]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/arc.c
Illumos #3741
[mirror_zfs.git] / module / zfs / arc.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
428870ff 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
3541dc6d 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
2e528b49 24 * Copyright (c) 2013 by Delphix. All rights reserved.
3a17a7a9 25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
34dc7c2f
BB
26 */
27
34dc7c2f
BB
28/*
29 * DVA-based Adjustable Replacement Cache
30 *
31 * While much of the theory of operation used here is
32 * based on the self-tuning, low overhead replacement cache
33 * presented by Megiddo and Modha at FAST 2003, there are some
34 * significant differences:
35 *
36 * 1. The Megiddo and Modha model assumes any page is evictable.
37 * Pages in its cache cannot be "locked" into memory. This makes
38 * the eviction algorithm simple: evict the last page in the list.
39 * This also make the performance characteristics easy to reason
40 * about. Our cache is not so simple. At any given moment, some
41 * subset of the blocks in the cache are un-evictable because we
42 * have handed out a reference to them. Blocks are only evictable
43 * when there are no external references active. This makes
44 * eviction far more problematic: we choose to evict the evictable
45 * blocks that are the "lowest" in the list.
46 *
47 * There are times when it is not possible to evict the requested
48 * space. In these circumstances we are unable to adjust the cache
49 * size. To prevent the cache growing unbounded at these times we
50 * implement a "cache throttle" that slows the flow of new data
51 * into the cache until we can make space available.
52 *
53 * 2. The Megiddo and Modha model assumes a fixed cache size.
54 * Pages are evicted when the cache is full and there is a cache
55 * miss. Our model has a variable sized cache. It grows with
56 * high use, but also tries to react to memory pressure from the
57 * operating system: decreasing its size when system memory is
58 * tight.
59 *
60 * 3. The Megiddo and Modha model assumes a fixed page size. All
61 * elements of the cache are therefor exactly the same size. So
62 * when adjusting the cache size following a cache miss, its simply
63 * a matter of choosing a single page to evict. In our model, we
64 * have variable sized cache blocks (rangeing from 512 bytes to
65 * 128K bytes). We therefor choose a set of blocks to evict to make
66 * space for a cache miss that approximates as closely as possible
67 * the space used by the new block.
68 *
69 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache"
70 * by N. Megiddo & D. Modha, FAST 2003
71 */
72
73/*
74 * The locking model:
75 *
76 * A new reference to a cache buffer can be obtained in two
77 * ways: 1) via a hash table lookup using the DVA as a key,
78 * or 2) via one of the ARC lists. The arc_read() interface
79 * uses method 1, while the internal arc algorithms for
80 * adjusting the cache use method 2. We therefor provide two
81 * types of locks: 1) the hash table lock array, and 2) the
82 * arc list locks.
83 *
5c839890
BC
84 * Buffers do not have their own mutexes, rather they rely on the
85 * hash table mutexes for the bulk of their protection (i.e. most
86 * fields in the arc_buf_hdr_t are protected by these mutexes).
34dc7c2f
BB
87 *
88 * buf_hash_find() returns the appropriate mutex (held) when it
89 * locates the requested buffer in the hash table. It returns
90 * NULL for the mutex if the buffer was not in the table.
91 *
92 * buf_hash_remove() expects the appropriate hash mutex to be
93 * already held before it is invoked.
94 *
95 * Each arc state also has a mutex which is used to protect the
96 * buffer list associated with the state. When attempting to
97 * obtain a hash table lock while holding an arc list lock you
98 * must use: mutex_tryenter() to avoid deadlock. Also note that
99 * the active state mutex must be held before the ghost state mutex.
100 *
101 * Arc buffers may have an associated eviction callback function.
102 * This function will be invoked prior to removing the buffer (e.g.
103 * in arc_do_user_evicts()). Note however that the data associated
104 * with the buffer may be evicted prior to the callback. The callback
105 * must be made with *no locks held* (to prevent deadlock). Additionally,
106 * the users of callbacks must ensure that their private data is
107 * protected from simultaneous callbacks from arc_buf_evict()
108 * and arc_do_user_evicts().
109 *
ab26409d
BB
110 * It as also possible to register a callback which is run when the
111 * arc_meta_limit is reached and no buffers can be safely evicted. In
112 * this case the arc user should drop a reference on some arc buffers so
113 * they can be reclaimed and the arc_meta_limit honored. For example,
114 * when using the ZPL each dentry holds a references on a znode. These
115 * dentries must be pruned before the arc buffer holding the znode can
116 * be safely evicted.
117 *
34dc7c2f
BB
118 * Note that the majority of the performance stats are manipulated
119 * with atomic operations.
120 *
121 * The L2ARC uses the l2arc_buflist_mtx global mutex for the following:
122 *
123 * - L2ARC buflist creation
124 * - L2ARC buflist eviction
125 * - L2ARC write completion, which walks L2ARC buflists
126 * - ARC header destruction, as it removes from L2ARC buflists
127 * - ARC header release, as it removes from L2ARC buflists
128 */
129
130#include <sys/spa.h>
131#include <sys/zio.h>
3a17a7a9 132#include <sys/zio_compress.h>
34dc7c2f
BB
133#include <sys/zfs_context.h>
134#include <sys/arc.h>
b128c09f 135#include <sys/vdev.h>
9babb374 136#include <sys/vdev_impl.h>
34dc7c2f
BB
137#ifdef _KERNEL
138#include <sys/vmsystm.h>
139#include <vm/anon.h>
140#include <sys/fs/swapnode.h>
ab26409d 141#include <sys/zpl.h>
34dc7c2f
BB
142#endif
143#include <sys/callb.h>
144#include <sys/kstat.h>
570827e1 145#include <sys/dmu_tx.h>
428870ff 146#include <zfs_fletcher.h>
34dc7c2f
BB
147
148static kmutex_t arc_reclaim_thr_lock;
149static kcondvar_t arc_reclaim_thr_cv; /* used to signal reclaim thr */
150static uint8_t arc_thread_exit;
151
ab26409d 152/* number of bytes to prune from caches when at arc_meta_limit is reached */
bce45ec9 153int zfs_arc_meta_prune = 1048576;
34dc7c2f
BB
154
155typedef enum arc_reclaim_strategy {
156 ARC_RECLAIM_AGGR, /* Aggressive reclaim strategy */
157 ARC_RECLAIM_CONS /* Conservative reclaim strategy */
158} arc_reclaim_strategy_t;
159
160/* number of seconds before growing cache again */
bce45ec9 161int zfs_arc_grow_retry = 5;
34dc7c2f 162
d164b209 163/* shift of arc_c for calculating both min and max arc_p */
bce45ec9 164int zfs_arc_p_min_shift = 4;
d164b209
BB
165
166/* log2(fraction of arc to reclaim) */
bce45ec9 167int zfs_arc_shrink_shift = 5;
d164b209 168
34dc7c2f
BB
169/*
170 * minimum lifespan of a prefetch block in clock ticks
171 * (initialized in arc_init())
172 */
bce45ec9
BB
173int zfs_arc_min_prefetch_lifespan = HZ;
174
175/* disable arc proactive arc throttle due to low memory */
176int zfs_arc_memory_throttle_disable = 1;
177
178/* disable duplicate buffer eviction */
179int zfs_disable_dup_eviction = 0;
34dc7c2f
BB
180
181static int arc_dead;
182
bce45ec9
BB
183/* expiration time for arc_no_grow */
184static clock_t arc_grow_time = 0;
185
b128c09f
BB
186/*
187 * The arc has filled available memory and has now warmed up.
188 */
189static boolean_t arc_warm;
190
34dc7c2f
BB
191/*
192 * These tunables are for performance analysis.
193 */
c28b2279
BB
194unsigned long zfs_arc_max = 0;
195unsigned long zfs_arc_min = 0;
196unsigned long zfs_arc_meta_limit = 0;
34dc7c2f
BB
197
198/*
199 * Note that buffers can be in one of 6 states:
200 * ARC_anon - anonymous (discussed below)
201 * ARC_mru - recently used, currently cached
202 * ARC_mru_ghost - recentely used, no longer in cache
203 * ARC_mfu - frequently used, currently cached
204 * ARC_mfu_ghost - frequently used, no longer in cache
205 * ARC_l2c_only - exists in L2ARC but not other states
206 * When there are no active references to the buffer, they are
207 * are linked onto a list in one of these arc states. These are
208 * the only buffers that can be evicted or deleted. Within each
209 * state there are multiple lists, one for meta-data and one for
210 * non-meta-data. Meta-data (indirect blocks, blocks of dnodes,
211 * etc.) is tracked separately so that it can be managed more
212 * explicitly: favored over data, limited explicitly.
213 *
214 * Anonymous buffers are buffers that are not associated with
215 * a DVA. These are buffers that hold dirty block copies
216 * before they are written to stable storage. By definition,
217 * they are "ref'd" and are considered part of arc_mru
218 * that cannot be freed. Generally, they will aquire a DVA
219 * as they are written and migrate onto the arc_mru list.
220 *
221 * The ARC_l2c_only state is for buffers that are in the second
222 * level ARC but no longer in any of the ARC_m* lists. The second
223 * level ARC itself may also contain buffers that are in any of
224 * the ARC_m* states - meaning that a buffer can exist in two
225 * places. The reason for the ARC_l2c_only state is to keep the
226 * buffer header in the hash table, so that reads that hit the
227 * second level ARC benefit from these fast lookups.
228 */
229
230typedef struct arc_state {
231 list_t arcs_list[ARC_BUFC_NUMTYPES]; /* list of evictable buffers */
232 uint64_t arcs_lsize[ARC_BUFC_NUMTYPES]; /* amount of evictable data */
233 uint64_t arcs_size; /* total amount of data in this state */
234 kmutex_t arcs_mtx;
e0b0ca98 235 arc_state_type_t arcs_state;
34dc7c2f
BB
236} arc_state_t;
237
238/* The 6 states: */
239static arc_state_t ARC_anon;
240static arc_state_t ARC_mru;
241static arc_state_t ARC_mru_ghost;
242static arc_state_t ARC_mfu;
243static arc_state_t ARC_mfu_ghost;
244static arc_state_t ARC_l2c_only;
245
246typedef struct arc_stats {
247 kstat_named_t arcstat_hits;
248 kstat_named_t arcstat_misses;
249 kstat_named_t arcstat_demand_data_hits;
250 kstat_named_t arcstat_demand_data_misses;
251 kstat_named_t arcstat_demand_metadata_hits;
252 kstat_named_t arcstat_demand_metadata_misses;
253 kstat_named_t arcstat_prefetch_data_hits;
254 kstat_named_t arcstat_prefetch_data_misses;
255 kstat_named_t arcstat_prefetch_metadata_hits;
256 kstat_named_t arcstat_prefetch_metadata_misses;
257 kstat_named_t arcstat_mru_hits;
258 kstat_named_t arcstat_mru_ghost_hits;
259 kstat_named_t arcstat_mfu_hits;
260 kstat_named_t arcstat_mfu_ghost_hits;
261 kstat_named_t arcstat_deleted;
262 kstat_named_t arcstat_recycle_miss;
e49f1e20
WA
263 /*
264 * Number of buffers that could not be evicted because the hash lock
265 * was held by another thread. The lock may not necessarily be held
266 * by something using the same buffer, since hash locks are shared
267 * by multiple buffers.
268 */
34dc7c2f 269 kstat_named_t arcstat_mutex_miss;
e49f1e20
WA
270 /*
271 * Number of buffers skipped because they have I/O in progress, are
272 * indrect prefetch buffers that have not lived long enough, or are
273 * not from the spa we're trying to evict from.
274 */
34dc7c2f 275 kstat_named_t arcstat_evict_skip;
428870ff
BB
276 kstat_named_t arcstat_evict_l2_cached;
277 kstat_named_t arcstat_evict_l2_eligible;
278 kstat_named_t arcstat_evict_l2_ineligible;
34dc7c2f
BB
279 kstat_named_t arcstat_hash_elements;
280 kstat_named_t arcstat_hash_elements_max;
281 kstat_named_t arcstat_hash_collisions;
282 kstat_named_t arcstat_hash_chains;
283 kstat_named_t arcstat_hash_chain_max;
284 kstat_named_t arcstat_p;
285 kstat_named_t arcstat_c;
286 kstat_named_t arcstat_c_min;
287 kstat_named_t arcstat_c_max;
288 kstat_named_t arcstat_size;
289 kstat_named_t arcstat_hdr_size;
d164b209
BB
290 kstat_named_t arcstat_data_size;
291 kstat_named_t arcstat_other_size;
13be560d
BB
292 kstat_named_t arcstat_anon_size;
293 kstat_named_t arcstat_anon_evict_data;
294 kstat_named_t arcstat_anon_evict_metadata;
295 kstat_named_t arcstat_mru_size;
296 kstat_named_t arcstat_mru_evict_data;
297 kstat_named_t arcstat_mru_evict_metadata;
298 kstat_named_t arcstat_mru_ghost_size;
299 kstat_named_t arcstat_mru_ghost_evict_data;
300 kstat_named_t arcstat_mru_ghost_evict_metadata;
301 kstat_named_t arcstat_mfu_size;
302 kstat_named_t arcstat_mfu_evict_data;
303 kstat_named_t arcstat_mfu_evict_metadata;
304 kstat_named_t arcstat_mfu_ghost_size;
305 kstat_named_t arcstat_mfu_ghost_evict_data;
306 kstat_named_t arcstat_mfu_ghost_evict_metadata;
34dc7c2f
BB
307 kstat_named_t arcstat_l2_hits;
308 kstat_named_t arcstat_l2_misses;
309 kstat_named_t arcstat_l2_feeds;
310 kstat_named_t arcstat_l2_rw_clash;
d164b209
BB
311 kstat_named_t arcstat_l2_read_bytes;
312 kstat_named_t arcstat_l2_write_bytes;
34dc7c2f
BB
313 kstat_named_t arcstat_l2_writes_sent;
314 kstat_named_t arcstat_l2_writes_done;
315 kstat_named_t arcstat_l2_writes_error;
316 kstat_named_t arcstat_l2_writes_hdr_miss;
317 kstat_named_t arcstat_l2_evict_lock_retry;
318 kstat_named_t arcstat_l2_evict_reading;
319 kstat_named_t arcstat_l2_free_on_write;
320 kstat_named_t arcstat_l2_abort_lowmem;
321 kstat_named_t arcstat_l2_cksum_bad;
322 kstat_named_t arcstat_l2_io_error;
323 kstat_named_t arcstat_l2_size;
3a17a7a9 324 kstat_named_t arcstat_l2_asize;
34dc7c2f 325 kstat_named_t arcstat_l2_hdr_size;
3a17a7a9
SK
326 kstat_named_t arcstat_l2_compress_successes;
327 kstat_named_t arcstat_l2_compress_zeros;
328 kstat_named_t arcstat_l2_compress_failures;
34dc7c2f 329 kstat_named_t arcstat_memory_throttle_count;
1eb5bfa3
GW
330 kstat_named_t arcstat_duplicate_buffers;
331 kstat_named_t arcstat_duplicate_buffers_size;
332 kstat_named_t arcstat_duplicate_reads;
7cb67b45
BB
333 kstat_named_t arcstat_memory_direct_count;
334 kstat_named_t arcstat_memory_indirect_count;
1834f2d8
BB
335 kstat_named_t arcstat_no_grow;
336 kstat_named_t arcstat_tempreserve;
337 kstat_named_t arcstat_loaned_bytes;
ab26409d 338 kstat_named_t arcstat_prune;
1834f2d8
BB
339 kstat_named_t arcstat_meta_used;
340 kstat_named_t arcstat_meta_limit;
341 kstat_named_t arcstat_meta_max;
34dc7c2f
BB
342} arc_stats_t;
343
344static arc_stats_t arc_stats = {
345 { "hits", KSTAT_DATA_UINT64 },
346 { "misses", KSTAT_DATA_UINT64 },
347 { "demand_data_hits", KSTAT_DATA_UINT64 },
348 { "demand_data_misses", KSTAT_DATA_UINT64 },
349 { "demand_metadata_hits", KSTAT_DATA_UINT64 },
350 { "demand_metadata_misses", KSTAT_DATA_UINT64 },
351 { "prefetch_data_hits", KSTAT_DATA_UINT64 },
352 { "prefetch_data_misses", KSTAT_DATA_UINT64 },
353 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 },
354 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 },
355 { "mru_hits", KSTAT_DATA_UINT64 },
356 { "mru_ghost_hits", KSTAT_DATA_UINT64 },
357 { "mfu_hits", KSTAT_DATA_UINT64 },
358 { "mfu_ghost_hits", KSTAT_DATA_UINT64 },
359 { "deleted", KSTAT_DATA_UINT64 },
360 { "recycle_miss", KSTAT_DATA_UINT64 },
361 { "mutex_miss", KSTAT_DATA_UINT64 },
362 { "evict_skip", KSTAT_DATA_UINT64 },
428870ff
BB
363 { "evict_l2_cached", KSTAT_DATA_UINT64 },
364 { "evict_l2_eligible", KSTAT_DATA_UINT64 },
365 { "evict_l2_ineligible", KSTAT_DATA_UINT64 },
34dc7c2f
BB
366 { "hash_elements", KSTAT_DATA_UINT64 },
367 { "hash_elements_max", KSTAT_DATA_UINT64 },
368 { "hash_collisions", KSTAT_DATA_UINT64 },
369 { "hash_chains", KSTAT_DATA_UINT64 },
370 { "hash_chain_max", KSTAT_DATA_UINT64 },
371 { "p", KSTAT_DATA_UINT64 },
372 { "c", KSTAT_DATA_UINT64 },
373 { "c_min", KSTAT_DATA_UINT64 },
374 { "c_max", KSTAT_DATA_UINT64 },
375 { "size", KSTAT_DATA_UINT64 },
376 { "hdr_size", KSTAT_DATA_UINT64 },
d164b209
BB
377 { "data_size", KSTAT_DATA_UINT64 },
378 { "other_size", KSTAT_DATA_UINT64 },
13be560d
BB
379 { "anon_size", KSTAT_DATA_UINT64 },
380 { "anon_evict_data", KSTAT_DATA_UINT64 },
381 { "anon_evict_metadata", KSTAT_DATA_UINT64 },
382 { "mru_size", KSTAT_DATA_UINT64 },
383 { "mru_evict_data", KSTAT_DATA_UINT64 },
384 { "mru_evict_metadata", KSTAT_DATA_UINT64 },
385 { "mru_ghost_size", KSTAT_DATA_UINT64 },
386 { "mru_ghost_evict_data", KSTAT_DATA_UINT64 },
387 { "mru_ghost_evict_metadata", KSTAT_DATA_UINT64 },
388 { "mfu_size", KSTAT_DATA_UINT64 },
389 { "mfu_evict_data", KSTAT_DATA_UINT64 },
390 { "mfu_evict_metadata", KSTAT_DATA_UINT64 },
391 { "mfu_ghost_size", KSTAT_DATA_UINT64 },
392 { "mfu_ghost_evict_data", KSTAT_DATA_UINT64 },
393 { "mfu_ghost_evict_metadata", KSTAT_DATA_UINT64 },
34dc7c2f
BB
394 { "l2_hits", KSTAT_DATA_UINT64 },
395 { "l2_misses", KSTAT_DATA_UINT64 },
396 { "l2_feeds", KSTAT_DATA_UINT64 },
397 { "l2_rw_clash", KSTAT_DATA_UINT64 },
d164b209
BB
398 { "l2_read_bytes", KSTAT_DATA_UINT64 },
399 { "l2_write_bytes", KSTAT_DATA_UINT64 },
34dc7c2f
BB
400 { "l2_writes_sent", KSTAT_DATA_UINT64 },
401 { "l2_writes_done", KSTAT_DATA_UINT64 },
402 { "l2_writes_error", KSTAT_DATA_UINT64 },
403 { "l2_writes_hdr_miss", KSTAT_DATA_UINT64 },
404 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 },
405 { "l2_evict_reading", KSTAT_DATA_UINT64 },
406 { "l2_free_on_write", KSTAT_DATA_UINT64 },
407 { "l2_abort_lowmem", KSTAT_DATA_UINT64 },
408 { "l2_cksum_bad", KSTAT_DATA_UINT64 },
409 { "l2_io_error", KSTAT_DATA_UINT64 },
410 { "l2_size", KSTAT_DATA_UINT64 },
3a17a7a9 411 { "l2_asize", KSTAT_DATA_UINT64 },
34dc7c2f 412 { "l2_hdr_size", KSTAT_DATA_UINT64 },
3a17a7a9
SK
413 { "l2_compress_successes", KSTAT_DATA_UINT64 },
414 { "l2_compress_zeros", KSTAT_DATA_UINT64 },
415 { "l2_compress_failures", KSTAT_DATA_UINT64 },
1834f2d8 416 { "memory_throttle_count", KSTAT_DATA_UINT64 },
1eb5bfa3
GW
417 { "duplicate_buffers", KSTAT_DATA_UINT64 },
418 { "duplicate_buffers_size", KSTAT_DATA_UINT64 },
419 { "duplicate_reads", KSTAT_DATA_UINT64 },
7cb67b45
BB
420 { "memory_direct_count", KSTAT_DATA_UINT64 },
421 { "memory_indirect_count", KSTAT_DATA_UINT64 },
1834f2d8
BB
422 { "arc_no_grow", KSTAT_DATA_UINT64 },
423 { "arc_tempreserve", KSTAT_DATA_UINT64 },
424 { "arc_loaned_bytes", KSTAT_DATA_UINT64 },
ab26409d 425 { "arc_prune", KSTAT_DATA_UINT64 },
1834f2d8
BB
426 { "arc_meta_used", KSTAT_DATA_UINT64 },
427 { "arc_meta_limit", KSTAT_DATA_UINT64 },
428 { "arc_meta_max", KSTAT_DATA_UINT64 },
34dc7c2f
BB
429};
430
431#define ARCSTAT(stat) (arc_stats.stat.value.ui64)
432
433#define ARCSTAT_INCR(stat, val) \
434 atomic_add_64(&arc_stats.stat.value.ui64, (val));
435
428870ff 436#define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1)
34dc7c2f
BB
437#define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1)
438
439#define ARCSTAT_MAX(stat, val) { \
440 uint64_t m; \
441 while ((val) > (m = arc_stats.stat.value.ui64) && \
442 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \
443 continue; \
444}
445
446#define ARCSTAT_MAXSTAT(stat) \
447 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
448
449/*
450 * We define a macro to allow ARC hits/misses to be easily broken down by
451 * two separate conditions, giving a total of four different subtypes for
452 * each of hits and misses (so eight statistics total).
453 */
454#define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
455 if (cond1) { \
456 if (cond2) { \
457 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
458 } else { \
459 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
460 } \
461 } else { \
462 if (cond2) { \
463 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
464 } else { \
465 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
466 } \
467 }
468
469kstat_t *arc_ksp;
428870ff 470static arc_state_t *arc_anon;
34dc7c2f
BB
471static arc_state_t *arc_mru;
472static arc_state_t *arc_mru_ghost;
473static arc_state_t *arc_mfu;
474static arc_state_t *arc_mfu_ghost;
475static arc_state_t *arc_l2c_only;
476
477/*
478 * There are several ARC variables that are critical to export as kstats --
479 * but we don't want to have to grovel around in the kstat whenever we wish to
480 * manipulate them. For these variables, we therefore define them to be in
481 * terms of the statistic variable. This assures that we are not introducing
482 * the possibility of inconsistency by having shadow copies of the variables,
483 * while still allowing the code to be readable.
484 */
485#define arc_size ARCSTAT(arcstat_size) /* actual total arc size */
486#define arc_p ARCSTAT(arcstat_p) /* target size of MRU */
487#define arc_c ARCSTAT(arcstat_c) /* target size of cache */
488#define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */
489#define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */
1834f2d8
BB
490#define arc_no_grow ARCSTAT(arcstat_no_grow)
491#define arc_tempreserve ARCSTAT(arcstat_tempreserve)
492#define arc_loaned_bytes ARCSTAT(arcstat_loaned_bytes)
23c0a133
GW
493#define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */
494#define arc_meta_used ARCSTAT(arcstat_meta_used) /* size of metadata */
495#define arc_meta_max ARCSTAT(arcstat_meta_max) /* max size of metadata */
34dc7c2f 496
3a17a7a9
SK
497#define L2ARC_IS_VALID_COMPRESS(_c_) \
498 ((_c_) == ZIO_COMPRESS_LZ4 || (_c_) == ZIO_COMPRESS_EMPTY)
499
34dc7c2f
BB
500typedef struct l2arc_buf_hdr l2arc_buf_hdr_t;
501
502typedef struct arc_callback arc_callback_t;
503
504struct arc_callback {
505 void *acb_private;
506 arc_done_func_t *acb_done;
34dc7c2f
BB
507 arc_buf_t *acb_buf;
508 zio_t *acb_zio_dummy;
509 arc_callback_t *acb_next;
510};
511
512typedef struct arc_write_callback arc_write_callback_t;
513
514struct arc_write_callback {
515 void *awcb_private;
516 arc_done_func_t *awcb_ready;
517 arc_done_func_t *awcb_done;
518 arc_buf_t *awcb_buf;
519};
520
521struct arc_buf_hdr {
522 /* protected by hash lock */
523 dva_t b_dva;
524 uint64_t b_birth;
525 uint64_t b_cksum0;
526
527 kmutex_t b_freeze_lock;
528 zio_cksum_t *b_freeze_cksum;
529
530 arc_buf_hdr_t *b_hash_next;
531 arc_buf_t *b_buf;
532 uint32_t b_flags;
533 uint32_t b_datacnt;
534
535 arc_callback_t *b_acb;
536 kcondvar_t b_cv;
537
538 /* immutable */
539 arc_buf_contents_t b_type;
540 uint64_t b_size;
d164b209 541 uint64_t b_spa;
34dc7c2f
BB
542
543 /* protected by arc state mutex */
544 arc_state_t *b_state;
545 list_node_t b_arc_node;
546
547 /* updated atomically */
548 clock_t b_arc_access;
e0b0ca98
BB
549 uint32_t b_mru_hits;
550 uint32_t b_mru_ghost_hits;
551 uint32_t b_mfu_hits;
552 uint32_t b_mfu_ghost_hits;
553 uint32_t b_l2_hits;
34dc7c2f
BB
554
555 /* self protecting */
556 refcount_t b_refcnt;
557
558 l2arc_buf_hdr_t *b_l2hdr;
559 list_node_t b_l2node;
560};
561
ab26409d
BB
562static list_t arc_prune_list;
563static kmutex_t arc_prune_mtx;
34dc7c2f
BB
564static arc_buf_t *arc_eviction_list;
565static kmutex_t arc_eviction_mtx;
566static arc_buf_hdr_t arc_eviction_hdr;
567static void arc_get_data_buf(arc_buf_t *buf);
568static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock);
569static int arc_evict_needed(arc_buf_contents_t type);
68121a03
BB
570static void arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes,
571 arc_buf_contents_t type);
34dc7c2f 572
428870ff
BB
573static boolean_t l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab);
574
34dc7c2f
BB
575#define GHOST_STATE(state) \
576 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \
577 (state) == arc_l2c_only)
578
579/*
580 * Private ARC flags. These flags are private ARC only flags that will show up
581 * in b_flags in the arc_hdr_buf_t. Some flags are publicly declared, and can
582 * be passed in as arc_flags in things like arc_read. However, these flags
583 * should never be passed and should only be set by ARC code. When adding new
584 * public flags, make sure not to smash the private ones.
585 */
586
587#define ARC_IN_HASH_TABLE (1 << 9) /* this buffer is hashed */
588#define ARC_IO_IN_PROGRESS (1 << 10) /* I/O in progress for buf */
589#define ARC_IO_ERROR (1 << 11) /* I/O failed for buf */
590#define ARC_FREED_IN_READ (1 << 12) /* buf freed while in read */
591#define ARC_BUF_AVAILABLE (1 << 13) /* block not in active use */
592#define ARC_INDIRECT (1 << 14) /* this is an indirect block */
593#define ARC_FREE_IN_PROGRESS (1 << 15) /* hdr about to be freed */
b128c09f
BB
594#define ARC_L2_WRITING (1 << 16) /* L2ARC write in progress */
595#define ARC_L2_EVICTED (1 << 17) /* evicted during I/O */
596#define ARC_L2_WRITE_HEAD (1 << 18) /* head of write list */
34dc7c2f
BB
597
598#define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_IN_HASH_TABLE)
599#define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS)
600#define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_IO_ERROR)
d164b209 601#define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_PREFETCH)
34dc7c2f
BB
602#define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FREED_IN_READ)
603#define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_BUF_AVAILABLE)
604#define HDR_FREE_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FREE_IN_PROGRESS)
b128c09f
BB
605#define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_L2CACHE)
606#define HDR_L2_READING(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS && \
607 (hdr)->b_l2hdr != NULL)
34dc7c2f
BB
608#define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_L2_WRITING)
609#define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_L2_EVICTED)
610#define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_L2_WRITE_HEAD)
611
612/*
613 * Other sizes
614 */
615
616#define HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
617#define L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t))
618
619/*
620 * Hash table routines
621 */
622
00b46022
BB
623#define HT_LOCK_ALIGN 64
624#define HT_LOCK_PAD (P2NPHASE(sizeof (kmutex_t), (HT_LOCK_ALIGN)))
34dc7c2f
BB
625
626struct ht_lock {
627 kmutex_t ht_lock;
628#ifdef _KERNEL
00b46022 629 unsigned char pad[HT_LOCK_PAD];
34dc7c2f
BB
630#endif
631};
632
633#define BUF_LOCKS 256
634typedef struct buf_hash_table {
635 uint64_t ht_mask;
636 arc_buf_hdr_t **ht_table;
637 struct ht_lock ht_locks[BUF_LOCKS];
638} buf_hash_table_t;
639
640static buf_hash_table_t buf_hash_table;
641
642#define BUF_HASH_INDEX(spa, dva, birth) \
643 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
644#define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
645#define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
428870ff
BB
646#define HDR_LOCK(hdr) \
647 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
34dc7c2f
BB
648
649uint64_t zfs_crc64_table[256];
650
651/*
652 * Level 2 ARC
653 */
654
655#define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */
3a17a7a9
SK
656#define L2ARC_HEADROOM 2 /* num of writes */
657/*
658 * If we discover during ARC scan any buffers to be compressed, we boost
659 * our headroom for the next scanning cycle by this percentage multiple.
660 */
661#define L2ARC_HEADROOM_BOOST 200
d164b209
BB
662#define L2ARC_FEED_SECS 1 /* caching interval secs */
663#define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */
34dc7c2f
BB
664
665#define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent)
666#define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done)
667
668/*
669 * L2ARC Performance Tunables
670 */
abd8610c
BB
671unsigned long l2arc_write_max = L2ARC_WRITE_SIZE; /* def max write size */
672unsigned long l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra warmup write */
673unsigned long l2arc_headroom = L2ARC_HEADROOM; /* # of dev writes */
3a17a7a9 674unsigned long l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
abd8610c
BB
675unsigned long l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */
676unsigned long l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval msecs */
677int l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */
3a17a7a9 678int l2arc_nocompress = B_FALSE; /* don't compress bufs */
abd8610c 679int l2arc_feed_again = B_TRUE; /* turbo warmup */
c93504f0 680int l2arc_norw = B_FALSE; /* no reads during writes */
34dc7c2f
BB
681
682/*
683 * L2ARC Internals
684 */
685typedef struct l2arc_dev {
686 vdev_t *l2ad_vdev; /* vdev */
687 spa_t *l2ad_spa; /* spa */
688 uint64_t l2ad_hand; /* next write location */
34dc7c2f
BB
689 uint64_t l2ad_start; /* first addr on device */
690 uint64_t l2ad_end; /* last addr on device */
691 uint64_t l2ad_evict; /* last addr eviction reached */
692 boolean_t l2ad_first; /* first sweep through */
d164b209 693 boolean_t l2ad_writing; /* currently writing */
34dc7c2f
BB
694 list_t *l2ad_buflist; /* buffer list */
695 list_node_t l2ad_node; /* device list node */
696} l2arc_dev_t;
697
698static list_t L2ARC_dev_list; /* device list */
699static list_t *l2arc_dev_list; /* device list pointer */
700static kmutex_t l2arc_dev_mtx; /* device list mutex */
701static l2arc_dev_t *l2arc_dev_last; /* last device used */
702static kmutex_t l2arc_buflist_mtx; /* mutex for all buflists */
703static list_t L2ARC_free_on_write; /* free after write buf list */
704static list_t *l2arc_free_on_write; /* free after write list ptr */
705static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */
706static uint64_t l2arc_ndev; /* number of devices */
707
708typedef struct l2arc_read_callback {
3a17a7a9
SK
709 arc_buf_t *l2rcb_buf; /* read buffer */
710 spa_t *l2rcb_spa; /* spa */
711 blkptr_t l2rcb_bp; /* original blkptr */
712 zbookmark_t l2rcb_zb; /* original bookmark */
713 int l2rcb_flags; /* original flags */
714 enum zio_compress l2rcb_compress; /* applied compress */
34dc7c2f
BB
715} l2arc_read_callback_t;
716
717typedef struct l2arc_write_callback {
718 l2arc_dev_t *l2wcb_dev; /* device info */
719 arc_buf_hdr_t *l2wcb_head; /* head of write buflist */
720} l2arc_write_callback_t;
721
722struct l2arc_buf_hdr {
723 /* protected by arc_buf_hdr mutex */
3a17a7a9
SK
724 l2arc_dev_t *b_dev; /* L2ARC device */
725 uint64_t b_daddr; /* disk address, offset byte */
726 /* compression applied to buffer data */
727 enum zio_compress b_compress;
728 /* real alloc'd buffer size depending on b_compress applied */
e0b0ca98
BB
729 uint32_t b_asize;
730 uint32_t b_hits;
3a17a7a9
SK
731 /* temporary buffer holder for in-flight compressed data */
732 void *b_tmp_cdata;
34dc7c2f
BB
733};
734
735typedef struct l2arc_data_free {
736 /* protected by l2arc_free_on_write_mtx */
737 void *l2df_data;
738 size_t l2df_size;
739 void (*l2df_func)(void *, size_t);
740 list_node_t l2df_list_node;
741} l2arc_data_free_t;
742
743static kmutex_t l2arc_feed_thr_lock;
744static kcondvar_t l2arc_feed_thr_cv;
745static uint8_t l2arc_thread_exit;
746
747static void l2arc_read_done(zio_t *zio);
748static void l2arc_hdr_stat_add(void);
749static void l2arc_hdr_stat_remove(void);
750
3a17a7a9
SK
751static boolean_t l2arc_compress_buf(l2arc_buf_hdr_t *l2hdr);
752static void l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr,
753 enum zio_compress c);
754static void l2arc_release_cdata_buf(arc_buf_hdr_t *ab);
755
34dc7c2f 756static uint64_t
d164b209 757buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
34dc7c2f 758{
34dc7c2f
BB
759 uint8_t *vdva = (uint8_t *)dva;
760 uint64_t crc = -1ULL;
761 int i;
762
763 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
764
765 for (i = 0; i < sizeof (dva_t); i++)
766 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
767
d164b209 768 crc ^= (spa>>8) ^ birth;
34dc7c2f
BB
769
770 return (crc);
771}
772
773#define BUF_EMPTY(buf) \
774 ((buf)->b_dva.dva_word[0] == 0 && \
775 (buf)->b_dva.dva_word[1] == 0 && \
776 (buf)->b_birth == 0)
777
778#define BUF_EQUAL(spa, dva, birth, buf) \
779 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \
780 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \
781 ((buf)->b_birth == birth) && ((buf)->b_spa == spa)
782
428870ff
BB
783static void
784buf_discard_identity(arc_buf_hdr_t *hdr)
785{
786 hdr->b_dva.dva_word[0] = 0;
787 hdr->b_dva.dva_word[1] = 0;
788 hdr->b_birth = 0;
789 hdr->b_cksum0 = 0;
790}
791
34dc7c2f 792static arc_buf_hdr_t *
d164b209 793buf_hash_find(uint64_t spa, const dva_t *dva, uint64_t birth, kmutex_t **lockp)
34dc7c2f
BB
794{
795 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
796 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
797 arc_buf_hdr_t *buf;
798
799 mutex_enter(hash_lock);
800 for (buf = buf_hash_table.ht_table[idx]; buf != NULL;
801 buf = buf->b_hash_next) {
802 if (BUF_EQUAL(spa, dva, birth, buf)) {
803 *lockp = hash_lock;
804 return (buf);
805 }
806 }
807 mutex_exit(hash_lock);
808 *lockp = NULL;
809 return (NULL);
810}
811
812/*
813 * Insert an entry into the hash table. If there is already an element
814 * equal to elem in the hash table, then the already existing element
815 * will be returned and the new element will not be inserted.
816 * Otherwise returns NULL.
817 */
818static arc_buf_hdr_t *
819buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp)
820{
821 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
822 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
823 arc_buf_hdr_t *fbuf;
824 uint32_t i;
825
826 ASSERT(!HDR_IN_HASH_TABLE(buf));
827 *lockp = hash_lock;
828 mutex_enter(hash_lock);
829 for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL;
830 fbuf = fbuf->b_hash_next, i++) {
831 if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf))
832 return (fbuf);
833 }
834
835 buf->b_hash_next = buf_hash_table.ht_table[idx];
836 buf_hash_table.ht_table[idx] = buf;
837 buf->b_flags |= ARC_IN_HASH_TABLE;
838
839 /* collect some hash table performance data */
840 if (i > 0) {
841 ARCSTAT_BUMP(arcstat_hash_collisions);
842 if (i == 1)
843 ARCSTAT_BUMP(arcstat_hash_chains);
844
845 ARCSTAT_MAX(arcstat_hash_chain_max, i);
846 }
847
848 ARCSTAT_BUMP(arcstat_hash_elements);
849 ARCSTAT_MAXSTAT(arcstat_hash_elements);
850
851 return (NULL);
852}
853
854static void
855buf_hash_remove(arc_buf_hdr_t *buf)
856{
857 arc_buf_hdr_t *fbuf, **bufp;
858 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
859
860 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
861 ASSERT(HDR_IN_HASH_TABLE(buf));
862
863 bufp = &buf_hash_table.ht_table[idx];
864 while ((fbuf = *bufp) != buf) {
865 ASSERT(fbuf != NULL);
866 bufp = &fbuf->b_hash_next;
867 }
868 *bufp = buf->b_hash_next;
869 buf->b_hash_next = NULL;
870 buf->b_flags &= ~ARC_IN_HASH_TABLE;
871
872 /* collect some hash table performance data */
873 ARCSTAT_BUMPDOWN(arcstat_hash_elements);
874
875 if (buf_hash_table.ht_table[idx] &&
876 buf_hash_table.ht_table[idx]->b_hash_next == NULL)
877 ARCSTAT_BUMPDOWN(arcstat_hash_chains);
878}
879
880/*
881 * Global data structures and functions for the buf kmem cache.
882 */
883static kmem_cache_t *hdr_cache;
884static kmem_cache_t *buf_cache;
885
886static void
887buf_fini(void)
888{
889 int i;
890
00b46022
BB
891#if defined(_KERNEL) && defined(HAVE_SPL)
892 /* Large allocations which do not require contiguous pages
893 * should be using vmem_free() in the linux kernel */
894 vmem_free(buf_hash_table.ht_table,
895 (buf_hash_table.ht_mask + 1) * sizeof (void *));
896#else
34dc7c2f
BB
897 kmem_free(buf_hash_table.ht_table,
898 (buf_hash_table.ht_mask + 1) * sizeof (void *));
00b46022 899#endif
34dc7c2f
BB
900 for (i = 0; i < BUF_LOCKS; i++)
901 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
902 kmem_cache_destroy(hdr_cache);
903 kmem_cache_destroy(buf_cache);
904}
905
906/*
907 * Constructor callback - called when the cache is empty
908 * and a new buf is requested.
909 */
910/* ARGSUSED */
911static int
912hdr_cons(void *vbuf, void *unused, int kmflag)
913{
914 arc_buf_hdr_t *buf = vbuf;
915
916 bzero(buf, sizeof (arc_buf_hdr_t));
917 refcount_create(&buf->b_refcnt);
918 cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL);
919 mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
98f72a53
BB
920 list_link_init(&buf->b_arc_node);
921 list_link_init(&buf->b_l2node);
d164b209 922 arc_space_consume(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
34dc7c2f 923
34dc7c2f
BB
924 return (0);
925}
926
b128c09f
BB
927/* ARGSUSED */
928static int
929buf_cons(void *vbuf, void *unused, int kmflag)
930{
931 arc_buf_t *buf = vbuf;
932
933 bzero(buf, sizeof (arc_buf_t));
428870ff 934 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
d164b209
BB
935 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
936
b128c09f
BB
937 return (0);
938}
939
34dc7c2f
BB
940/*
941 * Destructor callback - called when a cached buf is
942 * no longer required.
943 */
944/* ARGSUSED */
945static void
946hdr_dest(void *vbuf, void *unused)
947{
948 arc_buf_hdr_t *buf = vbuf;
949
428870ff 950 ASSERT(BUF_EMPTY(buf));
34dc7c2f
BB
951 refcount_destroy(&buf->b_refcnt);
952 cv_destroy(&buf->b_cv);
953 mutex_destroy(&buf->b_freeze_lock);
d164b209 954 arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
34dc7c2f
BB
955}
956
b128c09f
BB
957/* ARGSUSED */
958static void
959buf_dest(void *vbuf, void *unused)
960{
961 arc_buf_t *buf = vbuf;
962
428870ff 963 mutex_destroy(&buf->b_evict_lock);
d164b209 964 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
b128c09f
BB
965}
966
34dc7c2f
BB
967static void
968buf_init(void)
969{
970 uint64_t *ct;
971 uint64_t hsize = 1ULL << 12;
972 int i, j;
973
974 /*
975 * The hash table is big enough to fill all of physical memory
976 * with an average 64K block size. The table will take up
977 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers).
978 */
979 while (hsize * 65536 < physmem * PAGESIZE)
980 hsize <<= 1;
981retry:
982 buf_hash_table.ht_mask = hsize - 1;
00b46022
BB
983#if defined(_KERNEL) && defined(HAVE_SPL)
984 /* Large allocations which do not require contiguous pages
985 * should be using vmem_alloc() in the linux kernel */
986 buf_hash_table.ht_table =
987 vmem_zalloc(hsize * sizeof (void*), KM_SLEEP);
988#else
34dc7c2f
BB
989 buf_hash_table.ht_table =
990 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
00b46022 991#endif
34dc7c2f
BB
992 if (buf_hash_table.ht_table == NULL) {
993 ASSERT(hsize > (1ULL << 8));
994 hsize >>= 1;
995 goto retry;
996 }
997
998 hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t),
302f753f 999 0, hdr_cons, hdr_dest, NULL, NULL, NULL, 0);
34dc7c2f 1000 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
b128c09f 1001 0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
34dc7c2f
BB
1002
1003 for (i = 0; i < 256; i++)
1004 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1005 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1006
1007 for (i = 0; i < BUF_LOCKS; i++) {
1008 mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
1009 NULL, MUTEX_DEFAULT, NULL);
1010 }
1011}
1012
1013#define ARC_MINTIME (hz>>4) /* 62 ms */
1014
1015static void
1016arc_cksum_verify(arc_buf_t *buf)
1017{
1018 zio_cksum_t zc;
1019
1020 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1021 return;
1022
1023 mutex_enter(&buf->b_hdr->b_freeze_lock);
1024 if (buf->b_hdr->b_freeze_cksum == NULL ||
1025 (buf->b_hdr->b_flags & ARC_IO_ERROR)) {
1026 mutex_exit(&buf->b_hdr->b_freeze_lock);
1027 return;
1028 }
1029 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
1030 if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
1031 panic("buffer modified while frozen!");
1032 mutex_exit(&buf->b_hdr->b_freeze_lock);
1033}
1034
1035static int
1036arc_cksum_equal(arc_buf_t *buf)
1037{
1038 zio_cksum_t zc;
1039 int equal;
1040
1041 mutex_enter(&buf->b_hdr->b_freeze_lock);
1042 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
1043 equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
1044 mutex_exit(&buf->b_hdr->b_freeze_lock);
1045
1046 return (equal);
1047}
1048
1049static void
1050arc_cksum_compute(arc_buf_t *buf, boolean_t force)
1051{
1052 if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
1053 return;
1054
1055 mutex_enter(&buf->b_hdr->b_freeze_lock);
1056 if (buf->b_hdr->b_freeze_cksum != NULL) {
1057 mutex_exit(&buf->b_hdr->b_freeze_lock);
1058 return;
1059 }
409dc1a5
PS
1060 buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
1061 KM_PUSHPAGE);
34dc7c2f
BB
1062 fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
1063 buf->b_hdr->b_freeze_cksum);
1064 mutex_exit(&buf->b_hdr->b_freeze_lock);
1065}
1066
1067void
1068arc_buf_thaw(arc_buf_t *buf)
1069{
1070 if (zfs_flags & ZFS_DEBUG_MODIFY) {
1071 if (buf->b_hdr->b_state != arc_anon)
1072 panic("modifying non-anon buffer!");
1073 if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS)
1074 panic("modifying buffer while i/o in progress!");
1075 arc_cksum_verify(buf);
1076 }
1077
1078 mutex_enter(&buf->b_hdr->b_freeze_lock);
1079 if (buf->b_hdr->b_freeze_cksum != NULL) {
1080 kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1081 buf->b_hdr->b_freeze_cksum = NULL;
1082 }
428870ff 1083
34dc7c2f
BB
1084 mutex_exit(&buf->b_hdr->b_freeze_lock);
1085}
1086
1087void
1088arc_buf_freeze(arc_buf_t *buf)
1089{
428870ff
BB
1090 kmutex_t *hash_lock;
1091
34dc7c2f
BB
1092 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1093 return;
1094
428870ff
BB
1095 hash_lock = HDR_LOCK(buf->b_hdr);
1096 mutex_enter(hash_lock);
1097
34dc7c2f
BB
1098 ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
1099 buf->b_hdr->b_state == arc_anon);
1100 arc_cksum_compute(buf, B_FALSE);
428870ff 1101 mutex_exit(hash_lock);
34dc7c2f
BB
1102}
1103
1104static void
1105add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1106{
1107 ASSERT(MUTEX_HELD(hash_lock));
1108
1109 if ((refcount_add(&ab->b_refcnt, tag) == 1) &&
1110 (ab->b_state != arc_anon)) {
1111 uint64_t delta = ab->b_size * ab->b_datacnt;
1112 list_t *list = &ab->b_state->arcs_list[ab->b_type];
1113 uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type];
1114
1115 ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx));
1116 mutex_enter(&ab->b_state->arcs_mtx);
1117 ASSERT(list_link_active(&ab->b_arc_node));
1118 list_remove(list, ab);
1119 if (GHOST_STATE(ab->b_state)) {
c99c9001 1120 ASSERT0(ab->b_datacnt);
34dc7c2f
BB
1121 ASSERT3P(ab->b_buf, ==, NULL);
1122 delta = ab->b_size;
1123 }
1124 ASSERT(delta > 0);
1125 ASSERT3U(*size, >=, delta);
1126 atomic_add_64(size, -delta);
1127 mutex_exit(&ab->b_state->arcs_mtx);
b128c09f 1128 /* remove the prefetch flag if we get a reference */
34dc7c2f
BB
1129 if (ab->b_flags & ARC_PREFETCH)
1130 ab->b_flags &= ~ARC_PREFETCH;
1131 }
1132}
1133
1134static int
1135remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1136{
1137 int cnt;
1138 arc_state_t *state = ab->b_state;
1139
1140 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1141 ASSERT(!GHOST_STATE(state));
1142
1143 if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) &&
1144 (state != arc_anon)) {
1145 uint64_t *size = &state->arcs_lsize[ab->b_type];
1146
1147 ASSERT(!MUTEX_HELD(&state->arcs_mtx));
1148 mutex_enter(&state->arcs_mtx);
1149 ASSERT(!list_link_active(&ab->b_arc_node));
1150 list_insert_head(&state->arcs_list[ab->b_type], ab);
1151 ASSERT(ab->b_datacnt > 0);
1152 atomic_add_64(size, ab->b_size * ab->b_datacnt);
1153 mutex_exit(&state->arcs_mtx);
1154 }
1155 return (cnt);
1156}
1157
e0b0ca98
BB
1158/*
1159 * Returns detailed information about a specific arc buffer. When the
1160 * state_index argument is set the function will calculate the arc header
1161 * list position for its arc state. Since this requires a linear traversal
1162 * callers are strongly encourage not to do this. However, it can be helpful
1163 * for targeted analysis so the functionality is provided.
1164 */
1165void
1166arc_buf_info(arc_buf_t *ab, arc_buf_info_t *abi, int state_index)
1167{
1168 arc_buf_hdr_t *hdr = ab->b_hdr;
1169 arc_state_t *state = hdr->b_state;
1170
1171 memset(abi, 0, sizeof(arc_buf_info_t));
1172 abi->abi_flags = hdr->b_flags;
1173 abi->abi_datacnt = hdr->b_datacnt;
1174 abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON;
1175 abi->abi_state_contents = hdr->b_type;
1176 abi->abi_state_index = -1;
1177 abi->abi_size = hdr->b_size;
1178 abi->abi_access = hdr->b_arc_access;
1179 abi->abi_mru_hits = hdr->b_mru_hits;
1180 abi->abi_mru_ghost_hits = hdr->b_mru_ghost_hits;
1181 abi->abi_mfu_hits = hdr->b_mfu_hits;
1182 abi->abi_mfu_ghost_hits = hdr->b_mfu_ghost_hits;
1183 abi->abi_holds = refcount_count(&hdr->b_refcnt);
1184
1185 if (hdr->b_l2hdr) {
1186 abi->abi_l2arc_dattr = hdr->b_l2hdr->b_daddr;
1187 abi->abi_l2arc_asize = hdr->b_l2hdr->b_asize;
1188 abi->abi_l2arc_compress = hdr->b_l2hdr->b_compress;
1189 abi->abi_l2arc_hits = hdr->b_l2hdr->b_hits;
1190 }
1191
1192 if (state && state_index && list_link_active(&hdr->b_arc_node)) {
1193 list_t *list = &state->arcs_list[hdr->b_type];
1194 arc_buf_hdr_t *h;
1195
1196 mutex_enter(&state->arcs_mtx);
1197 for (h = list_head(list); h != NULL; h = list_next(list, h)) {
1198 abi->abi_state_index++;
1199 if (h == hdr)
1200 break;
1201 }
1202 mutex_exit(&state->arcs_mtx);
1203 }
1204}
1205
34dc7c2f
BB
1206/*
1207 * Move the supplied buffer to the indicated state. The mutex
1208 * for the buffer must be held by the caller.
1209 */
1210static void
1211arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock)
1212{
1213 arc_state_t *old_state = ab->b_state;
1214 int64_t refcnt = refcount_count(&ab->b_refcnt);
1215 uint64_t from_delta, to_delta;
1216
1217 ASSERT(MUTEX_HELD(hash_lock));
1218 ASSERT(new_state != old_state);
1219 ASSERT(refcnt == 0 || ab->b_datacnt > 0);
1220 ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state));
428870ff 1221 ASSERT(ab->b_datacnt <= 1 || old_state != arc_anon);
34dc7c2f
BB
1222
1223 from_delta = to_delta = ab->b_datacnt * ab->b_size;
1224
1225 /*
1226 * If this buffer is evictable, transfer it from the
1227 * old state list to the new state list.
1228 */
1229 if (refcnt == 0) {
1230 if (old_state != arc_anon) {
1231 int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx);
1232 uint64_t *size = &old_state->arcs_lsize[ab->b_type];
1233
1234 if (use_mutex)
1235 mutex_enter(&old_state->arcs_mtx);
1236
1237 ASSERT(list_link_active(&ab->b_arc_node));
1238 list_remove(&old_state->arcs_list[ab->b_type], ab);
1239
1240 /*
1241 * If prefetching out of the ghost cache,
428870ff 1242 * we will have a non-zero datacnt.
34dc7c2f
BB
1243 */
1244 if (GHOST_STATE(old_state) && ab->b_datacnt == 0) {
1245 /* ghost elements have a ghost size */
1246 ASSERT(ab->b_buf == NULL);
1247 from_delta = ab->b_size;
1248 }
1249 ASSERT3U(*size, >=, from_delta);
1250 atomic_add_64(size, -from_delta);
1251
1252 if (use_mutex)
1253 mutex_exit(&old_state->arcs_mtx);
1254 }
1255 if (new_state != arc_anon) {
1256 int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx);
1257 uint64_t *size = &new_state->arcs_lsize[ab->b_type];
1258
1259 if (use_mutex)
1260 mutex_enter(&new_state->arcs_mtx);
1261
1262 list_insert_head(&new_state->arcs_list[ab->b_type], ab);
1263
1264 /* ghost elements have a ghost size */
1265 if (GHOST_STATE(new_state)) {
1266 ASSERT(ab->b_datacnt == 0);
1267 ASSERT(ab->b_buf == NULL);
1268 to_delta = ab->b_size;
1269 }
1270 atomic_add_64(size, to_delta);
1271
1272 if (use_mutex)
1273 mutex_exit(&new_state->arcs_mtx);
1274 }
1275 }
1276
1277 ASSERT(!BUF_EMPTY(ab));
428870ff 1278 if (new_state == arc_anon && HDR_IN_HASH_TABLE(ab))
34dc7c2f 1279 buf_hash_remove(ab);
34dc7c2f
BB
1280
1281 /* adjust state sizes */
1282 if (to_delta)
1283 atomic_add_64(&new_state->arcs_size, to_delta);
1284 if (from_delta) {
1285 ASSERT3U(old_state->arcs_size, >=, from_delta);
1286 atomic_add_64(&old_state->arcs_size, -from_delta);
1287 }
1288 ab->b_state = new_state;
1289
1290 /* adjust l2arc hdr stats */
1291 if (new_state == arc_l2c_only)
1292 l2arc_hdr_stat_add();
1293 else if (old_state == arc_l2c_only)
1294 l2arc_hdr_stat_remove();
1295}
1296
1297void
d164b209 1298arc_space_consume(uint64_t space, arc_space_type_t type)
34dc7c2f 1299{
d164b209
BB
1300 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1301
1302 switch (type) {
e75c13c3
BB
1303 default:
1304 break;
d164b209
BB
1305 case ARC_SPACE_DATA:
1306 ARCSTAT_INCR(arcstat_data_size, space);
1307 break;
1308 case ARC_SPACE_OTHER:
1309 ARCSTAT_INCR(arcstat_other_size, space);
1310 break;
1311 case ARC_SPACE_HDRS:
1312 ARCSTAT_INCR(arcstat_hdr_size, space);
1313 break;
1314 case ARC_SPACE_L2HDRS:
1315 ARCSTAT_INCR(arcstat_l2_hdr_size, space);
1316 break;
1317 }
1318
23c0a133 1319 ARCSTAT_INCR(arcstat_meta_used, space);
34dc7c2f
BB
1320 atomic_add_64(&arc_size, space);
1321}
1322
1323void
d164b209 1324arc_space_return(uint64_t space, arc_space_type_t type)
34dc7c2f 1325{
d164b209
BB
1326 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1327
1328 switch (type) {
e75c13c3
BB
1329 default:
1330 break;
d164b209
BB
1331 case ARC_SPACE_DATA:
1332 ARCSTAT_INCR(arcstat_data_size, -space);
1333 break;
1334 case ARC_SPACE_OTHER:
1335 ARCSTAT_INCR(arcstat_other_size, -space);
1336 break;
1337 case ARC_SPACE_HDRS:
1338 ARCSTAT_INCR(arcstat_hdr_size, -space);
1339 break;
1340 case ARC_SPACE_L2HDRS:
1341 ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
1342 break;
1343 }
1344
34dc7c2f
BB
1345 ASSERT(arc_meta_used >= space);
1346 if (arc_meta_max < arc_meta_used)
1347 arc_meta_max = arc_meta_used;
23c0a133 1348 ARCSTAT_INCR(arcstat_meta_used, -space);
34dc7c2f
BB
1349 ASSERT(arc_size >= space);
1350 atomic_add_64(&arc_size, -space);
1351}
1352
34dc7c2f
BB
1353arc_buf_t *
1354arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type)
1355{
1356 arc_buf_hdr_t *hdr;
1357 arc_buf_t *buf;
1358
1359 ASSERT3U(size, >, 0);
1360 hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
1361 ASSERT(BUF_EMPTY(hdr));
1362 hdr->b_size = size;
1363 hdr->b_type = type;
3541dc6d 1364 hdr->b_spa = spa_load_guid(spa);
34dc7c2f
BB
1365 hdr->b_state = arc_anon;
1366 hdr->b_arc_access = 0;
e0b0ca98
BB
1367 hdr->b_mru_hits = 0;
1368 hdr->b_mru_ghost_hits = 0;
1369 hdr->b_mfu_hits = 0;
1370 hdr->b_mfu_ghost_hits = 0;
1371 hdr->b_l2_hits = 0;
34dc7c2f
BB
1372 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1373 buf->b_hdr = hdr;
1374 buf->b_data = NULL;
1375 buf->b_efunc = NULL;
1376 buf->b_private = NULL;
1377 buf->b_next = NULL;
1378 hdr->b_buf = buf;
1379 arc_get_data_buf(buf);
1380 hdr->b_datacnt = 1;
1381 hdr->b_flags = 0;
1382 ASSERT(refcount_is_zero(&hdr->b_refcnt));
1383 (void) refcount_add(&hdr->b_refcnt, tag);
1384
1385 return (buf);
1386}
1387
9babb374
BB
1388static char *arc_onloan_tag = "onloan";
1389
1390/*
1391 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
1392 * flight data by arc_tempreserve_space() until they are "returned". Loaned
1393 * buffers must be returned to the arc before they can be used by the DMU or
1394 * freed.
1395 */
1396arc_buf_t *
1397arc_loan_buf(spa_t *spa, int size)
1398{
1399 arc_buf_t *buf;
1400
1401 buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
1402
1403 atomic_add_64(&arc_loaned_bytes, size);
1404 return (buf);
1405}
1406
1407/*
1408 * Return a loaned arc buffer to the arc.
1409 */
1410void
1411arc_return_buf(arc_buf_t *buf, void *tag)
1412{
1413 arc_buf_hdr_t *hdr = buf->b_hdr;
1414
9babb374 1415 ASSERT(buf->b_data != NULL);
428870ff
BB
1416 (void) refcount_add(&hdr->b_refcnt, tag);
1417 (void) refcount_remove(&hdr->b_refcnt, arc_onloan_tag);
9babb374
BB
1418
1419 atomic_add_64(&arc_loaned_bytes, -hdr->b_size);
1420}
1421
428870ff
BB
1422/* Detach an arc_buf from a dbuf (tag) */
1423void
1424arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
1425{
1426 arc_buf_hdr_t *hdr;
1427
1428 ASSERT(buf->b_data != NULL);
1429 hdr = buf->b_hdr;
1430 (void) refcount_add(&hdr->b_refcnt, arc_onloan_tag);
1431 (void) refcount_remove(&hdr->b_refcnt, tag);
1432 buf->b_efunc = NULL;
1433 buf->b_private = NULL;
1434
1435 atomic_add_64(&arc_loaned_bytes, hdr->b_size);
1436}
1437
34dc7c2f
BB
1438static arc_buf_t *
1439arc_buf_clone(arc_buf_t *from)
1440{
1441 arc_buf_t *buf;
1442 arc_buf_hdr_t *hdr = from->b_hdr;
1443 uint64_t size = hdr->b_size;
1444
428870ff
BB
1445 ASSERT(hdr->b_state != arc_anon);
1446
34dc7c2f
BB
1447 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1448 buf->b_hdr = hdr;
1449 buf->b_data = NULL;
1450 buf->b_efunc = NULL;
1451 buf->b_private = NULL;
1452 buf->b_next = hdr->b_buf;
1453 hdr->b_buf = buf;
1454 arc_get_data_buf(buf);
1455 bcopy(from->b_data, buf->b_data, size);
1eb5bfa3
GW
1456
1457 /*
1458 * This buffer already exists in the arc so create a duplicate
1459 * copy for the caller. If the buffer is associated with user data
1460 * then track the size and number of duplicates. These stats will be
1461 * updated as duplicate buffers are created and destroyed.
1462 */
1463 if (hdr->b_type == ARC_BUFC_DATA) {
1464 ARCSTAT_BUMP(arcstat_duplicate_buffers);
1465 ARCSTAT_INCR(arcstat_duplicate_buffers_size, size);
1466 }
34dc7c2f
BB
1467 hdr->b_datacnt += 1;
1468 return (buf);
1469}
1470
1471void
1472arc_buf_add_ref(arc_buf_t *buf, void* tag)
1473{
1474 arc_buf_hdr_t *hdr;
1475 kmutex_t *hash_lock;
1476
1477 /*
b128c09f
BB
1478 * Check to see if this buffer is evicted. Callers
1479 * must verify b_data != NULL to know if the add_ref
1480 * was successful.
34dc7c2f 1481 */
428870ff 1482 mutex_enter(&buf->b_evict_lock);
b128c09f 1483 if (buf->b_data == NULL) {
428870ff 1484 mutex_exit(&buf->b_evict_lock);
34dc7c2f
BB
1485 return;
1486 }
428870ff 1487 hash_lock = HDR_LOCK(buf->b_hdr);
34dc7c2f 1488 mutex_enter(hash_lock);
428870ff
BB
1489 hdr = buf->b_hdr;
1490 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1491 mutex_exit(&buf->b_evict_lock);
34dc7c2f 1492
34dc7c2f
BB
1493 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
1494 add_reference(hdr, hash_lock, tag);
d164b209 1495 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
34dc7c2f
BB
1496 arc_access(hdr, hash_lock);
1497 mutex_exit(hash_lock);
1498 ARCSTAT_BUMP(arcstat_hits);
1499 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
1500 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
1501 data, metadata, hits);
1502}
1503
1504/*
1505 * Free the arc data buffer. If it is an l2arc write in progress,
1506 * the buffer is placed on l2arc_free_on_write to be freed later.
1507 */
1508static void
1509arc_buf_data_free(arc_buf_hdr_t *hdr, void (*free_func)(void *, size_t),
1510 void *data, size_t size)
1511{
1512 if (HDR_L2_WRITING(hdr)) {
1513 l2arc_data_free_t *df;
594b4dd8 1514 df = kmem_alloc(sizeof (l2arc_data_free_t), KM_PUSHPAGE);
34dc7c2f
BB
1515 df->l2df_data = data;
1516 df->l2df_size = size;
1517 df->l2df_func = free_func;
1518 mutex_enter(&l2arc_free_on_write_mtx);
1519 list_insert_head(l2arc_free_on_write, df);
1520 mutex_exit(&l2arc_free_on_write_mtx);
1521 ARCSTAT_BUMP(arcstat_l2_free_on_write);
1522 } else {
1523 free_func(data, size);
1524 }
1525}
1526
1527static void
1528arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all)
1529{
1530 arc_buf_t **bufp;
1531
1532 /* free up data associated with the buf */
1533 if (buf->b_data) {
1534 arc_state_t *state = buf->b_hdr->b_state;
1535 uint64_t size = buf->b_hdr->b_size;
1536 arc_buf_contents_t type = buf->b_hdr->b_type;
1537
1538 arc_cksum_verify(buf);
428870ff 1539
34dc7c2f
BB
1540 if (!recycle) {
1541 if (type == ARC_BUFC_METADATA) {
1542 arc_buf_data_free(buf->b_hdr, zio_buf_free,
1543 buf->b_data, size);
d164b209 1544 arc_space_return(size, ARC_SPACE_DATA);
34dc7c2f
BB
1545 } else {
1546 ASSERT(type == ARC_BUFC_DATA);
1547 arc_buf_data_free(buf->b_hdr,
1548 zio_data_buf_free, buf->b_data, size);
d164b209 1549 ARCSTAT_INCR(arcstat_data_size, -size);
34dc7c2f
BB
1550 atomic_add_64(&arc_size, -size);
1551 }
1552 }
1553 if (list_link_active(&buf->b_hdr->b_arc_node)) {
1554 uint64_t *cnt = &state->arcs_lsize[type];
1555
1556 ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt));
1557 ASSERT(state != arc_anon);
1558
1559 ASSERT3U(*cnt, >=, size);
1560 atomic_add_64(cnt, -size);
1561 }
1562 ASSERT3U(state->arcs_size, >=, size);
1563 atomic_add_64(&state->arcs_size, -size);
1564 buf->b_data = NULL;
1eb5bfa3
GW
1565
1566 /*
1567 * If we're destroying a duplicate buffer make sure
1568 * that the appropriate statistics are updated.
1569 */
1570 if (buf->b_hdr->b_datacnt > 1 &&
1571 buf->b_hdr->b_type == ARC_BUFC_DATA) {
1572 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
1573 ARCSTAT_INCR(arcstat_duplicate_buffers_size, -size);
1574 }
34dc7c2f
BB
1575 ASSERT(buf->b_hdr->b_datacnt > 0);
1576 buf->b_hdr->b_datacnt -= 1;
1577 }
1578
1579 /* only remove the buf if requested */
1580 if (!all)
1581 return;
1582
1583 /* remove the buf from the hdr list */
1584 for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next)
1585 continue;
1586 *bufp = buf->b_next;
428870ff 1587 buf->b_next = NULL;
34dc7c2f
BB
1588
1589 ASSERT(buf->b_efunc == NULL);
1590
1591 /* clean up the buf */
1592 buf->b_hdr = NULL;
1593 kmem_cache_free(buf_cache, buf);
1594}
1595
1596static void
1597arc_hdr_destroy(arc_buf_hdr_t *hdr)
1598{
d6320ddb
BB
1599 l2arc_buf_hdr_t *l2hdr = hdr->b_l2hdr;
1600
34dc7c2f
BB
1601 ASSERT(refcount_is_zero(&hdr->b_refcnt));
1602 ASSERT3P(hdr->b_state, ==, arc_anon);
1603 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1604
428870ff
BB
1605 if (l2hdr != NULL) {
1606 boolean_t buflist_held = MUTEX_HELD(&l2arc_buflist_mtx);
1607 /*
1608 * To prevent arc_free() and l2arc_evict() from
1609 * attempting to free the same buffer at the same time,
1610 * a FREE_IN_PROGRESS flag is given to arc_free() to
1611 * give it priority. l2arc_evict() can't destroy this
1612 * header while we are waiting on l2arc_buflist_mtx.
1613 *
1614 * The hdr may be removed from l2ad_buflist before we
1615 * grab l2arc_buflist_mtx, so b_l2hdr is rechecked.
1616 */
1617 if (!buflist_held) {
34dc7c2f 1618 mutex_enter(&l2arc_buflist_mtx);
428870ff 1619 l2hdr = hdr->b_l2hdr;
34dc7c2f 1620 }
428870ff
BB
1621
1622 if (l2hdr != NULL) {
1623 list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
1624 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
3a17a7a9 1625 ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize);
428870ff 1626 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
6e1d7276 1627 arc_space_return(L2HDR_SIZE, ARC_SPACE_L2HDRS);
428870ff
BB
1628 if (hdr->b_state == arc_l2c_only)
1629 l2arc_hdr_stat_remove();
1630 hdr->b_l2hdr = NULL;
1631 }
1632
1633 if (!buflist_held)
1634 mutex_exit(&l2arc_buflist_mtx);
34dc7c2f
BB
1635 }
1636
1637 if (!BUF_EMPTY(hdr)) {
1638 ASSERT(!HDR_IN_HASH_TABLE(hdr));
428870ff 1639 buf_discard_identity(hdr);
34dc7c2f
BB
1640 }
1641 while (hdr->b_buf) {
1642 arc_buf_t *buf = hdr->b_buf;
1643
1644 if (buf->b_efunc) {
1645 mutex_enter(&arc_eviction_mtx);
428870ff 1646 mutex_enter(&buf->b_evict_lock);
34dc7c2f
BB
1647 ASSERT(buf->b_hdr != NULL);
1648 arc_buf_destroy(hdr->b_buf, FALSE, FALSE);
1649 hdr->b_buf = buf->b_next;
1650 buf->b_hdr = &arc_eviction_hdr;
1651 buf->b_next = arc_eviction_list;
1652 arc_eviction_list = buf;
428870ff 1653 mutex_exit(&buf->b_evict_lock);
34dc7c2f
BB
1654 mutex_exit(&arc_eviction_mtx);
1655 } else {
1656 arc_buf_destroy(hdr->b_buf, FALSE, TRUE);
1657 }
1658 }
1659 if (hdr->b_freeze_cksum != NULL) {
1660 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1661 hdr->b_freeze_cksum = NULL;
1662 }
1663
1664 ASSERT(!list_link_active(&hdr->b_arc_node));
1665 ASSERT3P(hdr->b_hash_next, ==, NULL);
1666 ASSERT3P(hdr->b_acb, ==, NULL);
1667 kmem_cache_free(hdr_cache, hdr);
1668}
1669
1670void
1671arc_buf_free(arc_buf_t *buf, void *tag)
1672{
1673 arc_buf_hdr_t *hdr = buf->b_hdr;
1674 int hashed = hdr->b_state != arc_anon;
1675
1676 ASSERT(buf->b_efunc == NULL);
1677 ASSERT(buf->b_data != NULL);
1678
1679 if (hashed) {
1680 kmutex_t *hash_lock = HDR_LOCK(hdr);
1681
1682 mutex_enter(hash_lock);
428870ff
BB
1683 hdr = buf->b_hdr;
1684 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1685
34dc7c2f 1686 (void) remove_reference(hdr, hash_lock, tag);
428870ff 1687 if (hdr->b_datacnt > 1) {
34dc7c2f 1688 arc_buf_destroy(buf, FALSE, TRUE);
428870ff
BB
1689 } else {
1690 ASSERT(buf == hdr->b_buf);
1691 ASSERT(buf->b_efunc == NULL);
34dc7c2f 1692 hdr->b_flags |= ARC_BUF_AVAILABLE;
428870ff 1693 }
34dc7c2f
BB
1694 mutex_exit(hash_lock);
1695 } else if (HDR_IO_IN_PROGRESS(hdr)) {
1696 int destroy_hdr;
1697 /*
1698 * We are in the middle of an async write. Don't destroy
1699 * this buffer unless the write completes before we finish
1700 * decrementing the reference count.
1701 */
1702 mutex_enter(&arc_eviction_mtx);
1703 (void) remove_reference(hdr, NULL, tag);
1704 ASSERT(refcount_is_zero(&hdr->b_refcnt));
1705 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
1706 mutex_exit(&arc_eviction_mtx);
1707 if (destroy_hdr)
1708 arc_hdr_destroy(hdr);
1709 } else {
428870ff 1710 if (remove_reference(hdr, NULL, tag) > 0)
34dc7c2f 1711 arc_buf_destroy(buf, FALSE, TRUE);
428870ff 1712 else
34dc7c2f 1713 arc_hdr_destroy(hdr);
34dc7c2f
BB
1714 }
1715}
1716
13fe0198 1717boolean_t
34dc7c2f
BB
1718arc_buf_remove_ref(arc_buf_t *buf, void* tag)
1719{
1720 arc_buf_hdr_t *hdr = buf->b_hdr;
b4f7f105 1721 kmutex_t *hash_lock = NULL;
13fe0198 1722 boolean_t no_callback = (buf->b_efunc == NULL);
34dc7c2f
BB
1723
1724 if (hdr->b_state == arc_anon) {
428870ff 1725 ASSERT(hdr->b_datacnt == 1);
34dc7c2f
BB
1726 arc_buf_free(buf, tag);
1727 return (no_callback);
1728 }
1729
b4f7f105 1730 hash_lock = HDR_LOCK(hdr);
34dc7c2f 1731 mutex_enter(hash_lock);
428870ff
BB
1732 hdr = buf->b_hdr;
1733 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
34dc7c2f
BB
1734 ASSERT(hdr->b_state != arc_anon);
1735 ASSERT(buf->b_data != NULL);
1736
1737 (void) remove_reference(hdr, hash_lock, tag);
1738 if (hdr->b_datacnt > 1) {
1739 if (no_callback)
1740 arc_buf_destroy(buf, FALSE, TRUE);
1741 } else if (no_callback) {
1742 ASSERT(hdr->b_buf == buf && buf->b_next == NULL);
428870ff 1743 ASSERT(buf->b_efunc == NULL);
34dc7c2f
BB
1744 hdr->b_flags |= ARC_BUF_AVAILABLE;
1745 }
1746 ASSERT(no_callback || hdr->b_datacnt > 1 ||
1747 refcount_is_zero(&hdr->b_refcnt));
1748 mutex_exit(hash_lock);
1749 return (no_callback);
1750}
1751
1752int
1753arc_buf_size(arc_buf_t *buf)
1754{
1755 return (buf->b_hdr->b_size);
1756}
1757
1eb5bfa3
GW
1758/*
1759 * Called from the DMU to determine if the current buffer should be
1760 * evicted. In order to ensure proper locking, the eviction must be initiated
1761 * from the DMU. Return true if the buffer is associated with user data and
1762 * duplicate buffers still exist.
1763 */
1764boolean_t
1765arc_buf_eviction_needed(arc_buf_t *buf)
1766{
1767 arc_buf_hdr_t *hdr;
1768 boolean_t evict_needed = B_FALSE;
1769
1770 if (zfs_disable_dup_eviction)
1771 return (B_FALSE);
1772
1773 mutex_enter(&buf->b_evict_lock);
1774 hdr = buf->b_hdr;
1775 if (hdr == NULL) {
1776 /*
1777 * We are in arc_do_user_evicts(); let that function
1778 * perform the eviction.
1779 */
1780 ASSERT(buf->b_data == NULL);
1781 mutex_exit(&buf->b_evict_lock);
1782 return (B_FALSE);
1783 } else if (buf->b_data == NULL) {
1784 /*
1785 * We have already been added to the arc eviction list;
1786 * recommend eviction.
1787 */
1788 ASSERT3P(hdr, ==, &arc_eviction_hdr);
1789 mutex_exit(&buf->b_evict_lock);
1790 return (B_TRUE);
1791 }
1792
1793 if (hdr->b_datacnt > 1 && hdr->b_type == ARC_BUFC_DATA)
1794 evict_needed = B_TRUE;
1795
1796 mutex_exit(&buf->b_evict_lock);
1797 return (evict_needed);
1798}
1799
34dc7c2f
BB
1800/*
1801 * Evict buffers from list until we've removed the specified number of
1802 * bytes. Move the removed buffers to the appropriate evict state.
1803 * If the recycle flag is set, then attempt to "recycle" a buffer:
1804 * - look for a buffer to evict that is `bytes' long.
1805 * - return the data block from this buffer rather than freeing it.
1806 * This flag is used by callers that are trying to make space for a
1807 * new buffer in a full arc cache.
1808 *
1809 * This function makes a "best effort". It skips over any buffers
1810 * it can't get a hash_lock on, and so may not catch all candidates.
1811 * It may also return without evicting as much space as requested.
1812 */
1813static void *
d164b209 1814arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle,
34dc7c2f
BB
1815 arc_buf_contents_t type)
1816{
1817 arc_state_t *evicted_state;
1818 uint64_t bytes_evicted = 0, skipped = 0, missed = 0;
1819 arc_buf_hdr_t *ab, *ab_prev = NULL;
1820 list_t *list = &state->arcs_list[type];
1821 kmutex_t *hash_lock;
1822 boolean_t have_lock;
1823 void *stolen = NULL;
1824
1825 ASSERT(state == arc_mru || state == arc_mfu);
1826
1827 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
1828
1829 mutex_enter(&state->arcs_mtx);
1830 mutex_enter(&evicted_state->arcs_mtx);
1831
1832 for (ab = list_tail(list); ab; ab = ab_prev) {
1833 ab_prev = list_prev(list, ab);
1834 /* prefetch buffers have a minimum lifespan */
1835 if (HDR_IO_IN_PROGRESS(ab) ||
1836 (spa && ab->b_spa != spa) ||
1837 (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) &&
428870ff 1838 ddi_get_lbolt() - ab->b_arc_access <
bce45ec9 1839 zfs_arc_min_prefetch_lifespan)) {
34dc7c2f
BB
1840 skipped++;
1841 continue;
1842 }
1843 /* "lookahead" for better eviction candidate */
1844 if (recycle && ab->b_size != bytes &&
1845 ab_prev && ab_prev->b_size == bytes)
1846 continue;
1847 hash_lock = HDR_LOCK(ab);
1848 have_lock = MUTEX_HELD(hash_lock);
1849 if (have_lock || mutex_tryenter(hash_lock)) {
c99c9001 1850 ASSERT0(refcount_count(&ab->b_refcnt));
34dc7c2f
BB
1851 ASSERT(ab->b_datacnt > 0);
1852 while (ab->b_buf) {
1853 arc_buf_t *buf = ab->b_buf;
428870ff 1854 if (!mutex_tryenter(&buf->b_evict_lock)) {
b128c09f
BB
1855 missed += 1;
1856 break;
1857 }
34dc7c2f
BB
1858 if (buf->b_data) {
1859 bytes_evicted += ab->b_size;
1860 if (recycle && ab->b_type == type &&
1861 ab->b_size == bytes &&
1862 !HDR_L2_WRITING(ab)) {
1863 stolen = buf->b_data;
1864 recycle = FALSE;
1865 }
1866 }
1867 if (buf->b_efunc) {
1868 mutex_enter(&arc_eviction_mtx);
1869 arc_buf_destroy(buf,
1870 buf->b_data == stolen, FALSE);
1871 ab->b_buf = buf->b_next;
1872 buf->b_hdr = &arc_eviction_hdr;
1873 buf->b_next = arc_eviction_list;
1874 arc_eviction_list = buf;
1875 mutex_exit(&arc_eviction_mtx);
428870ff 1876 mutex_exit(&buf->b_evict_lock);
34dc7c2f 1877 } else {
428870ff 1878 mutex_exit(&buf->b_evict_lock);
34dc7c2f
BB
1879 arc_buf_destroy(buf,
1880 buf->b_data == stolen, TRUE);
1881 }
1882 }
428870ff
BB
1883
1884 if (ab->b_l2hdr) {
1885 ARCSTAT_INCR(arcstat_evict_l2_cached,
1886 ab->b_size);
1887 } else {
1888 if (l2arc_write_eligible(ab->b_spa, ab)) {
1889 ARCSTAT_INCR(arcstat_evict_l2_eligible,
1890 ab->b_size);
1891 } else {
1892 ARCSTAT_INCR(
1893 arcstat_evict_l2_ineligible,
1894 ab->b_size);
1895 }
1896 }
1897
b128c09f
BB
1898 if (ab->b_datacnt == 0) {
1899 arc_change_state(evicted_state, ab, hash_lock);
1900 ASSERT(HDR_IN_HASH_TABLE(ab));
1901 ab->b_flags |= ARC_IN_HASH_TABLE;
1902 ab->b_flags &= ~ARC_BUF_AVAILABLE;
1903 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab);
1904 }
34dc7c2f
BB
1905 if (!have_lock)
1906 mutex_exit(hash_lock);
1907 if (bytes >= 0 && bytes_evicted >= bytes)
1908 break;
1909 } else {
1910 missed += 1;
1911 }
1912 }
1913
1914 mutex_exit(&evicted_state->arcs_mtx);
1915 mutex_exit(&state->arcs_mtx);
1916
1917 if (bytes_evicted < bytes)
3f504482 1918 dprintf("only evicted %lld bytes from %x\n",
34dc7c2f
BB
1919 (longlong_t)bytes_evicted, state);
1920
1921 if (skipped)
1922 ARCSTAT_INCR(arcstat_evict_skip, skipped);
1923
1924 if (missed)
1925 ARCSTAT_INCR(arcstat_mutex_miss, missed);
1926
1927 /*
13fe0198 1928 * We have just evicted some data into the ghost state, make
34dc7c2f
BB
1929 * sure we also adjust the ghost state size if necessary.
1930 */
1931 if (arc_no_grow &&
1932 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size > arc_c) {
1933 int64_t mru_over = arc_anon->arcs_size + arc_mru->arcs_size +
1934 arc_mru_ghost->arcs_size - arc_c;
1935
1936 if (mru_over > 0 && arc_mru_ghost->arcs_lsize[type] > 0) {
1937 int64_t todelete =
1938 MIN(arc_mru_ghost->arcs_lsize[type], mru_over);
68121a03
BB
1939 arc_evict_ghost(arc_mru_ghost, 0, todelete,
1940 ARC_BUFC_DATA);
34dc7c2f
BB
1941 } else if (arc_mfu_ghost->arcs_lsize[type] > 0) {
1942 int64_t todelete = MIN(arc_mfu_ghost->arcs_lsize[type],
1943 arc_mru_ghost->arcs_size +
1944 arc_mfu_ghost->arcs_size - arc_c);
68121a03
BB
1945 arc_evict_ghost(arc_mfu_ghost, 0, todelete,
1946 ARC_BUFC_DATA);
34dc7c2f
BB
1947 }
1948 }
1949
1950 return (stolen);
1951}
1952
1953/*
1954 * Remove buffers from list until we've removed the specified number of
1955 * bytes. Destroy the buffers that are removed.
1956 */
1957static void
68121a03
BB
1958arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes,
1959 arc_buf_contents_t type)
34dc7c2f
BB
1960{
1961 arc_buf_hdr_t *ab, *ab_prev;
2598c001 1962 arc_buf_hdr_t marker;
68121a03 1963 list_t *list = &state->arcs_list[type];
34dc7c2f
BB
1964 kmutex_t *hash_lock;
1965 uint64_t bytes_deleted = 0;
1966 uint64_t bufs_skipped = 0;
1967
1968 ASSERT(GHOST_STATE(state));
2598c001 1969 bzero(&marker, sizeof(marker));
34dc7c2f
BB
1970top:
1971 mutex_enter(&state->arcs_mtx);
1972 for (ab = list_tail(list); ab; ab = ab_prev) {
1973 ab_prev = list_prev(list, ab);
1974 if (spa && ab->b_spa != spa)
1975 continue;
572e2857
BB
1976
1977 /* ignore markers */
1978 if (ab->b_spa == 0)
1979 continue;
1980
34dc7c2f 1981 hash_lock = HDR_LOCK(ab);
428870ff
BB
1982 /* caller may be trying to modify this buffer, skip it */
1983 if (MUTEX_HELD(hash_lock))
1984 continue;
34dc7c2f
BB
1985 if (mutex_tryenter(hash_lock)) {
1986 ASSERT(!HDR_IO_IN_PROGRESS(ab));
1987 ASSERT(ab->b_buf == NULL);
1988 ARCSTAT_BUMP(arcstat_deleted);
1989 bytes_deleted += ab->b_size;
1990
1991 if (ab->b_l2hdr != NULL) {
1992 /*
1993 * This buffer is cached on the 2nd Level ARC;
1994 * don't destroy the header.
1995 */
1996 arc_change_state(arc_l2c_only, ab, hash_lock);
1997 mutex_exit(hash_lock);
1998 } else {
1999 arc_change_state(arc_anon, ab, hash_lock);
2000 mutex_exit(hash_lock);
2001 arc_hdr_destroy(ab);
2002 }
2003
2004 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab);
2005 if (bytes >= 0 && bytes_deleted >= bytes)
2006 break;
572e2857
BB
2007 } else if (bytes < 0) {
2008 /*
2009 * Insert a list marker and then wait for the
2010 * hash lock to become available. Once its
2011 * available, restart from where we left off.
2012 */
2013 list_insert_after(list, ab, &marker);
2014 mutex_exit(&state->arcs_mtx);
2015 mutex_enter(hash_lock);
2016 mutex_exit(hash_lock);
2017 mutex_enter(&state->arcs_mtx);
2018 ab_prev = list_prev(list, &marker);
2019 list_remove(list, &marker);
2020 } else
34dc7c2f 2021 bufs_skipped += 1;
34dc7c2f
BB
2022 }
2023 mutex_exit(&state->arcs_mtx);
2024
2025 if (list == &state->arcs_list[ARC_BUFC_DATA] &&
2026 (bytes < 0 || bytes_deleted < bytes)) {
2027 list = &state->arcs_list[ARC_BUFC_METADATA];
2028 goto top;
2029 }
2030
2031 if (bufs_skipped) {
2032 ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped);
2033 ASSERT(bytes >= 0);
2034 }
2035
2036 if (bytes_deleted < bytes)
3f504482 2037 dprintf("only deleted %lld bytes from %p\n",
34dc7c2f
BB
2038 (longlong_t)bytes_deleted, state);
2039}
2040
2041static void
2042arc_adjust(void)
2043{
d164b209
BB
2044 int64_t adjustment, delta;
2045
2046 /*
2047 * Adjust MRU size
2048 */
34dc7c2f 2049
572e2857
BB
2050 adjustment = MIN((int64_t)(arc_size - arc_c),
2051 (int64_t)(arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used -
2052 arc_p));
34dc7c2f 2053
d164b209
BB
2054 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) {
2055 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], adjustment);
b8864a23 2056 (void) arc_evict(arc_mru, 0, delta, FALSE, ARC_BUFC_DATA);
d164b209 2057 adjustment -= delta;
34dc7c2f
BB
2058 }
2059
d164b209
BB
2060 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) {
2061 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment);
b8864a23 2062 (void) arc_evict(arc_mru, 0, delta, FALSE,
34dc7c2f 2063 ARC_BUFC_METADATA);
34dc7c2f
BB
2064 }
2065
d164b209
BB
2066 /*
2067 * Adjust MFU size
2068 */
34dc7c2f 2069
d164b209
BB
2070 adjustment = arc_size - arc_c;
2071
2072 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) {
2073 delta = MIN(adjustment, arc_mfu->arcs_lsize[ARC_BUFC_DATA]);
b8864a23 2074 (void) arc_evict(arc_mfu, 0, delta, FALSE, ARC_BUFC_DATA);
d164b209 2075 adjustment -= delta;
34dc7c2f
BB
2076 }
2077
d164b209
BB
2078 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) {
2079 int64_t delta = MIN(adjustment,
2080 arc_mfu->arcs_lsize[ARC_BUFC_METADATA]);
b8864a23 2081 (void) arc_evict(arc_mfu, 0, delta, FALSE,
d164b209
BB
2082 ARC_BUFC_METADATA);
2083 }
34dc7c2f 2084
d164b209
BB
2085 /*
2086 * Adjust ghost lists
2087 */
34dc7c2f 2088
d164b209
BB
2089 adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c;
2090
2091 if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) {
2092 delta = MIN(arc_mru_ghost->arcs_size, adjustment);
68121a03 2093 arc_evict_ghost(arc_mru_ghost, 0, delta, ARC_BUFC_DATA);
d164b209 2094 }
34dc7c2f 2095
d164b209
BB
2096 adjustment =
2097 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c;
34dc7c2f 2098
d164b209
BB
2099 if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) {
2100 delta = MIN(arc_mfu_ghost->arcs_size, adjustment);
68121a03 2101 arc_evict_ghost(arc_mfu_ghost, 0, delta, ARC_BUFC_DATA);
34dc7c2f
BB
2102 }
2103}
2104
ab26409d
BB
2105/*
2106 * Request that arc user drop references so that N bytes can be released
2107 * from the cache. This provides a mechanism to ensure the arc can honor
2108 * the arc_meta_limit and reclaim buffers which are pinned in the cache
2109 * by higher layers. (i.e. the zpl)
2110 */
2111static void
2112arc_do_user_prune(int64_t adjustment)
2113{
2114 arc_prune_func_t *func;
2115 void *private;
2116 arc_prune_t *cp, *np;
2117
2118 mutex_enter(&arc_prune_mtx);
2119
2120 cp = list_head(&arc_prune_list);
2121 while (cp != NULL) {
2122 func = cp->p_pfunc;
2123 private = cp->p_private;
2124 np = list_next(&arc_prune_list, cp);
2125 refcount_add(&cp->p_refcnt, func);
2126 mutex_exit(&arc_prune_mtx);
2127
2128 if (func != NULL)
2129 func(adjustment, private);
2130
2131 mutex_enter(&arc_prune_mtx);
2132
2133 /* User removed prune callback concurrently with execution */
2134 if (refcount_remove(&cp->p_refcnt, func) == 0) {
2135 ASSERT(!list_link_active(&cp->p_node));
2136 refcount_destroy(&cp->p_refcnt);
2137 kmem_free(cp, sizeof (*cp));
2138 }
2139
2140 cp = np;
2141 }
2142
2143 ARCSTAT_BUMP(arcstat_prune);
2144 mutex_exit(&arc_prune_mtx);
2145}
2146
34dc7c2f
BB
2147static void
2148arc_do_user_evicts(void)
2149{
2150 mutex_enter(&arc_eviction_mtx);
2151 while (arc_eviction_list != NULL) {
2152 arc_buf_t *buf = arc_eviction_list;
2153 arc_eviction_list = buf->b_next;
428870ff 2154 mutex_enter(&buf->b_evict_lock);
34dc7c2f 2155 buf->b_hdr = NULL;
428870ff 2156 mutex_exit(&buf->b_evict_lock);
34dc7c2f
BB
2157 mutex_exit(&arc_eviction_mtx);
2158
2159 if (buf->b_efunc != NULL)
2160 VERIFY(buf->b_efunc(buf) == 0);
2161
2162 buf->b_efunc = NULL;
2163 buf->b_private = NULL;
2164 kmem_cache_free(buf_cache, buf);
2165 mutex_enter(&arc_eviction_mtx);
2166 }
2167 mutex_exit(&arc_eviction_mtx);
2168}
2169
ab26409d
BB
2170/*
2171 * Evict only meta data objects from the cache leaving the data objects.
2172 * This is only used to enforce the tunable arc_meta_limit, if we are
2173 * unable to evict enough buffers notify the user via the prune callback.
2174 */
2175void
2176arc_adjust_meta(int64_t adjustment, boolean_t may_prune)
2177{
c273d60d 2178 int64_t delta;
ab26409d
BB
2179
2180 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) {
2181 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment);
2182 arc_evict(arc_mru, 0, delta, FALSE, ARC_BUFC_METADATA);
2183 adjustment -= delta;
2184 }
2185
2186 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) {
2187 delta = MIN(arc_mfu->arcs_lsize[ARC_BUFC_METADATA], adjustment);
2188 arc_evict(arc_mfu, 0, delta, FALSE, ARC_BUFC_METADATA);
2189 adjustment -= delta;
2190 }
2191
2192 if (may_prune && (adjustment > 0) && (arc_meta_used > arc_meta_limit))
bce45ec9 2193 arc_do_user_prune(zfs_arc_meta_prune);
ab26409d
BB
2194}
2195
34dc7c2f
BB
2196/*
2197 * Flush all *evictable* data from the cache for the given spa.
2198 * NOTE: this will not touch "active" (i.e. referenced) data.
2199 */
2200void
2201arc_flush(spa_t *spa)
2202{
d164b209
BB
2203 uint64_t guid = 0;
2204
2205 if (spa)
3541dc6d 2206 guid = spa_load_guid(spa);
d164b209 2207
34dc7c2f 2208 while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) {
d164b209 2209 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA);
34dc7c2f
BB
2210 if (spa)
2211 break;
2212 }
2213 while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) {
d164b209 2214 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA);
34dc7c2f
BB
2215 if (spa)
2216 break;
2217 }
2218 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) {
d164b209 2219 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA);
34dc7c2f
BB
2220 if (spa)
2221 break;
2222 }
2223 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) {
d164b209 2224 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA);
34dc7c2f
BB
2225 if (spa)
2226 break;
2227 }
2228
68121a03
BB
2229 arc_evict_ghost(arc_mru_ghost, guid, -1, ARC_BUFC_DATA);
2230 arc_evict_ghost(arc_mfu_ghost, guid, -1, ARC_BUFC_DATA);
34dc7c2f
BB
2231
2232 mutex_enter(&arc_reclaim_thr_lock);
2233 arc_do_user_evicts();
2234 mutex_exit(&arc_reclaim_thr_lock);
2235 ASSERT(spa || arc_eviction_list == NULL);
2236}
2237
34dc7c2f 2238void
302f753f 2239arc_shrink(uint64_t bytes)
34dc7c2f
BB
2240{
2241 if (arc_c > arc_c_min) {
2242 uint64_t to_free;
2243
bce45ec9 2244 to_free = bytes ? bytes : arc_c >> zfs_arc_shrink_shift;
302f753f 2245
34dc7c2f
BB
2246 if (arc_c > arc_c_min + to_free)
2247 atomic_add_64(&arc_c, -to_free);
2248 else
2249 arc_c = arc_c_min;
2250
bce45ec9 2251 atomic_add_64(&arc_p, -(arc_p >> zfs_arc_shrink_shift));
34dc7c2f
BB
2252 if (arc_c > arc_size)
2253 arc_c = MAX(arc_size, arc_c_min);
2254 if (arc_p > arc_c)
2255 arc_p = (arc_c >> 1);
2256 ASSERT(arc_c >= arc_c_min);
2257 ASSERT((int64_t)arc_p >= 0);
2258 }
2259
2260 if (arc_size > arc_c)
2261 arc_adjust();
2262}
2263
34dc7c2f 2264static void
302f753f 2265arc_kmem_reap_now(arc_reclaim_strategy_t strat, uint64_t bytes)
34dc7c2f
BB
2266{
2267 size_t i;
2268 kmem_cache_t *prev_cache = NULL;
2269 kmem_cache_t *prev_data_cache = NULL;
2270 extern kmem_cache_t *zio_buf_cache[];
2271 extern kmem_cache_t *zio_data_buf_cache[];
34dc7c2f
BB
2272
2273 /*
2274 * An aggressive reclamation will shrink the cache size as well as
2275 * reap free buffers from the arc kmem caches.
2276 */
2277 if (strat == ARC_RECLAIM_AGGR)
302f753f 2278 arc_shrink(bytes);
34dc7c2f
BB
2279
2280 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
2281 if (zio_buf_cache[i] != prev_cache) {
2282 prev_cache = zio_buf_cache[i];
2283 kmem_cache_reap_now(zio_buf_cache[i]);
2284 }
2285 if (zio_data_buf_cache[i] != prev_data_cache) {
2286 prev_data_cache = zio_data_buf_cache[i];
2287 kmem_cache_reap_now(zio_data_buf_cache[i]);
2288 }
2289 }
ab26409d 2290
34dc7c2f
BB
2291 kmem_cache_reap_now(buf_cache);
2292 kmem_cache_reap_now(hdr_cache);
2293}
2294
302f753f
BB
2295/*
2296 * Unlike other ZFS implementations this thread is only responsible for
2297 * adapting the target ARC size on Linux. The responsibility for memory
2298 * reclamation has been entirely delegated to the arc_shrinker_func()
2299 * which is registered with the VM. To reflect this change in behavior
2300 * the arc_reclaim thread has been renamed to arc_adapt.
2301 */
34dc7c2f 2302static void
302f753f 2303arc_adapt_thread(void)
34dc7c2f 2304{
34dc7c2f 2305 callb_cpr_t cpr;
ab26409d 2306 int64_t prune;
34dc7c2f
BB
2307
2308 CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG);
2309
2310 mutex_enter(&arc_reclaim_thr_lock);
2311 while (arc_thread_exit == 0) {
302f753f
BB
2312#ifndef _KERNEL
2313 arc_reclaim_strategy_t last_reclaim = ARC_RECLAIM_CONS;
2314
2315 if (spa_get_random(100) == 0) {
34dc7c2f
BB
2316
2317 if (arc_no_grow) {
2318 if (last_reclaim == ARC_RECLAIM_CONS) {
2319 last_reclaim = ARC_RECLAIM_AGGR;
2320 } else {
2321 last_reclaim = ARC_RECLAIM_CONS;
2322 }
2323 } else {
2324 arc_no_grow = TRUE;
2325 last_reclaim = ARC_RECLAIM_AGGR;
2326 membar_producer();
2327 }
2328
2329 /* reset the growth delay for every reclaim */
bce45ec9 2330 arc_grow_time = ddi_get_lbolt()+(zfs_arc_grow_retry * hz);
34dc7c2f 2331
302f753f 2332 arc_kmem_reap_now(last_reclaim, 0);
b128c09f 2333 arc_warm = B_TRUE;
302f753f
BB
2334 }
2335#endif /* !_KERNEL */
34dc7c2f 2336
302f753f
BB
2337 /* No recent memory pressure allow the ARC to grow. */
2338 if (arc_no_grow && ddi_get_lbolt() >= arc_grow_time)
34dc7c2f 2339 arc_no_grow = FALSE;
34dc7c2f 2340
ab26409d
BB
2341 /*
2342 * Keep meta data usage within limits, arc_shrink() is not
2343 * used to avoid collapsing the arc_c value when only the
2344 * arc_meta_limit is being exceeded.
2345 */
2346 prune = (int64_t)arc_meta_used - (int64_t)arc_meta_limit;
2347 if (prune > 0)
2348 arc_adjust_meta(prune, B_TRUE);
6a8f9b6b 2349
572e2857 2350 arc_adjust();
34dc7c2f
BB
2351
2352 if (arc_eviction_list != NULL)
2353 arc_do_user_evicts();
2354
2355 /* block until needed, or one second, whichever is shorter */
2356 CALLB_CPR_SAFE_BEGIN(&cpr);
5b63b3eb 2357 (void) cv_timedwait_interruptible(&arc_reclaim_thr_cv,
428870ff 2358 &arc_reclaim_thr_lock, (ddi_get_lbolt() + hz));
34dc7c2f 2359 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock);
bce45ec9
BB
2360
2361
2362 /* Allow the module options to be changed */
2363 if (zfs_arc_max > 64 << 20 &&
2364 zfs_arc_max < physmem * PAGESIZE &&
2365 zfs_arc_max != arc_c_max)
2366 arc_c_max = zfs_arc_max;
2367
2368 if (zfs_arc_min > 0 &&
2369 zfs_arc_min < arc_c_max &&
2370 zfs_arc_min != arc_c_min)
2371 arc_c_min = zfs_arc_min;
2372
2373 if (zfs_arc_meta_limit > 0 &&
2374 zfs_arc_meta_limit <= arc_c_max &&
2375 zfs_arc_meta_limit != arc_meta_limit)
2376 arc_meta_limit = zfs_arc_meta_limit;
2377
2378
2379
34dc7c2f
BB
2380 }
2381
2382 arc_thread_exit = 0;
2383 cv_broadcast(&arc_reclaim_thr_cv);
2384 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_thr_lock */
2385 thread_exit();
2386}
2387
7cb67b45
BB
2388#ifdef _KERNEL
2389/*
302f753f
BB
2390 * Determine the amount of memory eligible for eviction contained in the
2391 * ARC. All clean data reported by the ghost lists can always be safely
2392 * evicted. Due to arc_c_min, the same does not hold for all clean data
2393 * contained by the regular mru and mfu lists.
2394 *
2395 * In the case of the regular mru and mfu lists, we need to report as
2396 * much clean data as possible, such that evicting that same reported
2397 * data will not bring arc_size below arc_c_min. Thus, in certain
2398 * circumstances, the total amount of clean data in the mru and mfu
2399 * lists might not actually be evictable.
2400 *
2401 * The following two distinct cases are accounted for:
2402 *
2403 * 1. The sum of the amount of dirty data contained by both the mru and
2404 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
2405 * is greater than or equal to arc_c_min.
2406 * (i.e. amount of dirty data >= arc_c_min)
2407 *
2408 * This is the easy case; all clean data contained by the mru and mfu
2409 * lists is evictable. Evicting all clean data can only drop arc_size
2410 * to the amount of dirty data, which is greater than arc_c_min.
2411 *
2412 * 2. The sum of the amount of dirty data contained by both the mru and
2413 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
2414 * is less than arc_c_min.
2415 * (i.e. arc_c_min > amount of dirty data)
2416 *
2417 * 2.1. arc_size is greater than or equal arc_c_min.
2418 * (i.e. arc_size >= arc_c_min > amount of dirty data)
2419 *
2420 * In this case, not all clean data from the regular mru and mfu
2421 * lists is actually evictable; we must leave enough clean data
2422 * to keep arc_size above arc_c_min. Thus, the maximum amount of
2423 * evictable data from the two lists combined, is exactly the
2424 * difference between arc_size and arc_c_min.
2425 *
2426 * 2.2. arc_size is less than arc_c_min
2427 * (i.e. arc_c_min > arc_size > amount of dirty data)
2428 *
2429 * In this case, none of the data contained in the mru and mfu
2430 * lists is evictable, even if it's clean. Since arc_size is
2431 * already below arc_c_min, evicting any more would only
2432 * increase this negative difference.
7cb67b45 2433 */
302f753f
BB
2434static uint64_t
2435arc_evictable_memory(void) {
2436 uint64_t arc_clean =
2437 arc_mru->arcs_lsize[ARC_BUFC_DATA] +
2438 arc_mru->arcs_lsize[ARC_BUFC_METADATA] +
2439 arc_mfu->arcs_lsize[ARC_BUFC_DATA] +
2440 arc_mfu->arcs_lsize[ARC_BUFC_METADATA];
2441 uint64_t ghost_clean =
2442 arc_mru_ghost->arcs_lsize[ARC_BUFC_DATA] +
2443 arc_mru_ghost->arcs_lsize[ARC_BUFC_METADATA] +
2444 arc_mfu_ghost->arcs_lsize[ARC_BUFC_DATA] +
2445 arc_mfu_ghost->arcs_lsize[ARC_BUFC_METADATA];
2446 uint64_t arc_dirty = MAX((int64_t)arc_size - (int64_t)arc_clean, 0);
2447
2448 if (arc_dirty >= arc_c_min)
2449 return (ghost_clean + arc_clean);
2450
2451 return (ghost_clean + MAX((int64_t)arc_size - (int64_t)arc_c_min, 0));
2452}
2453
7e7baeca
BB
2454static int
2455__arc_shrinker_func(struct shrinker *shrink, struct shrink_control *sc)
7cb67b45 2456{
302f753f 2457 uint64_t pages;
7cb67b45 2458
302f753f
BB
2459 /* The arc is considered warm once reclaim has occurred */
2460 if (unlikely(arc_warm == B_FALSE))
2461 arc_warm = B_TRUE;
7cb67b45 2462
302f753f
BB
2463 /* Return the potential number of reclaimable pages */
2464 pages = btop(arc_evictable_memory());
2465 if (sc->nr_to_scan == 0)
2466 return (pages);
3fd70ee6
BB
2467
2468 /* Not allowed to perform filesystem reclaim */
7e7baeca 2469 if (!(sc->gfp_mask & __GFP_FS))
3fd70ee6
BB
2470 return (-1);
2471
7cb67b45
BB
2472 /* Reclaim in progress */
2473 if (mutex_tryenter(&arc_reclaim_thr_lock) == 0)
2474 return (-1);
2475
302f753f
BB
2476 /*
2477 * Evict the requested number of pages by shrinking arc_c the
2478 * requested amount. If there is nothing left to evict just
2479 * reap whatever we can from the various arc slabs.
2480 */
2481 if (pages > 0) {
2482 arc_kmem_reap_now(ARC_RECLAIM_AGGR, ptob(sc->nr_to_scan));
302f753f
BB
2483 } else {
2484 arc_kmem_reap_now(ARC_RECLAIM_CONS, ptob(sc->nr_to_scan));
302f753f
BB
2485 }
2486
2487 /*
2488 * When direct reclaim is observed it usually indicates a rapid
2489 * increase in memory pressure. This occurs because the kswapd
2490 * threads were unable to asynchronously keep enough free memory
2491 * available. In this case set arc_no_grow to briefly pause arc
2492 * growth to avoid compounding the memory pressure.
2493 */
7cb67b45 2494 if (current_is_kswapd()) {
302f753f 2495 ARCSTAT_BUMP(arcstat_memory_indirect_count);
7cb67b45 2496 } else {
302f753f 2497 arc_no_grow = B_TRUE;
bce45ec9 2498 arc_grow_time = ddi_get_lbolt() + (zfs_arc_grow_retry * hz);
302f753f 2499 ARCSTAT_BUMP(arcstat_memory_direct_count);
7cb67b45
BB
2500 }
2501
7cb67b45
BB
2502 mutex_exit(&arc_reclaim_thr_lock);
2503
c11a12bc 2504 return (-1);
7cb67b45 2505}
7e7baeca 2506SPL_SHRINKER_CALLBACK_WRAPPER(arc_shrinker_func);
7cb67b45
BB
2507
2508SPL_SHRINKER_DECLARE(arc_shrinker, arc_shrinker_func, DEFAULT_SEEKS);
2509#endif /* _KERNEL */
2510
34dc7c2f
BB
2511/*
2512 * Adapt arc info given the number of bytes we are trying to add and
2513 * the state that we are comming from. This function is only called
2514 * when we are adding new content to the cache.
2515 */
2516static void
2517arc_adapt(int bytes, arc_state_t *state)
2518{
2519 int mult;
bce45ec9 2520 uint64_t arc_p_min = (arc_c >> zfs_arc_p_min_shift);
34dc7c2f
BB
2521
2522 if (state == arc_l2c_only)
2523 return;
2524
2525 ASSERT(bytes > 0);
2526 /*
2527 * Adapt the target size of the MRU list:
2528 * - if we just hit in the MRU ghost list, then increase
2529 * the target size of the MRU list.
2530 * - if we just hit in the MFU ghost list, then increase
2531 * the target size of the MFU list by decreasing the
2532 * target size of the MRU list.
2533 */
2534 if (state == arc_mru_ghost) {
2535 mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ?
2536 1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size));
572e2857 2537 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
34dc7c2f 2538
d164b209 2539 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
34dc7c2f 2540 } else if (state == arc_mfu_ghost) {
d164b209
BB
2541 uint64_t delta;
2542
34dc7c2f
BB
2543 mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ?
2544 1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size));
572e2857 2545 mult = MIN(mult, 10);
34dc7c2f 2546
d164b209
BB
2547 delta = MIN(bytes * mult, arc_p);
2548 arc_p = MAX(arc_p_min, arc_p - delta);
34dc7c2f
BB
2549 }
2550 ASSERT((int64_t)arc_p >= 0);
2551
34dc7c2f
BB
2552 if (arc_no_grow)
2553 return;
2554
2555 if (arc_c >= arc_c_max)
2556 return;
2557
2558 /*
2559 * If we're within (2 * maxblocksize) bytes of the target
2560 * cache size, increment the target cache size
2561 */
2562 if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
2563 atomic_add_64(&arc_c, (int64_t)bytes);
2564 if (arc_c > arc_c_max)
2565 arc_c = arc_c_max;
2566 else if (state == arc_anon)
2567 atomic_add_64(&arc_p, (int64_t)bytes);
2568 if (arc_p > arc_c)
2569 arc_p = arc_c;
2570 }
2571 ASSERT((int64_t)arc_p >= 0);
2572}
2573
2574/*
2575 * Check if the cache has reached its limits and eviction is required
2576 * prior to insert.
2577 */
2578static int
2579arc_evict_needed(arc_buf_contents_t type)
2580{
2581 if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit)
2582 return (1);
2583
302f753f 2584 if (arc_no_grow)
34dc7c2f
BB
2585 return (1);
2586
2587 return (arc_size > arc_c);
2588}
2589
2590/*
2591 * The buffer, supplied as the first argument, needs a data block.
2592 * So, if we are at cache max, determine which cache should be victimized.
2593 * We have the following cases:
2594 *
2595 * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) ->
2596 * In this situation if we're out of space, but the resident size of the MFU is
2597 * under the limit, victimize the MFU cache to satisfy this insertion request.
2598 *
2599 * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) ->
2600 * Here, we've used up all of the available space for the MRU, so we need to
2601 * evict from our own cache instead. Evict from the set of resident MRU
2602 * entries.
2603 *
2604 * 3. Insert for MFU (c - p) > sizeof(arc_mfu) ->
2605 * c minus p represents the MFU space in the cache, since p is the size of the
2606 * cache that is dedicated to the MRU. In this situation there's still space on
2607 * the MFU side, so the MRU side needs to be victimized.
2608 *
2609 * 4. Insert for MFU (c - p) < sizeof(arc_mfu) ->
2610 * MFU's resident set is consuming more space than it has been allotted. In
2611 * this situation, we must victimize our own cache, the MFU, for this insertion.
2612 */
2613static void
2614arc_get_data_buf(arc_buf_t *buf)
2615{
2616 arc_state_t *state = buf->b_hdr->b_state;
2617 uint64_t size = buf->b_hdr->b_size;
2618 arc_buf_contents_t type = buf->b_hdr->b_type;
2619
2620 arc_adapt(size, state);
2621
2622 /*
2623 * We have not yet reached cache maximum size,
2624 * just allocate a new buffer.
2625 */
2626 if (!arc_evict_needed(type)) {
2627 if (type == ARC_BUFC_METADATA) {
2628 buf->b_data = zio_buf_alloc(size);
d164b209 2629 arc_space_consume(size, ARC_SPACE_DATA);
34dc7c2f
BB
2630 } else {
2631 ASSERT(type == ARC_BUFC_DATA);
2632 buf->b_data = zio_data_buf_alloc(size);
d164b209 2633 ARCSTAT_INCR(arcstat_data_size, size);
34dc7c2f
BB
2634 atomic_add_64(&arc_size, size);
2635 }
2636 goto out;
2637 }
2638
2639 /*
2640 * If we are prefetching from the mfu ghost list, this buffer
2641 * will end up on the mru list; so steal space from there.
2642 */
2643 if (state == arc_mfu_ghost)
2644 state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu;
2645 else if (state == arc_mru_ghost)
2646 state = arc_mru;
2647
2648 if (state == arc_mru || state == arc_anon) {
2649 uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size;
d164b209 2650 state = (arc_mfu->arcs_lsize[type] >= size &&
34dc7c2f
BB
2651 arc_p > mru_used) ? arc_mfu : arc_mru;
2652 } else {
2653 /* MFU cases */
2654 uint64_t mfu_space = arc_c - arc_p;
d164b209 2655 state = (arc_mru->arcs_lsize[type] >= size &&
34dc7c2f
BB
2656 mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu;
2657 }
ab26409d 2658
b8864a23 2659 if ((buf->b_data = arc_evict(state, 0, size, TRUE, type)) == NULL) {
34dc7c2f
BB
2660 if (type == ARC_BUFC_METADATA) {
2661 buf->b_data = zio_buf_alloc(size);
d164b209 2662 arc_space_consume(size, ARC_SPACE_DATA);
ab26409d
BB
2663
2664 /*
2665 * If we are unable to recycle an existing meta buffer
2666 * signal the reclaim thread. It will notify users
2667 * via the prune callback to drop references. The
2668 * prune callback in run in the context of the reclaim
2669 * thread to avoid deadlocking on the hash_lock.
2670 */
2671 cv_signal(&arc_reclaim_thr_cv);
34dc7c2f
BB
2672 } else {
2673 ASSERT(type == ARC_BUFC_DATA);
2674 buf->b_data = zio_data_buf_alloc(size);
d164b209 2675 ARCSTAT_INCR(arcstat_data_size, size);
34dc7c2f
BB
2676 atomic_add_64(&arc_size, size);
2677 }
ab26409d 2678
34dc7c2f
BB
2679 ARCSTAT_BUMP(arcstat_recycle_miss);
2680 }
2681 ASSERT(buf->b_data != NULL);
2682out:
2683 /*
2684 * Update the state size. Note that ghost states have a
2685 * "ghost size" and so don't need to be updated.
2686 */
2687 if (!GHOST_STATE(buf->b_hdr->b_state)) {
2688 arc_buf_hdr_t *hdr = buf->b_hdr;
2689
2690 atomic_add_64(&hdr->b_state->arcs_size, size);
2691 if (list_link_active(&hdr->b_arc_node)) {
2692 ASSERT(refcount_is_zero(&hdr->b_refcnt));
2693 atomic_add_64(&hdr->b_state->arcs_lsize[type], size);
2694 }
2695 /*
2696 * If we are growing the cache, and we are adding anonymous
2697 * data, and we have outgrown arc_p, update arc_p
2698 */
2699 if (arc_size < arc_c && hdr->b_state == arc_anon &&
2700 arc_anon->arcs_size + arc_mru->arcs_size > arc_p)
2701 arc_p = MIN(arc_c, arc_p + size);
2702 }
2703}
2704
2705/*
2706 * This routine is called whenever a buffer is accessed.
2707 * NOTE: the hash lock is dropped in this function.
2708 */
2709static void
2710arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock)
2711{
428870ff
BB
2712 clock_t now;
2713
34dc7c2f
BB
2714 ASSERT(MUTEX_HELD(hash_lock));
2715
2716 if (buf->b_state == arc_anon) {
2717 /*
2718 * This buffer is not in the cache, and does not
2719 * appear in our "ghost" list. Add the new buffer
2720 * to the MRU state.
2721 */
2722
2723 ASSERT(buf->b_arc_access == 0);
428870ff 2724 buf->b_arc_access = ddi_get_lbolt();
34dc7c2f
BB
2725 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2726 arc_change_state(arc_mru, buf, hash_lock);
2727
2728 } else if (buf->b_state == arc_mru) {
428870ff
BB
2729 now = ddi_get_lbolt();
2730
34dc7c2f
BB
2731 /*
2732 * If this buffer is here because of a prefetch, then either:
2733 * - clear the flag if this is a "referencing" read
2734 * (any subsequent access will bump this into the MFU state).
2735 * or
2736 * - move the buffer to the head of the list if this is
2737 * another prefetch (to make it less likely to be evicted).
2738 */
2739 if ((buf->b_flags & ARC_PREFETCH) != 0) {
2740 if (refcount_count(&buf->b_refcnt) == 0) {
2741 ASSERT(list_link_active(&buf->b_arc_node));
2742 } else {
2743 buf->b_flags &= ~ARC_PREFETCH;
e0b0ca98 2744 atomic_inc_32(&buf->b_mru_hits);
34dc7c2f
BB
2745 ARCSTAT_BUMP(arcstat_mru_hits);
2746 }
428870ff 2747 buf->b_arc_access = now;
34dc7c2f
BB
2748 return;
2749 }
2750
2751 /*
2752 * This buffer has been "accessed" only once so far,
2753 * but it is still in the cache. Move it to the MFU
2754 * state.
2755 */
428870ff 2756 if (now > buf->b_arc_access + ARC_MINTIME) {
34dc7c2f
BB
2757 /*
2758 * More than 125ms have passed since we
2759 * instantiated this buffer. Move it to the
2760 * most frequently used state.
2761 */
428870ff 2762 buf->b_arc_access = now;
34dc7c2f
BB
2763 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2764 arc_change_state(arc_mfu, buf, hash_lock);
2765 }
e0b0ca98 2766 atomic_inc_32(&buf->b_mru_hits);
34dc7c2f
BB
2767 ARCSTAT_BUMP(arcstat_mru_hits);
2768 } else if (buf->b_state == arc_mru_ghost) {
2769 arc_state_t *new_state;
2770 /*
2771 * This buffer has been "accessed" recently, but
2772 * was evicted from the cache. Move it to the
2773 * MFU state.
2774 */
2775
2776 if (buf->b_flags & ARC_PREFETCH) {
2777 new_state = arc_mru;
2778 if (refcount_count(&buf->b_refcnt) > 0)
2779 buf->b_flags &= ~ARC_PREFETCH;
2780 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2781 } else {
2782 new_state = arc_mfu;
2783 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2784 }
2785
428870ff 2786 buf->b_arc_access = ddi_get_lbolt();
34dc7c2f
BB
2787 arc_change_state(new_state, buf, hash_lock);
2788
e0b0ca98 2789 atomic_inc_32(&buf->b_mru_ghost_hits);
34dc7c2f
BB
2790 ARCSTAT_BUMP(arcstat_mru_ghost_hits);
2791 } else if (buf->b_state == arc_mfu) {
2792 /*
2793 * This buffer has been accessed more than once and is
2794 * still in the cache. Keep it in the MFU state.
2795 *
2796 * NOTE: an add_reference() that occurred when we did
2797 * the arc_read() will have kicked this off the list.
2798 * If it was a prefetch, we will explicitly move it to
2799 * the head of the list now.
2800 */
2801 if ((buf->b_flags & ARC_PREFETCH) != 0) {
2802 ASSERT(refcount_count(&buf->b_refcnt) == 0);
2803 ASSERT(list_link_active(&buf->b_arc_node));
2804 }
e0b0ca98 2805 atomic_inc_32(&buf->b_mfu_hits);
34dc7c2f 2806 ARCSTAT_BUMP(arcstat_mfu_hits);
428870ff 2807 buf->b_arc_access = ddi_get_lbolt();
34dc7c2f
BB
2808 } else if (buf->b_state == arc_mfu_ghost) {
2809 arc_state_t *new_state = arc_mfu;
2810 /*
2811 * This buffer has been accessed more than once but has
2812 * been evicted from the cache. Move it back to the
2813 * MFU state.
2814 */
2815
2816 if (buf->b_flags & ARC_PREFETCH) {
2817 /*
2818 * This is a prefetch access...
2819 * move this block back to the MRU state.
2820 */
c99c9001 2821 ASSERT0(refcount_count(&buf->b_refcnt));
34dc7c2f
BB
2822 new_state = arc_mru;
2823 }
2824
428870ff 2825 buf->b_arc_access = ddi_get_lbolt();
34dc7c2f
BB
2826 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2827 arc_change_state(new_state, buf, hash_lock);
2828
e0b0ca98 2829 atomic_inc_32(&buf->b_mfu_ghost_hits);
34dc7c2f
BB
2830 ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
2831 } else if (buf->b_state == arc_l2c_only) {
2832 /*
2833 * This buffer is on the 2nd Level ARC.
2834 */
2835
428870ff 2836 buf->b_arc_access = ddi_get_lbolt();
34dc7c2f
BB
2837 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2838 arc_change_state(arc_mfu, buf, hash_lock);
2839 } else {
2840 ASSERT(!"invalid arc state");
2841 }
2842}
2843
2844/* a generic arc_done_func_t which you can use */
2845/* ARGSUSED */
2846void
2847arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
2848{
428870ff
BB
2849 if (zio == NULL || zio->io_error == 0)
2850 bcopy(buf->b_data, arg, buf->b_hdr->b_size);
13fe0198 2851 VERIFY(arc_buf_remove_ref(buf, arg));
34dc7c2f
BB
2852}
2853
2854/* a generic arc_done_func_t */
2855void
2856arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
2857{
2858 arc_buf_t **bufp = arg;
2859 if (zio && zio->io_error) {
13fe0198 2860 VERIFY(arc_buf_remove_ref(buf, arg));
34dc7c2f
BB
2861 *bufp = NULL;
2862 } else {
2863 *bufp = buf;
428870ff 2864 ASSERT(buf->b_data);
34dc7c2f
BB
2865 }
2866}
2867
2868static void
2869arc_read_done(zio_t *zio)
2870{
2871 arc_buf_hdr_t *hdr, *found;
2872 arc_buf_t *buf;
2873 arc_buf_t *abuf; /* buffer we're assigning to callback */
2874 kmutex_t *hash_lock;
2875 arc_callback_t *callback_list, *acb;
2876 int freeable = FALSE;
2877
2878 buf = zio->io_private;
2879 hdr = buf->b_hdr;
2880
2881 /*
2882 * The hdr was inserted into hash-table and removed from lists
2883 * prior to starting I/O. We should find this header, since
2884 * it's in the hash table, and it should be legit since it's
2885 * not possible to evict it during the I/O. The only possible
2886 * reason for it not to be found is if we were freed during the
2887 * read.
2888 */
d164b209 2889 found = buf_hash_find(hdr->b_spa, &hdr->b_dva, hdr->b_birth,
34dc7c2f
BB
2890 &hash_lock);
2891
2892 ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) ||
2893 (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
2894 (found == hdr && HDR_L2_READING(hdr)));
2895
b128c09f 2896 hdr->b_flags &= ~ARC_L2_EVICTED;
34dc7c2f 2897 if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH))
b128c09f 2898 hdr->b_flags &= ~ARC_L2CACHE;
34dc7c2f
BB
2899
2900 /* byteswap if necessary */
2901 callback_list = hdr->b_acb;
2902 ASSERT(callback_list != NULL);
428870ff 2903 if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) {
9ae529ec
CS
2904 dmu_object_byteswap_t bswap =
2905 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
b01615d5
RY
2906 if (BP_GET_LEVEL(zio->io_bp) > 0)
2907 byteswap_uint64_array(buf->b_data, hdr->b_size);
2908 else
2909 dmu_ot_byteswap[bswap].ob_func(buf->b_data, hdr->b_size);
b128c09f 2910 }
34dc7c2f
BB
2911
2912 arc_cksum_compute(buf, B_FALSE);
2913
428870ff
BB
2914 if (hash_lock && zio->io_error == 0 && hdr->b_state == arc_anon) {
2915 /*
2916 * Only call arc_access on anonymous buffers. This is because
2917 * if we've issued an I/O for an evicted buffer, we've already
2918 * called arc_access (to prevent any simultaneous readers from
2919 * getting confused).
2920 */
2921 arc_access(hdr, hash_lock);
2922 }
2923
34dc7c2f
BB
2924 /* create copies of the data buffer for the callers */
2925 abuf = buf;
2926 for (acb = callback_list; acb; acb = acb->acb_next) {
2927 if (acb->acb_done) {
1eb5bfa3
GW
2928 if (abuf == NULL) {
2929 ARCSTAT_BUMP(arcstat_duplicate_reads);
34dc7c2f 2930 abuf = arc_buf_clone(buf);
1eb5bfa3 2931 }
34dc7c2f
BB
2932 acb->acb_buf = abuf;
2933 abuf = NULL;
2934 }
2935 }
2936 hdr->b_acb = NULL;
2937 hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2938 ASSERT(!HDR_BUF_AVAILABLE(hdr));
428870ff
BB
2939 if (abuf == buf) {
2940 ASSERT(buf->b_efunc == NULL);
2941 ASSERT(hdr->b_datacnt == 1);
34dc7c2f 2942 hdr->b_flags |= ARC_BUF_AVAILABLE;
428870ff 2943 }
34dc7c2f
BB
2944
2945 ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL);
2946
2947 if (zio->io_error != 0) {
2948 hdr->b_flags |= ARC_IO_ERROR;
2949 if (hdr->b_state != arc_anon)
2950 arc_change_state(arc_anon, hdr, hash_lock);
2951 if (HDR_IN_HASH_TABLE(hdr))
2952 buf_hash_remove(hdr);
2953 freeable = refcount_is_zero(&hdr->b_refcnt);
34dc7c2f
BB
2954 }
2955
2956 /*
2957 * Broadcast before we drop the hash_lock to avoid the possibility
2958 * that the hdr (and hence the cv) might be freed before we get to
2959 * the cv_broadcast().
2960 */
2961 cv_broadcast(&hdr->b_cv);
2962
2963 if (hash_lock) {
34dc7c2f
BB
2964 mutex_exit(hash_lock);
2965 } else {
2966 /*
2967 * This block was freed while we waited for the read to
2968 * complete. It has been removed from the hash table and
2969 * moved to the anonymous state (so that it won't show up
2970 * in the cache).
2971 */
2972 ASSERT3P(hdr->b_state, ==, arc_anon);
2973 freeable = refcount_is_zero(&hdr->b_refcnt);
2974 }
2975
2976 /* execute each callback and free its structure */
2977 while ((acb = callback_list) != NULL) {
2978 if (acb->acb_done)
2979 acb->acb_done(zio, acb->acb_buf, acb->acb_private);
2980
2981 if (acb->acb_zio_dummy != NULL) {
2982 acb->acb_zio_dummy->io_error = zio->io_error;
2983 zio_nowait(acb->acb_zio_dummy);
2984 }
2985
2986 callback_list = acb->acb_next;
2987 kmem_free(acb, sizeof (arc_callback_t));
2988 }
2989
2990 if (freeable)
2991 arc_hdr_destroy(hdr);
2992}
2993
2994/*
5c839890 2995 * "Read" the block at the specified DVA (in bp) via the
34dc7c2f
BB
2996 * cache. If the block is found in the cache, invoke the provided
2997 * callback immediately and return. Note that the `zio' parameter
2998 * in the callback will be NULL in this case, since no IO was
2999 * required. If the block is not in the cache pass the read request
3000 * on to the spa with a substitute callback function, so that the
3001 * requested block will be added to the cache.
3002 *
3003 * If a read request arrives for a block that has a read in-progress,
3004 * either wait for the in-progress read to complete (and return the
3005 * results); or, if this is a read with a "done" func, add a record
3006 * to the read to invoke the "done" func when the read completes,
3007 * and return; or just return.
3008 *
3009 * arc_read_done() will invoke all the requested "done" functions
3010 * for readers of this block.
3011 */
3012int
294f6806
GW
3013arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
3014 void *private, int priority, int zio_flags, uint32_t *arc_flags,
3015 const zbookmark_t *zb)
34dc7c2f
BB
3016{
3017 arc_buf_hdr_t *hdr;
d4ed6673 3018 arc_buf_t *buf = NULL;
34dc7c2f
BB
3019 kmutex_t *hash_lock;
3020 zio_t *rzio;
3541dc6d 3021 uint64_t guid = spa_load_guid(spa);
1421c891 3022 int rc = 0;
34dc7c2f
BB
3023
3024top:
428870ff
BB
3025 hdr = buf_hash_find(guid, BP_IDENTITY(bp), BP_PHYSICAL_BIRTH(bp),
3026 &hash_lock);
34dc7c2f
BB
3027 if (hdr && hdr->b_datacnt > 0) {
3028
3029 *arc_flags |= ARC_CACHED;
3030
3031 if (HDR_IO_IN_PROGRESS(hdr)) {
3032
3033 if (*arc_flags & ARC_WAIT) {
3034 cv_wait(&hdr->b_cv, hash_lock);
3035 mutex_exit(hash_lock);
3036 goto top;
3037 }
3038 ASSERT(*arc_flags & ARC_NOWAIT);
3039
3040 if (done) {
3041 arc_callback_t *acb = NULL;
3042
3043 acb = kmem_zalloc(sizeof (arc_callback_t),
691f6ac4 3044 KM_PUSHPAGE);
34dc7c2f
BB
3045 acb->acb_done = done;
3046 acb->acb_private = private;
34dc7c2f
BB
3047 if (pio != NULL)
3048 acb->acb_zio_dummy = zio_null(pio,
d164b209 3049 spa, NULL, NULL, NULL, zio_flags);
34dc7c2f
BB
3050
3051 ASSERT(acb->acb_done != NULL);
3052 acb->acb_next = hdr->b_acb;
3053 hdr->b_acb = acb;
3054 add_reference(hdr, hash_lock, private);
3055 mutex_exit(hash_lock);
1421c891 3056 goto out;
34dc7c2f
BB
3057 }
3058 mutex_exit(hash_lock);
1421c891 3059 goto out;
34dc7c2f
BB
3060 }
3061
3062 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
3063
3064 if (done) {
3065 add_reference(hdr, hash_lock, private);
3066 /*
3067 * If this block is already in use, create a new
3068 * copy of the data so that we will be guaranteed
3069 * that arc_release() will always succeed.
3070 */
3071 buf = hdr->b_buf;
3072 ASSERT(buf);
3073 ASSERT(buf->b_data);
3074 if (HDR_BUF_AVAILABLE(hdr)) {
3075 ASSERT(buf->b_efunc == NULL);
3076 hdr->b_flags &= ~ARC_BUF_AVAILABLE;
3077 } else {
3078 buf = arc_buf_clone(buf);
3079 }
428870ff 3080
34dc7c2f
BB
3081 } else if (*arc_flags & ARC_PREFETCH &&
3082 refcount_count(&hdr->b_refcnt) == 0) {
3083 hdr->b_flags |= ARC_PREFETCH;
3084 }
3085 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
3086 arc_access(hdr, hash_lock);
b128c09f
BB
3087 if (*arc_flags & ARC_L2CACHE)
3088 hdr->b_flags |= ARC_L2CACHE;
3a17a7a9
SK
3089 if (*arc_flags & ARC_L2COMPRESS)
3090 hdr->b_flags |= ARC_L2COMPRESS;
34dc7c2f
BB
3091 mutex_exit(hash_lock);
3092 ARCSTAT_BUMP(arcstat_hits);
3093 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
3094 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
3095 data, metadata, hits);
3096
3097 if (done)
3098 done(NULL, buf, private);
3099 } else {
3100 uint64_t size = BP_GET_LSIZE(bp);
3101 arc_callback_t *acb;
b128c09f 3102 vdev_t *vd = NULL;
a117a6d6 3103 uint64_t addr = 0;
d164b209 3104 boolean_t devw = B_FALSE;
34dc7c2f
BB
3105
3106 if (hdr == NULL) {
3107 /* this block is not in the cache */
3108 arc_buf_hdr_t *exists;
3109 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
3110 buf = arc_buf_alloc(spa, size, private, type);
3111 hdr = buf->b_hdr;
3112 hdr->b_dva = *BP_IDENTITY(bp);
428870ff 3113 hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
34dc7c2f
BB
3114 hdr->b_cksum0 = bp->blk_cksum.zc_word[0];
3115 exists = buf_hash_insert(hdr, &hash_lock);
3116 if (exists) {
3117 /* somebody beat us to the hash insert */
3118 mutex_exit(hash_lock);
428870ff 3119 buf_discard_identity(hdr);
34dc7c2f
BB
3120 (void) arc_buf_remove_ref(buf, private);
3121 goto top; /* restart the IO request */
3122 }
3123 /* if this is a prefetch, we don't have a reference */
3124 if (*arc_flags & ARC_PREFETCH) {
3125 (void) remove_reference(hdr, hash_lock,
3126 private);
3127 hdr->b_flags |= ARC_PREFETCH;
3128 }
b128c09f
BB
3129 if (*arc_flags & ARC_L2CACHE)
3130 hdr->b_flags |= ARC_L2CACHE;
3a17a7a9
SK
3131 if (*arc_flags & ARC_L2COMPRESS)
3132 hdr->b_flags |= ARC_L2COMPRESS;
34dc7c2f
BB
3133 if (BP_GET_LEVEL(bp) > 0)
3134 hdr->b_flags |= ARC_INDIRECT;
3135 } else {
3136 /* this block is in the ghost cache */
3137 ASSERT(GHOST_STATE(hdr->b_state));
3138 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
c99c9001 3139 ASSERT0(refcount_count(&hdr->b_refcnt));
34dc7c2f
BB
3140 ASSERT(hdr->b_buf == NULL);
3141
3142 /* if this is a prefetch, we don't have a reference */
3143 if (*arc_flags & ARC_PREFETCH)
3144 hdr->b_flags |= ARC_PREFETCH;
3145 else
3146 add_reference(hdr, hash_lock, private);
b128c09f
BB
3147 if (*arc_flags & ARC_L2CACHE)
3148 hdr->b_flags |= ARC_L2CACHE;
3a17a7a9
SK
3149 if (*arc_flags & ARC_L2COMPRESS)
3150 hdr->b_flags |= ARC_L2COMPRESS;
34dc7c2f
BB
3151 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
3152 buf->b_hdr = hdr;
3153 buf->b_data = NULL;
3154 buf->b_efunc = NULL;
3155 buf->b_private = NULL;
3156 buf->b_next = NULL;
3157 hdr->b_buf = buf;
34dc7c2f
BB
3158 ASSERT(hdr->b_datacnt == 0);
3159 hdr->b_datacnt = 1;
428870ff
BB
3160 arc_get_data_buf(buf);
3161 arc_access(hdr, hash_lock);
34dc7c2f
BB
3162 }
3163
428870ff
BB
3164 ASSERT(!GHOST_STATE(hdr->b_state));
3165
691f6ac4 3166 acb = kmem_zalloc(sizeof (arc_callback_t), KM_PUSHPAGE);
34dc7c2f
BB
3167 acb->acb_done = done;
3168 acb->acb_private = private;
34dc7c2f
BB
3169
3170 ASSERT(hdr->b_acb == NULL);
3171 hdr->b_acb = acb;
3172 hdr->b_flags |= ARC_IO_IN_PROGRESS;
3173
b128c09f
BB
3174 if (HDR_L2CACHE(hdr) && hdr->b_l2hdr != NULL &&
3175 (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) {
d164b209 3176 devw = hdr->b_l2hdr->b_dev->l2ad_writing;
b128c09f
BB
3177 addr = hdr->b_l2hdr->b_daddr;
3178 /*
3179 * Lock out device removal.
3180 */
3181 if (vdev_is_dead(vd) ||
3182 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
3183 vd = NULL;
3184 }
3185
3186 mutex_exit(hash_lock);
3187
e49f1e20
WA
3188 /*
3189 * At this point, we have a level 1 cache miss. Try again in
3190 * L2ARC if possible.
3191 */
34dc7c2f 3192 ASSERT3U(hdr->b_size, ==, size);
428870ff
BB
3193 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
3194 uint64_t, size, zbookmark_t *, zb);
34dc7c2f
BB
3195 ARCSTAT_BUMP(arcstat_misses);
3196 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
3197 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
3198 data, metadata, misses);
3199
d164b209 3200 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
34dc7c2f
BB
3201 /*
3202 * Read from the L2ARC if the following are true:
b128c09f
BB
3203 * 1. The L2ARC vdev was previously cached.
3204 * 2. This buffer still has L2ARC metadata.
3205 * 3. This buffer isn't currently writing to the L2ARC.
3206 * 4. The L2ARC entry wasn't evicted, which may
3207 * also have invalidated the vdev.
d164b209 3208 * 5. This isn't prefetch and l2arc_noprefetch is set.
34dc7c2f 3209 */
b128c09f 3210 if (hdr->b_l2hdr != NULL &&
d164b209
BB
3211 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
3212 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
34dc7c2f
BB
3213 l2arc_read_callback_t *cb;
3214
3215 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
3216 ARCSTAT_BUMP(arcstat_l2_hits);
e0b0ca98 3217 atomic_inc_32(&hdr->b_l2hdr->b_hits);
34dc7c2f 3218
34dc7c2f 3219 cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
691f6ac4 3220 KM_PUSHPAGE);
34dc7c2f
BB
3221 cb->l2rcb_buf = buf;
3222 cb->l2rcb_spa = spa;
3223 cb->l2rcb_bp = *bp;
3224 cb->l2rcb_zb = *zb;
b128c09f 3225 cb->l2rcb_flags = zio_flags;
3a17a7a9 3226 cb->l2rcb_compress = hdr->b_l2hdr->b_compress;
34dc7c2f 3227
a117a6d6
GW
3228 ASSERT(addr >= VDEV_LABEL_START_SIZE &&
3229 addr + size < vd->vdev_psize -
3230 VDEV_LABEL_END_SIZE);
3231
34dc7c2f 3232 /*
b128c09f
BB
3233 * l2arc read. The SCL_L2ARC lock will be
3234 * released by l2arc_read_done().
3a17a7a9
SK
3235 * Issue a null zio if the underlying buffer
3236 * was squashed to zero size by compression.
34dc7c2f 3237 */
3a17a7a9
SK
3238 if (hdr->b_l2hdr->b_compress ==
3239 ZIO_COMPRESS_EMPTY) {
3240 rzio = zio_null(pio, spa, vd,
3241 l2arc_read_done, cb,
3242 zio_flags | ZIO_FLAG_DONT_CACHE |
3243 ZIO_FLAG_CANFAIL |
3244 ZIO_FLAG_DONT_PROPAGATE |
3245 ZIO_FLAG_DONT_RETRY);
3246 } else {
3247 rzio = zio_read_phys(pio, vd, addr,
3248 hdr->b_l2hdr->b_asize,
3249 buf->b_data, ZIO_CHECKSUM_OFF,
3250 l2arc_read_done, cb, priority,
3251 zio_flags | ZIO_FLAG_DONT_CACHE |
3252 ZIO_FLAG_CANFAIL |
3253 ZIO_FLAG_DONT_PROPAGATE |
3254 ZIO_FLAG_DONT_RETRY, B_FALSE);
3255 }
34dc7c2f
BB
3256 DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
3257 zio_t *, rzio);
3a17a7a9
SK
3258 ARCSTAT_INCR(arcstat_l2_read_bytes,
3259 hdr->b_l2hdr->b_asize);
34dc7c2f 3260
b128c09f
BB
3261 if (*arc_flags & ARC_NOWAIT) {
3262 zio_nowait(rzio);
1421c891 3263 goto out;
b128c09f 3264 }
34dc7c2f 3265
b128c09f
BB
3266 ASSERT(*arc_flags & ARC_WAIT);
3267 if (zio_wait(rzio) == 0)
1421c891 3268 goto out;
b128c09f
BB
3269
3270 /* l2arc read error; goto zio_read() */
34dc7c2f
BB
3271 } else {
3272 DTRACE_PROBE1(l2arc__miss,
3273 arc_buf_hdr_t *, hdr);
3274 ARCSTAT_BUMP(arcstat_l2_misses);
3275 if (HDR_L2_WRITING(hdr))
3276 ARCSTAT_BUMP(arcstat_l2_rw_clash);
b128c09f 3277 spa_config_exit(spa, SCL_L2ARC, vd);
34dc7c2f 3278 }
d164b209
BB
3279 } else {
3280 if (vd != NULL)
3281 spa_config_exit(spa, SCL_L2ARC, vd);
3282 if (l2arc_ndev != 0) {
3283 DTRACE_PROBE1(l2arc__miss,
3284 arc_buf_hdr_t *, hdr);
3285 ARCSTAT_BUMP(arcstat_l2_misses);
3286 }
34dc7c2f 3287 }
34dc7c2f
BB
3288
3289 rzio = zio_read(pio, spa, bp, buf->b_data, size,
b128c09f 3290 arc_read_done, buf, priority, zio_flags, zb);
34dc7c2f 3291
1421c891
PS
3292 if (*arc_flags & ARC_WAIT) {
3293 rc = zio_wait(rzio);
3294 goto out;
3295 }
34dc7c2f
BB
3296
3297 ASSERT(*arc_flags & ARC_NOWAIT);
3298 zio_nowait(rzio);
3299 }
1421c891
PS
3300
3301out:
3302 spa_read_history_add(spa, zb, *arc_flags);
3303 return (rc);
34dc7c2f
BB
3304}
3305
ab26409d
BB
3306arc_prune_t *
3307arc_add_prune_callback(arc_prune_func_t *func, void *private)
3308{
3309 arc_prune_t *p;
3310
3311 p = kmem_alloc(sizeof(*p), KM_SLEEP);
3312 p->p_pfunc = func;
3313 p->p_private = private;
3314 list_link_init(&p->p_node);
3315 refcount_create(&p->p_refcnt);
3316
3317 mutex_enter(&arc_prune_mtx);
3318 refcount_add(&p->p_refcnt, &arc_prune_list);
3319 list_insert_head(&arc_prune_list, p);
3320 mutex_exit(&arc_prune_mtx);
3321
3322 return (p);
3323}
3324
3325void
3326arc_remove_prune_callback(arc_prune_t *p)
3327{
3328 mutex_enter(&arc_prune_mtx);
3329 list_remove(&arc_prune_list, p);
3330 if (refcount_remove(&p->p_refcnt, &arc_prune_list) == 0) {
3331 refcount_destroy(&p->p_refcnt);
3332 kmem_free(p, sizeof (*p));
3333 }
3334 mutex_exit(&arc_prune_mtx);
3335}
3336
34dc7c2f
BB
3337void
3338arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
3339{
3340 ASSERT(buf->b_hdr != NULL);
3341 ASSERT(buf->b_hdr->b_state != arc_anon);
3342 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL);
428870ff
BB
3343 ASSERT(buf->b_efunc == NULL);
3344 ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr));
3345
34dc7c2f
BB
3346 buf->b_efunc = func;
3347 buf->b_private = private;
3348}
3349
df4474f9
MA
3350/*
3351 * Notify the arc that a block was freed, and thus will never be used again.
3352 */
3353void
3354arc_freed(spa_t *spa, const blkptr_t *bp)
3355{
3356 arc_buf_hdr_t *hdr;
3357 kmutex_t *hash_lock;
3358 uint64_t guid = spa_load_guid(spa);
3359
3360 hdr = buf_hash_find(guid, BP_IDENTITY(bp), BP_PHYSICAL_BIRTH(bp),
3361 &hash_lock);
3362 if (hdr == NULL)
3363 return;
3364 if (HDR_BUF_AVAILABLE(hdr)) {
3365 arc_buf_t *buf = hdr->b_buf;
3366 add_reference(hdr, hash_lock, FTAG);
3367 hdr->b_flags &= ~ARC_BUF_AVAILABLE;
3368 mutex_exit(hash_lock);
3369
3370 arc_release(buf, FTAG);
3371 (void) arc_buf_remove_ref(buf, FTAG);
3372 } else {
3373 mutex_exit(hash_lock);
3374 }
3375
3376}
3377
34dc7c2f
BB
3378/*
3379 * This is used by the DMU to let the ARC know that a buffer is
3380 * being evicted, so the ARC should clean up. If this arc buf
3381 * is not yet in the evicted state, it will be put there.
3382 */
3383int
3384arc_buf_evict(arc_buf_t *buf)
3385{
3386 arc_buf_hdr_t *hdr;
3387 kmutex_t *hash_lock;
3388 arc_buf_t **bufp;
3389
428870ff 3390 mutex_enter(&buf->b_evict_lock);
34dc7c2f
BB
3391 hdr = buf->b_hdr;
3392 if (hdr == NULL) {
3393 /*
3394 * We are in arc_do_user_evicts().
3395 */
3396 ASSERT(buf->b_data == NULL);
428870ff 3397 mutex_exit(&buf->b_evict_lock);
34dc7c2f 3398 return (0);
b128c09f
BB
3399 } else if (buf->b_data == NULL) {
3400 arc_buf_t copy = *buf; /* structure assignment */
34dc7c2f 3401 /*
b128c09f
BB
3402 * We are on the eviction list; process this buffer now
3403 * but let arc_do_user_evicts() do the reaping.
34dc7c2f 3404 */
b128c09f 3405 buf->b_efunc = NULL;
428870ff 3406 mutex_exit(&buf->b_evict_lock);
b128c09f
BB
3407 VERIFY(copy.b_efunc(&copy) == 0);
3408 return (1);
34dc7c2f 3409 }
b128c09f
BB
3410 hash_lock = HDR_LOCK(hdr);
3411 mutex_enter(hash_lock);
428870ff
BB
3412 hdr = buf->b_hdr;
3413 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
34dc7c2f 3414
34dc7c2f
BB
3415 ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt);
3416 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
3417
3418 /*
3419 * Pull this buffer off of the hdr
3420 */
3421 bufp = &hdr->b_buf;
3422 while (*bufp != buf)
3423 bufp = &(*bufp)->b_next;
3424 *bufp = buf->b_next;
3425
3426 ASSERT(buf->b_data != NULL);
3427 arc_buf_destroy(buf, FALSE, FALSE);
3428
3429 if (hdr->b_datacnt == 0) {
3430 arc_state_t *old_state = hdr->b_state;
3431 arc_state_t *evicted_state;
3432
428870ff 3433 ASSERT(hdr->b_buf == NULL);
34dc7c2f
BB
3434 ASSERT(refcount_is_zero(&hdr->b_refcnt));
3435
3436 evicted_state =
3437 (old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
3438
3439 mutex_enter(&old_state->arcs_mtx);
3440 mutex_enter(&evicted_state->arcs_mtx);
3441
3442 arc_change_state(evicted_state, hdr, hash_lock);
3443 ASSERT(HDR_IN_HASH_TABLE(hdr));
3444 hdr->b_flags |= ARC_IN_HASH_TABLE;
3445 hdr->b_flags &= ~ARC_BUF_AVAILABLE;
3446
3447 mutex_exit(&evicted_state->arcs_mtx);
3448 mutex_exit(&old_state->arcs_mtx);
3449 }
3450 mutex_exit(hash_lock);
428870ff 3451 mutex_exit(&buf->b_evict_lock);
34dc7c2f
BB
3452
3453 VERIFY(buf->b_efunc(buf) == 0);
3454 buf->b_efunc = NULL;
3455 buf->b_private = NULL;
3456 buf->b_hdr = NULL;
428870ff 3457 buf->b_next = NULL;
34dc7c2f
BB
3458 kmem_cache_free(buf_cache, buf);
3459 return (1);
3460}
3461
3462/*
e49f1e20
WA
3463 * Release this buffer from the cache, making it an anonymous buffer. This
3464 * must be done after a read and prior to modifying the buffer contents.
34dc7c2f 3465 * If the buffer has more than one reference, we must make
b128c09f 3466 * a new hdr for the buffer.
34dc7c2f
BB
3467 */
3468void
3469arc_release(arc_buf_t *buf, void *tag)
3470{
b128c09f 3471 arc_buf_hdr_t *hdr;
428870ff 3472 kmutex_t *hash_lock = NULL;
b128c09f 3473 l2arc_buf_hdr_t *l2hdr;
d4ed6673 3474 uint64_t buf_size = 0;
34dc7c2f 3475
428870ff
BB
3476 /*
3477 * It would be nice to assert that if it's DMU metadata (level >
3478 * 0 || it's the dnode file), then it must be syncing context.
3479 * But we don't know that information at this level.
3480 */
3481
3482 mutex_enter(&buf->b_evict_lock);
b128c09f
BB
3483 hdr = buf->b_hdr;
3484
34dc7c2f
BB
3485 /* this buffer is not on any list */
3486 ASSERT(refcount_count(&hdr->b_refcnt) > 0);
3487
3488 if (hdr->b_state == arc_anon) {
3489 /* this buffer is already released */
34dc7c2f 3490 ASSERT(buf->b_efunc == NULL);
9babb374
BB
3491 } else {
3492 hash_lock = HDR_LOCK(hdr);
3493 mutex_enter(hash_lock);
428870ff
BB
3494 hdr = buf->b_hdr;
3495 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
34dc7c2f
BB
3496 }
3497
b128c09f
BB
3498 l2hdr = hdr->b_l2hdr;
3499 if (l2hdr) {
3500 mutex_enter(&l2arc_buflist_mtx);
3501 hdr->b_l2hdr = NULL;
b128c09f 3502 }
a117a6d6 3503 buf_size = hdr->b_size;
b128c09f 3504
34dc7c2f
BB
3505 /*
3506 * Do we have more than one buf?
3507 */
b128c09f 3508 if (hdr->b_datacnt > 1) {
34dc7c2f
BB
3509 arc_buf_hdr_t *nhdr;
3510 arc_buf_t **bufp;
3511 uint64_t blksz = hdr->b_size;
d164b209 3512 uint64_t spa = hdr->b_spa;
34dc7c2f
BB
3513 arc_buf_contents_t type = hdr->b_type;
3514 uint32_t flags = hdr->b_flags;
3515
b128c09f 3516 ASSERT(hdr->b_buf != buf || buf->b_next != NULL);
34dc7c2f 3517 /*
428870ff
BB
3518 * Pull the data off of this hdr and attach it to
3519 * a new anonymous hdr.
34dc7c2f
BB
3520 */
3521 (void) remove_reference(hdr, hash_lock, tag);
3522 bufp = &hdr->b_buf;
3523 while (*bufp != buf)
3524 bufp = &(*bufp)->b_next;
428870ff 3525 *bufp = buf->b_next;
34dc7c2f
BB
3526 buf->b_next = NULL;
3527
3528 ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size);
3529 atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size);
3530 if (refcount_is_zero(&hdr->b_refcnt)) {
3531 uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type];
3532 ASSERT3U(*size, >=, hdr->b_size);
3533 atomic_add_64(size, -hdr->b_size);
3534 }
1eb5bfa3
GW
3535
3536 /*
3537 * We're releasing a duplicate user data buffer, update
3538 * our statistics accordingly.
3539 */
3540 if (hdr->b_type == ARC_BUFC_DATA) {
3541 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
3542 ARCSTAT_INCR(arcstat_duplicate_buffers_size,
3543 -hdr->b_size);
3544 }
34dc7c2f 3545 hdr->b_datacnt -= 1;
34dc7c2f
BB
3546 arc_cksum_verify(buf);
3547
3548 mutex_exit(hash_lock);
3549
3550 nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
3551 nhdr->b_size = blksz;
3552 nhdr->b_spa = spa;
3553 nhdr->b_type = type;
3554 nhdr->b_buf = buf;
3555 nhdr->b_state = arc_anon;
3556 nhdr->b_arc_access = 0;
e0b0ca98
BB
3557 nhdr->b_mru_hits = 0;
3558 nhdr->b_mru_ghost_hits = 0;
3559 nhdr->b_mfu_hits = 0;
3560 nhdr->b_mfu_ghost_hits = 0;
3561 nhdr->b_l2_hits = 0;
34dc7c2f
BB
3562 nhdr->b_flags = flags & ARC_L2_WRITING;
3563 nhdr->b_l2hdr = NULL;
3564 nhdr->b_datacnt = 1;
3565 nhdr->b_freeze_cksum = NULL;
3566 (void) refcount_add(&nhdr->b_refcnt, tag);
3567 buf->b_hdr = nhdr;
428870ff 3568 mutex_exit(&buf->b_evict_lock);
34dc7c2f
BB
3569 atomic_add_64(&arc_anon->arcs_size, blksz);
3570 } else {
428870ff 3571 mutex_exit(&buf->b_evict_lock);
34dc7c2f
BB
3572 ASSERT(refcount_count(&hdr->b_refcnt) == 1);
3573 ASSERT(!list_link_active(&hdr->b_arc_node));
3574 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
428870ff
BB
3575 if (hdr->b_state != arc_anon)
3576 arc_change_state(arc_anon, hdr, hash_lock);
34dc7c2f 3577 hdr->b_arc_access = 0;
e0b0ca98
BB
3578 hdr->b_mru_hits = 0;
3579 hdr->b_mru_ghost_hits = 0;
3580 hdr->b_mfu_hits = 0;
3581 hdr->b_mfu_ghost_hits = 0;
3582 hdr->b_l2_hits = 0;
428870ff
BB
3583 if (hash_lock)
3584 mutex_exit(hash_lock);
34dc7c2f 3585
428870ff 3586 buf_discard_identity(hdr);
34dc7c2f
BB
3587 arc_buf_thaw(buf);
3588 }
3589 buf->b_efunc = NULL;
3590 buf->b_private = NULL;
3591
3592 if (l2hdr) {
3a17a7a9 3593 ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize);
34dc7c2f
BB
3594 list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
3595 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
6e1d7276 3596 arc_space_return(L2HDR_SIZE, ARC_SPACE_L2HDRS);
34dc7c2f 3597 ARCSTAT_INCR(arcstat_l2_size, -buf_size);
34dc7c2f 3598 mutex_exit(&l2arc_buflist_mtx);
b128c09f 3599 }
34dc7c2f
BB
3600}
3601
3602int
3603arc_released(arc_buf_t *buf)
3604{
b128c09f
BB
3605 int released;
3606
428870ff 3607 mutex_enter(&buf->b_evict_lock);
b128c09f 3608 released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon);
428870ff 3609 mutex_exit(&buf->b_evict_lock);
b128c09f 3610 return (released);
34dc7c2f
BB
3611}
3612
3613int
3614arc_has_callback(arc_buf_t *buf)
3615{
b128c09f
BB
3616 int callback;
3617
428870ff 3618 mutex_enter(&buf->b_evict_lock);
b128c09f 3619 callback = (buf->b_efunc != NULL);
428870ff 3620 mutex_exit(&buf->b_evict_lock);
b128c09f 3621 return (callback);
34dc7c2f
BB
3622}
3623
3624#ifdef ZFS_DEBUG
3625int
3626arc_referenced(arc_buf_t *buf)
3627{
b128c09f
BB
3628 int referenced;
3629
428870ff 3630 mutex_enter(&buf->b_evict_lock);
b128c09f 3631 referenced = (refcount_count(&buf->b_hdr->b_refcnt));
428870ff 3632 mutex_exit(&buf->b_evict_lock);
b128c09f 3633 return (referenced);
34dc7c2f
BB
3634}
3635#endif
3636
3637static void
3638arc_write_ready(zio_t *zio)
3639{
3640 arc_write_callback_t *callback = zio->io_private;
3641 arc_buf_t *buf = callback->awcb_buf;
3642 arc_buf_hdr_t *hdr = buf->b_hdr;
3643
b128c09f
BB
3644 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt));
3645 callback->awcb_ready(zio, buf, callback->awcb_private);
3646
34dc7c2f
BB
3647 /*
3648 * If the IO is already in progress, then this is a re-write
b128c09f
BB
3649 * attempt, so we need to thaw and re-compute the cksum.
3650 * It is the responsibility of the callback to handle the
3651 * accounting for any re-write attempt.
34dc7c2f
BB
3652 */
3653 if (HDR_IO_IN_PROGRESS(hdr)) {
34dc7c2f
BB
3654 mutex_enter(&hdr->b_freeze_lock);
3655 if (hdr->b_freeze_cksum != NULL) {
3656 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
3657 hdr->b_freeze_cksum = NULL;
3658 }
3659 mutex_exit(&hdr->b_freeze_lock);
3660 }
3661 arc_cksum_compute(buf, B_FALSE);
3662 hdr->b_flags |= ARC_IO_IN_PROGRESS;
3663}
3664
3665static void
3666arc_write_done(zio_t *zio)
3667{
3668 arc_write_callback_t *callback = zio->io_private;
3669 arc_buf_t *buf = callback->awcb_buf;
3670 arc_buf_hdr_t *hdr = buf->b_hdr;
3671
428870ff
BB
3672 ASSERT(hdr->b_acb == NULL);
3673
3674 if (zio->io_error == 0) {
3675 hdr->b_dva = *BP_IDENTITY(zio->io_bp);
3676 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
3677 hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0];
3678 } else {
3679 ASSERT(BUF_EMPTY(hdr));
3680 }
34dc7c2f 3681
34dc7c2f
BB
3682 /*
3683 * If the block to be written was all-zero, we may have
3684 * compressed it away. In this case no write was performed
428870ff
BB
3685 * so there will be no dva/birth/checksum. The buffer must
3686 * therefore remain anonymous (and uncached).
34dc7c2f
BB
3687 */
3688 if (!BUF_EMPTY(hdr)) {
3689 arc_buf_hdr_t *exists;
3690 kmutex_t *hash_lock;
3691
428870ff
BB
3692 ASSERT(zio->io_error == 0);
3693
34dc7c2f
BB
3694 arc_cksum_verify(buf);
3695
3696 exists = buf_hash_insert(hdr, &hash_lock);
3697 if (exists) {
3698 /*
3699 * This can only happen if we overwrite for
3700 * sync-to-convergence, because we remove
3701 * buffers from the hash table when we arc_free().
3702 */
428870ff
BB
3703 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
3704 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
3705 panic("bad overwrite, hdr=%p exists=%p",
3706 (void *)hdr, (void *)exists);
3707 ASSERT(refcount_is_zero(&exists->b_refcnt));
3708 arc_change_state(arc_anon, exists, hash_lock);
3709 mutex_exit(hash_lock);
3710 arc_hdr_destroy(exists);
3711 exists = buf_hash_insert(hdr, &hash_lock);
3712 ASSERT3P(exists, ==, NULL);
3713 } else {
3714 /* Dedup */
3715 ASSERT(hdr->b_datacnt == 1);
3716 ASSERT(hdr->b_state == arc_anon);
3717 ASSERT(BP_GET_DEDUP(zio->io_bp));
3718 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
3719 }
34dc7c2f
BB
3720 }
3721 hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
b128c09f 3722 /* if it's not anon, we are doing a scrub */
428870ff 3723 if (!exists && hdr->b_state == arc_anon)
b128c09f 3724 arc_access(hdr, hash_lock);
34dc7c2f 3725 mutex_exit(hash_lock);
34dc7c2f
BB
3726 } else {
3727 hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3728 }
3729
428870ff
BB
3730 ASSERT(!refcount_is_zero(&hdr->b_refcnt));
3731 callback->awcb_done(zio, buf, callback->awcb_private);
34dc7c2f
BB
3732
3733 kmem_free(callback, sizeof (arc_write_callback_t));
3734}
3735
3736zio_t *
428870ff 3737arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
3a17a7a9
SK
3738 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, boolean_t l2arc_compress,
3739 const zio_prop_t *zp, arc_done_func_t *ready, arc_done_func_t *done,
3740 void *private, int priority, int zio_flags, const zbookmark_t *zb)
34dc7c2f
BB
3741{
3742 arc_buf_hdr_t *hdr = buf->b_hdr;
3743 arc_write_callback_t *callback;
b128c09f 3744 zio_t *zio;
34dc7c2f 3745
b128c09f 3746 ASSERT(ready != NULL);
428870ff 3747 ASSERT(done != NULL);
34dc7c2f
BB
3748 ASSERT(!HDR_IO_ERROR(hdr));
3749 ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0);
428870ff 3750 ASSERT(hdr->b_acb == NULL);
b128c09f
BB
3751 if (l2arc)
3752 hdr->b_flags |= ARC_L2CACHE;
3a17a7a9
SK
3753 if (l2arc_compress)
3754 hdr->b_flags |= ARC_L2COMPRESS;
b8d06fca 3755 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_PUSHPAGE);
34dc7c2f
BB
3756 callback->awcb_ready = ready;
3757 callback->awcb_done = done;
3758 callback->awcb_private = private;
3759 callback->awcb_buf = buf;
b128c09f 3760
428870ff 3761 zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp,
b128c09f 3762 arc_write_ready, arc_write_done, callback, priority, zio_flags, zb);
34dc7c2f
BB
3763
3764 return (zio);
3765}
3766
34dc7c2f 3767static int
9babb374 3768arc_memory_throttle(uint64_t reserve, uint64_t inflight_data, uint64_t txg)
34dc7c2f
BB
3769{
3770#ifdef _KERNEL
302f753f 3771 uint64_t available_memory;
34dc7c2f 3772
0c5493d4
BB
3773 if (zfs_arc_memory_throttle_disable)
3774 return (0);
3775
302f753f
BB
3776 /* Easily reclaimable memory (free + inactive + arc-evictable) */
3777 available_memory = ptob(spl_kmem_availrmem()) + arc_evictable_memory();
34dc7c2f 3778
302f753f 3779 if (available_memory <= zfs_write_limit_max) {
34dc7c2f 3780 ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
570827e1 3781 DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim);
2e528b49 3782 return (SET_ERROR(EAGAIN));
34dc7c2f 3783 }
34dc7c2f
BB
3784
3785 if (inflight_data > available_memory / 4) {
3786 ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
570827e1 3787 DMU_TX_STAT_BUMP(dmu_tx_memory_inflight);
34dc7c2f
BB
3788 return (ERESTART);
3789 }
3790#endif
3791 return (0);
3792}
3793
3794void
3795arc_tempreserve_clear(uint64_t reserve)
3796{
3797 atomic_add_64(&arc_tempreserve, -reserve);
3798 ASSERT((int64_t)arc_tempreserve >= 0);
3799}
3800
3801int
3802arc_tempreserve_space(uint64_t reserve, uint64_t txg)
3803{
3804 int error;
9babb374 3805 uint64_t anon_size;
34dc7c2f
BB
3806
3807#ifdef ZFS_DEBUG
3808 /*
3809 * Once in a while, fail for no reason. Everything should cope.
3810 */
3811 if (spa_get_random(10000) == 0) {
3812 dprintf("forcing random failure\n");
3813 return (ERESTART);
3814 }
3815#endif
3816 if (reserve > arc_c/4 && !arc_no_grow)
3817 arc_c = MIN(arc_c_max, reserve * 4);
570827e1
BB
3818 if (reserve > arc_c) {
3819 DMU_TX_STAT_BUMP(dmu_tx_memory_reserve);
2e528b49 3820 return (SET_ERROR(ENOMEM));
570827e1 3821 }
34dc7c2f 3822
9babb374
BB
3823 /*
3824 * Don't count loaned bufs as in flight dirty data to prevent long
3825 * network delays from blocking transactions that are ready to be
3826 * assigned to a txg.
3827 */
3828 anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0);
3829
34dc7c2f
BB
3830 /*
3831 * Writes will, almost always, require additional memory allocations
3832 * in order to compress/encrypt/etc the data. We therefor need to
3833 * make sure that there is sufficient available memory for this.
3834 */
c65aa5b2 3835 if ((error = arc_memory_throttle(reserve, anon_size, txg)))
34dc7c2f
BB
3836 return (error);
3837
3838 /*
3839 * Throttle writes when the amount of dirty data in the cache
3840 * gets too large. We try to keep the cache less than half full
3841 * of dirty blocks so that our sync times don't grow too large.
3842 * Note: if two requests come in concurrently, we might let them
3843 * both succeed, when one of them should fail. Not a huge deal.
3844 */
9babb374
BB
3845
3846 if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
3847 anon_size > arc_c / 4) {
34dc7c2f
BB
3848 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
3849 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
3850 arc_tempreserve>>10,
3851 arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
3852 arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
3853 reserve>>10, arc_c>>10);
570827e1 3854 DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle);
2e528b49 3855 return (SET_ERROR(ERESTART));
34dc7c2f
BB
3856 }
3857 atomic_add_64(&arc_tempreserve, reserve);
3858 return (0);
3859}
3860
13be560d
BB
3861static void
3862arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
3863 kstat_named_t *evict_data, kstat_named_t *evict_metadata)
3864{
3865 size->value.ui64 = state->arcs_size;
3866 evict_data->value.ui64 = state->arcs_lsize[ARC_BUFC_DATA];
3867 evict_metadata->value.ui64 = state->arcs_lsize[ARC_BUFC_METADATA];
3868}
3869
3870static int
3871arc_kstat_update(kstat_t *ksp, int rw)
3872{
3873 arc_stats_t *as = ksp->ks_data;
3874
3875 if (rw == KSTAT_WRITE) {
2e528b49 3876 return (SET_ERROR(EACCES));
13be560d
BB
3877 } else {
3878 arc_kstat_update_state(arc_anon,
3879 &as->arcstat_anon_size,
3880 &as->arcstat_anon_evict_data,
3881 &as->arcstat_anon_evict_metadata);
3882 arc_kstat_update_state(arc_mru,
3883 &as->arcstat_mru_size,
3884 &as->arcstat_mru_evict_data,
3885 &as->arcstat_mru_evict_metadata);
3886 arc_kstat_update_state(arc_mru_ghost,
3887 &as->arcstat_mru_ghost_size,
3888 &as->arcstat_mru_ghost_evict_data,
3889 &as->arcstat_mru_ghost_evict_metadata);
3890 arc_kstat_update_state(arc_mfu,
3891 &as->arcstat_mfu_size,
3892 &as->arcstat_mfu_evict_data,
3893 &as->arcstat_mfu_evict_metadata);
fc41c640 3894 arc_kstat_update_state(arc_mfu_ghost,
13be560d
BB
3895 &as->arcstat_mfu_ghost_size,
3896 &as->arcstat_mfu_ghost_evict_data,
3897 &as->arcstat_mfu_ghost_evict_metadata);
3898 }
3899
3900 return (0);
3901}
3902
34dc7c2f
BB
3903void
3904arc_init(void)
3905{
3906 mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL);
3907 cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL);
3908
3909 /* Convert seconds to clock ticks */
bce45ec9 3910 zfs_arc_min_prefetch_lifespan = 1 * hz;
34dc7c2f
BB
3911
3912 /* Start out with 1/8 of all memory */
3913 arc_c = physmem * PAGESIZE / 8;
3914
3915#ifdef _KERNEL
3916 /*
3917 * On architectures where the physical memory can be larger
3918 * than the addressable space (intel in 32-bit mode), we may
3919 * need to limit the cache to 1/8 of VM size.
3920 */
3921 arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
7cb67b45
BB
3922 /*
3923 * Register a shrinker to support synchronous (direct) memory
3924 * reclaim from the arc. This is done to prevent kswapd from
3925 * swapping out pages when it is preferable to shrink the arc.
3926 */
3927 spl_register_shrinker(&arc_shrinker);
34dc7c2f
BB
3928#endif
3929
3930 /* set min cache to 1/32 of all memory, or 64MB, whichever is more */
3931 arc_c_min = MAX(arc_c / 4, 64<<20);
518b4876 3932 /* set max to 1/2 of all memory */
23bdb07d 3933 arc_c_max = MAX(arc_c * 4, arc_c_max);
34dc7c2f
BB
3934
3935 /*
3936 * Allow the tunables to override our calculations if they are
3937 * reasonable (ie. over 64MB)
3938 */
3939 if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE)
3940 arc_c_max = zfs_arc_max;
3941 if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc_c_max)
3942 arc_c_min = zfs_arc_min;
3943
3944 arc_c = arc_c_max;
3945 arc_p = (arc_c >> 1);
3946
3947 /* limit meta-data to 1/4 of the arc capacity */
3948 arc_meta_limit = arc_c_max / 4;
1834f2d8 3949 arc_meta_max = 0;
34dc7c2f
BB
3950
3951 /* Allow the tunable to override if it is reasonable */
3952 if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
3953 arc_meta_limit = zfs_arc_meta_limit;
3954
3955 if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
3956 arc_c_min = arc_meta_limit / 2;
3957
3958 /* if kmem_flags are set, lets try to use less memory */
3959 if (kmem_debugging())
3960 arc_c = arc_c / 2;
3961 if (arc_c < arc_c_min)
3962 arc_c = arc_c_min;
3963
3964 arc_anon = &ARC_anon;
3965 arc_mru = &ARC_mru;
3966 arc_mru_ghost = &ARC_mru_ghost;
3967 arc_mfu = &ARC_mfu;
3968 arc_mfu_ghost = &ARC_mfu_ghost;
3969 arc_l2c_only = &ARC_l2c_only;
3970 arc_size = 0;
3971
3972 mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3973 mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3974 mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3975 mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3976 mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3977 mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3978
3979 list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
3980 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3981 list_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
3982 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3983 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
3984 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3985 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
3986 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3987 list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
3988 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3989 list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
3990 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3991 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
3992 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3993 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
3994 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3995 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
3996 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3997 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
3998 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3999
e0b0ca98
BB
4000 arc_anon->arcs_state = ARC_STATE_ANON;
4001 arc_mru->arcs_state = ARC_STATE_MRU;
4002 arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST;
4003 arc_mfu->arcs_state = ARC_STATE_MFU;
4004 arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST;
4005 arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY;
4006
34dc7c2f
BB
4007 buf_init();
4008
4009 arc_thread_exit = 0;
ab26409d
BB
4010 list_create(&arc_prune_list, sizeof (arc_prune_t),
4011 offsetof(arc_prune_t, p_node));
34dc7c2f 4012 arc_eviction_list = NULL;
ab26409d 4013 mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f
BB
4014 mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL);
4015 bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
4016
4017 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
4018 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
4019
4020 if (arc_ksp != NULL) {
4021 arc_ksp->ks_data = &arc_stats;
13be560d 4022 arc_ksp->ks_update = arc_kstat_update;
34dc7c2f
BB
4023 kstat_install(arc_ksp);
4024 }
4025
302f753f 4026 (void) thread_create(NULL, 0, arc_adapt_thread, NULL, 0, &p0,
34dc7c2f
BB
4027 TS_RUN, minclsyspri);
4028
4029 arc_dead = FALSE;
b128c09f 4030 arc_warm = B_FALSE;
34dc7c2f
BB
4031
4032 if (zfs_write_limit_max == 0)
b128c09f 4033 zfs_write_limit_max = ptob(physmem) >> zfs_write_limit_shift;
34dc7c2f
BB
4034 else
4035 zfs_write_limit_shift = 0;
b128c09f 4036 mutex_init(&zfs_write_limit_lock, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f
BB
4037}
4038
4039void
4040arc_fini(void)
4041{
ab26409d
BB
4042 arc_prune_t *p;
4043
34dc7c2f 4044 mutex_enter(&arc_reclaim_thr_lock);
7cb67b45
BB
4045#ifdef _KERNEL
4046 spl_unregister_shrinker(&arc_shrinker);
4047#endif /* _KERNEL */
4048
34dc7c2f
BB
4049 arc_thread_exit = 1;
4050 while (arc_thread_exit != 0)
4051 cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock);
4052 mutex_exit(&arc_reclaim_thr_lock);
4053
4054 arc_flush(NULL);
4055
4056 arc_dead = TRUE;
4057
4058 if (arc_ksp != NULL) {
4059 kstat_delete(arc_ksp);
4060 arc_ksp = NULL;
4061 }
4062
ab26409d
BB
4063 mutex_enter(&arc_prune_mtx);
4064 while ((p = list_head(&arc_prune_list)) != NULL) {
4065 list_remove(&arc_prune_list, p);
4066 refcount_remove(&p->p_refcnt, &arc_prune_list);
4067 refcount_destroy(&p->p_refcnt);
4068 kmem_free(p, sizeof (*p));
4069 }
4070 mutex_exit(&arc_prune_mtx);
4071
4072 list_destroy(&arc_prune_list);
4073 mutex_destroy(&arc_prune_mtx);
34dc7c2f
BB
4074 mutex_destroy(&arc_eviction_mtx);
4075 mutex_destroy(&arc_reclaim_thr_lock);
4076 cv_destroy(&arc_reclaim_thr_cv);
4077
4078 list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
4079 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
4080 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
4081 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
4082 list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
4083 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
4084 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
4085 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
4086
4087 mutex_destroy(&arc_anon->arcs_mtx);
4088 mutex_destroy(&arc_mru->arcs_mtx);
4089 mutex_destroy(&arc_mru_ghost->arcs_mtx);
4090 mutex_destroy(&arc_mfu->arcs_mtx);
4091 mutex_destroy(&arc_mfu_ghost->arcs_mtx);
fb5f0bc8 4092 mutex_destroy(&arc_l2c_only->arcs_mtx);
34dc7c2f 4093
b128c09f
BB
4094 mutex_destroy(&zfs_write_limit_lock);
4095
34dc7c2f 4096 buf_fini();
9babb374
BB
4097
4098 ASSERT(arc_loaned_bytes == 0);
34dc7c2f
BB
4099}
4100
4101/*
4102 * Level 2 ARC
4103 *
4104 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
4105 * It uses dedicated storage devices to hold cached data, which are populated
4106 * using large infrequent writes. The main role of this cache is to boost
4107 * the performance of random read workloads. The intended L2ARC devices
4108 * include short-stroked disks, solid state disks, and other media with
4109 * substantially faster read latency than disk.
4110 *
4111 * +-----------------------+
4112 * | ARC |
4113 * +-----------------------+
4114 * | ^ ^
4115 * | | |
4116 * l2arc_feed_thread() arc_read()
4117 * | | |
4118 * | l2arc read |
4119 * V | |
4120 * +---------------+ |
4121 * | L2ARC | |
4122 * +---------------+ |
4123 * | ^ |
4124 * l2arc_write() | |
4125 * | | |
4126 * V | |
4127 * +-------+ +-------+
4128 * | vdev | | vdev |
4129 * | cache | | cache |
4130 * +-------+ +-------+
4131 * +=========+ .-----.
4132 * : L2ARC : |-_____-|
4133 * : devices : | Disks |
4134 * +=========+ `-_____-'
4135 *
4136 * Read requests are satisfied from the following sources, in order:
4137 *
4138 * 1) ARC
4139 * 2) vdev cache of L2ARC devices
4140 * 3) L2ARC devices
4141 * 4) vdev cache of disks
4142 * 5) disks
4143 *
4144 * Some L2ARC device types exhibit extremely slow write performance.
4145 * To accommodate for this there are some significant differences between
4146 * the L2ARC and traditional cache design:
4147 *
4148 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from
4149 * the ARC behave as usual, freeing buffers and placing headers on ghost
4150 * lists. The ARC does not send buffers to the L2ARC during eviction as
4151 * this would add inflated write latencies for all ARC memory pressure.
4152 *
4153 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
4154 * It does this by periodically scanning buffers from the eviction-end of
4155 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
3a17a7a9
SK
4156 * not already there. It scans until a headroom of buffers is satisfied,
4157 * which itself is a buffer for ARC eviction. If a compressible buffer is
4158 * found during scanning and selected for writing to an L2ARC device, we
4159 * temporarily boost scanning headroom during the next scan cycle to make
4160 * sure we adapt to compression effects (which might significantly reduce
4161 * the data volume we write to L2ARC). The thread that does this is
34dc7c2f
BB
4162 * l2arc_feed_thread(), illustrated below; example sizes are included to
4163 * provide a better sense of ratio than this diagram:
4164 *
4165 * head --> tail
4166 * +---------------------+----------+
4167 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC
4168 * +---------------------+----------+ | o L2ARC eligible
4169 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer
4170 * +---------------------+----------+ |
4171 * 15.9 Gbytes ^ 32 Mbytes |
4172 * headroom |
4173 * l2arc_feed_thread()
4174 * |
4175 * l2arc write hand <--[oooo]--'
4176 * | 8 Mbyte
4177 * | write max
4178 * V
4179 * +==============================+
4180 * L2ARC dev |####|#|###|###| |####| ... |
4181 * +==============================+
4182 * 32 Gbytes
4183 *
4184 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
4185 * evicted, then the L2ARC has cached a buffer much sooner than it probably
4186 * needed to, potentially wasting L2ARC device bandwidth and storage. It is
4187 * safe to say that this is an uncommon case, since buffers at the end of
4188 * the ARC lists have moved there due to inactivity.
4189 *
4190 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
4191 * then the L2ARC simply misses copying some buffers. This serves as a
4192 * pressure valve to prevent heavy read workloads from both stalling the ARC
4193 * with waits and clogging the L2ARC with writes. This also helps prevent
4194 * the potential for the L2ARC to churn if it attempts to cache content too
4195 * quickly, such as during backups of the entire pool.
4196 *
b128c09f
BB
4197 * 5. After system boot and before the ARC has filled main memory, there are
4198 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
4199 * lists can remain mostly static. Instead of searching from tail of these
4200 * lists as pictured, the l2arc_feed_thread() will search from the list heads
4201 * for eligible buffers, greatly increasing its chance of finding them.
4202 *
4203 * The L2ARC device write speed is also boosted during this time so that
4204 * the L2ARC warms up faster. Since there have been no ARC evictions yet,
4205 * there are no L2ARC reads, and no fear of degrading read performance
4206 * through increased writes.
4207 *
4208 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
34dc7c2f
BB
4209 * the vdev queue can aggregate them into larger and fewer writes. Each
4210 * device is written to in a rotor fashion, sweeping writes through
4211 * available space then repeating.
4212 *
b128c09f 4213 * 7. The L2ARC does not store dirty content. It never needs to flush
34dc7c2f
BB
4214 * write buffers back to disk based storage.
4215 *
b128c09f 4216 * 8. If an ARC buffer is written (and dirtied) which also exists in the
34dc7c2f
BB
4217 * L2ARC, the now stale L2ARC buffer is immediately dropped.
4218 *
4219 * The performance of the L2ARC can be tweaked by a number of tunables, which
4220 * may be necessary for different workloads:
4221 *
4222 * l2arc_write_max max write bytes per interval
b128c09f 4223 * l2arc_write_boost extra write bytes during device warmup
34dc7c2f 4224 * l2arc_noprefetch skip caching prefetched buffers
3a17a7a9 4225 * l2arc_nocompress skip compressing buffers
34dc7c2f 4226 * l2arc_headroom number of max device writes to precache
3a17a7a9
SK
4227 * l2arc_headroom_boost when we find compressed buffers during ARC
4228 * scanning, we multiply headroom by this
4229 * percentage factor for the next scan cycle,
4230 * since more compressed buffers are likely to
4231 * be present
34dc7c2f
BB
4232 * l2arc_feed_secs seconds between L2ARC writing
4233 *
4234 * Tunables may be removed or added as future performance improvements are
4235 * integrated, and also may become zpool properties.
d164b209
BB
4236 *
4237 * There are three key functions that control how the L2ARC warms up:
4238 *
4239 * l2arc_write_eligible() check if a buffer is eligible to cache
4240 * l2arc_write_size() calculate how much to write
4241 * l2arc_write_interval() calculate sleep delay between writes
4242 *
4243 * These three functions determine what to write, how much, and how quickly
4244 * to send writes.
34dc7c2f
BB
4245 */
4246
d164b209
BB
4247static boolean_t
4248l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab)
4249{
4250 /*
4251 * A buffer is *not* eligible for the L2ARC if it:
4252 * 1. belongs to a different spa.
428870ff
BB
4253 * 2. is already cached on the L2ARC.
4254 * 3. has an I/O in progress (it may be an incomplete read).
4255 * 4. is flagged not eligible (zfs property).
d164b209 4256 */
428870ff 4257 if (ab->b_spa != spa_guid || ab->b_l2hdr != NULL ||
d164b209
BB
4258 HDR_IO_IN_PROGRESS(ab) || !HDR_L2CACHE(ab))
4259 return (B_FALSE);
4260
4261 return (B_TRUE);
4262}
4263
4264static uint64_t
3a17a7a9 4265l2arc_write_size(void)
d164b209
BB
4266{
4267 uint64_t size;
4268
3a17a7a9
SK
4269 /*
4270 * Make sure our globals have meaningful values in case the user
4271 * altered them.
4272 */
4273 size = l2arc_write_max;
4274 if (size == 0) {
4275 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
4276 "be greater than zero, resetting it to the default (%d)",
4277 L2ARC_WRITE_SIZE);
4278 size = l2arc_write_max = L2ARC_WRITE_SIZE;
4279 }
d164b209
BB
4280
4281 if (arc_warm == B_FALSE)
3a17a7a9 4282 size += l2arc_write_boost;
d164b209
BB
4283
4284 return (size);
4285
4286}
4287
4288static clock_t
4289l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
4290{
428870ff 4291 clock_t interval, next, now;
d164b209
BB
4292
4293 /*
4294 * If the ARC lists are busy, increase our write rate; if the
4295 * lists are stale, idle back. This is achieved by checking
4296 * how much we previously wrote - if it was more than half of
4297 * what we wanted, schedule the next write much sooner.
4298 */
4299 if (l2arc_feed_again && wrote > (wanted / 2))
4300 interval = (hz * l2arc_feed_min_ms) / 1000;
4301 else
4302 interval = hz * l2arc_feed_secs;
4303
428870ff
BB
4304 now = ddi_get_lbolt();
4305 next = MAX(now, MIN(now + interval, began + interval));
d164b209
BB
4306
4307 return (next);
4308}
4309
34dc7c2f
BB
4310static void
4311l2arc_hdr_stat_add(void)
4312{
6e1d7276 4313 ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE);
34dc7c2f
BB
4314 ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE);
4315}
4316
4317static void
4318l2arc_hdr_stat_remove(void)
4319{
6e1d7276 4320 ARCSTAT_INCR(arcstat_l2_hdr_size, -HDR_SIZE);
34dc7c2f
BB
4321 ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE);
4322}
4323
4324/*
4325 * Cycle through L2ARC devices. This is how L2ARC load balances.
b128c09f 4326 * If a device is returned, this also returns holding the spa config lock.
34dc7c2f
BB
4327 */
4328static l2arc_dev_t *
4329l2arc_dev_get_next(void)
4330{
b128c09f 4331 l2arc_dev_t *first, *next = NULL;
34dc7c2f 4332
b128c09f
BB
4333 /*
4334 * Lock out the removal of spas (spa_namespace_lock), then removal
4335 * of cache devices (l2arc_dev_mtx). Once a device has been selected,
4336 * both locks will be dropped and a spa config lock held instead.
4337 */
4338 mutex_enter(&spa_namespace_lock);
4339 mutex_enter(&l2arc_dev_mtx);
4340
4341 /* if there are no vdevs, there is nothing to do */
4342 if (l2arc_ndev == 0)
4343 goto out;
4344
4345 first = NULL;
4346 next = l2arc_dev_last;
4347 do {
4348 /* loop around the list looking for a non-faulted vdev */
4349 if (next == NULL) {
34dc7c2f 4350 next = list_head(l2arc_dev_list);
b128c09f
BB
4351 } else {
4352 next = list_next(l2arc_dev_list, next);
4353 if (next == NULL)
4354 next = list_head(l2arc_dev_list);
4355 }
4356
4357 /* if we have come back to the start, bail out */
4358 if (first == NULL)
4359 first = next;
4360 else if (next == first)
4361 break;
4362
4363 } while (vdev_is_dead(next->l2ad_vdev));
4364
4365 /* if we were unable to find any usable vdevs, return NULL */
4366 if (vdev_is_dead(next->l2ad_vdev))
4367 next = NULL;
34dc7c2f
BB
4368
4369 l2arc_dev_last = next;
4370
b128c09f
BB
4371out:
4372 mutex_exit(&l2arc_dev_mtx);
4373
4374 /*
4375 * Grab the config lock to prevent the 'next' device from being
4376 * removed while we are writing to it.
4377 */
4378 if (next != NULL)
4379 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
4380 mutex_exit(&spa_namespace_lock);
4381
34dc7c2f
BB
4382 return (next);
4383}
4384
b128c09f
BB
4385/*
4386 * Free buffers that were tagged for destruction.
4387 */
4388static void
0bc8fd78 4389l2arc_do_free_on_write(void)
b128c09f
BB
4390{
4391 list_t *buflist;
4392 l2arc_data_free_t *df, *df_prev;
4393
4394 mutex_enter(&l2arc_free_on_write_mtx);
4395 buflist = l2arc_free_on_write;
4396
4397 for (df = list_tail(buflist); df; df = df_prev) {
4398 df_prev = list_prev(buflist, df);
4399 ASSERT(df->l2df_data != NULL);
4400 ASSERT(df->l2df_func != NULL);
4401 df->l2df_func(df->l2df_data, df->l2df_size);
4402 list_remove(buflist, df);
4403 kmem_free(df, sizeof (l2arc_data_free_t));
4404 }
4405
4406 mutex_exit(&l2arc_free_on_write_mtx);
4407}
4408
34dc7c2f
BB
4409/*
4410 * A write to a cache device has completed. Update all headers to allow
4411 * reads from these buffers to begin.
4412 */
4413static void
4414l2arc_write_done(zio_t *zio)
4415{
4416 l2arc_write_callback_t *cb;
4417 l2arc_dev_t *dev;
4418 list_t *buflist;
34dc7c2f 4419 arc_buf_hdr_t *head, *ab, *ab_prev;
b128c09f 4420 l2arc_buf_hdr_t *abl2;
34dc7c2f
BB
4421 kmutex_t *hash_lock;
4422
4423 cb = zio->io_private;
4424 ASSERT(cb != NULL);
4425 dev = cb->l2wcb_dev;
4426 ASSERT(dev != NULL);
4427 head = cb->l2wcb_head;
4428 ASSERT(head != NULL);
4429 buflist = dev->l2ad_buflist;
4430 ASSERT(buflist != NULL);
4431 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
4432 l2arc_write_callback_t *, cb);
4433
4434 if (zio->io_error != 0)
4435 ARCSTAT_BUMP(arcstat_l2_writes_error);
4436
4437 mutex_enter(&l2arc_buflist_mtx);
4438
4439 /*
4440 * All writes completed, or an error was hit.
4441 */
4442 for (ab = list_prev(buflist, head); ab; ab = ab_prev) {
4443 ab_prev = list_prev(buflist, ab);
4444
4445 hash_lock = HDR_LOCK(ab);
4446 if (!mutex_tryenter(hash_lock)) {
4447 /*
4448 * This buffer misses out. It may be in a stage
4449 * of eviction. Its ARC_L2_WRITING flag will be
4450 * left set, denying reads to this buffer.
4451 */
4452 ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss);
4453 continue;
4454 }
4455
3a17a7a9
SK
4456 abl2 = ab->b_l2hdr;
4457
4458 /*
4459 * Release the temporary compressed buffer as soon as possible.
4460 */
4461 if (abl2->b_compress != ZIO_COMPRESS_OFF)
4462 l2arc_release_cdata_buf(ab);
4463
34dc7c2f
BB
4464 if (zio->io_error != 0) {
4465 /*
b128c09f 4466 * Error - drop L2ARC entry.
34dc7c2f 4467 */
b128c09f 4468 list_remove(buflist, ab);
3a17a7a9 4469 ARCSTAT_INCR(arcstat_l2_asize, -abl2->b_asize);
34dc7c2f 4470 ab->b_l2hdr = NULL;
b128c09f 4471 kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
6e1d7276 4472 arc_space_return(L2HDR_SIZE, ARC_SPACE_L2HDRS);
b128c09f 4473 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
34dc7c2f
BB
4474 }
4475
4476 /*
4477 * Allow ARC to begin reads to this L2ARC entry.
4478 */
4479 ab->b_flags &= ~ARC_L2_WRITING;
4480
4481 mutex_exit(hash_lock);
4482 }
4483
4484 atomic_inc_64(&l2arc_writes_done);
4485 list_remove(buflist, head);
4486 kmem_cache_free(hdr_cache, head);
4487 mutex_exit(&l2arc_buflist_mtx);
4488
b128c09f 4489 l2arc_do_free_on_write();
34dc7c2f
BB
4490
4491 kmem_free(cb, sizeof (l2arc_write_callback_t));
4492}
4493
4494/*
4495 * A read to a cache device completed. Validate buffer contents before
4496 * handing over to the regular ARC routines.
4497 */
4498static void
4499l2arc_read_done(zio_t *zio)
4500{
4501 l2arc_read_callback_t *cb;
4502 arc_buf_hdr_t *hdr;
4503 arc_buf_t *buf;
34dc7c2f 4504 kmutex_t *hash_lock;
b128c09f
BB
4505 int equal;
4506
4507 ASSERT(zio->io_vd != NULL);
4508 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
4509
4510 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
34dc7c2f
BB
4511
4512 cb = zio->io_private;
4513 ASSERT(cb != NULL);
4514 buf = cb->l2rcb_buf;
4515 ASSERT(buf != NULL);
34dc7c2f 4516
428870ff 4517 hash_lock = HDR_LOCK(buf->b_hdr);
34dc7c2f 4518 mutex_enter(hash_lock);
428870ff
BB
4519 hdr = buf->b_hdr;
4520 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
34dc7c2f 4521
3a17a7a9
SK
4522 /*
4523 * If the buffer was compressed, decompress it first.
4524 */
4525 if (cb->l2rcb_compress != ZIO_COMPRESS_OFF)
4526 l2arc_decompress_zio(zio, hdr, cb->l2rcb_compress);
4527 ASSERT(zio->io_data != NULL);
4528
34dc7c2f
BB
4529 /*
4530 * Check this survived the L2ARC journey.
4531 */
4532 equal = arc_cksum_equal(buf);
4533 if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
4534 mutex_exit(hash_lock);
4535 zio->io_private = buf;
b128c09f
BB
4536 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */
4537 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */
34dc7c2f
BB
4538 arc_read_done(zio);
4539 } else {
4540 mutex_exit(hash_lock);
4541 /*
4542 * Buffer didn't survive caching. Increment stats and
4543 * reissue to the original storage device.
4544 */
b128c09f 4545 if (zio->io_error != 0) {
34dc7c2f 4546 ARCSTAT_BUMP(arcstat_l2_io_error);
b128c09f 4547 } else {
2e528b49 4548 zio->io_error = SET_ERROR(EIO);
b128c09f 4549 }
34dc7c2f
BB
4550 if (!equal)
4551 ARCSTAT_BUMP(arcstat_l2_cksum_bad);
4552
34dc7c2f 4553 /*
b128c09f
BB
4554 * If there's no waiter, issue an async i/o to the primary
4555 * storage now. If there *is* a waiter, the caller must
4556 * issue the i/o in a context where it's OK to block.
34dc7c2f 4557 */
d164b209
BB
4558 if (zio->io_waiter == NULL) {
4559 zio_t *pio = zio_unique_parent(zio);
4560
4561 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
4562
4563 zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp,
b128c09f
BB
4564 buf->b_data, zio->io_size, arc_read_done, buf,
4565 zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
d164b209 4566 }
34dc7c2f
BB
4567 }
4568
4569 kmem_free(cb, sizeof (l2arc_read_callback_t));
4570}
4571
4572/*
4573 * This is the list priority from which the L2ARC will search for pages to
4574 * cache. This is used within loops (0..3) to cycle through lists in the
4575 * desired order. This order can have a significant effect on cache
4576 * performance.
4577 *
4578 * Currently the metadata lists are hit first, MFU then MRU, followed by
4579 * the data lists. This function returns a locked list, and also returns
4580 * the lock pointer.
4581 */
4582static list_t *
4583l2arc_list_locked(int list_num, kmutex_t **lock)
4584{
d4ed6673 4585 list_t *list = NULL;
34dc7c2f
BB
4586
4587 ASSERT(list_num >= 0 && list_num <= 3);
4588
4589 switch (list_num) {
4590 case 0:
4591 list = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
4592 *lock = &arc_mfu->arcs_mtx;
4593 break;
4594 case 1:
4595 list = &arc_mru->arcs_list[ARC_BUFC_METADATA];
4596 *lock = &arc_mru->arcs_mtx;
4597 break;
4598 case 2:
4599 list = &arc_mfu->arcs_list[ARC_BUFC_DATA];
4600 *lock = &arc_mfu->arcs_mtx;
4601 break;
4602 case 3:
4603 list = &arc_mru->arcs_list[ARC_BUFC_DATA];
4604 *lock = &arc_mru->arcs_mtx;
4605 break;
4606 }
4607
4608 ASSERT(!(MUTEX_HELD(*lock)));
4609 mutex_enter(*lock);
4610 return (list);
4611}
4612
4613/*
4614 * Evict buffers from the device write hand to the distance specified in
4615 * bytes. This distance may span populated buffers, it may span nothing.
4616 * This is clearing a region on the L2ARC device ready for writing.
4617 * If the 'all' boolean is set, every buffer is evicted.
4618 */
4619static void
4620l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
4621{
4622 list_t *buflist;
4623 l2arc_buf_hdr_t *abl2;
4624 arc_buf_hdr_t *ab, *ab_prev;
4625 kmutex_t *hash_lock;
4626 uint64_t taddr;
4627
34dc7c2f
BB
4628 buflist = dev->l2ad_buflist;
4629
4630 if (buflist == NULL)
4631 return;
4632
4633 if (!all && dev->l2ad_first) {
4634 /*
4635 * This is the first sweep through the device. There is
4636 * nothing to evict.
4637 */
4638 return;
4639 }
4640
b128c09f 4641 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
34dc7c2f
BB
4642 /*
4643 * When nearing the end of the device, evict to the end
4644 * before the device write hand jumps to the start.
4645 */
4646 taddr = dev->l2ad_end;
4647 } else {
4648 taddr = dev->l2ad_hand + distance;
4649 }
4650 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
4651 uint64_t, taddr, boolean_t, all);
4652
4653top:
4654 mutex_enter(&l2arc_buflist_mtx);
4655 for (ab = list_tail(buflist); ab; ab = ab_prev) {
4656 ab_prev = list_prev(buflist, ab);
4657
4658 hash_lock = HDR_LOCK(ab);
4659 if (!mutex_tryenter(hash_lock)) {
4660 /*
4661 * Missed the hash lock. Retry.
4662 */
4663 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
4664 mutex_exit(&l2arc_buflist_mtx);
4665 mutex_enter(hash_lock);
4666 mutex_exit(hash_lock);
4667 goto top;
4668 }
4669
4670 if (HDR_L2_WRITE_HEAD(ab)) {
4671 /*
4672 * We hit a write head node. Leave it for
4673 * l2arc_write_done().
4674 */
4675 list_remove(buflist, ab);
4676 mutex_exit(hash_lock);
4677 continue;
4678 }
4679
4680 if (!all && ab->b_l2hdr != NULL &&
4681 (ab->b_l2hdr->b_daddr > taddr ||
4682 ab->b_l2hdr->b_daddr < dev->l2ad_hand)) {
4683 /*
4684 * We've evicted to the target address,
4685 * or the end of the device.
4686 */
4687 mutex_exit(hash_lock);
4688 break;
4689 }
4690
4691 if (HDR_FREE_IN_PROGRESS(ab)) {
4692 /*
4693 * Already on the path to destruction.
4694 */
4695 mutex_exit(hash_lock);
4696 continue;
4697 }
4698
4699 if (ab->b_state == arc_l2c_only) {
4700 ASSERT(!HDR_L2_READING(ab));
4701 /*
4702 * This doesn't exist in the ARC. Destroy.
4703 * arc_hdr_destroy() will call list_remove()
4704 * and decrement arcstat_l2_size.
4705 */
4706 arc_change_state(arc_anon, ab, hash_lock);
4707 arc_hdr_destroy(ab);
4708 } else {
b128c09f
BB
4709 /*
4710 * Invalidate issued or about to be issued
4711 * reads, since we may be about to write
4712 * over this location.
4713 */
4714 if (HDR_L2_READING(ab)) {
4715 ARCSTAT_BUMP(arcstat_l2_evict_reading);
4716 ab->b_flags |= ARC_L2_EVICTED;
4717 }
4718
34dc7c2f
BB
4719 /*
4720 * Tell ARC this no longer exists in L2ARC.
4721 */
4722 if (ab->b_l2hdr != NULL) {
4723 abl2 = ab->b_l2hdr;
3a17a7a9 4724 ARCSTAT_INCR(arcstat_l2_asize, -abl2->b_asize);
34dc7c2f
BB
4725 ab->b_l2hdr = NULL;
4726 kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
6e1d7276 4727 arc_space_return(L2HDR_SIZE, ARC_SPACE_L2HDRS);
34dc7c2f
BB
4728 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
4729 }
4730 list_remove(buflist, ab);
4731
4732 /*
4733 * This may have been leftover after a
4734 * failed write.
4735 */
4736 ab->b_flags &= ~ARC_L2_WRITING;
34dc7c2f
BB
4737 }
4738 mutex_exit(hash_lock);
4739 }
4740 mutex_exit(&l2arc_buflist_mtx);
4741
428870ff 4742 vdev_space_update(dev->l2ad_vdev, -(taddr - dev->l2ad_evict), 0, 0);
34dc7c2f
BB
4743 dev->l2ad_evict = taddr;
4744}
4745
4746/*
4747 * Find and write ARC buffers to the L2ARC device.
4748 *
4749 * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid
4750 * for reading until they have completed writing.
3a17a7a9
SK
4751 * The headroom_boost is an in-out parameter used to maintain headroom boost
4752 * state between calls to this function.
4753 *
4754 * Returns the number of bytes actually written (which may be smaller than
4755 * the delta by which the device hand has changed due to alignment).
34dc7c2f 4756 */
d164b209 4757static uint64_t
3a17a7a9
SK
4758l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz,
4759 boolean_t *headroom_boost)
34dc7c2f
BB
4760{
4761 arc_buf_hdr_t *ab, *ab_prev, *head;
34dc7c2f 4762 list_t *list;
3a17a7a9
SK
4763 uint64_t write_asize, write_psize, write_sz, headroom,
4764 buf_compress_minsz;
34dc7c2f 4765 void *buf_data;
3a17a7a9
SK
4766 kmutex_t *list_lock = NULL;
4767 boolean_t full;
34dc7c2f
BB
4768 l2arc_write_callback_t *cb;
4769 zio_t *pio, *wzio;
3541dc6d 4770 uint64_t guid = spa_load_guid(spa);
d6320ddb 4771 int try;
3a17a7a9 4772 const boolean_t do_headroom_boost = *headroom_boost;
34dc7c2f 4773
34dc7c2f
BB
4774 ASSERT(dev->l2ad_vdev != NULL);
4775
3a17a7a9
SK
4776 /* Lower the flag now, we might want to raise it again later. */
4777 *headroom_boost = B_FALSE;
4778
34dc7c2f 4779 pio = NULL;
3a17a7a9 4780 write_sz = write_asize = write_psize = 0;
34dc7c2f
BB
4781 full = B_FALSE;
4782 head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
4783 head->b_flags |= ARC_L2_WRITE_HEAD;
4784
3a17a7a9
SK
4785 /*
4786 * We will want to try to compress buffers that are at least 2x the
4787 * device sector size.
4788 */
4789 buf_compress_minsz = 2 << dev->l2ad_vdev->vdev_ashift;
4790
34dc7c2f
BB
4791 /*
4792 * Copy buffers for L2ARC writing.
4793 */
4794 mutex_enter(&l2arc_buflist_mtx);
d6320ddb 4795 for (try = 0; try <= 3; try++) {
3a17a7a9
SK
4796 uint64_t passed_sz = 0;
4797
34dc7c2f 4798 list = l2arc_list_locked(try, &list_lock);
34dc7c2f 4799
b128c09f
BB
4800 /*
4801 * L2ARC fast warmup.
4802 *
4803 * Until the ARC is warm and starts to evict, read from the
4804 * head of the ARC lists rather than the tail.
4805 */
b128c09f
BB
4806 if (arc_warm == B_FALSE)
4807 ab = list_head(list);
4808 else
4809 ab = list_tail(list);
4810
3a17a7a9
SK
4811 headroom = target_sz * l2arc_headroom;
4812 if (do_headroom_boost)
4813 headroom = (headroom * l2arc_headroom_boost) / 100;
4814
b128c09f 4815 for (; ab; ab = ab_prev) {
3a17a7a9
SK
4816 l2arc_buf_hdr_t *l2hdr;
4817 kmutex_t *hash_lock;
4818 uint64_t buf_sz;
4819
b128c09f
BB
4820 if (arc_warm == B_FALSE)
4821 ab_prev = list_next(list, ab);
4822 else
4823 ab_prev = list_prev(list, ab);
34dc7c2f
BB
4824
4825 hash_lock = HDR_LOCK(ab);
3a17a7a9 4826 if (!mutex_tryenter(hash_lock)) {
34dc7c2f
BB
4827 /*
4828 * Skip this buffer rather than waiting.
4829 */
4830 continue;
4831 }
4832
4833 passed_sz += ab->b_size;
4834 if (passed_sz > headroom) {
4835 /*
4836 * Searched too far.
4837 */
4838 mutex_exit(hash_lock);
4839 break;
4840 }
4841
d164b209 4842 if (!l2arc_write_eligible(guid, ab)) {
34dc7c2f
BB
4843 mutex_exit(hash_lock);
4844 continue;
4845 }
4846
4847 if ((write_sz + ab->b_size) > target_sz) {
4848 full = B_TRUE;
4849 mutex_exit(hash_lock);
4850 break;
4851 }
4852
34dc7c2f
BB
4853 if (pio == NULL) {
4854 /*
4855 * Insert a dummy header on the buflist so
4856 * l2arc_write_done() can find where the
4857 * write buffers begin without searching.
4858 */
4859 list_insert_head(dev->l2ad_buflist, head);
4860
409dc1a5
PS
4861 cb = kmem_alloc(sizeof (l2arc_write_callback_t),
4862 KM_PUSHPAGE);
34dc7c2f
BB
4863 cb->l2wcb_dev = dev;
4864 cb->l2wcb_head = head;
4865 pio = zio_root(spa, l2arc_write_done, cb,
4866 ZIO_FLAG_CANFAIL);
4867 }
4868
4869 /*
4870 * Create and add a new L2ARC header.
4871 */
3a17a7a9
SK
4872 l2hdr = kmem_zalloc(sizeof (l2arc_buf_hdr_t),
4873 KM_PUSHPAGE);
4874 l2hdr->b_dev = dev;
6e1d7276 4875 arc_space_consume(L2HDR_SIZE, ARC_SPACE_L2HDRS);
34dc7c2f
BB
4876
4877 ab->b_flags |= ARC_L2_WRITING;
3a17a7a9
SK
4878
4879 /*
4880 * Temporarily stash the data buffer in b_tmp_cdata.
4881 * The subsequent write step will pick it up from
4882 * there. This is because can't access ab->b_buf
4883 * without holding the hash_lock, which we in turn
4884 * can't access without holding the ARC list locks
4885 * (which we want to avoid during compression/writing)
4886 */
4887 l2hdr->b_compress = ZIO_COMPRESS_OFF;
4888 l2hdr->b_asize = ab->b_size;
4889 l2hdr->b_tmp_cdata = ab->b_buf->b_data;
e0b0ca98 4890 l2hdr->b_hits = 0;
3a17a7a9 4891
34dc7c2f 4892 buf_sz = ab->b_size;
3a17a7a9
SK
4893 ab->b_l2hdr = l2hdr;
4894
4895 list_insert_head(dev->l2ad_buflist, ab);
34dc7c2f
BB
4896
4897 /*
4898 * Compute and store the buffer cksum before
4899 * writing. On debug the cksum is verified first.
4900 */
4901 arc_cksum_verify(ab->b_buf);
4902 arc_cksum_compute(ab->b_buf, B_TRUE);
4903
4904 mutex_exit(hash_lock);
4905
3a17a7a9
SK
4906 write_sz += buf_sz;
4907 }
4908
4909 mutex_exit(list_lock);
4910
4911 if (full == B_TRUE)
4912 break;
4913 }
4914
4915 /* No buffers selected for writing? */
4916 if (pio == NULL) {
4917 ASSERT0(write_sz);
4918 mutex_exit(&l2arc_buflist_mtx);
4919 kmem_cache_free(hdr_cache, head);
4920 return (0);
4921 }
4922
4923 /*
4924 * Now start writing the buffers. We're starting at the write head
4925 * and work backwards, retracing the course of the buffer selector
4926 * loop above.
4927 */
4928 for (ab = list_prev(dev->l2ad_buflist, head); ab;
4929 ab = list_prev(dev->l2ad_buflist, ab)) {
4930 l2arc_buf_hdr_t *l2hdr;
4931 uint64_t buf_sz;
4932
4933 /*
4934 * We shouldn't need to lock the buffer here, since we flagged
4935 * it as ARC_L2_WRITING in the previous step, but we must take
4936 * care to only access its L2 cache parameters. In particular,
4937 * ab->b_buf may be invalid by now due to ARC eviction.
4938 */
4939 l2hdr = ab->b_l2hdr;
4940 l2hdr->b_daddr = dev->l2ad_hand;
4941
4942 if (!l2arc_nocompress && (ab->b_flags & ARC_L2COMPRESS) &&
4943 l2hdr->b_asize >= buf_compress_minsz) {
4944 if (l2arc_compress_buf(l2hdr)) {
4945 /*
4946 * If compression succeeded, enable headroom
4947 * boost on the next scan cycle.
4948 */
4949 *headroom_boost = B_TRUE;
4950 }
4951 }
4952
4953 /*
4954 * Pick up the buffer data we had previously stashed away
4955 * (and now potentially also compressed).
4956 */
4957 buf_data = l2hdr->b_tmp_cdata;
4958 buf_sz = l2hdr->b_asize;
4959
4960 /* Compression may have squashed the buffer to zero length. */
4961 if (buf_sz != 0) {
4962 uint64_t buf_p_sz;
4963
34dc7c2f
BB
4964 wzio = zio_write_phys(pio, dev->l2ad_vdev,
4965 dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
4966 NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
4967 ZIO_FLAG_CANFAIL, B_FALSE);
4968
4969 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
4970 zio_t *, wzio);
4971 (void) zio_nowait(wzio);
4972
3a17a7a9 4973 write_asize += buf_sz;
b128c09f
BB
4974 /*
4975 * Keep the clock hand suitably device-aligned.
4976 */
3a17a7a9
SK
4977 buf_p_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
4978 write_psize += buf_p_sz;
4979 dev->l2ad_hand += buf_p_sz;
34dc7c2f 4980 }
34dc7c2f 4981 }
34dc7c2f 4982
3a17a7a9 4983 mutex_exit(&l2arc_buflist_mtx);
34dc7c2f 4984
3a17a7a9 4985 ASSERT3U(write_asize, <=, target_sz);
34dc7c2f 4986 ARCSTAT_BUMP(arcstat_l2_writes_sent);
3a17a7a9 4987 ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize);
34dc7c2f 4988 ARCSTAT_INCR(arcstat_l2_size, write_sz);
3a17a7a9
SK
4989 ARCSTAT_INCR(arcstat_l2_asize, write_asize);
4990 vdev_space_update(dev->l2ad_vdev, write_psize, 0, 0);
34dc7c2f
BB
4991
4992 /*
4993 * Bump device hand to the device start if it is approaching the end.
4994 * l2arc_evict() will already have evicted ahead for this case.
4995 */
b128c09f 4996 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
428870ff
BB
4997 vdev_space_update(dev->l2ad_vdev,
4998 dev->l2ad_end - dev->l2ad_hand, 0, 0);
34dc7c2f
BB
4999 dev->l2ad_hand = dev->l2ad_start;
5000 dev->l2ad_evict = dev->l2ad_start;
5001 dev->l2ad_first = B_FALSE;
5002 }
5003
d164b209 5004 dev->l2ad_writing = B_TRUE;
34dc7c2f 5005 (void) zio_wait(pio);
d164b209
BB
5006 dev->l2ad_writing = B_FALSE;
5007
3a17a7a9
SK
5008 return (write_asize);
5009}
5010
5011/*
5012 * Compresses an L2ARC buffer.
5013 * The data to be compressed must be prefilled in l2hdr->b_tmp_cdata and its
5014 * size in l2hdr->b_asize. This routine tries to compress the data and
5015 * depending on the compression result there are three possible outcomes:
5016 * *) The buffer was incompressible. The original l2hdr contents were left
5017 * untouched and are ready for writing to an L2 device.
5018 * *) The buffer was all-zeros, so there is no need to write it to an L2
5019 * device. To indicate this situation b_tmp_cdata is NULL'ed, b_asize is
5020 * set to zero and b_compress is set to ZIO_COMPRESS_EMPTY.
5021 * *) Compression succeeded and b_tmp_cdata was replaced with a temporary
5022 * data buffer which holds the compressed data to be written, and b_asize
5023 * tells us how much data there is. b_compress is set to the appropriate
5024 * compression algorithm. Once writing is done, invoke
5025 * l2arc_release_cdata_buf on this l2hdr to free this temporary buffer.
5026 *
5027 * Returns B_TRUE if compression succeeded, or B_FALSE if it didn't (the
5028 * buffer was incompressible).
5029 */
5030static boolean_t
5031l2arc_compress_buf(l2arc_buf_hdr_t *l2hdr)
5032{
5033 void *cdata;
5034 size_t csize, len;
5035
5036 ASSERT(l2hdr->b_compress == ZIO_COMPRESS_OFF);
5037 ASSERT(l2hdr->b_tmp_cdata != NULL);
5038
5039 len = l2hdr->b_asize;
5040 cdata = zio_data_buf_alloc(len);
5041 csize = zio_compress_data(ZIO_COMPRESS_LZ4, l2hdr->b_tmp_cdata,
5042 cdata, l2hdr->b_asize);
5043
5044 if (csize == 0) {
5045 /* zero block, indicate that there's nothing to write */
5046 zio_data_buf_free(cdata, len);
5047 l2hdr->b_compress = ZIO_COMPRESS_EMPTY;
5048 l2hdr->b_asize = 0;
5049 l2hdr->b_tmp_cdata = NULL;
5050 ARCSTAT_BUMP(arcstat_l2_compress_zeros);
5051 return (B_TRUE);
5052 } else if (csize > 0 && csize < len) {
5053 /*
5054 * Compression succeeded, we'll keep the cdata around for
5055 * writing and release it afterwards.
5056 */
5057 l2hdr->b_compress = ZIO_COMPRESS_LZ4;
5058 l2hdr->b_asize = csize;
5059 l2hdr->b_tmp_cdata = cdata;
5060 ARCSTAT_BUMP(arcstat_l2_compress_successes);
5061 return (B_TRUE);
5062 } else {
5063 /*
5064 * Compression failed, release the compressed buffer.
5065 * l2hdr will be left unmodified.
5066 */
5067 zio_data_buf_free(cdata, len);
5068 ARCSTAT_BUMP(arcstat_l2_compress_failures);
5069 return (B_FALSE);
5070 }
5071}
5072
5073/*
5074 * Decompresses a zio read back from an l2arc device. On success, the
5075 * underlying zio's io_data buffer is overwritten by the uncompressed
5076 * version. On decompression error (corrupt compressed stream), the
5077 * zio->io_error value is set to signal an I/O error.
5078 *
5079 * Please note that the compressed data stream is not checksummed, so
5080 * if the underlying device is experiencing data corruption, we may feed
5081 * corrupt data to the decompressor, so the decompressor needs to be
5082 * able to handle this situation (LZ4 does).
5083 */
5084static void
5085l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr, enum zio_compress c)
5086{
5087 uint64_t csize;
5088 void *cdata;
5089
5090 ASSERT(L2ARC_IS_VALID_COMPRESS(c));
5091
5092 if (zio->io_error != 0) {
5093 /*
5094 * An io error has occured, just restore the original io
5095 * size in preparation for a main pool read.
5096 */
5097 zio->io_orig_size = zio->io_size = hdr->b_size;
5098 return;
5099 }
5100
5101 if (c == ZIO_COMPRESS_EMPTY) {
5102 /*
5103 * An empty buffer results in a null zio, which means we
5104 * need to fill its io_data after we're done restoring the
5105 * buffer's contents.
5106 */
5107 ASSERT(hdr->b_buf != NULL);
5108 bzero(hdr->b_buf->b_data, hdr->b_size);
5109 zio->io_data = zio->io_orig_data = hdr->b_buf->b_data;
5110 } else {
5111 ASSERT(zio->io_data != NULL);
5112 /*
5113 * We copy the compressed data from the start of the arc buffer
5114 * (the zio_read will have pulled in only what we need, the
5115 * rest is garbage which we will overwrite at decompression)
5116 * and then decompress back to the ARC data buffer. This way we
5117 * can minimize copying by simply decompressing back over the
5118 * original compressed data (rather than decompressing to an
5119 * aux buffer and then copying back the uncompressed buffer,
5120 * which is likely to be much larger).
5121 */
5122 csize = zio->io_size;
5123 cdata = zio_data_buf_alloc(csize);
5124 bcopy(zio->io_data, cdata, csize);
5125 if (zio_decompress_data(c, cdata, zio->io_data, csize,
5126 hdr->b_size) != 0)
2e528b49 5127 zio->io_error = SET_ERROR(EIO);
3a17a7a9
SK
5128 zio_data_buf_free(cdata, csize);
5129 }
5130
5131 /* Restore the expected uncompressed IO size. */
5132 zio->io_orig_size = zio->io_size = hdr->b_size;
5133}
5134
5135/*
5136 * Releases the temporary b_tmp_cdata buffer in an l2arc header structure.
5137 * This buffer serves as a temporary holder of compressed data while
5138 * the buffer entry is being written to an l2arc device. Once that is
5139 * done, we can dispose of it.
5140 */
5141static void
5142l2arc_release_cdata_buf(arc_buf_hdr_t *ab)
5143{
5144 l2arc_buf_hdr_t *l2hdr = ab->b_l2hdr;
5145
5146 if (l2hdr->b_compress == ZIO_COMPRESS_LZ4) {
5147 /*
5148 * If the data was compressed, then we've allocated a
5149 * temporary buffer for it, so now we need to release it.
5150 */
5151 ASSERT(l2hdr->b_tmp_cdata != NULL);
5152 zio_data_buf_free(l2hdr->b_tmp_cdata, ab->b_size);
5153 }
5154 l2hdr->b_tmp_cdata = NULL;
34dc7c2f
BB
5155}
5156
5157/*
5158 * This thread feeds the L2ARC at regular intervals. This is the beating
5159 * heart of the L2ARC.
5160 */
5161static void
5162l2arc_feed_thread(void)
5163{
5164 callb_cpr_t cpr;
5165 l2arc_dev_t *dev;
5166 spa_t *spa;
d164b209 5167 uint64_t size, wrote;
428870ff 5168 clock_t begin, next = ddi_get_lbolt();
3a17a7a9 5169 boolean_t headroom_boost = B_FALSE;
34dc7c2f
BB
5170
5171 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
5172
5173 mutex_enter(&l2arc_feed_thr_lock);
5174
5175 while (l2arc_thread_exit == 0) {
34dc7c2f 5176 CALLB_CPR_SAFE_BEGIN(&cpr);
5b63b3eb
BB
5177 (void) cv_timedwait_interruptible(&l2arc_feed_thr_cv,
5178 &l2arc_feed_thr_lock, next);
34dc7c2f 5179 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
428870ff 5180 next = ddi_get_lbolt() + hz;
34dc7c2f
BB
5181
5182 /*
b128c09f 5183 * Quick check for L2ARC devices.
34dc7c2f
BB
5184 */
5185 mutex_enter(&l2arc_dev_mtx);
5186 if (l2arc_ndev == 0) {
5187 mutex_exit(&l2arc_dev_mtx);
5188 continue;
5189 }
b128c09f 5190 mutex_exit(&l2arc_dev_mtx);
428870ff 5191 begin = ddi_get_lbolt();
34dc7c2f
BB
5192
5193 /*
b128c09f
BB
5194 * This selects the next l2arc device to write to, and in
5195 * doing so the next spa to feed from: dev->l2ad_spa. This
5196 * will return NULL if there are now no l2arc devices or if
5197 * they are all faulted.
5198 *
5199 * If a device is returned, its spa's config lock is also
5200 * held to prevent device removal. l2arc_dev_get_next()
5201 * will grab and release l2arc_dev_mtx.
34dc7c2f 5202 */
b128c09f 5203 if ((dev = l2arc_dev_get_next()) == NULL)
34dc7c2f 5204 continue;
b128c09f
BB
5205
5206 spa = dev->l2ad_spa;
5207 ASSERT(spa != NULL);
34dc7c2f 5208
572e2857
BB
5209 /*
5210 * If the pool is read-only then force the feed thread to
5211 * sleep a little longer.
5212 */
5213 if (!spa_writeable(spa)) {
5214 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
5215 spa_config_exit(spa, SCL_L2ARC, dev);
5216 continue;
5217 }
5218
34dc7c2f 5219 /*
b128c09f 5220 * Avoid contributing to memory pressure.
34dc7c2f 5221 */
302f753f 5222 if (arc_no_grow) {
b128c09f
BB
5223 ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
5224 spa_config_exit(spa, SCL_L2ARC, dev);
34dc7c2f
BB
5225 continue;
5226 }
b128c09f 5227
34dc7c2f
BB
5228 ARCSTAT_BUMP(arcstat_l2_feeds);
5229
3a17a7a9 5230 size = l2arc_write_size();
b128c09f 5231
34dc7c2f
BB
5232 /*
5233 * Evict L2ARC buffers that will be overwritten.
5234 */
b128c09f 5235 l2arc_evict(dev, size, B_FALSE);
34dc7c2f
BB
5236
5237 /*
5238 * Write ARC buffers.
5239 */
3a17a7a9 5240 wrote = l2arc_write_buffers(spa, dev, size, &headroom_boost);
d164b209
BB
5241
5242 /*
5243 * Calculate interval between writes.
5244 */
5245 next = l2arc_write_interval(begin, size, wrote);
b128c09f 5246 spa_config_exit(spa, SCL_L2ARC, dev);
34dc7c2f
BB
5247 }
5248
5249 l2arc_thread_exit = 0;
5250 cv_broadcast(&l2arc_feed_thr_cv);
5251 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */
5252 thread_exit();
5253}
5254
b128c09f
BB
5255boolean_t
5256l2arc_vdev_present(vdev_t *vd)
5257{
5258 l2arc_dev_t *dev;
5259
5260 mutex_enter(&l2arc_dev_mtx);
5261 for (dev = list_head(l2arc_dev_list); dev != NULL;
5262 dev = list_next(l2arc_dev_list, dev)) {
5263 if (dev->l2ad_vdev == vd)
5264 break;
5265 }
5266 mutex_exit(&l2arc_dev_mtx);
5267
5268 return (dev != NULL);
5269}
5270
34dc7c2f
BB
5271/*
5272 * Add a vdev for use by the L2ARC. By this point the spa has already
5273 * validated the vdev and opened it.
5274 */
5275void
9babb374 5276l2arc_add_vdev(spa_t *spa, vdev_t *vd)
34dc7c2f
BB
5277{
5278 l2arc_dev_t *adddev;
5279
b128c09f
BB
5280 ASSERT(!l2arc_vdev_present(vd));
5281
34dc7c2f
BB
5282 /*
5283 * Create a new l2arc device entry.
5284 */
5285 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
5286 adddev->l2ad_spa = spa;
5287 adddev->l2ad_vdev = vd;
9babb374
BB
5288 adddev->l2ad_start = VDEV_LABEL_START_SIZE;
5289 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
34dc7c2f
BB
5290 adddev->l2ad_hand = adddev->l2ad_start;
5291 adddev->l2ad_evict = adddev->l2ad_start;
5292 adddev->l2ad_first = B_TRUE;
d164b209 5293 adddev->l2ad_writing = B_FALSE;
98f72a53 5294 list_link_init(&adddev->l2ad_node);
34dc7c2f
BB
5295
5296 /*
5297 * This is a list of all ARC buffers that are still valid on the
5298 * device.
5299 */
5300 adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP);
5301 list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
5302 offsetof(arc_buf_hdr_t, b_l2node));
5303
428870ff 5304 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
34dc7c2f
BB
5305
5306 /*
5307 * Add device to global list
5308 */
5309 mutex_enter(&l2arc_dev_mtx);
5310 list_insert_head(l2arc_dev_list, adddev);
5311 atomic_inc_64(&l2arc_ndev);
5312 mutex_exit(&l2arc_dev_mtx);
5313}
5314
5315/*
5316 * Remove a vdev from the L2ARC.
5317 */
5318void
5319l2arc_remove_vdev(vdev_t *vd)
5320{
5321 l2arc_dev_t *dev, *nextdev, *remdev = NULL;
5322
34dc7c2f
BB
5323 /*
5324 * Find the device by vdev
5325 */
5326 mutex_enter(&l2arc_dev_mtx);
5327 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
5328 nextdev = list_next(l2arc_dev_list, dev);
5329 if (vd == dev->l2ad_vdev) {
5330 remdev = dev;
5331 break;
5332 }
5333 }
5334 ASSERT(remdev != NULL);
5335
5336 /*
5337 * Remove device from global list
5338 */
5339 list_remove(l2arc_dev_list, remdev);
5340 l2arc_dev_last = NULL; /* may have been invalidated */
b128c09f
BB
5341 atomic_dec_64(&l2arc_ndev);
5342 mutex_exit(&l2arc_dev_mtx);
34dc7c2f
BB
5343
5344 /*
5345 * Clear all buflists and ARC references. L2ARC device flush.
5346 */
5347 l2arc_evict(remdev, 0, B_TRUE);
5348 list_destroy(remdev->l2ad_buflist);
5349 kmem_free(remdev->l2ad_buflist, sizeof (list_t));
5350 kmem_free(remdev, sizeof (l2arc_dev_t));
34dc7c2f
BB
5351}
5352
5353void
b128c09f 5354l2arc_init(void)
34dc7c2f
BB
5355{
5356 l2arc_thread_exit = 0;
5357 l2arc_ndev = 0;
5358 l2arc_writes_sent = 0;
5359 l2arc_writes_done = 0;
5360
5361 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
5362 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
5363 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
5364 mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL);
5365 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
5366
5367 l2arc_dev_list = &L2ARC_dev_list;
5368 l2arc_free_on_write = &L2ARC_free_on_write;
5369 list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
5370 offsetof(l2arc_dev_t, l2ad_node));
5371 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
5372 offsetof(l2arc_data_free_t, l2df_list_node));
34dc7c2f
BB
5373}
5374
5375void
b128c09f 5376l2arc_fini(void)
34dc7c2f 5377{
b128c09f
BB
5378 /*
5379 * This is called from dmu_fini(), which is called from spa_fini();
5380 * Because of this, we can assume that all l2arc devices have
5381 * already been removed when the pools themselves were removed.
5382 */
5383
5384 l2arc_do_free_on_write();
34dc7c2f
BB
5385
5386 mutex_destroy(&l2arc_feed_thr_lock);
5387 cv_destroy(&l2arc_feed_thr_cv);
5388 mutex_destroy(&l2arc_dev_mtx);
5389 mutex_destroy(&l2arc_buflist_mtx);
5390 mutex_destroy(&l2arc_free_on_write_mtx);
5391
5392 list_destroy(l2arc_dev_list);
5393 list_destroy(l2arc_free_on_write);
5394}
b128c09f
BB
5395
5396void
5397l2arc_start(void)
5398{
fb5f0bc8 5399 if (!(spa_mode_global & FWRITE))
b128c09f
BB
5400 return;
5401
5402 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
5403 TS_RUN, minclsyspri);
5404}
5405
5406void
5407l2arc_stop(void)
5408{
fb5f0bc8 5409 if (!(spa_mode_global & FWRITE))
b128c09f
BB
5410 return;
5411
5412 mutex_enter(&l2arc_feed_thr_lock);
5413 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */
5414 l2arc_thread_exit = 1;
5415 while (l2arc_thread_exit != 0)
5416 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
5417 mutex_exit(&l2arc_feed_thr_lock);
5418}
c28b2279
BB
5419
5420#if defined(_KERNEL) && defined(HAVE_SPL)
5421EXPORT_SYMBOL(arc_read);
5422EXPORT_SYMBOL(arc_buf_remove_ref);
e0b0ca98 5423EXPORT_SYMBOL(arc_buf_info);
c28b2279 5424EXPORT_SYMBOL(arc_getbuf_func);
ab26409d
BB
5425EXPORT_SYMBOL(arc_add_prune_callback);
5426EXPORT_SYMBOL(arc_remove_prune_callback);
c28b2279 5427
bce45ec9 5428module_param(zfs_arc_min, ulong, 0644);
c409e464 5429MODULE_PARM_DESC(zfs_arc_min, "Min arc size");
c28b2279 5430
bce45ec9 5431module_param(zfs_arc_max, ulong, 0644);
c409e464 5432MODULE_PARM_DESC(zfs_arc_max, "Max arc size");
c28b2279 5433
bce45ec9 5434module_param(zfs_arc_meta_limit, ulong, 0644);
c28b2279 5435MODULE_PARM_DESC(zfs_arc_meta_limit, "Meta limit for arc size");
6a8f9b6b 5436
bce45ec9 5437module_param(zfs_arc_meta_prune, int, 0644);
ab26409d 5438MODULE_PARM_DESC(zfs_arc_meta_prune, "Bytes of meta data to prune");
c409e464 5439
bce45ec9 5440module_param(zfs_arc_grow_retry, int, 0644);
c409e464
BB
5441MODULE_PARM_DESC(zfs_arc_grow_retry, "Seconds before growing arc size");
5442
bce45ec9 5443module_param(zfs_arc_shrink_shift, int, 0644);
c409e464
BB
5444MODULE_PARM_DESC(zfs_arc_shrink_shift, "log2(fraction of arc to reclaim)");
5445
bce45ec9 5446module_param(zfs_arc_p_min_shift, int, 0644);
c409e464
BB
5447MODULE_PARM_DESC(zfs_arc_p_min_shift, "arc_c shift to calc min/max arc_p");
5448
1f7c30df
BB
5449module_param(zfs_disable_dup_eviction, int, 0644);
5450MODULE_PARM_DESC(zfs_disable_dup_eviction, "disable duplicate buffer eviction");
5451
0c5493d4
BB
5452module_param(zfs_arc_memory_throttle_disable, int, 0644);
5453MODULE_PARM_DESC(zfs_arc_memory_throttle_disable, "disable memory throttle");
5454
bce45ec9
BB
5455module_param(zfs_arc_min_prefetch_lifespan, int, 0644);
5456MODULE_PARM_DESC(zfs_arc_min_prefetch_lifespan, "Min life of prefetch block");
5457
5458module_param(l2arc_write_max, ulong, 0644);
abd8610c
BB
5459MODULE_PARM_DESC(l2arc_write_max, "Max write bytes per interval");
5460
bce45ec9 5461module_param(l2arc_write_boost, ulong, 0644);
abd8610c
BB
5462MODULE_PARM_DESC(l2arc_write_boost, "Extra write bytes during device warmup");
5463
bce45ec9 5464module_param(l2arc_headroom, ulong, 0644);
abd8610c
BB
5465MODULE_PARM_DESC(l2arc_headroom, "Number of max device writes to precache");
5466
3a17a7a9
SK
5467module_param(l2arc_headroom_boost, ulong, 0644);
5468MODULE_PARM_DESC(l2arc_headroom_boost, "Compressed l2arc_headroom multiplier");
5469
bce45ec9 5470module_param(l2arc_feed_secs, ulong, 0644);
abd8610c
BB
5471MODULE_PARM_DESC(l2arc_feed_secs, "Seconds between L2ARC writing");
5472
bce45ec9 5473module_param(l2arc_feed_min_ms, ulong, 0644);
abd8610c
BB
5474MODULE_PARM_DESC(l2arc_feed_min_ms, "Min feed interval in milliseconds");
5475
bce45ec9 5476module_param(l2arc_noprefetch, int, 0644);
abd8610c
BB
5477MODULE_PARM_DESC(l2arc_noprefetch, "Skip caching prefetched buffers");
5478
3a17a7a9
SK
5479module_param(l2arc_nocompress, int, 0644);
5480MODULE_PARM_DESC(l2arc_nocompress, "Skip compressing L2ARC buffers");
5481
bce45ec9 5482module_param(l2arc_feed_again, int, 0644);
abd8610c
BB
5483MODULE_PARM_DESC(l2arc_feed_again, "Turbo L2ARC warmup");
5484
bce45ec9 5485module_param(l2arc_norw, int, 0644);
abd8610c
BB
5486MODULE_PARM_DESC(l2arc_norw, "No reads during writes");
5487
c28b2279 5488#endif