]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/hugetlb.c
mm/hugetlb: add size parameter to huge_pte_offset()
[mirror_ubuntu-bionic-kernel.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
6d49e352 3 * (C) Nadia Yvette Chambers, April 2004
1da177e4 4 */
1da177e4
LT
5#include <linux/list.h>
6#include <linux/init.h>
1da177e4 7#include <linux/mm.h>
e1759c21 8#include <linux/seq_file.h>
1da177e4
LT
9#include <linux/sysctl.h>
10#include <linux/highmem.h>
cddb8a5c 11#include <linux/mmu_notifier.h>
1da177e4 12#include <linux/nodemask.h>
63551ae0 13#include <linux/pagemap.h>
5da7ca86 14#include <linux/mempolicy.h>
3b32123d 15#include <linux/compiler.h>
aea47ff3 16#include <linux/cpuset.h>
3935baa9 17#include <linux/mutex.h>
aa888a74 18#include <linux/bootmem.h>
a3437870 19#include <linux/sysfs.h>
5a0e3ad6 20#include <linux/slab.h>
174cd4b1 21#include <linux/sched/signal.h>
0fe6e20b 22#include <linux/rmap.h>
fd6a03ed
NH
23#include <linux/swap.h>
24#include <linux/swapops.h>
c8721bbb 25#include <linux/page-isolation.h>
8382d914 26#include <linux/jhash.h>
d6606683 27
63551ae0
DG
28#include <asm/page.h>
29#include <asm/pgtable.h>
24669e58 30#include <asm/tlb.h>
63551ae0 31
24669e58 32#include <linux/io.h>
63551ae0 33#include <linux/hugetlb.h>
9dd540e2 34#include <linux/hugetlb_cgroup.h>
9a305230 35#include <linux/node.h>
1a1aad8a 36#include <linux/userfaultfd_k.h>
7835e98b 37#include "internal.h"
1da177e4 38
753162cd 39int hugepages_treat_as_movable;
a5516438 40
c3f38a38 41int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
42unsigned int default_hstate_idx;
43struct hstate hstates[HUGE_MAX_HSTATE];
641844f5
NH
44/*
45 * Minimum page order among possible hugepage sizes, set to a proper value
46 * at boot time.
47 */
48static unsigned int minimum_order __read_mostly = UINT_MAX;
e5ff2159 49
53ba51d2
JT
50__initdata LIST_HEAD(huge_boot_pages);
51
e5ff2159
AK
52/* for command line parsing */
53static struct hstate * __initdata parsed_hstate;
54static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 55static unsigned long __initdata default_hstate_size;
9fee021d 56static bool __initdata parsed_valid_hugepagesz = true;
e5ff2159 57
3935baa9 58/*
31caf665
NH
59 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
60 * free_huge_pages, and surplus_huge_pages.
3935baa9 61 */
c3f38a38 62DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 63
8382d914
DB
64/*
65 * Serializes faults on the same logical page. This is used to
66 * prevent spurious OOMs when the hugepage pool is fully utilized.
67 */
68static int num_fault_mutexes;
c672c7f2 69struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
8382d914 70
7ca02d0a
MK
71/* Forward declaration */
72static int hugetlb_acct_memory(struct hstate *h, long delta);
73
90481622
DG
74static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
75{
76 bool free = (spool->count == 0) && (spool->used_hpages == 0);
77
78 spin_unlock(&spool->lock);
79
80 /* If no pages are used, and no other handles to the subpool
7ca02d0a
MK
81 * remain, give up any reservations mased on minimum size and
82 * free the subpool */
83 if (free) {
84 if (spool->min_hpages != -1)
85 hugetlb_acct_memory(spool->hstate,
86 -spool->min_hpages);
90481622 87 kfree(spool);
7ca02d0a 88 }
90481622
DG
89}
90
7ca02d0a
MK
91struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
92 long min_hpages)
90481622
DG
93{
94 struct hugepage_subpool *spool;
95
c6a91820 96 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
90481622
DG
97 if (!spool)
98 return NULL;
99
100 spin_lock_init(&spool->lock);
101 spool->count = 1;
7ca02d0a
MK
102 spool->max_hpages = max_hpages;
103 spool->hstate = h;
104 spool->min_hpages = min_hpages;
105
106 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
107 kfree(spool);
108 return NULL;
109 }
110 spool->rsv_hpages = min_hpages;
90481622
DG
111
112 return spool;
113}
114
115void hugepage_put_subpool(struct hugepage_subpool *spool)
116{
117 spin_lock(&spool->lock);
118 BUG_ON(!spool->count);
119 spool->count--;
120 unlock_or_release_subpool(spool);
121}
122
1c5ecae3
MK
123/*
124 * Subpool accounting for allocating and reserving pages.
125 * Return -ENOMEM if there are not enough resources to satisfy the
126 * the request. Otherwise, return the number of pages by which the
127 * global pools must be adjusted (upward). The returned value may
128 * only be different than the passed value (delta) in the case where
129 * a subpool minimum size must be manitained.
130 */
131static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
90481622
DG
132 long delta)
133{
1c5ecae3 134 long ret = delta;
90481622
DG
135
136 if (!spool)
1c5ecae3 137 return ret;
90481622
DG
138
139 spin_lock(&spool->lock);
1c5ecae3
MK
140
141 if (spool->max_hpages != -1) { /* maximum size accounting */
142 if ((spool->used_hpages + delta) <= spool->max_hpages)
143 spool->used_hpages += delta;
144 else {
145 ret = -ENOMEM;
146 goto unlock_ret;
147 }
90481622 148 }
90481622 149
09a95e29
MK
150 /* minimum size accounting */
151 if (spool->min_hpages != -1 && spool->rsv_hpages) {
1c5ecae3
MK
152 if (delta > spool->rsv_hpages) {
153 /*
154 * Asking for more reserves than those already taken on
155 * behalf of subpool. Return difference.
156 */
157 ret = delta - spool->rsv_hpages;
158 spool->rsv_hpages = 0;
159 } else {
160 ret = 0; /* reserves already accounted for */
161 spool->rsv_hpages -= delta;
162 }
163 }
164
165unlock_ret:
166 spin_unlock(&spool->lock);
90481622
DG
167 return ret;
168}
169
1c5ecae3
MK
170/*
171 * Subpool accounting for freeing and unreserving pages.
172 * Return the number of global page reservations that must be dropped.
173 * The return value may only be different than the passed value (delta)
174 * in the case where a subpool minimum size must be maintained.
175 */
176static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
90481622
DG
177 long delta)
178{
1c5ecae3
MK
179 long ret = delta;
180
90481622 181 if (!spool)
1c5ecae3 182 return delta;
90481622
DG
183
184 spin_lock(&spool->lock);
1c5ecae3
MK
185
186 if (spool->max_hpages != -1) /* maximum size accounting */
187 spool->used_hpages -= delta;
188
09a95e29
MK
189 /* minimum size accounting */
190 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
1c5ecae3
MK
191 if (spool->rsv_hpages + delta <= spool->min_hpages)
192 ret = 0;
193 else
194 ret = spool->rsv_hpages + delta - spool->min_hpages;
195
196 spool->rsv_hpages += delta;
197 if (spool->rsv_hpages > spool->min_hpages)
198 spool->rsv_hpages = spool->min_hpages;
199 }
200
201 /*
202 * If hugetlbfs_put_super couldn't free spool due to an outstanding
203 * quota reference, free it now.
204 */
90481622 205 unlock_or_release_subpool(spool);
1c5ecae3
MK
206
207 return ret;
90481622
DG
208}
209
210static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
211{
212 return HUGETLBFS_SB(inode->i_sb)->spool;
213}
214
215static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
216{
496ad9aa 217 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
218}
219
96822904
AW
220/*
221 * Region tracking -- allows tracking of reservations and instantiated pages
222 * across the pages in a mapping.
84afd99b 223 *
1dd308a7
MK
224 * The region data structures are embedded into a resv_map and protected
225 * by a resv_map's lock. The set of regions within the resv_map represent
226 * reservations for huge pages, or huge pages that have already been
227 * instantiated within the map. The from and to elements are huge page
228 * indicies into the associated mapping. from indicates the starting index
229 * of the region. to represents the first index past the end of the region.
230 *
231 * For example, a file region structure with from == 0 and to == 4 represents
232 * four huge pages in a mapping. It is important to note that the to element
233 * represents the first element past the end of the region. This is used in
234 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
235 *
236 * Interval notation of the form [from, to) will be used to indicate that
237 * the endpoint from is inclusive and to is exclusive.
96822904
AW
238 */
239struct file_region {
240 struct list_head link;
241 long from;
242 long to;
243};
244
1dd308a7
MK
245/*
246 * Add the huge page range represented by [f, t) to the reserve
5e911373
MK
247 * map. In the normal case, existing regions will be expanded
248 * to accommodate the specified range. Sufficient regions should
249 * exist for expansion due to the previous call to region_chg
250 * with the same range. However, it is possible that region_del
251 * could have been called after region_chg and modifed the map
252 * in such a way that no region exists to be expanded. In this
253 * case, pull a region descriptor from the cache associated with
254 * the map and use that for the new range.
cf3ad20b
MK
255 *
256 * Return the number of new huge pages added to the map. This
257 * number is greater than or equal to zero.
1dd308a7 258 */
1406ec9b 259static long region_add(struct resv_map *resv, long f, long t)
96822904 260{
1406ec9b 261 struct list_head *head = &resv->regions;
96822904 262 struct file_region *rg, *nrg, *trg;
cf3ad20b 263 long add = 0;
96822904 264
7b24d861 265 spin_lock(&resv->lock);
96822904
AW
266 /* Locate the region we are either in or before. */
267 list_for_each_entry(rg, head, link)
268 if (f <= rg->to)
269 break;
270
5e911373
MK
271 /*
272 * If no region exists which can be expanded to include the
273 * specified range, the list must have been modified by an
274 * interleving call to region_del(). Pull a region descriptor
275 * from the cache and use it for this range.
276 */
277 if (&rg->link == head || t < rg->from) {
278 VM_BUG_ON(resv->region_cache_count <= 0);
279
280 resv->region_cache_count--;
281 nrg = list_first_entry(&resv->region_cache, struct file_region,
282 link);
283 list_del(&nrg->link);
284
285 nrg->from = f;
286 nrg->to = t;
287 list_add(&nrg->link, rg->link.prev);
288
289 add += t - f;
290 goto out_locked;
291 }
292
96822904
AW
293 /* Round our left edge to the current segment if it encloses us. */
294 if (f > rg->from)
295 f = rg->from;
296
297 /* Check for and consume any regions we now overlap with. */
298 nrg = rg;
299 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
300 if (&rg->link == head)
301 break;
302 if (rg->from > t)
303 break;
304
305 /* If this area reaches higher then extend our area to
306 * include it completely. If this is not the first area
307 * which we intend to reuse, free it. */
308 if (rg->to > t)
309 t = rg->to;
310 if (rg != nrg) {
cf3ad20b
MK
311 /* Decrement return value by the deleted range.
312 * Another range will span this area so that by
313 * end of routine add will be >= zero
314 */
315 add -= (rg->to - rg->from);
96822904
AW
316 list_del(&rg->link);
317 kfree(rg);
318 }
319 }
cf3ad20b
MK
320
321 add += (nrg->from - f); /* Added to beginning of region */
96822904 322 nrg->from = f;
cf3ad20b 323 add += t - nrg->to; /* Added to end of region */
96822904 324 nrg->to = t;
cf3ad20b 325
5e911373
MK
326out_locked:
327 resv->adds_in_progress--;
7b24d861 328 spin_unlock(&resv->lock);
cf3ad20b
MK
329 VM_BUG_ON(add < 0);
330 return add;
96822904
AW
331}
332
1dd308a7
MK
333/*
334 * Examine the existing reserve map and determine how many
335 * huge pages in the specified range [f, t) are NOT currently
336 * represented. This routine is called before a subsequent
337 * call to region_add that will actually modify the reserve
338 * map to add the specified range [f, t). region_chg does
339 * not change the number of huge pages represented by the
340 * map. However, if the existing regions in the map can not
341 * be expanded to represent the new range, a new file_region
342 * structure is added to the map as a placeholder. This is
343 * so that the subsequent region_add call will have all the
344 * regions it needs and will not fail.
345 *
5e911373
MK
346 * Upon entry, region_chg will also examine the cache of region descriptors
347 * associated with the map. If there are not enough descriptors cached, one
348 * will be allocated for the in progress add operation.
349 *
350 * Returns the number of huge pages that need to be added to the existing
351 * reservation map for the range [f, t). This number is greater or equal to
352 * zero. -ENOMEM is returned if a new file_region structure or cache entry
353 * is needed and can not be allocated.
1dd308a7 354 */
1406ec9b 355static long region_chg(struct resv_map *resv, long f, long t)
96822904 356{
1406ec9b 357 struct list_head *head = &resv->regions;
7b24d861 358 struct file_region *rg, *nrg = NULL;
96822904
AW
359 long chg = 0;
360
7b24d861
DB
361retry:
362 spin_lock(&resv->lock);
5e911373
MK
363retry_locked:
364 resv->adds_in_progress++;
365
366 /*
367 * Check for sufficient descriptors in the cache to accommodate
368 * the number of in progress add operations.
369 */
370 if (resv->adds_in_progress > resv->region_cache_count) {
371 struct file_region *trg;
372
373 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
374 /* Must drop lock to allocate a new descriptor. */
375 resv->adds_in_progress--;
376 spin_unlock(&resv->lock);
377
378 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
dbe409e4
MK
379 if (!trg) {
380 kfree(nrg);
5e911373 381 return -ENOMEM;
dbe409e4 382 }
5e911373
MK
383
384 spin_lock(&resv->lock);
385 list_add(&trg->link, &resv->region_cache);
386 resv->region_cache_count++;
387 goto retry_locked;
388 }
389
96822904
AW
390 /* Locate the region we are before or in. */
391 list_for_each_entry(rg, head, link)
392 if (f <= rg->to)
393 break;
394
395 /* If we are below the current region then a new region is required.
396 * Subtle, allocate a new region at the position but make it zero
397 * size such that we can guarantee to record the reservation. */
398 if (&rg->link == head || t < rg->from) {
7b24d861 399 if (!nrg) {
5e911373 400 resv->adds_in_progress--;
7b24d861
DB
401 spin_unlock(&resv->lock);
402 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
403 if (!nrg)
404 return -ENOMEM;
405
406 nrg->from = f;
407 nrg->to = f;
408 INIT_LIST_HEAD(&nrg->link);
409 goto retry;
410 }
96822904 411
7b24d861
DB
412 list_add(&nrg->link, rg->link.prev);
413 chg = t - f;
414 goto out_nrg;
96822904
AW
415 }
416
417 /* Round our left edge to the current segment if it encloses us. */
418 if (f > rg->from)
419 f = rg->from;
420 chg = t - f;
421
422 /* Check for and consume any regions we now overlap with. */
423 list_for_each_entry(rg, rg->link.prev, link) {
424 if (&rg->link == head)
425 break;
426 if (rg->from > t)
7b24d861 427 goto out;
96822904 428
25985edc 429 /* We overlap with this area, if it extends further than
96822904
AW
430 * us then we must extend ourselves. Account for its
431 * existing reservation. */
432 if (rg->to > t) {
433 chg += rg->to - t;
434 t = rg->to;
435 }
436 chg -= rg->to - rg->from;
437 }
7b24d861
DB
438
439out:
440 spin_unlock(&resv->lock);
441 /* We already know we raced and no longer need the new region */
442 kfree(nrg);
443 return chg;
444out_nrg:
445 spin_unlock(&resv->lock);
96822904
AW
446 return chg;
447}
448
5e911373
MK
449/*
450 * Abort the in progress add operation. The adds_in_progress field
451 * of the resv_map keeps track of the operations in progress between
452 * calls to region_chg and region_add. Operations are sometimes
453 * aborted after the call to region_chg. In such cases, region_abort
454 * is called to decrement the adds_in_progress counter.
455 *
456 * NOTE: The range arguments [f, t) are not needed or used in this
457 * routine. They are kept to make reading the calling code easier as
458 * arguments will match the associated region_chg call.
459 */
460static void region_abort(struct resv_map *resv, long f, long t)
461{
462 spin_lock(&resv->lock);
463 VM_BUG_ON(!resv->region_cache_count);
464 resv->adds_in_progress--;
465 spin_unlock(&resv->lock);
466}
467
1dd308a7 468/*
feba16e2
MK
469 * Delete the specified range [f, t) from the reserve map. If the
470 * t parameter is LONG_MAX, this indicates that ALL regions after f
471 * should be deleted. Locate the regions which intersect [f, t)
472 * and either trim, delete or split the existing regions.
473 *
474 * Returns the number of huge pages deleted from the reserve map.
475 * In the normal case, the return value is zero or more. In the
476 * case where a region must be split, a new region descriptor must
477 * be allocated. If the allocation fails, -ENOMEM will be returned.
478 * NOTE: If the parameter t == LONG_MAX, then we will never split
479 * a region and possibly return -ENOMEM. Callers specifying
480 * t == LONG_MAX do not need to check for -ENOMEM error.
1dd308a7 481 */
feba16e2 482static long region_del(struct resv_map *resv, long f, long t)
96822904 483{
1406ec9b 484 struct list_head *head = &resv->regions;
96822904 485 struct file_region *rg, *trg;
feba16e2
MK
486 struct file_region *nrg = NULL;
487 long del = 0;
96822904 488
feba16e2 489retry:
7b24d861 490 spin_lock(&resv->lock);
feba16e2 491 list_for_each_entry_safe(rg, trg, head, link) {
dbe409e4
MK
492 /*
493 * Skip regions before the range to be deleted. file_region
494 * ranges are normally of the form [from, to). However, there
495 * may be a "placeholder" entry in the map which is of the form
496 * (from, to) with from == to. Check for placeholder entries
497 * at the beginning of the range to be deleted.
498 */
499 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
feba16e2 500 continue;
dbe409e4 501
feba16e2 502 if (rg->from >= t)
96822904 503 break;
96822904 504
feba16e2
MK
505 if (f > rg->from && t < rg->to) { /* Must split region */
506 /*
507 * Check for an entry in the cache before dropping
508 * lock and attempting allocation.
509 */
510 if (!nrg &&
511 resv->region_cache_count > resv->adds_in_progress) {
512 nrg = list_first_entry(&resv->region_cache,
513 struct file_region,
514 link);
515 list_del(&nrg->link);
516 resv->region_cache_count--;
517 }
96822904 518
feba16e2
MK
519 if (!nrg) {
520 spin_unlock(&resv->lock);
521 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
522 if (!nrg)
523 return -ENOMEM;
524 goto retry;
525 }
526
527 del += t - f;
528
529 /* New entry for end of split region */
530 nrg->from = t;
531 nrg->to = rg->to;
532 INIT_LIST_HEAD(&nrg->link);
533
534 /* Original entry is trimmed */
535 rg->to = f;
536
537 list_add(&nrg->link, &rg->link);
538 nrg = NULL;
96822904 539 break;
feba16e2
MK
540 }
541
542 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
543 del += rg->to - rg->from;
544 list_del(&rg->link);
545 kfree(rg);
546 continue;
547 }
548
549 if (f <= rg->from) { /* Trim beginning of region */
550 del += t - rg->from;
551 rg->from = t;
552 } else { /* Trim end of region */
553 del += rg->to - f;
554 rg->to = f;
555 }
96822904 556 }
7b24d861 557
7b24d861 558 spin_unlock(&resv->lock);
feba16e2
MK
559 kfree(nrg);
560 return del;
96822904
AW
561}
562
b5cec28d
MK
563/*
564 * A rare out of memory error was encountered which prevented removal of
565 * the reserve map region for a page. The huge page itself was free'ed
566 * and removed from the page cache. This routine will adjust the subpool
567 * usage count, and the global reserve count if needed. By incrementing
568 * these counts, the reserve map entry which could not be deleted will
569 * appear as a "reserved" entry instead of simply dangling with incorrect
570 * counts.
571 */
72e2936c 572void hugetlb_fix_reserve_counts(struct inode *inode)
b5cec28d
MK
573{
574 struct hugepage_subpool *spool = subpool_inode(inode);
575 long rsv_adjust;
576
577 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
72e2936c 578 if (rsv_adjust) {
b5cec28d
MK
579 struct hstate *h = hstate_inode(inode);
580
581 hugetlb_acct_memory(h, 1);
582 }
583}
584
1dd308a7
MK
585/*
586 * Count and return the number of huge pages in the reserve map
587 * that intersect with the range [f, t).
588 */
1406ec9b 589static long region_count(struct resv_map *resv, long f, long t)
84afd99b 590{
1406ec9b 591 struct list_head *head = &resv->regions;
84afd99b
AW
592 struct file_region *rg;
593 long chg = 0;
594
7b24d861 595 spin_lock(&resv->lock);
84afd99b
AW
596 /* Locate each segment we overlap with, and count that overlap. */
597 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
598 long seg_from;
599 long seg_to;
84afd99b
AW
600
601 if (rg->to <= f)
602 continue;
603 if (rg->from >= t)
604 break;
605
606 seg_from = max(rg->from, f);
607 seg_to = min(rg->to, t);
608
609 chg += seg_to - seg_from;
610 }
7b24d861 611 spin_unlock(&resv->lock);
84afd99b
AW
612
613 return chg;
614}
615
e7c4b0bf
AW
616/*
617 * Convert the address within this vma to the page offset within
618 * the mapping, in pagecache page units; huge pages here.
619 */
a5516438
AK
620static pgoff_t vma_hugecache_offset(struct hstate *h,
621 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 622{
a5516438
AK
623 return ((address - vma->vm_start) >> huge_page_shift(h)) +
624 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
625}
626
0fe6e20b
NH
627pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
628 unsigned long address)
629{
630 return vma_hugecache_offset(hstate_vma(vma), vma, address);
631}
dee41079 632EXPORT_SYMBOL_GPL(linear_hugepage_index);
0fe6e20b 633
08fba699
MG
634/*
635 * Return the size of the pages allocated when backing a VMA. In the majority
636 * cases this will be same size as used by the page table entries.
637 */
638unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
639{
640 struct hstate *hstate;
641
642 if (!is_vm_hugetlb_page(vma))
643 return PAGE_SIZE;
644
645 hstate = hstate_vma(vma);
646
2415cf12 647 return 1UL << huge_page_shift(hstate);
08fba699 648}
f340ca0f 649EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 650
3340289d
MG
651/*
652 * Return the page size being used by the MMU to back a VMA. In the majority
653 * of cases, the page size used by the kernel matches the MMU size. On
654 * architectures where it differs, an architecture-specific version of this
655 * function is required.
656 */
657#ifndef vma_mmu_pagesize
658unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
659{
660 return vma_kernel_pagesize(vma);
661}
662#endif
663
84afd99b
AW
664/*
665 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
666 * bits of the reservation map pointer, which are always clear due to
667 * alignment.
668 */
669#define HPAGE_RESV_OWNER (1UL << 0)
670#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 671#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 672
a1e78772
MG
673/*
674 * These helpers are used to track how many pages are reserved for
675 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
676 * is guaranteed to have their future faults succeed.
677 *
678 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
679 * the reserve counters are updated with the hugetlb_lock held. It is safe
680 * to reset the VMA at fork() time as it is not in use yet and there is no
681 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
682 *
683 * The private mapping reservation is represented in a subtly different
684 * manner to a shared mapping. A shared mapping has a region map associated
685 * with the underlying file, this region map represents the backing file
686 * pages which have ever had a reservation assigned which this persists even
687 * after the page is instantiated. A private mapping has a region map
688 * associated with the original mmap which is attached to all VMAs which
689 * reference it, this region map represents those offsets which have consumed
690 * reservation ie. where pages have been instantiated.
a1e78772 691 */
e7c4b0bf
AW
692static unsigned long get_vma_private_data(struct vm_area_struct *vma)
693{
694 return (unsigned long)vma->vm_private_data;
695}
696
697static void set_vma_private_data(struct vm_area_struct *vma,
698 unsigned long value)
699{
700 vma->vm_private_data = (void *)value;
701}
702
9119a41e 703struct resv_map *resv_map_alloc(void)
84afd99b
AW
704{
705 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
5e911373
MK
706 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
707
708 if (!resv_map || !rg) {
709 kfree(resv_map);
710 kfree(rg);
84afd99b 711 return NULL;
5e911373 712 }
84afd99b
AW
713
714 kref_init(&resv_map->refs);
7b24d861 715 spin_lock_init(&resv_map->lock);
84afd99b
AW
716 INIT_LIST_HEAD(&resv_map->regions);
717
5e911373
MK
718 resv_map->adds_in_progress = 0;
719
720 INIT_LIST_HEAD(&resv_map->region_cache);
721 list_add(&rg->link, &resv_map->region_cache);
722 resv_map->region_cache_count = 1;
723
84afd99b
AW
724 return resv_map;
725}
726
9119a41e 727void resv_map_release(struct kref *ref)
84afd99b
AW
728{
729 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
5e911373
MK
730 struct list_head *head = &resv_map->region_cache;
731 struct file_region *rg, *trg;
84afd99b
AW
732
733 /* Clear out any active regions before we release the map. */
feba16e2 734 region_del(resv_map, 0, LONG_MAX);
5e911373
MK
735
736 /* ... and any entries left in the cache */
737 list_for_each_entry_safe(rg, trg, head, link) {
738 list_del(&rg->link);
739 kfree(rg);
740 }
741
742 VM_BUG_ON(resv_map->adds_in_progress);
743
84afd99b
AW
744 kfree(resv_map);
745}
746
4e35f483
JK
747static inline struct resv_map *inode_resv_map(struct inode *inode)
748{
749 return inode->i_mapping->private_data;
750}
751
84afd99b 752static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772 753{
81d1b09c 754 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
4e35f483
JK
755 if (vma->vm_flags & VM_MAYSHARE) {
756 struct address_space *mapping = vma->vm_file->f_mapping;
757 struct inode *inode = mapping->host;
758
759 return inode_resv_map(inode);
760
761 } else {
84afd99b
AW
762 return (struct resv_map *)(get_vma_private_data(vma) &
763 ~HPAGE_RESV_MASK);
4e35f483 764 }
a1e78772
MG
765}
766
84afd99b 767static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772 768{
81d1b09c
SL
769 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
770 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
a1e78772 771
84afd99b
AW
772 set_vma_private_data(vma, (get_vma_private_data(vma) &
773 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
774}
775
776static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
777{
81d1b09c
SL
778 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
779 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
e7c4b0bf
AW
780
781 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
782}
783
784static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
785{
81d1b09c 786 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
e7c4b0bf
AW
787
788 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
789}
790
04f2cbe3 791/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
792void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
793{
81d1b09c 794 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
f83a275d 795 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
796 vma->vm_private_data = (void *)0;
797}
798
799/* Returns true if the VMA has associated reserve pages */
559ec2f8 800static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 801{
af0ed73e
JK
802 if (vma->vm_flags & VM_NORESERVE) {
803 /*
804 * This address is already reserved by other process(chg == 0),
805 * so, we should decrement reserved count. Without decrementing,
806 * reserve count remains after releasing inode, because this
807 * allocated page will go into page cache and is regarded as
808 * coming from reserved pool in releasing step. Currently, we
809 * don't have any other solution to deal with this situation
810 * properly, so add work-around here.
811 */
812 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
559ec2f8 813 return true;
af0ed73e 814 else
559ec2f8 815 return false;
af0ed73e 816 }
a63884e9
JK
817
818 /* Shared mappings always use reserves */
1fb1b0e9
MK
819 if (vma->vm_flags & VM_MAYSHARE) {
820 /*
821 * We know VM_NORESERVE is not set. Therefore, there SHOULD
822 * be a region map for all pages. The only situation where
823 * there is no region map is if a hole was punched via
824 * fallocate. In this case, there really are no reverves to
825 * use. This situation is indicated if chg != 0.
826 */
827 if (chg)
828 return false;
829 else
830 return true;
831 }
a63884e9
JK
832
833 /*
834 * Only the process that called mmap() has reserves for
835 * private mappings.
836 */
67961f9d
MK
837 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
838 /*
839 * Like the shared case above, a hole punch or truncate
840 * could have been performed on the private mapping.
841 * Examine the value of chg to determine if reserves
842 * actually exist or were previously consumed.
843 * Very Subtle - The value of chg comes from a previous
844 * call to vma_needs_reserves(). The reserve map for
845 * private mappings has different (opposite) semantics
846 * than that of shared mappings. vma_needs_reserves()
847 * has already taken this difference in semantics into
848 * account. Therefore, the meaning of chg is the same
849 * as in the shared case above. Code could easily be
850 * combined, but keeping it separate draws attention to
851 * subtle differences.
852 */
853 if (chg)
854 return false;
855 else
856 return true;
857 }
a63884e9 858
559ec2f8 859 return false;
a1e78772
MG
860}
861
a5516438 862static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
863{
864 int nid = page_to_nid(page);
0edaecfa 865 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
866 h->free_huge_pages++;
867 h->free_huge_pages_node[nid]++;
1da177e4
LT
868}
869
94310cbc 870static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
bf50bab2
NH
871{
872 struct page *page;
873
c8721bbb
NH
874 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
875 if (!is_migrate_isolate_page(page))
876 break;
877 /*
878 * if 'non-isolated free hugepage' not found on the list,
879 * the allocation fails.
880 */
881 if (&h->hugepage_freelists[nid] == &page->lru)
bf50bab2 882 return NULL;
0edaecfa 883 list_move(&page->lru, &h->hugepage_activelist);
a9869b83 884 set_page_refcounted(page);
bf50bab2
NH
885 h->free_huge_pages--;
886 h->free_huge_pages_node[nid]--;
887 return page;
888}
889
94310cbc
AK
890static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
891{
892 struct page *page;
893 int node;
894
895 if (nid != NUMA_NO_NODE)
896 return dequeue_huge_page_node_exact(h, nid);
897
898 for_each_online_node(node) {
899 page = dequeue_huge_page_node_exact(h, node);
900 if (page)
901 return page;
902 }
903 return NULL;
904}
905
86cdb465
NH
906/* Movability of hugepages depends on migration support. */
907static inline gfp_t htlb_alloc_mask(struct hstate *h)
908{
100873d7 909 if (hugepages_treat_as_movable || hugepage_migration_supported(h))
86cdb465
NH
910 return GFP_HIGHUSER_MOVABLE;
911 else
912 return GFP_HIGHUSER;
913}
914
a5516438
AK
915static struct page *dequeue_huge_page_vma(struct hstate *h,
916 struct vm_area_struct *vma,
af0ed73e
JK
917 unsigned long address, int avoid_reserve,
918 long chg)
1da177e4 919{
b1c12cbc 920 struct page *page = NULL;
480eccf9 921 struct mempolicy *mpol;
19770b32 922 nodemask_t *nodemask;
c0ff7453 923 struct zonelist *zonelist;
dd1a239f
MG
924 struct zone *zone;
925 struct zoneref *z;
cc9a6c87 926 unsigned int cpuset_mems_cookie;
1da177e4 927
a1e78772
MG
928 /*
929 * A child process with MAP_PRIVATE mappings created by their parent
930 * have no page reserves. This check ensures that reservations are
931 * not "stolen". The child may still get SIGKILLed
932 */
af0ed73e 933 if (!vma_has_reserves(vma, chg) &&
a5516438 934 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 935 goto err;
a1e78772 936
04f2cbe3 937 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 938 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 939 goto err;
04f2cbe3 940
9966c4bb 941retry_cpuset:
d26914d1 942 cpuset_mems_cookie = read_mems_allowed_begin();
9966c4bb 943 zonelist = huge_zonelist(vma, address,
86cdb465 944 htlb_alloc_mask(h), &mpol, &nodemask);
9966c4bb 945
19770b32
MG
946 for_each_zone_zonelist_nodemask(zone, z, zonelist,
947 MAX_NR_ZONES - 1, nodemask) {
344736f2 948 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
bf50bab2
NH
949 page = dequeue_huge_page_node(h, zone_to_nid(zone));
950 if (page) {
af0ed73e
JK
951 if (avoid_reserve)
952 break;
953 if (!vma_has_reserves(vma, chg))
954 break;
955
07443a85 956 SetPagePrivate(page);
af0ed73e 957 h->resv_huge_pages--;
bf50bab2
NH
958 break;
959 }
3abf7afd 960 }
1da177e4 961 }
cc9a6c87 962
52cd3b07 963 mpol_cond_put(mpol);
d26914d1 964 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87 965 goto retry_cpuset;
1da177e4 966 return page;
cc9a6c87
MG
967
968err:
cc9a6c87 969 return NULL;
1da177e4
LT
970}
971
1cac6f2c
LC
972/*
973 * common helper functions for hstate_next_node_to_{alloc|free}.
974 * We may have allocated or freed a huge page based on a different
975 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
976 * be outside of *nodes_allowed. Ensure that we use an allowed
977 * node for alloc or free.
978 */
979static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
980{
0edaf86c 981 nid = next_node_in(nid, *nodes_allowed);
1cac6f2c
LC
982 VM_BUG_ON(nid >= MAX_NUMNODES);
983
984 return nid;
985}
986
987static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
988{
989 if (!node_isset(nid, *nodes_allowed))
990 nid = next_node_allowed(nid, nodes_allowed);
991 return nid;
992}
993
994/*
995 * returns the previously saved node ["this node"] from which to
996 * allocate a persistent huge page for the pool and advance the
997 * next node from which to allocate, handling wrap at end of node
998 * mask.
999 */
1000static int hstate_next_node_to_alloc(struct hstate *h,
1001 nodemask_t *nodes_allowed)
1002{
1003 int nid;
1004
1005 VM_BUG_ON(!nodes_allowed);
1006
1007 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1008 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1009
1010 return nid;
1011}
1012
1013/*
1014 * helper for free_pool_huge_page() - return the previously saved
1015 * node ["this node"] from which to free a huge page. Advance the
1016 * next node id whether or not we find a free huge page to free so
1017 * that the next attempt to free addresses the next node.
1018 */
1019static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1020{
1021 int nid;
1022
1023 VM_BUG_ON(!nodes_allowed);
1024
1025 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1026 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1027
1028 return nid;
1029}
1030
1031#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1032 for (nr_nodes = nodes_weight(*mask); \
1033 nr_nodes > 0 && \
1034 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1035 nr_nodes--)
1036
1037#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1038 for (nr_nodes = nodes_weight(*mask); \
1039 nr_nodes > 0 && \
1040 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1041 nr_nodes--)
1042
e1073d1e 1043#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
944d9fec 1044static void destroy_compound_gigantic_page(struct page *page,
d00181b9 1045 unsigned int order)
944d9fec
LC
1046{
1047 int i;
1048 int nr_pages = 1 << order;
1049 struct page *p = page + 1;
1050
c8cc708a 1051 atomic_set(compound_mapcount_ptr(page), 0);
944d9fec 1052 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1d798ca3 1053 clear_compound_head(p);
944d9fec 1054 set_page_refcounted(p);
944d9fec
LC
1055 }
1056
1057 set_compound_order(page, 0);
1058 __ClearPageHead(page);
1059}
1060
d00181b9 1061static void free_gigantic_page(struct page *page, unsigned int order)
944d9fec
LC
1062{
1063 free_contig_range(page_to_pfn(page), 1 << order);
1064}
1065
1066static int __alloc_gigantic_page(unsigned long start_pfn,
1067 unsigned long nr_pages)
1068{
1069 unsigned long end_pfn = start_pfn + nr_pages;
ca96b625
LS
1070 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1071 GFP_KERNEL);
944d9fec
LC
1072}
1073
f44b2dda
JK
1074static bool pfn_range_valid_gigantic(struct zone *z,
1075 unsigned long start_pfn, unsigned long nr_pages)
944d9fec
LC
1076{
1077 unsigned long i, end_pfn = start_pfn + nr_pages;
1078 struct page *page;
1079
1080 for (i = start_pfn; i < end_pfn; i++) {
1081 if (!pfn_valid(i))
1082 return false;
1083
1084 page = pfn_to_page(i);
1085
f44b2dda
JK
1086 if (page_zone(page) != z)
1087 return false;
1088
944d9fec
LC
1089 if (PageReserved(page))
1090 return false;
1091
1092 if (page_count(page) > 0)
1093 return false;
1094
1095 if (PageHuge(page))
1096 return false;
1097 }
1098
1099 return true;
1100}
1101
1102static bool zone_spans_last_pfn(const struct zone *zone,
1103 unsigned long start_pfn, unsigned long nr_pages)
1104{
1105 unsigned long last_pfn = start_pfn + nr_pages - 1;
1106 return zone_spans_pfn(zone, last_pfn);
1107}
1108
d00181b9 1109static struct page *alloc_gigantic_page(int nid, unsigned int order)
944d9fec
LC
1110{
1111 unsigned long nr_pages = 1 << order;
1112 unsigned long ret, pfn, flags;
1113 struct zone *z;
1114
1115 z = NODE_DATA(nid)->node_zones;
1116 for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1117 spin_lock_irqsave(&z->lock, flags);
1118
1119 pfn = ALIGN(z->zone_start_pfn, nr_pages);
1120 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
f44b2dda 1121 if (pfn_range_valid_gigantic(z, pfn, nr_pages)) {
944d9fec
LC
1122 /*
1123 * We release the zone lock here because
1124 * alloc_contig_range() will also lock the zone
1125 * at some point. If there's an allocation
1126 * spinning on this lock, it may win the race
1127 * and cause alloc_contig_range() to fail...
1128 */
1129 spin_unlock_irqrestore(&z->lock, flags);
1130 ret = __alloc_gigantic_page(pfn, nr_pages);
1131 if (!ret)
1132 return pfn_to_page(pfn);
1133 spin_lock_irqsave(&z->lock, flags);
1134 }
1135 pfn += nr_pages;
1136 }
1137
1138 spin_unlock_irqrestore(&z->lock, flags);
1139 }
1140
1141 return NULL;
1142}
1143
1144static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
d00181b9 1145static void prep_compound_gigantic_page(struct page *page, unsigned int order);
944d9fec
LC
1146
1147static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1148{
1149 struct page *page;
1150
1151 page = alloc_gigantic_page(nid, huge_page_order(h));
1152 if (page) {
1153 prep_compound_gigantic_page(page, huge_page_order(h));
1154 prep_new_huge_page(h, page, nid);
1155 }
1156
1157 return page;
1158}
1159
1160static int alloc_fresh_gigantic_page(struct hstate *h,
1161 nodemask_t *nodes_allowed)
1162{
1163 struct page *page = NULL;
1164 int nr_nodes, node;
1165
1166 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1167 page = alloc_fresh_gigantic_page_node(h, node);
1168 if (page)
1169 return 1;
1170 }
1171
1172 return 0;
1173}
1174
e1073d1e 1175#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
944d9fec 1176static inline bool gigantic_page_supported(void) { return false; }
d00181b9 1177static inline void free_gigantic_page(struct page *page, unsigned int order) { }
944d9fec 1178static inline void destroy_compound_gigantic_page(struct page *page,
d00181b9 1179 unsigned int order) { }
944d9fec
LC
1180static inline int alloc_fresh_gigantic_page(struct hstate *h,
1181 nodemask_t *nodes_allowed) { return 0; }
1182#endif
1183
a5516438 1184static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
1185{
1186 int i;
a5516438 1187
944d9fec
LC
1188 if (hstate_is_gigantic(h) && !gigantic_page_supported())
1189 return;
18229df5 1190
a5516438
AK
1191 h->nr_huge_pages--;
1192 h->nr_huge_pages_node[page_to_nid(page)]--;
1193 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
1194 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1195 1 << PG_referenced | 1 << PG_dirty |
a7407a27
LC
1196 1 << PG_active | 1 << PG_private |
1197 1 << PG_writeback);
6af2acb6 1198 }
309381fe 1199 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
f1e61557 1200 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
6af2acb6 1201 set_page_refcounted(page);
944d9fec
LC
1202 if (hstate_is_gigantic(h)) {
1203 destroy_compound_gigantic_page(page, huge_page_order(h));
1204 free_gigantic_page(page, huge_page_order(h));
1205 } else {
944d9fec
LC
1206 __free_pages(page, huge_page_order(h));
1207 }
6af2acb6
AL
1208}
1209
e5ff2159
AK
1210struct hstate *size_to_hstate(unsigned long size)
1211{
1212 struct hstate *h;
1213
1214 for_each_hstate(h) {
1215 if (huge_page_size(h) == size)
1216 return h;
1217 }
1218 return NULL;
1219}
1220
bcc54222
NH
1221/*
1222 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1223 * to hstate->hugepage_activelist.)
1224 *
1225 * This function can be called for tail pages, but never returns true for them.
1226 */
1227bool page_huge_active(struct page *page)
1228{
1229 VM_BUG_ON_PAGE(!PageHuge(page), page);
1230 return PageHead(page) && PagePrivate(&page[1]);
1231}
1232
1233/* never called for tail page */
1234static void set_page_huge_active(struct page *page)
1235{
1236 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1237 SetPagePrivate(&page[1]);
1238}
1239
1240static void clear_page_huge_active(struct page *page)
1241{
1242 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1243 ClearPagePrivate(&page[1]);
1244}
1245
8f1d26d0 1246void free_huge_page(struct page *page)
27a85ef1 1247{
a5516438
AK
1248 /*
1249 * Can't pass hstate in here because it is called from the
1250 * compound page destructor.
1251 */
e5ff2159 1252 struct hstate *h = page_hstate(page);
7893d1d5 1253 int nid = page_to_nid(page);
90481622
DG
1254 struct hugepage_subpool *spool =
1255 (struct hugepage_subpool *)page_private(page);
07443a85 1256 bool restore_reserve;
27a85ef1 1257
e5df70ab 1258 set_page_private(page, 0);
23be7468 1259 page->mapping = NULL;
b4330afb
MK
1260 VM_BUG_ON_PAGE(page_count(page), page);
1261 VM_BUG_ON_PAGE(page_mapcount(page), page);
07443a85 1262 restore_reserve = PagePrivate(page);
16c794b4 1263 ClearPagePrivate(page);
27a85ef1 1264
1c5ecae3
MK
1265 /*
1266 * A return code of zero implies that the subpool will be under its
1267 * minimum size if the reservation is not restored after page is free.
1268 * Therefore, force restore_reserve operation.
1269 */
1270 if (hugepage_subpool_put_pages(spool, 1) == 0)
1271 restore_reserve = true;
1272
27a85ef1 1273 spin_lock(&hugetlb_lock);
bcc54222 1274 clear_page_huge_active(page);
6d76dcf4
AK
1275 hugetlb_cgroup_uncharge_page(hstate_index(h),
1276 pages_per_huge_page(h), page);
07443a85
JK
1277 if (restore_reserve)
1278 h->resv_huge_pages++;
1279
944d9fec 1280 if (h->surplus_huge_pages_node[nid]) {
0edaecfa
AK
1281 /* remove the page from active list */
1282 list_del(&page->lru);
a5516438
AK
1283 update_and_free_page(h, page);
1284 h->surplus_huge_pages--;
1285 h->surplus_huge_pages_node[nid]--;
7893d1d5 1286 } else {
5d3a551c 1287 arch_clear_hugepage_flags(page);
a5516438 1288 enqueue_huge_page(h, page);
7893d1d5 1289 }
27a85ef1
DG
1290 spin_unlock(&hugetlb_lock);
1291}
1292
a5516438 1293static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 1294{
0edaecfa 1295 INIT_LIST_HEAD(&page->lru);
f1e61557 1296 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
b7ba30c6 1297 spin_lock(&hugetlb_lock);
9dd540e2 1298 set_hugetlb_cgroup(page, NULL);
a5516438
AK
1299 h->nr_huge_pages++;
1300 h->nr_huge_pages_node[nid]++;
b7ba30c6
AK
1301 spin_unlock(&hugetlb_lock);
1302 put_page(page); /* free it into the hugepage allocator */
1303}
1304
d00181b9 1305static void prep_compound_gigantic_page(struct page *page, unsigned int order)
20a0307c
WF
1306{
1307 int i;
1308 int nr_pages = 1 << order;
1309 struct page *p = page + 1;
1310
1311 /* we rely on prep_new_huge_page to set the destructor */
1312 set_compound_order(page, order);
ef5a22be 1313 __ClearPageReserved(page);
de09d31d 1314 __SetPageHead(page);
20a0307c 1315 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
ef5a22be
AA
1316 /*
1317 * For gigantic hugepages allocated through bootmem at
1318 * boot, it's safer to be consistent with the not-gigantic
1319 * hugepages and clear the PG_reserved bit from all tail pages
1320 * too. Otherwse drivers using get_user_pages() to access tail
1321 * pages may get the reference counting wrong if they see
1322 * PG_reserved set on a tail page (despite the head page not
1323 * having PG_reserved set). Enforcing this consistency between
1324 * head and tail pages allows drivers to optimize away a check
1325 * on the head page when they need know if put_page() is needed
1326 * after get_user_pages().
1327 */
1328 __ClearPageReserved(p);
58a84aa9 1329 set_page_count(p, 0);
1d798ca3 1330 set_compound_head(p, page);
20a0307c 1331 }
b4330afb 1332 atomic_set(compound_mapcount_ptr(page), -1);
20a0307c
WF
1333}
1334
7795912c
AM
1335/*
1336 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1337 * transparent huge pages. See the PageTransHuge() documentation for more
1338 * details.
1339 */
20a0307c
WF
1340int PageHuge(struct page *page)
1341{
20a0307c
WF
1342 if (!PageCompound(page))
1343 return 0;
1344
1345 page = compound_head(page);
f1e61557 1346 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
20a0307c 1347}
43131e14
NH
1348EXPORT_SYMBOL_GPL(PageHuge);
1349
27c73ae7
AA
1350/*
1351 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1352 * normal or transparent huge pages.
1353 */
1354int PageHeadHuge(struct page *page_head)
1355{
27c73ae7
AA
1356 if (!PageHead(page_head))
1357 return 0;
1358
758f66a2 1359 return get_compound_page_dtor(page_head) == free_huge_page;
27c73ae7 1360}
27c73ae7 1361
13d60f4b
ZY
1362pgoff_t __basepage_index(struct page *page)
1363{
1364 struct page *page_head = compound_head(page);
1365 pgoff_t index = page_index(page_head);
1366 unsigned long compound_idx;
1367
1368 if (!PageHuge(page_head))
1369 return page_index(page);
1370
1371 if (compound_order(page_head) >= MAX_ORDER)
1372 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1373 else
1374 compound_idx = page - page_head;
1375
1376 return (index << compound_order(page_head)) + compound_idx;
1377}
1378
a5516438 1379static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1da177e4 1380{
1da177e4 1381 struct page *page;
f96efd58 1382
96db800f 1383 page = __alloc_pages_node(nid,
86cdb465 1384 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
551883ae 1385 __GFP_REPEAT|__GFP_NOWARN,
a5516438 1386 huge_page_order(h));
1da177e4 1387 if (page) {
a5516438 1388 prep_new_huge_page(h, page, nid);
1da177e4 1389 }
63b4613c
NA
1390
1391 return page;
1392}
1393
b2261026
JK
1394static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1395{
1396 struct page *page;
1397 int nr_nodes, node;
1398 int ret = 0;
1399
1400 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1401 page = alloc_fresh_huge_page_node(h, node);
1402 if (page) {
1403 ret = 1;
1404 break;
1405 }
1406 }
1407
1408 if (ret)
1409 count_vm_event(HTLB_BUDDY_PGALLOC);
1410 else
1411 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1412
1413 return ret;
1414}
1415
e8c5c824
LS
1416/*
1417 * Free huge page from pool from next node to free.
1418 * Attempt to keep persistent huge pages more or less
1419 * balanced over allowed nodes.
1420 * Called with hugetlb_lock locked.
1421 */
6ae11b27
LS
1422static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1423 bool acct_surplus)
e8c5c824 1424{
b2261026 1425 int nr_nodes, node;
e8c5c824
LS
1426 int ret = 0;
1427
b2261026 1428 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
1429 /*
1430 * If we're returning unused surplus pages, only examine
1431 * nodes with surplus pages.
1432 */
b2261026
JK
1433 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1434 !list_empty(&h->hugepage_freelists[node])) {
e8c5c824 1435 struct page *page =
b2261026 1436 list_entry(h->hugepage_freelists[node].next,
e8c5c824
LS
1437 struct page, lru);
1438 list_del(&page->lru);
1439 h->free_huge_pages--;
b2261026 1440 h->free_huge_pages_node[node]--;
685f3457
LS
1441 if (acct_surplus) {
1442 h->surplus_huge_pages--;
b2261026 1443 h->surplus_huge_pages_node[node]--;
685f3457 1444 }
e8c5c824
LS
1445 update_and_free_page(h, page);
1446 ret = 1;
9a76db09 1447 break;
e8c5c824 1448 }
b2261026 1449 }
e8c5c824
LS
1450
1451 return ret;
1452}
1453
c8721bbb
NH
1454/*
1455 * Dissolve a given free hugepage into free buddy pages. This function does
082d5b6b
GS
1456 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1457 * number of free hugepages would be reduced below the number of reserved
1458 * hugepages.
c8721bbb 1459 */
082d5b6b 1460static int dissolve_free_huge_page(struct page *page)
c8721bbb 1461{
082d5b6b
GS
1462 int rc = 0;
1463
c8721bbb
NH
1464 spin_lock(&hugetlb_lock);
1465 if (PageHuge(page) && !page_count(page)) {
2247bb33
GS
1466 struct page *head = compound_head(page);
1467 struct hstate *h = page_hstate(head);
1468 int nid = page_to_nid(head);
082d5b6b
GS
1469 if (h->free_huge_pages - h->resv_huge_pages == 0) {
1470 rc = -EBUSY;
1471 goto out;
1472 }
2247bb33 1473 list_del(&head->lru);
c8721bbb
NH
1474 h->free_huge_pages--;
1475 h->free_huge_pages_node[nid]--;
c1470b33 1476 h->max_huge_pages--;
2247bb33 1477 update_and_free_page(h, head);
c8721bbb 1478 }
082d5b6b 1479out:
c8721bbb 1480 spin_unlock(&hugetlb_lock);
082d5b6b 1481 return rc;
c8721bbb
NH
1482}
1483
1484/*
1485 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1486 * make specified memory blocks removable from the system.
2247bb33
GS
1487 * Note that this will dissolve a free gigantic hugepage completely, if any
1488 * part of it lies within the given range.
082d5b6b
GS
1489 * Also note that if dissolve_free_huge_page() returns with an error, all
1490 * free hugepages that were dissolved before that error are lost.
c8721bbb 1491 */
082d5b6b 1492int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
c8721bbb 1493{
c8721bbb 1494 unsigned long pfn;
eb03aa00 1495 struct page *page;
082d5b6b 1496 int rc = 0;
c8721bbb 1497
d0177639 1498 if (!hugepages_supported())
082d5b6b 1499 return rc;
d0177639 1500
eb03aa00
GS
1501 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1502 page = pfn_to_page(pfn);
1503 if (PageHuge(page) && !page_count(page)) {
1504 rc = dissolve_free_huge_page(page);
1505 if (rc)
1506 break;
1507 }
1508 }
082d5b6b
GS
1509
1510 return rc;
c8721bbb
NH
1511}
1512
099730d6
DH
1513/*
1514 * There are 3 ways this can get called:
1515 * 1. With vma+addr: we use the VMA's memory policy
1516 * 2. With !vma, but nid=NUMA_NO_NODE: We try to allocate a huge
1517 * page from any node, and let the buddy allocator itself figure
1518 * it out.
1519 * 3. With !vma, but nid!=NUMA_NO_NODE. We allocate a huge page
1520 * strictly from 'nid'
1521 */
1522static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1523 struct vm_area_struct *vma, unsigned long addr, int nid)
1524{
1525 int order = huge_page_order(h);
1526 gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1527 unsigned int cpuset_mems_cookie;
1528
1529 /*
1530 * We need a VMA to get a memory policy. If we do not
e0ec90ee
DH
1531 * have one, we use the 'nid' argument.
1532 *
1533 * The mempolicy stuff below has some non-inlined bits
1534 * and calls ->vm_ops. That makes it hard to optimize at
1535 * compile-time, even when NUMA is off and it does
1536 * nothing. This helps the compiler optimize it out.
099730d6 1537 */
e0ec90ee 1538 if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
099730d6
DH
1539 /*
1540 * If a specific node is requested, make sure to
1541 * get memory from there, but only when a node
1542 * is explicitly specified.
1543 */
1544 if (nid != NUMA_NO_NODE)
1545 gfp |= __GFP_THISNODE;
1546 /*
1547 * Make sure to call something that can handle
1548 * nid=NUMA_NO_NODE
1549 */
1550 return alloc_pages_node(nid, gfp, order);
1551 }
1552
1553 /*
1554 * OK, so we have a VMA. Fetch the mempolicy and try to
e0ec90ee
DH
1555 * allocate a huge page with it. We will only reach this
1556 * when CONFIG_NUMA=y.
099730d6
DH
1557 */
1558 do {
1559 struct page *page;
1560 struct mempolicy *mpol;
1561 struct zonelist *zl;
1562 nodemask_t *nodemask;
1563
1564 cpuset_mems_cookie = read_mems_allowed_begin();
1565 zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
1566 mpol_cond_put(mpol);
1567 page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
1568 if (page)
1569 return page;
1570 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1571
1572 return NULL;
1573}
1574
1575/*
1576 * There are two ways to allocate a huge page:
1577 * 1. When you have a VMA and an address (like a fault)
1578 * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1579 *
1580 * 'vma' and 'addr' are only for (1). 'nid' is always NUMA_NO_NODE in
1581 * this case which signifies that the allocation should be done with
1582 * respect for the VMA's memory policy.
1583 *
1584 * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1585 * implies that memory policies will not be taken in to account.
1586 */
1587static struct page *__alloc_buddy_huge_page(struct hstate *h,
1588 struct vm_area_struct *vma, unsigned long addr, int nid)
7893d1d5
AL
1589{
1590 struct page *page;
bf50bab2 1591 unsigned int r_nid;
7893d1d5 1592
bae7f4ae 1593 if (hstate_is_gigantic(h))
aa888a74
AK
1594 return NULL;
1595
099730d6
DH
1596 /*
1597 * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1598 * This makes sure the caller is picking _one_ of the modes with which
1599 * we can call this function, not both.
1600 */
1601 if (vma || (addr != -1)) {
e0ec90ee
DH
1602 VM_WARN_ON_ONCE(addr == -1);
1603 VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
099730d6 1604 }
d1c3fb1f
NA
1605 /*
1606 * Assume we will successfully allocate the surplus page to
1607 * prevent racing processes from causing the surplus to exceed
1608 * overcommit
1609 *
1610 * This however introduces a different race, where a process B
1611 * tries to grow the static hugepage pool while alloc_pages() is
1612 * called by process A. B will only examine the per-node
1613 * counters in determining if surplus huge pages can be
1614 * converted to normal huge pages in adjust_pool_surplus(). A
1615 * won't be able to increment the per-node counter, until the
1616 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1617 * no more huge pages can be converted from surplus to normal
1618 * state (and doesn't try to convert again). Thus, we have a
1619 * case where a surplus huge page exists, the pool is grown, and
1620 * the surplus huge page still exists after, even though it
1621 * should just have been converted to a normal huge page. This
1622 * does not leak memory, though, as the hugepage will be freed
1623 * once it is out of use. It also does not allow the counters to
1624 * go out of whack in adjust_pool_surplus() as we don't modify
1625 * the node values until we've gotten the hugepage and only the
1626 * per-node value is checked there.
1627 */
1628 spin_lock(&hugetlb_lock);
a5516438 1629 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
d1c3fb1f
NA
1630 spin_unlock(&hugetlb_lock);
1631 return NULL;
1632 } else {
a5516438
AK
1633 h->nr_huge_pages++;
1634 h->surplus_huge_pages++;
d1c3fb1f
NA
1635 }
1636 spin_unlock(&hugetlb_lock);
1637
099730d6 1638 page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
d1c3fb1f
NA
1639
1640 spin_lock(&hugetlb_lock);
7893d1d5 1641 if (page) {
0edaecfa 1642 INIT_LIST_HEAD(&page->lru);
bf50bab2 1643 r_nid = page_to_nid(page);
f1e61557 1644 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
9dd540e2 1645 set_hugetlb_cgroup(page, NULL);
d1c3fb1f
NA
1646 /*
1647 * We incremented the global counters already
1648 */
bf50bab2
NH
1649 h->nr_huge_pages_node[r_nid]++;
1650 h->surplus_huge_pages_node[r_nid]++;
3b116300 1651 __count_vm_event(HTLB_BUDDY_PGALLOC);
d1c3fb1f 1652 } else {
a5516438
AK
1653 h->nr_huge_pages--;
1654 h->surplus_huge_pages--;
3b116300 1655 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
7893d1d5 1656 }
d1c3fb1f 1657 spin_unlock(&hugetlb_lock);
7893d1d5
AL
1658
1659 return page;
1660}
1661
099730d6
DH
1662/*
1663 * Allocate a huge page from 'nid'. Note, 'nid' may be
1664 * NUMA_NO_NODE, which means that it may be allocated
1665 * anywhere.
1666 */
e0ec90ee 1667static
099730d6
DH
1668struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1669{
1670 unsigned long addr = -1;
1671
1672 return __alloc_buddy_huge_page(h, NULL, addr, nid);
1673}
1674
1675/*
1676 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1677 */
e0ec90ee 1678static
099730d6
DH
1679struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1680 struct vm_area_struct *vma, unsigned long addr)
1681{
1682 return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
1683}
1684
bf50bab2
NH
1685/*
1686 * This allocation function is useful in the context where vma is irrelevant.
1687 * E.g. soft-offlining uses this function because it only cares physical
1688 * address of error page.
1689 */
1690struct page *alloc_huge_page_node(struct hstate *h, int nid)
1691{
4ef91848 1692 struct page *page = NULL;
bf50bab2
NH
1693
1694 spin_lock(&hugetlb_lock);
4ef91848
JK
1695 if (h->free_huge_pages - h->resv_huge_pages > 0)
1696 page = dequeue_huge_page_node(h, nid);
bf50bab2
NH
1697 spin_unlock(&hugetlb_lock);
1698
94ae8ba7 1699 if (!page)
099730d6 1700 page = __alloc_buddy_huge_page_no_mpol(h, nid);
bf50bab2
NH
1701
1702 return page;
1703}
1704
e4e574b7 1705/*
25985edc 1706 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
1707 * of size 'delta'.
1708 */
a5516438 1709static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
1710{
1711 struct list_head surplus_list;
1712 struct page *page, *tmp;
1713 int ret, i;
1714 int needed, allocated;
28073b02 1715 bool alloc_ok = true;
e4e574b7 1716
a5516438 1717 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 1718 if (needed <= 0) {
a5516438 1719 h->resv_huge_pages += delta;
e4e574b7 1720 return 0;
ac09b3a1 1721 }
e4e574b7
AL
1722
1723 allocated = 0;
1724 INIT_LIST_HEAD(&surplus_list);
1725
1726 ret = -ENOMEM;
1727retry:
1728 spin_unlock(&hugetlb_lock);
1729 for (i = 0; i < needed; i++) {
099730d6 1730 page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
28073b02
HD
1731 if (!page) {
1732 alloc_ok = false;
1733 break;
1734 }
e4e574b7
AL
1735 list_add(&page->lru, &surplus_list);
1736 }
28073b02 1737 allocated += i;
e4e574b7
AL
1738
1739 /*
1740 * After retaking hugetlb_lock, we need to recalculate 'needed'
1741 * because either resv_huge_pages or free_huge_pages may have changed.
1742 */
1743 spin_lock(&hugetlb_lock);
a5516438
AK
1744 needed = (h->resv_huge_pages + delta) -
1745 (h->free_huge_pages + allocated);
28073b02
HD
1746 if (needed > 0) {
1747 if (alloc_ok)
1748 goto retry;
1749 /*
1750 * We were not able to allocate enough pages to
1751 * satisfy the entire reservation so we free what
1752 * we've allocated so far.
1753 */
1754 goto free;
1755 }
e4e574b7
AL
1756 /*
1757 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 1758 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 1759 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
1760 * allocator. Commit the entire reservation here to prevent another
1761 * process from stealing the pages as they are added to the pool but
1762 * before they are reserved.
e4e574b7
AL
1763 */
1764 needed += allocated;
a5516438 1765 h->resv_huge_pages += delta;
e4e574b7 1766 ret = 0;
a9869b83 1767
19fc3f0a 1768 /* Free the needed pages to the hugetlb pool */
e4e574b7 1769 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
1770 if ((--needed) < 0)
1771 break;
a9869b83
NH
1772 /*
1773 * This page is now managed by the hugetlb allocator and has
1774 * no users -- drop the buddy allocator's reference.
1775 */
1776 put_page_testzero(page);
309381fe 1777 VM_BUG_ON_PAGE(page_count(page), page);
a5516438 1778 enqueue_huge_page(h, page);
19fc3f0a 1779 }
28073b02 1780free:
b0365c8d 1781 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
1782
1783 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
1784 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1785 put_page(page);
a9869b83 1786 spin_lock(&hugetlb_lock);
e4e574b7
AL
1787
1788 return ret;
1789}
1790
1791/*
e5bbc8a6
MK
1792 * This routine has two main purposes:
1793 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1794 * in unused_resv_pages. This corresponds to the prior adjustments made
1795 * to the associated reservation map.
1796 * 2) Free any unused surplus pages that may have been allocated to satisfy
1797 * the reservation. As many as unused_resv_pages may be freed.
1798 *
1799 * Called with hugetlb_lock held. However, the lock could be dropped (and
1800 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1801 * we must make sure nobody else can claim pages we are in the process of
1802 * freeing. Do this by ensuring resv_huge_page always is greater than the
1803 * number of huge pages we plan to free when dropping the lock.
e4e574b7 1804 */
a5516438
AK
1805static void return_unused_surplus_pages(struct hstate *h,
1806 unsigned long unused_resv_pages)
e4e574b7 1807{
e4e574b7
AL
1808 unsigned long nr_pages;
1809
aa888a74 1810 /* Cannot return gigantic pages currently */
bae7f4ae 1811 if (hstate_is_gigantic(h))
e5bbc8a6 1812 goto out;
aa888a74 1813
e5bbc8a6
MK
1814 /*
1815 * Part (or even all) of the reservation could have been backed
1816 * by pre-allocated pages. Only free surplus pages.
1817 */
a5516438 1818 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 1819
685f3457
LS
1820 /*
1821 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
1822 * evenly across all nodes with memory. Iterate across these nodes
1823 * until we can no longer free unreserved surplus pages. This occurs
1824 * when the nodes with surplus pages have no free pages.
1825 * free_pool_huge_page() will balance the the freed pages across the
1826 * on-line nodes with memory and will handle the hstate accounting.
e5bbc8a6
MK
1827 *
1828 * Note that we decrement resv_huge_pages as we free the pages. If
1829 * we drop the lock, resv_huge_pages will still be sufficiently large
1830 * to cover subsequent pages we may free.
685f3457
LS
1831 */
1832 while (nr_pages--) {
e5bbc8a6
MK
1833 h->resv_huge_pages--;
1834 unused_resv_pages--;
8cebfcd0 1835 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
e5bbc8a6 1836 goto out;
7848a4bf 1837 cond_resched_lock(&hugetlb_lock);
e4e574b7 1838 }
e5bbc8a6
MK
1839
1840out:
1841 /* Fully uncommit the reservation */
1842 h->resv_huge_pages -= unused_resv_pages;
e4e574b7
AL
1843}
1844
5e911373 1845
c37f9fb1 1846/*
feba16e2 1847 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
5e911373 1848 * are used by the huge page allocation routines to manage reservations.
cf3ad20b
MK
1849 *
1850 * vma_needs_reservation is called to determine if the huge page at addr
1851 * within the vma has an associated reservation. If a reservation is
1852 * needed, the value 1 is returned. The caller is then responsible for
1853 * managing the global reservation and subpool usage counts. After
1854 * the huge page has been allocated, vma_commit_reservation is called
feba16e2
MK
1855 * to add the page to the reservation map. If the page allocation fails,
1856 * the reservation must be ended instead of committed. vma_end_reservation
1857 * is called in such cases.
cf3ad20b
MK
1858 *
1859 * In the normal case, vma_commit_reservation returns the same value
1860 * as the preceding vma_needs_reservation call. The only time this
1861 * is not the case is if a reserve map was changed between calls. It
1862 * is the responsibility of the caller to notice the difference and
1863 * take appropriate action.
96b96a96
MK
1864 *
1865 * vma_add_reservation is used in error paths where a reservation must
1866 * be restored when a newly allocated huge page must be freed. It is
1867 * to be called after calling vma_needs_reservation to determine if a
1868 * reservation exists.
c37f9fb1 1869 */
5e911373
MK
1870enum vma_resv_mode {
1871 VMA_NEEDS_RESV,
1872 VMA_COMMIT_RESV,
feba16e2 1873 VMA_END_RESV,
96b96a96 1874 VMA_ADD_RESV,
5e911373 1875};
cf3ad20b
MK
1876static long __vma_reservation_common(struct hstate *h,
1877 struct vm_area_struct *vma, unsigned long addr,
5e911373 1878 enum vma_resv_mode mode)
c37f9fb1 1879{
4e35f483
JK
1880 struct resv_map *resv;
1881 pgoff_t idx;
cf3ad20b 1882 long ret;
c37f9fb1 1883
4e35f483
JK
1884 resv = vma_resv_map(vma);
1885 if (!resv)
84afd99b 1886 return 1;
c37f9fb1 1887
4e35f483 1888 idx = vma_hugecache_offset(h, vma, addr);
5e911373
MK
1889 switch (mode) {
1890 case VMA_NEEDS_RESV:
cf3ad20b 1891 ret = region_chg(resv, idx, idx + 1);
5e911373
MK
1892 break;
1893 case VMA_COMMIT_RESV:
1894 ret = region_add(resv, idx, idx + 1);
1895 break;
feba16e2 1896 case VMA_END_RESV:
5e911373
MK
1897 region_abort(resv, idx, idx + 1);
1898 ret = 0;
1899 break;
96b96a96
MK
1900 case VMA_ADD_RESV:
1901 if (vma->vm_flags & VM_MAYSHARE)
1902 ret = region_add(resv, idx, idx + 1);
1903 else {
1904 region_abort(resv, idx, idx + 1);
1905 ret = region_del(resv, idx, idx + 1);
1906 }
1907 break;
5e911373
MK
1908 default:
1909 BUG();
1910 }
84afd99b 1911
4e35f483 1912 if (vma->vm_flags & VM_MAYSHARE)
cf3ad20b 1913 return ret;
67961f9d
MK
1914 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1915 /*
1916 * In most cases, reserves always exist for private mappings.
1917 * However, a file associated with mapping could have been
1918 * hole punched or truncated after reserves were consumed.
1919 * As subsequent fault on such a range will not use reserves.
1920 * Subtle - The reserve map for private mappings has the
1921 * opposite meaning than that of shared mappings. If NO
1922 * entry is in the reserve map, it means a reservation exists.
1923 * If an entry exists in the reserve map, it means the
1924 * reservation has already been consumed. As a result, the
1925 * return value of this routine is the opposite of the
1926 * value returned from reserve map manipulation routines above.
1927 */
1928 if (ret)
1929 return 0;
1930 else
1931 return 1;
1932 }
4e35f483 1933 else
cf3ad20b 1934 return ret < 0 ? ret : 0;
c37f9fb1 1935}
cf3ad20b
MK
1936
1937static long vma_needs_reservation(struct hstate *h,
a5516438 1938 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 1939{
5e911373 1940 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
cf3ad20b 1941}
84afd99b 1942
cf3ad20b
MK
1943static long vma_commit_reservation(struct hstate *h,
1944 struct vm_area_struct *vma, unsigned long addr)
1945{
5e911373
MK
1946 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1947}
1948
feba16e2 1949static void vma_end_reservation(struct hstate *h,
5e911373
MK
1950 struct vm_area_struct *vma, unsigned long addr)
1951{
feba16e2 1952 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
c37f9fb1
AW
1953}
1954
96b96a96
MK
1955static long vma_add_reservation(struct hstate *h,
1956 struct vm_area_struct *vma, unsigned long addr)
1957{
1958 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1959}
1960
1961/*
1962 * This routine is called to restore a reservation on error paths. In the
1963 * specific error paths, a huge page was allocated (via alloc_huge_page)
1964 * and is about to be freed. If a reservation for the page existed,
1965 * alloc_huge_page would have consumed the reservation and set PagePrivate
1966 * in the newly allocated page. When the page is freed via free_huge_page,
1967 * the global reservation count will be incremented if PagePrivate is set.
1968 * However, free_huge_page can not adjust the reserve map. Adjust the
1969 * reserve map here to be consistent with global reserve count adjustments
1970 * to be made by free_huge_page.
1971 */
1972static void restore_reserve_on_error(struct hstate *h,
1973 struct vm_area_struct *vma, unsigned long address,
1974 struct page *page)
1975{
1976 if (unlikely(PagePrivate(page))) {
1977 long rc = vma_needs_reservation(h, vma, address);
1978
1979 if (unlikely(rc < 0)) {
1980 /*
1981 * Rare out of memory condition in reserve map
1982 * manipulation. Clear PagePrivate so that
1983 * global reserve count will not be incremented
1984 * by free_huge_page. This will make it appear
1985 * as though the reservation for this page was
1986 * consumed. This may prevent the task from
1987 * faulting in the page at a later time. This
1988 * is better than inconsistent global huge page
1989 * accounting of reserve counts.
1990 */
1991 ClearPagePrivate(page);
1992 } else if (rc) {
1993 rc = vma_add_reservation(h, vma, address);
1994 if (unlikely(rc < 0))
1995 /*
1996 * See above comment about rare out of
1997 * memory condition.
1998 */
1999 ClearPagePrivate(page);
2000 } else
2001 vma_end_reservation(h, vma, address);
2002 }
2003}
2004
70c3547e 2005struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 2006 unsigned long addr, int avoid_reserve)
1da177e4 2007{
90481622 2008 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 2009 struct hstate *h = hstate_vma(vma);
348ea204 2010 struct page *page;
d85f69b0
MK
2011 long map_chg, map_commit;
2012 long gbl_chg;
6d76dcf4
AK
2013 int ret, idx;
2014 struct hugetlb_cgroup *h_cg;
a1e78772 2015
6d76dcf4 2016 idx = hstate_index(h);
a1e78772 2017 /*
d85f69b0
MK
2018 * Examine the region/reserve map to determine if the process
2019 * has a reservation for the page to be allocated. A return
2020 * code of zero indicates a reservation exists (no change).
a1e78772 2021 */
d85f69b0
MK
2022 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2023 if (map_chg < 0)
76dcee75 2024 return ERR_PTR(-ENOMEM);
d85f69b0
MK
2025
2026 /*
2027 * Processes that did not create the mapping will have no
2028 * reserves as indicated by the region/reserve map. Check
2029 * that the allocation will not exceed the subpool limit.
2030 * Allocations for MAP_NORESERVE mappings also need to be
2031 * checked against any subpool limit.
2032 */
2033 if (map_chg || avoid_reserve) {
2034 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2035 if (gbl_chg < 0) {
feba16e2 2036 vma_end_reservation(h, vma, addr);
76dcee75 2037 return ERR_PTR(-ENOSPC);
5e911373 2038 }
1da177e4 2039
d85f69b0
MK
2040 /*
2041 * Even though there was no reservation in the region/reserve
2042 * map, there could be reservations associated with the
2043 * subpool that can be used. This would be indicated if the
2044 * return value of hugepage_subpool_get_pages() is zero.
2045 * However, if avoid_reserve is specified we still avoid even
2046 * the subpool reservations.
2047 */
2048 if (avoid_reserve)
2049 gbl_chg = 1;
2050 }
2051
6d76dcf4 2052 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
8f34af6f
JZ
2053 if (ret)
2054 goto out_subpool_put;
2055
1da177e4 2056 spin_lock(&hugetlb_lock);
d85f69b0
MK
2057 /*
2058 * glb_chg is passed to indicate whether or not a page must be taken
2059 * from the global free pool (global change). gbl_chg == 0 indicates
2060 * a reservation exists for the allocation.
2061 */
2062 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
81a6fcae 2063 if (!page) {
94ae8ba7 2064 spin_unlock(&hugetlb_lock);
099730d6 2065 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
8f34af6f
JZ
2066 if (!page)
2067 goto out_uncharge_cgroup;
a88c7695
NH
2068 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2069 SetPagePrivate(page);
2070 h->resv_huge_pages--;
2071 }
79dbb236
AK
2072 spin_lock(&hugetlb_lock);
2073 list_move(&page->lru, &h->hugepage_activelist);
81a6fcae 2074 /* Fall through */
68842c9b 2075 }
81a6fcae
JK
2076 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2077 spin_unlock(&hugetlb_lock);
348ea204 2078
90481622 2079 set_page_private(page, (unsigned long)spool);
90d8b7e6 2080
d85f69b0
MK
2081 map_commit = vma_commit_reservation(h, vma, addr);
2082 if (unlikely(map_chg > map_commit)) {
33039678
MK
2083 /*
2084 * The page was added to the reservation map between
2085 * vma_needs_reservation and vma_commit_reservation.
2086 * This indicates a race with hugetlb_reserve_pages.
2087 * Adjust for the subpool count incremented above AND
2088 * in hugetlb_reserve_pages for the same page. Also,
2089 * the reservation count added in hugetlb_reserve_pages
2090 * no longer applies.
2091 */
2092 long rsv_adjust;
2093
2094 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2095 hugetlb_acct_memory(h, -rsv_adjust);
2096 }
90d8b7e6 2097 return page;
8f34af6f
JZ
2098
2099out_uncharge_cgroup:
2100 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2101out_subpool_put:
d85f69b0 2102 if (map_chg || avoid_reserve)
8f34af6f 2103 hugepage_subpool_put_pages(spool, 1);
feba16e2 2104 vma_end_reservation(h, vma, addr);
8f34af6f 2105 return ERR_PTR(-ENOSPC);
b45b5bd6
DG
2106}
2107
74060e4d
NH
2108/*
2109 * alloc_huge_page()'s wrapper which simply returns the page if allocation
2110 * succeeds, otherwise NULL. This function is called from new_vma_page(),
2111 * where no ERR_VALUE is expected to be returned.
2112 */
2113struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
2114 unsigned long addr, int avoid_reserve)
2115{
2116 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
2117 if (IS_ERR(page))
2118 page = NULL;
2119 return page;
2120}
2121
91f47662 2122int __weak alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
2123{
2124 struct huge_bootmem_page *m;
b2261026 2125 int nr_nodes, node;
aa888a74 2126
b2261026 2127 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
2128 void *addr;
2129
8b89a116
GS
2130 addr = memblock_virt_alloc_try_nid_nopanic(
2131 huge_page_size(h), huge_page_size(h),
2132 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
aa888a74
AK
2133 if (addr) {
2134 /*
2135 * Use the beginning of the huge page to store the
2136 * huge_bootmem_page struct (until gather_bootmem
2137 * puts them into the mem_map).
2138 */
2139 m = addr;
91f47662 2140 goto found;
aa888a74 2141 }
aa888a74
AK
2142 }
2143 return 0;
2144
2145found:
df994ead 2146 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
aa888a74
AK
2147 /* Put them into a private list first because mem_map is not up yet */
2148 list_add(&m->list, &huge_boot_pages);
2149 m->hstate = h;
2150 return 1;
2151}
2152
d00181b9
KS
2153static void __init prep_compound_huge_page(struct page *page,
2154 unsigned int order)
18229df5
AW
2155{
2156 if (unlikely(order > (MAX_ORDER - 1)))
2157 prep_compound_gigantic_page(page, order);
2158 else
2159 prep_compound_page(page, order);
2160}
2161
aa888a74
AK
2162/* Put bootmem huge pages into the standard lists after mem_map is up */
2163static void __init gather_bootmem_prealloc(void)
2164{
2165 struct huge_bootmem_page *m;
2166
2167 list_for_each_entry(m, &huge_boot_pages, list) {
aa888a74 2168 struct hstate *h = m->hstate;
ee8f248d
BB
2169 struct page *page;
2170
2171#ifdef CONFIG_HIGHMEM
2172 page = pfn_to_page(m->phys >> PAGE_SHIFT);
8b89a116
GS
2173 memblock_free_late(__pa(m),
2174 sizeof(struct huge_bootmem_page));
ee8f248d
BB
2175#else
2176 page = virt_to_page(m);
2177#endif
aa888a74 2178 WARN_ON(page_count(page) != 1);
18229df5 2179 prep_compound_huge_page(page, h->order);
ef5a22be 2180 WARN_ON(PageReserved(page));
aa888a74 2181 prep_new_huge_page(h, page, page_to_nid(page));
b0320c7b
RA
2182 /*
2183 * If we had gigantic hugepages allocated at boot time, we need
2184 * to restore the 'stolen' pages to totalram_pages in order to
2185 * fix confusing memory reports from free(1) and another
2186 * side-effects, like CommitLimit going negative.
2187 */
bae7f4ae 2188 if (hstate_is_gigantic(h))
3dcc0571 2189 adjust_managed_page_count(page, 1 << h->order);
aa888a74
AK
2190 }
2191}
2192
8faa8b07 2193static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
2194{
2195 unsigned long i;
a5516438 2196
e5ff2159 2197 for (i = 0; i < h->max_huge_pages; ++i) {
bae7f4ae 2198 if (hstate_is_gigantic(h)) {
aa888a74
AK
2199 if (!alloc_bootmem_huge_page(h))
2200 break;
9b5e5d0f 2201 } else if (!alloc_fresh_huge_page(h,
8cebfcd0 2202 &node_states[N_MEMORY]))
1da177e4 2203 break;
1da177e4 2204 }
8faa8b07 2205 h->max_huge_pages = i;
e5ff2159
AK
2206}
2207
2208static void __init hugetlb_init_hstates(void)
2209{
2210 struct hstate *h;
2211
2212 for_each_hstate(h) {
641844f5
NH
2213 if (minimum_order > huge_page_order(h))
2214 minimum_order = huge_page_order(h);
2215
8faa8b07 2216 /* oversize hugepages were init'ed in early boot */
bae7f4ae 2217 if (!hstate_is_gigantic(h))
8faa8b07 2218 hugetlb_hstate_alloc_pages(h);
e5ff2159 2219 }
641844f5 2220 VM_BUG_ON(minimum_order == UINT_MAX);
e5ff2159
AK
2221}
2222
4abd32db
AK
2223static char * __init memfmt(char *buf, unsigned long n)
2224{
2225 if (n >= (1UL << 30))
2226 sprintf(buf, "%lu GB", n >> 30);
2227 else if (n >= (1UL << 20))
2228 sprintf(buf, "%lu MB", n >> 20);
2229 else
2230 sprintf(buf, "%lu KB", n >> 10);
2231 return buf;
2232}
2233
e5ff2159
AK
2234static void __init report_hugepages(void)
2235{
2236 struct hstate *h;
2237
2238 for_each_hstate(h) {
4abd32db 2239 char buf[32];
ffb22af5 2240 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
4abd32db
AK
2241 memfmt(buf, huge_page_size(h)),
2242 h->free_huge_pages);
e5ff2159
AK
2243 }
2244}
2245
1da177e4 2246#ifdef CONFIG_HIGHMEM
6ae11b27
LS
2247static void try_to_free_low(struct hstate *h, unsigned long count,
2248 nodemask_t *nodes_allowed)
1da177e4 2249{
4415cc8d
CL
2250 int i;
2251
bae7f4ae 2252 if (hstate_is_gigantic(h))
aa888a74
AK
2253 return;
2254
6ae11b27 2255 for_each_node_mask(i, *nodes_allowed) {
1da177e4 2256 struct page *page, *next;
a5516438
AK
2257 struct list_head *freel = &h->hugepage_freelists[i];
2258 list_for_each_entry_safe(page, next, freel, lru) {
2259 if (count >= h->nr_huge_pages)
6b0c880d 2260 return;
1da177e4
LT
2261 if (PageHighMem(page))
2262 continue;
2263 list_del(&page->lru);
e5ff2159 2264 update_and_free_page(h, page);
a5516438
AK
2265 h->free_huge_pages--;
2266 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
2267 }
2268 }
2269}
2270#else
6ae11b27
LS
2271static inline void try_to_free_low(struct hstate *h, unsigned long count,
2272 nodemask_t *nodes_allowed)
1da177e4
LT
2273{
2274}
2275#endif
2276
20a0307c
WF
2277/*
2278 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2279 * balanced by operating on them in a round-robin fashion.
2280 * Returns 1 if an adjustment was made.
2281 */
6ae11b27
LS
2282static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2283 int delta)
20a0307c 2284{
b2261026 2285 int nr_nodes, node;
20a0307c
WF
2286
2287 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 2288
b2261026
JK
2289 if (delta < 0) {
2290 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2291 if (h->surplus_huge_pages_node[node])
2292 goto found;
e8c5c824 2293 }
b2261026
JK
2294 } else {
2295 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2296 if (h->surplus_huge_pages_node[node] <
2297 h->nr_huge_pages_node[node])
2298 goto found;
e8c5c824 2299 }
b2261026
JK
2300 }
2301 return 0;
20a0307c 2302
b2261026
JK
2303found:
2304 h->surplus_huge_pages += delta;
2305 h->surplus_huge_pages_node[node] += delta;
2306 return 1;
20a0307c
WF
2307}
2308
a5516438 2309#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
6ae11b27
LS
2310static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2311 nodemask_t *nodes_allowed)
1da177e4 2312{
7893d1d5 2313 unsigned long min_count, ret;
1da177e4 2314
944d9fec 2315 if (hstate_is_gigantic(h) && !gigantic_page_supported())
aa888a74
AK
2316 return h->max_huge_pages;
2317
7893d1d5
AL
2318 /*
2319 * Increase the pool size
2320 * First take pages out of surplus state. Then make up the
2321 * remaining difference by allocating fresh huge pages.
d1c3fb1f 2322 *
d15c7c09 2323 * We might race with __alloc_buddy_huge_page() here and be unable
d1c3fb1f
NA
2324 * to convert a surplus huge page to a normal huge page. That is
2325 * not critical, though, it just means the overall size of the
2326 * pool might be one hugepage larger than it needs to be, but
2327 * within all the constraints specified by the sysctls.
7893d1d5 2328 */
1da177e4 2329 spin_lock(&hugetlb_lock);
a5516438 2330 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 2331 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
2332 break;
2333 }
2334
a5516438 2335 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
2336 /*
2337 * If this allocation races such that we no longer need the
2338 * page, free_huge_page will handle it by freeing the page
2339 * and reducing the surplus.
2340 */
2341 spin_unlock(&hugetlb_lock);
649920c6
JH
2342
2343 /* yield cpu to avoid soft lockup */
2344 cond_resched();
2345
944d9fec
LC
2346 if (hstate_is_gigantic(h))
2347 ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2348 else
2349 ret = alloc_fresh_huge_page(h, nodes_allowed);
7893d1d5
AL
2350 spin_lock(&hugetlb_lock);
2351 if (!ret)
2352 goto out;
2353
536240f2
MG
2354 /* Bail for signals. Probably ctrl-c from user */
2355 if (signal_pending(current))
2356 goto out;
7893d1d5 2357 }
7893d1d5
AL
2358
2359 /*
2360 * Decrease the pool size
2361 * First return free pages to the buddy allocator (being careful
2362 * to keep enough around to satisfy reservations). Then place
2363 * pages into surplus state as needed so the pool will shrink
2364 * to the desired size as pages become free.
d1c3fb1f
NA
2365 *
2366 * By placing pages into the surplus state independent of the
2367 * overcommit value, we are allowing the surplus pool size to
2368 * exceed overcommit. There are few sane options here. Since
d15c7c09 2369 * __alloc_buddy_huge_page() is checking the global counter,
d1c3fb1f
NA
2370 * though, we'll note that we're not allowed to exceed surplus
2371 * and won't grow the pool anywhere else. Not until one of the
2372 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 2373 */
a5516438 2374 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 2375 min_count = max(count, min_count);
6ae11b27 2376 try_to_free_low(h, min_count, nodes_allowed);
a5516438 2377 while (min_count < persistent_huge_pages(h)) {
6ae11b27 2378 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 2379 break;
55f67141 2380 cond_resched_lock(&hugetlb_lock);
1da177e4 2381 }
a5516438 2382 while (count < persistent_huge_pages(h)) {
6ae11b27 2383 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
2384 break;
2385 }
2386out:
a5516438 2387 ret = persistent_huge_pages(h);
1da177e4 2388 spin_unlock(&hugetlb_lock);
7893d1d5 2389 return ret;
1da177e4
LT
2390}
2391
a3437870
NA
2392#define HSTATE_ATTR_RO(_name) \
2393 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2394
2395#define HSTATE_ATTR(_name) \
2396 static struct kobj_attribute _name##_attr = \
2397 __ATTR(_name, 0644, _name##_show, _name##_store)
2398
2399static struct kobject *hugepages_kobj;
2400static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2401
9a305230
LS
2402static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2403
2404static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
2405{
2406 int i;
9a305230 2407
a3437870 2408 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
2409 if (hstate_kobjs[i] == kobj) {
2410 if (nidp)
2411 *nidp = NUMA_NO_NODE;
a3437870 2412 return &hstates[i];
9a305230
LS
2413 }
2414
2415 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
2416}
2417
06808b08 2418static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
2419 struct kobj_attribute *attr, char *buf)
2420{
9a305230
LS
2421 struct hstate *h;
2422 unsigned long nr_huge_pages;
2423 int nid;
2424
2425 h = kobj_to_hstate(kobj, &nid);
2426 if (nid == NUMA_NO_NODE)
2427 nr_huge_pages = h->nr_huge_pages;
2428 else
2429 nr_huge_pages = h->nr_huge_pages_node[nid];
2430
2431 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 2432}
adbe8726 2433
238d3c13
DR
2434static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2435 struct hstate *h, int nid,
2436 unsigned long count, size_t len)
a3437870
NA
2437{
2438 int err;
bad44b5b 2439 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
a3437870 2440
944d9fec 2441 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
adbe8726
EM
2442 err = -EINVAL;
2443 goto out;
2444 }
2445
9a305230
LS
2446 if (nid == NUMA_NO_NODE) {
2447 /*
2448 * global hstate attribute
2449 */
2450 if (!(obey_mempolicy &&
2451 init_nodemask_of_mempolicy(nodes_allowed))) {
2452 NODEMASK_FREE(nodes_allowed);
8cebfcd0 2453 nodes_allowed = &node_states[N_MEMORY];
9a305230
LS
2454 }
2455 } else if (nodes_allowed) {
2456 /*
2457 * per node hstate attribute: adjust count to global,
2458 * but restrict alloc/free to the specified node.
2459 */
2460 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2461 init_nodemask_of_node(nodes_allowed, nid);
2462 } else
8cebfcd0 2463 nodes_allowed = &node_states[N_MEMORY];
9a305230 2464
06808b08 2465 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
a3437870 2466
8cebfcd0 2467 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
2468 NODEMASK_FREE(nodes_allowed);
2469
2470 return len;
adbe8726
EM
2471out:
2472 NODEMASK_FREE(nodes_allowed);
2473 return err;
06808b08
LS
2474}
2475
238d3c13
DR
2476static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2477 struct kobject *kobj, const char *buf,
2478 size_t len)
2479{
2480 struct hstate *h;
2481 unsigned long count;
2482 int nid;
2483 int err;
2484
2485 err = kstrtoul(buf, 10, &count);
2486 if (err)
2487 return err;
2488
2489 h = kobj_to_hstate(kobj, &nid);
2490 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2491}
2492
06808b08
LS
2493static ssize_t nr_hugepages_show(struct kobject *kobj,
2494 struct kobj_attribute *attr, char *buf)
2495{
2496 return nr_hugepages_show_common(kobj, attr, buf);
2497}
2498
2499static ssize_t nr_hugepages_store(struct kobject *kobj,
2500 struct kobj_attribute *attr, const char *buf, size_t len)
2501{
238d3c13 2502 return nr_hugepages_store_common(false, kobj, buf, len);
a3437870
NA
2503}
2504HSTATE_ATTR(nr_hugepages);
2505
06808b08
LS
2506#ifdef CONFIG_NUMA
2507
2508/*
2509 * hstate attribute for optionally mempolicy-based constraint on persistent
2510 * huge page alloc/free.
2511 */
2512static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2513 struct kobj_attribute *attr, char *buf)
2514{
2515 return nr_hugepages_show_common(kobj, attr, buf);
2516}
2517
2518static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2519 struct kobj_attribute *attr, const char *buf, size_t len)
2520{
238d3c13 2521 return nr_hugepages_store_common(true, kobj, buf, len);
06808b08
LS
2522}
2523HSTATE_ATTR(nr_hugepages_mempolicy);
2524#endif
2525
2526
a3437870
NA
2527static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2528 struct kobj_attribute *attr, char *buf)
2529{
9a305230 2530 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2531 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2532}
adbe8726 2533
a3437870
NA
2534static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2535 struct kobj_attribute *attr, const char *buf, size_t count)
2536{
2537 int err;
2538 unsigned long input;
9a305230 2539 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 2540
bae7f4ae 2541 if (hstate_is_gigantic(h))
adbe8726
EM
2542 return -EINVAL;
2543
3dbb95f7 2544 err = kstrtoul(buf, 10, &input);
a3437870 2545 if (err)
73ae31e5 2546 return err;
a3437870
NA
2547
2548 spin_lock(&hugetlb_lock);
2549 h->nr_overcommit_huge_pages = input;
2550 spin_unlock(&hugetlb_lock);
2551
2552 return count;
2553}
2554HSTATE_ATTR(nr_overcommit_hugepages);
2555
2556static ssize_t free_hugepages_show(struct kobject *kobj,
2557 struct kobj_attribute *attr, char *buf)
2558{
9a305230
LS
2559 struct hstate *h;
2560 unsigned long free_huge_pages;
2561 int nid;
2562
2563 h = kobj_to_hstate(kobj, &nid);
2564 if (nid == NUMA_NO_NODE)
2565 free_huge_pages = h->free_huge_pages;
2566 else
2567 free_huge_pages = h->free_huge_pages_node[nid];
2568
2569 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
2570}
2571HSTATE_ATTR_RO(free_hugepages);
2572
2573static ssize_t resv_hugepages_show(struct kobject *kobj,
2574 struct kobj_attribute *attr, char *buf)
2575{
9a305230 2576 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2577 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2578}
2579HSTATE_ATTR_RO(resv_hugepages);
2580
2581static ssize_t surplus_hugepages_show(struct kobject *kobj,
2582 struct kobj_attribute *attr, char *buf)
2583{
9a305230
LS
2584 struct hstate *h;
2585 unsigned long surplus_huge_pages;
2586 int nid;
2587
2588 h = kobj_to_hstate(kobj, &nid);
2589 if (nid == NUMA_NO_NODE)
2590 surplus_huge_pages = h->surplus_huge_pages;
2591 else
2592 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2593
2594 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
2595}
2596HSTATE_ATTR_RO(surplus_hugepages);
2597
2598static struct attribute *hstate_attrs[] = {
2599 &nr_hugepages_attr.attr,
2600 &nr_overcommit_hugepages_attr.attr,
2601 &free_hugepages_attr.attr,
2602 &resv_hugepages_attr.attr,
2603 &surplus_hugepages_attr.attr,
06808b08
LS
2604#ifdef CONFIG_NUMA
2605 &nr_hugepages_mempolicy_attr.attr,
2606#endif
a3437870
NA
2607 NULL,
2608};
2609
2610static struct attribute_group hstate_attr_group = {
2611 .attrs = hstate_attrs,
2612};
2613
094e9539
JM
2614static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2615 struct kobject **hstate_kobjs,
2616 struct attribute_group *hstate_attr_group)
a3437870
NA
2617{
2618 int retval;
972dc4de 2619 int hi = hstate_index(h);
a3437870 2620
9a305230
LS
2621 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2622 if (!hstate_kobjs[hi])
a3437870
NA
2623 return -ENOMEM;
2624
9a305230 2625 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 2626 if (retval)
9a305230 2627 kobject_put(hstate_kobjs[hi]);
a3437870
NA
2628
2629 return retval;
2630}
2631
2632static void __init hugetlb_sysfs_init(void)
2633{
2634 struct hstate *h;
2635 int err;
2636
2637 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2638 if (!hugepages_kobj)
2639 return;
2640
2641 for_each_hstate(h) {
9a305230
LS
2642 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2643 hstate_kobjs, &hstate_attr_group);
a3437870 2644 if (err)
ffb22af5 2645 pr_err("Hugetlb: Unable to add hstate %s", h->name);
a3437870
NA
2646 }
2647}
2648
9a305230
LS
2649#ifdef CONFIG_NUMA
2650
2651/*
2652 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
2653 * with node devices in node_devices[] using a parallel array. The array
2654 * index of a node device or _hstate == node id.
2655 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
2656 * the base kernel, on the hugetlb module.
2657 */
2658struct node_hstate {
2659 struct kobject *hugepages_kobj;
2660 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2661};
b4e289a6 2662static struct node_hstate node_hstates[MAX_NUMNODES];
9a305230
LS
2663
2664/*
10fbcf4c 2665 * A subset of global hstate attributes for node devices
9a305230
LS
2666 */
2667static struct attribute *per_node_hstate_attrs[] = {
2668 &nr_hugepages_attr.attr,
2669 &free_hugepages_attr.attr,
2670 &surplus_hugepages_attr.attr,
2671 NULL,
2672};
2673
2674static struct attribute_group per_node_hstate_attr_group = {
2675 .attrs = per_node_hstate_attrs,
2676};
2677
2678/*
10fbcf4c 2679 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
2680 * Returns node id via non-NULL nidp.
2681 */
2682static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2683{
2684 int nid;
2685
2686 for (nid = 0; nid < nr_node_ids; nid++) {
2687 struct node_hstate *nhs = &node_hstates[nid];
2688 int i;
2689 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2690 if (nhs->hstate_kobjs[i] == kobj) {
2691 if (nidp)
2692 *nidp = nid;
2693 return &hstates[i];
2694 }
2695 }
2696
2697 BUG();
2698 return NULL;
2699}
2700
2701/*
10fbcf4c 2702 * Unregister hstate attributes from a single node device.
9a305230
LS
2703 * No-op if no hstate attributes attached.
2704 */
3cd8b44f 2705static void hugetlb_unregister_node(struct node *node)
9a305230
LS
2706{
2707 struct hstate *h;
10fbcf4c 2708 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2709
2710 if (!nhs->hugepages_kobj)
9b5e5d0f 2711 return; /* no hstate attributes */
9a305230 2712
972dc4de
AK
2713 for_each_hstate(h) {
2714 int idx = hstate_index(h);
2715 if (nhs->hstate_kobjs[idx]) {
2716 kobject_put(nhs->hstate_kobjs[idx]);
2717 nhs->hstate_kobjs[idx] = NULL;
9a305230 2718 }
972dc4de 2719 }
9a305230
LS
2720
2721 kobject_put(nhs->hugepages_kobj);
2722 nhs->hugepages_kobj = NULL;
2723}
2724
9a305230
LS
2725
2726/*
10fbcf4c 2727 * Register hstate attributes for a single node device.
9a305230
LS
2728 * No-op if attributes already registered.
2729 */
3cd8b44f 2730static void hugetlb_register_node(struct node *node)
9a305230
LS
2731{
2732 struct hstate *h;
10fbcf4c 2733 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2734 int err;
2735
2736 if (nhs->hugepages_kobj)
2737 return; /* already allocated */
2738
2739 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 2740 &node->dev.kobj);
9a305230
LS
2741 if (!nhs->hugepages_kobj)
2742 return;
2743
2744 for_each_hstate(h) {
2745 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2746 nhs->hstate_kobjs,
2747 &per_node_hstate_attr_group);
2748 if (err) {
ffb22af5
AM
2749 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2750 h->name, node->dev.id);
9a305230
LS
2751 hugetlb_unregister_node(node);
2752 break;
2753 }
2754 }
2755}
2756
2757/*
9b5e5d0f 2758 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
2759 * devices of nodes that have memory. All on-line nodes should have
2760 * registered their associated device by this time.
9a305230 2761 */
7d9ca000 2762static void __init hugetlb_register_all_nodes(void)
9a305230
LS
2763{
2764 int nid;
2765
8cebfcd0 2766 for_each_node_state(nid, N_MEMORY) {
8732794b 2767 struct node *node = node_devices[nid];
10fbcf4c 2768 if (node->dev.id == nid)
9a305230
LS
2769 hugetlb_register_node(node);
2770 }
2771
2772 /*
10fbcf4c 2773 * Let the node device driver know we're here so it can
9a305230
LS
2774 * [un]register hstate attributes on node hotplug.
2775 */
2776 register_hugetlbfs_with_node(hugetlb_register_node,
2777 hugetlb_unregister_node);
2778}
2779#else /* !CONFIG_NUMA */
2780
2781static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2782{
2783 BUG();
2784 if (nidp)
2785 *nidp = -1;
2786 return NULL;
2787}
2788
9a305230
LS
2789static void hugetlb_register_all_nodes(void) { }
2790
2791#endif
2792
a3437870
NA
2793static int __init hugetlb_init(void)
2794{
8382d914
DB
2795 int i;
2796
457c1b27 2797 if (!hugepages_supported())
0ef89d25 2798 return 0;
a3437870 2799
e11bfbfc
NP
2800 if (!size_to_hstate(default_hstate_size)) {
2801 default_hstate_size = HPAGE_SIZE;
2802 if (!size_to_hstate(default_hstate_size))
2803 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 2804 }
972dc4de 2805 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
f8b74815
VT
2806 if (default_hstate_max_huge_pages) {
2807 if (!default_hstate.max_huge_pages)
2808 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2809 }
a3437870
NA
2810
2811 hugetlb_init_hstates();
aa888a74 2812 gather_bootmem_prealloc();
a3437870
NA
2813 report_hugepages();
2814
2815 hugetlb_sysfs_init();
9a305230 2816 hugetlb_register_all_nodes();
7179e7bf 2817 hugetlb_cgroup_file_init();
9a305230 2818
8382d914
DB
2819#ifdef CONFIG_SMP
2820 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2821#else
2822 num_fault_mutexes = 1;
2823#endif
c672c7f2 2824 hugetlb_fault_mutex_table =
8382d914 2825 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
c672c7f2 2826 BUG_ON(!hugetlb_fault_mutex_table);
8382d914
DB
2827
2828 for (i = 0; i < num_fault_mutexes; i++)
c672c7f2 2829 mutex_init(&hugetlb_fault_mutex_table[i]);
a3437870
NA
2830 return 0;
2831}
3e89e1c5 2832subsys_initcall(hugetlb_init);
a3437870
NA
2833
2834/* Should be called on processing a hugepagesz=... option */
9fee021d
VT
2835void __init hugetlb_bad_size(void)
2836{
2837 parsed_valid_hugepagesz = false;
2838}
2839
d00181b9 2840void __init hugetlb_add_hstate(unsigned int order)
a3437870
NA
2841{
2842 struct hstate *h;
8faa8b07
AK
2843 unsigned long i;
2844
a3437870 2845 if (size_to_hstate(PAGE_SIZE << order)) {
598d8091 2846 pr_warn("hugepagesz= specified twice, ignoring\n");
a3437870
NA
2847 return;
2848 }
47d38344 2849 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 2850 BUG_ON(order == 0);
47d38344 2851 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
2852 h->order = order;
2853 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
2854 h->nr_huge_pages = 0;
2855 h->free_huge_pages = 0;
2856 for (i = 0; i < MAX_NUMNODES; ++i)
2857 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 2858 INIT_LIST_HEAD(&h->hugepage_activelist);
54f18d35
AM
2859 h->next_nid_to_alloc = first_memory_node;
2860 h->next_nid_to_free = first_memory_node;
a3437870
NA
2861 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2862 huge_page_size(h)/1024);
8faa8b07 2863
a3437870
NA
2864 parsed_hstate = h;
2865}
2866
e11bfbfc 2867static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
2868{
2869 unsigned long *mhp;
8faa8b07 2870 static unsigned long *last_mhp;
a3437870 2871
9fee021d
VT
2872 if (!parsed_valid_hugepagesz) {
2873 pr_warn("hugepages = %s preceded by "
2874 "an unsupported hugepagesz, ignoring\n", s);
2875 parsed_valid_hugepagesz = true;
2876 return 1;
2877 }
a3437870 2878 /*
47d38344 2879 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
a3437870
NA
2880 * so this hugepages= parameter goes to the "default hstate".
2881 */
9fee021d 2882 else if (!hugetlb_max_hstate)
a3437870
NA
2883 mhp = &default_hstate_max_huge_pages;
2884 else
2885 mhp = &parsed_hstate->max_huge_pages;
2886
8faa8b07 2887 if (mhp == last_mhp) {
598d8091 2888 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
8faa8b07
AK
2889 return 1;
2890 }
2891
a3437870
NA
2892 if (sscanf(s, "%lu", mhp) <= 0)
2893 *mhp = 0;
2894
8faa8b07
AK
2895 /*
2896 * Global state is always initialized later in hugetlb_init.
2897 * But we need to allocate >= MAX_ORDER hstates here early to still
2898 * use the bootmem allocator.
2899 */
47d38344 2900 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
2901 hugetlb_hstate_alloc_pages(parsed_hstate);
2902
2903 last_mhp = mhp;
2904
a3437870
NA
2905 return 1;
2906}
e11bfbfc
NP
2907__setup("hugepages=", hugetlb_nrpages_setup);
2908
2909static int __init hugetlb_default_setup(char *s)
2910{
2911 default_hstate_size = memparse(s, &s);
2912 return 1;
2913}
2914__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 2915
8a213460
NA
2916static unsigned int cpuset_mems_nr(unsigned int *array)
2917{
2918 int node;
2919 unsigned int nr = 0;
2920
2921 for_each_node_mask(node, cpuset_current_mems_allowed)
2922 nr += array[node];
2923
2924 return nr;
2925}
2926
2927#ifdef CONFIG_SYSCTL
06808b08
LS
2928static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2929 struct ctl_table *table, int write,
2930 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 2931{
e5ff2159 2932 struct hstate *h = &default_hstate;
238d3c13 2933 unsigned long tmp = h->max_huge_pages;
08d4a246 2934 int ret;
e5ff2159 2935
457c1b27 2936 if (!hugepages_supported())
86613628 2937 return -EOPNOTSUPP;
457c1b27 2938
e5ff2159
AK
2939 table->data = &tmp;
2940 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2941 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2942 if (ret)
2943 goto out;
e5ff2159 2944
238d3c13
DR
2945 if (write)
2946 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2947 NUMA_NO_NODE, tmp, *length);
08d4a246
MH
2948out:
2949 return ret;
1da177e4 2950}
396faf03 2951
06808b08
LS
2952int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2953 void __user *buffer, size_t *length, loff_t *ppos)
2954{
2955
2956 return hugetlb_sysctl_handler_common(false, table, write,
2957 buffer, length, ppos);
2958}
2959
2960#ifdef CONFIG_NUMA
2961int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2962 void __user *buffer, size_t *length, loff_t *ppos)
2963{
2964 return hugetlb_sysctl_handler_common(true, table, write,
2965 buffer, length, ppos);
2966}
2967#endif /* CONFIG_NUMA */
2968
a3d0c6aa 2969int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 2970 void __user *buffer,
a3d0c6aa
NA
2971 size_t *length, loff_t *ppos)
2972{
a5516438 2973 struct hstate *h = &default_hstate;
e5ff2159 2974 unsigned long tmp;
08d4a246 2975 int ret;
e5ff2159 2976
457c1b27 2977 if (!hugepages_supported())
86613628 2978 return -EOPNOTSUPP;
457c1b27 2979
c033a93c 2980 tmp = h->nr_overcommit_huge_pages;
e5ff2159 2981
bae7f4ae 2982 if (write && hstate_is_gigantic(h))
adbe8726
EM
2983 return -EINVAL;
2984
e5ff2159
AK
2985 table->data = &tmp;
2986 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2987 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2988 if (ret)
2989 goto out;
e5ff2159
AK
2990
2991 if (write) {
2992 spin_lock(&hugetlb_lock);
2993 h->nr_overcommit_huge_pages = tmp;
2994 spin_unlock(&hugetlb_lock);
2995 }
08d4a246
MH
2996out:
2997 return ret;
a3d0c6aa
NA
2998}
2999
1da177e4
LT
3000#endif /* CONFIG_SYSCTL */
3001
e1759c21 3002void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 3003{
a5516438 3004 struct hstate *h = &default_hstate;
457c1b27
NA
3005 if (!hugepages_supported())
3006 return;
e1759c21 3007 seq_printf(m,
4f98a2fe
RR
3008 "HugePages_Total: %5lu\n"
3009 "HugePages_Free: %5lu\n"
3010 "HugePages_Rsvd: %5lu\n"
3011 "HugePages_Surp: %5lu\n"
3012 "Hugepagesize: %8lu kB\n",
a5516438
AK
3013 h->nr_huge_pages,
3014 h->free_huge_pages,
3015 h->resv_huge_pages,
3016 h->surplus_huge_pages,
3017 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1da177e4
LT
3018}
3019
3020int hugetlb_report_node_meminfo(int nid, char *buf)
3021{
a5516438 3022 struct hstate *h = &default_hstate;
457c1b27
NA
3023 if (!hugepages_supported())
3024 return 0;
1da177e4
LT
3025 return sprintf(buf,
3026 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
3027 "Node %d HugePages_Free: %5u\n"
3028 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
3029 nid, h->nr_huge_pages_node[nid],
3030 nid, h->free_huge_pages_node[nid],
3031 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
3032}
3033
949f7ec5
DR
3034void hugetlb_show_meminfo(void)
3035{
3036 struct hstate *h;
3037 int nid;
3038
457c1b27
NA
3039 if (!hugepages_supported())
3040 return;
3041
949f7ec5
DR
3042 for_each_node_state(nid, N_MEMORY)
3043 for_each_hstate(h)
3044 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3045 nid,
3046 h->nr_huge_pages_node[nid],
3047 h->free_huge_pages_node[nid],
3048 h->surplus_huge_pages_node[nid],
3049 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3050}
3051
5d317b2b
NH
3052void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3053{
3054 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3055 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3056}
3057
1da177e4
LT
3058/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3059unsigned long hugetlb_total_pages(void)
3060{
d0028588
WL
3061 struct hstate *h;
3062 unsigned long nr_total_pages = 0;
3063
3064 for_each_hstate(h)
3065 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3066 return nr_total_pages;
1da177e4 3067}
1da177e4 3068
a5516438 3069static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
3070{
3071 int ret = -ENOMEM;
3072
3073 spin_lock(&hugetlb_lock);
3074 /*
3075 * When cpuset is configured, it breaks the strict hugetlb page
3076 * reservation as the accounting is done on a global variable. Such
3077 * reservation is completely rubbish in the presence of cpuset because
3078 * the reservation is not checked against page availability for the
3079 * current cpuset. Application can still potentially OOM'ed by kernel
3080 * with lack of free htlb page in cpuset that the task is in.
3081 * Attempt to enforce strict accounting with cpuset is almost
3082 * impossible (or too ugly) because cpuset is too fluid that
3083 * task or memory node can be dynamically moved between cpusets.
3084 *
3085 * The change of semantics for shared hugetlb mapping with cpuset is
3086 * undesirable. However, in order to preserve some of the semantics,
3087 * we fall back to check against current free page availability as
3088 * a best attempt and hopefully to minimize the impact of changing
3089 * semantics that cpuset has.
3090 */
3091 if (delta > 0) {
a5516438 3092 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
3093 goto out;
3094
a5516438
AK
3095 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3096 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
3097 goto out;
3098 }
3099 }
3100
3101 ret = 0;
3102 if (delta < 0)
a5516438 3103 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
3104
3105out:
3106 spin_unlock(&hugetlb_lock);
3107 return ret;
3108}
3109
84afd99b
AW
3110static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3111{
f522c3ac 3112 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
3113
3114 /*
3115 * This new VMA should share its siblings reservation map if present.
3116 * The VMA will only ever have a valid reservation map pointer where
3117 * it is being copied for another still existing VMA. As that VMA
25985edc 3118 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
3119 * after this open call completes. It is therefore safe to take a
3120 * new reference here without additional locking.
3121 */
4e35f483 3122 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
f522c3ac 3123 kref_get(&resv->refs);
84afd99b
AW
3124}
3125
a1e78772
MG
3126static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3127{
a5516438 3128 struct hstate *h = hstate_vma(vma);
f522c3ac 3129 struct resv_map *resv = vma_resv_map(vma);
90481622 3130 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 3131 unsigned long reserve, start, end;
1c5ecae3 3132 long gbl_reserve;
84afd99b 3133
4e35f483
JK
3134 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3135 return;
84afd99b 3136
4e35f483
JK
3137 start = vma_hugecache_offset(h, vma, vma->vm_start);
3138 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 3139
4e35f483 3140 reserve = (end - start) - region_count(resv, start, end);
84afd99b 3141
4e35f483
JK
3142 kref_put(&resv->refs, resv_map_release);
3143
3144 if (reserve) {
1c5ecae3
MK
3145 /*
3146 * Decrement reserve counts. The global reserve count may be
3147 * adjusted if the subpool has a minimum size.
3148 */
3149 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3150 hugetlb_acct_memory(h, -gbl_reserve);
84afd99b 3151 }
a1e78772
MG
3152}
3153
1da177e4
LT
3154/*
3155 * We cannot handle pagefaults against hugetlb pages at all. They cause
3156 * handle_mm_fault() to try to instantiate regular-sized pages in the
3157 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3158 * this far.
3159 */
11bac800 3160static int hugetlb_vm_op_fault(struct vm_fault *vmf)
1da177e4
LT
3161{
3162 BUG();
d0217ac0 3163 return 0;
1da177e4
LT
3164}
3165
f0f37e2f 3166const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 3167 .fault = hugetlb_vm_op_fault,
84afd99b 3168 .open = hugetlb_vm_op_open,
a1e78772 3169 .close = hugetlb_vm_op_close,
1da177e4
LT
3170};
3171
1e8f889b
DG
3172static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3173 int writable)
63551ae0
DG
3174{
3175 pte_t entry;
3176
1e8f889b 3177 if (writable) {
106c992a
GS
3178 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3179 vma->vm_page_prot)));
63551ae0 3180 } else {
106c992a
GS
3181 entry = huge_pte_wrprotect(mk_huge_pte(page,
3182 vma->vm_page_prot));
63551ae0
DG
3183 }
3184 entry = pte_mkyoung(entry);
3185 entry = pte_mkhuge(entry);
d9ed9faa 3186 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
3187
3188 return entry;
3189}
3190
1e8f889b
DG
3191static void set_huge_ptep_writable(struct vm_area_struct *vma,
3192 unsigned long address, pte_t *ptep)
3193{
3194 pte_t entry;
3195
106c992a 3196 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 3197 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 3198 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
3199}
3200
d5ed7444 3201bool is_hugetlb_entry_migration(pte_t pte)
4a705fef
NH
3202{
3203 swp_entry_t swp;
3204
3205 if (huge_pte_none(pte) || pte_present(pte))
d5ed7444 3206 return false;
4a705fef
NH
3207 swp = pte_to_swp_entry(pte);
3208 if (non_swap_entry(swp) && is_migration_entry(swp))
d5ed7444 3209 return true;
4a705fef 3210 else
d5ed7444 3211 return false;
4a705fef
NH
3212}
3213
3214static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3215{
3216 swp_entry_t swp;
3217
3218 if (huge_pte_none(pte) || pte_present(pte))
3219 return 0;
3220 swp = pte_to_swp_entry(pte);
3221 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3222 return 1;
3223 else
3224 return 0;
3225}
1e8f889b 3226
63551ae0
DG
3227int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3228 struct vm_area_struct *vma)
3229{
3230 pte_t *src_pte, *dst_pte, entry;
3231 struct page *ptepage;
1c59827d 3232 unsigned long addr;
1e8f889b 3233 int cow;
a5516438
AK
3234 struct hstate *h = hstate_vma(vma);
3235 unsigned long sz = huge_page_size(h);
e8569dd2
AS
3236 unsigned long mmun_start; /* For mmu_notifiers */
3237 unsigned long mmun_end; /* For mmu_notifiers */
3238 int ret = 0;
1e8f889b
DG
3239
3240 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 3241
e8569dd2
AS
3242 mmun_start = vma->vm_start;
3243 mmun_end = vma->vm_end;
3244 if (cow)
3245 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3246
a5516438 3247 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
cb900f41 3248 spinlock_t *src_ptl, *dst_ptl;
7868a208 3249 src_pte = huge_pte_offset(src, addr, sz);
c74df32c
HD
3250 if (!src_pte)
3251 continue;
a5516438 3252 dst_pte = huge_pte_alloc(dst, addr, sz);
e8569dd2
AS
3253 if (!dst_pte) {
3254 ret = -ENOMEM;
3255 break;
3256 }
c5c99429
LW
3257
3258 /* If the pagetables are shared don't copy or take references */
3259 if (dst_pte == src_pte)
3260 continue;
3261
cb900f41
KS
3262 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3263 src_ptl = huge_pte_lockptr(h, src, src_pte);
3264 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4a705fef
NH
3265 entry = huge_ptep_get(src_pte);
3266 if (huge_pte_none(entry)) { /* skip none entry */
3267 ;
3268 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3269 is_hugetlb_entry_hwpoisoned(entry))) {
3270 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3271
3272 if (is_write_migration_entry(swp_entry) && cow) {
3273 /*
3274 * COW mappings require pages in both
3275 * parent and child to be set to read.
3276 */
3277 make_migration_entry_read(&swp_entry);
3278 entry = swp_entry_to_pte(swp_entry);
3279 set_huge_pte_at(src, addr, src_pte, entry);
3280 }
3281 set_huge_pte_at(dst, addr, dst_pte, entry);
3282 } else {
34ee645e 3283 if (cow) {
7f2e9525 3284 huge_ptep_set_wrprotect(src, addr, src_pte);
34ee645e
JR
3285 mmu_notifier_invalidate_range(src, mmun_start,
3286 mmun_end);
3287 }
0253d634 3288 entry = huge_ptep_get(src_pte);
1c59827d
HD
3289 ptepage = pte_page(entry);
3290 get_page(ptepage);
53f9263b 3291 page_dup_rmap(ptepage, true);
1c59827d 3292 set_huge_pte_at(dst, addr, dst_pte, entry);
5d317b2b 3293 hugetlb_count_add(pages_per_huge_page(h), dst);
1c59827d 3294 }
cb900f41
KS
3295 spin_unlock(src_ptl);
3296 spin_unlock(dst_ptl);
63551ae0 3297 }
63551ae0 3298
e8569dd2
AS
3299 if (cow)
3300 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3301
3302 return ret;
63551ae0
DG
3303}
3304
24669e58
AK
3305void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3306 unsigned long start, unsigned long end,
3307 struct page *ref_page)
63551ae0
DG
3308{
3309 struct mm_struct *mm = vma->vm_mm;
3310 unsigned long address;
c7546f8f 3311 pte_t *ptep;
63551ae0 3312 pte_t pte;
cb900f41 3313 spinlock_t *ptl;
63551ae0 3314 struct page *page;
a5516438
AK
3315 struct hstate *h = hstate_vma(vma);
3316 unsigned long sz = huge_page_size(h);
2ec74c3e
SG
3317 const unsigned long mmun_start = start; /* For mmu_notifiers */
3318 const unsigned long mmun_end = end; /* For mmu_notifiers */
a5516438 3319
63551ae0 3320 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
3321 BUG_ON(start & ~huge_page_mask(h));
3322 BUG_ON(end & ~huge_page_mask(h));
63551ae0 3323
07e32661
AK
3324 /*
3325 * This is a hugetlb vma, all the pte entries should point
3326 * to huge page.
3327 */
3328 tlb_remove_check_page_size_change(tlb, sz);
24669e58 3329 tlb_start_vma(tlb, vma);
2ec74c3e 3330 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
569f48b8 3331 address = start;
569f48b8 3332 for (; address < end; address += sz) {
7868a208 3333 ptep = huge_pte_offset(mm, address, sz);
4c887265 3334 if (!ptep)
c7546f8f
DG
3335 continue;
3336
cb900f41 3337 ptl = huge_pte_lock(h, mm, ptep);
31d49da5
AK
3338 if (huge_pmd_unshare(mm, &address, ptep)) {
3339 spin_unlock(ptl);
3340 continue;
3341 }
39dde65c 3342
6629326b 3343 pte = huge_ptep_get(ptep);
31d49da5
AK
3344 if (huge_pte_none(pte)) {
3345 spin_unlock(ptl);
3346 continue;
3347 }
6629326b
HD
3348
3349 /*
9fbc1f63
NH
3350 * Migrating hugepage or HWPoisoned hugepage is already
3351 * unmapped and its refcount is dropped, so just clear pte here.
6629326b 3352 */
9fbc1f63 3353 if (unlikely(!pte_present(pte))) {
106c992a 3354 huge_pte_clear(mm, address, ptep);
31d49da5
AK
3355 spin_unlock(ptl);
3356 continue;
8c4894c6 3357 }
6629326b
HD
3358
3359 page = pte_page(pte);
04f2cbe3
MG
3360 /*
3361 * If a reference page is supplied, it is because a specific
3362 * page is being unmapped, not a range. Ensure the page we
3363 * are about to unmap is the actual page of interest.
3364 */
3365 if (ref_page) {
31d49da5
AK
3366 if (page != ref_page) {
3367 spin_unlock(ptl);
3368 continue;
3369 }
04f2cbe3
MG
3370 /*
3371 * Mark the VMA as having unmapped its page so that
3372 * future faults in this VMA will fail rather than
3373 * looking like data was lost
3374 */
3375 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3376 }
3377
c7546f8f 3378 pte = huge_ptep_get_and_clear(mm, address, ptep);
b528e4b6 3379 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
106c992a 3380 if (huge_pte_dirty(pte))
6649a386 3381 set_page_dirty(page);
9e81130b 3382
5d317b2b 3383 hugetlb_count_sub(pages_per_huge_page(h), mm);
d281ee61 3384 page_remove_rmap(page, true);
31d49da5 3385
cb900f41 3386 spin_unlock(ptl);
e77b0852 3387 tlb_remove_page_size(tlb, page, huge_page_size(h));
31d49da5
AK
3388 /*
3389 * Bail out after unmapping reference page if supplied
3390 */
3391 if (ref_page)
3392 break;
fe1668ae 3393 }
2ec74c3e 3394 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
24669e58 3395 tlb_end_vma(tlb, vma);
1da177e4 3396}
63551ae0 3397
d833352a
MG
3398void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3399 struct vm_area_struct *vma, unsigned long start,
3400 unsigned long end, struct page *ref_page)
3401{
3402 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3403
3404 /*
3405 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3406 * test will fail on a vma being torn down, and not grab a page table
3407 * on its way out. We're lucky that the flag has such an appropriate
3408 * name, and can in fact be safely cleared here. We could clear it
3409 * before the __unmap_hugepage_range above, but all that's necessary
c8c06efa 3410 * is to clear it before releasing the i_mmap_rwsem. This works
d833352a 3411 * because in the context this is called, the VMA is about to be
c8c06efa 3412 * destroyed and the i_mmap_rwsem is held.
d833352a
MG
3413 */
3414 vma->vm_flags &= ~VM_MAYSHARE;
3415}
3416
502717f4 3417void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 3418 unsigned long end, struct page *ref_page)
502717f4 3419{
24669e58
AK
3420 struct mm_struct *mm;
3421 struct mmu_gather tlb;
3422
3423 mm = vma->vm_mm;
3424
2b047252 3425 tlb_gather_mmu(&tlb, mm, start, end);
24669e58
AK
3426 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3427 tlb_finish_mmu(&tlb, start, end);
502717f4
KC
3428}
3429
04f2cbe3
MG
3430/*
3431 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3432 * mappping it owns the reserve page for. The intention is to unmap the page
3433 * from other VMAs and let the children be SIGKILLed if they are faulting the
3434 * same region.
3435 */
2f4612af
DB
3436static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3437 struct page *page, unsigned long address)
04f2cbe3 3438{
7526674d 3439 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
3440 struct vm_area_struct *iter_vma;
3441 struct address_space *mapping;
04f2cbe3
MG
3442 pgoff_t pgoff;
3443
3444 /*
3445 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3446 * from page cache lookup which is in HPAGE_SIZE units.
3447 */
7526674d 3448 address = address & huge_page_mask(h);
36e4f20a
MH
3449 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3450 vma->vm_pgoff;
93c76a3d 3451 mapping = vma->vm_file->f_mapping;
04f2cbe3 3452
4eb2b1dc
MG
3453 /*
3454 * Take the mapping lock for the duration of the table walk. As
3455 * this mapping should be shared between all the VMAs,
3456 * __unmap_hugepage_range() is called as the lock is already held
3457 */
83cde9e8 3458 i_mmap_lock_write(mapping);
6b2dbba8 3459 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
3460 /* Do not unmap the current VMA */
3461 if (iter_vma == vma)
3462 continue;
3463
2f84a899
MG
3464 /*
3465 * Shared VMAs have their own reserves and do not affect
3466 * MAP_PRIVATE accounting but it is possible that a shared
3467 * VMA is using the same page so check and skip such VMAs.
3468 */
3469 if (iter_vma->vm_flags & VM_MAYSHARE)
3470 continue;
3471
04f2cbe3
MG
3472 /*
3473 * Unmap the page from other VMAs without their own reserves.
3474 * They get marked to be SIGKILLed if they fault in these
3475 * areas. This is because a future no-page fault on this VMA
3476 * could insert a zeroed page instead of the data existing
3477 * from the time of fork. This would look like data corruption
3478 */
3479 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
3480 unmap_hugepage_range(iter_vma, address,
3481 address + huge_page_size(h), page);
04f2cbe3 3482 }
83cde9e8 3483 i_mmap_unlock_write(mapping);
04f2cbe3
MG
3484}
3485
0fe6e20b
NH
3486/*
3487 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
3488 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3489 * cannot race with other handlers or page migration.
3490 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 3491 */
1e8f889b 3492static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3999f52e
AK
3493 unsigned long address, pte_t *ptep,
3494 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 3495{
3999f52e 3496 pte_t pte;
a5516438 3497 struct hstate *h = hstate_vma(vma);
1e8f889b 3498 struct page *old_page, *new_page;
ad4404a2 3499 int ret = 0, outside_reserve = 0;
2ec74c3e
SG
3500 unsigned long mmun_start; /* For mmu_notifiers */
3501 unsigned long mmun_end; /* For mmu_notifiers */
1e8f889b 3502
3999f52e 3503 pte = huge_ptep_get(ptep);
1e8f889b
DG
3504 old_page = pte_page(pte);
3505
04f2cbe3 3506retry_avoidcopy:
1e8f889b
DG
3507 /* If no-one else is actually using this page, avoid the copy
3508 * and just make the page writable */
37a2140d 3509 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5a49973d 3510 page_move_anon_rmap(old_page, vma);
1e8f889b 3511 set_huge_ptep_writable(vma, address, ptep);
83c54070 3512 return 0;
1e8f889b
DG
3513 }
3514
04f2cbe3
MG
3515 /*
3516 * If the process that created a MAP_PRIVATE mapping is about to
3517 * perform a COW due to a shared page count, attempt to satisfy
3518 * the allocation without using the existing reserves. The pagecache
3519 * page is used to determine if the reserve at this address was
3520 * consumed or not. If reserves were used, a partial faulted mapping
3521 * at the time of fork() could consume its reserves on COW instead
3522 * of the full address range.
3523 */
5944d011 3524 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
3525 old_page != pagecache_page)
3526 outside_reserve = 1;
3527
09cbfeaf 3528 get_page(old_page);
b76c8cfb 3529
ad4404a2
DB
3530 /*
3531 * Drop page table lock as buddy allocator may be called. It will
3532 * be acquired again before returning to the caller, as expected.
3533 */
cb900f41 3534 spin_unlock(ptl);
04f2cbe3 3535 new_page = alloc_huge_page(vma, address, outside_reserve);
1e8f889b 3536
2fc39cec 3537 if (IS_ERR(new_page)) {
04f2cbe3
MG
3538 /*
3539 * If a process owning a MAP_PRIVATE mapping fails to COW,
3540 * it is due to references held by a child and an insufficient
3541 * huge page pool. To guarantee the original mappers
3542 * reliability, unmap the page from child processes. The child
3543 * may get SIGKILLed if it later faults.
3544 */
3545 if (outside_reserve) {
09cbfeaf 3546 put_page(old_page);
04f2cbe3 3547 BUG_ON(huge_pte_none(pte));
2f4612af
DB
3548 unmap_ref_private(mm, vma, old_page, address);
3549 BUG_ON(huge_pte_none(pte));
3550 spin_lock(ptl);
7868a208
PA
3551 ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3552 huge_page_size(h));
2f4612af
DB
3553 if (likely(ptep &&
3554 pte_same(huge_ptep_get(ptep), pte)))
3555 goto retry_avoidcopy;
3556 /*
3557 * race occurs while re-acquiring page table
3558 * lock, and our job is done.
3559 */
3560 return 0;
04f2cbe3
MG
3561 }
3562
ad4404a2
DB
3563 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3564 VM_FAULT_OOM : VM_FAULT_SIGBUS;
3565 goto out_release_old;
1e8f889b
DG
3566 }
3567
0fe6e20b
NH
3568 /*
3569 * When the original hugepage is shared one, it does not have
3570 * anon_vma prepared.
3571 */
44e2aa93 3572 if (unlikely(anon_vma_prepare(vma))) {
ad4404a2
DB
3573 ret = VM_FAULT_OOM;
3574 goto out_release_all;
44e2aa93 3575 }
0fe6e20b 3576
47ad8475
AA
3577 copy_user_huge_page(new_page, old_page, address, vma,
3578 pages_per_huge_page(h));
0ed361de 3579 __SetPageUptodate(new_page);
bcc54222 3580 set_page_huge_active(new_page);
1e8f889b 3581
2ec74c3e
SG
3582 mmun_start = address & huge_page_mask(h);
3583 mmun_end = mmun_start + huge_page_size(h);
3584 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
ad4404a2 3585
b76c8cfb 3586 /*
cb900f41 3587 * Retake the page table lock to check for racing updates
b76c8cfb
LW
3588 * before the page tables are altered
3589 */
cb900f41 3590 spin_lock(ptl);
7868a208
PA
3591 ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3592 huge_page_size(h));
a9af0c5d 3593 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
07443a85
JK
3594 ClearPagePrivate(new_page);
3595
1e8f889b 3596 /* Break COW */
8fe627ec 3597 huge_ptep_clear_flush(vma, address, ptep);
34ee645e 3598 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
1e8f889b
DG
3599 set_huge_pte_at(mm, address, ptep,
3600 make_huge_pte(vma, new_page, 1));
d281ee61 3601 page_remove_rmap(old_page, true);
cd67f0d2 3602 hugepage_add_new_anon_rmap(new_page, vma, address);
1e8f889b
DG
3603 /* Make the old page be freed below */
3604 new_page = old_page;
3605 }
cb900f41 3606 spin_unlock(ptl);
2ec74c3e 3607 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
ad4404a2 3608out_release_all:
96b96a96 3609 restore_reserve_on_error(h, vma, address, new_page);
09cbfeaf 3610 put_page(new_page);
ad4404a2 3611out_release_old:
09cbfeaf 3612 put_page(old_page);
8312034f 3613
ad4404a2
DB
3614 spin_lock(ptl); /* Caller expects lock to be held */
3615 return ret;
1e8f889b
DG
3616}
3617
04f2cbe3 3618/* Return the pagecache page at a given address within a VMA */
a5516438
AK
3619static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3620 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
3621{
3622 struct address_space *mapping;
e7c4b0bf 3623 pgoff_t idx;
04f2cbe3
MG
3624
3625 mapping = vma->vm_file->f_mapping;
a5516438 3626 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
3627
3628 return find_lock_page(mapping, idx);
3629}
3630
3ae77f43
HD
3631/*
3632 * Return whether there is a pagecache page to back given address within VMA.
3633 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3634 */
3635static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
3636 struct vm_area_struct *vma, unsigned long address)
3637{
3638 struct address_space *mapping;
3639 pgoff_t idx;
3640 struct page *page;
3641
3642 mapping = vma->vm_file->f_mapping;
3643 idx = vma_hugecache_offset(h, vma, address);
3644
3645 page = find_get_page(mapping, idx);
3646 if (page)
3647 put_page(page);
3648 return page != NULL;
3649}
3650
ab76ad54
MK
3651int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3652 pgoff_t idx)
3653{
3654 struct inode *inode = mapping->host;
3655 struct hstate *h = hstate_inode(inode);
3656 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3657
3658 if (err)
3659 return err;
3660 ClearPagePrivate(page);
3661
3662 spin_lock(&inode->i_lock);
3663 inode->i_blocks += blocks_per_huge_page(h);
3664 spin_unlock(&inode->i_lock);
3665 return 0;
3666}
3667
a1ed3dda 3668static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
8382d914
DB
3669 struct address_space *mapping, pgoff_t idx,
3670 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 3671{
a5516438 3672 struct hstate *h = hstate_vma(vma);
ac9b9c66 3673 int ret = VM_FAULT_SIGBUS;
409eb8c2 3674 int anon_rmap = 0;
4c887265 3675 unsigned long size;
4c887265 3676 struct page *page;
1e8f889b 3677 pte_t new_pte;
cb900f41 3678 spinlock_t *ptl;
4c887265 3679
04f2cbe3
MG
3680 /*
3681 * Currently, we are forced to kill the process in the event the
3682 * original mapper has unmapped pages from the child due to a failed
25985edc 3683 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
3684 */
3685 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
910154d5 3686 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
ffb22af5 3687 current->pid);
04f2cbe3
MG
3688 return ret;
3689 }
3690
4c887265
AL
3691 /*
3692 * Use page lock to guard against racing truncation
3693 * before we get page_table_lock.
3694 */
6bda666a
CL
3695retry:
3696 page = find_lock_page(mapping, idx);
3697 if (!page) {
a5516438 3698 size = i_size_read(mapping->host) >> huge_page_shift(h);
ebed4bfc
HD
3699 if (idx >= size)
3700 goto out;
1a1aad8a
MK
3701
3702 /*
3703 * Check for page in userfault range
3704 */
3705 if (userfaultfd_missing(vma)) {
3706 u32 hash;
3707 struct vm_fault vmf = {
3708 .vma = vma,
3709 .address = address,
3710 .flags = flags,
3711 /*
3712 * Hard to debug if it ends up being
3713 * used by a callee that assumes
3714 * something about the other
3715 * uninitialized fields... same as in
3716 * memory.c
3717 */
3718 };
3719
3720 /*
3721 * hugetlb_fault_mutex must be dropped before
3722 * handling userfault. Reacquire after handling
3723 * fault to make calling code simpler.
3724 */
3725 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
3726 idx, address);
3727 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3728 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3729 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3730 goto out;
3731 }
3732
04f2cbe3 3733 page = alloc_huge_page(vma, address, 0);
2fc39cec 3734 if (IS_ERR(page)) {
76dcee75
AK
3735 ret = PTR_ERR(page);
3736 if (ret == -ENOMEM)
3737 ret = VM_FAULT_OOM;
3738 else
3739 ret = VM_FAULT_SIGBUS;
6bda666a
CL
3740 goto out;
3741 }
47ad8475 3742 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 3743 __SetPageUptodate(page);
bcc54222 3744 set_page_huge_active(page);
ac9b9c66 3745
f83a275d 3746 if (vma->vm_flags & VM_MAYSHARE) {
ab76ad54 3747 int err = huge_add_to_page_cache(page, mapping, idx);
6bda666a
CL
3748 if (err) {
3749 put_page(page);
6bda666a
CL
3750 if (err == -EEXIST)
3751 goto retry;
3752 goto out;
3753 }
23be7468 3754 } else {
6bda666a 3755 lock_page(page);
0fe6e20b
NH
3756 if (unlikely(anon_vma_prepare(vma))) {
3757 ret = VM_FAULT_OOM;
3758 goto backout_unlocked;
3759 }
409eb8c2 3760 anon_rmap = 1;
23be7468 3761 }
0fe6e20b 3762 } else {
998b4382
NH
3763 /*
3764 * If memory error occurs between mmap() and fault, some process
3765 * don't have hwpoisoned swap entry for errored virtual address.
3766 * So we need to block hugepage fault by PG_hwpoison bit check.
3767 */
3768 if (unlikely(PageHWPoison(page))) {
32f84528 3769 ret = VM_FAULT_HWPOISON |
972dc4de 3770 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
3771 goto backout_unlocked;
3772 }
6bda666a 3773 }
1e8f889b 3774
57303d80
AW
3775 /*
3776 * If we are going to COW a private mapping later, we examine the
3777 * pending reservations for this page now. This will ensure that
3778 * any allocations necessary to record that reservation occur outside
3779 * the spinlock.
3780 */
5e911373 3781 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2b26736c
AW
3782 if (vma_needs_reservation(h, vma, address) < 0) {
3783 ret = VM_FAULT_OOM;
3784 goto backout_unlocked;
3785 }
5e911373 3786 /* Just decrements count, does not deallocate */
feba16e2 3787 vma_end_reservation(h, vma, address);
5e911373 3788 }
57303d80 3789
8bea8052 3790 ptl = huge_pte_lock(h, mm, ptep);
a5516438 3791 size = i_size_read(mapping->host) >> huge_page_shift(h);
4c887265
AL
3792 if (idx >= size)
3793 goto backout;
3794
83c54070 3795 ret = 0;
7f2e9525 3796 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
3797 goto backout;
3798
07443a85
JK
3799 if (anon_rmap) {
3800 ClearPagePrivate(page);
409eb8c2 3801 hugepage_add_new_anon_rmap(page, vma, address);
ac714904 3802 } else
53f9263b 3803 page_dup_rmap(page, true);
1e8f889b
DG
3804 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3805 && (vma->vm_flags & VM_SHARED)));
3806 set_huge_pte_at(mm, address, ptep, new_pte);
3807
5d317b2b 3808 hugetlb_count_add(pages_per_huge_page(h), mm);
788c7df4 3809 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 3810 /* Optimization, do the COW without a second fault */
3999f52e 3811 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
1e8f889b
DG
3812 }
3813
cb900f41 3814 spin_unlock(ptl);
4c887265
AL
3815 unlock_page(page);
3816out:
ac9b9c66 3817 return ret;
4c887265
AL
3818
3819backout:
cb900f41 3820 spin_unlock(ptl);
2b26736c 3821backout_unlocked:
4c887265 3822 unlock_page(page);
96b96a96 3823 restore_reserve_on_error(h, vma, address, page);
4c887265
AL
3824 put_page(page);
3825 goto out;
ac9b9c66
HD
3826}
3827
8382d914 3828#ifdef CONFIG_SMP
c672c7f2 3829u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
8382d914
DB
3830 struct vm_area_struct *vma,
3831 struct address_space *mapping,
3832 pgoff_t idx, unsigned long address)
3833{
3834 unsigned long key[2];
3835 u32 hash;
3836
3837 if (vma->vm_flags & VM_SHARED) {
3838 key[0] = (unsigned long) mapping;
3839 key[1] = idx;
3840 } else {
3841 key[0] = (unsigned long) mm;
3842 key[1] = address >> huge_page_shift(h);
3843 }
3844
3845 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3846
3847 return hash & (num_fault_mutexes - 1);
3848}
3849#else
3850/*
3851 * For uniprocesor systems we always use a single mutex, so just
3852 * return 0 and avoid the hashing overhead.
3853 */
c672c7f2 3854u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
8382d914
DB
3855 struct vm_area_struct *vma,
3856 struct address_space *mapping,
3857 pgoff_t idx, unsigned long address)
3858{
3859 return 0;
3860}
3861#endif
3862
86e5216f 3863int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 3864 unsigned long address, unsigned int flags)
86e5216f 3865{
8382d914 3866 pte_t *ptep, entry;
cb900f41 3867 spinlock_t *ptl;
1e8f889b 3868 int ret;
8382d914
DB
3869 u32 hash;
3870 pgoff_t idx;
0fe6e20b 3871 struct page *page = NULL;
57303d80 3872 struct page *pagecache_page = NULL;
a5516438 3873 struct hstate *h = hstate_vma(vma);
8382d914 3874 struct address_space *mapping;
0f792cf9 3875 int need_wait_lock = 0;
86e5216f 3876
1e16a539
KH
3877 address &= huge_page_mask(h);
3878
7868a208 3879 ptep = huge_pte_offset(mm, address, huge_page_size(h));
fd6a03ed
NH
3880 if (ptep) {
3881 entry = huge_ptep_get(ptep);
290408d4 3882 if (unlikely(is_hugetlb_entry_migration(entry))) {
cb900f41 3883 migration_entry_wait_huge(vma, mm, ptep);
290408d4
NH
3884 return 0;
3885 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 3886 return VM_FAULT_HWPOISON_LARGE |
972dc4de 3887 VM_FAULT_SET_HINDEX(hstate_index(h));
0d777df5
NH
3888 } else {
3889 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3890 if (!ptep)
3891 return VM_FAULT_OOM;
fd6a03ed
NH
3892 }
3893
8382d914
DB
3894 mapping = vma->vm_file->f_mapping;
3895 idx = vma_hugecache_offset(h, vma, address);
3896
3935baa9
DG
3897 /*
3898 * Serialize hugepage allocation and instantiation, so that we don't
3899 * get spurious allocation failures if two CPUs race to instantiate
3900 * the same page in the page cache.
3901 */
c672c7f2
MK
3902 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3903 mutex_lock(&hugetlb_fault_mutex_table[hash]);
8382d914 3904
7f2e9525
GS
3905 entry = huge_ptep_get(ptep);
3906 if (huge_pte_none(entry)) {
8382d914 3907 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
b4d1d99f 3908 goto out_mutex;
3935baa9 3909 }
86e5216f 3910
83c54070 3911 ret = 0;
1e8f889b 3912
0f792cf9
NH
3913 /*
3914 * entry could be a migration/hwpoison entry at this point, so this
3915 * check prevents the kernel from going below assuming that we have
3916 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3917 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3918 * handle it.
3919 */
3920 if (!pte_present(entry))
3921 goto out_mutex;
3922
57303d80
AW
3923 /*
3924 * If we are going to COW the mapping later, we examine the pending
3925 * reservations for this page now. This will ensure that any
3926 * allocations necessary to record that reservation occur outside the
3927 * spinlock. For private mappings, we also lookup the pagecache
3928 * page now as it is used to determine if a reservation has been
3929 * consumed.
3930 */
106c992a 3931 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2b26736c
AW
3932 if (vma_needs_reservation(h, vma, address) < 0) {
3933 ret = VM_FAULT_OOM;
b4d1d99f 3934 goto out_mutex;
2b26736c 3935 }
5e911373 3936 /* Just decrements count, does not deallocate */
feba16e2 3937 vma_end_reservation(h, vma, address);
57303d80 3938
f83a275d 3939 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80
AW
3940 pagecache_page = hugetlbfs_pagecache_page(h,
3941 vma, address);
3942 }
3943
0f792cf9
NH
3944 ptl = huge_pte_lock(h, mm, ptep);
3945
3946 /* Check for a racing update before calling hugetlb_cow */
3947 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3948 goto out_ptl;
3949
56c9cfb1
NH
3950 /*
3951 * hugetlb_cow() requires page locks of pte_page(entry) and
3952 * pagecache_page, so here we need take the former one
3953 * when page != pagecache_page or !pagecache_page.
56c9cfb1
NH
3954 */
3955 page = pte_page(entry);
3956 if (page != pagecache_page)
0f792cf9
NH
3957 if (!trylock_page(page)) {
3958 need_wait_lock = 1;
3959 goto out_ptl;
3960 }
b4d1d99f 3961
0f792cf9 3962 get_page(page);
b4d1d99f 3963
788c7df4 3964 if (flags & FAULT_FLAG_WRITE) {
106c992a 3965 if (!huge_pte_write(entry)) {
3999f52e
AK
3966 ret = hugetlb_cow(mm, vma, address, ptep,
3967 pagecache_page, ptl);
0f792cf9 3968 goto out_put_page;
b4d1d99f 3969 }
106c992a 3970 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
3971 }
3972 entry = pte_mkyoung(entry);
788c7df4
HD
3973 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3974 flags & FAULT_FLAG_WRITE))
4b3073e1 3975 update_mmu_cache(vma, address, ptep);
0f792cf9
NH
3976out_put_page:
3977 if (page != pagecache_page)
3978 unlock_page(page);
3979 put_page(page);
cb900f41
KS
3980out_ptl:
3981 spin_unlock(ptl);
57303d80
AW
3982
3983 if (pagecache_page) {
3984 unlock_page(pagecache_page);
3985 put_page(pagecache_page);
3986 }
b4d1d99f 3987out_mutex:
c672c7f2 3988 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
0f792cf9
NH
3989 /*
3990 * Generally it's safe to hold refcount during waiting page lock. But
3991 * here we just wait to defer the next page fault to avoid busy loop and
3992 * the page is not used after unlocked before returning from the current
3993 * page fault. So we are safe from accessing freed page, even if we wait
3994 * here without taking refcount.
3995 */
3996 if (need_wait_lock)
3997 wait_on_page_locked(page);
1e8f889b 3998 return ret;
86e5216f
AL
3999}
4000
8fb5debc
MK
4001/*
4002 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4003 * modifications for huge pages.
4004 */
4005int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4006 pte_t *dst_pte,
4007 struct vm_area_struct *dst_vma,
4008 unsigned long dst_addr,
4009 unsigned long src_addr,
4010 struct page **pagep)
4011{
1c9e8def 4012 int vm_shared = dst_vma->vm_flags & VM_SHARED;
8fb5debc
MK
4013 struct hstate *h = hstate_vma(dst_vma);
4014 pte_t _dst_pte;
4015 spinlock_t *ptl;
4016 int ret;
4017 struct page *page;
4018
4019 if (!*pagep) {
4020 ret = -ENOMEM;
4021 page = alloc_huge_page(dst_vma, dst_addr, 0);
4022 if (IS_ERR(page))
4023 goto out;
4024
4025 ret = copy_huge_page_from_user(page,
4026 (const void __user *) src_addr,
810a56b9 4027 pages_per_huge_page(h), false);
8fb5debc
MK
4028
4029 /* fallback to copy_from_user outside mmap_sem */
4030 if (unlikely(ret)) {
4031 ret = -EFAULT;
4032 *pagep = page;
4033 /* don't free the page */
4034 goto out;
4035 }
4036 } else {
4037 page = *pagep;
4038 *pagep = NULL;
4039 }
4040
4041 /*
4042 * The memory barrier inside __SetPageUptodate makes sure that
4043 * preceding stores to the page contents become visible before
4044 * the set_pte_at() write.
4045 */
4046 __SetPageUptodate(page);
4047 set_page_huge_active(page);
4048
1c9e8def
MK
4049 /*
4050 * If shared, add to page cache
4051 */
4052 if (vm_shared) {
4053 struct address_space *mapping = dst_vma->vm_file->f_mapping;
4054 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4055
4056 ret = huge_add_to_page_cache(page, mapping, idx);
4057 if (ret)
4058 goto out_release_nounlock;
4059 }
4060
8fb5debc
MK
4061 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4062 spin_lock(ptl);
4063
4064 ret = -EEXIST;
4065 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4066 goto out_release_unlock;
4067
1c9e8def
MK
4068 if (vm_shared) {
4069 page_dup_rmap(page, true);
4070 } else {
4071 ClearPagePrivate(page);
4072 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4073 }
8fb5debc
MK
4074
4075 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4076 if (dst_vma->vm_flags & VM_WRITE)
4077 _dst_pte = huge_pte_mkdirty(_dst_pte);
4078 _dst_pte = pte_mkyoung(_dst_pte);
4079
4080 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4081
4082 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4083 dst_vma->vm_flags & VM_WRITE);
4084 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4085
4086 /* No need to invalidate - it was non-present before */
4087 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4088
4089 spin_unlock(ptl);
1c9e8def
MK
4090 if (vm_shared)
4091 unlock_page(page);
8fb5debc
MK
4092 ret = 0;
4093out:
4094 return ret;
4095out_release_unlock:
4096 spin_unlock(ptl);
1c9e8def
MK
4097out_release_nounlock:
4098 if (vm_shared)
4099 unlock_page(page);
8fb5debc
MK
4100 put_page(page);
4101 goto out;
4102}
4103
28a35716
ML
4104long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4105 struct page **pages, struct vm_area_struct **vmas,
4106 unsigned long *position, unsigned long *nr_pages,
87ffc118 4107 long i, unsigned int flags, int *nonblocking)
63551ae0 4108{
d5d4b0aa
KC
4109 unsigned long pfn_offset;
4110 unsigned long vaddr = *position;
28a35716 4111 unsigned long remainder = *nr_pages;
a5516438 4112 struct hstate *h = hstate_vma(vma);
63551ae0 4113
63551ae0 4114 while (vaddr < vma->vm_end && remainder) {
4c887265 4115 pte_t *pte;
cb900f41 4116 spinlock_t *ptl = NULL;
2a15efc9 4117 int absent;
4c887265 4118 struct page *page;
63551ae0 4119
02057967
DR
4120 /*
4121 * If we have a pending SIGKILL, don't keep faulting pages and
4122 * potentially allocating memory.
4123 */
4124 if (unlikely(fatal_signal_pending(current))) {
4125 remainder = 0;
4126 break;
4127 }
4128
4c887265
AL
4129 /*
4130 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 4131 * each hugepage. We have to make sure we get the
4c887265 4132 * first, for the page indexing below to work.
cb900f41
KS
4133 *
4134 * Note that page table lock is not held when pte is null.
4c887265 4135 */
7868a208
PA
4136 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4137 huge_page_size(h));
cb900f41
KS
4138 if (pte)
4139 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
4140 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4141
4142 /*
4143 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
4144 * an error where there's an empty slot with no huge pagecache
4145 * to back it. This way, we avoid allocating a hugepage, and
4146 * the sparse dumpfile avoids allocating disk blocks, but its
4147 * huge holes still show up with zeroes where they need to be.
2a15efc9 4148 */
3ae77f43
HD
4149 if (absent && (flags & FOLL_DUMP) &&
4150 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
4151 if (pte)
4152 spin_unlock(ptl);
2a15efc9
HD
4153 remainder = 0;
4154 break;
4155 }
63551ae0 4156
9cc3a5bd
NH
4157 /*
4158 * We need call hugetlb_fault for both hugepages under migration
4159 * (in which case hugetlb_fault waits for the migration,) and
4160 * hwpoisoned hugepages (in which case we need to prevent the
4161 * caller from accessing to them.) In order to do this, we use
4162 * here is_swap_pte instead of is_hugetlb_entry_migration and
4163 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4164 * both cases, and because we can't follow correct pages
4165 * directly from any kind of swap entries.
4166 */
4167 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
4168 ((flags & FOLL_WRITE) &&
4169 !huge_pte_write(huge_ptep_get(pte)))) {
4c887265 4170 int ret;
87ffc118 4171 unsigned int fault_flags = 0;
63551ae0 4172
cb900f41
KS
4173 if (pte)
4174 spin_unlock(ptl);
87ffc118
AA
4175 if (flags & FOLL_WRITE)
4176 fault_flags |= FAULT_FLAG_WRITE;
4177 if (nonblocking)
4178 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4179 if (flags & FOLL_NOWAIT)
4180 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4181 FAULT_FLAG_RETRY_NOWAIT;
4182 if (flags & FOLL_TRIED) {
4183 VM_WARN_ON_ONCE(fault_flags &
4184 FAULT_FLAG_ALLOW_RETRY);
4185 fault_flags |= FAULT_FLAG_TRIED;
4186 }
4187 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4188 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
4189 int err = vm_fault_to_errno(ret, flags);
4190
4191 if (err)
4192 return err;
4193
87ffc118
AA
4194 remainder = 0;
4195 break;
4196 }
4197 if (ret & VM_FAULT_RETRY) {
4198 if (nonblocking)
4199 *nonblocking = 0;
4200 *nr_pages = 0;
4201 /*
4202 * VM_FAULT_RETRY must not return an
4203 * error, it will return zero
4204 * instead.
4205 *
4206 * No need to update "position" as the
4207 * caller will not check it after
4208 * *nr_pages is set to 0.
4209 */
4210 return i;
4211 }
4212 continue;
4c887265
AL
4213 }
4214
a5516438 4215 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 4216 page = pte_page(huge_ptep_get(pte));
d5d4b0aa 4217same_page:
d6692183 4218 if (pages) {
2a15efc9 4219 pages[i] = mem_map_offset(page, pfn_offset);
ddc58f27 4220 get_page(pages[i]);
d6692183 4221 }
63551ae0
DG
4222
4223 if (vmas)
4224 vmas[i] = vma;
4225
4226 vaddr += PAGE_SIZE;
d5d4b0aa 4227 ++pfn_offset;
63551ae0
DG
4228 --remainder;
4229 ++i;
d5d4b0aa 4230 if (vaddr < vma->vm_end && remainder &&
a5516438 4231 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
KC
4232 /*
4233 * We use pfn_offset to avoid touching the pageframes
4234 * of this compound page.
4235 */
4236 goto same_page;
4237 }
cb900f41 4238 spin_unlock(ptl);
63551ae0 4239 }
28a35716 4240 *nr_pages = remainder;
87ffc118
AA
4241 /*
4242 * setting position is actually required only if remainder is
4243 * not zero but it's faster not to add a "if (remainder)"
4244 * branch.
4245 */
63551ae0
DG
4246 *position = vaddr;
4247
2a15efc9 4248 return i ? i : -EFAULT;
63551ae0 4249}
8f860591 4250
5491ae7b
AK
4251#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4252/*
4253 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4254 * implement this.
4255 */
4256#define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4257#endif
4258
7da4d641 4259unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
4260 unsigned long address, unsigned long end, pgprot_t newprot)
4261{
4262 struct mm_struct *mm = vma->vm_mm;
4263 unsigned long start = address;
4264 pte_t *ptep;
4265 pte_t pte;
a5516438 4266 struct hstate *h = hstate_vma(vma);
7da4d641 4267 unsigned long pages = 0;
8f860591
ZY
4268
4269 BUG_ON(address >= end);
4270 flush_cache_range(vma, address, end);
4271
a5338093 4272 mmu_notifier_invalidate_range_start(mm, start, end);
83cde9e8 4273 i_mmap_lock_write(vma->vm_file->f_mapping);
a5516438 4274 for (; address < end; address += huge_page_size(h)) {
cb900f41 4275 spinlock_t *ptl;
7868a208 4276 ptep = huge_pte_offset(mm, address, huge_page_size(h));
8f860591
ZY
4277 if (!ptep)
4278 continue;
cb900f41 4279 ptl = huge_pte_lock(h, mm, ptep);
7da4d641
PZ
4280 if (huge_pmd_unshare(mm, &address, ptep)) {
4281 pages++;
cb900f41 4282 spin_unlock(ptl);
39dde65c 4283 continue;
7da4d641 4284 }
a8bda28d
NH
4285 pte = huge_ptep_get(ptep);
4286 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4287 spin_unlock(ptl);
4288 continue;
4289 }
4290 if (unlikely(is_hugetlb_entry_migration(pte))) {
4291 swp_entry_t entry = pte_to_swp_entry(pte);
4292
4293 if (is_write_migration_entry(entry)) {
4294 pte_t newpte;
4295
4296 make_migration_entry_read(&entry);
4297 newpte = swp_entry_to_pte(entry);
4298 set_huge_pte_at(mm, address, ptep, newpte);
4299 pages++;
4300 }
4301 spin_unlock(ptl);
4302 continue;
4303 }
4304 if (!huge_pte_none(pte)) {
8f860591 4305 pte = huge_ptep_get_and_clear(mm, address, ptep);
106c992a 4306 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
be7517d6 4307 pte = arch_make_huge_pte(pte, vma, NULL, 0);
8f860591 4308 set_huge_pte_at(mm, address, ptep, pte);
7da4d641 4309 pages++;
8f860591 4310 }
cb900f41 4311 spin_unlock(ptl);
8f860591 4312 }
d833352a 4313 /*
c8c06efa 4314 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
d833352a 4315 * may have cleared our pud entry and done put_page on the page table:
c8c06efa 4316 * once we release i_mmap_rwsem, another task can do the final put_page
d833352a
MG
4317 * and that page table be reused and filled with junk.
4318 */
5491ae7b 4319 flush_hugetlb_tlb_range(vma, start, end);
34ee645e 4320 mmu_notifier_invalidate_range(mm, start, end);
83cde9e8 4321 i_mmap_unlock_write(vma->vm_file->f_mapping);
a5338093 4322 mmu_notifier_invalidate_range_end(mm, start, end);
7da4d641
PZ
4323
4324 return pages << h->order;
8f860591
ZY
4325}
4326
a1e78772
MG
4327int hugetlb_reserve_pages(struct inode *inode,
4328 long from, long to,
5a6fe125 4329 struct vm_area_struct *vma,
ca16d140 4330 vm_flags_t vm_flags)
e4e574b7 4331{
17c9d12e 4332 long ret, chg;
a5516438 4333 struct hstate *h = hstate_inode(inode);
90481622 4334 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 4335 struct resv_map *resv_map;
1c5ecae3 4336 long gbl_reserve;
e4e574b7 4337
17c9d12e
MG
4338 /*
4339 * Only apply hugepage reservation if asked. At fault time, an
4340 * attempt will be made for VM_NORESERVE to allocate a page
90481622 4341 * without using reserves
17c9d12e 4342 */
ca16d140 4343 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
4344 return 0;
4345
a1e78772
MG
4346 /*
4347 * Shared mappings base their reservation on the number of pages that
4348 * are already allocated on behalf of the file. Private mappings need
4349 * to reserve the full area even if read-only as mprotect() may be
4350 * called to make the mapping read-write. Assume !vma is a shm mapping
4351 */
9119a41e 4352 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4e35f483 4353 resv_map = inode_resv_map(inode);
9119a41e 4354
1406ec9b 4355 chg = region_chg(resv_map, from, to);
9119a41e
JK
4356
4357 } else {
4358 resv_map = resv_map_alloc();
17c9d12e
MG
4359 if (!resv_map)
4360 return -ENOMEM;
4361
a1e78772 4362 chg = to - from;
84afd99b 4363
17c9d12e
MG
4364 set_vma_resv_map(vma, resv_map);
4365 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4366 }
4367
c50ac050
DH
4368 if (chg < 0) {
4369 ret = chg;
4370 goto out_err;
4371 }
8a630112 4372
1c5ecae3
MK
4373 /*
4374 * There must be enough pages in the subpool for the mapping. If
4375 * the subpool has a minimum size, there may be some global
4376 * reservations already in place (gbl_reserve).
4377 */
4378 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4379 if (gbl_reserve < 0) {
c50ac050
DH
4380 ret = -ENOSPC;
4381 goto out_err;
4382 }
5a6fe125
MG
4383
4384 /*
17c9d12e 4385 * Check enough hugepages are available for the reservation.
90481622 4386 * Hand the pages back to the subpool if there are not
5a6fe125 4387 */
1c5ecae3 4388 ret = hugetlb_acct_memory(h, gbl_reserve);
68842c9b 4389 if (ret < 0) {
1c5ecae3
MK
4390 /* put back original number of pages, chg */
4391 (void)hugepage_subpool_put_pages(spool, chg);
c50ac050 4392 goto out_err;
68842c9b 4393 }
17c9d12e
MG
4394
4395 /*
4396 * Account for the reservations made. Shared mappings record regions
4397 * that have reservations as they are shared by multiple VMAs.
4398 * When the last VMA disappears, the region map says how much
4399 * the reservation was and the page cache tells how much of
4400 * the reservation was consumed. Private mappings are per-VMA and
4401 * only the consumed reservations are tracked. When the VMA
4402 * disappears, the original reservation is the VMA size and the
4403 * consumed reservations are stored in the map. Hence, nothing
4404 * else has to be done for private mappings here
4405 */
33039678
MK
4406 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4407 long add = region_add(resv_map, from, to);
4408
4409 if (unlikely(chg > add)) {
4410 /*
4411 * pages in this range were added to the reserve
4412 * map between region_chg and region_add. This
4413 * indicates a race with alloc_huge_page. Adjust
4414 * the subpool and reserve counts modified above
4415 * based on the difference.
4416 */
4417 long rsv_adjust;
4418
4419 rsv_adjust = hugepage_subpool_put_pages(spool,
4420 chg - add);
4421 hugetlb_acct_memory(h, -rsv_adjust);
4422 }
4423 }
a43a8c39 4424 return 0;
c50ac050 4425out_err:
5e911373 4426 if (!vma || vma->vm_flags & VM_MAYSHARE)
ff8c0c53
MK
4427 /* Don't call region_abort if region_chg failed */
4428 if (chg >= 0)
4429 region_abort(resv_map, from, to);
f031dd27
JK
4430 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4431 kref_put(&resv_map->refs, resv_map_release);
c50ac050 4432 return ret;
a43a8c39
KC
4433}
4434
b5cec28d
MK
4435long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4436 long freed)
a43a8c39 4437{
a5516438 4438 struct hstate *h = hstate_inode(inode);
4e35f483 4439 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 4440 long chg = 0;
90481622 4441 struct hugepage_subpool *spool = subpool_inode(inode);
1c5ecae3 4442 long gbl_reserve;
45c682a6 4443
b5cec28d
MK
4444 if (resv_map) {
4445 chg = region_del(resv_map, start, end);
4446 /*
4447 * region_del() can fail in the rare case where a region
4448 * must be split and another region descriptor can not be
4449 * allocated. If end == LONG_MAX, it will not fail.
4450 */
4451 if (chg < 0)
4452 return chg;
4453 }
4454
45c682a6 4455 spin_lock(&inode->i_lock);
e4c6f8be 4456 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
4457 spin_unlock(&inode->i_lock);
4458
1c5ecae3
MK
4459 /*
4460 * If the subpool has a minimum size, the number of global
4461 * reservations to be released may be adjusted.
4462 */
4463 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4464 hugetlb_acct_memory(h, -gbl_reserve);
b5cec28d
MK
4465
4466 return 0;
a43a8c39 4467}
93f70f90 4468
3212b535
SC
4469#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4470static unsigned long page_table_shareable(struct vm_area_struct *svma,
4471 struct vm_area_struct *vma,
4472 unsigned long addr, pgoff_t idx)
4473{
4474 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4475 svma->vm_start;
4476 unsigned long sbase = saddr & PUD_MASK;
4477 unsigned long s_end = sbase + PUD_SIZE;
4478
4479 /* Allow segments to share if only one is marked locked */
de60f5f1
EM
4480 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4481 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
3212b535
SC
4482
4483 /*
4484 * match the virtual addresses, permission and the alignment of the
4485 * page table page.
4486 */
4487 if (pmd_index(addr) != pmd_index(saddr) ||
4488 vm_flags != svm_flags ||
4489 sbase < svma->vm_start || svma->vm_end < s_end)
4490 return 0;
4491
4492 return saddr;
4493}
4494
31aafb45 4495static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3212b535
SC
4496{
4497 unsigned long base = addr & PUD_MASK;
4498 unsigned long end = base + PUD_SIZE;
4499
4500 /*
4501 * check on proper vm_flags and page table alignment
4502 */
4503 if (vma->vm_flags & VM_MAYSHARE &&
4504 vma->vm_start <= base && end <= vma->vm_end)
31aafb45
NK
4505 return true;
4506 return false;
3212b535
SC
4507}
4508
4509/*
4510 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4511 * and returns the corresponding pte. While this is not necessary for the
4512 * !shared pmd case because we can allocate the pmd later as well, it makes the
4513 * code much cleaner. pmd allocation is essential for the shared case because
c8c06efa 4514 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
3212b535
SC
4515 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4516 * bad pmd for sharing.
4517 */
4518pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4519{
4520 struct vm_area_struct *vma = find_vma(mm, addr);
4521 struct address_space *mapping = vma->vm_file->f_mapping;
4522 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4523 vma->vm_pgoff;
4524 struct vm_area_struct *svma;
4525 unsigned long saddr;
4526 pte_t *spte = NULL;
4527 pte_t *pte;
cb900f41 4528 spinlock_t *ptl;
3212b535
SC
4529
4530 if (!vma_shareable(vma, addr))
4531 return (pte_t *)pmd_alloc(mm, pud, addr);
4532
83cde9e8 4533 i_mmap_lock_write(mapping);
3212b535
SC
4534 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4535 if (svma == vma)
4536 continue;
4537
4538 saddr = page_table_shareable(svma, vma, addr, idx);
4539 if (saddr) {
7868a208
PA
4540 spte = huge_pte_offset(svma->vm_mm, saddr,
4541 vma_mmu_pagesize(svma));
3212b535
SC
4542 if (spte) {
4543 get_page(virt_to_page(spte));
4544 break;
4545 }
4546 }
4547 }
4548
4549 if (!spte)
4550 goto out;
4551
8bea8052 4552 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
dc6c9a35 4553 if (pud_none(*pud)) {
3212b535
SC
4554 pud_populate(mm, pud,
4555 (pmd_t *)((unsigned long)spte & PAGE_MASK));
c17b1f42 4556 mm_inc_nr_pmds(mm);
dc6c9a35 4557 } else {
3212b535 4558 put_page(virt_to_page(spte));
dc6c9a35 4559 }
cb900f41 4560 spin_unlock(ptl);
3212b535
SC
4561out:
4562 pte = (pte_t *)pmd_alloc(mm, pud, addr);
83cde9e8 4563 i_mmap_unlock_write(mapping);
3212b535
SC
4564 return pte;
4565}
4566
4567/*
4568 * unmap huge page backed by shared pte.
4569 *
4570 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4571 * indicated by page_count > 1, unmap is achieved by clearing pud and
4572 * decrementing the ref count. If count == 1, the pte page is not shared.
4573 *
cb900f41 4574 * called with page table lock held.
3212b535
SC
4575 *
4576 * returns: 1 successfully unmapped a shared pte page
4577 * 0 the underlying pte page is not shared, or it is the last user
4578 */
4579int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4580{
4581 pgd_t *pgd = pgd_offset(mm, *addr);
c2febafc
KS
4582 p4d_t *p4d = p4d_offset(pgd, *addr);
4583 pud_t *pud = pud_offset(p4d, *addr);
3212b535
SC
4584
4585 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4586 if (page_count(virt_to_page(ptep)) == 1)
4587 return 0;
4588
4589 pud_clear(pud);
4590 put_page(virt_to_page(ptep));
dc6c9a35 4591 mm_dec_nr_pmds(mm);
3212b535
SC
4592 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4593 return 1;
4594}
9e5fc74c
SC
4595#define want_pmd_share() (1)
4596#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4597pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4598{
4599 return NULL;
4600}
e81f2d22
ZZ
4601
4602int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4603{
4604 return 0;
4605}
9e5fc74c 4606#define want_pmd_share() (0)
3212b535
SC
4607#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4608
9e5fc74c
SC
4609#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4610pte_t *huge_pte_alloc(struct mm_struct *mm,
4611 unsigned long addr, unsigned long sz)
4612{
4613 pgd_t *pgd;
c2febafc 4614 p4d_t *p4d;
9e5fc74c
SC
4615 pud_t *pud;
4616 pte_t *pte = NULL;
4617
4618 pgd = pgd_offset(mm, addr);
c2febafc
KS
4619 p4d = p4d_offset(pgd, addr);
4620 pud = pud_alloc(mm, p4d, addr);
9e5fc74c
SC
4621 if (pud) {
4622 if (sz == PUD_SIZE) {
4623 pte = (pte_t *)pud;
4624 } else {
4625 BUG_ON(sz != PMD_SIZE);
4626 if (want_pmd_share() && pud_none(*pud))
4627 pte = huge_pmd_share(mm, addr, pud);
4628 else
4629 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4630 }
4631 }
4e666314 4632 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
9e5fc74c
SC
4633
4634 return pte;
4635}
4636
7868a208
PA
4637pte_t *huge_pte_offset(struct mm_struct *mm,
4638 unsigned long addr, unsigned long sz)
9e5fc74c
SC
4639{
4640 pgd_t *pgd;
c2febafc 4641 p4d_t *p4d;
9e5fc74c 4642 pud_t *pud;
c2febafc 4643 pmd_t *pmd;
9e5fc74c
SC
4644
4645 pgd = pgd_offset(mm, addr);
c2febafc
KS
4646 if (!pgd_present(*pgd))
4647 return NULL;
4648 p4d = p4d_offset(pgd, addr);
4649 if (!p4d_present(*p4d))
4650 return NULL;
4651 pud = pud_offset(p4d, addr);
4652 if (!pud_present(*pud))
4653 return NULL;
4654 if (pud_huge(*pud))
4655 return (pte_t *)pud;
4656 pmd = pmd_offset(pud, addr);
9e5fc74c
SC
4657 return (pte_t *) pmd;
4658}
4659
61f77eda
NH
4660#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4661
4662/*
4663 * These functions are overwritable if your architecture needs its own
4664 * behavior.
4665 */
4666struct page * __weak
4667follow_huge_addr(struct mm_struct *mm, unsigned long address,
4668 int write)
4669{
4670 return ERR_PTR(-EINVAL);
4671}
4672
4dc71451
AK
4673struct page * __weak
4674follow_huge_pd(struct vm_area_struct *vma,
4675 unsigned long address, hugepd_t hpd, int flags, int pdshift)
4676{
4677 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4678 return NULL;
4679}
4680
61f77eda 4681struct page * __weak
9e5fc74c 4682follow_huge_pmd(struct mm_struct *mm, unsigned long address,
e66f17ff 4683 pmd_t *pmd, int flags)
9e5fc74c 4684{
e66f17ff
NH
4685 struct page *page = NULL;
4686 spinlock_t *ptl;
c9d398fa 4687 pte_t pte;
e66f17ff
NH
4688retry:
4689 ptl = pmd_lockptr(mm, pmd);
4690 spin_lock(ptl);
4691 /*
4692 * make sure that the address range covered by this pmd is not
4693 * unmapped from other threads.
4694 */
4695 if (!pmd_huge(*pmd))
4696 goto out;
c9d398fa
NH
4697 pte = huge_ptep_get((pte_t *)pmd);
4698 if (pte_present(pte)) {
97534127 4699 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
e66f17ff
NH
4700 if (flags & FOLL_GET)
4701 get_page(page);
4702 } else {
c9d398fa 4703 if (is_hugetlb_entry_migration(pte)) {
e66f17ff
NH
4704 spin_unlock(ptl);
4705 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4706 goto retry;
4707 }
4708 /*
4709 * hwpoisoned entry is treated as no_page_table in
4710 * follow_page_mask().
4711 */
4712 }
4713out:
4714 spin_unlock(ptl);
9e5fc74c
SC
4715 return page;
4716}
4717
61f77eda 4718struct page * __weak
9e5fc74c 4719follow_huge_pud(struct mm_struct *mm, unsigned long address,
e66f17ff 4720 pud_t *pud, int flags)
9e5fc74c 4721{
e66f17ff
NH
4722 if (flags & FOLL_GET)
4723 return NULL;
9e5fc74c 4724
e66f17ff 4725 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
9e5fc74c
SC
4726}
4727
faaa5b62
AK
4728struct page * __weak
4729follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4730{
4731 if (flags & FOLL_GET)
4732 return NULL;
4733
4734 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4735}
4736
d5bd9106
AK
4737#ifdef CONFIG_MEMORY_FAILURE
4738
93f70f90
NH
4739/*
4740 * This function is called from memory failure code.
93f70f90 4741 */
6de2b1aa 4742int dequeue_hwpoisoned_huge_page(struct page *hpage)
93f70f90
NH
4743{
4744 struct hstate *h = page_hstate(hpage);
4745 int nid = page_to_nid(hpage);
6de2b1aa 4746 int ret = -EBUSY;
93f70f90
NH
4747
4748 spin_lock(&hugetlb_lock);
7e1f049e
NH
4749 /*
4750 * Just checking !page_huge_active is not enough, because that could be
4751 * an isolated/hwpoisoned hugepage (which have >0 refcount).
4752 */
4753 if (!page_huge_active(hpage) && !page_count(hpage)) {
56f2fb14
NH
4754 /*
4755 * Hwpoisoned hugepage isn't linked to activelist or freelist,
4756 * but dangling hpage->lru can trigger list-debug warnings
4757 * (this happens when we call unpoison_memory() on it),
4758 * so let it point to itself with list_del_init().
4759 */
4760 list_del_init(&hpage->lru);
8c6c2ecb 4761 set_page_refcounted(hpage);
6de2b1aa
NH
4762 h->free_huge_pages--;
4763 h->free_huge_pages_node[nid]--;
4764 ret = 0;
4765 }
93f70f90 4766 spin_unlock(&hugetlb_lock);
6de2b1aa 4767 return ret;
93f70f90 4768}
6de2b1aa 4769#endif
31caf665
NH
4770
4771bool isolate_huge_page(struct page *page, struct list_head *list)
4772{
bcc54222
NH
4773 bool ret = true;
4774
309381fe 4775 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 4776 spin_lock(&hugetlb_lock);
bcc54222
NH
4777 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4778 ret = false;
4779 goto unlock;
4780 }
4781 clear_page_huge_active(page);
31caf665 4782 list_move_tail(&page->lru, list);
bcc54222 4783unlock:
31caf665 4784 spin_unlock(&hugetlb_lock);
bcc54222 4785 return ret;
31caf665
NH
4786}
4787
4788void putback_active_hugepage(struct page *page)
4789{
309381fe 4790 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 4791 spin_lock(&hugetlb_lock);
bcc54222 4792 set_page_huge_active(page);
31caf665
NH
4793 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4794 spin_unlock(&hugetlb_lock);
4795 put_page(page);
4796}