]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/page_alloc.c
mm, compaction: add per-zone migration pfn cache for async compaction
[mirror_ubuntu-zesty-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
52d4b9ac 51#include <linux/page_cgroup.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
56de7263 54#include <linux/compaction.h>
0d3d062a 55#include <trace/events/kmem.h>
718a3821 56#include <linux/ftrace_event.h>
f212ad7c 57#include <linux/memcontrol.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
c0a32fc5 61#include <linux/page-debug-flags.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
1da177e4 64
7ee3d4e8 65#include <asm/sections.h>
1da177e4 66#include <asm/tlbflush.h>
ac924c60 67#include <asm/div64.h>
1da177e4
LT
68#include "internal.h"
69
c8e251fa
CS
70/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
71static DEFINE_MUTEX(pcp_batch_high_lock);
72
72812019
LS
73#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
74DEFINE_PER_CPU(int, numa_node);
75EXPORT_PER_CPU_SYMBOL(numa_node);
76#endif
77
7aac7898
LS
78#ifdef CONFIG_HAVE_MEMORYLESS_NODES
79/*
80 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
81 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
82 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
83 * defined in <linux/topology.h>.
84 */
85DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
86EXPORT_PER_CPU_SYMBOL(_numa_mem_);
87#endif
88
1da177e4 89/*
13808910 90 * Array of node states.
1da177e4 91 */
13808910
CL
92nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
93 [N_POSSIBLE] = NODE_MASK_ALL,
94 [N_ONLINE] = { { [0] = 1UL } },
95#ifndef CONFIG_NUMA
96 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
97#ifdef CONFIG_HIGHMEM
98 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
99#endif
100#ifdef CONFIG_MOVABLE_NODE
101 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
102#endif
103 [N_CPU] = { { [0] = 1UL } },
104#endif /* NUMA */
105};
106EXPORT_SYMBOL(node_states);
107
c3d5f5f0
JL
108/* Protect totalram_pages and zone->managed_pages */
109static DEFINE_SPINLOCK(managed_page_count_lock);
110
6c231b7b 111unsigned long totalram_pages __read_mostly;
cb45b0e9 112unsigned long totalreserve_pages __read_mostly;
ab8fabd4
JW
113/*
114 * When calculating the number of globally allowed dirty pages, there
115 * is a certain number of per-zone reserves that should not be
116 * considered dirtyable memory. This is the sum of those reserves
117 * over all existing zones that contribute dirtyable memory.
118 */
119unsigned long dirty_balance_reserve __read_mostly;
120
1b76b02f 121int percpu_pagelist_fraction;
dcce284a 122gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 123
452aa699
RW
124#ifdef CONFIG_PM_SLEEP
125/*
126 * The following functions are used by the suspend/hibernate code to temporarily
127 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
128 * while devices are suspended. To avoid races with the suspend/hibernate code,
129 * they should always be called with pm_mutex held (gfp_allowed_mask also should
130 * only be modified with pm_mutex held, unless the suspend/hibernate code is
131 * guaranteed not to run in parallel with that modification).
132 */
c9e664f1
RW
133
134static gfp_t saved_gfp_mask;
135
136void pm_restore_gfp_mask(void)
452aa699
RW
137{
138 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
139 if (saved_gfp_mask) {
140 gfp_allowed_mask = saved_gfp_mask;
141 saved_gfp_mask = 0;
142 }
452aa699
RW
143}
144
c9e664f1 145void pm_restrict_gfp_mask(void)
452aa699 146{
452aa699 147 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
148 WARN_ON(saved_gfp_mask);
149 saved_gfp_mask = gfp_allowed_mask;
150 gfp_allowed_mask &= ~GFP_IOFS;
452aa699 151}
f90ac398
MG
152
153bool pm_suspended_storage(void)
154{
155 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
156 return false;
157 return true;
158}
452aa699
RW
159#endif /* CONFIG_PM_SLEEP */
160
d9c23400
MG
161#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
162int pageblock_order __read_mostly;
163#endif
164
d98c7a09 165static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 166
1da177e4
LT
167/*
168 * results with 256, 32 in the lowmem_reserve sysctl:
169 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
170 * 1G machine -> (16M dma, 784M normal, 224M high)
171 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
172 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
173 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
174 *
175 * TBD: should special case ZONE_DMA32 machines here - in those we normally
176 * don't need any ZONE_NORMAL reservation
1da177e4 177 */
2f1b6248 178int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 179#ifdef CONFIG_ZONE_DMA
2f1b6248 180 256,
4b51d669 181#endif
fb0e7942 182#ifdef CONFIG_ZONE_DMA32
2f1b6248 183 256,
fb0e7942 184#endif
e53ef38d 185#ifdef CONFIG_HIGHMEM
2a1e274a 186 32,
e53ef38d 187#endif
2a1e274a 188 32,
2f1b6248 189};
1da177e4
LT
190
191EXPORT_SYMBOL(totalram_pages);
1da177e4 192
15ad7cdc 193static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 194#ifdef CONFIG_ZONE_DMA
2f1b6248 195 "DMA",
4b51d669 196#endif
fb0e7942 197#ifdef CONFIG_ZONE_DMA32
2f1b6248 198 "DMA32",
fb0e7942 199#endif
2f1b6248 200 "Normal",
e53ef38d 201#ifdef CONFIG_HIGHMEM
2a1e274a 202 "HighMem",
e53ef38d 203#endif
2a1e274a 204 "Movable",
2f1b6248
CL
205};
206
1da177e4 207int min_free_kbytes = 1024;
42aa83cb 208int user_min_free_kbytes = -1;
1da177e4 209
2c85f51d
JB
210static unsigned long __meminitdata nr_kernel_pages;
211static unsigned long __meminitdata nr_all_pages;
a3142c8e 212static unsigned long __meminitdata dma_reserve;
1da177e4 213
0ee332c1
TH
214#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
215static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
216static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
217static unsigned long __initdata required_kernelcore;
218static unsigned long __initdata required_movablecore;
219static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
220
221/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
222int movable_zone;
223EXPORT_SYMBOL(movable_zone);
224#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 225
418508c1
MS
226#if MAX_NUMNODES > 1
227int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 228int nr_online_nodes __read_mostly = 1;
418508c1 229EXPORT_SYMBOL(nr_node_ids);
62bc62a8 230EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
231#endif
232
9ef9acb0
MG
233int page_group_by_mobility_disabled __read_mostly;
234
ee6f509c 235void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 236{
5d0f3f72
KM
237 if (unlikely(page_group_by_mobility_disabled &&
238 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
239 migratetype = MIGRATE_UNMOVABLE;
240
b2a0ac88
MG
241 set_pageblock_flags_group(page, (unsigned long)migratetype,
242 PB_migrate, PB_migrate_end);
243}
244
7f33d49a
RW
245bool oom_killer_disabled __read_mostly;
246
13e7444b 247#ifdef CONFIG_DEBUG_VM
c6a57e19 248static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 249{
bdc8cb98
DH
250 int ret = 0;
251 unsigned seq;
252 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 253 unsigned long sp, start_pfn;
c6a57e19 254
bdc8cb98
DH
255 do {
256 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
257 start_pfn = zone->zone_start_pfn;
258 sp = zone->spanned_pages;
108bcc96 259 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
260 ret = 1;
261 } while (zone_span_seqretry(zone, seq));
262
b5e6a5a2 263 if (ret)
613813e8
DH
264 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
265 pfn, zone_to_nid(zone), zone->name,
266 start_pfn, start_pfn + sp);
b5e6a5a2 267
bdc8cb98 268 return ret;
c6a57e19
DH
269}
270
271static int page_is_consistent(struct zone *zone, struct page *page)
272{
14e07298 273 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 274 return 0;
1da177e4 275 if (zone != page_zone(page))
c6a57e19
DH
276 return 0;
277
278 return 1;
279}
280/*
281 * Temporary debugging check for pages not lying within a given zone.
282 */
283static int bad_range(struct zone *zone, struct page *page)
284{
285 if (page_outside_zone_boundaries(zone, page))
1da177e4 286 return 1;
c6a57e19
DH
287 if (!page_is_consistent(zone, page))
288 return 1;
289
1da177e4
LT
290 return 0;
291}
13e7444b
NP
292#else
293static inline int bad_range(struct zone *zone, struct page *page)
294{
295 return 0;
296}
297#endif
298
d230dec1
KS
299static void bad_page(struct page *page, const char *reason,
300 unsigned long bad_flags)
1da177e4 301{
d936cf9b
HD
302 static unsigned long resume;
303 static unsigned long nr_shown;
304 static unsigned long nr_unshown;
305
2a7684a2
WF
306 /* Don't complain about poisoned pages */
307 if (PageHWPoison(page)) {
22b751c3 308 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
309 return;
310 }
311
d936cf9b
HD
312 /*
313 * Allow a burst of 60 reports, then keep quiet for that minute;
314 * or allow a steady drip of one report per second.
315 */
316 if (nr_shown == 60) {
317 if (time_before(jiffies, resume)) {
318 nr_unshown++;
319 goto out;
320 }
321 if (nr_unshown) {
1e9e6365
HD
322 printk(KERN_ALERT
323 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
324 nr_unshown);
325 nr_unshown = 0;
326 }
327 nr_shown = 0;
328 }
329 if (nr_shown++ == 0)
330 resume = jiffies + 60 * HZ;
331
1e9e6365 332 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 333 current->comm, page_to_pfn(page));
f0b791a3 334 dump_page_badflags(page, reason, bad_flags);
3dc14741 335
4f31888c 336 print_modules();
1da177e4 337 dump_stack();
d936cf9b 338out:
8cc3b392 339 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 340 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 341 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
342}
343
1da177e4
LT
344/*
345 * Higher-order pages are called "compound pages". They are structured thusly:
346 *
347 * The first PAGE_SIZE page is called the "head page".
348 *
349 * The remaining PAGE_SIZE pages are called "tail pages".
350 *
6416b9fa
WSH
351 * All pages have PG_compound set. All tail pages have their ->first_page
352 * pointing at the head page.
1da177e4 353 *
41d78ba5
HD
354 * The first tail page's ->lru.next holds the address of the compound page's
355 * put_page() function. Its ->lru.prev holds the order of allocation.
356 * This usage means that zero-order pages may not be compound.
1da177e4 357 */
d98c7a09
HD
358
359static void free_compound_page(struct page *page)
360{
d85f3385 361 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
362}
363
01ad1c08 364void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
365{
366 int i;
367 int nr_pages = 1 << order;
368
369 set_compound_page_dtor(page, free_compound_page);
370 set_compound_order(page, order);
371 __SetPageHead(page);
372 for (i = 1; i < nr_pages; i++) {
373 struct page *p = page + i;
58a84aa9 374 set_page_count(p, 0);
18229df5 375 p->first_page = page;
668f9abb
DR
376 /* Make sure p->first_page is always valid for PageTail() */
377 smp_wmb();
378 __SetPageTail(p);
18229df5
AW
379 }
380}
381
59ff4216 382/* update __split_huge_page_refcount if you change this function */
8cc3b392 383static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
384{
385 int i;
386 int nr_pages = 1 << order;
8cc3b392 387 int bad = 0;
1da177e4 388
0bb2c763 389 if (unlikely(compound_order(page) != order)) {
f0b791a3 390 bad_page(page, "wrong compound order", 0);
8cc3b392
HD
391 bad++;
392 }
1da177e4 393
6d777953 394 __ClearPageHead(page);
8cc3b392 395
18229df5
AW
396 for (i = 1; i < nr_pages; i++) {
397 struct page *p = page + i;
1da177e4 398
f0b791a3
DH
399 if (unlikely(!PageTail(p))) {
400 bad_page(page, "PageTail not set", 0);
401 bad++;
402 } else if (unlikely(p->first_page != page)) {
403 bad_page(page, "first_page not consistent", 0);
8cc3b392
HD
404 bad++;
405 }
d85f3385 406 __ClearPageTail(p);
1da177e4 407 }
8cc3b392
HD
408
409 return bad;
1da177e4 410}
1da177e4 411
17cf4406
NP
412static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
413{
414 int i;
415
6626c5d5
AM
416 /*
417 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
418 * and __GFP_HIGHMEM from hard or soft interrupt context.
419 */
725d704e 420 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
421 for (i = 0; i < (1 << order); i++)
422 clear_highpage(page + i);
423}
424
c0a32fc5
SG
425#ifdef CONFIG_DEBUG_PAGEALLOC
426unsigned int _debug_guardpage_minorder;
427
428static int __init debug_guardpage_minorder_setup(char *buf)
429{
430 unsigned long res;
431
432 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
433 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
434 return 0;
435 }
436 _debug_guardpage_minorder = res;
437 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
438 return 0;
439}
440__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
441
442static inline void set_page_guard_flag(struct page *page)
443{
444 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
445}
446
447static inline void clear_page_guard_flag(struct page *page)
448{
449 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
450}
451#else
452static inline void set_page_guard_flag(struct page *page) { }
453static inline void clear_page_guard_flag(struct page *page) { }
454#endif
455
6aa3001b
AM
456static inline void set_page_order(struct page *page, int order)
457{
4c21e2f2 458 set_page_private(page, order);
676165a8 459 __SetPageBuddy(page);
1da177e4
LT
460}
461
462static inline void rmv_page_order(struct page *page)
463{
676165a8 464 __ClearPageBuddy(page);
4c21e2f2 465 set_page_private(page, 0);
1da177e4
LT
466}
467
468/*
469 * Locate the struct page for both the matching buddy in our
470 * pair (buddy1) and the combined O(n+1) page they form (page).
471 *
472 * 1) Any buddy B1 will have an order O twin B2 which satisfies
473 * the following equation:
474 * B2 = B1 ^ (1 << O)
475 * For example, if the starting buddy (buddy2) is #8 its order
476 * 1 buddy is #10:
477 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
478 *
479 * 2) Any buddy B will have an order O+1 parent P which
480 * satisfies the following equation:
481 * P = B & ~(1 << O)
482 *
d6e05edc 483 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4 484 */
1da177e4 485static inline unsigned long
43506fad 486__find_buddy_index(unsigned long page_idx, unsigned int order)
1da177e4 487{
43506fad 488 return page_idx ^ (1 << order);
1da177e4
LT
489}
490
491/*
492 * This function checks whether a page is free && is the buddy
493 * we can do coalesce a page and its buddy if
13e7444b 494 * (a) the buddy is not in a hole &&
676165a8 495 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
496 * (c) a page and its buddy have the same order &&
497 * (d) a page and its buddy are in the same zone.
676165a8 498 *
cf6fe945
WSH
499 * For recording whether a page is in the buddy system, we set ->_mapcount
500 * PAGE_BUDDY_MAPCOUNT_VALUE.
501 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
502 * serialized by zone->lock.
1da177e4 503 *
676165a8 504 * For recording page's order, we use page_private(page).
1da177e4 505 */
cb2b95e1
AW
506static inline int page_is_buddy(struct page *page, struct page *buddy,
507 int order)
1da177e4 508{
14e07298 509 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 510 return 0;
13e7444b 511
cb2b95e1
AW
512 if (page_zone_id(page) != page_zone_id(buddy))
513 return 0;
514
c0a32fc5 515 if (page_is_guard(buddy) && page_order(buddy) == order) {
309381fe 516 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
c0a32fc5
SG
517 return 1;
518 }
519
cb2b95e1 520 if (PageBuddy(buddy) && page_order(buddy) == order) {
309381fe 521 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
6aa3001b 522 return 1;
676165a8 523 }
6aa3001b 524 return 0;
1da177e4
LT
525}
526
527/*
528 * Freeing function for a buddy system allocator.
529 *
530 * The concept of a buddy system is to maintain direct-mapped table
531 * (containing bit values) for memory blocks of various "orders".
532 * The bottom level table contains the map for the smallest allocatable
533 * units of memory (here, pages), and each level above it describes
534 * pairs of units from the levels below, hence, "buddies".
535 * At a high level, all that happens here is marking the table entry
536 * at the bottom level available, and propagating the changes upward
537 * as necessary, plus some accounting needed to play nicely with other
538 * parts of the VM system.
539 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
540 * free pages of length of (1 << order) and marked with _mapcount
541 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
542 * field.
1da177e4 543 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
544 * other. That is, if we allocate a small block, and both were
545 * free, the remainder of the region must be split into blocks.
1da177e4 546 * If a block is freed, and its buddy is also free, then this
5f63b720 547 * triggers coalescing into a block of larger size.
1da177e4 548 *
6d49e352 549 * -- nyc
1da177e4
LT
550 */
551
48db57f8 552static inline void __free_one_page(struct page *page,
ed0ae21d
MG
553 struct zone *zone, unsigned int order,
554 int migratetype)
1da177e4
LT
555{
556 unsigned long page_idx;
6dda9d55 557 unsigned long combined_idx;
43506fad 558 unsigned long uninitialized_var(buddy_idx);
6dda9d55 559 struct page *buddy;
1da177e4 560
d29bb978
CS
561 VM_BUG_ON(!zone_is_initialized(zone));
562
224abf92 563 if (unlikely(PageCompound(page)))
8cc3b392
HD
564 if (unlikely(destroy_compound_page(page, order)))
565 return;
1da177e4 566
ed0ae21d
MG
567 VM_BUG_ON(migratetype == -1);
568
1da177e4
LT
569 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
570
309381fe
SL
571 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
572 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 573
1da177e4 574 while (order < MAX_ORDER-1) {
43506fad
KC
575 buddy_idx = __find_buddy_index(page_idx, order);
576 buddy = page + (buddy_idx - page_idx);
cb2b95e1 577 if (!page_is_buddy(page, buddy, order))
3c82d0ce 578 break;
c0a32fc5
SG
579 /*
580 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
581 * merge with it and move up one order.
582 */
583 if (page_is_guard(buddy)) {
584 clear_page_guard_flag(buddy);
585 set_page_private(page, 0);
d1ce749a
BZ
586 __mod_zone_freepage_state(zone, 1 << order,
587 migratetype);
c0a32fc5
SG
588 } else {
589 list_del(&buddy->lru);
590 zone->free_area[order].nr_free--;
591 rmv_page_order(buddy);
592 }
43506fad 593 combined_idx = buddy_idx & page_idx;
1da177e4
LT
594 page = page + (combined_idx - page_idx);
595 page_idx = combined_idx;
596 order++;
597 }
598 set_page_order(page, order);
6dda9d55
CZ
599
600 /*
601 * If this is not the largest possible page, check if the buddy
602 * of the next-highest order is free. If it is, it's possible
603 * that pages are being freed that will coalesce soon. In case,
604 * that is happening, add the free page to the tail of the list
605 * so it's less likely to be used soon and more likely to be merged
606 * as a higher order page
607 */
b7f50cfa 608 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 609 struct page *higher_page, *higher_buddy;
43506fad
KC
610 combined_idx = buddy_idx & page_idx;
611 higher_page = page + (combined_idx - page_idx);
612 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 613 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
614 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
615 list_add_tail(&page->lru,
616 &zone->free_area[order].free_list[migratetype]);
617 goto out;
618 }
619 }
620
621 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
622out:
1da177e4
LT
623 zone->free_area[order].nr_free++;
624}
625
224abf92 626static inline int free_pages_check(struct page *page)
1da177e4 627{
d230dec1 628 const char *bad_reason = NULL;
f0b791a3
DH
629 unsigned long bad_flags = 0;
630
631 if (unlikely(page_mapcount(page)))
632 bad_reason = "nonzero mapcount";
633 if (unlikely(page->mapping != NULL))
634 bad_reason = "non-NULL mapping";
635 if (unlikely(atomic_read(&page->_count) != 0))
636 bad_reason = "nonzero _count";
637 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
638 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
639 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
640 }
641 if (unlikely(mem_cgroup_bad_page_check(page)))
642 bad_reason = "cgroup check failed";
643 if (unlikely(bad_reason)) {
644 bad_page(page, bad_reason, bad_flags);
79f4b7bf 645 return 1;
8cc3b392 646 }
90572890 647 page_cpupid_reset_last(page);
79f4b7bf
HD
648 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
649 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
650 return 0;
1da177e4
LT
651}
652
653/*
5f8dcc21 654 * Frees a number of pages from the PCP lists
1da177e4 655 * Assumes all pages on list are in same zone, and of same order.
207f36ee 656 * count is the number of pages to free.
1da177e4
LT
657 *
658 * If the zone was previously in an "all pages pinned" state then look to
659 * see if this freeing clears that state.
660 *
661 * And clear the zone's pages_scanned counter, to hold off the "all pages are
662 * pinned" detection logic.
663 */
5f8dcc21
MG
664static void free_pcppages_bulk(struct zone *zone, int count,
665 struct per_cpu_pages *pcp)
1da177e4 666{
5f8dcc21 667 int migratetype = 0;
a6f9edd6 668 int batch_free = 0;
72853e29 669 int to_free = count;
5f8dcc21 670
c54ad30c 671 spin_lock(&zone->lock);
1da177e4 672 zone->pages_scanned = 0;
f2260e6b 673
72853e29 674 while (to_free) {
48db57f8 675 struct page *page;
5f8dcc21
MG
676 struct list_head *list;
677
678 /*
a6f9edd6
MG
679 * Remove pages from lists in a round-robin fashion. A
680 * batch_free count is maintained that is incremented when an
681 * empty list is encountered. This is so more pages are freed
682 * off fuller lists instead of spinning excessively around empty
683 * lists
5f8dcc21
MG
684 */
685 do {
a6f9edd6 686 batch_free++;
5f8dcc21
MG
687 if (++migratetype == MIGRATE_PCPTYPES)
688 migratetype = 0;
689 list = &pcp->lists[migratetype];
690 } while (list_empty(list));
48db57f8 691
1d16871d
NK
692 /* This is the only non-empty list. Free them all. */
693 if (batch_free == MIGRATE_PCPTYPES)
694 batch_free = to_free;
695
a6f9edd6 696 do {
770c8aaa
BZ
697 int mt; /* migratetype of the to-be-freed page */
698
a6f9edd6
MG
699 page = list_entry(list->prev, struct page, lru);
700 /* must delete as __free_one_page list manipulates */
701 list_del(&page->lru);
b12c4ad1 702 mt = get_freepage_migratetype(page);
a7016235 703 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
770c8aaa
BZ
704 __free_one_page(page, zone, 0, mt);
705 trace_mm_page_pcpu_drain(page, 0, mt);
194159fb 706 if (likely(!is_migrate_isolate_page(page))) {
97d0da22
WC
707 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
708 if (is_migrate_cma(mt))
709 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
710 }
72853e29 711 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 712 }
c54ad30c 713 spin_unlock(&zone->lock);
1da177e4
LT
714}
715
ed0ae21d
MG
716static void free_one_page(struct zone *zone, struct page *page, int order,
717 int migratetype)
1da177e4 718{
006d22d9 719 spin_lock(&zone->lock);
006d22d9 720 zone->pages_scanned = 0;
f2260e6b 721
ed0ae21d 722 __free_one_page(page, zone, order, migratetype);
194159fb 723 if (unlikely(!is_migrate_isolate(migratetype)))
d1ce749a 724 __mod_zone_freepage_state(zone, 1 << order, migratetype);
006d22d9 725 spin_unlock(&zone->lock);
48db57f8
NP
726}
727
ec95f53a 728static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 729{
1da177e4 730 int i;
8cc3b392 731 int bad = 0;
1da177e4 732
b413d48a 733 trace_mm_page_free(page, order);
b1eeab67
VN
734 kmemcheck_free_shadow(page, order);
735
8dd60a3a
AA
736 if (PageAnon(page))
737 page->mapping = NULL;
738 for (i = 0; i < (1 << order); i++)
739 bad += free_pages_check(page + i);
8cc3b392 740 if (bad)
ec95f53a 741 return false;
689bcebf 742
3ac7fe5a 743 if (!PageHighMem(page)) {
b8af2941
PK
744 debug_check_no_locks_freed(page_address(page),
745 PAGE_SIZE << order);
3ac7fe5a
TG
746 debug_check_no_obj_freed(page_address(page),
747 PAGE_SIZE << order);
748 }
dafb1367 749 arch_free_page(page, order);
48db57f8 750 kernel_map_pages(page, 1 << order, 0);
dafb1367 751
ec95f53a
KM
752 return true;
753}
754
755static void __free_pages_ok(struct page *page, unsigned int order)
756{
757 unsigned long flags;
95e34412 758 int migratetype;
ec95f53a
KM
759
760 if (!free_pages_prepare(page, order))
761 return;
762
c54ad30c 763 local_irq_save(flags);
f8891e5e 764 __count_vm_events(PGFREE, 1 << order);
95e34412
MK
765 migratetype = get_pageblock_migratetype(page);
766 set_freepage_migratetype(page, migratetype);
767 free_one_page(page_zone(page), page, order, migratetype);
c54ad30c 768 local_irq_restore(flags);
1da177e4
LT
769}
770
170a5a7e 771void __init __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8 772{
c3993076 773 unsigned int nr_pages = 1 << order;
e2d0bd2b 774 struct page *p = page;
c3993076 775 unsigned int loop;
a226f6c8 776
e2d0bd2b
YL
777 prefetchw(p);
778 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
779 prefetchw(p + 1);
c3993076
JW
780 __ClearPageReserved(p);
781 set_page_count(p, 0);
a226f6c8 782 }
e2d0bd2b
YL
783 __ClearPageReserved(p);
784 set_page_count(p, 0);
c3993076 785
e2d0bd2b 786 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
787 set_page_refcounted(page);
788 __free_pages(page, order);
a226f6c8
DH
789}
790
47118af0 791#ifdef CONFIG_CMA
9cf510a5 792/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
793void __init init_cma_reserved_pageblock(struct page *page)
794{
795 unsigned i = pageblock_nr_pages;
796 struct page *p = page;
797
798 do {
799 __ClearPageReserved(p);
800 set_page_count(p, 0);
801 } while (++p, --i);
802
803 set_page_refcounted(page);
804 set_pageblock_migratetype(page, MIGRATE_CMA);
805 __free_pages(page, pageblock_order);
3dcc0571 806 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
807}
808#endif
1da177e4
LT
809
810/*
811 * The order of subdivision here is critical for the IO subsystem.
812 * Please do not alter this order without good reasons and regression
813 * testing. Specifically, as large blocks of memory are subdivided,
814 * the order in which smaller blocks are delivered depends on the order
815 * they're subdivided in this function. This is the primary factor
816 * influencing the order in which pages are delivered to the IO
817 * subsystem according to empirical testing, and this is also justified
818 * by considering the behavior of a buddy system containing a single
819 * large block of memory acted on by a series of small allocations.
820 * This behavior is a critical factor in sglist merging's success.
821 *
6d49e352 822 * -- nyc
1da177e4 823 */
085cc7d5 824static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
825 int low, int high, struct free_area *area,
826 int migratetype)
1da177e4
LT
827{
828 unsigned long size = 1 << high;
829
830 while (high > low) {
831 area--;
832 high--;
833 size >>= 1;
309381fe 834 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5
SG
835
836#ifdef CONFIG_DEBUG_PAGEALLOC
837 if (high < debug_guardpage_minorder()) {
838 /*
839 * Mark as guard pages (or page), that will allow to
840 * merge back to allocator when buddy will be freed.
841 * Corresponding page table entries will not be touched,
842 * pages will stay not present in virtual address space
843 */
844 INIT_LIST_HEAD(&page[size].lru);
845 set_page_guard_flag(&page[size]);
846 set_page_private(&page[size], high);
847 /* Guard pages are not available for any usage */
d1ce749a
BZ
848 __mod_zone_freepage_state(zone, -(1 << high),
849 migratetype);
c0a32fc5
SG
850 continue;
851 }
852#endif
b2a0ac88 853 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
854 area->nr_free++;
855 set_page_order(&page[size], high);
856 }
1da177e4
LT
857}
858
1da177e4
LT
859/*
860 * This page is about to be returned from the page allocator
861 */
2a7684a2 862static inline int check_new_page(struct page *page)
1da177e4 863{
d230dec1 864 const char *bad_reason = NULL;
f0b791a3
DH
865 unsigned long bad_flags = 0;
866
867 if (unlikely(page_mapcount(page)))
868 bad_reason = "nonzero mapcount";
869 if (unlikely(page->mapping != NULL))
870 bad_reason = "non-NULL mapping";
871 if (unlikely(atomic_read(&page->_count) != 0))
872 bad_reason = "nonzero _count";
873 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
874 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
875 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
876 }
877 if (unlikely(mem_cgroup_bad_page_check(page)))
878 bad_reason = "cgroup check failed";
879 if (unlikely(bad_reason)) {
880 bad_page(page, bad_reason, bad_flags);
689bcebf 881 return 1;
8cc3b392 882 }
2a7684a2
WF
883 return 0;
884}
885
886static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
887{
888 int i;
889
890 for (i = 0; i < (1 << order); i++) {
891 struct page *p = page + i;
892 if (unlikely(check_new_page(p)))
893 return 1;
894 }
689bcebf 895
4c21e2f2 896 set_page_private(page, 0);
7835e98b 897 set_page_refcounted(page);
cc102509
NP
898
899 arch_alloc_page(page, order);
1da177e4 900 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
901
902 if (gfp_flags & __GFP_ZERO)
903 prep_zero_page(page, order, gfp_flags);
904
905 if (order && (gfp_flags & __GFP_COMP))
906 prep_compound_page(page, order);
907
689bcebf 908 return 0;
1da177e4
LT
909}
910
56fd56b8
MG
911/*
912 * Go through the free lists for the given migratetype and remove
913 * the smallest available page from the freelists
914 */
728ec980
MG
915static inline
916struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
917 int migratetype)
918{
919 unsigned int current_order;
b8af2941 920 struct free_area *area;
56fd56b8
MG
921 struct page *page;
922
923 /* Find a page of the appropriate size in the preferred list */
924 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
925 area = &(zone->free_area[current_order]);
926 if (list_empty(&area->free_list[migratetype]))
927 continue;
928
929 page = list_entry(area->free_list[migratetype].next,
930 struct page, lru);
931 list_del(&page->lru);
932 rmv_page_order(page);
933 area->nr_free--;
56fd56b8 934 expand(zone, page, order, current_order, area, migratetype);
5bcc9f86 935 set_freepage_migratetype(page, migratetype);
56fd56b8
MG
936 return page;
937 }
938
939 return NULL;
940}
941
942
b2a0ac88
MG
943/*
944 * This array describes the order lists are fallen back to when
945 * the free lists for the desirable migrate type are depleted
946 */
47118af0
MN
947static int fallbacks[MIGRATE_TYPES][4] = {
948 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
949 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
950#ifdef CONFIG_CMA
951 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
952 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
953#else
954 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
955#endif
6d4a4916 956 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 957#ifdef CONFIG_MEMORY_ISOLATION
6d4a4916 958 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 959#endif
b2a0ac88
MG
960};
961
c361be55
MG
962/*
963 * Move the free pages in a range to the free lists of the requested type.
d9c23400 964 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
965 * boundary. If alignment is required, use move_freepages_block()
966 */
435b405c 967int move_freepages(struct zone *zone,
b69a7288
AB
968 struct page *start_page, struct page *end_page,
969 int migratetype)
c361be55
MG
970{
971 struct page *page;
972 unsigned long order;
d100313f 973 int pages_moved = 0;
c361be55
MG
974
975#ifndef CONFIG_HOLES_IN_ZONE
976 /*
977 * page_zone is not safe to call in this context when
978 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
979 * anyway as we check zone boundaries in move_freepages_block().
980 * Remove at a later date when no bug reports exist related to
ac0e5b7a 981 * grouping pages by mobility
c361be55
MG
982 */
983 BUG_ON(page_zone(start_page) != page_zone(end_page));
984#endif
985
986 for (page = start_page; page <= end_page;) {
344c790e 987 /* Make sure we are not inadvertently changing nodes */
309381fe 988 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 989
c361be55
MG
990 if (!pfn_valid_within(page_to_pfn(page))) {
991 page++;
992 continue;
993 }
994
995 if (!PageBuddy(page)) {
996 page++;
997 continue;
998 }
999
1000 order = page_order(page);
84be48d8
KS
1001 list_move(&page->lru,
1002 &zone->free_area[order].free_list[migratetype]);
95e34412 1003 set_freepage_migratetype(page, migratetype);
c361be55 1004 page += 1 << order;
d100313f 1005 pages_moved += 1 << order;
c361be55
MG
1006 }
1007
d100313f 1008 return pages_moved;
c361be55
MG
1009}
1010
ee6f509c 1011int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1012 int migratetype)
c361be55
MG
1013{
1014 unsigned long start_pfn, end_pfn;
1015 struct page *start_page, *end_page;
1016
1017 start_pfn = page_to_pfn(page);
d9c23400 1018 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1019 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1020 end_page = start_page + pageblock_nr_pages - 1;
1021 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1022
1023 /* Do not cross zone boundaries */
108bcc96 1024 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1025 start_page = page;
108bcc96 1026 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1027 return 0;
1028
1029 return move_freepages(zone, start_page, end_page, migratetype);
1030}
1031
2f66a68f
MG
1032static void change_pageblock_range(struct page *pageblock_page,
1033 int start_order, int migratetype)
1034{
1035 int nr_pageblocks = 1 << (start_order - pageblock_order);
1036
1037 while (nr_pageblocks--) {
1038 set_pageblock_migratetype(pageblock_page, migratetype);
1039 pageblock_page += pageblock_nr_pages;
1040 }
1041}
1042
fef903ef
SB
1043/*
1044 * If breaking a large block of pages, move all free pages to the preferred
1045 * allocation list. If falling back for a reclaimable kernel allocation, be
1046 * more aggressive about taking ownership of free pages.
1047 *
1048 * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1049 * nor move CMA pages to different free lists. We don't want unmovable pages
1050 * to be allocated from MIGRATE_CMA areas.
1051 *
1052 * Returns the new migratetype of the pageblock (or the same old migratetype
1053 * if it was unchanged).
1054 */
1055static int try_to_steal_freepages(struct zone *zone, struct page *page,
1056 int start_type, int fallback_type)
1057{
1058 int current_order = page_order(page);
1059
0cbef29a
KM
1060 /*
1061 * When borrowing from MIGRATE_CMA, we need to release the excess
5bcc9f86
VB
1062 * buddy pages to CMA itself. We also ensure the freepage_migratetype
1063 * is set to CMA so it is returned to the correct freelist in case
1064 * the page ends up being not actually allocated from the pcp lists.
0cbef29a 1065 */
fef903ef
SB
1066 if (is_migrate_cma(fallback_type))
1067 return fallback_type;
1068
1069 /* Take ownership for orders >= pageblock_order */
1070 if (current_order >= pageblock_order) {
1071 change_pageblock_range(page, current_order, start_type);
1072 return start_type;
1073 }
1074
1075 if (current_order >= pageblock_order / 2 ||
1076 start_type == MIGRATE_RECLAIMABLE ||
1077 page_group_by_mobility_disabled) {
1078 int pages;
1079
1080 pages = move_freepages_block(zone, page, start_type);
1081
1082 /* Claim the whole block if over half of it is free */
1083 if (pages >= (1 << (pageblock_order-1)) ||
1084 page_group_by_mobility_disabled) {
1085
1086 set_pageblock_migratetype(page, start_type);
1087 return start_type;
1088 }
1089
1090 }
1091
1092 return fallback_type;
1093}
1094
b2a0ac88 1095/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
1096static inline struct page *
1097__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88 1098{
b8af2941 1099 struct free_area *area;
b2a0ac88
MG
1100 int current_order;
1101 struct page *page;
fef903ef 1102 int migratetype, new_type, i;
b2a0ac88
MG
1103
1104 /* Find the largest possible block of pages in the other list */
1105 for (current_order = MAX_ORDER-1; current_order >= order;
1106 --current_order) {
6d4a4916 1107 for (i = 0;; i++) {
b2a0ac88
MG
1108 migratetype = fallbacks[start_migratetype][i];
1109
56fd56b8
MG
1110 /* MIGRATE_RESERVE handled later if necessary */
1111 if (migratetype == MIGRATE_RESERVE)
6d4a4916 1112 break;
e010487d 1113
b2a0ac88
MG
1114 area = &(zone->free_area[current_order]);
1115 if (list_empty(&area->free_list[migratetype]))
1116 continue;
1117
1118 page = list_entry(area->free_list[migratetype].next,
1119 struct page, lru);
1120 area->nr_free--;
1121
fef903ef
SB
1122 new_type = try_to_steal_freepages(zone, page,
1123 start_migratetype,
1124 migratetype);
b2a0ac88
MG
1125
1126 /* Remove the page from the freelists */
1127 list_del(&page->lru);
1128 rmv_page_order(page);
b2a0ac88 1129
47118af0 1130 expand(zone, page, order, current_order, area,
0cbef29a 1131 new_type);
5bcc9f86
VB
1132 /* The freepage_migratetype may differ from pageblock's
1133 * migratetype depending on the decisions in
1134 * try_to_steal_freepages. This is OK as long as it does
1135 * not differ for MIGRATE_CMA type.
1136 */
1137 set_freepage_migratetype(page, new_type);
e0fff1bd 1138
52c8f6a5
KM
1139 trace_mm_page_alloc_extfrag(page, order, current_order,
1140 start_migratetype, migratetype, new_type);
e0fff1bd 1141
b2a0ac88
MG
1142 return page;
1143 }
1144 }
1145
728ec980 1146 return NULL;
b2a0ac88
MG
1147}
1148
56fd56b8 1149/*
1da177e4
LT
1150 * Do the hard work of removing an element from the buddy allocator.
1151 * Call me with the zone->lock already held.
1152 */
b2a0ac88
MG
1153static struct page *__rmqueue(struct zone *zone, unsigned int order,
1154 int migratetype)
1da177e4 1155{
1da177e4
LT
1156 struct page *page;
1157
728ec980 1158retry_reserve:
56fd56b8 1159 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 1160
728ec980 1161 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 1162 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1163
728ec980
MG
1164 /*
1165 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1166 * is used because __rmqueue_smallest is an inline function
1167 * and we want just one call site
1168 */
1169 if (!page) {
1170 migratetype = MIGRATE_RESERVE;
1171 goto retry_reserve;
1172 }
1173 }
1174
0d3d062a 1175 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1176 return page;
1da177e4
LT
1177}
1178
5f63b720 1179/*
1da177e4
LT
1180 * Obtain a specified number of elements from the buddy allocator, all under
1181 * a single hold of the lock, for efficiency. Add them to the supplied list.
1182 * Returns the number of new pages which were placed at *list.
1183 */
5f63b720 1184static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1185 unsigned long count, struct list_head *list,
e084b2d9 1186 int migratetype, int cold)
1da177e4 1187{
5bcc9f86 1188 int i;
5f63b720 1189
c54ad30c 1190 spin_lock(&zone->lock);
1da177e4 1191 for (i = 0; i < count; ++i) {
b2a0ac88 1192 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1193 if (unlikely(page == NULL))
1da177e4 1194 break;
81eabcbe
MG
1195
1196 /*
1197 * Split buddy pages returned by expand() are received here
1198 * in physical page order. The page is added to the callers and
1199 * list and the list head then moves forward. From the callers
1200 * perspective, the linked list is ordered by page number in
1201 * some conditions. This is useful for IO devices that can
1202 * merge IO requests if the physical pages are ordered
1203 * properly.
1204 */
e084b2d9
MG
1205 if (likely(cold == 0))
1206 list_add(&page->lru, list);
1207 else
1208 list_add_tail(&page->lru, list);
81eabcbe 1209 list = &page->lru;
5bcc9f86 1210 if (is_migrate_cma(get_freepage_migratetype(page)))
d1ce749a
BZ
1211 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1212 -(1 << order));
1da177e4 1213 }
f2260e6b 1214 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1215 spin_unlock(&zone->lock);
085cc7d5 1216 return i;
1da177e4
LT
1217}
1218
4ae7c039 1219#ifdef CONFIG_NUMA
8fce4d8e 1220/*
4037d452
CL
1221 * Called from the vmstat counter updater to drain pagesets of this
1222 * currently executing processor on remote nodes after they have
1223 * expired.
1224 *
879336c3
CL
1225 * Note that this function must be called with the thread pinned to
1226 * a single processor.
8fce4d8e 1227 */
4037d452 1228void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1229{
4ae7c039 1230 unsigned long flags;
4037d452 1231 int to_drain;
998d39cb 1232 unsigned long batch;
4ae7c039 1233
4037d452 1234 local_irq_save(flags);
998d39cb
CS
1235 batch = ACCESS_ONCE(pcp->batch);
1236 if (pcp->count >= batch)
1237 to_drain = batch;
4037d452
CL
1238 else
1239 to_drain = pcp->count;
2a13515c
KM
1240 if (to_drain > 0) {
1241 free_pcppages_bulk(zone, to_drain, pcp);
1242 pcp->count -= to_drain;
1243 }
4037d452 1244 local_irq_restore(flags);
4ae7c039
CL
1245}
1246#endif
1247
9f8f2172
CL
1248/*
1249 * Drain pages of the indicated processor.
1250 *
1251 * The processor must either be the current processor and the
1252 * thread pinned to the current processor or a processor that
1253 * is not online.
1254 */
1255static void drain_pages(unsigned int cpu)
1da177e4 1256{
c54ad30c 1257 unsigned long flags;
1da177e4 1258 struct zone *zone;
1da177e4 1259
ee99c71c 1260 for_each_populated_zone(zone) {
1da177e4 1261 struct per_cpu_pageset *pset;
3dfa5721 1262 struct per_cpu_pages *pcp;
1da177e4 1263
99dcc3e5
CL
1264 local_irq_save(flags);
1265 pset = per_cpu_ptr(zone->pageset, cpu);
3dfa5721
CL
1266
1267 pcp = &pset->pcp;
2ff754fa
DR
1268 if (pcp->count) {
1269 free_pcppages_bulk(zone, pcp->count, pcp);
1270 pcp->count = 0;
1271 }
3dfa5721 1272 local_irq_restore(flags);
1da177e4
LT
1273 }
1274}
1da177e4 1275
9f8f2172
CL
1276/*
1277 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1278 */
1279void drain_local_pages(void *arg)
1280{
1281 drain_pages(smp_processor_id());
1282}
1283
1284/*
74046494
GBY
1285 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1286 *
1287 * Note that this code is protected against sending an IPI to an offline
1288 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1289 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1290 * nothing keeps CPUs from showing up after we populated the cpumask and
1291 * before the call to on_each_cpu_mask().
9f8f2172
CL
1292 */
1293void drain_all_pages(void)
1294{
74046494
GBY
1295 int cpu;
1296 struct per_cpu_pageset *pcp;
1297 struct zone *zone;
1298
1299 /*
1300 * Allocate in the BSS so we wont require allocation in
1301 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1302 */
1303 static cpumask_t cpus_with_pcps;
1304
1305 /*
1306 * We don't care about racing with CPU hotplug event
1307 * as offline notification will cause the notified
1308 * cpu to drain that CPU pcps and on_each_cpu_mask
1309 * disables preemption as part of its processing
1310 */
1311 for_each_online_cpu(cpu) {
1312 bool has_pcps = false;
1313 for_each_populated_zone(zone) {
1314 pcp = per_cpu_ptr(zone->pageset, cpu);
1315 if (pcp->pcp.count) {
1316 has_pcps = true;
1317 break;
1318 }
1319 }
1320 if (has_pcps)
1321 cpumask_set_cpu(cpu, &cpus_with_pcps);
1322 else
1323 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1324 }
1325 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
9f8f2172
CL
1326}
1327
296699de 1328#ifdef CONFIG_HIBERNATION
1da177e4
LT
1329
1330void mark_free_pages(struct zone *zone)
1331{
f623f0db
RW
1332 unsigned long pfn, max_zone_pfn;
1333 unsigned long flags;
b2a0ac88 1334 int order, t;
1da177e4
LT
1335 struct list_head *curr;
1336
8080fc03 1337 if (zone_is_empty(zone))
1da177e4
LT
1338 return;
1339
1340 spin_lock_irqsave(&zone->lock, flags);
f623f0db 1341
108bcc96 1342 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
1343 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1344 if (pfn_valid(pfn)) {
1345 struct page *page = pfn_to_page(pfn);
1346
7be98234
RW
1347 if (!swsusp_page_is_forbidden(page))
1348 swsusp_unset_page_free(page);
f623f0db 1349 }
1da177e4 1350
b2a0ac88
MG
1351 for_each_migratetype_order(order, t) {
1352 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1353 unsigned long i;
1da177e4 1354
f623f0db
RW
1355 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1356 for (i = 0; i < (1UL << order); i++)
7be98234 1357 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1358 }
b2a0ac88 1359 }
1da177e4
LT
1360 spin_unlock_irqrestore(&zone->lock, flags);
1361}
e2c55dc8 1362#endif /* CONFIG_PM */
1da177e4 1363
1da177e4
LT
1364/*
1365 * Free a 0-order page
fc91668e 1366 * cold == 1 ? free a cold page : free a hot page
1da177e4 1367 */
fc91668e 1368void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1369{
1370 struct zone *zone = page_zone(page);
1371 struct per_cpu_pages *pcp;
1372 unsigned long flags;
5f8dcc21 1373 int migratetype;
1da177e4 1374
ec95f53a 1375 if (!free_pages_prepare(page, 0))
689bcebf
HD
1376 return;
1377
5f8dcc21 1378 migratetype = get_pageblock_migratetype(page);
b12c4ad1 1379 set_freepage_migratetype(page, migratetype);
1da177e4 1380 local_irq_save(flags);
f8891e5e 1381 __count_vm_event(PGFREE);
da456f14 1382
5f8dcc21
MG
1383 /*
1384 * We only track unmovable, reclaimable and movable on pcp lists.
1385 * Free ISOLATE pages back to the allocator because they are being
1386 * offlined but treat RESERVE as movable pages so we can get those
1387 * areas back if necessary. Otherwise, we may have to free
1388 * excessively into the page allocator
1389 */
1390 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 1391 if (unlikely(is_migrate_isolate(migratetype))) {
5f8dcc21
MG
1392 free_one_page(zone, page, 0, migratetype);
1393 goto out;
1394 }
1395 migratetype = MIGRATE_MOVABLE;
1396 }
1397
99dcc3e5 1398 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3dfa5721 1399 if (cold)
5f8dcc21 1400 list_add_tail(&page->lru, &pcp->lists[migratetype]);
3dfa5721 1401 else
5f8dcc21 1402 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 1403 pcp->count++;
48db57f8 1404 if (pcp->count >= pcp->high) {
998d39cb
CS
1405 unsigned long batch = ACCESS_ONCE(pcp->batch);
1406 free_pcppages_bulk(zone, batch, pcp);
1407 pcp->count -= batch;
48db57f8 1408 }
5f8dcc21
MG
1409
1410out:
1da177e4 1411 local_irq_restore(flags);
1da177e4
LT
1412}
1413
cc59850e
KK
1414/*
1415 * Free a list of 0-order pages
1416 */
1417void free_hot_cold_page_list(struct list_head *list, int cold)
1418{
1419 struct page *page, *next;
1420
1421 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 1422 trace_mm_page_free_batched(page, cold);
cc59850e
KK
1423 free_hot_cold_page(page, cold);
1424 }
1425}
1426
8dfcc9ba
NP
1427/*
1428 * split_page takes a non-compound higher-order page, and splits it into
1429 * n (1<<order) sub-pages: page[0..n]
1430 * Each sub-page must be freed individually.
1431 *
1432 * Note: this is probably too low level an operation for use in drivers.
1433 * Please consult with lkml before using this in your driver.
1434 */
1435void split_page(struct page *page, unsigned int order)
1436{
1437 int i;
1438
309381fe
SL
1439 VM_BUG_ON_PAGE(PageCompound(page), page);
1440 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
1441
1442#ifdef CONFIG_KMEMCHECK
1443 /*
1444 * Split shadow pages too, because free(page[0]) would
1445 * otherwise free the whole shadow.
1446 */
1447 if (kmemcheck_page_is_tracked(page))
1448 split_page(virt_to_page(page[0].shadow), order);
1449#endif
1450
7835e98b
NP
1451 for (i = 1; i < (1 << order); i++)
1452 set_page_refcounted(page + i);
8dfcc9ba 1453}
5853ff23 1454EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 1455
8fb74b9f 1456static int __isolate_free_page(struct page *page, unsigned int order)
748446bb 1457{
748446bb
MG
1458 unsigned long watermark;
1459 struct zone *zone;
2139cbe6 1460 int mt;
748446bb
MG
1461
1462 BUG_ON(!PageBuddy(page));
1463
1464 zone = page_zone(page);
2e30abd1 1465 mt = get_pageblock_migratetype(page);
748446bb 1466
194159fb 1467 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
1468 /* Obey watermarks as if the page was being allocated */
1469 watermark = low_wmark_pages(zone) + (1 << order);
1470 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1471 return 0;
1472
8fb74b9f 1473 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 1474 }
748446bb
MG
1475
1476 /* Remove page from free list */
1477 list_del(&page->lru);
1478 zone->free_area[order].nr_free--;
1479 rmv_page_order(page);
2139cbe6 1480
8fb74b9f 1481 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
1482 if (order >= pageblock_order - 1) {
1483 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
1484 for (; page < endpage; page += pageblock_nr_pages) {
1485 int mt = get_pageblock_migratetype(page);
194159fb 1486 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
1487 set_pageblock_migratetype(page,
1488 MIGRATE_MOVABLE);
1489 }
748446bb
MG
1490 }
1491
8fb74b9f 1492 return 1UL << order;
1fb3f8ca
MG
1493}
1494
1495/*
1496 * Similar to split_page except the page is already free. As this is only
1497 * being used for migration, the migratetype of the block also changes.
1498 * As this is called with interrupts disabled, the caller is responsible
1499 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1500 * are enabled.
1501 *
1502 * Note: this is probably too low level an operation for use in drivers.
1503 * Please consult with lkml before using this in your driver.
1504 */
1505int split_free_page(struct page *page)
1506{
1507 unsigned int order;
1508 int nr_pages;
1509
1fb3f8ca
MG
1510 order = page_order(page);
1511
8fb74b9f 1512 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
1513 if (!nr_pages)
1514 return 0;
1515
1516 /* Split into individual pages */
1517 set_page_refcounted(page);
1518 split_page(page, order);
1519 return nr_pages;
748446bb
MG
1520}
1521
1da177e4
LT
1522/*
1523 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1524 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1525 * or two.
1526 */
0a15c3e9
MG
1527static inline
1528struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1529 struct zone *zone, int order, gfp_t gfp_flags,
1530 int migratetype)
1da177e4
LT
1531{
1532 unsigned long flags;
689bcebf 1533 struct page *page;
1da177e4
LT
1534 int cold = !!(gfp_flags & __GFP_COLD);
1535
689bcebf 1536again:
48db57f8 1537 if (likely(order == 0)) {
1da177e4 1538 struct per_cpu_pages *pcp;
5f8dcc21 1539 struct list_head *list;
1da177e4 1540
1da177e4 1541 local_irq_save(flags);
99dcc3e5
CL
1542 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1543 list = &pcp->lists[migratetype];
5f8dcc21 1544 if (list_empty(list)) {
535131e6 1545 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1546 pcp->batch, list,
e084b2d9 1547 migratetype, cold);
5f8dcc21 1548 if (unlikely(list_empty(list)))
6fb332fa 1549 goto failed;
535131e6 1550 }
b92a6edd 1551
5f8dcc21
MG
1552 if (cold)
1553 page = list_entry(list->prev, struct page, lru);
1554 else
1555 page = list_entry(list->next, struct page, lru);
1556
b92a6edd
MG
1557 list_del(&page->lru);
1558 pcp->count--;
7fb1d9fc 1559 } else {
dab48dab
AM
1560 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1561 /*
1562 * __GFP_NOFAIL is not to be used in new code.
1563 *
1564 * All __GFP_NOFAIL callers should be fixed so that they
1565 * properly detect and handle allocation failures.
1566 *
1567 * We most definitely don't want callers attempting to
4923abf9 1568 * allocate greater than order-1 page units with
dab48dab
AM
1569 * __GFP_NOFAIL.
1570 */
4923abf9 1571 WARN_ON_ONCE(order > 1);
dab48dab 1572 }
1da177e4 1573 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1574 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1575 spin_unlock(&zone->lock);
1576 if (!page)
1577 goto failed;
d1ce749a 1578 __mod_zone_freepage_state(zone, -(1 << order),
5bcc9f86 1579 get_freepage_migratetype(page));
1da177e4
LT
1580 }
1581
3a025760 1582 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
27329369 1583
f8891e5e 1584 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 1585 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 1586 local_irq_restore(flags);
1da177e4 1587
309381fe 1588 VM_BUG_ON_PAGE(bad_range(zone, page), page);
17cf4406 1589 if (prep_new_page(page, order, gfp_flags))
a74609fa 1590 goto again;
1da177e4 1591 return page;
a74609fa
NP
1592
1593failed:
1594 local_irq_restore(flags);
a74609fa 1595 return NULL;
1da177e4
LT
1596}
1597
933e312e
AM
1598#ifdef CONFIG_FAIL_PAGE_ALLOC
1599
b2588c4b 1600static struct {
933e312e
AM
1601 struct fault_attr attr;
1602
1603 u32 ignore_gfp_highmem;
1604 u32 ignore_gfp_wait;
54114994 1605 u32 min_order;
933e312e
AM
1606} fail_page_alloc = {
1607 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1608 .ignore_gfp_wait = 1,
1609 .ignore_gfp_highmem = 1,
54114994 1610 .min_order = 1,
933e312e
AM
1611};
1612
1613static int __init setup_fail_page_alloc(char *str)
1614{
1615 return setup_fault_attr(&fail_page_alloc.attr, str);
1616}
1617__setup("fail_page_alloc=", setup_fail_page_alloc);
1618
deaf386e 1619static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1620{
54114994 1621 if (order < fail_page_alloc.min_order)
deaf386e 1622 return false;
933e312e 1623 if (gfp_mask & __GFP_NOFAIL)
deaf386e 1624 return false;
933e312e 1625 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 1626 return false;
933e312e 1627 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
deaf386e 1628 return false;
933e312e
AM
1629
1630 return should_fail(&fail_page_alloc.attr, 1 << order);
1631}
1632
1633#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1634
1635static int __init fail_page_alloc_debugfs(void)
1636{
f4ae40a6 1637 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 1638 struct dentry *dir;
933e312e 1639
dd48c085
AM
1640 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1641 &fail_page_alloc.attr);
1642 if (IS_ERR(dir))
1643 return PTR_ERR(dir);
933e312e 1644
b2588c4b
AM
1645 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1646 &fail_page_alloc.ignore_gfp_wait))
1647 goto fail;
1648 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1649 &fail_page_alloc.ignore_gfp_highmem))
1650 goto fail;
1651 if (!debugfs_create_u32("min-order", mode, dir,
1652 &fail_page_alloc.min_order))
1653 goto fail;
1654
1655 return 0;
1656fail:
dd48c085 1657 debugfs_remove_recursive(dir);
933e312e 1658
b2588c4b 1659 return -ENOMEM;
933e312e
AM
1660}
1661
1662late_initcall(fail_page_alloc_debugfs);
1663
1664#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1665
1666#else /* CONFIG_FAIL_PAGE_ALLOC */
1667
deaf386e 1668static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1669{
deaf386e 1670 return false;
933e312e
AM
1671}
1672
1673#endif /* CONFIG_FAIL_PAGE_ALLOC */
1674
1da177e4 1675/*
88f5acf8 1676 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1677 * of the allocation.
1678 */
88f5acf8
MG
1679static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1680 int classzone_idx, int alloc_flags, long free_pages)
1da177e4
LT
1681{
1682 /* free_pages my go negative - that's OK */
d23ad423 1683 long min = mark;
2cfed075 1684 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1da177e4 1685 int o;
026b0814 1686 long free_cma = 0;
1da177e4 1687
df0a6daa 1688 free_pages -= (1 << order) - 1;
7fb1d9fc 1689 if (alloc_flags & ALLOC_HIGH)
1da177e4 1690 min -= min / 2;
7fb1d9fc 1691 if (alloc_flags & ALLOC_HARDER)
1da177e4 1692 min -= min / 4;
d95ea5d1
BZ
1693#ifdef CONFIG_CMA
1694 /* If allocation can't use CMA areas don't use free CMA pages */
1695 if (!(alloc_flags & ALLOC_CMA))
026b0814 1696 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 1697#endif
026b0814
TS
1698
1699 if (free_pages - free_cma <= min + lowmem_reserve)
88f5acf8 1700 return false;
1da177e4
LT
1701 for (o = 0; o < order; o++) {
1702 /* At the next order, this order's pages become unavailable */
1703 free_pages -= z->free_area[o].nr_free << o;
1704
1705 /* Require fewer higher order pages to be free */
1706 min >>= 1;
1707
1708 if (free_pages <= min)
88f5acf8 1709 return false;
1da177e4 1710 }
88f5acf8
MG
1711 return true;
1712}
1713
1714bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1715 int classzone_idx, int alloc_flags)
1716{
1717 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1718 zone_page_state(z, NR_FREE_PAGES));
1719}
1720
1721bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1722 int classzone_idx, int alloc_flags)
1723{
1724 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1725
1726 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1727 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1728
1729 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1730 free_pages);
1da177e4
LT
1731}
1732
9276b1bc
PJ
1733#ifdef CONFIG_NUMA
1734/*
1735 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1736 * skip over zones that are not allowed by the cpuset, or that have
1737 * been recently (in last second) found to be nearly full. See further
1738 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1739 * that have to skip over a lot of full or unallowed zones.
9276b1bc 1740 *
a1aeb65a 1741 * If the zonelist cache is present in the passed zonelist, then
9276b1bc 1742 * returns a pointer to the allowed node mask (either the current
4b0ef1fe 1743 * tasks mems_allowed, or node_states[N_MEMORY].)
9276b1bc
PJ
1744 *
1745 * If the zonelist cache is not available for this zonelist, does
1746 * nothing and returns NULL.
1747 *
1748 * If the fullzones BITMAP in the zonelist cache is stale (more than
1749 * a second since last zap'd) then we zap it out (clear its bits.)
1750 *
1751 * We hold off even calling zlc_setup, until after we've checked the
1752 * first zone in the zonelist, on the theory that most allocations will
1753 * be satisfied from that first zone, so best to examine that zone as
1754 * quickly as we can.
1755 */
1756static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1757{
1758 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1759 nodemask_t *allowednodes; /* zonelist_cache approximation */
1760
1761 zlc = zonelist->zlcache_ptr;
1762 if (!zlc)
1763 return NULL;
1764
f05111f5 1765 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1766 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1767 zlc->last_full_zap = jiffies;
1768 }
1769
1770 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1771 &cpuset_current_mems_allowed :
4b0ef1fe 1772 &node_states[N_MEMORY];
9276b1bc
PJ
1773 return allowednodes;
1774}
1775
1776/*
1777 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1778 * if it is worth looking at further for free memory:
1779 * 1) Check that the zone isn't thought to be full (doesn't have its
1780 * bit set in the zonelist_cache fullzones BITMAP).
1781 * 2) Check that the zones node (obtained from the zonelist_cache
1782 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1783 * Return true (non-zero) if zone is worth looking at further, or
1784 * else return false (zero) if it is not.
1785 *
1786 * This check -ignores- the distinction between various watermarks,
1787 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1788 * found to be full for any variation of these watermarks, it will
1789 * be considered full for up to one second by all requests, unless
1790 * we are so low on memory on all allowed nodes that we are forced
1791 * into the second scan of the zonelist.
1792 *
1793 * In the second scan we ignore this zonelist cache and exactly
1794 * apply the watermarks to all zones, even it is slower to do so.
1795 * We are low on memory in the second scan, and should leave no stone
1796 * unturned looking for a free page.
1797 */
dd1a239f 1798static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1799 nodemask_t *allowednodes)
1800{
1801 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1802 int i; /* index of *z in zonelist zones */
1803 int n; /* node that zone *z is on */
1804
1805 zlc = zonelist->zlcache_ptr;
1806 if (!zlc)
1807 return 1;
1808
dd1a239f 1809 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1810 n = zlc->z_to_n[i];
1811
1812 /* This zone is worth trying if it is allowed but not full */
1813 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1814}
1815
1816/*
1817 * Given 'z' scanning a zonelist, set the corresponding bit in
1818 * zlc->fullzones, so that subsequent attempts to allocate a page
1819 * from that zone don't waste time re-examining it.
1820 */
dd1a239f 1821static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1822{
1823 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1824 int i; /* index of *z in zonelist zones */
1825
1826 zlc = zonelist->zlcache_ptr;
1827 if (!zlc)
1828 return;
1829
dd1a239f 1830 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1831
1832 set_bit(i, zlc->fullzones);
1833}
1834
76d3fbf8
MG
1835/*
1836 * clear all zones full, called after direct reclaim makes progress so that
1837 * a zone that was recently full is not skipped over for up to a second
1838 */
1839static void zlc_clear_zones_full(struct zonelist *zonelist)
1840{
1841 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1842
1843 zlc = zonelist->zlcache_ptr;
1844 if (!zlc)
1845 return;
1846
1847 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1848}
1849
81c0a2bb
JW
1850static bool zone_local(struct zone *local_zone, struct zone *zone)
1851{
fff4068c 1852 return local_zone->node == zone->node;
81c0a2bb
JW
1853}
1854
957f822a
DR
1855static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1856{
5f7a75ac
MG
1857 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
1858 RECLAIM_DISTANCE;
957f822a
DR
1859}
1860
9276b1bc
PJ
1861#else /* CONFIG_NUMA */
1862
1863static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1864{
1865 return NULL;
1866}
1867
dd1a239f 1868static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1869 nodemask_t *allowednodes)
1870{
1871 return 1;
1872}
1873
dd1a239f 1874static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1875{
1876}
76d3fbf8
MG
1877
1878static void zlc_clear_zones_full(struct zonelist *zonelist)
1879{
1880}
957f822a 1881
81c0a2bb
JW
1882static bool zone_local(struct zone *local_zone, struct zone *zone)
1883{
1884 return true;
1885}
1886
957f822a
DR
1887static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1888{
1889 return true;
1890}
1891
9276b1bc
PJ
1892#endif /* CONFIG_NUMA */
1893
7fb1d9fc 1894/*
0798e519 1895 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1896 * a page.
1897 */
1898static struct page *
19770b32 1899get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1900 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1901 struct zone *preferred_zone, int migratetype)
753ee728 1902{
dd1a239f 1903 struct zoneref *z;
7fb1d9fc 1904 struct page *page = NULL;
54a6eb5c 1905 int classzone_idx;
5117f45d 1906 struct zone *zone;
9276b1bc
PJ
1907 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1908 int zlc_active = 0; /* set if using zonelist_cache */
1909 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1910
19770b32 1911 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1912zonelist_scan:
7fb1d9fc 1913 /*
9276b1bc 1914 * Scan zonelist, looking for a zone with enough free.
3b11f0aa 1915 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c.
7fb1d9fc 1916 */
19770b32
MG
1917 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1918 high_zoneidx, nodemask) {
e085dbc5
JW
1919 unsigned long mark;
1920
e5adfffc 1921 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
9276b1bc
PJ
1922 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1923 continue;
7fb1d9fc 1924 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1925 !cpuset_zone_allowed_softwall(zone, gfp_mask))
cd38b115 1926 continue;
e085dbc5 1927 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
e66f0972 1928 if (unlikely(alloc_flags & ALLOC_NO_WATERMARKS))
e085dbc5 1929 goto try_this_zone;
81c0a2bb
JW
1930 /*
1931 * Distribute pages in proportion to the individual
1932 * zone size to ensure fair page aging. The zone a
1933 * page was allocated in should have no effect on the
1934 * time the page has in memory before being reclaimed.
81c0a2bb 1935 */
3a025760 1936 if (alloc_flags & ALLOC_FAIR) {
fff4068c 1937 if (!zone_local(preferred_zone, zone))
81c0a2bb 1938 continue;
3a025760
JW
1939 if (zone_page_state(zone, NR_ALLOC_BATCH) <= 0)
1940 continue;
81c0a2bb 1941 }
a756cf59
JW
1942 /*
1943 * When allocating a page cache page for writing, we
1944 * want to get it from a zone that is within its dirty
1945 * limit, such that no single zone holds more than its
1946 * proportional share of globally allowed dirty pages.
1947 * The dirty limits take into account the zone's
1948 * lowmem reserves and high watermark so that kswapd
1949 * should be able to balance it without having to
1950 * write pages from its LRU list.
1951 *
1952 * This may look like it could increase pressure on
1953 * lower zones by failing allocations in higher zones
1954 * before they are full. But the pages that do spill
1955 * over are limited as the lower zones are protected
1956 * by this very same mechanism. It should not become
1957 * a practical burden to them.
1958 *
1959 * XXX: For now, allow allocations to potentially
1960 * exceed the per-zone dirty limit in the slowpath
1961 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1962 * which is important when on a NUMA setup the allowed
1963 * zones are together not big enough to reach the
1964 * global limit. The proper fix for these situations
1965 * will require awareness of zones in the
1966 * dirty-throttling and the flusher threads.
1967 */
1968 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1969 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1970 goto this_zone_full;
7fb1d9fc 1971
e085dbc5
JW
1972 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1973 if (!zone_watermark_ok(zone, order, mark,
1974 classzone_idx, alloc_flags)) {
fa5e084e
MG
1975 int ret;
1976
e5adfffc
KS
1977 if (IS_ENABLED(CONFIG_NUMA) &&
1978 !did_zlc_setup && nr_online_nodes > 1) {
cd38b115
MG
1979 /*
1980 * we do zlc_setup if there are multiple nodes
1981 * and before considering the first zone allowed
1982 * by the cpuset.
1983 */
1984 allowednodes = zlc_setup(zonelist, alloc_flags);
1985 zlc_active = 1;
1986 did_zlc_setup = 1;
1987 }
1988
957f822a
DR
1989 if (zone_reclaim_mode == 0 ||
1990 !zone_allows_reclaim(preferred_zone, zone))
fa5e084e
MG
1991 goto this_zone_full;
1992
cd38b115
MG
1993 /*
1994 * As we may have just activated ZLC, check if the first
1995 * eligible zone has failed zone_reclaim recently.
1996 */
e5adfffc 1997 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
cd38b115
MG
1998 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1999 continue;
2000
fa5e084e
MG
2001 ret = zone_reclaim(zone, gfp_mask, order);
2002 switch (ret) {
2003 case ZONE_RECLAIM_NOSCAN:
2004 /* did not scan */
cd38b115 2005 continue;
fa5e084e
MG
2006 case ZONE_RECLAIM_FULL:
2007 /* scanned but unreclaimable */
cd38b115 2008 continue;
fa5e084e
MG
2009 default:
2010 /* did we reclaim enough */
fed2719e 2011 if (zone_watermark_ok(zone, order, mark,
fa5e084e 2012 classzone_idx, alloc_flags))
fed2719e
MG
2013 goto try_this_zone;
2014
2015 /*
2016 * Failed to reclaim enough to meet watermark.
2017 * Only mark the zone full if checking the min
2018 * watermark or if we failed to reclaim just
2019 * 1<<order pages or else the page allocator
2020 * fastpath will prematurely mark zones full
2021 * when the watermark is between the low and
2022 * min watermarks.
2023 */
2024 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2025 ret == ZONE_RECLAIM_SOME)
9276b1bc 2026 goto this_zone_full;
fed2719e
MG
2027
2028 continue;
0798e519 2029 }
7fb1d9fc
RS
2030 }
2031
fa5e084e 2032try_this_zone:
3dd28266
MG
2033 page = buffered_rmqueue(preferred_zone, zone, order,
2034 gfp_mask, migratetype);
0798e519 2035 if (page)
7fb1d9fc 2036 break;
9276b1bc 2037this_zone_full:
e5adfffc 2038 if (IS_ENABLED(CONFIG_NUMA))
9276b1bc 2039 zlc_mark_zone_full(zonelist, z);
54a6eb5c 2040 }
9276b1bc 2041
e5adfffc 2042 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
9276b1bc
PJ
2043 /* Disable zlc cache for second zonelist scan */
2044 zlc_active = 0;
2045 goto zonelist_scan;
2046 }
b121186a
AS
2047
2048 if (page)
2049 /*
2050 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2051 * necessary to allocate the page. The expectation is
2052 * that the caller is taking steps that will free more
2053 * memory. The caller should avoid the page being used
2054 * for !PFMEMALLOC purposes.
2055 */
2056 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
2057
7fb1d9fc 2058 return page;
753ee728
MH
2059}
2060
29423e77
DR
2061/*
2062 * Large machines with many possible nodes should not always dump per-node
2063 * meminfo in irq context.
2064 */
2065static inline bool should_suppress_show_mem(void)
2066{
2067 bool ret = false;
2068
2069#if NODES_SHIFT > 8
2070 ret = in_interrupt();
2071#endif
2072 return ret;
2073}
2074
a238ab5b
DH
2075static DEFINE_RATELIMIT_STATE(nopage_rs,
2076 DEFAULT_RATELIMIT_INTERVAL,
2077 DEFAULT_RATELIMIT_BURST);
2078
2079void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2080{
a238ab5b
DH
2081 unsigned int filter = SHOW_MEM_FILTER_NODES;
2082
c0a32fc5
SG
2083 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2084 debug_guardpage_minorder() > 0)
a238ab5b
DH
2085 return;
2086
2087 /*
2088 * This documents exceptions given to allocations in certain
2089 * contexts that are allowed to allocate outside current's set
2090 * of allowed nodes.
2091 */
2092 if (!(gfp_mask & __GFP_NOMEMALLOC))
2093 if (test_thread_flag(TIF_MEMDIE) ||
2094 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2095 filter &= ~SHOW_MEM_FILTER_NODES;
2096 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2097 filter &= ~SHOW_MEM_FILTER_NODES;
2098
2099 if (fmt) {
3ee9a4f0
JP
2100 struct va_format vaf;
2101 va_list args;
2102
a238ab5b 2103 va_start(args, fmt);
3ee9a4f0
JP
2104
2105 vaf.fmt = fmt;
2106 vaf.va = &args;
2107
2108 pr_warn("%pV", &vaf);
2109
a238ab5b
DH
2110 va_end(args);
2111 }
2112
3ee9a4f0
JP
2113 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2114 current->comm, order, gfp_mask);
a238ab5b
DH
2115
2116 dump_stack();
2117 if (!should_suppress_show_mem())
2118 show_mem(filter);
2119}
2120
11e33f6a
MG
2121static inline int
2122should_alloc_retry(gfp_t gfp_mask, unsigned int order,
f90ac398 2123 unsigned long did_some_progress,
11e33f6a 2124 unsigned long pages_reclaimed)
1da177e4 2125{
11e33f6a
MG
2126 /* Do not loop if specifically requested */
2127 if (gfp_mask & __GFP_NORETRY)
2128 return 0;
1da177e4 2129
f90ac398
MG
2130 /* Always retry if specifically requested */
2131 if (gfp_mask & __GFP_NOFAIL)
2132 return 1;
2133
2134 /*
2135 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2136 * making forward progress without invoking OOM. Suspend also disables
2137 * storage devices so kswapd will not help. Bail if we are suspending.
2138 */
2139 if (!did_some_progress && pm_suspended_storage())
2140 return 0;
2141
11e33f6a
MG
2142 /*
2143 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2144 * means __GFP_NOFAIL, but that may not be true in other
2145 * implementations.
2146 */
2147 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2148 return 1;
2149
2150 /*
2151 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2152 * specified, then we retry until we no longer reclaim any pages
2153 * (above), or we've reclaimed an order of pages at least as
2154 * large as the allocation's order. In both cases, if the
2155 * allocation still fails, we stop retrying.
2156 */
2157 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2158 return 1;
cf40bd16 2159
11e33f6a
MG
2160 return 0;
2161}
933e312e 2162
11e33f6a
MG
2163static inline struct page *
2164__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2165 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2166 nodemask_t *nodemask, struct zone *preferred_zone,
2167 int migratetype)
11e33f6a
MG
2168{
2169 struct page *page;
2170
2171 /* Acquire the OOM killer lock for the zones in zonelist */
ff321fea 2172 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
11e33f6a 2173 schedule_timeout_uninterruptible(1);
1da177e4
LT
2174 return NULL;
2175 }
6b1de916 2176
11e33f6a
MG
2177 /*
2178 * Go through the zonelist yet one more time, keep very high watermark
2179 * here, this is only to catch a parallel oom killing, we must fail if
2180 * we're still under heavy pressure.
2181 */
2182 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2183 order, zonelist, high_zoneidx,
5117f45d 2184 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 2185 preferred_zone, migratetype);
7fb1d9fc 2186 if (page)
11e33f6a
MG
2187 goto out;
2188
4365a567
KH
2189 if (!(gfp_mask & __GFP_NOFAIL)) {
2190 /* The OOM killer will not help higher order allocs */
2191 if (order > PAGE_ALLOC_COSTLY_ORDER)
2192 goto out;
03668b3c
DR
2193 /* The OOM killer does not needlessly kill tasks for lowmem */
2194 if (high_zoneidx < ZONE_NORMAL)
2195 goto out;
4365a567
KH
2196 /*
2197 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2198 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2199 * The caller should handle page allocation failure by itself if
2200 * it specifies __GFP_THISNODE.
2201 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2202 */
2203 if (gfp_mask & __GFP_THISNODE)
2204 goto out;
2205 }
11e33f6a 2206 /* Exhausted what can be done so it's blamo time */
08ab9b10 2207 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
11e33f6a
MG
2208
2209out:
2210 clear_zonelist_oom(zonelist, gfp_mask);
2211 return page;
2212}
2213
56de7263
MG
2214#ifdef CONFIG_COMPACTION
2215/* Try memory compaction for high-order allocations before reclaim */
2216static struct page *
2217__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2218 struct zonelist *zonelist, enum zone_type high_zoneidx,
2219 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712 2220 int migratetype, bool sync_migration,
c67fe375 2221 bool *contended_compaction, bool *deferred_compaction,
66199712 2222 unsigned long *did_some_progress)
56de7263 2223{
66199712 2224 if (!order)
56de7263
MG
2225 return NULL;
2226
aff62249 2227 if (compaction_deferred(preferred_zone, order)) {
66199712
MG
2228 *deferred_compaction = true;
2229 return NULL;
2230 }
2231
c06b1fca 2232 current->flags |= PF_MEMALLOC;
56de7263 2233 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
c67fe375 2234 nodemask, sync_migration,
8fb74b9f 2235 contended_compaction);
c06b1fca 2236 current->flags &= ~PF_MEMALLOC;
56de7263 2237
1fb3f8ca 2238 if (*did_some_progress != COMPACT_SKIPPED) {
8fb74b9f
MG
2239 struct page *page;
2240
56de7263
MG
2241 /* Page migration frees to the PCP lists but we want merging */
2242 drain_pages(get_cpu());
2243 put_cpu();
2244
2245 page = get_page_from_freelist(gfp_mask, nodemask,
2246 order, zonelist, high_zoneidx,
cfd19c5a
MG
2247 alloc_flags & ~ALLOC_NO_WATERMARKS,
2248 preferred_zone, migratetype);
56de7263 2249 if (page) {
62997027 2250 preferred_zone->compact_blockskip_flush = false;
de6c60a6 2251 compaction_defer_reset(preferred_zone, order, true);
56de7263
MG
2252 count_vm_event(COMPACTSUCCESS);
2253 return page;
2254 }
2255
2256 /*
2257 * It's bad if compaction run occurs and fails.
2258 * The most likely reason is that pages exist,
2259 * but not enough to satisfy watermarks.
2260 */
2261 count_vm_event(COMPACTFAIL);
66199712
MG
2262
2263 /*
2264 * As async compaction considers a subset of pageblocks, only
2265 * defer if the failure was a sync compaction failure.
2266 */
2267 if (sync_migration)
aff62249 2268 defer_compaction(preferred_zone, order);
56de7263
MG
2269
2270 cond_resched();
2271 }
2272
2273 return NULL;
2274}
2275#else
2276static inline struct page *
2277__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2278 struct zonelist *zonelist, enum zone_type high_zoneidx,
2279 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712 2280 int migratetype, bool sync_migration,
c67fe375 2281 bool *contended_compaction, bool *deferred_compaction,
66199712 2282 unsigned long *did_some_progress)
56de7263
MG
2283{
2284 return NULL;
2285}
2286#endif /* CONFIG_COMPACTION */
2287
bba90710
MS
2288/* Perform direct synchronous page reclaim */
2289static int
2290__perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2291 nodemask_t *nodemask)
11e33f6a 2292{
11e33f6a 2293 struct reclaim_state reclaim_state;
bba90710 2294 int progress;
11e33f6a
MG
2295
2296 cond_resched();
2297
2298 /* We now go into synchronous reclaim */
2299 cpuset_memory_pressure_bump();
c06b1fca 2300 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2301 lockdep_set_current_reclaim_state(gfp_mask);
2302 reclaim_state.reclaimed_slab = 0;
c06b1fca 2303 current->reclaim_state = &reclaim_state;
11e33f6a 2304
bba90710 2305 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
11e33f6a 2306
c06b1fca 2307 current->reclaim_state = NULL;
11e33f6a 2308 lockdep_clear_current_reclaim_state();
c06b1fca 2309 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2310
2311 cond_resched();
2312
bba90710
MS
2313 return progress;
2314}
2315
2316/* The really slow allocator path where we enter direct reclaim */
2317static inline struct page *
2318__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2319 struct zonelist *zonelist, enum zone_type high_zoneidx,
2320 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2321 int migratetype, unsigned long *did_some_progress)
2322{
2323 struct page *page = NULL;
2324 bool drained = false;
2325
2326 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2327 nodemask);
9ee493ce
MG
2328 if (unlikely(!(*did_some_progress)))
2329 return NULL;
11e33f6a 2330
76d3fbf8 2331 /* After successful reclaim, reconsider all zones for allocation */
e5adfffc 2332 if (IS_ENABLED(CONFIG_NUMA))
76d3fbf8
MG
2333 zlc_clear_zones_full(zonelist);
2334
9ee493ce
MG
2335retry:
2336 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2337 zonelist, high_zoneidx,
cfd19c5a
MG
2338 alloc_flags & ~ALLOC_NO_WATERMARKS,
2339 preferred_zone, migratetype);
9ee493ce
MG
2340
2341 /*
2342 * If an allocation failed after direct reclaim, it could be because
2343 * pages are pinned on the per-cpu lists. Drain them and try again
2344 */
2345 if (!page && !drained) {
2346 drain_all_pages();
2347 drained = true;
2348 goto retry;
2349 }
2350
11e33f6a
MG
2351 return page;
2352}
2353
1da177e4 2354/*
11e33f6a
MG
2355 * This is called in the allocator slow-path if the allocation request is of
2356 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2357 */
11e33f6a
MG
2358static inline struct page *
2359__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2360 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2361 nodemask_t *nodemask, struct zone *preferred_zone,
2362 int migratetype)
11e33f6a
MG
2363{
2364 struct page *page;
2365
2366 do {
2367 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2368 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 2369 preferred_zone, migratetype);
11e33f6a
MG
2370
2371 if (!page && gfp_mask & __GFP_NOFAIL)
0e093d99 2372 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
2373 } while (!page && (gfp_mask & __GFP_NOFAIL));
2374
2375 return page;
2376}
2377
3a025760
JW
2378static void reset_alloc_batches(struct zonelist *zonelist,
2379 enum zone_type high_zoneidx,
2380 struct zone *preferred_zone)
1da177e4 2381{
dd1a239f
MG
2382 struct zoneref *z;
2383 struct zone *zone;
1da177e4 2384
81c0a2bb 2385 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
81c0a2bb
JW
2386 /*
2387 * Only reset the batches of zones that were actually
3a025760
JW
2388 * considered in the fairness pass, we don't want to
2389 * trash fairness information for zones that are not
81c0a2bb
JW
2390 * actually part of this zonelist's round-robin cycle.
2391 */
fff4068c 2392 if (!zone_local(preferred_zone, zone))
81c0a2bb
JW
2393 continue;
2394 mod_zone_page_state(zone, NR_ALLOC_BATCH,
3a025760
JW
2395 high_wmark_pages(zone) - low_wmark_pages(zone) -
2396 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
81c0a2bb 2397 }
11e33f6a 2398}
cf40bd16 2399
3a025760
JW
2400static void wake_all_kswapds(unsigned int order,
2401 struct zonelist *zonelist,
2402 enum zone_type high_zoneidx,
2403 struct zone *preferred_zone)
2404{
2405 struct zoneref *z;
2406 struct zone *zone;
2407
2408 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2409 wakeup_kswapd(zone, order, zone_idx(preferred_zone));
2410}
2411
341ce06f
PZ
2412static inline int
2413gfp_to_alloc_flags(gfp_t gfp_mask)
2414{
341ce06f
PZ
2415 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2416 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 2417
a56f57ff 2418 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2419 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2420
341ce06f
PZ
2421 /*
2422 * The caller may dip into page reserves a bit more if the caller
2423 * cannot run direct reclaim, or if the caller has realtime scheduling
2424 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2425 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2426 */
e6223a3b 2427 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2428
341ce06f 2429 if (!wait) {
5c3240d9
AA
2430 /*
2431 * Not worth trying to allocate harder for
2432 * __GFP_NOMEMALLOC even if it can't schedule.
2433 */
2434 if (!(gfp_mask & __GFP_NOMEMALLOC))
2435 alloc_flags |= ALLOC_HARDER;
523b9458 2436 /*
341ce06f
PZ
2437 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2438 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 2439 */
341ce06f 2440 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2441 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2442 alloc_flags |= ALLOC_HARDER;
2443
b37f1dd0
MG
2444 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2445 if (gfp_mask & __GFP_MEMALLOC)
2446 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
2447 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2448 alloc_flags |= ALLOC_NO_WATERMARKS;
2449 else if (!in_interrupt() &&
2450 ((current->flags & PF_MEMALLOC) ||
2451 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 2452 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2453 }
d95ea5d1
BZ
2454#ifdef CONFIG_CMA
2455 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2456 alloc_flags |= ALLOC_CMA;
2457#endif
341ce06f
PZ
2458 return alloc_flags;
2459}
2460
072bb0aa
MG
2461bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2462{
b37f1dd0 2463 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
2464}
2465
11e33f6a
MG
2466static inline struct page *
2467__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2468 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2469 nodemask_t *nodemask, struct zone *preferred_zone,
2470 int migratetype)
11e33f6a
MG
2471{
2472 const gfp_t wait = gfp_mask & __GFP_WAIT;
2473 struct page *page = NULL;
2474 int alloc_flags;
2475 unsigned long pages_reclaimed = 0;
2476 unsigned long did_some_progress;
77f1fe6b 2477 bool sync_migration = false;
66199712 2478 bool deferred_compaction = false;
c67fe375 2479 bool contended_compaction = false;
1da177e4 2480
72807a74
MG
2481 /*
2482 * In the slowpath, we sanity check order to avoid ever trying to
2483 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2484 * be using allocators in order of preference for an area that is
2485 * too large.
2486 */
1fc28b70
MG
2487 if (order >= MAX_ORDER) {
2488 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2489 return NULL;
1fc28b70 2490 }
1da177e4 2491
952f3b51
CL
2492 /*
2493 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2494 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2495 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2496 * using a larger set of nodes after it has established that the
2497 * allowed per node queues are empty and that nodes are
2498 * over allocated.
2499 */
3a025760
JW
2500 if (IS_ENABLED(CONFIG_NUMA) &&
2501 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
952f3b51
CL
2502 goto nopage;
2503
cc4a6851 2504restart:
3a025760
JW
2505 if (!(gfp_mask & __GFP_NO_KSWAPD))
2506 wake_all_kswapds(order, zonelist, high_zoneidx, preferred_zone);
1da177e4 2507
9bf2229f 2508 /*
7fb1d9fc
RS
2509 * OK, we're below the kswapd watermark and have kicked background
2510 * reclaim. Now things get more complex, so set up alloc_flags according
2511 * to how we want to proceed.
9bf2229f 2512 */
341ce06f 2513 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2514
f33261d7
DR
2515 /*
2516 * Find the true preferred zone if the allocation is unconstrained by
2517 * cpusets.
2518 */
2519 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2520 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2521 &preferred_zone);
2522
cfa54a0f 2523rebalance:
341ce06f 2524 /* This is the last chance, in general, before the goto nopage. */
19770b32 2525 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
2526 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2527 preferred_zone, migratetype);
7fb1d9fc
RS
2528 if (page)
2529 goto got_pg;
1da177e4 2530
11e33f6a 2531 /* Allocate without watermarks if the context allows */
341ce06f 2532 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
2533 /*
2534 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2535 * the allocation is high priority and these type of
2536 * allocations are system rather than user orientated
2537 */
2538 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2539
341ce06f
PZ
2540 page = __alloc_pages_high_priority(gfp_mask, order,
2541 zonelist, high_zoneidx, nodemask,
2542 preferred_zone, migratetype);
cfd19c5a 2543 if (page) {
341ce06f 2544 goto got_pg;
cfd19c5a 2545 }
1da177e4
LT
2546 }
2547
2548 /* Atomic allocations - we can't balance anything */
aed0a0e3
DR
2549 if (!wait) {
2550 /*
2551 * All existing users of the deprecated __GFP_NOFAIL are
2552 * blockable, so warn of any new users that actually allow this
2553 * type of allocation to fail.
2554 */
2555 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 2556 goto nopage;
aed0a0e3 2557 }
1da177e4 2558
341ce06f 2559 /* Avoid recursion of direct reclaim */
c06b1fca 2560 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
2561 goto nopage;
2562
6583bb64
DR
2563 /* Avoid allocations with no watermarks from looping endlessly */
2564 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2565 goto nopage;
2566
77f1fe6b
MG
2567 /*
2568 * Try direct compaction. The first pass is asynchronous. Subsequent
2569 * attempts after direct reclaim are synchronous
2570 */
56de7263
MG
2571 page = __alloc_pages_direct_compact(gfp_mask, order,
2572 zonelist, high_zoneidx,
2573 nodemask,
2574 alloc_flags, preferred_zone,
66199712 2575 migratetype, sync_migration,
c67fe375 2576 &contended_compaction,
66199712
MG
2577 &deferred_compaction,
2578 &did_some_progress);
56de7263
MG
2579 if (page)
2580 goto got_pg;
c6a140bf 2581 sync_migration = true;
56de7263 2582
31f8d42d
LT
2583 /*
2584 * If compaction is deferred for high-order allocations, it is because
2585 * sync compaction recently failed. In this is the case and the caller
2586 * requested a movable allocation that does not heavily disrupt the
2587 * system then fail the allocation instead of entering direct reclaim.
2588 */
2589 if ((deferred_compaction || contended_compaction) &&
caf49191 2590 (gfp_mask & __GFP_NO_KSWAPD))
31f8d42d 2591 goto nopage;
66199712 2592
11e33f6a
MG
2593 /* Try direct reclaim and then allocating */
2594 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2595 zonelist, high_zoneidx,
2596 nodemask,
5117f45d 2597 alloc_flags, preferred_zone,
3dd28266 2598 migratetype, &did_some_progress);
11e33f6a
MG
2599 if (page)
2600 goto got_pg;
1da177e4 2601
e33c3b5e 2602 /*
11e33f6a
MG
2603 * If we failed to make any progress reclaiming, then we are
2604 * running out of options and have to consider going OOM
e33c3b5e 2605 */
11e33f6a 2606 if (!did_some_progress) {
b9921ecd 2607 if (oom_gfp_allowed(gfp_mask)) {
7f33d49a
RW
2608 if (oom_killer_disabled)
2609 goto nopage;
29fd66d2
DR
2610 /* Coredumps can quickly deplete all memory reserves */
2611 if ((current->flags & PF_DUMPCORE) &&
2612 !(gfp_mask & __GFP_NOFAIL))
2613 goto nopage;
11e33f6a
MG
2614 page = __alloc_pages_may_oom(gfp_mask, order,
2615 zonelist, high_zoneidx,
3dd28266
MG
2616 nodemask, preferred_zone,
2617 migratetype);
11e33f6a
MG
2618 if (page)
2619 goto got_pg;
1da177e4 2620
03668b3c
DR
2621 if (!(gfp_mask & __GFP_NOFAIL)) {
2622 /*
2623 * The oom killer is not called for high-order
2624 * allocations that may fail, so if no progress
2625 * is being made, there are no other options and
2626 * retrying is unlikely to help.
2627 */
2628 if (order > PAGE_ALLOC_COSTLY_ORDER)
2629 goto nopage;
2630 /*
2631 * The oom killer is not called for lowmem
2632 * allocations to prevent needlessly killing
2633 * innocent tasks.
2634 */
2635 if (high_zoneidx < ZONE_NORMAL)
2636 goto nopage;
2637 }
e2c55dc8 2638
ff0ceb9d
DR
2639 goto restart;
2640 }
1da177e4
LT
2641 }
2642
11e33f6a 2643 /* Check if we should retry the allocation */
a41f24ea 2644 pages_reclaimed += did_some_progress;
f90ac398
MG
2645 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2646 pages_reclaimed)) {
11e33f6a 2647 /* Wait for some write requests to complete then retry */
0e093d99 2648 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1da177e4 2649 goto rebalance;
3e7d3449
MG
2650 } else {
2651 /*
2652 * High-order allocations do not necessarily loop after
2653 * direct reclaim and reclaim/compaction depends on compaction
2654 * being called after reclaim so call directly if necessary
2655 */
2656 page = __alloc_pages_direct_compact(gfp_mask, order,
2657 zonelist, high_zoneidx,
2658 nodemask,
2659 alloc_flags, preferred_zone,
66199712 2660 migratetype, sync_migration,
c67fe375 2661 &contended_compaction,
66199712
MG
2662 &deferred_compaction,
2663 &did_some_progress);
3e7d3449
MG
2664 if (page)
2665 goto got_pg;
1da177e4
LT
2666 }
2667
2668nopage:
a238ab5b 2669 warn_alloc_failed(gfp_mask, order, NULL);
b1eeab67 2670 return page;
1da177e4 2671got_pg:
b1eeab67
VN
2672 if (kmemcheck_enabled)
2673 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
11e33f6a 2674
072bb0aa 2675 return page;
1da177e4 2676}
11e33f6a
MG
2677
2678/*
2679 * This is the 'heart' of the zoned buddy allocator.
2680 */
2681struct page *
2682__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2683 struct zonelist *zonelist, nodemask_t *nodemask)
2684{
2685 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2686 struct zone *preferred_zone;
cc9a6c87 2687 struct page *page = NULL;
3dd28266 2688 int migratetype = allocflags_to_migratetype(gfp_mask);
cc9a6c87 2689 unsigned int cpuset_mems_cookie;
3a025760 2690 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
11e33f6a 2691
dcce284a
BH
2692 gfp_mask &= gfp_allowed_mask;
2693
11e33f6a
MG
2694 lockdep_trace_alloc(gfp_mask);
2695
2696 might_sleep_if(gfp_mask & __GFP_WAIT);
2697
2698 if (should_fail_alloc_page(gfp_mask, order))
2699 return NULL;
2700
2701 /*
2702 * Check the zones suitable for the gfp_mask contain at least one
2703 * valid zone. It's possible to have an empty zonelist as a result
2704 * of GFP_THISNODE and a memoryless node
2705 */
2706 if (unlikely(!zonelist->_zonerefs->zone))
2707 return NULL;
2708
cc9a6c87 2709retry_cpuset:
d26914d1 2710 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 2711
5117f45d 2712 /* The preferred zone is used for statistics later */
f33261d7
DR
2713 first_zones_zonelist(zonelist, high_zoneidx,
2714 nodemask ? : &cpuset_current_mems_allowed,
2715 &preferred_zone);
cc9a6c87
MG
2716 if (!preferred_zone)
2717 goto out;
5117f45d 2718
d95ea5d1
BZ
2719#ifdef CONFIG_CMA
2720 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2721 alloc_flags |= ALLOC_CMA;
2722#endif
3a025760 2723retry:
5117f45d 2724 /* First allocation attempt */
11e33f6a 2725 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
d95ea5d1 2726 zonelist, high_zoneidx, alloc_flags,
3dd28266 2727 preferred_zone, migratetype);
21caf2fc 2728 if (unlikely(!page)) {
3a025760
JW
2729 /*
2730 * The first pass makes sure allocations are spread
2731 * fairly within the local node. However, the local
2732 * node might have free pages left after the fairness
2733 * batches are exhausted, and remote zones haven't
2734 * even been considered yet. Try once more without
2735 * fairness, and include remote zones now, before
2736 * entering the slowpath and waking kswapd: prefer
2737 * spilling to a remote zone over swapping locally.
2738 */
2739 if (alloc_flags & ALLOC_FAIR) {
2740 reset_alloc_batches(zonelist, high_zoneidx,
2741 preferred_zone);
2742 alloc_flags &= ~ALLOC_FAIR;
2743 goto retry;
2744 }
21caf2fc
ML
2745 /*
2746 * Runtime PM, block IO and its error handling path
2747 * can deadlock because I/O on the device might not
2748 * complete.
2749 */
2750 gfp_mask = memalloc_noio_flags(gfp_mask);
11e33f6a 2751 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2752 zonelist, high_zoneidx, nodemask,
3dd28266 2753 preferred_zone, migratetype);
21caf2fc 2754 }
11e33f6a 2755
4b4f278c 2756 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
cc9a6c87
MG
2757
2758out:
2759 /*
2760 * When updating a task's mems_allowed, it is possible to race with
2761 * parallel threads in such a way that an allocation can fail while
2762 * the mask is being updated. If a page allocation is about to fail,
2763 * check if the cpuset changed during allocation and if so, retry.
2764 */
d26914d1 2765 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87
MG
2766 goto retry_cpuset;
2767
11e33f6a 2768 return page;
1da177e4 2769}
d239171e 2770EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2771
2772/*
2773 * Common helper functions.
2774 */
920c7a5d 2775unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2776{
945a1113
AM
2777 struct page *page;
2778
2779 /*
2780 * __get_free_pages() returns a 32-bit address, which cannot represent
2781 * a highmem page
2782 */
2783 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2784
1da177e4
LT
2785 page = alloc_pages(gfp_mask, order);
2786 if (!page)
2787 return 0;
2788 return (unsigned long) page_address(page);
2789}
1da177e4
LT
2790EXPORT_SYMBOL(__get_free_pages);
2791
920c7a5d 2792unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2793{
945a1113 2794 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2795}
1da177e4
LT
2796EXPORT_SYMBOL(get_zeroed_page);
2797
920c7a5d 2798void __free_pages(struct page *page, unsigned int order)
1da177e4 2799{
b5810039 2800 if (put_page_testzero(page)) {
1da177e4 2801 if (order == 0)
fc91668e 2802 free_hot_cold_page(page, 0);
1da177e4
LT
2803 else
2804 __free_pages_ok(page, order);
2805 }
2806}
2807
2808EXPORT_SYMBOL(__free_pages);
2809
920c7a5d 2810void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2811{
2812 if (addr != 0) {
725d704e 2813 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2814 __free_pages(virt_to_page((void *)addr), order);
2815 }
2816}
2817
2818EXPORT_SYMBOL(free_pages);
2819
6a1a0d3b 2820/*
52383431
VD
2821 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
2822 * of the current memory cgroup.
6a1a0d3b 2823 *
52383431
VD
2824 * It should be used when the caller would like to use kmalloc, but since the
2825 * allocation is large, it has to fall back to the page allocator.
2826 */
2827struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
2828{
2829 struct page *page;
2830 struct mem_cgroup *memcg = NULL;
2831
2832 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2833 return NULL;
2834 page = alloc_pages(gfp_mask, order);
2835 memcg_kmem_commit_charge(page, memcg, order);
2836 return page;
2837}
2838
2839struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
2840{
2841 struct page *page;
2842 struct mem_cgroup *memcg = NULL;
2843
2844 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2845 return NULL;
2846 page = alloc_pages_node(nid, gfp_mask, order);
2847 memcg_kmem_commit_charge(page, memcg, order);
2848 return page;
2849}
2850
2851/*
2852 * __free_kmem_pages and free_kmem_pages will free pages allocated with
2853 * alloc_kmem_pages.
6a1a0d3b 2854 */
52383431 2855void __free_kmem_pages(struct page *page, unsigned int order)
6a1a0d3b
GC
2856{
2857 memcg_kmem_uncharge_pages(page, order);
2858 __free_pages(page, order);
2859}
2860
52383431 2861void free_kmem_pages(unsigned long addr, unsigned int order)
6a1a0d3b
GC
2862{
2863 if (addr != 0) {
2864 VM_BUG_ON(!virt_addr_valid((void *)addr));
52383431 2865 __free_kmem_pages(virt_to_page((void *)addr), order);
6a1a0d3b
GC
2866 }
2867}
2868
ee85c2e1
AK
2869static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2870{
2871 if (addr) {
2872 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2873 unsigned long used = addr + PAGE_ALIGN(size);
2874
2875 split_page(virt_to_page((void *)addr), order);
2876 while (used < alloc_end) {
2877 free_page(used);
2878 used += PAGE_SIZE;
2879 }
2880 }
2881 return (void *)addr;
2882}
2883
2be0ffe2
TT
2884/**
2885 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2886 * @size: the number of bytes to allocate
2887 * @gfp_mask: GFP flags for the allocation
2888 *
2889 * This function is similar to alloc_pages(), except that it allocates the
2890 * minimum number of pages to satisfy the request. alloc_pages() can only
2891 * allocate memory in power-of-two pages.
2892 *
2893 * This function is also limited by MAX_ORDER.
2894 *
2895 * Memory allocated by this function must be released by free_pages_exact().
2896 */
2897void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2898{
2899 unsigned int order = get_order(size);
2900 unsigned long addr;
2901
2902 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 2903 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
2904}
2905EXPORT_SYMBOL(alloc_pages_exact);
2906
ee85c2e1
AK
2907/**
2908 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2909 * pages on a node.
b5e6ab58 2910 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
2911 * @size: the number of bytes to allocate
2912 * @gfp_mask: GFP flags for the allocation
2913 *
2914 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2915 * back.
2916 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2917 * but is not exact.
2918 */
2919void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2920{
2921 unsigned order = get_order(size);
2922 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2923 if (!p)
2924 return NULL;
2925 return make_alloc_exact((unsigned long)page_address(p), order, size);
2926}
2927EXPORT_SYMBOL(alloc_pages_exact_nid);
2928
2be0ffe2
TT
2929/**
2930 * free_pages_exact - release memory allocated via alloc_pages_exact()
2931 * @virt: the value returned by alloc_pages_exact.
2932 * @size: size of allocation, same value as passed to alloc_pages_exact().
2933 *
2934 * Release the memory allocated by a previous call to alloc_pages_exact.
2935 */
2936void free_pages_exact(void *virt, size_t size)
2937{
2938 unsigned long addr = (unsigned long)virt;
2939 unsigned long end = addr + PAGE_ALIGN(size);
2940
2941 while (addr < end) {
2942 free_page(addr);
2943 addr += PAGE_SIZE;
2944 }
2945}
2946EXPORT_SYMBOL(free_pages_exact);
2947
e0fb5815
ZY
2948/**
2949 * nr_free_zone_pages - count number of pages beyond high watermark
2950 * @offset: The zone index of the highest zone
2951 *
2952 * nr_free_zone_pages() counts the number of counts pages which are beyond the
2953 * high watermark within all zones at or below a given zone index. For each
2954 * zone, the number of pages is calculated as:
834405c3 2955 * managed_pages - high_pages
e0fb5815 2956 */
ebec3862 2957static unsigned long nr_free_zone_pages(int offset)
1da177e4 2958{
dd1a239f 2959 struct zoneref *z;
54a6eb5c
MG
2960 struct zone *zone;
2961
e310fd43 2962 /* Just pick one node, since fallback list is circular */
ebec3862 2963 unsigned long sum = 0;
1da177e4 2964
0e88460d 2965 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2966
54a6eb5c 2967 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 2968 unsigned long size = zone->managed_pages;
41858966 2969 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2970 if (size > high)
2971 sum += size - high;
1da177e4
LT
2972 }
2973
2974 return sum;
2975}
2976
e0fb5815
ZY
2977/**
2978 * nr_free_buffer_pages - count number of pages beyond high watermark
2979 *
2980 * nr_free_buffer_pages() counts the number of pages which are beyond the high
2981 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 2982 */
ebec3862 2983unsigned long nr_free_buffer_pages(void)
1da177e4 2984{
af4ca457 2985 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 2986}
c2f1a551 2987EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 2988
e0fb5815
ZY
2989/**
2990 * nr_free_pagecache_pages - count number of pages beyond high watermark
2991 *
2992 * nr_free_pagecache_pages() counts the number of pages which are beyond the
2993 * high watermark within all zones.
1da177e4 2994 */
ebec3862 2995unsigned long nr_free_pagecache_pages(void)
1da177e4 2996{
2a1e274a 2997 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 2998}
08e0f6a9
CL
2999
3000static inline void show_node(struct zone *zone)
1da177e4 3001{
e5adfffc 3002 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 3003 printk("Node %d ", zone_to_nid(zone));
1da177e4 3004}
1da177e4 3005
1da177e4
LT
3006void si_meminfo(struct sysinfo *val)
3007{
3008 val->totalram = totalram_pages;
3009 val->sharedram = 0;
d23ad423 3010 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 3011 val->bufferram = nr_blockdev_pages();
1da177e4
LT
3012 val->totalhigh = totalhigh_pages;
3013 val->freehigh = nr_free_highpages();
1da177e4
LT
3014 val->mem_unit = PAGE_SIZE;
3015}
3016
3017EXPORT_SYMBOL(si_meminfo);
3018
3019#ifdef CONFIG_NUMA
3020void si_meminfo_node(struct sysinfo *val, int nid)
3021{
cdd91a77
JL
3022 int zone_type; /* needs to be signed */
3023 unsigned long managed_pages = 0;
1da177e4
LT
3024 pg_data_t *pgdat = NODE_DATA(nid);
3025
cdd91a77
JL
3026 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3027 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3028 val->totalram = managed_pages;
d23ad423 3029 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 3030#ifdef CONFIG_HIGHMEM
b40da049 3031 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
d23ad423
CL
3032 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3033 NR_FREE_PAGES);
98d2b0eb
CL
3034#else
3035 val->totalhigh = 0;
3036 val->freehigh = 0;
3037#endif
1da177e4
LT
3038 val->mem_unit = PAGE_SIZE;
3039}
3040#endif
3041
ddd588b5 3042/*
7bf02ea2
DR
3043 * Determine whether the node should be displayed or not, depending on whether
3044 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 3045 */
7bf02ea2 3046bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
3047{
3048 bool ret = false;
cc9a6c87 3049 unsigned int cpuset_mems_cookie;
ddd588b5
DR
3050
3051 if (!(flags & SHOW_MEM_FILTER_NODES))
3052 goto out;
3053
cc9a6c87 3054 do {
d26914d1 3055 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3056 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 3057 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
3058out:
3059 return ret;
3060}
3061
1da177e4
LT
3062#define K(x) ((x) << (PAGE_SHIFT-10))
3063
377e4f16
RV
3064static void show_migration_types(unsigned char type)
3065{
3066 static const char types[MIGRATE_TYPES] = {
3067 [MIGRATE_UNMOVABLE] = 'U',
3068 [MIGRATE_RECLAIMABLE] = 'E',
3069 [MIGRATE_MOVABLE] = 'M',
3070 [MIGRATE_RESERVE] = 'R',
3071#ifdef CONFIG_CMA
3072 [MIGRATE_CMA] = 'C',
3073#endif
194159fb 3074#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 3075 [MIGRATE_ISOLATE] = 'I',
194159fb 3076#endif
377e4f16
RV
3077 };
3078 char tmp[MIGRATE_TYPES + 1];
3079 char *p = tmp;
3080 int i;
3081
3082 for (i = 0; i < MIGRATE_TYPES; i++) {
3083 if (type & (1 << i))
3084 *p++ = types[i];
3085 }
3086
3087 *p = '\0';
3088 printk("(%s) ", tmp);
3089}
3090
1da177e4
LT
3091/*
3092 * Show free area list (used inside shift_scroll-lock stuff)
3093 * We also calculate the percentage fragmentation. We do this by counting the
3094 * memory on each free list with the exception of the first item on the list.
ddd588b5
DR
3095 * Suppresses nodes that are not allowed by current's cpuset if
3096 * SHOW_MEM_FILTER_NODES is passed.
1da177e4 3097 */
7bf02ea2 3098void show_free_areas(unsigned int filter)
1da177e4 3099{
c7241913 3100 int cpu;
1da177e4
LT
3101 struct zone *zone;
3102
ee99c71c 3103 for_each_populated_zone(zone) {
7bf02ea2 3104 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3105 continue;
c7241913
JS
3106 show_node(zone);
3107 printk("%s per-cpu:\n", zone->name);
1da177e4 3108
6b482c67 3109 for_each_online_cpu(cpu) {
1da177e4
LT
3110 struct per_cpu_pageset *pageset;
3111
99dcc3e5 3112 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 3113
3dfa5721
CL
3114 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3115 cpu, pageset->pcp.high,
3116 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
3117 }
3118 }
3119
a731286d
KM
3120 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3121 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 3122 " unevictable:%lu"
b76146ed 3123 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 3124 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a
BZ
3125 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3126 " free_cma:%lu\n",
4f98a2fe 3127 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 3128 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
3129 global_page_state(NR_ISOLATED_ANON),
3130 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 3131 global_page_state(NR_INACTIVE_FILE),
a731286d 3132 global_page_state(NR_ISOLATED_FILE),
7b854121 3133 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 3134 global_page_state(NR_FILE_DIRTY),
ce866b34 3135 global_page_state(NR_WRITEBACK),
fd39fc85 3136 global_page_state(NR_UNSTABLE_NFS),
d23ad423 3137 global_page_state(NR_FREE_PAGES),
3701b033
KM
3138 global_page_state(NR_SLAB_RECLAIMABLE),
3139 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 3140 global_page_state(NR_FILE_MAPPED),
4b02108a 3141 global_page_state(NR_SHMEM),
a25700a5 3142 global_page_state(NR_PAGETABLE),
d1ce749a
BZ
3143 global_page_state(NR_BOUNCE),
3144 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 3145
ee99c71c 3146 for_each_populated_zone(zone) {
1da177e4
LT
3147 int i;
3148
7bf02ea2 3149 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3150 continue;
1da177e4
LT
3151 show_node(zone);
3152 printk("%s"
3153 " free:%lukB"
3154 " min:%lukB"
3155 " low:%lukB"
3156 " high:%lukB"
4f98a2fe
RR
3157 " active_anon:%lukB"
3158 " inactive_anon:%lukB"
3159 " active_file:%lukB"
3160 " inactive_file:%lukB"
7b854121 3161 " unevictable:%lukB"
a731286d
KM
3162 " isolated(anon):%lukB"
3163 " isolated(file):%lukB"
1da177e4 3164 " present:%lukB"
9feedc9d 3165 " managed:%lukB"
4a0aa73f
KM
3166 " mlocked:%lukB"
3167 " dirty:%lukB"
3168 " writeback:%lukB"
3169 " mapped:%lukB"
4b02108a 3170 " shmem:%lukB"
4a0aa73f
KM
3171 " slab_reclaimable:%lukB"
3172 " slab_unreclaimable:%lukB"
c6a7f572 3173 " kernel_stack:%lukB"
4a0aa73f
KM
3174 " pagetables:%lukB"
3175 " unstable:%lukB"
3176 " bounce:%lukB"
d1ce749a 3177 " free_cma:%lukB"
4a0aa73f 3178 " writeback_tmp:%lukB"
1da177e4
LT
3179 " pages_scanned:%lu"
3180 " all_unreclaimable? %s"
3181 "\n",
3182 zone->name,
88f5acf8 3183 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
3184 K(min_wmark_pages(zone)),
3185 K(low_wmark_pages(zone)),
3186 K(high_wmark_pages(zone)),
4f98a2fe
RR
3187 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3188 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3189 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3190 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 3191 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
3192 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3193 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 3194 K(zone->present_pages),
9feedc9d 3195 K(zone->managed_pages),
4a0aa73f
KM
3196 K(zone_page_state(zone, NR_MLOCK)),
3197 K(zone_page_state(zone, NR_FILE_DIRTY)),
3198 K(zone_page_state(zone, NR_WRITEBACK)),
3199 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 3200 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
3201 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3202 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
3203 zone_page_state(zone, NR_KERNEL_STACK) *
3204 THREAD_SIZE / 1024,
4a0aa73f
KM
3205 K(zone_page_state(zone, NR_PAGETABLE)),
3206 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3207 K(zone_page_state(zone, NR_BOUNCE)),
d1ce749a 3208 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 3209 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
1da177e4 3210 zone->pages_scanned,
6e543d57 3211 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
3212 );
3213 printk("lowmem_reserve[]:");
3214 for (i = 0; i < MAX_NR_ZONES; i++)
3215 printk(" %lu", zone->lowmem_reserve[i]);
3216 printk("\n");
3217 }
3218
ee99c71c 3219 for_each_populated_zone(zone) {
b8af2941 3220 unsigned long nr[MAX_ORDER], flags, order, total = 0;
377e4f16 3221 unsigned char types[MAX_ORDER];
1da177e4 3222
7bf02ea2 3223 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3224 continue;
1da177e4
LT
3225 show_node(zone);
3226 printk("%s: ", zone->name);
1da177e4
LT
3227
3228 spin_lock_irqsave(&zone->lock, flags);
3229 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
3230 struct free_area *area = &zone->free_area[order];
3231 int type;
3232
3233 nr[order] = area->nr_free;
8f9de51a 3234 total += nr[order] << order;
377e4f16
RV
3235
3236 types[order] = 0;
3237 for (type = 0; type < MIGRATE_TYPES; type++) {
3238 if (!list_empty(&area->free_list[type]))
3239 types[order] |= 1 << type;
3240 }
1da177e4
LT
3241 }
3242 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 3243 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 3244 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
3245 if (nr[order])
3246 show_migration_types(types[order]);
3247 }
1da177e4
LT
3248 printk("= %lukB\n", K(total));
3249 }
3250
949f7ec5
DR
3251 hugetlb_show_meminfo();
3252
e6f3602d
LW
3253 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3254
1da177e4
LT
3255 show_swap_cache_info();
3256}
3257
19770b32
MG
3258static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3259{
3260 zoneref->zone = zone;
3261 zoneref->zone_idx = zone_idx(zone);
3262}
3263
1da177e4
LT
3264/*
3265 * Builds allocation fallback zone lists.
1a93205b
CL
3266 *
3267 * Add all populated zones of a node to the zonelist.
1da177e4 3268 */
f0c0b2b8 3269static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 3270 int nr_zones)
1da177e4 3271{
1a93205b 3272 struct zone *zone;
bc732f1d 3273 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
3274
3275 do {
2f6726e5 3276 zone_type--;
070f8032 3277 zone = pgdat->node_zones + zone_type;
1a93205b 3278 if (populated_zone(zone)) {
dd1a239f
MG
3279 zoneref_set_zone(zone,
3280 &zonelist->_zonerefs[nr_zones++]);
070f8032 3281 check_highest_zone(zone_type);
1da177e4 3282 }
2f6726e5 3283 } while (zone_type);
bc732f1d 3284
070f8032 3285 return nr_zones;
1da177e4
LT
3286}
3287
f0c0b2b8
KH
3288
3289/*
3290 * zonelist_order:
3291 * 0 = automatic detection of better ordering.
3292 * 1 = order by ([node] distance, -zonetype)
3293 * 2 = order by (-zonetype, [node] distance)
3294 *
3295 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3296 * the same zonelist. So only NUMA can configure this param.
3297 */
3298#define ZONELIST_ORDER_DEFAULT 0
3299#define ZONELIST_ORDER_NODE 1
3300#define ZONELIST_ORDER_ZONE 2
3301
3302/* zonelist order in the kernel.
3303 * set_zonelist_order() will set this to NODE or ZONE.
3304 */
3305static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3306static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3307
3308
1da177e4 3309#ifdef CONFIG_NUMA
f0c0b2b8
KH
3310/* The value user specified ....changed by config */
3311static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3312/* string for sysctl */
3313#define NUMA_ZONELIST_ORDER_LEN 16
3314char numa_zonelist_order[16] = "default";
3315
3316/*
3317 * interface for configure zonelist ordering.
3318 * command line option "numa_zonelist_order"
3319 * = "[dD]efault - default, automatic configuration.
3320 * = "[nN]ode - order by node locality, then by zone within node
3321 * = "[zZ]one - order by zone, then by locality within zone
3322 */
3323
3324static int __parse_numa_zonelist_order(char *s)
3325{
3326 if (*s == 'd' || *s == 'D') {
3327 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3328 } else if (*s == 'n' || *s == 'N') {
3329 user_zonelist_order = ZONELIST_ORDER_NODE;
3330 } else if (*s == 'z' || *s == 'Z') {
3331 user_zonelist_order = ZONELIST_ORDER_ZONE;
3332 } else {
3333 printk(KERN_WARNING
3334 "Ignoring invalid numa_zonelist_order value: "
3335 "%s\n", s);
3336 return -EINVAL;
3337 }
3338 return 0;
3339}
3340
3341static __init int setup_numa_zonelist_order(char *s)
3342{
ecb256f8
VL
3343 int ret;
3344
3345 if (!s)
3346 return 0;
3347
3348 ret = __parse_numa_zonelist_order(s);
3349 if (ret == 0)
3350 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3351
3352 return ret;
f0c0b2b8
KH
3353}
3354early_param("numa_zonelist_order", setup_numa_zonelist_order);
3355
3356/*
3357 * sysctl handler for numa_zonelist_order
3358 */
3359int numa_zonelist_order_handler(ctl_table *table, int write,
8d65af78 3360 void __user *buffer, size_t *length,
f0c0b2b8
KH
3361 loff_t *ppos)
3362{
3363 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3364 int ret;
443c6f14 3365 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3366
443c6f14 3367 mutex_lock(&zl_order_mutex);
dacbde09
CG
3368 if (write) {
3369 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3370 ret = -EINVAL;
3371 goto out;
3372 }
3373 strcpy(saved_string, (char *)table->data);
3374 }
8d65af78 3375 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 3376 if (ret)
443c6f14 3377 goto out;
f0c0b2b8
KH
3378 if (write) {
3379 int oldval = user_zonelist_order;
dacbde09
CG
3380
3381 ret = __parse_numa_zonelist_order((char *)table->data);
3382 if (ret) {
f0c0b2b8
KH
3383 /*
3384 * bogus value. restore saved string
3385 */
dacbde09 3386 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
3387 NUMA_ZONELIST_ORDER_LEN);
3388 user_zonelist_order = oldval;
4eaf3f64
HL
3389 } else if (oldval != user_zonelist_order) {
3390 mutex_lock(&zonelists_mutex);
9adb62a5 3391 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
3392 mutex_unlock(&zonelists_mutex);
3393 }
f0c0b2b8 3394 }
443c6f14
AK
3395out:
3396 mutex_unlock(&zl_order_mutex);
3397 return ret;
f0c0b2b8
KH
3398}
3399
3400
62bc62a8 3401#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
3402static int node_load[MAX_NUMNODES];
3403
1da177e4 3404/**
4dc3b16b 3405 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
3406 * @node: node whose fallback list we're appending
3407 * @used_node_mask: nodemask_t of already used nodes
3408 *
3409 * We use a number of factors to determine which is the next node that should
3410 * appear on a given node's fallback list. The node should not have appeared
3411 * already in @node's fallback list, and it should be the next closest node
3412 * according to the distance array (which contains arbitrary distance values
3413 * from each node to each node in the system), and should also prefer nodes
3414 * with no CPUs, since presumably they'll have very little allocation pressure
3415 * on them otherwise.
3416 * It returns -1 if no node is found.
3417 */
f0c0b2b8 3418static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 3419{
4cf808eb 3420 int n, val;
1da177e4 3421 int min_val = INT_MAX;
00ef2d2f 3422 int best_node = NUMA_NO_NODE;
a70f7302 3423 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 3424
4cf808eb
LT
3425 /* Use the local node if we haven't already */
3426 if (!node_isset(node, *used_node_mask)) {
3427 node_set(node, *used_node_mask);
3428 return node;
3429 }
1da177e4 3430
4b0ef1fe 3431 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
3432
3433 /* Don't want a node to appear more than once */
3434 if (node_isset(n, *used_node_mask))
3435 continue;
3436
1da177e4
LT
3437 /* Use the distance array to find the distance */
3438 val = node_distance(node, n);
3439
4cf808eb
LT
3440 /* Penalize nodes under us ("prefer the next node") */
3441 val += (n < node);
3442
1da177e4 3443 /* Give preference to headless and unused nodes */
a70f7302
RR
3444 tmp = cpumask_of_node(n);
3445 if (!cpumask_empty(tmp))
1da177e4
LT
3446 val += PENALTY_FOR_NODE_WITH_CPUS;
3447
3448 /* Slight preference for less loaded node */
3449 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3450 val += node_load[n];
3451
3452 if (val < min_val) {
3453 min_val = val;
3454 best_node = n;
3455 }
3456 }
3457
3458 if (best_node >= 0)
3459 node_set(best_node, *used_node_mask);
3460
3461 return best_node;
3462}
3463
f0c0b2b8
KH
3464
3465/*
3466 * Build zonelists ordered by node and zones within node.
3467 * This results in maximum locality--normal zone overflows into local
3468 * DMA zone, if any--but risks exhausting DMA zone.
3469 */
3470static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 3471{
f0c0b2b8 3472 int j;
1da177e4 3473 struct zonelist *zonelist;
f0c0b2b8 3474
54a6eb5c 3475 zonelist = &pgdat->node_zonelists[0];
dd1a239f 3476 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 3477 ;
bc732f1d 3478 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
3479 zonelist->_zonerefs[j].zone = NULL;
3480 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
3481}
3482
523b9458
CL
3483/*
3484 * Build gfp_thisnode zonelists
3485 */
3486static void build_thisnode_zonelists(pg_data_t *pgdat)
3487{
523b9458
CL
3488 int j;
3489 struct zonelist *zonelist;
3490
54a6eb5c 3491 zonelist = &pgdat->node_zonelists[1];
bc732f1d 3492 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
3493 zonelist->_zonerefs[j].zone = NULL;
3494 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
3495}
3496
f0c0b2b8
KH
3497/*
3498 * Build zonelists ordered by zone and nodes within zones.
3499 * This results in conserving DMA zone[s] until all Normal memory is
3500 * exhausted, but results in overflowing to remote node while memory
3501 * may still exist in local DMA zone.
3502 */
3503static int node_order[MAX_NUMNODES];
3504
3505static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3506{
f0c0b2b8
KH
3507 int pos, j, node;
3508 int zone_type; /* needs to be signed */
3509 struct zone *z;
3510 struct zonelist *zonelist;
3511
54a6eb5c
MG
3512 zonelist = &pgdat->node_zonelists[0];
3513 pos = 0;
3514 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3515 for (j = 0; j < nr_nodes; j++) {
3516 node = node_order[j];
3517 z = &NODE_DATA(node)->node_zones[zone_type];
3518 if (populated_zone(z)) {
dd1a239f
MG
3519 zoneref_set_zone(z,
3520 &zonelist->_zonerefs[pos++]);
54a6eb5c 3521 check_highest_zone(zone_type);
f0c0b2b8
KH
3522 }
3523 }
f0c0b2b8 3524 }
dd1a239f
MG
3525 zonelist->_zonerefs[pos].zone = NULL;
3526 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
3527}
3528
3529static int default_zonelist_order(void)
3530{
3531 int nid, zone_type;
b8af2941 3532 unsigned long low_kmem_size, total_size;
f0c0b2b8
KH
3533 struct zone *z;
3534 int average_size;
3535 /*
b8af2941 3536 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
f0c0b2b8
KH
3537 * If they are really small and used heavily, the system can fall
3538 * into OOM very easily.
e325c90f 3539 * This function detect ZONE_DMA/DMA32 size and configures zone order.
f0c0b2b8
KH
3540 */
3541 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3542 low_kmem_size = 0;
3543 total_size = 0;
3544 for_each_online_node(nid) {
3545 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3546 z = &NODE_DATA(nid)->node_zones[zone_type];
3547 if (populated_zone(z)) {
3548 if (zone_type < ZONE_NORMAL)
4f9f4774
JL
3549 low_kmem_size += z->managed_pages;
3550 total_size += z->managed_pages;
e325c90f
DR
3551 } else if (zone_type == ZONE_NORMAL) {
3552 /*
3553 * If any node has only lowmem, then node order
3554 * is preferred to allow kernel allocations
3555 * locally; otherwise, they can easily infringe
3556 * on other nodes when there is an abundance of
3557 * lowmem available to allocate from.
3558 */
3559 return ZONELIST_ORDER_NODE;
f0c0b2b8
KH
3560 }
3561 }
3562 }
3563 if (!low_kmem_size || /* there are no DMA area. */
3564 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3565 return ZONELIST_ORDER_NODE;
3566 /*
3567 * look into each node's config.
b8af2941
PK
3568 * If there is a node whose DMA/DMA32 memory is very big area on
3569 * local memory, NODE_ORDER may be suitable.
3570 */
37b07e41 3571 average_size = total_size /
4b0ef1fe 3572 (nodes_weight(node_states[N_MEMORY]) + 1);
f0c0b2b8
KH
3573 for_each_online_node(nid) {
3574 low_kmem_size = 0;
3575 total_size = 0;
3576 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3577 z = &NODE_DATA(nid)->node_zones[zone_type];
3578 if (populated_zone(z)) {
3579 if (zone_type < ZONE_NORMAL)
3580 low_kmem_size += z->present_pages;
3581 total_size += z->present_pages;
3582 }
3583 }
3584 if (low_kmem_size &&
3585 total_size > average_size && /* ignore small node */
3586 low_kmem_size > total_size * 70/100)
3587 return ZONELIST_ORDER_NODE;
3588 }
3589 return ZONELIST_ORDER_ZONE;
3590}
3591
3592static void set_zonelist_order(void)
3593{
3594 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3595 current_zonelist_order = default_zonelist_order();
3596 else
3597 current_zonelist_order = user_zonelist_order;
3598}
3599
3600static void build_zonelists(pg_data_t *pgdat)
3601{
3602 int j, node, load;
3603 enum zone_type i;
1da177e4 3604 nodemask_t used_mask;
f0c0b2b8
KH
3605 int local_node, prev_node;
3606 struct zonelist *zonelist;
3607 int order = current_zonelist_order;
1da177e4
LT
3608
3609 /* initialize zonelists */
523b9458 3610 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 3611 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
3612 zonelist->_zonerefs[0].zone = NULL;
3613 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
3614 }
3615
3616 /* NUMA-aware ordering of nodes */
3617 local_node = pgdat->node_id;
62bc62a8 3618 load = nr_online_nodes;
1da177e4
LT
3619 prev_node = local_node;
3620 nodes_clear(used_mask);
f0c0b2b8 3621
f0c0b2b8
KH
3622 memset(node_order, 0, sizeof(node_order));
3623 j = 0;
3624
1da177e4
LT
3625 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3626 /*
3627 * We don't want to pressure a particular node.
3628 * So adding penalty to the first node in same
3629 * distance group to make it round-robin.
3630 */
957f822a
DR
3631 if (node_distance(local_node, node) !=
3632 node_distance(local_node, prev_node))
f0c0b2b8
KH
3633 node_load[node] = load;
3634
1da177e4
LT
3635 prev_node = node;
3636 load--;
f0c0b2b8
KH
3637 if (order == ZONELIST_ORDER_NODE)
3638 build_zonelists_in_node_order(pgdat, node);
3639 else
3640 node_order[j++] = node; /* remember order */
3641 }
1da177e4 3642
f0c0b2b8
KH
3643 if (order == ZONELIST_ORDER_ZONE) {
3644 /* calculate node order -- i.e., DMA last! */
3645 build_zonelists_in_zone_order(pgdat, j);
1da177e4 3646 }
523b9458
CL
3647
3648 build_thisnode_zonelists(pgdat);
1da177e4
LT
3649}
3650
9276b1bc 3651/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 3652static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3653{
54a6eb5c
MG
3654 struct zonelist *zonelist;
3655 struct zonelist_cache *zlc;
dd1a239f 3656 struct zoneref *z;
9276b1bc 3657
54a6eb5c
MG
3658 zonelist = &pgdat->node_zonelists[0];
3659 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3660 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
3661 for (z = zonelist->_zonerefs; z->zone; z++)
3662 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
3663}
3664
7aac7898
LS
3665#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3666/*
3667 * Return node id of node used for "local" allocations.
3668 * I.e., first node id of first zone in arg node's generic zonelist.
3669 * Used for initializing percpu 'numa_mem', which is used primarily
3670 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3671 */
3672int local_memory_node(int node)
3673{
3674 struct zone *zone;
3675
3676 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3677 gfp_zone(GFP_KERNEL),
3678 NULL,
3679 &zone);
3680 return zone->node;
3681}
3682#endif
f0c0b2b8 3683
1da177e4
LT
3684#else /* CONFIG_NUMA */
3685
f0c0b2b8
KH
3686static void set_zonelist_order(void)
3687{
3688 current_zonelist_order = ZONELIST_ORDER_ZONE;
3689}
3690
3691static void build_zonelists(pg_data_t *pgdat)
1da177e4 3692{
19655d34 3693 int node, local_node;
54a6eb5c
MG
3694 enum zone_type j;
3695 struct zonelist *zonelist;
1da177e4
LT
3696
3697 local_node = pgdat->node_id;
1da177e4 3698
54a6eb5c 3699 zonelist = &pgdat->node_zonelists[0];
bc732f1d 3700 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 3701
54a6eb5c
MG
3702 /*
3703 * Now we build the zonelist so that it contains the zones
3704 * of all the other nodes.
3705 * We don't want to pressure a particular node, so when
3706 * building the zones for node N, we make sure that the
3707 * zones coming right after the local ones are those from
3708 * node N+1 (modulo N)
3709 */
3710 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3711 if (!node_online(node))
3712 continue;
bc732f1d 3713 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 3714 }
54a6eb5c
MG
3715 for (node = 0; node < local_node; node++) {
3716 if (!node_online(node))
3717 continue;
bc732f1d 3718 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
3719 }
3720
dd1a239f
MG
3721 zonelist->_zonerefs[j].zone = NULL;
3722 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3723}
3724
9276b1bc 3725/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3726static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3727{
54a6eb5c 3728 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3729}
3730
1da177e4
LT
3731#endif /* CONFIG_NUMA */
3732
99dcc3e5
CL
3733/*
3734 * Boot pageset table. One per cpu which is going to be used for all
3735 * zones and all nodes. The parameters will be set in such a way
3736 * that an item put on a list will immediately be handed over to
3737 * the buddy list. This is safe since pageset manipulation is done
3738 * with interrupts disabled.
3739 *
3740 * The boot_pagesets must be kept even after bootup is complete for
3741 * unused processors and/or zones. They do play a role for bootstrapping
3742 * hotplugged processors.
3743 *
3744 * zoneinfo_show() and maybe other functions do
3745 * not check if the processor is online before following the pageset pointer.
3746 * Other parts of the kernel may not check if the zone is available.
3747 */
3748static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3749static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3750static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3751
4eaf3f64
HL
3752/*
3753 * Global mutex to protect against size modification of zonelists
3754 * as well as to serialize pageset setup for the new populated zone.
3755 */
3756DEFINE_MUTEX(zonelists_mutex);
3757
9b1a4d38 3758/* return values int ....just for stop_machine() */
4ed7e022 3759static int __build_all_zonelists(void *data)
1da177e4 3760{
6811378e 3761 int nid;
99dcc3e5 3762 int cpu;
9adb62a5 3763 pg_data_t *self = data;
9276b1bc 3764
7f9cfb31
BL
3765#ifdef CONFIG_NUMA
3766 memset(node_load, 0, sizeof(node_load));
3767#endif
9adb62a5
JL
3768
3769 if (self && !node_online(self->node_id)) {
3770 build_zonelists(self);
3771 build_zonelist_cache(self);
3772 }
3773
9276b1bc 3774 for_each_online_node(nid) {
7ea1530a
CL
3775 pg_data_t *pgdat = NODE_DATA(nid);
3776
3777 build_zonelists(pgdat);
3778 build_zonelist_cache(pgdat);
9276b1bc 3779 }
99dcc3e5
CL
3780
3781 /*
3782 * Initialize the boot_pagesets that are going to be used
3783 * for bootstrapping processors. The real pagesets for
3784 * each zone will be allocated later when the per cpu
3785 * allocator is available.
3786 *
3787 * boot_pagesets are used also for bootstrapping offline
3788 * cpus if the system is already booted because the pagesets
3789 * are needed to initialize allocators on a specific cpu too.
3790 * F.e. the percpu allocator needs the page allocator which
3791 * needs the percpu allocator in order to allocate its pagesets
3792 * (a chicken-egg dilemma).
3793 */
7aac7898 3794 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3795 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3796
7aac7898
LS
3797#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3798 /*
3799 * We now know the "local memory node" for each node--
3800 * i.e., the node of the first zone in the generic zonelist.
3801 * Set up numa_mem percpu variable for on-line cpus. During
3802 * boot, only the boot cpu should be on-line; we'll init the
3803 * secondary cpus' numa_mem as they come on-line. During
3804 * node/memory hotplug, we'll fixup all on-line cpus.
3805 */
3806 if (cpu_online(cpu))
3807 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3808#endif
3809 }
3810
6811378e
YG
3811 return 0;
3812}
3813
4eaf3f64
HL
3814/*
3815 * Called with zonelists_mutex held always
3816 * unless system_state == SYSTEM_BOOTING.
3817 */
9adb62a5 3818void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 3819{
f0c0b2b8
KH
3820 set_zonelist_order();
3821
6811378e 3822 if (system_state == SYSTEM_BOOTING) {
423b41d7 3823 __build_all_zonelists(NULL);
68ad8df4 3824 mminit_verify_zonelist();
6811378e
YG
3825 cpuset_init_current_mems_allowed();
3826 } else {
e9959f0f 3827#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
3828 if (zone)
3829 setup_zone_pageset(zone);
e9959f0f 3830#endif
dd1895e2
CS
3831 /* we have to stop all cpus to guarantee there is no user
3832 of zonelist */
9adb62a5 3833 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
3834 /* cpuset refresh routine should be here */
3835 }
bd1e22b8 3836 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3837 /*
3838 * Disable grouping by mobility if the number of pages in the
3839 * system is too low to allow the mechanism to work. It would be
3840 * more accurate, but expensive to check per-zone. This check is
3841 * made on memory-hotadd so a system can start with mobility
3842 * disabled and enable it later
3843 */
d9c23400 3844 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3845 page_group_by_mobility_disabled = 1;
3846 else
3847 page_group_by_mobility_disabled = 0;
3848
3849 printk("Built %i zonelists in %s order, mobility grouping %s. "
3850 "Total pages: %ld\n",
62bc62a8 3851 nr_online_nodes,
f0c0b2b8 3852 zonelist_order_name[current_zonelist_order],
9ef9acb0 3853 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3854 vm_total_pages);
3855#ifdef CONFIG_NUMA
3856 printk("Policy zone: %s\n", zone_names[policy_zone]);
3857#endif
1da177e4
LT
3858}
3859
3860/*
3861 * Helper functions to size the waitqueue hash table.
3862 * Essentially these want to choose hash table sizes sufficiently
3863 * large so that collisions trying to wait on pages are rare.
3864 * But in fact, the number of active page waitqueues on typical
3865 * systems is ridiculously low, less than 200. So this is even
3866 * conservative, even though it seems large.
3867 *
3868 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3869 * waitqueues, i.e. the size of the waitq table given the number of pages.
3870 */
3871#define PAGES_PER_WAITQUEUE 256
3872
cca448fe 3873#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3874static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3875{
3876 unsigned long size = 1;
3877
3878 pages /= PAGES_PER_WAITQUEUE;
3879
3880 while (size < pages)
3881 size <<= 1;
3882
3883 /*
3884 * Once we have dozens or even hundreds of threads sleeping
3885 * on IO we've got bigger problems than wait queue collision.
3886 * Limit the size of the wait table to a reasonable size.
3887 */
3888 size = min(size, 4096UL);
3889
3890 return max(size, 4UL);
3891}
cca448fe
YG
3892#else
3893/*
3894 * A zone's size might be changed by hot-add, so it is not possible to determine
3895 * a suitable size for its wait_table. So we use the maximum size now.
3896 *
3897 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3898 *
3899 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3900 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3901 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3902 *
3903 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3904 * or more by the traditional way. (See above). It equals:
3905 *
3906 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3907 * ia64(16K page size) : = ( 8G + 4M)byte.
3908 * powerpc (64K page size) : = (32G +16M)byte.
3909 */
3910static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3911{
3912 return 4096UL;
3913}
3914#endif
1da177e4
LT
3915
3916/*
3917 * This is an integer logarithm so that shifts can be used later
3918 * to extract the more random high bits from the multiplicative
3919 * hash function before the remainder is taken.
3920 */
3921static inline unsigned long wait_table_bits(unsigned long size)
3922{
3923 return ffz(~size);
3924}
3925
6d3163ce
AH
3926/*
3927 * Check if a pageblock contains reserved pages
3928 */
3929static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3930{
3931 unsigned long pfn;
3932
3933 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3934 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3935 return 1;
3936 }
3937 return 0;
3938}
3939
56fd56b8 3940/*
d9c23400 3941 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
3942 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3943 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
3944 * higher will lead to a bigger reserve which will get freed as contiguous
3945 * blocks as reclaim kicks in
3946 */
3947static void setup_zone_migrate_reserve(struct zone *zone)
3948{
6d3163ce 3949 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 3950 struct page *page;
78986a67
MG
3951 unsigned long block_migratetype;
3952 int reserve;
943dca1a 3953 int old_reserve;
56fd56b8 3954
d0215638
MH
3955 /*
3956 * Get the start pfn, end pfn and the number of blocks to reserve
3957 * We have to be careful to be aligned to pageblock_nr_pages to
3958 * make sure that we always check pfn_valid for the first page in
3959 * the block.
3960 */
56fd56b8 3961 start_pfn = zone->zone_start_pfn;
108bcc96 3962 end_pfn = zone_end_pfn(zone);
d0215638 3963 start_pfn = roundup(start_pfn, pageblock_nr_pages);
41858966 3964 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 3965 pageblock_order;
56fd56b8 3966
78986a67
MG
3967 /*
3968 * Reserve blocks are generally in place to help high-order atomic
3969 * allocations that are short-lived. A min_free_kbytes value that
3970 * would result in more than 2 reserve blocks for atomic allocations
3971 * is assumed to be in place to help anti-fragmentation for the
3972 * future allocation of hugepages at runtime.
3973 */
3974 reserve = min(2, reserve);
943dca1a
YI
3975 old_reserve = zone->nr_migrate_reserve_block;
3976
3977 /* When memory hot-add, we almost always need to do nothing */
3978 if (reserve == old_reserve)
3979 return;
3980 zone->nr_migrate_reserve_block = reserve;
78986a67 3981
d9c23400 3982 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
3983 if (!pfn_valid(pfn))
3984 continue;
3985 page = pfn_to_page(pfn);
3986
344c790e
AL
3987 /* Watch out for overlapping nodes */
3988 if (page_to_nid(page) != zone_to_nid(zone))
3989 continue;
3990
56fd56b8
MG
3991 block_migratetype = get_pageblock_migratetype(page);
3992
938929f1
MG
3993 /* Only test what is necessary when the reserves are not met */
3994 if (reserve > 0) {
3995 /*
3996 * Blocks with reserved pages will never free, skip
3997 * them.
3998 */
3999 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4000 if (pageblock_is_reserved(pfn, block_end_pfn))
4001 continue;
56fd56b8 4002
938929f1
MG
4003 /* If this block is reserved, account for it */
4004 if (block_migratetype == MIGRATE_RESERVE) {
4005 reserve--;
4006 continue;
4007 }
4008
4009 /* Suitable for reserving if this block is movable */
4010 if (block_migratetype == MIGRATE_MOVABLE) {
4011 set_pageblock_migratetype(page,
4012 MIGRATE_RESERVE);
4013 move_freepages_block(zone, page,
4014 MIGRATE_RESERVE);
4015 reserve--;
4016 continue;
4017 }
943dca1a
YI
4018 } else if (!old_reserve) {
4019 /*
4020 * At boot time we don't need to scan the whole zone
4021 * for turning off MIGRATE_RESERVE.
4022 */
4023 break;
56fd56b8
MG
4024 }
4025
4026 /*
4027 * If the reserve is met and this is a previous reserved block,
4028 * take it back
4029 */
4030 if (block_migratetype == MIGRATE_RESERVE) {
4031 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4032 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4033 }
4034 }
4035}
ac0e5b7a 4036
1da177e4
LT
4037/*
4038 * Initially all pages are reserved - free ones are freed
4039 * up by free_all_bootmem() once the early boot process is
4040 * done. Non-atomic initialization, single-pass.
4041 */
c09b4240 4042void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 4043 unsigned long start_pfn, enum memmap_context context)
1da177e4 4044{
1da177e4 4045 struct page *page;
29751f69
AW
4046 unsigned long end_pfn = start_pfn + size;
4047 unsigned long pfn;
86051ca5 4048 struct zone *z;
1da177e4 4049
22b31eec
HD
4050 if (highest_memmap_pfn < end_pfn - 1)
4051 highest_memmap_pfn = end_pfn - 1;
4052
86051ca5 4053 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 4054 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
4055 /*
4056 * There can be holes in boot-time mem_map[]s
4057 * handed to this function. They do not
4058 * exist on hotplugged memory.
4059 */
4060 if (context == MEMMAP_EARLY) {
4061 if (!early_pfn_valid(pfn))
4062 continue;
4063 if (!early_pfn_in_nid(pfn, nid))
4064 continue;
4065 }
d41dee36
AW
4066 page = pfn_to_page(pfn);
4067 set_page_links(page, zone, nid, pfn);
708614e6 4068 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 4069 init_page_count(page);
22b751c3 4070 page_mapcount_reset(page);
90572890 4071 page_cpupid_reset_last(page);
1da177e4 4072 SetPageReserved(page);
b2a0ac88
MG
4073 /*
4074 * Mark the block movable so that blocks are reserved for
4075 * movable at startup. This will force kernel allocations
4076 * to reserve their blocks rather than leaking throughout
4077 * the address space during boot when many long-lived
56fd56b8
MG
4078 * kernel allocations are made. Later some blocks near
4079 * the start are marked MIGRATE_RESERVE by
4080 * setup_zone_migrate_reserve()
86051ca5
KH
4081 *
4082 * bitmap is created for zone's valid pfn range. but memmap
4083 * can be created for invalid pages (for alignment)
4084 * check here not to call set_pageblock_migratetype() against
4085 * pfn out of zone.
b2a0ac88 4086 */
86051ca5 4087 if ((z->zone_start_pfn <= pfn)
108bcc96 4088 && (pfn < zone_end_pfn(z))
86051ca5 4089 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 4090 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 4091
1da177e4
LT
4092 INIT_LIST_HEAD(&page->lru);
4093#ifdef WANT_PAGE_VIRTUAL
4094 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4095 if (!is_highmem_idx(zone))
3212c6be 4096 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 4097#endif
1da177e4
LT
4098 }
4099}
4100
1e548deb 4101static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 4102{
b2a0ac88
MG
4103 int order, t;
4104 for_each_migratetype_order(order, t) {
4105 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
4106 zone->free_area[order].nr_free = 0;
4107 }
4108}
4109
4110#ifndef __HAVE_ARCH_MEMMAP_INIT
4111#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 4112 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
4113#endif
4114
4ed7e022 4115static int __meminit zone_batchsize(struct zone *zone)
e7c8d5c9 4116{
3a6be87f 4117#ifdef CONFIG_MMU
e7c8d5c9
CL
4118 int batch;
4119
4120 /*
4121 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 4122 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
4123 *
4124 * OK, so we don't know how big the cache is. So guess.
4125 */
b40da049 4126 batch = zone->managed_pages / 1024;
ba56e91c
SR
4127 if (batch * PAGE_SIZE > 512 * 1024)
4128 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
4129 batch /= 4; /* We effectively *= 4 below */
4130 if (batch < 1)
4131 batch = 1;
4132
4133 /*
0ceaacc9
NP
4134 * Clamp the batch to a 2^n - 1 value. Having a power
4135 * of 2 value was found to be more likely to have
4136 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 4137 *
0ceaacc9
NP
4138 * For example if 2 tasks are alternately allocating
4139 * batches of pages, one task can end up with a lot
4140 * of pages of one half of the possible page colors
4141 * and the other with pages of the other colors.
e7c8d5c9 4142 */
9155203a 4143 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 4144
e7c8d5c9 4145 return batch;
3a6be87f
DH
4146
4147#else
4148 /* The deferral and batching of frees should be suppressed under NOMMU
4149 * conditions.
4150 *
4151 * The problem is that NOMMU needs to be able to allocate large chunks
4152 * of contiguous memory as there's no hardware page translation to
4153 * assemble apparent contiguous memory from discontiguous pages.
4154 *
4155 * Queueing large contiguous runs of pages for batching, however,
4156 * causes the pages to actually be freed in smaller chunks. As there
4157 * can be a significant delay between the individual batches being
4158 * recycled, this leads to the once large chunks of space being
4159 * fragmented and becoming unavailable for high-order allocations.
4160 */
4161 return 0;
4162#endif
e7c8d5c9
CL
4163}
4164
8d7a8fa9
CS
4165/*
4166 * pcp->high and pcp->batch values are related and dependent on one another:
4167 * ->batch must never be higher then ->high.
4168 * The following function updates them in a safe manner without read side
4169 * locking.
4170 *
4171 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4172 * those fields changing asynchronously (acording the the above rule).
4173 *
4174 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4175 * outside of boot time (or some other assurance that no concurrent updaters
4176 * exist).
4177 */
4178static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4179 unsigned long batch)
4180{
4181 /* start with a fail safe value for batch */
4182 pcp->batch = 1;
4183 smp_wmb();
4184
4185 /* Update high, then batch, in order */
4186 pcp->high = high;
4187 smp_wmb();
4188
4189 pcp->batch = batch;
4190}
4191
3664033c 4192/* a companion to pageset_set_high() */
4008bab7
CS
4193static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4194{
8d7a8fa9 4195 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
4196}
4197
88c90dbc 4198static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
4199{
4200 struct per_cpu_pages *pcp;
5f8dcc21 4201 int migratetype;
2caaad41 4202
1c6fe946
MD
4203 memset(p, 0, sizeof(*p));
4204
3dfa5721 4205 pcp = &p->pcp;
2caaad41 4206 pcp->count = 0;
5f8dcc21
MG
4207 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4208 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4209}
4210
88c90dbc
CS
4211static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4212{
4213 pageset_init(p);
4214 pageset_set_batch(p, batch);
4215}
4216
8ad4b1fb 4217/*
3664033c 4218 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
4219 * to the value high for the pageset p.
4220 */
3664033c 4221static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
4222 unsigned long high)
4223{
8d7a8fa9
CS
4224 unsigned long batch = max(1UL, high / 4);
4225 if ((high / 4) > (PAGE_SHIFT * 8))
4226 batch = PAGE_SHIFT * 8;
8ad4b1fb 4227
8d7a8fa9 4228 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
4229}
4230
169f6c19
CS
4231static void __meminit pageset_set_high_and_batch(struct zone *zone,
4232 struct per_cpu_pageset *pcp)
56cef2b8 4233{
56cef2b8 4234 if (percpu_pagelist_fraction)
3664033c 4235 pageset_set_high(pcp,
56cef2b8
CS
4236 (zone->managed_pages /
4237 percpu_pagelist_fraction));
4238 else
4239 pageset_set_batch(pcp, zone_batchsize(zone));
4240}
4241
169f6c19
CS
4242static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4243{
4244 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4245
4246 pageset_init(pcp);
4247 pageset_set_high_and_batch(zone, pcp);
4248}
4249
4ed7e022 4250static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4251{
4252 int cpu;
319774e2 4253 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
4254 for_each_possible_cpu(cpu)
4255 zone_pageset_init(zone, cpu);
319774e2
WF
4256}
4257
2caaad41 4258/*
99dcc3e5
CL
4259 * Allocate per cpu pagesets and initialize them.
4260 * Before this call only boot pagesets were available.
e7c8d5c9 4261 */
99dcc3e5 4262void __init setup_per_cpu_pageset(void)
e7c8d5c9 4263{
99dcc3e5 4264 struct zone *zone;
e7c8d5c9 4265
319774e2
WF
4266 for_each_populated_zone(zone)
4267 setup_zone_pageset(zone);
e7c8d5c9
CL
4268}
4269
577a32f6 4270static noinline __init_refok
cca448fe 4271int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4272{
4273 int i;
cca448fe 4274 size_t alloc_size;
ed8ece2e
DH
4275
4276 /*
4277 * The per-page waitqueue mechanism uses hashed waitqueues
4278 * per zone.
4279 */
02b694de
YG
4280 zone->wait_table_hash_nr_entries =
4281 wait_table_hash_nr_entries(zone_size_pages);
4282 zone->wait_table_bits =
4283 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4284 alloc_size = zone->wait_table_hash_nr_entries
4285 * sizeof(wait_queue_head_t);
4286
cd94b9db 4287 if (!slab_is_available()) {
cca448fe 4288 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
4289 memblock_virt_alloc_node_nopanic(
4290 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
4291 } else {
4292 /*
4293 * This case means that a zone whose size was 0 gets new memory
4294 * via memory hot-add.
4295 * But it may be the case that a new node was hot-added. In
4296 * this case vmalloc() will not be able to use this new node's
4297 * memory - this wait_table must be initialized to use this new
4298 * node itself as well.
4299 * To use this new node's memory, further consideration will be
4300 * necessary.
4301 */
8691f3a7 4302 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4303 }
4304 if (!zone->wait_table)
4305 return -ENOMEM;
ed8ece2e 4306
b8af2941 4307 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4308 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4309
4310 return 0;
ed8ece2e
DH
4311}
4312
c09b4240 4313static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4314{
99dcc3e5
CL
4315 /*
4316 * per cpu subsystem is not up at this point. The following code
4317 * relies on the ability of the linker to provide the
4318 * offset of a (static) per cpu variable into the per cpu area.
4319 */
4320 zone->pageset = &boot_pageset;
ed8ece2e 4321
b38a8725 4322 if (populated_zone(zone))
99dcc3e5
CL
4323 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4324 zone->name, zone->present_pages,
4325 zone_batchsize(zone));
ed8ece2e
DH
4326}
4327
4ed7e022 4328int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4329 unsigned long zone_start_pfn,
a2f3aa02
DH
4330 unsigned long size,
4331 enum memmap_context context)
ed8ece2e
DH
4332{
4333 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4334 int ret;
4335 ret = zone_wait_table_init(zone, size);
4336 if (ret)
4337 return ret;
ed8ece2e
DH
4338 pgdat->nr_zones = zone_idx(zone) + 1;
4339
ed8ece2e
DH
4340 zone->zone_start_pfn = zone_start_pfn;
4341
708614e6
MG
4342 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4343 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4344 pgdat->node_id,
4345 (unsigned long)zone_idx(zone),
4346 zone_start_pfn, (zone_start_pfn + size));
4347
1e548deb 4348 zone_init_free_lists(zone);
718127cc
YG
4349
4350 return 0;
ed8ece2e
DH
4351}
4352
0ee332c1 4353#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d
MG
4354#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4355/*
4356 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4357 * Architectures may implement their own version but if add_active_range()
4358 * was used and there are no special requirements, this is a convenient
4359 * alternative
4360 */
f2dbcfa7 4361int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d 4362{
c13291a5 4363 unsigned long start_pfn, end_pfn;
e76b63f8 4364 int nid;
7c243c71
RA
4365 /*
4366 * NOTE: The following SMP-unsafe globals are only used early in boot
4367 * when the kernel is running single-threaded.
4368 */
4369 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4370 static int __meminitdata last_nid;
4371
4372 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4373 return last_nid;
c713216d 4374
e76b63f8
YL
4375 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4376 if (nid != -1) {
4377 last_start_pfn = start_pfn;
4378 last_end_pfn = end_pfn;
4379 last_nid = nid;
4380 }
4381
4382 return nid;
c713216d
MG
4383}
4384#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4385
f2dbcfa7
KH
4386int __meminit early_pfn_to_nid(unsigned long pfn)
4387{
cc2559bc
KH
4388 int nid;
4389
4390 nid = __early_pfn_to_nid(pfn);
4391 if (nid >= 0)
4392 return nid;
4393 /* just returns 0 */
4394 return 0;
f2dbcfa7
KH
4395}
4396
cc2559bc
KH
4397#ifdef CONFIG_NODES_SPAN_OTHER_NODES
4398bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4399{
4400 int nid;
4401
4402 nid = __early_pfn_to_nid(pfn);
4403 if (nid >= 0 && nid != node)
4404 return false;
4405 return true;
4406}
4407#endif
f2dbcfa7 4408
c713216d 4409/**
6782832e 4410 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 4411 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 4412 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d
MG
4413 *
4414 * If an architecture guarantees that all ranges registered with
4415 * add_active_ranges() contain no holes and may be freed, this
6782832e
SS
4416 * this function may be used instead of calling memblock_free_early_nid()
4417 * manually.
c713216d 4418 */
c13291a5 4419void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4420{
c13291a5
TH
4421 unsigned long start_pfn, end_pfn;
4422 int i, this_nid;
edbe7d23 4423
c13291a5
TH
4424 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4425 start_pfn = min(start_pfn, max_low_pfn);
4426 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4427
c13291a5 4428 if (start_pfn < end_pfn)
6782832e
SS
4429 memblock_free_early_nid(PFN_PHYS(start_pfn),
4430 (end_pfn - start_pfn) << PAGE_SHIFT,
4431 this_nid);
edbe7d23 4432 }
edbe7d23 4433}
edbe7d23 4434
c713216d
MG
4435/**
4436 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4437 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
4438 *
4439 * If an architecture guarantees that all ranges registered with
4440 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 4441 * function may be used instead of calling memory_present() manually.
c713216d
MG
4442 */
4443void __init sparse_memory_present_with_active_regions(int nid)
4444{
c13291a5
TH
4445 unsigned long start_pfn, end_pfn;
4446 int i, this_nid;
c713216d 4447
c13291a5
TH
4448 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4449 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4450}
4451
4452/**
4453 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4454 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4455 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4456 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4457 *
4458 * It returns the start and end page frame of a node based on information
4459 * provided by an arch calling add_active_range(). If called for a node
4460 * with no available memory, a warning is printed and the start and end
88ca3b94 4461 * PFNs will be 0.
c713216d 4462 */
a3142c8e 4463void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4464 unsigned long *start_pfn, unsigned long *end_pfn)
4465{
c13291a5 4466 unsigned long this_start_pfn, this_end_pfn;
c713216d 4467 int i;
c13291a5 4468
c713216d
MG
4469 *start_pfn = -1UL;
4470 *end_pfn = 0;
4471
c13291a5
TH
4472 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4473 *start_pfn = min(*start_pfn, this_start_pfn);
4474 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4475 }
4476
633c0666 4477 if (*start_pfn == -1UL)
c713216d 4478 *start_pfn = 0;
c713216d
MG
4479}
4480
2a1e274a
MG
4481/*
4482 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4483 * assumption is made that zones within a node are ordered in monotonic
4484 * increasing memory addresses so that the "highest" populated zone is used
4485 */
b69a7288 4486static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4487{
4488 int zone_index;
4489 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4490 if (zone_index == ZONE_MOVABLE)
4491 continue;
4492
4493 if (arch_zone_highest_possible_pfn[zone_index] >
4494 arch_zone_lowest_possible_pfn[zone_index])
4495 break;
4496 }
4497
4498 VM_BUG_ON(zone_index == -1);
4499 movable_zone = zone_index;
4500}
4501
4502/*
4503 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4504 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4505 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4506 * in each node depending on the size of each node and how evenly kernelcore
4507 * is distributed. This helper function adjusts the zone ranges
4508 * provided by the architecture for a given node by using the end of the
4509 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4510 * zones within a node are in order of monotonic increases memory addresses
4511 */
b69a7288 4512static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4513 unsigned long zone_type,
4514 unsigned long node_start_pfn,
4515 unsigned long node_end_pfn,
4516 unsigned long *zone_start_pfn,
4517 unsigned long *zone_end_pfn)
4518{
4519 /* Only adjust if ZONE_MOVABLE is on this node */
4520 if (zone_movable_pfn[nid]) {
4521 /* Size ZONE_MOVABLE */
4522 if (zone_type == ZONE_MOVABLE) {
4523 *zone_start_pfn = zone_movable_pfn[nid];
4524 *zone_end_pfn = min(node_end_pfn,
4525 arch_zone_highest_possible_pfn[movable_zone]);
4526
4527 /* Adjust for ZONE_MOVABLE starting within this range */
4528 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4529 *zone_end_pfn > zone_movable_pfn[nid]) {
4530 *zone_end_pfn = zone_movable_pfn[nid];
4531
4532 /* Check if this whole range is within ZONE_MOVABLE */
4533 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4534 *zone_start_pfn = *zone_end_pfn;
4535 }
4536}
4537
c713216d
MG
4538/*
4539 * Return the number of pages a zone spans in a node, including holes
4540 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4541 */
6ea6e688 4542static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4543 unsigned long zone_type,
7960aedd
ZY
4544 unsigned long node_start_pfn,
4545 unsigned long node_end_pfn,
c713216d
MG
4546 unsigned long *ignored)
4547{
c713216d
MG
4548 unsigned long zone_start_pfn, zone_end_pfn;
4549
7960aedd 4550 /* Get the start and end of the zone */
c713216d
MG
4551 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4552 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
4553 adjust_zone_range_for_zone_movable(nid, zone_type,
4554 node_start_pfn, node_end_pfn,
4555 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
4556
4557 /* Check that this node has pages within the zone's required range */
4558 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4559 return 0;
4560
4561 /* Move the zone boundaries inside the node if necessary */
4562 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4563 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4564
4565 /* Return the spanned pages */
4566 return zone_end_pfn - zone_start_pfn;
4567}
4568
4569/*
4570 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 4571 * then all holes in the requested range will be accounted for.
c713216d 4572 */
32996250 4573unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
4574 unsigned long range_start_pfn,
4575 unsigned long range_end_pfn)
4576{
96e907d1
TH
4577 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4578 unsigned long start_pfn, end_pfn;
4579 int i;
c713216d 4580
96e907d1
TH
4581 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4582 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4583 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4584 nr_absent -= end_pfn - start_pfn;
c713216d 4585 }
96e907d1 4586 return nr_absent;
c713216d
MG
4587}
4588
4589/**
4590 * absent_pages_in_range - Return number of page frames in holes within a range
4591 * @start_pfn: The start PFN to start searching for holes
4592 * @end_pfn: The end PFN to stop searching for holes
4593 *
88ca3b94 4594 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
4595 */
4596unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4597 unsigned long end_pfn)
4598{
4599 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4600}
4601
4602/* Return the number of page frames in holes in a zone on a node */
6ea6e688 4603static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 4604 unsigned long zone_type,
7960aedd
ZY
4605 unsigned long node_start_pfn,
4606 unsigned long node_end_pfn,
c713216d
MG
4607 unsigned long *ignored)
4608{
96e907d1
TH
4609 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4610 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
4611 unsigned long zone_start_pfn, zone_end_pfn;
4612
96e907d1
TH
4613 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4614 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 4615
2a1e274a
MG
4616 adjust_zone_range_for_zone_movable(nid, zone_type,
4617 node_start_pfn, node_end_pfn,
4618 &zone_start_pfn, &zone_end_pfn);
9c7cd687 4619 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 4620}
0e0b864e 4621
0ee332c1 4622#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 4623static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4624 unsigned long zone_type,
7960aedd
ZY
4625 unsigned long node_start_pfn,
4626 unsigned long node_end_pfn,
c713216d
MG
4627 unsigned long *zones_size)
4628{
4629 return zones_size[zone_type];
4630}
4631
6ea6e688 4632static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 4633 unsigned long zone_type,
7960aedd
ZY
4634 unsigned long node_start_pfn,
4635 unsigned long node_end_pfn,
c713216d
MG
4636 unsigned long *zholes_size)
4637{
4638 if (!zholes_size)
4639 return 0;
4640
4641 return zholes_size[zone_type];
4642}
20e6926d 4643
0ee332c1 4644#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4645
a3142c8e 4646static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
4647 unsigned long node_start_pfn,
4648 unsigned long node_end_pfn,
4649 unsigned long *zones_size,
4650 unsigned long *zholes_size)
c713216d
MG
4651{
4652 unsigned long realtotalpages, totalpages = 0;
4653 enum zone_type i;
4654
4655 for (i = 0; i < MAX_NR_ZONES; i++)
4656 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
4657 node_start_pfn,
4658 node_end_pfn,
4659 zones_size);
c713216d
MG
4660 pgdat->node_spanned_pages = totalpages;
4661
4662 realtotalpages = totalpages;
4663 for (i = 0; i < MAX_NR_ZONES; i++)
4664 realtotalpages -=
4665 zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
4666 node_start_pfn, node_end_pfn,
4667 zholes_size);
c713216d
MG
4668 pgdat->node_present_pages = realtotalpages;
4669 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4670 realtotalpages);
4671}
4672
835c134e
MG
4673#ifndef CONFIG_SPARSEMEM
4674/*
4675 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4676 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4677 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4678 * round what is now in bits to nearest long in bits, then return it in
4679 * bytes.
4680 */
7c45512d 4681static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
4682{
4683 unsigned long usemapsize;
4684
7c45512d 4685 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
4686 usemapsize = roundup(zonesize, pageblock_nr_pages);
4687 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4688 usemapsize *= NR_PAGEBLOCK_BITS;
4689 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4690
4691 return usemapsize / 8;
4692}
4693
4694static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
4695 struct zone *zone,
4696 unsigned long zone_start_pfn,
4697 unsigned long zonesize)
835c134e 4698{
7c45512d 4699 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 4700 zone->pageblock_flags = NULL;
58a01a45 4701 if (usemapsize)
6782832e
SS
4702 zone->pageblock_flags =
4703 memblock_virt_alloc_node_nopanic(usemapsize,
4704 pgdat->node_id);
835c134e
MG
4705}
4706#else
7c45512d
LT
4707static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4708 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
4709#endif /* CONFIG_SPARSEMEM */
4710
d9c23400 4711#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 4712
d9c23400 4713/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 4714void __paginginit set_pageblock_order(void)
d9c23400 4715{
955c1cd7
AM
4716 unsigned int order;
4717
d9c23400
MG
4718 /* Check that pageblock_nr_pages has not already been setup */
4719 if (pageblock_order)
4720 return;
4721
955c1cd7
AM
4722 if (HPAGE_SHIFT > PAGE_SHIFT)
4723 order = HUGETLB_PAGE_ORDER;
4724 else
4725 order = MAX_ORDER - 1;
4726
d9c23400
MG
4727 /*
4728 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
4729 * This value may be variable depending on boot parameters on IA64 and
4730 * powerpc.
d9c23400
MG
4731 */
4732 pageblock_order = order;
4733}
4734#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4735
ba72cb8c
MG
4736/*
4737 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
4738 * is unused as pageblock_order is set at compile-time. See
4739 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4740 * the kernel config
ba72cb8c 4741 */
15ca220e 4742void __paginginit set_pageblock_order(void)
ba72cb8c 4743{
ba72cb8c 4744}
d9c23400
MG
4745
4746#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4747
01cefaef
JL
4748static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4749 unsigned long present_pages)
4750{
4751 unsigned long pages = spanned_pages;
4752
4753 /*
4754 * Provide a more accurate estimation if there are holes within
4755 * the zone and SPARSEMEM is in use. If there are holes within the
4756 * zone, each populated memory region may cost us one or two extra
4757 * memmap pages due to alignment because memmap pages for each
4758 * populated regions may not naturally algined on page boundary.
4759 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4760 */
4761 if (spanned_pages > present_pages + (present_pages >> 4) &&
4762 IS_ENABLED(CONFIG_SPARSEMEM))
4763 pages = present_pages;
4764
4765 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4766}
4767
1da177e4
LT
4768/*
4769 * Set up the zone data structures:
4770 * - mark all pages reserved
4771 * - mark all memory queues empty
4772 * - clear the memory bitmaps
6527af5d
MK
4773 *
4774 * NOTE: pgdat should get zeroed by caller.
1da177e4 4775 */
b5a0e011 4776static void __paginginit free_area_init_core(struct pglist_data *pgdat,
7960aedd 4777 unsigned long node_start_pfn, unsigned long node_end_pfn,
1da177e4
LT
4778 unsigned long *zones_size, unsigned long *zholes_size)
4779{
2f1b6248 4780 enum zone_type j;
ed8ece2e 4781 int nid = pgdat->node_id;
1da177e4 4782 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4783 int ret;
1da177e4 4784
208d54e5 4785 pgdat_resize_init(pgdat);
8177a420
AA
4786#ifdef CONFIG_NUMA_BALANCING
4787 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4788 pgdat->numabalancing_migrate_nr_pages = 0;
4789 pgdat->numabalancing_migrate_next_window = jiffies;
4790#endif
1da177e4 4791 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 4792 init_waitqueue_head(&pgdat->pfmemalloc_wait);
52d4b9ac 4793 pgdat_page_cgroup_init(pgdat);
5f63b720 4794
1da177e4
LT
4795 for (j = 0; j < MAX_NR_ZONES; j++) {
4796 struct zone *zone = pgdat->node_zones + j;
9feedc9d 4797 unsigned long size, realsize, freesize, memmap_pages;
1da177e4 4798
7960aedd
ZY
4799 size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4800 node_end_pfn, zones_size);
9feedc9d 4801 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
7960aedd
ZY
4802 node_start_pfn,
4803 node_end_pfn,
c713216d 4804 zholes_size);
1da177e4 4805
0e0b864e 4806 /*
9feedc9d 4807 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
4808 * is used by this zone for memmap. This affects the watermark
4809 * and per-cpu initialisations
4810 */
01cefaef 4811 memmap_pages = calc_memmap_size(size, realsize);
9feedc9d
JL
4812 if (freesize >= memmap_pages) {
4813 freesize -= memmap_pages;
5594c8c8
YL
4814 if (memmap_pages)
4815 printk(KERN_DEBUG
4816 " %s zone: %lu pages used for memmap\n",
4817 zone_names[j], memmap_pages);
0e0b864e
MG
4818 } else
4819 printk(KERN_WARNING
9feedc9d
JL
4820 " %s zone: %lu pages exceeds freesize %lu\n",
4821 zone_names[j], memmap_pages, freesize);
0e0b864e 4822
6267276f 4823 /* Account for reserved pages */
9feedc9d
JL
4824 if (j == 0 && freesize > dma_reserve) {
4825 freesize -= dma_reserve;
d903ef9f 4826 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4827 zone_names[0], dma_reserve);
0e0b864e
MG
4828 }
4829
98d2b0eb 4830 if (!is_highmem_idx(j))
9feedc9d 4831 nr_kernel_pages += freesize;
01cefaef
JL
4832 /* Charge for highmem memmap if there are enough kernel pages */
4833 else if (nr_kernel_pages > memmap_pages * 2)
4834 nr_kernel_pages -= memmap_pages;
9feedc9d 4835 nr_all_pages += freesize;
1da177e4
LT
4836
4837 zone->spanned_pages = size;
306f2e9e 4838 zone->present_pages = realsize;
9feedc9d
JL
4839 /*
4840 * Set an approximate value for lowmem here, it will be adjusted
4841 * when the bootmem allocator frees pages into the buddy system.
4842 * And all highmem pages will be managed by the buddy system.
4843 */
4844 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 4845#ifdef CONFIG_NUMA
d5f541ed 4846 zone->node = nid;
9feedc9d 4847 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 4848 / 100;
9feedc9d 4849 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 4850#endif
1da177e4
LT
4851 zone->name = zone_names[j];
4852 spin_lock_init(&zone->lock);
4853 spin_lock_init(&zone->lru_lock);
bdc8cb98 4854 zone_seqlock_init(zone);
1da177e4 4855 zone->zone_pgdat = pgdat;
ed8ece2e 4856 zone_pcp_init(zone);
81c0a2bb
JW
4857
4858 /* For bootup, initialized properly in watermark setup */
4859 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4860
bea8c150 4861 lruvec_init(&zone->lruvec);
1da177e4
LT
4862 if (!size)
4863 continue;
4864
955c1cd7 4865 set_pageblock_order();
7c45512d 4866 setup_usemap(pgdat, zone, zone_start_pfn, size);
a2f3aa02
DH
4867 ret = init_currently_empty_zone(zone, zone_start_pfn,
4868 size, MEMMAP_EARLY);
718127cc 4869 BUG_ON(ret);
76cdd58e 4870 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4871 zone_start_pfn += size;
1da177e4
LT
4872 }
4873}
4874
577a32f6 4875static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4876{
1da177e4
LT
4877 /* Skip empty nodes */
4878 if (!pgdat->node_spanned_pages)
4879 return;
4880
d41dee36 4881#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4882 /* ia64 gets its own node_mem_map, before this, without bootmem */
4883 if (!pgdat->node_mem_map) {
e984bb43 4884 unsigned long size, start, end;
d41dee36
AW
4885 struct page *map;
4886
e984bb43
BP
4887 /*
4888 * The zone's endpoints aren't required to be MAX_ORDER
4889 * aligned but the node_mem_map endpoints must be in order
4890 * for the buddy allocator to function correctly.
4891 */
4892 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
108bcc96 4893 end = pgdat_end_pfn(pgdat);
e984bb43
BP
4894 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4895 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4896 map = alloc_remap(pgdat->node_id, size);
4897 if (!map)
6782832e
SS
4898 map = memblock_virt_alloc_node_nopanic(size,
4899 pgdat->node_id);
e984bb43 4900 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4901 }
12d810c1 4902#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4903 /*
4904 * With no DISCONTIG, the global mem_map is just set as node 0's
4905 */
c713216d 4906 if (pgdat == NODE_DATA(0)) {
1da177e4 4907 mem_map = NODE_DATA(0)->node_mem_map;
0ee332c1 4908#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4909 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4910 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
0ee332c1 4911#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4912 }
1da177e4 4913#endif
d41dee36 4914#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4915}
4916
9109fb7b
JW
4917void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4918 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4919{
9109fb7b 4920 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
4921 unsigned long start_pfn = 0;
4922 unsigned long end_pfn = 0;
9109fb7b 4923
88fdf75d 4924 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 4925 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 4926
1da177e4
LT
4927 pgdat->node_id = nid;
4928 pgdat->node_start_pfn = node_start_pfn;
7960aedd
ZY
4929#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4930 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
4931#endif
4932 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
4933 zones_size, zholes_size);
1da177e4
LT
4934
4935 alloc_node_mem_map(pgdat);
e8c27ac9
YL
4936#ifdef CONFIG_FLAT_NODE_MEM_MAP
4937 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4938 nid, (unsigned long)pgdat,
4939 (unsigned long)pgdat->node_mem_map);
4940#endif
1da177e4 4941
7960aedd
ZY
4942 free_area_init_core(pgdat, start_pfn, end_pfn,
4943 zones_size, zholes_size);
1da177e4
LT
4944}
4945
0ee332c1 4946#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
4947
4948#if MAX_NUMNODES > 1
4949/*
4950 * Figure out the number of possible node ids.
4951 */
f9872caf 4952void __init setup_nr_node_ids(void)
418508c1
MS
4953{
4954 unsigned int node;
4955 unsigned int highest = 0;
4956
4957 for_each_node_mask(node, node_possible_map)
4958 highest = node;
4959 nr_node_ids = highest + 1;
4960}
418508c1
MS
4961#endif
4962
1e01979c
TH
4963/**
4964 * node_map_pfn_alignment - determine the maximum internode alignment
4965 *
4966 * This function should be called after node map is populated and sorted.
4967 * It calculates the maximum power of two alignment which can distinguish
4968 * all the nodes.
4969 *
4970 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4971 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4972 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4973 * shifted, 1GiB is enough and this function will indicate so.
4974 *
4975 * This is used to test whether pfn -> nid mapping of the chosen memory
4976 * model has fine enough granularity to avoid incorrect mapping for the
4977 * populated node map.
4978 *
4979 * Returns the determined alignment in pfn's. 0 if there is no alignment
4980 * requirement (single node).
4981 */
4982unsigned long __init node_map_pfn_alignment(void)
4983{
4984 unsigned long accl_mask = 0, last_end = 0;
c13291a5 4985 unsigned long start, end, mask;
1e01979c 4986 int last_nid = -1;
c13291a5 4987 int i, nid;
1e01979c 4988
c13291a5 4989 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
4990 if (!start || last_nid < 0 || last_nid == nid) {
4991 last_nid = nid;
4992 last_end = end;
4993 continue;
4994 }
4995
4996 /*
4997 * Start with a mask granular enough to pin-point to the
4998 * start pfn and tick off bits one-by-one until it becomes
4999 * too coarse to separate the current node from the last.
5000 */
5001 mask = ~((1 << __ffs(start)) - 1);
5002 while (mask && last_end <= (start & (mask << 1)))
5003 mask <<= 1;
5004
5005 /* accumulate all internode masks */
5006 accl_mask |= mask;
5007 }
5008
5009 /* convert mask to number of pages */
5010 return ~accl_mask + 1;
5011}
5012
a6af2bc3 5013/* Find the lowest pfn for a node */
b69a7288 5014static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 5015{
a6af2bc3 5016 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
5017 unsigned long start_pfn;
5018 int i;
1abbfb41 5019
c13291a5
TH
5020 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5021 min_pfn = min(min_pfn, start_pfn);
c713216d 5022
a6af2bc3
MG
5023 if (min_pfn == ULONG_MAX) {
5024 printk(KERN_WARNING
2bc0d261 5025 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
5026 return 0;
5027 }
5028
5029 return min_pfn;
c713216d
MG
5030}
5031
5032/**
5033 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5034 *
5035 * It returns the minimum PFN based on information provided via
88ca3b94 5036 * add_active_range().
c713216d
MG
5037 */
5038unsigned long __init find_min_pfn_with_active_regions(void)
5039{
5040 return find_min_pfn_for_node(MAX_NUMNODES);
5041}
5042
37b07e41
LS
5043/*
5044 * early_calculate_totalpages()
5045 * Sum pages in active regions for movable zone.
4b0ef1fe 5046 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 5047 */
484f51f8 5048static unsigned long __init early_calculate_totalpages(void)
7e63efef 5049{
7e63efef 5050 unsigned long totalpages = 0;
c13291a5
TH
5051 unsigned long start_pfn, end_pfn;
5052 int i, nid;
5053
5054 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5055 unsigned long pages = end_pfn - start_pfn;
7e63efef 5056
37b07e41
LS
5057 totalpages += pages;
5058 if (pages)
4b0ef1fe 5059 node_set_state(nid, N_MEMORY);
37b07e41 5060 }
b8af2941 5061 return totalpages;
7e63efef
MG
5062}
5063
2a1e274a
MG
5064/*
5065 * Find the PFN the Movable zone begins in each node. Kernel memory
5066 * is spread evenly between nodes as long as the nodes have enough
5067 * memory. When they don't, some nodes will have more kernelcore than
5068 * others
5069 */
b224ef85 5070static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
5071{
5072 int i, nid;
5073 unsigned long usable_startpfn;
5074 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 5075 /* save the state before borrow the nodemask */
4b0ef1fe 5076 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 5077 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 5078 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 5079 struct memblock_region *r;
b2f3eebe
TC
5080
5081 /* Need to find movable_zone earlier when movable_node is specified. */
5082 find_usable_zone_for_movable();
5083
5084 /*
5085 * If movable_node is specified, ignore kernelcore and movablecore
5086 * options.
5087 */
5088 if (movable_node_is_enabled()) {
136199f0
EM
5089 for_each_memblock(memory, r) {
5090 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
5091 continue;
5092
136199f0 5093 nid = r->nid;
b2f3eebe 5094
136199f0 5095 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
5096 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5097 min(usable_startpfn, zone_movable_pfn[nid]) :
5098 usable_startpfn;
5099 }
5100
5101 goto out2;
5102 }
2a1e274a 5103
7e63efef 5104 /*
b2f3eebe 5105 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
5106 * kernelcore that corresponds so that memory usable for
5107 * any allocation type is evenly spread. If both kernelcore
5108 * and movablecore are specified, then the value of kernelcore
5109 * will be used for required_kernelcore if it's greater than
5110 * what movablecore would have allowed.
5111 */
5112 if (required_movablecore) {
7e63efef
MG
5113 unsigned long corepages;
5114
5115 /*
5116 * Round-up so that ZONE_MOVABLE is at least as large as what
5117 * was requested by the user
5118 */
5119 required_movablecore =
5120 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5121 corepages = totalpages - required_movablecore;
5122
5123 required_kernelcore = max(required_kernelcore, corepages);
5124 }
5125
20e6926d
YL
5126 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5127 if (!required_kernelcore)
66918dcd 5128 goto out;
2a1e274a
MG
5129
5130 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
5131 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5132
5133restart:
5134 /* Spread kernelcore memory as evenly as possible throughout nodes */
5135 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 5136 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
5137 unsigned long start_pfn, end_pfn;
5138
2a1e274a
MG
5139 /*
5140 * Recalculate kernelcore_node if the division per node
5141 * now exceeds what is necessary to satisfy the requested
5142 * amount of memory for the kernel
5143 */
5144 if (required_kernelcore < kernelcore_node)
5145 kernelcore_node = required_kernelcore / usable_nodes;
5146
5147 /*
5148 * As the map is walked, we track how much memory is usable
5149 * by the kernel using kernelcore_remaining. When it is
5150 * 0, the rest of the node is usable by ZONE_MOVABLE
5151 */
5152 kernelcore_remaining = kernelcore_node;
5153
5154 /* Go through each range of PFNs within this node */
c13291a5 5155 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
5156 unsigned long size_pages;
5157
c13291a5 5158 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
5159 if (start_pfn >= end_pfn)
5160 continue;
5161
5162 /* Account for what is only usable for kernelcore */
5163 if (start_pfn < usable_startpfn) {
5164 unsigned long kernel_pages;
5165 kernel_pages = min(end_pfn, usable_startpfn)
5166 - start_pfn;
5167
5168 kernelcore_remaining -= min(kernel_pages,
5169 kernelcore_remaining);
5170 required_kernelcore -= min(kernel_pages,
5171 required_kernelcore);
5172
5173 /* Continue if range is now fully accounted */
5174 if (end_pfn <= usable_startpfn) {
5175
5176 /*
5177 * Push zone_movable_pfn to the end so
5178 * that if we have to rebalance
5179 * kernelcore across nodes, we will
5180 * not double account here
5181 */
5182 zone_movable_pfn[nid] = end_pfn;
5183 continue;
5184 }
5185 start_pfn = usable_startpfn;
5186 }
5187
5188 /*
5189 * The usable PFN range for ZONE_MOVABLE is from
5190 * start_pfn->end_pfn. Calculate size_pages as the
5191 * number of pages used as kernelcore
5192 */
5193 size_pages = end_pfn - start_pfn;
5194 if (size_pages > kernelcore_remaining)
5195 size_pages = kernelcore_remaining;
5196 zone_movable_pfn[nid] = start_pfn + size_pages;
5197
5198 /*
5199 * Some kernelcore has been met, update counts and
5200 * break if the kernelcore for this node has been
b8af2941 5201 * satisfied
2a1e274a
MG
5202 */
5203 required_kernelcore -= min(required_kernelcore,
5204 size_pages);
5205 kernelcore_remaining -= size_pages;
5206 if (!kernelcore_remaining)
5207 break;
5208 }
5209 }
5210
5211 /*
5212 * If there is still required_kernelcore, we do another pass with one
5213 * less node in the count. This will push zone_movable_pfn[nid] further
5214 * along on the nodes that still have memory until kernelcore is
b8af2941 5215 * satisfied
2a1e274a
MG
5216 */
5217 usable_nodes--;
5218 if (usable_nodes && required_kernelcore > usable_nodes)
5219 goto restart;
5220
b2f3eebe 5221out2:
2a1e274a
MG
5222 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5223 for (nid = 0; nid < MAX_NUMNODES; nid++)
5224 zone_movable_pfn[nid] =
5225 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 5226
20e6926d 5227out:
66918dcd 5228 /* restore the node_state */
4b0ef1fe 5229 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
5230}
5231
4b0ef1fe
LJ
5232/* Any regular or high memory on that node ? */
5233static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 5234{
37b07e41
LS
5235 enum zone_type zone_type;
5236
4b0ef1fe
LJ
5237 if (N_MEMORY == N_NORMAL_MEMORY)
5238 return;
5239
5240 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 5241 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 5242 if (populated_zone(zone)) {
4b0ef1fe
LJ
5243 node_set_state(nid, N_HIGH_MEMORY);
5244 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5245 zone_type <= ZONE_NORMAL)
5246 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
5247 break;
5248 }
37b07e41 5249 }
37b07e41
LS
5250}
5251
c713216d
MG
5252/**
5253 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 5254 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
5255 *
5256 * This will call free_area_init_node() for each active node in the system.
5257 * Using the page ranges provided by add_active_range(), the size of each
5258 * zone in each node and their holes is calculated. If the maximum PFN
5259 * between two adjacent zones match, it is assumed that the zone is empty.
5260 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5261 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5262 * starts where the previous one ended. For example, ZONE_DMA32 starts
5263 * at arch_max_dma_pfn.
5264 */
5265void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5266{
c13291a5
TH
5267 unsigned long start_pfn, end_pfn;
5268 int i, nid;
a6af2bc3 5269
c713216d
MG
5270 /* Record where the zone boundaries are */
5271 memset(arch_zone_lowest_possible_pfn, 0,
5272 sizeof(arch_zone_lowest_possible_pfn));
5273 memset(arch_zone_highest_possible_pfn, 0,
5274 sizeof(arch_zone_highest_possible_pfn));
5275 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5276 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5277 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
5278 if (i == ZONE_MOVABLE)
5279 continue;
c713216d
MG
5280 arch_zone_lowest_possible_pfn[i] =
5281 arch_zone_highest_possible_pfn[i-1];
5282 arch_zone_highest_possible_pfn[i] =
5283 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5284 }
2a1e274a
MG
5285 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5286 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5287
5288 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5289 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 5290 find_zone_movable_pfns_for_nodes();
c713216d 5291
c713216d 5292 /* Print out the zone ranges */
a62e2f4f 5293 printk("Zone ranges:\n");
2a1e274a
MG
5294 for (i = 0; i < MAX_NR_ZONES; i++) {
5295 if (i == ZONE_MOVABLE)
5296 continue;
155cbfc8 5297 printk(KERN_CONT " %-8s ", zone_names[i]);
72f0ba02
DR
5298 if (arch_zone_lowest_possible_pfn[i] ==
5299 arch_zone_highest_possible_pfn[i])
155cbfc8 5300 printk(KERN_CONT "empty\n");
72f0ba02 5301 else
a62e2f4f
BH
5302 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5303 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5304 (arch_zone_highest_possible_pfn[i]
5305 << PAGE_SHIFT) - 1);
2a1e274a
MG
5306 }
5307
5308 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
a62e2f4f 5309 printk("Movable zone start for each node\n");
2a1e274a
MG
5310 for (i = 0; i < MAX_NUMNODES; i++) {
5311 if (zone_movable_pfn[i])
a62e2f4f
BH
5312 printk(" Node %d: %#010lx\n", i,
5313 zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 5314 }
c713216d 5315
f2d52fe5 5316 /* Print out the early node map */
a62e2f4f 5317 printk("Early memory node ranges\n");
c13291a5 5318 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
a62e2f4f
BH
5319 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5320 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
5321
5322 /* Initialise every node */
708614e6 5323 mminit_verify_pageflags_layout();
8ef82866 5324 setup_nr_node_ids();
c713216d
MG
5325 for_each_online_node(nid) {
5326 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 5327 free_area_init_node(nid, NULL,
c713216d 5328 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
5329
5330 /* Any memory on that node */
5331 if (pgdat->node_present_pages)
4b0ef1fe
LJ
5332 node_set_state(nid, N_MEMORY);
5333 check_for_memory(pgdat, nid);
c713216d
MG
5334 }
5335}
2a1e274a 5336
7e63efef 5337static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
5338{
5339 unsigned long long coremem;
5340 if (!p)
5341 return -EINVAL;
5342
5343 coremem = memparse(p, &p);
7e63efef 5344 *core = coremem >> PAGE_SHIFT;
2a1e274a 5345
7e63efef 5346 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
5347 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5348
5349 return 0;
5350}
ed7ed365 5351
7e63efef
MG
5352/*
5353 * kernelcore=size sets the amount of memory for use for allocations that
5354 * cannot be reclaimed or migrated.
5355 */
5356static int __init cmdline_parse_kernelcore(char *p)
5357{
5358 return cmdline_parse_core(p, &required_kernelcore);
5359}
5360
5361/*
5362 * movablecore=size sets the amount of memory for use for allocations that
5363 * can be reclaimed or migrated.
5364 */
5365static int __init cmdline_parse_movablecore(char *p)
5366{
5367 return cmdline_parse_core(p, &required_movablecore);
5368}
5369
ed7ed365 5370early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 5371early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 5372
0ee332c1 5373#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5374
c3d5f5f0
JL
5375void adjust_managed_page_count(struct page *page, long count)
5376{
5377 spin_lock(&managed_page_count_lock);
5378 page_zone(page)->managed_pages += count;
5379 totalram_pages += count;
3dcc0571
JL
5380#ifdef CONFIG_HIGHMEM
5381 if (PageHighMem(page))
5382 totalhigh_pages += count;
5383#endif
c3d5f5f0
JL
5384 spin_unlock(&managed_page_count_lock);
5385}
3dcc0571 5386EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 5387
11199692 5388unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 5389{
11199692
JL
5390 void *pos;
5391 unsigned long pages = 0;
69afade7 5392
11199692
JL
5393 start = (void *)PAGE_ALIGN((unsigned long)start);
5394 end = (void *)((unsigned long)end & PAGE_MASK);
5395 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 5396 if ((unsigned int)poison <= 0xFF)
11199692
JL
5397 memset(pos, poison, PAGE_SIZE);
5398 free_reserved_page(virt_to_page(pos));
69afade7
JL
5399 }
5400
5401 if (pages && s)
11199692 5402 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
5403 s, pages << (PAGE_SHIFT - 10), start, end);
5404
5405 return pages;
5406}
11199692 5407EXPORT_SYMBOL(free_reserved_area);
69afade7 5408
cfa11e08
JL
5409#ifdef CONFIG_HIGHMEM
5410void free_highmem_page(struct page *page)
5411{
5412 __free_reserved_page(page);
5413 totalram_pages++;
7b4b2a0d 5414 page_zone(page)->managed_pages++;
cfa11e08
JL
5415 totalhigh_pages++;
5416}
5417#endif
5418
7ee3d4e8
JL
5419
5420void __init mem_init_print_info(const char *str)
5421{
5422 unsigned long physpages, codesize, datasize, rosize, bss_size;
5423 unsigned long init_code_size, init_data_size;
5424
5425 physpages = get_num_physpages();
5426 codesize = _etext - _stext;
5427 datasize = _edata - _sdata;
5428 rosize = __end_rodata - __start_rodata;
5429 bss_size = __bss_stop - __bss_start;
5430 init_data_size = __init_end - __init_begin;
5431 init_code_size = _einittext - _sinittext;
5432
5433 /*
5434 * Detect special cases and adjust section sizes accordingly:
5435 * 1) .init.* may be embedded into .data sections
5436 * 2) .init.text.* may be out of [__init_begin, __init_end],
5437 * please refer to arch/tile/kernel/vmlinux.lds.S.
5438 * 3) .rodata.* may be embedded into .text or .data sections.
5439 */
5440#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
5441 do { \
5442 if (start <= pos && pos < end && size > adj) \
5443 size -= adj; \
5444 } while (0)
7ee3d4e8
JL
5445
5446 adj_init_size(__init_begin, __init_end, init_data_size,
5447 _sinittext, init_code_size);
5448 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5449 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5450 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5451 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5452
5453#undef adj_init_size
5454
5455 printk("Memory: %luK/%luK available "
5456 "(%luK kernel code, %luK rwdata, %luK rodata, "
5457 "%luK init, %luK bss, %luK reserved"
5458#ifdef CONFIG_HIGHMEM
5459 ", %luK highmem"
5460#endif
5461 "%s%s)\n",
5462 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5463 codesize >> 10, datasize >> 10, rosize >> 10,
5464 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5465 (physpages - totalram_pages) << (PAGE_SHIFT-10),
5466#ifdef CONFIG_HIGHMEM
5467 totalhigh_pages << (PAGE_SHIFT-10),
5468#endif
5469 str ? ", " : "", str ? str : "");
5470}
5471
0e0b864e 5472/**
88ca3b94
RD
5473 * set_dma_reserve - set the specified number of pages reserved in the first zone
5474 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
5475 *
5476 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5477 * In the DMA zone, a significant percentage may be consumed by kernel image
5478 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
5479 * function may optionally be used to account for unfreeable pages in the
5480 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5481 * smaller per-cpu batchsize.
0e0b864e
MG
5482 */
5483void __init set_dma_reserve(unsigned long new_dma_reserve)
5484{
5485 dma_reserve = new_dma_reserve;
5486}
5487
1da177e4
LT
5488void __init free_area_init(unsigned long *zones_size)
5489{
9109fb7b 5490 free_area_init_node(0, zones_size,
1da177e4
LT
5491 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5492}
1da177e4 5493
1da177e4
LT
5494static int page_alloc_cpu_notify(struct notifier_block *self,
5495 unsigned long action, void *hcpu)
5496{
5497 int cpu = (unsigned long)hcpu;
1da177e4 5498
8bb78442 5499 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 5500 lru_add_drain_cpu(cpu);
9f8f2172
CL
5501 drain_pages(cpu);
5502
5503 /*
5504 * Spill the event counters of the dead processor
5505 * into the current processors event counters.
5506 * This artificially elevates the count of the current
5507 * processor.
5508 */
f8891e5e 5509 vm_events_fold_cpu(cpu);
9f8f2172
CL
5510
5511 /*
5512 * Zero the differential counters of the dead processor
5513 * so that the vm statistics are consistent.
5514 *
5515 * This is only okay since the processor is dead and cannot
5516 * race with what we are doing.
5517 */
2bb921e5 5518 cpu_vm_stats_fold(cpu);
1da177e4
LT
5519 }
5520 return NOTIFY_OK;
5521}
1da177e4
LT
5522
5523void __init page_alloc_init(void)
5524{
5525 hotcpu_notifier(page_alloc_cpu_notify, 0);
5526}
5527
cb45b0e9
HA
5528/*
5529 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5530 * or min_free_kbytes changes.
5531 */
5532static void calculate_totalreserve_pages(void)
5533{
5534 struct pglist_data *pgdat;
5535 unsigned long reserve_pages = 0;
2f6726e5 5536 enum zone_type i, j;
cb45b0e9
HA
5537
5538 for_each_online_pgdat(pgdat) {
5539 for (i = 0; i < MAX_NR_ZONES; i++) {
5540 struct zone *zone = pgdat->node_zones + i;
5541 unsigned long max = 0;
5542
5543 /* Find valid and maximum lowmem_reserve in the zone */
5544 for (j = i; j < MAX_NR_ZONES; j++) {
5545 if (zone->lowmem_reserve[j] > max)
5546 max = zone->lowmem_reserve[j];
5547 }
5548
41858966
MG
5549 /* we treat the high watermark as reserved pages. */
5550 max += high_wmark_pages(zone);
cb45b0e9 5551
b40da049
JL
5552 if (max > zone->managed_pages)
5553 max = zone->managed_pages;
cb45b0e9 5554 reserve_pages += max;
ab8fabd4
JW
5555 /*
5556 * Lowmem reserves are not available to
5557 * GFP_HIGHUSER page cache allocations and
5558 * kswapd tries to balance zones to their high
5559 * watermark. As a result, neither should be
5560 * regarded as dirtyable memory, to prevent a
5561 * situation where reclaim has to clean pages
5562 * in order to balance the zones.
5563 */
5564 zone->dirty_balance_reserve = max;
cb45b0e9
HA
5565 }
5566 }
ab8fabd4 5567 dirty_balance_reserve = reserve_pages;
cb45b0e9
HA
5568 totalreserve_pages = reserve_pages;
5569}
5570
1da177e4
LT
5571/*
5572 * setup_per_zone_lowmem_reserve - called whenever
5573 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5574 * has a correct pages reserved value, so an adequate number of
5575 * pages are left in the zone after a successful __alloc_pages().
5576 */
5577static void setup_per_zone_lowmem_reserve(void)
5578{
5579 struct pglist_data *pgdat;
2f6726e5 5580 enum zone_type j, idx;
1da177e4 5581
ec936fc5 5582 for_each_online_pgdat(pgdat) {
1da177e4
LT
5583 for (j = 0; j < MAX_NR_ZONES; j++) {
5584 struct zone *zone = pgdat->node_zones + j;
b40da049 5585 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
5586
5587 zone->lowmem_reserve[j] = 0;
5588
2f6726e5
CL
5589 idx = j;
5590 while (idx) {
1da177e4
LT
5591 struct zone *lower_zone;
5592
2f6726e5
CL
5593 idx--;
5594
1da177e4
LT
5595 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5596 sysctl_lowmem_reserve_ratio[idx] = 1;
5597
5598 lower_zone = pgdat->node_zones + idx;
b40da049 5599 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 5600 sysctl_lowmem_reserve_ratio[idx];
b40da049 5601 managed_pages += lower_zone->managed_pages;
1da177e4
LT
5602 }
5603 }
5604 }
cb45b0e9
HA
5605
5606 /* update totalreserve_pages */
5607 calculate_totalreserve_pages();
1da177e4
LT
5608}
5609
cfd3da1e 5610static void __setup_per_zone_wmarks(void)
1da177e4
LT
5611{
5612 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5613 unsigned long lowmem_pages = 0;
5614 struct zone *zone;
5615 unsigned long flags;
5616
5617 /* Calculate total number of !ZONE_HIGHMEM pages */
5618 for_each_zone(zone) {
5619 if (!is_highmem(zone))
b40da049 5620 lowmem_pages += zone->managed_pages;
1da177e4
LT
5621 }
5622
5623 for_each_zone(zone) {
ac924c60
AM
5624 u64 tmp;
5625
1125b4e3 5626 spin_lock_irqsave(&zone->lock, flags);
b40da049 5627 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 5628 do_div(tmp, lowmem_pages);
1da177e4
LT
5629 if (is_highmem(zone)) {
5630 /*
669ed175
NP
5631 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5632 * need highmem pages, so cap pages_min to a small
5633 * value here.
5634 *
41858966 5635 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
5636 * deltas controls asynch page reclaim, and so should
5637 * not be capped for highmem.
1da177e4 5638 */
90ae8d67 5639 unsigned long min_pages;
1da177e4 5640
b40da049 5641 min_pages = zone->managed_pages / 1024;
90ae8d67 5642 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 5643 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 5644 } else {
669ed175
NP
5645 /*
5646 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
5647 * proportionate to the zone's size.
5648 */
41858966 5649 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
5650 }
5651
41858966
MG
5652 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5653 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9 5654
81c0a2bb
JW
5655 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
5656 high_wmark_pages(zone) -
5657 low_wmark_pages(zone) -
5658 zone_page_state(zone, NR_ALLOC_BATCH));
5659
56fd56b8 5660 setup_zone_migrate_reserve(zone);
1125b4e3 5661 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 5662 }
cb45b0e9
HA
5663
5664 /* update totalreserve_pages */
5665 calculate_totalreserve_pages();
1da177e4
LT
5666}
5667
cfd3da1e
MG
5668/**
5669 * setup_per_zone_wmarks - called when min_free_kbytes changes
5670 * or when memory is hot-{added|removed}
5671 *
5672 * Ensures that the watermark[min,low,high] values for each zone are set
5673 * correctly with respect to min_free_kbytes.
5674 */
5675void setup_per_zone_wmarks(void)
5676{
5677 mutex_lock(&zonelists_mutex);
5678 __setup_per_zone_wmarks();
5679 mutex_unlock(&zonelists_mutex);
5680}
5681
55a4462a 5682/*
556adecb
RR
5683 * The inactive anon list should be small enough that the VM never has to
5684 * do too much work, but large enough that each inactive page has a chance
5685 * to be referenced again before it is swapped out.
5686 *
5687 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5688 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5689 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5690 * the anonymous pages are kept on the inactive list.
5691 *
5692 * total target max
5693 * memory ratio inactive anon
5694 * -------------------------------------
5695 * 10MB 1 5MB
5696 * 100MB 1 50MB
5697 * 1GB 3 250MB
5698 * 10GB 10 0.9GB
5699 * 100GB 31 3GB
5700 * 1TB 101 10GB
5701 * 10TB 320 32GB
5702 */
1b79acc9 5703static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 5704{
96cb4df5 5705 unsigned int gb, ratio;
556adecb 5706
96cb4df5 5707 /* Zone size in gigabytes */
b40da049 5708 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 5709 if (gb)
556adecb 5710 ratio = int_sqrt(10 * gb);
96cb4df5
MK
5711 else
5712 ratio = 1;
556adecb 5713
96cb4df5
MK
5714 zone->inactive_ratio = ratio;
5715}
556adecb 5716
839a4fcc 5717static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
5718{
5719 struct zone *zone;
5720
5721 for_each_zone(zone)
5722 calculate_zone_inactive_ratio(zone);
556adecb
RR
5723}
5724
1da177e4
LT
5725/*
5726 * Initialise min_free_kbytes.
5727 *
5728 * For small machines we want it small (128k min). For large machines
5729 * we want it large (64MB max). But it is not linear, because network
5730 * bandwidth does not increase linearly with machine size. We use
5731 *
b8af2941 5732 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
5733 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5734 *
5735 * which yields
5736 *
5737 * 16MB: 512k
5738 * 32MB: 724k
5739 * 64MB: 1024k
5740 * 128MB: 1448k
5741 * 256MB: 2048k
5742 * 512MB: 2896k
5743 * 1024MB: 4096k
5744 * 2048MB: 5792k
5745 * 4096MB: 8192k
5746 * 8192MB: 11584k
5747 * 16384MB: 16384k
5748 */
1b79acc9 5749int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
5750{
5751 unsigned long lowmem_kbytes;
5f12733e 5752 int new_min_free_kbytes;
1da177e4
LT
5753
5754 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
5755 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5756
5757 if (new_min_free_kbytes > user_min_free_kbytes) {
5758 min_free_kbytes = new_min_free_kbytes;
5759 if (min_free_kbytes < 128)
5760 min_free_kbytes = 128;
5761 if (min_free_kbytes > 65536)
5762 min_free_kbytes = 65536;
5763 } else {
5764 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5765 new_min_free_kbytes, user_min_free_kbytes);
5766 }
bc75d33f 5767 setup_per_zone_wmarks();
a6cccdc3 5768 refresh_zone_stat_thresholds();
1da177e4 5769 setup_per_zone_lowmem_reserve();
556adecb 5770 setup_per_zone_inactive_ratio();
1da177e4
LT
5771 return 0;
5772}
bc75d33f 5773module_init(init_per_zone_wmark_min)
1da177e4
LT
5774
5775/*
b8af2941 5776 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
5777 * that we can call two helper functions whenever min_free_kbytes
5778 * changes.
5779 */
b8af2941 5780int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
8d65af78 5781 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5782{
da8c757b
HP
5783 int rc;
5784
5785 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5786 if (rc)
5787 return rc;
5788
5f12733e
MH
5789 if (write) {
5790 user_min_free_kbytes = min_free_kbytes;
bc75d33f 5791 setup_per_zone_wmarks();
5f12733e 5792 }
1da177e4
LT
5793 return 0;
5794}
5795
9614634f
CL
5796#ifdef CONFIG_NUMA
5797int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5798 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5799{
5800 struct zone *zone;
5801 int rc;
5802
8d65af78 5803 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5804 if (rc)
5805 return rc;
5806
5807 for_each_zone(zone)
b40da049 5808 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
5809 sysctl_min_unmapped_ratio) / 100;
5810 return 0;
5811}
0ff38490
CL
5812
5813int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5814 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5815{
5816 struct zone *zone;
5817 int rc;
5818
8d65af78 5819 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5820 if (rc)
5821 return rc;
5822
5823 for_each_zone(zone)
b40da049 5824 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
5825 sysctl_min_slab_ratio) / 100;
5826 return 0;
5827}
9614634f
CL
5828#endif
5829
1da177e4
LT
5830/*
5831 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5832 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5833 * whenever sysctl_lowmem_reserve_ratio changes.
5834 *
5835 * The reserve ratio obviously has absolutely no relation with the
41858966 5836 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5837 * if in function of the boot time zone sizes.
5838 */
5839int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5840 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5841{
8d65af78 5842 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5843 setup_per_zone_lowmem_reserve();
5844 return 0;
5845}
5846
8ad4b1fb
RS
5847/*
5848 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
5849 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5850 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 5851 */
8ad4b1fb 5852int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
8d65af78 5853 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5854{
5855 struct zone *zone;
5856 unsigned int cpu;
5857 int ret;
5858
8d65af78 5859 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
93278814 5860 if (!write || (ret < 0))
8ad4b1fb 5861 return ret;
c8e251fa
CS
5862
5863 mutex_lock(&pcp_batch_high_lock);
364df0eb 5864 for_each_populated_zone(zone) {
22a7f12b
CS
5865 unsigned long high;
5866 high = zone->managed_pages / percpu_pagelist_fraction;
5867 for_each_possible_cpu(cpu)
3664033c
CS
5868 pageset_set_high(per_cpu_ptr(zone->pageset, cpu),
5869 high);
8ad4b1fb 5870 }
c8e251fa 5871 mutex_unlock(&pcp_batch_high_lock);
8ad4b1fb
RS
5872 return 0;
5873}
5874
f034b5d4 5875int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
5876
5877#ifdef CONFIG_NUMA
5878static int __init set_hashdist(char *str)
5879{
5880 if (!str)
5881 return 0;
5882 hashdist = simple_strtoul(str, &str, 0);
5883 return 1;
5884}
5885__setup("hashdist=", set_hashdist);
5886#endif
5887
5888/*
5889 * allocate a large system hash table from bootmem
5890 * - it is assumed that the hash table must contain an exact power-of-2
5891 * quantity of entries
5892 * - limit is the number of hash buckets, not the total allocation size
5893 */
5894void *__init alloc_large_system_hash(const char *tablename,
5895 unsigned long bucketsize,
5896 unsigned long numentries,
5897 int scale,
5898 int flags,
5899 unsigned int *_hash_shift,
5900 unsigned int *_hash_mask,
31fe62b9
TB
5901 unsigned long low_limit,
5902 unsigned long high_limit)
1da177e4 5903{
31fe62b9 5904 unsigned long long max = high_limit;
1da177e4
LT
5905 unsigned long log2qty, size;
5906 void *table = NULL;
5907
5908 /* allow the kernel cmdline to have a say */
5909 if (!numentries) {
5910 /* round applicable memory size up to nearest megabyte */
04903664 5911 numentries = nr_kernel_pages;
a7e83318
JZ
5912
5913 /* It isn't necessary when PAGE_SIZE >= 1MB */
5914 if (PAGE_SHIFT < 20)
5915 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
5916
5917 /* limit to 1 bucket per 2^scale bytes of low memory */
5918 if (scale > PAGE_SHIFT)
5919 numentries >>= (scale - PAGE_SHIFT);
5920 else
5921 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
5922
5923 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
5924 if (unlikely(flags & HASH_SMALL)) {
5925 /* Makes no sense without HASH_EARLY */
5926 WARN_ON(!(flags & HASH_EARLY));
5927 if (!(numentries >> *_hash_shift)) {
5928 numentries = 1UL << *_hash_shift;
5929 BUG_ON(!numentries);
5930 }
5931 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 5932 numentries = PAGE_SIZE / bucketsize;
1da177e4 5933 }
6e692ed3 5934 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
5935
5936 /* limit allocation size to 1/16 total memory by default */
5937 if (max == 0) {
5938 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5939 do_div(max, bucketsize);
5940 }
074b8517 5941 max = min(max, 0x80000000ULL);
1da177e4 5942
31fe62b9
TB
5943 if (numentries < low_limit)
5944 numentries = low_limit;
1da177e4
LT
5945 if (numentries > max)
5946 numentries = max;
5947
f0d1b0b3 5948 log2qty = ilog2(numentries);
1da177e4
LT
5949
5950 do {
5951 size = bucketsize << log2qty;
5952 if (flags & HASH_EARLY)
6782832e 5953 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
5954 else if (hashdist)
5955 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5956 else {
1037b83b
ED
5957 /*
5958 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
5959 * some pages at the end of hash table which
5960 * alloc_pages_exact() automatically does
1037b83b 5961 */
264ef8a9 5962 if (get_order(size) < MAX_ORDER) {
a1dd268c 5963 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
5964 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5965 }
1da177e4
LT
5966 }
5967 } while (!table && size > PAGE_SIZE && --log2qty);
5968
5969 if (!table)
5970 panic("Failed to allocate %s hash table\n", tablename);
5971
f241e660 5972 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 5973 tablename,
f241e660 5974 (1UL << log2qty),
f0d1b0b3 5975 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
5976 size);
5977
5978 if (_hash_shift)
5979 *_hash_shift = log2qty;
5980 if (_hash_mask)
5981 *_hash_mask = (1 << log2qty) - 1;
5982
5983 return table;
5984}
a117e66e 5985
835c134e
MG
5986/* Return a pointer to the bitmap storing bits affecting a block of pages */
5987static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5988 unsigned long pfn)
5989{
5990#ifdef CONFIG_SPARSEMEM
5991 return __pfn_to_section(pfn)->pageblock_flags;
5992#else
5993 return zone->pageblock_flags;
5994#endif /* CONFIG_SPARSEMEM */
5995}
5996
5997static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5998{
5999#ifdef CONFIG_SPARSEMEM
6000 pfn &= (PAGES_PER_SECTION-1);
d9c23400 6001 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 6002#else
c060f943 6003 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
d9c23400 6004 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
6005#endif /* CONFIG_SPARSEMEM */
6006}
6007
6008/**
d9c23400 6009 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
6010 * @page: The page within the block of interest
6011 * @start_bitidx: The first bit of interest to retrieve
6012 * @end_bitidx: The last bit of interest
6013 * returns pageblock_bits flags
6014 */
6015unsigned long get_pageblock_flags_group(struct page *page,
6016 int start_bitidx, int end_bitidx)
6017{
6018 struct zone *zone;
6019 unsigned long *bitmap;
6020 unsigned long pfn, bitidx;
6021 unsigned long flags = 0;
6022 unsigned long value = 1;
6023
6024 zone = page_zone(page);
6025 pfn = page_to_pfn(page);
6026 bitmap = get_pageblock_bitmap(zone, pfn);
6027 bitidx = pfn_to_bitidx(zone, pfn);
6028
6029 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
6030 if (test_bit(bitidx + start_bitidx, bitmap))
6031 flags |= value;
6220ec78 6032
835c134e
MG
6033 return flags;
6034}
6035
6036/**
d9c23400 6037 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
6038 * @page: The page within the block of interest
6039 * @start_bitidx: The first bit of interest
6040 * @end_bitidx: The last bit of interest
6041 * @flags: The flags to set
6042 */
6043void set_pageblock_flags_group(struct page *page, unsigned long flags,
6044 int start_bitidx, int end_bitidx)
6045{
6046 struct zone *zone;
6047 unsigned long *bitmap;
6048 unsigned long pfn, bitidx;
6049 unsigned long value = 1;
6050
6051 zone = page_zone(page);
6052 pfn = page_to_pfn(page);
6053 bitmap = get_pageblock_bitmap(zone, pfn);
6054 bitidx = pfn_to_bitidx(zone, pfn);
309381fe 6055 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
835c134e
MG
6056
6057 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
6058 if (flags & value)
6059 __set_bit(bitidx + start_bitidx, bitmap);
6060 else
6061 __clear_bit(bitidx + start_bitidx, bitmap);
6062}
a5d76b54
KH
6063
6064/*
80934513
MK
6065 * This function checks whether pageblock includes unmovable pages or not.
6066 * If @count is not zero, it is okay to include less @count unmovable pages
6067 *
b8af2941 6068 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
6069 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6070 * expect this function should be exact.
a5d76b54 6071 */
b023f468
WC
6072bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6073 bool skip_hwpoisoned_pages)
49ac8255
KH
6074{
6075 unsigned long pfn, iter, found;
47118af0
MN
6076 int mt;
6077
49ac8255
KH
6078 /*
6079 * For avoiding noise data, lru_add_drain_all() should be called
80934513 6080 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
6081 */
6082 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 6083 return false;
47118af0
MN
6084 mt = get_pageblock_migratetype(page);
6085 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 6086 return false;
49ac8255
KH
6087
6088 pfn = page_to_pfn(page);
6089 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6090 unsigned long check = pfn + iter;
6091
29723fcc 6092 if (!pfn_valid_within(check))
49ac8255 6093 continue;
29723fcc 6094
49ac8255 6095 page = pfn_to_page(check);
c8721bbb
NH
6096
6097 /*
6098 * Hugepages are not in LRU lists, but they're movable.
6099 * We need not scan over tail pages bacause we don't
6100 * handle each tail page individually in migration.
6101 */
6102 if (PageHuge(page)) {
6103 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6104 continue;
6105 }
6106
97d255c8
MK
6107 /*
6108 * We can't use page_count without pin a page
6109 * because another CPU can free compound page.
6110 * This check already skips compound tails of THP
6111 * because their page->_count is zero at all time.
6112 */
6113 if (!atomic_read(&page->_count)) {
49ac8255
KH
6114 if (PageBuddy(page))
6115 iter += (1 << page_order(page)) - 1;
6116 continue;
6117 }
97d255c8 6118
b023f468
WC
6119 /*
6120 * The HWPoisoned page may be not in buddy system, and
6121 * page_count() is not 0.
6122 */
6123 if (skip_hwpoisoned_pages && PageHWPoison(page))
6124 continue;
6125
49ac8255
KH
6126 if (!PageLRU(page))
6127 found++;
6128 /*
6129 * If there are RECLAIMABLE pages, we need to check it.
6130 * But now, memory offline itself doesn't call shrink_slab()
6131 * and it still to be fixed.
6132 */
6133 /*
6134 * If the page is not RAM, page_count()should be 0.
6135 * we don't need more check. This is an _used_ not-movable page.
6136 *
6137 * The problematic thing here is PG_reserved pages. PG_reserved
6138 * is set to both of a memory hole page and a _used_ kernel
6139 * page at boot.
6140 */
6141 if (found > count)
80934513 6142 return true;
49ac8255 6143 }
80934513 6144 return false;
49ac8255
KH
6145}
6146
6147bool is_pageblock_removable_nolock(struct page *page)
6148{
656a0706
MH
6149 struct zone *zone;
6150 unsigned long pfn;
687875fb
MH
6151
6152 /*
6153 * We have to be careful here because we are iterating over memory
6154 * sections which are not zone aware so we might end up outside of
6155 * the zone but still within the section.
656a0706
MH
6156 * We have to take care about the node as well. If the node is offline
6157 * its NODE_DATA will be NULL - see page_zone.
687875fb 6158 */
656a0706
MH
6159 if (!node_online(page_to_nid(page)))
6160 return false;
6161
6162 zone = page_zone(page);
6163 pfn = page_to_pfn(page);
108bcc96 6164 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
6165 return false;
6166
b023f468 6167 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 6168}
0c0e6195 6169
041d3a8c
MN
6170#ifdef CONFIG_CMA
6171
6172static unsigned long pfn_max_align_down(unsigned long pfn)
6173{
6174 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6175 pageblock_nr_pages) - 1);
6176}
6177
6178static unsigned long pfn_max_align_up(unsigned long pfn)
6179{
6180 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6181 pageblock_nr_pages));
6182}
6183
041d3a8c 6184/* [start, end) must belong to a single zone. */
bb13ffeb
MG
6185static int __alloc_contig_migrate_range(struct compact_control *cc,
6186 unsigned long start, unsigned long end)
041d3a8c
MN
6187{
6188 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 6189 unsigned long nr_reclaimed;
041d3a8c
MN
6190 unsigned long pfn = start;
6191 unsigned int tries = 0;
6192 int ret = 0;
6193
be49a6e1 6194 migrate_prep();
041d3a8c 6195
bb13ffeb 6196 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
6197 if (fatal_signal_pending(current)) {
6198 ret = -EINTR;
6199 break;
6200 }
6201
bb13ffeb
MG
6202 if (list_empty(&cc->migratepages)) {
6203 cc->nr_migratepages = 0;
6204 pfn = isolate_migratepages_range(cc->zone, cc,
e46a2879 6205 pfn, end, true);
041d3a8c
MN
6206 if (!pfn) {
6207 ret = -EINTR;
6208 break;
6209 }
6210 tries = 0;
6211 } else if (++tries == 5) {
6212 ret = ret < 0 ? ret : -EBUSY;
6213 break;
6214 }
6215
beb51eaa
MK
6216 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6217 &cc->migratepages);
6218 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 6219
9c620e2b 6220 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
68711a74 6221 NULL, 0, MIGRATE_SYNC, MR_CMA);
041d3a8c 6222 }
2a6f5124
SP
6223 if (ret < 0) {
6224 putback_movable_pages(&cc->migratepages);
6225 return ret;
6226 }
6227 return 0;
041d3a8c
MN
6228}
6229
6230/**
6231 * alloc_contig_range() -- tries to allocate given range of pages
6232 * @start: start PFN to allocate
6233 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
6234 * @migratetype: migratetype of the underlaying pageblocks (either
6235 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6236 * in range must have the same migratetype and it must
6237 * be either of the two.
041d3a8c
MN
6238 *
6239 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6240 * aligned, however it's the caller's responsibility to guarantee that
6241 * we are the only thread that changes migrate type of pageblocks the
6242 * pages fall in.
6243 *
6244 * The PFN range must belong to a single zone.
6245 *
6246 * Returns zero on success or negative error code. On success all
6247 * pages which PFN is in [start, end) are allocated for the caller and
6248 * need to be freed with free_contig_range().
6249 */
0815f3d8
MN
6250int alloc_contig_range(unsigned long start, unsigned long end,
6251 unsigned migratetype)
041d3a8c 6252{
041d3a8c
MN
6253 unsigned long outer_start, outer_end;
6254 int ret = 0, order;
6255
bb13ffeb
MG
6256 struct compact_control cc = {
6257 .nr_migratepages = 0,
6258 .order = -1,
6259 .zone = page_zone(pfn_to_page(start)),
6260 .sync = true,
6261 .ignore_skip_hint = true,
6262 };
6263 INIT_LIST_HEAD(&cc.migratepages);
6264
041d3a8c
MN
6265 /*
6266 * What we do here is we mark all pageblocks in range as
6267 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6268 * have different sizes, and due to the way page allocator
6269 * work, we align the range to biggest of the two pages so
6270 * that page allocator won't try to merge buddies from
6271 * different pageblocks and change MIGRATE_ISOLATE to some
6272 * other migration type.
6273 *
6274 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6275 * migrate the pages from an unaligned range (ie. pages that
6276 * we are interested in). This will put all the pages in
6277 * range back to page allocator as MIGRATE_ISOLATE.
6278 *
6279 * When this is done, we take the pages in range from page
6280 * allocator removing them from the buddy system. This way
6281 * page allocator will never consider using them.
6282 *
6283 * This lets us mark the pageblocks back as
6284 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6285 * aligned range but not in the unaligned, original range are
6286 * put back to page allocator so that buddy can use them.
6287 */
6288
6289 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
6290 pfn_max_align_up(end), migratetype,
6291 false);
041d3a8c 6292 if (ret)
86a595f9 6293 return ret;
041d3a8c 6294
bb13ffeb 6295 ret = __alloc_contig_migrate_range(&cc, start, end);
041d3a8c
MN
6296 if (ret)
6297 goto done;
6298
6299 /*
6300 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6301 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6302 * more, all pages in [start, end) are free in page allocator.
6303 * What we are going to do is to allocate all pages from
6304 * [start, end) (that is remove them from page allocator).
6305 *
6306 * The only problem is that pages at the beginning and at the
6307 * end of interesting range may be not aligned with pages that
6308 * page allocator holds, ie. they can be part of higher order
6309 * pages. Because of this, we reserve the bigger range and
6310 * once this is done free the pages we are not interested in.
6311 *
6312 * We don't have to hold zone->lock here because the pages are
6313 * isolated thus they won't get removed from buddy.
6314 */
6315
6316 lru_add_drain_all();
6317 drain_all_pages();
6318
6319 order = 0;
6320 outer_start = start;
6321 while (!PageBuddy(pfn_to_page(outer_start))) {
6322 if (++order >= MAX_ORDER) {
6323 ret = -EBUSY;
6324 goto done;
6325 }
6326 outer_start &= ~0UL << order;
6327 }
6328
6329 /* Make sure the range is really isolated. */
b023f468 6330 if (test_pages_isolated(outer_start, end, false)) {
041d3a8c
MN
6331 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6332 outer_start, end);
6333 ret = -EBUSY;
6334 goto done;
6335 }
6336
49f223a9
MS
6337
6338 /* Grab isolated pages from freelists. */
bb13ffeb 6339 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
6340 if (!outer_end) {
6341 ret = -EBUSY;
6342 goto done;
6343 }
6344
6345 /* Free head and tail (if any) */
6346 if (start != outer_start)
6347 free_contig_range(outer_start, start - outer_start);
6348 if (end != outer_end)
6349 free_contig_range(end, outer_end - end);
6350
6351done:
6352 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 6353 pfn_max_align_up(end), migratetype);
041d3a8c
MN
6354 return ret;
6355}
6356
6357void free_contig_range(unsigned long pfn, unsigned nr_pages)
6358{
bcc2b02f
MS
6359 unsigned int count = 0;
6360
6361 for (; nr_pages--; pfn++) {
6362 struct page *page = pfn_to_page(pfn);
6363
6364 count += page_count(page) != 1;
6365 __free_page(page);
6366 }
6367 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
6368}
6369#endif
6370
4ed7e022 6371#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
6372/*
6373 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6374 * page high values need to be recalulated.
6375 */
4ed7e022
JL
6376void __meminit zone_pcp_update(struct zone *zone)
6377{
0a647f38 6378 unsigned cpu;
c8e251fa 6379 mutex_lock(&pcp_batch_high_lock);
0a647f38 6380 for_each_possible_cpu(cpu)
169f6c19
CS
6381 pageset_set_high_and_batch(zone,
6382 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 6383 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
6384}
6385#endif
6386
340175b7
JL
6387void zone_pcp_reset(struct zone *zone)
6388{
6389 unsigned long flags;
5a883813
MK
6390 int cpu;
6391 struct per_cpu_pageset *pset;
340175b7
JL
6392
6393 /* avoid races with drain_pages() */
6394 local_irq_save(flags);
6395 if (zone->pageset != &boot_pageset) {
5a883813
MK
6396 for_each_online_cpu(cpu) {
6397 pset = per_cpu_ptr(zone->pageset, cpu);
6398 drain_zonestat(zone, pset);
6399 }
340175b7
JL
6400 free_percpu(zone->pageset);
6401 zone->pageset = &boot_pageset;
6402 }
6403 local_irq_restore(flags);
6404}
6405
6dcd73d7 6406#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195
KH
6407/*
6408 * All pages in the range must be isolated before calling this.
6409 */
6410void
6411__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6412{
6413 struct page *page;
6414 struct zone *zone;
6415 int order, i;
6416 unsigned long pfn;
6417 unsigned long flags;
6418 /* find the first valid pfn */
6419 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6420 if (pfn_valid(pfn))
6421 break;
6422 if (pfn == end_pfn)
6423 return;
6424 zone = page_zone(pfn_to_page(pfn));
6425 spin_lock_irqsave(&zone->lock, flags);
6426 pfn = start_pfn;
6427 while (pfn < end_pfn) {
6428 if (!pfn_valid(pfn)) {
6429 pfn++;
6430 continue;
6431 }
6432 page = pfn_to_page(pfn);
b023f468
WC
6433 /*
6434 * The HWPoisoned page may be not in buddy system, and
6435 * page_count() is not 0.
6436 */
6437 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6438 pfn++;
6439 SetPageReserved(page);
6440 continue;
6441 }
6442
0c0e6195
KH
6443 BUG_ON(page_count(page));
6444 BUG_ON(!PageBuddy(page));
6445 order = page_order(page);
6446#ifdef CONFIG_DEBUG_VM
6447 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6448 pfn, 1 << order, end_pfn);
6449#endif
6450 list_del(&page->lru);
6451 rmv_page_order(page);
6452 zone->free_area[order].nr_free--;
0c0e6195
KH
6453 for (i = 0; i < (1 << order); i++)
6454 SetPageReserved((page+i));
6455 pfn += (1 << order);
6456 }
6457 spin_unlock_irqrestore(&zone->lock, flags);
6458}
6459#endif
8d22ba1b
WF
6460
6461#ifdef CONFIG_MEMORY_FAILURE
6462bool is_free_buddy_page(struct page *page)
6463{
6464 struct zone *zone = page_zone(page);
6465 unsigned long pfn = page_to_pfn(page);
6466 unsigned long flags;
6467 int order;
6468
6469 spin_lock_irqsave(&zone->lock, flags);
6470 for (order = 0; order < MAX_ORDER; order++) {
6471 struct page *page_head = page - (pfn & ((1 << order) - 1));
6472
6473 if (PageBuddy(page_head) && page_order(page_head) >= order)
6474 break;
6475 }
6476 spin_unlock_irqrestore(&zone->lock, flags);
6477
6478 return order < MAX_ORDER;
6479}
6480#endif
718a3821 6481
51300cef 6482static const struct trace_print_flags pageflag_names[] = {
718a3821
WF
6483 {1UL << PG_locked, "locked" },
6484 {1UL << PG_error, "error" },
6485 {1UL << PG_referenced, "referenced" },
6486 {1UL << PG_uptodate, "uptodate" },
6487 {1UL << PG_dirty, "dirty" },
6488 {1UL << PG_lru, "lru" },
6489 {1UL << PG_active, "active" },
6490 {1UL << PG_slab, "slab" },
6491 {1UL << PG_owner_priv_1, "owner_priv_1" },
6492 {1UL << PG_arch_1, "arch_1" },
6493 {1UL << PG_reserved, "reserved" },
6494 {1UL << PG_private, "private" },
6495 {1UL << PG_private_2, "private_2" },
6496 {1UL << PG_writeback, "writeback" },
6497#ifdef CONFIG_PAGEFLAGS_EXTENDED
6498 {1UL << PG_head, "head" },
6499 {1UL << PG_tail, "tail" },
6500#else
6501 {1UL << PG_compound, "compound" },
6502#endif
6503 {1UL << PG_swapcache, "swapcache" },
6504 {1UL << PG_mappedtodisk, "mappedtodisk" },
6505 {1UL << PG_reclaim, "reclaim" },
718a3821
WF
6506 {1UL << PG_swapbacked, "swapbacked" },
6507 {1UL << PG_unevictable, "unevictable" },
6508#ifdef CONFIG_MMU
6509 {1UL << PG_mlocked, "mlocked" },
6510#endif
6511#ifdef CONFIG_ARCH_USES_PG_UNCACHED
6512 {1UL << PG_uncached, "uncached" },
6513#endif
6514#ifdef CONFIG_MEMORY_FAILURE
6515 {1UL << PG_hwpoison, "hwpoison" },
be9cd873
GS
6516#endif
6517#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6518 {1UL << PG_compound_lock, "compound_lock" },
718a3821 6519#endif
718a3821
WF
6520};
6521
6522static void dump_page_flags(unsigned long flags)
6523{
6524 const char *delim = "";
6525 unsigned long mask;
6526 int i;
6527
51300cef 6528 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
acc50c11 6529
718a3821
WF
6530 printk(KERN_ALERT "page flags: %#lx(", flags);
6531
6532 /* remove zone id */
6533 flags &= (1UL << NR_PAGEFLAGS) - 1;
6534
51300cef 6535 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
718a3821
WF
6536
6537 mask = pageflag_names[i].mask;
6538 if ((flags & mask) != mask)
6539 continue;
6540
6541 flags &= ~mask;
6542 printk("%s%s", delim, pageflag_names[i].name);
6543 delim = "|";
6544 }
6545
6546 /* check for left over flags */
6547 if (flags)
6548 printk("%s%#lx", delim, flags);
6549
6550 printk(")\n");
6551}
6552
d230dec1
KS
6553void dump_page_badflags(struct page *page, const char *reason,
6554 unsigned long badflags)
718a3821
WF
6555{
6556 printk(KERN_ALERT
6557 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
4e9f64c4 6558 page, atomic_read(&page->_count), page_mapcount(page),
718a3821
WF
6559 page->mapping, page->index);
6560 dump_page_flags(page->flags);
f0b791a3
DH
6561 if (reason)
6562 pr_alert("page dumped because: %s\n", reason);
6563 if (page->flags & badflags) {
6564 pr_alert("bad because of flags:\n");
6565 dump_page_flags(page->flags & badflags);
6566 }
f212ad7c 6567 mem_cgroup_print_bad_page(page);
718a3821 6568}
f0b791a3 6569
d230dec1 6570void dump_page(struct page *page, const char *reason)
f0b791a3
DH
6571{
6572 dump_page_badflags(page, reason, 0);
6573}
ed12d845 6574EXPORT_SYMBOL(dump_page);