
19fc3f0a | 1749 | } |
28073b02 | 1750 | free: |
b0365c8d | 1751 | spin_unlock(&hugetlb_lock); |
19fc3f0a AL |
1752 | |
1753 | /* Free unnecessary surplus pages to the buddy allocator */ | |
c0d934ba JK |
1754 | list_for_each_entry_safe(page, tmp, &surplus_list, lru) |
1755 | put_page(page); | |
a9869b83 | 1756 | spin_lock(&hugetlb_lock); |
e4e574b7 AL |
1757 | |
1758 | return ret; | |
1759 | } | |
1760 | ||
1761 | /* | |
e5bbc8a6 MK |
1762 | * This routine has two main purposes: |
1763 | * 1) Decrement the reservation count (resv_huge_pages) by the value passed | |
1764 | * in unused_resv_pages. This corresponds to the prior adjustments made | |
1765 | * to the associated reservation map. | |
1766 | * 2) Free any unused surplus pages that may have been allocated to satisfy | |
1767 | * the reservation. As many as unused_resv_pages may be freed. | |
1768 | * | |
1769 | * Called with hugetlb_lock held. However, the lock could be dropped (and | |
1770 | * reacquired) during calls to cond_resched_lock. Whenever dropping the lock, | |
1771 | * we must make sure nobody else can claim pages we are in the process of | |
1772 | * freeing. Do this by ensuring resv_huge_page always is greater than the | |
1773 | * number of huge pages we plan to free when dropping the lock. | |
e4e574b7 | 1774 | */ |
a5516438 AK |
1775 | static void return_unused_surplus_pages(struct hstate *h, |
1776 | unsigned long unused_resv_pages) | |
e4e574b7 | 1777 | { |
e4e574b7 AL |
1778 | unsigned long nr_pages; |
1779 | ||
aa888a74 | 1780 | /* Cannot return gigantic pages currently */ |
bae7f4ae | 1781 | if (hstate_is_gigantic(h)) |
e5bbc8a6 | 1782 | goto out; |
aa888a74 | 1783 | |
e5bbc8a6 MK |
1784 | /* |
1785 | * Part (or even all) of the reservation could have been backed | |
1786 | * by pre-allocated pages. Only free surplus pages. | |
1787 | */ | |
a5516438 | 1788 | nr_pages = min(unused_resv_pages, h->surplus_huge_pages); |
e4e574b7 | 1789 | |
685f3457 LS |
1790 | /* |
1791 | * We want to release as many surplus pages as possible, spread | |
9b5e5d0f LS |
1792 | * evenly across all nodes with memory. Iterate across these nodes |
1793 | * until we can no longer free unreserved surplus pages. This occurs | |
1794 | * when the nodes with surplus pages have no free pages. | |
1795 | * free_pool_huge_page() will balance the the freed pages across the | |
1796 | * on-line nodes with memory and will handle the hstate accounting. | |
e5bbc8a6 MK |
1797 | * |
1798 | * Note that we decrement resv_huge_pages as we free the pages. If | |
1799 | * we drop the lock, resv_huge_pages will still be sufficiently large | |
1800 | * to cover subsequent pages we may free. | |
685f3457 LS |
1801 | */ |
1802 | while (nr_pages--) { | |
e5bbc8a6 MK |
1803 | h->resv_huge_pages--; |
1804 | unused_resv_pages--; | |
8cebfcd0 | 1805 | if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1)) |
e5bbc8a6 | 1806 | goto out; |
7848a4bf | 1807 | cond_resched_lock(&hugetlb_lock); |
e4e574b7 | 1808 | } |
e5bbc8a6 MK |
1809 | |
1810 | out: | |
1811 | /* Fully uncommit the reservation */ | |
1812 | h->resv_huge_pages -= unused_resv_pages; | |
e4e574b7 AL |
1813 | } |
1814 | ||
5e911373 | 1815 | |
c37f9fb1 | 1816 | /* |
feba16e2 | 1817 | * vma_needs_reservation, vma_commit_reservation and vma_end_reservation |
5e911373 | 1818 | * are used by the huge page allocation routines to manage reservations. |
cf3ad20b MK |
1819 | * |
1820 | * vma_needs_reservation is called to determine if the huge page at addr | |
1821 | * within the vma has an associated reservation. If a reservation is | |
1822 | * needed, the value 1 is returned. The caller is then responsible for | |
1823 | * managing the global reservation and subpool usage counts. After | |
1824 | * the huge page has been allocated, vma_commit_reservation is called | |
feba16e2 MK |
1825 | * to add the page to the reservation map. If the page allocation fails, |
1826 | * the reservation must be ended instead of committed. vma_end_reservation | |
1827 | * is called in such cases. | |
cf3ad20b MK |
1828 | * |
1829 | * In the normal case, vma_commit_reservation returns the same value | |
1830 | * as the preceding vma_needs_reservation call. The only time this | |
1831 | * is not the case is if a reserve map was changed between calls. It | |
1832 | * is the responsibility of the caller to notice the difference and | |
1833 | * take appropriate action. | |
96b96a96 MK |
1834 | * |
1835 | * vma_add_reservation is used in error paths where a reservation must | |
1836 | * be restored when a newly allocated huge page must be freed. It is | |
1837 | * to be called after calling vma_needs_reservation to determine if a | |
1838 | * reservation exists. | |
c37f9fb1 | 1839 | */ |
5e911373 MK |
1840 | enum vma_resv_mode { |
1841 | VMA_NEEDS_RESV, | |
1842 | VMA_COMMIT_RESV, | |
feba16e2 | 1843 | VMA_END_RESV, |
96b96a96 | 1844 | VMA_ADD_RESV, |
5e911373 | 1845 | }; |
cf3ad20b MK |
1846 | static long __vma_reservation_common(struct hstate *h, |
1847 | struct vm_area_struct *vma, unsigned long addr, | |
5e911373 | 1848 | enum vma_resv_mode mode) |
c37f9fb1 | 1849 | { |
4e35f483 JK |
1850 | struct resv_map *resv; |
1851 | pgoff_t idx; | |
cf3ad20b | 1852 | long ret; |
c37f9fb1 | 1853 | |
4e35f483 JK |
1854 | resv = vma_resv_map(vma); |
1855 | if (!resv) | |
84afd99b | 1856 | return 1; |
c37f9fb1 | 1857 | |
4e35f483 | 1858 | idx = vma_hugecache_offset(h, vma, addr); |
5e911373 MK |
1859 | switch (mode) { |
1860 | case VMA_NEEDS_RESV: | |
cf3ad20b | 1861 | ret = region_chg(resv, idx, idx + 1); |
5e911373 MK |
1862 | break; |
1863 | case VMA_COMMIT_RESV: | |
1864 | ret = region_add(resv, idx, idx + 1); | |
1865 | break; | |
feba16e2 | 1866 | case VMA_END_RESV: |
5e911373 MK |
1867 | region_abort(resv, idx, idx + 1); |
1868 | ret = 0; | |
1869 | break; | |
96b96a96 MK |
1870 | case VMA_ADD_RESV: |
1871 | if (vma->vm_flags & VM_MAYSHARE) | |
1872 | ret = region_add(resv, idx, idx + 1); | |
1873 | else { | |
1874 | region_abort(resv, idx, idx + 1); | |
1875 | ret = region_del(resv, idx, idx + 1); | |
1876 | } | |
1877 | break; | |
5e911373 MK |
1878 | default: |
1879 | BUG(); | |
1880 | } | |
84afd99b | 1881 | |
4e35f483 | 1882 | if (vma->vm_flags & VM_MAYSHARE) |
cf3ad20b | 1883 | return ret; |
67961f9d MK |
1884 | else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) { |
1885 | /* | |
1886 | * In most cases, reserves always exist for private mappings. | |
1887 | * However, a file associated with mapping could have been | |
1888 | * hole punched or truncated after reserves were consumed. | |
1889 | * As subsequent fault on such a range will not use reserves. | |
1890 | * Subtle - The reserve map for private mappings has the | |
1891 | * opposite meaning than that of shared mappings. If NO | |
1892 | * entry is in the reserve map, it means a reservation exists. | |
1893 | * If an entry exists in the reserve map, it means the | |
1894 | * reservation has already been consumed. As a result, the | |
1895 | * return value of this routine is the opposite of the | |
1896 | * value returned from reserve map manipulation routines above. | |
1897 | */ | |
1898 | if (ret) | |
1899 | return 0; | |
1900 | else | |
1901 | return 1; | |
1902 | } | |
4e35f483 | 1903 | else |
cf3ad20b | 1904 | return ret < 0 ? ret : 0; |
c37f9fb1 | 1905 | } |
cf3ad20b MK |
1906 | |
1907 | static long vma_needs_reservation(struct hstate *h, | |
a5516438 | 1908 | struct vm_area_struct *vma, unsigned long addr) |
c37f9fb1 | 1909 | { |
5e911373 | 1910 | return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); |
cf3ad20b | 1911 | } |
84afd99b | 1912 | |
cf3ad20b MK |
1913 | static long vma_commit_reservation(struct hstate *h, |
1914 | struct vm_area_struct *vma, unsigned long addr) | |
1915 | { | |
5e911373 MK |
1916 | return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); |
1917 | } | |
1918 | ||
feba16e2 | 1919 | static void vma_end_reservation(struct hstate *h, |
5e911373 MK |
1920 | struct vm_area_struct *vma, unsigned long addr) |
1921 | { | |
feba16e2 | 1922 | (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); |
c37f9fb1 AW |
1923 | } |
1924 | ||
96b96a96 MK |
1925 | static long vma_add_reservation(struct hstate *h, |
1926 | struct vm_area_struct *vma, unsigned long addr) | |
1927 | { | |
1928 | return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); | |
1929 | } | |
1930 | ||
1931 | /* | |
1932 | * This routine is called to restore a reservation on error paths. In the | |
1933 | * specific error paths, a huge page was allocated (via alloc_huge_page) | |
1934 | * and is about to be freed. If a reservation for the page existed, | |
1935 | * alloc_huge_page would have consumed the reservation and set PagePrivate | |
1936 | * in the newly allocated page. When the page is freed via free_huge_page, | |
1937 | * the global reservation count will be incremented if PagePrivate is set. | |
1938 | * However, free_huge_page can not adjust the reserve map. Adjust the | |
1939 | * reserve map here to be consistent with global reserve count adjustments | |
1940 | * to be made by free_huge_page. | |
1941 | */ | |
1942 | static void restore_reserve_on_error(struct hstate *h, | |
1943 | struct vm_area_struct *vma, unsigned long address, | |
1944 | struct page *page) | |
1945 | { | |
1946 | if (unlikely(PagePrivate(page))) { | |
1947 | long rc = vma_needs_reservation(h, vma, address); | |
1948 | ||
1949 | if (unlikely(rc < 0)) { | |
1950 | /* | |
1951 | * Rare out of memory condition in reserve map | |
1952 | * manipulation. Clear PagePrivate so that | |
1953 | * global reserve count will not be incremented | |
1954 | * by free_huge_page. This will make it appear | |
1955 | * as though the reservation for this page was | |
1956 | * consumed. This may prevent the task from | |
1957 | * faulting in the page at a later time. This | |
1958 | * is better than inconsistent global huge page | |
1959 | * accounting of reserve counts. | |
1960 | */ | |
1961 | ClearPagePrivate(page); | |
1962 | } else if (rc) { | |
1963 | rc = vma_add_reservation(h, vma, address); | |
1964 | if (unlikely(rc < 0)) | |
1965 | /* | |
1966 | * See above comment about rare out of | |
1967 | * memory condition. | |
1968 | */ | |
1969 | ClearPagePrivate(page); | |
1970 | } else | |
1971 | vma_end_reservation(h, vma, address); | |
1972 | } | |
1973 | } | |
1974 | ||
70c3547e | 1975 | struct page *alloc_huge_page(struct vm_area_struct *vma, |
04f2cbe3 | 1976 | unsigned long addr, int avoid_reserve) |
1da177e4 | 1977 | { |
90481622 | 1978 | struct hugepage_subpool *spool = subpool_vma(vma); |
a5516438 | 1979 | struct hstate *h = hstate_vma(vma); |
348ea204 | 1980 | struct page *page; |
d85f69b0 MK |
1981 | long map_chg, map_commit; |
1982 | long gbl_chg; | |
6d76dcf4 AK |
1983 | int ret, idx; |
1984 | struct hugetlb_cgroup *h_cg; | |
a1e78772 | 1985 | |
6d76dcf4 | 1986 | idx = hstate_index(h); |
a1e78772 | 1987 | /* |
d85f69b0 MK |
1988 | * Examine the region/reserve map to determine if the process |
1989 | * has a reservation for the page to be allocated. A return | |
1990 | * code of zero indicates a reservation exists (no change). | |
a1e78772 | 1991 | */ |
d85f69b0 MK |
1992 | map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); |
1993 | if (map_chg < 0) | |
76dcee75 | 1994 | return ERR_PTR(-ENOMEM); |
d85f69b0 MK |
1995 | |
1996 | /* | |
1997 | * Processes that did not create the mapping will have no | |
1998 | * reserves as indicated by the region/reserve map. Check | |
1999 | * that the allocation will not exceed the subpool limit. | |
2000 | * Allocations for MAP_NORESERVE mappings also need to be | |
2001 | * checked against any subpool limit. | |
2002 | */ | |
2003 | if (map_chg || avoid_reserve) { | |
2004 | gbl_chg = hugepage_subpool_get_pages(spool, 1); | |
2005 | if (gbl_chg < 0) { | |
feba16e2 | 2006 | vma_end_reservation(h, vma, addr); |
76dcee75 | 2007 | return ERR_PTR(-ENOSPC); |
5e911373 | 2008 | } |
1da177e4 | 2009 | |
d85f69b0 MK |
2010 | /* |
2011 | * Even though there was no reservation in the region/reserve | |
2012 | * map, there could be reservations associated with the | |
2013 | * subpool that can be used. This would be indicated if the | |
2014 | * return value of hugepage_subpool_get_pages() is zero. | |
2015 | * However, if avoid_reserve is specified we still avoid even | |
2016 | * the subpool reservations. | |
2017 | */ | |
2018 | if (avoid_reserve) | |
2019 | gbl_chg = 1; | |
2020 | } | |
2021 | ||
6d76dcf4 | 2022 | ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); |
8f34af6f JZ |
2023 | if (ret) |
2024 | goto out_subpool_put; | |
2025 | ||
1da177e4 | 2026 | spin_lock(&hugetlb_lock); |
d85f69b0 MK |
2027 | /* |
2028 | * glb_chg is passed to indicate whether or not a page must be taken | |
2029 | * from the global free pool (global change). gbl_chg == 0 indicates | |
2030 | * a reservation exists for the allocation. | |
2031 | */ | |
2032 | page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg); | |
81a6fcae | 2033 | if (!page) { |
94ae8ba7 | 2034 | spin_unlock(&hugetlb_lock); |
099730d6 | 2035 | page = __alloc_buddy_huge_page_with_mpol(h, vma, addr); |
8f34af6f JZ |
2036 | if (!page) |
2037 | goto out_uncharge_cgroup; | |
a88c7695 NH |
2038 | if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { |
2039 | SetPagePrivate(page); | |
2040 | h->resv_huge_pages--; | |
2041 | } | |
79dbb236 AK |
2042 | spin_lock(&hugetlb_lock); |
2043 | list_move(&page->lru, &h->hugepage_activelist); | |
81a6fcae | 2044 | /* Fall through */ |
68842c9b | 2045 | } |
81a6fcae JK |
2046 | hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page); |
2047 | spin_unlock(&hugetlb_lock); | |
348ea204 | 2048 | |
90481622 | 2049 | set_page_private(page, (unsigned long)spool); |
90d8b7e6 | 2050 | |
d85f69b0 MK |
2051 | map_commit = vma_commit_reservation(h, vma, addr); |
2052 | if (unlikely(map_chg > map_commit)) { | |
33039678 MK |
2053 | /* |
2054 | * The page was added to the reservation map between | |
2055 | * vma_needs_reservation and vma_commit_reservation. | |
2056 | * This indicates a race with hugetlb_reserve_pages. | |
2057 | * Adjust for the subpool count incremented above AND | |
2058 | * in hugetlb_reserve_pages for the same page. Also, | |
2059 | * the reservation count added in hugetlb_reserve_pages | |
2060 | * no longer applies. | |
2061 | */ | |
2062 | long rsv_adjust; | |
2063 | ||
2064 | rsv_adjust = hugepage_subpool_put_pages(spool, 1); | |
2065 | hugetlb_acct_memory(h, -rsv_adjust); | |
2066 | } | |
90d8b7e6 | 2067 | return page; |
8f34af6f JZ |
2068 | |
2069 | out_uncharge_cgroup: | |
2070 | hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); | |
2071 | out_subpool_put: | |
d85f69b0 | 2072 | if (map_chg || avoid_reserve) |
8f34af6f | 2073 | hugepage_subpool_put_pages(spool, 1); |
feba16e2 | 2074 | vma_end_reservation(h, vma, addr); |
8f34af6f | 2075 | return ERR_PTR(-ENOSPC); |
b45b5bd6 DG |
2076 | } |
2077 | ||
74060e4d NH |
2078 | /* |
2079 | * alloc_huge_page()'s wrapper which simply returns the page if allocation | |
2080 | * succeeds, otherwise NULL. This function is called from new_vma_page(), | |
2081 | * where no ERR_VALUE is expected to be returned. | |
2082 | */ | |
2083 | struct page *alloc_huge_page_noerr(struct vm_area_struct *vma, | |
2084 | unsigned long addr, int avoid_reserve) | |
2085 | { | |
2086 | struct page *page = alloc_huge_page(vma, addr, avoid_reserve); | |
2087 | if (IS_ERR(page)) | |
2088 | page = NULL; | |
2089 | return page; | |
2090 | } | |
2091 | ||
e24a1307 AK |
2092 | int alloc_bootmem_huge_page(struct hstate *h) |
2093 | __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); | |
2094 | int __alloc_bootmem_huge_page(struct hstate *h) | |
aa888a74 AK |
2095 | { |
2096 | struct huge_bootmem_page *m; | |
b2261026 | 2097 | int nr_nodes, node; |
aa888a74 | 2098 | |
b2261026 | 2099 | for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { |
aa888a74 AK |
2100 | void *addr; |
2101 | ||
8b89a116 GS |
2102 | addr = memblock_virt_alloc_try_nid_nopanic( |
2103 | huge_page_size(h), huge_page_size(h), | |
2104 | 0, BOOTMEM_ALLOC_ACCESSIBLE, node); | |
aa888a74 AK |
2105 | if (addr) { |
2106 | /* | |
2107 | * Use the beginning of the huge page to store the | |
2108 | * huge_bootmem_page struct (until gather_bootmem | |
2109 | * puts them into the mem_map). | |
2110 | */ | |
2111 | m = addr; | |
91f47662 | 2112 | goto found; |
aa888a74 | 2113 | } |
aa888a74 AK |
2114 | } |
2115 | return 0; | |
2116 | ||
2117 | found: | |
df994ead | 2118 | BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h))); |
aa888a74 AK |
2119 | /* Put them into a private list first because mem_map is not up yet */ |
2120 | list_add(&m->list, &huge_boot_pages); | |
2121 | m->hstate = h; | |
2122 | return 1; | |
2123 | } | |
2124 | ||
d00181b9 KS |
2125 | static void __init prep_compound_huge_page(struct page *page, |
2126 | unsigned int order) | |
18229df5 AW |
2127 | { |
2128 | if (unlikely(order > (MAX_ORDER - 1))) | |
2129 | prep_compound_gigantic_page(page, order); | |
2130 | else | |
2131 | prep_compound_page(page, order); | |
2132 | } | |
2133 | ||
aa888a74 AK |
2134 | /* Put bootmem huge pages into the standard lists after mem_map is up */ |
2135 | static void __init gather_bootmem_prealloc(void) | |
2136 | { | |
2137 | struct huge_bootmem_page *m; | |
2138 | ||
2139 | list_for_each_entry(m, &huge_boot_pages, list) { | |
aa888a74 | 2140 | struct hstate *h = m->hstate; |
ee8f248d BB |
2141 | struct page *page; |
2142 | ||
2143 | #ifdef CONFIG_HIGHMEM | |
2144 | page = pfn_to_page(m->phys >> PAGE_SHIFT); | |
8b89a116 GS |
2145 | memblock_free_late(__pa(m), |
2146 | sizeof(struct huge_bootmem_page)); | |
ee8f248d BB |
2147 | #else |
2148 | page = virt_to_page(m); | |
2149 | #endif | |
aa888a74 | 2150 | WARN_ON(page_count(page) != 1); |
18229df5 | 2151 | prep_compound_huge_page(page, h->order); |
ef5a22be | 2152 | WARN_ON(PageReserved(page)); |
aa888a74 | 2153 | prep_new_huge_page(h, page, page_to_nid(page)); |
b0320c7b RA |
2154 | /* |
2155 | * If we had gigantic hugepages allocated at boot time, we need | |
2156 | * to restore the 'stolen' pages to totalram_pages in order to | |
2157 | * fix confusing memory reports from free(1) and another | |
2158 | * side-effects, like CommitLimit going negative. | |
2159 | */ | |
bae7f4ae | 2160 | if (hstate_is_gigantic(h)) |
3dcc0571 | 2161 | adjust_managed_page_count(page, 1 << h->order); |
bac593cd | 2162 | cond_resched(); |
aa888a74 AK |
2163 | } |
2164 | } | |
2165 | ||
8faa8b07 | 2166 | static void __init hugetlb_hstate_alloc_pages(struct hstate *h) |
1da177e4 LT |
2167 | { |
2168 | unsigned long i; | |
a5516438 | 2169 | |
e5ff2159 | 2170 | for (i = 0; i < h->max_huge_pages; ++i) { |
bae7f4ae | 2171 | if (hstate_is_gigantic(h)) { |
aa888a74 AK |
2172 | if (!alloc_bootmem_huge_page(h)) |
2173 | break; | |
9b5e5d0f | 2174 | } else if (!alloc_fresh_huge_page(h, |
8cebfcd0 | 2175 | &node_states[N_MEMORY])) |
1da177e4 | 2176 | break; |
69ed779a | 2177 | cond_resched(); |
1da177e4 | 2178 | } |
d715cf80 LH |
2179 | if (i < h->max_huge_pages) { |
2180 | char buf[32]; | |
2181 | ||
c6247f72 | 2182 | string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); |
d715cf80 LH |
2183 | pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", |
2184 | h->max_huge_pages, buf, i); | |
2185 | h->max_huge_pages = i; | |
2186 | } | |
e5ff2159 AK |
2187 | } |
2188 | ||
2189 | static void __init hugetlb_init_hstates(void) | |
2190 | { | |
2191 | struct hstate *h; | |
2192 | ||
2193 | for_each_hstate(h) { | |
641844f5 NH |
2194 | if (minimum_order > huge_page_order(h)) |
2195 | minimum_order = huge_page_order(h); | |
2196 | ||
8faa8b07 | 2197 | /* oversize hugepages were init'ed in early boot */ |
bae7f4ae | 2198 | if (!hstate_is_gigantic(h)) |
8faa8b07 | 2199 | hugetlb_hstate_alloc_pages(h); |
e5ff2159 | 2200 | } |
641844f5 | 2201 | VM_BUG_ON(minimum_order == UINT_MAX); |
e5ff2159 AK |
2202 | } |
2203 | ||
2204 | static void __init report_hugepages(void) | |
2205 | { | |
2206 | struct hstate *h; | |
2207 | ||
2208 | for_each_hstate(h) { | |
4abd32db | 2209 | char buf[32]; |
c6247f72 MW |
2210 | |
2211 | string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); | |
ffb22af5 | 2212 | pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n", |
c6247f72 | 2213 | buf, h->free_huge_pages); |
e5ff2159 AK |
2214 | } |
2215 | } | |
2216 | ||
1da177e4 | 2217 | #ifdef CONFIG_HIGHMEM |
6ae11b27 LS |
2218 | static void try_to_free_low(struct hstate *h, unsigned long count, |
2219 | nodemask_t *nodes_allowed) | |
1da177e4 | 2220 | { |
4415cc8d CL |
2221 | int i; |
2222 | ||
bae7f4ae | 2223 | if (hstate_is_gigantic(h)) |
aa888a74 AK |
2224 | return; |
2225 | ||
6ae11b27 | 2226 | for_each_node_mask(i, *nodes_allowed) { |
1da177e4 | 2227 | struct page *page, *next; |
a5516438 AK |
2228 | struct list_head *freel = &h->hugepage_freelists[i]; |
2229 | list_for_each_entry_safe(page, next, freel, lru) { | |
2230 | if (count >= h->nr_huge_pages) | |
6b0c880d | 2231 | return; |
1da177e4 LT |
2232 | if (PageHighMem(page)) |
2233 | continue; | |
2234 | list_del(&page->lru); | |
e5ff2159 | 2235 | update_and_free_page(h, page); |
a5516438 AK |
2236 | h->free_huge_pages--; |
2237 | h->free_huge_pages_node[page_to_nid(page)]--; | |
1da177e4 LT |
2238 | } |
2239 | } | |
2240 | } | |
2241 | #else | |
6ae11b27 LS |
2242 | static inline void try_to_free_low(struct hstate *h, unsigned long count, |
2243 | nodemask_t *nodes_allowed) | |
1da177e4 LT |
2244 | { |
2245 | } | |
2246 | #endif | |
2247 | ||
20a0307c WF |
2248 | /* |
2249 | * Increment or decrement surplus_huge_pages. Keep node-specific counters | |
2250 | * balanced by operating on them in a round-robin fashion. | |
2251 | * Returns 1 if an adjustment was made. | |
2252 | */ | |
6ae11b27 LS |
2253 | static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, |
2254 | int delta) | |
20a0307c | 2255 | { |
b2261026 | 2256 | int nr_nodes, node; |
20a0307c WF |
2257 | |
2258 | VM_BUG_ON(delta != -1 && delta != 1); | |
20a0307c | 2259 | |
b2261026 JK |
2260 | if (delta < 0) { |
2261 | for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { | |
2262 | if (h->surplus_huge_pages_node[node]) | |
2263 | goto found; | |
e8c5c824 | 2264 | } |
b2261026 JK |
2265 | } else { |
2266 | for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { | |
2267 | if (h->surplus_huge_pages_node[node] < | |
2268 | h->nr_huge_pages_node[node]) | |
2269 | goto found; | |
e8c5c824 | 2270 | } |
b2261026 JK |
2271 | } |
2272 | return 0; | |
20a0307c | 2273 | |
b2261026 JK |
2274 | found: |
2275 | h->surplus_huge_pages += delta; | |
2276 | h->surplus_huge_pages_node[node] += delta; | |
2277 | return 1; | |
20a0307c WF |
2278 | } |
2279 | ||
a5516438 | 2280 | #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) |
6ae11b27 LS |
2281 | static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count, |
2282 | nodemask_t *nodes_allowed) | |
1da177e4 | 2283 | { |
7893d1d5 | 2284 | unsigned long min_count, ret; |
1da177e4 | 2285 | |
944d9fec | 2286 | if (hstate_is_gigantic(h) && !gigantic_page_supported()) |
aa888a74 AK |
2287 | return h->max_huge_pages; |
2288 | ||
7893d1d5 AL |
2289 | /* |
2290 | * Increase the pool size | |
2291 | * First take pages out of surplus state. Then make up the | |
2292 | * remaining difference by allocating fresh huge pages. | |
d1c3fb1f | 2293 | * |
d15c7c09 | 2294 | * We might race with __alloc_buddy_huge_page() here and be unable |
d1c3fb1f NA |
2295 | * to convert a surplus huge page to a normal huge page. That is |
2296 | * not critical, though, it just means the overall size of the | |
2297 | * pool might be one hugepage larger than it needs to be, but | |
2298 | * within all the constraints specified by the sysctls. | |
7893d1d5 | 2299 | */ |
1da177e4 | 2300 | spin_lock(&hugetlb_lock); |
a5516438 | 2301 | while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { |
6ae11b27 | 2302 | if (!adjust_pool_surplus(h, nodes_allowed, -1)) |
7893d1d5 AL |
2303 | break; |
2304 | } | |
2305 | ||
a5516438 | 2306 | while (count > persistent_huge_pages(h)) { |
7893d1d5 AL |
2307 | /* |
2308 | * If this allocation races such that we no longer need the | |
2309 | * page, free_huge_page will handle it by freeing the page | |
2310 | * and reducing the surplus. | |
2311 | */ | |
2312 | spin_unlock(&hugetlb_lock); | |
649920c6 JH |
2313 | |
2314 | /* yield cpu to avoid soft lockup */ | |
2315 | cond_resched(); | |
2316 | ||
944d9fec LC |
2317 | if (hstate_is_gigantic(h)) |
2318 | ret = alloc_fresh_gigantic_page(h, nodes_allowed); | |
2319 | else | |
2320 | ret = alloc_fresh_huge_page(h, nodes_allowed); | |
7893d1d5 AL |
2321 | spin_lock(&hugetlb_lock); |
2322 | if (!ret) | |
2323 | goto out; | |
2324 | ||
536240f2 MG |
2325 | /* Bail for signals. Probably ctrl-c from user */ |
2326 | if (signal_pending(current)) | |
2327 | goto out; | |
7893d1d5 | 2328 | } |
7893d1d5 AL |
2329 | |
2330 | /* | |
2331 | * Decrease the pool size | |
2332 | * First return free pages to the buddy allocator (being careful | |
2333 | * to keep enough around to satisfy reservations). Then place | |
2334 | * pages into surplus state as needed so the pool will shrink | |
2335 | * to the desired size as pages become free. | |
d1c3fb1f NA |
2336 | * |
2337 | * By placing pages into the surplus state independent of the | |
2338 | * overcommit value, we are allowing the surplus pool size to | |
2339 | * exceed overcommit. There are few sane options here. Since | |
d15c7c09 | 2340 | * __alloc_buddy_huge_page() is checking the global counter, |
d1c3fb1f NA |
2341 | * though, we'll note that we're not allowed to exceed surplus |
2342 | * and won't grow the pool anywhere else. Not until one of the | |
2343 | * sysctls are changed, or the surplus pages go out of use. | |
7893d1d5 | 2344 | */ |
a5516438 | 2345 | min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; |
6b0c880d | 2346 | min_count = max(count, min_count); |
6ae11b27 | 2347 | try_to_free_low(h, min_count, nodes_allowed); |
a5516438 | 2348 | while (min_count < persistent_huge_pages(h)) { |
6ae11b27 | 2349 | if (!free_pool_huge_page(h, nodes_allowed, 0)) |
1da177e4 | 2350 | break; |
55f67141 | 2351 | cond_resched_lock(&hugetlb_lock); |
1da177e4 | 2352 | } |
a5516438 | 2353 | while (count < persistent_huge_pages(h)) { |
6ae11b27 | 2354 | if (!adjust_pool_surplus(h, nodes_allowed, 1)) |
7893d1d5 AL |
2355 | break; |
2356 | } | |
2357 | out: | |
a5516438 | 2358 | ret = persistent_huge_pages(h); |
1da177e4 | 2359 | spin_unlock(&hugetlb_lock); |
7893d1d5 | 2360 | return ret; |
1da177e4 LT |
2361 | } |
2362 | ||
a3437870 NA |
2363 | #define HSTATE_ATTR_RO(_name) \ |
2364 | static struct kobj_attribute _name##_attr = __ATTR_RO(_name) | |
2365 | ||
2366 | #define HSTATE_ATTR(_name) \ | |
2367 | static struct kobj_attribute _name##_attr = \ | |
2368 | __ATTR(_name, 0644, _name##_show, _name##_store) | |
2369 | ||
2370 | static struct kobject *hugepages_kobj; | |
2371 | static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; | |
2372 | ||
9a305230 LS |
2373 | static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); |
2374 | ||
2375 | static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) | |
a3437870 NA |
2376 | { |
2377 | int i; | |
9a305230 | 2378 | |
a3437870 | 2379 | for (i = 0; i < HUGE_MAX_HSTATE; i++) |
9a305230 LS |
2380 | if (hstate_kobjs[i] == kobj) { |
2381 | if (nidp) | |
2382 | *nidp = NUMA_NO_NODE; | |
a3437870 | 2383 | return &hstates[i]; |
9a305230 LS |
2384 | } |
2385 | ||
2386 | return kobj_to_node_hstate(kobj, nidp); | |
a3437870 NA |
2387 | } |
2388 | ||
06808b08 | 2389 | static ssize_t nr_hugepages_show_common(struct kobject *kobj, |
a3437870 NA |
2390 | struct kobj_attribute *attr, char *buf) |
2391 | { | |
9a305230 LS |
2392 | struct hstate *h; |
2393 | unsigned long nr_huge_pages; | |
2394 | int nid; | |
2395 | ||
2396 | h = kobj_to_hstate(kobj, &nid); | |
2397 | if (nid == NUMA_NO_NODE) | |
2398 | nr_huge_pages = h->nr_huge_pages; | |
2399 | else | |
2400 | nr_huge_pages = h->nr_huge_pages_node[nid]; | |
2401 | ||
2402 | return sprintf(buf, "%lu\n", nr_huge_pages); | |
a3437870 | 2403 | } |
adbe8726 | 2404 | |
238d3c13 DR |
2405 | static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, |
2406 | struct hstate *h, int nid, | |
2407 | unsigned long count, size_t len) | |
a3437870 NA |
2408 | { |
2409 | int err; | |
bad44b5b | 2410 | NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY); |
a3437870 | 2411 | |
944d9fec | 2412 | if (hstate_is_gigantic(h) && !gigantic_page_supported()) { |
adbe8726 EM |
2413 | err = -EINVAL; |
2414 | goto out; | |
2415 | } | |
2416 | ||
9a305230 LS |
2417 | if (nid == NUMA_NO_NODE) { |
2418 | /* | |
2419 | * global hstate attribute | |
2420 | */ | |
2421 | if (!(obey_mempolicy && | |
2422 | init_nodemask_of_mempolicy(nodes_allowed))) { | |
2423 | NODEMASK_FREE(nodes_allowed); | |
8cebfcd0 | 2424 | nodes_allowed = &node_states[N_MEMORY]; |
9a305230 LS |
2425 | } |
2426 | } else if (nodes_allowed) { | |
2427 | /* | |
2428 | * per node hstate attribute: adjust count to global, | |
2429 | * but restrict alloc/free to the specified node. | |
2430 | */ | |
2431 | count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; | |
2432 | init_nodemask_of_node(nodes_allowed, nid); | |
2433 | } else | |
8cebfcd0 | 2434 | nodes_allowed = &node_states[N_MEMORY]; |
9a305230 | 2435 | |
06808b08 | 2436 | h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed); |
a3437870 | 2437 | |
8cebfcd0 | 2438 | if (nodes_allowed != &node_states[N_MEMORY]) |
06808b08 LS |
2439 | NODEMASK_FREE(nodes_allowed); |
2440 | ||
2441 | return len; | |
adbe8726 EM |
2442 | out: |
2443 | NODEMASK_FREE(nodes_allowed); | |
2444 | return err; | |
06808b08 LS |
2445 | } |
2446 | ||
238d3c13 DR |
2447 | static ssize_t nr_hugepages_store_common(bool obey_mempolicy, |
2448 | struct kobject *kobj, const char *buf, | |
2449 | size_t len) | |
2450 | { | |
2451 | struct hstate *h; | |
2452 | unsigned long count; | |
2453 | int nid; | |
2454 | int err; | |
2455 | ||
2456 | err = kstrtoul(buf, 10, &count); | |
2457 | if (err) | |
2458 | return err; | |
2459 | ||
2460 | h = kobj_to_hstate(kobj, &nid); | |
2461 | return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); | |
2462 | } | |
2463 | ||
06808b08 LS |
2464 | static ssize_t nr_hugepages_show(struct kobject *kobj, |
2465 | struct kobj_attribute *attr, char *buf) | |
2466 | { | |
2467 | return nr_hugepages_show_common(kobj, attr, buf); | |
2468 | } | |
2469 | ||
2470 | static ssize_t nr_hugepages_store(struct kobject *kobj, | |
2471 | struct kobj_attribute *attr, const char *buf, size_t len) | |
2472 | { | |
238d3c13 | 2473 | return nr_hugepages_store_common(false, kobj, buf, len); |
a3437870 NA |
2474 | } |
2475 | HSTATE_ATTR(nr_hugepages); | |
2476 | ||
06808b08 LS |
2477 | #ifdef CONFIG_NUMA |
2478 | ||
2479 | /* | |
2480 | * hstate attribute for optionally mempolicy-based constraint on persistent | |
2481 | * huge page alloc/free. | |
2482 | */ | |
2483 | static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, | |
2484 | struct kobj_attribute *attr, char *buf) | |
2485 | { | |
2486 | return nr_hugepages_show_common(kobj, attr, buf); | |
2487 | } | |
2488 | ||
2489 | static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, | |
2490 | struct kobj_attribute *attr, const char *buf, size_t len) | |
2491 | { | |
238d3c13 | 2492 | return nr_hugepages_store_common(true, kobj, buf, len); |
06808b08 LS |
2493 | } |
2494 | HSTATE_ATTR(nr_hugepages_mempolicy); | |
2495 | #endif | |
2496 | ||
2497 | ||
a3437870 NA |
2498 | static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, |
2499 | struct kobj_attribute *attr, char *buf) | |
2500 | { | |
9a305230 | 2501 | struct hstate *h = kobj_to_hstate(kobj, NULL); |
a3437870 NA |
2502 | return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages); |
2503 | } | |
adbe8726 | 2504 | |
a3437870 NA |
2505 | static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, |
2506 | struct kobj_attribute *attr, const char *buf, size_t count) | |
2507 | { | |
2508 | int err; | |
2509 | unsigned long input; | |
9a305230 | 2510 | struct hstate *h = kobj_to_hstate(kobj, NULL); |
a3437870 | 2511 | |
bae7f4ae | 2512 | if (hstate_is_gigantic(h)) |
adbe8726 EM |
2513 | return -EINVAL; |
2514 | ||
3dbb95f7 | 2515 | err = kstrtoul(buf, 10, &input); |
a3437870 | 2516 | if (err) |
73ae31e5 | 2517 | return err; |
a3437870 NA |
2518 | |
2519 | spin_lock(&hugetlb_lock); | |
2520 | h->nr_overcommit_huge_pages = input; | |
2521 | spin_unlock(&hugetlb_lock); | |
2522 | ||
2523 | return count; | |
2524 | } | |
2525 | HSTATE_ATTR(nr_overcommit_hugepages); | |
2526 | ||
2527 | static ssize_t free_hugepages_show(struct kobject *kobj, | |
2528 | struct kobj_attribute *attr, char *buf) | |
2529 | { | |
9a305230 LS |
2530 | struct hstate *h; |
2531 | unsigned long free_huge_pages; | |
2532 | int nid; | |
2533 | ||
2534 | h = kobj_to_hstate(kobj, &nid); | |
2535 | if (nid == NUMA_NO_NODE) | |
2536 | free_huge_pages = h->free_huge_pages; | |
2537 | else | |
2538 | free_huge_pages = h->free_huge_pages_node[nid]; | |
2539 | ||
2540 | return sprintf(buf, "%lu\n", free_huge_pages); | |
a3437870 NA |
2541 | } |
2542 | HSTATE_ATTR_RO(free_hugepages); | |
2543 | ||
2544 | static ssize_t resv_hugepages_show(struct kobject *kobj, | |
2545 | struct kobj_attribute *attr, char *buf) | |
2546 | { | |
9a305230 | 2547 | struct hstate *h = kobj_to_hstate(kobj, NULL); |
a3437870 NA |
2548 | return sprintf(buf, "%lu\n", h->resv_huge_pages); |
2549 | } | |
2550 | HSTATE_ATTR_RO(resv_hugepages); | |
2551 | ||
2552 | static ssize_t surplus_hugepages_show(struct kobject *kobj, | |
2553 | struct kobj_attribute *attr, char *buf) | |
2554 | { | |
9a305230 LS |
2555 | struct hstate *h; |
2556 | unsigned long surplus_huge_pages; | |
2557 | int nid; | |
2558 | ||
2559 | h = kobj_to_hstate(kobj, &nid); | |
2560 | if (nid == NUMA_NO_NODE) | |
2561 | surplus_huge_pages = h->surplus_huge_pages; | |
2562 | else | |
2563 | surplus_huge_pages = h->surplus_huge_pages_node[nid]; | |
2564 | ||
2565 | return sprintf(buf, "%lu\n", surplus_huge_pages); | |
a3437870 NA |
2566 | } |
2567 | HSTATE_ATTR_RO(surplus_hugepages); | |
2568 | ||
2569 | static struct attribute *hstate_attrs[] = { | |
2570 | &nr_hugepages_attr.attr, | |
2571 | &nr_overcommit_hugepages_attr.attr, | |
2572 | &free_hugepages_attr.attr, | |
2573 | &resv_hugepages_attr.attr, | |
2574 | &surplus_hugepages_attr.attr, | |
06808b08 LS |
2575 | #ifdef CONFIG_NUMA |
2576 | &nr_hugepages_mempolicy_attr.attr, | |
2577 | #endif | |
a3437870 NA |
2578 | NULL, |
2579 | }; | |
2580 | ||
67e5ed96 | 2581 | static const struct attribute_group hstate_attr_group = { |
a3437870 NA |
2582 | .attrs = hstate_attrs, |
2583 | }; | |
2584 | ||
094e9539 JM |
2585 | static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, |
2586 | struct kobject **hstate_kobjs, | |
67e5ed96 | 2587 | const struct attribute_group *hstate_attr_group) |
a3437870 NA |
2588 | { |
2589 | int retval; | |
972dc4de | 2590 | int hi = hstate_index(h); |
a3437870 | 2591 | |
9a305230 LS |
2592 | hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); |
2593 | if (!hstate_kobjs[hi]) | |
a3437870 NA |
2594 | return -ENOMEM; |
2595 | ||
9a305230 | 2596 | retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); |
a3437870 | 2597 | if (retval) |
9a305230 | 2598 | kobject_put(hstate_kobjs[hi]); |
a3437870 NA |
2599 | |
2600 | return retval; | |
2601 | } | |
2602 | ||
2603 | static void __init hugetlb_sysfs_init(void) | |
2604 | { | |
2605 | struct hstate *h; | |
2606 | int err; | |
2607 | ||
2608 | hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); | |
2609 | if (!hugepages_kobj) | |
2610 | return; | |
2611 | ||
2612 | for_each_hstate(h) { | |
9a305230 LS |
2613 | err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, |
2614 | hstate_kobjs, &hstate_attr_group); | |
a3437870 | 2615 | if (err) |
ffb22af5 | 2616 | pr_err("Hugetlb: Unable to add hstate %s", h->name); |
a3437870 NA |
2617 | } |
2618 | } | |
2619 | ||
9a305230 LS |
2620 | #ifdef CONFIG_NUMA |
2621 | ||
2622 | /* | |
2623 | * node_hstate/s - associate per node hstate attributes, via their kobjects, | |
10fbcf4c KS |
2624 | * with node devices in node_devices[] using a parallel array. The array |
2625 | * index of a node device or _hstate == node id. | |
2626 | * This is here to avoid any static dependency of the node device driver, in | |
9a305230 LS |
2627 | * the base kernel, on the hugetlb module. |
2628 | */ | |
2629 | struct node_hstate { | |
2630 | struct kobject *hugepages_kobj; | |
2631 | struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; | |
2632 | }; | |
b4e289a6 | 2633 | static struct node_hstate node_hstates[MAX_NUMNODES]; |
9a305230 LS |
2634 | |
2635 | /* | |
10fbcf4c | 2636 | * A subset of global hstate attributes for node devices |
9a305230 LS |
2637 | */ |
2638 | static struct attribute *per_node_hstate_attrs[] = { | |
2639 | &nr_hugepages_attr.attr, | |
2640 | &free_hugepages_attr.attr, | |
2641 | &surplus_hugepages_attr.attr, | |
2642 | NULL, | |
2643 | }; | |
2644 | ||
67e5ed96 | 2645 | static const struct attribute_group per_node_hstate_attr_group = { |
9a305230 LS |
2646 | .attrs = per_node_hstate_attrs, |
2647 | }; | |
2648 | ||
2649 | /* | |
10fbcf4c | 2650 | * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. |
9a305230 LS |
2651 | * Returns node id via non-NULL nidp. |
2652 | */ | |
2653 | static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) | |
2654 | { | |
2655 | int nid; | |
2656 | ||
2657 | for (nid = 0; nid < nr_node_ids; nid++) { | |
2658 | struct node_hstate *nhs = &node_hstates[nid]; | |
2659 | int i; | |
2660 | for (i = 0; i < HUGE_MAX_HSTATE; i++) | |
2661 | if (nhs->hstate_kobjs[i] == kobj) { | |
2662 | if (nidp) | |
2663 | *nidp = nid; | |
2664 | return &hstates[i]; | |
2665 | } | |
2666 | } | |
2667 | ||
2668 | BUG(); | |
2669 | return NULL; | |
2670 | } | |
2671 | ||
2672 | /* | |
10fbcf4c | 2673 | * Unregister hstate attributes from a single node device. |
9a305230 LS |
2674 | * No-op if no hstate attributes attached. |
2675 | */ | |
3cd8b44f | 2676 | static void hugetlb_unregister_node(struct node *node) |
9a305230 LS |
2677 | { |
2678 | struct hstate *h; | |
10fbcf4c | 2679 | struct node_hstate *nhs = &node_hstates[node->dev.id]; |
9a305230 LS |
2680 | |
2681 | if (!nhs->hugepages_kobj) | |
9b5e5d0f | 2682 | return; /* no hstate attributes */ |
9a305230 | 2683 | |
972dc4de AK |
2684 | for_each_hstate(h) { |
2685 | int idx = hstate_index(h); | |
2686 | if (nhs->hstate_kobjs[idx]) { | |
2687 | kobject_put(nhs->hstate_kobjs[idx]); | |
2688 | nhs->hstate_kobjs[idx] = NULL; | |
9a305230 | 2689 | } |
972dc4de | 2690 | } |
9a305230 LS |
2691 | |
2692 | kobject_put(nhs->hugepages_kobj); | |
2693 | nhs->hugepages_kobj = NULL; | |
2694 | } | |
2695 | ||
9a305230 LS |
2696 | |
2697 | /* | |
10fbcf4c | 2698 | * Register hstate attributes for a single node device. |
9a305230 LS |
2699 | * No-op if attributes already registered. |
2700 | */ | |
3cd8b44f | 2701 | static void hugetlb_register_node(struct node *node) |
9a305230 LS |
2702 | { |
2703 | struct hstate *h; | |
10fbcf4c | 2704 | struct node_hstate *nhs = &node_hstates[node->dev.id]; |
9a305230 LS |
2705 | int err; |
2706 | ||
2707 | if (nhs->hugepages_kobj) | |
2708 | return; /* already allocated */ | |
2709 | ||
2710 | nhs->hugepages_kobj = kobject_create_and_add("hugepages", | |
10fbcf4c | 2711 | &node->dev.kobj); |
9a305230 LS |
2712 | if (!nhs->hugepages_kobj) |
2713 | return; | |
2714 | ||
2715 | for_each_hstate(h) { | |
2716 | err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, | |
2717 | nhs->hstate_kobjs, | |
2718 | &per_node_hstate_attr_group); | |
2719 | if (err) { | |
ffb22af5 AM |
2720 | pr_err("Hugetlb: Unable to add hstate %s for node %d\n", |
2721 | h->name, node->dev.id); | |
9a305230 LS |
2722 | hugetlb_unregister_node(node); |
2723 | break; | |
2724 | } | |
2725 | } | |
2726 | } | |
2727 | ||
2728 | /* | |
9b5e5d0f | 2729 | * hugetlb init time: register hstate attributes for all registered node |
10fbcf4c KS |
2730 | * devices of nodes that have memory. All on-line nodes should have |
2731 | * registered their associated device by this time. | |
9a305230 | 2732 | */ |
7d9ca000 | 2733 | static void __init hugetlb_register_all_nodes(void) |
9a305230 LS |
2734 | { |
2735 | int nid; | |
2736 | ||
8cebfcd0 | 2737 | for_each_node_state(nid, N_MEMORY) { |
8732794b | 2738 | struct node *node = node_devices[nid]; |
10fbcf4c | 2739 | if (node->dev.id == nid) |
9a305230 LS |
2740 | hugetlb_register_node(node); |
2741 | } | |
2742 | ||
2743 | /* | |
10fbcf4c | 2744 | * Let the node device driver know we're here so it can |
9a305230 LS |
2745 | * [un]register hstate attributes on node hotplug. |
2746 | */ | |
2747 | register_hugetlbfs_with_node(hugetlb_register_node, | |
2748 | hugetlb_unregister_node); | |
2749 | } | |
2750 | #else /* !CONFIG_NUMA */ | |
2751 | ||
2752 | static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) | |
2753 | { | |
2754 | BUG(); | |
2755 | if (nidp) | |
2756 | *nidp = -1; | |
2757 | return NULL; | |
2758 | } | |
2759 | ||
9a305230 LS |
2760 | static void hugetlb_register_all_nodes(void) { } |
2761 | ||
2762 | #endif | |
2763 | ||
a3437870 NA |
2764 | static int __init hugetlb_init(void) |
2765 | { | |
8382d914 DB |
2766 | int i; |
2767 | ||
457c1b27 | 2768 | if (!hugepages_supported()) |
0ef89d25 | 2769 | return 0; |
a3437870 | 2770 | |
e11bfbfc | 2771 | if (!size_to_hstate(default_hstate_size)) { |
d715cf80 LH |
2772 | if (default_hstate_size != 0) { |
2773 | pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n", | |
2774 | default_hstate_size, HPAGE_SIZE); | |
2775 | } | |
2776 | ||
e11bfbfc NP |
2777 | default_hstate_size = HPAGE_SIZE; |
2778 | if (!size_to_hstate(default_hstate_size)) | |
2779 | hugetlb_add_hstate(HUGETLB_PAGE_ORDER); | |
a3437870 | 2780 | } |
972dc4de | 2781 | default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size)); |
f8b74815 VT |
2782 | if (default_hstate_max_huge_pages) { |
2783 | if (!default_hstate.max_huge_pages) | |
2784 | default_hstate.max_huge_pages = default_hstate_max_huge_pages; | |
2785 | } | |
a3437870 NA |
2786 | |
2787 | hugetlb_init_hstates(); | |
aa888a74 | 2788 | gather_bootmem_prealloc(); |
a3437870 NA |
2789 | report_hugepages(); |
2790 | ||
2791 | hugetlb_sysfs_init(); | |
9a305230 | 2792 | hugetlb_register_all_nodes(); |
7179e7bf | 2793 | hugetlb_cgroup_file_init(); |
9a305230 | 2794 | |
8382d914 DB |
2795 | #ifdef CONFIG_SMP |
2796 | num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); | |
2797 | #else | |
2798 | num_fault_mutexes = 1; | |
2799 | #endif | |
c672c7f2 | 2800 | hugetlb_fault_mutex_table = |
8382d914 | 2801 | kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL); |
c672c7f2 | 2802 | BUG_ON(!hugetlb_fault_mutex_table); |
8382d914 DB |
2803 | |
2804 | for (i = 0; i < num_fault_mutexes; i++) | |
c672c7f2 | 2805 | mutex_init(&hugetlb_fault_mutex_table[i]); |
a3437870 NA |
2806 | return 0; |
2807 | } | |
3e89e1c5 | 2808 | subsys_initcall(hugetlb_init); |
a3437870 NA |
2809 | |
2810 | /* Should be called on processing a hugepagesz=... option */ | |
9fee021d VT |
2811 | void __init hugetlb_bad_size(void) |
2812 | { | |
2813 | parsed_valid_hugepagesz = false; | |
2814 | } | |
2815 | ||
d00181b9 | 2816 | void __init hugetlb_add_hstate(unsigned int order) |
a3437870 NA |
2817 | { |
2818 | struct hstate *h; | |
8faa8b07 AK |
2819 | unsigned long i; |
2820 | ||
a3437870 | 2821 | if (size_to_hstate(PAGE_SIZE << order)) { |
598d8091 | 2822 | pr_warn("hugepagesz= specified twice, ignoring\n"); |
a3437870 NA |
2823 | return; |
2824 | } | |
47d38344 | 2825 | BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); |
a3437870 | 2826 | BUG_ON(order == 0); |
47d38344 | 2827 | h = &hstates[hugetlb_max_hstate++]; |
a3437870 NA |
2828 | h->order = order; |
2829 | h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1); | |
8faa8b07 AK |
2830 | h->nr_huge_pages = 0; |
2831 | h->free_huge_pages = 0; | |
2832 | for (i = 0; i < MAX_NUMNODES; ++i) | |
2833 | INIT_LIST_HEAD(&h->hugepage_freelists[i]); | |
0edaecfa | 2834 | INIT_LIST_HEAD(&h->hugepage_activelist); |
54f18d35 AM |
2835 | h->next_nid_to_alloc = first_memory_node; |
2836 | h->next_nid_to_free = first_memory_node; | |
a3437870 NA |
2837 | snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", |
2838 | huge_page_size(h)/1024); | |
8faa8b07 | 2839 | |
a3437870 NA |
2840 | parsed_hstate = h; |
2841 | } | |
2842 | ||
e11bfbfc | 2843 | static int __init hugetlb_nrpages_setup(char *s) |
a3437870 NA |
2844 | { |
2845 | unsigned long *mhp; | |
8faa8b07 | 2846 | static unsigned long *last_mhp; |
a3437870 | 2847 | |
9fee021d VT |
2848 | if (!parsed_valid_hugepagesz) { |
2849 | pr_warn("hugepages = %s preceded by " | |
2850 | "an unsupported hugepagesz, ignoring\n", s); | |
2851 | parsed_valid_hugepagesz = true; | |
2852 | return 1; | |
2853 | } | |
a3437870 | 2854 | /* |
47d38344 | 2855 | * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet, |
a3437870 NA |
2856 | * so this hugepages= parameter goes to the "default hstate". |
2857 | */ | |
9fee021d | 2858 | else if (!hugetlb_max_hstate) |
a3437870 NA |
2859 | mhp = &default_hstate_max_huge_pages; |
2860 | else | |
2861 | mhp = &parsed_hstate->max_huge_pages; | |
2862 | ||
8faa8b07 | 2863 | if (mhp == last_mhp) { |
598d8091 | 2864 | pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n"); |
8faa8b07 AK |
2865 | return 1; |
2866 | } | |
2867 | ||
a3437870 NA |
2868 | if (sscanf(s, "%lu", mhp) <= 0) |
2869 | *mhp = 0; | |
2870 | ||
8faa8b07 AK |
2871 | /* |
2872 | * Global state is always initialized later in hugetlb_init. | |
2873 | * But we need to allocate >= MAX_ORDER hstates here early to still | |
2874 | * use the bootmem allocator. | |
2875 | */ | |
47d38344 | 2876 | if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER) |
8faa8b07 AK |
2877 | hugetlb_hstate_alloc_pages(parsed_hstate); |
2878 | ||
2879 | last_mhp = mhp; | |
2880 | ||
a3437870 NA |
2881 | return 1; |
2882 | } | |
e11bfbfc NP |
2883 | __setup("hugepages=", hugetlb_nrpages_setup); |
2884 | ||
2885 | static int __init hugetlb_default_setup(char *s) | |
2886 | { | |
2887 | default_hstate_size = memparse(s, &s); | |
2888 | return 1; | |
2889 | } | |
2890 | __setup("default_hugepagesz=", hugetlb_default_setup); | |
a3437870 | 2891 | |
8a213460 NA |
2892 | static unsigned int cpuset_mems_nr(unsigned int *array) |
2893 | { | |
2894 | int node; | |
2895 | unsigned int nr = 0; | |
2896 | ||
2897 | for_each_node_mask(node, cpuset_current_mems_allowed) | |
2898 | nr += array[node]; | |
2899 | ||
2900 | return nr; | |
2901 | } | |
2902 | ||
2903 | #ifdef CONFIG_SYSCTL | |
06808b08 LS |
2904 | static int hugetlb_sysctl_handler_common(bool obey_mempolicy, |
2905 | struct ctl_table *table, int write, | |
2906 | void __user *buffer, size_t *length, loff_t *ppos) | |
1da177e4 | 2907 | { |
e5ff2159 | 2908 | struct hstate *h = &default_hstate; |
238d3c13 | 2909 | unsigned long tmp = h->max_huge_pages; |
08d4a246 | 2910 | int ret; |
e5ff2159 | 2911 | |
457c1b27 | 2912 | if (!hugepages_supported()) |
86613628 | 2913 | return -EOPNOTSUPP; |
457c1b27 | 2914 | |
e5ff2159 AK |
2915 | table->data = &tmp; |
2916 | table->maxlen = sizeof(unsigned long); | |
08d4a246 MH |
2917 | ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); |
2918 | if (ret) | |
2919 | goto out; | |
e5ff2159 | 2920 | |
238d3c13 DR |
2921 | if (write) |
2922 | ret = __nr_hugepages_store_common(obey_mempolicy, h, | |
2923 | NUMA_NO_NODE, tmp, *length); | |
08d4a246 MH |
2924 | out: |
2925 | return ret; | |
1da177e4 | 2926 | } |
396faf03 | 2927 | |
06808b08 LS |
2928 | int hugetlb_sysctl_handler(struct ctl_table *table, int write, |
2929 | void __user *buffer, size_t *length, loff_t *ppos) | |
2930 | { | |
2931 | ||
2932 | return hugetlb_sysctl_handler_common(false, table, write, | |
2933 | buffer, length, ppos); | |
2934 | } | |
2935 | ||
2936 | #ifdef CONFIG_NUMA | |
2937 | int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, | |
2938 | void __user *buffer, size_t *length, loff_t *ppos) | |
2939 | { | |
2940 | return hugetlb_sysctl_handler_common(true, table, write, | |
2941 | buffer, length, ppos); | |
2942 | } | |
2943 | #endif /* CONFIG_NUMA */ | |
2944 | ||
a3d0c6aa | 2945 | int hugetlb_overcommit_handler(struct ctl_table *table, int write, |
8d65af78 | 2946 | void __user *buffer, |
a3d0c6aa NA |
2947 | size_t *length, loff_t *ppos) |
2948 | { | |
a5516438 | 2949 | struct hstate *h = &default_hstate; |
e5ff2159 | 2950 | unsigned long tmp; |
08d4a246 | 2951 | int ret; |
e5ff2159 | 2952 | |
457c1b27 | 2953 | if (!hugepages_supported()) |
86613628 | 2954 | return -EOPNOTSUPP; |
457c1b27 | 2955 | |
c033a93c | 2956 | tmp = h->nr_overcommit_huge_pages; |
e5ff2159 | 2957 | |
bae7f4ae | 2958 | if (write && hstate_is_gigantic(h)) |
adbe8726 EM |
2959 | return -EINVAL; |
2960 | ||
e5ff2159 AK |
2961 | table->data = &tmp; |
2962 | table->maxlen = sizeof(unsigned long); | |
08d4a246 MH |
2963 | ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); |
2964 | if (ret) | |
2965 | goto out; | |
e5ff2159 AK |
2966 | |
2967 | if (write) { | |
2968 | spin_lock(&hugetlb_lock); | |
2969 | h->nr_overcommit_huge_pages = tmp; | |
2970 | spin_unlock(&hugetlb_lock); | |
2971 | } | |
08d4a246 MH |
2972 | out: |
2973 | return ret; | |
a3d0c6aa NA |
2974 | } |
2975 | ||
1da177e4 LT |
2976 | #endif /* CONFIG_SYSCTL */ |
2977 | ||
e1759c21 | 2978 | void hugetlb_report_meminfo(struct seq_file *m) |
1da177e4 | 2979 | { |
a5516438 | 2980 | struct hstate *h = &default_hstate; |
457c1b27 NA |
2981 | if (!hugepages_supported()) |
2982 | return; | |
e1759c21 | 2983 | seq_printf(m, |
4f98a2fe RR |
2984 | "HugePages_Total: %5lu\n" |
2985 | "HugePages_Free: %5lu\n" | |
2986 | "HugePages_Rsvd: %5lu\n" | |
2987 | "HugePages_Surp: %5lu\n" | |
2988 | "Hugepagesize: %8lu kB\n", | |
a5516438 AK |
2989 | h->nr_huge_pages, |
2990 | h->free_huge_pages, | |
2991 | h->resv_huge_pages, | |
2992 | h->surplus_huge_pages, | |
2993 | 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); | |
1da177e4 LT |
2994 | } |
2995 | ||
2996 | int hugetlb_report_node_meminfo(int nid, char *buf) | |
2997 | { | |
a5516438 | 2998 | struct hstate *h = &default_hstate; |
457c1b27 NA |
2999 | if (!hugepages_supported()) |
3000 | return 0; | |
1da177e4 LT |
3001 | return sprintf(buf, |
3002 | "Node %d HugePages_Total: %5u\n" | |
a1de0919 NA |
3003 | "Node %d HugePages_Free: %5u\n" |
3004 | "Node %d HugePages_Surp: %5u\n", | |
a5516438 AK |
3005 | nid, h->nr_huge_pages_node[nid], |
3006 | nid, h->free_huge_pages_node[nid], | |
3007 | nid, h->surplus_huge_pages_node[nid]); | |
1da177e4 LT |
3008 | } |
3009 | ||
949f7ec5 DR |
3010 | void hugetlb_show_meminfo(void) |
3011 | { | |
3012 | struct hstate *h; | |
3013 | int nid; | |
3014 | ||
457c1b27 NA |
3015 | if (!hugepages_supported()) |
3016 | return; | |
3017 | ||
949f7ec5 DR |
3018 | for_each_node_state(nid, N_MEMORY) |
3019 | for_each_hstate(h) | |
3020 | pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", | |
3021 | nid, | |
3022 | h->nr_huge_pages_node[nid], | |
3023 | h->free_huge_pages_node[nid], | |
3024 | h->surplus_huge_pages_node[nid], | |
3025 | 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); | |
3026 | } | |
3027 | ||
5d317b2b NH |
3028 | void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) |
3029 | { | |
3030 | seq_printf(m, "HugetlbPages:\t%8lu kB\n", | |
3031 | atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10)); | |
3032 | } | |
3033 | ||
1da177e4 LT |
3034 | /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ |
3035 | unsigned long hugetlb_total_pages(void) | |
3036 | { | |
d0028588 WL |
3037 | struct hstate *h; |
3038 | unsigned long nr_total_pages = 0; | |
3039 | ||
3040 | for_each_hstate(h) | |
3041 | nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); | |
3042 | return nr_total_pages; | |
1da177e4 | 3043 | } |
1da177e4 | 3044 | |
a5516438 | 3045 | static int hugetlb_acct_memory(struct hstate *h, long delta) |
fc1b8a73 MG |
3046 | { |
3047 | int ret = -ENOMEM; | |
3048 | ||
3049 | spin_lock(&hugetlb_lock); | |
3050 | /* | |
3051 | * When cpuset is configured, it breaks the strict hugetlb page | |
3052 | * reservation as the accounting is done on a global variable. Such | |
3053 | * reservation is completely rubbish in the presence of cpuset because | |
3054 | * the reservation is not checked against page availability for the | |
3055 | * current cpuset. Application can still potentially OOM'ed by kernel | |
3056 | * with lack of free htlb page in cpuset that the task is in. | |
3057 | * Attempt to enforce strict accounting with cpuset is almost | |
3058 | * impossible (or too ugly) because cpuset is too fluid that | |
3059 | * task or memory node can be dynamically moved between cpusets. | |
3060 | * | |
3061 | * The change of semantics for shared hugetlb mapping with cpuset is | |
3062 | * undesirable. However, in order to preserve some of the semantics, | |
3063 | * we fall back to check against current free page availability as | |
3064 | * a best attempt and hopefully to minimize the impact of changing | |
3065 | * semantics that cpuset has. | |
3066 | */ | |
3067 | if (delta > 0) { | |
a5516438 | 3068 | if (gather_surplus_pages(h, delta) < 0) |
fc1b8a73 MG |
3069 | goto out; |
3070 | ||
a5516438 AK |
3071 | if (delta > cpuset_mems_nr(h->free_huge_pages_node)) { |
3072 | return_unused_surplus_pages(h, delta); | |
fc1b8a73 MG |
3073 | goto out; |
3074 | } | |
3075 | } | |
3076 | ||
3077 | ret = 0; | |
3078 | if (delta < 0) | |
a5516438 | 3079 | return_unused_surplus_pages(h, (unsigned long) -delta); |
fc1b8a73 MG |
3080 | |
3081 | out: | |
3082 | spin_unlock(&hugetlb_lock); | |
3083 | return ret; | |
3084 | } | |
3085 | ||
84afd99b AW |
3086 | static void hugetlb_vm_op_open(struct vm_area_struct *vma) |
3087 | { | |
f522c3ac | 3088 | struct resv_map *resv = vma_resv_map(vma); |
84afd99b AW |
3089 | |
3090 | /* | |
3091 | * This new VMA should share its siblings reservation map if present. | |
3092 | * The VMA will only ever have a valid reservation map pointer where | |
3093 | * it is being copied for another still existing VMA. As that VMA | |
25985edc | 3094 | * has a reference to the reservation map it cannot disappear until |
84afd99b AW |
3095 | * after this open call completes. It is therefore safe to take a |
3096 | * new reference here without additional locking. | |
3097 | */ | |
4e35f483 | 3098 | if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) |
f522c3ac | 3099 | kref_get(&resv->refs); |
84afd99b AW |
3100 | } |
3101 | ||
a1e78772 MG |
3102 | static void hugetlb_vm_op_close(struct vm_area_struct *vma) |
3103 | { | |
a5516438 | 3104 | struct hstate *h = hstate_vma(vma); |
f522c3ac | 3105 | struct resv_map *resv = vma_resv_map(vma); |
90481622 | 3106 | struct hugepage_subpool *spool = subpool_vma(vma); |
4e35f483 | 3107 | unsigned long reserve, start, end; |
1c5ecae3 | 3108 | long gbl_reserve; |
84afd99b | 3109 | |
4e35f483 JK |
3110 | if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) |
3111 | return; | |
84afd99b | 3112 | |
4e35f483 JK |
3113 | start = vma_hugecache_offset(h, vma, vma->vm_start); |
3114 | end = vma_hugecache_offset(h, vma, vma->vm_end); | |
84afd99b | 3115 | |
4e35f483 | 3116 | reserve = (end - start) - region_count(resv, start, end); |
84afd99b | 3117 | |
4e35f483 JK |
3118 | kref_put(&resv->refs, resv_map_release); |
3119 | ||
3120 | if (reserve) { | |
1c5ecae3 MK |
3121 | /* |
3122 | * Decrement reserve counts. The global reserve count may be | |
3123 | * adjusted if the subpool has a minimum size. | |
3124 | */ | |
3125 | gbl_reserve = hugepage_subpool_put_pages(spool, reserve); | |
3126 | hugetlb_acct_memory(h, -gbl_reserve); | |
84afd99b | 3127 | } |
a1e78772 MG |
3128 | } |
3129 | ||
31383c68 DW |
3130 | static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) |
3131 | { | |
3132 | if (addr & ~(huge_page_mask(hstate_vma(vma)))) | |
3133 | return -EINVAL; | |
3134 | return 0; | |
3135 | } | |
3136 | ||
1da177e4 LT |
3137 | /* |
3138 | * We cannot handle pagefaults against hugetlb pages at all. They cause | |
3139 | * handle_mm_fault() to try to instantiate regular-sized pages in the | |
3140 | * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get | |
3141 | * this far. | |
3142 | */ | |
11bac800 | 3143 | static int hugetlb_vm_op_fault(struct vm_fault *vmf) |
1da177e4 LT |
3144 | { |
3145 | BUG(); | |
d0217ac0 | 3146 | return 0; |
1da177e4 LT |
3147 | } |
3148 | ||
f0f37e2f | 3149 | const struct vm_operations_struct hugetlb_vm_ops = { |
d0217ac0 | 3150 | .fault = hugetlb_vm_op_fault, |
84afd99b | 3151 | .open = hugetlb_vm_op_open, |
a1e78772 | 3152 | .close = hugetlb_vm_op_close, |
31383c68 | 3153 | .split = hugetlb_vm_op_split, |
1da177e4 LT |
3154 | }; |
3155 | ||
1e8f889b DG |
3156 | static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, |
3157 | int writable) | |
63551ae0 DG |
3158 | { |
3159 | pte_t entry; | |
3160 | ||
1e8f889b | 3161 | if (writable) { |
106c992a GS |
3162 | entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, |
3163 | vma->vm_page_prot))); | |
63551ae0 | 3164 | } else { |
106c992a GS |
3165 | entry = huge_pte_wrprotect(mk_huge_pte(page, |
3166 | vma->vm_page_prot)); | |
63551ae0 DG |
3167 | } |
3168 | entry = pte_mkyoung(entry); | |
3169 | entry = pte_mkhuge(entry); | |
d9ed9faa | 3170 | entry = arch_make_huge_pte(entry, vma, page, writable); |
63551ae0 DG |
3171 | |
3172 | return entry; | |
3173 | } | |
3174 | ||
1e8f889b DG |
3175 | static void set_huge_ptep_writable(struct vm_area_struct *vma, |
3176 | unsigned long address, pte_t *ptep) | |
3177 | { | |
3178 | pte_t entry; | |
3179 | ||
106c992a | 3180 | entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); |
32f84528 | 3181 | if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) |
4b3073e1 | 3182 | update_mmu_cache(vma, address, ptep); |
1e8f889b DG |
3183 | } |
3184 | ||
d5ed7444 | 3185 | bool is_hugetlb_entry_migration(pte_t pte) |
4a705fef NH |
3186 | { |
3187 | swp_entry_t swp; | |
3188 | ||
3189 | if (huge_pte_none(pte) || pte_present(pte)) | |
d5ed7444 | 3190 | return false; |
4a705fef NH |
3191 | swp = pte_to_swp_entry(pte); |
3192 | if (non_swap_entry(swp) && is_migration_entry(swp)) | |
d5ed7444 | 3193 | return true; |
4a705fef | 3194 | else |
d5ed7444 | 3195 | return false; |
4a705fef NH |
3196 | } |
3197 | ||
3198 | static int is_hugetlb_entry_hwpoisoned(pte_t pte) | |
3199 | { | |
3200 | swp_entry_t swp; | |
3201 | ||
3202 | if (huge_pte_none(pte) || pte_present(pte)) | |
3203 | return 0; | |
3204 | swp = pte_to_swp_entry(pte); | |
3205 | if (non_swap_entry(swp) && is_hwpoison_entry(swp)) | |
3206 | return 1; | |
3207 | else | |
3208 | return 0; | |
3209 | } | |
1e8f889b | 3210 | |
63551ae0 DG |
3211 | int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, |
3212 | struct vm_area_struct *vma) | |
3213 | { | |
3214 | pte_t *src_pte, *dst_pte, entry; | |
3215 | struct page *ptepage; | |
1c59827d | 3216 | unsigned long addr; |
1e8f889b | 3217 | int cow; |
a5516438 AK |
3218 | struct hstate *h = hstate_vma(vma); |
3219 | unsigned long sz = huge_page_size(h); | |
e8569dd2 AS |
3220 | unsigned long mmun_start; /* For mmu_notifiers */ |
3221 | unsigned long mmun_end; /* For mmu_notifiers */ | |
3222 | int ret = 0; | |
1e8f889b DG |
3223 | |
3224 | cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; | |
63551ae0 | 3225 | |
e8569dd2 AS |
3226 | mmun_start = vma->vm_start; |
3227 | mmun_end = vma->vm_end; | |
3228 | if (cow) | |
3229 | mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end); | |
3230 | ||
a5516438 | 3231 | for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { |
cb900f41 | 3232 | spinlock_t *src_ptl, *dst_ptl; |
7868a208 | 3233 | src_pte = huge_pte_offset(src, addr, sz); |
c74df32c HD |
3234 | if (!src_pte) |
3235 | continue; | |
a5516438 | 3236 | dst_pte = huge_pte_alloc(dst, addr, sz); |
e8569dd2 AS |
3237 | if (!dst_pte) { |
3238 | ret = -ENOMEM; | |
3239 | break; | |
3240 | } | |
c5c99429 LW |
3241 | |
3242 | /* If the pagetables are shared don't copy or take references */ | |
3243 | if (dst_pte == src_pte) | |
3244 | continue; | |
3245 | ||
cb900f41 KS |
3246 | dst_ptl = huge_pte_lock(h, dst, dst_pte); |
3247 | src_ptl = huge_pte_lockptr(h, src, src_pte); | |
3248 | spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); | |
4a705fef NH |
3249 | entry = huge_ptep_get(src_pte); |
3250 | if (huge_pte_none(entry)) { /* skip none entry */ | |
3251 | ; | |
3252 | } else if (unlikely(is_hugetlb_entry_migration(entry) || | |
3253 | is_hugetlb_entry_hwpoisoned(entry))) { | |
3254 | swp_entry_t swp_entry = pte_to_swp_entry(entry); | |
3255 | ||
3256 | if (is_write_migration_entry(swp_entry) && cow) { | |
3257 | /* | |
3258 | * COW mappings require pages in both | |
3259 | * parent and child to be set to read. | |
3260 | */ | |
3261 | make_migration_entry_read(&swp_entry); | |
3262 | entry = swp_entry_to_pte(swp_entry); | |
e5251fd4 PA |
3263 | set_huge_swap_pte_at(src, addr, src_pte, |
3264 | entry, sz); | |
4a705fef | 3265 | } |
e5251fd4 | 3266 | set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz); |
4a705fef | 3267 | } else { |
34ee645e | 3268 | if (cow) { |
0f10851e JG |
3269 | /* |
3270 | * No need to notify as we are downgrading page | |
3271 | * table protection not changing it to point | |
3272 | * to a new page. | |
3273 | * | |
3274 | * See Documentation/vm/mmu_notifier.txt | |
3275 | */ | |
7f2e9525 | 3276 | huge_ptep_set_wrprotect(src, addr, src_pte); |
34ee645e | 3277 | } |
0253d634 | 3278 | entry = huge_ptep_get(src_pte); |
1c59827d HD |
3279 | ptepage = pte_page(entry); |
3280 | get_page(ptepage); | |
53f9263b | 3281 | page_dup_rmap(ptepage, true); |
1c59827d | 3282 | set_huge_pte_at(dst, addr, dst_pte, entry); |
5d317b2b | 3283 | hugetlb_count_add(pages_per_huge_page(h), dst); |
1c59827d | 3284 | } |
cb900f41 KS |
3285 | spin_unlock(src_ptl); |
3286 | spin_unlock(dst_ptl); | |
63551ae0 | 3287 | } |
63551ae0 | 3288 | |
e8569dd2 AS |
3289 | if (cow) |
3290 | mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end); | |
3291 | ||
3292 | return ret; | |
63551ae0 DG |
3293 | } |
3294 | ||
24669e58 AK |
3295 | void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, |
3296 | unsigned long start, unsigned long end, | |
3297 | struct page *ref_page) | |
63551ae0 DG |
3298 | { |
3299 | struct mm_struct *mm = vma->vm_mm; | |
3300 | unsigned long address; | |
c7546f8f | 3301 | pte_t *ptep; |
63551ae0 | 3302 | pte_t pte; |
cb900f41 | 3303 | spinlock_t *ptl; |
63551ae0 | 3304 | struct page *page; |
a5516438 AK |
3305 | struct hstate *h = hstate_vma(vma); |
3306 | unsigned long sz = huge_page_size(h); | |
2ec74c3e SG |
3307 | const unsigned long mmun_start = start; /* For mmu_notifiers */ |
3308 | const unsigned long mmun_end = end; /* For mmu_notifiers */ | |
a5516438 | 3309 | |
63551ae0 | 3310 | WARN_ON(!is_vm_hugetlb_page(vma)); |
a5516438 AK |
3311 | BUG_ON(start & ~huge_page_mask(h)); |
3312 | BUG_ON(end & ~huge_page_mask(h)); | |
63551ae0 | 3313 | |
07e32661 AK |
3314 | /* |
3315 | * This is a hugetlb vma, all the pte entries should point | |
3316 | * to huge page. | |
3317 | */ | |
3318 | tlb_remove_check_page_size_change(tlb, sz); | |
24669e58 | 3319 | tlb_start_vma(tlb, vma); |
2ec74c3e | 3320 | mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); |
569f48b8 | 3321 | address = start; |
569f48b8 | 3322 | for (; address < end; address += sz) { |
7868a208 | 3323 | ptep = huge_pte_offset(mm, address, sz); |
4c887265 | 3324 | if (!ptep) |
c7546f8f DG |
3325 | continue; |
3326 | ||
cb900f41 | 3327 | ptl = huge_pte_lock(h, mm, ptep); |
31d49da5 AK |
3328 | if (huge_pmd_unshare(mm, &address, ptep)) { |
3329 | spin_unlock(ptl); | |
3330 | continue; | |
3331 | } | |
39dde65c | 3332 | |
6629326b | 3333 | pte = huge_ptep_get(ptep); |
31d49da5 AK |
3334 | if (huge_pte_none(pte)) { |
3335 | spin_unlock(ptl); | |
3336 | continue; | |
3337 | } | |
6629326b HD |
3338 | |
3339 | /* | |
9fbc1f63 NH |
3340 | * Migrating hugepage or HWPoisoned hugepage is already |
3341 | * unmapped and its refcount is dropped, so just clear pte here. | |
6629326b | 3342 | */ |
9fbc1f63 | 3343 | if (unlikely(!pte_present(pte))) { |
9386fac3 | 3344 | huge_pte_clear(mm, address, ptep, sz); |
31d49da5 AK |
3345 | spin_unlock(ptl); |
3346 | continue; | |
8c4894c6 | 3347 | } |
6629326b HD |
3348 | |
3349 | page = pte_page(pte); | |
04f2cbe3 MG |
3350 | /* |
3351 | * If a reference page is supplied, it is because a specific | |
3352 | * page is being unmapped, not a range. Ensure the page we | |
3353 | * are about to unmap is the actual page of interest. | |
3354 | */ | |
3355 | if (ref_page) { | |
31d49da5 AK |
3356 | if (page != ref_page) { |
3357 | spin_unlock(ptl); | |
3358 | continue; | |
3359 | } | |
04f2cbe3 MG |
3360 | /* |
3361 | * Mark the VMA as having unmapped its page so that | |
3362 | * future faults in this VMA will fail rather than | |
3363 | * looking like data was lost | |
3364 | */ | |
3365 | set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); | |
3366 | } | |
3367 | ||
c7546f8f | 3368 | pte = huge_ptep_get_and_clear(mm, address, ptep); |
b528e4b6 | 3369 | tlb_remove_huge_tlb_entry(h, tlb, ptep, address); |
106c992a | 3370 | if (huge_pte_dirty(pte)) |
6649a386 | 3371 | set_page_dirty(page); |
9e81130b | 3372 | |
5d317b2b | 3373 | hugetlb_count_sub(pages_per_huge_page(h), mm); |
d281ee61 | 3374 | page_remove_rmap(page, true); |
31d49da5 | 3375 | |
cb900f41 | 3376 | spin_unlock(ptl); |
e77b0852 | 3377 | tlb_remove_page_size(tlb, page, huge_page_size(h)); |
31d49da5 AK |
3378 | /* |
3379 | * Bail out after unmapping reference page if supplied | |
3380 | */ | |
3381 | if (ref_page) | |
3382 | break; | |
fe1668ae | 3383 | } |
2ec74c3e | 3384 | mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); |
24669e58 | 3385 | tlb_end_vma(tlb, vma); |
1da177e4 | 3386 | } |
63551ae0 | 3387 | |
d833352a MG |
3388 | void __unmap_hugepage_range_final(struct mmu_gather *tlb, |
3389 | struct vm_area_struct *vma, unsigned long start, | |
3390 | unsigned long end, struct page *ref_page) | |
3391 | { | |
3392 | __unmap_hugepage_range(tlb, vma, start, end, ref_page); | |
3393 | ||
3394 | /* | |
3395 | * Clear this flag so that x86's huge_pmd_share page_table_shareable | |
3396 | * test will fail on a vma being torn down, and not grab a page table | |
3397 | * on its way out. We're lucky that the flag has such an appropriate | |
3398 | * name, and can in fact be safely cleared here. We could clear it | |
3399 | * before the __unmap_hugepage_range above, but all that's necessary | |
c8c06efa | 3400 | * is to clear it before releasing the i_mmap_rwsem. This works |
d833352a | 3401 | * because in the context this is called, the VMA is about to be |
c8c06efa | 3402 | * destroyed and the i_mmap_rwsem is held. |
d833352a MG |
3403 | */ |
3404 | vma->vm_flags &= ~VM_MAYSHARE; | |
3405 | } | |
3406 | ||
502717f4 | 3407 | void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, |
04f2cbe3 | 3408 | unsigned long end, struct page *ref_page) |
502717f4 | 3409 | { |
24669e58 AK |
3410 | struct mm_struct *mm; |
3411 | struct mmu_gather tlb; | |
3412 | ||
3413 | mm = vma->vm_mm; | |
3414 | ||
2b047252 | 3415 | tlb_gather_mmu(&tlb, mm, start, end); |
24669e58 AK |
3416 | __unmap_hugepage_range(&tlb, vma, start, end, ref_page); |
3417 | tlb_finish_mmu(&tlb, start, end); | |
502717f4 KC |
3418 | } |
3419 | ||
04f2cbe3 MG |
3420 | /* |
3421 | * This is called when the original mapper is failing to COW a MAP_PRIVATE | |
3422 | * mappping it owns the reserve page for. The intention is to unmap the page | |
3423 | * from other VMAs and let the children be SIGKILLed if they are faulting the | |
3424 | * same region. | |
3425 | */ | |
2f4612af DB |
3426 | static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, |
3427 | struct page *page, unsigned long address) | |
04f2cbe3 | 3428 | { |
7526674d | 3429 | struct hstate *h = hstate_vma(vma); |
04f2cbe3 MG |
3430 | struct vm_area_struct *iter_vma; |
3431 | struct address_space *mapping; | |
04f2cbe3 MG |
3432 | pgoff_t pgoff; |
3433 | ||
3434 | /* | |
3435 | * vm_pgoff is in PAGE_SIZE units, hence the different calculation | |
3436 | * from page cache lookup which is in HPAGE_SIZE units. | |
3437 | */ | |
7526674d | 3438 | address = address & huge_page_mask(h); |
36e4f20a MH |
3439 | pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + |
3440 | vma->vm_pgoff; | |
93c76a3d | 3441 | mapping = vma->vm_file->f_mapping; |
04f2cbe3 | 3442 | |
4eb2b1dc MG |
3443 | /* |
3444 | * Take the mapping lock for the duration of the table walk. As | |
3445 | * this mapping should be shared between all the VMAs, | |
3446 | * __unmap_hugepage_range() is called as the lock is already held | |
3447 | */ | |
83cde9e8 | 3448 | i_mmap_lock_write(mapping); |
6b2dbba8 | 3449 | vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { |
04f2cbe3 MG |
3450 | /* Do not unmap the current VMA */ |
3451 | if (iter_vma == vma) | |
3452 | continue; | |
3453 | ||
2f84a899 MG |
3454 | /* |
3455 | * Shared VMAs have their own reserves and do not affect | |
3456 | * MAP_PRIVATE accounting but it is possible that a shared | |
3457 | * VMA is using the same page so check and skip such VMAs. | |
3458 | */ | |
3459 | if (iter_vma->vm_flags & VM_MAYSHARE) | |
3460 | continue; | |
3461 | ||
04f2cbe3 MG |
3462 | /* |
3463 | * Unmap the page from other VMAs without their own reserves. | |
3464 | * They get marked to be SIGKILLed if they fault in these | |
3465 | * areas. This is because a future no-page fault on this VMA | |
3466 | * could insert a zeroed page instead of the data existing | |
3467 | * from the time of fork. This would look like data corruption | |
3468 | */ | |
3469 | if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) | |
24669e58 AK |
3470 | unmap_hugepage_range(iter_vma, address, |
3471 | address + huge_page_size(h), page); | |
04f2cbe3 | 3472 | } |
83cde9e8 | 3473 | i_mmap_unlock_write(mapping); |
04f2cbe3 MG |
3474 | } |
3475 | ||
0fe6e20b NH |
3476 | /* |
3477 | * Hugetlb_cow() should be called with page lock of the original hugepage held. | |
ef009b25 MH |
3478 | * Called with hugetlb_instantiation_mutex held and pte_page locked so we |
3479 | * cannot race with other handlers or page migration. | |
3480 | * Keep the pte_same checks anyway to make transition from the mutex easier. | |
0fe6e20b | 3481 | */ |
1e8f889b | 3482 | static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, |
3999f52e AK |
3483 | unsigned long address, pte_t *ptep, |
3484 | struct page *pagecache_page, spinlock_t *ptl) | |
1e8f889b | 3485 | { |
3999f52e | 3486 | pte_t pte; |
a5516438 | 3487 | struct hstate *h = hstate_vma(vma); |
1e8f889b | 3488 | struct page *old_page, *new_page; |
ad4404a2 | 3489 | int ret = 0, outside_reserve = 0; |
2ec74c3e SG |
3490 | unsigned long mmun_start; /* For mmu_notifiers */ |
3491 | unsigned long mmun_end; /* For mmu_notifiers */ | |
1e8f889b | 3492 | |
3999f52e | 3493 | pte = huge_ptep_get(ptep); |
1e8f889b DG |
3494 | old_page = pte_page(pte); |
3495 | ||
04f2cbe3 | 3496 | retry_avoidcopy: |
1e8f889b DG |
3497 | /* If no-one else is actually using this page, avoid the copy |
3498 | * and just make the page writable */ | |
37a2140d | 3499 | if (page_mapcount(old_page) == 1 && PageAnon(old_page)) { |
5a49973d | 3500 | page_move_anon_rmap(old_page, vma); |
1e8f889b | 3501 | set_huge_ptep_writable(vma, address, ptep); |
83c54070 | 3502 | return 0; |
1e8f889b DG |
3503 | } |
3504 | ||
04f2cbe3 MG |
3505 | /* |
3506 | * If the process that created a MAP_PRIVATE mapping is about to | |
3507 | * perform a COW due to a shared page count, attempt to satisfy | |
3508 | * the allocation without using the existing reserves. The pagecache | |
3509 | * page is used to determine if the reserve at this address was | |
3510 | * consumed or not. If reserves were used, a partial faulted mapping | |
3511 | * at the time of fork() could consume its reserves on COW instead | |
3512 | * of the full address range. | |
3513 | */ | |
5944d011 | 3514 | if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && |
04f2cbe3 MG |
3515 | old_page != pagecache_page) |
3516 | outside_reserve = 1; | |
3517 | ||
09cbfeaf | 3518 | get_page(old_page); |
b76c8cfb | 3519 | |
ad4404a2 DB |
3520 | /* |
3521 | * Drop page table lock as buddy allocator may be called. It will | |
3522 | * be acquired again before returning to the caller, as expected. | |
3523 | */ | |
cb900f41 | 3524 | spin_unlock(ptl); |
04f2cbe3 | 3525 | new_page = alloc_huge_page(vma, address, outside_reserve); |
1e8f889b | 3526 | |
2fc39cec | 3527 | if (IS_ERR(new_page)) { |
04f2cbe3 MG |
3528 | /* |
3529 | * If a process owning a MAP_PRIVATE mapping fails to COW, | |
3530 | * it is due to references held by a child and an insufficient | |
3531 | * huge page pool. To guarantee the original mappers | |
3532 | * reliability, unmap the page from child processes. The child | |
3533 | * may get SIGKILLed if it later faults. | |
3534 | */ | |
3535 | if (outside_reserve) { | |
09cbfeaf | 3536 | put_page(old_page); |
04f2cbe3 | 3537 | BUG_ON(huge_pte_none(pte)); |
2f4612af DB |
3538 | unmap_ref_private(mm, vma, old_page, address); |
3539 | BUG_ON(huge_pte_none(pte)); | |
3540 | spin_lock(ptl); | |
7868a208 PA |
3541 | ptep = huge_pte_offset(mm, address & huge_page_mask(h), |
3542 | huge_page_size(h)); | |
2f4612af DB |
3543 | if (likely(ptep && |
3544 | pte_same(huge_ptep_get(ptep), pte))) | |
3545 | goto retry_avoidcopy; | |
3546 | /* | |
3547 | * race occurs while re-acquiring page table | |
3548 | * lock, and our job is done. | |
3549 | */ | |
3550 | return 0; | |
04f2cbe3 MG |
3551 | } |
3552 | ||
ad4404a2 DB |
3553 | ret = (PTR_ERR(new_page) == -ENOMEM) ? |
3554 | VM_FAULT_OOM : VM_FAULT_SIGBUS; | |
3555 | goto out_release_old; | |
1e8f889b DG |
3556 | } |
3557 | ||
0fe6e20b NH |
3558 | /* |
3559 | * When the original hugepage is shared one, it does not have | |
3560 | * anon_vma prepared. | |
3561 | */ | |
44e2aa93 | 3562 | if (unlikely(anon_vma_prepare(vma))) { |
ad4404a2 DB |
3563 | ret = VM_FAULT_OOM; |
3564 | goto out_release_all; | |
44e2aa93 | 3565 | } |
0fe6e20b | 3566 | |
47ad8475 AA |
3567 | copy_user_huge_page(new_page, old_page, address, vma, |
3568 | pages_per_huge_page(h)); | |
0ed361de | 3569 | __SetPageUptodate(new_page); |
bcc54222 | 3570 | set_page_huge_active(new_page); |
1e8f889b | 3571 | |
2ec74c3e SG |
3572 | mmun_start = address & huge_page_mask(h); |
3573 | mmun_end = mmun_start + huge_page_size(h); | |
3574 | mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); | |
ad4404a2 | 3575 | |
b76c8cfb | 3576 | /* |
cb900f41 | 3577 | * Retake the page table lock to check for racing updates |
b76c8cfb LW |
3578 | * before the page tables are altered |
3579 | */ | |
cb900f41 | 3580 | spin_lock(ptl); |
7868a208 PA |
3581 | ptep = huge_pte_offset(mm, address & huge_page_mask(h), |
3582 | huge_page_size(h)); | |
a9af0c5d | 3583 | if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { |
07443a85 JK |
3584 | ClearPagePrivate(new_page); |
3585 | ||
1e8f889b | 3586 | /* Break COW */ |
8fe627ec | 3587 | huge_ptep_clear_flush(vma, address, ptep); |
34ee645e | 3588 | mmu_notifier_invalidate_range(mm, mmun_start, mmun_end); |
1e8f889b DG |
3589 | set_huge_pte_at(mm, address, ptep, |
3590 | make_huge_pte(vma, new_page, 1)); | |
d281ee61 | 3591 | page_remove_rmap(old_page, true); |
cd67f0d2 | 3592 | hugepage_add_new_anon_rmap(new_page, vma, address); |
1e8f889b DG |
3593 | /* Make the old page be freed below */ |
3594 | new_page = old_page; | |
3595 | } | |
cb900f41 | 3596 | spin_unlock(ptl); |
2ec74c3e | 3597 | mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); |
ad4404a2 | 3598 | out_release_all: |
96b96a96 | 3599 | restore_reserve_on_error(h, vma, address, new_page); |
09cbfeaf | 3600 | put_page(new_page); |
ad4404a2 | 3601 | out_release_old: |
09cbfeaf | 3602 | put_page(old_page); |
8312034f | 3603 | |
ad4404a2 DB |
3604 | spin_lock(ptl); /* Caller expects lock to be held */ |
3605 | return ret; | |
1e8f889b DG |
3606 | } |
3607 | ||
04f2cbe3 | 3608 | /* Return the pagecache page at a given address within a VMA */ |
a5516438 AK |
3609 | static struct page *hugetlbfs_pagecache_page(struct hstate *h, |
3610 | struct vm_area_struct *vma, unsigned long address) | |
04f2cbe3 MG |
3611 | { |
3612 | struct address_space *mapping; | |
e7c4b0bf | 3613 | pgoff_t idx; |
04f2cbe3 MG |
3614 | |
3615 | mapping = vma->vm_file->f_mapping; | |
a5516438 | 3616 | idx = vma_hugecache_offset(h, vma, address); |
04f2cbe3 MG |
3617 | |
3618 | return find_lock_page(mapping, idx); | |
3619 | } | |
3620 | ||
3ae77f43 HD |
3621 | /* |
3622 | * Return whether there is a pagecache page to back given address within VMA. | |
3623 | * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. | |
3624 | */ | |
3625 | static bool hugetlbfs_pagecache_present(struct hstate *h, | |
2a15efc9 HD |
3626 | struct vm_area_struct *vma, unsigned long address) |
3627 | { | |
3628 | struct address_space *mapping; | |
3629 | pgoff_t idx; | |
3630 | struct page *page; | |
3631 | ||
3632 | mapping = vma->vm_file->f_mapping; | |
3633 | idx = vma_hugecache_offset(h, vma, address); | |
3634 | ||
3635 | page = find_get_page(mapping, idx); | |
3636 | if (page) | |
3637 | put_page(page); | |
3638 | return page != NULL; | |
3639 | } | |
3640 | ||
ab76ad54 MK |
3641 | int huge_add_to_page_cache(struct page *page, struct address_space *mapping, |
3642 | pgoff_t idx) | |
3643 | { | |
3644 | struct inode *inode = mapping->host; | |
3645 | struct hstate *h = hstate_inode(inode); | |
3646 | int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); | |
3647 | ||
3648 | if (err) | |
3649 | return err; | |
3650 | ClearPagePrivate(page); | |
3651 | ||
3652 | spin_lock(&inode->i_lock); | |
3653 | inode->i_blocks += blocks_per_huge_page(h); | |
3654 | spin_unlock(&inode->i_lock); | |
3655 | return 0; | |
3656 | } | |
3657 | ||
a1ed3dda | 3658 | static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, |
8382d914 DB |
3659 | struct address_space *mapping, pgoff_t idx, |
3660 | unsigned long address, pte_t *ptep, unsigned int flags) | |
ac9b9c66 | 3661 | { |
a5516438 | 3662 | struct hstate *h = hstate_vma(vma); |
ac9b9c66 | 3663 | int ret = VM_FAULT_SIGBUS; |
409eb8c2 | 3664 | int anon_rmap = 0; |
4c887265 | 3665 | unsigned long size; |
4c887265 | 3666 | struct page *page; |
1e8f889b | 3667 | pte_t new_pte; |
cb900f41 | 3668 | spinlock_t *ptl; |
4c887265 | 3669 | |
04f2cbe3 MG |
3670 | /* |
3671 | * Currently, we are forced to kill the process in the event the | |
3672 | * original mapper has unmapped pages from the child due to a failed | |
25985edc | 3673 | * COW. Warn that such a situation has occurred as it may not be obvious |
04f2cbe3 MG |
3674 | */ |
3675 | if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { | |
910154d5 | 3676 | pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", |
ffb22af5 | 3677 | current->pid); |
04f2cbe3 MG |
3678 | return ret; |
3679 | } | |
3680 | ||
4c887265 AL |
3681 | /* |
3682 | * Use page lock to guard against racing truncation | |
3683 | * before we get page_table_lock. | |
3684 | */ | |
6bda666a CL |
3685 | retry: |
3686 | page = find_lock_page(mapping, idx); | |
3687 | if (!page) { | |
a5516438 | 3688 | size = i_size_read(mapping->host) >> huge_page_shift(h); |
ebed4bfc HD |
3689 | if (idx >= size) |
3690 | goto out; | |
1a1aad8a MK |
3691 | |
3692 | /* | |
3693 | * Check for page in userfault range | |
3694 | */ | |
3695 | if (userfaultfd_missing(vma)) { | |
3696 | u32 hash; | |
3697 | struct vm_fault vmf = { | |
3698 | .vma = vma, | |
3699 | .address = address, | |
3700 | .flags = flags, | |
3701 | /* | |
3702 | * Hard to debug if it ends up being | |
3703 | * used by a callee that assumes | |
3704 | * something about the other | |
3705 | * uninitialized fields... same as in | |
3706 | * memory.c | |
3707 | */ | |
3708 | }; | |
3709 | ||
3710 | /* | |
3711 | * hugetlb_fault_mutex must be dropped before | |
3712 | * handling userfault. Reacquire after handling | |
3713 | * fault to make calling code simpler. | |
3714 | */ | |
3715 | hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, | |
3716 | idx, address); | |
3717 | mutex_unlock(&hugetlb_fault_mutex_table[hash]); | |
3718 | ret = handle_userfault(&vmf, VM_UFFD_MISSING); | |
3719 | mutex_lock(&hugetlb_fault_mutex_table[hash]); | |
3720 | goto out; | |
3721 | } | |
3722 | ||
04f2cbe3 | 3723 | page = alloc_huge_page(vma, address, 0); |
2fc39cec | 3724 | if (IS_ERR(page)) { |
76dcee75 AK |
3725 | ret = PTR_ERR(page); |
3726 | if (ret == -ENOMEM) | |
3727 | ret = VM_FAULT_OOM; | |
3728 | else | |
3729 | ret = VM_FAULT_SIGBUS; | |
6bda666a CL |
3730 | goto out; |
3731 | } | |
47ad8475 | 3732 | clear_huge_page(page, address, pages_per_huge_page(h)); |
0ed361de | 3733 | __SetPageUptodate(page); |
bcc54222 | 3734 | set_page_huge_active(page); |
ac9b9c66 | 3735 | |
f83a275d | 3736 | if (vma->vm_flags & VM_MAYSHARE) { |
ab76ad54 | 3737 | int err = huge_add_to_page_cache(page, mapping, idx); |
6bda666a CL |
3738 | if (err) { |
3739 | put_page(page); | |
6bda666a CL |
3740 | if (err == -EEXIST) |
3741 | goto retry; | |
3742 | goto out; | |
3743 | } | |
23be7468 | 3744 | } else { |
6bda666a | 3745 | lock_page(page); |
0fe6e20b NH |
3746 | if (unlikely(anon_vma_prepare(vma))) { |
3747 | ret = VM_FAULT_OOM; | |
3748 | goto backout_unlocked; | |
3749 | } | |
409eb8c2 | 3750 | anon_rmap = 1; |
23be7468 | 3751 | } |
0fe6e20b | 3752 | } else { |
998b4382 NH |
3753 | /* |
3754 | * If memory error occurs between mmap() and fault, some process | |
3755 | * don't have hwpoisoned swap entry for errored virtual address. | |
3756 | * So we need to block hugepage fault by PG_hwpoison bit check. | |
3757 | */ | |
3758 | if (unlikely(PageHWPoison(page))) { | |
32f84528 | 3759 | ret = VM_FAULT_HWPOISON | |
972dc4de | 3760 | VM_FAULT_SET_HINDEX(hstate_index(h)); |
998b4382 NH |
3761 | goto backout_unlocked; |
3762 | } | |
6bda666a | 3763 | } |
1e8f889b | 3764 | |
57303d80 AW |
3765 | /* |
3766 | * If we are going to COW a private mapping later, we examine the | |
3767 | * pending reservations for this page now. This will ensure that | |
3768 | * any allocations necessary to record that reservation occur outside | |
3769 | * the spinlock. | |
3770 | */ | |
5e911373 | 3771 | if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { |
2b26736c AW |
3772 | if (vma_needs_reservation(h, vma, address) < 0) { |
3773 | ret = VM_FAULT_OOM; | |
3774 | goto backout_unlocked; | |
3775 | } | |
5e911373 | 3776 | /* Just decrements count, does not deallocate */ |
feba16e2 | 3777 | vma_end_reservation(h, vma, address); |
5e911373 | 3778 | } |
57303d80 | 3779 | |
8bea8052 | 3780 | ptl = huge_pte_lock(h, mm, ptep); |
a5516438 | 3781 | size = i_size_read(mapping->host) >> huge_page_shift(h); |
4c887265 AL |
3782 | if (idx >= size) |
3783 | goto backout; | |
3784 | ||
83c54070 | 3785 | ret = 0; |
7f2e9525 | 3786 | if (!huge_pte_none(huge_ptep_get(ptep))) |
4c887265 AL |
3787 | goto backout; |
3788 | ||
07443a85 JK |
3789 | if (anon_rmap) { |
3790 | ClearPagePrivate(page); | |
409eb8c2 | 3791 | hugepage_add_new_anon_rmap(page, vma, address); |
ac714904 | 3792 | } else |
53f9263b | 3793 | page_dup_rmap(page, true); |
1e8f889b DG |
3794 | new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) |
3795 | && (vma->vm_flags & VM_SHARED))); | |
3796 | set_huge_pte_at(mm, address, ptep, new_pte); | |
3797 | ||
5d317b2b | 3798 | hugetlb_count_add(pages_per_huge_page(h), mm); |
788c7df4 | 3799 | if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { |
1e8f889b | 3800 | /* Optimization, do the COW without a second fault */ |
3999f52e | 3801 | ret = hugetlb_cow(mm, vma, address, ptep, page, ptl); |
1e8f889b DG |
3802 | } |
3803 | ||
cb900f41 | 3804 | spin_unlock(ptl); |
4c887265 AL |
3805 | unlock_page(page); |
3806 | out: | |
ac9b9c66 | 3807 | return ret; |
4c887265 AL |
3808 | |
3809 | backout: | |
cb900f41 | 3810 | spin_unlock(ptl); |
2b26736c | 3811 | backout_unlocked: |
4c887265 | 3812 | unlock_page(page); |
96b96a96 | 3813 | restore_reserve_on_error(h, vma, address, page); |
4c887265 AL |
3814 | put_page(page); |
3815 | goto out; | |
ac9b9c66 HD |
3816 | } |
3817 | ||
8382d914 | 3818 | #ifdef CONFIG_SMP |
c672c7f2 | 3819 | u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm, |
8382d914 DB |
3820 | struct vm_area_struct *vma, |
3821 | struct address_space *mapping, | |
3822 | pgoff_t idx, unsigned long address) | |
3823 | { | |
3824 | unsigned long key[2]; | |
3825 | u32 hash; | |
3826 | ||
3827 | if (vma->vm_flags & VM_SHARED) { | |
3828 | key[0] = (unsigned long) mapping; | |
3829 | key[1] = idx; | |
3830 | } else { | |
3831 | key[0] = (unsigned long) mm; | |
3832 | key[1] = address >> huge_page_shift(h); | |
3833 | } | |
3834 | ||
3835 | hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0); | |
3836 | ||
3837 | return hash & (num_fault_mutexes - 1); | |
3838 | } | |
3839 | #else | |
3840 | /* | |
3841 | * For uniprocesor systems we always use a single mutex, so just | |
3842 | * return 0 and avoid the hashing overhead. | |
3843 | */ | |
c672c7f2 | 3844 | u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm, |
8382d914 DB |
3845 | struct vm_area_struct *vma, |
3846 | struct address_space *mapping, | |
3847 | pgoff_t idx, unsigned long address) | |
3848 | { | |
3849 | return 0; | |
3850 | } | |
3851 | #endif | |
3852 | ||
86e5216f | 3853 | int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, |
788c7df4 | 3854 | unsigned long address, unsigned int flags) |
86e5216f | 3855 | { |
8382d914 | 3856 | pte_t *ptep, entry; |
cb900f41 | 3857 | spinlock_t *ptl; |
1e8f889b | 3858 | int ret; |
8382d914 DB |
3859 | u32 hash; |
3860 | pgoff_t idx; | |
0fe6e20b | 3861 | struct page *page = NULL; |
57303d80 | 3862 | struct page *pagecache_page = NULL; |
a5516438 | 3863 | struct hstate *h = hstate_vma(vma); |
8382d914 | 3864 | struct address_space *mapping; |
0f792cf9 | 3865 | int need_wait_lock = 0; |
86e5216f | 3866 | |
1e16a539 KH |
3867 | address &= huge_page_mask(h); |
3868 | ||
7868a208 | 3869 | ptep = huge_pte_offset(mm, address, huge_page_size(h)); |
fd6a03ed NH |
3870 | if (ptep) { |
3871 | entry = huge_ptep_get(ptep); | |
290408d4 | 3872 | if (unlikely(is_hugetlb_entry_migration(entry))) { |
cb900f41 | 3873 | migration_entry_wait_huge(vma, mm, ptep); |
290408d4 NH |
3874 | return 0; |
3875 | } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) | |
32f84528 | 3876 | return VM_FAULT_HWPOISON_LARGE | |
972dc4de | 3877 | VM_FAULT_SET_HINDEX(hstate_index(h)); |
0d777df5 NH |
3878 | } else { |
3879 | ptep = huge_pte_alloc(mm, address, huge_page_size(h)); | |
3880 | if (!ptep) | |
3881 | return VM_FAULT_OOM; | |
fd6a03ed NH |
3882 | } |
3883 | ||
8382d914 DB |
3884 | mapping = vma->vm_file->f_mapping; |
3885 | idx = vma_hugecache_offset(h, vma, address); | |
3886 | ||
3935baa9 DG |
3887 | /* |
3888 | * Serialize hugepage allocation and instantiation, so that we don't | |
3889 | * get spurious allocation failures if two CPUs race to instantiate | |
3890 | * the same page in the page cache. | |
3891 | */ | |
c672c7f2 MK |
3892 | hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address); |
3893 | mutex_lock(&hugetlb_fault_mutex_table[hash]); | |
8382d914 | 3894 | |
7f2e9525 GS |
3895 | entry = huge_ptep_get(ptep); |
3896 | if (huge_pte_none(entry)) { | |
8382d914 | 3897 | ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags); |
b4d1d99f | 3898 | goto out_mutex; |
3935baa9 | 3899 | } |
86e5216f | 3900 | |
83c54070 | 3901 | ret = 0; |
1e8f889b | 3902 | |
0f792cf9 NH |
3903 | /* |
3904 | * entry could be a migration/hwpoison entry at this point, so this | |
3905 | * check prevents the kernel from going below assuming that we have | |
3906 | * a active hugepage in pagecache. This goto expects the 2nd page fault, | |
3907 | * and is_hugetlb_entry_(migration|hwpoisoned) check will properly | |
3908 | * handle it. | |
3909 | */ | |
3910 | if (!pte_present(entry)) | |
3911 | goto out_mutex; | |
3912 | ||
57303d80 AW |
3913 | /* |
3914 | * If we are going to COW the mapping later, we examine the pending | |
3915 | * reservations for this page now. This will ensure that any | |
3916 | * allocations necessary to record that reservation occur outside the | |
3917 | * spinlock. For private mappings, we also lookup the pagecache | |
3918 | * page now as it is used to determine if a reservation has been | |
3919 | * consumed. | |
3920 | */ | |
106c992a | 3921 | if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { |
2b26736c AW |
3922 | if (vma_needs_reservation(h, vma, address) < 0) { |
3923 | ret = VM_FAULT_OOM; | |
b4d1d99f | 3924 | goto out_mutex; |
2b26736c | 3925 | } |
5e911373 | 3926 | /* Just decrements count, does not deallocate */ |
feba16e2 | 3927 | vma_end_reservation(h, vma, address); |
57303d80 | 3928 | |
f83a275d | 3929 | if (!(vma->vm_flags & VM_MAYSHARE)) |
57303d80 AW |
3930 | pagecache_page = hugetlbfs_pagecache_page(h, |
3931 | vma, address); | |
3932 | } | |
3933 | ||
0f792cf9 NH |
3934 | ptl = huge_pte_lock(h, mm, ptep); |
3935 | ||
3936 | /* Check for a racing update before calling hugetlb_cow */ | |
3937 | if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) | |
3938 | goto out_ptl; | |
3939 | ||
56c9cfb1 NH |
3940 | /* |
3941 | * hugetlb_cow() requires page locks of pte_page(entry) and | |
3942 | * pagecache_page, so here we need take the former one | |
3943 | * when page != pagecache_page or !pagecache_page. | |
56c9cfb1 NH |
3944 | */ |
3945 | page = pte_page(entry); | |
3946 | if (page != pagecache_page) | |
0f792cf9 NH |
3947 | if (!trylock_page(page)) { |
3948 | need_wait_lock = 1; | |
3949 | goto out_ptl; | |
3950 | } | |
b4d1d99f | 3951 | |
0f792cf9 | 3952 | get_page(page); |
b4d1d99f | 3953 | |
788c7df4 | 3954 | if (flags & FAULT_FLAG_WRITE) { |
106c992a | 3955 | if (!huge_pte_write(entry)) { |
3999f52e AK |
3956 | ret = hugetlb_cow(mm, vma, address, ptep, |
3957 | pagecache_page, ptl); | |
0f792cf9 | 3958 | goto out_put_page; |
b4d1d99f | 3959 | } |
106c992a | 3960 | entry = huge_pte_mkdirty(entry); |
b4d1d99f DG |
3961 | } |
3962 | entry = pte_mkyoung(entry); | |
788c7df4 HD |
3963 | if (huge_ptep_set_access_flags(vma, address, ptep, entry, |
3964 | flags & FAULT_FLAG_WRITE)) | |
4b3073e1 | 3965 | update_mmu_cache(vma, address, ptep); |
0f792cf9 NH |
3966 | out_put_page: |
3967 | if (page != pagecache_page) | |
3968 | unlock_page(page); | |
3969 | put_page(page); | |
cb900f41 KS |
3970 | out_ptl: |
3971 | spin_unlock(ptl); | |
57303d80 AW |
3972 | |
3973 | if (pagecache_page) { | |
3974 | unlock_page(pagecache_page); | |
3975 | put_page(pagecache_page); | |
3976 | } | |
b4d1d99f | 3977 | out_mutex: |
c672c7f2 | 3978 | mutex_unlock(&hugetlb_fault_mutex_table[hash]); |
0f792cf9 NH |
3979 | /* |
3980 | * Generally it's safe to hold refcount during waiting page lock. But | |
3981 | * here we just wait to defer the next page fault to avoid busy loop and | |
3982 | * the page is not used after unlocked before returning from the current | |
3983 | * page fault. So we are safe from accessing freed page, even if we wait | |
3984 | * here without taking refcount. | |
3985 | */ | |
3986 | if (need_wait_lock) | |
3987 | wait_on_page_locked(page); | |
1e8f889b | 3988 | return ret; |
86e5216f AL |
3989 | } |
3990 | ||
8fb5debc MK |
3991 | /* |
3992 | * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with | |
3993 | * modifications for huge pages. | |
3994 | */ | |
3995 | int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm, | |
3996 | pte_t *dst_pte, | |
3997 | struct vm_area_struct *dst_vma, | |
3998 | unsigned long dst_addr, | |
3999 | unsigned long src_addr, | |
4000 | struct page **pagep) | |
4001 | { | |
1e392147 AA |
4002 | struct address_space *mapping; |
4003 | pgoff_t idx; | |
4004 | unsigned long size; | |
1c9e8def | 4005 | int vm_shared = dst_vma->vm_flags & VM_SHARED; |
8fb5debc MK |
4006 | struct hstate *h = hstate_vma(dst_vma); |
4007 | pte_t _dst_pte; | |
4008 | spinlock_t *ptl; | |
4009 | int ret; | |
4010 | struct page *page; | |
4011 | ||
4012 | if (!*pagep) { | |
4013 | ret = -ENOMEM; | |
4014 | page = alloc_huge_page(dst_vma, dst_addr, 0); | |
4015 | if (IS_ERR(page)) | |
4016 | goto out; | |
4017 | ||
4018 | ret = copy_huge_page_from_user(page, | |
4019 | (const void __user *) src_addr, | |
810a56b9 | 4020 | pages_per_huge_page(h), false); |
8fb5debc MK |
4021 | |
4022 | /* fallback to copy_from_user outside mmap_sem */ | |
4023 | if (unlikely(ret)) { | |
c9ddac33 | 4024 | ret = -ENOENT; |
8fb5debc MK |
4025 | *pagep = page; |
4026 | /* don't free the page */ | |
4027 | goto out; | |
4028 | } | |
4029 | } else { | |
4030 | page = *pagep; | |
4031 | *pagep = NULL; | |
4032 | } | |
4033 | ||
4034 | /* | |
4035 | * The memory barrier inside __SetPageUptodate makes sure that | |
4036 | * preceding stores to the page contents become visible before | |
4037 | * the set_pte_at() write. | |
4038 | */ | |
4039 | __SetPageUptodate(page); | |
4040 | set_page_huge_active(page); | |
4041 | ||
1e392147 AA |
4042 | mapping = dst_vma->vm_file->f_mapping; |
4043 | idx = vma_hugecache_offset(h, dst_vma, dst_addr); | |
4044 | ||
1c9e8def MK |
4045 | /* |
4046 | * If shared, add to page cache | |
4047 | */ | |
4048 | if (vm_shared) { | |
1e392147 AA |
4049 | size = i_size_read(mapping->host) >> huge_page_shift(h); |
4050 | ret = -EFAULT; | |
4051 | if (idx >= size) | |
4052 | goto out_release_nounlock; | |
1c9e8def | 4053 | |
1e392147 AA |
4054 | /* |
4055 | * Serialization between remove_inode_hugepages() and | |
4056 | * huge_add_to_page_cache() below happens through the | |
4057 | * hugetlb_fault_mutex_table that here must be hold by | |
4058 | * the caller. | |
4059 | */ | |
1c9e8def MK |
4060 | ret = huge_add_to_page_cache(page, mapping, idx); |
4061 | if (ret) | |
4062 | goto out_release_nounlock; | |
4063 | } | |
4064 | ||
8fb5debc MK |
4065 | ptl = huge_pte_lockptr(h, dst_mm, dst_pte); |
4066 | spin_lock(ptl); | |
4067 | ||
1e392147 AA |
4068 | /* |
4069 | * Recheck the i_size after holding PT lock to make sure not | |
4070 | * to leave any page mapped (as page_mapped()) beyond the end | |
4071 | * of the i_size (remove_inode_hugepages() is strict about | |
4072 | * enforcing that). If we bail out here, we'll also leave a | |
4073 | * page in the radix tree in the vm_shared case beyond the end | |
4074 | * of the i_size, but remove_inode_hugepages() will take care | |
4075 | * of it as soon as we drop the hugetlb_fault_mutex_table. | |
4076 | */ | |
4077 | size = i_size_read(mapping->host) >> huge_page_shift(h); | |
4078 | ret = -EFAULT; | |
4079 | if (idx >= size) | |
4080 | goto out_release_unlock; | |
4081 | ||
8fb5debc MK |
4082 | ret = -EEXIST; |
4083 | if (!huge_pte_none(huge_ptep_get(dst_pte))) | |
4084 | goto out_release_unlock; | |
4085 | ||
1c9e8def MK |
4086 | if (vm_shared) { |
4087 | page_dup_rmap(page, true); | |
4088 | } else { | |
4089 | ClearPagePrivate(page); | |
4090 | hugepage_add_new_anon_rmap(page, dst_vma, dst_addr); | |
4091 | } | |
8fb5debc MK |
4092 | |
4093 | _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE); | |
4094 | if (dst_vma->vm_flags & VM_WRITE) | |
4095 | _dst_pte = huge_pte_mkdirty(_dst_pte); | |
4096 | _dst_pte = pte_mkyoung(_dst_pte); | |
4097 | ||
4098 | set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); | |
4099 | ||
4100 | (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte, | |
4101 | dst_vma->vm_flags & VM_WRITE); | |
4102 | hugetlb_count_add(pages_per_huge_page(h), dst_mm); | |
4103 | ||
4104 | /* No need to invalidate - it was non-present before */ | |
4105 | update_mmu_cache(dst_vma, dst_addr, dst_pte); | |
4106 | ||
4107 | spin_unlock(ptl); | |
1c9e8def MK |
4108 | if (vm_shared) |
4109 | unlock_page(page); | |
8fb5debc MK |
4110 | ret = 0; |
4111 | out: | |
4112 | return ret; | |
4113 | out_release_unlock: | |
4114 | spin_unlock(ptl); | |
1c9e8def MK |
4115 | if (vm_shared) |
4116 | unlock_page(page); | |
5af10dfd | 4117 | out_release_nounlock: |
8fb5debc MK |
4118 | put_page(page); |
4119 | goto out; | |
4120 | } | |
4121 | ||
28a35716 ML |
4122 | long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, |
4123 | struct page **pages, struct vm_area_struct **vmas, | |
4124 | unsigned long *position, unsigned long *nr_pages, | |
87ffc118 | 4125 | long i, unsigned int flags, int *nonblocking) |
63551ae0 | 4126 | { |
d5d4b0aa KC |
4127 | unsigned long pfn_offset; |
4128 | unsigned long vaddr = *position; | |
28a35716 | 4129 | unsigned long remainder = *nr_pages; |
a5516438 | 4130 | struct hstate *h = hstate_vma(vma); |
2be7cfed | 4131 | int err = -EFAULT; |
63551ae0 | 4132 | |
63551ae0 | 4133 | while (vaddr < vma->vm_end && remainder) { |
4c887265 | 4134 | pte_t *pte; |
cb900f41 | 4135 | spinlock_t *ptl = NULL; |
2a15efc9 | 4136 | int absent; |
4c887265 | 4137 | struct page *page; |
63551ae0 | 4138 | |
02057967 DR |
4139 | /* |
4140 | * If we have a pending SIGKILL, don't keep faulting pages and | |
4141 | * potentially allocating memory. | |
4142 | */ | |
4143 | if (unlikely(fatal_signal_pending(current))) { | |
4144 | remainder = 0; | |
4145 | break; | |
4146 | } | |
4147 | ||
4c887265 AL |
4148 | /* |
4149 | * Some archs (sparc64, sh*) have multiple pte_ts to | |
2a15efc9 | 4150 | * each hugepage. We have to make sure we get the |
4c887265 | 4151 | * first, for the page indexing below to work. |
cb900f41 KS |
4152 | * |
4153 | * Note that page table lock is not held when pte is null. | |
4c887265 | 4154 | */ |
7868a208 PA |
4155 | pte = huge_pte_offset(mm, vaddr & huge_page_mask(h), |
4156 | huge_page_size(h)); | |
cb900f41 KS |
4157 | if (pte) |
4158 | ptl = huge_pte_lock(h, mm, pte); | |
2a15efc9 HD |
4159 | absent = !pte || huge_pte_none(huge_ptep_get(pte)); |
4160 | ||
4161 | /* | |
4162 | * When coredumping, it suits get_dump_page if we just return | |
3ae77f43 HD |
4163 | * an error where there's an empty slot with no huge pagecache |
4164 | * to back it. This way, we avoid allocating a hugepage, and | |
4165 | * the sparse dumpfile avoids allocating disk blocks, but its | |
4166 | * huge holes still show up with zeroes where they need to be. | |
2a15efc9 | 4167 | */ |
3ae77f43 HD |
4168 | if (absent && (flags & FOLL_DUMP) && |
4169 | !hugetlbfs_pagecache_present(h, vma, vaddr)) { | |
cb900f41 KS |
4170 | if (pte) |
4171 | spin_unlock(ptl); | |
2a15efc9 HD |
4172 | remainder = 0; |
4173 | break; | |
4174 | } | |
63551ae0 | 4175 | |
9cc3a5bd NH |
4176 | /* |
4177 | * We need call hugetlb_fault for both hugepages under migration | |
4178 | * (in which case hugetlb_fault waits for the migration,) and | |
4179 | * hwpoisoned hugepages (in which case we need to prevent the | |
4180 | * caller from accessing to them.) In order to do this, we use | |
4181 | * here is_swap_pte instead of is_hugetlb_entry_migration and | |
4182 | * is_hugetlb_entry_hwpoisoned. This is because it simply covers | |
4183 | * both cases, and because we can't follow correct pages | |
4184 | * directly from any kind of swap entries. | |
4185 | */ | |
4186 | if (absent || is_swap_pte(huge_ptep_get(pte)) || | |
106c992a GS |
4187 | ((flags & FOLL_WRITE) && |
4188 | !huge_pte_write(huge_ptep_get(pte)))) { | |
4c887265 | 4189 | int ret; |
87ffc118 | 4190 | unsigned int fault_flags = 0; |
63551ae0 | 4191 | |
cb900f41 KS |
4192 | if (pte) |
4193 | spin_unlock(ptl); | |
87ffc118 AA |
4194 | if (flags & FOLL_WRITE) |
4195 | fault_flags |= FAULT_FLAG_WRITE; | |
4196 | if (nonblocking) | |
4197 | fault_flags |= FAULT_FLAG_ALLOW_RETRY; | |
4198 | if (flags & FOLL_NOWAIT) | |
4199 | fault_flags |= FAULT_FLAG_ALLOW_RETRY | | |
4200 | FAULT_FLAG_RETRY_NOWAIT; | |
4201 | if (flags & FOLL_TRIED) { | |
4202 | VM_WARN_ON_ONCE(fault_flags & | |
4203 | FAULT_FLAG_ALLOW_RETRY); | |
4204 | fault_flags |= FAULT_FLAG_TRIED; | |
4205 | } | |
4206 | ret = hugetlb_fault(mm, vma, vaddr, fault_flags); | |
4207 | if (ret & VM_FAULT_ERROR) { | |
2be7cfed | 4208 | err = vm_fault_to_errno(ret, flags); |
87ffc118 AA |
4209 | remainder = 0; |
4210 | break; | |
4211 | } | |
4212 | if (ret & VM_FAULT_RETRY) { | |
4213 | if (nonblocking) | |
4214 | *nonblocking = 0; | |
4215 | *nr_pages = 0; | |
4216 | /* | |
4217 | * VM_FAULT_RETRY must not return an | |
4218 | * error, it will return zero | |
4219 | * instead. | |
4220 | * | |
4221 | * No need to update "position" as the | |
4222 | * caller will not check it after | |
4223 | * *nr_pages is set to 0. | |
4224 | */ | |
4225 | return i; | |
4226 | } | |
4227 | continue; | |
4c887265 AL |
4228 | } |
4229 | ||
a5516438 | 4230 | pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; |
7f2e9525 | 4231 | page = pte_page(huge_ptep_get(pte)); |
d5d4b0aa | 4232 | same_page: |
d6692183 | 4233 | if (pages) { |
2a15efc9 | 4234 | pages[i] = mem_map_offset(page, pfn_offset); |
ddc58f27 | 4235 | get_page(pages[i]); |
d6692183 | 4236 | } |
63551ae0 DG |
4237 | |
4238 | if (vmas) | |
4239 | vmas[i] = vma; | |
4240 | ||
4241 | vaddr += PAGE_SIZE; | |
d5d4b0aa | 4242 | ++pfn_offset; |
63551ae0 DG |
4243 | --remainder; |
4244 | ++i; | |
d5d4b0aa | 4245 | if (vaddr < vma->vm_end && remainder && |
a5516438 | 4246 | pfn_offset < pages_per_huge_page(h)) { |
d5d4b0aa KC |
4247 | /* |
4248 | * We use pfn_offset to avoid touching the pageframes | |
4249 | * of this compound page. | |
4250 | */ | |
4251 | goto same_page; | |
4252 | } | |
cb900f41 | 4253 | spin_unlock(ptl); |
63551ae0 | 4254 | } |
28a35716 | 4255 | *nr_pages = remainder; |
87ffc118 AA |
4256 | /* |
4257 | * setting position is actually required only if remainder is | |
4258 | * not zero but it's faster not to add a "if (remainder)" | |
4259 | * branch. | |
4260 | */ | |
63551ae0 DG |
4261 | *position = vaddr; |
4262 | ||
2be7cfed | 4263 | return i ? i : err; |
63551ae0 | 4264 | } |
8f860591 | 4265 | |
5491ae7b AK |
4266 | #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE |
4267 | /* | |
4268 | * ARCHes with special requirements for evicting HUGETLB backing TLB entries can | |
4269 | * implement this. | |
4270 | */ | |
4271 | #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) | |
4272 | #endif | |
4273 | ||
7da4d641 | 4274 | unsigned long hugetlb_change_protection(struct vm_area_struct *vma, |
8f860591 ZY |
4275 | unsigned long address, unsigned long end, pgprot_t newprot) |
4276 | { | |
4277 | struct mm_struct *mm = vma->vm_mm; | |
4278 | unsigned long start = address; | |
4279 | pte_t *ptep; | |
4280 | pte_t pte; | |
a5516438 | 4281 | struct hstate *h = hstate_vma(vma); |
7da4d641 | 4282 | unsigned long pages = 0; |
8f860591 ZY |
4283 | |
4284 | BUG_ON(address >= end); | |
4285 | flush_cache_range(vma, address, end); | |
4286 | ||
a5338093 | 4287 | mmu_notifier_invalidate_range_start(mm, start, end); |
83cde9e8 | 4288 | i_mmap_lock_write(vma->vm_file->f_mapping); |
a5516438 | 4289 | for (; address < end; address += huge_page_size(h)) { |
cb900f41 | 4290 | spinlock_t *ptl; |
7868a208 | 4291 | ptep = huge_pte_offset(mm, address, huge_page_size(h)); |
8f860591 ZY |
4292 | if (!ptep) |
4293 | continue; | |
cb900f41 | 4294 | ptl = huge_pte_lock(h, mm, ptep); |
7da4d641 PZ |
4295 | if (huge_pmd_unshare(mm, &address, ptep)) { |
4296 | pages++; | |
cb900f41 | 4297 | spin_unlock(ptl); |
39dde65c | 4298 | continue; |
7da4d641 | 4299 | } |
a8bda28d NH |
4300 | pte = huge_ptep_get(ptep); |
4301 | if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { | |
4302 | spin_unlock(ptl); | |
4303 | continue; | |
4304 | } | |
4305 | if (unlikely(is_hugetlb_entry_migration(pte))) { | |
4306 | swp_entry_t entry = pte_to_swp_entry(pte); | |
4307 | ||
4308 | if (is_write_migration_entry(entry)) { | |
4309 | pte_t newpte; | |
4310 | ||
4311 | make_migration_entry_read(&entry); | |
4312 | newpte = swp_entry_to_pte(entry); | |
e5251fd4 PA |
4313 | set_huge_swap_pte_at(mm, address, ptep, |
4314 | newpte, huge_page_size(h)); | |
a8bda28d NH |
4315 | pages++; |
4316 | } | |
4317 | spin_unlock(ptl); | |
4318 | continue; | |
4319 | } | |
4320 | if (!huge_pte_none(pte)) { | |
8f860591 | 4321 | pte = huge_ptep_get_and_clear(mm, address, ptep); |
106c992a | 4322 | pte = pte_mkhuge(huge_pte_modify(pte, newprot)); |
be7517d6 | 4323 | pte = arch_make_huge_pte(pte, vma, NULL, 0); |
8f860591 | 4324 | set_huge_pte_at(mm, address, ptep, pte); |
7da4d641 | 4325 | pages++; |
8f860591 | 4326 | } |
cb900f41 | 4327 | spin_unlock(ptl); |
8f860591 | 4328 | } |
d833352a | 4329 | /* |
c8c06efa | 4330 | * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare |
d833352a | 4331 | * may have cleared our pud entry and done put_page on the page table: |
c8c06efa | 4332 | * once we release i_mmap_rwsem, another task can do the final put_page |
d833352a MG |
4333 | * and that page table be reused and filled with junk. |
4334 | */ | |
5491ae7b | 4335 | flush_hugetlb_tlb_range(vma, start, end); |
0f10851e JG |
4336 | /* |
4337 | * No need to call mmu_notifier_invalidate_range() we are downgrading | |
4338 | * page table protection not changing it to point to a new page. | |
4339 | * | |
4340 | * See Documentation/vm/mmu_notifier.txt | |
4341 | */ | |
83cde9e8 | 4342 | i_mmap_unlock_write(vma->vm_file->f_mapping); |
a5338093 | 4343 | mmu_notifier_invalidate_range_end(mm, start, end); |
7da4d641 PZ |
4344 | |
4345 | return pages << h->order; | |
8f860591 ZY |
4346 | } |
4347 | ||
a1e78772 MG |
4348 | int hugetlb_reserve_pages(struct inode *inode, |
4349 | long from, long to, | |
5a6fe125 | 4350 | struct vm_area_struct *vma, |
ca16d140 | 4351 | vm_flags_t vm_flags) |
e4e574b7 | 4352 | { |
17c9d12e | 4353 | long ret, chg; |
a5516438 | 4354 | struct hstate *h = hstate_inode(inode); |
90481622 | 4355 | struct hugepage_subpool *spool = subpool_inode(inode); |
9119a41e | 4356 | struct resv_map *resv_map; |
1c5ecae3 | 4357 | long gbl_reserve; |
e4e574b7 | 4358 | |
1211d50a MK |
4359 | /* This should never happen */ |
4360 | if (from > to) { | |
4361 | VM_WARN(1, "%s called with a negative range\n", __func__); | |
4362 | return -EINVAL; | |
4363 | } | |
4364 | ||
17c9d12e MG |
4365 | /* |
4366 | * Only apply hugepage reservation if asked. At fault time, an | |
4367 | * attempt will be made for VM_NORESERVE to allocate a page | |
90481622 | 4368 | * without using reserves |
17c9d12e | 4369 | */ |
ca16d140 | 4370 | if (vm_flags & VM_NORESERVE) |
17c9d12e MG |
4371 | return 0; |
4372 | ||
a1e78772 MG |
4373 | /* |
4374 | * Shared mappings base their reservation on the number of pages that | |
4375 | * are already allocated on behalf of the file. Private mappings need | |
4376 | * to reserve the full area even if read-only as mprotect() may be | |
4377 | * called to make the mapping read-write. Assume !vma is a shm mapping | |
4378 | */ | |
9119a41e | 4379 | if (!vma || vma->vm_flags & VM_MAYSHARE) { |
4e35f483 | 4380 | resv_map = inode_resv_map(inode); |
9119a41e | 4381 | |
1406ec9b | 4382 | chg = region_chg(resv_map, from, to); |
9119a41e JK |
4383 | |
4384 | } else { | |
4385 | resv_map = resv_map_alloc(); | |
17c9d12e MG |
4386 | if (!resv_map) |
4387 | return -ENOMEM; | |
4388 | ||
a1e78772 | 4389 | chg = to - from; |
84afd99b | 4390 | |
17c9d12e MG |
4391 | set_vma_resv_map(vma, resv_map); |
4392 | set_vma_resv_flags(vma, HPAGE_RESV_OWNER); | |
4393 | } | |
4394 | ||
c50ac050 DH |
4395 | if (chg < 0) { |
4396 | ret = chg; | |
4397 | goto out_err; | |
4398 | } | |
8a630112 | 4399 | |
1c5ecae3 MK |
4400 | /* |
4401 | * There must be enough pages in the subpool for the mapping. If | |
4402 | * the subpool has a minimum size, there may be some global | |
4403 | * reservations already in place (gbl_reserve). | |
4404 | */ | |
4405 | gbl_reserve = hugepage_subpool_get_pages(spool, chg); | |
4406 | if (gbl_reserve < 0) { | |
c50ac050 DH |
4407 | ret = -ENOSPC; |
4408 | goto out_err; | |
4409 | } | |
5a6fe125 MG |
4410 | |
4411 | /* | |
17c9d12e | 4412 | * Check enough hugepages are available for the reservation. |
90481622 | 4413 | * Hand the pages back to the subpool if there are not |
5a6fe125 | 4414 | */ |
1c5ecae3 | 4415 | ret = hugetlb_acct_memory(h, gbl_reserve); |
68842c9b | 4416 | if (ret < 0) { |
1c5ecae3 MK |
4417 | /* put back original number of pages, chg */ |
4418 | (void)hugepage_subpool_put_pages(spool, chg); | |
c50ac050 | 4419 | goto out_err; |
68842c9b | 4420 | } |
17c9d12e MG |
4421 | |
4422 | /* | |
4423 | * Account for the reservations made. Shared mappings record regions | |
4424 | * that have reservations as they are shared by multiple VMAs. | |
4425 | * When the last VMA disappears, the region map says how much | |
4426 | * the reservation was and the page cache tells how much of | |
4427 | * the reservation was consumed. Private mappings are per-VMA and | |
4428 | * only the consumed reservations are tracked. When the VMA | |
4429 | * disappears, the original reservation is the VMA size and the | |
4430 | * consumed reservations are stored in the map. Hence, nothing | |
4431 | * else has to be done for private mappings here | |
4432 | */ | |
33039678 MK |
4433 | if (!vma || vma->vm_flags & VM_MAYSHARE) { |
4434 | long add = region_add(resv_map, from, to); | |
4435 | ||
4436 | if (unlikely(chg > add)) { | |
4437 | /* | |
4438 | * pages in this range were added to the reserve | |
4439 | * map between region_chg and region_add. This | |
4440 | * indicates a race with alloc_huge_page. Adjust | |
4441 | * the subpool and reserve counts modified above | |
4442 | * based on the difference. | |
4443 | */ | |
4444 | long rsv_adjust; | |
4445 | ||
4446 | rsv_adjust = hugepage_subpool_put_pages(spool, | |
4447 | chg - add); | |
4448 | hugetlb_acct_memory(h, -rsv_adjust); | |
4449 | } | |
4450 | } | |
a43a8c39 | 4451 | return 0; |
c50ac050 | 4452 | out_err: |
5e911373 | 4453 | if (!vma || vma->vm_flags & VM_MAYSHARE) |
ff8c0c53 MK |
4454 | /* Don't call region_abort if region_chg failed */ |
4455 | if (chg >= 0) | |
4456 | region_abort(resv_map, from, to); | |
f031dd27 JK |
4457 | if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) |
4458 | kref_put(&resv_map->refs, resv_map_release); | |
c50ac050 | 4459 | return ret; |
a43a8c39 KC |
4460 | } |
4461 | ||
b5cec28d MK |
4462 | long hugetlb_unreserve_pages(struct inode *inode, long start, long end, |
4463 | long freed) | |
a43a8c39 | 4464 | { |
a5516438 | 4465 | struct hstate *h = hstate_inode(inode); |
4e35f483 | 4466 | struct resv_map *resv_map = inode_resv_map(inode); |
9119a41e | 4467 | long chg = 0; |
90481622 | 4468 | struct hugepage_subpool *spool = subpool_inode(inode); |
1c5ecae3 | 4469 | long gbl_reserve; |
45c682a6 | 4470 | |
b5cec28d MK |
4471 | if (resv_map) { |
4472 | chg = region_del(resv_map, start, end); | |
4473 | /* | |
4474 | * region_del() can fail in the rare case where a region | |
4475 | * must be split and another region descriptor can not be | |
4476 | * allocated. If end == LONG_MAX, it will not fail. | |
4477 | */ | |
4478 | if (chg < 0) | |
4479 | return chg; | |
4480 | } | |
4481 | ||
45c682a6 | 4482 | spin_lock(&inode->i_lock); |
e4c6f8be | 4483 | inode->i_blocks -= (blocks_per_huge_page(h) * freed); |
45c682a6 KC |
4484 | spin_unlock(&inode->i_lock); |
4485 | ||
1c5ecae3 MK |
4486 | /* |
4487 | * If the subpool has a minimum size, the number of global | |
4488 | * reservations to be released may be adjusted. | |
4489 | */ | |
4490 | gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); | |
4491 | hugetlb_acct_memory(h, -gbl_reserve); | |
b5cec28d MK |
4492 | |
4493 | return 0; | |
a43a8c39 | 4494 | } |
93f70f90 | 4495 | |
3212b535 SC |
4496 | #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE |
4497 | static unsigned long page_table_shareable(struct vm_area_struct *svma, | |
4498 | struct vm_area_struct *vma, | |
4499 | unsigned long addr, pgoff_t idx) | |
4500 | { | |
4501 | unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + | |
4502 | svma->vm_start; | |
4503 | unsigned long sbase = saddr & PUD_MASK; | |
4504 | unsigned long s_end = sbase + PUD_SIZE; | |
4505 | ||
4506 | /* Allow segments to share if only one is marked locked */ | |
de60f5f1 EM |
4507 | unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; |
4508 | unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK; | |
3212b535 SC |
4509 | |
4510 | /* | |
4511 | * match the virtual addresses, permission and the alignment of the | |
4512 | * page table page. | |
4513 | */ | |
4514 | if (pmd_index(addr) != pmd_index(saddr) || | |
4515 | vm_flags != svm_flags || | |
4516 | sbase < svma->vm_start || svma->vm_end < s_end) | |
4517 | return 0; | |
4518 | ||
4519 | return saddr; | |
4520 | } | |
4521 | ||
31aafb45 | 4522 | static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr) |
3212b535 SC |
4523 | { |
4524 | unsigned long base = addr & PUD_MASK; | |
4525 | unsigned long end = base + PUD_SIZE; | |
4526 | ||
4527 | /* | |
4528 | * check on proper vm_flags and page table alignment | |
4529 | */ | |
4530 | if (vma->vm_flags & VM_MAYSHARE && | |
4531 | vma->vm_start <= base && end <= vma->vm_end) | |
31aafb45 NK |
4532 | return true; |
4533 | return false; | |
3212b535 SC |
4534 | } |
4535 | ||
4536 | /* | |
4537 | * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() | |
4538 | * and returns the corresponding pte. While this is not necessary for the | |
4539 | * !shared pmd case because we can allocate the pmd later as well, it makes the | |
4540 | * code much cleaner. pmd allocation is essential for the shared case because | |
c8c06efa | 4541 | * pud has to be populated inside the same i_mmap_rwsem section - otherwise |
3212b535 SC |
4542 | * racing tasks could either miss the sharing (see huge_pte_offset) or select a |
4543 | * bad pmd for sharing. | |
4544 | */ | |
4545 | pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) | |
4546 | { | |
4547 | struct vm_area_struct *vma = find_vma(mm, addr); | |
4548 | struct address_space *mapping = vma->vm_file->f_mapping; | |
4549 | pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + | |
4550 | vma->vm_pgoff; | |
4551 | struct vm_area_struct *svma; | |
4552 | unsigned long saddr; | |
4553 | pte_t *spte = NULL; | |
4554 | pte_t *pte; | |
cb900f41 | 4555 | spinlock_t *ptl; |
3212b535 SC |
4556 | |
4557 | if (!vma_shareable(vma, addr)) | |
4558 | return (pte_t *)pmd_alloc(mm, pud, addr); | |
4559 | ||
83cde9e8 | 4560 | i_mmap_lock_write(mapping); |
3212b535 SC |
4561 | vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { |
4562 | if (svma == vma) | |
4563 | continue; | |
4564 | ||
4565 | saddr = page_table_shareable(svma, vma, addr, idx); | |
4566 | if (saddr) { | |
7868a208 PA |
4567 | spte = huge_pte_offset(svma->vm_mm, saddr, |
4568 | vma_mmu_pagesize(svma)); | |
3212b535 SC |
4569 | if (spte) { |
4570 | get_page(virt_to_page(spte)); | |
4571 | break; | |
4572 | } | |
4573 | } | |
4574 | } | |
4575 | ||
4576 | if (!spte) | |
4577 | goto out; | |
4578 | ||
8bea8052 | 4579 | ptl = huge_pte_lock(hstate_vma(vma), mm, spte); |
dc6c9a35 | 4580 | if (pud_none(*pud)) { |
3212b535 SC |
4581 | pud_populate(mm, pud, |
4582 | (pmd_t *)((unsigned long)spte & PAGE_MASK)); | |
c17b1f42 | 4583 | mm_inc_nr_pmds(mm); |
dc6c9a35 | 4584 | } else { |
3212b535 | 4585 | put_page(virt_to_page(spte)); |
dc6c9a35 | 4586 | } |
cb900f41 | 4587 | spin_unlock(ptl); |
3212b535 SC |
4588 | out: |
4589 | pte = (pte_t *)pmd_alloc(mm, pud, addr); | |
83cde9e8 | 4590 | i_mmap_unlock_write(mapping); |
3212b535 SC |
4591 | return pte; |
4592 | } | |
4593 | ||
4594 | /* | |
4595 | * unmap huge page backed by shared pte. | |
4596 | * | |
4597 | * Hugetlb pte page is ref counted at the time of mapping. If pte is shared | |
4598 | * indicated by page_count > 1, unmap is achieved by clearing pud and | |
4599 | * decrementing the ref count. If count == 1, the pte page is not shared. | |
4600 | * | |
cb900f41 | 4601 | * called with page table lock held. |
3212b535 SC |
4602 | * |
4603 | * returns: 1 successfully unmapped a shared pte page | |
4604 | * 0 the underlying pte page is not shared, or it is the last user | |
4605 | */ | |
4606 | int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) | |
4607 | { | |
4608 | pgd_t *pgd = pgd_offset(mm, *addr); | |
c2febafc KS |
4609 | p4d_t *p4d = p4d_offset(pgd, *addr); |
4610 | pud_t *pud = pud_offset(p4d, *addr); | |
3212b535 SC |
4611 | |
4612 | BUG_ON(page_count(virt_to_page(ptep)) == 0); | |
4613 | if (page_count(virt_to_page(ptep)) == 1) | |
4614 | return 0; | |
4615 | ||
4616 | pud_clear(pud); | |
4617 | put_page(virt_to_page(ptep)); | |
dc6c9a35 | 4618 | mm_dec_nr_pmds(mm); |
3212b535 SC |
4619 | *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE; |
4620 | return 1; | |
4621 | } | |
9e5fc74c SC |
4622 | #define want_pmd_share() (1) |
4623 | #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ | |
4624 | pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) | |
4625 | { | |
4626 | return NULL; | |
4627 | } | |
e81f2d22 ZZ |
4628 | |
4629 | int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) | |
4630 | { | |
4631 | return 0; | |
4632 | } | |
9e5fc74c | 4633 | #define want_pmd_share() (0) |
3212b535 SC |
4634 | #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ |
4635 | ||
9e5fc74c SC |
4636 | #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB |
4637 | pte_t *huge_pte_alloc(struct mm_struct *mm, | |
4638 | unsigned long addr, unsigned long sz) | |
4639 | { | |
4640 | pgd_t *pgd; | |
c2febafc | 4641 | p4d_t *p4d; |
9e5fc74c SC |
4642 | pud_t *pud; |
4643 | pte_t *pte = NULL; | |
4644 | ||
4645 | pgd = pgd_offset(mm, addr); | |
f4f0a3d8 KS |
4646 | p4d = p4d_alloc(mm, pgd, addr); |
4647 | if (!p4d) | |
4648 | return NULL; | |
c2febafc | 4649 | pud = pud_alloc(mm, p4d, addr); |
9e5fc74c SC |
4650 | if (pud) { |
4651 | if (sz == PUD_SIZE) { | |
4652 | pte = (pte_t *)pud; | |
4653 | } else { | |
4654 | BUG_ON(sz != PMD_SIZE); | |
4655 | if (want_pmd_share() && pud_none(*pud)) | |
4656 | pte = huge_pmd_share(mm, addr, pud); | |
4657 | else | |
4658 | pte = (pte_t *)pmd_alloc(mm, pud, addr); | |
4659 | } | |
4660 | } | |
4e666314 | 4661 | BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte)); |
9e5fc74c SC |
4662 | |
4663 | return pte; | |
4664 | } | |
4665 | ||
9b19df29 PA |
4666 | /* |
4667 | * huge_pte_offset() - Walk the page table to resolve the hugepage | |
4668 | * entry at address @addr | |
4669 | * | |
4670 | * Return: Pointer to page table or swap entry (PUD or PMD) for | |
4671 | * address @addr, or NULL if a p*d_none() entry is encountered and the | |
4672 | * size @sz doesn't match the hugepage size at this level of the page | |
4673 | * table. | |
4674 | */ | |
7868a208 PA |
4675 | pte_t *huge_pte_offset(struct mm_struct *mm, |
4676 | unsigned long addr, unsigned long sz) | |
9e5fc74c SC |
4677 | { |
4678 | pgd_t *pgd; | |
c2febafc | 4679 | p4d_t *p4d; |
9e5fc74c | 4680 | pud_t *pud; |
c2febafc | 4681 | pmd_t *pmd; |
9e5fc74c SC |
4682 | |
4683 | pgd = pgd_offset(mm, addr); | |
c2febafc KS |
4684 | if (!pgd_present(*pgd)) |
4685 | return NULL; | |
4686 | p4d = p4d_offset(pgd, addr); | |
4687 | if (!p4d_present(*p4d)) | |
4688 | return NULL; | |
9b19df29 | 4689 | |
c2febafc | 4690 | pud = pud_offset(p4d, addr); |
9b19df29 | 4691 | if (sz != PUD_SIZE && pud_none(*pud)) |
c2febafc | 4692 | return NULL; |
9b19df29 PA |
4693 | /* hugepage or swap? */ |
4694 | if (pud_huge(*pud) || !pud_present(*pud)) | |
c2febafc | 4695 | return (pte_t *)pud; |
9b19df29 | 4696 | |
c2febafc | 4697 | pmd = pmd_offset(pud, addr); |
9b19df29 PA |
4698 | if (sz != PMD_SIZE && pmd_none(*pmd)) |
4699 | return NULL; | |
4700 | /* hugepage or swap? */ | |
4701 | if (pmd_huge(*pmd) || !pmd_present(*pmd)) | |
4702 | return (pte_t *)pmd; | |
4703 | ||
4704 | return NULL; | |
9e5fc74c SC |
4705 | } |
4706 | ||
61f77eda NH |
4707 | #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ |
4708 | ||
4709 | /* | |
4710 | * These functions are overwritable if your architecture needs its own | |
4711 | * behavior. | |
4712 | */ | |
4713 | struct page * __weak | |
4714 | follow_huge_addr(struct mm_struct *mm, unsigned long address, | |
4715 | int write) | |
4716 | { | |
4717 | return ERR_PTR(-EINVAL); | |
4718 | } | |
4719 | ||
4dc71451 AK |
4720 | struct page * __weak |
4721 | follow_huge_pd(struct vm_area_struct *vma, | |
4722 | unsigned long address, hugepd_t hpd, int flags, int pdshift) | |
4723 | { | |
4724 | WARN(1, "hugepd follow called with no support for hugepage directory format\n"); | |
4725 | return NULL; | |
4726 | } | |
4727 | ||
61f77eda | 4728 | struct page * __weak |
9e5fc74c | 4729 | follow_huge_pmd(struct mm_struct *mm, unsigned long address, |
e66f17ff | 4730 | pmd_t *pmd, int flags) |
9e5fc74c | 4731 | { |
e66f17ff NH |
4732 | struct page *page = NULL; |
4733 | spinlock_t *ptl; | |
c9d398fa | 4734 | pte_t pte; |
e66f17ff NH |
4735 | retry: |
4736 | ptl = pmd_lockptr(mm, pmd); | |
4737 | spin_lock(ptl); | |
4738 | /* | |
4739 | * make sure that the address range covered by this pmd is not | |
4740 | * unmapped from other threads. | |
4741 | */ | |
4742 | if (!pmd_huge(*pmd)) | |
4743 | goto out; | |
c9d398fa NH |
4744 | pte = huge_ptep_get((pte_t *)pmd); |
4745 | if (pte_present(pte)) { | |
97534127 | 4746 | page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT); |
e66f17ff NH |
4747 | if (flags & FOLL_GET) |
4748 | get_page(page); | |
4749 | } else { | |
c9d398fa | 4750 | if (is_hugetlb_entry_migration(pte)) { |
e66f17ff NH |
4751 | spin_unlock(ptl); |
4752 | __migration_entry_wait(mm, (pte_t *)pmd, ptl); | |
4753 | goto retry; | |
4754 | } | |
4755 | /* | |
4756 | * hwpoisoned entry is treated as no_page_table in | |
4757 | * follow_page_mask(). | |
4758 | */ | |
4759 | } | |
4760 | out: | |
4761 | spin_unlock(ptl); | |
9e5fc74c SC |
4762 | return page; |
4763 | } | |
4764 | ||
61f77eda | 4765 | struct page * __weak |
9e5fc74c | 4766 | follow_huge_pud(struct mm_struct *mm, unsigned long address, |
e66f17ff | 4767 | pud_t *pud, int flags) |
9e5fc74c | 4768 | { |
e66f17ff NH |
4769 | if (flags & FOLL_GET) |
4770 | return NULL; | |
9e5fc74c | 4771 | |
e66f17ff | 4772 | return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT); |
9e5fc74c SC |
4773 | } |
4774 | ||
faaa5b62 AK |
4775 | struct page * __weak |
4776 | follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags) | |
4777 | { | |
4778 | if (flags & FOLL_GET) | |
4779 | return NULL; | |
4780 | ||
4781 | return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT); | |
4782 | } | |
4783 | ||
31caf665 NH |
4784 | bool isolate_huge_page(struct page *page, struct list_head *list) |
4785 | { | |
bcc54222 NH |
4786 | bool ret = true; |
4787 | ||
309381fe | 4788 | VM_BUG_ON_PAGE(!PageHead(page), page); |
31caf665 | 4789 | spin_lock(&hugetlb_lock); |
bcc54222 NH |
4790 | if (!page_huge_active(page) || !get_page_unless_zero(page)) { |
4791 | ret = false; | |
4792 | goto unlock; | |
4793 | } | |
4794 | clear_page_huge_active(page); | |
31caf665 | 4795 | list_move_tail(&page->lru, list); |
bcc54222 | 4796 | unlock: |
31caf665 | 4797 | spin_unlock(&hugetlb_lock); |
bcc54222 | 4798 | return ret; |
31caf665 NH |
4799 | } |
4800 | ||
4801 | void putback_active_hugepage(struct page *page) | |
4802 | { | |
309381fe | 4803 | VM_BUG_ON_PAGE(!PageHead(page), page); |
31caf665 | 4804 | spin_lock(&hugetlb_lock); |
bcc54222 | 4805 | set_page_huge_active(page); |
31caf665 NH |
4806 | list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist); |
4807 | spin_unlock(&hugetlb_lock); | |
4808 | put_page(page); | |
4809 | } |