]> git.proxmox.com Git - mirror_zfs.git/blame - module/os/linux/zfs/vdev_disk.c
vdev_disk: ensure trim errors are returned immediately
[mirror_zfs.git] / module / os / linux / zfs / vdev_disk.c
CommitLineData
60101509
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
1d3ba0bf 9 * or https://opensource.org/licenses/CDDL-1.0.
60101509
BB
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
23 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
24 * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
25 * LLNL-CODE-403049.
1eacf2b3 26 * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
06a19602 27 * Copyright (c) 2023, 2024, Klara Inc.
60101509
BB
28 */
29
30#include <sys/zfs_context.h>
e771de53 31#include <sys/spa_impl.h>
60101509
BB
32#include <sys/vdev_disk.h>
33#include <sys/vdev_impl.h>
1b939560 34#include <sys/vdev_trim.h>
a6255b7f 35#include <sys/abd.h>
60101509
BB
36#include <sys/fs/zfs.h>
37#include <sys/zio.h>
8e82ffba 38#include <linux/blkpg.h>
74d42600 39#include <linux/msdos_fs.h>
05805494 40#include <linux/vfs_compat.h>
1e767532
CK
41#ifdef HAVE_LINUX_BLK_CGROUP_HEADER
42#include <linux/blk-cgroup.h>
43#endif
60101509 44
386d6a75
RN
45/*
46 * Linux 6.8.x uses a bdev_handle as an instance/refcount for an underlying
47 * block_device. Since it carries the block_device inside, its convenient to
e3120f73
RN
48 * just use the handle as a proxy.
49 *
50 * Linux 6.9.x uses a file for the same purpose.
51 *
52 * For pre-6.8, we just emulate this with a cast, since we don't need any of
53 * the other fields inside the handle.
386d6a75 54 */
e3120f73 55#if defined(HAVE_BDEV_OPEN_BY_PATH)
386d6a75
RN
56typedef struct bdev_handle zfs_bdev_handle_t;
57#define BDH_BDEV(bdh) ((bdh)->bdev)
58#define BDH_IS_ERR(bdh) (IS_ERR(bdh))
59#define BDH_PTR_ERR(bdh) (PTR_ERR(bdh))
60#define BDH_ERR_PTR(err) (ERR_PTR(err))
e3120f73
RN
61#elif defined(HAVE_BDEV_FILE_OPEN_BY_PATH)
62typedef struct file zfs_bdev_handle_t;
63#define BDH_BDEV(bdh) (file_bdev(bdh))
64#define BDH_IS_ERR(bdh) (IS_ERR(bdh))
65#define BDH_PTR_ERR(bdh) (PTR_ERR(bdh))
66#define BDH_ERR_PTR(err) (ERR_PTR(err))
386d6a75
RN
67#else
68typedef void zfs_bdev_handle_t;
69#define BDH_BDEV(bdh) ((struct block_device *)bdh)
70#define BDH_IS_ERR(bdh) (IS_ERR(BDH_BDEV(bdh)))
71#define BDH_PTR_ERR(bdh) (PTR_ERR(BDH_BDEV(bdh)))
72#define BDH_ERR_PTR(err) (ERR_PTR(err))
73#endif
74
d366c8fd 75typedef struct vdev_disk {
386d6a75 76 zfs_bdev_handle_t *vd_bdh;
d366c8fd
JL
77 krwlock_t vd_lock;
78} vdev_disk_t;
79
06a19602
RN
80/*
81 * Maximum number of segments to add to a bio (min 4). If this is higher than
82 * the maximum allowed by the device queue or the kernel itself, it will be
83 * clamped. Setting it to zero will cause the kernel's ideal size to be used.
84 */
85uint_t zfs_vdev_disk_max_segs = 0;
86
a25861dc
BB
87/*
88 * Unique identifier for the exclusive vdev holder.
89 */
8128bd89 90static void *zfs_vdev_holder = VDEV_HOLDER;
6839eed2 91
a25861dc
BB
92/*
93 * Wait up to zfs_vdev_open_timeout_ms milliseconds before determining the
94 * device is missing. The missing path may be transient since the links
95 * can be briefly removed and recreated in response to udev events.
96 */
f66ffe68 97static uint_t zfs_vdev_open_timeout_ms = 1000;
a25861dc
BB
98
99/*
100 * Size of the "reserved" partition, in blocks.
101 */
74d42600
SH
102#define EFI_MIN_RESV_SIZE (16 * 1024)
103
16f0fdad
MZ
104/*
105 * BIO request failfast mask.
106 */
107
108static unsigned int zfs_vdev_failfast_mask = 1;
109
cfb96c77
RN
110/*
111 * Convert SPA mode flags into bdev open mode flags.
112 */
43e8f6e3 113#ifdef HAVE_BLK_MODE_T
cfb96c77
RN
114typedef blk_mode_t vdev_bdev_mode_t;
115#define VDEV_BDEV_MODE_READ BLK_OPEN_READ
116#define VDEV_BDEV_MODE_WRITE BLK_OPEN_WRITE
117#define VDEV_BDEV_MODE_EXCL BLK_OPEN_EXCL
118#define VDEV_BDEV_MODE_MASK (BLK_OPEN_READ|BLK_OPEN_WRITE|BLK_OPEN_EXCL)
43e8f6e3 119#else
cfb96c77
RN
120typedef fmode_t vdev_bdev_mode_t;
121#define VDEV_BDEV_MODE_READ FMODE_READ
122#define VDEV_BDEV_MODE_WRITE FMODE_WRITE
123#define VDEV_BDEV_MODE_EXCL FMODE_EXCL
124#define VDEV_BDEV_MODE_MASK (FMODE_READ|FMODE_WRITE|FMODE_EXCL)
43e8f6e3 125#endif
43e8f6e3 126
cfb96c77
RN
127static vdev_bdev_mode_t
128vdev_bdev_mode(spa_mode_t smode)
129{
130 ASSERT3U(smode, !=, SPA_MODE_UNINIT);
131 ASSERT0(smode & ~(SPA_MODE_READ|SPA_MODE_WRITE));
233d34e4 132
cfb96c77 133 vdev_bdev_mode_t bmode = VDEV_BDEV_MODE_EXCL;
60101509 134
cfb96c77
RN
135 if (smode & SPA_MODE_READ)
136 bmode |= VDEV_BDEV_MODE_READ;
60101509 137
cfb96c77
RN
138 if (smode & SPA_MODE_WRITE)
139 bmode |= VDEV_BDEV_MODE_WRITE;
233d34e4 140
cfb96c77
RN
141 ASSERT(bmode & VDEV_BDEV_MODE_MASK);
142 ASSERT0(bmode & ~VDEV_BDEV_MODE_MASK);
60101509 143
cfb96c77 144 return (bmode);
60101509 145}
60101509 146
d441e85d
BB
147/*
148 * Returns the usable capacity (in bytes) for the partition or disk.
149 */
60101509 150static uint64_t
d441e85d 151bdev_capacity(struct block_device *bdev)
60101509 152{
d441e85d
BB
153 return (i_size_read(bdev->bd_inode));
154}
60101509 155
72ba4b2a
BB
156#if !defined(HAVE_BDEV_WHOLE)
157static inline struct block_device *
158bdev_whole(struct block_device *bdev)
159{
160 return (bdev->bd_contains);
161}
162#endif
163
bebdf52a
BB
164#if defined(HAVE_BDEVNAME)
165#define vdev_bdevname(bdev, name) bdevname(bdev, name)
166#else
167static inline void
168vdev_bdevname(struct block_device *bdev, char *name)
169{
170 snprintf(name, BDEVNAME_SIZE, "%pg", bdev);
171}
172#endif
173
d441e85d
BB
174/*
175 * Returns the maximum expansion capacity of the block device (in bytes).
176 *
177 * It is possible to expand a vdev when it has been created as a wholedisk
178 * and the containing block device has increased in capacity. Or when the
179 * partition containing the pool has been manually increased in size.
180 *
181 * This function is only responsible for calculating the potential expansion
182 * size so it can be reported by 'zpool list'. The efi_use_whole_disk() is
183 * responsible for verifying the expected partition layout in the wholedisk
184 * case, and updating the partition table if appropriate. Once the partition
185 * size has been increased the additional capacity will be visible using
186 * bdev_capacity().
0c637f31 187 *
188 * The returned maximum expansion capacity is always expected to be larger, or
189 * at the very least equal, to its usable capacity to prevent overestimating
190 * the pool expandsize.
d441e85d
BB
191 */
192static uint64_t
193bdev_max_capacity(struct block_device *bdev, uint64_t wholedisk)
194{
195 uint64_t psize;
196 int64_t available;
197
72ba4b2a 198 if (wholedisk && bdev != bdev_whole(bdev)) {
74d42600 199 /*
d441e85d
BB
200 * When reporting maximum expansion capacity for a wholedisk
201 * deduct any capacity which is expected to be lost due to
202 * alignment restrictions. Over reporting this value isn't
203 * harmful and would only result in slightly less capacity
204 * than expected post expansion.
0c637f31 205 * The estimated available space may be slightly smaller than
206 * bdev_capacity() for devices where the number of sectors is
207 * not a multiple of the alignment size and the partition layout
208 * is keeping less than PARTITION_END_ALIGNMENT bytes after the
209 * "reserved" EFI partition: in such cases return the device
210 * usable capacity.
74d42600 211 */
72ba4b2a 212 available = i_size_read(bdev_whole(bdev)->bd_inode) -
d441e85d
BB
213 ((EFI_MIN_RESV_SIZE + NEW_START_BLOCK +
214 PARTITION_END_ALIGNMENT) << SECTOR_BITS);
0c637f31 215 psize = MAX(available, bdev_capacity(bdev));
74d42600 216 } else {
d441e85d 217 psize = bdev_capacity(bdev);
74d42600 218 }
d441e85d
BB
219
220 return (psize);
60101509
BB
221}
222
d148e951
BB
223static void
224vdev_disk_error(zio_t *zio)
225{
c71c8c71 226 /*
227 * This function can be called in interrupt context, for instance while
228 * handling IRQs coming from a misbehaving disk device; use printk()
229 * which is safe from any context.
230 */
231 printk(KERN_WARNING "zio pool=%s vdev=%s error=%d type=%d "
4938d01d 232 "offset=%llu size=%llu flags=%llu\n", spa_name(zio->io_spa),
c71c8c71 233 zio->io_vd->vdev_path, zio->io_error, zio->io_type,
234 (u_longlong_t)zio->io_offset, (u_longlong_t)zio->io_size,
235 zio->io_flags);
d148e951
BB
236}
237
55c12724
AH
238static void
239vdev_disk_kobj_evt_post(vdev_t *v)
240{
241 vdev_disk_t *vd = v->vdev_tsd;
386d6a75
RN
242 if (vd && vd->vd_bdh) {
243 spl_signal_kobj_evt(BDH_BDEV(vd->vd_bdh));
55c12724
AH
244 } else {
245 vdev_dbgmsg(v, "vdev_disk_t is NULL for VDEV:%s\n",
246 v->vdev_path);
247 }
248}
249
386d6a75 250static zfs_bdev_handle_t *
cfb96c77 251vdev_blkdev_get_by_path(const char *path, spa_mode_t smode, void *holder)
43e8f6e3 252{
cfb96c77
RN
253 vdev_bdev_mode_t bmode = vdev_bdev_mode(smode);
254
e3120f73
RN
255#if defined(HAVE_BDEV_FILE_OPEN_BY_PATH)
256 return (bdev_file_open_by_path(path, bmode, holder, NULL));
257#elif defined(HAVE_BDEV_OPEN_BY_PATH)
cfb96c77 258 return (bdev_open_by_path(path, bmode, holder, NULL));
386d6a75 259#elif defined(HAVE_BLKDEV_GET_BY_PATH_4ARG)
cfb96c77 260 return (blkdev_get_by_path(path, bmode, holder, NULL));
43e8f6e3 261#else
cfb96c77 262 return (blkdev_get_by_path(path, bmode, holder));
43e8f6e3
CK
263#endif
264}
265
266static void
cfb96c77 267vdev_blkdev_put(zfs_bdev_handle_t *bdh, spa_mode_t smode, void *holder)
43e8f6e3 268{
386d6a75
RN
269#if defined(HAVE_BDEV_RELEASE)
270 return (bdev_release(bdh));
271#elif defined(HAVE_BLKDEV_PUT_HOLDER)
272 return (blkdev_put(BDH_BDEV(bdh), holder));
e3120f73 273#elif defined(HAVE_BLKDEV_PUT)
cfb96c77 274 return (blkdev_put(BDH_BDEV(bdh), vdev_bdev_mode(smode)));
e3120f73
RN
275#else
276 fput(bdh);
43e8f6e3
CK
277#endif
278}
279
60101509 280static int
1bd201e7 281vdev_disk_open(vdev_t *v, uint64_t *psize, uint64_t *max_psize,
6fe3498c 282 uint64_t *logical_ashift, uint64_t *physical_ashift)
60101509 283{
386d6a75 284 zfs_bdev_handle_t *bdh;
cfb96c77 285 spa_mode_t smode = spa_mode(v->vdev_spa);
a25861dc 286 hrtime_t timeout = MSEC2NSEC(zfs_vdev_open_timeout_ms);
60101509 287 vdev_disk_t *vd;
60101509
BB
288
289 /* Must have a pathname and it must be absolute. */
290 if (v->vdev_path == NULL || v->vdev_path[0] != '/') {
291 v->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
d441e85d 292 vdev_dbgmsg(v, "invalid vdev_path");
2d82ea8b 293 return (SET_ERROR(EINVAL));
60101509
BB
294 }
295
0d8103d9 296 /*
d441e85d 297 * Reopen the device if it is currently open. When expanding a
8e82ffba
GW
298 * partition force re-scanning the partition table if userland
299 * did not take care of this already. We need to do this while closed
d441e85d
BB
300 * in order to get an accurate updated block device size. Then
301 * since udev may need to recreate the device links increase the
a25861dc 302 * open retry timeout before reporting the device as unavailable.
0d8103d9 303 */
d441e85d
BB
304 vd = v->vdev_tsd;
305 if (vd) {
306 char disk_name[BDEVNAME_SIZE + 6] = "/dev/";
307 boolean_t reread_part = B_FALSE;
0d8103d9 308
d441e85d 309 rw_enter(&vd->vd_lock, RW_WRITER);
386d6a75
RN
310 bdh = vd->vd_bdh;
311 vd->vd_bdh = NULL;
d441e85d 312
386d6a75
RN
313 if (bdh) {
314 struct block_device *bdev = BDH_BDEV(bdh);
72ba4b2a 315 if (v->vdev_expanding && bdev != bdev_whole(bdev)) {
bebdf52a 316 vdev_bdevname(bdev_whole(bdev), disk_name + 5);
8e82ffba
GW
317 /*
318 * If userland has BLKPG_RESIZE_PARTITION,
319 * then it should have updated the partition
320 * table already. We can detect this by
321 * comparing our current physical size
322 * with that of the device. If they are
323 * the same, then we must not have
324 * BLKPG_RESIZE_PARTITION or it failed to
325 * update the partition table online. We
326 * fallback to rescanning the partition
327 * table from the kernel below. However,
328 * if the capacity already reflects the
329 * updated partition, then we skip
330 * rescanning the partition table here.
331 */
332 if (v->vdev_psize == bdev_capacity(bdev))
333 reread_part = B_TRUE;
d441e85d
BB
334 }
335
cfb96c77 336 vdev_blkdev_put(bdh, smode, zfs_vdev_holder);
d441e85d
BB
337 }
338
339 if (reread_part) {
cfb96c77 340 bdh = vdev_blkdev_get_by_path(disk_name, smode,
386d6a75
RN
341 zfs_vdev_holder);
342 if (!BDH_IS_ERR(bdh)) {
343 int error =
344 vdev_bdev_reread_part(BDH_BDEV(bdh));
cfb96c77 345 vdev_blkdev_put(bdh, smode, zfs_vdev_holder);
a25861dc
BB
346 if (error == 0) {
347 timeout = MSEC2NSEC(
348 zfs_vdev_open_timeout_ms * 2);
349 }
d441e85d
BB
350 }
351 }
352 } else {
353 vd = kmem_zalloc(sizeof (vdev_disk_t), KM_SLEEP);
354
355 rw_init(&vd->vd_lock, NULL, RW_DEFAULT, NULL);
356 rw_enter(&vd->vd_lock, RW_WRITER);
357 }
60101509
BB
358
359 /*
360 * Devices are always opened by the path provided at configuration
361 * time. This means that if the provided path is a udev by-id path
d441e85d 362 * then drives may be re-cabled without an issue. If the provided
4e95cc99 363 * path is a udev by-path path, then the physical location information
60101509
BB
364 * will be preserved. This can be critical for more complicated
365 * configurations where drives are located in specific physical
d441e85d
BB
366 * locations to maximize the systems tolerance to component failure.
367 *
4e95cc99 368 * Alternatively, you can provide your own udev rule to flexibly map
60101509 369 * the drives as you see fit. It is not advised that you use the
4e95cc99 370 * /dev/[hd]d devices which may be reordered due to probing order.
60101509
BB
371 * Devices in the wrong locations will be detected by the higher
372 * level vdev validation.
2d82ea8b
BB
373 *
374 * The specified paths may be briefly removed and recreated in
375 * response to udev events. This should be exceptionally unlikely
376 * because the zpool command makes every effort to verify these paths
377 * have already settled prior to reaching this point. Therefore,
378 * a ENOENT failure at this point is highly likely to be transient
379 * and it is reasonable to sleep and retry before giving up. In
380 * practice delays have been observed to be on the order of 100ms.
77e2756d
BB
381 *
382 * When ERESTARTSYS is returned it indicates the block device is
383 * a zvol which could not be opened due to the deadlock detection
384 * logic in zvol_open(). Extend the timeout and retry the open
385 * subsequent attempts are expected to eventually succeed.
60101509 386 */
a25861dc 387 hrtime_t start = gethrtime();
386d6a75
RN
388 bdh = BDH_ERR_PTR(-ENXIO);
389 while (BDH_IS_ERR(bdh) && ((gethrtime() - start) < timeout)) {
cfb96c77 390 bdh = vdev_blkdev_get_by_path(v->vdev_path, smode,
386d6a75
RN
391 zfs_vdev_holder);
392 if (unlikely(BDH_PTR_ERR(bdh) == -ENOENT)) {
55c12724
AH
393 /*
394 * There is no point of waiting since device is removed
395 * explicitly
396 */
397 if (v->vdev_removed)
398 break;
399
d441e85d 400 schedule_timeout(MSEC_TO_TICK(10));
386d6a75 401 } else if (unlikely(BDH_PTR_ERR(bdh) == -ERESTARTSYS)) {
77e2756d
BB
402 timeout = MSEC2NSEC(zfs_vdev_open_timeout_ms * 10);
403 continue;
386d6a75 404 } else if (BDH_IS_ERR(bdh)) {
2d82ea8b
BB
405 break;
406 }
407 }
408
386d6a75
RN
409 if (BDH_IS_ERR(bdh)) {
410 int error = -BDH_PTR_ERR(bdh);
a25861dc
BB
411 vdev_dbgmsg(v, "open error=%d timeout=%llu/%llu", error,
412 (u_longlong_t)(gethrtime() - start),
413 (u_longlong_t)timeout);
386d6a75 414 vd->vd_bdh = NULL;
d441e85d
BB
415 v->vdev_tsd = vd;
416 rw_exit(&vd->vd_lock);
417 return (SET_ERROR(error));
418 } else {
386d6a75 419 vd->vd_bdh = bdh;
d441e85d
BB
420 v->vdev_tsd = vd;
421 rw_exit(&vd->vd_lock);
60101509
BB
422 }
423
386d6a75
RN
424 struct block_device *bdev = BDH_BDEV(vd->vd_bdh);
425
0d8103d9 426 /* Determine the physical block size */
386d6a75 427 int physical_block_size = bdev_physical_block_size(bdev);
6fe3498c
RM
428
429 /* Determine the logical block size */
386d6a75 430 int logical_block_size = bdev_logical_block_size(bdev);
60101509 431
60101509
BB
432 /* Clear the nowritecache bit, causes vdev_reopen() to try again. */
433 v->vdev_nowritecache = B_FALSE;
434
1b939560 435 /* Set when device reports it supports TRIM. */
386d6a75 436 v->vdev_has_trim = bdev_discard_supported(bdev);
1b939560
BB
437
438 /* Set when device reports it supports secure TRIM. */
386d6a75 439 v->vdev_has_securetrim = bdev_secure_discard_supported(bdev);
1b939560 440
fb40095f 441 /* Inform the ZIO pipeline that we are non-rotational */
386d6a75 442 v->vdev_nonrot = blk_queue_nonrot(bdev_get_queue(bdev));
fb40095f 443
d441e85d 444 /* Physical volume size in bytes for the partition */
386d6a75 445 *psize = bdev_capacity(bdev);
d441e85d
BB
446
447 /* Physical volume size in bytes including possible expansion space */
386d6a75 448 *max_psize = bdev_max_capacity(bdev, v->vdev_wholedisk);
1bd201e7 449
60101509 450 /* Based on the minimum sector size set the block size */
6fe3498c
RM
451 *physical_ashift = highbit64(MAX(physical_block_size,
452 SPA_MINBLOCKSIZE)) - 1;
453
454 *logical_ashift = highbit64(MAX(logical_block_size,
455 SPA_MINBLOCKSIZE)) - 1;
60101509 456
d1d7e268 457 return (0);
60101509
BB
458}
459
460static void
461vdev_disk_close(vdev_t *v)
462{
463 vdev_disk_t *vd = v->vdev_tsd;
464
0d8103d9 465 if (v->vdev_reopening || vd == NULL)
60101509
BB
466 return;
467
72fd834c 468 if (vd->vd_bdh != NULL)
386d6a75 469 vdev_blkdev_put(vd->vd_bdh, spa_mode(v->vdev_spa),
43e8f6e3 470 zfs_vdev_holder);
60101509 471
d441e85d 472 rw_destroy(&vd->vd_lock);
d1d7e268 473 kmem_free(vd, sizeof (vdev_disk_t));
60101509
BB
474 v->vdev_tsd = NULL;
475}
476
bbb1b6ce 477static inline void
3b86aeb2 478vdev_submit_bio_impl(struct bio *bio)
bbb1b6ce
BB
479{
480#ifdef HAVE_1ARG_SUBMIT_BIO
453c63e9 481 (void) submit_bio(bio);
bbb1b6ce 482#else
a3fbe2b9 483 (void) submit_bio(bio_data_dir(bio), bio);
bbb1b6ce
BB
484#endif
485}
486
2e407941
BB
487/*
488 * preempt_schedule_notrace is GPL-only which breaks the ZFS build, so
489 * replace it with preempt_schedule under the following condition:
490 */
491#if defined(CONFIG_ARM64) && \
492 defined(CONFIG_PREEMPTION) && \
493 defined(CONFIG_BLK_CGROUP)
494#define preempt_schedule_notrace(x) preempt_schedule(x)
495#endif
496
5f264996
BB
497/*
498 * As for the Linux 5.18 kernel bio_alloc() expects a block_device struct
499 * as an argument removing the need to set it with bio_set_dev(). This
500 * removes the need for all of the following compatibility code.
501 */
502#if !defined(HAVE_BIO_ALLOC_4ARG)
503
26a85659
BB
504#ifdef HAVE_BIO_SET_DEV
505#if defined(CONFIG_BLK_CGROUP) && defined(HAVE_BIO_SET_DEV_GPL_ONLY)
bd0d24e0
BB
506/*
507 * The Linux 5.5 kernel updated percpu_ref_tryget() which is inlined by
508 * blkg_tryget() to use rcu_read_lock() instead of rcu_read_lock_sched().
509 * As a side effect the function was converted to GPL-only. Define our
510 * own version when needed which uses rcu_read_lock_sched().
036e846a
RS
511 *
512 * The Linux 5.17 kernel split linux/blk-cgroup.h into a private and a public
513 * part, moving blkg_tryget into the private one. Define our own version.
bd0d24e0 514 */
036e846a 515#if defined(HAVE_BLKG_TRYGET_GPL_ONLY) || !defined(HAVE_BLKG_TRYGET)
bd0d24e0
BB
516static inline bool
517vdev_blkg_tryget(struct blkcg_gq *blkg)
518{
519 struct percpu_ref *ref = &blkg->refcnt;
520 unsigned long __percpu *count;
521 bool rc;
522
523 rcu_read_lock_sched();
524
525 if (__ref_is_percpu(ref, &count)) {
526 this_cpu_inc(*count);
527 rc = true;
528 } else {
838a2490
CK
529#ifdef ZFS_PERCPU_REF_COUNT_IN_DATA
530 rc = atomic_long_inc_not_zero(&ref->data->count);
531#else
bd0d24e0 532 rc = atomic_long_inc_not_zero(&ref->count);
838a2490 533#endif
bd0d24e0
BB
534 }
535
536 rcu_read_unlock_sched();
537
538 return (rc);
539}
036e846a 540#else
bd0d24e0
BB
541#define vdev_blkg_tryget(bg) blkg_tryget(bg)
542#endif
d08b99ac 543#ifdef HAVE_BIO_SET_DEV_MACRO
26a85659
BB
544/*
545 * The Linux 5.0 kernel updated the bio_set_dev() macro so it calls the
546 * GPL-only bio_associate_blkg() symbol thus inadvertently converting
547 * the entire macro. Provide a minimal version which always assigns the
548 * request queue's root_blkg to the bio.
549 */
550static inline void
551vdev_bio_associate_blkg(struct bio *bio)
552{
d939930f
CK
553#if defined(HAVE_BIO_BDEV_DISK)
554 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
555#else
26a85659 556 struct request_queue *q = bio->bi_disk->queue;
d939930f 557#endif
26a85659
BB
558
559 ASSERT3P(q, !=, NULL);
26a85659
BB
560 ASSERT3P(bio->bi_blkg, ==, NULL);
561
bd0d24e0 562 if (q->root_blkg && vdev_blkg_tryget(q->root_blkg))
26a85659
BB
563 bio->bi_blkg = q->root_blkg;
564}
d08b99ac 565
26a85659 566#define bio_associate_blkg vdev_bio_associate_blkg
d08b99ac
CK
567#else
568static inline void
569vdev_bio_set_dev(struct bio *bio, struct block_device *bdev)
570{
571#if defined(HAVE_BIO_BDEV_DISK)
572 struct request_queue *q = bdev->bd_disk->queue;
573#else
574 struct request_queue *q = bio->bi_disk->queue;
575#endif
576 bio_clear_flag(bio, BIO_REMAPPED);
577 if (bio->bi_bdev != bdev)
578 bio_clear_flag(bio, BIO_THROTTLED);
579 bio->bi_bdev = bdev;
580
581 ASSERT3P(q, !=, NULL);
582 ASSERT3P(bio->bi_blkg, ==, NULL);
583
584 if (q->root_blkg && vdev_blkg_tryget(q->root_blkg))
585 bio->bi_blkg = q->root_blkg;
586}
587#define bio_set_dev vdev_bio_set_dev
588#endif
26a85659
BB
589#endif
590#else
591/*
592 * Provide a bio_set_dev() helper macro for pre-Linux 4.14 kernels.
593 */
787acae0
GDN
594static inline void
595bio_set_dev(struct bio *bio, struct block_device *bdev)
596{
597 bio->bi_bdev = bdev;
598}
26a85659 599#endif /* HAVE_BIO_SET_DEV */
5f264996 600#endif /* !HAVE_BIO_ALLOC_4ARG */
787acae0 601
37f9dac5 602static inline void
3b86aeb2 603vdev_submit_bio(struct bio *bio)
37f9dac5 604{
37f9dac5
RY
605 struct bio_list *bio_list = current->bio_list;
606 current->bio_list = NULL;
3b86aeb2 607 vdev_submit_bio_impl(bio);
37f9dac5 608 current->bio_list = bio_list;
37f9dac5
RY
609}
610
5f264996
BB
611static inline struct bio *
612vdev_bio_alloc(struct block_device *bdev, gfp_t gfp_mask,
613 unsigned short nr_vecs)
614{
615 struct bio *bio;
616
d1325b4f 617#ifdef HAVE_BIO_ALLOC_4ARG
5f264996
BB
618 bio = bio_alloc(bdev, nr_vecs, 0, gfp_mask);
619#else
620 bio = bio_alloc(gfp_mask, nr_vecs);
621 if (likely(bio != NULL))
622 bio_set_dev(bio, bdev);
d1325b4f
AZ
623#endif
624
5f264996
BB
625 return (bio);
626}
627
06a19602
RN
628static inline uint_t
629vdev_bio_max_segs(struct block_device *bdev)
630{
631 /*
632 * Smallest of the device max segs and the tuneable max segs. Minimum
633 * 4, so there's room to finish split pages if they come up.
634 */
635 const uint_t dev_max_segs = queue_max_segments(bdev_get_queue(bdev));
636 const uint_t tune_max_segs = (zfs_vdev_disk_max_segs > 0) ?
637 MAX(4, zfs_vdev_disk_max_segs) : dev_max_segs;
638 const uint_t max_segs = MIN(tune_max_segs, dev_max_segs);
639
640#ifdef HAVE_BIO_MAX_SEGS
641 return (bio_max_segs(max_segs));
642#else
643 return (MIN(max_segs, BIO_MAX_PAGES));
644#endif
645}
646
647static inline uint_t
648vdev_bio_max_bytes(struct block_device *bdev)
649{
650 return (queue_max_sectors(bdev_get_queue(bdev)) << 9);
651}
652
653
654/*
655 * Virtual block IO object (VBIO)
656 *
657 * Linux block IO (BIO) objects have a limit on how many data segments (pages)
658 * they can hold. Depending on how they're allocated and structured, a large
659 * ZIO can require more than one BIO to be submitted to the kernel, which then
660 * all have to complete before we can return the completed ZIO back to ZFS.
661 *
662 * A VBIO is a wrapper around multiple BIOs, carrying everything needed to
663 * translate a ZIO down into the kernel block layer and back again.
664 *
665 * Note that these are only used for data ZIOs (read/write). Meta-operations
666 * (flush/trim) don't need multiple BIOs and so can just make the call
667 * directly.
668 */
669typedef struct {
670 zio_t *vbio_zio; /* parent zio */
671
672 struct block_device *vbio_bdev; /* blockdev to submit bios to */
673
674 abd_t *vbio_abd; /* abd carrying borrowed linear buf */
675
06a19602
RN
676 uint_t vbio_max_segs; /* max segs per bio */
677
678 uint_t vbio_max_bytes; /* max bytes per bio */
679 uint_t vbio_lbs_mask; /* logical block size mask */
680
681 uint64_t vbio_offset; /* start offset of next bio */
682
683 struct bio *vbio_bio; /* pointer to the current bio */
72fd834c 684 int vbio_flags; /* bio flags */
06a19602
RN
685} vbio_t;
686
687static vbio_t *
72fd834c 688vbio_alloc(zio_t *zio, struct block_device *bdev, int flags)
06a19602
RN
689{
690 vbio_t *vbio = kmem_zalloc(sizeof (vbio_t), KM_SLEEP);
691
692 vbio->vbio_zio = zio;
693 vbio->vbio_bdev = bdev;
72fd834c 694 vbio->vbio_abd = NULL;
06a19602
RN
695 vbio->vbio_max_segs = vdev_bio_max_segs(bdev);
696 vbio->vbio_max_bytes = vdev_bio_max_bytes(bdev);
697 vbio->vbio_lbs_mask = ~(bdev_logical_block_size(bdev)-1);
698 vbio->vbio_offset = zio->io_offset;
72fd834c
RN
699 vbio->vbio_bio = NULL;
700 vbio->vbio_flags = flags;
06a19602
RN
701
702 return (vbio);
703}
704
72fd834c
RN
705BIO_END_IO_PROTO(vbio_completion, bio, error);
706
06a19602
RN
707static int
708vbio_add_page(vbio_t *vbio, struct page *page, uint_t size, uint_t offset)
709{
72fd834c 710 struct bio *bio = vbio->vbio_bio;
06a19602
RN
711 uint_t ssize;
712
713 while (size > 0) {
06a19602
RN
714 if (bio == NULL) {
715 /* New BIO, allocate and set up */
716 bio = vdev_bio_alloc(vbio->vbio_bdev, GFP_NOIO,
717 vbio->vbio_max_segs);
72fd834c
RN
718 VERIFY(bio);
719
06a19602 720 BIO_BI_SECTOR(bio) = vbio->vbio_offset >> 9;
72fd834c
RN
721 bio_set_op_attrs(bio,
722 vbio->vbio_zio->io_type == ZIO_TYPE_WRITE ?
723 WRITE : READ, vbio->vbio_flags);
06a19602 724
72fd834c
RN
725 if (vbio->vbio_bio) {
726 bio_chain(vbio->vbio_bio, bio);
727 vdev_submit_bio(vbio->vbio_bio);
728 }
729 vbio->vbio_bio = bio;
06a19602
RN
730 }
731
732 /*
733 * Only load as much of the current page data as will fit in
734 * the space left in the BIO, respecting lbs alignment. Older
735 * kernels will error if we try to overfill the BIO, while
736 * newer ones will accept it and split the BIO. This ensures
737 * everything works on older kernels, and avoids an additional
738 * overhead on the new.
739 */
740 ssize = MIN(size, (vbio->vbio_max_bytes - BIO_BI_SIZE(bio)) &
741 vbio->vbio_lbs_mask);
742 if (ssize > 0 &&
743 bio_add_page(bio, page, ssize, offset) == ssize) {
744 /* Accepted, adjust and load any remaining. */
745 size -= ssize;
746 offset += ssize;
747 continue;
748 }
749
750 /* No room, set up for a new BIO and loop */
751 vbio->vbio_offset += BIO_BI_SIZE(bio);
752
753 /* Signal new BIO allocation wanted */
72fd834c 754 bio = NULL;
06a19602
RN
755 }
756
757 return (0);
758}
759
72fd834c
RN
760/* Iterator callback to submit ABD pages to the vbio. */
761static int
762vbio_fill_cb(struct page *page, size_t off, size_t len, void *priv)
763{
764 vbio_t *vbio = priv;
765 return (vbio_add_page(vbio, page, len, off));
766}
06a19602 767
72fd834c 768/* Create some BIOs, fill them with data and submit them */
06a19602 769static void
72fd834c 770vbio_submit(vbio_t *vbio, abd_t *abd, uint64_t size)
06a19602 771{
06a19602 772 /*
72fd834c
RN
773 * We plug so we can submit the BIOs as we go and only unplug them when
774 * they are fully created and submitted. This is important; if we don't
775 * plug, then the kernel may start executing earlier BIOs while we're
776 * still creating and executing later ones, and if the device goes
777 * away while that's happening, older kernels can get confused and
778 * trample memory.
06a19602
RN
779 */
780 struct blk_plug plug;
72fd834c 781 blk_start_plug(&plug);
06a19602 782
72fd834c
RN
783 (void) abd_iterate_page_func(abd, 0, size, vbio_fill_cb, vbio);
784 ASSERT(vbio->vbio_bio);
06a19602 785
72fd834c
RN
786 vbio->vbio_bio->bi_end_io = vbio_completion;
787 vbio->vbio_bio->bi_private = vbio;
06a19602 788
917ff75e
RN
789 /*
790 * Once submitted, vbio_bio now owns vbio (through bi_private) and we
791 * can't touch it again. The bio may complete and vbio_completion() be
792 * called and free the vbio before this task is run again, so we must
793 * consider it invalid from this point.
794 */
72fd834c 795 vdev_submit_bio(vbio->vbio_bio);
06a19602 796
72fd834c 797 blk_finish_plug(&plug);
06a19602
RN
798}
799
72fd834c
RN
800/* IO completion callback */
801BIO_END_IO_PROTO(vbio_completion, bio, error)
06a19602 802{
72fd834c 803 vbio_t *vbio = bio->bi_private;
06a19602 804 zio_t *zio = vbio->vbio_zio;
06a19602 805
72fd834c 806 ASSERT(zio);
06a19602 807
72fd834c
RN
808 /* Capture and log any errors */
809#ifdef HAVE_1ARG_BIO_END_IO_T
810 zio->io_error = BIO_END_IO_ERROR(bio);
811#else
812 zio->io_error = 0;
813 if (error)
814 zio->io_error = -(error);
815 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
816 zio->io_error = EIO;
817#endif
818 ASSERT3U(zio->io_error, >=, 0);
06a19602 819
72fd834c
RN
820 if (zio->io_error)
821 vdev_disk_error(zio);
06a19602 822
72fd834c
RN
823 /* Return the BIO to the kernel */
824 bio_put(bio);
06a19602
RN
825
826 /*
72fd834c
RN
827 * If we copied the ABD before issuing it, clean up and return the copy
828 * to the ADB, with changes if appropriate.
06a19602 829 */
72fd834c
RN
830 if (vbio->vbio_abd != NULL) {
831 void *buf = abd_to_buf(vbio->vbio_abd);
832 abd_free(vbio->vbio_abd);
833 vbio->vbio_abd = NULL;
06a19602 834
72fd834c
RN
835 if (zio->io_type == ZIO_TYPE_READ)
836 abd_return_buf_copy(zio->io_abd, buf, zio->io_size);
837 else
838 abd_return_buf(zio->io_abd, buf, zio->io_size);
839 }
06a19602 840
72fd834c
RN
841 /* Final cleanup */
842 kmem_free(vbio, sizeof (vbio_t));
06a19602
RN
843
844 /* All done, submit for processing */
845 zio_delay_interrupt(zio);
06a19602
RN
846}
847
848/*
849 * Iterator callback to count ABD pages and check their size & alignment.
850 *
851 * On Linux, each BIO segment can take a page pointer, and an offset+length of
852 * the data within that page. A page can be arbitrarily large ("compound"
853 * pages) but we still have to ensure the data portion is correctly sized and
854 * aligned to the logical block size, to ensure that if the kernel wants to
855 * split the BIO, the two halves will still be properly aligned.
856 */
857typedef struct {
858 uint_t bmask;
859 uint_t npages;
860 uint_t end;
861} vdev_disk_check_pages_t;
862
863static int
864vdev_disk_check_pages_cb(struct page *page, size_t off, size_t len, void *priv)
865{
866 vdev_disk_check_pages_t *s = priv;
867
868 /*
869 * If we didn't finish on a block size boundary last time, then there
870 * would be a gap if we tried to use this ABD as-is, so abort.
871 */
872 if (s->end != 0)
873 return (1);
874
875 /*
876 * Note if we're taking less than a full block, so we can check it
877 * above on the next call.
878 */
879 s->end = len & s->bmask;
880
881 /* All blocks after the first must start on a block size boundary. */
882 if (s->npages != 0 && (off & s->bmask) != 0)
883 return (1);
884
885 s->npages++;
886 return (0);
887}
888
889/*
890 * Check if we can submit the pages in this ABD to the kernel as-is. Returns
891 * the number of pages, or 0 if it can't be submitted like this.
892 */
893static boolean_t
894vdev_disk_check_pages(abd_t *abd, uint64_t size, struct block_device *bdev)
895{
896 vdev_disk_check_pages_t s = {
897 .bmask = bdev_logical_block_size(bdev)-1,
898 .npages = 0,
899 .end = 0,
900 };
901
902 if (abd_iterate_page_func(abd, 0, size, vdev_disk_check_pages_cb, &s))
903 return (B_FALSE);
904
905 return (B_TRUE);
906}
907
06a19602
RN
908static int
909vdev_disk_io_rw(zio_t *zio)
910{
911 vdev_t *v = zio->io_vd;
912 vdev_disk_t *vd = v->vdev_tsd;
913 struct block_device *bdev = BDH_BDEV(vd->vd_bdh);
914 int flags = 0;
915
916 /*
917 * Accessing outside the block device is never allowed.
918 */
919 if (zio->io_offset + zio->io_size > bdev->bd_inode->i_size) {
920 vdev_dbgmsg(zio->io_vd,
921 "Illegal access %llu size %llu, device size %llu",
922 (u_longlong_t)zio->io_offset,
923 (u_longlong_t)zio->io_size,
924 (u_longlong_t)i_size_read(bdev->bd_inode));
925 return (SET_ERROR(EIO));
926 }
927
928 if (!(zio->io_flags & (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD)) &&
929 v->vdev_failfast == B_TRUE) {
930 bio_set_flags_failfast(bdev, &flags, zfs_vdev_failfast_mask & 1,
931 zfs_vdev_failfast_mask & 2, zfs_vdev_failfast_mask & 4);
932 }
933
934 /*
935 * Check alignment of the incoming ABD. If any part of it would require
936 * submitting a page that is not aligned to the logical block size,
937 * then we take a copy into a linear buffer and submit that instead.
938 * This should be impossible on a 512b LBS, and fairly rare on 4K,
939 * usually requiring abnormally-small data blocks (eg gang blocks)
940 * mixed into the same ABD as larger ones (eg aggregated).
941 */
942 abd_t *abd = zio->io_abd;
943 if (!vdev_disk_check_pages(abd, zio->io_size, bdev)) {
944 void *buf;
945 if (zio->io_type == ZIO_TYPE_READ)
946 buf = abd_borrow_buf(zio->io_abd, zio->io_size);
947 else
948 buf = abd_borrow_buf_copy(zio->io_abd, zio->io_size);
949
950 /*
951 * Wrap the copy in an abd_t, so we can use the same iterators
952 * to count and fill the vbio later.
953 */
954 abd = abd_get_from_buf(buf, zio->io_size);
955
956 /*
957 * False here would mean the borrowed copy has an invalid
958 * alignment too, which would mean we've somehow been passed a
959 * linear ABD with an interior page that has a non-zero offset
960 * or a size not a multiple of PAGE_SIZE. This is not possible.
961 * It would mean either zio_buf_alloc() or its underlying
962 * allocators have done something extremely strange, or our
963 * math in vdev_disk_check_pages() is wrong. In either case,
964 * something in seriously wrong and its not safe to continue.
965 */
966 VERIFY(vdev_disk_check_pages(abd, zio->io_size, bdev));
967 }
968
969 /* Allocate vbio, with a pointer to the borrowed ABD if necessary */
72fd834c 970 vbio_t *vbio = vbio_alloc(zio, bdev, flags);
06a19602
RN
971 if (abd != zio->io_abd)
972 vbio->vbio_abd = abd;
973
72fd834c
RN
974 /* Fill it with data pages and submit it to the kernel */
975 vbio_submit(vbio, abd, zio->io_size);
06a19602
RN
976 return (0);
977}
978
f3b85d70
RN
979/* ========== */
980
981/*
06a19602
RN
982 * This is the classic, battle-tested BIO submission code. Until we're totally
983 * sure that the new code is safe and correct in all cases, this will remain
984 * available and can be enabled by setting zfs_vdev_disk_classic=1 at module
985 * load time.
f3b85d70
RN
986 *
987 * These functions have been renamed to vdev_classic_* to make it clear what
988 * they belong to, but their implementations are unchanged.
989 */
990
991/*
992 * Virtual device vector for disks.
993 */
994typedef struct dio_request {
995 zio_t *dr_zio; /* Parent ZIO */
996 atomic_t dr_ref; /* References */
997 int dr_error; /* Bio error */
998 int dr_bio_count; /* Count of bio's */
999 struct bio *dr_bio[]; /* Attached bio's */
1000} dio_request_t;
1001
1002static dio_request_t *
1003vdev_classic_dio_alloc(int bio_count)
1004{
1005 dio_request_t *dr = kmem_zalloc(sizeof (dio_request_t) +
1006 sizeof (struct bio *) * bio_count, KM_SLEEP);
1007 atomic_set(&dr->dr_ref, 0);
1008 dr->dr_bio_count = bio_count;
1009 dr->dr_error = 0;
1010
1011 for (int i = 0; i < dr->dr_bio_count; i++)
1012 dr->dr_bio[i] = NULL;
1013
1014 return (dr);
1015}
1016
1017static void
1018vdev_classic_dio_free(dio_request_t *dr)
1019{
1020 int i;
1021
1022 for (i = 0; i < dr->dr_bio_count; i++)
1023 if (dr->dr_bio[i])
1024 bio_put(dr->dr_bio[i]);
1025
1026 kmem_free(dr, sizeof (dio_request_t) +
1027 sizeof (struct bio *) * dr->dr_bio_count);
1028}
1029
1030static void
1031vdev_classic_dio_get(dio_request_t *dr)
1032{
1033 atomic_inc(&dr->dr_ref);
1034}
1035
1036static void
1037vdev_classic_dio_put(dio_request_t *dr)
1038{
1039 int rc = atomic_dec_return(&dr->dr_ref);
1040
1041 /*
1042 * Free the dio_request when the last reference is dropped and
1043 * ensure zio_interpret is called only once with the correct zio
1044 */
1045 if (rc == 0) {
1046 zio_t *zio = dr->dr_zio;
1047 int error = dr->dr_error;
1048
1049 vdev_classic_dio_free(dr);
1050
1051 if (zio) {
1052 zio->io_error = error;
1053 ASSERT3S(zio->io_error, >=, 0);
1054 if (zio->io_error)
1055 vdev_disk_error(zio);
1056
1057 zio_delay_interrupt(zio);
1058 }
1059 }
1060}
1061
1062BIO_END_IO_PROTO(vdev_classic_physio_completion, bio, error)
1063{
1064 dio_request_t *dr = bio->bi_private;
1065
1066 if (dr->dr_error == 0) {
1067#ifdef HAVE_1ARG_BIO_END_IO_T
1068 dr->dr_error = BIO_END_IO_ERROR(bio);
1069#else
1070 if (error)
1071 dr->dr_error = -(error);
1072 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1073 dr->dr_error = EIO;
1074#endif
1075 }
1076
1077 /* Drop reference acquired by vdev_classic_physio */
1078 vdev_classic_dio_put(dr);
1079}
1080
5f264996 1081static inline unsigned int
f3b85d70 1082vdev_classic_bio_max_segs(zio_t *zio, int bio_size, uint64_t abd_offset)
5f264996
BB
1083{
1084 unsigned long nr_segs = abd_nr_pages_off(zio->io_abd,
1085 bio_size, abd_offset);
1086
1087#ifdef HAVE_BIO_MAX_SEGS
1088 return (bio_max_segs(nr_segs));
1089#else
1090 return (MIN(nr_segs, BIO_MAX_PAGES));
1091#endif
1092}
1093
60101509 1094static int
867178ae 1095vdev_classic_physio(zio_t *zio)
60101509 1096{
867178ae
RN
1097 vdev_t *v = zio->io_vd;
1098 vdev_disk_t *vd = v->vdev_tsd;
1099 struct block_device *bdev = BDH_BDEV(vd->vd_bdh);
1100 size_t io_size = zio->io_size;
1101 uint64_t io_offset = zio->io_offset;
1102 int rw = zio->io_type == ZIO_TYPE_READ ? READ : WRITE;
1103 int flags = 0;
1104
d1d7e268 1105 dio_request_t *dr;
b0be93e8 1106 uint64_t abd_offset;
60101509 1107 uint64_t bio_offset;
f8c0d7e1
MA
1108 int bio_size;
1109 int bio_count = 16;
1110 int error = 0;
e8ac4557 1111 struct blk_plug plug;
5f264996 1112 unsigned short nr_vecs;
066e8252 1113
d441e85d
BB
1114 /*
1115 * Accessing outside the block device is never allowed.
1116 */
1117 if (io_offset + io_size > bdev->bd_inode->i_size) {
1118 vdev_dbgmsg(zio->io_vd,
1119 "Illegal access %llu size %llu, device size %llu",
5dbf6c5a
AZ
1120 (u_longlong_t)io_offset,
1121 (u_longlong_t)io_size,
1122 (u_longlong_t)i_size_read(bdev->bd_inode));
d441e85d
BB
1123 return (SET_ERROR(EIO));
1124 }
e06be586 1125
60101509 1126retry:
f3b85d70 1127 dr = vdev_classic_dio_alloc(bio_count);
60101509 1128
f1100863 1129 if (!(zio->io_flags & (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD)) &&
16f0fdad
MZ
1130 zio->io_vd->vdev_failfast == B_TRUE) {
1131 bio_set_flags_failfast(bdev, &flags, zfs_vdev_failfast_mask & 1,
1132 zfs_vdev_failfast_mask & 2, zfs_vdev_failfast_mask & 4);
1133 }
2959d94a 1134
60101509 1135 dr->dr_zio = zio;
60101509 1136
60101509 1137 /*
f8c0d7e1
MA
1138 * Since bio's can have up to BIO_MAX_PAGES=256 iovec's, each of which
1139 * is at least 512 bytes and at most PAGESIZE (typically 4K), one bio
1140 * can cover at least 128KB and at most 1MB. When the required number
1141 * of iovec's exceeds this, we are forced to break the IO in multiple
1142 * bio's and wait for them all to complete. This is likely if the
1143 * recordsize property is increased beyond 1MB. The default
1144 * bio_count=16 should typically accommodate the maximum-size zio of
1145 * 16MB.
60101509 1146 */
a6255b7f 1147
b0be93e8
IH
1148 abd_offset = 0;
1149 bio_offset = io_offset;
f8c0d7e1
MA
1150 bio_size = io_size;
1151 for (int i = 0; i <= dr->dr_bio_count; i++) {
60101509
BB
1152
1153 /* Finished constructing bio's for given buffer */
1154 if (bio_size <= 0)
1155 break;
1156
1157 /*
f8c0d7e1
MA
1158 * If additional bio's are required, we have to retry, but
1159 * this should be rare - see the comment above.
60101509
BB
1160 */
1161 if (dr->dr_bio_count == i) {
f3b85d70 1162 vdev_classic_dio_free(dr);
60101509 1163 bio_count *= 2;
60101509
BB
1164 goto retry;
1165 }
1166
f3b85d70 1167 nr_vecs = vdev_classic_bio_max_segs(zio, bio_size, abd_offset);
5f264996 1168 dr->dr_bio[i] = vdev_bio_alloc(bdev, GFP_NOIO, nr_vecs);
1086f542 1169 if (unlikely(dr->dr_bio[i] == NULL)) {
f3b85d70 1170 vdev_classic_dio_free(dr);
ecb2b7dc 1171 return (SET_ERROR(ENOMEM));
60101509
BB
1172 }
1173
f3b85d70
RN
1174 /* Matching put called by vdev_classic_physio_completion */
1175 vdev_classic_dio_get(dr);
60101509 1176
d4541210 1177 BIO_BI_SECTOR(dr->dr_bio[i]) = bio_offset >> 9;
f3b85d70 1178 dr->dr_bio[i]->bi_end_io = vdev_classic_physio_completion;
60101509 1179 dr->dr_bio[i]->bi_private = dr;
3b86aeb2 1180 bio_set_op_attrs(dr->dr_bio[i], rw, flags);
60101509
BB
1181
1182 /* Remaining size is returned to become the new size */
fb822260 1183 bio_size = abd_bio_map_off(dr->dr_bio[i], zio->io_abd,
02730c33 1184 bio_size, abd_offset);
60101509
BB
1185
1186 /* Advance in buffer and construct another bio if needed */
b0be93e8 1187 abd_offset += BIO_BI_SIZE(dr->dr_bio[i]);
d4541210 1188 bio_offset += BIO_BI_SIZE(dr->dr_bio[i]);
60101509
BB
1189 }
1190
37f9dac5 1191 /* Extra reference to protect dio_request during vdev_submit_bio */
f3b85d70 1192 vdev_classic_dio_get(dr);
60101509 1193
e8ac4557
IH
1194 if (dr->dr_bio_count > 1)
1195 blk_start_plug(&plug);
e8ac4557 1196
60101509 1197 /* Submit all bio's associated with this dio */
f8c0d7e1 1198 for (int i = 0; i < dr->dr_bio_count; i++) {
60101509 1199 if (dr->dr_bio[i])
3b86aeb2 1200 vdev_submit_bio(dr->dr_bio[i]);
f8c0d7e1 1201 }
60101509 1202
e8ac4557
IH
1203 if (dr->dr_bio_count > 1)
1204 blk_finish_plug(&plug);
e8ac4557 1205
f3b85d70 1206 vdev_classic_dio_put(dr);
60101509 1207
d1d7e268 1208 return (error);
60101509
BB
1209}
1210
f3b85d70
RN
1211/* ========== */
1212
36ba27e9 1213BIO_END_IO_PROTO(vdev_disk_io_flush_completion, bio, error)
60101509
BB
1214{
1215 zio_t *zio = bio->bi_private;
784a7fe5 1216#ifdef HAVE_1ARG_BIO_END_IO_T
36ba27e9
BB
1217 zio->io_error = BIO_END_IO_ERROR(bio);
1218#else
1219 zio->io_error = -error;
784a7fe5 1220#endif
60101509 1221
36ba27e9 1222 if (zio->io_error && (zio->io_error == EOPNOTSUPP))
60101509
BB
1223 zio->io_vd->vdev_nowritecache = B_TRUE;
1224
1225 bio_put(bio);
d148e951
BB
1226 ASSERT3S(zio->io_error, >=, 0);
1227 if (zio->io_error)
1228 vdev_disk_error(zio);
60101509 1229 zio_interrupt(zio);
60101509
BB
1230}
1231
1232static int
1233vdev_disk_io_flush(struct block_device *bdev, zio_t *zio)
1234{
1235 struct request_queue *q;
1236 struct bio *bio;
1237
1238 q = bdev_get_queue(bdev);
1239 if (!q)
ecb2b7dc 1240 return (SET_ERROR(ENXIO));
60101509 1241
5f264996 1242 bio = vdev_bio_alloc(bdev, GFP_NOIO, 0);
29b763cd 1243 if (unlikely(bio == NULL))
ecb2b7dc 1244 return (SET_ERROR(ENOMEM));
60101509
BB
1245
1246 bio->bi_end_io = vdev_disk_io_flush_completion;
1247 bio->bi_private = zio;
a5e046ea 1248 bio_set_flush(bio);
3b86aeb2 1249 vdev_submit_bio(bio);
cecb7487 1250 invalidate_bdev(bdev);
60101509 1251
d1d7e268 1252 return (0);
60101509 1253}
60101509 1254
06e25f9c
US
1255BIO_END_IO_PROTO(vdev_disk_discard_end_io, bio, error)
1256{
1257 zio_t *zio = bio->bi_private;
1258#ifdef HAVE_1ARG_BIO_END_IO_T
1259 zio->io_error = BIO_END_IO_ERROR(bio);
1260#else
1261 zio->io_error = -error;
1262#endif
1263 bio_put(bio);
1264 if (zio->io_error)
1265 vdev_disk_error(zio);
1266 zio_interrupt(zio);
1267}
1268
ba9f587a
RN
1269/*
1270 * Wrappers for the different secure erase and discard APIs. We use async
1271 * when available; in this case, *biop is set to the last bio in the chain.
1272 */
a12a5cb5 1273static int
ba9f587a
RN
1274vdev_bdev_issue_secure_erase(zfs_bdev_handle_t *bdh, sector_t sector,
1275 sector_t nsect, struct bio **biop)
a12a5cb5 1276{
ba9f587a
RN
1277 *biop = NULL;
1278 int error;
a12a5cb5 1279
ba9f587a
RN
1280#if defined(HAVE_BLKDEV_ISSUE_SECURE_ERASE)
1281 error = blkdev_issue_secure_erase(BDH_BDEV(bdh),
1282 sector, nsect, GFP_NOFS);
1283#elif defined(HAVE_BLKDEV_ISSUE_DISCARD_ASYNC_FLAGS)
1284 error = __blkdev_issue_discard(BDH_BDEV(bdh),
1285 sector, nsect, GFP_NOFS, BLKDEV_DISCARD_SECURE, biop);
1286#elif defined(HAVE_BLKDEV_ISSUE_DISCARD_FLAGS)
1287 error = blkdev_issue_discard(BDH_BDEV(bdh),
1288 sector, nsect, GFP_NOFS, BLKDEV_DISCARD_SECURE);
06e25f9c 1289#else
ba9f587a 1290#error "unsupported kernel"
06e25f9c 1291#endif
ba9f587a
RN
1292
1293 return (error);
06e25f9c 1294}
ba9f587a
RN
1295
1296static int
1297vdev_bdev_issue_discard(zfs_bdev_handle_t *bdh, sector_t sector,
1298 sector_t nsect, struct bio **biop)
1299{
1300 *biop = NULL;
1301 int error;
1302
1303#if defined(HAVE_BLKDEV_ISSUE_DISCARD_ASYNC_FLAGS)
1304 error = __blkdev_issue_discard(BDH_BDEV(bdh),
1305 sector, nsect, GFP_NOFS, 0, biop);
1306#elif defined(HAVE_BLKDEV_ISSUE_DISCARD_ASYNC_NOFLAGS)
1307 error = __blkdev_issue_discard(BDH_BDEV(bdh),
1308 sector, nsect, GFP_NOFS, biop);
1309#elif defined(HAVE_BLKDEV_ISSUE_DISCARD_FLAGS)
1310 error = blkdev_issue_discard(BDH_BDEV(bdh),
1311 sector, nsect, GFP_NOFS, 0);
1312#elif defined(HAVE_BLKDEV_ISSUE_DISCARD_NOFLAGS)
1313 error = blkdev_issue_discard(BDH_BDEV(bdh),
1314 sector, nsect, GFP_NOFS);
1315#else
1316#error "unsupported kernel"
06e25f9c
US
1317#endif
1318
ba9f587a
RN
1319 return (error);
1320}
1321
1322/*
1323 * Entry point for TRIM ops. This calls the right wrapper for secure erase or
1324 * discard, and then does the appropriate finishing work for error vs success
1325 * and async vs sync.
1326 */
06e25f9c
US
1327static int
1328vdev_disk_io_trim(zio_t *zio)
1329{
ba9f587a
RN
1330 int error;
1331 struct bio *bio;
1332
1333 zfs_bdev_handle_t *bdh = ((vdev_disk_t *)zio->io_vd->vdev_tsd)->vd_bdh;
1334 sector_t sector = zio->io_offset >> 9;
1335 sector_t nsects = zio->io_size >> 9;
1336
1337 if (zio->io_trim_flags & ZIO_TRIM_SECURE)
1338 error = vdev_bdev_issue_secure_erase(bdh, sector, nsects, &bio);
1339 else
1340 error = vdev_bdev_issue_discard(bdh, sector, nsects, &bio);
1341
1342 if (error != 0)
1343 return (SET_ERROR(-error));
1344
1345 if (bio == NULL) {
1346 /*
1347 * This was a synchronous op that completed successfully, so
1348 * return it to ZFS immediately.
1349 */
1350 zio_interrupt(zio);
1351 } else {
1352 /*
1353 * This was an asynchronous op; set up completion callback and
1354 * issue it.
1355 */
1356 bio->bi_private = zio;
1357 bio->bi_end_io = vdev_disk_discard_end_io;
1358 vdev_submit_bio(bio);
06e25f9c 1359 }
ba9f587a
RN
1360
1361 return (0);
a12a5cb5
BB
1362}
1363
c4a13ba4
RN
1364int (*vdev_disk_io_rw_fn)(zio_t *zio) = NULL;
1365
98b25418 1366static void
60101509
BB
1367vdev_disk_io_start(zio_t *zio)
1368{
1369 vdev_t *v = zio->io_vd;
1370 vdev_disk_t *vd = v->vdev_tsd;
867178ae 1371 int error;
60101509 1372
d441e85d
BB
1373 /*
1374 * If the vdev is closed, it's likely in the REMOVED or FAULTED state.
1375 * Nothing to be done here but return failure.
1376 */
1377 if (vd == NULL) {
1378 zio->io_error = ENXIO;
1379 zio_interrupt(zio);
1380 return;
1381 }
1382
1383 rw_enter(&vd->vd_lock, RW_READER);
1384
1385 /*
1386 * If the vdev is closed, it's likely due to a failed reopen and is
1387 * in the UNAVAIL state. Nothing to be done here but return failure.
1388 */
386d6a75 1389 if (vd->vd_bdh == NULL) {
d441e85d
BB
1390 rw_exit(&vd->vd_lock);
1391 zio->io_error = ENXIO;
1392 zio_interrupt(zio);
1393 return;
1394 }
1395
60101509
BB
1396 switch (zio->io_type) {
1397 case ZIO_TYPE_IOCTL:
1398
1399 if (!vdev_readable(v)) {
d441e85d 1400 rw_exit(&vd->vd_lock);
2e528b49 1401 zio->io_error = SET_ERROR(ENXIO);
98b25418
GW
1402 zio_interrupt(zio);
1403 return;
60101509
BB
1404 }
1405
1406 switch (zio->io_cmd) {
1407 case DKIOCFLUSHWRITECACHE:
1408
1409 if (zfs_nocacheflush)
1410 break;
1411
1412 if (v->vdev_nowritecache) {
2e528b49 1413 zio->io_error = SET_ERROR(ENOTSUP);
60101509
BB
1414 break;
1415 }
1416
386d6a75 1417 error = vdev_disk_io_flush(BDH_BDEV(vd->vd_bdh), zio);
d441e85d
BB
1418 if (error == 0) {
1419 rw_exit(&vd->vd_lock);
98b25418 1420 return;
d441e85d 1421 }
60101509
BB
1422
1423 zio->io_error = error;
60101509
BB
1424
1425 break;
1426
1427 default:
2e528b49 1428 zio->io_error = SET_ERROR(ENOTSUP);
60101509
BB
1429 }
1430
d441e85d 1431 rw_exit(&vd->vd_lock);
98b25418
GW
1432 zio_execute(zio);
1433 return;
60101509 1434
1b939560 1435 case ZIO_TYPE_TRIM:
ba9f587a 1436 error = vdev_disk_io_trim(zio);
1b939560 1437 rw_exit(&vd->vd_lock);
ba9f587a
RN
1438 if (error) {
1439 zio->io_error = error;
1440 zio_execute(zio);
1441 }
1b939560
BB
1442 return;
1443
867178ae
RN
1444 case ZIO_TYPE_READ:
1445 case ZIO_TYPE_WRITE:
1446 zio->io_target_timestamp = zio_handle_io_delay(zio);
c4a13ba4 1447 error = vdev_disk_io_rw_fn(zio);
d441e85d 1448 rw_exit(&vd->vd_lock);
867178ae
RN
1449 if (error) {
1450 zio->io_error = error;
1451 zio_interrupt(zio);
1452 }
98b25418 1453 return;
60101509 1454
867178ae
RN
1455 default:
1456 /*
1457 * Getting here means our parent vdev has made a very strange
1458 * request of us, and shouldn't happen. Assert here to force a
1459 * crash in dev builds, but in production return the IO
1460 * unhandled. The pool will likely suspend anyway but that's
1461 * nicer than crashing the kernel.
1462 */
1463 ASSERT3S(zio->io_type, ==, -1);
d441e85d 1464
867178ae
RN
1465 rw_exit(&vd->vd_lock);
1466 zio->io_error = SET_ERROR(ENOTSUP);
98b25418
GW
1467 zio_interrupt(zio);
1468 return;
60101509 1469 }
867178ae
RN
1470
1471 __builtin_unreachable();
60101509
BB
1472}
1473
1474static void
1475vdev_disk_io_done(zio_t *zio)
1476{
1477 /*
1478 * If the device returned EIO, we revalidate the media. If it is
1479 * determined the media has changed this triggers the asynchronous
1480 * removal of the device from the configuration.
1481 */
1482 if (zio->io_error == EIO) {
d1d7e268 1483 vdev_t *v = zio->io_vd;
60101509
BB
1484 vdev_disk_t *vd = v->vdev_tsd;
1485
386d6a75
RN
1486 if (!zfs_check_disk_status(BDH_BDEV(vd->vd_bdh))) {
1487 invalidate_bdev(BDH_BDEV(vd->vd_bdh));
60101509
BB
1488 v->vdev_remove_wanted = B_TRUE;
1489 spa_async_request(zio->io_spa, SPA_ASYNC_REMOVE);
1490 }
1491 }
1492}
1493
1494static void
1495vdev_disk_hold(vdev_t *vd)
1496{
1497 ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
1498
1499 /* We must have a pathname, and it must be absolute. */
1500 if (vd->vdev_path == NULL || vd->vdev_path[0] != '/')
1501 return;
1502
1503 /*
1504 * Only prefetch path and devid info if the device has
1505 * never been opened.
1506 */
1507 if (vd->vdev_tsd != NULL)
1508 return;
1509
60101509
BB
1510}
1511
1512static void
1513vdev_disk_rele(vdev_t *vd)
1514{
1515 ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
1516
1517 /* XXX: Implement me as a vnode rele for the device */
1518}
1519
df2169d1
RN
1520/*
1521 * BIO submission method. See comment above about vdev_classic.
1522 * Set zfs_vdev_disk_classic=0 for new, =1 for classic
1523 */
1524static uint_t zfs_vdev_disk_classic = 0; /* default new */
1525
1526/* Set submission function from module parameter */
1527static int
1528vdev_disk_param_set_classic(const char *buf, zfs_kernel_param_t *kp)
1529{
1530 int err = param_set_uint(buf, kp);
1531 if (err < 0)
1532 return (SET_ERROR(err));
1533
1534 vdev_disk_io_rw_fn =
1535 zfs_vdev_disk_classic ? vdev_classic_physio : vdev_disk_io_rw;
1536
1537 printk(KERN_INFO "ZFS: forcing %s BIO submission\n",
1538 zfs_vdev_disk_classic ? "classic" : "new");
1539
1540 return (0);
1541}
1542
c4a13ba4
RN
1543/*
1544 * At first use vdev use, set the submission function from the default value if
1545 * it hasn't been set already.
1546 */
1547static int
1548vdev_disk_init(spa_t *spa, nvlist_t *nv, void **tsd)
1549{
1550 (void) spa;
1551 (void) nv;
1552 (void) tsd;
1553
1554 if (vdev_disk_io_rw_fn == NULL)
df2169d1
RN
1555 vdev_disk_io_rw_fn = zfs_vdev_disk_classic ?
1556 vdev_classic_physio : vdev_disk_io_rw;
c4a13ba4
RN
1557
1558 return (0);
1559}
1560
60101509 1561vdev_ops_t vdev_disk_ops = {
c4a13ba4 1562 .vdev_op_init = vdev_disk_init,
b2255edc 1563 .vdev_op_fini = NULL,
a64f8276
I
1564 .vdev_op_open = vdev_disk_open,
1565 .vdev_op_close = vdev_disk_close,
1566 .vdev_op_asize = vdev_default_asize,
b2255edc
BB
1567 .vdev_op_min_asize = vdev_default_min_asize,
1568 .vdev_op_min_alloc = NULL,
a64f8276
I
1569 .vdev_op_io_start = vdev_disk_io_start,
1570 .vdev_op_io_done = vdev_disk_io_done,
1571 .vdev_op_state_change = NULL,
1572 .vdev_op_need_resilver = NULL,
1573 .vdev_op_hold = vdev_disk_hold,
1574 .vdev_op_rele = vdev_disk_rele,
1575 .vdev_op_remap = NULL,
1576 .vdev_op_xlate = vdev_default_xlate,
b2255edc
BB
1577 .vdev_op_rebuild_asize = NULL,
1578 .vdev_op_metaslab_init = NULL,
1579 .vdev_op_config_generate = NULL,
1580 .vdev_op_nparity = NULL,
1581 .vdev_op_ndisks = NULL,
a64f8276 1582 .vdev_op_type = VDEV_TYPE_DISK, /* name of this vdev type */
55c12724
AH
1583 .vdev_op_leaf = B_TRUE, /* leaf vdev */
1584 .vdev_op_kobj_evt_post = vdev_disk_kobj_evt_post
60101509
BB
1585};
1586
9e17e6f2
BB
1587/*
1588 * The zfs_vdev_scheduler module option has been deprecated. Setting this
1589 * value no longer has any effect. It has not yet been entirely removed
1590 * to allow the module to be loaded if this option is specified in the
1591 * /etc/modprobe.d/zfs.conf file. The following warning will be logged.
1592 */
1593static int
1594param_set_vdev_scheduler(const char *val, zfs_kernel_param_t *kp)
1595{
1596 int error = param_set_charp(val, kp);
1597 if (error == 0) {
1598 printk(KERN_INFO "The 'zfs_vdev_scheduler' module option "
1599 "is not supported.\n");
1600 }
1601
1602 return (error);
1603}
1604
18168da7 1605static const char *zfs_vdev_scheduler = "unused";
e771de53
BB
1606module_param_call(zfs_vdev_scheduler, param_set_vdev_scheduler,
1607 param_get_charp, &zfs_vdev_scheduler, 0644);
c409e464 1608MODULE_PARM_DESC(zfs_vdev_scheduler, "I/O scheduler");
6fe3498c
RM
1609
1610int
1611param_set_min_auto_ashift(const char *buf, zfs_kernel_param_t *kp)
1612{
ab8d9c17 1613 uint_t val;
6fe3498c
RM
1614 int error;
1615
ab8d9c17 1616 error = kstrtouint(buf, 0, &val);
6fe3498c
RM
1617 if (error < 0)
1618 return (SET_ERROR(error));
1619
1620 if (val < ASHIFT_MIN || val > zfs_vdev_max_auto_ashift)
1621 return (SET_ERROR(-EINVAL));
1622
ab8d9c17 1623 error = param_set_uint(buf, kp);
6fe3498c
RM
1624 if (error < 0)
1625 return (SET_ERROR(error));
1626
1627 return (0);
1628}
1629
1630int
1631param_set_max_auto_ashift(const char *buf, zfs_kernel_param_t *kp)
1632{
ab8d9c17 1633 uint_t val;
6fe3498c
RM
1634 int error;
1635
ab8d9c17 1636 error = kstrtouint(buf, 0, &val);
6fe3498c
RM
1637 if (error < 0)
1638 return (SET_ERROR(error));
1639
1640 if (val > ASHIFT_MAX || val < zfs_vdev_min_auto_ashift)
1641 return (SET_ERROR(-EINVAL));
1642
ab8d9c17 1643 error = param_set_uint(buf, kp);
6fe3498c
RM
1644 if (error < 0)
1645 return (SET_ERROR(error));
1646
1647 return (0);
1648}
f66ffe68
SD
1649
1650ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, open_timeout_ms, UINT, ZMOD_RW,
1651 "Timeout before determining that a device is missing");
16f0fdad
MZ
1652
1653ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, failfast_mask, UINT, ZMOD_RW,
1654 "Defines failfast mask: 1 - device, 2 - transport, 4 - driver");
06a19602
RN
1655
1656ZFS_MODULE_PARAM(zfs_vdev_disk, zfs_vdev_disk_, max_segs, UINT, ZMOD_RW,
1657 "Maximum number of data segments to add to an IO request (min 4)");
df2169d1
RN
1658
1659ZFS_MODULE_PARAM_CALL(zfs_vdev_disk, zfs_vdev_disk_, classic,
1660 vdev_disk_param_set_classic, param_get_uint, ZMOD_RD,
1661 "Use classic BIO submission method");