]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/vdev_indirect.c
Revert "Allow ECKSUM in vdev_checkpoint_sm_object()"
[mirror_zfs.git] / module / zfs / vdev_indirect.c
CommitLineData
a1d477c2
MA
1/*
2 * CDDL HEADER START
3 *
4 * This file and its contents are supplied under the terms of the
5 * Common Development and Distribution License ("CDDL"), version 1.0.
6 * You may only use this file in accordance with the terms of version
7 * 1.0 of the CDDL.
8 *
9 * A full copy of the text of the CDDL should have accompanied this
10 * source. A copy of the CDDL is also available via the Internet at
11 * http://www.illumos.org/license/CDDL.
12 *
13 * CDDL HEADER END
14 */
15
16/*
4bf8108e 17 * Copyright (c) 2014, 2017 by Delphix. All rights reserved.
a1d477c2
MA
18 */
19
20#include <sys/zfs_context.h>
21#include <sys/spa.h>
22#include <sys/spa_impl.h>
23#include <sys/vdev_impl.h>
24#include <sys/fs/zfs.h>
25#include <sys/zio.h>
9e052db4 26#include <sys/zio_checksum.h>
a1d477c2
MA
27#include <sys/metaslab.h>
28#include <sys/refcount.h>
29#include <sys/dmu.h>
30#include <sys/vdev_indirect_mapping.h>
31#include <sys/dmu_tx.h>
32#include <sys/dsl_synctask.h>
33#include <sys/zap.h>
9d5b5245
SD
34#include <sys/abd.h>
35#include <sys/zthr.h>
a1d477c2
MA
36
37/*
38 * An indirect vdev corresponds to a vdev that has been removed. Since
39 * we cannot rewrite block pointers of snapshots, etc., we keep a
40 * mapping from old location on the removed device to the new location
41 * on another device in the pool and use this mapping whenever we need
42 * to access the DVA. Unfortunately, this mapping did not respect
43 * logical block boundaries when it was first created, and so a DVA on
44 * this indirect vdev may be "split" into multiple sections that each
45 * map to a different location. As a consequence, not all DVAs can be
46 * translated to an equivalent new DVA. Instead we must provide a
47 * "vdev_remap" operation that executes a callback on each contiguous
48 * segment of the new location. This function is used in multiple ways:
49 *
9e052db4
MA
50 * - i/os to this vdev use the callback to determine where the
51 * data is now located, and issue child i/os for each segment's new
52 * location.
a1d477c2 53 *
9e052db4 54 * - frees and claims to this vdev use the callback to free or claim
a1d477c2
MA
55 * each mapped segment. (Note that we don't actually need to claim
56 * log blocks on indirect vdevs, because we don't allocate to
57 * removing vdevs. However, zdb uses zio_claim() for its leak
58 * detection.)
59 */
60
61/*
62 * "Big theory statement" for how we mark blocks obsolete.
63 *
64 * When a block on an indirect vdev is freed or remapped, a section of
65 * that vdev's mapping may no longer be referenced (aka "obsolete"). We
66 * keep track of how much of each mapping entry is obsolete. When
67 * an entry becomes completely obsolete, we can remove it, thus reducing
68 * the memory used by the mapping. The complete picture of obsolescence
69 * is given by the following data structures, described below:
70 * - the entry-specific obsolete count
71 * - the vdev-specific obsolete spacemap
72 * - the pool-specific obsolete bpobj
73 *
74 * == On disk data structures used ==
75 *
76 * We track the obsolete space for the pool using several objects. Each
77 * of these objects is created on demand and freed when no longer
78 * needed, and is assumed to be empty if it does not exist.
79 * SPA_FEATURE_OBSOLETE_COUNTS includes the count of these objects.
80 *
81 * - Each vic_mapping_object (associated with an indirect vdev) can
82 * have a vimp_counts_object. This is an array of uint32_t's
83 * with the same number of entries as the vic_mapping_object. When
84 * the mapping is condensed, entries from the vic_obsolete_sm_object
85 * (see below) are folded into the counts. Therefore, each
86 * obsolete_counts entry tells us the number of bytes in the
87 * corresponding mapping entry that were not referenced when the
88 * mapping was last condensed.
89 *
90 * - Each indirect or removing vdev can have a vic_obsolete_sm_object.
91 * This is a space map containing an alloc entry for every DVA that
92 * has been obsoleted since the last time this indirect vdev was
93 * condensed. We use this object in order to improve performance
94 * when marking a DVA as obsolete. Instead of modifying an arbitrary
95 * offset of the vimp_counts_object, we only need to append an entry
96 * to the end of this object. When a DVA becomes obsolete, it is
97 * added to the obsolete space map. This happens when the DVA is
98 * freed, remapped and not referenced by a snapshot, or the last
99 * snapshot referencing it is destroyed.
100 *
101 * - Each dataset can have a ds_remap_deadlist object. This is a
102 * deadlist object containing all blocks that were remapped in this
103 * dataset but referenced in a previous snapshot. Blocks can *only*
104 * appear on this list if they were remapped (dsl_dataset_block_remapped);
105 * blocks that were killed in a head dataset are put on the normal
106 * ds_deadlist and marked obsolete when they are freed.
107 *
108 * - The pool can have a dp_obsolete_bpobj. This is a list of blocks
109 * in the pool that need to be marked obsolete. When a snapshot is
110 * destroyed, we move some of the ds_remap_deadlist to the obsolete
111 * bpobj (see dsl_destroy_snapshot_handle_remaps()). We then
112 * asynchronously process the obsolete bpobj, moving its entries to
113 * the specific vdevs' obsolete space maps.
114 *
115 * == Summary of how we mark blocks as obsolete ==
116 *
117 * - When freeing a block: if any DVA is on an indirect vdev, append to
118 * vic_obsolete_sm_object.
119 * - When remapping a block, add dva to ds_remap_deadlist (if prev snap
120 * references; otherwise append to vic_obsolete_sm_object).
121 * - When freeing a snapshot: move parts of ds_remap_deadlist to
122 * dp_obsolete_bpobj (same algorithm as ds_deadlist).
123 * - When syncing the spa: process dp_obsolete_bpobj, moving ranges to
124 * individual vdev's vic_obsolete_sm_object.
125 */
126
127/*
128 * "Big theory statement" for how we condense indirect vdevs.
129 *
130 * Condensing an indirect vdev's mapping is the process of determining
131 * the precise counts of obsolete space for each mapping entry (by
132 * integrating the obsolete spacemap into the obsolete counts) and
133 * writing out a new mapping that contains only referenced entries.
134 *
135 * We condense a vdev when we expect the mapping to shrink (see
136 * vdev_indirect_should_condense()), but only perform one condense at a
137 * time to limit the memory usage. In addition, we use a separate
138 * open-context thread (spa_condense_indirect_thread) to incrementally
139 * create the new mapping object in a way that minimizes the impact on
140 * the rest of the system.
141 *
142 * == Generating a new mapping ==
143 *
144 * To generate a new mapping, we follow these steps:
145 *
146 * 1. Save the old obsolete space map and create a new mapping object
147 * (see spa_condense_indirect_start_sync()). This initializes the
148 * spa_condensing_indirect_phys with the "previous obsolete space map",
149 * which is now read only. Newly obsolete DVAs will be added to a
150 * new (initially empty) obsolete space map, and will not be
151 * considered as part of this condense operation.
152 *
153 * 2. Construct in memory the precise counts of obsolete space for each
154 * mapping entry, by incorporating the obsolete space map into the
155 * counts. (See vdev_indirect_mapping_load_obsolete_{counts,spacemap}().)
156 *
157 * 3. Iterate through each mapping entry, writing to the new mapping any
158 * entries that are not completely obsolete (i.e. which don't have
159 * obsolete count == mapping length). (See
160 * spa_condense_indirect_generate_new_mapping().)
161 *
162 * 4. Destroy the old mapping object and switch over to the new one
163 * (spa_condense_indirect_complete_sync).
164 *
165 * == Restarting from failure ==
166 *
167 * To restart the condense when we import/open the pool, we must start
168 * at the 2nd step above: reconstruct the precise counts in memory,
169 * based on the space map + counts. Then in the 3rd step, we start
170 * iterating where we left off: at vimp_max_offset of the new mapping
171 * object.
172 */
173
0dc2f70c 174int zfs_condense_indirect_vdevs_enable = B_TRUE;
a1d477c2
MA
175
176/*
177 * Condense if at least this percent of the bytes in the mapping is
178 * obsolete. With the default of 25%, the amount of space mapped
179 * will be reduced to 1% of its original size after at most 16
180 * condenses. Higher values will condense less often (causing less
181 * i/o); lower values will reduce the mapping size more quickly.
182 */
183int zfs_indirect_condense_obsolete_pct = 25;
184
185/*
186 * Condense if the obsolete space map takes up more than this amount of
187 * space on disk (logically). This limits the amount of disk space
188 * consumed by the obsolete space map; the default of 1GB is small enough
189 * that we typically don't mind "wasting" it.
190 */
0dc2f70c 191unsigned long zfs_condense_max_obsolete_bytes = 1024 * 1024 * 1024;
a1d477c2
MA
192
193/*
194 * Don't bother condensing if the mapping uses less than this amount of
195 * memory. The default of 128KB is considered a "trivial" amount of
196 * memory and not worth reducing.
197 */
198unsigned long zfs_condense_min_mapping_bytes = 128 * 1024;
199
200/*
201 * This is used by the test suite so that it can ensure that certain
202 * actions happen while in the middle of a condense (which might otherwise
203 * complete too quickly). If used to reduce the performance impact of
204 * condensing in production, a maximum value of 1 should be sufficient.
205 */
206int zfs_condense_indirect_commit_entry_delay_ms = 0;
207
9e052db4 208/*
4589f3ae
BB
209 * If an indirect split block contains more than this many possible unique
210 * combinations when being reconstructed, consider it too computationally
211 * expensive to check them all. Instead, try at most 100 randomly-selected
212 * combinations each time the block is accessed. This allows all segment
213 * copies to participate fairly in the reconstruction when all combinations
214 * cannot be checked and prevents repeated use of one bad copy.
9e052db4 215 */
1258bd77
BB
216int zfs_reconstruct_indirect_combinations_max = 256;
217
218
219/*
220 * Enable to simulate damaged segments and validate reconstruction. This
221 * is intentionally not exposed as a module parameter.
222 */
223unsigned long zfs_reconstruct_indirect_damage_fraction = 0;
9e052db4
MA
224
225/*
226 * The indirect_child_t represents the vdev that we will read from, when we
227 * need to read all copies of the data (e.g. for scrub or reconstruction).
228 * For plain (non-mirror) top-level vdevs (i.e. is_vdev is not a mirror),
229 * ic_vdev is the same as is_vdev. However, for mirror top-level vdevs,
230 * ic_vdev is a child of the mirror.
231 */
232typedef struct indirect_child {
233 abd_t *ic_data;
234 vdev_t *ic_vdev;
4589f3ae
BB
235
236 /*
1258bd77
BB
237 * ic_duplicate is NULL when the ic_data contents are unique, when it
238 * is determined to be a duplicate it references the primary child.
4589f3ae 239 */
1258bd77
BB
240 struct indirect_child *ic_duplicate;
241 list_node_t ic_node; /* node on is_unique_child */
9e052db4
MA
242} indirect_child_t;
243
244/*
245 * The indirect_split_t represents one mapped segment of an i/o to the
246 * indirect vdev. For non-split (contiguously-mapped) blocks, there will be
247 * only one indirect_split_t, with is_split_offset==0 and is_size==io_size.
248 * For split blocks, there will be several of these.
249 */
250typedef struct indirect_split {
251 list_node_t is_node; /* link on iv_splits */
252
253 /*
254 * is_split_offset is the offset into the i/o.
255 * This is the sum of the previous splits' is_size's.
256 */
257 uint64_t is_split_offset;
258
259 vdev_t *is_vdev; /* top-level vdev */
260 uint64_t is_target_offset; /* offset on is_vdev */
261 uint64_t is_size;
262 int is_children; /* number of entries in is_child[] */
1258bd77
BB
263 int is_unique_children; /* number of entries in is_unique_child */
264 list_t is_unique_child;
9e052db4
MA
265
266 /*
267 * is_good_child is the child that we are currently using to
268 * attempt reconstruction.
269 */
1258bd77 270 indirect_child_t *is_good_child;
9e052db4
MA
271
272 indirect_child_t is_child[1]; /* variable-length */
273} indirect_split_t;
274
275/*
276 * The indirect_vsd_t is associated with each i/o to the indirect vdev.
277 * It is the "Vdev-Specific Data" in the zio_t's io_vsd.
278 */
279typedef struct indirect_vsd {
280 boolean_t iv_split_block;
281 boolean_t iv_reconstruct;
1258bd77
BB
282 uint64_t iv_unique_combinations;
283 uint64_t iv_attempts;
284 uint64_t iv_attempts_max;
9e052db4
MA
285
286 list_t iv_splits; /* list of indirect_split_t's */
287} indirect_vsd_t;
288
289static void
290vdev_indirect_map_free(zio_t *zio)
291{
292 indirect_vsd_t *iv = zio->io_vsd;
293
294 indirect_split_t *is;
295 while ((is = list_head(&iv->iv_splits)) != NULL) {
296 for (int c = 0; c < is->is_children; c++) {
297 indirect_child_t *ic = &is->is_child[c];
298 if (ic->ic_data != NULL)
299 abd_free(ic->ic_data);
300 }
301 list_remove(&iv->iv_splits, is);
1258bd77
BB
302
303 indirect_child_t *ic;
304 while ((ic = list_head(&is->is_unique_child)) != NULL)
305 list_remove(&is->is_unique_child, ic);
306
307 list_destroy(&is->is_unique_child);
308
9e052db4
MA
309 kmem_free(is,
310 offsetof(indirect_split_t, is_child[is->is_children]));
311 }
312 kmem_free(iv, sizeof (*iv));
313}
314
315static const zio_vsd_ops_t vdev_indirect_vsd_ops = {
089500e7
MW
316 .vsd_free = vdev_indirect_map_free,
317 .vsd_cksum_report = zio_vsd_default_cksum_report
9e052db4
MA
318};
319
a1d477c2 320/*
d2734cce 321 * Mark the given offset and size as being obsolete.
a1d477c2
MA
322 */
323void
d2734cce 324vdev_indirect_mark_obsolete(vdev_t *vd, uint64_t offset, uint64_t size)
a1d477c2
MA
325{
326 spa_t *spa = vd->vdev_spa;
d2734cce 327
a1d477c2
MA
328 ASSERT3U(vd->vdev_indirect_config.vic_mapping_object, !=, 0);
329 ASSERT(vd->vdev_removing || vd->vdev_ops == &vdev_indirect_ops);
330 ASSERT(size > 0);
331 VERIFY(vdev_indirect_mapping_entry_for_offset(
332 vd->vdev_indirect_mapping, offset) != NULL);
333
334 if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
335 mutex_enter(&vd->vdev_obsolete_lock);
336 range_tree_add(vd->vdev_obsolete_segments, offset, size);
337 mutex_exit(&vd->vdev_obsolete_lock);
d2734cce 338 vdev_dirty(vd, 0, NULL, spa_syncing_txg(spa));
a1d477c2
MA
339 }
340}
341
342/*
343 * Mark the DVA vdev_id:offset:size as being obsolete in the given tx. This
344 * wrapper is provided because the DMU does not know about vdev_t's and
345 * cannot directly call vdev_indirect_mark_obsolete.
346 */
347void
348spa_vdev_indirect_mark_obsolete(spa_t *spa, uint64_t vdev_id, uint64_t offset,
349 uint64_t size, dmu_tx_t *tx)
350{
351 vdev_t *vd = vdev_lookup_top(spa, vdev_id);
352 ASSERT(dmu_tx_is_syncing(tx));
353
354 /* The DMU can only remap indirect vdevs. */
355 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
d2734cce 356 vdev_indirect_mark_obsolete(vd, offset, size);
a1d477c2
MA
357}
358
359static spa_condensing_indirect_t *
360spa_condensing_indirect_create(spa_t *spa)
361{
362 spa_condensing_indirect_phys_t *scip =
363 &spa->spa_condensing_indirect_phys;
364 spa_condensing_indirect_t *sci = kmem_zalloc(sizeof (*sci), KM_SLEEP);
365 objset_t *mos = spa->spa_meta_objset;
366
367 for (int i = 0; i < TXG_SIZE; i++) {
368 list_create(&sci->sci_new_mapping_entries[i],
369 sizeof (vdev_indirect_mapping_entry_t),
370 offsetof(vdev_indirect_mapping_entry_t, vime_node));
371 }
372
373 sci->sci_new_mapping =
374 vdev_indirect_mapping_open(mos, scip->scip_next_mapping_object);
375
376 return (sci);
377}
378
379static void
380spa_condensing_indirect_destroy(spa_condensing_indirect_t *sci)
381{
382 for (int i = 0; i < TXG_SIZE; i++)
383 list_destroy(&sci->sci_new_mapping_entries[i]);
384
385 if (sci->sci_new_mapping != NULL)
386 vdev_indirect_mapping_close(sci->sci_new_mapping);
387
388 kmem_free(sci, sizeof (*sci));
389}
390
391boolean_t
392vdev_indirect_should_condense(vdev_t *vd)
393{
394 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
395 spa_t *spa = vd->vdev_spa;
396
397 ASSERT(dsl_pool_sync_context(spa->spa_dsl_pool));
398
399 if (!zfs_condense_indirect_vdevs_enable)
400 return (B_FALSE);
401
402 /*
403 * We can only condense one indirect vdev at a time.
404 */
405 if (spa->spa_condensing_indirect != NULL)
406 return (B_FALSE);
407
408 if (spa_shutting_down(spa))
409 return (B_FALSE);
410
411 /*
412 * The mapping object size must not change while we are
413 * condensing, so we can only condense indirect vdevs
414 * (not vdevs that are still in the middle of being removed).
415 */
416 if (vd->vdev_ops != &vdev_indirect_ops)
417 return (B_FALSE);
418
419 /*
420 * If nothing new has been marked obsolete, there is no
421 * point in condensing.
422 */
423 if (vd->vdev_obsolete_sm == NULL) {
424 ASSERT0(vdev_obsolete_sm_object(vd));
425 return (B_FALSE);
426 }
427
428 ASSERT(vd->vdev_obsolete_sm != NULL);
429
430 ASSERT3U(vdev_obsolete_sm_object(vd), ==,
431 space_map_object(vd->vdev_obsolete_sm));
432
433 uint64_t bytes_mapped = vdev_indirect_mapping_bytes_mapped(vim);
434 uint64_t bytes_obsolete = space_map_allocated(vd->vdev_obsolete_sm);
435 uint64_t mapping_size = vdev_indirect_mapping_size(vim);
436 uint64_t obsolete_sm_size = space_map_length(vd->vdev_obsolete_sm);
437
438 ASSERT3U(bytes_obsolete, <=, bytes_mapped);
439
440 /*
441 * If a high percentage of the bytes that are mapped have become
442 * obsolete, condense (unless the mapping is already small enough).
443 * This has a good chance of reducing the amount of memory used
444 * by the mapping.
445 */
446 if (bytes_obsolete * 100 / bytes_mapped >=
447 zfs_indirect_condense_obsolete_pct &&
448 mapping_size > zfs_condense_min_mapping_bytes) {
449 zfs_dbgmsg("should condense vdev %llu because obsolete "
450 "spacemap covers %d%% of %lluMB mapping",
451 (u_longlong_t)vd->vdev_id,
452 (int)(bytes_obsolete * 100 / bytes_mapped),
453 (u_longlong_t)bytes_mapped / 1024 / 1024);
454 return (B_TRUE);
455 }
456
457 /*
458 * If the obsolete space map takes up too much space on disk,
459 * condense in order to free up this disk space.
460 */
461 if (obsolete_sm_size >= zfs_condense_max_obsolete_bytes) {
462 zfs_dbgmsg("should condense vdev %llu because obsolete sm "
463 "length %lluMB >= max size %lluMB",
464 (u_longlong_t)vd->vdev_id,
465 (u_longlong_t)obsolete_sm_size / 1024 / 1024,
466 (u_longlong_t)zfs_condense_max_obsolete_bytes /
467 1024 / 1024);
468 return (B_TRUE);
469 }
470
471 return (B_FALSE);
472}
473
474/*
475 * This sync task completes (finishes) a condense, deleting the old
476 * mapping and replacing it with the new one.
477 */
478static void
479spa_condense_indirect_complete_sync(void *arg, dmu_tx_t *tx)
480{
481 spa_condensing_indirect_t *sci = arg;
482 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
483 spa_condensing_indirect_phys_t *scip =
484 &spa->spa_condensing_indirect_phys;
485 vdev_t *vd = vdev_lookup_top(spa, scip->scip_vdev);
486 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
487 objset_t *mos = spa->spa_meta_objset;
488 vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping;
489 uint64_t old_count = vdev_indirect_mapping_num_entries(old_mapping);
490 uint64_t new_count =
491 vdev_indirect_mapping_num_entries(sci->sci_new_mapping);
492
493 ASSERT(dmu_tx_is_syncing(tx));
494 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
495 ASSERT3P(sci, ==, spa->spa_condensing_indirect);
496 for (int i = 0; i < TXG_SIZE; i++) {
497 ASSERT(list_is_empty(&sci->sci_new_mapping_entries[i]));
498 }
499 ASSERT(vic->vic_mapping_object != 0);
500 ASSERT3U(vd->vdev_id, ==, scip->scip_vdev);
501 ASSERT(scip->scip_next_mapping_object != 0);
502 ASSERT(scip->scip_prev_obsolete_sm_object != 0);
503
504 /*
505 * Reset vdev_indirect_mapping to refer to the new object.
506 */
507 rw_enter(&vd->vdev_indirect_rwlock, RW_WRITER);
508 vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
509 vd->vdev_indirect_mapping = sci->sci_new_mapping;
510 rw_exit(&vd->vdev_indirect_rwlock);
511
512 sci->sci_new_mapping = NULL;
513 vdev_indirect_mapping_free(mos, vic->vic_mapping_object, tx);
514 vic->vic_mapping_object = scip->scip_next_mapping_object;
515 scip->scip_next_mapping_object = 0;
516
517 space_map_free_obj(mos, scip->scip_prev_obsolete_sm_object, tx);
518 spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
519 scip->scip_prev_obsolete_sm_object = 0;
520
521 scip->scip_vdev = 0;
522
523 VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT,
524 DMU_POOL_CONDENSING_INDIRECT, tx));
525 spa_condensing_indirect_destroy(spa->spa_condensing_indirect);
526 spa->spa_condensing_indirect = NULL;
527
528 zfs_dbgmsg("finished condense of vdev %llu in txg %llu: "
529 "new mapping object %llu has %llu entries "
530 "(was %llu entries)",
531 vd->vdev_id, dmu_tx_get_txg(tx), vic->vic_mapping_object,
532 new_count, old_count);
533
534 vdev_config_dirty(spa->spa_root_vdev);
535}
536
537/*
538 * This sync task appends entries to the new mapping object.
539 */
540static void
541spa_condense_indirect_commit_sync(void *arg, dmu_tx_t *tx)
542{
543 spa_condensing_indirect_t *sci = arg;
544 uint64_t txg = dmu_tx_get_txg(tx);
545 ASSERTV(spa_t *spa = dmu_tx_pool(tx)->dp_spa);
546
547 ASSERT(dmu_tx_is_syncing(tx));
548 ASSERT3P(sci, ==, spa->spa_condensing_indirect);
549
550 vdev_indirect_mapping_add_entries(sci->sci_new_mapping,
551 &sci->sci_new_mapping_entries[txg & TXG_MASK], tx);
552 ASSERT(list_is_empty(&sci->sci_new_mapping_entries[txg & TXG_MASK]));
553}
554
555/*
556 * Open-context function to add one entry to the new mapping. The new
557 * entry will be remembered and written from syncing context.
558 */
559static void
560spa_condense_indirect_commit_entry(spa_t *spa,
561 vdev_indirect_mapping_entry_phys_t *vimep, uint32_t count)
562{
563 spa_condensing_indirect_t *sci = spa->spa_condensing_indirect;
564
565 ASSERT3U(count, <, DVA_GET_ASIZE(&vimep->vimep_dst));
566
567 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
568 dmu_tx_hold_space(tx, sizeof (*vimep) + sizeof (count));
569 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
570 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
571
572 /*
573 * If we are the first entry committed this txg, kick off the sync
574 * task to write to the MOS on our behalf.
575 */
576 if (list_is_empty(&sci->sci_new_mapping_entries[txgoff])) {
577 dsl_sync_task_nowait(dmu_tx_pool(tx),
578 spa_condense_indirect_commit_sync, sci,
579 0, ZFS_SPACE_CHECK_NONE, tx);
580 }
581
582 vdev_indirect_mapping_entry_t *vime =
583 kmem_alloc(sizeof (*vime), KM_SLEEP);
584 vime->vime_mapping = *vimep;
585 vime->vime_obsolete_count = count;
586 list_insert_tail(&sci->sci_new_mapping_entries[txgoff], vime);
587
588 dmu_tx_commit(tx);
589}
590
591static void
592spa_condense_indirect_generate_new_mapping(vdev_t *vd,
9d5b5245 593 uint32_t *obsolete_counts, uint64_t start_index, zthr_t *zthr)
a1d477c2
MA
594{
595 spa_t *spa = vd->vdev_spa;
596 uint64_t mapi = start_index;
597 vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping;
598 uint64_t old_num_entries =
599 vdev_indirect_mapping_num_entries(old_mapping);
600
601 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
602 ASSERT3U(vd->vdev_id, ==, spa->spa_condensing_indirect_phys.scip_vdev);
603
604 zfs_dbgmsg("starting condense of vdev %llu from index %llu",
605 (u_longlong_t)vd->vdev_id,
606 (u_longlong_t)mapi);
607
9d5b5245
SD
608 while (mapi < old_num_entries) {
609
610 if (zthr_iscancelled(zthr)) {
611 zfs_dbgmsg("pausing condense of vdev %llu "
612 "at index %llu", (u_longlong_t)vd->vdev_id,
613 (u_longlong_t)mapi);
614 break;
615 }
616
a1d477c2
MA
617 vdev_indirect_mapping_entry_phys_t *entry =
618 &old_mapping->vim_entries[mapi];
619 uint64_t entry_size = DVA_GET_ASIZE(&entry->vimep_dst);
620 ASSERT3U(obsolete_counts[mapi], <=, entry_size);
621 if (obsolete_counts[mapi] < entry_size) {
622 spa_condense_indirect_commit_entry(spa, entry,
623 obsolete_counts[mapi]);
624
625 /*
626 * This delay may be requested for testing, debugging,
627 * or performance reasons.
628 */
629 hrtime_t now = gethrtime();
630 hrtime_t sleep_until = now + MSEC2NSEC(
631 zfs_condense_indirect_commit_entry_delay_ms);
632 zfs_sleep_until(sleep_until);
633 }
634
635 mapi++;
636 }
a1d477c2
MA
637}
638
9d5b5245
SD
639/* ARGSUSED */
640static boolean_t
641spa_condense_indirect_thread_check(void *arg, zthr_t *zthr)
a1d477c2 642{
9d5b5245
SD
643 spa_t *spa = arg;
644
645 return (spa->spa_condensing_indirect != NULL);
646}
647
648/* ARGSUSED */
649static int
650spa_condense_indirect_thread(void *arg, zthr_t *zthr)
651{
652 spa_t *spa = arg;
653 vdev_t *vd;
654
655 ASSERT3P(spa->spa_condensing_indirect, !=, NULL);
656 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
657 vd = vdev_lookup_top(spa, spa->spa_condensing_indirect_phys.scip_vdev);
658 ASSERT3P(vd, !=, NULL);
659 spa_config_exit(spa, SCL_VDEV, FTAG);
660
a1d477c2
MA
661 spa_condensing_indirect_t *sci = spa->spa_condensing_indirect;
662 spa_condensing_indirect_phys_t *scip =
663 &spa->spa_condensing_indirect_phys;
664 uint32_t *counts;
665 uint64_t start_index;
666 vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping;
667 space_map_t *prev_obsolete_sm = NULL;
668
669 ASSERT3U(vd->vdev_id, ==, scip->scip_vdev);
670 ASSERT(scip->scip_next_mapping_object != 0);
671 ASSERT(scip->scip_prev_obsolete_sm_object != 0);
672 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
673
674 for (int i = 0; i < TXG_SIZE; i++) {
675 /*
676 * The list must start out empty in order for the
677 * _commit_sync() sync task to be properly registered
678 * on the first call to _commit_entry(); so it's wise
679 * to double check and ensure we actually are starting
680 * with empty lists.
681 */
682 ASSERT(list_is_empty(&sci->sci_new_mapping_entries[i]));
683 }
684
685 VERIFY0(space_map_open(&prev_obsolete_sm, spa->spa_meta_objset,
686 scip->scip_prev_obsolete_sm_object, 0, vd->vdev_asize, 0));
687 space_map_update(prev_obsolete_sm);
688 counts = vdev_indirect_mapping_load_obsolete_counts(old_mapping);
689 if (prev_obsolete_sm != NULL) {
690 vdev_indirect_mapping_load_obsolete_spacemap(old_mapping,
691 counts, prev_obsolete_sm);
692 }
693 space_map_close(prev_obsolete_sm);
694
695 /*
696 * Generate new mapping. Determine what index to continue from
697 * based on the max offset that we've already written in the
698 * new mapping.
699 */
700 uint64_t max_offset =
701 vdev_indirect_mapping_max_offset(sci->sci_new_mapping);
702 if (max_offset == 0) {
703 /* We haven't written anything to the new mapping yet. */
704 start_index = 0;
705 } else {
706 /*
707 * Pick up from where we left off. _entry_for_offset()
708 * returns a pointer into the vim_entries array. If
709 * max_offset is greater than any of the mappings
710 * contained in the table NULL will be returned and
711 * that indicates we've exhausted our iteration of the
712 * old_mapping.
713 */
714
715 vdev_indirect_mapping_entry_phys_t *entry =
716 vdev_indirect_mapping_entry_for_offset_or_next(old_mapping,
717 max_offset);
718
719 if (entry == NULL) {
720 /*
721 * We've already written the whole new mapping.
722 * This special value will cause us to skip the
723 * generate_new_mapping step and just do the sync
724 * task to complete the condense.
725 */
726 start_index = UINT64_MAX;
727 } else {
728 start_index = entry - old_mapping->vim_entries;
729 ASSERT3U(start_index, <,
730 vdev_indirect_mapping_num_entries(old_mapping));
731 }
732 }
733
9d5b5245
SD
734 spa_condense_indirect_generate_new_mapping(vd, counts,
735 start_index, zthr);
a1d477c2
MA
736
737 vdev_indirect_mapping_free_obsolete_counts(old_mapping, counts);
738
739 /*
9d5b5245
SD
740 * If the zthr has received a cancellation signal while running
741 * in generate_new_mapping() or at any point after that, then bail
742 * early. We don't want to complete the condense if the spa is
743 * shutting down.
a1d477c2 744 */
9d5b5245
SD
745 if (zthr_iscancelled(zthr))
746 return (0);
747
748 VERIFY0(dsl_sync_task(spa_name(spa), NULL,
d2734cce
SD
749 spa_condense_indirect_complete_sync, sci, 0,
750 ZFS_SPACE_CHECK_EXTRA_RESERVED));
a1d477c2 751
9d5b5245 752 return (0);
a1d477c2
MA
753}
754
755/*
756 * Sync task to begin the condensing process.
757 */
758void
759spa_condense_indirect_start_sync(vdev_t *vd, dmu_tx_t *tx)
760{
761 spa_t *spa = vd->vdev_spa;
762 spa_condensing_indirect_phys_t *scip =
763 &spa->spa_condensing_indirect_phys;
764
765 ASSERT0(scip->scip_next_mapping_object);
766 ASSERT0(scip->scip_prev_obsolete_sm_object);
767 ASSERT0(scip->scip_vdev);
768 ASSERT(dmu_tx_is_syncing(tx));
769 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
770 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_OBSOLETE_COUNTS));
771 ASSERT(vdev_indirect_mapping_num_entries(vd->vdev_indirect_mapping));
772
773 uint64_t obsolete_sm_obj = vdev_obsolete_sm_object(vd);
774 ASSERT(obsolete_sm_obj != 0);
775
776 scip->scip_vdev = vd->vdev_id;
777 scip->scip_next_mapping_object =
778 vdev_indirect_mapping_alloc(spa->spa_meta_objset, tx);
779
780 scip->scip_prev_obsolete_sm_object = obsolete_sm_obj;
781
782 /*
783 * We don't need to allocate a new space map object, since
784 * vdev_indirect_sync_obsolete will allocate one when needed.
785 */
786 space_map_close(vd->vdev_obsolete_sm);
787 vd->vdev_obsolete_sm = NULL;
788 VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
789 VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, tx));
790
791 VERIFY0(zap_add(spa->spa_dsl_pool->dp_meta_objset,
792 DMU_POOL_DIRECTORY_OBJECT,
793 DMU_POOL_CONDENSING_INDIRECT, sizeof (uint64_t),
794 sizeof (*scip) / sizeof (uint64_t), scip, tx));
795
796 ASSERT3P(spa->spa_condensing_indirect, ==, NULL);
797 spa->spa_condensing_indirect = spa_condensing_indirect_create(spa);
798
799 zfs_dbgmsg("starting condense of vdev %llu in txg %llu: "
800 "posm=%llu nm=%llu",
801 vd->vdev_id, dmu_tx_get_txg(tx),
802 (u_longlong_t)scip->scip_prev_obsolete_sm_object,
803 (u_longlong_t)scip->scip_next_mapping_object);
804
9d5b5245 805 zthr_wakeup(spa->spa_condense_zthr);
a1d477c2
MA
806}
807
808/*
809 * Sync to the given vdev's obsolete space map any segments that are no longer
810 * referenced as of the given txg.
811 *
812 * If the obsolete space map doesn't exist yet, create and open it.
813 */
814void
815vdev_indirect_sync_obsolete(vdev_t *vd, dmu_tx_t *tx)
816{
817 spa_t *spa = vd->vdev_spa;
818 ASSERTV(vdev_indirect_config_t *vic = &vd->vdev_indirect_config);
819
820 ASSERT3U(vic->vic_mapping_object, !=, 0);
821 ASSERT(range_tree_space(vd->vdev_obsolete_segments) > 0);
822 ASSERT(vd->vdev_removing || vd->vdev_ops == &vdev_indirect_ops);
823 ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS));
824
825 if (vdev_obsolete_sm_object(vd) == 0) {
826 uint64_t obsolete_sm_object =
d2734cce
SD
827 space_map_alloc(spa->spa_meta_objset,
828 vdev_standard_sm_blksz, tx);
a1d477c2
MA
829
830 ASSERT(vd->vdev_top_zap != 0);
831 VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
832 VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM,
833 sizeof (obsolete_sm_object), 1, &obsolete_sm_object, tx));
834 ASSERT3U(vdev_obsolete_sm_object(vd), !=, 0);
835
836 spa_feature_incr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
837 VERIFY0(space_map_open(&vd->vdev_obsolete_sm,
838 spa->spa_meta_objset, obsolete_sm_object,
839 0, vd->vdev_asize, 0));
840 space_map_update(vd->vdev_obsolete_sm);
841 }
842
843 ASSERT(vd->vdev_obsolete_sm != NULL);
844 ASSERT3U(vdev_obsolete_sm_object(vd), ==,
845 space_map_object(vd->vdev_obsolete_sm));
846
847 space_map_write(vd->vdev_obsolete_sm,
4d044c4c 848 vd->vdev_obsolete_segments, SM_ALLOC, SM_NO_VDEVID, tx);
a1d477c2
MA
849 space_map_update(vd->vdev_obsolete_sm);
850 range_tree_vacate(vd->vdev_obsolete_segments, NULL, NULL);
851}
852
853int
854spa_condense_init(spa_t *spa)
855{
856 int error = zap_lookup(spa->spa_meta_objset,
857 DMU_POOL_DIRECTORY_OBJECT,
858 DMU_POOL_CONDENSING_INDIRECT, sizeof (uint64_t),
859 sizeof (spa->spa_condensing_indirect_phys) / sizeof (uint64_t),
860 &spa->spa_condensing_indirect_phys);
861 if (error == 0) {
862 if (spa_writeable(spa)) {
863 spa->spa_condensing_indirect =
864 spa_condensing_indirect_create(spa);
865 }
866 return (0);
867 } else if (error == ENOENT) {
868 return (0);
869 } else {
870 return (error);
871 }
872}
873
874void
875spa_condense_fini(spa_t *spa)
876{
877 if (spa->spa_condensing_indirect != NULL) {
878 spa_condensing_indirect_destroy(spa->spa_condensing_indirect);
879 spa->spa_condensing_indirect = NULL;
880 }
881}
882
a1d477c2 883void
9d5b5245 884spa_start_indirect_condensing_thread(spa_t *spa)
a1d477c2 885{
9d5b5245
SD
886 ASSERT3P(spa->spa_condense_zthr, ==, NULL);
887 spa->spa_condense_zthr = zthr_create(spa_condense_indirect_thread_check,
888 spa_condense_indirect_thread, spa);
a1d477c2
MA
889}
890
891/*
892 * Gets the obsolete spacemap object from the vdev's ZAP.
893 * Returns the spacemap object, or 0 if it wasn't in the ZAP or the ZAP doesn't
894 * exist yet.
895 */
896int
897vdev_obsolete_sm_object(vdev_t *vd)
898{
899 ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
900 if (vd->vdev_top_zap == 0) {
901 return (0);
902 }
903
904 uint64_t sm_obj = 0;
905 int err;
906 err = zap_lookup(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
907 VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, sizeof (sm_obj), 1, &sm_obj);
908
909 ASSERT(err == 0 || err == ENOENT);
910
911 return (sm_obj);
912}
913
914boolean_t
915vdev_obsolete_counts_are_precise(vdev_t *vd)
916{
917 ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
918 if (vd->vdev_top_zap == 0) {
919 return (B_FALSE);
920 }
921
922 uint64_t val = 0;
923 int err;
924 err = zap_lookup(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
925 VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, sizeof (val), 1, &val);
926
927 ASSERT(err == 0 || err == ENOENT);
928
929 return (val != 0);
930}
931
932/* ARGSUSED */
933static void
934vdev_indirect_close(vdev_t *vd)
935{
936}
937
a1d477c2
MA
938/* ARGSUSED */
939static int
940vdev_indirect_open(vdev_t *vd, uint64_t *psize, uint64_t *max_psize,
941 uint64_t *ashift)
942{
943 *psize = *max_psize = vd->vdev_asize +
944 VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
945 *ashift = vd->vdev_ashift;
946 return (0);
947}
948
949typedef struct remap_segment {
950 vdev_t *rs_vd;
951 uint64_t rs_offset;
952 uint64_t rs_asize;
953 uint64_t rs_split_offset;
954 list_node_t rs_node;
955} remap_segment_t;
956
957remap_segment_t *
958rs_alloc(vdev_t *vd, uint64_t offset, uint64_t asize, uint64_t split_offset)
959{
960 remap_segment_t *rs = kmem_alloc(sizeof (remap_segment_t), KM_SLEEP);
961 rs->rs_vd = vd;
962 rs->rs_offset = offset;
963 rs->rs_asize = asize;
964 rs->rs_split_offset = split_offset;
965 return (rs);
966}
967
4bf8108e
SD
968/*
969 * Given an indirect vdev and an extent on that vdev, it duplicates the
970 * physical entries of the indirect mapping that correspond to the extent
971 * to a new array and returns a pointer to it. In addition, copied_entries
972 * is populated with the number of mapping entries that were duplicated.
973 *
974 * Note that the function assumes that the caller holds vdev_indirect_rwlock.
975 * This ensures that the mapping won't change due to condensing as we
976 * copy over its contents.
977 *
978 * Finally, since we are doing an allocation, it is up to the caller to
979 * free the array allocated in this function.
980 */
981vdev_indirect_mapping_entry_phys_t *
982vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *vd, uint64_t offset,
983 uint64_t asize, uint64_t *copied_entries)
984{
985 vdev_indirect_mapping_entry_phys_t *duplicate_mappings = NULL;
986 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
987 uint64_t entries = 0;
988
989 ASSERT(RW_READ_HELD(&vd->vdev_indirect_rwlock));
990
991 vdev_indirect_mapping_entry_phys_t *first_mapping =
992 vdev_indirect_mapping_entry_for_offset(vim, offset);
993 ASSERT3P(first_mapping, !=, NULL);
994
995 vdev_indirect_mapping_entry_phys_t *m = first_mapping;
996 while (asize > 0) {
997 uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
998
999 ASSERT3U(offset, >=, DVA_MAPPING_GET_SRC_OFFSET(m));
1000 ASSERT3U(offset, <, DVA_MAPPING_GET_SRC_OFFSET(m) + size);
1001
1002 uint64_t inner_offset = offset - DVA_MAPPING_GET_SRC_OFFSET(m);
1003 uint64_t inner_size = MIN(asize, size - inner_offset);
1004
1005 offset += inner_size;
1006 asize -= inner_size;
1007 entries++;
1008 m++;
1009 }
1010
1011 size_t copy_length = entries * sizeof (*first_mapping);
1012 duplicate_mappings = kmem_alloc(copy_length, KM_SLEEP);
1013 bcopy(first_mapping, duplicate_mappings, copy_length);
1014 *copied_entries = entries;
1015
1016 return (duplicate_mappings);
1017}
1018
a1d477c2
MA
1019/*
1020 * Goes through the relevant indirect mappings until it hits a concrete vdev
1021 * and issues the callback. On the way to the concrete vdev, if any other
1022 * indirect vdevs are encountered, then the callback will also be called on
1023 * each of those indirect vdevs. For example, if the segment is mapped to
1024 * segment A on indirect vdev 1, and then segment A on indirect vdev 1 is
1025 * mapped to segment B on concrete vdev 2, then the callback will be called on
1026 * both vdev 1 and vdev 2.
1027 *
1028 * While the callback passed to vdev_indirect_remap() is called on every vdev
1029 * the function encounters, certain callbacks only care about concrete vdevs.
1030 * These types of callbacks should return immediately and explicitly when they
1031 * are called on an indirect vdev.
1032 *
1033 * Because there is a possibility that a DVA section in the indirect device
1034 * has been split into multiple sections in our mapping, we keep track
1035 * of the relevant contiguous segments of the new location (remap_segment_t)
1036 * in a stack. This way we can call the callback for each of the new sections
1037 * created by a single section of the indirect device. Note though, that in
1038 * this scenario the callbacks in each split block won't occur in-order in
1039 * terms of offset, so callers should not make any assumptions about that.
1040 *
1041 * For callbacks that don't handle split blocks and immediately return when
1042 * they encounter them (as is the case for remap_blkptr_cb), the caller can
1043 * assume that its callback will be applied from the first indirect vdev
1044 * encountered to the last one and then the concrete vdev, in that order.
1045 */
1046static void
1047vdev_indirect_remap(vdev_t *vd, uint64_t offset, uint64_t asize,
1048 void (*func)(uint64_t, vdev_t *, uint64_t, uint64_t, void *), void *arg)
1049{
1050 list_t stack;
1051 spa_t *spa = vd->vdev_spa;
1052
1053 list_create(&stack, sizeof (remap_segment_t),
1054 offsetof(remap_segment_t, rs_node));
1055
1056 for (remap_segment_t *rs = rs_alloc(vd, offset, asize, 0);
1057 rs != NULL; rs = list_remove_head(&stack)) {
1058 vdev_t *v = rs->rs_vd;
4bf8108e
SD
1059 uint64_t num_entries = 0;
1060
1061 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1062 ASSERT(rs->rs_asize > 0);
a1d477c2
MA
1063
1064 /*
4bf8108e
SD
1065 * Note: As this function can be called from open context
1066 * (e.g. zio_read()), we need the following rwlock to
1067 * prevent the mapping from being changed by condensing.
1068 *
1069 * So we grab the lock and we make a copy of the entries
1070 * that are relevant to the extent that we are working on.
1071 * Once that is done, we drop the lock and iterate over
1072 * our copy of the mapping. Once we are done with the with
1073 * the remap segment and we free it, we also free our copy
1074 * of the indirect mapping entries that are relevant to it.
1075 *
1076 * This way we don't need to wait until the function is
1077 * finished with a segment, to condense it. In addition, we
1078 * don't need a recursive rwlock for the case that a call to
1079 * vdev_indirect_remap() needs to call itself (through the
1080 * codepath of its callback) for the same vdev in the middle
1081 * of its execution.
a1d477c2
MA
1082 */
1083 rw_enter(&v->vdev_indirect_rwlock, RW_READER);
4bf8108e 1084 ASSERT3P(v->vdev_indirect_mapping, !=, NULL);
a1d477c2
MA
1085
1086 vdev_indirect_mapping_entry_phys_t *mapping =
4bf8108e
SD
1087 vdev_indirect_mapping_duplicate_adjacent_entries(v,
1088 rs->rs_offset, rs->rs_asize, &num_entries);
a1d477c2 1089 ASSERT3P(mapping, !=, NULL);
4bf8108e
SD
1090 ASSERT3U(num_entries, >, 0);
1091 rw_exit(&v->vdev_indirect_rwlock);
a1d477c2 1092
4bf8108e 1093 for (uint64_t i = 0; i < num_entries; i++) {
a1d477c2
MA
1094 /*
1095 * Note: the vdev_indirect_mapping can not change
1096 * while we are running. It only changes while the
1097 * removal is in progress, and then only from syncing
1098 * context. While a removal is in progress, this
1099 * function is only called for frees, which also only
1100 * happen from syncing context.
1101 */
4bf8108e
SD
1102 vdev_indirect_mapping_entry_phys_t *m = &mapping[i];
1103
1104 ASSERT3P(m, !=, NULL);
1105 ASSERT3U(rs->rs_asize, >, 0);
a1d477c2 1106
4bf8108e
SD
1107 uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
1108 uint64_t dst_offset = DVA_GET_OFFSET(&m->vimep_dst);
1109 uint64_t dst_vdev = DVA_GET_VDEV(&m->vimep_dst);
a1d477c2
MA
1110
1111 ASSERT3U(rs->rs_offset, >=,
4bf8108e 1112 DVA_MAPPING_GET_SRC_OFFSET(m));
a1d477c2 1113 ASSERT3U(rs->rs_offset, <,
4bf8108e 1114 DVA_MAPPING_GET_SRC_OFFSET(m) + size);
a1d477c2
MA
1115 ASSERT3U(dst_vdev, !=, v->vdev_id);
1116
1117 uint64_t inner_offset = rs->rs_offset -
4bf8108e 1118 DVA_MAPPING_GET_SRC_OFFSET(m);
a1d477c2
MA
1119 uint64_t inner_size =
1120 MIN(rs->rs_asize, size - inner_offset);
1121
1122 vdev_t *dst_v = vdev_lookup_top(spa, dst_vdev);
1123 ASSERT3P(dst_v, !=, NULL);
1124
1125 if (dst_v->vdev_ops == &vdev_indirect_ops) {
1126 list_insert_head(&stack,
1127 rs_alloc(dst_v, dst_offset + inner_offset,
1128 inner_size, rs->rs_split_offset));
1129
1130 }
1131
1132 if ((zfs_flags & ZFS_DEBUG_INDIRECT_REMAP) &&
1133 IS_P2ALIGNED(inner_size, 2 * SPA_MINBLOCKSIZE)) {
1134 /*
1135 * Note: This clause exists only solely for
1136 * testing purposes. We use it to ensure that
1137 * split blocks work and that the callbacks
1138 * using them yield the same result if issued
1139 * in reverse order.
1140 */
1141 uint64_t inner_half = inner_size / 2;
1142
1143 func(rs->rs_split_offset + inner_half, dst_v,
1144 dst_offset + inner_offset + inner_half,
1145 inner_half, arg);
1146
1147 func(rs->rs_split_offset, dst_v,
1148 dst_offset + inner_offset,
1149 inner_half, arg);
1150 } else {
1151 func(rs->rs_split_offset, dst_v,
1152 dst_offset + inner_offset,
1153 inner_size, arg);
1154 }
1155
1156 rs->rs_offset += inner_size;
1157 rs->rs_asize -= inner_size;
1158 rs->rs_split_offset += inner_size;
a1d477c2 1159 }
4bf8108e 1160 VERIFY0(rs->rs_asize);
a1d477c2 1161
4bf8108e 1162 kmem_free(mapping, num_entries * sizeof (*mapping));
a1d477c2
MA
1163 kmem_free(rs, sizeof (remap_segment_t));
1164 }
1165 list_destroy(&stack);
1166}
1167
1168static void
1169vdev_indirect_child_io_done(zio_t *zio)
1170{
1171 zio_t *pio = zio->io_private;
1172
1173 mutex_enter(&pio->io_lock);
1174 pio->io_error = zio_worst_error(pio->io_error, zio->io_error);
1175 mutex_exit(&pio->io_lock);
1176
1177 abd_put(zio->io_abd);
1178}
1179
9e052db4
MA
1180/*
1181 * This is a callback for vdev_indirect_remap() which allocates an
1182 * indirect_split_t for each split segment and adds it to iv_splits.
1183 */
a1d477c2 1184static void
9e052db4 1185vdev_indirect_gather_splits(uint64_t split_offset, vdev_t *vd, uint64_t offset,
a1d477c2
MA
1186 uint64_t size, void *arg)
1187{
1188 zio_t *zio = arg;
9e052db4 1189 indirect_vsd_t *iv = zio->io_vsd;
a1d477c2
MA
1190
1191 ASSERT3P(vd, !=, NULL);
1192
1193 if (vd->vdev_ops == &vdev_indirect_ops)
1194 return;
1195
9e052db4
MA
1196 int n = 1;
1197 if (vd->vdev_ops == &vdev_mirror_ops)
1198 n = vd->vdev_children;
1199
1200 indirect_split_t *is =
1201 kmem_zalloc(offsetof(indirect_split_t, is_child[n]), KM_SLEEP);
1202
1203 is->is_children = n;
1204 is->is_size = size;
1205 is->is_split_offset = split_offset;
1206 is->is_target_offset = offset;
1207 is->is_vdev = vd;
1258bd77
BB
1208 list_create(&is->is_unique_child, sizeof (indirect_child_t),
1209 offsetof(indirect_child_t, ic_node));
9e052db4
MA
1210
1211 /*
1212 * Note that we only consider multiple copies of the data for
1213 * *mirror* vdevs. We don't for "replacing" or "spare" vdevs, even
1214 * though they use the same ops as mirror, because there's only one
1215 * "good" copy under the replacing/spare.
1216 */
1217 if (vd->vdev_ops == &vdev_mirror_ops) {
1218 for (int i = 0; i < n; i++) {
1219 is->is_child[i].ic_vdev = vd->vdev_child[i];
1258bd77 1220 list_link_init(&is->is_child[i].ic_node);
9e052db4
MA
1221 }
1222 } else {
1223 is->is_child[0].ic_vdev = vd;
1224 }
1225
1226 list_insert_tail(&iv->iv_splits, is);
1227}
1228
1229static void
1230vdev_indirect_read_split_done(zio_t *zio)
1231{
1232 indirect_child_t *ic = zio->io_private;
1233
1234 if (zio->io_error != 0) {
1235 /*
1236 * Clear ic_data to indicate that we do not have data for this
1237 * child.
1238 */
1239 abd_free(ic->ic_data);
1240 ic->ic_data = NULL;
1241 }
1242}
1243
1244/*
1245 * Issue reads for all copies (mirror children) of all splits.
1246 */
1247static void
1248vdev_indirect_read_all(zio_t *zio)
1249{
1250 indirect_vsd_t *iv = zio->io_vsd;
1251
1252 for (indirect_split_t *is = list_head(&iv->iv_splits);
1253 is != NULL; is = list_next(&iv->iv_splits, is)) {
1254 for (int i = 0; i < is->is_children; i++) {
1255 indirect_child_t *ic = &is->is_child[i];
1256
1257 if (!vdev_readable(ic->ic_vdev))
1258 continue;
1259
1260 /*
1261 * Note, we may read from a child whose DTL
1262 * indicates that the data may not be present here.
1263 * While this might result in a few i/os that will
1264 * likely return incorrect data, it simplifies the
1265 * code since we can treat scrub and resilver
1266 * identically. (The incorrect data will be
1267 * detected and ignored when we verify the
1268 * checksum.)
1269 */
1270
1271 ic->ic_data = abd_alloc_sametype(zio->io_abd,
1272 is->is_size);
1258bd77 1273 ic->ic_duplicate = NULL;
9e052db4
MA
1274
1275 zio_nowait(zio_vdev_child_io(zio, NULL,
1276 ic->ic_vdev, is->is_target_offset, ic->ic_data,
1277 is->is_size, zio->io_type, zio->io_priority, 0,
1278 vdev_indirect_read_split_done, ic));
1279 }
1280 }
1281 iv->iv_reconstruct = B_TRUE;
a1d477c2
MA
1282}
1283
1284static void
1285vdev_indirect_io_start(zio_t *zio)
1286{
1287 ASSERTV(spa_t *spa = zio->io_spa);
9e052db4
MA
1288 indirect_vsd_t *iv = kmem_zalloc(sizeof (*iv), KM_SLEEP);
1289 list_create(&iv->iv_splits,
1290 sizeof (indirect_split_t), offsetof(indirect_split_t, is_node));
1291
1292 zio->io_vsd = iv;
1293 zio->io_vsd_ops = &vdev_indirect_vsd_ops;
a1d477c2
MA
1294
1295 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1296 if (zio->io_type != ZIO_TYPE_READ) {
1297 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
9e052db4
MA
1298 /*
1299 * Note: this code can handle other kinds of writes,
1300 * but we don't expect them.
1301 */
1302 ASSERT((zio->io_flags & (ZIO_FLAG_SELF_HEAL |
1303 ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE)) != 0);
a1d477c2
MA
1304 }
1305
1306 vdev_indirect_remap(zio->io_vd, zio->io_offset, zio->io_size,
9e052db4
MA
1307 vdev_indirect_gather_splits, zio);
1308
1309 indirect_split_t *first = list_head(&iv->iv_splits);
1310 if (first->is_size == zio->io_size) {
1311 /*
1312 * This is not a split block; we are pointing to the entire
1313 * data, which will checksum the same as the original data.
1314 * Pass the BP down so that the child i/o can verify the
1315 * checksum, and try a different location if available
1316 * (e.g. on a mirror).
1317 *
1318 * While this special case could be handled the same as the
1319 * general (split block) case, doing it this way ensures
1320 * that the vast majority of blocks on indirect vdevs
1321 * (which are not split) are handled identically to blocks
1322 * on non-indirect vdevs. This allows us to be less strict
1323 * about performance in the general (but rare) case.
1324 */
1325 ASSERT0(first->is_split_offset);
1326 ASSERT3P(list_next(&iv->iv_splits, first), ==, NULL);
1327 zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
1328 first->is_vdev, first->is_target_offset,
1329 abd_get_offset(zio->io_abd, 0),
1330 zio->io_size, zio->io_type, zio->io_priority, 0,
1331 vdev_indirect_child_io_done, zio));
1332 } else {
1333 iv->iv_split_block = B_TRUE;
1334 if (zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER)) {
1335 /*
1336 * Read all copies. Note that for simplicity,
1337 * we don't bother consulting the DTL in the
1338 * resilver case.
1339 */
1340 vdev_indirect_read_all(zio);
1341 } else {
1342 /*
1343 * Read one copy of each split segment, from the
1344 * top-level vdev. Since we don't know the
1345 * checksum of each split individually, the child
1346 * zio can't ensure that we get the right data.
1347 * E.g. if it's a mirror, it will just read from a
1348 * random (healthy) leaf vdev. We have to verify
1349 * the checksum in vdev_indirect_io_done().
1350 */
1351 for (indirect_split_t *is = list_head(&iv->iv_splits);
1352 is != NULL; is = list_next(&iv->iv_splits, is)) {
1353 zio_nowait(zio_vdev_child_io(zio, NULL,
1354 is->is_vdev, is->is_target_offset,
1355 abd_get_offset(zio->io_abd,
1356 is->is_split_offset), is->is_size,
1357 zio->io_type, zio->io_priority, 0,
1358 vdev_indirect_child_io_done, zio));
1359 }
1360
1361 }
1362 }
a1d477c2
MA
1363
1364 zio_execute(zio);
1365}
1366
9e052db4
MA
1367/*
1368 * Report a checksum error for a child.
1369 */
1370static void
1371vdev_indirect_checksum_error(zio_t *zio,
1372 indirect_split_t *is, indirect_child_t *ic)
1373{
1374 vdev_t *vd = ic->ic_vdev;
1375
1376 if (zio->io_flags & ZIO_FLAG_SPECULATIVE)
1377 return;
1378
1379 mutex_enter(&vd->vdev_stat_lock);
1380 vd->vdev_stat.vs_checksum_errors++;
1381 mutex_exit(&vd->vdev_stat_lock);
1382
1383 zio_bad_cksum_t zbc = {{{ 0 }}};
1384 abd_t *bad_abd = ic->ic_data;
1258bd77 1385 abd_t *good_abd = is->is_good_child->ic_data;
9e052db4
MA
1386 zfs_ereport_post_checksum(zio->io_spa, vd, NULL, zio,
1387 is->is_target_offset, is->is_size, good_abd, bad_abd, &zbc);
1388}
1389
1390/*
1391 * Issue repair i/os for any incorrect copies. We do this by comparing
1392 * each split segment's correct data (is_good_child's ic_data) with each
1393 * other copy of the data. If they differ, then we overwrite the bad data
1394 * with the good copy. Note that we do this without regard for the DTL's,
1395 * which simplifies this code and also issues the optimal number of writes
1396 * (based on which copies actually read bad data, as opposed to which we
1397 * think might be wrong). For the same reason, we always use
1398 * ZIO_FLAG_SELF_HEAL, to bypass the DTL check in zio_vdev_io_start().
1399 */
1400static void
1401vdev_indirect_repair(zio_t *zio)
1402{
1403 indirect_vsd_t *iv = zio->io_vsd;
1404
1405 enum zio_flag flags = ZIO_FLAG_IO_REPAIR;
1406
1407 if (!(zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER)))
1408 flags |= ZIO_FLAG_SELF_HEAL;
1409
1410 if (!spa_writeable(zio->io_spa))
1411 return;
1412
1413 for (indirect_split_t *is = list_head(&iv->iv_splits);
1414 is != NULL; is = list_next(&iv->iv_splits, is)) {
9e052db4
MA
1415 for (int c = 0; c < is->is_children; c++) {
1416 indirect_child_t *ic = &is->is_child[c];
1258bd77 1417 if (ic == is->is_good_child)
9e052db4
MA
1418 continue;
1419 if (ic->ic_data == NULL)
1420 continue;
4589f3ae 1421 if (ic->ic_duplicate == is->is_good_child)
9e052db4
MA
1422 continue;
1423
1424 zio_nowait(zio_vdev_child_io(zio, NULL,
1425 ic->ic_vdev, is->is_target_offset,
1258bd77 1426 is->is_good_child->ic_data, is->is_size,
9e052db4
MA
1427 ZIO_TYPE_WRITE, ZIO_PRIORITY_ASYNC_WRITE,
1428 ZIO_FLAG_IO_REPAIR | ZIO_FLAG_SELF_HEAL,
1429 NULL, NULL));
1430
1431 vdev_indirect_checksum_error(zio, is, ic);
1432 }
1433 }
1434}
1435
1436/*
1437 * Report checksum errors on all children that we read from.
1438 */
1439static void
1440vdev_indirect_all_checksum_errors(zio_t *zio)
1441{
1442 indirect_vsd_t *iv = zio->io_vsd;
1443
1444 if (zio->io_flags & ZIO_FLAG_SPECULATIVE)
1445 return;
1446
1447 for (indirect_split_t *is = list_head(&iv->iv_splits);
1448 is != NULL; is = list_next(&iv->iv_splits, is)) {
1449 for (int c = 0; c < is->is_children; c++) {
1450 indirect_child_t *ic = &is->is_child[c];
1451
1452 if (ic->ic_data == NULL)
1453 continue;
1454
1455 vdev_t *vd = ic->ic_vdev;
1456
1457 mutex_enter(&vd->vdev_stat_lock);
1458 vd->vdev_stat.vs_checksum_errors++;
1459 mutex_exit(&vd->vdev_stat_lock);
1460
1461 zfs_ereport_post_checksum(zio->io_spa, vd, NULL, zio,
1462 is->is_target_offset, is->is_size,
1463 NULL, NULL, NULL);
1464 }
1465 }
1466}
1467
1258bd77
BB
1468/*
1469 * Copy data from all the splits to a main zio then validate the checksum.
1470 * If then checksum is successfully validated return success.
1471 */
1472static int
1473vdev_indirect_splits_checksum_validate(indirect_vsd_t *iv, zio_t *zio)
1474{
1475 zio_bad_cksum_t zbc;
1476
1477 for (indirect_split_t *is = list_head(&iv->iv_splits);
1478 is != NULL; is = list_next(&iv->iv_splits, is)) {
1479
1480 ASSERT3P(is->is_good_child->ic_data, !=, NULL);
1481 ASSERT3P(is->is_good_child->ic_duplicate, ==, NULL);
1482
1483 abd_copy_off(zio->io_abd, is->is_good_child->ic_data,
1484 is->is_split_offset, 0, is->is_size);
1485 }
1486
1487 return (zio_checksum_error(zio, &zbc));
1488}
1489
1490/*
1491 * There are relatively few possible combinations making it feasible to
1492 * deterministically check them all. We do this by setting the good_child
1493 * to the next unique split version. If we reach the end of the list then
1494 * "carry over" to the next unique split version (like counting in base
1495 * is_unique_children, but each digit can have a different base).
1496 */
1497static int
1498vdev_indirect_splits_enumerate_all(indirect_vsd_t *iv, zio_t *zio)
1499{
1500 boolean_t more = B_TRUE;
1501
1502 iv->iv_attempts = 0;
1503
1504 for (indirect_split_t *is = list_head(&iv->iv_splits);
1505 is != NULL; is = list_next(&iv->iv_splits, is))
1506 is->is_good_child = list_head(&is->is_unique_child);
1507
1508 while (more == B_TRUE) {
1509 iv->iv_attempts++;
1510 more = B_FALSE;
1511
1512 if (vdev_indirect_splits_checksum_validate(iv, zio) == 0)
1513 return (0);
1514
1515 for (indirect_split_t *is = list_head(&iv->iv_splits);
1516 is != NULL; is = list_next(&iv->iv_splits, is)) {
1517 is->is_good_child = list_next(&is->is_unique_child,
1518 is->is_good_child);
1519 if (is->is_good_child != NULL) {
1520 more = B_TRUE;
1521 break;
1522 }
1523
1524 is->is_good_child = list_head(&is->is_unique_child);
1525 }
1526 }
1527
1528 ASSERT3S(iv->iv_attempts, <=, iv->iv_unique_combinations);
1529
1530 return (SET_ERROR(ECKSUM));
1531}
1532
1533/*
1534 * There are too many combinations to try all of them in a reasonable amount
1535 * of time. So try a fixed number of random combinations from the unique
1536 * split versions, after which we'll consider the block unrecoverable.
1537 */
1538static int
1539vdev_indirect_splits_enumerate_randomly(indirect_vsd_t *iv, zio_t *zio)
1540{
1541 iv->iv_attempts = 0;
1542
1543 while (iv->iv_attempts < iv->iv_attempts_max) {
1544 iv->iv_attempts++;
1545
1546 for (indirect_split_t *is = list_head(&iv->iv_splits);
1547 is != NULL; is = list_next(&iv->iv_splits, is)) {
1548 indirect_child_t *ic = list_head(&is->is_unique_child);
1549 int children = is->is_unique_children;
1550
1551 for (int i = spa_get_random(children); i > 0; i--)
1552 ic = list_next(&is->is_unique_child, ic);
1553
1554 ASSERT3P(ic, !=, NULL);
1555 is->is_good_child = ic;
1556 }
1557
1558 if (vdev_indirect_splits_checksum_validate(iv, zio) == 0)
1559 return (0);
1560 }
1561
1562 return (SET_ERROR(ECKSUM));
1563}
1564
1565/*
1566 * This is a validation function for reconstruction. It randomly selects
1567 * a good combination, if one can be found, and then it intentionally
1568 * damages all other segment copes by zeroing them. This forces the
1569 * reconstruction algorithm to locate the one remaining known good copy.
1570 */
1571static int
1572vdev_indirect_splits_damage(indirect_vsd_t *iv, zio_t *zio)
1573{
1574 /* Presume all the copies are unique for initial selection. */
1575 for (indirect_split_t *is = list_head(&iv->iv_splits);
1576 is != NULL; is = list_next(&iv->iv_splits, is)) {
1577 is->is_unique_children = 0;
1578
1579 for (int i = 0; i < is->is_children; i++) {
1580 indirect_child_t *ic = &is->is_child[i];
1581 if (ic->ic_data != NULL) {
1582 is->is_unique_children++;
1583 list_insert_tail(&is->is_unique_child, ic);
1584 }
1585 }
1586 }
1587
1588 /*
1589 * Set each is_good_child to a randomly-selected child which
1590 * is known to contain validated data.
1591 */
1592 int error = vdev_indirect_splits_enumerate_randomly(iv, zio);
1593 if (error)
1594 goto out;
1595
1596 /*
1597 * Damage all but the known good copy by zeroing it. This will
1598 * result in two or less unique copies per indirect_child_t.
1599 * Both may need to be checked in order to reconstruct the block.
1600 * Set iv->iv_attempts_max such that all unique combinations will
1601 * enumerated, but limit the damage to at most 16 indirect splits.
1602 */
1603 iv->iv_attempts_max = 1;
1604
1605 for (indirect_split_t *is = list_head(&iv->iv_splits);
1606 is != NULL; is = list_next(&iv->iv_splits, is)) {
1607 for (int c = 0; c < is->is_children; c++) {
1608 indirect_child_t *ic = &is->is_child[c];
1609
1610 if (ic == is->is_good_child)
1611 continue;
1612 if (ic->ic_data == NULL)
1613 continue;
1614
1615 abd_zero(ic->ic_data, ic->ic_data->abd_size);
1616 }
1617
1618 iv->iv_attempts_max *= 2;
1619 if (iv->iv_attempts_max > (1ULL << 16)) {
1620 iv->iv_attempts_max = UINT64_MAX;
1621 break;
1622 }
1623 }
1624
1625out:
1626 /* Empty the unique children lists so they can be reconstructed. */
1627 for (indirect_split_t *is = list_head(&iv->iv_splits);
1628 is != NULL; is = list_next(&iv->iv_splits, is)) {
1629 indirect_child_t *ic;
1630 while ((ic = list_head(&is->is_unique_child)) != NULL)
1631 list_remove(&is->is_unique_child, ic);
1632
1633 is->is_unique_children = 0;
1634 }
1635
1636 return (error);
1637}
1638
9e052db4
MA
1639/*
1640 * This function is called when we have read all copies of the data and need
1641 * to try to find a combination of copies that gives us the right checksum.
1642 *
1643 * If we pointed to any mirror vdevs, this effectively does the job of the
1644 * mirror. The mirror vdev code can't do its own job because we don't know
4589f3ae 1645 * the checksum of each split segment individually.
9e052db4 1646 *
4589f3ae
BB
1647 * We have to try every unique combination of copies of split segments, until
1648 * we find one that checksums correctly. Duplicate segment copies are first
1258bd77
BB
1649 * identified and latter skipped during reconstruction. This optimization
1650 * reduces the search space and ensures that of the remaining combinations
1651 * at most one is correct.
4589f3ae
BB
1652 *
1653 * When the total number of combinations is small they can all be checked.
1654 * For example, if we have 3 segments in the split, and each points to a
1655 * 2-way mirror with unique copies, we will have the following pieces of data:
9e052db4
MA
1656 *
1657 * | mirror child
1658 * split | [0] [1]
1659 * ======|=====================
1660 * A | data_A_0 data_A_1
1661 * B | data_B_0 data_B_1
1662 * C | data_C_0 data_C_1
1663 *
1664 * We will try the following (mirror children)^(number of splits) (2^3=8)
1665 * combinations, which is similar to bitwise-little-endian counting in
1666 * binary. In general each "digit" corresponds to a split segment, and the
1667 * base of each digit is is_children, which can be different for each
1668 * digit.
1669 *
1670 * "low bit" "high bit"
1671 * v v
1672 * data_A_0 data_B_0 data_C_0
1673 * data_A_1 data_B_0 data_C_0
1674 * data_A_0 data_B_1 data_C_0
1675 * data_A_1 data_B_1 data_C_0
1676 * data_A_0 data_B_0 data_C_1
1677 * data_A_1 data_B_0 data_C_1
1678 * data_A_0 data_B_1 data_C_1
1679 * data_A_1 data_B_1 data_C_1
1680 *
1681 * Note that the split segments may be on the same or different top-level
1258bd77
BB
1682 * vdevs. In either case, we may need to try lots of combinations (see
1683 * zfs_reconstruct_indirect_combinations_max). This ensures that if a mirror
1684 * has small silent errors on all of its children, we can still reconstruct
1685 * the correct data, as long as those errors are at sufficiently-separated
9e052db4
MA
1686 * offsets (specifically, separated by the largest block size - default of
1687 * 128KB, but up to 16MB).
1688 */
1689static void
1690vdev_indirect_reconstruct_io_done(zio_t *zio)
1691{
1692 indirect_vsd_t *iv = zio->io_vsd;
1258bd77
BB
1693 boolean_t known_good = B_FALSE;
1694 int error;
1695
1696 iv->iv_unique_combinations = 1;
1697 iv->iv_attempts_max = UINT64_MAX;
4589f3ae
BB
1698
1699 if (zfs_reconstruct_indirect_combinations_max > 0)
1258bd77
BB
1700 iv->iv_attempts_max = zfs_reconstruct_indirect_combinations_max;
1701
1702 /*
1703 * If nonzero, every 1/x blocks will be damaged, in order to validate
1704 * reconstruction when there are split segments with damaged copies.
1705 * Known_good will TRUE when reconstruction is known to be possible.
1706 */
1707 if (zfs_reconstruct_indirect_damage_fraction != 0 &&
1708 spa_get_random(zfs_reconstruct_indirect_damage_fraction) == 0)
1709 known_good = (vdev_indirect_splits_damage(iv, zio) == 0);
9e052db4 1710
4589f3ae 1711 /*
1258bd77
BB
1712 * Determine the unique children for a split segment and add them
1713 * to the is_unique_child list. By restricting reconstruction
1714 * to these children, only unique combinations will be considered.
1715 * This can vastly reduce the search space when there are a large
1716 * number of indirect splits.
4589f3ae 1717 */
9e052db4 1718 for (indirect_split_t *is = list_head(&iv->iv_splits);
4589f3ae 1719 is != NULL; is = list_next(&iv->iv_splits, is)) {
1258bd77 1720 is->is_unique_children = 0;
4589f3ae
BB
1721
1722 for (int i = 0; i < is->is_children; i++) {
1258bd77
BB
1723 indirect_child_t *ic_i = &is->is_child[i];
1724
1725 if (ic_i->ic_data == NULL ||
1726 ic_i->ic_duplicate != NULL)
4589f3ae
BB
1727 continue;
1728
1729 for (int j = i + 1; j < is->is_children; j++) {
1258bd77
BB
1730 indirect_child_t *ic_j = &is->is_child[j];
1731
1732 if (ic_j->ic_data == NULL ||
1733 ic_j->ic_duplicate != NULL)
4589f3ae
BB
1734 continue;
1735
1258bd77
BB
1736 if (abd_cmp(ic_i->ic_data, ic_j->ic_data) == 0)
1737 ic_j->ic_duplicate = ic_i;
4589f3ae
BB
1738 }
1739
1258bd77
BB
1740 is->is_unique_children++;
1741 list_insert_tail(&is->is_unique_child, ic_i);
4589f3ae
BB
1742 }
1743
1258bd77
BB
1744 /* Reconstruction is impossible, no valid children */
1745 EQUIV(list_is_empty(&is->is_unique_child),
1746 is->is_unique_children == 0);
1747 if (list_is_empty(&is->is_unique_child)) {
4589f3ae
BB
1748 zio->io_error = EIO;
1749 vdev_indirect_all_checksum_errors(zio);
1750 zio_checksum_verified(zio);
1751 return;
1752 }
1753
1258bd77 1754 iv->iv_unique_combinations *= is->is_unique_children;
4589f3ae 1755 }
9e052db4 1756
1258bd77
BB
1757 if (iv->iv_unique_combinations <= iv->iv_attempts_max)
1758 error = vdev_indirect_splits_enumerate_all(iv, zio);
1759 else
1760 error = vdev_indirect_splits_enumerate_randomly(iv, zio);
9e052db4 1761
1258bd77
BB
1762 if (error != 0) {
1763 /* All attempted combinations failed. */
1764 ASSERT3B(known_good, ==, B_FALSE);
1765 zio->io_error = error;
1766 vdev_indirect_all_checksum_errors(zio);
1767 } else {
9e052db4 1768 /*
1258bd77
BB
1769 * The checksum has been successfully validated. Issue
1770 * repair I/Os to any copies of splits which don't match
1771 * the validated version.
9e052db4 1772 */
1258bd77
BB
1773 ASSERT0(vdev_indirect_splits_checksum_validate(iv, zio));
1774 vdev_indirect_repair(zio);
1775 zio_checksum_verified(zio);
9e052db4
MA
1776 }
1777}
1778
1779static void
1780vdev_indirect_io_done(zio_t *zio)
1781{
1782 indirect_vsd_t *iv = zio->io_vsd;
1783
1784 if (iv->iv_reconstruct) {
1785 /*
1786 * We have read all copies of the data (e.g. from mirrors),
1787 * either because this was a scrub/resilver, or because the
1788 * one-copy read didn't checksum correctly.
1789 */
1790 vdev_indirect_reconstruct_io_done(zio);
1791 return;
1792 }
1793
1794 if (!iv->iv_split_block) {
1795 /*
1796 * This was not a split block, so we passed the BP down,
1797 * and the checksum was handled by the (one) child zio.
1798 */
1799 return;
1800 }
1801
1802 zio_bad_cksum_t zbc;
1803 int ret = zio_checksum_error(zio, &zbc);
1804 if (ret == 0) {
1805 zio_checksum_verified(zio);
1806 return;
1807 }
1808
1809 /*
1810 * The checksum didn't match. Read all copies of all splits, and
1811 * then we will try to reconstruct. The next time
1812 * vdev_indirect_io_done() is called, iv_reconstruct will be set.
1813 */
1814 vdev_indirect_read_all(zio);
1815
1816 zio_vdev_io_redone(zio);
1817}
1818
a1d477c2
MA
1819vdev_ops_t vdev_indirect_ops = {
1820 vdev_indirect_open,
1821 vdev_indirect_close,
1822 vdev_default_asize,
1823 vdev_indirect_io_start,
1824 vdev_indirect_io_done,
1825 NULL,
1826 NULL,
1827 NULL,
1828 NULL,
1829 vdev_indirect_remap,
1830 VDEV_TYPE_INDIRECT, /* name of this vdev type */
1831 B_FALSE /* leaf vdev */
1832};
1833
93ce2b4c 1834#if defined(_KERNEL)
a1d477c2
MA
1835EXPORT_SYMBOL(rs_alloc);
1836EXPORT_SYMBOL(spa_condense_fini);
9d5b5245 1837EXPORT_SYMBOL(spa_start_indirect_condensing_thread);
a1d477c2
MA
1838EXPORT_SYMBOL(spa_condense_indirect_start_sync);
1839EXPORT_SYMBOL(spa_condense_init);
1840EXPORT_SYMBOL(spa_vdev_indirect_mark_obsolete);
1841EXPORT_SYMBOL(vdev_indirect_mark_obsolete);
1842EXPORT_SYMBOL(vdev_indirect_should_condense);
1843EXPORT_SYMBOL(vdev_indirect_sync_obsolete);
1844EXPORT_SYMBOL(vdev_obsolete_counts_are_precise);
1845EXPORT_SYMBOL(vdev_obsolete_sm_object);
1846
0dc2f70c
MA
1847module_param(zfs_condense_indirect_vdevs_enable, int, 0644);
1848MODULE_PARM_DESC(zfs_condense_indirect_vdevs_enable,
1849 "Whether to attempt condensing indirect vdev mappings");
1850
a1d477c2
MA
1851/* CSTYLED */
1852module_param(zfs_condense_min_mapping_bytes, ulong, 0644);
1853MODULE_PARM_DESC(zfs_condense_min_mapping_bytes,
1854 "Minimum size of vdev mapping to condense");
1855
0dc2f70c
MA
1856/* CSTYLED */
1857module_param(zfs_condense_max_obsolete_bytes, ulong, 0644);
1858MODULE_PARM_DESC(zfs_condense_max_obsolete_bytes,
1859 "Minimum size obsolete spacemap to attempt condensing");
1860
a1d477c2
MA
1861module_param(zfs_condense_indirect_commit_entry_delay_ms, int, 0644);
1862MODULE_PARM_DESC(zfs_condense_indirect_commit_entry_delay_ms,
1863 "Delay while condensing vdev mapping");
9e052db4 1864
4589f3ae
BB
1865module_param(zfs_reconstruct_indirect_combinations_max, int, 0644);
1866MODULE_PARM_DESC(zfs_reconstruct_indirect_combinations_max,
1867 "Maximum number of combinations when reconstructing split segments");
a1d477c2 1868#endif