]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/page_alloc.c
mm: page_alloc: only check the alloc flags and gfp_mask for dirty once
[mirror_ubuntu-zesty-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
52d4b9ac 51#include <linux/page_cgroup.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
56de7263 54#include <linux/compaction.h>
0d3d062a 55#include <trace/events/kmem.h>
718a3821 56#include <linux/ftrace_event.h>
f212ad7c 57#include <linux/memcontrol.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
c0a32fc5 61#include <linux/page-debug-flags.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
1da177e4 64
7ee3d4e8 65#include <asm/sections.h>
1da177e4 66#include <asm/tlbflush.h>
ac924c60 67#include <asm/div64.h>
1da177e4
LT
68#include "internal.h"
69
c8e251fa
CS
70/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
71static DEFINE_MUTEX(pcp_batch_high_lock);
72
72812019
LS
73#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
74DEFINE_PER_CPU(int, numa_node);
75EXPORT_PER_CPU_SYMBOL(numa_node);
76#endif
77
7aac7898
LS
78#ifdef CONFIG_HAVE_MEMORYLESS_NODES
79/*
80 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
81 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
82 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
83 * defined in <linux/topology.h>.
84 */
85DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
86EXPORT_PER_CPU_SYMBOL(_numa_mem_);
87#endif
88
1da177e4 89/*
13808910 90 * Array of node states.
1da177e4 91 */
13808910
CL
92nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
93 [N_POSSIBLE] = NODE_MASK_ALL,
94 [N_ONLINE] = { { [0] = 1UL } },
95#ifndef CONFIG_NUMA
96 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
97#ifdef CONFIG_HIGHMEM
98 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
99#endif
100#ifdef CONFIG_MOVABLE_NODE
101 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
102#endif
103 [N_CPU] = { { [0] = 1UL } },
104#endif /* NUMA */
105};
106EXPORT_SYMBOL(node_states);
107
c3d5f5f0
JL
108/* Protect totalram_pages and zone->managed_pages */
109static DEFINE_SPINLOCK(managed_page_count_lock);
110
6c231b7b 111unsigned long totalram_pages __read_mostly;
cb45b0e9 112unsigned long totalreserve_pages __read_mostly;
ab8fabd4
JW
113/*
114 * When calculating the number of globally allowed dirty pages, there
115 * is a certain number of per-zone reserves that should not be
116 * considered dirtyable memory. This is the sum of those reserves
117 * over all existing zones that contribute dirtyable memory.
118 */
119unsigned long dirty_balance_reserve __read_mostly;
120
1b76b02f 121int percpu_pagelist_fraction;
dcce284a 122gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 123
452aa699
RW
124#ifdef CONFIG_PM_SLEEP
125/*
126 * The following functions are used by the suspend/hibernate code to temporarily
127 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
128 * while devices are suspended. To avoid races with the suspend/hibernate code,
129 * they should always be called with pm_mutex held (gfp_allowed_mask also should
130 * only be modified with pm_mutex held, unless the suspend/hibernate code is
131 * guaranteed not to run in parallel with that modification).
132 */
c9e664f1
RW
133
134static gfp_t saved_gfp_mask;
135
136void pm_restore_gfp_mask(void)
452aa699
RW
137{
138 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
139 if (saved_gfp_mask) {
140 gfp_allowed_mask = saved_gfp_mask;
141 saved_gfp_mask = 0;
142 }
452aa699
RW
143}
144
c9e664f1 145void pm_restrict_gfp_mask(void)
452aa699 146{
452aa699 147 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
148 WARN_ON(saved_gfp_mask);
149 saved_gfp_mask = gfp_allowed_mask;
150 gfp_allowed_mask &= ~GFP_IOFS;
452aa699 151}
f90ac398
MG
152
153bool pm_suspended_storage(void)
154{
155 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
156 return false;
157 return true;
158}
452aa699
RW
159#endif /* CONFIG_PM_SLEEP */
160
d9c23400
MG
161#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
162int pageblock_order __read_mostly;
163#endif
164
d98c7a09 165static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 166
1da177e4
LT
167/*
168 * results with 256, 32 in the lowmem_reserve sysctl:
169 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
170 * 1G machine -> (16M dma, 784M normal, 224M high)
171 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
172 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
173 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
174 *
175 * TBD: should special case ZONE_DMA32 machines here - in those we normally
176 * don't need any ZONE_NORMAL reservation
1da177e4 177 */
2f1b6248 178int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 179#ifdef CONFIG_ZONE_DMA
2f1b6248 180 256,
4b51d669 181#endif
fb0e7942 182#ifdef CONFIG_ZONE_DMA32
2f1b6248 183 256,
fb0e7942 184#endif
e53ef38d 185#ifdef CONFIG_HIGHMEM
2a1e274a 186 32,
e53ef38d 187#endif
2a1e274a 188 32,
2f1b6248 189};
1da177e4
LT
190
191EXPORT_SYMBOL(totalram_pages);
1da177e4 192
15ad7cdc 193static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 194#ifdef CONFIG_ZONE_DMA
2f1b6248 195 "DMA",
4b51d669 196#endif
fb0e7942 197#ifdef CONFIG_ZONE_DMA32
2f1b6248 198 "DMA32",
fb0e7942 199#endif
2f1b6248 200 "Normal",
e53ef38d 201#ifdef CONFIG_HIGHMEM
2a1e274a 202 "HighMem",
e53ef38d 203#endif
2a1e274a 204 "Movable",
2f1b6248
CL
205};
206
1da177e4 207int min_free_kbytes = 1024;
42aa83cb 208int user_min_free_kbytes = -1;
1da177e4 209
2c85f51d
JB
210static unsigned long __meminitdata nr_kernel_pages;
211static unsigned long __meminitdata nr_all_pages;
a3142c8e 212static unsigned long __meminitdata dma_reserve;
1da177e4 213
0ee332c1
TH
214#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
215static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
216static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
217static unsigned long __initdata required_kernelcore;
218static unsigned long __initdata required_movablecore;
219static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
220
221/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
222int movable_zone;
223EXPORT_SYMBOL(movable_zone);
224#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 225
418508c1
MS
226#if MAX_NUMNODES > 1
227int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 228int nr_online_nodes __read_mostly = 1;
418508c1 229EXPORT_SYMBOL(nr_node_ids);
62bc62a8 230EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
231#endif
232
9ef9acb0
MG
233int page_group_by_mobility_disabled __read_mostly;
234
ee6f509c 235void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 236{
5d0f3f72
KM
237 if (unlikely(page_group_by_mobility_disabled &&
238 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
239 migratetype = MIGRATE_UNMOVABLE;
240
b2a0ac88
MG
241 set_pageblock_flags_group(page, (unsigned long)migratetype,
242 PB_migrate, PB_migrate_end);
243}
244
7f33d49a
RW
245bool oom_killer_disabled __read_mostly;
246
13e7444b 247#ifdef CONFIG_DEBUG_VM
c6a57e19 248static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 249{
bdc8cb98
DH
250 int ret = 0;
251 unsigned seq;
252 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 253 unsigned long sp, start_pfn;
c6a57e19 254
bdc8cb98
DH
255 do {
256 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
257 start_pfn = zone->zone_start_pfn;
258 sp = zone->spanned_pages;
108bcc96 259 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
260 ret = 1;
261 } while (zone_span_seqretry(zone, seq));
262
b5e6a5a2 263 if (ret)
613813e8
DH
264 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
265 pfn, zone_to_nid(zone), zone->name,
266 start_pfn, start_pfn + sp);
b5e6a5a2 267
bdc8cb98 268 return ret;
c6a57e19
DH
269}
270
271static int page_is_consistent(struct zone *zone, struct page *page)
272{
14e07298 273 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 274 return 0;
1da177e4 275 if (zone != page_zone(page))
c6a57e19
DH
276 return 0;
277
278 return 1;
279}
280/*
281 * Temporary debugging check for pages not lying within a given zone.
282 */
283static int bad_range(struct zone *zone, struct page *page)
284{
285 if (page_outside_zone_boundaries(zone, page))
1da177e4 286 return 1;
c6a57e19
DH
287 if (!page_is_consistent(zone, page))
288 return 1;
289
1da177e4
LT
290 return 0;
291}
13e7444b
NP
292#else
293static inline int bad_range(struct zone *zone, struct page *page)
294{
295 return 0;
296}
297#endif
298
d230dec1
KS
299static void bad_page(struct page *page, const char *reason,
300 unsigned long bad_flags)
1da177e4 301{
d936cf9b
HD
302 static unsigned long resume;
303 static unsigned long nr_shown;
304 static unsigned long nr_unshown;
305
2a7684a2
WF
306 /* Don't complain about poisoned pages */
307 if (PageHWPoison(page)) {
22b751c3 308 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
309 return;
310 }
311
d936cf9b
HD
312 /*
313 * Allow a burst of 60 reports, then keep quiet for that minute;
314 * or allow a steady drip of one report per second.
315 */
316 if (nr_shown == 60) {
317 if (time_before(jiffies, resume)) {
318 nr_unshown++;
319 goto out;
320 }
321 if (nr_unshown) {
1e9e6365
HD
322 printk(KERN_ALERT
323 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
324 nr_unshown);
325 nr_unshown = 0;
326 }
327 nr_shown = 0;
328 }
329 if (nr_shown++ == 0)
330 resume = jiffies + 60 * HZ;
331
1e9e6365 332 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 333 current->comm, page_to_pfn(page));
f0b791a3 334 dump_page_badflags(page, reason, bad_flags);
3dc14741 335
4f31888c 336 print_modules();
1da177e4 337 dump_stack();
d936cf9b 338out:
8cc3b392 339 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 340 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 341 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
342}
343
1da177e4
LT
344/*
345 * Higher-order pages are called "compound pages". They are structured thusly:
346 *
347 * The first PAGE_SIZE page is called the "head page".
348 *
349 * The remaining PAGE_SIZE pages are called "tail pages".
350 *
6416b9fa
WSH
351 * All pages have PG_compound set. All tail pages have their ->first_page
352 * pointing at the head page.
1da177e4 353 *
41d78ba5
HD
354 * The first tail page's ->lru.next holds the address of the compound page's
355 * put_page() function. Its ->lru.prev holds the order of allocation.
356 * This usage means that zero-order pages may not be compound.
1da177e4 357 */
d98c7a09
HD
358
359static void free_compound_page(struct page *page)
360{
d85f3385 361 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
362}
363
01ad1c08 364void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
365{
366 int i;
367 int nr_pages = 1 << order;
368
369 set_compound_page_dtor(page, free_compound_page);
370 set_compound_order(page, order);
371 __SetPageHead(page);
372 for (i = 1; i < nr_pages; i++) {
373 struct page *p = page + i;
58a84aa9 374 set_page_count(p, 0);
18229df5 375 p->first_page = page;
668f9abb
DR
376 /* Make sure p->first_page is always valid for PageTail() */
377 smp_wmb();
378 __SetPageTail(p);
18229df5
AW
379 }
380}
381
59ff4216 382/* update __split_huge_page_refcount if you change this function */
8cc3b392 383static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
384{
385 int i;
386 int nr_pages = 1 << order;
8cc3b392 387 int bad = 0;
1da177e4 388
0bb2c763 389 if (unlikely(compound_order(page) != order)) {
f0b791a3 390 bad_page(page, "wrong compound order", 0);
8cc3b392
HD
391 bad++;
392 }
1da177e4 393
6d777953 394 __ClearPageHead(page);
8cc3b392 395
18229df5
AW
396 for (i = 1; i < nr_pages; i++) {
397 struct page *p = page + i;
1da177e4 398
f0b791a3
DH
399 if (unlikely(!PageTail(p))) {
400 bad_page(page, "PageTail not set", 0);
401 bad++;
402 } else if (unlikely(p->first_page != page)) {
403 bad_page(page, "first_page not consistent", 0);
8cc3b392
HD
404 bad++;
405 }
d85f3385 406 __ClearPageTail(p);
1da177e4 407 }
8cc3b392
HD
408
409 return bad;
1da177e4 410}
1da177e4 411
17cf4406
NP
412static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
413{
414 int i;
415
6626c5d5
AM
416 /*
417 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
418 * and __GFP_HIGHMEM from hard or soft interrupt context.
419 */
725d704e 420 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
421 for (i = 0; i < (1 << order); i++)
422 clear_highpage(page + i);
423}
424
c0a32fc5
SG
425#ifdef CONFIG_DEBUG_PAGEALLOC
426unsigned int _debug_guardpage_minorder;
427
428static int __init debug_guardpage_minorder_setup(char *buf)
429{
430 unsigned long res;
431
432 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
433 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
434 return 0;
435 }
436 _debug_guardpage_minorder = res;
437 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
438 return 0;
439}
440__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
441
442static inline void set_page_guard_flag(struct page *page)
443{
444 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
445}
446
447static inline void clear_page_guard_flag(struct page *page)
448{
449 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
450}
451#else
452static inline void set_page_guard_flag(struct page *page) { }
453static inline void clear_page_guard_flag(struct page *page) { }
454#endif
455
6aa3001b
AM
456static inline void set_page_order(struct page *page, int order)
457{
4c21e2f2 458 set_page_private(page, order);
676165a8 459 __SetPageBuddy(page);
1da177e4
LT
460}
461
462static inline void rmv_page_order(struct page *page)
463{
676165a8 464 __ClearPageBuddy(page);
4c21e2f2 465 set_page_private(page, 0);
1da177e4
LT
466}
467
468/*
469 * Locate the struct page for both the matching buddy in our
470 * pair (buddy1) and the combined O(n+1) page they form (page).
471 *
472 * 1) Any buddy B1 will have an order O twin B2 which satisfies
473 * the following equation:
474 * B2 = B1 ^ (1 << O)
475 * For example, if the starting buddy (buddy2) is #8 its order
476 * 1 buddy is #10:
477 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
478 *
479 * 2) Any buddy B will have an order O+1 parent P which
480 * satisfies the following equation:
481 * P = B & ~(1 << O)
482 *
d6e05edc 483 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4 484 */
1da177e4 485static inline unsigned long
43506fad 486__find_buddy_index(unsigned long page_idx, unsigned int order)
1da177e4 487{
43506fad 488 return page_idx ^ (1 << order);
1da177e4
LT
489}
490
491/*
492 * This function checks whether a page is free && is the buddy
493 * we can do coalesce a page and its buddy if
13e7444b 494 * (a) the buddy is not in a hole &&
676165a8 495 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
496 * (c) a page and its buddy have the same order &&
497 * (d) a page and its buddy are in the same zone.
676165a8 498 *
cf6fe945
WSH
499 * For recording whether a page is in the buddy system, we set ->_mapcount
500 * PAGE_BUDDY_MAPCOUNT_VALUE.
501 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
502 * serialized by zone->lock.
1da177e4 503 *
676165a8 504 * For recording page's order, we use page_private(page).
1da177e4 505 */
cb2b95e1
AW
506static inline int page_is_buddy(struct page *page, struct page *buddy,
507 int order)
1da177e4 508{
14e07298 509 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 510 return 0;
13e7444b 511
c0a32fc5 512 if (page_is_guard(buddy) && page_order(buddy) == order) {
309381fe 513 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
d34c5fa0
MG
514
515 if (page_zone_id(page) != page_zone_id(buddy))
516 return 0;
517
c0a32fc5
SG
518 return 1;
519 }
520
cb2b95e1 521 if (PageBuddy(buddy) && page_order(buddy) == order) {
309381fe 522 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
d34c5fa0
MG
523
524 /*
525 * zone check is done late to avoid uselessly
526 * calculating zone/node ids for pages that could
527 * never merge.
528 */
529 if (page_zone_id(page) != page_zone_id(buddy))
530 return 0;
531
6aa3001b 532 return 1;
676165a8 533 }
6aa3001b 534 return 0;
1da177e4
LT
535}
536
537/*
538 * Freeing function for a buddy system allocator.
539 *
540 * The concept of a buddy system is to maintain direct-mapped table
541 * (containing bit values) for memory blocks of various "orders".
542 * The bottom level table contains the map for the smallest allocatable
543 * units of memory (here, pages), and each level above it describes
544 * pairs of units from the levels below, hence, "buddies".
545 * At a high level, all that happens here is marking the table entry
546 * at the bottom level available, and propagating the changes upward
547 * as necessary, plus some accounting needed to play nicely with other
548 * parts of the VM system.
549 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
550 * free pages of length of (1 << order) and marked with _mapcount
551 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
552 * field.
1da177e4 553 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
554 * other. That is, if we allocate a small block, and both were
555 * free, the remainder of the region must be split into blocks.
1da177e4 556 * If a block is freed, and its buddy is also free, then this
5f63b720 557 * triggers coalescing into a block of larger size.
1da177e4 558 *
6d49e352 559 * -- nyc
1da177e4
LT
560 */
561
48db57f8 562static inline void __free_one_page(struct page *page,
ed0ae21d
MG
563 struct zone *zone, unsigned int order,
564 int migratetype)
1da177e4
LT
565{
566 unsigned long page_idx;
6dda9d55 567 unsigned long combined_idx;
43506fad 568 unsigned long uninitialized_var(buddy_idx);
6dda9d55 569 struct page *buddy;
1da177e4 570
d29bb978
CS
571 VM_BUG_ON(!zone_is_initialized(zone));
572
224abf92 573 if (unlikely(PageCompound(page)))
8cc3b392
HD
574 if (unlikely(destroy_compound_page(page, order)))
575 return;
1da177e4 576
ed0ae21d
MG
577 VM_BUG_ON(migratetype == -1);
578
1da177e4
LT
579 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
580
309381fe
SL
581 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
582 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 583
1da177e4 584 while (order < MAX_ORDER-1) {
43506fad
KC
585 buddy_idx = __find_buddy_index(page_idx, order);
586 buddy = page + (buddy_idx - page_idx);
cb2b95e1 587 if (!page_is_buddy(page, buddy, order))
3c82d0ce 588 break;
c0a32fc5
SG
589 /*
590 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
591 * merge with it and move up one order.
592 */
593 if (page_is_guard(buddy)) {
594 clear_page_guard_flag(buddy);
595 set_page_private(page, 0);
d1ce749a
BZ
596 __mod_zone_freepage_state(zone, 1 << order,
597 migratetype);
c0a32fc5
SG
598 } else {
599 list_del(&buddy->lru);
600 zone->free_area[order].nr_free--;
601 rmv_page_order(buddy);
602 }
43506fad 603 combined_idx = buddy_idx & page_idx;
1da177e4
LT
604 page = page + (combined_idx - page_idx);
605 page_idx = combined_idx;
606 order++;
607 }
608 set_page_order(page, order);
6dda9d55
CZ
609
610 /*
611 * If this is not the largest possible page, check if the buddy
612 * of the next-highest order is free. If it is, it's possible
613 * that pages are being freed that will coalesce soon. In case,
614 * that is happening, add the free page to the tail of the list
615 * so it's less likely to be used soon and more likely to be merged
616 * as a higher order page
617 */
b7f50cfa 618 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 619 struct page *higher_page, *higher_buddy;
43506fad
KC
620 combined_idx = buddy_idx & page_idx;
621 higher_page = page + (combined_idx - page_idx);
622 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 623 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
624 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
625 list_add_tail(&page->lru,
626 &zone->free_area[order].free_list[migratetype]);
627 goto out;
628 }
629 }
630
631 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
632out:
1da177e4
LT
633 zone->free_area[order].nr_free++;
634}
635
224abf92 636static inline int free_pages_check(struct page *page)
1da177e4 637{
d230dec1 638 const char *bad_reason = NULL;
f0b791a3
DH
639 unsigned long bad_flags = 0;
640
641 if (unlikely(page_mapcount(page)))
642 bad_reason = "nonzero mapcount";
643 if (unlikely(page->mapping != NULL))
644 bad_reason = "non-NULL mapping";
645 if (unlikely(atomic_read(&page->_count) != 0))
646 bad_reason = "nonzero _count";
647 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
648 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
649 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
650 }
651 if (unlikely(mem_cgroup_bad_page_check(page)))
652 bad_reason = "cgroup check failed";
653 if (unlikely(bad_reason)) {
654 bad_page(page, bad_reason, bad_flags);
79f4b7bf 655 return 1;
8cc3b392 656 }
90572890 657 page_cpupid_reset_last(page);
79f4b7bf
HD
658 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
659 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
660 return 0;
1da177e4
LT
661}
662
663/*
5f8dcc21 664 * Frees a number of pages from the PCP lists
1da177e4 665 * Assumes all pages on list are in same zone, and of same order.
207f36ee 666 * count is the number of pages to free.
1da177e4
LT
667 *
668 * If the zone was previously in an "all pages pinned" state then look to
669 * see if this freeing clears that state.
670 *
671 * And clear the zone's pages_scanned counter, to hold off the "all pages are
672 * pinned" detection logic.
673 */
5f8dcc21
MG
674static void free_pcppages_bulk(struct zone *zone, int count,
675 struct per_cpu_pages *pcp)
1da177e4 676{
5f8dcc21 677 int migratetype = 0;
a6f9edd6 678 int batch_free = 0;
72853e29 679 int to_free = count;
5f8dcc21 680
c54ad30c 681 spin_lock(&zone->lock);
1da177e4 682 zone->pages_scanned = 0;
f2260e6b 683
72853e29 684 while (to_free) {
48db57f8 685 struct page *page;
5f8dcc21
MG
686 struct list_head *list;
687
688 /*
a6f9edd6
MG
689 * Remove pages from lists in a round-robin fashion. A
690 * batch_free count is maintained that is incremented when an
691 * empty list is encountered. This is so more pages are freed
692 * off fuller lists instead of spinning excessively around empty
693 * lists
5f8dcc21
MG
694 */
695 do {
a6f9edd6 696 batch_free++;
5f8dcc21
MG
697 if (++migratetype == MIGRATE_PCPTYPES)
698 migratetype = 0;
699 list = &pcp->lists[migratetype];
700 } while (list_empty(list));
48db57f8 701
1d16871d
NK
702 /* This is the only non-empty list. Free them all. */
703 if (batch_free == MIGRATE_PCPTYPES)
704 batch_free = to_free;
705
a6f9edd6 706 do {
770c8aaa
BZ
707 int mt; /* migratetype of the to-be-freed page */
708
a6f9edd6
MG
709 page = list_entry(list->prev, struct page, lru);
710 /* must delete as __free_one_page list manipulates */
711 list_del(&page->lru);
b12c4ad1 712 mt = get_freepage_migratetype(page);
a7016235 713 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
770c8aaa
BZ
714 __free_one_page(page, zone, 0, mt);
715 trace_mm_page_pcpu_drain(page, 0, mt);
194159fb 716 if (likely(!is_migrate_isolate_page(page))) {
97d0da22
WC
717 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
718 if (is_migrate_cma(mt))
719 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
720 }
72853e29 721 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 722 }
c54ad30c 723 spin_unlock(&zone->lock);
1da177e4
LT
724}
725
ed0ae21d
MG
726static void free_one_page(struct zone *zone, struct page *page, int order,
727 int migratetype)
1da177e4 728{
006d22d9 729 spin_lock(&zone->lock);
006d22d9 730 zone->pages_scanned = 0;
f2260e6b 731
ed0ae21d 732 __free_one_page(page, zone, order, migratetype);
194159fb 733 if (unlikely(!is_migrate_isolate(migratetype)))
d1ce749a 734 __mod_zone_freepage_state(zone, 1 << order, migratetype);
006d22d9 735 spin_unlock(&zone->lock);
48db57f8
NP
736}
737
ec95f53a 738static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 739{
1da177e4 740 int i;
8cc3b392 741 int bad = 0;
1da177e4 742
b413d48a 743 trace_mm_page_free(page, order);
b1eeab67
VN
744 kmemcheck_free_shadow(page, order);
745
8dd60a3a
AA
746 if (PageAnon(page))
747 page->mapping = NULL;
748 for (i = 0; i < (1 << order); i++)
749 bad += free_pages_check(page + i);
8cc3b392 750 if (bad)
ec95f53a 751 return false;
689bcebf 752
3ac7fe5a 753 if (!PageHighMem(page)) {
b8af2941
PK
754 debug_check_no_locks_freed(page_address(page),
755 PAGE_SIZE << order);
3ac7fe5a
TG
756 debug_check_no_obj_freed(page_address(page),
757 PAGE_SIZE << order);
758 }
dafb1367 759 arch_free_page(page, order);
48db57f8 760 kernel_map_pages(page, 1 << order, 0);
dafb1367 761
ec95f53a
KM
762 return true;
763}
764
765static void __free_pages_ok(struct page *page, unsigned int order)
766{
767 unsigned long flags;
95e34412 768 int migratetype;
ec95f53a
KM
769
770 if (!free_pages_prepare(page, order))
771 return;
772
c54ad30c 773 local_irq_save(flags);
f8891e5e 774 __count_vm_events(PGFREE, 1 << order);
95e34412
MK
775 migratetype = get_pageblock_migratetype(page);
776 set_freepage_migratetype(page, migratetype);
777 free_one_page(page_zone(page), page, order, migratetype);
c54ad30c 778 local_irq_restore(flags);
1da177e4
LT
779}
780
170a5a7e 781void __init __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8 782{
c3993076 783 unsigned int nr_pages = 1 << order;
e2d0bd2b 784 struct page *p = page;
c3993076 785 unsigned int loop;
a226f6c8 786
e2d0bd2b
YL
787 prefetchw(p);
788 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
789 prefetchw(p + 1);
c3993076
JW
790 __ClearPageReserved(p);
791 set_page_count(p, 0);
a226f6c8 792 }
e2d0bd2b
YL
793 __ClearPageReserved(p);
794 set_page_count(p, 0);
c3993076 795
e2d0bd2b 796 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
797 set_page_refcounted(page);
798 __free_pages(page, order);
a226f6c8
DH
799}
800
47118af0 801#ifdef CONFIG_CMA
9cf510a5 802/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
803void __init init_cma_reserved_pageblock(struct page *page)
804{
805 unsigned i = pageblock_nr_pages;
806 struct page *p = page;
807
808 do {
809 __ClearPageReserved(p);
810 set_page_count(p, 0);
811 } while (++p, --i);
812
813 set_page_refcounted(page);
814 set_pageblock_migratetype(page, MIGRATE_CMA);
815 __free_pages(page, pageblock_order);
3dcc0571 816 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
817}
818#endif
1da177e4
LT
819
820/*
821 * The order of subdivision here is critical for the IO subsystem.
822 * Please do not alter this order without good reasons and regression
823 * testing. Specifically, as large blocks of memory are subdivided,
824 * the order in which smaller blocks are delivered depends on the order
825 * they're subdivided in this function. This is the primary factor
826 * influencing the order in which pages are delivered to the IO
827 * subsystem according to empirical testing, and this is also justified
828 * by considering the behavior of a buddy system containing a single
829 * large block of memory acted on by a series of small allocations.
830 * This behavior is a critical factor in sglist merging's success.
831 *
6d49e352 832 * -- nyc
1da177e4 833 */
085cc7d5 834static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
835 int low, int high, struct free_area *area,
836 int migratetype)
1da177e4
LT
837{
838 unsigned long size = 1 << high;
839
840 while (high > low) {
841 area--;
842 high--;
843 size >>= 1;
309381fe 844 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5
SG
845
846#ifdef CONFIG_DEBUG_PAGEALLOC
847 if (high < debug_guardpage_minorder()) {
848 /*
849 * Mark as guard pages (or page), that will allow to
850 * merge back to allocator when buddy will be freed.
851 * Corresponding page table entries will not be touched,
852 * pages will stay not present in virtual address space
853 */
854 INIT_LIST_HEAD(&page[size].lru);
855 set_page_guard_flag(&page[size]);
856 set_page_private(&page[size], high);
857 /* Guard pages are not available for any usage */
d1ce749a
BZ
858 __mod_zone_freepage_state(zone, -(1 << high),
859 migratetype);
c0a32fc5
SG
860 continue;
861 }
862#endif
b2a0ac88 863 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
864 area->nr_free++;
865 set_page_order(&page[size], high);
866 }
1da177e4
LT
867}
868
1da177e4
LT
869/*
870 * This page is about to be returned from the page allocator
871 */
2a7684a2 872static inline int check_new_page(struct page *page)
1da177e4 873{
d230dec1 874 const char *bad_reason = NULL;
f0b791a3
DH
875 unsigned long bad_flags = 0;
876
877 if (unlikely(page_mapcount(page)))
878 bad_reason = "nonzero mapcount";
879 if (unlikely(page->mapping != NULL))
880 bad_reason = "non-NULL mapping";
881 if (unlikely(atomic_read(&page->_count) != 0))
882 bad_reason = "nonzero _count";
883 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
884 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
885 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
886 }
887 if (unlikely(mem_cgroup_bad_page_check(page)))
888 bad_reason = "cgroup check failed";
889 if (unlikely(bad_reason)) {
890 bad_page(page, bad_reason, bad_flags);
689bcebf 891 return 1;
8cc3b392 892 }
2a7684a2
WF
893 return 0;
894}
895
896static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
897{
898 int i;
899
900 for (i = 0; i < (1 << order); i++) {
901 struct page *p = page + i;
902 if (unlikely(check_new_page(p)))
903 return 1;
904 }
689bcebf 905
4c21e2f2 906 set_page_private(page, 0);
7835e98b 907 set_page_refcounted(page);
cc102509
NP
908
909 arch_alloc_page(page, order);
1da177e4 910 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
911
912 if (gfp_flags & __GFP_ZERO)
913 prep_zero_page(page, order, gfp_flags);
914
915 if (order && (gfp_flags & __GFP_COMP))
916 prep_compound_page(page, order);
917
689bcebf 918 return 0;
1da177e4
LT
919}
920
56fd56b8
MG
921/*
922 * Go through the free lists for the given migratetype and remove
923 * the smallest available page from the freelists
924 */
728ec980
MG
925static inline
926struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
927 int migratetype)
928{
929 unsigned int current_order;
b8af2941 930 struct free_area *area;
56fd56b8
MG
931 struct page *page;
932
933 /* Find a page of the appropriate size in the preferred list */
934 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
935 area = &(zone->free_area[current_order]);
936 if (list_empty(&area->free_list[migratetype]))
937 continue;
938
939 page = list_entry(area->free_list[migratetype].next,
940 struct page, lru);
941 list_del(&page->lru);
942 rmv_page_order(page);
943 area->nr_free--;
56fd56b8 944 expand(zone, page, order, current_order, area, migratetype);
5bcc9f86 945 set_freepage_migratetype(page, migratetype);
56fd56b8
MG
946 return page;
947 }
948
949 return NULL;
950}
951
952
b2a0ac88
MG
953/*
954 * This array describes the order lists are fallen back to when
955 * the free lists for the desirable migrate type are depleted
956 */
47118af0
MN
957static int fallbacks[MIGRATE_TYPES][4] = {
958 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
959 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
960#ifdef CONFIG_CMA
961 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
962 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
963#else
964 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
965#endif
6d4a4916 966 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 967#ifdef CONFIG_MEMORY_ISOLATION
6d4a4916 968 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 969#endif
b2a0ac88
MG
970};
971
c361be55
MG
972/*
973 * Move the free pages in a range to the free lists of the requested type.
d9c23400 974 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
975 * boundary. If alignment is required, use move_freepages_block()
976 */
435b405c 977int move_freepages(struct zone *zone,
b69a7288
AB
978 struct page *start_page, struct page *end_page,
979 int migratetype)
c361be55
MG
980{
981 struct page *page;
982 unsigned long order;
d100313f 983 int pages_moved = 0;
c361be55
MG
984
985#ifndef CONFIG_HOLES_IN_ZONE
986 /*
987 * page_zone is not safe to call in this context when
988 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
989 * anyway as we check zone boundaries in move_freepages_block().
990 * Remove at a later date when no bug reports exist related to
ac0e5b7a 991 * grouping pages by mobility
c361be55
MG
992 */
993 BUG_ON(page_zone(start_page) != page_zone(end_page));
994#endif
995
996 for (page = start_page; page <= end_page;) {
344c790e 997 /* Make sure we are not inadvertently changing nodes */
309381fe 998 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 999
c361be55
MG
1000 if (!pfn_valid_within(page_to_pfn(page))) {
1001 page++;
1002 continue;
1003 }
1004
1005 if (!PageBuddy(page)) {
1006 page++;
1007 continue;
1008 }
1009
1010 order = page_order(page);
84be48d8
KS
1011 list_move(&page->lru,
1012 &zone->free_area[order].free_list[migratetype]);
95e34412 1013 set_freepage_migratetype(page, migratetype);
c361be55 1014 page += 1 << order;
d100313f 1015 pages_moved += 1 << order;
c361be55
MG
1016 }
1017
d100313f 1018 return pages_moved;
c361be55
MG
1019}
1020
ee6f509c 1021int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1022 int migratetype)
c361be55
MG
1023{
1024 unsigned long start_pfn, end_pfn;
1025 struct page *start_page, *end_page;
1026
1027 start_pfn = page_to_pfn(page);
d9c23400 1028 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1029 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1030 end_page = start_page + pageblock_nr_pages - 1;
1031 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1032
1033 /* Do not cross zone boundaries */
108bcc96 1034 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1035 start_page = page;
108bcc96 1036 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1037 return 0;
1038
1039 return move_freepages(zone, start_page, end_page, migratetype);
1040}
1041
2f66a68f
MG
1042static void change_pageblock_range(struct page *pageblock_page,
1043 int start_order, int migratetype)
1044{
1045 int nr_pageblocks = 1 << (start_order - pageblock_order);
1046
1047 while (nr_pageblocks--) {
1048 set_pageblock_migratetype(pageblock_page, migratetype);
1049 pageblock_page += pageblock_nr_pages;
1050 }
1051}
1052
fef903ef
SB
1053/*
1054 * If breaking a large block of pages, move all free pages to the preferred
1055 * allocation list. If falling back for a reclaimable kernel allocation, be
1056 * more aggressive about taking ownership of free pages.
1057 *
1058 * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1059 * nor move CMA pages to different free lists. We don't want unmovable pages
1060 * to be allocated from MIGRATE_CMA areas.
1061 *
1062 * Returns the new migratetype of the pageblock (or the same old migratetype
1063 * if it was unchanged).
1064 */
1065static int try_to_steal_freepages(struct zone *zone, struct page *page,
1066 int start_type, int fallback_type)
1067{
1068 int current_order = page_order(page);
1069
0cbef29a
KM
1070 /*
1071 * When borrowing from MIGRATE_CMA, we need to release the excess
5bcc9f86
VB
1072 * buddy pages to CMA itself. We also ensure the freepage_migratetype
1073 * is set to CMA so it is returned to the correct freelist in case
1074 * the page ends up being not actually allocated from the pcp lists.
0cbef29a 1075 */
fef903ef
SB
1076 if (is_migrate_cma(fallback_type))
1077 return fallback_type;
1078
1079 /* Take ownership for orders >= pageblock_order */
1080 if (current_order >= pageblock_order) {
1081 change_pageblock_range(page, current_order, start_type);
1082 return start_type;
1083 }
1084
1085 if (current_order >= pageblock_order / 2 ||
1086 start_type == MIGRATE_RECLAIMABLE ||
1087 page_group_by_mobility_disabled) {
1088 int pages;
1089
1090 pages = move_freepages_block(zone, page, start_type);
1091
1092 /* Claim the whole block if over half of it is free */
1093 if (pages >= (1 << (pageblock_order-1)) ||
1094 page_group_by_mobility_disabled) {
1095
1096 set_pageblock_migratetype(page, start_type);
1097 return start_type;
1098 }
1099
1100 }
1101
1102 return fallback_type;
1103}
1104
b2a0ac88 1105/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
1106static inline struct page *
1107__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88 1108{
b8af2941 1109 struct free_area *area;
b2a0ac88
MG
1110 int current_order;
1111 struct page *page;
fef903ef 1112 int migratetype, new_type, i;
b2a0ac88
MG
1113
1114 /* Find the largest possible block of pages in the other list */
1115 for (current_order = MAX_ORDER-1; current_order >= order;
1116 --current_order) {
6d4a4916 1117 for (i = 0;; i++) {
b2a0ac88
MG
1118 migratetype = fallbacks[start_migratetype][i];
1119
56fd56b8
MG
1120 /* MIGRATE_RESERVE handled later if necessary */
1121 if (migratetype == MIGRATE_RESERVE)
6d4a4916 1122 break;
e010487d 1123
b2a0ac88
MG
1124 area = &(zone->free_area[current_order]);
1125 if (list_empty(&area->free_list[migratetype]))
1126 continue;
1127
1128 page = list_entry(area->free_list[migratetype].next,
1129 struct page, lru);
1130 area->nr_free--;
1131
fef903ef
SB
1132 new_type = try_to_steal_freepages(zone, page,
1133 start_migratetype,
1134 migratetype);
b2a0ac88
MG
1135
1136 /* Remove the page from the freelists */
1137 list_del(&page->lru);
1138 rmv_page_order(page);
b2a0ac88 1139
47118af0 1140 expand(zone, page, order, current_order, area,
0cbef29a 1141 new_type);
5bcc9f86
VB
1142 /* The freepage_migratetype may differ from pageblock's
1143 * migratetype depending on the decisions in
1144 * try_to_steal_freepages. This is OK as long as it does
1145 * not differ for MIGRATE_CMA type.
1146 */
1147 set_freepage_migratetype(page, new_type);
e0fff1bd 1148
52c8f6a5
KM
1149 trace_mm_page_alloc_extfrag(page, order, current_order,
1150 start_migratetype, migratetype, new_type);
e0fff1bd 1151
b2a0ac88
MG
1152 return page;
1153 }
1154 }
1155
728ec980 1156 return NULL;
b2a0ac88
MG
1157}
1158
56fd56b8 1159/*
1da177e4
LT
1160 * Do the hard work of removing an element from the buddy allocator.
1161 * Call me with the zone->lock already held.
1162 */
b2a0ac88
MG
1163static struct page *__rmqueue(struct zone *zone, unsigned int order,
1164 int migratetype)
1da177e4 1165{
1da177e4
LT
1166 struct page *page;
1167
728ec980 1168retry_reserve:
56fd56b8 1169 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 1170
728ec980 1171 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 1172 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1173
728ec980
MG
1174 /*
1175 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1176 * is used because __rmqueue_smallest is an inline function
1177 * and we want just one call site
1178 */
1179 if (!page) {
1180 migratetype = MIGRATE_RESERVE;
1181 goto retry_reserve;
1182 }
1183 }
1184
0d3d062a 1185 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1186 return page;
1da177e4
LT
1187}
1188
5f63b720 1189/*
1da177e4
LT
1190 * Obtain a specified number of elements from the buddy allocator, all under
1191 * a single hold of the lock, for efficiency. Add them to the supplied list.
1192 * Returns the number of new pages which were placed at *list.
1193 */
5f63b720 1194static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1195 unsigned long count, struct list_head *list,
e084b2d9 1196 int migratetype, int cold)
1da177e4 1197{
5bcc9f86 1198 int i;
5f63b720 1199
c54ad30c 1200 spin_lock(&zone->lock);
1da177e4 1201 for (i = 0; i < count; ++i) {
b2a0ac88 1202 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1203 if (unlikely(page == NULL))
1da177e4 1204 break;
81eabcbe
MG
1205
1206 /*
1207 * Split buddy pages returned by expand() are received here
1208 * in physical page order. The page is added to the callers and
1209 * list and the list head then moves forward. From the callers
1210 * perspective, the linked list is ordered by page number in
1211 * some conditions. This is useful for IO devices that can
1212 * merge IO requests if the physical pages are ordered
1213 * properly.
1214 */
e084b2d9
MG
1215 if (likely(cold == 0))
1216 list_add(&page->lru, list);
1217 else
1218 list_add_tail(&page->lru, list);
81eabcbe 1219 list = &page->lru;
5bcc9f86 1220 if (is_migrate_cma(get_freepage_migratetype(page)))
d1ce749a
BZ
1221 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1222 -(1 << order));
1da177e4 1223 }
f2260e6b 1224 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1225 spin_unlock(&zone->lock);
085cc7d5 1226 return i;
1da177e4
LT
1227}
1228
4ae7c039 1229#ifdef CONFIG_NUMA
8fce4d8e 1230/*
4037d452
CL
1231 * Called from the vmstat counter updater to drain pagesets of this
1232 * currently executing processor on remote nodes after they have
1233 * expired.
1234 *
879336c3
CL
1235 * Note that this function must be called with the thread pinned to
1236 * a single processor.
8fce4d8e 1237 */
4037d452 1238void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1239{
4ae7c039 1240 unsigned long flags;
4037d452 1241 int to_drain;
998d39cb 1242 unsigned long batch;
4ae7c039 1243
4037d452 1244 local_irq_save(flags);
998d39cb
CS
1245 batch = ACCESS_ONCE(pcp->batch);
1246 if (pcp->count >= batch)
1247 to_drain = batch;
4037d452
CL
1248 else
1249 to_drain = pcp->count;
2a13515c
KM
1250 if (to_drain > 0) {
1251 free_pcppages_bulk(zone, to_drain, pcp);
1252 pcp->count -= to_drain;
1253 }
4037d452 1254 local_irq_restore(flags);
4ae7c039
CL
1255}
1256#endif
1257
9f8f2172
CL
1258/*
1259 * Drain pages of the indicated processor.
1260 *
1261 * The processor must either be the current processor and the
1262 * thread pinned to the current processor or a processor that
1263 * is not online.
1264 */
1265static void drain_pages(unsigned int cpu)
1da177e4 1266{
c54ad30c 1267 unsigned long flags;
1da177e4 1268 struct zone *zone;
1da177e4 1269
ee99c71c 1270 for_each_populated_zone(zone) {
1da177e4 1271 struct per_cpu_pageset *pset;
3dfa5721 1272 struct per_cpu_pages *pcp;
1da177e4 1273
99dcc3e5
CL
1274 local_irq_save(flags);
1275 pset = per_cpu_ptr(zone->pageset, cpu);
3dfa5721
CL
1276
1277 pcp = &pset->pcp;
2ff754fa
DR
1278 if (pcp->count) {
1279 free_pcppages_bulk(zone, pcp->count, pcp);
1280 pcp->count = 0;
1281 }
3dfa5721 1282 local_irq_restore(flags);
1da177e4
LT
1283 }
1284}
1da177e4 1285
9f8f2172
CL
1286/*
1287 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1288 */
1289void drain_local_pages(void *arg)
1290{
1291 drain_pages(smp_processor_id());
1292}
1293
1294/*
74046494
GBY
1295 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1296 *
1297 * Note that this code is protected against sending an IPI to an offline
1298 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1299 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1300 * nothing keeps CPUs from showing up after we populated the cpumask and
1301 * before the call to on_each_cpu_mask().
9f8f2172
CL
1302 */
1303void drain_all_pages(void)
1304{
74046494
GBY
1305 int cpu;
1306 struct per_cpu_pageset *pcp;
1307 struct zone *zone;
1308
1309 /*
1310 * Allocate in the BSS so we wont require allocation in
1311 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1312 */
1313 static cpumask_t cpus_with_pcps;
1314
1315 /*
1316 * We don't care about racing with CPU hotplug event
1317 * as offline notification will cause the notified
1318 * cpu to drain that CPU pcps and on_each_cpu_mask
1319 * disables preemption as part of its processing
1320 */
1321 for_each_online_cpu(cpu) {
1322 bool has_pcps = false;
1323 for_each_populated_zone(zone) {
1324 pcp = per_cpu_ptr(zone->pageset, cpu);
1325 if (pcp->pcp.count) {
1326 has_pcps = true;
1327 break;
1328 }
1329 }
1330 if (has_pcps)
1331 cpumask_set_cpu(cpu, &cpus_with_pcps);
1332 else
1333 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1334 }
1335 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
9f8f2172
CL
1336}
1337
296699de 1338#ifdef CONFIG_HIBERNATION
1da177e4
LT
1339
1340void mark_free_pages(struct zone *zone)
1341{
f623f0db
RW
1342 unsigned long pfn, max_zone_pfn;
1343 unsigned long flags;
b2a0ac88 1344 int order, t;
1da177e4
LT
1345 struct list_head *curr;
1346
8080fc03 1347 if (zone_is_empty(zone))
1da177e4
LT
1348 return;
1349
1350 spin_lock_irqsave(&zone->lock, flags);
f623f0db 1351
108bcc96 1352 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
1353 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1354 if (pfn_valid(pfn)) {
1355 struct page *page = pfn_to_page(pfn);
1356
7be98234
RW
1357 if (!swsusp_page_is_forbidden(page))
1358 swsusp_unset_page_free(page);
f623f0db 1359 }
1da177e4 1360
b2a0ac88
MG
1361 for_each_migratetype_order(order, t) {
1362 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1363 unsigned long i;
1da177e4 1364
f623f0db
RW
1365 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1366 for (i = 0; i < (1UL << order); i++)
7be98234 1367 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1368 }
b2a0ac88 1369 }
1da177e4
LT
1370 spin_unlock_irqrestore(&zone->lock, flags);
1371}
e2c55dc8 1372#endif /* CONFIG_PM */
1da177e4 1373
1da177e4
LT
1374/*
1375 * Free a 0-order page
fc91668e 1376 * cold == 1 ? free a cold page : free a hot page
1da177e4 1377 */
fc91668e 1378void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1379{
1380 struct zone *zone = page_zone(page);
1381 struct per_cpu_pages *pcp;
1382 unsigned long flags;
5f8dcc21 1383 int migratetype;
1da177e4 1384
ec95f53a 1385 if (!free_pages_prepare(page, 0))
689bcebf
HD
1386 return;
1387
5f8dcc21 1388 migratetype = get_pageblock_migratetype(page);
b12c4ad1 1389 set_freepage_migratetype(page, migratetype);
1da177e4 1390 local_irq_save(flags);
f8891e5e 1391 __count_vm_event(PGFREE);
da456f14 1392
5f8dcc21
MG
1393 /*
1394 * We only track unmovable, reclaimable and movable on pcp lists.
1395 * Free ISOLATE pages back to the allocator because they are being
1396 * offlined but treat RESERVE as movable pages so we can get those
1397 * areas back if necessary. Otherwise, we may have to free
1398 * excessively into the page allocator
1399 */
1400 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 1401 if (unlikely(is_migrate_isolate(migratetype))) {
5f8dcc21
MG
1402 free_one_page(zone, page, 0, migratetype);
1403 goto out;
1404 }
1405 migratetype = MIGRATE_MOVABLE;
1406 }
1407
99dcc3e5 1408 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3dfa5721 1409 if (cold)
5f8dcc21 1410 list_add_tail(&page->lru, &pcp->lists[migratetype]);
3dfa5721 1411 else
5f8dcc21 1412 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 1413 pcp->count++;
48db57f8 1414 if (pcp->count >= pcp->high) {
998d39cb
CS
1415 unsigned long batch = ACCESS_ONCE(pcp->batch);
1416 free_pcppages_bulk(zone, batch, pcp);
1417 pcp->count -= batch;
48db57f8 1418 }
5f8dcc21
MG
1419
1420out:
1da177e4 1421 local_irq_restore(flags);
1da177e4
LT
1422}
1423
cc59850e
KK
1424/*
1425 * Free a list of 0-order pages
1426 */
1427void free_hot_cold_page_list(struct list_head *list, int cold)
1428{
1429 struct page *page, *next;
1430
1431 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 1432 trace_mm_page_free_batched(page, cold);
cc59850e
KK
1433 free_hot_cold_page(page, cold);
1434 }
1435}
1436
8dfcc9ba
NP
1437/*
1438 * split_page takes a non-compound higher-order page, and splits it into
1439 * n (1<<order) sub-pages: page[0..n]
1440 * Each sub-page must be freed individually.
1441 *
1442 * Note: this is probably too low level an operation for use in drivers.
1443 * Please consult with lkml before using this in your driver.
1444 */
1445void split_page(struct page *page, unsigned int order)
1446{
1447 int i;
1448
309381fe
SL
1449 VM_BUG_ON_PAGE(PageCompound(page), page);
1450 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
1451
1452#ifdef CONFIG_KMEMCHECK
1453 /*
1454 * Split shadow pages too, because free(page[0]) would
1455 * otherwise free the whole shadow.
1456 */
1457 if (kmemcheck_page_is_tracked(page))
1458 split_page(virt_to_page(page[0].shadow), order);
1459#endif
1460
7835e98b
NP
1461 for (i = 1; i < (1 << order); i++)
1462 set_page_refcounted(page + i);
8dfcc9ba 1463}
5853ff23 1464EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 1465
8fb74b9f 1466static int __isolate_free_page(struct page *page, unsigned int order)
748446bb 1467{
748446bb
MG
1468 unsigned long watermark;
1469 struct zone *zone;
2139cbe6 1470 int mt;
748446bb
MG
1471
1472 BUG_ON(!PageBuddy(page));
1473
1474 zone = page_zone(page);
2e30abd1 1475 mt = get_pageblock_migratetype(page);
748446bb 1476
194159fb 1477 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
1478 /* Obey watermarks as if the page was being allocated */
1479 watermark = low_wmark_pages(zone) + (1 << order);
1480 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1481 return 0;
1482
8fb74b9f 1483 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 1484 }
748446bb
MG
1485
1486 /* Remove page from free list */
1487 list_del(&page->lru);
1488 zone->free_area[order].nr_free--;
1489 rmv_page_order(page);
2139cbe6 1490
8fb74b9f 1491 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
1492 if (order >= pageblock_order - 1) {
1493 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
1494 for (; page < endpage; page += pageblock_nr_pages) {
1495 int mt = get_pageblock_migratetype(page);
194159fb 1496 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
1497 set_pageblock_migratetype(page,
1498 MIGRATE_MOVABLE);
1499 }
748446bb
MG
1500 }
1501
8fb74b9f 1502 return 1UL << order;
1fb3f8ca
MG
1503}
1504
1505/*
1506 * Similar to split_page except the page is already free. As this is only
1507 * being used for migration, the migratetype of the block also changes.
1508 * As this is called with interrupts disabled, the caller is responsible
1509 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1510 * are enabled.
1511 *
1512 * Note: this is probably too low level an operation for use in drivers.
1513 * Please consult with lkml before using this in your driver.
1514 */
1515int split_free_page(struct page *page)
1516{
1517 unsigned int order;
1518 int nr_pages;
1519
1fb3f8ca
MG
1520 order = page_order(page);
1521
8fb74b9f 1522 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
1523 if (!nr_pages)
1524 return 0;
1525
1526 /* Split into individual pages */
1527 set_page_refcounted(page);
1528 split_page(page, order);
1529 return nr_pages;
748446bb
MG
1530}
1531
1da177e4
LT
1532/*
1533 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1534 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1535 * or two.
1536 */
0a15c3e9
MG
1537static inline
1538struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1539 struct zone *zone, int order, gfp_t gfp_flags,
1540 int migratetype)
1da177e4
LT
1541{
1542 unsigned long flags;
689bcebf 1543 struct page *page;
1da177e4
LT
1544 int cold = !!(gfp_flags & __GFP_COLD);
1545
689bcebf 1546again:
48db57f8 1547 if (likely(order == 0)) {
1da177e4 1548 struct per_cpu_pages *pcp;
5f8dcc21 1549 struct list_head *list;
1da177e4 1550
1da177e4 1551 local_irq_save(flags);
99dcc3e5
CL
1552 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1553 list = &pcp->lists[migratetype];
5f8dcc21 1554 if (list_empty(list)) {
535131e6 1555 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1556 pcp->batch, list,
e084b2d9 1557 migratetype, cold);
5f8dcc21 1558 if (unlikely(list_empty(list)))
6fb332fa 1559 goto failed;
535131e6 1560 }
b92a6edd 1561
5f8dcc21
MG
1562 if (cold)
1563 page = list_entry(list->prev, struct page, lru);
1564 else
1565 page = list_entry(list->next, struct page, lru);
1566
b92a6edd
MG
1567 list_del(&page->lru);
1568 pcp->count--;
7fb1d9fc 1569 } else {
dab48dab
AM
1570 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1571 /*
1572 * __GFP_NOFAIL is not to be used in new code.
1573 *
1574 * All __GFP_NOFAIL callers should be fixed so that they
1575 * properly detect and handle allocation failures.
1576 *
1577 * We most definitely don't want callers attempting to
4923abf9 1578 * allocate greater than order-1 page units with
dab48dab
AM
1579 * __GFP_NOFAIL.
1580 */
4923abf9 1581 WARN_ON_ONCE(order > 1);
dab48dab 1582 }
1da177e4 1583 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1584 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1585 spin_unlock(&zone->lock);
1586 if (!page)
1587 goto failed;
d1ce749a 1588 __mod_zone_freepage_state(zone, -(1 << order),
5bcc9f86 1589 get_freepage_migratetype(page));
1da177e4
LT
1590 }
1591
3a025760 1592 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
27329369 1593
f8891e5e 1594 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 1595 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 1596 local_irq_restore(flags);
1da177e4 1597
309381fe 1598 VM_BUG_ON_PAGE(bad_range(zone, page), page);
17cf4406 1599 if (prep_new_page(page, order, gfp_flags))
a74609fa 1600 goto again;
1da177e4 1601 return page;
a74609fa
NP
1602
1603failed:
1604 local_irq_restore(flags);
a74609fa 1605 return NULL;
1da177e4
LT
1606}
1607
933e312e
AM
1608#ifdef CONFIG_FAIL_PAGE_ALLOC
1609
b2588c4b 1610static struct {
933e312e
AM
1611 struct fault_attr attr;
1612
1613 u32 ignore_gfp_highmem;
1614 u32 ignore_gfp_wait;
54114994 1615 u32 min_order;
933e312e
AM
1616} fail_page_alloc = {
1617 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1618 .ignore_gfp_wait = 1,
1619 .ignore_gfp_highmem = 1,
54114994 1620 .min_order = 1,
933e312e
AM
1621};
1622
1623static int __init setup_fail_page_alloc(char *str)
1624{
1625 return setup_fault_attr(&fail_page_alloc.attr, str);
1626}
1627__setup("fail_page_alloc=", setup_fail_page_alloc);
1628
deaf386e 1629static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1630{
54114994 1631 if (order < fail_page_alloc.min_order)
deaf386e 1632 return false;
933e312e 1633 if (gfp_mask & __GFP_NOFAIL)
deaf386e 1634 return false;
933e312e 1635 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 1636 return false;
933e312e 1637 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
deaf386e 1638 return false;
933e312e
AM
1639
1640 return should_fail(&fail_page_alloc.attr, 1 << order);
1641}
1642
1643#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1644
1645static int __init fail_page_alloc_debugfs(void)
1646{
f4ae40a6 1647 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 1648 struct dentry *dir;
933e312e 1649
dd48c085
AM
1650 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1651 &fail_page_alloc.attr);
1652 if (IS_ERR(dir))
1653 return PTR_ERR(dir);
933e312e 1654
b2588c4b
AM
1655 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1656 &fail_page_alloc.ignore_gfp_wait))
1657 goto fail;
1658 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1659 &fail_page_alloc.ignore_gfp_highmem))
1660 goto fail;
1661 if (!debugfs_create_u32("min-order", mode, dir,
1662 &fail_page_alloc.min_order))
1663 goto fail;
1664
1665 return 0;
1666fail:
dd48c085 1667 debugfs_remove_recursive(dir);
933e312e 1668
b2588c4b 1669 return -ENOMEM;
933e312e
AM
1670}
1671
1672late_initcall(fail_page_alloc_debugfs);
1673
1674#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1675
1676#else /* CONFIG_FAIL_PAGE_ALLOC */
1677
deaf386e 1678static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1679{
deaf386e 1680 return false;
933e312e
AM
1681}
1682
1683#endif /* CONFIG_FAIL_PAGE_ALLOC */
1684
1da177e4 1685/*
88f5acf8 1686 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1687 * of the allocation.
1688 */
88f5acf8
MG
1689static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1690 int classzone_idx, int alloc_flags, long free_pages)
1da177e4
LT
1691{
1692 /* free_pages my go negative - that's OK */
d23ad423 1693 long min = mark;
2cfed075 1694 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1da177e4 1695 int o;
026b0814 1696 long free_cma = 0;
1da177e4 1697
df0a6daa 1698 free_pages -= (1 << order) - 1;
7fb1d9fc 1699 if (alloc_flags & ALLOC_HIGH)
1da177e4 1700 min -= min / 2;
7fb1d9fc 1701 if (alloc_flags & ALLOC_HARDER)
1da177e4 1702 min -= min / 4;
d95ea5d1
BZ
1703#ifdef CONFIG_CMA
1704 /* If allocation can't use CMA areas don't use free CMA pages */
1705 if (!(alloc_flags & ALLOC_CMA))
026b0814 1706 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 1707#endif
026b0814
TS
1708
1709 if (free_pages - free_cma <= min + lowmem_reserve)
88f5acf8 1710 return false;
1da177e4
LT
1711 for (o = 0; o < order; o++) {
1712 /* At the next order, this order's pages become unavailable */
1713 free_pages -= z->free_area[o].nr_free << o;
1714
1715 /* Require fewer higher order pages to be free */
1716 min >>= 1;
1717
1718 if (free_pages <= min)
88f5acf8 1719 return false;
1da177e4 1720 }
88f5acf8
MG
1721 return true;
1722}
1723
1724bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1725 int classzone_idx, int alloc_flags)
1726{
1727 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1728 zone_page_state(z, NR_FREE_PAGES));
1729}
1730
1731bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1732 int classzone_idx, int alloc_flags)
1733{
1734 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1735
1736 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1737 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1738
1739 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1740 free_pages);
1da177e4
LT
1741}
1742
9276b1bc
PJ
1743#ifdef CONFIG_NUMA
1744/*
1745 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1746 * skip over zones that are not allowed by the cpuset, or that have
1747 * been recently (in last second) found to be nearly full. See further
1748 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1749 * that have to skip over a lot of full or unallowed zones.
9276b1bc 1750 *
a1aeb65a 1751 * If the zonelist cache is present in the passed zonelist, then
9276b1bc 1752 * returns a pointer to the allowed node mask (either the current
4b0ef1fe 1753 * tasks mems_allowed, or node_states[N_MEMORY].)
9276b1bc
PJ
1754 *
1755 * If the zonelist cache is not available for this zonelist, does
1756 * nothing and returns NULL.
1757 *
1758 * If the fullzones BITMAP in the zonelist cache is stale (more than
1759 * a second since last zap'd) then we zap it out (clear its bits.)
1760 *
1761 * We hold off even calling zlc_setup, until after we've checked the
1762 * first zone in the zonelist, on the theory that most allocations will
1763 * be satisfied from that first zone, so best to examine that zone as
1764 * quickly as we can.
1765 */
1766static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1767{
1768 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1769 nodemask_t *allowednodes; /* zonelist_cache approximation */
1770
1771 zlc = zonelist->zlcache_ptr;
1772 if (!zlc)
1773 return NULL;
1774
f05111f5 1775 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1776 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1777 zlc->last_full_zap = jiffies;
1778 }
1779
1780 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1781 &cpuset_current_mems_allowed :
4b0ef1fe 1782 &node_states[N_MEMORY];
9276b1bc
PJ
1783 return allowednodes;
1784}
1785
1786/*
1787 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1788 * if it is worth looking at further for free memory:
1789 * 1) Check that the zone isn't thought to be full (doesn't have its
1790 * bit set in the zonelist_cache fullzones BITMAP).
1791 * 2) Check that the zones node (obtained from the zonelist_cache
1792 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1793 * Return true (non-zero) if zone is worth looking at further, or
1794 * else return false (zero) if it is not.
1795 *
1796 * This check -ignores- the distinction between various watermarks,
1797 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1798 * found to be full for any variation of these watermarks, it will
1799 * be considered full for up to one second by all requests, unless
1800 * we are so low on memory on all allowed nodes that we are forced
1801 * into the second scan of the zonelist.
1802 *
1803 * In the second scan we ignore this zonelist cache and exactly
1804 * apply the watermarks to all zones, even it is slower to do so.
1805 * We are low on memory in the second scan, and should leave no stone
1806 * unturned looking for a free page.
1807 */
dd1a239f 1808static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1809 nodemask_t *allowednodes)
1810{
1811 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1812 int i; /* index of *z in zonelist zones */
1813 int n; /* node that zone *z is on */
1814
1815 zlc = zonelist->zlcache_ptr;
1816 if (!zlc)
1817 return 1;
1818
dd1a239f 1819 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1820 n = zlc->z_to_n[i];
1821
1822 /* This zone is worth trying if it is allowed but not full */
1823 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1824}
1825
1826/*
1827 * Given 'z' scanning a zonelist, set the corresponding bit in
1828 * zlc->fullzones, so that subsequent attempts to allocate a page
1829 * from that zone don't waste time re-examining it.
1830 */
dd1a239f 1831static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1832{
1833 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1834 int i; /* index of *z in zonelist zones */
1835
1836 zlc = zonelist->zlcache_ptr;
1837 if (!zlc)
1838 return;
1839
dd1a239f 1840 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1841
1842 set_bit(i, zlc->fullzones);
1843}
1844
76d3fbf8
MG
1845/*
1846 * clear all zones full, called after direct reclaim makes progress so that
1847 * a zone that was recently full is not skipped over for up to a second
1848 */
1849static void zlc_clear_zones_full(struct zonelist *zonelist)
1850{
1851 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1852
1853 zlc = zonelist->zlcache_ptr;
1854 if (!zlc)
1855 return;
1856
1857 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1858}
1859
81c0a2bb
JW
1860static bool zone_local(struct zone *local_zone, struct zone *zone)
1861{
fff4068c 1862 return local_zone->node == zone->node;
81c0a2bb
JW
1863}
1864
957f822a
DR
1865static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1866{
5f7a75ac
MG
1867 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
1868 RECLAIM_DISTANCE;
957f822a
DR
1869}
1870
9276b1bc
PJ
1871#else /* CONFIG_NUMA */
1872
1873static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1874{
1875 return NULL;
1876}
1877
dd1a239f 1878static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1879 nodemask_t *allowednodes)
1880{
1881 return 1;
1882}
1883
dd1a239f 1884static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1885{
1886}
76d3fbf8
MG
1887
1888static void zlc_clear_zones_full(struct zonelist *zonelist)
1889{
1890}
957f822a 1891
81c0a2bb
JW
1892static bool zone_local(struct zone *local_zone, struct zone *zone)
1893{
1894 return true;
1895}
1896
957f822a
DR
1897static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1898{
1899 return true;
1900}
1901
9276b1bc
PJ
1902#endif /* CONFIG_NUMA */
1903
7fb1d9fc 1904/*
0798e519 1905 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1906 * a page.
1907 */
1908static struct page *
19770b32 1909get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1910 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1911 struct zone *preferred_zone, int migratetype)
753ee728 1912{
dd1a239f 1913 struct zoneref *z;
7fb1d9fc 1914 struct page *page = NULL;
54a6eb5c 1915 int classzone_idx;
5117f45d 1916 struct zone *zone;
9276b1bc
PJ
1917 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1918 int zlc_active = 0; /* set if using zonelist_cache */
1919 int did_zlc_setup = 0; /* just call zlc_setup() one time */
a6e21b14
MG
1920 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
1921 (gfp_mask & __GFP_WRITE);
54a6eb5c 1922
19770b32 1923 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1924zonelist_scan:
7fb1d9fc 1925 /*
9276b1bc 1926 * Scan zonelist, looking for a zone with enough free.
3b11f0aa 1927 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c.
7fb1d9fc 1928 */
19770b32
MG
1929 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1930 high_zoneidx, nodemask) {
e085dbc5
JW
1931 unsigned long mark;
1932
e5adfffc 1933 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
9276b1bc
PJ
1934 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1935 continue;
664eedde
MG
1936 if (cpusets_enabled() &&
1937 (alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1938 !cpuset_zone_allowed_softwall(zone, gfp_mask))
cd38b115 1939 continue;
e085dbc5 1940 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
e66f0972 1941 if (unlikely(alloc_flags & ALLOC_NO_WATERMARKS))
e085dbc5 1942 goto try_this_zone;
81c0a2bb
JW
1943 /*
1944 * Distribute pages in proportion to the individual
1945 * zone size to ensure fair page aging. The zone a
1946 * page was allocated in should have no effect on the
1947 * time the page has in memory before being reclaimed.
81c0a2bb 1948 */
3a025760 1949 if (alloc_flags & ALLOC_FAIR) {
fff4068c 1950 if (!zone_local(preferred_zone, zone))
81c0a2bb 1951 continue;
3a025760
JW
1952 if (zone_page_state(zone, NR_ALLOC_BATCH) <= 0)
1953 continue;
81c0a2bb 1954 }
a756cf59
JW
1955 /*
1956 * When allocating a page cache page for writing, we
1957 * want to get it from a zone that is within its dirty
1958 * limit, such that no single zone holds more than its
1959 * proportional share of globally allowed dirty pages.
1960 * The dirty limits take into account the zone's
1961 * lowmem reserves and high watermark so that kswapd
1962 * should be able to balance it without having to
1963 * write pages from its LRU list.
1964 *
1965 * This may look like it could increase pressure on
1966 * lower zones by failing allocations in higher zones
1967 * before they are full. But the pages that do spill
1968 * over are limited as the lower zones are protected
1969 * by this very same mechanism. It should not become
1970 * a practical burden to them.
1971 *
1972 * XXX: For now, allow allocations to potentially
1973 * exceed the per-zone dirty limit in the slowpath
1974 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1975 * which is important when on a NUMA setup the allowed
1976 * zones are together not big enough to reach the
1977 * global limit. The proper fix for these situations
1978 * will require awareness of zones in the
1979 * dirty-throttling and the flusher threads.
1980 */
a6e21b14 1981 if (consider_zone_dirty && !zone_dirty_ok(zone))
800a1e75 1982 continue;
7fb1d9fc 1983
e085dbc5
JW
1984 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1985 if (!zone_watermark_ok(zone, order, mark,
1986 classzone_idx, alloc_flags)) {
fa5e084e
MG
1987 int ret;
1988
e5adfffc
KS
1989 if (IS_ENABLED(CONFIG_NUMA) &&
1990 !did_zlc_setup && nr_online_nodes > 1) {
cd38b115
MG
1991 /*
1992 * we do zlc_setup if there are multiple nodes
1993 * and before considering the first zone allowed
1994 * by the cpuset.
1995 */
1996 allowednodes = zlc_setup(zonelist, alloc_flags);
1997 zlc_active = 1;
1998 did_zlc_setup = 1;
1999 }
2000
957f822a
DR
2001 if (zone_reclaim_mode == 0 ||
2002 !zone_allows_reclaim(preferred_zone, zone))
fa5e084e
MG
2003 goto this_zone_full;
2004
cd38b115
MG
2005 /*
2006 * As we may have just activated ZLC, check if the first
2007 * eligible zone has failed zone_reclaim recently.
2008 */
e5adfffc 2009 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
cd38b115
MG
2010 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2011 continue;
2012
fa5e084e
MG
2013 ret = zone_reclaim(zone, gfp_mask, order);
2014 switch (ret) {
2015 case ZONE_RECLAIM_NOSCAN:
2016 /* did not scan */
cd38b115 2017 continue;
fa5e084e
MG
2018 case ZONE_RECLAIM_FULL:
2019 /* scanned but unreclaimable */
cd38b115 2020 continue;
fa5e084e
MG
2021 default:
2022 /* did we reclaim enough */
fed2719e 2023 if (zone_watermark_ok(zone, order, mark,
fa5e084e 2024 classzone_idx, alloc_flags))
fed2719e
MG
2025 goto try_this_zone;
2026
2027 /*
2028 * Failed to reclaim enough to meet watermark.
2029 * Only mark the zone full if checking the min
2030 * watermark or if we failed to reclaim just
2031 * 1<<order pages or else the page allocator
2032 * fastpath will prematurely mark zones full
2033 * when the watermark is between the low and
2034 * min watermarks.
2035 */
2036 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2037 ret == ZONE_RECLAIM_SOME)
9276b1bc 2038 goto this_zone_full;
fed2719e
MG
2039
2040 continue;
0798e519 2041 }
7fb1d9fc
RS
2042 }
2043
fa5e084e 2044try_this_zone:
3dd28266
MG
2045 page = buffered_rmqueue(preferred_zone, zone, order,
2046 gfp_mask, migratetype);
0798e519 2047 if (page)
7fb1d9fc 2048 break;
9276b1bc 2049this_zone_full:
65bb3719 2050 if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
9276b1bc 2051 zlc_mark_zone_full(zonelist, z);
54a6eb5c 2052 }
9276b1bc 2053
e5adfffc 2054 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
9276b1bc
PJ
2055 /* Disable zlc cache for second zonelist scan */
2056 zlc_active = 0;
2057 goto zonelist_scan;
2058 }
b121186a
AS
2059
2060 if (page)
2061 /*
2062 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2063 * necessary to allocate the page. The expectation is
2064 * that the caller is taking steps that will free more
2065 * memory. The caller should avoid the page being used
2066 * for !PFMEMALLOC purposes.
2067 */
2068 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
2069
7fb1d9fc 2070 return page;
753ee728
MH
2071}
2072
29423e77
DR
2073/*
2074 * Large machines with many possible nodes should not always dump per-node
2075 * meminfo in irq context.
2076 */
2077static inline bool should_suppress_show_mem(void)
2078{
2079 bool ret = false;
2080
2081#if NODES_SHIFT > 8
2082 ret = in_interrupt();
2083#endif
2084 return ret;
2085}
2086
a238ab5b
DH
2087static DEFINE_RATELIMIT_STATE(nopage_rs,
2088 DEFAULT_RATELIMIT_INTERVAL,
2089 DEFAULT_RATELIMIT_BURST);
2090
2091void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2092{
a238ab5b
DH
2093 unsigned int filter = SHOW_MEM_FILTER_NODES;
2094
c0a32fc5
SG
2095 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2096 debug_guardpage_minorder() > 0)
a238ab5b
DH
2097 return;
2098
2099 /*
2100 * This documents exceptions given to allocations in certain
2101 * contexts that are allowed to allocate outside current's set
2102 * of allowed nodes.
2103 */
2104 if (!(gfp_mask & __GFP_NOMEMALLOC))
2105 if (test_thread_flag(TIF_MEMDIE) ||
2106 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2107 filter &= ~SHOW_MEM_FILTER_NODES;
2108 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2109 filter &= ~SHOW_MEM_FILTER_NODES;
2110
2111 if (fmt) {
3ee9a4f0
JP
2112 struct va_format vaf;
2113 va_list args;
2114
a238ab5b 2115 va_start(args, fmt);
3ee9a4f0
JP
2116
2117 vaf.fmt = fmt;
2118 vaf.va = &args;
2119
2120 pr_warn("%pV", &vaf);
2121
a238ab5b
DH
2122 va_end(args);
2123 }
2124
3ee9a4f0
JP
2125 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2126 current->comm, order, gfp_mask);
a238ab5b
DH
2127
2128 dump_stack();
2129 if (!should_suppress_show_mem())
2130 show_mem(filter);
2131}
2132
11e33f6a
MG
2133static inline int
2134should_alloc_retry(gfp_t gfp_mask, unsigned int order,
f90ac398 2135 unsigned long did_some_progress,
11e33f6a 2136 unsigned long pages_reclaimed)
1da177e4 2137{
11e33f6a
MG
2138 /* Do not loop if specifically requested */
2139 if (gfp_mask & __GFP_NORETRY)
2140 return 0;
1da177e4 2141
f90ac398
MG
2142 /* Always retry if specifically requested */
2143 if (gfp_mask & __GFP_NOFAIL)
2144 return 1;
2145
2146 /*
2147 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2148 * making forward progress without invoking OOM. Suspend also disables
2149 * storage devices so kswapd will not help. Bail if we are suspending.
2150 */
2151 if (!did_some_progress && pm_suspended_storage())
2152 return 0;
2153
11e33f6a
MG
2154 /*
2155 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2156 * means __GFP_NOFAIL, but that may not be true in other
2157 * implementations.
2158 */
2159 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2160 return 1;
2161
2162 /*
2163 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2164 * specified, then we retry until we no longer reclaim any pages
2165 * (above), or we've reclaimed an order of pages at least as
2166 * large as the allocation's order. In both cases, if the
2167 * allocation still fails, we stop retrying.
2168 */
2169 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2170 return 1;
cf40bd16 2171
11e33f6a
MG
2172 return 0;
2173}
933e312e 2174
11e33f6a
MG
2175static inline struct page *
2176__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2177 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2178 nodemask_t *nodemask, struct zone *preferred_zone,
2179 int migratetype)
11e33f6a
MG
2180{
2181 struct page *page;
2182
2183 /* Acquire the OOM killer lock for the zones in zonelist */
ff321fea 2184 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
11e33f6a 2185 schedule_timeout_uninterruptible(1);
1da177e4
LT
2186 return NULL;
2187 }
6b1de916 2188
11e33f6a
MG
2189 /*
2190 * Go through the zonelist yet one more time, keep very high watermark
2191 * here, this is only to catch a parallel oom killing, we must fail if
2192 * we're still under heavy pressure.
2193 */
2194 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2195 order, zonelist, high_zoneidx,
5117f45d 2196 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 2197 preferred_zone, migratetype);
7fb1d9fc 2198 if (page)
11e33f6a
MG
2199 goto out;
2200
4365a567
KH
2201 if (!(gfp_mask & __GFP_NOFAIL)) {
2202 /* The OOM killer will not help higher order allocs */
2203 if (order > PAGE_ALLOC_COSTLY_ORDER)
2204 goto out;
03668b3c
DR
2205 /* The OOM killer does not needlessly kill tasks for lowmem */
2206 if (high_zoneidx < ZONE_NORMAL)
2207 goto out;
4365a567
KH
2208 /*
2209 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2210 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2211 * The caller should handle page allocation failure by itself if
2212 * it specifies __GFP_THISNODE.
2213 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2214 */
2215 if (gfp_mask & __GFP_THISNODE)
2216 goto out;
2217 }
11e33f6a 2218 /* Exhausted what can be done so it's blamo time */
08ab9b10 2219 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
11e33f6a
MG
2220
2221out:
2222 clear_zonelist_oom(zonelist, gfp_mask);
2223 return page;
2224}
2225
56de7263
MG
2226#ifdef CONFIG_COMPACTION
2227/* Try memory compaction for high-order allocations before reclaim */
2228static struct page *
2229__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2230 struct zonelist *zonelist, enum zone_type high_zoneidx,
2231 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
e0b9daeb 2232 int migratetype, enum migrate_mode mode,
c67fe375 2233 bool *contended_compaction, bool *deferred_compaction,
66199712 2234 unsigned long *did_some_progress)
56de7263 2235{
66199712 2236 if (!order)
56de7263
MG
2237 return NULL;
2238
aff62249 2239 if (compaction_deferred(preferred_zone, order)) {
66199712
MG
2240 *deferred_compaction = true;
2241 return NULL;
2242 }
2243
c06b1fca 2244 current->flags |= PF_MEMALLOC;
56de7263 2245 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
e0b9daeb 2246 nodemask, mode,
8fb74b9f 2247 contended_compaction);
c06b1fca 2248 current->flags &= ~PF_MEMALLOC;
56de7263 2249
1fb3f8ca 2250 if (*did_some_progress != COMPACT_SKIPPED) {
8fb74b9f
MG
2251 struct page *page;
2252
56de7263
MG
2253 /* Page migration frees to the PCP lists but we want merging */
2254 drain_pages(get_cpu());
2255 put_cpu();
2256
2257 page = get_page_from_freelist(gfp_mask, nodemask,
2258 order, zonelist, high_zoneidx,
cfd19c5a
MG
2259 alloc_flags & ~ALLOC_NO_WATERMARKS,
2260 preferred_zone, migratetype);
56de7263 2261 if (page) {
62997027 2262 preferred_zone->compact_blockskip_flush = false;
de6c60a6 2263 compaction_defer_reset(preferred_zone, order, true);
56de7263
MG
2264 count_vm_event(COMPACTSUCCESS);
2265 return page;
2266 }
2267
2268 /*
2269 * It's bad if compaction run occurs and fails.
2270 * The most likely reason is that pages exist,
2271 * but not enough to satisfy watermarks.
2272 */
2273 count_vm_event(COMPACTFAIL);
66199712
MG
2274
2275 /*
2276 * As async compaction considers a subset of pageblocks, only
2277 * defer if the failure was a sync compaction failure.
2278 */
e0b9daeb 2279 if (mode != MIGRATE_ASYNC)
aff62249 2280 defer_compaction(preferred_zone, order);
56de7263
MG
2281
2282 cond_resched();
2283 }
2284
2285 return NULL;
2286}
2287#else
2288static inline struct page *
2289__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2290 struct zonelist *zonelist, enum zone_type high_zoneidx,
2291 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
e0b9daeb
DR
2292 int migratetype, enum migrate_mode mode, bool *contended_compaction,
2293 bool *deferred_compaction, unsigned long *did_some_progress)
56de7263
MG
2294{
2295 return NULL;
2296}
2297#endif /* CONFIG_COMPACTION */
2298
bba90710
MS
2299/* Perform direct synchronous page reclaim */
2300static int
2301__perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2302 nodemask_t *nodemask)
11e33f6a 2303{
11e33f6a 2304 struct reclaim_state reclaim_state;
bba90710 2305 int progress;
11e33f6a
MG
2306
2307 cond_resched();
2308
2309 /* We now go into synchronous reclaim */
2310 cpuset_memory_pressure_bump();
c06b1fca 2311 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2312 lockdep_set_current_reclaim_state(gfp_mask);
2313 reclaim_state.reclaimed_slab = 0;
c06b1fca 2314 current->reclaim_state = &reclaim_state;
11e33f6a 2315
bba90710 2316 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
11e33f6a 2317
c06b1fca 2318 current->reclaim_state = NULL;
11e33f6a 2319 lockdep_clear_current_reclaim_state();
c06b1fca 2320 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2321
2322 cond_resched();
2323
bba90710
MS
2324 return progress;
2325}
2326
2327/* The really slow allocator path where we enter direct reclaim */
2328static inline struct page *
2329__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2330 struct zonelist *zonelist, enum zone_type high_zoneidx,
2331 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2332 int migratetype, unsigned long *did_some_progress)
2333{
2334 struct page *page = NULL;
2335 bool drained = false;
2336
2337 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2338 nodemask);
9ee493ce
MG
2339 if (unlikely(!(*did_some_progress)))
2340 return NULL;
11e33f6a 2341
76d3fbf8 2342 /* After successful reclaim, reconsider all zones for allocation */
e5adfffc 2343 if (IS_ENABLED(CONFIG_NUMA))
76d3fbf8
MG
2344 zlc_clear_zones_full(zonelist);
2345
9ee493ce
MG
2346retry:
2347 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2348 zonelist, high_zoneidx,
cfd19c5a
MG
2349 alloc_flags & ~ALLOC_NO_WATERMARKS,
2350 preferred_zone, migratetype);
9ee493ce
MG
2351
2352 /*
2353 * If an allocation failed after direct reclaim, it could be because
2354 * pages are pinned on the per-cpu lists. Drain them and try again
2355 */
2356 if (!page && !drained) {
2357 drain_all_pages();
2358 drained = true;
2359 goto retry;
2360 }
2361
11e33f6a
MG
2362 return page;
2363}
2364
1da177e4 2365/*
11e33f6a
MG
2366 * This is called in the allocator slow-path if the allocation request is of
2367 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2368 */
11e33f6a
MG
2369static inline struct page *
2370__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2371 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2372 nodemask_t *nodemask, struct zone *preferred_zone,
2373 int migratetype)
11e33f6a
MG
2374{
2375 struct page *page;
2376
2377 do {
2378 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2379 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 2380 preferred_zone, migratetype);
11e33f6a
MG
2381
2382 if (!page && gfp_mask & __GFP_NOFAIL)
0e093d99 2383 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
2384 } while (!page && (gfp_mask & __GFP_NOFAIL));
2385
2386 return page;
2387}
2388
3a025760
JW
2389static void reset_alloc_batches(struct zonelist *zonelist,
2390 enum zone_type high_zoneidx,
2391 struct zone *preferred_zone)
1da177e4 2392{
dd1a239f
MG
2393 struct zoneref *z;
2394 struct zone *zone;
1da177e4 2395
81c0a2bb 2396 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
81c0a2bb
JW
2397 /*
2398 * Only reset the batches of zones that were actually
3a025760
JW
2399 * considered in the fairness pass, we don't want to
2400 * trash fairness information for zones that are not
81c0a2bb
JW
2401 * actually part of this zonelist's round-robin cycle.
2402 */
fff4068c 2403 if (!zone_local(preferred_zone, zone))
81c0a2bb
JW
2404 continue;
2405 mod_zone_page_state(zone, NR_ALLOC_BATCH,
3a025760
JW
2406 high_wmark_pages(zone) - low_wmark_pages(zone) -
2407 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
81c0a2bb 2408 }
11e33f6a 2409}
cf40bd16 2410
3a025760
JW
2411static void wake_all_kswapds(unsigned int order,
2412 struct zonelist *zonelist,
2413 enum zone_type high_zoneidx,
2414 struct zone *preferred_zone)
2415{
2416 struct zoneref *z;
2417 struct zone *zone;
2418
2419 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2420 wakeup_kswapd(zone, order, zone_idx(preferred_zone));
2421}
2422
341ce06f
PZ
2423static inline int
2424gfp_to_alloc_flags(gfp_t gfp_mask)
2425{
341ce06f
PZ
2426 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2427 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 2428
a56f57ff 2429 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2430 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2431
341ce06f
PZ
2432 /*
2433 * The caller may dip into page reserves a bit more if the caller
2434 * cannot run direct reclaim, or if the caller has realtime scheduling
2435 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2436 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2437 */
e6223a3b 2438 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2439
341ce06f 2440 if (!wait) {
5c3240d9
AA
2441 /*
2442 * Not worth trying to allocate harder for
2443 * __GFP_NOMEMALLOC even if it can't schedule.
2444 */
2445 if (!(gfp_mask & __GFP_NOMEMALLOC))
2446 alloc_flags |= ALLOC_HARDER;
523b9458 2447 /*
341ce06f
PZ
2448 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2449 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 2450 */
341ce06f 2451 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2452 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2453 alloc_flags |= ALLOC_HARDER;
2454
b37f1dd0
MG
2455 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2456 if (gfp_mask & __GFP_MEMALLOC)
2457 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
2458 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2459 alloc_flags |= ALLOC_NO_WATERMARKS;
2460 else if (!in_interrupt() &&
2461 ((current->flags & PF_MEMALLOC) ||
2462 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 2463 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2464 }
d95ea5d1
BZ
2465#ifdef CONFIG_CMA
2466 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2467 alloc_flags |= ALLOC_CMA;
2468#endif
341ce06f
PZ
2469 return alloc_flags;
2470}
2471
072bb0aa
MG
2472bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2473{
b37f1dd0 2474 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
2475}
2476
11e33f6a
MG
2477static inline struct page *
2478__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2479 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2480 nodemask_t *nodemask, struct zone *preferred_zone,
2481 int migratetype)
11e33f6a
MG
2482{
2483 const gfp_t wait = gfp_mask & __GFP_WAIT;
2484 struct page *page = NULL;
2485 int alloc_flags;
2486 unsigned long pages_reclaimed = 0;
2487 unsigned long did_some_progress;
e0b9daeb 2488 enum migrate_mode migration_mode = MIGRATE_ASYNC;
66199712 2489 bool deferred_compaction = false;
c67fe375 2490 bool contended_compaction = false;
1da177e4 2491
72807a74
MG
2492 /*
2493 * In the slowpath, we sanity check order to avoid ever trying to
2494 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2495 * be using allocators in order of preference for an area that is
2496 * too large.
2497 */
1fc28b70
MG
2498 if (order >= MAX_ORDER) {
2499 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2500 return NULL;
1fc28b70 2501 }
1da177e4 2502
952f3b51
CL
2503 /*
2504 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2505 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2506 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2507 * using a larger set of nodes after it has established that the
2508 * allowed per node queues are empty and that nodes are
2509 * over allocated.
2510 */
3a025760
JW
2511 if (IS_ENABLED(CONFIG_NUMA) &&
2512 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
952f3b51
CL
2513 goto nopage;
2514
cc4a6851 2515restart:
3a025760
JW
2516 if (!(gfp_mask & __GFP_NO_KSWAPD))
2517 wake_all_kswapds(order, zonelist, high_zoneidx, preferred_zone);
1da177e4 2518
9bf2229f 2519 /*
7fb1d9fc
RS
2520 * OK, we're below the kswapd watermark and have kicked background
2521 * reclaim. Now things get more complex, so set up alloc_flags according
2522 * to how we want to proceed.
9bf2229f 2523 */
341ce06f 2524 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2525
f33261d7
DR
2526 /*
2527 * Find the true preferred zone if the allocation is unconstrained by
2528 * cpusets.
2529 */
2530 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2531 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2532 &preferred_zone);
2533
cfa54a0f 2534rebalance:
341ce06f 2535 /* This is the last chance, in general, before the goto nopage. */
19770b32 2536 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
2537 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2538 preferred_zone, migratetype);
7fb1d9fc
RS
2539 if (page)
2540 goto got_pg;
1da177e4 2541
11e33f6a 2542 /* Allocate without watermarks if the context allows */
341ce06f 2543 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
2544 /*
2545 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2546 * the allocation is high priority and these type of
2547 * allocations are system rather than user orientated
2548 */
2549 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2550
341ce06f
PZ
2551 page = __alloc_pages_high_priority(gfp_mask, order,
2552 zonelist, high_zoneidx, nodemask,
2553 preferred_zone, migratetype);
cfd19c5a 2554 if (page) {
341ce06f 2555 goto got_pg;
cfd19c5a 2556 }
1da177e4
LT
2557 }
2558
2559 /* Atomic allocations - we can't balance anything */
aed0a0e3
DR
2560 if (!wait) {
2561 /*
2562 * All existing users of the deprecated __GFP_NOFAIL are
2563 * blockable, so warn of any new users that actually allow this
2564 * type of allocation to fail.
2565 */
2566 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 2567 goto nopage;
aed0a0e3 2568 }
1da177e4 2569
341ce06f 2570 /* Avoid recursion of direct reclaim */
c06b1fca 2571 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
2572 goto nopage;
2573
6583bb64
DR
2574 /* Avoid allocations with no watermarks from looping endlessly */
2575 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2576 goto nopage;
2577
77f1fe6b
MG
2578 /*
2579 * Try direct compaction. The first pass is asynchronous. Subsequent
2580 * attempts after direct reclaim are synchronous
2581 */
e0b9daeb
DR
2582 page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2583 high_zoneidx, nodemask, alloc_flags,
2584 preferred_zone, migratetype,
2585 migration_mode, &contended_compaction,
66199712
MG
2586 &deferred_compaction,
2587 &did_some_progress);
56de7263
MG
2588 if (page)
2589 goto got_pg;
75f30861
DR
2590
2591 /*
2592 * It can become very expensive to allocate transparent hugepages at
2593 * fault, so use asynchronous memory compaction for THP unless it is
2594 * khugepaged trying to collapse.
2595 */
2596 if (!(gfp_mask & __GFP_NO_KSWAPD) || (current->flags & PF_KTHREAD))
2597 migration_mode = MIGRATE_SYNC_LIGHT;
56de7263 2598
31f8d42d
LT
2599 /*
2600 * If compaction is deferred for high-order allocations, it is because
2601 * sync compaction recently failed. In this is the case and the caller
2602 * requested a movable allocation that does not heavily disrupt the
2603 * system then fail the allocation instead of entering direct reclaim.
2604 */
2605 if ((deferred_compaction || contended_compaction) &&
caf49191 2606 (gfp_mask & __GFP_NO_KSWAPD))
31f8d42d 2607 goto nopage;
66199712 2608
11e33f6a
MG
2609 /* Try direct reclaim and then allocating */
2610 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2611 zonelist, high_zoneidx,
2612 nodemask,
5117f45d 2613 alloc_flags, preferred_zone,
3dd28266 2614 migratetype, &did_some_progress);
11e33f6a
MG
2615 if (page)
2616 goto got_pg;
1da177e4 2617
e33c3b5e 2618 /*
11e33f6a
MG
2619 * If we failed to make any progress reclaiming, then we are
2620 * running out of options and have to consider going OOM
e33c3b5e 2621 */
11e33f6a 2622 if (!did_some_progress) {
b9921ecd 2623 if (oom_gfp_allowed(gfp_mask)) {
7f33d49a
RW
2624 if (oom_killer_disabled)
2625 goto nopage;
29fd66d2
DR
2626 /* Coredumps can quickly deplete all memory reserves */
2627 if ((current->flags & PF_DUMPCORE) &&
2628 !(gfp_mask & __GFP_NOFAIL))
2629 goto nopage;
11e33f6a
MG
2630 page = __alloc_pages_may_oom(gfp_mask, order,
2631 zonelist, high_zoneidx,
3dd28266
MG
2632 nodemask, preferred_zone,
2633 migratetype);
11e33f6a
MG
2634 if (page)
2635 goto got_pg;
1da177e4 2636
03668b3c
DR
2637 if (!(gfp_mask & __GFP_NOFAIL)) {
2638 /*
2639 * The oom killer is not called for high-order
2640 * allocations that may fail, so if no progress
2641 * is being made, there are no other options and
2642 * retrying is unlikely to help.
2643 */
2644 if (order > PAGE_ALLOC_COSTLY_ORDER)
2645 goto nopage;
2646 /*
2647 * The oom killer is not called for lowmem
2648 * allocations to prevent needlessly killing
2649 * innocent tasks.
2650 */
2651 if (high_zoneidx < ZONE_NORMAL)
2652 goto nopage;
2653 }
e2c55dc8 2654
ff0ceb9d
DR
2655 goto restart;
2656 }
1da177e4
LT
2657 }
2658
11e33f6a 2659 /* Check if we should retry the allocation */
a41f24ea 2660 pages_reclaimed += did_some_progress;
f90ac398
MG
2661 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2662 pages_reclaimed)) {
11e33f6a 2663 /* Wait for some write requests to complete then retry */
0e093d99 2664 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1da177e4 2665 goto rebalance;
3e7d3449
MG
2666 } else {
2667 /*
2668 * High-order allocations do not necessarily loop after
2669 * direct reclaim and reclaim/compaction depends on compaction
2670 * being called after reclaim so call directly if necessary
2671 */
e0b9daeb
DR
2672 page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2673 high_zoneidx, nodemask, alloc_flags,
2674 preferred_zone, migratetype,
2675 migration_mode, &contended_compaction,
66199712
MG
2676 &deferred_compaction,
2677 &did_some_progress);
3e7d3449
MG
2678 if (page)
2679 goto got_pg;
1da177e4
LT
2680 }
2681
2682nopage:
a238ab5b 2683 warn_alloc_failed(gfp_mask, order, NULL);
b1eeab67 2684 return page;
1da177e4 2685got_pg:
b1eeab67
VN
2686 if (kmemcheck_enabled)
2687 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
11e33f6a 2688
072bb0aa 2689 return page;
1da177e4 2690}
11e33f6a
MG
2691
2692/*
2693 * This is the 'heart' of the zoned buddy allocator.
2694 */
2695struct page *
2696__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2697 struct zonelist *zonelist, nodemask_t *nodemask)
2698{
2699 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2700 struct zone *preferred_zone;
cc9a6c87 2701 struct page *page = NULL;
3dd28266 2702 int migratetype = allocflags_to_migratetype(gfp_mask);
cc9a6c87 2703 unsigned int cpuset_mems_cookie;
3a025760 2704 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
11e33f6a 2705
dcce284a
BH
2706 gfp_mask &= gfp_allowed_mask;
2707
11e33f6a
MG
2708 lockdep_trace_alloc(gfp_mask);
2709
2710 might_sleep_if(gfp_mask & __GFP_WAIT);
2711
2712 if (should_fail_alloc_page(gfp_mask, order))
2713 return NULL;
2714
2715 /*
2716 * Check the zones suitable for the gfp_mask contain at least one
2717 * valid zone. It's possible to have an empty zonelist as a result
2718 * of GFP_THISNODE and a memoryless node
2719 */
2720 if (unlikely(!zonelist->_zonerefs->zone))
2721 return NULL;
2722
cc9a6c87 2723retry_cpuset:
d26914d1 2724 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 2725
5117f45d 2726 /* The preferred zone is used for statistics later */
f33261d7
DR
2727 first_zones_zonelist(zonelist, high_zoneidx,
2728 nodemask ? : &cpuset_current_mems_allowed,
2729 &preferred_zone);
cc9a6c87
MG
2730 if (!preferred_zone)
2731 goto out;
5117f45d 2732
d95ea5d1
BZ
2733#ifdef CONFIG_CMA
2734 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2735 alloc_flags |= ALLOC_CMA;
2736#endif
3a025760 2737retry:
5117f45d 2738 /* First allocation attempt */
11e33f6a 2739 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
d95ea5d1 2740 zonelist, high_zoneidx, alloc_flags,
3dd28266 2741 preferred_zone, migratetype);
21caf2fc 2742 if (unlikely(!page)) {
3a025760
JW
2743 /*
2744 * The first pass makes sure allocations are spread
2745 * fairly within the local node. However, the local
2746 * node might have free pages left after the fairness
2747 * batches are exhausted, and remote zones haven't
2748 * even been considered yet. Try once more without
2749 * fairness, and include remote zones now, before
2750 * entering the slowpath and waking kswapd: prefer
2751 * spilling to a remote zone over swapping locally.
2752 */
2753 if (alloc_flags & ALLOC_FAIR) {
2754 reset_alloc_batches(zonelist, high_zoneidx,
2755 preferred_zone);
2756 alloc_flags &= ~ALLOC_FAIR;
2757 goto retry;
2758 }
21caf2fc
ML
2759 /*
2760 * Runtime PM, block IO and its error handling path
2761 * can deadlock because I/O on the device might not
2762 * complete.
2763 */
2764 gfp_mask = memalloc_noio_flags(gfp_mask);
11e33f6a 2765 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2766 zonelist, high_zoneidx, nodemask,
3dd28266 2767 preferred_zone, migratetype);
21caf2fc 2768 }
11e33f6a 2769
4b4f278c 2770 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
cc9a6c87
MG
2771
2772out:
2773 /*
2774 * When updating a task's mems_allowed, it is possible to race with
2775 * parallel threads in such a way that an allocation can fail while
2776 * the mask is being updated. If a page allocation is about to fail,
2777 * check if the cpuset changed during allocation and if so, retry.
2778 */
d26914d1 2779 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87
MG
2780 goto retry_cpuset;
2781
11e33f6a 2782 return page;
1da177e4 2783}
d239171e 2784EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2785
2786/*
2787 * Common helper functions.
2788 */
920c7a5d 2789unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2790{
945a1113
AM
2791 struct page *page;
2792
2793 /*
2794 * __get_free_pages() returns a 32-bit address, which cannot represent
2795 * a highmem page
2796 */
2797 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2798
1da177e4
LT
2799 page = alloc_pages(gfp_mask, order);
2800 if (!page)
2801 return 0;
2802 return (unsigned long) page_address(page);
2803}
1da177e4
LT
2804EXPORT_SYMBOL(__get_free_pages);
2805
920c7a5d 2806unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2807{
945a1113 2808 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2809}
1da177e4
LT
2810EXPORT_SYMBOL(get_zeroed_page);
2811
920c7a5d 2812void __free_pages(struct page *page, unsigned int order)
1da177e4 2813{
b5810039 2814 if (put_page_testzero(page)) {
1da177e4 2815 if (order == 0)
fc91668e 2816 free_hot_cold_page(page, 0);
1da177e4
LT
2817 else
2818 __free_pages_ok(page, order);
2819 }
2820}
2821
2822EXPORT_SYMBOL(__free_pages);
2823
920c7a5d 2824void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2825{
2826 if (addr != 0) {
725d704e 2827 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2828 __free_pages(virt_to_page((void *)addr), order);
2829 }
2830}
2831
2832EXPORT_SYMBOL(free_pages);
2833
6a1a0d3b 2834/*
52383431
VD
2835 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
2836 * of the current memory cgroup.
6a1a0d3b 2837 *
52383431
VD
2838 * It should be used when the caller would like to use kmalloc, but since the
2839 * allocation is large, it has to fall back to the page allocator.
2840 */
2841struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
2842{
2843 struct page *page;
2844 struct mem_cgroup *memcg = NULL;
2845
2846 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2847 return NULL;
2848 page = alloc_pages(gfp_mask, order);
2849 memcg_kmem_commit_charge(page, memcg, order);
2850 return page;
2851}
2852
2853struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
2854{
2855 struct page *page;
2856 struct mem_cgroup *memcg = NULL;
2857
2858 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2859 return NULL;
2860 page = alloc_pages_node(nid, gfp_mask, order);
2861 memcg_kmem_commit_charge(page, memcg, order);
2862 return page;
2863}
2864
2865/*
2866 * __free_kmem_pages and free_kmem_pages will free pages allocated with
2867 * alloc_kmem_pages.
6a1a0d3b 2868 */
52383431 2869void __free_kmem_pages(struct page *page, unsigned int order)
6a1a0d3b
GC
2870{
2871 memcg_kmem_uncharge_pages(page, order);
2872 __free_pages(page, order);
2873}
2874
52383431 2875void free_kmem_pages(unsigned long addr, unsigned int order)
6a1a0d3b
GC
2876{
2877 if (addr != 0) {
2878 VM_BUG_ON(!virt_addr_valid((void *)addr));
52383431 2879 __free_kmem_pages(virt_to_page((void *)addr), order);
6a1a0d3b
GC
2880 }
2881}
2882
ee85c2e1
AK
2883static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2884{
2885 if (addr) {
2886 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2887 unsigned long used = addr + PAGE_ALIGN(size);
2888
2889 split_page(virt_to_page((void *)addr), order);
2890 while (used < alloc_end) {
2891 free_page(used);
2892 used += PAGE_SIZE;
2893 }
2894 }
2895 return (void *)addr;
2896}
2897
2be0ffe2
TT
2898/**
2899 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2900 * @size: the number of bytes to allocate
2901 * @gfp_mask: GFP flags for the allocation
2902 *
2903 * This function is similar to alloc_pages(), except that it allocates the
2904 * minimum number of pages to satisfy the request. alloc_pages() can only
2905 * allocate memory in power-of-two pages.
2906 *
2907 * This function is also limited by MAX_ORDER.
2908 *
2909 * Memory allocated by this function must be released by free_pages_exact().
2910 */
2911void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2912{
2913 unsigned int order = get_order(size);
2914 unsigned long addr;
2915
2916 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 2917 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
2918}
2919EXPORT_SYMBOL(alloc_pages_exact);
2920
ee85c2e1
AK
2921/**
2922 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2923 * pages on a node.
b5e6ab58 2924 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
2925 * @size: the number of bytes to allocate
2926 * @gfp_mask: GFP flags for the allocation
2927 *
2928 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2929 * back.
2930 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2931 * but is not exact.
2932 */
2933void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2934{
2935 unsigned order = get_order(size);
2936 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2937 if (!p)
2938 return NULL;
2939 return make_alloc_exact((unsigned long)page_address(p), order, size);
2940}
2941EXPORT_SYMBOL(alloc_pages_exact_nid);
2942
2be0ffe2
TT
2943/**
2944 * free_pages_exact - release memory allocated via alloc_pages_exact()
2945 * @virt: the value returned by alloc_pages_exact.
2946 * @size: size of allocation, same value as passed to alloc_pages_exact().
2947 *
2948 * Release the memory allocated by a previous call to alloc_pages_exact.
2949 */
2950void free_pages_exact(void *virt, size_t size)
2951{
2952 unsigned long addr = (unsigned long)virt;
2953 unsigned long end = addr + PAGE_ALIGN(size);
2954
2955 while (addr < end) {
2956 free_page(addr);
2957 addr += PAGE_SIZE;
2958 }
2959}
2960EXPORT_SYMBOL(free_pages_exact);
2961
e0fb5815
ZY
2962/**
2963 * nr_free_zone_pages - count number of pages beyond high watermark
2964 * @offset: The zone index of the highest zone
2965 *
2966 * nr_free_zone_pages() counts the number of counts pages which are beyond the
2967 * high watermark within all zones at or below a given zone index. For each
2968 * zone, the number of pages is calculated as:
834405c3 2969 * managed_pages - high_pages
e0fb5815 2970 */
ebec3862 2971static unsigned long nr_free_zone_pages(int offset)
1da177e4 2972{
dd1a239f 2973 struct zoneref *z;
54a6eb5c
MG
2974 struct zone *zone;
2975
e310fd43 2976 /* Just pick one node, since fallback list is circular */
ebec3862 2977 unsigned long sum = 0;
1da177e4 2978
0e88460d 2979 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2980
54a6eb5c 2981 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 2982 unsigned long size = zone->managed_pages;
41858966 2983 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2984 if (size > high)
2985 sum += size - high;
1da177e4
LT
2986 }
2987
2988 return sum;
2989}
2990
e0fb5815
ZY
2991/**
2992 * nr_free_buffer_pages - count number of pages beyond high watermark
2993 *
2994 * nr_free_buffer_pages() counts the number of pages which are beyond the high
2995 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 2996 */
ebec3862 2997unsigned long nr_free_buffer_pages(void)
1da177e4 2998{
af4ca457 2999 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 3000}
c2f1a551 3001EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 3002
e0fb5815
ZY
3003/**
3004 * nr_free_pagecache_pages - count number of pages beyond high watermark
3005 *
3006 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3007 * high watermark within all zones.
1da177e4 3008 */
ebec3862 3009unsigned long nr_free_pagecache_pages(void)
1da177e4 3010{
2a1e274a 3011 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 3012}
08e0f6a9
CL
3013
3014static inline void show_node(struct zone *zone)
1da177e4 3015{
e5adfffc 3016 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 3017 printk("Node %d ", zone_to_nid(zone));
1da177e4 3018}
1da177e4 3019
1da177e4
LT
3020void si_meminfo(struct sysinfo *val)
3021{
3022 val->totalram = totalram_pages;
3023 val->sharedram = 0;
d23ad423 3024 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 3025 val->bufferram = nr_blockdev_pages();
1da177e4
LT
3026 val->totalhigh = totalhigh_pages;
3027 val->freehigh = nr_free_highpages();
1da177e4
LT
3028 val->mem_unit = PAGE_SIZE;
3029}
3030
3031EXPORT_SYMBOL(si_meminfo);
3032
3033#ifdef CONFIG_NUMA
3034void si_meminfo_node(struct sysinfo *val, int nid)
3035{
cdd91a77
JL
3036 int zone_type; /* needs to be signed */
3037 unsigned long managed_pages = 0;
1da177e4
LT
3038 pg_data_t *pgdat = NODE_DATA(nid);
3039
cdd91a77
JL
3040 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3041 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3042 val->totalram = managed_pages;
d23ad423 3043 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 3044#ifdef CONFIG_HIGHMEM
b40da049 3045 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
d23ad423
CL
3046 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3047 NR_FREE_PAGES);
98d2b0eb
CL
3048#else
3049 val->totalhigh = 0;
3050 val->freehigh = 0;
3051#endif
1da177e4
LT
3052 val->mem_unit = PAGE_SIZE;
3053}
3054#endif
3055
ddd588b5 3056/*
7bf02ea2
DR
3057 * Determine whether the node should be displayed or not, depending on whether
3058 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 3059 */
7bf02ea2 3060bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
3061{
3062 bool ret = false;
cc9a6c87 3063 unsigned int cpuset_mems_cookie;
ddd588b5
DR
3064
3065 if (!(flags & SHOW_MEM_FILTER_NODES))
3066 goto out;
3067
cc9a6c87 3068 do {
d26914d1 3069 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3070 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 3071 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
3072out:
3073 return ret;
3074}
3075
1da177e4
LT
3076#define K(x) ((x) << (PAGE_SHIFT-10))
3077
377e4f16
RV
3078static void show_migration_types(unsigned char type)
3079{
3080 static const char types[MIGRATE_TYPES] = {
3081 [MIGRATE_UNMOVABLE] = 'U',
3082 [MIGRATE_RECLAIMABLE] = 'E',
3083 [MIGRATE_MOVABLE] = 'M',
3084 [MIGRATE_RESERVE] = 'R',
3085#ifdef CONFIG_CMA
3086 [MIGRATE_CMA] = 'C',
3087#endif
194159fb 3088#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 3089 [MIGRATE_ISOLATE] = 'I',
194159fb 3090#endif
377e4f16
RV
3091 };
3092 char tmp[MIGRATE_TYPES + 1];
3093 char *p = tmp;
3094 int i;
3095
3096 for (i = 0; i < MIGRATE_TYPES; i++) {
3097 if (type & (1 << i))
3098 *p++ = types[i];
3099 }
3100
3101 *p = '\0';
3102 printk("(%s) ", tmp);
3103}
3104
1da177e4
LT
3105/*
3106 * Show free area list (used inside shift_scroll-lock stuff)
3107 * We also calculate the percentage fragmentation. We do this by counting the
3108 * memory on each free list with the exception of the first item on the list.
ddd588b5
DR
3109 * Suppresses nodes that are not allowed by current's cpuset if
3110 * SHOW_MEM_FILTER_NODES is passed.
1da177e4 3111 */
7bf02ea2 3112void show_free_areas(unsigned int filter)
1da177e4 3113{
c7241913 3114 int cpu;
1da177e4
LT
3115 struct zone *zone;
3116
ee99c71c 3117 for_each_populated_zone(zone) {
7bf02ea2 3118 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3119 continue;
c7241913
JS
3120 show_node(zone);
3121 printk("%s per-cpu:\n", zone->name);
1da177e4 3122
6b482c67 3123 for_each_online_cpu(cpu) {
1da177e4
LT
3124 struct per_cpu_pageset *pageset;
3125
99dcc3e5 3126 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 3127
3dfa5721
CL
3128 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3129 cpu, pageset->pcp.high,
3130 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
3131 }
3132 }
3133
a731286d
KM
3134 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3135 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 3136 " unevictable:%lu"
b76146ed 3137 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 3138 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a
BZ
3139 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3140 " free_cma:%lu\n",
4f98a2fe 3141 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 3142 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
3143 global_page_state(NR_ISOLATED_ANON),
3144 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 3145 global_page_state(NR_INACTIVE_FILE),
a731286d 3146 global_page_state(NR_ISOLATED_FILE),
7b854121 3147 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 3148 global_page_state(NR_FILE_DIRTY),
ce866b34 3149 global_page_state(NR_WRITEBACK),
fd39fc85 3150 global_page_state(NR_UNSTABLE_NFS),
d23ad423 3151 global_page_state(NR_FREE_PAGES),
3701b033
KM
3152 global_page_state(NR_SLAB_RECLAIMABLE),
3153 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 3154 global_page_state(NR_FILE_MAPPED),
4b02108a 3155 global_page_state(NR_SHMEM),
a25700a5 3156 global_page_state(NR_PAGETABLE),
d1ce749a
BZ
3157 global_page_state(NR_BOUNCE),
3158 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 3159
ee99c71c 3160 for_each_populated_zone(zone) {
1da177e4
LT
3161 int i;
3162
7bf02ea2 3163 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3164 continue;
1da177e4
LT
3165 show_node(zone);
3166 printk("%s"
3167 " free:%lukB"
3168 " min:%lukB"
3169 " low:%lukB"
3170 " high:%lukB"
4f98a2fe
RR
3171 " active_anon:%lukB"
3172 " inactive_anon:%lukB"
3173 " active_file:%lukB"
3174 " inactive_file:%lukB"
7b854121 3175 " unevictable:%lukB"
a731286d
KM
3176 " isolated(anon):%lukB"
3177 " isolated(file):%lukB"
1da177e4 3178 " present:%lukB"
9feedc9d 3179 " managed:%lukB"
4a0aa73f
KM
3180 " mlocked:%lukB"
3181 " dirty:%lukB"
3182 " writeback:%lukB"
3183 " mapped:%lukB"
4b02108a 3184 " shmem:%lukB"
4a0aa73f
KM
3185 " slab_reclaimable:%lukB"
3186 " slab_unreclaimable:%lukB"
c6a7f572 3187 " kernel_stack:%lukB"
4a0aa73f
KM
3188 " pagetables:%lukB"
3189 " unstable:%lukB"
3190 " bounce:%lukB"
d1ce749a 3191 " free_cma:%lukB"
4a0aa73f 3192 " writeback_tmp:%lukB"
1da177e4
LT
3193 " pages_scanned:%lu"
3194 " all_unreclaimable? %s"
3195 "\n",
3196 zone->name,
88f5acf8 3197 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
3198 K(min_wmark_pages(zone)),
3199 K(low_wmark_pages(zone)),
3200 K(high_wmark_pages(zone)),
4f98a2fe
RR
3201 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3202 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3203 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3204 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 3205 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
3206 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3207 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 3208 K(zone->present_pages),
9feedc9d 3209 K(zone->managed_pages),
4a0aa73f
KM
3210 K(zone_page_state(zone, NR_MLOCK)),
3211 K(zone_page_state(zone, NR_FILE_DIRTY)),
3212 K(zone_page_state(zone, NR_WRITEBACK)),
3213 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 3214 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
3215 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3216 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
3217 zone_page_state(zone, NR_KERNEL_STACK) *
3218 THREAD_SIZE / 1024,
4a0aa73f
KM
3219 K(zone_page_state(zone, NR_PAGETABLE)),
3220 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3221 K(zone_page_state(zone, NR_BOUNCE)),
d1ce749a 3222 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 3223 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
1da177e4 3224 zone->pages_scanned,
6e543d57 3225 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
3226 );
3227 printk("lowmem_reserve[]:");
3228 for (i = 0; i < MAX_NR_ZONES; i++)
3229 printk(" %lu", zone->lowmem_reserve[i]);
3230 printk("\n");
3231 }
3232
ee99c71c 3233 for_each_populated_zone(zone) {
b8af2941 3234 unsigned long nr[MAX_ORDER], flags, order, total = 0;
377e4f16 3235 unsigned char types[MAX_ORDER];
1da177e4 3236
7bf02ea2 3237 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3238 continue;
1da177e4
LT
3239 show_node(zone);
3240 printk("%s: ", zone->name);
1da177e4
LT
3241
3242 spin_lock_irqsave(&zone->lock, flags);
3243 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
3244 struct free_area *area = &zone->free_area[order];
3245 int type;
3246
3247 nr[order] = area->nr_free;
8f9de51a 3248 total += nr[order] << order;
377e4f16
RV
3249
3250 types[order] = 0;
3251 for (type = 0; type < MIGRATE_TYPES; type++) {
3252 if (!list_empty(&area->free_list[type]))
3253 types[order] |= 1 << type;
3254 }
1da177e4
LT
3255 }
3256 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 3257 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 3258 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
3259 if (nr[order])
3260 show_migration_types(types[order]);
3261 }
1da177e4
LT
3262 printk("= %lukB\n", K(total));
3263 }
3264
949f7ec5
DR
3265 hugetlb_show_meminfo();
3266
e6f3602d
LW
3267 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3268
1da177e4
LT
3269 show_swap_cache_info();
3270}
3271
19770b32
MG
3272static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3273{
3274 zoneref->zone = zone;
3275 zoneref->zone_idx = zone_idx(zone);
3276}
3277
1da177e4
LT
3278/*
3279 * Builds allocation fallback zone lists.
1a93205b
CL
3280 *
3281 * Add all populated zones of a node to the zonelist.
1da177e4 3282 */
f0c0b2b8 3283static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 3284 int nr_zones)
1da177e4 3285{
1a93205b 3286 struct zone *zone;
bc732f1d 3287 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
3288
3289 do {
2f6726e5 3290 zone_type--;
070f8032 3291 zone = pgdat->node_zones + zone_type;
1a93205b 3292 if (populated_zone(zone)) {
dd1a239f
MG
3293 zoneref_set_zone(zone,
3294 &zonelist->_zonerefs[nr_zones++]);
070f8032 3295 check_highest_zone(zone_type);
1da177e4 3296 }
2f6726e5 3297 } while (zone_type);
bc732f1d 3298
070f8032 3299 return nr_zones;
1da177e4
LT
3300}
3301
f0c0b2b8
KH
3302
3303/*
3304 * zonelist_order:
3305 * 0 = automatic detection of better ordering.
3306 * 1 = order by ([node] distance, -zonetype)
3307 * 2 = order by (-zonetype, [node] distance)
3308 *
3309 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3310 * the same zonelist. So only NUMA can configure this param.
3311 */
3312#define ZONELIST_ORDER_DEFAULT 0
3313#define ZONELIST_ORDER_NODE 1
3314#define ZONELIST_ORDER_ZONE 2
3315
3316/* zonelist order in the kernel.
3317 * set_zonelist_order() will set this to NODE or ZONE.
3318 */
3319static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3320static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3321
3322
1da177e4 3323#ifdef CONFIG_NUMA
f0c0b2b8
KH
3324/* The value user specified ....changed by config */
3325static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3326/* string for sysctl */
3327#define NUMA_ZONELIST_ORDER_LEN 16
3328char numa_zonelist_order[16] = "default";
3329
3330/*
3331 * interface for configure zonelist ordering.
3332 * command line option "numa_zonelist_order"
3333 * = "[dD]efault - default, automatic configuration.
3334 * = "[nN]ode - order by node locality, then by zone within node
3335 * = "[zZ]one - order by zone, then by locality within zone
3336 */
3337
3338static int __parse_numa_zonelist_order(char *s)
3339{
3340 if (*s == 'd' || *s == 'D') {
3341 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3342 } else if (*s == 'n' || *s == 'N') {
3343 user_zonelist_order = ZONELIST_ORDER_NODE;
3344 } else if (*s == 'z' || *s == 'Z') {
3345 user_zonelist_order = ZONELIST_ORDER_ZONE;
3346 } else {
3347 printk(KERN_WARNING
3348 "Ignoring invalid numa_zonelist_order value: "
3349 "%s\n", s);
3350 return -EINVAL;
3351 }
3352 return 0;
3353}
3354
3355static __init int setup_numa_zonelist_order(char *s)
3356{
ecb256f8
VL
3357 int ret;
3358
3359 if (!s)
3360 return 0;
3361
3362 ret = __parse_numa_zonelist_order(s);
3363 if (ret == 0)
3364 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3365
3366 return ret;
f0c0b2b8
KH
3367}
3368early_param("numa_zonelist_order", setup_numa_zonelist_order);
3369
3370/*
3371 * sysctl handler for numa_zonelist_order
3372 */
3373int numa_zonelist_order_handler(ctl_table *table, int write,
8d65af78 3374 void __user *buffer, size_t *length,
f0c0b2b8
KH
3375 loff_t *ppos)
3376{
3377 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3378 int ret;
443c6f14 3379 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3380
443c6f14 3381 mutex_lock(&zl_order_mutex);
dacbde09
CG
3382 if (write) {
3383 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3384 ret = -EINVAL;
3385 goto out;
3386 }
3387 strcpy(saved_string, (char *)table->data);
3388 }
8d65af78 3389 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 3390 if (ret)
443c6f14 3391 goto out;
f0c0b2b8
KH
3392 if (write) {
3393 int oldval = user_zonelist_order;
dacbde09
CG
3394
3395 ret = __parse_numa_zonelist_order((char *)table->data);
3396 if (ret) {
f0c0b2b8
KH
3397 /*
3398 * bogus value. restore saved string
3399 */
dacbde09 3400 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
3401 NUMA_ZONELIST_ORDER_LEN);
3402 user_zonelist_order = oldval;
4eaf3f64
HL
3403 } else if (oldval != user_zonelist_order) {
3404 mutex_lock(&zonelists_mutex);
9adb62a5 3405 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
3406 mutex_unlock(&zonelists_mutex);
3407 }
f0c0b2b8 3408 }
443c6f14
AK
3409out:
3410 mutex_unlock(&zl_order_mutex);
3411 return ret;
f0c0b2b8
KH
3412}
3413
3414
62bc62a8 3415#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
3416static int node_load[MAX_NUMNODES];
3417
1da177e4 3418/**
4dc3b16b 3419 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
3420 * @node: node whose fallback list we're appending
3421 * @used_node_mask: nodemask_t of already used nodes
3422 *
3423 * We use a number of factors to determine which is the next node that should
3424 * appear on a given node's fallback list. The node should not have appeared
3425 * already in @node's fallback list, and it should be the next closest node
3426 * according to the distance array (which contains arbitrary distance values
3427 * from each node to each node in the system), and should also prefer nodes
3428 * with no CPUs, since presumably they'll have very little allocation pressure
3429 * on them otherwise.
3430 * It returns -1 if no node is found.
3431 */
f0c0b2b8 3432static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 3433{
4cf808eb 3434 int n, val;
1da177e4 3435 int min_val = INT_MAX;
00ef2d2f 3436 int best_node = NUMA_NO_NODE;
a70f7302 3437 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 3438
4cf808eb
LT
3439 /* Use the local node if we haven't already */
3440 if (!node_isset(node, *used_node_mask)) {
3441 node_set(node, *used_node_mask);
3442 return node;
3443 }
1da177e4 3444
4b0ef1fe 3445 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
3446
3447 /* Don't want a node to appear more than once */
3448 if (node_isset(n, *used_node_mask))
3449 continue;
3450
1da177e4
LT
3451 /* Use the distance array to find the distance */
3452 val = node_distance(node, n);
3453
4cf808eb
LT
3454 /* Penalize nodes under us ("prefer the next node") */
3455 val += (n < node);
3456
1da177e4 3457 /* Give preference to headless and unused nodes */
a70f7302
RR
3458 tmp = cpumask_of_node(n);
3459 if (!cpumask_empty(tmp))
1da177e4
LT
3460 val += PENALTY_FOR_NODE_WITH_CPUS;
3461
3462 /* Slight preference for less loaded node */
3463 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3464 val += node_load[n];
3465
3466 if (val < min_val) {
3467 min_val = val;
3468 best_node = n;
3469 }
3470 }
3471
3472 if (best_node >= 0)
3473 node_set(best_node, *used_node_mask);
3474
3475 return best_node;
3476}
3477
f0c0b2b8
KH
3478
3479/*
3480 * Build zonelists ordered by node and zones within node.
3481 * This results in maximum locality--normal zone overflows into local
3482 * DMA zone, if any--but risks exhausting DMA zone.
3483 */
3484static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 3485{
f0c0b2b8 3486 int j;
1da177e4 3487 struct zonelist *zonelist;
f0c0b2b8 3488
54a6eb5c 3489 zonelist = &pgdat->node_zonelists[0];
dd1a239f 3490 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 3491 ;
bc732f1d 3492 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
3493 zonelist->_zonerefs[j].zone = NULL;
3494 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
3495}
3496
523b9458
CL
3497/*
3498 * Build gfp_thisnode zonelists
3499 */
3500static void build_thisnode_zonelists(pg_data_t *pgdat)
3501{
523b9458
CL
3502 int j;
3503 struct zonelist *zonelist;
3504
54a6eb5c 3505 zonelist = &pgdat->node_zonelists[1];
bc732f1d 3506 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
3507 zonelist->_zonerefs[j].zone = NULL;
3508 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
3509}
3510
f0c0b2b8
KH
3511/*
3512 * Build zonelists ordered by zone and nodes within zones.
3513 * This results in conserving DMA zone[s] until all Normal memory is
3514 * exhausted, but results in overflowing to remote node while memory
3515 * may still exist in local DMA zone.
3516 */
3517static int node_order[MAX_NUMNODES];
3518
3519static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3520{
f0c0b2b8
KH
3521 int pos, j, node;
3522 int zone_type; /* needs to be signed */
3523 struct zone *z;
3524 struct zonelist *zonelist;
3525
54a6eb5c
MG
3526 zonelist = &pgdat->node_zonelists[0];
3527 pos = 0;
3528 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3529 for (j = 0; j < nr_nodes; j++) {
3530 node = node_order[j];
3531 z = &NODE_DATA(node)->node_zones[zone_type];
3532 if (populated_zone(z)) {
dd1a239f
MG
3533 zoneref_set_zone(z,
3534 &zonelist->_zonerefs[pos++]);
54a6eb5c 3535 check_highest_zone(zone_type);
f0c0b2b8
KH
3536 }
3537 }
f0c0b2b8 3538 }
dd1a239f
MG
3539 zonelist->_zonerefs[pos].zone = NULL;
3540 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
3541}
3542
3543static int default_zonelist_order(void)
3544{
3545 int nid, zone_type;
b8af2941 3546 unsigned long low_kmem_size, total_size;
f0c0b2b8
KH
3547 struct zone *z;
3548 int average_size;
3549 /*
b8af2941 3550 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
f0c0b2b8
KH
3551 * If they are really small and used heavily, the system can fall
3552 * into OOM very easily.
e325c90f 3553 * This function detect ZONE_DMA/DMA32 size and configures zone order.
f0c0b2b8
KH
3554 */
3555 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3556 low_kmem_size = 0;
3557 total_size = 0;
3558 for_each_online_node(nid) {
3559 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3560 z = &NODE_DATA(nid)->node_zones[zone_type];
3561 if (populated_zone(z)) {
3562 if (zone_type < ZONE_NORMAL)
4f9f4774
JL
3563 low_kmem_size += z->managed_pages;
3564 total_size += z->managed_pages;
e325c90f
DR
3565 } else if (zone_type == ZONE_NORMAL) {
3566 /*
3567 * If any node has only lowmem, then node order
3568 * is preferred to allow kernel allocations
3569 * locally; otherwise, they can easily infringe
3570 * on other nodes when there is an abundance of
3571 * lowmem available to allocate from.
3572 */
3573 return ZONELIST_ORDER_NODE;
f0c0b2b8
KH
3574 }
3575 }
3576 }
3577 if (!low_kmem_size || /* there are no DMA area. */
3578 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3579 return ZONELIST_ORDER_NODE;
3580 /*
3581 * look into each node's config.
b8af2941
PK
3582 * If there is a node whose DMA/DMA32 memory is very big area on
3583 * local memory, NODE_ORDER may be suitable.
3584 */
37b07e41 3585 average_size = total_size /
4b0ef1fe 3586 (nodes_weight(node_states[N_MEMORY]) + 1);
f0c0b2b8
KH
3587 for_each_online_node(nid) {
3588 low_kmem_size = 0;
3589 total_size = 0;
3590 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3591 z = &NODE_DATA(nid)->node_zones[zone_type];
3592 if (populated_zone(z)) {
3593 if (zone_type < ZONE_NORMAL)
3594 low_kmem_size += z->present_pages;
3595 total_size += z->present_pages;
3596 }
3597 }
3598 if (low_kmem_size &&
3599 total_size > average_size && /* ignore small node */
3600 low_kmem_size > total_size * 70/100)
3601 return ZONELIST_ORDER_NODE;
3602 }
3603 return ZONELIST_ORDER_ZONE;
3604}
3605
3606static void set_zonelist_order(void)
3607{
3608 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3609 current_zonelist_order = default_zonelist_order();
3610 else
3611 current_zonelist_order = user_zonelist_order;
3612}
3613
3614static void build_zonelists(pg_data_t *pgdat)
3615{
3616 int j, node, load;
3617 enum zone_type i;
1da177e4 3618 nodemask_t used_mask;
f0c0b2b8
KH
3619 int local_node, prev_node;
3620 struct zonelist *zonelist;
3621 int order = current_zonelist_order;
1da177e4
LT
3622
3623 /* initialize zonelists */
523b9458 3624 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 3625 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
3626 zonelist->_zonerefs[0].zone = NULL;
3627 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
3628 }
3629
3630 /* NUMA-aware ordering of nodes */
3631 local_node = pgdat->node_id;
62bc62a8 3632 load = nr_online_nodes;
1da177e4
LT
3633 prev_node = local_node;
3634 nodes_clear(used_mask);
f0c0b2b8 3635
f0c0b2b8
KH
3636 memset(node_order, 0, sizeof(node_order));
3637 j = 0;
3638
1da177e4
LT
3639 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3640 /*
3641 * We don't want to pressure a particular node.
3642 * So adding penalty to the first node in same
3643 * distance group to make it round-robin.
3644 */
957f822a
DR
3645 if (node_distance(local_node, node) !=
3646 node_distance(local_node, prev_node))
f0c0b2b8
KH
3647 node_load[node] = load;
3648
1da177e4
LT
3649 prev_node = node;
3650 load--;
f0c0b2b8
KH
3651 if (order == ZONELIST_ORDER_NODE)
3652 build_zonelists_in_node_order(pgdat, node);
3653 else
3654 node_order[j++] = node; /* remember order */
3655 }
1da177e4 3656
f0c0b2b8
KH
3657 if (order == ZONELIST_ORDER_ZONE) {
3658 /* calculate node order -- i.e., DMA last! */
3659 build_zonelists_in_zone_order(pgdat, j);
1da177e4 3660 }
523b9458
CL
3661
3662 build_thisnode_zonelists(pgdat);
1da177e4
LT
3663}
3664
9276b1bc 3665/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 3666static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3667{
54a6eb5c
MG
3668 struct zonelist *zonelist;
3669 struct zonelist_cache *zlc;
dd1a239f 3670 struct zoneref *z;
9276b1bc 3671
54a6eb5c
MG
3672 zonelist = &pgdat->node_zonelists[0];
3673 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3674 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
3675 for (z = zonelist->_zonerefs; z->zone; z++)
3676 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
3677}
3678
7aac7898
LS
3679#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3680/*
3681 * Return node id of node used for "local" allocations.
3682 * I.e., first node id of first zone in arg node's generic zonelist.
3683 * Used for initializing percpu 'numa_mem', which is used primarily
3684 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3685 */
3686int local_memory_node(int node)
3687{
3688 struct zone *zone;
3689
3690 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3691 gfp_zone(GFP_KERNEL),
3692 NULL,
3693 &zone);
3694 return zone->node;
3695}
3696#endif
f0c0b2b8 3697
1da177e4
LT
3698#else /* CONFIG_NUMA */
3699
f0c0b2b8
KH
3700static void set_zonelist_order(void)
3701{
3702 current_zonelist_order = ZONELIST_ORDER_ZONE;
3703}
3704
3705static void build_zonelists(pg_data_t *pgdat)
1da177e4 3706{
19655d34 3707 int node, local_node;
54a6eb5c
MG
3708 enum zone_type j;
3709 struct zonelist *zonelist;
1da177e4
LT
3710
3711 local_node = pgdat->node_id;
1da177e4 3712
54a6eb5c 3713 zonelist = &pgdat->node_zonelists[0];
bc732f1d 3714 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 3715
54a6eb5c
MG
3716 /*
3717 * Now we build the zonelist so that it contains the zones
3718 * of all the other nodes.
3719 * We don't want to pressure a particular node, so when
3720 * building the zones for node N, we make sure that the
3721 * zones coming right after the local ones are those from
3722 * node N+1 (modulo N)
3723 */
3724 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3725 if (!node_online(node))
3726 continue;
bc732f1d 3727 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 3728 }
54a6eb5c
MG
3729 for (node = 0; node < local_node; node++) {
3730 if (!node_online(node))
3731 continue;
bc732f1d 3732 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
3733 }
3734
dd1a239f
MG
3735 zonelist->_zonerefs[j].zone = NULL;
3736 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3737}
3738
9276b1bc 3739/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3740static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3741{
54a6eb5c 3742 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3743}
3744
1da177e4
LT
3745#endif /* CONFIG_NUMA */
3746
99dcc3e5
CL
3747/*
3748 * Boot pageset table. One per cpu which is going to be used for all
3749 * zones and all nodes. The parameters will be set in such a way
3750 * that an item put on a list will immediately be handed over to
3751 * the buddy list. This is safe since pageset manipulation is done
3752 * with interrupts disabled.
3753 *
3754 * The boot_pagesets must be kept even after bootup is complete for
3755 * unused processors and/or zones. They do play a role for bootstrapping
3756 * hotplugged processors.
3757 *
3758 * zoneinfo_show() and maybe other functions do
3759 * not check if the processor is online before following the pageset pointer.
3760 * Other parts of the kernel may not check if the zone is available.
3761 */
3762static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3763static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3764static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3765
4eaf3f64
HL
3766/*
3767 * Global mutex to protect against size modification of zonelists
3768 * as well as to serialize pageset setup for the new populated zone.
3769 */
3770DEFINE_MUTEX(zonelists_mutex);
3771
9b1a4d38 3772/* return values int ....just for stop_machine() */
4ed7e022 3773static int __build_all_zonelists(void *data)
1da177e4 3774{
6811378e 3775 int nid;
99dcc3e5 3776 int cpu;
9adb62a5 3777 pg_data_t *self = data;
9276b1bc 3778
7f9cfb31
BL
3779#ifdef CONFIG_NUMA
3780 memset(node_load, 0, sizeof(node_load));
3781#endif
9adb62a5
JL
3782
3783 if (self && !node_online(self->node_id)) {
3784 build_zonelists(self);
3785 build_zonelist_cache(self);
3786 }
3787
9276b1bc 3788 for_each_online_node(nid) {
7ea1530a
CL
3789 pg_data_t *pgdat = NODE_DATA(nid);
3790
3791 build_zonelists(pgdat);
3792 build_zonelist_cache(pgdat);
9276b1bc 3793 }
99dcc3e5
CL
3794
3795 /*
3796 * Initialize the boot_pagesets that are going to be used
3797 * for bootstrapping processors. The real pagesets for
3798 * each zone will be allocated later when the per cpu
3799 * allocator is available.
3800 *
3801 * boot_pagesets are used also for bootstrapping offline
3802 * cpus if the system is already booted because the pagesets
3803 * are needed to initialize allocators on a specific cpu too.
3804 * F.e. the percpu allocator needs the page allocator which
3805 * needs the percpu allocator in order to allocate its pagesets
3806 * (a chicken-egg dilemma).
3807 */
7aac7898 3808 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3809 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3810
7aac7898
LS
3811#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3812 /*
3813 * We now know the "local memory node" for each node--
3814 * i.e., the node of the first zone in the generic zonelist.
3815 * Set up numa_mem percpu variable for on-line cpus. During
3816 * boot, only the boot cpu should be on-line; we'll init the
3817 * secondary cpus' numa_mem as they come on-line. During
3818 * node/memory hotplug, we'll fixup all on-line cpus.
3819 */
3820 if (cpu_online(cpu))
3821 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3822#endif
3823 }
3824
6811378e
YG
3825 return 0;
3826}
3827
4eaf3f64
HL
3828/*
3829 * Called with zonelists_mutex held always
3830 * unless system_state == SYSTEM_BOOTING.
3831 */
9adb62a5 3832void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 3833{
f0c0b2b8
KH
3834 set_zonelist_order();
3835
6811378e 3836 if (system_state == SYSTEM_BOOTING) {
423b41d7 3837 __build_all_zonelists(NULL);
68ad8df4 3838 mminit_verify_zonelist();
6811378e
YG
3839 cpuset_init_current_mems_allowed();
3840 } else {
e9959f0f 3841#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
3842 if (zone)
3843 setup_zone_pageset(zone);
e9959f0f 3844#endif
dd1895e2
CS
3845 /* we have to stop all cpus to guarantee there is no user
3846 of zonelist */
9adb62a5 3847 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
3848 /* cpuset refresh routine should be here */
3849 }
bd1e22b8 3850 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3851 /*
3852 * Disable grouping by mobility if the number of pages in the
3853 * system is too low to allow the mechanism to work. It would be
3854 * more accurate, but expensive to check per-zone. This check is
3855 * made on memory-hotadd so a system can start with mobility
3856 * disabled and enable it later
3857 */
d9c23400 3858 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3859 page_group_by_mobility_disabled = 1;
3860 else
3861 page_group_by_mobility_disabled = 0;
3862
3863 printk("Built %i zonelists in %s order, mobility grouping %s. "
3864 "Total pages: %ld\n",
62bc62a8 3865 nr_online_nodes,
f0c0b2b8 3866 zonelist_order_name[current_zonelist_order],
9ef9acb0 3867 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3868 vm_total_pages);
3869#ifdef CONFIG_NUMA
3870 printk("Policy zone: %s\n", zone_names[policy_zone]);
3871#endif
1da177e4
LT
3872}
3873
3874/*
3875 * Helper functions to size the waitqueue hash table.
3876 * Essentially these want to choose hash table sizes sufficiently
3877 * large so that collisions trying to wait on pages are rare.
3878 * But in fact, the number of active page waitqueues on typical
3879 * systems is ridiculously low, less than 200. So this is even
3880 * conservative, even though it seems large.
3881 *
3882 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3883 * waitqueues, i.e. the size of the waitq table given the number of pages.
3884 */
3885#define PAGES_PER_WAITQUEUE 256
3886
cca448fe 3887#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3888static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3889{
3890 unsigned long size = 1;
3891
3892 pages /= PAGES_PER_WAITQUEUE;
3893
3894 while (size < pages)
3895 size <<= 1;
3896
3897 /*
3898 * Once we have dozens or even hundreds of threads sleeping
3899 * on IO we've got bigger problems than wait queue collision.
3900 * Limit the size of the wait table to a reasonable size.
3901 */
3902 size = min(size, 4096UL);
3903
3904 return max(size, 4UL);
3905}
cca448fe
YG
3906#else
3907/*
3908 * A zone's size might be changed by hot-add, so it is not possible to determine
3909 * a suitable size for its wait_table. So we use the maximum size now.
3910 *
3911 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3912 *
3913 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3914 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3915 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3916 *
3917 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3918 * or more by the traditional way. (See above). It equals:
3919 *
3920 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3921 * ia64(16K page size) : = ( 8G + 4M)byte.
3922 * powerpc (64K page size) : = (32G +16M)byte.
3923 */
3924static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3925{
3926 return 4096UL;
3927}
3928#endif
1da177e4
LT
3929
3930/*
3931 * This is an integer logarithm so that shifts can be used later
3932 * to extract the more random high bits from the multiplicative
3933 * hash function before the remainder is taken.
3934 */
3935static inline unsigned long wait_table_bits(unsigned long size)
3936{
3937 return ffz(~size);
3938}
3939
6d3163ce
AH
3940/*
3941 * Check if a pageblock contains reserved pages
3942 */
3943static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3944{
3945 unsigned long pfn;
3946
3947 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3948 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3949 return 1;
3950 }
3951 return 0;
3952}
3953
56fd56b8 3954/*
d9c23400 3955 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
3956 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3957 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
3958 * higher will lead to a bigger reserve which will get freed as contiguous
3959 * blocks as reclaim kicks in
3960 */
3961static void setup_zone_migrate_reserve(struct zone *zone)
3962{
6d3163ce 3963 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 3964 struct page *page;
78986a67
MG
3965 unsigned long block_migratetype;
3966 int reserve;
943dca1a 3967 int old_reserve;
56fd56b8 3968
d0215638
MH
3969 /*
3970 * Get the start pfn, end pfn and the number of blocks to reserve
3971 * We have to be careful to be aligned to pageblock_nr_pages to
3972 * make sure that we always check pfn_valid for the first page in
3973 * the block.
3974 */
56fd56b8 3975 start_pfn = zone->zone_start_pfn;
108bcc96 3976 end_pfn = zone_end_pfn(zone);
d0215638 3977 start_pfn = roundup(start_pfn, pageblock_nr_pages);
41858966 3978 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 3979 pageblock_order;
56fd56b8 3980
78986a67
MG
3981 /*
3982 * Reserve blocks are generally in place to help high-order atomic
3983 * allocations that are short-lived. A min_free_kbytes value that
3984 * would result in more than 2 reserve blocks for atomic allocations
3985 * is assumed to be in place to help anti-fragmentation for the
3986 * future allocation of hugepages at runtime.
3987 */
3988 reserve = min(2, reserve);
943dca1a
YI
3989 old_reserve = zone->nr_migrate_reserve_block;
3990
3991 /* When memory hot-add, we almost always need to do nothing */
3992 if (reserve == old_reserve)
3993 return;
3994 zone->nr_migrate_reserve_block = reserve;
78986a67 3995
d9c23400 3996 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
3997 if (!pfn_valid(pfn))
3998 continue;
3999 page = pfn_to_page(pfn);
4000
344c790e
AL
4001 /* Watch out for overlapping nodes */
4002 if (page_to_nid(page) != zone_to_nid(zone))
4003 continue;
4004
56fd56b8
MG
4005 block_migratetype = get_pageblock_migratetype(page);
4006
938929f1
MG
4007 /* Only test what is necessary when the reserves are not met */
4008 if (reserve > 0) {
4009 /*
4010 * Blocks with reserved pages will never free, skip
4011 * them.
4012 */
4013 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4014 if (pageblock_is_reserved(pfn, block_end_pfn))
4015 continue;
56fd56b8 4016
938929f1
MG
4017 /* If this block is reserved, account for it */
4018 if (block_migratetype == MIGRATE_RESERVE) {
4019 reserve--;
4020 continue;
4021 }
4022
4023 /* Suitable for reserving if this block is movable */
4024 if (block_migratetype == MIGRATE_MOVABLE) {
4025 set_pageblock_migratetype(page,
4026 MIGRATE_RESERVE);
4027 move_freepages_block(zone, page,
4028 MIGRATE_RESERVE);
4029 reserve--;
4030 continue;
4031 }
943dca1a
YI
4032 } else if (!old_reserve) {
4033 /*
4034 * At boot time we don't need to scan the whole zone
4035 * for turning off MIGRATE_RESERVE.
4036 */
4037 break;
56fd56b8
MG
4038 }
4039
4040 /*
4041 * If the reserve is met and this is a previous reserved block,
4042 * take it back
4043 */
4044 if (block_migratetype == MIGRATE_RESERVE) {
4045 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4046 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4047 }
4048 }
4049}
ac0e5b7a 4050
1da177e4
LT
4051/*
4052 * Initially all pages are reserved - free ones are freed
4053 * up by free_all_bootmem() once the early boot process is
4054 * done. Non-atomic initialization, single-pass.
4055 */
c09b4240 4056void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 4057 unsigned long start_pfn, enum memmap_context context)
1da177e4 4058{
1da177e4 4059 struct page *page;
29751f69
AW
4060 unsigned long end_pfn = start_pfn + size;
4061 unsigned long pfn;
86051ca5 4062 struct zone *z;
1da177e4 4063
22b31eec
HD
4064 if (highest_memmap_pfn < end_pfn - 1)
4065 highest_memmap_pfn = end_pfn - 1;
4066
86051ca5 4067 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 4068 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
4069 /*
4070 * There can be holes in boot-time mem_map[]s
4071 * handed to this function. They do not
4072 * exist on hotplugged memory.
4073 */
4074 if (context == MEMMAP_EARLY) {
4075 if (!early_pfn_valid(pfn))
4076 continue;
4077 if (!early_pfn_in_nid(pfn, nid))
4078 continue;
4079 }
d41dee36
AW
4080 page = pfn_to_page(pfn);
4081 set_page_links(page, zone, nid, pfn);
708614e6 4082 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 4083 init_page_count(page);
22b751c3 4084 page_mapcount_reset(page);
90572890 4085 page_cpupid_reset_last(page);
1da177e4 4086 SetPageReserved(page);
b2a0ac88
MG
4087 /*
4088 * Mark the block movable so that blocks are reserved for
4089 * movable at startup. This will force kernel allocations
4090 * to reserve their blocks rather than leaking throughout
4091 * the address space during boot when many long-lived
56fd56b8
MG
4092 * kernel allocations are made. Later some blocks near
4093 * the start are marked MIGRATE_RESERVE by
4094 * setup_zone_migrate_reserve()
86051ca5
KH
4095 *
4096 * bitmap is created for zone's valid pfn range. but memmap
4097 * can be created for invalid pages (for alignment)
4098 * check here not to call set_pageblock_migratetype() against
4099 * pfn out of zone.
b2a0ac88 4100 */
86051ca5 4101 if ((z->zone_start_pfn <= pfn)
108bcc96 4102 && (pfn < zone_end_pfn(z))
86051ca5 4103 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 4104 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 4105
1da177e4
LT
4106 INIT_LIST_HEAD(&page->lru);
4107#ifdef WANT_PAGE_VIRTUAL
4108 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4109 if (!is_highmem_idx(zone))
3212c6be 4110 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 4111#endif
1da177e4
LT
4112 }
4113}
4114
1e548deb 4115static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 4116{
b2a0ac88
MG
4117 int order, t;
4118 for_each_migratetype_order(order, t) {
4119 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
4120 zone->free_area[order].nr_free = 0;
4121 }
4122}
4123
4124#ifndef __HAVE_ARCH_MEMMAP_INIT
4125#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 4126 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
4127#endif
4128
4ed7e022 4129static int __meminit zone_batchsize(struct zone *zone)
e7c8d5c9 4130{
3a6be87f 4131#ifdef CONFIG_MMU
e7c8d5c9
CL
4132 int batch;
4133
4134 /*
4135 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 4136 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
4137 *
4138 * OK, so we don't know how big the cache is. So guess.
4139 */
b40da049 4140 batch = zone->managed_pages / 1024;
ba56e91c
SR
4141 if (batch * PAGE_SIZE > 512 * 1024)
4142 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
4143 batch /= 4; /* We effectively *= 4 below */
4144 if (batch < 1)
4145 batch = 1;
4146
4147 /*
0ceaacc9
NP
4148 * Clamp the batch to a 2^n - 1 value. Having a power
4149 * of 2 value was found to be more likely to have
4150 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 4151 *
0ceaacc9
NP
4152 * For example if 2 tasks are alternately allocating
4153 * batches of pages, one task can end up with a lot
4154 * of pages of one half of the possible page colors
4155 * and the other with pages of the other colors.
e7c8d5c9 4156 */
9155203a 4157 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 4158
e7c8d5c9 4159 return batch;
3a6be87f
DH
4160
4161#else
4162 /* The deferral and batching of frees should be suppressed under NOMMU
4163 * conditions.
4164 *
4165 * The problem is that NOMMU needs to be able to allocate large chunks
4166 * of contiguous memory as there's no hardware page translation to
4167 * assemble apparent contiguous memory from discontiguous pages.
4168 *
4169 * Queueing large contiguous runs of pages for batching, however,
4170 * causes the pages to actually be freed in smaller chunks. As there
4171 * can be a significant delay between the individual batches being
4172 * recycled, this leads to the once large chunks of space being
4173 * fragmented and becoming unavailable for high-order allocations.
4174 */
4175 return 0;
4176#endif
e7c8d5c9
CL
4177}
4178
8d7a8fa9
CS
4179/*
4180 * pcp->high and pcp->batch values are related and dependent on one another:
4181 * ->batch must never be higher then ->high.
4182 * The following function updates them in a safe manner without read side
4183 * locking.
4184 *
4185 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4186 * those fields changing asynchronously (acording the the above rule).
4187 *
4188 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4189 * outside of boot time (or some other assurance that no concurrent updaters
4190 * exist).
4191 */
4192static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4193 unsigned long batch)
4194{
4195 /* start with a fail safe value for batch */
4196 pcp->batch = 1;
4197 smp_wmb();
4198
4199 /* Update high, then batch, in order */
4200 pcp->high = high;
4201 smp_wmb();
4202
4203 pcp->batch = batch;
4204}
4205
3664033c 4206/* a companion to pageset_set_high() */
4008bab7
CS
4207static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4208{
8d7a8fa9 4209 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
4210}
4211
88c90dbc 4212static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
4213{
4214 struct per_cpu_pages *pcp;
5f8dcc21 4215 int migratetype;
2caaad41 4216
1c6fe946
MD
4217 memset(p, 0, sizeof(*p));
4218
3dfa5721 4219 pcp = &p->pcp;
2caaad41 4220 pcp->count = 0;
5f8dcc21
MG
4221 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4222 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4223}
4224
88c90dbc
CS
4225static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4226{
4227 pageset_init(p);
4228 pageset_set_batch(p, batch);
4229}
4230
8ad4b1fb 4231/*
3664033c 4232 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
4233 * to the value high for the pageset p.
4234 */
3664033c 4235static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
4236 unsigned long high)
4237{
8d7a8fa9
CS
4238 unsigned long batch = max(1UL, high / 4);
4239 if ((high / 4) > (PAGE_SHIFT * 8))
4240 batch = PAGE_SHIFT * 8;
8ad4b1fb 4241
8d7a8fa9 4242 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
4243}
4244
169f6c19
CS
4245static void __meminit pageset_set_high_and_batch(struct zone *zone,
4246 struct per_cpu_pageset *pcp)
56cef2b8 4247{
56cef2b8 4248 if (percpu_pagelist_fraction)
3664033c 4249 pageset_set_high(pcp,
56cef2b8
CS
4250 (zone->managed_pages /
4251 percpu_pagelist_fraction));
4252 else
4253 pageset_set_batch(pcp, zone_batchsize(zone));
4254}
4255
169f6c19
CS
4256static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4257{
4258 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4259
4260 pageset_init(pcp);
4261 pageset_set_high_and_batch(zone, pcp);
4262}
4263
4ed7e022 4264static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4265{
4266 int cpu;
319774e2 4267 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
4268 for_each_possible_cpu(cpu)
4269 zone_pageset_init(zone, cpu);
319774e2
WF
4270}
4271
2caaad41 4272/*
99dcc3e5
CL
4273 * Allocate per cpu pagesets and initialize them.
4274 * Before this call only boot pagesets were available.
e7c8d5c9 4275 */
99dcc3e5 4276void __init setup_per_cpu_pageset(void)
e7c8d5c9 4277{
99dcc3e5 4278 struct zone *zone;
e7c8d5c9 4279
319774e2
WF
4280 for_each_populated_zone(zone)
4281 setup_zone_pageset(zone);
e7c8d5c9
CL
4282}
4283
577a32f6 4284static noinline __init_refok
cca448fe 4285int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4286{
4287 int i;
cca448fe 4288 size_t alloc_size;
ed8ece2e
DH
4289
4290 /*
4291 * The per-page waitqueue mechanism uses hashed waitqueues
4292 * per zone.
4293 */
02b694de
YG
4294 zone->wait_table_hash_nr_entries =
4295 wait_table_hash_nr_entries(zone_size_pages);
4296 zone->wait_table_bits =
4297 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4298 alloc_size = zone->wait_table_hash_nr_entries
4299 * sizeof(wait_queue_head_t);
4300
cd94b9db 4301 if (!slab_is_available()) {
cca448fe 4302 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
4303 memblock_virt_alloc_node_nopanic(
4304 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
4305 } else {
4306 /*
4307 * This case means that a zone whose size was 0 gets new memory
4308 * via memory hot-add.
4309 * But it may be the case that a new node was hot-added. In
4310 * this case vmalloc() will not be able to use this new node's
4311 * memory - this wait_table must be initialized to use this new
4312 * node itself as well.
4313 * To use this new node's memory, further consideration will be
4314 * necessary.
4315 */
8691f3a7 4316 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4317 }
4318 if (!zone->wait_table)
4319 return -ENOMEM;
ed8ece2e 4320
b8af2941 4321 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4322 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4323
4324 return 0;
ed8ece2e
DH
4325}
4326
c09b4240 4327static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4328{
99dcc3e5
CL
4329 /*
4330 * per cpu subsystem is not up at this point. The following code
4331 * relies on the ability of the linker to provide the
4332 * offset of a (static) per cpu variable into the per cpu area.
4333 */
4334 zone->pageset = &boot_pageset;
ed8ece2e 4335
b38a8725 4336 if (populated_zone(zone))
99dcc3e5
CL
4337 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4338 zone->name, zone->present_pages,
4339 zone_batchsize(zone));
ed8ece2e
DH
4340}
4341
4ed7e022 4342int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4343 unsigned long zone_start_pfn,
a2f3aa02
DH
4344 unsigned long size,
4345 enum memmap_context context)
ed8ece2e
DH
4346{
4347 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4348 int ret;
4349 ret = zone_wait_table_init(zone, size);
4350 if (ret)
4351 return ret;
ed8ece2e
DH
4352 pgdat->nr_zones = zone_idx(zone) + 1;
4353
ed8ece2e
DH
4354 zone->zone_start_pfn = zone_start_pfn;
4355
708614e6
MG
4356 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4357 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4358 pgdat->node_id,
4359 (unsigned long)zone_idx(zone),
4360 zone_start_pfn, (zone_start_pfn + size));
4361
1e548deb 4362 zone_init_free_lists(zone);
718127cc
YG
4363
4364 return 0;
ed8ece2e
DH
4365}
4366
0ee332c1 4367#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d
MG
4368#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4369/*
4370 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4371 * Architectures may implement their own version but if add_active_range()
4372 * was used and there are no special requirements, this is a convenient
4373 * alternative
4374 */
f2dbcfa7 4375int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d 4376{
c13291a5 4377 unsigned long start_pfn, end_pfn;
e76b63f8 4378 int nid;
7c243c71
RA
4379 /*
4380 * NOTE: The following SMP-unsafe globals are only used early in boot
4381 * when the kernel is running single-threaded.
4382 */
4383 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4384 static int __meminitdata last_nid;
4385
4386 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4387 return last_nid;
c713216d 4388
e76b63f8
YL
4389 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4390 if (nid != -1) {
4391 last_start_pfn = start_pfn;
4392 last_end_pfn = end_pfn;
4393 last_nid = nid;
4394 }
4395
4396 return nid;
c713216d
MG
4397}
4398#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4399
f2dbcfa7
KH
4400int __meminit early_pfn_to_nid(unsigned long pfn)
4401{
cc2559bc
KH
4402 int nid;
4403
4404 nid = __early_pfn_to_nid(pfn);
4405 if (nid >= 0)
4406 return nid;
4407 /* just returns 0 */
4408 return 0;
f2dbcfa7
KH
4409}
4410
cc2559bc
KH
4411#ifdef CONFIG_NODES_SPAN_OTHER_NODES
4412bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4413{
4414 int nid;
4415
4416 nid = __early_pfn_to_nid(pfn);
4417 if (nid >= 0 && nid != node)
4418 return false;
4419 return true;
4420}
4421#endif
f2dbcfa7 4422
c713216d 4423/**
6782832e 4424 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 4425 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 4426 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d
MG
4427 *
4428 * If an architecture guarantees that all ranges registered with
4429 * add_active_ranges() contain no holes and may be freed, this
6782832e
SS
4430 * this function may be used instead of calling memblock_free_early_nid()
4431 * manually.
c713216d 4432 */
c13291a5 4433void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4434{
c13291a5
TH
4435 unsigned long start_pfn, end_pfn;
4436 int i, this_nid;
edbe7d23 4437
c13291a5
TH
4438 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4439 start_pfn = min(start_pfn, max_low_pfn);
4440 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4441
c13291a5 4442 if (start_pfn < end_pfn)
6782832e
SS
4443 memblock_free_early_nid(PFN_PHYS(start_pfn),
4444 (end_pfn - start_pfn) << PAGE_SHIFT,
4445 this_nid);
edbe7d23 4446 }
edbe7d23 4447}
edbe7d23 4448
c713216d
MG
4449/**
4450 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4451 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
4452 *
4453 * If an architecture guarantees that all ranges registered with
4454 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 4455 * function may be used instead of calling memory_present() manually.
c713216d
MG
4456 */
4457void __init sparse_memory_present_with_active_regions(int nid)
4458{
c13291a5
TH
4459 unsigned long start_pfn, end_pfn;
4460 int i, this_nid;
c713216d 4461
c13291a5
TH
4462 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4463 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4464}
4465
4466/**
4467 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4468 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4469 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4470 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4471 *
4472 * It returns the start and end page frame of a node based on information
4473 * provided by an arch calling add_active_range(). If called for a node
4474 * with no available memory, a warning is printed and the start and end
88ca3b94 4475 * PFNs will be 0.
c713216d 4476 */
a3142c8e 4477void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4478 unsigned long *start_pfn, unsigned long *end_pfn)
4479{
c13291a5 4480 unsigned long this_start_pfn, this_end_pfn;
c713216d 4481 int i;
c13291a5 4482
c713216d
MG
4483 *start_pfn = -1UL;
4484 *end_pfn = 0;
4485
c13291a5
TH
4486 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4487 *start_pfn = min(*start_pfn, this_start_pfn);
4488 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4489 }
4490
633c0666 4491 if (*start_pfn == -1UL)
c713216d 4492 *start_pfn = 0;
c713216d
MG
4493}
4494
2a1e274a
MG
4495/*
4496 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4497 * assumption is made that zones within a node are ordered in monotonic
4498 * increasing memory addresses so that the "highest" populated zone is used
4499 */
b69a7288 4500static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4501{
4502 int zone_index;
4503 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4504 if (zone_index == ZONE_MOVABLE)
4505 continue;
4506
4507 if (arch_zone_highest_possible_pfn[zone_index] >
4508 arch_zone_lowest_possible_pfn[zone_index])
4509 break;
4510 }
4511
4512 VM_BUG_ON(zone_index == -1);
4513 movable_zone = zone_index;
4514}
4515
4516/*
4517 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4518 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4519 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4520 * in each node depending on the size of each node and how evenly kernelcore
4521 * is distributed. This helper function adjusts the zone ranges
4522 * provided by the architecture for a given node by using the end of the
4523 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4524 * zones within a node are in order of monotonic increases memory addresses
4525 */
b69a7288 4526static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4527 unsigned long zone_type,
4528 unsigned long node_start_pfn,
4529 unsigned long node_end_pfn,
4530 unsigned long *zone_start_pfn,
4531 unsigned long *zone_end_pfn)
4532{
4533 /* Only adjust if ZONE_MOVABLE is on this node */
4534 if (zone_movable_pfn[nid]) {
4535 /* Size ZONE_MOVABLE */
4536 if (zone_type == ZONE_MOVABLE) {
4537 *zone_start_pfn = zone_movable_pfn[nid];
4538 *zone_end_pfn = min(node_end_pfn,
4539 arch_zone_highest_possible_pfn[movable_zone]);
4540
4541 /* Adjust for ZONE_MOVABLE starting within this range */
4542 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4543 *zone_end_pfn > zone_movable_pfn[nid]) {
4544 *zone_end_pfn = zone_movable_pfn[nid];
4545
4546 /* Check if this whole range is within ZONE_MOVABLE */
4547 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4548 *zone_start_pfn = *zone_end_pfn;
4549 }
4550}
4551
c713216d
MG
4552/*
4553 * Return the number of pages a zone spans in a node, including holes
4554 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4555 */
6ea6e688 4556static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4557 unsigned long zone_type,
7960aedd
ZY
4558 unsigned long node_start_pfn,
4559 unsigned long node_end_pfn,
c713216d
MG
4560 unsigned long *ignored)
4561{
c713216d
MG
4562 unsigned long zone_start_pfn, zone_end_pfn;
4563
7960aedd 4564 /* Get the start and end of the zone */
c713216d
MG
4565 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4566 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
4567 adjust_zone_range_for_zone_movable(nid, zone_type,
4568 node_start_pfn, node_end_pfn,
4569 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
4570
4571 /* Check that this node has pages within the zone's required range */
4572 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4573 return 0;
4574
4575 /* Move the zone boundaries inside the node if necessary */
4576 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4577 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4578
4579 /* Return the spanned pages */
4580 return zone_end_pfn - zone_start_pfn;
4581}
4582
4583/*
4584 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 4585 * then all holes in the requested range will be accounted for.
c713216d 4586 */
32996250 4587unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
4588 unsigned long range_start_pfn,
4589 unsigned long range_end_pfn)
4590{
96e907d1
TH
4591 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4592 unsigned long start_pfn, end_pfn;
4593 int i;
c713216d 4594
96e907d1
TH
4595 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4596 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4597 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4598 nr_absent -= end_pfn - start_pfn;
c713216d 4599 }
96e907d1 4600 return nr_absent;
c713216d
MG
4601}
4602
4603/**
4604 * absent_pages_in_range - Return number of page frames in holes within a range
4605 * @start_pfn: The start PFN to start searching for holes
4606 * @end_pfn: The end PFN to stop searching for holes
4607 *
88ca3b94 4608 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
4609 */
4610unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4611 unsigned long end_pfn)
4612{
4613 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4614}
4615
4616/* Return the number of page frames in holes in a zone on a node */
6ea6e688 4617static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 4618 unsigned long zone_type,
7960aedd
ZY
4619 unsigned long node_start_pfn,
4620 unsigned long node_end_pfn,
c713216d
MG
4621 unsigned long *ignored)
4622{
96e907d1
TH
4623 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4624 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
4625 unsigned long zone_start_pfn, zone_end_pfn;
4626
96e907d1
TH
4627 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4628 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 4629
2a1e274a
MG
4630 adjust_zone_range_for_zone_movable(nid, zone_type,
4631 node_start_pfn, node_end_pfn,
4632 &zone_start_pfn, &zone_end_pfn);
9c7cd687 4633 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 4634}
0e0b864e 4635
0ee332c1 4636#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 4637static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4638 unsigned long zone_type,
7960aedd
ZY
4639 unsigned long node_start_pfn,
4640 unsigned long node_end_pfn,
c713216d
MG
4641 unsigned long *zones_size)
4642{
4643 return zones_size[zone_type];
4644}
4645
6ea6e688 4646static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 4647 unsigned long zone_type,
7960aedd
ZY
4648 unsigned long node_start_pfn,
4649 unsigned long node_end_pfn,
c713216d
MG
4650 unsigned long *zholes_size)
4651{
4652 if (!zholes_size)
4653 return 0;
4654
4655 return zholes_size[zone_type];
4656}
20e6926d 4657
0ee332c1 4658#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4659
a3142c8e 4660static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
4661 unsigned long node_start_pfn,
4662 unsigned long node_end_pfn,
4663 unsigned long *zones_size,
4664 unsigned long *zholes_size)
c713216d
MG
4665{
4666 unsigned long realtotalpages, totalpages = 0;
4667 enum zone_type i;
4668
4669 for (i = 0; i < MAX_NR_ZONES; i++)
4670 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
4671 node_start_pfn,
4672 node_end_pfn,
4673 zones_size);
c713216d
MG
4674 pgdat->node_spanned_pages = totalpages;
4675
4676 realtotalpages = totalpages;
4677 for (i = 0; i < MAX_NR_ZONES; i++)
4678 realtotalpages -=
4679 zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
4680 node_start_pfn, node_end_pfn,
4681 zholes_size);
c713216d
MG
4682 pgdat->node_present_pages = realtotalpages;
4683 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4684 realtotalpages);
4685}
4686
835c134e
MG
4687#ifndef CONFIG_SPARSEMEM
4688/*
4689 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4690 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4691 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4692 * round what is now in bits to nearest long in bits, then return it in
4693 * bytes.
4694 */
7c45512d 4695static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
4696{
4697 unsigned long usemapsize;
4698
7c45512d 4699 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
4700 usemapsize = roundup(zonesize, pageblock_nr_pages);
4701 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4702 usemapsize *= NR_PAGEBLOCK_BITS;
4703 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4704
4705 return usemapsize / 8;
4706}
4707
4708static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
4709 struct zone *zone,
4710 unsigned long zone_start_pfn,
4711 unsigned long zonesize)
835c134e 4712{
7c45512d 4713 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 4714 zone->pageblock_flags = NULL;
58a01a45 4715 if (usemapsize)
6782832e
SS
4716 zone->pageblock_flags =
4717 memblock_virt_alloc_node_nopanic(usemapsize,
4718 pgdat->node_id);
835c134e
MG
4719}
4720#else
7c45512d
LT
4721static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4722 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
4723#endif /* CONFIG_SPARSEMEM */
4724
d9c23400 4725#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 4726
d9c23400 4727/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 4728void __paginginit set_pageblock_order(void)
d9c23400 4729{
955c1cd7
AM
4730 unsigned int order;
4731
d9c23400
MG
4732 /* Check that pageblock_nr_pages has not already been setup */
4733 if (pageblock_order)
4734 return;
4735
955c1cd7
AM
4736 if (HPAGE_SHIFT > PAGE_SHIFT)
4737 order = HUGETLB_PAGE_ORDER;
4738 else
4739 order = MAX_ORDER - 1;
4740
d9c23400
MG
4741 /*
4742 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
4743 * This value may be variable depending on boot parameters on IA64 and
4744 * powerpc.
d9c23400
MG
4745 */
4746 pageblock_order = order;
4747}
4748#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4749
ba72cb8c
MG
4750/*
4751 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
4752 * is unused as pageblock_order is set at compile-time. See
4753 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4754 * the kernel config
ba72cb8c 4755 */
15ca220e 4756void __paginginit set_pageblock_order(void)
ba72cb8c 4757{
ba72cb8c 4758}
d9c23400
MG
4759
4760#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4761
01cefaef
JL
4762static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4763 unsigned long present_pages)
4764{
4765 unsigned long pages = spanned_pages;
4766
4767 /*
4768 * Provide a more accurate estimation if there are holes within
4769 * the zone and SPARSEMEM is in use. If there are holes within the
4770 * zone, each populated memory region may cost us one or two extra
4771 * memmap pages due to alignment because memmap pages for each
4772 * populated regions may not naturally algined on page boundary.
4773 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4774 */
4775 if (spanned_pages > present_pages + (present_pages >> 4) &&
4776 IS_ENABLED(CONFIG_SPARSEMEM))
4777 pages = present_pages;
4778
4779 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4780}
4781
1da177e4
LT
4782/*
4783 * Set up the zone data structures:
4784 * - mark all pages reserved
4785 * - mark all memory queues empty
4786 * - clear the memory bitmaps
6527af5d
MK
4787 *
4788 * NOTE: pgdat should get zeroed by caller.
1da177e4 4789 */
b5a0e011 4790static void __paginginit free_area_init_core(struct pglist_data *pgdat,
7960aedd 4791 unsigned long node_start_pfn, unsigned long node_end_pfn,
1da177e4
LT
4792 unsigned long *zones_size, unsigned long *zholes_size)
4793{
2f1b6248 4794 enum zone_type j;
ed8ece2e 4795 int nid = pgdat->node_id;
1da177e4 4796 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4797 int ret;
1da177e4 4798
208d54e5 4799 pgdat_resize_init(pgdat);
8177a420
AA
4800#ifdef CONFIG_NUMA_BALANCING
4801 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4802 pgdat->numabalancing_migrate_nr_pages = 0;
4803 pgdat->numabalancing_migrate_next_window = jiffies;
4804#endif
1da177e4 4805 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 4806 init_waitqueue_head(&pgdat->pfmemalloc_wait);
52d4b9ac 4807 pgdat_page_cgroup_init(pgdat);
5f63b720 4808
1da177e4
LT
4809 for (j = 0; j < MAX_NR_ZONES; j++) {
4810 struct zone *zone = pgdat->node_zones + j;
9feedc9d 4811 unsigned long size, realsize, freesize, memmap_pages;
1da177e4 4812
7960aedd
ZY
4813 size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4814 node_end_pfn, zones_size);
9feedc9d 4815 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
7960aedd
ZY
4816 node_start_pfn,
4817 node_end_pfn,
c713216d 4818 zholes_size);
1da177e4 4819
0e0b864e 4820 /*
9feedc9d 4821 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
4822 * is used by this zone for memmap. This affects the watermark
4823 * and per-cpu initialisations
4824 */
01cefaef 4825 memmap_pages = calc_memmap_size(size, realsize);
9feedc9d
JL
4826 if (freesize >= memmap_pages) {
4827 freesize -= memmap_pages;
5594c8c8
YL
4828 if (memmap_pages)
4829 printk(KERN_DEBUG
4830 " %s zone: %lu pages used for memmap\n",
4831 zone_names[j], memmap_pages);
0e0b864e
MG
4832 } else
4833 printk(KERN_WARNING
9feedc9d
JL
4834 " %s zone: %lu pages exceeds freesize %lu\n",
4835 zone_names[j], memmap_pages, freesize);
0e0b864e 4836
6267276f 4837 /* Account for reserved pages */
9feedc9d
JL
4838 if (j == 0 && freesize > dma_reserve) {
4839 freesize -= dma_reserve;
d903ef9f 4840 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4841 zone_names[0], dma_reserve);
0e0b864e
MG
4842 }
4843
98d2b0eb 4844 if (!is_highmem_idx(j))
9feedc9d 4845 nr_kernel_pages += freesize;
01cefaef
JL
4846 /* Charge for highmem memmap if there are enough kernel pages */
4847 else if (nr_kernel_pages > memmap_pages * 2)
4848 nr_kernel_pages -= memmap_pages;
9feedc9d 4849 nr_all_pages += freesize;
1da177e4
LT
4850
4851 zone->spanned_pages = size;
306f2e9e 4852 zone->present_pages = realsize;
9feedc9d
JL
4853 /*
4854 * Set an approximate value for lowmem here, it will be adjusted
4855 * when the bootmem allocator frees pages into the buddy system.
4856 * And all highmem pages will be managed by the buddy system.
4857 */
4858 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 4859#ifdef CONFIG_NUMA
d5f541ed 4860 zone->node = nid;
9feedc9d 4861 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 4862 / 100;
9feedc9d 4863 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 4864#endif
1da177e4
LT
4865 zone->name = zone_names[j];
4866 spin_lock_init(&zone->lock);
4867 spin_lock_init(&zone->lru_lock);
bdc8cb98 4868 zone_seqlock_init(zone);
1da177e4 4869 zone->zone_pgdat = pgdat;
ed8ece2e 4870 zone_pcp_init(zone);
81c0a2bb
JW
4871
4872 /* For bootup, initialized properly in watermark setup */
4873 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4874
bea8c150 4875 lruvec_init(&zone->lruvec);
1da177e4
LT
4876 if (!size)
4877 continue;
4878
955c1cd7 4879 set_pageblock_order();
7c45512d 4880 setup_usemap(pgdat, zone, zone_start_pfn, size);
a2f3aa02
DH
4881 ret = init_currently_empty_zone(zone, zone_start_pfn,
4882 size, MEMMAP_EARLY);
718127cc 4883 BUG_ON(ret);
76cdd58e 4884 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4885 zone_start_pfn += size;
1da177e4
LT
4886 }
4887}
4888
577a32f6 4889static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4890{
1da177e4
LT
4891 /* Skip empty nodes */
4892 if (!pgdat->node_spanned_pages)
4893 return;
4894
d41dee36 4895#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4896 /* ia64 gets its own node_mem_map, before this, without bootmem */
4897 if (!pgdat->node_mem_map) {
e984bb43 4898 unsigned long size, start, end;
d41dee36
AW
4899 struct page *map;
4900
e984bb43
BP
4901 /*
4902 * The zone's endpoints aren't required to be MAX_ORDER
4903 * aligned but the node_mem_map endpoints must be in order
4904 * for the buddy allocator to function correctly.
4905 */
4906 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
108bcc96 4907 end = pgdat_end_pfn(pgdat);
e984bb43
BP
4908 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4909 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4910 map = alloc_remap(pgdat->node_id, size);
4911 if (!map)
6782832e
SS
4912 map = memblock_virt_alloc_node_nopanic(size,
4913 pgdat->node_id);
e984bb43 4914 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4915 }
12d810c1 4916#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4917 /*
4918 * With no DISCONTIG, the global mem_map is just set as node 0's
4919 */
c713216d 4920 if (pgdat == NODE_DATA(0)) {
1da177e4 4921 mem_map = NODE_DATA(0)->node_mem_map;
0ee332c1 4922#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4923 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4924 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
0ee332c1 4925#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4926 }
1da177e4 4927#endif
d41dee36 4928#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4929}
4930
9109fb7b
JW
4931void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4932 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4933{
9109fb7b 4934 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
4935 unsigned long start_pfn = 0;
4936 unsigned long end_pfn = 0;
9109fb7b 4937
88fdf75d 4938 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 4939 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 4940
1da177e4
LT
4941 pgdat->node_id = nid;
4942 pgdat->node_start_pfn = node_start_pfn;
7960aedd
ZY
4943#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4944 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
4945#endif
4946 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
4947 zones_size, zholes_size);
1da177e4
LT
4948
4949 alloc_node_mem_map(pgdat);
e8c27ac9
YL
4950#ifdef CONFIG_FLAT_NODE_MEM_MAP
4951 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4952 nid, (unsigned long)pgdat,
4953 (unsigned long)pgdat->node_mem_map);
4954#endif
1da177e4 4955
7960aedd
ZY
4956 free_area_init_core(pgdat, start_pfn, end_pfn,
4957 zones_size, zholes_size);
1da177e4
LT
4958}
4959
0ee332c1 4960#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
4961
4962#if MAX_NUMNODES > 1
4963/*
4964 * Figure out the number of possible node ids.
4965 */
f9872caf 4966void __init setup_nr_node_ids(void)
418508c1
MS
4967{
4968 unsigned int node;
4969 unsigned int highest = 0;
4970
4971 for_each_node_mask(node, node_possible_map)
4972 highest = node;
4973 nr_node_ids = highest + 1;
4974}
418508c1
MS
4975#endif
4976
1e01979c
TH
4977/**
4978 * node_map_pfn_alignment - determine the maximum internode alignment
4979 *
4980 * This function should be called after node map is populated and sorted.
4981 * It calculates the maximum power of two alignment which can distinguish
4982 * all the nodes.
4983 *
4984 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4985 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4986 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4987 * shifted, 1GiB is enough and this function will indicate so.
4988 *
4989 * This is used to test whether pfn -> nid mapping of the chosen memory
4990 * model has fine enough granularity to avoid incorrect mapping for the
4991 * populated node map.
4992 *
4993 * Returns the determined alignment in pfn's. 0 if there is no alignment
4994 * requirement (single node).
4995 */
4996unsigned long __init node_map_pfn_alignment(void)
4997{
4998 unsigned long accl_mask = 0, last_end = 0;
c13291a5 4999 unsigned long start, end, mask;
1e01979c 5000 int last_nid = -1;
c13291a5 5001 int i, nid;
1e01979c 5002
c13291a5 5003 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
5004 if (!start || last_nid < 0 || last_nid == nid) {
5005 last_nid = nid;
5006 last_end = end;
5007 continue;
5008 }
5009
5010 /*
5011 * Start with a mask granular enough to pin-point to the
5012 * start pfn and tick off bits one-by-one until it becomes
5013 * too coarse to separate the current node from the last.
5014 */
5015 mask = ~((1 << __ffs(start)) - 1);
5016 while (mask && last_end <= (start & (mask << 1)))
5017 mask <<= 1;
5018
5019 /* accumulate all internode masks */
5020 accl_mask |= mask;
5021 }
5022
5023 /* convert mask to number of pages */
5024 return ~accl_mask + 1;
5025}
5026
a6af2bc3 5027/* Find the lowest pfn for a node */
b69a7288 5028static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 5029{
a6af2bc3 5030 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
5031 unsigned long start_pfn;
5032 int i;
1abbfb41 5033
c13291a5
TH
5034 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5035 min_pfn = min(min_pfn, start_pfn);
c713216d 5036
a6af2bc3
MG
5037 if (min_pfn == ULONG_MAX) {
5038 printk(KERN_WARNING
2bc0d261 5039 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
5040 return 0;
5041 }
5042
5043 return min_pfn;
c713216d
MG
5044}
5045
5046/**
5047 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5048 *
5049 * It returns the minimum PFN based on information provided via
88ca3b94 5050 * add_active_range().
c713216d
MG
5051 */
5052unsigned long __init find_min_pfn_with_active_regions(void)
5053{
5054 return find_min_pfn_for_node(MAX_NUMNODES);
5055}
5056
37b07e41
LS
5057/*
5058 * early_calculate_totalpages()
5059 * Sum pages in active regions for movable zone.
4b0ef1fe 5060 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 5061 */
484f51f8 5062static unsigned long __init early_calculate_totalpages(void)
7e63efef 5063{
7e63efef 5064 unsigned long totalpages = 0;
c13291a5
TH
5065 unsigned long start_pfn, end_pfn;
5066 int i, nid;
5067
5068 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5069 unsigned long pages = end_pfn - start_pfn;
7e63efef 5070
37b07e41
LS
5071 totalpages += pages;
5072 if (pages)
4b0ef1fe 5073 node_set_state(nid, N_MEMORY);
37b07e41 5074 }
b8af2941 5075 return totalpages;
7e63efef
MG
5076}
5077
2a1e274a
MG
5078/*
5079 * Find the PFN the Movable zone begins in each node. Kernel memory
5080 * is spread evenly between nodes as long as the nodes have enough
5081 * memory. When they don't, some nodes will have more kernelcore than
5082 * others
5083 */
b224ef85 5084static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
5085{
5086 int i, nid;
5087 unsigned long usable_startpfn;
5088 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 5089 /* save the state before borrow the nodemask */
4b0ef1fe 5090 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 5091 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 5092 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 5093 struct memblock_region *r;
b2f3eebe
TC
5094
5095 /* Need to find movable_zone earlier when movable_node is specified. */
5096 find_usable_zone_for_movable();
5097
5098 /*
5099 * If movable_node is specified, ignore kernelcore and movablecore
5100 * options.
5101 */
5102 if (movable_node_is_enabled()) {
136199f0
EM
5103 for_each_memblock(memory, r) {
5104 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
5105 continue;
5106
136199f0 5107 nid = r->nid;
b2f3eebe 5108
136199f0 5109 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
5110 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5111 min(usable_startpfn, zone_movable_pfn[nid]) :
5112 usable_startpfn;
5113 }
5114
5115 goto out2;
5116 }
2a1e274a 5117
7e63efef 5118 /*
b2f3eebe 5119 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
5120 * kernelcore that corresponds so that memory usable for
5121 * any allocation type is evenly spread. If both kernelcore
5122 * and movablecore are specified, then the value of kernelcore
5123 * will be used for required_kernelcore if it's greater than
5124 * what movablecore would have allowed.
5125 */
5126 if (required_movablecore) {
7e63efef
MG
5127 unsigned long corepages;
5128
5129 /*
5130 * Round-up so that ZONE_MOVABLE is at least as large as what
5131 * was requested by the user
5132 */
5133 required_movablecore =
5134 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5135 corepages = totalpages - required_movablecore;
5136
5137 required_kernelcore = max(required_kernelcore, corepages);
5138 }
5139
20e6926d
YL
5140 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5141 if (!required_kernelcore)
66918dcd 5142 goto out;
2a1e274a
MG
5143
5144 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
5145 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5146
5147restart:
5148 /* Spread kernelcore memory as evenly as possible throughout nodes */
5149 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 5150 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
5151 unsigned long start_pfn, end_pfn;
5152
2a1e274a
MG
5153 /*
5154 * Recalculate kernelcore_node if the division per node
5155 * now exceeds what is necessary to satisfy the requested
5156 * amount of memory for the kernel
5157 */
5158 if (required_kernelcore < kernelcore_node)
5159 kernelcore_node = required_kernelcore / usable_nodes;
5160
5161 /*
5162 * As the map is walked, we track how much memory is usable
5163 * by the kernel using kernelcore_remaining. When it is
5164 * 0, the rest of the node is usable by ZONE_MOVABLE
5165 */
5166 kernelcore_remaining = kernelcore_node;
5167
5168 /* Go through each range of PFNs within this node */
c13291a5 5169 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
5170 unsigned long size_pages;
5171
c13291a5 5172 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
5173 if (start_pfn >= end_pfn)
5174 continue;
5175
5176 /* Account for what is only usable for kernelcore */
5177 if (start_pfn < usable_startpfn) {
5178 unsigned long kernel_pages;
5179 kernel_pages = min(end_pfn, usable_startpfn)
5180 - start_pfn;
5181
5182 kernelcore_remaining -= min(kernel_pages,
5183 kernelcore_remaining);
5184 required_kernelcore -= min(kernel_pages,
5185 required_kernelcore);
5186
5187 /* Continue if range is now fully accounted */
5188 if (end_pfn <= usable_startpfn) {
5189
5190 /*
5191 * Push zone_movable_pfn to the end so
5192 * that if we have to rebalance
5193 * kernelcore across nodes, we will
5194 * not double account here
5195 */
5196 zone_movable_pfn[nid] = end_pfn;
5197 continue;
5198 }
5199 start_pfn = usable_startpfn;
5200 }
5201
5202 /*
5203 * The usable PFN range for ZONE_MOVABLE is from
5204 * start_pfn->end_pfn. Calculate size_pages as the
5205 * number of pages used as kernelcore
5206 */
5207 size_pages = end_pfn - start_pfn;
5208 if (size_pages > kernelcore_remaining)
5209 size_pages = kernelcore_remaining;
5210 zone_movable_pfn[nid] = start_pfn + size_pages;
5211
5212 /*
5213 * Some kernelcore has been met, update counts and
5214 * break if the kernelcore for this node has been
b8af2941 5215 * satisfied
2a1e274a
MG
5216 */
5217 required_kernelcore -= min(required_kernelcore,
5218 size_pages);
5219 kernelcore_remaining -= size_pages;
5220 if (!kernelcore_remaining)
5221 break;
5222 }
5223 }
5224
5225 /*
5226 * If there is still required_kernelcore, we do another pass with one
5227 * less node in the count. This will push zone_movable_pfn[nid] further
5228 * along on the nodes that still have memory until kernelcore is
b8af2941 5229 * satisfied
2a1e274a
MG
5230 */
5231 usable_nodes--;
5232 if (usable_nodes && required_kernelcore > usable_nodes)
5233 goto restart;
5234
b2f3eebe 5235out2:
2a1e274a
MG
5236 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5237 for (nid = 0; nid < MAX_NUMNODES; nid++)
5238 zone_movable_pfn[nid] =
5239 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 5240
20e6926d 5241out:
66918dcd 5242 /* restore the node_state */
4b0ef1fe 5243 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
5244}
5245
4b0ef1fe
LJ
5246/* Any regular or high memory on that node ? */
5247static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 5248{
37b07e41
LS
5249 enum zone_type zone_type;
5250
4b0ef1fe
LJ
5251 if (N_MEMORY == N_NORMAL_MEMORY)
5252 return;
5253
5254 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 5255 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 5256 if (populated_zone(zone)) {
4b0ef1fe
LJ
5257 node_set_state(nid, N_HIGH_MEMORY);
5258 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5259 zone_type <= ZONE_NORMAL)
5260 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
5261 break;
5262 }
37b07e41 5263 }
37b07e41
LS
5264}
5265
c713216d
MG
5266/**
5267 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 5268 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
5269 *
5270 * This will call free_area_init_node() for each active node in the system.
5271 * Using the page ranges provided by add_active_range(), the size of each
5272 * zone in each node and their holes is calculated. If the maximum PFN
5273 * between two adjacent zones match, it is assumed that the zone is empty.
5274 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5275 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5276 * starts where the previous one ended. For example, ZONE_DMA32 starts
5277 * at arch_max_dma_pfn.
5278 */
5279void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5280{
c13291a5
TH
5281 unsigned long start_pfn, end_pfn;
5282 int i, nid;
a6af2bc3 5283
c713216d
MG
5284 /* Record where the zone boundaries are */
5285 memset(arch_zone_lowest_possible_pfn, 0,
5286 sizeof(arch_zone_lowest_possible_pfn));
5287 memset(arch_zone_highest_possible_pfn, 0,
5288 sizeof(arch_zone_highest_possible_pfn));
5289 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5290 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5291 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
5292 if (i == ZONE_MOVABLE)
5293 continue;
c713216d
MG
5294 arch_zone_lowest_possible_pfn[i] =
5295 arch_zone_highest_possible_pfn[i-1];
5296 arch_zone_highest_possible_pfn[i] =
5297 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5298 }
2a1e274a
MG
5299 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5300 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5301
5302 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5303 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 5304 find_zone_movable_pfns_for_nodes();
c713216d 5305
c713216d 5306 /* Print out the zone ranges */
a62e2f4f 5307 printk("Zone ranges:\n");
2a1e274a
MG
5308 for (i = 0; i < MAX_NR_ZONES; i++) {
5309 if (i == ZONE_MOVABLE)
5310 continue;
155cbfc8 5311 printk(KERN_CONT " %-8s ", zone_names[i]);
72f0ba02
DR
5312 if (arch_zone_lowest_possible_pfn[i] ==
5313 arch_zone_highest_possible_pfn[i])
155cbfc8 5314 printk(KERN_CONT "empty\n");
72f0ba02 5315 else
a62e2f4f
BH
5316 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5317 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5318 (arch_zone_highest_possible_pfn[i]
5319 << PAGE_SHIFT) - 1);
2a1e274a
MG
5320 }
5321
5322 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
a62e2f4f 5323 printk("Movable zone start for each node\n");
2a1e274a
MG
5324 for (i = 0; i < MAX_NUMNODES; i++) {
5325 if (zone_movable_pfn[i])
a62e2f4f
BH
5326 printk(" Node %d: %#010lx\n", i,
5327 zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 5328 }
c713216d 5329
f2d52fe5 5330 /* Print out the early node map */
a62e2f4f 5331 printk("Early memory node ranges\n");
c13291a5 5332 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
a62e2f4f
BH
5333 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5334 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
5335
5336 /* Initialise every node */
708614e6 5337 mminit_verify_pageflags_layout();
8ef82866 5338 setup_nr_node_ids();
c713216d
MG
5339 for_each_online_node(nid) {
5340 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 5341 free_area_init_node(nid, NULL,
c713216d 5342 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
5343
5344 /* Any memory on that node */
5345 if (pgdat->node_present_pages)
4b0ef1fe
LJ
5346 node_set_state(nid, N_MEMORY);
5347 check_for_memory(pgdat, nid);
c713216d
MG
5348 }
5349}
2a1e274a 5350
7e63efef 5351static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
5352{
5353 unsigned long long coremem;
5354 if (!p)
5355 return -EINVAL;
5356
5357 coremem = memparse(p, &p);
7e63efef 5358 *core = coremem >> PAGE_SHIFT;
2a1e274a 5359
7e63efef 5360 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
5361 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5362
5363 return 0;
5364}
ed7ed365 5365
7e63efef
MG
5366/*
5367 * kernelcore=size sets the amount of memory for use for allocations that
5368 * cannot be reclaimed or migrated.
5369 */
5370static int __init cmdline_parse_kernelcore(char *p)
5371{
5372 return cmdline_parse_core(p, &required_kernelcore);
5373}
5374
5375/*
5376 * movablecore=size sets the amount of memory for use for allocations that
5377 * can be reclaimed or migrated.
5378 */
5379static int __init cmdline_parse_movablecore(char *p)
5380{
5381 return cmdline_parse_core(p, &required_movablecore);
5382}
5383
ed7ed365 5384early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 5385early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 5386
0ee332c1 5387#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5388
c3d5f5f0
JL
5389void adjust_managed_page_count(struct page *page, long count)
5390{
5391 spin_lock(&managed_page_count_lock);
5392 page_zone(page)->managed_pages += count;
5393 totalram_pages += count;
3dcc0571
JL
5394#ifdef CONFIG_HIGHMEM
5395 if (PageHighMem(page))
5396 totalhigh_pages += count;
5397#endif
c3d5f5f0
JL
5398 spin_unlock(&managed_page_count_lock);
5399}
3dcc0571 5400EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 5401
11199692 5402unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 5403{
11199692
JL
5404 void *pos;
5405 unsigned long pages = 0;
69afade7 5406
11199692
JL
5407 start = (void *)PAGE_ALIGN((unsigned long)start);
5408 end = (void *)((unsigned long)end & PAGE_MASK);
5409 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 5410 if ((unsigned int)poison <= 0xFF)
11199692
JL
5411 memset(pos, poison, PAGE_SIZE);
5412 free_reserved_page(virt_to_page(pos));
69afade7
JL
5413 }
5414
5415 if (pages && s)
11199692 5416 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
5417 s, pages << (PAGE_SHIFT - 10), start, end);
5418
5419 return pages;
5420}
11199692 5421EXPORT_SYMBOL(free_reserved_area);
69afade7 5422
cfa11e08
JL
5423#ifdef CONFIG_HIGHMEM
5424void free_highmem_page(struct page *page)
5425{
5426 __free_reserved_page(page);
5427 totalram_pages++;
7b4b2a0d 5428 page_zone(page)->managed_pages++;
cfa11e08
JL
5429 totalhigh_pages++;
5430}
5431#endif
5432
7ee3d4e8
JL
5433
5434void __init mem_init_print_info(const char *str)
5435{
5436 unsigned long physpages, codesize, datasize, rosize, bss_size;
5437 unsigned long init_code_size, init_data_size;
5438
5439 physpages = get_num_physpages();
5440 codesize = _etext - _stext;
5441 datasize = _edata - _sdata;
5442 rosize = __end_rodata - __start_rodata;
5443 bss_size = __bss_stop - __bss_start;
5444 init_data_size = __init_end - __init_begin;
5445 init_code_size = _einittext - _sinittext;
5446
5447 /*
5448 * Detect special cases and adjust section sizes accordingly:
5449 * 1) .init.* may be embedded into .data sections
5450 * 2) .init.text.* may be out of [__init_begin, __init_end],
5451 * please refer to arch/tile/kernel/vmlinux.lds.S.
5452 * 3) .rodata.* may be embedded into .text or .data sections.
5453 */
5454#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
5455 do { \
5456 if (start <= pos && pos < end && size > adj) \
5457 size -= adj; \
5458 } while (0)
7ee3d4e8
JL
5459
5460 adj_init_size(__init_begin, __init_end, init_data_size,
5461 _sinittext, init_code_size);
5462 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5463 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5464 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5465 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5466
5467#undef adj_init_size
5468
5469 printk("Memory: %luK/%luK available "
5470 "(%luK kernel code, %luK rwdata, %luK rodata, "
5471 "%luK init, %luK bss, %luK reserved"
5472#ifdef CONFIG_HIGHMEM
5473 ", %luK highmem"
5474#endif
5475 "%s%s)\n",
5476 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5477 codesize >> 10, datasize >> 10, rosize >> 10,
5478 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5479 (physpages - totalram_pages) << (PAGE_SHIFT-10),
5480#ifdef CONFIG_HIGHMEM
5481 totalhigh_pages << (PAGE_SHIFT-10),
5482#endif
5483 str ? ", " : "", str ? str : "");
5484}
5485
0e0b864e 5486/**
88ca3b94
RD
5487 * set_dma_reserve - set the specified number of pages reserved in the first zone
5488 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
5489 *
5490 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5491 * In the DMA zone, a significant percentage may be consumed by kernel image
5492 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
5493 * function may optionally be used to account for unfreeable pages in the
5494 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5495 * smaller per-cpu batchsize.
0e0b864e
MG
5496 */
5497void __init set_dma_reserve(unsigned long new_dma_reserve)
5498{
5499 dma_reserve = new_dma_reserve;
5500}
5501
1da177e4
LT
5502void __init free_area_init(unsigned long *zones_size)
5503{
9109fb7b 5504 free_area_init_node(0, zones_size,
1da177e4
LT
5505 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5506}
1da177e4 5507
1da177e4
LT
5508static int page_alloc_cpu_notify(struct notifier_block *self,
5509 unsigned long action, void *hcpu)
5510{
5511 int cpu = (unsigned long)hcpu;
1da177e4 5512
8bb78442 5513 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 5514 lru_add_drain_cpu(cpu);
9f8f2172
CL
5515 drain_pages(cpu);
5516
5517 /*
5518 * Spill the event counters of the dead processor
5519 * into the current processors event counters.
5520 * This artificially elevates the count of the current
5521 * processor.
5522 */
f8891e5e 5523 vm_events_fold_cpu(cpu);
9f8f2172
CL
5524
5525 /*
5526 * Zero the differential counters of the dead processor
5527 * so that the vm statistics are consistent.
5528 *
5529 * This is only okay since the processor is dead and cannot
5530 * race with what we are doing.
5531 */
2bb921e5 5532 cpu_vm_stats_fold(cpu);
1da177e4
LT
5533 }
5534 return NOTIFY_OK;
5535}
1da177e4
LT
5536
5537void __init page_alloc_init(void)
5538{
5539 hotcpu_notifier(page_alloc_cpu_notify, 0);
5540}
5541
cb45b0e9
HA
5542/*
5543 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5544 * or min_free_kbytes changes.
5545 */
5546static void calculate_totalreserve_pages(void)
5547{
5548 struct pglist_data *pgdat;
5549 unsigned long reserve_pages = 0;
2f6726e5 5550 enum zone_type i, j;
cb45b0e9
HA
5551
5552 for_each_online_pgdat(pgdat) {
5553 for (i = 0; i < MAX_NR_ZONES; i++) {
5554 struct zone *zone = pgdat->node_zones + i;
5555 unsigned long max = 0;
5556
5557 /* Find valid and maximum lowmem_reserve in the zone */
5558 for (j = i; j < MAX_NR_ZONES; j++) {
5559 if (zone->lowmem_reserve[j] > max)
5560 max = zone->lowmem_reserve[j];
5561 }
5562
41858966
MG
5563 /* we treat the high watermark as reserved pages. */
5564 max += high_wmark_pages(zone);
cb45b0e9 5565
b40da049
JL
5566 if (max > zone->managed_pages)
5567 max = zone->managed_pages;
cb45b0e9 5568 reserve_pages += max;
ab8fabd4
JW
5569 /*
5570 * Lowmem reserves are not available to
5571 * GFP_HIGHUSER page cache allocations and
5572 * kswapd tries to balance zones to their high
5573 * watermark. As a result, neither should be
5574 * regarded as dirtyable memory, to prevent a
5575 * situation where reclaim has to clean pages
5576 * in order to balance the zones.
5577 */
5578 zone->dirty_balance_reserve = max;
cb45b0e9
HA
5579 }
5580 }
ab8fabd4 5581 dirty_balance_reserve = reserve_pages;
cb45b0e9
HA
5582 totalreserve_pages = reserve_pages;
5583}
5584
1da177e4
LT
5585/*
5586 * setup_per_zone_lowmem_reserve - called whenever
5587 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5588 * has a correct pages reserved value, so an adequate number of
5589 * pages are left in the zone after a successful __alloc_pages().
5590 */
5591static void setup_per_zone_lowmem_reserve(void)
5592{
5593 struct pglist_data *pgdat;
2f6726e5 5594 enum zone_type j, idx;
1da177e4 5595
ec936fc5 5596 for_each_online_pgdat(pgdat) {
1da177e4
LT
5597 for (j = 0; j < MAX_NR_ZONES; j++) {
5598 struct zone *zone = pgdat->node_zones + j;
b40da049 5599 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
5600
5601 zone->lowmem_reserve[j] = 0;
5602
2f6726e5
CL
5603 idx = j;
5604 while (idx) {
1da177e4
LT
5605 struct zone *lower_zone;
5606
2f6726e5
CL
5607 idx--;
5608
1da177e4
LT
5609 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5610 sysctl_lowmem_reserve_ratio[idx] = 1;
5611
5612 lower_zone = pgdat->node_zones + idx;
b40da049 5613 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 5614 sysctl_lowmem_reserve_ratio[idx];
b40da049 5615 managed_pages += lower_zone->managed_pages;
1da177e4
LT
5616 }
5617 }
5618 }
cb45b0e9
HA
5619
5620 /* update totalreserve_pages */
5621 calculate_totalreserve_pages();
1da177e4
LT
5622}
5623
cfd3da1e 5624static void __setup_per_zone_wmarks(void)
1da177e4
LT
5625{
5626 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5627 unsigned long lowmem_pages = 0;
5628 struct zone *zone;
5629 unsigned long flags;
5630
5631 /* Calculate total number of !ZONE_HIGHMEM pages */
5632 for_each_zone(zone) {
5633 if (!is_highmem(zone))
b40da049 5634 lowmem_pages += zone->managed_pages;
1da177e4
LT
5635 }
5636
5637 for_each_zone(zone) {
ac924c60
AM
5638 u64 tmp;
5639
1125b4e3 5640 spin_lock_irqsave(&zone->lock, flags);
b40da049 5641 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 5642 do_div(tmp, lowmem_pages);
1da177e4
LT
5643 if (is_highmem(zone)) {
5644 /*
669ed175
NP
5645 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5646 * need highmem pages, so cap pages_min to a small
5647 * value here.
5648 *
41858966 5649 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
5650 * deltas controls asynch page reclaim, and so should
5651 * not be capped for highmem.
1da177e4 5652 */
90ae8d67 5653 unsigned long min_pages;
1da177e4 5654
b40da049 5655 min_pages = zone->managed_pages / 1024;
90ae8d67 5656 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 5657 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 5658 } else {
669ed175
NP
5659 /*
5660 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
5661 * proportionate to the zone's size.
5662 */
41858966 5663 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
5664 }
5665
41858966
MG
5666 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5667 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9 5668
81c0a2bb
JW
5669 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
5670 high_wmark_pages(zone) -
5671 low_wmark_pages(zone) -
5672 zone_page_state(zone, NR_ALLOC_BATCH));
5673
56fd56b8 5674 setup_zone_migrate_reserve(zone);
1125b4e3 5675 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 5676 }
cb45b0e9
HA
5677
5678 /* update totalreserve_pages */
5679 calculate_totalreserve_pages();
1da177e4
LT
5680}
5681
cfd3da1e
MG
5682/**
5683 * setup_per_zone_wmarks - called when min_free_kbytes changes
5684 * or when memory is hot-{added|removed}
5685 *
5686 * Ensures that the watermark[min,low,high] values for each zone are set
5687 * correctly with respect to min_free_kbytes.
5688 */
5689void setup_per_zone_wmarks(void)
5690{
5691 mutex_lock(&zonelists_mutex);
5692 __setup_per_zone_wmarks();
5693 mutex_unlock(&zonelists_mutex);
5694}
5695
55a4462a 5696/*
556adecb
RR
5697 * The inactive anon list should be small enough that the VM never has to
5698 * do too much work, but large enough that each inactive page has a chance
5699 * to be referenced again before it is swapped out.
5700 *
5701 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5702 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5703 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5704 * the anonymous pages are kept on the inactive list.
5705 *
5706 * total target max
5707 * memory ratio inactive anon
5708 * -------------------------------------
5709 * 10MB 1 5MB
5710 * 100MB 1 50MB
5711 * 1GB 3 250MB
5712 * 10GB 10 0.9GB
5713 * 100GB 31 3GB
5714 * 1TB 101 10GB
5715 * 10TB 320 32GB
5716 */
1b79acc9 5717static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 5718{
96cb4df5 5719 unsigned int gb, ratio;
556adecb 5720
96cb4df5 5721 /* Zone size in gigabytes */
b40da049 5722 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 5723 if (gb)
556adecb 5724 ratio = int_sqrt(10 * gb);
96cb4df5
MK
5725 else
5726 ratio = 1;
556adecb 5727
96cb4df5
MK
5728 zone->inactive_ratio = ratio;
5729}
556adecb 5730
839a4fcc 5731static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
5732{
5733 struct zone *zone;
5734
5735 for_each_zone(zone)
5736 calculate_zone_inactive_ratio(zone);
556adecb
RR
5737}
5738
1da177e4
LT
5739/*
5740 * Initialise min_free_kbytes.
5741 *
5742 * For small machines we want it small (128k min). For large machines
5743 * we want it large (64MB max). But it is not linear, because network
5744 * bandwidth does not increase linearly with machine size. We use
5745 *
b8af2941 5746 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
5747 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5748 *
5749 * which yields
5750 *
5751 * 16MB: 512k
5752 * 32MB: 724k
5753 * 64MB: 1024k
5754 * 128MB: 1448k
5755 * 256MB: 2048k
5756 * 512MB: 2896k
5757 * 1024MB: 4096k
5758 * 2048MB: 5792k
5759 * 4096MB: 8192k
5760 * 8192MB: 11584k
5761 * 16384MB: 16384k
5762 */
1b79acc9 5763int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
5764{
5765 unsigned long lowmem_kbytes;
5f12733e 5766 int new_min_free_kbytes;
1da177e4
LT
5767
5768 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
5769 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5770
5771 if (new_min_free_kbytes > user_min_free_kbytes) {
5772 min_free_kbytes = new_min_free_kbytes;
5773 if (min_free_kbytes < 128)
5774 min_free_kbytes = 128;
5775 if (min_free_kbytes > 65536)
5776 min_free_kbytes = 65536;
5777 } else {
5778 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5779 new_min_free_kbytes, user_min_free_kbytes);
5780 }
bc75d33f 5781 setup_per_zone_wmarks();
a6cccdc3 5782 refresh_zone_stat_thresholds();
1da177e4 5783 setup_per_zone_lowmem_reserve();
556adecb 5784 setup_per_zone_inactive_ratio();
1da177e4
LT
5785 return 0;
5786}
bc75d33f 5787module_init(init_per_zone_wmark_min)
1da177e4
LT
5788
5789/*
b8af2941 5790 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
5791 * that we can call two helper functions whenever min_free_kbytes
5792 * changes.
5793 */
b8af2941 5794int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
8d65af78 5795 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5796{
da8c757b
HP
5797 int rc;
5798
5799 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5800 if (rc)
5801 return rc;
5802
5f12733e
MH
5803 if (write) {
5804 user_min_free_kbytes = min_free_kbytes;
bc75d33f 5805 setup_per_zone_wmarks();
5f12733e 5806 }
1da177e4
LT
5807 return 0;
5808}
5809
9614634f
CL
5810#ifdef CONFIG_NUMA
5811int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5812 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5813{
5814 struct zone *zone;
5815 int rc;
5816
8d65af78 5817 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5818 if (rc)
5819 return rc;
5820
5821 for_each_zone(zone)
b40da049 5822 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
5823 sysctl_min_unmapped_ratio) / 100;
5824 return 0;
5825}
0ff38490
CL
5826
5827int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5828 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5829{
5830 struct zone *zone;
5831 int rc;
5832
8d65af78 5833 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5834 if (rc)
5835 return rc;
5836
5837 for_each_zone(zone)
b40da049 5838 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
5839 sysctl_min_slab_ratio) / 100;
5840 return 0;
5841}
9614634f
CL
5842#endif
5843
1da177e4
LT
5844/*
5845 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5846 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5847 * whenever sysctl_lowmem_reserve_ratio changes.
5848 *
5849 * The reserve ratio obviously has absolutely no relation with the
41858966 5850 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5851 * if in function of the boot time zone sizes.
5852 */
5853int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5854 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5855{
8d65af78 5856 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5857 setup_per_zone_lowmem_reserve();
5858 return 0;
5859}
5860
8ad4b1fb
RS
5861/*
5862 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
5863 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5864 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 5865 */
8ad4b1fb 5866int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
8d65af78 5867 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5868{
5869 struct zone *zone;
5870 unsigned int cpu;
5871 int ret;
5872
8d65af78 5873 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
93278814 5874 if (!write || (ret < 0))
8ad4b1fb 5875 return ret;
c8e251fa
CS
5876
5877 mutex_lock(&pcp_batch_high_lock);
364df0eb 5878 for_each_populated_zone(zone) {
22a7f12b
CS
5879 unsigned long high;
5880 high = zone->managed_pages / percpu_pagelist_fraction;
5881 for_each_possible_cpu(cpu)
3664033c
CS
5882 pageset_set_high(per_cpu_ptr(zone->pageset, cpu),
5883 high);
8ad4b1fb 5884 }
c8e251fa 5885 mutex_unlock(&pcp_batch_high_lock);
8ad4b1fb
RS
5886 return 0;
5887}
5888
f034b5d4 5889int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
5890
5891#ifdef CONFIG_NUMA
5892static int __init set_hashdist(char *str)
5893{
5894 if (!str)
5895 return 0;
5896 hashdist = simple_strtoul(str, &str, 0);
5897 return 1;
5898}
5899__setup("hashdist=", set_hashdist);
5900#endif
5901
5902/*
5903 * allocate a large system hash table from bootmem
5904 * - it is assumed that the hash table must contain an exact power-of-2
5905 * quantity of entries
5906 * - limit is the number of hash buckets, not the total allocation size
5907 */
5908void *__init alloc_large_system_hash(const char *tablename,
5909 unsigned long bucketsize,
5910 unsigned long numentries,
5911 int scale,
5912 int flags,
5913 unsigned int *_hash_shift,
5914 unsigned int *_hash_mask,
31fe62b9
TB
5915 unsigned long low_limit,
5916 unsigned long high_limit)
1da177e4 5917{
31fe62b9 5918 unsigned long long max = high_limit;
1da177e4
LT
5919 unsigned long log2qty, size;
5920 void *table = NULL;
5921
5922 /* allow the kernel cmdline to have a say */
5923 if (!numentries) {
5924 /* round applicable memory size up to nearest megabyte */
04903664 5925 numentries = nr_kernel_pages;
a7e83318
JZ
5926
5927 /* It isn't necessary when PAGE_SIZE >= 1MB */
5928 if (PAGE_SHIFT < 20)
5929 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
5930
5931 /* limit to 1 bucket per 2^scale bytes of low memory */
5932 if (scale > PAGE_SHIFT)
5933 numentries >>= (scale - PAGE_SHIFT);
5934 else
5935 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
5936
5937 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
5938 if (unlikely(flags & HASH_SMALL)) {
5939 /* Makes no sense without HASH_EARLY */
5940 WARN_ON(!(flags & HASH_EARLY));
5941 if (!(numentries >> *_hash_shift)) {
5942 numentries = 1UL << *_hash_shift;
5943 BUG_ON(!numentries);
5944 }
5945 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 5946 numentries = PAGE_SIZE / bucketsize;
1da177e4 5947 }
6e692ed3 5948 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
5949
5950 /* limit allocation size to 1/16 total memory by default */
5951 if (max == 0) {
5952 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5953 do_div(max, bucketsize);
5954 }
074b8517 5955 max = min(max, 0x80000000ULL);
1da177e4 5956
31fe62b9
TB
5957 if (numentries < low_limit)
5958 numentries = low_limit;
1da177e4
LT
5959 if (numentries > max)
5960 numentries = max;
5961
f0d1b0b3 5962 log2qty = ilog2(numentries);
1da177e4
LT
5963
5964 do {
5965 size = bucketsize << log2qty;
5966 if (flags & HASH_EARLY)
6782832e 5967 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
5968 else if (hashdist)
5969 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5970 else {
1037b83b
ED
5971 /*
5972 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
5973 * some pages at the end of hash table which
5974 * alloc_pages_exact() automatically does
1037b83b 5975 */
264ef8a9 5976 if (get_order(size) < MAX_ORDER) {
a1dd268c 5977 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
5978 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5979 }
1da177e4
LT
5980 }
5981 } while (!table && size > PAGE_SIZE && --log2qty);
5982
5983 if (!table)
5984 panic("Failed to allocate %s hash table\n", tablename);
5985
f241e660 5986 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 5987 tablename,
f241e660 5988 (1UL << log2qty),
f0d1b0b3 5989 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
5990 size);
5991
5992 if (_hash_shift)
5993 *_hash_shift = log2qty;
5994 if (_hash_mask)
5995 *_hash_mask = (1 << log2qty) - 1;
5996
5997 return table;
5998}
a117e66e 5999
835c134e
MG
6000/* Return a pointer to the bitmap storing bits affecting a block of pages */
6001static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6002 unsigned long pfn)
6003{
6004#ifdef CONFIG_SPARSEMEM
6005 return __pfn_to_section(pfn)->pageblock_flags;
6006#else
6007 return zone->pageblock_flags;
6008#endif /* CONFIG_SPARSEMEM */
6009}
6010
6011static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6012{
6013#ifdef CONFIG_SPARSEMEM
6014 pfn &= (PAGES_PER_SECTION-1);
d9c23400 6015 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 6016#else
c060f943 6017 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
d9c23400 6018 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
6019#endif /* CONFIG_SPARSEMEM */
6020}
6021
6022/**
d9c23400 6023 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
6024 * @page: The page within the block of interest
6025 * @start_bitidx: The first bit of interest to retrieve
6026 * @end_bitidx: The last bit of interest
6027 * returns pageblock_bits flags
6028 */
6029unsigned long get_pageblock_flags_group(struct page *page,
6030 int start_bitidx, int end_bitidx)
6031{
6032 struct zone *zone;
6033 unsigned long *bitmap;
6034 unsigned long pfn, bitidx;
6035 unsigned long flags = 0;
6036 unsigned long value = 1;
6037
6038 zone = page_zone(page);
6039 pfn = page_to_pfn(page);
6040 bitmap = get_pageblock_bitmap(zone, pfn);
6041 bitidx = pfn_to_bitidx(zone, pfn);
6042
6043 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
6044 if (test_bit(bitidx + start_bitidx, bitmap))
6045 flags |= value;
6220ec78 6046
835c134e
MG
6047 return flags;
6048}
6049
6050/**
d9c23400 6051 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
6052 * @page: The page within the block of interest
6053 * @start_bitidx: The first bit of interest
6054 * @end_bitidx: The last bit of interest
6055 * @flags: The flags to set
6056 */
6057void set_pageblock_flags_group(struct page *page, unsigned long flags,
6058 int start_bitidx, int end_bitidx)
6059{
6060 struct zone *zone;
6061 unsigned long *bitmap;
6062 unsigned long pfn, bitidx;
6063 unsigned long value = 1;
6064
6065 zone = page_zone(page);
6066 pfn = page_to_pfn(page);
6067 bitmap = get_pageblock_bitmap(zone, pfn);
6068 bitidx = pfn_to_bitidx(zone, pfn);
309381fe 6069 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
835c134e
MG
6070
6071 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
6072 if (flags & value)
6073 __set_bit(bitidx + start_bitidx, bitmap);
6074 else
6075 __clear_bit(bitidx + start_bitidx, bitmap);
6076}
a5d76b54
KH
6077
6078/*
80934513
MK
6079 * This function checks whether pageblock includes unmovable pages or not.
6080 * If @count is not zero, it is okay to include less @count unmovable pages
6081 *
b8af2941 6082 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
6083 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6084 * expect this function should be exact.
a5d76b54 6085 */
b023f468
WC
6086bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6087 bool skip_hwpoisoned_pages)
49ac8255
KH
6088{
6089 unsigned long pfn, iter, found;
47118af0
MN
6090 int mt;
6091
49ac8255
KH
6092 /*
6093 * For avoiding noise data, lru_add_drain_all() should be called
80934513 6094 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
6095 */
6096 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 6097 return false;
47118af0
MN
6098 mt = get_pageblock_migratetype(page);
6099 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 6100 return false;
49ac8255
KH
6101
6102 pfn = page_to_pfn(page);
6103 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6104 unsigned long check = pfn + iter;
6105
29723fcc 6106 if (!pfn_valid_within(check))
49ac8255 6107 continue;
29723fcc 6108
49ac8255 6109 page = pfn_to_page(check);
c8721bbb
NH
6110
6111 /*
6112 * Hugepages are not in LRU lists, but they're movable.
6113 * We need not scan over tail pages bacause we don't
6114 * handle each tail page individually in migration.
6115 */
6116 if (PageHuge(page)) {
6117 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6118 continue;
6119 }
6120
97d255c8
MK
6121 /*
6122 * We can't use page_count without pin a page
6123 * because another CPU can free compound page.
6124 * This check already skips compound tails of THP
6125 * because their page->_count is zero at all time.
6126 */
6127 if (!atomic_read(&page->_count)) {
49ac8255
KH
6128 if (PageBuddy(page))
6129 iter += (1 << page_order(page)) - 1;
6130 continue;
6131 }
97d255c8 6132
b023f468
WC
6133 /*
6134 * The HWPoisoned page may be not in buddy system, and
6135 * page_count() is not 0.
6136 */
6137 if (skip_hwpoisoned_pages && PageHWPoison(page))
6138 continue;
6139
49ac8255
KH
6140 if (!PageLRU(page))
6141 found++;
6142 /*
6143 * If there are RECLAIMABLE pages, we need to check it.
6144 * But now, memory offline itself doesn't call shrink_slab()
6145 * and it still to be fixed.
6146 */
6147 /*
6148 * If the page is not RAM, page_count()should be 0.
6149 * we don't need more check. This is an _used_ not-movable page.
6150 *
6151 * The problematic thing here is PG_reserved pages. PG_reserved
6152 * is set to both of a memory hole page and a _used_ kernel
6153 * page at boot.
6154 */
6155 if (found > count)
80934513 6156 return true;
49ac8255 6157 }
80934513 6158 return false;
49ac8255
KH
6159}
6160
6161bool is_pageblock_removable_nolock(struct page *page)
6162{
656a0706
MH
6163 struct zone *zone;
6164 unsigned long pfn;
687875fb
MH
6165
6166 /*
6167 * We have to be careful here because we are iterating over memory
6168 * sections which are not zone aware so we might end up outside of
6169 * the zone but still within the section.
656a0706
MH
6170 * We have to take care about the node as well. If the node is offline
6171 * its NODE_DATA will be NULL - see page_zone.
687875fb 6172 */
656a0706
MH
6173 if (!node_online(page_to_nid(page)))
6174 return false;
6175
6176 zone = page_zone(page);
6177 pfn = page_to_pfn(page);
108bcc96 6178 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
6179 return false;
6180
b023f468 6181 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 6182}
0c0e6195 6183
041d3a8c
MN
6184#ifdef CONFIG_CMA
6185
6186static unsigned long pfn_max_align_down(unsigned long pfn)
6187{
6188 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6189 pageblock_nr_pages) - 1);
6190}
6191
6192static unsigned long pfn_max_align_up(unsigned long pfn)
6193{
6194 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6195 pageblock_nr_pages));
6196}
6197
041d3a8c 6198/* [start, end) must belong to a single zone. */
bb13ffeb
MG
6199static int __alloc_contig_migrate_range(struct compact_control *cc,
6200 unsigned long start, unsigned long end)
041d3a8c
MN
6201{
6202 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 6203 unsigned long nr_reclaimed;
041d3a8c
MN
6204 unsigned long pfn = start;
6205 unsigned int tries = 0;
6206 int ret = 0;
6207
be49a6e1 6208 migrate_prep();
041d3a8c 6209
bb13ffeb 6210 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
6211 if (fatal_signal_pending(current)) {
6212 ret = -EINTR;
6213 break;
6214 }
6215
bb13ffeb
MG
6216 if (list_empty(&cc->migratepages)) {
6217 cc->nr_migratepages = 0;
6218 pfn = isolate_migratepages_range(cc->zone, cc,
e46a2879 6219 pfn, end, true);
041d3a8c
MN
6220 if (!pfn) {
6221 ret = -EINTR;
6222 break;
6223 }
6224 tries = 0;
6225 } else if (++tries == 5) {
6226 ret = ret < 0 ? ret : -EBUSY;
6227 break;
6228 }
6229
beb51eaa
MK
6230 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6231 &cc->migratepages);
6232 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 6233
9c620e2b 6234 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 6235 NULL, 0, cc->mode, MR_CMA);
041d3a8c 6236 }
2a6f5124
SP
6237 if (ret < 0) {
6238 putback_movable_pages(&cc->migratepages);
6239 return ret;
6240 }
6241 return 0;
041d3a8c
MN
6242}
6243
6244/**
6245 * alloc_contig_range() -- tries to allocate given range of pages
6246 * @start: start PFN to allocate
6247 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
6248 * @migratetype: migratetype of the underlaying pageblocks (either
6249 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6250 * in range must have the same migratetype and it must
6251 * be either of the two.
041d3a8c
MN
6252 *
6253 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6254 * aligned, however it's the caller's responsibility to guarantee that
6255 * we are the only thread that changes migrate type of pageblocks the
6256 * pages fall in.
6257 *
6258 * The PFN range must belong to a single zone.
6259 *
6260 * Returns zero on success or negative error code. On success all
6261 * pages which PFN is in [start, end) are allocated for the caller and
6262 * need to be freed with free_contig_range().
6263 */
0815f3d8
MN
6264int alloc_contig_range(unsigned long start, unsigned long end,
6265 unsigned migratetype)
041d3a8c 6266{
041d3a8c
MN
6267 unsigned long outer_start, outer_end;
6268 int ret = 0, order;
6269
bb13ffeb
MG
6270 struct compact_control cc = {
6271 .nr_migratepages = 0,
6272 .order = -1,
6273 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 6274 .mode = MIGRATE_SYNC,
bb13ffeb
MG
6275 .ignore_skip_hint = true,
6276 };
6277 INIT_LIST_HEAD(&cc.migratepages);
6278
041d3a8c
MN
6279 /*
6280 * What we do here is we mark all pageblocks in range as
6281 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6282 * have different sizes, and due to the way page allocator
6283 * work, we align the range to biggest of the two pages so
6284 * that page allocator won't try to merge buddies from
6285 * different pageblocks and change MIGRATE_ISOLATE to some
6286 * other migration type.
6287 *
6288 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6289 * migrate the pages from an unaligned range (ie. pages that
6290 * we are interested in). This will put all the pages in
6291 * range back to page allocator as MIGRATE_ISOLATE.
6292 *
6293 * When this is done, we take the pages in range from page
6294 * allocator removing them from the buddy system. This way
6295 * page allocator will never consider using them.
6296 *
6297 * This lets us mark the pageblocks back as
6298 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6299 * aligned range but not in the unaligned, original range are
6300 * put back to page allocator so that buddy can use them.
6301 */
6302
6303 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
6304 pfn_max_align_up(end), migratetype,
6305 false);
041d3a8c 6306 if (ret)
86a595f9 6307 return ret;
041d3a8c 6308
bb13ffeb 6309 ret = __alloc_contig_migrate_range(&cc, start, end);
041d3a8c
MN
6310 if (ret)
6311 goto done;
6312
6313 /*
6314 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6315 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6316 * more, all pages in [start, end) are free in page allocator.
6317 * What we are going to do is to allocate all pages from
6318 * [start, end) (that is remove them from page allocator).
6319 *
6320 * The only problem is that pages at the beginning and at the
6321 * end of interesting range may be not aligned with pages that
6322 * page allocator holds, ie. they can be part of higher order
6323 * pages. Because of this, we reserve the bigger range and
6324 * once this is done free the pages we are not interested in.
6325 *
6326 * We don't have to hold zone->lock here because the pages are
6327 * isolated thus they won't get removed from buddy.
6328 */
6329
6330 lru_add_drain_all();
6331 drain_all_pages();
6332
6333 order = 0;
6334 outer_start = start;
6335 while (!PageBuddy(pfn_to_page(outer_start))) {
6336 if (++order >= MAX_ORDER) {
6337 ret = -EBUSY;
6338 goto done;
6339 }
6340 outer_start &= ~0UL << order;
6341 }
6342
6343 /* Make sure the range is really isolated. */
b023f468 6344 if (test_pages_isolated(outer_start, end, false)) {
041d3a8c
MN
6345 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6346 outer_start, end);
6347 ret = -EBUSY;
6348 goto done;
6349 }
6350
49f223a9
MS
6351
6352 /* Grab isolated pages from freelists. */
bb13ffeb 6353 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
6354 if (!outer_end) {
6355 ret = -EBUSY;
6356 goto done;
6357 }
6358
6359 /* Free head and tail (if any) */
6360 if (start != outer_start)
6361 free_contig_range(outer_start, start - outer_start);
6362 if (end != outer_end)
6363 free_contig_range(end, outer_end - end);
6364
6365done:
6366 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 6367 pfn_max_align_up(end), migratetype);
041d3a8c
MN
6368 return ret;
6369}
6370
6371void free_contig_range(unsigned long pfn, unsigned nr_pages)
6372{
bcc2b02f
MS
6373 unsigned int count = 0;
6374
6375 for (; nr_pages--; pfn++) {
6376 struct page *page = pfn_to_page(pfn);
6377
6378 count += page_count(page) != 1;
6379 __free_page(page);
6380 }
6381 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
6382}
6383#endif
6384
4ed7e022 6385#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
6386/*
6387 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6388 * page high values need to be recalulated.
6389 */
4ed7e022
JL
6390void __meminit zone_pcp_update(struct zone *zone)
6391{
0a647f38 6392 unsigned cpu;
c8e251fa 6393 mutex_lock(&pcp_batch_high_lock);
0a647f38 6394 for_each_possible_cpu(cpu)
169f6c19
CS
6395 pageset_set_high_and_batch(zone,
6396 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 6397 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
6398}
6399#endif
6400
340175b7
JL
6401void zone_pcp_reset(struct zone *zone)
6402{
6403 unsigned long flags;
5a883813
MK
6404 int cpu;
6405 struct per_cpu_pageset *pset;
340175b7
JL
6406
6407 /* avoid races with drain_pages() */
6408 local_irq_save(flags);
6409 if (zone->pageset != &boot_pageset) {
5a883813
MK
6410 for_each_online_cpu(cpu) {
6411 pset = per_cpu_ptr(zone->pageset, cpu);
6412 drain_zonestat(zone, pset);
6413 }
340175b7
JL
6414 free_percpu(zone->pageset);
6415 zone->pageset = &boot_pageset;
6416 }
6417 local_irq_restore(flags);
6418}
6419
6dcd73d7 6420#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195
KH
6421/*
6422 * All pages in the range must be isolated before calling this.
6423 */
6424void
6425__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6426{
6427 struct page *page;
6428 struct zone *zone;
6429 int order, i;
6430 unsigned long pfn;
6431 unsigned long flags;
6432 /* find the first valid pfn */
6433 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6434 if (pfn_valid(pfn))
6435 break;
6436 if (pfn == end_pfn)
6437 return;
6438 zone = page_zone(pfn_to_page(pfn));
6439 spin_lock_irqsave(&zone->lock, flags);
6440 pfn = start_pfn;
6441 while (pfn < end_pfn) {
6442 if (!pfn_valid(pfn)) {
6443 pfn++;
6444 continue;
6445 }
6446 page = pfn_to_page(pfn);
b023f468
WC
6447 /*
6448 * The HWPoisoned page may be not in buddy system, and
6449 * page_count() is not 0.
6450 */
6451 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6452 pfn++;
6453 SetPageReserved(page);
6454 continue;
6455 }
6456
0c0e6195
KH
6457 BUG_ON(page_count(page));
6458 BUG_ON(!PageBuddy(page));
6459 order = page_order(page);
6460#ifdef CONFIG_DEBUG_VM
6461 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6462 pfn, 1 << order, end_pfn);
6463#endif
6464 list_del(&page->lru);
6465 rmv_page_order(page);
6466 zone->free_area[order].nr_free--;
0c0e6195
KH
6467 for (i = 0; i < (1 << order); i++)
6468 SetPageReserved((page+i));
6469 pfn += (1 << order);
6470 }
6471 spin_unlock_irqrestore(&zone->lock, flags);
6472}
6473#endif
8d22ba1b
WF
6474
6475#ifdef CONFIG_MEMORY_FAILURE
6476bool is_free_buddy_page(struct page *page)
6477{
6478 struct zone *zone = page_zone(page);
6479 unsigned long pfn = page_to_pfn(page);
6480 unsigned long flags;
6481 int order;
6482
6483 spin_lock_irqsave(&zone->lock, flags);
6484 for (order = 0; order < MAX_ORDER; order++) {
6485 struct page *page_head = page - (pfn & ((1 << order) - 1));
6486
6487 if (PageBuddy(page_head) && page_order(page_head) >= order)
6488 break;
6489 }
6490 spin_unlock_irqrestore(&zone->lock, flags);
6491
6492 return order < MAX_ORDER;
6493}
6494#endif
718a3821 6495
51300cef 6496static const struct trace_print_flags pageflag_names[] = {
718a3821
WF
6497 {1UL << PG_locked, "locked" },
6498 {1UL << PG_error, "error" },
6499 {1UL << PG_referenced, "referenced" },
6500 {1UL << PG_uptodate, "uptodate" },
6501 {1UL << PG_dirty, "dirty" },
6502 {1UL << PG_lru, "lru" },
6503 {1UL << PG_active, "active" },
6504 {1UL << PG_slab, "slab" },
6505 {1UL << PG_owner_priv_1, "owner_priv_1" },
6506 {1UL << PG_arch_1, "arch_1" },
6507 {1UL << PG_reserved, "reserved" },
6508 {1UL << PG_private, "private" },
6509 {1UL << PG_private_2, "private_2" },
6510 {1UL << PG_writeback, "writeback" },
6511#ifdef CONFIG_PAGEFLAGS_EXTENDED
6512 {1UL << PG_head, "head" },
6513 {1UL << PG_tail, "tail" },
6514#else
6515 {1UL << PG_compound, "compound" },
6516#endif
6517 {1UL << PG_swapcache, "swapcache" },
6518 {1UL << PG_mappedtodisk, "mappedtodisk" },
6519 {1UL << PG_reclaim, "reclaim" },
718a3821
WF
6520 {1UL << PG_swapbacked, "swapbacked" },
6521 {1UL << PG_unevictable, "unevictable" },
6522#ifdef CONFIG_MMU
6523 {1UL << PG_mlocked, "mlocked" },
6524#endif
6525#ifdef CONFIG_ARCH_USES_PG_UNCACHED
6526 {1UL << PG_uncached, "uncached" },
6527#endif
6528#ifdef CONFIG_MEMORY_FAILURE
6529 {1UL << PG_hwpoison, "hwpoison" },
be9cd873
GS
6530#endif
6531#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6532 {1UL << PG_compound_lock, "compound_lock" },
718a3821 6533#endif
718a3821
WF
6534};
6535
6536static void dump_page_flags(unsigned long flags)
6537{
6538 const char *delim = "";
6539 unsigned long mask;
6540 int i;
6541
51300cef 6542 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
acc50c11 6543
718a3821
WF
6544 printk(KERN_ALERT "page flags: %#lx(", flags);
6545
6546 /* remove zone id */
6547 flags &= (1UL << NR_PAGEFLAGS) - 1;
6548
51300cef 6549 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
718a3821
WF
6550
6551 mask = pageflag_names[i].mask;
6552 if ((flags & mask) != mask)
6553 continue;
6554
6555 flags &= ~mask;
6556 printk("%s%s", delim, pageflag_names[i].name);
6557 delim = "|";
6558 }
6559
6560 /* check for left over flags */
6561 if (flags)
6562 printk("%s%#lx", delim, flags);
6563
6564 printk(")\n");
6565}
6566
d230dec1
KS
6567void dump_page_badflags(struct page *page, const char *reason,
6568 unsigned long badflags)
718a3821
WF
6569{
6570 printk(KERN_ALERT
6571 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
4e9f64c4 6572 page, atomic_read(&page->_count), page_mapcount(page),
718a3821
WF
6573 page->mapping, page->index);
6574 dump_page_flags(page->flags);
f0b791a3
DH
6575 if (reason)
6576 pr_alert("page dumped because: %s\n", reason);
6577 if (page->flags & badflags) {
6578 pr_alert("bad because of flags:\n");
6579 dump_page_flags(page->flags & badflags);
6580 }
f212ad7c 6581 mem_cgroup_print_bad_page(page);
718a3821 6582}
f0b791a3 6583
d230dec1 6584void dump_page(struct page *page, const char *reason)
f0b791a3
DH
6585{
6586 dump_page_badflags(page, reason, 0);
6587}
ed12d845 6588EXPORT_SYMBOL(dump_page);