]> git.proxmox.com Git - mirror_qemu.git/blame - qemu-doc.texi
vnc: fix use-after-free
[mirror_qemu.git] / qemu-doc.texi
CommitLineData
386405f7 1\input texinfo @c -*- texinfo -*-
debc7065
FB
2@c %**start of header
3@setfilename qemu-doc.info
44cb280d 4@include version.texi
e080e785
SW
5
6@documentlanguage en
7@documentencoding UTF-8
8
44cb280d 9@settitle QEMU version @value{VERSION} User Documentation
debc7065
FB
10@exampleindent 0
11@paragraphindent 0
12@c %**end of header
386405f7 13
a1a32b05
SW
14@ifinfo
15@direntry
16* QEMU: (qemu-doc). The QEMU Emulator User Documentation.
17@end direntry
18@end ifinfo
19
0806e3f6 20@iftex
386405f7
FB
21@titlepage
22@sp 7
44cb280d 23@center @titlefont{QEMU version @value{VERSION}}
debc7065
FB
24@sp 1
25@center @titlefont{User Documentation}
386405f7
FB
26@sp 3
27@end titlepage
0806e3f6 28@end iftex
386405f7 29
debc7065
FB
30@ifnottex
31@node Top
32@top
33
34@menu
35* Introduction::
debc7065
FB
36* QEMU PC System emulator::
37* QEMU System emulator for non PC targets::
3f2ce724 38* QEMU Guest Agent::
83195237 39* QEMU User space emulator::
78e87797 40* Implementation notes::
eb22aeca 41* Deprecated features::
7544a042 42* License::
debc7065
FB
43* Index::
44@end menu
45@end ifnottex
46
47@contents
48
49@node Introduction
386405f7
FB
50@chapter Introduction
51
debc7065
FB
52@menu
53* intro_features:: Features
54@end menu
55
56@node intro_features
322d0c66 57@section Features
386405f7 58
1f673135
FB
59QEMU is a FAST! processor emulator using dynamic translation to
60achieve good emulation speed.
1eb20527 61
1f3e7e41 62@cindex operating modes
1eb20527 63QEMU has two operating modes:
0806e3f6 64
d7e5edca 65@itemize
7544a042 66@cindex system emulation
1f3e7e41 67@item Full system emulation. In this mode, QEMU emulates a full system (for
3f9f3aa1
FB
68example a PC), including one or several processors and various
69peripherals. It can be used to launch different Operating Systems
70without rebooting the PC or to debug system code.
1eb20527 71
7544a042 72@cindex user mode emulation
1f3e7e41 73@item User mode emulation. In this mode, QEMU can launch
83195237 74processes compiled for one CPU on another CPU. It can be used to
70b7fba9 75launch the Wine Windows API emulator (@url{https://www.winehq.org}) or
1f673135 76to ease cross-compilation and cross-debugging.
1eb20527
FB
77
78@end itemize
79
1f3e7e41
PB
80QEMU has the following features:
81
82@itemize
83@item QEMU can run without a host kernel driver and yet gives acceptable
84performance. It uses dynamic translation to native code for reasonable speed,
85with support for self-modifying code and precise exceptions.
86
87@item It is portable to several operating systems (GNU/Linux, *BSD, Mac OS X,
88Windows) and architectures.
89
90@item It performs accurate software emulation of the FPU.
91@end itemize
322d0c66 92
1f3e7e41 93QEMU user mode emulation has the following features:
52c00a5f 94@itemize
1f3e7e41
PB
95@item Generic Linux system call converter, including most ioctls.
96
97@item clone() emulation using native CPU clone() to use Linux scheduler for threads.
98
99@item Accurate signal handling by remapping host signals to target signals.
100@end itemize
101
102QEMU full system emulation has the following features:
103@itemize
104@item
105QEMU uses a full software MMU for maximum portability.
106
107@item
326c4c3c 108QEMU can optionally use an in-kernel accelerator, like kvm. The accelerators
1f3e7e41
PB
109execute most of the guest code natively, while
110continuing to emulate the rest of the machine.
111
112@item
113Various hardware devices can be emulated and in some cases, host
114devices (e.g. serial and parallel ports, USB, drives) can be used
115transparently by the guest Operating System. Host device passthrough
116can be used for talking to external physical peripherals (e.g. a
117webcam, modem or tape drive).
118
119@item
120Symmetric multiprocessing (SMP) support. Currently, an in-kernel
121accelerator is required to use more than one host CPU for emulation.
122
52c00a5f 123@end itemize
386405f7 124
0806e3f6 125
debc7065 126@node QEMU PC System emulator
3f9f3aa1 127@chapter QEMU PC System emulator
7544a042 128@cindex system emulation (PC)
1eb20527 129
debc7065
FB
130@menu
131* pcsys_introduction:: Introduction
132* pcsys_quickstart:: Quick Start
133* sec_invocation:: Invocation
a40db1b3
PM
134* pcsys_keys:: Keys in the graphical frontends
135* mux_keys:: Keys in the character backend multiplexer
debc7065
FB
136* pcsys_monitor:: QEMU Monitor
137* disk_images:: Disk Images
138* pcsys_network:: Network emulation
576fd0a1 139* pcsys_other_devs:: Other Devices
debc7065
FB
140* direct_linux_boot:: Direct Linux Boot
141* pcsys_usb:: USB emulation
f858dcae 142* vnc_security:: VNC security
5d19a6ea 143* network_tls:: TLS setup for network services
debc7065
FB
144* gdb_usage:: GDB usage
145* pcsys_os_specific:: Target OS specific information
146@end menu
147
148@node pcsys_introduction
0806e3f6
FB
149@section Introduction
150
151@c man begin DESCRIPTION
152
3f9f3aa1
FB
153The QEMU PC System emulator simulates the
154following peripherals:
0806e3f6
FB
155
156@itemize @minus
5fafdf24 157@item
15a34c63 158i440FX host PCI bridge and PIIX3 PCI to ISA bridge
0806e3f6 159@item
15a34c63
FB
160Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
161extensions (hardware level, including all non standard modes).
0806e3f6
FB
162@item
163PS/2 mouse and keyboard
5fafdf24 164@item
15a34c63 1652 PCI IDE interfaces with hard disk and CD-ROM support
1f673135
FB
166@item
167Floppy disk
5fafdf24 168@item
3a2eeac0 169PCI and ISA network adapters
0806e3f6 170@item
05d5818c
FB
171Serial ports
172@item
23076bb3
CM
173IPMI BMC, either and internal or external one
174@item
c0fe3827
FB
175Creative SoundBlaster 16 sound card
176@item
177ENSONIQ AudioPCI ES1370 sound card
178@item
e5c9a13e
AZ
179Intel 82801AA AC97 Audio compatible sound card
180@item
7d72e762
GH
181Intel HD Audio Controller and HDA codec
182@item
2d983446 183Adlib (OPL2) - Yamaha YM3812 compatible chip
b389dbfb 184@item
26463dbc
AZ
185Gravis Ultrasound GF1 sound card
186@item
cc53d26d 187CS4231A compatible sound card
188@item
a92ff8c1 189PCI UHCI, OHCI, EHCI or XHCI USB controller and a virtual USB-1.1 hub.
0806e3f6
FB
190@end itemize
191
3f9f3aa1
FB
192SMP is supported with up to 255 CPUs.
193
a8ad4159 194QEMU uses the PC BIOS from the Seabios project and the Plex86/Bochs LGPL
15a34c63
FB
195VGA BIOS.
196
c0fe3827
FB
197QEMU uses YM3812 emulation by Tatsuyuki Satoh.
198
2d983446 199QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
26463dbc 200by Tibor "TS" Schütz.
423d65f4 201
1a1a0e20 202Note that, by default, GUS shares IRQ(7) with parallel ports and so
b65ee4fa 203QEMU must be told to not have parallel ports to have working GUS.
720036a5 204
205@example
3804da9d 206qemu-system-i386 dos.img -soundhw gus -parallel none
720036a5 207@end example
208
209Alternatively:
210@example
3804da9d 211qemu-system-i386 dos.img -device gus,irq=5
720036a5 212@end example
213
214Or some other unclaimed IRQ.
215
cc53d26d 216CS4231A is the chip used in Windows Sound System and GUSMAX products
217
0806e3f6
FB
218@c man end
219
debc7065 220@node pcsys_quickstart
1eb20527 221@section Quick Start
7544a042 222@cindex quick start
1eb20527 223
285dc330 224Download and uncompress the linux image (@file{linux.img}) and type:
0806e3f6
FB
225
226@example
3804da9d 227qemu-system-i386 linux.img
0806e3f6
FB
228@end example
229
230Linux should boot and give you a prompt.
231
6cc721cf 232@node sec_invocation
ec410fc9
FB
233@section Invocation
234
235@example
0806e3f6 236@c man begin SYNOPSIS
8485140f 237@command{qemu-system-i386} [@var{options}] [@var{disk_image}]
0806e3f6 238@c man end
ec410fc9
FB
239@end example
240
0806e3f6 241@c man begin OPTIONS
d2c639d6
BS
242@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
243targets do not need a disk image.
ec410fc9 244
5824d651 245@include qemu-options.texi
ec410fc9 246
3e11db9a
FB
247@c man end
248
e896d0f9
MA
249@subsection Device URL Syntax
250@c TODO merge this with section Disk Images
251
252@c man begin NOTES
253
254In addition to using normal file images for the emulated storage devices,
255QEMU can also use networked resources such as iSCSI devices. These are
256specified using a special URL syntax.
257
258@table @option
259@item iSCSI
260iSCSI support allows QEMU to access iSCSI resources directly and use as
261images for the guest storage. Both disk and cdrom images are supported.
262
263Syntax for specifying iSCSI LUNs is
264``iscsi://<target-ip>[:<port>]/<target-iqn>/<lun>''
265
266By default qemu will use the iSCSI initiator-name
267'iqn.2008-11.org.linux-kvm[:<name>]' but this can also be set from the command
268line or a configuration file.
269
270Since version Qemu 2.4 it is possible to specify a iSCSI request timeout to detect
271stalled requests and force a reestablishment of the session. The timeout
272is specified in seconds. The default is 0 which means no timeout. Libiscsi
2731.15.0 or greater is required for this feature.
274
275Example (without authentication):
276@example
277qemu-system-i386 -iscsi initiator-name=iqn.2001-04.com.example:my-initiator \
278 -cdrom iscsi://192.0.2.1/iqn.2001-04.com.example/2 \
279 -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1
280@end example
281
282Example (CHAP username/password via URL):
283@example
284qemu-system-i386 -drive file=iscsi://user%password@@192.0.2.1/iqn.2001-04.com.example/1
285@end example
286
287Example (CHAP username/password via environment variables):
288@example
289LIBISCSI_CHAP_USERNAME="user" \
290LIBISCSI_CHAP_PASSWORD="password" \
291qemu-system-i386 -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1
292@end example
293
294@item NBD
295QEMU supports NBD (Network Block Devices) both using TCP protocol as well
296as Unix Domain Sockets.
297
298Syntax for specifying a NBD device using TCP
299``nbd:<server-ip>:<port>[:exportname=<export>]''
300
301Syntax for specifying a NBD device using Unix Domain Sockets
302``nbd:unix:<domain-socket>[:exportname=<export>]''
303
304Example for TCP
305@example
306qemu-system-i386 --drive file=nbd:192.0.2.1:30000
307@end example
308
309Example for Unix Domain Sockets
310@example
311qemu-system-i386 --drive file=nbd:unix:/tmp/nbd-socket
312@end example
313
314@item SSH
315QEMU supports SSH (Secure Shell) access to remote disks.
316
317Examples:
318@example
319qemu-system-i386 -drive file=ssh://user@@host/path/to/disk.img
320qemu-system-i386 -drive file.driver=ssh,file.user=user,file.host=host,file.port=22,file.path=/path/to/disk.img
321@end example
322
323Currently authentication must be done using ssh-agent. Other
324authentication methods may be supported in future.
325
326@item Sheepdog
327Sheepdog is a distributed storage system for QEMU.
328QEMU supports using either local sheepdog devices or remote networked
329devices.
330
331Syntax for specifying a sheepdog device
332@example
333sheepdog[+tcp|+unix]://[host:port]/vdiname[?socket=path][#snapid|#tag]
334@end example
335
336Example
337@example
338qemu-system-i386 --drive file=sheepdog://192.0.2.1:30000/MyVirtualMachine
339@end example
340
341See also @url{https://sheepdog.github.io/sheepdog/}.
342
343@item GlusterFS
344GlusterFS is a user space distributed file system.
345QEMU supports the use of GlusterFS volumes for hosting VM disk images using
346TCP, Unix Domain Sockets and RDMA transport protocols.
347
348Syntax for specifying a VM disk image on GlusterFS volume is
349@example
350
351URI:
352gluster[+type]://[host[:port]]/volume/path[?socket=...][,debug=N][,logfile=...]
353
354JSON:
355'json:@{"driver":"qcow2","file":@{"driver":"gluster","volume":"testvol","path":"a.img","debug":N,"logfile":"...",
356@ "server":[@{"type":"tcp","host":"...","port":"..."@},
357@ @{"type":"unix","socket":"..."@}]@}@}'
358@end example
359
360
361Example
362@example
363URI:
364qemu-system-x86_64 --drive file=gluster://192.0.2.1/testvol/a.img,
365@ file.debug=9,file.logfile=/var/log/qemu-gluster.log
366
367JSON:
368qemu-system-x86_64 'json:@{"driver":"qcow2",
369@ "file":@{"driver":"gluster",
370@ "volume":"testvol","path":"a.img",
371@ "debug":9,"logfile":"/var/log/qemu-gluster.log",
372@ "server":[@{"type":"tcp","host":"1.2.3.4","port":24007@},
373@ @{"type":"unix","socket":"/var/run/glusterd.socket"@}]@}@}'
374qemu-system-x86_64 -drive driver=qcow2,file.driver=gluster,file.volume=testvol,file.path=/path/a.img,
375@ file.debug=9,file.logfile=/var/log/qemu-gluster.log,
376@ file.server.0.type=tcp,file.server.0.host=1.2.3.4,file.server.0.port=24007,
377@ file.server.1.type=unix,file.server.1.socket=/var/run/glusterd.socket
378@end example
379
380See also @url{http://www.gluster.org}.
381
382@item HTTP/HTTPS/FTP/FTPS
383QEMU supports read-only access to files accessed over http(s) and ftp(s).
384
385Syntax using a single filename:
386@example
387<protocol>://[<username>[:<password>]@@]<host>/<path>
388@end example
389
390where:
391@table @option
392@item protocol
393'http', 'https', 'ftp', or 'ftps'.
394
395@item username
396Optional username for authentication to the remote server.
397
398@item password
399Optional password for authentication to the remote server.
400
401@item host
402Address of the remote server.
403
404@item path
405Path on the remote server, including any query string.
406@end table
407
408The following options are also supported:
409@table @option
410@item url
411The full URL when passing options to the driver explicitly.
412
413@item readahead
414The amount of data to read ahead with each range request to the remote server.
415This value may optionally have the suffix 'T', 'G', 'M', 'K', 'k' or 'b'. If it
416does not have a suffix, it will be assumed to be in bytes. The value must be a
417multiple of 512 bytes. It defaults to 256k.
418
419@item sslverify
420Whether to verify the remote server's certificate when connecting over SSL. It
421can have the value 'on' or 'off'. It defaults to 'on'.
422
423@item cookie
424Send this cookie (it can also be a list of cookies separated by ';') with
425each outgoing request. Only supported when using protocols such as HTTP
426which support cookies, otherwise ignored.
427
428@item timeout
429Set the timeout in seconds of the CURL connection. This timeout is the time
430that CURL waits for a response from the remote server to get the size of the
431image to be downloaded. If not set, the default timeout of 5 seconds is used.
432@end table
433
434Note that when passing options to qemu explicitly, @option{driver} is the value
435of <protocol>.
436
437Example: boot from a remote Fedora 20 live ISO image
438@example
439qemu-system-x86_64 --drive media=cdrom,file=http://dl.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly
440
441qemu-system-x86_64 --drive media=cdrom,file.driver=http,file.url=http://dl.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly
442@end example
443
444Example: boot from a remote Fedora 20 cloud image using a local overlay for
445writes, copy-on-read, and a readahead of 64k
446@example
447qemu-img create -f qcow2 -o backing_file='json:@{"file.driver":"http",, "file.url":"https://dl.fedoraproject.org/pub/fedora/linux/releases/20/Images/x86_64/Fedora-x86_64-20-20131211.1-sda.qcow2",, "file.readahead":"64k"@}' /tmp/Fedora-x86_64-20-20131211.1-sda.qcow2
448
449qemu-system-x86_64 -drive file=/tmp/Fedora-x86_64-20-20131211.1-sda.qcow2,copy-on-read=on
450@end example
451
452Example: boot from an image stored on a VMware vSphere server with a self-signed
453certificate using a local overlay for writes, a readahead of 64k and a timeout
454of 10 seconds.
455@example
456qemu-img create -f qcow2 -o backing_file='json:@{"file.driver":"https",, "file.url":"https://user:password@@vsphere.example.com/folder/test/test-flat.vmdk?dcPath=Datacenter&dsName=datastore1",, "file.sslverify":"off",, "file.readahead":"64k",, "file.timeout":10@}' /tmp/test.qcow2
457
458qemu-system-x86_64 -drive file=/tmp/test.qcow2
459@end example
460
461@end table
462
463@c man end
464
debc7065 465@node pcsys_keys
a40db1b3 466@section Keys in the graphical frontends
3e11db9a
FB
467
468@c man begin OPTIONS
469
de1db2a1
BH
470During the graphical emulation, you can use special key combinations to change
471modes. The default key mappings are shown below, but if you use @code{-alt-grab}
472then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
473@code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
474
a1b74fe8 475@table @key
f9859310 476@item Ctrl-Alt-f
7544a042 477@kindex Ctrl-Alt-f
a1b74fe8 478Toggle full screen
a0a821a4 479
d6a65ba3
JK
480@item Ctrl-Alt-+
481@kindex Ctrl-Alt-+
482Enlarge the screen
483
484@item Ctrl-Alt--
485@kindex Ctrl-Alt--
486Shrink the screen
487
c4a735f9 488@item Ctrl-Alt-u
7544a042 489@kindex Ctrl-Alt-u
c4a735f9 490Restore the screen's un-scaled dimensions
491
f9859310 492@item Ctrl-Alt-n
7544a042 493@kindex Ctrl-Alt-n
a0a821a4
FB
494Switch to virtual console 'n'. Standard console mappings are:
495@table @emph
496@item 1
497Target system display
498@item 2
499Monitor
500@item 3
501Serial port
a1b74fe8
FB
502@end table
503
f9859310 504@item Ctrl-Alt
7544a042 505@kindex Ctrl-Alt
a0a821a4
FB
506Toggle mouse and keyboard grab.
507@end table
508
7544a042
SW
509@kindex Ctrl-Up
510@kindex Ctrl-Down
511@kindex Ctrl-PageUp
512@kindex Ctrl-PageDown
3e11db9a
FB
513In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
514@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
515
a40db1b3
PM
516@c man end
517
518@node mux_keys
519@section Keys in the character backend multiplexer
520
521@c man begin OPTIONS
522
523During emulation, if you are using a character backend multiplexer
524(which is the default if you are using @option{-nographic}) then
525several commands are available via an escape sequence. These
526key sequences all start with an escape character, which is @key{Ctrl-a}
527by default, but can be changed with @option{-echr}. The list below assumes
528you're using the default.
ec410fc9
FB
529
530@table @key
a1b74fe8 531@item Ctrl-a h
7544a042 532@kindex Ctrl-a h
ec410fc9 533Print this help
3b46e624 534@item Ctrl-a x
7544a042 535@kindex Ctrl-a x
366dfc52 536Exit emulator
3b46e624 537@item Ctrl-a s
7544a042 538@kindex Ctrl-a s
1f47a922 539Save disk data back to file (if -snapshot)
20d8a3ed 540@item Ctrl-a t
7544a042 541@kindex Ctrl-a t
d2c639d6 542Toggle console timestamps
a1b74fe8 543@item Ctrl-a b
7544a042 544@kindex Ctrl-a b
1f673135 545Send break (magic sysrq in Linux)
a1b74fe8 546@item Ctrl-a c
7544a042 547@kindex Ctrl-a c
a40db1b3
PM
548Rotate between the frontends connected to the multiplexer (usually
549this switches between the monitor and the console)
a1b74fe8 550@item Ctrl-a Ctrl-a
a40db1b3
PM
551@kindex Ctrl-a Ctrl-a
552Send the escape character to the frontend
ec410fc9 553@end table
0806e3f6
FB
554@c man end
555
556@ignore
557
1f673135
FB
558@c man begin SEEALSO
559The HTML documentation of QEMU for more precise information and Linux
560user mode emulator invocation.
561@c man end
562
563@c man begin AUTHOR
564Fabrice Bellard
565@c man end
566
567@end ignore
568
debc7065 569@node pcsys_monitor
1f673135 570@section QEMU Monitor
7544a042 571@cindex QEMU monitor
1f673135
FB
572
573The QEMU monitor is used to give complex commands to the QEMU
574emulator. You can use it to:
575
576@itemize @minus
577
578@item
e598752a 579Remove or insert removable media images
89dfe898 580(such as CD-ROM or floppies).
1f673135 581
5fafdf24 582@item
1f673135
FB
583Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
584from a disk file.
585
586@item Inspect the VM state without an external debugger.
587
588@end itemize
589
590@subsection Commands
591
592The following commands are available:
593
2313086a 594@include qemu-monitor.texi
0806e3f6 595
2cd8af2d
PB
596@include qemu-monitor-info.texi
597
1f673135
FB
598@subsection Integer expressions
599
600The monitor understands integers expressions for every integer
601argument. You can use register names to get the value of specifics
602CPU registers by prefixing them with @emph{$}.
ec410fc9 603
1f47a922
FB
604@node disk_images
605@section Disk Images
606
ee29bdb6
PB
607QEMU supports many disk image formats, including growable disk images
608(their size increase as non empty sectors are written), compressed and
609encrypted disk images.
1f47a922 610
debc7065
FB
611@menu
612* disk_images_quickstart:: Quick start for disk image creation
613* disk_images_snapshot_mode:: Snapshot mode
13a2e80f 614* vm_snapshots:: VM snapshots
debc7065 615* qemu_img_invocation:: qemu-img Invocation
975b092b 616* qemu_nbd_invocation:: qemu-nbd Invocation
d3067b02 617* disk_images_formats:: Disk image file formats
19cb3738 618* host_drives:: Using host drives
debc7065 619* disk_images_fat_images:: Virtual FAT disk images
75818250 620* disk_images_nbd:: NBD access
42af9c30 621* disk_images_sheepdog:: Sheepdog disk images
00984e39 622* disk_images_iscsi:: iSCSI LUNs
8809e289 623* disk_images_gluster:: GlusterFS disk images
0a12ec87 624* disk_images_ssh:: Secure Shell (ssh) disk images
e86de5e4 625* disk_images_nvme:: NVMe userspace driver
b1d1cb27 626* disk_image_locking:: Disk image file locking
debc7065
FB
627@end menu
628
629@node disk_images_quickstart
acd935ef
FB
630@subsection Quick start for disk image creation
631
632You can create a disk image with the command:
1f47a922 633@example
acd935ef 634qemu-img create myimage.img mysize
1f47a922 635@end example
acd935ef
FB
636where @var{myimage.img} is the disk image filename and @var{mysize} is its
637size in kilobytes. You can add an @code{M} suffix to give the size in
638megabytes and a @code{G} suffix for gigabytes.
639
debc7065 640See @ref{qemu_img_invocation} for more information.
1f47a922 641
debc7065 642@node disk_images_snapshot_mode
1f47a922
FB
643@subsection Snapshot mode
644
645If you use the option @option{-snapshot}, all disk images are
646considered as read only. When sectors in written, they are written in
647a temporary file created in @file{/tmp}. You can however force the
acd935ef
FB
648write back to the raw disk images by using the @code{commit} monitor
649command (or @key{C-a s} in the serial console).
1f47a922 650
13a2e80f
FB
651@node vm_snapshots
652@subsection VM snapshots
653
654VM snapshots are snapshots of the complete virtual machine including
655CPU state, RAM, device state and the content of all the writable
656disks. In order to use VM snapshots, you must have at least one non
657removable and writable block device using the @code{qcow2} disk image
658format. Normally this device is the first virtual hard drive.
659
660Use the monitor command @code{savevm} to create a new VM snapshot or
661replace an existing one. A human readable name can be assigned to each
19d36792 662snapshot in addition to its numerical ID.
13a2e80f
FB
663
664Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
665a VM snapshot. @code{info snapshots} lists the available snapshots
666with their associated information:
667
668@example
669(qemu) info snapshots
670Snapshot devices: hda
671Snapshot list (from hda):
672ID TAG VM SIZE DATE VM CLOCK
6731 start 41M 2006-08-06 12:38:02 00:00:14.954
6742 40M 2006-08-06 12:43:29 00:00:18.633
6753 msys 40M 2006-08-06 12:44:04 00:00:23.514
676@end example
677
678A VM snapshot is made of a VM state info (its size is shown in
679@code{info snapshots}) and a snapshot of every writable disk image.
680The VM state info is stored in the first @code{qcow2} non removable
681and writable block device. The disk image snapshots are stored in
682every disk image. The size of a snapshot in a disk image is difficult
683to evaluate and is not shown by @code{info snapshots} because the
684associated disk sectors are shared among all the snapshots to save
19d36792
FB
685disk space (otherwise each snapshot would need a full copy of all the
686disk images).
13a2e80f
FB
687
688When using the (unrelated) @code{-snapshot} option
689(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
690but they are deleted as soon as you exit QEMU.
691
692VM snapshots currently have the following known limitations:
693@itemize
5fafdf24 694@item
13a2e80f
FB
695They cannot cope with removable devices if they are removed or
696inserted after a snapshot is done.
5fafdf24 697@item
13a2e80f
FB
698A few device drivers still have incomplete snapshot support so their
699state is not saved or restored properly (in particular USB).
700@end itemize
701
acd935ef
FB
702@node qemu_img_invocation
703@subsection @code{qemu-img} Invocation
1f47a922 704
acd935ef 705@include qemu-img.texi
05efe46e 706
975b092b
TS
707@node qemu_nbd_invocation
708@subsection @code{qemu-nbd} Invocation
709
710@include qemu-nbd.texi
711
78aa8aa0 712@include docs/qemu-block-drivers.texi
0a12ec87 713
debc7065 714@node pcsys_network
9d4fb82e
FB
715@section Network emulation
716
4be456f1 717QEMU can simulate several network cards (PCI or ISA cards on the PC
41d03949
FB
718target) and can connect them to an arbitrary number of Virtual Local
719Area Networks (VLANs). Host TAP devices can be connected to any QEMU
720VLAN. VLAN can be connected between separate instances of QEMU to
4be456f1 721simulate large networks. For simpler usage, a non privileged user mode
41d03949
FB
722network stack can replace the TAP device to have a basic network
723connection.
724
725@subsection VLANs
9d4fb82e 726
41d03949
FB
727QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
728connection between several network devices. These devices can be for
729example QEMU virtual Ethernet cards or virtual Host ethernet devices
730(TAP devices).
9d4fb82e 731
41d03949
FB
732@subsection Using TAP network interfaces
733
734This is the standard way to connect QEMU to a real network. QEMU adds
735a virtual network device on your host (called @code{tapN}), and you
736can then configure it as if it was a real ethernet card.
9d4fb82e 737
8f40c388
FB
738@subsubsection Linux host
739
9d4fb82e
FB
740As an example, you can download the @file{linux-test-xxx.tar.gz}
741archive and copy the script @file{qemu-ifup} in @file{/etc} and
742configure properly @code{sudo} so that the command @code{ifconfig}
743contained in @file{qemu-ifup} can be executed as root. You must verify
41d03949 744that your host kernel supports the TAP network interfaces: the
9d4fb82e
FB
745device @file{/dev/net/tun} must be present.
746
ee0f4751
FB
747See @ref{sec_invocation} to have examples of command lines using the
748TAP network interfaces.
9d4fb82e 749
8f40c388
FB
750@subsubsection Windows host
751
752There is a virtual ethernet driver for Windows 2000/XP systems, called
753TAP-Win32. But it is not included in standard QEMU for Windows,
754so you will need to get it separately. It is part of OpenVPN package,
70b7fba9 755so download OpenVPN from : @url{https://openvpn.net/}.
8f40c388 756
9d4fb82e
FB
757@subsection Using the user mode network stack
758
41d03949
FB
759By using the option @option{-net user} (default configuration if no
760@option{-net} option is specified), QEMU uses a completely user mode
4be456f1 761network stack (you don't need root privilege to use the virtual
41d03949 762network). The virtual network configuration is the following:
9d4fb82e
FB
763
764@example
765
41d03949
FB
766 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
767 | (10.0.2.2)
9d4fb82e 768 |
2518bd0d 769 ----> DNS server (10.0.2.3)
3b46e624 770 |
2518bd0d 771 ----> SMB server (10.0.2.4)
9d4fb82e
FB
772@end example
773
774The QEMU VM behaves as if it was behind a firewall which blocks all
775incoming connections. You can use a DHCP client to automatically
41d03949
FB
776configure the network in the QEMU VM. The DHCP server assign addresses
777to the hosts starting from 10.0.2.15.
9d4fb82e
FB
778
779In order to check that the user mode network is working, you can ping
780the address 10.0.2.2 and verify that you got an address in the range
78110.0.2.x from the QEMU virtual DHCP server.
782
37cbfcce
GH
783Note that ICMP traffic in general does not work with user mode networking.
784@code{ping}, aka. ICMP echo, to the local router (10.0.2.2) shall work,
785however. If you're using QEMU on Linux >= 3.0, it can use unprivileged ICMP
786ping sockets to allow @code{ping} to the Internet. The host admin has to set
787the ping_group_range in order to grant access to those sockets. To allow ping
788for GID 100 (usually users group):
789
790@example
791echo 100 100 > /proc/sys/net/ipv4/ping_group_range
792@end example
b415a407 793
9bf05444
FB
794When using the built-in TFTP server, the router is also the TFTP
795server.
796
c8c6afa8
TH
797When using the @option{'-netdev user,hostfwd=...'} option, TCP or UDP
798connections can be redirected from the host to the guest. It allows for
799example to redirect X11, telnet or SSH connections.
443f1376 800
41d03949
FB
801@subsection Connecting VLANs between QEMU instances
802
803Using the @option{-net socket} option, it is possible to make VLANs
804that span several QEMU instances. See @ref{sec_invocation} to have a
805basic example.
806
576fd0a1 807@node pcsys_other_devs
6cbf4c8c
CM
808@section Other Devices
809
810@subsection Inter-VM Shared Memory device
811
5400c02b
MA
812On Linux hosts, a shared memory device is available. The basic syntax
813is:
6cbf4c8c
CM
814
815@example
5400c02b
MA
816qemu-system-x86_64 -device ivshmem-plain,memdev=@var{hostmem}
817@end example
818
819where @var{hostmem} names a host memory backend. For a POSIX shared
820memory backend, use something like
821
822@example
823-object memory-backend-file,size=1M,share,mem-path=/dev/shm/ivshmem,id=@var{hostmem}
6cbf4c8c
CM
824@end example
825
826If desired, interrupts can be sent between guest VMs accessing the same shared
827memory region. Interrupt support requires using a shared memory server and
828using a chardev socket to connect to it. The code for the shared memory server
829is qemu.git/contrib/ivshmem-server. An example syntax when using the shared
830memory server is:
831
832@example
a75eb03b 833# First start the ivshmem server once and for all
50d34c4e 834ivshmem-server -p @var{pidfile} -S @var{path} -m @var{shm-name} -l @var{shm-size} -n @var{vectors}
a75eb03b
DM
835
836# Then start your qemu instances with matching arguments
5400c02b 837qemu-system-x86_64 -device ivshmem-doorbell,vectors=@var{vectors},chardev=@var{id}
50d34c4e 838 -chardev socket,path=@var{path},id=@var{id}
6cbf4c8c
CM
839@end example
840
841When using the server, the guest will be assigned a VM ID (>=0) that allows guests
842using the same server to communicate via interrupts. Guests can read their
1309cf44 843VM ID from a device register (see ivshmem-spec.txt).
6cbf4c8c 844
62a830b6
MA
845@subsubsection Migration with ivshmem
846
5400c02b
MA
847With device property @option{master=on}, the guest will copy the shared
848memory on migration to the destination host. With @option{master=off},
849the guest will not be able to migrate with the device attached. In the
850latter case, the device should be detached and then reattached after
851migration using the PCI hotplug support.
6cbf4c8c 852
62a830b6
MA
853At most one of the devices sharing the same memory can be master. The
854master must complete migration before you plug back the other devices.
855
7d4f4bda
MAL
856@subsubsection ivshmem and hugepages
857
858Instead of specifying the <shm size> using POSIX shm, you may specify
859a memory backend that has hugepage support:
860
861@example
5400c02b
MA
862qemu-system-x86_64 -object memory-backend-file,size=1G,mem-path=/dev/hugepages/my-shmem-file,share,id=mb1
863 -device ivshmem-plain,memdev=mb1
7d4f4bda
MAL
864@end example
865
866ivshmem-server also supports hugepages mount points with the
867@option{-m} memory path argument.
868
9d4fb82e
FB
869@node direct_linux_boot
870@section Direct Linux Boot
1f673135
FB
871
872This section explains how to launch a Linux kernel inside QEMU without
873having to make a full bootable image. It is very useful for fast Linux
ee0f4751 874kernel testing.
1f673135 875
ee0f4751 876The syntax is:
1f673135 877@example
3804da9d 878qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1f673135
FB
879@end example
880
ee0f4751
FB
881Use @option{-kernel} to provide the Linux kernel image and
882@option{-append} to give the kernel command line arguments. The
883@option{-initrd} option can be used to provide an INITRD image.
1f673135 884
ee0f4751
FB
885When using the direct Linux boot, a disk image for the first hard disk
886@file{hda} is required because its boot sector is used to launch the
887Linux kernel.
1f673135 888
ee0f4751
FB
889If you do not need graphical output, you can disable it and redirect
890the virtual serial port and the QEMU monitor to the console with the
891@option{-nographic} option. The typical command line is:
1f673135 892@example
3804da9d
SW
893qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
894 -append "root=/dev/hda console=ttyS0" -nographic
1f673135
FB
895@end example
896
ee0f4751
FB
897Use @key{Ctrl-a c} to switch between the serial console and the
898monitor (@pxref{pcsys_keys}).
1f673135 899
debc7065 900@node pcsys_usb
b389dbfb
FB
901@section USB emulation
902
a92ff8c1
TH
903QEMU can emulate a PCI UHCI, OHCI, EHCI or XHCI USB controller. You can
904plug virtual USB devices or real host USB devices (only works with certain
905host operating systems). QEMU will automatically create and connect virtual
906USB hubs as necessary to connect multiple USB devices.
b389dbfb 907
0aff66b5
PB
908@menu
909* usb_devices::
910* host_usb_devices::
911@end menu
912@node usb_devices
913@subsection Connecting USB devices
b389dbfb 914
a92ff8c1
TH
915USB devices can be connected with the @option{-device usb-...} command line
916option or the @code{device_add} monitor command. Available devices are:
b389dbfb 917
db380c06 918@table @code
a92ff8c1 919@item usb-mouse
0aff66b5 920Virtual Mouse. This will override the PS/2 mouse emulation when activated.
a92ff8c1 921@item usb-tablet
c6d46c20 922Pointer device that uses absolute coordinates (like a touchscreen).
b65ee4fa 923This means QEMU is able to report the mouse position without having
0aff66b5 924to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
a92ff8c1
TH
925@item usb-storage,drive=@var{drive_id}
926Mass storage device backed by @var{drive_id} (@pxref{disk_images})
927@item usb-uas
928USB attached SCSI device, see
70b7fba9 929@url{https://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/usb-storage.txt,usb-storage.txt}
a92ff8c1
TH
930for details
931@item usb-bot
932Bulk-only transport storage device, see
70b7fba9 933@url{https://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/usb-storage.txt,usb-storage.txt}
a92ff8c1
TH
934for details here, too
935@item usb-mtp,x-root=@var{dir}
936Media transfer protocol device, using @var{dir} as root of the file tree
937that is presented to the guest.
938@item usb-host,hostbus=@var{bus},hostaddr=@var{addr}
939Pass through the host device identified by @var{bus} and @var{addr}
940@item usb-host,vendorid=@var{vendor},productid=@var{product}
941Pass through the host device identified by @var{vendor} and @var{product} ID
942@item usb-wacom-tablet
f6d2a316
AZ
943Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
944above but it can be used with the tslib library because in addition to touch
945coordinates it reports touch pressure.
a92ff8c1 946@item usb-kbd
47b2d338 947Standard USB keyboard. Will override the PS/2 keyboard (if present).
a92ff8c1 948@item usb-serial,chardev=@var{id}
db380c06 949Serial converter. This emulates an FTDI FT232BM chip connected to host character
a92ff8c1
TH
950device @var{id}.
951@item usb-braille,chardev=@var{id}
2e4d9fb1 952Braille device. This will use BrlAPI to display the braille output on a real
a92ff8c1
TH
953or fake device referenced by @var{id}.
954@item usb-net[,netdev=@var{id}]
955Network adapter that supports CDC ethernet and RNDIS protocols. @var{id}
956specifies a netdev defined with @code{-netdev @dots{},id=@var{id}}.
9ad97e65 957For instance, user-mode networking can be used with
6c9f886c 958@example
a92ff8c1 959qemu-system-i386 [...] -netdev user,id=net0 -device usb-net,netdev=net0
6c9f886c 960@end example
a92ff8c1
TH
961@item usb-ccid
962Smartcard reader device
963@item usb-audio
964USB audio device
965@item usb-bt-dongle
966Bluetooth dongle for the transport layer of HCI. It is connected to HCI
967scatternet 0 by default (corresponds to @code{-bt hci,vlan=0}).
968Note that the syntax for the @code{-device usb-bt-dongle} option is not as
969useful yet as it was with the legacy @code{-usbdevice} option. So to
970configure an USB bluetooth device, you might need to use
971"@code{-usbdevice bt}[:@var{hci-type}]" instead. This configures a
972bluetooth dongle whose type is specified in the same format as with
2d564691
AZ
973the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
974no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
975This USB device implements the USB Transport Layer of HCI. Example
976usage:
977@example
8485140f 978@command{qemu-system-i386} [...@var{OPTIONS}...] @option{-usbdevice} bt:hci,vlan=3 @option{-bt} device:keyboard,vlan=3
2d564691 979@end example
0aff66b5 980@end table
b389dbfb 981
0aff66b5 982@node host_usb_devices
b389dbfb
FB
983@subsection Using host USB devices on a Linux host
984
985WARNING: this is an experimental feature. QEMU will slow down when
986using it. USB devices requiring real time streaming (i.e. USB Video
987Cameras) are not supported yet.
988
989@enumerate
5fafdf24 990@item If you use an early Linux 2.4 kernel, verify that no Linux driver
b389dbfb
FB
991is actually using the USB device. A simple way to do that is simply to
992disable the corresponding kernel module by renaming it from @file{mydriver.o}
993to @file{mydriver.o.disabled}.
994
995@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
996@example
997ls /proc/bus/usb
998001 devices drivers
999@end example
1000
1001@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1002@example
1003chown -R myuid /proc/bus/usb
1004@end example
1005
1006@item Launch QEMU and do in the monitor:
5fafdf24 1007@example
b389dbfb
FB
1008info usbhost
1009 Device 1.2, speed 480 Mb/s
1010 Class 00: USB device 1234:5678, USB DISK
1011@end example
1012You should see the list of the devices you can use (Never try to use
1013hubs, it won't work).
1014
1015@item Add the device in QEMU by using:
5fafdf24 1016@example
a92ff8c1 1017device_add usb-host,vendorid=0x1234,productid=0x5678
b389dbfb
FB
1018@end example
1019
a92ff8c1
TH
1020Normally the guest OS should report that a new USB device is plugged.
1021You can use the option @option{-device usb-host,...} to do the same.
b389dbfb
FB
1022
1023@item Now you can try to use the host USB device in QEMU.
1024
1025@end enumerate
1026
1027When relaunching QEMU, you may have to unplug and plug again the USB
1028device to make it work again (this is a bug).
1029
f858dcae
TS
1030@node vnc_security
1031@section VNC security
1032
1033The VNC server capability provides access to the graphical console
1034of the guest VM across the network. This has a number of security
1035considerations depending on the deployment scenarios.
1036
1037@menu
1038* vnc_sec_none::
1039* vnc_sec_password::
1040* vnc_sec_certificate::
1041* vnc_sec_certificate_verify::
1042* vnc_sec_certificate_pw::
2f9606b3
AL
1043* vnc_sec_sasl::
1044* vnc_sec_certificate_sasl::
2f9606b3 1045* vnc_setup_sasl::
f858dcae
TS
1046@end menu
1047@node vnc_sec_none
1048@subsection Without passwords
1049
1050The simplest VNC server setup does not include any form of authentication.
1051For this setup it is recommended to restrict it to listen on a UNIX domain
1052socket only. For example
1053
1054@example
3804da9d 1055qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
f858dcae
TS
1056@end example
1057
1058This ensures that only users on local box with read/write access to that
1059path can access the VNC server. To securely access the VNC server from a
1060remote machine, a combination of netcat+ssh can be used to provide a secure
1061tunnel.
1062
1063@node vnc_sec_password
1064@subsection With passwords
1065
1066The VNC protocol has limited support for password based authentication. Since
1067the protocol limits passwords to 8 characters it should not be considered
1068to provide high security. The password can be fairly easily brute-forced by
1069a client making repeat connections. For this reason, a VNC server using password
1070authentication should be restricted to only listen on the loopback interface
0f66998f
PM
1071or UNIX domain sockets. Password authentication is not supported when operating
1072in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password
1073authentication is requested with the @code{password} option, and then once QEMU
1074is running the password is set with the monitor. Until the monitor is used to
1075set the password all clients will be rejected.
f858dcae
TS
1076
1077@example
3804da9d 1078qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio
f858dcae
TS
1079(qemu) change vnc password
1080Password: ********
1081(qemu)
1082@end example
1083
1084@node vnc_sec_certificate
1085@subsection With x509 certificates
1086
1087The QEMU VNC server also implements the VeNCrypt extension allowing use of
1088TLS for encryption of the session, and x509 certificates for authentication.
1089The use of x509 certificates is strongly recommended, because TLS on its
1090own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1091support provides a secure session, but no authentication. This allows any
1092client to connect, and provides an encrypted session.
1093
1094@example
3804da9d 1095qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
f858dcae
TS
1096@end example
1097
1098In the above example @code{/etc/pki/qemu} should contain at least three files,
1099@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1100users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1101NB the @code{server-key.pem} file should be protected with file mode 0600 to
1102only be readable by the user owning it.
1103
1104@node vnc_sec_certificate_verify
1105@subsection With x509 certificates and client verification
1106
1107Certificates can also provide a means to authenticate the client connecting.
1108The server will request that the client provide a certificate, which it will
1109then validate against the CA certificate. This is a good choice if deploying
1110in an environment with a private internal certificate authority.
1111
1112@example
3804da9d 1113qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
f858dcae
TS
1114@end example
1115
1116
1117@node vnc_sec_certificate_pw
1118@subsection With x509 certificates, client verification and passwords
1119
1120Finally, the previous method can be combined with VNC password authentication
1121to provide two layers of authentication for clients.
1122
1123@example
3804da9d 1124qemu-system-i386 [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
f858dcae
TS
1125(qemu) change vnc password
1126Password: ********
1127(qemu)
1128@end example
1129
2f9606b3
AL
1130
1131@node vnc_sec_sasl
1132@subsection With SASL authentication
1133
1134The SASL authentication method is a VNC extension, that provides an
1135easily extendable, pluggable authentication method. This allows for
1136integration with a wide range of authentication mechanisms, such as
1137PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1138The strength of the authentication depends on the exact mechanism
1139configured. If the chosen mechanism also provides a SSF layer, then
1140it will encrypt the datastream as well.
1141
1142Refer to the later docs on how to choose the exact SASL mechanism
1143used for authentication, but assuming use of one supporting SSF,
1144then QEMU can be launched with:
1145
1146@example
3804da9d 1147qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio
2f9606b3
AL
1148@end example
1149
1150@node vnc_sec_certificate_sasl
1151@subsection With x509 certificates and SASL authentication
1152
1153If the desired SASL authentication mechanism does not supported
1154SSF layers, then it is strongly advised to run it in combination
1155with TLS and x509 certificates. This provides securely encrypted
1156data stream, avoiding risk of compromising of the security
1157credentials. This can be enabled, by combining the 'sasl' option
1158with the aforementioned TLS + x509 options:
1159
1160@example
3804da9d 1161qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
2f9606b3
AL
1162@end example
1163
5d19a6ea
DB
1164@node vnc_setup_sasl
1165
1166@subsection Configuring SASL mechanisms
1167
1168The following documentation assumes use of the Cyrus SASL implementation on a
1169Linux host, but the principles should apply to any other SASL implementation
1170or host. When SASL is enabled, the mechanism configuration will be loaded from
1171system default SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1172unprivileged user, an environment variable SASL_CONF_PATH can be used to make
1173it search alternate locations for the service config file.
1174
1175If the TLS option is enabled for VNC, then it will provide session encryption,
1176otherwise the SASL mechanism will have to provide encryption. In the latter
1177case the list of possible plugins that can be used is drastically reduced. In
1178fact only the GSSAPI SASL mechanism provides an acceptable level of security
1179by modern standards. Previous versions of QEMU referred to the DIGEST-MD5
1180mechanism, however, it has multiple serious flaws described in detail in
1181RFC 6331 and thus should never be used any more. The SCRAM-SHA-1 mechanism
1182provides a simple username/password auth facility similar to DIGEST-MD5, but
1183does not support session encryption, so can only be used in combination with
1184TLS.
2f9606b3 1185
5d19a6ea 1186When not using TLS the recommended configuration is
f858dcae 1187
5d19a6ea
DB
1188@example
1189mech_list: gssapi
1190keytab: /etc/qemu/krb5.tab
1191@end example
1192
1193This says to use the 'GSSAPI' mechanism with the Kerberos v5 protocol, with
1194the server principal stored in /etc/qemu/krb5.tab. For this to work the
1195administrator of your KDC must generate a Kerberos principal for the server,
1196with a name of 'qemu/somehost.example.com@@EXAMPLE.COM' replacing
1197'somehost.example.com' with the fully qualified host name of the machine
1198running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
1199
1200When using TLS, if username+password authentication is desired, then a
1201reasonable configuration is
1202
1203@example
1204mech_list: scram-sha-1
1205sasldb_path: /etc/qemu/passwd.db
1206@end example
1207
1208The @code{saslpasswd2} program can be used to populate the @code{passwd.db}
1209file with accounts.
1210
1211Other SASL configurations will be left as an exercise for the reader. Note that
1212all mechanisms, except GSSAPI, should be combined with use of TLS to ensure a
1213secure data channel.
1214
1215
1216@node network_tls
1217@section TLS setup for network services
1218
1219Almost all network services in QEMU have the ability to use TLS for
1220session data encryption, along with x509 certificates for simple
1221client authentication. What follows is a description of how to
1222generate certificates suitable for usage with QEMU, and applies to
1223the VNC server, character devices with the TCP backend, NBD server
1224and client, and migration server and client.
1225
1226At a high level, QEMU requires certificates and private keys to be
1227provided in PEM format. Aside from the core fields, the certificates
1228should include various extension data sets, including v3 basic
1229constraints data, key purpose, key usage and subject alt name.
1230
1231The GnuTLS package includes a command called @code{certtool} which can
1232be used to easily generate certificates and keys in the required format
1233with expected data present. Alternatively a certificate management
1234service may be used.
1235
1236At a minimum it is necessary to setup a certificate authority, and
1237issue certificates to each server. If using x509 certificates for
1238authentication, then each client will also need to be issued a
1239certificate.
1240
1241Assuming that the QEMU network services will only ever be exposed to
1242clients on a private intranet, there is no need to use a commercial
1243certificate authority to create certificates. A self-signed CA is
1244sufficient, and in fact likely to be more secure since it removes
1245the ability of malicious 3rd parties to trick the CA into mis-issuing
1246certs for impersonating your services. The only likely exception
1247where a commercial CA might be desirable is if enabling the VNC
1248websockets server and exposing it directly to remote browser clients.
1249In such a case it might be useful to use a commercial CA to avoid
1250needing to install custom CA certs in the web browsers.
1251
1252The recommendation is for the server to keep its certificates in either
1253@code{/etc/pki/qemu} or for unprivileged users in @code{$HOME/.pki/qemu}.
f858dcae
TS
1254
1255@menu
5d19a6ea
DB
1256* tls_generate_ca::
1257* tls_generate_server::
1258* tls_generate_client::
1259* tls_creds_setup::
f858dcae 1260@end menu
5d19a6ea
DB
1261@node tls_generate_ca
1262@subsection Setup the Certificate Authority
f858dcae
TS
1263
1264This step only needs to be performed once per organization / organizational
1265unit. First the CA needs a private key. This key must be kept VERY secret
1266and secure. If this key is compromised the entire trust chain of the certificates
1267issued with it is lost.
1268
1269@example
1270# certtool --generate-privkey > ca-key.pem
1271@end example
1272
5d19a6ea
DB
1273To generate a self-signed certificate requires one core piece of information,
1274the name of the organization. A template file @code{ca.info} should be
1275populated with the desired data to avoid having to deal with interactive
1276prompts from certtool:
f858dcae
TS
1277@example
1278# cat > ca.info <<EOF
1279cn = Name of your organization
1280ca
1281cert_signing_key
1282EOF
1283# certtool --generate-self-signed \
1284 --load-privkey ca-key.pem
1285 --template ca.info \
1286 --outfile ca-cert.pem
1287@end example
1288
5d19a6ea
DB
1289The @code{ca} keyword in the template sets the v3 basic constraints extension
1290to indicate this certificate is for a CA, while @code{cert_signing_key} sets
1291the key usage extension to indicate this will be used for signing other keys.
1292The generated @code{ca-cert.pem} file should be copied to all servers and
1293clients wishing to utilize TLS support in the VNC server. The @code{ca-key.pem}
1294must not be disclosed/copied anywhere except the host responsible for issuing
1295certificates.
f858dcae 1296
5d19a6ea
DB
1297@node tls_generate_server
1298@subsection Issuing server certificates
f858dcae
TS
1299
1300Each server (or host) needs to be issued with a key and certificate. When connecting
1301the certificate is sent to the client which validates it against the CA certificate.
5d19a6ea
DB
1302The core pieces of information for a server certificate are the hostnames and/or IP
1303addresses that will be used by clients when connecting. The hostname / IP address
1304that the client specifies when connecting will be validated against the hostname(s)
1305and IP address(es) recorded in the server certificate, and if no match is found
1306the client will close the connection.
1307
1308Thus it is recommended that the server certificate include both the fully qualified
1309and unqualified hostnames. If the server will have permanently assigned IP address(es),
1310and clients are likely to use them when connecting, they may also be included in the
1311certificate. Both IPv4 and IPv6 addresses are supported. Historically certificates
1312only included 1 hostname in the @code{CN} field, however, usage of this field for
1313validation is now deprecated. Instead modern TLS clients will validate against the
1314Subject Alt Name extension data, which allows for multiple entries. In the future
1315usage of the @code{CN} field may be discontinued entirely, so providing SAN
1316extension data is strongly recommended.
1317
1318On the host holding the CA, create template files containing the information
1319for each server, and use it to issue server certificates.
f858dcae
TS
1320
1321@example
5d19a6ea 1322# cat > server-hostNNN.info <<EOF
f858dcae 1323organization = Name of your organization
5d19a6ea
DB
1324cn = hostNNN.foo.example.com
1325dns_name = hostNNN
1326dns_name = hostNNN.foo.example.com
1327ip_address = 10.0.1.87
1328ip_address = 192.8.0.92
1329ip_address = 2620:0:cafe::87
1330ip_address = 2001:24::92
f858dcae
TS
1331tls_www_server
1332encryption_key
1333signing_key
1334EOF
5d19a6ea 1335# certtool --generate-privkey > server-hostNNN-key.pem
f858dcae
TS
1336# certtool --generate-certificate \
1337 --load-ca-certificate ca-cert.pem \
1338 --load-ca-privkey ca-key.pem \
5d19a6ea
DB
1339 --load-privkey server-hostNNN-key.pem \
1340 --template server-hostNNN.info \
1341 --outfile server-hostNNN-cert.pem
f858dcae
TS
1342@end example
1343
5d19a6ea
DB
1344The @code{dns_name} and @code{ip_address} fields in the template are setting
1345the subject alt name extension data. The @code{tls_www_server} keyword is the
1346key purpose extension to indicate this certificate is intended for usage in
1347a web server. Although QEMU network services are not in fact HTTP servers
1348(except for VNC websockets), setting this key purpose is still recommended.
1349The @code{encryption_key} and @code{signing_key} keyword is the key usage
1350extension to indicate this certificate is intended for usage in the data
1351session.
1352
1353The @code{server-hostNNN-key.pem} and @code{server-hostNNN-cert.pem} files
1354should now be securely copied to the server for which they were generated,
1355and renamed to @code{server-key.pem} and @code{server-cert.pem} when added
1356to the @code{/etc/pki/qemu} directory on the target host. The @code{server-key.pem}
1357file is security sensitive and should be kept protected with file mode 0600
1358to prevent disclosure.
1359
1360@node tls_generate_client
1361@subsection Issuing client certificates
f858dcae 1362
5d19a6ea
DB
1363The QEMU x509 TLS credential setup defaults to enabling client verification
1364using certificates, providing a simple authentication mechanism. If this
1365default is used, each client also needs to be issued a certificate. The client
1366certificate contains enough metadata to uniquely identify the client with the
1367scope of the certificate authority. The client certificate would typically
1368include fields for organization, state, city, building, etc.
1369
1370Once again on the host holding the CA, create template files containing the
1371information for each client, and use it to issue client certificates.
f858dcae 1372
f858dcae
TS
1373
1374@example
5d19a6ea 1375# cat > client-hostNNN.info <<EOF
f858dcae
TS
1376country = GB
1377state = London
5d19a6ea 1378locality = City Of London
63c693f8 1379organization = Name of your organization
5d19a6ea 1380cn = hostNNN.foo.example.com
f858dcae
TS
1381tls_www_client
1382encryption_key
1383signing_key
1384EOF
5d19a6ea 1385# certtool --generate-privkey > client-hostNNN-key.pem
f858dcae
TS
1386# certtool --generate-certificate \
1387 --load-ca-certificate ca-cert.pem \
1388 --load-ca-privkey ca-key.pem \
5d19a6ea
DB
1389 --load-privkey client-hostNNN-key.pem \
1390 --template client-hostNNN.info \
1391 --outfile client-hostNNN-cert.pem
f858dcae
TS
1392@end example
1393
5d19a6ea
DB
1394The subject alt name extension data is not required for clients, so the
1395the @code{dns_name} and @code{ip_address} fields are not included.
1396The @code{tls_www_client} keyword is the key purpose extension to indicate
1397this certificate is intended for usage in a web client. Although QEMU
1398network clients are not in fact HTTP clients, setting this key purpose is
1399still recommended. The @code{encryption_key} and @code{signing_key} keyword
1400is the key usage extension to indicate this certificate is intended for
1401usage in the data session.
1402
1403The @code{client-hostNNN-key.pem} and @code{client-hostNNN-cert.pem} files
1404should now be securely copied to the client for which they were generated,
1405and renamed to @code{client-key.pem} and @code{client-cert.pem} when added
1406to the @code{/etc/pki/qemu} directory on the target host. The @code{client-key.pem}
1407file is security sensitive and should be kept protected with file mode 0600
1408to prevent disclosure.
1409
1410If a single host is going to be using TLS in both a client and server
1411role, it is possible to create a single certificate to cover both roles.
1412This would be quite common for the migration and NBD services, where a
1413QEMU process will be started by accepting a TLS protected incoming migration,
1414and later itself be migrated out to another host. To generate a single
1415certificate, simply include the template data from both the client and server
1416instructions in one.
2f9606b3 1417
5d19a6ea
DB
1418@example
1419# cat > both-hostNNN.info <<EOF
1420country = GB
1421state = London
1422locality = City Of London
1423organization = Name of your organization
1424cn = hostNNN.foo.example.com
1425dns_name = hostNNN
1426dns_name = hostNNN.foo.example.com
1427ip_address = 10.0.1.87
1428ip_address = 192.8.0.92
1429ip_address = 2620:0:cafe::87
1430ip_address = 2001:24::92
1431tls_www_server
1432tls_www_client
1433encryption_key
1434signing_key
1435EOF
1436# certtool --generate-privkey > both-hostNNN-key.pem
1437# certtool --generate-certificate \
1438 --load-ca-certificate ca-cert.pem \
1439 --load-ca-privkey ca-key.pem \
1440 --load-privkey both-hostNNN-key.pem \
1441 --template both-hostNNN.info \
1442 --outfile both-hostNNN-cert.pem
1443@end example
c6a9a9f5 1444
5d19a6ea
DB
1445When copying the PEM files to the target host, save them twice,
1446once as @code{server-cert.pem} and @code{server-key.pem}, and
1447again as @code{client-cert.pem} and @code{client-key.pem}.
1448
1449@node tls_creds_setup
1450@subsection TLS x509 credential configuration
1451
1452QEMU has a standard mechanism for loading x509 credentials that will be
1453used for network services and clients. It requires specifying the
1454@code{tls-creds-x509} class name to the @code{--object} command line
1455argument for the system emulators. Each set of credentials loaded should
1456be given a unique string identifier via the @code{id} parameter. A single
1457set of TLS credentials can be used for multiple network backends, so VNC,
1458migration, NBD, character devices can all share the same credentials. Note,
1459however, that credentials for use in a client endpoint must be loaded
1460separately from those used in a server endpoint.
1461
1462When specifying the object, the @code{dir} parameters specifies which
1463directory contains the credential files. This directory is expected to
1464contain files with the names mentioned previously, @code{ca-cert.pem},
1465@code{server-key.pem}, @code{server-cert.pem}, @code{client-key.pem}
1466and @code{client-cert.pem} as appropriate. It is also possible to
1467include a set of pre-generated Diffie-Hellman (DH) parameters in a file
1468@code{dh-params.pem}, which can be created using the
1469@code{certtool --generate-dh-params} command. If omitted, QEMU will
1470dynamically generate DH parameters when loading the credentials.
1471
1472The @code{endpoint} parameter indicates whether the credentials will
1473be used for a network client or server, and determines which PEM
1474files are loaded.
1475
1476The @code{verify} parameter determines whether x509 certificate
1477validation should be performed. This defaults to enabled, meaning
1478clients will always validate the server hostname against the
1479certificate subject alt name fields and/or CN field. It also
1480means that servers will request that clients provide a certificate
1481and validate them. Verification should never be turned off for
1482client endpoints, however, it may be turned off for server endpoints
1483if an alternative mechanism is used to authenticate clients. For
1484example, the VNC server can use SASL to authenticate clients
1485instead.
1486
1487To load server credentials with client certificate validation
1488enabled
2f9606b3
AL
1489
1490@example
5d19a6ea 1491$QEMU -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server
2f9606b3
AL
1492@end example
1493
5d19a6ea 1494while to load client credentials use
2f9606b3
AL
1495
1496@example
5d19a6ea 1497$QEMU -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=client
2f9606b3
AL
1498@end example
1499
5d19a6ea
DB
1500Network services which support TLS will all have a @code{tls-creds}
1501parameter which expects the ID of the TLS credentials object. For
1502example with VNC:
2f9606b3 1503
5d19a6ea
DB
1504@example
1505$QEMU -vnc 0.0.0.0:0,tls-creds=tls0
1506@end example
2f9606b3 1507
0806e3f6 1508@node gdb_usage
da415d54
FB
1509@section GDB usage
1510
1511QEMU has a primitive support to work with gdb, so that you can do
0806e3f6 1512'Ctrl-C' while the virtual machine is running and inspect its state.
da415d54 1513
b65ee4fa 1514In order to use gdb, launch QEMU with the '-s' option. It will wait for a
da415d54
FB
1515gdb connection:
1516@example
3804da9d
SW
1517qemu-system-i386 -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1518 -append "root=/dev/hda"
da415d54
FB
1519Connected to host network interface: tun0
1520Waiting gdb connection on port 1234
1521@end example
1522
1523Then launch gdb on the 'vmlinux' executable:
1524@example
1525> gdb vmlinux
1526@end example
1527
1528In gdb, connect to QEMU:
1529@example
6c9bf893 1530(gdb) target remote localhost:1234
da415d54
FB
1531@end example
1532
1533Then you can use gdb normally. For example, type 'c' to launch the kernel:
1534@example
1535(gdb) c
1536@end example
1537
0806e3f6
FB
1538Here are some useful tips in order to use gdb on system code:
1539
1540@enumerate
1541@item
1542Use @code{info reg} to display all the CPU registers.
1543@item
1544Use @code{x/10i $eip} to display the code at the PC position.
1545@item
1546Use @code{set architecture i8086} to dump 16 bit code. Then use
294e8637 1547@code{x/10i $cs*16+$eip} to dump the code at the PC position.
0806e3f6
FB
1548@end enumerate
1549
60897d36
EI
1550Advanced debugging options:
1551
b6af0975 1552The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
94d45e44 1553@table @code
60897d36
EI
1554@item maintenance packet qqemu.sstepbits
1555
1556This will display the MASK bits used to control the single stepping IE:
1557@example
1558(gdb) maintenance packet qqemu.sstepbits
1559sending: "qqemu.sstepbits"
1560received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1561@end example
1562@item maintenance packet qqemu.sstep
1563
1564This will display the current value of the mask used when single stepping IE:
1565@example
1566(gdb) maintenance packet qqemu.sstep
1567sending: "qqemu.sstep"
1568received: "0x7"
1569@end example
1570@item maintenance packet Qqemu.sstep=HEX_VALUE
1571
1572This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1573@example
1574(gdb) maintenance packet Qqemu.sstep=0x5
1575sending: "qemu.sstep=0x5"
1576received: "OK"
1577@end example
94d45e44 1578@end table
60897d36 1579
debc7065 1580@node pcsys_os_specific
1a084f3d
FB
1581@section Target OS specific information
1582
1583@subsection Linux
1584
15a34c63
FB
1585To have access to SVGA graphic modes under X11, use the @code{vesa} or
1586the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1587color depth in the guest and the host OS.
1a084f3d 1588
e3371e62
FB
1589When using a 2.6 guest Linux kernel, you should add the option
1590@code{clock=pit} on the kernel command line because the 2.6 Linux
1591kernels make very strict real time clock checks by default that QEMU
1592cannot simulate exactly.
1593
7c3fc84d
FB
1594When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1595not activated because QEMU is slower with this patch. The QEMU
1596Accelerator Module is also much slower in this case. Earlier Fedora
4be456f1 1597Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
7c3fc84d
FB
1598patch by default. Newer kernels don't have it.
1599
1a084f3d
FB
1600@subsection Windows
1601
1602If you have a slow host, using Windows 95 is better as it gives the
1603best speed. Windows 2000 is also a good choice.
1604
e3371e62
FB
1605@subsubsection SVGA graphic modes support
1606
1607QEMU emulates a Cirrus Logic GD5446 Video
15a34c63
FB
1608card. All Windows versions starting from Windows 95 should recognize
1609and use this graphic card. For optimal performances, use 16 bit color
1610depth in the guest and the host OS.
1a084f3d 1611
3cb0853a
FB
1612If you are using Windows XP as guest OS and if you want to use high
1613resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
16141280x1024x16), then you should use the VESA VBE virtual graphic card
1615(option @option{-std-vga}).
1616
e3371e62
FB
1617@subsubsection CPU usage reduction
1618
1619Windows 9x does not correctly use the CPU HLT
15a34c63
FB
1620instruction. The result is that it takes host CPU cycles even when
1621idle. You can install the utility from
70b7fba9 1622@url{https://web.archive.org/web/20060212132151/http://www.user.cityline.ru/~maxamn/amnhltm.zip}
3ba34a70 1623to solve this problem. Note that no such tool is needed for NT, 2000 or XP.
1a084f3d 1624
9d0a8e6f 1625@subsubsection Windows 2000 disk full problem
e3371e62 1626
9d0a8e6f
FB
1627Windows 2000 has a bug which gives a disk full problem during its
1628installation. When installing it, use the @option{-win2k-hack} QEMU
1629option to enable a specific workaround. After Windows 2000 is
1630installed, you no longer need this option (this option slows down the
1631IDE transfers).
e3371e62 1632
6cc721cf
FB
1633@subsubsection Windows 2000 shutdown
1634
1635Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1636can. It comes from the fact that Windows 2000 does not automatically
1637use the APM driver provided by the BIOS.
1638
1639In order to correct that, do the following (thanks to Struan
1640Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1641Add/Troubleshoot a device => Add a new device & Next => No, select the
1642hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1643(again) a few times. Now the driver is installed and Windows 2000 now
5fafdf24 1644correctly instructs QEMU to shutdown at the appropriate moment.
6cc721cf
FB
1645
1646@subsubsection Share a directory between Unix and Windows
1647
c8c6afa8
TH
1648See @ref{sec_invocation} about the help of the option
1649@option{'-netdev user,smb=...'}.
6cc721cf 1650
2192c332 1651@subsubsection Windows XP security problem
e3371e62
FB
1652
1653Some releases of Windows XP install correctly but give a security
1654error when booting:
1655@example
1656A problem is preventing Windows from accurately checking the
1657license for this computer. Error code: 0x800703e6.
1658@end example
e3371e62 1659
2192c332
FB
1660The workaround is to install a service pack for XP after a boot in safe
1661mode. Then reboot, and the problem should go away. Since there is no
1662network while in safe mode, its recommended to download the full
1663installation of SP1 or SP2 and transfer that via an ISO or using the
1664vvfat block device ("-hdb fat:directory_which_holds_the_SP").
e3371e62 1665
a0a821a4
FB
1666@subsection MS-DOS and FreeDOS
1667
1668@subsubsection CPU usage reduction
1669
1670DOS does not correctly use the CPU HLT instruction. The result is that
3ba34a70 1671it takes host CPU cycles even when idle. You can install the utility from
70b7fba9 1672@url{https://web.archive.org/web/20051222085335/http://www.vmware.com/software/dosidle210.zip}
3ba34a70 1673to solve this problem.
a0a821a4 1674
debc7065 1675@node QEMU System emulator for non PC targets
3f9f3aa1
FB
1676@chapter QEMU System emulator for non PC targets
1677
1678QEMU is a generic emulator and it emulates many non PC
1679machines. Most of the options are similar to the PC emulator. The
4be456f1 1680differences are mentioned in the following sections.
3f9f3aa1 1681
debc7065 1682@menu
7544a042 1683* PowerPC System emulator::
24d4de45
TS
1684* Sparc32 System emulator::
1685* Sparc64 System emulator::
1686* MIPS System emulator::
1687* ARM System emulator::
1688* ColdFire System emulator::
7544a042
SW
1689* Cris System emulator::
1690* Microblaze System emulator::
1691* SH4 System emulator::
3aeaea65 1692* Xtensa System emulator::
debc7065
FB
1693@end menu
1694
7544a042
SW
1695@node PowerPC System emulator
1696@section PowerPC System emulator
1697@cindex system emulation (PowerPC)
1a084f3d 1698
15a34c63
FB
1699Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1700or PowerMac PowerPC system.
1a084f3d 1701
b671f9ed 1702QEMU emulates the following PowerMac peripherals:
1a084f3d 1703
15a34c63 1704@itemize @minus
5fafdf24 1705@item
006f3a48 1706UniNorth or Grackle PCI Bridge
15a34c63
FB
1707@item
1708PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1709@item
15a34c63 17102 PMAC IDE interfaces with hard disk and CD-ROM support
5fafdf24 1711@item
15a34c63
FB
1712NE2000 PCI adapters
1713@item
1714Non Volatile RAM
1715@item
1716VIA-CUDA with ADB keyboard and mouse.
1a084f3d
FB
1717@end itemize
1718
b671f9ed 1719QEMU emulates the following PREP peripherals:
52c00a5f
FB
1720
1721@itemize @minus
5fafdf24 1722@item
15a34c63
FB
1723PCI Bridge
1724@item
1725PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1726@item
52c00a5f
FB
17272 IDE interfaces with hard disk and CD-ROM support
1728@item
1729Floppy disk
5fafdf24 1730@item
15a34c63 1731NE2000 network adapters
52c00a5f
FB
1732@item
1733Serial port
1734@item
1735PREP Non Volatile RAM
15a34c63
FB
1736@item
1737PC compatible keyboard and mouse.
52c00a5f
FB
1738@end itemize
1739
15a34c63 1740QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
3f9f3aa1 1741@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
52c00a5f 1742
70b7fba9 1743Since version 0.9.1, QEMU uses OpenBIOS @url{https://www.openbios.org/}
006f3a48
BS
1744for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1745v2) portable firmware implementation. The goal is to implement a 100%
1746IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
992e5acd 1747
15a34c63
FB
1748@c man begin OPTIONS
1749
1750The following options are specific to the PowerPC emulation:
1751
1752@table @option
1753
4e257e5e 1754@item -g @var{W}x@var{H}[x@var{DEPTH}]
15a34c63 1755
340fb41b 1756Set the initial VGA graphic mode. The default is 800x600x32.
15a34c63 1757
4e257e5e 1758@item -prom-env @var{string}
95efd11c
BS
1759
1760Set OpenBIOS variables in NVRAM, for example:
1761
1762@example
1763qemu-system-ppc -prom-env 'auto-boot?=false' \
1764 -prom-env 'boot-device=hd:2,\yaboot' \
1765 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1766@end example
1767
1768These variables are not used by Open Hack'Ware.
1769
15a34c63
FB
1770@end table
1771
5fafdf24 1772@c man end
15a34c63
FB
1773
1774
52c00a5f 1775More information is available at
3f9f3aa1 1776@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
52c00a5f 1777
24d4de45
TS
1778@node Sparc32 System emulator
1779@section Sparc32 System emulator
7544a042 1780@cindex system emulation (Sparc32)
e80cfcfc 1781
34a3d239
BS
1782Use the executable @file{qemu-system-sparc} to simulate the following
1783Sun4m architecture machines:
1784@itemize @minus
1785@item
1786SPARCstation 4
1787@item
1788SPARCstation 5
1789@item
1790SPARCstation 10
1791@item
1792SPARCstation 20
1793@item
1794SPARCserver 600MP
1795@item
1796SPARCstation LX
1797@item
1798SPARCstation Voyager
1799@item
1800SPARCclassic
1801@item
1802SPARCbook
1803@end itemize
1804
1805The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1806but Linux limits the number of usable CPUs to 4.
e80cfcfc 1807
6a4e1771 1808QEMU emulates the following sun4m peripherals:
e80cfcfc
FB
1809
1810@itemize @minus
3475187d 1811@item
6a4e1771 1812IOMMU
e80cfcfc 1813@item
33632788 1814TCX or cgthree Frame buffer
5fafdf24 1815@item
e80cfcfc
FB
1816Lance (Am7990) Ethernet
1817@item
34a3d239 1818Non Volatile RAM M48T02/M48T08
e80cfcfc 1819@item
3475187d
FB
1820Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1821and power/reset logic
1822@item
1823ESP SCSI controller with hard disk and CD-ROM support
1824@item
6a3b9cc9 1825Floppy drive (not on SS-600MP)
a2502b58
BS
1826@item
1827CS4231 sound device (only on SS-5, not working yet)
e80cfcfc
FB
1828@end itemize
1829
6a3b9cc9
BS
1830The number of peripherals is fixed in the architecture. Maximum
1831memory size depends on the machine type, for SS-5 it is 256MB and for
7d85892b 1832others 2047MB.
3475187d 1833
30a604f3 1834Since version 0.8.2, QEMU uses OpenBIOS
70b7fba9 1835@url{https://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
0986ac3b
FB
1836firmware implementation. The goal is to implement a 100% IEEE
18371275-1994 (referred to as Open Firmware) compliant firmware.
3475187d
FB
1838
1839A sample Linux 2.6 series kernel and ram disk image are available on
34a3d239 1840the QEMU web site. There are still issues with NetBSD and OpenBSD, but
9bb9f217 1841most kernel versions work. Please note that currently older Solaris kernels
34a3d239
BS
1842don't work probably due to interface issues between OpenBIOS and
1843Solaris.
3475187d
FB
1844
1845@c man begin OPTIONS
1846
a2502b58 1847The following options are specific to the Sparc32 emulation:
3475187d
FB
1848
1849@table @option
1850
4e257e5e 1851@item -g @var{W}x@var{H}x[x@var{DEPTH}]
3475187d 1852
33632788
MCA
1853Set the initial graphics mode. For TCX, the default is 1024x768x8 with the
1854option of 1024x768x24. For cgthree, the default is 1024x768x8 with the option
1855of 1152x900x8 for people who wish to use OBP.
3475187d 1856
4e257e5e 1857@item -prom-env @var{string}
66508601
BS
1858
1859Set OpenBIOS variables in NVRAM, for example:
1860
1861@example
1862qemu-system-sparc -prom-env 'auto-boot?=false' \
1863 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1864@end example
1865
6a4e1771 1866@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook]
a2502b58
BS
1867
1868Set the emulated machine type. Default is SS-5.
1869
3475187d
FB
1870@end table
1871
5fafdf24 1872@c man end
3475187d 1873
24d4de45
TS
1874@node Sparc64 System emulator
1875@section Sparc64 System emulator
7544a042 1876@cindex system emulation (Sparc64)
e80cfcfc 1877
34a3d239
BS
1878Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
1879(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
9bb9f217
MCA
1880Niagara (T1) machine. The Sun4u emulator is mostly complete, being
1881able to run Linux, NetBSD and OpenBSD in headless (-nographic) mode. The
a2664ca0
AT
1882Sun4v emulator is still a work in progress.
1883
1884The Niagara T1 emulator makes use of firmware and OS binaries supplied in the S10image/ directory
1885of the OpenSPARC T1 project @url{http://download.oracle.com/technetwork/systems/opensparc/OpenSPARCT1_Arch.1.5.tar.bz2}
1886and is able to boot the disk.s10hw2 Solaris image.
1887@example
1888qemu-system-sparc64 -M niagara -L /path-to/S10image/ \
1889 -nographic -m 256 \
1890 -drive if=pflash,readonly=on,file=/S10image/disk.s10hw2
1891@end example
1892
b756921a 1893
c7ba218d 1894QEMU emulates the following peripherals:
83469015
FB
1895
1896@itemize @minus
1897@item
5fafdf24 1898UltraSparc IIi APB PCI Bridge
83469015
FB
1899@item
1900PCI VGA compatible card with VESA Bochs Extensions
1901@item
34a3d239
BS
1902PS/2 mouse and keyboard
1903@item
83469015
FB
1904Non Volatile RAM M48T59
1905@item
1906PC-compatible serial ports
c7ba218d
BS
1907@item
19082 PCI IDE interfaces with hard disk and CD-ROM support
34a3d239
BS
1909@item
1910Floppy disk
83469015
FB
1911@end itemize
1912
c7ba218d
BS
1913@c man begin OPTIONS
1914
1915The following options are specific to the Sparc64 emulation:
1916
1917@table @option
1918
4e257e5e 1919@item -prom-env @var{string}
34a3d239
BS
1920
1921Set OpenBIOS variables in NVRAM, for example:
1922
1923@example
1924qemu-system-sparc64 -prom-env 'auto-boot?=false'
1925@end example
1926
a2664ca0 1927@item -M [sun4u|sun4v|niagara]
c7ba218d
BS
1928
1929Set the emulated machine type. The default is sun4u.
1930
1931@end table
1932
1933@c man end
1934
24d4de45
TS
1935@node MIPS System emulator
1936@section MIPS System emulator
7544a042 1937@cindex system emulation (MIPS)
9d0a8e6f 1938
d9aedc32
TS
1939Four executables cover simulation of 32 and 64-bit MIPS systems in
1940both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
1941@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
88cb0a02 1942Five different machine types are emulated:
24d4de45
TS
1943
1944@itemize @minus
1945@item
1946A generic ISA PC-like machine "mips"
1947@item
1948The MIPS Malta prototype board "malta"
1949@item
d9aedc32 1950An ACER Pica "pica61". This machine needs the 64-bit emulator.
6bf5b4e8 1951@item
f0fc6f8f 1952MIPS emulator pseudo board "mipssim"
88cb0a02
AJ
1953@item
1954A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
24d4de45
TS
1955@end itemize
1956
1957The generic emulation is supported by Debian 'Etch' and is able to
1958install Debian into a virtual disk image. The following devices are
1959emulated:
3f9f3aa1
FB
1960
1961@itemize @minus
5fafdf24 1962@item
6bf5b4e8 1963A range of MIPS CPUs, default is the 24Kf
3f9f3aa1
FB
1964@item
1965PC style serial port
1966@item
24d4de45
TS
1967PC style IDE disk
1968@item
3f9f3aa1
FB
1969NE2000 network card
1970@end itemize
1971
24d4de45
TS
1972The Malta emulation supports the following devices:
1973
1974@itemize @minus
1975@item
0b64d008 1976Core board with MIPS 24Kf CPU and Galileo system controller
24d4de45
TS
1977@item
1978PIIX4 PCI/USB/SMbus controller
1979@item
1980The Multi-I/O chip's serial device
1981@item
3a2eeac0 1982PCI network cards (PCnet32 and others)
24d4de45
TS
1983@item
1984Malta FPGA serial device
1985@item
1f605a76 1986Cirrus (default) or any other PCI VGA graphics card
24d4de45
TS
1987@end itemize
1988
1989The ACER Pica emulation supports:
1990
1991@itemize @minus
1992@item
1993MIPS R4000 CPU
1994@item
1995PC-style IRQ and DMA controllers
1996@item
1997PC Keyboard
1998@item
1999IDE controller
2000@end itemize
3f9f3aa1 2001
b5e4946f 2002The mipssim pseudo board emulation provides an environment similar
f0fc6f8f
TS
2003to what the proprietary MIPS emulator uses for running Linux.
2004It supports:
6bf5b4e8
TS
2005
2006@itemize @minus
2007@item
2008A range of MIPS CPUs, default is the 24Kf
2009@item
2010PC style serial port
2011@item
2012MIPSnet network emulation
2013@end itemize
2014
88cb0a02
AJ
2015The MIPS Magnum R4000 emulation supports:
2016
2017@itemize @minus
2018@item
2019MIPS R4000 CPU
2020@item
2021PC-style IRQ controller
2022@item
2023PC Keyboard
2024@item
2025SCSI controller
2026@item
2027G364 framebuffer
2028@end itemize
2029
2030
24d4de45
TS
2031@node ARM System emulator
2032@section ARM System emulator
7544a042 2033@cindex system emulation (ARM)
3f9f3aa1
FB
2034
2035Use the executable @file{qemu-system-arm} to simulate a ARM
2036machine. The ARM Integrator/CP board is emulated with the following
2037devices:
2038
2039@itemize @minus
2040@item
9ee6e8bb 2041ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
3f9f3aa1
FB
2042@item
2043Two PL011 UARTs
5fafdf24 2044@item
3f9f3aa1 2045SMC 91c111 Ethernet adapter
00a9bf19
PB
2046@item
2047PL110 LCD controller
2048@item
2049PL050 KMI with PS/2 keyboard and mouse.
a1bb27b1
PB
2050@item
2051PL181 MultiMedia Card Interface with SD card.
00a9bf19
PB
2052@end itemize
2053
2054The ARM Versatile baseboard is emulated with the following devices:
2055
2056@itemize @minus
2057@item
9ee6e8bb 2058ARM926E, ARM1136 or Cortex-A8 CPU
00a9bf19
PB
2059@item
2060PL190 Vectored Interrupt Controller
2061@item
2062Four PL011 UARTs
5fafdf24 2063@item
00a9bf19
PB
2064SMC 91c111 Ethernet adapter
2065@item
2066PL110 LCD controller
2067@item
2068PL050 KMI with PS/2 keyboard and mouse.
2069@item
2070PCI host bridge. Note the emulated PCI bridge only provides access to
2071PCI memory space. It does not provide access to PCI IO space.
4be456f1
TS
2072This means some devices (eg. ne2k_pci NIC) are not usable, and others
2073(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
00a9bf19 2074mapped control registers.
e6de1bad
PB
2075@item
2076PCI OHCI USB controller.
2077@item
2078LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
a1bb27b1
PB
2079@item
2080PL181 MultiMedia Card Interface with SD card.
3f9f3aa1
FB
2081@end itemize
2082
21a88941
PB
2083Several variants of the ARM RealView baseboard are emulated,
2084including the EB, PB-A8 and PBX-A9. Due to interactions with the
2085bootloader, only certain Linux kernel configurations work out
2086of the box on these boards.
2087
2088Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2089enabled in the kernel, and expect 512M RAM. Kernels for The PBX-A9 board
2090should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2091disabled and expect 1024M RAM.
2092
40c5c6cd 2093The following devices are emulated:
d7739d75
PB
2094
2095@itemize @minus
2096@item
f7c70325 2097ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
d7739d75
PB
2098@item
2099ARM AMBA Generic/Distributed Interrupt Controller
2100@item
2101Four PL011 UARTs
5fafdf24 2102@item
0ef849d7 2103SMC 91c111 or SMSC LAN9118 Ethernet adapter
d7739d75
PB
2104@item
2105PL110 LCD controller
2106@item
2107PL050 KMI with PS/2 keyboard and mouse
2108@item
2109PCI host bridge
2110@item
2111PCI OHCI USB controller
2112@item
2113LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
a1bb27b1
PB
2114@item
2115PL181 MultiMedia Card Interface with SD card.
d7739d75
PB
2116@end itemize
2117
b00052e4
AZ
2118The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2119and "Terrier") emulation includes the following peripherals:
2120
2121@itemize @minus
2122@item
2123Intel PXA270 System-on-chip (ARM V5TE core)
2124@item
2125NAND Flash memory
2126@item
2127IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2128@item
2129On-chip OHCI USB controller
2130@item
2131On-chip LCD controller
2132@item
2133On-chip Real Time Clock
2134@item
2135TI ADS7846 touchscreen controller on SSP bus
2136@item
2137Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2138@item
2139GPIO-connected keyboard controller and LEDs
2140@item
549444e1 2141Secure Digital card connected to PXA MMC/SD host
b00052e4
AZ
2142@item
2143Three on-chip UARTs
2144@item
2145WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2146@end itemize
2147
02645926
AZ
2148The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2149following elements:
2150
2151@itemize @minus
2152@item
2153Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2154@item
2155ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2156@item
2157On-chip LCD controller
2158@item
2159On-chip Real Time Clock
2160@item
2161TI TSC2102i touchscreen controller / analog-digital converter / Audio
2162CODEC, connected through MicroWire and I@math{^2}S busses
2163@item
2164GPIO-connected matrix keypad
2165@item
2166Secure Digital card connected to OMAP MMC/SD host
2167@item
2168Three on-chip UARTs
2169@end itemize
2170
c30bb264
AZ
2171Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2172emulation supports the following elements:
2173
2174@itemize @minus
2175@item
2176Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2177@item
2178RAM and non-volatile OneNAND Flash memories
2179@item
2180Display connected to EPSON remote framebuffer chip and OMAP on-chip
2181display controller and a LS041y3 MIPI DBI-C controller
2182@item
2183TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2184driven through SPI bus
2185@item
2186National Semiconductor LM8323-controlled qwerty keyboard driven
2187through I@math{^2}C bus
2188@item
2189Secure Digital card connected to OMAP MMC/SD host
2190@item
2191Three OMAP on-chip UARTs and on-chip STI debugging console
2192@item
40c5c6cd 2193A Bluetooth(R) transceiver and HCI connected to an UART
2d564691 2194@item
c30bb264
AZ
2195Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2196TUSB6010 chip - only USB host mode is supported
2197@item
2198TI TMP105 temperature sensor driven through I@math{^2}C bus
2199@item
2200TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2201@item
2202Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2203through CBUS
2204@end itemize
2205
9ee6e8bb
PB
2206The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2207devices:
2208
2209@itemize @minus
2210@item
2211Cortex-M3 CPU core.
2212@item
221364k Flash and 8k SRAM.
2214@item
2215Timers, UARTs, ADC and I@math{^2}C interface.
2216@item
2217OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2218@end itemize
2219
2220The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2221devices:
2222
2223@itemize @minus
2224@item
2225Cortex-M3 CPU core.
2226@item
2227256k Flash and 64k SRAM.
2228@item
2229Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2230@item
2231OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2232@end itemize
2233
57cd6e97
AZ
2234The Freecom MusicPal internet radio emulation includes the following
2235elements:
2236
2237@itemize @minus
2238@item
2239Marvell MV88W8618 ARM core.
2240@item
224132 MB RAM, 256 KB SRAM, 8 MB flash.
2242@item
2243Up to 2 16550 UARTs
2244@item
2245MV88W8xx8 Ethernet controller
2246@item
2247MV88W8618 audio controller, WM8750 CODEC and mixer
2248@item
e080e785 2249128×64 display with brightness control
57cd6e97
AZ
2250@item
22512 buttons, 2 navigation wheels with button function
2252@end itemize
2253
997641a8 2254The Siemens SX1 models v1 and v2 (default) basic emulation.
40c5c6cd 2255The emulation includes the following elements:
997641a8
AZ
2256
2257@itemize @minus
2258@item
2259Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2260@item
2261ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2262V1
22631 Flash of 16MB and 1 Flash of 8MB
2264V2
22651 Flash of 32MB
2266@item
2267On-chip LCD controller
2268@item
2269On-chip Real Time Clock
2270@item
2271Secure Digital card connected to OMAP MMC/SD host
2272@item
2273Three on-chip UARTs
2274@end itemize
2275
3f9f3aa1
FB
2276A Linux 2.6 test image is available on the QEMU web site. More
2277information is available in the QEMU mailing-list archive.
9d0a8e6f 2278
d2c639d6
BS
2279@c man begin OPTIONS
2280
2281The following options are specific to the ARM emulation:
2282
2283@table @option
2284
2285@item -semihosting
2286Enable semihosting syscall emulation.
2287
2288On ARM this implements the "Angel" interface.
2289
2290Note that this allows guest direct access to the host filesystem,
2291so should only be used with trusted guest OS.
2292
2293@end table
2294
abc67eb6
TH
2295@c man end
2296
24d4de45
TS
2297@node ColdFire System emulator
2298@section ColdFire System emulator
7544a042
SW
2299@cindex system emulation (ColdFire)
2300@cindex system emulation (M68K)
209a4e69
PB
2301
2302Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2303The emulator is able to boot a uClinux kernel.
707e011b
PB
2304
2305The M5208EVB emulation includes the following devices:
2306
2307@itemize @minus
5fafdf24 2308@item
707e011b
PB
2309MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2310@item
2311Three Two on-chip UARTs.
2312@item
2313Fast Ethernet Controller (FEC)
2314@end itemize
2315
2316The AN5206 emulation includes the following devices:
209a4e69
PB
2317
2318@itemize @minus
5fafdf24 2319@item
209a4e69
PB
2320MCF5206 ColdFire V2 Microprocessor.
2321@item
2322Two on-chip UARTs.
2323@end itemize
2324
d2c639d6
BS
2325@c man begin OPTIONS
2326
7544a042 2327The following options are specific to the ColdFire emulation:
d2c639d6
BS
2328
2329@table @option
2330
2331@item -semihosting
2332Enable semihosting syscall emulation.
2333
2334On M68K this implements the "ColdFire GDB" interface used by libgloss.
2335
2336Note that this allows guest direct access to the host filesystem,
2337so should only be used with trusted guest OS.
2338
2339@end table
2340
abc67eb6
TH
2341@c man end
2342
7544a042
SW
2343@node Cris System emulator
2344@section Cris System emulator
2345@cindex system emulation (Cris)
2346
2347TODO
2348
2349@node Microblaze System emulator
2350@section Microblaze System emulator
2351@cindex system emulation (Microblaze)
2352
2353TODO
2354
2355@node SH4 System emulator
2356@section SH4 System emulator
2357@cindex system emulation (SH4)
2358
2359TODO
2360
3aeaea65
MF
2361@node Xtensa System emulator
2362@section Xtensa System emulator
2363@cindex system emulation (Xtensa)
2364
2365Two executables cover simulation of both Xtensa endian options,
2366@file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
2367Two different machine types are emulated:
2368
2369@itemize @minus
2370@item
2371Xtensa emulator pseudo board "sim"
2372@item
2373Avnet LX60/LX110/LX200 board
2374@end itemize
2375
b5e4946f 2376The sim pseudo board emulation provides an environment similar
3aeaea65
MF
2377to one provided by the proprietary Tensilica ISS.
2378It supports:
2379
2380@itemize @minus
2381@item
2382A range of Xtensa CPUs, default is the DC232B
2383@item
2384Console and filesystem access via semihosting calls
2385@end itemize
2386
2387The Avnet LX60/LX110/LX200 emulation supports:
2388
2389@itemize @minus
2390@item
2391A range of Xtensa CPUs, default is the DC232B
2392@item
239316550 UART
2394@item
2395OpenCores 10/100 Mbps Ethernet MAC
2396@end itemize
2397
2398@c man begin OPTIONS
2399
2400The following options are specific to the Xtensa emulation:
2401
2402@table @option
2403
2404@item -semihosting
2405Enable semihosting syscall emulation.
2406
2407Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2408Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2409
2410Note that this allows guest direct access to the host filesystem,
2411so should only be used with trusted guest OS.
2412
2413@end table
3f2ce724 2414
abc67eb6
TH
2415@c man end
2416
3f2ce724
TH
2417@node QEMU Guest Agent
2418@chapter QEMU Guest Agent invocation
2419
2420@include qemu-ga.texi
2421
5fafdf24
TS
2422@node QEMU User space emulator
2423@chapter QEMU User space emulator
83195237
FB
2424
2425@menu
2426* Supported Operating Systems ::
0722cc42 2427* Features::
83195237 2428* Linux User space emulator::
84778508 2429* BSD User space emulator ::
83195237
FB
2430@end menu
2431
2432@node Supported Operating Systems
2433@section Supported Operating Systems
2434
2435The following OS are supported in user space emulation:
2436
2437@itemize @minus
2438@item
4be456f1 2439Linux (referred as qemu-linux-user)
83195237 2440@item
84778508 2441BSD (referred as qemu-bsd-user)
83195237
FB
2442@end itemize
2443
0722cc42
PB
2444@node Features
2445@section Features
2446
2447QEMU user space emulation has the following notable features:
2448
2449@table @strong
2450@item System call translation:
2451QEMU includes a generic system call translator. This means that
2452the parameters of the system calls can be converted to fix
2453endianness and 32/64-bit mismatches between hosts and targets.
2454IOCTLs can be converted too.
2455
2456@item POSIX signal handling:
2457QEMU can redirect to the running program all signals coming from
2458the host (such as @code{SIGALRM}), as well as synthesize signals from
2459virtual CPU exceptions (for example @code{SIGFPE} when the program
2460executes a division by zero).
2461
2462QEMU relies on the host kernel to emulate most signal system
2463calls, for example to emulate the signal mask. On Linux, QEMU
2464supports both normal and real-time signals.
2465
2466@item Threading:
2467On Linux, QEMU can emulate the @code{clone} syscall and create a real
2468host thread (with a separate virtual CPU) for each emulated thread.
2469Note that not all targets currently emulate atomic operations correctly.
2470x86 and ARM use a global lock in order to preserve their semantics.
2471@end table
2472
2473QEMU was conceived so that ultimately it can emulate itself. Although
2474it is not very useful, it is an important test to show the power of the
2475emulator.
2476
83195237
FB
2477@node Linux User space emulator
2478@section Linux User space emulator
386405f7 2479
debc7065
FB
2480@menu
2481* Quick Start::
2482* Wine launch::
2483* Command line options::
79737e4a 2484* Other binaries::
debc7065
FB
2485@end menu
2486
2487@node Quick Start
83195237 2488@subsection Quick Start
df0f11a0 2489
1f673135 2490In order to launch a Linux process, QEMU needs the process executable
5fafdf24 2491itself and all the target (x86) dynamic libraries used by it.
386405f7 2492
1f673135 2493@itemize
386405f7 2494
1f673135
FB
2495@item On x86, you can just try to launch any process by using the native
2496libraries:
386405f7 2497
5fafdf24 2498@example
1f673135
FB
2499qemu-i386 -L / /bin/ls
2500@end example
386405f7 2501
1f673135
FB
2502@code{-L /} tells that the x86 dynamic linker must be searched with a
2503@file{/} prefix.
386405f7 2504
b65ee4fa
SW
2505@item Since QEMU is also a linux process, you can launch QEMU with
2506QEMU (NOTE: you can only do that if you compiled QEMU from the sources):
386405f7 2507
5fafdf24 2508@example
1f673135
FB
2509qemu-i386 -L / qemu-i386 -L / /bin/ls
2510@end example
386405f7 2511
1f673135
FB
2512@item On non x86 CPUs, you need first to download at least an x86 glibc
2513(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2514@code{LD_LIBRARY_PATH} is not set:
df0f11a0 2515
1f673135 2516@example
5fafdf24 2517unset LD_LIBRARY_PATH
1f673135 2518@end example
1eb87257 2519
1f673135 2520Then you can launch the precompiled @file{ls} x86 executable:
1eb87257 2521
1f673135
FB
2522@example
2523qemu-i386 tests/i386/ls
2524@end example
4c3b5a48 2525You can look at @file{scripts/qemu-binfmt-conf.sh} so that
1f673135
FB
2526QEMU is automatically launched by the Linux kernel when you try to
2527launch x86 executables. It requires the @code{binfmt_misc} module in the
2528Linux kernel.
1eb87257 2529
1f673135
FB
2530@item The x86 version of QEMU is also included. You can try weird things such as:
2531@example
debc7065
FB
2532qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2533 /usr/local/qemu-i386/bin/ls-i386
1f673135 2534@end example
1eb20527 2535
1f673135 2536@end itemize
1eb20527 2537
debc7065 2538@node Wine launch
83195237 2539@subsection Wine launch
1eb20527 2540
1f673135 2541@itemize
386405f7 2542
1f673135
FB
2543@item Ensure that you have a working QEMU with the x86 glibc
2544distribution (see previous section). In order to verify it, you must be
2545able to do:
386405f7 2546
1f673135
FB
2547@example
2548qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2549@end example
386405f7 2550
1f673135 2551@item Download the binary x86 Wine install
5fafdf24 2552(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
386405f7 2553
1f673135 2554@item Configure Wine on your account. Look at the provided script
debc7065 2555@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
1f673135 2556@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
386405f7 2557
1f673135 2558@item Then you can try the example @file{putty.exe}:
386405f7 2559
1f673135 2560@example
debc7065
FB
2561qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2562 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
1f673135 2563@end example
386405f7 2564
1f673135 2565@end itemize
fd429f2f 2566
debc7065 2567@node Command line options
83195237 2568@subsection Command line options
1eb20527 2569
1f673135 2570@example
8485140f 2571@command{qemu-i386} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-cpu} @var{model}] [@option{-g} @var{port}] [@option{-B} @var{offset}] [@option{-R} @var{size}] @var{program} [@var{arguments}...]
1f673135 2572@end example
1eb20527 2573
1f673135
FB
2574@table @option
2575@item -h
2576Print the help
3b46e624 2577@item -L path
1f673135
FB
2578Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2579@item -s size
2580Set the x86 stack size in bytes (default=524288)
34a3d239 2581@item -cpu model
c8057f95 2582Select CPU model (-cpu help for list and additional feature selection)
f66724c9
SW
2583@item -E @var{var}=@var{value}
2584Set environment @var{var} to @var{value}.
2585@item -U @var{var}
2586Remove @var{var} from the environment.
379f6698
PB
2587@item -B offset
2588Offset guest address by the specified number of bytes. This is useful when
1f5c3f8c
SW
2589the address region required by guest applications is reserved on the host.
2590This option is currently only supported on some hosts.
68a1c816
PB
2591@item -R size
2592Pre-allocate a guest virtual address space of the given size (in bytes).
0d6753e5 2593"G", "M", and "k" suffixes may be used when specifying the size.
386405f7
FB
2594@end table
2595
1f673135 2596Debug options:
386405f7 2597
1f673135 2598@table @option
989b697d
PM
2599@item -d item1,...
2600Activate logging of the specified items (use '-d help' for a list of log items)
1f673135
FB
2601@item -p pagesize
2602Act as if the host page size was 'pagesize' bytes
34a3d239
BS
2603@item -g port
2604Wait gdb connection to port
1b530a6d
AJ
2605@item -singlestep
2606Run the emulation in single step mode.
1f673135 2607@end table
386405f7 2608
b01bcae6
AZ
2609Environment variables:
2610
2611@table @env
2612@item QEMU_STRACE
2613Print system calls and arguments similar to the 'strace' program
2614(NOTE: the actual 'strace' program will not work because the user
2615space emulator hasn't implemented ptrace). At the moment this is
2616incomplete. All system calls that don't have a specific argument
2617format are printed with information for six arguments. Many
2618flag-style arguments don't have decoders and will show up as numbers.
5cfdf930 2619@end table
b01bcae6 2620
79737e4a 2621@node Other binaries
83195237 2622@subsection Other binaries
79737e4a 2623
7544a042
SW
2624@cindex user mode (Alpha)
2625@command{qemu-alpha} TODO.
2626
2627@cindex user mode (ARM)
2628@command{qemu-armeb} TODO.
2629
2630@cindex user mode (ARM)
79737e4a
PB
2631@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2632binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2633configurations), and arm-uclinux bFLT format binaries.
2634
7544a042
SW
2635@cindex user mode (ColdFire)
2636@cindex user mode (M68K)
e6e5906b
PB
2637@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2638(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2639coldfire uClinux bFLT format binaries.
2640
79737e4a
PB
2641The binary format is detected automatically.
2642
7544a042
SW
2643@cindex user mode (Cris)
2644@command{qemu-cris} TODO.
2645
2646@cindex user mode (i386)
2647@command{qemu-i386} TODO.
2648@command{qemu-x86_64} TODO.
2649
2650@cindex user mode (Microblaze)
2651@command{qemu-microblaze} TODO.
2652
2653@cindex user mode (MIPS)
2654@command{qemu-mips} TODO.
2655@command{qemu-mipsel} TODO.
2656
e671711c
MV
2657@cindex user mode (NiosII)
2658@command{qemu-nios2} TODO.
2659
7544a042
SW
2660@cindex user mode (PowerPC)
2661@command{qemu-ppc64abi32} TODO.
2662@command{qemu-ppc64} TODO.
2663@command{qemu-ppc} TODO.
2664
2665@cindex user mode (SH4)
2666@command{qemu-sh4eb} TODO.
2667@command{qemu-sh4} TODO.
2668
2669@cindex user mode (SPARC)
34a3d239
BS
2670@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2671
a785e42e
BS
2672@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2673(Sparc64 CPU, 32 bit ABI).
2674
2675@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2676SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2677
84778508
BS
2678@node BSD User space emulator
2679@section BSD User space emulator
2680
2681@menu
2682* BSD Status::
2683* BSD Quick Start::
2684* BSD Command line options::
2685@end menu
2686
2687@node BSD Status
2688@subsection BSD Status
2689
2690@itemize @minus
2691@item
2692target Sparc64 on Sparc64: Some trivial programs work.
2693@end itemize
2694
2695@node BSD Quick Start
2696@subsection Quick Start
2697
2698In order to launch a BSD process, QEMU needs the process executable
2699itself and all the target dynamic libraries used by it.
2700
2701@itemize
2702
2703@item On Sparc64, you can just try to launch any process by using the native
2704libraries:
2705
2706@example
2707qemu-sparc64 /bin/ls
2708@end example
2709
2710@end itemize
2711
2712@node BSD Command line options
2713@subsection Command line options
2714
2715@example
8485140f 2716@command{qemu-sparc64} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-bsd} @var{type}] @var{program} [@var{arguments}...]
84778508
BS
2717@end example
2718
2719@table @option
2720@item -h
2721Print the help
2722@item -L path
2723Set the library root path (default=/)
2724@item -s size
2725Set the stack size in bytes (default=524288)
f66724c9
SW
2726@item -ignore-environment
2727Start with an empty environment. Without this option,
40c5c6cd 2728the initial environment is a copy of the caller's environment.
f66724c9
SW
2729@item -E @var{var}=@var{value}
2730Set environment @var{var} to @var{value}.
2731@item -U @var{var}
2732Remove @var{var} from the environment.
84778508
BS
2733@item -bsd type
2734Set the type of the emulated BSD Operating system. Valid values are
2735FreeBSD, NetBSD and OpenBSD (default).
2736@end table
2737
2738Debug options:
2739
2740@table @option
989b697d
PM
2741@item -d item1,...
2742Activate logging of the specified items (use '-d help' for a list of log items)
84778508
BS
2743@item -p pagesize
2744Act as if the host page size was 'pagesize' bytes
1b530a6d
AJ
2745@item -singlestep
2746Run the emulation in single step mode.
84778508
BS
2747@end table
2748
47eacb4f 2749
78e87797
PB
2750@include qemu-tech.texi
2751
eb22aeca
DB
2752@node Deprecated features
2753@appendix Deprecated features
2754
2755In general features are intended to be supported indefinitely once
2756introduced into QEMU. In the event that a feature needs to be removed,
2757it will be listed in this appendix. The feature will remain functional
2758for 2 releases prior to actual removal. Deprecated features may also
2759generate warnings on the console when QEMU starts up, or if activated
2760via a monitor command, however, this is not a mandatory requirement.
2761
2762Prior to the 2.10.0 release there was no official policy on how
2763long features would be deprecated prior to their removal, nor
2764any documented list of which features were deprecated. Thus
2765any features deprecated prior to 2.10.0 will be treated as if
2766they were first deprecated in the 2.10.0 release.
2767
2768What follows is a list of all features currently marked as
2769deprecated.
2770
b7715af2
DB
2771@section Build options
2772
2773@subsection GTK 2.x
2774
2775Previously QEMU has supported building against both GTK 2.x
2776and 3.x series APIs. Support for the GTK 2.x builds will be
2777discontinued, so maintainers should switch to using GTK 3.x,
2778which is the default.
2779
e52c6ba3
DB
2780@subsection SDL 1.2
2781
2782Previously QEMU has supported building against both SDL 1.2
2783and 2.0 series APIs. Support for the SDL 1.2 builds will be
2784discontinued, so maintainers should switch to using SDL 2.0,
2785which is the default.
2786
eb22aeca
DB
2787@section System emulator command line arguments
2788
eb22aeca
DB
2789@subsection -no-kvm-pit-reinjection (since 1.3.0)
2790
2791The ``-no-kvm-pit-reinjection'' argument is now a
2792synonym for setting ``-global kvm-pit.lost_tick_policy=discard''.
2793
2794@subsection -no-kvm-irqchip (since 1.3.0)
2795
2796The ``-no-kvm-irqchip'' argument is now a synonym for
2797setting ``-machine kernel_irqchip=off''.
2798
eb22aeca
DB
2799@subsection -no-kvm (since 1.3.0)
2800
2801The ``-no-kvm'' argument is now a synonym for setting
2802``-machine accel=tcg''.
2803
eb22aeca
DB
2804@subsection -vnc tls (since 2.5.0)
2805
2806The ``-vnc tls'' argument is now a synonym for setting
2807``-object tls-creds-anon,id=tls0'' combined with
2808``-vnc tls-creds=tls0'
2809
2810@subsection -vnc x509 (since 2.5.0)
2811
2812The ``-vnc x509=/path/to/certs'' argument is now a
2813synonym for setting
2814``-object tls-creds-x509,dir=/path/to/certs,id=tls0,verify-peer=no''
2815combined with ``-vnc tls-creds=tls0'
2816
2817@subsection -vnc x509verify (since 2.5.0)
2818
2819The ``-vnc x509verify=/path/to/certs'' argument is now a
2820synonym for setting
2821``-object tls-creds-x509,dir=/path/to/certs,id=tls0,verify-peer=yes''
2822combined with ``-vnc tls-creds=tls0'
2823
2824@subsection -tftp (since 2.6.0)
2825
fb815218
PB
2826The ``-tftp /some/dir'' argument is replaced by either
2827``-netdev user,id=x,tftp=/some/dir '' (for pluggable NICs, accompanied
2828with ``-device ...,netdev=x''), or ``-nic user,tftp=/some/dir''
0065e915
TH
2829(for embedded NICs). The new syntax allows different settings to be
2830provided per NIC.
eb22aeca
DB
2831
2832@subsection -bootp (since 2.6.0)
2833
fb815218
PB
2834The ``-bootp /some/file'' argument is replaced by either
2835``-netdev user,id=x,bootp=/some/file '' (for pluggable NICs, accompanied
2836with ``-device ...,netdev=x''), or ``-nic user,bootp=/some/file''
0065e915
TH
2837(for embedded NICs). The new syntax allows different settings to be
2838provided per NIC.
eb22aeca
DB
2839
2840@subsection -redir (since 2.6.0)
2841
0065e915 2842The ``-redir [tcp|udp]:hostport:[guestaddr]:guestport'' argument is
fb815218
PB
2843replaced by either
2844``-netdev user,id=x,hostfwd=[tcp|udp]:[hostaddr]:hostport-[guestaddr]:guestport''
2845(for pluggable NICs, accompanied with ``-device ...,netdev=x'') or
2846``-nic user,hostfwd=[tcp|udp]:[hostaddr]:hostport-[guestaddr]:guestport''
2847(for embedded NICs). The new syntax allows different settings to be
2848provided per NIC.
eb22aeca
DB
2849
2850@subsection -smb (since 2.6.0)
2851
fb815218
PB
2852The ``-smb /some/dir'' argument is replaced by either
2853``-netdev user,id=x,smb=/some/dir '' (for pluggable NICs, accompanied
2854with ``-device ...,netdev=x''), or ``-nic user,smb=/some/dir''
0065e915
TH
2855(for embedded NICs). The new syntax allows different settings to be
2856provided per NIC.
eb22aeca 2857
eb22aeca
DB
2858@subsection -net vlan (since 2.9.0)
2859
fb815218
PB
2860The ``-net vlan=NN'' argument was mostly used to attach separate
2861network backends to different virtual NICs. This is the default
2862behavior for ``-netdev'' and ``-nic''. You can connect multiple
2863``-netdev'' and ``-nic'' devices to the same network using the
2864"hubport" network backend, created with ``-netdev hubport,hubid=NN,...''
2865and ``-nic hubport,hubid=NN''.
eb22aeca 2866
c08d46a9
TH
2867@subsection -drive cyls=...,heads=...,secs=...,trans=... (since 2.10.0)
2868
2869The drive geometry arguments are replaced by the the geometry arguments
2870that can be specified with the ``-device'' parameter.
2871
2872@subsection -drive serial=... (since 2.10.0)
2873
2874The drive serial argument is replaced by the the serial argument
2875that can be specified with the ``-device'' parameter.
2876
2877@subsection -drive addr=... (since 2.10.0)
2878
2879The drive addr argument is replaced by the the addr argument
2880that can be specified with the ``-device'' parameter.
2881
eb22aeca
DB
2882@subsection -usbdevice (since 2.10.0)
2883
2884The ``-usbdevice DEV'' argument is now a synonym for setting
2885the ``-device usb-DEV'' argument instead. The deprecated syntax
2886would automatically enable USB support on the machine type.
2887If using the new syntax, USB support must be explicitly
2888enabled via the ``-machine usb=on'' argument.
2889
3478eae9
EH
2890@subsection -nodefconfig (since 2.11.0)
2891
2892The ``-nodefconfig`` argument is a synonym for ``-no-user-config``.
2893
4060e671
TH
2894@subsection -balloon (since 2.12.0)
2895
2896The @option{--balloon virtio} argument has been superseded by
2897@option{--device virtio-balloon}.
2898
d69969e5
HP
2899@subsection -machine s390-squash-mcss=on|off (since 2.12.0)
2900
2901The ``s390-squash-mcss=on`` property has been obsoleted by allowing the
2902cssid to be chosen freely. Instead of squashing subchannels into the
2903default channel subsystem image for guests that do not support multiple
2904channel subsystems, all devices can be put into the default channel
2905subsystem image.
2906
db3b3c72
GK
2907@subsection -fsdev handle (since 2.12.0)
2908
2909The ``handle'' fsdev backend does not support symlinks and causes the 9p
2910filesystem in the guest to fail a fair amount of tests from the PJD POSIX
2911filesystem test suite. Also it requires the CAP_DAC_READ_SEARCH capability,
2912which is not the recommended way to run QEMU. This backend should not be
2913used and it will be removed with no replacement.
2914
e12c8198
TH
2915@subsection -no-frame (since 2.12.0)
2916
2917The @code{--no-frame} argument works with SDL 1.2 only. The other user
2918interfaces never implemented this in the first place. So this will be
2919removed together with SDL 1.2 support.
2920
f29d4450 2921@subsection -rtc-td-hack (since 2.12.0)
67358447 2922
f29d4450
TH
2923The @code{-rtc-td-hack} option has been replaced by
2924@code{-rtc driftfix=slew}.
2925
2926@subsection -localtime (since 2.12.0)
2927
2928The @code{-localtime} option has been replaced by @code{-rtc base=localtime}.
2929
2930@subsection -startdate (since 2.12.0)
2931
2932The @code{-startdate} option has been replaced by @code{-rtc base=@var{date}}.
67358447 2933
eb22aeca
DB
2934@section qemu-img command line arguments
2935
2936@subsection convert -s (since 2.0.0)
2937
2938The ``convert -s snapshot_id_or_name'' argument is obsoleted
2939by the ``convert -l snapshot_param'' argument instead.
2940
3e99da5e
VSO
2941@section QEMU Machine Protocol (QMP) commands
2942
2943@subsection block-dirty-bitmap-add "autoload" parameter (since 2.12.0)
2944
2945"autoload" parameter is now ignored. All bitmaps are automatically loaded
2946from qcow2 images.
2947
ff9a9156
VM
2948@subsection query-cpus (since 2.12.0)
2949
2950The ``query-cpus'' command is replaced by the ``query-cpus-fast'' command.
2951
eb22aeca
DB
2952@section System emulator devices
2953
2954@subsection ivshmem (since 2.6.0)
2955
2956The ``ivshmem'' device type is replaced by either the ``ivshmem-plain''
2957or ``ivshmem-doorbell`` device types.
2958
64b47457
TH
2959@subsection Page size support < 4k for embedded PowerPC CPUs (since 2.12.0)
2960
2961qemu-system-ppcemb will be removed. qemu-system-ppc (or qemu-system-ppc64)
2962should be used instead. That means that embedded 4xx PowerPC CPUs will not
2963support page sizes < 4096 any longer.
2964
83926ad5
AF
2965@section System emulator machines
2966
2967@subsection Xilinx EP108 (since 2.11.0)
2968
2969The ``xlnx-ep108'' machine has been replaced by the ``xlnx-zcu102'' machine.
2970The ``xlnx-zcu102'' machine has the same features and capabilites in QEMU.
2971
4f7be280
HR
2972@section Block device options
2973
2974@subsection "backing": "" (since 2.12.0)
2975
2976In order to prevent QEMU from automatically opening an image's backing
2977chain, use ``"backing": null'' instead.
2978
7544a042
SW
2979@node License
2980@appendix License
2981
2982QEMU is a trademark of Fabrice Bellard.
2983
2f8d8f01
TH
2984QEMU is released under the
2985@url{https://www.gnu.org/licenses/gpl-2.0.txt,GNU General Public License},
2986version 2. Parts of QEMU have specific licenses, see file
70b7fba9 2987@url{https://git.qemu.org/?p=qemu.git;a=blob_plain;f=LICENSE,LICENSE}.
7544a042 2988
debc7065 2989@node Index
7544a042
SW
2990@appendix Index
2991@menu
2992* Concept Index::
2993* Function Index::
2994* Keystroke Index::
2995* Program Index::
2996* Data Type Index::
2997* Variable Index::
2998@end menu
2999
3000@node Concept Index
3001@section Concept Index
3002This is the main index. Should we combine all keywords in one index? TODO
debc7065
FB
3003@printindex cp
3004
7544a042
SW
3005@node Function Index
3006@section Function Index
3007This index could be used for command line options and monitor functions.
3008@printindex fn
3009
3010@node Keystroke Index
3011@section Keystroke Index
3012
3013This is a list of all keystrokes which have a special function
3014in system emulation.
3015
3016@printindex ky
3017
3018@node Program Index
3019@section Program Index
3020@printindex pg
3021
3022@node Data Type Index
3023@section Data Type Index
3024
3025This index could be used for qdev device names and options.
3026
3027@printindex tp
3028
3029@node Variable Index
3030@section Variable Index
3031@printindex vr
3032
debc7065 3033@bye