]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/arc.c
Disable aggressive arc_p growth by default
[mirror_zfs.git] / module / zfs / arc.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
428870ff 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
3541dc6d 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
2e528b49 24 * Copyright (c) 2013 by Delphix. All rights reserved.
3a17a7a9 25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
34dc7c2f
BB
26 */
27
34dc7c2f
BB
28/*
29 * DVA-based Adjustable Replacement Cache
30 *
31 * While much of the theory of operation used here is
32 * based on the self-tuning, low overhead replacement cache
33 * presented by Megiddo and Modha at FAST 2003, there are some
34 * significant differences:
35 *
36 * 1. The Megiddo and Modha model assumes any page is evictable.
37 * Pages in its cache cannot be "locked" into memory. This makes
38 * the eviction algorithm simple: evict the last page in the list.
39 * This also make the performance characteristics easy to reason
40 * about. Our cache is not so simple. At any given moment, some
41 * subset of the blocks in the cache are un-evictable because we
42 * have handed out a reference to them. Blocks are only evictable
43 * when there are no external references active. This makes
44 * eviction far more problematic: we choose to evict the evictable
45 * blocks that are the "lowest" in the list.
46 *
47 * There are times when it is not possible to evict the requested
48 * space. In these circumstances we are unable to adjust the cache
49 * size. To prevent the cache growing unbounded at these times we
50 * implement a "cache throttle" that slows the flow of new data
51 * into the cache until we can make space available.
52 *
53 * 2. The Megiddo and Modha model assumes a fixed cache size.
54 * Pages are evicted when the cache is full and there is a cache
55 * miss. Our model has a variable sized cache. It grows with
56 * high use, but also tries to react to memory pressure from the
57 * operating system: decreasing its size when system memory is
58 * tight.
59 *
60 * 3. The Megiddo and Modha model assumes a fixed page size. All
d3cc8b15 61 * elements of the cache are therefore exactly the same size. So
34dc7c2f
BB
62 * when adjusting the cache size following a cache miss, its simply
63 * a matter of choosing a single page to evict. In our model, we
64 * have variable sized cache blocks (rangeing from 512 bytes to
d3cc8b15 65 * 128K bytes). We therefore choose a set of blocks to evict to make
34dc7c2f
BB
66 * space for a cache miss that approximates as closely as possible
67 * the space used by the new block.
68 *
69 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache"
70 * by N. Megiddo & D. Modha, FAST 2003
71 */
72
73/*
74 * The locking model:
75 *
76 * A new reference to a cache buffer can be obtained in two
77 * ways: 1) via a hash table lookup using the DVA as a key,
78 * or 2) via one of the ARC lists. The arc_read() interface
79 * uses method 1, while the internal arc algorithms for
d3cc8b15 80 * adjusting the cache use method 2. We therefore provide two
34dc7c2f
BB
81 * types of locks: 1) the hash table lock array, and 2) the
82 * arc list locks.
83 *
5c839890
BC
84 * Buffers do not have their own mutexes, rather they rely on the
85 * hash table mutexes for the bulk of their protection (i.e. most
86 * fields in the arc_buf_hdr_t are protected by these mutexes).
34dc7c2f
BB
87 *
88 * buf_hash_find() returns the appropriate mutex (held) when it
89 * locates the requested buffer in the hash table. It returns
90 * NULL for the mutex if the buffer was not in the table.
91 *
92 * buf_hash_remove() expects the appropriate hash mutex to be
93 * already held before it is invoked.
94 *
95 * Each arc state also has a mutex which is used to protect the
96 * buffer list associated with the state. When attempting to
97 * obtain a hash table lock while holding an arc list lock you
98 * must use: mutex_tryenter() to avoid deadlock. Also note that
99 * the active state mutex must be held before the ghost state mutex.
100 *
101 * Arc buffers may have an associated eviction callback function.
102 * This function will be invoked prior to removing the buffer (e.g.
103 * in arc_do_user_evicts()). Note however that the data associated
104 * with the buffer may be evicted prior to the callback. The callback
105 * must be made with *no locks held* (to prevent deadlock). Additionally,
106 * the users of callbacks must ensure that their private data is
107 * protected from simultaneous callbacks from arc_buf_evict()
108 * and arc_do_user_evicts().
109 *
ab26409d
BB
110 * It as also possible to register a callback which is run when the
111 * arc_meta_limit is reached and no buffers can be safely evicted. In
112 * this case the arc user should drop a reference on some arc buffers so
113 * they can be reclaimed and the arc_meta_limit honored. For example,
114 * when using the ZPL each dentry holds a references on a znode. These
115 * dentries must be pruned before the arc buffer holding the znode can
116 * be safely evicted.
117 *
34dc7c2f
BB
118 * Note that the majority of the performance stats are manipulated
119 * with atomic operations.
120 *
121 * The L2ARC uses the l2arc_buflist_mtx global mutex for the following:
122 *
123 * - L2ARC buflist creation
124 * - L2ARC buflist eviction
125 * - L2ARC write completion, which walks L2ARC buflists
126 * - ARC header destruction, as it removes from L2ARC buflists
127 * - ARC header release, as it removes from L2ARC buflists
128 */
129
130#include <sys/spa.h>
131#include <sys/zio.h>
3a17a7a9 132#include <sys/zio_compress.h>
34dc7c2f
BB
133#include <sys/zfs_context.h>
134#include <sys/arc.h>
b128c09f 135#include <sys/vdev.h>
9babb374 136#include <sys/vdev_impl.h>
e8b96c60 137#include <sys/dsl_pool.h>
34dc7c2f
BB
138#ifdef _KERNEL
139#include <sys/vmsystm.h>
140#include <vm/anon.h>
141#include <sys/fs/swapnode.h>
ab26409d 142#include <sys/zpl.h>
34dc7c2f
BB
143#endif
144#include <sys/callb.h>
145#include <sys/kstat.h>
570827e1 146#include <sys/dmu_tx.h>
428870ff 147#include <zfs_fletcher.h>
34dc7c2f 148
498877ba
MA
149#ifndef _KERNEL
150/* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
151boolean_t arc_watch = B_FALSE;
152#endif
153
34dc7c2f
BB
154static kmutex_t arc_reclaim_thr_lock;
155static kcondvar_t arc_reclaim_thr_cv; /* used to signal reclaim thr */
156static uint8_t arc_thread_exit;
157
ab26409d 158/* number of bytes to prune from caches when at arc_meta_limit is reached */
bce45ec9 159int zfs_arc_meta_prune = 1048576;
34dc7c2f
BB
160
161typedef enum arc_reclaim_strategy {
162 ARC_RECLAIM_AGGR, /* Aggressive reclaim strategy */
163 ARC_RECLAIM_CONS /* Conservative reclaim strategy */
164} arc_reclaim_strategy_t;
165
e8b96c60
MA
166/*
167 * The number of iterations through arc_evict_*() before we
168 * drop & reacquire the lock.
169 */
170int arc_evict_iterations = 100;
171
34dc7c2f 172/* number of seconds before growing cache again */
bce45ec9 173int zfs_arc_grow_retry = 5;
34dc7c2f 174
d164b209 175/* shift of arc_c for calculating both min and max arc_p */
bce45ec9 176int zfs_arc_p_min_shift = 4;
d164b209 177
89c8cac4
PS
178/* disable anon data aggressively growing arc_p */
179int zfs_arc_p_aggressive_disable = 1;
180
d164b209 181/* log2(fraction of arc to reclaim) */
bce45ec9 182int zfs_arc_shrink_shift = 5;
d164b209 183
34dc7c2f
BB
184/*
185 * minimum lifespan of a prefetch block in clock ticks
186 * (initialized in arc_init())
187 */
bce45ec9
BB
188int zfs_arc_min_prefetch_lifespan = HZ;
189
190/* disable arc proactive arc throttle due to low memory */
191int zfs_arc_memory_throttle_disable = 1;
192
193/* disable duplicate buffer eviction */
194int zfs_disable_dup_eviction = 0;
34dc7c2f 195
e8b96c60
MA
196/*
197 * If this percent of memory is free, don't throttle.
198 */
199int arc_lotsfree_percent = 10;
200
34dc7c2f
BB
201static int arc_dead;
202
bce45ec9
BB
203/* expiration time for arc_no_grow */
204static clock_t arc_grow_time = 0;
205
b128c09f
BB
206/*
207 * The arc has filled available memory and has now warmed up.
208 */
209static boolean_t arc_warm;
210
34dc7c2f
BB
211/*
212 * These tunables are for performance analysis.
213 */
c28b2279
BB
214unsigned long zfs_arc_max = 0;
215unsigned long zfs_arc_min = 0;
216unsigned long zfs_arc_meta_limit = 0;
34dc7c2f
BB
217
218/*
219 * Note that buffers can be in one of 6 states:
220 * ARC_anon - anonymous (discussed below)
221 * ARC_mru - recently used, currently cached
222 * ARC_mru_ghost - recentely used, no longer in cache
223 * ARC_mfu - frequently used, currently cached
224 * ARC_mfu_ghost - frequently used, no longer in cache
225 * ARC_l2c_only - exists in L2ARC but not other states
226 * When there are no active references to the buffer, they are
227 * are linked onto a list in one of these arc states. These are
228 * the only buffers that can be evicted or deleted. Within each
229 * state there are multiple lists, one for meta-data and one for
230 * non-meta-data. Meta-data (indirect blocks, blocks of dnodes,
231 * etc.) is tracked separately so that it can be managed more
232 * explicitly: favored over data, limited explicitly.
233 *
234 * Anonymous buffers are buffers that are not associated with
235 * a DVA. These are buffers that hold dirty block copies
236 * before they are written to stable storage. By definition,
237 * they are "ref'd" and are considered part of arc_mru
238 * that cannot be freed. Generally, they will aquire a DVA
239 * as they are written and migrate onto the arc_mru list.
240 *
241 * The ARC_l2c_only state is for buffers that are in the second
242 * level ARC but no longer in any of the ARC_m* lists. The second
243 * level ARC itself may also contain buffers that are in any of
244 * the ARC_m* states - meaning that a buffer can exist in two
245 * places. The reason for the ARC_l2c_only state is to keep the
246 * buffer header in the hash table, so that reads that hit the
247 * second level ARC benefit from these fast lookups.
248 */
249
250typedef struct arc_state {
251 list_t arcs_list[ARC_BUFC_NUMTYPES]; /* list of evictable buffers */
252 uint64_t arcs_lsize[ARC_BUFC_NUMTYPES]; /* amount of evictable data */
253 uint64_t arcs_size; /* total amount of data in this state */
254 kmutex_t arcs_mtx;
e0b0ca98 255 arc_state_type_t arcs_state;
34dc7c2f
BB
256} arc_state_t;
257
258/* The 6 states: */
259static arc_state_t ARC_anon;
260static arc_state_t ARC_mru;
261static arc_state_t ARC_mru_ghost;
262static arc_state_t ARC_mfu;
263static arc_state_t ARC_mfu_ghost;
264static arc_state_t ARC_l2c_only;
265
266typedef struct arc_stats {
267 kstat_named_t arcstat_hits;
268 kstat_named_t arcstat_misses;
269 kstat_named_t arcstat_demand_data_hits;
270 kstat_named_t arcstat_demand_data_misses;
271 kstat_named_t arcstat_demand_metadata_hits;
272 kstat_named_t arcstat_demand_metadata_misses;
273 kstat_named_t arcstat_prefetch_data_hits;
274 kstat_named_t arcstat_prefetch_data_misses;
275 kstat_named_t arcstat_prefetch_metadata_hits;
276 kstat_named_t arcstat_prefetch_metadata_misses;
277 kstat_named_t arcstat_mru_hits;
278 kstat_named_t arcstat_mru_ghost_hits;
279 kstat_named_t arcstat_mfu_hits;
280 kstat_named_t arcstat_mfu_ghost_hits;
281 kstat_named_t arcstat_deleted;
282 kstat_named_t arcstat_recycle_miss;
e49f1e20
WA
283 /*
284 * Number of buffers that could not be evicted because the hash lock
285 * was held by another thread. The lock may not necessarily be held
286 * by something using the same buffer, since hash locks are shared
287 * by multiple buffers.
288 */
34dc7c2f 289 kstat_named_t arcstat_mutex_miss;
e49f1e20
WA
290 /*
291 * Number of buffers skipped because they have I/O in progress, are
292 * indrect prefetch buffers that have not lived long enough, or are
293 * not from the spa we're trying to evict from.
294 */
34dc7c2f 295 kstat_named_t arcstat_evict_skip;
428870ff
BB
296 kstat_named_t arcstat_evict_l2_cached;
297 kstat_named_t arcstat_evict_l2_eligible;
298 kstat_named_t arcstat_evict_l2_ineligible;
34dc7c2f
BB
299 kstat_named_t arcstat_hash_elements;
300 kstat_named_t arcstat_hash_elements_max;
301 kstat_named_t arcstat_hash_collisions;
302 kstat_named_t arcstat_hash_chains;
303 kstat_named_t arcstat_hash_chain_max;
304 kstat_named_t arcstat_p;
305 kstat_named_t arcstat_c;
306 kstat_named_t arcstat_c_min;
307 kstat_named_t arcstat_c_max;
308 kstat_named_t arcstat_size;
309 kstat_named_t arcstat_hdr_size;
d164b209
BB
310 kstat_named_t arcstat_data_size;
311 kstat_named_t arcstat_other_size;
13be560d
BB
312 kstat_named_t arcstat_anon_size;
313 kstat_named_t arcstat_anon_evict_data;
314 kstat_named_t arcstat_anon_evict_metadata;
315 kstat_named_t arcstat_mru_size;
316 kstat_named_t arcstat_mru_evict_data;
317 kstat_named_t arcstat_mru_evict_metadata;
318 kstat_named_t arcstat_mru_ghost_size;
319 kstat_named_t arcstat_mru_ghost_evict_data;
320 kstat_named_t arcstat_mru_ghost_evict_metadata;
321 kstat_named_t arcstat_mfu_size;
322 kstat_named_t arcstat_mfu_evict_data;
323 kstat_named_t arcstat_mfu_evict_metadata;
324 kstat_named_t arcstat_mfu_ghost_size;
325 kstat_named_t arcstat_mfu_ghost_evict_data;
326 kstat_named_t arcstat_mfu_ghost_evict_metadata;
34dc7c2f
BB
327 kstat_named_t arcstat_l2_hits;
328 kstat_named_t arcstat_l2_misses;
329 kstat_named_t arcstat_l2_feeds;
330 kstat_named_t arcstat_l2_rw_clash;
d164b209
BB
331 kstat_named_t arcstat_l2_read_bytes;
332 kstat_named_t arcstat_l2_write_bytes;
34dc7c2f
BB
333 kstat_named_t arcstat_l2_writes_sent;
334 kstat_named_t arcstat_l2_writes_done;
335 kstat_named_t arcstat_l2_writes_error;
336 kstat_named_t arcstat_l2_writes_hdr_miss;
337 kstat_named_t arcstat_l2_evict_lock_retry;
338 kstat_named_t arcstat_l2_evict_reading;
339 kstat_named_t arcstat_l2_free_on_write;
340 kstat_named_t arcstat_l2_abort_lowmem;
341 kstat_named_t arcstat_l2_cksum_bad;
342 kstat_named_t arcstat_l2_io_error;
343 kstat_named_t arcstat_l2_size;
3a17a7a9 344 kstat_named_t arcstat_l2_asize;
34dc7c2f 345 kstat_named_t arcstat_l2_hdr_size;
3a17a7a9
SK
346 kstat_named_t arcstat_l2_compress_successes;
347 kstat_named_t arcstat_l2_compress_zeros;
348 kstat_named_t arcstat_l2_compress_failures;
34dc7c2f 349 kstat_named_t arcstat_memory_throttle_count;
1eb5bfa3
GW
350 kstat_named_t arcstat_duplicate_buffers;
351 kstat_named_t arcstat_duplicate_buffers_size;
352 kstat_named_t arcstat_duplicate_reads;
7cb67b45
BB
353 kstat_named_t arcstat_memory_direct_count;
354 kstat_named_t arcstat_memory_indirect_count;
1834f2d8
BB
355 kstat_named_t arcstat_no_grow;
356 kstat_named_t arcstat_tempreserve;
357 kstat_named_t arcstat_loaned_bytes;
ab26409d 358 kstat_named_t arcstat_prune;
1834f2d8
BB
359 kstat_named_t arcstat_meta_used;
360 kstat_named_t arcstat_meta_limit;
361 kstat_named_t arcstat_meta_max;
34dc7c2f
BB
362} arc_stats_t;
363
364static arc_stats_t arc_stats = {
365 { "hits", KSTAT_DATA_UINT64 },
366 { "misses", KSTAT_DATA_UINT64 },
367 { "demand_data_hits", KSTAT_DATA_UINT64 },
368 { "demand_data_misses", KSTAT_DATA_UINT64 },
369 { "demand_metadata_hits", KSTAT_DATA_UINT64 },
370 { "demand_metadata_misses", KSTAT_DATA_UINT64 },
371 { "prefetch_data_hits", KSTAT_DATA_UINT64 },
372 { "prefetch_data_misses", KSTAT_DATA_UINT64 },
373 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 },
374 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 },
375 { "mru_hits", KSTAT_DATA_UINT64 },
376 { "mru_ghost_hits", KSTAT_DATA_UINT64 },
377 { "mfu_hits", KSTAT_DATA_UINT64 },
378 { "mfu_ghost_hits", KSTAT_DATA_UINT64 },
379 { "deleted", KSTAT_DATA_UINT64 },
380 { "recycle_miss", KSTAT_DATA_UINT64 },
381 { "mutex_miss", KSTAT_DATA_UINT64 },
382 { "evict_skip", KSTAT_DATA_UINT64 },
428870ff
BB
383 { "evict_l2_cached", KSTAT_DATA_UINT64 },
384 { "evict_l2_eligible", KSTAT_DATA_UINT64 },
385 { "evict_l2_ineligible", KSTAT_DATA_UINT64 },
34dc7c2f
BB
386 { "hash_elements", KSTAT_DATA_UINT64 },
387 { "hash_elements_max", KSTAT_DATA_UINT64 },
388 { "hash_collisions", KSTAT_DATA_UINT64 },
389 { "hash_chains", KSTAT_DATA_UINT64 },
390 { "hash_chain_max", KSTAT_DATA_UINT64 },
391 { "p", KSTAT_DATA_UINT64 },
392 { "c", KSTAT_DATA_UINT64 },
393 { "c_min", KSTAT_DATA_UINT64 },
394 { "c_max", KSTAT_DATA_UINT64 },
395 { "size", KSTAT_DATA_UINT64 },
396 { "hdr_size", KSTAT_DATA_UINT64 },
d164b209
BB
397 { "data_size", KSTAT_DATA_UINT64 },
398 { "other_size", KSTAT_DATA_UINT64 },
13be560d
BB
399 { "anon_size", KSTAT_DATA_UINT64 },
400 { "anon_evict_data", KSTAT_DATA_UINT64 },
401 { "anon_evict_metadata", KSTAT_DATA_UINT64 },
402 { "mru_size", KSTAT_DATA_UINT64 },
403 { "mru_evict_data", KSTAT_DATA_UINT64 },
404 { "mru_evict_metadata", KSTAT_DATA_UINT64 },
405 { "mru_ghost_size", KSTAT_DATA_UINT64 },
406 { "mru_ghost_evict_data", KSTAT_DATA_UINT64 },
407 { "mru_ghost_evict_metadata", KSTAT_DATA_UINT64 },
408 { "mfu_size", KSTAT_DATA_UINT64 },
409 { "mfu_evict_data", KSTAT_DATA_UINT64 },
410 { "mfu_evict_metadata", KSTAT_DATA_UINT64 },
411 { "mfu_ghost_size", KSTAT_DATA_UINT64 },
412 { "mfu_ghost_evict_data", KSTAT_DATA_UINT64 },
413 { "mfu_ghost_evict_metadata", KSTAT_DATA_UINT64 },
34dc7c2f
BB
414 { "l2_hits", KSTAT_DATA_UINT64 },
415 { "l2_misses", KSTAT_DATA_UINT64 },
416 { "l2_feeds", KSTAT_DATA_UINT64 },
417 { "l2_rw_clash", KSTAT_DATA_UINT64 },
d164b209
BB
418 { "l2_read_bytes", KSTAT_DATA_UINT64 },
419 { "l2_write_bytes", KSTAT_DATA_UINT64 },
34dc7c2f
BB
420 { "l2_writes_sent", KSTAT_DATA_UINT64 },
421 { "l2_writes_done", KSTAT_DATA_UINT64 },
422 { "l2_writes_error", KSTAT_DATA_UINT64 },
423 { "l2_writes_hdr_miss", KSTAT_DATA_UINT64 },
424 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 },
425 { "l2_evict_reading", KSTAT_DATA_UINT64 },
426 { "l2_free_on_write", KSTAT_DATA_UINT64 },
427 { "l2_abort_lowmem", KSTAT_DATA_UINT64 },
428 { "l2_cksum_bad", KSTAT_DATA_UINT64 },
429 { "l2_io_error", KSTAT_DATA_UINT64 },
430 { "l2_size", KSTAT_DATA_UINT64 },
3a17a7a9 431 { "l2_asize", KSTAT_DATA_UINT64 },
34dc7c2f 432 { "l2_hdr_size", KSTAT_DATA_UINT64 },
3a17a7a9
SK
433 { "l2_compress_successes", KSTAT_DATA_UINT64 },
434 { "l2_compress_zeros", KSTAT_DATA_UINT64 },
435 { "l2_compress_failures", KSTAT_DATA_UINT64 },
1834f2d8 436 { "memory_throttle_count", KSTAT_DATA_UINT64 },
1eb5bfa3
GW
437 { "duplicate_buffers", KSTAT_DATA_UINT64 },
438 { "duplicate_buffers_size", KSTAT_DATA_UINT64 },
439 { "duplicate_reads", KSTAT_DATA_UINT64 },
7cb67b45
BB
440 { "memory_direct_count", KSTAT_DATA_UINT64 },
441 { "memory_indirect_count", KSTAT_DATA_UINT64 },
1834f2d8
BB
442 { "arc_no_grow", KSTAT_DATA_UINT64 },
443 { "arc_tempreserve", KSTAT_DATA_UINT64 },
444 { "arc_loaned_bytes", KSTAT_DATA_UINT64 },
ab26409d 445 { "arc_prune", KSTAT_DATA_UINT64 },
1834f2d8
BB
446 { "arc_meta_used", KSTAT_DATA_UINT64 },
447 { "arc_meta_limit", KSTAT_DATA_UINT64 },
448 { "arc_meta_max", KSTAT_DATA_UINT64 },
34dc7c2f
BB
449};
450
451#define ARCSTAT(stat) (arc_stats.stat.value.ui64)
452
453#define ARCSTAT_INCR(stat, val) \
d3cc8b15 454 atomic_add_64(&arc_stats.stat.value.ui64, (val))
34dc7c2f 455
428870ff 456#define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1)
34dc7c2f
BB
457#define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1)
458
459#define ARCSTAT_MAX(stat, val) { \
460 uint64_t m; \
461 while ((val) > (m = arc_stats.stat.value.ui64) && \
462 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \
463 continue; \
464}
465
466#define ARCSTAT_MAXSTAT(stat) \
467 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
468
469/*
470 * We define a macro to allow ARC hits/misses to be easily broken down by
471 * two separate conditions, giving a total of four different subtypes for
472 * each of hits and misses (so eight statistics total).
473 */
474#define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
475 if (cond1) { \
476 if (cond2) { \
477 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
478 } else { \
479 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
480 } \
481 } else { \
482 if (cond2) { \
483 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
484 } else { \
485 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
486 } \
487 }
488
489kstat_t *arc_ksp;
428870ff 490static arc_state_t *arc_anon;
34dc7c2f
BB
491static arc_state_t *arc_mru;
492static arc_state_t *arc_mru_ghost;
493static arc_state_t *arc_mfu;
494static arc_state_t *arc_mfu_ghost;
495static arc_state_t *arc_l2c_only;
496
497/*
498 * There are several ARC variables that are critical to export as kstats --
499 * but we don't want to have to grovel around in the kstat whenever we wish to
500 * manipulate them. For these variables, we therefore define them to be in
501 * terms of the statistic variable. This assures that we are not introducing
502 * the possibility of inconsistency by having shadow copies of the variables,
503 * while still allowing the code to be readable.
504 */
505#define arc_size ARCSTAT(arcstat_size) /* actual total arc size */
506#define arc_p ARCSTAT(arcstat_p) /* target size of MRU */
507#define arc_c ARCSTAT(arcstat_c) /* target size of cache */
508#define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */
509#define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */
1834f2d8
BB
510#define arc_no_grow ARCSTAT(arcstat_no_grow)
511#define arc_tempreserve ARCSTAT(arcstat_tempreserve)
512#define arc_loaned_bytes ARCSTAT(arcstat_loaned_bytes)
23c0a133
GW
513#define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */
514#define arc_meta_used ARCSTAT(arcstat_meta_used) /* size of metadata */
515#define arc_meta_max ARCSTAT(arcstat_meta_max) /* max size of metadata */
34dc7c2f 516
3a17a7a9
SK
517#define L2ARC_IS_VALID_COMPRESS(_c_) \
518 ((_c_) == ZIO_COMPRESS_LZ4 || (_c_) == ZIO_COMPRESS_EMPTY)
519
34dc7c2f
BB
520typedef struct l2arc_buf_hdr l2arc_buf_hdr_t;
521
522typedef struct arc_callback arc_callback_t;
523
524struct arc_callback {
525 void *acb_private;
526 arc_done_func_t *acb_done;
34dc7c2f
BB
527 arc_buf_t *acb_buf;
528 zio_t *acb_zio_dummy;
529 arc_callback_t *acb_next;
530};
531
532typedef struct arc_write_callback arc_write_callback_t;
533
534struct arc_write_callback {
535 void *awcb_private;
536 arc_done_func_t *awcb_ready;
e8b96c60 537 arc_done_func_t *awcb_physdone;
34dc7c2f
BB
538 arc_done_func_t *awcb_done;
539 arc_buf_t *awcb_buf;
540};
541
542struct arc_buf_hdr {
543 /* protected by hash lock */
544 dva_t b_dva;
545 uint64_t b_birth;
546 uint64_t b_cksum0;
547
548 kmutex_t b_freeze_lock;
549 zio_cksum_t *b_freeze_cksum;
550
551 arc_buf_hdr_t *b_hash_next;
552 arc_buf_t *b_buf;
553 uint32_t b_flags;
554 uint32_t b_datacnt;
555
556 arc_callback_t *b_acb;
557 kcondvar_t b_cv;
558
559 /* immutable */
560 arc_buf_contents_t b_type;
561 uint64_t b_size;
d164b209 562 uint64_t b_spa;
34dc7c2f
BB
563
564 /* protected by arc state mutex */
565 arc_state_t *b_state;
566 list_node_t b_arc_node;
567
568 /* updated atomically */
569 clock_t b_arc_access;
e0b0ca98
BB
570 uint32_t b_mru_hits;
571 uint32_t b_mru_ghost_hits;
572 uint32_t b_mfu_hits;
573 uint32_t b_mfu_ghost_hits;
574 uint32_t b_l2_hits;
34dc7c2f
BB
575
576 /* self protecting */
577 refcount_t b_refcnt;
578
579 l2arc_buf_hdr_t *b_l2hdr;
580 list_node_t b_l2node;
581};
582
ab26409d
BB
583static list_t arc_prune_list;
584static kmutex_t arc_prune_mtx;
34dc7c2f
BB
585static arc_buf_t *arc_eviction_list;
586static kmutex_t arc_eviction_mtx;
587static arc_buf_hdr_t arc_eviction_hdr;
588static void arc_get_data_buf(arc_buf_t *buf);
589static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock);
590static int arc_evict_needed(arc_buf_contents_t type);
68121a03
BB
591static void arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes,
592 arc_buf_contents_t type);
498877ba 593static void arc_buf_watch(arc_buf_t *buf);
34dc7c2f 594
428870ff
BB
595static boolean_t l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab);
596
34dc7c2f
BB
597#define GHOST_STATE(state) \
598 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \
599 (state) == arc_l2c_only)
600
601/*
602 * Private ARC flags. These flags are private ARC only flags that will show up
603 * in b_flags in the arc_hdr_buf_t. Some flags are publicly declared, and can
604 * be passed in as arc_flags in things like arc_read. However, these flags
605 * should never be passed and should only be set by ARC code. When adding new
606 * public flags, make sure not to smash the private ones.
607 */
608
609#define ARC_IN_HASH_TABLE (1 << 9) /* this buffer is hashed */
610#define ARC_IO_IN_PROGRESS (1 << 10) /* I/O in progress for buf */
611#define ARC_IO_ERROR (1 << 11) /* I/O failed for buf */
612#define ARC_FREED_IN_READ (1 << 12) /* buf freed while in read */
613#define ARC_BUF_AVAILABLE (1 << 13) /* block not in active use */
614#define ARC_INDIRECT (1 << 14) /* this is an indirect block */
615#define ARC_FREE_IN_PROGRESS (1 << 15) /* hdr about to be freed */
b128c09f
BB
616#define ARC_L2_WRITING (1 << 16) /* L2ARC write in progress */
617#define ARC_L2_EVICTED (1 << 17) /* evicted during I/O */
618#define ARC_L2_WRITE_HEAD (1 << 18) /* head of write list */
34dc7c2f
BB
619
620#define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_IN_HASH_TABLE)
621#define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS)
622#define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_IO_ERROR)
d164b209 623#define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_PREFETCH)
34dc7c2f
BB
624#define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FREED_IN_READ)
625#define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_BUF_AVAILABLE)
626#define HDR_FREE_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FREE_IN_PROGRESS)
b128c09f
BB
627#define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_L2CACHE)
628#define HDR_L2_READING(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS && \
629 (hdr)->b_l2hdr != NULL)
34dc7c2f
BB
630#define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_L2_WRITING)
631#define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_L2_EVICTED)
632#define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_L2_WRITE_HEAD)
633
634/*
635 * Other sizes
636 */
637
638#define HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
639#define L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t))
640
641/*
642 * Hash table routines
643 */
644
00b46022
BB
645#define HT_LOCK_ALIGN 64
646#define HT_LOCK_PAD (P2NPHASE(sizeof (kmutex_t), (HT_LOCK_ALIGN)))
34dc7c2f
BB
647
648struct ht_lock {
649 kmutex_t ht_lock;
650#ifdef _KERNEL
00b46022 651 unsigned char pad[HT_LOCK_PAD];
34dc7c2f
BB
652#endif
653};
654
655#define BUF_LOCKS 256
656typedef struct buf_hash_table {
657 uint64_t ht_mask;
658 arc_buf_hdr_t **ht_table;
659 struct ht_lock ht_locks[BUF_LOCKS];
660} buf_hash_table_t;
661
662static buf_hash_table_t buf_hash_table;
663
664#define BUF_HASH_INDEX(spa, dva, birth) \
665 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
666#define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
667#define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
428870ff
BB
668#define HDR_LOCK(hdr) \
669 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
34dc7c2f
BB
670
671uint64_t zfs_crc64_table[256];
672
673/*
674 * Level 2 ARC
675 */
676
677#define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */
3a17a7a9
SK
678#define L2ARC_HEADROOM 2 /* num of writes */
679/*
680 * If we discover during ARC scan any buffers to be compressed, we boost
681 * our headroom for the next scanning cycle by this percentage multiple.
682 */
683#define L2ARC_HEADROOM_BOOST 200
d164b209
BB
684#define L2ARC_FEED_SECS 1 /* caching interval secs */
685#define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */
34dc7c2f
BB
686
687#define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent)
688#define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done)
689
d3cc8b15 690/* L2ARC Performance Tunables */
abd8610c
BB
691unsigned long l2arc_write_max = L2ARC_WRITE_SIZE; /* def max write size */
692unsigned long l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra warmup write */
693unsigned long l2arc_headroom = L2ARC_HEADROOM; /* # of dev writes */
3a17a7a9 694unsigned long l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
abd8610c
BB
695unsigned long l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */
696unsigned long l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval msecs */
697int l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */
3a17a7a9 698int l2arc_nocompress = B_FALSE; /* don't compress bufs */
abd8610c 699int l2arc_feed_again = B_TRUE; /* turbo warmup */
c93504f0 700int l2arc_norw = B_FALSE; /* no reads during writes */
34dc7c2f
BB
701
702/*
703 * L2ARC Internals
704 */
705typedef struct l2arc_dev {
706 vdev_t *l2ad_vdev; /* vdev */
707 spa_t *l2ad_spa; /* spa */
708 uint64_t l2ad_hand; /* next write location */
34dc7c2f
BB
709 uint64_t l2ad_start; /* first addr on device */
710 uint64_t l2ad_end; /* last addr on device */
711 uint64_t l2ad_evict; /* last addr eviction reached */
712 boolean_t l2ad_first; /* first sweep through */
d164b209 713 boolean_t l2ad_writing; /* currently writing */
34dc7c2f
BB
714 list_t *l2ad_buflist; /* buffer list */
715 list_node_t l2ad_node; /* device list node */
716} l2arc_dev_t;
717
718static list_t L2ARC_dev_list; /* device list */
719static list_t *l2arc_dev_list; /* device list pointer */
720static kmutex_t l2arc_dev_mtx; /* device list mutex */
721static l2arc_dev_t *l2arc_dev_last; /* last device used */
722static kmutex_t l2arc_buflist_mtx; /* mutex for all buflists */
723static list_t L2ARC_free_on_write; /* free after write buf list */
724static list_t *l2arc_free_on_write; /* free after write list ptr */
725static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */
726static uint64_t l2arc_ndev; /* number of devices */
727
728typedef struct l2arc_read_callback {
3a17a7a9
SK
729 arc_buf_t *l2rcb_buf; /* read buffer */
730 spa_t *l2rcb_spa; /* spa */
731 blkptr_t l2rcb_bp; /* original blkptr */
732 zbookmark_t l2rcb_zb; /* original bookmark */
733 int l2rcb_flags; /* original flags */
734 enum zio_compress l2rcb_compress; /* applied compress */
34dc7c2f
BB
735} l2arc_read_callback_t;
736
737typedef struct l2arc_write_callback {
738 l2arc_dev_t *l2wcb_dev; /* device info */
739 arc_buf_hdr_t *l2wcb_head; /* head of write buflist */
740} l2arc_write_callback_t;
741
742struct l2arc_buf_hdr {
743 /* protected by arc_buf_hdr mutex */
3a17a7a9
SK
744 l2arc_dev_t *b_dev; /* L2ARC device */
745 uint64_t b_daddr; /* disk address, offset byte */
746 /* compression applied to buffer data */
747 enum zio_compress b_compress;
748 /* real alloc'd buffer size depending on b_compress applied */
e0b0ca98 749 uint32_t b_hits;
c5cb66ad 750 uint64_t b_asize;
3a17a7a9
SK
751 /* temporary buffer holder for in-flight compressed data */
752 void *b_tmp_cdata;
34dc7c2f
BB
753};
754
755typedef struct l2arc_data_free {
756 /* protected by l2arc_free_on_write_mtx */
757 void *l2df_data;
758 size_t l2df_size;
759 void (*l2df_func)(void *, size_t);
760 list_node_t l2df_list_node;
761} l2arc_data_free_t;
762
763static kmutex_t l2arc_feed_thr_lock;
764static kcondvar_t l2arc_feed_thr_cv;
765static uint8_t l2arc_thread_exit;
766
767static void l2arc_read_done(zio_t *zio);
768static void l2arc_hdr_stat_add(void);
769static void l2arc_hdr_stat_remove(void);
770
3a17a7a9
SK
771static boolean_t l2arc_compress_buf(l2arc_buf_hdr_t *l2hdr);
772static void l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr,
773 enum zio_compress c);
774static void l2arc_release_cdata_buf(arc_buf_hdr_t *ab);
775
34dc7c2f 776static uint64_t
d164b209 777buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
34dc7c2f 778{
34dc7c2f
BB
779 uint8_t *vdva = (uint8_t *)dva;
780 uint64_t crc = -1ULL;
781 int i;
782
783 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
784
785 for (i = 0; i < sizeof (dva_t); i++)
786 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
787
d164b209 788 crc ^= (spa>>8) ^ birth;
34dc7c2f
BB
789
790 return (crc);
791}
792
793#define BUF_EMPTY(buf) \
794 ((buf)->b_dva.dva_word[0] == 0 && \
795 (buf)->b_dva.dva_word[1] == 0 && \
796 (buf)->b_birth == 0)
797
798#define BUF_EQUAL(spa, dva, birth, buf) \
799 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \
800 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \
801 ((buf)->b_birth == birth) && ((buf)->b_spa == spa)
802
428870ff
BB
803static void
804buf_discard_identity(arc_buf_hdr_t *hdr)
805{
806 hdr->b_dva.dva_word[0] = 0;
807 hdr->b_dva.dva_word[1] = 0;
808 hdr->b_birth = 0;
809 hdr->b_cksum0 = 0;
810}
811
34dc7c2f 812static arc_buf_hdr_t *
d164b209 813buf_hash_find(uint64_t spa, const dva_t *dva, uint64_t birth, kmutex_t **lockp)
34dc7c2f
BB
814{
815 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
816 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
817 arc_buf_hdr_t *buf;
818
819 mutex_enter(hash_lock);
820 for (buf = buf_hash_table.ht_table[idx]; buf != NULL;
821 buf = buf->b_hash_next) {
822 if (BUF_EQUAL(spa, dva, birth, buf)) {
823 *lockp = hash_lock;
824 return (buf);
825 }
826 }
827 mutex_exit(hash_lock);
828 *lockp = NULL;
829 return (NULL);
830}
831
832/*
833 * Insert an entry into the hash table. If there is already an element
834 * equal to elem in the hash table, then the already existing element
835 * will be returned and the new element will not be inserted.
836 * Otherwise returns NULL.
837 */
838static arc_buf_hdr_t *
839buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp)
840{
841 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
842 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
843 arc_buf_hdr_t *fbuf;
844 uint32_t i;
845
846 ASSERT(!HDR_IN_HASH_TABLE(buf));
847 *lockp = hash_lock;
848 mutex_enter(hash_lock);
849 for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL;
850 fbuf = fbuf->b_hash_next, i++) {
851 if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf))
852 return (fbuf);
853 }
854
855 buf->b_hash_next = buf_hash_table.ht_table[idx];
856 buf_hash_table.ht_table[idx] = buf;
857 buf->b_flags |= ARC_IN_HASH_TABLE;
858
859 /* collect some hash table performance data */
860 if (i > 0) {
861 ARCSTAT_BUMP(arcstat_hash_collisions);
862 if (i == 1)
863 ARCSTAT_BUMP(arcstat_hash_chains);
864
865 ARCSTAT_MAX(arcstat_hash_chain_max, i);
866 }
867
868 ARCSTAT_BUMP(arcstat_hash_elements);
869 ARCSTAT_MAXSTAT(arcstat_hash_elements);
870
871 return (NULL);
872}
873
874static void
875buf_hash_remove(arc_buf_hdr_t *buf)
876{
877 arc_buf_hdr_t *fbuf, **bufp;
878 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
879
880 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
881 ASSERT(HDR_IN_HASH_TABLE(buf));
882
883 bufp = &buf_hash_table.ht_table[idx];
884 while ((fbuf = *bufp) != buf) {
885 ASSERT(fbuf != NULL);
886 bufp = &fbuf->b_hash_next;
887 }
888 *bufp = buf->b_hash_next;
889 buf->b_hash_next = NULL;
890 buf->b_flags &= ~ARC_IN_HASH_TABLE;
891
892 /* collect some hash table performance data */
893 ARCSTAT_BUMPDOWN(arcstat_hash_elements);
894
895 if (buf_hash_table.ht_table[idx] &&
896 buf_hash_table.ht_table[idx]->b_hash_next == NULL)
897 ARCSTAT_BUMPDOWN(arcstat_hash_chains);
898}
899
900/*
901 * Global data structures and functions for the buf kmem cache.
902 */
903static kmem_cache_t *hdr_cache;
904static kmem_cache_t *buf_cache;
ecf3d9b8 905static kmem_cache_t *l2arc_hdr_cache;
34dc7c2f
BB
906
907static void
908buf_fini(void)
909{
910 int i;
911
00b46022 912#if defined(_KERNEL) && defined(HAVE_SPL)
d1d7e268
MK
913 /*
914 * Large allocations which do not require contiguous pages
915 * should be using vmem_free() in the linux kernel\
916 */
00b46022
BB
917 vmem_free(buf_hash_table.ht_table,
918 (buf_hash_table.ht_mask + 1) * sizeof (void *));
919#else
34dc7c2f
BB
920 kmem_free(buf_hash_table.ht_table,
921 (buf_hash_table.ht_mask + 1) * sizeof (void *));
00b46022 922#endif
34dc7c2f
BB
923 for (i = 0; i < BUF_LOCKS; i++)
924 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
925 kmem_cache_destroy(hdr_cache);
926 kmem_cache_destroy(buf_cache);
ecf3d9b8 927 kmem_cache_destroy(l2arc_hdr_cache);
34dc7c2f
BB
928}
929
930/*
931 * Constructor callback - called when the cache is empty
932 * and a new buf is requested.
933 */
934/* ARGSUSED */
935static int
936hdr_cons(void *vbuf, void *unused, int kmflag)
937{
938 arc_buf_hdr_t *buf = vbuf;
939
940 bzero(buf, sizeof (arc_buf_hdr_t));
941 refcount_create(&buf->b_refcnt);
942 cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL);
943 mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
98f72a53
BB
944 list_link_init(&buf->b_arc_node);
945 list_link_init(&buf->b_l2node);
d164b209 946 arc_space_consume(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
34dc7c2f 947
34dc7c2f
BB
948 return (0);
949}
950
b128c09f
BB
951/* ARGSUSED */
952static int
953buf_cons(void *vbuf, void *unused, int kmflag)
954{
955 arc_buf_t *buf = vbuf;
956
957 bzero(buf, sizeof (arc_buf_t));
428870ff 958 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
d164b209
BB
959 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
960
b128c09f
BB
961 return (0);
962}
963
34dc7c2f
BB
964/*
965 * Destructor callback - called when a cached buf is
966 * no longer required.
967 */
968/* ARGSUSED */
969static void
970hdr_dest(void *vbuf, void *unused)
971{
972 arc_buf_hdr_t *buf = vbuf;
973
428870ff 974 ASSERT(BUF_EMPTY(buf));
34dc7c2f
BB
975 refcount_destroy(&buf->b_refcnt);
976 cv_destroy(&buf->b_cv);
977 mutex_destroy(&buf->b_freeze_lock);
d164b209 978 arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
34dc7c2f
BB
979}
980
b128c09f
BB
981/* ARGSUSED */
982static void
983buf_dest(void *vbuf, void *unused)
984{
985 arc_buf_t *buf = vbuf;
986
428870ff 987 mutex_destroy(&buf->b_evict_lock);
d164b209 988 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
b128c09f
BB
989}
990
34dc7c2f
BB
991static void
992buf_init(void)
993{
994 uint64_t *ct;
995 uint64_t hsize = 1ULL << 12;
996 int i, j;
997
998 /*
999 * The hash table is big enough to fill all of physical memory
1000 * with an average 64K block size. The table will take up
1001 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers).
1002 */
1003 while (hsize * 65536 < physmem * PAGESIZE)
1004 hsize <<= 1;
1005retry:
1006 buf_hash_table.ht_mask = hsize - 1;
00b46022 1007#if defined(_KERNEL) && defined(HAVE_SPL)
d1d7e268
MK
1008 /*
1009 * Large allocations which do not require contiguous pages
1010 * should be using vmem_alloc() in the linux kernel
1011 */
00b46022
BB
1012 buf_hash_table.ht_table =
1013 vmem_zalloc(hsize * sizeof (void*), KM_SLEEP);
1014#else
34dc7c2f
BB
1015 buf_hash_table.ht_table =
1016 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
00b46022 1017#endif
34dc7c2f
BB
1018 if (buf_hash_table.ht_table == NULL) {
1019 ASSERT(hsize > (1ULL << 8));
1020 hsize >>= 1;
1021 goto retry;
1022 }
1023
1024 hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t),
302f753f 1025 0, hdr_cons, hdr_dest, NULL, NULL, NULL, 0);
34dc7c2f 1026 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
b128c09f 1027 0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
ecf3d9b8
JL
1028 l2arc_hdr_cache = kmem_cache_create("l2arc_buf_hdr_t", L2HDR_SIZE,
1029 0, NULL, NULL, NULL, NULL, NULL, 0);
34dc7c2f
BB
1030
1031 for (i = 0; i < 256; i++)
1032 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1033 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1034
1035 for (i = 0; i < BUF_LOCKS; i++) {
1036 mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
1037 NULL, MUTEX_DEFAULT, NULL);
1038 }
1039}
1040
1041#define ARC_MINTIME (hz>>4) /* 62 ms */
1042
1043static void
1044arc_cksum_verify(arc_buf_t *buf)
1045{
1046 zio_cksum_t zc;
1047
1048 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1049 return;
1050
1051 mutex_enter(&buf->b_hdr->b_freeze_lock);
1052 if (buf->b_hdr->b_freeze_cksum == NULL ||
1053 (buf->b_hdr->b_flags & ARC_IO_ERROR)) {
1054 mutex_exit(&buf->b_hdr->b_freeze_lock);
1055 return;
1056 }
1057 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
1058 if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
1059 panic("buffer modified while frozen!");
1060 mutex_exit(&buf->b_hdr->b_freeze_lock);
1061}
1062
1063static int
1064arc_cksum_equal(arc_buf_t *buf)
1065{
1066 zio_cksum_t zc;
1067 int equal;
1068
1069 mutex_enter(&buf->b_hdr->b_freeze_lock);
1070 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
1071 equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
1072 mutex_exit(&buf->b_hdr->b_freeze_lock);
1073
1074 return (equal);
1075}
1076
1077static void
1078arc_cksum_compute(arc_buf_t *buf, boolean_t force)
1079{
1080 if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
1081 return;
1082
1083 mutex_enter(&buf->b_hdr->b_freeze_lock);
1084 if (buf->b_hdr->b_freeze_cksum != NULL) {
1085 mutex_exit(&buf->b_hdr->b_freeze_lock);
1086 return;
1087 }
409dc1a5 1088 buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
d1d7e268 1089 KM_PUSHPAGE);
34dc7c2f
BB
1090 fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
1091 buf->b_hdr->b_freeze_cksum);
1092 mutex_exit(&buf->b_hdr->b_freeze_lock);
498877ba
MA
1093 arc_buf_watch(buf);
1094}
1095
1096#ifndef _KERNEL
1097void
1098arc_buf_sigsegv(int sig, siginfo_t *si, void *unused)
1099{
1100 panic("Got SIGSEGV at address: 0x%lx\n", (long) si->si_addr);
1101}
1102#endif
1103
1104/* ARGSUSED */
1105static void
1106arc_buf_unwatch(arc_buf_t *buf)
1107{
1108#ifndef _KERNEL
1109 if (arc_watch) {
1110 ASSERT0(mprotect(buf->b_data, buf->b_hdr->b_size,
1111 PROT_READ | PROT_WRITE));
1112 }
1113#endif
1114}
1115
1116/* ARGSUSED */
1117static void
1118arc_buf_watch(arc_buf_t *buf)
1119{
1120#ifndef _KERNEL
1121 if (arc_watch)
1122 ASSERT0(mprotect(buf->b_data, buf->b_hdr->b_size, PROT_READ));
1123#endif
34dc7c2f
BB
1124}
1125
1126void
1127arc_buf_thaw(arc_buf_t *buf)
1128{
1129 if (zfs_flags & ZFS_DEBUG_MODIFY) {
1130 if (buf->b_hdr->b_state != arc_anon)
1131 panic("modifying non-anon buffer!");
1132 if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS)
1133 panic("modifying buffer while i/o in progress!");
1134 arc_cksum_verify(buf);
1135 }
1136
1137 mutex_enter(&buf->b_hdr->b_freeze_lock);
1138 if (buf->b_hdr->b_freeze_cksum != NULL) {
1139 kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1140 buf->b_hdr->b_freeze_cksum = NULL;
1141 }
428870ff 1142
34dc7c2f 1143 mutex_exit(&buf->b_hdr->b_freeze_lock);
498877ba
MA
1144
1145 arc_buf_unwatch(buf);
34dc7c2f
BB
1146}
1147
1148void
1149arc_buf_freeze(arc_buf_t *buf)
1150{
428870ff
BB
1151 kmutex_t *hash_lock;
1152
34dc7c2f
BB
1153 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1154 return;
1155
428870ff
BB
1156 hash_lock = HDR_LOCK(buf->b_hdr);
1157 mutex_enter(hash_lock);
1158
34dc7c2f
BB
1159 ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
1160 buf->b_hdr->b_state == arc_anon);
1161 arc_cksum_compute(buf, B_FALSE);
428870ff 1162 mutex_exit(hash_lock);
498877ba 1163
34dc7c2f
BB
1164}
1165
1166static void
1167add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1168{
1169 ASSERT(MUTEX_HELD(hash_lock));
1170
1171 if ((refcount_add(&ab->b_refcnt, tag) == 1) &&
1172 (ab->b_state != arc_anon)) {
1173 uint64_t delta = ab->b_size * ab->b_datacnt;
1174 list_t *list = &ab->b_state->arcs_list[ab->b_type];
1175 uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type];
1176
1177 ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx));
1178 mutex_enter(&ab->b_state->arcs_mtx);
1179 ASSERT(list_link_active(&ab->b_arc_node));
1180 list_remove(list, ab);
1181 if (GHOST_STATE(ab->b_state)) {
c99c9001 1182 ASSERT0(ab->b_datacnt);
34dc7c2f
BB
1183 ASSERT3P(ab->b_buf, ==, NULL);
1184 delta = ab->b_size;
1185 }
1186 ASSERT(delta > 0);
1187 ASSERT3U(*size, >=, delta);
1188 atomic_add_64(size, -delta);
1189 mutex_exit(&ab->b_state->arcs_mtx);
b128c09f 1190 /* remove the prefetch flag if we get a reference */
34dc7c2f
BB
1191 if (ab->b_flags & ARC_PREFETCH)
1192 ab->b_flags &= ~ARC_PREFETCH;
1193 }
1194}
1195
1196static int
1197remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1198{
1199 int cnt;
1200 arc_state_t *state = ab->b_state;
1201
1202 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1203 ASSERT(!GHOST_STATE(state));
1204
1205 if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) &&
1206 (state != arc_anon)) {
1207 uint64_t *size = &state->arcs_lsize[ab->b_type];
1208
1209 ASSERT(!MUTEX_HELD(&state->arcs_mtx));
1210 mutex_enter(&state->arcs_mtx);
1211 ASSERT(!list_link_active(&ab->b_arc_node));
1212 list_insert_head(&state->arcs_list[ab->b_type], ab);
1213 ASSERT(ab->b_datacnt > 0);
1214 atomic_add_64(size, ab->b_size * ab->b_datacnt);
1215 mutex_exit(&state->arcs_mtx);
1216 }
1217 return (cnt);
1218}
1219
e0b0ca98
BB
1220/*
1221 * Returns detailed information about a specific arc buffer. When the
1222 * state_index argument is set the function will calculate the arc header
1223 * list position for its arc state. Since this requires a linear traversal
1224 * callers are strongly encourage not to do this. However, it can be helpful
1225 * for targeted analysis so the functionality is provided.
1226 */
1227void
1228arc_buf_info(arc_buf_t *ab, arc_buf_info_t *abi, int state_index)
1229{
1230 arc_buf_hdr_t *hdr = ab->b_hdr;
1231 arc_state_t *state = hdr->b_state;
1232
d1d7e268 1233 memset(abi, 0, sizeof (arc_buf_info_t));
e0b0ca98
BB
1234 abi->abi_flags = hdr->b_flags;
1235 abi->abi_datacnt = hdr->b_datacnt;
1236 abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON;
1237 abi->abi_state_contents = hdr->b_type;
1238 abi->abi_state_index = -1;
1239 abi->abi_size = hdr->b_size;
1240 abi->abi_access = hdr->b_arc_access;
1241 abi->abi_mru_hits = hdr->b_mru_hits;
1242 abi->abi_mru_ghost_hits = hdr->b_mru_ghost_hits;
1243 abi->abi_mfu_hits = hdr->b_mfu_hits;
1244 abi->abi_mfu_ghost_hits = hdr->b_mfu_ghost_hits;
1245 abi->abi_holds = refcount_count(&hdr->b_refcnt);
1246
1247 if (hdr->b_l2hdr) {
1248 abi->abi_l2arc_dattr = hdr->b_l2hdr->b_daddr;
1249 abi->abi_l2arc_asize = hdr->b_l2hdr->b_asize;
1250 abi->abi_l2arc_compress = hdr->b_l2hdr->b_compress;
1251 abi->abi_l2arc_hits = hdr->b_l2hdr->b_hits;
1252 }
1253
1254 if (state && state_index && list_link_active(&hdr->b_arc_node)) {
1255 list_t *list = &state->arcs_list[hdr->b_type];
1256 arc_buf_hdr_t *h;
1257
1258 mutex_enter(&state->arcs_mtx);
1259 for (h = list_head(list); h != NULL; h = list_next(list, h)) {
1260 abi->abi_state_index++;
1261 if (h == hdr)
1262 break;
1263 }
1264 mutex_exit(&state->arcs_mtx);
1265 }
1266}
1267
34dc7c2f
BB
1268/*
1269 * Move the supplied buffer to the indicated state. The mutex
1270 * for the buffer must be held by the caller.
1271 */
1272static void
1273arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock)
1274{
1275 arc_state_t *old_state = ab->b_state;
1276 int64_t refcnt = refcount_count(&ab->b_refcnt);
1277 uint64_t from_delta, to_delta;
1278
1279 ASSERT(MUTEX_HELD(hash_lock));
e8b96c60 1280 ASSERT3P(new_state, !=, old_state);
34dc7c2f
BB
1281 ASSERT(refcnt == 0 || ab->b_datacnt > 0);
1282 ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state));
428870ff 1283 ASSERT(ab->b_datacnt <= 1 || old_state != arc_anon);
34dc7c2f
BB
1284
1285 from_delta = to_delta = ab->b_datacnt * ab->b_size;
1286
1287 /*
1288 * If this buffer is evictable, transfer it from the
1289 * old state list to the new state list.
1290 */
1291 if (refcnt == 0) {
1292 if (old_state != arc_anon) {
1293 int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx);
1294 uint64_t *size = &old_state->arcs_lsize[ab->b_type];
1295
1296 if (use_mutex)
1297 mutex_enter(&old_state->arcs_mtx);
1298
1299 ASSERT(list_link_active(&ab->b_arc_node));
1300 list_remove(&old_state->arcs_list[ab->b_type], ab);
1301
1302 /*
1303 * If prefetching out of the ghost cache,
428870ff 1304 * we will have a non-zero datacnt.
34dc7c2f
BB
1305 */
1306 if (GHOST_STATE(old_state) && ab->b_datacnt == 0) {
1307 /* ghost elements have a ghost size */
1308 ASSERT(ab->b_buf == NULL);
1309 from_delta = ab->b_size;
1310 }
1311 ASSERT3U(*size, >=, from_delta);
1312 atomic_add_64(size, -from_delta);
1313
1314 if (use_mutex)
1315 mutex_exit(&old_state->arcs_mtx);
1316 }
1317 if (new_state != arc_anon) {
1318 int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx);
1319 uint64_t *size = &new_state->arcs_lsize[ab->b_type];
1320
1321 if (use_mutex)
1322 mutex_enter(&new_state->arcs_mtx);
1323
1324 list_insert_head(&new_state->arcs_list[ab->b_type], ab);
1325
1326 /* ghost elements have a ghost size */
1327 if (GHOST_STATE(new_state)) {
1328 ASSERT(ab->b_datacnt == 0);
1329 ASSERT(ab->b_buf == NULL);
1330 to_delta = ab->b_size;
1331 }
1332 atomic_add_64(size, to_delta);
1333
1334 if (use_mutex)
1335 mutex_exit(&new_state->arcs_mtx);
1336 }
1337 }
1338
1339 ASSERT(!BUF_EMPTY(ab));
428870ff 1340 if (new_state == arc_anon && HDR_IN_HASH_TABLE(ab))
34dc7c2f 1341 buf_hash_remove(ab);
34dc7c2f
BB
1342
1343 /* adjust state sizes */
1344 if (to_delta)
1345 atomic_add_64(&new_state->arcs_size, to_delta);
1346 if (from_delta) {
1347 ASSERT3U(old_state->arcs_size, >=, from_delta);
1348 atomic_add_64(&old_state->arcs_size, -from_delta);
1349 }
1350 ab->b_state = new_state;
1351
1352 /* adjust l2arc hdr stats */
1353 if (new_state == arc_l2c_only)
1354 l2arc_hdr_stat_add();
1355 else if (old_state == arc_l2c_only)
1356 l2arc_hdr_stat_remove();
1357}
1358
1359void
d164b209 1360arc_space_consume(uint64_t space, arc_space_type_t type)
34dc7c2f 1361{
d164b209
BB
1362 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1363
1364 switch (type) {
e75c13c3
BB
1365 default:
1366 break;
d164b209
BB
1367 case ARC_SPACE_DATA:
1368 ARCSTAT_INCR(arcstat_data_size, space);
1369 break;
1370 case ARC_SPACE_OTHER:
1371 ARCSTAT_INCR(arcstat_other_size, space);
1372 break;
1373 case ARC_SPACE_HDRS:
1374 ARCSTAT_INCR(arcstat_hdr_size, space);
1375 break;
1376 case ARC_SPACE_L2HDRS:
1377 ARCSTAT_INCR(arcstat_l2_hdr_size, space);
1378 break;
1379 }
1380
23c0a133 1381 ARCSTAT_INCR(arcstat_meta_used, space);
34dc7c2f
BB
1382 atomic_add_64(&arc_size, space);
1383}
1384
1385void
d164b209 1386arc_space_return(uint64_t space, arc_space_type_t type)
34dc7c2f 1387{
d164b209
BB
1388 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1389
1390 switch (type) {
e75c13c3
BB
1391 default:
1392 break;
d164b209
BB
1393 case ARC_SPACE_DATA:
1394 ARCSTAT_INCR(arcstat_data_size, -space);
1395 break;
1396 case ARC_SPACE_OTHER:
1397 ARCSTAT_INCR(arcstat_other_size, -space);
1398 break;
1399 case ARC_SPACE_HDRS:
1400 ARCSTAT_INCR(arcstat_hdr_size, -space);
1401 break;
1402 case ARC_SPACE_L2HDRS:
1403 ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
1404 break;
1405 }
1406
34dc7c2f
BB
1407 ASSERT(arc_meta_used >= space);
1408 if (arc_meta_max < arc_meta_used)
1409 arc_meta_max = arc_meta_used;
23c0a133 1410 ARCSTAT_INCR(arcstat_meta_used, -space);
34dc7c2f
BB
1411 ASSERT(arc_size >= space);
1412 atomic_add_64(&arc_size, -space);
1413}
1414
34dc7c2f
BB
1415arc_buf_t *
1416arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type)
1417{
1418 arc_buf_hdr_t *hdr;
1419 arc_buf_t *buf;
1420
1421 ASSERT3U(size, >, 0);
1422 hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
1423 ASSERT(BUF_EMPTY(hdr));
1424 hdr->b_size = size;
1425 hdr->b_type = type;
3541dc6d 1426 hdr->b_spa = spa_load_guid(spa);
34dc7c2f
BB
1427 hdr->b_state = arc_anon;
1428 hdr->b_arc_access = 0;
e0b0ca98
BB
1429 hdr->b_mru_hits = 0;
1430 hdr->b_mru_ghost_hits = 0;
1431 hdr->b_mfu_hits = 0;
1432 hdr->b_mfu_ghost_hits = 0;
1433 hdr->b_l2_hits = 0;
34dc7c2f
BB
1434 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1435 buf->b_hdr = hdr;
1436 buf->b_data = NULL;
1437 buf->b_efunc = NULL;
1438 buf->b_private = NULL;
1439 buf->b_next = NULL;
1440 hdr->b_buf = buf;
1441 arc_get_data_buf(buf);
1442 hdr->b_datacnt = 1;
1443 hdr->b_flags = 0;
1444 ASSERT(refcount_is_zero(&hdr->b_refcnt));
1445 (void) refcount_add(&hdr->b_refcnt, tag);
1446
1447 return (buf);
1448}
1449
9babb374
BB
1450static char *arc_onloan_tag = "onloan";
1451
1452/*
1453 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
1454 * flight data by arc_tempreserve_space() until they are "returned". Loaned
1455 * buffers must be returned to the arc before they can be used by the DMU or
1456 * freed.
1457 */
1458arc_buf_t *
1459arc_loan_buf(spa_t *spa, int size)
1460{
1461 arc_buf_t *buf;
1462
1463 buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
1464
1465 atomic_add_64(&arc_loaned_bytes, size);
1466 return (buf);
1467}
1468
1469/*
1470 * Return a loaned arc buffer to the arc.
1471 */
1472void
1473arc_return_buf(arc_buf_t *buf, void *tag)
1474{
1475 arc_buf_hdr_t *hdr = buf->b_hdr;
1476
9babb374 1477 ASSERT(buf->b_data != NULL);
428870ff
BB
1478 (void) refcount_add(&hdr->b_refcnt, tag);
1479 (void) refcount_remove(&hdr->b_refcnt, arc_onloan_tag);
9babb374
BB
1480
1481 atomic_add_64(&arc_loaned_bytes, -hdr->b_size);
1482}
1483
428870ff
BB
1484/* Detach an arc_buf from a dbuf (tag) */
1485void
1486arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
1487{
1488 arc_buf_hdr_t *hdr;
1489
1490 ASSERT(buf->b_data != NULL);
1491 hdr = buf->b_hdr;
1492 (void) refcount_add(&hdr->b_refcnt, arc_onloan_tag);
1493 (void) refcount_remove(&hdr->b_refcnt, tag);
1494 buf->b_efunc = NULL;
1495 buf->b_private = NULL;
1496
1497 atomic_add_64(&arc_loaned_bytes, hdr->b_size);
1498}
1499
34dc7c2f
BB
1500static arc_buf_t *
1501arc_buf_clone(arc_buf_t *from)
1502{
1503 arc_buf_t *buf;
1504 arc_buf_hdr_t *hdr = from->b_hdr;
1505 uint64_t size = hdr->b_size;
1506
428870ff
BB
1507 ASSERT(hdr->b_state != arc_anon);
1508
34dc7c2f
BB
1509 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1510 buf->b_hdr = hdr;
1511 buf->b_data = NULL;
1512 buf->b_efunc = NULL;
1513 buf->b_private = NULL;
1514 buf->b_next = hdr->b_buf;
1515 hdr->b_buf = buf;
1516 arc_get_data_buf(buf);
1517 bcopy(from->b_data, buf->b_data, size);
1eb5bfa3
GW
1518
1519 /*
1520 * This buffer already exists in the arc so create a duplicate
1521 * copy for the caller. If the buffer is associated with user data
1522 * then track the size and number of duplicates. These stats will be
1523 * updated as duplicate buffers are created and destroyed.
1524 */
1525 if (hdr->b_type == ARC_BUFC_DATA) {
1526 ARCSTAT_BUMP(arcstat_duplicate_buffers);
1527 ARCSTAT_INCR(arcstat_duplicate_buffers_size, size);
1528 }
34dc7c2f
BB
1529 hdr->b_datacnt += 1;
1530 return (buf);
1531}
1532
1533void
1534arc_buf_add_ref(arc_buf_t *buf, void* tag)
1535{
1536 arc_buf_hdr_t *hdr;
1537 kmutex_t *hash_lock;
1538
1539 /*
b128c09f
BB
1540 * Check to see if this buffer is evicted. Callers
1541 * must verify b_data != NULL to know if the add_ref
1542 * was successful.
34dc7c2f 1543 */
428870ff 1544 mutex_enter(&buf->b_evict_lock);
b128c09f 1545 if (buf->b_data == NULL) {
428870ff 1546 mutex_exit(&buf->b_evict_lock);
34dc7c2f
BB
1547 return;
1548 }
428870ff 1549 hash_lock = HDR_LOCK(buf->b_hdr);
34dc7c2f 1550 mutex_enter(hash_lock);
428870ff
BB
1551 hdr = buf->b_hdr;
1552 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1553 mutex_exit(&buf->b_evict_lock);
34dc7c2f 1554
34dc7c2f
BB
1555 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
1556 add_reference(hdr, hash_lock, tag);
d164b209 1557 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
34dc7c2f
BB
1558 arc_access(hdr, hash_lock);
1559 mutex_exit(hash_lock);
1560 ARCSTAT_BUMP(arcstat_hits);
1561 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
1562 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
1563 data, metadata, hits);
1564}
1565
1566/*
1567 * Free the arc data buffer. If it is an l2arc write in progress,
1568 * the buffer is placed on l2arc_free_on_write to be freed later.
1569 */
1570static void
498877ba 1571arc_buf_data_free(arc_buf_t *buf, void (*free_func)(void *, size_t))
34dc7c2f 1572{
498877ba
MA
1573 arc_buf_hdr_t *hdr = buf->b_hdr;
1574
34dc7c2f
BB
1575 if (HDR_L2_WRITING(hdr)) {
1576 l2arc_data_free_t *df;
594b4dd8 1577 df = kmem_alloc(sizeof (l2arc_data_free_t), KM_PUSHPAGE);
498877ba
MA
1578 df->l2df_data = buf->b_data;
1579 df->l2df_size = hdr->b_size;
34dc7c2f
BB
1580 df->l2df_func = free_func;
1581 mutex_enter(&l2arc_free_on_write_mtx);
1582 list_insert_head(l2arc_free_on_write, df);
1583 mutex_exit(&l2arc_free_on_write_mtx);
1584 ARCSTAT_BUMP(arcstat_l2_free_on_write);
1585 } else {
498877ba 1586 free_func(buf->b_data, hdr->b_size);
34dc7c2f
BB
1587 }
1588}
1589
1590static void
1591arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all)
1592{
1593 arc_buf_t **bufp;
1594
1595 /* free up data associated with the buf */
1596 if (buf->b_data) {
1597 arc_state_t *state = buf->b_hdr->b_state;
1598 uint64_t size = buf->b_hdr->b_size;
1599 arc_buf_contents_t type = buf->b_hdr->b_type;
1600
1601 arc_cksum_verify(buf);
498877ba 1602 arc_buf_unwatch(buf);
428870ff 1603
34dc7c2f
BB
1604 if (!recycle) {
1605 if (type == ARC_BUFC_METADATA) {
498877ba 1606 arc_buf_data_free(buf, zio_buf_free);
d164b209 1607 arc_space_return(size, ARC_SPACE_DATA);
34dc7c2f
BB
1608 } else {
1609 ASSERT(type == ARC_BUFC_DATA);
498877ba 1610 arc_buf_data_free(buf, zio_data_buf_free);
d164b209 1611 ARCSTAT_INCR(arcstat_data_size, -size);
34dc7c2f
BB
1612 atomic_add_64(&arc_size, -size);
1613 }
1614 }
1615 if (list_link_active(&buf->b_hdr->b_arc_node)) {
1616 uint64_t *cnt = &state->arcs_lsize[type];
1617
1618 ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt));
1619 ASSERT(state != arc_anon);
1620
1621 ASSERT3U(*cnt, >=, size);
1622 atomic_add_64(cnt, -size);
1623 }
1624 ASSERT3U(state->arcs_size, >=, size);
1625 atomic_add_64(&state->arcs_size, -size);
1626 buf->b_data = NULL;
1eb5bfa3
GW
1627
1628 /*
1629 * If we're destroying a duplicate buffer make sure
1630 * that the appropriate statistics are updated.
1631 */
1632 if (buf->b_hdr->b_datacnt > 1 &&
1633 buf->b_hdr->b_type == ARC_BUFC_DATA) {
1634 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
1635 ARCSTAT_INCR(arcstat_duplicate_buffers_size, -size);
1636 }
34dc7c2f
BB
1637 ASSERT(buf->b_hdr->b_datacnt > 0);
1638 buf->b_hdr->b_datacnt -= 1;
1639 }
1640
1641 /* only remove the buf if requested */
1642 if (!all)
1643 return;
1644
1645 /* remove the buf from the hdr list */
1646 for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next)
1647 continue;
1648 *bufp = buf->b_next;
428870ff 1649 buf->b_next = NULL;
34dc7c2f
BB
1650
1651 ASSERT(buf->b_efunc == NULL);
1652
1653 /* clean up the buf */
1654 buf->b_hdr = NULL;
1655 kmem_cache_free(buf_cache, buf);
1656}
1657
1658static void
1659arc_hdr_destroy(arc_buf_hdr_t *hdr)
1660{
d6320ddb
BB
1661 l2arc_buf_hdr_t *l2hdr = hdr->b_l2hdr;
1662
34dc7c2f
BB
1663 ASSERT(refcount_is_zero(&hdr->b_refcnt));
1664 ASSERT3P(hdr->b_state, ==, arc_anon);
1665 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1666
428870ff
BB
1667 if (l2hdr != NULL) {
1668 boolean_t buflist_held = MUTEX_HELD(&l2arc_buflist_mtx);
1669 /*
1670 * To prevent arc_free() and l2arc_evict() from
1671 * attempting to free the same buffer at the same time,
1672 * a FREE_IN_PROGRESS flag is given to arc_free() to
1673 * give it priority. l2arc_evict() can't destroy this
1674 * header while we are waiting on l2arc_buflist_mtx.
1675 *
1676 * The hdr may be removed from l2ad_buflist before we
1677 * grab l2arc_buflist_mtx, so b_l2hdr is rechecked.
1678 */
1679 if (!buflist_held) {
34dc7c2f 1680 mutex_enter(&l2arc_buflist_mtx);
428870ff 1681 l2hdr = hdr->b_l2hdr;
34dc7c2f 1682 }
428870ff
BB
1683
1684 if (l2hdr != NULL) {
1685 list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
1686 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
3a17a7a9 1687 ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize);
ecf3d9b8 1688 kmem_cache_free(l2arc_hdr_cache, l2hdr);
6e1d7276 1689 arc_space_return(L2HDR_SIZE, ARC_SPACE_L2HDRS);
428870ff
BB
1690 if (hdr->b_state == arc_l2c_only)
1691 l2arc_hdr_stat_remove();
1692 hdr->b_l2hdr = NULL;
1693 }
1694
1695 if (!buflist_held)
1696 mutex_exit(&l2arc_buflist_mtx);
34dc7c2f
BB
1697 }
1698
1699 if (!BUF_EMPTY(hdr)) {
1700 ASSERT(!HDR_IN_HASH_TABLE(hdr));
428870ff 1701 buf_discard_identity(hdr);
34dc7c2f
BB
1702 }
1703 while (hdr->b_buf) {
1704 arc_buf_t *buf = hdr->b_buf;
1705
1706 if (buf->b_efunc) {
1707 mutex_enter(&arc_eviction_mtx);
428870ff 1708 mutex_enter(&buf->b_evict_lock);
34dc7c2f
BB
1709 ASSERT(buf->b_hdr != NULL);
1710 arc_buf_destroy(hdr->b_buf, FALSE, FALSE);
1711 hdr->b_buf = buf->b_next;
1712 buf->b_hdr = &arc_eviction_hdr;
1713 buf->b_next = arc_eviction_list;
1714 arc_eviction_list = buf;
428870ff 1715 mutex_exit(&buf->b_evict_lock);
34dc7c2f
BB
1716 mutex_exit(&arc_eviction_mtx);
1717 } else {
1718 arc_buf_destroy(hdr->b_buf, FALSE, TRUE);
1719 }
1720 }
1721 if (hdr->b_freeze_cksum != NULL) {
1722 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1723 hdr->b_freeze_cksum = NULL;
1724 }
1725
1726 ASSERT(!list_link_active(&hdr->b_arc_node));
1727 ASSERT3P(hdr->b_hash_next, ==, NULL);
1728 ASSERT3P(hdr->b_acb, ==, NULL);
1729 kmem_cache_free(hdr_cache, hdr);
1730}
1731
1732void
1733arc_buf_free(arc_buf_t *buf, void *tag)
1734{
1735 arc_buf_hdr_t *hdr = buf->b_hdr;
1736 int hashed = hdr->b_state != arc_anon;
1737
1738 ASSERT(buf->b_efunc == NULL);
1739 ASSERT(buf->b_data != NULL);
1740
1741 if (hashed) {
1742 kmutex_t *hash_lock = HDR_LOCK(hdr);
1743
1744 mutex_enter(hash_lock);
428870ff
BB
1745 hdr = buf->b_hdr;
1746 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1747
34dc7c2f 1748 (void) remove_reference(hdr, hash_lock, tag);
428870ff 1749 if (hdr->b_datacnt > 1) {
34dc7c2f 1750 arc_buf_destroy(buf, FALSE, TRUE);
428870ff
BB
1751 } else {
1752 ASSERT(buf == hdr->b_buf);
1753 ASSERT(buf->b_efunc == NULL);
34dc7c2f 1754 hdr->b_flags |= ARC_BUF_AVAILABLE;
428870ff 1755 }
34dc7c2f
BB
1756 mutex_exit(hash_lock);
1757 } else if (HDR_IO_IN_PROGRESS(hdr)) {
1758 int destroy_hdr;
1759 /*
1760 * We are in the middle of an async write. Don't destroy
1761 * this buffer unless the write completes before we finish
1762 * decrementing the reference count.
1763 */
1764 mutex_enter(&arc_eviction_mtx);
1765 (void) remove_reference(hdr, NULL, tag);
1766 ASSERT(refcount_is_zero(&hdr->b_refcnt));
1767 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
1768 mutex_exit(&arc_eviction_mtx);
1769 if (destroy_hdr)
1770 arc_hdr_destroy(hdr);
1771 } else {
428870ff 1772 if (remove_reference(hdr, NULL, tag) > 0)
34dc7c2f 1773 arc_buf_destroy(buf, FALSE, TRUE);
428870ff 1774 else
34dc7c2f 1775 arc_hdr_destroy(hdr);
34dc7c2f
BB
1776 }
1777}
1778
13fe0198 1779boolean_t
34dc7c2f
BB
1780arc_buf_remove_ref(arc_buf_t *buf, void* tag)
1781{
1782 arc_buf_hdr_t *hdr = buf->b_hdr;
b4f7f105 1783 kmutex_t *hash_lock = NULL;
13fe0198 1784 boolean_t no_callback = (buf->b_efunc == NULL);
34dc7c2f
BB
1785
1786 if (hdr->b_state == arc_anon) {
428870ff 1787 ASSERT(hdr->b_datacnt == 1);
34dc7c2f
BB
1788 arc_buf_free(buf, tag);
1789 return (no_callback);
1790 }
1791
b4f7f105 1792 hash_lock = HDR_LOCK(hdr);
34dc7c2f 1793 mutex_enter(hash_lock);
428870ff
BB
1794 hdr = buf->b_hdr;
1795 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
34dc7c2f
BB
1796 ASSERT(hdr->b_state != arc_anon);
1797 ASSERT(buf->b_data != NULL);
1798
1799 (void) remove_reference(hdr, hash_lock, tag);
1800 if (hdr->b_datacnt > 1) {
1801 if (no_callback)
1802 arc_buf_destroy(buf, FALSE, TRUE);
1803 } else if (no_callback) {
1804 ASSERT(hdr->b_buf == buf && buf->b_next == NULL);
428870ff 1805 ASSERT(buf->b_efunc == NULL);
34dc7c2f
BB
1806 hdr->b_flags |= ARC_BUF_AVAILABLE;
1807 }
1808 ASSERT(no_callback || hdr->b_datacnt > 1 ||
1809 refcount_is_zero(&hdr->b_refcnt));
1810 mutex_exit(hash_lock);
1811 return (no_callback);
1812}
1813
1814int
1815arc_buf_size(arc_buf_t *buf)
1816{
1817 return (buf->b_hdr->b_size);
1818}
1819
1eb5bfa3
GW
1820/*
1821 * Called from the DMU to determine if the current buffer should be
1822 * evicted. In order to ensure proper locking, the eviction must be initiated
1823 * from the DMU. Return true if the buffer is associated with user data and
1824 * duplicate buffers still exist.
1825 */
1826boolean_t
1827arc_buf_eviction_needed(arc_buf_t *buf)
1828{
1829 arc_buf_hdr_t *hdr;
1830 boolean_t evict_needed = B_FALSE;
1831
1832 if (zfs_disable_dup_eviction)
1833 return (B_FALSE);
1834
1835 mutex_enter(&buf->b_evict_lock);
1836 hdr = buf->b_hdr;
1837 if (hdr == NULL) {
1838 /*
1839 * We are in arc_do_user_evicts(); let that function
1840 * perform the eviction.
1841 */
1842 ASSERT(buf->b_data == NULL);
1843 mutex_exit(&buf->b_evict_lock);
1844 return (B_FALSE);
1845 } else if (buf->b_data == NULL) {
1846 /*
1847 * We have already been added to the arc eviction list;
1848 * recommend eviction.
1849 */
1850 ASSERT3P(hdr, ==, &arc_eviction_hdr);
1851 mutex_exit(&buf->b_evict_lock);
1852 return (B_TRUE);
1853 }
1854
1855 if (hdr->b_datacnt > 1 && hdr->b_type == ARC_BUFC_DATA)
1856 evict_needed = B_TRUE;
1857
1858 mutex_exit(&buf->b_evict_lock);
1859 return (evict_needed);
1860}
1861
34dc7c2f
BB
1862/*
1863 * Evict buffers from list until we've removed the specified number of
1864 * bytes. Move the removed buffers to the appropriate evict state.
1865 * If the recycle flag is set, then attempt to "recycle" a buffer:
1866 * - look for a buffer to evict that is `bytes' long.
1867 * - return the data block from this buffer rather than freeing it.
1868 * This flag is used by callers that are trying to make space for a
1869 * new buffer in a full arc cache.
1870 *
1871 * This function makes a "best effort". It skips over any buffers
1872 * it can't get a hash_lock on, and so may not catch all candidates.
1873 * It may also return without evicting as much space as requested.
1874 */
1875static void *
d164b209 1876arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle,
34dc7c2f
BB
1877 arc_buf_contents_t type)
1878{
1879 arc_state_t *evicted_state;
1880 uint64_t bytes_evicted = 0, skipped = 0, missed = 0;
1881 arc_buf_hdr_t *ab, *ab_prev = NULL;
1882 list_t *list = &state->arcs_list[type];
1883 kmutex_t *hash_lock;
1884 boolean_t have_lock;
1885 void *stolen = NULL;
e8b96c60
MA
1886 arc_buf_hdr_t marker = {{{ 0 }}};
1887 int count = 0;
34dc7c2f
BB
1888
1889 ASSERT(state == arc_mru || state == arc_mfu);
1890
1891 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
1892
1893 mutex_enter(&state->arcs_mtx);
1894 mutex_enter(&evicted_state->arcs_mtx);
1895
1896 for (ab = list_tail(list); ab; ab = ab_prev) {
1897 ab_prev = list_prev(list, ab);
1898 /* prefetch buffers have a minimum lifespan */
1899 if (HDR_IO_IN_PROGRESS(ab) ||
1900 (spa && ab->b_spa != spa) ||
1901 (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) &&
428870ff 1902 ddi_get_lbolt() - ab->b_arc_access <
bce45ec9 1903 zfs_arc_min_prefetch_lifespan)) {
34dc7c2f
BB
1904 skipped++;
1905 continue;
1906 }
1907 /* "lookahead" for better eviction candidate */
1908 if (recycle && ab->b_size != bytes &&
1909 ab_prev && ab_prev->b_size == bytes)
1910 continue;
e8b96c60
MA
1911
1912 /* ignore markers */
1913 if (ab->b_spa == 0)
1914 continue;
1915
1916 /*
1917 * It may take a long time to evict all the bufs requested.
1918 * To avoid blocking all arc activity, periodically drop
1919 * the arcs_mtx and give other threads a chance to run
1920 * before reacquiring the lock.
1921 *
1922 * If we are looking for a buffer to recycle, we are in
1923 * the hot code path, so don't sleep.
1924 */
1925 if (!recycle && count++ > arc_evict_iterations) {
1926 list_insert_after(list, ab, &marker);
1927 mutex_exit(&evicted_state->arcs_mtx);
1928 mutex_exit(&state->arcs_mtx);
1929 kpreempt(KPREEMPT_SYNC);
1930 mutex_enter(&state->arcs_mtx);
1931 mutex_enter(&evicted_state->arcs_mtx);
1932 ab_prev = list_prev(list, &marker);
1933 list_remove(list, &marker);
1934 count = 0;
1935 continue;
1936 }
1937
34dc7c2f
BB
1938 hash_lock = HDR_LOCK(ab);
1939 have_lock = MUTEX_HELD(hash_lock);
1940 if (have_lock || mutex_tryenter(hash_lock)) {
c99c9001 1941 ASSERT0(refcount_count(&ab->b_refcnt));
34dc7c2f
BB
1942 ASSERT(ab->b_datacnt > 0);
1943 while (ab->b_buf) {
1944 arc_buf_t *buf = ab->b_buf;
428870ff 1945 if (!mutex_tryenter(&buf->b_evict_lock)) {
b128c09f
BB
1946 missed += 1;
1947 break;
1948 }
34dc7c2f
BB
1949 if (buf->b_data) {
1950 bytes_evicted += ab->b_size;
1951 if (recycle && ab->b_type == type &&
1952 ab->b_size == bytes &&
1953 !HDR_L2_WRITING(ab)) {
1954 stolen = buf->b_data;
1955 recycle = FALSE;
1956 }
1957 }
1958 if (buf->b_efunc) {
1959 mutex_enter(&arc_eviction_mtx);
1960 arc_buf_destroy(buf,
1961 buf->b_data == stolen, FALSE);
1962 ab->b_buf = buf->b_next;
1963 buf->b_hdr = &arc_eviction_hdr;
1964 buf->b_next = arc_eviction_list;
1965 arc_eviction_list = buf;
1966 mutex_exit(&arc_eviction_mtx);
428870ff 1967 mutex_exit(&buf->b_evict_lock);
34dc7c2f 1968 } else {
428870ff 1969 mutex_exit(&buf->b_evict_lock);
34dc7c2f
BB
1970 arc_buf_destroy(buf,
1971 buf->b_data == stolen, TRUE);
1972 }
1973 }
428870ff
BB
1974
1975 if (ab->b_l2hdr) {
1976 ARCSTAT_INCR(arcstat_evict_l2_cached,
1977 ab->b_size);
1978 } else {
1979 if (l2arc_write_eligible(ab->b_spa, ab)) {
1980 ARCSTAT_INCR(arcstat_evict_l2_eligible,
1981 ab->b_size);
1982 } else {
1983 ARCSTAT_INCR(
1984 arcstat_evict_l2_ineligible,
1985 ab->b_size);
1986 }
1987 }
1988
b128c09f
BB
1989 if (ab->b_datacnt == 0) {
1990 arc_change_state(evicted_state, ab, hash_lock);
1991 ASSERT(HDR_IN_HASH_TABLE(ab));
1992 ab->b_flags |= ARC_IN_HASH_TABLE;
1993 ab->b_flags &= ~ARC_BUF_AVAILABLE;
1994 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab);
1995 }
34dc7c2f
BB
1996 if (!have_lock)
1997 mutex_exit(hash_lock);
1998 if (bytes >= 0 && bytes_evicted >= bytes)
1999 break;
2000 } else {
2001 missed += 1;
2002 }
2003 }
2004
2005 mutex_exit(&evicted_state->arcs_mtx);
2006 mutex_exit(&state->arcs_mtx);
2007
2008 if (bytes_evicted < bytes)
3f504482 2009 dprintf("only evicted %lld bytes from %x\n",
34dc7c2f
BB
2010 (longlong_t)bytes_evicted, state);
2011
2012 if (skipped)
2013 ARCSTAT_INCR(arcstat_evict_skip, skipped);
2014
2015 if (missed)
2016 ARCSTAT_INCR(arcstat_mutex_miss, missed);
2017
2018 /*
e8b96c60
MA
2019 * Note: we have just evicted some data into the ghost state,
2020 * potentially putting the ghost size over the desired size. Rather
2021 * that evicting from the ghost list in this hot code path, leave
2022 * this chore to the arc_reclaim_thread().
34dc7c2f 2023 */
34dc7c2f
BB
2024
2025 return (stolen);
2026}
2027
2028/*
2029 * Remove buffers from list until we've removed the specified number of
2030 * bytes. Destroy the buffers that are removed.
2031 */
2032static void
68121a03
BB
2033arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes,
2034 arc_buf_contents_t type)
34dc7c2f
BB
2035{
2036 arc_buf_hdr_t *ab, *ab_prev;
2598c001 2037 arc_buf_hdr_t marker;
68121a03 2038 list_t *list = &state->arcs_list[type];
34dc7c2f
BB
2039 kmutex_t *hash_lock;
2040 uint64_t bytes_deleted = 0;
2041 uint64_t bufs_skipped = 0;
e8b96c60 2042 int count = 0;
34dc7c2f
BB
2043
2044 ASSERT(GHOST_STATE(state));
d1d7e268 2045 bzero(&marker, sizeof (marker));
34dc7c2f
BB
2046top:
2047 mutex_enter(&state->arcs_mtx);
2048 for (ab = list_tail(list); ab; ab = ab_prev) {
2049 ab_prev = list_prev(list, ab);
e8b96c60
MA
2050 if (ab->b_type > ARC_BUFC_NUMTYPES)
2051 panic("invalid ab=%p", (void *)ab);
34dc7c2f
BB
2052 if (spa && ab->b_spa != spa)
2053 continue;
572e2857
BB
2054
2055 /* ignore markers */
2056 if (ab->b_spa == 0)
2057 continue;
2058
34dc7c2f 2059 hash_lock = HDR_LOCK(ab);
428870ff
BB
2060 /* caller may be trying to modify this buffer, skip it */
2061 if (MUTEX_HELD(hash_lock))
2062 continue;
e8b96c60
MA
2063
2064 /*
2065 * It may take a long time to evict all the bufs requested.
2066 * To avoid blocking all arc activity, periodically drop
2067 * the arcs_mtx and give other threads a chance to run
2068 * before reacquiring the lock.
2069 */
2070 if (count++ > arc_evict_iterations) {
2071 list_insert_after(list, ab, &marker);
2072 mutex_exit(&state->arcs_mtx);
2073 kpreempt(KPREEMPT_SYNC);
2074 mutex_enter(&state->arcs_mtx);
2075 ab_prev = list_prev(list, &marker);
2076 list_remove(list, &marker);
2077 count = 0;
2078 continue;
2079 }
34dc7c2f
BB
2080 if (mutex_tryenter(hash_lock)) {
2081 ASSERT(!HDR_IO_IN_PROGRESS(ab));
2082 ASSERT(ab->b_buf == NULL);
2083 ARCSTAT_BUMP(arcstat_deleted);
2084 bytes_deleted += ab->b_size;
2085
2086 if (ab->b_l2hdr != NULL) {
2087 /*
2088 * This buffer is cached on the 2nd Level ARC;
2089 * don't destroy the header.
2090 */
2091 arc_change_state(arc_l2c_only, ab, hash_lock);
2092 mutex_exit(hash_lock);
2093 } else {
2094 arc_change_state(arc_anon, ab, hash_lock);
2095 mutex_exit(hash_lock);
2096 arc_hdr_destroy(ab);
2097 }
2098
2099 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab);
2100 if (bytes >= 0 && bytes_deleted >= bytes)
2101 break;
572e2857
BB
2102 } else if (bytes < 0) {
2103 /*
2104 * Insert a list marker and then wait for the
2105 * hash lock to become available. Once its
2106 * available, restart from where we left off.
2107 */
2108 list_insert_after(list, ab, &marker);
2109 mutex_exit(&state->arcs_mtx);
2110 mutex_enter(hash_lock);
2111 mutex_exit(hash_lock);
2112 mutex_enter(&state->arcs_mtx);
2113 ab_prev = list_prev(list, &marker);
2114 list_remove(list, &marker);
e8b96c60 2115 } else {
34dc7c2f 2116 bufs_skipped += 1;
e8b96c60 2117 }
34dc7c2f
BB
2118 }
2119 mutex_exit(&state->arcs_mtx);
2120
2121 if (list == &state->arcs_list[ARC_BUFC_DATA] &&
2122 (bytes < 0 || bytes_deleted < bytes)) {
2123 list = &state->arcs_list[ARC_BUFC_METADATA];
2124 goto top;
2125 }
2126
2127 if (bufs_skipped) {
2128 ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped);
2129 ASSERT(bytes >= 0);
2130 }
2131
2132 if (bytes_deleted < bytes)
3f504482 2133 dprintf("only deleted %lld bytes from %p\n",
34dc7c2f
BB
2134 (longlong_t)bytes_deleted, state);
2135}
2136
2137static void
2138arc_adjust(void)
2139{
d164b209
BB
2140 int64_t adjustment, delta;
2141
2142 /*
2143 * Adjust MRU size
2144 */
34dc7c2f 2145
572e2857
BB
2146 adjustment = MIN((int64_t)(arc_size - arc_c),
2147 (int64_t)(arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used -
2148 arc_p));
34dc7c2f 2149
d164b209
BB
2150 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) {
2151 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], adjustment);
b8864a23 2152 (void) arc_evict(arc_mru, 0, delta, FALSE, ARC_BUFC_DATA);
d164b209 2153 adjustment -= delta;
34dc7c2f
BB
2154 }
2155
d164b209
BB
2156 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) {
2157 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment);
b8864a23 2158 (void) arc_evict(arc_mru, 0, delta, FALSE,
34dc7c2f 2159 ARC_BUFC_METADATA);
34dc7c2f
BB
2160 }
2161
d164b209
BB
2162 /*
2163 * Adjust MFU size
2164 */
34dc7c2f 2165
d164b209
BB
2166 adjustment = arc_size - arc_c;
2167
2168 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) {
2169 delta = MIN(adjustment, arc_mfu->arcs_lsize[ARC_BUFC_DATA]);
b8864a23 2170 (void) arc_evict(arc_mfu, 0, delta, FALSE, ARC_BUFC_DATA);
d164b209 2171 adjustment -= delta;
34dc7c2f
BB
2172 }
2173
d164b209
BB
2174 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) {
2175 int64_t delta = MIN(adjustment,
2176 arc_mfu->arcs_lsize[ARC_BUFC_METADATA]);
b8864a23 2177 (void) arc_evict(arc_mfu, 0, delta, FALSE,
d164b209
BB
2178 ARC_BUFC_METADATA);
2179 }
34dc7c2f 2180
d164b209
BB
2181 /*
2182 * Adjust ghost lists
2183 */
34dc7c2f 2184
d164b209
BB
2185 adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c;
2186
2187 if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) {
2188 delta = MIN(arc_mru_ghost->arcs_size, adjustment);
68121a03 2189 arc_evict_ghost(arc_mru_ghost, 0, delta, ARC_BUFC_DATA);
d164b209 2190 }
34dc7c2f 2191
d164b209
BB
2192 adjustment =
2193 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c;
34dc7c2f 2194
d164b209
BB
2195 if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) {
2196 delta = MIN(arc_mfu_ghost->arcs_size, adjustment);
68121a03 2197 arc_evict_ghost(arc_mfu_ghost, 0, delta, ARC_BUFC_DATA);
34dc7c2f
BB
2198 }
2199}
2200
ab26409d
BB
2201/*
2202 * Request that arc user drop references so that N bytes can be released
2203 * from the cache. This provides a mechanism to ensure the arc can honor
2204 * the arc_meta_limit and reclaim buffers which are pinned in the cache
2205 * by higher layers. (i.e. the zpl)
2206 */
2207static void
2208arc_do_user_prune(int64_t adjustment)
2209{
2210 arc_prune_func_t *func;
2211 void *private;
2212 arc_prune_t *cp, *np;
2213
2214 mutex_enter(&arc_prune_mtx);
2215
2216 cp = list_head(&arc_prune_list);
2217 while (cp != NULL) {
2218 func = cp->p_pfunc;
2219 private = cp->p_private;
2220 np = list_next(&arc_prune_list, cp);
2221 refcount_add(&cp->p_refcnt, func);
2222 mutex_exit(&arc_prune_mtx);
2223
2224 if (func != NULL)
2225 func(adjustment, private);
2226
2227 mutex_enter(&arc_prune_mtx);
2228
2229 /* User removed prune callback concurrently with execution */
2230 if (refcount_remove(&cp->p_refcnt, func) == 0) {
2231 ASSERT(!list_link_active(&cp->p_node));
2232 refcount_destroy(&cp->p_refcnt);
2233 kmem_free(cp, sizeof (*cp));
2234 }
2235
2236 cp = np;
2237 }
2238
2239 ARCSTAT_BUMP(arcstat_prune);
2240 mutex_exit(&arc_prune_mtx);
2241}
2242
34dc7c2f
BB
2243static void
2244arc_do_user_evicts(void)
2245{
2246 mutex_enter(&arc_eviction_mtx);
2247 while (arc_eviction_list != NULL) {
2248 arc_buf_t *buf = arc_eviction_list;
2249 arc_eviction_list = buf->b_next;
428870ff 2250 mutex_enter(&buf->b_evict_lock);
34dc7c2f 2251 buf->b_hdr = NULL;
428870ff 2252 mutex_exit(&buf->b_evict_lock);
34dc7c2f
BB
2253 mutex_exit(&arc_eviction_mtx);
2254
2255 if (buf->b_efunc != NULL)
2256 VERIFY(buf->b_efunc(buf) == 0);
2257
2258 buf->b_efunc = NULL;
2259 buf->b_private = NULL;
2260 kmem_cache_free(buf_cache, buf);
2261 mutex_enter(&arc_eviction_mtx);
2262 }
2263 mutex_exit(&arc_eviction_mtx);
2264}
2265
ab26409d
BB
2266/*
2267 * Evict only meta data objects from the cache leaving the data objects.
2268 * This is only used to enforce the tunable arc_meta_limit, if we are
2269 * unable to evict enough buffers notify the user via the prune callback.
2270 */
2271void
2272arc_adjust_meta(int64_t adjustment, boolean_t may_prune)
2273{
c273d60d 2274 int64_t delta;
ab26409d
BB
2275
2276 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) {
2277 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment);
2278 arc_evict(arc_mru, 0, delta, FALSE, ARC_BUFC_METADATA);
2279 adjustment -= delta;
2280 }
2281
2282 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) {
2283 delta = MIN(arc_mfu->arcs_lsize[ARC_BUFC_METADATA], adjustment);
2284 arc_evict(arc_mfu, 0, delta, FALSE, ARC_BUFC_METADATA);
2285 adjustment -= delta;
2286 }
2287
2288 if (may_prune && (adjustment > 0) && (arc_meta_used > arc_meta_limit))
bce45ec9 2289 arc_do_user_prune(zfs_arc_meta_prune);
ab26409d
BB
2290}
2291
34dc7c2f
BB
2292/*
2293 * Flush all *evictable* data from the cache for the given spa.
2294 * NOTE: this will not touch "active" (i.e. referenced) data.
2295 */
2296void
2297arc_flush(spa_t *spa)
2298{
d164b209
BB
2299 uint64_t guid = 0;
2300
2301 if (spa)
3541dc6d 2302 guid = spa_load_guid(spa);
d164b209 2303
34dc7c2f 2304 while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) {
d164b209 2305 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA);
34dc7c2f
BB
2306 if (spa)
2307 break;
2308 }
2309 while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) {
d164b209 2310 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA);
34dc7c2f
BB
2311 if (spa)
2312 break;
2313 }
2314 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) {
d164b209 2315 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA);
34dc7c2f
BB
2316 if (spa)
2317 break;
2318 }
2319 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) {
d164b209 2320 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA);
34dc7c2f
BB
2321 if (spa)
2322 break;
2323 }
2324
68121a03
BB
2325 arc_evict_ghost(arc_mru_ghost, guid, -1, ARC_BUFC_DATA);
2326 arc_evict_ghost(arc_mfu_ghost, guid, -1, ARC_BUFC_DATA);
34dc7c2f
BB
2327
2328 mutex_enter(&arc_reclaim_thr_lock);
2329 arc_do_user_evicts();
2330 mutex_exit(&arc_reclaim_thr_lock);
2331 ASSERT(spa || arc_eviction_list == NULL);
2332}
2333
34dc7c2f 2334void
302f753f 2335arc_shrink(uint64_t bytes)
34dc7c2f
BB
2336{
2337 if (arc_c > arc_c_min) {
39e055c4 2338 uint64_t arc_p_min;
34dc7c2f
BB
2339 uint64_t to_free;
2340
bce45ec9 2341 to_free = bytes ? bytes : arc_c >> zfs_arc_shrink_shift;
302f753f 2342
34dc7c2f
BB
2343 if (arc_c > arc_c_min + to_free)
2344 atomic_add_64(&arc_c, -to_free);
2345 else
2346 arc_c = arc_c_min;
2347
39e055c4
PS
2348 arc_p_min = (arc_c >> zfs_arc_p_min_shift);
2349 to_free = bytes ? bytes : arc_p >> zfs_arc_shrink_shift;
2350
2351 if (arc_p > arc_p_min + to_free)
2352 atomic_add_64(&arc_p, -to_free);
2353 else
2354 arc_p = arc_p_min;
2355
34dc7c2f
BB
2356 if (arc_c > arc_size)
2357 arc_c = MAX(arc_size, arc_c_min);
2358 if (arc_p > arc_c)
2359 arc_p = (arc_c >> 1);
2360 ASSERT(arc_c >= arc_c_min);
2361 ASSERT((int64_t)arc_p >= 0);
2362 }
2363
2364 if (arc_size > arc_c)
2365 arc_adjust();
2366}
2367
34dc7c2f 2368static void
302f753f 2369arc_kmem_reap_now(arc_reclaim_strategy_t strat, uint64_t bytes)
34dc7c2f
BB
2370{
2371 size_t i;
2372 kmem_cache_t *prev_cache = NULL;
2373 kmem_cache_t *prev_data_cache = NULL;
2374 extern kmem_cache_t *zio_buf_cache[];
2375 extern kmem_cache_t *zio_data_buf_cache[];
34dc7c2f
BB
2376
2377 /*
2378 * An aggressive reclamation will shrink the cache size as well as
2379 * reap free buffers from the arc kmem caches.
2380 */
2381 if (strat == ARC_RECLAIM_AGGR)
302f753f 2382 arc_shrink(bytes);
34dc7c2f
BB
2383
2384 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
2385 if (zio_buf_cache[i] != prev_cache) {
2386 prev_cache = zio_buf_cache[i];
2387 kmem_cache_reap_now(zio_buf_cache[i]);
2388 }
2389 if (zio_data_buf_cache[i] != prev_data_cache) {
2390 prev_data_cache = zio_data_buf_cache[i];
2391 kmem_cache_reap_now(zio_data_buf_cache[i]);
2392 }
2393 }
ab26409d 2394
34dc7c2f
BB
2395 kmem_cache_reap_now(buf_cache);
2396 kmem_cache_reap_now(hdr_cache);
2397}
2398
302f753f
BB
2399/*
2400 * Unlike other ZFS implementations this thread is only responsible for
2401 * adapting the target ARC size on Linux. The responsibility for memory
2402 * reclamation has been entirely delegated to the arc_shrinker_func()
2403 * which is registered with the VM. To reflect this change in behavior
2404 * the arc_reclaim thread has been renamed to arc_adapt.
2405 */
34dc7c2f 2406static void
302f753f 2407arc_adapt_thread(void)
34dc7c2f 2408{
34dc7c2f 2409 callb_cpr_t cpr;
ab26409d 2410 int64_t prune;
34dc7c2f
BB
2411
2412 CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG);
2413
2414 mutex_enter(&arc_reclaim_thr_lock);
2415 while (arc_thread_exit == 0) {
302f753f
BB
2416#ifndef _KERNEL
2417 arc_reclaim_strategy_t last_reclaim = ARC_RECLAIM_CONS;
2418
2419 if (spa_get_random(100) == 0) {
34dc7c2f
BB
2420
2421 if (arc_no_grow) {
2422 if (last_reclaim == ARC_RECLAIM_CONS) {
2423 last_reclaim = ARC_RECLAIM_AGGR;
2424 } else {
2425 last_reclaim = ARC_RECLAIM_CONS;
2426 }
2427 } else {
2428 arc_no_grow = TRUE;
2429 last_reclaim = ARC_RECLAIM_AGGR;
2430 membar_producer();
2431 }
2432
2433 /* reset the growth delay for every reclaim */
d1d7e268
MK
2434 arc_grow_time = ddi_get_lbolt() +
2435 (zfs_arc_grow_retry * hz);
34dc7c2f 2436
302f753f 2437 arc_kmem_reap_now(last_reclaim, 0);
b128c09f 2438 arc_warm = B_TRUE;
302f753f
BB
2439 }
2440#endif /* !_KERNEL */
34dc7c2f 2441
302f753f
BB
2442 /* No recent memory pressure allow the ARC to grow. */
2443 if (arc_no_grow && ddi_get_lbolt() >= arc_grow_time)
34dc7c2f 2444 arc_no_grow = FALSE;
34dc7c2f 2445
ab26409d
BB
2446 /*
2447 * Keep meta data usage within limits, arc_shrink() is not
2448 * used to avoid collapsing the arc_c value when only the
2449 * arc_meta_limit is being exceeded.
2450 */
2451 prune = (int64_t)arc_meta_used - (int64_t)arc_meta_limit;
2452 if (prune > 0)
2453 arc_adjust_meta(prune, B_TRUE);
6a8f9b6b 2454
572e2857 2455 arc_adjust();
34dc7c2f
BB
2456
2457 if (arc_eviction_list != NULL)
2458 arc_do_user_evicts();
2459
2460 /* block until needed, or one second, whichever is shorter */
2461 CALLB_CPR_SAFE_BEGIN(&cpr);
5b63b3eb 2462 (void) cv_timedwait_interruptible(&arc_reclaim_thr_cv,
428870ff 2463 &arc_reclaim_thr_lock, (ddi_get_lbolt() + hz));
34dc7c2f 2464 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock);
bce45ec9
BB
2465
2466
2467 /* Allow the module options to be changed */
2468 if (zfs_arc_max > 64 << 20 &&
2469 zfs_arc_max < physmem * PAGESIZE &&
2470 zfs_arc_max != arc_c_max)
2471 arc_c_max = zfs_arc_max;
2472
2473 if (zfs_arc_min > 0 &&
2474 zfs_arc_min < arc_c_max &&
2475 zfs_arc_min != arc_c_min)
2476 arc_c_min = zfs_arc_min;
2477
2478 if (zfs_arc_meta_limit > 0 &&
2479 zfs_arc_meta_limit <= arc_c_max &&
2480 zfs_arc_meta_limit != arc_meta_limit)
2481 arc_meta_limit = zfs_arc_meta_limit;
2482
2483
2484
34dc7c2f
BB
2485 }
2486
2487 arc_thread_exit = 0;
2488 cv_broadcast(&arc_reclaim_thr_cv);
2489 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_thr_lock */
2490 thread_exit();
2491}
2492
7cb67b45
BB
2493#ifdef _KERNEL
2494/*
302f753f
BB
2495 * Determine the amount of memory eligible for eviction contained in the
2496 * ARC. All clean data reported by the ghost lists can always be safely
2497 * evicted. Due to arc_c_min, the same does not hold for all clean data
2498 * contained by the regular mru and mfu lists.
2499 *
2500 * In the case of the regular mru and mfu lists, we need to report as
2501 * much clean data as possible, such that evicting that same reported
2502 * data will not bring arc_size below arc_c_min. Thus, in certain
2503 * circumstances, the total amount of clean data in the mru and mfu
2504 * lists might not actually be evictable.
2505 *
2506 * The following two distinct cases are accounted for:
2507 *
2508 * 1. The sum of the amount of dirty data contained by both the mru and
2509 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
2510 * is greater than or equal to arc_c_min.
2511 * (i.e. amount of dirty data >= arc_c_min)
2512 *
2513 * This is the easy case; all clean data contained by the mru and mfu
2514 * lists is evictable. Evicting all clean data can only drop arc_size
2515 * to the amount of dirty data, which is greater than arc_c_min.
2516 *
2517 * 2. The sum of the amount of dirty data contained by both the mru and
2518 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
2519 * is less than arc_c_min.
2520 * (i.e. arc_c_min > amount of dirty data)
2521 *
2522 * 2.1. arc_size is greater than or equal arc_c_min.
2523 * (i.e. arc_size >= arc_c_min > amount of dirty data)
2524 *
2525 * In this case, not all clean data from the regular mru and mfu
2526 * lists is actually evictable; we must leave enough clean data
2527 * to keep arc_size above arc_c_min. Thus, the maximum amount of
2528 * evictable data from the two lists combined, is exactly the
2529 * difference between arc_size and arc_c_min.
2530 *
2531 * 2.2. arc_size is less than arc_c_min
2532 * (i.e. arc_c_min > arc_size > amount of dirty data)
2533 *
2534 * In this case, none of the data contained in the mru and mfu
2535 * lists is evictable, even if it's clean. Since arc_size is
2536 * already below arc_c_min, evicting any more would only
2537 * increase this negative difference.
7cb67b45 2538 */
302f753f
BB
2539static uint64_t
2540arc_evictable_memory(void) {
2541 uint64_t arc_clean =
2542 arc_mru->arcs_lsize[ARC_BUFC_DATA] +
2543 arc_mru->arcs_lsize[ARC_BUFC_METADATA] +
2544 arc_mfu->arcs_lsize[ARC_BUFC_DATA] +
2545 arc_mfu->arcs_lsize[ARC_BUFC_METADATA];
2546 uint64_t ghost_clean =
2547 arc_mru_ghost->arcs_lsize[ARC_BUFC_DATA] +
2548 arc_mru_ghost->arcs_lsize[ARC_BUFC_METADATA] +
2549 arc_mfu_ghost->arcs_lsize[ARC_BUFC_DATA] +
2550 arc_mfu_ghost->arcs_lsize[ARC_BUFC_METADATA];
2551 uint64_t arc_dirty = MAX((int64_t)arc_size - (int64_t)arc_clean, 0);
2552
2553 if (arc_dirty >= arc_c_min)
2554 return (ghost_clean + arc_clean);
2555
2556 return (ghost_clean + MAX((int64_t)arc_size - (int64_t)arc_c_min, 0));
2557}
2558
7e7baeca
BB
2559static int
2560__arc_shrinker_func(struct shrinker *shrink, struct shrink_control *sc)
7cb67b45 2561{
302f753f 2562 uint64_t pages;
7cb67b45 2563
302f753f
BB
2564 /* The arc is considered warm once reclaim has occurred */
2565 if (unlikely(arc_warm == B_FALSE))
2566 arc_warm = B_TRUE;
7cb67b45 2567
302f753f
BB
2568 /* Return the potential number of reclaimable pages */
2569 pages = btop(arc_evictable_memory());
2570 if (sc->nr_to_scan == 0)
2571 return (pages);
3fd70ee6
BB
2572
2573 /* Not allowed to perform filesystem reclaim */
7e7baeca 2574 if (!(sc->gfp_mask & __GFP_FS))
3fd70ee6
BB
2575 return (-1);
2576
7cb67b45
BB
2577 /* Reclaim in progress */
2578 if (mutex_tryenter(&arc_reclaim_thr_lock) == 0)
2579 return (-1);
2580
302f753f
BB
2581 /*
2582 * Evict the requested number of pages by shrinking arc_c the
2583 * requested amount. If there is nothing left to evict just
2584 * reap whatever we can from the various arc slabs.
2585 */
2586 if (pages > 0) {
2587 arc_kmem_reap_now(ARC_RECLAIM_AGGR, ptob(sc->nr_to_scan));
302f753f
BB
2588 } else {
2589 arc_kmem_reap_now(ARC_RECLAIM_CONS, ptob(sc->nr_to_scan));
302f753f
BB
2590 }
2591
2592 /*
2593 * When direct reclaim is observed it usually indicates a rapid
2594 * increase in memory pressure. This occurs because the kswapd
2595 * threads were unable to asynchronously keep enough free memory
2596 * available. In this case set arc_no_grow to briefly pause arc
2597 * growth to avoid compounding the memory pressure.
2598 */
7cb67b45 2599 if (current_is_kswapd()) {
302f753f 2600 ARCSTAT_BUMP(arcstat_memory_indirect_count);
7cb67b45 2601 } else {
302f753f 2602 arc_no_grow = B_TRUE;
bce45ec9 2603 arc_grow_time = ddi_get_lbolt() + (zfs_arc_grow_retry * hz);
302f753f 2604 ARCSTAT_BUMP(arcstat_memory_direct_count);
7cb67b45
BB
2605 }
2606
7cb67b45
BB
2607 mutex_exit(&arc_reclaim_thr_lock);
2608
c11a12bc 2609 return (-1);
7cb67b45 2610}
7e7baeca 2611SPL_SHRINKER_CALLBACK_WRAPPER(arc_shrinker_func);
7cb67b45
BB
2612
2613SPL_SHRINKER_DECLARE(arc_shrinker, arc_shrinker_func, DEFAULT_SEEKS);
2614#endif /* _KERNEL */
2615
34dc7c2f
BB
2616/*
2617 * Adapt arc info given the number of bytes we are trying to add and
2618 * the state that we are comming from. This function is only called
2619 * when we are adding new content to the cache.
2620 */
2621static void
2622arc_adapt(int bytes, arc_state_t *state)
2623{
2624 int mult;
bce45ec9 2625 uint64_t arc_p_min = (arc_c >> zfs_arc_p_min_shift);
34dc7c2f
BB
2626
2627 if (state == arc_l2c_only)
2628 return;
2629
2630 ASSERT(bytes > 0);
2631 /*
2632 * Adapt the target size of the MRU list:
2633 * - if we just hit in the MRU ghost list, then increase
2634 * the target size of the MRU list.
2635 * - if we just hit in the MFU ghost list, then increase
2636 * the target size of the MFU list by decreasing the
2637 * target size of the MRU list.
2638 */
2639 if (state == arc_mru_ghost) {
2640 mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ?
2641 1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size));
572e2857 2642 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
34dc7c2f 2643
d164b209 2644 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
34dc7c2f 2645 } else if (state == arc_mfu_ghost) {
d164b209
BB
2646 uint64_t delta;
2647
34dc7c2f
BB
2648 mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ?
2649 1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size));
572e2857 2650 mult = MIN(mult, 10);
34dc7c2f 2651
d164b209
BB
2652 delta = MIN(bytes * mult, arc_p);
2653 arc_p = MAX(arc_p_min, arc_p - delta);
34dc7c2f
BB
2654 }
2655 ASSERT((int64_t)arc_p >= 0);
2656
34dc7c2f
BB
2657 if (arc_no_grow)
2658 return;
2659
2660 if (arc_c >= arc_c_max)
2661 return;
2662
2663 /*
2664 * If we're within (2 * maxblocksize) bytes of the target
2665 * cache size, increment the target cache size
2666 */
2667 if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
2668 atomic_add_64(&arc_c, (int64_t)bytes);
2669 if (arc_c > arc_c_max)
2670 arc_c = arc_c_max;
2671 else if (state == arc_anon)
2672 atomic_add_64(&arc_p, (int64_t)bytes);
2673 if (arc_p > arc_c)
2674 arc_p = arc_c;
2675 }
2676 ASSERT((int64_t)arc_p >= 0);
2677}
2678
2679/*
2680 * Check if the cache has reached its limits and eviction is required
2681 * prior to insert.
2682 */
2683static int
2684arc_evict_needed(arc_buf_contents_t type)
2685{
2686 if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit)
2687 return (1);
2688
302f753f 2689 if (arc_no_grow)
34dc7c2f
BB
2690 return (1);
2691
2692 return (arc_size > arc_c);
2693}
2694
2695/*
2696 * The buffer, supplied as the first argument, needs a data block.
2697 * So, if we are at cache max, determine which cache should be victimized.
2698 * We have the following cases:
2699 *
2700 * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) ->
2701 * In this situation if we're out of space, but the resident size of the MFU is
2702 * under the limit, victimize the MFU cache to satisfy this insertion request.
2703 *
2704 * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) ->
2705 * Here, we've used up all of the available space for the MRU, so we need to
2706 * evict from our own cache instead. Evict from the set of resident MRU
2707 * entries.
2708 *
2709 * 3. Insert for MFU (c - p) > sizeof(arc_mfu) ->
2710 * c minus p represents the MFU space in the cache, since p is the size of the
2711 * cache that is dedicated to the MRU. In this situation there's still space on
2712 * the MFU side, so the MRU side needs to be victimized.
2713 *
2714 * 4. Insert for MFU (c - p) < sizeof(arc_mfu) ->
2715 * MFU's resident set is consuming more space than it has been allotted. In
2716 * this situation, we must victimize our own cache, the MFU, for this insertion.
2717 */
2718static void
2719arc_get_data_buf(arc_buf_t *buf)
2720{
2721 arc_state_t *state = buf->b_hdr->b_state;
2722 uint64_t size = buf->b_hdr->b_size;
2723 arc_buf_contents_t type = buf->b_hdr->b_type;
2724
2725 arc_adapt(size, state);
2726
2727 /*
2728 * We have not yet reached cache maximum size,
2729 * just allocate a new buffer.
2730 */
2731 if (!arc_evict_needed(type)) {
2732 if (type == ARC_BUFC_METADATA) {
2733 buf->b_data = zio_buf_alloc(size);
d164b209 2734 arc_space_consume(size, ARC_SPACE_DATA);
34dc7c2f
BB
2735 } else {
2736 ASSERT(type == ARC_BUFC_DATA);
2737 buf->b_data = zio_data_buf_alloc(size);
d164b209 2738 ARCSTAT_INCR(arcstat_data_size, size);
34dc7c2f
BB
2739 atomic_add_64(&arc_size, size);
2740 }
2741 goto out;
2742 }
2743
2744 /*
2745 * If we are prefetching from the mfu ghost list, this buffer
2746 * will end up on the mru list; so steal space from there.
2747 */
2748 if (state == arc_mfu_ghost)
2749 state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu;
2750 else if (state == arc_mru_ghost)
2751 state = arc_mru;
2752
2753 if (state == arc_mru || state == arc_anon) {
2754 uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size;
d164b209 2755 state = (arc_mfu->arcs_lsize[type] >= size &&
34dc7c2f
BB
2756 arc_p > mru_used) ? arc_mfu : arc_mru;
2757 } else {
2758 /* MFU cases */
2759 uint64_t mfu_space = arc_c - arc_p;
d164b209 2760 state = (arc_mru->arcs_lsize[type] >= size &&
34dc7c2f
BB
2761 mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu;
2762 }
ab26409d 2763
b8864a23 2764 if ((buf->b_data = arc_evict(state, 0, size, TRUE, type)) == NULL) {
34dc7c2f
BB
2765 if (type == ARC_BUFC_METADATA) {
2766 buf->b_data = zio_buf_alloc(size);
d164b209 2767 arc_space_consume(size, ARC_SPACE_DATA);
ab26409d
BB
2768
2769 /*
2770 * If we are unable to recycle an existing meta buffer
2771 * signal the reclaim thread. It will notify users
2772 * via the prune callback to drop references. The
2773 * prune callback in run in the context of the reclaim
2774 * thread to avoid deadlocking on the hash_lock.
2775 */
2776 cv_signal(&arc_reclaim_thr_cv);
34dc7c2f
BB
2777 } else {
2778 ASSERT(type == ARC_BUFC_DATA);
2779 buf->b_data = zio_data_buf_alloc(size);
d164b209 2780 ARCSTAT_INCR(arcstat_data_size, size);
34dc7c2f
BB
2781 atomic_add_64(&arc_size, size);
2782 }
ab26409d 2783
34dc7c2f
BB
2784 ARCSTAT_BUMP(arcstat_recycle_miss);
2785 }
2786 ASSERT(buf->b_data != NULL);
2787out:
2788 /*
2789 * Update the state size. Note that ghost states have a
2790 * "ghost size" and so don't need to be updated.
2791 */
2792 if (!GHOST_STATE(buf->b_hdr->b_state)) {
2793 arc_buf_hdr_t *hdr = buf->b_hdr;
2794
2795 atomic_add_64(&hdr->b_state->arcs_size, size);
2796 if (list_link_active(&hdr->b_arc_node)) {
2797 ASSERT(refcount_is_zero(&hdr->b_refcnt));
2798 atomic_add_64(&hdr->b_state->arcs_lsize[type], size);
2799 }
2800 /*
2801 * If we are growing the cache, and we are adding anonymous
2802 * data, and we have outgrown arc_p, update arc_p
2803 */
89c8cac4
PS
2804 if (!zfs_arc_p_aggressive_disable &&
2805 arc_size < arc_c && hdr->b_state == arc_anon &&
34dc7c2f
BB
2806 arc_anon->arcs_size + arc_mru->arcs_size > arc_p)
2807 arc_p = MIN(arc_c, arc_p + size);
2808 }
2809}
2810
2811/*
2812 * This routine is called whenever a buffer is accessed.
2813 * NOTE: the hash lock is dropped in this function.
2814 */
2815static void
2816arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock)
2817{
428870ff
BB
2818 clock_t now;
2819
34dc7c2f
BB
2820 ASSERT(MUTEX_HELD(hash_lock));
2821
2822 if (buf->b_state == arc_anon) {
2823 /*
2824 * This buffer is not in the cache, and does not
2825 * appear in our "ghost" list. Add the new buffer
2826 * to the MRU state.
2827 */
2828
2829 ASSERT(buf->b_arc_access == 0);
428870ff 2830 buf->b_arc_access = ddi_get_lbolt();
34dc7c2f
BB
2831 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2832 arc_change_state(arc_mru, buf, hash_lock);
2833
2834 } else if (buf->b_state == arc_mru) {
428870ff
BB
2835 now = ddi_get_lbolt();
2836
34dc7c2f
BB
2837 /*
2838 * If this buffer is here because of a prefetch, then either:
2839 * - clear the flag if this is a "referencing" read
2840 * (any subsequent access will bump this into the MFU state).
2841 * or
2842 * - move the buffer to the head of the list if this is
2843 * another prefetch (to make it less likely to be evicted).
2844 */
2845 if ((buf->b_flags & ARC_PREFETCH) != 0) {
2846 if (refcount_count(&buf->b_refcnt) == 0) {
2847 ASSERT(list_link_active(&buf->b_arc_node));
2848 } else {
2849 buf->b_flags &= ~ARC_PREFETCH;
e0b0ca98 2850 atomic_inc_32(&buf->b_mru_hits);
34dc7c2f
BB
2851 ARCSTAT_BUMP(arcstat_mru_hits);
2852 }
428870ff 2853 buf->b_arc_access = now;
34dc7c2f
BB
2854 return;
2855 }
2856
2857 /*
2858 * This buffer has been "accessed" only once so far,
2859 * but it is still in the cache. Move it to the MFU
2860 * state.
2861 */
428870ff 2862 if (now > buf->b_arc_access + ARC_MINTIME) {
34dc7c2f
BB
2863 /*
2864 * More than 125ms have passed since we
2865 * instantiated this buffer. Move it to the
2866 * most frequently used state.
2867 */
428870ff 2868 buf->b_arc_access = now;
34dc7c2f
BB
2869 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2870 arc_change_state(arc_mfu, buf, hash_lock);
2871 }
e0b0ca98 2872 atomic_inc_32(&buf->b_mru_hits);
34dc7c2f
BB
2873 ARCSTAT_BUMP(arcstat_mru_hits);
2874 } else if (buf->b_state == arc_mru_ghost) {
2875 arc_state_t *new_state;
2876 /*
2877 * This buffer has been "accessed" recently, but
2878 * was evicted from the cache. Move it to the
2879 * MFU state.
2880 */
2881
2882 if (buf->b_flags & ARC_PREFETCH) {
2883 new_state = arc_mru;
2884 if (refcount_count(&buf->b_refcnt) > 0)
2885 buf->b_flags &= ~ARC_PREFETCH;
2886 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2887 } else {
2888 new_state = arc_mfu;
2889 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2890 }
2891
428870ff 2892 buf->b_arc_access = ddi_get_lbolt();
34dc7c2f
BB
2893 arc_change_state(new_state, buf, hash_lock);
2894
e0b0ca98 2895 atomic_inc_32(&buf->b_mru_ghost_hits);
34dc7c2f
BB
2896 ARCSTAT_BUMP(arcstat_mru_ghost_hits);
2897 } else if (buf->b_state == arc_mfu) {
2898 /*
2899 * This buffer has been accessed more than once and is
2900 * still in the cache. Keep it in the MFU state.
2901 *
2902 * NOTE: an add_reference() that occurred when we did
2903 * the arc_read() will have kicked this off the list.
2904 * If it was a prefetch, we will explicitly move it to
2905 * the head of the list now.
2906 */
2907 if ((buf->b_flags & ARC_PREFETCH) != 0) {
2908 ASSERT(refcount_count(&buf->b_refcnt) == 0);
2909 ASSERT(list_link_active(&buf->b_arc_node));
2910 }
e0b0ca98 2911 atomic_inc_32(&buf->b_mfu_hits);
34dc7c2f 2912 ARCSTAT_BUMP(arcstat_mfu_hits);
428870ff 2913 buf->b_arc_access = ddi_get_lbolt();
34dc7c2f
BB
2914 } else if (buf->b_state == arc_mfu_ghost) {
2915 arc_state_t *new_state = arc_mfu;
2916 /*
2917 * This buffer has been accessed more than once but has
2918 * been evicted from the cache. Move it back to the
2919 * MFU state.
2920 */
2921
2922 if (buf->b_flags & ARC_PREFETCH) {
2923 /*
2924 * This is a prefetch access...
2925 * move this block back to the MRU state.
2926 */
c99c9001 2927 ASSERT0(refcount_count(&buf->b_refcnt));
34dc7c2f
BB
2928 new_state = arc_mru;
2929 }
2930
428870ff 2931 buf->b_arc_access = ddi_get_lbolt();
34dc7c2f
BB
2932 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2933 arc_change_state(new_state, buf, hash_lock);
2934
e0b0ca98 2935 atomic_inc_32(&buf->b_mfu_ghost_hits);
34dc7c2f
BB
2936 ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
2937 } else if (buf->b_state == arc_l2c_only) {
2938 /*
2939 * This buffer is on the 2nd Level ARC.
2940 */
2941
428870ff 2942 buf->b_arc_access = ddi_get_lbolt();
34dc7c2f
BB
2943 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2944 arc_change_state(arc_mfu, buf, hash_lock);
2945 } else {
2946 ASSERT(!"invalid arc state");
2947 }
2948}
2949
2950/* a generic arc_done_func_t which you can use */
2951/* ARGSUSED */
2952void
2953arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
2954{
428870ff
BB
2955 if (zio == NULL || zio->io_error == 0)
2956 bcopy(buf->b_data, arg, buf->b_hdr->b_size);
13fe0198 2957 VERIFY(arc_buf_remove_ref(buf, arg));
34dc7c2f
BB
2958}
2959
2960/* a generic arc_done_func_t */
2961void
2962arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
2963{
2964 arc_buf_t **bufp = arg;
2965 if (zio && zio->io_error) {
13fe0198 2966 VERIFY(arc_buf_remove_ref(buf, arg));
34dc7c2f
BB
2967 *bufp = NULL;
2968 } else {
2969 *bufp = buf;
428870ff 2970 ASSERT(buf->b_data);
34dc7c2f
BB
2971 }
2972}
2973
2974static void
2975arc_read_done(zio_t *zio)
2976{
2977 arc_buf_hdr_t *hdr, *found;
2978 arc_buf_t *buf;
2979 arc_buf_t *abuf; /* buffer we're assigning to callback */
2980 kmutex_t *hash_lock;
2981 arc_callback_t *callback_list, *acb;
2982 int freeable = FALSE;
2983
2984 buf = zio->io_private;
2985 hdr = buf->b_hdr;
2986
2987 /*
2988 * The hdr was inserted into hash-table and removed from lists
2989 * prior to starting I/O. We should find this header, since
2990 * it's in the hash table, and it should be legit since it's
2991 * not possible to evict it during the I/O. The only possible
2992 * reason for it not to be found is if we were freed during the
2993 * read.
2994 */
d164b209 2995 found = buf_hash_find(hdr->b_spa, &hdr->b_dva, hdr->b_birth,
34dc7c2f
BB
2996 &hash_lock);
2997
2998 ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) ||
2999 (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
3000 (found == hdr && HDR_L2_READING(hdr)));
3001
b128c09f 3002 hdr->b_flags &= ~ARC_L2_EVICTED;
34dc7c2f 3003 if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH))
b128c09f 3004 hdr->b_flags &= ~ARC_L2CACHE;
34dc7c2f
BB
3005
3006 /* byteswap if necessary */
3007 callback_list = hdr->b_acb;
3008 ASSERT(callback_list != NULL);
428870ff 3009 if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) {
9ae529ec
CS
3010 dmu_object_byteswap_t bswap =
3011 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
b01615d5
RY
3012 if (BP_GET_LEVEL(zio->io_bp) > 0)
3013 byteswap_uint64_array(buf->b_data, hdr->b_size);
3014 else
3015 dmu_ot_byteswap[bswap].ob_func(buf->b_data, hdr->b_size);
b128c09f 3016 }
34dc7c2f
BB
3017
3018 arc_cksum_compute(buf, B_FALSE);
498877ba 3019 arc_buf_watch(buf);
34dc7c2f 3020
428870ff
BB
3021 if (hash_lock && zio->io_error == 0 && hdr->b_state == arc_anon) {
3022 /*
3023 * Only call arc_access on anonymous buffers. This is because
3024 * if we've issued an I/O for an evicted buffer, we've already
3025 * called arc_access (to prevent any simultaneous readers from
3026 * getting confused).
3027 */
3028 arc_access(hdr, hash_lock);
3029 }
3030
34dc7c2f
BB
3031 /* create copies of the data buffer for the callers */
3032 abuf = buf;
3033 for (acb = callback_list; acb; acb = acb->acb_next) {
3034 if (acb->acb_done) {
1eb5bfa3
GW
3035 if (abuf == NULL) {
3036 ARCSTAT_BUMP(arcstat_duplicate_reads);
34dc7c2f 3037 abuf = arc_buf_clone(buf);
1eb5bfa3 3038 }
34dc7c2f
BB
3039 acb->acb_buf = abuf;
3040 abuf = NULL;
3041 }
3042 }
3043 hdr->b_acb = NULL;
3044 hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3045 ASSERT(!HDR_BUF_AVAILABLE(hdr));
428870ff
BB
3046 if (abuf == buf) {
3047 ASSERT(buf->b_efunc == NULL);
3048 ASSERT(hdr->b_datacnt == 1);
34dc7c2f 3049 hdr->b_flags |= ARC_BUF_AVAILABLE;
428870ff 3050 }
34dc7c2f
BB
3051
3052 ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL);
3053
3054 if (zio->io_error != 0) {
3055 hdr->b_flags |= ARC_IO_ERROR;
3056 if (hdr->b_state != arc_anon)
3057 arc_change_state(arc_anon, hdr, hash_lock);
3058 if (HDR_IN_HASH_TABLE(hdr))
3059 buf_hash_remove(hdr);
3060 freeable = refcount_is_zero(&hdr->b_refcnt);
34dc7c2f
BB
3061 }
3062
3063 /*
3064 * Broadcast before we drop the hash_lock to avoid the possibility
3065 * that the hdr (and hence the cv) might be freed before we get to
3066 * the cv_broadcast().
3067 */
3068 cv_broadcast(&hdr->b_cv);
3069
3070 if (hash_lock) {
34dc7c2f
BB
3071 mutex_exit(hash_lock);
3072 } else {
3073 /*
3074 * This block was freed while we waited for the read to
3075 * complete. It has been removed from the hash table and
3076 * moved to the anonymous state (so that it won't show up
3077 * in the cache).
3078 */
3079 ASSERT3P(hdr->b_state, ==, arc_anon);
3080 freeable = refcount_is_zero(&hdr->b_refcnt);
3081 }
3082
3083 /* execute each callback and free its structure */
3084 while ((acb = callback_list) != NULL) {
3085 if (acb->acb_done)
3086 acb->acb_done(zio, acb->acb_buf, acb->acb_private);
3087
3088 if (acb->acb_zio_dummy != NULL) {
3089 acb->acb_zio_dummy->io_error = zio->io_error;
3090 zio_nowait(acb->acb_zio_dummy);
3091 }
3092
3093 callback_list = acb->acb_next;
3094 kmem_free(acb, sizeof (arc_callback_t));
3095 }
3096
3097 if (freeable)
3098 arc_hdr_destroy(hdr);
3099}
3100
3101/*
5c839890 3102 * "Read" the block at the specified DVA (in bp) via the
34dc7c2f
BB
3103 * cache. If the block is found in the cache, invoke the provided
3104 * callback immediately and return. Note that the `zio' parameter
3105 * in the callback will be NULL in this case, since no IO was
3106 * required. If the block is not in the cache pass the read request
3107 * on to the spa with a substitute callback function, so that the
3108 * requested block will be added to the cache.
3109 *
3110 * If a read request arrives for a block that has a read in-progress,
3111 * either wait for the in-progress read to complete (and return the
3112 * results); or, if this is a read with a "done" func, add a record
3113 * to the read to invoke the "done" func when the read completes,
3114 * and return; or just return.
3115 *
3116 * arc_read_done() will invoke all the requested "done" functions
3117 * for readers of this block.
3118 */
3119int
294f6806 3120arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
e8b96c60 3121 void *private, zio_priority_t priority, int zio_flags, uint32_t *arc_flags,
294f6806 3122 const zbookmark_t *zb)
34dc7c2f
BB
3123{
3124 arc_buf_hdr_t *hdr;
d4ed6673 3125 arc_buf_t *buf = NULL;
34dc7c2f
BB
3126 kmutex_t *hash_lock;
3127 zio_t *rzio;
3541dc6d 3128 uint64_t guid = spa_load_guid(spa);
1421c891 3129 int rc = 0;
34dc7c2f
BB
3130
3131top:
428870ff
BB
3132 hdr = buf_hash_find(guid, BP_IDENTITY(bp), BP_PHYSICAL_BIRTH(bp),
3133 &hash_lock);
34dc7c2f
BB
3134 if (hdr && hdr->b_datacnt > 0) {
3135
3136 *arc_flags |= ARC_CACHED;
3137
3138 if (HDR_IO_IN_PROGRESS(hdr)) {
3139
3140 if (*arc_flags & ARC_WAIT) {
3141 cv_wait(&hdr->b_cv, hash_lock);
3142 mutex_exit(hash_lock);
3143 goto top;
3144 }
3145 ASSERT(*arc_flags & ARC_NOWAIT);
3146
3147 if (done) {
3148 arc_callback_t *acb = NULL;
3149
3150 acb = kmem_zalloc(sizeof (arc_callback_t),
691f6ac4 3151 KM_PUSHPAGE);
34dc7c2f
BB
3152 acb->acb_done = done;
3153 acb->acb_private = private;
34dc7c2f
BB
3154 if (pio != NULL)
3155 acb->acb_zio_dummy = zio_null(pio,
d164b209 3156 spa, NULL, NULL, NULL, zio_flags);
34dc7c2f
BB
3157
3158 ASSERT(acb->acb_done != NULL);
3159 acb->acb_next = hdr->b_acb;
3160 hdr->b_acb = acb;
3161 add_reference(hdr, hash_lock, private);
3162 mutex_exit(hash_lock);
1421c891 3163 goto out;
34dc7c2f
BB
3164 }
3165 mutex_exit(hash_lock);
1421c891 3166 goto out;
34dc7c2f
BB
3167 }
3168
3169 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
3170
3171 if (done) {
3172 add_reference(hdr, hash_lock, private);
3173 /*
3174 * If this block is already in use, create a new
3175 * copy of the data so that we will be guaranteed
3176 * that arc_release() will always succeed.
3177 */
3178 buf = hdr->b_buf;
3179 ASSERT(buf);
3180 ASSERT(buf->b_data);
3181 if (HDR_BUF_AVAILABLE(hdr)) {
3182 ASSERT(buf->b_efunc == NULL);
3183 hdr->b_flags &= ~ARC_BUF_AVAILABLE;
3184 } else {
3185 buf = arc_buf_clone(buf);
3186 }
428870ff 3187
34dc7c2f
BB
3188 } else if (*arc_flags & ARC_PREFETCH &&
3189 refcount_count(&hdr->b_refcnt) == 0) {
3190 hdr->b_flags |= ARC_PREFETCH;
3191 }
3192 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
3193 arc_access(hdr, hash_lock);
b128c09f
BB
3194 if (*arc_flags & ARC_L2CACHE)
3195 hdr->b_flags |= ARC_L2CACHE;
3a17a7a9
SK
3196 if (*arc_flags & ARC_L2COMPRESS)
3197 hdr->b_flags |= ARC_L2COMPRESS;
34dc7c2f
BB
3198 mutex_exit(hash_lock);
3199 ARCSTAT_BUMP(arcstat_hits);
3200 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
3201 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
3202 data, metadata, hits);
3203
3204 if (done)
3205 done(NULL, buf, private);
3206 } else {
3207 uint64_t size = BP_GET_LSIZE(bp);
3208 arc_callback_t *acb;
b128c09f 3209 vdev_t *vd = NULL;
a117a6d6 3210 uint64_t addr = 0;
d164b209 3211 boolean_t devw = B_FALSE;
34dc7c2f
BB
3212
3213 if (hdr == NULL) {
3214 /* this block is not in the cache */
3215 arc_buf_hdr_t *exists;
3216 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
3217 buf = arc_buf_alloc(spa, size, private, type);
3218 hdr = buf->b_hdr;
3219 hdr->b_dva = *BP_IDENTITY(bp);
428870ff 3220 hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
34dc7c2f
BB
3221 hdr->b_cksum0 = bp->blk_cksum.zc_word[0];
3222 exists = buf_hash_insert(hdr, &hash_lock);
3223 if (exists) {
3224 /* somebody beat us to the hash insert */
3225 mutex_exit(hash_lock);
428870ff 3226 buf_discard_identity(hdr);
34dc7c2f
BB
3227 (void) arc_buf_remove_ref(buf, private);
3228 goto top; /* restart the IO request */
3229 }
3230 /* if this is a prefetch, we don't have a reference */
3231 if (*arc_flags & ARC_PREFETCH) {
3232 (void) remove_reference(hdr, hash_lock,
3233 private);
3234 hdr->b_flags |= ARC_PREFETCH;
3235 }
b128c09f
BB
3236 if (*arc_flags & ARC_L2CACHE)
3237 hdr->b_flags |= ARC_L2CACHE;
3a17a7a9
SK
3238 if (*arc_flags & ARC_L2COMPRESS)
3239 hdr->b_flags |= ARC_L2COMPRESS;
34dc7c2f
BB
3240 if (BP_GET_LEVEL(bp) > 0)
3241 hdr->b_flags |= ARC_INDIRECT;
3242 } else {
3243 /* this block is in the ghost cache */
3244 ASSERT(GHOST_STATE(hdr->b_state));
3245 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
c99c9001 3246 ASSERT0(refcount_count(&hdr->b_refcnt));
34dc7c2f
BB
3247 ASSERT(hdr->b_buf == NULL);
3248
3249 /* if this is a prefetch, we don't have a reference */
3250 if (*arc_flags & ARC_PREFETCH)
3251 hdr->b_flags |= ARC_PREFETCH;
3252 else
3253 add_reference(hdr, hash_lock, private);
b128c09f
BB
3254 if (*arc_flags & ARC_L2CACHE)
3255 hdr->b_flags |= ARC_L2CACHE;
3a17a7a9
SK
3256 if (*arc_flags & ARC_L2COMPRESS)
3257 hdr->b_flags |= ARC_L2COMPRESS;
34dc7c2f
BB
3258 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
3259 buf->b_hdr = hdr;
3260 buf->b_data = NULL;
3261 buf->b_efunc = NULL;
3262 buf->b_private = NULL;
3263 buf->b_next = NULL;
3264 hdr->b_buf = buf;
34dc7c2f
BB
3265 ASSERT(hdr->b_datacnt == 0);
3266 hdr->b_datacnt = 1;
428870ff
BB
3267 arc_get_data_buf(buf);
3268 arc_access(hdr, hash_lock);
34dc7c2f
BB
3269 }
3270
428870ff
BB
3271 ASSERT(!GHOST_STATE(hdr->b_state));
3272
691f6ac4 3273 acb = kmem_zalloc(sizeof (arc_callback_t), KM_PUSHPAGE);
34dc7c2f
BB
3274 acb->acb_done = done;
3275 acb->acb_private = private;
34dc7c2f
BB
3276
3277 ASSERT(hdr->b_acb == NULL);
3278 hdr->b_acb = acb;
3279 hdr->b_flags |= ARC_IO_IN_PROGRESS;
3280
b128c09f
BB
3281 if (HDR_L2CACHE(hdr) && hdr->b_l2hdr != NULL &&
3282 (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) {
d164b209 3283 devw = hdr->b_l2hdr->b_dev->l2ad_writing;
b128c09f
BB
3284 addr = hdr->b_l2hdr->b_daddr;
3285 /*
3286 * Lock out device removal.
3287 */
3288 if (vdev_is_dead(vd) ||
3289 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
3290 vd = NULL;
3291 }
3292
3293 mutex_exit(hash_lock);
3294
e49f1e20
WA
3295 /*
3296 * At this point, we have a level 1 cache miss. Try again in
3297 * L2ARC if possible.
3298 */
34dc7c2f 3299 ASSERT3U(hdr->b_size, ==, size);
428870ff
BB
3300 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
3301 uint64_t, size, zbookmark_t *, zb);
34dc7c2f
BB
3302 ARCSTAT_BUMP(arcstat_misses);
3303 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
3304 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
3305 data, metadata, misses);
3306
d164b209 3307 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
34dc7c2f
BB
3308 /*
3309 * Read from the L2ARC if the following are true:
b128c09f
BB
3310 * 1. The L2ARC vdev was previously cached.
3311 * 2. This buffer still has L2ARC metadata.
3312 * 3. This buffer isn't currently writing to the L2ARC.
3313 * 4. The L2ARC entry wasn't evicted, which may
3314 * also have invalidated the vdev.
d164b209 3315 * 5. This isn't prefetch and l2arc_noprefetch is set.
34dc7c2f 3316 */
b128c09f 3317 if (hdr->b_l2hdr != NULL &&
d164b209
BB
3318 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
3319 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
34dc7c2f
BB
3320 l2arc_read_callback_t *cb;
3321
3322 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
3323 ARCSTAT_BUMP(arcstat_l2_hits);
e0b0ca98 3324 atomic_inc_32(&hdr->b_l2hdr->b_hits);
34dc7c2f 3325
34dc7c2f 3326 cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
691f6ac4 3327 KM_PUSHPAGE);
34dc7c2f
BB
3328 cb->l2rcb_buf = buf;
3329 cb->l2rcb_spa = spa;
3330 cb->l2rcb_bp = *bp;
3331 cb->l2rcb_zb = *zb;
b128c09f 3332 cb->l2rcb_flags = zio_flags;
3a17a7a9 3333 cb->l2rcb_compress = hdr->b_l2hdr->b_compress;
34dc7c2f 3334
a117a6d6
GW
3335 ASSERT(addr >= VDEV_LABEL_START_SIZE &&
3336 addr + size < vd->vdev_psize -
3337 VDEV_LABEL_END_SIZE);
3338
34dc7c2f 3339 /*
b128c09f
BB
3340 * l2arc read. The SCL_L2ARC lock will be
3341 * released by l2arc_read_done().
3a17a7a9
SK
3342 * Issue a null zio if the underlying buffer
3343 * was squashed to zero size by compression.
34dc7c2f 3344 */
3a17a7a9
SK
3345 if (hdr->b_l2hdr->b_compress ==
3346 ZIO_COMPRESS_EMPTY) {
3347 rzio = zio_null(pio, spa, vd,
3348 l2arc_read_done, cb,
3349 zio_flags | ZIO_FLAG_DONT_CACHE |
3350 ZIO_FLAG_CANFAIL |
3351 ZIO_FLAG_DONT_PROPAGATE |
3352 ZIO_FLAG_DONT_RETRY);
3353 } else {
3354 rzio = zio_read_phys(pio, vd, addr,
3355 hdr->b_l2hdr->b_asize,
3356 buf->b_data, ZIO_CHECKSUM_OFF,
3357 l2arc_read_done, cb, priority,
3358 zio_flags | ZIO_FLAG_DONT_CACHE |
3359 ZIO_FLAG_CANFAIL |
3360 ZIO_FLAG_DONT_PROPAGATE |
3361 ZIO_FLAG_DONT_RETRY, B_FALSE);
3362 }
34dc7c2f
BB
3363 DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
3364 zio_t *, rzio);
3a17a7a9
SK
3365 ARCSTAT_INCR(arcstat_l2_read_bytes,
3366 hdr->b_l2hdr->b_asize);
34dc7c2f 3367
b128c09f
BB
3368 if (*arc_flags & ARC_NOWAIT) {
3369 zio_nowait(rzio);
1421c891 3370 goto out;
b128c09f 3371 }
34dc7c2f 3372
b128c09f
BB
3373 ASSERT(*arc_flags & ARC_WAIT);
3374 if (zio_wait(rzio) == 0)
1421c891 3375 goto out;
b128c09f
BB
3376
3377 /* l2arc read error; goto zio_read() */
34dc7c2f
BB
3378 } else {
3379 DTRACE_PROBE1(l2arc__miss,
3380 arc_buf_hdr_t *, hdr);
3381 ARCSTAT_BUMP(arcstat_l2_misses);
3382 if (HDR_L2_WRITING(hdr))
3383 ARCSTAT_BUMP(arcstat_l2_rw_clash);
b128c09f 3384 spa_config_exit(spa, SCL_L2ARC, vd);
34dc7c2f 3385 }
d164b209
BB
3386 } else {
3387 if (vd != NULL)
3388 spa_config_exit(spa, SCL_L2ARC, vd);
3389 if (l2arc_ndev != 0) {
3390 DTRACE_PROBE1(l2arc__miss,
3391 arc_buf_hdr_t *, hdr);
3392 ARCSTAT_BUMP(arcstat_l2_misses);
3393 }
34dc7c2f 3394 }
34dc7c2f
BB
3395
3396 rzio = zio_read(pio, spa, bp, buf->b_data, size,
b128c09f 3397 arc_read_done, buf, priority, zio_flags, zb);
34dc7c2f 3398
1421c891
PS
3399 if (*arc_flags & ARC_WAIT) {
3400 rc = zio_wait(rzio);
3401 goto out;
3402 }
34dc7c2f
BB
3403
3404 ASSERT(*arc_flags & ARC_NOWAIT);
3405 zio_nowait(rzio);
3406 }
1421c891
PS
3407
3408out:
3409 spa_read_history_add(spa, zb, *arc_flags);
3410 return (rc);
34dc7c2f
BB
3411}
3412
ab26409d
BB
3413arc_prune_t *
3414arc_add_prune_callback(arc_prune_func_t *func, void *private)
3415{
3416 arc_prune_t *p;
3417
d1d7e268 3418 p = kmem_alloc(sizeof (*p), KM_SLEEP);
ab26409d
BB
3419 p->p_pfunc = func;
3420 p->p_private = private;
3421 list_link_init(&p->p_node);
3422 refcount_create(&p->p_refcnt);
3423
3424 mutex_enter(&arc_prune_mtx);
3425 refcount_add(&p->p_refcnt, &arc_prune_list);
3426 list_insert_head(&arc_prune_list, p);
3427 mutex_exit(&arc_prune_mtx);
3428
3429 return (p);
3430}
3431
3432void
3433arc_remove_prune_callback(arc_prune_t *p)
3434{
3435 mutex_enter(&arc_prune_mtx);
3436 list_remove(&arc_prune_list, p);
3437 if (refcount_remove(&p->p_refcnt, &arc_prune_list) == 0) {
3438 refcount_destroy(&p->p_refcnt);
3439 kmem_free(p, sizeof (*p));
3440 }
3441 mutex_exit(&arc_prune_mtx);
3442}
3443
34dc7c2f
BB
3444void
3445arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
3446{
3447 ASSERT(buf->b_hdr != NULL);
3448 ASSERT(buf->b_hdr->b_state != arc_anon);
3449 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL);
428870ff
BB
3450 ASSERT(buf->b_efunc == NULL);
3451 ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr));
3452
34dc7c2f
BB
3453 buf->b_efunc = func;
3454 buf->b_private = private;
3455}
3456
df4474f9
MA
3457/*
3458 * Notify the arc that a block was freed, and thus will never be used again.
3459 */
3460void
3461arc_freed(spa_t *spa, const blkptr_t *bp)
3462{
3463 arc_buf_hdr_t *hdr;
3464 kmutex_t *hash_lock;
3465 uint64_t guid = spa_load_guid(spa);
3466
3467 hdr = buf_hash_find(guid, BP_IDENTITY(bp), BP_PHYSICAL_BIRTH(bp),
3468 &hash_lock);
3469 if (hdr == NULL)
3470 return;
3471 if (HDR_BUF_AVAILABLE(hdr)) {
3472 arc_buf_t *buf = hdr->b_buf;
3473 add_reference(hdr, hash_lock, FTAG);
3474 hdr->b_flags &= ~ARC_BUF_AVAILABLE;
3475 mutex_exit(hash_lock);
3476
3477 arc_release(buf, FTAG);
3478 (void) arc_buf_remove_ref(buf, FTAG);
3479 } else {
3480 mutex_exit(hash_lock);
3481 }
3482
3483}
3484
34dc7c2f
BB
3485/*
3486 * This is used by the DMU to let the ARC know that a buffer is
3487 * being evicted, so the ARC should clean up. If this arc buf
3488 * is not yet in the evicted state, it will be put there.
3489 */
3490int
3491arc_buf_evict(arc_buf_t *buf)
3492{
3493 arc_buf_hdr_t *hdr;
3494 kmutex_t *hash_lock;
3495 arc_buf_t **bufp;
3496
428870ff 3497 mutex_enter(&buf->b_evict_lock);
34dc7c2f
BB
3498 hdr = buf->b_hdr;
3499 if (hdr == NULL) {
3500 /*
3501 * We are in arc_do_user_evicts().
3502 */
3503 ASSERT(buf->b_data == NULL);
428870ff 3504 mutex_exit(&buf->b_evict_lock);
34dc7c2f 3505 return (0);
b128c09f
BB
3506 } else if (buf->b_data == NULL) {
3507 arc_buf_t copy = *buf; /* structure assignment */
34dc7c2f 3508 /*
b128c09f
BB
3509 * We are on the eviction list; process this buffer now
3510 * but let arc_do_user_evicts() do the reaping.
34dc7c2f 3511 */
b128c09f 3512 buf->b_efunc = NULL;
428870ff 3513 mutex_exit(&buf->b_evict_lock);
b128c09f
BB
3514 VERIFY(copy.b_efunc(&copy) == 0);
3515 return (1);
34dc7c2f 3516 }
b128c09f
BB
3517 hash_lock = HDR_LOCK(hdr);
3518 mutex_enter(hash_lock);
428870ff
BB
3519 hdr = buf->b_hdr;
3520 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
34dc7c2f 3521
34dc7c2f
BB
3522 ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt);
3523 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
3524
3525 /*
3526 * Pull this buffer off of the hdr
3527 */
3528 bufp = &hdr->b_buf;
3529 while (*bufp != buf)
3530 bufp = &(*bufp)->b_next;
3531 *bufp = buf->b_next;
3532
3533 ASSERT(buf->b_data != NULL);
3534 arc_buf_destroy(buf, FALSE, FALSE);
3535
3536 if (hdr->b_datacnt == 0) {
3537 arc_state_t *old_state = hdr->b_state;
3538 arc_state_t *evicted_state;
3539
428870ff 3540 ASSERT(hdr->b_buf == NULL);
34dc7c2f
BB
3541 ASSERT(refcount_is_zero(&hdr->b_refcnt));
3542
3543 evicted_state =
3544 (old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
3545
3546 mutex_enter(&old_state->arcs_mtx);
3547 mutex_enter(&evicted_state->arcs_mtx);
3548
3549 arc_change_state(evicted_state, hdr, hash_lock);
3550 ASSERT(HDR_IN_HASH_TABLE(hdr));
3551 hdr->b_flags |= ARC_IN_HASH_TABLE;
3552 hdr->b_flags &= ~ARC_BUF_AVAILABLE;
3553
3554 mutex_exit(&evicted_state->arcs_mtx);
3555 mutex_exit(&old_state->arcs_mtx);
3556 }
3557 mutex_exit(hash_lock);
428870ff 3558 mutex_exit(&buf->b_evict_lock);
34dc7c2f
BB
3559
3560 VERIFY(buf->b_efunc(buf) == 0);
3561 buf->b_efunc = NULL;
3562 buf->b_private = NULL;
3563 buf->b_hdr = NULL;
428870ff 3564 buf->b_next = NULL;
34dc7c2f
BB
3565 kmem_cache_free(buf_cache, buf);
3566 return (1);
3567}
3568
3569/*
e49f1e20
WA
3570 * Release this buffer from the cache, making it an anonymous buffer. This
3571 * must be done after a read and prior to modifying the buffer contents.
34dc7c2f 3572 * If the buffer has more than one reference, we must make
b128c09f 3573 * a new hdr for the buffer.
34dc7c2f
BB
3574 */
3575void
3576arc_release(arc_buf_t *buf, void *tag)
3577{
b128c09f 3578 arc_buf_hdr_t *hdr;
428870ff 3579 kmutex_t *hash_lock = NULL;
b128c09f 3580 l2arc_buf_hdr_t *l2hdr;
d4ed6673 3581 uint64_t buf_size = 0;
34dc7c2f 3582
428870ff
BB
3583 /*
3584 * It would be nice to assert that if it's DMU metadata (level >
3585 * 0 || it's the dnode file), then it must be syncing context.
3586 * But we don't know that information at this level.
3587 */
3588
3589 mutex_enter(&buf->b_evict_lock);
b128c09f
BB
3590 hdr = buf->b_hdr;
3591
34dc7c2f
BB
3592 /* this buffer is not on any list */
3593 ASSERT(refcount_count(&hdr->b_refcnt) > 0);
3594
3595 if (hdr->b_state == arc_anon) {
3596 /* this buffer is already released */
34dc7c2f 3597 ASSERT(buf->b_efunc == NULL);
9babb374
BB
3598 } else {
3599 hash_lock = HDR_LOCK(hdr);
3600 mutex_enter(hash_lock);
428870ff
BB
3601 hdr = buf->b_hdr;
3602 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
34dc7c2f
BB
3603 }
3604
b128c09f
BB
3605 l2hdr = hdr->b_l2hdr;
3606 if (l2hdr) {
3607 mutex_enter(&l2arc_buflist_mtx);
3608 hdr->b_l2hdr = NULL;
b128c09f 3609 }
a117a6d6 3610 buf_size = hdr->b_size;
b128c09f 3611
34dc7c2f
BB
3612 /*
3613 * Do we have more than one buf?
3614 */
b128c09f 3615 if (hdr->b_datacnt > 1) {
34dc7c2f
BB
3616 arc_buf_hdr_t *nhdr;
3617 arc_buf_t **bufp;
3618 uint64_t blksz = hdr->b_size;
d164b209 3619 uint64_t spa = hdr->b_spa;
34dc7c2f
BB
3620 arc_buf_contents_t type = hdr->b_type;
3621 uint32_t flags = hdr->b_flags;
3622
b128c09f 3623 ASSERT(hdr->b_buf != buf || buf->b_next != NULL);
34dc7c2f 3624 /*
428870ff
BB
3625 * Pull the data off of this hdr and attach it to
3626 * a new anonymous hdr.
34dc7c2f
BB
3627 */
3628 (void) remove_reference(hdr, hash_lock, tag);
3629 bufp = &hdr->b_buf;
3630 while (*bufp != buf)
3631 bufp = &(*bufp)->b_next;
428870ff 3632 *bufp = buf->b_next;
34dc7c2f
BB
3633 buf->b_next = NULL;
3634
3635 ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size);
3636 atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size);
3637 if (refcount_is_zero(&hdr->b_refcnt)) {
3638 uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type];
3639 ASSERT3U(*size, >=, hdr->b_size);
3640 atomic_add_64(size, -hdr->b_size);
3641 }
1eb5bfa3
GW
3642
3643 /*
3644 * We're releasing a duplicate user data buffer, update
3645 * our statistics accordingly.
3646 */
3647 if (hdr->b_type == ARC_BUFC_DATA) {
3648 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
3649 ARCSTAT_INCR(arcstat_duplicate_buffers_size,
3650 -hdr->b_size);
3651 }
34dc7c2f 3652 hdr->b_datacnt -= 1;
34dc7c2f 3653 arc_cksum_verify(buf);
498877ba 3654 arc_buf_unwatch(buf);
34dc7c2f
BB
3655
3656 mutex_exit(hash_lock);
3657
3658 nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
3659 nhdr->b_size = blksz;
3660 nhdr->b_spa = spa;
3661 nhdr->b_type = type;
3662 nhdr->b_buf = buf;
3663 nhdr->b_state = arc_anon;
3664 nhdr->b_arc_access = 0;
e0b0ca98
BB
3665 nhdr->b_mru_hits = 0;
3666 nhdr->b_mru_ghost_hits = 0;
3667 nhdr->b_mfu_hits = 0;
3668 nhdr->b_mfu_ghost_hits = 0;
3669 nhdr->b_l2_hits = 0;
34dc7c2f
BB
3670 nhdr->b_flags = flags & ARC_L2_WRITING;
3671 nhdr->b_l2hdr = NULL;
3672 nhdr->b_datacnt = 1;
3673 nhdr->b_freeze_cksum = NULL;
3674 (void) refcount_add(&nhdr->b_refcnt, tag);
3675 buf->b_hdr = nhdr;
428870ff 3676 mutex_exit(&buf->b_evict_lock);
34dc7c2f
BB
3677 atomic_add_64(&arc_anon->arcs_size, blksz);
3678 } else {
428870ff 3679 mutex_exit(&buf->b_evict_lock);
34dc7c2f
BB
3680 ASSERT(refcount_count(&hdr->b_refcnt) == 1);
3681 ASSERT(!list_link_active(&hdr->b_arc_node));
3682 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
428870ff
BB
3683 if (hdr->b_state != arc_anon)
3684 arc_change_state(arc_anon, hdr, hash_lock);
34dc7c2f 3685 hdr->b_arc_access = 0;
e0b0ca98
BB
3686 hdr->b_mru_hits = 0;
3687 hdr->b_mru_ghost_hits = 0;
3688 hdr->b_mfu_hits = 0;
3689 hdr->b_mfu_ghost_hits = 0;
3690 hdr->b_l2_hits = 0;
428870ff
BB
3691 if (hash_lock)
3692 mutex_exit(hash_lock);
34dc7c2f 3693
428870ff 3694 buf_discard_identity(hdr);
34dc7c2f
BB
3695 arc_buf_thaw(buf);
3696 }
3697 buf->b_efunc = NULL;
3698 buf->b_private = NULL;
3699
3700 if (l2hdr) {
3a17a7a9 3701 ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize);
34dc7c2f 3702 list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
ecf3d9b8 3703 kmem_cache_free(l2arc_hdr_cache, l2hdr);
6e1d7276 3704 arc_space_return(L2HDR_SIZE, ARC_SPACE_L2HDRS);
34dc7c2f 3705 ARCSTAT_INCR(arcstat_l2_size, -buf_size);
34dc7c2f 3706 mutex_exit(&l2arc_buflist_mtx);
b128c09f 3707 }
34dc7c2f
BB
3708}
3709
3710int
3711arc_released(arc_buf_t *buf)
3712{
b128c09f
BB
3713 int released;
3714
428870ff 3715 mutex_enter(&buf->b_evict_lock);
b128c09f 3716 released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon);
428870ff 3717 mutex_exit(&buf->b_evict_lock);
b128c09f 3718 return (released);
34dc7c2f
BB
3719}
3720
3721int
3722arc_has_callback(arc_buf_t *buf)
3723{
b128c09f
BB
3724 int callback;
3725
428870ff 3726 mutex_enter(&buf->b_evict_lock);
b128c09f 3727 callback = (buf->b_efunc != NULL);
428870ff 3728 mutex_exit(&buf->b_evict_lock);
b128c09f 3729 return (callback);
34dc7c2f
BB
3730}
3731
3732#ifdef ZFS_DEBUG
3733int
3734arc_referenced(arc_buf_t *buf)
3735{
b128c09f
BB
3736 int referenced;
3737
428870ff 3738 mutex_enter(&buf->b_evict_lock);
b128c09f 3739 referenced = (refcount_count(&buf->b_hdr->b_refcnt));
428870ff 3740 mutex_exit(&buf->b_evict_lock);
b128c09f 3741 return (referenced);
34dc7c2f
BB
3742}
3743#endif
3744
3745static void
3746arc_write_ready(zio_t *zio)
3747{
3748 arc_write_callback_t *callback = zio->io_private;
3749 arc_buf_t *buf = callback->awcb_buf;
3750 arc_buf_hdr_t *hdr = buf->b_hdr;
3751
b128c09f
BB
3752 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt));
3753 callback->awcb_ready(zio, buf, callback->awcb_private);
3754
34dc7c2f
BB
3755 /*
3756 * If the IO is already in progress, then this is a re-write
b128c09f
BB
3757 * attempt, so we need to thaw and re-compute the cksum.
3758 * It is the responsibility of the callback to handle the
3759 * accounting for any re-write attempt.
34dc7c2f
BB
3760 */
3761 if (HDR_IO_IN_PROGRESS(hdr)) {
34dc7c2f
BB
3762 mutex_enter(&hdr->b_freeze_lock);
3763 if (hdr->b_freeze_cksum != NULL) {
3764 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
3765 hdr->b_freeze_cksum = NULL;
3766 }
3767 mutex_exit(&hdr->b_freeze_lock);
3768 }
3769 arc_cksum_compute(buf, B_FALSE);
3770 hdr->b_flags |= ARC_IO_IN_PROGRESS;
3771}
3772
e8b96c60
MA
3773/*
3774 * The SPA calls this callback for each physical write that happens on behalf
3775 * of a logical write. See the comment in dbuf_write_physdone() for details.
3776 */
3777static void
3778arc_write_physdone(zio_t *zio)
3779{
3780 arc_write_callback_t *cb = zio->io_private;
3781 if (cb->awcb_physdone != NULL)
3782 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
3783}
3784
34dc7c2f
BB
3785static void
3786arc_write_done(zio_t *zio)
3787{
3788 arc_write_callback_t *callback = zio->io_private;
3789 arc_buf_t *buf = callback->awcb_buf;
3790 arc_buf_hdr_t *hdr = buf->b_hdr;
3791
428870ff
BB
3792 ASSERT(hdr->b_acb == NULL);
3793
3794 if (zio->io_error == 0) {
3795 hdr->b_dva = *BP_IDENTITY(zio->io_bp);
3796 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
3797 hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0];
3798 } else {
3799 ASSERT(BUF_EMPTY(hdr));
3800 }
34dc7c2f 3801
34dc7c2f
BB
3802 /*
3803 * If the block to be written was all-zero, we may have
3804 * compressed it away. In this case no write was performed
428870ff
BB
3805 * so there will be no dva/birth/checksum. The buffer must
3806 * therefore remain anonymous (and uncached).
34dc7c2f
BB
3807 */
3808 if (!BUF_EMPTY(hdr)) {
3809 arc_buf_hdr_t *exists;
3810 kmutex_t *hash_lock;
3811
428870ff
BB
3812 ASSERT(zio->io_error == 0);
3813
34dc7c2f
BB
3814 arc_cksum_verify(buf);
3815
3816 exists = buf_hash_insert(hdr, &hash_lock);
3817 if (exists) {
3818 /*
3819 * This can only happen if we overwrite for
3820 * sync-to-convergence, because we remove
3821 * buffers from the hash table when we arc_free().
3822 */
428870ff
BB
3823 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
3824 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
3825 panic("bad overwrite, hdr=%p exists=%p",
3826 (void *)hdr, (void *)exists);
3827 ASSERT(refcount_is_zero(&exists->b_refcnt));
3828 arc_change_state(arc_anon, exists, hash_lock);
3829 mutex_exit(hash_lock);
3830 arc_hdr_destroy(exists);
3831 exists = buf_hash_insert(hdr, &hash_lock);
3832 ASSERT3P(exists, ==, NULL);
03c6040b
GW
3833 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
3834 /* nopwrite */
3835 ASSERT(zio->io_prop.zp_nopwrite);
3836 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
3837 panic("bad nopwrite, hdr=%p exists=%p",
3838 (void *)hdr, (void *)exists);
428870ff
BB
3839 } else {
3840 /* Dedup */
3841 ASSERT(hdr->b_datacnt == 1);
3842 ASSERT(hdr->b_state == arc_anon);
3843 ASSERT(BP_GET_DEDUP(zio->io_bp));
3844 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
3845 }
34dc7c2f
BB
3846 }
3847 hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
b128c09f 3848 /* if it's not anon, we are doing a scrub */
428870ff 3849 if (!exists && hdr->b_state == arc_anon)
b128c09f 3850 arc_access(hdr, hash_lock);
34dc7c2f 3851 mutex_exit(hash_lock);
34dc7c2f
BB
3852 } else {
3853 hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3854 }
3855
428870ff
BB
3856 ASSERT(!refcount_is_zero(&hdr->b_refcnt));
3857 callback->awcb_done(zio, buf, callback->awcb_private);
34dc7c2f
BB
3858
3859 kmem_free(callback, sizeof (arc_write_callback_t));
3860}
3861
3862zio_t *
428870ff 3863arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
3a17a7a9 3864 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, boolean_t l2arc_compress,
e8b96c60
MA
3865 const zio_prop_t *zp, arc_done_func_t *ready, arc_done_func_t *physdone,
3866 arc_done_func_t *done, void *private, zio_priority_t priority,
3867 int zio_flags, const zbookmark_t *zb)
34dc7c2f
BB
3868{
3869 arc_buf_hdr_t *hdr = buf->b_hdr;
3870 arc_write_callback_t *callback;
b128c09f 3871 zio_t *zio;
34dc7c2f 3872
b128c09f 3873 ASSERT(ready != NULL);
428870ff 3874 ASSERT(done != NULL);
34dc7c2f
BB
3875 ASSERT(!HDR_IO_ERROR(hdr));
3876 ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0);
428870ff 3877 ASSERT(hdr->b_acb == NULL);
b128c09f
BB
3878 if (l2arc)
3879 hdr->b_flags |= ARC_L2CACHE;
3a17a7a9
SK
3880 if (l2arc_compress)
3881 hdr->b_flags |= ARC_L2COMPRESS;
b8d06fca 3882 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_PUSHPAGE);
34dc7c2f 3883 callback->awcb_ready = ready;
e8b96c60 3884 callback->awcb_physdone = physdone;
34dc7c2f
BB
3885 callback->awcb_done = done;
3886 callback->awcb_private = private;
3887 callback->awcb_buf = buf;
b128c09f 3888
428870ff 3889 zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp,
e8b96c60
MA
3890 arc_write_ready, arc_write_physdone, arc_write_done, callback,
3891 priority, zio_flags, zb);
34dc7c2f
BB
3892
3893 return (zio);
3894}
3895
34dc7c2f 3896static int
e8b96c60 3897arc_memory_throttle(uint64_t reserve, uint64_t txg)
34dc7c2f
BB
3898{
3899#ifdef _KERNEL
0c5493d4
BB
3900 if (zfs_arc_memory_throttle_disable)
3901 return (0);
3902
e8b96c60 3903 if (freemem <= physmem * arc_lotsfree_percent / 100) {
34dc7c2f 3904 ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
570827e1 3905 DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim);
2e528b49 3906 return (SET_ERROR(EAGAIN));
34dc7c2f 3907 }
34dc7c2f
BB
3908#endif
3909 return (0);
3910}
3911
3912void
3913arc_tempreserve_clear(uint64_t reserve)
3914{
3915 atomic_add_64(&arc_tempreserve, -reserve);
3916 ASSERT((int64_t)arc_tempreserve >= 0);
3917}
3918
3919int
3920arc_tempreserve_space(uint64_t reserve, uint64_t txg)
3921{
3922 int error;
9babb374 3923 uint64_t anon_size;
34dc7c2f 3924
34dc7c2f
BB
3925 if (reserve > arc_c/4 && !arc_no_grow)
3926 arc_c = MIN(arc_c_max, reserve * 4);
570827e1
BB
3927 if (reserve > arc_c) {
3928 DMU_TX_STAT_BUMP(dmu_tx_memory_reserve);
2e528b49 3929 return (SET_ERROR(ENOMEM));
570827e1 3930 }
34dc7c2f 3931
9babb374
BB
3932 /*
3933 * Don't count loaned bufs as in flight dirty data to prevent long
3934 * network delays from blocking transactions that are ready to be
3935 * assigned to a txg.
3936 */
3937 anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0);
3938
34dc7c2f
BB
3939 /*
3940 * Writes will, almost always, require additional memory allocations
d3cc8b15 3941 * in order to compress/encrypt/etc the data. We therefore need to
34dc7c2f
BB
3942 * make sure that there is sufficient available memory for this.
3943 */
e8b96c60
MA
3944 error = arc_memory_throttle(reserve, txg);
3945 if (error != 0)
34dc7c2f
BB
3946 return (error);
3947
3948 /*
3949 * Throttle writes when the amount of dirty data in the cache
3950 * gets too large. We try to keep the cache less than half full
3951 * of dirty blocks so that our sync times don't grow too large.
3952 * Note: if two requests come in concurrently, we might let them
3953 * both succeed, when one of them should fail. Not a huge deal.
3954 */
9babb374
BB
3955
3956 if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
3957 anon_size > arc_c / 4) {
34dc7c2f
BB
3958 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
3959 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
3960 arc_tempreserve>>10,
3961 arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
3962 arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
3963 reserve>>10, arc_c>>10);
570827e1 3964 DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle);
2e528b49 3965 return (SET_ERROR(ERESTART));
34dc7c2f
BB
3966 }
3967 atomic_add_64(&arc_tempreserve, reserve);
3968 return (0);
3969}
3970
13be560d
BB
3971static void
3972arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
3973 kstat_named_t *evict_data, kstat_named_t *evict_metadata)
3974{
3975 size->value.ui64 = state->arcs_size;
3976 evict_data->value.ui64 = state->arcs_lsize[ARC_BUFC_DATA];
3977 evict_metadata->value.ui64 = state->arcs_lsize[ARC_BUFC_METADATA];
3978}
3979
3980static int
3981arc_kstat_update(kstat_t *ksp, int rw)
3982{
3983 arc_stats_t *as = ksp->ks_data;
3984
3985 if (rw == KSTAT_WRITE) {
2e528b49 3986 return (SET_ERROR(EACCES));
13be560d
BB
3987 } else {
3988 arc_kstat_update_state(arc_anon,
3989 &as->arcstat_anon_size,
3990 &as->arcstat_anon_evict_data,
3991 &as->arcstat_anon_evict_metadata);
3992 arc_kstat_update_state(arc_mru,
3993 &as->arcstat_mru_size,
3994 &as->arcstat_mru_evict_data,
3995 &as->arcstat_mru_evict_metadata);
3996 arc_kstat_update_state(arc_mru_ghost,
3997 &as->arcstat_mru_ghost_size,
3998 &as->arcstat_mru_ghost_evict_data,
3999 &as->arcstat_mru_ghost_evict_metadata);
4000 arc_kstat_update_state(arc_mfu,
4001 &as->arcstat_mfu_size,
4002 &as->arcstat_mfu_evict_data,
4003 &as->arcstat_mfu_evict_metadata);
fc41c640 4004 arc_kstat_update_state(arc_mfu_ghost,
13be560d
BB
4005 &as->arcstat_mfu_ghost_size,
4006 &as->arcstat_mfu_ghost_evict_data,
4007 &as->arcstat_mfu_ghost_evict_metadata);
4008 }
4009
4010 return (0);
4011}
4012
34dc7c2f
BB
4013void
4014arc_init(void)
4015{
4016 mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL);
4017 cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL);
4018
4019 /* Convert seconds to clock ticks */
bce45ec9 4020 zfs_arc_min_prefetch_lifespan = 1 * hz;
34dc7c2f
BB
4021
4022 /* Start out with 1/8 of all memory */
4023 arc_c = physmem * PAGESIZE / 8;
4024
4025#ifdef _KERNEL
4026 /*
4027 * On architectures where the physical memory can be larger
4028 * than the addressable space (intel in 32-bit mode), we may
4029 * need to limit the cache to 1/8 of VM size.
4030 */
4031 arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
7cb67b45
BB
4032 /*
4033 * Register a shrinker to support synchronous (direct) memory
4034 * reclaim from the arc. This is done to prevent kswapd from
4035 * swapping out pages when it is preferable to shrink the arc.
4036 */
4037 spl_register_shrinker(&arc_shrinker);
34dc7c2f
BB
4038#endif
4039
91415825
BB
4040 /* set min cache to zero */
4041 arc_c_min = 4<<20;
518b4876 4042 /* set max to 1/2 of all memory */
be5db977 4043 arc_c_max = arc_c * 4;
34dc7c2f
BB
4044
4045 /*
4046 * Allow the tunables to override our calculations if they are
4047 * reasonable (ie. over 64MB)
4048 */
4049 if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE)
4050 arc_c_max = zfs_arc_max;
91415825 4051 if (zfs_arc_min > 0 && zfs_arc_min <= arc_c_max)
34dc7c2f
BB
4052 arc_c_min = zfs_arc_min;
4053
4054 arc_c = arc_c_max;
4055 arc_p = (arc_c >> 1);
4056
4057 /* limit meta-data to 1/4 of the arc capacity */
4058 arc_meta_limit = arc_c_max / 4;
1834f2d8 4059 arc_meta_max = 0;
34dc7c2f
BB
4060
4061 /* Allow the tunable to override if it is reasonable */
4062 if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
4063 arc_meta_limit = zfs_arc_meta_limit;
4064
34dc7c2f
BB
4065 /* if kmem_flags are set, lets try to use less memory */
4066 if (kmem_debugging())
4067 arc_c = arc_c / 2;
4068 if (arc_c < arc_c_min)
4069 arc_c = arc_c_min;
4070
4071 arc_anon = &ARC_anon;
4072 arc_mru = &ARC_mru;
4073 arc_mru_ghost = &ARC_mru_ghost;
4074 arc_mfu = &ARC_mfu;
4075 arc_mfu_ghost = &ARC_mfu_ghost;
4076 arc_l2c_only = &ARC_l2c_only;
4077 arc_size = 0;
4078
4079 mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
4080 mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
4081 mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
4082 mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
4083 mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
4084 mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
4085
4086 list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
4087 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4088 list_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
4089 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4090 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
4091 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4092 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
4093 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4094 list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
4095 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4096 list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
4097 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4098 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
4099 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4100 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
4101 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4102 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
4103 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4104 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
4105 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4106
e0b0ca98
BB
4107 arc_anon->arcs_state = ARC_STATE_ANON;
4108 arc_mru->arcs_state = ARC_STATE_MRU;
4109 arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST;
4110 arc_mfu->arcs_state = ARC_STATE_MFU;
4111 arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST;
4112 arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY;
4113
34dc7c2f
BB
4114 buf_init();
4115
4116 arc_thread_exit = 0;
ab26409d
BB
4117 list_create(&arc_prune_list, sizeof (arc_prune_t),
4118 offsetof(arc_prune_t, p_node));
34dc7c2f 4119 arc_eviction_list = NULL;
ab26409d 4120 mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f
BB
4121 mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL);
4122 bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
4123
4124 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
4125 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
4126
4127 if (arc_ksp != NULL) {
4128 arc_ksp->ks_data = &arc_stats;
13be560d 4129 arc_ksp->ks_update = arc_kstat_update;
34dc7c2f
BB
4130 kstat_install(arc_ksp);
4131 }
4132
302f753f 4133 (void) thread_create(NULL, 0, arc_adapt_thread, NULL, 0, &p0,
34dc7c2f
BB
4134 TS_RUN, minclsyspri);
4135
4136 arc_dead = FALSE;
b128c09f 4137 arc_warm = B_FALSE;
34dc7c2f 4138
e8b96c60
MA
4139 /*
4140 * Calculate maximum amount of dirty data per pool.
4141 *
4142 * If it has been set by a module parameter, take that.
4143 * Otherwise, use a percentage of physical memory defined by
4144 * zfs_dirty_data_max_percent (default 10%) with a cap at
4145 * zfs_dirty_data_max_max (default 25% of physical memory).
4146 */
4147 if (zfs_dirty_data_max_max == 0)
4148 zfs_dirty_data_max_max = physmem * PAGESIZE *
4149 zfs_dirty_data_max_max_percent / 100;
4150
4151 if (zfs_dirty_data_max == 0) {
4152 zfs_dirty_data_max = physmem * PAGESIZE *
4153 zfs_dirty_data_max_percent / 100;
4154 zfs_dirty_data_max = MIN(zfs_dirty_data_max,
4155 zfs_dirty_data_max_max);
4156 }
34dc7c2f
BB
4157}
4158
4159void
4160arc_fini(void)
4161{
ab26409d
BB
4162 arc_prune_t *p;
4163
34dc7c2f 4164 mutex_enter(&arc_reclaim_thr_lock);
7cb67b45
BB
4165#ifdef _KERNEL
4166 spl_unregister_shrinker(&arc_shrinker);
4167#endif /* _KERNEL */
4168
34dc7c2f
BB
4169 arc_thread_exit = 1;
4170 while (arc_thread_exit != 0)
4171 cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock);
4172 mutex_exit(&arc_reclaim_thr_lock);
4173
4174 arc_flush(NULL);
4175
4176 arc_dead = TRUE;
4177
4178 if (arc_ksp != NULL) {
4179 kstat_delete(arc_ksp);
4180 arc_ksp = NULL;
4181 }
4182
ab26409d
BB
4183 mutex_enter(&arc_prune_mtx);
4184 while ((p = list_head(&arc_prune_list)) != NULL) {
4185 list_remove(&arc_prune_list, p);
4186 refcount_remove(&p->p_refcnt, &arc_prune_list);
4187 refcount_destroy(&p->p_refcnt);
4188 kmem_free(p, sizeof (*p));
4189 }
4190 mutex_exit(&arc_prune_mtx);
4191
4192 list_destroy(&arc_prune_list);
4193 mutex_destroy(&arc_prune_mtx);
34dc7c2f
BB
4194 mutex_destroy(&arc_eviction_mtx);
4195 mutex_destroy(&arc_reclaim_thr_lock);
4196 cv_destroy(&arc_reclaim_thr_cv);
4197
4198 list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
4199 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
4200 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
4201 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
4202 list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
4203 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
4204 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
4205 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
4206
4207 mutex_destroy(&arc_anon->arcs_mtx);
4208 mutex_destroy(&arc_mru->arcs_mtx);
4209 mutex_destroy(&arc_mru_ghost->arcs_mtx);
4210 mutex_destroy(&arc_mfu->arcs_mtx);
4211 mutex_destroy(&arc_mfu_ghost->arcs_mtx);
fb5f0bc8 4212 mutex_destroy(&arc_l2c_only->arcs_mtx);
34dc7c2f
BB
4213
4214 buf_fini();
9babb374
BB
4215
4216 ASSERT(arc_loaned_bytes == 0);
34dc7c2f
BB
4217}
4218
4219/*
4220 * Level 2 ARC
4221 *
4222 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
4223 * It uses dedicated storage devices to hold cached data, which are populated
4224 * using large infrequent writes. The main role of this cache is to boost
4225 * the performance of random read workloads. The intended L2ARC devices
4226 * include short-stroked disks, solid state disks, and other media with
4227 * substantially faster read latency than disk.
4228 *
4229 * +-----------------------+
4230 * | ARC |
4231 * +-----------------------+
4232 * | ^ ^
4233 * | | |
4234 * l2arc_feed_thread() arc_read()
4235 * | | |
4236 * | l2arc read |
4237 * V | |
4238 * +---------------+ |
4239 * | L2ARC | |
4240 * +---------------+ |
4241 * | ^ |
4242 * l2arc_write() | |
4243 * | | |
4244 * V | |
4245 * +-------+ +-------+
4246 * | vdev | | vdev |
4247 * | cache | | cache |
4248 * +-------+ +-------+
4249 * +=========+ .-----.
4250 * : L2ARC : |-_____-|
4251 * : devices : | Disks |
4252 * +=========+ `-_____-'
4253 *
4254 * Read requests are satisfied from the following sources, in order:
4255 *
4256 * 1) ARC
4257 * 2) vdev cache of L2ARC devices
4258 * 3) L2ARC devices
4259 * 4) vdev cache of disks
4260 * 5) disks
4261 *
4262 * Some L2ARC device types exhibit extremely slow write performance.
4263 * To accommodate for this there are some significant differences between
4264 * the L2ARC and traditional cache design:
4265 *
4266 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from
4267 * the ARC behave as usual, freeing buffers and placing headers on ghost
4268 * lists. The ARC does not send buffers to the L2ARC during eviction as
4269 * this would add inflated write latencies for all ARC memory pressure.
4270 *
4271 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
4272 * It does this by periodically scanning buffers from the eviction-end of
4273 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
3a17a7a9
SK
4274 * not already there. It scans until a headroom of buffers is satisfied,
4275 * which itself is a buffer for ARC eviction. If a compressible buffer is
4276 * found during scanning and selected for writing to an L2ARC device, we
4277 * temporarily boost scanning headroom during the next scan cycle to make
4278 * sure we adapt to compression effects (which might significantly reduce
4279 * the data volume we write to L2ARC). The thread that does this is
34dc7c2f
BB
4280 * l2arc_feed_thread(), illustrated below; example sizes are included to
4281 * provide a better sense of ratio than this diagram:
4282 *
4283 * head --> tail
4284 * +---------------------+----------+
4285 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC
4286 * +---------------------+----------+ | o L2ARC eligible
4287 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer
4288 * +---------------------+----------+ |
4289 * 15.9 Gbytes ^ 32 Mbytes |
4290 * headroom |
4291 * l2arc_feed_thread()
4292 * |
4293 * l2arc write hand <--[oooo]--'
4294 * | 8 Mbyte
4295 * | write max
4296 * V
4297 * +==============================+
4298 * L2ARC dev |####|#|###|###| |####| ... |
4299 * +==============================+
4300 * 32 Gbytes
4301 *
4302 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
4303 * evicted, then the L2ARC has cached a buffer much sooner than it probably
4304 * needed to, potentially wasting L2ARC device bandwidth and storage. It is
4305 * safe to say that this is an uncommon case, since buffers at the end of
4306 * the ARC lists have moved there due to inactivity.
4307 *
4308 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
4309 * then the L2ARC simply misses copying some buffers. This serves as a
4310 * pressure valve to prevent heavy read workloads from both stalling the ARC
4311 * with waits and clogging the L2ARC with writes. This also helps prevent
4312 * the potential for the L2ARC to churn if it attempts to cache content too
4313 * quickly, such as during backups of the entire pool.
4314 *
b128c09f
BB
4315 * 5. After system boot and before the ARC has filled main memory, there are
4316 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
4317 * lists can remain mostly static. Instead of searching from tail of these
4318 * lists as pictured, the l2arc_feed_thread() will search from the list heads
4319 * for eligible buffers, greatly increasing its chance of finding them.
4320 *
4321 * The L2ARC device write speed is also boosted during this time so that
4322 * the L2ARC warms up faster. Since there have been no ARC evictions yet,
4323 * there are no L2ARC reads, and no fear of degrading read performance
4324 * through increased writes.
4325 *
4326 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
34dc7c2f
BB
4327 * the vdev queue can aggregate them into larger and fewer writes. Each
4328 * device is written to in a rotor fashion, sweeping writes through
4329 * available space then repeating.
4330 *
b128c09f 4331 * 7. The L2ARC does not store dirty content. It never needs to flush
34dc7c2f
BB
4332 * write buffers back to disk based storage.
4333 *
b128c09f 4334 * 8. If an ARC buffer is written (and dirtied) which also exists in the
34dc7c2f
BB
4335 * L2ARC, the now stale L2ARC buffer is immediately dropped.
4336 *
4337 * The performance of the L2ARC can be tweaked by a number of tunables, which
4338 * may be necessary for different workloads:
4339 *
4340 * l2arc_write_max max write bytes per interval
b128c09f 4341 * l2arc_write_boost extra write bytes during device warmup
34dc7c2f 4342 * l2arc_noprefetch skip caching prefetched buffers
3a17a7a9 4343 * l2arc_nocompress skip compressing buffers
34dc7c2f 4344 * l2arc_headroom number of max device writes to precache
3a17a7a9
SK
4345 * l2arc_headroom_boost when we find compressed buffers during ARC
4346 * scanning, we multiply headroom by this
4347 * percentage factor for the next scan cycle,
4348 * since more compressed buffers are likely to
4349 * be present
34dc7c2f
BB
4350 * l2arc_feed_secs seconds between L2ARC writing
4351 *
4352 * Tunables may be removed or added as future performance improvements are
4353 * integrated, and also may become zpool properties.
d164b209
BB
4354 *
4355 * There are three key functions that control how the L2ARC warms up:
4356 *
4357 * l2arc_write_eligible() check if a buffer is eligible to cache
4358 * l2arc_write_size() calculate how much to write
4359 * l2arc_write_interval() calculate sleep delay between writes
4360 *
4361 * These three functions determine what to write, how much, and how quickly
4362 * to send writes.
34dc7c2f
BB
4363 */
4364
d164b209
BB
4365static boolean_t
4366l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab)
4367{
4368 /*
4369 * A buffer is *not* eligible for the L2ARC if it:
4370 * 1. belongs to a different spa.
428870ff
BB
4371 * 2. is already cached on the L2ARC.
4372 * 3. has an I/O in progress (it may be an incomplete read).
4373 * 4. is flagged not eligible (zfs property).
d164b209 4374 */
428870ff 4375 if (ab->b_spa != spa_guid || ab->b_l2hdr != NULL ||
d164b209
BB
4376 HDR_IO_IN_PROGRESS(ab) || !HDR_L2CACHE(ab))
4377 return (B_FALSE);
4378
4379 return (B_TRUE);
4380}
4381
4382static uint64_t
3a17a7a9 4383l2arc_write_size(void)
d164b209
BB
4384{
4385 uint64_t size;
4386
3a17a7a9
SK
4387 /*
4388 * Make sure our globals have meaningful values in case the user
4389 * altered them.
4390 */
4391 size = l2arc_write_max;
4392 if (size == 0) {
4393 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
4394 "be greater than zero, resetting it to the default (%d)",
4395 L2ARC_WRITE_SIZE);
4396 size = l2arc_write_max = L2ARC_WRITE_SIZE;
4397 }
d164b209
BB
4398
4399 if (arc_warm == B_FALSE)
3a17a7a9 4400 size += l2arc_write_boost;
d164b209
BB
4401
4402 return (size);
4403
4404}
4405
4406static clock_t
4407l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
4408{
428870ff 4409 clock_t interval, next, now;
d164b209
BB
4410
4411 /*
4412 * If the ARC lists are busy, increase our write rate; if the
4413 * lists are stale, idle back. This is achieved by checking
4414 * how much we previously wrote - if it was more than half of
4415 * what we wanted, schedule the next write much sooner.
4416 */
4417 if (l2arc_feed_again && wrote > (wanted / 2))
4418 interval = (hz * l2arc_feed_min_ms) / 1000;
4419 else
4420 interval = hz * l2arc_feed_secs;
4421
428870ff
BB
4422 now = ddi_get_lbolt();
4423 next = MAX(now, MIN(now + interval, began + interval));
d164b209
BB
4424
4425 return (next);
4426}
4427
34dc7c2f
BB
4428static void
4429l2arc_hdr_stat_add(void)
4430{
6e1d7276 4431 ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE);
34dc7c2f
BB
4432 ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE);
4433}
4434
4435static void
4436l2arc_hdr_stat_remove(void)
4437{
6e1d7276 4438 ARCSTAT_INCR(arcstat_l2_hdr_size, -HDR_SIZE);
34dc7c2f
BB
4439 ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE);
4440}
4441
4442/*
4443 * Cycle through L2ARC devices. This is how L2ARC load balances.
b128c09f 4444 * If a device is returned, this also returns holding the spa config lock.
34dc7c2f
BB
4445 */
4446static l2arc_dev_t *
4447l2arc_dev_get_next(void)
4448{
b128c09f 4449 l2arc_dev_t *first, *next = NULL;
34dc7c2f 4450
b128c09f
BB
4451 /*
4452 * Lock out the removal of spas (spa_namespace_lock), then removal
4453 * of cache devices (l2arc_dev_mtx). Once a device has been selected,
4454 * both locks will be dropped and a spa config lock held instead.
4455 */
4456 mutex_enter(&spa_namespace_lock);
4457 mutex_enter(&l2arc_dev_mtx);
4458
4459 /* if there are no vdevs, there is nothing to do */
4460 if (l2arc_ndev == 0)
4461 goto out;
4462
4463 first = NULL;
4464 next = l2arc_dev_last;
4465 do {
4466 /* loop around the list looking for a non-faulted vdev */
4467 if (next == NULL) {
34dc7c2f 4468 next = list_head(l2arc_dev_list);
b128c09f
BB
4469 } else {
4470 next = list_next(l2arc_dev_list, next);
4471 if (next == NULL)
4472 next = list_head(l2arc_dev_list);
4473 }
4474
4475 /* if we have come back to the start, bail out */
4476 if (first == NULL)
4477 first = next;
4478 else if (next == first)
4479 break;
4480
4481 } while (vdev_is_dead(next->l2ad_vdev));
4482
4483 /* if we were unable to find any usable vdevs, return NULL */
4484 if (vdev_is_dead(next->l2ad_vdev))
4485 next = NULL;
34dc7c2f
BB
4486
4487 l2arc_dev_last = next;
4488
b128c09f
BB
4489out:
4490 mutex_exit(&l2arc_dev_mtx);
4491
4492 /*
4493 * Grab the config lock to prevent the 'next' device from being
4494 * removed while we are writing to it.
4495 */
4496 if (next != NULL)
4497 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
4498 mutex_exit(&spa_namespace_lock);
4499
34dc7c2f
BB
4500 return (next);
4501}
4502
b128c09f
BB
4503/*
4504 * Free buffers that were tagged for destruction.
4505 */
4506static void
0bc8fd78 4507l2arc_do_free_on_write(void)
b128c09f
BB
4508{
4509 list_t *buflist;
4510 l2arc_data_free_t *df, *df_prev;
4511
4512 mutex_enter(&l2arc_free_on_write_mtx);
4513 buflist = l2arc_free_on_write;
4514
4515 for (df = list_tail(buflist); df; df = df_prev) {
4516 df_prev = list_prev(buflist, df);
4517 ASSERT(df->l2df_data != NULL);
4518 ASSERT(df->l2df_func != NULL);
4519 df->l2df_func(df->l2df_data, df->l2df_size);
4520 list_remove(buflist, df);
4521 kmem_free(df, sizeof (l2arc_data_free_t));
4522 }
4523
4524 mutex_exit(&l2arc_free_on_write_mtx);
4525}
4526
34dc7c2f
BB
4527/*
4528 * A write to a cache device has completed. Update all headers to allow
4529 * reads from these buffers to begin.
4530 */
4531static void
4532l2arc_write_done(zio_t *zio)
4533{
4534 l2arc_write_callback_t *cb;
4535 l2arc_dev_t *dev;
4536 list_t *buflist;
34dc7c2f 4537 arc_buf_hdr_t *head, *ab, *ab_prev;
b128c09f 4538 l2arc_buf_hdr_t *abl2;
34dc7c2f
BB
4539 kmutex_t *hash_lock;
4540
4541 cb = zio->io_private;
4542 ASSERT(cb != NULL);
4543 dev = cb->l2wcb_dev;
4544 ASSERT(dev != NULL);
4545 head = cb->l2wcb_head;
4546 ASSERT(head != NULL);
4547 buflist = dev->l2ad_buflist;
4548 ASSERT(buflist != NULL);
4549 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
4550 l2arc_write_callback_t *, cb);
4551
4552 if (zio->io_error != 0)
4553 ARCSTAT_BUMP(arcstat_l2_writes_error);
4554
4555 mutex_enter(&l2arc_buflist_mtx);
4556
4557 /*
4558 * All writes completed, or an error was hit.
4559 */
4560 for (ab = list_prev(buflist, head); ab; ab = ab_prev) {
4561 ab_prev = list_prev(buflist, ab);
1ca546b3
SK
4562 abl2 = ab->b_l2hdr;
4563
4564 /*
4565 * Release the temporary compressed buffer as soon as possible.
4566 */
4567 if (abl2->b_compress != ZIO_COMPRESS_OFF)
4568 l2arc_release_cdata_buf(ab);
34dc7c2f
BB
4569
4570 hash_lock = HDR_LOCK(ab);
4571 if (!mutex_tryenter(hash_lock)) {
4572 /*
4573 * This buffer misses out. It may be in a stage
4574 * of eviction. Its ARC_L2_WRITING flag will be
4575 * left set, denying reads to this buffer.
4576 */
4577 ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss);
4578 continue;
4579 }
4580
4581 if (zio->io_error != 0) {
4582 /*
b128c09f 4583 * Error - drop L2ARC entry.
34dc7c2f 4584 */
b128c09f 4585 list_remove(buflist, ab);
3a17a7a9 4586 ARCSTAT_INCR(arcstat_l2_asize, -abl2->b_asize);
34dc7c2f 4587 ab->b_l2hdr = NULL;
ecf3d9b8 4588 kmem_cache_free(l2arc_hdr_cache, abl2);
6e1d7276 4589 arc_space_return(L2HDR_SIZE, ARC_SPACE_L2HDRS);
b128c09f 4590 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
34dc7c2f
BB
4591 }
4592
4593 /*
4594 * Allow ARC to begin reads to this L2ARC entry.
4595 */
4596 ab->b_flags &= ~ARC_L2_WRITING;
4597
4598 mutex_exit(hash_lock);
4599 }
4600
4601 atomic_inc_64(&l2arc_writes_done);
4602 list_remove(buflist, head);
4603 kmem_cache_free(hdr_cache, head);
4604 mutex_exit(&l2arc_buflist_mtx);
4605
b128c09f 4606 l2arc_do_free_on_write();
34dc7c2f
BB
4607
4608 kmem_free(cb, sizeof (l2arc_write_callback_t));
4609}
4610
4611/*
4612 * A read to a cache device completed. Validate buffer contents before
4613 * handing over to the regular ARC routines.
4614 */
4615static void
4616l2arc_read_done(zio_t *zio)
4617{
4618 l2arc_read_callback_t *cb;
4619 arc_buf_hdr_t *hdr;
4620 arc_buf_t *buf;
34dc7c2f 4621 kmutex_t *hash_lock;
b128c09f
BB
4622 int equal;
4623
4624 ASSERT(zio->io_vd != NULL);
4625 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
4626
4627 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
34dc7c2f
BB
4628
4629 cb = zio->io_private;
4630 ASSERT(cb != NULL);
4631 buf = cb->l2rcb_buf;
4632 ASSERT(buf != NULL);
34dc7c2f 4633
428870ff 4634 hash_lock = HDR_LOCK(buf->b_hdr);
34dc7c2f 4635 mutex_enter(hash_lock);
428870ff
BB
4636 hdr = buf->b_hdr;
4637 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
34dc7c2f 4638
3a17a7a9
SK
4639 /*
4640 * If the buffer was compressed, decompress it first.
4641 */
4642 if (cb->l2rcb_compress != ZIO_COMPRESS_OFF)
4643 l2arc_decompress_zio(zio, hdr, cb->l2rcb_compress);
4644 ASSERT(zio->io_data != NULL);
4645
34dc7c2f
BB
4646 /*
4647 * Check this survived the L2ARC journey.
4648 */
4649 equal = arc_cksum_equal(buf);
4650 if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
4651 mutex_exit(hash_lock);
4652 zio->io_private = buf;
b128c09f
BB
4653 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */
4654 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */
34dc7c2f
BB
4655 arc_read_done(zio);
4656 } else {
4657 mutex_exit(hash_lock);
4658 /*
4659 * Buffer didn't survive caching. Increment stats and
4660 * reissue to the original storage device.
4661 */
b128c09f 4662 if (zio->io_error != 0) {
34dc7c2f 4663 ARCSTAT_BUMP(arcstat_l2_io_error);
b128c09f 4664 } else {
2e528b49 4665 zio->io_error = SET_ERROR(EIO);
b128c09f 4666 }
34dc7c2f
BB
4667 if (!equal)
4668 ARCSTAT_BUMP(arcstat_l2_cksum_bad);
4669
34dc7c2f 4670 /*
b128c09f
BB
4671 * If there's no waiter, issue an async i/o to the primary
4672 * storage now. If there *is* a waiter, the caller must
4673 * issue the i/o in a context where it's OK to block.
34dc7c2f 4674 */
d164b209
BB
4675 if (zio->io_waiter == NULL) {
4676 zio_t *pio = zio_unique_parent(zio);
4677
4678 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
4679
4680 zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp,
b128c09f
BB
4681 buf->b_data, zio->io_size, arc_read_done, buf,
4682 zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
d164b209 4683 }
34dc7c2f
BB
4684 }
4685
4686 kmem_free(cb, sizeof (l2arc_read_callback_t));
4687}
4688
4689/*
4690 * This is the list priority from which the L2ARC will search for pages to
4691 * cache. This is used within loops (0..3) to cycle through lists in the
4692 * desired order. This order can have a significant effect on cache
4693 * performance.
4694 *
4695 * Currently the metadata lists are hit first, MFU then MRU, followed by
4696 * the data lists. This function returns a locked list, and also returns
4697 * the lock pointer.
4698 */
4699static list_t *
4700l2arc_list_locked(int list_num, kmutex_t **lock)
4701{
d4ed6673 4702 list_t *list = NULL;
34dc7c2f
BB
4703
4704 ASSERT(list_num >= 0 && list_num <= 3);
4705
4706 switch (list_num) {
4707 case 0:
4708 list = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
4709 *lock = &arc_mfu->arcs_mtx;
4710 break;
4711 case 1:
4712 list = &arc_mru->arcs_list[ARC_BUFC_METADATA];
4713 *lock = &arc_mru->arcs_mtx;
4714 break;
4715 case 2:
4716 list = &arc_mfu->arcs_list[ARC_BUFC_DATA];
4717 *lock = &arc_mfu->arcs_mtx;
4718 break;
4719 case 3:
4720 list = &arc_mru->arcs_list[ARC_BUFC_DATA];
4721 *lock = &arc_mru->arcs_mtx;
4722 break;
4723 }
4724
4725 ASSERT(!(MUTEX_HELD(*lock)));
4726 mutex_enter(*lock);
4727 return (list);
4728}
4729
4730/*
4731 * Evict buffers from the device write hand to the distance specified in
4732 * bytes. This distance may span populated buffers, it may span nothing.
4733 * This is clearing a region on the L2ARC device ready for writing.
4734 * If the 'all' boolean is set, every buffer is evicted.
4735 */
4736static void
4737l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
4738{
4739 list_t *buflist;
4740 l2arc_buf_hdr_t *abl2;
4741 arc_buf_hdr_t *ab, *ab_prev;
4742 kmutex_t *hash_lock;
4743 uint64_t taddr;
4744
34dc7c2f
BB
4745 buflist = dev->l2ad_buflist;
4746
4747 if (buflist == NULL)
4748 return;
4749
4750 if (!all && dev->l2ad_first) {
4751 /*
4752 * This is the first sweep through the device. There is
4753 * nothing to evict.
4754 */
4755 return;
4756 }
4757
b128c09f 4758 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
34dc7c2f
BB
4759 /*
4760 * When nearing the end of the device, evict to the end
4761 * before the device write hand jumps to the start.
4762 */
4763 taddr = dev->l2ad_end;
4764 } else {
4765 taddr = dev->l2ad_hand + distance;
4766 }
4767 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
4768 uint64_t, taddr, boolean_t, all);
4769
4770top:
4771 mutex_enter(&l2arc_buflist_mtx);
4772 for (ab = list_tail(buflist); ab; ab = ab_prev) {
4773 ab_prev = list_prev(buflist, ab);
4774
4775 hash_lock = HDR_LOCK(ab);
4776 if (!mutex_tryenter(hash_lock)) {
4777 /*
4778 * Missed the hash lock. Retry.
4779 */
4780 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
4781 mutex_exit(&l2arc_buflist_mtx);
4782 mutex_enter(hash_lock);
4783 mutex_exit(hash_lock);
4784 goto top;
4785 }
4786
4787 if (HDR_L2_WRITE_HEAD(ab)) {
4788 /*
4789 * We hit a write head node. Leave it for
4790 * l2arc_write_done().
4791 */
4792 list_remove(buflist, ab);
4793 mutex_exit(hash_lock);
4794 continue;
4795 }
4796
4797 if (!all && ab->b_l2hdr != NULL &&
4798 (ab->b_l2hdr->b_daddr > taddr ||
4799 ab->b_l2hdr->b_daddr < dev->l2ad_hand)) {
4800 /*
4801 * We've evicted to the target address,
4802 * or the end of the device.
4803 */
4804 mutex_exit(hash_lock);
4805 break;
4806 }
4807
4808 if (HDR_FREE_IN_PROGRESS(ab)) {
4809 /*
4810 * Already on the path to destruction.
4811 */
4812 mutex_exit(hash_lock);
4813 continue;
4814 }
4815
4816 if (ab->b_state == arc_l2c_only) {
4817 ASSERT(!HDR_L2_READING(ab));
4818 /*
4819 * This doesn't exist in the ARC. Destroy.
4820 * arc_hdr_destroy() will call list_remove()
4821 * and decrement arcstat_l2_size.
4822 */
4823 arc_change_state(arc_anon, ab, hash_lock);
4824 arc_hdr_destroy(ab);
4825 } else {
b128c09f
BB
4826 /*
4827 * Invalidate issued or about to be issued
4828 * reads, since we may be about to write
4829 * over this location.
4830 */
4831 if (HDR_L2_READING(ab)) {
4832 ARCSTAT_BUMP(arcstat_l2_evict_reading);
4833 ab->b_flags |= ARC_L2_EVICTED;
4834 }
4835
34dc7c2f
BB
4836 /*
4837 * Tell ARC this no longer exists in L2ARC.
4838 */
4839 if (ab->b_l2hdr != NULL) {
4840 abl2 = ab->b_l2hdr;
3a17a7a9 4841 ARCSTAT_INCR(arcstat_l2_asize, -abl2->b_asize);
34dc7c2f 4842 ab->b_l2hdr = NULL;
ecf3d9b8 4843 kmem_cache_free(l2arc_hdr_cache, abl2);
6e1d7276 4844 arc_space_return(L2HDR_SIZE, ARC_SPACE_L2HDRS);
34dc7c2f
BB
4845 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
4846 }
4847 list_remove(buflist, ab);
4848
4849 /*
4850 * This may have been leftover after a
4851 * failed write.
4852 */
4853 ab->b_flags &= ~ARC_L2_WRITING;
34dc7c2f
BB
4854 }
4855 mutex_exit(hash_lock);
4856 }
4857 mutex_exit(&l2arc_buflist_mtx);
4858
428870ff 4859 vdev_space_update(dev->l2ad_vdev, -(taddr - dev->l2ad_evict), 0, 0);
34dc7c2f
BB
4860 dev->l2ad_evict = taddr;
4861}
4862
4863/*
4864 * Find and write ARC buffers to the L2ARC device.
4865 *
4866 * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid
4867 * for reading until they have completed writing.
3a17a7a9
SK
4868 * The headroom_boost is an in-out parameter used to maintain headroom boost
4869 * state between calls to this function.
4870 *
4871 * Returns the number of bytes actually written (which may be smaller than
4872 * the delta by which the device hand has changed due to alignment).
34dc7c2f 4873 */
d164b209 4874static uint64_t
3a17a7a9
SK
4875l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz,
4876 boolean_t *headroom_boost)
34dc7c2f
BB
4877{
4878 arc_buf_hdr_t *ab, *ab_prev, *head;
34dc7c2f 4879 list_t *list;
3a17a7a9
SK
4880 uint64_t write_asize, write_psize, write_sz, headroom,
4881 buf_compress_minsz;
34dc7c2f 4882 void *buf_data;
3a17a7a9
SK
4883 kmutex_t *list_lock = NULL;
4884 boolean_t full;
34dc7c2f
BB
4885 l2arc_write_callback_t *cb;
4886 zio_t *pio, *wzio;
3541dc6d 4887 uint64_t guid = spa_load_guid(spa);
d6320ddb 4888 int try;
3a17a7a9 4889 const boolean_t do_headroom_boost = *headroom_boost;
34dc7c2f 4890
34dc7c2f
BB
4891 ASSERT(dev->l2ad_vdev != NULL);
4892
3a17a7a9
SK
4893 /* Lower the flag now, we might want to raise it again later. */
4894 *headroom_boost = B_FALSE;
4895
34dc7c2f 4896 pio = NULL;
3a17a7a9 4897 write_sz = write_asize = write_psize = 0;
34dc7c2f
BB
4898 full = B_FALSE;
4899 head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
4900 head->b_flags |= ARC_L2_WRITE_HEAD;
4901
3a17a7a9
SK
4902 /*
4903 * We will want to try to compress buffers that are at least 2x the
4904 * device sector size.
4905 */
4906 buf_compress_minsz = 2 << dev->l2ad_vdev->vdev_ashift;
4907
34dc7c2f
BB
4908 /*
4909 * Copy buffers for L2ARC writing.
4910 */
4911 mutex_enter(&l2arc_buflist_mtx);
d6320ddb 4912 for (try = 0; try <= 3; try++) {
3a17a7a9
SK
4913 uint64_t passed_sz = 0;
4914
34dc7c2f 4915 list = l2arc_list_locked(try, &list_lock);
34dc7c2f 4916
b128c09f
BB
4917 /*
4918 * L2ARC fast warmup.
4919 *
4920 * Until the ARC is warm and starts to evict, read from the
4921 * head of the ARC lists rather than the tail.
4922 */
b128c09f
BB
4923 if (arc_warm == B_FALSE)
4924 ab = list_head(list);
4925 else
4926 ab = list_tail(list);
4927
3a17a7a9
SK
4928 headroom = target_sz * l2arc_headroom;
4929 if (do_headroom_boost)
4930 headroom = (headroom * l2arc_headroom_boost) / 100;
4931
b128c09f 4932 for (; ab; ab = ab_prev) {
3a17a7a9
SK
4933 l2arc_buf_hdr_t *l2hdr;
4934 kmutex_t *hash_lock;
4935 uint64_t buf_sz;
4936
b128c09f
BB
4937 if (arc_warm == B_FALSE)
4938 ab_prev = list_next(list, ab);
4939 else
4940 ab_prev = list_prev(list, ab);
34dc7c2f
BB
4941
4942 hash_lock = HDR_LOCK(ab);
3a17a7a9 4943 if (!mutex_tryenter(hash_lock)) {
34dc7c2f
BB
4944 /*
4945 * Skip this buffer rather than waiting.
4946 */
4947 continue;
4948 }
4949
4950 passed_sz += ab->b_size;
4951 if (passed_sz > headroom) {
4952 /*
4953 * Searched too far.
4954 */
4955 mutex_exit(hash_lock);
4956 break;
4957 }
4958
d164b209 4959 if (!l2arc_write_eligible(guid, ab)) {
34dc7c2f
BB
4960 mutex_exit(hash_lock);
4961 continue;
4962 }
4963
4964 if ((write_sz + ab->b_size) > target_sz) {
4965 full = B_TRUE;
4966 mutex_exit(hash_lock);
4967 break;
4968 }
4969
34dc7c2f
BB
4970 if (pio == NULL) {
4971 /*
4972 * Insert a dummy header on the buflist so
4973 * l2arc_write_done() can find where the
4974 * write buffers begin without searching.
4975 */
4976 list_insert_head(dev->l2ad_buflist, head);
4977
409dc1a5 4978 cb = kmem_alloc(sizeof (l2arc_write_callback_t),
d1d7e268 4979 KM_PUSHPAGE);
34dc7c2f
BB
4980 cb->l2wcb_dev = dev;
4981 cb->l2wcb_head = head;
4982 pio = zio_root(spa, l2arc_write_done, cb,
4983 ZIO_FLAG_CANFAIL);
4984 }
4985
4986 /*
4987 * Create and add a new L2ARC header.
4988 */
ecf3d9b8 4989 l2hdr = kmem_cache_alloc(l2arc_hdr_cache, KM_PUSHPAGE);
3a17a7a9 4990 l2hdr->b_dev = dev;
ecf3d9b8 4991 l2hdr->b_daddr = 0;
6e1d7276 4992 arc_space_consume(L2HDR_SIZE, ARC_SPACE_L2HDRS);
34dc7c2f
BB
4993
4994 ab->b_flags |= ARC_L2_WRITING;
3a17a7a9
SK
4995
4996 /*
4997 * Temporarily stash the data buffer in b_tmp_cdata.
4998 * The subsequent write step will pick it up from
4999 * there. This is because can't access ab->b_buf
5000 * without holding the hash_lock, which we in turn
5001 * can't access without holding the ARC list locks
5002 * (which we want to avoid during compression/writing)
5003 */
5004 l2hdr->b_compress = ZIO_COMPRESS_OFF;
5005 l2hdr->b_asize = ab->b_size;
5006 l2hdr->b_tmp_cdata = ab->b_buf->b_data;
e0b0ca98 5007 l2hdr->b_hits = 0;
3a17a7a9 5008
34dc7c2f 5009 buf_sz = ab->b_size;
3a17a7a9
SK
5010 ab->b_l2hdr = l2hdr;
5011
5012 list_insert_head(dev->l2ad_buflist, ab);
34dc7c2f
BB
5013
5014 /*
5015 * Compute and store the buffer cksum before
5016 * writing. On debug the cksum is verified first.
5017 */
5018 arc_cksum_verify(ab->b_buf);
5019 arc_cksum_compute(ab->b_buf, B_TRUE);
5020
5021 mutex_exit(hash_lock);
5022
3a17a7a9
SK
5023 write_sz += buf_sz;
5024 }
5025
5026 mutex_exit(list_lock);
5027
5028 if (full == B_TRUE)
5029 break;
5030 }
5031
5032 /* No buffers selected for writing? */
5033 if (pio == NULL) {
5034 ASSERT0(write_sz);
5035 mutex_exit(&l2arc_buflist_mtx);
5036 kmem_cache_free(hdr_cache, head);
5037 return (0);
5038 }
5039
5040 /*
5041 * Now start writing the buffers. We're starting at the write head
5042 * and work backwards, retracing the course of the buffer selector
5043 * loop above.
5044 */
5045 for (ab = list_prev(dev->l2ad_buflist, head); ab;
5046 ab = list_prev(dev->l2ad_buflist, ab)) {
5047 l2arc_buf_hdr_t *l2hdr;
5048 uint64_t buf_sz;
5049
5050 /*
5051 * We shouldn't need to lock the buffer here, since we flagged
5052 * it as ARC_L2_WRITING in the previous step, but we must take
5053 * care to only access its L2 cache parameters. In particular,
5054 * ab->b_buf may be invalid by now due to ARC eviction.
5055 */
5056 l2hdr = ab->b_l2hdr;
5057 l2hdr->b_daddr = dev->l2ad_hand;
5058
5059 if (!l2arc_nocompress && (ab->b_flags & ARC_L2COMPRESS) &&
5060 l2hdr->b_asize >= buf_compress_minsz) {
5061 if (l2arc_compress_buf(l2hdr)) {
5062 /*
5063 * If compression succeeded, enable headroom
5064 * boost on the next scan cycle.
5065 */
5066 *headroom_boost = B_TRUE;
5067 }
5068 }
5069
5070 /*
5071 * Pick up the buffer data we had previously stashed away
5072 * (and now potentially also compressed).
5073 */
5074 buf_data = l2hdr->b_tmp_cdata;
5075 buf_sz = l2hdr->b_asize;
5076
5077 /* Compression may have squashed the buffer to zero length. */
5078 if (buf_sz != 0) {
5079 uint64_t buf_p_sz;
5080
34dc7c2f
BB
5081 wzio = zio_write_phys(pio, dev->l2ad_vdev,
5082 dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
5083 NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
5084 ZIO_FLAG_CANFAIL, B_FALSE);
5085
5086 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
5087 zio_t *, wzio);
5088 (void) zio_nowait(wzio);
5089
3a17a7a9 5090 write_asize += buf_sz;
b128c09f
BB
5091 /*
5092 * Keep the clock hand suitably device-aligned.
5093 */
3a17a7a9
SK
5094 buf_p_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
5095 write_psize += buf_p_sz;
5096 dev->l2ad_hand += buf_p_sz;
34dc7c2f 5097 }
34dc7c2f 5098 }
34dc7c2f 5099
3a17a7a9 5100 mutex_exit(&l2arc_buflist_mtx);
34dc7c2f 5101
3a17a7a9 5102 ASSERT3U(write_asize, <=, target_sz);
34dc7c2f 5103 ARCSTAT_BUMP(arcstat_l2_writes_sent);
3a17a7a9 5104 ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize);
34dc7c2f 5105 ARCSTAT_INCR(arcstat_l2_size, write_sz);
3a17a7a9
SK
5106 ARCSTAT_INCR(arcstat_l2_asize, write_asize);
5107 vdev_space_update(dev->l2ad_vdev, write_psize, 0, 0);
34dc7c2f
BB
5108
5109 /*
5110 * Bump device hand to the device start if it is approaching the end.
5111 * l2arc_evict() will already have evicted ahead for this case.
5112 */
b128c09f 5113 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
428870ff
BB
5114 vdev_space_update(dev->l2ad_vdev,
5115 dev->l2ad_end - dev->l2ad_hand, 0, 0);
34dc7c2f
BB
5116 dev->l2ad_hand = dev->l2ad_start;
5117 dev->l2ad_evict = dev->l2ad_start;
5118 dev->l2ad_first = B_FALSE;
5119 }
5120
d164b209 5121 dev->l2ad_writing = B_TRUE;
34dc7c2f 5122 (void) zio_wait(pio);
d164b209
BB
5123 dev->l2ad_writing = B_FALSE;
5124
3a17a7a9
SK
5125 return (write_asize);
5126}
5127
5128/*
5129 * Compresses an L2ARC buffer.
5130 * The data to be compressed must be prefilled in l2hdr->b_tmp_cdata and its
5131 * size in l2hdr->b_asize. This routine tries to compress the data and
5132 * depending on the compression result there are three possible outcomes:
5133 * *) The buffer was incompressible. The original l2hdr contents were left
5134 * untouched and are ready for writing to an L2 device.
5135 * *) The buffer was all-zeros, so there is no need to write it to an L2
5136 * device. To indicate this situation b_tmp_cdata is NULL'ed, b_asize is
5137 * set to zero and b_compress is set to ZIO_COMPRESS_EMPTY.
5138 * *) Compression succeeded and b_tmp_cdata was replaced with a temporary
5139 * data buffer which holds the compressed data to be written, and b_asize
5140 * tells us how much data there is. b_compress is set to the appropriate
5141 * compression algorithm. Once writing is done, invoke
5142 * l2arc_release_cdata_buf on this l2hdr to free this temporary buffer.
5143 *
5144 * Returns B_TRUE if compression succeeded, or B_FALSE if it didn't (the
5145 * buffer was incompressible).
5146 */
5147static boolean_t
5148l2arc_compress_buf(l2arc_buf_hdr_t *l2hdr)
5149{
5150 void *cdata;
5151 size_t csize, len;
5152
5153 ASSERT(l2hdr->b_compress == ZIO_COMPRESS_OFF);
5154 ASSERT(l2hdr->b_tmp_cdata != NULL);
5155
5156 len = l2hdr->b_asize;
5157 cdata = zio_data_buf_alloc(len);
5158 csize = zio_compress_data(ZIO_COMPRESS_LZ4, l2hdr->b_tmp_cdata,
5159 cdata, l2hdr->b_asize);
5160
5161 if (csize == 0) {
5162 /* zero block, indicate that there's nothing to write */
5163 zio_data_buf_free(cdata, len);
5164 l2hdr->b_compress = ZIO_COMPRESS_EMPTY;
5165 l2hdr->b_asize = 0;
5166 l2hdr->b_tmp_cdata = NULL;
5167 ARCSTAT_BUMP(arcstat_l2_compress_zeros);
5168 return (B_TRUE);
5169 } else if (csize > 0 && csize < len) {
5170 /*
5171 * Compression succeeded, we'll keep the cdata around for
5172 * writing and release it afterwards.
5173 */
5174 l2hdr->b_compress = ZIO_COMPRESS_LZ4;
5175 l2hdr->b_asize = csize;
5176 l2hdr->b_tmp_cdata = cdata;
5177 ARCSTAT_BUMP(arcstat_l2_compress_successes);
5178 return (B_TRUE);
5179 } else {
5180 /*
5181 * Compression failed, release the compressed buffer.
5182 * l2hdr will be left unmodified.
5183 */
5184 zio_data_buf_free(cdata, len);
5185 ARCSTAT_BUMP(arcstat_l2_compress_failures);
5186 return (B_FALSE);
5187 }
5188}
5189
5190/*
5191 * Decompresses a zio read back from an l2arc device. On success, the
5192 * underlying zio's io_data buffer is overwritten by the uncompressed
5193 * version. On decompression error (corrupt compressed stream), the
5194 * zio->io_error value is set to signal an I/O error.
5195 *
5196 * Please note that the compressed data stream is not checksummed, so
5197 * if the underlying device is experiencing data corruption, we may feed
5198 * corrupt data to the decompressor, so the decompressor needs to be
5199 * able to handle this situation (LZ4 does).
5200 */
5201static void
5202l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr, enum zio_compress c)
5203{
5204 uint64_t csize;
5205 void *cdata;
5206
5207 ASSERT(L2ARC_IS_VALID_COMPRESS(c));
5208
5209 if (zio->io_error != 0) {
5210 /*
5211 * An io error has occured, just restore the original io
5212 * size in preparation for a main pool read.
5213 */
5214 zio->io_orig_size = zio->io_size = hdr->b_size;
5215 return;
5216 }
5217
5218 if (c == ZIO_COMPRESS_EMPTY) {
5219 /*
5220 * An empty buffer results in a null zio, which means we
5221 * need to fill its io_data after we're done restoring the
5222 * buffer's contents.
5223 */
5224 ASSERT(hdr->b_buf != NULL);
5225 bzero(hdr->b_buf->b_data, hdr->b_size);
5226 zio->io_data = zio->io_orig_data = hdr->b_buf->b_data;
5227 } else {
5228 ASSERT(zio->io_data != NULL);
5229 /*
5230 * We copy the compressed data from the start of the arc buffer
5231 * (the zio_read will have pulled in only what we need, the
5232 * rest is garbage which we will overwrite at decompression)
5233 * and then decompress back to the ARC data buffer. This way we
5234 * can minimize copying by simply decompressing back over the
5235 * original compressed data (rather than decompressing to an
5236 * aux buffer and then copying back the uncompressed buffer,
5237 * which is likely to be much larger).
5238 */
5239 csize = zio->io_size;
5240 cdata = zio_data_buf_alloc(csize);
5241 bcopy(zio->io_data, cdata, csize);
5242 if (zio_decompress_data(c, cdata, zio->io_data, csize,
5243 hdr->b_size) != 0)
2e528b49 5244 zio->io_error = SET_ERROR(EIO);
3a17a7a9
SK
5245 zio_data_buf_free(cdata, csize);
5246 }
5247
5248 /* Restore the expected uncompressed IO size. */
5249 zio->io_orig_size = zio->io_size = hdr->b_size;
5250}
5251
5252/*
5253 * Releases the temporary b_tmp_cdata buffer in an l2arc header structure.
5254 * This buffer serves as a temporary holder of compressed data while
5255 * the buffer entry is being written to an l2arc device. Once that is
5256 * done, we can dispose of it.
5257 */
5258static void
5259l2arc_release_cdata_buf(arc_buf_hdr_t *ab)
5260{
5261 l2arc_buf_hdr_t *l2hdr = ab->b_l2hdr;
5262
5263 if (l2hdr->b_compress == ZIO_COMPRESS_LZ4) {
5264 /*
5265 * If the data was compressed, then we've allocated a
5266 * temporary buffer for it, so now we need to release it.
5267 */
5268 ASSERT(l2hdr->b_tmp_cdata != NULL);
5269 zio_data_buf_free(l2hdr->b_tmp_cdata, ab->b_size);
5270 }
5271 l2hdr->b_tmp_cdata = NULL;
34dc7c2f
BB
5272}
5273
5274/*
5275 * This thread feeds the L2ARC at regular intervals. This is the beating
5276 * heart of the L2ARC.
5277 */
5278static void
5279l2arc_feed_thread(void)
5280{
5281 callb_cpr_t cpr;
5282 l2arc_dev_t *dev;
5283 spa_t *spa;
d164b209 5284 uint64_t size, wrote;
428870ff 5285 clock_t begin, next = ddi_get_lbolt();
3a17a7a9 5286 boolean_t headroom_boost = B_FALSE;
34dc7c2f
BB
5287
5288 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
5289
5290 mutex_enter(&l2arc_feed_thr_lock);
5291
5292 while (l2arc_thread_exit == 0) {
34dc7c2f 5293 CALLB_CPR_SAFE_BEGIN(&cpr);
5b63b3eb
BB
5294 (void) cv_timedwait_interruptible(&l2arc_feed_thr_cv,
5295 &l2arc_feed_thr_lock, next);
34dc7c2f 5296 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
428870ff 5297 next = ddi_get_lbolt() + hz;
34dc7c2f
BB
5298
5299 /*
b128c09f 5300 * Quick check for L2ARC devices.
34dc7c2f
BB
5301 */
5302 mutex_enter(&l2arc_dev_mtx);
5303 if (l2arc_ndev == 0) {
5304 mutex_exit(&l2arc_dev_mtx);
5305 continue;
5306 }
b128c09f 5307 mutex_exit(&l2arc_dev_mtx);
428870ff 5308 begin = ddi_get_lbolt();
34dc7c2f
BB
5309
5310 /*
b128c09f
BB
5311 * This selects the next l2arc device to write to, and in
5312 * doing so the next spa to feed from: dev->l2ad_spa. This
5313 * will return NULL if there are now no l2arc devices or if
5314 * they are all faulted.
5315 *
5316 * If a device is returned, its spa's config lock is also
5317 * held to prevent device removal. l2arc_dev_get_next()
5318 * will grab and release l2arc_dev_mtx.
34dc7c2f 5319 */
b128c09f 5320 if ((dev = l2arc_dev_get_next()) == NULL)
34dc7c2f 5321 continue;
b128c09f
BB
5322
5323 spa = dev->l2ad_spa;
5324 ASSERT(spa != NULL);
34dc7c2f 5325
572e2857
BB
5326 /*
5327 * If the pool is read-only then force the feed thread to
5328 * sleep a little longer.
5329 */
5330 if (!spa_writeable(spa)) {
5331 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
5332 spa_config_exit(spa, SCL_L2ARC, dev);
5333 continue;
5334 }
5335
34dc7c2f 5336 /*
b128c09f 5337 * Avoid contributing to memory pressure.
34dc7c2f 5338 */
302f753f 5339 if (arc_no_grow) {
b128c09f
BB
5340 ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
5341 spa_config_exit(spa, SCL_L2ARC, dev);
34dc7c2f
BB
5342 continue;
5343 }
b128c09f 5344
34dc7c2f
BB
5345 ARCSTAT_BUMP(arcstat_l2_feeds);
5346
3a17a7a9 5347 size = l2arc_write_size();
b128c09f 5348
34dc7c2f
BB
5349 /*
5350 * Evict L2ARC buffers that will be overwritten.
5351 */
b128c09f 5352 l2arc_evict(dev, size, B_FALSE);
34dc7c2f
BB
5353
5354 /*
5355 * Write ARC buffers.
5356 */
3a17a7a9 5357 wrote = l2arc_write_buffers(spa, dev, size, &headroom_boost);
d164b209
BB
5358
5359 /*
5360 * Calculate interval between writes.
5361 */
5362 next = l2arc_write_interval(begin, size, wrote);
b128c09f 5363 spa_config_exit(spa, SCL_L2ARC, dev);
34dc7c2f
BB
5364 }
5365
5366 l2arc_thread_exit = 0;
5367 cv_broadcast(&l2arc_feed_thr_cv);
5368 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */
5369 thread_exit();
5370}
5371
b128c09f
BB
5372boolean_t
5373l2arc_vdev_present(vdev_t *vd)
5374{
5375 l2arc_dev_t *dev;
5376
5377 mutex_enter(&l2arc_dev_mtx);
5378 for (dev = list_head(l2arc_dev_list); dev != NULL;
5379 dev = list_next(l2arc_dev_list, dev)) {
5380 if (dev->l2ad_vdev == vd)
5381 break;
5382 }
5383 mutex_exit(&l2arc_dev_mtx);
5384
5385 return (dev != NULL);
5386}
5387
34dc7c2f
BB
5388/*
5389 * Add a vdev for use by the L2ARC. By this point the spa has already
5390 * validated the vdev and opened it.
5391 */
5392void
9babb374 5393l2arc_add_vdev(spa_t *spa, vdev_t *vd)
34dc7c2f
BB
5394{
5395 l2arc_dev_t *adddev;
5396
b128c09f
BB
5397 ASSERT(!l2arc_vdev_present(vd));
5398
34dc7c2f
BB
5399 /*
5400 * Create a new l2arc device entry.
5401 */
5402 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
5403 adddev->l2ad_spa = spa;
5404 adddev->l2ad_vdev = vd;
9babb374
BB
5405 adddev->l2ad_start = VDEV_LABEL_START_SIZE;
5406 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
34dc7c2f
BB
5407 adddev->l2ad_hand = adddev->l2ad_start;
5408 adddev->l2ad_evict = adddev->l2ad_start;
5409 adddev->l2ad_first = B_TRUE;
d164b209 5410 adddev->l2ad_writing = B_FALSE;
98f72a53 5411 list_link_init(&adddev->l2ad_node);
34dc7c2f
BB
5412
5413 /*
5414 * This is a list of all ARC buffers that are still valid on the
5415 * device.
5416 */
5417 adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP);
5418 list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
5419 offsetof(arc_buf_hdr_t, b_l2node));
5420
428870ff 5421 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
34dc7c2f
BB
5422
5423 /*
5424 * Add device to global list
5425 */
5426 mutex_enter(&l2arc_dev_mtx);
5427 list_insert_head(l2arc_dev_list, adddev);
5428 atomic_inc_64(&l2arc_ndev);
5429 mutex_exit(&l2arc_dev_mtx);
5430}
5431
5432/*
5433 * Remove a vdev from the L2ARC.
5434 */
5435void
5436l2arc_remove_vdev(vdev_t *vd)
5437{
5438 l2arc_dev_t *dev, *nextdev, *remdev = NULL;
5439
34dc7c2f
BB
5440 /*
5441 * Find the device by vdev
5442 */
5443 mutex_enter(&l2arc_dev_mtx);
5444 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
5445 nextdev = list_next(l2arc_dev_list, dev);
5446 if (vd == dev->l2ad_vdev) {
5447 remdev = dev;
5448 break;
5449 }
5450 }
5451 ASSERT(remdev != NULL);
5452
5453 /*
5454 * Remove device from global list
5455 */
5456 list_remove(l2arc_dev_list, remdev);
5457 l2arc_dev_last = NULL; /* may have been invalidated */
b128c09f
BB
5458 atomic_dec_64(&l2arc_ndev);
5459 mutex_exit(&l2arc_dev_mtx);
34dc7c2f
BB
5460
5461 /*
5462 * Clear all buflists and ARC references. L2ARC device flush.
5463 */
5464 l2arc_evict(remdev, 0, B_TRUE);
5465 list_destroy(remdev->l2ad_buflist);
5466 kmem_free(remdev->l2ad_buflist, sizeof (list_t));
5467 kmem_free(remdev, sizeof (l2arc_dev_t));
34dc7c2f
BB
5468}
5469
5470void
b128c09f 5471l2arc_init(void)
34dc7c2f
BB
5472{
5473 l2arc_thread_exit = 0;
5474 l2arc_ndev = 0;
5475 l2arc_writes_sent = 0;
5476 l2arc_writes_done = 0;
5477
5478 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
5479 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
5480 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
5481 mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL);
5482 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
5483
5484 l2arc_dev_list = &L2ARC_dev_list;
5485 l2arc_free_on_write = &L2ARC_free_on_write;
5486 list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
5487 offsetof(l2arc_dev_t, l2ad_node));
5488 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
5489 offsetof(l2arc_data_free_t, l2df_list_node));
34dc7c2f
BB
5490}
5491
5492void
b128c09f 5493l2arc_fini(void)
34dc7c2f 5494{
b128c09f
BB
5495 /*
5496 * This is called from dmu_fini(), which is called from spa_fini();
5497 * Because of this, we can assume that all l2arc devices have
5498 * already been removed when the pools themselves were removed.
5499 */
5500
5501 l2arc_do_free_on_write();
34dc7c2f
BB
5502
5503 mutex_destroy(&l2arc_feed_thr_lock);
5504 cv_destroy(&l2arc_feed_thr_cv);
5505 mutex_destroy(&l2arc_dev_mtx);
5506 mutex_destroy(&l2arc_buflist_mtx);
5507 mutex_destroy(&l2arc_free_on_write_mtx);
5508
5509 list_destroy(l2arc_dev_list);
5510 list_destroy(l2arc_free_on_write);
5511}
b128c09f
BB
5512
5513void
5514l2arc_start(void)
5515{
fb5f0bc8 5516 if (!(spa_mode_global & FWRITE))
b128c09f
BB
5517 return;
5518
5519 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
5520 TS_RUN, minclsyspri);
5521}
5522
5523void
5524l2arc_stop(void)
5525{
fb5f0bc8 5526 if (!(spa_mode_global & FWRITE))
b128c09f
BB
5527 return;
5528
5529 mutex_enter(&l2arc_feed_thr_lock);
5530 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */
5531 l2arc_thread_exit = 1;
5532 while (l2arc_thread_exit != 0)
5533 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
5534 mutex_exit(&l2arc_feed_thr_lock);
5535}
c28b2279
BB
5536
5537#if defined(_KERNEL) && defined(HAVE_SPL)
5538EXPORT_SYMBOL(arc_read);
5539EXPORT_SYMBOL(arc_buf_remove_ref);
e0b0ca98 5540EXPORT_SYMBOL(arc_buf_info);
c28b2279 5541EXPORT_SYMBOL(arc_getbuf_func);
ab26409d
BB
5542EXPORT_SYMBOL(arc_add_prune_callback);
5543EXPORT_SYMBOL(arc_remove_prune_callback);
c28b2279 5544
bce45ec9 5545module_param(zfs_arc_min, ulong, 0644);
c409e464 5546MODULE_PARM_DESC(zfs_arc_min, "Min arc size");
c28b2279 5547
bce45ec9 5548module_param(zfs_arc_max, ulong, 0644);
c409e464 5549MODULE_PARM_DESC(zfs_arc_max, "Max arc size");
c28b2279 5550
bce45ec9 5551module_param(zfs_arc_meta_limit, ulong, 0644);
c28b2279 5552MODULE_PARM_DESC(zfs_arc_meta_limit, "Meta limit for arc size");
6a8f9b6b 5553
bce45ec9 5554module_param(zfs_arc_meta_prune, int, 0644);
ab26409d 5555MODULE_PARM_DESC(zfs_arc_meta_prune, "Bytes of meta data to prune");
c409e464 5556
bce45ec9 5557module_param(zfs_arc_grow_retry, int, 0644);
c409e464
BB
5558MODULE_PARM_DESC(zfs_arc_grow_retry, "Seconds before growing arc size");
5559
89c8cac4
PS
5560module_param(zfs_arc_p_aggressive_disable, int, 0644);
5561MODULE_PARM_DESC(zfs_arc_p_aggressive_disable, "disable aggressive arc_p grow");
5562
bce45ec9 5563module_param(zfs_arc_shrink_shift, int, 0644);
c409e464
BB
5564MODULE_PARM_DESC(zfs_arc_shrink_shift, "log2(fraction of arc to reclaim)");
5565
bce45ec9 5566module_param(zfs_arc_p_min_shift, int, 0644);
c409e464
BB
5567MODULE_PARM_DESC(zfs_arc_p_min_shift, "arc_c shift to calc min/max arc_p");
5568
1f7c30df
BB
5569module_param(zfs_disable_dup_eviction, int, 0644);
5570MODULE_PARM_DESC(zfs_disable_dup_eviction, "disable duplicate buffer eviction");
5571
0c5493d4
BB
5572module_param(zfs_arc_memory_throttle_disable, int, 0644);
5573MODULE_PARM_DESC(zfs_arc_memory_throttle_disable, "disable memory throttle");
5574
bce45ec9
BB
5575module_param(zfs_arc_min_prefetch_lifespan, int, 0644);
5576MODULE_PARM_DESC(zfs_arc_min_prefetch_lifespan, "Min life of prefetch block");
5577
5578module_param(l2arc_write_max, ulong, 0644);
abd8610c
BB
5579MODULE_PARM_DESC(l2arc_write_max, "Max write bytes per interval");
5580
bce45ec9 5581module_param(l2arc_write_boost, ulong, 0644);
abd8610c
BB
5582MODULE_PARM_DESC(l2arc_write_boost, "Extra write bytes during device warmup");
5583
bce45ec9 5584module_param(l2arc_headroom, ulong, 0644);
abd8610c
BB
5585MODULE_PARM_DESC(l2arc_headroom, "Number of max device writes to precache");
5586
3a17a7a9
SK
5587module_param(l2arc_headroom_boost, ulong, 0644);
5588MODULE_PARM_DESC(l2arc_headroom_boost, "Compressed l2arc_headroom multiplier");
5589
bce45ec9 5590module_param(l2arc_feed_secs, ulong, 0644);
abd8610c
BB
5591MODULE_PARM_DESC(l2arc_feed_secs, "Seconds between L2ARC writing");
5592
bce45ec9 5593module_param(l2arc_feed_min_ms, ulong, 0644);
abd8610c
BB
5594MODULE_PARM_DESC(l2arc_feed_min_ms, "Min feed interval in milliseconds");
5595
bce45ec9 5596module_param(l2arc_noprefetch, int, 0644);
abd8610c
BB
5597MODULE_PARM_DESC(l2arc_noprefetch, "Skip caching prefetched buffers");
5598
3a17a7a9
SK
5599module_param(l2arc_nocompress, int, 0644);
5600MODULE_PARM_DESC(l2arc_nocompress, "Skip compressing L2ARC buffers");
5601
bce45ec9 5602module_param(l2arc_feed_again, int, 0644);
abd8610c
BB
5603MODULE_PARM_DESC(l2arc_feed_again, "Turbo L2ARC warmup");
5604
bce45ec9 5605module_param(l2arc_norw, int, 0644);
abd8610c
BB
5606MODULE_PARM_DESC(l2arc_norw, "No reads during writes");
5607
c28b2279 5608#endif