]> git.proxmox.com Git - mirror_qemu.git/blame - qemu-doc.texi
pseries: Remove redundant setting of mc->name for pseries-2.5 machine
[mirror_qemu.git] / qemu-doc.texi
CommitLineData
386405f7 1\input texinfo @c -*- texinfo -*-
debc7065
FB
2@c %**start of header
3@setfilename qemu-doc.info
e080e785
SW
4
5@documentlanguage en
6@documentencoding UTF-8
7
8f40c388 8@settitle QEMU Emulator User Documentation
debc7065
FB
9@exampleindent 0
10@paragraphindent 0
11@c %**end of header
386405f7 12
a1a32b05
SW
13@ifinfo
14@direntry
15* QEMU: (qemu-doc). The QEMU Emulator User Documentation.
16@end direntry
17@end ifinfo
18
0806e3f6 19@iftex
386405f7
FB
20@titlepage
21@sp 7
8f40c388 22@center @titlefont{QEMU Emulator}
debc7065
FB
23@sp 1
24@center @titlefont{User Documentation}
386405f7
FB
25@sp 3
26@end titlepage
0806e3f6 27@end iftex
386405f7 28
debc7065
FB
29@ifnottex
30@node Top
31@top
32
33@menu
34* Introduction::
35* Installation::
36* QEMU PC System emulator::
37* QEMU System emulator for non PC targets::
83195237 38* QEMU User space emulator::
debc7065 39* compilation:: Compilation from the sources
7544a042 40* License::
debc7065
FB
41* Index::
42@end menu
43@end ifnottex
44
45@contents
46
47@node Introduction
386405f7
FB
48@chapter Introduction
49
debc7065
FB
50@menu
51* intro_features:: Features
52@end menu
53
54@node intro_features
322d0c66 55@section Features
386405f7 56
1f673135
FB
57QEMU is a FAST! processor emulator using dynamic translation to
58achieve good emulation speed.
1eb20527
FB
59
60QEMU has two operating modes:
0806e3f6 61
d7e5edca 62@itemize
7544a042 63@cindex operating modes
0806e3f6 64
5fafdf24 65@item
7544a042 66@cindex system emulation
1f673135 67Full system emulation. In this mode, QEMU emulates a full system (for
3f9f3aa1
FB
68example a PC), including one or several processors and various
69peripherals. It can be used to launch different Operating Systems
70without rebooting the PC or to debug system code.
1eb20527 71
5fafdf24 72@item
7544a042 73@cindex user mode emulation
83195237
FB
74User mode emulation. In this mode, QEMU can launch
75processes compiled for one CPU on another CPU. It can be used to
1f673135
FB
76launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
77to ease cross-compilation and cross-debugging.
1eb20527
FB
78
79@end itemize
80
e1b4382c 81QEMU can run without a host kernel driver and yet gives acceptable
5fafdf24 82performance.
322d0c66 83
52c00a5f
FB
84For system emulation, the following hardware targets are supported:
85@itemize
7544a042
SW
86@cindex emulated target systems
87@cindex supported target systems
9d0a8e6f 88@item PC (x86 or x86_64 processor)
3f9f3aa1 89@item ISA PC (old style PC without PCI bus)
52c00a5f 90@item PREP (PowerPC processor)
d45952a0 91@item G3 Beige PowerMac (PowerPC processor)
9d0a8e6f 92@item Mac99 PowerMac (PowerPC processor, in progress)
ee76f82e 93@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
c7ba218d 94@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
d9aedc32 95@item Malta board (32-bit and 64-bit MIPS processors)
88cb0a02 96@item MIPS Magnum (64-bit MIPS processor)
9ee6e8bb
PB
97@item ARM Integrator/CP (ARM)
98@item ARM Versatile baseboard (ARM)
0ef849d7 99@item ARM RealView Emulation/Platform baseboard (ARM)
ef4c3856 100@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
9ee6e8bb
PB
101@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
102@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
707e011b 103@item Freescale MCF5208EVB (ColdFire V2).
209a4e69 104@item Arnewsh MCF5206 evaluation board (ColdFire V2).
02645926 105@item Palm Tungsten|E PDA (OMAP310 processor)
c30bb264 106@item N800 and N810 tablets (OMAP2420 processor)
57cd6e97 107@item MusicPal (MV88W8618 ARM processor)
ef4c3856
AZ
108@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
109@item Siemens SX1 smartphone (OMAP310 processor)
48c50a62
EI
110@item AXIS-Devboard88 (CRISv32 ETRAX-FS).
111@item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze).
3aeaea65 112@item Avnet LX60/LX110/LX200 boards (Xtensa)
52c00a5f 113@end itemize
386405f7 114
7544a042
SW
115@cindex supported user mode targets
116For user emulation, x86 (32 and 64 bit), PowerPC (32 and 64 bit),
117ARM, MIPS (32 bit only), Sparc (32 and 64 bit),
118Alpha, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported.
0806e3f6 119
debc7065 120@node Installation
5b9f457a
FB
121@chapter Installation
122
15a34c63
FB
123If you want to compile QEMU yourself, see @ref{compilation}.
124
debc7065
FB
125@menu
126* install_linux:: Linux
127* install_windows:: Windows
128* install_mac:: Macintosh
129@end menu
130
131@node install_linux
1f673135 132@section Linux
7544a042 133@cindex installation (Linux)
1f673135 134
7c3fc84d
FB
135If a precompiled package is available for your distribution - you just
136have to install it. Otherwise, see @ref{compilation}.
5b9f457a 137
debc7065 138@node install_windows
1f673135 139@section Windows
7544a042 140@cindex installation (Windows)
8cd0ac2f 141
15a34c63 142Download the experimental binary installer at
debc7065 143@url{http://www.free.oszoo.org/@/download.html}.
7544a042 144TODO (no longer available)
d691f669 145
debc7065 146@node install_mac
1f673135 147@section Mac OS X
d691f669 148
15a34c63 149Download the experimental binary installer at
debc7065 150@url{http://www.free.oszoo.org/@/download.html}.
7544a042 151TODO (no longer available)
df0f11a0 152
debc7065 153@node QEMU PC System emulator
3f9f3aa1 154@chapter QEMU PC System emulator
7544a042 155@cindex system emulation (PC)
1eb20527 156
debc7065
FB
157@menu
158* pcsys_introduction:: Introduction
159* pcsys_quickstart:: Quick Start
160* sec_invocation:: Invocation
161* pcsys_keys:: Keys
162* pcsys_monitor:: QEMU Monitor
163* disk_images:: Disk Images
164* pcsys_network:: Network emulation
576fd0a1 165* pcsys_other_devs:: Other Devices
debc7065
FB
166* direct_linux_boot:: Direct Linux Boot
167* pcsys_usb:: USB emulation
f858dcae 168* vnc_security:: VNC security
debc7065
FB
169* gdb_usage:: GDB usage
170* pcsys_os_specific:: Target OS specific information
171@end menu
172
173@node pcsys_introduction
0806e3f6
FB
174@section Introduction
175
176@c man begin DESCRIPTION
177
3f9f3aa1
FB
178The QEMU PC System emulator simulates the
179following peripherals:
0806e3f6
FB
180
181@itemize @minus
5fafdf24 182@item
15a34c63 183i440FX host PCI bridge and PIIX3 PCI to ISA bridge
0806e3f6 184@item
15a34c63
FB
185Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
186extensions (hardware level, including all non standard modes).
0806e3f6
FB
187@item
188PS/2 mouse and keyboard
5fafdf24 189@item
15a34c63 1902 PCI IDE interfaces with hard disk and CD-ROM support
1f673135
FB
191@item
192Floppy disk
5fafdf24 193@item
3a2eeac0 194PCI and ISA network adapters
0806e3f6 195@item
05d5818c
FB
196Serial ports
197@item
23076bb3
CM
198IPMI BMC, either and internal or external one
199@item
c0fe3827
FB
200Creative SoundBlaster 16 sound card
201@item
202ENSONIQ AudioPCI ES1370 sound card
203@item
e5c9a13e
AZ
204Intel 82801AA AC97 Audio compatible sound card
205@item
7d72e762
GH
206Intel HD Audio Controller and HDA codec
207@item
2d983446 208Adlib (OPL2) - Yamaha YM3812 compatible chip
b389dbfb 209@item
26463dbc
AZ
210Gravis Ultrasound GF1 sound card
211@item
cc53d26d 212CS4231A compatible sound card
213@item
b389dbfb 214PCI UHCI USB controller and a virtual USB hub.
0806e3f6
FB
215@end itemize
216
3f9f3aa1
FB
217SMP is supported with up to 255 CPUs.
218
a8ad4159 219QEMU uses the PC BIOS from the Seabios project and the Plex86/Bochs LGPL
15a34c63
FB
220VGA BIOS.
221
c0fe3827
FB
222QEMU uses YM3812 emulation by Tatsuyuki Satoh.
223
2d983446 224QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
26463dbc 225by Tibor "TS" Schütz.
423d65f4 226
1a1a0e20 227Note that, by default, GUS shares IRQ(7) with parallel ports and so
b65ee4fa 228QEMU must be told to not have parallel ports to have working GUS.
720036a5 229
230@example
3804da9d 231qemu-system-i386 dos.img -soundhw gus -parallel none
720036a5 232@end example
233
234Alternatively:
235@example
3804da9d 236qemu-system-i386 dos.img -device gus,irq=5
720036a5 237@end example
238
239Or some other unclaimed IRQ.
240
cc53d26d 241CS4231A is the chip used in Windows Sound System and GUSMAX products
242
0806e3f6
FB
243@c man end
244
debc7065 245@node pcsys_quickstart
1eb20527 246@section Quick Start
7544a042 247@cindex quick start
1eb20527 248
285dc330 249Download and uncompress the linux image (@file{linux.img}) and type:
0806e3f6
FB
250
251@example
3804da9d 252qemu-system-i386 linux.img
0806e3f6
FB
253@end example
254
255Linux should boot and give you a prompt.
256
6cc721cf 257@node sec_invocation
ec410fc9
FB
258@section Invocation
259
260@example
0806e3f6 261@c man begin SYNOPSIS
3804da9d 262usage: qemu-system-i386 [options] [@var{disk_image}]
0806e3f6 263@c man end
ec410fc9
FB
264@end example
265
0806e3f6 266@c man begin OPTIONS
d2c639d6
BS
267@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
268targets do not need a disk image.
ec410fc9 269
5824d651 270@include qemu-options.texi
ec410fc9 271
3e11db9a
FB
272@c man end
273
debc7065 274@node pcsys_keys
3e11db9a
FB
275@section Keys
276
277@c man begin OPTIONS
278
de1db2a1
BH
279During the graphical emulation, you can use special key combinations to change
280modes. The default key mappings are shown below, but if you use @code{-alt-grab}
281then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
282@code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
283
a1b74fe8 284@table @key
f9859310 285@item Ctrl-Alt-f
7544a042 286@kindex Ctrl-Alt-f
a1b74fe8 287Toggle full screen
a0a821a4 288
d6a65ba3
JK
289@item Ctrl-Alt-+
290@kindex Ctrl-Alt-+
291Enlarge the screen
292
293@item Ctrl-Alt--
294@kindex Ctrl-Alt--
295Shrink the screen
296
c4a735f9 297@item Ctrl-Alt-u
7544a042 298@kindex Ctrl-Alt-u
c4a735f9 299Restore the screen's un-scaled dimensions
300
f9859310 301@item Ctrl-Alt-n
7544a042 302@kindex Ctrl-Alt-n
a0a821a4
FB
303Switch to virtual console 'n'. Standard console mappings are:
304@table @emph
305@item 1
306Target system display
307@item 2
308Monitor
309@item 3
310Serial port
a1b74fe8
FB
311@end table
312
f9859310 313@item Ctrl-Alt
7544a042 314@kindex Ctrl-Alt
a0a821a4
FB
315Toggle mouse and keyboard grab.
316@end table
317
7544a042
SW
318@kindex Ctrl-Up
319@kindex Ctrl-Down
320@kindex Ctrl-PageUp
321@kindex Ctrl-PageDown
3e11db9a
FB
322In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
323@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
324
7544a042 325@kindex Ctrl-a h
a0a821a4
FB
326During emulation, if you are using the @option{-nographic} option, use
327@key{Ctrl-a h} to get terminal commands:
ec410fc9
FB
328
329@table @key
a1b74fe8 330@item Ctrl-a h
7544a042 331@kindex Ctrl-a h
d2c639d6 332@item Ctrl-a ?
7544a042 333@kindex Ctrl-a ?
ec410fc9 334Print this help
3b46e624 335@item Ctrl-a x
7544a042 336@kindex Ctrl-a x
366dfc52 337Exit emulator
3b46e624 338@item Ctrl-a s
7544a042 339@kindex Ctrl-a s
1f47a922 340Save disk data back to file (if -snapshot)
20d8a3ed 341@item Ctrl-a t
7544a042 342@kindex Ctrl-a t
d2c639d6 343Toggle console timestamps
a1b74fe8 344@item Ctrl-a b
7544a042 345@kindex Ctrl-a b
1f673135 346Send break (magic sysrq in Linux)
a1b74fe8 347@item Ctrl-a c
7544a042 348@kindex Ctrl-a c
1f673135 349Switch between console and monitor
a1b74fe8 350@item Ctrl-a Ctrl-a
7544a042 351@kindex Ctrl-a a
a1b74fe8 352Send Ctrl-a
ec410fc9 353@end table
0806e3f6
FB
354@c man end
355
356@ignore
357
1f673135
FB
358@c man begin SEEALSO
359The HTML documentation of QEMU for more precise information and Linux
360user mode emulator invocation.
361@c man end
362
363@c man begin AUTHOR
364Fabrice Bellard
365@c man end
366
367@end ignore
368
debc7065 369@node pcsys_monitor
1f673135 370@section QEMU Monitor
7544a042 371@cindex QEMU monitor
1f673135
FB
372
373The QEMU monitor is used to give complex commands to the QEMU
374emulator. You can use it to:
375
376@itemize @minus
377
378@item
e598752a 379Remove or insert removable media images
89dfe898 380(such as CD-ROM or floppies).
1f673135 381
5fafdf24 382@item
1f673135
FB
383Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
384from a disk file.
385
386@item Inspect the VM state without an external debugger.
387
388@end itemize
389
390@subsection Commands
391
392The following commands are available:
393
2313086a 394@include qemu-monitor.texi
0806e3f6 395
2cd8af2d
PB
396@include qemu-monitor-info.texi
397
1f673135
FB
398@subsection Integer expressions
399
400The monitor understands integers expressions for every integer
401argument. You can use register names to get the value of specifics
402CPU registers by prefixing them with @emph{$}.
ec410fc9 403
1f47a922
FB
404@node disk_images
405@section Disk Images
406
acd935ef
FB
407Since version 0.6.1, QEMU supports many disk image formats, including
408growable disk images (their size increase as non empty sectors are
13a2e80f
FB
409written), compressed and encrypted disk images. Version 0.8.3 added
410the new qcow2 disk image format which is essential to support VM
411snapshots.
1f47a922 412
debc7065
FB
413@menu
414* disk_images_quickstart:: Quick start for disk image creation
415* disk_images_snapshot_mode:: Snapshot mode
13a2e80f 416* vm_snapshots:: VM snapshots
debc7065 417* qemu_img_invocation:: qemu-img Invocation
975b092b 418* qemu_nbd_invocation:: qemu-nbd Invocation
665b5d0d 419* qemu_ga_invocation:: qemu-ga Invocation
d3067b02 420* disk_images_formats:: Disk image file formats
19cb3738 421* host_drives:: Using host drives
debc7065 422* disk_images_fat_images:: Virtual FAT disk images
75818250 423* disk_images_nbd:: NBD access
42af9c30 424* disk_images_sheepdog:: Sheepdog disk images
00984e39 425* disk_images_iscsi:: iSCSI LUNs
8809e289 426* disk_images_gluster:: GlusterFS disk images
0a12ec87 427* disk_images_ssh:: Secure Shell (ssh) disk images
debc7065
FB
428@end menu
429
430@node disk_images_quickstart
acd935ef
FB
431@subsection Quick start for disk image creation
432
433You can create a disk image with the command:
1f47a922 434@example
acd935ef 435qemu-img create myimage.img mysize
1f47a922 436@end example
acd935ef
FB
437where @var{myimage.img} is the disk image filename and @var{mysize} is its
438size in kilobytes. You can add an @code{M} suffix to give the size in
439megabytes and a @code{G} suffix for gigabytes.
440
debc7065 441See @ref{qemu_img_invocation} for more information.
1f47a922 442
debc7065 443@node disk_images_snapshot_mode
1f47a922
FB
444@subsection Snapshot mode
445
446If you use the option @option{-snapshot}, all disk images are
447considered as read only. When sectors in written, they are written in
448a temporary file created in @file{/tmp}. You can however force the
acd935ef
FB
449write back to the raw disk images by using the @code{commit} monitor
450command (or @key{C-a s} in the serial console).
1f47a922 451
13a2e80f
FB
452@node vm_snapshots
453@subsection VM snapshots
454
455VM snapshots are snapshots of the complete virtual machine including
456CPU state, RAM, device state and the content of all the writable
457disks. In order to use VM snapshots, you must have at least one non
458removable and writable block device using the @code{qcow2} disk image
459format. Normally this device is the first virtual hard drive.
460
461Use the monitor command @code{savevm} to create a new VM snapshot or
462replace an existing one. A human readable name can be assigned to each
19d36792 463snapshot in addition to its numerical ID.
13a2e80f
FB
464
465Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
466a VM snapshot. @code{info snapshots} lists the available snapshots
467with their associated information:
468
469@example
470(qemu) info snapshots
471Snapshot devices: hda
472Snapshot list (from hda):
473ID TAG VM SIZE DATE VM CLOCK
4741 start 41M 2006-08-06 12:38:02 00:00:14.954
4752 40M 2006-08-06 12:43:29 00:00:18.633
4763 msys 40M 2006-08-06 12:44:04 00:00:23.514
477@end example
478
479A VM snapshot is made of a VM state info (its size is shown in
480@code{info snapshots}) and a snapshot of every writable disk image.
481The VM state info is stored in the first @code{qcow2} non removable
482and writable block device. The disk image snapshots are stored in
483every disk image. The size of a snapshot in a disk image is difficult
484to evaluate and is not shown by @code{info snapshots} because the
485associated disk sectors are shared among all the snapshots to save
19d36792
FB
486disk space (otherwise each snapshot would need a full copy of all the
487disk images).
13a2e80f
FB
488
489When using the (unrelated) @code{-snapshot} option
490(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
491but they are deleted as soon as you exit QEMU.
492
493VM snapshots currently have the following known limitations:
494@itemize
5fafdf24 495@item
13a2e80f
FB
496They cannot cope with removable devices if they are removed or
497inserted after a snapshot is done.
5fafdf24 498@item
13a2e80f
FB
499A few device drivers still have incomplete snapshot support so their
500state is not saved or restored properly (in particular USB).
501@end itemize
502
acd935ef
FB
503@node qemu_img_invocation
504@subsection @code{qemu-img} Invocation
1f47a922 505
acd935ef 506@include qemu-img.texi
05efe46e 507
975b092b
TS
508@node qemu_nbd_invocation
509@subsection @code{qemu-nbd} Invocation
510
511@include qemu-nbd.texi
512
665b5d0d
MAL
513@node qemu_ga_invocation
514@subsection @code{qemu-ga} Invocation
515
516@include qemu-ga.texi
517
d3067b02
KW
518@node disk_images_formats
519@subsection Disk image file formats
520
521QEMU supports many image file formats that can be used with VMs as well as with
522any of the tools (like @code{qemu-img}). This includes the preferred formats
523raw and qcow2 as well as formats that are supported for compatibility with
524older QEMU versions or other hypervisors.
525
526Depending on the image format, different options can be passed to
527@code{qemu-img create} and @code{qemu-img convert} using the @code{-o} option.
528This section describes each format and the options that are supported for it.
529
530@table @option
531@item raw
532
533Raw disk image format. This format has the advantage of
534being simple and easily exportable to all other emulators. If your
535file system supports @emph{holes} (for example in ext2 or ext3 on
536Linux or NTFS on Windows), then only the written sectors will reserve
537space. Use @code{qemu-img info} to know the real size used by the
538image or @code{ls -ls} on Unix/Linux.
539
06247428
HT
540Supported options:
541@table @code
542@item preallocation
543Preallocation mode (allowed values: @code{off}, @code{falloc}, @code{full}).
544@code{falloc} mode preallocates space for image by calling posix_fallocate().
545@code{full} mode preallocates space for image by writing zeros to underlying
546storage.
547@end table
548
d3067b02
KW
549@item qcow2
550QEMU image format, the most versatile format. Use it to have smaller
551images (useful if your filesystem does not supports holes, for example
a1f688f4
MA
552on Windows), zlib based compression and support of multiple VM
553snapshots.
d3067b02
KW
554
555Supported options:
556@table @code
557@item compat
7fa9e1f9
SH
558Determines the qcow2 version to use. @code{compat=0.10} uses the
559traditional image format that can be read by any QEMU since 0.10.
d3067b02 560@code{compat=1.1} enables image format extensions that only QEMU 1.1 and
7fa9e1f9
SH
561newer understand (this is the default). Amongst others, this includes
562zero clusters, which allow efficient copy-on-read for sparse images.
d3067b02
KW
563
564@item backing_file
565File name of a base image (see @option{create} subcommand)
566@item backing_fmt
567Image format of the base image
568@item encryption
136cd19d 569If this option is set to @code{on}, the image is encrypted with 128-bit AES-CBC.
d3067b02 570
136cd19d
DB
571The use of encryption in qcow and qcow2 images is considered to be flawed by
572modern cryptography standards, suffering from a number of design problems:
573
574@itemize @minus
575@item The AES-CBC cipher is used with predictable initialization vectors based
576on the sector number. This makes it vulnerable to chosen plaintext attacks
577which can reveal the existence of encrypted data.
578@item The user passphrase is directly used as the encryption key. A poorly
579chosen or short passphrase will compromise the security of the encryption.
580@item In the event of the passphrase being compromised there is no way to
581change the passphrase to protect data in any qcow images. The files must
582be cloned, using a different encryption passphrase in the new file. The
583original file must then be securely erased using a program like shred,
584though even this is ineffective with many modern storage technologies.
585@end itemize
586
a1f688f4
MA
587Use of qcow / qcow2 encryption with QEMU is deprecated, and support for
588it will go away in a future release. Users are recommended to use an
589alternative encryption technology such as the Linux dm-crypt / LUKS
590system.
d3067b02
KW
591
592@item cluster_size
593Changes the qcow2 cluster size (must be between 512 and 2M). Smaller cluster
594sizes can improve the image file size whereas larger cluster sizes generally
595provide better performance.
596
597@item preallocation
0e4271b7
HT
598Preallocation mode (allowed values: @code{off}, @code{metadata}, @code{falloc},
599@code{full}). An image with preallocated metadata is initially larger but can
600improve performance when the image needs to grow. @code{falloc} and @code{full}
601preallocations are like the same options of @code{raw} format, but sets up
602metadata also.
d3067b02
KW
603
604@item lazy_refcounts
605If this option is set to @code{on}, reference count updates are postponed with
606the goal of avoiding metadata I/O and improving performance. This is
607particularly interesting with @option{cache=writethrough} which doesn't batch
608metadata updates. The tradeoff is that after a host crash, the reference count
609tables must be rebuilt, i.e. on the next open an (automatic) @code{qemu-img
610check -r all} is required, which may take some time.
611
612This option can only be enabled if @code{compat=1.1} is specified.
613
4ab15590 614@item nocow
bc3a7f90 615If this option is set to @code{on}, it will turn off COW of the file. It's only
4ab15590
CL
616valid on btrfs, no effect on other file systems.
617
618Btrfs has low performance when hosting a VM image file, even more when the guest
619on the VM also using btrfs as file system. Turning off COW is a way to mitigate
620this bad performance. Generally there are two ways to turn off COW on btrfs:
621a) Disable it by mounting with nodatacow, then all newly created files will be
622NOCOW. b) For an empty file, add the NOCOW file attribute. That's what this option
623does.
624
625Note: this option is only valid to new or empty files. If there is an existing
626file which is COW and has data blocks already, it couldn't be changed to NOCOW
627by setting @code{nocow=on}. One can issue @code{lsattr filename} to check if
bc3a7f90 628the NOCOW flag is set or not (Capital 'C' is NOCOW flag).
4ab15590 629
d3067b02
KW
630@end table
631
632@item qed
633Old QEMU image format with support for backing files and compact image files
634(when your filesystem or transport medium does not support holes).
635
636When converting QED images to qcow2, you might want to consider using the
637@code{lazy_refcounts=on} option to get a more QED-like behaviour.
638
639Supported options:
640@table @code
641@item backing_file
642File name of a base image (see @option{create} subcommand).
643@item backing_fmt
644Image file format of backing file (optional). Useful if the format cannot be
645autodetected because it has no header, like some vhd/vpc files.
646@item cluster_size
647Changes the cluster size (must be power-of-2 between 4K and 64K). Smaller
648cluster sizes can improve the image file size whereas larger cluster sizes
649generally provide better performance.
650@item table_size
651Changes the number of clusters per L1/L2 table (must be power-of-2 between 1
652and 16). There is normally no need to change this value but this option can be
653used for performance benchmarking.
654@end table
655
656@item qcow
657Old QEMU image format with support for backing files, compact image files,
658encryption and compression.
659
660Supported options:
661@table @code
662@item backing_file
663File name of a base image (see @option{create} subcommand)
664@item encryption
665If this option is set to @code{on}, the image is encrypted.
666@end table
667
d3067b02
KW
668@item vdi
669VirtualBox 1.1 compatible image format.
670Supported options:
671@table @code
672@item static
673If this option is set to @code{on}, the image is created with metadata
674preallocation.
675@end table
676
677@item vmdk
678VMware 3 and 4 compatible image format.
679
680Supported options:
681@table @code
682@item backing_file
683File name of a base image (see @option{create} subcommand).
684@item compat6
685Create a VMDK version 6 image (instead of version 4)
686@item subformat
687Specifies which VMDK subformat to use. Valid options are
688@code{monolithicSparse} (default),
689@code{monolithicFlat},
690@code{twoGbMaxExtentSparse},
691@code{twoGbMaxExtentFlat} and
692@code{streamOptimized}.
693@end table
694
695@item vpc
696VirtualPC compatible image format (VHD).
697Supported options:
698@table @code
699@item subformat
700Specifies which VHD subformat to use. Valid options are
701@code{dynamic} (default) and @code{fixed}.
702@end table
8282db1b
JC
703
704@item VHDX
705Hyper-V compatible image format (VHDX).
706Supported options:
707@table @code
708@item subformat
709Specifies which VHDX subformat to use. Valid options are
710@code{dynamic} (default) and @code{fixed}.
711@item block_state_zero
30af51ce
JC
712Force use of payload blocks of type 'ZERO'. Can be set to @code{on} (default)
713or @code{off}. When set to @code{off}, new blocks will be created as
714@code{PAYLOAD_BLOCK_NOT_PRESENT}, which means parsers are free to return
715arbitrary data for those blocks. Do not set to @code{off} when using
716@code{qemu-img convert} with @code{subformat=dynamic}.
8282db1b
JC
717@item block_size
718Block size; min 1 MB, max 256 MB. 0 means auto-calculate based on image size.
719@item log_size
720Log size; min 1 MB.
721@end table
d3067b02
KW
722@end table
723
724@subsubsection Read-only formats
725More disk image file formats are supported in a read-only mode.
726@table @option
727@item bochs
728Bochs images of @code{growing} type.
729@item cloop
730Linux Compressed Loop image, useful only to reuse directly compressed
731CD-ROM images present for example in the Knoppix CD-ROMs.
732@item dmg
733Apple disk image.
734@item parallels
735Parallels disk image format.
736@end table
737
738
19cb3738
FB
739@node host_drives
740@subsection Using host drives
741
742In addition to disk image files, QEMU can directly access host
743devices. We describe here the usage for QEMU version >= 0.8.3.
744
745@subsubsection Linux
746
747On Linux, you can directly use the host device filename instead of a
4be456f1 748disk image filename provided you have enough privileges to access
92a539d2 749it. For example, use @file{/dev/cdrom} to access to the CDROM.
19cb3738 750
f542086d 751@table @code
19cb3738
FB
752@item CD
753You can specify a CDROM device even if no CDROM is loaded. QEMU has
754specific code to detect CDROM insertion or removal. CDROM ejection by
755the guest OS is supported. Currently only data CDs are supported.
756@item Floppy
757You can specify a floppy device even if no floppy is loaded. Floppy
758removal is currently not detected accurately (if you change floppy
759without doing floppy access while the floppy is not loaded, the guest
760OS will think that the same floppy is loaded).
92a539d2
MA
761Use of the host's floppy device is deprecated, and support for it will
762be removed in a future release.
19cb3738
FB
763@item Hard disks
764Hard disks can be used. Normally you must specify the whole disk
765(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
766see it as a partitioned disk. WARNING: unless you know what you do, it
767is better to only make READ-ONLY accesses to the hard disk otherwise
768you may corrupt your host data (use the @option{-snapshot} command
769line option or modify the device permissions accordingly).
770@end table
771
772@subsubsection Windows
773
01781963
FB
774@table @code
775@item CD
4be456f1 776The preferred syntax is the drive letter (e.g. @file{d:}). The
01781963
FB
777alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
778supported as an alias to the first CDROM drive.
19cb3738 779
e598752a 780Currently there is no specific code to handle removable media, so it
19cb3738
FB
781is better to use the @code{change} or @code{eject} monitor commands to
782change or eject media.
01781963 783@item Hard disks
89dfe898 784Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
01781963
FB
785where @var{N} is the drive number (0 is the first hard disk).
786
787WARNING: unless you know what you do, it is better to only make
788READ-ONLY accesses to the hard disk otherwise you may corrupt your
789host data (use the @option{-snapshot} command line so that the
790modifications are written in a temporary file).
791@end table
792
19cb3738
FB
793
794@subsubsection Mac OS X
795
5fafdf24 796@file{/dev/cdrom} is an alias to the first CDROM.
19cb3738 797
e598752a 798Currently there is no specific code to handle removable media, so it
19cb3738
FB
799is better to use the @code{change} or @code{eject} monitor commands to
800change or eject media.
801
debc7065 802@node disk_images_fat_images
2c6cadd4
FB
803@subsection Virtual FAT disk images
804
805QEMU can automatically create a virtual FAT disk image from a
806directory tree. In order to use it, just type:
807
5fafdf24 808@example
3804da9d 809qemu-system-i386 linux.img -hdb fat:/my_directory
2c6cadd4
FB
810@end example
811
812Then you access access to all the files in the @file{/my_directory}
813directory without having to copy them in a disk image or to export
814them via SAMBA or NFS. The default access is @emph{read-only}.
815
816Floppies can be emulated with the @code{:floppy:} option:
817
5fafdf24 818@example
3804da9d 819qemu-system-i386 linux.img -fda fat:floppy:/my_directory
2c6cadd4
FB
820@end example
821
822A read/write support is available for testing (beta stage) with the
823@code{:rw:} option:
824
5fafdf24 825@example
3804da9d 826qemu-system-i386 linux.img -fda fat:floppy:rw:/my_directory
2c6cadd4
FB
827@end example
828
829What you should @emph{never} do:
830@itemize
831@item use non-ASCII filenames ;
832@item use "-snapshot" together with ":rw:" ;
85b2c688
FB
833@item expect it to work when loadvm'ing ;
834@item write to the FAT directory on the host system while accessing it with the guest system.
2c6cadd4
FB
835@end itemize
836
75818250
TS
837@node disk_images_nbd
838@subsection NBD access
839
840QEMU can access directly to block device exported using the Network Block Device
841protocol.
842
843@example
1d7d2a9d 844qemu-system-i386 linux.img -hdb nbd://my_nbd_server.mydomain.org:1024/
75818250
TS
845@end example
846
847If the NBD server is located on the same host, you can use an unix socket instead
848of an inet socket:
849
850@example
1d7d2a9d 851qemu-system-i386 linux.img -hdb nbd+unix://?socket=/tmp/my_socket
75818250
TS
852@end example
853
854In this case, the block device must be exported using qemu-nbd:
855
856@example
857qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
858@end example
859
9d85d557 860The use of qemu-nbd allows sharing of a disk between several guests:
75818250
TS
861@example
862qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
863@end example
864
1d7d2a9d 865@noindent
75818250
TS
866and then you can use it with two guests:
867@example
1d7d2a9d
PB
868qemu-system-i386 linux1.img -hdb nbd+unix://?socket=/tmp/my_socket
869qemu-system-i386 linux2.img -hdb nbd+unix://?socket=/tmp/my_socket
75818250
TS
870@end example
871
1d7d2a9d
PB
872If the nbd-server uses named exports (supported since NBD 2.9.18, or with QEMU's
873own embedded NBD server), you must specify an export name in the URI:
1d45f8b5 874@example
1d7d2a9d
PB
875qemu-system-i386 -cdrom nbd://localhost/debian-500-ppc-netinst
876qemu-system-i386 -cdrom nbd://localhost/openSUSE-11.1-ppc-netinst
877@end example
878
879The URI syntax for NBD is supported since QEMU 1.3. An alternative syntax is
880also available. Here are some example of the older syntax:
881@example
882qemu-system-i386 linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
883qemu-system-i386 linux2.img -hdb nbd:unix:/tmp/my_socket
884qemu-system-i386 -cdrom nbd:localhost:10809:exportname=debian-500-ppc-netinst
1d45f8b5
LV
885@end example
886
42af9c30
MK
887@node disk_images_sheepdog
888@subsection Sheepdog disk images
889
890Sheepdog is a distributed storage system for QEMU. It provides highly
891available block level storage volumes that can be attached to
892QEMU-based virtual machines.
893
894You can create a Sheepdog disk image with the command:
895@example
5d6768e3 896qemu-img create sheepdog:///@var{image} @var{size}
42af9c30
MK
897@end example
898where @var{image} is the Sheepdog image name and @var{size} is its
899size.
900
901To import the existing @var{filename} to Sheepdog, you can use a
902convert command.
903@example
5d6768e3 904qemu-img convert @var{filename} sheepdog:///@var{image}
42af9c30
MK
905@end example
906
907You can boot from the Sheepdog disk image with the command:
908@example
5d6768e3 909qemu-system-i386 sheepdog:///@var{image}
42af9c30
MK
910@end example
911
912You can also create a snapshot of the Sheepdog image like qcow2.
913@example
5d6768e3 914qemu-img snapshot -c @var{tag} sheepdog:///@var{image}
42af9c30
MK
915@end example
916where @var{tag} is a tag name of the newly created snapshot.
917
918To boot from the Sheepdog snapshot, specify the tag name of the
919snapshot.
920@example
5d6768e3 921qemu-system-i386 sheepdog:///@var{image}#@var{tag}
42af9c30
MK
922@end example
923
924You can create a cloned image from the existing snapshot.
925@example
5d6768e3 926qemu-img create -b sheepdog:///@var{base}#@var{tag} sheepdog:///@var{image}
42af9c30
MK
927@end example
928where @var{base} is a image name of the source snapshot and @var{tag}
929is its tag name.
930
1b8bbb46
MK
931You can use an unix socket instead of an inet socket:
932
933@example
934qemu-system-i386 sheepdog+unix:///@var{image}?socket=@var{path}
935@end example
936
42af9c30
MK
937If the Sheepdog daemon doesn't run on the local host, you need to
938specify one of the Sheepdog servers to connect to.
939@example
5d6768e3
MK
940qemu-img create sheepdog://@var{hostname}:@var{port}/@var{image} @var{size}
941qemu-system-i386 sheepdog://@var{hostname}:@var{port}/@var{image}
42af9c30
MK
942@end example
943
00984e39
RS
944@node disk_images_iscsi
945@subsection iSCSI LUNs
946
947iSCSI is a popular protocol used to access SCSI devices across a computer
948network.
949
950There are two different ways iSCSI devices can be used by QEMU.
951
952The first method is to mount the iSCSI LUN on the host, and make it appear as
953any other ordinary SCSI device on the host and then to access this device as a
954/dev/sd device from QEMU. How to do this differs between host OSes.
955
956The second method involves using the iSCSI initiator that is built into
957QEMU. This provides a mechanism that works the same way regardless of which
958host OS you are running QEMU on. This section will describe this second method
959of using iSCSI together with QEMU.
960
961In QEMU, iSCSI devices are described using special iSCSI URLs
962
963@example
964URL syntax:
965iscsi://[<username>[%<password>]@@]<host>[:<port>]/<target-iqn-name>/<lun>
966@end example
967
968Username and password are optional and only used if your target is set up
969using CHAP authentication for access control.
970Alternatively the username and password can also be set via environment
971variables to have these not show up in the process list
972
973@example
974export LIBISCSI_CHAP_USERNAME=<username>
975export LIBISCSI_CHAP_PASSWORD=<password>
976iscsi://<host>/<target-iqn-name>/<lun>
977@end example
978
f9dadc98
RS
979Various session related parameters can be set via special options, either
980in a configuration file provided via '-readconfig' or directly on the
981command line.
982
31459f46
RS
983If the initiator-name is not specified qemu will use a default name
984of 'iqn.2008-11.org.linux-kvm[:<name>'] where <name> is the name of the
985virtual machine.
986
987
f9dadc98
RS
988@example
989Setting a specific initiator name to use when logging in to the target
990-iscsi initiator-name=iqn.qemu.test:my-initiator
991@end example
992
993@example
994Controlling which type of header digest to negotiate with the target
995-iscsi header-digest=CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
996@end example
997
998These can also be set via a configuration file
999@example
1000[iscsi]
1001 user = "CHAP username"
1002 password = "CHAP password"
1003 initiator-name = "iqn.qemu.test:my-initiator"
1004 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
1005 header-digest = "CRC32C"
1006@end example
1007
1008
1009Setting the target name allows different options for different targets
1010@example
1011[iscsi "iqn.target.name"]
1012 user = "CHAP username"
1013 password = "CHAP password"
1014 initiator-name = "iqn.qemu.test:my-initiator"
1015 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
1016 header-digest = "CRC32C"
1017@end example
1018
1019
1020Howto use a configuration file to set iSCSI configuration options:
1021@example
1022cat >iscsi.conf <<EOF
1023[iscsi]
1024 user = "me"
1025 password = "my password"
1026 initiator-name = "iqn.qemu.test:my-initiator"
1027 header-digest = "CRC32C"
1028EOF
1029
1030qemu-system-i386 -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
1031 -readconfig iscsi.conf
1032@end example
1033
1034
00984e39
RS
1035Howto set up a simple iSCSI target on loopback and accessing it via QEMU:
1036@example
1037This example shows how to set up an iSCSI target with one CDROM and one DISK
1038using the Linux STGT software target. This target is available on Red Hat based
1039systems as the package 'scsi-target-utils'.
1040
1041tgtd --iscsi portal=127.0.0.1:3260
1042tgtadm --lld iscsi --op new --mode target --tid 1 -T iqn.qemu.test
1043tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 1 \
1044 -b /IMAGES/disk.img --device-type=disk
1045tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 2 \
1046 -b /IMAGES/cd.iso --device-type=cd
1047tgtadm --lld iscsi --op bind --mode target --tid 1 -I ALL
1048
f9dadc98
RS
1049qemu-system-i386 -iscsi initiator-name=iqn.qemu.test:my-initiator \
1050 -boot d -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
00984e39
RS
1051 -cdrom iscsi://127.0.0.1/iqn.qemu.test/2
1052@end example
1053
8809e289
BR
1054@node disk_images_gluster
1055@subsection GlusterFS disk images
00984e39 1056
8809e289
BR
1057GlusterFS is an user space distributed file system.
1058
1059You can boot from the GlusterFS disk image with the command:
1060@example
1061qemu-system-x86_64 -drive file=gluster[+@var{transport}]://[@var{server}[:@var{port}]]/@var{volname}/@var{image}[?socket=...]
1062@end example
1063
1064@var{gluster} is the protocol.
1065
1066@var{transport} specifies the transport type used to connect to gluster
1067management daemon (glusterd). Valid transport types are
1068tcp, unix and rdma. If a transport type isn't specified, then tcp
1069type is assumed.
1070
1071@var{server} specifies the server where the volume file specification for
1072the given volume resides. This can be either hostname, ipv4 address
1073or ipv6 address. ipv6 address needs to be within square brackets [ ].
d274e07c 1074If transport type is unix, then @var{server} field should not be specified.
8809e289
BR
1075Instead @var{socket} field needs to be populated with the path to unix domain
1076socket.
1077
1078@var{port} is the port number on which glusterd is listening. This is optional
1079and if not specified, QEMU will send 0 which will make gluster to use the
1080default port. If the transport type is unix, then @var{port} should not be
1081specified.
1082
1083@var{volname} is the name of the gluster volume which contains the disk image.
1084
1085@var{image} is the path to the actual disk image that resides on gluster volume.
1086
1087You can create a GlusterFS disk image with the command:
1088@example
1089qemu-img create gluster://@var{server}/@var{volname}/@var{image} @var{size}
1090@end example
1091
1092Examples
1093@example
1094qemu-system-x86_64 -drive file=gluster://1.2.3.4/testvol/a.img
1095qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4/testvol/a.img
1096qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4:24007/testvol/dir/a.img
1097qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]/testvol/dir/a.img
1098qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]:24007/testvol/dir/a.img
1099qemu-system-x86_64 -drive file=gluster+tcp://server.domain.com:24007/testvol/dir/a.img
1100qemu-system-x86_64 -drive file=gluster+unix:///testvol/dir/a.img?socket=/tmp/glusterd.socket
1101qemu-system-x86_64 -drive file=gluster+rdma://1.2.3.4:24007/testvol/a.img
1102@end example
00984e39 1103
0a12ec87
RJ
1104@node disk_images_ssh
1105@subsection Secure Shell (ssh) disk images
1106
1107You can access disk images located on a remote ssh server
1108by using the ssh protocol:
1109
1110@example
1111qemu-system-x86_64 -drive file=ssh://[@var{user}@@]@var{server}[:@var{port}]/@var{path}[?host_key_check=@var{host_key_check}]
1112@end example
1113
1114Alternative syntax using properties:
1115
1116@example
1117qemu-system-x86_64 -drive file.driver=ssh[,file.user=@var{user}],file.host=@var{server}[,file.port=@var{port}],file.path=@var{path}[,file.host_key_check=@var{host_key_check}]
1118@end example
1119
1120@var{ssh} is the protocol.
1121
1122@var{user} is the remote user. If not specified, then the local
1123username is tried.
1124
1125@var{server} specifies the remote ssh server. Any ssh server can be
1126used, but it must implement the sftp-server protocol. Most Unix/Linux
1127systems should work without requiring any extra configuration.
1128
1129@var{port} is the port number on which sshd is listening. By default
1130the standard ssh port (22) is used.
1131
1132@var{path} is the path to the disk image.
1133
1134The optional @var{host_key_check} parameter controls how the remote
1135host's key is checked. The default is @code{yes} which means to use
1136the local @file{.ssh/known_hosts} file. Setting this to @code{no}
1137turns off known-hosts checking. Or you can check that the host key
1138matches a specific fingerprint:
1139@code{host_key_check=md5:78:45:8e:14:57:4f:d5:45:83:0a:0e:f3:49:82:c9:c8}
1140(@code{sha1:} can also be used as a prefix, but note that OpenSSH
1141tools only use MD5 to print fingerprints).
1142
1143Currently authentication must be done using ssh-agent. Other
1144authentication methods may be supported in future.
1145
9a2d462e
RJ
1146Note: Many ssh servers do not support an @code{fsync}-style operation.
1147The ssh driver cannot guarantee that disk flush requests are
1148obeyed, and this causes a risk of disk corruption if the remote
1149server or network goes down during writes. The driver will
1150print a warning when @code{fsync} is not supported:
1151
1152warning: ssh server @code{ssh.example.com:22} does not support fsync
1153
1154With sufficiently new versions of libssh2 and OpenSSH, @code{fsync} is
1155supported.
0a12ec87 1156
debc7065 1157@node pcsys_network
9d4fb82e
FB
1158@section Network emulation
1159
4be456f1 1160QEMU can simulate several network cards (PCI or ISA cards on the PC
41d03949
FB
1161target) and can connect them to an arbitrary number of Virtual Local
1162Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1163VLAN. VLAN can be connected between separate instances of QEMU to
4be456f1 1164simulate large networks. For simpler usage, a non privileged user mode
41d03949
FB
1165network stack can replace the TAP device to have a basic network
1166connection.
1167
1168@subsection VLANs
9d4fb82e 1169
41d03949
FB
1170QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1171connection between several network devices. These devices can be for
1172example QEMU virtual Ethernet cards or virtual Host ethernet devices
1173(TAP devices).
9d4fb82e 1174
41d03949
FB
1175@subsection Using TAP network interfaces
1176
1177This is the standard way to connect QEMU to a real network. QEMU adds
1178a virtual network device on your host (called @code{tapN}), and you
1179can then configure it as if it was a real ethernet card.
9d4fb82e 1180
8f40c388
FB
1181@subsubsection Linux host
1182
9d4fb82e
FB
1183As an example, you can download the @file{linux-test-xxx.tar.gz}
1184archive and copy the script @file{qemu-ifup} in @file{/etc} and
1185configure properly @code{sudo} so that the command @code{ifconfig}
1186contained in @file{qemu-ifup} can be executed as root. You must verify
41d03949 1187that your host kernel supports the TAP network interfaces: the
9d4fb82e
FB
1188device @file{/dev/net/tun} must be present.
1189
ee0f4751
FB
1190See @ref{sec_invocation} to have examples of command lines using the
1191TAP network interfaces.
9d4fb82e 1192
8f40c388
FB
1193@subsubsection Windows host
1194
1195There is a virtual ethernet driver for Windows 2000/XP systems, called
1196TAP-Win32. But it is not included in standard QEMU for Windows,
1197so you will need to get it separately. It is part of OpenVPN package,
1198so download OpenVPN from : @url{http://openvpn.net/}.
1199
9d4fb82e
FB
1200@subsection Using the user mode network stack
1201
41d03949
FB
1202By using the option @option{-net user} (default configuration if no
1203@option{-net} option is specified), QEMU uses a completely user mode
4be456f1 1204network stack (you don't need root privilege to use the virtual
41d03949 1205network). The virtual network configuration is the following:
9d4fb82e
FB
1206
1207@example
1208
41d03949
FB
1209 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
1210 | (10.0.2.2)
9d4fb82e 1211 |
2518bd0d 1212 ----> DNS server (10.0.2.3)
3b46e624 1213 |
2518bd0d 1214 ----> SMB server (10.0.2.4)
9d4fb82e
FB
1215@end example
1216
1217The QEMU VM behaves as if it was behind a firewall which blocks all
1218incoming connections. You can use a DHCP client to automatically
41d03949
FB
1219configure the network in the QEMU VM. The DHCP server assign addresses
1220to the hosts starting from 10.0.2.15.
9d4fb82e
FB
1221
1222In order to check that the user mode network is working, you can ping
1223the address 10.0.2.2 and verify that you got an address in the range
122410.0.2.x from the QEMU virtual DHCP server.
1225
37cbfcce
GH
1226Note that ICMP traffic in general does not work with user mode networking.
1227@code{ping}, aka. ICMP echo, to the local router (10.0.2.2) shall work,
1228however. If you're using QEMU on Linux >= 3.0, it can use unprivileged ICMP
1229ping sockets to allow @code{ping} to the Internet. The host admin has to set
1230the ping_group_range in order to grant access to those sockets. To allow ping
1231for GID 100 (usually users group):
1232
1233@example
1234echo 100 100 > /proc/sys/net/ipv4/ping_group_range
1235@end example
b415a407 1236
9bf05444
FB
1237When using the built-in TFTP server, the router is also the TFTP
1238server.
1239
1240When using the @option{-redir} option, TCP or UDP connections can be
1241redirected from the host to the guest. It allows for example to
1242redirect X11, telnet or SSH connections.
443f1376 1243
41d03949
FB
1244@subsection Connecting VLANs between QEMU instances
1245
1246Using the @option{-net socket} option, it is possible to make VLANs
1247that span several QEMU instances. See @ref{sec_invocation} to have a
1248basic example.
1249
576fd0a1 1250@node pcsys_other_devs
6cbf4c8c
CM
1251@section Other Devices
1252
1253@subsection Inter-VM Shared Memory device
1254
1255With KVM enabled on a Linux host, a shared memory device is available. Guests
1256map a POSIX shared memory region into the guest as a PCI device that enables
1257zero-copy communication to the application level of the guests. The basic
1258syntax is:
1259
1260@example
a9282c25 1261qemu-system-i386 -device ivshmem,size=@var{size},shm=@var{shm-name}
6cbf4c8c
CM
1262@end example
1263
1264If desired, interrupts can be sent between guest VMs accessing the same shared
1265memory region. Interrupt support requires using a shared memory server and
1266using a chardev socket to connect to it. The code for the shared memory server
1267is qemu.git/contrib/ivshmem-server. An example syntax when using the shared
1268memory server is:
1269
1270@example
a75eb03b 1271# First start the ivshmem server once and for all
50d34c4e 1272ivshmem-server -p @var{pidfile} -S @var{path} -m @var{shm-name} -l @var{shm-size} -n @var{vectors}
a75eb03b
DM
1273
1274# Then start your qemu instances with matching arguments
50d34c4e 1275qemu-system-i386 -device ivshmem,size=@var{shm-size},vectors=@var{vectors},chardev=@var{id}
a75eb03b 1276 [,msi=on][,ioeventfd=on][,role=peer|master]
50d34c4e 1277 -chardev socket,path=@var{path},id=@var{id}
6cbf4c8c
CM
1278@end example
1279
1280When using the server, the guest will be assigned a VM ID (>=0) that allows guests
1281using the same server to communicate via interrupts. Guests can read their
1282VM ID from a device register (see example code). Since receiving the shared
1283memory region from the server is asynchronous, there is a (small) chance the
1284guest may boot before the shared memory is attached. To allow an application
1285to ensure shared memory is attached, the VM ID register will return -1 (an
1286invalid VM ID) until the memory is attached. Once the shared memory is
1287attached, the VM ID will return the guest's valid VM ID. With these semantics,
1288the guest application can check to ensure the shared memory is attached to the
1289guest before proceeding.
1290
1291The @option{role} argument can be set to either master or peer and will affect
1292how the shared memory is migrated. With @option{role=master}, the guest will
1293copy the shared memory on migration to the destination host. With
1294@option{role=peer}, the guest will not be able to migrate with the device attached.
1295With the @option{peer} case, the device should be detached and then reattached
1296after migration using the PCI hotplug support.
1297
7d4f4bda
MAL
1298@subsubsection ivshmem and hugepages
1299
1300Instead of specifying the <shm size> using POSIX shm, you may specify
1301a memory backend that has hugepage support:
1302
1303@example
8d31d6b6 1304qemu-system-i386 -object memory-backend-file,size=1G,mem-path=/mnt/hugepages/my-shmem-file,id=mb1
1d649244 1305 -device ivshmem,x-memdev=mb1
7d4f4bda
MAL
1306@end example
1307
1308ivshmem-server also supports hugepages mount points with the
1309@option{-m} memory path argument.
1310
9d4fb82e
FB
1311@node direct_linux_boot
1312@section Direct Linux Boot
1f673135
FB
1313
1314This section explains how to launch a Linux kernel inside QEMU without
1315having to make a full bootable image. It is very useful for fast Linux
ee0f4751 1316kernel testing.
1f673135 1317
ee0f4751 1318The syntax is:
1f673135 1319@example
3804da9d 1320qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1f673135
FB
1321@end example
1322
ee0f4751
FB
1323Use @option{-kernel} to provide the Linux kernel image and
1324@option{-append} to give the kernel command line arguments. The
1325@option{-initrd} option can be used to provide an INITRD image.
1f673135 1326
ee0f4751
FB
1327When using the direct Linux boot, a disk image for the first hard disk
1328@file{hda} is required because its boot sector is used to launch the
1329Linux kernel.
1f673135 1330
ee0f4751
FB
1331If you do not need graphical output, you can disable it and redirect
1332the virtual serial port and the QEMU monitor to the console with the
1333@option{-nographic} option. The typical command line is:
1f673135 1334@example
3804da9d
SW
1335qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1336 -append "root=/dev/hda console=ttyS0" -nographic
1f673135
FB
1337@end example
1338
ee0f4751
FB
1339Use @key{Ctrl-a c} to switch between the serial console and the
1340monitor (@pxref{pcsys_keys}).
1f673135 1341
debc7065 1342@node pcsys_usb
b389dbfb
FB
1343@section USB emulation
1344
0aff66b5
PB
1345QEMU emulates a PCI UHCI USB controller. You can virtually plug
1346virtual USB devices or real host USB devices (experimental, works only
071c9394 1347on Linux hosts). QEMU will automatically create and connect virtual USB hubs
f542086d 1348as necessary to connect multiple USB devices.
b389dbfb 1349
0aff66b5
PB
1350@menu
1351* usb_devices::
1352* host_usb_devices::
1353@end menu
1354@node usb_devices
1355@subsection Connecting USB devices
b389dbfb 1356
0aff66b5
PB
1357USB devices can be connected with the @option{-usbdevice} commandline option
1358or the @code{usb_add} monitor command. Available devices are:
b389dbfb 1359
db380c06
AZ
1360@table @code
1361@item mouse
0aff66b5 1362Virtual Mouse. This will override the PS/2 mouse emulation when activated.
db380c06 1363@item tablet
c6d46c20 1364Pointer device that uses absolute coordinates (like a touchscreen).
b65ee4fa 1365This means QEMU is able to report the mouse position without having
0aff66b5 1366to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
db380c06 1367@item disk:@var{file}
0aff66b5 1368Mass storage device based on @var{file} (@pxref{disk_images})
db380c06 1369@item host:@var{bus.addr}
0aff66b5
PB
1370Pass through the host device identified by @var{bus.addr}
1371(Linux only)
db380c06 1372@item host:@var{vendor_id:product_id}
0aff66b5
PB
1373Pass through the host device identified by @var{vendor_id:product_id}
1374(Linux only)
db380c06 1375@item wacom-tablet
f6d2a316
AZ
1376Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
1377above but it can be used with the tslib library because in addition to touch
1378coordinates it reports touch pressure.
db380c06 1379@item keyboard
47b2d338 1380Standard USB keyboard. Will override the PS/2 keyboard (if present).
db380c06
AZ
1381@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1382Serial converter. This emulates an FTDI FT232BM chip connected to host character
1383device @var{dev}. The available character devices are the same as for the
1384@code{-serial} option. The @code{vendorid} and @code{productid} options can be
0d6753e5 1385used to override the default 0403:6001. For instance,
db380c06
AZ
1386@example
1387usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1388@end example
1389will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1390serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
2e4d9fb1
AJ
1391@item braille
1392Braille device. This will use BrlAPI to display the braille output on a real
1393or fake device.
9ad97e65
AZ
1394@item net:@var{options}
1395Network adapter that supports CDC ethernet and RNDIS protocols. @var{options}
1396specifies NIC options as with @code{-net nic,}@var{options} (see description).
1397For instance, user-mode networking can be used with
6c9f886c 1398@example
3804da9d 1399qemu-system-i386 [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
6c9f886c
AZ
1400@end example
1401Currently this cannot be used in machines that support PCI NICs.
2d564691
AZ
1402@item bt[:@var{hci-type}]
1403Bluetooth dongle whose type is specified in the same format as with
1404the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
1405no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
1406This USB device implements the USB Transport Layer of HCI. Example
1407usage:
1408@example
3804da9d 1409qemu-system-i386 [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
2d564691 1410@end example
0aff66b5 1411@end table
b389dbfb 1412
0aff66b5 1413@node host_usb_devices
b389dbfb
FB
1414@subsection Using host USB devices on a Linux host
1415
1416WARNING: this is an experimental feature. QEMU will slow down when
1417using it. USB devices requiring real time streaming (i.e. USB Video
1418Cameras) are not supported yet.
1419
1420@enumerate
5fafdf24 1421@item If you use an early Linux 2.4 kernel, verify that no Linux driver
b389dbfb
FB
1422is actually using the USB device. A simple way to do that is simply to
1423disable the corresponding kernel module by renaming it from @file{mydriver.o}
1424to @file{mydriver.o.disabled}.
1425
1426@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1427@example
1428ls /proc/bus/usb
1429001 devices drivers
1430@end example
1431
1432@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1433@example
1434chown -R myuid /proc/bus/usb
1435@end example
1436
1437@item Launch QEMU and do in the monitor:
5fafdf24 1438@example
b389dbfb
FB
1439info usbhost
1440 Device 1.2, speed 480 Mb/s
1441 Class 00: USB device 1234:5678, USB DISK
1442@end example
1443You should see the list of the devices you can use (Never try to use
1444hubs, it won't work).
1445
1446@item Add the device in QEMU by using:
5fafdf24 1447@example
b389dbfb
FB
1448usb_add host:1234:5678
1449@end example
1450
1451Normally the guest OS should report that a new USB device is
1452plugged. You can use the option @option{-usbdevice} to do the same.
1453
1454@item Now you can try to use the host USB device in QEMU.
1455
1456@end enumerate
1457
1458When relaunching QEMU, you may have to unplug and plug again the USB
1459device to make it work again (this is a bug).
1460
f858dcae
TS
1461@node vnc_security
1462@section VNC security
1463
1464The VNC server capability provides access to the graphical console
1465of the guest VM across the network. This has a number of security
1466considerations depending on the deployment scenarios.
1467
1468@menu
1469* vnc_sec_none::
1470* vnc_sec_password::
1471* vnc_sec_certificate::
1472* vnc_sec_certificate_verify::
1473* vnc_sec_certificate_pw::
2f9606b3
AL
1474* vnc_sec_sasl::
1475* vnc_sec_certificate_sasl::
f858dcae 1476* vnc_generate_cert::
2f9606b3 1477* vnc_setup_sasl::
f858dcae
TS
1478@end menu
1479@node vnc_sec_none
1480@subsection Without passwords
1481
1482The simplest VNC server setup does not include any form of authentication.
1483For this setup it is recommended to restrict it to listen on a UNIX domain
1484socket only. For example
1485
1486@example
3804da9d 1487qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
f858dcae
TS
1488@end example
1489
1490This ensures that only users on local box with read/write access to that
1491path can access the VNC server. To securely access the VNC server from a
1492remote machine, a combination of netcat+ssh can be used to provide a secure
1493tunnel.
1494
1495@node vnc_sec_password
1496@subsection With passwords
1497
1498The VNC protocol has limited support for password based authentication. Since
1499the protocol limits passwords to 8 characters it should not be considered
1500to provide high security. The password can be fairly easily brute-forced by
1501a client making repeat connections. For this reason, a VNC server using password
1502authentication should be restricted to only listen on the loopback interface
0f66998f
PM
1503or UNIX domain sockets. Password authentication is not supported when operating
1504in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password
1505authentication is requested with the @code{password} option, and then once QEMU
1506is running the password is set with the monitor. Until the monitor is used to
1507set the password all clients will be rejected.
f858dcae
TS
1508
1509@example
3804da9d 1510qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio
f858dcae
TS
1511(qemu) change vnc password
1512Password: ********
1513(qemu)
1514@end example
1515
1516@node vnc_sec_certificate
1517@subsection With x509 certificates
1518
1519The QEMU VNC server also implements the VeNCrypt extension allowing use of
1520TLS for encryption of the session, and x509 certificates for authentication.
1521The use of x509 certificates is strongly recommended, because TLS on its
1522own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1523support provides a secure session, but no authentication. This allows any
1524client to connect, and provides an encrypted session.
1525
1526@example
3804da9d 1527qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
f858dcae
TS
1528@end example
1529
1530In the above example @code{/etc/pki/qemu} should contain at least three files,
1531@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1532users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1533NB the @code{server-key.pem} file should be protected with file mode 0600 to
1534only be readable by the user owning it.
1535
1536@node vnc_sec_certificate_verify
1537@subsection With x509 certificates and client verification
1538
1539Certificates can also provide a means to authenticate the client connecting.
1540The server will request that the client provide a certificate, which it will
1541then validate against the CA certificate. This is a good choice if deploying
1542in an environment with a private internal certificate authority.
1543
1544@example
3804da9d 1545qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
f858dcae
TS
1546@end example
1547
1548
1549@node vnc_sec_certificate_pw
1550@subsection With x509 certificates, client verification and passwords
1551
1552Finally, the previous method can be combined with VNC password authentication
1553to provide two layers of authentication for clients.
1554
1555@example
3804da9d 1556qemu-system-i386 [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
f858dcae
TS
1557(qemu) change vnc password
1558Password: ********
1559(qemu)
1560@end example
1561
2f9606b3
AL
1562
1563@node vnc_sec_sasl
1564@subsection With SASL authentication
1565
1566The SASL authentication method is a VNC extension, that provides an
1567easily extendable, pluggable authentication method. This allows for
1568integration with a wide range of authentication mechanisms, such as
1569PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1570The strength of the authentication depends on the exact mechanism
1571configured. If the chosen mechanism also provides a SSF layer, then
1572it will encrypt the datastream as well.
1573
1574Refer to the later docs on how to choose the exact SASL mechanism
1575used for authentication, but assuming use of one supporting SSF,
1576then QEMU can be launched with:
1577
1578@example
3804da9d 1579qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio
2f9606b3
AL
1580@end example
1581
1582@node vnc_sec_certificate_sasl
1583@subsection With x509 certificates and SASL authentication
1584
1585If the desired SASL authentication mechanism does not supported
1586SSF layers, then it is strongly advised to run it in combination
1587with TLS and x509 certificates. This provides securely encrypted
1588data stream, avoiding risk of compromising of the security
1589credentials. This can be enabled, by combining the 'sasl' option
1590with the aforementioned TLS + x509 options:
1591
1592@example
3804da9d 1593qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
2f9606b3
AL
1594@end example
1595
1596
f858dcae
TS
1597@node vnc_generate_cert
1598@subsection Generating certificates for VNC
1599
1600The GNU TLS packages provides a command called @code{certtool} which can
1601be used to generate certificates and keys in PEM format. At a minimum it
40c5c6cd 1602is necessary to setup a certificate authority, and issue certificates to
f858dcae
TS
1603each server. If using certificates for authentication, then each client
1604will also need to be issued a certificate. The recommendation is for the
1605server to keep its certificates in either @code{/etc/pki/qemu} or for
1606unprivileged users in @code{$HOME/.pki/qemu}.
1607
1608@menu
1609* vnc_generate_ca::
1610* vnc_generate_server::
1611* vnc_generate_client::
1612@end menu
1613@node vnc_generate_ca
1614@subsubsection Setup the Certificate Authority
1615
1616This step only needs to be performed once per organization / organizational
1617unit. First the CA needs a private key. This key must be kept VERY secret
1618and secure. If this key is compromised the entire trust chain of the certificates
1619issued with it is lost.
1620
1621@example
1622# certtool --generate-privkey > ca-key.pem
1623@end example
1624
1625A CA needs to have a public certificate. For simplicity it can be a self-signed
1626certificate, or one issue by a commercial certificate issuing authority. To
1627generate a self-signed certificate requires one core piece of information, the
1628name of the organization.
1629
1630@example
1631# cat > ca.info <<EOF
1632cn = Name of your organization
1633ca
1634cert_signing_key
1635EOF
1636# certtool --generate-self-signed \
1637 --load-privkey ca-key.pem
1638 --template ca.info \
1639 --outfile ca-cert.pem
1640@end example
1641
1642The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1643TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1644
1645@node vnc_generate_server
1646@subsubsection Issuing server certificates
1647
1648Each server (or host) needs to be issued with a key and certificate. When connecting
1649the certificate is sent to the client which validates it against the CA certificate.
1650The core piece of information for a server certificate is the hostname. This should
1651be the fully qualified hostname that the client will connect with, since the client
1652will typically also verify the hostname in the certificate. On the host holding the
1653secure CA private key:
1654
1655@example
1656# cat > server.info <<EOF
1657organization = Name of your organization
1658cn = server.foo.example.com
1659tls_www_server
1660encryption_key
1661signing_key
1662EOF
1663# certtool --generate-privkey > server-key.pem
1664# certtool --generate-certificate \
1665 --load-ca-certificate ca-cert.pem \
1666 --load-ca-privkey ca-key.pem \
63c693f8 1667 --load-privkey server-key.pem \
f858dcae
TS
1668 --template server.info \
1669 --outfile server-cert.pem
1670@end example
1671
1672The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1673to the server for which they were generated. The @code{server-key.pem} is security
1674sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1675
1676@node vnc_generate_client
1677@subsubsection Issuing client certificates
1678
1679If the QEMU VNC server is to use the @code{x509verify} option to validate client
1680certificates as its authentication mechanism, each client also needs to be issued
1681a certificate. The client certificate contains enough metadata to uniquely identify
1682the client, typically organization, state, city, building, etc. On the host holding
1683the secure CA private key:
1684
1685@example
1686# cat > client.info <<EOF
1687country = GB
1688state = London
1689locality = London
63c693f8 1690organization = Name of your organization
f858dcae
TS
1691cn = client.foo.example.com
1692tls_www_client
1693encryption_key
1694signing_key
1695EOF
1696# certtool --generate-privkey > client-key.pem
1697# certtool --generate-certificate \
1698 --load-ca-certificate ca-cert.pem \
1699 --load-ca-privkey ca-key.pem \
1700 --load-privkey client-key.pem \
1701 --template client.info \
1702 --outfile client-cert.pem
1703@end example
1704
1705The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1706copied to the client for which they were generated.
1707
2f9606b3
AL
1708
1709@node vnc_setup_sasl
1710
1711@subsection Configuring SASL mechanisms
1712
1713The following documentation assumes use of the Cyrus SASL implementation on a
1714Linux host, but the principals should apply to any other SASL impl. When SASL
1715is enabled, the mechanism configuration will be loaded from system default
1716SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1717unprivileged user, an environment variable SASL_CONF_PATH can be used
1718to make it search alternate locations for the service config.
1719
1720The default configuration might contain
1721
1722@example
1723mech_list: digest-md5
1724sasldb_path: /etc/qemu/passwd.db
1725@end example
1726
1727This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1728Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1729in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1730command. While this mechanism is easy to configure and use, it is not
1731considered secure by modern standards, so only suitable for developers /
1732ad-hoc testing.
1733
1734A more serious deployment might use Kerberos, which is done with the 'gssapi'
1735mechanism
1736
1737@example
1738mech_list: gssapi
1739keytab: /etc/qemu/krb5.tab
1740@end example
1741
1742For this to work the administrator of your KDC must generate a Kerberos
1743principal for the server, with a name of 'qemu/somehost.example.com@@EXAMPLE.COM'
1744replacing 'somehost.example.com' with the fully qualified host name of the
40c5c6cd 1745machine running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
2f9606b3
AL
1746
1747Other configurations will be left as an exercise for the reader. It should
1748be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1749encryption. For all other mechanisms, VNC should always be configured to
1750use TLS and x509 certificates to protect security credentials from snooping.
1751
0806e3f6 1752@node gdb_usage
da415d54
FB
1753@section GDB usage
1754
1755QEMU has a primitive support to work with gdb, so that you can do
0806e3f6 1756'Ctrl-C' while the virtual machine is running and inspect its state.
da415d54 1757
b65ee4fa 1758In order to use gdb, launch QEMU with the '-s' option. It will wait for a
da415d54
FB
1759gdb connection:
1760@example
3804da9d
SW
1761qemu-system-i386 -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1762 -append "root=/dev/hda"
da415d54
FB
1763Connected to host network interface: tun0
1764Waiting gdb connection on port 1234
1765@end example
1766
1767Then launch gdb on the 'vmlinux' executable:
1768@example
1769> gdb vmlinux
1770@end example
1771
1772In gdb, connect to QEMU:
1773@example
6c9bf893 1774(gdb) target remote localhost:1234
da415d54
FB
1775@end example
1776
1777Then you can use gdb normally. For example, type 'c' to launch the kernel:
1778@example
1779(gdb) c
1780@end example
1781
0806e3f6
FB
1782Here are some useful tips in order to use gdb on system code:
1783
1784@enumerate
1785@item
1786Use @code{info reg} to display all the CPU registers.
1787@item
1788Use @code{x/10i $eip} to display the code at the PC position.
1789@item
1790Use @code{set architecture i8086} to dump 16 bit code. Then use
294e8637 1791@code{x/10i $cs*16+$eip} to dump the code at the PC position.
0806e3f6
FB
1792@end enumerate
1793
60897d36
EI
1794Advanced debugging options:
1795
b6af0975 1796The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
94d45e44 1797@table @code
60897d36
EI
1798@item maintenance packet qqemu.sstepbits
1799
1800This will display the MASK bits used to control the single stepping IE:
1801@example
1802(gdb) maintenance packet qqemu.sstepbits
1803sending: "qqemu.sstepbits"
1804received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1805@end example
1806@item maintenance packet qqemu.sstep
1807
1808This will display the current value of the mask used when single stepping IE:
1809@example
1810(gdb) maintenance packet qqemu.sstep
1811sending: "qqemu.sstep"
1812received: "0x7"
1813@end example
1814@item maintenance packet Qqemu.sstep=HEX_VALUE
1815
1816This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1817@example
1818(gdb) maintenance packet Qqemu.sstep=0x5
1819sending: "qemu.sstep=0x5"
1820received: "OK"
1821@end example
94d45e44 1822@end table
60897d36 1823
debc7065 1824@node pcsys_os_specific
1a084f3d
FB
1825@section Target OS specific information
1826
1827@subsection Linux
1828
15a34c63
FB
1829To have access to SVGA graphic modes under X11, use the @code{vesa} or
1830the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1831color depth in the guest and the host OS.
1a084f3d 1832
e3371e62
FB
1833When using a 2.6 guest Linux kernel, you should add the option
1834@code{clock=pit} on the kernel command line because the 2.6 Linux
1835kernels make very strict real time clock checks by default that QEMU
1836cannot simulate exactly.
1837
7c3fc84d
FB
1838When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1839not activated because QEMU is slower with this patch. The QEMU
1840Accelerator Module is also much slower in this case. Earlier Fedora
4be456f1 1841Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
7c3fc84d
FB
1842patch by default. Newer kernels don't have it.
1843
1a084f3d
FB
1844@subsection Windows
1845
1846If you have a slow host, using Windows 95 is better as it gives the
1847best speed. Windows 2000 is also a good choice.
1848
e3371e62
FB
1849@subsubsection SVGA graphic modes support
1850
1851QEMU emulates a Cirrus Logic GD5446 Video
15a34c63
FB
1852card. All Windows versions starting from Windows 95 should recognize
1853and use this graphic card. For optimal performances, use 16 bit color
1854depth in the guest and the host OS.
1a084f3d 1855
3cb0853a
FB
1856If you are using Windows XP as guest OS and if you want to use high
1857resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
18581280x1024x16), then you should use the VESA VBE virtual graphic card
1859(option @option{-std-vga}).
1860
e3371e62
FB
1861@subsubsection CPU usage reduction
1862
1863Windows 9x does not correctly use the CPU HLT
15a34c63
FB
1864instruction. The result is that it takes host CPU cycles even when
1865idle. You can install the utility from
1866@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1867problem. Note that no such tool is needed for NT, 2000 or XP.
1a084f3d 1868
9d0a8e6f 1869@subsubsection Windows 2000 disk full problem
e3371e62 1870
9d0a8e6f
FB
1871Windows 2000 has a bug which gives a disk full problem during its
1872installation. When installing it, use the @option{-win2k-hack} QEMU
1873option to enable a specific workaround. After Windows 2000 is
1874installed, you no longer need this option (this option slows down the
1875IDE transfers).
e3371e62 1876
6cc721cf
FB
1877@subsubsection Windows 2000 shutdown
1878
1879Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1880can. It comes from the fact that Windows 2000 does not automatically
1881use the APM driver provided by the BIOS.
1882
1883In order to correct that, do the following (thanks to Struan
1884Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1885Add/Troubleshoot a device => Add a new device & Next => No, select the
1886hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1887(again) a few times. Now the driver is installed and Windows 2000 now
5fafdf24 1888correctly instructs QEMU to shutdown at the appropriate moment.
6cc721cf
FB
1889
1890@subsubsection Share a directory between Unix and Windows
1891
1892See @ref{sec_invocation} about the help of the option @option{-smb}.
1893
2192c332 1894@subsubsection Windows XP security problem
e3371e62
FB
1895
1896Some releases of Windows XP install correctly but give a security
1897error when booting:
1898@example
1899A problem is preventing Windows from accurately checking the
1900license for this computer. Error code: 0x800703e6.
1901@end example
e3371e62 1902
2192c332
FB
1903The workaround is to install a service pack for XP after a boot in safe
1904mode. Then reboot, and the problem should go away. Since there is no
1905network while in safe mode, its recommended to download the full
1906installation of SP1 or SP2 and transfer that via an ISO or using the
1907vvfat block device ("-hdb fat:directory_which_holds_the_SP").
e3371e62 1908
a0a821a4
FB
1909@subsection MS-DOS and FreeDOS
1910
1911@subsubsection CPU usage reduction
1912
1913DOS does not correctly use the CPU HLT instruction. The result is that
1914it takes host CPU cycles even when idle. You can install the utility
1915from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1916problem.
1917
debc7065 1918@node QEMU System emulator for non PC targets
3f9f3aa1
FB
1919@chapter QEMU System emulator for non PC targets
1920
1921QEMU is a generic emulator and it emulates many non PC
1922machines. Most of the options are similar to the PC emulator. The
4be456f1 1923differences are mentioned in the following sections.
3f9f3aa1 1924
debc7065 1925@menu
7544a042 1926* PowerPC System emulator::
24d4de45
TS
1927* Sparc32 System emulator::
1928* Sparc64 System emulator::
1929* MIPS System emulator::
1930* ARM System emulator::
1931* ColdFire System emulator::
7544a042
SW
1932* Cris System emulator::
1933* Microblaze System emulator::
1934* SH4 System emulator::
3aeaea65 1935* Xtensa System emulator::
debc7065
FB
1936@end menu
1937
7544a042
SW
1938@node PowerPC System emulator
1939@section PowerPC System emulator
1940@cindex system emulation (PowerPC)
1a084f3d 1941
15a34c63
FB
1942Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1943or PowerMac PowerPC system.
1a084f3d 1944
b671f9ed 1945QEMU emulates the following PowerMac peripherals:
1a084f3d 1946
15a34c63 1947@itemize @minus
5fafdf24 1948@item
006f3a48 1949UniNorth or Grackle PCI Bridge
15a34c63
FB
1950@item
1951PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1952@item
15a34c63 19532 PMAC IDE interfaces with hard disk and CD-ROM support
5fafdf24 1954@item
15a34c63
FB
1955NE2000 PCI adapters
1956@item
1957Non Volatile RAM
1958@item
1959VIA-CUDA with ADB keyboard and mouse.
1a084f3d
FB
1960@end itemize
1961
b671f9ed 1962QEMU emulates the following PREP peripherals:
52c00a5f
FB
1963
1964@itemize @minus
5fafdf24 1965@item
15a34c63
FB
1966PCI Bridge
1967@item
1968PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1969@item
52c00a5f
FB
19702 IDE interfaces with hard disk and CD-ROM support
1971@item
1972Floppy disk
5fafdf24 1973@item
15a34c63 1974NE2000 network adapters
52c00a5f
FB
1975@item
1976Serial port
1977@item
1978PREP Non Volatile RAM
15a34c63
FB
1979@item
1980PC compatible keyboard and mouse.
52c00a5f
FB
1981@end itemize
1982
15a34c63 1983QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
3f9f3aa1 1984@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
52c00a5f 1985
992e5acd 1986Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
006f3a48
BS
1987for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1988v2) portable firmware implementation. The goal is to implement a 100%
1989IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
992e5acd 1990
15a34c63
FB
1991@c man begin OPTIONS
1992
1993The following options are specific to the PowerPC emulation:
1994
1995@table @option
1996
4e257e5e 1997@item -g @var{W}x@var{H}[x@var{DEPTH}]
15a34c63 1998
340fb41b 1999Set the initial VGA graphic mode. The default is 800x600x32.
15a34c63 2000
4e257e5e 2001@item -prom-env @var{string}
95efd11c
BS
2002
2003Set OpenBIOS variables in NVRAM, for example:
2004
2005@example
2006qemu-system-ppc -prom-env 'auto-boot?=false' \
2007 -prom-env 'boot-device=hd:2,\yaboot' \
2008 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
2009@end example
2010
2011These variables are not used by Open Hack'Ware.
2012
15a34c63
FB
2013@end table
2014
5fafdf24 2015@c man end
15a34c63
FB
2016
2017
52c00a5f 2018More information is available at
3f9f3aa1 2019@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
52c00a5f 2020
24d4de45
TS
2021@node Sparc32 System emulator
2022@section Sparc32 System emulator
7544a042 2023@cindex system emulation (Sparc32)
e80cfcfc 2024
34a3d239
BS
2025Use the executable @file{qemu-system-sparc} to simulate the following
2026Sun4m architecture machines:
2027@itemize @minus
2028@item
2029SPARCstation 4
2030@item
2031SPARCstation 5
2032@item
2033SPARCstation 10
2034@item
2035SPARCstation 20
2036@item
2037SPARCserver 600MP
2038@item
2039SPARCstation LX
2040@item
2041SPARCstation Voyager
2042@item
2043SPARCclassic
2044@item
2045SPARCbook
2046@end itemize
2047
2048The emulation is somewhat complete. SMP up to 16 CPUs is supported,
2049but Linux limits the number of usable CPUs to 4.
e80cfcfc 2050
6a4e1771 2051QEMU emulates the following sun4m peripherals:
e80cfcfc
FB
2052
2053@itemize @minus
3475187d 2054@item
6a4e1771 2055IOMMU
e80cfcfc 2056@item
33632788 2057TCX or cgthree Frame buffer
5fafdf24 2058@item
e80cfcfc
FB
2059Lance (Am7990) Ethernet
2060@item
34a3d239 2061Non Volatile RAM M48T02/M48T08
e80cfcfc 2062@item
3475187d
FB
2063Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2064and power/reset logic
2065@item
2066ESP SCSI controller with hard disk and CD-ROM support
2067@item
6a3b9cc9 2068Floppy drive (not on SS-600MP)
a2502b58
BS
2069@item
2070CS4231 sound device (only on SS-5, not working yet)
e80cfcfc
FB
2071@end itemize
2072
6a3b9cc9
BS
2073The number of peripherals is fixed in the architecture. Maximum
2074memory size depends on the machine type, for SS-5 it is 256MB and for
7d85892b 2075others 2047MB.
3475187d 2076
30a604f3 2077Since version 0.8.2, QEMU uses OpenBIOS
0986ac3b
FB
2078@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2079firmware implementation. The goal is to implement a 100% IEEE
20801275-1994 (referred to as Open Firmware) compliant firmware.
3475187d
FB
2081
2082A sample Linux 2.6 series kernel and ram disk image are available on
34a3d239 2083the QEMU web site. There are still issues with NetBSD and OpenBSD, but
9bb9f217 2084most kernel versions work. Please note that currently older Solaris kernels
34a3d239
BS
2085don't work probably due to interface issues between OpenBIOS and
2086Solaris.
3475187d
FB
2087
2088@c man begin OPTIONS
2089
a2502b58 2090The following options are specific to the Sparc32 emulation:
3475187d
FB
2091
2092@table @option
2093
4e257e5e 2094@item -g @var{W}x@var{H}x[x@var{DEPTH}]
3475187d 2095
33632788
MCA
2096Set the initial graphics mode. For TCX, the default is 1024x768x8 with the
2097option of 1024x768x24. For cgthree, the default is 1024x768x8 with the option
2098of 1152x900x8 for people who wish to use OBP.
3475187d 2099
4e257e5e 2100@item -prom-env @var{string}
66508601
BS
2101
2102Set OpenBIOS variables in NVRAM, for example:
2103
2104@example
2105qemu-system-sparc -prom-env 'auto-boot?=false' \
2106 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2107@end example
2108
6a4e1771 2109@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook]
a2502b58
BS
2110
2111Set the emulated machine type. Default is SS-5.
2112
3475187d
FB
2113@end table
2114
5fafdf24 2115@c man end
3475187d 2116
24d4de45
TS
2117@node Sparc64 System emulator
2118@section Sparc64 System emulator
7544a042 2119@cindex system emulation (Sparc64)
e80cfcfc 2120
34a3d239
BS
2121Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
2122(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
9bb9f217
MCA
2123Niagara (T1) machine. The Sun4u emulator is mostly complete, being
2124able to run Linux, NetBSD and OpenBSD in headless (-nographic) mode. The
2125Sun4v and Niagara emulators are still a work in progress.
b756921a 2126
c7ba218d 2127QEMU emulates the following peripherals:
83469015
FB
2128
2129@itemize @minus
2130@item
5fafdf24 2131UltraSparc IIi APB PCI Bridge
83469015
FB
2132@item
2133PCI VGA compatible card with VESA Bochs Extensions
2134@item
34a3d239
BS
2135PS/2 mouse and keyboard
2136@item
83469015
FB
2137Non Volatile RAM M48T59
2138@item
2139PC-compatible serial ports
c7ba218d
BS
2140@item
21412 PCI IDE interfaces with hard disk and CD-ROM support
34a3d239
BS
2142@item
2143Floppy disk
83469015
FB
2144@end itemize
2145
c7ba218d
BS
2146@c man begin OPTIONS
2147
2148The following options are specific to the Sparc64 emulation:
2149
2150@table @option
2151
4e257e5e 2152@item -prom-env @var{string}
34a3d239
BS
2153
2154Set OpenBIOS variables in NVRAM, for example:
2155
2156@example
2157qemu-system-sparc64 -prom-env 'auto-boot?=false'
2158@end example
2159
2160@item -M [sun4u|sun4v|Niagara]
c7ba218d
BS
2161
2162Set the emulated machine type. The default is sun4u.
2163
2164@end table
2165
2166@c man end
2167
24d4de45
TS
2168@node MIPS System emulator
2169@section MIPS System emulator
7544a042 2170@cindex system emulation (MIPS)
9d0a8e6f 2171
d9aedc32
TS
2172Four executables cover simulation of 32 and 64-bit MIPS systems in
2173both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2174@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
88cb0a02 2175Five different machine types are emulated:
24d4de45
TS
2176
2177@itemize @minus
2178@item
2179A generic ISA PC-like machine "mips"
2180@item
2181The MIPS Malta prototype board "malta"
2182@item
d9aedc32 2183An ACER Pica "pica61". This machine needs the 64-bit emulator.
6bf5b4e8 2184@item
f0fc6f8f 2185MIPS emulator pseudo board "mipssim"
88cb0a02
AJ
2186@item
2187A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
24d4de45
TS
2188@end itemize
2189
2190The generic emulation is supported by Debian 'Etch' and is able to
2191install Debian into a virtual disk image. The following devices are
2192emulated:
3f9f3aa1
FB
2193
2194@itemize @minus
5fafdf24 2195@item
6bf5b4e8 2196A range of MIPS CPUs, default is the 24Kf
3f9f3aa1
FB
2197@item
2198PC style serial port
2199@item
24d4de45
TS
2200PC style IDE disk
2201@item
3f9f3aa1
FB
2202NE2000 network card
2203@end itemize
2204
24d4de45
TS
2205The Malta emulation supports the following devices:
2206
2207@itemize @minus
2208@item
0b64d008 2209Core board with MIPS 24Kf CPU and Galileo system controller
24d4de45
TS
2210@item
2211PIIX4 PCI/USB/SMbus controller
2212@item
2213The Multi-I/O chip's serial device
2214@item
3a2eeac0 2215PCI network cards (PCnet32 and others)
24d4de45
TS
2216@item
2217Malta FPGA serial device
2218@item
1f605a76 2219Cirrus (default) or any other PCI VGA graphics card
24d4de45
TS
2220@end itemize
2221
2222The ACER Pica emulation supports:
2223
2224@itemize @minus
2225@item
2226MIPS R4000 CPU
2227@item
2228PC-style IRQ and DMA controllers
2229@item
2230PC Keyboard
2231@item
2232IDE controller
2233@end itemize
3f9f3aa1 2234
b5e4946f 2235The mipssim pseudo board emulation provides an environment similar
f0fc6f8f
TS
2236to what the proprietary MIPS emulator uses for running Linux.
2237It supports:
6bf5b4e8
TS
2238
2239@itemize @minus
2240@item
2241A range of MIPS CPUs, default is the 24Kf
2242@item
2243PC style serial port
2244@item
2245MIPSnet network emulation
2246@end itemize
2247
88cb0a02
AJ
2248The MIPS Magnum R4000 emulation supports:
2249
2250@itemize @minus
2251@item
2252MIPS R4000 CPU
2253@item
2254PC-style IRQ controller
2255@item
2256PC Keyboard
2257@item
2258SCSI controller
2259@item
2260G364 framebuffer
2261@end itemize
2262
2263
24d4de45
TS
2264@node ARM System emulator
2265@section ARM System emulator
7544a042 2266@cindex system emulation (ARM)
3f9f3aa1
FB
2267
2268Use the executable @file{qemu-system-arm} to simulate a ARM
2269machine. The ARM Integrator/CP board is emulated with the following
2270devices:
2271
2272@itemize @minus
2273@item
9ee6e8bb 2274ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
3f9f3aa1
FB
2275@item
2276Two PL011 UARTs
5fafdf24 2277@item
3f9f3aa1 2278SMC 91c111 Ethernet adapter
00a9bf19
PB
2279@item
2280PL110 LCD controller
2281@item
2282PL050 KMI with PS/2 keyboard and mouse.
a1bb27b1
PB
2283@item
2284PL181 MultiMedia Card Interface with SD card.
00a9bf19
PB
2285@end itemize
2286
2287The ARM Versatile baseboard is emulated with the following devices:
2288
2289@itemize @minus
2290@item
9ee6e8bb 2291ARM926E, ARM1136 or Cortex-A8 CPU
00a9bf19
PB
2292@item
2293PL190 Vectored Interrupt Controller
2294@item
2295Four PL011 UARTs
5fafdf24 2296@item
00a9bf19
PB
2297SMC 91c111 Ethernet adapter
2298@item
2299PL110 LCD controller
2300@item
2301PL050 KMI with PS/2 keyboard and mouse.
2302@item
2303PCI host bridge. Note the emulated PCI bridge only provides access to
2304PCI memory space. It does not provide access to PCI IO space.
4be456f1
TS
2305This means some devices (eg. ne2k_pci NIC) are not usable, and others
2306(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
00a9bf19 2307mapped control registers.
e6de1bad
PB
2308@item
2309PCI OHCI USB controller.
2310@item
2311LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
a1bb27b1
PB
2312@item
2313PL181 MultiMedia Card Interface with SD card.
3f9f3aa1
FB
2314@end itemize
2315
21a88941
PB
2316Several variants of the ARM RealView baseboard are emulated,
2317including the EB, PB-A8 and PBX-A9. Due to interactions with the
2318bootloader, only certain Linux kernel configurations work out
2319of the box on these boards.
2320
2321Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2322enabled in the kernel, and expect 512M RAM. Kernels for The PBX-A9 board
2323should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2324disabled and expect 1024M RAM.
2325
40c5c6cd 2326The following devices are emulated:
d7739d75
PB
2327
2328@itemize @minus
2329@item
f7c70325 2330ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
d7739d75
PB
2331@item
2332ARM AMBA Generic/Distributed Interrupt Controller
2333@item
2334Four PL011 UARTs
5fafdf24 2335@item
0ef849d7 2336SMC 91c111 or SMSC LAN9118 Ethernet adapter
d7739d75
PB
2337@item
2338PL110 LCD controller
2339@item
2340PL050 KMI with PS/2 keyboard and mouse
2341@item
2342PCI host bridge
2343@item
2344PCI OHCI USB controller
2345@item
2346LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
a1bb27b1
PB
2347@item
2348PL181 MultiMedia Card Interface with SD card.
d7739d75
PB
2349@end itemize
2350
b00052e4
AZ
2351The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2352and "Terrier") emulation includes the following peripherals:
2353
2354@itemize @minus
2355@item
2356Intel PXA270 System-on-chip (ARM V5TE core)
2357@item
2358NAND Flash memory
2359@item
2360IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2361@item
2362On-chip OHCI USB controller
2363@item
2364On-chip LCD controller
2365@item
2366On-chip Real Time Clock
2367@item
2368TI ADS7846 touchscreen controller on SSP bus
2369@item
2370Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2371@item
2372GPIO-connected keyboard controller and LEDs
2373@item
549444e1 2374Secure Digital card connected to PXA MMC/SD host
b00052e4
AZ
2375@item
2376Three on-chip UARTs
2377@item
2378WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2379@end itemize
2380
02645926
AZ
2381The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2382following elements:
2383
2384@itemize @minus
2385@item
2386Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2387@item
2388ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2389@item
2390On-chip LCD controller
2391@item
2392On-chip Real Time Clock
2393@item
2394TI TSC2102i touchscreen controller / analog-digital converter / Audio
2395CODEC, connected through MicroWire and I@math{^2}S busses
2396@item
2397GPIO-connected matrix keypad
2398@item
2399Secure Digital card connected to OMAP MMC/SD host
2400@item
2401Three on-chip UARTs
2402@end itemize
2403
c30bb264
AZ
2404Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2405emulation supports the following elements:
2406
2407@itemize @minus
2408@item
2409Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2410@item
2411RAM and non-volatile OneNAND Flash memories
2412@item
2413Display connected to EPSON remote framebuffer chip and OMAP on-chip
2414display controller and a LS041y3 MIPI DBI-C controller
2415@item
2416TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2417driven through SPI bus
2418@item
2419National Semiconductor LM8323-controlled qwerty keyboard driven
2420through I@math{^2}C bus
2421@item
2422Secure Digital card connected to OMAP MMC/SD host
2423@item
2424Three OMAP on-chip UARTs and on-chip STI debugging console
2425@item
40c5c6cd 2426A Bluetooth(R) transceiver and HCI connected to an UART
2d564691 2427@item
c30bb264
AZ
2428Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2429TUSB6010 chip - only USB host mode is supported
2430@item
2431TI TMP105 temperature sensor driven through I@math{^2}C bus
2432@item
2433TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2434@item
2435Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2436through CBUS
2437@end itemize
2438
9ee6e8bb
PB
2439The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2440devices:
2441
2442@itemize @minus
2443@item
2444Cortex-M3 CPU core.
2445@item
244664k Flash and 8k SRAM.
2447@item
2448Timers, UARTs, ADC and I@math{^2}C interface.
2449@item
2450OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2451@end itemize
2452
2453The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2454devices:
2455
2456@itemize @minus
2457@item
2458Cortex-M3 CPU core.
2459@item
2460256k Flash and 64k SRAM.
2461@item
2462Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2463@item
2464OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2465@end itemize
2466
57cd6e97
AZ
2467The Freecom MusicPal internet radio emulation includes the following
2468elements:
2469
2470@itemize @minus
2471@item
2472Marvell MV88W8618 ARM core.
2473@item
247432 MB RAM, 256 KB SRAM, 8 MB flash.
2475@item
2476Up to 2 16550 UARTs
2477@item
2478MV88W8xx8 Ethernet controller
2479@item
2480MV88W8618 audio controller, WM8750 CODEC and mixer
2481@item
e080e785 2482128×64 display with brightness control
57cd6e97
AZ
2483@item
24842 buttons, 2 navigation wheels with button function
2485@end itemize
2486
997641a8 2487The Siemens SX1 models v1 and v2 (default) basic emulation.
40c5c6cd 2488The emulation includes the following elements:
997641a8
AZ
2489
2490@itemize @minus
2491@item
2492Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2493@item
2494ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2495V1
24961 Flash of 16MB and 1 Flash of 8MB
2497V2
24981 Flash of 32MB
2499@item
2500On-chip LCD controller
2501@item
2502On-chip Real Time Clock
2503@item
2504Secure Digital card connected to OMAP MMC/SD host
2505@item
2506Three on-chip UARTs
2507@end itemize
2508
3f9f3aa1
FB
2509A Linux 2.6 test image is available on the QEMU web site. More
2510information is available in the QEMU mailing-list archive.
9d0a8e6f 2511
d2c639d6
BS
2512@c man begin OPTIONS
2513
2514The following options are specific to the ARM emulation:
2515
2516@table @option
2517
2518@item -semihosting
2519Enable semihosting syscall emulation.
2520
2521On ARM this implements the "Angel" interface.
2522
2523Note that this allows guest direct access to the host filesystem,
2524so should only be used with trusted guest OS.
2525
2526@end table
2527
24d4de45
TS
2528@node ColdFire System emulator
2529@section ColdFire System emulator
7544a042
SW
2530@cindex system emulation (ColdFire)
2531@cindex system emulation (M68K)
209a4e69
PB
2532
2533Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2534The emulator is able to boot a uClinux kernel.
707e011b
PB
2535
2536The M5208EVB emulation includes the following devices:
2537
2538@itemize @minus
5fafdf24 2539@item
707e011b
PB
2540MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2541@item
2542Three Two on-chip UARTs.
2543@item
2544Fast Ethernet Controller (FEC)
2545@end itemize
2546
2547The AN5206 emulation includes the following devices:
209a4e69
PB
2548
2549@itemize @minus
5fafdf24 2550@item
209a4e69
PB
2551MCF5206 ColdFire V2 Microprocessor.
2552@item
2553Two on-chip UARTs.
2554@end itemize
2555
d2c639d6
BS
2556@c man begin OPTIONS
2557
7544a042 2558The following options are specific to the ColdFire emulation:
d2c639d6
BS
2559
2560@table @option
2561
2562@item -semihosting
2563Enable semihosting syscall emulation.
2564
2565On M68K this implements the "ColdFire GDB" interface used by libgloss.
2566
2567Note that this allows guest direct access to the host filesystem,
2568so should only be used with trusted guest OS.
2569
2570@end table
2571
7544a042
SW
2572@node Cris System emulator
2573@section Cris System emulator
2574@cindex system emulation (Cris)
2575
2576TODO
2577
2578@node Microblaze System emulator
2579@section Microblaze System emulator
2580@cindex system emulation (Microblaze)
2581
2582TODO
2583
2584@node SH4 System emulator
2585@section SH4 System emulator
2586@cindex system emulation (SH4)
2587
2588TODO
2589
3aeaea65
MF
2590@node Xtensa System emulator
2591@section Xtensa System emulator
2592@cindex system emulation (Xtensa)
2593
2594Two executables cover simulation of both Xtensa endian options,
2595@file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
2596Two different machine types are emulated:
2597
2598@itemize @minus
2599@item
2600Xtensa emulator pseudo board "sim"
2601@item
2602Avnet LX60/LX110/LX200 board
2603@end itemize
2604
b5e4946f 2605The sim pseudo board emulation provides an environment similar
3aeaea65
MF
2606to one provided by the proprietary Tensilica ISS.
2607It supports:
2608
2609@itemize @minus
2610@item
2611A range of Xtensa CPUs, default is the DC232B
2612@item
2613Console and filesystem access via semihosting calls
2614@end itemize
2615
2616The Avnet LX60/LX110/LX200 emulation supports:
2617
2618@itemize @minus
2619@item
2620A range of Xtensa CPUs, default is the DC232B
2621@item
262216550 UART
2623@item
2624OpenCores 10/100 Mbps Ethernet MAC
2625@end itemize
2626
2627@c man begin OPTIONS
2628
2629The following options are specific to the Xtensa emulation:
2630
2631@table @option
2632
2633@item -semihosting
2634Enable semihosting syscall emulation.
2635
2636Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2637Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2638
2639Note that this allows guest direct access to the host filesystem,
2640so should only be used with trusted guest OS.
2641
2642@end table
5fafdf24
TS
2643@node QEMU User space emulator
2644@chapter QEMU User space emulator
83195237
FB
2645
2646@menu
2647* Supported Operating Systems ::
2648* Linux User space emulator::
84778508 2649* BSD User space emulator ::
83195237
FB
2650@end menu
2651
2652@node Supported Operating Systems
2653@section Supported Operating Systems
2654
2655The following OS are supported in user space emulation:
2656
2657@itemize @minus
2658@item
4be456f1 2659Linux (referred as qemu-linux-user)
83195237 2660@item
84778508 2661BSD (referred as qemu-bsd-user)
83195237
FB
2662@end itemize
2663
2664@node Linux User space emulator
2665@section Linux User space emulator
386405f7 2666
debc7065
FB
2667@menu
2668* Quick Start::
2669* Wine launch::
2670* Command line options::
79737e4a 2671* Other binaries::
debc7065
FB
2672@end menu
2673
2674@node Quick Start
83195237 2675@subsection Quick Start
df0f11a0 2676
1f673135 2677In order to launch a Linux process, QEMU needs the process executable
5fafdf24 2678itself and all the target (x86) dynamic libraries used by it.
386405f7 2679
1f673135 2680@itemize
386405f7 2681
1f673135
FB
2682@item On x86, you can just try to launch any process by using the native
2683libraries:
386405f7 2684
5fafdf24 2685@example
1f673135
FB
2686qemu-i386 -L / /bin/ls
2687@end example
386405f7 2688
1f673135
FB
2689@code{-L /} tells that the x86 dynamic linker must be searched with a
2690@file{/} prefix.
386405f7 2691
b65ee4fa
SW
2692@item Since QEMU is also a linux process, you can launch QEMU with
2693QEMU (NOTE: you can only do that if you compiled QEMU from the sources):
386405f7 2694
5fafdf24 2695@example
1f673135
FB
2696qemu-i386 -L / qemu-i386 -L / /bin/ls
2697@end example
386405f7 2698
1f673135
FB
2699@item On non x86 CPUs, you need first to download at least an x86 glibc
2700(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2701@code{LD_LIBRARY_PATH} is not set:
df0f11a0 2702
1f673135 2703@example
5fafdf24 2704unset LD_LIBRARY_PATH
1f673135 2705@end example
1eb87257 2706
1f673135 2707Then you can launch the precompiled @file{ls} x86 executable:
1eb87257 2708
1f673135
FB
2709@example
2710qemu-i386 tests/i386/ls
2711@end example
4c3b5a48 2712You can look at @file{scripts/qemu-binfmt-conf.sh} so that
1f673135
FB
2713QEMU is automatically launched by the Linux kernel when you try to
2714launch x86 executables. It requires the @code{binfmt_misc} module in the
2715Linux kernel.
1eb87257 2716
1f673135
FB
2717@item The x86 version of QEMU is also included. You can try weird things such as:
2718@example
debc7065
FB
2719qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2720 /usr/local/qemu-i386/bin/ls-i386
1f673135 2721@end example
1eb20527 2722
1f673135 2723@end itemize
1eb20527 2724
debc7065 2725@node Wine launch
83195237 2726@subsection Wine launch
1eb20527 2727
1f673135 2728@itemize
386405f7 2729
1f673135
FB
2730@item Ensure that you have a working QEMU with the x86 glibc
2731distribution (see previous section). In order to verify it, you must be
2732able to do:
386405f7 2733
1f673135
FB
2734@example
2735qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2736@end example
386405f7 2737
1f673135 2738@item Download the binary x86 Wine install
5fafdf24 2739(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
386405f7 2740
1f673135 2741@item Configure Wine on your account. Look at the provided script
debc7065 2742@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
1f673135 2743@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
386405f7 2744
1f673135 2745@item Then you can try the example @file{putty.exe}:
386405f7 2746
1f673135 2747@example
debc7065
FB
2748qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2749 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
1f673135 2750@end example
386405f7 2751
1f673135 2752@end itemize
fd429f2f 2753
debc7065 2754@node Command line options
83195237 2755@subsection Command line options
1eb20527 2756
1f673135 2757@example
68a1c816 2758usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] [-B offset] [-R size] program [arguments...]
1f673135 2759@end example
1eb20527 2760
1f673135
FB
2761@table @option
2762@item -h
2763Print the help
3b46e624 2764@item -L path
1f673135
FB
2765Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2766@item -s size
2767Set the x86 stack size in bytes (default=524288)
34a3d239 2768@item -cpu model
c8057f95 2769Select CPU model (-cpu help for list and additional feature selection)
f66724c9
SW
2770@item -E @var{var}=@var{value}
2771Set environment @var{var} to @var{value}.
2772@item -U @var{var}
2773Remove @var{var} from the environment.
379f6698
PB
2774@item -B offset
2775Offset guest address by the specified number of bytes. This is useful when
1f5c3f8c
SW
2776the address region required by guest applications is reserved on the host.
2777This option is currently only supported on some hosts.
68a1c816
PB
2778@item -R size
2779Pre-allocate a guest virtual address space of the given size (in bytes).
0d6753e5 2780"G", "M", and "k" suffixes may be used when specifying the size.
386405f7
FB
2781@end table
2782
1f673135 2783Debug options:
386405f7 2784
1f673135 2785@table @option
989b697d
PM
2786@item -d item1,...
2787Activate logging of the specified items (use '-d help' for a list of log items)
1f673135
FB
2788@item -p pagesize
2789Act as if the host page size was 'pagesize' bytes
34a3d239
BS
2790@item -g port
2791Wait gdb connection to port
1b530a6d
AJ
2792@item -singlestep
2793Run the emulation in single step mode.
1f673135 2794@end table
386405f7 2795
b01bcae6
AZ
2796Environment variables:
2797
2798@table @env
2799@item QEMU_STRACE
2800Print system calls and arguments similar to the 'strace' program
2801(NOTE: the actual 'strace' program will not work because the user
2802space emulator hasn't implemented ptrace). At the moment this is
2803incomplete. All system calls that don't have a specific argument
2804format are printed with information for six arguments. Many
2805flag-style arguments don't have decoders and will show up as numbers.
5cfdf930 2806@end table
b01bcae6 2807
79737e4a 2808@node Other binaries
83195237 2809@subsection Other binaries
79737e4a 2810
7544a042
SW
2811@cindex user mode (Alpha)
2812@command{qemu-alpha} TODO.
2813
2814@cindex user mode (ARM)
2815@command{qemu-armeb} TODO.
2816
2817@cindex user mode (ARM)
79737e4a
PB
2818@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2819binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2820configurations), and arm-uclinux bFLT format binaries.
2821
7544a042
SW
2822@cindex user mode (ColdFire)
2823@cindex user mode (M68K)
e6e5906b
PB
2824@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2825(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2826coldfire uClinux bFLT format binaries.
2827
79737e4a
PB
2828The binary format is detected automatically.
2829
7544a042
SW
2830@cindex user mode (Cris)
2831@command{qemu-cris} TODO.
2832
2833@cindex user mode (i386)
2834@command{qemu-i386} TODO.
2835@command{qemu-x86_64} TODO.
2836
2837@cindex user mode (Microblaze)
2838@command{qemu-microblaze} TODO.
2839
2840@cindex user mode (MIPS)
2841@command{qemu-mips} TODO.
2842@command{qemu-mipsel} TODO.
2843
2844@cindex user mode (PowerPC)
2845@command{qemu-ppc64abi32} TODO.
2846@command{qemu-ppc64} TODO.
2847@command{qemu-ppc} TODO.
2848
2849@cindex user mode (SH4)
2850@command{qemu-sh4eb} TODO.
2851@command{qemu-sh4} TODO.
2852
2853@cindex user mode (SPARC)
34a3d239
BS
2854@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2855
a785e42e
BS
2856@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2857(Sparc64 CPU, 32 bit ABI).
2858
2859@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2860SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2861
84778508
BS
2862@node BSD User space emulator
2863@section BSD User space emulator
2864
2865@menu
2866* BSD Status::
2867* BSD Quick Start::
2868* BSD Command line options::
2869@end menu
2870
2871@node BSD Status
2872@subsection BSD Status
2873
2874@itemize @minus
2875@item
2876target Sparc64 on Sparc64: Some trivial programs work.
2877@end itemize
2878
2879@node BSD Quick Start
2880@subsection Quick Start
2881
2882In order to launch a BSD process, QEMU needs the process executable
2883itself and all the target dynamic libraries used by it.
2884
2885@itemize
2886
2887@item On Sparc64, you can just try to launch any process by using the native
2888libraries:
2889
2890@example
2891qemu-sparc64 /bin/ls
2892@end example
2893
2894@end itemize
2895
2896@node BSD Command line options
2897@subsection Command line options
2898
2899@example
2900usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
2901@end example
2902
2903@table @option
2904@item -h
2905Print the help
2906@item -L path
2907Set the library root path (default=/)
2908@item -s size
2909Set the stack size in bytes (default=524288)
f66724c9
SW
2910@item -ignore-environment
2911Start with an empty environment. Without this option,
40c5c6cd 2912the initial environment is a copy of the caller's environment.
f66724c9
SW
2913@item -E @var{var}=@var{value}
2914Set environment @var{var} to @var{value}.
2915@item -U @var{var}
2916Remove @var{var} from the environment.
84778508
BS
2917@item -bsd type
2918Set the type of the emulated BSD Operating system. Valid values are
2919FreeBSD, NetBSD and OpenBSD (default).
2920@end table
2921
2922Debug options:
2923
2924@table @option
989b697d
PM
2925@item -d item1,...
2926Activate logging of the specified items (use '-d help' for a list of log items)
84778508
BS
2927@item -p pagesize
2928Act as if the host page size was 'pagesize' bytes
1b530a6d
AJ
2929@item -singlestep
2930Run the emulation in single step mode.
84778508
BS
2931@end table
2932
15a34c63
FB
2933@node compilation
2934@chapter Compilation from the sources
2935
debc7065
FB
2936@menu
2937* Linux/Unix::
2938* Windows::
2939* Cross compilation for Windows with Linux::
2940* Mac OS X::
47eacb4f 2941* Make targets::
debc7065
FB
2942@end menu
2943
2944@node Linux/Unix
7c3fc84d
FB
2945@section Linux/Unix
2946
2947@subsection Compilation
2948
2949First you must decompress the sources:
2950@example
2951cd /tmp
2952tar zxvf qemu-x.y.z.tar.gz
2953cd qemu-x.y.z
2954@end example
2955
2956Then you configure QEMU and build it (usually no options are needed):
2957@example
2958./configure
2959make
2960@end example
2961
2962Then type as root user:
2963@example
2964make install
2965@end example
2966to install QEMU in @file{/usr/local}.
2967
debc7065 2968@node Windows
15a34c63
FB
2969@section Windows
2970
2971@itemize
2972@item Install the current versions of MSYS and MinGW from
2973@url{http://www.mingw.org/}. You can find detailed installation
2974instructions in the download section and the FAQ.
2975
5fafdf24 2976@item Download
15a34c63 2977the MinGW development library of SDL 1.2.x
debc7065 2978(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
d0a96f3d
ST
2979@url{http://www.libsdl.org}. Unpack it in a temporary place and
2980edit the @file{sdl-config} script so that it gives the
15a34c63
FB
2981correct SDL directory when invoked.
2982
d0a96f3d
ST
2983@item Install the MinGW version of zlib and make sure
2984@file{zlib.h} and @file{libz.dll.a} are in
40c5c6cd 2985MinGW's default header and linker search paths.
d0a96f3d 2986
15a34c63 2987@item Extract the current version of QEMU.
5fafdf24 2988
15a34c63
FB
2989@item Start the MSYS shell (file @file{msys.bat}).
2990
5fafdf24 2991@item Change to the QEMU directory. Launch @file{./configure} and
15a34c63
FB
2992@file{make}. If you have problems using SDL, verify that
2993@file{sdl-config} can be launched from the MSYS command line.
2994
c5ec15ea 2995@item You can install QEMU in @file{Program Files/QEMU} by typing
15a34c63 2996@file{make install}. Don't forget to copy @file{SDL.dll} in
c5ec15ea 2997@file{Program Files/QEMU}.
15a34c63
FB
2998
2999@end itemize
3000
debc7065 3001@node Cross compilation for Windows with Linux
15a34c63
FB
3002@section Cross compilation for Windows with Linux
3003
3004@itemize
3005@item
3006Install the MinGW cross compilation tools available at
3007@url{http://www.mingw.org/}.
3008
d0a96f3d
ST
3009@item Download
3010the MinGW development library of SDL 1.2.x
3011(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
3012@url{http://www.libsdl.org}. Unpack it in a temporary place and
3013edit the @file{sdl-config} script so that it gives the
3014correct SDL directory when invoked. Set up the @code{PATH} environment
3015variable so that @file{sdl-config} can be launched by
15a34c63
FB
3016the QEMU configuration script.
3017
d0a96f3d
ST
3018@item Install the MinGW version of zlib and make sure
3019@file{zlib.h} and @file{libz.dll.a} are in
40c5c6cd 3020MinGW's default header and linker search paths.
d0a96f3d 3021
5fafdf24 3022@item
15a34c63
FB
3023Configure QEMU for Windows cross compilation:
3024@example
d0a96f3d
ST
3025PATH=/usr/i686-pc-mingw32/sys-root/mingw/bin:$PATH ./configure --cross-prefix='i686-pc-mingw32-'
3026@end example
3027The example assumes @file{sdl-config} is installed under @file{/usr/i686-pc-mingw32/sys-root/mingw/bin} and
3028MinGW cross compilation tools have names like @file{i686-pc-mingw32-gcc} and @file{i686-pc-mingw32-strip}.
40c5c6cd 3029We set the @code{PATH} environment variable to ensure the MinGW version of @file{sdl-config} is used and
d0a96f3d 3030use --cross-prefix to specify the name of the cross compiler.
c5ec15ea 3031You can also use --prefix to set the Win32 install path which defaults to @file{c:/Program Files/QEMU}.
d0a96f3d
ST
3032
3033Under Fedora Linux, you can run:
3034@example
3035yum -y install mingw32-gcc mingw32-SDL mingw32-zlib
15a34c63 3036@end example
d0a96f3d 3037to get a suitable cross compilation environment.
15a34c63 3038
5fafdf24 3039@item You can install QEMU in the installation directory by typing
d0a96f3d 3040@code{make install}. Don't forget to copy @file{SDL.dll} and @file{zlib1.dll} into the
5fafdf24 3041installation directory.
15a34c63
FB
3042
3043@end itemize
3044
3804da9d
SW
3045Wine can be used to launch the resulting qemu-system-i386.exe
3046and all other qemu-system-@var{target}.exe compiled for Win32.
15a34c63 3047
debc7065 3048@node Mac OS X
15a34c63
FB
3049@section Mac OS X
3050
b352153f
JA
3051System Requirements:
3052@itemize
3053@item Mac OS 10.5 or higher
3054@item The clang compiler shipped with Xcode 4.2 or higher,
3055or GCC 4.3 or higher
3056@end itemize
3057
3058Additional Requirements (install in order):
3059@enumerate
3060@item libffi: @uref{https://sourceware.org/libffi/}
3061@item gettext: @uref{http://www.gnu.org/software/gettext/}
3062@item glib: @uref{http://ftp.gnome.org/pub/GNOME/sources/glib/}
3063@item pkg-config: @uref{http://www.freedesktop.org/wiki/Software/pkg-config/}
3064@item autoconf: @uref{http://www.gnu.org/software/autoconf/autoconf.html}
3065@item automake: @uref{http://www.gnu.org/software/automake/}
3066@item libtool: @uref{http://www.gnu.org/software/libtool/}
3067@item pixman: @uref{http://www.pixman.org/}
3068@end enumerate
3069
3070* You may find it easiest to get these from a third-party packager
3071such as Homebrew, Macports, or Fink.
3072
3073After downloading the QEMU source code, double-click it to expand it.
3074
3075Then configure and make QEMU:
3076@example
3077./configure
3078make
3079@end example
3080
3081If you have a recent version of Mac OS X (OSX 10.7 or better
3082with Xcode 4.2 or better) we recommend building QEMU with the
3083default compiler provided by Apple, for your version of Mac OS X
3084(which will be 'clang'). The configure script will
3085automatically pick this.
3086
3087Note: If after the configure step you see a message like this:
3088@example
3089ERROR: Your compiler does not support the __thread specifier for
3090 Thread-Local Storage (TLS). Please upgrade to a version that does.
3091@end example
6c76ec68 3092you may have to build your own version of gcc from source. Expect that to take
b352153f
JA
3093several hours. More information can be found here:
3094@uref{https://gcc.gnu.org/install/} @*
3095
3096These are some of the third party binaries of gcc available for download:
3097@itemize
3098@item Homebrew: @uref{http://brew.sh/}
3099@item @uref{https://www.litebeam.net/gcc/gcc_472.pkg}
3100@item @uref{http://www.macports.org/ports.php?by=name&substr=gcc}
3101@end itemize
3102
3103You can have several versions of GCC on your system. To specify a certain version,
3104use the --cc and --cxx options.
3105@example
3106./configure --cxx=<path of your c++ compiler> --cc=<path of your c compiler> <other options>
3107@end example
15a34c63 3108
47eacb4f
SW
3109@node Make targets
3110@section Make targets
3111
3112@table @code
3113
3114@item make
3115@item make all
3116Make everything which is typically needed.
3117
3118@item install
3119TODO
3120
3121@item install-doc
3122TODO
3123
3124@item make clean
3125Remove most files which were built during make.
3126
3127@item make distclean
3128Remove everything which was built during make.
3129
3130@item make dvi
3131@item make html
3132@item make info
3133@item make pdf
3134Create documentation in dvi, html, info or pdf format.
3135
3136@item make cscope
3137TODO
3138
3139@item make defconfig
3140(Re-)create some build configuration files.
3141User made changes will be overwritten.
3142
3143@item tar
3144@item tarbin
3145TODO
3146
3147@end table
3148
7544a042
SW
3149@node License
3150@appendix License
3151
3152QEMU is a trademark of Fabrice Bellard.
3153
3154QEMU is released under the GNU General Public License (TODO: add link).
3155Parts of QEMU have specific licenses, see file LICENSE.
3156
3157TODO (refer to file LICENSE, include it, include the GPL?)
3158
debc7065 3159@node Index
7544a042
SW
3160@appendix Index
3161@menu
3162* Concept Index::
3163* Function Index::
3164* Keystroke Index::
3165* Program Index::
3166* Data Type Index::
3167* Variable Index::
3168@end menu
3169
3170@node Concept Index
3171@section Concept Index
3172This is the main index. Should we combine all keywords in one index? TODO
debc7065
FB
3173@printindex cp
3174
7544a042
SW
3175@node Function Index
3176@section Function Index
3177This index could be used for command line options and monitor functions.
3178@printindex fn
3179
3180@node Keystroke Index
3181@section Keystroke Index
3182
3183This is a list of all keystrokes which have a special function
3184in system emulation.
3185
3186@printindex ky
3187
3188@node Program Index
3189@section Program Index
3190@printindex pg
3191
3192@node Data Type Index
3193@section Data Type Index
3194
3195This index could be used for qdev device names and options.
3196
3197@printindex tp
3198
3199@node Variable Index
3200@section Variable Index
3201@printindex vr
3202
debc7065 3203@bye