]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/page_alloc.c
fs/hugetlbfs/inode.c: complete conversion to pr_foo()
[mirror_ubuntu-zesty-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
52d4b9ac 51#include <linux/page_cgroup.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
56de7263 54#include <linux/compaction.h>
0d3d062a 55#include <trace/events/kmem.h>
718a3821 56#include <linux/ftrace_event.h>
f212ad7c 57#include <linux/memcontrol.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
c0a32fc5 61#include <linux/page-debug-flags.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
1da177e4 64
7ee3d4e8 65#include <asm/sections.h>
1da177e4 66#include <asm/tlbflush.h>
ac924c60 67#include <asm/div64.h>
1da177e4
LT
68#include "internal.h"
69
c8e251fa
CS
70/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
71static DEFINE_MUTEX(pcp_batch_high_lock);
72
72812019
LS
73#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
74DEFINE_PER_CPU(int, numa_node);
75EXPORT_PER_CPU_SYMBOL(numa_node);
76#endif
77
7aac7898
LS
78#ifdef CONFIG_HAVE_MEMORYLESS_NODES
79/*
80 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
81 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
82 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
83 * defined in <linux/topology.h>.
84 */
85DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
86EXPORT_PER_CPU_SYMBOL(_numa_mem_);
87#endif
88
1da177e4 89/*
13808910 90 * Array of node states.
1da177e4 91 */
13808910
CL
92nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
93 [N_POSSIBLE] = NODE_MASK_ALL,
94 [N_ONLINE] = { { [0] = 1UL } },
95#ifndef CONFIG_NUMA
96 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
97#ifdef CONFIG_HIGHMEM
98 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
99#endif
100#ifdef CONFIG_MOVABLE_NODE
101 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
102#endif
103 [N_CPU] = { { [0] = 1UL } },
104#endif /* NUMA */
105};
106EXPORT_SYMBOL(node_states);
107
c3d5f5f0
JL
108/* Protect totalram_pages and zone->managed_pages */
109static DEFINE_SPINLOCK(managed_page_count_lock);
110
6c231b7b 111unsigned long totalram_pages __read_mostly;
cb45b0e9 112unsigned long totalreserve_pages __read_mostly;
ab8fabd4
JW
113/*
114 * When calculating the number of globally allowed dirty pages, there
115 * is a certain number of per-zone reserves that should not be
116 * considered dirtyable memory. This is the sum of those reserves
117 * over all existing zones that contribute dirtyable memory.
118 */
119unsigned long dirty_balance_reserve __read_mostly;
120
1b76b02f 121int percpu_pagelist_fraction;
dcce284a 122gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 123
452aa699
RW
124#ifdef CONFIG_PM_SLEEP
125/*
126 * The following functions are used by the suspend/hibernate code to temporarily
127 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
128 * while devices are suspended. To avoid races with the suspend/hibernate code,
129 * they should always be called with pm_mutex held (gfp_allowed_mask also should
130 * only be modified with pm_mutex held, unless the suspend/hibernate code is
131 * guaranteed not to run in parallel with that modification).
132 */
c9e664f1
RW
133
134static gfp_t saved_gfp_mask;
135
136void pm_restore_gfp_mask(void)
452aa699
RW
137{
138 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
139 if (saved_gfp_mask) {
140 gfp_allowed_mask = saved_gfp_mask;
141 saved_gfp_mask = 0;
142 }
452aa699
RW
143}
144
c9e664f1 145void pm_restrict_gfp_mask(void)
452aa699 146{
452aa699 147 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
148 WARN_ON(saved_gfp_mask);
149 saved_gfp_mask = gfp_allowed_mask;
150 gfp_allowed_mask &= ~GFP_IOFS;
452aa699 151}
f90ac398
MG
152
153bool pm_suspended_storage(void)
154{
155 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
156 return false;
157 return true;
158}
452aa699
RW
159#endif /* CONFIG_PM_SLEEP */
160
d9c23400
MG
161#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
162int pageblock_order __read_mostly;
163#endif
164
d98c7a09 165static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 166
1da177e4
LT
167/*
168 * results with 256, 32 in the lowmem_reserve sysctl:
169 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
170 * 1G machine -> (16M dma, 784M normal, 224M high)
171 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
172 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
173 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
174 *
175 * TBD: should special case ZONE_DMA32 machines here - in those we normally
176 * don't need any ZONE_NORMAL reservation
1da177e4 177 */
2f1b6248 178int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 179#ifdef CONFIG_ZONE_DMA
2f1b6248 180 256,
4b51d669 181#endif
fb0e7942 182#ifdef CONFIG_ZONE_DMA32
2f1b6248 183 256,
fb0e7942 184#endif
e53ef38d 185#ifdef CONFIG_HIGHMEM
2a1e274a 186 32,
e53ef38d 187#endif
2a1e274a 188 32,
2f1b6248 189};
1da177e4
LT
190
191EXPORT_SYMBOL(totalram_pages);
1da177e4 192
15ad7cdc 193static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 194#ifdef CONFIG_ZONE_DMA
2f1b6248 195 "DMA",
4b51d669 196#endif
fb0e7942 197#ifdef CONFIG_ZONE_DMA32
2f1b6248 198 "DMA32",
fb0e7942 199#endif
2f1b6248 200 "Normal",
e53ef38d 201#ifdef CONFIG_HIGHMEM
2a1e274a 202 "HighMem",
e53ef38d 203#endif
2a1e274a 204 "Movable",
2f1b6248
CL
205};
206
1da177e4 207int min_free_kbytes = 1024;
42aa83cb 208int user_min_free_kbytes = -1;
1da177e4 209
2c85f51d
JB
210static unsigned long __meminitdata nr_kernel_pages;
211static unsigned long __meminitdata nr_all_pages;
a3142c8e 212static unsigned long __meminitdata dma_reserve;
1da177e4 213
0ee332c1
TH
214#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
215static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
216static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
217static unsigned long __initdata required_kernelcore;
218static unsigned long __initdata required_movablecore;
219static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
220
221/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
222int movable_zone;
223EXPORT_SYMBOL(movable_zone);
224#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 225
418508c1
MS
226#if MAX_NUMNODES > 1
227int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 228int nr_online_nodes __read_mostly = 1;
418508c1 229EXPORT_SYMBOL(nr_node_ids);
62bc62a8 230EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
231#endif
232
9ef9acb0
MG
233int page_group_by_mobility_disabled __read_mostly;
234
ee6f509c 235void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 236{
5d0f3f72
KM
237 if (unlikely(page_group_by_mobility_disabled &&
238 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
239 migratetype = MIGRATE_UNMOVABLE;
240
b2a0ac88
MG
241 set_pageblock_flags_group(page, (unsigned long)migratetype,
242 PB_migrate, PB_migrate_end);
243}
244
7f33d49a
RW
245bool oom_killer_disabled __read_mostly;
246
13e7444b 247#ifdef CONFIG_DEBUG_VM
c6a57e19 248static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 249{
bdc8cb98
DH
250 int ret = 0;
251 unsigned seq;
252 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 253 unsigned long sp, start_pfn;
c6a57e19 254
bdc8cb98
DH
255 do {
256 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
257 start_pfn = zone->zone_start_pfn;
258 sp = zone->spanned_pages;
108bcc96 259 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
260 ret = 1;
261 } while (zone_span_seqretry(zone, seq));
262
b5e6a5a2
CS
263 if (ret)
264 pr_err("page %lu outside zone [ %lu - %lu ]\n",
265 pfn, start_pfn, start_pfn + sp);
266
bdc8cb98 267 return ret;
c6a57e19
DH
268}
269
270static int page_is_consistent(struct zone *zone, struct page *page)
271{
14e07298 272 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 273 return 0;
1da177e4 274 if (zone != page_zone(page))
c6a57e19
DH
275 return 0;
276
277 return 1;
278}
279/*
280 * Temporary debugging check for pages not lying within a given zone.
281 */
282static int bad_range(struct zone *zone, struct page *page)
283{
284 if (page_outside_zone_boundaries(zone, page))
1da177e4 285 return 1;
c6a57e19
DH
286 if (!page_is_consistent(zone, page))
287 return 1;
288
1da177e4
LT
289 return 0;
290}
13e7444b
NP
291#else
292static inline int bad_range(struct zone *zone, struct page *page)
293{
294 return 0;
295}
296#endif
297
d230dec1
KS
298static void bad_page(struct page *page, const char *reason,
299 unsigned long bad_flags)
1da177e4 300{
d936cf9b
HD
301 static unsigned long resume;
302 static unsigned long nr_shown;
303 static unsigned long nr_unshown;
304
2a7684a2
WF
305 /* Don't complain about poisoned pages */
306 if (PageHWPoison(page)) {
22b751c3 307 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
308 return;
309 }
310
d936cf9b
HD
311 /*
312 * Allow a burst of 60 reports, then keep quiet for that minute;
313 * or allow a steady drip of one report per second.
314 */
315 if (nr_shown == 60) {
316 if (time_before(jiffies, resume)) {
317 nr_unshown++;
318 goto out;
319 }
320 if (nr_unshown) {
1e9e6365
HD
321 printk(KERN_ALERT
322 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
323 nr_unshown);
324 nr_unshown = 0;
325 }
326 nr_shown = 0;
327 }
328 if (nr_shown++ == 0)
329 resume = jiffies + 60 * HZ;
330
1e9e6365 331 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 332 current->comm, page_to_pfn(page));
f0b791a3 333 dump_page_badflags(page, reason, bad_flags);
3dc14741 334
4f31888c 335 print_modules();
1da177e4 336 dump_stack();
d936cf9b 337out:
8cc3b392 338 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 339 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 340 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
341}
342
1da177e4
LT
343/*
344 * Higher-order pages are called "compound pages". They are structured thusly:
345 *
346 * The first PAGE_SIZE page is called the "head page".
347 *
348 * The remaining PAGE_SIZE pages are called "tail pages".
349 *
6416b9fa
WSH
350 * All pages have PG_compound set. All tail pages have their ->first_page
351 * pointing at the head page.
1da177e4 352 *
41d78ba5
HD
353 * The first tail page's ->lru.next holds the address of the compound page's
354 * put_page() function. Its ->lru.prev holds the order of allocation.
355 * This usage means that zero-order pages may not be compound.
1da177e4 356 */
d98c7a09
HD
357
358static void free_compound_page(struct page *page)
359{
d85f3385 360 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
361}
362
01ad1c08 363void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
364{
365 int i;
366 int nr_pages = 1 << order;
367
368 set_compound_page_dtor(page, free_compound_page);
369 set_compound_order(page, order);
370 __SetPageHead(page);
371 for (i = 1; i < nr_pages; i++) {
372 struct page *p = page + i;
58a84aa9 373 set_page_count(p, 0);
18229df5 374 p->first_page = page;
668f9abb
DR
375 /* Make sure p->first_page is always valid for PageTail() */
376 smp_wmb();
377 __SetPageTail(p);
18229df5
AW
378 }
379}
380
59ff4216 381/* update __split_huge_page_refcount if you change this function */
8cc3b392 382static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
383{
384 int i;
385 int nr_pages = 1 << order;
8cc3b392 386 int bad = 0;
1da177e4 387
0bb2c763 388 if (unlikely(compound_order(page) != order)) {
f0b791a3 389 bad_page(page, "wrong compound order", 0);
8cc3b392
HD
390 bad++;
391 }
1da177e4 392
6d777953 393 __ClearPageHead(page);
8cc3b392 394
18229df5
AW
395 for (i = 1; i < nr_pages; i++) {
396 struct page *p = page + i;
1da177e4 397
f0b791a3
DH
398 if (unlikely(!PageTail(p))) {
399 bad_page(page, "PageTail not set", 0);
400 bad++;
401 } else if (unlikely(p->first_page != page)) {
402 bad_page(page, "first_page not consistent", 0);
8cc3b392
HD
403 bad++;
404 }
d85f3385 405 __ClearPageTail(p);
1da177e4 406 }
8cc3b392
HD
407
408 return bad;
1da177e4 409}
1da177e4 410
17cf4406
NP
411static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
412{
413 int i;
414
6626c5d5
AM
415 /*
416 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
417 * and __GFP_HIGHMEM from hard or soft interrupt context.
418 */
725d704e 419 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
420 for (i = 0; i < (1 << order); i++)
421 clear_highpage(page + i);
422}
423
c0a32fc5
SG
424#ifdef CONFIG_DEBUG_PAGEALLOC
425unsigned int _debug_guardpage_minorder;
426
427static int __init debug_guardpage_minorder_setup(char *buf)
428{
429 unsigned long res;
430
431 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
432 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
433 return 0;
434 }
435 _debug_guardpage_minorder = res;
436 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
437 return 0;
438}
439__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
440
441static inline void set_page_guard_flag(struct page *page)
442{
443 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
444}
445
446static inline void clear_page_guard_flag(struct page *page)
447{
448 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
449}
450#else
451static inline void set_page_guard_flag(struct page *page) { }
452static inline void clear_page_guard_flag(struct page *page) { }
453#endif
454
6aa3001b
AM
455static inline void set_page_order(struct page *page, int order)
456{
4c21e2f2 457 set_page_private(page, order);
676165a8 458 __SetPageBuddy(page);
1da177e4
LT
459}
460
461static inline void rmv_page_order(struct page *page)
462{
676165a8 463 __ClearPageBuddy(page);
4c21e2f2 464 set_page_private(page, 0);
1da177e4
LT
465}
466
467/*
468 * Locate the struct page for both the matching buddy in our
469 * pair (buddy1) and the combined O(n+1) page they form (page).
470 *
471 * 1) Any buddy B1 will have an order O twin B2 which satisfies
472 * the following equation:
473 * B2 = B1 ^ (1 << O)
474 * For example, if the starting buddy (buddy2) is #8 its order
475 * 1 buddy is #10:
476 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
477 *
478 * 2) Any buddy B will have an order O+1 parent P which
479 * satisfies the following equation:
480 * P = B & ~(1 << O)
481 *
d6e05edc 482 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4 483 */
1da177e4 484static inline unsigned long
43506fad 485__find_buddy_index(unsigned long page_idx, unsigned int order)
1da177e4 486{
43506fad 487 return page_idx ^ (1 << order);
1da177e4
LT
488}
489
490/*
491 * This function checks whether a page is free && is the buddy
492 * we can do coalesce a page and its buddy if
13e7444b 493 * (a) the buddy is not in a hole &&
676165a8 494 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
495 * (c) a page and its buddy have the same order &&
496 * (d) a page and its buddy are in the same zone.
676165a8 497 *
cf6fe945
WSH
498 * For recording whether a page is in the buddy system, we set ->_mapcount
499 * PAGE_BUDDY_MAPCOUNT_VALUE.
500 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
501 * serialized by zone->lock.
1da177e4 502 *
676165a8 503 * For recording page's order, we use page_private(page).
1da177e4 504 */
cb2b95e1
AW
505static inline int page_is_buddy(struct page *page, struct page *buddy,
506 int order)
1da177e4 507{
14e07298 508 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 509 return 0;
13e7444b 510
cb2b95e1
AW
511 if (page_zone_id(page) != page_zone_id(buddy))
512 return 0;
513
c0a32fc5 514 if (page_is_guard(buddy) && page_order(buddy) == order) {
309381fe 515 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
c0a32fc5
SG
516 return 1;
517 }
518
cb2b95e1 519 if (PageBuddy(buddy) && page_order(buddy) == order) {
309381fe 520 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
6aa3001b 521 return 1;
676165a8 522 }
6aa3001b 523 return 0;
1da177e4
LT
524}
525
526/*
527 * Freeing function for a buddy system allocator.
528 *
529 * The concept of a buddy system is to maintain direct-mapped table
530 * (containing bit values) for memory blocks of various "orders".
531 * The bottom level table contains the map for the smallest allocatable
532 * units of memory (here, pages), and each level above it describes
533 * pairs of units from the levels below, hence, "buddies".
534 * At a high level, all that happens here is marking the table entry
535 * at the bottom level available, and propagating the changes upward
536 * as necessary, plus some accounting needed to play nicely with other
537 * parts of the VM system.
538 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
539 * free pages of length of (1 << order) and marked with _mapcount
540 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
541 * field.
1da177e4 542 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
543 * other. That is, if we allocate a small block, and both were
544 * free, the remainder of the region must be split into blocks.
1da177e4 545 * If a block is freed, and its buddy is also free, then this
5f63b720 546 * triggers coalescing into a block of larger size.
1da177e4 547 *
6d49e352 548 * -- nyc
1da177e4
LT
549 */
550
48db57f8 551static inline void __free_one_page(struct page *page,
ed0ae21d
MG
552 struct zone *zone, unsigned int order,
553 int migratetype)
1da177e4
LT
554{
555 unsigned long page_idx;
6dda9d55 556 unsigned long combined_idx;
43506fad 557 unsigned long uninitialized_var(buddy_idx);
6dda9d55 558 struct page *buddy;
1da177e4 559
d29bb978
CS
560 VM_BUG_ON(!zone_is_initialized(zone));
561
224abf92 562 if (unlikely(PageCompound(page)))
8cc3b392
HD
563 if (unlikely(destroy_compound_page(page, order)))
564 return;
1da177e4 565
ed0ae21d
MG
566 VM_BUG_ON(migratetype == -1);
567
1da177e4
LT
568 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
569
309381fe
SL
570 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
571 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 572
1da177e4 573 while (order < MAX_ORDER-1) {
43506fad
KC
574 buddy_idx = __find_buddy_index(page_idx, order);
575 buddy = page + (buddy_idx - page_idx);
cb2b95e1 576 if (!page_is_buddy(page, buddy, order))
3c82d0ce 577 break;
c0a32fc5
SG
578 /*
579 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
580 * merge with it and move up one order.
581 */
582 if (page_is_guard(buddy)) {
583 clear_page_guard_flag(buddy);
584 set_page_private(page, 0);
d1ce749a
BZ
585 __mod_zone_freepage_state(zone, 1 << order,
586 migratetype);
c0a32fc5
SG
587 } else {
588 list_del(&buddy->lru);
589 zone->free_area[order].nr_free--;
590 rmv_page_order(buddy);
591 }
43506fad 592 combined_idx = buddy_idx & page_idx;
1da177e4
LT
593 page = page + (combined_idx - page_idx);
594 page_idx = combined_idx;
595 order++;
596 }
597 set_page_order(page, order);
6dda9d55
CZ
598
599 /*
600 * If this is not the largest possible page, check if the buddy
601 * of the next-highest order is free. If it is, it's possible
602 * that pages are being freed that will coalesce soon. In case,
603 * that is happening, add the free page to the tail of the list
604 * so it's less likely to be used soon and more likely to be merged
605 * as a higher order page
606 */
b7f50cfa 607 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 608 struct page *higher_page, *higher_buddy;
43506fad
KC
609 combined_idx = buddy_idx & page_idx;
610 higher_page = page + (combined_idx - page_idx);
611 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 612 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
613 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
614 list_add_tail(&page->lru,
615 &zone->free_area[order].free_list[migratetype]);
616 goto out;
617 }
618 }
619
620 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
621out:
1da177e4
LT
622 zone->free_area[order].nr_free++;
623}
624
224abf92 625static inline int free_pages_check(struct page *page)
1da177e4 626{
d230dec1 627 const char *bad_reason = NULL;
f0b791a3
DH
628 unsigned long bad_flags = 0;
629
630 if (unlikely(page_mapcount(page)))
631 bad_reason = "nonzero mapcount";
632 if (unlikely(page->mapping != NULL))
633 bad_reason = "non-NULL mapping";
634 if (unlikely(atomic_read(&page->_count) != 0))
635 bad_reason = "nonzero _count";
636 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
637 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
638 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
639 }
640 if (unlikely(mem_cgroup_bad_page_check(page)))
641 bad_reason = "cgroup check failed";
642 if (unlikely(bad_reason)) {
643 bad_page(page, bad_reason, bad_flags);
79f4b7bf 644 return 1;
8cc3b392 645 }
90572890 646 page_cpupid_reset_last(page);
79f4b7bf
HD
647 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
648 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
649 return 0;
1da177e4
LT
650}
651
652/*
5f8dcc21 653 * Frees a number of pages from the PCP lists
1da177e4 654 * Assumes all pages on list are in same zone, and of same order.
207f36ee 655 * count is the number of pages to free.
1da177e4
LT
656 *
657 * If the zone was previously in an "all pages pinned" state then look to
658 * see if this freeing clears that state.
659 *
660 * And clear the zone's pages_scanned counter, to hold off the "all pages are
661 * pinned" detection logic.
662 */
5f8dcc21
MG
663static void free_pcppages_bulk(struct zone *zone, int count,
664 struct per_cpu_pages *pcp)
1da177e4 665{
5f8dcc21 666 int migratetype = 0;
a6f9edd6 667 int batch_free = 0;
72853e29 668 int to_free = count;
5f8dcc21 669
c54ad30c 670 spin_lock(&zone->lock);
1da177e4 671 zone->pages_scanned = 0;
f2260e6b 672
72853e29 673 while (to_free) {
48db57f8 674 struct page *page;
5f8dcc21
MG
675 struct list_head *list;
676
677 /*
a6f9edd6
MG
678 * Remove pages from lists in a round-robin fashion. A
679 * batch_free count is maintained that is incremented when an
680 * empty list is encountered. This is so more pages are freed
681 * off fuller lists instead of spinning excessively around empty
682 * lists
5f8dcc21
MG
683 */
684 do {
a6f9edd6 685 batch_free++;
5f8dcc21
MG
686 if (++migratetype == MIGRATE_PCPTYPES)
687 migratetype = 0;
688 list = &pcp->lists[migratetype];
689 } while (list_empty(list));
48db57f8 690
1d16871d
NK
691 /* This is the only non-empty list. Free them all. */
692 if (batch_free == MIGRATE_PCPTYPES)
693 batch_free = to_free;
694
a6f9edd6 695 do {
770c8aaa
BZ
696 int mt; /* migratetype of the to-be-freed page */
697
a6f9edd6
MG
698 page = list_entry(list->prev, struct page, lru);
699 /* must delete as __free_one_page list manipulates */
700 list_del(&page->lru);
b12c4ad1 701 mt = get_freepage_migratetype(page);
a7016235 702 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
770c8aaa
BZ
703 __free_one_page(page, zone, 0, mt);
704 trace_mm_page_pcpu_drain(page, 0, mt);
194159fb 705 if (likely(!is_migrate_isolate_page(page))) {
97d0da22
WC
706 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
707 if (is_migrate_cma(mt))
708 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
709 }
72853e29 710 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 711 }
c54ad30c 712 spin_unlock(&zone->lock);
1da177e4
LT
713}
714
ed0ae21d
MG
715static void free_one_page(struct zone *zone, struct page *page, int order,
716 int migratetype)
1da177e4 717{
006d22d9 718 spin_lock(&zone->lock);
006d22d9 719 zone->pages_scanned = 0;
f2260e6b 720
ed0ae21d 721 __free_one_page(page, zone, order, migratetype);
194159fb 722 if (unlikely(!is_migrate_isolate(migratetype)))
d1ce749a 723 __mod_zone_freepage_state(zone, 1 << order, migratetype);
006d22d9 724 spin_unlock(&zone->lock);
48db57f8
NP
725}
726
ec95f53a 727static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 728{
1da177e4 729 int i;
8cc3b392 730 int bad = 0;
1da177e4 731
b413d48a 732 trace_mm_page_free(page, order);
b1eeab67
VN
733 kmemcheck_free_shadow(page, order);
734
8dd60a3a
AA
735 if (PageAnon(page))
736 page->mapping = NULL;
737 for (i = 0; i < (1 << order); i++)
738 bad += free_pages_check(page + i);
8cc3b392 739 if (bad)
ec95f53a 740 return false;
689bcebf 741
3ac7fe5a 742 if (!PageHighMem(page)) {
b8af2941
PK
743 debug_check_no_locks_freed(page_address(page),
744 PAGE_SIZE << order);
3ac7fe5a
TG
745 debug_check_no_obj_freed(page_address(page),
746 PAGE_SIZE << order);
747 }
dafb1367 748 arch_free_page(page, order);
48db57f8 749 kernel_map_pages(page, 1 << order, 0);
dafb1367 750
ec95f53a
KM
751 return true;
752}
753
754static void __free_pages_ok(struct page *page, unsigned int order)
755{
756 unsigned long flags;
95e34412 757 int migratetype;
ec95f53a
KM
758
759 if (!free_pages_prepare(page, order))
760 return;
761
c54ad30c 762 local_irq_save(flags);
f8891e5e 763 __count_vm_events(PGFREE, 1 << order);
95e34412
MK
764 migratetype = get_pageblock_migratetype(page);
765 set_freepage_migratetype(page, migratetype);
766 free_one_page(page_zone(page), page, order, migratetype);
c54ad30c 767 local_irq_restore(flags);
1da177e4
LT
768}
769
170a5a7e 770void __init __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8 771{
c3993076 772 unsigned int nr_pages = 1 << order;
e2d0bd2b 773 struct page *p = page;
c3993076 774 unsigned int loop;
a226f6c8 775
e2d0bd2b
YL
776 prefetchw(p);
777 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
778 prefetchw(p + 1);
c3993076
JW
779 __ClearPageReserved(p);
780 set_page_count(p, 0);
a226f6c8 781 }
e2d0bd2b
YL
782 __ClearPageReserved(p);
783 set_page_count(p, 0);
c3993076 784
e2d0bd2b 785 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
786 set_page_refcounted(page);
787 __free_pages(page, order);
a226f6c8
DH
788}
789
47118af0 790#ifdef CONFIG_CMA
9cf510a5 791/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
792void __init init_cma_reserved_pageblock(struct page *page)
793{
794 unsigned i = pageblock_nr_pages;
795 struct page *p = page;
796
797 do {
798 __ClearPageReserved(p);
799 set_page_count(p, 0);
800 } while (++p, --i);
801
802 set_page_refcounted(page);
803 set_pageblock_migratetype(page, MIGRATE_CMA);
804 __free_pages(page, pageblock_order);
3dcc0571 805 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
806}
807#endif
1da177e4
LT
808
809/*
810 * The order of subdivision here is critical for the IO subsystem.
811 * Please do not alter this order without good reasons and regression
812 * testing. Specifically, as large blocks of memory are subdivided,
813 * the order in which smaller blocks are delivered depends on the order
814 * they're subdivided in this function. This is the primary factor
815 * influencing the order in which pages are delivered to the IO
816 * subsystem according to empirical testing, and this is also justified
817 * by considering the behavior of a buddy system containing a single
818 * large block of memory acted on by a series of small allocations.
819 * This behavior is a critical factor in sglist merging's success.
820 *
6d49e352 821 * -- nyc
1da177e4 822 */
085cc7d5 823static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
824 int low, int high, struct free_area *area,
825 int migratetype)
1da177e4
LT
826{
827 unsigned long size = 1 << high;
828
829 while (high > low) {
830 area--;
831 high--;
832 size >>= 1;
309381fe 833 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5
SG
834
835#ifdef CONFIG_DEBUG_PAGEALLOC
836 if (high < debug_guardpage_minorder()) {
837 /*
838 * Mark as guard pages (or page), that will allow to
839 * merge back to allocator when buddy will be freed.
840 * Corresponding page table entries will not be touched,
841 * pages will stay not present in virtual address space
842 */
843 INIT_LIST_HEAD(&page[size].lru);
844 set_page_guard_flag(&page[size]);
845 set_page_private(&page[size], high);
846 /* Guard pages are not available for any usage */
d1ce749a
BZ
847 __mod_zone_freepage_state(zone, -(1 << high),
848 migratetype);
c0a32fc5
SG
849 continue;
850 }
851#endif
b2a0ac88 852 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
853 area->nr_free++;
854 set_page_order(&page[size], high);
855 }
1da177e4
LT
856}
857
1da177e4
LT
858/*
859 * This page is about to be returned from the page allocator
860 */
2a7684a2 861static inline int check_new_page(struct page *page)
1da177e4 862{
d230dec1 863 const char *bad_reason = NULL;
f0b791a3
DH
864 unsigned long bad_flags = 0;
865
866 if (unlikely(page_mapcount(page)))
867 bad_reason = "nonzero mapcount";
868 if (unlikely(page->mapping != NULL))
869 bad_reason = "non-NULL mapping";
870 if (unlikely(atomic_read(&page->_count) != 0))
871 bad_reason = "nonzero _count";
872 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
873 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
874 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
875 }
876 if (unlikely(mem_cgroup_bad_page_check(page)))
877 bad_reason = "cgroup check failed";
878 if (unlikely(bad_reason)) {
879 bad_page(page, bad_reason, bad_flags);
689bcebf 880 return 1;
8cc3b392 881 }
2a7684a2
WF
882 return 0;
883}
884
885static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
886{
887 int i;
888
889 for (i = 0; i < (1 << order); i++) {
890 struct page *p = page + i;
891 if (unlikely(check_new_page(p)))
892 return 1;
893 }
689bcebf 894
4c21e2f2 895 set_page_private(page, 0);
7835e98b 896 set_page_refcounted(page);
cc102509
NP
897
898 arch_alloc_page(page, order);
1da177e4 899 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
900
901 if (gfp_flags & __GFP_ZERO)
902 prep_zero_page(page, order, gfp_flags);
903
904 if (order && (gfp_flags & __GFP_COMP))
905 prep_compound_page(page, order);
906
689bcebf 907 return 0;
1da177e4
LT
908}
909
56fd56b8
MG
910/*
911 * Go through the free lists for the given migratetype and remove
912 * the smallest available page from the freelists
913 */
728ec980
MG
914static inline
915struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
916 int migratetype)
917{
918 unsigned int current_order;
b8af2941 919 struct free_area *area;
56fd56b8
MG
920 struct page *page;
921
922 /* Find a page of the appropriate size in the preferred list */
923 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
924 area = &(zone->free_area[current_order]);
925 if (list_empty(&area->free_list[migratetype]))
926 continue;
927
928 page = list_entry(area->free_list[migratetype].next,
929 struct page, lru);
930 list_del(&page->lru);
931 rmv_page_order(page);
932 area->nr_free--;
56fd56b8
MG
933 expand(zone, page, order, current_order, area, migratetype);
934 return page;
935 }
936
937 return NULL;
938}
939
940
b2a0ac88
MG
941/*
942 * This array describes the order lists are fallen back to when
943 * the free lists for the desirable migrate type are depleted
944 */
47118af0
MN
945static int fallbacks[MIGRATE_TYPES][4] = {
946 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
947 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
948#ifdef CONFIG_CMA
949 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
950 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
951#else
952 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
953#endif
6d4a4916 954 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 955#ifdef CONFIG_MEMORY_ISOLATION
6d4a4916 956 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 957#endif
b2a0ac88
MG
958};
959
c361be55
MG
960/*
961 * Move the free pages in a range to the free lists of the requested type.
d9c23400 962 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
963 * boundary. If alignment is required, use move_freepages_block()
964 */
435b405c 965int move_freepages(struct zone *zone,
b69a7288
AB
966 struct page *start_page, struct page *end_page,
967 int migratetype)
c361be55
MG
968{
969 struct page *page;
970 unsigned long order;
d100313f 971 int pages_moved = 0;
c361be55
MG
972
973#ifndef CONFIG_HOLES_IN_ZONE
974 /*
975 * page_zone is not safe to call in this context when
976 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
977 * anyway as we check zone boundaries in move_freepages_block().
978 * Remove at a later date when no bug reports exist related to
ac0e5b7a 979 * grouping pages by mobility
c361be55
MG
980 */
981 BUG_ON(page_zone(start_page) != page_zone(end_page));
982#endif
983
984 for (page = start_page; page <= end_page;) {
344c790e 985 /* Make sure we are not inadvertently changing nodes */
309381fe 986 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 987
c361be55
MG
988 if (!pfn_valid_within(page_to_pfn(page))) {
989 page++;
990 continue;
991 }
992
993 if (!PageBuddy(page)) {
994 page++;
995 continue;
996 }
997
998 order = page_order(page);
84be48d8
KS
999 list_move(&page->lru,
1000 &zone->free_area[order].free_list[migratetype]);
95e34412 1001 set_freepage_migratetype(page, migratetype);
c361be55 1002 page += 1 << order;
d100313f 1003 pages_moved += 1 << order;
c361be55
MG
1004 }
1005
d100313f 1006 return pages_moved;
c361be55
MG
1007}
1008
ee6f509c 1009int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1010 int migratetype)
c361be55
MG
1011{
1012 unsigned long start_pfn, end_pfn;
1013 struct page *start_page, *end_page;
1014
1015 start_pfn = page_to_pfn(page);
d9c23400 1016 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1017 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1018 end_page = start_page + pageblock_nr_pages - 1;
1019 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1020
1021 /* Do not cross zone boundaries */
108bcc96 1022 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1023 start_page = page;
108bcc96 1024 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1025 return 0;
1026
1027 return move_freepages(zone, start_page, end_page, migratetype);
1028}
1029
2f66a68f
MG
1030static void change_pageblock_range(struct page *pageblock_page,
1031 int start_order, int migratetype)
1032{
1033 int nr_pageblocks = 1 << (start_order - pageblock_order);
1034
1035 while (nr_pageblocks--) {
1036 set_pageblock_migratetype(pageblock_page, migratetype);
1037 pageblock_page += pageblock_nr_pages;
1038 }
1039}
1040
fef903ef
SB
1041/*
1042 * If breaking a large block of pages, move all free pages to the preferred
1043 * allocation list. If falling back for a reclaimable kernel allocation, be
1044 * more aggressive about taking ownership of free pages.
1045 *
1046 * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1047 * nor move CMA pages to different free lists. We don't want unmovable pages
1048 * to be allocated from MIGRATE_CMA areas.
1049 *
1050 * Returns the new migratetype of the pageblock (or the same old migratetype
1051 * if it was unchanged).
1052 */
1053static int try_to_steal_freepages(struct zone *zone, struct page *page,
1054 int start_type, int fallback_type)
1055{
1056 int current_order = page_order(page);
1057
0cbef29a
KM
1058 /*
1059 * When borrowing from MIGRATE_CMA, we need to release the excess
1060 * buddy pages to CMA itself.
1061 */
fef903ef
SB
1062 if (is_migrate_cma(fallback_type))
1063 return fallback_type;
1064
1065 /* Take ownership for orders >= pageblock_order */
1066 if (current_order >= pageblock_order) {
1067 change_pageblock_range(page, current_order, start_type);
1068 return start_type;
1069 }
1070
1071 if (current_order >= pageblock_order / 2 ||
1072 start_type == MIGRATE_RECLAIMABLE ||
1073 page_group_by_mobility_disabled) {
1074 int pages;
1075
1076 pages = move_freepages_block(zone, page, start_type);
1077
1078 /* Claim the whole block if over half of it is free */
1079 if (pages >= (1 << (pageblock_order-1)) ||
1080 page_group_by_mobility_disabled) {
1081
1082 set_pageblock_migratetype(page, start_type);
1083 return start_type;
1084 }
1085
1086 }
1087
1088 return fallback_type;
1089}
1090
b2a0ac88 1091/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
1092static inline struct page *
1093__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88 1094{
b8af2941 1095 struct free_area *area;
b2a0ac88
MG
1096 int current_order;
1097 struct page *page;
fef903ef 1098 int migratetype, new_type, i;
b2a0ac88
MG
1099
1100 /* Find the largest possible block of pages in the other list */
1101 for (current_order = MAX_ORDER-1; current_order >= order;
1102 --current_order) {
6d4a4916 1103 for (i = 0;; i++) {
b2a0ac88
MG
1104 migratetype = fallbacks[start_migratetype][i];
1105
56fd56b8
MG
1106 /* MIGRATE_RESERVE handled later if necessary */
1107 if (migratetype == MIGRATE_RESERVE)
6d4a4916 1108 break;
e010487d 1109
b2a0ac88
MG
1110 area = &(zone->free_area[current_order]);
1111 if (list_empty(&area->free_list[migratetype]))
1112 continue;
1113
1114 page = list_entry(area->free_list[migratetype].next,
1115 struct page, lru);
1116 area->nr_free--;
1117
fef903ef
SB
1118 new_type = try_to_steal_freepages(zone, page,
1119 start_migratetype,
1120 migratetype);
b2a0ac88
MG
1121
1122 /* Remove the page from the freelists */
1123 list_del(&page->lru);
1124 rmv_page_order(page);
b2a0ac88 1125
47118af0 1126 expand(zone, page, order, current_order, area,
0cbef29a 1127 new_type);
e0fff1bd 1128
52c8f6a5
KM
1129 trace_mm_page_alloc_extfrag(page, order, current_order,
1130 start_migratetype, migratetype, new_type);
e0fff1bd 1131
b2a0ac88
MG
1132 return page;
1133 }
1134 }
1135
728ec980 1136 return NULL;
b2a0ac88
MG
1137}
1138
56fd56b8 1139/*
1da177e4
LT
1140 * Do the hard work of removing an element from the buddy allocator.
1141 * Call me with the zone->lock already held.
1142 */
b2a0ac88
MG
1143static struct page *__rmqueue(struct zone *zone, unsigned int order,
1144 int migratetype)
1da177e4 1145{
1da177e4
LT
1146 struct page *page;
1147
728ec980 1148retry_reserve:
56fd56b8 1149 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 1150
728ec980 1151 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 1152 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1153
728ec980
MG
1154 /*
1155 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1156 * is used because __rmqueue_smallest is an inline function
1157 * and we want just one call site
1158 */
1159 if (!page) {
1160 migratetype = MIGRATE_RESERVE;
1161 goto retry_reserve;
1162 }
1163 }
1164
0d3d062a 1165 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1166 return page;
1da177e4
LT
1167}
1168
5f63b720 1169/*
1da177e4
LT
1170 * Obtain a specified number of elements from the buddy allocator, all under
1171 * a single hold of the lock, for efficiency. Add them to the supplied list.
1172 * Returns the number of new pages which were placed at *list.
1173 */
5f63b720 1174static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1175 unsigned long count, struct list_head *list,
e084b2d9 1176 int migratetype, int cold)
1da177e4 1177{
47118af0 1178 int mt = migratetype, i;
5f63b720 1179
c54ad30c 1180 spin_lock(&zone->lock);
1da177e4 1181 for (i = 0; i < count; ++i) {
b2a0ac88 1182 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1183 if (unlikely(page == NULL))
1da177e4 1184 break;
81eabcbe
MG
1185
1186 /*
1187 * Split buddy pages returned by expand() are received here
1188 * in physical page order. The page is added to the callers and
1189 * list and the list head then moves forward. From the callers
1190 * perspective, the linked list is ordered by page number in
1191 * some conditions. This is useful for IO devices that can
1192 * merge IO requests if the physical pages are ordered
1193 * properly.
1194 */
e084b2d9
MG
1195 if (likely(cold == 0))
1196 list_add(&page->lru, list);
1197 else
1198 list_add_tail(&page->lru, list);
47118af0
MN
1199 if (IS_ENABLED(CONFIG_CMA)) {
1200 mt = get_pageblock_migratetype(page);
194159fb 1201 if (!is_migrate_cma(mt) && !is_migrate_isolate(mt))
47118af0
MN
1202 mt = migratetype;
1203 }
b12c4ad1 1204 set_freepage_migratetype(page, mt);
81eabcbe 1205 list = &page->lru;
d1ce749a
BZ
1206 if (is_migrate_cma(mt))
1207 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1208 -(1 << order));
1da177e4 1209 }
f2260e6b 1210 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1211 spin_unlock(&zone->lock);
085cc7d5 1212 return i;
1da177e4
LT
1213}
1214
4ae7c039 1215#ifdef CONFIG_NUMA
8fce4d8e 1216/*
4037d452
CL
1217 * Called from the vmstat counter updater to drain pagesets of this
1218 * currently executing processor on remote nodes after they have
1219 * expired.
1220 *
879336c3
CL
1221 * Note that this function must be called with the thread pinned to
1222 * a single processor.
8fce4d8e 1223 */
4037d452 1224void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1225{
4ae7c039 1226 unsigned long flags;
4037d452 1227 int to_drain;
998d39cb 1228 unsigned long batch;
4ae7c039 1229
4037d452 1230 local_irq_save(flags);
998d39cb
CS
1231 batch = ACCESS_ONCE(pcp->batch);
1232 if (pcp->count >= batch)
1233 to_drain = batch;
4037d452
CL
1234 else
1235 to_drain = pcp->count;
2a13515c
KM
1236 if (to_drain > 0) {
1237 free_pcppages_bulk(zone, to_drain, pcp);
1238 pcp->count -= to_drain;
1239 }
4037d452 1240 local_irq_restore(flags);
4ae7c039
CL
1241}
1242#endif
1243
9f8f2172
CL
1244/*
1245 * Drain pages of the indicated processor.
1246 *
1247 * The processor must either be the current processor and the
1248 * thread pinned to the current processor or a processor that
1249 * is not online.
1250 */
1251static void drain_pages(unsigned int cpu)
1da177e4 1252{
c54ad30c 1253 unsigned long flags;
1da177e4 1254 struct zone *zone;
1da177e4 1255
ee99c71c 1256 for_each_populated_zone(zone) {
1da177e4 1257 struct per_cpu_pageset *pset;
3dfa5721 1258 struct per_cpu_pages *pcp;
1da177e4 1259
99dcc3e5
CL
1260 local_irq_save(flags);
1261 pset = per_cpu_ptr(zone->pageset, cpu);
3dfa5721
CL
1262
1263 pcp = &pset->pcp;
2ff754fa
DR
1264 if (pcp->count) {
1265 free_pcppages_bulk(zone, pcp->count, pcp);
1266 pcp->count = 0;
1267 }
3dfa5721 1268 local_irq_restore(flags);
1da177e4
LT
1269 }
1270}
1da177e4 1271
9f8f2172
CL
1272/*
1273 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1274 */
1275void drain_local_pages(void *arg)
1276{
1277 drain_pages(smp_processor_id());
1278}
1279
1280/*
74046494
GBY
1281 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1282 *
1283 * Note that this code is protected against sending an IPI to an offline
1284 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1285 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1286 * nothing keeps CPUs from showing up after we populated the cpumask and
1287 * before the call to on_each_cpu_mask().
9f8f2172
CL
1288 */
1289void drain_all_pages(void)
1290{
74046494
GBY
1291 int cpu;
1292 struct per_cpu_pageset *pcp;
1293 struct zone *zone;
1294
1295 /*
1296 * Allocate in the BSS so we wont require allocation in
1297 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1298 */
1299 static cpumask_t cpus_with_pcps;
1300
1301 /*
1302 * We don't care about racing with CPU hotplug event
1303 * as offline notification will cause the notified
1304 * cpu to drain that CPU pcps and on_each_cpu_mask
1305 * disables preemption as part of its processing
1306 */
1307 for_each_online_cpu(cpu) {
1308 bool has_pcps = false;
1309 for_each_populated_zone(zone) {
1310 pcp = per_cpu_ptr(zone->pageset, cpu);
1311 if (pcp->pcp.count) {
1312 has_pcps = true;
1313 break;
1314 }
1315 }
1316 if (has_pcps)
1317 cpumask_set_cpu(cpu, &cpus_with_pcps);
1318 else
1319 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1320 }
1321 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
9f8f2172
CL
1322}
1323
296699de 1324#ifdef CONFIG_HIBERNATION
1da177e4
LT
1325
1326void mark_free_pages(struct zone *zone)
1327{
f623f0db
RW
1328 unsigned long pfn, max_zone_pfn;
1329 unsigned long flags;
b2a0ac88 1330 int order, t;
1da177e4
LT
1331 struct list_head *curr;
1332
8080fc03 1333 if (zone_is_empty(zone))
1da177e4
LT
1334 return;
1335
1336 spin_lock_irqsave(&zone->lock, flags);
f623f0db 1337
108bcc96 1338 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
1339 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1340 if (pfn_valid(pfn)) {
1341 struct page *page = pfn_to_page(pfn);
1342
7be98234
RW
1343 if (!swsusp_page_is_forbidden(page))
1344 swsusp_unset_page_free(page);
f623f0db 1345 }
1da177e4 1346
b2a0ac88
MG
1347 for_each_migratetype_order(order, t) {
1348 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1349 unsigned long i;
1da177e4 1350
f623f0db
RW
1351 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1352 for (i = 0; i < (1UL << order); i++)
7be98234 1353 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1354 }
b2a0ac88 1355 }
1da177e4
LT
1356 spin_unlock_irqrestore(&zone->lock, flags);
1357}
e2c55dc8 1358#endif /* CONFIG_PM */
1da177e4 1359
1da177e4
LT
1360/*
1361 * Free a 0-order page
fc91668e 1362 * cold == 1 ? free a cold page : free a hot page
1da177e4 1363 */
fc91668e 1364void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1365{
1366 struct zone *zone = page_zone(page);
1367 struct per_cpu_pages *pcp;
1368 unsigned long flags;
5f8dcc21 1369 int migratetype;
1da177e4 1370
ec95f53a 1371 if (!free_pages_prepare(page, 0))
689bcebf
HD
1372 return;
1373
5f8dcc21 1374 migratetype = get_pageblock_migratetype(page);
b12c4ad1 1375 set_freepage_migratetype(page, migratetype);
1da177e4 1376 local_irq_save(flags);
f8891e5e 1377 __count_vm_event(PGFREE);
da456f14 1378
5f8dcc21
MG
1379 /*
1380 * We only track unmovable, reclaimable and movable on pcp lists.
1381 * Free ISOLATE pages back to the allocator because they are being
1382 * offlined but treat RESERVE as movable pages so we can get those
1383 * areas back if necessary. Otherwise, we may have to free
1384 * excessively into the page allocator
1385 */
1386 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 1387 if (unlikely(is_migrate_isolate(migratetype))) {
5f8dcc21
MG
1388 free_one_page(zone, page, 0, migratetype);
1389 goto out;
1390 }
1391 migratetype = MIGRATE_MOVABLE;
1392 }
1393
99dcc3e5 1394 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3dfa5721 1395 if (cold)
5f8dcc21 1396 list_add_tail(&page->lru, &pcp->lists[migratetype]);
3dfa5721 1397 else
5f8dcc21 1398 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 1399 pcp->count++;
48db57f8 1400 if (pcp->count >= pcp->high) {
998d39cb
CS
1401 unsigned long batch = ACCESS_ONCE(pcp->batch);
1402 free_pcppages_bulk(zone, batch, pcp);
1403 pcp->count -= batch;
48db57f8 1404 }
5f8dcc21
MG
1405
1406out:
1da177e4 1407 local_irq_restore(flags);
1da177e4
LT
1408}
1409
cc59850e
KK
1410/*
1411 * Free a list of 0-order pages
1412 */
1413void free_hot_cold_page_list(struct list_head *list, int cold)
1414{
1415 struct page *page, *next;
1416
1417 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 1418 trace_mm_page_free_batched(page, cold);
cc59850e
KK
1419 free_hot_cold_page(page, cold);
1420 }
1421}
1422
8dfcc9ba
NP
1423/*
1424 * split_page takes a non-compound higher-order page, and splits it into
1425 * n (1<<order) sub-pages: page[0..n]
1426 * Each sub-page must be freed individually.
1427 *
1428 * Note: this is probably too low level an operation for use in drivers.
1429 * Please consult with lkml before using this in your driver.
1430 */
1431void split_page(struct page *page, unsigned int order)
1432{
1433 int i;
1434
309381fe
SL
1435 VM_BUG_ON_PAGE(PageCompound(page), page);
1436 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
1437
1438#ifdef CONFIG_KMEMCHECK
1439 /*
1440 * Split shadow pages too, because free(page[0]) would
1441 * otherwise free the whole shadow.
1442 */
1443 if (kmemcheck_page_is_tracked(page))
1444 split_page(virt_to_page(page[0].shadow), order);
1445#endif
1446
7835e98b
NP
1447 for (i = 1; i < (1 << order); i++)
1448 set_page_refcounted(page + i);
8dfcc9ba 1449}
5853ff23 1450EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 1451
8fb74b9f 1452static int __isolate_free_page(struct page *page, unsigned int order)
748446bb 1453{
748446bb
MG
1454 unsigned long watermark;
1455 struct zone *zone;
2139cbe6 1456 int mt;
748446bb
MG
1457
1458 BUG_ON(!PageBuddy(page));
1459
1460 zone = page_zone(page);
2e30abd1 1461 mt = get_pageblock_migratetype(page);
748446bb 1462
194159fb 1463 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
1464 /* Obey watermarks as if the page was being allocated */
1465 watermark = low_wmark_pages(zone) + (1 << order);
1466 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1467 return 0;
1468
8fb74b9f 1469 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 1470 }
748446bb
MG
1471
1472 /* Remove page from free list */
1473 list_del(&page->lru);
1474 zone->free_area[order].nr_free--;
1475 rmv_page_order(page);
2139cbe6 1476
8fb74b9f 1477 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
1478 if (order >= pageblock_order - 1) {
1479 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
1480 for (; page < endpage; page += pageblock_nr_pages) {
1481 int mt = get_pageblock_migratetype(page);
194159fb 1482 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
1483 set_pageblock_migratetype(page,
1484 MIGRATE_MOVABLE);
1485 }
748446bb
MG
1486 }
1487
8fb74b9f 1488 return 1UL << order;
1fb3f8ca
MG
1489}
1490
1491/*
1492 * Similar to split_page except the page is already free. As this is only
1493 * being used for migration, the migratetype of the block also changes.
1494 * As this is called with interrupts disabled, the caller is responsible
1495 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1496 * are enabled.
1497 *
1498 * Note: this is probably too low level an operation for use in drivers.
1499 * Please consult with lkml before using this in your driver.
1500 */
1501int split_free_page(struct page *page)
1502{
1503 unsigned int order;
1504 int nr_pages;
1505
1fb3f8ca
MG
1506 order = page_order(page);
1507
8fb74b9f 1508 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
1509 if (!nr_pages)
1510 return 0;
1511
1512 /* Split into individual pages */
1513 set_page_refcounted(page);
1514 split_page(page, order);
1515 return nr_pages;
748446bb
MG
1516}
1517
1da177e4
LT
1518/*
1519 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1520 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1521 * or two.
1522 */
0a15c3e9
MG
1523static inline
1524struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1525 struct zone *zone, int order, gfp_t gfp_flags,
1526 int migratetype)
1da177e4
LT
1527{
1528 unsigned long flags;
689bcebf 1529 struct page *page;
1da177e4
LT
1530 int cold = !!(gfp_flags & __GFP_COLD);
1531
689bcebf 1532again:
48db57f8 1533 if (likely(order == 0)) {
1da177e4 1534 struct per_cpu_pages *pcp;
5f8dcc21 1535 struct list_head *list;
1da177e4 1536
1da177e4 1537 local_irq_save(flags);
99dcc3e5
CL
1538 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1539 list = &pcp->lists[migratetype];
5f8dcc21 1540 if (list_empty(list)) {
535131e6 1541 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1542 pcp->batch, list,
e084b2d9 1543 migratetype, cold);
5f8dcc21 1544 if (unlikely(list_empty(list)))
6fb332fa 1545 goto failed;
535131e6 1546 }
b92a6edd 1547
5f8dcc21
MG
1548 if (cold)
1549 page = list_entry(list->prev, struct page, lru);
1550 else
1551 page = list_entry(list->next, struct page, lru);
1552
b92a6edd
MG
1553 list_del(&page->lru);
1554 pcp->count--;
7fb1d9fc 1555 } else {
dab48dab
AM
1556 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1557 /*
1558 * __GFP_NOFAIL is not to be used in new code.
1559 *
1560 * All __GFP_NOFAIL callers should be fixed so that they
1561 * properly detect and handle allocation failures.
1562 *
1563 * We most definitely don't want callers attempting to
4923abf9 1564 * allocate greater than order-1 page units with
dab48dab
AM
1565 * __GFP_NOFAIL.
1566 */
4923abf9 1567 WARN_ON_ONCE(order > 1);
dab48dab 1568 }
1da177e4 1569 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1570 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1571 spin_unlock(&zone->lock);
1572 if (!page)
1573 goto failed;
d1ce749a
BZ
1574 __mod_zone_freepage_state(zone, -(1 << order),
1575 get_pageblock_migratetype(page));
1da177e4
LT
1576 }
1577
3a025760 1578 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
27329369 1579
f8891e5e 1580 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 1581 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 1582 local_irq_restore(flags);
1da177e4 1583
309381fe 1584 VM_BUG_ON_PAGE(bad_range(zone, page), page);
17cf4406 1585 if (prep_new_page(page, order, gfp_flags))
a74609fa 1586 goto again;
1da177e4 1587 return page;
a74609fa
NP
1588
1589failed:
1590 local_irq_restore(flags);
a74609fa 1591 return NULL;
1da177e4
LT
1592}
1593
933e312e
AM
1594#ifdef CONFIG_FAIL_PAGE_ALLOC
1595
b2588c4b 1596static struct {
933e312e
AM
1597 struct fault_attr attr;
1598
1599 u32 ignore_gfp_highmem;
1600 u32 ignore_gfp_wait;
54114994 1601 u32 min_order;
933e312e
AM
1602} fail_page_alloc = {
1603 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1604 .ignore_gfp_wait = 1,
1605 .ignore_gfp_highmem = 1,
54114994 1606 .min_order = 1,
933e312e
AM
1607};
1608
1609static int __init setup_fail_page_alloc(char *str)
1610{
1611 return setup_fault_attr(&fail_page_alloc.attr, str);
1612}
1613__setup("fail_page_alloc=", setup_fail_page_alloc);
1614
deaf386e 1615static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1616{
54114994 1617 if (order < fail_page_alloc.min_order)
deaf386e 1618 return false;
933e312e 1619 if (gfp_mask & __GFP_NOFAIL)
deaf386e 1620 return false;
933e312e 1621 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 1622 return false;
933e312e 1623 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
deaf386e 1624 return false;
933e312e
AM
1625
1626 return should_fail(&fail_page_alloc.attr, 1 << order);
1627}
1628
1629#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1630
1631static int __init fail_page_alloc_debugfs(void)
1632{
f4ae40a6 1633 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 1634 struct dentry *dir;
933e312e 1635
dd48c085
AM
1636 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1637 &fail_page_alloc.attr);
1638 if (IS_ERR(dir))
1639 return PTR_ERR(dir);
933e312e 1640
b2588c4b
AM
1641 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1642 &fail_page_alloc.ignore_gfp_wait))
1643 goto fail;
1644 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1645 &fail_page_alloc.ignore_gfp_highmem))
1646 goto fail;
1647 if (!debugfs_create_u32("min-order", mode, dir,
1648 &fail_page_alloc.min_order))
1649 goto fail;
1650
1651 return 0;
1652fail:
dd48c085 1653 debugfs_remove_recursive(dir);
933e312e 1654
b2588c4b 1655 return -ENOMEM;
933e312e
AM
1656}
1657
1658late_initcall(fail_page_alloc_debugfs);
1659
1660#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1661
1662#else /* CONFIG_FAIL_PAGE_ALLOC */
1663
deaf386e 1664static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1665{
deaf386e 1666 return false;
933e312e
AM
1667}
1668
1669#endif /* CONFIG_FAIL_PAGE_ALLOC */
1670
1da177e4 1671/*
88f5acf8 1672 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1673 * of the allocation.
1674 */
88f5acf8
MG
1675static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1676 int classzone_idx, int alloc_flags, long free_pages)
1da177e4
LT
1677{
1678 /* free_pages my go negative - that's OK */
d23ad423 1679 long min = mark;
2cfed075 1680 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1da177e4 1681 int o;
026b0814 1682 long free_cma = 0;
1da177e4 1683
df0a6daa 1684 free_pages -= (1 << order) - 1;
7fb1d9fc 1685 if (alloc_flags & ALLOC_HIGH)
1da177e4 1686 min -= min / 2;
7fb1d9fc 1687 if (alloc_flags & ALLOC_HARDER)
1da177e4 1688 min -= min / 4;
d95ea5d1
BZ
1689#ifdef CONFIG_CMA
1690 /* If allocation can't use CMA areas don't use free CMA pages */
1691 if (!(alloc_flags & ALLOC_CMA))
026b0814 1692 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 1693#endif
026b0814
TS
1694
1695 if (free_pages - free_cma <= min + lowmem_reserve)
88f5acf8 1696 return false;
1da177e4
LT
1697 for (o = 0; o < order; o++) {
1698 /* At the next order, this order's pages become unavailable */
1699 free_pages -= z->free_area[o].nr_free << o;
1700
1701 /* Require fewer higher order pages to be free */
1702 min >>= 1;
1703
1704 if (free_pages <= min)
88f5acf8 1705 return false;
1da177e4 1706 }
88f5acf8
MG
1707 return true;
1708}
1709
1710bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1711 int classzone_idx, int alloc_flags)
1712{
1713 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1714 zone_page_state(z, NR_FREE_PAGES));
1715}
1716
1717bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1718 int classzone_idx, int alloc_flags)
1719{
1720 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1721
1722 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1723 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1724
1725 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1726 free_pages);
1da177e4
LT
1727}
1728
9276b1bc
PJ
1729#ifdef CONFIG_NUMA
1730/*
1731 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1732 * skip over zones that are not allowed by the cpuset, or that have
1733 * been recently (in last second) found to be nearly full. See further
1734 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1735 * that have to skip over a lot of full or unallowed zones.
9276b1bc 1736 *
a1aeb65a 1737 * If the zonelist cache is present in the passed zonelist, then
9276b1bc 1738 * returns a pointer to the allowed node mask (either the current
4b0ef1fe 1739 * tasks mems_allowed, or node_states[N_MEMORY].)
9276b1bc
PJ
1740 *
1741 * If the zonelist cache is not available for this zonelist, does
1742 * nothing and returns NULL.
1743 *
1744 * If the fullzones BITMAP in the zonelist cache is stale (more than
1745 * a second since last zap'd) then we zap it out (clear its bits.)
1746 *
1747 * We hold off even calling zlc_setup, until after we've checked the
1748 * first zone in the zonelist, on the theory that most allocations will
1749 * be satisfied from that first zone, so best to examine that zone as
1750 * quickly as we can.
1751 */
1752static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1753{
1754 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1755 nodemask_t *allowednodes; /* zonelist_cache approximation */
1756
1757 zlc = zonelist->zlcache_ptr;
1758 if (!zlc)
1759 return NULL;
1760
f05111f5 1761 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1762 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1763 zlc->last_full_zap = jiffies;
1764 }
1765
1766 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1767 &cpuset_current_mems_allowed :
4b0ef1fe 1768 &node_states[N_MEMORY];
9276b1bc
PJ
1769 return allowednodes;
1770}
1771
1772/*
1773 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1774 * if it is worth looking at further for free memory:
1775 * 1) Check that the zone isn't thought to be full (doesn't have its
1776 * bit set in the zonelist_cache fullzones BITMAP).
1777 * 2) Check that the zones node (obtained from the zonelist_cache
1778 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1779 * Return true (non-zero) if zone is worth looking at further, or
1780 * else return false (zero) if it is not.
1781 *
1782 * This check -ignores- the distinction between various watermarks,
1783 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1784 * found to be full for any variation of these watermarks, it will
1785 * be considered full for up to one second by all requests, unless
1786 * we are so low on memory on all allowed nodes that we are forced
1787 * into the second scan of the zonelist.
1788 *
1789 * In the second scan we ignore this zonelist cache and exactly
1790 * apply the watermarks to all zones, even it is slower to do so.
1791 * We are low on memory in the second scan, and should leave no stone
1792 * unturned looking for a free page.
1793 */
dd1a239f 1794static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1795 nodemask_t *allowednodes)
1796{
1797 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1798 int i; /* index of *z in zonelist zones */
1799 int n; /* node that zone *z is on */
1800
1801 zlc = zonelist->zlcache_ptr;
1802 if (!zlc)
1803 return 1;
1804
dd1a239f 1805 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1806 n = zlc->z_to_n[i];
1807
1808 /* This zone is worth trying if it is allowed but not full */
1809 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1810}
1811
1812/*
1813 * Given 'z' scanning a zonelist, set the corresponding bit in
1814 * zlc->fullzones, so that subsequent attempts to allocate a page
1815 * from that zone don't waste time re-examining it.
1816 */
dd1a239f 1817static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1818{
1819 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1820 int i; /* index of *z in zonelist zones */
1821
1822 zlc = zonelist->zlcache_ptr;
1823 if (!zlc)
1824 return;
1825
dd1a239f 1826 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1827
1828 set_bit(i, zlc->fullzones);
1829}
1830
76d3fbf8
MG
1831/*
1832 * clear all zones full, called after direct reclaim makes progress so that
1833 * a zone that was recently full is not skipped over for up to a second
1834 */
1835static void zlc_clear_zones_full(struct zonelist *zonelist)
1836{
1837 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1838
1839 zlc = zonelist->zlcache_ptr;
1840 if (!zlc)
1841 return;
1842
1843 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1844}
1845
81c0a2bb
JW
1846static bool zone_local(struct zone *local_zone, struct zone *zone)
1847{
fff4068c 1848 return local_zone->node == zone->node;
81c0a2bb
JW
1849}
1850
957f822a
DR
1851static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1852{
5f7a75ac
MG
1853 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
1854 RECLAIM_DISTANCE;
957f822a
DR
1855}
1856
9276b1bc
PJ
1857#else /* CONFIG_NUMA */
1858
1859static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1860{
1861 return NULL;
1862}
1863
dd1a239f 1864static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1865 nodemask_t *allowednodes)
1866{
1867 return 1;
1868}
1869
dd1a239f 1870static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1871{
1872}
76d3fbf8
MG
1873
1874static void zlc_clear_zones_full(struct zonelist *zonelist)
1875{
1876}
957f822a 1877
81c0a2bb
JW
1878static bool zone_local(struct zone *local_zone, struct zone *zone)
1879{
1880 return true;
1881}
1882
957f822a
DR
1883static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1884{
1885 return true;
1886}
1887
9276b1bc
PJ
1888#endif /* CONFIG_NUMA */
1889
7fb1d9fc 1890/*
0798e519 1891 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1892 * a page.
1893 */
1894static struct page *
19770b32 1895get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1896 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1897 struct zone *preferred_zone, int migratetype)
753ee728 1898{
dd1a239f 1899 struct zoneref *z;
7fb1d9fc 1900 struct page *page = NULL;
54a6eb5c 1901 int classzone_idx;
5117f45d 1902 struct zone *zone;
9276b1bc
PJ
1903 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1904 int zlc_active = 0; /* set if using zonelist_cache */
1905 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1906
19770b32 1907 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1908zonelist_scan:
7fb1d9fc 1909 /*
9276b1bc 1910 * Scan zonelist, looking for a zone with enough free.
3b11f0aa 1911 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c.
7fb1d9fc 1912 */
19770b32
MG
1913 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1914 high_zoneidx, nodemask) {
e085dbc5
JW
1915 unsigned long mark;
1916
e5adfffc 1917 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
9276b1bc
PJ
1918 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1919 continue;
7fb1d9fc 1920 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1921 !cpuset_zone_allowed_softwall(zone, gfp_mask))
cd38b115 1922 continue;
e085dbc5 1923 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
e66f0972 1924 if (unlikely(alloc_flags & ALLOC_NO_WATERMARKS))
e085dbc5 1925 goto try_this_zone;
81c0a2bb
JW
1926 /*
1927 * Distribute pages in proportion to the individual
1928 * zone size to ensure fair page aging. The zone a
1929 * page was allocated in should have no effect on the
1930 * time the page has in memory before being reclaimed.
81c0a2bb 1931 */
3a025760 1932 if (alloc_flags & ALLOC_FAIR) {
fff4068c 1933 if (!zone_local(preferred_zone, zone))
81c0a2bb 1934 continue;
3a025760
JW
1935 if (zone_page_state(zone, NR_ALLOC_BATCH) <= 0)
1936 continue;
81c0a2bb 1937 }
a756cf59
JW
1938 /*
1939 * When allocating a page cache page for writing, we
1940 * want to get it from a zone that is within its dirty
1941 * limit, such that no single zone holds more than its
1942 * proportional share of globally allowed dirty pages.
1943 * The dirty limits take into account the zone's
1944 * lowmem reserves and high watermark so that kswapd
1945 * should be able to balance it without having to
1946 * write pages from its LRU list.
1947 *
1948 * This may look like it could increase pressure on
1949 * lower zones by failing allocations in higher zones
1950 * before they are full. But the pages that do spill
1951 * over are limited as the lower zones are protected
1952 * by this very same mechanism. It should not become
1953 * a practical burden to them.
1954 *
1955 * XXX: For now, allow allocations to potentially
1956 * exceed the per-zone dirty limit in the slowpath
1957 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1958 * which is important when on a NUMA setup the allowed
1959 * zones are together not big enough to reach the
1960 * global limit. The proper fix for these situations
1961 * will require awareness of zones in the
1962 * dirty-throttling and the flusher threads.
1963 */
1964 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1965 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1966 goto this_zone_full;
7fb1d9fc 1967
e085dbc5
JW
1968 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1969 if (!zone_watermark_ok(zone, order, mark,
1970 classzone_idx, alloc_flags)) {
fa5e084e
MG
1971 int ret;
1972
e5adfffc
KS
1973 if (IS_ENABLED(CONFIG_NUMA) &&
1974 !did_zlc_setup && nr_online_nodes > 1) {
cd38b115
MG
1975 /*
1976 * we do zlc_setup if there are multiple nodes
1977 * and before considering the first zone allowed
1978 * by the cpuset.
1979 */
1980 allowednodes = zlc_setup(zonelist, alloc_flags);
1981 zlc_active = 1;
1982 did_zlc_setup = 1;
1983 }
1984
957f822a
DR
1985 if (zone_reclaim_mode == 0 ||
1986 !zone_allows_reclaim(preferred_zone, zone))
fa5e084e
MG
1987 goto this_zone_full;
1988
cd38b115
MG
1989 /*
1990 * As we may have just activated ZLC, check if the first
1991 * eligible zone has failed zone_reclaim recently.
1992 */
e5adfffc 1993 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
cd38b115
MG
1994 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1995 continue;
1996
fa5e084e
MG
1997 ret = zone_reclaim(zone, gfp_mask, order);
1998 switch (ret) {
1999 case ZONE_RECLAIM_NOSCAN:
2000 /* did not scan */
cd38b115 2001 continue;
fa5e084e
MG
2002 case ZONE_RECLAIM_FULL:
2003 /* scanned but unreclaimable */
cd38b115 2004 continue;
fa5e084e
MG
2005 default:
2006 /* did we reclaim enough */
fed2719e 2007 if (zone_watermark_ok(zone, order, mark,
fa5e084e 2008 classzone_idx, alloc_flags))
fed2719e
MG
2009 goto try_this_zone;
2010
2011 /*
2012 * Failed to reclaim enough to meet watermark.
2013 * Only mark the zone full if checking the min
2014 * watermark or if we failed to reclaim just
2015 * 1<<order pages or else the page allocator
2016 * fastpath will prematurely mark zones full
2017 * when the watermark is between the low and
2018 * min watermarks.
2019 */
2020 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2021 ret == ZONE_RECLAIM_SOME)
9276b1bc 2022 goto this_zone_full;
fed2719e
MG
2023
2024 continue;
0798e519 2025 }
7fb1d9fc
RS
2026 }
2027
fa5e084e 2028try_this_zone:
3dd28266
MG
2029 page = buffered_rmqueue(preferred_zone, zone, order,
2030 gfp_mask, migratetype);
0798e519 2031 if (page)
7fb1d9fc 2032 break;
9276b1bc 2033this_zone_full:
e5adfffc 2034 if (IS_ENABLED(CONFIG_NUMA))
9276b1bc 2035 zlc_mark_zone_full(zonelist, z);
54a6eb5c 2036 }
9276b1bc 2037
e5adfffc 2038 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
9276b1bc
PJ
2039 /* Disable zlc cache for second zonelist scan */
2040 zlc_active = 0;
2041 goto zonelist_scan;
2042 }
b121186a
AS
2043
2044 if (page)
2045 /*
2046 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2047 * necessary to allocate the page. The expectation is
2048 * that the caller is taking steps that will free more
2049 * memory. The caller should avoid the page being used
2050 * for !PFMEMALLOC purposes.
2051 */
2052 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
2053
7fb1d9fc 2054 return page;
753ee728
MH
2055}
2056
29423e77
DR
2057/*
2058 * Large machines with many possible nodes should not always dump per-node
2059 * meminfo in irq context.
2060 */
2061static inline bool should_suppress_show_mem(void)
2062{
2063 bool ret = false;
2064
2065#if NODES_SHIFT > 8
2066 ret = in_interrupt();
2067#endif
2068 return ret;
2069}
2070
a238ab5b
DH
2071static DEFINE_RATELIMIT_STATE(nopage_rs,
2072 DEFAULT_RATELIMIT_INTERVAL,
2073 DEFAULT_RATELIMIT_BURST);
2074
2075void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2076{
a238ab5b
DH
2077 unsigned int filter = SHOW_MEM_FILTER_NODES;
2078
c0a32fc5
SG
2079 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2080 debug_guardpage_minorder() > 0)
a238ab5b
DH
2081 return;
2082
2083 /*
2084 * This documents exceptions given to allocations in certain
2085 * contexts that are allowed to allocate outside current's set
2086 * of allowed nodes.
2087 */
2088 if (!(gfp_mask & __GFP_NOMEMALLOC))
2089 if (test_thread_flag(TIF_MEMDIE) ||
2090 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2091 filter &= ~SHOW_MEM_FILTER_NODES;
2092 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2093 filter &= ~SHOW_MEM_FILTER_NODES;
2094
2095 if (fmt) {
3ee9a4f0
JP
2096 struct va_format vaf;
2097 va_list args;
2098
a238ab5b 2099 va_start(args, fmt);
3ee9a4f0
JP
2100
2101 vaf.fmt = fmt;
2102 vaf.va = &args;
2103
2104 pr_warn("%pV", &vaf);
2105
a238ab5b
DH
2106 va_end(args);
2107 }
2108
3ee9a4f0
JP
2109 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2110 current->comm, order, gfp_mask);
a238ab5b
DH
2111
2112 dump_stack();
2113 if (!should_suppress_show_mem())
2114 show_mem(filter);
2115}
2116
11e33f6a
MG
2117static inline int
2118should_alloc_retry(gfp_t gfp_mask, unsigned int order,
f90ac398 2119 unsigned long did_some_progress,
11e33f6a 2120 unsigned long pages_reclaimed)
1da177e4 2121{
11e33f6a
MG
2122 /* Do not loop if specifically requested */
2123 if (gfp_mask & __GFP_NORETRY)
2124 return 0;
1da177e4 2125
f90ac398
MG
2126 /* Always retry if specifically requested */
2127 if (gfp_mask & __GFP_NOFAIL)
2128 return 1;
2129
2130 /*
2131 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2132 * making forward progress without invoking OOM. Suspend also disables
2133 * storage devices so kswapd will not help. Bail if we are suspending.
2134 */
2135 if (!did_some_progress && pm_suspended_storage())
2136 return 0;
2137
11e33f6a
MG
2138 /*
2139 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2140 * means __GFP_NOFAIL, but that may not be true in other
2141 * implementations.
2142 */
2143 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2144 return 1;
2145
2146 /*
2147 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2148 * specified, then we retry until we no longer reclaim any pages
2149 * (above), or we've reclaimed an order of pages at least as
2150 * large as the allocation's order. In both cases, if the
2151 * allocation still fails, we stop retrying.
2152 */
2153 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2154 return 1;
cf40bd16 2155
11e33f6a
MG
2156 return 0;
2157}
933e312e 2158
11e33f6a
MG
2159static inline struct page *
2160__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2161 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2162 nodemask_t *nodemask, struct zone *preferred_zone,
2163 int migratetype)
11e33f6a
MG
2164{
2165 struct page *page;
2166
2167 /* Acquire the OOM killer lock for the zones in zonelist */
ff321fea 2168 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
11e33f6a 2169 schedule_timeout_uninterruptible(1);
1da177e4
LT
2170 return NULL;
2171 }
6b1de916 2172
11e33f6a
MG
2173 /*
2174 * Go through the zonelist yet one more time, keep very high watermark
2175 * here, this is only to catch a parallel oom killing, we must fail if
2176 * we're still under heavy pressure.
2177 */
2178 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2179 order, zonelist, high_zoneidx,
5117f45d 2180 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 2181 preferred_zone, migratetype);
7fb1d9fc 2182 if (page)
11e33f6a
MG
2183 goto out;
2184
4365a567
KH
2185 if (!(gfp_mask & __GFP_NOFAIL)) {
2186 /* The OOM killer will not help higher order allocs */
2187 if (order > PAGE_ALLOC_COSTLY_ORDER)
2188 goto out;
03668b3c
DR
2189 /* The OOM killer does not needlessly kill tasks for lowmem */
2190 if (high_zoneidx < ZONE_NORMAL)
2191 goto out;
4365a567
KH
2192 /*
2193 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2194 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2195 * The caller should handle page allocation failure by itself if
2196 * it specifies __GFP_THISNODE.
2197 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2198 */
2199 if (gfp_mask & __GFP_THISNODE)
2200 goto out;
2201 }
11e33f6a 2202 /* Exhausted what can be done so it's blamo time */
08ab9b10 2203 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
11e33f6a
MG
2204
2205out:
2206 clear_zonelist_oom(zonelist, gfp_mask);
2207 return page;
2208}
2209
56de7263
MG
2210#ifdef CONFIG_COMPACTION
2211/* Try memory compaction for high-order allocations before reclaim */
2212static struct page *
2213__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2214 struct zonelist *zonelist, enum zone_type high_zoneidx,
2215 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712 2216 int migratetype, bool sync_migration,
c67fe375 2217 bool *contended_compaction, bool *deferred_compaction,
66199712 2218 unsigned long *did_some_progress)
56de7263 2219{
66199712 2220 if (!order)
56de7263
MG
2221 return NULL;
2222
aff62249 2223 if (compaction_deferred(preferred_zone, order)) {
66199712
MG
2224 *deferred_compaction = true;
2225 return NULL;
2226 }
2227
c06b1fca 2228 current->flags |= PF_MEMALLOC;
56de7263 2229 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
c67fe375 2230 nodemask, sync_migration,
8fb74b9f 2231 contended_compaction);
c06b1fca 2232 current->flags &= ~PF_MEMALLOC;
56de7263 2233
1fb3f8ca 2234 if (*did_some_progress != COMPACT_SKIPPED) {
8fb74b9f
MG
2235 struct page *page;
2236
56de7263
MG
2237 /* Page migration frees to the PCP lists but we want merging */
2238 drain_pages(get_cpu());
2239 put_cpu();
2240
2241 page = get_page_from_freelist(gfp_mask, nodemask,
2242 order, zonelist, high_zoneidx,
cfd19c5a
MG
2243 alloc_flags & ~ALLOC_NO_WATERMARKS,
2244 preferred_zone, migratetype);
56de7263 2245 if (page) {
62997027 2246 preferred_zone->compact_blockskip_flush = false;
de6c60a6 2247 compaction_defer_reset(preferred_zone, order, true);
56de7263
MG
2248 count_vm_event(COMPACTSUCCESS);
2249 return page;
2250 }
2251
2252 /*
2253 * It's bad if compaction run occurs and fails.
2254 * The most likely reason is that pages exist,
2255 * but not enough to satisfy watermarks.
2256 */
2257 count_vm_event(COMPACTFAIL);
66199712
MG
2258
2259 /*
2260 * As async compaction considers a subset of pageblocks, only
2261 * defer if the failure was a sync compaction failure.
2262 */
2263 if (sync_migration)
aff62249 2264 defer_compaction(preferred_zone, order);
56de7263
MG
2265
2266 cond_resched();
2267 }
2268
2269 return NULL;
2270}
2271#else
2272static inline struct page *
2273__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2274 struct zonelist *zonelist, enum zone_type high_zoneidx,
2275 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712 2276 int migratetype, bool sync_migration,
c67fe375 2277 bool *contended_compaction, bool *deferred_compaction,
66199712 2278 unsigned long *did_some_progress)
56de7263
MG
2279{
2280 return NULL;
2281}
2282#endif /* CONFIG_COMPACTION */
2283
bba90710
MS
2284/* Perform direct synchronous page reclaim */
2285static int
2286__perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2287 nodemask_t *nodemask)
11e33f6a 2288{
11e33f6a 2289 struct reclaim_state reclaim_state;
bba90710 2290 int progress;
11e33f6a
MG
2291
2292 cond_resched();
2293
2294 /* We now go into synchronous reclaim */
2295 cpuset_memory_pressure_bump();
c06b1fca 2296 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2297 lockdep_set_current_reclaim_state(gfp_mask);
2298 reclaim_state.reclaimed_slab = 0;
c06b1fca 2299 current->reclaim_state = &reclaim_state;
11e33f6a 2300
bba90710 2301 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
11e33f6a 2302
c06b1fca 2303 current->reclaim_state = NULL;
11e33f6a 2304 lockdep_clear_current_reclaim_state();
c06b1fca 2305 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2306
2307 cond_resched();
2308
bba90710
MS
2309 return progress;
2310}
2311
2312/* The really slow allocator path where we enter direct reclaim */
2313static inline struct page *
2314__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2315 struct zonelist *zonelist, enum zone_type high_zoneidx,
2316 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2317 int migratetype, unsigned long *did_some_progress)
2318{
2319 struct page *page = NULL;
2320 bool drained = false;
2321
2322 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2323 nodemask);
9ee493ce
MG
2324 if (unlikely(!(*did_some_progress)))
2325 return NULL;
11e33f6a 2326
76d3fbf8 2327 /* After successful reclaim, reconsider all zones for allocation */
e5adfffc 2328 if (IS_ENABLED(CONFIG_NUMA))
76d3fbf8
MG
2329 zlc_clear_zones_full(zonelist);
2330
9ee493ce
MG
2331retry:
2332 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2333 zonelist, high_zoneidx,
cfd19c5a
MG
2334 alloc_flags & ~ALLOC_NO_WATERMARKS,
2335 preferred_zone, migratetype);
9ee493ce
MG
2336
2337 /*
2338 * If an allocation failed after direct reclaim, it could be because
2339 * pages are pinned on the per-cpu lists. Drain them and try again
2340 */
2341 if (!page && !drained) {
2342 drain_all_pages();
2343 drained = true;
2344 goto retry;
2345 }
2346
11e33f6a
MG
2347 return page;
2348}
2349
1da177e4 2350/*
11e33f6a
MG
2351 * This is called in the allocator slow-path if the allocation request is of
2352 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2353 */
11e33f6a
MG
2354static inline struct page *
2355__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2356 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2357 nodemask_t *nodemask, struct zone *preferred_zone,
2358 int migratetype)
11e33f6a
MG
2359{
2360 struct page *page;
2361
2362 do {
2363 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2364 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 2365 preferred_zone, migratetype);
11e33f6a
MG
2366
2367 if (!page && gfp_mask & __GFP_NOFAIL)
0e093d99 2368 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
2369 } while (!page && (gfp_mask & __GFP_NOFAIL));
2370
2371 return page;
2372}
2373
3a025760
JW
2374static void reset_alloc_batches(struct zonelist *zonelist,
2375 enum zone_type high_zoneidx,
2376 struct zone *preferred_zone)
1da177e4 2377{
dd1a239f
MG
2378 struct zoneref *z;
2379 struct zone *zone;
1da177e4 2380
81c0a2bb 2381 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
81c0a2bb
JW
2382 /*
2383 * Only reset the batches of zones that were actually
3a025760
JW
2384 * considered in the fairness pass, we don't want to
2385 * trash fairness information for zones that are not
81c0a2bb
JW
2386 * actually part of this zonelist's round-robin cycle.
2387 */
fff4068c 2388 if (!zone_local(preferred_zone, zone))
81c0a2bb
JW
2389 continue;
2390 mod_zone_page_state(zone, NR_ALLOC_BATCH,
3a025760
JW
2391 high_wmark_pages(zone) - low_wmark_pages(zone) -
2392 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
81c0a2bb 2393 }
11e33f6a 2394}
cf40bd16 2395
3a025760
JW
2396static void wake_all_kswapds(unsigned int order,
2397 struct zonelist *zonelist,
2398 enum zone_type high_zoneidx,
2399 struct zone *preferred_zone)
2400{
2401 struct zoneref *z;
2402 struct zone *zone;
2403
2404 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2405 wakeup_kswapd(zone, order, zone_idx(preferred_zone));
2406}
2407
341ce06f
PZ
2408static inline int
2409gfp_to_alloc_flags(gfp_t gfp_mask)
2410{
341ce06f
PZ
2411 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2412 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 2413
a56f57ff 2414 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2415 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2416
341ce06f
PZ
2417 /*
2418 * The caller may dip into page reserves a bit more if the caller
2419 * cannot run direct reclaim, or if the caller has realtime scheduling
2420 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2421 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2422 */
e6223a3b 2423 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2424
341ce06f 2425 if (!wait) {
5c3240d9
AA
2426 /*
2427 * Not worth trying to allocate harder for
2428 * __GFP_NOMEMALLOC even if it can't schedule.
2429 */
2430 if (!(gfp_mask & __GFP_NOMEMALLOC))
2431 alloc_flags |= ALLOC_HARDER;
523b9458 2432 /*
341ce06f
PZ
2433 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2434 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 2435 */
341ce06f 2436 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2437 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2438 alloc_flags |= ALLOC_HARDER;
2439
b37f1dd0
MG
2440 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2441 if (gfp_mask & __GFP_MEMALLOC)
2442 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
2443 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2444 alloc_flags |= ALLOC_NO_WATERMARKS;
2445 else if (!in_interrupt() &&
2446 ((current->flags & PF_MEMALLOC) ||
2447 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 2448 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2449 }
d95ea5d1
BZ
2450#ifdef CONFIG_CMA
2451 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2452 alloc_flags |= ALLOC_CMA;
2453#endif
341ce06f
PZ
2454 return alloc_flags;
2455}
2456
072bb0aa
MG
2457bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2458{
b37f1dd0 2459 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
2460}
2461
11e33f6a
MG
2462static inline struct page *
2463__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2464 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2465 nodemask_t *nodemask, struct zone *preferred_zone,
2466 int migratetype)
11e33f6a
MG
2467{
2468 const gfp_t wait = gfp_mask & __GFP_WAIT;
2469 struct page *page = NULL;
2470 int alloc_flags;
2471 unsigned long pages_reclaimed = 0;
2472 unsigned long did_some_progress;
77f1fe6b 2473 bool sync_migration = false;
66199712 2474 bool deferred_compaction = false;
c67fe375 2475 bool contended_compaction = false;
1da177e4 2476
72807a74
MG
2477 /*
2478 * In the slowpath, we sanity check order to avoid ever trying to
2479 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2480 * be using allocators in order of preference for an area that is
2481 * too large.
2482 */
1fc28b70
MG
2483 if (order >= MAX_ORDER) {
2484 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2485 return NULL;
1fc28b70 2486 }
1da177e4 2487
952f3b51
CL
2488 /*
2489 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2490 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2491 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2492 * using a larger set of nodes after it has established that the
2493 * allowed per node queues are empty and that nodes are
2494 * over allocated.
2495 */
3a025760
JW
2496 if (IS_ENABLED(CONFIG_NUMA) &&
2497 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
952f3b51
CL
2498 goto nopage;
2499
cc4a6851 2500restart:
3a025760
JW
2501 if (!(gfp_mask & __GFP_NO_KSWAPD))
2502 wake_all_kswapds(order, zonelist, high_zoneidx, preferred_zone);
1da177e4 2503
9bf2229f 2504 /*
7fb1d9fc
RS
2505 * OK, we're below the kswapd watermark and have kicked background
2506 * reclaim. Now things get more complex, so set up alloc_flags according
2507 * to how we want to proceed.
9bf2229f 2508 */
341ce06f 2509 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2510
f33261d7
DR
2511 /*
2512 * Find the true preferred zone if the allocation is unconstrained by
2513 * cpusets.
2514 */
2515 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2516 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2517 &preferred_zone);
2518
cfa54a0f 2519rebalance:
341ce06f 2520 /* This is the last chance, in general, before the goto nopage. */
19770b32 2521 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
2522 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2523 preferred_zone, migratetype);
7fb1d9fc
RS
2524 if (page)
2525 goto got_pg;
1da177e4 2526
11e33f6a 2527 /* Allocate without watermarks if the context allows */
341ce06f 2528 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
2529 /*
2530 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2531 * the allocation is high priority and these type of
2532 * allocations are system rather than user orientated
2533 */
2534 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2535
341ce06f
PZ
2536 page = __alloc_pages_high_priority(gfp_mask, order,
2537 zonelist, high_zoneidx, nodemask,
2538 preferred_zone, migratetype);
cfd19c5a 2539 if (page) {
341ce06f 2540 goto got_pg;
cfd19c5a 2541 }
1da177e4
LT
2542 }
2543
2544 /* Atomic allocations - we can't balance anything */
aed0a0e3
DR
2545 if (!wait) {
2546 /*
2547 * All existing users of the deprecated __GFP_NOFAIL are
2548 * blockable, so warn of any new users that actually allow this
2549 * type of allocation to fail.
2550 */
2551 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 2552 goto nopage;
aed0a0e3 2553 }
1da177e4 2554
341ce06f 2555 /* Avoid recursion of direct reclaim */
c06b1fca 2556 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
2557 goto nopage;
2558
6583bb64
DR
2559 /* Avoid allocations with no watermarks from looping endlessly */
2560 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2561 goto nopage;
2562
77f1fe6b
MG
2563 /*
2564 * Try direct compaction. The first pass is asynchronous. Subsequent
2565 * attempts after direct reclaim are synchronous
2566 */
56de7263
MG
2567 page = __alloc_pages_direct_compact(gfp_mask, order,
2568 zonelist, high_zoneidx,
2569 nodemask,
2570 alloc_flags, preferred_zone,
66199712 2571 migratetype, sync_migration,
c67fe375 2572 &contended_compaction,
66199712
MG
2573 &deferred_compaction,
2574 &did_some_progress);
56de7263
MG
2575 if (page)
2576 goto got_pg;
c6a140bf 2577 sync_migration = true;
56de7263 2578
31f8d42d
LT
2579 /*
2580 * If compaction is deferred for high-order allocations, it is because
2581 * sync compaction recently failed. In this is the case and the caller
2582 * requested a movable allocation that does not heavily disrupt the
2583 * system then fail the allocation instead of entering direct reclaim.
2584 */
2585 if ((deferred_compaction || contended_compaction) &&
caf49191 2586 (gfp_mask & __GFP_NO_KSWAPD))
31f8d42d 2587 goto nopage;
66199712 2588
11e33f6a
MG
2589 /* Try direct reclaim and then allocating */
2590 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2591 zonelist, high_zoneidx,
2592 nodemask,
5117f45d 2593 alloc_flags, preferred_zone,
3dd28266 2594 migratetype, &did_some_progress);
11e33f6a
MG
2595 if (page)
2596 goto got_pg;
1da177e4 2597
e33c3b5e 2598 /*
11e33f6a
MG
2599 * If we failed to make any progress reclaiming, then we are
2600 * running out of options and have to consider going OOM
e33c3b5e 2601 */
11e33f6a 2602 if (!did_some_progress) {
b9921ecd 2603 if (oom_gfp_allowed(gfp_mask)) {
7f33d49a
RW
2604 if (oom_killer_disabled)
2605 goto nopage;
29fd66d2
DR
2606 /* Coredumps can quickly deplete all memory reserves */
2607 if ((current->flags & PF_DUMPCORE) &&
2608 !(gfp_mask & __GFP_NOFAIL))
2609 goto nopage;
11e33f6a
MG
2610 page = __alloc_pages_may_oom(gfp_mask, order,
2611 zonelist, high_zoneidx,
3dd28266
MG
2612 nodemask, preferred_zone,
2613 migratetype);
11e33f6a
MG
2614 if (page)
2615 goto got_pg;
1da177e4 2616
03668b3c
DR
2617 if (!(gfp_mask & __GFP_NOFAIL)) {
2618 /*
2619 * The oom killer is not called for high-order
2620 * allocations that may fail, so if no progress
2621 * is being made, there are no other options and
2622 * retrying is unlikely to help.
2623 */
2624 if (order > PAGE_ALLOC_COSTLY_ORDER)
2625 goto nopage;
2626 /*
2627 * The oom killer is not called for lowmem
2628 * allocations to prevent needlessly killing
2629 * innocent tasks.
2630 */
2631 if (high_zoneidx < ZONE_NORMAL)
2632 goto nopage;
2633 }
e2c55dc8 2634
ff0ceb9d
DR
2635 goto restart;
2636 }
1da177e4
LT
2637 }
2638
11e33f6a 2639 /* Check if we should retry the allocation */
a41f24ea 2640 pages_reclaimed += did_some_progress;
f90ac398
MG
2641 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2642 pages_reclaimed)) {
11e33f6a 2643 /* Wait for some write requests to complete then retry */
0e093d99 2644 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1da177e4 2645 goto rebalance;
3e7d3449
MG
2646 } else {
2647 /*
2648 * High-order allocations do not necessarily loop after
2649 * direct reclaim and reclaim/compaction depends on compaction
2650 * being called after reclaim so call directly if necessary
2651 */
2652 page = __alloc_pages_direct_compact(gfp_mask, order,
2653 zonelist, high_zoneidx,
2654 nodemask,
2655 alloc_flags, preferred_zone,
66199712 2656 migratetype, sync_migration,
c67fe375 2657 &contended_compaction,
66199712
MG
2658 &deferred_compaction,
2659 &did_some_progress);
3e7d3449
MG
2660 if (page)
2661 goto got_pg;
1da177e4
LT
2662 }
2663
2664nopage:
a238ab5b 2665 warn_alloc_failed(gfp_mask, order, NULL);
b1eeab67 2666 return page;
1da177e4 2667got_pg:
b1eeab67
VN
2668 if (kmemcheck_enabled)
2669 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
11e33f6a 2670
072bb0aa 2671 return page;
1da177e4 2672}
11e33f6a
MG
2673
2674/*
2675 * This is the 'heart' of the zoned buddy allocator.
2676 */
2677struct page *
2678__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2679 struct zonelist *zonelist, nodemask_t *nodemask)
2680{
2681 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2682 struct zone *preferred_zone;
cc9a6c87 2683 struct page *page = NULL;
3dd28266 2684 int migratetype = allocflags_to_migratetype(gfp_mask);
cc9a6c87 2685 unsigned int cpuset_mems_cookie;
3a025760 2686 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
11e33f6a 2687
dcce284a
BH
2688 gfp_mask &= gfp_allowed_mask;
2689
11e33f6a
MG
2690 lockdep_trace_alloc(gfp_mask);
2691
2692 might_sleep_if(gfp_mask & __GFP_WAIT);
2693
2694 if (should_fail_alloc_page(gfp_mask, order))
2695 return NULL;
2696
2697 /*
2698 * Check the zones suitable for the gfp_mask contain at least one
2699 * valid zone. It's possible to have an empty zonelist as a result
2700 * of GFP_THISNODE and a memoryless node
2701 */
2702 if (unlikely(!zonelist->_zonerefs->zone))
2703 return NULL;
2704
cc9a6c87 2705retry_cpuset:
d26914d1 2706 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 2707
5117f45d 2708 /* The preferred zone is used for statistics later */
f33261d7
DR
2709 first_zones_zonelist(zonelist, high_zoneidx,
2710 nodemask ? : &cpuset_current_mems_allowed,
2711 &preferred_zone);
cc9a6c87
MG
2712 if (!preferred_zone)
2713 goto out;
5117f45d 2714
d95ea5d1
BZ
2715#ifdef CONFIG_CMA
2716 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2717 alloc_flags |= ALLOC_CMA;
2718#endif
3a025760 2719retry:
5117f45d 2720 /* First allocation attempt */
11e33f6a 2721 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
d95ea5d1 2722 zonelist, high_zoneidx, alloc_flags,
3dd28266 2723 preferred_zone, migratetype);
21caf2fc 2724 if (unlikely(!page)) {
3a025760
JW
2725 /*
2726 * The first pass makes sure allocations are spread
2727 * fairly within the local node. However, the local
2728 * node might have free pages left after the fairness
2729 * batches are exhausted, and remote zones haven't
2730 * even been considered yet. Try once more without
2731 * fairness, and include remote zones now, before
2732 * entering the slowpath and waking kswapd: prefer
2733 * spilling to a remote zone over swapping locally.
2734 */
2735 if (alloc_flags & ALLOC_FAIR) {
2736 reset_alloc_batches(zonelist, high_zoneidx,
2737 preferred_zone);
2738 alloc_flags &= ~ALLOC_FAIR;
2739 goto retry;
2740 }
21caf2fc
ML
2741 /*
2742 * Runtime PM, block IO and its error handling path
2743 * can deadlock because I/O on the device might not
2744 * complete.
2745 */
2746 gfp_mask = memalloc_noio_flags(gfp_mask);
11e33f6a 2747 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2748 zonelist, high_zoneidx, nodemask,
3dd28266 2749 preferred_zone, migratetype);
21caf2fc 2750 }
11e33f6a 2751
4b4f278c 2752 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
cc9a6c87
MG
2753
2754out:
2755 /*
2756 * When updating a task's mems_allowed, it is possible to race with
2757 * parallel threads in such a way that an allocation can fail while
2758 * the mask is being updated. If a page allocation is about to fail,
2759 * check if the cpuset changed during allocation and if so, retry.
2760 */
d26914d1 2761 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87
MG
2762 goto retry_cpuset;
2763
11e33f6a 2764 return page;
1da177e4 2765}
d239171e 2766EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2767
2768/*
2769 * Common helper functions.
2770 */
920c7a5d 2771unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2772{
945a1113
AM
2773 struct page *page;
2774
2775 /*
2776 * __get_free_pages() returns a 32-bit address, which cannot represent
2777 * a highmem page
2778 */
2779 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2780
1da177e4
LT
2781 page = alloc_pages(gfp_mask, order);
2782 if (!page)
2783 return 0;
2784 return (unsigned long) page_address(page);
2785}
1da177e4
LT
2786EXPORT_SYMBOL(__get_free_pages);
2787
920c7a5d 2788unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2789{
945a1113 2790 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2791}
1da177e4
LT
2792EXPORT_SYMBOL(get_zeroed_page);
2793
920c7a5d 2794void __free_pages(struct page *page, unsigned int order)
1da177e4 2795{
b5810039 2796 if (put_page_testzero(page)) {
1da177e4 2797 if (order == 0)
fc91668e 2798 free_hot_cold_page(page, 0);
1da177e4
LT
2799 else
2800 __free_pages_ok(page, order);
2801 }
2802}
2803
2804EXPORT_SYMBOL(__free_pages);
2805
920c7a5d 2806void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2807{
2808 if (addr != 0) {
725d704e 2809 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2810 __free_pages(virt_to_page((void *)addr), order);
2811 }
2812}
2813
2814EXPORT_SYMBOL(free_pages);
2815
6a1a0d3b 2816/*
52383431
VD
2817 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
2818 * of the current memory cgroup.
6a1a0d3b 2819 *
52383431
VD
2820 * It should be used when the caller would like to use kmalloc, but since the
2821 * allocation is large, it has to fall back to the page allocator.
2822 */
2823struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
2824{
2825 struct page *page;
2826 struct mem_cgroup *memcg = NULL;
2827
2828 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2829 return NULL;
2830 page = alloc_pages(gfp_mask, order);
2831 memcg_kmem_commit_charge(page, memcg, order);
2832 return page;
2833}
2834
2835struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
2836{
2837 struct page *page;
2838 struct mem_cgroup *memcg = NULL;
2839
2840 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2841 return NULL;
2842 page = alloc_pages_node(nid, gfp_mask, order);
2843 memcg_kmem_commit_charge(page, memcg, order);
2844 return page;
2845}
2846
2847/*
2848 * __free_kmem_pages and free_kmem_pages will free pages allocated with
2849 * alloc_kmem_pages.
6a1a0d3b 2850 */
52383431 2851void __free_kmem_pages(struct page *page, unsigned int order)
6a1a0d3b
GC
2852{
2853 memcg_kmem_uncharge_pages(page, order);
2854 __free_pages(page, order);
2855}
2856
52383431 2857void free_kmem_pages(unsigned long addr, unsigned int order)
6a1a0d3b
GC
2858{
2859 if (addr != 0) {
2860 VM_BUG_ON(!virt_addr_valid((void *)addr));
52383431 2861 __free_kmem_pages(virt_to_page((void *)addr), order);
6a1a0d3b
GC
2862 }
2863}
2864
ee85c2e1
AK
2865static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2866{
2867 if (addr) {
2868 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2869 unsigned long used = addr + PAGE_ALIGN(size);
2870
2871 split_page(virt_to_page((void *)addr), order);
2872 while (used < alloc_end) {
2873 free_page(used);
2874 used += PAGE_SIZE;
2875 }
2876 }
2877 return (void *)addr;
2878}
2879
2be0ffe2
TT
2880/**
2881 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2882 * @size: the number of bytes to allocate
2883 * @gfp_mask: GFP flags for the allocation
2884 *
2885 * This function is similar to alloc_pages(), except that it allocates the
2886 * minimum number of pages to satisfy the request. alloc_pages() can only
2887 * allocate memory in power-of-two pages.
2888 *
2889 * This function is also limited by MAX_ORDER.
2890 *
2891 * Memory allocated by this function must be released by free_pages_exact().
2892 */
2893void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2894{
2895 unsigned int order = get_order(size);
2896 unsigned long addr;
2897
2898 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 2899 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
2900}
2901EXPORT_SYMBOL(alloc_pages_exact);
2902
ee85c2e1
AK
2903/**
2904 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2905 * pages on a node.
b5e6ab58 2906 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
2907 * @size: the number of bytes to allocate
2908 * @gfp_mask: GFP flags for the allocation
2909 *
2910 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2911 * back.
2912 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2913 * but is not exact.
2914 */
2915void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2916{
2917 unsigned order = get_order(size);
2918 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2919 if (!p)
2920 return NULL;
2921 return make_alloc_exact((unsigned long)page_address(p), order, size);
2922}
2923EXPORT_SYMBOL(alloc_pages_exact_nid);
2924
2be0ffe2
TT
2925/**
2926 * free_pages_exact - release memory allocated via alloc_pages_exact()
2927 * @virt: the value returned by alloc_pages_exact.
2928 * @size: size of allocation, same value as passed to alloc_pages_exact().
2929 *
2930 * Release the memory allocated by a previous call to alloc_pages_exact.
2931 */
2932void free_pages_exact(void *virt, size_t size)
2933{
2934 unsigned long addr = (unsigned long)virt;
2935 unsigned long end = addr + PAGE_ALIGN(size);
2936
2937 while (addr < end) {
2938 free_page(addr);
2939 addr += PAGE_SIZE;
2940 }
2941}
2942EXPORT_SYMBOL(free_pages_exact);
2943
e0fb5815
ZY
2944/**
2945 * nr_free_zone_pages - count number of pages beyond high watermark
2946 * @offset: The zone index of the highest zone
2947 *
2948 * nr_free_zone_pages() counts the number of counts pages which are beyond the
2949 * high watermark within all zones at or below a given zone index. For each
2950 * zone, the number of pages is calculated as:
834405c3 2951 * managed_pages - high_pages
e0fb5815 2952 */
ebec3862 2953static unsigned long nr_free_zone_pages(int offset)
1da177e4 2954{
dd1a239f 2955 struct zoneref *z;
54a6eb5c
MG
2956 struct zone *zone;
2957
e310fd43 2958 /* Just pick one node, since fallback list is circular */
ebec3862 2959 unsigned long sum = 0;
1da177e4 2960
0e88460d 2961 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2962
54a6eb5c 2963 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 2964 unsigned long size = zone->managed_pages;
41858966 2965 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2966 if (size > high)
2967 sum += size - high;
1da177e4
LT
2968 }
2969
2970 return sum;
2971}
2972
e0fb5815
ZY
2973/**
2974 * nr_free_buffer_pages - count number of pages beyond high watermark
2975 *
2976 * nr_free_buffer_pages() counts the number of pages which are beyond the high
2977 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 2978 */
ebec3862 2979unsigned long nr_free_buffer_pages(void)
1da177e4 2980{
af4ca457 2981 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 2982}
c2f1a551 2983EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 2984
e0fb5815
ZY
2985/**
2986 * nr_free_pagecache_pages - count number of pages beyond high watermark
2987 *
2988 * nr_free_pagecache_pages() counts the number of pages which are beyond the
2989 * high watermark within all zones.
1da177e4 2990 */
ebec3862 2991unsigned long nr_free_pagecache_pages(void)
1da177e4 2992{
2a1e274a 2993 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 2994}
08e0f6a9
CL
2995
2996static inline void show_node(struct zone *zone)
1da177e4 2997{
e5adfffc 2998 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 2999 printk("Node %d ", zone_to_nid(zone));
1da177e4 3000}
1da177e4 3001
1da177e4
LT
3002void si_meminfo(struct sysinfo *val)
3003{
3004 val->totalram = totalram_pages;
3005 val->sharedram = 0;
d23ad423 3006 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 3007 val->bufferram = nr_blockdev_pages();
1da177e4
LT
3008 val->totalhigh = totalhigh_pages;
3009 val->freehigh = nr_free_highpages();
1da177e4
LT
3010 val->mem_unit = PAGE_SIZE;
3011}
3012
3013EXPORT_SYMBOL(si_meminfo);
3014
3015#ifdef CONFIG_NUMA
3016void si_meminfo_node(struct sysinfo *val, int nid)
3017{
cdd91a77
JL
3018 int zone_type; /* needs to be signed */
3019 unsigned long managed_pages = 0;
1da177e4
LT
3020 pg_data_t *pgdat = NODE_DATA(nid);
3021
cdd91a77
JL
3022 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3023 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3024 val->totalram = managed_pages;
d23ad423 3025 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 3026#ifdef CONFIG_HIGHMEM
b40da049 3027 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
d23ad423
CL
3028 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3029 NR_FREE_PAGES);
98d2b0eb
CL
3030#else
3031 val->totalhigh = 0;
3032 val->freehigh = 0;
3033#endif
1da177e4
LT
3034 val->mem_unit = PAGE_SIZE;
3035}
3036#endif
3037
ddd588b5 3038/*
7bf02ea2
DR
3039 * Determine whether the node should be displayed or not, depending on whether
3040 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 3041 */
7bf02ea2 3042bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
3043{
3044 bool ret = false;
cc9a6c87 3045 unsigned int cpuset_mems_cookie;
ddd588b5
DR
3046
3047 if (!(flags & SHOW_MEM_FILTER_NODES))
3048 goto out;
3049
cc9a6c87 3050 do {
d26914d1 3051 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3052 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 3053 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
3054out:
3055 return ret;
3056}
3057
1da177e4
LT
3058#define K(x) ((x) << (PAGE_SHIFT-10))
3059
377e4f16
RV
3060static void show_migration_types(unsigned char type)
3061{
3062 static const char types[MIGRATE_TYPES] = {
3063 [MIGRATE_UNMOVABLE] = 'U',
3064 [MIGRATE_RECLAIMABLE] = 'E',
3065 [MIGRATE_MOVABLE] = 'M',
3066 [MIGRATE_RESERVE] = 'R',
3067#ifdef CONFIG_CMA
3068 [MIGRATE_CMA] = 'C',
3069#endif
194159fb 3070#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 3071 [MIGRATE_ISOLATE] = 'I',
194159fb 3072#endif
377e4f16
RV
3073 };
3074 char tmp[MIGRATE_TYPES + 1];
3075 char *p = tmp;
3076 int i;
3077
3078 for (i = 0; i < MIGRATE_TYPES; i++) {
3079 if (type & (1 << i))
3080 *p++ = types[i];
3081 }
3082
3083 *p = '\0';
3084 printk("(%s) ", tmp);
3085}
3086
1da177e4
LT
3087/*
3088 * Show free area list (used inside shift_scroll-lock stuff)
3089 * We also calculate the percentage fragmentation. We do this by counting the
3090 * memory on each free list with the exception of the first item on the list.
ddd588b5
DR
3091 * Suppresses nodes that are not allowed by current's cpuset if
3092 * SHOW_MEM_FILTER_NODES is passed.
1da177e4 3093 */
7bf02ea2 3094void show_free_areas(unsigned int filter)
1da177e4 3095{
c7241913 3096 int cpu;
1da177e4
LT
3097 struct zone *zone;
3098
ee99c71c 3099 for_each_populated_zone(zone) {
7bf02ea2 3100 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3101 continue;
c7241913
JS
3102 show_node(zone);
3103 printk("%s per-cpu:\n", zone->name);
1da177e4 3104
6b482c67 3105 for_each_online_cpu(cpu) {
1da177e4
LT
3106 struct per_cpu_pageset *pageset;
3107
99dcc3e5 3108 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 3109
3dfa5721
CL
3110 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3111 cpu, pageset->pcp.high,
3112 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
3113 }
3114 }
3115
a731286d
KM
3116 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3117 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 3118 " unevictable:%lu"
b76146ed 3119 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 3120 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a
BZ
3121 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3122 " free_cma:%lu\n",
4f98a2fe 3123 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 3124 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
3125 global_page_state(NR_ISOLATED_ANON),
3126 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 3127 global_page_state(NR_INACTIVE_FILE),
a731286d 3128 global_page_state(NR_ISOLATED_FILE),
7b854121 3129 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 3130 global_page_state(NR_FILE_DIRTY),
ce866b34 3131 global_page_state(NR_WRITEBACK),
fd39fc85 3132 global_page_state(NR_UNSTABLE_NFS),
d23ad423 3133 global_page_state(NR_FREE_PAGES),
3701b033
KM
3134 global_page_state(NR_SLAB_RECLAIMABLE),
3135 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 3136 global_page_state(NR_FILE_MAPPED),
4b02108a 3137 global_page_state(NR_SHMEM),
a25700a5 3138 global_page_state(NR_PAGETABLE),
d1ce749a
BZ
3139 global_page_state(NR_BOUNCE),
3140 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 3141
ee99c71c 3142 for_each_populated_zone(zone) {
1da177e4
LT
3143 int i;
3144
7bf02ea2 3145 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3146 continue;
1da177e4
LT
3147 show_node(zone);
3148 printk("%s"
3149 " free:%lukB"
3150 " min:%lukB"
3151 " low:%lukB"
3152 " high:%lukB"
4f98a2fe
RR
3153 " active_anon:%lukB"
3154 " inactive_anon:%lukB"
3155 " active_file:%lukB"
3156 " inactive_file:%lukB"
7b854121 3157 " unevictable:%lukB"
a731286d
KM
3158 " isolated(anon):%lukB"
3159 " isolated(file):%lukB"
1da177e4 3160 " present:%lukB"
9feedc9d 3161 " managed:%lukB"
4a0aa73f
KM
3162 " mlocked:%lukB"
3163 " dirty:%lukB"
3164 " writeback:%lukB"
3165 " mapped:%lukB"
4b02108a 3166 " shmem:%lukB"
4a0aa73f
KM
3167 " slab_reclaimable:%lukB"
3168 " slab_unreclaimable:%lukB"
c6a7f572 3169 " kernel_stack:%lukB"
4a0aa73f
KM
3170 " pagetables:%lukB"
3171 " unstable:%lukB"
3172 " bounce:%lukB"
d1ce749a 3173 " free_cma:%lukB"
4a0aa73f 3174 " writeback_tmp:%lukB"
1da177e4
LT
3175 " pages_scanned:%lu"
3176 " all_unreclaimable? %s"
3177 "\n",
3178 zone->name,
88f5acf8 3179 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
3180 K(min_wmark_pages(zone)),
3181 K(low_wmark_pages(zone)),
3182 K(high_wmark_pages(zone)),
4f98a2fe
RR
3183 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3184 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3185 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3186 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 3187 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
3188 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3189 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 3190 K(zone->present_pages),
9feedc9d 3191 K(zone->managed_pages),
4a0aa73f
KM
3192 K(zone_page_state(zone, NR_MLOCK)),
3193 K(zone_page_state(zone, NR_FILE_DIRTY)),
3194 K(zone_page_state(zone, NR_WRITEBACK)),
3195 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 3196 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
3197 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3198 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
3199 zone_page_state(zone, NR_KERNEL_STACK) *
3200 THREAD_SIZE / 1024,
4a0aa73f
KM
3201 K(zone_page_state(zone, NR_PAGETABLE)),
3202 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3203 K(zone_page_state(zone, NR_BOUNCE)),
d1ce749a 3204 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 3205 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
1da177e4 3206 zone->pages_scanned,
6e543d57 3207 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
3208 );
3209 printk("lowmem_reserve[]:");
3210 for (i = 0; i < MAX_NR_ZONES; i++)
3211 printk(" %lu", zone->lowmem_reserve[i]);
3212 printk("\n");
3213 }
3214
ee99c71c 3215 for_each_populated_zone(zone) {
b8af2941 3216 unsigned long nr[MAX_ORDER], flags, order, total = 0;
377e4f16 3217 unsigned char types[MAX_ORDER];
1da177e4 3218
7bf02ea2 3219 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3220 continue;
1da177e4
LT
3221 show_node(zone);
3222 printk("%s: ", zone->name);
1da177e4
LT
3223
3224 spin_lock_irqsave(&zone->lock, flags);
3225 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
3226 struct free_area *area = &zone->free_area[order];
3227 int type;
3228
3229 nr[order] = area->nr_free;
8f9de51a 3230 total += nr[order] << order;
377e4f16
RV
3231
3232 types[order] = 0;
3233 for (type = 0; type < MIGRATE_TYPES; type++) {
3234 if (!list_empty(&area->free_list[type]))
3235 types[order] |= 1 << type;
3236 }
1da177e4
LT
3237 }
3238 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 3239 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 3240 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
3241 if (nr[order])
3242 show_migration_types(types[order]);
3243 }
1da177e4
LT
3244 printk("= %lukB\n", K(total));
3245 }
3246
949f7ec5
DR
3247 hugetlb_show_meminfo();
3248
e6f3602d
LW
3249 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3250
1da177e4
LT
3251 show_swap_cache_info();
3252}
3253
19770b32
MG
3254static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3255{
3256 zoneref->zone = zone;
3257 zoneref->zone_idx = zone_idx(zone);
3258}
3259
1da177e4
LT
3260/*
3261 * Builds allocation fallback zone lists.
1a93205b
CL
3262 *
3263 * Add all populated zones of a node to the zonelist.
1da177e4 3264 */
f0c0b2b8 3265static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 3266 int nr_zones)
1da177e4 3267{
1a93205b 3268 struct zone *zone;
bc732f1d 3269 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
3270
3271 do {
2f6726e5 3272 zone_type--;
070f8032 3273 zone = pgdat->node_zones + zone_type;
1a93205b 3274 if (populated_zone(zone)) {
dd1a239f
MG
3275 zoneref_set_zone(zone,
3276 &zonelist->_zonerefs[nr_zones++]);
070f8032 3277 check_highest_zone(zone_type);
1da177e4 3278 }
2f6726e5 3279 } while (zone_type);
bc732f1d 3280
070f8032 3281 return nr_zones;
1da177e4
LT
3282}
3283
f0c0b2b8
KH
3284
3285/*
3286 * zonelist_order:
3287 * 0 = automatic detection of better ordering.
3288 * 1 = order by ([node] distance, -zonetype)
3289 * 2 = order by (-zonetype, [node] distance)
3290 *
3291 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3292 * the same zonelist. So only NUMA can configure this param.
3293 */
3294#define ZONELIST_ORDER_DEFAULT 0
3295#define ZONELIST_ORDER_NODE 1
3296#define ZONELIST_ORDER_ZONE 2
3297
3298/* zonelist order in the kernel.
3299 * set_zonelist_order() will set this to NODE or ZONE.
3300 */
3301static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3302static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3303
3304
1da177e4 3305#ifdef CONFIG_NUMA
f0c0b2b8
KH
3306/* The value user specified ....changed by config */
3307static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3308/* string for sysctl */
3309#define NUMA_ZONELIST_ORDER_LEN 16
3310char numa_zonelist_order[16] = "default";
3311
3312/*
3313 * interface for configure zonelist ordering.
3314 * command line option "numa_zonelist_order"
3315 * = "[dD]efault - default, automatic configuration.
3316 * = "[nN]ode - order by node locality, then by zone within node
3317 * = "[zZ]one - order by zone, then by locality within zone
3318 */
3319
3320static int __parse_numa_zonelist_order(char *s)
3321{
3322 if (*s == 'd' || *s == 'D') {
3323 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3324 } else if (*s == 'n' || *s == 'N') {
3325 user_zonelist_order = ZONELIST_ORDER_NODE;
3326 } else if (*s == 'z' || *s == 'Z') {
3327 user_zonelist_order = ZONELIST_ORDER_ZONE;
3328 } else {
3329 printk(KERN_WARNING
3330 "Ignoring invalid numa_zonelist_order value: "
3331 "%s\n", s);
3332 return -EINVAL;
3333 }
3334 return 0;
3335}
3336
3337static __init int setup_numa_zonelist_order(char *s)
3338{
ecb256f8
VL
3339 int ret;
3340
3341 if (!s)
3342 return 0;
3343
3344 ret = __parse_numa_zonelist_order(s);
3345 if (ret == 0)
3346 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3347
3348 return ret;
f0c0b2b8
KH
3349}
3350early_param("numa_zonelist_order", setup_numa_zonelist_order);
3351
3352/*
3353 * sysctl handler for numa_zonelist_order
3354 */
3355int numa_zonelist_order_handler(ctl_table *table, int write,
8d65af78 3356 void __user *buffer, size_t *length,
f0c0b2b8
KH
3357 loff_t *ppos)
3358{
3359 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3360 int ret;
443c6f14 3361 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3362
443c6f14 3363 mutex_lock(&zl_order_mutex);
dacbde09
CG
3364 if (write) {
3365 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3366 ret = -EINVAL;
3367 goto out;
3368 }
3369 strcpy(saved_string, (char *)table->data);
3370 }
8d65af78 3371 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 3372 if (ret)
443c6f14 3373 goto out;
f0c0b2b8
KH
3374 if (write) {
3375 int oldval = user_zonelist_order;
dacbde09
CG
3376
3377 ret = __parse_numa_zonelist_order((char *)table->data);
3378 if (ret) {
f0c0b2b8
KH
3379 /*
3380 * bogus value. restore saved string
3381 */
dacbde09 3382 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
3383 NUMA_ZONELIST_ORDER_LEN);
3384 user_zonelist_order = oldval;
4eaf3f64
HL
3385 } else if (oldval != user_zonelist_order) {
3386 mutex_lock(&zonelists_mutex);
9adb62a5 3387 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
3388 mutex_unlock(&zonelists_mutex);
3389 }
f0c0b2b8 3390 }
443c6f14
AK
3391out:
3392 mutex_unlock(&zl_order_mutex);
3393 return ret;
f0c0b2b8
KH
3394}
3395
3396
62bc62a8 3397#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
3398static int node_load[MAX_NUMNODES];
3399
1da177e4 3400/**
4dc3b16b 3401 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
3402 * @node: node whose fallback list we're appending
3403 * @used_node_mask: nodemask_t of already used nodes
3404 *
3405 * We use a number of factors to determine which is the next node that should
3406 * appear on a given node's fallback list. The node should not have appeared
3407 * already in @node's fallback list, and it should be the next closest node
3408 * according to the distance array (which contains arbitrary distance values
3409 * from each node to each node in the system), and should also prefer nodes
3410 * with no CPUs, since presumably they'll have very little allocation pressure
3411 * on them otherwise.
3412 * It returns -1 if no node is found.
3413 */
f0c0b2b8 3414static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 3415{
4cf808eb 3416 int n, val;
1da177e4 3417 int min_val = INT_MAX;
00ef2d2f 3418 int best_node = NUMA_NO_NODE;
a70f7302 3419 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 3420
4cf808eb
LT
3421 /* Use the local node if we haven't already */
3422 if (!node_isset(node, *used_node_mask)) {
3423 node_set(node, *used_node_mask);
3424 return node;
3425 }
1da177e4 3426
4b0ef1fe 3427 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
3428
3429 /* Don't want a node to appear more than once */
3430 if (node_isset(n, *used_node_mask))
3431 continue;
3432
1da177e4
LT
3433 /* Use the distance array to find the distance */
3434 val = node_distance(node, n);
3435
4cf808eb
LT
3436 /* Penalize nodes under us ("prefer the next node") */
3437 val += (n < node);
3438
1da177e4 3439 /* Give preference to headless and unused nodes */
a70f7302
RR
3440 tmp = cpumask_of_node(n);
3441 if (!cpumask_empty(tmp))
1da177e4
LT
3442 val += PENALTY_FOR_NODE_WITH_CPUS;
3443
3444 /* Slight preference for less loaded node */
3445 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3446 val += node_load[n];
3447
3448 if (val < min_val) {
3449 min_val = val;
3450 best_node = n;
3451 }
3452 }
3453
3454 if (best_node >= 0)
3455 node_set(best_node, *used_node_mask);
3456
3457 return best_node;
3458}
3459
f0c0b2b8
KH
3460
3461/*
3462 * Build zonelists ordered by node and zones within node.
3463 * This results in maximum locality--normal zone overflows into local
3464 * DMA zone, if any--but risks exhausting DMA zone.
3465 */
3466static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 3467{
f0c0b2b8 3468 int j;
1da177e4 3469 struct zonelist *zonelist;
f0c0b2b8 3470
54a6eb5c 3471 zonelist = &pgdat->node_zonelists[0];
dd1a239f 3472 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 3473 ;
bc732f1d 3474 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
3475 zonelist->_zonerefs[j].zone = NULL;
3476 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
3477}
3478
523b9458
CL
3479/*
3480 * Build gfp_thisnode zonelists
3481 */
3482static void build_thisnode_zonelists(pg_data_t *pgdat)
3483{
523b9458
CL
3484 int j;
3485 struct zonelist *zonelist;
3486
54a6eb5c 3487 zonelist = &pgdat->node_zonelists[1];
bc732f1d 3488 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
3489 zonelist->_zonerefs[j].zone = NULL;
3490 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
3491}
3492
f0c0b2b8
KH
3493/*
3494 * Build zonelists ordered by zone and nodes within zones.
3495 * This results in conserving DMA zone[s] until all Normal memory is
3496 * exhausted, but results in overflowing to remote node while memory
3497 * may still exist in local DMA zone.
3498 */
3499static int node_order[MAX_NUMNODES];
3500
3501static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3502{
f0c0b2b8
KH
3503 int pos, j, node;
3504 int zone_type; /* needs to be signed */
3505 struct zone *z;
3506 struct zonelist *zonelist;
3507
54a6eb5c
MG
3508 zonelist = &pgdat->node_zonelists[0];
3509 pos = 0;
3510 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3511 for (j = 0; j < nr_nodes; j++) {
3512 node = node_order[j];
3513 z = &NODE_DATA(node)->node_zones[zone_type];
3514 if (populated_zone(z)) {
dd1a239f
MG
3515 zoneref_set_zone(z,
3516 &zonelist->_zonerefs[pos++]);
54a6eb5c 3517 check_highest_zone(zone_type);
f0c0b2b8
KH
3518 }
3519 }
f0c0b2b8 3520 }
dd1a239f
MG
3521 zonelist->_zonerefs[pos].zone = NULL;
3522 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
3523}
3524
3525static int default_zonelist_order(void)
3526{
3527 int nid, zone_type;
b8af2941 3528 unsigned long low_kmem_size, total_size;
f0c0b2b8
KH
3529 struct zone *z;
3530 int average_size;
3531 /*
b8af2941 3532 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
f0c0b2b8
KH
3533 * If they are really small and used heavily, the system can fall
3534 * into OOM very easily.
e325c90f 3535 * This function detect ZONE_DMA/DMA32 size and configures zone order.
f0c0b2b8
KH
3536 */
3537 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3538 low_kmem_size = 0;
3539 total_size = 0;
3540 for_each_online_node(nid) {
3541 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3542 z = &NODE_DATA(nid)->node_zones[zone_type];
3543 if (populated_zone(z)) {
3544 if (zone_type < ZONE_NORMAL)
4f9f4774
JL
3545 low_kmem_size += z->managed_pages;
3546 total_size += z->managed_pages;
e325c90f
DR
3547 } else if (zone_type == ZONE_NORMAL) {
3548 /*
3549 * If any node has only lowmem, then node order
3550 * is preferred to allow kernel allocations
3551 * locally; otherwise, they can easily infringe
3552 * on other nodes when there is an abundance of
3553 * lowmem available to allocate from.
3554 */
3555 return ZONELIST_ORDER_NODE;
f0c0b2b8
KH
3556 }
3557 }
3558 }
3559 if (!low_kmem_size || /* there are no DMA area. */
3560 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3561 return ZONELIST_ORDER_NODE;
3562 /*
3563 * look into each node's config.
b8af2941
PK
3564 * If there is a node whose DMA/DMA32 memory is very big area on
3565 * local memory, NODE_ORDER may be suitable.
3566 */
37b07e41 3567 average_size = total_size /
4b0ef1fe 3568 (nodes_weight(node_states[N_MEMORY]) + 1);
f0c0b2b8
KH
3569 for_each_online_node(nid) {
3570 low_kmem_size = 0;
3571 total_size = 0;
3572 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3573 z = &NODE_DATA(nid)->node_zones[zone_type];
3574 if (populated_zone(z)) {
3575 if (zone_type < ZONE_NORMAL)
3576 low_kmem_size += z->present_pages;
3577 total_size += z->present_pages;
3578 }
3579 }
3580 if (low_kmem_size &&
3581 total_size > average_size && /* ignore small node */
3582 low_kmem_size > total_size * 70/100)
3583 return ZONELIST_ORDER_NODE;
3584 }
3585 return ZONELIST_ORDER_ZONE;
3586}
3587
3588static void set_zonelist_order(void)
3589{
3590 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3591 current_zonelist_order = default_zonelist_order();
3592 else
3593 current_zonelist_order = user_zonelist_order;
3594}
3595
3596static void build_zonelists(pg_data_t *pgdat)
3597{
3598 int j, node, load;
3599 enum zone_type i;
1da177e4 3600 nodemask_t used_mask;
f0c0b2b8
KH
3601 int local_node, prev_node;
3602 struct zonelist *zonelist;
3603 int order = current_zonelist_order;
1da177e4
LT
3604
3605 /* initialize zonelists */
523b9458 3606 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 3607 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
3608 zonelist->_zonerefs[0].zone = NULL;
3609 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
3610 }
3611
3612 /* NUMA-aware ordering of nodes */
3613 local_node = pgdat->node_id;
62bc62a8 3614 load = nr_online_nodes;
1da177e4
LT
3615 prev_node = local_node;
3616 nodes_clear(used_mask);
f0c0b2b8 3617
f0c0b2b8
KH
3618 memset(node_order, 0, sizeof(node_order));
3619 j = 0;
3620
1da177e4
LT
3621 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3622 /*
3623 * We don't want to pressure a particular node.
3624 * So adding penalty to the first node in same
3625 * distance group to make it round-robin.
3626 */
957f822a
DR
3627 if (node_distance(local_node, node) !=
3628 node_distance(local_node, prev_node))
f0c0b2b8
KH
3629 node_load[node] = load;
3630
1da177e4
LT
3631 prev_node = node;
3632 load--;
f0c0b2b8
KH
3633 if (order == ZONELIST_ORDER_NODE)
3634 build_zonelists_in_node_order(pgdat, node);
3635 else
3636 node_order[j++] = node; /* remember order */
3637 }
1da177e4 3638
f0c0b2b8
KH
3639 if (order == ZONELIST_ORDER_ZONE) {
3640 /* calculate node order -- i.e., DMA last! */
3641 build_zonelists_in_zone_order(pgdat, j);
1da177e4 3642 }
523b9458
CL
3643
3644 build_thisnode_zonelists(pgdat);
1da177e4
LT
3645}
3646
9276b1bc 3647/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 3648static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3649{
54a6eb5c
MG
3650 struct zonelist *zonelist;
3651 struct zonelist_cache *zlc;
dd1a239f 3652 struct zoneref *z;
9276b1bc 3653
54a6eb5c
MG
3654 zonelist = &pgdat->node_zonelists[0];
3655 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3656 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
3657 for (z = zonelist->_zonerefs; z->zone; z++)
3658 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
3659}
3660
7aac7898
LS
3661#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3662/*
3663 * Return node id of node used for "local" allocations.
3664 * I.e., first node id of first zone in arg node's generic zonelist.
3665 * Used for initializing percpu 'numa_mem', which is used primarily
3666 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3667 */
3668int local_memory_node(int node)
3669{
3670 struct zone *zone;
3671
3672 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3673 gfp_zone(GFP_KERNEL),
3674 NULL,
3675 &zone);
3676 return zone->node;
3677}
3678#endif
f0c0b2b8 3679
1da177e4
LT
3680#else /* CONFIG_NUMA */
3681
f0c0b2b8
KH
3682static void set_zonelist_order(void)
3683{
3684 current_zonelist_order = ZONELIST_ORDER_ZONE;
3685}
3686
3687static void build_zonelists(pg_data_t *pgdat)
1da177e4 3688{
19655d34 3689 int node, local_node;
54a6eb5c
MG
3690 enum zone_type j;
3691 struct zonelist *zonelist;
1da177e4
LT
3692
3693 local_node = pgdat->node_id;
1da177e4 3694
54a6eb5c 3695 zonelist = &pgdat->node_zonelists[0];
bc732f1d 3696 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 3697
54a6eb5c
MG
3698 /*
3699 * Now we build the zonelist so that it contains the zones
3700 * of all the other nodes.
3701 * We don't want to pressure a particular node, so when
3702 * building the zones for node N, we make sure that the
3703 * zones coming right after the local ones are those from
3704 * node N+1 (modulo N)
3705 */
3706 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3707 if (!node_online(node))
3708 continue;
bc732f1d 3709 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 3710 }
54a6eb5c
MG
3711 for (node = 0; node < local_node; node++) {
3712 if (!node_online(node))
3713 continue;
bc732f1d 3714 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
3715 }
3716
dd1a239f
MG
3717 zonelist->_zonerefs[j].zone = NULL;
3718 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3719}
3720
9276b1bc 3721/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3722static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3723{
54a6eb5c 3724 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3725}
3726
1da177e4
LT
3727#endif /* CONFIG_NUMA */
3728
99dcc3e5
CL
3729/*
3730 * Boot pageset table. One per cpu which is going to be used for all
3731 * zones and all nodes. The parameters will be set in such a way
3732 * that an item put on a list will immediately be handed over to
3733 * the buddy list. This is safe since pageset manipulation is done
3734 * with interrupts disabled.
3735 *
3736 * The boot_pagesets must be kept even after bootup is complete for
3737 * unused processors and/or zones. They do play a role for bootstrapping
3738 * hotplugged processors.
3739 *
3740 * zoneinfo_show() and maybe other functions do
3741 * not check if the processor is online before following the pageset pointer.
3742 * Other parts of the kernel may not check if the zone is available.
3743 */
3744static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3745static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3746static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3747
4eaf3f64
HL
3748/*
3749 * Global mutex to protect against size modification of zonelists
3750 * as well as to serialize pageset setup for the new populated zone.
3751 */
3752DEFINE_MUTEX(zonelists_mutex);
3753
9b1a4d38 3754/* return values int ....just for stop_machine() */
4ed7e022 3755static int __build_all_zonelists(void *data)
1da177e4 3756{
6811378e 3757 int nid;
99dcc3e5 3758 int cpu;
9adb62a5 3759 pg_data_t *self = data;
9276b1bc 3760
7f9cfb31
BL
3761#ifdef CONFIG_NUMA
3762 memset(node_load, 0, sizeof(node_load));
3763#endif
9adb62a5
JL
3764
3765 if (self && !node_online(self->node_id)) {
3766 build_zonelists(self);
3767 build_zonelist_cache(self);
3768 }
3769
9276b1bc 3770 for_each_online_node(nid) {
7ea1530a
CL
3771 pg_data_t *pgdat = NODE_DATA(nid);
3772
3773 build_zonelists(pgdat);
3774 build_zonelist_cache(pgdat);
9276b1bc 3775 }
99dcc3e5
CL
3776
3777 /*
3778 * Initialize the boot_pagesets that are going to be used
3779 * for bootstrapping processors. The real pagesets for
3780 * each zone will be allocated later when the per cpu
3781 * allocator is available.
3782 *
3783 * boot_pagesets are used also for bootstrapping offline
3784 * cpus if the system is already booted because the pagesets
3785 * are needed to initialize allocators on a specific cpu too.
3786 * F.e. the percpu allocator needs the page allocator which
3787 * needs the percpu allocator in order to allocate its pagesets
3788 * (a chicken-egg dilemma).
3789 */
7aac7898 3790 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3791 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3792
7aac7898
LS
3793#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3794 /*
3795 * We now know the "local memory node" for each node--
3796 * i.e., the node of the first zone in the generic zonelist.
3797 * Set up numa_mem percpu variable for on-line cpus. During
3798 * boot, only the boot cpu should be on-line; we'll init the
3799 * secondary cpus' numa_mem as they come on-line. During
3800 * node/memory hotplug, we'll fixup all on-line cpus.
3801 */
3802 if (cpu_online(cpu))
3803 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3804#endif
3805 }
3806
6811378e
YG
3807 return 0;
3808}
3809
4eaf3f64
HL
3810/*
3811 * Called with zonelists_mutex held always
3812 * unless system_state == SYSTEM_BOOTING.
3813 */
9adb62a5 3814void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 3815{
f0c0b2b8
KH
3816 set_zonelist_order();
3817
6811378e 3818 if (system_state == SYSTEM_BOOTING) {
423b41d7 3819 __build_all_zonelists(NULL);
68ad8df4 3820 mminit_verify_zonelist();
6811378e
YG
3821 cpuset_init_current_mems_allowed();
3822 } else {
e9959f0f 3823#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
3824 if (zone)
3825 setup_zone_pageset(zone);
e9959f0f 3826#endif
dd1895e2
CS
3827 /* we have to stop all cpus to guarantee there is no user
3828 of zonelist */
9adb62a5 3829 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
3830 /* cpuset refresh routine should be here */
3831 }
bd1e22b8 3832 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3833 /*
3834 * Disable grouping by mobility if the number of pages in the
3835 * system is too low to allow the mechanism to work. It would be
3836 * more accurate, but expensive to check per-zone. This check is
3837 * made on memory-hotadd so a system can start with mobility
3838 * disabled and enable it later
3839 */
d9c23400 3840 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3841 page_group_by_mobility_disabled = 1;
3842 else
3843 page_group_by_mobility_disabled = 0;
3844
3845 printk("Built %i zonelists in %s order, mobility grouping %s. "
3846 "Total pages: %ld\n",
62bc62a8 3847 nr_online_nodes,
f0c0b2b8 3848 zonelist_order_name[current_zonelist_order],
9ef9acb0 3849 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3850 vm_total_pages);
3851#ifdef CONFIG_NUMA
3852 printk("Policy zone: %s\n", zone_names[policy_zone]);
3853#endif
1da177e4
LT
3854}
3855
3856/*
3857 * Helper functions to size the waitqueue hash table.
3858 * Essentially these want to choose hash table sizes sufficiently
3859 * large so that collisions trying to wait on pages are rare.
3860 * But in fact, the number of active page waitqueues on typical
3861 * systems is ridiculously low, less than 200. So this is even
3862 * conservative, even though it seems large.
3863 *
3864 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3865 * waitqueues, i.e. the size of the waitq table given the number of pages.
3866 */
3867#define PAGES_PER_WAITQUEUE 256
3868
cca448fe 3869#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3870static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3871{
3872 unsigned long size = 1;
3873
3874 pages /= PAGES_PER_WAITQUEUE;
3875
3876 while (size < pages)
3877 size <<= 1;
3878
3879 /*
3880 * Once we have dozens or even hundreds of threads sleeping
3881 * on IO we've got bigger problems than wait queue collision.
3882 * Limit the size of the wait table to a reasonable size.
3883 */
3884 size = min(size, 4096UL);
3885
3886 return max(size, 4UL);
3887}
cca448fe
YG
3888#else
3889/*
3890 * A zone's size might be changed by hot-add, so it is not possible to determine
3891 * a suitable size for its wait_table. So we use the maximum size now.
3892 *
3893 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3894 *
3895 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3896 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3897 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3898 *
3899 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3900 * or more by the traditional way. (See above). It equals:
3901 *
3902 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3903 * ia64(16K page size) : = ( 8G + 4M)byte.
3904 * powerpc (64K page size) : = (32G +16M)byte.
3905 */
3906static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3907{
3908 return 4096UL;
3909}
3910#endif
1da177e4
LT
3911
3912/*
3913 * This is an integer logarithm so that shifts can be used later
3914 * to extract the more random high bits from the multiplicative
3915 * hash function before the remainder is taken.
3916 */
3917static inline unsigned long wait_table_bits(unsigned long size)
3918{
3919 return ffz(~size);
3920}
3921
6d3163ce
AH
3922/*
3923 * Check if a pageblock contains reserved pages
3924 */
3925static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3926{
3927 unsigned long pfn;
3928
3929 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3930 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3931 return 1;
3932 }
3933 return 0;
3934}
3935
56fd56b8 3936/*
d9c23400 3937 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
3938 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3939 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
3940 * higher will lead to a bigger reserve which will get freed as contiguous
3941 * blocks as reclaim kicks in
3942 */
3943static void setup_zone_migrate_reserve(struct zone *zone)
3944{
6d3163ce 3945 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 3946 struct page *page;
78986a67
MG
3947 unsigned long block_migratetype;
3948 int reserve;
943dca1a 3949 int old_reserve;
56fd56b8 3950
d0215638
MH
3951 /*
3952 * Get the start pfn, end pfn and the number of blocks to reserve
3953 * We have to be careful to be aligned to pageblock_nr_pages to
3954 * make sure that we always check pfn_valid for the first page in
3955 * the block.
3956 */
56fd56b8 3957 start_pfn = zone->zone_start_pfn;
108bcc96 3958 end_pfn = zone_end_pfn(zone);
d0215638 3959 start_pfn = roundup(start_pfn, pageblock_nr_pages);
41858966 3960 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 3961 pageblock_order;
56fd56b8 3962
78986a67
MG
3963 /*
3964 * Reserve blocks are generally in place to help high-order atomic
3965 * allocations that are short-lived. A min_free_kbytes value that
3966 * would result in more than 2 reserve blocks for atomic allocations
3967 * is assumed to be in place to help anti-fragmentation for the
3968 * future allocation of hugepages at runtime.
3969 */
3970 reserve = min(2, reserve);
943dca1a
YI
3971 old_reserve = zone->nr_migrate_reserve_block;
3972
3973 /* When memory hot-add, we almost always need to do nothing */
3974 if (reserve == old_reserve)
3975 return;
3976 zone->nr_migrate_reserve_block = reserve;
78986a67 3977
d9c23400 3978 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
3979 if (!pfn_valid(pfn))
3980 continue;
3981 page = pfn_to_page(pfn);
3982
344c790e
AL
3983 /* Watch out for overlapping nodes */
3984 if (page_to_nid(page) != zone_to_nid(zone))
3985 continue;
3986
56fd56b8
MG
3987 block_migratetype = get_pageblock_migratetype(page);
3988
938929f1
MG
3989 /* Only test what is necessary when the reserves are not met */
3990 if (reserve > 0) {
3991 /*
3992 * Blocks with reserved pages will never free, skip
3993 * them.
3994 */
3995 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3996 if (pageblock_is_reserved(pfn, block_end_pfn))
3997 continue;
56fd56b8 3998
938929f1
MG
3999 /* If this block is reserved, account for it */
4000 if (block_migratetype == MIGRATE_RESERVE) {
4001 reserve--;
4002 continue;
4003 }
4004
4005 /* Suitable for reserving if this block is movable */
4006 if (block_migratetype == MIGRATE_MOVABLE) {
4007 set_pageblock_migratetype(page,
4008 MIGRATE_RESERVE);
4009 move_freepages_block(zone, page,
4010 MIGRATE_RESERVE);
4011 reserve--;
4012 continue;
4013 }
943dca1a
YI
4014 } else if (!old_reserve) {
4015 /*
4016 * At boot time we don't need to scan the whole zone
4017 * for turning off MIGRATE_RESERVE.
4018 */
4019 break;
56fd56b8
MG
4020 }
4021
4022 /*
4023 * If the reserve is met and this is a previous reserved block,
4024 * take it back
4025 */
4026 if (block_migratetype == MIGRATE_RESERVE) {
4027 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4028 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4029 }
4030 }
4031}
ac0e5b7a 4032
1da177e4
LT
4033/*
4034 * Initially all pages are reserved - free ones are freed
4035 * up by free_all_bootmem() once the early boot process is
4036 * done. Non-atomic initialization, single-pass.
4037 */
c09b4240 4038void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 4039 unsigned long start_pfn, enum memmap_context context)
1da177e4 4040{
1da177e4 4041 struct page *page;
29751f69
AW
4042 unsigned long end_pfn = start_pfn + size;
4043 unsigned long pfn;
86051ca5 4044 struct zone *z;
1da177e4 4045
22b31eec
HD
4046 if (highest_memmap_pfn < end_pfn - 1)
4047 highest_memmap_pfn = end_pfn - 1;
4048
86051ca5 4049 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 4050 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
4051 /*
4052 * There can be holes in boot-time mem_map[]s
4053 * handed to this function. They do not
4054 * exist on hotplugged memory.
4055 */
4056 if (context == MEMMAP_EARLY) {
4057 if (!early_pfn_valid(pfn))
4058 continue;
4059 if (!early_pfn_in_nid(pfn, nid))
4060 continue;
4061 }
d41dee36
AW
4062 page = pfn_to_page(pfn);
4063 set_page_links(page, zone, nid, pfn);
708614e6 4064 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 4065 init_page_count(page);
22b751c3 4066 page_mapcount_reset(page);
90572890 4067 page_cpupid_reset_last(page);
1da177e4 4068 SetPageReserved(page);
b2a0ac88
MG
4069 /*
4070 * Mark the block movable so that blocks are reserved for
4071 * movable at startup. This will force kernel allocations
4072 * to reserve their blocks rather than leaking throughout
4073 * the address space during boot when many long-lived
56fd56b8
MG
4074 * kernel allocations are made. Later some blocks near
4075 * the start are marked MIGRATE_RESERVE by
4076 * setup_zone_migrate_reserve()
86051ca5
KH
4077 *
4078 * bitmap is created for zone's valid pfn range. but memmap
4079 * can be created for invalid pages (for alignment)
4080 * check here not to call set_pageblock_migratetype() against
4081 * pfn out of zone.
b2a0ac88 4082 */
86051ca5 4083 if ((z->zone_start_pfn <= pfn)
108bcc96 4084 && (pfn < zone_end_pfn(z))
86051ca5 4085 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 4086 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 4087
1da177e4
LT
4088 INIT_LIST_HEAD(&page->lru);
4089#ifdef WANT_PAGE_VIRTUAL
4090 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4091 if (!is_highmem_idx(zone))
3212c6be 4092 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 4093#endif
1da177e4
LT
4094 }
4095}
4096
1e548deb 4097static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 4098{
b2a0ac88
MG
4099 int order, t;
4100 for_each_migratetype_order(order, t) {
4101 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
4102 zone->free_area[order].nr_free = 0;
4103 }
4104}
4105
4106#ifndef __HAVE_ARCH_MEMMAP_INIT
4107#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 4108 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
4109#endif
4110
4ed7e022 4111static int __meminit zone_batchsize(struct zone *zone)
e7c8d5c9 4112{
3a6be87f 4113#ifdef CONFIG_MMU
e7c8d5c9
CL
4114 int batch;
4115
4116 /*
4117 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 4118 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
4119 *
4120 * OK, so we don't know how big the cache is. So guess.
4121 */
b40da049 4122 batch = zone->managed_pages / 1024;
ba56e91c
SR
4123 if (batch * PAGE_SIZE > 512 * 1024)
4124 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
4125 batch /= 4; /* We effectively *= 4 below */
4126 if (batch < 1)
4127 batch = 1;
4128
4129 /*
0ceaacc9
NP
4130 * Clamp the batch to a 2^n - 1 value. Having a power
4131 * of 2 value was found to be more likely to have
4132 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 4133 *
0ceaacc9
NP
4134 * For example if 2 tasks are alternately allocating
4135 * batches of pages, one task can end up with a lot
4136 * of pages of one half of the possible page colors
4137 * and the other with pages of the other colors.
e7c8d5c9 4138 */
9155203a 4139 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 4140
e7c8d5c9 4141 return batch;
3a6be87f
DH
4142
4143#else
4144 /* The deferral and batching of frees should be suppressed under NOMMU
4145 * conditions.
4146 *
4147 * The problem is that NOMMU needs to be able to allocate large chunks
4148 * of contiguous memory as there's no hardware page translation to
4149 * assemble apparent contiguous memory from discontiguous pages.
4150 *
4151 * Queueing large contiguous runs of pages for batching, however,
4152 * causes the pages to actually be freed in smaller chunks. As there
4153 * can be a significant delay between the individual batches being
4154 * recycled, this leads to the once large chunks of space being
4155 * fragmented and becoming unavailable for high-order allocations.
4156 */
4157 return 0;
4158#endif
e7c8d5c9
CL
4159}
4160
8d7a8fa9
CS
4161/*
4162 * pcp->high and pcp->batch values are related and dependent on one another:
4163 * ->batch must never be higher then ->high.
4164 * The following function updates them in a safe manner without read side
4165 * locking.
4166 *
4167 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4168 * those fields changing asynchronously (acording the the above rule).
4169 *
4170 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4171 * outside of boot time (or some other assurance that no concurrent updaters
4172 * exist).
4173 */
4174static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4175 unsigned long batch)
4176{
4177 /* start with a fail safe value for batch */
4178 pcp->batch = 1;
4179 smp_wmb();
4180
4181 /* Update high, then batch, in order */
4182 pcp->high = high;
4183 smp_wmb();
4184
4185 pcp->batch = batch;
4186}
4187
3664033c 4188/* a companion to pageset_set_high() */
4008bab7
CS
4189static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4190{
8d7a8fa9 4191 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
4192}
4193
88c90dbc 4194static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
4195{
4196 struct per_cpu_pages *pcp;
5f8dcc21 4197 int migratetype;
2caaad41 4198
1c6fe946
MD
4199 memset(p, 0, sizeof(*p));
4200
3dfa5721 4201 pcp = &p->pcp;
2caaad41 4202 pcp->count = 0;
5f8dcc21
MG
4203 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4204 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4205}
4206
88c90dbc
CS
4207static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4208{
4209 pageset_init(p);
4210 pageset_set_batch(p, batch);
4211}
4212
8ad4b1fb 4213/*
3664033c 4214 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
4215 * to the value high for the pageset p.
4216 */
3664033c 4217static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
4218 unsigned long high)
4219{
8d7a8fa9
CS
4220 unsigned long batch = max(1UL, high / 4);
4221 if ((high / 4) > (PAGE_SHIFT * 8))
4222 batch = PAGE_SHIFT * 8;
8ad4b1fb 4223
8d7a8fa9 4224 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
4225}
4226
169f6c19
CS
4227static void __meminit pageset_set_high_and_batch(struct zone *zone,
4228 struct per_cpu_pageset *pcp)
56cef2b8 4229{
56cef2b8 4230 if (percpu_pagelist_fraction)
3664033c 4231 pageset_set_high(pcp,
56cef2b8
CS
4232 (zone->managed_pages /
4233 percpu_pagelist_fraction));
4234 else
4235 pageset_set_batch(pcp, zone_batchsize(zone));
4236}
4237
169f6c19
CS
4238static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4239{
4240 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4241
4242 pageset_init(pcp);
4243 pageset_set_high_and_batch(zone, pcp);
4244}
4245
4ed7e022 4246static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4247{
4248 int cpu;
319774e2 4249 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
4250 for_each_possible_cpu(cpu)
4251 zone_pageset_init(zone, cpu);
319774e2
WF
4252}
4253
2caaad41 4254/*
99dcc3e5
CL
4255 * Allocate per cpu pagesets and initialize them.
4256 * Before this call only boot pagesets were available.
e7c8d5c9 4257 */
99dcc3e5 4258void __init setup_per_cpu_pageset(void)
e7c8d5c9 4259{
99dcc3e5 4260 struct zone *zone;
e7c8d5c9 4261
319774e2
WF
4262 for_each_populated_zone(zone)
4263 setup_zone_pageset(zone);
e7c8d5c9
CL
4264}
4265
577a32f6 4266static noinline __init_refok
cca448fe 4267int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4268{
4269 int i;
cca448fe 4270 size_t alloc_size;
ed8ece2e
DH
4271
4272 /*
4273 * The per-page waitqueue mechanism uses hashed waitqueues
4274 * per zone.
4275 */
02b694de
YG
4276 zone->wait_table_hash_nr_entries =
4277 wait_table_hash_nr_entries(zone_size_pages);
4278 zone->wait_table_bits =
4279 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4280 alloc_size = zone->wait_table_hash_nr_entries
4281 * sizeof(wait_queue_head_t);
4282
cd94b9db 4283 if (!slab_is_available()) {
cca448fe 4284 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
4285 memblock_virt_alloc_node_nopanic(
4286 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
4287 } else {
4288 /*
4289 * This case means that a zone whose size was 0 gets new memory
4290 * via memory hot-add.
4291 * But it may be the case that a new node was hot-added. In
4292 * this case vmalloc() will not be able to use this new node's
4293 * memory - this wait_table must be initialized to use this new
4294 * node itself as well.
4295 * To use this new node's memory, further consideration will be
4296 * necessary.
4297 */
8691f3a7 4298 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4299 }
4300 if (!zone->wait_table)
4301 return -ENOMEM;
ed8ece2e 4302
b8af2941 4303 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4304 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4305
4306 return 0;
ed8ece2e
DH
4307}
4308
c09b4240 4309static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4310{
99dcc3e5
CL
4311 /*
4312 * per cpu subsystem is not up at this point. The following code
4313 * relies on the ability of the linker to provide the
4314 * offset of a (static) per cpu variable into the per cpu area.
4315 */
4316 zone->pageset = &boot_pageset;
ed8ece2e 4317
b38a8725 4318 if (populated_zone(zone))
99dcc3e5
CL
4319 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4320 zone->name, zone->present_pages,
4321 zone_batchsize(zone));
ed8ece2e
DH
4322}
4323
4ed7e022 4324int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4325 unsigned long zone_start_pfn,
a2f3aa02
DH
4326 unsigned long size,
4327 enum memmap_context context)
ed8ece2e
DH
4328{
4329 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4330 int ret;
4331 ret = zone_wait_table_init(zone, size);
4332 if (ret)
4333 return ret;
ed8ece2e
DH
4334 pgdat->nr_zones = zone_idx(zone) + 1;
4335
ed8ece2e
DH
4336 zone->zone_start_pfn = zone_start_pfn;
4337
708614e6
MG
4338 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4339 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4340 pgdat->node_id,
4341 (unsigned long)zone_idx(zone),
4342 zone_start_pfn, (zone_start_pfn + size));
4343
1e548deb 4344 zone_init_free_lists(zone);
718127cc
YG
4345
4346 return 0;
ed8ece2e
DH
4347}
4348
0ee332c1 4349#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d
MG
4350#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4351/*
4352 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4353 * Architectures may implement their own version but if add_active_range()
4354 * was used and there are no special requirements, this is a convenient
4355 * alternative
4356 */
f2dbcfa7 4357int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d 4358{
c13291a5 4359 unsigned long start_pfn, end_pfn;
e76b63f8 4360 int nid;
7c243c71
RA
4361 /*
4362 * NOTE: The following SMP-unsafe globals are only used early in boot
4363 * when the kernel is running single-threaded.
4364 */
4365 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4366 static int __meminitdata last_nid;
4367
4368 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4369 return last_nid;
c713216d 4370
e76b63f8
YL
4371 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4372 if (nid != -1) {
4373 last_start_pfn = start_pfn;
4374 last_end_pfn = end_pfn;
4375 last_nid = nid;
4376 }
4377
4378 return nid;
c713216d
MG
4379}
4380#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4381
f2dbcfa7
KH
4382int __meminit early_pfn_to_nid(unsigned long pfn)
4383{
cc2559bc
KH
4384 int nid;
4385
4386 nid = __early_pfn_to_nid(pfn);
4387 if (nid >= 0)
4388 return nid;
4389 /* just returns 0 */
4390 return 0;
f2dbcfa7
KH
4391}
4392
cc2559bc
KH
4393#ifdef CONFIG_NODES_SPAN_OTHER_NODES
4394bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4395{
4396 int nid;
4397
4398 nid = __early_pfn_to_nid(pfn);
4399 if (nid >= 0 && nid != node)
4400 return false;
4401 return true;
4402}
4403#endif
f2dbcfa7 4404
c713216d 4405/**
6782832e 4406 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 4407 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 4408 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d
MG
4409 *
4410 * If an architecture guarantees that all ranges registered with
4411 * add_active_ranges() contain no holes and may be freed, this
6782832e
SS
4412 * this function may be used instead of calling memblock_free_early_nid()
4413 * manually.
c713216d 4414 */
c13291a5 4415void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4416{
c13291a5
TH
4417 unsigned long start_pfn, end_pfn;
4418 int i, this_nid;
edbe7d23 4419
c13291a5
TH
4420 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4421 start_pfn = min(start_pfn, max_low_pfn);
4422 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4423
c13291a5 4424 if (start_pfn < end_pfn)
6782832e
SS
4425 memblock_free_early_nid(PFN_PHYS(start_pfn),
4426 (end_pfn - start_pfn) << PAGE_SHIFT,
4427 this_nid);
edbe7d23 4428 }
edbe7d23 4429}
edbe7d23 4430
c713216d
MG
4431/**
4432 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4433 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
4434 *
4435 * If an architecture guarantees that all ranges registered with
4436 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 4437 * function may be used instead of calling memory_present() manually.
c713216d
MG
4438 */
4439void __init sparse_memory_present_with_active_regions(int nid)
4440{
c13291a5
TH
4441 unsigned long start_pfn, end_pfn;
4442 int i, this_nid;
c713216d 4443
c13291a5
TH
4444 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4445 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4446}
4447
4448/**
4449 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4450 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4451 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4452 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4453 *
4454 * It returns the start and end page frame of a node based on information
4455 * provided by an arch calling add_active_range(). If called for a node
4456 * with no available memory, a warning is printed and the start and end
88ca3b94 4457 * PFNs will be 0.
c713216d 4458 */
a3142c8e 4459void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4460 unsigned long *start_pfn, unsigned long *end_pfn)
4461{
c13291a5 4462 unsigned long this_start_pfn, this_end_pfn;
c713216d 4463 int i;
c13291a5 4464
c713216d
MG
4465 *start_pfn = -1UL;
4466 *end_pfn = 0;
4467
c13291a5
TH
4468 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4469 *start_pfn = min(*start_pfn, this_start_pfn);
4470 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4471 }
4472
633c0666 4473 if (*start_pfn == -1UL)
c713216d 4474 *start_pfn = 0;
c713216d
MG
4475}
4476
2a1e274a
MG
4477/*
4478 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4479 * assumption is made that zones within a node are ordered in monotonic
4480 * increasing memory addresses so that the "highest" populated zone is used
4481 */
b69a7288 4482static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4483{
4484 int zone_index;
4485 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4486 if (zone_index == ZONE_MOVABLE)
4487 continue;
4488
4489 if (arch_zone_highest_possible_pfn[zone_index] >
4490 arch_zone_lowest_possible_pfn[zone_index])
4491 break;
4492 }
4493
4494 VM_BUG_ON(zone_index == -1);
4495 movable_zone = zone_index;
4496}
4497
4498/*
4499 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4500 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4501 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4502 * in each node depending on the size of each node and how evenly kernelcore
4503 * is distributed. This helper function adjusts the zone ranges
4504 * provided by the architecture for a given node by using the end of the
4505 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4506 * zones within a node are in order of monotonic increases memory addresses
4507 */
b69a7288 4508static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4509 unsigned long zone_type,
4510 unsigned long node_start_pfn,
4511 unsigned long node_end_pfn,
4512 unsigned long *zone_start_pfn,
4513 unsigned long *zone_end_pfn)
4514{
4515 /* Only adjust if ZONE_MOVABLE is on this node */
4516 if (zone_movable_pfn[nid]) {
4517 /* Size ZONE_MOVABLE */
4518 if (zone_type == ZONE_MOVABLE) {
4519 *zone_start_pfn = zone_movable_pfn[nid];
4520 *zone_end_pfn = min(node_end_pfn,
4521 arch_zone_highest_possible_pfn[movable_zone]);
4522
4523 /* Adjust for ZONE_MOVABLE starting within this range */
4524 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4525 *zone_end_pfn > zone_movable_pfn[nid]) {
4526 *zone_end_pfn = zone_movable_pfn[nid];
4527
4528 /* Check if this whole range is within ZONE_MOVABLE */
4529 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4530 *zone_start_pfn = *zone_end_pfn;
4531 }
4532}
4533
c713216d
MG
4534/*
4535 * Return the number of pages a zone spans in a node, including holes
4536 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4537 */
6ea6e688 4538static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4539 unsigned long zone_type,
7960aedd
ZY
4540 unsigned long node_start_pfn,
4541 unsigned long node_end_pfn,
c713216d
MG
4542 unsigned long *ignored)
4543{
c713216d
MG
4544 unsigned long zone_start_pfn, zone_end_pfn;
4545
7960aedd 4546 /* Get the start and end of the zone */
c713216d
MG
4547 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4548 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
4549 adjust_zone_range_for_zone_movable(nid, zone_type,
4550 node_start_pfn, node_end_pfn,
4551 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
4552
4553 /* Check that this node has pages within the zone's required range */
4554 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4555 return 0;
4556
4557 /* Move the zone boundaries inside the node if necessary */
4558 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4559 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4560
4561 /* Return the spanned pages */
4562 return zone_end_pfn - zone_start_pfn;
4563}
4564
4565/*
4566 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 4567 * then all holes in the requested range will be accounted for.
c713216d 4568 */
32996250 4569unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
4570 unsigned long range_start_pfn,
4571 unsigned long range_end_pfn)
4572{
96e907d1
TH
4573 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4574 unsigned long start_pfn, end_pfn;
4575 int i;
c713216d 4576
96e907d1
TH
4577 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4578 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4579 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4580 nr_absent -= end_pfn - start_pfn;
c713216d 4581 }
96e907d1 4582 return nr_absent;
c713216d
MG
4583}
4584
4585/**
4586 * absent_pages_in_range - Return number of page frames in holes within a range
4587 * @start_pfn: The start PFN to start searching for holes
4588 * @end_pfn: The end PFN to stop searching for holes
4589 *
88ca3b94 4590 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
4591 */
4592unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4593 unsigned long end_pfn)
4594{
4595 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4596}
4597
4598/* Return the number of page frames in holes in a zone on a node */
6ea6e688 4599static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 4600 unsigned long zone_type,
7960aedd
ZY
4601 unsigned long node_start_pfn,
4602 unsigned long node_end_pfn,
c713216d
MG
4603 unsigned long *ignored)
4604{
96e907d1
TH
4605 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4606 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
4607 unsigned long zone_start_pfn, zone_end_pfn;
4608
96e907d1
TH
4609 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4610 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 4611
2a1e274a
MG
4612 adjust_zone_range_for_zone_movable(nid, zone_type,
4613 node_start_pfn, node_end_pfn,
4614 &zone_start_pfn, &zone_end_pfn);
9c7cd687 4615 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 4616}
0e0b864e 4617
0ee332c1 4618#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 4619static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4620 unsigned long zone_type,
7960aedd
ZY
4621 unsigned long node_start_pfn,
4622 unsigned long node_end_pfn,
c713216d
MG
4623 unsigned long *zones_size)
4624{
4625 return zones_size[zone_type];
4626}
4627
6ea6e688 4628static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 4629 unsigned long zone_type,
7960aedd
ZY
4630 unsigned long node_start_pfn,
4631 unsigned long node_end_pfn,
c713216d
MG
4632 unsigned long *zholes_size)
4633{
4634 if (!zholes_size)
4635 return 0;
4636
4637 return zholes_size[zone_type];
4638}
20e6926d 4639
0ee332c1 4640#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4641
a3142c8e 4642static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
4643 unsigned long node_start_pfn,
4644 unsigned long node_end_pfn,
4645 unsigned long *zones_size,
4646 unsigned long *zholes_size)
c713216d
MG
4647{
4648 unsigned long realtotalpages, totalpages = 0;
4649 enum zone_type i;
4650
4651 for (i = 0; i < MAX_NR_ZONES; i++)
4652 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
4653 node_start_pfn,
4654 node_end_pfn,
4655 zones_size);
c713216d
MG
4656 pgdat->node_spanned_pages = totalpages;
4657
4658 realtotalpages = totalpages;
4659 for (i = 0; i < MAX_NR_ZONES; i++)
4660 realtotalpages -=
4661 zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
4662 node_start_pfn, node_end_pfn,
4663 zholes_size);
c713216d
MG
4664 pgdat->node_present_pages = realtotalpages;
4665 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4666 realtotalpages);
4667}
4668
835c134e
MG
4669#ifndef CONFIG_SPARSEMEM
4670/*
4671 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4672 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4673 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4674 * round what is now in bits to nearest long in bits, then return it in
4675 * bytes.
4676 */
7c45512d 4677static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
4678{
4679 unsigned long usemapsize;
4680
7c45512d 4681 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
4682 usemapsize = roundup(zonesize, pageblock_nr_pages);
4683 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4684 usemapsize *= NR_PAGEBLOCK_BITS;
4685 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4686
4687 return usemapsize / 8;
4688}
4689
4690static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
4691 struct zone *zone,
4692 unsigned long zone_start_pfn,
4693 unsigned long zonesize)
835c134e 4694{
7c45512d 4695 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 4696 zone->pageblock_flags = NULL;
58a01a45 4697 if (usemapsize)
6782832e
SS
4698 zone->pageblock_flags =
4699 memblock_virt_alloc_node_nopanic(usemapsize,
4700 pgdat->node_id);
835c134e
MG
4701}
4702#else
7c45512d
LT
4703static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4704 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
4705#endif /* CONFIG_SPARSEMEM */
4706
d9c23400 4707#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 4708
d9c23400 4709/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 4710void __paginginit set_pageblock_order(void)
d9c23400 4711{
955c1cd7
AM
4712 unsigned int order;
4713
d9c23400
MG
4714 /* Check that pageblock_nr_pages has not already been setup */
4715 if (pageblock_order)
4716 return;
4717
955c1cd7
AM
4718 if (HPAGE_SHIFT > PAGE_SHIFT)
4719 order = HUGETLB_PAGE_ORDER;
4720 else
4721 order = MAX_ORDER - 1;
4722
d9c23400
MG
4723 /*
4724 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
4725 * This value may be variable depending on boot parameters on IA64 and
4726 * powerpc.
d9c23400
MG
4727 */
4728 pageblock_order = order;
4729}
4730#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4731
ba72cb8c
MG
4732/*
4733 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
4734 * is unused as pageblock_order is set at compile-time. See
4735 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4736 * the kernel config
ba72cb8c 4737 */
15ca220e 4738void __paginginit set_pageblock_order(void)
ba72cb8c 4739{
ba72cb8c 4740}
d9c23400
MG
4741
4742#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4743
01cefaef
JL
4744static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4745 unsigned long present_pages)
4746{
4747 unsigned long pages = spanned_pages;
4748
4749 /*
4750 * Provide a more accurate estimation if there are holes within
4751 * the zone and SPARSEMEM is in use. If there are holes within the
4752 * zone, each populated memory region may cost us one or two extra
4753 * memmap pages due to alignment because memmap pages for each
4754 * populated regions may not naturally algined on page boundary.
4755 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4756 */
4757 if (spanned_pages > present_pages + (present_pages >> 4) &&
4758 IS_ENABLED(CONFIG_SPARSEMEM))
4759 pages = present_pages;
4760
4761 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4762}
4763
1da177e4
LT
4764/*
4765 * Set up the zone data structures:
4766 * - mark all pages reserved
4767 * - mark all memory queues empty
4768 * - clear the memory bitmaps
6527af5d
MK
4769 *
4770 * NOTE: pgdat should get zeroed by caller.
1da177e4 4771 */
b5a0e011 4772static void __paginginit free_area_init_core(struct pglist_data *pgdat,
7960aedd 4773 unsigned long node_start_pfn, unsigned long node_end_pfn,
1da177e4
LT
4774 unsigned long *zones_size, unsigned long *zholes_size)
4775{
2f1b6248 4776 enum zone_type j;
ed8ece2e 4777 int nid = pgdat->node_id;
1da177e4 4778 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4779 int ret;
1da177e4 4780
208d54e5 4781 pgdat_resize_init(pgdat);
8177a420
AA
4782#ifdef CONFIG_NUMA_BALANCING
4783 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4784 pgdat->numabalancing_migrate_nr_pages = 0;
4785 pgdat->numabalancing_migrate_next_window = jiffies;
4786#endif
1da177e4 4787 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 4788 init_waitqueue_head(&pgdat->pfmemalloc_wait);
52d4b9ac 4789 pgdat_page_cgroup_init(pgdat);
5f63b720 4790
1da177e4
LT
4791 for (j = 0; j < MAX_NR_ZONES; j++) {
4792 struct zone *zone = pgdat->node_zones + j;
9feedc9d 4793 unsigned long size, realsize, freesize, memmap_pages;
1da177e4 4794
7960aedd
ZY
4795 size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4796 node_end_pfn, zones_size);
9feedc9d 4797 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
7960aedd
ZY
4798 node_start_pfn,
4799 node_end_pfn,
c713216d 4800 zholes_size);
1da177e4 4801
0e0b864e 4802 /*
9feedc9d 4803 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
4804 * is used by this zone for memmap. This affects the watermark
4805 * and per-cpu initialisations
4806 */
01cefaef 4807 memmap_pages = calc_memmap_size(size, realsize);
9feedc9d
JL
4808 if (freesize >= memmap_pages) {
4809 freesize -= memmap_pages;
5594c8c8
YL
4810 if (memmap_pages)
4811 printk(KERN_DEBUG
4812 " %s zone: %lu pages used for memmap\n",
4813 zone_names[j], memmap_pages);
0e0b864e
MG
4814 } else
4815 printk(KERN_WARNING
9feedc9d
JL
4816 " %s zone: %lu pages exceeds freesize %lu\n",
4817 zone_names[j], memmap_pages, freesize);
0e0b864e 4818
6267276f 4819 /* Account for reserved pages */
9feedc9d
JL
4820 if (j == 0 && freesize > dma_reserve) {
4821 freesize -= dma_reserve;
d903ef9f 4822 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4823 zone_names[0], dma_reserve);
0e0b864e
MG
4824 }
4825
98d2b0eb 4826 if (!is_highmem_idx(j))
9feedc9d 4827 nr_kernel_pages += freesize;
01cefaef
JL
4828 /* Charge for highmem memmap if there are enough kernel pages */
4829 else if (nr_kernel_pages > memmap_pages * 2)
4830 nr_kernel_pages -= memmap_pages;
9feedc9d 4831 nr_all_pages += freesize;
1da177e4
LT
4832
4833 zone->spanned_pages = size;
306f2e9e 4834 zone->present_pages = realsize;
9feedc9d
JL
4835 /*
4836 * Set an approximate value for lowmem here, it will be adjusted
4837 * when the bootmem allocator frees pages into the buddy system.
4838 * And all highmem pages will be managed by the buddy system.
4839 */
4840 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 4841#ifdef CONFIG_NUMA
d5f541ed 4842 zone->node = nid;
9feedc9d 4843 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 4844 / 100;
9feedc9d 4845 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 4846#endif
1da177e4
LT
4847 zone->name = zone_names[j];
4848 spin_lock_init(&zone->lock);
4849 spin_lock_init(&zone->lru_lock);
bdc8cb98 4850 zone_seqlock_init(zone);
1da177e4 4851 zone->zone_pgdat = pgdat;
ed8ece2e 4852 zone_pcp_init(zone);
81c0a2bb
JW
4853
4854 /* For bootup, initialized properly in watermark setup */
4855 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4856
bea8c150 4857 lruvec_init(&zone->lruvec);
1da177e4
LT
4858 if (!size)
4859 continue;
4860
955c1cd7 4861 set_pageblock_order();
7c45512d 4862 setup_usemap(pgdat, zone, zone_start_pfn, size);
a2f3aa02
DH
4863 ret = init_currently_empty_zone(zone, zone_start_pfn,
4864 size, MEMMAP_EARLY);
718127cc 4865 BUG_ON(ret);
76cdd58e 4866 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4867 zone_start_pfn += size;
1da177e4
LT
4868 }
4869}
4870
577a32f6 4871static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4872{
1da177e4
LT
4873 /* Skip empty nodes */
4874 if (!pgdat->node_spanned_pages)
4875 return;
4876
d41dee36 4877#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4878 /* ia64 gets its own node_mem_map, before this, without bootmem */
4879 if (!pgdat->node_mem_map) {
e984bb43 4880 unsigned long size, start, end;
d41dee36
AW
4881 struct page *map;
4882
e984bb43
BP
4883 /*
4884 * The zone's endpoints aren't required to be MAX_ORDER
4885 * aligned but the node_mem_map endpoints must be in order
4886 * for the buddy allocator to function correctly.
4887 */
4888 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
108bcc96 4889 end = pgdat_end_pfn(pgdat);
e984bb43
BP
4890 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4891 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4892 map = alloc_remap(pgdat->node_id, size);
4893 if (!map)
6782832e
SS
4894 map = memblock_virt_alloc_node_nopanic(size,
4895 pgdat->node_id);
e984bb43 4896 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4897 }
12d810c1 4898#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4899 /*
4900 * With no DISCONTIG, the global mem_map is just set as node 0's
4901 */
c713216d 4902 if (pgdat == NODE_DATA(0)) {
1da177e4 4903 mem_map = NODE_DATA(0)->node_mem_map;
0ee332c1 4904#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4905 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4906 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
0ee332c1 4907#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4908 }
1da177e4 4909#endif
d41dee36 4910#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4911}
4912
9109fb7b
JW
4913void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4914 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4915{
9109fb7b 4916 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
4917 unsigned long start_pfn = 0;
4918 unsigned long end_pfn = 0;
9109fb7b 4919
88fdf75d 4920 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 4921 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 4922
1da177e4
LT
4923 pgdat->node_id = nid;
4924 pgdat->node_start_pfn = node_start_pfn;
7960aedd
ZY
4925#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4926 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
4927#endif
4928 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
4929 zones_size, zholes_size);
1da177e4
LT
4930
4931 alloc_node_mem_map(pgdat);
e8c27ac9
YL
4932#ifdef CONFIG_FLAT_NODE_MEM_MAP
4933 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4934 nid, (unsigned long)pgdat,
4935 (unsigned long)pgdat->node_mem_map);
4936#endif
1da177e4 4937
7960aedd
ZY
4938 free_area_init_core(pgdat, start_pfn, end_pfn,
4939 zones_size, zholes_size);
1da177e4
LT
4940}
4941
0ee332c1 4942#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
4943
4944#if MAX_NUMNODES > 1
4945/*
4946 * Figure out the number of possible node ids.
4947 */
f9872caf 4948void __init setup_nr_node_ids(void)
418508c1
MS
4949{
4950 unsigned int node;
4951 unsigned int highest = 0;
4952
4953 for_each_node_mask(node, node_possible_map)
4954 highest = node;
4955 nr_node_ids = highest + 1;
4956}
418508c1
MS
4957#endif
4958
1e01979c
TH
4959/**
4960 * node_map_pfn_alignment - determine the maximum internode alignment
4961 *
4962 * This function should be called after node map is populated and sorted.
4963 * It calculates the maximum power of two alignment which can distinguish
4964 * all the nodes.
4965 *
4966 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4967 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4968 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4969 * shifted, 1GiB is enough and this function will indicate so.
4970 *
4971 * This is used to test whether pfn -> nid mapping of the chosen memory
4972 * model has fine enough granularity to avoid incorrect mapping for the
4973 * populated node map.
4974 *
4975 * Returns the determined alignment in pfn's. 0 if there is no alignment
4976 * requirement (single node).
4977 */
4978unsigned long __init node_map_pfn_alignment(void)
4979{
4980 unsigned long accl_mask = 0, last_end = 0;
c13291a5 4981 unsigned long start, end, mask;
1e01979c 4982 int last_nid = -1;
c13291a5 4983 int i, nid;
1e01979c 4984
c13291a5 4985 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
4986 if (!start || last_nid < 0 || last_nid == nid) {
4987 last_nid = nid;
4988 last_end = end;
4989 continue;
4990 }
4991
4992 /*
4993 * Start with a mask granular enough to pin-point to the
4994 * start pfn and tick off bits one-by-one until it becomes
4995 * too coarse to separate the current node from the last.
4996 */
4997 mask = ~((1 << __ffs(start)) - 1);
4998 while (mask && last_end <= (start & (mask << 1)))
4999 mask <<= 1;
5000
5001 /* accumulate all internode masks */
5002 accl_mask |= mask;
5003 }
5004
5005 /* convert mask to number of pages */
5006 return ~accl_mask + 1;
5007}
5008
a6af2bc3 5009/* Find the lowest pfn for a node */
b69a7288 5010static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 5011{
a6af2bc3 5012 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
5013 unsigned long start_pfn;
5014 int i;
1abbfb41 5015
c13291a5
TH
5016 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5017 min_pfn = min(min_pfn, start_pfn);
c713216d 5018
a6af2bc3
MG
5019 if (min_pfn == ULONG_MAX) {
5020 printk(KERN_WARNING
2bc0d261 5021 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
5022 return 0;
5023 }
5024
5025 return min_pfn;
c713216d
MG
5026}
5027
5028/**
5029 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5030 *
5031 * It returns the minimum PFN based on information provided via
88ca3b94 5032 * add_active_range().
c713216d
MG
5033 */
5034unsigned long __init find_min_pfn_with_active_regions(void)
5035{
5036 return find_min_pfn_for_node(MAX_NUMNODES);
5037}
5038
37b07e41
LS
5039/*
5040 * early_calculate_totalpages()
5041 * Sum pages in active regions for movable zone.
4b0ef1fe 5042 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 5043 */
484f51f8 5044static unsigned long __init early_calculate_totalpages(void)
7e63efef 5045{
7e63efef 5046 unsigned long totalpages = 0;
c13291a5
TH
5047 unsigned long start_pfn, end_pfn;
5048 int i, nid;
5049
5050 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5051 unsigned long pages = end_pfn - start_pfn;
7e63efef 5052
37b07e41
LS
5053 totalpages += pages;
5054 if (pages)
4b0ef1fe 5055 node_set_state(nid, N_MEMORY);
37b07e41 5056 }
b8af2941 5057 return totalpages;
7e63efef
MG
5058}
5059
2a1e274a
MG
5060/*
5061 * Find the PFN the Movable zone begins in each node. Kernel memory
5062 * is spread evenly between nodes as long as the nodes have enough
5063 * memory. When they don't, some nodes will have more kernelcore than
5064 * others
5065 */
b224ef85 5066static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
5067{
5068 int i, nid;
5069 unsigned long usable_startpfn;
5070 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 5071 /* save the state before borrow the nodemask */
4b0ef1fe 5072 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 5073 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 5074 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 5075 struct memblock_region *r;
b2f3eebe
TC
5076
5077 /* Need to find movable_zone earlier when movable_node is specified. */
5078 find_usable_zone_for_movable();
5079
5080 /*
5081 * If movable_node is specified, ignore kernelcore and movablecore
5082 * options.
5083 */
5084 if (movable_node_is_enabled()) {
136199f0
EM
5085 for_each_memblock(memory, r) {
5086 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
5087 continue;
5088
136199f0 5089 nid = r->nid;
b2f3eebe 5090
136199f0 5091 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
5092 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5093 min(usable_startpfn, zone_movable_pfn[nid]) :
5094 usable_startpfn;
5095 }
5096
5097 goto out2;
5098 }
2a1e274a 5099
7e63efef 5100 /*
b2f3eebe 5101 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
5102 * kernelcore that corresponds so that memory usable for
5103 * any allocation type is evenly spread. If both kernelcore
5104 * and movablecore are specified, then the value of kernelcore
5105 * will be used for required_kernelcore if it's greater than
5106 * what movablecore would have allowed.
5107 */
5108 if (required_movablecore) {
7e63efef
MG
5109 unsigned long corepages;
5110
5111 /*
5112 * Round-up so that ZONE_MOVABLE is at least as large as what
5113 * was requested by the user
5114 */
5115 required_movablecore =
5116 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5117 corepages = totalpages - required_movablecore;
5118
5119 required_kernelcore = max(required_kernelcore, corepages);
5120 }
5121
20e6926d
YL
5122 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5123 if (!required_kernelcore)
66918dcd 5124 goto out;
2a1e274a
MG
5125
5126 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
5127 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5128
5129restart:
5130 /* Spread kernelcore memory as evenly as possible throughout nodes */
5131 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 5132 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
5133 unsigned long start_pfn, end_pfn;
5134
2a1e274a
MG
5135 /*
5136 * Recalculate kernelcore_node if the division per node
5137 * now exceeds what is necessary to satisfy the requested
5138 * amount of memory for the kernel
5139 */
5140 if (required_kernelcore < kernelcore_node)
5141 kernelcore_node = required_kernelcore / usable_nodes;
5142
5143 /*
5144 * As the map is walked, we track how much memory is usable
5145 * by the kernel using kernelcore_remaining. When it is
5146 * 0, the rest of the node is usable by ZONE_MOVABLE
5147 */
5148 kernelcore_remaining = kernelcore_node;
5149
5150 /* Go through each range of PFNs within this node */
c13291a5 5151 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
5152 unsigned long size_pages;
5153
c13291a5 5154 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
5155 if (start_pfn >= end_pfn)
5156 continue;
5157
5158 /* Account for what is only usable for kernelcore */
5159 if (start_pfn < usable_startpfn) {
5160 unsigned long kernel_pages;
5161 kernel_pages = min(end_pfn, usable_startpfn)
5162 - start_pfn;
5163
5164 kernelcore_remaining -= min(kernel_pages,
5165 kernelcore_remaining);
5166 required_kernelcore -= min(kernel_pages,
5167 required_kernelcore);
5168
5169 /* Continue if range is now fully accounted */
5170 if (end_pfn <= usable_startpfn) {
5171
5172 /*
5173 * Push zone_movable_pfn to the end so
5174 * that if we have to rebalance
5175 * kernelcore across nodes, we will
5176 * not double account here
5177 */
5178 zone_movable_pfn[nid] = end_pfn;
5179 continue;
5180 }
5181 start_pfn = usable_startpfn;
5182 }
5183
5184 /*
5185 * The usable PFN range for ZONE_MOVABLE is from
5186 * start_pfn->end_pfn. Calculate size_pages as the
5187 * number of pages used as kernelcore
5188 */
5189 size_pages = end_pfn - start_pfn;
5190 if (size_pages > kernelcore_remaining)
5191 size_pages = kernelcore_remaining;
5192 zone_movable_pfn[nid] = start_pfn + size_pages;
5193
5194 /*
5195 * Some kernelcore has been met, update counts and
5196 * break if the kernelcore for this node has been
b8af2941 5197 * satisfied
2a1e274a
MG
5198 */
5199 required_kernelcore -= min(required_kernelcore,
5200 size_pages);
5201 kernelcore_remaining -= size_pages;
5202 if (!kernelcore_remaining)
5203 break;
5204 }
5205 }
5206
5207 /*
5208 * If there is still required_kernelcore, we do another pass with one
5209 * less node in the count. This will push zone_movable_pfn[nid] further
5210 * along on the nodes that still have memory until kernelcore is
b8af2941 5211 * satisfied
2a1e274a
MG
5212 */
5213 usable_nodes--;
5214 if (usable_nodes && required_kernelcore > usable_nodes)
5215 goto restart;
5216
b2f3eebe 5217out2:
2a1e274a
MG
5218 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5219 for (nid = 0; nid < MAX_NUMNODES; nid++)
5220 zone_movable_pfn[nid] =
5221 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 5222
20e6926d 5223out:
66918dcd 5224 /* restore the node_state */
4b0ef1fe 5225 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
5226}
5227
4b0ef1fe
LJ
5228/* Any regular or high memory on that node ? */
5229static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 5230{
37b07e41
LS
5231 enum zone_type zone_type;
5232
4b0ef1fe
LJ
5233 if (N_MEMORY == N_NORMAL_MEMORY)
5234 return;
5235
5236 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 5237 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 5238 if (populated_zone(zone)) {
4b0ef1fe
LJ
5239 node_set_state(nid, N_HIGH_MEMORY);
5240 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5241 zone_type <= ZONE_NORMAL)
5242 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
5243 break;
5244 }
37b07e41 5245 }
37b07e41
LS
5246}
5247
c713216d
MG
5248/**
5249 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 5250 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
5251 *
5252 * This will call free_area_init_node() for each active node in the system.
5253 * Using the page ranges provided by add_active_range(), the size of each
5254 * zone in each node and their holes is calculated. If the maximum PFN
5255 * between two adjacent zones match, it is assumed that the zone is empty.
5256 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5257 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5258 * starts where the previous one ended. For example, ZONE_DMA32 starts
5259 * at arch_max_dma_pfn.
5260 */
5261void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5262{
c13291a5
TH
5263 unsigned long start_pfn, end_pfn;
5264 int i, nid;
a6af2bc3 5265
c713216d
MG
5266 /* Record where the zone boundaries are */
5267 memset(arch_zone_lowest_possible_pfn, 0,
5268 sizeof(arch_zone_lowest_possible_pfn));
5269 memset(arch_zone_highest_possible_pfn, 0,
5270 sizeof(arch_zone_highest_possible_pfn));
5271 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5272 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5273 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
5274 if (i == ZONE_MOVABLE)
5275 continue;
c713216d
MG
5276 arch_zone_lowest_possible_pfn[i] =
5277 arch_zone_highest_possible_pfn[i-1];
5278 arch_zone_highest_possible_pfn[i] =
5279 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5280 }
2a1e274a
MG
5281 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5282 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5283
5284 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5285 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 5286 find_zone_movable_pfns_for_nodes();
c713216d 5287
c713216d 5288 /* Print out the zone ranges */
a62e2f4f 5289 printk("Zone ranges:\n");
2a1e274a
MG
5290 for (i = 0; i < MAX_NR_ZONES; i++) {
5291 if (i == ZONE_MOVABLE)
5292 continue;
155cbfc8 5293 printk(KERN_CONT " %-8s ", zone_names[i]);
72f0ba02
DR
5294 if (arch_zone_lowest_possible_pfn[i] ==
5295 arch_zone_highest_possible_pfn[i])
155cbfc8 5296 printk(KERN_CONT "empty\n");
72f0ba02 5297 else
a62e2f4f
BH
5298 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5299 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5300 (arch_zone_highest_possible_pfn[i]
5301 << PAGE_SHIFT) - 1);
2a1e274a
MG
5302 }
5303
5304 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
a62e2f4f 5305 printk("Movable zone start for each node\n");
2a1e274a
MG
5306 for (i = 0; i < MAX_NUMNODES; i++) {
5307 if (zone_movable_pfn[i])
a62e2f4f
BH
5308 printk(" Node %d: %#010lx\n", i,
5309 zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 5310 }
c713216d 5311
f2d52fe5 5312 /* Print out the early node map */
a62e2f4f 5313 printk("Early memory node ranges\n");
c13291a5 5314 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
a62e2f4f
BH
5315 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5316 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
5317
5318 /* Initialise every node */
708614e6 5319 mminit_verify_pageflags_layout();
8ef82866 5320 setup_nr_node_ids();
c713216d
MG
5321 for_each_online_node(nid) {
5322 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 5323 free_area_init_node(nid, NULL,
c713216d 5324 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
5325
5326 /* Any memory on that node */
5327 if (pgdat->node_present_pages)
4b0ef1fe
LJ
5328 node_set_state(nid, N_MEMORY);
5329 check_for_memory(pgdat, nid);
c713216d
MG
5330 }
5331}
2a1e274a 5332
7e63efef 5333static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
5334{
5335 unsigned long long coremem;
5336 if (!p)
5337 return -EINVAL;
5338
5339 coremem = memparse(p, &p);
7e63efef 5340 *core = coremem >> PAGE_SHIFT;
2a1e274a 5341
7e63efef 5342 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
5343 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5344
5345 return 0;
5346}
ed7ed365 5347
7e63efef
MG
5348/*
5349 * kernelcore=size sets the amount of memory for use for allocations that
5350 * cannot be reclaimed or migrated.
5351 */
5352static int __init cmdline_parse_kernelcore(char *p)
5353{
5354 return cmdline_parse_core(p, &required_kernelcore);
5355}
5356
5357/*
5358 * movablecore=size sets the amount of memory for use for allocations that
5359 * can be reclaimed or migrated.
5360 */
5361static int __init cmdline_parse_movablecore(char *p)
5362{
5363 return cmdline_parse_core(p, &required_movablecore);
5364}
5365
ed7ed365 5366early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 5367early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 5368
0ee332c1 5369#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5370
c3d5f5f0
JL
5371void adjust_managed_page_count(struct page *page, long count)
5372{
5373 spin_lock(&managed_page_count_lock);
5374 page_zone(page)->managed_pages += count;
5375 totalram_pages += count;
3dcc0571
JL
5376#ifdef CONFIG_HIGHMEM
5377 if (PageHighMem(page))
5378 totalhigh_pages += count;
5379#endif
c3d5f5f0
JL
5380 spin_unlock(&managed_page_count_lock);
5381}
3dcc0571 5382EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 5383
11199692 5384unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 5385{
11199692
JL
5386 void *pos;
5387 unsigned long pages = 0;
69afade7 5388
11199692
JL
5389 start = (void *)PAGE_ALIGN((unsigned long)start);
5390 end = (void *)((unsigned long)end & PAGE_MASK);
5391 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 5392 if ((unsigned int)poison <= 0xFF)
11199692
JL
5393 memset(pos, poison, PAGE_SIZE);
5394 free_reserved_page(virt_to_page(pos));
69afade7
JL
5395 }
5396
5397 if (pages && s)
11199692 5398 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
5399 s, pages << (PAGE_SHIFT - 10), start, end);
5400
5401 return pages;
5402}
11199692 5403EXPORT_SYMBOL(free_reserved_area);
69afade7 5404
cfa11e08
JL
5405#ifdef CONFIG_HIGHMEM
5406void free_highmem_page(struct page *page)
5407{
5408 __free_reserved_page(page);
5409 totalram_pages++;
7b4b2a0d 5410 page_zone(page)->managed_pages++;
cfa11e08
JL
5411 totalhigh_pages++;
5412}
5413#endif
5414
7ee3d4e8
JL
5415
5416void __init mem_init_print_info(const char *str)
5417{
5418 unsigned long physpages, codesize, datasize, rosize, bss_size;
5419 unsigned long init_code_size, init_data_size;
5420
5421 physpages = get_num_physpages();
5422 codesize = _etext - _stext;
5423 datasize = _edata - _sdata;
5424 rosize = __end_rodata - __start_rodata;
5425 bss_size = __bss_stop - __bss_start;
5426 init_data_size = __init_end - __init_begin;
5427 init_code_size = _einittext - _sinittext;
5428
5429 /*
5430 * Detect special cases and adjust section sizes accordingly:
5431 * 1) .init.* may be embedded into .data sections
5432 * 2) .init.text.* may be out of [__init_begin, __init_end],
5433 * please refer to arch/tile/kernel/vmlinux.lds.S.
5434 * 3) .rodata.* may be embedded into .text or .data sections.
5435 */
5436#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
5437 do { \
5438 if (start <= pos && pos < end && size > adj) \
5439 size -= adj; \
5440 } while (0)
7ee3d4e8
JL
5441
5442 adj_init_size(__init_begin, __init_end, init_data_size,
5443 _sinittext, init_code_size);
5444 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5445 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5446 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5447 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5448
5449#undef adj_init_size
5450
5451 printk("Memory: %luK/%luK available "
5452 "(%luK kernel code, %luK rwdata, %luK rodata, "
5453 "%luK init, %luK bss, %luK reserved"
5454#ifdef CONFIG_HIGHMEM
5455 ", %luK highmem"
5456#endif
5457 "%s%s)\n",
5458 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5459 codesize >> 10, datasize >> 10, rosize >> 10,
5460 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5461 (physpages - totalram_pages) << (PAGE_SHIFT-10),
5462#ifdef CONFIG_HIGHMEM
5463 totalhigh_pages << (PAGE_SHIFT-10),
5464#endif
5465 str ? ", " : "", str ? str : "");
5466}
5467
0e0b864e 5468/**
88ca3b94
RD
5469 * set_dma_reserve - set the specified number of pages reserved in the first zone
5470 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
5471 *
5472 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5473 * In the DMA zone, a significant percentage may be consumed by kernel image
5474 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
5475 * function may optionally be used to account for unfreeable pages in the
5476 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5477 * smaller per-cpu batchsize.
0e0b864e
MG
5478 */
5479void __init set_dma_reserve(unsigned long new_dma_reserve)
5480{
5481 dma_reserve = new_dma_reserve;
5482}
5483
1da177e4
LT
5484void __init free_area_init(unsigned long *zones_size)
5485{
9109fb7b 5486 free_area_init_node(0, zones_size,
1da177e4
LT
5487 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5488}
1da177e4 5489
1da177e4
LT
5490static int page_alloc_cpu_notify(struct notifier_block *self,
5491 unsigned long action, void *hcpu)
5492{
5493 int cpu = (unsigned long)hcpu;
1da177e4 5494
8bb78442 5495 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 5496 lru_add_drain_cpu(cpu);
9f8f2172
CL
5497 drain_pages(cpu);
5498
5499 /*
5500 * Spill the event counters of the dead processor
5501 * into the current processors event counters.
5502 * This artificially elevates the count of the current
5503 * processor.
5504 */
f8891e5e 5505 vm_events_fold_cpu(cpu);
9f8f2172
CL
5506
5507 /*
5508 * Zero the differential counters of the dead processor
5509 * so that the vm statistics are consistent.
5510 *
5511 * This is only okay since the processor is dead and cannot
5512 * race with what we are doing.
5513 */
2bb921e5 5514 cpu_vm_stats_fold(cpu);
1da177e4
LT
5515 }
5516 return NOTIFY_OK;
5517}
1da177e4
LT
5518
5519void __init page_alloc_init(void)
5520{
5521 hotcpu_notifier(page_alloc_cpu_notify, 0);
5522}
5523
cb45b0e9
HA
5524/*
5525 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5526 * or min_free_kbytes changes.
5527 */
5528static void calculate_totalreserve_pages(void)
5529{
5530 struct pglist_data *pgdat;
5531 unsigned long reserve_pages = 0;
2f6726e5 5532 enum zone_type i, j;
cb45b0e9
HA
5533
5534 for_each_online_pgdat(pgdat) {
5535 for (i = 0; i < MAX_NR_ZONES; i++) {
5536 struct zone *zone = pgdat->node_zones + i;
5537 unsigned long max = 0;
5538
5539 /* Find valid and maximum lowmem_reserve in the zone */
5540 for (j = i; j < MAX_NR_ZONES; j++) {
5541 if (zone->lowmem_reserve[j] > max)
5542 max = zone->lowmem_reserve[j];
5543 }
5544
41858966
MG
5545 /* we treat the high watermark as reserved pages. */
5546 max += high_wmark_pages(zone);
cb45b0e9 5547
b40da049
JL
5548 if (max > zone->managed_pages)
5549 max = zone->managed_pages;
cb45b0e9 5550 reserve_pages += max;
ab8fabd4
JW
5551 /*
5552 * Lowmem reserves are not available to
5553 * GFP_HIGHUSER page cache allocations and
5554 * kswapd tries to balance zones to their high
5555 * watermark. As a result, neither should be
5556 * regarded as dirtyable memory, to prevent a
5557 * situation where reclaim has to clean pages
5558 * in order to balance the zones.
5559 */
5560 zone->dirty_balance_reserve = max;
cb45b0e9
HA
5561 }
5562 }
ab8fabd4 5563 dirty_balance_reserve = reserve_pages;
cb45b0e9
HA
5564 totalreserve_pages = reserve_pages;
5565}
5566
1da177e4
LT
5567/*
5568 * setup_per_zone_lowmem_reserve - called whenever
5569 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5570 * has a correct pages reserved value, so an adequate number of
5571 * pages are left in the zone after a successful __alloc_pages().
5572 */
5573static void setup_per_zone_lowmem_reserve(void)
5574{
5575 struct pglist_data *pgdat;
2f6726e5 5576 enum zone_type j, idx;
1da177e4 5577
ec936fc5 5578 for_each_online_pgdat(pgdat) {
1da177e4
LT
5579 for (j = 0; j < MAX_NR_ZONES; j++) {
5580 struct zone *zone = pgdat->node_zones + j;
b40da049 5581 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
5582
5583 zone->lowmem_reserve[j] = 0;
5584
2f6726e5
CL
5585 idx = j;
5586 while (idx) {
1da177e4
LT
5587 struct zone *lower_zone;
5588
2f6726e5
CL
5589 idx--;
5590
1da177e4
LT
5591 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5592 sysctl_lowmem_reserve_ratio[idx] = 1;
5593
5594 lower_zone = pgdat->node_zones + idx;
b40da049 5595 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 5596 sysctl_lowmem_reserve_ratio[idx];
b40da049 5597 managed_pages += lower_zone->managed_pages;
1da177e4
LT
5598 }
5599 }
5600 }
cb45b0e9
HA
5601
5602 /* update totalreserve_pages */
5603 calculate_totalreserve_pages();
1da177e4
LT
5604}
5605
cfd3da1e 5606static void __setup_per_zone_wmarks(void)
1da177e4
LT
5607{
5608 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5609 unsigned long lowmem_pages = 0;
5610 struct zone *zone;
5611 unsigned long flags;
5612
5613 /* Calculate total number of !ZONE_HIGHMEM pages */
5614 for_each_zone(zone) {
5615 if (!is_highmem(zone))
b40da049 5616 lowmem_pages += zone->managed_pages;
1da177e4
LT
5617 }
5618
5619 for_each_zone(zone) {
ac924c60
AM
5620 u64 tmp;
5621
1125b4e3 5622 spin_lock_irqsave(&zone->lock, flags);
b40da049 5623 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 5624 do_div(tmp, lowmem_pages);
1da177e4
LT
5625 if (is_highmem(zone)) {
5626 /*
669ed175
NP
5627 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5628 * need highmem pages, so cap pages_min to a small
5629 * value here.
5630 *
41858966 5631 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
5632 * deltas controls asynch page reclaim, and so should
5633 * not be capped for highmem.
1da177e4 5634 */
90ae8d67 5635 unsigned long min_pages;
1da177e4 5636
b40da049 5637 min_pages = zone->managed_pages / 1024;
90ae8d67 5638 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 5639 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 5640 } else {
669ed175
NP
5641 /*
5642 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
5643 * proportionate to the zone's size.
5644 */
41858966 5645 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
5646 }
5647
41858966
MG
5648 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5649 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9 5650
81c0a2bb
JW
5651 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
5652 high_wmark_pages(zone) -
5653 low_wmark_pages(zone) -
5654 zone_page_state(zone, NR_ALLOC_BATCH));
5655
56fd56b8 5656 setup_zone_migrate_reserve(zone);
1125b4e3 5657 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 5658 }
cb45b0e9
HA
5659
5660 /* update totalreserve_pages */
5661 calculate_totalreserve_pages();
1da177e4
LT
5662}
5663
cfd3da1e
MG
5664/**
5665 * setup_per_zone_wmarks - called when min_free_kbytes changes
5666 * or when memory is hot-{added|removed}
5667 *
5668 * Ensures that the watermark[min,low,high] values for each zone are set
5669 * correctly with respect to min_free_kbytes.
5670 */
5671void setup_per_zone_wmarks(void)
5672{
5673 mutex_lock(&zonelists_mutex);
5674 __setup_per_zone_wmarks();
5675 mutex_unlock(&zonelists_mutex);
5676}
5677
55a4462a 5678/*
556adecb
RR
5679 * The inactive anon list should be small enough that the VM never has to
5680 * do too much work, but large enough that each inactive page has a chance
5681 * to be referenced again before it is swapped out.
5682 *
5683 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5684 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5685 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5686 * the anonymous pages are kept on the inactive list.
5687 *
5688 * total target max
5689 * memory ratio inactive anon
5690 * -------------------------------------
5691 * 10MB 1 5MB
5692 * 100MB 1 50MB
5693 * 1GB 3 250MB
5694 * 10GB 10 0.9GB
5695 * 100GB 31 3GB
5696 * 1TB 101 10GB
5697 * 10TB 320 32GB
5698 */
1b79acc9 5699static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 5700{
96cb4df5 5701 unsigned int gb, ratio;
556adecb 5702
96cb4df5 5703 /* Zone size in gigabytes */
b40da049 5704 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 5705 if (gb)
556adecb 5706 ratio = int_sqrt(10 * gb);
96cb4df5
MK
5707 else
5708 ratio = 1;
556adecb 5709
96cb4df5
MK
5710 zone->inactive_ratio = ratio;
5711}
556adecb 5712
839a4fcc 5713static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
5714{
5715 struct zone *zone;
5716
5717 for_each_zone(zone)
5718 calculate_zone_inactive_ratio(zone);
556adecb
RR
5719}
5720
1da177e4
LT
5721/*
5722 * Initialise min_free_kbytes.
5723 *
5724 * For small machines we want it small (128k min). For large machines
5725 * we want it large (64MB max). But it is not linear, because network
5726 * bandwidth does not increase linearly with machine size. We use
5727 *
b8af2941 5728 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
5729 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5730 *
5731 * which yields
5732 *
5733 * 16MB: 512k
5734 * 32MB: 724k
5735 * 64MB: 1024k
5736 * 128MB: 1448k
5737 * 256MB: 2048k
5738 * 512MB: 2896k
5739 * 1024MB: 4096k
5740 * 2048MB: 5792k
5741 * 4096MB: 8192k
5742 * 8192MB: 11584k
5743 * 16384MB: 16384k
5744 */
1b79acc9 5745int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
5746{
5747 unsigned long lowmem_kbytes;
5f12733e 5748 int new_min_free_kbytes;
1da177e4
LT
5749
5750 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
5751 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5752
5753 if (new_min_free_kbytes > user_min_free_kbytes) {
5754 min_free_kbytes = new_min_free_kbytes;
5755 if (min_free_kbytes < 128)
5756 min_free_kbytes = 128;
5757 if (min_free_kbytes > 65536)
5758 min_free_kbytes = 65536;
5759 } else {
5760 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5761 new_min_free_kbytes, user_min_free_kbytes);
5762 }
bc75d33f 5763 setup_per_zone_wmarks();
a6cccdc3 5764 refresh_zone_stat_thresholds();
1da177e4 5765 setup_per_zone_lowmem_reserve();
556adecb 5766 setup_per_zone_inactive_ratio();
1da177e4
LT
5767 return 0;
5768}
bc75d33f 5769module_init(init_per_zone_wmark_min)
1da177e4
LT
5770
5771/*
b8af2941 5772 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
5773 * that we can call two helper functions whenever min_free_kbytes
5774 * changes.
5775 */
b8af2941 5776int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
8d65af78 5777 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5778{
da8c757b
HP
5779 int rc;
5780
5781 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5782 if (rc)
5783 return rc;
5784
5f12733e
MH
5785 if (write) {
5786 user_min_free_kbytes = min_free_kbytes;
bc75d33f 5787 setup_per_zone_wmarks();
5f12733e 5788 }
1da177e4
LT
5789 return 0;
5790}
5791
9614634f
CL
5792#ifdef CONFIG_NUMA
5793int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5794 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5795{
5796 struct zone *zone;
5797 int rc;
5798
8d65af78 5799 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5800 if (rc)
5801 return rc;
5802
5803 for_each_zone(zone)
b40da049 5804 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
5805 sysctl_min_unmapped_ratio) / 100;
5806 return 0;
5807}
0ff38490
CL
5808
5809int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5810 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5811{
5812 struct zone *zone;
5813 int rc;
5814
8d65af78 5815 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5816 if (rc)
5817 return rc;
5818
5819 for_each_zone(zone)
b40da049 5820 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
5821 sysctl_min_slab_ratio) / 100;
5822 return 0;
5823}
9614634f
CL
5824#endif
5825
1da177e4
LT
5826/*
5827 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5828 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5829 * whenever sysctl_lowmem_reserve_ratio changes.
5830 *
5831 * The reserve ratio obviously has absolutely no relation with the
41858966 5832 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5833 * if in function of the boot time zone sizes.
5834 */
5835int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5836 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5837{
8d65af78 5838 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5839 setup_per_zone_lowmem_reserve();
5840 return 0;
5841}
5842
8ad4b1fb
RS
5843/*
5844 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
5845 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5846 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 5847 */
8ad4b1fb 5848int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
8d65af78 5849 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5850{
5851 struct zone *zone;
5852 unsigned int cpu;
5853 int ret;
5854
8d65af78 5855 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
93278814 5856 if (!write || (ret < 0))
8ad4b1fb 5857 return ret;
c8e251fa
CS
5858
5859 mutex_lock(&pcp_batch_high_lock);
364df0eb 5860 for_each_populated_zone(zone) {
22a7f12b
CS
5861 unsigned long high;
5862 high = zone->managed_pages / percpu_pagelist_fraction;
5863 for_each_possible_cpu(cpu)
3664033c
CS
5864 pageset_set_high(per_cpu_ptr(zone->pageset, cpu),
5865 high);
8ad4b1fb 5866 }
c8e251fa 5867 mutex_unlock(&pcp_batch_high_lock);
8ad4b1fb
RS
5868 return 0;
5869}
5870
f034b5d4 5871int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
5872
5873#ifdef CONFIG_NUMA
5874static int __init set_hashdist(char *str)
5875{
5876 if (!str)
5877 return 0;
5878 hashdist = simple_strtoul(str, &str, 0);
5879 return 1;
5880}
5881__setup("hashdist=", set_hashdist);
5882#endif
5883
5884/*
5885 * allocate a large system hash table from bootmem
5886 * - it is assumed that the hash table must contain an exact power-of-2
5887 * quantity of entries
5888 * - limit is the number of hash buckets, not the total allocation size
5889 */
5890void *__init alloc_large_system_hash(const char *tablename,
5891 unsigned long bucketsize,
5892 unsigned long numentries,
5893 int scale,
5894 int flags,
5895 unsigned int *_hash_shift,
5896 unsigned int *_hash_mask,
31fe62b9
TB
5897 unsigned long low_limit,
5898 unsigned long high_limit)
1da177e4 5899{
31fe62b9 5900 unsigned long long max = high_limit;
1da177e4
LT
5901 unsigned long log2qty, size;
5902 void *table = NULL;
5903
5904 /* allow the kernel cmdline to have a say */
5905 if (!numentries) {
5906 /* round applicable memory size up to nearest megabyte */
04903664 5907 numentries = nr_kernel_pages;
a7e83318
JZ
5908
5909 /* It isn't necessary when PAGE_SIZE >= 1MB */
5910 if (PAGE_SHIFT < 20)
5911 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
5912
5913 /* limit to 1 bucket per 2^scale bytes of low memory */
5914 if (scale > PAGE_SHIFT)
5915 numentries >>= (scale - PAGE_SHIFT);
5916 else
5917 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
5918
5919 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
5920 if (unlikely(flags & HASH_SMALL)) {
5921 /* Makes no sense without HASH_EARLY */
5922 WARN_ON(!(flags & HASH_EARLY));
5923 if (!(numentries >> *_hash_shift)) {
5924 numentries = 1UL << *_hash_shift;
5925 BUG_ON(!numentries);
5926 }
5927 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 5928 numentries = PAGE_SIZE / bucketsize;
1da177e4 5929 }
6e692ed3 5930 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
5931
5932 /* limit allocation size to 1/16 total memory by default */
5933 if (max == 0) {
5934 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5935 do_div(max, bucketsize);
5936 }
074b8517 5937 max = min(max, 0x80000000ULL);
1da177e4 5938
31fe62b9
TB
5939 if (numentries < low_limit)
5940 numentries = low_limit;
1da177e4
LT
5941 if (numentries > max)
5942 numentries = max;
5943
f0d1b0b3 5944 log2qty = ilog2(numentries);
1da177e4
LT
5945
5946 do {
5947 size = bucketsize << log2qty;
5948 if (flags & HASH_EARLY)
6782832e 5949 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
5950 else if (hashdist)
5951 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5952 else {
1037b83b
ED
5953 /*
5954 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
5955 * some pages at the end of hash table which
5956 * alloc_pages_exact() automatically does
1037b83b 5957 */
264ef8a9 5958 if (get_order(size) < MAX_ORDER) {
a1dd268c 5959 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
5960 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5961 }
1da177e4
LT
5962 }
5963 } while (!table && size > PAGE_SIZE && --log2qty);
5964
5965 if (!table)
5966 panic("Failed to allocate %s hash table\n", tablename);
5967
f241e660 5968 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 5969 tablename,
f241e660 5970 (1UL << log2qty),
f0d1b0b3 5971 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
5972 size);
5973
5974 if (_hash_shift)
5975 *_hash_shift = log2qty;
5976 if (_hash_mask)
5977 *_hash_mask = (1 << log2qty) - 1;
5978
5979 return table;
5980}
a117e66e 5981
835c134e
MG
5982/* Return a pointer to the bitmap storing bits affecting a block of pages */
5983static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5984 unsigned long pfn)
5985{
5986#ifdef CONFIG_SPARSEMEM
5987 return __pfn_to_section(pfn)->pageblock_flags;
5988#else
5989 return zone->pageblock_flags;
5990#endif /* CONFIG_SPARSEMEM */
5991}
5992
5993static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5994{
5995#ifdef CONFIG_SPARSEMEM
5996 pfn &= (PAGES_PER_SECTION-1);
d9c23400 5997 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 5998#else
c060f943 5999 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
d9c23400 6000 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
6001#endif /* CONFIG_SPARSEMEM */
6002}
6003
6004/**
d9c23400 6005 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
6006 * @page: The page within the block of interest
6007 * @start_bitidx: The first bit of interest to retrieve
6008 * @end_bitidx: The last bit of interest
6009 * returns pageblock_bits flags
6010 */
6011unsigned long get_pageblock_flags_group(struct page *page,
6012 int start_bitidx, int end_bitidx)
6013{
6014 struct zone *zone;
6015 unsigned long *bitmap;
6016 unsigned long pfn, bitidx;
6017 unsigned long flags = 0;
6018 unsigned long value = 1;
6019
6020 zone = page_zone(page);
6021 pfn = page_to_pfn(page);
6022 bitmap = get_pageblock_bitmap(zone, pfn);
6023 bitidx = pfn_to_bitidx(zone, pfn);
6024
6025 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
6026 if (test_bit(bitidx + start_bitidx, bitmap))
6027 flags |= value;
6220ec78 6028
835c134e
MG
6029 return flags;
6030}
6031
6032/**
d9c23400 6033 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
6034 * @page: The page within the block of interest
6035 * @start_bitidx: The first bit of interest
6036 * @end_bitidx: The last bit of interest
6037 * @flags: The flags to set
6038 */
6039void set_pageblock_flags_group(struct page *page, unsigned long flags,
6040 int start_bitidx, int end_bitidx)
6041{
6042 struct zone *zone;
6043 unsigned long *bitmap;
6044 unsigned long pfn, bitidx;
6045 unsigned long value = 1;
6046
6047 zone = page_zone(page);
6048 pfn = page_to_pfn(page);
6049 bitmap = get_pageblock_bitmap(zone, pfn);
6050 bitidx = pfn_to_bitidx(zone, pfn);
309381fe 6051 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
835c134e
MG
6052
6053 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
6054 if (flags & value)
6055 __set_bit(bitidx + start_bitidx, bitmap);
6056 else
6057 __clear_bit(bitidx + start_bitidx, bitmap);
6058}
a5d76b54
KH
6059
6060/*
80934513
MK
6061 * This function checks whether pageblock includes unmovable pages or not.
6062 * If @count is not zero, it is okay to include less @count unmovable pages
6063 *
b8af2941 6064 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
6065 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6066 * expect this function should be exact.
a5d76b54 6067 */
b023f468
WC
6068bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6069 bool skip_hwpoisoned_pages)
49ac8255
KH
6070{
6071 unsigned long pfn, iter, found;
47118af0
MN
6072 int mt;
6073
49ac8255
KH
6074 /*
6075 * For avoiding noise data, lru_add_drain_all() should be called
80934513 6076 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
6077 */
6078 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 6079 return false;
47118af0
MN
6080 mt = get_pageblock_migratetype(page);
6081 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 6082 return false;
49ac8255
KH
6083
6084 pfn = page_to_pfn(page);
6085 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6086 unsigned long check = pfn + iter;
6087
29723fcc 6088 if (!pfn_valid_within(check))
49ac8255 6089 continue;
29723fcc 6090
49ac8255 6091 page = pfn_to_page(check);
c8721bbb
NH
6092
6093 /*
6094 * Hugepages are not in LRU lists, but they're movable.
6095 * We need not scan over tail pages bacause we don't
6096 * handle each tail page individually in migration.
6097 */
6098 if (PageHuge(page)) {
6099 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6100 continue;
6101 }
6102
97d255c8
MK
6103 /*
6104 * We can't use page_count without pin a page
6105 * because another CPU can free compound page.
6106 * This check already skips compound tails of THP
6107 * because their page->_count is zero at all time.
6108 */
6109 if (!atomic_read(&page->_count)) {
49ac8255
KH
6110 if (PageBuddy(page))
6111 iter += (1 << page_order(page)) - 1;
6112 continue;
6113 }
97d255c8 6114
b023f468
WC
6115 /*
6116 * The HWPoisoned page may be not in buddy system, and
6117 * page_count() is not 0.
6118 */
6119 if (skip_hwpoisoned_pages && PageHWPoison(page))
6120 continue;
6121
49ac8255
KH
6122 if (!PageLRU(page))
6123 found++;
6124 /*
6125 * If there are RECLAIMABLE pages, we need to check it.
6126 * But now, memory offline itself doesn't call shrink_slab()
6127 * and it still to be fixed.
6128 */
6129 /*
6130 * If the page is not RAM, page_count()should be 0.
6131 * we don't need more check. This is an _used_ not-movable page.
6132 *
6133 * The problematic thing here is PG_reserved pages. PG_reserved
6134 * is set to both of a memory hole page and a _used_ kernel
6135 * page at boot.
6136 */
6137 if (found > count)
80934513 6138 return true;
49ac8255 6139 }
80934513 6140 return false;
49ac8255
KH
6141}
6142
6143bool is_pageblock_removable_nolock(struct page *page)
6144{
656a0706
MH
6145 struct zone *zone;
6146 unsigned long pfn;
687875fb
MH
6147
6148 /*
6149 * We have to be careful here because we are iterating over memory
6150 * sections which are not zone aware so we might end up outside of
6151 * the zone but still within the section.
656a0706
MH
6152 * We have to take care about the node as well. If the node is offline
6153 * its NODE_DATA will be NULL - see page_zone.
687875fb 6154 */
656a0706
MH
6155 if (!node_online(page_to_nid(page)))
6156 return false;
6157
6158 zone = page_zone(page);
6159 pfn = page_to_pfn(page);
108bcc96 6160 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
6161 return false;
6162
b023f468 6163 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 6164}
0c0e6195 6165
041d3a8c
MN
6166#ifdef CONFIG_CMA
6167
6168static unsigned long pfn_max_align_down(unsigned long pfn)
6169{
6170 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6171 pageblock_nr_pages) - 1);
6172}
6173
6174static unsigned long pfn_max_align_up(unsigned long pfn)
6175{
6176 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6177 pageblock_nr_pages));
6178}
6179
041d3a8c 6180/* [start, end) must belong to a single zone. */
bb13ffeb
MG
6181static int __alloc_contig_migrate_range(struct compact_control *cc,
6182 unsigned long start, unsigned long end)
041d3a8c
MN
6183{
6184 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 6185 unsigned long nr_reclaimed;
041d3a8c
MN
6186 unsigned long pfn = start;
6187 unsigned int tries = 0;
6188 int ret = 0;
6189
be49a6e1 6190 migrate_prep();
041d3a8c 6191
bb13ffeb 6192 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
6193 if (fatal_signal_pending(current)) {
6194 ret = -EINTR;
6195 break;
6196 }
6197
bb13ffeb
MG
6198 if (list_empty(&cc->migratepages)) {
6199 cc->nr_migratepages = 0;
6200 pfn = isolate_migratepages_range(cc->zone, cc,
e46a2879 6201 pfn, end, true);
041d3a8c
MN
6202 if (!pfn) {
6203 ret = -EINTR;
6204 break;
6205 }
6206 tries = 0;
6207 } else if (++tries == 5) {
6208 ret = ret < 0 ? ret : -EBUSY;
6209 break;
6210 }
6211
beb51eaa
MK
6212 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6213 &cc->migratepages);
6214 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 6215
9c620e2b
HD
6216 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6217 0, MIGRATE_SYNC, MR_CMA);
041d3a8c 6218 }
2a6f5124
SP
6219 if (ret < 0) {
6220 putback_movable_pages(&cc->migratepages);
6221 return ret;
6222 }
6223 return 0;
041d3a8c
MN
6224}
6225
6226/**
6227 * alloc_contig_range() -- tries to allocate given range of pages
6228 * @start: start PFN to allocate
6229 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
6230 * @migratetype: migratetype of the underlaying pageblocks (either
6231 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6232 * in range must have the same migratetype and it must
6233 * be either of the two.
041d3a8c
MN
6234 *
6235 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6236 * aligned, however it's the caller's responsibility to guarantee that
6237 * we are the only thread that changes migrate type of pageblocks the
6238 * pages fall in.
6239 *
6240 * The PFN range must belong to a single zone.
6241 *
6242 * Returns zero on success or negative error code. On success all
6243 * pages which PFN is in [start, end) are allocated for the caller and
6244 * need to be freed with free_contig_range().
6245 */
0815f3d8
MN
6246int alloc_contig_range(unsigned long start, unsigned long end,
6247 unsigned migratetype)
041d3a8c 6248{
041d3a8c
MN
6249 unsigned long outer_start, outer_end;
6250 int ret = 0, order;
6251
bb13ffeb
MG
6252 struct compact_control cc = {
6253 .nr_migratepages = 0,
6254 .order = -1,
6255 .zone = page_zone(pfn_to_page(start)),
6256 .sync = true,
6257 .ignore_skip_hint = true,
6258 };
6259 INIT_LIST_HEAD(&cc.migratepages);
6260
041d3a8c
MN
6261 /*
6262 * What we do here is we mark all pageblocks in range as
6263 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6264 * have different sizes, and due to the way page allocator
6265 * work, we align the range to biggest of the two pages so
6266 * that page allocator won't try to merge buddies from
6267 * different pageblocks and change MIGRATE_ISOLATE to some
6268 * other migration type.
6269 *
6270 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6271 * migrate the pages from an unaligned range (ie. pages that
6272 * we are interested in). This will put all the pages in
6273 * range back to page allocator as MIGRATE_ISOLATE.
6274 *
6275 * When this is done, we take the pages in range from page
6276 * allocator removing them from the buddy system. This way
6277 * page allocator will never consider using them.
6278 *
6279 * This lets us mark the pageblocks back as
6280 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6281 * aligned range but not in the unaligned, original range are
6282 * put back to page allocator so that buddy can use them.
6283 */
6284
6285 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
6286 pfn_max_align_up(end), migratetype,
6287 false);
041d3a8c 6288 if (ret)
86a595f9 6289 return ret;
041d3a8c 6290
bb13ffeb 6291 ret = __alloc_contig_migrate_range(&cc, start, end);
041d3a8c
MN
6292 if (ret)
6293 goto done;
6294
6295 /*
6296 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6297 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6298 * more, all pages in [start, end) are free in page allocator.
6299 * What we are going to do is to allocate all pages from
6300 * [start, end) (that is remove them from page allocator).
6301 *
6302 * The only problem is that pages at the beginning and at the
6303 * end of interesting range may be not aligned with pages that
6304 * page allocator holds, ie. they can be part of higher order
6305 * pages. Because of this, we reserve the bigger range and
6306 * once this is done free the pages we are not interested in.
6307 *
6308 * We don't have to hold zone->lock here because the pages are
6309 * isolated thus they won't get removed from buddy.
6310 */
6311
6312 lru_add_drain_all();
6313 drain_all_pages();
6314
6315 order = 0;
6316 outer_start = start;
6317 while (!PageBuddy(pfn_to_page(outer_start))) {
6318 if (++order >= MAX_ORDER) {
6319 ret = -EBUSY;
6320 goto done;
6321 }
6322 outer_start &= ~0UL << order;
6323 }
6324
6325 /* Make sure the range is really isolated. */
b023f468 6326 if (test_pages_isolated(outer_start, end, false)) {
041d3a8c
MN
6327 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6328 outer_start, end);
6329 ret = -EBUSY;
6330 goto done;
6331 }
6332
49f223a9
MS
6333
6334 /* Grab isolated pages from freelists. */
bb13ffeb 6335 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
6336 if (!outer_end) {
6337 ret = -EBUSY;
6338 goto done;
6339 }
6340
6341 /* Free head and tail (if any) */
6342 if (start != outer_start)
6343 free_contig_range(outer_start, start - outer_start);
6344 if (end != outer_end)
6345 free_contig_range(end, outer_end - end);
6346
6347done:
6348 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 6349 pfn_max_align_up(end), migratetype);
041d3a8c
MN
6350 return ret;
6351}
6352
6353void free_contig_range(unsigned long pfn, unsigned nr_pages)
6354{
bcc2b02f
MS
6355 unsigned int count = 0;
6356
6357 for (; nr_pages--; pfn++) {
6358 struct page *page = pfn_to_page(pfn);
6359
6360 count += page_count(page) != 1;
6361 __free_page(page);
6362 }
6363 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
6364}
6365#endif
6366
4ed7e022 6367#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
6368/*
6369 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6370 * page high values need to be recalulated.
6371 */
4ed7e022
JL
6372void __meminit zone_pcp_update(struct zone *zone)
6373{
0a647f38 6374 unsigned cpu;
c8e251fa 6375 mutex_lock(&pcp_batch_high_lock);
0a647f38 6376 for_each_possible_cpu(cpu)
169f6c19
CS
6377 pageset_set_high_and_batch(zone,
6378 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 6379 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
6380}
6381#endif
6382
340175b7
JL
6383void zone_pcp_reset(struct zone *zone)
6384{
6385 unsigned long flags;
5a883813
MK
6386 int cpu;
6387 struct per_cpu_pageset *pset;
340175b7
JL
6388
6389 /* avoid races with drain_pages() */
6390 local_irq_save(flags);
6391 if (zone->pageset != &boot_pageset) {
5a883813
MK
6392 for_each_online_cpu(cpu) {
6393 pset = per_cpu_ptr(zone->pageset, cpu);
6394 drain_zonestat(zone, pset);
6395 }
340175b7
JL
6396 free_percpu(zone->pageset);
6397 zone->pageset = &boot_pageset;
6398 }
6399 local_irq_restore(flags);
6400}
6401
6dcd73d7 6402#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195
KH
6403/*
6404 * All pages in the range must be isolated before calling this.
6405 */
6406void
6407__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6408{
6409 struct page *page;
6410 struct zone *zone;
6411 int order, i;
6412 unsigned long pfn;
6413 unsigned long flags;
6414 /* find the first valid pfn */
6415 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6416 if (pfn_valid(pfn))
6417 break;
6418 if (pfn == end_pfn)
6419 return;
6420 zone = page_zone(pfn_to_page(pfn));
6421 spin_lock_irqsave(&zone->lock, flags);
6422 pfn = start_pfn;
6423 while (pfn < end_pfn) {
6424 if (!pfn_valid(pfn)) {
6425 pfn++;
6426 continue;
6427 }
6428 page = pfn_to_page(pfn);
b023f468
WC
6429 /*
6430 * The HWPoisoned page may be not in buddy system, and
6431 * page_count() is not 0.
6432 */
6433 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6434 pfn++;
6435 SetPageReserved(page);
6436 continue;
6437 }
6438
0c0e6195
KH
6439 BUG_ON(page_count(page));
6440 BUG_ON(!PageBuddy(page));
6441 order = page_order(page);
6442#ifdef CONFIG_DEBUG_VM
6443 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6444 pfn, 1 << order, end_pfn);
6445#endif
6446 list_del(&page->lru);
6447 rmv_page_order(page);
6448 zone->free_area[order].nr_free--;
0c0e6195
KH
6449 for (i = 0; i < (1 << order); i++)
6450 SetPageReserved((page+i));
6451 pfn += (1 << order);
6452 }
6453 spin_unlock_irqrestore(&zone->lock, flags);
6454}
6455#endif
8d22ba1b
WF
6456
6457#ifdef CONFIG_MEMORY_FAILURE
6458bool is_free_buddy_page(struct page *page)
6459{
6460 struct zone *zone = page_zone(page);
6461 unsigned long pfn = page_to_pfn(page);
6462 unsigned long flags;
6463 int order;
6464
6465 spin_lock_irqsave(&zone->lock, flags);
6466 for (order = 0; order < MAX_ORDER; order++) {
6467 struct page *page_head = page - (pfn & ((1 << order) - 1));
6468
6469 if (PageBuddy(page_head) && page_order(page_head) >= order)
6470 break;
6471 }
6472 spin_unlock_irqrestore(&zone->lock, flags);
6473
6474 return order < MAX_ORDER;
6475}
6476#endif
718a3821 6477
51300cef 6478static const struct trace_print_flags pageflag_names[] = {
718a3821
WF
6479 {1UL << PG_locked, "locked" },
6480 {1UL << PG_error, "error" },
6481 {1UL << PG_referenced, "referenced" },
6482 {1UL << PG_uptodate, "uptodate" },
6483 {1UL << PG_dirty, "dirty" },
6484 {1UL << PG_lru, "lru" },
6485 {1UL << PG_active, "active" },
6486 {1UL << PG_slab, "slab" },
6487 {1UL << PG_owner_priv_1, "owner_priv_1" },
6488 {1UL << PG_arch_1, "arch_1" },
6489 {1UL << PG_reserved, "reserved" },
6490 {1UL << PG_private, "private" },
6491 {1UL << PG_private_2, "private_2" },
6492 {1UL << PG_writeback, "writeback" },
6493#ifdef CONFIG_PAGEFLAGS_EXTENDED
6494 {1UL << PG_head, "head" },
6495 {1UL << PG_tail, "tail" },
6496#else
6497 {1UL << PG_compound, "compound" },
6498#endif
6499 {1UL << PG_swapcache, "swapcache" },
6500 {1UL << PG_mappedtodisk, "mappedtodisk" },
6501 {1UL << PG_reclaim, "reclaim" },
718a3821
WF
6502 {1UL << PG_swapbacked, "swapbacked" },
6503 {1UL << PG_unevictable, "unevictable" },
6504#ifdef CONFIG_MMU
6505 {1UL << PG_mlocked, "mlocked" },
6506#endif
6507#ifdef CONFIG_ARCH_USES_PG_UNCACHED
6508 {1UL << PG_uncached, "uncached" },
6509#endif
6510#ifdef CONFIG_MEMORY_FAILURE
6511 {1UL << PG_hwpoison, "hwpoison" },
be9cd873
GS
6512#endif
6513#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6514 {1UL << PG_compound_lock, "compound_lock" },
718a3821 6515#endif
718a3821
WF
6516};
6517
6518static void dump_page_flags(unsigned long flags)
6519{
6520 const char *delim = "";
6521 unsigned long mask;
6522 int i;
6523
51300cef 6524 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
acc50c11 6525
718a3821
WF
6526 printk(KERN_ALERT "page flags: %#lx(", flags);
6527
6528 /* remove zone id */
6529 flags &= (1UL << NR_PAGEFLAGS) - 1;
6530
51300cef 6531 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
718a3821
WF
6532
6533 mask = pageflag_names[i].mask;
6534 if ((flags & mask) != mask)
6535 continue;
6536
6537 flags &= ~mask;
6538 printk("%s%s", delim, pageflag_names[i].name);
6539 delim = "|";
6540 }
6541
6542 /* check for left over flags */
6543 if (flags)
6544 printk("%s%#lx", delim, flags);
6545
6546 printk(")\n");
6547}
6548
d230dec1
KS
6549void dump_page_badflags(struct page *page, const char *reason,
6550 unsigned long badflags)
718a3821
WF
6551{
6552 printk(KERN_ALERT
6553 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
4e9f64c4 6554 page, atomic_read(&page->_count), page_mapcount(page),
718a3821
WF
6555 page->mapping, page->index);
6556 dump_page_flags(page->flags);
f0b791a3
DH
6557 if (reason)
6558 pr_alert("page dumped because: %s\n", reason);
6559 if (page->flags & badflags) {
6560 pr_alert("bad because of flags:\n");
6561 dump_page_flags(page->flags & badflags);
6562 }
f212ad7c 6563 mem_cgroup_print_bad_page(page);
718a3821 6564}
f0b791a3 6565
d230dec1 6566void dump_page(struct page *page, const char *reason)
f0b791a3
DH
6567{
6568 dump_page_badflags(page, reason, 0);
6569}
ed12d845 6570EXPORT_SYMBOL(dump_page);