]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/page_alloc.c
mm: non-atomically mark page accessed during page cache allocation where possible
[mirror_ubuntu-zesty-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
52d4b9ac 51#include <linux/page_cgroup.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
56de7263 54#include <linux/compaction.h>
0d3d062a 55#include <trace/events/kmem.h>
718a3821 56#include <linux/ftrace_event.h>
f212ad7c 57#include <linux/memcontrol.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
c0a32fc5 61#include <linux/page-debug-flags.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
1da177e4 64
7ee3d4e8 65#include <asm/sections.h>
1da177e4 66#include <asm/tlbflush.h>
ac924c60 67#include <asm/div64.h>
1da177e4
LT
68#include "internal.h"
69
c8e251fa
CS
70/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
71static DEFINE_MUTEX(pcp_batch_high_lock);
72
72812019
LS
73#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
74DEFINE_PER_CPU(int, numa_node);
75EXPORT_PER_CPU_SYMBOL(numa_node);
76#endif
77
7aac7898
LS
78#ifdef CONFIG_HAVE_MEMORYLESS_NODES
79/*
80 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
81 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
82 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
83 * defined in <linux/topology.h>.
84 */
85DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
86EXPORT_PER_CPU_SYMBOL(_numa_mem_);
87#endif
88
1da177e4 89/*
13808910 90 * Array of node states.
1da177e4 91 */
13808910
CL
92nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
93 [N_POSSIBLE] = NODE_MASK_ALL,
94 [N_ONLINE] = { { [0] = 1UL } },
95#ifndef CONFIG_NUMA
96 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
97#ifdef CONFIG_HIGHMEM
98 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
99#endif
100#ifdef CONFIG_MOVABLE_NODE
101 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
102#endif
103 [N_CPU] = { { [0] = 1UL } },
104#endif /* NUMA */
105};
106EXPORT_SYMBOL(node_states);
107
c3d5f5f0
JL
108/* Protect totalram_pages and zone->managed_pages */
109static DEFINE_SPINLOCK(managed_page_count_lock);
110
6c231b7b 111unsigned long totalram_pages __read_mostly;
cb45b0e9 112unsigned long totalreserve_pages __read_mostly;
ab8fabd4
JW
113/*
114 * When calculating the number of globally allowed dirty pages, there
115 * is a certain number of per-zone reserves that should not be
116 * considered dirtyable memory. This is the sum of those reserves
117 * over all existing zones that contribute dirtyable memory.
118 */
119unsigned long dirty_balance_reserve __read_mostly;
120
1b76b02f 121int percpu_pagelist_fraction;
dcce284a 122gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 123
452aa699
RW
124#ifdef CONFIG_PM_SLEEP
125/*
126 * The following functions are used by the suspend/hibernate code to temporarily
127 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
128 * while devices are suspended. To avoid races with the suspend/hibernate code,
129 * they should always be called with pm_mutex held (gfp_allowed_mask also should
130 * only be modified with pm_mutex held, unless the suspend/hibernate code is
131 * guaranteed not to run in parallel with that modification).
132 */
c9e664f1
RW
133
134static gfp_t saved_gfp_mask;
135
136void pm_restore_gfp_mask(void)
452aa699
RW
137{
138 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
139 if (saved_gfp_mask) {
140 gfp_allowed_mask = saved_gfp_mask;
141 saved_gfp_mask = 0;
142 }
452aa699
RW
143}
144
c9e664f1 145void pm_restrict_gfp_mask(void)
452aa699 146{
452aa699 147 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
148 WARN_ON(saved_gfp_mask);
149 saved_gfp_mask = gfp_allowed_mask;
150 gfp_allowed_mask &= ~GFP_IOFS;
452aa699 151}
f90ac398
MG
152
153bool pm_suspended_storage(void)
154{
155 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
156 return false;
157 return true;
158}
452aa699
RW
159#endif /* CONFIG_PM_SLEEP */
160
d9c23400
MG
161#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
162int pageblock_order __read_mostly;
163#endif
164
d98c7a09 165static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 166
1da177e4
LT
167/*
168 * results with 256, 32 in the lowmem_reserve sysctl:
169 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
170 * 1G machine -> (16M dma, 784M normal, 224M high)
171 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
172 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
173 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
174 *
175 * TBD: should special case ZONE_DMA32 machines here - in those we normally
176 * don't need any ZONE_NORMAL reservation
1da177e4 177 */
2f1b6248 178int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 179#ifdef CONFIG_ZONE_DMA
2f1b6248 180 256,
4b51d669 181#endif
fb0e7942 182#ifdef CONFIG_ZONE_DMA32
2f1b6248 183 256,
fb0e7942 184#endif
e53ef38d 185#ifdef CONFIG_HIGHMEM
2a1e274a 186 32,
e53ef38d 187#endif
2a1e274a 188 32,
2f1b6248 189};
1da177e4
LT
190
191EXPORT_SYMBOL(totalram_pages);
1da177e4 192
15ad7cdc 193static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 194#ifdef CONFIG_ZONE_DMA
2f1b6248 195 "DMA",
4b51d669 196#endif
fb0e7942 197#ifdef CONFIG_ZONE_DMA32
2f1b6248 198 "DMA32",
fb0e7942 199#endif
2f1b6248 200 "Normal",
e53ef38d 201#ifdef CONFIG_HIGHMEM
2a1e274a 202 "HighMem",
e53ef38d 203#endif
2a1e274a 204 "Movable",
2f1b6248
CL
205};
206
1da177e4 207int min_free_kbytes = 1024;
42aa83cb 208int user_min_free_kbytes = -1;
1da177e4 209
2c85f51d
JB
210static unsigned long __meminitdata nr_kernel_pages;
211static unsigned long __meminitdata nr_all_pages;
a3142c8e 212static unsigned long __meminitdata dma_reserve;
1da177e4 213
0ee332c1
TH
214#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
215static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
216static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
217static unsigned long __initdata required_kernelcore;
218static unsigned long __initdata required_movablecore;
219static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
220
221/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
222int movable_zone;
223EXPORT_SYMBOL(movable_zone);
224#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 225
418508c1
MS
226#if MAX_NUMNODES > 1
227int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 228int nr_online_nodes __read_mostly = 1;
418508c1 229EXPORT_SYMBOL(nr_node_ids);
62bc62a8 230EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
231#endif
232
9ef9acb0
MG
233int page_group_by_mobility_disabled __read_mostly;
234
ee6f509c 235void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 236{
5d0f3f72
KM
237 if (unlikely(page_group_by_mobility_disabled &&
238 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
239 migratetype = MIGRATE_UNMOVABLE;
240
b2a0ac88
MG
241 set_pageblock_flags_group(page, (unsigned long)migratetype,
242 PB_migrate, PB_migrate_end);
243}
244
7f33d49a
RW
245bool oom_killer_disabled __read_mostly;
246
13e7444b 247#ifdef CONFIG_DEBUG_VM
c6a57e19 248static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 249{
bdc8cb98
DH
250 int ret = 0;
251 unsigned seq;
252 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 253 unsigned long sp, start_pfn;
c6a57e19 254
bdc8cb98
DH
255 do {
256 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
257 start_pfn = zone->zone_start_pfn;
258 sp = zone->spanned_pages;
108bcc96 259 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
260 ret = 1;
261 } while (zone_span_seqretry(zone, seq));
262
b5e6a5a2 263 if (ret)
613813e8
DH
264 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
265 pfn, zone_to_nid(zone), zone->name,
266 start_pfn, start_pfn + sp);
b5e6a5a2 267
bdc8cb98 268 return ret;
c6a57e19
DH
269}
270
271static int page_is_consistent(struct zone *zone, struct page *page)
272{
14e07298 273 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 274 return 0;
1da177e4 275 if (zone != page_zone(page))
c6a57e19
DH
276 return 0;
277
278 return 1;
279}
280/*
281 * Temporary debugging check for pages not lying within a given zone.
282 */
283static int bad_range(struct zone *zone, struct page *page)
284{
285 if (page_outside_zone_boundaries(zone, page))
1da177e4 286 return 1;
c6a57e19
DH
287 if (!page_is_consistent(zone, page))
288 return 1;
289
1da177e4
LT
290 return 0;
291}
13e7444b
NP
292#else
293static inline int bad_range(struct zone *zone, struct page *page)
294{
295 return 0;
296}
297#endif
298
d230dec1
KS
299static void bad_page(struct page *page, const char *reason,
300 unsigned long bad_flags)
1da177e4 301{
d936cf9b
HD
302 static unsigned long resume;
303 static unsigned long nr_shown;
304 static unsigned long nr_unshown;
305
2a7684a2
WF
306 /* Don't complain about poisoned pages */
307 if (PageHWPoison(page)) {
22b751c3 308 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
309 return;
310 }
311
d936cf9b
HD
312 /*
313 * Allow a burst of 60 reports, then keep quiet for that minute;
314 * or allow a steady drip of one report per second.
315 */
316 if (nr_shown == 60) {
317 if (time_before(jiffies, resume)) {
318 nr_unshown++;
319 goto out;
320 }
321 if (nr_unshown) {
1e9e6365
HD
322 printk(KERN_ALERT
323 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
324 nr_unshown);
325 nr_unshown = 0;
326 }
327 nr_shown = 0;
328 }
329 if (nr_shown++ == 0)
330 resume = jiffies + 60 * HZ;
331
1e9e6365 332 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 333 current->comm, page_to_pfn(page));
f0b791a3 334 dump_page_badflags(page, reason, bad_flags);
3dc14741 335
4f31888c 336 print_modules();
1da177e4 337 dump_stack();
d936cf9b 338out:
8cc3b392 339 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 340 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 341 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
342}
343
1da177e4
LT
344/*
345 * Higher-order pages are called "compound pages". They are structured thusly:
346 *
347 * The first PAGE_SIZE page is called the "head page".
348 *
349 * The remaining PAGE_SIZE pages are called "tail pages".
350 *
6416b9fa
WSH
351 * All pages have PG_compound set. All tail pages have their ->first_page
352 * pointing at the head page.
1da177e4 353 *
41d78ba5
HD
354 * The first tail page's ->lru.next holds the address of the compound page's
355 * put_page() function. Its ->lru.prev holds the order of allocation.
356 * This usage means that zero-order pages may not be compound.
1da177e4 357 */
d98c7a09
HD
358
359static void free_compound_page(struct page *page)
360{
d85f3385 361 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
362}
363
01ad1c08 364void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
365{
366 int i;
367 int nr_pages = 1 << order;
368
369 set_compound_page_dtor(page, free_compound_page);
370 set_compound_order(page, order);
371 __SetPageHead(page);
372 for (i = 1; i < nr_pages; i++) {
373 struct page *p = page + i;
58a84aa9 374 set_page_count(p, 0);
18229df5 375 p->first_page = page;
668f9abb
DR
376 /* Make sure p->first_page is always valid for PageTail() */
377 smp_wmb();
378 __SetPageTail(p);
18229df5
AW
379 }
380}
381
59ff4216 382/* update __split_huge_page_refcount if you change this function */
8cc3b392 383static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
384{
385 int i;
386 int nr_pages = 1 << order;
8cc3b392 387 int bad = 0;
1da177e4 388
0bb2c763 389 if (unlikely(compound_order(page) != order)) {
f0b791a3 390 bad_page(page, "wrong compound order", 0);
8cc3b392
HD
391 bad++;
392 }
1da177e4 393
6d777953 394 __ClearPageHead(page);
8cc3b392 395
18229df5
AW
396 for (i = 1; i < nr_pages; i++) {
397 struct page *p = page + i;
1da177e4 398
f0b791a3
DH
399 if (unlikely(!PageTail(p))) {
400 bad_page(page, "PageTail not set", 0);
401 bad++;
402 } else if (unlikely(p->first_page != page)) {
403 bad_page(page, "first_page not consistent", 0);
8cc3b392
HD
404 bad++;
405 }
d85f3385 406 __ClearPageTail(p);
1da177e4 407 }
8cc3b392
HD
408
409 return bad;
1da177e4 410}
1da177e4 411
7aeb09f9
MG
412static inline void prep_zero_page(struct page *page, unsigned int order,
413 gfp_t gfp_flags)
17cf4406
NP
414{
415 int i;
416
6626c5d5
AM
417 /*
418 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
419 * and __GFP_HIGHMEM from hard or soft interrupt context.
420 */
725d704e 421 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
422 for (i = 0; i < (1 << order); i++)
423 clear_highpage(page + i);
424}
425
c0a32fc5
SG
426#ifdef CONFIG_DEBUG_PAGEALLOC
427unsigned int _debug_guardpage_minorder;
428
429static int __init debug_guardpage_minorder_setup(char *buf)
430{
431 unsigned long res;
432
433 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
434 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
435 return 0;
436 }
437 _debug_guardpage_minorder = res;
438 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
439 return 0;
440}
441__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
442
443static inline void set_page_guard_flag(struct page *page)
444{
445 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
446}
447
448static inline void clear_page_guard_flag(struct page *page)
449{
450 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
451}
452#else
453static inline void set_page_guard_flag(struct page *page) { }
454static inline void clear_page_guard_flag(struct page *page) { }
455#endif
456
7aeb09f9 457static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 458{
4c21e2f2 459 set_page_private(page, order);
676165a8 460 __SetPageBuddy(page);
1da177e4
LT
461}
462
463static inline void rmv_page_order(struct page *page)
464{
676165a8 465 __ClearPageBuddy(page);
4c21e2f2 466 set_page_private(page, 0);
1da177e4
LT
467}
468
469/*
470 * Locate the struct page for both the matching buddy in our
471 * pair (buddy1) and the combined O(n+1) page they form (page).
472 *
473 * 1) Any buddy B1 will have an order O twin B2 which satisfies
474 * the following equation:
475 * B2 = B1 ^ (1 << O)
476 * For example, if the starting buddy (buddy2) is #8 its order
477 * 1 buddy is #10:
478 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
479 *
480 * 2) Any buddy B will have an order O+1 parent P which
481 * satisfies the following equation:
482 * P = B & ~(1 << O)
483 *
d6e05edc 484 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4 485 */
1da177e4 486static inline unsigned long
43506fad 487__find_buddy_index(unsigned long page_idx, unsigned int order)
1da177e4 488{
43506fad 489 return page_idx ^ (1 << order);
1da177e4
LT
490}
491
492/*
493 * This function checks whether a page is free && is the buddy
494 * we can do coalesce a page and its buddy if
13e7444b 495 * (a) the buddy is not in a hole &&
676165a8 496 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
497 * (c) a page and its buddy have the same order &&
498 * (d) a page and its buddy are in the same zone.
676165a8 499 *
cf6fe945
WSH
500 * For recording whether a page is in the buddy system, we set ->_mapcount
501 * PAGE_BUDDY_MAPCOUNT_VALUE.
502 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
503 * serialized by zone->lock.
1da177e4 504 *
676165a8 505 * For recording page's order, we use page_private(page).
1da177e4 506 */
cb2b95e1 507static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 508 unsigned int order)
1da177e4 509{
14e07298 510 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 511 return 0;
13e7444b 512
c0a32fc5 513 if (page_is_guard(buddy) && page_order(buddy) == order) {
309381fe 514 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
d34c5fa0
MG
515
516 if (page_zone_id(page) != page_zone_id(buddy))
517 return 0;
518
c0a32fc5
SG
519 return 1;
520 }
521
cb2b95e1 522 if (PageBuddy(buddy) && page_order(buddy) == order) {
309381fe 523 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
d34c5fa0
MG
524
525 /*
526 * zone check is done late to avoid uselessly
527 * calculating zone/node ids for pages that could
528 * never merge.
529 */
530 if (page_zone_id(page) != page_zone_id(buddy))
531 return 0;
532
6aa3001b 533 return 1;
676165a8 534 }
6aa3001b 535 return 0;
1da177e4
LT
536}
537
538/*
539 * Freeing function for a buddy system allocator.
540 *
541 * The concept of a buddy system is to maintain direct-mapped table
542 * (containing bit values) for memory blocks of various "orders".
543 * The bottom level table contains the map for the smallest allocatable
544 * units of memory (here, pages), and each level above it describes
545 * pairs of units from the levels below, hence, "buddies".
546 * At a high level, all that happens here is marking the table entry
547 * at the bottom level available, and propagating the changes upward
548 * as necessary, plus some accounting needed to play nicely with other
549 * parts of the VM system.
550 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
551 * free pages of length of (1 << order) and marked with _mapcount
552 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
553 * field.
1da177e4 554 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
555 * other. That is, if we allocate a small block, and both were
556 * free, the remainder of the region must be split into blocks.
1da177e4 557 * If a block is freed, and its buddy is also free, then this
5f63b720 558 * triggers coalescing into a block of larger size.
1da177e4 559 *
6d49e352 560 * -- nyc
1da177e4
LT
561 */
562
48db57f8 563static inline void __free_one_page(struct page *page,
dc4b0caf 564 unsigned long pfn,
ed0ae21d
MG
565 struct zone *zone, unsigned int order,
566 int migratetype)
1da177e4
LT
567{
568 unsigned long page_idx;
6dda9d55 569 unsigned long combined_idx;
43506fad 570 unsigned long uninitialized_var(buddy_idx);
6dda9d55 571 struct page *buddy;
1da177e4 572
d29bb978
CS
573 VM_BUG_ON(!zone_is_initialized(zone));
574
224abf92 575 if (unlikely(PageCompound(page)))
8cc3b392
HD
576 if (unlikely(destroy_compound_page(page, order)))
577 return;
1da177e4 578
ed0ae21d
MG
579 VM_BUG_ON(migratetype == -1);
580
dc4b0caf 581 page_idx = pfn & ((1 << MAX_ORDER) - 1);
1da177e4 582
309381fe
SL
583 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
584 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 585
1da177e4 586 while (order < MAX_ORDER-1) {
43506fad
KC
587 buddy_idx = __find_buddy_index(page_idx, order);
588 buddy = page + (buddy_idx - page_idx);
cb2b95e1 589 if (!page_is_buddy(page, buddy, order))
3c82d0ce 590 break;
c0a32fc5
SG
591 /*
592 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
593 * merge with it and move up one order.
594 */
595 if (page_is_guard(buddy)) {
596 clear_page_guard_flag(buddy);
597 set_page_private(page, 0);
d1ce749a
BZ
598 __mod_zone_freepage_state(zone, 1 << order,
599 migratetype);
c0a32fc5
SG
600 } else {
601 list_del(&buddy->lru);
602 zone->free_area[order].nr_free--;
603 rmv_page_order(buddy);
604 }
43506fad 605 combined_idx = buddy_idx & page_idx;
1da177e4
LT
606 page = page + (combined_idx - page_idx);
607 page_idx = combined_idx;
608 order++;
609 }
610 set_page_order(page, order);
6dda9d55
CZ
611
612 /*
613 * If this is not the largest possible page, check if the buddy
614 * of the next-highest order is free. If it is, it's possible
615 * that pages are being freed that will coalesce soon. In case,
616 * that is happening, add the free page to the tail of the list
617 * so it's less likely to be used soon and more likely to be merged
618 * as a higher order page
619 */
b7f50cfa 620 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 621 struct page *higher_page, *higher_buddy;
43506fad
KC
622 combined_idx = buddy_idx & page_idx;
623 higher_page = page + (combined_idx - page_idx);
624 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 625 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
626 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
627 list_add_tail(&page->lru,
628 &zone->free_area[order].free_list[migratetype]);
629 goto out;
630 }
631 }
632
633 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
634out:
1da177e4
LT
635 zone->free_area[order].nr_free++;
636}
637
224abf92 638static inline int free_pages_check(struct page *page)
1da177e4 639{
d230dec1 640 const char *bad_reason = NULL;
f0b791a3
DH
641 unsigned long bad_flags = 0;
642
643 if (unlikely(page_mapcount(page)))
644 bad_reason = "nonzero mapcount";
645 if (unlikely(page->mapping != NULL))
646 bad_reason = "non-NULL mapping";
647 if (unlikely(atomic_read(&page->_count) != 0))
648 bad_reason = "nonzero _count";
649 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
650 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
651 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
652 }
653 if (unlikely(mem_cgroup_bad_page_check(page)))
654 bad_reason = "cgroup check failed";
655 if (unlikely(bad_reason)) {
656 bad_page(page, bad_reason, bad_flags);
79f4b7bf 657 return 1;
8cc3b392 658 }
90572890 659 page_cpupid_reset_last(page);
79f4b7bf
HD
660 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
661 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
662 return 0;
1da177e4
LT
663}
664
665/*
5f8dcc21 666 * Frees a number of pages from the PCP lists
1da177e4 667 * Assumes all pages on list are in same zone, and of same order.
207f36ee 668 * count is the number of pages to free.
1da177e4
LT
669 *
670 * If the zone was previously in an "all pages pinned" state then look to
671 * see if this freeing clears that state.
672 *
673 * And clear the zone's pages_scanned counter, to hold off the "all pages are
674 * pinned" detection logic.
675 */
5f8dcc21
MG
676static void free_pcppages_bulk(struct zone *zone, int count,
677 struct per_cpu_pages *pcp)
1da177e4 678{
5f8dcc21 679 int migratetype = 0;
a6f9edd6 680 int batch_free = 0;
72853e29 681 int to_free = count;
5f8dcc21 682
c54ad30c 683 spin_lock(&zone->lock);
1da177e4 684 zone->pages_scanned = 0;
f2260e6b 685
72853e29 686 while (to_free) {
48db57f8 687 struct page *page;
5f8dcc21
MG
688 struct list_head *list;
689
690 /*
a6f9edd6
MG
691 * Remove pages from lists in a round-robin fashion. A
692 * batch_free count is maintained that is incremented when an
693 * empty list is encountered. This is so more pages are freed
694 * off fuller lists instead of spinning excessively around empty
695 * lists
5f8dcc21
MG
696 */
697 do {
a6f9edd6 698 batch_free++;
5f8dcc21
MG
699 if (++migratetype == MIGRATE_PCPTYPES)
700 migratetype = 0;
701 list = &pcp->lists[migratetype];
702 } while (list_empty(list));
48db57f8 703
1d16871d
NK
704 /* This is the only non-empty list. Free them all. */
705 if (batch_free == MIGRATE_PCPTYPES)
706 batch_free = to_free;
707
a6f9edd6 708 do {
770c8aaa
BZ
709 int mt; /* migratetype of the to-be-freed page */
710
a6f9edd6
MG
711 page = list_entry(list->prev, struct page, lru);
712 /* must delete as __free_one_page list manipulates */
713 list_del(&page->lru);
b12c4ad1 714 mt = get_freepage_migratetype(page);
a7016235 715 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
dc4b0caf 716 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 717 trace_mm_page_pcpu_drain(page, 0, mt);
194159fb 718 if (likely(!is_migrate_isolate_page(page))) {
97d0da22
WC
719 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
720 if (is_migrate_cma(mt))
721 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
722 }
72853e29 723 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 724 }
c54ad30c 725 spin_unlock(&zone->lock);
1da177e4
LT
726}
727
dc4b0caf
MG
728static void free_one_page(struct zone *zone,
729 struct page *page, unsigned long pfn,
7aeb09f9 730 unsigned int order,
ed0ae21d 731 int migratetype)
1da177e4 732{
006d22d9 733 spin_lock(&zone->lock);
006d22d9 734 zone->pages_scanned = 0;
f2260e6b 735
dc4b0caf 736 __free_one_page(page, pfn, zone, order, migratetype);
194159fb 737 if (unlikely(!is_migrate_isolate(migratetype)))
d1ce749a 738 __mod_zone_freepage_state(zone, 1 << order, migratetype);
006d22d9 739 spin_unlock(&zone->lock);
48db57f8
NP
740}
741
ec95f53a 742static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 743{
1da177e4 744 int i;
8cc3b392 745 int bad = 0;
1da177e4 746
b413d48a 747 trace_mm_page_free(page, order);
b1eeab67
VN
748 kmemcheck_free_shadow(page, order);
749
8dd60a3a
AA
750 if (PageAnon(page))
751 page->mapping = NULL;
752 for (i = 0; i < (1 << order); i++)
753 bad += free_pages_check(page + i);
8cc3b392 754 if (bad)
ec95f53a 755 return false;
689bcebf 756
3ac7fe5a 757 if (!PageHighMem(page)) {
b8af2941
PK
758 debug_check_no_locks_freed(page_address(page),
759 PAGE_SIZE << order);
3ac7fe5a
TG
760 debug_check_no_obj_freed(page_address(page),
761 PAGE_SIZE << order);
762 }
dafb1367 763 arch_free_page(page, order);
48db57f8 764 kernel_map_pages(page, 1 << order, 0);
dafb1367 765
ec95f53a
KM
766 return true;
767}
768
769static void __free_pages_ok(struct page *page, unsigned int order)
770{
771 unsigned long flags;
95e34412 772 int migratetype;
dc4b0caf 773 unsigned long pfn = page_to_pfn(page);
ec95f53a
KM
774
775 if (!free_pages_prepare(page, order))
776 return;
777
cfc47a28 778 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 779 local_irq_save(flags);
f8891e5e 780 __count_vm_events(PGFREE, 1 << order);
95e34412 781 set_freepage_migratetype(page, migratetype);
dc4b0caf 782 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 783 local_irq_restore(flags);
1da177e4
LT
784}
785
170a5a7e 786void __init __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8 787{
c3993076 788 unsigned int nr_pages = 1 << order;
e2d0bd2b 789 struct page *p = page;
c3993076 790 unsigned int loop;
a226f6c8 791
e2d0bd2b
YL
792 prefetchw(p);
793 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
794 prefetchw(p + 1);
c3993076
JW
795 __ClearPageReserved(p);
796 set_page_count(p, 0);
a226f6c8 797 }
e2d0bd2b
YL
798 __ClearPageReserved(p);
799 set_page_count(p, 0);
c3993076 800
e2d0bd2b 801 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
802 set_page_refcounted(page);
803 __free_pages(page, order);
a226f6c8
DH
804}
805
47118af0 806#ifdef CONFIG_CMA
9cf510a5 807/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
808void __init init_cma_reserved_pageblock(struct page *page)
809{
810 unsigned i = pageblock_nr_pages;
811 struct page *p = page;
812
813 do {
814 __ClearPageReserved(p);
815 set_page_count(p, 0);
816 } while (++p, --i);
817
818 set_page_refcounted(page);
819 set_pageblock_migratetype(page, MIGRATE_CMA);
820 __free_pages(page, pageblock_order);
3dcc0571 821 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
822}
823#endif
1da177e4
LT
824
825/*
826 * The order of subdivision here is critical for the IO subsystem.
827 * Please do not alter this order without good reasons and regression
828 * testing. Specifically, as large blocks of memory are subdivided,
829 * the order in which smaller blocks are delivered depends on the order
830 * they're subdivided in this function. This is the primary factor
831 * influencing the order in which pages are delivered to the IO
832 * subsystem according to empirical testing, and this is also justified
833 * by considering the behavior of a buddy system containing a single
834 * large block of memory acted on by a series of small allocations.
835 * This behavior is a critical factor in sglist merging's success.
836 *
6d49e352 837 * -- nyc
1da177e4 838 */
085cc7d5 839static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
840 int low, int high, struct free_area *area,
841 int migratetype)
1da177e4
LT
842{
843 unsigned long size = 1 << high;
844
845 while (high > low) {
846 area--;
847 high--;
848 size >>= 1;
309381fe 849 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5
SG
850
851#ifdef CONFIG_DEBUG_PAGEALLOC
852 if (high < debug_guardpage_minorder()) {
853 /*
854 * Mark as guard pages (or page), that will allow to
855 * merge back to allocator when buddy will be freed.
856 * Corresponding page table entries will not be touched,
857 * pages will stay not present in virtual address space
858 */
859 INIT_LIST_HEAD(&page[size].lru);
860 set_page_guard_flag(&page[size]);
861 set_page_private(&page[size], high);
862 /* Guard pages are not available for any usage */
d1ce749a
BZ
863 __mod_zone_freepage_state(zone, -(1 << high),
864 migratetype);
c0a32fc5
SG
865 continue;
866 }
867#endif
b2a0ac88 868 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
869 area->nr_free++;
870 set_page_order(&page[size], high);
871 }
1da177e4
LT
872}
873
1da177e4
LT
874/*
875 * This page is about to be returned from the page allocator
876 */
2a7684a2 877static inline int check_new_page(struct page *page)
1da177e4 878{
d230dec1 879 const char *bad_reason = NULL;
f0b791a3
DH
880 unsigned long bad_flags = 0;
881
882 if (unlikely(page_mapcount(page)))
883 bad_reason = "nonzero mapcount";
884 if (unlikely(page->mapping != NULL))
885 bad_reason = "non-NULL mapping";
886 if (unlikely(atomic_read(&page->_count) != 0))
887 bad_reason = "nonzero _count";
888 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
889 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
890 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
891 }
892 if (unlikely(mem_cgroup_bad_page_check(page)))
893 bad_reason = "cgroup check failed";
894 if (unlikely(bad_reason)) {
895 bad_page(page, bad_reason, bad_flags);
689bcebf 896 return 1;
8cc3b392 897 }
2a7684a2
WF
898 return 0;
899}
900
7aeb09f9 901static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags)
2a7684a2
WF
902{
903 int i;
904
905 for (i = 0; i < (1 << order); i++) {
906 struct page *p = page + i;
907 if (unlikely(check_new_page(p)))
908 return 1;
909 }
689bcebf 910
4c21e2f2 911 set_page_private(page, 0);
7835e98b 912 set_page_refcounted(page);
cc102509
NP
913
914 arch_alloc_page(page, order);
1da177e4 915 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
916
917 if (gfp_flags & __GFP_ZERO)
918 prep_zero_page(page, order, gfp_flags);
919
920 if (order && (gfp_flags & __GFP_COMP))
921 prep_compound_page(page, order);
922
689bcebf 923 return 0;
1da177e4
LT
924}
925
56fd56b8
MG
926/*
927 * Go through the free lists for the given migratetype and remove
928 * the smallest available page from the freelists
929 */
728ec980
MG
930static inline
931struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
932 int migratetype)
933{
934 unsigned int current_order;
b8af2941 935 struct free_area *area;
56fd56b8
MG
936 struct page *page;
937
938 /* Find a page of the appropriate size in the preferred list */
939 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
940 area = &(zone->free_area[current_order]);
941 if (list_empty(&area->free_list[migratetype]))
942 continue;
943
944 page = list_entry(area->free_list[migratetype].next,
945 struct page, lru);
946 list_del(&page->lru);
947 rmv_page_order(page);
948 area->nr_free--;
56fd56b8 949 expand(zone, page, order, current_order, area, migratetype);
5bcc9f86 950 set_freepage_migratetype(page, migratetype);
56fd56b8
MG
951 return page;
952 }
953
954 return NULL;
955}
956
957
b2a0ac88
MG
958/*
959 * This array describes the order lists are fallen back to when
960 * the free lists for the desirable migrate type are depleted
961 */
47118af0
MN
962static int fallbacks[MIGRATE_TYPES][4] = {
963 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
964 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
965#ifdef CONFIG_CMA
966 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
967 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
968#else
969 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
970#endif
6d4a4916 971 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 972#ifdef CONFIG_MEMORY_ISOLATION
6d4a4916 973 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 974#endif
b2a0ac88
MG
975};
976
c361be55
MG
977/*
978 * Move the free pages in a range to the free lists of the requested type.
d9c23400 979 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
980 * boundary. If alignment is required, use move_freepages_block()
981 */
435b405c 982int move_freepages(struct zone *zone,
b69a7288
AB
983 struct page *start_page, struct page *end_page,
984 int migratetype)
c361be55
MG
985{
986 struct page *page;
987 unsigned long order;
d100313f 988 int pages_moved = 0;
c361be55
MG
989
990#ifndef CONFIG_HOLES_IN_ZONE
991 /*
992 * page_zone is not safe to call in this context when
993 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
994 * anyway as we check zone boundaries in move_freepages_block().
995 * Remove at a later date when no bug reports exist related to
ac0e5b7a 996 * grouping pages by mobility
c361be55
MG
997 */
998 BUG_ON(page_zone(start_page) != page_zone(end_page));
999#endif
1000
1001 for (page = start_page; page <= end_page;) {
344c790e 1002 /* Make sure we are not inadvertently changing nodes */
309381fe 1003 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1004
c361be55
MG
1005 if (!pfn_valid_within(page_to_pfn(page))) {
1006 page++;
1007 continue;
1008 }
1009
1010 if (!PageBuddy(page)) {
1011 page++;
1012 continue;
1013 }
1014
1015 order = page_order(page);
84be48d8
KS
1016 list_move(&page->lru,
1017 &zone->free_area[order].free_list[migratetype]);
95e34412 1018 set_freepage_migratetype(page, migratetype);
c361be55 1019 page += 1 << order;
d100313f 1020 pages_moved += 1 << order;
c361be55
MG
1021 }
1022
d100313f 1023 return pages_moved;
c361be55
MG
1024}
1025
ee6f509c 1026int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1027 int migratetype)
c361be55
MG
1028{
1029 unsigned long start_pfn, end_pfn;
1030 struct page *start_page, *end_page;
1031
1032 start_pfn = page_to_pfn(page);
d9c23400 1033 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1034 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1035 end_page = start_page + pageblock_nr_pages - 1;
1036 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1037
1038 /* Do not cross zone boundaries */
108bcc96 1039 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1040 start_page = page;
108bcc96 1041 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1042 return 0;
1043
1044 return move_freepages(zone, start_page, end_page, migratetype);
1045}
1046
2f66a68f
MG
1047static void change_pageblock_range(struct page *pageblock_page,
1048 int start_order, int migratetype)
1049{
1050 int nr_pageblocks = 1 << (start_order - pageblock_order);
1051
1052 while (nr_pageblocks--) {
1053 set_pageblock_migratetype(pageblock_page, migratetype);
1054 pageblock_page += pageblock_nr_pages;
1055 }
1056}
1057
fef903ef
SB
1058/*
1059 * If breaking a large block of pages, move all free pages to the preferred
1060 * allocation list. If falling back for a reclaimable kernel allocation, be
1061 * more aggressive about taking ownership of free pages.
1062 *
1063 * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1064 * nor move CMA pages to different free lists. We don't want unmovable pages
1065 * to be allocated from MIGRATE_CMA areas.
1066 *
1067 * Returns the new migratetype of the pageblock (or the same old migratetype
1068 * if it was unchanged).
1069 */
1070static int try_to_steal_freepages(struct zone *zone, struct page *page,
1071 int start_type, int fallback_type)
1072{
1073 int current_order = page_order(page);
1074
0cbef29a
KM
1075 /*
1076 * When borrowing from MIGRATE_CMA, we need to release the excess
5bcc9f86
VB
1077 * buddy pages to CMA itself. We also ensure the freepage_migratetype
1078 * is set to CMA so it is returned to the correct freelist in case
1079 * the page ends up being not actually allocated from the pcp lists.
0cbef29a 1080 */
fef903ef
SB
1081 if (is_migrate_cma(fallback_type))
1082 return fallback_type;
1083
1084 /* Take ownership for orders >= pageblock_order */
1085 if (current_order >= pageblock_order) {
1086 change_pageblock_range(page, current_order, start_type);
1087 return start_type;
1088 }
1089
1090 if (current_order >= pageblock_order / 2 ||
1091 start_type == MIGRATE_RECLAIMABLE ||
1092 page_group_by_mobility_disabled) {
1093 int pages;
1094
1095 pages = move_freepages_block(zone, page, start_type);
1096
1097 /* Claim the whole block if over half of it is free */
1098 if (pages >= (1 << (pageblock_order-1)) ||
1099 page_group_by_mobility_disabled) {
1100
1101 set_pageblock_migratetype(page, start_type);
1102 return start_type;
1103 }
1104
1105 }
1106
1107 return fallback_type;
1108}
1109
b2a0ac88 1110/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 1111static inline struct page *
7aeb09f9 1112__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 1113{
b8af2941 1114 struct free_area *area;
7aeb09f9 1115 unsigned int current_order;
b2a0ac88 1116 struct page *page;
fef903ef 1117 int migratetype, new_type, i;
b2a0ac88
MG
1118
1119 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
1120 for (current_order = MAX_ORDER-1;
1121 current_order >= order && current_order <= MAX_ORDER-1;
1122 --current_order) {
6d4a4916 1123 for (i = 0;; i++) {
b2a0ac88
MG
1124 migratetype = fallbacks[start_migratetype][i];
1125
56fd56b8
MG
1126 /* MIGRATE_RESERVE handled later if necessary */
1127 if (migratetype == MIGRATE_RESERVE)
6d4a4916 1128 break;
e010487d 1129
b2a0ac88
MG
1130 area = &(zone->free_area[current_order]);
1131 if (list_empty(&area->free_list[migratetype]))
1132 continue;
1133
1134 page = list_entry(area->free_list[migratetype].next,
1135 struct page, lru);
1136 area->nr_free--;
1137
fef903ef
SB
1138 new_type = try_to_steal_freepages(zone, page,
1139 start_migratetype,
1140 migratetype);
b2a0ac88
MG
1141
1142 /* Remove the page from the freelists */
1143 list_del(&page->lru);
1144 rmv_page_order(page);
b2a0ac88 1145
47118af0 1146 expand(zone, page, order, current_order, area,
0cbef29a 1147 new_type);
5bcc9f86
VB
1148 /* The freepage_migratetype may differ from pageblock's
1149 * migratetype depending on the decisions in
1150 * try_to_steal_freepages. This is OK as long as it does
1151 * not differ for MIGRATE_CMA type.
1152 */
1153 set_freepage_migratetype(page, new_type);
e0fff1bd 1154
52c8f6a5
KM
1155 trace_mm_page_alloc_extfrag(page, order, current_order,
1156 start_migratetype, migratetype, new_type);
e0fff1bd 1157
b2a0ac88
MG
1158 return page;
1159 }
1160 }
1161
728ec980 1162 return NULL;
b2a0ac88
MG
1163}
1164
56fd56b8 1165/*
1da177e4
LT
1166 * Do the hard work of removing an element from the buddy allocator.
1167 * Call me with the zone->lock already held.
1168 */
b2a0ac88
MG
1169static struct page *__rmqueue(struct zone *zone, unsigned int order,
1170 int migratetype)
1da177e4 1171{
1da177e4
LT
1172 struct page *page;
1173
728ec980 1174retry_reserve:
56fd56b8 1175 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 1176
728ec980 1177 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 1178 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1179
728ec980
MG
1180 /*
1181 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1182 * is used because __rmqueue_smallest is an inline function
1183 * and we want just one call site
1184 */
1185 if (!page) {
1186 migratetype = MIGRATE_RESERVE;
1187 goto retry_reserve;
1188 }
1189 }
1190
0d3d062a 1191 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1192 return page;
1da177e4
LT
1193}
1194
5f63b720 1195/*
1da177e4
LT
1196 * Obtain a specified number of elements from the buddy allocator, all under
1197 * a single hold of the lock, for efficiency. Add them to the supplied list.
1198 * Returns the number of new pages which were placed at *list.
1199 */
5f63b720 1200static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1201 unsigned long count, struct list_head *list,
b745bc85 1202 int migratetype, bool cold)
1da177e4 1203{
5bcc9f86 1204 int i;
5f63b720 1205
c54ad30c 1206 spin_lock(&zone->lock);
1da177e4 1207 for (i = 0; i < count; ++i) {
b2a0ac88 1208 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1209 if (unlikely(page == NULL))
1da177e4 1210 break;
81eabcbe
MG
1211
1212 /*
1213 * Split buddy pages returned by expand() are received here
1214 * in physical page order. The page is added to the callers and
1215 * list and the list head then moves forward. From the callers
1216 * perspective, the linked list is ordered by page number in
1217 * some conditions. This is useful for IO devices that can
1218 * merge IO requests if the physical pages are ordered
1219 * properly.
1220 */
b745bc85 1221 if (likely(!cold))
e084b2d9
MG
1222 list_add(&page->lru, list);
1223 else
1224 list_add_tail(&page->lru, list);
81eabcbe 1225 list = &page->lru;
5bcc9f86 1226 if (is_migrate_cma(get_freepage_migratetype(page)))
d1ce749a
BZ
1227 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1228 -(1 << order));
1da177e4 1229 }
f2260e6b 1230 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1231 spin_unlock(&zone->lock);
085cc7d5 1232 return i;
1da177e4
LT
1233}
1234
4ae7c039 1235#ifdef CONFIG_NUMA
8fce4d8e 1236/*
4037d452
CL
1237 * Called from the vmstat counter updater to drain pagesets of this
1238 * currently executing processor on remote nodes after they have
1239 * expired.
1240 *
879336c3
CL
1241 * Note that this function must be called with the thread pinned to
1242 * a single processor.
8fce4d8e 1243 */
4037d452 1244void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1245{
4ae7c039 1246 unsigned long flags;
4037d452 1247 int to_drain;
998d39cb 1248 unsigned long batch;
4ae7c039 1249
4037d452 1250 local_irq_save(flags);
998d39cb
CS
1251 batch = ACCESS_ONCE(pcp->batch);
1252 if (pcp->count >= batch)
1253 to_drain = batch;
4037d452
CL
1254 else
1255 to_drain = pcp->count;
2a13515c
KM
1256 if (to_drain > 0) {
1257 free_pcppages_bulk(zone, to_drain, pcp);
1258 pcp->count -= to_drain;
1259 }
4037d452 1260 local_irq_restore(flags);
4ae7c039
CL
1261}
1262#endif
1263
9f8f2172
CL
1264/*
1265 * Drain pages of the indicated processor.
1266 *
1267 * The processor must either be the current processor and the
1268 * thread pinned to the current processor or a processor that
1269 * is not online.
1270 */
1271static void drain_pages(unsigned int cpu)
1da177e4 1272{
c54ad30c 1273 unsigned long flags;
1da177e4 1274 struct zone *zone;
1da177e4 1275
ee99c71c 1276 for_each_populated_zone(zone) {
1da177e4 1277 struct per_cpu_pageset *pset;
3dfa5721 1278 struct per_cpu_pages *pcp;
1da177e4 1279
99dcc3e5
CL
1280 local_irq_save(flags);
1281 pset = per_cpu_ptr(zone->pageset, cpu);
3dfa5721
CL
1282
1283 pcp = &pset->pcp;
2ff754fa
DR
1284 if (pcp->count) {
1285 free_pcppages_bulk(zone, pcp->count, pcp);
1286 pcp->count = 0;
1287 }
3dfa5721 1288 local_irq_restore(flags);
1da177e4
LT
1289 }
1290}
1da177e4 1291
9f8f2172
CL
1292/*
1293 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1294 */
1295void drain_local_pages(void *arg)
1296{
1297 drain_pages(smp_processor_id());
1298}
1299
1300/*
74046494
GBY
1301 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1302 *
1303 * Note that this code is protected against sending an IPI to an offline
1304 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1305 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1306 * nothing keeps CPUs from showing up after we populated the cpumask and
1307 * before the call to on_each_cpu_mask().
9f8f2172
CL
1308 */
1309void drain_all_pages(void)
1310{
74046494
GBY
1311 int cpu;
1312 struct per_cpu_pageset *pcp;
1313 struct zone *zone;
1314
1315 /*
1316 * Allocate in the BSS so we wont require allocation in
1317 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1318 */
1319 static cpumask_t cpus_with_pcps;
1320
1321 /*
1322 * We don't care about racing with CPU hotplug event
1323 * as offline notification will cause the notified
1324 * cpu to drain that CPU pcps and on_each_cpu_mask
1325 * disables preemption as part of its processing
1326 */
1327 for_each_online_cpu(cpu) {
1328 bool has_pcps = false;
1329 for_each_populated_zone(zone) {
1330 pcp = per_cpu_ptr(zone->pageset, cpu);
1331 if (pcp->pcp.count) {
1332 has_pcps = true;
1333 break;
1334 }
1335 }
1336 if (has_pcps)
1337 cpumask_set_cpu(cpu, &cpus_with_pcps);
1338 else
1339 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1340 }
1341 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
9f8f2172
CL
1342}
1343
296699de 1344#ifdef CONFIG_HIBERNATION
1da177e4
LT
1345
1346void mark_free_pages(struct zone *zone)
1347{
f623f0db
RW
1348 unsigned long pfn, max_zone_pfn;
1349 unsigned long flags;
7aeb09f9 1350 unsigned int order, t;
1da177e4
LT
1351 struct list_head *curr;
1352
8080fc03 1353 if (zone_is_empty(zone))
1da177e4
LT
1354 return;
1355
1356 spin_lock_irqsave(&zone->lock, flags);
f623f0db 1357
108bcc96 1358 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
1359 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1360 if (pfn_valid(pfn)) {
1361 struct page *page = pfn_to_page(pfn);
1362
7be98234
RW
1363 if (!swsusp_page_is_forbidden(page))
1364 swsusp_unset_page_free(page);
f623f0db 1365 }
1da177e4 1366
b2a0ac88
MG
1367 for_each_migratetype_order(order, t) {
1368 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1369 unsigned long i;
1da177e4 1370
f623f0db
RW
1371 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1372 for (i = 0; i < (1UL << order); i++)
7be98234 1373 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1374 }
b2a0ac88 1375 }
1da177e4
LT
1376 spin_unlock_irqrestore(&zone->lock, flags);
1377}
e2c55dc8 1378#endif /* CONFIG_PM */
1da177e4 1379
1da177e4
LT
1380/*
1381 * Free a 0-order page
b745bc85 1382 * cold == true ? free a cold page : free a hot page
1da177e4 1383 */
b745bc85 1384void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
1385{
1386 struct zone *zone = page_zone(page);
1387 struct per_cpu_pages *pcp;
1388 unsigned long flags;
dc4b0caf 1389 unsigned long pfn = page_to_pfn(page);
5f8dcc21 1390 int migratetype;
1da177e4 1391
ec95f53a 1392 if (!free_pages_prepare(page, 0))
689bcebf
HD
1393 return;
1394
dc4b0caf 1395 migratetype = get_pfnblock_migratetype(page, pfn);
b12c4ad1 1396 set_freepage_migratetype(page, migratetype);
1da177e4 1397 local_irq_save(flags);
f8891e5e 1398 __count_vm_event(PGFREE);
da456f14 1399
5f8dcc21
MG
1400 /*
1401 * We only track unmovable, reclaimable and movable on pcp lists.
1402 * Free ISOLATE pages back to the allocator because they are being
1403 * offlined but treat RESERVE as movable pages so we can get those
1404 * areas back if necessary. Otherwise, we may have to free
1405 * excessively into the page allocator
1406 */
1407 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 1408 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 1409 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
1410 goto out;
1411 }
1412 migratetype = MIGRATE_MOVABLE;
1413 }
1414
99dcc3e5 1415 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 1416 if (!cold)
5f8dcc21 1417 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
1418 else
1419 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 1420 pcp->count++;
48db57f8 1421 if (pcp->count >= pcp->high) {
998d39cb
CS
1422 unsigned long batch = ACCESS_ONCE(pcp->batch);
1423 free_pcppages_bulk(zone, batch, pcp);
1424 pcp->count -= batch;
48db57f8 1425 }
5f8dcc21
MG
1426
1427out:
1da177e4 1428 local_irq_restore(flags);
1da177e4
LT
1429}
1430
cc59850e
KK
1431/*
1432 * Free a list of 0-order pages
1433 */
b745bc85 1434void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
1435{
1436 struct page *page, *next;
1437
1438 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 1439 trace_mm_page_free_batched(page, cold);
cc59850e
KK
1440 free_hot_cold_page(page, cold);
1441 }
1442}
1443
8dfcc9ba
NP
1444/*
1445 * split_page takes a non-compound higher-order page, and splits it into
1446 * n (1<<order) sub-pages: page[0..n]
1447 * Each sub-page must be freed individually.
1448 *
1449 * Note: this is probably too low level an operation for use in drivers.
1450 * Please consult with lkml before using this in your driver.
1451 */
1452void split_page(struct page *page, unsigned int order)
1453{
1454 int i;
1455
309381fe
SL
1456 VM_BUG_ON_PAGE(PageCompound(page), page);
1457 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
1458
1459#ifdef CONFIG_KMEMCHECK
1460 /*
1461 * Split shadow pages too, because free(page[0]) would
1462 * otherwise free the whole shadow.
1463 */
1464 if (kmemcheck_page_is_tracked(page))
1465 split_page(virt_to_page(page[0].shadow), order);
1466#endif
1467
7835e98b
NP
1468 for (i = 1; i < (1 << order); i++)
1469 set_page_refcounted(page + i);
8dfcc9ba 1470}
5853ff23 1471EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 1472
8fb74b9f 1473static int __isolate_free_page(struct page *page, unsigned int order)
748446bb 1474{
748446bb
MG
1475 unsigned long watermark;
1476 struct zone *zone;
2139cbe6 1477 int mt;
748446bb
MG
1478
1479 BUG_ON(!PageBuddy(page));
1480
1481 zone = page_zone(page);
2e30abd1 1482 mt = get_pageblock_migratetype(page);
748446bb 1483
194159fb 1484 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
1485 /* Obey watermarks as if the page was being allocated */
1486 watermark = low_wmark_pages(zone) + (1 << order);
1487 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1488 return 0;
1489
8fb74b9f 1490 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 1491 }
748446bb
MG
1492
1493 /* Remove page from free list */
1494 list_del(&page->lru);
1495 zone->free_area[order].nr_free--;
1496 rmv_page_order(page);
2139cbe6 1497
8fb74b9f 1498 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
1499 if (order >= pageblock_order - 1) {
1500 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
1501 for (; page < endpage; page += pageblock_nr_pages) {
1502 int mt = get_pageblock_migratetype(page);
194159fb 1503 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
1504 set_pageblock_migratetype(page,
1505 MIGRATE_MOVABLE);
1506 }
748446bb
MG
1507 }
1508
8fb74b9f 1509 return 1UL << order;
1fb3f8ca
MG
1510}
1511
1512/*
1513 * Similar to split_page except the page is already free. As this is only
1514 * being used for migration, the migratetype of the block also changes.
1515 * As this is called with interrupts disabled, the caller is responsible
1516 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1517 * are enabled.
1518 *
1519 * Note: this is probably too low level an operation for use in drivers.
1520 * Please consult with lkml before using this in your driver.
1521 */
1522int split_free_page(struct page *page)
1523{
1524 unsigned int order;
1525 int nr_pages;
1526
1fb3f8ca
MG
1527 order = page_order(page);
1528
8fb74b9f 1529 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
1530 if (!nr_pages)
1531 return 0;
1532
1533 /* Split into individual pages */
1534 set_page_refcounted(page);
1535 split_page(page, order);
1536 return nr_pages;
748446bb
MG
1537}
1538
1da177e4
LT
1539/*
1540 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1541 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1542 * or two.
1543 */
0a15c3e9
MG
1544static inline
1545struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9
MG
1546 struct zone *zone, unsigned int order,
1547 gfp_t gfp_flags, int migratetype)
1da177e4
LT
1548{
1549 unsigned long flags;
689bcebf 1550 struct page *page;
b745bc85 1551 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 1552
689bcebf 1553again:
48db57f8 1554 if (likely(order == 0)) {
1da177e4 1555 struct per_cpu_pages *pcp;
5f8dcc21 1556 struct list_head *list;
1da177e4 1557
1da177e4 1558 local_irq_save(flags);
99dcc3e5
CL
1559 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1560 list = &pcp->lists[migratetype];
5f8dcc21 1561 if (list_empty(list)) {
535131e6 1562 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1563 pcp->batch, list,
e084b2d9 1564 migratetype, cold);
5f8dcc21 1565 if (unlikely(list_empty(list)))
6fb332fa 1566 goto failed;
535131e6 1567 }
b92a6edd 1568
5f8dcc21
MG
1569 if (cold)
1570 page = list_entry(list->prev, struct page, lru);
1571 else
1572 page = list_entry(list->next, struct page, lru);
1573
b92a6edd
MG
1574 list_del(&page->lru);
1575 pcp->count--;
7fb1d9fc 1576 } else {
dab48dab
AM
1577 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1578 /*
1579 * __GFP_NOFAIL is not to be used in new code.
1580 *
1581 * All __GFP_NOFAIL callers should be fixed so that they
1582 * properly detect and handle allocation failures.
1583 *
1584 * We most definitely don't want callers attempting to
4923abf9 1585 * allocate greater than order-1 page units with
dab48dab
AM
1586 * __GFP_NOFAIL.
1587 */
4923abf9 1588 WARN_ON_ONCE(order > 1);
dab48dab 1589 }
1da177e4 1590 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1591 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1592 spin_unlock(&zone->lock);
1593 if (!page)
1594 goto failed;
d1ce749a 1595 __mod_zone_freepage_state(zone, -(1 << order),
5bcc9f86 1596 get_freepage_migratetype(page));
1da177e4
LT
1597 }
1598
3a025760 1599 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
27329369 1600
f8891e5e 1601 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 1602 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 1603 local_irq_restore(flags);
1da177e4 1604
309381fe 1605 VM_BUG_ON_PAGE(bad_range(zone, page), page);
17cf4406 1606 if (prep_new_page(page, order, gfp_flags))
a74609fa 1607 goto again;
1da177e4 1608 return page;
a74609fa
NP
1609
1610failed:
1611 local_irq_restore(flags);
a74609fa 1612 return NULL;
1da177e4
LT
1613}
1614
933e312e
AM
1615#ifdef CONFIG_FAIL_PAGE_ALLOC
1616
b2588c4b 1617static struct {
933e312e
AM
1618 struct fault_attr attr;
1619
1620 u32 ignore_gfp_highmem;
1621 u32 ignore_gfp_wait;
54114994 1622 u32 min_order;
933e312e
AM
1623} fail_page_alloc = {
1624 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1625 .ignore_gfp_wait = 1,
1626 .ignore_gfp_highmem = 1,
54114994 1627 .min_order = 1,
933e312e
AM
1628};
1629
1630static int __init setup_fail_page_alloc(char *str)
1631{
1632 return setup_fault_attr(&fail_page_alloc.attr, str);
1633}
1634__setup("fail_page_alloc=", setup_fail_page_alloc);
1635
deaf386e 1636static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1637{
54114994 1638 if (order < fail_page_alloc.min_order)
deaf386e 1639 return false;
933e312e 1640 if (gfp_mask & __GFP_NOFAIL)
deaf386e 1641 return false;
933e312e 1642 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 1643 return false;
933e312e 1644 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
deaf386e 1645 return false;
933e312e
AM
1646
1647 return should_fail(&fail_page_alloc.attr, 1 << order);
1648}
1649
1650#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1651
1652static int __init fail_page_alloc_debugfs(void)
1653{
f4ae40a6 1654 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 1655 struct dentry *dir;
933e312e 1656
dd48c085
AM
1657 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1658 &fail_page_alloc.attr);
1659 if (IS_ERR(dir))
1660 return PTR_ERR(dir);
933e312e 1661
b2588c4b
AM
1662 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1663 &fail_page_alloc.ignore_gfp_wait))
1664 goto fail;
1665 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1666 &fail_page_alloc.ignore_gfp_highmem))
1667 goto fail;
1668 if (!debugfs_create_u32("min-order", mode, dir,
1669 &fail_page_alloc.min_order))
1670 goto fail;
1671
1672 return 0;
1673fail:
dd48c085 1674 debugfs_remove_recursive(dir);
933e312e 1675
b2588c4b 1676 return -ENOMEM;
933e312e
AM
1677}
1678
1679late_initcall(fail_page_alloc_debugfs);
1680
1681#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1682
1683#else /* CONFIG_FAIL_PAGE_ALLOC */
1684
deaf386e 1685static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1686{
deaf386e 1687 return false;
933e312e
AM
1688}
1689
1690#endif /* CONFIG_FAIL_PAGE_ALLOC */
1691
1da177e4 1692/*
88f5acf8 1693 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1694 * of the allocation.
1695 */
7aeb09f9
MG
1696static bool __zone_watermark_ok(struct zone *z, unsigned int order,
1697 unsigned long mark, int classzone_idx, int alloc_flags,
1698 long free_pages)
1da177e4
LT
1699{
1700 /* free_pages my go negative - that's OK */
d23ad423 1701 long min = mark;
2cfed075 1702 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1da177e4 1703 int o;
026b0814 1704 long free_cma = 0;
1da177e4 1705
df0a6daa 1706 free_pages -= (1 << order) - 1;
7fb1d9fc 1707 if (alloc_flags & ALLOC_HIGH)
1da177e4 1708 min -= min / 2;
7fb1d9fc 1709 if (alloc_flags & ALLOC_HARDER)
1da177e4 1710 min -= min / 4;
d95ea5d1
BZ
1711#ifdef CONFIG_CMA
1712 /* If allocation can't use CMA areas don't use free CMA pages */
1713 if (!(alloc_flags & ALLOC_CMA))
026b0814 1714 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 1715#endif
026b0814
TS
1716
1717 if (free_pages - free_cma <= min + lowmem_reserve)
88f5acf8 1718 return false;
1da177e4
LT
1719 for (o = 0; o < order; o++) {
1720 /* At the next order, this order's pages become unavailable */
1721 free_pages -= z->free_area[o].nr_free << o;
1722
1723 /* Require fewer higher order pages to be free */
1724 min >>= 1;
1725
1726 if (free_pages <= min)
88f5acf8 1727 return false;
1da177e4 1728 }
88f5acf8
MG
1729 return true;
1730}
1731
7aeb09f9 1732bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
88f5acf8
MG
1733 int classzone_idx, int alloc_flags)
1734{
1735 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1736 zone_page_state(z, NR_FREE_PAGES));
1737}
1738
7aeb09f9
MG
1739bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1740 unsigned long mark, int classzone_idx, int alloc_flags)
88f5acf8
MG
1741{
1742 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1743
1744 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1745 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1746
1747 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1748 free_pages);
1da177e4
LT
1749}
1750
9276b1bc
PJ
1751#ifdef CONFIG_NUMA
1752/*
1753 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1754 * skip over zones that are not allowed by the cpuset, or that have
1755 * been recently (in last second) found to be nearly full. See further
1756 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1757 * that have to skip over a lot of full or unallowed zones.
9276b1bc 1758 *
a1aeb65a 1759 * If the zonelist cache is present in the passed zonelist, then
9276b1bc 1760 * returns a pointer to the allowed node mask (either the current
4b0ef1fe 1761 * tasks mems_allowed, or node_states[N_MEMORY].)
9276b1bc
PJ
1762 *
1763 * If the zonelist cache is not available for this zonelist, does
1764 * nothing and returns NULL.
1765 *
1766 * If the fullzones BITMAP in the zonelist cache is stale (more than
1767 * a second since last zap'd) then we zap it out (clear its bits.)
1768 *
1769 * We hold off even calling zlc_setup, until after we've checked the
1770 * first zone in the zonelist, on the theory that most allocations will
1771 * be satisfied from that first zone, so best to examine that zone as
1772 * quickly as we can.
1773 */
1774static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1775{
1776 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1777 nodemask_t *allowednodes; /* zonelist_cache approximation */
1778
1779 zlc = zonelist->zlcache_ptr;
1780 if (!zlc)
1781 return NULL;
1782
f05111f5 1783 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1784 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1785 zlc->last_full_zap = jiffies;
1786 }
1787
1788 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1789 &cpuset_current_mems_allowed :
4b0ef1fe 1790 &node_states[N_MEMORY];
9276b1bc
PJ
1791 return allowednodes;
1792}
1793
1794/*
1795 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1796 * if it is worth looking at further for free memory:
1797 * 1) Check that the zone isn't thought to be full (doesn't have its
1798 * bit set in the zonelist_cache fullzones BITMAP).
1799 * 2) Check that the zones node (obtained from the zonelist_cache
1800 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1801 * Return true (non-zero) if zone is worth looking at further, or
1802 * else return false (zero) if it is not.
1803 *
1804 * This check -ignores- the distinction between various watermarks,
1805 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1806 * found to be full for any variation of these watermarks, it will
1807 * be considered full for up to one second by all requests, unless
1808 * we are so low on memory on all allowed nodes that we are forced
1809 * into the second scan of the zonelist.
1810 *
1811 * In the second scan we ignore this zonelist cache and exactly
1812 * apply the watermarks to all zones, even it is slower to do so.
1813 * We are low on memory in the second scan, and should leave no stone
1814 * unturned looking for a free page.
1815 */
dd1a239f 1816static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1817 nodemask_t *allowednodes)
1818{
1819 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1820 int i; /* index of *z in zonelist zones */
1821 int n; /* node that zone *z is on */
1822
1823 zlc = zonelist->zlcache_ptr;
1824 if (!zlc)
1825 return 1;
1826
dd1a239f 1827 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1828 n = zlc->z_to_n[i];
1829
1830 /* This zone is worth trying if it is allowed but not full */
1831 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1832}
1833
1834/*
1835 * Given 'z' scanning a zonelist, set the corresponding bit in
1836 * zlc->fullzones, so that subsequent attempts to allocate a page
1837 * from that zone don't waste time re-examining it.
1838 */
dd1a239f 1839static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1840{
1841 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1842 int i; /* index of *z in zonelist zones */
1843
1844 zlc = zonelist->zlcache_ptr;
1845 if (!zlc)
1846 return;
1847
dd1a239f 1848 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1849
1850 set_bit(i, zlc->fullzones);
1851}
1852
76d3fbf8
MG
1853/*
1854 * clear all zones full, called after direct reclaim makes progress so that
1855 * a zone that was recently full is not skipped over for up to a second
1856 */
1857static void zlc_clear_zones_full(struct zonelist *zonelist)
1858{
1859 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1860
1861 zlc = zonelist->zlcache_ptr;
1862 if (!zlc)
1863 return;
1864
1865 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1866}
1867
81c0a2bb
JW
1868static bool zone_local(struct zone *local_zone, struct zone *zone)
1869{
fff4068c 1870 return local_zone->node == zone->node;
81c0a2bb
JW
1871}
1872
957f822a
DR
1873static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1874{
5f7a75ac
MG
1875 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
1876 RECLAIM_DISTANCE;
957f822a
DR
1877}
1878
9276b1bc
PJ
1879#else /* CONFIG_NUMA */
1880
1881static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1882{
1883 return NULL;
1884}
1885
dd1a239f 1886static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1887 nodemask_t *allowednodes)
1888{
1889 return 1;
1890}
1891
dd1a239f 1892static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1893{
1894}
76d3fbf8
MG
1895
1896static void zlc_clear_zones_full(struct zonelist *zonelist)
1897{
1898}
957f822a 1899
81c0a2bb
JW
1900static bool zone_local(struct zone *local_zone, struct zone *zone)
1901{
1902 return true;
1903}
1904
957f822a
DR
1905static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1906{
1907 return true;
1908}
1909
9276b1bc
PJ
1910#endif /* CONFIG_NUMA */
1911
7fb1d9fc 1912/*
0798e519 1913 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1914 * a page.
1915 */
1916static struct page *
19770b32 1917get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1918 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1919 struct zone *preferred_zone, int migratetype)
753ee728 1920{
dd1a239f 1921 struct zoneref *z;
7fb1d9fc 1922 struct page *page = NULL;
54a6eb5c 1923 int classzone_idx;
5117f45d 1924 struct zone *zone;
9276b1bc
PJ
1925 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1926 int zlc_active = 0; /* set if using zonelist_cache */
1927 int did_zlc_setup = 0; /* just call zlc_setup() one time */
a6e21b14
MG
1928 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
1929 (gfp_mask & __GFP_WRITE);
54a6eb5c 1930
19770b32 1931 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1932zonelist_scan:
7fb1d9fc 1933 /*
9276b1bc 1934 * Scan zonelist, looking for a zone with enough free.
3b11f0aa 1935 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c.
7fb1d9fc 1936 */
19770b32
MG
1937 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1938 high_zoneidx, nodemask) {
e085dbc5
JW
1939 unsigned long mark;
1940
e5adfffc 1941 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
9276b1bc
PJ
1942 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1943 continue;
664eedde
MG
1944 if (cpusets_enabled() &&
1945 (alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1946 !cpuset_zone_allowed_softwall(zone, gfp_mask))
cd38b115 1947 continue;
81c0a2bb
JW
1948 /*
1949 * Distribute pages in proportion to the individual
1950 * zone size to ensure fair page aging. The zone a
1951 * page was allocated in should have no effect on the
1952 * time the page has in memory before being reclaimed.
81c0a2bb 1953 */
3a025760 1954 if (alloc_flags & ALLOC_FAIR) {
fff4068c 1955 if (!zone_local(preferred_zone, zone))
81c0a2bb 1956 continue;
3a025760
JW
1957 if (zone_page_state(zone, NR_ALLOC_BATCH) <= 0)
1958 continue;
81c0a2bb 1959 }
a756cf59
JW
1960 /*
1961 * When allocating a page cache page for writing, we
1962 * want to get it from a zone that is within its dirty
1963 * limit, such that no single zone holds more than its
1964 * proportional share of globally allowed dirty pages.
1965 * The dirty limits take into account the zone's
1966 * lowmem reserves and high watermark so that kswapd
1967 * should be able to balance it without having to
1968 * write pages from its LRU list.
1969 *
1970 * This may look like it could increase pressure on
1971 * lower zones by failing allocations in higher zones
1972 * before they are full. But the pages that do spill
1973 * over are limited as the lower zones are protected
1974 * by this very same mechanism. It should not become
1975 * a practical burden to them.
1976 *
1977 * XXX: For now, allow allocations to potentially
1978 * exceed the per-zone dirty limit in the slowpath
1979 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1980 * which is important when on a NUMA setup the allowed
1981 * zones are together not big enough to reach the
1982 * global limit. The proper fix for these situations
1983 * will require awareness of zones in the
1984 * dirty-throttling and the flusher threads.
1985 */
a6e21b14 1986 if (consider_zone_dirty && !zone_dirty_ok(zone))
800a1e75 1987 continue;
7fb1d9fc 1988
e085dbc5
JW
1989 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1990 if (!zone_watermark_ok(zone, order, mark,
1991 classzone_idx, alloc_flags)) {
fa5e084e
MG
1992 int ret;
1993
5dab2911
MG
1994 /* Checked here to keep the fast path fast */
1995 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1996 if (alloc_flags & ALLOC_NO_WATERMARKS)
1997 goto try_this_zone;
1998
e5adfffc
KS
1999 if (IS_ENABLED(CONFIG_NUMA) &&
2000 !did_zlc_setup && nr_online_nodes > 1) {
cd38b115
MG
2001 /*
2002 * we do zlc_setup if there are multiple nodes
2003 * and before considering the first zone allowed
2004 * by the cpuset.
2005 */
2006 allowednodes = zlc_setup(zonelist, alloc_flags);
2007 zlc_active = 1;
2008 did_zlc_setup = 1;
2009 }
2010
957f822a
DR
2011 if (zone_reclaim_mode == 0 ||
2012 !zone_allows_reclaim(preferred_zone, zone))
fa5e084e
MG
2013 goto this_zone_full;
2014
cd38b115
MG
2015 /*
2016 * As we may have just activated ZLC, check if the first
2017 * eligible zone has failed zone_reclaim recently.
2018 */
e5adfffc 2019 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
cd38b115
MG
2020 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2021 continue;
2022
fa5e084e
MG
2023 ret = zone_reclaim(zone, gfp_mask, order);
2024 switch (ret) {
2025 case ZONE_RECLAIM_NOSCAN:
2026 /* did not scan */
cd38b115 2027 continue;
fa5e084e
MG
2028 case ZONE_RECLAIM_FULL:
2029 /* scanned but unreclaimable */
cd38b115 2030 continue;
fa5e084e
MG
2031 default:
2032 /* did we reclaim enough */
fed2719e 2033 if (zone_watermark_ok(zone, order, mark,
fa5e084e 2034 classzone_idx, alloc_flags))
fed2719e
MG
2035 goto try_this_zone;
2036
2037 /*
2038 * Failed to reclaim enough to meet watermark.
2039 * Only mark the zone full if checking the min
2040 * watermark or if we failed to reclaim just
2041 * 1<<order pages or else the page allocator
2042 * fastpath will prematurely mark zones full
2043 * when the watermark is between the low and
2044 * min watermarks.
2045 */
2046 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2047 ret == ZONE_RECLAIM_SOME)
9276b1bc 2048 goto this_zone_full;
fed2719e
MG
2049
2050 continue;
0798e519 2051 }
7fb1d9fc
RS
2052 }
2053
fa5e084e 2054try_this_zone:
3dd28266
MG
2055 page = buffered_rmqueue(preferred_zone, zone, order,
2056 gfp_mask, migratetype);
0798e519 2057 if (page)
7fb1d9fc 2058 break;
9276b1bc 2059this_zone_full:
65bb3719 2060 if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
9276b1bc 2061 zlc_mark_zone_full(zonelist, z);
54a6eb5c 2062 }
9276b1bc 2063
e5adfffc 2064 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
9276b1bc
PJ
2065 /* Disable zlc cache for second zonelist scan */
2066 zlc_active = 0;
2067 goto zonelist_scan;
2068 }
b121186a
AS
2069
2070 if (page)
2071 /*
2072 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2073 * necessary to allocate the page. The expectation is
2074 * that the caller is taking steps that will free more
2075 * memory. The caller should avoid the page being used
2076 * for !PFMEMALLOC purposes.
2077 */
2078 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
2079
7fb1d9fc 2080 return page;
753ee728
MH
2081}
2082
29423e77
DR
2083/*
2084 * Large machines with many possible nodes should not always dump per-node
2085 * meminfo in irq context.
2086 */
2087static inline bool should_suppress_show_mem(void)
2088{
2089 bool ret = false;
2090
2091#if NODES_SHIFT > 8
2092 ret = in_interrupt();
2093#endif
2094 return ret;
2095}
2096
a238ab5b
DH
2097static DEFINE_RATELIMIT_STATE(nopage_rs,
2098 DEFAULT_RATELIMIT_INTERVAL,
2099 DEFAULT_RATELIMIT_BURST);
2100
2101void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2102{
a238ab5b
DH
2103 unsigned int filter = SHOW_MEM_FILTER_NODES;
2104
c0a32fc5
SG
2105 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2106 debug_guardpage_minorder() > 0)
a238ab5b
DH
2107 return;
2108
2109 /*
2110 * This documents exceptions given to allocations in certain
2111 * contexts that are allowed to allocate outside current's set
2112 * of allowed nodes.
2113 */
2114 if (!(gfp_mask & __GFP_NOMEMALLOC))
2115 if (test_thread_flag(TIF_MEMDIE) ||
2116 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2117 filter &= ~SHOW_MEM_FILTER_NODES;
2118 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2119 filter &= ~SHOW_MEM_FILTER_NODES;
2120
2121 if (fmt) {
3ee9a4f0
JP
2122 struct va_format vaf;
2123 va_list args;
2124
a238ab5b 2125 va_start(args, fmt);
3ee9a4f0
JP
2126
2127 vaf.fmt = fmt;
2128 vaf.va = &args;
2129
2130 pr_warn("%pV", &vaf);
2131
a238ab5b
DH
2132 va_end(args);
2133 }
2134
3ee9a4f0
JP
2135 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2136 current->comm, order, gfp_mask);
a238ab5b
DH
2137
2138 dump_stack();
2139 if (!should_suppress_show_mem())
2140 show_mem(filter);
2141}
2142
11e33f6a
MG
2143static inline int
2144should_alloc_retry(gfp_t gfp_mask, unsigned int order,
f90ac398 2145 unsigned long did_some_progress,
11e33f6a 2146 unsigned long pages_reclaimed)
1da177e4 2147{
11e33f6a
MG
2148 /* Do not loop if specifically requested */
2149 if (gfp_mask & __GFP_NORETRY)
2150 return 0;
1da177e4 2151
f90ac398
MG
2152 /* Always retry if specifically requested */
2153 if (gfp_mask & __GFP_NOFAIL)
2154 return 1;
2155
2156 /*
2157 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2158 * making forward progress without invoking OOM. Suspend also disables
2159 * storage devices so kswapd will not help. Bail if we are suspending.
2160 */
2161 if (!did_some_progress && pm_suspended_storage())
2162 return 0;
2163
11e33f6a
MG
2164 /*
2165 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2166 * means __GFP_NOFAIL, but that may not be true in other
2167 * implementations.
2168 */
2169 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2170 return 1;
2171
2172 /*
2173 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2174 * specified, then we retry until we no longer reclaim any pages
2175 * (above), or we've reclaimed an order of pages at least as
2176 * large as the allocation's order. In both cases, if the
2177 * allocation still fails, we stop retrying.
2178 */
2179 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2180 return 1;
cf40bd16 2181
11e33f6a
MG
2182 return 0;
2183}
933e312e 2184
11e33f6a
MG
2185static inline struct page *
2186__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2187 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2188 nodemask_t *nodemask, struct zone *preferred_zone,
2189 int migratetype)
11e33f6a
MG
2190{
2191 struct page *page;
2192
2193 /* Acquire the OOM killer lock for the zones in zonelist */
ff321fea 2194 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
11e33f6a 2195 schedule_timeout_uninterruptible(1);
1da177e4
LT
2196 return NULL;
2197 }
6b1de916 2198
11e33f6a
MG
2199 /*
2200 * Go through the zonelist yet one more time, keep very high watermark
2201 * here, this is only to catch a parallel oom killing, we must fail if
2202 * we're still under heavy pressure.
2203 */
2204 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2205 order, zonelist, high_zoneidx,
5117f45d 2206 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 2207 preferred_zone, migratetype);
7fb1d9fc 2208 if (page)
11e33f6a
MG
2209 goto out;
2210
4365a567
KH
2211 if (!(gfp_mask & __GFP_NOFAIL)) {
2212 /* The OOM killer will not help higher order allocs */
2213 if (order > PAGE_ALLOC_COSTLY_ORDER)
2214 goto out;
03668b3c
DR
2215 /* The OOM killer does not needlessly kill tasks for lowmem */
2216 if (high_zoneidx < ZONE_NORMAL)
2217 goto out;
4365a567
KH
2218 /*
2219 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2220 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2221 * The caller should handle page allocation failure by itself if
2222 * it specifies __GFP_THISNODE.
2223 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2224 */
2225 if (gfp_mask & __GFP_THISNODE)
2226 goto out;
2227 }
11e33f6a 2228 /* Exhausted what can be done so it's blamo time */
08ab9b10 2229 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
11e33f6a
MG
2230
2231out:
2232 clear_zonelist_oom(zonelist, gfp_mask);
2233 return page;
2234}
2235
56de7263
MG
2236#ifdef CONFIG_COMPACTION
2237/* Try memory compaction for high-order allocations before reclaim */
2238static struct page *
2239__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2240 struct zonelist *zonelist, enum zone_type high_zoneidx,
2241 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
e0b9daeb 2242 int migratetype, enum migrate_mode mode,
c67fe375 2243 bool *contended_compaction, bool *deferred_compaction,
66199712 2244 unsigned long *did_some_progress)
56de7263 2245{
66199712 2246 if (!order)
56de7263
MG
2247 return NULL;
2248
aff62249 2249 if (compaction_deferred(preferred_zone, order)) {
66199712
MG
2250 *deferred_compaction = true;
2251 return NULL;
2252 }
2253
c06b1fca 2254 current->flags |= PF_MEMALLOC;
56de7263 2255 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
e0b9daeb 2256 nodemask, mode,
8fb74b9f 2257 contended_compaction);
c06b1fca 2258 current->flags &= ~PF_MEMALLOC;
56de7263 2259
1fb3f8ca 2260 if (*did_some_progress != COMPACT_SKIPPED) {
8fb74b9f
MG
2261 struct page *page;
2262
56de7263
MG
2263 /* Page migration frees to the PCP lists but we want merging */
2264 drain_pages(get_cpu());
2265 put_cpu();
2266
2267 page = get_page_from_freelist(gfp_mask, nodemask,
2268 order, zonelist, high_zoneidx,
cfd19c5a
MG
2269 alloc_flags & ~ALLOC_NO_WATERMARKS,
2270 preferred_zone, migratetype);
56de7263 2271 if (page) {
62997027 2272 preferred_zone->compact_blockskip_flush = false;
de6c60a6 2273 compaction_defer_reset(preferred_zone, order, true);
56de7263
MG
2274 count_vm_event(COMPACTSUCCESS);
2275 return page;
2276 }
2277
2278 /*
2279 * It's bad if compaction run occurs and fails.
2280 * The most likely reason is that pages exist,
2281 * but not enough to satisfy watermarks.
2282 */
2283 count_vm_event(COMPACTFAIL);
66199712
MG
2284
2285 /*
2286 * As async compaction considers a subset of pageblocks, only
2287 * defer if the failure was a sync compaction failure.
2288 */
e0b9daeb 2289 if (mode != MIGRATE_ASYNC)
aff62249 2290 defer_compaction(preferred_zone, order);
56de7263
MG
2291
2292 cond_resched();
2293 }
2294
2295 return NULL;
2296}
2297#else
2298static inline struct page *
2299__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2300 struct zonelist *zonelist, enum zone_type high_zoneidx,
2301 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
e0b9daeb
DR
2302 int migratetype, enum migrate_mode mode, bool *contended_compaction,
2303 bool *deferred_compaction, unsigned long *did_some_progress)
56de7263
MG
2304{
2305 return NULL;
2306}
2307#endif /* CONFIG_COMPACTION */
2308
bba90710
MS
2309/* Perform direct synchronous page reclaim */
2310static int
2311__perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2312 nodemask_t *nodemask)
11e33f6a 2313{
11e33f6a 2314 struct reclaim_state reclaim_state;
bba90710 2315 int progress;
11e33f6a
MG
2316
2317 cond_resched();
2318
2319 /* We now go into synchronous reclaim */
2320 cpuset_memory_pressure_bump();
c06b1fca 2321 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2322 lockdep_set_current_reclaim_state(gfp_mask);
2323 reclaim_state.reclaimed_slab = 0;
c06b1fca 2324 current->reclaim_state = &reclaim_state;
11e33f6a 2325
bba90710 2326 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
11e33f6a 2327
c06b1fca 2328 current->reclaim_state = NULL;
11e33f6a 2329 lockdep_clear_current_reclaim_state();
c06b1fca 2330 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2331
2332 cond_resched();
2333
bba90710
MS
2334 return progress;
2335}
2336
2337/* The really slow allocator path where we enter direct reclaim */
2338static inline struct page *
2339__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2340 struct zonelist *zonelist, enum zone_type high_zoneidx,
2341 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2342 int migratetype, unsigned long *did_some_progress)
2343{
2344 struct page *page = NULL;
2345 bool drained = false;
2346
2347 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2348 nodemask);
9ee493ce
MG
2349 if (unlikely(!(*did_some_progress)))
2350 return NULL;
11e33f6a 2351
76d3fbf8 2352 /* After successful reclaim, reconsider all zones for allocation */
e5adfffc 2353 if (IS_ENABLED(CONFIG_NUMA))
76d3fbf8
MG
2354 zlc_clear_zones_full(zonelist);
2355
9ee493ce
MG
2356retry:
2357 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2358 zonelist, high_zoneidx,
cfd19c5a
MG
2359 alloc_flags & ~ALLOC_NO_WATERMARKS,
2360 preferred_zone, migratetype);
9ee493ce
MG
2361
2362 /*
2363 * If an allocation failed after direct reclaim, it could be because
2364 * pages are pinned on the per-cpu lists. Drain them and try again
2365 */
2366 if (!page && !drained) {
2367 drain_all_pages();
2368 drained = true;
2369 goto retry;
2370 }
2371
11e33f6a
MG
2372 return page;
2373}
2374
1da177e4 2375/*
11e33f6a
MG
2376 * This is called in the allocator slow-path if the allocation request is of
2377 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2378 */
11e33f6a
MG
2379static inline struct page *
2380__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2381 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2382 nodemask_t *nodemask, struct zone *preferred_zone,
2383 int migratetype)
11e33f6a
MG
2384{
2385 struct page *page;
2386
2387 do {
2388 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2389 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 2390 preferred_zone, migratetype);
11e33f6a
MG
2391
2392 if (!page && gfp_mask & __GFP_NOFAIL)
0e093d99 2393 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
2394 } while (!page && (gfp_mask & __GFP_NOFAIL));
2395
2396 return page;
2397}
2398
3a025760
JW
2399static void reset_alloc_batches(struct zonelist *zonelist,
2400 enum zone_type high_zoneidx,
2401 struct zone *preferred_zone)
1da177e4 2402{
dd1a239f
MG
2403 struct zoneref *z;
2404 struct zone *zone;
1da177e4 2405
81c0a2bb 2406 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
81c0a2bb
JW
2407 /*
2408 * Only reset the batches of zones that were actually
3a025760
JW
2409 * considered in the fairness pass, we don't want to
2410 * trash fairness information for zones that are not
81c0a2bb
JW
2411 * actually part of this zonelist's round-robin cycle.
2412 */
fff4068c 2413 if (!zone_local(preferred_zone, zone))
81c0a2bb
JW
2414 continue;
2415 mod_zone_page_state(zone, NR_ALLOC_BATCH,
3a025760
JW
2416 high_wmark_pages(zone) - low_wmark_pages(zone) -
2417 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
81c0a2bb 2418 }
11e33f6a 2419}
cf40bd16 2420
3a025760
JW
2421static void wake_all_kswapds(unsigned int order,
2422 struct zonelist *zonelist,
2423 enum zone_type high_zoneidx,
2424 struct zone *preferred_zone)
2425{
2426 struct zoneref *z;
2427 struct zone *zone;
2428
2429 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2430 wakeup_kswapd(zone, order, zone_idx(preferred_zone));
2431}
2432
341ce06f
PZ
2433static inline int
2434gfp_to_alloc_flags(gfp_t gfp_mask)
2435{
341ce06f
PZ
2436 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2437 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 2438
a56f57ff 2439 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2440 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2441
341ce06f
PZ
2442 /*
2443 * The caller may dip into page reserves a bit more if the caller
2444 * cannot run direct reclaim, or if the caller has realtime scheduling
2445 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2446 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2447 */
e6223a3b 2448 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2449
341ce06f 2450 if (!wait) {
5c3240d9
AA
2451 /*
2452 * Not worth trying to allocate harder for
2453 * __GFP_NOMEMALLOC even if it can't schedule.
2454 */
2455 if (!(gfp_mask & __GFP_NOMEMALLOC))
2456 alloc_flags |= ALLOC_HARDER;
523b9458 2457 /*
341ce06f
PZ
2458 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2459 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 2460 */
341ce06f 2461 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2462 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2463 alloc_flags |= ALLOC_HARDER;
2464
b37f1dd0
MG
2465 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2466 if (gfp_mask & __GFP_MEMALLOC)
2467 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
2468 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2469 alloc_flags |= ALLOC_NO_WATERMARKS;
2470 else if (!in_interrupt() &&
2471 ((current->flags & PF_MEMALLOC) ||
2472 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 2473 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2474 }
d95ea5d1
BZ
2475#ifdef CONFIG_CMA
2476 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2477 alloc_flags |= ALLOC_CMA;
2478#endif
341ce06f
PZ
2479 return alloc_flags;
2480}
2481
072bb0aa
MG
2482bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2483{
b37f1dd0 2484 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
2485}
2486
11e33f6a
MG
2487static inline struct page *
2488__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2489 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2490 nodemask_t *nodemask, struct zone *preferred_zone,
2491 int migratetype)
11e33f6a
MG
2492{
2493 const gfp_t wait = gfp_mask & __GFP_WAIT;
2494 struct page *page = NULL;
2495 int alloc_flags;
2496 unsigned long pages_reclaimed = 0;
2497 unsigned long did_some_progress;
e0b9daeb 2498 enum migrate_mode migration_mode = MIGRATE_ASYNC;
66199712 2499 bool deferred_compaction = false;
c67fe375 2500 bool contended_compaction = false;
1da177e4 2501
72807a74
MG
2502 /*
2503 * In the slowpath, we sanity check order to avoid ever trying to
2504 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2505 * be using allocators in order of preference for an area that is
2506 * too large.
2507 */
1fc28b70
MG
2508 if (order >= MAX_ORDER) {
2509 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2510 return NULL;
1fc28b70 2511 }
1da177e4 2512
952f3b51
CL
2513 /*
2514 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2515 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2516 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2517 * using a larger set of nodes after it has established that the
2518 * allowed per node queues are empty and that nodes are
2519 * over allocated.
2520 */
3a025760
JW
2521 if (IS_ENABLED(CONFIG_NUMA) &&
2522 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
952f3b51
CL
2523 goto nopage;
2524
cc4a6851 2525restart:
3a025760
JW
2526 if (!(gfp_mask & __GFP_NO_KSWAPD))
2527 wake_all_kswapds(order, zonelist, high_zoneidx, preferred_zone);
1da177e4 2528
9bf2229f 2529 /*
7fb1d9fc
RS
2530 * OK, we're below the kswapd watermark and have kicked background
2531 * reclaim. Now things get more complex, so set up alloc_flags according
2532 * to how we want to proceed.
9bf2229f 2533 */
341ce06f 2534 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2535
f33261d7
DR
2536 /*
2537 * Find the true preferred zone if the allocation is unconstrained by
2538 * cpusets.
2539 */
2540 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2541 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2542 &preferred_zone);
2543
cfa54a0f 2544rebalance:
341ce06f 2545 /* This is the last chance, in general, before the goto nopage. */
19770b32 2546 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
2547 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2548 preferred_zone, migratetype);
7fb1d9fc
RS
2549 if (page)
2550 goto got_pg;
1da177e4 2551
11e33f6a 2552 /* Allocate without watermarks if the context allows */
341ce06f 2553 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
2554 /*
2555 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2556 * the allocation is high priority and these type of
2557 * allocations are system rather than user orientated
2558 */
2559 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2560
341ce06f
PZ
2561 page = __alloc_pages_high_priority(gfp_mask, order,
2562 zonelist, high_zoneidx, nodemask,
2563 preferred_zone, migratetype);
cfd19c5a 2564 if (page) {
341ce06f 2565 goto got_pg;
cfd19c5a 2566 }
1da177e4
LT
2567 }
2568
2569 /* Atomic allocations - we can't balance anything */
aed0a0e3
DR
2570 if (!wait) {
2571 /*
2572 * All existing users of the deprecated __GFP_NOFAIL are
2573 * blockable, so warn of any new users that actually allow this
2574 * type of allocation to fail.
2575 */
2576 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 2577 goto nopage;
aed0a0e3 2578 }
1da177e4 2579
341ce06f 2580 /* Avoid recursion of direct reclaim */
c06b1fca 2581 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
2582 goto nopage;
2583
6583bb64
DR
2584 /* Avoid allocations with no watermarks from looping endlessly */
2585 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2586 goto nopage;
2587
77f1fe6b
MG
2588 /*
2589 * Try direct compaction. The first pass is asynchronous. Subsequent
2590 * attempts after direct reclaim are synchronous
2591 */
e0b9daeb
DR
2592 page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2593 high_zoneidx, nodemask, alloc_flags,
2594 preferred_zone, migratetype,
2595 migration_mode, &contended_compaction,
66199712
MG
2596 &deferred_compaction,
2597 &did_some_progress);
56de7263
MG
2598 if (page)
2599 goto got_pg;
75f30861
DR
2600
2601 /*
2602 * It can become very expensive to allocate transparent hugepages at
2603 * fault, so use asynchronous memory compaction for THP unless it is
2604 * khugepaged trying to collapse.
2605 */
2606 if (!(gfp_mask & __GFP_NO_KSWAPD) || (current->flags & PF_KTHREAD))
2607 migration_mode = MIGRATE_SYNC_LIGHT;
56de7263 2608
31f8d42d
LT
2609 /*
2610 * If compaction is deferred for high-order allocations, it is because
2611 * sync compaction recently failed. In this is the case and the caller
2612 * requested a movable allocation that does not heavily disrupt the
2613 * system then fail the allocation instead of entering direct reclaim.
2614 */
2615 if ((deferred_compaction || contended_compaction) &&
caf49191 2616 (gfp_mask & __GFP_NO_KSWAPD))
31f8d42d 2617 goto nopage;
66199712 2618
11e33f6a
MG
2619 /* Try direct reclaim and then allocating */
2620 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2621 zonelist, high_zoneidx,
2622 nodemask,
5117f45d 2623 alloc_flags, preferred_zone,
3dd28266 2624 migratetype, &did_some_progress);
11e33f6a
MG
2625 if (page)
2626 goto got_pg;
1da177e4 2627
e33c3b5e 2628 /*
11e33f6a
MG
2629 * If we failed to make any progress reclaiming, then we are
2630 * running out of options and have to consider going OOM
e33c3b5e 2631 */
11e33f6a 2632 if (!did_some_progress) {
b9921ecd 2633 if (oom_gfp_allowed(gfp_mask)) {
7f33d49a
RW
2634 if (oom_killer_disabled)
2635 goto nopage;
29fd66d2
DR
2636 /* Coredumps can quickly deplete all memory reserves */
2637 if ((current->flags & PF_DUMPCORE) &&
2638 !(gfp_mask & __GFP_NOFAIL))
2639 goto nopage;
11e33f6a
MG
2640 page = __alloc_pages_may_oom(gfp_mask, order,
2641 zonelist, high_zoneidx,
3dd28266
MG
2642 nodemask, preferred_zone,
2643 migratetype);
11e33f6a
MG
2644 if (page)
2645 goto got_pg;
1da177e4 2646
03668b3c
DR
2647 if (!(gfp_mask & __GFP_NOFAIL)) {
2648 /*
2649 * The oom killer is not called for high-order
2650 * allocations that may fail, so if no progress
2651 * is being made, there are no other options and
2652 * retrying is unlikely to help.
2653 */
2654 if (order > PAGE_ALLOC_COSTLY_ORDER)
2655 goto nopage;
2656 /*
2657 * The oom killer is not called for lowmem
2658 * allocations to prevent needlessly killing
2659 * innocent tasks.
2660 */
2661 if (high_zoneidx < ZONE_NORMAL)
2662 goto nopage;
2663 }
e2c55dc8 2664
ff0ceb9d
DR
2665 goto restart;
2666 }
1da177e4
LT
2667 }
2668
11e33f6a 2669 /* Check if we should retry the allocation */
a41f24ea 2670 pages_reclaimed += did_some_progress;
f90ac398
MG
2671 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2672 pages_reclaimed)) {
11e33f6a 2673 /* Wait for some write requests to complete then retry */
0e093d99 2674 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1da177e4 2675 goto rebalance;
3e7d3449
MG
2676 } else {
2677 /*
2678 * High-order allocations do not necessarily loop after
2679 * direct reclaim and reclaim/compaction depends on compaction
2680 * being called after reclaim so call directly if necessary
2681 */
e0b9daeb
DR
2682 page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2683 high_zoneidx, nodemask, alloc_flags,
2684 preferred_zone, migratetype,
2685 migration_mode, &contended_compaction,
66199712
MG
2686 &deferred_compaction,
2687 &did_some_progress);
3e7d3449
MG
2688 if (page)
2689 goto got_pg;
1da177e4
LT
2690 }
2691
2692nopage:
a238ab5b 2693 warn_alloc_failed(gfp_mask, order, NULL);
b1eeab67 2694 return page;
1da177e4 2695got_pg:
b1eeab67
VN
2696 if (kmemcheck_enabled)
2697 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
11e33f6a 2698
072bb0aa 2699 return page;
1da177e4 2700}
11e33f6a
MG
2701
2702/*
2703 * This is the 'heart' of the zoned buddy allocator.
2704 */
2705struct page *
2706__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2707 struct zonelist *zonelist, nodemask_t *nodemask)
2708{
2709 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2710 struct zone *preferred_zone;
cc9a6c87 2711 struct page *page = NULL;
3dd28266 2712 int migratetype = allocflags_to_migratetype(gfp_mask);
cc9a6c87 2713 unsigned int cpuset_mems_cookie;
3a025760 2714 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
11e33f6a 2715
dcce284a
BH
2716 gfp_mask &= gfp_allowed_mask;
2717
11e33f6a
MG
2718 lockdep_trace_alloc(gfp_mask);
2719
2720 might_sleep_if(gfp_mask & __GFP_WAIT);
2721
2722 if (should_fail_alloc_page(gfp_mask, order))
2723 return NULL;
2724
2725 /*
2726 * Check the zones suitable for the gfp_mask contain at least one
2727 * valid zone. It's possible to have an empty zonelist as a result
2728 * of GFP_THISNODE and a memoryless node
2729 */
2730 if (unlikely(!zonelist->_zonerefs->zone))
2731 return NULL;
2732
cc9a6c87 2733retry_cpuset:
d26914d1 2734 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 2735
5117f45d 2736 /* The preferred zone is used for statistics later */
f33261d7
DR
2737 first_zones_zonelist(zonelist, high_zoneidx,
2738 nodemask ? : &cpuset_current_mems_allowed,
2739 &preferred_zone);
cc9a6c87
MG
2740 if (!preferred_zone)
2741 goto out;
5117f45d 2742
d95ea5d1
BZ
2743#ifdef CONFIG_CMA
2744 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2745 alloc_flags |= ALLOC_CMA;
2746#endif
3a025760 2747retry:
5117f45d 2748 /* First allocation attempt */
11e33f6a 2749 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
d95ea5d1 2750 zonelist, high_zoneidx, alloc_flags,
3dd28266 2751 preferred_zone, migratetype);
21caf2fc 2752 if (unlikely(!page)) {
3a025760
JW
2753 /*
2754 * The first pass makes sure allocations are spread
2755 * fairly within the local node. However, the local
2756 * node might have free pages left after the fairness
2757 * batches are exhausted, and remote zones haven't
2758 * even been considered yet. Try once more without
2759 * fairness, and include remote zones now, before
2760 * entering the slowpath and waking kswapd: prefer
2761 * spilling to a remote zone over swapping locally.
2762 */
2763 if (alloc_flags & ALLOC_FAIR) {
2764 reset_alloc_batches(zonelist, high_zoneidx,
2765 preferred_zone);
2766 alloc_flags &= ~ALLOC_FAIR;
2767 goto retry;
2768 }
21caf2fc
ML
2769 /*
2770 * Runtime PM, block IO and its error handling path
2771 * can deadlock because I/O on the device might not
2772 * complete.
2773 */
2774 gfp_mask = memalloc_noio_flags(gfp_mask);
11e33f6a 2775 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2776 zonelist, high_zoneidx, nodemask,
3dd28266 2777 preferred_zone, migratetype);
21caf2fc 2778 }
11e33f6a 2779
4b4f278c 2780 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
cc9a6c87
MG
2781
2782out:
2783 /*
2784 * When updating a task's mems_allowed, it is possible to race with
2785 * parallel threads in such a way that an allocation can fail while
2786 * the mask is being updated. If a page allocation is about to fail,
2787 * check if the cpuset changed during allocation and if so, retry.
2788 */
d26914d1 2789 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87
MG
2790 goto retry_cpuset;
2791
11e33f6a 2792 return page;
1da177e4 2793}
d239171e 2794EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2795
2796/*
2797 * Common helper functions.
2798 */
920c7a5d 2799unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2800{
945a1113
AM
2801 struct page *page;
2802
2803 /*
2804 * __get_free_pages() returns a 32-bit address, which cannot represent
2805 * a highmem page
2806 */
2807 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2808
1da177e4
LT
2809 page = alloc_pages(gfp_mask, order);
2810 if (!page)
2811 return 0;
2812 return (unsigned long) page_address(page);
2813}
1da177e4
LT
2814EXPORT_SYMBOL(__get_free_pages);
2815
920c7a5d 2816unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2817{
945a1113 2818 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2819}
1da177e4
LT
2820EXPORT_SYMBOL(get_zeroed_page);
2821
920c7a5d 2822void __free_pages(struct page *page, unsigned int order)
1da177e4 2823{
b5810039 2824 if (put_page_testzero(page)) {
1da177e4 2825 if (order == 0)
b745bc85 2826 free_hot_cold_page(page, false);
1da177e4
LT
2827 else
2828 __free_pages_ok(page, order);
2829 }
2830}
2831
2832EXPORT_SYMBOL(__free_pages);
2833
920c7a5d 2834void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2835{
2836 if (addr != 0) {
725d704e 2837 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2838 __free_pages(virt_to_page((void *)addr), order);
2839 }
2840}
2841
2842EXPORT_SYMBOL(free_pages);
2843
6a1a0d3b 2844/*
52383431
VD
2845 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
2846 * of the current memory cgroup.
6a1a0d3b 2847 *
52383431
VD
2848 * It should be used when the caller would like to use kmalloc, but since the
2849 * allocation is large, it has to fall back to the page allocator.
2850 */
2851struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
2852{
2853 struct page *page;
2854 struct mem_cgroup *memcg = NULL;
2855
2856 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2857 return NULL;
2858 page = alloc_pages(gfp_mask, order);
2859 memcg_kmem_commit_charge(page, memcg, order);
2860 return page;
2861}
2862
2863struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
2864{
2865 struct page *page;
2866 struct mem_cgroup *memcg = NULL;
2867
2868 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2869 return NULL;
2870 page = alloc_pages_node(nid, gfp_mask, order);
2871 memcg_kmem_commit_charge(page, memcg, order);
2872 return page;
2873}
2874
2875/*
2876 * __free_kmem_pages and free_kmem_pages will free pages allocated with
2877 * alloc_kmem_pages.
6a1a0d3b 2878 */
52383431 2879void __free_kmem_pages(struct page *page, unsigned int order)
6a1a0d3b
GC
2880{
2881 memcg_kmem_uncharge_pages(page, order);
2882 __free_pages(page, order);
2883}
2884
52383431 2885void free_kmem_pages(unsigned long addr, unsigned int order)
6a1a0d3b
GC
2886{
2887 if (addr != 0) {
2888 VM_BUG_ON(!virt_addr_valid((void *)addr));
52383431 2889 __free_kmem_pages(virt_to_page((void *)addr), order);
6a1a0d3b
GC
2890 }
2891}
2892
ee85c2e1
AK
2893static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2894{
2895 if (addr) {
2896 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2897 unsigned long used = addr + PAGE_ALIGN(size);
2898
2899 split_page(virt_to_page((void *)addr), order);
2900 while (used < alloc_end) {
2901 free_page(used);
2902 used += PAGE_SIZE;
2903 }
2904 }
2905 return (void *)addr;
2906}
2907
2be0ffe2
TT
2908/**
2909 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2910 * @size: the number of bytes to allocate
2911 * @gfp_mask: GFP flags for the allocation
2912 *
2913 * This function is similar to alloc_pages(), except that it allocates the
2914 * minimum number of pages to satisfy the request. alloc_pages() can only
2915 * allocate memory in power-of-two pages.
2916 *
2917 * This function is also limited by MAX_ORDER.
2918 *
2919 * Memory allocated by this function must be released by free_pages_exact().
2920 */
2921void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2922{
2923 unsigned int order = get_order(size);
2924 unsigned long addr;
2925
2926 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 2927 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
2928}
2929EXPORT_SYMBOL(alloc_pages_exact);
2930
ee85c2e1
AK
2931/**
2932 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2933 * pages on a node.
b5e6ab58 2934 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
2935 * @size: the number of bytes to allocate
2936 * @gfp_mask: GFP flags for the allocation
2937 *
2938 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2939 * back.
2940 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2941 * but is not exact.
2942 */
2943void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2944{
2945 unsigned order = get_order(size);
2946 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2947 if (!p)
2948 return NULL;
2949 return make_alloc_exact((unsigned long)page_address(p), order, size);
2950}
2951EXPORT_SYMBOL(alloc_pages_exact_nid);
2952
2be0ffe2
TT
2953/**
2954 * free_pages_exact - release memory allocated via alloc_pages_exact()
2955 * @virt: the value returned by alloc_pages_exact.
2956 * @size: size of allocation, same value as passed to alloc_pages_exact().
2957 *
2958 * Release the memory allocated by a previous call to alloc_pages_exact.
2959 */
2960void free_pages_exact(void *virt, size_t size)
2961{
2962 unsigned long addr = (unsigned long)virt;
2963 unsigned long end = addr + PAGE_ALIGN(size);
2964
2965 while (addr < end) {
2966 free_page(addr);
2967 addr += PAGE_SIZE;
2968 }
2969}
2970EXPORT_SYMBOL(free_pages_exact);
2971
e0fb5815
ZY
2972/**
2973 * nr_free_zone_pages - count number of pages beyond high watermark
2974 * @offset: The zone index of the highest zone
2975 *
2976 * nr_free_zone_pages() counts the number of counts pages which are beyond the
2977 * high watermark within all zones at or below a given zone index. For each
2978 * zone, the number of pages is calculated as:
834405c3 2979 * managed_pages - high_pages
e0fb5815 2980 */
ebec3862 2981static unsigned long nr_free_zone_pages(int offset)
1da177e4 2982{
dd1a239f 2983 struct zoneref *z;
54a6eb5c
MG
2984 struct zone *zone;
2985
e310fd43 2986 /* Just pick one node, since fallback list is circular */
ebec3862 2987 unsigned long sum = 0;
1da177e4 2988
0e88460d 2989 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2990
54a6eb5c 2991 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 2992 unsigned long size = zone->managed_pages;
41858966 2993 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2994 if (size > high)
2995 sum += size - high;
1da177e4
LT
2996 }
2997
2998 return sum;
2999}
3000
e0fb5815
ZY
3001/**
3002 * nr_free_buffer_pages - count number of pages beyond high watermark
3003 *
3004 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3005 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 3006 */
ebec3862 3007unsigned long nr_free_buffer_pages(void)
1da177e4 3008{
af4ca457 3009 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 3010}
c2f1a551 3011EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 3012
e0fb5815
ZY
3013/**
3014 * nr_free_pagecache_pages - count number of pages beyond high watermark
3015 *
3016 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3017 * high watermark within all zones.
1da177e4 3018 */
ebec3862 3019unsigned long nr_free_pagecache_pages(void)
1da177e4 3020{
2a1e274a 3021 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 3022}
08e0f6a9
CL
3023
3024static inline void show_node(struct zone *zone)
1da177e4 3025{
e5adfffc 3026 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 3027 printk("Node %d ", zone_to_nid(zone));
1da177e4 3028}
1da177e4 3029
1da177e4
LT
3030void si_meminfo(struct sysinfo *val)
3031{
3032 val->totalram = totalram_pages;
3033 val->sharedram = 0;
d23ad423 3034 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 3035 val->bufferram = nr_blockdev_pages();
1da177e4
LT
3036 val->totalhigh = totalhigh_pages;
3037 val->freehigh = nr_free_highpages();
1da177e4
LT
3038 val->mem_unit = PAGE_SIZE;
3039}
3040
3041EXPORT_SYMBOL(si_meminfo);
3042
3043#ifdef CONFIG_NUMA
3044void si_meminfo_node(struct sysinfo *val, int nid)
3045{
cdd91a77
JL
3046 int zone_type; /* needs to be signed */
3047 unsigned long managed_pages = 0;
1da177e4
LT
3048 pg_data_t *pgdat = NODE_DATA(nid);
3049
cdd91a77
JL
3050 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3051 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3052 val->totalram = managed_pages;
d23ad423 3053 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 3054#ifdef CONFIG_HIGHMEM
b40da049 3055 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
d23ad423
CL
3056 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3057 NR_FREE_PAGES);
98d2b0eb
CL
3058#else
3059 val->totalhigh = 0;
3060 val->freehigh = 0;
3061#endif
1da177e4
LT
3062 val->mem_unit = PAGE_SIZE;
3063}
3064#endif
3065
ddd588b5 3066/*
7bf02ea2
DR
3067 * Determine whether the node should be displayed or not, depending on whether
3068 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 3069 */
7bf02ea2 3070bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
3071{
3072 bool ret = false;
cc9a6c87 3073 unsigned int cpuset_mems_cookie;
ddd588b5
DR
3074
3075 if (!(flags & SHOW_MEM_FILTER_NODES))
3076 goto out;
3077
cc9a6c87 3078 do {
d26914d1 3079 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3080 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 3081 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
3082out:
3083 return ret;
3084}
3085
1da177e4
LT
3086#define K(x) ((x) << (PAGE_SHIFT-10))
3087
377e4f16
RV
3088static void show_migration_types(unsigned char type)
3089{
3090 static const char types[MIGRATE_TYPES] = {
3091 [MIGRATE_UNMOVABLE] = 'U',
3092 [MIGRATE_RECLAIMABLE] = 'E',
3093 [MIGRATE_MOVABLE] = 'M',
3094 [MIGRATE_RESERVE] = 'R',
3095#ifdef CONFIG_CMA
3096 [MIGRATE_CMA] = 'C',
3097#endif
194159fb 3098#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 3099 [MIGRATE_ISOLATE] = 'I',
194159fb 3100#endif
377e4f16
RV
3101 };
3102 char tmp[MIGRATE_TYPES + 1];
3103 char *p = tmp;
3104 int i;
3105
3106 for (i = 0; i < MIGRATE_TYPES; i++) {
3107 if (type & (1 << i))
3108 *p++ = types[i];
3109 }
3110
3111 *p = '\0';
3112 printk("(%s) ", tmp);
3113}
3114
1da177e4
LT
3115/*
3116 * Show free area list (used inside shift_scroll-lock stuff)
3117 * We also calculate the percentage fragmentation. We do this by counting the
3118 * memory on each free list with the exception of the first item on the list.
ddd588b5
DR
3119 * Suppresses nodes that are not allowed by current's cpuset if
3120 * SHOW_MEM_FILTER_NODES is passed.
1da177e4 3121 */
7bf02ea2 3122void show_free_areas(unsigned int filter)
1da177e4 3123{
c7241913 3124 int cpu;
1da177e4
LT
3125 struct zone *zone;
3126
ee99c71c 3127 for_each_populated_zone(zone) {
7bf02ea2 3128 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3129 continue;
c7241913
JS
3130 show_node(zone);
3131 printk("%s per-cpu:\n", zone->name);
1da177e4 3132
6b482c67 3133 for_each_online_cpu(cpu) {
1da177e4
LT
3134 struct per_cpu_pageset *pageset;
3135
99dcc3e5 3136 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 3137
3dfa5721
CL
3138 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3139 cpu, pageset->pcp.high,
3140 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
3141 }
3142 }
3143
a731286d
KM
3144 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3145 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 3146 " unevictable:%lu"
b76146ed 3147 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 3148 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a
BZ
3149 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3150 " free_cma:%lu\n",
4f98a2fe 3151 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 3152 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
3153 global_page_state(NR_ISOLATED_ANON),
3154 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 3155 global_page_state(NR_INACTIVE_FILE),
a731286d 3156 global_page_state(NR_ISOLATED_FILE),
7b854121 3157 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 3158 global_page_state(NR_FILE_DIRTY),
ce866b34 3159 global_page_state(NR_WRITEBACK),
fd39fc85 3160 global_page_state(NR_UNSTABLE_NFS),
d23ad423 3161 global_page_state(NR_FREE_PAGES),
3701b033
KM
3162 global_page_state(NR_SLAB_RECLAIMABLE),
3163 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 3164 global_page_state(NR_FILE_MAPPED),
4b02108a 3165 global_page_state(NR_SHMEM),
a25700a5 3166 global_page_state(NR_PAGETABLE),
d1ce749a
BZ
3167 global_page_state(NR_BOUNCE),
3168 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 3169
ee99c71c 3170 for_each_populated_zone(zone) {
1da177e4
LT
3171 int i;
3172
7bf02ea2 3173 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3174 continue;
1da177e4
LT
3175 show_node(zone);
3176 printk("%s"
3177 " free:%lukB"
3178 " min:%lukB"
3179 " low:%lukB"
3180 " high:%lukB"
4f98a2fe
RR
3181 " active_anon:%lukB"
3182 " inactive_anon:%lukB"
3183 " active_file:%lukB"
3184 " inactive_file:%lukB"
7b854121 3185 " unevictable:%lukB"
a731286d
KM
3186 " isolated(anon):%lukB"
3187 " isolated(file):%lukB"
1da177e4 3188 " present:%lukB"
9feedc9d 3189 " managed:%lukB"
4a0aa73f
KM
3190 " mlocked:%lukB"
3191 " dirty:%lukB"
3192 " writeback:%lukB"
3193 " mapped:%lukB"
4b02108a 3194 " shmem:%lukB"
4a0aa73f
KM
3195 " slab_reclaimable:%lukB"
3196 " slab_unreclaimable:%lukB"
c6a7f572 3197 " kernel_stack:%lukB"
4a0aa73f
KM
3198 " pagetables:%lukB"
3199 " unstable:%lukB"
3200 " bounce:%lukB"
d1ce749a 3201 " free_cma:%lukB"
4a0aa73f 3202 " writeback_tmp:%lukB"
1da177e4
LT
3203 " pages_scanned:%lu"
3204 " all_unreclaimable? %s"
3205 "\n",
3206 zone->name,
88f5acf8 3207 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
3208 K(min_wmark_pages(zone)),
3209 K(low_wmark_pages(zone)),
3210 K(high_wmark_pages(zone)),
4f98a2fe
RR
3211 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3212 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3213 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3214 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 3215 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
3216 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3217 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 3218 K(zone->present_pages),
9feedc9d 3219 K(zone->managed_pages),
4a0aa73f
KM
3220 K(zone_page_state(zone, NR_MLOCK)),
3221 K(zone_page_state(zone, NR_FILE_DIRTY)),
3222 K(zone_page_state(zone, NR_WRITEBACK)),
3223 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 3224 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
3225 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3226 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
3227 zone_page_state(zone, NR_KERNEL_STACK) *
3228 THREAD_SIZE / 1024,
4a0aa73f
KM
3229 K(zone_page_state(zone, NR_PAGETABLE)),
3230 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3231 K(zone_page_state(zone, NR_BOUNCE)),
d1ce749a 3232 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 3233 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
1da177e4 3234 zone->pages_scanned,
6e543d57 3235 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
3236 );
3237 printk("lowmem_reserve[]:");
3238 for (i = 0; i < MAX_NR_ZONES; i++)
3239 printk(" %lu", zone->lowmem_reserve[i]);
3240 printk("\n");
3241 }
3242
ee99c71c 3243 for_each_populated_zone(zone) {
b8af2941 3244 unsigned long nr[MAX_ORDER], flags, order, total = 0;
377e4f16 3245 unsigned char types[MAX_ORDER];
1da177e4 3246
7bf02ea2 3247 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3248 continue;
1da177e4
LT
3249 show_node(zone);
3250 printk("%s: ", zone->name);
1da177e4
LT
3251
3252 spin_lock_irqsave(&zone->lock, flags);
3253 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
3254 struct free_area *area = &zone->free_area[order];
3255 int type;
3256
3257 nr[order] = area->nr_free;
8f9de51a 3258 total += nr[order] << order;
377e4f16
RV
3259
3260 types[order] = 0;
3261 for (type = 0; type < MIGRATE_TYPES; type++) {
3262 if (!list_empty(&area->free_list[type]))
3263 types[order] |= 1 << type;
3264 }
1da177e4
LT
3265 }
3266 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 3267 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 3268 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
3269 if (nr[order])
3270 show_migration_types(types[order]);
3271 }
1da177e4
LT
3272 printk("= %lukB\n", K(total));
3273 }
3274
949f7ec5
DR
3275 hugetlb_show_meminfo();
3276
e6f3602d
LW
3277 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3278
1da177e4
LT
3279 show_swap_cache_info();
3280}
3281
19770b32
MG
3282static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3283{
3284 zoneref->zone = zone;
3285 zoneref->zone_idx = zone_idx(zone);
3286}
3287
1da177e4
LT
3288/*
3289 * Builds allocation fallback zone lists.
1a93205b
CL
3290 *
3291 * Add all populated zones of a node to the zonelist.
1da177e4 3292 */
f0c0b2b8 3293static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 3294 int nr_zones)
1da177e4 3295{
1a93205b 3296 struct zone *zone;
bc732f1d 3297 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
3298
3299 do {
2f6726e5 3300 zone_type--;
070f8032 3301 zone = pgdat->node_zones + zone_type;
1a93205b 3302 if (populated_zone(zone)) {
dd1a239f
MG
3303 zoneref_set_zone(zone,
3304 &zonelist->_zonerefs[nr_zones++]);
070f8032 3305 check_highest_zone(zone_type);
1da177e4 3306 }
2f6726e5 3307 } while (zone_type);
bc732f1d 3308
070f8032 3309 return nr_zones;
1da177e4
LT
3310}
3311
f0c0b2b8
KH
3312
3313/*
3314 * zonelist_order:
3315 * 0 = automatic detection of better ordering.
3316 * 1 = order by ([node] distance, -zonetype)
3317 * 2 = order by (-zonetype, [node] distance)
3318 *
3319 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3320 * the same zonelist. So only NUMA can configure this param.
3321 */
3322#define ZONELIST_ORDER_DEFAULT 0
3323#define ZONELIST_ORDER_NODE 1
3324#define ZONELIST_ORDER_ZONE 2
3325
3326/* zonelist order in the kernel.
3327 * set_zonelist_order() will set this to NODE or ZONE.
3328 */
3329static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3330static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3331
3332
1da177e4 3333#ifdef CONFIG_NUMA
f0c0b2b8
KH
3334/* The value user specified ....changed by config */
3335static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3336/* string for sysctl */
3337#define NUMA_ZONELIST_ORDER_LEN 16
3338char numa_zonelist_order[16] = "default";
3339
3340/*
3341 * interface for configure zonelist ordering.
3342 * command line option "numa_zonelist_order"
3343 * = "[dD]efault - default, automatic configuration.
3344 * = "[nN]ode - order by node locality, then by zone within node
3345 * = "[zZ]one - order by zone, then by locality within zone
3346 */
3347
3348static int __parse_numa_zonelist_order(char *s)
3349{
3350 if (*s == 'd' || *s == 'D') {
3351 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3352 } else if (*s == 'n' || *s == 'N') {
3353 user_zonelist_order = ZONELIST_ORDER_NODE;
3354 } else if (*s == 'z' || *s == 'Z') {
3355 user_zonelist_order = ZONELIST_ORDER_ZONE;
3356 } else {
3357 printk(KERN_WARNING
3358 "Ignoring invalid numa_zonelist_order value: "
3359 "%s\n", s);
3360 return -EINVAL;
3361 }
3362 return 0;
3363}
3364
3365static __init int setup_numa_zonelist_order(char *s)
3366{
ecb256f8
VL
3367 int ret;
3368
3369 if (!s)
3370 return 0;
3371
3372 ret = __parse_numa_zonelist_order(s);
3373 if (ret == 0)
3374 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3375
3376 return ret;
f0c0b2b8
KH
3377}
3378early_param("numa_zonelist_order", setup_numa_zonelist_order);
3379
3380/*
3381 * sysctl handler for numa_zonelist_order
3382 */
3383int numa_zonelist_order_handler(ctl_table *table, int write,
8d65af78 3384 void __user *buffer, size_t *length,
f0c0b2b8
KH
3385 loff_t *ppos)
3386{
3387 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3388 int ret;
443c6f14 3389 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3390
443c6f14 3391 mutex_lock(&zl_order_mutex);
dacbde09
CG
3392 if (write) {
3393 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3394 ret = -EINVAL;
3395 goto out;
3396 }
3397 strcpy(saved_string, (char *)table->data);
3398 }
8d65af78 3399 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 3400 if (ret)
443c6f14 3401 goto out;
f0c0b2b8
KH
3402 if (write) {
3403 int oldval = user_zonelist_order;
dacbde09
CG
3404
3405 ret = __parse_numa_zonelist_order((char *)table->data);
3406 if (ret) {
f0c0b2b8
KH
3407 /*
3408 * bogus value. restore saved string
3409 */
dacbde09 3410 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
3411 NUMA_ZONELIST_ORDER_LEN);
3412 user_zonelist_order = oldval;
4eaf3f64
HL
3413 } else if (oldval != user_zonelist_order) {
3414 mutex_lock(&zonelists_mutex);
9adb62a5 3415 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
3416 mutex_unlock(&zonelists_mutex);
3417 }
f0c0b2b8 3418 }
443c6f14
AK
3419out:
3420 mutex_unlock(&zl_order_mutex);
3421 return ret;
f0c0b2b8
KH
3422}
3423
3424
62bc62a8 3425#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
3426static int node_load[MAX_NUMNODES];
3427
1da177e4 3428/**
4dc3b16b 3429 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
3430 * @node: node whose fallback list we're appending
3431 * @used_node_mask: nodemask_t of already used nodes
3432 *
3433 * We use a number of factors to determine which is the next node that should
3434 * appear on a given node's fallback list. The node should not have appeared
3435 * already in @node's fallback list, and it should be the next closest node
3436 * according to the distance array (which contains arbitrary distance values
3437 * from each node to each node in the system), and should also prefer nodes
3438 * with no CPUs, since presumably they'll have very little allocation pressure
3439 * on them otherwise.
3440 * It returns -1 if no node is found.
3441 */
f0c0b2b8 3442static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 3443{
4cf808eb 3444 int n, val;
1da177e4 3445 int min_val = INT_MAX;
00ef2d2f 3446 int best_node = NUMA_NO_NODE;
a70f7302 3447 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 3448
4cf808eb
LT
3449 /* Use the local node if we haven't already */
3450 if (!node_isset(node, *used_node_mask)) {
3451 node_set(node, *used_node_mask);
3452 return node;
3453 }
1da177e4 3454
4b0ef1fe 3455 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
3456
3457 /* Don't want a node to appear more than once */
3458 if (node_isset(n, *used_node_mask))
3459 continue;
3460
1da177e4
LT
3461 /* Use the distance array to find the distance */
3462 val = node_distance(node, n);
3463
4cf808eb
LT
3464 /* Penalize nodes under us ("prefer the next node") */
3465 val += (n < node);
3466
1da177e4 3467 /* Give preference to headless and unused nodes */
a70f7302
RR
3468 tmp = cpumask_of_node(n);
3469 if (!cpumask_empty(tmp))
1da177e4
LT
3470 val += PENALTY_FOR_NODE_WITH_CPUS;
3471
3472 /* Slight preference for less loaded node */
3473 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3474 val += node_load[n];
3475
3476 if (val < min_val) {
3477 min_val = val;
3478 best_node = n;
3479 }
3480 }
3481
3482 if (best_node >= 0)
3483 node_set(best_node, *used_node_mask);
3484
3485 return best_node;
3486}
3487
f0c0b2b8
KH
3488
3489/*
3490 * Build zonelists ordered by node and zones within node.
3491 * This results in maximum locality--normal zone overflows into local
3492 * DMA zone, if any--but risks exhausting DMA zone.
3493 */
3494static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 3495{
f0c0b2b8 3496 int j;
1da177e4 3497 struct zonelist *zonelist;
f0c0b2b8 3498
54a6eb5c 3499 zonelist = &pgdat->node_zonelists[0];
dd1a239f 3500 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 3501 ;
bc732f1d 3502 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
3503 zonelist->_zonerefs[j].zone = NULL;
3504 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
3505}
3506
523b9458
CL
3507/*
3508 * Build gfp_thisnode zonelists
3509 */
3510static void build_thisnode_zonelists(pg_data_t *pgdat)
3511{
523b9458
CL
3512 int j;
3513 struct zonelist *zonelist;
3514
54a6eb5c 3515 zonelist = &pgdat->node_zonelists[1];
bc732f1d 3516 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
3517 zonelist->_zonerefs[j].zone = NULL;
3518 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
3519}
3520
f0c0b2b8
KH
3521/*
3522 * Build zonelists ordered by zone and nodes within zones.
3523 * This results in conserving DMA zone[s] until all Normal memory is
3524 * exhausted, but results in overflowing to remote node while memory
3525 * may still exist in local DMA zone.
3526 */
3527static int node_order[MAX_NUMNODES];
3528
3529static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3530{
f0c0b2b8
KH
3531 int pos, j, node;
3532 int zone_type; /* needs to be signed */
3533 struct zone *z;
3534 struct zonelist *zonelist;
3535
54a6eb5c
MG
3536 zonelist = &pgdat->node_zonelists[0];
3537 pos = 0;
3538 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3539 for (j = 0; j < nr_nodes; j++) {
3540 node = node_order[j];
3541 z = &NODE_DATA(node)->node_zones[zone_type];
3542 if (populated_zone(z)) {
dd1a239f
MG
3543 zoneref_set_zone(z,
3544 &zonelist->_zonerefs[pos++]);
54a6eb5c 3545 check_highest_zone(zone_type);
f0c0b2b8
KH
3546 }
3547 }
f0c0b2b8 3548 }
dd1a239f
MG
3549 zonelist->_zonerefs[pos].zone = NULL;
3550 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
3551}
3552
3553static int default_zonelist_order(void)
3554{
3555 int nid, zone_type;
b8af2941 3556 unsigned long low_kmem_size, total_size;
f0c0b2b8
KH
3557 struct zone *z;
3558 int average_size;
3559 /*
b8af2941 3560 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
f0c0b2b8
KH
3561 * If they are really small and used heavily, the system can fall
3562 * into OOM very easily.
e325c90f 3563 * This function detect ZONE_DMA/DMA32 size and configures zone order.
f0c0b2b8
KH
3564 */
3565 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3566 low_kmem_size = 0;
3567 total_size = 0;
3568 for_each_online_node(nid) {
3569 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3570 z = &NODE_DATA(nid)->node_zones[zone_type];
3571 if (populated_zone(z)) {
3572 if (zone_type < ZONE_NORMAL)
4f9f4774
JL
3573 low_kmem_size += z->managed_pages;
3574 total_size += z->managed_pages;
e325c90f
DR
3575 } else if (zone_type == ZONE_NORMAL) {
3576 /*
3577 * If any node has only lowmem, then node order
3578 * is preferred to allow kernel allocations
3579 * locally; otherwise, they can easily infringe
3580 * on other nodes when there is an abundance of
3581 * lowmem available to allocate from.
3582 */
3583 return ZONELIST_ORDER_NODE;
f0c0b2b8
KH
3584 }
3585 }
3586 }
3587 if (!low_kmem_size || /* there are no DMA area. */
3588 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3589 return ZONELIST_ORDER_NODE;
3590 /*
3591 * look into each node's config.
b8af2941
PK
3592 * If there is a node whose DMA/DMA32 memory is very big area on
3593 * local memory, NODE_ORDER may be suitable.
3594 */
37b07e41 3595 average_size = total_size /
4b0ef1fe 3596 (nodes_weight(node_states[N_MEMORY]) + 1);
f0c0b2b8
KH
3597 for_each_online_node(nid) {
3598 low_kmem_size = 0;
3599 total_size = 0;
3600 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3601 z = &NODE_DATA(nid)->node_zones[zone_type];
3602 if (populated_zone(z)) {
3603 if (zone_type < ZONE_NORMAL)
3604 low_kmem_size += z->present_pages;
3605 total_size += z->present_pages;
3606 }
3607 }
3608 if (low_kmem_size &&
3609 total_size > average_size && /* ignore small node */
3610 low_kmem_size > total_size * 70/100)
3611 return ZONELIST_ORDER_NODE;
3612 }
3613 return ZONELIST_ORDER_ZONE;
3614}
3615
3616static void set_zonelist_order(void)
3617{
3618 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3619 current_zonelist_order = default_zonelist_order();
3620 else
3621 current_zonelist_order = user_zonelist_order;
3622}
3623
3624static void build_zonelists(pg_data_t *pgdat)
3625{
3626 int j, node, load;
3627 enum zone_type i;
1da177e4 3628 nodemask_t used_mask;
f0c0b2b8
KH
3629 int local_node, prev_node;
3630 struct zonelist *zonelist;
3631 int order = current_zonelist_order;
1da177e4
LT
3632
3633 /* initialize zonelists */
523b9458 3634 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 3635 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
3636 zonelist->_zonerefs[0].zone = NULL;
3637 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
3638 }
3639
3640 /* NUMA-aware ordering of nodes */
3641 local_node = pgdat->node_id;
62bc62a8 3642 load = nr_online_nodes;
1da177e4
LT
3643 prev_node = local_node;
3644 nodes_clear(used_mask);
f0c0b2b8 3645
f0c0b2b8
KH
3646 memset(node_order, 0, sizeof(node_order));
3647 j = 0;
3648
1da177e4
LT
3649 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3650 /*
3651 * We don't want to pressure a particular node.
3652 * So adding penalty to the first node in same
3653 * distance group to make it round-robin.
3654 */
957f822a
DR
3655 if (node_distance(local_node, node) !=
3656 node_distance(local_node, prev_node))
f0c0b2b8
KH
3657 node_load[node] = load;
3658
1da177e4
LT
3659 prev_node = node;
3660 load--;
f0c0b2b8
KH
3661 if (order == ZONELIST_ORDER_NODE)
3662 build_zonelists_in_node_order(pgdat, node);
3663 else
3664 node_order[j++] = node; /* remember order */
3665 }
1da177e4 3666
f0c0b2b8
KH
3667 if (order == ZONELIST_ORDER_ZONE) {
3668 /* calculate node order -- i.e., DMA last! */
3669 build_zonelists_in_zone_order(pgdat, j);
1da177e4 3670 }
523b9458
CL
3671
3672 build_thisnode_zonelists(pgdat);
1da177e4
LT
3673}
3674
9276b1bc 3675/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 3676static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3677{
54a6eb5c
MG
3678 struct zonelist *zonelist;
3679 struct zonelist_cache *zlc;
dd1a239f 3680 struct zoneref *z;
9276b1bc 3681
54a6eb5c
MG
3682 zonelist = &pgdat->node_zonelists[0];
3683 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3684 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
3685 for (z = zonelist->_zonerefs; z->zone; z++)
3686 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
3687}
3688
7aac7898
LS
3689#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3690/*
3691 * Return node id of node used for "local" allocations.
3692 * I.e., first node id of first zone in arg node's generic zonelist.
3693 * Used for initializing percpu 'numa_mem', which is used primarily
3694 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3695 */
3696int local_memory_node(int node)
3697{
3698 struct zone *zone;
3699
3700 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3701 gfp_zone(GFP_KERNEL),
3702 NULL,
3703 &zone);
3704 return zone->node;
3705}
3706#endif
f0c0b2b8 3707
1da177e4
LT
3708#else /* CONFIG_NUMA */
3709
f0c0b2b8
KH
3710static void set_zonelist_order(void)
3711{
3712 current_zonelist_order = ZONELIST_ORDER_ZONE;
3713}
3714
3715static void build_zonelists(pg_data_t *pgdat)
1da177e4 3716{
19655d34 3717 int node, local_node;
54a6eb5c
MG
3718 enum zone_type j;
3719 struct zonelist *zonelist;
1da177e4
LT
3720
3721 local_node = pgdat->node_id;
1da177e4 3722
54a6eb5c 3723 zonelist = &pgdat->node_zonelists[0];
bc732f1d 3724 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 3725
54a6eb5c
MG
3726 /*
3727 * Now we build the zonelist so that it contains the zones
3728 * of all the other nodes.
3729 * We don't want to pressure a particular node, so when
3730 * building the zones for node N, we make sure that the
3731 * zones coming right after the local ones are those from
3732 * node N+1 (modulo N)
3733 */
3734 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3735 if (!node_online(node))
3736 continue;
bc732f1d 3737 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 3738 }
54a6eb5c
MG
3739 for (node = 0; node < local_node; node++) {
3740 if (!node_online(node))
3741 continue;
bc732f1d 3742 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
3743 }
3744
dd1a239f
MG
3745 zonelist->_zonerefs[j].zone = NULL;
3746 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3747}
3748
9276b1bc 3749/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3750static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3751{
54a6eb5c 3752 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3753}
3754
1da177e4
LT
3755#endif /* CONFIG_NUMA */
3756
99dcc3e5
CL
3757/*
3758 * Boot pageset table. One per cpu which is going to be used for all
3759 * zones and all nodes. The parameters will be set in such a way
3760 * that an item put on a list will immediately be handed over to
3761 * the buddy list. This is safe since pageset manipulation is done
3762 * with interrupts disabled.
3763 *
3764 * The boot_pagesets must be kept even after bootup is complete for
3765 * unused processors and/or zones. They do play a role for bootstrapping
3766 * hotplugged processors.
3767 *
3768 * zoneinfo_show() and maybe other functions do
3769 * not check if the processor is online before following the pageset pointer.
3770 * Other parts of the kernel may not check if the zone is available.
3771 */
3772static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3773static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3774static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3775
4eaf3f64
HL
3776/*
3777 * Global mutex to protect against size modification of zonelists
3778 * as well as to serialize pageset setup for the new populated zone.
3779 */
3780DEFINE_MUTEX(zonelists_mutex);
3781
9b1a4d38 3782/* return values int ....just for stop_machine() */
4ed7e022 3783static int __build_all_zonelists(void *data)
1da177e4 3784{
6811378e 3785 int nid;
99dcc3e5 3786 int cpu;
9adb62a5 3787 pg_data_t *self = data;
9276b1bc 3788
7f9cfb31
BL
3789#ifdef CONFIG_NUMA
3790 memset(node_load, 0, sizeof(node_load));
3791#endif
9adb62a5
JL
3792
3793 if (self && !node_online(self->node_id)) {
3794 build_zonelists(self);
3795 build_zonelist_cache(self);
3796 }
3797
9276b1bc 3798 for_each_online_node(nid) {
7ea1530a
CL
3799 pg_data_t *pgdat = NODE_DATA(nid);
3800
3801 build_zonelists(pgdat);
3802 build_zonelist_cache(pgdat);
9276b1bc 3803 }
99dcc3e5
CL
3804
3805 /*
3806 * Initialize the boot_pagesets that are going to be used
3807 * for bootstrapping processors. The real pagesets for
3808 * each zone will be allocated later when the per cpu
3809 * allocator is available.
3810 *
3811 * boot_pagesets are used also for bootstrapping offline
3812 * cpus if the system is already booted because the pagesets
3813 * are needed to initialize allocators on a specific cpu too.
3814 * F.e. the percpu allocator needs the page allocator which
3815 * needs the percpu allocator in order to allocate its pagesets
3816 * (a chicken-egg dilemma).
3817 */
7aac7898 3818 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3819 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3820
7aac7898
LS
3821#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3822 /*
3823 * We now know the "local memory node" for each node--
3824 * i.e., the node of the first zone in the generic zonelist.
3825 * Set up numa_mem percpu variable for on-line cpus. During
3826 * boot, only the boot cpu should be on-line; we'll init the
3827 * secondary cpus' numa_mem as they come on-line. During
3828 * node/memory hotplug, we'll fixup all on-line cpus.
3829 */
3830 if (cpu_online(cpu))
3831 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3832#endif
3833 }
3834
6811378e
YG
3835 return 0;
3836}
3837
4eaf3f64
HL
3838/*
3839 * Called with zonelists_mutex held always
3840 * unless system_state == SYSTEM_BOOTING.
3841 */
9adb62a5 3842void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 3843{
f0c0b2b8
KH
3844 set_zonelist_order();
3845
6811378e 3846 if (system_state == SYSTEM_BOOTING) {
423b41d7 3847 __build_all_zonelists(NULL);
68ad8df4 3848 mminit_verify_zonelist();
6811378e
YG
3849 cpuset_init_current_mems_allowed();
3850 } else {
e9959f0f 3851#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
3852 if (zone)
3853 setup_zone_pageset(zone);
e9959f0f 3854#endif
dd1895e2
CS
3855 /* we have to stop all cpus to guarantee there is no user
3856 of zonelist */
9adb62a5 3857 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
3858 /* cpuset refresh routine should be here */
3859 }
bd1e22b8 3860 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3861 /*
3862 * Disable grouping by mobility if the number of pages in the
3863 * system is too low to allow the mechanism to work. It would be
3864 * more accurate, but expensive to check per-zone. This check is
3865 * made on memory-hotadd so a system can start with mobility
3866 * disabled and enable it later
3867 */
d9c23400 3868 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3869 page_group_by_mobility_disabled = 1;
3870 else
3871 page_group_by_mobility_disabled = 0;
3872
3873 printk("Built %i zonelists in %s order, mobility grouping %s. "
3874 "Total pages: %ld\n",
62bc62a8 3875 nr_online_nodes,
f0c0b2b8 3876 zonelist_order_name[current_zonelist_order],
9ef9acb0 3877 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3878 vm_total_pages);
3879#ifdef CONFIG_NUMA
3880 printk("Policy zone: %s\n", zone_names[policy_zone]);
3881#endif
1da177e4
LT
3882}
3883
3884/*
3885 * Helper functions to size the waitqueue hash table.
3886 * Essentially these want to choose hash table sizes sufficiently
3887 * large so that collisions trying to wait on pages are rare.
3888 * But in fact, the number of active page waitqueues on typical
3889 * systems is ridiculously low, less than 200. So this is even
3890 * conservative, even though it seems large.
3891 *
3892 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3893 * waitqueues, i.e. the size of the waitq table given the number of pages.
3894 */
3895#define PAGES_PER_WAITQUEUE 256
3896
cca448fe 3897#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3898static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3899{
3900 unsigned long size = 1;
3901
3902 pages /= PAGES_PER_WAITQUEUE;
3903
3904 while (size < pages)
3905 size <<= 1;
3906
3907 /*
3908 * Once we have dozens or even hundreds of threads sleeping
3909 * on IO we've got bigger problems than wait queue collision.
3910 * Limit the size of the wait table to a reasonable size.
3911 */
3912 size = min(size, 4096UL);
3913
3914 return max(size, 4UL);
3915}
cca448fe
YG
3916#else
3917/*
3918 * A zone's size might be changed by hot-add, so it is not possible to determine
3919 * a suitable size for its wait_table. So we use the maximum size now.
3920 *
3921 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3922 *
3923 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3924 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3925 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3926 *
3927 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3928 * or more by the traditional way. (See above). It equals:
3929 *
3930 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3931 * ia64(16K page size) : = ( 8G + 4M)byte.
3932 * powerpc (64K page size) : = (32G +16M)byte.
3933 */
3934static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3935{
3936 return 4096UL;
3937}
3938#endif
1da177e4
LT
3939
3940/*
3941 * This is an integer logarithm so that shifts can be used later
3942 * to extract the more random high bits from the multiplicative
3943 * hash function before the remainder is taken.
3944 */
3945static inline unsigned long wait_table_bits(unsigned long size)
3946{
3947 return ffz(~size);
3948}
3949
6d3163ce
AH
3950/*
3951 * Check if a pageblock contains reserved pages
3952 */
3953static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3954{
3955 unsigned long pfn;
3956
3957 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3958 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3959 return 1;
3960 }
3961 return 0;
3962}
3963
56fd56b8 3964/*
d9c23400 3965 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
3966 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3967 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
3968 * higher will lead to a bigger reserve which will get freed as contiguous
3969 * blocks as reclaim kicks in
3970 */
3971static void setup_zone_migrate_reserve(struct zone *zone)
3972{
6d3163ce 3973 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 3974 struct page *page;
78986a67
MG
3975 unsigned long block_migratetype;
3976 int reserve;
943dca1a 3977 int old_reserve;
56fd56b8 3978
d0215638
MH
3979 /*
3980 * Get the start pfn, end pfn and the number of blocks to reserve
3981 * We have to be careful to be aligned to pageblock_nr_pages to
3982 * make sure that we always check pfn_valid for the first page in
3983 * the block.
3984 */
56fd56b8 3985 start_pfn = zone->zone_start_pfn;
108bcc96 3986 end_pfn = zone_end_pfn(zone);
d0215638 3987 start_pfn = roundup(start_pfn, pageblock_nr_pages);
41858966 3988 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 3989 pageblock_order;
56fd56b8 3990
78986a67
MG
3991 /*
3992 * Reserve blocks are generally in place to help high-order atomic
3993 * allocations that are short-lived. A min_free_kbytes value that
3994 * would result in more than 2 reserve blocks for atomic allocations
3995 * is assumed to be in place to help anti-fragmentation for the
3996 * future allocation of hugepages at runtime.
3997 */
3998 reserve = min(2, reserve);
943dca1a
YI
3999 old_reserve = zone->nr_migrate_reserve_block;
4000
4001 /* When memory hot-add, we almost always need to do nothing */
4002 if (reserve == old_reserve)
4003 return;
4004 zone->nr_migrate_reserve_block = reserve;
78986a67 4005
d9c23400 4006 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
4007 if (!pfn_valid(pfn))
4008 continue;
4009 page = pfn_to_page(pfn);
4010
344c790e
AL
4011 /* Watch out for overlapping nodes */
4012 if (page_to_nid(page) != zone_to_nid(zone))
4013 continue;
4014
56fd56b8
MG
4015 block_migratetype = get_pageblock_migratetype(page);
4016
938929f1
MG
4017 /* Only test what is necessary when the reserves are not met */
4018 if (reserve > 0) {
4019 /*
4020 * Blocks with reserved pages will never free, skip
4021 * them.
4022 */
4023 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4024 if (pageblock_is_reserved(pfn, block_end_pfn))
4025 continue;
56fd56b8 4026
938929f1
MG
4027 /* If this block is reserved, account for it */
4028 if (block_migratetype == MIGRATE_RESERVE) {
4029 reserve--;
4030 continue;
4031 }
4032
4033 /* Suitable for reserving if this block is movable */
4034 if (block_migratetype == MIGRATE_MOVABLE) {
4035 set_pageblock_migratetype(page,
4036 MIGRATE_RESERVE);
4037 move_freepages_block(zone, page,
4038 MIGRATE_RESERVE);
4039 reserve--;
4040 continue;
4041 }
943dca1a
YI
4042 } else if (!old_reserve) {
4043 /*
4044 * At boot time we don't need to scan the whole zone
4045 * for turning off MIGRATE_RESERVE.
4046 */
4047 break;
56fd56b8
MG
4048 }
4049
4050 /*
4051 * If the reserve is met and this is a previous reserved block,
4052 * take it back
4053 */
4054 if (block_migratetype == MIGRATE_RESERVE) {
4055 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4056 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4057 }
4058 }
4059}
ac0e5b7a 4060
1da177e4
LT
4061/*
4062 * Initially all pages are reserved - free ones are freed
4063 * up by free_all_bootmem() once the early boot process is
4064 * done. Non-atomic initialization, single-pass.
4065 */
c09b4240 4066void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 4067 unsigned long start_pfn, enum memmap_context context)
1da177e4 4068{
1da177e4 4069 struct page *page;
29751f69
AW
4070 unsigned long end_pfn = start_pfn + size;
4071 unsigned long pfn;
86051ca5 4072 struct zone *z;
1da177e4 4073
22b31eec
HD
4074 if (highest_memmap_pfn < end_pfn - 1)
4075 highest_memmap_pfn = end_pfn - 1;
4076
86051ca5 4077 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 4078 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
4079 /*
4080 * There can be holes in boot-time mem_map[]s
4081 * handed to this function. They do not
4082 * exist on hotplugged memory.
4083 */
4084 if (context == MEMMAP_EARLY) {
4085 if (!early_pfn_valid(pfn))
4086 continue;
4087 if (!early_pfn_in_nid(pfn, nid))
4088 continue;
4089 }
d41dee36
AW
4090 page = pfn_to_page(pfn);
4091 set_page_links(page, zone, nid, pfn);
708614e6 4092 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 4093 init_page_count(page);
22b751c3 4094 page_mapcount_reset(page);
90572890 4095 page_cpupid_reset_last(page);
1da177e4 4096 SetPageReserved(page);
b2a0ac88
MG
4097 /*
4098 * Mark the block movable so that blocks are reserved for
4099 * movable at startup. This will force kernel allocations
4100 * to reserve their blocks rather than leaking throughout
4101 * the address space during boot when many long-lived
56fd56b8
MG
4102 * kernel allocations are made. Later some blocks near
4103 * the start are marked MIGRATE_RESERVE by
4104 * setup_zone_migrate_reserve()
86051ca5
KH
4105 *
4106 * bitmap is created for zone's valid pfn range. but memmap
4107 * can be created for invalid pages (for alignment)
4108 * check here not to call set_pageblock_migratetype() against
4109 * pfn out of zone.
b2a0ac88 4110 */
86051ca5 4111 if ((z->zone_start_pfn <= pfn)
108bcc96 4112 && (pfn < zone_end_pfn(z))
86051ca5 4113 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 4114 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 4115
1da177e4
LT
4116 INIT_LIST_HEAD(&page->lru);
4117#ifdef WANT_PAGE_VIRTUAL
4118 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4119 if (!is_highmem_idx(zone))
3212c6be 4120 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 4121#endif
1da177e4
LT
4122 }
4123}
4124
1e548deb 4125static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 4126{
7aeb09f9 4127 unsigned int order, t;
b2a0ac88
MG
4128 for_each_migratetype_order(order, t) {
4129 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
4130 zone->free_area[order].nr_free = 0;
4131 }
4132}
4133
4134#ifndef __HAVE_ARCH_MEMMAP_INIT
4135#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 4136 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
4137#endif
4138
4ed7e022 4139static int __meminit zone_batchsize(struct zone *zone)
e7c8d5c9 4140{
3a6be87f 4141#ifdef CONFIG_MMU
e7c8d5c9
CL
4142 int batch;
4143
4144 /*
4145 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 4146 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
4147 *
4148 * OK, so we don't know how big the cache is. So guess.
4149 */
b40da049 4150 batch = zone->managed_pages / 1024;
ba56e91c
SR
4151 if (batch * PAGE_SIZE > 512 * 1024)
4152 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
4153 batch /= 4; /* We effectively *= 4 below */
4154 if (batch < 1)
4155 batch = 1;
4156
4157 /*
0ceaacc9
NP
4158 * Clamp the batch to a 2^n - 1 value. Having a power
4159 * of 2 value was found to be more likely to have
4160 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 4161 *
0ceaacc9
NP
4162 * For example if 2 tasks are alternately allocating
4163 * batches of pages, one task can end up with a lot
4164 * of pages of one half of the possible page colors
4165 * and the other with pages of the other colors.
e7c8d5c9 4166 */
9155203a 4167 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 4168
e7c8d5c9 4169 return batch;
3a6be87f
DH
4170
4171#else
4172 /* The deferral and batching of frees should be suppressed under NOMMU
4173 * conditions.
4174 *
4175 * The problem is that NOMMU needs to be able to allocate large chunks
4176 * of contiguous memory as there's no hardware page translation to
4177 * assemble apparent contiguous memory from discontiguous pages.
4178 *
4179 * Queueing large contiguous runs of pages for batching, however,
4180 * causes the pages to actually be freed in smaller chunks. As there
4181 * can be a significant delay between the individual batches being
4182 * recycled, this leads to the once large chunks of space being
4183 * fragmented and becoming unavailable for high-order allocations.
4184 */
4185 return 0;
4186#endif
e7c8d5c9
CL
4187}
4188
8d7a8fa9
CS
4189/*
4190 * pcp->high and pcp->batch values are related and dependent on one another:
4191 * ->batch must never be higher then ->high.
4192 * The following function updates them in a safe manner without read side
4193 * locking.
4194 *
4195 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4196 * those fields changing asynchronously (acording the the above rule).
4197 *
4198 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4199 * outside of boot time (or some other assurance that no concurrent updaters
4200 * exist).
4201 */
4202static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4203 unsigned long batch)
4204{
4205 /* start with a fail safe value for batch */
4206 pcp->batch = 1;
4207 smp_wmb();
4208
4209 /* Update high, then batch, in order */
4210 pcp->high = high;
4211 smp_wmb();
4212
4213 pcp->batch = batch;
4214}
4215
3664033c 4216/* a companion to pageset_set_high() */
4008bab7
CS
4217static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4218{
8d7a8fa9 4219 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
4220}
4221
88c90dbc 4222static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
4223{
4224 struct per_cpu_pages *pcp;
5f8dcc21 4225 int migratetype;
2caaad41 4226
1c6fe946
MD
4227 memset(p, 0, sizeof(*p));
4228
3dfa5721 4229 pcp = &p->pcp;
2caaad41 4230 pcp->count = 0;
5f8dcc21
MG
4231 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4232 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4233}
4234
88c90dbc
CS
4235static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4236{
4237 pageset_init(p);
4238 pageset_set_batch(p, batch);
4239}
4240
8ad4b1fb 4241/*
3664033c 4242 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
4243 * to the value high for the pageset p.
4244 */
3664033c 4245static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
4246 unsigned long high)
4247{
8d7a8fa9
CS
4248 unsigned long batch = max(1UL, high / 4);
4249 if ((high / 4) > (PAGE_SHIFT * 8))
4250 batch = PAGE_SHIFT * 8;
8ad4b1fb 4251
8d7a8fa9 4252 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
4253}
4254
169f6c19
CS
4255static void __meminit pageset_set_high_and_batch(struct zone *zone,
4256 struct per_cpu_pageset *pcp)
56cef2b8 4257{
56cef2b8 4258 if (percpu_pagelist_fraction)
3664033c 4259 pageset_set_high(pcp,
56cef2b8
CS
4260 (zone->managed_pages /
4261 percpu_pagelist_fraction));
4262 else
4263 pageset_set_batch(pcp, zone_batchsize(zone));
4264}
4265
169f6c19
CS
4266static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4267{
4268 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4269
4270 pageset_init(pcp);
4271 pageset_set_high_and_batch(zone, pcp);
4272}
4273
4ed7e022 4274static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4275{
4276 int cpu;
319774e2 4277 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
4278 for_each_possible_cpu(cpu)
4279 zone_pageset_init(zone, cpu);
319774e2
WF
4280}
4281
2caaad41 4282/*
99dcc3e5
CL
4283 * Allocate per cpu pagesets and initialize them.
4284 * Before this call only boot pagesets were available.
e7c8d5c9 4285 */
99dcc3e5 4286void __init setup_per_cpu_pageset(void)
e7c8d5c9 4287{
99dcc3e5 4288 struct zone *zone;
e7c8d5c9 4289
319774e2
WF
4290 for_each_populated_zone(zone)
4291 setup_zone_pageset(zone);
e7c8d5c9
CL
4292}
4293
577a32f6 4294static noinline __init_refok
cca448fe 4295int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4296{
4297 int i;
cca448fe 4298 size_t alloc_size;
ed8ece2e
DH
4299
4300 /*
4301 * The per-page waitqueue mechanism uses hashed waitqueues
4302 * per zone.
4303 */
02b694de
YG
4304 zone->wait_table_hash_nr_entries =
4305 wait_table_hash_nr_entries(zone_size_pages);
4306 zone->wait_table_bits =
4307 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4308 alloc_size = zone->wait_table_hash_nr_entries
4309 * sizeof(wait_queue_head_t);
4310
cd94b9db 4311 if (!slab_is_available()) {
cca448fe 4312 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
4313 memblock_virt_alloc_node_nopanic(
4314 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
4315 } else {
4316 /*
4317 * This case means that a zone whose size was 0 gets new memory
4318 * via memory hot-add.
4319 * But it may be the case that a new node was hot-added. In
4320 * this case vmalloc() will not be able to use this new node's
4321 * memory - this wait_table must be initialized to use this new
4322 * node itself as well.
4323 * To use this new node's memory, further consideration will be
4324 * necessary.
4325 */
8691f3a7 4326 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4327 }
4328 if (!zone->wait_table)
4329 return -ENOMEM;
ed8ece2e 4330
b8af2941 4331 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4332 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4333
4334 return 0;
ed8ece2e
DH
4335}
4336
c09b4240 4337static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4338{
99dcc3e5
CL
4339 /*
4340 * per cpu subsystem is not up at this point. The following code
4341 * relies on the ability of the linker to provide the
4342 * offset of a (static) per cpu variable into the per cpu area.
4343 */
4344 zone->pageset = &boot_pageset;
ed8ece2e 4345
b38a8725 4346 if (populated_zone(zone))
99dcc3e5
CL
4347 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4348 zone->name, zone->present_pages,
4349 zone_batchsize(zone));
ed8ece2e
DH
4350}
4351
4ed7e022 4352int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4353 unsigned long zone_start_pfn,
a2f3aa02
DH
4354 unsigned long size,
4355 enum memmap_context context)
ed8ece2e
DH
4356{
4357 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4358 int ret;
4359 ret = zone_wait_table_init(zone, size);
4360 if (ret)
4361 return ret;
ed8ece2e
DH
4362 pgdat->nr_zones = zone_idx(zone) + 1;
4363
ed8ece2e
DH
4364 zone->zone_start_pfn = zone_start_pfn;
4365
708614e6
MG
4366 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4367 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4368 pgdat->node_id,
4369 (unsigned long)zone_idx(zone),
4370 zone_start_pfn, (zone_start_pfn + size));
4371
1e548deb 4372 zone_init_free_lists(zone);
718127cc
YG
4373
4374 return 0;
ed8ece2e
DH
4375}
4376
0ee332c1 4377#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d
MG
4378#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4379/*
4380 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4381 * Architectures may implement their own version but if add_active_range()
4382 * was used and there are no special requirements, this is a convenient
4383 * alternative
4384 */
f2dbcfa7 4385int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d 4386{
c13291a5 4387 unsigned long start_pfn, end_pfn;
e76b63f8 4388 int nid;
7c243c71
RA
4389 /*
4390 * NOTE: The following SMP-unsafe globals are only used early in boot
4391 * when the kernel is running single-threaded.
4392 */
4393 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4394 static int __meminitdata last_nid;
4395
4396 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4397 return last_nid;
c713216d 4398
e76b63f8
YL
4399 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4400 if (nid != -1) {
4401 last_start_pfn = start_pfn;
4402 last_end_pfn = end_pfn;
4403 last_nid = nid;
4404 }
4405
4406 return nid;
c713216d
MG
4407}
4408#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4409
f2dbcfa7
KH
4410int __meminit early_pfn_to_nid(unsigned long pfn)
4411{
cc2559bc
KH
4412 int nid;
4413
4414 nid = __early_pfn_to_nid(pfn);
4415 if (nid >= 0)
4416 return nid;
4417 /* just returns 0 */
4418 return 0;
f2dbcfa7
KH
4419}
4420
cc2559bc
KH
4421#ifdef CONFIG_NODES_SPAN_OTHER_NODES
4422bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4423{
4424 int nid;
4425
4426 nid = __early_pfn_to_nid(pfn);
4427 if (nid >= 0 && nid != node)
4428 return false;
4429 return true;
4430}
4431#endif
f2dbcfa7 4432
c713216d 4433/**
6782832e 4434 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 4435 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 4436 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d
MG
4437 *
4438 * If an architecture guarantees that all ranges registered with
4439 * add_active_ranges() contain no holes and may be freed, this
6782832e
SS
4440 * this function may be used instead of calling memblock_free_early_nid()
4441 * manually.
c713216d 4442 */
c13291a5 4443void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4444{
c13291a5
TH
4445 unsigned long start_pfn, end_pfn;
4446 int i, this_nid;
edbe7d23 4447
c13291a5
TH
4448 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4449 start_pfn = min(start_pfn, max_low_pfn);
4450 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4451
c13291a5 4452 if (start_pfn < end_pfn)
6782832e
SS
4453 memblock_free_early_nid(PFN_PHYS(start_pfn),
4454 (end_pfn - start_pfn) << PAGE_SHIFT,
4455 this_nid);
edbe7d23 4456 }
edbe7d23 4457}
edbe7d23 4458
c713216d
MG
4459/**
4460 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4461 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
4462 *
4463 * If an architecture guarantees that all ranges registered with
4464 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 4465 * function may be used instead of calling memory_present() manually.
c713216d
MG
4466 */
4467void __init sparse_memory_present_with_active_regions(int nid)
4468{
c13291a5
TH
4469 unsigned long start_pfn, end_pfn;
4470 int i, this_nid;
c713216d 4471
c13291a5
TH
4472 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4473 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4474}
4475
4476/**
4477 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4478 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4479 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4480 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4481 *
4482 * It returns the start and end page frame of a node based on information
4483 * provided by an arch calling add_active_range(). If called for a node
4484 * with no available memory, a warning is printed and the start and end
88ca3b94 4485 * PFNs will be 0.
c713216d 4486 */
a3142c8e 4487void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4488 unsigned long *start_pfn, unsigned long *end_pfn)
4489{
c13291a5 4490 unsigned long this_start_pfn, this_end_pfn;
c713216d 4491 int i;
c13291a5 4492
c713216d
MG
4493 *start_pfn = -1UL;
4494 *end_pfn = 0;
4495
c13291a5
TH
4496 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4497 *start_pfn = min(*start_pfn, this_start_pfn);
4498 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4499 }
4500
633c0666 4501 if (*start_pfn == -1UL)
c713216d 4502 *start_pfn = 0;
c713216d
MG
4503}
4504
2a1e274a
MG
4505/*
4506 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4507 * assumption is made that zones within a node are ordered in monotonic
4508 * increasing memory addresses so that the "highest" populated zone is used
4509 */
b69a7288 4510static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4511{
4512 int zone_index;
4513 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4514 if (zone_index == ZONE_MOVABLE)
4515 continue;
4516
4517 if (arch_zone_highest_possible_pfn[zone_index] >
4518 arch_zone_lowest_possible_pfn[zone_index])
4519 break;
4520 }
4521
4522 VM_BUG_ON(zone_index == -1);
4523 movable_zone = zone_index;
4524}
4525
4526/*
4527 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4528 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4529 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4530 * in each node depending on the size of each node and how evenly kernelcore
4531 * is distributed. This helper function adjusts the zone ranges
4532 * provided by the architecture for a given node by using the end of the
4533 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4534 * zones within a node are in order of monotonic increases memory addresses
4535 */
b69a7288 4536static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4537 unsigned long zone_type,
4538 unsigned long node_start_pfn,
4539 unsigned long node_end_pfn,
4540 unsigned long *zone_start_pfn,
4541 unsigned long *zone_end_pfn)
4542{
4543 /* Only adjust if ZONE_MOVABLE is on this node */
4544 if (zone_movable_pfn[nid]) {
4545 /* Size ZONE_MOVABLE */
4546 if (zone_type == ZONE_MOVABLE) {
4547 *zone_start_pfn = zone_movable_pfn[nid];
4548 *zone_end_pfn = min(node_end_pfn,
4549 arch_zone_highest_possible_pfn[movable_zone]);
4550
4551 /* Adjust for ZONE_MOVABLE starting within this range */
4552 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4553 *zone_end_pfn > zone_movable_pfn[nid]) {
4554 *zone_end_pfn = zone_movable_pfn[nid];
4555
4556 /* Check if this whole range is within ZONE_MOVABLE */
4557 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4558 *zone_start_pfn = *zone_end_pfn;
4559 }
4560}
4561
c713216d
MG
4562/*
4563 * Return the number of pages a zone spans in a node, including holes
4564 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4565 */
6ea6e688 4566static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4567 unsigned long zone_type,
7960aedd
ZY
4568 unsigned long node_start_pfn,
4569 unsigned long node_end_pfn,
c713216d
MG
4570 unsigned long *ignored)
4571{
c713216d
MG
4572 unsigned long zone_start_pfn, zone_end_pfn;
4573
7960aedd 4574 /* Get the start and end of the zone */
c713216d
MG
4575 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4576 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
4577 adjust_zone_range_for_zone_movable(nid, zone_type,
4578 node_start_pfn, node_end_pfn,
4579 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
4580
4581 /* Check that this node has pages within the zone's required range */
4582 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4583 return 0;
4584
4585 /* Move the zone boundaries inside the node if necessary */
4586 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4587 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4588
4589 /* Return the spanned pages */
4590 return zone_end_pfn - zone_start_pfn;
4591}
4592
4593/*
4594 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 4595 * then all holes in the requested range will be accounted for.
c713216d 4596 */
32996250 4597unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
4598 unsigned long range_start_pfn,
4599 unsigned long range_end_pfn)
4600{
96e907d1
TH
4601 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4602 unsigned long start_pfn, end_pfn;
4603 int i;
c713216d 4604
96e907d1
TH
4605 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4606 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4607 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4608 nr_absent -= end_pfn - start_pfn;
c713216d 4609 }
96e907d1 4610 return nr_absent;
c713216d
MG
4611}
4612
4613/**
4614 * absent_pages_in_range - Return number of page frames in holes within a range
4615 * @start_pfn: The start PFN to start searching for holes
4616 * @end_pfn: The end PFN to stop searching for holes
4617 *
88ca3b94 4618 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
4619 */
4620unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4621 unsigned long end_pfn)
4622{
4623 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4624}
4625
4626/* Return the number of page frames in holes in a zone on a node */
6ea6e688 4627static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 4628 unsigned long zone_type,
7960aedd
ZY
4629 unsigned long node_start_pfn,
4630 unsigned long node_end_pfn,
c713216d
MG
4631 unsigned long *ignored)
4632{
96e907d1
TH
4633 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4634 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
4635 unsigned long zone_start_pfn, zone_end_pfn;
4636
96e907d1
TH
4637 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4638 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 4639
2a1e274a
MG
4640 adjust_zone_range_for_zone_movable(nid, zone_type,
4641 node_start_pfn, node_end_pfn,
4642 &zone_start_pfn, &zone_end_pfn);
9c7cd687 4643 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 4644}
0e0b864e 4645
0ee332c1 4646#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 4647static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4648 unsigned long zone_type,
7960aedd
ZY
4649 unsigned long node_start_pfn,
4650 unsigned long node_end_pfn,
c713216d
MG
4651 unsigned long *zones_size)
4652{
4653 return zones_size[zone_type];
4654}
4655
6ea6e688 4656static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 4657 unsigned long zone_type,
7960aedd
ZY
4658 unsigned long node_start_pfn,
4659 unsigned long node_end_pfn,
c713216d
MG
4660 unsigned long *zholes_size)
4661{
4662 if (!zholes_size)
4663 return 0;
4664
4665 return zholes_size[zone_type];
4666}
20e6926d 4667
0ee332c1 4668#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4669
a3142c8e 4670static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
4671 unsigned long node_start_pfn,
4672 unsigned long node_end_pfn,
4673 unsigned long *zones_size,
4674 unsigned long *zholes_size)
c713216d
MG
4675{
4676 unsigned long realtotalpages, totalpages = 0;
4677 enum zone_type i;
4678
4679 for (i = 0; i < MAX_NR_ZONES; i++)
4680 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
4681 node_start_pfn,
4682 node_end_pfn,
4683 zones_size);
c713216d
MG
4684 pgdat->node_spanned_pages = totalpages;
4685
4686 realtotalpages = totalpages;
4687 for (i = 0; i < MAX_NR_ZONES; i++)
4688 realtotalpages -=
4689 zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
4690 node_start_pfn, node_end_pfn,
4691 zholes_size);
c713216d
MG
4692 pgdat->node_present_pages = realtotalpages;
4693 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4694 realtotalpages);
4695}
4696
835c134e
MG
4697#ifndef CONFIG_SPARSEMEM
4698/*
4699 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4700 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4701 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4702 * round what is now in bits to nearest long in bits, then return it in
4703 * bytes.
4704 */
7c45512d 4705static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
4706{
4707 unsigned long usemapsize;
4708
7c45512d 4709 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
4710 usemapsize = roundup(zonesize, pageblock_nr_pages);
4711 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4712 usemapsize *= NR_PAGEBLOCK_BITS;
4713 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4714
4715 return usemapsize / 8;
4716}
4717
4718static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
4719 struct zone *zone,
4720 unsigned long zone_start_pfn,
4721 unsigned long zonesize)
835c134e 4722{
7c45512d 4723 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 4724 zone->pageblock_flags = NULL;
58a01a45 4725 if (usemapsize)
6782832e
SS
4726 zone->pageblock_flags =
4727 memblock_virt_alloc_node_nopanic(usemapsize,
4728 pgdat->node_id);
835c134e
MG
4729}
4730#else
7c45512d
LT
4731static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4732 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
4733#endif /* CONFIG_SPARSEMEM */
4734
d9c23400 4735#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 4736
d9c23400 4737/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 4738void __paginginit set_pageblock_order(void)
d9c23400 4739{
955c1cd7
AM
4740 unsigned int order;
4741
d9c23400
MG
4742 /* Check that pageblock_nr_pages has not already been setup */
4743 if (pageblock_order)
4744 return;
4745
955c1cd7
AM
4746 if (HPAGE_SHIFT > PAGE_SHIFT)
4747 order = HUGETLB_PAGE_ORDER;
4748 else
4749 order = MAX_ORDER - 1;
4750
d9c23400
MG
4751 /*
4752 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
4753 * This value may be variable depending on boot parameters on IA64 and
4754 * powerpc.
d9c23400
MG
4755 */
4756 pageblock_order = order;
4757}
4758#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4759
ba72cb8c
MG
4760/*
4761 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
4762 * is unused as pageblock_order is set at compile-time. See
4763 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4764 * the kernel config
ba72cb8c 4765 */
15ca220e 4766void __paginginit set_pageblock_order(void)
ba72cb8c 4767{
ba72cb8c 4768}
d9c23400
MG
4769
4770#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4771
01cefaef
JL
4772static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4773 unsigned long present_pages)
4774{
4775 unsigned long pages = spanned_pages;
4776
4777 /*
4778 * Provide a more accurate estimation if there are holes within
4779 * the zone and SPARSEMEM is in use. If there are holes within the
4780 * zone, each populated memory region may cost us one or two extra
4781 * memmap pages due to alignment because memmap pages for each
4782 * populated regions may not naturally algined on page boundary.
4783 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4784 */
4785 if (spanned_pages > present_pages + (present_pages >> 4) &&
4786 IS_ENABLED(CONFIG_SPARSEMEM))
4787 pages = present_pages;
4788
4789 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4790}
4791
1da177e4
LT
4792/*
4793 * Set up the zone data structures:
4794 * - mark all pages reserved
4795 * - mark all memory queues empty
4796 * - clear the memory bitmaps
6527af5d
MK
4797 *
4798 * NOTE: pgdat should get zeroed by caller.
1da177e4 4799 */
b5a0e011 4800static void __paginginit free_area_init_core(struct pglist_data *pgdat,
7960aedd 4801 unsigned long node_start_pfn, unsigned long node_end_pfn,
1da177e4
LT
4802 unsigned long *zones_size, unsigned long *zholes_size)
4803{
2f1b6248 4804 enum zone_type j;
ed8ece2e 4805 int nid = pgdat->node_id;
1da177e4 4806 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4807 int ret;
1da177e4 4808
208d54e5 4809 pgdat_resize_init(pgdat);
8177a420
AA
4810#ifdef CONFIG_NUMA_BALANCING
4811 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4812 pgdat->numabalancing_migrate_nr_pages = 0;
4813 pgdat->numabalancing_migrate_next_window = jiffies;
4814#endif
1da177e4 4815 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 4816 init_waitqueue_head(&pgdat->pfmemalloc_wait);
52d4b9ac 4817 pgdat_page_cgroup_init(pgdat);
5f63b720 4818
1da177e4
LT
4819 for (j = 0; j < MAX_NR_ZONES; j++) {
4820 struct zone *zone = pgdat->node_zones + j;
9feedc9d 4821 unsigned long size, realsize, freesize, memmap_pages;
1da177e4 4822
7960aedd
ZY
4823 size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4824 node_end_pfn, zones_size);
9feedc9d 4825 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
7960aedd
ZY
4826 node_start_pfn,
4827 node_end_pfn,
c713216d 4828 zholes_size);
1da177e4 4829
0e0b864e 4830 /*
9feedc9d 4831 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
4832 * is used by this zone for memmap. This affects the watermark
4833 * and per-cpu initialisations
4834 */
01cefaef 4835 memmap_pages = calc_memmap_size(size, realsize);
9feedc9d
JL
4836 if (freesize >= memmap_pages) {
4837 freesize -= memmap_pages;
5594c8c8
YL
4838 if (memmap_pages)
4839 printk(KERN_DEBUG
4840 " %s zone: %lu pages used for memmap\n",
4841 zone_names[j], memmap_pages);
0e0b864e
MG
4842 } else
4843 printk(KERN_WARNING
9feedc9d
JL
4844 " %s zone: %lu pages exceeds freesize %lu\n",
4845 zone_names[j], memmap_pages, freesize);
0e0b864e 4846
6267276f 4847 /* Account for reserved pages */
9feedc9d
JL
4848 if (j == 0 && freesize > dma_reserve) {
4849 freesize -= dma_reserve;
d903ef9f 4850 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4851 zone_names[0], dma_reserve);
0e0b864e
MG
4852 }
4853
98d2b0eb 4854 if (!is_highmem_idx(j))
9feedc9d 4855 nr_kernel_pages += freesize;
01cefaef
JL
4856 /* Charge for highmem memmap if there are enough kernel pages */
4857 else if (nr_kernel_pages > memmap_pages * 2)
4858 nr_kernel_pages -= memmap_pages;
9feedc9d 4859 nr_all_pages += freesize;
1da177e4
LT
4860
4861 zone->spanned_pages = size;
306f2e9e 4862 zone->present_pages = realsize;
9feedc9d
JL
4863 /*
4864 * Set an approximate value for lowmem here, it will be adjusted
4865 * when the bootmem allocator frees pages into the buddy system.
4866 * And all highmem pages will be managed by the buddy system.
4867 */
4868 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 4869#ifdef CONFIG_NUMA
d5f541ed 4870 zone->node = nid;
9feedc9d 4871 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 4872 / 100;
9feedc9d 4873 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 4874#endif
1da177e4
LT
4875 zone->name = zone_names[j];
4876 spin_lock_init(&zone->lock);
4877 spin_lock_init(&zone->lru_lock);
bdc8cb98 4878 zone_seqlock_init(zone);
1da177e4 4879 zone->zone_pgdat = pgdat;
ed8ece2e 4880 zone_pcp_init(zone);
81c0a2bb
JW
4881
4882 /* For bootup, initialized properly in watermark setup */
4883 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4884
bea8c150 4885 lruvec_init(&zone->lruvec);
1da177e4
LT
4886 if (!size)
4887 continue;
4888
955c1cd7 4889 set_pageblock_order();
7c45512d 4890 setup_usemap(pgdat, zone, zone_start_pfn, size);
a2f3aa02
DH
4891 ret = init_currently_empty_zone(zone, zone_start_pfn,
4892 size, MEMMAP_EARLY);
718127cc 4893 BUG_ON(ret);
76cdd58e 4894 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4895 zone_start_pfn += size;
1da177e4
LT
4896 }
4897}
4898
577a32f6 4899static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4900{
1da177e4
LT
4901 /* Skip empty nodes */
4902 if (!pgdat->node_spanned_pages)
4903 return;
4904
d41dee36 4905#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4906 /* ia64 gets its own node_mem_map, before this, without bootmem */
4907 if (!pgdat->node_mem_map) {
e984bb43 4908 unsigned long size, start, end;
d41dee36
AW
4909 struct page *map;
4910
e984bb43
BP
4911 /*
4912 * The zone's endpoints aren't required to be MAX_ORDER
4913 * aligned but the node_mem_map endpoints must be in order
4914 * for the buddy allocator to function correctly.
4915 */
4916 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
108bcc96 4917 end = pgdat_end_pfn(pgdat);
e984bb43
BP
4918 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4919 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4920 map = alloc_remap(pgdat->node_id, size);
4921 if (!map)
6782832e
SS
4922 map = memblock_virt_alloc_node_nopanic(size,
4923 pgdat->node_id);
e984bb43 4924 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4925 }
12d810c1 4926#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4927 /*
4928 * With no DISCONTIG, the global mem_map is just set as node 0's
4929 */
c713216d 4930 if (pgdat == NODE_DATA(0)) {
1da177e4 4931 mem_map = NODE_DATA(0)->node_mem_map;
0ee332c1 4932#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4933 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4934 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
0ee332c1 4935#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4936 }
1da177e4 4937#endif
d41dee36 4938#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4939}
4940
9109fb7b
JW
4941void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4942 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4943{
9109fb7b 4944 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
4945 unsigned long start_pfn = 0;
4946 unsigned long end_pfn = 0;
9109fb7b 4947
88fdf75d 4948 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 4949 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 4950
1da177e4
LT
4951 pgdat->node_id = nid;
4952 pgdat->node_start_pfn = node_start_pfn;
7960aedd
ZY
4953#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4954 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
4955#endif
4956 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
4957 zones_size, zholes_size);
1da177e4
LT
4958
4959 alloc_node_mem_map(pgdat);
e8c27ac9
YL
4960#ifdef CONFIG_FLAT_NODE_MEM_MAP
4961 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4962 nid, (unsigned long)pgdat,
4963 (unsigned long)pgdat->node_mem_map);
4964#endif
1da177e4 4965
7960aedd
ZY
4966 free_area_init_core(pgdat, start_pfn, end_pfn,
4967 zones_size, zholes_size);
1da177e4
LT
4968}
4969
0ee332c1 4970#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
4971
4972#if MAX_NUMNODES > 1
4973/*
4974 * Figure out the number of possible node ids.
4975 */
f9872caf 4976void __init setup_nr_node_ids(void)
418508c1
MS
4977{
4978 unsigned int node;
4979 unsigned int highest = 0;
4980
4981 for_each_node_mask(node, node_possible_map)
4982 highest = node;
4983 nr_node_ids = highest + 1;
4984}
418508c1
MS
4985#endif
4986
1e01979c
TH
4987/**
4988 * node_map_pfn_alignment - determine the maximum internode alignment
4989 *
4990 * This function should be called after node map is populated and sorted.
4991 * It calculates the maximum power of two alignment which can distinguish
4992 * all the nodes.
4993 *
4994 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4995 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4996 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4997 * shifted, 1GiB is enough and this function will indicate so.
4998 *
4999 * This is used to test whether pfn -> nid mapping of the chosen memory
5000 * model has fine enough granularity to avoid incorrect mapping for the
5001 * populated node map.
5002 *
5003 * Returns the determined alignment in pfn's. 0 if there is no alignment
5004 * requirement (single node).
5005 */
5006unsigned long __init node_map_pfn_alignment(void)
5007{
5008 unsigned long accl_mask = 0, last_end = 0;
c13291a5 5009 unsigned long start, end, mask;
1e01979c 5010 int last_nid = -1;
c13291a5 5011 int i, nid;
1e01979c 5012
c13291a5 5013 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
5014 if (!start || last_nid < 0 || last_nid == nid) {
5015 last_nid = nid;
5016 last_end = end;
5017 continue;
5018 }
5019
5020 /*
5021 * Start with a mask granular enough to pin-point to the
5022 * start pfn and tick off bits one-by-one until it becomes
5023 * too coarse to separate the current node from the last.
5024 */
5025 mask = ~((1 << __ffs(start)) - 1);
5026 while (mask && last_end <= (start & (mask << 1)))
5027 mask <<= 1;
5028
5029 /* accumulate all internode masks */
5030 accl_mask |= mask;
5031 }
5032
5033 /* convert mask to number of pages */
5034 return ~accl_mask + 1;
5035}
5036
a6af2bc3 5037/* Find the lowest pfn for a node */
b69a7288 5038static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 5039{
a6af2bc3 5040 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
5041 unsigned long start_pfn;
5042 int i;
1abbfb41 5043
c13291a5
TH
5044 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5045 min_pfn = min(min_pfn, start_pfn);
c713216d 5046
a6af2bc3
MG
5047 if (min_pfn == ULONG_MAX) {
5048 printk(KERN_WARNING
2bc0d261 5049 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
5050 return 0;
5051 }
5052
5053 return min_pfn;
c713216d
MG
5054}
5055
5056/**
5057 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5058 *
5059 * It returns the minimum PFN based on information provided via
88ca3b94 5060 * add_active_range().
c713216d
MG
5061 */
5062unsigned long __init find_min_pfn_with_active_regions(void)
5063{
5064 return find_min_pfn_for_node(MAX_NUMNODES);
5065}
5066
37b07e41
LS
5067/*
5068 * early_calculate_totalpages()
5069 * Sum pages in active regions for movable zone.
4b0ef1fe 5070 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 5071 */
484f51f8 5072static unsigned long __init early_calculate_totalpages(void)
7e63efef 5073{
7e63efef 5074 unsigned long totalpages = 0;
c13291a5
TH
5075 unsigned long start_pfn, end_pfn;
5076 int i, nid;
5077
5078 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5079 unsigned long pages = end_pfn - start_pfn;
7e63efef 5080
37b07e41
LS
5081 totalpages += pages;
5082 if (pages)
4b0ef1fe 5083 node_set_state(nid, N_MEMORY);
37b07e41 5084 }
b8af2941 5085 return totalpages;
7e63efef
MG
5086}
5087
2a1e274a
MG
5088/*
5089 * Find the PFN the Movable zone begins in each node. Kernel memory
5090 * is spread evenly between nodes as long as the nodes have enough
5091 * memory. When they don't, some nodes will have more kernelcore than
5092 * others
5093 */
b224ef85 5094static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
5095{
5096 int i, nid;
5097 unsigned long usable_startpfn;
5098 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 5099 /* save the state before borrow the nodemask */
4b0ef1fe 5100 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 5101 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 5102 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 5103 struct memblock_region *r;
b2f3eebe
TC
5104
5105 /* Need to find movable_zone earlier when movable_node is specified. */
5106 find_usable_zone_for_movable();
5107
5108 /*
5109 * If movable_node is specified, ignore kernelcore and movablecore
5110 * options.
5111 */
5112 if (movable_node_is_enabled()) {
136199f0
EM
5113 for_each_memblock(memory, r) {
5114 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
5115 continue;
5116
136199f0 5117 nid = r->nid;
b2f3eebe 5118
136199f0 5119 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
5120 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5121 min(usable_startpfn, zone_movable_pfn[nid]) :
5122 usable_startpfn;
5123 }
5124
5125 goto out2;
5126 }
2a1e274a 5127
7e63efef 5128 /*
b2f3eebe 5129 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
5130 * kernelcore that corresponds so that memory usable for
5131 * any allocation type is evenly spread. If both kernelcore
5132 * and movablecore are specified, then the value of kernelcore
5133 * will be used for required_kernelcore if it's greater than
5134 * what movablecore would have allowed.
5135 */
5136 if (required_movablecore) {
7e63efef
MG
5137 unsigned long corepages;
5138
5139 /*
5140 * Round-up so that ZONE_MOVABLE is at least as large as what
5141 * was requested by the user
5142 */
5143 required_movablecore =
5144 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5145 corepages = totalpages - required_movablecore;
5146
5147 required_kernelcore = max(required_kernelcore, corepages);
5148 }
5149
20e6926d
YL
5150 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5151 if (!required_kernelcore)
66918dcd 5152 goto out;
2a1e274a
MG
5153
5154 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
5155 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5156
5157restart:
5158 /* Spread kernelcore memory as evenly as possible throughout nodes */
5159 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 5160 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
5161 unsigned long start_pfn, end_pfn;
5162
2a1e274a
MG
5163 /*
5164 * Recalculate kernelcore_node if the division per node
5165 * now exceeds what is necessary to satisfy the requested
5166 * amount of memory for the kernel
5167 */
5168 if (required_kernelcore < kernelcore_node)
5169 kernelcore_node = required_kernelcore / usable_nodes;
5170
5171 /*
5172 * As the map is walked, we track how much memory is usable
5173 * by the kernel using kernelcore_remaining. When it is
5174 * 0, the rest of the node is usable by ZONE_MOVABLE
5175 */
5176 kernelcore_remaining = kernelcore_node;
5177
5178 /* Go through each range of PFNs within this node */
c13291a5 5179 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
5180 unsigned long size_pages;
5181
c13291a5 5182 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
5183 if (start_pfn >= end_pfn)
5184 continue;
5185
5186 /* Account for what is only usable for kernelcore */
5187 if (start_pfn < usable_startpfn) {
5188 unsigned long kernel_pages;
5189 kernel_pages = min(end_pfn, usable_startpfn)
5190 - start_pfn;
5191
5192 kernelcore_remaining -= min(kernel_pages,
5193 kernelcore_remaining);
5194 required_kernelcore -= min(kernel_pages,
5195 required_kernelcore);
5196
5197 /* Continue if range is now fully accounted */
5198 if (end_pfn <= usable_startpfn) {
5199
5200 /*
5201 * Push zone_movable_pfn to the end so
5202 * that if we have to rebalance
5203 * kernelcore across nodes, we will
5204 * not double account here
5205 */
5206 zone_movable_pfn[nid] = end_pfn;
5207 continue;
5208 }
5209 start_pfn = usable_startpfn;
5210 }
5211
5212 /*
5213 * The usable PFN range for ZONE_MOVABLE is from
5214 * start_pfn->end_pfn. Calculate size_pages as the
5215 * number of pages used as kernelcore
5216 */
5217 size_pages = end_pfn - start_pfn;
5218 if (size_pages > kernelcore_remaining)
5219 size_pages = kernelcore_remaining;
5220 zone_movable_pfn[nid] = start_pfn + size_pages;
5221
5222 /*
5223 * Some kernelcore has been met, update counts and
5224 * break if the kernelcore for this node has been
b8af2941 5225 * satisfied
2a1e274a
MG
5226 */
5227 required_kernelcore -= min(required_kernelcore,
5228 size_pages);
5229 kernelcore_remaining -= size_pages;
5230 if (!kernelcore_remaining)
5231 break;
5232 }
5233 }
5234
5235 /*
5236 * If there is still required_kernelcore, we do another pass with one
5237 * less node in the count. This will push zone_movable_pfn[nid] further
5238 * along on the nodes that still have memory until kernelcore is
b8af2941 5239 * satisfied
2a1e274a
MG
5240 */
5241 usable_nodes--;
5242 if (usable_nodes && required_kernelcore > usable_nodes)
5243 goto restart;
5244
b2f3eebe 5245out2:
2a1e274a
MG
5246 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5247 for (nid = 0; nid < MAX_NUMNODES; nid++)
5248 zone_movable_pfn[nid] =
5249 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 5250
20e6926d 5251out:
66918dcd 5252 /* restore the node_state */
4b0ef1fe 5253 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
5254}
5255
4b0ef1fe
LJ
5256/* Any regular or high memory on that node ? */
5257static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 5258{
37b07e41
LS
5259 enum zone_type zone_type;
5260
4b0ef1fe
LJ
5261 if (N_MEMORY == N_NORMAL_MEMORY)
5262 return;
5263
5264 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 5265 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 5266 if (populated_zone(zone)) {
4b0ef1fe
LJ
5267 node_set_state(nid, N_HIGH_MEMORY);
5268 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5269 zone_type <= ZONE_NORMAL)
5270 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
5271 break;
5272 }
37b07e41 5273 }
37b07e41
LS
5274}
5275
c713216d
MG
5276/**
5277 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 5278 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
5279 *
5280 * This will call free_area_init_node() for each active node in the system.
5281 * Using the page ranges provided by add_active_range(), the size of each
5282 * zone in each node and their holes is calculated. If the maximum PFN
5283 * between two adjacent zones match, it is assumed that the zone is empty.
5284 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5285 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5286 * starts where the previous one ended. For example, ZONE_DMA32 starts
5287 * at arch_max_dma_pfn.
5288 */
5289void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5290{
c13291a5
TH
5291 unsigned long start_pfn, end_pfn;
5292 int i, nid;
a6af2bc3 5293
c713216d
MG
5294 /* Record where the zone boundaries are */
5295 memset(arch_zone_lowest_possible_pfn, 0,
5296 sizeof(arch_zone_lowest_possible_pfn));
5297 memset(arch_zone_highest_possible_pfn, 0,
5298 sizeof(arch_zone_highest_possible_pfn));
5299 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5300 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5301 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
5302 if (i == ZONE_MOVABLE)
5303 continue;
c713216d
MG
5304 arch_zone_lowest_possible_pfn[i] =
5305 arch_zone_highest_possible_pfn[i-1];
5306 arch_zone_highest_possible_pfn[i] =
5307 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5308 }
2a1e274a
MG
5309 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5310 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5311
5312 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5313 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 5314 find_zone_movable_pfns_for_nodes();
c713216d 5315
c713216d 5316 /* Print out the zone ranges */
a62e2f4f 5317 printk("Zone ranges:\n");
2a1e274a
MG
5318 for (i = 0; i < MAX_NR_ZONES; i++) {
5319 if (i == ZONE_MOVABLE)
5320 continue;
155cbfc8 5321 printk(KERN_CONT " %-8s ", zone_names[i]);
72f0ba02
DR
5322 if (arch_zone_lowest_possible_pfn[i] ==
5323 arch_zone_highest_possible_pfn[i])
155cbfc8 5324 printk(KERN_CONT "empty\n");
72f0ba02 5325 else
a62e2f4f
BH
5326 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5327 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5328 (arch_zone_highest_possible_pfn[i]
5329 << PAGE_SHIFT) - 1);
2a1e274a
MG
5330 }
5331
5332 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
a62e2f4f 5333 printk("Movable zone start for each node\n");
2a1e274a
MG
5334 for (i = 0; i < MAX_NUMNODES; i++) {
5335 if (zone_movable_pfn[i])
a62e2f4f
BH
5336 printk(" Node %d: %#010lx\n", i,
5337 zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 5338 }
c713216d 5339
f2d52fe5 5340 /* Print out the early node map */
a62e2f4f 5341 printk("Early memory node ranges\n");
c13291a5 5342 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
a62e2f4f
BH
5343 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5344 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
5345
5346 /* Initialise every node */
708614e6 5347 mminit_verify_pageflags_layout();
8ef82866 5348 setup_nr_node_ids();
c713216d
MG
5349 for_each_online_node(nid) {
5350 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 5351 free_area_init_node(nid, NULL,
c713216d 5352 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
5353
5354 /* Any memory on that node */
5355 if (pgdat->node_present_pages)
4b0ef1fe
LJ
5356 node_set_state(nid, N_MEMORY);
5357 check_for_memory(pgdat, nid);
c713216d
MG
5358 }
5359}
2a1e274a 5360
7e63efef 5361static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
5362{
5363 unsigned long long coremem;
5364 if (!p)
5365 return -EINVAL;
5366
5367 coremem = memparse(p, &p);
7e63efef 5368 *core = coremem >> PAGE_SHIFT;
2a1e274a 5369
7e63efef 5370 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
5371 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5372
5373 return 0;
5374}
ed7ed365 5375
7e63efef
MG
5376/*
5377 * kernelcore=size sets the amount of memory for use for allocations that
5378 * cannot be reclaimed or migrated.
5379 */
5380static int __init cmdline_parse_kernelcore(char *p)
5381{
5382 return cmdline_parse_core(p, &required_kernelcore);
5383}
5384
5385/*
5386 * movablecore=size sets the amount of memory for use for allocations that
5387 * can be reclaimed or migrated.
5388 */
5389static int __init cmdline_parse_movablecore(char *p)
5390{
5391 return cmdline_parse_core(p, &required_movablecore);
5392}
5393
ed7ed365 5394early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 5395early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 5396
0ee332c1 5397#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5398
c3d5f5f0
JL
5399void adjust_managed_page_count(struct page *page, long count)
5400{
5401 spin_lock(&managed_page_count_lock);
5402 page_zone(page)->managed_pages += count;
5403 totalram_pages += count;
3dcc0571
JL
5404#ifdef CONFIG_HIGHMEM
5405 if (PageHighMem(page))
5406 totalhigh_pages += count;
5407#endif
c3d5f5f0
JL
5408 spin_unlock(&managed_page_count_lock);
5409}
3dcc0571 5410EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 5411
11199692 5412unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 5413{
11199692
JL
5414 void *pos;
5415 unsigned long pages = 0;
69afade7 5416
11199692
JL
5417 start = (void *)PAGE_ALIGN((unsigned long)start);
5418 end = (void *)((unsigned long)end & PAGE_MASK);
5419 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 5420 if ((unsigned int)poison <= 0xFF)
11199692
JL
5421 memset(pos, poison, PAGE_SIZE);
5422 free_reserved_page(virt_to_page(pos));
69afade7
JL
5423 }
5424
5425 if (pages && s)
11199692 5426 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
5427 s, pages << (PAGE_SHIFT - 10), start, end);
5428
5429 return pages;
5430}
11199692 5431EXPORT_SYMBOL(free_reserved_area);
69afade7 5432
cfa11e08
JL
5433#ifdef CONFIG_HIGHMEM
5434void free_highmem_page(struct page *page)
5435{
5436 __free_reserved_page(page);
5437 totalram_pages++;
7b4b2a0d 5438 page_zone(page)->managed_pages++;
cfa11e08
JL
5439 totalhigh_pages++;
5440}
5441#endif
5442
7ee3d4e8
JL
5443
5444void __init mem_init_print_info(const char *str)
5445{
5446 unsigned long physpages, codesize, datasize, rosize, bss_size;
5447 unsigned long init_code_size, init_data_size;
5448
5449 physpages = get_num_physpages();
5450 codesize = _etext - _stext;
5451 datasize = _edata - _sdata;
5452 rosize = __end_rodata - __start_rodata;
5453 bss_size = __bss_stop - __bss_start;
5454 init_data_size = __init_end - __init_begin;
5455 init_code_size = _einittext - _sinittext;
5456
5457 /*
5458 * Detect special cases and adjust section sizes accordingly:
5459 * 1) .init.* may be embedded into .data sections
5460 * 2) .init.text.* may be out of [__init_begin, __init_end],
5461 * please refer to arch/tile/kernel/vmlinux.lds.S.
5462 * 3) .rodata.* may be embedded into .text or .data sections.
5463 */
5464#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
5465 do { \
5466 if (start <= pos && pos < end && size > adj) \
5467 size -= adj; \
5468 } while (0)
7ee3d4e8
JL
5469
5470 adj_init_size(__init_begin, __init_end, init_data_size,
5471 _sinittext, init_code_size);
5472 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5473 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5474 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5475 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5476
5477#undef adj_init_size
5478
5479 printk("Memory: %luK/%luK available "
5480 "(%luK kernel code, %luK rwdata, %luK rodata, "
5481 "%luK init, %luK bss, %luK reserved"
5482#ifdef CONFIG_HIGHMEM
5483 ", %luK highmem"
5484#endif
5485 "%s%s)\n",
5486 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5487 codesize >> 10, datasize >> 10, rosize >> 10,
5488 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5489 (physpages - totalram_pages) << (PAGE_SHIFT-10),
5490#ifdef CONFIG_HIGHMEM
5491 totalhigh_pages << (PAGE_SHIFT-10),
5492#endif
5493 str ? ", " : "", str ? str : "");
5494}
5495
0e0b864e 5496/**
88ca3b94
RD
5497 * set_dma_reserve - set the specified number of pages reserved in the first zone
5498 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
5499 *
5500 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5501 * In the DMA zone, a significant percentage may be consumed by kernel image
5502 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
5503 * function may optionally be used to account for unfreeable pages in the
5504 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5505 * smaller per-cpu batchsize.
0e0b864e
MG
5506 */
5507void __init set_dma_reserve(unsigned long new_dma_reserve)
5508{
5509 dma_reserve = new_dma_reserve;
5510}
5511
1da177e4
LT
5512void __init free_area_init(unsigned long *zones_size)
5513{
9109fb7b 5514 free_area_init_node(0, zones_size,
1da177e4
LT
5515 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5516}
1da177e4 5517
1da177e4
LT
5518static int page_alloc_cpu_notify(struct notifier_block *self,
5519 unsigned long action, void *hcpu)
5520{
5521 int cpu = (unsigned long)hcpu;
1da177e4 5522
8bb78442 5523 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 5524 lru_add_drain_cpu(cpu);
9f8f2172
CL
5525 drain_pages(cpu);
5526
5527 /*
5528 * Spill the event counters of the dead processor
5529 * into the current processors event counters.
5530 * This artificially elevates the count of the current
5531 * processor.
5532 */
f8891e5e 5533 vm_events_fold_cpu(cpu);
9f8f2172
CL
5534
5535 /*
5536 * Zero the differential counters of the dead processor
5537 * so that the vm statistics are consistent.
5538 *
5539 * This is only okay since the processor is dead and cannot
5540 * race with what we are doing.
5541 */
2bb921e5 5542 cpu_vm_stats_fold(cpu);
1da177e4
LT
5543 }
5544 return NOTIFY_OK;
5545}
1da177e4
LT
5546
5547void __init page_alloc_init(void)
5548{
5549 hotcpu_notifier(page_alloc_cpu_notify, 0);
5550}
5551
cb45b0e9
HA
5552/*
5553 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5554 * or min_free_kbytes changes.
5555 */
5556static void calculate_totalreserve_pages(void)
5557{
5558 struct pglist_data *pgdat;
5559 unsigned long reserve_pages = 0;
2f6726e5 5560 enum zone_type i, j;
cb45b0e9
HA
5561
5562 for_each_online_pgdat(pgdat) {
5563 for (i = 0; i < MAX_NR_ZONES; i++) {
5564 struct zone *zone = pgdat->node_zones + i;
5565 unsigned long max = 0;
5566
5567 /* Find valid and maximum lowmem_reserve in the zone */
5568 for (j = i; j < MAX_NR_ZONES; j++) {
5569 if (zone->lowmem_reserve[j] > max)
5570 max = zone->lowmem_reserve[j];
5571 }
5572
41858966
MG
5573 /* we treat the high watermark as reserved pages. */
5574 max += high_wmark_pages(zone);
cb45b0e9 5575
b40da049
JL
5576 if (max > zone->managed_pages)
5577 max = zone->managed_pages;
cb45b0e9 5578 reserve_pages += max;
ab8fabd4
JW
5579 /*
5580 * Lowmem reserves are not available to
5581 * GFP_HIGHUSER page cache allocations and
5582 * kswapd tries to balance zones to their high
5583 * watermark. As a result, neither should be
5584 * regarded as dirtyable memory, to prevent a
5585 * situation where reclaim has to clean pages
5586 * in order to balance the zones.
5587 */
5588 zone->dirty_balance_reserve = max;
cb45b0e9
HA
5589 }
5590 }
ab8fabd4 5591 dirty_balance_reserve = reserve_pages;
cb45b0e9
HA
5592 totalreserve_pages = reserve_pages;
5593}
5594
1da177e4
LT
5595/*
5596 * setup_per_zone_lowmem_reserve - called whenever
5597 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5598 * has a correct pages reserved value, so an adequate number of
5599 * pages are left in the zone after a successful __alloc_pages().
5600 */
5601static void setup_per_zone_lowmem_reserve(void)
5602{
5603 struct pglist_data *pgdat;
2f6726e5 5604 enum zone_type j, idx;
1da177e4 5605
ec936fc5 5606 for_each_online_pgdat(pgdat) {
1da177e4
LT
5607 for (j = 0; j < MAX_NR_ZONES; j++) {
5608 struct zone *zone = pgdat->node_zones + j;
b40da049 5609 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
5610
5611 zone->lowmem_reserve[j] = 0;
5612
2f6726e5
CL
5613 idx = j;
5614 while (idx) {
1da177e4
LT
5615 struct zone *lower_zone;
5616
2f6726e5
CL
5617 idx--;
5618
1da177e4
LT
5619 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5620 sysctl_lowmem_reserve_ratio[idx] = 1;
5621
5622 lower_zone = pgdat->node_zones + idx;
b40da049 5623 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 5624 sysctl_lowmem_reserve_ratio[idx];
b40da049 5625 managed_pages += lower_zone->managed_pages;
1da177e4
LT
5626 }
5627 }
5628 }
cb45b0e9
HA
5629
5630 /* update totalreserve_pages */
5631 calculate_totalreserve_pages();
1da177e4
LT
5632}
5633
cfd3da1e 5634static void __setup_per_zone_wmarks(void)
1da177e4
LT
5635{
5636 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5637 unsigned long lowmem_pages = 0;
5638 struct zone *zone;
5639 unsigned long flags;
5640
5641 /* Calculate total number of !ZONE_HIGHMEM pages */
5642 for_each_zone(zone) {
5643 if (!is_highmem(zone))
b40da049 5644 lowmem_pages += zone->managed_pages;
1da177e4
LT
5645 }
5646
5647 for_each_zone(zone) {
ac924c60
AM
5648 u64 tmp;
5649
1125b4e3 5650 spin_lock_irqsave(&zone->lock, flags);
b40da049 5651 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 5652 do_div(tmp, lowmem_pages);
1da177e4
LT
5653 if (is_highmem(zone)) {
5654 /*
669ed175
NP
5655 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5656 * need highmem pages, so cap pages_min to a small
5657 * value here.
5658 *
41858966 5659 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
5660 * deltas controls asynch page reclaim, and so should
5661 * not be capped for highmem.
1da177e4 5662 */
90ae8d67 5663 unsigned long min_pages;
1da177e4 5664
b40da049 5665 min_pages = zone->managed_pages / 1024;
90ae8d67 5666 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 5667 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 5668 } else {
669ed175
NP
5669 /*
5670 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
5671 * proportionate to the zone's size.
5672 */
41858966 5673 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
5674 }
5675
41858966
MG
5676 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5677 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9 5678
81c0a2bb
JW
5679 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
5680 high_wmark_pages(zone) -
5681 low_wmark_pages(zone) -
5682 zone_page_state(zone, NR_ALLOC_BATCH));
5683
56fd56b8 5684 setup_zone_migrate_reserve(zone);
1125b4e3 5685 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 5686 }
cb45b0e9
HA
5687
5688 /* update totalreserve_pages */
5689 calculate_totalreserve_pages();
1da177e4
LT
5690}
5691
cfd3da1e
MG
5692/**
5693 * setup_per_zone_wmarks - called when min_free_kbytes changes
5694 * or when memory is hot-{added|removed}
5695 *
5696 * Ensures that the watermark[min,low,high] values for each zone are set
5697 * correctly with respect to min_free_kbytes.
5698 */
5699void setup_per_zone_wmarks(void)
5700{
5701 mutex_lock(&zonelists_mutex);
5702 __setup_per_zone_wmarks();
5703 mutex_unlock(&zonelists_mutex);
5704}
5705
55a4462a 5706/*
556adecb
RR
5707 * The inactive anon list should be small enough that the VM never has to
5708 * do too much work, but large enough that each inactive page has a chance
5709 * to be referenced again before it is swapped out.
5710 *
5711 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5712 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5713 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5714 * the anonymous pages are kept on the inactive list.
5715 *
5716 * total target max
5717 * memory ratio inactive anon
5718 * -------------------------------------
5719 * 10MB 1 5MB
5720 * 100MB 1 50MB
5721 * 1GB 3 250MB
5722 * 10GB 10 0.9GB
5723 * 100GB 31 3GB
5724 * 1TB 101 10GB
5725 * 10TB 320 32GB
5726 */
1b79acc9 5727static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 5728{
96cb4df5 5729 unsigned int gb, ratio;
556adecb 5730
96cb4df5 5731 /* Zone size in gigabytes */
b40da049 5732 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 5733 if (gb)
556adecb 5734 ratio = int_sqrt(10 * gb);
96cb4df5
MK
5735 else
5736 ratio = 1;
556adecb 5737
96cb4df5
MK
5738 zone->inactive_ratio = ratio;
5739}
556adecb 5740
839a4fcc 5741static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
5742{
5743 struct zone *zone;
5744
5745 for_each_zone(zone)
5746 calculate_zone_inactive_ratio(zone);
556adecb
RR
5747}
5748
1da177e4
LT
5749/*
5750 * Initialise min_free_kbytes.
5751 *
5752 * For small machines we want it small (128k min). For large machines
5753 * we want it large (64MB max). But it is not linear, because network
5754 * bandwidth does not increase linearly with machine size. We use
5755 *
b8af2941 5756 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
5757 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5758 *
5759 * which yields
5760 *
5761 * 16MB: 512k
5762 * 32MB: 724k
5763 * 64MB: 1024k
5764 * 128MB: 1448k
5765 * 256MB: 2048k
5766 * 512MB: 2896k
5767 * 1024MB: 4096k
5768 * 2048MB: 5792k
5769 * 4096MB: 8192k
5770 * 8192MB: 11584k
5771 * 16384MB: 16384k
5772 */
1b79acc9 5773int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
5774{
5775 unsigned long lowmem_kbytes;
5f12733e 5776 int new_min_free_kbytes;
1da177e4
LT
5777
5778 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
5779 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5780
5781 if (new_min_free_kbytes > user_min_free_kbytes) {
5782 min_free_kbytes = new_min_free_kbytes;
5783 if (min_free_kbytes < 128)
5784 min_free_kbytes = 128;
5785 if (min_free_kbytes > 65536)
5786 min_free_kbytes = 65536;
5787 } else {
5788 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5789 new_min_free_kbytes, user_min_free_kbytes);
5790 }
bc75d33f 5791 setup_per_zone_wmarks();
a6cccdc3 5792 refresh_zone_stat_thresholds();
1da177e4 5793 setup_per_zone_lowmem_reserve();
556adecb 5794 setup_per_zone_inactive_ratio();
1da177e4
LT
5795 return 0;
5796}
bc75d33f 5797module_init(init_per_zone_wmark_min)
1da177e4
LT
5798
5799/*
b8af2941 5800 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
5801 * that we can call two helper functions whenever min_free_kbytes
5802 * changes.
5803 */
b8af2941 5804int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
8d65af78 5805 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5806{
da8c757b
HP
5807 int rc;
5808
5809 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5810 if (rc)
5811 return rc;
5812
5f12733e
MH
5813 if (write) {
5814 user_min_free_kbytes = min_free_kbytes;
bc75d33f 5815 setup_per_zone_wmarks();
5f12733e 5816 }
1da177e4
LT
5817 return 0;
5818}
5819
9614634f
CL
5820#ifdef CONFIG_NUMA
5821int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5822 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5823{
5824 struct zone *zone;
5825 int rc;
5826
8d65af78 5827 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5828 if (rc)
5829 return rc;
5830
5831 for_each_zone(zone)
b40da049 5832 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
5833 sysctl_min_unmapped_ratio) / 100;
5834 return 0;
5835}
0ff38490
CL
5836
5837int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5838 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5839{
5840 struct zone *zone;
5841 int rc;
5842
8d65af78 5843 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5844 if (rc)
5845 return rc;
5846
5847 for_each_zone(zone)
b40da049 5848 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
5849 sysctl_min_slab_ratio) / 100;
5850 return 0;
5851}
9614634f
CL
5852#endif
5853
1da177e4
LT
5854/*
5855 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5856 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5857 * whenever sysctl_lowmem_reserve_ratio changes.
5858 *
5859 * The reserve ratio obviously has absolutely no relation with the
41858966 5860 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5861 * if in function of the boot time zone sizes.
5862 */
5863int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5864 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5865{
8d65af78 5866 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5867 setup_per_zone_lowmem_reserve();
5868 return 0;
5869}
5870
8ad4b1fb
RS
5871/*
5872 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
5873 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5874 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 5875 */
8ad4b1fb 5876int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
8d65af78 5877 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5878{
5879 struct zone *zone;
5880 unsigned int cpu;
5881 int ret;
5882
8d65af78 5883 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
93278814 5884 if (!write || (ret < 0))
8ad4b1fb 5885 return ret;
c8e251fa
CS
5886
5887 mutex_lock(&pcp_batch_high_lock);
364df0eb 5888 for_each_populated_zone(zone) {
22a7f12b
CS
5889 unsigned long high;
5890 high = zone->managed_pages / percpu_pagelist_fraction;
5891 for_each_possible_cpu(cpu)
3664033c
CS
5892 pageset_set_high(per_cpu_ptr(zone->pageset, cpu),
5893 high);
8ad4b1fb 5894 }
c8e251fa 5895 mutex_unlock(&pcp_batch_high_lock);
8ad4b1fb
RS
5896 return 0;
5897}
5898
f034b5d4 5899int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
5900
5901#ifdef CONFIG_NUMA
5902static int __init set_hashdist(char *str)
5903{
5904 if (!str)
5905 return 0;
5906 hashdist = simple_strtoul(str, &str, 0);
5907 return 1;
5908}
5909__setup("hashdist=", set_hashdist);
5910#endif
5911
5912/*
5913 * allocate a large system hash table from bootmem
5914 * - it is assumed that the hash table must contain an exact power-of-2
5915 * quantity of entries
5916 * - limit is the number of hash buckets, not the total allocation size
5917 */
5918void *__init alloc_large_system_hash(const char *tablename,
5919 unsigned long bucketsize,
5920 unsigned long numentries,
5921 int scale,
5922 int flags,
5923 unsigned int *_hash_shift,
5924 unsigned int *_hash_mask,
31fe62b9
TB
5925 unsigned long low_limit,
5926 unsigned long high_limit)
1da177e4 5927{
31fe62b9 5928 unsigned long long max = high_limit;
1da177e4
LT
5929 unsigned long log2qty, size;
5930 void *table = NULL;
5931
5932 /* allow the kernel cmdline to have a say */
5933 if (!numentries) {
5934 /* round applicable memory size up to nearest megabyte */
04903664 5935 numentries = nr_kernel_pages;
a7e83318
JZ
5936
5937 /* It isn't necessary when PAGE_SIZE >= 1MB */
5938 if (PAGE_SHIFT < 20)
5939 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
5940
5941 /* limit to 1 bucket per 2^scale bytes of low memory */
5942 if (scale > PAGE_SHIFT)
5943 numentries >>= (scale - PAGE_SHIFT);
5944 else
5945 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
5946
5947 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
5948 if (unlikely(flags & HASH_SMALL)) {
5949 /* Makes no sense without HASH_EARLY */
5950 WARN_ON(!(flags & HASH_EARLY));
5951 if (!(numentries >> *_hash_shift)) {
5952 numentries = 1UL << *_hash_shift;
5953 BUG_ON(!numentries);
5954 }
5955 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 5956 numentries = PAGE_SIZE / bucketsize;
1da177e4 5957 }
6e692ed3 5958 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
5959
5960 /* limit allocation size to 1/16 total memory by default */
5961 if (max == 0) {
5962 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5963 do_div(max, bucketsize);
5964 }
074b8517 5965 max = min(max, 0x80000000ULL);
1da177e4 5966
31fe62b9
TB
5967 if (numentries < low_limit)
5968 numentries = low_limit;
1da177e4
LT
5969 if (numentries > max)
5970 numentries = max;
5971
f0d1b0b3 5972 log2qty = ilog2(numentries);
1da177e4
LT
5973
5974 do {
5975 size = bucketsize << log2qty;
5976 if (flags & HASH_EARLY)
6782832e 5977 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
5978 else if (hashdist)
5979 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5980 else {
1037b83b
ED
5981 /*
5982 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
5983 * some pages at the end of hash table which
5984 * alloc_pages_exact() automatically does
1037b83b 5985 */
264ef8a9 5986 if (get_order(size) < MAX_ORDER) {
a1dd268c 5987 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
5988 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5989 }
1da177e4
LT
5990 }
5991 } while (!table && size > PAGE_SIZE && --log2qty);
5992
5993 if (!table)
5994 panic("Failed to allocate %s hash table\n", tablename);
5995
f241e660 5996 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 5997 tablename,
f241e660 5998 (1UL << log2qty),
f0d1b0b3 5999 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
6000 size);
6001
6002 if (_hash_shift)
6003 *_hash_shift = log2qty;
6004 if (_hash_mask)
6005 *_hash_mask = (1 << log2qty) - 1;
6006
6007 return table;
6008}
a117e66e 6009
835c134e
MG
6010/* Return a pointer to the bitmap storing bits affecting a block of pages */
6011static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6012 unsigned long pfn)
6013{
6014#ifdef CONFIG_SPARSEMEM
6015 return __pfn_to_section(pfn)->pageblock_flags;
6016#else
6017 return zone->pageblock_flags;
6018#endif /* CONFIG_SPARSEMEM */
6019}
6020
6021static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6022{
6023#ifdef CONFIG_SPARSEMEM
6024 pfn &= (PAGES_PER_SECTION-1);
d9c23400 6025 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 6026#else
c060f943 6027 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
d9c23400 6028 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
6029#endif /* CONFIG_SPARSEMEM */
6030}
6031
6032/**
d9c23400 6033 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
6034 * @page: The page within the block of interest
6035 * @start_bitidx: The first bit of interest to retrieve
6036 * @end_bitidx: The last bit of interest
6037 * returns pageblock_bits flags
6038 */
dc4b0caf 6039unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
e58469ba
MG
6040 unsigned long end_bitidx,
6041 unsigned long mask)
835c134e
MG
6042{
6043 struct zone *zone;
6044 unsigned long *bitmap;
dc4b0caf 6045 unsigned long bitidx, word_bitidx;
e58469ba 6046 unsigned long word;
835c134e
MG
6047
6048 zone = page_zone(page);
835c134e
MG
6049 bitmap = get_pageblock_bitmap(zone, pfn);
6050 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6051 word_bitidx = bitidx / BITS_PER_LONG;
6052 bitidx &= (BITS_PER_LONG-1);
835c134e 6053
e58469ba
MG
6054 word = bitmap[word_bitidx];
6055 bitidx += end_bitidx;
6056 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
835c134e
MG
6057}
6058
6059/**
dc4b0caf 6060 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
6061 * @page: The page within the block of interest
6062 * @start_bitidx: The first bit of interest
6063 * @end_bitidx: The last bit of interest
6064 * @flags: The flags to set
6065 */
dc4b0caf
MG
6066void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6067 unsigned long pfn,
e58469ba
MG
6068 unsigned long end_bitidx,
6069 unsigned long mask)
835c134e
MG
6070{
6071 struct zone *zone;
6072 unsigned long *bitmap;
dc4b0caf 6073 unsigned long bitidx, word_bitidx;
e58469ba
MG
6074 unsigned long old_word, word;
6075
6076 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
835c134e
MG
6077
6078 zone = page_zone(page);
835c134e
MG
6079 bitmap = get_pageblock_bitmap(zone, pfn);
6080 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6081 word_bitidx = bitidx / BITS_PER_LONG;
6082 bitidx &= (BITS_PER_LONG-1);
6083
309381fe 6084 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
835c134e 6085
e58469ba
MG
6086 bitidx += end_bitidx;
6087 mask <<= (BITS_PER_LONG - bitidx - 1);
6088 flags <<= (BITS_PER_LONG - bitidx - 1);
6089
6090 word = ACCESS_ONCE(bitmap[word_bitidx]);
6091 for (;;) {
6092 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6093 if (word == old_word)
6094 break;
6095 word = old_word;
6096 }
835c134e 6097}
a5d76b54
KH
6098
6099/*
80934513
MK
6100 * This function checks whether pageblock includes unmovable pages or not.
6101 * If @count is not zero, it is okay to include less @count unmovable pages
6102 *
b8af2941 6103 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
6104 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6105 * expect this function should be exact.
a5d76b54 6106 */
b023f468
WC
6107bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6108 bool skip_hwpoisoned_pages)
49ac8255
KH
6109{
6110 unsigned long pfn, iter, found;
47118af0
MN
6111 int mt;
6112
49ac8255
KH
6113 /*
6114 * For avoiding noise data, lru_add_drain_all() should be called
80934513 6115 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
6116 */
6117 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 6118 return false;
47118af0
MN
6119 mt = get_pageblock_migratetype(page);
6120 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 6121 return false;
49ac8255
KH
6122
6123 pfn = page_to_pfn(page);
6124 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6125 unsigned long check = pfn + iter;
6126
29723fcc 6127 if (!pfn_valid_within(check))
49ac8255 6128 continue;
29723fcc 6129
49ac8255 6130 page = pfn_to_page(check);
c8721bbb
NH
6131
6132 /*
6133 * Hugepages are not in LRU lists, but they're movable.
6134 * We need not scan over tail pages bacause we don't
6135 * handle each tail page individually in migration.
6136 */
6137 if (PageHuge(page)) {
6138 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6139 continue;
6140 }
6141
97d255c8
MK
6142 /*
6143 * We can't use page_count without pin a page
6144 * because another CPU can free compound page.
6145 * This check already skips compound tails of THP
6146 * because their page->_count is zero at all time.
6147 */
6148 if (!atomic_read(&page->_count)) {
49ac8255
KH
6149 if (PageBuddy(page))
6150 iter += (1 << page_order(page)) - 1;
6151 continue;
6152 }
97d255c8 6153
b023f468
WC
6154 /*
6155 * The HWPoisoned page may be not in buddy system, and
6156 * page_count() is not 0.
6157 */
6158 if (skip_hwpoisoned_pages && PageHWPoison(page))
6159 continue;
6160
49ac8255
KH
6161 if (!PageLRU(page))
6162 found++;
6163 /*
6164 * If there are RECLAIMABLE pages, we need to check it.
6165 * But now, memory offline itself doesn't call shrink_slab()
6166 * and it still to be fixed.
6167 */
6168 /*
6169 * If the page is not RAM, page_count()should be 0.
6170 * we don't need more check. This is an _used_ not-movable page.
6171 *
6172 * The problematic thing here is PG_reserved pages. PG_reserved
6173 * is set to both of a memory hole page and a _used_ kernel
6174 * page at boot.
6175 */
6176 if (found > count)
80934513 6177 return true;
49ac8255 6178 }
80934513 6179 return false;
49ac8255
KH
6180}
6181
6182bool is_pageblock_removable_nolock(struct page *page)
6183{
656a0706
MH
6184 struct zone *zone;
6185 unsigned long pfn;
687875fb
MH
6186
6187 /*
6188 * We have to be careful here because we are iterating over memory
6189 * sections which are not zone aware so we might end up outside of
6190 * the zone but still within the section.
656a0706
MH
6191 * We have to take care about the node as well. If the node is offline
6192 * its NODE_DATA will be NULL - see page_zone.
687875fb 6193 */
656a0706
MH
6194 if (!node_online(page_to_nid(page)))
6195 return false;
6196
6197 zone = page_zone(page);
6198 pfn = page_to_pfn(page);
108bcc96 6199 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
6200 return false;
6201
b023f468 6202 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 6203}
0c0e6195 6204
041d3a8c
MN
6205#ifdef CONFIG_CMA
6206
6207static unsigned long pfn_max_align_down(unsigned long pfn)
6208{
6209 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6210 pageblock_nr_pages) - 1);
6211}
6212
6213static unsigned long pfn_max_align_up(unsigned long pfn)
6214{
6215 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6216 pageblock_nr_pages));
6217}
6218
041d3a8c 6219/* [start, end) must belong to a single zone. */
bb13ffeb
MG
6220static int __alloc_contig_migrate_range(struct compact_control *cc,
6221 unsigned long start, unsigned long end)
041d3a8c
MN
6222{
6223 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 6224 unsigned long nr_reclaimed;
041d3a8c
MN
6225 unsigned long pfn = start;
6226 unsigned int tries = 0;
6227 int ret = 0;
6228
be49a6e1 6229 migrate_prep();
041d3a8c 6230
bb13ffeb 6231 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
6232 if (fatal_signal_pending(current)) {
6233 ret = -EINTR;
6234 break;
6235 }
6236
bb13ffeb
MG
6237 if (list_empty(&cc->migratepages)) {
6238 cc->nr_migratepages = 0;
6239 pfn = isolate_migratepages_range(cc->zone, cc,
e46a2879 6240 pfn, end, true);
041d3a8c
MN
6241 if (!pfn) {
6242 ret = -EINTR;
6243 break;
6244 }
6245 tries = 0;
6246 } else if (++tries == 5) {
6247 ret = ret < 0 ? ret : -EBUSY;
6248 break;
6249 }
6250
beb51eaa
MK
6251 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6252 &cc->migratepages);
6253 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 6254
9c620e2b 6255 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 6256 NULL, 0, cc->mode, MR_CMA);
041d3a8c 6257 }
2a6f5124
SP
6258 if (ret < 0) {
6259 putback_movable_pages(&cc->migratepages);
6260 return ret;
6261 }
6262 return 0;
041d3a8c
MN
6263}
6264
6265/**
6266 * alloc_contig_range() -- tries to allocate given range of pages
6267 * @start: start PFN to allocate
6268 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
6269 * @migratetype: migratetype of the underlaying pageblocks (either
6270 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6271 * in range must have the same migratetype and it must
6272 * be either of the two.
041d3a8c
MN
6273 *
6274 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6275 * aligned, however it's the caller's responsibility to guarantee that
6276 * we are the only thread that changes migrate type of pageblocks the
6277 * pages fall in.
6278 *
6279 * The PFN range must belong to a single zone.
6280 *
6281 * Returns zero on success or negative error code. On success all
6282 * pages which PFN is in [start, end) are allocated for the caller and
6283 * need to be freed with free_contig_range().
6284 */
0815f3d8
MN
6285int alloc_contig_range(unsigned long start, unsigned long end,
6286 unsigned migratetype)
041d3a8c 6287{
041d3a8c
MN
6288 unsigned long outer_start, outer_end;
6289 int ret = 0, order;
6290
bb13ffeb
MG
6291 struct compact_control cc = {
6292 .nr_migratepages = 0,
6293 .order = -1,
6294 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 6295 .mode = MIGRATE_SYNC,
bb13ffeb
MG
6296 .ignore_skip_hint = true,
6297 };
6298 INIT_LIST_HEAD(&cc.migratepages);
6299
041d3a8c
MN
6300 /*
6301 * What we do here is we mark all pageblocks in range as
6302 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6303 * have different sizes, and due to the way page allocator
6304 * work, we align the range to biggest of the two pages so
6305 * that page allocator won't try to merge buddies from
6306 * different pageblocks and change MIGRATE_ISOLATE to some
6307 * other migration type.
6308 *
6309 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6310 * migrate the pages from an unaligned range (ie. pages that
6311 * we are interested in). This will put all the pages in
6312 * range back to page allocator as MIGRATE_ISOLATE.
6313 *
6314 * When this is done, we take the pages in range from page
6315 * allocator removing them from the buddy system. This way
6316 * page allocator will never consider using them.
6317 *
6318 * This lets us mark the pageblocks back as
6319 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6320 * aligned range but not in the unaligned, original range are
6321 * put back to page allocator so that buddy can use them.
6322 */
6323
6324 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
6325 pfn_max_align_up(end), migratetype,
6326 false);
041d3a8c 6327 if (ret)
86a595f9 6328 return ret;
041d3a8c 6329
bb13ffeb 6330 ret = __alloc_contig_migrate_range(&cc, start, end);
041d3a8c
MN
6331 if (ret)
6332 goto done;
6333
6334 /*
6335 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6336 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6337 * more, all pages in [start, end) are free in page allocator.
6338 * What we are going to do is to allocate all pages from
6339 * [start, end) (that is remove them from page allocator).
6340 *
6341 * The only problem is that pages at the beginning and at the
6342 * end of interesting range may be not aligned with pages that
6343 * page allocator holds, ie. they can be part of higher order
6344 * pages. Because of this, we reserve the bigger range and
6345 * once this is done free the pages we are not interested in.
6346 *
6347 * We don't have to hold zone->lock here because the pages are
6348 * isolated thus they won't get removed from buddy.
6349 */
6350
6351 lru_add_drain_all();
6352 drain_all_pages();
6353
6354 order = 0;
6355 outer_start = start;
6356 while (!PageBuddy(pfn_to_page(outer_start))) {
6357 if (++order >= MAX_ORDER) {
6358 ret = -EBUSY;
6359 goto done;
6360 }
6361 outer_start &= ~0UL << order;
6362 }
6363
6364 /* Make sure the range is really isolated. */
b023f468 6365 if (test_pages_isolated(outer_start, end, false)) {
041d3a8c
MN
6366 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6367 outer_start, end);
6368 ret = -EBUSY;
6369 goto done;
6370 }
6371
49f223a9
MS
6372
6373 /* Grab isolated pages from freelists. */
bb13ffeb 6374 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
6375 if (!outer_end) {
6376 ret = -EBUSY;
6377 goto done;
6378 }
6379
6380 /* Free head and tail (if any) */
6381 if (start != outer_start)
6382 free_contig_range(outer_start, start - outer_start);
6383 if (end != outer_end)
6384 free_contig_range(end, outer_end - end);
6385
6386done:
6387 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 6388 pfn_max_align_up(end), migratetype);
041d3a8c
MN
6389 return ret;
6390}
6391
6392void free_contig_range(unsigned long pfn, unsigned nr_pages)
6393{
bcc2b02f
MS
6394 unsigned int count = 0;
6395
6396 for (; nr_pages--; pfn++) {
6397 struct page *page = pfn_to_page(pfn);
6398
6399 count += page_count(page) != 1;
6400 __free_page(page);
6401 }
6402 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
6403}
6404#endif
6405
4ed7e022 6406#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
6407/*
6408 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6409 * page high values need to be recalulated.
6410 */
4ed7e022
JL
6411void __meminit zone_pcp_update(struct zone *zone)
6412{
0a647f38 6413 unsigned cpu;
c8e251fa 6414 mutex_lock(&pcp_batch_high_lock);
0a647f38 6415 for_each_possible_cpu(cpu)
169f6c19
CS
6416 pageset_set_high_and_batch(zone,
6417 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 6418 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
6419}
6420#endif
6421
340175b7
JL
6422void zone_pcp_reset(struct zone *zone)
6423{
6424 unsigned long flags;
5a883813
MK
6425 int cpu;
6426 struct per_cpu_pageset *pset;
340175b7
JL
6427
6428 /* avoid races with drain_pages() */
6429 local_irq_save(flags);
6430 if (zone->pageset != &boot_pageset) {
5a883813
MK
6431 for_each_online_cpu(cpu) {
6432 pset = per_cpu_ptr(zone->pageset, cpu);
6433 drain_zonestat(zone, pset);
6434 }
340175b7
JL
6435 free_percpu(zone->pageset);
6436 zone->pageset = &boot_pageset;
6437 }
6438 local_irq_restore(flags);
6439}
6440
6dcd73d7 6441#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195
KH
6442/*
6443 * All pages in the range must be isolated before calling this.
6444 */
6445void
6446__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6447{
6448 struct page *page;
6449 struct zone *zone;
7aeb09f9 6450 unsigned int order, i;
0c0e6195
KH
6451 unsigned long pfn;
6452 unsigned long flags;
6453 /* find the first valid pfn */
6454 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6455 if (pfn_valid(pfn))
6456 break;
6457 if (pfn == end_pfn)
6458 return;
6459 zone = page_zone(pfn_to_page(pfn));
6460 spin_lock_irqsave(&zone->lock, flags);
6461 pfn = start_pfn;
6462 while (pfn < end_pfn) {
6463 if (!pfn_valid(pfn)) {
6464 pfn++;
6465 continue;
6466 }
6467 page = pfn_to_page(pfn);
b023f468
WC
6468 /*
6469 * The HWPoisoned page may be not in buddy system, and
6470 * page_count() is not 0.
6471 */
6472 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6473 pfn++;
6474 SetPageReserved(page);
6475 continue;
6476 }
6477
0c0e6195
KH
6478 BUG_ON(page_count(page));
6479 BUG_ON(!PageBuddy(page));
6480 order = page_order(page);
6481#ifdef CONFIG_DEBUG_VM
6482 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6483 pfn, 1 << order, end_pfn);
6484#endif
6485 list_del(&page->lru);
6486 rmv_page_order(page);
6487 zone->free_area[order].nr_free--;
0c0e6195
KH
6488 for (i = 0; i < (1 << order); i++)
6489 SetPageReserved((page+i));
6490 pfn += (1 << order);
6491 }
6492 spin_unlock_irqrestore(&zone->lock, flags);
6493}
6494#endif
8d22ba1b
WF
6495
6496#ifdef CONFIG_MEMORY_FAILURE
6497bool is_free_buddy_page(struct page *page)
6498{
6499 struct zone *zone = page_zone(page);
6500 unsigned long pfn = page_to_pfn(page);
6501 unsigned long flags;
7aeb09f9 6502 unsigned int order;
8d22ba1b
WF
6503
6504 spin_lock_irqsave(&zone->lock, flags);
6505 for (order = 0; order < MAX_ORDER; order++) {
6506 struct page *page_head = page - (pfn & ((1 << order) - 1));
6507
6508 if (PageBuddy(page_head) && page_order(page_head) >= order)
6509 break;
6510 }
6511 spin_unlock_irqrestore(&zone->lock, flags);
6512
6513 return order < MAX_ORDER;
6514}
6515#endif
718a3821 6516
51300cef 6517static const struct trace_print_flags pageflag_names[] = {
718a3821
WF
6518 {1UL << PG_locked, "locked" },
6519 {1UL << PG_error, "error" },
6520 {1UL << PG_referenced, "referenced" },
6521 {1UL << PG_uptodate, "uptodate" },
6522 {1UL << PG_dirty, "dirty" },
6523 {1UL << PG_lru, "lru" },
6524 {1UL << PG_active, "active" },
6525 {1UL << PG_slab, "slab" },
6526 {1UL << PG_owner_priv_1, "owner_priv_1" },
6527 {1UL << PG_arch_1, "arch_1" },
6528 {1UL << PG_reserved, "reserved" },
6529 {1UL << PG_private, "private" },
6530 {1UL << PG_private_2, "private_2" },
6531 {1UL << PG_writeback, "writeback" },
6532#ifdef CONFIG_PAGEFLAGS_EXTENDED
6533 {1UL << PG_head, "head" },
6534 {1UL << PG_tail, "tail" },
6535#else
6536 {1UL << PG_compound, "compound" },
6537#endif
6538 {1UL << PG_swapcache, "swapcache" },
6539 {1UL << PG_mappedtodisk, "mappedtodisk" },
6540 {1UL << PG_reclaim, "reclaim" },
718a3821
WF
6541 {1UL << PG_swapbacked, "swapbacked" },
6542 {1UL << PG_unevictable, "unevictable" },
6543#ifdef CONFIG_MMU
6544 {1UL << PG_mlocked, "mlocked" },
6545#endif
6546#ifdef CONFIG_ARCH_USES_PG_UNCACHED
6547 {1UL << PG_uncached, "uncached" },
6548#endif
6549#ifdef CONFIG_MEMORY_FAILURE
6550 {1UL << PG_hwpoison, "hwpoison" },
be9cd873
GS
6551#endif
6552#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6553 {1UL << PG_compound_lock, "compound_lock" },
718a3821 6554#endif
718a3821
WF
6555};
6556
6557static void dump_page_flags(unsigned long flags)
6558{
6559 const char *delim = "";
6560 unsigned long mask;
6561 int i;
6562
51300cef 6563 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
acc50c11 6564
718a3821
WF
6565 printk(KERN_ALERT "page flags: %#lx(", flags);
6566
6567 /* remove zone id */
6568 flags &= (1UL << NR_PAGEFLAGS) - 1;
6569
51300cef 6570 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
718a3821
WF
6571
6572 mask = pageflag_names[i].mask;
6573 if ((flags & mask) != mask)
6574 continue;
6575
6576 flags &= ~mask;
6577 printk("%s%s", delim, pageflag_names[i].name);
6578 delim = "|";
6579 }
6580
6581 /* check for left over flags */
6582 if (flags)
6583 printk("%s%#lx", delim, flags);
6584
6585 printk(")\n");
6586}
6587
d230dec1
KS
6588void dump_page_badflags(struct page *page, const char *reason,
6589 unsigned long badflags)
718a3821
WF
6590{
6591 printk(KERN_ALERT
6592 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
4e9f64c4 6593 page, atomic_read(&page->_count), page_mapcount(page),
718a3821
WF
6594 page->mapping, page->index);
6595 dump_page_flags(page->flags);
f0b791a3
DH
6596 if (reason)
6597 pr_alert("page dumped because: %s\n", reason);
6598 if (page->flags & badflags) {
6599 pr_alert("bad because of flags:\n");
6600 dump_page_flags(page->flags & badflags);
6601 }
f212ad7c 6602 mem_cgroup_print_bad_page(page);
718a3821 6603}
f0b791a3 6604
d230dec1 6605void dump_page(struct page *page, const char *reason)
f0b791a3
DH
6606{
6607 dump_page_badflags(page, reason, 0);
6608}
ed12d845 6609EXPORT_SYMBOL(dump_page);