]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/hugetlb.c
powerpc/64: Make meltdown reporting Book3S 64 specific
[mirror_ubuntu-bionic-kernel.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
6d49e352 3 * (C) Nadia Yvette Chambers, April 2004
1da177e4 4 */
1da177e4
LT
5#include <linux/list.h>
6#include <linux/init.h>
1da177e4 7#include <linux/mm.h>
e1759c21 8#include <linux/seq_file.h>
1da177e4
LT
9#include <linux/sysctl.h>
10#include <linux/highmem.h>
cddb8a5c 11#include <linux/mmu_notifier.h>
1da177e4 12#include <linux/nodemask.h>
63551ae0 13#include <linux/pagemap.h>
5da7ca86 14#include <linux/mempolicy.h>
3b32123d 15#include <linux/compiler.h>
aea47ff3 16#include <linux/cpuset.h>
3935baa9 17#include <linux/mutex.h>
aa888a74 18#include <linux/bootmem.h>
a3437870 19#include <linux/sysfs.h>
5a0e3ad6 20#include <linux/slab.h>
1211d50a 21#include <linux/mmdebug.h>
174cd4b1 22#include <linux/sched/signal.h>
0fe6e20b 23#include <linux/rmap.h>
c6247f72 24#include <linux/string_helpers.h>
fd6a03ed
NH
25#include <linux/swap.h>
26#include <linux/swapops.h>
8382d914 27#include <linux/jhash.h>
d6606683 28
63551ae0
DG
29#include <asm/page.h>
30#include <asm/pgtable.h>
24669e58 31#include <asm/tlb.h>
63551ae0 32
24669e58 33#include <linux/io.h>
63551ae0 34#include <linux/hugetlb.h>
9dd540e2 35#include <linux/hugetlb_cgroup.h>
9a305230 36#include <linux/node.h>
1a1aad8a 37#include <linux/userfaultfd_k.h>
7835e98b 38#include "internal.h"
1da177e4 39
753162cd 40int hugepages_treat_as_movable;
a5516438 41
c3f38a38 42int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
43unsigned int default_hstate_idx;
44struct hstate hstates[HUGE_MAX_HSTATE];
641844f5
NH
45/*
46 * Minimum page order among possible hugepage sizes, set to a proper value
47 * at boot time.
48 */
49static unsigned int minimum_order __read_mostly = UINT_MAX;
e5ff2159 50
53ba51d2
JT
51__initdata LIST_HEAD(huge_boot_pages);
52
e5ff2159
AK
53/* for command line parsing */
54static struct hstate * __initdata parsed_hstate;
55static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 56static unsigned long __initdata default_hstate_size;
9fee021d 57static bool __initdata parsed_valid_hugepagesz = true;
e5ff2159 58
3935baa9 59/*
31caf665
NH
60 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
61 * free_huge_pages, and surplus_huge_pages.
3935baa9 62 */
c3f38a38 63DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 64
8382d914
DB
65/*
66 * Serializes faults on the same logical page. This is used to
67 * prevent spurious OOMs when the hugepage pool is fully utilized.
68 */
69static int num_fault_mutexes;
c672c7f2 70struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
8382d914 71
7ca02d0a
MK
72/* Forward declaration */
73static int hugetlb_acct_memory(struct hstate *h, long delta);
74
90481622
DG
75static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
76{
77 bool free = (spool->count == 0) && (spool->used_hpages == 0);
78
79 spin_unlock(&spool->lock);
80
81 /* If no pages are used, and no other handles to the subpool
7ca02d0a
MK
82 * remain, give up any reservations mased on minimum size and
83 * free the subpool */
84 if (free) {
85 if (spool->min_hpages != -1)
86 hugetlb_acct_memory(spool->hstate,
87 -spool->min_hpages);
90481622 88 kfree(spool);
7ca02d0a 89 }
90481622
DG
90}
91
7ca02d0a
MK
92struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
93 long min_hpages)
90481622
DG
94{
95 struct hugepage_subpool *spool;
96
c6a91820 97 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
90481622
DG
98 if (!spool)
99 return NULL;
100
101 spin_lock_init(&spool->lock);
102 spool->count = 1;
7ca02d0a
MK
103 spool->max_hpages = max_hpages;
104 spool->hstate = h;
105 spool->min_hpages = min_hpages;
106
107 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
108 kfree(spool);
109 return NULL;
110 }
111 spool->rsv_hpages = min_hpages;
90481622
DG
112
113 return spool;
114}
115
116void hugepage_put_subpool(struct hugepage_subpool *spool)
117{
118 spin_lock(&spool->lock);
119 BUG_ON(!spool->count);
120 spool->count--;
121 unlock_or_release_subpool(spool);
122}
123
1c5ecae3
MK
124/*
125 * Subpool accounting for allocating and reserving pages.
126 * Return -ENOMEM if there are not enough resources to satisfy the
127 * the request. Otherwise, return the number of pages by which the
128 * global pools must be adjusted (upward). The returned value may
129 * only be different than the passed value (delta) in the case where
130 * a subpool minimum size must be manitained.
131 */
132static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
90481622
DG
133 long delta)
134{
1c5ecae3 135 long ret = delta;
90481622
DG
136
137 if (!spool)
1c5ecae3 138 return ret;
90481622
DG
139
140 spin_lock(&spool->lock);
1c5ecae3
MK
141
142 if (spool->max_hpages != -1) { /* maximum size accounting */
143 if ((spool->used_hpages + delta) <= spool->max_hpages)
144 spool->used_hpages += delta;
145 else {
146 ret = -ENOMEM;
147 goto unlock_ret;
148 }
90481622 149 }
90481622 150
09a95e29
MK
151 /* minimum size accounting */
152 if (spool->min_hpages != -1 && spool->rsv_hpages) {
1c5ecae3
MK
153 if (delta > spool->rsv_hpages) {
154 /*
155 * Asking for more reserves than those already taken on
156 * behalf of subpool. Return difference.
157 */
158 ret = delta - spool->rsv_hpages;
159 spool->rsv_hpages = 0;
160 } else {
161 ret = 0; /* reserves already accounted for */
162 spool->rsv_hpages -= delta;
163 }
164 }
165
166unlock_ret:
167 spin_unlock(&spool->lock);
90481622
DG
168 return ret;
169}
170
1c5ecae3
MK
171/*
172 * Subpool accounting for freeing and unreserving pages.
173 * Return the number of global page reservations that must be dropped.
174 * The return value may only be different than the passed value (delta)
175 * in the case where a subpool minimum size must be maintained.
176 */
177static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
90481622
DG
178 long delta)
179{
1c5ecae3
MK
180 long ret = delta;
181
90481622 182 if (!spool)
1c5ecae3 183 return delta;
90481622
DG
184
185 spin_lock(&spool->lock);
1c5ecae3
MK
186
187 if (spool->max_hpages != -1) /* maximum size accounting */
188 spool->used_hpages -= delta;
189
09a95e29
MK
190 /* minimum size accounting */
191 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
1c5ecae3
MK
192 if (spool->rsv_hpages + delta <= spool->min_hpages)
193 ret = 0;
194 else
195 ret = spool->rsv_hpages + delta - spool->min_hpages;
196
197 spool->rsv_hpages += delta;
198 if (spool->rsv_hpages > spool->min_hpages)
199 spool->rsv_hpages = spool->min_hpages;
200 }
201
202 /*
203 * If hugetlbfs_put_super couldn't free spool due to an outstanding
204 * quota reference, free it now.
205 */
90481622 206 unlock_or_release_subpool(spool);
1c5ecae3
MK
207
208 return ret;
90481622
DG
209}
210
211static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
212{
213 return HUGETLBFS_SB(inode->i_sb)->spool;
214}
215
216static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
217{
496ad9aa 218 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
219}
220
96822904
AW
221/*
222 * Region tracking -- allows tracking of reservations and instantiated pages
223 * across the pages in a mapping.
84afd99b 224 *
1dd308a7
MK
225 * The region data structures are embedded into a resv_map and protected
226 * by a resv_map's lock. The set of regions within the resv_map represent
227 * reservations for huge pages, or huge pages that have already been
228 * instantiated within the map. The from and to elements are huge page
229 * indicies into the associated mapping. from indicates the starting index
230 * of the region. to represents the first index past the end of the region.
231 *
232 * For example, a file region structure with from == 0 and to == 4 represents
233 * four huge pages in a mapping. It is important to note that the to element
234 * represents the first element past the end of the region. This is used in
235 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
236 *
237 * Interval notation of the form [from, to) will be used to indicate that
238 * the endpoint from is inclusive and to is exclusive.
96822904
AW
239 */
240struct file_region {
241 struct list_head link;
242 long from;
243 long to;
244};
245
1dd308a7
MK
246/*
247 * Add the huge page range represented by [f, t) to the reserve
5e911373
MK
248 * map. In the normal case, existing regions will be expanded
249 * to accommodate the specified range. Sufficient regions should
250 * exist for expansion due to the previous call to region_chg
251 * with the same range. However, it is possible that region_del
252 * could have been called after region_chg and modifed the map
253 * in such a way that no region exists to be expanded. In this
254 * case, pull a region descriptor from the cache associated with
255 * the map and use that for the new range.
cf3ad20b
MK
256 *
257 * Return the number of new huge pages added to the map. This
258 * number is greater than or equal to zero.
1dd308a7 259 */
1406ec9b 260static long region_add(struct resv_map *resv, long f, long t)
96822904 261{
1406ec9b 262 struct list_head *head = &resv->regions;
96822904 263 struct file_region *rg, *nrg, *trg;
cf3ad20b 264 long add = 0;
96822904 265
7b24d861 266 spin_lock(&resv->lock);
96822904
AW
267 /* Locate the region we are either in or before. */
268 list_for_each_entry(rg, head, link)
269 if (f <= rg->to)
270 break;
271
5e911373
MK
272 /*
273 * If no region exists which can be expanded to include the
274 * specified range, the list must have been modified by an
275 * interleving call to region_del(). Pull a region descriptor
276 * from the cache and use it for this range.
277 */
278 if (&rg->link == head || t < rg->from) {
279 VM_BUG_ON(resv->region_cache_count <= 0);
280
281 resv->region_cache_count--;
282 nrg = list_first_entry(&resv->region_cache, struct file_region,
283 link);
284 list_del(&nrg->link);
285
286 nrg->from = f;
287 nrg->to = t;
288 list_add(&nrg->link, rg->link.prev);
289
290 add += t - f;
291 goto out_locked;
292 }
293
96822904
AW
294 /* Round our left edge to the current segment if it encloses us. */
295 if (f > rg->from)
296 f = rg->from;
297
298 /* Check for and consume any regions we now overlap with. */
299 nrg = rg;
300 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
301 if (&rg->link == head)
302 break;
303 if (rg->from > t)
304 break;
305
306 /* If this area reaches higher then extend our area to
307 * include it completely. If this is not the first area
308 * which we intend to reuse, free it. */
309 if (rg->to > t)
310 t = rg->to;
311 if (rg != nrg) {
cf3ad20b
MK
312 /* Decrement return value by the deleted range.
313 * Another range will span this area so that by
314 * end of routine add will be >= zero
315 */
316 add -= (rg->to - rg->from);
96822904
AW
317 list_del(&rg->link);
318 kfree(rg);
319 }
320 }
cf3ad20b
MK
321
322 add += (nrg->from - f); /* Added to beginning of region */
96822904 323 nrg->from = f;
cf3ad20b 324 add += t - nrg->to; /* Added to end of region */
96822904 325 nrg->to = t;
cf3ad20b 326
5e911373
MK
327out_locked:
328 resv->adds_in_progress--;
7b24d861 329 spin_unlock(&resv->lock);
cf3ad20b
MK
330 VM_BUG_ON(add < 0);
331 return add;
96822904
AW
332}
333
1dd308a7
MK
334/*
335 * Examine the existing reserve map and determine how many
336 * huge pages in the specified range [f, t) are NOT currently
337 * represented. This routine is called before a subsequent
338 * call to region_add that will actually modify the reserve
339 * map to add the specified range [f, t). region_chg does
340 * not change the number of huge pages represented by the
341 * map. However, if the existing regions in the map can not
342 * be expanded to represent the new range, a new file_region
343 * structure is added to the map as a placeholder. This is
344 * so that the subsequent region_add call will have all the
345 * regions it needs and will not fail.
346 *
5e911373
MK
347 * Upon entry, region_chg will also examine the cache of region descriptors
348 * associated with the map. If there are not enough descriptors cached, one
349 * will be allocated for the in progress add operation.
350 *
351 * Returns the number of huge pages that need to be added to the existing
352 * reservation map for the range [f, t). This number is greater or equal to
353 * zero. -ENOMEM is returned if a new file_region structure or cache entry
354 * is needed and can not be allocated.
1dd308a7 355 */
1406ec9b 356static long region_chg(struct resv_map *resv, long f, long t)
96822904 357{
1406ec9b 358 struct list_head *head = &resv->regions;
7b24d861 359 struct file_region *rg, *nrg = NULL;
96822904
AW
360 long chg = 0;
361
7b24d861
DB
362retry:
363 spin_lock(&resv->lock);
5e911373
MK
364retry_locked:
365 resv->adds_in_progress++;
366
367 /*
368 * Check for sufficient descriptors in the cache to accommodate
369 * the number of in progress add operations.
370 */
371 if (resv->adds_in_progress > resv->region_cache_count) {
372 struct file_region *trg;
373
374 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
375 /* Must drop lock to allocate a new descriptor. */
376 resv->adds_in_progress--;
377 spin_unlock(&resv->lock);
378
379 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
dbe409e4
MK
380 if (!trg) {
381 kfree(nrg);
5e911373 382 return -ENOMEM;
dbe409e4 383 }
5e911373
MK
384
385 spin_lock(&resv->lock);
386 list_add(&trg->link, &resv->region_cache);
387 resv->region_cache_count++;
388 goto retry_locked;
389 }
390
96822904
AW
391 /* Locate the region we are before or in. */
392 list_for_each_entry(rg, head, link)
393 if (f <= rg->to)
394 break;
395
396 /* If we are below the current region then a new region is required.
397 * Subtle, allocate a new region at the position but make it zero
398 * size such that we can guarantee to record the reservation. */
399 if (&rg->link == head || t < rg->from) {
7b24d861 400 if (!nrg) {
5e911373 401 resv->adds_in_progress--;
7b24d861
DB
402 spin_unlock(&resv->lock);
403 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
404 if (!nrg)
405 return -ENOMEM;
406
407 nrg->from = f;
408 nrg->to = f;
409 INIT_LIST_HEAD(&nrg->link);
410 goto retry;
411 }
96822904 412
7b24d861
DB
413 list_add(&nrg->link, rg->link.prev);
414 chg = t - f;
415 goto out_nrg;
96822904
AW
416 }
417
418 /* Round our left edge to the current segment if it encloses us. */
419 if (f > rg->from)
420 f = rg->from;
421 chg = t - f;
422
423 /* Check for and consume any regions we now overlap with. */
424 list_for_each_entry(rg, rg->link.prev, link) {
425 if (&rg->link == head)
426 break;
427 if (rg->from > t)
7b24d861 428 goto out;
96822904 429
25985edc 430 /* We overlap with this area, if it extends further than
96822904
AW
431 * us then we must extend ourselves. Account for its
432 * existing reservation. */
433 if (rg->to > t) {
434 chg += rg->to - t;
435 t = rg->to;
436 }
437 chg -= rg->to - rg->from;
438 }
7b24d861
DB
439
440out:
441 spin_unlock(&resv->lock);
442 /* We already know we raced and no longer need the new region */
443 kfree(nrg);
444 return chg;
445out_nrg:
446 spin_unlock(&resv->lock);
96822904
AW
447 return chg;
448}
449
5e911373
MK
450/*
451 * Abort the in progress add operation. The adds_in_progress field
452 * of the resv_map keeps track of the operations in progress between
453 * calls to region_chg and region_add. Operations are sometimes
454 * aborted after the call to region_chg. In such cases, region_abort
455 * is called to decrement the adds_in_progress counter.
456 *
457 * NOTE: The range arguments [f, t) are not needed or used in this
458 * routine. They are kept to make reading the calling code easier as
459 * arguments will match the associated region_chg call.
460 */
461static void region_abort(struct resv_map *resv, long f, long t)
462{
463 spin_lock(&resv->lock);
464 VM_BUG_ON(!resv->region_cache_count);
465 resv->adds_in_progress--;
466 spin_unlock(&resv->lock);
467}
468
1dd308a7 469/*
feba16e2
MK
470 * Delete the specified range [f, t) from the reserve map. If the
471 * t parameter is LONG_MAX, this indicates that ALL regions after f
472 * should be deleted. Locate the regions which intersect [f, t)
473 * and either trim, delete or split the existing regions.
474 *
475 * Returns the number of huge pages deleted from the reserve map.
476 * In the normal case, the return value is zero or more. In the
477 * case where a region must be split, a new region descriptor must
478 * be allocated. If the allocation fails, -ENOMEM will be returned.
479 * NOTE: If the parameter t == LONG_MAX, then we will never split
480 * a region and possibly return -ENOMEM. Callers specifying
481 * t == LONG_MAX do not need to check for -ENOMEM error.
1dd308a7 482 */
feba16e2 483static long region_del(struct resv_map *resv, long f, long t)
96822904 484{
1406ec9b 485 struct list_head *head = &resv->regions;
96822904 486 struct file_region *rg, *trg;
feba16e2
MK
487 struct file_region *nrg = NULL;
488 long del = 0;
96822904 489
feba16e2 490retry:
7b24d861 491 spin_lock(&resv->lock);
feba16e2 492 list_for_each_entry_safe(rg, trg, head, link) {
dbe409e4
MK
493 /*
494 * Skip regions before the range to be deleted. file_region
495 * ranges are normally of the form [from, to). However, there
496 * may be a "placeholder" entry in the map which is of the form
497 * (from, to) with from == to. Check for placeholder entries
498 * at the beginning of the range to be deleted.
499 */
500 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
feba16e2 501 continue;
dbe409e4 502
feba16e2 503 if (rg->from >= t)
96822904 504 break;
96822904 505
feba16e2
MK
506 if (f > rg->from && t < rg->to) { /* Must split region */
507 /*
508 * Check for an entry in the cache before dropping
509 * lock and attempting allocation.
510 */
511 if (!nrg &&
512 resv->region_cache_count > resv->adds_in_progress) {
513 nrg = list_first_entry(&resv->region_cache,
514 struct file_region,
515 link);
516 list_del(&nrg->link);
517 resv->region_cache_count--;
518 }
96822904 519
feba16e2
MK
520 if (!nrg) {
521 spin_unlock(&resv->lock);
522 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
523 if (!nrg)
524 return -ENOMEM;
525 goto retry;
526 }
527
528 del += t - f;
529
530 /* New entry for end of split region */
531 nrg->from = t;
532 nrg->to = rg->to;
533 INIT_LIST_HEAD(&nrg->link);
534
535 /* Original entry is trimmed */
536 rg->to = f;
537
538 list_add(&nrg->link, &rg->link);
539 nrg = NULL;
96822904 540 break;
feba16e2
MK
541 }
542
543 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
544 del += rg->to - rg->from;
545 list_del(&rg->link);
546 kfree(rg);
547 continue;
548 }
549
550 if (f <= rg->from) { /* Trim beginning of region */
551 del += t - rg->from;
552 rg->from = t;
553 } else { /* Trim end of region */
554 del += rg->to - f;
555 rg->to = f;
556 }
96822904 557 }
7b24d861 558
7b24d861 559 spin_unlock(&resv->lock);
feba16e2
MK
560 kfree(nrg);
561 return del;
96822904
AW
562}
563
b5cec28d
MK
564/*
565 * A rare out of memory error was encountered which prevented removal of
566 * the reserve map region for a page. The huge page itself was free'ed
567 * and removed from the page cache. This routine will adjust the subpool
568 * usage count, and the global reserve count if needed. By incrementing
569 * these counts, the reserve map entry which could not be deleted will
570 * appear as a "reserved" entry instead of simply dangling with incorrect
571 * counts.
572 */
72e2936c 573void hugetlb_fix_reserve_counts(struct inode *inode)
b5cec28d
MK
574{
575 struct hugepage_subpool *spool = subpool_inode(inode);
576 long rsv_adjust;
577
578 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
72e2936c 579 if (rsv_adjust) {
b5cec28d
MK
580 struct hstate *h = hstate_inode(inode);
581
582 hugetlb_acct_memory(h, 1);
583 }
584}
585
1dd308a7
MK
586/*
587 * Count and return the number of huge pages in the reserve map
588 * that intersect with the range [f, t).
589 */
1406ec9b 590static long region_count(struct resv_map *resv, long f, long t)
84afd99b 591{
1406ec9b 592 struct list_head *head = &resv->regions;
84afd99b
AW
593 struct file_region *rg;
594 long chg = 0;
595
7b24d861 596 spin_lock(&resv->lock);
84afd99b
AW
597 /* Locate each segment we overlap with, and count that overlap. */
598 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
599 long seg_from;
600 long seg_to;
84afd99b
AW
601
602 if (rg->to <= f)
603 continue;
604 if (rg->from >= t)
605 break;
606
607 seg_from = max(rg->from, f);
608 seg_to = min(rg->to, t);
609
610 chg += seg_to - seg_from;
611 }
7b24d861 612 spin_unlock(&resv->lock);
84afd99b
AW
613
614 return chg;
615}
616
e7c4b0bf
AW
617/*
618 * Convert the address within this vma to the page offset within
619 * the mapping, in pagecache page units; huge pages here.
620 */
a5516438
AK
621static pgoff_t vma_hugecache_offset(struct hstate *h,
622 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 623{
a5516438
AK
624 return ((address - vma->vm_start) >> huge_page_shift(h)) +
625 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
626}
627
0fe6e20b
NH
628pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
629 unsigned long address)
630{
631 return vma_hugecache_offset(hstate_vma(vma), vma, address);
632}
dee41079 633EXPORT_SYMBOL_GPL(linear_hugepage_index);
0fe6e20b 634
08fba699
MG
635/*
636 * Return the size of the pages allocated when backing a VMA. In the majority
637 * cases this will be same size as used by the page table entries.
638 */
639unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
640{
641 struct hstate *hstate;
642
643 if (!is_vm_hugetlb_page(vma))
644 return PAGE_SIZE;
645
646 hstate = hstate_vma(vma);
647
2415cf12 648 return 1UL << huge_page_shift(hstate);
08fba699 649}
f340ca0f 650EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 651
3340289d
MG
652/*
653 * Return the page size being used by the MMU to back a VMA. In the majority
654 * of cases, the page size used by the kernel matches the MMU size. On
655 * architectures where it differs, an architecture-specific version of this
656 * function is required.
657 */
658#ifndef vma_mmu_pagesize
659unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
660{
661 return vma_kernel_pagesize(vma);
662}
663#endif
664
84afd99b
AW
665/*
666 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
667 * bits of the reservation map pointer, which are always clear due to
668 * alignment.
669 */
670#define HPAGE_RESV_OWNER (1UL << 0)
671#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 672#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 673
a1e78772
MG
674/*
675 * These helpers are used to track how many pages are reserved for
676 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
677 * is guaranteed to have their future faults succeed.
678 *
679 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
680 * the reserve counters are updated with the hugetlb_lock held. It is safe
681 * to reset the VMA at fork() time as it is not in use yet and there is no
682 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
683 *
684 * The private mapping reservation is represented in a subtly different
685 * manner to a shared mapping. A shared mapping has a region map associated
686 * with the underlying file, this region map represents the backing file
687 * pages which have ever had a reservation assigned which this persists even
688 * after the page is instantiated. A private mapping has a region map
689 * associated with the original mmap which is attached to all VMAs which
690 * reference it, this region map represents those offsets which have consumed
691 * reservation ie. where pages have been instantiated.
a1e78772 692 */
e7c4b0bf
AW
693static unsigned long get_vma_private_data(struct vm_area_struct *vma)
694{
695 return (unsigned long)vma->vm_private_data;
696}
697
698static void set_vma_private_data(struct vm_area_struct *vma,
699 unsigned long value)
700{
701 vma->vm_private_data = (void *)value;
702}
703
9119a41e 704struct resv_map *resv_map_alloc(void)
84afd99b
AW
705{
706 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
5e911373
MK
707 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
708
709 if (!resv_map || !rg) {
710 kfree(resv_map);
711 kfree(rg);
84afd99b 712 return NULL;
5e911373 713 }
84afd99b
AW
714
715 kref_init(&resv_map->refs);
7b24d861 716 spin_lock_init(&resv_map->lock);
84afd99b
AW
717 INIT_LIST_HEAD(&resv_map->regions);
718
5e911373
MK
719 resv_map->adds_in_progress = 0;
720
721 INIT_LIST_HEAD(&resv_map->region_cache);
722 list_add(&rg->link, &resv_map->region_cache);
723 resv_map->region_cache_count = 1;
724
84afd99b
AW
725 return resv_map;
726}
727
9119a41e 728void resv_map_release(struct kref *ref)
84afd99b
AW
729{
730 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
5e911373
MK
731 struct list_head *head = &resv_map->region_cache;
732 struct file_region *rg, *trg;
84afd99b
AW
733
734 /* Clear out any active regions before we release the map. */
feba16e2 735 region_del(resv_map, 0, LONG_MAX);
5e911373
MK
736
737 /* ... and any entries left in the cache */
738 list_for_each_entry_safe(rg, trg, head, link) {
739 list_del(&rg->link);
740 kfree(rg);
741 }
742
743 VM_BUG_ON(resv_map->adds_in_progress);
744
84afd99b
AW
745 kfree(resv_map);
746}
747
4e35f483
JK
748static inline struct resv_map *inode_resv_map(struct inode *inode)
749{
750 return inode->i_mapping->private_data;
751}
752
84afd99b 753static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772 754{
81d1b09c 755 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
4e35f483
JK
756 if (vma->vm_flags & VM_MAYSHARE) {
757 struct address_space *mapping = vma->vm_file->f_mapping;
758 struct inode *inode = mapping->host;
759
760 return inode_resv_map(inode);
761
762 } else {
84afd99b
AW
763 return (struct resv_map *)(get_vma_private_data(vma) &
764 ~HPAGE_RESV_MASK);
4e35f483 765 }
a1e78772
MG
766}
767
84afd99b 768static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772 769{
81d1b09c
SL
770 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
771 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
a1e78772 772
84afd99b
AW
773 set_vma_private_data(vma, (get_vma_private_data(vma) &
774 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
775}
776
777static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
778{
81d1b09c
SL
779 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
780 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
e7c4b0bf
AW
781
782 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
783}
784
785static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
786{
81d1b09c 787 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
e7c4b0bf
AW
788
789 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
790}
791
04f2cbe3 792/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
793void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
794{
81d1b09c 795 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
f83a275d 796 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
797 vma->vm_private_data = (void *)0;
798}
799
800/* Returns true if the VMA has associated reserve pages */
559ec2f8 801static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 802{
af0ed73e
JK
803 if (vma->vm_flags & VM_NORESERVE) {
804 /*
805 * This address is already reserved by other process(chg == 0),
806 * so, we should decrement reserved count. Without decrementing,
807 * reserve count remains after releasing inode, because this
808 * allocated page will go into page cache and is regarded as
809 * coming from reserved pool in releasing step. Currently, we
810 * don't have any other solution to deal with this situation
811 * properly, so add work-around here.
812 */
813 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
559ec2f8 814 return true;
af0ed73e 815 else
559ec2f8 816 return false;
af0ed73e 817 }
a63884e9
JK
818
819 /* Shared mappings always use reserves */
1fb1b0e9
MK
820 if (vma->vm_flags & VM_MAYSHARE) {
821 /*
822 * We know VM_NORESERVE is not set. Therefore, there SHOULD
823 * be a region map for all pages. The only situation where
824 * there is no region map is if a hole was punched via
825 * fallocate. In this case, there really are no reverves to
826 * use. This situation is indicated if chg != 0.
827 */
828 if (chg)
829 return false;
830 else
831 return true;
832 }
a63884e9
JK
833
834 /*
835 * Only the process that called mmap() has reserves for
836 * private mappings.
837 */
67961f9d
MK
838 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
839 /*
840 * Like the shared case above, a hole punch or truncate
841 * could have been performed on the private mapping.
842 * Examine the value of chg to determine if reserves
843 * actually exist or were previously consumed.
844 * Very Subtle - The value of chg comes from a previous
845 * call to vma_needs_reserves(). The reserve map for
846 * private mappings has different (opposite) semantics
847 * than that of shared mappings. vma_needs_reserves()
848 * has already taken this difference in semantics into
849 * account. Therefore, the meaning of chg is the same
850 * as in the shared case above. Code could easily be
851 * combined, but keeping it separate draws attention to
852 * subtle differences.
853 */
854 if (chg)
855 return false;
856 else
857 return true;
858 }
a63884e9 859
559ec2f8 860 return false;
a1e78772
MG
861}
862
a5516438 863static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
864{
865 int nid = page_to_nid(page);
0edaecfa 866 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
867 h->free_huge_pages++;
868 h->free_huge_pages_node[nid]++;
1da177e4
LT
869}
870
94310cbc 871static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
bf50bab2
NH
872{
873 struct page *page;
874
c8721bbb 875 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
243abd5b 876 if (!PageHWPoison(page))
c8721bbb
NH
877 break;
878 /*
879 * if 'non-isolated free hugepage' not found on the list,
880 * the allocation fails.
881 */
882 if (&h->hugepage_freelists[nid] == &page->lru)
bf50bab2 883 return NULL;
0edaecfa 884 list_move(&page->lru, &h->hugepage_activelist);
a9869b83 885 set_page_refcounted(page);
bf50bab2
NH
886 h->free_huge_pages--;
887 h->free_huge_pages_node[nid]--;
888 return page;
889}
890
3e59fcb0
MH
891static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
892 nodemask_t *nmask)
94310cbc 893{
3e59fcb0
MH
894 unsigned int cpuset_mems_cookie;
895 struct zonelist *zonelist;
896 struct zone *zone;
897 struct zoneref *z;
898 int node = -1;
94310cbc 899
3e59fcb0
MH
900 zonelist = node_zonelist(nid, gfp_mask);
901
902retry_cpuset:
903 cpuset_mems_cookie = read_mems_allowed_begin();
904 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
905 struct page *page;
906
907 if (!cpuset_zone_allowed(zone, gfp_mask))
908 continue;
909 /*
910 * no need to ask again on the same node. Pool is node rather than
911 * zone aware
912 */
913 if (zone_to_nid(zone) == node)
914 continue;
915 node = zone_to_nid(zone);
94310cbc 916
94310cbc
AK
917 page = dequeue_huge_page_node_exact(h, node);
918 if (page)
919 return page;
920 }
3e59fcb0
MH
921 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
922 goto retry_cpuset;
923
94310cbc
AK
924 return NULL;
925}
926
86cdb465
NH
927/* Movability of hugepages depends on migration support. */
928static inline gfp_t htlb_alloc_mask(struct hstate *h)
929{
100873d7 930 if (hugepages_treat_as_movable || hugepage_migration_supported(h))
86cdb465
NH
931 return GFP_HIGHUSER_MOVABLE;
932 else
933 return GFP_HIGHUSER;
934}
935
a5516438
AK
936static struct page *dequeue_huge_page_vma(struct hstate *h,
937 struct vm_area_struct *vma,
af0ed73e
JK
938 unsigned long address, int avoid_reserve,
939 long chg)
1da177e4 940{
3e59fcb0 941 struct page *page;
480eccf9 942 struct mempolicy *mpol;
04ec6264 943 gfp_t gfp_mask;
3e59fcb0 944 nodemask_t *nodemask;
04ec6264 945 int nid;
1da177e4 946
a1e78772
MG
947 /*
948 * A child process with MAP_PRIVATE mappings created by their parent
949 * have no page reserves. This check ensures that reservations are
950 * not "stolen". The child may still get SIGKILLed
951 */
af0ed73e 952 if (!vma_has_reserves(vma, chg) &&
a5516438 953 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 954 goto err;
a1e78772 955
04f2cbe3 956 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 957 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 958 goto err;
04f2cbe3 959
04ec6264
VB
960 gfp_mask = htlb_alloc_mask(h);
961 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
3e59fcb0
MH
962 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
963 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
964 SetPagePrivate(page);
965 h->resv_huge_pages--;
1da177e4 966 }
cc9a6c87 967
52cd3b07 968 mpol_cond_put(mpol);
1da177e4 969 return page;
cc9a6c87
MG
970
971err:
cc9a6c87 972 return NULL;
1da177e4
LT
973}
974
1cac6f2c
LC
975/*
976 * common helper functions for hstate_next_node_to_{alloc|free}.
977 * We may have allocated or freed a huge page based on a different
978 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
979 * be outside of *nodes_allowed. Ensure that we use an allowed
980 * node for alloc or free.
981 */
982static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
983{
0edaf86c 984 nid = next_node_in(nid, *nodes_allowed);
1cac6f2c
LC
985 VM_BUG_ON(nid >= MAX_NUMNODES);
986
987 return nid;
988}
989
990static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
991{
992 if (!node_isset(nid, *nodes_allowed))
993 nid = next_node_allowed(nid, nodes_allowed);
994 return nid;
995}
996
997/*
998 * returns the previously saved node ["this node"] from which to
999 * allocate a persistent huge page for the pool and advance the
1000 * next node from which to allocate, handling wrap at end of node
1001 * mask.
1002 */
1003static int hstate_next_node_to_alloc(struct hstate *h,
1004 nodemask_t *nodes_allowed)
1005{
1006 int nid;
1007
1008 VM_BUG_ON(!nodes_allowed);
1009
1010 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1011 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1012
1013 return nid;
1014}
1015
1016/*
1017 * helper for free_pool_huge_page() - return the previously saved
1018 * node ["this node"] from which to free a huge page. Advance the
1019 * next node id whether or not we find a free huge page to free so
1020 * that the next attempt to free addresses the next node.
1021 */
1022static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1023{
1024 int nid;
1025
1026 VM_BUG_ON(!nodes_allowed);
1027
1028 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1029 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1030
1031 return nid;
1032}
1033
1034#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1035 for (nr_nodes = nodes_weight(*mask); \
1036 nr_nodes > 0 && \
1037 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1038 nr_nodes--)
1039
1040#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1041 for (nr_nodes = nodes_weight(*mask); \
1042 nr_nodes > 0 && \
1043 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1044 nr_nodes--)
1045
e1073d1e 1046#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
944d9fec 1047static void destroy_compound_gigantic_page(struct page *page,
d00181b9 1048 unsigned int order)
944d9fec
LC
1049{
1050 int i;
1051 int nr_pages = 1 << order;
1052 struct page *p = page + 1;
1053
c8cc708a 1054 atomic_set(compound_mapcount_ptr(page), 0);
944d9fec 1055 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1d798ca3 1056 clear_compound_head(p);
944d9fec 1057 set_page_refcounted(p);
944d9fec
LC
1058 }
1059
1060 set_compound_order(page, 0);
1061 __ClearPageHead(page);
1062}
1063
d00181b9 1064static void free_gigantic_page(struct page *page, unsigned int order)
944d9fec
LC
1065{
1066 free_contig_range(page_to_pfn(page), 1 << order);
1067}
1068
1069static int __alloc_gigantic_page(unsigned long start_pfn,
79b63f12 1070 unsigned long nr_pages, gfp_t gfp_mask)
944d9fec
LC
1071{
1072 unsigned long end_pfn = start_pfn + nr_pages;
ca96b625 1073 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
79b63f12 1074 gfp_mask);
944d9fec
LC
1075}
1076
f44b2dda
JK
1077static bool pfn_range_valid_gigantic(struct zone *z,
1078 unsigned long start_pfn, unsigned long nr_pages)
944d9fec
LC
1079{
1080 unsigned long i, end_pfn = start_pfn + nr_pages;
1081 struct page *page;
1082
1083 for (i = start_pfn; i < end_pfn; i++) {
1084 if (!pfn_valid(i))
1085 return false;
1086
1087 page = pfn_to_page(i);
1088
f44b2dda
JK
1089 if (page_zone(page) != z)
1090 return false;
1091
944d9fec
LC
1092 if (PageReserved(page))
1093 return false;
1094
1095 if (page_count(page) > 0)
1096 return false;
1097
1098 if (PageHuge(page))
1099 return false;
1100 }
1101
1102 return true;
1103}
1104
1105static bool zone_spans_last_pfn(const struct zone *zone,
1106 unsigned long start_pfn, unsigned long nr_pages)
1107{
1108 unsigned long last_pfn = start_pfn + nr_pages - 1;
1109 return zone_spans_pfn(zone, last_pfn);
1110}
1111
79b63f12 1112static struct page *alloc_gigantic_page(int nid, struct hstate *h)
944d9fec 1113{
79b63f12 1114 unsigned int order = huge_page_order(h);
944d9fec
LC
1115 unsigned long nr_pages = 1 << order;
1116 unsigned long ret, pfn, flags;
79b63f12
MH
1117 struct zonelist *zonelist;
1118 struct zone *zone;
1119 struct zoneref *z;
1120 gfp_t gfp_mask;
944d9fec 1121
79b63f12
MH
1122 gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1123 zonelist = node_zonelist(nid, gfp_mask);
1124 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), NULL) {
1125 spin_lock_irqsave(&zone->lock, flags);
944d9fec 1126
79b63f12
MH
1127 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1128 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1129 if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
944d9fec
LC
1130 /*
1131 * We release the zone lock here because
1132 * alloc_contig_range() will also lock the zone
1133 * at some point. If there's an allocation
1134 * spinning on this lock, it may win the race
1135 * and cause alloc_contig_range() to fail...
1136 */
79b63f12
MH
1137 spin_unlock_irqrestore(&zone->lock, flags);
1138 ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
944d9fec
LC
1139 if (!ret)
1140 return pfn_to_page(pfn);
79b63f12 1141 spin_lock_irqsave(&zone->lock, flags);
944d9fec
LC
1142 }
1143 pfn += nr_pages;
1144 }
1145
79b63f12 1146 spin_unlock_irqrestore(&zone->lock, flags);
944d9fec
LC
1147 }
1148
1149 return NULL;
1150}
1151
1152static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
d00181b9 1153static void prep_compound_gigantic_page(struct page *page, unsigned int order);
944d9fec
LC
1154
1155static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1156{
1157 struct page *page;
1158
79b63f12 1159 page = alloc_gigantic_page(nid, h);
944d9fec
LC
1160 if (page) {
1161 prep_compound_gigantic_page(page, huge_page_order(h));
1162 prep_new_huge_page(h, page, nid);
1163 }
1164
1165 return page;
1166}
1167
1168static int alloc_fresh_gigantic_page(struct hstate *h,
1169 nodemask_t *nodes_allowed)
1170{
1171 struct page *page = NULL;
1172 int nr_nodes, node;
1173
1174 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1175 page = alloc_fresh_gigantic_page_node(h, node);
1176 if (page)
1177 return 1;
1178 }
1179
1180 return 0;
1181}
1182
e1073d1e 1183#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
944d9fec 1184static inline bool gigantic_page_supported(void) { return false; }
d00181b9 1185static inline void free_gigantic_page(struct page *page, unsigned int order) { }
944d9fec 1186static inline void destroy_compound_gigantic_page(struct page *page,
d00181b9 1187 unsigned int order) { }
944d9fec
LC
1188static inline int alloc_fresh_gigantic_page(struct hstate *h,
1189 nodemask_t *nodes_allowed) { return 0; }
1190#endif
1191
a5516438 1192static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
1193{
1194 int i;
a5516438 1195
944d9fec
LC
1196 if (hstate_is_gigantic(h) && !gigantic_page_supported())
1197 return;
18229df5 1198
a5516438
AK
1199 h->nr_huge_pages--;
1200 h->nr_huge_pages_node[page_to_nid(page)]--;
1201 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
1202 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1203 1 << PG_referenced | 1 << PG_dirty |
a7407a27
LC
1204 1 << PG_active | 1 << PG_private |
1205 1 << PG_writeback);
6af2acb6 1206 }
309381fe 1207 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
f1e61557 1208 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
6af2acb6 1209 set_page_refcounted(page);
944d9fec
LC
1210 if (hstate_is_gigantic(h)) {
1211 destroy_compound_gigantic_page(page, huge_page_order(h));
1212 free_gigantic_page(page, huge_page_order(h));
1213 } else {
944d9fec
LC
1214 __free_pages(page, huge_page_order(h));
1215 }
6af2acb6
AL
1216}
1217
e5ff2159
AK
1218struct hstate *size_to_hstate(unsigned long size)
1219{
1220 struct hstate *h;
1221
1222 for_each_hstate(h) {
1223 if (huge_page_size(h) == size)
1224 return h;
1225 }
1226 return NULL;
1227}
1228
bcc54222
NH
1229/*
1230 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1231 * to hstate->hugepage_activelist.)
1232 *
1233 * This function can be called for tail pages, but never returns true for them.
1234 */
1235bool page_huge_active(struct page *page)
1236{
1237 VM_BUG_ON_PAGE(!PageHuge(page), page);
1238 return PageHead(page) && PagePrivate(&page[1]);
1239}
1240
1241/* never called for tail page */
1242static void set_page_huge_active(struct page *page)
1243{
1244 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1245 SetPagePrivate(&page[1]);
1246}
1247
1248static void clear_page_huge_active(struct page *page)
1249{
1250 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1251 ClearPagePrivate(&page[1]);
1252}
1253
8f1d26d0 1254void free_huge_page(struct page *page)
27a85ef1 1255{
a5516438
AK
1256 /*
1257 * Can't pass hstate in here because it is called from the
1258 * compound page destructor.
1259 */
e5ff2159 1260 struct hstate *h = page_hstate(page);
7893d1d5 1261 int nid = page_to_nid(page);
90481622
DG
1262 struct hugepage_subpool *spool =
1263 (struct hugepage_subpool *)page_private(page);
07443a85 1264 bool restore_reserve;
27a85ef1 1265
e5df70ab 1266 set_page_private(page, 0);
23be7468 1267 page->mapping = NULL;
b4330afb
MK
1268 VM_BUG_ON_PAGE(page_count(page), page);
1269 VM_BUG_ON_PAGE(page_mapcount(page), page);
07443a85 1270 restore_reserve = PagePrivate(page);
16c794b4 1271 ClearPagePrivate(page);
27a85ef1 1272
1c5ecae3
MK
1273 /*
1274 * A return code of zero implies that the subpool will be under its
1275 * minimum size if the reservation is not restored after page is free.
1276 * Therefore, force restore_reserve operation.
1277 */
1278 if (hugepage_subpool_put_pages(spool, 1) == 0)
1279 restore_reserve = true;
1280
27a85ef1 1281 spin_lock(&hugetlb_lock);
bcc54222 1282 clear_page_huge_active(page);
6d76dcf4
AK
1283 hugetlb_cgroup_uncharge_page(hstate_index(h),
1284 pages_per_huge_page(h), page);
07443a85
JK
1285 if (restore_reserve)
1286 h->resv_huge_pages++;
1287
944d9fec 1288 if (h->surplus_huge_pages_node[nid]) {
0edaecfa
AK
1289 /* remove the page from active list */
1290 list_del(&page->lru);
a5516438
AK
1291 update_and_free_page(h, page);
1292 h->surplus_huge_pages--;
1293 h->surplus_huge_pages_node[nid]--;
7893d1d5 1294 } else {
5d3a551c 1295 arch_clear_hugepage_flags(page);
a5516438 1296 enqueue_huge_page(h, page);
7893d1d5 1297 }
27a85ef1
DG
1298 spin_unlock(&hugetlb_lock);
1299}
1300
a5516438 1301static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 1302{
0edaecfa 1303 INIT_LIST_HEAD(&page->lru);
f1e61557 1304 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
b7ba30c6 1305 spin_lock(&hugetlb_lock);
9dd540e2 1306 set_hugetlb_cgroup(page, NULL);
a5516438
AK
1307 h->nr_huge_pages++;
1308 h->nr_huge_pages_node[nid]++;
b7ba30c6
AK
1309 spin_unlock(&hugetlb_lock);
1310 put_page(page); /* free it into the hugepage allocator */
1311}
1312
d00181b9 1313static void prep_compound_gigantic_page(struct page *page, unsigned int order)
20a0307c
WF
1314{
1315 int i;
1316 int nr_pages = 1 << order;
1317 struct page *p = page + 1;
1318
1319 /* we rely on prep_new_huge_page to set the destructor */
1320 set_compound_order(page, order);
ef5a22be 1321 __ClearPageReserved(page);
de09d31d 1322 __SetPageHead(page);
20a0307c 1323 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
ef5a22be
AA
1324 /*
1325 * For gigantic hugepages allocated through bootmem at
1326 * boot, it's safer to be consistent with the not-gigantic
1327 * hugepages and clear the PG_reserved bit from all tail pages
1328 * too. Otherwse drivers using get_user_pages() to access tail
1329 * pages may get the reference counting wrong if they see
1330 * PG_reserved set on a tail page (despite the head page not
1331 * having PG_reserved set). Enforcing this consistency between
1332 * head and tail pages allows drivers to optimize away a check
1333 * on the head page when they need know if put_page() is needed
1334 * after get_user_pages().
1335 */
1336 __ClearPageReserved(p);
58a84aa9 1337 set_page_count(p, 0);
1d798ca3 1338 set_compound_head(p, page);
20a0307c 1339 }
b4330afb 1340 atomic_set(compound_mapcount_ptr(page), -1);
20a0307c
WF
1341}
1342
7795912c
AM
1343/*
1344 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1345 * transparent huge pages. See the PageTransHuge() documentation for more
1346 * details.
1347 */
20a0307c
WF
1348int PageHuge(struct page *page)
1349{
20a0307c
WF
1350 if (!PageCompound(page))
1351 return 0;
1352
1353 page = compound_head(page);
f1e61557 1354 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
20a0307c 1355}
43131e14
NH
1356EXPORT_SYMBOL_GPL(PageHuge);
1357
27c73ae7
AA
1358/*
1359 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1360 * normal or transparent huge pages.
1361 */
1362int PageHeadHuge(struct page *page_head)
1363{
27c73ae7
AA
1364 if (!PageHead(page_head))
1365 return 0;
1366
758f66a2 1367 return get_compound_page_dtor(page_head) == free_huge_page;
27c73ae7 1368}
27c73ae7 1369
13d60f4b
ZY
1370pgoff_t __basepage_index(struct page *page)
1371{
1372 struct page *page_head = compound_head(page);
1373 pgoff_t index = page_index(page_head);
1374 unsigned long compound_idx;
1375
1376 if (!PageHuge(page_head))
1377 return page_index(page);
1378
1379 if (compound_order(page_head) >= MAX_ORDER)
1380 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1381 else
1382 compound_idx = page - page_head;
1383
1384 return (index << compound_order(page_head)) + compound_idx;
1385}
1386
a5516438 1387static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1da177e4 1388{
1da177e4 1389 struct page *page;
f96efd58 1390
96db800f 1391 page = __alloc_pages_node(nid,
86cdb465 1392 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
dcda9b04 1393 __GFP_RETRY_MAYFAIL|__GFP_NOWARN,
a5516438 1394 huge_page_order(h));
1da177e4 1395 if (page) {
a5516438 1396 prep_new_huge_page(h, page, nid);
1da177e4 1397 }
63b4613c
NA
1398
1399 return page;
1400}
1401
b2261026
JK
1402static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1403{
1404 struct page *page;
1405 int nr_nodes, node;
1406 int ret = 0;
1407
1408 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1409 page = alloc_fresh_huge_page_node(h, node);
1410 if (page) {
1411 ret = 1;
1412 break;
1413 }
1414 }
1415
1416 if (ret)
1417 count_vm_event(HTLB_BUDDY_PGALLOC);
1418 else
1419 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1420
1421 return ret;
1422}
1423
e8c5c824
LS
1424/*
1425 * Free huge page from pool from next node to free.
1426 * Attempt to keep persistent huge pages more or less
1427 * balanced over allowed nodes.
1428 * Called with hugetlb_lock locked.
1429 */
6ae11b27
LS
1430static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1431 bool acct_surplus)
e8c5c824 1432{
b2261026 1433 int nr_nodes, node;
e8c5c824
LS
1434 int ret = 0;
1435
b2261026 1436 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
1437 /*
1438 * If we're returning unused surplus pages, only examine
1439 * nodes with surplus pages.
1440 */
b2261026
JK
1441 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1442 !list_empty(&h->hugepage_freelists[node])) {
e8c5c824 1443 struct page *page =
b2261026 1444 list_entry(h->hugepage_freelists[node].next,
e8c5c824
LS
1445 struct page, lru);
1446 list_del(&page->lru);
1447 h->free_huge_pages--;
b2261026 1448 h->free_huge_pages_node[node]--;
685f3457
LS
1449 if (acct_surplus) {
1450 h->surplus_huge_pages--;
b2261026 1451 h->surplus_huge_pages_node[node]--;
685f3457 1452 }
e8c5c824
LS
1453 update_and_free_page(h, page);
1454 ret = 1;
9a76db09 1455 break;
e8c5c824 1456 }
b2261026 1457 }
e8c5c824
LS
1458
1459 return ret;
1460}
1461
c8721bbb
NH
1462/*
1463 * Dissolve a given free hugepage into free buddy pages. This function does
082d5b6b
GS
1464 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1465 * number of free hugepages would be reduced below the number of reserved
1466 * hugepages.
c8721bbb 1467 */
c3114a84 1468int dissolve_free_huge_page(struct page *page)
c8721bbb 1469{
082d5b6b
GS
1470 int rc = 0;
1471
c8721bbb
NH
1472 spin_lock(&hugetlb_lock);
1473 if (PageHuge(page) && !page_count(page)) {
2247bb33
GS
1474 struct page *head = compound_head(page);
1475 struct hstate *h = page_hstate(head);
1476 int nid = page_to_nid(head);
082d5b6b
GS
1477 if (h->free_huge_pages - h->resv_huge_pages == 0) {
1478 rc = -EBUSY;
1479 goto out;
1480 }
c3114a84
AK
1481 /*
1482 * Move PageHWPoison flag from head page to the raw error page,
1483 * which makes any subpages rather than the error page reusable.
1484 */
1485 if (PageHWPoison(head) && page != head) {
1486 SetPageHWPoison(page);
1487 ClearPageHWPoison(head);
1488 }
2247bb33 1489 list_del(&head->lru);
c8721bbb
NH
1490 h->free_huge_pages--;
1491 h->free_huge_pages_node[nid]--;
c1470b33 1492 h->max_huge_pages--;
2247bb33 1493 update_and_free_page(h, head);
c8721bbb 1494 }
082d5b6b 1495out:
c8721bbb 1496 spin_unlock(&hugetlb_lock);
082d5b6b 1497 return rc;
c8721bbb
NH
1498}
1499
1500/*
1501 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1502 * make specified memory blocks removable from the system.
2247bb33
GS
1503 * Note that this will dissolve a free gigantic hugepage completely, if any
1504 * part of it lies within the given range.
082d5b6b
GS
1505 * Also note that if dissolve_free_huge_page() returns with an error, all
1506 * free hugepages that were dissolved before that error are lost.
c8721bbb 1507 */
082d5b6b 1508int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
c8721bbb 1509{
c8721bbb 1510 unsigned long pfn;
eb03aa00 1511 struct page *page;
082d5b6b 1512 int rc = 0;
c8721bbb 1513
d0177639 1514 if (!hugepages_supported())
082d5b6b 1515 return rc;
d0177639 1516
eb03aa00
GS
1517 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1518 page = pfn_to_page(pfn);
1519 if (PageHuge(page) && !page_count(page)) {
1520 rc = dissolve_free_huge_page(page);
1521 if (rc)
1522 break;
1523 }
1524 }
082d5b6b
GS
1525
1526 return rc;
c8721bbb
NH
1527}
1528
099730d6 1529static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
aaf14e40 1530 gfp_t gfp_mask, int nid, nodemask_t *nmask)
099730d6
DH
1531{
1532 int order = huge_page_order(h);
099730d6 1533
dcda9b04 1534 gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
aaf14e40
MH
1535 if (nid == NUMA_NO_NODE)
1536 nid = numa_mem_id();
1537 return __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
099730d6
DH
1538}
1539
aaf14e40
MH
1540static struct page *__alloc_buddy_huge_page(struct hstate *h, gfp_t gfp_mask,
1541 int nid, nodemask_t *nmask)
7893d1d5
AL
1542{
1543 struct page *page;
bf50bab2 1544 unsigned int r_nid;
7893d1d5 1545
bae7f4ae 1546 if (hstate_is_gigantic(h))
aa888a74
AK
1547 return NULL;
1548
d1c3fb1f
NA
1549 /*
1550 * Assume we will successfully allocate the surplus page to
1551 * prevent racing processes from causing the surplus to exceed
1552 * overcommit
1553 *
1554 * This however introduces a different race, where a process B
1555 * tries to grow the static hugepage pool while alloc_pages() is
1556 * called by process A. B will only examine the per-node
1557 * counters in determining if surplus huge pages can be
1558 * converted to normal huge pages in adjust_pool_surplus(). A
1559 * won't be able to increment the per-node counter, until the
1560 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1561 * no more huge pages can be converted from surplus to normal
1562 * state (and doesn't try to convert again). Thus, we have a
1563 * case where a surplus huge page exists, the pool is grown, and
1564 * the surplus huge page still exists after, even though it
1565 * should just have been converted to a normal huge page. This
1566 * does not leak memory, though, as the hugepage will be freed
1567 * once it is out of use. It also does not allow the counters to
1568 * go out of whack in adjust_pool_surplus() as we don't modify
1569 * the node values until we've gotten the hugepage and only the
1570 * per-node value is checked there.
1571 */
1572 spin_lock(&hugetlb_lock);
a5516438 1573 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
d1c3fb1f
NA
1574 spin_unlock(&hugetlb_lock);
1575 return NULL;
1576 } else {
a5516438
AK
1577 h->nr_huge_pages++;
1578 h->surplus_huge_pages++;
d1c3fb1f
NA
1579 }
1580 spin_unlock(&hugetlb_lock);
1581
aaf14e40 1582 page = __hugetlb_alloc_buddy_huge_page(h, gfp_mask, nid, nmask);
d1c3fb1f
NA
1583
1584 spin_lock(&hugetlb_lock);
7893d1d5 1585 if (page) {
0edaecfa 1586 INIT_LIST_HEAD(&page->lru);
bf50bab2 1587 r_nid = page_to_nid(page);
f1e61557 1588 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
9dd540e2 1589 set_hugetlb_cgroup(page, NULL);
d1c3fb1f
NA
1590 /*
1591 * We incremented the global counters already
1592 */
bf50bab2
NH
1593 h->nr_huge_pages_node[r_nid]++;
1594 h->surplus_huge_pages_node[r_nid]++;
3b116300 1595 __count_vm_event(HTLB_BUDDY_PGALLOC);
d1c3fb1f 1596 } else {
a5516438
AK
1597 h->nr_huge_pages--;
1598 h->surplus_huge_pages--;
3b116300 1599 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
7893d1d5 1600 }
d1c3fb1f 1601 spin_unlock(&hugetlb_lock);
7893d1d5
AL
1602
1603 return page;
1604}
1605
099730d6
DH
1606/*
1607 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1608 */
e0ec90ee 1609static
099730d6
DH
1610struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1611 struct vm_area_struct *vma, unsigned long addr)
1612{
aaf14e40
MH
1613 struct page *page;
1614 struct mempolicy *mpol;
1615 gfp_t gfp_mask = htlb_alloc_mask(h);
1616 int nid;
1617 nodemask_t *nodemask;
1618
1619 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1620 page = __alloc_buddy_huge_page(h, gfp_mask, nid, nodemask);
1621 mpol_cond_put(mpol);
1622
1623 return page;
099730d6
DH
1624}
1625
bf50bab2
NH
1626/*
1627 * This allocation function is useful in the context where vma is irrelevant.
1628 * E.g. soft-offlining uses this function because it only cares physical
1629 * address of error page.
1630 */
1631struct page *alloc_huge_page_node(struct hstate *h, int nid)
1632{
aaf14e40 1633 gfp_t gfp_mask = htlb_alloc_mask(h);
4ef91848 1634 struct page *page = NULL;
bf50bab2 1635
aaf14e40
MH
1636 if (nid != NUMA_NO_NODE)
1637 gfp_mask |= __GFP_THISNODE;
1638
bf50bab2 1639 spin_lock(&hugetlb_lock);
4ef91848 1640 if (h->free_huge_pages - h->resv_huge_pages > 0)
3e59fcb0 1641 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
bf50bab2
NH
1642 spin_unlock(&hugetlb_lock);
1643
94ae8ba7 1644 if (!page)
aaf14e40 1645 page = __alloc_buddy_huge_page(h, gfp_mask, nid, NULL);
bf50bab2
NH
1646
1647 return page;
1648}
1649
3e59fcb0
MH
1650
1651struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1652 nodemask_t *nmask)
4db9b2ef 1653{
aaf14e40 1654 gfp_t gfp_mask = htlb_alloc_mask(h);
4db9b2ef
MH
1655
1656 spin_lock(&hugetlb_lock);
1657 if (h->free_huge_pages - h->resv_huge_pages > 0) {
3e59fcb0
MH
1658 struct page *page;
1659
1660 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1661 if (page) {
1662 spin_unlock(&hugetlb_lock);
1663 return page;
4db9b2ef
MH
1664 }
1665 }
1666 spin_unlock(&hugetlb_lock);
4db9b2ef
MH
1667
1668 /* No reservations, try to overcommit */
3e59fcb0
MH
1669
1670 return __alloc_buddy_huge_page(h, gfp_mask, preferred_nid, nmask);
4db9b2ef
MH
1671}
1672
e4e574b7 1673/*
25985edc 1674 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
1675 * of size 'delta'.
1676 */
a5516438 1677static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
1678{
1679 struct list_head surplus_list;
1680 struct page *page, *tmp;
1681 int ret, i;
1682 int needed, allocated;
28073b02 1683 bool alloc_ok = true;
e4e574b7 1684
a5516438 1685 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 1686 if (needed <= 0) {
a5516438 1687 h->resv_huge_pages += delta;
e4e574b7 1688 return 0;
ac09b3a1 1689 }
e4e574b7
AL
1690
1691 allocated = 0;
1692 INIT_LIST_HEAD(&surplus_list);
1693
1694 ret = -ENOMEM;
1695retry:
1696 spin_unlock(&hugetlb_lock);
1697 for (i = 0; i < needed; i++) {
aaf14e40
MH
1698 page = __alloc_buddy_huge_page(h, htlb_alloc_mask(h),
1699 NUMA_NO_NODE, NULL);
28073b02
HD
1700 if (!page) {
1701 alloc_ok = false;
1702 break;
1703 }
e4e574b7 1704 list_add(&page->lru, &surplus_list);
69ed779a 1705 cond_resched();
e4e574b7 1706 }
28073b02 1707 allocated += i;
e4e574b7
AL
1708
1709 /*
1710 * After retaking hugetlb_lock, we need to recalculate 'needed'
1711 * because either resv_huge_pages or free_huge_pages may have changed.
1712 */
1713 spin_lock(&hugetlb_lock);
a5516438
AK
1714 needed = (h->resv_huge_pages + delta) -
1715 (h->free_huge_pages + allocated);
28073b02
HD
1716 if (needed > 0) {
1717 if (alloc_ok)
1718 goto retry;
1719 /*
1720 * We were not able to allocate enough pages to
1721 * satisfy the entire reservation so we free what
1722 * we've allocated so far.
1723 */
1724 goto free;
1725 }
e4e574b7
AL
1726 /*
1727 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 1728 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 1729 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
1730 * allocator. Commit the entire reservation here to prevent another
1731 * process from stealing the pages as they are added to the pool but
1732 * before they are reserved.
e4e574b7
AL
1733 */
1734 needed += allocated;
a5516438 1735 h->resv_huge_pages += delta;
e4e574b7 1736 ret = 0;
a9869b83 1737
19fc3f0a 1738 /* Free the needed pages to the hugetlb pool */
e4e574b7 1739 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
1740 if ((--needed) < 0)
1741 break;
a9869b83
NH
1742 /*
1743 * This page is now managed by the hugetlb allocator and has
1744 * no users -- drop the buddy allocator's reference.
1745 */
1746 put_page_testzero(page);
309381fe 1747 VM_BUG_ON_PAGE(page_count(page), page);
a5516438 1748 enqueue_huge_page(h, page);
19fc3f0a 1749 }
28073b02 1750free:
b0365c8d 1751 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
1752
1753 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
1754 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1755 put_page(page);
a9869b83 1756 spin_lock(&hugetlb_lock);
e4e574b7
AL
1757
1758 return ret;
1759}
1760
1761/*
e5bbc8a6
MK
1762 * This routine has two main purposes:
1763 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1764 * in unused_resv_pages. This corresponds to the prior adjustments made
1765 * to the associated reservation map.
1766 * 2) Free any unused surplus pages that may have been allocated to satisfy
1767 * the reservation. As many as unused_resv_pages may be freed.
1768 *
1769 * Called with hugetlb_lock held. However, the lock could be dropped (and
1770 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1771 * we must make sure nobody else can claim pages we are in the process of
1772 * freeing. Do this by ensuring resv_huge_page always is greater than the
1773 * number of huge pages we plan to free when dropping the lock.
e4e574b7 1774 */
a5516438
AK
1775static void return_unused_surplus_pages(struct hstate *h,
1776 unsigned long unused_resv_pages)
e4e574b7 1777{
e4e574b7
AL
1778 unsigned long nr_pages;
1779
aa888a74 1780 /* Cannot return gigantic pages currently */
bae7f4ae 1781 if (hstate_is_gigantic(h))
e5bbc8a6 1782 goto out;
aa888a74 1783
e5bbc8a6
MK
1784 /*
1785 * Part (or even all) of the reservation could have been backed
1786 * by pre-allocated pages. Only free surplus pages.
1787 */
a5516438 1788 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 1789
685f3457
LS
1790 /*
1791 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
1792 * evenly across all nodes with memory. Iterate across these nodes
1793 * until we can no longer free unreserved surplus pages. This occurs
1794 * when the nodes with surplus pages have no free pages.
1795 * free_pool_huge_page() will balance the the freed pages across the
1796 * on-line nodes with memory and will handle the hstate accounting.
e5bbc8a6
MK
1797 *
1798 * Note that we decrement resv_huge_pages as we free the pages. If
1799 * we drop the lock, resv_huge_pages will still be sufficiently large
1800 * to cover subsequent pages we may free.
685f3457
LS
1801 */
1802 while (nr_pages--) {
e5bbc8a6
MK
1803 h->resv_huge_pages--;
1804 unused_resv_pages--;
8cebfcd0 1805 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
e5bbc8a6 1806 goto out;
7848a4bf 1807 cond_resched_lock(&hugetlb_lock);
e4e574b7 1808 }
e5bbc8a6
MK
1809
1810out:
1811 /* Fully uncommit the reservation */
1812 h->resv_huge_pages -= unused_resv_pages;
e4e574b7
AL
1813}
1814
5e911373 1815
c37f9fb1 1816/*
feba16e2 1817 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
5e911373 1818 * are used by the huge page allocation routines to manage reservations.
cf3ad20b
MK
1819 *
1820 * vma_needs_reservation is called to determine if the huge page at addr
1821 * within the vma has an associated reservation. If a reservation is
1822 * needed, the value 1 is returned. The caller is then responsible for
1823 * managing the global reservation and subpool usage counts. After
1824 * the huge page has been allocated, vma_commit_reservation is called
feba16e2
MK
1825 * to add the page to the reservation map. If the page allocation fails,
1826 * the reservation must be ended instead of committed. vma_end_reservation
1827 * is called in such cases.
cf3ad20b
MK
1828 *
1829 * In the normal case, vma_commit_reservation returns the same value
1830 * as the preceding vma_needs_reservation call. The only time this
1831 * is not the case is if a reserve map was changed between calls. It
1832 * is the responsibility of the caller to notice the difference and
1833 * take appropriate action.
96b96a96
MK
1834 *
1835 * vma_add_reservation is used in error paths where a reservation must
1836 * be restored when a newly allocated huge page must be freed. It is
1837 * to be called after calling vma_needs_reservation to determine if a
1838 * reservation exists.
c37f9fb1 1839 */
5e911373
MK
1840enum vma_resv_mode {
1841 VMA_NEEDS_RESV,
1842 VMA_COMMIT_RESV,
feba16e2 1843 VMA_END_RESV,
96b96a96 1844 VMA_ADD_RESV,
5e911373 1845};
cf3ad20b
MK
1846static long __vma_reservation_common(struct hstate *h,
1847 struct vm_area_struct *vma, unsigned long addr,
5e911373 1848 enum vma_resv_mode mode)
c37f9fb1 1849{
4e35f483
JK
1850 struct resv_map *resv;
1851 pgoff_t idx;
cf3ad20b 1852 long ret;
c37f9fb1 1853
4e35f483
JK
1854 resv = vma_resv_map(vma);
1855 if (!resv)
84afd99b 1856 return 1;
c37f9fb1 1857
4e35f483 1858 idx = vma_hugecache_offset(h, vma, addr);
5e911373
MK
1859 switch (mode) {
1860 case VMA_NEEDS_RESV:
cf3ad20b 1861 ret = region_chg(resv, idx, idx + 1);
5e911373
MK
1862 break;
1863 case VMA_COMMIT_RESV:
1864 ret = region_add(resv, idx, idx + 1);
1865 break;
feba16e2 1866 case VMA_END_RESV:
5e911373
MK
1867 region_abort(resv, idx, idx + 1);
1868 ret = 0;
1869 break;
96b96a96
MK
1870 case VMA_ADD_RESV:
1871 if (vma->vm_flags & VM_MAYSHARE)
1872 ret = region_add(resv, idx, idx + 1);
1873 else {
1874 region_abort(resv, idx, idx + 1);
1875 ret = region_del(resv, idx, idx + 1);
1876 }
1877 break;
5e911373
MK
1878 default:
1879 BUG();
1880 }
84afd99b 1881
4e35f483 1882 if (vma->vm_flags & VM_MAYSHARE)
cf3ad20b 1883 return ret;
67961f9d
MK
1884 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1885 /*
1886 * In most cases, reserves always exist for private mappings.
1887 * However, a file associated with mapping could have been
1888 * hole punched or truncated after reserves were consumed.
1889 * As subsequent fault on such a range will not use reserves.
1890 * Subtle - The reserve map for private mappings has the
1891 * opposite meaning than that of shared mappings. If NO
1892 * entry is in the reserve map, it means a reservation exists.
1893 * If an entry exists in the reserve map, it means the
1894 * reservation has already been consumed. As a result, the
1895 * return value of this routine is the opposite of the
1896 * value returned from reserve map manipulation routines above.
1897 */
1898 if (ret)
1899 return 0;
1900 else
1901 return 1;
1902 }
4e35f483 1903 else
cf3ad20b 1904 return ret < 0 ? ret : 0;
c37f9fb1 1905}
cf3ad20b
MK
1906
1907static long vma_needs_reservation(struct hstate *h,
a5516438 1908 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 1909{
5e911373 1910 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
cf3ad20b 1911}
84afd99b 1912
cf3ad20b
MK
1913static long vma_commit_reservation(struct hstate *h,
1914 struct vm_area_struct *vma, unsigned long addr)
1915{
5e911373
MK
1916 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1917}
1918
feba16e2 1919static void vma_end_reservation(struct hstate *h,
5e911373
MK
1920 struct vm_area_struct *vma, unsigned long addr)
1921{
feba16e2 1922 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
c37f9fb1
AW
1923}
1924
96b96a96
MK
1925static long vma_add_reservation(struct hstate *h,
1926 struct vm_area_struct *vma, unsigned long addr)
1927{
1928 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1929}
1930
1931/*
1932 * This routine is called to restore a reservation on error paths. In the
1933 * specific error paths, a huge page was allocated (via alloc_huge_page)
1934 * and is about to be freed. If a reservation for the page existed,
1935 * alloc_huge_page would have consumed the reservation and set PagePrivate
1936 * in the newly allocated page. When the page is freed via free_huge_page,
1937 * the global reservation count will be incremented if PagePrivate is set.
1938 * However, free_huge_page can not adjust the reserve map. Adjust the
1939 * reserve map here to be consistent with global reserve count adjustments
1940 * to be made by free_huge_page.
1941 */
1942static void restore_reserve_on_error(struct hstate *h,
1943 struct vm_area_struct *vma, unsigned long address,
1944 struct page *page)
1945{
1946 if (unlikely(PagePrivate(page))) {
1947 long rc = vma_needs_reservation(h, vma, address);
1948
1949 if (unlikely(rc < 0)) {
1950 /*
1951 * Rare out of memory condition in reserve map
1952 * manipulation. Clear PagePrivate so that
1953 * global reserve count will not be incremented
1954 * by free_huge_page. This will make it appear
1955 * as though the reservation for this page was
1956 * consumed. This may prevent the task from
1957 * faulting in the page at a later time. This
1958 * is better than inconsistent global huge page
1959 * accounting of reserve counts.
1960 */
1961 ClearPagePrivate(page);
1962 } else if (rc) {
1963 rc = vma_add_reservation(h, vma, address);
1964 if (unlikely(rc < 0))
1965 /*
1966 * See above comment about rare out of
1967 * memory condition.
1968 */
1969 ClearPagePrivate(page);
1970 } else
1971 vma_end_reservation(h, vma, address);
1972 }
1973}
1974
70c3547e 1975struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 1976 unsigned long addr, int avoid_reserve)
1da177e4 1977{
90481622 1978 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 1979 struct hstate *h = hstate_vma(vma);
348ea204 1980 struct page *page;
d85f69b0
MK
1981 long map_chg, map_commit;
1982 long gbl_chg;
6d76dcf4
AK
1983 int ret, idx;
1984 struct hugetlb_cgroup *h_cg;
a1e78772 1985
6d76dcf4 1986 idx = hstate_index(h);
a1e78772 1987 /*
d85f69b0
MK
1988 * Examine the region/reserve map to determine if the process
1989 * has a reservation for the page to be allocated. A return
1990 * code of zero indicates a reservation exists (no change).
a1e78772 1991 */
d85f69b0
MK
1992 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
1993 if (map_chg < 0)
76dcee75 1994 return ERR_PTR(-ENOMEM);
d85f69b0
MK
1995
1996 /*
1997 * Processes that did not create the mapping will have no
1998 * reserves as indicated by the region/reserve map. Check
1999 * that the allocation will not exceed the subpool limit.
2000 * Allocations for MAP_NORESERVE mappings also need to be
2001 * checked against any subpool limit.
2002 */
2003 if (map_chg || avoid_reserve) {
2004 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2005 if (gbl_chg < 0) {
feba16e2 2006 vma_end_reservation(h, vma, addr);
76dcee75 2007 return ERR_PTR(-ENOSPC);
5e911373 2008 }
1da177e4 2009
d85f69b0
MK
2010 /*
2011 * Even though there was no reservation in the region/reserve
2012 * map, there could be reservations associated with the
2013 * subpool that can be used. This would be indicated if the
2014 * return value of hugepage_subpool_get_pages() is zero.
2015 * However, if avoid_reserve is specified we still avoid even
2016 * the subpool reservations.
2017 */
2018 if (avoid_reserve)
2019 gbl_chg = 1;
2020 }
2021
6d76dcf4 2022 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
8f34af6f
JZ
2023 if (ret)
2024 goto out_subpool_put;
2025
1da177e4 2026 spin_lock(&hugetlb_lock);
d85f69b0
MK
2027 /*
2028 * glb_chg is passed to indicate whether or not a page must be taken
2029 * from the global free pool (global change). gbl_chg == 0 indicates
2030 * a reservation exists for the allocation.
2031 */
2032 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
81a6fcae 2033 if (!page) {
94ae8ba7 2034 spin_unlock(&hugetlb_lock);
099730d6 2035 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
8f34af6f
JZ
2036 if (!page)
2037 goto out_uncharge_cgroup;
a88c7695
NH
2038 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2039 SetPagePrivate(page);
2040 h->resv_huge_pages--;
2041 }
79dbb236
AK
2042 spin_lock(&hugetlb_lock);
2043 list_move(&page->lru, &h->hugepage_activelist);
81a6fcae 2044 /* Fall through */
68842c9b 2045 }
81a6fcae
JK
2046 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2047 spin_unlock(&hugetlb_lock);
348ea204 2048
90481622 2049 set_page_private(page, (unsigned long)spool);
90d8b7e6 2050
d85f69b0
MK
2051 map_commit = vma_commit_reservation(h, vma, addr);
2052 if (unlikely(map_chg > map_commit)) {
33039678
MK
2053 /*
2054 * The page was added to the reservation map between
2055 * vma_needs_reservation and vma_commit_reservation.
2056 * This indicates a race with hugetlb_reserve_pages.
2057 * Adjust for the subpool count incremented above AND
2058 * in hugetlb_reserve_pages for the same page. Also,
2059 * the reservation count added in hugetlb_reserve_pages
2060 * no longer applies.
2061 */
2062 long rsv_adjust;
2063
2064 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2065 hugetlb_acct_memory(h, -rsv_adjust);
2066 }
90d8b7e6 2067 return page;
8f34af6f
JZ
2068
2069out_uncharge_cgroup:
2070 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2071out_subpool_put:
d85f69b0 2072 if (map_chg || avoid_reserve)
8f34af6f 2073 hugepage_subpool_put_pages(spool, 1);
feba16e2 2074 vma_end_reservation(h, vma, addr);
8f34af6f 2075 return ERR_PTR(-ENOSPC);
b45b5bd6
DG
2076}
2077
74060e4d
NH
2078/*
2079 * alloc_huge_page()'s wrapper which simply returns the page if allocation
2080 * succeeds, otherwise NULL. This function is called from new_vma_page(),
2081 * where no ERR_VALUE is expected to be returned.
2082 */
2083struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
2084 unsigned long addr, int avoid_reserve)
2085{
2086 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
2087 if (IS_ERR(page))
2088 page = NULL;
2089 return page;
2090}
2091
e24a1307
AK
2092int alloc_bootmem_huge_page(struct hstate *h)
2093 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2094int __alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
2095{
2096 struct huge_bootmem_page *m;
b2261026 2097 int nr_nodes, node;
aa888a74 2098
b2261026 2099 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
2100 void *addr;
2101
8b89a116
GS
2102 addr = memblock_virt_alloc_try_nid_nopanic(
2103 huge_page_size(h), huge_page_size(h),
2104 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
aa888a74
AK
2105 if (addr) {
2106 /*
2107 * Use the beginning of the huge page to store the
2108 * huge_bootmem_page struct (until gather_bootmem
2109 * puts them into the mem_map).
2110 */
2111 m = addr;
91f47662 2112 goto found;
aa888a74 2113 }
aa888a74
AK
2114 }
2115 return 0;
2116
2117found:
df994ead 2118 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
aa888a74
AK
2119 /* Put them into a private list first because mem_map is not up yet */
2120 list_add(&m->list, &huge_boot_pages);
2121 m->hstate = h;
2122 return 1;
2123}
2124
d00181b9
KS
2125static void __init prep_compound_huge_page(struct page *page,
2126 unsigned int order)
18229df5
AW
2127{
2128 if (unlikely(order > (MAX_ORDER - 1)))
2129 prep_compound_gigantic_page(page, order);
2130 else
2131 prep_compound_page(page, order);
2132}
2133
aa888a74
AK
2134/* Put bootmem huge pages into the standard lists after mem_map is up */
2135static void __init gather_bootmem_prealloc(void)
2136{
2137 struct huge_bootmem_page *m;
2138
2139 list_for_each_entry(m, &huge_boot_pages, list) {
aa888a74 2140 struct hstate *h = m->hstate;
ee8f248d
BB
2141 struct page *page;
2142
2143#ifdef CONFIG_HIGHMEM
2144 page = pfn_to_page(m->phys >> PAGE_SHIFT);
8b89a116
GS
2145 memblock_free_late(__pa(m),
2146 sizeof(struct huge_bootmem_page));
ee8f248d
BB
2147#else
2148 page = virt_to_page(m);
2149#endif
aa888a74 2150 WARN_ON(page_count(page) != 1);
18229df5 2151 prep_compound_huge_page(page, h->order);
ef5a22be 2152 WARN_ON(PageReserved(page));
aa888a74 2153 prep_new_huge_page(h, page, page_to_nid(page));
b0320c7b
RA
2154 /*
2155 * If we had gigantic hugepages allocated at boot time, we need
2156 * to restore the 'stolen' pages to totalram_pages in order to
2157 * fix confusing memory reports from free(1) and another
2158 * side-effects, like CommitLimit going negative.
2159 */
bae7f4ae 2160 if (hstate_is_gigantic(h))
3dcc0571 2161 adjust_managed_page_count(page, 1 << h->order);
bac593cd 2162 cond_resched();
aa888a74
AK
2163 }
2164}
2165
8faa8b07 2166static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
2167{
2168 unsigned long i;
a5516438 2169
e5ff2159 2170 for (i = 0; i < h->max_huge_pages; ++i) {
bae7f4ae 2171 if (hstate_is_gigantic(h)) {
aa888a74
AK
2172 if (!alloc_bootmem_huge_page(h))
2173 break;
9b5e5d0f 2174 } else if (!alloc_fresh_huge_page(h,
8cebfcd0 2175 &node_states[N_MEMORY]))
1da177e4 2176 break;
69ed779a 2177 cond_resched();
1da177e4 2178 }
d715cf80
LH
2179 if (i < h->max_huge_pages) {
2180 char buf[32];
2181
c6247f72 2182 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
d715cf80
LH
2183 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2184 h->max_huge_pages, buf, i);
2185 h->max_huge_pages = i;
2186 }
e5ff2159
AK
2187}
2188
2189static void __init hugetlb_init_hstates(void)
2190{
2191 struct hstate *h;
2192
2193 for_each_hstate(h) {
641844f5
NH
2194 if (minimum_order > huge_page_order(h))
2195 minimum_order = huge_page_order(h);
2196
8faa8b07 2197 /* oversize hugepages were init'ed in early boot */
bae7f4ae 2198 if (!hstate_is_gigantic(h))
8faa8b07 2199 hugetlb_hstate_alloc_pages(h);
e5ff2159 2200 }
641844f5 2201 VM_BUG_ON(minimum_order == UINT_MAX);
e5ff2159
AK
2202}
2203
2204static void __init report_hugepages(void)
2205{
2206 struct hstate *h;
2207
2208 for_each_hstate(h) {
4abd32db 2209 char buf[32];
c6247f72
MW
2210
2211 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
ffb22af5 2212 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
c6247f72 2213 buf, h->free_huge_pages);
e5ff2159
AK
2214 }
2215}
2216
1da177e4 2217#ifdef CONFIG_HIGHMEM
6ae11b27
LS
2218static void try_to_free_low(struct hstate *h, unsigned long count,
2219 nodemask_t *nodes_allowed)
1da177e4 2220{
4415cc8d
CL
2221 int i;
2222
bae7f4ae 2223 if (hstate_is_gigantic(h))
aa888a74
AK
2224 return;
2225
6ae11b27 2226 for_each_node_mask(i, *nodes_allowed) {
1da177e4 2227 struct page *page, *next;
a5516438
AK
2228 struct list_head *freel = &h->hugepage_freelists[i];
2229 list_for_each_entry_safe(page, next, freel, lru) {
2230 if (count >= h->nr_huge_pages)
6b0c880d 2231 return;
1da177e4
LT
2232 if (PageHighMem(page))
2233 continue;
2234 list_del(&page->lru);
e5ff2159 2235 update_and_free_page(h, page);
a5516438
AK
2236 h->free_huge_pages--;
2237 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
2238 }
2239 }
2240}
2241#else
6ae11b27
LS
2242static inline void try_to_free_low(struct hstate *h, unsigned long count,
2243 nodemask_t *nodes_allowed)
1da177e4
LT
2244{
2245}
2246#endif
2247
20a0307c
WF
2248/*
2249 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2250 * balanced by operating on them in a round-robin fashion.
2251 * Returns 1 if an adjustment was made.
2252 */
6ae11b27
LS
2253static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2254 int delta)
20a0307c 2255{
b2261026 2256 int nr_nodes, node;
20a0307c
WF
2257
2258 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 2259
b2261026
JK
2260 if (delta < 0) {
2261 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2262 if (h->surplus_huge_pages_node[node])
2263 goto found;
e8c5c824 2264 }
b2261026
JK
2265 } else {
2266 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2267 if (h->surplus_huge_pages_node[node] <
2268 h->nr_huge_pages_node[node])
2269 goto found;
e8c5c824 2270 }
b2261026
JK
2271 }
2272 return 0;
20a0307c 2273
b2261026
JK
2274found:
2275 h->surplus_huge_pages += delta;
2276 h->surplus_huge_pages_node[node] += delta;
2277 return 1;
20a0307c
WF
2278}
2279
a5516438 2280#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
6ae11b27
LS
2281static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2282 nodemask_t *nodes_allowed)
1da177e4 2283{
7893d1d5 2284 unsigned long min_count, ret;
1da177e4 2285
944d9fec 2286 if (hstate_is_gigantic(h) && !gigantic_page_supported())
aa888a74
AK
2287 return h->max_huge_pages;
2288
7893d1d5
AL
2289 /*
2290 * Increase the pool size
2291 * First take pages out of surplus state. Then make up the
2292 * remaining difference by allocating fresh huge pages.
d1c3fb1f 2293 *
d15c7c09 2294 * We might race with __alloc_buddy_huge_page() here and be unable
d1c3fb1f
NA
2295 * to convert a surplus huge page to a normal huge page. That is
2296 * not critical, though, it just means the overall size of the
2297 * pool might be one hugepage larger than it needs to be, but
2298 * within all the constraints specified by the sysctls.
7893d1d5 2299 */
1da177e4 2300 spin_lock(&hugetlb_lock);
a5516438 2301 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 2302 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
2303 break;
2304 }
2305
a5516438 2306 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
2307 /*
2308 * If this allocation races such that we no longer need the
2309 * page, free_huge_page will handle it by freeing the page
2310 * and reducing the surplus.
2311 */
2312 spin_unlock(&hugetlb_lock);
649920c6
JH
2313
2314 /* yield cpu to avoid soft lockup */
2315 cond_resched();
2316
944d9fec
LC
2317 if (hstate_is_gigantic(h))
2318 ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2319 else
2320 ret = alloc_fresh_huge_page(h, nodes_allowed);
7893d1d5
AL
2321 spin_lock(&hugetlb_lock);
2322 if (!ret)
2323 goto out;
2324
536240f2
MG
2325 /* Bail for signals. Probably ctrl-c from user */
2326 if (signal_pending(current))
2327 goto out;
7893d1d5 2328 }
7893d1d5
AL
2329
2330 /*
2331 * Decrease the pool size
2332 * First return free pages to the buddy allocator (being careful
2333 * to keep enough around to satisfy reservations). Then place
2334 * pages into surplus state as needed so the pool will shrink
2335 * to the desired size as pages become free.
d1c3fb1f
NA
2336 *
2337 * By placing pages into the surplus state independent of the
2338 * overcommit value, we are allowing the surplus pool size to
2339 * exceed overcommit. There are few sane options here. Since
d15c7c09 2340 * __alloc_buddy_huge_page() is checking the global counter,
d1c3fb1f
NA
2341 * though, we'll note that we're not allowed to exceed surplus
2342 * and won't grow the pool anywhere else. Not until one of the
2343 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 2344 */
a5516438 2345 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 2346 min_count = max(count, min_count);
6ae11b27 2347 try_to_free_low(h, min_count, nodes_allowed);
a5516438 2348 while (min_count < persistent_huge_pages(h)) {
6ae11b27 2349 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 2350 break;
55f67141 2351 cond_resched_lock(&hugetlb_lock);
1da177e4 2352 }
a5516438 2353 while (count < persistent_huge_pages(h)) {
6ae11b27 2354 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
2355 break;
2356 }
2357out:
a5516438 2358 ret = persistent_huge_pages(h);
1da177e4 2359 spin_unlock(&hugetlb_lock);
7893d1d5 2360 return ret;
1da177e4
LT
2361}
2362
a3437870
NA
2363#define HSTATE_ATTR_RO(_name) \
2364 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2365
2366#define HSTATE_ATTR(_name) \
2367 static struct kobj_attribute _name##_attr = \
2368 __ATTR(_name, 0644, _name##_show, _name##_store)
2369
2370static struct kobject *hugepages_kobj;
2371static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2372
9a305230
LS
2373static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2374
2375static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
2376{
2377 int i;
9a305230 2378
a3437870 2379 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
2380 if (hstate_kobjs[i] == kobj) {
2381 if (nidp)
2382 *nidp = NUMA_NO_NODE;
a3437870 2383 return &hstates[i];
9a305230
LS
2384 }
2385
2386 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
2387}
2388
06808b08 2389static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
2390 struct kobj_attribute *attr, char *buf)
2391{
9a305230
LS
2392 struct hstate *h;
2393 unsigned long nr_huge_pages;
2394 int nid;
2395
2396 h = kobj_to_hstate(kobj, &nid);
2397 if (nid == NUMA_NO_NODE)
2398 nr_huge_pages = h->nr_huge_pages;
2399 else
2400 nr_huge_pages = h->nr_huge_pages_node[nid];
2401
2402 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 2403}
adbe8726 2404
238d3c13
DR
2405static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2406 struct hstate *h, int nid,
2407 unsigned long count, size_t len)
a3437870
NA
2408{
2409 int err;
bad44b5b 2410 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
a3437870 2411
944d9fec 2412 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
adbe8726
EM
2413 err = -EINVAL;
2414 goto out;
2415 }
2416
9a305230
LS
2417 if (nid == NUMA_NO_NODE) {
2418 /*
2419 * global hstate attribute
2420 */
2421 if (!(obey_mempolicy &&
2422 init_nodemask_of_mempolicy(nodes_allowed))) {
2423 NODEMASK_FREE(nodes_allowed);
8cebfcd0 2424 nodes_allowed = &node_states[N_MEMORY];
9a305230
LS
2425 }
2426 } else if (nodes_allowed) {
2427 /*
2428 * per node hstate attribute: adjust count to global,
2429 * but restrict alloc/free to the specified node.
2430 */
2431 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2432 init_nodemask_of_node(nodes_allowed, nid);
2433 } else
8cebfcd0 2434 nodes_allowed = &node_states[N_MEMORY];
9a305230 2435
06808b08 2436 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
a3437870 2437
8cebfcd0 2438 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
2439 NODEMASK_FREE(nodes_allowed);
2440
2441 return len;
adbe8726
EM
2442out:
2443 NODEMASK_FREE(nodes_allowed);
2444 return err;
06808b08
LS
2445}
2446
238d3c13
DR
2447static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2448 struct kobject *kobj, const char *buf,
2449 size_t len)
2450{
2451 struct hstate *h;
2452 unsigned long count;
2453 int nid;
2454 int err;
2455
2456 err = kstrtoul(buf, 10, &count);
2457 if (err)
2458 return err;
2459
2460 h = kobj_to_hstate(kobj, &nid);
2461 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2462}
2463
06808b08
LS
2464static ssize_t nr_hugepages_show(struct kobject *kobj,
2465 struct kobj_attribute *attr, char *buf)
2466{
2467 return nr_hugepages_show_common(kobj, attr, buf);
2468}
2469
2470static ssize_t nr_hugepages_store(struct kobject *kobj,
2471 struct kobj_attribute *attr, const char *buf, size_t len)
2472{
238d3c13 2473 return nr_hugepages_store_common(false, kobj, buf, len);
a3437870
NA
2474}
2475HSTATE_ATTR(nr_hugepages);
2476
06808b08
LS
2477#ifdef CONFIG_NUMA
2478
2479/*
2480 * hstate attribute for optionally mempolicy-based constraint on persistent
2481 * huge page alloc/free.
2482 */
2483static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2484 struct kobj_attribute *attr, char *buf)
2485{
2486 return nr_hugepages_show_common(kobj, attr, buf);
2487}
2488
2489static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2490 struct kobj_attribute *attr, const char *buf, size_t len)
2491{
238d3c13 2492 return nr_hugepages_store_common(true, kobj, buf, len);
06808b08
LS
2493}
2494HSTATE_ATTR(nr_hugepages_mempolicy);
2495#endif
2496
2497
a3437870
NA
2498static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2499 struct kobj_attribute *attr, char *buf)
2500{
9a305230 2501 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2502 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2503}
adbe8726 2504
a3437870
NA
2505static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2506 struct kobj_attribute *attr, const char *buf, size_t count)
2507{
2508 int err;
2509 unsigned long input;
9a305230 2510 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 2511
bae7f4ae 2512 if (hstate_is_gigantic(h))
adbe8726
EM
2513 return -EINVAL;
2514
3dbb95f7 2515 err = kstrtoul(buf, 10, &input);
a3437870 2516 if (err)
73ae31e5 2517 return err;
a3437870
NA
2518
2519 spin_lock(&hugetlb_lock);
2520 h->nr_overcommit_huge_pages = input;
2521 spin_unlock(&hugetlb_lock);
2522
2523 return count;
2524}
2525HSTATE_ATTR(nr_overcommit_hugepages);
2526
2527static ssize_t free_hugepages_show(struct kobject *kobj,
2528 struct kobj_attribute *attr, char *buf)
2529{
9a305230
LS
2530 struct hstate *h;
2531 unsigned long free_huge_pages;
2532 int nid;
2533
2534 h = kobj_to_hstate(kobj, &nid);
2535 if (nid == NUMA_NO_NODE)
2536 free_huge_pages = h->free_huge_pages;
2537 else
2538 free_huge_pages = h->free_huge_pages_node[nid];
2539
2540 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
2541}
2542HSTATE_ATTR_RO(free_hugepages);
2543
2544static ssize_t resv_hugepages_show(struct kobject *kobj,
2545 struct kobj_attribute *attr, char *buf)
2546{
9a305230 2547 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2548 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2549}
2550HSTATE_ATTR_RO(resv_hugepages);
2551
2552static ssize_t surplus_hugepages_show(struct kobject *kobj,
2553 struct kobj_attribute *attr, char *buf)
2554{
9a305230
LS
2555 struct hstate *h;
2556 unsigned long surplus_huge_pages;
2557 int nid;
2558
2559 h = kobj_to_hstate(kobj, &nid);
2560 if (nid == NUMA_NO_NODE)
2561 surplus_huge_pages = h->surplus_huge_pages;
2562 else
2563 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2564
2565 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
2566}
2567HSTATE_ATTR_RO(surplus_hugepages);
2568
2569static struct attribute *hstate_attrs[] = {
2570 &nr_hugepages_attr.attr,
2571 &nr_overcommit_hugepages_attr.attr,
2572 &free_hugepages_attr.attr,
2573 &resv_hugepages_attr.attr,
2574 &surplus_hugepages_attr.attr,
06808b08
LS
2575#ifdef CONFIG_NUMA
2576 &nr_hugepages_mempolicy_attr.attr,
2577#endif
a3437870
NA
2578 NULL,
2579};
2580
67e5ed96 2581static const struct attribute_group hstate_attr_group = {
a3437870
NA
2582 .attrs = hstate_attrs,
2583};
2584
094e9539
JM
2585static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2586 struct kobject **hstate_kobjs,
67e5ed96 2587 const struct attribute_group *hstate_attr_group)
a3437870
NA
2588{
2589 int retval;
972dc4de 2590 int hi = hstate_index(h);
a3437870 2591
9a305230
LS
2592 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2593 if (!hstate_kobjs[hi])
a3437870
NA
2594 return -ENOMEM;
2595
9a305230 2596 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 2597 if (retval)
9a305230 2598 kobject_put(hstate_kobjs[hi]);
a3437870
NA
2599
2600 return retval;
2601}
2602
2603static void __init hugetlb_sysfs_init(void)
2604{
2605 struct hstate *h;
2606 int err;
2607
2608 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2609 if (!hugepages_kobj)
2610 return;
2611
2612 for_each_hstate(h) {
9a305230
LS
2613 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2614 hstate_kobjs, &hstate_attr_group);
a3437870 2615 if (err)
ffb22af5 2616 pr_err("Hugetlb: Unable to add hstate %s", h->name);
a3437870
NA
2617 }
2618}
2619
9a305230
LS
2620#ifdef CONFIG_NUMA
2621
2622/*
2623 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
2624 * with node devices in node_devices[] using a parallel array. The array
2625 * index of a node device or _hstate == node id.
2626 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
2627 * the base kernel, on the hugetlb module.
2628 */
2629struct node_hstate {
2630 struct kobject *hugepages_kobj;
2631 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2632};
b4e289a6 2633static struct node_hstate node_hstates[MAX_NUMNODES];
9a305230
LS
2634
2635/*
10fbcf4c 2636 * A subset of global hstate attributes for node devices
9a305230
LS
2637 */
2638static struct attribute *per_node_hstate_attrs[] = {
2639 &nr_hugepages_attr.attr,
2640 &free_hugepages_attr.attr,
2641 &surplus_hugepages_attr.attr,
2642 NULL,
2643};
2644
67e5ed96 2645static const struct attribute_group per_node_hstate_attr_group = {
9a305230
LS
2646 .attrs = per_node_hstate_attrs,
2647};
2648
2649/*
10fbcf4c 2650 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
2651 * Returns node id via non-NULL nidp.
2652 */
2653static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2654{
2655 int nid;
2656
2657 for (nid = 0; nid < nr_node_ids; nid++) {
2658 struct node_hstate *nhs = &node_hstates[nid];
2659 int i;
2660 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2661 if (nhs->hstate_kobjs[i] == kobj) {
2662 if (nidp)
2663 *nidp = nid;
2664 return &hstates[i];
2665 }
2666 }
2667
2668 BUG();
2669 return NULL;
2670}
2671
2672/*
10fbcf4c 2673 * Unregister hstate attributes from a single node device.
9a305230
LS
2674 * No-op if no hstate attributes attached.
2675 */
3cd8b44f 2676static void hugetlb_unregister_node(struct node *node)
9a305230
LS
2677{
2678 struct hstate *h;
10fbcf4c 2679 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2680
2681 if (!nhs->hugepages_kobj)
9b5e5d0f 2682 return; /* no hstate attributes */
9a305230 2683
972dc4de
AK
2684 for_each_hstate(h) {
2685 int idx = hstate_index(h);
2686 if (nhs->hstate_kobjs[idx]) {
2687 kobject_put(nhs->hstate_kobjs[idx]);
2688 nhs->hstate_kobjs[idx] = NULL;
9a305230 2689 }
972dc4de 2690 }
9a305230
LS
2691
2692 kobject_put(nhs->hugepages_kobj);
2693 nhs->hugepages_kobj = NULL;
2694}
2695
9a305230
LS
2696
2697/*
10fbcf4c 2698 * Register hstate attributes for a single node device.
9a305230
LS
2699 * No-op if attributes already registered.
2700 */
3cd8b44f 2701static void hugetlb_register_node(struct node *node)
9a305230
LS
2702{
2703 struct hstate *h;
10fbcf4c 2704 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2705 int err;
2706
2707 if (nhs->hugepages_kobj)
2708 return; /* already allocated */
2709
2710 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 2711 &node->dev.kobj);
9a305230
LS
2712 if (!nhs->hugepages_kobj)
2713 return;
2714
2715 for_each_hstate(h) {
2716 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2717 nhs->hstate_kobjs,
2718 &per_node_hstate_attr_group);
2719 if (err) {
ffb22af5
AM
2720 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2721 h->name, node->dev.id);
9a305230
LS
2722 hugetlb_unregister_node(node);
2723 break;
2724 }
2725 }
2726}
2727
2728/*
9b5e5d0f 2729 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
2730 * devices of nodes that have memory. All on-line nodes should have
2731 * registered their associated device by this time.
9a305230 2732 */
7d9ca000 2733static void __init hugetlb_register_all_nodes(void)
9a305230
LS
2734{
2735 int nid;
2736
8cebfcd0 2737 for_each_node_state(nid, N_MEMORY) {
8732794b 2738 struct node *node = node_devices[nid];
10fbcf4c 2739 if (node->dev.id == nid)
9a305230
LS
2740 hugetlb_register_node(node);
2741 }
2742
2743 /*
10fbcf4c 2744 * Let the node device driver know we're here so it can
9a305230
LS
2745 * [un]register hstate attributes on node hotplug.
2746 */
2747 register_hugetlbfs_with_node(hugetlb_register_node,
2748 hugetlb_unregister_node);
2749}
2750#else /* !CONFIG_NUMA */
2751
2752static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2753{
2754 BUG();
2755 if (nidp)
2756 *nidp = -1;
2757 return NULL;
2758}
2759
9a305230
LS
2760static void hugetlb_register_all_nodes(void) { }
2761
2762#endif
2763
a3437870
NA
2764static int __init hugetlb_init(void)
2765{
8382d914
DB
2766 int i;
2767
457c1b27 2768 if (!hugepages_supported())
0ef89d25 2769 return 0;
a3437870 2770
e11bfbfc 2771 if (!size_to_hstate(default_hstate_size)) {
d715cf80
LH
2772 if (default_hstate_size != 0) {
2773 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2774 default_hstate_size, HPAGE_SIZE);
2775 }
2776
e11bfbfc
NP
2777 default_hstate_size = HPAGE_SIZE;
2778 if (!size_to_hstate(default_hstate_size))
2779 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 2780 }
972dc4de 2781 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
f8b74815
VT
2782 if (default_hstate_max_huge_pages) {
2783 if (!default_hstate.max_huge_pages)
2784 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2785 }
a3437870
NA
2786
2787 hugetlb_init_hstates();
aa888a74 2788 gather_bootmem_prealloc();
a3437870
NA
2789 report_hugepages();
2790
2791 hugetlb_sysfs_init();
9a305230 2792 hugetlb_register_all_nodes();
7179e7bf 2793 hugetlb_cgroup_file_init();
9a305230 2794
8382d914
DB
2795#ifdef CONFIG_SMP
2796 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2797#else
2798 num_fault_mutexes = 1;
2799#endif
c672c7f2 2800 hugetlb_fault_mutex_table =
8382d914 2801 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
c672c7f2 2802 BUG_ON(!hugetlb_fault_mutex_table);
8382d914
DB
2803
2804 for (i = 0; i < num_fault_mutexes; i++)
c672c7f2 2805 mutex_init(&hugetlb_fault_mutex_table[i]);
a3437870
NA
2806 return 0;
2807}
3e89e1c5 2808subsys_initcall(hugetlb_init);
a3437870
NA
2809
2810/* Should be called on processing a hugepagesz=... option */
9fee021d
VT
2811void __init hugetlb_bad_size(void)
2812{
2813 parsed_valid_hugepagesz = false;
2814}
2815
d00181b9 2816void __init hugetlb_add_hstate(unsigned int order)
a3437870
NA
2817{
2818 struct hstate *h;
8faa8b07
AK
2819 unsigned long i;
2820
a3437870 2821 if (size_to_hstate(PAGE_SIZE << order)) {
598d8091 2822 pr_warn("hugepagesz= specified twice, ignoring\n");
a3437870
NA
2823 return;
2824 }
47d38344 2825 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 2826 BUG_ON(order == 0);
47d38344 2827 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
2828 h->order = order;
2829 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
2830 h->nr_huge_pages = 0;
2831 h->free_huge_pages = 0;
2832 for (i = 0; i < MAX_NUMNODES; ++i)
2833 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 2834 INIT_LIST_HEAD(&h->hugepage_activelist);
54f18d35
AM
2835 h->next_nid_to_alloc = first_memory_node;
2836 h->next_nid_to_free = first_memory_node;
a3437870
NA
2837 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2838 huge_page_size(h)/1024);
8faa8b07 2839
a3437870
NA
2840 parsed_hstate = h;
2841}
2842
e11bfbfc 2843static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
2844{
2845 unsigned long *mhp;
8faa8b07 2846 static unsigned long *last_mhp;
a3437870 2847
9fee021d
VT
2848 if (!parsed_valid_hugepagesz) {
2849 pr_warn("hugepages = %s preceded by "
2850 "an unsupported hugepagesz, ignoring\n", s);
2851 parsed_valid_hugepagesz = true;
2852 return 1;
2853 }
a3437870 2854 /*
47d38344 2855 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
a3437870
NA
2856 * so this hugepages= parameter goes to the "default hstate".
2857 */
9fee021d 2858 else if (!hugetlb_max_hstate)
a3437870
NA
2859 mhp = &default_hstate_max_huge_pages;
2860 else
2861 mhp = &parsed_hstate->max_huge_pages;
2862
8faa8b07 2863 if (mhp == last_mhp) {
598d8091 2864 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
8faa8b07
AK
2865 return 1;
2866 }
2867
a3437870
NA
2868 if (sscanf(s, "%lu", mhp) <= 0)
2869 *mhp = 0;
2870
8faa8b07
AK
2871 /*
2872 * Global state is always initialized later in hugetlb_init.
2873 * But we need to allocate >= MAX_ORDER hstates here early to still
2874 * use the bootmem allocator.
2875 */
47d38344 2876 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
2877 hugetlb_hstate_alloc_pages(parsed_hstate);
2878
2879 last_mhp = mhp;
2880
a3437870
NA
2881 return 1;
2882}
e11bfbfc
NP
2883__setup("hugepages=", hugetlb_nrpages_setup);
2884
2885static int __init hugetlb_default_setup(char *s)
2886{
2887 default_hstate_size = memparse(s, &s);
2888 return 1;
2889}
2890__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 2891
8a213460
NA
2892static unsigned int cpuset_mems_nr(unsigned int *array)
2893{
2894 int node;
2895 unsigned int nr = 0;
2896
2897 for_each_node_mask(node, cpuset_current_mems_allowed)
2898 nr += array[node];
2899
2900 return nr;
2901}
2902
2903#ifdef CONFIG_SYSCTL
06808b08
LS
2904static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2905 struct ctl_table *table, int write,
2906 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 2907{
e5ff2159 2908 struct hstate *h = &default_hstate;
238d3c13 2909 unsigned long tmp = h->max_huge_pages;
08d4a246 2910 int ret;
e5ff2159 2911
457c1b27 2912 if (!hugepages_supported())
86613628 2913 return -EOPNOTSUPP;
457c1b27 2914
e5ff2159
AK
2915 table->data = &tmp;
2916 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2917 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2918 if (ret)
2919 goto out;
e5ff2159 2920
238d3c13
DR
2921 if (write)
2922 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2923 NUMA_NO_NODE, tmp, *length);
08d4a246
MH
2924out:
2925 return ret;
1da177e4 2926}
396faf03 2927
06808b08
LS
2928int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2929 void __user *buffer, size_t *length, loff_t *ppos)
2930{
2931
2932 return hugetlb_sysctl_handler_common(false, table, write,
2933 buffer, length, ppos);
2934}
2935
2936#ifdef CONFIG_NUMA
2937int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2938 void __user *buffer, size_t *length, loff_t *ppos)
2939{
2940 return hugetlb_sysctl_handler_common(true, table, write,
2941 buffer, length, ppos);
2942}
2943#endif /* CONFIG_NUMA */
2944
a3d0c6aa 2945int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 2946 void __user *buffer,
a3d0c6aa
NA
2947 size_t *length, loff_t *ppos)
2948{
a5516438 2949 struct hstate *h = &default_hstate;
e5ff2159 2950 unsigned long tmp;
08d4a246 2951 int ret;
e5ff2159 2952
457c1b27 2953 if (!hugepages_supported())
86613628 2954 return -EOPNOTSUPP;
457c1b27 2955
c033a93c 2956 tmp = h->nr_overcommit_huge_pages;
e5ff2159 2957
bae7f4ae 2958 if (write && hstate_is_gigantic(h))
adbe8726
EM
2959 return -EINVAL;
2960
e5ff2159
AK
2961 table->data = &tmp;
2962 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2963 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2964 if (ret)
2965 goto out;
e5ff2159
AK
2966
2967 if (write) {
2968 spin_lock(&hugetlb_lock);
2969 h->nr_overcommit_huge_pages = tmp;
2970 spin_unlock(&hugetlb_lock);
2971 }
08d4a246
MH
2972out:
2973 return ret;
a3d0c6aa
NA
2974}
2975
1da177e4
LT
2976#endif /* CONFIG_SYSCTL */
2977
e1759c21 2978void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 2979{
a5516438 2980 struct hstate *h = &default_hstate;
457c1b27
NA
2981 if (!hugepages_supported())
2982 return;
e1759c21 2983 seq_printf(m,
4f98a2fe
RR
2984 "HugePages_Total: %5lu\n"
2985 "HugePages_Free: %5lu\n"
2986 "HugePages_Rsvd: %5lu\n"
2987 "HugePages_Surp: %5lu\n"
2988 "Hugepagesize: %8lu kB\n",
a5516438
AK
2989 h->nr_huge_pages,
2990 h->free_huge_pages,
2991 h->resv_huge_pages,
2992 h->surplus_huge_pages,
2993 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1da177e4
LT
2994}
2995
2996int hugetlb_report_node_meminfo(int nid, char *buf)
2997{
a5516438 2998 struct hstate *h = &default_hstate;
457c1b27
NA
2999 if (!hugepages_supported())
3000 return 0;
1da177e4
LT
3001 return sprintf(buf,
3002 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
3003 "Node %d HugePages_Free: %5u\n"
3004 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
3005 nid, h->nr_huge_pages_node[nid],
3006 nid, h->free_huge_pages_node[nid],
3007 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
3008}
3009
949f7ec5
DR
3010void hugetlb_show_meminfo(void)
3011{
3012 struct hstate *h;
3013 int nid;
3014
457c1b27
NA
3015 if (!hugepages_supported())
3016 return;
3017
949f7ec5
DR
3018 for_each_node_state(nid, N_MEMORY)
3019 for_each_hstate(h)
3020 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3021 nid,
3022 h->nr_huge_pages_node[nid],
3023 h->free_huge_pages_node[nid],
3024 h->surplus_huge_pages_node[nid],
3025 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3026}
3027
5d317b2b
NH
3028void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3029{
3030 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3031 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3032}
3033
1da177e4
LT
3034/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3035unsigned long hugetlb_total_pages(void)
3036{
d0028588
WL
3037 struct hstate *h;
3038 unsigned long nr_total_pages = 0;
3039
3040 for_each_hstate(h)
3041 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3042 return nr_total_pages;
1da177e4 3043}
1da177e4 3044
a5516438 3045static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
3046{
3047 int ret = -ENOMEM;
3048
3049 spin_lock(&hugetlb_lock);
3050 /*
3051 * When cpuset is configured, it breaks the strict hugetlb page
3052 * reservation as the accounting is done on a global variable. Such
3053 * reservation is completely rubbish in the presence of cpuset because
3054 * the reservation is not checked against page availability for the
3055 * current cpuset. Application can still potentially OOM'ed by kernel
3056 * with lack of free htlb page in cpuset that the task is in.
3057 * Attempt to enforce strict accounting with cpuset is almost
3058 * impossible (or too ugly) because cpuset is too fluid that
3059 * task or memory node can be dynamically moved between cpusets.
3060 *
3061 * The change of semantics for shared hugetlb mapping with cpuset is
3062 * undesirable. However, in order to preserve some of the semantics,
3063 * we fall back to check against current free page availability as
3064 * a best attempt and hopefully to minimize the impact of changing
3065 * semantics that cpuset has.
3066 */
3067 if (delta > 0) {
a5516438 3068 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
3069 goto out;
3070
a5516438
AK
3071 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3072 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
3073 goto out;
3074 }
3075 }
3076
3077 ret = 0;
3078 if (delta < 0)
a5516438 3079 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
3080
3081out:
3082 spin_unlock(&hugetlb_lock);
3083 return ret;
3084}
3085
84afd99b
AW
3086static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3087{
f522c3ac 3088 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
3089
3090 /*
3091 * This new VMA should share its siblings reservation map if present.
3092 * The VMA will only ever have a valid reservation map pointer where
3093 * it is being copied for another still existing VMA. As that VMA
25985edc 3094 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
3095 * after this open call completes. It is therefore safe to take a
3096 * new reference here without additional locking.
3097 */
4e35f483 3098 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
f522c3ac 3099 kref_get(&resv->refs);
84afd99b
AW
3100}
3101
a1e78772
MG
3102static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3103{
a5516438 3104 struct hstate *h = hstate_vma(vma);
f522c3ac 3105 struct resv_map *resv = vma_resv_map(vma);
90481622 3106 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 3107 unsigned long reserve, start, end;
1c5ecae3 3108 long gbl_reserve;
84afd99b 3109
4e35f483
JK
3110 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3111 return;
84afd99b 3112
4e35f483
JK
3113 start = vma_hugecache_offset(h, vma, vma->vm_start);
3114 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 3115
4e35f483 3116 reserve = (end - start) - region_count(resv, start, end);
84afd99b 3117
4e35f483
JK
3118 kref_put(&resv->refs, resv_map_release);
3119
3120 if (reserve) {
1c5ecae3
MK
3121 /*
3122 * Decrement reserve counts. The global reserve count may be
3123 * adjusted if the subpool has a minimum size.
3124 */
3125 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3126 hugetlb_acct_memory(h, -gbl_reserve);
84afd99b 3127 }
a1e78772
MG
3128}
3129
31383c68
DW
3130static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3131{
3132 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3133 return -EINVAL;
3134 return 0;
3135}
3136
1da177e4
LT
3137/*
3138 * We cannot handle pagefaults against hugetlb pages at all. They cause
3139 * handle_mm_fault() to try to instantiate regular-sized pages in the
3140 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3141 * this far.
3142 */
11bac800 3143static int hugetlb_vm_op_fault(struct vm_fault *vmf)
1da177e4
LT
3144{
3145 BUG();
d0217ac0 3146 return 0;
1da177e4
LT
3147}
3148
f0f37e2f 3149const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 3150 .fault = hugetlb_vm_op_fault,
84afd99b 3151 .open = hugetlb_vm_op_open,
a1e78772 3152 .close = hugetlb_vm_op_close,
31383c68 3153 .split = hugetlb_vm_op_split,
1da177e4
LT
3154};
3155
1e8f889b
DG
3156static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3157 int writable)
63551ae0
DG
3158{
3159 pte_t entry;
3160
1e8f889b 3161 if (writable) {
106c992a
GS
3162 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3163 vma->vm_page_prot)));
63551ae0 3164 } else {
106c992a
GS
3165 entry = huge_pte_wrprotect(mk_huge_pte(page,
3166 vma->vm_page_prot));
63551ae0
DG
3167 }
3168 entry = pte_mkyoung(entry);
3169 entry = pte_mkhuge(entry);
d9ed9faa 3170 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
3171
3172 return entry;
3173}
3174
1e8f889b
DG
3175static void set_huge_ptep_writable(struct vm_area_struct *vma,
3176 unsigned long address, pte_t *ptep)
3177{
3178 pte_t entry;
3179
106c992a 3180 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 3181 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 3182 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
3183}
3184
d5ed7444 3185bool is_hugetlb_entry_migration(pte_t pte)
4a705fef
NH
3186{
3187 swp_entry_t swp;
3188
3189 if (huge_pte_none(pte) || pte_present(pte))
d5ed7444 3190 return false;
4a705fef
NH
3191 swp = pte_to_swp_entry(pte);
3192 if (non_swap_entry(swp) && is_migration_entry(swp))
d5ed7444 3193 return true;
4a705fef 3194 else
d5ed7444 3195 return false;
4a705fef
NH
3196}
3197
3198static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3199{
3200 swp_entry_t swp;
3201
3202 if (huge_pte_none(pte) || pte_present(pte))
3203 return 0;
3204 swp = pte_to_swp_entry(pte);
3205 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3206 return 1;
3207 else
3208 return 0;
3209}
1e8f889b 3210
63551ae0
DG
3211int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3212 struct vm_area_struct *vma)
3213{
3214 pte_t *src_pte, *dst_pte, entry;
3215 struct page *ptepage;
1c59827d 3216 unsigned long addr;
1e8f889b 3217 int cow;
a5516438
AK
3218 struct hstate *h = hstate_vma(vma);
3219 unsigned long sz = huge_page_size(h);
e8569dd2
AS
3220 unsigned long mmun_start; /* For mmu_notifiers */
3221 unsigned long mmun_end; /* For mmu_notifiers */
3222 int ret = 0;
1e8f889b
DG
3223
3224 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 3225
e8569dd2
AS
3226 mmun_start = vma->vm_start;
3227 mmun_end = vma->vm_end;
3228 if (cow)
3229 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3230
a5516438 3231 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
cb900f41 3232 spinlock_t *src_ptl, *dst_ptl;
7868a208 3233 src_pte = huge_pte_offset(src, addr, sz);
c74df32c
HD
3234 if (!src_pte)
3235 continue;
a5516438 3236 dst_pte = huge_pte_alloc(dst, addr, sz);
e8569dd2
AS
3237 if (!dst_pte) {
3238 ret = -ENOMEM;
3239 break;
3240 }
c5c99429
LW
3241
3242 /* If the pagetables are shared don't copy or take references */
3243 if (dst_pte == src_pte)
3244 continue;
3245
cb900f41
KS
3246 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3247 src_ptl = huge_pte_lockptr(h, src, src_pte);
3248 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4a705fef
NH
3249 entry = huge_ptep_get(src_pte);
3250 if (huge_pte_none(entry)) { /* skip none entry */
3251 ;
3252 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3253 is_hugetlb_entry_hwpoisoned(entry))) {
3254 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3255
3256 if (is_write_migration_entry(swp_entry) && cow) {
3257 /*
3258 * COW mappings require pages in both
3259 * parent and child to be set to read.
3260 */
3261 make_migration_entry_read(&swp_entry);
3262 entry = swp_entry_to_pte(swp_entry);
e5251fd4
PA
3263 set_huge_swap_pte_at(src, addr, src_pte,
3264 entry, sz);
4a705fef 3265 }
e5251fd4 3266 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4a705fef 3267 } else {
34ee645e 3268 if (cow) {
0f10851e
JG
3269 /*
3270 * No need to notify as we are downgrading page
3271 * table protection not changing it to point
3272 * to a new page.
3273 *
3274 * See Documentation/vm/mmu_notifier.txt
3275 */
7f2e9525 3276 huge_ptep_set_wrprotect(src, addr, src_pte);
34ee645e 3277 }
0253d634 3278 entry = huge_ptep_get(src_pte);
1c59827d
HD
3279 ptepage = pte_page(entry);
3280 get_page(ptepage);
53f9263b 3281 page_dup_rmap(ptepage, true);
1c59827d 3282 set_huge_pte_at(dst, addr, dst_pte, entry);
5d317b2b 3283 hugetlb_count_add(pages_per_huge_page(h), dst);
1c59827d 3284 }
cb900f41
KS
3285 spin_unlock(src_ptl);
3286 spin_unlock(dst_ptl);
63551ae0 3287 }
63551ae0 3288
e8569dd2
AS
3289 if (cow)
3290 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3291
3292 return ret;
63551ae0
DG
3293}
3294
24669e58
AK
3295void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3296 unsigned long start, unsigned long end,
3297 struct page *ref_page)
63551ae0
DG
3298{
3299 struct mm_struct *mm = vma->vm_mm;
3300 unsigned long address;
c7546f8f 3301 pte_t *ptep;
63551ae0 3302 pte_t pte;
cb900f41 3303 spinlock_t *ptl;
63551ae0 3304 struct page *page;
a5516438
AK
3305 struct hstate *h = hstate_vma(vma);
3306 unsigned long sz = huge_page_size(h);
2ec74c3e
SG
3307 const unsigned long mmun_start = start; /* For mmu_notifiers */
3308 const unsigned long mmun_end = end; /* For mmu_notifiers */
a5516438 3309
63551ae0 3310 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
3311 BUG_ON(start & ~huge_page_mask(h));
3312 BUG_ON(end & ~huge_page_mask(h));
63551ae0 3313
07e32661
AK
3314 /*
3315 * This is a hugetlb vma, all the pte entries should point
3316 * to huge page.
3317 */
3318 tlb_remove_check_page_size_change(tlb, sz);
24669e58 3319 tlb_start_vma(tlb, vma);
2ec74c3e 3320 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
569f48b8 3321 address = start;
569f48b8 3322 for (; address < end; address += sz) {
7868a208 3323 ptep = huge_pte_offset(mm, address, sz);
4c887265 3324 if (!ptep)
c7546f8f
DG
3325 continue;
3326
cb900f41 3327 ptl = huge_pte_lock(h, mm, ptep);
31d49da5
AK
3328 if (huge_pmd_unshare(mm, &address, ptep)) {
3329 spin_unlock(ptl);
3330 continue;
3331 }
39dde65c 3332
6629326b 3333 pte = huge_ptep_get(ptep);
31d49da5
AK
3334 if (huge_pte_none(pte)) {
3335 spin_unlock(ptl);
3336 continue;
3337 }
6629326b
HD
3338
3339 /*
9fbc1f63
NH
3340 * Migrating hugepage or HWPoisoned hugepage is already
3341 * unmapped and its refcount is dropped, so just clear pte here.
6629326b 3342 */
9fbc1f63 3343 if (unlikely(!pte_present(pte))) {
9386fac3 3344 huge_pte_clear(mm, address, ptep, sz);
31d49da5
AK
3345 spin_unlock(ptl);
3346 continue;
8c4894c6 3347 }
6629326b
HD
3348
3349 page = pte_page(pte);
04f2cbe3
MG
3350 /*
3351 * If a reference page is supplied, it is because a specific
3352 * page is being unmapped, not a range. Ensure the page we
3353 * are about to unmap is the actual page of interest.
3354 */
3355 if (ref_page) {
31d49da5
AK
3356 if (page != ref_page) {
3357 spin_unlock(ptl);
3358 continue;
3359 }
04f2cbe3
MG
3360 /*
3361 * Mark the VMA as having unmapped its page so that
3362 * future faults in this VMA will fail rather than
3363 * looking like data was lost
3364 */
3365 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3366 }
3367
c7546f8f 3368 pte = huge_ptep_get_and_clear(mm, address, ptep);
b528e4b6 3369 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
106c992a 3370 if (huge_pte_dirty(pte))
6649a386 3371 set_page_dirty(page);
9e81130b 3372
5d317b2b 3373 hugetlb_count_sub(pages_per_huge_page(h), mm);
d281ee61 3374 page_remove_rmap(page, true);
31d49da5 3375
cb900f41 3376 spin_unlock(ptl);
e77b0852 3377 tlb_remove_page_size(tlb, page, huge_page_size(h));
31d49da5
AK
3378 /*
3379 * Bail out after unmapping reference page if supplied
3380 */
3381 if (ref_page)
3382 break;
fe1668ae 3383 }
2ec74c3e 3384 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
24669e58 3385 tlb_end_vma(tlb, vma);
1da177e4 3386}
63551ae0 3387
d833352a
MG
3388void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3389 struct vm_area_struct *vma, unsigned long start,
3390 unsigned long end, struct page *ref_page)
3391{
3392 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3393
3394 /*
3395 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3396 * test will fail on a vma being torn down, and not grab a page table
3397 * on its way out. We're lucky that the flag has such an appropriate
3398 * name, and can in fact be safely cleared here. We could clear it
3399 * before the __unmap_hugepage_range above, but all that's necessary
c8c06efa 3400 * is to clear it before releasing the i_mmap_rwsem. This works
d833352a 3401 * because in the context this is called, the VMA is about to be
c8c06efa 3402 * destroyed and the i_mmap_rwsem is held.
d833352a
MG
3403 */
3404 vma->vm_flags &= ~VM_MAYSHARE;
3405}
3406
502717f4 3407void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 3408 unsigned long end, struct page *ref_page)
502717f4 3409{
24669e58
AK
3410 struct mm_struct *mm;
3411 struct mmu_gather tlb;
3412
3413 mm = vma->vm_mm;
3414
2b047252 3415 tlb_gather_mmu(&tlb, mm, start, end);
24669e58
AK
3416 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3417 tlb_finish_mmu(&tlb, start, end);
502717f4
KC
3418}
3419
04f2cbe3
MG
3420/*
3421 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3422 * mappping it owns the reserve page for. The intention is to unmap the page
3423 * from other VMAs and let the children be SIGKILLed if they are faulting the
3424 * same region.
3425 */
2f4612af
DB
3426static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3427 struct page *page, unsigned long address)
04f2cbe3 3428{
7526674d 3429 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
3430 struct vm_area_struct *iter_vma;
3431 struct address_space *mapping;
04f2cbe3
MG
3432 pgoff_t pgoff;
3433
3434 /*
3435 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3436 * from page cache lookup which is in HPAGE_SIZE units.
3437 */
7526674d 3438 address = address & huge_page_mask(h);
36e4f20a
MH
3439 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3440 vma->vm_pgoff;
93c76a3d 3441 mapping = vma->vm_file->f_mapping;
04f2cbe3 3442
4eb2b1dc
MG
3443 /*
3444 * Take the mapping lock for the duration of the table walk. As
3445 * this mapping should be shared between all the VMAs,
3446 * __unmap_hugepage_range() is called as the lock is already held
3447 */
83cde9e8 3448 i_mmap_lock_write(mapping);
6b2dbba8 3449 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
3450 /* Do not unmap the current VMA */
3451 if (iter_vma == vma)
3452 continue;
3453
2f84a899
MG
3454 /*
3455 * Shared VMAs have their own reserves and do not affect
3456 * MAP_PRIVATE accounting but it is possible that a shared
3457 * VMA is using the same page so check and skip such VMAs.
3458 */
3459 if (iter_vma->vm_flags & VM_MAYSHARE)
3460 continue;
3461
04f2cbe3
MG
3462 /*
3463 * Unmap the page from other VMAs without their own reserves.
3464 * They get marked to be SIGKILLed if they fault in these
3465 * areas. This is because a future no-page fault on this VMA
3466 * could insert a zeroed page instead of the data existing
3467 * from the time of fork. This would look like data corruption
3468 */
3469 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
3470 unmap_hugepage_range(iter_vma, address,
3471 address + huge_page_size(h), page);
04f2cbe3 3472 }
83cde9e8 3473 i_mmap_unlock_write(mapping);
04f2cbe3
MG
3474}
3475
0fe6e20b
NH
3476/*
3477 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
3478 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3479 * cannot race with other handlers or page migration.
3480 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 3481 */
1e8f889b 3482static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3999f52e
AK
3483 unsigned long address, pte_t *ptep,
3484 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 3485{
3999f52e 3486 pte_t pte;
a5516438 3487 struct hstate *h = hstate_vma(vma);
1e8f889b 3488 struct page *old_page, *new_page;
ad4404a2 3489 int ret = 0, outside_reserve = 0;
2ec74c3e
SG
3490 unsigned long mmun_start; /* For mmu_notifiers */
3491 unsigned long mmun_end; /* For mmu_notifiers */
1e8f889b 3492
3999f52e 3493 pte = huge_ptep_get(ptep);
1e8f889b
DG
3494 old_page = pte_page(pte);
3495
04f2cbe3 3496retry_avoidcopy:
1e8f889b
DG
3497 /* If no-one else is actually using this page, avoid the copy
3498 * and just make the page writable */
37a2140d 3499 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5a49973d 3500 page_move_anon_rmap(old_page, vma);
1e8f889b 3501 set_huge_ptep_writable(vma, address, ptep);
83c54070 3502 return 0;
1e8f889b
DG
3503 }
3504
04f2cbe3
MG
3505 /*
3506 * If the process that created a MAP_PRIVATE mapping is about to
3507 * perform a COW due to a shared page count, attempt to satisfy
3508 * the allocation without using the existing reserves. The pagecache
3509 * page is used to determine if the reserve at this address was
3510 * consumed or not. If reserves were used, a partial faulted mapping
3511 * at the time of fork() could consume its reserves on COW instead
3512 * of the full address range.
3513 */
5944d011 3514 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
3515 old_page != pagecache_page)
3516 outside_reserve = 1;
3517
09cbfeaf 3518 get_page(old_page);
b76c8cfb 3519
ad4404a2
DB
3520 /*
3521 * Drop page table lock as buddy allocator may be called. It will
3522 * be acquired again before returning to the caller, as expected.
3523 */
cb900f41 3524 spin_unlock(ptl);
04f2cbe3 3525 new_page = alloc_huge_page(vma, address, outside_reserve);
1e8f889b 3526
2fc39cec 3527 if (IS_ERR(new_page)) {
04f2cbe3
MG
3528 /*
3529 * If a process owning a MAP_PRIVATE mapping fails to COW,
3530 * it is due to references held by a child and an insufficient
3531 * huge page pool. To guarantee the original mappers
3532 * reliability, unmap the page from child processes. The child
3533 * may get SIGKILLed if it later faults.
3534 */
3535 if (outside_reserve) {
09cbfeaf 3536 put_page(old_page);
04f2cbe3 3537 BUG_ON(huge_pte_none(pte));
2f4612af
DB
3538 unmap_ref_private(mm, vma, old_page, address);
3539 BUG_ON(huge_pte_none(pte));
3540 spin_lock(ptl);
7868a208
PA
3541 ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3542 huge_page_size(h));
2f4612af
DB
3543 if (likely(ptep &&
3544 pte_same(huge_ptep_get(ptep), pte)))
3545 goto retry_avoidcopy;
3546 /*
3547 * race occurs while re-acquiring page table
3548 * lock, and our job is done.
3549 */
3550 return 0;
04f2cbe3
MG
3551 }
3552
ad4404a2
DB
3553 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3554 VM_FAULT_OOM : VM_FAULT_SIGBUS;
3555 goto out_release_old;
1e8f889b
DG
3556 }
3557
0fe6e20b
NH
3558 /*
3559 * When the original hugepage is shared one, it does not have
3560 * anon_vma prepared.
3561 */
44e2aa93 3562 if (unlikely(anon_vma_prepare(vma))) {
ad4404a2
DB
3563 ret = VM_FAULT_OOM;
3564 goto out_release_all;
44e2aa93 3565 }
0fe6e20b 3566
47ad8475
AA
3567 copy_user_huge_page(new_page, old_page, address, vma,
3568 pages_per_huge_page(h));
0ed361de 3569 __SetPageUptodate(new_page);
bcc54222 3570 set_page_huge_active(new_page);
1e8f889b 3571
2ec74c3e
SG
3572 mmun_start = address & huge_page_mask(h);
3573 mmun_end = mmun_start + huge_page_size(h);
3574 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
ad4404a2 3575
b76c8cfb 3576 /*
cb900f41 3577 * Retake the page table lock to check for racing updates
b76c8cfb
LW
3578 * before the page tables are altered
3579 */
cb900f41 3580 spin_lock(ptl);
7868a208
PA
3581 ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3582 huge_page_size(h));
a9af0c5d 3583 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
07443a85
JK
3584 ClearPagePrivate(new_page);
3585
1e8f889b 3586 /* Break COW */
8fe627ec 3587 huge_ptep_clear_flush(vma, address, ptep);
34ee645e 3588 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
1e8f889b
DG
3589 set_huge_pte_at(mm, address, ptep,
3590 make_huge_pte(vma, new_page, 1));
d281ee61 3591 page_remove_rmap(old_page, true);
cd67f0d2 3592 hugepage_add_new_anon_rmap(new_page, vma, address);
1e8f889b
DG
3593 /* Make the old page be freed below */
3594 new_page = old_page;
3595 }
cb900f41 3596 spin_unlock(ptl);
2ec74c3e 3597 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
ad4404a2 3598out_release_all:
96b96a96 3599 restore_reserve_on_error(h, vma, address, new_page);
09cbfeaf 3600 put_page(new_page);
ad4404a2 3601out_release_old:
09cbfeaf 3602 put_page(old_page);
8312034f 3603
ad4404a2
DB
3604 spin_lock(ptl); /* Caller expects lock to be held */
3605 return ret;
1e8f889b
DG
3606}
3607
04f2cbe3 3608/* Return the pagecache page at a given address within a VMA */
a5516438
AK
3609static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3610 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
3611{
3612 struct address_space *mapping;
e7c4b0bf 3613 pgoff_t idx;
04f2cbe3
MG
3614
3615 mapping = vma->vm_file->f_mapping;
a5516438 3616 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
3617
3618 return find_lock_page(mapping, idx);
3619}
3620
3ae77f43
HD
3621/*
3622 * Return whether there is a pagecache page to back given address within VMA.
3623 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3624 */
3625static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
3626 struct vm_area_struct *vma, unsigned long address)
3627{
3628 struct address_space *mapping;
3629 pgoff_t idx;
3630 struct page *page;
3631
3632 mapping = vma->vm_file->f_mapping;
3633 idx = vma_hugecache_offset(h, vma, address);
3634
3635 page = find_get_page(mapping, idx);
3636 if (page)
3637 put_page(page);
3638 return page != NULL;
3639}
3640
ab76ad54
MK
3641int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3642 pgoff_t idx)
3643{
3644 struct inode *inode = mapping->host;
3645 struct hstate *h = hstate_inode(inode);
3646 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3647
3648 if (err)
3649 return err;
3650 ClearPagePrivate(page);
3651
3652 spin_lock(&inode->i_lock);
3653 inode->i_blocks += blocks_per_huge_page(h);
3654 spin_unlock(&inode->i_lock);
3655 return 0;
3656}
3657
a1ed3dda 3658static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
8382d914
DB
3659 struct address_space *mapping, pgoff_t idx,
3660 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 3661{
a5516438 3662 struct hstate *h = hstate_vma(vma);
ac9b9c66 3663 int ret = VM_FAULT_SIGBUS;
409eb8c2 3664 int anon_rmap = 0;
4c887265 3665 unsigned long size;
4c887265 3666 struct page *page;
1e8f889b 3667 pte_t new_pte;
cb900f41 3668 spinlock_t *ptl;
4c887265 3669
04f2cbe3
MG
3670 /*
3671 * Currently, we are forced to kill the process in the event the
3672 * original mapper has unmapped pages from the child due to a failed
25985edc 3673 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
3674 */
3675 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
910154d5 3676 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
ffb22af5 3677 current->pid);
04f2cbe3
MG
3678 return ret;
3679 }
3680
4c887265
AL
3681 /*
3682 * Use page lock to guard against racing truncation
3683 * before we get page_table_lock.
3684 */
6bda666a
CL
3685retry:
3686 page = find_lock_page(mapping, idx);
3687 if (!page) {
a5516438 3688 size = i_size_read(mapping->host) >> huge_page_shift(h);
ebed4bfc
HD
3689 if (idx >= size)
3690 goto out;
1a1aad8a
MK
3691
3692 /*
3693 * Check for page in userfault range
3694 */
3695 if (userfaultfd_missing(vma)) {
3696 u32 hash;
3697 struct vm_fault vmf = {
3698 .vma = vma,
3699 .address = address,
3700 .flags = flags,
3701 /*
3702 * Hard to debug if it ends up being
3703 * used by a callee that assumes
3704 * something about the other
3705 * uninitialized fields... same as in
3706 * memory.c
3707 */
3708 };
3709
3710 /*
3711 * hugetlb_fault_mutex must be dropped before
3712 * handling userfault. Reacquire after handling
3713 * fault to make calling code simpler.
3714 */
3715 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
3716 idx, address);
3717 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3718 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3719 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3720 goto out;
3721 }
3722
04f2cbe3 3723 page = alloc_huge_page(vma, address, 0);
2fc39cec 3724 if (IS_ERR(page)) {
76dcee75
AK
3725 ret = PTR_ERR(page);
3726 if (ret == -ENOMEM)
3727 ret = VM_FAULT_OOM;
3728 else
3729 ret = VM_FAULT_SIGBUS;
6bda666a
CL
3730 goto out;
3731 }
47ad8475 3732 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 3733 __SetPageUptodate(page);
bcc54222 3734 set_page_huge_active(page);
ac9b9c66 3735
f83a275d 3736 if (vma->vm_flags & VM_MAYSHARE) {
ab76ad54 3737 int err = huge_add_to_page_cache(page, mapping, idx);
6bda666a
CL
3738 if (err) {
3739 put_page(page);
6bda666a
CL
3740 if (err == -EEXIST)
3741 goto retry;
3742 goto out;
3743 }
23be7468 3744 } else {
6bda666a 3745 lock_page(page);
0fe6e20b
NH
3746 if (unlikely(anon_vma_prepare(vma))) {
3747 ret = VM_FAULT_OOM;
3748 goto backout_unlocked;
3749 }
409eb8c2 3750 anon_rmap = 1;
23be7468 3751 }
0fe6e20b 3752 } else {
998b4382
NH
3753 /*
3754 * If memory error occurs between mmap() and fault, some process
3755 * don't have hwpoisoned swap entry for errored virtual address.
3756 * So we need to block hugepage fault by PG_hwpoison bit check.
3757 */
3758 if (unlikely(PageHWPoison(page))) {
32f84528 3759 ret = VM_FAULT_HWPOISON |
972dc4de 3760 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
3761 goto backout_unlocked;
3762 }
6bda666a 3763 }
1e8f889b 3764
57303d80
AW
3765 /*
3766 * If we are going to COW a private mapping later, we examine the
3767 * pending reservations for this page now. This will ensure that
3768 * any allocations necessary to record that reservation occur outside
3769 * the spinlock.
3770 */
5e911373 3771 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2b26736c
AW
3772 if (vma_needs_reservation(h, vma, address) < 0) {
3773 ret = VM_FAULT_OOM;
3774 goto backout_unlocked;
3775 }
5e911373 3776 /* Just decrements count, does not deallocate */
feba16e2 3777 vma_end_reservation(h, vma, address);
5e911373 3778 }
57303d80 3779
8bea8052 3780 ptl = huge_pte_lock(h, mm, ptep);
a5516438 3781 size = i_size_read(mapping->host) >> huge_page_shift(h);
4c887265
AL
3782 if (idx >= size)
3783 goto backout;
3784
83c54070 3785 ret = 0;
7f2e9525 3786 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
3787 goto backout;
3788
07443a85
JK
3789 if (anon_rmap) {
3790 ClearPagePrivate(page);
409eb8c2 3791 hugepage_add_new_anon_rmap(page, vma, address);
ac714904 3792 } else
53f9263b 3793 page_dup_rmap(page, true);
1e8f889b
DG
3794 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3795 && (vma->vm_flags & VM_SHARED)));
3796 set_huge_pte_at(mm, address, ptep, new_pte);
3797
5d317b2b 3798 hugetlb_count_add(pages_per_huge_page(h), mm);
788c7df4 3799 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 3800 /* Optimization, do the COW without a second fault */
3999f52e 3801 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
1e8f889b
DG
3802 }
3803
cb900f41 3804 spin_unlock(ptl);
4c887265
AL
3805 unlock_page(page);
3806out:
ac9b9c66 3807 return ret;
4c887265
AL
3808
3809backout:
cb900f41 3810 spin_unlock(ptl);
2b26736c 3811backout_unlocked:
4c887265 3812 unlock_page(page);
96b96a96 3813 restore_reserve_on_error(h, vma, address, page);
4c887265
AL
3814 put_page(page);
3815 goto out;
ac9b9c66
HD
3816}
3817
8382d914 3818#ifdef CONFIG_SMP
c672c7f2 3819u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
8382d914
DB
3820 struct vm_area_struct *vma,
3821 struct address_space *mapping,
3822 pgoff_t idx, unsigned long address)
3823{
3824 unsigned long key[2];
3825 u32 hash;
3826
3827 if (vma->vm_flags & VM_SHARED) {
3828 key[0] = (unsigned long) mapping;
3829 key[1] = idx;
3830 } else {
3831 key[0] = (unsigned long) mm;
3832 key[1] = address >> huge_page_shift(h);
3833 }
3834
3835 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3836
3837 return hash & (num_fault_mutexes - 1);
3838}
3839#else
3840/*
3841 * For uniprocesor systems we always use a single mutex, so just
3842 * return 0 and avoid the hashing overhead.
3843 */
c672c7f2 3844u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
8382d914
DB
3845 struct vm_area_struct *vma,
3846 struct address_space *mapping,
3847 pgoff_t idx, unsigned long address)
3848{
3849 return 0;
3850}
3851#endif
3852
86e5216f 3853int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 3854 unsigned long address, unsigned int flags)
86e5216f 3855{
8382d914 3856 pte_t *ptep, entry;
cb900f41 3857 spinlock_t *ptl;
1e8f889b 3858 int ret;
8382d914
DB
3859 u32 hash;
3860 pgoff_t idx;
0fe6e20b 3861 struct page *page = NULL;
57303d80 3862 struct page *pagecache_page = NULL;
a5516438 3863 struct hstate *h = hstate_vma(vma);
8382d914 3864 struct address_space *mapping;
0f792cf9 3865 int need_wait_lock = 0;
86e5216f 3866
1e16a539
KH
3867 address &= huge_page_mask(h);
3868
7868a208 3869 ptep = huge_pte_offset(mm, address, huge_page_size(h));
fd6a03ed
NH
3870 if (ptep) {
3871 entry = huge_ptep_get(ptep);
290408d4 3872 if (unlikely(is_hugetlb_entry_migration(entry))) {
cb900f41 3873 migration_entry_wait_huge(vma, mm, ptep);
290408d4
NH
3874 return 0;
3875 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 3876 return VM_FAULT_HWPOISON_LARGE |
972dc4de 3877 VM_FAULT_SET_HINDEX(hstate_index(h));
0d777df5
NH
3878 } else {
3879 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3880 if (!ptep)
3881 return VM_FAULT_OOM;
fd6a03ed
NH
3882 }
3883
8382d914
DB
3884 mapping = vma->vm_file->f_mapping;
3885 idx = vma_hugecache_offset(h, vma, address);
3886
3935baa9
DG
3887 /*
3888 * Serialize hugepage allocation and instantiation, so that we don't
3889 * get spurious allocation failures if two CPUs race to instantiate
3890 * the same page in the page cache.
3891 */
c672c7f2
MK
3892 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3893 mutex_lock(&hugetlb_fault_mutex_table[hash]);
8382d914 3894
7f2e9525
GS
3895 entry = huge_ptep_get(ptep);
3896 if (huge_pte_none(entry)) {
8382d914 3897 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
b4d1d99f 3898 goto out_mutex;
3935baa9 3899 }
86e5216f 3900
83c54070 3901 ret = 0;
1e8f889b 3902
0f792cf9
NH
3903 /*
3904 * entry could be a migration/hwpoison entry at this point, so this
3905 * check prevents the kernel from going below assuming that we have
3906 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3907 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3908 * handle it.
3909 */
3910 if (!pte_present(entry))
3911 goto out_mutex;
3912
57303d80
AW
3913 /*
3914 * If we are going to COW the mapping later, we examine the pending
3915 * reservations for this page now. This will ensure that any
3916 * allocations necessary to record that reservation occur outside the
3917 * spinlock. For private mappings, we also lookup the pagecache
3918 * page now as it is used to determine if a reservation has been
3919 * consumed.
3920 */
106c992a 3921 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2b26736c
AW
3922 if (vma_needs_reservation(h, vma, address) < 0) {
3923 ret = VM_FAULT_OOM;
b4d1d99f 3924 goto out_mutex;
2b26736c 3925 }
5e911373 3926 /* Just decrements count, does not deallocate */
feba16e2 3927 vma_end_reservation(h, vma, address);
57303d80 3928
f83a275d 3929 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80
AW
3930 pagecache_page = hugetlbfs_pagecache_page(h,
3931 vma, address);
3932 }
3933
0f792cf9
NH
3934 ptl = huge_pte_lock(h, mm, ptep);
3935
3936 /* Check for a racing update before calling hugetlb_cow */
3937 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3938 goto out_ptl;
3939
56c9cfb1
NH
3940 /*
3941 * hugetlb_cow() requires page locks of pte_page(entry) and
3942 * pagecache_page, so here we need take the former one
3943 * when page != pagecache_page or !pagecache_page.
56c9cfb1
NH
3944 */
3945 page = pte_page(entry);
3946 if (page != pagecache_page)
0f792cf9
NH
3947 if (!trylock_page(page)) {
3948 need_wait_lock = 1;
3949 goto out_ptl;
3950 }
b4d1d99f 3951
0f792cf9 3952 get_page(page);
b4d1d99f 3953
788c7df4 3954 if (flags & FAULT_FLAG_WRITE) {
106c992a 3955 if (!huge_pte_write(entry)) {
3999f52e
AK
3956 ret = hugetlb_cow(mm, vma, address, ptep,
3957 pagecache_page, ptl);
0f792cf9 3958 goto out_put_page;
b4d1d99f 3959 }
106c992a 3960 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
3961 }
3962 entry = pte_mkyoung(entry);
788c7df4
HD
3963 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3964 flags & FAULT_FLAG_WRITE))
4b3073e1 3965 update_mmu_cache(vma, address, ptep);
0f792cf9
NH
3966out_put_page:
3967 if (page != pagecache_page)
3968 unlock_page(page);
3969 put_page(page);
cb900f41
KS
3970out_ptl:
3971 spin_unlock(ptl);
57303d80
AW
3972
3973 if (pagecache_page) {
3974 unlock_page(pagecache_page);
3975 put_page(pagecache_page);
3976 }
b4d1d99f 3977out_mutex:
c672c7f2 3978 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
0f792cf9
NH
3979 /*
3980 * Generally it's safe to hold refcount during waiting page lock. But
3981 * here we just wait to defer the next page fault to avoid busy loop and
3982 * the page is not used after unlocked before returning from the current
3983 * page fault. So we are safe from accessing freed page, even if we wait
3984 * here without taking refcount.
3985 */
3986 if (need_wait_lock)
3987 wait_on_page_locked(page);
1e8f889b 3988 return ret;
86e5216f
AL
3989}
3990
8fb5debc
MK
3991/*
3992 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
3993 * modifications for huge pages.
3994 */
3995int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
3996 pte_t *dst_pte,
3997 struct vm_area_struct *dst_vma,
3998 unsigned long dst_addr,
3999 unsigned long src_addr,
4000 struct page **pagep)
4001{
1e392147
AA
4002 struct address_space *mapping;
4003 pgoff_t idx;
4004 unsigned long size;
1c9e8def 4005 int vm_shared = dst_vma->vm_flags & VM_SHARED;
8fb5debc
MK
4006 struct hstate *h = hstate_vma(dst_vma);
4007 pte_t _dst_pte;
4008 spinlock_t *ptl;
4009 int ret;
4010 struct page *page;
4011
4012 if (!*pagep) {
4013 ret = -ENOMEM;
4014 page = alloc_huge_page(dst_vma, dst_addr, 0);
4015 if (IS_ERR(page))
4016 goto out;
4017
4018 ret = copy_huge_page_from_user(page,
4019 (const void __user *) src_addr,
810a56b9 4020 pages_per_huge_page(h), false);
8fb5debc
MK
4021
4022 /* fallback to copy_from_user outside mmap_sem */
4023 if (unlikely(ret)) {
c9ddac33 4024 ret = -ENOENT;
8fb5debc
MK
4025 *pagep = page;
4026 /* don't free the page */
4027 goto out;
4028 }
4029 } else {
4030 page = *pagep;
4031 *pagep = NULL;
4032 }
4033
4034 /*
4035 * The memory barrier inside __SetPageUptodate makes sure that
4036 * preceding stores to the page contents become visible before
4037 * the set_pte_at() write.
4038 */
4039 __SetPageUptodate(page);
4040 set_page_huge_active(page);
4041
1e392147
AA
4042 mapping = dst_vma->vm_file->f_mapping;
4043 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4044
1c9e8def
MK
4045 /*
4046 * If shared, add to page cache
4047 */
4048 if (vm_shared) {
1e392147
AA
4049 size = i_size_read(mapping->host) >> huge_page_shift(h);
4050 ret = -EFAULT;
4051 if (idx >= size)
4052 goto out_release_nounlock;
1c9e8def 4053
1e392147
AA
4054 /*
4055 * Serialization between remove_inode_hugepages() and
4056 * huge_add_to_page_cache() below happens through the
4057 * hugetlb_fault_mutex_table that here must be hold by
4058 * the caller.
4059 */
1c9e8def
MK
4060 ret = huge_add_to_page_cache(page, mapping, idx);
4061 if (ret)
4062 goto out_release_nounlock;
4063 }
4064
8fb5debc
MK
4065 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4066 spin_lock(ptl);
4067
1e392147
AA
4068 /*
4069 * Recheck the i_size after holding PT lock to make sure not
4070 * to leave any page mapped (as page_mapped()) beyond the end
4071 * of the i_size (remove_inode_hugepages() is strict about
4072 * enforcing that). If we bail out here, we'll also leave a
4073 * page in the radix tree in the vm_shared case beyond the end
4074 * of the i_size, but remove_inode_hugepages() will take care
4075 * of it as soon as we drop the hugetlb_fault_mutex_table.
4076 */
4077 size = i_size_read(mapping->host) >> huge_page_shift(h);
4078 ret = -EFAULT;
4079 if (idx >= size)
4080 goto out_release_unlock;
4081
8fb5debc
MK
4082 ret = -EEXIST;
4083 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4084 goto out_release_unlock;
4085
1c9e8def
MK
4086 if (vm_shared) {
4087 page_dup_rmap(page, true);
4088 } else {
4089 ClearPagePrivate(page);
4090 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4091 }
8fb5debc
MK
4092
4093 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4094 if (dst_vma->vm_flags & VM_WRITE)
4095 _dst_pte = huge_pte_mkdirty(_dst_pte);
4096 _dst_pte = pte_mkyoung(_dst_pte);
4097
4098 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4099
4100 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4101 dst_vma->vm_flags & VM_WRITE);
4102 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4103
4104 /* No need to invalidate - it was non-present before */
4105 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4106
4107 spin_unlock(ptl);
1c9e8def
MK
4108 if (vm_shared)
4109 unlock_page(page);
8fb5debc
MK
4110 ret = 0;
4111out:
4112 return ret;
4113out_release_unlock:
4114 spin_unlock(ptl);
1c9e8def
MK
4115 if (vm_shared)
4116 unlock_page(page);
5af10dfd 4117out_release_nounlock:
8fb5debc
MK
4118 put_page(page);
4119 goto out;
4120}
4121
28a35716
ML
4122long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4123 struct page **pages, struct vm_area_struct **vmas,
4124 unsigned long *position, unsigned long *nr_pages,
87ffc118 4125 long i, unsigned int flags, int *nonblocking)
63551ae0 4126{
d5d4b0aa
KC
4127 unsigned long pfn_offset;
4128 unsigned long vaddr = *position;
28a35716 4129 unsigned long remainder = *nr_pages;
a5516438 4130 struct hstate *h = hstate_vma(vma);
2be7cfed 4131 int err = -EFAULT;
63551ae0 4132
63551ae0 4133 while (vaddr < vma->vm_end && remainder) {
4c887265 4134 pte_t *pte;
cb900f41 4135 spinlock_t *ptl = NULL;
2a15efc9 4136 int absent;
4c887265 4137 struct page *page;
63551ae0 4138
02057967
DR
4139 /*
4140 * If we have a pending SIGKILL, don't keep faulting pages and
4141 * potentially allocating memory.
4142 */
4143 if (unlikely(fatal_signal_pending(current))) {
4144 remainder = 0;
4145 break;
4146 }
4147
4c887265
AL
4148 /*
4149 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 4150 * each hugepage. We have to make sure we get the
4c887265 4151 * first, for the page indexing below to work.
cb900f41
KS
4152 *
4153 * Note that page table lock is not held when pte is null.
4c887265 4154 */
7868a208
PA
4155 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4156 huge_page_size(h));
cb900f41
KS
4157 if (pte)
4158 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
4159 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4160
4161 /*
4162 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
4163 * an error where there's an empty slot with no huge pagecache
4164 * to back it. This way, we avoid allocating a hugepage, and
4165 * the sparse dumpfile avoids allocating disk blocks, but its
4166 * huge holes still show up with zeroes where they need to be.
2a15efc9 4167 */
3ae77f43
HD
4168 if (absent && (flags & FOLL_DUMP) &&
4169 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
4170 if (pte)
4171 spin_unlock(ptl);
2a15efc9
HD
4172 remainder = 0;
4173 break;
4174 }
63551ae0 4175
9cc3a5bd
NH
4176 /*
4177 * We need call hugetlb_fault for both hugepages under migration
4178 * (in which case hugetlb_fault waits for the migration,) and
4179 * hwpoisoned hugepages (in which case we need to prevent the
4180 * caller from accessing to them.) In order to do this, we use
4181 * here is_swap_pte instead of is_hugetlb_entry_migration and
4182 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4183 * both cases, and because we can't follow correct pages
4184 * directly from any kind of swap entries.
4185 */
4186 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
4187 ((flags & FOLL_WRITE) &&
4188 !huge_pte_write(huge_ptep_get(pte)))) {
4c887265 4189 int ret;
87ffc118 4190 unsigned int fault_flags = 0;
63551ae0 4191
cb900f41
KS
4192 if (pte)
4193 spin_unlock(ptl);
87ffc118
AA
4194 if (flags & FOLL_WRITE)
4195 fault_flags |= FAULT_FLAG_WRITE;
4196 if (nonblocking)
4197 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4198 if (flags & FOLL_NOWAIT)
4199 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4200 FAULT_FLAG_RETRY_NOWAIT;
4201 if (flags & FOLL_TRIED) {
4202 VM_WARN_ON_ONCE(fault_flags &
4203 FAULT_FLAG_ALLOW_RETRY);
4204 fault_flags |= FAULT_FLAG_TRIED;
4205 }
4206 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4207 if (ret & VM_FAULT_ERROR) {
2be7cfed 4208 err = vm_fault_to_errno(ret, flags);
87ffc118
AA
4209 remainder = 0;
4210 break;
4211 }
4212 if (ret & VM_FAULT_RETRY) {
4213 if (nonblocking)
4214 *nonblocking = 0;
4215 *nr_pages = 0;
4216 /*
4217 * VM_FAULT_RETRY must not return an
4218 * error, it will return zero
4219 * instead.
4220 *
4221 * No need to update "position" as the
4222 * caller will not check it after
4223 * *nr_pages is set to 0.
4224 */
4225 return i;
4226 }
4227 continue;
4c887265
AL
4228 }
4229
a5516438 4230 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 4231 page = pte_page(huge_ptep_get(pte));
d5d4b0aa 4232same_page:
d6692183 4233 if (pages) {
2a15efc9 4234 pages[i] = mem_map_offset(page, pfn_offset);
ddc58f27 4235 get_page(pages[i]);
d6692183 4236 }
63551ae0
DG
4237
4238 if (vmas)
4239 vmas[i] = vma;
4240
4241 vaddr += PAGE_SIZE;
d5d4b0aa 4242 ++pfn_offset;
63551ae0
DG
4243 --remainder;
4244 ++i;
d5d4b0aa 4245 if (vaddr < vma->vm_end && remainder &&
a5516438 4246 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
KC
4247 /*
4248 * We use pfn_offset to avoid touching the pageframes
4249 * of this compound page.
4250 */
4251 goto same_page;
4252 }
cb900f41 4253 spin_unlock(ptl);
63551ae0 4254 }
28a35716 4255 *nr_pages = remainder;
87ffc118
AA
4256 /*
4257 * setting position is actually required only if remainder is
4258 * not zero but it's faster not to add a "if (remainder)"
4259 * branch.
4260 */
63551ae0
DG
4261 *position = vaddr;
4262
2be7cfed 4263 return i ? i : err;
63551ae0 4264}
8f860591 4265
5491ae7b
AK
4266#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4267/*
4268 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4269 * implement this.
4270 */
4271#define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4272#endif
4273
7da4d641 4274unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
4275 unsigned long address, unsigned long end, pgprot_t newprot)
4276{
4277 struct mm_struct *mm = vma->vm_mm;
4278 unsigned long start = address;
4279 pte_t *ptep;
4280 pte_t pte;
a5516438 4281 struct hstate *h = hstate_vma(vma);
7da4d641 4282 unsigned long pages = 0;
8f860591
ZY
4283
4284 BUG_ON(address >= end);
4285 flush_cache_range(vma, address, end);
4286
a5338093 4287 mmu_notifier_invalidate_range_start(mm, start, end);
83cde9e8 4288 i_mmap_lock_write(vma->vm_file->f_mapping);
a5516438 4289 for (; address < end; address += huge_page_size(h)) {
cb900f41 4290 spinlock_t *ptl;
7868a208 4291 ptep = huge_pte_offset(mm, address, huge_page_size(h));
8f860591
ZY
4292 if (!ptep)
4293 continue;
cb900f41 4294 ptl = huge_pte_lock(h, mm, ptep);
7da4d641
PZ
4295 if (huge_pmd_unshare(mm, &address, ptep)) {
4296 pages++;
cb900f41 4297 spin_unlock(ptl);
39dde65c 4298 continue;
7da4d641 4299 }
a8bda28d
NH
4300 pte = huge_ptep_get(ptep);
4301 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4302 spin_unlock(ptl);
4303 continue;
4304 }
4305 if (unlikely(is_hugetlb_entry_migration(pte))) {
4306 swp_entry_t entry = pte_to_swp_entry(pte);
4307
4308 if (is_write_migration_entry(entry)) {
4309 pte_t newpte;
4310
4311 make_migration_entry_read(&entry);
4312 newpte = swp_entry_to_pte(entry);
e5251fd4
PA
4313 set_huge_swap_pte_at(mm, address, ptep,
4314 newpte, huge_page_size(h));
a8bda28d
NH
4315 pages++;
4316 }
4317 spin_unlock(ptl);
4318 continue;
4319 }
4320 if (!huge_pte_none(pte)) {
8f860591 4321 pte = huge_ptep_get_and_clear(mm, address, ptep);
106c992a 4322 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
be7517d6 4323 pte = arch_make_huge_pte(pte, vma, NULL, 0);
8f860591 4324 set_huge_pte_at(mm, address, ptep, pte);
7da4d641 4325 pages++;
8f860591 4326 }
cb900f41 4327 spin_unlock(ptl);
8f860591 4328 }
d833352a 4329 /*
c8c06efa 4330 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
d833352a 4331 * may have cleared our pud entry and done put_page on the page table:
c8c06efa 4332 * once we release i_mmap_rwsem, another task can do the final put_page
d833352a
MG
4333 * and that page table be reused and filled with junk.
4334 */
5491ae7b 4335 flush_hugetlb_tlb_range(vma, start, end);
0f10851e
JG
4336 /*
4337 * No need to call mmu_notifier_invalidate_range() we are downgrading
4338 * page table protection not changing it to point to a new page.
4339 *
4340 * See Documentation/vm/mmu_notifier.txt
4341 */
83cde9e8 4342 i_mmap_unlock_write(vma->vm_file->f_mapping);
a5338093 4343 mmu_notifier_invalidate_range_end(mm, start, end);
7da4d641
PZ
4344
4345 return pages << h->order;
8f860591
ZY
4346}
4347
a1e78772
MG
4348int hugetlb_reserve_pages(struct inode *inode,
4349 long from, long to,
5a6fe125 4350 struct vm_area_struct *vma,
ca16d140 4351 vm_flags_t vm_flags)
e4e574b7 4352{
17c9d12e 4353 long ret, chg;
a5516438 4354 struct hstate *h = hstate_inode(inode);
90481622 4355 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 4356 struct resv_map *resv_map;
1c5ecae3 4357 long gbl_reserve;
e4e574b7 4358
1211d50a
MK
4359 /* This should never happen */
4360 if (from > to) {
4361 VM_WARN(1, "%s called with a negative range\n", __func__);
4362 return -EINVAL;
4363 }
4364
17c9d12e
MG
4365 /*
4366 * Only apply hugepage reservation if asked. At fault time, an
4367 * attempt will be made for VM_NORESERVE to allocate a page
90481622 4368 * without using reserves
17c9d12e 4369 */
ca16d140 4370 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
4371 return 0;
4372
a1e78772
MG
4373 /*
4374 * Shared mappings base their reservation on the number of pages that
4375 * are already allocated on behalf of the file. Private mappings need
4376 * to reserve the full area even if read-only as mprotect() may be
4377 * called to make the mapping read-write. Assume !vma is a shm mapping
4378 */
9119a41e 4379 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4e35f483 4380 resv_map = inode_resv_map(inode);
9119a41e 4381
1406ec9b 4382 chg = region_chg(resv_map, from, to);
9119a41e
JK
4383
4384 } else {
4385 resv_map = resv_map_alloc();
17c9d12e
MG
4386 if (!resv_map)
4387 return -ENOMEM;
4388
a1e78772 4389 chg = to - from;
84afd99b 4390
17c9d12e
MG
4391 set_vma_resv_map(vma, resv_map);
4392 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4393 }
4394
c50ac050
DH
4395 if (chg < 0) {
4396 ret = chg;
4397 goto out_err;
4398 }
8a630112 4399
1c5ecae3
MK
4400 /*
4401 * There must be enough pages in the subpool for the mapping. If
4402 * the subpool has a minimum size, there may be some global
4403 * reservations already in place (gbl_reserve).
4404 */
4405 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4406 if (gbl_reserve < 0) {
c50ac050
DH
4407 ret = -ENOSPC;
4408 goto out_err;
4409 }
5a6fe125
MG
4410
4411 /*
17c9d12e 4412 * Check enough hugepages are available for the reservation.
90481622 4413 * Hand the pages back to the subpool if there are not
5a6fe125 4414 */
1c5ecae3 4415 ret = hugetlb_acct_memory(h, gbl_reserve);
68842c9b 4416 if (ret < 0) {
1c5ecae3
MK
4417 /* put back original number of pages, chg */
4418 (void)hugepage_subpool_put_pages(spool, chg);
c50ac050 4419 goto out_err;
68842c9b 4420 }
17c9d12e
MG
4421
4422 /*
4423 * Account for the reservations made. Shared mappings record regions
4424 * that have reservations as they are shared by multiple VMAs.
4425 * When the last VMA disappears, the region map says how much
4426 * the reservation was and the page cache tells how much of
4427 * the reservation was consumed. Private mappings are per-VMA and
4428 * only the consumed reservations are tracked. When the VMA
4429 * disappears, the original reservation is the VMA size and the
4430 * consumed reservations are stored in the map. Hence, nothing
4431 * else has to be done for private mappings here
4432 */
33039678
MK
4433 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4434 long add = region_add(resv_map, from, to);
4435
4436 if (unlikely(chg > add)) {
4437 /*
4438 * pages in this range were added to the reserve
4439 * map between region_chg and region_add. This
4440 * indicates a race with alloc_huge_page. Adjust
4441 * the subpool and reserve counts modified above
4442 * based on the difference.
4443 */
4444 long rsv_adjust;
4445
4446 rsv_adjust = hugepage_subpool_put_pages(spool,
4447 chg - add);
4448 hugetlb_acct_memory(h, -rsv_adjust);
4449 }
4450 }
a43a8c39 4451 return 0;
c50ac050 4452out_err:
5e911373 4453 if (!vma || vma->vm_flags & VM_MAYSHARE)
ff8c0c53
MK
4454 /* Don't call region_abort if region_chg failed */
4455 if (chg >= 0)
4456 region_abort(resv_map, from, to);
f031dd27
JK
4457 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4458 kref_put(&resv_map->refs, resv_map_release);
c50ac050 4459 return ret;
a43a8c39
KC
4460}
4461
b5cec28d
MK
4462long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4463 long freed)
a43a8c39 4464{
a5516438 4465 struct hstate *h = hstate_inode(inode);
4e35f483 4466 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 4467 long chg = 0;
90481622 4468 struct hugepage_subpool *spool = subpool_inode(inode);
1c5ecae3 4469 long gbl_reserve;
45c682a6 4470
b5cec28d
MK
4471 if (resv_map) {
4472 chg = region_del(resv_map, start, end);
4473 /*
4474 * region_del() can fail in the rare case where a region
4475 * must be split and another region descriptor can not be
4476 * allocated. If end == LONG_MAX, it will not fail.
4477 */
4478 if (chg < 0)
4479 return chg;
4480 }
4481
45c682a6 4482 spin_lock(&inode->i_lock);
e4c6f8be 4483 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
4484 spin_unlock(&inode->i_lock);
4485
1c5ecae3
MK
4486 /*
4487 * If the subpool has a minimum size, the number of global
4488 * reservations to be released may be adjusted.
4489 */
4490 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4491 hugetlb_acct_memory(h, -gbl_reserve);
b5cec28d
MK
4492
4493 return 0;
a43a8c39 4494}
93f70f90 4495
3212b535
SC
4496#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4497static unsigned long page_table_shareable(struct vm_area_struct *svma,
4498 struct vm_area_struct *vma,
4499 unsigned long addr, pgoff_t idx)
4500{
4501 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4502 svma->vm_start;
4503 unsigned long sbase = saddr & PUD_MASK;
4504 unsigned long s_end = sbase + PUD_SIZE;
4505
4506 /* Allow segments to share if only one is marked locked */
de60f5f1
EM
4507 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4508 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
3212b535
SC
4509
4510 /*
4511 * match the virtual addresses, permission and the alignment of the
4512 * page table page.
4513 */
4514 if (pmd_index(addr) != pmd_index(saddr) ||
4515 vm_flags != svm_flags ||
4516 sbase < svma->vm_start || svma->vm_end < s_end)
4517 return 0;
4518
4519 return saddr;
4520}
4521
31aafb45 4522static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3212b535
SC
4523{
4524 unsigned long base = addr & PUD_MASK;
4525 unsigned long end = base + PUD_SIZE;
4526
4527 /*
4528 * check on proper vm_flags and page table alignment
4529 */
4530 if (vma->vm_flags & VM_MAYSHARE &&
4531 vma->vm_start <= base && end <= vma->vm_end)
31aafb45
NK
4532 return true;
4533 return false;
3212b535
SC
4534}
4535
4536/*
4537 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4538 * and returns the corresponding pte. While this is not necessary for the
4539 * !shared pmd case because we can allocate the pmd later as well, it makes the
4540 * code much cleaner. pmd allocation is essential for the shared case because
c8c06efa 4541 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
3212b535
SC
4542 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4543 * bad pmd for sharing.
4544 */
4545pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4546{
4547 struct vm_area_struct *vma = find_vma(mm, addr);
4548 struct address_space *mapping = vma->vm_file->f_mapping;
4549 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4550 vma->vm_pgoff;
4551 struct vm_area_struct *svma;
4552 unsigned long saddr;
4553 pte_t *spte = NULL;
4554 pte_t *pte;
cb900f41 4555 spinlock_t *ptl;
3212b535
SC
4556
4557 if (!vma_shareable(vma, addr))
4558 return (pte_t *)pmd_alloc(mm, pud, addr);
4559
83cde9e8 4560 i_mmap_lock_write(mapping);
3212b535
SC
4561 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4562 if (svma == vma)
4563 continue;
4564
4565 saddr = page_table_shareable(svma, vma, addr, idx);
4566 if (saddr) {
7868a208
PA
4567 spte = huge_pte_offset(svma->vm_mm, saddr,
4568 vma_mmu_pagesize(svma));
3212b535
SC
4569 if (spte) {
4570 get_page(virt_to_page(spte));
4571 break;
4572 }
4573 }
4574 }
4575
4576 if (!spte)
4577 goto out;
4578
8bea8052 4579 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
dc6c9a35 4580 if (pud_none(*pud)) {
3212b535
SC
4581 pud_populate(mm, pud,
4582 (pmd_t *)((unsigned long)spte & PAGE_MASK));
c17b1f42 4583 mm_inc_nr_pmds(mm);
dc6c9a35 4584 } else {
3212b535 4585 put_page(virt_to_page(spte));
dc6c9a35 4586 }
cb900f41 4587 spin_unlock(ptl);
3212b535
SC
4588out:
4589 pte = (pte_t *)pmd_alloc(mm, pud, addr);
83cde9e8 4590 i_mmap_unlock_write(mapping);
3212b535
SC
4591 return pte;
4592}
4593
4594/*
4595 * unmap huge page backed by shared pte.
4596 *
4597 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4598 * indicated by page_count > 1, unmap is achieved by clearing pud and
4599 * decrementing the ref count. If count == 1, the pte page is not shared.
4600 *
cb900f41 4601 * called with page table lock held.
3212b535
SC
4602 *
4603 * returns: 1 successfully unmapped a shared pte page
4604 * 0 the underlying pte page is not shared, or it is the last user
4605 */
4606int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4607{
4608 pgd_t *pgd = pgd_offset(mm, *addr);
c2febafc
KS
4609 p4d_t *p4d = p4d_offset(pgd, *addr);
4610 pud_t *pud = pud_offset(p4d, *addr);
3212b535
SC
4611
4612 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4613 if (page_count(virt_to_page(ptep)) == 1)
4614 return 0;
4615
4616 pud_clear(pud);
4617 put_page(virt_to_page(ptep));
dc6c9a35 4618 mm_dec_nr_pmds(mm);
3212b535
SC
4619 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4620 return 1;
4621}
9e5fc74c
SC
4622#define want_pmd_share() (1)
4623#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4624pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4625{
4626 return NULL;
4627}
e81f2d22
ZZ
4628
4629int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4630{
4631 return 0;
4632}
9e5fc74c 4633#define want_pmd_share() (0)
3212b535
SC
4634#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4635
9e5fc74c
SC
4636#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4637pte_t *huge_pte_alloc(struct mm_struct *mm,
4638 unsigned long addr, unsigned long sz)
4639{
4640 pgd_t *pgd;
c2febafc 4641 p4d_t *p4d;
9e5fc74c
SC
4642 pud_t *pud;
4643 pte_t *pte = NULL;
4644
4645 pgd = pgd_offset(mm, addr);
f4f0a3d8
KS
4646 p4d = p4d_alloc(mm, pgd, addr);
4647 if (!p4d)
4648 return NULL;
c2febafc 4649 pud = pud_alloc(mm, p4d, addr);
9e5fc74c
SC
4650 if (pud) {
4651 if (sz == PUD_SIZE) {
4652 pte = (pte_t *)pud;
4653 } else {
4654 BUG_ON(sz != PMD_SIZE);
4655 if (want_pmd_share() && pud_none(*pud))
4656 pte = huge_pmd_share(mm, addr, pud);
4657 else
4658 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4659 }
4660 }
4e666314 4661 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
9e5fc74c
SC
4662
4663 return pte;
4664}
4665
9b19df29
PA
4666/*
4667 * huge_pte_offset() - Walk the page table to resolve the hugepage
4668 * entry at address @addr
4669 *
4670 * Return: Pointer to page table or swap entry (PUD or PMD) for
4671 * address @addr, or NULL if a p*d_none() entry is encountered and the
4672 * size @sz doesn't match the hugepage size at this level of the page
4673 * table.
4674 */
7868a208
PA
4675pte_t *huge_pte_offset(struct mm_struct *mm,
4676 unsigned long addr, unsigned long sz)
9e5fc74c
SC
4677{
4678 pgd_t *pgd;
c2febafc 4679 p4d_t *p4d;
9e5fc74c 4680 pud_t *pud;
c2febafc 4681 pmd_t *pmd;
9e5fc74c
SC
4682
4683 pgd = pgd_offset(mm, addr);
c2febafc
KS
4684 if (!pgd_present(*pgd))
4685 return NULL;
4686 p4d = p4d_offset(pgd, addr);
4687 if (!p4d_present(*p4d))
4688 return NULL;
9b19df29 4689
c2febafc 4690 pud = pud_offset(p4d, addr);
9b19df29 4691 if (sz != PUD_SIZE && pud_none(*pud))
c2febafc 4692 return NULL;
9b19df29
PA
4693 /* hugepage or swap? */
4694 if (pud_huge(*pud) || !pud_present(*pud))
c2febafc 4695 return (pte_t *)pud;
9b19df29 4696
c2febafc 4697 pmd = pmd_offset(pud, addr);
9b19df29
PA
4698 if (sz != PMD_SIZE && pmd_none(*pmd))
4699 return NULL;
4700 /* hugepage or swap? */
4701 if (pmd_huge(*pmd) || !pmd_present(*pmd))
4702 return (pte_t *)pmd;
4703
4704 return NULL;
9e5fc74c
SC
4705}
4706
61f77eda
NH
4707#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4708
4709/*
4710 * These functions are overwritable if your architecture needs its own
4711 * behavior.
4712 */
4713struct page * __weak
4714follow_huge_addr(struct mm_struct *mm, unsigned long address,
4715 int write)
4716{
4717 return ERR_PTR(-EINVAL);
4718}
4719
4dc71451
AK
4720struct page * __weak
4721follow_huge_pd(struct vm_area_struct *vma,
4722 unsigned long address, hugepd_t hpd, int flags, int pdshift)
4723{
4724 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4725 return NULL;
4726}
4727
61f77eda 4728struct page * __weak
9e5fc74c 4729follow_huge_pmd(struct mm_struct *mm, unsigned long address,
e66f17ff 4730 pmd_t *pmd, int flags)
9e5fc74c 4731{
e66f17ff
NH
4732 struct page *page = NULL;
4733 spinlock_t *ptl;
c9d398fa 4734 pte_t pte;
e66f17ff
NH
4735retry:
4736 ptl = pmd_lockptr(mm, pmd);
4737 spin_lock(ptl);
4738 /*
4739 * make sure that the address range covered by this pmd is not
4740 * unmapped from other threads.
4741 */
4742 if (!pmd_huge(*pmd))
4743 goto out;
c9d398fa
NH
4744 pte = huge_ptep_get((pte_t *)pmd);
4745 if (pte_present(pte)) {
97534127 4746 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
e66f17ff
NH
4747 if (flags & FOLL_GET)
4748 get_page(page);
4749 } else {
c9d398fa 4750 if (is_hugetlb_entry_migration(pte)) {
e66f17ff
NH
4751 spin_unlock(ptl);
4752 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4753 goto retry;
4754 }
4755 /*
4756 * hwpoisoned entry is treated as no_page_table in
4757 * follow_page_mask().
4758 */
4759 }
4760out:
4761 spin_unlock(ptl);
9e5fc74c
SC
4762 return page;
4763}
4764
61f77eda 4765struct page * __weak
9e5fc74c 4766follow_huge_pud(struct mm_struct *mm, unsigned long address,
e66f17ff 4767 pud_t *pud, int flags)
9e5fc74c 4768{
e66f17ff
NH
4769 if (flags & FOLL_GET)
4770 return NULL;
9e5fc74c 4771
e66f17ff 4772 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
9e5fc74c
SC
4773}
4774
faaa5b62
AK
4775struct page * __weak
4776follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4777{
4778 if (flags & FOLL_GET)
4779 return NULL;
4780
4781 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4782}
4783
31caf665
NH
4784bool isolate_huge_page(struct page *page, struct list_head *list)
4785{
bcc54222
NH
4786 bool ret = true;
4787
309381fe 4788 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 4789 spin_lock(&hugetlb_lock);
bcc54222
NH
4790 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4791 ret = false;
4792 goto unlock;
4793 }
4794 clear_page_huge_active(page);
31caf665 4795 list_move_tail(&page->lru, list);
bcc54222 4796unlock:
31caf665 4797 spin_unlock(&hugetlb_lock);
bcc54222 4798 return ret;
31caf665
NH
4799}
4800
4801void putback_active_hugepage(struct page *page)
4802{
309381fe 4803 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 4804 spin_lock(&hugetlb_lock);
bcc54222 4805 set_page_huge_active(page);
31caf665
NH
4806 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4807 spin_unlock(&hugetlb_lock);
4808 put_page(page);
4809}