]> git.proxmox.com Git - mirror_qemu.git/blame - qemu-doc.texi
target-sparc: move common cpu initialisation routines to sparc64.c
[mirror_qemu.git] / qemu-doc.texi
CommitLineData
386405f7 1\input texinfo @c -*- texinfo -*-
debc7065
FB
2@c %**start of header
3@setfilename qemu-doc.info
e080e785
SW
4
5@documentlanguage en
6@documentencoding UTF-8
7
8f40c388 8@settitle QEMU Emulator User Documentation
debc7065
FB
9@exampleindent 0
10@paragraphindent 0
11@c %**end of header
386405f7 12
a1a32b05
SW
13@ifinfo
14@direntry
15* QEMU: (qemu-doc). The QEMU Emulator User Documentation.
16@end direntry
17@end ifinfo
18
0806e3f6 19@iftex
386405f7
FB
20@titlepage
21@sp 7
8f40c388 22@center @titlefont{QEMU Emulator}
debc7065
FB
23@sp 1
24@center @titlefont{User Documentation}
386405f7
FB
25@sp 3
26@end titlepage
0806e3f6 27@end iftex
386405f7 28
debc7065
FB
29@ifnottex
30@node Top
31@top
32
33@menu
34* Introduction::
debc7065
FB
35* QEMU PC System emulator::
36* QEMU System emulator for non PC targets::
83195237 37* QEMU User space emulator::
78e87797 38* Implementation notes::
7544a042 39* License::
debc7065
FB
40* Index::
41@end menu
42@end ifnottex
43
44@contents
45
46@node Introduction
386405f7
FB
47@chapter Introduction
48
debc7065
FB
49@menu
50* intro_features:: Features
51@end menu
52
53@node intro_features
322d0c66 54@section Features
386405f7 55
1f673135
FB
56QEMU is a FAST! processor emulator using dynamic translation to
57achieve good emulation speed.
1eb20527 58
1f3e7e41 59@cindex operating modes
1eb20527 60QEMU has two operating modes:
0806e3f6 61
d7e5edca 62@itemize
7544a042 63@cindex system emulation
1f3e7e41 64@item Full system emulation. In this mode, QEMU emulates a full system (for
3f9f3aa1
FB
65example a PC), including one or several processors and various
66peripherals. It can be used to launch different Operating Systems
67without rebooting the PC or to debug system code.
1eb20527 68
7544a042 69@cindex user mode emulation
1f3e7e41 70@item User mode emulation. In this mode, QEMU can launch
83195237 71processes compiled for one CPU on another CPU. It can be used to
1f673135
FB
72launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
73to ease cross-compilation and cross-debugging.
1eb20527
FB
74
75@end itemize
76
1f3e7e41
PB
77QEMU has the following features:
78
79@itemize
80@item QEMU can run without a host kernel driver and yet gives acceptable
81performance. It uses dynamic translation to native code for reasonable speed,
82with support for self-modifying code and precise exceptions.
83
84@item It is portable to several operating systems (GNU/Linux, *BSD, Mac OS X,
85Windows) and architectures.
86
87@item It performs accurate software emulation of the FPU.
88@end itemize
322d0c66 89
1f3e7e41 90QEMU user mode emulation has the following features:
52c00a5f 91@itemize
1f3e7e41
PB
92@item Generic Linux system call converter, including most ioctls.
93
94@item clone() emulation using native CPU clone() to use Linux scheduler for threads.
95
96@item Accurate signal handling by remapping host signals to target signals.
97@end itemize
98
99QEMU full system emulation has the following features:
100@itemize
101@item
102QEMU uses a full software MMU for maximum portability.
103
104@item
105QEMU can optionally use an in-kernel accelerator, like kvm. The accelerators
106execute most of the guest code natively, while
107continuing to emulate the rest of the machine.
108
109@item
110Various hardware devices can be emulated and in some cases, host
111devices (e.g. serial and parallel ports, USB, drives) can be used
112transparently by the guest Operating System. Host device passthrough
113can be used for talking to external physical peripherals (e.g. a
114webcam, modem or tape drive).
115
116@item
117Symmetric multiprocessing (SMP) support. Currently, an in-kernel
118accelerator is required to use more than one host CPU for emulation.
119
52c00a5f 120@end itemize
386405f7 121
0806e3f6 122
debc7065 123@node QEMU PC System emulator
3f9f3aa1 124@chapter QEMU PC System emulator
7544a042 125@cindex system emulation (PC)
1eb20527 126
debc7065
FB
127@menu
128* pcsys_introduction:: Introduction
129* pcsys_quickstart:: Quick Start
130* sec_invocation:: Invocation
a40db1b3
PM
131* pcsys_keys:: Keys in the graphical frontends
132* mux_keys:: Keys in the character backend multiplexer
debc7065
FB
133* pcsys_monitor:: QEMU Monitor
134* disk_images:: Disk Images
135* pcsys_network:: Network emulation
576fd0a1 136* pcsys_other_devs:: Other Devices
debc7065
FB
137* direct_linux_boot:: Direct Linux Boot
138* pcsys_usb:: USB emulation
f858dcae 139* vnc_security:: VNC security
debc7065
FB
140* gdb_usage:: GDB usage
141* pcsys_os_specific:: Target OS specific information
142@end menu
143
144@node pcsys_introduction
0806e3f6
FB
145@section Introduction
146
147@c man begin DESCRIPTION
148
3f9f3aa1
FB
149The QEMU PC System emulator simulates the
150following peripherals:
0806e3f6
FB
151
152@itemize @minus
5fafdf24 153@item
15a34c63 154i440FX host PCI bridge and PIIX3 PCI to ISA bridge
0806e3f6 155@item
15a34c63
FB
156Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
157extensions (hardware level, including all non standard modes).
0806e3f6
FB
158@item
159PS/2 mouse and keyboard
5fafdf24 160@item
15a34c63 1612 PCI IDE interfaces with hard disk and CD-ROM support
1f673135
FB
162@item
163Floppy disk
5fafdf24 164@item
3a2eeac0 165PCI and ISA network adapters
0806e3f6 166@item
05d5818c
FB
167Serial ports
168@item
23076bb3
CM
169IPMI BMC, either and internal or external one
170@item
c0fe3827
FB
171Creative SoundBlaster 16 sound card
172@item
173ENSONIQ AudioPCI ES1370 sound card
174@item
e5c9a13e
AZ
175Intel 82801AA AC97 Audio compatible sound card
176@item
7d72e762
GH
177Intel HD Audio Controller and HDA codec
178@item
2d983446 179Adlib (OPL2) - Yamaha YM3812 compatible chip
b389dbfb 180@item
26463dbc
AZ
181Gravis Ultrasound GF1 sound card
182@item
cc53d26d 183CS4231A compatible sound card
184@item
b389dbfb 185PCI UHCI USB controller and a virtual USB hub.
0806e3f6
FB
186@end itemize
187
3f9f3aa1
FB
188SMP is supported with up to 255 CPUs.
189
a8ad4159 190QEMU uses the PC BIOS from the Seabios project and the Plex86/Bochs LGPL
15a34c63
FB
191VGA BIOS.
192
c0fe3827
FB
193QEMU uses YM3812 emulation by Tatsuyuki Satoh.
194
2d983446 195QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
26463dbc 196by Tibor "TS" Schütz.
423d65f4 197
1a1a0e20 198Note that, by default, GUS shares IRQ(7) with parallel ports and so
b65ee4fa 199QEMU must be told to not have parallel ports to have working GUS.
720036a5 200
201@example
3804da9d 202qemu-system-i386 dos.img -soundhw gus -parallel none
720036a5 203@end example
204
205Alternatively:
206@example
3804da9d 207qemu-system-i386 dos.img -device gus,irq=5
720036a5 208@end example
209
210Or some other unclaimed IRQ.
211
cc53d26d 212CS4231A is the chip used in Windows Sound System and GUSMAX products
213
0806e3f6
FB
214@c man end
215
debc7065 216@node pcsys_quickstart
1eb20527 217@section Quick Start
7544a042 218@cindex quick start
1eb20527 219
285dc330 220Download and uncompress the linux image (@file{linux.img}) and type:
0806e3f6
FB
221
222@example
3804da9d 223qemu-system-i386 linux.img
0806e3f6
FB
224@end example
225
226Linux should boot and give you a prompt.
227
6cc721cf 228@node sec_invocation
ec410fc9
FB
229@section Invocation
230
231@example
0806e3f6 232@c man begin SYNOPSIS
8485140f 233@command{qemu-system-i386} [@var{options}] [@var{disk_image}]
0806e3f6 234@c man end
ec410fc9
FB
235@end example
236
0806e3f6 237@c man begin OPTIONS
d2c639d6
BS
238@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
239targets do not need a disk image.
ec410fc9 240
5824d651 241@include qemu-options.texi
ec410fc9 242
3e11db9a
FB
243@c man end
244
debc7065 245@node pcsys_keys
a40db1b3 246@section Keys in the graphical frontends
3e11db9a
FB
247
248@c man begin OPTIONS
249
de1db2a1
BH
250During the graphical emulation, you can use special key combinations to change
251modes. The default key mappings are shown below, but if you use @code{-alt-grab}
252then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
253@code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
254
a1b74fe8 255@table @key
f9859310 256@item Ctrl-Alt-f
7544a042 257@kindex Ctrl-Alt-f
a1b74fe8 258Toggle full screen
a0a821a4 259
d6a65ba3
JK
260@item Ctrl-Alt-+
261@kindex Ctrl-Alt-+
262Enlarge the screen
263
264@item Ctrl-Alt--
265@kindex Ctrl-Alt--
266Shrink the screen
267
c4a735f9 268@item Ctrl-Alt-u
7544a042 269@kindex Ctrl-Alt-u
c4a735f9 270Restore the screen's un-scaled dimensions
271
f9859310 272@item Ctrl-Alt-n
7544a042 273@kindex Ctrl-Alt-n
a0a821a4
FB
274Switch to virtual console 'n'. Standard console mappings are:
275@table @emph
276@item 1
277Target system display
278@item 2
279Monitor
280@item 3
281Serial port
a1b74fe8
FB
282@end table
283
f9859310 284@item Ctrl-Alt
7544a042 285@kindex Ctrl-Alt
a0a821a4
FB
286Toggle mouse and keyboard grab.
287@end table
288
7544a042
SW
289@kindex Ctrl-Up
290@kindex Ctrl-Down
291@kindex Ctrl-PageUp
292@kindex Ctrl-PageDown
3e11db9a
FB
293In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
294@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
295
a40db1b3
PM
296@c man end
297
298@node mux_keys
299@section Keys in the character backend multiplexer
300
301@c man begin OPTIONS
302
303During emulation, if you are using a character backend multiplexer
304(which is the default if you are using @option{-nographic}) then
305several commands are available via an escape sequence. These
306key sequences all start with an escape character, which is @key{Ctrl-a}
307by default, but can be changed with @option{-echr}. The list below assumes
308you're using the default.
ec410fc9
FB
309
310@table @key
a1b74fe8 311@item Ctrl-a h
7544a042 312@kindex Ctrl-a h
ec410fc9 313Print this help
3b46e624 314@item Ctrl-a x
7544a042 315@kindex Ctrl-a x
366dfc52 316Exit emulator
3b46e624 317@item Ctrl-a s
7544a042 318@kindex Ctrl-a s
1f47a922 319Save disk data back to file (if -snapshot)
20d8a3ed 320@item Ctrl-a t
7544a042 321@kindex Ctrl-a t
d2c639d6 322Toggle console timestamps
a1b74fe8 323@item Ctrl-a b
7544a042 324@kindex Ctrl-a b
1f673135 325Send break (magic sysrq in Linux)
a1b74fe8 326@item Ctrl-a c
7544a042 327@kindex Ctrl-a c
a40db1b3
PM
328Rotate between the frontends connected to the multiplexer (usually
329this switches between the monitor and the console)
a1b74fe8 330@item Ctrl-a Ctrl-a
a40db1b3
PM
331@kindex Ctrl-a Ctrl-a
332Send the escape character to the frontend
ec410fc9 333@end table
0806e3f6
FB
334@c man end
335
336@ignore
337
1f673135
FB
338@c man begin SEEALSO
339The HTML documentation of QEMU for more precise information and Linux
340user mode emulator invocation.
341@c man end
342
343@c man begin AUTHOR
344Fabrice Bellard
345@c man end
346
347@end ignore
348
debc7065 349@node pcsys_monitor
1f673135 350@section QEMU Monitor
7544a042 351@cindex QEMU monitor
1f673135
FB
352
353The QEMU monitor is used to give complex commands to the QEMU
354emulator. You can use it to:
355
356@itemize @minus
357
358@item
e598752a 359Remove or insert removable media images
89dfe898 360(such as CD-ROM or floppies).
1f673135 361
5fafdf24 362@item
1f673135
FB
363Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
364from a disk file.
365
366@item Inspect the VM state without an external debugger.
367
368@end itemize
369
370@subsection Commands
371
372The following commands are available:
373
2313086a 374@include qemu-monitor.texi
0806e3f6 375
2cd8af2d
PB
376@include qemu-monitor-info.texi
377
1f673135
FB
378@subsection Integer expressions
379
380The monitor understands integers expressions for every integer
381argument. You can use register names to get the value of specifics
382CPU registers by prefixing them with @emph{$}.
ec410fc9 383
1f47a922
FB
384@node disk_images
385@section Disk Images
386
acd935ef
FB
387Since version 0.6.1, QEMU supports many disk image formats, including
388growable disk images (their size increase as non empty sectors are
13a2e80f
FB
389written), compressed and encrypted disk images. Version 0.8.3 added
390the new qcow2 disk image format which is essential to support VM
391snapshots.
1f47a922 392
debc7065
FB
393@menu
394* disk_images_quickstart:: Quick start for disk image creation
395* disk_images_snapshot_mode:: Snapshot mode
13a2e80f 396* vm_snapshots:: VM snapshots
debc7065 397* qemu_img_invocation:: qemu-img Invocation
975b092b 398* qemu_nbd_invocation:: qemu-nbd Invocation
665b5d0d 399* qemu_ga_invocation:: qemu-ga Invocation
d3067b02 400* disk_images_formats:: Disk image file formats
19cb3738 401* host_drives:: Using host drives
debc7065 402* disk_images_fat_images:: Virtual FAT disk images
75818250 403* disk_images_nbd:: NBD access
42af9c30 404* disk_images_sheepdog:: Sheepdog disk images
00984e39 405* disk_images_iscsi:: iSCSI LUNs
8809e289 406* disk_images_gluster:: GlusterFS disk images
0a12ec87 407* disk_images_ssh:: Secure Shell (ssh) disk images
debc7065
FB
408@end menu
409
410@node disk_images_quickstart
acd935ef
FB
411@subsection Quick start for disk image creation
412
413You can create a disk image with the command:
1f47a922 414@example
acd935ef 415qemu-img create myimage.img mysize
1f47a922 416@end example
acd935ef
FB
417where @var{myimage.img} is the disk image filename and @var{mysize} is its
418size in kilobytes. You can add an @code{M} suffix to give the size in
419megabytes and a @code{G} suffix for gigabytes.
420
debc7065 421See @ref{qemu_img_invocation} for more information.
1f47a922 422
debc7065 423@node disk_images_snapshot_mode
1f47a922
FB
424@subsection Snapshot mode
425
426If you use the option @option{-snapshot}, all disk images are
427considered as read only. When sectors in written, they are written in
428a temporary file created in @file{/tmp}. You can however force the
acd935ef
FB
429write back to the raw disk images by using the @code{commit} monitor
430command (or @key{C-a s} in the serial console).
1f47a922 431
13a2e80f
FB
432@node vm_snapshots
433@subsection VM snapshots
434
435VM snapshots are snapshots of the complete virtual machine including
436CPU state, RAM, device state and the content of all the writable
437disks. In order to use VM snapshots, you must have at least one non
438removable and writable block device using the @code{qcow2} disk image
439format. Normally this device is the first virtual hard drive.
440
441Use the monitor command @code{savevm} to create a new VM snapshot or
442replace an existing one. A human readable name can be assigned to each
19d36792 443snapshot in addition to its numerical ID.
13a2e80f
FB
444
445Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
446a VM snapshot. @code{info snapshots} lists the available snapshots
447with their associated information:
448
449@example
450(qemu) info snapshots
451Snapshot devices: hda
452Snapshot list (from hda):
453ID TAG VM SIZE DATE VM CLOCK
4541 start 41M 2006-08-06 12:38:02 00:00:14.954
4552 40M 2006-08-06 12:43:29 00:00:18.633
4563 msys 40M 2006-08-06 12:44:04 00:00:23.514
457@end example
458
459A VM snapshot is made of a VM state info (its size is shown in
460@code{info snapshots}) and a snapshot of every writable disk image.
461The VM state info is stored in the first @code{qcow2} non removable
462and writable block device. The disk image snapshots are stored in
463every disk image. The size of a snapshot in a disk image is difficult
464to evaluate and is not shown by @code{info snapshots} because the
465associated disk sectors are shared among all the snapshots to save
19d36792
FB
466disk space (otherwise each snapshot would need a full copy of all the
467disk images).
13a2e80f
FB
468
469When using the (unrelated) @code{-snapshot} option
470(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
471but they are deleted as soon as you exit QEMU.
472
473VM snapshots currently have the following known limitations:
474@itemize
5fafdf24 475@item
13a2e80f
FB
476They cannot cope with removable devices if they are removed or
477inserted after a snapshot is done.
5fafdf24 478@item
13a2e80f
FB
479A few device drivers still have incomplete snapshot support so their
480state is not saved or restored properly (in particular USB).
481@end itemize
482
acd935ef
FB
483@node qemu_img_invocation
484@subsection @code{qemu-img} Invocation
1f47a922 485
acd935ef 486@include qemu-img.texi
05efe46e 487
975b092b
TS
488@node qemu_nbd_invocation
489@subsection @code{qemu-nbd} Invocation
490
491@include qemu-nbd.texi
492
665b5d0d
MAL
493@node qemu_ga_invocation
494@subsection @code{qemu-ga} Invocation
495
496@include qemu-ga.texi
497
d3067b02
KW
498@node disk_images_formats
499@subsection Disk image file formats
500
501QEMU supports many image file formats that can be used with VMs as well as with
502any of the tools (like @code{qemu-img}). This includes the preferred formats
503raw and qcow2 as well as formats that are supported for compatibility with
504older QEMU versions or other hypervisors.
505
506Depending on the image format, different options can be passed to
507@code{qemu-img create} and @code{qemu-img convert} using the @code{-o} option.
508This section describes each format and the options that are supported for it.
509
510@table @option
511@item raw
512
513Raw disk image format. This format has the advantage of
514being simple and easily exportable to all other emulators. If your
515file system supports @emph{holes} (for example in ext2 or ext3 on
516Linux or NTFS on Windows), then only the written sectors will reserve
517space. Use @code{qemu-img info} to know the real size used by the
518image or @code{ls -ls} on Unix/Linux.
519
06247428
HT
520Supported options:
521@table @code
522@item preallocation
523Preallocation mode (allowed values: @code{off}, @code{falloc}, @code{full}).
524@code{falloc} mode preallocates space for image by calling posix_fallocate().
525@code{full} mode preallocates space for image by writing zeros to underlying
526storage.
527@end table
528
d3067b02
KW
529@item qcow2
530QEMU image format, the most versatile format. Use it to have smaller
531images (useful if your filesystem does not supports holes, for example
a1f688f4
MA
532on Windows), zlib based compression and support of multiple VM
533snapshots.
d3067b02
KW
534
535Supported options:
536@table @code
537@item compat
7fa9e1f9
SH
538Determines the qcow2 version to use. @code{compat=0.10} uses the
539traditional image format that can be read by any QEMU since 0.10.
d3067b02 540@code{compat=1.1} enables image format extensions that only QEMU 1.1 and
7fa9e1f9
SH
541newer understand (this is the default). Amongst others, this includes
542zero clusters, which allow efficient copy-on-read for sparse images.
d3067b02
KW
543
544@item backing_file
545File name of a base image (see @option{create} subcommand)
546@item backing_fmt
547Image format of the base image
548@item encryption
136cd19d 549If this option is set to @code{on}, the image is encrypted with 128-bit AES-CBC.
d3067b02 550
136cd19d
DB
551The use of encryption in qcow and qcow2 images is considered to be flawed by
552modern cryptography standards, suffering from a number of design problems:
553
554@itemize @minus
555@item The AES-CBC cipher is used with predictable initialization vectors based
556on the sector number. This makes it vulnerable to chosen plaintext attacks
557which can reveal the existence of encrypted data.
558@item The user passphrase is directly used as the encryption key. A poorly
559chosen or short passphrase will compromise the security of the encryption.
560@item In the event of the passphrase being compromised there is no way to
561change the passphrase to protect data in any qcow images. The files must
562be cloned, using a different encryption passphrase in the new file. The
563original file must then be securely erased using a program like shred,
564though even this is ineffective with many modern storage technologies.
565@end itemize
566
a1f688f4
MA
567Use of qcow / qcow2 encryption with QEMU is deprecated, and support for
568it will go away in a future release. Users are recommended to use an
569alternative encryption technology such as the Linux dm-crypt / LUKS
570system.
d3067b02
KW
571
572@item cluster_size
573Changes the qcow2 cluster size (must be between 512 and 2M). Smaller cluster
574sizes can improve the image file size whereas larger cluster sizes generally
575provide better performance.
576
577@item preallocation
0e4271b7
HT
578Preallocation mode (allowed values: @code{off}, @code{metadata}, @code{falloc},
579@code{full}). An image with preallocated metadata is initially larger but can
580improve performance when the image needs to grow. @code{falloc} and @code{full}
581preallocations are like the same options of @code{raw} format, but sets up
582metadata also.
d3067b02
KW
583
584@item lazy_refcounts
585If this option is set to @code{on}, reference count updates are postponed with
586the goal of avoiding metadata I/O and improving performance. This is
587particularly interesting with @option{cache=writethrough} which doesn't batch
588metadata updates. The tradeoff is that after a host crash, the reference count
589tables must be rebuilt, i.e. on the next open an (automatic) @code{qemu-img
590check -r all} is required, which may take some time.
591
592This option can only be enabled if @code{compat=1.1} is specified.
593
4ab15590 594@item nocow
bc3a7f90 595If this option is set to @code{on}, it will turn off COW of the file. It's only
4ab15590
CL
596valid on btrfs, no effect on other file systems.
597
598Btrfs has low performance when hosting a VM image file, even more when the guest
599on the VM also using btrfs as file system. Turning off COW is a way to mitigate
600this bad performance. Generally there are two ways to turn off COW on btrfs:
601a) Disable it by mounting with nodatacow, then all newly created files will be
602NOCOW. b) For an empty file, add the NOCOW file attribute. That's what this option
603does.
604
605Note: this option is only valid to new or empty files. If there is an existing
606file which is COW and has data blocks already, it couldn't be changed to NOCOW
607by setting @code{nocow=on}. One can issue @code{lsattr filename} to check if
bc3a7f90 608the NOCOW flag is set or not (Capital 'C' is NOCOW flag).
4ab15590 609
d3067b02
KW
610@end table
611
612@item qed
613Old QEMU image format with support for backing files and compact image files
614(when your filesystem or transport medium does not support holes).
615
616When converting QED images to qcow2, you might want to consider using the
617@code{lazy_refcounts=on} option to get a more QED-like behaviour.
618
619Supported options:
620@table @code
621@item backing_file
622File name of a base image (see @option{create} subcommand).
623@item backing_fmt
624Image file format of backing file (optional). Useful if the format cannot be
625autodetected because it has no header, like some vhd/vpc files.
626@item cluster_size
627Changes the cluster size (must be power-of-2 between 4K and 64K). Smaller
628cluster sizes can improve the image file size whereas larger cluster sizes
629generally provide better performance.
630@item table_size
631Changes the number of clusters per L1/L2 table (must be power-of-2 between 1
632and 16). There is normally no need to change this value but this option can be
633used for performance benchmarking.
634@end table
635
636@item qcow
637Old QEMU image format with support for backing files, compact image files,
638encryption and compression.
639
640Supported options:
641@table @code
642@item backing_file
643File name of a base image (see @option{create} subcommand)
644@item encryption
645If this option is set to @code{on}, the image is encrypted.
646@end table
647
d3067b02
KW
648@item vdi
649VirtualBox 1.1 compatible image format.
650Supported options:
651@table @code
652@item static
653If this option is set to @code{on}, the image is created with metadata
654preallocation.
655@end table
656
657@item vmdk
658VMware 3 and 4 compatible image format.
659
660Supported options:
661@table @code
662@item backing_file
663File name of a base image (see @option{create} subcommand).
664@item compat6
665Create a VMDK version 6 image (instead of version 4)
f249924e
JK
666@item hwversion
667Specify vmdk virtual hardware version. Compat6 flag cannot be enabled
668if hwversion is specified.
d3067b02
KW
669@item subformat
670Specifies which VMDK subformat to use. Valid options are
671@code{monolithicSparse} (default),
672@code{monolithicFlat},
673@code{twoGbMaxExtentSparse},
674@code{twoGbMaxExtentFlat} and
675@code{streamOptimized}.
676@end table
677
678@item vpc
679VirtualPC compatible image format (VHD).
680Supported options:
681@table @code
682@item subformat
683Specifies which VHD subformat to use. Valid options are
684@code{dynamic} (default) and @code{fixed}.
685@end table
8282db1b
JC
686
687@item VHDX
688Hyper-V compatible image format (VHDX).
689Supported options:
690@table @code
691@item subformat
692Specifies which VHDX subformat to use. Valid options are
693@code{dynamic} (default) and @code{fixed}.
694@item block_state_zero
30af51ce
JC
695Force use of payload blocks of type 'ZERO'. Can be set to @code{on} (default)
696or @code{off}. When set to @code{off}, new blocks will be created as
697@code{PAYLOAD_BLOCK_NOT_PRESENT}, which means parsers are free to return
698arbitrary data for those blocks. Do not set to @code{off} when using
699@code{qemu-img convert} with @code{subformat=dynamic}.
8282db1b
JC
700@item block_size
701Block size; min 1 MB, max 256 MB. 0 means auto-calculate based on image size.
702@item log_size
703Log size; min 1 MB.
704@end table
d3067b02
KW
705@end table
706
707@subsubsection Read-only formats
708More disk image file formats are supported in a read-only mode.
709@table @option
710@item bochs
711Bochs images of @code{growing} type.
712@item cloop
713Linux Compressed Loop image, useful only to reuse directly compressed
714CD-ROM images present for example in the Knoppix CD-ROMs.
715@item dmg
716Apple disk image.
717@item parallels
718Parallels disk image format.
719@end table
720
721
19cb3738
FB
722@node host_drives
723@subsection Using host drives
724
725In addition to disk image files, QEMU can directly access host
726devices. We describe here the usage for QEMU version >= 0.8.3.
727
728@subsubsection Linux
729
730On Linux, you can directly use the host device filename instead of a
4be456f1 731disk image filename provided you have enough privileges to access
92a539d2 732it. For example, use @file{/dev/cdrom} to access to the CDROM.
19cb3738 733
f542086d 734@table @code
19cb3738
FB
735@item CD
736You can specify a CDROM device even if no CDROM is loaded. QEMU has
737specific code to detect CDROM insertion or removal. CDROM ejection by
738the guest OS is supported. Currently only data CDs are supported.
739@item Floppy
740You can specify a floppy device even if no floppy is loaded. Floppy
741removal is currently not detected accurately (if you change floppy
742without doing floppy access while the floppy is not loaded, the guest
743OS will think that the same floppy is loaded).
92a539d2
MA
744Use of the host's floppy device is deprecated, and support for it will
745be removed in a future release.
19cb3738
FB
746@item Hard disks
747Hard disks can be used. Normally you must specify the whole disk
748(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
749see it as a partitioned disk. WARNING: unless you know what you do, it
750is better to only make READ-ONLY accesses to the hard disk otherwise
751you may corrupt your host data (use the @option{-snapshot} command
752line option or modify the device permissions accordingly).
753@end table
754
755@subsubsection Windows
756
01781963
FB
757@table @code
758@item CD
4be456f1 759The preferred syntax is the drive letter (e.g. @file{d:}). The
01781963
FB
760alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
761supported as an alias to the first CDROM drive.
19cb3738 762
e598752a 763Currently there is no specific code to handle removable media, so it
19cb3738
FB
764is better to use the @code{change} or @code{eject} monitor commands to
765change or eject media.
01781963 766@item Hard disks
89dfe898 767Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
01781963
FB
768where @var{N} is the drive number (0 is the first hard disk).
769
770WARNING: unless you know what you do, it is better to only make
771READ-ONLY accesses to the hard disk otherwise you may corrupt your
772host data (use the @option{-snapshot} command line so that the
773modifications are written in a temporary file).
774@end table
775
19cb3738
FB
776
777@subsubsection Mac OS X
778
5fafdf24 779@file{/dev/cdrom} is an alias to the first CDROM.
19cb3738 780
e598752a 781Currently there is no specific code to handle removable media, so it
19cb3738
FB
782is better to use the @code{change} or @code{eject} monitor commands to
783change or eject media.
784
debc7065 785@node disk_images_fat_images
2c6cadd4
FB
786@subsection Virtual FAT disk images
787
788QEMU can automatically create a virtual FAT disk image from a
789directory tree. In order to use it, just type:
790
5fafdf24 791@example
3804da9d 792qemu-system-i386 linux.img -hdb fat:/my_directory
2c6cadd4
FB
793@end example
794
795Then you access access to all the files in the @file{/my_directory}
796directory without having to copy them in a disk image or to export
797them via SAMBA or NFS. The default access is @emph{read-only}.
798
799Floppies can be emulated with the @code{:floppy:} option:
800
5fafdf24 801@example
3804da9d 802qemu-system-i386 linux.img -fda fat:floppy:/my_directory
2c6cadd4
FB
803@end example
804
805A read/write support is available for testing (beta stage) with the
806@code{:rw:} option:
807
5fafdf24 808@example
3804da9d 809qemu-system-i386 linux.img -fda fat:floppy:rw:/my_directory
2c6cadd4
FB
810@end example
811
812What you should @emph{never} do:
813@itemize
814@item use non-ASCII filenames ;
815@item use "-snapshot" together with ":rw:" ;
85b2c688
FB
816@item expect it to work when loadvm'ing ;
817@item write to the FAT directory on the host system while accessing it with the guest system.
2c6cadd4
FB
818@end itemize
819
75818250
TS
820@node disk_images_nbd
821@subsection NBD access
822
823QEMU can access directly to block device exported using the Network Block Device
824protocol.
825
826@example
1d7d2a9d 827qemu-system-i386 linux.img -hdb nbd://my_nbd_server.mydomain.org:1024/
75818250
TS
828@end example
829
830If the NBD server is located on the same host, you can use an unix socket instead
831of an inet socket:
832
833@example
1d7d2a9d 834qemu-system-i386 linux.img -hdb nbd+unix://?socket=/tmp/my_socket
75818250
TS
835@end example
836
837In this case, the block device must be exported using qemu-nbd:
838
839@example
840qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
841@end example
842
9d85d557 843The use of qemu-nbd allows sharing of a disk between several guests:
75818250
TS
844@example
845qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
846@end example
847
1d7d2a9d 848@noindent
75818250
TS
849and then you can use it with two guests:
850@example
1d7d2a9d
PB
851qemu-system-i386 linux1.img -hdb nbd+unix://?socket=/tmp/my_socket
852qemu-system-i386 linux2.img -hdb nbd+unix://?socket=/tmp/my_socket
75818250
TS
853@end example
854
1d7d2a9d
PB
855If the nbd-server uses named exports (supported since NBD 2.9.18, or with QEMU's
856own embedded NBD server), you must specify an export name in the URI:
1d45f8b5 857@example
1d7d2a9d
PB
858qemu-system-i386 -cdrom nbd://localhost/debian-500-ppc-netinst
859qemu-system-i386 -cdrom nbd://localhost/openSUSE-11.1-ppc-netinst
860@end example
861
862The URI syntax for NBD is supported since QEMU 1.3. An alternative syntax is
863also available. Here are some example of the older syntax:
864@example
865qemu-system-i386 linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
866qemu-system-i386 linux2.img -hdb nbd:unix:/tmp/my_socket
867qemu-system-i386 -cdrom nbd:localhost:10809:exportname=debian-500-ppc-netinst
1d45f8b5
LV
868@end example
869
42af9c30
MK
870@node disk_images_sheepdog
871@subsection Sheepdog disk images
872
873Sheepdog is a distributed storage system for QEMU. It provides highly
874available block level storage volumes that can be attached to
875QEMU-based virtual machines.
876
877You can create a Sheepdog disk image with the command:
878@example
5d6768e3 879qemu-img create sheepdog:///@var{image} @var{size}
42af9c30
MK
880@end example
881where @var{image} is the Sheepdog image name and @var{size} is its
882size.
883
884To import the existing @var{filename} to Sheepdog, you can use a
885convert command.
886@example
5d6768e3 887qemu-img convert @var{filename} sheepdog:///@var{image}
42af9c30
MK
888@end example
889
890You can boot from the Sheepdog disk image with the command:
891@example
5d6768e3 892qemu-system-i386 sheepdog:///@var{image}
42af9c30
MK
893@end example
894
895You can also create a snapshot of the Sheepdog image like qcow2.
896@example
5d6768e3 897qemu-img snapshot -c @var{tag} sheepdog:///@var{image}
42af9c30
MK
898@end example
899where @var{tag} is a tag name of the newly created snapshot.
900
901To boot from the Sheepdog snapshot, specify the tag name of the
902snapshot.
903@example
5d6768e3 904qemu-system-i386 sheepdog:///@var{image}#@var{tag}
42af9c30
MK
905@end example
906
907You can create a cloned image from the existing snapshot.
908@example
5d6768e3 909qemu-img create -b sheepdog:///@var{base}#@var{tag} sheepdog:///@var{image}
42af9c30
MK
910@end example
911where @var{base} is a image name of the source snapshot and @var{tag}
912is its tag name.
913
1b8bbb46
MK
914You can use an unix socket instead of an inet socket:
915
916@example
917qemu-system-i386 sheepdog+unix:///@var{image}?socket=@var{path}
918@end example
919
42af9c30
MK
920If the Sheepdog daemon doesn't run on the local host, you need to
921specify one of the Sheepdog servers to connect to.
922@example
5d6768e3
MK
923qemu-img create sheepdog://@var{hostname}:@var{port}/@var{image} @var{size}
924qemu-system-i386 sheepdog://@var{hostname}:@var{port}/@var{image}
42af9c30
MK
925@end example
926
00984e39
RS
927@node disk_images_iscsi
928@subsection iSCSI LUNs
929
930iSCSI is a popular protocol used to access SCSI devices across a computer
931network.
932
933There are two different ways iSCSI devices can be used by QEMU.
934
935The first method is to mount the iSCSI LUN on the host, and make it appear as
936any other ordinary SCSI device on the host and then to access this device as a
937/dev/sd device from QEMU. How to do this differs between host OSes.
938
939The second method involves using the iSCSI initiator that is built into
940QEMU. This provides a mechanism that works the same way regardless of which
941host OS you are running QEMU on. This section will describe this second method
942of using iSCSI together with QEMU.
943
944In QEMU, iSCSI devices are described using special iSCSI URLs
945
946@example
947URL syntax:
948iscsi://[<username>[%<password>]@@]<host>[:<port>]/<target-iqn-name>/<lun>
949@end example
950
951Username and password are optional and only used if your target is set up
952using CHAP authentication for access control.
953Alternatively the username and password can also be set via environment
954variables to have these not show up in the process list
955
956@example
957export LIBISCSI_CHAP_USERNAME=<username>
958export LIBISCSI_CHAP_PASSWORD=<password>
959iscsi://<host>/<target-iqn-name>/<lun>
960@end example
961
f9dadc98
RS
962Various session related parameters can be set via special options, either
963in a configuration file provided via '-readconfig' or directly on the
964command line.
965
31459f46
RS
966If the initiator-name is not specified qemu will use a default name
967of 'iqn.2008-11.org.linux-kvm[:<name>'] where <name> is the name of the
968virtual machine.
969
970
f9dadc98
RS
971@example
972Setting a specific initiator name to use when logging in to the target
973-iscsi initiator-name=iqn.qemu.test:my-initiator
974@end example
975
976@example
977Controlling which type of header digest to negotiate with the target
978-iscsi header-digest=CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
979@end example
980
981These can also be set via a configuration file
982@example
983[iscsi]
984 user = "CHAP username"
985 password = "CHAP password"
986 initiator-name = "iqn.qemu.test:my-initiator"
987 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
988 header-digest = "CRC32C"
989@end example
990
991
992Setting the target name allows different options for different targets
993@example
994[iscsi "iqn.target.name"]
995 user = "CHAP username"
996 password = "CHAP password"
997 initiator-name = "iqn.qemu.test:my-initiator"
998 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
999 header-digest = "CRC32C"
1000@end example
1001
1002
1003Howto use a configuration file to set iSCSI configuration options:
1004@example
1005cat >iscsi.conf <<EOF
1006[iscsi]
1007 user = "me"
1008 password = "my password"
1009 initiator-name = "iqn.qemu.test:my-initiator"
1010 header-digest = "CRC32C"
1011EOF
1012
1013qemu-system-i386 -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
1014 -readconfig iscsi.conf
1015@end example
1016
1017
00984e39
RS
1018Howto set up a simple iSCSI target on loopback and accessing it via QEMU:
1019@example
1020This example shows how to set up an iSCSI target with one CDROM and one DISK
1021using the Linux STGT software target. This target is available on Red Hat based
1022systems as the package 'scsi-target-utils'.
1023
1024tgtd --iscsi portal=127.0.0.1:3260
1025tgtadm --lld iscsi --op new --mode target --tid 1 -T iqn.qemu.test
1026tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 1 \
1027 -b /IMAGES/disk.img --device-type=disk
1028tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 2 \
1029 -b /IMAGES/cd.iso --device-type=cd
1030tgtadm --lld iscsi --op bind --mode target --tid 1 -I ALL
1031
f9dadc98
RS
1032qemu-system-i386 -iscsi initiator-name=iqn.qemu.test:my-initiator \
1033 -boot d -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
00984e39
RS
1034 -cdrom iscsi://127.0.0.1/iqn.qemu.test/2
1035@end example
1036
8809e289
BR
1037@node disk_images_gluster
1038@subsection GlusterFS disk images
00984e39 1039
8809e289
BR
1040GlusterFS is an user space distributed file system.
1041
1042You can boot from the GlusterFS disk image with the command:
1043@example
76b5550f
PKK
1044URI:
1045qemu-system-x86_64 -drive file=gluster[+@var{type}]://[@var{host}[:@var{port}]]/@var{volume}/@var{path}
1046 [?socket=...][,file.debug=9][,file.logfile=...]
1047
1048JSON:
1049qemu-system-x86_64 'json:@{"driver":"qcow2",
1050 "file":@{"driver":"gluster",
1051 "volume":"testvol","path":"a.img","debug":9,"logfile":"...",
1052 "server":[@{"type":"tcp","host":"...","port":"..."@},
1053 @{"type":"unix","socket":"..."@}]@}@}'
8809e289
BR
1054@end example
1055
1056@var{gluster} is the protocol.
1057
76b5550f 1058@var{type} specifies the transport type used to connect to gluster
8809e289 1059management daemon (glusterd). Valid transport types are
76b5550f
PKK
1060tcp and unix. In the URI form, if a transport type isn't specified,
1061then tcp type is assumed.
8809e289 1062
76b5550f
PKK
1063@var{host} specifies the server where the volume file specification for
1064the given volume resides. This can be either a hostname or an ipv4 address.
1065If transport type is unix, then @var{host} field should not be specified.
8809e289
BR
1066Instead @var{socket} field needs to be populated with the path to unix domain
1067socket.
1068
1069@var{port} is the port number on which glusterd is listening. This is optional
76b5550f
PKK
1070and if not specified, it defaults to port 24007. If the transport type is unix,
1071then @var{port} should not be specified.
1072
1073@var{volume} is the name of the gluster volume which contains the disk image.
1074
1075@var{path} is the path to the actual disk image that resides on gluster volume.
1076
1077@var{debug} is the logging level of the gluster protocol driver. Debug levels
1078are 0-9, with 9 being the most verbose, and 0 representing no debugging output.
1079The default level is 4. The current logging levels defined in the gluster source
1080are 0 - None, 1 - Emergency, 2 - Alert, 3 - Critical, 4 - Error, 5 - Warning,
10816 - Notice, 7 - Info, 8 - Debug, 9 - Trace
1082
1083@var{logfile} is a commandline option to mention log file path which helps in
1084logging to the specified file and also help in persisting the gfapi logs. The
1085default is stderr.
1086
8809e289 1087
8809e289 1088
8809e289
BR
1089
1090You can create a GlusterFS disk image with the command:
1091@example
76b5550f 1092qemu-img create gluster://@var{host}/@var{volume}/@var{path} @var{size}
8809e289
BR
1093@end example
1094
1095Examples
1096@example
1097qemu-system-x86_64 -drive file=gluster://1.2.3.4/testvol/a.img
1098qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4/testvol/a.img
1099qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4:24007/testvol/dir/a.img
1100qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]/testvol/dir/a.img
1101qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]:24007/testvol/dir/a.img
1102qemu-system-x86_64 -drive file=gluster+tcp://server.domain.com:24007/testvol/dir/a.img
1103qemu-system-x86_64 -drive file=gluster+unix:///testvol/dir/a.img?socket=/tmp/glusterd.socket
1104qemu-system-x86_64 -drive file=gluster+rdma://1.2.3.4:24007/testvol/a.img
76b5550f
PKK
1105qemu-system-x86_64 -drive file=gluster://1.2.3.4/testvol/a.img,file.debug=9,file.logfile=/var/log/qemu-gluster.log
1106qemu-system-x86_64 'json:@{"driver":"qcow2",
1107 "file":@{"driver":"gluster",
1108 "volume":"testvol","path":"a.img",
1109 "debug":9,"logfile":"/var/log/qemu-gluster.log",
1110 "server":[@{"type":"tcp","host":"1.2.3.4","port":24007@},
1111 @{"type":"unix","socket":"/var/run/glusterd.socket"@}]@}@}'
1112qemu-system-x86_64 -drive driver=qcow2,file.driver=gluster,file.volume=testvol,file.path=/path/a.img,
1113 file.debug=9,file.logfile=/var/log/qemu-gluster.log,
1114 file.server.0.type=tcp,file.server.0.host=1.2.3.4,file.server.0.port=24007,
1115 file.server.1.type=unix,file.server.1.socket=/var/run/glusterd.socket
8809e289 1116@end example
00984e39 1117
0a12ec87
RJ
1118@node disk_images_ssh
1119@subsection Secure Shell (ssh) disk images
1120
1121You can access disk images located on a remote ssh server
1122by using the ssh protocol:
1123
1124@example
1125qemu-system-x86_64 -drive file=ssh://[@var{user}@@]@var{server}[:@var{port}]/@var{path}[?host_key_check=@var{host_key_check}]
1126@end example
1127
1128Alternative syntax using properties:
1129
1130@example
1131qemu-system-x86_64 -drive file.driver=ssh[,file.user=@var{user}],file.host=@var{server}[,file.port=@var{port}],file.path=@var{path}[,file.host_key_check=@var{host_key_check}]
1132@end example
1133
1134@var{ssh} is the protocol.
1135
1136@var{user} is the remote user. If not specified, then the local
1137username is tried.
1138
1139@var{server} specifies the remote ssh server. Any ssh server can be
1140used, but it must implement the sftp-server protocol. Most Unix/Linux
1141systems should work without requiring any extra configuration.
1142
1143@var{port} is the port number on which sshd is listening. By default
1144the standard ssh port (22) is used.
1145
1146@var{path} is the path to the disk image.
1147
1148The optional @var{host_key_check} parameter controls how the remote
1149host's key is checked. The default is @code{yes} which means to use
1150the local @file{.ssh/known_hosts} file. Setting this to @code{no}
1151turns off known-hosts checking. Or you can check that the host key
1152matches a specific fingerprint:
1153@code{host_key_check=md5:78:45:8e:14:57:4f:d5:45:83:0a:0e:f3:49:82:c9:c8}
1154(@code{sha1:} can also be used as a prefix, but note that OpenSSH
1155tools only use MD5 to print fingerprints).
1156
1157Currently authentication must be done using ssh-agent. Other
1158authentication methods may be supported in future.
1159
9a2d462e
RJ
1160Note: Many ssh servers do not support an @code{fsync}-style operation.
1161The ssh driver cannot guarantee that disk flush requests are
1162obeyed, and this causes a risk of disk corruption if the remote
1163server or network goes down during writes. The driver will
1164print a warning when @code{fsync} is not supported:
1165
1166warning: ssh server @code{ssh.example.com:22} does not support fsync
1167
1168With sufficiently new versions of libssh2 and OpenSSH, @code{fsync} is
1169supported.
0a12ec87 1170
debc7065 1171@node pcsys_network
9d4fb82e
FB
1172@section Network emulation
1173
4be456f1 1174QEMU can simulate several network cards (PCI or ISA cards on the PC
41d03949
FB
1175target) and can connect them to an arbitrary number of Virtual Local
1176Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1177VLAN. VLAN can be connected between separate instances of QEMU to
4be456f1 1178simulate large networks. For simpler usage, a non privileged user mode
41d03949
FB
1179network stack can replace the TAP device to have a basic network
1180connection.
1181
1182@subsection VLANs
9d4fb82e 1183
41d03949
FB
1184QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1185connection between several network devices. These devices can be for
1186example QEMU virtual Ethernet cards or virtual Host ethernet devices
1187(TAP devices).
9d4fb82e 1188
41d03949
FB
1189@subsection Using TAP network interfaces
1190
1191This is the standard way to connect QEMU to a real network. QEMU adds
1192a virtual network device on your host (called @code{tapN}), and you
1193can then configure it as if it was a real ethernet card.
9d4fb82e 1194
8f40c388
FB
1195@subsubsection Linux host
1196
9d4fb82e
FB
1197As an example, you can download the @file{linux-test-xxx.tar.gz}
1198archive and copy the script @file{qemu-ifup} in @file{/etc} and
1199configure properly @code{sudo} so that the command @code{ifconfig}
1200contained in @file{qemu-ifup} can be executed as root. You must verify
41d03949 1201that your host kernel supports the TAP network interfaces: the
9d4fb82e
FB
1202device @file{/dev/net/tun} must be present.
1203
ee0f4751
FB
1204See @ref{sec_invocation} to have examples of command lines using the
1205TAP network interfaces.
9d4fb82e 1206
8f40c388
FB
1207@subsubsection Windows host
1208
1209There is a virtual ethernet driver for Windows 2000/XP systems, called
1210TAP-Win32. But it is not included in standard QEMU for Windows,
1211so you will need to get it separately. It is part of OpenVPN package,
1212so download OpenVPN from : @url{http://openvpn.net/}.
1213
9d4fb82e
FB
1214@subsection Using the user mode network stack
1215
41d03949
FB
1216By using the option @option{-net user} (default configuration if no
1217@option{-net} option is specified), QEMU uses a completely user mode
4be456f1 1218network stack (you don't need root privilege to use the virtual
41d03949 1219network). The virtual network configuration is the following:
9d4fb82e
FB
1220
1221@example
1222
41d03949
FB
1223 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
1224 | (10.0.2.2)
9d4fb82e 1225 |
2518bd0d 1226 ----> DNS server (10.0.2.3)
3b46e624 1227 |
2518bd0d 1228 ----> SMB server (10.0.2.4)
9d4fb82e
FB
1229@end example
1230
1231The QEMU VM behaves as if it was behind a firewall which blocks all
1232incoming connections. You can use a DHCP client to automatically
41d03949
FB
1233configure the network in the QEMU VM. The DHCP server assign addresses
1234to the hosts starting from 10.0.2.15.
9d4fb82e
FB
1235
1236In order to check that the user mode network is working, you can ping
1237the address 10.0.2.2 and verify that you got an address in the range
123810.0.2.x from the QEMU virtual DHCP server.
1239
37cbfcce
GH
1240Note that ICMP traffic in general does not work with user mode networking.
1241@code{ping}, aka. ICMP echo, to the local router (10.0.2.2) shall work,
1242however. If you're using QEMU on Linux >= 3.0, it can use unprivileged ICMP
1243ping sockets to allow @code{ping} to the Internet. The host admin has to set
1244the ping_group_range in order to grant access to those sockets. To allow ping
1245for GID 100 (usually users group):
1246
1247@example
1248echo 100 100 > /proc/sys/net/ipv4/ping_group_range
1249@end example
b415a407 1250
9bf05444
FB
1251When using the built-in TFTP server, the router is also the TFTP
1252server.
1253
c8c6afa8
TH
1254When using the @option{'-netdev user,hostfwd=...'} option, TCP or UDP
1255connections can be redirected from the host to the guest. It allows for
1256example to redirect X11, telnet or SSH connections.
443f1376 1257
41d03949
FB
1258@subsection Connecting VLANs between QEMU instances
1259
1260Using the @option{-net socket} option, it is possible to make VLANs
1261that span several QEMU instances. See @ref{sec_invocation} to have a
1262basic example.
1263
576fd0a1 1264@node pcsys_other_devs
6cbf4c8c
CM
1265@section Other Devices
1266
1267@subsection Inter-VM Shared Memory device
1268
5400c02b
MA
1269On Linux hosts, a shared memory device is available. The basic syntax
1270is:
6cbf4c8c
CM
1271
1272@example
5400c02b
MA
1273qemu-system-x86_64 -device ivshmem-plain,memdev=@var{hostmem}
1274@end example
1275
1276where @var{hostmem} names a host memory backend. For a POSIX shared
1277memory backend, use something like
1278
1279@example
1280-object memory-backend-file,size=1M,share,mem-path=/dev/shm/ivshmem,id=@var{hostmem}
6cbf4c8c
CM
1281@end example
1282
1283If desired, interrupts can be sent between guest VMs accessing the same shared
1284memory region. Interrupt support requires using a shared memory server and
1285using a chardev socket to connect to it. The code for the shared memory server
1286is qemu.git/contrib/ivshmem-server. An example syntax when using the shared
1287memory server is:
1288
1289@example
a75eb03b 1290# First start the ivshmem server once and for all
50d34c4e 1291ivshmem-server -p @var{pidfile} -S @var{path} -m @var{shm-name} -l @var{shm-size} -n @var{vectors}
a75eb03b
DM
1292
1293# Then start your qemu instances with matching arguments
5400c02b 1294qemu-system-x86_64 -device ivshmem-doorbell,vectors=@var{vectors},chardev=@var{id}
50d34c4e 1295 -chardev socket,path=@var{path},id=@var{id}
6cbf4c8c
CM
1296@end example
1297
1298When using the server, the guest will be assigned a VM ID (>=0) that allows guests
1299using the same server to communicate via interrupts. Guests can read their
1309cf44 1300VM ID from a device register (see ivshmem-spec.txt).
6cbf4c8c 1301
62a830b6
MA
1302@subsubsection Migration with ivshmem
1303
5400c02b
MA
1304With device property @option{master=on}, the guest will copy the shared
1305memory on migration to the destination host. With @option{master=off},
1306the guest will not be able to migrate with the device attached. In the
1307latter case, the device should be detached and then reattached after
1308migration using the PCI hotplug support.
6cbf4c8c 1309
62a830b6
MA
1310At most one of the devices sharing the same memory can be master. The
1311master must complete migration before you plug back the other devices.
1312
7d4f4bda
MAL
1313@subsubsection ivshmem and hugepages
1314
1315Instead of specifying the <shm size> using POSIX shm, you may specify
1316a memory backend that has hugepage support:
1317
1318@example
5400c02b
MA
1319qemu-system-x86_64 -object memory-backend-file,size=1G,mem-path=/dev/hugepages/my-shmem-file,share,id=mb1
1320 -device ivshmem-plain,memdev=mb1
7d4f4bda
MAL
1321@end example
1322
1323ivshmem-server also supports hugepages mount points with the
1324@option{-m} memory path argument.
1325
9d4fb82e
FB
1326@node direct_linux_boot
1327@section Direct Linux Boot
1f673135
FB
1328
1329This section explains how to launch a Linux kernel inside QEMU without
1330having to make a full bootable image. It is very useful for fast Linux
ee0f4751 1331kernel testing.
1f673135 1332
ee0f4751 1333The syntax is:
1f673135 1334@example
3804da9d 1335qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1f673135
FB
1336@end example
1337
ee0f4751
FB
1338Use @option{-kernel} to provide the Linux kernel image and
1339@option{-append} to give the kernel command line arguments. The
1340@option{-initrd} option can be used to provide an INITRD image.
1f673135 1341
ee0f4751
FB
1342When using the direct Linux boot, a disk image for the first hard disk
1343@file{hda} is required because its boot sector is used to launch the
1344Linux kernel.
1f673135 1345
ee0f4751
FB
1346If you do not need graphical output, you can disable it and redirect
1347the virtual serial port and the QEMU monitor to the console with the
1348@option{-nographic} option. The typical command line is:
1f673135 1349@example
3804da9d
SW
1350qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1351 -append "root=/dev/hda console=ttyS0" -nographic
1f673135
FB
1352@end example
1353
ee0f4751
FB
1354Use @key{Ctrl-a c} to switch between the serial console and the
1355monitor (@pxref{pcsys_keys}).
1f673135 1356
debc7065 1357@node pcsys_usb
b389dbfb
FB
1358@section USB emulation
1359
0aff66b5
PB
1360QEMU emulates a PCI UHCI USB controller. You can virtually plug
1361virtual USB devices or real host USB devices (experimental, works only
071c9394 1362on Linux hosts). QEMU will automatically create and connect virtual USB hubs
f542086d 1363as necessary to connect multiple USB devices.
b389dbfb 1364
0aff66b5
PB
1365@menu
1366* usb_devices::
1367* host_usb_devices::
1368@end menu
1369@node usb_devices
1370@subsection Connecting USB devices
b389dbfb 1371
0aff66b5
PB
1372USB devices can be connected with the @option{-usbdevice} commandline option
1373or the @code{usb_add} monitor command. Available devices are:
b389dbfb 1374
db380c06
AZ
1375@table @code
1376@item mouse
0aff66b5 1377Virtual Mouse. This will override the PS/2 mouse emulation when activated.
db380c06 1378@item tablet
c6d46c20 1379Pointer device that uses absolute coordinates (like a touchscreen).
b65ee4fa 1380This means QEMU is able to report the mouse position without having
0aff66b5 1381to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
db380c06 1382@item disk:@var{file}
0aff66b5 1383Mass storage device based on @var{file} (@pxref{disk_images})
db380c06 1384@item host:@var{bus.addr}
0aff66b5
PB
1385Pass through the host device identified by @var{bus.addr}
1386(Linux only)
db380c06 1387@item host:@var{vendor_id:product_id}
0aff66b5
PB
1388Pass through the host device identified by @var{vendor_id:product_id}
1389(Linux only)
db380c06 1390@item wacom-tablet
f6d2a316
AZ
1391Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
1392above but it can be used with the tslib library because in addition to touch
1393coordinates it reports touch pressure.
db380c06 1394@item keyboard
47b2d338 1395Standard USB keyboard. Will override the PS/2 keyboard (if present).
db380c06
AZ
1396@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1397Serial converter. This emulates an FTDI FT232BM chip connected to host character
1398device @var{dev}. The available character devices are the same as for the
1399@code{-serial} option. The @code{vendorid} and @code{productid} options can be
0d6753e5 1400used to override the default 0403:6001. For instance,
db380c06
AZ
1401@example
1402usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1403@end example
1404will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1405serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
2e4d9fb1
AJ
1406@item braille
1407Braille device. This will use BrlAPI to display the braille output on a real
1408or fake device.
9ad97e65
AZ
1409@item net:@var{options}
1410Network adapter that supports CDC ethernet and RNDIS protocols. @var{options}
1411specifies NIC options as with @code{-net nic,}@var{options} (see description).
1412For instance, user-mode networking can be used with
6c9f886c 1413@example
3804da9d 1414qemu-system-i386 [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
6c9f886c
AZ
1415@end example
1416Currently this cannot be used in machines that support PCI NICs.
2d564691
AZ
1417@item bt[:@var{hci-type}]
1418Bluetooth dongle whose type is specified in the same format as with
1419the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
1420no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
1421This USB device implements the USB Transport Layer of HCI. Example
1422usage:
1423@example
8485140f 1424@command{qemu-system-i386} [...@var{OPTIONS}...] @option{-usbdevice} bt:hci,vlan=3 @option{-bt} device:keyboard,vlan=3
2d564691 1425@end example
0aff66b5 1426@end table
b389dbfb 1427
0aff66b5 1428@node host_usb_devices
b389dbfb
FB
1429@subsection Using host USB devices on a Linux host
1430
1431WARNING: this is an experimental feature. QEMU will slow down when
1432using it. USB devices requiring real time streaming (i.e. USB Video
1433Cameras) are not supported yet.
1434
1435@enumerate
5fafdf24 1436@item If you use an early Linux 2.4 kernel, verify that no Linux driver
b389dbfb
FB
1437is actually using the USB device. A simple way to do that is simply to
1438disable the corresponding kernel module by renaming it from @file{mydriver.o}
1439to @file{mydriver.o.disabled}.
1440
1441@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1442@example
1443ls /proc/bus/usb
1444001 devices drivers
1445@end example
1446
1447@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1448@example
1449chown -R myuid /proc/bus/usb
1450@end example
1451
1452@item Launch QEMU and do in the monitor:
5fafdf24 1453@example
b389dbfb
FB
1454info usbhost
1455 Device 1.2, speed 480 Mb/s
1456 Class 00: USB device 1234:5678, USB DISK
1457@end example
1458You should see the list of the devices you can use (Never try to use
1459hubs, it won't work).
1460
1461@item Add the device in QEMU by using:
5fafdf24 1462@example
b389dbfb
FB
1463usb_add host:1234:5678
1464@end example
1465
1466Normally the guest OS should report that a new USB device is
1467plugged. You can use the option @option{-usbdevice} to do the same.
1468
1469@item Now you can try to use the host USB device in QEMU.
1470
1471@end enumerate
1472
1473When relaunching QEMU, you may have to unplug and plug again the USB
1474device to make it work again (this is a bug).
1475
f858dcae
TS
1476@node vnc_security
1477@section VNC security
1478
1479The VNC server capability provides access to the graphical console
1480of the guest VM across the network. This has a number of security
1481considerations depending on the deployment scenarios.
1482
1483@menu
1484* vnc_sec_none::
1485* vnc_sec_password::
1486* vnc_sec_certificate::
1487* vnc_sec_certificate_verify::
1488* vnc_sec_certificate_pw::
2f9606b3
AL
1489* vnc_sec_sasl::
1490* vnc_sec_certificate_sasl::
f858dcae 1491* vnc_generate_cert::
2f9606b3 1492* vnc_setup_sasl::
f858dcae
TS
1493@end menu
1494@node vnc_sec_none
1495@subsection Without passwords
1496
1497The simplest VNC server setup does not include any form of authentication.
1498For this setup it is recommended to restrict it to listen on a UNIX domain
1499socket only. For example
1500
1501@example
3804da9d 1502qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
f858dcae
TS
1503@end example
1504
1505This ensures that only users on local box with read/write access to that
1506path can access the VNC server. To securely access the VNC server from a
1507remote machine, a combination of netcat+ssh can be used to provide a secure
1508tunnel.
1509
1510@node vnc_sec_password
1511@subsection With passwords
1512
1513The VNC protocol has limited support for password based authentication. Since
1514the protocol limits passwords to 8 characters it should not be considered
1515to provide high security. The password can be fairly easily brute-forced by
1516a client making repeat connections. For this reason, a VNC server using password
1517authentication should be restricted to only listen on the loopback interface
0f66998f
PM
1518or UNIX domain sockets. Password authentication is not supported when operating
1519in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password
1520authentication is requested with the @code{password} option, and then once QEMU
1521is running the password is set with the monitor. Until the monitor is used to
1522set the password all clients will be rejected.
f858dcae
TS
1523
1524@example
3804da9d 1525qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio
f858dcae
TS
1526(qemu) change vnc password
1527Password: ********
1528(qemu)
1529@end example
1530
1531@node vnc_sec_certificate
1532@subsection With x509 certificates
1533
1534The QEMU VNC server also implements the VeNCrypt extension allowing use of
1535TLS for encryption of the session, and x509 certificates for authentication.
1536The use of x509 certificates is strongly recommended, because TLS on its
1537own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1538support provides a secure session, but no authentication. This allows any
1539client to connect, and provides an encrypted session.
1540
1541@example
3804da9d 1542qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
f858dcae
TS
1543@end example
1544
1545In the above example @code{/etc/pki/qemu} should contain at least three files,
1546@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1547users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1548NB the @code{server-key.pem} file should be protected with file mode 0600 to
1549only be readable by the user owning it.
1550
1551@node vnc_sec_certificate_verify
1552@subsection With x509 certificates and client verification
1553
1554Certificates can also provide a means to authenticate the client connecting.
1555The server will request that the client provide a certificate, which it will
1556then validate against the CA certificate. This is a good choice if deploying
1557in an environment with a private internal certificate authority.
1558
1559@example
3804da9d 1560qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
f858dcae
TS
1561@end example
1562
1563
1564@node vnc_sec_certificate_pw
1565@subsection With x509 certificates, client verification and passwords
1566
1567Finally, the previous method can be combined with VNC password authentication
1568to provide two layers of authentication for clients.
1569
1570@example
3804da9d 1571qemu-system-i386 [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
f858dcae
TS
1572(qemu) change vnc password
1573Password: ********
1574(qemu)
1575@end example
1576
2f9606b3
AL
1577
1578@node vnc_sec_sasl
1579@subsection With SASL authentication
1580
1581The SASL authentication method is a VNC extension, that provides an
1582easily extendable, pluggable authentication method. This allows for
1583integration with a wide range of authentication mechanisms, such as
1584PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1585The strength of the authentication depends on the exact mechanism
1586configured. If the chosen mechanism also provides a SSF layer, then
1587it will encrypt the datastream as well.
1588
1589Refer to the later docs on how to choose the exact SASL mechanism
1590used for authentication, but assuming use of one supporting SSF,
1591then QEMU can be launched with:
1592
1593@example
3804da9d 1594qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio
2f9606b3
AL
1595@end example
1596
1597@node vnc_sec_certificate_sasl
1598@subsection With x509 certificates and SASL authentication
1599
1600If the desired SASL authentication mechanism does not supported
1601SSF layers, then it is strongly advised to run it in combination
1602with TLS and x509 certificates. This provides securely encrypted
1603data stream, avoiding risk of compromising of the security
1604credentials. This can be enabled, by combining the 'sasl' option
1605with the aforementioned TLS + x509 options:
1606
1607@example
3804da9d 1608qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
2f9606b3
AL
1609@end example
1610
1611
f858dcae
TS
1612@node vnc_generate_cert
1613@subsection Generating certificates for VNC
1614
1615The GNU TLS packages provides a command called @code{certtool} which can
1616be used to generate certificates and keys in PEM format. At a minimum it
40c5c6cd 1617is necessary to setup a certificate authority, and issue certificates to
f858dcae
TS
1618each server. If using certificates for authentication, then each client
1619will also need to be issued a certificate. The recommendation is for the
1620server to keep its certificates in either @code{/etc/pki/qemu} or for
1621unprivileged users in @code{$HOME/.pki/qemu}.
1622
1623@menu
1624* vnc_generate_ca::
1625* vnc_generate_server::
1626* vnc_generate_client::
1627@end menu
1628@node vnc_generate_ca
1629@subsubsection Setup the Certificate Authority
1630
1631This step only needs to be performed once per organization / organizational
1632unit. First the CA needs a private key. This key must be kept VERY secret
1633and secure. If this key is compromised the entire trust chain of the certificates
1634issued with it is lost.
1635
1636@example
1637# certtool --generate-privkey > ca-key.pem
1638@end example
1639
1640A CA needs to have a public certificate. For simplicity it can be a self-signed
1641certificate, or one issue by a commercial certificate issuing authority. To
1642generate a self-signed certificate requires one core piece of information, the
1643name of the organization.
1644
1645@example
1646# cat > ca.info <<EOF
1647cn = Name of your organization
1648ca
1649cert_signing_key
1650EOF
1651# certtool --generate-self-signed \
1652 --load-privkey ca-key.pem
1653 --template ca.info \
1654 --outfile ca-cert.pem
1655@end example
1656
1657The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1658TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1659
1660@node vnc_generate_server
1661@subsubsection Issuing server certificates
1662
1663Each server (or host) needs to be issued with a key and certificate. When connecting
1664the certificate is sent to the client which validates it against the CA certificate.
1665The core piece of information for a server certificate is the hostname. This should
1666be the fully qualified hostname that the client will connect with, since the client
1667will typically also verify the hostname in the certificate. On the host holding the
1668secure CA private key:
1669
1670@example
1671# cat > server.info <<EOF
1672organization = Name of your organization
1673cn = server.foo.example.com
1674tls_www_server
1675encryption_key
1676signing_key
1677EOF
1678# certtool --generate-privkey > server-key.pem
1679# certtool --generate-certificate \
1680 --load-ca-certificate ca-cert.pem \
1681 --load-ca-privkey ca-key.pem \
63c693f8 1682 --load-privkey server-key.pem \
f858dcae
TS
1683 --template server.info \
1684 --outfile server-cert.pem
1685@end example
1686
1687The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1688to the server for which they were generated. The @code{server-key.pem} is security
1689sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1690
1691@node vnc_generate_client
1692@subsubsection Issuing client certificates
1693
1694If the QEMU VNC server is to use the @code{x509verify} option to validate client
1695certificates as its authentication mechanism, each client also needs to be issued
1696a certificate. The client certificate contains enough metadata to uniquely identify
1697the client, typically organization, state, city, building, etc. On the host holding
1698the secure CA private key:
1699
1700@example
1701# cat > client.info <<EOF
1702country = GB
1703state = London
1704locality = London
63c693f8 1705organization = Name of your organization
f858dcae
TS
1706cn = client.foo.example.com
1707tls_www_client
1708encryption_key
1709signing_key
1710EOF
1711# certtool --generate-privkey > client-key.pem
1712# certtool --generate-certificate \
1713 --load-ca-certificate ca-cert.pem \
1714 --load-ca-privkey ca-key.pem \
1715 --load-privkey client-key.pem \
1716 --template client.info \
1717 --outfile client-cert.pem
1718@end example
1719
1720The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1721copied to the client for which they were generated.
1722
2f9606b3
AL
1723
1724@node vnc_setup_sasl
1725
1726@subsection Configuring SASL mechanisms
1727
1728The following documentation assumes use of the Cyrus SASL implementation on a
1729Linux host, but the principals should apply to any other SASL impl. When SASL
1730is enabled, the mechanism configuration will be loaded from system default
1731SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1732unprivileged user, an environment variable SASL_CONF_PATH can be used
1733to make it search alternate locations for the service config.
1734
1735The default configuration might contain
1736
1737@example
1738mech_list: digest-md5
1739sasldb_path: /etc/qemu/passwd.db
1740@end example
1741
1742This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1743Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1744in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1745command. While this mechanism is easy to configure and use, it is not
1746considered secure by modern standards, so only suitable for developers /
1747ad-hoc testing.
1748
1749A more serious deployment might use Kerberos, which is done with the 'gssapi'
1750mechanism
1751
1752@example
1753mech_list: gssapi
1754keytab: /etc/qemu/krb5.tab
1755@end example
1756
1757For this to work the administrator of your KDC must generate a Kerberos
1758principal for the server, with a name of 'qemu/somehost.example.com@@EXAMPLE.COM'
1759replacing 'somehost.example.com' with the fully qualified host name of the
40c5c6cd 1760machine running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
2f9606b3
AL
1761
1762Other configurations will be left as an exercise for the reader. It should
1763be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1764encryption. For all other mechanisms, VNC should always be configured to
1765use TLS and x509 certificates to protect security credentials from snooping.
1766
0806e3f6 1767@node gdb_usage
da415d54
FB
1768@section GDB usage
1769
1770QEMU has a primitive support to work with gdb, so that you can do
0806e3f6 1771'Ctrl-C' while the virtual machine is running and inspect its state.
da415d54 1772
b65ee4fa 1773In order to use gdb, launch QEMU with the '-s' option. It will wait for a
da415d54
FB
1774gdb connection:
1775@example
3804da9d
SW
1776qemu-system-i386 -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1777 -append "root=/dev/hda"
da415d54
FB
1778Connected to host network interface: tun0
1779Waiting gdb connection on port 1234
1780@end example
1781
1782Then launch gdb on the 'vmlinux' executable:
1783@example
1784> gdb vmlinux
1785@end example
1786
1787In gdb, connect to QEMU:
1788@example
6c9bf893 1789(gdb) target remote localhost:1234
da415d54
FB
1790@end example
1791
1792Then you can use gdb normally. For example, type 'c' to launch the kernel:
1793@example
1794(gdb) c
1795@end example
1796
0806e3f6
FB
1797Here are some useful tips in order to use gdb on system code:
1798
1799@enumerate
1800@item
1801Use @code{info reg} to display all the CPU registers.
1802@item
1803Use @code{x/10i $eip} to display the code at the PC position.
1804@item
1805Use @code{set architecture i8086} to dump 16 bit code. Then use
294e8637 1806@code{x/10i $cs*16+$eip} to dump the code at the PC position.
0806e3f6
FB
1807@end enumerate
1808
60897d36
EI
1809Advanced debugging options:
1810
b6af0975 1811The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
94d45e44 1812@table @code
60897d36
EI
1813@item maintenance packet qqemu.sstepbits
1814
1815This will display the MASK bits used to control the single stepping IE:
1816@example
1817(gdb) maintenance packet qqemu.sstepbits
1818sending: "qqemu.sstepbits"
1819received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1820@end example
1821@item maintenance packet qqemu.sstep
1822
1823This will display the current value of the mask used when single stepping IE:
1824@example
1825(gdb) maintenance packet qqemu.sstep
1826sending: "qqemu.sstep"
1827received: "0x7"
1828@end example
1829@item maintenance packet Qqemu.sstep=HEX_VALUE
1830
1831This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1832@example
1833(gdb) maintenance packet Qqemu.sstep=0x5
1834sending: "qemu.sstep=0x5"
1835received: "OK"
1836@end example
94d45e44 1837@end table
60897d36 1838
debc7065 1839@node pcsys_os_specific
1a084f3d
FB
1840@section Target OS specific information
1841
1842@subsection Linux
1843
15a34c63
FB
1844To have access to SVGA graphic modes under X11, use the @code{vesa} or
1845the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1846color depth in the guest and the host OS.
1a084f3d 1847
e3371e62
FB
1848When using a 2.6 guest Linux kernel, you should add the option
1849@code{clock=pit} on the kernel command line because the 2.6 Linux
1850kernels make very strict real time clock checks by default that QEMU
1851cannot simulate exactly.
1852
7c3fc84d
FB
1853When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1854not activated because QEMU is slower with this patch. The QEMU
1855Accelerator Module is also much slower in this case. Earlier Fedora
4be456f1 1856Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
7c3fc84d
FB
1857patch by default. Newer kernels don't have it.
1858
1a084f3d
FB
1859@subsection Windows
1860
1861If you have a slow host, using Windows 95 is better as it gives the
1862best speed. Windows 2000 is also a good choice.
1863
e3371e62
FB
1864@subsubsection SVGA graphic modes support
1865
1866QEMU emulates a Cirrus Logic GD5446 Video
15a34c63
FB
1867card. All Windows versions starting from Windows 95 should recognize
1868and use this graphic card. For optimal performances, use 16 bit color
1869depth in the guest and the host OS.
1a084f3d 1870
3cb0853a
FB
1871If you are using Windows XP as guest OS and if you want to use high
1872resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
18731280x1024x16), then you should use the VESA VBE virtual graphic card
1874(option @option{-std-vga}).
1875
e3371e62
FB
1876@subsubsection CPU usage reduction
1877
1878Windows 9x does not correctly use the CPU HLT
15a34c63
FB
1879instruction. The result is that it takes host CPU cycles even when
1880idle. You can install the utility from
1881@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1882problem. Note that no such tool is needed for NT, 2000 or XP.
1a084f3d 1883
9d0a8e6f 1884@subsubsection Windows 2000 disk full problem
e3371e62 1885
9d0a8e6f
FB
1886Windows 2000 has a bug which gives a disk full problem during its
1887installation. When installing it, use the @option{-win2k-hack} QEMU
1888option to enable a specific workaround. After Windows 2000 is
1889installed, you no longer need this option (this option slows down the
1890IDE transfers).
e3371e62 1891
6cc721cf
FB
1892@subsubsection Windows 2000 shutdown
1893
1894Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1895can. It comes from the fact that Windows 2000 does not automatically
1896use the APM driver provided by the BIOS.
1897
1898In order to correct that, do the following (thanks to Struan
1899Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1900Add/Troubleshoot a device => Add a new device & Next => No, select the
1901hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1902(again) a few times. Now the driver is installed and Windows 2000 now
5fafdf24 1903correctly instructs QEMU to shutdown at the appropriate moment.
6cc721cf
FB
1904
1905@subsubsection Share a directory between Unix and Windows
1906
c8c6afa8
TH
1907See @ref{sec_invocation} about the help of the option
1908@option{'-netdev user,smb=...'}.
6cc721cf 1909
2192c332 1910@subsubsection Windows XP security problem
e3371e62
FB
1911
1912Some releases of Windows XP install correctly but give a security
1913error when booting:
1914@example
1915A problem is preventing Windows from accurately checking the
1916license for this computer. Error code: 0x800703e6.
1917@end example
e3371e62 1918
2192c332
FB
1919The workaround is to install a service pack for XP after a boot in safe
1920mode. Then reboot, and the problem should go away. Since there is no
1921network while in safe mode, its recommended to download the full
1922installation of SP1 or SP2 and transfer that via an ISO or using the
1923vvfat block device ("-hdb fat:directory_which_holds_the_SP").
e3371e62 1924
a0a821a4
FB
1925@subsection MS-DOS and FreeDOS
1926
1927@subsubsection CPU usage reduction
1928
1929DOS does not correctly use the CPU HLT instruction. The result is that
1930it takes host CPU cycles even when idle. You can install the utility
1931from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1932problem.
1933
debc7065 1934@node QEMU System emulator for non PC targets
3f9f3aa1
FB
1935@chapter QEMU System emulator for non PC targets
1936
1937QEMU is a generic emulator and it emulates many non PC
1938machines. Most of the options are similar to the PC emulator. The
4be456f1 1939differences are mentioned in the following sections.
3f9f3aa1 1940
debc7065 1941@menu
7544a042 1942* PowerPC System emulator::
24d4de45
TS
1943* Sparc32 System emulator::
1944* Sparc64 System emulator::
1945* MIPS System emulator::
1946* ARM System emulator::
1947* ColdFire System emulator::
7544a042
SW
1948* Cris System emulator::
1949* Microblaze System emulator::
1950* SH4 System emulator::
3aeaea65 1951* Xtensa System emulator::
debc7065
FB
1952@end menu
1953
7544a042
SW
1954@node PowerPC System emulator
1955@section PowerPC System emulator
1956@cindex system emulation (PowerPC)
1a084f3d 1957
15a34c63
FB
1958Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1959or PowerMac PowerPC system.
1a084f3d 1960
b671f9ed 1961QEMU emulates the following PowerMac peripherals:
1a084f3d 1962
15a34c63 1963@itemize @minus
5fafdf24 1964@item
006f3a48 1965UniNorth or Grackle PCI Bridge
15a34c63
FB
1966@item
1967PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1968@item
15a34c63 19692 PMAC IDE interfaces with hard disk and CD-ROM support
5fafdf24 1970@item
15a34c63
FB
1971NE2000 PCI adapters
1972@item
1973Non Volatile RAM
1974@item
1975VIA-CUDA with ADB keyboard and mouse.
1a084f3d
FB
1976@end itemize
1977
b671f9ed 1978QEMU emulates the following PREP peripherals:
52c00a5f
FB
1979
1980@itemize @minus
5fafdf24 1981@item
15a34c63
FB
1982PCI Bridge
1983@item
1984PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1985@item
52c00a5f
FB
19862 IDE interfaces with hard disk and CD-ROM support
1987@item
1988Floppy disk
5fafdf24 1989@item
15a34c63 1990NE2000 network adapters
52c00a5f
FB
1991@item
1992Serial port
1993@item
1994PREP Non Volatile RAM
15a34c63
FB
1995@item
1996PC compatible keyboard and mouse.
52c00a5f
FB
1997@end itemize
1998
15a34c63 1999QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
3f9f3aa1 2000@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
52c00a5f 2001
992e5acd 2002Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
006f3a48
BS
2003for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
2004v2) portable firmware implementation. The goal is to implement a 100%
2005IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
992e5acd 2006
15a34c63
FB
2007@c man begin OPTIONS
2008
2009The following options are specific to the PowerPC emulation:
2010
2011@table @option
2012
4e257e5e 2013@item -g @var{W}x@var{H}[x@var{DEPTH}]
15a34c63 2014
340fb41b 2015Set the initial VGA graphic mode. The default is 800x600x32.
15a34c63 2016
4e257e5e 2017@item -prom-env @var{string}
95efd11c
BS
2018
2019Set OpenBIOS variables in NVRAM, for example:
2020
2021@example
2022qemu-system-ppc -prom-env 'auto-boot?=false' \
2023 -prom-env 'boot-device=hd:2,\yaboot' \
2024 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
2025@end example
2026
2027These variables are not used by Open Hack'Ware.
2028
15a34c63
FB
2029@end table
2030
5fafdf24 2031@c man end
15a34c63
FB
2032
2033
52c00a5f 2034More information is available at
3f9f3aa1 2035@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
52c00a5f 2036
24d4de45
TS
2037@node Sparc32 System emulator
2038@section Sparc32 System emulator
7544a042 2039@cindex system emulation (Sparc32)
e80cfcfc 2040
34a3d239
BS
2041Use the executable @file{qemu-system-sparc} to simulate the following
2042Sun4m architecture machines:
2043@itemize @minus
2044@item
2045SPARCstation 4
2046@item
2047SPARCstation 5
2048@item
2049SPARCstation 10
2050@item
2051SPARCstation 20
2052@item
2053SPARCserver 600MP
2054@item
2055SPARCstation LX
2056@item
2057SPARCstation Voyager
2058@item
2059SPARCclassic
2060@item
2061SPARCbook
2062@end itemize
2063
2064The emulation is somewhat complete. SMP up to 16 CPUs is supported,
2065but Linux limits the number of usable CPUs to 4.
e80cfcfc 2066
6a4e1771 2067QEMU emulates the following sun4m peripherals:
e80cfcfc
FB
2068
2069@itemize @minus
3475187d 2070@item
6a4e1771 2071IOMMU
e80cfcfc 2072@item
33632788 2073TCX or cgthree Frame buffer
5fafdf24 2074@item
e80cfcfc
FB
2075Lance (Am7990) Ethernet
2076@item
34a3d239 2077Non Volatile RAM M48T02/M48T08
e80cfcfc 2078@item
3475187d
FB
2079Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2080and power/reset logic
2081@item
2082ESP SCSI controller with hard disk and CD-ROM support
2083@item
6a3b9cc9 2084Floppy drive (not on SS-600MP)
a2502b58
BS
2085@item
2086CS4231 sound device (only on SS-5, not working yet)
e80cfcfc
FB
2087@end itemize
2088
6a3b9cc9
BS
2089The number of peripherals is fixed in the architecture. Maximum
2090memory size depends on the machine type, for SS-5 it is 256MB and for
7d85892b 2091others 2047MB.
3475187d 2092
30a604f3 2093Since version 0.8.2, QEMU uses OpenBIOS
0986ac3b
FB
2094@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2095firmware implementation. The goal is to implement a 100% IEEE
20961275-1994 (referred to as Open Firmware) compliant firmware.
3475187d
FB
2097
2098A sample Linux 2.6 series kernel and ram disk image are available on
34a3d239 2099the QEMU web site. There are still issues with NetBSD and OpenBSD, but
9bb9f217 2100most kernel versions work. Please note that currently older Solaris kernels
34a3d239
BS
2101don't work probably due to interface issues between OpenBIOS and
2102Solaris.
3475187d
FB
2103
2104@c man begin OPTIONS
2105
a2502b58 2106The following options are specific to the Sparc32 emulation:
3475187d
FB
2107
2108@table @option
2109
4e257e5e 2110@item -g @var{W}x@var{H}x[x@var{DEPTH}]
3475187d 2111
33632788
MCA
2112Set the initial graphics mode. For TCX, the default is 1024x768x8 with the
2113option of 1024x768x24. For cgthree, the default is 1024x768x8 with the option
2114of 1152x900x8 for people who wish to use OBP.
3475187d 2115
4e257e5e 2116@item -prom-env @var{string}
66508601
BS
2117
2118Set OpenBIOS variables in NVRAM, for example:
2119
2120@example
2121qemu-system-sparc -prom-env 'auto-boot?=false' \
2122 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2123@end example
2124
6a4e1771 2125@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook]
a2502b58
BS
2126
2127Set the emulated machine type. Default is SS-5.
2128
3475187d
FB
2129@end table
2130
5fafdf24 2131@c man end
3475187d 2132
24d4de45
TS
2133@node Sparc64 System emulator
2134@section Sparc64 System emulator
7544a042 2135@cindex system emulation (Sparc64)
e80cfcfc 2136
34a3d239
BS
2137Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
2138(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
9bb9f217
MCA
2139Niagara (T1) machine. The Sun4u emulator is mostly complete, being
2140able to run Linux, NetBSD and OpenBSD in headless (-nographic) mode. The
2141Sun4v and Niagara emulators are still a work in progress.
b756921a 2142
c7ba218d 2143QEMU emulates the following peripherals:
83469015
FB
2144
2145@itemize @minus
2146@item
5fafdf24 2147UltraSparc IIi APB PCI Bridge
83469015
FB
2148@item
2149PCI VGA compatible card with VESA Bochs Extensions
2150@item
34a3d239
BS
2151PS/2 mouse and keyboard
2152@item
83469015
FB
2153Non Volatile RAM M48T59
2154@item
2155PC-compatible serial ports
c7ba218d
BS
2156@item
21572 PCI IDE interfaces with hard disk and CD-ROM support
34a3d239
BS
2158@item
2159Floppy disk
83469015
FB
2160@end itemize
2161
c7ba218d
BS
2162@c man begin OPTIONS
2163
2164The following options are specific to the Sparc64 emulation:
2165
2166@table @option
2167
4e257e5e 2168@item -prom-env @var{string}
34a3d239
BS
2169
2170Set OpenBIOS variables in NVRAM, for example:
2171
2172@example
2173qemu-system-sparc64 -prom-env 'auto-boot?=false'
2174@end example
2175
2176@item -M [sun4u|sun4v|Niagara]
c7ba218d
BS
2177
2178Set the emulated machine type. The default is sun4u.
2179
2180@end table
2181
2182@c man end
2183
24d4de45
TS
2184@node MIPS System emulator
2185@section MIPS System emulator
7544a042 2186@cindex system emulation (MIPS)
9d0a8e6f 2187
d9aedc32
TS
2188Four executables cover simulation of 32 and 64-bit MIPS systems in
2189both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2190@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
88cb0a02 2191Five different machine types are emulated:
24d4de45
TS
2192
2193@itemize @minus
2194@item
2195A generic ISA PC-like machine "mips"
2196@item
2197The MIPS Malta prototype board "malta"
2198@item
d9aedc32 2199An ACER Pica "pica61". This machine needs the 64-bit emulator.
6bf5b4e8 2200@item
f0fc6f8f 2201MIPS emulator pseudo board "mipssim"
88cb0a02
AJ
2202@item
2203A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
24d4de45
TS
2204@end itemize
2205
2206The generic emulation is supported by Debian 'Etch' and is able to
2207install Debian into a virtual disk image. The following devices are
2208emulated:
3f9f3aa1
FB
2209
2210@itemize @minus
5fafdf24 2211@item
6bf5b4e8 2212A range of MIPS CPUs, default is the 24Kf
3f9f3aa1
FB
2213@item
2214PC style serial port
2215@item
24d4de45
TS
2216PC style IDE disk
2217@item
3f9f3aa1
FB
2218NE2000 network card
2219@end itemize
2220
24d4de45
TS
2221The Malta emulation supports the following devices:
2222
2223@itemize @minus
2224@item
0b64d008 2225Core board with MIPS 24Kf CPU and Galileo system controller
24d4de45
TS
2226@item
2227PIIX4 PCI/USB/SMbus controller
2228@item
2229The Multi-I/O chip's serial device
2230@item
3a2eeac0 2231PCI network cards (PCnet32 and others)
24d4de45
TS
2232@item
2233Malta FPGA serial device
2234@item
1f605a76 2235Cirrus (default) or any other PCI VGA graphics card
24d4de45
TS
2236@end itemize
2237
2238The ACER Pica emulation supports:
2239
2240@itemize @minus
2241@item
2242MIPS R4000 CPU
2243@item
2244PC-style IRQ and DMA controllers
2245@item
2246PC Keyboard
2247@item
2248IDE controller
2249@end itemize
3f9f3aa1 2250
b5e4946f 2251The mipssim pseudo board emulation provides an environment similar
f0fc6f8f
TS
2252to what the proprietary MIPS emulator uses for running Linux.
2253It supports:
6bf5b4e8
TS
2254
2255@itemize @minus
2256@item
2257A range of MIPS CPUs, default is the 24Kf
2258@item
2259PC style serial port
2260@item
2261MIPSnet network emulation
2262@end itemize
2263
88cb0a02
AJ
2264The MIPS Magnum R4000 emulation supports:
2265
2266@itemize @minus
2267@item
2268MIPS R4000 CPU
2269@item
2270PC-style IRQ controller
2271@item
2272PC Keyboard
2273@item
2274SCSI controller
2275@item
2276G364 framebuffer
2277@end itemize
2278
2279
24d4de45
TS
2280@node ARM System emulator
2281@section ARM System emulator
7544a042 2282@cindex system emulation (ARM)
3f9f3aa1
FB
2283
2284Use the executable @file{qemu-system-arm} to simulate a ARM
2285machine. The ARM Integrator/CP board is emulated with the following
2286devices:
2287
2288@itemize @minus
2289@item
9ee6e8bb 2290ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
3f9f3aa1
FB
2291@item
2292Two PL011 UARTs
5fafdf24 2293@item
3f9f3aa1 2294SMC 91c111 Ethernet adapter
00a9bf19
PB
2295@item
2296PL110 LCD controller
2297@item
2298PL050 KMI with PS/2 keyboard and mouse.
a1bb27b1
PB
2299@item
2300PL181 MultiMedia Card Interface with SD card.
00a9bf19
PB
2301@end itemize
2302
2303The ARM Versatile baseboard is emulated with the following devices:
2304
2305@itemize @minus
2306@item
9ee6e8bb 2307ARM926E, ARM1136 or Cortex-A8 CPU
00a9bf19
PB
2308@item
2309PL190 Vectored Interrupt Controller
2310@item
2311Four PL011 UARTs
5fafdf24 2312@item
00a9bf19
PB
2313SMC 91c111 Ethernet adapter
2314@item
2315PL110 LCD controller
2316@item
2317PL050 KMI with PS/2 keyboard and mouse.
2318@item
2319PCI host bridge. Note the emulated PCI bridge only provides access to
2320PCI memory space. It does not provide access to PCI IO space.
4be456f1
TS
2321This means some devices (eg. ne2k_pci NIC) are not usable, and others
2322(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
00a9bf19 2323mapped control registers.
e6de1bad
PB
2324@item
2325PCI OHCI USB controller.
2326@item
2327LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
a1bb27b1
PB
2328@item
2329PL181 MultiMedia Card Interface with SD card.
3f9f3aa1
FB
2330@end itemize
2331
21a88941
PB
2332Several variants of the ARM RealView baseboard are emulated,
2333including the EB, PB-A8 and PBX-A9. Due to interactions with the
2334bootloader, only certain Linux kernel configurations work out
2335of the box on these boards.
2336
2337Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2338enabled in the kernel, and expect 512M RAM. Kernels for The PBX-A9 board
2339should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2340disabled and expect 1024M RAM.
2341
40c5c6cd 2342The following devices are emulated:
d7739d75
PB
2343
2344@itemize @minus
2345@item
f7c70325 2346ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
d7739d75
PB
2347@item
2348ARM AMBA Generic/Distributed Interrupt Controller
2349@item
2350Four PL011 UARTs
5fafdf24 2351@item
0ef849d7 2352SMC 91c111 or SMSC LAN9118 Ethernet adapter
d7739d75
PB
2353@item
2354PL110 LCD controller
2355@item
2356PL050 KMI with PS/2 keyboard and mouse
2357@item
2358PCI host bridge
2359@item
2360PCI OHCI USB controller
2361@item
2362LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
a1bb27b1
PB
2363@item
2364PL181 MultiMedia Card Interface with SD card.
d7739d75
PB
2365@end itemize
2366
b00052e4
AZ
2367The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2368and "Terrier") emulation includes the following peripherals:
2369
2370@itemize @minus
2371@item
2372Intel PXA270 System-on-chip (ARM V5TE core)
2373@item
2374NAND Flash memory
2375@item
2376IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2377@item
2378On-chip OHCI USB controller
2379@item
2380On-chip LCD controller
2381@item
2382On-chip Real Time Clock
2383@item
2384TI ADS7846 touchscreen controller on SSP bus
2385@item
2386Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2387@item
2388GPIO-connected keyboard controller and LEDs
2389@item
549444e1 2390Secure Digital card connected to PXA MMC/SD host
b00052e4
AZ
2391@item
2392Three on-chip UARTs
2393@item
2394WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2395@end itemize
2396
02645926
AZ
2397The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2398following elements:
2399
2400@itemize @minus
2401@item
2402Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2403@item
2404ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2405@item
2406On-chip LCD controller
2407@item
2408On-chip Real Time Clock
2409@item
2410TI TSC2102i touchscreen controller / analog-digital converter / Audio
2411CODEC, connected through MicroWire and I@math{^2}S busses
2412@item
2413GPIO-connected matrix keypad
2414@item
2415Secure Digital card connected to OMAP MMC/SD host
2416@item
2417Three on-chip UARTs
2418@end itemize
2419
c30bb264
AZ
2420Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2421emulation supports the following elements:
2422
2423@itemize @minus
2424@item
2425Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2426@item
2427RAM and non-volatile OneNAND Flash memories
2428@item
2429Display connected to EPSON remote framebuffer chip and OMAP on-chip
2430display controller and a LS041y3 MIPI DBI-C controller
2431@item
2432TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2433driven through SPI bus
2434@item
2435National Semiconductor LM8323-controlled qwerty keyboard driven
2436through I@math{^2}C bus
2437@item
2438Secure Digital card connected to OMAP MMC/SD host
2439@item
2440Three OMAP on-chip UARTs and on-chip STI debugging console
2441@item
40c5c6cd 2442A Bluetooth(R) transceiver and HCI connected to an UART
2d564691 2443@item
c30bb264
AZ
2444Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2445TUSB6010 chip - only USB host mode is supported
2446@item
2447TI TMP105 temperature sensor driven through I@math{^2}C bus
2448@item
2449TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2450@item
2451Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2452through CBUS
2453@end itemize
2454
9ee6e8bb
PB
2455The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2456devices:
2457
2458@itemize @minus
2459@item
2460Cortex-M3 CPU core.
2461@item
246264k Flash and 8k SRAM.
2463@item
2464Timers, UARTs, ADC and I@math{^2}C interface.
2465@item
2466OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2467@end itemize
2468
2469The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2470devices:
2471
2472@itemize @minus
2473@item
2474Cortex-M3 CPU core.
2475@item
2476256k Flash and 64k SRAM.
2477@item
2478Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2479@item
2480OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2481@end itemize
2482
57cd6e97
AZ
2483The Freecom MusicPal internet radio emulation includes the following
2484elements:
2485
2486@itemize @minus
2487@item
2488Marvell MV88W8618 ARM core.
2489@item
249032 MB RAM, 256 KB SRAM, 8 MB flash.
2491@item
2492Up to 2 16550 UARTs
2493@item
2494MV88W8xx8 Ethernet controller
2495@item
2496MV88W8618 audio controller, WM8750 CODEC and mixer
2497@item
e080e785 2498128×64 display with brightness control
57cd6e97
AZ
2499@item
25002 buttons, 2 navigation wheels with button function
2501@end itemize
2502
997641a8 2503The Siemens SX1 models v1 and v2 (default) basic emulation.
40c5c6cd 2504The emulation includes the following elements:
997641a8
AZ
2505
2506@itemize @minus
2507@item
2508Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2509@item
2510ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2511V1
25121 Flash of 16MB and 1 Flash of 8MB
2513V2
25141 Flash of 32MB
2515@item
2516On-chip LCD controller
2517@item
2518On-chip Real Time Clock
2519@item
2520Secure Digital card connected to OMAP MMC/SD host
2521@item
2522Three on-chip UARTs
2523@end itemize
2524
3f9f3aa1
FB
2525A Linux 2.6 test image is available on the QEMU web site. More
2526information is available in the QEMU mailing-list archive.
9d0a8e6f 2527
d2c639d6
BS
2528@c man begin OPTIONS
2529
2530The following options are specific to the ARM emulation:
2531
2532@table @option
2533
2534@item -semihosting
2535Enable semihosting syscall emulation.
2536
2537On ARM this implements the "Angel" interface.
2538
2539Note that this allows guest direct access to the host filesystem,
2540so should only be used with trusted guest OS.
2541
2542@end table
2543
24d4de45
TS
2544@node ColdFire System emulator
2545@section ColdFire System emulator
7544a042
SW
2546@cindex system emulation (ColdFire)
2547@cindex system emulation (M68K)
209a4e69
PB
2548
2549Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2550The emulator is able to boot a uClinux kernel.
707e011b
PB
2551
2552The M5208EVB emulation includes the following devices:
2553
2554@itemize @minus
5fafdf24 2555@item
707e011b
PB
2556MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2557@item
2558Three Two on-chip UARTs.
2559@item
2560Fast Ethernet Controller (FEC)
2561@end itemize
2562
2563The AN5206 emulation includes the following devices:
209a4e69
PB
2564
2565@itemize @minus
5fafdf24 2566@item
209a4e69
PB
2567MCF5206 ColdFire V2 Microprocessor.
2568@item
2569Two on-chip UARTs.
2570@end itemize
2571
d2c639d6
BS
2572@c man begin OPTIONS
2573
7544a042 2574The following options are specific to the ColdFire emulation:
d2c639d6
BS
2575
2576@table @option
2577
2578@item -semihosting
2579Enable semihosting syscall emulation.
2580
2581On M68K this implements the "ColdFire GDB" interface used by libgloss.
2582
2583Note that this allows guest direct access to the host filesystem,
2584so should only be used with trusted guest OS.
2585
2586@end table
2587
7544a042
SW
2588@node Cris System emulator
2589@section Cris System emulator
2590@cindex system emulation (Cris)
2591
2592TODO
2593
2594@node Microblaze System emulator
2595@section Microblaze System emulator
2596@cindex system emulation (Microblaze)
2597
2598TODO
2599
2600@node SH4 System emulator
2601@section SH4 System emulator
2602@cindex system emulation (SH4)
2603
2604TODO
2605
3aeaea65
MF
2606@node Xtensa System emulator
2607@section Xtensa System emulator
2608@cindex system emulation (Xtensa)
2609
2610Two executables cover simulation of both Xtensa endian options,
2611@file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
2612Two different machine types are emulated:
2613
2614@itemize @minus
2615@item
2616Xtensa emulator pseudo board "sim"
2617@item
2618Avnet LX60/LX110/LX200 board
2619@end itemize
2620
b5e4946f 2621The sim pseudo board emulation provides an environment similar
3aeaea65
MF
2622to one provided by the proprietary Tensilica ISS.
2623It supports:
2624
2625@itemize @minus
2626@item
2627A range of Xtensa CPUs, default is the DC232B
2628@item
2629Console and filesystem access via semihosting calls
2630@end itemize
2631
2632The Avnet LX60/LX110/LX200 emulation supports:
2633
2634@itemize @minus
2635@item
2636A range of Xtensa CPUs, default is the DC232B
2637@item
263816550 UART
2639@item
2640OpenCores 10/100 Mbps Ethernet MAC
2641@end itemize
2642
2643@c man begin OPTIONS
2644
2645The following options are specific to the Xtensa emulation:
2646
2647@table @option
2648
2649@item -semihosting
2650Enable semihosting syscall emulation.
2651
2652Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2653Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2654
2655Note that this allows guest direct access to the host filesystem,
2656so should only be used with trusted guest OS.
2657
2658@end table
5fafdf24
TS
2659@node QEMU User space emulator
2660@chapter QEMU User space emulator
83195237
FB
2661
2662@menu
2663* Supported Operating Systems ::
0722cc42 2664* Features::
83195237 2665* Linux User space emulator::
84778508 2666* BSD User space emulator ::
83195237
FB
2667@end menu
2668
2669@node Supported Operating Systems
2670@section Supported Operating Systems
2671
2672The following OS are supported in user space emulation:
2673
2674@itemize @minus
2675@item
4be456f1 2676Linux (referred as qemu-linux-user)
83195237 2677@item
84778508 2678BSD (referred as qemu-bsd-user)
83195237
FB
2679@end itemize
2680
0722cc42
PB
2681@node Features
2682@section Features
2683
2684QEMU user space emulation has the following notable features:
2685
2686@table @strong
2687@item System call translation:
2688QEMU includes a generic system call translator. This means that
2689the parameters of the system calls can be converted to fix
2690endianness and 32/64-bit mismatches between hosts and targets.
2691IOCTLs can be converted too.
2692
2693@item POSIX signal handling:
2694QEMU can redirect to the running program all signals coming from
2695the host (such as @code{SIGALRM}), as well as synthesize signals from
2696virtual CPU exceptions (for example @code{SIGFPE} when the program
2697executes a division by zero).
2698
2699QEMU relies on the host kernel to emulate most signal system
2700calls, for example to emulate the signal mask. On Linux, QEMU
2701supports both normal and real-time signals.
2702
2703@item Threading:
2704On Linux, QEMU can emulate the @code{clone} syscall and create a real
2705host thread (with a separate virtual CPU) for each emulated thread.
2706Note that not all targets currently emulate atomic operations correctly.
2707x86 and ARM use a global lock in order to preserve their semantics.
2708@end table
2709
2710QEMU was conceived so that ultimately it can emulate itself. Although
2711it is not very useful, it is an important test to show the power of the
2712emulator.
2713
83195237
FB
2714@node Linux User space emulator
2715@section Linux User space emulator
386405f7 2716
debc7065
FB
2717@menu
2718* Quick Start::
2719* Wine launch::
2720* Command line options::
79737e4a 2721* Other binaries::
debc7065
FB
2722@end menu
2723
2724@node Quick Start
83195237 2725@subsection Quick Start
df0f11a0 2726
1f673135 2727In order to launch a Linux process, QEMU needs the process executable
5fafdf24 2728itself and all the target (x86) dynamic libraries used by it.
386405f7 2729
1f673135 2730@itemize
386405f7 2731
1f673135
FB
2732@item On x86, you can just try to launch any process by using the native
2733libraries:
386405f7 2734
5fafdf24 2735@example
1f673135
FB
2736qemu-i386 -L / /bin/ls
2737@end example
386405f7 2738
1f673135
FB
2739@code{-L /} tells that the x86 dynamic linker must be searched with a
2740@file{/} prefix.
386405f7 2741
b65ee4fa
SW
2742@item Since QEMU is also a linux process, you can launch QEMU with
2743QEMU (NOTE: you can only do that if you compiled QEMU from the sources):
386405f7 2744
5fafdf24 2745@example
1f673135
FB
2746qemu-i386 -L / qemu-i386 -L / /bin/ls
2747@end example
386405f7 2748
1f673135
FB
2749@item On non x86 CPUs, you need first to download at least an x86 glibc
2750(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2751@code{LD_LIBRARY_PATH} is not set:
df0f11a0 2752
1f673135 2753@example
5fafdf24 2754unset LD_LIBRARY_PATH
1f673135 2755@end example
1eb87257 2756
1f673135 2757Then you can launch the precompiled @file{ls} x86 executable:
1eb87257 2758
1f673135
FB
2759@example
2760qemu-i386 tests/i386/ls
2761@end example
4c3b5a48 2762You can look at @file{scripts/qemu-binfmt-conf.sh} so that
1f673135
FB
2763QEMU is automatically launched by the Linux kernel when you try to
2764launch x86 executables. It requires the @code{binfmt_misc} module in the
2765Linux kernel.
1eb87257 2766
1f673135
FB
2767@item The x86 version of QEMU is also included. You can try weird things such as:
2768@example
debc7065
FB
2769qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2770 /usr/local/qemu-i386/bin/ls-i386
1f673135 2771@end example
1eb20527 2772
1f673135 2773@end itemize
1eb20527 2774
debc7065 2775@node Wine launch
83195237 2776@subsection Wine launch
1eb20527 2777
1f673135 2778@itemize
386405f7 2779
1f673135
FB
2780@item Ensure that you have a working QEMU with the x86 glibc
2781distribution (see previous section). In order to verify it, you must be
2782able to do:
386405f7 2783
1f673135
FB
2784@example
2785qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2786@end example
386405f7 2787
1f673135 2788@item Download the binary x86 Wine install
5fafdf24 2789(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
386405f7 2790
1f673135 2791@item Configure Wine on your account. Look at the provided script
debc7065 2792@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
1f673135 2793@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
386405f7 2794
1f673135 2795@item Then you can try the example @file{putty.exe}:
386405f7 2796
1f673135 2797@example
debc7065
FB
2798qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2799 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
1f673135 2800@end example
386405f7 2801
1f673135 2802@end itemize
fd429f2f 2803
debc7065 2804@node Command line options
83195237 2805@subsection Command line options
1eb20527 2806
1f673135 2807@example
8485140f 2808@command{qemu-i386} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-cpu} @var{model}] [@option{-g} @var{port}] [@option{-B} @var{offset}] [@option{-R} @var{size}] @var{program} [@var{arguments}...]
1f673135 2809@end example
1eb20527 2810
1f673135
FB
2811@table @option
2812@item -h
2813Print the help
3b46e624 2814@item -L path
1f673135
FB
2815Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2816@item -s size
2817Set the x86 stack size in bytes (default=524288)
34a3d239 2818@item -cpu model
c8057f95 2819Select CPU model (-cpu help for list and additional feature selection)
f66724c9
SW
2820@item -E @var{var}=@var{value}
2821Set environment @var{var} to @var{value}.
2822@item -U @var{var}
2823Remove @var{var} from the environment.
379f6698
PB
2824@item -B offset
2825Offset guest address by the specified number of bytes. This is useful when
1f5c3f8c
SW
2826the address region required by guest applications is reserved on the host.
2827This option is currently only supported on some hosts.
68a1c816
PB
2828@item -R size
2829Pre-allocate a guest virtual address space of the given size (in bytes).
0d6753e5 2830"G", "M", and "k" suffixes may be used when specifying the size.
386405f7
FB
2831@end table
2832
1f673135 2833Debug options:
386405f7 2834
1f673135 2835@table @option
989b697d
PM
2836@item -d item1,...
2837Activate logging of the specified items (use '-d help' for a list of log items)
1f673135
FB
2838@item -p pagesize
2839Act as if the host page size was 'pagesize' bytes
34a3d239
BS
2840@item -g port
2841Wait gdb connection to port
1b530a6d
AJ
2842@item -singlestep
2843Run the emulation in single step mode.
1f673135 2844@end table
386405f7 2845
b01bcae6
AZ
2846Environment variables:
2847
2848@table @env
2849@item QEMU_STRACE
2850Print system calls and arguments similar to the 'strace' program
2851(NOTE: the actual 'strace' program will not work because the user
2852space emulator hasn't implemented ptrace). At the moment this is
2853incomplete. All system calls that don't have a specific argument
2854format are printed with information for six arguments. Many
2855flag-style arguments don't have decoders and will show up as numbers.
5cfdf930 2856@end table
b01bcae6 2857
79737e4a 2858@node Other binaries
83195237 2859@subsection Other binaries
79737e4a 2860
7544a042
SW
2861@cindex user mode (Alpha)
2862@command{qemu-alpha} TODO.
2863
2864@cindex user mode (ARM)
2865@command{qemu-armeb} TODO.
2866
2867@cindex user mode (ARM)
79737e4a
PB
2868@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2869binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2870configurations), and arm-uclinux bFLT format binaries.
2871
7544a042
SW
2872@cindex user mode (ColdFire)
2873@cindex user mode (M68K)
e6e5906b
PB
2874@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2875(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2876coldfire uClinux bFLT format binaries.
2877
79737e4a
PB
2878The binary format is detected automatically.
2879
7544a042
SW
2880@cindex user mode (Cris)
2881@command{qemu-cris} TODO.
2882
2883@cindex user mode (i386)
2884@command{qemu-i386} TODO.
2885@command{qemu-x86_64} TODO.
2886
2887@cindex user mode (Microblaze)
2888@command{qemu-microblaze} TODO.
2889
2890@cindex user mode (MIPS)
2891@command{qemu-mips} TODO.
2892@command{qemu-mipsel} TODO.
2893
2894@cindex user mode (PowerPC)
2895@command{qemu-ppc64abi32} TODO.
2896@command{qemu-ppc64} TODO.
2897@command{qemu-ppc} TODO.
2898
2899@cindex user mode (SH4)
2900@command{qemu-sh4eb} TODO.
2901@command{qemu-sh4} TODO.
2902
2903@cindex user mode (SPARC)
34a3d239
BS
2904@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2905
a785e42e
BS
2906@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2907(Sparc64 CPU, 32 bit ABI).
2908
2909@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2910SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2911
84778508
BS
2912@node BSD User space emulator
2913@section BSD User space emulator
2914
2915@menu
2916* BSD Status::
2917* BSD Quick Start::
2918* BSD Command line options::
2919@end menu
2920
2921@node BSD Status
2922@subsection BSD Status
2923
2924@itemize @minus
2925@item
2926target Sparc64 on Sparc64: Some trivial programs work.
2927@end itemize
2928
2929@node BSD Quick Start
2930@subsection Quick Start
2931
2932In order to launch a BSD process, QEMU needs the process executable
2933itself and all the target dynamic libraries used by it.
2934
2935@itemize
2936
2937@item On Sparc64, you can just try to launch any process by using the native
2938libraries:
2939
2940@example
2941qemu-sparc64 /bin/ls
2942@end example
2943
2944@end itemize
2945
2946@node BSD Command line options
2947@subsection Command line options
2948
2949@example
8485140f 2950@command{qemu-sparc64} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-bsd} @var{type}] @var{program} [@var{arguments}...]
84778508
BS
2951@end example
2952
2953@table @option
2954@item -h
2955Print the help
2956@item -L path
2957Set the library root path (default=/)
2958@item -s size
2959Set the stack size in bytes (default=524288)
f66724c9
SW
2960@item -ignore-environment
2961Start with an empty environment. Without this option,
40c5c6cd 2962the initial environment is a copy of the caller's environment.
f66724c9
SW
2963@item -E @var{var}=@var{value}
2964Set environment @var{var} to @var{value}.
2965@item -U @var{var}
2966Remove @var{var} from the environment.
84778508
BS
2967@item -bsd type
2968Set the type of the emulated BSD Operating system. Valid values are
2969FreeBSD, NetBSD and OpenBSD (default).
2970@end table
2971
2972Debug options:
2973
2974@table @option
989b697d
PM
2975@item -d item1,...
2976Activate logging of the specified items (use '-d help' for a list of log items)
84778508
BS
2977@item -p pagesize
2978Act as if the host page size was 'pagesize' bytes
1b530a6d
AJ
2979@item -singlestep
2980Run the emulation in single step mode.
84778508
BS
2981@end table
2982
47eacb4f 2983
78e87797
PB
2984@include qemu-tech.texi
2985
7544a042
SW
2986@node License
2987@appendix License
2988
2989QEMU is a trademark of Fabrice Bellard.
2990
2991QEMU is released under the GNU General Public License (TODO: add link).
2992Parts of QEMU have specific licenses, see file LICENSE.
2993
2994TODO (refer to file LICENSE, include it, include the GPL?)
2995
debc7065 2996@node Index
7544a042
SW
2997@appendix Index
2998@menu
2999* Concept Index::
3000* Function Index::
3001* Keystroke Index::
3002* Program Index::
3003* Data Type Index::
3004* Variable Index::
3005@end menu
3006
3007@node Concept Index
3008@section Concept Index
3009This is the main index. Should we combine all keywords in one index? TODO
debc7065
FB
3010@printindex cp
3011
7544a042
SW
3012@node Function Index
3013@section Function Index
3014This index could be used for command line options and monitor functions.
3015@printindex fn
3016
3017@node Keystroke Index
3018@section Keystroke Index
3019
3020This is a list of all keystrokes which have a special function
3021in system emulation.
3022
3023@printindex ky
3024
3025@node Program Index
3026@section Program Index
3027@printindex pg
3028
3029@node Data Type Index
3030@section Data Type Index
3031
3032This index could be used for qdev device names and options.
3033
3034@printindex tp
3035
3036@node Variable Index
3037@section Variable Index
3038@printindex vr
3039
debc7065 3040@bye