]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/vdev.c
Fix typos in module/zfs/
[mirror_zfs.git] / module / zfs / vdev.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
428870ff 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
74d42600 24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
153b2285 25 * Copyright 2017 Nexenta Systems, Inc.
e550644f
BB
26 * Copyright (c) 2014 Integros [integros.com]
27 * Copyright 2016 Toomas Soome <tsoome@me.com>
12fa0466 28 * Copyright 2017 Joyent, Inc.
cc99f275 29 * Copyright (c) 2017, Intel Corporation.
34dc7c2f
BB
30 */
31
34dc7c2f
BB
32#include <sys/zfs_context.h>
33#include <sys/fm/fs/zfs.h>
34#include <sys/spa.h>
35#include <sys/spa_impl.h>
a1d477c2 36#include <sys/bpobj.h>
34dc7c2f
BB
37#include <sys/dmu.h>
38#include <sys/dmu_tx.h>
a1d477c2 39#include <sys/dsl_dir.h>
34dc7c2f
BB
40#include <sys/vdev_impl.h>
41#include <sys/uberblock_impl.h>
42#include <sys/metaslab.h>
43#include <sys/metaslab_impl.h>
44#include <sys/space_map.h>
93cf2076 45#include <sys/space_reftree.h>
34dc7c2f
BB
46#include <sys/zio.h>
47#include <sys/zap.h>
48#include <sys/fs/zfs.h>
b128c09f 49#include <sys/arc.h>
9babb374 50#include <sys/zil.h>
428870ff 51#include <sys/dsl_scan.h>
a6255b7f 52#include <sys/abd.h>
619f0976 53#include <sys/vdev_initialize.h>
1b939560 54#include <sys/vdev_trim.h>
6c285672 55#include <sys/zvol.h>
6078881a 56#include <sys/zfs_ratelimit.h>
34dc7c2f 57
c853f382
SD
58/* default target for number of metaslabs per top-level vdev */
59int zfs_vdev_default_ms_count = 200;
d2734cce 60
e4e94ca3 61/* minimum number of metaslabs per top-level vdev */
c853f382 62int zfs_vdev_min_ms_count = 16;
d2734cce 63
e4e94ca3 64/* practical upper limit of total metaslabs per top-level vdev */
c853f382 65int zfs_vdev_ms_count_limit = 1ULL << 17;
e4e94ca3
DB
66
67/* lower limit for metaslab size (512M) */
c853f382 68int zfs_vdev_default_ms_shift = 29;
d2734cce 69
c853f382
SD
70/* upper limit for metaslab size (16G) */
71int zfs_vdev_max_ms_shift = 34;
e4e94ca3 72
d2734cce
SD
73int vdev_validate_skip = B_FALSE;
74
b8bcca18 75/*
d2734cce
SD
76 * Since the DTL space map of a vdev is not expected to have a lot of
77 * entries, we default its block size to 4K.
b8bcca18 78 */
93e28d66 79int zfs_vdev_dtl_sm_blksz = (1 << 12);
b8bcca18 80
80d52c39 81/*
ad796b8a 82 * Rate limit slow IO (delay) events to this many per second.
80d52c39 83 */
ad796b8a 84unsigned int zfs_slow_io_events_per_second = 20;
80d52c39
TH
85
86/*
87 * Rate limit checksum events after this many checksum errors per second.
88 */
ad796b8a 89unsigned int zfs_checksum_events_per_second = 20;
80d52c39 90
02638a30
TC
91/*
92 * Ignore errors during scrub/resilver. Allows to work around resilver
93 * upon import when there are pool errors.
94 */
95int zfs_scan_ignore_errors = 0;
96
d2734cce
SD
97/*
98 * vdev-wide space maps that have lots of entries written to them at
99 * the end of each transaction can benefit from a higher I/O bandwidth
100 * (e.g. vdev_obsolete_sm), thus we default their block size to 128K.
101 */
93e28d66 102int zfs_vdev_standard_sm_blksz = (1 << 17);
6cb8e530 103
53b1f5ea
PS
104/*
105 * Tunable parameter for debugging or performance analysis. Setting this
106 * will cause pool corruption on power loss if a volatile out-of-order
107 * write cache is enabled.
108 */
109int zfs_nocacheflush = 0;
110
4a0ee12a
PZ
111/*PRINTFLIKE2*/
112void
113vdev_dbgmsg(vdev_t *vd, const char *fmt, ...)
114{
115 va_list adx;
116 char buf[256];
117
118 va_start(adx, fmt);
119 (void) vsnprintf(buf, sizeof (buf), fmt, adx);
120 va_end(adx);
121
122 if (vd->vdev_path != NULL) {
123 zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type,
124 vd->vdev_path, buf);
125 } else {
126 zfs_dbgmsg("%s-%llu vdev (guid %llu): %s",
127 vd->vdev_ops->vdev_op_type,
128 (u_longlong_t)vd->vdev_id,
129 (u_longlong_t)vd->vdev_guid, buf);
130 }
131}
132
6cb8e530
PZ
133void
134vdev_dbgmsg_print_tree(vdev_t *vd, int indent)
135{
136 char state[20];
137
138 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) {
139 zfs_dbgmsg("%*svdev %u: %s", indent, "", vd->vdev_id,
140 vd->vdev_ops->vdev_op_type);
141 return;
142 }
143
144 switch (vd->vdev_state) {
145 case VDEV_STATE_UNKNOWN:
146 (void) snprintf(state, sizeof (state), "unknown");
147 break;
148 case VDEV_STATE_CLOSED:
149 (void) snprintf(state, sizeof (state), "closed");
150 break;
151 case VDEV_STATE_OFFLINE:
152 (void) snprintf(state, sizeof (state), "offline");
153 break;
154 case VDEV_STATE_REMOVED:
155 (void) snprintf(state, sizeof (state), "removed");
156 break;
157 case VDEV_STATE_CANT_OPEN:
158 (void) snprintf(state, sizeof (state), "can't open");
159 break;
160 case VDEV_STATE_FAULTED:
161 (void) snprintf(state, sizeof (state), "faulted");
162 break;
163 case VDEV_STATE_DEGRADED:
164 (void) snprintf(state, sizeof (state), "degraded");
165 break;
166 case VDEV_STATE_HEALTHY:
167 (void) snprintf(state, sizeof (state), "healthy");
168 break;
169 default:
170 (void) snprintf(state, sizeof (state), "<state %u>",
171 (uint_t)vd->vdev_state);
172 }
173
174 zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent,
e902ddb0 175 "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type,
6cb8e530
PZ
176 vd->vdev_islog ? " (log)" : "",
177 (u_longlong_t)vd->vdev_guid,
178 vd->vdev_path ? vd->vdev_path : "N/A", state);
179
180 for (uint64_t i = 0; i < vd->vdev_children; i++)
181 vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2);
182}
183
34dc7c2f
BB
184/*
185 * Virtual device management.
186 */
187
188static vdev_ops_t *vdev_ops_table[] = {
189 &vdev_root_ops,
190 &vdev_raidz_ops,
191 &vdev_mirror_ops,
192 &vdev_replacing_ops,
193 &vdev_spare_ops,
194 &vdev_disk_ops,
195 &vdev_file_ops,
196 &vdev_missing_ops,
428870ff 197 &vdev_hole_ops,
a1d477c2 198 &vdev_indirect_ops,
34dc7c2f
BB
199 NULL
200};
201
34dc7c2f
BB
202/*
203 * Given a vdev type, return the appropriate ops vector.
204 */
205static vdev_ops_t *
206vdev_getops(const char *type)
207{
208 vdev_ops_t *ops, **opspp;
209
210 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
211 if (strcmp(ops->vdev_op_type, type) == 0)
212 break;
213
214 return (ops);
215}
216
619f0976
GW
217/* ARGSUSED */
218void
219vdev_default_xlate(vdev_t *vd, const range_seg_t *in, range_seg_t *res)
220{
221 res->rs_start = in->rs_start;
222 res->rs_end = in->rs_end;
223}
224
cc99f275 225/*
e1cfd73f 226 * Derive the enumerated allocation bias from string input.
cc99f275
DB
227 * String origin is either the per-vdev zap or zpool(1M).
228 */
229static vdev_alloc_bias_t
230vdev_derive_alloc_bias(const char *bias)
231{
232 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
233
234 if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0)
235 alloc_bias = VDEV_BIAS_LOG;
236 else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0)
237 alloc_bias = VDEV_BIAS_SPECIAL;
238 else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0)
239 alloc_bias = VDEV_BIAS_DEDUP;
240
241 return (alloc_bias);
242}
243
34dc7c2f
BB
244/*
245 * Default asize function: return the MAX of psize with the asize of
246 * all children. This is what's used by anything other than RAID-Z.
247 */
248uint64_t
249vdev_default_asize(vdev_t *vd, uint64_t psize)
250{
251 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
252 uint64_t csize;
34dc7c2f 253
1c27024e 254 for (int c = 0; c < vd->vdev_children; c++) {
34dc7c2f
BB
255 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
256 asize = MAX(asize, csize);
257 }
258
259 return (asize);
260}
261
262/*
9babb374
BB
263 * Get the minimum allocatable size. We define the allocatable size as
264 * the vdev's asize rounded to the nearest metaslab. This allows us to
265 * replace or attach devices which don't have the same physical size but
266 * can still satisfy the same number of allocations.
34dc7c2f
BB
267 */
268uint64_t
9babb374 269vdev_get_min_asize(vdev_t *vd)
34dc7c2f 270{
9babb374 271 vdev_t *pvd = vd->vdev_parent;
34dc7c2f 272
9babb374 273 /*
1bd201e7 274 * If our parent is NULL (inactive spare or cache) or is the root,
9babb374
BB
275 * just return our own asize.
276 */
277 if (pvd == NULL)
278 return (vd->vdev_asize);
34dc7c2f
BB
279
280 /*
9babb374
BB
281 * The top-level vdev just returns the allocatable size rounded
282 * to the nearest metaslab.
34dc7c2f 283 */
9babb374
BB
284 if (vd == vd->vdev_top)
285 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
34dc7c2f 286
9babb374
BB
287 /*
288 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
289 * so each child must provide at least 1/Nth of its asize.
290 */
291 if (pvd->vdev_ops == &vdev_raidz_ops)
2e215fec
SH
292 return ((pvd->vdev_min_asize + pvd->vdev_children - 1) /
293 pvd->vdev_children);
34dc7c2f 294
9babb374
BB
295 return (pvd->vdev_min_asize);
296}
297
298void
299vdev_set_min_asize(vdev_t *vd)
300{
301 vd->vdev_min_asize = vdev_get_min_asize(vd);
34dc7c2f 302
1c27024e 303 for (int c = 0; c < vd->vdev_children; c++)
9babb374 304 vdev_set_min_asize(vd->vdev_child[c]);
34dc7c2f
BB
305}
306
307vdev_t *
308vdev_lookup_top(spa_t *spa, uint64_t vdev)
309{
310 vdev_t *rvd = spa->spa_root_vdev;
311
b128c09f 312 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
34dc7c2f 313
b128c09f
BB
314 if (vdev < rvd->vdev_children) {
315 ASSERT(rvd->vdev_child[vdev] != NULL);
34dc7c2f 316 return (rvd->vdev_child[vdev]);
b128c09f 317 }
34dc7c2f
BB
318
319 return (NULL);
320}
321
322vdev_t *
323vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
324{
34dc7c2f
BB
325 vdev_t *mvd;
326
327 if (vd->vdev_guid == guid)
328 return (vd);
329
1c27024e 330 for (int c = 0; c < vd->vdev_children; c++)
34dc7c2f
BB
331 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
332 NULL)
333 return (mvd);
334
335 return (NULL);
336}
337
9c43027b
AJ
338static int
339vdev_count_leaves_impl(vdev_t *vd)
340{
341 int n = 0;
9c43027b
AJ
342
343 if (vd->vdev_ops->vdev_op_leaf)
344 return (1);
345
1c27024e 346 for (int c = 0; c < vd->vdev_children; c++)
9c43027b
AJ
347 n += vdev_count_leaves_impl(vd->vdev_child[c]);
348
349 return (n);
350}
351
352int
353vdev_count_leaves(spa_t *spa)
354{
743253df
OF
355 int rc;
356
357 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
358 rc = vdev_count_leaves_impl(spa->spa_root_vdev);
359 spa_config_exit(spa, SCL_VDEV, FTAG);
360
361 return (rc);
9c43027b
AJ
362}
363
34dc7c2f
BB
364void
365vdev_add_child(vdev_t *pvd, vdev_t *cvd)
366{
367 size_t oldsize, newsize;
368 uint64_t id = cvd->vdev_id;
369 vdev_t **newchild;
370
44de2f02 371 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
34dc7c2f
BB
372 ASSERT(cvd->vdev_parent == NULL);
373
374 cvd->vdev_parent = pvd;
375
376 if (pvd == NULL)
377 return;
378
379 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
380
381 oldsize = pvd->vdev_children * sizeof (vdev_t *);
382 pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
383 newsize = pvd->vdev_children * sizeof (vdev_t *);
384
79c76d5b 385 newchild = kmem_alloc(newsize, KM_SLEEP);
34dc7c2f
BB
386 if (pvd->vdev_child != NULL) {
387 bcopy(pvd->vdev_child, newchild, oldsize);
388 kmem_free(pvd->vdev_child, oldsize);
389 }
390
391 pvd->vdev_child = newchild;
392 pvd->vdev_child[id] = cvd;
393
394 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
395 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
396
397 /*
398 * Walk up all ancestors to update guid sum.
399 */
400 for (; pvd != NULL; pvd = pvd->vdev_parent)
401 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
3d31aad8
OF
402
403 if (cvd->vdev_ops->vdev_op_leaf) {
404 list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd);
405 cvd->vdev_spa->spa_leaf_list_gen++;
406 }
34dc7c2f
BB
407}
408
409void
410vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
411{
412 int c;
413 uint_t id = cvd->vdev_id;
414
415 ASSERT(cvd->vdev_parent == pvd);
416
417 if (pvd == NULL)
418 return;
419
420 ASSERT(id < pvd->vdev_children);
421 ASSERT(pvd->vdev_child[id] == cvd);
422
423 pvd->vdev_child[id] = NULL;
424 cvd->vdev_parent = NULL;
425
426 for (c = 0; c < pvd->vdev_children; c++)
427 if (pvd->vdev_child[c])
428 break;
429
430 if (c == pvd->vdev_children) {
431 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
432 pvd->vdev_child = NULL;
433 pvd->vdev_children = 0;
434 }
435
3d31aad8
OF
436 if (cvd->vdev_ops->vdev_op_leaf) {
437 spa_t *spa = cvd->vdev_spa;
438 list_remove(&spa->spa_leaf_list, cvd);
439 spa->spa_leaf_list_gen++;
440 }
441
34dc7c2f
BB
442 /*
443 * Walk up all ancestors to update guid sum.
444 */
445 for (; pvd != NULL; pvd = pvd->vdev_parent)
446 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
34dc7c2f
BB
447}
448
449/*
450 * Remove any holes in the child array.
451 */
452void
453vdev_compact_children(vdev_t *pvd)
454{
455 vdev_t **newchild, *cvd;
456 int oldc = pvd->vdev_children;
9babb374 457 int newc;
34dc7c2f 458
b128c09f 459 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
34dc7c2f 460
a1d477c2
MA
461 if (oldc == 0)
462 return;
463
1c27024e 464 for (int c = newc = 0; c < oldc; c++)
34dc7c2f
BB
465 if (pvd->vdev_child[c])
466 newc++;
467
a1d477c2
MA
468 if (newc > 0) {
469 newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP);
34dc7c2f 470
a1d477c2
MA
471 for (int c = newc = 0; c < oldc; c++) {
472 if ((cvd = pvd->vdev_child[c]) != NULL) {
473 newchild[newc] = cvd;
474 cvd->vdev_id = newc++;
475 }
34dc7c2f 476 }
a1d477c2
MA
477 } else {
478 newchild = NULL;
34dc7c2f
BB
479 }
480
481 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
482 pvd->vdev_child = newchild;
483 pvd->vdev_children = newc;
484}
485
486/*
487 * Allocate and minimally initialize a vdev_t.
488 */
428870ff 489vdev_t *
34dc7c2f
BB
490vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
491{
492 vdev_t *vd;
a1d477c2 493 vdev_indirect_config_t *vic;
34dc7c2f 494
79c76d5b 495 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
a1d477c2 496 vic = &vd->vdev_indirect_config;
34dc7c2f
BB
497
498 if (spa->spa_root_vdev == NULL) {
499 ASSERT(ops == &vdev_root_ops);
500 spa->spa_root_vdev = vd;
3541dc6d 501 spa->spa_load_guid = spa_generate_guid(NULL);
34dc7c2f
BB
502 }
503
428870ff 504 if (guid == 0 && ops != &vdev_hole_ops) {
34dc7c2f
BB
505 if (spa->spa_root_vdev == vd) {
506 /*
507 * The root vdev's guid will also be the pool guid,
508 * which must be unique among all pools.
509 */
428870ff 510 guid = spa_generate_guid(NULL);
34dc7c2f
BB
511 } else {
512 /*
513 * Any other vdev's guid must be unique within the pool.
514 */
428870ff 515 guid = spa_generate_guid(spa);
34dc7c2f
BB
516 }
517 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
518 }
519
520 vd->vdev_spa = spa;
521 vd->vdev_id = id;
522 vd->vdev_guid = guid;
523 vd->vdev_guid_sum = guid;
524 vd->vdev_ops = ops;
525 vd->vdev_state = VDEV_STATE_CLOSED;
428870ff 526 vd->vdev_ishole = (ops == &vdev_hole_ops);
a1d477c2
MA
527 vic->vic_prev_indirect_vdev = UINT64_MAX;
528
529 rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
530 mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
531 vd->vdev_obsolete_segments = range_tree_create(NULL, NULL);
34dc7c2f 532
6078881a
TH
533 /*
534 * Initialize rate limit structs for events. We rate limit ZIO delay
535 * and checksum events so that we don't overwhelm ZED with thousands
536 * of events when a disk is acting up.
537 */
ad796b8a
TH
538 zfs_ratelimit_init(&vd->vdev_delay_rl, &zfs_slow_io_events_per_second,
539 1);
540 zfs_ratelimit_init(&vd->vdev_checksum_rl,
541 &zfs_checksum_events_per_second, 1);
6078881a 542
98f72a53
BB
543 list_link_init(&vd->vdev_config_dirty_node);
544 list_link_init(&vd->vdev_state_dirty_node);
c10d37dd 545 list_link_init(&vd->vdev_initialize_node);
3d31aad8 546 list_link_init(&vd->vdev_leaf_node);
1b939560 547 list_link_init(&vd->vdev_trim_node);
448d7aaa 548 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL);
34dc7c2f 549 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
b128c09f 550 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
d4a72f23 551 mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL);
619f0976
GW
552 mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL);
553 mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL);
554 cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL);
555 cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL);
1b939560
BB
556 mutex_init(&vd->vdev_trim_lock, NULL, MUTEX_DEFAULT, NULL);
557 mutex_init(&vd->vdev_autotrim_lock, NULL, MUTEX_DEFAULT, NULL);
558 mutex_init(&vd->vdev_trim_io_lock, NULL, MUTEX_DEFAULT, NULL);
559 cv_init(&vd->vdev_trim_cv, NULL, CV_DEFAULT, NULL);
560 cv_init(&vd->vdev_autotrim_cv, NULL, CV_DEFAULT, NULL);
561 cv_init(&vd->vdev_trim_io_cv, NULL, CV_DEFAULT, NULL);
6078881a 562
1c27024e 563 for (int t = 0; t < DTL_TYPES; t++) {
a1d477c2 564 vd->vdev_dtl[t] = range_tree_create(NULL, NULL);
fb5f0bc8 565 }
4747a7d3 566 txg_list_create(&vd->vdev_ms_list, spa,
34dc7c2f 567 offsetof(struct metaslab, ms_txg_node));
4747a7d3 568 txg_list_create(&vd->vdev_dtl_list, spa,
34dc7c2f
BB
569 offsetof(struct vdev, vdev_dtl_node));
570 vd->vdev_stat.vs_timestamp = gethrtime();
571 vdev_queue_init(vd);
572 vdev_cache_init(vd);
573
574 return (vd);
575}
576
577/*
578 * Allocate a new vdev. The 'alloctype' is used to control whether we are
579 * creating a new vdev or loading an existing one - the behavior is slightly
580 * different for each case.
581 */
582int
583vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
584 int alloctype)
585{
586 vdev_ops_t *ops;
587 char *type;
588 uint64_t guid = 0, islog, nparity;
589 vdev_t *vd;
a1d477c2 590 vdev_indirect_config_t *vic;
4a283c7f
TH
591 char *tmp = NULL;
592 int rc;
cc99f275
DB
593 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
594 boolean_t top_level = (parent && !parent->vdev_parent);
34dc7c2f 595
b128c09f 596 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
34dc7c2f
BB
597
598 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
2e528b49 599 return (SET_ERROR(EINVAL));
34dc7c2f
BB
600
601 if ((ops = vdev_getops(type)) == NULL)
2e528b49 602 return (SET_ERROR(EINVAL));
34dc7c2f
BB
603
604 /*
605 * If this is a load, get the vdev guid from the nvlist.
606 * Otherwise, vdev_alloc_common() will generate one for us.
607 */
608 if (alloctype == VDEV_ALLOC_LOAD) {
609 uint64_t label_id;
610
611 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
612 label_id != id)
2e528b49 613 return (SET_ERROR(EINVAL));
34dc7c2f
BB
614
615 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
2e528b49 616 return (SET_ERROR(EINVAL));
34dc7c2f
BB
617 } else if (alloctype == VDEV_ALLOC_SPARE) {
618 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
2e528b49 619 return (SET_ERROR(EINVAL));
34dc7c2f
BB
620 } else if (alloctype == VDEV_ALLOC_L2CACHE) {
621 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
2e528b49 622 return (SET_ERROR(EINVAL));
9babb374
BB
623 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
624 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
2e528b49 625 return (SET_ERROR(EINVAL));
34dc7c2f
BB
626 }
627
628 /*
629 * The first allocated vdev must be of type 'root'.
630 */
631 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
2e528b49 632 return (SET_ERROR(EINVAL));
34dc7c2f
BB
633
634 /*
635 * Determine whether we're a log vdev.
636 */
637 islog = 0;
638 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
639 if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
2e528b49 640 return (SET_ERROR(ENOTSUP));
34dc7c2f 641
428870ff 642 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
2e528b49 643 return (SET_ERROR(ENOTSUP));
428870ff 644
34dc7c2f
BB
645 /*
646 * Set the nparity property for RAID-Z vdevs.
647 */
648 nparity = -1ULL;
649 if (ops == &vdev_raidz_ops) {
650 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
651 &nparity) == 0) {
428870ff 652 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
2e528b49 653 return (SET_ERROR(EINVAL));
34dc7c2f 654 /*
45d1cae3
BB
655 * Previous versions could only support 1 or 2 parity
656 * device.
34dc7c2f 657 */
45d1cae3
BB
658 if (nparity > 1 &&
659 spa_version(spa) < SPA_VERSION_RAIDZ2)
2e528b49 660 return (SET_ERROR(ENOTSUP));
45d1cae3
BB
661 if (nparity > 2 &&
662 spa_version(spa) < SPA_VERSION_RAIDZ3)
2e528b49 663 return (SET_ERROR(ENOTSUP));
34dc7c2f
BB
664 } else {
665 /*
666 * We require the parity to be specified for SPAs that
667 * support multiple parity levels.
668 */
45d1cae3 669 if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
2e528b49 670 return (SET_ERROR(EINVAL));
34dc7c2f
BB
671 /*
672 * Otherwise, we default to 1 parity device for RAID-Z.
673 */
674 nparity = 1;
675 }
676 } else {
677 nparity = 0;
678 }
679 ASSERT(nparity != -1ULL);
680
cc99f275
DB
681 /*
682 * If creating a top-level vdev, check for allocation classes input
683 */
684 if (top_level && alloctype == VDEV_ALLOC_ADD) {
685 char *bias;
686
687 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
688 &bias) == 0) {
689 alloc_bias = vdev_derive_alloc_bias(bias);
690
691 /* spa_vdev_add() expects feature to be enabled */
692 if (spa->spa_load_state != SPA_LOAD_CREATE &&
693 !spa_feature_is_enabled(spa,
694 SPA_FEATURE_ALLOCATION_CLASSES)) {
695 return (SET_ERROR(ENOTSUP));
696 }
697 }
698 }
699
34dc7c2f 700 vd = vdev_alloc_common(spa, id, guid, ops);
a1d477c2 701 vic = &vd->vdev_indirect_config;
34dc7c2f
BB
702
703 vd->vdev_islog = islog;
704 vd->vdev_nparity = nparity;
cc99f275
DB
705 if (top_level && alloc_bias != VDEV_BIAS_NONE)
706 vd->vdev_alloc_bias = alloc_bias;
34dc7c2f
BB
707
708 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
709 vd->vdev_path = spa_strdup(vd->vdev_path);
4a283c7f
TH
710
711 /*
712 * ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a
713 * fault on a vdev and want it to persist across imports (like with
714 * zpool offline -f).
715 */
716 rc = nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &tmp);
717 if (rc == 0 && tmp != NULL && strcmp(tmp, "external") == 0) {
718 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
719 vd->vdev_faulted = 1;
720 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
721 }
722
34dc7c2f
BB
723 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
724 vd->vdev_devid = spa_strdup(vd->vdev_devid);
725 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
726 &vd->vdev_physpath) == 0)
727 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
1bbd8770
TH
728
729 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
730 &vd->vdev_enc_sysfs_path) == 0)
731 vd->vdev_enc_sysfs_path = spa_strdup(vd->vdev_enc_sysfs_path);
732
9babb374
BB
733 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
734 vd->vdev_fru = spa_strdup(vd->vdev_fru);
34dc7c2f
BB
735
736 /*
737 * Set the whole_disk property. If it's not specified, leave the value
738 * as -1.
739 */
740 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
741 &vd->vdev_wholedisk) != 0)
742 vd->vdev_wholedisk = -1ULL;
743
a1d477c2
MA
744 ASSERT0(vic->vic_mapping_object);
745 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
746 &vic->vic_mapping_object);
747 ASSERT0(vic->vic_births_object);
748 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
749 &vic->vic_births_object);
750 ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
751 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
752 &vic->vic_prev_indirect_vdev);
753
34dc7c2f
BB
754 /*
755 * Look for the 'not present' flag. This will only be set if the device
756 * was not present at the time of import.
757 */
9babb374
BB
758 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
759 &vd->vdev_not_present);
34dc7c2f
BB
760
761 /*
762 * Get the alignment requirement.
763 */
764 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
765
428870ff
BB
766 /*
767 * Retrieve the vdev creation time.
768 */
769 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
770 &vd->vdev_crtxg);
771
34dc7c2f
BB
772 /*
773 * If we're a top-level vdev, try to load the allocation parameters.
774 */
cc99f275 775 if (top_level &&
428870ff 776 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
34dc7c2f
BB
777 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
778 &vd->vdev_ms_array);
779 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
780 &vd->vdev_ms_shift);
781 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
782 &vd->vdev_asize);
428870ff
BB
783 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
784 &vd->vdev_removing);
e0ab3ab5
JS
785 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
786 &vd->vdev_top_zap);
787 } else {
788 ASSERT0(vd->vdev_top_zap);
428870ff
BB
789 }
790
cc99f275 791 if (top_level && alloctype != VDEV_ALLOC_ATTACH) {
428870ff
BB
792 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
793 alloctype == VDEV_ALLOC_ADD ||
794 alloctype == VDEV_ALLOC_SPLIT ||
795 alloctype == VDEV_ALLOC_ROOTPOOL);
cc99f275 796 /* Note: metaslab_group_create() is now deferred */
34dc7c2f
BB
797 }
798
e0ab3ab5
JS
799 if (vd->vdev_ops->vdev_op_leaf &&
800 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
801 (void) nvlist_lookup_uint64(nv,
802 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
803 } else {
804 ASSERT0(vd->vdev_leaf_zap);
805 }
806
34dc7c2f
BB
807 /*
808 * If we're a leaf vdev, try to load the DTL object and other state.
809 */
e0ab3ab5 810
b128c09f 811 if (vd->vdev_ops->vdev_op_leaf &&
9babb374
BB
812 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
813 alloctype == VDEV_ALLOC_ROOTPOOL)) {
b128c09f
BB
814 if (alloctype == VDEV_ALLOC_LOAD) {
815 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
93cf2076 816 &vd->vdev_dtl_object);
b128c09f
BB
817 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
818 &vd->vdev_unspare);
819 }
9babb374
BB
820
821 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
822 uint64_t spare = 0;
823
824 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
825 &spare) == 0 && spare)
826 spa_spare_add(vd);
827 }
828
34dc7c2f
BB
829 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
830 &vd->vdev_offline);
b128c09f 831
5d1f7fb6
GW
832 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
833 &vd->vdev_resilver_txg);
572e2857 834
80a91e74
TC
835 if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER))
836 vdev_set_deferred_resilver(spa, vd);
837
34dc7c2f 838 /*
4a283c7f
TH
839 * In general, when importing a pool we want to ignore the
840 * persistent fault state, as the diagnosis made on another
841 * system may not be valid in the current context. The only
842 * exception is if we forced a vdev to a persistently faulted
843 * state with 'zpool offline -f'. The persistent fault will
844 * remain across imports until cleared.
845 *
846 * Local vdevs will remain in the faulted state.
34dc7c2f 847 */
4a283c7f
TH
848 if (spa_load_state(spa) == SPA_LOAD_OPEN ||
849 spa_load_state(spa) == SPA_LOAD_IMPORT) {
34dc7c2f
BB
850 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
851 &vd->vdev_faulted);
852 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
853 &vd->vdev_degraded);
854 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
855 &vd->vdev_removed);
428870ff
BB
856
857 if (vd->vdev_faulted || vd->vdev_degraded) {
858 char *aux;
859
860 vd->vdev_label_aux =
861 VDEV_AUX_ERR_EXCEEDED;
862 if (nvlist_lookup_string(nv,
863 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
864 strcmp(aux, "external") == 0)
865 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
a0ad7ca5
TC
866 else
867 vd->vdev_faulted = 0ULL;
428870ff 868 }
34dc7c2f
BB
869 }
870 }
871
872 /*
873 * Add ourselves to the parent's list of children.
874 */
875 vdev_add_child(parent, vd);
876
877 *vdp = vd;
878
879 return (0);
880}
881
882void
883vdev_free(vdev_t *vd)
884{
34dc7c2f 885 spa_t *spa = vd->vdev_spa;
1b939560 886
619f0976 887 ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
1b939560
BB
888 ASSERT3P(vd->vdev_trim_thread, ==, NULL);
889 ASSERT3P(vd->vdev_autotrim_thread, ==, NULL);
34dc7c2f 890
d4a72f23
TC
891 /*
892 * Scan queues are normally destroyed at the end of a scan. If the
893 * queue exists here, that implies the vdev is being removed while
894 * the scan is still running.
895 */
896 if (vd->vdev_scan_io_queue != NULL) {
897 mutex_enter(&vd->vdev_scan_io_queue_lock);
898 dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue);
899 vd->vdev_scan_io_queue = NULL;
900 mutex_exit(&vd->vdev_scan_io_queue_lock);
901 }
902
34dc7c2f
BB
903 /*
904 * vdev_free() implies closing the vdev first. This is simpler than
905 * trying to ensure complicated semantics for all callers.
906 */
907 vdev_close(vd);
908
b128c09f 909 ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
428870ff 910 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
34dc7c2f
BB
911
912 /*
913 * Free all children.
914 */
1c27024e 915 for (int c = 0; c < vd->vdev_children; c++)
34dc7c2f
BB
916 vdev_free(vd->vdev_child[c]);
917
918 ASSERT(vd->vdev_child == NULL);
919 ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
920
921 /*
922 * Discard allocation state.
923 */
428870ff 924 if (vd->vdev_mg != NULL) {
34dc7c2f 925 vdev_metaslab_fini(vd);
428870ff 926 metaslab_group_destroy(vd->vdev_mg);
93e28d66 927 vd->vdev_mg = NULL;
428870ff 928 }
34dc7c2f 929
c99c9001
MS
930 ASSERT0(vd->vdev_stat.vs_space);
931 ASSERT0(vd->vdev_stat.vs_dspace);
932 ASSERT0(vd->vdev_stat.vs_alloc);
34dc7c2f
BB
933
934 /*
935 * Remove this vdev from its parent's child list.
936 */
937 vdev_remove_child(vd->vdev_parent, vd);
938
939 ASSERT(vd->vdev_parent == NULL);
3d31aad8 940 ASSERT(!list_link_active(&vd->vdev_leaf_node));
34dc7c2f
BB
941
942 /*
943 * Clean up vdev structure.
944 */
945 vdev_queue_fini(vd);
946 vdev_cache_fini(vd);
947
948 if (vd->vdev_path)
949 spa_strfree(vd->vdev_path);
950 if (vd->vdev_devid)
951 spa_strfree(vd->vdev_devid);
952 if (vd->vdev_physpath)
953 spa_strfree(vd->vdev_physpath);
1bbd8770
TH
954
955 if (vd->vdev_enc_sysfs_path)
956 spa_strfree(vd->vdev_enc_sysfs_path);
957
9babb374
BB
958 if (vd->vdev_fru)
959 spa_strfree(vd->vdev_fru);
34dc7c2f
BB
960
961 if (vd->vdev_isspare)
962 spa_spare_remove(vd);
963 if (vd->vdev_isl2cache)
964 spa_l2cache_remove(vd);
965
966 txg_list_destroy(&vd->vdev_ms_list);
967 txg_list_destroy(&vd->vdev_dtl_list);
fb5f0bc8 968
34dc7c2f 969 mutex_enter(&vd->vdev_dtl_lock);
93cf2076 970 space_map_close(vd->vdev_dtl_sm);
1c27024e 971 for (int t = 0; t < DTL_TYPES; t++) {
93cf2076
GW
972 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
973 range_tree_destroy(vd->vdev_dtl[t]);
fb5f0bc8 974 }
34dc7c2f 975 mutex_exit(&vd->vdev_dtl_lock);
fb5f0bc8 976
a1d477c2
MA
977 EQUIV(vd->vdev_indirect_births != NULL,
978 vd->vdev_indirect_mapping != NULL);
979 if (vd->vdev_indirect_births != NULL) {
980 vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
981 vdev_indirect_births_close(vd->vdev_indirect_births);
982 }
983
984 if (vd->vdev_obsolete_sm != NULL) {
985 ASSERT(vd->vdev_removing ||
986 vd->vdev_ops == &vdev_indirect_ops);
987 space_map_close(vd->vdev_obsolete_sm);
988 vd->vdev_obsolete_sm = NULL;
989 }
990 range_tree_destroy(vd->vdev_obsolete_segments);
991 rw_destroy(&vd->vdev_indirect_rwlock);
992 mutex_destroy(&vd->vdev_obsolete_lock);
993
34dc7c2f
BB
994 mutex_destroy(&vd->vdev_dtl_lock);
995 mutex_destroy(&vd->vdev_stat_lock);
b128c09f 996 mutex_destroy(&vd->vdev_probe_lock);
d4a72f23 997 mutex_destroy(&vd->vdev_scan_io_queue_lock);
619f0976
GW
998 mutex_destroy(&vd->vdev_initialize_lock);
999 mutex_destroy(&vd->vdev_initialize_io_lock);
1000 cv_destroy(&vd->vdev_initialize_io_cv);
1001 cv_destroy(&vd->vdev_initialize_cv);
1b939560
BB
1002 mutex_destroy(&vd->vdev_trim_lock);
1003 mutex_destroy(&vd->vdev_autotrim_lock);
1004 mutex_destroy(&vd->vdev_trim_io_lock);
1005 cv_destroy(&vd->vdev_trim_cv);
1006 cv_destroy(&vd->vdev_autotrim_cv);
1007 cv_destroy(&vd->vdev_trim_io_cv);
34dc7c2f 1008
c17486b2
GN
1009 zfs_ratelimit_fini(&vd->vdev_delay_rl);
1010 zfs_ratelimit_fini(&vd->vdev_checksum_rl);
1011
34dc7c2f
BB
1012 if (vd == spa->spa_root_vdev)
1013 spa->spa_root_vdev = NULL;
1014
1015 kmem_free(vd, sizeof (vdev_t));
1016}
1017
1018/*
1019 * Transfer top-level vdev state from svd to tvd.
1020 */
1021static void
1022vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
1023{
1024 spa_t *spa = svd->vdev_spa;
1025 metaslab_t *msp;
1026 vdev_t *vd;
1027 int t;
1028
1029 ASSERT(tvd == tvd->vdev_top);
1030
77943bc1 1031 tvd->vdev_pending_fastwrite = svd->vdev_pending_fastwrite;
34dc7c2f
BB
1032 tvd->vdev_ms_array = svd->vdev_ms_array;
1033 tvd->vdev_ms_shift = svd->vdev_ms_shift;
1034 tvd->vdev_ms_count = svd->vdev_ms_count;
e0ab3ab5 1035 tvd->vdev_top_zap = svd->vdev_top_zap;
34dc7c2f
BB
1036
1037 svd->vdev_ms_array = 0;
1038 svd->vdev_ms_shift = 0;
1039 svd->vdev_ms_count = 0;
e0ab3ab5 1040 svd->vdev_top_zap = 0;
34dc7c2f 1041
5ffb9d1d
GW
1042 if (tvd->vdev_mg)
1043 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
34dc7c2f
BB
1044 tvd->vdev_mg = svd->vdev_mg;
1045 tvd->vdev_ms = svd->vdev_ms;
1046
1047 svd->vdev_mg = NULL;
1048 svd->vdev_ms = NULL;
1049
1050 if (tvd->vdev_mg != NULL)
1051 tvd->vdev_mg->mg_vd = tvd;
1052
d2734cce
SD
1053 tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm;
1054 svd->vdev_checkpoint_sm = NULL;
1055
cc99f275
DB
1056 tvd->vdev_alloc_bias = svd->vdev_alloc_bias;
1057 svd->vdev_alloc_bias = VDEV_BIAS_NONE;
1058
34dc7c2f
BB
1059 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
1060 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
1061 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
1062
1063 svd->vdev_stat.vs_alloc = 0;
1064 svd->vdev_stat.vs_space = 0;
1065 svd->vdev_stat.vs_dspace = 0;
1066
9e052db4
MA
1067 /*
1068 * State which may be set on a top-level vdev that's in the
1069 * process of being removed.
1070 */
1071 ASSERT0(tvd->vdev_indirect_config.vic_births_object);
1072 ASSERT0(tvd->vdev_indirect_config.vic_mapping_object);
1073 ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL);
1074 ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL);
1075 ASSERT3P(tvd->vdev_indirect_births, ==, NULL);
1076 ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL);
1077 ASSERT0(tvd->vdev_removing);
1078 tvd->vdev_removing = svd->vdev_removing;
1079 tvd->vdev_indirect_config = svd->vdev_indirect_config;
1080 tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping;
1081 tvd->vdev_indirect_births = svd->vdev_indirect_births;
1082 range_tree_swap(&svd->vdev_obsolete_segments,
1083 &tvd->vdev_obsolete_segments);
1084 tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm;
1085 svd->vdev_indirect_config.vic_mapping_object = 0;
1086 svd->vdev_indirect_config.vic_births_object = 0;
1087 svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL;
1088 svd->vdev_indirect_mapping = NULL;
1089 svd->vdev_indirect_births = NULL;
1090 svd->vdev_obsolete_sm = NULL;
1091 svd->vdev_removing = 0;
1092
34dc7c2f
BB
1093 for (t = 0; t < TXG_SIZE; t++) {
1094 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
1095 (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
1096 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
1097 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
1098 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
1099 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
1100 }
1101
b128c09f 1102 if (list_link_active(&svd->vdev_config_dirty_node)) {
34dc7c2f
BB
1103 vdev_config_clean(svd);
1104 vdev_config_dirty(tvd);
1105 }
1106
b128c09f
BB
1107 if (list_link_active(&svd->vdev_state_dirty_node)) {
1108 vdev_state_clean(svd);
1109 vdev_state_dirty(tvd);
1110 }
1111
34dc7c2f
BB
1112 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
1113 svd->vdev_deflate_ratio = 0;
1114
1115 tvd->vdev_islog = svd->vdev_islog;
1116 svd->vdev_islog = 0;
d4a72f23
TC
1117
1118 dsl_scan_io_queue_vdev_xfer(svd, tvd);
34dc7c2f
BB
1119}
1120
1121static void
1122vdev_top_update(vdev_t *tvd, vdev_t *vd)
1123{
34dc7c2f
BB
1124 if (vd == NULL)
1125 return;
1126
1127 vd->vdev_top = tvd;
1128
1c27024e 1129 for (int c = 0; c < vd->vdev_children; c++)
34dc7c2f
BB
1130 vdev_top_update(tvd, vd->vdev_child[c]);
1131}
1132
1133/*
1134 * Add a mirror/replacing vdev above an existing vdev.
1135 */
1136vdev_t *
1137vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
1138{
1139 spa_t *spa = cvd->vdev_spa;
1140 vdev_t *pvd = cvd->vdev_parent;
1141 vdev_t *mvd;
1142
b128c09f 1143 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
34dc7c2f
BB
1144
1145 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
1146
1147 mvd->vdev_asize = cvd->vdev_asize;
9babb374 1148 mvd->vdev_min_asize = cvd->vdev_min_asize;
1bd201e7 1149 mvd->vdev_max_asize = cvd->vdev_max_asize;
a1d477c2 1150 mvd->vdev_psize = cvd->vdev_psize;
34dc7c2f
BB
1151 mvd->vdev_ashift = cvd->vdev_ashift;
1152 mvd->vdev_state = cvd->vdev_state;
428870ff 1153 mvd->vdev_crtxg = cvd->vdev_crtxg;
34dc7c2f
BB
1154
1155 vdev_remove_child(pvd, cvd);
1156 vdev_add_child(pvd, mvd);
1157 cvd->vdev_id = mvd->vdev_children;
1158 vdev_add_child(mvd, cvd);
1159 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1160
1161 if (mvd == mvd->vdev_top)
1162 vdev_top_transfer(cvd, mvd);
1163
1164 return (mvd);
1165}
1166
1167/*
1168 * Remove a 1-way mirror/replacing vdev from the tree.
1169 */
1170void
1171vdev_remove_parent(vdev_t *cvd)
1172{
1173 vdev_t *mvd = cvd->vdev_parent;
1174 vdev_t *pvd = mvd->vdev_parent;
1175
b128c09f 1176 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
34dc7c2f
BB
1177
1178 ASSERT(mvd->vdev_children == 1);
1179 ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
1180 mvd->vdev_ops == &vdev_replacing_ops ||
1181 mvd->vdev_ops == &vdev_spare_ops);
1182 cvd->vdev_ashift = mvd->vdev_ashift;
1183
1184 vdev_remove_child(mvd, cvd);
1185 vdev_remove_child(pvd, mvd);
fb5f0bc8 1186
34dc7c2f 1187 /*
b128c09f
BB
1188 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
1189 * Otherwise, we could have detached an offline device, and when we
1190 * go to import the pool we'll think we have two top-level vdevs,
1191 * instead of a different version of the same top-level vdev.
34dc7c2f 1192 */
fb5f0bc8
BB
1193 if (mvd->vdev_top == mvd) {
1194 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
428870ff 1195 cvd->vdev_orig_guid = cvd->vdev_guid;
fb5f0bc8
BB
1196 cvd->vdev_guid += guid_delta;
1197 cvd->vdev_guid_sum += guid_delta;
61e99a73
AB
1198
1199 /*
1200 * If pool not set for autoexpand, we need to also preserve
1201 * mvd's asize to prevent automatic expansion of cvd.
1202 * Otherwise if we are adjusting the mirror by attaching and
1203 * detaching children of non-uniform sizes, the mirror could
1204 * autoexpand, unexpectedly requiring larger devices to
1205 * re-establish the mirror.
1206 */
1207 if (!cvd->vdev_spa->spa_autoexpand)
1208 cvd->vdev_asize = mvd->vdev_asize;
fb5f0bc8 1209 }
b128c09f
BB
1210 cvd->vdev_id = mvd->vdev_id;
1211 vdev_add_child(pvd, cvd);
34dc7c2f
BB
1212 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1213
1214 if (cvd == cvd->vdev_top)
1215 vdev_top_transfer(mvd, cvd);
1216
1217 ASSERT(mvd->vdev_children == 0);
1218 vdev_free(mvd);
1219}
1220
cc99f275
DB
1221static void
1222vdev_metaslab_group_create(vdev_t *vd)
1223{
1224 spa_t *spa = vd->vdev_spa;
1225
1226 /*
1227 * metaslab_group_create was delayed until allocation bias was available
1228 */
1229 if (vd->vdev_mg == NULL) {
1230 metaslab_class_t *mc;
1231
1232 if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE)
1233 vd->vdev_alloc_bias = VDEV_BIAS_LOG;
1234
1235 ASSERT3U(vd->vdev_islog, ==,
1236 (vd->vdev_alloc_bias == VDEV_BIAS_LOG));
1237
1238 switch (vd->vdev_alloc_bias) {
1239 case VDEV_BIAS_LOG:
1240 mc = spa_log_class(spa);
1241 break;
1242 case VDEV_BIAS_SPECIAL:
1243 mc = spa_special_class(spa);
1244 break;
1245 case VDEV_BIAS_DEDUP:
1246 mc = spa_dedup_class(spa);
1247 break;
1248 default:
1249 mc = spa_normal_class(spa);
1250 }
1251
1252 vd->vdev_mg = metaslab_group_create(mc, vd,
1253 spa->spa_alloc_count);
1254
1255 /*
1256 * The spa ashift values currently only reflect the
1257 * general vdev classes. Class destination is late
1258 * binding so ashift checking had to wait until now
1259 */
1260 if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1261 mc == spa_normal_class(spa) && vd->vdev_aux == NULL) {
1262 if (vd->vdev_ashift > spa->spa_max_ashift)
1263 spa->spa_max_ashift = vd->vdev_ashift;
1264 if (vd->vdev_ashift < spa->spa_min_ashift)
1265 spa->spa_min_ashift = vd->vdev_ashift;
1266 }
1267 }
1268}
1269
34dc7c2f
BB
1270int
1271vdev_metaslab_init(vdev_t *vd, uint64_t txg)
1272{
1273 spa_t *spa = vd->vdev_spa;
1274 objset_t *mos = spa->spa_meta_objset;
34dc7c2f
BB
1275 uint64_t m;
1276 uint64_t oldc = vd->vdev_ms_count;
1277 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
1278 metaslab_t **mspp;
1279 int error;
cc99f275 1280 boolean_t expanding = (oldc != 0);
34dc7c2f 1281
428870ff
BB
1282 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1283
1284 /*
1285 * This vdev is not being allocated from yet or is a hole.
1286 */
1287 if (vd->vdev_ms_shift == 0)
34dc7c2f
BB
1288 return (0);
1289
428870ff
BB
1290 ASSERT(!vd->vdev_ishole);
1291
34dc7c2f
BB
1292 ASSERT(oldc <= newc);
1293
bffb68a2 1294 mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
34dc7c2f 1295
cc99f275 1296 if (expanding) {
34dc7c2f 1297 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
bffb68a2 1298 vmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
34dc7c2f
BB
1299 }
1300
1301 vd->vdev_ms = mspp;
1302 vd->vdev_ms_count = newc;
34dc7c2f 1303 for (m = oldc; m < newc; m++) {
93cf2076
GW
1304 uint64_t object = 0;
1305
a1d477c2
MA
1306 /*
1307 * vdev_ms_array may be 0 if we are creating the "fake"
1308 * metaslabs for an indirect vdev for zdb's leak detection.
1309 * See zdb_leak_init().
1310 */
1311 if (txg == 0 && vd->vdev_ms_array != 0) {
34dc7c2f 1312 error = dmu_read(mos, vd->vdev_ms_array,
9babb374
BB
1313 m * sizeof (uint64_t), sizeof (uint64_t), &object,
1314 DMU_READ_PREFETCH);
4a0ee12a
PZ
1315 if (error != 0) {
1316 vdev_dbgmsg(vd, "unable to read the metaslab "
1317 "array [error=%d]", error);
34dc7c2f 1318 return (error);
4a0ee12a 1319 }
34dc7c2f 1320 }
fb42a493 1321
cc99f275
DB
1322#ifndef _KERNEL
1323 /*
e1cfd73f 1324 * To accommodate zdb_leak_init() fake indirect
cc99f275
DB
1325 * metaslabs, we allocate a metaslab group for
1326 * indirect vdevs which normally don't have one.
1327 */
1328 if (vd->vdev_mg == NULL) {
1329 ASSERT0(vdev_is_concrete(vd));
1330 vdev_metaslab_group_create(vd);
1331 }
1332#endif
fb42a493
PS
1333 error = metaslab_init(vd->vdev_mg, m, object, txg,
1334 &(vd->vdev_ms[m]));
4a0ee12a
PZ
1335 if (error != 0) {
1336 vdev_dbgmsg(vd, "metaslab_init failed [error=%d]",
1337 error);
fb42a493 1338 return (error);
4a0ee12a 1339 }
34dc7c2f
BB
1340 }
1341
428870ff
BB
1342 if (txg == 0)
1343 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
1344
1345 /*
1346 * If the vdev is being removed we don't activate
1347 * the metaslabs since we want to ensure that no new
1348 * allocations are performed on this device.
1349 */
cc99f275 1350 if (!expanding && !vd->vdev_removing) {
428870ff 1351 metaslab_group_activate(vd->vdev_mg);
cc99f275 1352 }
428870ff
BB
1353
1354 if (txg == 0)
1355 spa_config_exit(spa, SCL_ALLOC, FTAG);
1356
93e28d66
SD
1357 /*
1358 * Regardless whether this vdev was just added or it is being
1359 * expanded, the metaslab count has changed. Recalculate the
1360 * block limit.
1361 */
1362 spa_log_sm_set_blocklimit(spa);
1363
34dc7c2f
BB
1364 return (0);
1365}
1366
1367void
1368vdev_metaslab_fini(vdev_t *vd)
1369{
d2734cce
SD
1370 if (vd->vdev_checkpoint_sm != NULL) {
1371 ASSERT(spa_feature_is_active(vd->vdev_spa,
1372 SPA_FEATURE_POOL_CHECKPOINT));
1373 space_map_close(vd->vdev_checkpoint_sm);
1374 /*
1375 * Even though we close the space map, we need to set its
1376 * pointer to NULL. The reason is that vdev_metaslab_fini()
1377 * may be called multiple times for certain operations
1378 * (i.e. when destroying a pool) so we need to ensure that
1379 * this clause never executes twice. This logic is similar
1380 * to the one used for the vdev_ms clause below.
1381 */
1382 vd->vdev_checkpoint_sm = NULL;
1383 }
1384
34dc7c2f 1385 if (vd->vdev_ms != NULL) {
928e8ad4
SD
1386 metaslab_group_t *mg = vd->vdev_mg;
1387 metaslab_group_passivate(mg);
a1d477c2 1388
928e8ad4 1389 uint64_t count = vd->vdev_ms_count;
a1d477c2 1390 for (uint64_t m = 0; m < count; m++) {
93cf2076 1391 metaslab_t *msp = vd->vdev_ms[m];
93cf2076
GW
1392 if (msp != NULL)
1393 metaslab_fini(msp);
1394 }
bffb68a2 1395 vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
34dc7c2f 1396 vd->vdev_ms = NULL;
920dd524 1397
a1d477c2 1398 vd->vdev_ms_count = 0;
928e8ad4
SD
1399
1400 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
1401 ASSERT0(mg->mg_histogram[i]);
a1d477c2
MA
1402 }
1403 ASSERT0(vd->vdev_ms_count);
920dd524 1404 ASSERT3U(vd->vdev_pending_fastwrite, ==, 0);
34dc7c2f
BB
1405}
1406
b128c09f
BB
1407typedef struct vdev_probe_stats {
1408 boolean_t vps_readable;
1409 boolean_t vps_writeable;
1410 int vps_flags;
b128c09f
BB
1411} vdev_probe_stats_t;
1412
1413static void
1414vdev_probe_done(zio_t *zio)
34dc7c2f 1415{
fb5f0bc8 1416 spa_t *spa = zio->io_spa;
d164b209 1417 vdev_t *vd = zio->io_vd;
b128c09f 1418 vdev_probe_stats_t *vps = zio->io_private;
d164b209
BB
1419
1420 ASSERT(vd->vdev_probe_zio != NULL);
b128c09f
BB
1421
1422 if (zio->io_type == ZIO_TYPE_READ) {
b128c09f
BB
1423 if (zio->io_error == 0)
1424 vps->vps_readable = 1;
fb5f0bc8 1425 if (zio->io_error == 0 && spa_writeable(spa)) {
d164b209 1426 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
a6255b7f 1427 zio->io_offset, zio->io_size, zio->io_abd,
b128c09f
BB
1428 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1429 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1430 } else {
a6255b7f 1431 abd_free(zio->io_abd);
b128c09f
BB
1432 }
1433 } else if (zio->io_type == ZIO_TYPE_WRITE) {
b128c09f
BB
1434 if (zio->io_error == 0)
1435 vps->vps_writeable = 1;
a6255b7f 1436 abd_free(zio->io_abd);
b128c09f 1437 } else if (zio->io_type == ZIO_TYPE_NULL) {
d164b209 1438 zio_t *pio;
3dfb57a3 1439 zio_link_t *zl;
b128c09f
BB
1440
1441 vd->vdev_cant_read |= !vps->vps_readable;
1442 vd->vdev_cant_write |= !vps->vps_writeable;
1443
1444 if (vdev_readable(vd) &&
fb5f0bc8 1445 (vdev_writeable(vd) || !spa_writeable(spa))) {
b128c09f
BB
1446 zio->io_error = 0;
1447 } else {
1448 ASSERT(zio->io_error != 0);
4a0ee12a 1449 vdev_dbgmsg(vd, "failed probe");
b128c09f 1450 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
b5256303 1451 spa, vd, NULL, NULL, 0, 0);
2e528b49 1452 zio->io_error = SET_ERROR(ENXIO);
b128c09f 1453 }
d164b209
BB
1454
1455 mutex_enter(&vd->vdev_probe_lock);
1456 ASSERT(vd->vdev_probe_zio == zio);
1457 vd->vdev_probe_zio = NULL;
1458 mutex_exit(&vd->vdev_probe_lock);
1459
3dfb57a3
DB
1460 zl = NULL;
1461 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
d164b209 1462 if (!vdev_accessible(vd, pio))
2e528b49 1463 pio->io_error = SET_ERROR(ENXIO);
d164b209 1464
b128c09f
BB
1465 kmem_free(vps, sizeof (*vps));
1466 }
1467}
34dc7c2f 1468
b128c09f 1469/*
d3cc8b15
WA
1470 * Determine whether this device is accessible.
1471 *
1472 * Read and write to several known locations: the pad regions of each
1473 * vdev label but the first, which we leave alone in case it contains
1474 * a VTOC.
b128c09f
BB
1475 */
1476zio_t *
d164b209 1477vdev_probe(vdev_t *vd, zio_t *zio)
b128c09f
BB
1478{
1479 spa_t *spa = vd->vdev_spa;
d164b209
BB
1480 vdev_probe_stats_t *vps = NULL;
1481 zio_t *pio;
1482
1483 ASSERT(vd->vdev_ops->vdev_op_leaf);
34dc7c2f 1484
d164b209
BB
1485 /*
1486 * Don't probe the probe.
1487 */
1488 if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1489 return (NULL);
b128c09f 1490
d164b209
BB
1491 /*
1492 * To prevent 'probe storms' when a device fails, we create
1493 * just one probe i/o at a time. All zios that want to probe
1494 * this vdev will become parents of the probe io.
1495 */
1496 mutex_enter(&vd->vdev_probe_lock);
b128c09f 1497
d164b209 1498 if ((pio = vd->vdev_probe_zio) == NULL) {
79c76d5b 1499 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
d164b209
BB
1500
1501 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1502 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
9babb374 1503 ZIO_FLAG_TRYHARD;
d164b209
BB
1504
1505 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1506 /*
1507 * vdev_cant_read and vdev_cant_write can only
1508 * transition from TRUE to FALSE when we have the
1509 * SCL_ZIO lock as writer; otherwise they can only
1510 * transition from FALSE to TRUE. This ensures that
1511 * any zio looking at these values can assume that
1512 * failures persist for the life of the I/O. That's
1513 * important because when a device has intermittent
1514 * connectivity problems, we want to ensure that
1515 * they're ascribed to the device (ENXIO) and not
1516 * the zio (EIO).
1517 *
1518 * Since we hold SCL_ZIO as writer here, clear both
1519 * values so the probe can reevaluate from first
1520 * principles.
1521 */
1522 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1523 vd->vdev_cant_read = B_FALSE;
1524 vd->vdev_cant_write = B_FALSE;
1525 }
1526
1527 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1528 vdev_probe_done, vps,
1529 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1530
428870ff
BB
1531 /*
1532 * We can't change the vdev state in this context, so we
1533 * kick off an async task to do it on our behalf.
1534 */
d164b209
BB
1535 if (zio != NULL) {
1536 vd->vdev_probe_wanted = B_TRUE;
1537 spa_async_request(spa, SPA_ASYNC_PROBE);
1538 }
b128c09f
BB
1539 }
1540
d164b209
BB
1541 if (zio != NULL)
1542 zio_add_child(zio, pio);
b128c09f 1543
d164b209 1544 mutex_exit(&vd->vdev_probe_lock);
b128c09f 1545
d164b209
BB
1546 if (vps == NULL) {
1547 ASSERT(zio != NULL);
1548 return (NULL);
1549 }
b128c09f 1550
1c27024e 1551 for (int l = 1; l < VDEV_LABELS; l++) {
d164b209 1552 zio_nowait(zio_read_phys(pio, vd,
b128c09f 1553 vdev_label_offset(vd->vdev_psize, l,
a6255b7f
DQ
1554 offsetof(vdev_label_t, vl_pad2)), VDEV_PAD_SIZE,
1555 abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
b128c09f
BB
1556 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1557 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1558 }
1559
d164b209
BB
1560 if (zio == NULL)
1561 return (pio);
1562
1563 zio_nowait(pio);
1564 return (NULL);
34dc7c2f
BB
1565}
1566
45d1cae3
BB
1567static void
1568vdev_open_child(void *arg)
1569{
1570 vdev_t *vd = arg;
1571
1572 vd->vdev_open_thread = curthread;
1573 vd->vdev_open_error = vdev_open(vd);
1574 vd->vdev_open_thread = NULL;
1575}
1576
6c285672 1577static boolean_t
428870ff
BB
1578vdev_uses_zvols(vdev_t *vd)
1579{
6c285672
JL
1580#ifdef _KERNEL
1581 if (zvol_is_zvol(vd->vdev_path))
428870ff 1582 return (B_TRUE);
6c285672
JL
1583#endif
1584
1c27024e 1585 for (int c = 0; c < vd->vdev_children; c++)
428870ff
BB
1586 if (vdev_uses_zvols(vd->vdev_child[c]))
1587 return (B_TRUE);
6c285672 1588
428870ff
BB
1589 return (B_FALSE);
1590}
1591
45d1cae3
BB
1592void
1593vdev_open_children(vdev_t *vd)
1594{
1595 taskq_t *tq;
1596 int children = vd->vdev_children;
1597
428870ff
BB
1598 /*
1599 * in order to handle pools on top of zvols, do the opens
1600 * in a single thread so that the same thread holds the
1601 * spa_namespace_lock
1602 */
1603 if (vdev_uses_zvols(vd)) {
13d9a004 1604retry_sync:
1c27024e 1605 for (int c = 0; c < children; c++)
428870ff
BB
1606 vd->vdev_child[c]->vdev_open_error =
1607 vdev_open(vd->vdev_child[c]);
4770aa06
HJ
1608 } else {
1609 tq = taskq_create("vdev_open", children, minclsyspri,
1610 children, children, TASKQ_PREPOPULATE);
13d9a004
BB
1611 if (tq == NULL)
1612 goto retry_sync;
45d1cae3 1613
1c27024e 1614 for (int c = 0; c < children; c++)
4770aa06 1615 VERIFY(taskq_dispatch(tq, vdev_open_child,
48d3eb40 1616 vd->vdev_child[c], TQ_SLEEP) != TASKQID_INVALID);
45d1cae3 1617
4770aa06
HJ
1618 taskq_destroy(tq);
1619 }
1620
1621 vd->vdev_nonrot = B_TRUE;
fb40095f 1622
1c27024e 1623 for (int c = 0; c < children; c++)
fb40095f 1624 vd->vdev_nonrot &= vd->vdev_child[c]->vdev_nonrot;
45d1cae3
BB
1625}
1626
a1d477c2
MA
1627/*
1628 * Compute the raidz-deflation ratio. Note, we hard-code
1629 * in 128k (1 << 17) because it is the "typical" blocksize.
1630 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
1631 * otherwise it would inconsistently account for existing bp's.
1632 */
1633static void
1634vdev_set_deflate_ratio(vdev_t *vd)
1635{
1636 if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
1637 vd->vdev_deflate_ratio = (1 << 17) /
1638 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
1639 }
1640}
1641
34dc7c2f
BB
1642/*
1643 * Prepare a virtual device for access.
1644 */
1645int
1646vdev_open(vdev_t *vd)
1647{
fb5f0bc8 1648 spa_t *spa = vd->vdev_spa;
34dc7c2f 1649 int error;
34dc7c2f 1650 uint64_t osize = 0;
1bd201e7
CS
1651 uint64_t max_osize = 0;
1652 uint64_t asize, max_asize, psize;
34dc7c2f
BB
1653 uint64_t ashift = 0;
1654
45d1cae3
BB
1655 ASSERT(vd->vdev_open_thread == curthread ||
1656 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
34dc7c2f
BB
1657 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1658 vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1659 vd->vdev_state == VDEV_STATE_OFFLINE);
1660
34dc7c2f 1661 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
9babb374
BB
1662 vd->vdev_cant_read = B_FALSE;
1663 vd->vdev_cant_write = B_FALSE;
1664 vd->vdev_min_asize = vdev_get_min_asize(vd);
34dc7c2f 1665
428870ff
BB
1666 /*
1667 * If this vdev is not removed, check its fault status. If it's
1668 * faulted, bail out of the open.
1669 */
34dc7c2f
BB
1670 if (!vd->vdev_removed && vd->vdev_faulted) {
1671 ASSERT(vd->vdev_children == 0);
428870ff
BB
1672 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1673 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
34dc7c2f 1674 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
428870ff 1675 vd->vdev_label_aux);
2e528b49 1676 return (SET_ERROR(ENXIO));
34dc7c2f
BB
1677 } else if (vd->vdev_offline) {
1678 ASSERT(vd->vdev_children == 0);
1679 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
2e528b49 1680 return (SET_ERROR(ENXIO));
34dc7c2f
BB
1681 }
1682
1bd201e7 1683 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
34dc7c2f 1684
0c637f31 1685 /*
1686 * Physical volume size should never be larger than its max size, unless
1687 * the disk has shrunk while we were reading it or the device is buggy
1688 * or damaged: either way it's not safe for use, bail out of the open.
1689 */
1690 if (osize > max_osize) {
1691 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1692 VDEV_AUX_OPEN_FAILED);
1693 return (SET_ERROR(ENXIO));
1694 }
1695
428870ff
BB
1696 /*
1697 * Reset the vdev_reopening flag so that we actually close
1698 * the vdev on error.
1699 */
1700 vd->vdev_reopening = B_FALSE;
34dc7c2f 1701 if (zio_injection_enabled && error == 0)
9babb374 1702 error = zio_handle_device_injection(vd, NULL, ENXIO);
34dc7c2f
BB
1703
1704 if (error) {
1705 if (vd->vdev_removed &&
1706 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1707 vd->vdev_removed = B_FALSE;
1708
6cb8e530
PZ
1709 if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) {
1710 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE,
1711 vd->vdev_stat.vs_aux);
1712 } else {
1713 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1714 vd->vdev_stat.vs_aux);
1715 }
34dc7c2f
BB
1716 return (error);
1717 }
1718
1719 vd->vdev_removed = B_FALSE;
1720
428870ff
BB
1721 /*
1722 * Recheck the faulted flag now that we have confirmed that
1723 * the vdev is accessible. If we're faulted, bail.
1724 */
1725 if (vd->vdev_faulted) {
1726 ASSERT(vd->vdev_children == 0);
1727 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1728 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1729 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1730 vd->vdev_label_aux);
2e528b49 1731 return (SET_ERROR(ENXIO));
428870ff
BB
1732 }
1733
34dc7c2f
BB
1734 if (vd->vdev_degraded) {
1735 ASSERT(vd->vdev_children == 0);
1736 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1737 VDEV_AUX_ERR_EXCEEDED);
1738 } else {
428870ff 1739 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
34dc7c2f
BB
1740 }
1741
428870ff
BB
1742 /*
1743 * For hole or missing vdevs we just return success.
1744 */
1745 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1746 return (0);
1747
1c27024e 1748 for (int c = 0; c < vd->vdev_children; c++) {
34dc7c2f
BB
1749 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1750 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1751 VDEV_AUX_NONE);
1752 break;
1753 }
9babb374 1754 }
34dc7c2f
BB
1755
1756 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1bd201e7 1757 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
34dc7c2f
BB
1758
1759 if (vd->vdev_children == 0) {
1760 if (osize < SPA_MINDEVSIZE) {
1761 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1762 VDEV_AUX_TOO_SMALL);
2e528b49 1763 return (SET_ERROR(EOVERFLOW));
34dc7c2f
BB
1764 }
1765 psize = osize;
1766 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1bd201e7
CS
1767 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1768 VDEV_LABEL_END_SIZE);
34dc7c2f
BB
1769 } else {
1770 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1771 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1772 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1773 VDEV_AUX_TOO_SMALL);
2e528b49 1774 return (SET_ERROR(EOVERFLOW));
34dc7c2f
BB
1775 }
1776 psize = 0;
1777 asize = osize;
1bd201e7 1778 max_asize = max_osize;
34dc7c2f
BB
1779 }
1780
9d3f7b87
OF
1781 /*
1782 * If the vdev was expanded, record this so that we can re-create the
1783 * uberblock rings in labels {2,3}, during the next sync.
1784 */
1785 if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0))
1786 vd->vdev_copy_uberblocks = B_TRUE;
1787
34dc7c2f
BB
1788 vd->vdev_psize = psize;
1789
9babb374 1790 /*
2e215fec 1791 * Make sure the allocatable size hasn't shrunk too much.
9babb374
BB
1792 */
1793 if (asize < vd->vdev_min_asize) {
1794 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1795 VDEV_AUX_BAD_LABEL);
2e528b49 1796 return (SET_ERROR(EINVAL));
9babb374
BB
1797 }
1798
34dc7c2f
BB
1799 if (vd->vdev_asize == 0) {
1800 /*
1801 * This is the first-ever open, so use the computed values.
b28e57cb 1802 * For compatibility, a different ashift can be requested.
34dc7c2f
BB
1803 */
1804 vd->vdev_asize = asize;
1bd201e7 1805 vd->vdev_max_asize = max_asize;
ff61d1a4 1806 if (vd->vdev_ashift == 0) {
1807 vd->vdev_ashift = ashift; /* use detected value */
1808 }
1809 if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN ||
1810 vd->vdev_ashift > ASHIFT_MAX)) {
1811 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1812 VDEV_AUX_BAD_ASHIFT);
1813 return (SET_ERROR(EDOM));
1814 }
34dc7c2f
BB
1815 } else {
1816 /*
32a9872b
GW
1817 * Detect if the alignment requirement has increased.
1818 * We don't want to make the pool unavailable, just
1819 * post an event instead.
34dc7c2f 1820 */
32a9872b
GW
1821 if (ashift > vd->vdev_top->vdev_ashift &&
1822 vd->vdev_ops->vdev_op_leaf) {
1823 zfs_ereport_post(FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
b5256303 1824 spa, vd, NULL, NULL, 0, 0);
34dc7c2f 1825 }
32a9872b 1826
1bd201e7 1827 vd->vdev_max_asize = max_asize;
9babb374 1828 }
34dc7c2f 1829
9babb374 1830 /*
2e215fec
SH
1831 * If all children are healthy we update asize if either:
1832 * The asize has increased, due to a device expansion caused by dynamic
1833 * LUN growth or vdev replacement, and automatic expansion is enabled;
1834 * making the additional space available.
1835 *
1836 * The asize has decreased, due to a device shrink usually caused by a
1837 * vdev replace with a smaller device. This ensures that calculations
1838 * based of max_asize and asize e.g. esize are always valid. It's safe
1839 * to do this as we've already validated that asize is greater than
1840 * vdev_min_asize.
9babb374 1841 */
2e215fec
SH
1842 if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1843 ((asize > vd->vdev_asize &&
1844 (vd->vdev_expanding || spa->spa_autoexpand)) ||
1845 (asize < vd->vdev_asize)))
9babb374 1846 vd->vdev_asize = asize;
34dc7c2f 1847
9babb374 1848 vdev_set_min_asize(vd);
34dc7c2f
BB
1849
1850 /*
1851 * Ensure we can issue some IO before declaring the
1852 * vdev open for business.
1853 */
b128c09f
BB
1854 if (vd->vdev_ops->vdev_op_leaf &&
1855 (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
428870ff
BB
1856 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1857 VDEV_AUX_ERR_EXCEEDED);
34dc7c2f
BB
1858 return (error);
1859 }
1860
c3520e7f
MA
1861 /*
1862 * Track the min and max ashift values for normal data devices.
1863 */
1864 if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
cc99f275 1865 vd->vdev_alloc_bias == VDEV_BIAS_NONE &&
1e724f4f 1866 vd->vdev_islog == 0 && vd->vdev_aux == NULL) {
c3520e7f
MA
1867 if (vd->vdev_ashift > spa->spa_max_ashift)
1868 spa->spa_max_ashift = vd->vdev_ashift;
1869 if (vd->vdev_ashift < spa->spa_min_ashift)
1870 spa->spa_min_ashift = vd->vdev_ashift;
1871 }
1872
34dc7c2f 1873 /*
b128c09f 1874 * If a leaf vdev has a DTL, and seems healthy, then kick off a
fb5f0bc8
BB
1875 * resilver. But don't do this if we are doing a reopen for a scrub,
1876 * since this would just restart the scrub we are already doing.
34dc7c2f 1877 */
fb5f0bc8 1878 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
80a91e74
TC
1879 vdev_resilver_needed(vd, NULL, NULL)) {
1880 if (dsl_scan_resilvering(spa->spa_dsl_pool) &&
1881 spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
1882 vdev_set_deferred_resilver(spa, vd);
1883 else
1884 spa_async_request(spa, SPA_ASYNC_RESILVER);
1885 }
34dc7c2f
BB
1886
1887 return (0);
1888}
1889
1890/*
1891 * Called once the vdevs are all opened, this routine validates the label
6cb8e530 1892 * contents. This needs to be done before vdev_load() so that we don't
34dc7c2f
BB
1893 * inadvertently do repair I/Os to the wrong device.
1894 *
1895 * This function will only return failure if one of the vdevs indicates that it
1896 * has since been destroyed or exported. This is only possible if
1897 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
1898 * will be updated but the function will return 0.
1899 */
1900int
6cb8e530 1901vdev_validate(vdev_t *vd)
34dc7c2f
BB
1902{
1903 spa_t *spa = vd->vdev_spa;
34dc7c2f 1904 nvlist_t *label;
6cb8e530 1905 uint64_t guid = 0, aux_guid = 0, top_guid;
34dc7c2f 1906 uint64_t state;
6cb8e530
PZ
1907 nvlist_t *nvl;
1908 uint64_t txg;
34dc7c2f 1909
6cb8e530
PZ
1910 if (vdev_validate_skip)
1911 return (0);
1912
1913 for (uint64_t c = 0; c < vd->vdev_children; c++)
1914 if (vdev_validate(vd->vdev_child[c]) != 0)
2e528b49 1915 return (SET_ERROR(EBADF));
34dc7c2f
BB
1916
1917 /*
1918 * If the device has already failed, or was marked offline, don't do
1919 * any further validation. Otherwise, label I/O will fail and we will
1920 * overwrite the previous state.
1921 */
6cb8e530
PZ
1922 if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd))
1923 return (0);
34dc7c2f 1924
6cb8e530
PZ
1925 /*
1926 * If we are performing an extreme rewind, we allow for a label that
1927 * was modified at a point after the current txg.
a11c7aae
PZ
1928 * If config lock is not held do not check for the txg. spa_sync could
1929 * be updating the vdev's label before updating spa_last_synced_txg.
6cb8e530 1930 */
a11c7aae
PZ
1931 if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 ||
1932 spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG)
6cb8e530
PZ
1933 txg = UINT64_MAX;
1934 else
1935 txg = spa_last_synced_txg(spa);
34dc7c2f 1936
6cb8e530
PZ
1937 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1938 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1939 VDEV_AUX_BAD_LABEL);
38a19edd
PZ
1940 vdev_dbgmsg(vd, "vdev_validate: failed reading config for "
1941 "txg %llu", (u_longlong_t)txg);
6cb8e530
PZ
1942 return (0);
1943 }
428870ff 1944
6cb8e530
PZ
1945 /*
1946 * Determine if this vdev has been split off into another
1947 * pool. If so, then refuse to open it.
1948 */
1949 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1950 &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1951 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1952 VDEV_AUX_SPLIT_POOL);
1953 nvlist_free(label);
1954 vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool");
1955 return (0);
1956 }
34dc7c2f 1957
6cb8e530
PZ
1958 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) {
1959 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1960 VDEV_AUX_CORRUPT_DATA);
1961 nvlist_free(label);
1962 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1963 ZPOOL_CONFIG_POOL_GUID);
1964 return (0);
1965 }
428870ff 1966
6cb8e530
PZ
1967 /*
1968 * If config is not trusted then ignore the spa guid check. This is
1969 * necessary because if the machine crashed during a re-guid the new
1970 * guid might have been written to all of the vdev labels, but not the
1971 * cached config. The check will be performed again once we have the
1972 * trusted config from the MOS.
1973 */
1974 if (spa->spa_trust_config && guid != spa_guid(spa)) {
1975 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1976 VDEV_AUX_CORRUPT_DATA);
1977 nvlist_free(label);
1978 vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't "
1979 "match config (%llu != %llu)", (u_longlong_t)guid,
1980 (u_longlong_t)spa_guid(spa));
1981 return (0);
1982 }
1983
1984 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1985 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1986 &aux_guid) != 0)
1987 aux_guid = 0;
1988
1989 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) {
1990 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1991 VDEV_AUX_CORRUPT_DATA);
1992 nvlist_free(label);
1993 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1994 ZPOOL_CONFIG_GUID);
1995 return (0);
1996 }
1997
1998 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid)
1999 != 0) {
2000 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2001 VDEV_AUX_CORRUPT_DATA);
2002 nvlist_free(label);
2003 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2004 ZPOOL_CONFIG_TOP_GUID);
2005 return (0);
2006 }
2007
2008 /*
2009 * If this vdev just became a top-level vdev because its sibling was
2010 * detached, it will have adopted the parent's vdev guid -- but the
2011 * label may or may not be on disk yet. Fortunately, either version
2012 * of the label will have the same top guid, so if we're a top-level
2013 * vdev, we can safely compare to that instead.
2014 * However, if the config comes from a cachefile that failed to update
2015 * after the detach, a top-level vdev will appear as a non top-level
2016 * vdev in the config. Also relax the constraints if we perform an
2017 * extreme rewind.
2018 *
2019 * If we split this vdev off instead, then we also check the
2020 * original pool's guid. We don't want to consider the vdev
2021 * corrupt if it is partway through a split operation.
2022 */
2023 if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) {
2024 boolean_t mismatch = B_FALSE;
2025 if (spa->spa_trust_config && !spa->spa_extreme_rewind) {
2026 if (vd != vd->vdev_top || vd->vdev_guid != top_guid)
2027 mismatch = B_TRUE;
2028 } else {
2029 if (vd->vdev_guid != top_guid &&
2030 vd->vdev_top->vdev_guid != guid)
2031 mismatch = B_TRUE;
34dc7c2f
BB
2032 }
2033
6cb8e530 2034 if (mismatch) {
34dc7c2f
BB
2035 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2036 VDEV_AUX_CORRUPT_DATA);
2037 nvlist_free(label);
6cb8e530
PZ
2038 vdev_dbgmsg(vd, "vdev_validate: config guid "
2039 "doesn't match label guid");
2040 vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu",
2041 (u_longlong_t)vd->vdev_guid,
2042 (u_longlong_t)vd->vdev_top->vdev_guid);
2043 vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, "
2044 "aux_guid %llu", (u_longlong_t)guid,
2045 (u_longlong_t)top_guid, (u_longlong_t)aux_guid);
34dc7c2f
BB
2046 return (0);
2047 }
6cb8e530 2048 }
34dc7c2f 2049
6cb8e530
PZ
2050 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
2051 &state) != 0) {
2052 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2053 VDEV_AUX_CORRUPT_DATA);
34dc7c2f 2054 nvlist_free(label);
6cb8e530
PZ
2055 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2056 ZPOOL_CONFIG_POOL_STATE);
2057 return (0);
2058 }
34dc7c2f 2059
6cb8e530
PZ
2060 nvlist_free(label);
2061
2062 /*
2063 * If this is a verbatim import, no need to check the
2064 * state of the pool.
2065 */
2066 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
2067 spa_load_state(spa) == SPA_LOAD_OPEN &&
2068 state != POOL_STATE_ACTIVE) {
2069 vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) "
2070 "for spa %s", (u_longlong_t)state, spa->spa_name);
2071 return (SET_ERROR(EBADF));
2072 }
2073
2074 /*
2075 * If we were able to open and validate a vdev that was
2076 * previously marked permanently unavailable, clear that state
2077 * now.
2078 */
2079 if (vd->vdev_not_present)
2080 vd->vdev_not_present = 0;
2081
2082 return (0);
2083}
2084
2085static void
2086vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd)
2087{
2088 if (svd->vdev_path != NULL && dvd->vdev_path != NULL) {
2089 if (strcmp(svd->vdev_path, dvd->vdev_path) != 0) {
2090 zfs_dbgmsg("vdev_copy_path: vdev %llu: path changed "
2091 "from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
2092 dvd->vdev_path, svd->vdev_path);
2093 spa_strfree(dvd->vdev_path);
2094 dvd->vdev_path = spa_strdup(svd->vdev_path);
4a0ee12a 2095 }
6cb8e530
PZ
2096 } else if (svd->vdev_path != NULL) {
2097 dvd->vdev_path = spa_strdup(svd->vdev_path);
2098 zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'",
2099 (u_longlong_t)dvd->vdev_guid, dvd->vdev_path);
2100 }
2101}
34dc7c2f 2102
6cb8e530
PZ
2103/*
2104 * Recursively copy vdev paths from one vdev to another. Source and destination
2105 * vdev trees must have same geometry otherwise return error. Intended to copy
2106 * paths from userland config into MOS config.
2107 */
2108int
2109vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd)
2110{
2111 if ((svd->vdev_ops == &vdev_missing_ops) ||
2112 (svd->vdev_ishole && dvd->vdev_ishole) ||
2113 (dvd->vdev_ops == &vdev_indirect_ops))
2114 return (0);
2115
2116 if (svd->vdev_ops != dvd->vdev_ops) {
2117 vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s",
2118 svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type);
2119 return (SET_ERROR(EINVAL));
2120 }
2121
2122 if (svd->vdev_guid != dvd->vdev_guid) {
2123 vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != "
2124 "%llu)", (u_longlong_t)svd->vdev_guid,
2125 (u_longlong_t)dvd->vdev_guid);
2126 return (SET_ERROR(EINVAL));
b128c09f 2127 }
34dc7c2f 2128
6cb8e530
PZ
2129 if (svd->vdev_children != dvd->vdev_children) {
2130 vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: "
2131 "%llu != %llu", (u_longlong_t)svd->vdev_children,
2132 (u_longlong_t)dvd->vdev_children);
2133 return (SET_ERROR(EINVAL));
2134 }
2135
2136 for (uint64_t i = 0; i < svd->vdev_children; i++) {
2137 int error = vdev_copy_path_strict(svd->vdev_child[i],
2138 dvd->vdev_child[i]);
2139 if (error != 0)
2140 return (error);
2141 }
2142
2143 if (svd->vdev_ops->vdev_op_leaf)
2144 vdev_copy_path_impl(svd, dvd);
2145
34dc7c2f
BB
2146 return (0);
2147}
2148
6cb8e530
PZ
2149static void
2150vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd)
2151{
2152 ASSERT(stvd->vdev_top == stvd);
2153 ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id);
2154
2155 for (uint64_t i = 0; i < dvd->vdev_children; i++) {
2156 vdev_copy_path_search(stvd, dvd->vdev_child[i]);
2157 }
2158
2159 if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd))
2160 return;
2161
2162 /*
2163 * The idea here is that while a vdev can shift positions within
2164 * a top vdev (when replacing, attaching mirror, etc.) it cannot
2165 * step outside of it.
2166 */
2167 vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid);
2168
2169 if (vd == NULL || vd->vdev_ops != dvd->vdev_ops)
2170 return;
2171
2172 ASSERT(vd->vdev_ops->vdev_op_leaf);
2173
2174 vdev_copy_path_impl(vd, dvd);
2175}
2176
2177/*
2178 * Recursively copy vdev paths from one root vdev to another. Source and
2179 * destination vdev trees may differ in geometry. For each destination leaf
2180 * vdev, search a vdev with the same guid and top vdev id in the source.
2181 * Intended to copy paths from userland config into MOS config.
2182 */
2183void
2184vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd)
2185{
2186 uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children);
2187 ASSERT(srvd->vdev_ops == &vdev_root_ops);
2188 ASSERT(drvd->vdev_ops == &vdev_root_ops);
2189
2190 for (uint64_t i = 0; i < children; i++) {
2191 vdev_copy_path_search(srvd->vdev_child[i],
2192 drvd->vdev_child[i]);
2193 }
2194}
2195
34dc7c2f
BB
2196/*
2197 * Close a virtual device.
2198 */
2199void
2200vdev_close(vdev_t *vd)
2201{
428870ff 2202 vdev_t *pvd = vd->vdev_parent;
1fde1e37 2203 ASSERTV(spa_t *spa = vd->vdev_spa);
fb5f0bc8
BB
2204
2205 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2206
428870ff
BB
2207 /*
2208 * If our parent is reopening, then we are as well, unless we are
2209 * going offline.
2210 */
2211 if (pvd != NULL && pvd->vdev_reopening)
2212 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
2213
34dc7c2f
BB
2214 vd->vdev_ops->vdev_op_close(vd);
2215
2216 vdev_cache_purge(vd);
2217
2218 /*
9babb374 2219 * We record the previous state before we close it, so that if we are
34dc7c2f
BB
2220 * doing a reopen(), we don't generate FMA ereports if we notice that
2221 * it's still faulted.
2222 */
2223 vd->vdev_prevstate = vd->vdev_state;
2224
2225 if (vd->vdev_offline)
2226 vd->vdev_state = VDEV_STATE_OFFLINE;
2227 else
2228 vd->vdev_state = VDEV_STATE_CLOSED;
2229 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2230}
2231
428870ff
BB
2232void
2233vdev_hold(vdev_t *vd)
2234{
2235 spa_t *spa = vd->vdev_spa;
2236
2237 ASSERT(spa_is_root(spa));
2238 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
2239 return;
2240
1c27024e 2241 for (int c = 0; c < vd->vdev_children; c++)
428870ff
BB
2242 vdev_hold(vd->vdev_child[c]);
2243
2244 if (vd->vdev_ops->vdev_op_leaf)
2245 vd->vdev_ops->vdev_op_hold(vd);
2246}
2247
2248void
2249vdev_rele(vdev_t *vd)
2250{
d6320ddb 2251 ASSERT(spa_is_root(vd->vdev_spa));
1c27024e 2252 for (int c = 0; c < vd->vdev_children; c++)
428870ff
BB
2253 vdev_rele(vd->vdev_child[c]);
2254
2255 if (vd->vdev_ops->vdev_op_leaf)
2256 vd->vdev_ops->vdev_op_rele(vd);
2257}
2258
2259/*
2260 * Reopen all interior vdevs and any unopened leaves. We don't actually
2261 * reopen leaf vdevs which had previously been opened as they might deadlock
2262 * on the spa_config_lock. Instead we only obtain the leaf's physical size.
2263 * If the leaf has never been opened then open it, as usual.
2264 */
34dc7c2f
BB
2265void
2266vdev_reopen(vdev_t *vd)
2267{
2268 spa_t *spa = vd->vdev_spa;
2269
b128c09f 2270 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
34dc7c2f 2271
428870ff
BB
2272 /* set the reopening flag unless we're taking the vdev offline */
2273 vd->vdev_reopening = !vd->vdev_offline;
34dc7c2f
BB
2274 vdev_close(vd);
2275 (void) vdev_open(vd);
2276
2277 /*
2278 * Call vdev_validate() here to make sure we have the same device.
2279 * Otherwise, a device with an invalid label could be successfully
2280 * opened in response to vdev_reopen().
2281 */
b128c09f
BB
2282 if (vd->vdev_aux) {
2283 (void) vdev_validate_aux(vd);
2284 if (vdev_readable(vd) && vdev_writeable(vd) &&
9babb374
BB
2285 vd->vdev_aux == &spa->spa_l2cache &&
2286 !l2arc_vdev_present(vd))
2287 l2arc_add_vdev(spa, vd);
b128c09f 2288 } else {
6cb8e530 2289 (void) vdev_validate(vd);
b128c09f 2290 }
34dc7c2f
BB
2291
2292 /*
2293 * Reassess parent vdev's health.
2294 */
2295 vdev_propagate_state(vd);
2296}
2297
2298int
2299vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
2300{
2301 int error;
2302
2303 /*
2304 * Normally, partial opens (e.g. of a mirror) are allowed.
2305 * For a create, however, we want to fail the request if
2306 * there are any components we can't open.
2307 */
2308 error = vdev_open(vd);
2309
2310 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
2311 vdev_close(vd);
2312 return (error ? error : ENXIO);
2313 }
2314
2315 /*
93cf2076 2316 * Recursively load DTLs and initialize all labels.
34dc7c2f 2317 */
93cf2076
GW
2318 if ((error = vdev_dtl_load(vd)) != 0 ||
2319 (error = vdev_label_init(vd, txg, isreplacing ?
34dc7c2f
BB
2320 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
2321 vdev_close(vd);
2322 return (error);
2323 }
2324
2325 return (0);
2326}
2327
34dc7c2f 2328void
9babb374 2329vdev_metaslab_set_size(vdev_t *vd)
34dc7c2f 2330{
d2734cce 2331 uint64_t asize = vd->vdev_asize;
c853f382 2332 uint64_t ms_count = asize >> zfs_vdev_default_ms_shift;
e4e94ca3 2333 uint64_t ms_shift;
d2734cce 2334
34dc7c2f 2335 /*
e4e94ca3
DB
2336 * There are two dimensions to the metaslab sizing calculation:
2337 * the size of the metaslab and the count of metaslabs per vdev.
e4e94ca3 2338 *
c853f382
SD
2339 * The default values used below are a good balance between memory
2340 * usage (larger metaslab size means more memory needed for loaded
2341 * metaslabs; more metaslabs means more memory needed for the
2342 * metaslab_t structs), metaslab load time (larger metaslabs take
2343 * longer to load), and metaslab sync time (more metaslabs means
2344 * more time spent syncing all of them).
2345 *
2346 * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs.
2347 * The range of the dimensions are as follows:
2348 *
2349 * 2^29 <= ms_size <= 2^34
e4e94ca3
DB
2350 * 16 <= ms_count <= 131,072
2351 *
2352 * On the lower end of vdev sizes, we aim for metaslabs sizes of
2353 * at least 512MB (2^29) to minimize fragmentation effects when
2354 * testing with smaller devices. However, the count constraint
2355 * of at least 16 metaslabs will override this minimum size goal.
2356 *
2357 * On the upper end of vdev sizes, we aim for a maximum metaslab
c853f382
SD
2358 * size of 16GB. However, we will cap the total count to 2^17
2359 * metaslabs to keep our memory footprint in check and let the
2360 * metaslab size grow from there if that limit is hit.
e4e94ca3
DB
2361 *
2362 * The net effect of applying above constrains is summarized below.
2363 *
c853f382
SD
2364 * vdev size metaslab count
2365 * --------------|-----------------
2366 * < 8GB ~16
2367 * 8GB - 100GB one per 512MB
2368 * 100GB - 3TB ~200
2369 * 3TB - 2PB one per 16GB
2370 * > 2PB ~131,072
2371 * --------------------------------
2372 *
2373 * Finally, note that all of the above calculate the initial
2374 * number of metaslabs. Expanding a top-level vdev will result
2375 * in additional metaslabs being allocated making it possible
2376 * to exceed the zfs_vdev_ms_count_limit.
34dc7c2f 2377 */
d2734cce 2378
c853f382
SD
2379 if (ms_count < zfs_vdev_min_ms_count)
2380 ms_shift = highbit64(asize / zfs_vdev_min_ms_count);
2381 else if (ms_count > zfs_vdev_default_ms_count)
2382 ms_shift = highbit64(asize / zfs_vdev_default_ms_count);
e4e94ca3 2383 else
c853f382 2384 ms_shift = zfs_vdev_default_ms_shift;
e4e94ca3
DB
2385
2386 if (ms_shift < SPA_MAXBLOCKSHIFT) {
2387 ms_shift = SPA_MAXBLOCKSHIFT;
c853f382
SD
2388 } else if (ms_shift > zfs_vdev_max_ms_shift) {
2389 ms_shift = zfs_vdev_max_ms_shift;
e4e94ca3 2390 /* cap the total count to constrain memory footprint */
c853f382
SD
2391 if ((asize >> ms_shift) > zfs_vdev_ms_count_limit)
2392 ms_shift = highbit64(asize / zfs_vdev_ms_count_limit);
d2734cce
SD
2393 }
2394
2395 vd->vdev_ms_shift = ms_shift;
2396 ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT);
34dc7c2f
BB
2397}
2398
2399void
2400vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
2401{
2402 ASSERT(vd == vd->vdev_top);
a1d477c2
MA
2403 /* indirect vdevs don't have metaslabs or dtls */
2404 ASSERT(vdev_is_concrete(vd) || flags == 0);
34dc7c2f 2405 ASSERT(ISP2(flags));
572e2857 2406 ASSERT(spa_writeable(vd->vdev_spa));
34dc7c2f
BB
2407
2408 if (flags & VDD_METASLAB)
2409 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
2410
2411 if (flags & VDD_DTL)
2412 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
2413
2414 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
2415}
2416
93cf2076
GW
2417void
2418vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
2419{
1c27024e 2420 for (int c = 0; c < vd->vdev_children; c++)
93cf2076
GW
2421 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
2422
2423 if (vd->vdev_ops->vdev_op_leaf)
2424 vdev_dirty(vd->vdev_top, flags, vd, txg);
2425}
2426
fb5f0bc8
BB
2427/*
2428 * DTLs.
2429 *
2430 * A vdev's DTL (dirty time log) is the set of transaction groups for which
428870ff 2431 * the vdev has less than perfect replication. There are four kinds of DTL:
fb5f0bc8
BB
2432 *
2433 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
2434 *
2435 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
2436 *
2437 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
2438 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
2439 * txgs that was scrubbed.
2440 *
2441 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
2442 * persistent errors or just some device being offline.
2443 * Unlike the other three, the DTL_OUTAGE map is not generally
2444 * maintained; it's only computed when needed, typically to
2445 * determine whether a device can be detached.
2446 *
2447 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
2448 * either has the data or it doesn't.
2449 *
2450 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
2451 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
2452 * if any child is less than fully replicated, then so is its parent.
2453 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
2454 * comprising only those txgs which appear in 'maxfaults' or more children;
2455 * those are the txgs we don't have enough replication to read. For example,
2456 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
2457 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
2458 * two child DTL_MISSING maps.
2459 *
2460 * It should be clear from the above that to compute the DTLs and outage maps
2461 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
2462 * Therefore, that is all we keep on disk. When loading the pool, or after
2463 * a configuration change, we generate all other DTLs from first principles.
2464 */
34dc7c2f 2465void
fb5f0bc8 2466vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
34dc7c2f 2467{
93cf2076 2468 range_tree_t *rt = vd->vdev_dtl[t];
fb5f0bc8
BB
2469
2470 ASSERT(t < DTL_TYPES);
2471 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
572e2857 2472 ASSERT(spa_writeable(vd->vdev_spa));
fb5f0bc8 2473
a1d477c2 2474 mutex_enter(&vd->vdev_dtl_lock);
93cf2076
GW
2475 if (!range_tree_contains(rt, txg, size))
2476 range_tree_add(rt, txg, size);
a1d477c2 2477 mutex_exit(&vd->vdev_dtl_lock);
34dc7c2f
BB
2478}
2479
fb5f0bc8
BB
2480boolean_t
2481vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
34dc7c2f 2482{
93cf2076 2483 range_tree_t *rt = vd->vdev_dtl[t];
fb5f0bc8 2484 boolean_t dirty = B_FALSE;
34dc7c2f 2485
fb5f0bc8
BB
2486 ASSERT(t < DTL_TYPES);
2487 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
34dc7c2f 2488
a1d477c2
MA
2489 /*
2490 * While we are loading the pool, the DTLs have not been loaded yet.
2491 * Ignore the DTLs and try all devices. This avoids a recursive
2492 * mutex enter on the vdev_dtl_lock, and also makes us try hard
2493 * when loading the pool (relying on the checksum to ensure that
2494 * we get the right data -- note that we while loading, we are
2495 * only reading the MOS, which is always checksummed).
2496 */
2497 if (vd->vdev_spa->spa_load_state != SPA_LOAD_NONE)
2498 return (B_FALSE);
2499
2500 mutex_enter(&vd->vdev_dtl_lock);
d2734cce 2501 if (!range_tree_is_empty(rt))
93cf2076 2502 dirty = range_tree_contains(rt, txg, size);
a1d477c2 2503 mutex_exit(&vd->vdev_dtl_lock);
34dc7c2f
BB
2504
2505 return (dirty);
2506}
2507
fb5f0bc8
BB
2508boolean_t
2509vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
2510{
93cf2076 2511 range_tree_t *rt = vd->vdev_dtl[t];
fb5f0bc8
BB
2512 boolean_t empty;
2513
a1d477c2 2514 mutex_enter(&vd->vdev_dtl_lock);
d2734cce 2515 empty = range_tree_is_empty(rt);
a1d477c2 2516 mutex_exit(&vd->vdev_dtl_lock);
fb5f0bc8
BB
2517
2518 return (empty);
2519}
2520
3d6da72d
IH
2521/*
2522 * Returns B_TRUE if vdev determines offset needs to be resilvered.
2523 */
2524boolean_t
2525vdev_dtl_need_resilver(vdev_t *vd, uint64_t offset, size_t psize)
2526{
2527 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2528
2529 if (vd->vdev_ops->vdev_op_need_resilver == NULL ||
2530 vd->vdev_ops->vdev_op_leaf)
2531 return (B_TRUE);
2532
2533 return (vd->vdev_ops->vdev_op_need_resilver(vd, offset, psize));
2534}
2535
5d1f7fb6
GW
2536/*
2537 * Returns the lowest txg in the DTL range.
2538 */
2539static uint64_t
2540vdev_dtl_min(vdev_t *vd)
2541{
93cf2076 2542 range_seg_t *rs;
5d1f7fb6
GW
2543
2544 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
93cf2076 2545 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
5d1f7fb6
GW
2546 ASSERT0(vd->vdev_children);
2547
93cf2076
GW
2548 rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
2549 return (rs->rs_start - 1);
5d1f7fb6
GW
2550}
2551
2552/*
2553 * Returns the highest txg in the DTL.
2554 */
2555static uint64_t
2556vdev_dtl_max(vdev_t *vd)
2557{
93cf2076 2558 range_seg_t *rs;
5d1f7fb6
GW
2559
2560 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
93cf2076 2561 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
5d1f7fb6
GW
2562 ASSERT0(vd->vdev_children);
2563
93cf2076
GW
2564 rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
2565 return (rs->rs_end);
5d1f7fb6
GW
2566}
2567
2568/*
2569 * Determine if a resilvering vdev should remove any DTL entries from
2570 * its range. If the vdev was resilvering for the entire duration of the
2571 * scan then it should excise that range from its DTLs. Otherwise, this
2572 * vdev is considered partially resilvered and should leave its DTL
2573 * entries intact. The comment in vdev_dtl_reassess() describes how we
2574 * excise the DTLs.
2575 */
2576static boolean_t
2577vdev_dtl_should_excise(vdev_t *vd)
2578{
2579 spa_t *spa = vd->vdev_spa;
2580 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2581
2582 ASSERT0(scn->scn_phys.scn_errors);
2583 ASSERT0(vd->vdev_children);
2584
335b251a
MA
2585 if (vd->vdev_state < VDEV_STATE_DEGRADED)
2586 return (B_FALSE);
2587
80a91e74
TC
2588 if (vd->vdev_resilver_deferred)
2589 return (B_FALSE);
2590
5d1f7fb6 2591 if (vd->vdev_resilver_txg == 0 ||
d2734cce 2592 range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]))
5d1f7fb6
GW
2593 return (B_TRUE);
2594
2595 /*
2596 * When a resilver is initiated the scan will assign the scn_max_txg
2597 * value to the highest txg value that exists in all DTLs. If this
2598 * device's max DTL is not part of this scan (i.e. it is not in
2599 * the range (scn_min_txg, scn_max_txg] then it is not eligible
2600 * for excision.
2601 */
2602 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
2603 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
2604 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
2605 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
2606 return (B_TRUE);
2607 }
2608 return (B_FALSE);
2609}
2610
34dc7c2f 2611/*
fde25c0a
TC
2612 * Reassess DTLs after a config change or scrub completion. If txg == 0 no
2613 * write operations will be issued to the pool.
34dc7c2f
BB
2614 */
2615void
2616vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
2617{
2618 spa_t *spa = vd->vdev_spa;
fb5f0bc8 2619 avl_tree_t reftree;
1c27024e 2620 int minref;
34dc7c2f 2621
fb5f0bc8 2622 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
34dc7c2f 2623
1c27024e 2624 for (int c = 0; c < vd->vdev_children; c++)
fb5f0bc8
BB
2625 vdev_dtl_reassess(vd->vdev_child[c], txg,
2626 scrub_txg, scrub_done);
2627
a1d477c2 2628 if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
fb5f0bc8
BB
2629 return;
2630
2631 if (vd->vdev_ops->vdev_op_leaf) {
428870ff
BB
2632 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2633
34dc7c2f 2634 mutex_enter(&vd->vdev_dtl_lock);
5d1f7fb6 2635
02638a30
TC
2636 /*
2637 * If requested, pretend the scan completed cleanly.
2638 */
2639 if (zfs_scan_ignore_errors && scn)
2640 scn->scn_phys.scn_errors = 0;
2641
5d1f7fb6
GW
2642 /*
2643 * If we've completed a scan cleanly then determine
2644 * if this vdev should remove any DTLs. We only want to
2645 * excise regions on vdevs that were available during
2646 * the entire duration of this scan.
2647 */
b128c09f 2648 if (scrub_txg != 0 &&
428870ff 2649 (spa->spa_scrub_started ||
5d1f7fb6
GW
2650 (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
2651 vdev_dtl_should_excise(vd)) {
b128c09f
BB
2652 /*
2653 * We completed a scrub up to scrub_txg. If we
2654 * did it without rebooting, then the scrub dtl
2655 * will be valid, so excise the old region and
2656 * fold in the scrub dtl. Otherwise, leave the
2657 * dtl as-is if there was an error.
fb5f0bc8
BB
2658 *
2659 * There's little trick here: to excise the beginning
2660 * of the DTL_MISSING map, we put it into a reference
2661 * tree and then add a segment with refcnt -1 that
2662 * covers the range [0, scrub_txg). This means
2663 * that each txg in that range has refcnt -1 or 0.
2664 * We then add DTL_SCRUB with a refcnt of 2, so that
2665 * entries in the range [0, scrub_txg) will have a
2666 * positive refcnt -- either 1 or 2. We then convert
2667 * the reference tree into the new DTL_MISSING map.
b128c09f 2668 */
93cf2076
GW
2669 space_reftree_create(&reftree);
2670 space_reftree_add_map(&reftree,
2671 vd->vdev_dtl[DTL_MISSING], 1);
2672 space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
2673 space_reftree_add_map(&reftree,
2674 vd->vdev_dtl[DTL_SCRUB], 2);
2675 space_reftree_generate_map(&reftree,
2676 vd->vdev_dtl[DTL_MISSING], 1);
2677 space_reftree_destroy(&reftree);
34dc7c2f 2678 }
93cf2076
GW
2679 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
2680 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2681 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
34dc7c2f 2682 if (scrub_done)
93cf2076
GW
2683 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
2684 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
fb5f0bc8 2685 if (!vdev_readable(vd))
93cf2076 2686 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
fb5f0bc8 2687 else
93cf2076
GW
2688 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2689 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
5d1f7fb6
GW
2690
2691 /*
2692 * If the vdev was resilvering and no longer has any
d14fa5db 2693 * DTLs then reset its resilvering flag and dirty
2694 * the top level so that we persist the change.
5d1f7fb6 2695 */
fde25c0a 2696 if (txg != 0 && vd->vdev_resilver_txg != 0 &&
d2734cce
SD
2697 range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
2698 range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) {
5d1f7fb6 2699 vd->vdev_resilver_txg = 0;
d14fa5db 2700 vdev_config_dirty(vd->vdev_top);
2701 }
5d1f7fb6 2702
34dc7c2f 2703 mutex_exit(&vd->vdev_dtl_lock);
b128c09f 2704
34dc7c2f
BB
2705 if (txg != 0)
2706 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
2707 return;
2708 }
2709
34dc7c2f 2710 mutex_enter(&vd->vdev_dtl_lock);
1c27024e 2711 for (int t = 0; t < DTL_TYPES; t++) {
428870ff
BB
2712 /* account for child's outage in parent's missing map */
2713 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
fb5f0bc8
BB
2714 if (t == DTL_SCRUB)
2715 continue; /* leaf vdevs only */
2716 if (t == DTL_PARTIAL)
2717 minref = 1; /* i.e. non-zero */
2718 else if (vd->vdev_nparity != 0)
2719 minref = vd->vdev_nparity + 1; /* RAID-Z */
2720 else
2721 minref = vd->vdev_children; /* any kind of mirror */
93cf2076 2722 space_reftree_create(&reftree);
1c27024e 2723 for (int c = 0; c < vd->vdev_children; c++) {
fb5f0bc8
BB
2724 vdev_t *cvd = vd->vdev_child[c];
2725 mutex_enter(&cvd->vdev_dtl_lock);
93cf2076 2726 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
fb5f0bc8
BB
2727 mutex_exit(&cvd->vdev_dtl_lock);
2728 }
93cf2076
GW
2729 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
2730 space_reftree_destroy(&reftree);
34dc7c2f 2731 }
fb5f0bc8 2732 mutex_exit(&vd->vdev_dtl_lock);
34dc7c2f
BB
2733}
2734
93cf2076 2735int
34dc7c2f
BB
2736vdev_dtl_load(vdev_t *vd)
2737{
2738 spa_t *spa = vd->vdev_spa;
34dc7c2f 2739 objset_t *mos = spa->spa_meta_objset;
93cf2076 2740 int error = 0;
34dc7c2f 2741
93cf2076 2742 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
a1d477c2 2743 ASSERT(vdev_is_concrete(vd));
34dc7c2f 2744
93cf2076 2745 error = space_map_open(&vd->vdev_dtl_sm, mos,
a1d477c2 2746 vd->vdev_dtl_object, 0, -1ULL, 0);
93cf2076
GW
2747 if (error)
2748 return (error);
2749 ASSERT(vd->vdev_dtl_sm != NULL);
34dc7c2f 2750
93cf2076 2751 mutex_enter(&vd->vdev_dtl_lock);
93cf2076
GW
2752 error = space_map_load(vd->vdev_dtl_sm,
2753 vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
2754 mutex_exit(&vd->vdev_dtl_lock);
34dc7c2f 2755
93cf2076
GW
2756 return (error);
2757 }
2758
1c27024e 2759 for (int c = 0; c < vd->vdev_children; c++) {
93cf2076
GW
2760 error = vdev_dtl_load(vd->vdev_child[c]);
2761 if (error != 0)
2762 break;
2763 }
34dc7c2f
BB
2764
2765 return (error);
2766}
2767
cc99f275
DB
2768static void
2769vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx)
2770{
2771 spa_t *spa = vd->vdev_spa;
2772 objset_t *mos = spa->spa_meta_objset;
2773 vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias;
2774 const char *string;
2775
2776 ASSERT(alloc_bias != VDEV_BIAS_NONE);
2777
2778 string =
2779 (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG :
2780 (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL :
2781 (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL;
2782
2783 ASSERT(string != NULL);
2784 VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS,
2785 1, strlen(string) + 1, string, tx));
2786
2787 if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) {
2788 spa_activate_allocation_classes(spa, tx);
2789 }
2790}
2791
e0ab3ab5
JS
2792void
2793vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
2794{
2795 spa_t *spa = vd->vdev_spa;
2796
2797 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
2798 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2799 zapobj, tx));
2800}
2801
2802uint64_t
2803vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
2804{
2805 spa_t *spa = vd->vdev_spa;
2806 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
2807 DMU_OT_NONE, 0, tx);
2808
2809 ASSERT(zap != 0);
2810 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2811 zap, tx));
2812
2813 return (zap);
2814}
2815
2816void
2817vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
2818{
e0ab3ab5
JS
2819 if (vd->vdev_ops != &vdev_hole_ops &&
2820 vd->vdev_ops != &vdev_missing_ops &&
2821 vd->vdev_ops != &vdev_root_ops &&
2822 !vd->vdev_top->vdev_removing) {
2823 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
2824 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
2825 }
2826 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
2827 vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
cc99f275
DB
2828 if (vd->vdev_alloc_bias != VDEV_BIAS_NONE)
2829 vdev_zap_allocation_data(vd, tx);
e0ab3ab5
JS
2830 }
2831 }
cc99f275 2832
1c27024e 2833 for (uint64_t i = 0; i < vd->vdev_children; i++) {
e0ab3ab5
JS
2834 vdev_construct_zaps(vd->vdev_child[i], tx);
2835 }
2836}
2837
34dc7c2f
BB
2838void
2839vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2840{
2841 spa_t *spa = vd->vdev_spa;
93cf2076 2842 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
34dc7c2f 2843 objset_t *mos = spa->spa_meta_objset;
93cf2076 2844 range_tree_t *rtsync;
34dc7c2f 2845 dmu_tx_t *tx;
93cf2076 2846 uint64_t object = space_map_object(vd->vdev_dtl_sm);
34dc7c2f 2847
a1d477c2 2848 ASSERT(vdev_is_concrete(vd));
93cf2076 2849 ASSERT(vd->vdev_ops->vdev_op_leaf);
428870ff 2850
34dc7c2f
BB
2851 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2852
93cf2076
GW
2853 if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2854 mutex_enter(&vd->vdev_dtl_lock);
2855 space_map_free(vd->vdev_dtl_sm, tx);
2856 space_map_close(vd->vdev_dtl_sm);
2857 vd->vdev_dtl_sm = NULL;
2858 mutex_exit(&vd->vdev_dtl_lock);
e0ab3ab5
JS
2859
2860 /*
2861 * We only destroy the leaf ZAP for detached leaves or for
2862 * removed log devices. Removed data devices handle leaf ZAP
2863 * cleanup later, once cancellation is no longer possible.
2864 */
2865 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
2866 vd->vdev_top->vdev_islog)) {
2867 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
2868 vd->vdev_leaf_zap = 0;
2869 }
2870
34dc7c2f 2871 dmu_tx_commit(tx);
34dc7c2f
BB
2872 return;
2873 }
2874
93cf2076
GW
2875 if (vd->vdev_dtl_sm == NULL) {
2876 uint64_t new_object;
2877
93e28d66 2878 new_object = space_map_alloc(mos, zfs_vdev_dtl_sm_blksz, tx);
93cf2076
GW
2879 VERIFY3U(new_object, !=, 0);
2880
2881 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
a1d477c2 2882 0, -1ULL, 0));
93cf2076 2883 ASSERT(vd->vdev_dtl_sm != NULL);
34dc7c2f
BB
2884 }
2885
a1d477c2 2886 rtsync = range_tree_create(NULL, NULL);
34dc7c2f
BB
2887
2888 mutex_enter(&vd->vdev_dtl_lock);
93cf2076 2889 range_tree_walk(rt, range_tree_add, rtsync);
34dc7c2f
BB
2890 mutex_exit(&vd->vdev_dtl_lock);
2891
93e28d66 2892 space_map_truncate(vd->vdev_dtl_sm, zfs_vdev_dtl_sm_blksz, tx);
4d044c4c 2893 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx);
93cf2076 2894 range_tree_vacate(rtsync, NULL, NULL);
34dc7c2f 2895
93cf2076 2896 range_tree_destroy(rtsync);
34dc7c2f 2897
93cf2076
GW
2898 /*
2899 * If the object for the space map has changed then dirty
2900 * the top level so that we update the config.
2901 */
2902 if (object != space_map_object(vd->vdev_dtl_sm)) {
4a0ee12a
PZ
2903 vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, "
2904 "new object %llu", (u_longlong_t)txg, spa_name(spa),
2905 (u_longlong_t)object,
2906 (u_longlong_t)space_map_object(vd->vdev_dtl_sm));
93cf2076
GW
2907 vdev_config_dirty(vd->vdev_top);
2908 }
34dc7c2f
BB
2909
2910 dmu_tx_commit(tx);
2911}
2912
fb5f0bc8
BB
2913/*
2914 * Determine whether the specified vdev can be offlined/detached/removed
2915 * without losing data.
2916 */
2917boolean_t
2918vdev_dtl_required(vdev_t *vd)
2919{
2920 spa_t *spa = vd->vdev_spa;
2921 vdev_t *tvd = vd->vdev_top;
2922 uint8_t cant_read = vd->vdev_cant_read;
2923 boolean_t required;
2924
2925 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2926
2927 if (vd == spa->spa_root_vdev || vd == tvd)
2928 return (B_TRUE);
2929
2930 /*
2931 * Temporarily mark the device as unreadable, and then determine
2932 * whether this results in any DTL outages in the top-level vdev.
2933 * If not, we can safely offline/detach/remove the device.
2934 */
2935 vd->vdev_cant_read = B_TRUE;
2936 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2937 required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2938 vd->vdev_cant_read = cant_read;
2939 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2940
572e2857
BB
2941 if (!required && zio_injection_enabled)
2942 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2943
fb5f0bc8
BB
2944 return (required);
2945}
2946
b128c09f
BB
2947/*
2948 * Determine if resilver is needed, and if so the txg range.
2949 */
2950boolean_t
2951vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2952{
2953 boolean_t needed = B_FALSE;
2954 uint64_t thismin = UINT64_MAX;
2955 uint64_t thismax = 0;
2956
2957 if (vd->vdev_children == 0) {
2958 mutex_enter(&vd->vdev_dtl_lock);
d2734cce 2959 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
fb5f0bc8 2960 vdev_writeable(vd)) {
b128c09f 2961
5d1f7fb6
GW
2962 thismin = vdev_dtl_min(vd);
2963 thismax = vdev_dtl_max(vd);
b128c09f
BB
2964 needed = B_TRUE;
2965 }
2966 mutex_exit(&vd->vdev_dtl_lock);
2967 } else {
1c27024e 2968 for (int c = 0; c < vd->vdev_children; c++) {
b128c09f
BB
2969 vdev_t *cvd = vd->vdev_child[c];
2970 uint64_t cmin, cmax;
2971
2972 if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2973 thismin = MIN(thismin, cmin);
2974 thismax = MAX(thismax, cmax);
2975 needed = B_TRUE;
2976 }
2977 }
2978 }
2979
2980 if (needed && minp) {
2981 *minp = thismin;
2982 *maxp = thismax;
2983 }
2984 return (needed);
2985}
2986
d2734cce 2987/*
27f80e85
BB
2988 * Gets the checkpoint space map object from the vdev's ZAP. On success sm_obj
2989 * will contain either the checkpoint spacemap object or zero if none exists.
2990 * All other errors are returned to the caller.
d2734cce
SD
2991 */
2992int
27f80e85 2993vdev_checkpoint_sm_object(vdev_t *vd, uint64_t *sm_obj)
d2734cce
SD
2994{
2995 ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
27f80e85 2996
d2734cce 2997 if (vd->vdev_top_zap == 0) {
27f80e85 2998 *sm_obj = 0;
d2734cce
SD
2999 return (0);
3000 }
3001
27f80e85
BB
3002 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap,
3003 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, sm_obj);
3004 if (error == ENOENT) {
3005 *sm_obj = 0;
3006 error = 0;
3007 }
d2734cce 3008
27f80e85 3009 return (error);
d2734cce
SD
3010}
3011
a1d477c2 3012int
34dc7c2f
BB
3013vdev_load(vdev_t *vd)
3014{
a1d477c2
MA
3015 int error = 0;
3016
34dc7c2f
BB
3017 /*
3018 * Recursively load all children.
3019 */
a1d477c2
MA
3020 for (int c = 0; c < vd->vdev_children; c++) {
3021 error = vdev_load(vd->vdev_child[c]);
3022 if (error != 0) {
3023 return (error);
3024 }
3025 }
3026
3027 vdev_set_deflate_ratio(vd);
34dc7c2f 3028
cc99f275
DB
3029 /*
3030 * On spa_load path, grab the allocation bias from our zap
3031 */
3032 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3033 spa_t *spa = vd->vdev_spa;
3034 char bias_str[64];
3035
3036 if (zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
3037 VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str),
3038 bias_str) == 0) {
3039 ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE);
3040 vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str);
3041 }
3042 }
3043
34dc7c2f
BB
3044 /*
3045 * If this is a top-level vdev, initialize its metaslabs.
3046 */
a1d477c2 3047 if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
cc99f275
DB
3048 vdev_metaslab_group_create(vd);
3049
a1d477c2
MA
3050 if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
3051 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3052 VDEV_AUX_CORRUPT_DATA);
4a0ee12a
PZ
3053 vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, "
3054 "asize=%llu", (u_longlong_t)vd->vdev_ashift,
3055 (u_longlong_t)vd->vdev_asize);
a1d477c2 3056 return (SET_ERROR(ENXIO));
928e8ad4
SD
3057 }
3058
3059 error = vdev_metaslab_init(vd, 0);
3060 if (error != 0) {
4a0ee12a
PZ
3061 vdev_dbgmsg(vd, "vdev_load: metaslab_init failed "
3062 "[error=%d]", error);
a1d477c2
MA
3063 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3064 VDEV_AUX_CORRUPT_DATA);
3065 return (error);
3066 }
d2734cce 3067
27f80e85
BB
3068 uint64_t checkpoint_sm_obj;
3069 error = vdev_checkpoint_sm_object(vd, &checkpoint_sm_obj);
3070 if (error == 0 && checkpoint_sm_obj != 0) {
d2734cce
SD
3071 objset_t *mos = spa_meta_objset(vd->vdev_spa);
3072 ASSERT(vd->vdev_asize != 0);
3073 ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL);
3074
928e8ad4 3075 error = space_map_open(&vd->vdev_checkpoint_sm,
d2734cce 3076 mos, checkpoint_sm_obj, 0, vd->vdev_asize,
928e8ad4
SD
3077 vd->vdev_ashift);
3078 if (error != 0) {
d2734cce
SD
3079 vdev_dbgmsg(vd, "vdev_load: space_map_open "
3080 "failed for checkpoint spacemap (obj %llu) "
3081 "[error=%d]",
3082 (u_longlong_t)checkpoint_sm_obj, error);
3083 return (error);
3084 }
3085 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
d2734cce
SD
3086
3087 /*
3088 * Since the checkpoint_sm contains free entries
425d3237
SD
3089 * exclusively we can use space_map_allocated() to
3090 * indicate the cumulative checkpointed space that
3091 * has been freed.
d2734cce
SD
3092 */
3093 vd->vdev_stat.vs_checkpoint_space =
425d3237 3094 -space_map_allocated(vd->vdev_checkpoint_sm);
d2734cce
SD
3095 vd->vdev_spa->spa_checkpoint_info.sci_dspace +=
3096 vd->vdev_stat.vs_checkpoint_space;
27f80e85
BB
3097 } else if (error != 0) {
3098 vdev_dbgmsg(vd, "vdev_load: failed to retrieve "
3099 "checkpoint space map object from vdev ZAP "
3100 "[error=%d]", error);
3101 return (error);
d2734cce 3102 }
a1d477c2
MA
3103 }
3104
34dc7c2f
BB
3105 /*
3106 * If this is a leaf vdev, load its DTL.
3107 */
a1d477c2 3108 if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
34dc7c2f
BB
3109 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3110 VDEV_AUX_CORRUPT_DATA);
4a0ee12a
PZ
3111 vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed "
3112 "[error=%d]", error);
a1d477c2
MA
3113 return (error);
3114 }
3115
27f80e85
BB
3116 uint64_t obsolete_sm_object;
3117 error = vdev_obsolete_sm_object(vd, &obsolete_sm_object);
3118 if (error == 0 && obsolete_sm_object != 0) {
a1d477c2
MA
3119 objset_t *mos = vd->vdev_spa->spa_meta_objset;
3120 ASSERT(vd->vdev_asize != 0);
d2734cce 3121 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL);
a1d477c2
MA
3122
3123 if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
3124 obsolete_sm_object, 0, vd->vdev_asize, 0))) {
3125 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3126 VDEV_AUX_CORRUPT_DATA);
4a0ee12a
PZ
3127 vdev_dbgmsg(vd, "vdev_load: space_map_open failed for "
3128 "obsolete spacemap (obj %llu) [error=%d]",
3129 (u_longlong_t)obsolete_sm_object, error);
a1d477c2
MA
3130 return (error);
3131 }
27f80e85
BB
3132 } else if (error != 0) {
3133 vdev_dbgmsg(vd, "vdev_load: failed to retrieve obsolete "
3134 "space map object from vdev ZAP [error=%d]", error);
3135 return (error);
a1d477c2
MA
3136 }
3137
3138 return (0);
34dc7c2f
BB
3139}
3140
3141/*
3142 * The special vdev case is used for hot spares and l2cache devices. Its
3143 * sole purpose it to set the vdev state for the associated vdev. To do this,
3144 * we make sure that we can open the underlying device, then try to read the
3145 * label, and make sure that the label is sane and that it hasn't been
3146 * repurposed to another pool.
3147 */
3148int
3149vdev_validate_aux(vdev_t *vd)
3150{
3151 nvlist_t *label;
3152 uint64_t guid, version;
3153 uint64_t state;
3154
b128c09f
BB
3155 if (!vdev_readable(vd))
3156 return (0);
3157
3bc7e0fb 3158 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
34dc7c2f
BB
3159 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3160 VDEV_AUX_CORRUPT_DATA);
3161 return (-1);
3162 }
3163
3164 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
9ae529ec 3165 !SPA_VERSION_IS_SUPPORTED(version) ||
34dc7c2f
BB
3166 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
3167 guid != vd->vdev_guid ||
3168 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
3169 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3170 VDEV_AUX_CORRUPT_DATA);
3171 nvlist_free(label);
3172 return (-1);
3173 }
3174
3175 /*
3176 * We don't actually check the pool state here. If it's in fact in
3177 * use by another pool, we update this fact on the fly when requested.
3178 */
3179 nvlist_free(label);
3180 return (0);
3181}
3182
93e28d66
SD
3183static void
3184vdev_destroy_ms_flush_data(vdev_t *vd, dmu_tx_t *tx)
3185{
3186 objset_t *mos = spa_meta_objset(vd->vdev_spa);
3187
3188 if (vd->vdev_top_zap == 0)
3189 return;
3190
3191 uint64_t object = 0;
3192 int err = zap_lookup(mos, vd->vdev_top_zap,
3193 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, &object);
3194 if (err == ENOENT)
3195 return;
3196
3197 VERIFY0(dmu_object_free(mos, object, tx));
3198 VERIFY0(zap_remove(mos, vd->vdev_top_zap,
3199 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, tx));
3200}
3201
a1d477c2
MA
3202/*
3203 * Free the objects used to store this vdev's spacemaps, and the array
3204 * that points to them.
3205 */
428870ff 3206void
a1d477c2
MA
3207vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
3208{
3209 if (vd->vdev_ms_array == 0)
3210 return;
3211
3212 objset_t *mos = vd->vdev_spa->spa_meta_objset;
3213 uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
3214 size_t array_bytes = array_count * sizeof (uint64_t);
3215 uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
3216 VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
3217 array_bytes, smobj_array, 0));
3218
3219 for (uint64_t i = 0; i < array_count; i++) {
3220 uint64_t smobj = smobj_array[i];
3221 if (smobj == 0)
3222 continue;
3223
3224 space_map_free_obj(mos, smobj, tx);
3225 }
3226
3227 kmem_free(smobj_array, array_bytes);
3228 VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
93e28d66 3229 vdev_destroy_ms_flush_data(vd, tx);
a1d477c2
MA
3230 vd->vdev_ms_array = 0;
3231}
3232
3233static void
ee900344 3234vdev_remove_empty_log(vdev_t *vd, uint64_t txg)
428870ff
BB
3235{
3236 spa_t *spa = vd->vdev_spa;
428870ff 3237
ee900344 3238 ASSERT(vd->vdev_islog);
e0ab3ab5
JS
3239 ASSERT(vd == vd->vdev_top);
3240 ASSERT3U(txg, ==, spa_syncing_txg(spa));
428870ff 3241
ee900344 3242 dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
e0ab3ab5 3243
ee900344
SD
3244 vdev_destroy_spacemaps(vd, tx);
3245 if (vd->vdev_top_zap != 0) {
e0ab3ab5
JS
3246 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
3247 vd->vdev_top_zap = 0;
3248 }
ee900344 3249
428870ff
BB
3250 dmu_tx_commit(tx);
3251}
3252
34dc7c2f
BB
3253void
3254vdev_sync_done(vdev_t *vd, uint64_t txg)
3255{
3256 metaslab_t *msp;
428870ff
BB
3257 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
3258
a1d477c2 3259 ASSERT(vdev_is_concrete(vd));
34dc7c2f 3260
619f0976
GW
3261 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
3262 != NULL)
34dc7c2f 3263 metaslab_sync_done(msp, txg);
428870ff
BB
3264
3265 if (reassess)
3266 metaslab_sync_reassess(vd->vdev_mg);
34dc7c2f
BB
3267}
3268
3269void
3270vdev_sync(vdev_t *vd, uint64_t txg)
3271{
3272 spa_t *spa = vd->vdev_spa;
3273 vdev_t *lvd;
3274 metaslab_t *msp;
34dc7c2f 3275
6c926f42
SD
3276 ASSERT3U(txg, ==, spa->spa_syncing_txg);
3277 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
a1d477c2 3278 if (range_tree_space(vd->vdev_obsolete_segments) > 0) {
a1d477c2
MA
3279 ASSERT(vd->vdev_removing ||
3280 vd->vdev_ops == &vdev_indirect_ops);
3281
a1d477c2 3282 vdev_indirect_sync_obsolete(vd, tx);
a1d477c2
MA
3283
3284 /*
3285 * If the vdev is indirect, it can't have dirty
3286 * metaslabs or DTLs.
3287 */
3288 if (vd->vdev_ops == &vdev_indirect_ops) {
3289 ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
3290 ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
6c926f42 3291 dmu_tx_commit(tx);
a1d477c2
MA
3292 return;
3293 }
3294 }
3295
3296 ASSERT(vdev_is_concrete(vd));
3297
3298 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
3299 !vd->vdev_removing) {
34dc7c2f 3300 ASSERT(vd == vd->vdev_top);
a1d477c2 3301 ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
34dc7c2f
BB
3302 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
3303 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
3304 ASSERT(vd->vdev_ms_array != 0);
3305 vdev_config_dirty(vd);
34dc7c2f
BB
3306 }
3307
3308 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
3309 metaslab_sync(msp, txg);
3310 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
3311 }
3312
3313 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
3314 vdev_dtl_sync(lvd, txg);
3315
a1d477c2 3316 /*
ee900344
SD
3317 * If this is an empty log device being removed, destroy the
3318 * metadata associated with it.
a1d477c2 3319 */
ee900344
SD
3320 if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
3321 vdev_remove_empty_log(vd, txg);
a1d477c2 3322
34dc7c2f 3323 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
6c926f42 3324 dmu_tx_commit(tx);
34dc7c2f
BB
3325}
3326
3327uint64_t
3328vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
3329{
3330 return (vd->vdev_ops->vdev_op_asize(vd, psize));
3331}
3332
34dc7c2f
BB
3333/*
3334 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
3335 * not be opened, and no I/O is attempted.
3336 */
3337int
428870ff 3338vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
34dc7c2f 3339{
572e2857 3340 vdev_t *vd, *tvd;
34dc7c2f 3341
428870ff 3342 spa_vdev_state_enter(spa, SCL_NONE);
34dc7c2f 3343
b128c09f
BB
3344 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3345 return (spa_vdev_state_exit(spa, NULL, ENODEV));
34dc7c2f 3346
34dc7c2f 3347 if (!vd->vdev_ops->vdev_op_leaf)
b128c09f 3348 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
34dc7c2f 3349
572e2857
BB
3350 tvd = vd->vdev_top;
3351
4a283c7f
TH
3352 /*
3353 * If user did a 'zpool offline -f' then make the fault persist across
3354 * reboots.
3355 */
3356 if (aux == VDEV_AUX_EXTERNAL_PERSIST) {
3357 /*
3358 * There are two kinds of forced faults: temporary and
3359 * persistent. Temporary faults go away at pool import, while
3360 * persistent faults stay set. Both types of faults can be
3361 * cleared with a zpool clear.
3362 *
3363 * We tell if a vdev is persistently faulted by looking at the
3364 * ZPOOL_CONFIG_AUX_STATE nvpair. If it's set to "external" at
3365 * import then it's a persistent fault. Otherwise, it's
3366 * temporary. We get ZPOOL_CONFIG_AUX_STATE set to "external"
3367 * by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL. This
3368 * tells vdev_config_generate() (which gets run later) to set
3369 * ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist.
3370 */
3371 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
3372 vd->vdev_tmpoffline = B_FALSE;
3373 aux = VDEV_AUX_EXTERNAL;
3374 } else {
3375 vd->vdev_tmpoffline = B_TRUE;
3376 }
3377
428870ff
BB
3378 /*
3379 * We don't directly use the aux state here, but if we do a
3380 * vdev_reopen(), we need this value to be present to remember why we
3381 * were faulted.
3382 */
3383 vd->vdev_label_aux = aux;
3384
34dc7c2f
BB
3385 /*
3386 * Faulted state takes precedence over degraded.
3387 */
428870ff 3388 vd->vdev_delayed_close = B_FALSE;
34dc7c2f
BB
3389 vd->vdev_faulted = 1ULL;
3390 vd->vdev_degraded = 0ULL;
428870ff 3391 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
34dc7c2f
BB
3392
3393 /*
428870ff
BB
3394 * If this device has the only valid copy of the data, then
3395 * back off and simply mark the vdev as degraded instead.
34dc7c2f 3396 */
572e2857 3397 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
34dc7c2f
BB
3398 vd->vdev_degraded = 1ULL;
3399 vd->vdev_faulted = 0ULL;
3400
3401 /*
3402 * If we reopen the device and it's not dead, only then do we
3403 * mark it degraded.
3404 */
572e2857 3405 vdev_reopen(tvd);
34dc7c2f 3406
428870ff
BB
3407 if (vdev_readable(vd))
3408 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
34dc7c2f
BB
3409 }
3410
b128c09f 3411 return (spa_vdev_state_exit(spa, vd, 0));
34dc7c2f
BB
3412}
3413
3414/*
3415 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
3416 * user that something is wrong. The vdev continues to operate as normal as far
3417 * as I/O is concerned.
3418 */
3419int
428870ff 3420vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
34dc7c2f 3421{
b128c09f 3422 vdev_t *vd;
34dc7c2f 3423
428870ff 3424 spa_vdev_state_enter(spa, SCL_NONE);
34dc7c2f 3425
b128c09f
BB
3426 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3427 return (spa_vdev_state_exit(spa, NULL, ENODEV));
34dc7c2f 3428
34dc7c2f 3429 if (!vd->vdev_ops->vdev_op_leaf)
b128c09f 3430 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
34dc7c2f
BB
3431
3432 /*
3433 * If the vdev is already faulted, then don't do anything.
3434 */
b128c09f
BB
3435 if (vd->vdev_faulted || vd->vdev_degraded)
3436 return (spa_vdev_state_exit(spa, NULL, 0));
34dc7c2f
BB
3437
3438 vd->vdev_degraded = 1ULL;
3439 if (!vdev_is_dead(vd))
3440 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
428870ff 3441 aux);
34dc7c2f 3442
b128c09f 3443 return (spa_vdev_state_exit(spa, vd, 0));
34dc7c2f
BB
3444}
3445
3446/*
d3cc8b15
WA
3447 * Online the given vdev.
3448 *
3449 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached
3450 * spare device should be detached when the device finishes resilvering.
3451 * Second, the online should be treated like a 'test' online case, so no FMA
3452 * events are generated if the device fails to open.
34dc7c2f
BB
3453 */
3454int
b128c09f 3455vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
34dc7c2f 3456{
9babb374 3457 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
153b2285
YP
3458 boolean_t wasoffline;
3459 vdev_state_t oldstate;
34dc7c2f 3460
428870ff 3461 spa_vdev_state_enter(spa, SCL_NONE);
34dc7c2f 3462
b128c09f
BB
3463 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3464 return (spa_vdev_state_exit(spa, NULL, ENODEV));
34dc7c2f
BB
3465
3466 if (!vd->vdev_ops->vdev_op_leaf)
b128c09f 3467 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
34dc7c2f 3468
153b2285
YP
3469 wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
3470 oldstate = vd->vdev_state;
fb390aaf 3471
9babb374 3472 tvd = vd->vdev_top;
34dc7c2f
BB
3473 vd->vdev_offline = B_FALSE;
3474 vd->vdev_tmpoffline = B_FALSE;
b128c09f
BB
3475 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
3476 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
9babb374
BB
3477
3478 /* XXX - L2ARC 1.0 does not support expansion */
3479 if (!vd->vdev_aux) {
3480 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
d441e85d
BB
3481 pvd->vdev_expanding = !!((flags & ZFS_ONLINE_EXPAND) ||
3482 spa->spa_autoexpand);
d48091de 3483 vd->vdev_expansion_time = gethrestime_sec();
9babb374
BB
3484 }
3485
3486 vdev_reopen(tvd);
34dc7c2f
BB
3487 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
3488
9babb374
BB
3489 if (!vd->vdev_aux) {
3490 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3491 pvd->vdev_expanding = B_FALSE;
3492 }
3493
34dc7c2f
BB
3494 if (newstate)
3495 *newstate = vd->vdev_state;
3496 if ((flags & ZFS_ONLINE_UNSPARE) &&
3497 !vdev_is_dead(vd) && vd->vdev_parent &&
3498 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3499 vd->vdev_parent->vdev_child[0] == vd)
3500 vd->vdev_unspare = B_TRUE;
3501
9babb374
BB
3502 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
3503
3504 /* XXX - L2ARC 1.0 does not support expansion */
3505 if (vd->vdev_aux)
3506 return (spa_vdev_state_exit(spa, vd, ENOTSUP));
3507 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
3508 }
fb390aaf 3509
619f0976
GW
3510 /* Restart initializing if necessary */
3511 mutex_enter(&vd->vdev_initialize_lock);
3512 if (vdev_writeable(vd) &&
3513 vd->vdev_initialize_thread == NULL &&
3514 vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) {
3515 (void) vdev_initialize(vd);
3516 }
3517 mutex_exit(&vd->vdev_initialize_lock);
3518
1b939560
BB
3519 /* Restart trimming if necessary */
3520 mutex_enter(&vd->vdev_trim_lock);
3521 if (vdev_writeable(vd) &&
3522 vd->vdev_trim_thread == NULL &&
3523 vd->vdev_trim_state == VDEV_TRIM_ACTIVE) {
3524 (void) vdev_trim(vd, vd->vdev_trim_rate, vd->vdev_trim_partial,
3525 vd->vdev_trim_secure);
3526 }
3527 mutex_exit(&vd->vdev_trim_lock);
3528
153b2285
YP
3529 if (wasoffline ||
3530 (oldstate < VDEV_STATE_DEGRADED &&
3531 vd->vdev_state >= VDEV_STATE_DEGRADED))
12fa0466 3532 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
fb390aaf 3533
fb5f0bc8 3534 return (spa_vdev_state_exit(spa, vd, 0));
34dc7c2f
BB
3535}
3536
428870ff
BB
3537static int
3538vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
34dc7c2f 3539{
9babb374 3540 vdev_t *vd, *tvd;
428870ff
BB
3541 int error = 0;
3542 uint64_t generation;
3543 metaslab_group_t *mg;
34dc7c2f 3544
428870ff
BB
3545top:
3546 spa_vdev_state_enter(spa, SCL_ALLOC);
34dc7c2f 3547
b128c09f
BB
3548 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3549 return (spa_vdev_state_exit(spa, NULL, ENODEV));
34dc7c2f
BB
3550
3551 if (!vd->vdev_ops->vdev_op_leaf)
b128c09f 3552 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
34dc7c2f 3553
9babb374 3554 tvd = vd->vdev_top;
428870ff
BB
3555 mg = tvd->vdev_mg;
3556 generation = spa->spa_config_generation + 1;
9babb374 3557
34dc7c2f
BB
3558 /*
3559 * If the device isn't already offline, try to offline it.
3560 */
3561 if (!vd->vdev_offline) {
3562 /*
fb5f0bc8 3563 * If this device has the only valid copy of some data,
9babb374
BB
3564 * don't allow it to be offlined. Log devices are always
3565 * expendable.
34dc7c2f 3566 */
9babb374
BB
3567 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
3568 vdev_dtl_required(vd))
b128c09f 3569 return (spa_vdev_state_exit(spa, NULL, EBUSY));
34dc7c2f 3570
428870ff
BB
3571 /*
3572 * If the top-level is a slog and it has had allocations
3573 * then proceed. We check that the vdev's metaslab group
3574 * is not NULL since it's possible that we may have just
3575 * added this vdev but not yet initialized its metaslabs.
3576 */
3577 if (tvd->vdev_islog && mg != NULL) {
3578 /*
3579 * Prevent any future allocations.
3580 */
3581 metaslab_group_passivate(mg);
3582 (void) spa_vdev_state_exit(spa, vd, 0);
3583
a1d477c2 3584 error = spa_reset_logs(spa);
428870ff 3585
d2734cce
SD
3586 /*
3587 * If the log device was successfully reset but has
3588 * checkpointed data, do not offline it.
3589 */
3590 if (error == 0 &&
3591 tvd->vdev_checkpoint_sm != NULL) {
425d3237
SD
3592 ASSERT3U(space_map_allocated(
3593 tvd->vdev_checkpoint_sm), !=, 0);
d2734cce
SD
3594 error = ZFS_ERR_CHECKPOINT_EXISTS;
3595 }
3596
428870ff
BB
3597 spa_vdev_state_enter(spa, SCL_ALLOC);
3598
3599 /*
3600 * Check to see if the config has changed.
3601 */
3602 if (error || generation != spa->spa_config_generation) {
3603 metaslab_group_activate(mg);
3604 if (error)
3605 return (spa_vdev_state_exit(spa,
3606 vd, error));
3607 (void) spa_vdev_state_exit(spa, vd, 0);
3608 goto top;
3609 }
c99c9001 3610 ASSERT0(tvd->vdev_stat.vs_alloc);
428870ff
BB
3611 }
3612
34dc7c2f
BB
3613 /*
3614 * Offline this device and reopen its top-level vdev.
9babb374
BB
3615 * If the top-level vdev is a log device then just offline
3616 * it. Otherwise, if this action results in the top-level
3617 * vdev becoming unusable, undo it and fail the request.
34dc7c2f
BB
3618 */
3619 vd->vdev_offline = B_TRUE;
9babb374
BB
3620 vdev_reopen(tvd);
3621
3622 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
3623 vdev_is_dead(tvd)) {
34dc7c2f 3624 vd->vdev_offline = B_FALSE;
9babb374 3625 vdev_reopen(tvd);
b128c09f 3626 return (spa_vdev_state_exit(spa, NULL, EBUSY));
34dc7c2f 3627 }
428870ff
BB
3628
3629 /*
3630 * Add the device back into the metaslab rotor so that
3631 * once we online the device it's open for business.
3632 */
3633 if (tvd->vdev_islog && mg != NULL)
3634 metaslab_group_activate(mg);
34dc7c2f
BB
3635 }
3636
b128c09f 3637 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
34dc7c2f 3638
428870ff
BB
3639 return (spa_vdev_state_exit(spa, vd, 0));
3640}
9babb374 3641
428870ff
BB
3642int
3643vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
3644{
3645 int error;
9babb374 3646
428870ff
BB
3647 mutex_enter(&spa->spa_vdev_top_lock);
3648 error = vdev_offline_locked(spa, guid, flags);
3649 mutex_exit(&spa->spa_vdev_top_lock);
3650
3651 return (error);
34dc7c2f
BB
3652}
3653
3654/*
3655 * Clear the error counts associated with this vdev. Unlike vdev_online() and
3656 * vdev_offline(), we assume the spa config is locked. We also clear all
3657 * children. If 'vd' is NULL, then the user wants to clear all vdevs.
34dc7c2f
BB
3658 */
3659void
b128c09f 3660vdev_clear(spa_t *spa, vdev_t *vd)
34dc7c2f 3661{
b128c09f
BB
3662 vdev_t *rvd = spa->spa_root_vdev;
3663
3664 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
34dc7c2f
BB
3665
3666 if (vd == NULL)
b128c09f 3667 vd = rvd;
34dc7c2f
BB
3668
3669 vd->vdev_stat.vs_read_errors = 0;
3670 vd->vdev_stat.vs_write_errors = 0;
3671 vd->vdev_stat.vs_checksum_errors = 0;
ad796b8a 3672 vd->vdev_stat.vs_slow_ios = 0;
34dc7c2f 3673
1c27024e 3674 for (int c = 0; c < vd->vdev_children; c++)
b128c09f 3675 vdev_clear(spa, vd->vdev_child[c]);
34dc7c2f 3676
a1d477c2
MA
3677 /*
3678 * It makes no sense to "clear" an indirect vdev.
3679 */
3680 if (!vdev_is_concrete(vd))
3681 return;
3682
34dc7c2f 3683 /*
b128c09f
BB
3684 * If we're in the FAULTED state or have experienced failed I/O, then
3685 * clear the persistent state and attempt to reopen the device. We
3686 * also mark the vdev config dirty, so that the new faulted state is
3687 * written out to disk.
34dc7c2f 3688 */
b128c09f
BB
3689 if (vd->vdev_faulted || vd->vdev_degraded ||
3690 !vdev_readable(vd) || !vdev_writeable(vd)) {
428870ff 3691 /*
4e33ba4c 3692 * When reopening in response to a clear event, it may be due to
428870ff
BB
3693 * a fmadm repair request. In this case, if the device is
3694 * still broken, we want to still post the ereport again.
3695 */
3696 vd->vdev_forcefault = B_TRUE;
3697
572e2857 3698 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
b128c09f
BB
3699 vd->vdev_cant_read = B_FALSE;
3700 vd->vdev_cant_write = B_FALSE;
4a283c7f 3701 vd->vdev_stat.vs_aux = 0;
b128c09f 3702
572e2857 3703 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
34dc7c2f 3704
428870ff
BB
3705 vd->vdev_forcefault = B_FALSE;
3706
572e2857 3707 if (vd != rvd && vdev_writeable(vd->vdev_top))
b128c09f
BB
3708 vdev_state_dirty(vd->vdev_top);
3709
80a91e74
TC
3710 if (vd->vdev_aux == NULL && !vdev_is_dead(vd)) {
3711 if (dsl_scan_resilvering(spa->spa_dsl_pool) &&
3712 spa_feature_is_enabled(spa,
3713 SPA_FEATURE_RESILVER_DEFER))
3714 vdev_set_deferred_resilver(spa, vd);
3715 else
3716 spa_async_request(spa, SPA_ASYNC_RESILVER);
3717 }
34dc7c2f 3718
12fa0466 3719 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
34dc7c2f 3720 }
428870ff
BB
3721
3722 /*
3723 * When clearing a FMA-diagnosed fault, we always want to
3724 * unspare the device, as we assume that the original spare was
3725 * done in response to the FMA fault.
3726 */
3727 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
3728 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3729 vd->vdev_parent->vdev_child[0] == vd)
3730 vd->vdev_unspare = B_TRUE;
34dc7c2f
BB
3731}
3732
b128c09f
BB
3733boolean_t
3734vdev_is_dead(vdev_t *vd)
3735{
428870ff
BB
3736 /*
3737 * Holes and missing devices are always considered "dead".
3738 * This simplifies the code since we don't have to check for
3739 * these types of devices in the various code paths.
3740 * Instead we rely on the fact that we skip over dead devices
3741 * before issuing I/O to them.
3742 */
a1d477c2
MA
3743 return (vd->vdev_state < VDEV_STATE_DEGRADED ||
3744 vd->vdev_ops == &vdev_hole_ops ||
428870ff 3745 vd->vdev_ops == &vdev_missing_ops);
b128c09f
BB
3746}
3747
3748boolean_t
34dc7c2f
BB
3749vdev_readable(vdev_t *vd)
3750{
b128c09f 3751 return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
34dc7c2f
BB
3752}
3753
b128c09f 3754boolean_t
34dc7c2f
BB
3755vdev_writeable(vdev_t *vd)
3756{
a1d477c2
MA
3757 return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
3758 vdev_is_concrete(vd));
34dc7c2f
BB
3759}
3760
b128c09f
BB
3761boolean_t
3762vdev_allocatable(vdev_t *vd)
34dc7c2f 3763{
fb5f0bc8
BB
3764 uint64_t state = vd->vdev_state;
3765
b128c09f 3766 /*
fb5f0bc8 3767 * We currently allow allocations from vdevs which may be in the
b128c09f
BB
3768 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
3769 * fails to reopen then we'll catch it later when we're holding
fb5f0bc8
BB
3770 * the proper locks. Note that we have to get the vdev state
3771 * in a local variable because although it changes atomically,
3772 * we're asking two separate questions about it.
b128c09f 3773 */
fb5f0bc8 3774 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
a1d477c2 3775 !vd->vdev_cant_write && vdev_is_concrete(vd) &&
3dfb57a3 3776 vd->vdev_mg->mg_initialized);
34dc7c2f
BB
3777}
3778
b128c09f
BB
3779boolean_t
3780vdev_accessible(vdev_t *vd, zio_t *zio)
34dc7c2f 3781{
b128c09f 3782 ASSERT(zio->io_vd == vd);
34dc7c2f 3783
b128c09f
BB
3784 if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
3785 return (B_FALSE);
34dc7c2f 3786
b128c09f
BB
3787 if (zio->io_type == ZIO_TYPE_READ)
3788 return (!vd->vdev_cant_read);
34dc7c2f 3789
b128c09f
BB
3790 if (zio->io_type == ZIO_TYPE_WRITE)
3791 return (!vd->vdev_cant_write);
34dc7c2f 3792
b128c09f 3793 return (B_TRUE);
34dc7c2f
BB
3794}
3795
193a37cb
TH
3796static void
3797vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs)
34dc7c2f 3798{
1b939560 3799 for (int t = 0; t < VS_ZIO_TYPES; t++) {
193a37cb
TH
3800 vs->vs_ops[t] += cvs->vs_ops[t];
3801 vs->vs_bytes[t] += cvs->vs_bytes[t];
3802 }
34dc7c2f 3803
193a37cb
TH
3804 cvs->vs_scan_removing = cvd->vdev_removing;
3805}
f3a7f661 3806
193a37cb
TH
3807/*
3808 * Get extended stats
3809 */
3810static void
3811vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx)
3812{
3813 int t, b;
3814 for (t = 0; t < ZIO_TYPES; t++) {
7e945072 3815 for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++)
193a37cb 3816 vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b];
7e945072
TH
3817
3818 for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) {
193a37cb
TH
3819 vsx->vsx_total_histo[t][b] +=
3820 cvsx->vsx_total_histo[t][b];
3821 }
f38dfec3 3822 }
34dc7c2f 3823
193a37cb 3824 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
7e945072 3825 for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) {
193a37cb
TH
3826 vsx->vsx_queue_histo[t][b] +=
3827 cvsx->vsx_queue_histo[t][b];
3828 }
3829 vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t];
3830 vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t];
7e945072
TH
3831
3832 for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++)
3833 vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b];
3834
3835 for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++)
3836 vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b];
193a37cb 3837 }
7e945072 3838
193a37cb
TH
3839}
3840
d2734cce
SD
3841boolean_t
3842vdev_is_spacemap_addressable(vdev_t *vd)
3843{
419ba591
SD
3844 if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2))
3845 return (B_TRUE);
3846
d2734cce 3847 /*
419ba591
SD
3848 * If double-word space map entries are not enabled we assume
3849 * 47 bits of the space map entry are dedicated to the entry's
3850 * offset (see SM_OFFSET_BITS in space_map.h). We then use that
3851 * to calculate the maximum address that can be described by a
3852 * space map entry for the given device.
d2734cce 3853 */
419ba591 3854 uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS;
d2734cce
SD
3855
3856 if (shift >= 63) /* detect potential overflow */
3857 return (B_TRUE);
3858
3859 return (vd->vdev_asize < (1ULL << shift));
3860}
3861
193a37cb
TH
3862/*
3863 * Get statistics for the given vdev.
3864 */
3865static void
3866vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
3867{
1c27024e 3868 int t;
34dc7c2f
BB
3869 /*
3870 * If we're getting stats on the root vdev, aggregate the I/O counts
3871 * over all top-level vdevs (i.e. the direct children of the root).
3872 */
193a37cb
TH
3873 if (!vd->vdev_ops->vdev_op_leaf) {
3874 if (vs) {
3875 memset(vs->vs_ops, 0, sizeof (vs->vs_ops));
3876 memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes));
3877 }
3878 if (vsx)
3879 memset(vsx, 0, sizeof (*vsx));
3880
1c27024e 3881 for (int c = 0; c < vd->vdev_children; c++) {
193a37cb 3882 vdev_t *cvd = vd->vdev_child[c];
34dc7c2f 3883 vdev_stat_t *cvs = &cvd->vdev_stat;
193a37cb
TH
3884 vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex;
3885
3886 vdev_get_stats_ex_impl(cvd, cvs, cvsx);
3887 if (vs)
3888 vdev_get_child_stat(cvd, vs, cvs);
3889 if (vsx)
3890 vdev_get_child_stat_ex(cvd, vsx, cvsx);
34dc7c2f 3891
193a37cb
TH
3892 }
3893 } else {
3894 /*
3895 * We're a leaf. Just copy our ZIO active queue stats in. The
3896 * other leaf stats are updated in vdev_stat_update().
3897 */
3898 if (!vsx)
3899 return;
3900
3901 memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex));
3902
3903 for (t = 0; t < ARRAY_SIZE(vd->vdev_queue.vq_class); t++) {
3904 vsx->vsx_active_queue[t] =
3905 vd->vdev_queue.vq_class[t].vqc_active;
3906 vsx->vsx_pend_queue[t] = avl_numnodes(
3907 &vd->vdev_queue.vq_class[t].vqc_queued_tree);
34dc7c2f
BB
3908 }
3909 }
193a37cb
TH
3910}
3911
3912void
3913vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
3914{
0f676dc2 3915 vdev_t *tvd = vd->vdev_top;
193a37cb
TH
3916 mutex_enter(&vd->vdev_stat_lock);
3917 if (vs) {
3918 bcopy(&vd->vdev_stat, vs, sizeof (*vs));
3919 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
3920 vs->vs_state = vd->vdev_state;
3921 vs->vs_rsize = vdev_get_min_asize(vd);
619f0976 3922 if (vd->vdev_ops->vdev_op_leaf) {
193a37cb
TH
3923 vs->vs_rsize += VDEV_LABEL_START_SIZE +
3924 VDEV_LABEL_END_SIZE;
619f0976 3925 /*
1b939560 3926 * Report initializing progress. Since we don't
619f0976
GW
3927 * have the initializing locks held, this is only
3928 * an estimate (although a fairly accurate one).
3929 */
3930 vs->vs_initialize_bytes_done =
3931 vd->vdev_initialize_bytes_done;
3932 vs->vs_initialize_bytes_est =
3933 vd->vdev_initialize_bytes_est;
3934 vs->vs_initialize_state = vd->vdev_initialize_state;
3935 vs->vs_initialize_action_time =
3936 vd->vdev_initialize_action_time;
1b939560
BB
3937
3938 /*
3939 * Report manual TRIM progress. Since we don't have
3940 * the manual TRIM locks held, this is only an
3941 * estimate (although fairly accurate one).
3942 */
3943 vs->vs_trim_notsup = !vd->vdev_has_trim;
3944 vs->vs_trim_bytes_done = vd->vdev_trim_bytes_done;
3945 vs->vs_trim_bytes_est = vd->vdev_trim_bytes_est;
3946 vs->vs_trim_state = vd->vdev_trim_state;
3947 vs->vs_trim_action_time = vd->vdev_trim_action_time;
619f0976 3948 }
0f676dc2 3949 /*
1b939560 3950 * Report expandable space on top-level, non-auxiliary devices
0f676dc2
GM
3951 * only. The expandable space is reported in terms of metaslab
3952 * sized units since that determines how much space the pool
3953 * can expand.
3954 */
3955 if (vd->vdev_aux == NULL && tvd != NULL) {
3956 vs->vs_esize = P2ALIGN(
3957 vd->vdev_max_asize - vd->vdev_asize,
3958 1ULL << tvd->vdev_ms_shift);
3959 }
193a37cb 3960 if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
a1d477c2 3961 vdev_is_concrete(vd)) {
cc99f275
DB
3962 vs->vs_fragmentation = (vd->vdev_mg != NULL) ?
3963 vd->vdev_mg->mg_fragmentation : 0;
193a37cb 3964 }
80a91e74
TC
3965 if (vd->vdev_ops->vdev_op_leaf)
3966 vs->vs_resilver_deferred = vd->vdev_resilver_deferred;
193a37cb
TH
3967 }
3968
193a37cb 3969 vdev_get_stats_ex_impl(vd, vs, vsx);
f3a7f661 3970 mutex_exit(&vd->vdev_stat_lock);
34dc7c2f
BB
3971}
3972
193a37cb
TH
3973void
3974vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
3975{
3976 return (vdev_get_stats_ex(vd, vs, NULL));
3977}
3978
34dc7c2f
BB
3979void
3980vdev_clear_stats(vdev_t *vd)
3981{
3982 mutex_enter(&vd->vdev_stat_lock);
3983 vd->vdev_stat.vs_space = 0;
3984 vd->vdev_stat.vs_dspace = 0;
3985 vd->vdev_stat.vs_alloc = 0;
3986 mutex_exit(&vd->vdev_stat_lock);
3987}
3988
428870ff
BB
3989void
3990vdev_scan_stat_init(vdev_t *vd)
3991{
3992 vdev_stat_t *vs = &vd->vdev_stat;
3993
1c27024e 3994 for (int c = 0; c < vd->vdev_children; c++)
428870ff
BB
3995 vdev_scan_stat_init(vd->vdev_child[c]);
3996
3997 mutex_enter(&vd->vdev_stat_lock);
3998 vs->vs_scan_processed = 0;
3999 mutex_exit(&vd->vdev_stat_lock);
4000}
4001
34dc7c2f 4002void
b128c09f 4003vdev_stat_update(zio_t *zio, uint64_t psize)
34dc7c2f 4004{
fb5f0bc8
BB
4005 spa_t *spa = zio->io_spa;
4006 vdev_t *rvd = spa->spa_root_vdev;
b128c09f 4007 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
34dc7c2f
BB
4008 vdev_t *pvd;
4009 uint64_t txg = zio->io_txg;
4010 vdev_stat_t *vs = &vd->vdev_stat;
193a37cb 4011 vdev_stat_ex_t *vsx = &vd->vdev_stat_ex;
34dc7c2f
BB
4012 zio_type_t type = zio->io_type;
4013 int flags = zio->io_flags;
4014
b128c09f
BB
4015 /*
4016 * If this i/o is a gang leader, it didn't do any actual work.
4017 */
4018 if (zio->io_gang_tree)
4019 return;
4020
34dc7c2f 4021 if (zio->io_error == 0) {
b128c09f
BB
4022 /*
4023 * If this is a root i/o, don't count it -- we've already
4024 * counted the top-level vdevs, and vdev_get_stats() will
4025 * aggregate them when asked. This reduces contention on
4026 * the root vdev_stat_lock and implicitly handles blocks
4027 * that compress away to holes, for which there is no i/o.
4028 * (Holes never create vdev children, so all the counters
4029 * remain zero, which is what we want.)
4030 *
4031 * Note: this only applies to successful i/o (io_error == 0)
4032 * because unlike i/o counts, errors are not additive.
4033 * When reading a ditto block, for example, failure of
4034 * one top-level vdev does not imply a root-level error.
4035 */
4036 if (vd == rvd)
4037 return;
4038
4039 ASSERT(vd == zio->io_vd);
fb5f0bc8
BB
4040
4041 if (flags & ZIO_FLAG_IO_BYPASS)
4042 return;
4043
4044 mutex_enter(&vd->vdev_stat_lock);
4045
b128c09f 4046 if (flags & ZIO_FLAG_IO_REPAIR) {
572e2857 4047 if (flags & ZIO_FLAG_SCAN_THREAD) {
428870ff
BB
4048 dsl_scan_phys_t *scn_phys =
4049 &spa->spa_dsl_pool->dp_scan->scn_phys;
4050 uint64_t *processed = &scn_phys->scn_processed;
4051
4052 /* XXX cleanup? */
4053 if (vd->vdev_ops->vdev_op_leaf)
4054 atomic_add_64(processed, psize);
4055 vs->vs_scan_processed += psize;
4056 }
4057
fb5f0bc8 4058 if (flags & ZIO_FLAG_SELF_HEAL)
b128c09f 4059 vs->vs_self_healed += psize;
34dc7c2f 4060 }
fb5f0bc8 4061
193a37cb
TH
4062 /*
4063 * The bytes/ops/histograms are recorded at the leaf level and
4064 * aggregated into the higher level vdevs in vdev_get_stats().
4065 */
4eb0db42
TH
4066 if (vd->vdev_ops->vdev_op_leaf &&
4067 (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) {
1b939560
BB
4068 zio_type_t vs_type = type;
4069
4070 /*
4071 * TRIM ops and bytes are reported to user space as
4072 * ZIO_TYPE_IOCTL. This is done to preserve the
4073 * vdev_stat_t structure layout for user space.
4074 */
4075 if (type == ZIO_TYPE_TRIM)
4076 vs_type = ZIO_TYPE_IOCTL;
193a37cb 4077
1b939560
BB
4078 vs->vs_ops[vs_type]++;
4079 vs->vs_bytes[vs_type] += psize;
193a37cb 4080
7e945072
TH
4081 if (flags & ZIO_FLAG_DELEGATED) {
4082 vsx->vsx_agg_histo[zio->io_priority]
4083 [RQ_HISTO(zio->io_size)]++;
4084 } else {
4085 vsx->vsx_ind_histo[zio->io_priority]
4086 [RQ_HISTO(zio->io_size)]++;
4087 }
4088
193a37cb
TH
4089 if (zio->io_delta && zio->io_delay) {
4090 vsx->vsx_queue_histo[zio->io_priority]
7e945072 4091 [L_HISTO(zio->io_delta - zio->io_delay)]++;
193a37cb 4092 vsx->vsx_disk_histo[type]
7e945072 4093 [L_HISTO(zio->io_delay)]++;
193a37cb 4094 vsx->vsx_total_histo[type]
7e945072 4095 [L_HISTO(zio->io_delta)]++;
193a37cb
TH
4096 }
4097 }
fb5f0bc8
BB
4098
4099 mutex_exit(&vd->vdev_stat_lock);
34dc7c2f
BB
4100 return;
4101 }
4102
4103 if (flags & ZIO_FLAG_SPECULATIVE)
4104 return;
4105
9babb374
BB
4106 /*
4107 * If this is an I/O error that is going to be retried, then ignore the
4108 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as
4109 * hard errors, when in reality they can happen for any number of
4110 * innocuous reasons (bus resets, MPxIO link failure, etc).
4111 */
4112 if (zio->io_error == EIO &&
4113 !(zio->io_flags & ZIO_FLAG_IO_RETRY))
4114 return;
4115
428870ff
BB
4116 /*
4117 * Intent logs writes won't propagate their error to the root
4118 * I/O so don't mark these types of failures as pool-level
4119 * errors.
4120 */
4121 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
4122 return;
4123
a1d477c2
MA
4124 if (spa->spa_load_state == SPA_LOAD_NONE &&
4125 type == ZIO_TYPE_WRITE && txg != 0 &&
fb5f0bc8 4126 (!(flags & ZIO_FLAG_IO_REPAIR) ||
572e2857 4127 (flags & ZIO_FLAG_SCAN_THREAD) ||
428870ff 4128 spa->spa_claiming)) {
fb5f0bc8 4129 /*
428870ff
BB
4130 * This is either a normal write (not a repair), or it's
4131 * a repair induced by the scrub thread, or it's a repair
4132 * made by zil_claim() during spa_load() in the first txg.
4133 * In the normal case, we commit the DTL change in the same
4134 * txg as the block was born. In the scrub-induced repair
4135 * case, we know that scrubs run in first-pass syncing context,
4136 * so we commit the DTL change in spa_syncing_txg(spa).
4137 * In the zil_claim() case, we commit in spa_first_txg(spa).
fb5f0bc8
BB
4138 *
4139 * We currently do not make DTL entries for failed spontaneous
4140 * self-healing writes triggered by normal (non-scrubbing)
4141 * reads, because we have no transactional context in which to
4142 * do so -- and it's not clear that it'd be desirable anyway.
4143 */
4144 if (vd->vdev_ops->vdev_op_leaf) {
4145 uint64_t commit_txg = txg;
572e2857 4146 if (flags & ZIO_FLAG_SCAN_THREAD) {
fb5f0bc8
BB
4147 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
4148 ASSERT(spa_sync_pass(spa) == 1);
4149 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
428870ff
BB
4150 commit_txg = spa_syncing_txg(spa);
4151 } else if (spa->spa_claiming) {
4152 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
4153 commit_txg = spa_first_txg(spa);
fb5f0bc8 4154 }
428870ff 4155 ASSERT(commit_txg >= spa_syncing_txg(spa));
fb5f0bc8 4156 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
34dc7c2f 4157 return;
fb5f0bc8
BB
4158 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
4159 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
4160 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
34dc7c2f 4161 }
fb5f0bc8
BB
4162 if (vd != rvd)
4163 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
34dc7c2f
BB
4164 }
4165}
4166
cc99f275
DB
4167int64_t
4168vdev_deflated_space(vdev_t *vd, int64_t space)
4169{
4170 ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0);
4171 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
4172
4173 return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio);
4174}
4175
34dc7c2f 4176/*
1b939560
BB
4177 * Update the in-core space usage stats for this vdev, its metaslab class,
4178 * and the root vdev.
34dc7c2f
BB
4179 */
4180void
428870ff
BB
4181vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
4182 int64_t space_delta)
34dc7c2f 4183{
cc99f275 4184 int64_t dspace_delta;
34dc7c2f
BB
4185 spa_t *spa = vd->vdev_spa;
4186 vdev_t *rvd = spa->spa_root_vdev;
4187
4188 ASSERT(vd == vd->vdev_top);
4189
4190 /*
4191 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
4192 * factor. We must calculate this here and not at the root vdev
4193 * because the root vdev's psize-to-asize is simply the max of its
e1cfd73f 4194 * children's, thus not accurate enough for us.
34dc7c2f 4195 */
cc99f275 4196 dspace_delta = vdev_deflated_space(vd, space_delta);
34dc7c2f
BB
4197
4198 mutex_enter(&vd->vdev_stat_lock);
7558997d
SD
4199 /* ensure we won't underflow */
4200 if (alloc_delta < 0) {
4201 ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta);
4202 }
4203
34dc7c2f 4204 vd->vdev_stat.vs_alloc += alloc_delta;
428870ff 4205 vd->vdev_stat.vs_space += space_delta;
34dc7c2f
BB
4206 vd->vdev_stat.vs_dspace += dspace_delta;
4207 mutex_exit(&vd->vdev_stat_lock);
4208
cc99f275
DB
4209 /* every class but log contributes to root space stats */
4210 if (vd->vdev_mg != NULL && !vd->vdev_islog) {
7558997d 4211 ASSERT(!vd->vdev_isl2cache);
34dc7c2f 4212 mutex_enter(&rvd->vdev_stat_lock);
34dc7c2f 4213 rvd->vdev_stat.vs_alloc += alloc_delta;
428870ff 4214 rvd->vdev_stat.vs_space += space_delta;
34dc7c2f
BB
4215 rvd->vdev_stat.vs_dspace += dspace_delta;
4216 mutex_exit(&rvd->vdev_stat_lock);
4217 }
cc99f275 4218 /* Note: metaslab_class_space_update moved to metaslab_space_update */
34dc7c2f
BB
4219}
4220
4221/*
4222 * Mark a top-level vdev's config as dirty, placing it on the dirty list
4223 * so that it will be written out next time the vdev configuration is synced.
4224 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
4225 */
4226void
4227vdev_config_dirty(vdev_t *vd)
4228{
4229 spa_t *spa = vd->vdev_spa;
4230 vdev_t *rvd = spa->spa_root_vdev;
4231 int c;
4232
572e2857
BB
4233 ASSERT(spa_writeable(spa));
4234
34dc7c2f 4235 /*
9babb374
BB
4236 * If this is an aux vdev (as with l2cache and spare devices), then we
4237 * update the vdev config manually and set the sync flag.
b128c09f
BB
4238 */
4239 if (vd->vdev_aux != NULL) {
4240 spa_aux_vdev_t *sav = vd->vdev_aux;
4241 nvlist_t **aux;
4242 uint_t naux;
4243
4244 for (c = 0; c < sav->sav_count; c++) {
4245 if (sav->sav_vdevs[c] == vd)
4246 break;
4247 }
4248
4249 if (c == sav->sav_count) {
4250 /*
4251 * We're being removed. There's nothing more to do.
4252 */
4253 ASSERT(sav->sav_sync == B_TRUE);
4254 return;
4255 }
4256
4257 sav->sav_sync = B_TRUE;
4258
9babb374
BB
4259 if (nvlist_lookup_nvlist_array(sav->sav_config,
4260 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
4261 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
4262 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
4263 }
b128c09f
BB
4264
4265 ASSERT(c < naux);
4266
4267 /*
4268 * Setting the nvlist in the middle if the array is a little
4269 * sketchy, but it will work.
4270 */
4271 nvlist_free(aux[c]);
428870ff 4272 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
b128c09f
BB
4273
4274 return;
4275 }
4276
4277 /*
4278 * The dirty list is protected by the SCL_CONFIG lock. The caller
4279 * must either hold SCL_CONFIG as writer, or must be the sync thread
4280 * (which holds SCL_CONFIG as reader). There's only one sync thread,
34dc7c2f
BB
4281 * so this is sufficient to ensure mutual exclusion.
4282 */
b128c09f
BB
4283 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
4284 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4285 spa_config_held(spa, SCL_CONFIG, RW_READER)));
34dc7c2f
BB
4286
4287 if (vd == rvd) {
4288 for (c = 0; c < rvd->vdev_children; c++)
4289 vdev_config_dirty(rvd->vdev_child[c]);
4290 } else {
4291 ASSERT(vd == vd->vdev_top);
4292
428870ff 4293 if (!list_link_active(&vd->vdev_config_dirty_node) &&
a1d477c2 4294 vdev_is_concrete(vd)) {
b128c09f 4295 list_insert_head(&spa->spa_config_dirty_list, vd);
a1d477c2 4296 }
34dc7c2f
BB
4297 }
4298}
4299
4300void
4301vdev_config_clean(vdev_t *vd)
4302{
4303 spa_t *spa = vd->vdev_spa;
4304
b128c09f
BB
4305 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
4306 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4307 spa_config_held(spa, SCL_CONFIG, RW_READER)));
34dc7c2f 4308
b128c09f
BB
4309 ASSERT(list_link_active(&vd->vdev_config_dirty_node));
4310 list_remove(&spa->spa_config_dirty_list, vd);
34dc7c2f
BB
4311}
4312
b128c09f
BB
4313/*
4314 * Mark a top-level vdev's state as dirty, so that the next pass of
4315 * spa_sync() can convert this into vdev_config_dirty(). We distinguish
4316 * the state changes from larger config changes because they require
4317 * much less locking, and are often needed for administrative actions.
4318 */
4319void
4320vdev_state_dirty(vdev_t *vd)
4321{
4322 spa_t *spa = vd->vdev_spa;
4323
572e2857 4324 ASSERT(spa_writeable(spa));
b128c09f
BB
4325 ASSERT(vd == vd->vdev_top);
4326
4327 /*
4328 * The state list is protected by the SCL_STATE lock. The caller
4329 * must either hold SCL_STATE as writer, or must be the sync thread
4330 * (which holds SCL_STATE as reader). There's only one sync thread,
4331 * so this is sufficient to ensure mutual exclusion.
4332 */
4333 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
4334 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4335 spa_config_held(spa, SCL_STATE, RW_READER)));
4336
a1d477c2
MA
4337 if (!list_link_active(&vd->vdev_state_dirty_node) &&
4338 vdev_is_concrete(vd))
b128c09f
BB
4339 list_insert_head(&spa->spa_state_dirty_list, vd);
4340}
4341
4342void
4343vdev_state_clean(vdev_t *vd)
4344{
4345 spa_t *spa = vd->vdev_spa;
4346
4347 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
4348 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4349 spa_config_held(spa, SCL_STATE, RW_READER)));
4350
4351 ASSERT(list_link_active(&vd->vdev_state_dirty_node));
4352 list_remove(&spa->spa_state_dirty_list, vd);
4353}
4354
4355/*
4356 * Propagate vdev state up from children to parent.
4357 */
34dc7c2f
BB
4358void
4359vdev_propagate_state(vdev_t *vd)
4360{
fb5f0bc8
BB
4361 spa_t *spa = vd->vdev_spa;
4362 vdev_t *rvd = spa->spa_root_vdev;
34dc7c2f
BB
4363 int degraded = 0, faulted = 0;
4364 int corrupted = 0;
34dc7c2f
BB
4365 vdev_t *child;
4366
4367 if (vd->vdev_children > 0) {
1c27024e 4368 for (int c = 0; c < vd->vdev_children; c++) {
34dc7c2f 4369 child = vd->vdev_child[c];
b128c09f 4370
428870ff 4371 /*
a1d477c2
MA
4372 * Don't factor holes or indirect vdevs into the
4373 * decision.
428870ff 4374 */
a1d477c2 4375 if (!vdev_is_concrete(child))
428870ff
BB
4376 continue;
4377
b128c09f 4378 if (!vdev_readable(child) ||
fb5f0bc8 4379 (!vdev_writeable(child) && spa_writeable(spa))) {
b128c09f
BB
4380 /*
4381 * Root special: if there is a top-level log
4382 * device, treat the root vdev as if it were
4383 * degraded.
4384 */
4385 if (child->vdev_islog && vd == rvd)
4386 degraded++;
4387 else
4388 faulted++;
4389 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
34dc7c2f 4390 degraded++;
b128c09f 4391 }
34dc7c2f
BB
4392
4393 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
4394 corrupted++;
4395 }
4396
4397 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
4398
4399 /*
b128c09f 4400 * Root special: if there is a top-level vdev that cannot be
34dc7c2f
BB
4401 * opened due to corrupted metadata, then propagate the root
4402 * vdev's aux state as 'corrupt' rather than 'insufficient
4403 * replicas'.
4404 */
4405 if (corrupted && vd == rvd &&
4406 rvd->vdev_state == VDEV_STATE_CANT_OPEN)
4407 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
4408 VDEV_AUX_CORRUPT_DATA);
4409 }
4410
b128c09f 4411 if (vd->vdev_parent)
34dc7c2f
BB
4412 vdev_propagate_state(vd->vdev_parent);
4413}
4414
4415/*
4416 * Set a vdev's state. If this is during an open, we don't update the parent
4417 * state, because we're in the process of opening children depth-first.
4418 * Otherwise, we propagate the change to the parent.
4419 *
4420 * If this routine places a device in a faulted state, an appropriate ereport is
4421 * generated.
4422 */
4423void
4424vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
4425{
4426 uint64_t save_state;
b128c09f 4427 spa_t *spa = vd->vdev_spa;
34dc7c2f
BB
4428
4429 if (state == vd->vdev_state) {
976246fa
DB
4430 /*
4431 * Since vdev_offline() code path is already in an offline
4432 * state we can miss a statechange event to OFFLINE. Check
4433 * the previous state to catch this condition.
4434 */
4435 if (vd->vdev_ops->vdev_op_leaf &&
4436 (state == VDEV_STATE_OFFLINE) &&
4437 (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) {
4438 /* post an offline state change */
4439 zfs_post_state_change(spa, vd, vd->vdev_prevstate);
4440 }
34dc7c2f
BB
4441 vd->vdev_stat.vs_aux = aux;
4442 return;
4443 }
4444
4445 save_state = vd->vdev_state;
4446
4447 vd->vdev_state = state;
4448 vd->vdev_stat.vs_aux = aux;
4449
4450 /*
4451 * If we are setting the vdev state to anything but an open state, then
428870ff
BB
4452 * always close the underlying device unless the device has requested
4453 * a delayed close (i.e. we're about to remove or fault the device).
4454 * Otherwise, we keep accessible but invalid devices open forever.
4455 * We don't call vdev_close() itself, because that implies some extra
4456 * checks (offline, etc) that we don't want here. This is limited to
4457 * leaf devices, because otherwise closing the device will affect other
4458 * children.
34dc7c2f 4459 */
428870ff
BB
4460 if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
4461 vd->vdev_ops->vdev_op_leaf)
34dc7c2f
BB
4462 vd->vdev_ops->vdev_op_close(vd);
4463
4464 if (vd->vdev_removed &&
4465 state == VDEV_STATE_CANT_OPEN &&
4466 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
4467 /*
4468 * If the previous state is set to VDEV_STATE_REMOVED, then this
4469 * device was previously marked removed and someone attempted to
4470 * reopen it. If this failed due to a nonexistent device, then
4471 * keep the device in the REMOVED state. We also let this be if
4472 * it is one of our special test online cases, which is only
4473 * attempting to online the device and shouldn't generate an FMA
4474 * fault.
4475 */
4476 vd->vdev_state = VDEV_STATE_REMOVED;
4477 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
4478 } else if (state == VDEV_STATE_REMOVED) {
34dc7c2f
BB
4479 vd->vdev_removed = B_TRUE;
4480 } else if (state == VDEV_STATE_CANT_OPEN) {
4481 /*
572e2857
BB
4482 * If we fail to open a vdev during an import or recovery, we
4483 * mark it as "not available", which signifies that it was
4484 * never there to begin with. Failure to open such a device
4485 * is not considered an error.
34dc7c2f 4486 */
572e2857
BB
4487 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
4488 spa_load_state(spa) == SPA_LOAD_RECOVER) &&
34dc7c2f
BB
4489 vd->vdev_ops->vdev_op_leaf)
4490 vd->vdev_not_present = 1;
4491
4492 /*
4493 * Post the appropriate ereport. If the 'prevstate' field is
4494 * set to something other than VDEV_STATE_UNKNOWN, it indicates
4495 * that this is part of a vdev_reopen(). In this case, we don't
4496 * want to post the ereport if the device was already in the
4497 * CANT_OPEN state beforehand.
4498 *
4499 * If the 'checkremove' flag is set, then this is an attempt to
4500 * online the device in response to an insertion event. If we
4501 * hit this case, then we have detected an insertion event for a
4502 * faulted or offline device that wasn't in the removed state.
4503 * In this scenario, we don't post an ereport because we are
4504 * about to replace the device, or attempt an online with
4505 * vdev_forcefault, which will generate the fault for us.
4506 */
4507 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
4508 !vd->vdev_not_present && !vd->vdev_checkremove &&
b128c09f 4509 vd != spa->spa_root_vdev) {
34dc7c2f
BB
4510 const char *class;
4511
4512 switch (aux) {
4513 case VDEV_AUX_OPEN_FAILED:
4514 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
4515 break;
4516 case VDEV_AUX_CORRUPT_DATA:
4517 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
4518 break;
4519 case VDEV_AUX_NO_REPLICAS:
4520 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
4521 break;
4522 case VDEV_AUX_BAD_GUID_SUM:
4523 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
4524 break;
4525 case VDEV_AUX_TOO_SMALL:
4526 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
4527 break;
4528 case VDEV_AUX_BAD_LABEL:
4529 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
4530 break;
ff61d1a4 4531 case VDEV_AUX_BAD_ASHIFT:
4532 class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT;
4533 break;
34dc7c2f
BB
4534 default:
4535 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
4536 }
4537
b5256303
TC
4538 zfs_ereport_post(class, spa, vd, NULL, NULL,
4539 save_state, 0);
34dc7c2f
BB
4540 }
4541
4542 /* Erase any notion of persistent removed state */
4543 vd->vdev_removed = B_FALSE;
4544 } else {
4545 vd->vdev_removed = B_FALSE;
4546 }
4547
d02ca379
DB
4548 /*
4549 * Notify ZED of any significant state-change on a leaf vdev.
4550 *
d02ca379 4551 */
6078881a
TH
4552 if (vd->vdev_ops->vdev_op_leaf) {
4553 /* preserve original state from a vdev_reopen() */
4554 if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) &&
4555 (vd->vdev_prevstate != vd->vdev_state) &&
4556 (save_state <= VDEV_STATE_CLOSED))
4557 save_state = vd->vdev_prevstate;
4558
4559 /* filter out state change due to initial vdev_open */
4560 if (save_state > VDEV_STATE_CLOSED)
4561 zfs_post_state_change(spa, vd, save_state);
d02ca379
DB
4562 }
4563
9babb374
BB
4564 if (!isopen && vd->vdev_parent)
4565 vdev_propagate_state(vd->vdev_parent);
34dc7c2f 4566}
b128c09f 4567
6cb8e530
PZ
4568boolean_t
4569vdev_children_are_offline(vdev_t *vd)
4570{
4571 ASSERT(!vd->vdev_ops->vdev_op_leaf);
4572
4573 for (uint64_t i = 0; i < vd->vdev_children; i++) {
4574 if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE)
4575 return (B_FALSE);
4576 }
4577
4578 return (B_TRUE);
4579}
4580
b128c09f
BB
4581/*
4582 * Check the vdev configuration to ensure that it's capable of supporting
e550644f 4583 * a root pool. We do not support partial configuration.
b128c09f
BB
4584 */
4585boolean_t
4586vdev_is_bootable(vdev_t *vd)
4587{
b128c09f 4588 if (!vd->vdev_ops->vdev_op_leaf) {
e550644f 4589 const char *vdev_type = vd->vdev_ops->vdev_op_type;
b128c09f 4590
a1d477c2
MA
4591 if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0 ||
4592 strcmp(vdev_type, VDEV_TYPE_INDIRECT) == 0) {
b128c09f 4593 return (B_FALSE);
a1d477c2 4594 }
b128c09f
BB
4595 }
4596
e550644f 4597 for (int c = 0; c < vd->vdev_children; c++) {
b128c09f
BB
4598 if (!vdev_is_bootable(vd->vdev_child[c]))
4599 return (B_FALSE);
4600 }
4601 return (B_TRUE);
4602}
9babb374 4603
a1d477c2
MA
4604boolean_t
4605vdev_is_concrete(vdev_t *vd)
4606{
4607 vdev_ops_t *ops = vd->vdev_ops;
4608 if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
4609 ops == &vdev_missing_ops || ops == &vdev_root_ops) {
4610 return (B_FALSE);
4611 } else {
4612 return (B_TRUE);
4613 }
4614}
4615
572e2857
BB
4616/*
4617 * Determine if a log device has valid content. If the vdev was
4618 * removed or faulted in the MOS config then we know that
4619 * the content on the log device has already been written to the pool.
4620 */
4621boolean_t
4622vdev_log_state_valid(vdev_t *vd)
4623{
4624 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
4625 !vd->vdev_removed)
4626 return (B_TRUE);
4627
1c27024e 4628 for (int c = 0; c < vd->vdev_children; c++)
572e2857
BB
4629 if (vdev_log_state_valid(vd->vdev_child[c]))
4630 return (B_TRUE);
4631
4632 return (B_FALSE);
4633}
4634
9babb374
BB
4635/*
4636 * Expand a vdev if possible.
4637 */
4638void
4639vdev_expand(vdev_t *vd, uint64_t txg)
4640{
4641 ASSERT(vd->vdev_top == vd);
4642 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
7637ef8d 4643 ASSERT(vdev_is_concrete(vd));
9babb374 4644
a1d477c2
MA
4645 vdev_set_deflate_ratio(vd);
4646
cc99f275
DB
4647 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count &&
4648 vdev_is_concrete(vd)) {
4649 vdev_metaslab_group_create(vd);
9babb374
BB
4650 VERIFY(vdev_metaslab_init(vd, txg) == 0);
4651 vdev_config_dirty(vd);
4652 }
4653}
428870ff
BB
4654
4655/*
4656 * Split a vdev.
4657 */
4658void
4659vdev_split(vdev_t *vd)
4660{
4661 vdev_t *cvd, *pvd = vd->vdev_parent;
4662
4663 vdev_remove_child(pvd, vd);
4664 vdev_compact_children(pvd);
4665
4666 cvd = pvd->vdev_child[0];
4667 if (pvd->vdev_children == 1) {
4668 vdev_remove_parent(cvd);
4669 cvd->vdev_splitting = B_TRUE;
4670 }
4671 vdev_propagate_state(cvd);
4672}
c28b2279 4673
cc92e9d0 4674void
8fb1ede1 4675vdev_deadman(vdev_t *vd, char *tag)
cc92e9d0 4676{
1c27024e 4677 for (int c = 0; c < vd->vdev_children; c++) {
cc92e9d0
GW
4678 vdev_t *cvd = vd->vdev_child[c];
4679
8fb1ede1 4680 vdev_deadman(cvd, tag);
cc92e9d0
GW
4681 }
4682
4683 if (vd->vdev_ops->vdev_op_leaf) {
4684 vdev_queue_t *vq = &vd->vdev_queue;
4685
4686 mutex_enter(&vq->vq_lock);
e8b96c60 4687 if (avl_numnodes(&vq->vq_active_tree) > 0) {
cc92e9d0
GW
4688 spa_t *spa = vd->vdev_spa;
4689 zio_t *fio;
4690 uint64_t delta;
4691
8fb1ede1
BB
4692 zfs_dbgmsg("slow vdev: %s has %d active IOs",
4693 vd->vdev_path, avl_numnodes(&vq->vq_active_tree));
4694
cc92e9d0
GW
4695 /*
4696 * Look at the head of all the pending queues,
4697 * if any I/O has been outstanding for longer than
8fb1ede1 4698 * the spa_deadman_synctime invoke the deadman logic.
cc92e9d0 4699 */
e8b96c60 4700 fio = avl_first(&vq->vq_active_tree);
cb682a17 4701 delta = gethrtime() - fio->io_timestamp;
8fb1ede1
BB
4702 if (delta > spa_deadman_synctime(spa))
4703 zio_deadman(fio, tag);
cc92e9d0
GW
4704 }
4705 mutex_exit(&vq->vq_lock);
4706 }
4707}
4708
80a91e74
TC
4709void
4710vdev_set_deferred_resilver(spa_t *spa, vdev_t *vd)
4711{
4021ba4c
TC
4712 for (uint64_t i = 0; i < vd->vdev_children; i++)
4713 vdev_set_deferred_resilver(spa, vd->vdev_child[i]);
4714
4715 if (!vd->vdev_ops->vdev_op_leaf || !vdev_writeable(vd) ||
4716 range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
4717 return;
4718 }
4719
80a91e74
TC
4720 vd->vdev_resilver_deferred = B_TRUE;
4721 spa->spa_resilver_deferred = B_TRUE;
4722}
4723
1b939560
BB
4724/*
4725 * Translate a logical range to the physical range for the specified vdev_t.
4726 * This function is initially called with a leaf vdev and will walk each
4727 * parent vdev until it reaches a top-level vdev. Once the top-level is
4728 * reached the physical range is initialized and the recursive function
4729 * begins to unwind. As it unwinds it calls the parent's vdev specific
4730 * translation function to do the real conversion.
4731 */
4732void
4733vdev_xlate(vdev_t *vd, const range_seg_t *logical_rs, range_seg_t *physical_rs)
4734{
4735 /*
4736 * Walk up the vdev tree
4737 */
4738 if (vd != vd->vdev_top) {
4739 vdev_xlate(vd->vdev_parent, logical_rs, physical_rs);
4740 } else {
4741 /*
4742 * We've reached the top-level vdev, initialize the
4743 * physical range to the logical range and start to
4744 * unwind.
4745 */
4746 physical_rs->rs_start = logical_rs->rs_start;
4747 physical_rs->rs_end = logical_rs->rs_end;
4748 return;
4749 }
4750
4751 vdev_t *pvd = vd->vdev_parent;
4752 ASSERT3P(pvd, !=, NULL);
4753 ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL);
4754
4755 /*
4756 * As this recursive function unwinds, translate the logical
4757 * range into its physical components by calling the
4758 * vdev specific translate function.
4759 */
4760 range_seg_t intermediate = { { { 0, 0 } } };
4761 pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate);
4762
4763 physical_rs->rs_start = intermediate.rs_start;
4764 physical_rs->rs_end = intermediate.rs_end;
4765}
4766
93ce2b4c 4767#if defined(_KERNEL)
c28b2279
BB
4768EXPORT_SYMBOL(vdev_fault);
4769EXPORT_SYMBOL(vdev_degrade);
4770EXPORT_SYMBOL(vdev_online);
4771EXPORT_SYMBOL(vdev_offline);
4772EXPORT_SYMBOL(vdev_clear);
1b939560 4773
4ea3f864 4774/* BEGIN CSTYLED */
c853f382
SD
4775module_param(zfs_vdev_default_ms_count, int, 0644);
4776MODULE_PARM_DESC(zfs_vdev_default_ms_count,
e4e94ca3 4777 "Target number of metaslabs per top-level vdev");
80d52c39 4778
93e28d66
SD
4779module_param(zfs_vdev_default_ms_shift, int, 0644);
4780MODULE_PARM_DESC(zfs_vdev_default_ms_shift,
4781 "Default limit for metaslab size");
4782
c853f382
SD
4783module_param(zfs_vdev_min_ms_count, int, 0644);
4784MODULE_PARM_DESC(zfs_vdev_min_ms_count,
d2734cce
SD
4785 "Minimum number of metaslabs per top-level vdev");
4786
c853f382
SD
4787module_param(zfs_vdev_ms_count_limit, int, 0644);
4788MODULE_PARM_DESC(zfs_vdev_ms_count_limit,
e4e94ca3
DB
4789 "Practical upper limit of total metaslabs per top-level vdev");
4790
ad796b8a
TH
4791module_param(zfs_slow_io_events_per_second, uint, 0644);
4792MODULE_PARM_DESC(zfs_slow_io_events_per_second,
4793 "Rate limit slow IO (delay) events to this many per second");
80d52c39 4794
ad796b8a
TH
4795module_param(zfs_checksum_events_per_second, uint, 0644);
4796MODULE_PARM_DESC(zfs_checksum_events_per_second, "Rate limit checksum events "
80d52c39
TH
4797 "to this many checksum errors per second (do not set below zed"
4798 "threshold).");
02638a30
TC
4799
4800module_param(zfs_scan_ignore_errors, int, 0644);
4801MODULE_PARM_DESC(zfs_scan_ignore_errors,
4802 "Ignore errors during resilver/scrub");
6cb8e530
PZ
4803
4804module_param(vdev_validate_skip, int, 0644);
4805MODULE_PARM_DESC(vdev_validate_skip,
4806 "Bypass vdev_validate()");
53b1f5ea
PS
4807
4808module_param(zfs_nocacheflush, int, 0644);
4809MODULE_PARM_DESC(zfs_nocacheflush, "Disable cache flushes");
4ea3f864 4810/* END CSTYLED */
c28b2279 4811#endif