]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/hugetlb.c
mm: unify new_node_page and alloc_migrate_target
[mirror_ubuntu-bionic-kernel.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
6d49e352 3 * (C) Nadia Yvette Chambers, April 2004
1da177e4 4 */
1da177e4
LT
5#include <linux/list.h>
6#include <linux/init.h>
1da177e4 7#include <linux/mm.h>
e1759c21 8#include <linux/seq_file.h>
1da177e4
LT
9#include <linux/sysctl.h>
10#include <linux/highmem.h>
cddb8a5c 11#include <linux/mmu_notifier.h>
1da177e4 12#include <linux/nodemask.h>
63551ae0 13#include <linux/pagemap.h>
5da7ca86 14#include <linux/mempolicy.h>
3b32123d 15#include <linux/compiler.h>
aea47ff3 16#include <linux/cpuset.h>
3935baa9 17#include <linux/mutex.h>
aa888a74 18#include <linux/bootmem.h>
a3437870 19#include <linux/sysfs.h>
5a0e3ad6 20#include <linux/slab.h>
174cd4b1 21#include <linux/sched/signal.h>
0fe6e20b 22#include <linux/rmap.h>
fd6a03ed
NH
23#include <linux/swap.h>
24#include <linux/swapops.h>
8382d914 25#include <linux/jhash.h>
d6606683 26
63551ae0
DG
27#include <asm/page.h>
28#include <asm/pgtable.h>
24669e58 29#include <asm/tlb.h>
63551ae0 30
24669e58 31#include <linux/io.h>
63551ae0 32#include <linux/hugetlb.h>
9dd540e2 33#include <linux/hugetlb_cgroup.h>
9a305230 34#include <linux/node.h>
1a1aad8a 35#include <linux/userfaultfd_k.h>
7835e98b 36#include "internal.h"
1da177e4 37
753162cd 38int hugepages_treat_as_movable;
a5516438 39
c3f38a38 40int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
41unsigned int default_hstate_idx;
42struct hstate hstates[HUGE_MAX_HSTATE];
641844f5
NH
43/*
44 * Minimum page order among possible hugepage sizes, set to a proper value
45 * at boot time.
46 */
47static unsigned int minimum_order __read_mostly = UINT_MAX;
e5ff2159 48
53ba51d2
JT
49__initdata LIST_HEAD(huge_boot_pages);
50
e5ff2159
AK
51/* for command line parsing */
52static struct hstate * __initdata parsed_hstate;
53static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 54static unsigned long __initdata default_hstate_size;
9fee021d 55static bool __initdata parsed_valid_hugepagesz = true;
e5ff2159 56
3935baa9 57/*
31caf665
NH
58 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
59 * free_huge_pages, and surplus_huge_pages.
3935baa9 60 */
c3f38a38 61DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 62
8382d914
DB
63/*
64 * Serializes faults on the same logical page. This is used to
65 * prevent spurious OOMs when the hugepage pool is fully utilized.
66 */
67static int num_fault_mutexes;
c672c7f2 68struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
8382d914 69
7ca02d0a
MK
70/* Forward declaration */
71static int hugetlb_acct_memory(struct hstate *h, long delta);
72
d715cf80
LH
73static char * __init memfmt(char *buf, unsigned long n)
74{
75 if (n >= (1UL << 30))
76 sprintf(buf, "%lu GB", n >> 30);
77 else if (n >= (1UL << 20))
78 sprintf(buf, "%lu MB", n >> 20);
79 else
80 sprintf(buf, "%lu KB", n >> 10);
81 return buf;
82}
83
90481622
DG
84static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
85{
86 bool free = (spool->count == 0) && (spool->used_hpages == 0);
87
88 spin_unlock(&spool->lock);
89
90 /* If no pages are used, and no other handles to the subpool
7ca02d0a
MK
91 * remain, give up any reservations mased on minimum size and
92 * free the subpool */
93 if (free) {
94 if (spool->min_hpages != -1)
95 hugetlb_acct_memory(spool->hstate,
96 -spool->min_hpages);
90481622 97 kfree(spool);
7ca02d0a 98 }
90481622
DG
99}
100
7ca02d0a
MK
101struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
102 long min_hpages)
90481622
DG
103{
104 struct hugepage_subpool *spool;
105
c6a91820 106 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
90481622
DG
107 if (!spool)
108 return NULL;
109
110 spin_lock_init(&spool->lock);
111 spool->count = 1;
7ca02d0a
MK
112 spool->max_hpages = max_hpages;
113 spool->hstate = h;
114 spool->min_hpages = min_hpages;
115
116 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
117 kfree(spool);
118 return NULL;
119 }
120 spool->rsv_hpages = min_hpages;
90481622
DG
121
122 return spool;
123}
124
125void hugepage_put_subpool(struct hugepage_subpool *spool)
126{
127 spin_lock(&spool->lock);
128 BUG_ON(!spool->count);
129 spool->count--;
130 unlock_or_release_subpool(spool);
131}
132
1c5ecae3
MK
133/*
134 * Subpool accounting for allocating and reserving pages.
135 * Return -ENOMEM if there are not enough resources to satisfy the
136 * the request. Otherwise, return the number of pages by which the
137 * global pools must be adjusted (upward). The returned value may
138 * only be different than the passed value (delta) in the case where
139 * a subpool minimum size must be manitained.
140 */
141static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
90481622
DG
142 long delta)
143{
1c5ecae3 144 long ret = delta;
90481622
DG
145
146 if (!spool)
1c5ecae3 147 return ret;
90481622
DG
148
149 spin_lock(&spool->lock);
1c5ecae3
MK
150
151 if (spool->max_hpages != -1) { /* maximum size accounting */
152 if ((spool->used_hpages + delta) <= spool->max_hpages)
153 spool->used_hpages += delta;
154 else {
155 ret = -ENOMEM;
156 goto unlock_ret;
157 }
90481622 158 }
90481622 159
09a95e29
MK
160 /* minimum size accounting */
161 if (spool->min_hpages != -1 && spool->rsv_hpages) {
1c5ecae3
MK
162 if (delta > spool->rsv_hpages) {
163 /*
164 * Asking for more reserves than those already taken on
165 * behalf of subpool. Return difference.
166 */
167 ret = delta - spool->rsv_hpages;
168 spool->rsv_hpages = 0;
169 } else {
170 ret = 0; /* reserves already accounted for */
171 spool->rsv_hpages -= delta;
172 }
173 }
174
175unlock_ret:
176 spin_unlock(&spool->lock);
90481622
DG
177 return ret;
178}
179
1c5ecae3
MK
180/*
181 * Subpool accounting for freeing and unreserving pages.
182 * Return the number of global page reservations that must be dropped.
183 * The return value may only be different than the passed value (delta)
184 * in the case where a subpool minimum size must be maintained.
185 */
186static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
90481622
DG
187 long delta)
188{
1c5ecae3
MK
189 long ret = delta;
190
90481622 191 if (!spool)
1c5ecae3 192 return delta;
90481622
DG
193
194 spin_lock(&spool->lock);
1c5ecae3
MK
195
196 if (spool->max_hpages != -1) /* maximum size accounting */
197 spool->used_hpages -= delta;
198
09a95e29
MK
199 /* minimum size accounting */
200 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
1c5ecae3
MK
201 if (spool->rsv_hpages + delta <= spool->min_hpages)
202 ret = 0;
203 else
204 ret = spool->rsv_hpages + delta - spool->min_hpages;
205
206 spool->rsv_hpages += delta;
207 if (spool->rsv_hpages > spool->min_hpages)
208 spool->rsv_hpages = spool->min_hpages;
209 }
210
211 /*
212 * If hugetlbfs_put_super couldn't free spool due to an outstanding
213 * quota reference, free it now.
214 */
90481622 215 unlock_or_release_subpool(spool);
1c5ecae3
MK
216
217 return ret;
90481622
DG
218}
219
220static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
221{
222 return HUGETLBFS_SB(inode->i_sb)->spool;
223}
224
225static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
226{
496ad9aa 227 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
228}
229
96822904
AW
230/*
231 * Region tracking -- allows tracking of reservations and instantiated pages
232 * across the pages in a mapping.
84afd99b 233 *
1dd308a7
MK
234 * The region data structures are embedded into a resv_map and protected
235 * by a resv_map's lock. The set of regions within the resv_map represent
236 * reservations for huge pages, or huge pages that have already been
237 * instantiated within the map. The from and to elements are huge page
238 * indicies into the associated mapping. from indicates the starting index
239 * of the region. to represents the first index past the end of the region.
240 *
241 * For example, a file region structure with from == 0 and to == 4 represents
242 * four huge pages in a mapping. It is important to note that the to element
243 * represents the first element past the end of the region. This is used in
244 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
245 *
246 * Interval notation of the form [from, to) will be used to indicate that
247 * the endpoint from is inclusive and to is exclusive.
96822904
AW
248 */
249struct file_region {
250 struct list_head link;
251 long from;
252 long to;
253};
254
1dd308a7
MK
255/*
256 * Add the huge page range represented by [f, t) to the reserve
5e911373
MK
257 * map. In the normal case, existing regions will be expanded
258 * to accommodate the specified range. Sufficient regions should
259 * exist for expansion due to the previous call to region_chg
260 * with the same range. However, it is possible that region_del
261 * could have been called after region_chg and modifed the map
262 * in such a way that no region exists to be expanded. In this
263 * case, pull a region descriptor from the cache associated with
264 * the map and use that for the new range.
cf3ad20b
MK
265 *
266 * Return the number of new huge pages added to the map. This
267 * number is greater than or equal to zero.
1dd308a7 268 */
1406ec9b 269static long region_add(struct resv_map *resv, long f, long t)
96822904 270{
1406ec9b 271 struct list_head *head = &resv->regions;
96822904 272 struct file_region *rg, *nrg, *trg;
cf3ad20b 273 long add = 0;
96822904 274
7b24d861 275 spin_lock(&resv->lock);
96822904
AW
276 /* Locate the region we are either in or before. */
277 list_for_each_entry(rg, head, link)
278 if (f <= rg->to)
279 break;
280
5e911373
MK
281 /*
282 * If no region exists which can be expanded to include the
283 * specified range, the list must have been modified by an
284 * interleving call to region_del(). Pull a region descriptor
285 * from the cache and use it for this range.
286 */
287 if (&rg->link == head || t < rg->from) {
288 VM_BUG_ON(resv->region_cache_count <= 0);
289
290 resv->region_cache_count--;
291 nrg = list_first_entry(&resv->region_cache, struct file_region,
292 link);
293 list_del(&nrg->link);
294
295 nrg->from = f;
296 nrg->to = t;
297 list_add(&nrg->link, rg->link.prev);
298
299 add += t - f;
300 goto out_locked;
301 }
302
96822904
AW
303 /* Round our left edge to the current segment if it encloses us. */
304 if (f > rg->from)
305 f = rg->from;
306
307 /* Check for and consume any regions we now overlap with. */
308 nrg = rg;
309 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
310 if (&rg->link == head)
311 break;
312 if (rg->from > t)
313 break;
314
315 /* If this area reaches higher then extend our area to
316 * include it completely. If this is not the first area
317 * which we intend to reuse, free it. */
318 if (rg->to > t)
319 t = rg->to;
320 if (rg != nrg) {
cf3ad20b
MK
321 /* Decrement return value by the deleted range.
322 * Another range will span this area so that by
323 * end of routine add will be >= zero
324 */
325 add -= (rg->to - rg->from);
96822904
AW
326 list_del(&rg->link);
327 kfree(rg);
328 }
329 }
cf3ad20b
MK
330
331 add += (nrg->from - f); /* Added to beginning of region */
96822904 332 nrg->from = f;
cf3ad20b 333 add += t - nrg->to; /* Added to end of region */
96822904 334 nrg->to = t;
cf3ad20b 335
5e911373
MK
336out_locked:
337 resv->adds_in_progress--;
7b24d861 338 spin_unlock(&resv->lock);
cf3ad20b
MK
339 VM_BUG_ON(add < 0);
340 return add;
96822904
AW
341}
342
1dd308a7
MK
343/*
344 * Examine the existing reserve map and determine how many
345 * huge pages in the specified range [f, t) are NOT currently
346 * represented. This routine is called before a subsequent
347 * call to region_add that will actually modify the reserve
348 * map to add the specified range [f, t). region_chg does
349 * not change the number of huge pages represented by the
350 * map. However, if the existing regions in the map can not
351 * be expanded to represent the new range, a new file_region
352 * structure is added to the map as a placeholder. This is
353 * so that the subsequent region_add call will have all the
354 * regions it needs and will not fail.
355 *
5e911373
MK
356 * Upon entry, region_chg will also examine the cache of region descriptors
357 * associated with the map. If there are not enough descriptors cached, one
358 * will be allocated for the in progress add operation.
359 *
360 * Returns the number of huge pages that need to be added to the existing
361 * reservation map for the range [f, t). This number is greater or equal to
362 * zero. -ENOMEM is returned if a new file_region structure or cache entry
363 * is needed and can not be allocated.
1dd308a7 364 */
1406ec9b 365static long region_chg(struct resv_map *resv, long f, long t)
96822904 366{
1406ec9b 367 struct list_head *head = &resv->regions;
7b24d861 368 struct file_region *rg, *nrg = NULL;
96822904
AW
369 long chg = 0;
370
7b24d861
DB
371retry:
372 spin_lock(&resv->lock);
5e911373
MK
373retry_locked:
374 resv->adds_in_progress++;
375
376 /*
377 * Check for sufficient descriptors in the cache to accommodate
378 * the number of in progress add operations.
379 */
380 if (resv->adds_in_progress > resv->region_cache_count) {
381 struct file_region *trg;
382
383 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
384 /* Must drop lock to allocate a new descriptor. */
385 resv->adds_in_progress--;
386 spin_unlock(&resv->lock);
387
388 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
dbe409e4
MK
389 if (!trg) {
390 kfree(nrg);
5e911373 391 return -ENOMEM;
dbe409e4 392 }
5e911373
MK
393
394 spin_lock(&resv->lock);
395 list_add(&trg->link, &resv->region_cache);
396 resv->region_cache_count++;
397 goto retry_locked;
398 }
399
96822904
AW
400 /* Locate the region we are before or in. */
401 list_for_each_entry(rg, head, link)
402 if (f <= rg->to)
403 break;
404
405 /* If we are below the current region then a new region is required.
406 * Subtle, allocate a new region at the position but make it zero
407 * size such that we can guarantee to record the reservation. */
408 if (&rg->link == head || t < rg->from) {
7b24d861 409 if (!nrg) {
5e911373 410 resv->adds_in_progress--;
7b24d861
DB
411 spin_unlock(&resv->lock);
412 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
413 if (!nrg)
414 return -ENOMEM;
415
416 nrg->from = f;
417 nrg->to = f;
418 INIT_LIST_HEAD(&nrg->link);
419 goto retry;
420 }
96822904 421
7b24d861
DB
422 list_add(&nrg->link, rg->link.prev);
423 chg = t - f;
424 goto out_nrg;
96822904
AW
425 }
426
427 /* Round our left edge to the current segment if it encloses us. */
428 if (f > rg->from)
429 f = rg->from;
430 chg = t - f;
431
432 /* Check for and consume any regions we now overlap with. */
433 list_for_each_entry(rg, rg->link.prev, link) {
434 if (&rg->link == head)
435 break;
436 if (rg->from > t)
7b24d861 437 goto out;
96822904 438
25985edc 439 /* We overlap with this area, if it extends further than
96822904
AW
440 * us then we must extend ourselves. Account for its
441 * existing reservation. */
442 if (rg->to > t) {
443 chg += rg->to - t;
444 t = rg->to;
445 }
446 chg -= rg->to - rg->from;
447 }
7b24d861
DB
448
449out:
450 spin_unlock(&resv->lock);
451 /* We already know we raced and no longer need the new region */
452 kfree(nrg);
453 return chg;
454out_nrg:
455 spin_unlock(&resv->lock);
96822904
AW
456 return chg;
457}
458
5e911373
MK
459/*
460 * Abort the in progress add operation. The adds_in_progress field
461 * of the resv_map keeps track of the operations in progress between
462 * calls to region_chg and region_add. Operations are sometimes
463 * aborted after the call to region_chg. In such cases, region_abort
464 * is called to decrement the adds_in_progress counter.
465 *
466 * NOTE: The range arguments [f, t) are not needed or used in this
467 * routine. They are kept to make reading the calling code easier as
468 * arguments will match the associated region_chg call.
469 */
470static void region_abort(struct resv_map *resv, long f, long t)
471{
472 spin_lock(&resv->lock);
473 VM_BUG_ON(!resv->region_cache_count);
474 resv->adds_in_progress--;
475 spin_unlock(&resv->lock);
476}
477
1dd308a7 478/*
feba16e2
MK
479 * Delete the specified range [f, t) from the reserve map. If the
480 * t parameter is LONG_MAX, this indicates that ALL regions after f
481 * should be deleted. Locate the regions which intersect [f, t)
482 * and either trim, delete or split the existing regions.
483 *
484 * Returns the number of huge pages deleted from the reserve map.
485 * In the normal case, the return value is zero or more. In the
486 * case where a region must be split, a new region descriptor must
487 * be allocated. If the allocation fails, -ENOMEM will be returned.
488 * NOTE: If the parameter t == LONG_MAX, then we will never split
489 * a region and possibly return -ENOMEM. Callers specifying
490 * t == LONG_MAX do not need to check for -ENOMEM error.
1dd308a7 491 */
feba16e2 492static long region_del(struct resv_map *resv, long f, long t)
96822904 493{
1406ec9b 494 struct list_head *head = &resv->regions;
96822904 495 struct file_region *rg, *trg;
feba16e2
MK
496 struct file_region *nrg = NULL;
497 long del = 0;
96822904 498
feba16e2 499retry:
7b24d861 500 spin_lock(&resv->lock);
feba16e2 501 list_for_each_entry_safe(rg, trg, head, link) {
dbe409e4
MK
502 /*
503 * Skip regions before the range to be deleted. file_region
504 * ranges are normally of the form [from, to). However, there
505 * may be a "placeholder" entry in the map which is of the form
506 * (from, to) with from == to. Check for placeholder entries
507 * at the beginning of the range to be deleted.
508 */
509 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
feba16e2 510 continue;
dbe409e4 511
feba16e2 512 if (rg->from >= t)
96822904 513 break;
96822904 514
feba16e2
MK
515 if (f > rg->from && t < rg->to) { /* Must split region */
516 /*
517 * Check for an entry in the cache before dropping
518 * lock and attempting allocation.
519 */
520 if (!nrg &&
521 resv->region_cache_count > resv->adds_in_progress) {
522 nrg = list_first_entry(&resv->region_cache,
523 struct file_region,
524 link);
525 list_del(&nrg->link);
526 resv->region_cache_count--;
527 }
96822904 528
feba16e2
MK
529 if (!nrg) {
530 spin_unlock(&resv->lock);
531 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
532 if (!nrg)
533 return -ENOMEM;
534 goto retry;
535 }
536
537 del += t - f;
538
539 /* New entry for end of split region */
540 nrg->from = t;
541 nrg->to = rg->to;
542 INIT_LIST_HEAD(&nrg->link);
543
544 /* Original entry is trimmed */
545 rg->to = f;
546
547 list_add(&nrg->link, &rg->link);
548 nrg = NULL;
96822904 549 break;
feba16e2
MK
550 }
551
552 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
553 del += rg->to - rg->from;
554 list_del(&rg->link);
555 kfree(rg);
556 continue;
557 }
558
559 if (f <= rg->from) { /* Trim beginning of region */
560 del += t - rg->from;
561 rg->from = t;
562 } else { /* Trim end of region */
563 del += rg->to - f;
564 rg->to = f;
565 }
96822904 566 }
7b24d861 567
7b24d861 568 spin_unlock(&resv->lock);
feba16e2
MK
569 kfree(nrg);
570 return del;
96822904
AW
571}
572
b5cec28d
MK
573/*
574 * A rare out of memory error was encountered which prevented removal of
575 * the reserve map region for a page. The huge page itself was free'ed
576 * and removed from the page cache. This routine will adjust the subpool
577 * usage count, and the global reserve count if needed. By incrementing
578 * these counts, the reserve map entry which could not be deleted will
579 * appear as a "reserved" entry instead of simply dangling with incorrect
580 * counts.
581 */
72e2936c 582void hugetlb_fix_reserve_counts(struct inode *inode)
b5cec28d
MK
583{
584 struct hugepage_subpool *spool = subpool_inode(inode);
585 long rsv_adjust;
586
587 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
72e2936c 588 if (rsv_adjust) {
b5cec28d
MK
589 struct hstate *h = hstate_inode(inode);
590
591 hugetlb_acct_memory(h, 1);
592 }
593}
594
1dd308a7
MK
595/*
596 * Count and return the number of huge pages in the reserve map
597 * that intersect with the range [f, t).
598 */
1406ec9b 599static long region_count(struct resv_map *resv, long f, long t)
84afd99b 600{
1406ec9b 601 struct list_head *head = &resv->regions;
84afd99b
AW
602 struct file_region *rg;
603 long chg = 0;
604
7b24d861 605 spin_lock(&resv->lock);
84afd99b
AW
606 /* Locate each segment we overlap with, and count that overlap. */
607 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
608 long seg_from;
609 long seg_to;
84afd99b
AW
610
611 if (rg->to <= f)
612 continue;
613 if (rg->from >= t)
614 break;
615
616 seg_from = max(rg->from, f);
617 seg_to = min(rg->to, t);
618
619 chg += seg_to - seg_from;
620 }
7b24d861 621 spin_unlock(&resv->lock);
84afd99b
AW
622
623 return chg;
624}
625
e7c4b0bf
AW
626/*
627 * Convert the address within this vma to the page offset within
628 * the mapping, in pagecache page units; huge pages here.
629 */
a5516438
AK
630static pgoff_t vma_hugecache_offset(struct hstate *h,
631 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 632{
a5516438
AK
633 return ((address - vma->vm_start) >> huge_page_shift(h)) +
634 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
635}
636
0fe6e20b
NH
637pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
638 unsigned long address)
639{
640 return vma_hugecache_offset(hstate_vma(vma), vma, address);
641}
dee41079 642EXPORT_SYMBOL_GPL(linear_hugepage_index);
0fe6e20b 643
08fba699
MG
644/*
645 * Return the size of the pages allocated when backing a VMA. In the majority
646 * cases this will be same size as used by the page table entries.
647 */
648unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
649{
650 struct hstate *hstate;
651
652 if (!is_vm_hugetlb_page(vma))
653 return PAGE_SIZE;
654
655 hstate = hstate_vma(vma);
656
2415cf12 657 return 1UL << huge_page_shift(hstate);
08fba699 658}
f340ca0f 659EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 660
3340289d
MG
661/*
662 * Return the page size being used by the MMU to back a VMA. In the majority
663 * of cases, the page size used by the kernel matches the MMU size. On
664 * architectures where it differs, an architecture-specific version of this
665 * function is required.
666 */
667#ifndef vma_mmu_pagesize
668unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
669{
670 return vma_kernel_pagesize(vma);
671}
672#endif
673
84afd99b
AW
674/*
675 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
676 * bits of the reservation map pointer, which are always clear due to
677 * alignment.
678 */
679#define HPAGE_RESV_OWNER (1UL << 0)
680#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 681#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 682
a1e78772
MG
683/*
684 * These helpers are used to track how many pages are reserved for
685 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
686 * is guaranteed to have their future faults succeed.
687 *
688 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
689 * the reserve counters are updated with the hugetlb_lock held. It is safe
690 * to reset the VMA at fork() time as it is not in use yet and there is no
691 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
692 *
693 * The private mapping reservation is represented in a subtly different
694 * manner to a shared mapping. A shared mapping has a region map associated
695 * with the underlying file, this region map represents the backing file
696 * pages which have ever had a reservation assigned which this persists even
697 * after the page is instantiated. A private mapping has a region map
698 * associated with the original mmap which is attached to all VMAs which
699 * reference it, this region map represents those offsets which have consumed
700 * reservation ie. where pages have been instantiated.
a1e78772 701 */
e7c4b0bf
AW
702static unsigned long get_vma_private_data(struct vm_area_struct *vma)
703{
704 return (unsigned long)vma->vm_private_data;
705}
706
707static void set_vma_private_data(struct vm_area_struct *vma,
708 unsigned long value)
709{
710 vma->vm_private_data = (void *)value;
711}
712
9119a41e 713struct resv_map *resv_map_alloc(void)
84afd99b
AW
714{
715 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
5e911373
MK
716 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
717
718 if (!resv_map || !rg) {
719 kfree(resv_map);
720 kfree(rg);
84afd99b 721 return NULL;
5e911373 722 }
84afd99b
AW
723
724 kref_init(&resv_map->refs);
7b24d861 725 spin_lock_init(&resv_map->lock);
84afd99b
AW
726 INIT_LIST_HEAD(&resv_map->regions);
727
5e911373
MK
728 resv_map->adds_in_progress = 0;
729
730 INIT_LIST_HEAD(&resv_map->region_cache);
731 list_add(&rg->link, &resv_map->region_cache);
732 resv_map->region_cache_count = 1;
733
84afd99b
AW
734 return resv_map;
735}
736
9119a41e 737void resv_map_release(struct kref *ref)
84afd99b
AW
738{
739 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
5e911373
MK
740 struct list_head *head = &resv_map->region_cache;
741 struct file_region *rg, *trg;
84afd99b
AW
742
743 /* Clear out any active regions before we release the map. */
feba16e2 744 region_del(resv_map, 0, LONG_MAX);
5e911373
MK
745
746 /* ... and any entries left in the cache */
747 list_for_each_entry_safe(rg, trg, head, link) {
748 list_del(&rg->link);
749 kfree(rg);
750 }
751
752 VM_BUG_ON(resv_map->adds_in_progress);
753
84afd99b
AW
754 kfree(resv_map);
755}
756
4e35f483
JK
757static inline struct resv_map *inode_resv_map(struct inode *inode)
758{
759 return inode->i_mapping->private_data;
760}
761
84afd99b 762static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772 763{
81d1b09c 764 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
4e35f483
JK
765 if (vma->vm_flags & VM_MAYSHARE) {
766 struct address_space *mapping = vma->vm_file->f_mapping;
767 struct inode *inode = mapping->host;
768
769 return inode_resv_map(inode);
770
771 } else {
84afd99b
AW
772 return (struct resv_map *)(get_vma_private_data(vma) &
773 ~HPAGE_RESV_MASK);
4e35f483 774 }
a1e78772
MG
775}
776
84afd99b 777static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772 778{
81d1b09c
SL
779 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
780 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
a1e78772 781
84afd99b
AW
782 set_vma_private_data(vma, (get_vma_private_data(vma) &
783 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
784}
785
786static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
787{
81d1b09c
SL
788 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
789 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
e7c4b0bf
AW
790
791 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
792}
793
794static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
795{
81d1b09c 796 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
e7c4b0bf
AW
797
798 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
799}
800
04f2cbe3 801/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
802void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
803{
81d1b09c 804 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
f83a275d 805 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
806 vma->vm_private_data = (void *)0;
807}
808
809/* Returns true if the VMA has associated reserve pages */
559ec2f8 810static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 811{
af0ed73e
JK
812 if (vma->vm_flags & VM_NORESERVE) {
813 /*
814 * This address is already reserved by other process(chg == 0),
815 * so, we should decrement reserved count. Without decrementing,
816 * reserve count remains after releasing inode, because this
817 * allocated page will go into page cache and is regarded as
818 * coming from reserved pool in releasing step. Currently, we
819 * don't have any other solution to deal with this situation
820 * properly, so add work-around here.
821 */
822 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
559ec2f8 823 return true;
af0ed73e 824 else
559ec2f8 825 return false;
af0ed73e 826 }
a63884e9
JK
827
828 /* Shared mappings always use reserves */
1fb1b0e9
MK
829 if (vma->vm_flags & VM_MAYSHARE) {
830 /*
831 * We know VM_NORESERVE is not set. Therefore, there SHOULD
832 * be a region map for all pages. The only situation where
833 * there is no region map is if a hole was punched via
834 * fallocate. In this case, there really are no reverves to
835 * use. This situation is indicated if chg != 0.
836 */
837 if (chg)
838 return false;
839 else
840 return true;
841 }
a63884e9
JK
842
843 /*
844 * Only the process that called mmap() has reserves for
845 * private mappings.
846 */
67961f9d
MK
847 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
848 /*
849 * Like the shared case above, a hole punch or truncate
850 * could have been performed on the private mapping.
851 * Examine the value of chg to determine if reserves
852 * actually exist or were previously consumed.
853 * Very Subtle - The value of chg comes from a previous
854 * call to vma_needs_reserves(). The reserve map for
855 * private mappings has different (opposite) semantics
856 * than that of shared mappings. vma_needs_reserves()
857 * has already taken this difference in semantics into
858 * account. Therefore, the meaning of chg is the same
859 * as in the shared case above. Code could easily be
860 * combined, but keeping it separate draws attention to
861 * subtle differences.
862 */
863 if (chg)
864 return false;
865 else
866 return true;
867 }
a63884e9 868
559ec2f8 869 return false;
a1e78772
MG
870}
871
a5516438 872static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
873{
874 int nid = page_to_nid(page);
0edaecfa 875 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
876 h->free_huge_pages++;
877 h->free_huge_pages_node[nid]++;
1da177e4
LT
878}
879
94310cbc 880static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
bf50bab2
NH
881{
882 struct page *page;
883
c8721bbb 884 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
243abd5b 885 if (!PageHWPoison(page))
c8721bbb
NH
886 break;
887 /*
888 * if 'non-isolated free hugepage' not found on the list,
889 * the allocation fails.
890 */
891 if (&h->hugepage_freelists[nid] == &page->lru)
bf50bab2 892 return NULL;
0edaecfa 893 list_move(&page->lru, &h->hugepage_activelist);
a9869b83 894 set_page_refcounted(page);
bf50bab2
NH
895 h->free_huge_pages--;
896 h->free_huge_pages_node[nid]--;
897 return page;
898}
899
94310cbc
AK
900static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
901{
902 struct page *page;
903 int node;
904
905 if (nid != NUMA_NO_NODE)
906 return dequeue_huge_page_node_exact(h, nid);
907
908 for_each_online_node(node) {
909 page = dequeue_huge_page_node_exact(h, node);
910 if (page)
911 return page;
912 }
913 return NULL;
914}
915
86cdb465
NH
916/* Movability of hugepages depends on migration support. */
917static inline gfp_t htlb_alloc_mask(struct hstate *h)
918{
100873d7 919 if (hugepages_treat_as_movable || hugepage_migration_supported(h))
86cdb465
NH
920 return GFP_HIGHUSER_MOVABLE;
921 else
922 return GFP_HIGHUSER;
923}
924
a5516438
AK
925static struct page *dequeue_huge_page_vma(struct hstate *h,
926 struct vm_area_struct *vma,
af0ed73e
JK
927 unsigned long address, int avoid_reserve,
928 long chg)
1da177e4 929{
b1c12cbc 930 struct page *page = NULL;
480eccf9 931 struct mempolicy *mpol;
19770b32 932 nodemask_t *nodemask;
04ec6264
VB
933 gfp_t gfp_mask;
934 int nid;
c0ff7453 935 struct zonelist *zonelist;
dd1a239f
MG
936 struct zone *zone;
937 struct zoneref *z;
cc9a6c87 938 unsigned int cpuset_mems_cookie;
1da177e4 939
a1e78772
MG
940 /*
941 * A child process with MAP_PRIVATE mappings created by their parent
942 * have no page reserves. This check ensures that reservations are
943 * not "stolen". The child may still get SIGKILLed
944 */
af0ed73e 945 if (!vma_has_reserves(vma, chg) &&
a5516438 946 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 947 goto err;
a1e78772 948
04f2cbe3 949 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 950 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 951 goto err;
04f2cbe3 952
9966c4bb 953retry_cpuset:
d26914d1 954 cpuset_mems_cookie = read_mems_allowed_begin();
04ec6264
VB
955 gfp_mask = htlb_alloc_mask(h);
956 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
957 zonelist = node_zonelist(nid, gfp_mask);
9966c4bb 958
19770b32
MG
959 for_each_zone_zonelist_nodemask(zone, z, zonelist,
960 MAX_NR_ZONES - 1, nodemask) {
04ec6264 961 if (cpuset_zone_allowed(zone, gfp_mask)) {
bf50bab2
NH
962 page = dequeue_huge_page_node(h, zone_to_nid(zone));
963 if (page) {
af0ed73e
JK
964 if (avoid_reserve)
965 break;
966 if (!vma_has_reserves(vma, chg))
967 break;
968
07443a85 969 SetPagePrivate(page);
af0ed73e 970 h->resv_huge_pages--;
bf50bab2
NH
971 break;
972 }
3abf7afd 973 }
1da177e4 974 }
cc9a6c87 975
52cd3b07 976 mpol_cond_put(mpol);
d26914d1 977 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87 978 goto retry_cpuset;
1da177e4 979 return page;
cc9a6c87
MG
980
981err:
cc9a6c87 982 return NULL;
1da177e4
LT
983}
984
1cac6f2c
LC
985/*
986 * common helper functions for hstate_next_node_to_{alloc|free}.
987 * We may have allocated or freed a huge page based on a different
988 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
989 * be outside of *nodes_allowed. Ensure that we use an allowed
990 * node for alloc or free.
991 */
992static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
993{
0edaf86c 994 nid = next_node_in(nid, *nodes_allowed);
1cac6f2c
LC
995 VM_BUG_ON(nid >= MAX_NUMNODES);
996
997 return nid;
998}
999
1000static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1001{
1002 if (!node_isset(nid, *nodes_allowed))
1003 nid = next_node_allowed(nid, nodes_allowed);
1004 return nid;
1005}
1006
1007/*
1008 * returns the previously saved node ["this node"] from which to
1009 * allocate a persistent huge page for the pool and advance the
1010 * next node from which to allocate, handling wrap at end of node
1011 * mask.
1012 */
1013static int hstate_next_node_to_alloc(struct hstate *h,
1014 nodemask_t *nodes_allowed)
1015{
1016 int nid;
1017
1018 VM_BUG_ON(!nodes_allowed);
1019
1020 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1021 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1022
1023 return nid;
1024}
1025
1026/*
1027 * helper for free_pool_huge_page() - return the previously saved
1028 * node ["this node"] from which to free a huge page. Advance the
1029 * next node id whether or not we find a free huge page to free so
1030 * that the next attempt to free addresses the next node.
1031 */
1032static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1033{
1034 int nid;
1035
1036 VM_BUG_ON(!nodes_allowed);
1037
1038 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1039 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1040
1041 return nid;
1042}
1043
1044#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1045 for (nr_nodes = nodes_weight(*mask); \
1046 nr_nodes > 0 && \
1047 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1048 nr_nodes--)
1049
1050#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1051 for (nr_nodes = nodes_weight(*mask); \
1052 nr_nodes > 0 && \
1053 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1054 nr_nodes--)
1055
e1073d1e 1056#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
944d9fec 1057static void destroy_compound_gigantic_page(struct page *page,
d00181b9 1058 unsigned int order)
944d9fec
LC
1059{
1060 int i;
1061 int nr_pages = 1 << order;
1062 struct page *p = page + 1;
1063
c8cc708a 1064 atomic_set(compound_mapcount_ptr(page), 0);
944d9fec 1065 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1d798ca3 1066 clear_compound_head(p);
944d9fec 1067 set_page_refcounted(p);
944d9fec
LC
1068 }
1069
1070 set_compound_order(page, 0);
1071 __ClearPageHead(page);
1072}
1073
d00181b9 1074static void free_gigantic_page(struct page *page, unsigned int order)
944d9fec
LC
1075{
1076 free_contig_range(page_to_pfn(page), 1 << order);
1077}
1078
1079static int __alloc_gigantic_page(unsigned long start_pfn,
1080 unsigned long nr_pages)
1081{
1082 unsigned long end_pfn = start_pfn + nr_pages;
ca96b625
LS
1083 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1084 GFP_KERNEL);
944d9fec
LC
1085}
1086
f44b2dda
JK
1087static bool pfn_range_valid_gigantic(struct zone *z,
1088 unsigned long start_pfn, unsigned long nr_pages)
944d9fec
LC
1089{
1090 unsigned long i, end_pfn = start_pfn + nr_pages;
1091 struct page *page;
1092
1093 for (i = start_pfn; i < end_pfn; i++) {
1094 if (!pfn_valid(i))
1095 return false;
1096
1097 page = pfn_to_page(i);
1098
f44b2dda
JK
1099 if (page_zone(page) != z)
1100 return false;
1101
944d9fec
LC
1102 if (PageReserved(page))
1103 return false;
1104
1105 if (page_count(page) > 0)
1106 return false;
1107
1108 if (PageHuge(page))
1109 return false;
1110 }
1111
1112 return true;
1113}
1114
1115static bool zone_spans_last_pfn(const struct zone *zone,
1116 unsigned long start_pfn, unsigned long nr_pages)
1117{
1118 unsigned long last_pfn = start_pfn + nr_pages - 1;
1119 return zone_spans_pfn(zone, last_pfn);
1120}
1121
d00181b9 1122static struct page *alloc_gigantic_page(int nid, unsigned int order)
944d9fec
LC
1123{
1124 unsigned long nr_pages = 1 << order;
1125 unsigned long ret, pfn, flags;
1126 struct zone *z;
1127
1128 z = NODE_DATA(nid)->node_zones;
1129 for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1130 spin_lock_irqsave(&z->lock, flags);
1131
1132 pfn = ALIGN(z->zone_start_pfn, nr_pages);
1133 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
f44b2dda 1134 if (pfn_range_valid_gigantic(z, pfn, nr_pages)) {
944d9fec
LC
1135 /*
1136 * We release the zone lock here because
1137 * alloc_contig_range() will also lock the zone
1138 * at some point. If there's an allocation
1139 * spinning on this lock, it may win the race
1140 * and cause alloc_contig_range() to fail...
1141 */
1142 spin_unlock_irqrestore(&z->lock, flags);
1143 ret = __alloc_gigantic_page(pfn, nr_pages);
1144 if (!ret)
1145 return pfn_to_page(pfn);
1146 spin_lock_irqsave(&z->lock, flags);
1147 }
1148 pfn += nr_pages;
1149 }
1150
1151 spin_unlock_irqrestore(&z->lock, flags);
1152 }
1153
1154 return NULL;
1155}
1156
1157static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
d00181b9 1158static void prep_compound_gigantic_page(struct page *page, unsigned int order);
944d9fec
LC
1159
1160static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1161{
1162 struct page *page;
1163
1164 page = alloc_gigantic_page(nid, huge_page_order(h));
1165 if (page) {
1166 prep_compound_gigantic_page(page, huge_page_order(h));
1167 prep_new_huge_page(h, page, nid);
1168 }
1169
1170 return page;
1171}
1172
1173static int alloc_fresh_gigantic_page(struct hstate *h,
1174 nodemask_t *nodes_allowed)
1175{
1176 struct page *page = NULL;
1177 int nr_nodes, node;
1178
1179 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1180 page = alloc_fresh_gigantic_page_node(h, node);
1181 if (page)
1182 return 1;
1183 }
1184
1185 return 0;
1186}
1187
e1073d1e 1188#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
944d9fec 1189static inline bool gigantic_page_supported(void) { return false; }
d00181b9 1190static inline void free_gigantic_page(struct page *page, unsigned int order) { }
944d9fec 1191static inline void destroy_compound_gigantic_page(struct page *page,
d00181b9 1192 unsigned int order) { }
944d9fec
LC
1193static inline int alloc_fresh_gigantic_page(struct hstate *h,
1194 nodemask_t *nodes_allowed) { return 0; }
1195#endif
1196
a5516438 1197static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
1198{
1199 int i;
a5516438 1200
944d9fec
LC
1201 if (hstate_is_gigantic(h) && !gigantic_page_supported())
1202 return;
18229df5 1203
a5516438
AK
1204 h->nr_huge_pages--;
1205 h->nr_huge_pages_node[page_to_nid(page)]--;
1206 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
1207 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1208 1 << PG_referenced | 1 << PG_dirty |
a7407a27
LC
1209 1 << PG_active | 1 << PG_private |
1210 1 << PG_writeback);
6af2acb6 1211 }
309381fe 1212 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
f1e61557 1213 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
6af2acb6 1214 set_page_refcounted(page);
944d9fec
LC
1215 if (hstate_is_gigantic(h)) {
1216 destroy_compound_gigantic_page(page, huge_page_order(h));
1217 free_gigantic_page(page, huge_page_order(h));
1218 } else {
944d9fec
LC
1219 __free_pages(page, huge_page_order(h));
1220 }
6af2acb6
AL
1221}
1222
e5ff2159
AK
1223struct hstate *size_to_hstate(unsigned long size)
1224{
1225 struct hstate *h;
1226
1227 for_each_hstate(h) {
1228 if (huge_page_size(h) == size)
1229 return h;
1230 }
1231 return NULL;
1232}
1233
bcc54222
NH
1234/*
1235 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1236 * to hstate->hugepage_activelist.)
1237 *
1238 * This function can be called for tail pages, but never returns true for them.
1239 */
1240bool page_huge_active(struct page *page)
1241{
1242 VM_BUG_ON_PAGE(!PageHuge(page), page);
1243 return PageHead(page) && PagePrivate(&page[1]);
1244}
1245
1246/* never called for tail page */
1247static void set_page_huge_active(struct page *page)
1248{
1249 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1250 SetPagePrivate(&page[1]);
1251}
1252
1253static void clear_page_huge_active(struct page *page)
1254{
1255 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1256 ClearPagePrivate(&page[1]);
1257}
1258
8f1d26d0 1259void free_huge_page(struct page *page)
27a85ef1 1260{
a5516438
AK
1261 /*
1262 * Can't pass hstate in here because it is called from the
1263 * compound page destructor.
1264 */
e5ff2159 1265 struct hstate *h = page_hstate(page);
7893d1d5 1266 int nid = page_to_nid(page);
90481622
DG
1267 struct hugepage_subpool *spool =
1268 (struct hugepage_subpool *)page_private(page);
07443a85 1269 bool restore_reserve;
27a85ef1 1270
e5df70ab 1271 set_page_private(page, 0);
23be7468 1272 page->mapping = NULL;
b4330afb
MK
1273 VM_BUG_ON_PAGE(page_count(page), page);
1274 VM_BUG_ON_PAGE(page_mapcount(page), page);
07443a85 1275 restore_reserve = PagePrivate(page);
16c794b4 1276 ClearPagePrivate(page);
27a85ef1 1277
1c5ecae3
MK
1278 /*
1279 * A return code of zero implies that the subpool will be under its
1280 * minimum size if the reservation is not restored after page is free.
1281 * Therefore, force restore_reserve operation.
1282 */
1283 if (hugepage_subpool_put_pages(spool, 1) == 0)
1284 restore_reserve = true;
1285
27a85ef1 1286 spin_lock(&hugetlb_lock);
bcc54222 1287 clear_page_huge_active(page);
6d76dcf4
AK
1288 hugetlb_cgroup_uncharge_page(hstate_index(h),
1289 pages_per_huge_page(h), page);
07443a85
JK
1290 if (restore_reserve)
1291 h->resv_huge_pages++;
1292
944d9fec 1293 if (h->surplus_huge_pages_node[nid]) {
0edaecfa
AK
1294 /* remove the page from active list */
1295 list_del(&page->lru);
a5516438
AK
1296 update_and_free_page(h, page);
1297 h->surplus_huge_pages--;
1298 h->surplus_huge_pages_node[nid]--;
7893d1d5 1299 } else {
5d3a551c 1300 arch_clear_hugepage_flags(page);
a5516438 1301 enqueue_huge_page(h, page);
7893d1d5 1302 }
27a85ef1
DG
1303 spin_unlock(&hugetlb_lock);
1304}
1305
a5516438 1306static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 1307{
0edaecfa 1308 INIT_LIST_HEAD(&page->lru);
f1e61557 1309 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
b7ba30c6 1310 spin_lock(&hugetlb_lock);
9dd540e2 1311 set_hugetlb_cgroup(page, NULL);
a5516438
AK
1312 h->nr_huge_pages++;
1313 h->nr_huge_pages_node[nid]++;
b7ba30c6
AK
1314 spin_unlock(&hugetlb_lock);
1315 put_page(page); /* free it into the hugepage allocator */
1316}
1317
d00181b9 1318static void prep_compound_gigantic_page(struct page *page, unsigned int order)
20a0307c
WF
1319{
1320 int i;
1321 int nr_pages = 1 << order;
1322 struct page *p = page + 1;
1323
1324 /* we rely on prep_new_huge_page to set the destructor */
1325 set_compound_order(page, order);
ef5a22be 1326 __ClearPageReserved(page);
de09d31d 1327 __SetPageHead(page);
20a0307c 1328 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
ef5a22be
AA
1329 /*
1330 * For gigantic hugepages allocated through bootmem at
1331 * boot, it's safer to be consistent with the not-gigantic
1332 * hugepages and clear the PG_reserved bit from all tail pages
1333 * too. Otherwse drivers using get_user_pages() to access tail
1334 * pages may get the reference counting wrong if they see
1335 * PG_reserved set on a tail page (despite the head page not
1336 * having PG_reserved set). Enforcing this consistency between
1337 * head and tail pages allows drivers to optimize away a check
1338 * on the head page when they need know if put_page() is needed
1339 * after get_user_pages().
1340 */
1341 __ClearPageReserved(p);
58a84aa9 1342 set_page_count(p, 0);
1d798ca3 1343 set_compound_head(p, page);
20a0307c 1344 }
b4330afb 1345 atomic_set(compound_mapcount_ptr(page), -1);
20a0307c
WF
1346}
1347
7795912c
AM
1348/*
1349 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1350 * transparent huge pages. See the PageTransHuge() documentation for more
1351 * details.
1352 */
20a0307c
WF
1353int PageHuge(struct page *page)
1354{
20a0307c
WF
1355 if (!PageCompound(page))
1356 return 0;
1357
1358 page = compound_head(page);
f1e61557 1359 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
20a0307c 1360}
43131e14
NH
1361EXPORT_SYMBOL_GPL(PageHuge);
1362
27c73ae7
AA
1363/*
1364 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1365 * normal or transparent huge pages.
1366 */
1367int PageHeadHuge(struct page *page_head)
1368{
27c73ae7
AA
1369 if (!PageHead(page_head))
1370 return 0;
1371
758f66a2 1372 return get_compound_page_dtor(page_head) == free_huge_page;
27c73ae7 1373}
27c73ae7 1374
13d60f4b
ZY
1375pgoff_t __basepage_index(struct page *page)
1376{
1377 struct page *page_head = compound_head(page);
1378 pgoff_t index = page_index(page_head);
1379 unsigned long compound_idx;
1380
1381 if (!PageHuge(page_head))
1382 return page_index(page);
1383
1384 if (compound_order(page_head) >= MAX_ORDER)
1385 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1386 else
1387 compound_idx = page - page_head;
1388
1389 return (index << compound_order(page_head)) + compound_idx;
1390}
1391
a5516438 1392static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1da177e4 1393{
1da177e4 1394 struct page *page;
f96efd58 1395
96db800f 1396 page = __alloc_pages_node(nid,
86cdb465 1397 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
551883ae 1398 __GFP_REPEAT|__GFP_NOWARN,
a5516438 1399 huge_page_order(h));
1da177e4 1400 if (page) {
a5516438 1401 prep_new_huge_page(h, page, nid);
1da177e4 1402 }
63b4613c
NA
1403
1404 return page;
1405}
1406
b2261026
JK
1407static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1408{
1409 struct page *page;
1410 int nr_nodes, node;
1411 int ret = 0;
1412
1413 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1414 page = alloc_fresh_huge_page_node(h, node);
1415 if (page) {
1416 ret = 1;
1417 break;
1418 }
1419 }
1420
1421 if (ret)
1422 count_vm_event(HTLB_BUDDY_PGALLOC);
1423 else
1424 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1425
1426 return ret;
1427}
1428
e8c5c824
LS
1429/*
1430 * Free huge page from pool from next node to free.
1431 * Attempt to keep persistent huge pages more or less
1432 * balanced over allowed nodes.
1433 * Called with hugetlb_lock locked.
1434 */
6ae11b27
LS
1435static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1436 bool acct_surplus)
e8c5c824 1437{
b2261026 1438 int nr_nodes, node;
e8c5c824
LS
1439 int ret = 0;
1440
b2261026 1441 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
1442 /*
1443 * If we're returning unused surplus pages, only examine
1444 * nodes with surplus pages.
1445 */
b2261026
JK
1446 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1447 !list_empty(&h->hugepage_freelists[node])) {
e8c5c824 1448 struct page *page =
b2261026 1449 list_entry(h->hugepage_freelists[node].next,
e8c5c824
LS
1450 struct page, lru);
1451 list_del(&page->lru);
1452 h->free_huge_pages--;
b2261026 1453 h->free_huge_pages_node[node]--;
685f3457
LS
1454 if (acct_surplus) {
1455 h->surplus_huge_pages--;
b2261026 1456 h->surplus_huge_pages_node[node]--;
685f3457 1457 }
e8c5c824
LS
1458 update_and_free_page(h, page);
1459 ret = 1;
9a76db09 1460 break;
e8c5c824 1461 }
b2261026 1462 }
e8c5c824
LS
1463
1464 return ret;
1465}
1466
c8721bbb
NH
1467/*
1468 * Dissolve a given free hugepage into free buddy pages. This function does
082d5b6b
GS
1469 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1470 * number of free hugepages would be reduced below the number of reserved
1471 * hugepages.
c8721bbb 1472 */
c3114a84 1473int dissolve_free_huge_page(struct page *page)
c8721bbb 1474{
082d5b6b
GS
1475 int rc = 0;
1476
c8721bbb
NH
1477 spin_lock(&hugetlb_lock);
1478 if (PageHuge(page) && !page_count(page)) {
2247bb33
GS
1479 struct page *head = compound_head(page);
1480 struct hstate *h = page_hstate(head);
1481 int nid = page_to_nid(head);
082d5b6b
GS
1482 if (h->free_huge_pages - h->resv_huge_pages == 0) {
1483 rc = -EBUSY;
1484 goto out;
1485 }
c3114a84
AK
1486 /*
1487 * Move PageHWPoison flag from head page to the raw error page,
1488 * which makes any subpages rather than the error page reusable.
1489 */
1490 if (PageHWPoison(head) && page != head) {
1491 SetPageHWPoison(page);
1492 ClearPageHWPoison(head);
1493 }
2247bb33 1494 list_del(&head->lru);
c8721bbb
NH
1495 h->free_huge_pages--;
1496 h->free_huge_pages_node[nid]--;
c1470b33 1497 h->max_huge_pages--;
2247bb33 1498 update_and_free_page(h, head);
c8721bbb 1499 }
082d5b6b 1500out:
c8721bbb 1501 spin_unlock(&hugetlb_lock);
082d5b6b 1502 return rc;
c8721bbb
NH
1503}
1504
1505/*
1506 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1507 * make specified memory blocks removable from the system.
2247bb33
GS
1508 * Note that this will dissolve a free gigantic hugepage completely, if any
1509 * part of it lies within the given range.
082d5b6b
GS
1510 * Also note that if dissolve_free_huge_page() returns with an error, all
1511 * free hugepages that were dissolved before that error are lost.
c8721bbb 1512 */
082d5b6b 1513int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
c8721bbb 1514{
c8721bbb 1515 unsigned long pfn;
eb03aa00 1516 struct page *page;
082d5b6b 1517 int rc = 0;
c8721bbb 1518
d0177639 1519 if (!hugepages_supported())
082d5b6b 1520 return rc;
d0177639 1521
eb03aa00
GS
1522 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1523 page = pfn_to_page(pfn);
1524 if (PageHuge(page) && !page_count(page)) {
1525 rc = dissolve_free_huge_page(page);
1526 if (rc)
1527 break;
1528 }
1529 }
082d5b6b
GS
1530
1531 return rc;
c8721bbb
NH
1532}
1533
099730d6
DH
1534/*
1535 * There are 3 ways this can get called:
1536 * 1. With vma+addr: we use the VMA's memory policy
1537 * 2. With !vma, but nid=NUMA_NO_NODE: We try to allocate a huge
1538 * page from any node, and let the buddy allocator itself figure
1539 * it out.
1540 * 3. With !vma, but nid!=NUMA_NO_NODE. We allocate a huge page
1541 * strictly from 'nid'
1542 */
1543static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1544 struct vm_area_struct *vma, unsigned long addr, int nid)
1545{
1546 int order = huge_page_order(h);
1547 gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1548 unsigned int cpuset_mems_cookie;
1549
1550 /*
1551 * We need a VMA to get a memory policy. If we do not
e0ec90ee
DH
1552 * have one, we use the 'nid' argument.
1553 *
1554 * The mempolicy stuff below has some non-inlined bits
1555 * and calls ->vm_ops. That makes it hard to optimize at
1556 * compile-time, even when NUMA is off and it does
1557 * nothing. This helps the compiler optimize it out.
099730d6 1558 */
e0ec90ee 1559 if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
099730d6
DH
1560 /*
1561 * If a specific node is requested, make sure to
1562 * get memory from there, but only when a node
1563 * is explicitly specified.
1564 */
1565 if (nid != NUMA_NO_NODE)
1566 gfp |= __GFP_THISNODE;
1567 /*
1568 * Make sure to call something that can handle
1569 * nid=NUMA_NO_NODE
1570 */
1571 return alloc_pages_node(nid, gfp, order);
1572 }
1573
1574 /*
1575 * OK, so we have a VMA. Fetch the mempolicy and try to
e0ec90ee
DH
1576 * allocate a huge page with it. We will only reach this
1577 * when CONFIG_NUMA=y.
099730d6
DH
1578 */
1579 do {
1580 struct page *page;
1581 struct mempolicy *mpol;
04ec6264 1582 int nid;
099730d6
DH
1583 nodemask_t *nodemask;
1584
1585 cpuset_mems_cookie = read_mems_allowed_begin();
04ec6264 1586 nid = huge_node(vma, addr, gfp, &mpol, &nodemask);
099730d6 1587 mpol_cond_put(mpol);
04ec6264 1588 page = __alloc_pages_nodemask(gfp, order, nid, nodemask);
099730d6
DH
1589 if (page)
1590 return page;
1591 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1592
1593 return NULL;
1594}
1595
1596/*
1597 * There are two ways to allocate a huge page:
1598 * 1. When you have a VMA and an address (like a fault)
1599 * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1600 *
1601 * 'vma' and 'addr' are only for (1). 'nid' is always NUMA_NO_NODE in
1602 * this case which signifies that the allocation should be done with
1603 * respect for the VMA's memory policy.
1604 *
1605 * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1606 * implies that memory policies will not be taken in to account.
1607 */
1608static struct page *__alloc_buddy_huge_page(struct hstate *h,
1609 struct vm_area_struct *vma, unsigned long addr, int nid)
7893d1d5
AL
1610{
1611 struct page *page;
bf50bab2 1612 unsigned int r_nid;
7893d1d5 1613
bae7f4ae 1614 if (hstate_is_gigantic(h))
aa888a74
AK
1615 return NULL;
1616
099730d6
DH
1617 /*
1618 * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1619 * This makes sure the caller is picking _one_ of the modes with which
1620 * we can call this function, not both.
1621 */
1622 if (vma || (addr != -1)) {
e0ec90ee
DH
1623 VM_WARN_ON_ONCE(addr == -1);
1624 VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
099730d6 1625 }
d1c3fb1f
NA
1626 /*
1627 * Assume we will successfully allocate the surplus page to
1628 * prevent racing processes from causing the surplus to exceed
1629 * overcommit
1630 *
1631 * This however introduces a different race, where a process B
1632 * tries to grow the static hugepage pool while alloc_pages() is
1633 * called by process A. B will only examine the per-node
1634 * counters in determining if surplus huge pages can be
1635 * converted to normal huge pages in adjust_pool_surplus(). A
1636 * won't be able to increment the per-node counter, until the
1637 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1638 * no more huge pages can be converted from surplus to normal
1639 * state (and doesn't try to convert again). Thus, we have a
1640 * case where a surplus huge page exists, the pool is grown, and
1641 * the surplus huge page still exists after, even though it
1642 * should just have been converted to a normal huge page. This
1643 * does not leak memory, though, as the hugepage will be freed
1644 * once it is out of use. It also does not allow the counters to
1645 * go out of whack in adjust_pool_surplus() as we don't modify
1646 * the node values until we've gotten the hugepage and only the
1647 * per-node value is checked there.
1648 */
1649 spin_lock(&hugetlb_lock);
a5516438 1650 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
d1c3fb1f
NA
1651 spin_unlock(&hugetlb_lock);
1652 return NULL;
1653 } else {
a5516438
AK
1654 h->nr_huge_pages++;
1655 h->surplus_huge_pages++;
d1c3fb1f
NA
1656 }
1657 spin_unlock(&hugetlb_lock);
1658
099730d6 1659 page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
d1c3fb1f
NA
1660
1661 spin_lock(&hugetlb_lock);
7893d1d5 1662 if (page) {
0edaecfa 1663 INIT_LIST_HEAD(&page->lru);
bf50bab2 1664 r_nid = page_to_nid(page);
f1e61557 1665 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
9dd540e2 1666 set_hugetlb_cgroup(page, NULL);
d1c3fb1f
NA
1667 /*
1668 * We incremented the global counters already
1669 */
bf50bab2
NH
1670 h->nr_huge_pages_node[r_nid]++;
1671 h->surplus_huge_pages_node[r_nid]++;
3b116300 1672 __count_vm_event(HTLB_BUDDY_PGALLOC);
d1c3fb1f 1673 } else {
a5516438
AK
1674 h->nr_huge_pages--;
1675 h->surplus_huge_pages--;
3b116300 1676 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
7893d1d5 1677 }
d1c3fb1f 1678 spin_unlock(&hugetlb_lock);
7893d1d5
AL
1679
1680 return page;
1681}
1682
099730d6
DH
1683/*
1684 * Allocate a huge page from 'nid'. Note, 'nid' may be
1685 * NUMA_NO_NODE, which means that it may be allocated
1686 * anywhere.
1687 */
e0ec90ee 1688static
099730d6
DH
1689struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1690{
1691 unsigned long addr = -1;
1692
1693 return __alloc_buddy_huge_page(h, NULL, addr, nid);
1694}
1695
1696/*
1697 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1698 */
e0ec90ee 1699static
099730d6
DH
1700struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1701 struct vm_area_struct *vma, unsigned long addr)
1702{
1703 return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
1704}
1705
bf50bab2
NH
1706/*
1707 * This allocation function is useful in the context where vma is irrelevant.
1708 * E.g. soft-offlining uses this function because it only cares physical
1709 * address of error page.
1710 */
1711struct page *alloc_huge_page_node(struct hstate *h, int nid)
1712{
4ef91848 1713 struct page *page = NULL;
bf50bab2
NH
1714
1715 spin_lock(&hugetlb_lock);
4ef91848
JK
1716 if (h->free_huge_pages - h->resv_huge_pages > 0)
1717 page = dequeue_huge_page_node(h, nid);
bf50bab2
NH
1718 spin_unlock(&hugetlb_lock);
1719
94ae8ba7 1720 if (!page)
099730d6 1721 page = __alloc_buddy_huge_page_no_mpol(h, nid);
bf50bab2
NH
1722
1723 return page;
1724}
1725
4db9b2ef
MH
1726struct page *alloc_huge_page_nodemask(struct hstate *h, const nodemask_t *nmask)
1727{
1728 struct page *page = NULL;
1729 int node;
1730
1731 spin_lock(&hugetlb_lock);
1732 if (h->free_huge_pages - h->resv_huge_pages > 0) {
1733 for_each_node_mask(node, *nmask) {
1734 page = dequeue_huge_page_node_exact(h, node);
1735 if (page)
1736 break;
1737 }
1738 }
1739 spin_unlock(&hugetlb_lock);
1740 if (page)
1741 return page;
1742
1743 /* No reservations, try to overcommit */
1744 for_each_node_mask(node, *nmask) {
1745 page = __alloc_buddy_huge_page_no_mpol(h, node);
1746 if (page)
1747 return page;
1748 }
1749
1750 return NULL;
1751}
1752
e4e574b7 1753/*
25985edc 1754 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
1755 * of size 'delta'.
1756 */
a5516438 1757static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
1758{
1759 struct list_head surplus_list;
1760 struct page *page, *tmp;
1761 int ret, i;
1762 int needed, allocated;
28073b02 1763 bool alloc_ok = true;
e4e574b7 1764
a5516438 1765 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 1766 if (needed <= 0) {
a5516438 1767 h->resv_huge_pages += delta;
e4e574b7 1768 return 0;
ac09b3a1 1769 }
e4e574b7
AL
1770
1771 allocated = 0;
1772 INIT_LIST_HEAD(&surplus_list);
1773
1774 ret = -ENOMEM;
1775retry:
1776 spin_unlock(&hugetlb_lock);
1777 for (i = 0; i < needed; i++) {
099730d6 1778 page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
28073b02
HD
1779 if (!page) {
1780 alloc_ok = false;
1781 break;
1782 }
e4e574b7
AL
1783 list_add(&page->lru, &surplus_list);
1784 }
28073b02 1785 allocated += i;
e4e574b7
AL
1786
1787 /*
1788 * After retaking hugetlb_lock, we need to recalculate 'needed'
1789 * because either resv_huge_pages or free_huge_pages may have changed.
1790 */
1791 spin_lock(&hugetlb_lock);
a5516438
AK
1792 needed = (h->resv_huge_pages + delta) -
1793 (h->free_huge_pages + allocated);
28073b02
HD
1794 if (needed > 0) {
1795 if (alloc_ok)
1796 goto retry;
1797 /*
1798 * We were not able to allocate enough pages to
1799 * satisfy the entire reservation so we free what
1800 * we've allocated so far.
1801 */
1802 goto free;
1803 }
e4e574b7
AL
1804 /*
1805 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 1806 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 1807 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
1808 * allocator. Commit the entire reservation here to prevent another
1809 * process from stealing the pages as they are added to the pool but
1810 * before they are reserved.
e4e574b7
AL
1811 */
1812 needed += allocated;
a5516438 1813 h->resv_huge_pages += delta;
e4e574b7 1814 ret = 0;
a9869b83 1815
19fc3f0a 1816 /* Free the needed pages to the hugetlb pool */
e4e574b7 1817 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
1818 if ((--needed) < 0)
1819 break;
a9869b83
NH
1820 /*
1821 * This page is now managed by the hugetlb allocator and has
1822 * no users -- drop the buddy allocator's reference.
1823 */
1824 put_page_testzero(page);
309381fe 1825 VM_BUG_ON_PAGE(page_count(page), page);
a5516438 1826 enqueue_huge_page(h, page);
19fc3f0a 1827 }
28073b02 1828free:
b0365c8d 1829 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
1830
1831 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
1832 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1833 put_page(page);
a9869b83 1834 spin_lock(&hugetlb_lock);
e4e574b7
AL
1835
1836 return ret;
1837}
1838
1839/*
e5bbc8a6
MK
1840 * This routine has two main purposes:
1841 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1842 * in unused_resv_pages. This corresponds to the prior adjustments made
1843 * to the associated reservation map.
1844 * 2) Free any unused surplus pages that may have been allocated to satisfy
1845 * the reservation. As many as unused_resv_pages may be freed.
1846 *
1847 * Called with hugetlb_lock held. However, the lock could be dropped (and
1848 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1849 * we must make sure nobody else can claim pages we are in the process of
1850 * freeing. Do this by ensuring resv_huge_page always is greater than the
1851 * number of huge pages we plan to free when dropping the lock.
e4e574b7 1852 */
a5516438
AK
1853static void return_unused_surplus_pages(struct hstate *h,
1854 unsigned long unused_resv_pages)
e4e574b7 1855{
e4e574b7
AL
1856 unsigned long nr_pages;
1857
aa888a74 1858 /* Cannot return gigantic pages currently */
bae7f4ae 1859 if (hstate_is_gigantic(h))
e5bbc8a6 1860 goto out;
aa888a74 1861
e5bbc8a6
MK
1862 /*
1863 * Part (or even all) of the reservation could have been backed
1864 * by pre-allocated pages. Only free surplus pages.
1865 */
a5516438 1866 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 1867
685f3457
LS
1868 /*
1869 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
1870 * evenly across all nodes with memory. Iterate across these nodes
1871 * until we can no longer free unreserved surplus pages. This occurs
1872 * when the nodes with surplus pages have no free pages.
1873 * free_pool_huge_page() will balance the the freed pages across the
1874 * on-line nodes with memory and will handle the hstate accounting.
e5bbc8a6
MK
1875 *
1876 * Note that we decrement resv_huge_pages as we free the pages. If
1877 * we drop the lock, resv_huge_pages will still be sufficiently large
1878 * to cover subsequent pages we may free.
685f3457
LS
1879 */
1880 while (nr_pages--) {
e5bbc8a6
MK
1881 h->resv_huge_pages--;
1882 unused_resv_pages--;
8cebfcd0 1883 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
e5bbc8a6 1884 goto out;
7848a4bf 1885 cond_resched_lock(&hugetlb_lock);
e4e574b7 1886 }
e5bbc8a6
MK
1887
1888out:
1889 /* Fully uncommit the reservation */
1890 h->resv_huge_pages -= unused_resv_pages;
e4e574b7
AL
1891}
1892
5e911373 1893
c37f9fb1 1894/*
feba16e2 1895 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
5e911373 1896 * are used by the huge page allocation routines to manage reservations.
cf3ad20b
MK
1897 *
1898 * vma_needs_reservation is called to determine if the huge page at addr
1899 * within the vma has an associated reservation. If a reservation is
1900 * needed, the value 1 is returned. The caller is then responsible for
1901 * managing the global reservation and subpool usage counts. After
1902 * the huge page has been allocated, vma_commit_reservation is called
feba16e2
MK
1903 * to add the page to the reservation map. If the page allocation fails,
1904 * the reservation must be ended instead of committed. vma_end_reservation
1905 * is called in such cases.
cf3ad20b
MK
1906 *
1907 * In the normal case, vma_commit_reservation returns the same value
1908 * as the preceding vma_needs_reservation call. The only time this
1909 * is not the case is if a reserve map was changed between calls. It
1910 * is the responsibility of the caller to notice the difference and
1911 * take appropriate action.
96b96a96
MK
1912 *
1913 * vma_add_reservation is used in error paths where a reservation must
1914 * be restored when a newly allocated huge page must be freed. It is
1915 * to be called after calling vma_needs_reservation to determine if a
1916 * reservation exists.
c37f9fb1 1917 */
5e911373
MK
1918enum vma_resv_mode {
1919 VMA_NEEDS_RESV,
1920 VMA_COMMIT_RESV,
feba16e2 1921 VMA_END_RESV,
96b96a96 1922 VMA_ADD_RESV,
5e911373 1923};
cf3ad20b
MK
1924static long __vma_reservation_common(struct hstate *h,
1925 struct vm_area_struct *vma, unsigned long addr,
5e911373 1926 enum vma_resv_mode mode)
c37f9fb1 1927{
4e35f483
JK
1928 struct resv_map *resv;
1929 pgoff_t idx;
cf3ad20b 1930 long ret;
c37f9fb1 1931
4e35f483
JK
1932 resv = vma_resv_map(vma);
1933 if (!resv)
84afd99b 1934 return 1;
c37f9fb1 1935
4e35f483 1936 idx = vma_hugecache_offset(h, vma, addr);
5e911373
MK
1937 switch (mode) {
1938 case VMA_NEEDS_RESV:
cf3ad20b 1939 ret = region_chg(resv, idx, idx + 1);
5e911373
MK
1940 break;
1941 case VMA_COMMIT_RESV:
1942 ret = region_add(resv, idx, idx + 1);
1943 break;
feba16e2 1944 case VMA_END_RESV:
5e911373
MK
1945 region_abort(resv, idx, idx + 1);
1946 ret = 0;
1947 break;
96b96a96
MK
1948 case VMA_ADD_RESV:
1949 if (vma->vm_flags & VM_MAYSHARE)
1950 ret = region_add(resv, idx, idx + 1);
1951 else {
1952 region_abort(resv, idx, idx + 1);
1953 ret = region_del(resv, idx, idx + 1);
1954 }
1955 break;
5e911373
MK
1956 default:
1957 BUG();
1958 }
84afd99b 1959
4e35f483 1960 if (vma->vm_flags & VM_MAYSHARE)
cf3ad20b 1961 return ret;
67961f9d
MK
1962 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1963 /*
1964 * In most cases, reserves always exist for private mappings.
1965 * However, a file associated with mapping could have been
1966 * hole punched or truncated after reserves were consumed.
1967 * As subsequent fault on such a range will not use reserves.
1968 * Subtle - The reserve map for private mappings has the
1969 * opposite meaning than that of shared mappings. If NO
1970 * entry is in the reserve map, it means a reservation exists.
1971 * If an entry exists in the reserve map, it means the
1972 * reservation has already been consumed. As a result, the
1973 * return value of this routine is the opposite of the
1974 * value returned from reserve map manipulation routines above.
1975 */
1976 if (ret)
1977 return 0;
1978 else
1979 return 1;
1980 }
4e35f483 1981 else
cf3ad20b 1982 return ret < 0 ? ret : 0;
c37f9fb1 1983}
cf3ad20b
MK
1984
1985static long vma_needs_reservation(struct hstate *h,
a5516438 1986 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 1987{
5e911373 1988 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
cf3ad20b 1989}
84afd99b 1990
cf3ad20b
MK
1991static long vma_commit_reservation(struct hstate *h,
1992 struct vm_area_struct *vma, unsigned long addr)
1993{
5e911373
MK
1994 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1995}
1996
feba16e2 1997static void vma_end_reservation(struct hstate *h,
5e911373
MK
1998 struct vm_area_struct *vma, unsigned long addr)
1999{
feba16e2 2000 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
c37f9fb1
AW
2001}
2002
96b96a96
MK
2003static long vma_add_reservation(struct hstate *h,
2004 struct vm_area_struct *vma, unsigned long addr)
2005{
2006 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2007}
2008
2009/*
2010 * This routine is called to restore a reservation on error paths. In the
2011 * specific error paths, a huge page was allocated (via alloc_huge_page)
2012 * and is about to be freed. If a reservation for the page existed,
2013 * alloc_huge_page would have consumed the reservation and set PagePrivate
2014 * in the newly allocated page. When the page is freed via free_huge_page,
2015 * the global reservation count will be incremented if PagePrivate is set.
2016 * However, free_huge_page can not adjust the reserve map. Adjust the
2017 * reserve map here to be consistent with global reserve count adjustments
2018 * to be made by free_huge_page.
2019 */
2020static void restore_reserve_on_error(struct hstate *h,
2021 struct vm_area_struct *vma, unsigned long address,
2022 struct page *page)
2023{
2024 if (unlikely(PagePrivate(page))) {
2025 long rc = vma_needs_reservation(h, vma, address);
2026
2027 if (unlikely(rc < 0)) {
2028 /*
2029 * Rare out of memory condition in reserve map
2030 * manipulation. Clear PagePrivate so that
2031 * global reserve count will not be incremented
2032 * by free_huge_page. This will make it appear
2033 * as though the reservation for this page was
2034 * consumed. This may prevent the task from
2035 * faulting in the page at a later time. This
2036 * is better than inconsistent global huge page
2037 * accounting of reserve counts.
2038 */
2039 ClearPagePrivate(page);
2040 } else if (rc) {
2041 rc = vma_add_reservation(h, vma, address);
2042 if (unlikely(rc < 0))
2043 /*
2044 * See above comment about rare out of
2045 * memory condition.
2046 */
2047 ClearPagePrivate(page);
2048 } else
2049 vma_end_reservation(h, vma, address);
2050 }
2051}
2052
70c3547e 2053struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 2054 unsigned long addr, int avoid_reserve)
1da177e4 2055{
90481622 2056 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 2057 struct hstate *h = hstate_vma(vma);
348ea204 2058 struct page *page;
d85f69b0
MK
2059 long map_chg, map_commit;
2060 long gbl_chg;
6d76dcf4
AK
2061 int ret, idx;
2062 struct hugetlb_cgroup *h_cg;
a1e78772 2063
6d76dcf4 2064 idx = hstate_index(h);
a1e78772 2065 /*
d85f69b0
MK
2066 * Examine the region/reserve map to determine if the process
2067 * has a reservation for the page to be allocated. A return
2068 * code of zero indicates a reservation exists (no change).
a1e78772 2069 */
d85f69b0
MK
2070 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2071 if (map_chg < 0)
76dcee75 2072 return ERR_PTR(-ENOMEM);
d85f69b0
MK
2073
2074 /*
2075 * Processes that did not create the mapping will have no
2076 * reserves as indicated by the region/reserve map. Check
2077 * that the allocation will not exceed the subpool limit.
2078 * Allocations for MAP_NORESERVE mappings also need to be
2079 * checked against any subpool limit.
2080 */
2081 if (map_chg || avoid_reserve) {
2082 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2083 if (gbl_chg < 0) {
feba16e2 2084 vma_end_reservation(h, vma, addr);
76dcee75 2085 return ERR_PTR(-ENOSPC);
5e911373 2086 }
1da177e4 2087
d85f69b0
MK
2088 /*
2089 * Even though there was no reservation in the region/reserve
2090 * map, there could be reservations associated with the
2091 * subpool that can be used. This would be indicated if the
2092 * return value of hugepage_subpool_get_pages() is zero.
2093 * However, if avoid_reserve is specified we still avoid even
2094 * the subpool reservations.
2095 */
2096 if (avoid_reserve)
2097 gbl_chg = 1;
2098 }
2099
6d76dcf4 2100 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
8f34af6f
JZ
2101 if (ret)
2102 goto out_subpool_put;
2103
1da177e4 2104 spin_lock(&hugetlb_lock);
d85f69b0
MK
2105 /*
2106 * glb_chg is passed to indicate whether or not a page must be taken
2107 * from the global free pool (global change). gbl_chg == 0 indicates
2108 * a reservation exists for the allocation.
2109 */
2110 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
81a6fcae 2111 if (!page) {
94ae8ba7 2112 spin_unlock(&hugetlb_lock);
099730d6 2113 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
8f34af6f
JZ
2114 if (!page)
2115 goto out_uncharge_cgroup;
a88c7695
NH
2116 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2117 SetPagePrivate(page);
2118 h->resv_huge_pages--;
2119 }
79dbb236
AK
2120 spin_lock(&hugetlb_lock);
2121 list_move(&page->lru, &h->hugepage_activelist);
81a6fcae 2122 /* Fall through */
68842c9b 2123 }
81a6fcae
JK
2124 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2125 spin_unlock(&hugetlb_lock);
348ea204 2126
90481622 2127 set_page_private(page, (unsigned long)spool);
90d8b7e6 2128
d85f69b0
MK
2129 map_commit = vma_commit_reservation(h, vma, addr);
2130 if (unlikely(map_chg > map_commit)) {
33039678
MK
2131 /*
2132 * The page was added to the reservation map between
2133 * vma_needs_reservation and vma_commit_reservation.
2134 * This indicates a race with hugetlb_reserve_pages.
2135 * Adjust for the subpool count incremented above AND
2136 * in hugetlb_reserve_pages for the same page. Also,
2137 * the reservation count added in hugetlb_reserve_pages
2138 * no longer applies.
2139 */
2140 long rsv_adjust;
2141
2142 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2143 hugetlb_acct_memory(h, -rsv_adjust);
2144 }
90d8b7e6 2145 return page;
8f34af6f
JZ
2146
2147out_uncharge_cgroup:
2148 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2149out_subpool_put:
d85f69b0 2150 if (map_chg || avoid_reserve)
8f34af6f 2151 hugepage_subpool_put_pages(spool, 1);
feba16e2 2152 vma_end_reservation(h, vma, addr);
8f34af6f 2153 return ERR_PTR(-ENOSPC);
b45b5bd6
DG
2154}
2155
74060e4d
NH
2156/*
2157 * alloc_huge_page()'s wrapper which simply returns the page if allocation
2158 * succeeds, otherwise NULL. This function is called from new_vma_page(),
2159 * where no ERR_VALUE is expected to be returned.
2160 */
2161struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
2162 unsigned long addr, int avoid_reserve)
2163{
2164 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
2165 if (IS_ERR(page))
2166 page = NULL;
2167 return page;
2168}
2169
91f47662 2170int __weak alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
2171{
2172 struct huge_bootmem_page *m;
b2261026 2173 int nr_nodes, node;
aa888a74 2174
b2261026 2175 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
2176 void *addr;
2177
8b89a116
GS
2178 addr = memblock_virt_alloc_try_nid_nopanic(
2179 huge_page_size(h), huge_page_size(h),
2180 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
aa888a74
AK
2181 if (addr) {
2182 /*
2183 * Use the beginning of the huge page to store the
2184 * huge_bootmem_page struct (until gather_bootmem
2185 * puts them into the mem_map).
2186 */
2187 m = addr;
91f47662 2188 goto found;
aa888a74 2189 }
aa888a74
AK
2190 }
2191 return 0;
2192
2193found:
df994ead 2194 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
aa888a74
AK
2195 /* Put them into a private list first because mem_map is not up yet */
2196 list_add(&m->list, &huge_boot_pages);
2197 m->hstate = h;
2198 return 1;
2199}
2200
d00181b9
KS
2201static void __init prep_compound_huge_page(struct page *page,
2202 unsigned int order)
18229df5
AW
2203{
2204 if (unlikely(order > (MAX_ORDER - 1)))
2205 prep_compound_gigantic_page(page, order);
2206 else
2207 prep_compound_page(page, order);
2208}
2209
aa888a74
AK
2210/* Put bootmem huge pages into the standard lists after mem_map is up */
2211static void __init gather_bootmem_prealloc(void)
2212{
2213 struct huge_bootmem_page *m;
2214
2215 list_for_each_entry(m, &huge_boot_pages, list) {
aa888a74 2216 struct hstate *h = m->hstate;
ee8f248d
BB
2217 struct page *page;
2218
2219#ifdef CONFIG_HIGHMEM
2220 page = pfn_to_page(m->phys >> PAGE_SHIFT);
8b89a116
GS
2221 memblock_free_late(__pa(m),
2222 sizeof(struct huge_bootmem_page));
ee8f248d
BB
2223#else
2224 page = virt_to_page(m);
2225#endif
aa888a74 2226 WARN_ON(page_count(page) != 1);
18229df5 2227 prep_compound_huge_page(page, h->order);
ef5a22be 2228 WARN_ON(PageReserved(page));
aa888a74 2229 prep_new_huge_page(h, page, page_to_nid(page));
b0320c7b
RA
2230 /*
2231 * If we had gigantic hugepages allocated at boot time, we need
2232 * to restore the 'stolen' pages to totalram_pages in order to
2233 * fix confusing memory reports from free(1) and another
2234 * side-effects, like CommitLimit going negative.
2235 */
bae7f4ae 2236 if (hstate_is_gigantic(h))
3dcc0571 2237 adjust_managed_page_count(page, 1 << h->order);
aa888a74
AK
2238 }
2239}
2240
8faa8b07 2241static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
2242{
2243 unsigned long i;
a5516438 2244
e5ff2159 2245 for (i = 0; i < h->max_huge_pages; ++i) {
bae7f4ae 2246 if (hstate_is_gigantic(h)) {
aa888a74
AK
2247 if (!alloc_bootmem_huge_page(h))
2248 break;
9b5e5d0f 2249 } else if (!alloc_fresh_huge_page(h,
8cebfcd0 2250 &node_states[N_MEMORY]))
1da177e4 2251 break;
1da177e4 2252 }
d715cf80
LH
2253 if (i < h->max_huge_pages) {
2254 char buf[32];
2255
2256 memfmt(buf, huge_page_size(h)),
2257 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2258 h->max_huge_pages, buf, i);
2259 h->max_huge_pages = i;
2260 }
e5ff2159
AK
2261}
2262
2263static void __init hugetlb_init_hstates(void)
2264{
2265 struct hstate *h;
2266
2267 for_each_hstate(h) {
641844f5
NH
2268 if (minimum_order > huge_page_order(h))
2269 minimum_order = huge_page_order(h);
2270
8faa8b07 2271 /* oversize hugepages were init'ed in early boot */
bae7f4ae 2272 if (!hstate_is_gigantic(h))
8faa8b07 2273 hugetlb_hstate_alloc_pages(h);
e5ff2159 2274 }
641844f5 2275 VM_BUG_ON(minimum_order == UINT_MAX);
e5ff2159
AK
2276}
2277
2278static void __init report_hugepages(void)
2279{
2280 struct hstate *h;
2281
2282 for_each_hstate(h) {
4abd32db 2283 char buf[32];
ffb22af5 2284 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
4abd32db
AK
2285 memfmt(buf, huge_page_size(h)),
2286 h->free_huge_pages);
e5ff2159
AK
2287 }
2288}
2289
1da177e4 2290#ifdef CONFIG_HIGHMEM
6ae11b27
LS
2291static void try_to_free_low(struct hstate *h, unsigned long count,
2292 nodemask_t *nodes_allowed)
1da177e4 2293{
4415cc8d
CL
2294 int i;
2295
bae7f4ae 2296 if (hstate_is_gigantic(h))
aa888a74
AK
2297 return;
2298
6ae11b27 2299 for_each_node_mask(i, *nodes_allowed) {
1da177e4 2300 struct page *page, *next;
a5516438
AK
2301 struct list_head *freel = &h->hugepage_freelists[i];
2302 list_for_each_entry_safe(page, next, freel, lru) {
2303 if (count >= h->nr_huge_pages)
6b0c880d 2304 return;
1da177e4
LT
2305 if (PageHighMem(page))
2306 continue;
2307 list_del(&page->lru);
e5ff2159 2308 update_and_free_page(h, page);
a5516438
AK
2309 h->free_huge_pages--;
2310 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
2311 }
2312 }
2313}
2314#else
6ae11b27
LS
2315static inline void try_to_free_low(struct hstate *h, unsigned long count,
2316 nodemask_t *nodes_allowed)
1da177e4
LT
2317{
2318}
2319#endif
2320
20a0307c
WF
2321/*
2322 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2323 * balanced by operating on them in a round-robin fashion.
2324 * Returns 1 if an adjustment was made.
2325 */
6ae11b27
LS
2326static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2327 int delta)
20a0307c 2328{
b2261026 2329 int nr_nodes, node;
20a0307c
WF
2330
2331 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 2332
b2261026
JK
2333 if (delta < 0) {
2334 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2335 if (h->surplus_huge_pages_node[node])
2336 goto found;
e8c5c824 2337 }
b2261026
JK
2338 } else {
2339 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2340 if (h->surplus_huge_pages_node[node] <
2341 h->nr_huge_pages_node[node])
2342 goto found;
e8c5c824 2343 }
b2261026
JK
2344 }
2345 return 0;
20a0307c 2346
b2261026
JK
2347found:
2348 h->surplus_huge_pages += delta;
2349 h->surplus_huge_pages_node[node] += delta;
2350 return 1;
20a0307c
WF
2351}
2352
a5516438 2353#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
6ae11b27
LS
2354static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2355 nodemask_t *nodes_allowed)
1da177e4 2356{
7893d1d5 2357 unsigned long min_count, ret;
1da177e4 2358
944d9fec 2359 if (hstate_is_gigantic(h) && !gigantic_page_supported())
aa888a74
AK
2360 return h->max_huge_pages;
2361
7893d1d5
AL
2362 /*
2363 * Increase the pool size
2364 * First take pages out of surplus state. Then make up the
2365 * remaining difference by allocating fresh huge pages.
d1c3fb1f 2366 *
d15c7c09 2367 * We might race with __alloc_buddy_huge_page() here and be unable
d1c3fb1f
NA
2368 * to convert a surplus huge page to a normal huge page. That is
2369 * not critical, though, it just means the overall size of the
2370 * pool might be one hugepage larger than it needs to be, but
2371 * within all the constraints specified by the sysctls.
7893d1d5 2372 */
1da177e4 2373 spin_lock(&hugetlb_lock);
a5516438 2374 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 2375 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
2376 break;
2377 }
2378
a5516438 2379 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
2380 /*
2381 * If this allocation races such that we no longer need the
2382 * page, free_huge_page will handle it by freeing the page
2383 * and reducing the surplus.
2384 */
2385 spin_unlock(&hugetlb_lock);
649920c6
JH
2386
2387 /* yield cpu to avoid soft lockup */
2388 cond_resched();
2389
944d9fec
LC
2390 if (hstate_is_gigantic(h))
2391 ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2392 else
2393 ret = alloc_fresh_huge_page(h, nodes_allowed);
7893d1d5
AL
2394 spin_lock(&hugetlb_lock);
2395 if (!ret)
2396 goto out;
2397
536240f2
MG
2398 /* Bail for signals. Probably ctrl-c from user */
2399 if (signal_pending(current))
2400 goto out;
7893d1d5 2401 }
7893d1d5
AL
2402
2403 /*
2404 * Decrease the pool size
2405 * First return free pages to the buddy allocator (being careful
2406 * to keep enough around to satisfy reservations). Then place
2407 * pages into surplus state as needed so the pool will shrink
2408 * to the desired size as pages become free.
d1c3fb1f
NA
2409 *
2410 * By placing pages into the surplus state independent of the
2411 * overcommit value, we are allowing the surplus pool size to
2412 * exceed overcommit. There are few sane options here. Since
d15c7c09 2413 * __alloc_buddy_huge_page() is checking the global counter,
d1c3fb1f
NA
2414 * though, we'll note that we're not allowed to exceed surplus
2415 * and won't grow the pool anywhere else. Not until one of the
2416 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 2417 */
a5516438 2418 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 2419 min_count = max(count, min_count);
6ae11b27 2420 try_to_free_low(h, min_count, nodes_allowed);
a5516438 2421 while (min_count < persistent_huge_pages(h)) {
6ae11b27 2422 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 2423 break;
55f67141 2424 cond_resched_lock(&hugetlb_lock);
1da177e4 2425 }
a5516438 2426 while (count < persistent_huge_pages(h)) {
6ae11b27 2427 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
2428 break;
2429 }
2430out:
a5516438 2431 ret = persistent_huge_pages(h);
1da177e4 2432 spin_unlock(&hugetlb_lock);
7893d1d5 2433 return ret;
1da177e4
LT
2434}
2435
a3437870
NA
2436#define HSTATE_ATTR_RO(_name) \
2437 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2438
2439#define HSTATE_ATTR(_name) \
2440 static struct kobj_attribute _name##_attr = \
2441 __ATTR(_name, 0644, _name##_show, _name##_store)
2442
2443static struct kobject *hugepages_kobj;
2444static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2445
9a305230
LS
2446static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2447
2448static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
2449{
2450 int i;
9a305230 2451
a3437870 2452 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
2453 if (hstate_kobjs[i] == kobj) {
2454 if (nidp)
2455 *nidp = NUMA_NO_NODE;
a3437870 2456 return &hstates[i];
9a305230
LS
2457 }
2458
2459 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
2460}
2461
06808b08 2462static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
2463 struct kobj_attribute *attr, char *buf)
2464{
9a305230
LS
2465 struct hstate *h;
2466 unsigned long nr_huge_pages;
2467 int nid;
2468
2469 h = kobj_to_hstate(kobj, &nid);
2470 if (nid == NUMA_NO_NODE)
2471 nr_huge_pages = h->nr_huge_pages;
2472 else
2473 nr_huge_pages = h->nr_huge_pages_node[nid];
2474
2475 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 2476}
adbe8726 2477
238d3c13
DR
2478static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2479 struct hstate *h, int nid,
2480 unsigned long count, size_t len)
a3437870
NA
2481{
2482 int err;
bad44b5b 2483 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
a3437870 2484
944d9fec 2485 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
adbe8726
EM
2486 err = -EINVAL;
2487 goto out;
2488 }
2489
9a305230
LS
2490 if (nid == NUMA_NO_NODE) {
2491 /*
2492 * global hstate attribute
2493 */
2494 if (!(obey_mempolicy &&
2495 init_nodemask_of_mempolicy(nodes_allowed))) {
2496 NODEMASK_FREE(nodes_allowed);
8cebfcd0 2497 nodes_allowed = &node_states[N_MEMORY];
9a305230
LS
2498 }
2499 } else if (nodes_allowed) {
2500 /*
2501 * per node hstate attribute: adjust count to global,
2502 * but restrict alloc/free to the specified node.
2503 */
2504 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2505 init_nodemask_of_node(nodes_allowed, nid);
2506 } else
8cebfcd0 2507 nodes_allowed = &node_states[N_MEMORY];
9a305230 2508
06808b08 2509 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
a3437870 2510
8cebfcd0 2511 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
2512 NODEMASK_FREE(nodes_allowed);
2513
2514 return len;
adbe8726
EM
2515out:
2516 NODEMASK_FREE(nodes_allowed);
2517 return err;
06808b08
LS
2518}
2519
238d3c13
DR
2520static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2521 struct kobject *kobj, const char *buf,
2522 size_t len)
2523{
2524 struct hstate *h;
2525 unsigned long count;
2526 int nid;
2527 int err;
2528
2529 err = kstrtoul(buf, 10, &count);
2530 if (err)
2531 return err;
2532
2533 h = kobj_to_hstate(kobj, &nid);
2534 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2535}
2536
06808b08
LS
2537static ssize_t nr_hugepages_show(struct kobject *kobj,
2538 struct kobj_attribute *attr, char *buf)
2539{
2540 return nr_hugepages_show_common(kobj, attr, buf);
2541}
2542
2543static ssize_t nr_hugepages_store(struct kobject *kobj,
2544 struct kobj_attribute *attr, const char *buf, size_t len)
2545{
238d3c13 2546 return nr_hugepages_store_common(false, kobj, buf, len);
a3437870
NA
2547}
2548HSTATE_ATTR(nr_hugepages);
2549
06808b08
LS
2550#ifdef CONFIG_NUMA
2551
2552/*
2553 * hstate attribute for optionally mempolicy-based constraint on persistent
2554 * huge page alloc/free.
2555 */
2556static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2557 struct kobj_attribute *attr, char *buf)
2558{
2559 return nr_hugepages_show_common(kobj, attr, buf);
2560}
2561
2562static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2563 struct kobj_attribute *attr, const char *buf, size_t len)
2564{
238d3c13 2565 return nr_hugepages_store_common(true, kobj, buf, len);
06808b08
LS
2566}
2567HSTATE_ATTR(nr_hugepages_mempolicy);
2568#endif
2569
2570
a3437870
NA
2571static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2572 struct kobj_attribute *attr, char *buf)
2573{
9a305230 2574 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2575 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2576}
adbe8726 2577
a3437870
NA
2578static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2579 struct kobj_attribute *attr, const char *buf, size_t count)
2580{
2581 int err;
2582 unsigned long input;
9a305230 2583 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 2584
bae7f4ae 2585 if (hstate_is_gigantic(h))
adbe8726
EM
2586 return -EINVAL;
2587
3dbb95f7 2588 err = kstrtoul(buf, 10, &input);
a3437870 2589 if (err)
73ae31e5 2590 return err;
a3437870
NA
2591
2592 spin_lock(&hugetlb_lock);
2593 h->nr_overcommit_huge_pages = input;
2594 spin_unlock(&hugetlb_lock);
2595
2596 return count;
2597}
2598HSTATE_ATTR(nr_overcommit_hugepages);
2599
2600static ssize_t free_hugepages_show(struct kobject *kobj,
2601 struct kobj_attribute *attr, char *buf)
2602{
9a305230
LS
2603 struct hstate *h;
2604 unsigned long free_huge_pages;
2605 int nid;
2606
2607 h = kobj_to_hstate(kobj, &nid);
2608 if (nid == NUMA_NO_NODE)
2609 free_huge_pages = h->free_huge_pages;
2610 else
2611 free_huge_pages = h->free_huge_pages_node[nid];
2612
2613 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
2614}
2615HSTATE_ATTR_RO(free_hugepages);
2616
2617static ssize_t resv_hugepages_show(struct kobject *kobj,
2618 struct kobj_attribute *attr, char *buf)
2619{
9a305230 2620 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2621 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2622}
2623HSTATE_ATTR_RO(resv_hugepages);
2624
2625static ssize_t surplus_hugepages_show(struct kobject *kobj,
2626 struct kobj_attribute *attr, char *buf)
2627{
9a305230
LS
2628 struct hstate *h;
2629 unsigned long surplus_huge_pages;
2630 int nid;
2631
2632 h = kobj_to_hstate(kobj, &nid);
2633 if (nid == NUMA_NO_NODE)
2634 surplus_huge_pages = h->surplus_huge_pages;
2635 else
2636 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2637
2638 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
2639}
2640HSTATE_ATTR_RO(surplus_hugepages);
2641
2642static struct attribute *hstate_attrs[] = {
2643 &nr_hugepages_attr.attr,
2644 &nr_overcommit_hugepages_attr.attr,
2645 &free_hugepages_attr.attr,
2646 &resv_hugepages_attr.attr,
2647 &surplus_hugepages_attr.attr,
06808b08
LS
2648#ifdef CONFIG_NUMA
2649 &nr_hugepages_mempolicy_attr.attr,
2650#endif
a3437870
NA
2651 NULL,
2652};
2653
2654static struct attribute_group hstate_attr_group = {
2655 .attrs = hstate_attrs,
2656};
2657
094e9539
JM
2658static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2659 struct kobject **hstate_kobjs,
2660 struct attribute_group *hstate_attr_group)
a3437870
NA
2661{
2662 int retval;
972dc4de 2663 int hi = hstate_index(h);
a3437870 2664
9a305230
LS
2665 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2666 if (!hstate_kobjs[hi])
a3437870
NA
2667 return -ENOMEM;
2668
9a305230 2669 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 2670 if (retval)
9a305230 2671 kobject_put(hstate_kobjs[hi]);
a3437870
NA
2672
2673 return retval;
2674}
2675
2676static void __init hugetlb_sysfs_init(void)
2677{
2678 struct hstate *h;
2679 int err;
2680
2681 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2682 if (!hugepages_kobj)
2683 return;
2684
2685 for_each_hstate(h) {
9a305230
LS
2686 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2687 hstate_kobjs, &hstate_attr_group);
a3437870 2688 if (err)
ffb22af5 2689 pr_err("Hugetlb: Unable to add hstate %s", h->name);
a3437870
NA
2690 }
2691}
2692
9a305230
LS
2693#ifdef CONFIG_NUMA
2694
2695/*
2696 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
2697 * with node devices in node_devices[] using a parallel array. The array
2698 * index of a node device or _hstate == node id.
2699 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
2700 * the base kernel, on the hugetlb module.
2701 */
2702struct node_hstate {
2703 struct kobject *hugepages_kobj;
2704 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2705};
b4e289a6 2706static struct node_hstate node_hstates[MAX_NUMNODES];
9a305230
LS
2707
2708/*
10fbcf4c 2709 * A subset of global hstate attributes for node devices
9a305230
LS
2710 */
2711static struct attribute *per_node_hstate_attrs[] = {
2712 &nr_hugepages_attr.attr,
2713 &free_hugepages_attr.attr,
2714 &surplus_hugepages_attr.attr,
2715 NULL,
2716};
2717
2718static struct attribute_group per_node_hstate_attr_group = {
2719 .attrs = per_node_hstate_attrs,
2720};
2721
2722/*
10fbcf4c 2723 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
2724 * Returns node id via non-NULL nidp.
2725 */
2726static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2727{
2728 int nid;
2729
2730 for (nid = 0; nid < nr_node_ids; nid++) {
2731 struct node_hstate *nhs = &node_hstates[nid];
2732 int i;
2733 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2734 if (nhs->hstate_kobjs[i] == kobj) {
2735 if (nidp)
2736 *nidp = nid;
2737 return &hstates[i];
2738 }
2739 }
2740
2741 BUG();
2742 return NULL;
2743}
2744
2745/*
10fbcf4c 2746 * Unregister hstate attributes from a single node device.
9a305230
LS
2747 * No-op if no hstate attributes attached.
2748 */
3cd8b44f 2749static void hugetlb_unregister_node(struct node *node)
9a305230
LS
2750{
2751 struct hstate *h;
10fbcf4c 2752 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2753
2754 if (!nhs->hugepages_kobj)
9b5e5d0f 2755 return; /* no hstate attributes */
9a305230 2756
972dc4de
AK
2757 for_each_hstate(h) {
2758 int idx = hstate_index(h);
2759 if (nhs->hstate_kobjs[idx]) {
2760 kobject_put(nhs->hstate_kobjs[idx]);
2761 nhs->hstate_kobjs[idx] = NULL;
9a305230 2762 }
972dc4de 2763 }
9a305230
LS
2764
2765 kobject_put(nhs->hugepages_kobj);
2766 nhs->hugepages_kobj = NULL;
2767}
2768
9a305230
LS
2769
2770/*
10fbcf4c 2771 * Register hstate attributes for a single node device.
9a305230
LS
2772 * No-op if attributes already registered.
2773 */
3cd8b44f 2774static void hugetlb_register_node(struct node *node)
9a305230
LS
2775{
2776 struct hstate *h;
10fbcf4c 2777 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2778 int err;
2779
2780 if (nhs->hugepages_kobj)
2781 return; /* already allocated */
2782
2783 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 2784 &node->dev.kobj);
9a305230
LS
2785 if (!nhs->hugepages_kobj)
2786 return;
2787
2788 for_each_hstate(h) {
2789 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2790 nhs->hstate_kobjs,
2791 &per_node_hstate_attr_group);
2792 if (err) {
ffb22af5
AM
2793 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2794 h->name, node->dev.id);
9a305230
LS
2795 hugetlb_unregister_node(node);
2796 break;
2797 }
2798 }
2799}
2800
2801/*
9b5e5d0f 2802 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
2803 * devices of nodes that have memory. All on-line nodes should have
2804 * registered their associated device by this time.
9a305230 2805 */
7d9ca000 2806static void __init hugetlb_register_all_nodes(void)
9a305230
LS
2807{
2808 int nid;
2809
8cebfcd0 2810 for_each_node_state(nid, N_MEMORY) {
8732794b 2811 struct node *node = node_devices[nid];
10fbcf4c 2812 if (node->dev.id == nid)
9a305230
LS
2813 hugetlb_register_node(node);
2814 }
2815
2816 /*
10fbcf4c 2817 * Let the node device driver know we're here so it can
9a305230
LS
2818 * [un]register hstate attributes on node hotplug.
2819 */
2820 register_hugetlbfs_with_node(hugetlb_register_node,
2821 hugetlb_unregister_node);
2822}
2823#else /* !CONFIG_NUMA */
2824
2825static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2826{
2827 BUG();
2828 if (nidp)
2829 *nidp = -1;
2830 return NULL;
2831}
2832
9a305230
LS
2833static void hugetlb_register_all_nodes(void) { }
2834
2835#endif
2836
a3437870
NA
2837static int __init hugetlb_init(void)
2838{
8382d914
DB
2839 int i;
2840
457c1b27 2841 if (!hugepages_supported())
0ef89d25 2842 return 0;
a3437870 2843
e11bfbfc 2844 if (!size_to_hstate(default_hstate_size)) {
d715cf80
LH
2845 if (default_hstate_size != 0) {
2846 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2847 default_hstate_size, HPAGE_SIZE);
2848 }
2849
e11bfbfc
NP
2850 default_hstate_size = HPAGE_SIZE;
2851 if (!size_to_hstate(default_hstate_size))
2852 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 2853 }
972dc4de 2854 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
f8b74815
VT
2855 if (default_hstate_max_huge_pages) {
2856 if (!default_hstate.max_huge_pages)
2857 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2858 }
a3437870
NA
2859
2860 hugetlb_init_hstates();
aa888a74 2861 gather_bootmem_prealloc();
a3437870
NA
2862 report_hugepages();
2863
2864 hugetlb_sysfs_init();
9a305230 2865 hugetlb_register_all_nodes();
7179e7bf 2866 hugetlb_cgroup_file_init();
9a305230 2867
8382d914
DB
2868#ifdef CONFIG_SMP
2869 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2870#else
2871 num_fault_mutexes = 1;
2872#endif
c672c7f2 2873 hugetlb_fault_mutex_table =
8382d914 2874 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
c672c7f2 2875 BUG_ON(!hugetlb_fault_mutex_table);
8382d914
DB
2876
2877 for (i = 0; i < num_fault_mutexes; i++)
c672c7f2 2878 mutex_init(&hugetlb_fault_mutex_table[i]);
a3437870
NA
2879 return 0;
2880}
3e89e1c5 2881subsys_initcall(hugetlb_init);
a3437870
NA
2882
2883/* Should be called on processing a hugepagesz=... option */
9fee021d
VT
2884void __init hugetlb_bad_size(void)
2885{
2886 parsed_valid_hugepagesz = false;
2887}
2888
d00181b9 2889void __init hugetlb_add_hstate(unsigned int order)
a3437870
NA
2890{
2891 struct hstate *h;
8faa8b07
AK
2892 unsigned long i;
2893
a3437870 2894 if (size_to_hstate(PAGE_SIZE << order)) {
598d8091 2895 pr_warn("hugepagesz= specified twice, ignoring\n");
a3437870
NA
2896 return;
2897 }
47d38344 2898 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 2899 BUG_ON(order == 0);
47d38344 2900 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
2901 h->order = order;
2902 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
2903 h->nr_huge_pages = 0;
2904 h->free_huge_pages = 0;
2905 for (i = 0; i < MAX_NUMNODES; ++i)
2906 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 2907 INIT_LIST_HEAD(&h->hugepage_activelist);
54f18d35
AM
2908 h->next_nid_to_alloc = first_memory_node;
2909 h->next_nid_to_free = first_memory_node;
a3437870
NA
2910 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2911 huge_page_size(h)/1024);
8faa8b07 2912
a3437870
NA
2913 parsed_hstate = h;
2914}
2915
e11bfbfc 2916static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
2917{
2918 unsigned long *mhp;
8faa8b07 2919 static unsigned long *last_mhp;
a3437870 2920
9fee021d
VT
2921 if (!parsed_valid_hugepagesz) {
2922 pr_warn("hugepages = %s preceded by "
2923 "an unsupported hugepagesz, ignoring\n", s);
2924 parsed_valid_hugepagesz = true;
2925 return 1;
2926 }
a3437870 2927 /*
47d38344 2928 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
a3437870
NA
2929 * so this hugepages= parameter goes to the "default hstate".
2930 */
9fee021d 2931 else if (!hugetlb_max_hstate)
a3437870
NA
2932 mhp = &default_hstate_max_huge_pages;
2933 else
2934 mhp = &parsed_hstate->max_huge_pages;
2935
8faa8b07 2936 if (mhp == last_mhp) {
598d8091 2937 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
8faa8b07
AK
2938 return 1;
2939 }
2940
a3437870
NA
2941 if (sscanf(s, "%lu", mhp) <= 0)
2942 *mhp = 0;
2943
8faa8b07
AK
2944 /*
2945 * Global state is always initialized later in hugetlb_init.
2946 * But we need to allocate >= MAX_ORDER hstates here early to still
2947 * use the bootmem allocator.
2948 */
47d38344 2949 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
2950 hugetlb_hstate_alloc_pages(parsed_hstate);
2951
2952 last_mhp = mhp;
2953
a3437870
NA
2954 return 1;
2955}
e11bfbfc
NP
2956__setup("hugepages=", hugetlb_nrpages_setup);
2957
2958static int __init hugetlb_default_setup(char *s)
2959{
2960 default_hstate_size = memparse(s, &s);
2961 return 1;
2962}
2963__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 2964
8a213460
NA
2965static unsigned int cpuset_mems_nr(unsigned int *array)
2966{
2967 int node;
2968 unsigned int nr = 0;
2969
2970 for_each_node_mask(node, cpuset_current_mems_allowed)
2971 nr += array[node];
2972
2973 return nr;
2974}
2975
2976#ifdef CONFIG_SYSCTL
06808b08
LS
2977static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2978 struct ctl_table *table, int write,
2979 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 2980{
e5ff2159 2981 struct hstate *h = &default_hstate;
238d3c13 2982 unsigned long tmp = h->max_huge_pages;
08d4a246 2983 int ret;
e5ff2159 2984
457c1b27 2985 if (!hugepages_supported())
86613628 2986 return -EOPNOTSUPP;
457c1b27 2987
e5ff2159
AK
2988 table->data = &tmp;
2989 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2990 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2991 if (ret)
2992 goto out;
e5ff2159 2993
238d3c13
DR
2994 if (write)
2995 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2996 NUMA_NO_NODE, tmp, *length);
08d4a246
MH
2997out:
2998 return ret;
1da177e4 2999}
396faf03 3000
06808b08
LS
3001int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3002 void __user *buffer, size_t *length, loff_t *ppos)
3003{
3004
3005 return hugetlb_sysctl_handler_common(false, table, write,
3006 buffer, length, ppos);
3007}
3008
3009#ifdef CONFIG_NUMA
3010int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3011 void __user *buffer, size_t *length, loff_t *ppos)
3012{
3013 return hugetlb_sysctl_handler_common(true, table, write,
3014 buffer, length, ppos);
3015}
3016#endif /* CONFIG_NUMA */
3017
a3d0c6aa 3018int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 3019 void __user *buffer,
a3d0c6aa
NA
3020 size_t *length, loff_t *ppos)
3021{
a5516438 3022 struct hstate *h = &default_hstate;
e5ff2159 3023 unsigned long tmp;
08d4a246 3024 int ret;
e5ff2159 3025
457c1b27 3026 if (!hugepages_supported())
86613628 3027 return -EOPNOTSUPP;
457c1b27 3028
c033a93c 3029 tmp = h->nr_overcommit_huge_pages;
e5ff2159 3030
bae7f4ae 3031 if (write && hstate_is_gigantic(h))
adbe8726
EM
3032 return -EINVAL;
3033
e5ff2159
AK
3034 table->data = &tmp;
3035 table->maxlen = sizeof(unsigned long);
08d4a246
MH
3036 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3037 if (ret)
3038 goto out;
e5ff2159
AK
3039
3040 if (write) {
3041 spin_lock(&hugetlb_lock);
3042 h->nr_overcommit_huge_pages = tmp;
3043 spin_unlock(&hugetlb_lock);
3044 }
08d4a246
MH
3045out:
3046 return ret;
a3d0c6aa
NA
3047}
3048
1da177e4
LT
3049#endif /* CONFIG_SYSCTL */
3050
e1759c21 3051void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 3052{
a5516438 3053 struct hstate *h = &default_hstate;
457c1b27
NA
3054 if (!hugepages_supported())
3055 return;
e1759c21 3056 seq_printf(m,
4f98a2fe
RR
3057 "HugePages_Total: %5lu\n"
3058 "HugePages_Free: %5lu\n"
3059 "HugePages_Rsvd: %5lu\n"
3060 "HugePages_Surp: %5lu\n"
3061 "Hugepagesize: %8lu kB\n",
a5516438
AK
3062 h->nr_huge_pages,
3063 h->free_huge_pages,
3064 h->resv_huge_pages,
3065 h->surplus_huge_pages,
3066 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1da177e4
LT
3067}
3068
3069int hugetlb_report_node_meminfo(int nid, char *buf)
3070{
a5516438 3071 struct hstate *h = &default_hstate;
457c1b27
NA
3072 if (!hugepages_supported())
3073 return 0;
1da177e4
LT
3074 return sprintf(buf,
3075 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
3076 "Node %d HugePages_Free: %5u\n"
3077 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
3078 nid, h->nr_huge_pages_node[nid],
3079 nid, h->free_huge_pages_node[nid],
3080 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
3081}
3082
949f7ec5
DR
3083void hugetlb_show_meminfo(void)
3084{
3085 struct hstate *h;
3086 int nid;
3087
457c1b27
NA
3088 if (!hugepages_supported())
3089 return;
3090
949f7ec5
DR
3091 for_each_node_state(nid, N_MEMORY)
3092 for_each_hstate(h)
3093 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3094 nid,
3095 h->nr_huge_pages_node[nid],
3096 h->free_huge_pages_node[nid],
3097 h->surplus_huge_pages_node[nid],
3098 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3099}
3100
5d317b2b
NH
3101void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3102{
3103 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3104 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3105}
3106
1da177e4
LT
3107/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3108unsigned long hugetlb_total_pages(void)
3109{
d0028588
WL
3110 struct hstate *h;
3111 unsigned long nr_total_pages = 0;
3112
3113 for_each_hstate(h)
3114 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3115 return nr_total_pages;
1da177e4 3116}
1da177e4 3117
a5516438 3118static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
3119{
3120 int ret = -ENOMEM;
3121
3122 spin_lock(&hugetlb_lock);
3123 /*
3124 * When cpuset is configured, it breaks the strict hugetlb page
3125 * reservation as the accounting is done on a global variable. Such
3126 * reservation is completely rubbish in the presence of cpuset because
3127 * the reservation is not checked against page availability for the
3128 * current cpuset. Application can still potentially OOM'ed by kernel
3129 * with lack of free htlb page in cpuset that the task is in.
3130 * Attempt to enforce strict accounting with cpuset is almost
3131 * impossible (or too ugly) because cpuset is too fluid that
3132 * task or memory node can be dynamically moved between cpusets.
3133 *
3134 * The change of semantics for shared hugetlb mapping with cpuset is
3135 * undesirable. However, in order to preserve some of the semantics,
3136 * we fall back to check against current free page availability as
3137 * a best attempt and hopefully to minimize the impact of changing
3138 * semantics that cpuset has.
3139 */
3140 if (delta > 0) {
a5516438 3141 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
3142 goto out;
3143
a5516438
AK
3144 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3145 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
3146 goto out;
3147 }
3148 }
3149
3150 ret = 0;
3151 if (delta < 0)
a5516438 3152 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
3153
3154out:
3155 spin_unlock(&hugetlb_lock);
3156 return ret;
3157}
3158
84afd99b
AW
3159static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3160{
f522c3ac 3161 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
3162
3163 /*
3164 * This new VMA should share its siblings reservation map if present.
3165 * The VMA will only ever have a valid reservation map pointer where
3166 * it is being copied for another still existing VMA. As that VMA
25985edc 3167 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
3168 * after this open call completes. It is therefore safe to take a
3169 * new reference here without additional locking.
3170 */
4e35f483 3171 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
f522c3ac 3172 kref_get(&resv->refs);
84afd99b
AW
3173}
3174
a1e78772
MG
3175static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3176{
a5516438 3177 struct hstate *h = hstate_vma(vma);
f522c3ac 3178 struct resv_map *resv = vma_resv_map(vma);
90481622 3179 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 3180 unsigned long reserve, start, end;
1c5ecae3 3181 long gbl_reserve;
84afd99b 3182
4e35f483
JK
3183 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3184 return;
84afd99b 3185
4e35f483
JK
3186 start = vma_hugecache_offset(h, vma, vma->vm_start);
3187 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 3188
4e35f483 3189 reserve = (end - start) - region_count(resv, start, end);
84afd99b 3190
4e35f483
JK
3191 kref_put(&resv->refs, resv_map_release);
3192
3193 if (reserve) {
1c5ecae3
MK
3194 /*
3195 * Decrement reserve counts. The global reserve count may be
3196 * adjusted if the subpool has a minimum size.
3197 */
3198 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3199 hugetlb_acct_memory(h, -gbl_reserve);
84afd99b 3200 }
a1e78772
MG
3201}
3202
1da177e4
LT
3203/*
3204 * We cannot handle pagefaults against hugetlb pages at all. They cause
3205 * handle_mm_fault() to try to instantiate regular-sized pages in the
3206 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3207 * this far.
3208 */
11bac800 3209static int hugetlb_vm_op_fault(struct vm_fault *vmf)
1da177e4
LT
3210{
3211 BUG();
d0217ac0 3212 return 0;
1da177e4
LT
3213}
3214
f0f37e2f 3215const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 3216 .fault = hugetlb_vm_op_fault,
84afd99b 3217 .open = hugetlb_vm_op_open,
a1e78772 3218 .close = hugetlb_vm_op_close,
1da177e4
LT
3219};
3220
1e8f889b
DG
3221static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3222 int writable)
63551ae0
DG
3223{
3224 pte_t entry;
3225
1e8f889b 3226 if (writable) {
106c992a
GS
3227 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3228 vma->vm_page_prot)));
63551ae0 3229 } else {
106c992a
GS
3230 entry = huge_pte_wrprotect(mk_huge_pte(page,
3231 vma->vm_page_prot));
63551ae0
DG
3232 }
3233 entry = pte_mkyoung(entry);
3234 entry = pte_mkhuge(entry);
d9ed9faa 3235 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
3236
3237 return entry;
3238}
3239
1e8f889b
DG
3240static void set_huge_ptep_writable(struct vm_area_struct *vma,
3241 unsigned long address, pte_t *ptep)
3242{
3243 pte_t entry;
3244
106c992a 3245 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 3246 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 3247 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
3248}
3249
d5ed7444 3250bool is_hugetlb_entry_migration(pte_t pte)
4a705fef
NH
3251{
3252 swp_entry_t swp;
3253
3254 if (huge_pte_none(pte) || pte_present(pte))
d5ed7444 3255 return false;
4a705fef
NH
3256 swp = pte_to_swp_entry(pte);
3257 if (non_swap_entry(swp) && is_migration_entry(swp))
d5ed7444 3258 return true;
4a705fef 3259 else
d5ed7444 3260 return false;
4a705fef
NH
3261}
3262
3263static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3264{
3265 swp_entry_t swp;
3266
3267 if (huge_pte_none(pte) || pte_present(pte))
3268 return 0;
3269 swp = pte_to_swp_entry(pte);
3270 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3271 return 1;
3272 else
3273 return 0;
3274}
1e8f889b 3275
63551ae0
DG
3276int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3277 struct vm_area_struct *vma)
3278{
3279 pte_t *src_pte, *dst_pte, entry;
3280 struct page *ptepage;
1c59827d 3281 unsigned long addr;
1e8f889b 3282 int cow;
a5516438
AK
3283 struct hstate *h = hstate_vma(vma);
3284 unsigned long sz = huge_page_size(h);
e8569dd2
AS
3285 unsigned long mmun_start; /* For mmu_notifiers */
3286 unsigned long mmun_end; /* For mmu_notifiers */
3287 int ret = 0;
1e8f889b
DG
3288
3289 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 3290
e8569dd2
AS
3291 mmun_start = vma->vm_start;
3292 mmun_end = vma->vm_end;
3293 if (cow)
3294 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3295
a5516438 3296 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
cb900f41 3297 spinlock_t *src_ptl, *dst_ptl;
7868a208 3298 src_pte = huge_pte_offset(src, addr, sz);
c74df32c
HD
3299 if (!src_pte)
3300 continue;
a5516438 3301 dst_pte = huge_pte_alloc(dst, addr, sz);
e8569dd2
AS
3302 if (!dst_pte) {
3303 ret = -ENOMEM;
3304 break;
3305 }
c5c99429
LW
3306
3307 /* If the pagetables are shared don't copy or take references */
3308 if (dst_pte == src_pte)
3309 continue;
3310
cb900f41
KS
3311 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3312 src_ptl = huge_pte_lockptr(h, src, src_pte);
3313 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4a705fef
NH
3314 entry = huge_ptep_get(src_pte);
3315 if (huge_pte_none(entry)) { /* skip none entry */
3316 ;
3317 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3318 is_hugetlb_entry_hwpoisoned(entry))) {
3319 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3320
3321 if (is_write_migration_entry(swp_entry) && cow) {
3322 /*
3323 * COW mappings require pages in both
3324 * parent and child to be set to read.
3325 */
3326 make_migration_entry_read(&swp_entry);
3327 entry = swp_entry_to_pte(swp_entry);
e5251fd4
PA
3328 set_huge_swap_pte_at(src, addr, src_pte,
3329 entry, sz);
4a705fef 3330 }
e5251fd4 3331 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4a705fef 3332 } else {
34ee645e 3333 if (cow) {
7f2e9525 3334 huge_ptep_set_wrprotect(src, addr, src_pte);
34ee645e
JR
3335 mmu_notifier_invalidate_range(src, mmun_start,
3336 mmun_end);
3337 }
0253d634 3338 entry = huge_ptep_get(src_pte);
1c59827d
HD
3339 ptepage = pte_page(entry);
3340 get_page(ptepage);
53f9263b 3341 page_dup_rmap(ptepage, true);
1c59827d 3342 set_huge_pte_at(dst, addr, dst_pte, entry);
5d317b2b 3343 hugetlb_count_add(pages_per_huge_page(h), dst);
1c59827d 3344 }
cb900f41
KS
3345 spin_unlock(src_ptl);
3346 spin_unlock(dst_ptl);
63551ae0 3347 }
63551ae0 3348
e8569dd2
AS
3349 if (cow)
3350 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3351
3352 return ret;
63551ae0
DG
3353}
3354
24669e58
AK
3355void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3356 unsigned long start, unsigned long end,
3357 struct page *ref_page)
63551ae0
DG
3358{
3359 struct mm_struct *mm = vma->vm_mm;
3360 unsigned long address;
c7546f8f 3361 pte_t *ptep;
63551ae0 3362 pte_t pte;
cb900f41 3363 spinlock_t *ptl;
63551ae0 3364 struct page *page;
a5516438
AK
3365 struct hstate *h = hstate_vma(vma);
3366 unsigned long sz = huge_page_size(h);
2ec74c3e
SG
3367 const unsigned long mmun_start = start; /* For mmu_notifiers */
3368 const unsigned long mmun_end = end; /* For mmu_notifiers */
a5516438 3369
63551ae0 3370 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
3371 BUG_ON(start & ~huge_page_mask(h));
3372 BUG_ON(end & ~huge_page_mask(h));
63551ae0 3373
07e32661
AK
3374 /*
3375 * This is a hugetlb vma, all the pte entries should point
3376 * to huge page.
3377 */
3378 tlb_remove_check_page_size_change(tlb, sz);
24669e58 3379 tlb_start_vma(tlb, vma);
2ec74c3e 3380 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
569f48b8 3381 address = start;
569f48b8 3382 for (; address < end; address += sz) {
7868a208 3383 ptep = huge_pte_offset(mm, address, sz);
4c887265 3384 if (!ptep)
c7546f8f
DG
3385 continue;
3386
cb900f41 3387 ptl = huge_pte_lock(h, mm, ptep);
31d49da5
AK
3388 if (huge_pmd_unshare(mm, &address, ptep)) {
3389 spin_unlock(ptl);
3390 continue;
3391 }
39dde65c 3392
6629326b 3393 pte = huge_ptep_get(ptep);
31d49da5
AK
3394 if (huge_pte_none(pte)) {
3395 spin_unlock(ptl);
3396 continue;
3397 }
6629326b
HD
3398
3399 /*
9fbc1f63
NH
3400 * Migrating hugepage or HWPoisoned hugepage is already
3401 * unmapped and its refcount is dropped, so just clear pte here.
6629326b 3402 */
9fbc1f63 3403 if (unlikely(!pte_present(pte))) {
9386fac3 3404 huge_pte_clear(mm, address, ptep, sz);
31d49da5
AK
3405 spin_unlock(ptl);
3406 continue;
8c4894c6 3407 }
6629326b
HD
3408
3409 page = pte_page(pte);
04f2cbe3
MG
3410 /*
3411 * If a reference page is supplied, it is because a specific
3412 * page is being unmapped, not a range. Ensure the page we
3413 * are about to unmap is the actual page of interest.
3414 */
3415 if (ref_page) {
31d49da5
AK
3416 if (page != ref_page) {
3417 spin_unlock(ptl);
3418 continue;
3419 }
04f2cbe3
MG
3420 /*
3421 * Mark the VMA as having unmapped its page so that
3422 * future faults in this VMA will fail rather than
3423 * looking like data was lost
3424 */
3425 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3426 }
3427
c7546f8f 3428 pte = huge_ptep_get_and_clear(mm, address, ptep);
b528e4b6 3429 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
106c992a 3430 if (huge_pte_dirty(pte))
6649a386 3431 set_page_dirty(page);
9e81130b 3432
5d317b2b 3433 hugetlb_count_sub(pages_per_huge_page(h), mm);
d281ee61 3434 page_remove_rmap(page, true);
31d49da5 3435
cb900f41 3436 spin_unlock(ptl);
e77b0852 3437 tlb_remove_page_size(tlb, page, huge_page_size(h));
31d49da5
AK
3438 /*
3439 * Bail out after unmapping reference page if supplied
3440 */
3441 if (ref_page)
3442 break;
fe1668ae 3443 }
2ec74c3e 3444 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
24669e58 3445 tlb_end_vma(tlb, vma);
1da177e4 3446}
63551ae0 3447
d833352a
MG
3448void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3449 struct vm_area_struct *vma, unsigned long start,
3450 unsigned long end, struct page *ref_page)
3451{
3452 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3453
3454 /*
3455 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3456 * test will fail on a vma being torn down, and not grab a page table
3457 * on its way out. We're lucky that the flag has such an appropriate
3458 * name, and can in fact be safely cleared here. We could clear it
3459 * before the __unmap_hugepage_range above, but all that's necessary
c8c06efa 3460 * is to clear it before releasing the i_mmap_rwsem. This works
d833352a 3461 * because in the context this is called, the VMA is about to be
c8c06efa 3462 * destroyed and the i_mmap_rwsem is held.
d833352a
MG
3463 */
3464 vma->vm_flags &= ~VM_MAYSHARE;
3465}
3466
502717f4 3467void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 3468 unsigned long end, struct page *ref_page)
502717f4 3469{
24669e58
AK
3470 struct mm_struct *mm;
3471 struct mmu_gather tlb;
3472
3473 mm = vma->vm_mm;
3474
2b047252 3475 tlb_gather_mmu(&tlb, mm, start, end);
24669e58
AK
3476 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3477 tlb_finish_mmu(&tlb, start, end);
502717f4
KC
3478}
3479
04f2cbe3
MG
3480/*
3481 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3482 * mappping it owns the reserve page for. The intention is to unmap the page
3483 * from other VMAs and let the children be SIGKILLed if they are faulting the
3484 * same region.
3485 */
2f4612af
DB
3486static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3487 struct page *page, unsigned long address)
04f2cbe3 3488{
7526674d 3489 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
3490 struct vm_area_struct *iter_vma;
3491 struct address_space *mapping;
04f2cbe3
MG
3492 pgoff_t pgoff;
3493
3494 /*
3495 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3496 * from page cache lookup which is in HPAGE_SIZE units.
3497 */
7526674d 3498 address = address & huge_page_mask(h);
36e4f20a
MH
3499 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3500 vma->vm_pgoff;
93c76a3d 3501 mapping = vma->vm_file->f_mapping;
04f2cbe3 3502
4eb2b1dc
MG
3503 /*
3504 * Take the mapping lock for the duration of the table walk. As
3505 * this mapping should be shared between all the VMAs,
3506 * __unmap_hugepage_range() is called as the lock is already held
3507 */
83cde9e8 3508 i_mmap_lock_write(mapping);
6b2dbba8 3509 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
3510 /* Do not unmap the current VMA */
3511 if (iter_vma == vma)
3512 continue;
3513
2f84a899
MG
3514 /*
3515 * Shared VMAs have their own reserves and do not affect
3516 * MAP_PRIVATE accounting but it is possible that a shared
3517 * VMA is using the same page so check and skip such VMAs.
3518 */
3519 if (iter_vma->vm_flags & VM_MAYSHARE)
3520 continue;
3521
04f2cbe3
MG
3522 /*
3523 * Unmap the page from other VMAs without their own reserves.
3524 * They get marked to be SIGKILLed if they fault in these
3525 * areas. This is because a future no-page fault on this VMA
3526 * could insert a zeroed page instead of the data existing
3527 * from the time of fork. This would look like data corruption
3528 */
3529 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
3530 unmap_hugepage_range(iter_vma, address,
3531 address + huge_page_size(h), page);
04f2cbe3 3532 }
83cde9e8 3533 i_mmap_unlock_write(mapping);
04f2cbe3
MG
3534}
3535
0fe6e20b
NH
3536/*
3537 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
3538 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3539 * cannot race with other handlers or page migration.
3540 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 3541 */
1e8f889b 3542static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3999f52e
AK
3543 unsigned long address, pte_t *ptep,
3544 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 3545{
3999f52e 3546 pte_t pte;
a5516438 3547 struct hstate *h = hstate_vma(vma);
1e8f889b 3548 struct page *old_page, *new_page;
ad4404a2 3549 int ret = 0, outside_reserve = 0;
2ec74c3e
SG
3550 unsigned long mmun_start; /* For mmu_notifiers */
3551 unsigned long mmun_end; /* For mmu_notifiers */
1e8f889b 3552
3999f52e 3553 pte = huge_ptep_get(ptep);
1e8f889b
DG
3554 old_page = pte_page(pte);
3555
04f2cbe3 3556retry_avoidcopy:
1e8f889b
DG
3557 /* If no-one else is actually using this page, avoid the copy
3558 * and just make the page writable */
37a2140d 3559 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5a49973d 3560 page_move_anon_rmap(old_page, vma);
1e8f889b 3561 set_huge_ptep_writable(vma, address, ptep);
83c54070 3562 return 0;
1e8f889b
DG
3563 }
3564
04f2cbe3
MG
3565 /*
3566 * If the process that created a MAP_PRIVATE mapping is about to
3567 * perform a COW due to a shared page count, attempt to satisfy
3568 * the allocation without using the existing reserves. The pagecache
3569 * page is used to determine if the reserve at this address was
3570 * consumed or not. If reserves were used, a partial faulted mapping
3571 * at the time of fork() could consume its reserves on COW instead
3572 * of the full address range.
3573 */
5944d011 3574 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
3575 old_page != pagecache_page)
3576 outside_reserve = 1;
3577
09cbfeaf 3578 get_page(old_page);
b76c8cfb 3579
ad4404a2
DB
3580 /*
3581 * Drop page table lock as buddy allocator may be called. It will
3582 * be acquired again before returning to the caller, as expected.
3583 */
cb900f41 3584 spin_unlock(ptl);
04f2cbe3 3585 new_page = alloc_huge_page(vma, address, outside_reserve);
1e8f889b 3586
2fc39cec 3587 if (IS_ERR(new_page)) {
04f2cbe3
MG
3588 /*
3589 * If a process owning a MAP_PRIVATE mapping fails to COW,
3590 * it is due to references held by a child and an insufficient
3591 * huge page pool. To guarantee the original mappers
3592 * reliability, unmap the page from child processes. The child
3593 * may get SIGKILLed if it later faults.
3594 */
3595 if (outside_reserve) {
09cbfeaf 3596 put_page(old_page);
04f2cbe3 3597 BUG_ON(huge_pte_none(pte));
2f4612af
DB
3598 unmap_ref_private(mm, vma, old_page, address);
3599 BUG_ON(huge_pte_none(pte));
3600 spin_lock(ptl);
7868a208
PA
3601 ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3602 huge_page_size(h));
2f4612af
DB
3603 if (likely(ptep &&
3604 pte_same(huge_ptep_get(ptep), pte)))
3605 goto retry_avoidcopy;
3606 /*
3607 * race occurs while re-acquiring page table
3608 * lock, and our job is done.
3609 */
3610 return 0;
04f2cbe3
MG
3611 }
3612
ad4404a2
DB
3613 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3614 VM_FAULT_OOM : VM_FAULT_SIGBUS;
3615 goto out_release_old;
1e8f889b
DG
3616 }
3617
0fe6e20b
NH
3618 /*
3619 * When the original hugepage is shared one, it does not have
3620 * anon_vma prepared.
3621 */
44e2aa93 3622 if (unlikely(anon_vma_prepare(vma))) {
ad4404a2
DB
3623 ret = VM_FAULT_OOM;
3624 goto out_release_all;
44e2aa93 3625 }
0fe6e20b 3626
47ad8475
AA
3627 copy_user_huge_page(new_page, old_page, address, vma,
3628 pages_per_huge_page(h));
0ed361de 3629 __SetPageUptodate(new_page);
bcc54222 3630 set_page_huge_active(new_page);
1e8f889b 3631
2ec74c3e
SG
3632 mmun_start = address & huge_page_mask(h);
3633 mmun_end = mmun_start + huge_page_size(h);
3634 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
ad4404a2 3635
b76c8cfb 3636 /*
cb900f41 3637 * Retake the page table lock to check for racing updates
b76c8cfb
LW
3638 * before the page tables are altered
3639 */
cb900f41 3640 spin_lock(ptl);
7868a208
PA
3641 ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3642 huge_page_size(h));
a9af0c5d 3643 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
07443a85
JK
3644 ClearPagePrivate(new_page);
3645
1e8f889b 3646 /* Break COW */
8fe627ec 3647 huge_ptep_clear_flush(vma, address, ptep);
34ee645e 3648 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
1e8f889b
DG
3649 set_huge_pte_at(mm, address, ptep,
3650 make_huge_pte(vma, new_page, 1));
d281ee61 3651 page_remove_rmap(old_page, true);
cd67f0d2 3652 hugepage_add_new_anon_rmap(new_page, vma, address);
1e8f889b
DG
3653 /* Make the old page be freed below */
3654 new_page = old_page;
3655 }
cb900f41 3656 spin_unlock(ptl);
2ec74c3e 3657 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
ad4404a2 3658out_release_all:
96b96a96 3659 restore_reserve_on_error(h, vma, address, new_page);
09cbfeaf 3660 put_page(new_page);
ad4404a2 3661out_release_old:
09cbfeaf 3662 put_page(old_page);
8312034f 3663
ad4404a2
DB
3664 spin_lock(ptl); /* Caller expects lock to be held */
3665 return ret;
1e8f889b
DG
3666}
3667
04f2cbe3 3668/* Return the pagecache page at a given address within a VMA */
a5516438
AK
3669static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3670 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
3671{
3672 struct address_space *mapping;
e7c4b0bf 3673 pgoff_t idx;
04f2cbe3
MG
3674
3675 mapping = vma->vm_file->f_mapping;
a5516438 3676 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
3677
3678 return find_lock_page(mapping, idx);
3679}
3680
3ae77f43
HD
3681/*
3682 * Return whether there is a pagecache page to back given address within VMA.
3683 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3684 */
3685static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
3686 struct vm_area_struct *vma, unsigned long address)
3687{
3688 struct address_space *mapping;
3689 pgoff_t idx;
3690 struct page *page;
3691
3692 mapping = vma->vm_file->f_mapping;
3693 idx = vma_hugecache_offset(h, vma, address);
3694
3695 page = find_get_page(mapping, idx);
3696 if (page)
3697 put_page(page);
3698 return page != NULL;
3699}
3700
ab76ad54
MK
3701int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3702 pgoff_t idx)
3703{
3704 struct inode *inode = mapping->host;
3705 struct hstate *h = hstate_inode(inode);
3706 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3707
3708 if (err)
3709 return err;
3710 ClearPagePrivate(page);
3711
3712 spin_lock(&inode->i_lock);
3713 inode->i_blocks += blocks_per_huge_page(h);
3714 spin_unlock(&inode->i_lock);
3715 return 0;
3716}
3717
a1ed3dda 3718static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
8382d914
DB
3719 struct address_space *mapping, pgoff_t idx,
3720 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 3721{
a5516438 3722 struct hstate *h = hstate_vma(vma);
ac9b9c66 3723 int ret = VM_FAULT_SIGBUS;
409eb8c2 3724 int anon_rmap = 0;
4c887265 3725 unsigned long size;
4c887265 3726 struct page *page;
1e8f889b 3727 pte_t new_pte;
cb900f41 3728 spinlock_t *ptl;
4c887265 3729
04f2cbe3
MG
3730 /*
3731 * Currently, we are forced to kill the process in the event the
3732 * original mapper has unmapped pages from the child due to a failed
25985edc 3733 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
3734 */
3735 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
910154d5 3736 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
ffb22af5 3737 current->pid);
04f2cbe3
MG
3738 return ret;
3739 }
3740
4c887265
AL
3741 /*
3742 * Use page lock to guard against racing truncation
3743 * before we get page_table_lock.
3744 */
6bda666a
CL
3745retry:
3746 page = find_lock_page(mapping, idx);
3747 if (!page) {
a5516438 3748 size = i_size_read(mapping->host) >> huge_page_shift(h);
ebed4bfc
HD
3749 if (idx >= size)
3750 goto out;
1a1aad8a
MK
3751
3752 /*
3753 * Check for page in userfault range
3754 */
3755 if (userfaultfd_missing(vma)) {
3756 u32 hash;
3757 struct vm_fault vmf = {
3758 .vma = vma,
3759 .address = address,
3760 .flags = flags,
3761 /*
3762 * Hard to debug if it ends up being
3763 * used by a callee that assumes
3764 * something about the other
3765 * uninitialized fields... same as in
3766 * memory.c
3767 */
3768 };
3769
3770 /*
3771 * hugetlb_fault_mutex must be dropped before
3772 * handling userfault. Reacquire after handling
3773 * fault to make calling code simpler.
3774 */
3775 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
3776 idx, address);
3777 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3778 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3779 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3780 goto out;
3781 }
3782
04f2cbe3 3783 page = alloc_huge_page(vma, address, 0);
2fc39cec 3784 if (IS_ERR(page)) {
76dcee75
AK
3785 ret = PTR_ERR(page);
3786 if (ret == -ENOMEM)
3787 ret = VM_FAULT_OOM;
3788 else
3789 ret = VM_FAULT_SIGBUS;
6bda666a
CL
3790 goto out;
3791 }
47ad8475 3792 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 3793 __SetPageUptodate(page);
bcc54222 3794 set_page_huge_active(page);
ac9b9c66 3795
f83a275d 3796 if (vma->vm_flags & VM_MAYSHARE) {
ab76ad54 3797 int err = huge_add_to_page_cache(page, mapping, idx);
6bda666a
CL
3798 if (err) {
3799 put_page(page);
6bda666a
CL
3800 if (err == -EEXIST)
3801 goto retry;
3802 goto out;
3803 }
23be7468 3804 } else {
6bda666a 3805 lock_page(page);
0fe6e20b
NH
3806 if (unlikely(anon_vma_prepare(vma))) {
3807 ret = VM_FAULT_OOM;
3808 goto backout_unlocked;
3809 }
409eb8c2 3810 anon_rmap = 1;
23be7468 3811 }
0fe6e20b 3812 } else {
998b4382
NH
3813 /*
3814 * If memory error occurs between mmap() and fault, some process
3815 * don't have hwpoisoned swap entry for errored virtual address.
3816 * So we need to block hugepage fault by PG_hwpoison bit check.
3817 */
3818 if (unlikely(PageHWPoison(page))) {
32f84528 3819 ret = VM_FAULT_HWPOISON |
972dc4de 3820 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
3821 goto backout_unlocked;
3822 }
6bda666a 3823 }
1e8f889b 3824
57303d80
AW
3825 /*
3826 * If we are going to COW a private mapping later, we examine the
3827 * pending reservations for this page now. This will ensure that
3828 * any allocations necessary to record that reservation occur outside
3829 * the spinlock.
3830 */
5e911373 3831 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2b26736c
AW
3832 if (vma_needs_reservation(h, vma, address) < 0) {
3833 ret = VM_FAULT_OOM;
3834 goto backout_unlocked;
3835 }
5e911373 3836 /* Just decrements count, does not deallocate */
feba16e2 3837 vma_end_reservation(h, vma, address);
5e911373 3838 }
57303d80 3839
8bea8052 3840 ptl = huge_pte_lock(h, mm, ptep);
a5516438 3841 size = i_size_read(mapping->host) >> huge_page_shift(h);
4c887265
AL
3842 if (idx >= size)
3843 goto backout;
3844
83c54070 3845 ret = 0;
7f2e9525 3846 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
3847 goto backout;
3848
07443a85
JK
3849 if (anon_rmap) {
3850 ClearPagePrivate(page);
409eb8c2 3851 hugepage_add_new_anon_rmap(page, vma, address);
ac714904 3852 } else
53f9263b 3853 page_dup_rmap(page, true);
1e8f889b
DG
3854 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3855 && (vma->vm_flags & VM_SHARED)));
3856 set_huge_pte_at(mm, address, ptep, new_pte);
3857
5d317b2b 3858 hugetlb_count_add(pages_per_huge_page(h), mm);
788c7df4 3859 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 3860 /* Optimization, do the COW without a second fault */
3999f52e 3861 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
1e8f889b
DG
3862 }
3863
cb900f41 3864 spin_unlock(ptl);
4c887265
AL
3865 unlock_page(page);
3866out:
ac9b9c66 3867 return ret;
4c887265
AL
3868
3869backout:
cb900f41 3870 spin_unlock(ptl);
2b26736c 3871backout_unlocked:
4c887265 3872 unlock_page(page);
96b96a96 3873 restore_reserve_on_error(h, vma, address, page);
4c887265
AL
3874 put_page(page);
3875 goto out;
ac9b9c66
HD
3876}
3877
8382d914 3878#ifdef CONFIG_SMP
c672c7f2 3879u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
8382d914
DB
3880 struct vm_area_struct *vma,
3881 struct address_space *mapping,
3882 pgoff_t idx, unsigned long address)
3883{
3884 unsigned long key[2];
3885 u32 hash;
3886
3887 if (vma->vm_flags & VM_SHARED) {
3888 key[0] = (unsigned long) mapping;
3889 key[1] = idx;
3890 } else {
3891 key[0] = (unsigned long) mm;
3892 key[1] = address >> huge_page_shift(h);
3893 }
3894
3895 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3896
3897 return hash & (num_fault_mutexes - 1);
3898}
3899#else
3900/*
3901 * For uniprocesor systems we always use a single mutex, so just
3902 * return 0 and avoid the hashing overhead.
3903 */
c672c7f2 3904u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
8382d914
DB
3905 struct vm_area_struct *vma,
3906 struct address_space *mapping,
3907 pgoff_t idx, unsigned long address)
3908{
3909 return 0;
3910}
3911#endif
3912
86e5216f 3913int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 3914 unsigned long address, unsigned int flags)
86e5216f 3915{
8382d914 3916 pte_t *ptep, entry;
cb900f41 3917 spinlock_t *ptl;
1e8f889b 3918 int ret;
8382d914
DB
3919 u32 hash;
3920 pgoff_t idx;
0fe6e20b 3921 struct page *page = NULL;
57303d80 3922 struct page *pagecache_page = NULL;
a5516438 3923 struct hstate *h = hstate_vma(vma);
8382d914 3924 struct address_space *mapping;
0f792cf9 3925 int need_wait_lock = 0;
86e5216f 3926
1e16a539
KH
3927 address &= huge_page_mask(h);
3928
7868a208 3929 ptep = huge_pte_offset(mm, address, huge_page_size(h));
fd6a03ed
NH
3930 if (ptep) {
3931 entry = huge_ptep_get(ptep);
290408d4 3932 if (unlikely(is_hugetlb_entry_migration(entry))) {
cb900f41 3933 migration_entry_wait_huge(vma, mm, ptep);
290408d4
NH
3934 return 0;
3935 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 3936 return VM_FAULT_HWPOISON_LARGE |
972dc4de 3937 VM_FAULT_SET_HINDEX(hstate_index(h));
0d777df5
NH
3938 } else {
3939 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3940 if (!ptep)
3941 return VM_FAULT_OOM;
fd6a03ed
NH
3942 }
3943
8382d914
DB
3944 mapping = vma->vm_file->f_mapping;
3945 idx = vma_hugecache_offset(h, vma, address);
3946
3935baa9
DG
3947 /*
3948 * Serialize hugepage allocation and instantiation, so that we don't
3949 * get spurious allocation failures if two CPUs race to instantiate
3950 * the same page in the page cache.
3951 */
c672c7f2
MK
3952 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3953 mutex_lock(&hugetlb_fault_mutex_table[hash]);
8382d914 3954
7f2e9525
GS
3955 entry = huge_ptep_get(ptep);
3956 if (huge_pte_none(entry)) {
8382d914 3957 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
b4d1d99f 3958 goto out_mutex;
3935baa9 3959 }
86e5216f 3960
83c54070 3961 ret = 0;
1e8f889b 3962
0f792cf9
NH
3963 /*
3964 * entry could be a migration/hwpoison entry at this point, so this
3965 * check prevents the kernel from going below assuming that we have
3966 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3967 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3968 * handle it.
3969 */
3970 if (!pte_present(entry))
3971 goto out_mutex;
3972
57303d80
AW
3973 /*
3974 * If we are going to COW the mapping later, we examine the pending
3975 * reservations for this page now. This will ensure that any
3976 * allocations necessary to record that reservation occur outside the
3977 * spinlock. For private mappings, we also lookup the pagecache
3978 * page now as it is used to determine if a reservation has been
3979 * consumed.
3980 */
106c992a 3981 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2b26736c
AW
3982 if (vma_needs_reservation(h, vma, address) < 0) {
3983 ret = VM_FAULT_OOM;
b4d1d99f 3984 goto out_mutex;
2b26736c 3985 }
5e911373 3986 /* Just decrements count, does not deallocate */
feba16e2 3987 vma_end_reservation(h, vma, address);
57303d80 3988
f83a275d 3989 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80
AW
3990 pagecache_page = hugetlbfs_pagecache_page(h,
3991 vma, address);
3992 }
3993
0f792cf9
NH
3994 ptl = huge_pte_lock(h, mm, ptep);
3995
3996 /* Check for a racing update before calling hugetlb_cow */
3997 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3998 goto out_ptl;
3999
56c9cfb1
NH
4000 /*
4001 * hugetlb_cow() requires page locks of pte_page(entry) and
4002 * pagecache_page, so here we need take the former one
4003 * when page != pagecache_page or !pagecache_page.
56c9cfb1
NH
4004 */
4005 page = pte_page(entry);
4006 if (page != pagecache_page)
0f792cf9
NH
4007 if (!trylock_page(page)) {
4008 need_wait_lock = 1;
4009 goto out_ptl;
4010 }
b4d1d99f 4011
0f792cf9 4012 get_page(page);
b4d1d99f 4013
788c7df4 4014 if (flags & FAULT_FLAG_WRITE) {
106c992a 4015 if (!huge_pte_write(entry)) {
3999f52e
AK
4016 ret = hugetlb_cow(mm, vma, address, ptep,
4017 pagecache_page, ptl);
0f792cf9 4018 goto out_put_page;
b4d1d99f 4019 }
106c992a 4020 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
4021 }
4022 entry = pte_mkyoung(entry);
788c7df4
HD
4023 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
4024 flags & FAULT_FLAG_WRITE))
4b3073e1 4025 update_mmu_cache(vma, address, ptep);
0f792cf9
NH
4026out_put_page:
4027 if (page != pagecache_page)
4028 unlock_page(page);
4029 put_page(page);
cb900f41
KS
4030out_ptl:
4031 spin_unlock(ptl);
57303d80
AW
4032
4033 if (pagecache_page) {
4034 unlock_page(pagecache_page);
4035 put_page(pagecache_page);
4036 }
b4d1d99f 4037out_mutex:
c672c7f2 4038 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
0f792cf9
NH
4039 /*
4040 * Generally it's safe to hold refcount during waiting page lock. But
4041 * here we just wait to defer the next page fault to avoid busy loop and
4042 * the page is not used after unlocked before returning from the current
4043 * page fault. So we are safe from accessing freed page, even if we wait
4044 * here without taking refcount.
4045 */
4046 if (need_wait_lock)
4047 wait_on_page_locked(page);
1e8f889b 4048 return ret;
86e5216f
AL
4049}
4050
8fb5debc
MK
4051/*
4052 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4053 * modifications for huge pages.
4054 */
4055int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4056 pte_t *dst_pte,
4057 struct vm_area_struct *dst_vma,
4058 unsigned long dst_addr,
4059 unsigned long src_addr,
4060 struct page **pagep)
4061{
1c9e8def 4062 int vm_shared = dst_vma->vm_flags & VM_SHARED;
8fb5debc
MK
4063 struct hstate *h = hstate_vma(dst_vma);
4064 pte_t _dst_pte;
4065 spinlock_t *ptl;
4066 int ret;
4067 struct page *page;
4068
4069 if (!*pagep) {
4070 ret = -ENOMEM;
4071 page = alloc_huge_page(dst_vma, dst_addr, 0);
4072 if (IS_ERR(page))
4073 goto out;
4074
4075 ret = copy_huge_page_from_user(page,
4076 (const void __user *) src_addr,
810a56b9 4077 pages_per_huge_page(h), false);
8fb5debc
MK
4078
4079 /* fallback to copy_from_user outside mmap_sem */
4080 if (unlikely(ret)) {
4081 ret = -EFAULT;
4082 *pagep = page;
4083 /* don't free the page */
4084 goto out;
4085 }
4086 } else {
4087 page = *pagep;
4088 *pagep = NULL;
4089 }
4090
4091 /*
4092 * The memory barrier inside __SetPageUptodate makes sure that
4093 * preceding stores to the page contents become visible before
4094 * the set_pte_at() write.
4095 */
4096 __SetPageUptodate(page);
4097 set_page_huge_active(page);
4098
1c9e8def
MK
4099 /*
4100 * If shared, add to page cache
4101 */
4102 if (vm_shared) {
4103 struct address_space *mapping = dst_vma->vm_file->f_mapping;
4104 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4105
4106 ret = huge_add_to_page_cache(page, mapping, idx);
4107 if (ret)
4108 goto out_release_nounlock;
4109 }
4110
8fb5debc
MK
4111 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4112 spin_lock(ptl);
4113
4114 ret = -EEXIST;
4115 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4116 goto out_release_unlock;
4117
1c9e8def
MK
4118 if (vm_shared) {
4119 page_dup_rmap(page, true);
4120 } else {
4121 ClearPagePrivate(page);
4122 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4123 }
8fb5debc
MK
4124
4125 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4126 if (dst_vma->vm_flags & VM_WRITE)
4127 _dst_pte = huge_pte_mkdirty(_dst_pte);
4128 _dst_pte = pte_mkyoung(_dst_pte);
4129
4130 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4131
4132 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4133 dst_vma->vm_flags & VM_WRITE);
4134 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4135
4136 /* No need to invalidate - it was non-present before */
4137 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4138
4139 spin_unlock(ptl);
1c9e8def
MK
4140 if (vm_shared)
4141 unlock_page(page);
8fb5debc
MK
4142 ret = 0;
4143out:
4144 return ret;
4145out_release_unlock:
4146 spin_unlock(ptl);
1c9e8def
MK
4147out_release_nounlock:
4148 if (vm_shared)
4149 unlock_page(page);
8fb5debc
MK
4150 put_page(page);
4151 goto out;
4152}
4153
28a35716
ML
4154long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4155 struct page **pages, struct vm_area_struct **vmas,
4156 unsigned long *position, unsigned long *nr_pages,
87ffc118 4157 long i, unsigned int flags, int *nonblocking)
63551ae0 4158{
d5d4b0aa
KC
4159 unsigned long pfn_offset;
4160 unsigned long vaddr = *position;
28a35716 4161 unsigned long remainder = *nr_pages;
a5516438 4162 struct hstate *h = hstate_vma(vma);
63551ae0 4163
63551ae0 4164 while (vaddr < vma->vm_end && remainder) {
4c887265 4165 pte_t *pte;
cb900f41 4166 spinlock_t *ptl = NULL;
2a15efc9 4167 int absent;
4c887265 4168 struct page *page;
63551ae0 4169
02057967
DR
4170 /*
4171 * If we have a pending SIGKILL, don't keep faulting pages and
4172 * potentially allocating memory.
4173 */
4174 if (unlikely(fatal_signal_pending(current))) {
4175 remainder = 0;
4176 break;
4177 }
4178
4c887265
AL
4179 /*
4180 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 4181 * each hugepage. We have to make sure we get the
4c887265 4182 * first, for the page indexing below to work.
cb900f41
KS
4183 *
4184 * Note that page table lock is not held when pte is null.
4c887265 4185 */
7868a208
PA
4186 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4187 huge_page_size(h));
cb900f41
KS
4188 if (pte)
4189 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
4190 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4191
4192 /*
4193 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
4194 * an error where there's an empty slot with no huge pagecache
4195 * to back it. This way, we avoid allocating a hugepage, and
4196 * the sparse dumpfile avoids allocating disk blocks, but its
4197 * huge holes still show up with zeroes where they need to be.
2a15efc9 4198 */
3ae77f43
HD
4199 if (absent && (flags & FOLL_DUMP) &&
4200 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
4201 if (pte)
4202 spin_unlock(ptl);
2a15efc9
HD
4203 remainder = 0;
4204 break;
4205 }
63551ae0 4206
9cc3a5bd
NH
4207 /*
4208 * We need call hugetlb_fault for both hugepages under migration
4209 * (in which case hugetlb_fault waits for the migration,) and
4210 * hwpoisoned hugepages (in which case we need to prevent the
4211 * caller from accessing to them.) In order to do this, we use
4212 * here is_swap_pte instead of is_hugetlb_entry_migration and
4213 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4214 * both cases, and because we can't follow correct pages
4215 * directly from any kind of swap entries.
4216 */
4217 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
4218 ((flags & FOLL_WRITE) &&
4219 !huge_pte_write(huge_ptep_get(pte)))) {
4c887265 4220 int ret;
87ffc118 4221 unsigned int fault_flags = 0;
63551ae0 4222
cb900f41
KS
4223 if (pte)
4224 spin_unlock(ptl);
87ffc118
AA
4225 if (flags & FOLL_WRITE)
4226 fault_flags |= FAULT_FLAG_WRITE;
4227 if (nonblocking)
4228 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4229 if (flags & FOLL_NOWAIT)
4230 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4231 FAULT_FLAG_RETRY_NOWAIT;
4232 if (flags & FOLL_TRIED) {
4233 VM_WARN_ON_ONCE(fault_flags &
4234 FAULT_FLAG_ALLOW_RETRY);
4235 fault_flags |= FAULT_FLAG_TRIED;
4236 }
4237 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4238 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
4239 int err = vm_fault_to_errno(ret, flags);
4240
4241 if (err)
4242 return err;
4243
87ffc118
AA
4244 remainder = 0;
4245 break;
4246 }
4247 if (ret & VM_FAULT_RETRY) {
4248 if (nonblocking)
4249 *nonblocking = 0;
4250 *nr_pages = 0;
4251 /*
4252 * VM_FAULT_RETRY must not return an
4253 * error, it will return zero
4254 * instead.
4255 *
4256 * No need to update "position" as the
4257 * caller will not check it after
4258 * *nr_pages is set to 0.
4259 */
4260 return i;
4261 }
4262 continue;
4c887265
AL
4263 }
4264
a5516438 4265 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 4266 page = pte_page(huge_ptep_get(pte));
d5d4b0aa 4267same_page:
d6692183 4268 if (pages) {
2a15efc9 4269 pages[i] = mem_map_offset(page, pfn_offset);
ddc58f27 4270 get_page(pages[i]);
d6692183 4271 }
63551ae0
DG
4272
4273 if (vmas)
4274 vmas[i] = vma;
4275
4276 vaddr += PAGE_SIZE;
d5d4b0aa 4277 ++pfn_offset;
63551ae0
DG
4278 --remainder;
4279 ++i;
d5d4b0aa 4280 if (vaddr < vma->vm_end && remainder &&
a5516438 4281 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
KC
4282 /*
4283 * We use pfn_offset to avoid touching the pageframes
4284 * of this compound page.
4285 */
4286 goto same_page;
4287 }
cb900f41 4288 spin_unlock(ptl);
63551ae0 4289 }
28a35716 4290 *nr_pages = remainder;
87ffc118
AA
4291 /*
4292 * setting position is actually required only if remainder is
4293 * not zero but it's faster not to add a "if (remainder)"
4294 * branch.
4295 */
63551ae0
DG
4296 *position = vaddr;
4297
2a15efc9 4298 return i ? i : -EFAULT;
63551ae0 4299}
8f860591 4300
5491ae7b
AK
4301#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4302/*
4303 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4304 * implement this.
4305 */
4306#define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4307#endif
4308
7da4d641 4309unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
4310 unsigned long address, unsigned long end, pgprot_t newprot)
4311{
4312 struct mm_struct *mm = vma->vm_mm;
4313 unsigned long start = address;
4314 pte_t *ptep;
4315 pte_t pte;
a5516438 4316 struct hstate *h = hstate_vma(vma);
7da4d641 4317 unsigned long pages = 0;
8f860591
ZY
4318
4319 BUG_ON(address >= end);
4320 flush_cache_range(vma, address, end);
4321
a5338093 4322 mmu_notifier_invalidate_range_start(mm, start, end);
83cde9e8 4323 i_mmap_lock_write(vma->vm_file->f_mapping);
a5516438 4324 for (; address < end; address += huge_page_size(h)) {
cb900f41 4325 spinlock_t *ptl;
7868a208 4326 ptep = huge_pte_offset(mm, address, huge_page_size(h));
8f860591
ZY
4327 if (!ptep)
4328 continue;
cb900f41 4329 ptl = huge_pte_lock(h, mm, ptep);
7da4d641
PZ
4330 if (huge_pmd_unshare(mm, &address, ptep)) {
4331 pages++;
cb900f41 4332 spin_unlock(ptl);
39dde65c 4333 continue;
7da4d641 4334 }
a8bda28d
NH
4335 pte = huge_ptep_get(ptep);
4336 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4337 spin_unlock(ptl);
4338 continue;
4339 }
4340 if (unlikely(is_hugetlb_entry_migration(pte))) {
4341 swp_entry_t entry = pte_to_swp_entry(pte);
4342
4343 if (is_write_migration_entry(entry)) {
4344 pte_t newpte;
4345
4346 make_migration_entry_read(&entry);
4347 newpte = swp_entry_to_pte(entry);
e5251fd4
PA
4348 set_huge_swap_pte_at(mm, address, ptep,
4349 newpte, huge_page_size(h));
a8bda28d
NH
4350 pages++;
4351 }
4352 spin_unlock(ptl);
4353 continue;
4354 }
4355 if (!huge_pte_none(pte)) {
8f860591 4356 pte = huge_ptep_get_and_clear(mm, address, ptep);
106c992a 4357 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
be7517d6 4358 pte = arch_make_huge_pte(pte, vma, NULL, 0);
8f860591 4359 set_huge_pte_at(mm, address, ptep, pte);
7da4d641 4360 pages++;
8f860591 4361 }
cb900f41 4362 spin_unlock(ptl);
8f860591 4363 }
d833352a 4364 /*
c8c06efa 4365 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
d833352a 4366 * may have cleared our pud entry and done put_page on the page table:
c8c06efa 4367 * once we release i_mmap_rwsem, another task can do the final put_page
d833352a
MG
4368 * and that page table be reused and filled with junk.
4369 */
5491ae7b 4370 flush_hugetlb_tlb_range(vma, start, end);
34ee645e 4371 mmu_notifier_invalidate_range(mm, start, end);
83cde9e8 4372 i_mmap_unlock_write(vma->vm_file->f_mapping);
a5338093 4373 mmu_notifier_invalidate_range_end(mm, start, end);
7da4d641
PZ
4374
4375 return pages << h->order;
8f860591
ZY
4376}
4377
a1e78772
MG
4378int hugetlb_reserve_pages(struct inode *inode,
4379 long from, long to,
5a6fe125 4380 struct vm_area_struct *vma,
ca16d140 4381 vm_flags_t vm_flags)
e4e574b7 4382{
17c9d12e 4383 long ret, chg;
a5516438 4384 struct hstate *h = hstate_inode(inode);
90481622 4385 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 4386 struct resv_map *resv_map;
1c5ecae3 4387 long gbl_reserve;
e4e574b7 4388
17c9d12e
MG
4389 /*
4390 * Only apply hugepage reservation if asked. At fault time, an
4391 * attempt will be made for VM_NORESERVE to allocate a page
90481622 4392 * without using reserves
17c9d12e 4393 */
ca16d140 4394 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
4395 return 0;
4396
a1e78772
MG
4397 /*
4398 * Shared mappings base their reservation on the number of pages that
4399 * are already allocated on behalf of the file. Private mappings need
4400 * to reserve the full area even if read-only as mprotect() may be
4401 * called to make the mapping read-write. Assume !vma is a shm mapping
4402 */
9119a41e 4403 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4e35f483 4404 resv_map = inode_resv_map(inode);
9119a41e 4405
1406ec9b 4406 chg = region_chg(resv_map, from, to);
9119a41e
JK
4407
4408 } else {
4409 resv_map = resv_map_alloc();
17c9d12e
MG
4410 if (!resv_map)
4411 return -ENOMEM;
4412
a1e78772 4413 chg = to - from;
84afd99b 4414
17c9d12e
MG
4415 set_vma_resv_map(vma, resv_map);
4416 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4417 }
4418
c50ac050
DH
4419 if (chg < 0) {
4420 ret = chg;
4421 goto out_err;
4422 }
8a630112 4423
1c5ecae3
MK
4424 /*
4425 * There must be enough pages in the subpool for the mapping. If
4426 * the subpool has a minimum size, there may be some global
4427 * reservations already in place (gbl_reserve).
4428 */
4429 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4430 if (gbl_reserve < 0) {
c50ac050
DH
4431 ret = -ENOSPC;
4432 goto out_err;
4433 }
5a6fe125
MG
4434
4435 /*
17c9d12e 4436 * Check enough hugepages are available for the reservation.
90481622 4437 * Hand the pages back to the subpool if there are not
5a6fe125 4438 */
1c5ecae3 4439 ret = hugetlb_acct_memory(h, gbl_reserve);
68842c9b 4440 if (ret < 0) {
1c5ecae3
MK
4441 /* put back original number of pages, chg */
4442 (void)hugepage_subpool_put_pages(spool, chg);
c50ac050 4443 goto out_err;
68842c9b 4444 }
17c9d12e
MG
4445
4446 /*
4447 * Account for the reservations made. Shared mappings record regions
4448 * that have reservations as they are shared by multiple VMAs.
4449 * When the last VMA disappears, the region map says how much
4450 * the reservation was and the page cache tells how much of
4451 * the reservation was consumed. Private mappings are per-VMA and
4452 * only the consumed reservations are tracked. When the VMA
4453 * disappears, the original reservation is the VMA size and the
4454 * consumed reservations are stored in the map. Hence, nothing
4455 * else has to be done for private mappings here
4456 */
33039678
MK
4457 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4458 long add = region_add(resv_map, from, to);
4459
4460 if (unlikely(chg > add)) {
4461 /*
4462 * pages in this range were added to the reserve
4463 * map between region_chg and region_add. This
4464 * indicates a race with alloc_huge_page. Adjust
4465 * the subpool and reserve counts modified above
4466 * based on the difference.
4467 */
4468 long rsv_adjust;
4469
4470 rsv_adjust = hugepage_subpool_put_pages(spool,
4471 chg - add);
4472 hugetlb_acct_memory(h, -rsv_adjust);
4473 }
4474 }
a43a8c39 4475 return 0;
c50ac050 4476out_err:
5e911373 4477 if (!vma || vma->vm_flags & VM_MAYSHARE)
ff8c0c53
MK
4478 /* Don't call region_abort if region_chg failed */
4479 if (chg >= 0)
4480 region_abort(resv_map, from, to);
f031dd27
JK
4481 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4482 kref_put(&resv_map->refs, resv_map_release);
c50ac050 4483 return ret;
a43a8c39
KC
4484}
4485
b5cec28d
MK
4486long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4487 long freed)
a43a8c39 4488{
a5516438 4489 struct hstate *h = hstate_inode(inode);
4e35f483 4490 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 4491 long chg = 0;
90481622 4492 struct hugepage_subpool *spool = subpool_inode(inode);
1c5ecae3 4493 long gbl_reserve;
45c682a6 4494
b5cec28d
MK
4495 if (resv_map) {
4496 chg = region_del(resv_map, start, end);
4497 /*
4498 * region_del() can fail in the rare case where a region
4499 * must be split and another region descriptor can not be
4500 * allocated. If end == LONG_MAX, it will not fail.
4501 */
4502 if (chg < 0)
4503 return chg;
4504 }
4505
45c682a6 4506 spin_lock(&inode->i_lock);
e4c6f8be 4507 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
4508 spin_unlock(&inode->i_lock);
4509
1c5ecae3
MK
4510 /*
4511 * If the subpool has a minimum size, the number of global
4512 * reservations to be released may be adjusted.
4513 */
4514 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4515 hugetlb_acct_memory(h, -gbl_reserve);
b5cec28d
MK
4516
4517 return 0;
a43a8c39 4518}
93f70f90 4519
3212b535
SC
4520#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4521static unsigned long page_table_shareable(struct vm_area_struct *svma,
4522 struct vm_area_struct *vma,
4523 unsigned long addr, pgoff_t idx)
4524{
4525 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4526 svma->vm_start;
4527 unsigned long sbase = saddr & PUD_MASK;
4528 unsigned long s_end = sbase + PUD_SIZE;
4529
4530 /* Allow segments to share if only one is marked locked */
de60f5f1
EM
4531 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4532 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
3212b535
SC
4533
4534 /*
4535 * match the virtual addresses, permission and the alignment of the
4536 * page table page.
4537 */
4538 if (pmd_index(addr) != pmd_index(saddr) ||
4539 vm_flags != svm_flags ||
4540 sbase < svma->vm_start || svma->vm_end < s_end)
4541 return 0;
4542
4543 return saddr;
4544}
4545
31aafb45 4546static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3212b535
SC
4547{
4548 unsigned long base = addr & PUD_MASK;
4549 unsigned long end = base + PUD_SIZE;
4550
4551 /*
4552 * check on proper vm_flags and page table alignment
4553 */
4554 if (vma->vm_flags & VM_MAYSHARE &&
4555 vma->vm_start <= base && end <= vma->vm_end)
31aafb45
NK
4556 return true;
4557 return false;
3212b535
SC
4558}
4559
4560/*
4561 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4562 * and returns the corresponding pte. While this is not necessary for the
4563 * !shared pmd case because we can allocate the pmd later as well, it makes the
4564 * code much cleaner. pmd allocation is essential for the shared case because
c8c06efa 4565 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
3212b535
SC
4566 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4567 * bad pmd for sharing.
4568 */
4569pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4570{
4571 struct vm_area_struct *vma = find_vma(mm, addr);
4572 struct address_space *mapping = vma->vm_file->f_mapping;
4573 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4574 vma->vm_pgoff;
4575 struct vm_area_struct *svma;
4576 unsigned long saddr;
4577 pte_t *spte = NULL;
4578 pte_t *pte;
cb900f41 4579 spinlock_t *ptl;
3212b535
SC
4580
4581 if (!vma_shareable(vma, addr))
4582 return (pte_t *)pmd_alloc(mm, pud, addr);
4583
83cde9e8 4584 i_mmap_lock_write(mapping);
3212b535
SC
4585 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4586 if (svma == vma)
4587 continue;
4588
4589 saddr = page_table_shareable(svma, vma, addr, idx);
4590 if (saddr) {
7868a208
PA
4591 spte = huge_pte_offset(svma->vm_mm, saddr,
4592 vma_mmu_pagesize(svma));
3212b535
SC
4593 if (spte) {
4594 get_page(virt_to_page(spte));
4595 break;
4596 }
4597 }
4598 }
4599
4600 if (!spte)
4601 goto out;
4602
8bea8052 4603 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
dc6c9a35 4604 if (pud_none(*pud)) {
3212b535
SC
4605 pud_populate(mm, pud,
4606 (pmd_t *)((unsigned long)spte & PAGE_MASK));
c17b1f42 4607 mm_inc_nr_pmds(mm);
dc6c9a35 4608 } else {
3212b535 4609 put_page(virt_to_page(spte));
dc6c9a35 4610 }
cb900f41 4611 spin_unlock(ptl);
3212b535
SC
4612out:
4613 pte = (pte_t *)pmd_alloc(mm, pud, addr);
83cde9e8 4614 i_mmap_unlock_write(mapping);
3212b535
SC
4615 return pte;
4616}
4617
4618/*
4619 * unmap huge page backed by shared pte.
4620 *
4621 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4622 * indicated by page_count > 1, unmap is achieved by clearing pud and
4623 * decrementing the ref count. If count == 1, the pte page is not shared.
4624 *
cb900f41 4625 * called with page table lock held.
3212b535
SC
4626 *
4627 * returns: 1 successfully unmapped a shared pte page
4628 * 0 the underlying pte page is not shared, or it is the last user
4629 */
4630int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4631{
4632 pgd_t *pgd = pgd_offset(mm, *addr);
c2febafc
KS
4633 p4d_t *p4d = p4d_offset(pgd, *addr);
4634 pud_t *pud = pud_offset(p4d, *addr);
3212b535
SC
4635
4636 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4637 if (page_count(virt_to_page(ptep)) == 1)
4638 return 0;
4639
4640 pud_clear(pud);
4641 put_page(virt_to_page(ptep));
dc6c9a35 4642 mm_dec_nr_pmds(mm);
3212b535
SC
4643 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4644 return 1;
4645}
9e5fc74c
SC
4646#define want_pmd_share() (1)
4647#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4648pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4649{
4650 return NULL;
4651}
e81f2d22
ZZ
4652
4653int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4654{
4655 return 0;
4656}
9e5fc74c 4657#define want_pmd_share() (0)
3212b535
SC
4658#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4659
9e5fc74c
SC
4660#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4661pte_t *huge_pte_alloc(struct mm_struct *mm,
4662 unsigned long addr, unsigned long sz)
4663{
4664 pgd_t *pgd;
c2febafc 4665 p4d_t *p4d;
9e5fc74c
SC
4666 pud_t *pud;
4667 pte_t *pte = NULL;
4668
4669 pgd = pgd_offset(mm, addr);
c2febafc
KS
4670 p4d = p4d_offset(pgd, addr);
4671 pud = pud_alloc(mm, p4d, addr);
9e5fc74c
SC
4672 if (pud) {
4673 if (sz == PUD_SIZE) {
4674 pte = (pte_t *)pud;
4675 } else {
4676 BUG_ON(sz != PMD_SIZE);
4677 if (want_pmd_share() && pud_none(*pud))
4678 pte = huge_pmd_share(mm, addr, pud);
4679 else
4680 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4681 }
4682 }
4e666314 4683 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
9e5fc74c
SC
4684
4685 return pte;
4686}
4687
7868a208
PA
4688pte_t *huge_pte_offset(struct mm_struct *mm,
4689 unsigned long addr, unsigned long sz)
9e5fc74c
SC
4690{
4691 pgd_t *pgd;
c2febafc 4692 p4d_t *p4d;
9e5fc74c 4693 pud_t *pud;
c2febafc 4694 pmd_t *pmd;
9e5fc74c
SC
4695
4696 pgd = pgd_offset(mm, addr);
c2febafc
KS
4697 if (!pgd_present(*pgd))
4698 return NULL;
4699 p4d = p4d_offset(pgd, addr);
4700 if (!p4d_present(*p4d))
4701 return NULL;
4702 pud = pud_offset(p4d, addr);
4703 if (!pud_present(*pud))
4704 return NULL;
4705 if (pud_huge(*pud))
4706 return (pte_t *)pud;
4707 pmd = pmd_offset(pud, addr);
9e5fc74c
SC
4708 return (pte_t *) pmd;
4709}
4710
61f77eda
NH
4711#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4712
4713/*
4714 * These functions are overwritable if your architecture needs its own
4715 * behavior.
4716 */
4717struct page * __weak
4718follow_huge_addr(struct mm_struct *mm, unsigned long address,
4719 int write)
4720{
4721 return ERR_PTR(-EINVAL);
4722}
4723
4dc71451
AK
4724struct page * __weak
4725follow_huge_pd(struct vm_area_struct *vma,
4726 unsigned long address, hugepd_t hpd, int flags, int pdshift)
4727{
4728 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4729 return NULL;
4730}
4731
61f77eda 4732struct page * __weak
9e5fc74c 4733follow_huge_pmd(struct mm_struct *mm, unsigned long address,
e66f17ff 4734 pmd_t *pmd, int flags)
9e5fc74c 4735{
e66f17ff
NH
4736 struct page *page = NULL;
4737 spinlock_t *ptl;
c9d398fa 4738 pte_t pte;
e66f17ff
NH
4739retry:
4740 ptl = pmd_lockptr(mm, pmd);
4741 spin_lock(ptl);
4742 /*
4743 * make sure that the address range covered by this pmd is not
4744 * unmapped from other threads.
4745 */
4746 if (!pmd_huge(*pmd))
4747 goto out;
c9d398fa
NH
4748 pte = huge_ptep_get((pte_t *)pmd);
4749 if (pte_present(pte)) {
97534127 4750 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
e66f17ff
NH
4751 if (flags & FOLL_GET)
4752 get_page(page);
4753 } else {
c9d398fa 4754 if (is_hugetlb_entry_migration(pte)) {
e66f17ff
NH
4755 spin_unlock(ptl);
4756 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4757 goto retry;
4758 }
4759 /*
4760 * hwpoisoned entry is treated as no_page_table in
4761 * follow_page_mask().
4762 */
4763 }
4764out:
4765 spin_unlock(ptl);
9e5fc74c
SC
4766 return page;
4767}
4768
61f77eda 4769struct page * __weak
9e5fc74c 4770follow_huge_pud(struct mm_struct *mm, unsigned long address,
e66f17ff 4771 pud_t *pud, int flags)
9e5fc74c 4772{
e66f17ff
NH
4773 if (flags & FOLL_GET)
4774 return NULL;
9e5fc74c 4775
e66f17ff 4776 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
9e5fc74c
SC
4777}
4778
faaa5b62
AK
4779struct page * __weak
4780follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4781{
4782 if (flags & FOLL_GET)
4783 return NULL;
4784
4785 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4786}
4787
31caf665
NH
4788bool isolate_huge_page(struct page *page, struct list_head *list)
4789{
bcc54222
NH
4790 bool ret = true;
4791
309381fe 4792 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 4793 spin_lock(&hugetlb_lock);
bcc54222
NH
4794 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4795 ret = false;
4796 goto unlock;
4797 }
4798 clear_page_huge_active(page);
31caf665 4799 list_move_tail(&page->lru, list);
bcc54222 4800unlock:
31caf665 4801 spin_unlock(&hugetlb_lock);
bcc54222 4802 return ret;
31caf665
NH
4803}
4804
4805void putback_active_hugepage(struct page *page)
4806{
309381fe 4807 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 4808 spin_lock(&hugetlb_lock);
bcc54222 4809 set_page_huge_active(page);
31caf665
NH
4810 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4811 spin_unlock(&hugetlb_lock);
4812 put_page(page);
4813}