]> git.proxmox.com Git - mirror_qemu.git/blame - qemu-doc.texi
apic: add function to apic that will be used by hvf
[mirror_qemu.git] / qemu-doc.texi
CommitLineData
386405f7 1\input texinfo @c -*- texinfo -*-
debc7065
FB
2@c %**start of header
3@setfilename qemu-doc.info
44cb280d 4@include version.texi
e080e785
SW
5
6@documentlanguage en
7@documentencoding UTF-8
8
44cb280d 9@settitle QEMU version @value{VERSION} User Documentation
debc7065
FB
10@exampleindent 0
11@paragraphindent 0
12@c %**end of header
386405f7 13
a1a32b05
SW
14@ifinfo
15@direntry
16* QEMU: (qemu-doc). The QEMU Emulator User Documentation.
17@end direntry
18@end ifinfo
19
0806e3f6 20@iftex
386405f7
FB
21@titlepage
22@sp 7
44cb280d 23@center @titlefont{QEMU version @value{VERSION}}
debc7065
FB
24@sp 1
25@center @titlefont{User Documentation}
386405f7
FB
26@sp 3
27@end titlepage
0806e3f6 28@end iftex
386405f7 29
debc7065
FB
30@ifnottex
31@node Top
32@top
33
34@menu
35* Introduction::
debc7065
FB
36* QEMU PC System emulator::
37* QEMU System emulator for non PC targets::
3f2ce724 38* QEMU Guest Agent::
83195237 39* QEMU User space emulator::
78e87797 40* Implementation notes::
eb22aeca 41* Deprecated features::
7544a042 42* License::
debc7065
FB
43* Index::
44@end menu
45@end ifnottex
46
47@contents
48
49@node Introduction
386405f7
FB
50@chapter Introduction
51
debc7065
FB
52@menu
53* intro_features:: Features
54@end menu
55
56@node intro_features
322d0c66 57@section Features
386405f7 58
1f673135
FB
59QEMU is a FAST! processor emulator using dynamic translation to
60achieve good emulation speed.
1eb20527 61
1f3e7e41 62@cindex operating modes
1eb20527 63QEMU has two operating modes:
0806e3f6 64
d7e5edca 65@itemize
7544a042 66@cindex system emulation
1f3e7e41 67@item Full system emulation. In this mode, QEMU emulates a full system (for
3f9f3aa1
FB
68example a PC), including one or several processors and various
69peripherals. It can be used to launch different Operating Systems
70without rebooting the PC or to debug system code.
1eb20527 71
7544a042 72@cindex user mode emulation
1f3e7e41 73@item User mode emulation. In this mode, QEMU can launch
83195237 74processes compiled for one CPU on another CPU. It can be used to
70b7fba9 75launch the Wine Windows API emulator (@url{https://www.winehq.org}) or
1f673135 76to ease cross-compilation and cross-debugging.
1eb20527
FB
77
78@end itemize
79
1f3e7e41
PB
80QEMU has the following features:
81
82@itemize
83@item QEMU can run without a host kernel driver and yet gives acceptable
84performance. It uses dynamic translation to native code for reasonable speed,
85with support for self-modifying code and precise exceptions.
86
87@item It is portable to several operating systems (GNU/Linux, *BSD, Mac OS X,
88Windows) and architectures.
89
90@item It performs accurate software emulation of the FPU.
91@end itemize
322d0c66 92
1f3e7e41 93QEMU user mode emulation has the following features:
52c00a5f 94@itemize
1f3e7e41
PB
95@item Generic Linux system call converter, including most ioctls.
96
97@item clone() emulation using native CPU clone() to use Linux scheduler for threads.
98
99@item Accurate signal handling by remapping host signals to target signals.
100@end itemize
101
102QEMU full system emulation has the following features:
103@itemize
104@item
105QEMU uses a full software MMU for maximum portability.
106
107@item
326c4c3c 108QEMU can optionally use an in-kernel accelerator, like kvm. The accelerators
1f3e7e41
PB
109execute most of the guest code natively, while
110continuing to emulate the rest of the machine.
111
112@item
113Various hardware devices can be emulated and in some cases, host
114devices (e.g. serial and parallel ports, USB, drives) can be used
115transparently by the guest Operating System. Host device passthrough
116can be used for talking to external physical peripherals (e.g. a
117webcam, modem or tape drive).
118
119@item
120Symmetric multiprocessing (SMP) support. Currently, an in-kernel
121accelerator is required to use more than one host CPU for emulation.
122
52c00a5f 123@end itemize
386405f7 124
0806e3f6 125
debc7065 126@node QEMU PC System emulator
3f9f3aa1 127@chapter QEMU PC System emulator
7544a042 128@cindex system emulation (PC)
1eb20527 129
debc7065
FB
130@menu
131* pcsys_introduction:: Introduction
132* pcsys_quickstart:: Quick Start
133* sec_invocation:: Invocation
a40db1b3
PM
134* pcsys_keys:: Keys in the graphical frontends
135* mux_keys:: Keys in the character backend multiplexer
debc7065
FB
136* pcsys_monitor:: QEMU Monitor
137* disk_images:: Disk Images
138* pcsys_network:: Network emulation
576fd0a1 139* pcsys_other_devs:: Other Devices
debc7065
FB
140* direct_linux_boot:: Direct Linux Boot
141* pcsys_usb:: USB emulation
f858dcae 142* vnc_security:: VNC security
debc7065
FB
143* gdb_usage:: GDB usage
144* pcsys_os_specific:: Target OS specific information
145@end menu
146
147@node pcsys_introduction
0806e3f6
FB
148@section Introduction
149
150@c man begin DESCRIPTION
151
3f9f3aa1
FB
152The QEMU PC System emulator simulates the
153following peripherals:
0806e3f6
FB
154
155@itemize @minus
5fafdf24 156@item
15a34c63 157i440FX host PCI bridge and PIIX3 PCI to ISA bridge
0806e3f6 158@item
15a34c63
FB
159Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
160extensions (hardware level, including all non standard modes).
0806e3f6
FB
161@item
162PS/2 mouse and keyboard
5fafdf24 163@item
15a34c63 1642 PCI IDE interfaces with hard disk and CD-ROM support
1f673135
FB
165@item
166Floppy disk
5fafdf24 167@item
3a2eeac0 168PCI and ISA network adapters
0806e3f6 169@item
05d5818c
FB
170Serial ports
171@item
23076bb3
CM
172IPMI BMC, either and internal or external one
173@item
c0fe3827
FB
174Creative SoundBlaster 16 sound card
175@item
176ENSONIQ AudioPCI ES1370 sound card
177@item
e5c9a13e
AZ
178Intel 82801AA AC97 Audio compatible sound card
179@item
7d72e762
GH
180Intel HD Audio Controller and HDA codec
181@item
2d983446 182Adlib (OPL2) - Yamaha YM3812 compatible chip
b389dbfb 183@item
26463dbc
AZ
184Gravis Ultrasound GF1 sound card
185@item
cc53d26d 186CS4231A compatible sound card
187@item
a92ff8c1 188PCI UHCI, OHCI, EHCI or XHCI USB controller and a virtual USB-1.1 hub.
0806e3f6
FB
189@end itemize
190
3f9f3aa1
FB
191SMP is supported with up to 255 CPUs.
192
a8ad4159 193QEMU uses the PC BIOS from the Seabios project and the Plex86/Bochs LGPL
15a34c63
FB
194VGA BIOS.
195
c0fe3827
FB
196QEMU uses YM3812 emulation by Tatsuyuki Satoh.
197
2d983446 198QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
26463dbc 199by Tibor "TS" Schütz.
423d65f4 200
1a1a0e20 201Note that, by default, GUS shares IRQ(7) with parallel ports and so
b65ee4fa 202QEMU must be told to not have parallel ports to have working GUS.
720036a5 203
204@example
3804da9d 205qemu-system-i386 dos.img -soundhw gus -parallel none
720036a5 206@end example
207
208Alternatively:
209@example
3804da9d 210qemu-system-i386 dos.img -device gus,irq=5
720036a5 211@end example
212
213Or some other unclaimed IRQ.
214
cc53d26d 215CS4231A is the chip used in Windows Sound System and GUSMAX products
216
0806e3f6
FB
217@c man end
218
debc7065 219@node pcsys_quickstart
1eb20527 220@section Quick Start
7544a042 221@cindex quick start
1eb20527 222
285dc330 223Download and uncompress the linux image (@file{linux.img}) and type:
0806e3f6
FB
224
225@example
3804da9d 226qemu-system-i386 linux.img
0806e3f6
FB
227@end example
228
229Linux should boot and give you a prompt.
230
6cc721cf 231@node sec_invocation
ec410fc9
FB
232@section Invocation
233
234@example
0806e3f6 235@c man begin SYNOPSIS
8485140f 236@command{qemu-system-i386} [@var{options}] [@var{disk_image}]
0806e3f6 237@c man end
ec410fc9
FB
238@end example
239
0806e3f6 240@c man begin OPTIONS
d2c639d6
BS
241@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
242targets do not need a disk image.
ec410fc9 243
5824d651 244@include qemu-options.texi
ec410fc9 245
3e11db9a
FB
246@c man end
247
e896d0f9
MA
248@subsection Device URL Syntax
249@c TODO merge this with section Disk Images
250
251@c man begin NOTES
252
253In addition to using normal file images for the emulated storage devices,
254QEMU can also use networked resources such as iSCSI devices. These are
255specified using a special URL syntax.
256
257@table @option
258@item iSCSI
259iSCSI support allows QEMU to access iSCSI resources directly and use as
260images for the guest storage. Both disk and cdrom images are supported.
261
262Syntax for specifying iSCSI LUNs is
263``iscsi://<target-ip>[:<port>]/<target-iqn>/<lun>''
264
265By default qemu will use the iSCSI initiator-name
266'iqn.2008-11.org.linux-kvm[:<name>]' but this can also be set from the command
267line or a configuration file.
268
269Since version Qemu 2.4 it is possible to specify a iSCSI request timeout to detect
270stalled requests and force a reestablishment of the session. The timeout
271is specified in seconds. The default is 0 which means no timeout. Libiscsi
2721.15.0 or greater is required for this feature.
273
274Example (without authentication):
275@example
276qemu-system-i386 -iscsi initiator-name=iqn.2001-04.com.example:my-initiator \
277 -cdrom iscsi://192.0.2.1/iqn.2001-04.com.example/2 \
278 -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1
279@end example
280
281Example (CHAP username/password via URL):
282@example
283qemu-system-i386 -drive file=iscsi://user%password@@192.0.2.1/iqn.2001-04.com.example/1
284@end example
285
286Example (CHAP username/password via environment variables):
287@example
288LIBISCSI_CHAP_USERNAME="user" \
289LIBISCSI_CHAP_PASSWORD="password" \
290qemu-system-i386 -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1
291@end example
292
293@item NBD
294QEMU supports NBD (Network Block Devices) both using TCP protocol as well
295as Unix Domain Sockets.
296
297Syntax for specifying a NBD device using TCP
298``nbd:<server-ip>:<port>[:exportname=<export>]''
299
300Syntax for specifying a NBD device using Unix Domain Sockets
301``nbd:unix:<domain-socket>[:exportname=<export>]''
302
303Example for TCP
304@example
305qemu-system-i386 --drive file=nbd:192.0.2.1:30000
306@end example
307
308Example for Unix Domain Sockets
309@example
310qemu-system-i386 --drive file=nbd:unix:/tmp/nbd-socket
311@end example
312
313@item SSH
314QEMU supports SSH (Secure Shell) access to remote disks.
315
316Examples:
317@example
318qemu-system-i386 -drive file=ssh://user@@host/path/to/disk.img
319qemu-system-i386 -drive file.driver=ssh,file.user=user,file.host=host,file.port=22,file.path=/path/to/disk.img
320@end example
321
322Currently authentication must be done using ssh-agent. Other
323authentication methods may be supported in future.
324
325@item Sheepdog
326Sheepdog is a distributed storage system for QEMU.
327QEMU supports using either local sheepdog devices or remote networked
328devices.
329
330Syntax for specifying a sheepdog device
331@example
332sheepdog[+tcp|+unix]://[host:port]/vdiname[?socket=path][#snapid|#tag]
333@end example
334
335Example
336@example
337qemu-system-i386 --drive file=sheepdog://192.0.2.1:30000/MyVirtualMachine
338@end example
339
340See also @url{https://sheepdog.github.io/sheepdog/}.
341
342@item GlusterFS
343GlusterFS is a user space distributed file system.
344QEMU supports the use of GlusterFS volumes for hosting VM disk images using
345TCP, Unix Domain Sockets and RDMA transport protocols.
346
347Syntax for specifying a VM disk image on GlusterFS volume is
348@example
349
350URI:
351gluster[+type]://[host[:port]]/volume/path[?socket=...][,debug=N][,logfile=...]
352
353JSON:
354'json:@{"driver":"qcow2","file":@{"driver":"gluster","volume":"testvol","path":"a.img","debug":N,"logfile":"...",
355@ "server":[@{"type":"tcp","host":"...","port":"..."@},
356@ @{"type":"unix","socket":"..."@}]@}@}'
357@end example
358
359
360Example
361@example
362URI:
363qemu-system-x86_64 --drive file=gluster://192.0.2.1/testvol/a.img,
364@ file.debug=9,file.logfile=/var/log/qemu-gluster.log
365
366JSON:
367qemu-system-x86_64 'json:@{"driver":"qcow2",
368@ "file":@{"driver":"gluster",
369@ "volume":"testvol","path":"a.img",
370@ "debug":9,"logfile":"/var/log/qemu-gluster.log",
371@ "server":[@{"type":"tcp","host":"1.2.3.4","port":24007@},
372@ @{"type":"unix","socket":"/var/run/glusterd.socket"@}]@}@}'
373qemu-system-x86_64 -drive driver=qcow2,file.driver=gluster,file.volume=testvol,file.path=/path/a.img,
374@ file.debug=9,file.logfile=/var/log/qemu-gluster.log,
375@ file.server.0.type=tcp,file.server.0.host=1.2.3.4,file.server.0.port=24007,
376@ file.server.1.type=unix,file.server.1.socket=/var/run/glusterd.socket
377@end example
378
379See also @url{http://www.gluster.org}.
380
381@item HTTP/HTTPS/FTP/FTPS
382QEMU supports read-only access to files accessed over http(s) and ftp(s).
383
384Syntax using a single filename:
385@example
386<protocol>://[<username>[:<password>]@@]<host>/<path>
387@end example
388
389where:
390@table @option
391@item protocol
392'http', 'https', 'ftp', or 'ftps'.
393
394@item username
395Optional username for authentication to the remote server.
396
397@item password
398Optional password for authentication to the remote server.
399
400@item host
401Address of the remote server.
402
403@item path
404Path on the remote server, including any query string.
405@end table
406
407The following options are also supported:
408@table @option
409@item url
410The full URL when passing options to the driver explicitly.
411
412@item readahead
413The amount of data to read ahead with each range request to the remote server.
414This value may optionally have the suffix 'T', 'G', 'M', 'K', 'k' or 'b'. If it
415does not have a suffix, it will be assumed to be in bytes. The value must be a
416multiple of 512 bytes. It defaults to 256k.
417
418@item sslverify
419Whether to verify the remote server's certificate when connecting over SSL. It
420can have the value 'on' or 'off'. It defaults to 'on'.
421
422@item cookie
423Send this cookie (it can also be a list of cookies separated by ';') with
424each outgoing request. Only supported when using protocols such as HTTP
425which support cookies, otherwise ignored.
426
427@item timeout
428Set the timeout in seconds of the CURL connection. This timeout is the time
429that CURL waits for a response from the remote server to get the size of the
430image to be downloaded. If not set, the default timeout of 5 seconds is used.
431@end table
432
433Note that when passing options to qemu explicitly, @option{driver} is the value
434of <protocol>.
435
436Example: boot from a remote Fedora 20 live ISO image
437@example
438qemu-system-x86_64 --drive media=cdrom,file=http://dl.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly
439
440qemu-system-x86_64 --drive media=cdrom,file.driver=http,file.url=http://dl.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly
441@end example
442
443Example: boot from a remote Fedora 20 cloud image using a local overlay for
444writes, copy-on-read, and a readahead of 64k
445@example
446qemu-img create -f qcow2 -o backing_file='json:@{"file.driver":"http",, "file.url":"https://dl.fedoraproject.org/pub/fedora/linux/releases/20/Images/x86_64/Fedora-x86_64-20-20131211.1-sda.qcow2",, "file.readahead":"64k"@}' /tmp/Fedora-x86_64-20-20131211.1-sda.qcow2
447
448qemu-system-x86_64 -drive file=/tmp/Fedora-x86_64-20-20131211.1-sda.qcow2,copy-on-read=on
449@end example
450
451Example: boot from an image stored on a VMware vSphere server with a self-signed
452certificate using a local overlay for writes, a readahead of 64k and a timeout
453of 10 seconds.
454@example
455qemu-img create -f qcow2 -o backing_file='json:@{"file.driver":"https",, "file.url":"https://user:password@@vsphere.example.com/folder/test/test-flat.vmdk?dcPath=Datacenter&dsName=datastore1",, "file.sslverify":"off",, "file.readahead":"64k",, "file.timeout":10@}' /tmp/test.qcow2
456
457qemu-system-x86_64 -drive file=/tmp/test.qcow2
458@end example
459
460@end table
461
462@c man end
463
debc7065 464@node pcsys_keys
a40db1b3 465@section Keys in the graphical frontends
3e11db9a
FB
466
467@c man begin OPTIONS
468
de1db2a1
BH
469During the graphical emulation, you can use special key combinations to change
470modes. The default key mappings are shown below, but if you use @code{-alt-grab}
471then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
472@code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
473
a1b74fe8 474@table @key
f9859310 475@item Ctrl-Alt-f
7544a042 476@kindex Ctrl-Alt-f
a1b74fe8 477Toggle full screen
a0a821a4 478
d6a65ba3
JK
479@item Ctrl-Alt-+
480@kindex Ctrl-Alt-+
481Enlarge the screen
482
483@item Ctrl-Alt--
484@kindex Ctrl-Alt--
485Shrink the screen
486
c4a735f9 487@item Ctrl-Alt-u
7544a042 488@kindex Ctrl-Alt-u
c4a735f9 489Restore the screen's un-scaled dimensions
490
f9859310 491@item Ctrl-Alt-n
7544a042 492@kindex Ctrl-Alt-n
a0a821a4
FB
493Switch to virtual console 'n'. Standard console mappings are:
494@table @emph
495@item 1
496Target system display
497@item 2
498Monitor
499@item 3
500Serial port
a1b74fe8
FB
501@end table
502
f9859310 503@item Ctrl-Alt
7544a042 504@kindex Ctrl-Alt
a0a821a4
FB
505Toggle mouse and keyboard grab.
506@end table
507
7544a042
SW
508@kindex Ctrl-Up
509@kindex Ctrl-Down
510@kindex Ctrl-PageUp
511@kindex Ctrl-PageDown
3e11db9a
FB
512In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
513@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
514
a40db1b3
PM
515@c man end
516
517@node mux_keys
518@section Keys in the character backend multiplexer
519
520@c man begin OPTIONS
521
522During emulation, if you are using a character backend multiplexer
523(which is the default if you are using @option{-nographic}) then
524several commands are available via an escape sequence. These
525key sequences all start with an escape character, which is @key{Ctrl-a}
526by default, but can be changed with @option{-echr}. The list below assumes
527you're using the default.
ec410fc9
FB
528
529@table @key
a1b74fe8 530@item Ctrl-a h
7544a042 531@kindex Ctrl-a h
ec410fc9 532Print this help
3b46e624 533@item Ctrl-a x
7544a042 534@kindex Ctrl-a x
366dfc52 535Exit emulator
3b46e624 536@item Ctrl-a s
7544a042 537@kindex Ctrl-a s
1f47a922 538Save disk data back to file (if -snapshot)
20d8a3ed 539@item Ctrl-a t
7544a042 540@kindex Ctrl-a t
d2c639d6 541Toggle console timestamps
a1b74fe8 542@item Ctrl-a b
7544a042 543@kindex Ctrl-a b
1f673135 544Send break (magic sysrq in Linux)
a1b74fe8 545@item Ctrl-a c
7544a042 546@kindex Ctrl-a c
a40db1b3
PM
547Rotate between the frontends connected to the multiplexer (usually
548this switches between the monitor and the console)
a1b74fe8 549@item Ctrl-a Ctrl-a
a40db1b3
PM
550@kindex Ctrl-a Ctrl-a
551Send the escape character to the frontend
ec410fc9 552@end table
0806e3f6
FB
553@c man end
554
555@ignore
556
1f673135
FB
557@c man begin SEEALSO
558The HTML documentation of QEMU for more precise information and Linux
559user mode emulator invocation.
560@c man end
561
562@c man begin AUTHOR
563Fabrice Bellard
564@c man end
565
566@end ignore
567
debc7065 568@node pcsys_monitor
1f673135 569@section QEMU Monitor
7544a042 570@cindex QEMU monitor
1f673135
FB
571
572The QEMU monitor is used to give complex commands to the QEMU
573emulator. You can use it to:
574
575@itemize @minus
576
577@item
e598752a 578Remove or insert removable media images
89dfe898 579(such as CD-ROM or floppies).
1f673135 580
5fafdf24 581@item
1f673135
FB
582Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
583from a disk file.
584
585@item Inspect the VM state without an external debugger.
586
587@end itemize
588
589@subsection Commands
590
591The following commands are available:
592
2313086a 593@include qemu-monitor.texi
0806e3f6 594
2cd8af2d
PB
595@include qemu-monitor-info.texi
596
1f673135
FB
597@subsection Integer expressions
598
599The monitor understands integers expressions for every integer
600argument. You can use register names to get the value of specifics
601CPU registers by prefixing them with @emph{$}.
ec410fc9 602
1f47a922
FB
603@node disk_images
604@section Disk Images
605
ee29bdb6
PB
606QEMU supports many disk image formats, including growable disk images
607(their size increase as non empty sectors are written), compressed and
608encrypted disk images.
1f47a922 609
debc7065
FB
610@menu
611* disk_images_quickstart:: Quick start for disk image creation
612* disk_images_snapshot_mode:: Snapshot mode
13a2e80f 613* vm_snapshots:: VM snapshots
debc7065 614* qemu_img_invocation:: qemu-img Invocation
975b092b 615* qemu_nbd_invocation:: qemu-nbd Invocation
d3067b02 616* disk_images_formats:: Disk image file formats
19cb3738 617* host_drives:: Using host drives
debc7065 618* disk_images_fat_images:: Virtual FAT disk images
75818250 619* disk_images_nbd:: NBD access
42af9c30 620* disk_images_sheepdog:: Sheepdog disk images
00984e39 621* disk_images_iscsi:: iSCSI LUNs
8809e289 622* disk_images_gluster:: GlusterFS disk images
0a12ec87 623* disk_images_ssh:: Secure Shell (ssh) disk images
b1d1cb27 624* disk_image_locking:: Disk image file locking
debc7065
FB
625@end menu
626
627@node disk_images_quickstart
acd935ef
FB
628@subsection Quick start for disk image creation
629
630You can create a disk image with the command:
1f47a922 631@example
acd935ef 632qemu-img create myimage.img mysize
1f47a922 633@end example
acd935ef
FB
634where @var{myimage.img} is the disk image filename and @var{mysize} is its
635size in kilobytes. You can add an @code{M} suffix to give the size in
636megabytes and a @code{G} suffix for gigabytes.
637
debc7065 638See @ref{qemu_img_invocation} for more information.
1f47a922 639
debc7065 640@node disk_images_snapshot_mode
1f47a922
FB
641@subsection Snapshot mode
642
643If you use the option @option{-snapshot}, all disk images are
644considered as read only. When sectors in written, they are written in
645a temporary file created in @file{/tmp}. You can however force the
acd935ef
FB
646write back to the raw disk images by using the @code{commit} monitor
647command (or @key{C-a s} in the serial console).
1f47a922 648
13a2e80f
FB
649@node vm_snapshots
650@subsection VM snapshots
651
652VM snapshots are snapshots of the complete virtual machine including
653CPU state, RAM, device state and the content of all the writable
654disks. In order to use VM snapshots, you must have at least one non
655removable and writable block device using the @code{qcow2} disk image
656format. Normally this device is the first virtual hard drive.
657
658Use the monitor command @code{savevm} to create a new VM snapshot or
659replace an existing one. A human readable name can be assigned to each
19d36792 660snapshot in addition to its numerical ID.
13a2e80f
FB
661
662Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
663a VM snapshot. @code{info snapshots} lists the available snapshots
664with their associated information:
665
666@example
667(qemu) info snapshots
668Snapshot devices: hda
669Snapshot list (from hda):
670ID TAG VM SIZE DATE VM CLOCK
6711 start 41M 2006-08-06 12:38:02 00:00:14.954
6722 40M 2006-08-06 12:43:29 00:00:18.633
6733 msys 40M 2006-08-06 12:44:04 00:00:23.514
674@end example
675
676A VM snapshot is made of a VM state info (its size is shown in
677@code{info snapshots}) and a snapshot of every writable disk image.
678The VM state info is stored in the first @code{qcow2} non removable
679and writable block device. The disk image snapshots are stored in
680every disk image. The size of a snapshot in a disk image is difficult
681to evaluate and is not shown by @code{info snapshots} because the
682associated disk sectors are shared among all the snapshots to save
19d36792
FB
683disk space (otherwise each snapshot would need a full copy of all the
684disk images).
13a2e80f
FB
685
686When using the (unrelated) @code{-snapshot} option
687(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
688but they are deleted as soon as you exit QEMU.
689
690VM snapshots currently have the following known limitations:
691@itemize
5fafdf24 692@item
13a2e80f
FB
693They cannot cope with removable devices if they are removed or
694inserted after a snapshot is done.
5fafdf24 695@item
13a2e80f
FB
696A few device drivers still have incomplete snapshot support so their
697state is not saved or restored properly (in particular USB).
698@end itemize
699
acd935ef
FB
700@node qemu_img_invocation
701@subsection @code{qemu-img} Invocation
1f47a922 702
acd935ef 703@include qemu-img.texi
05efe46e 704
975b092b
TS
705@node qemu_nbd_invocation
706@subsection @code{qemu-nbd} Invocation
707
708@include qemu-nbd.texi
709
78aa8aa0 710@include docs/qemu-block-drivers.texi
0a12ec87 711
debc7065 712@node pcsys_network
9d4fb82e
FB
713@section Network emulation
714
4be456f1 715QEMU can simulate several network cards (PCI or ISA cards on the PC
41d03949
FB
716target) and can connect them to an arbitrary number of Virtual Local
717Area Networks (VLANs). Host TAP devices can be connected to any QEMU
718VLAN. VLAN can be connected between separate instances of QEMU to
4be456f1 719simulate large networks. For simpler usage, a non privileged user mode
41d03949
FB
720network stack can replace the TAP device to have a basic network
721connection.
722
723@subsection VLANs
9d4fb82e 724
41d03949
FB
725QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
726connection between several network devices. These devices can be for
727example QEMU virtual Ethernet cards or virtual Host ethernet devices
728(TAP devices).
9d4fb82e 729
41d03949
FB
730@subsection Using TAP network interfaces
731
732This is the standard way to connect QEMU to a real network. QEMU adds
733a virtual network device on your host (called @code{tapN}), and you
734can then configure it as if it was a real ethernet card.
9d4fb82e 735
8f40c388
FB
736@subsubsection Linux host
737
9d4fb82e
FB
738As an example, you can download the @file{linux-test-xxx.tar.gz}
739archive and copy the script @file{qemu-ifup} in @file{/etc} and
740configure properly @code{sudo} so that the command @code{ifconfig}
741contained in @file{qemu-ifup} can be executed as root. You must verify
41d03949 742that your host kernel supports the TAP network interfaces: the
9d4fb82e
FB
743device @file{/dev/net/tun} must be present.
744
ee0f4751
FB
745See @ref{sec_invocation} to have examples of command lines using the
746TAP network interfaces.
9d4fb82e 747
8f40c388
FB
748@subsubsection Windows host
749
750There is a virtual ethernet driver for Windows 2000/XP systems, called
751TAP-Win32. But it is not included in standard QEMU for Windows,
752so you will need to get it separately. It is part of OpenVPN package,
70b7fba9 753so download OpenVPN from : @url{https://openvpn.net/}.
8f40c388 754
9d4fb82e
FB
755@subsection Using the user mode network stack
756
41d03949
FB
757By using the option @option{-net user} (default configuration if no
758@option{-net} option is specified), QEMU uses a completely user mode
4be456f1 759network stack (you don't need root privilege to use the virtual
41d03949 760network). The virtual network configuration is the following:
9d4fb82e
FB
761
762@example
763
41d03949
FB
764 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
765 | (10.0.2.2)
9d4fb82e 766 |
2518bd0d 767 ----> DNS server (10.0.2.3)
3b46e624 768 |
2518bd0d 769 ----> SMB server (10.0.2.4)
9d4fb82e
FB
770@end example
771
772The QEMU VM behaves as if it was behind a firewall which blocks all
773incoming connections. You can use a DHCP client to automatically
41d03949
FB
774configure the network in the QEMU VM. The DHCP server assign addresses
775to the hosts starting from 10.0.2.15.
9d4fb82e
FB
776
777In order to check that the user mode network is working, you can ping
778the address 10.0.2.2 and verify that you got an address in the range
77910.0.2.x from the QEMU virtual DHCP server.
780
37cbfcce
GH
781Note that ICMP traffic in general does not work with user mode networking.
782@code{ping}, aka. ICMP echo, to the local router (10.0.2.2) shall work,
783however. If you're using QEMU on Linux >= 3.0, it can use unprivileged ICMP
784ping sockets to allow @code{ping} to the Internet. The host admin has to set
785the ping_group_range in order to grant access to those sockets. To allow ping
786for GID 100 (usually users group):
787
788@example
789echo 100 100 > /proc/sys/net/ipv4/ping_group_range
790@end example
b415a407 791
9bf05444
FB
792When using the built-in TFTP server, the router is also the TFTP
793server.
794
c8c6afa8
TH
795When using the @option{'-netdev user,hostfwd=...'} option, TCP or UDP
796connections can be redirected from the host to the guest. It allows for
797example to redirect X11, telnet or SSH connections.
443f1376 798
41d03949
FB
799@subsection Connecting VLANs between QEMU instances
800
801Using the @option{-net socket} option, it is possible to make VLANs
802that span several QEMU instances. See @ref{sec_invocation} to have a
803basic example.
804
576fd0a1 805@node pcsys_other_devs
6cbf4c8c
CM
806@section Other Devices
807
808@subsection Inter-VM Shared Memory device
809
5400c02b
MA
810On Linux hosts, a shared memory device is available. The basic syntax
811is:
6cbf4c8c
CM
812
813@example
5400c02b
MA
814qemu-system-x86_64 -device ivshmem-plain,memdev=@var{hostmem}
815@end example
816
817where @var{hostmem} names a host memory backend. For a POSIX shared
818memory backend, use something like
819
820@example
821-object memory-backend-file,size=1M,share,mem-path=/dev/shm/ivshmem,id=@var{hostmem}
6cbf4c8c
CM
822@end example
823
824If desired, interrupts can be sent between guest VMs accessing the same shared
825memory region. Interrupt support requires using a shared memory server and
826using a chardev socket to connect to it. The code for the shared memory server
827is qemu.git/contrib/ivshmem-server. An example syntax when using the shared
828memory server is:
829
830@example
a75eb03b 831# First start the ivshmem server once and for all
50d34c4e 832ivshmem-server -p @var{pidfile} -S @var{path} -m @var{shm-name} -l @var{shm-size} -n @var{vectors}
a75eb03b
DM
833
834# Then start your qemu instances with matching arguments
5400c02b 835qemu-system-x86_64 -device ivshmem-doorbell,vectors=@var{vectors},chardev=@var{id}
50d34c4e 836 -chardev socket,path=@var{path},id=@var{id}
6cbf4c8c
CM
837@end example
838
839When using the server, the guest will be assigned a VM ID (>=0) that allows guests
840using the same server to communicate via interrupts. Guests can read their
1309cf44 841VM ID from a device register (see ivshmem-spec.txt).
6cbf4c8c 842
62a830b6
MA
843@subsubsection Migration with ivshmem
844
5400c02b
MA
845With device property @option{master=on}, the guest will copy the shared
846memory on migration to the destination host. With @option{master=off},
847the guest will not be able to migrate with the device attached. In the
848latter case, the device should be detached and then reattached after
849migration using the PCI hotplug support.
6cbf4c8c 850
62a830b6
MA
851At most one of the devices sharing the same memory can be master. The
852master must complete migration before you plug back the other devices.
853
7d4f4bda
MAL
854@subsubsection ivshmem and hugepages
855
856Instead of specifying the <shm size> using POSIX shm, you may specify
857a memory backend that has hugepage support:
858
859@example
5400c02b
MA
860qemu-system-x86_64 -object memory-backend-file,size=1G,mem-path=/dev/hugepages/my-shmem-file,share,id=mb1
861 -device ivshmem-plain,memdev=mb1
7d4f4bda
MAL
862@end example
863
864ivshmem-server also supports hugepages mount points with the
865@option{-m} memory path argument.
866
9d4fb82e
FB
867@node direct_linux_boot
868@section Direct Linux Boot
1f673135
FB
869
870This section explains how to launch a Linux kernel inside QEMU without
871having to make a full bootable image. It is very useful for fast Linux
ee0f4751 872kernel testing.
1f673135 873
ee0f4751 874The syntax is:
1f673135 875@example
3804da9d 876qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1f673135
FB
877@end example
878
ee0f4751
FB
879Use @option{-kernel} to provide the Linux kernel image and
880@option{-append} to give the kernel command line arguments. The
881@option{-initrd} option can be used to provide an INITRD image.
1f673135 882
ee0f4751
FB
883When using the direct Linux boot, a disk image for the first hard disk
884@file{hda} is required because its boot sector is used to launch the
885Linux kernel.
1f673135 886
ee0f4751
FB
887If you do not need graphical output, you can disable it and redirect
888the virtual serial port and the QEMU monitor to the console with the
889@option{-nographic} option. The typical command line is:
1f673135 890@example
3804da9d
SW
891qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
892 -append "root=/dev/hda console=ttyS0" -nographic
1f673135
FB
893@end example
894
ee0f4751
FB
895Use @key{Ctrl-a c} to switch between the serial console and the
896monitor (@pxref{pcsys_keys}).
1f673135 897
debc7065 898@node pcsys_usb
b389dbfb
FB
899@section USB emulation
900
a92ff8c1
TH
901QEMU can emulate a PCI UHCI, OHCI, EHCI or XHCI USB controller. You can
902plug virtual USB devices or real host USB devices (only works with certain
903host operating systems). QEMU will automatically create and connect virtual
904USB hubs as necessary to connect multiple USB devices.
b389dbfb 905
0aff66b5
PB
906@menu
907* usb_devices::
908* host_usb_devices::
909@end menu
910@node usb_devices
911@subsection Connecting USB devices
b389dbfb 912
a92ff8c1
TH
913USB devices can be connected with the @option{-device usb-...} command line
914option or the @code{device_add} monitor command. Available devices are:
b389dbfb 915
db380c06 916@table @code
a92ff8c1 917@item usb-mouse
0aff66b5 918Virtual Mouse. This will override the PS/2 mouse emulation when activated.
a92ff8c1 919@item usb-tablet
c6d46c20 920Pointer device that uses absolute coordinates (like a touchscreen).
b65ee4fa 921This means QEMU is able to report the mouse position without having
0aff66b5 922to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
a92ff8c1
TH
923@item usb-storage,drive=@var{drive_id}
924Mass storage device backed by @var{drive_id} (@pxref{disk_images})
925@item usb-uas
926USB attached SCSI device, see
70b7fba9 927@url{https://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/usb-storage.txt,usb-storage.txt}
a92ff8c1
TH
928for details
929@item usb-bot
930Bulk-only transport storage device, see
70b7fba9 931@url{https://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/usb-storage.txt,usb-storage.txt}
a92ff8c1
TH
932for details here, too
933@item usb-mtp,x-root=@var{dir}
934Media transfer protocol device, using @var{dir} as root of the file tree
935that is presented to the guest.
936@item usb-host,hostbus=@var{bus},hostaddr=@var{addr}
937Pass through the host device identified by @var{bus} and @var{addr}
938@item usb-host,vendorid=@var{vendor},productid=@var{product}
939Pass through the host device identified by @var{vendor} and @var{product} ID
940@item usb-wacom-tablet
f6d2a316
AZ
941Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
942above but it can be used with the tslib library because in addition to touch
943coordinates it reports touch pressure.
a92ff8c1 944@item usb-kbd
47b2d338 945Standard USB keyboard. Will override the PS/2 keyboard (if present).
a92ff8c1 946@item usb-serial,chardev=@var{id}
db380c06 947Serial converter. This emulates an FTDI FT232BM chip connected to host character
a92ff8c1
TH
948device @var{id}.
949@item usb-braille,chardev=@var{id}
2e4d9fb1 950Braille device. This will use BrlAPI to display the braille output on a real
a92ff8c1
TH
951or fake device referenced by @var{id}.
952@item usb-net[,netdev=@var{id}]
953Network adapter that supports CDC ethernet and RNDIS protocols. @var{id}
954specifies a netdev defined with @code{-netdev @dots{},id=@var{id}}.
9ad97e65 955For instance, user-mode networking can be used with
6c9f886c 956@example
a92ff8c1 957qemu-system-i386 [...] -netdev user,id=net0 -device usb-net,netdev=net0
6c9f886c 958@end example
a92ff8c1
TH
959@item usb-ccid
960Smartcard reader device
961@item usb-audio
962USB audio device
963@item usb-bt-dongle
964Bluetooth dongle for the transport layer of HCI. It is connected to HCI
965scatternet 0 by default (corresponds to @code{-bt hci,vlan=0}).
966Note that the syntax for the @code{-device usb-bt-dongle} option is not as
967useful yet as it was with the legacy @code{-usbdevice} option. So to
968configure an USB bluetooth device, you might need to use
969"@code{-usbdevice bt}[:@var{hci-type}]" instead. This configures a
970bluetooth dongle whose type is specified in the same format as with
2d564691
AZ
971the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
972no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
973This USB device implements the USB Transport Layer of HCI. Example
974usage:
975@example
8485140f 976@command{qemu-system-i386} [...@var{OPTIONS}...] @option{-usbdevice} bt:hci,vlan=3 @option{-bt} device:keyboard,vlan=3
2d564691 977@end example
0aff66b5 978@end table
b389dbfb 979
0aff66b5 980@node host_usb_devices
b389dbfb
FB
981@subsection Using host USB devices on a Linux host
982
983WARNING: this is an experimental feature. QEMU will slow down when
984using it. USB devices requiring real time streaming (i.e. USB Video
985Cameras) are not supported yet.
986
987@enumerate
5fafdf24 988@item If you use an early Linux 2.4 kernel, verify that no Linux driver
b389dbfb
FB
989is actually using the USB device. A simple way to do that is simply to
990disable the corresponding kernel module by renaming it from @file{mydriver.o}
991to @file{mydriver.o.disabled}.
992
993@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
994@example
995ls /proc/bus/usb
996001 devices drivers
997@end example
998
999@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1000@example
1001chown -R myuid /proc/bus/usb
1002@end example
1003
1004@item Launch QEMU and do in the monitor:
5fafdf24 1005@example
b389dbfb
FB
1006info usbhost
1007 Device 1.2, speed 480 Mb/s
1008 Class 00: USB device 1234:5678, USB DISK
1009@end example
1010You should see the list of the devices you can use (Never try to use
1011hubs, it won't work).
1012
1013@item Add the device in QEMU by using:
5fafdf24 1014@example
a92ff8c1 1015device_add usb-host,vendorid=0x1234,productid=0x5678
b389dbfb
FB
1016@end example
1017
a92ff8c1
TH
1018Normally the guest OS should report that a new USB device is plugged.
1019You can use the option @option{-device usb-host,...} to do the same.
b389dbfb
FB
1020
1021@item Now you can try to use the host USB device in QEMU.
1022
1023@end enumerate
1024
1025When relaunching QEMU, you may have to unplug and plug again the USB
1026device to make it work again (this is a bug).
1027
f858dcae
TS
1028@node vnc_security
1029@section VNC security
1030
1031The VNC server capability provides access to the graphical console
1032of the guest VM across the network. This has a number of security
1033considerations depending on the deployment scenarios.
1034
1035@menu
1036* vnc_sec_none::
1037* vnc_sec_password::
1038* vnc_sec_certificate::
1039* vnc_sec_certificate_verify::
1040* vnc_sec_certificate_pw::
2f9606b3
AL
1041* vnc_sec_sasl::
1042* vnc_sec_certificate_sasl::
f858dcae 1043* vnc_generate_cert::
2f9606b3 1044* vnc_setup_sasl::
f858dcae
TS
1045@end menu
1046@node vnc_sec_none
1047@subsection Without passwords
1048
1049The simplest VNC server setup does not include any form of authentication.
1050For this setup it is recommended to restrict it to listen on a UNIX domain
1051socket only. For example
1052
1053@example
3804da9d 1054qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
f858dcae
TS
1055@end example
1056
1057This ensures that only users on local box with read/write access to that
1058path can access the VNC server. To securely access the VNC server from a
1059remote machine, a combination of netcat+ssh can be used to provide a secure
1060tunnel.
1061
1062@node vnc_sec_password
1063@subsection With passwords
1064
1065The VNC protocol has limited support for password based authentication. Since
1066the protocol limits passwords to 8 characters it should not be considered
1067to provide high security. The password can be fairly easily brute-forced by
1068a client making repeat connections. For this reason, a VNC server using password
1069authentication should be restricted to only listen on the loopback interface
0f66998f
PM
1070or UNIX domain sockets. Password authentication is not supported when operating
1071in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password
1072authentication is requested with the @code{password} option, and then once QEMU
1073is running the password is set with the monitor. Until the monitor is used to
1074set the password all clients will be rejected.
f858dcae
TS
1075
1076@example
3804da9d 1077qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio
f858dcae
TS
1078(qemu) change vnc password
1079Password: ********
1080(qemu)
1081@end example
1082
1083@node vnc_sec_certificate
1084@subsection With x509 certificates
1085
1086The QEMU VNC server also implements the VeNCrypt extension allowing use of
1087TLS for encryption of the session, and x509 certificates for authentication.
1088The use of x509 certificates is strongly recommended, because TLS on its
1089own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1090support provides a secure session, but no authentication. This allows any
1091client to connect, and provides an encrypted session.
1092
1093@example
3804da9d 1094qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
f858dcae
TS
1095@end example
1096
1097In the above example @code{/etc/pki/qemu} should contain at least three files,
1098@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1099users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1100NB the @code{server-key.pem} file should be protected with file mode 0600 to
1101only be readable by the user owning it.
1102
1103@node vnc_sec_certificate_verify
1104@subsection With x509 certificates and client verification
1105
1106Certificates can also provide a means to authenticate the client connecting.
1107The server will request that the client provide a certificate, which it will
1108then validate against the CA certificate. This is a good choice if deploying
1109in an environment with a private internal certificate authority.
1110
1111@example
3804da9d 1112qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
f858dcae
TS
1113@end example
1114
1115
1116@node vnc_sec_certificate_pw
1117@subsection With x509 certificates, client verification and passwords
1118
1119Finally, the previous method can be combined with VNC password authentication
1120to provide two layers of authentication for clients.
1121
1122@example
3804da9d 1123qemu-system-i386 [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
f858dcae
TS
1124(qemu) change vnc password
1125Password: ********
1126(qemu)
1127@end example
1128
2f9606b3
AL
1129
1130@node vnc_sec_sasl
1131@subsection With SASL authentication
1132
1133The SASL authentication method is a VNC extension, that provides an
1134easily extendable, pluggable authentication method. This allows for
1135integration with a wide range of authentication mechanisms, such as
1136PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1137The strength of the authentication depends on the exact mechanism
1138configured. If the chosen mechanism also provides a SSF layer, then
1139it will encrypt the datastream as well.
1140
1141Refer to the later docs on how to choose the exact SASL mechanism
1142used for authentication, but assuming use of one supporting SSF,
1143then QEMU can be launched with:
1144
1145@example
3804da9d 1146qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio
2f9606b3
AL
1147@end example
1148
1149@node vnc_sec_certificate_sasl
1150@subsection With x509 certificates and SASL authentication
1151
1152If the desired SASL authentication mechanism does not supported
1153SSF layers, then it is strongly advised to run it in combination
1154with TLS and x509 certificates. This provides securely encrypted
1155data stream, avoiding risk of compromising of the security
1156credentials. This can be enabled, by combining the 'sasl' option
1157with the aforementioned TLS + x509 options:
1158
1159@example
3804da9d 1160qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
2f9606b3
AL
1161@end example
1162
1163
f858dcae
TS
1164@node vnc_generate_cert
1165@subsection Generating certificates for VNC
1166
1167The GNU TLS packages provides a command called @code{certtool} which can
1168be used to generate certificates and keys in PEM format. At a minimum it
40c5c6cd 1169is necessary to setup a certificate authority, and issue certificates to
f858dcae
TS
1170each server. If using certificates for authentication, then each client
1171will also need to be issued a certificate. The recommendation is for the
1172server to keep its certificates in either @code{/etc/pki/qemu} or for
1173unprivileged users in @code{$HOME/.pki/qemu}.
1174
1175@menu
1176* vnc_generate_ca::
1177* vnc_generate_server::
1178* vnc_generate_client::
1179@end menu
1180@node vnc_generate_ca
1181@subsubsection Setup the Certificate Authority
1182
1183This step only needs to be performed once per organization / organizational
1184unit. First the CA needs a private key. This key must be kept VERY secret
1185and secure. If this key is compromised the entire trust chain of the certificates
1186issued with it is lost.
1187
1188@example
1189# certtool --generate-privkey > ca-key.pem
1190@end example
1191
1192A CA needs to have a public certificate. For simplicity it can be a self-signed
1193certificate, or one issue by a commercial certificate issuing authority. To
1194generate a self-signed certificate requires one core piece of information, the
1195name of the organization.
1196
1197@example
1198# cat > ca.info <<EOF
1199cn = Name of your organization
1200ca
1201cert_signing_key
1202EOF
1203# certtool --generate-self-signed \
1204 --load-privkey ca-key.pem
1205 --template ca.info \
1206 --outfile ca-cert.pem
1207@end example
1208
1209The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1210TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1211
1212@node vnc_generate_server
1213@subsubsection Issuing server certificates
1214
1215Each server (or host) needs to be issued with a key and certificate. When connecting
1216the certificate is sent to the client which validates it against the CA certificate.
1217The core piece of information for a server certificate is the hostname. This should
1218be the fully qualified hostname that the client will connect with, since the client
1219will typically also verify the hostname in the certificate. On the host holding the
1220secure CA private key:
1221
1222@example
1223# cat > server.info <<EOF
1224organization = Name of your organization
1225cn = server.foo.example.com
1226tls_www_server
1227encryption_key
1228signing_key
1229EOF
1230# certtool --generate-privkey > server-key.pem
1231# certtool --generate-certificate \
1232 --load-ca-certificate ca-cert.pem \
1233 --load-ca-privkey ca-key.pem \
63c693f8 1234 --load-privkey server-key.pem \
f858dcae
TS
1235 --template server.info \
1236 --outfile server-cert.pem
1237@end example
1238
1239The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1240to the server for which they were generated. The @code{server-key.pem} is security
1241sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1242
1243@node vnc_generate_client
1244@subsubsection Issuing client certificates
1245
1246If the QEMU VNC server is to use the @code{x509verify} option to validate client
1247certificates as its authentication mechanism, each client also needs to be issued
1248a certificate. The client certificate contains enough metadata to uniquely identify
1249the client, typically organization, state, city, building, etc. On the host holding
1250the secure CA private key:
1251
1252@example
1253# cat > client.info <<EOF
1254country = GB
1255state = London
1256locality = London
63c693f8 1257organization = Name of your organization
f858dcae
TS
1258cn = client.foo.example.com
1259tls_www_client
1260encryption_key
1261signing_key
1262EOF
1263# certtool --generate-privkey > client-key.pem
1264# certtool --generate-certificate \
1265 --load-ca-certificate ca-cert.pem \
1266 --load-ca-privkey ca-key.pem \
1267 --load-privkey client-key.pem \
1268 --template client.info \
1269 --outfile client-cert.pem
1270@end example
1271
1272The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1273copied to the client for which they were generated.
1274
2f9606b3
AL
1275
1276@node vnc_setup_sasl
1277
1278@subsection Configuring SASL mechanisms
1279
1280The following documentation assumes use of the Cyrus SASL implementation on a
1281Linux host, but the principals should apply to any other SASL impl. When SASL
1282is enabled, the mechanism configuration will be loaded from system default
1283SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1284unprivileged user, an environment variable SASL_CONF_PATH can be used
1285to make it search alternate locations for the service config.
1286
c6a9a9f5
DB
1287If the TLS option is enabled for VNC, then it will provide session encryption,
1288otherwise the SASL mechanism will have to provide encryption. In the latter
1289case the list of possible plugins that can be used is drastically reduced. In
1290fact only the GSSAPI SASL mechanism provides an acceptable level of security
1291by modern standards. Previous versions of QEMU referred to the DIGEST-MD5
1292mechanism, however, it has multiple serious flaws described in detail in
1293RFC 6331 and thus should never be used any more. The SCRAM-SHA-1 mechanism
1294provides a simple username/password auth facility similar to DIGEST-MD5, but
1295does not support session encryption, so can only be used in combination with
1296TLS.
1297
1298When not using TLS the recommended configuration is
2f9606b3
AL
1299
1300@example
c6a9a9f5
DB
1301mech_list: gssapi
1302keytab: /etc/qemu/krb5.tab
2f9606b3
AL
1303@end example
1304
c6a9a9f5
DB
1305This says to use the 'GSSAPI' mechanism with the Kerberos v5 protocol, with
1306the server principal stored in /etc/qemu/krb5.tab. For this to work the
1307administrator of your KDC must generate a Kerberos principal for the server,
1308with a name of 'qemu/somehost.example.com@@EXAMPLE.COM' replacing
1309'somehost.example.com' with the fully qualified host name of the machine
1310running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
2f9606b3 1311
c6a9a9f5
DB
1312When using TLS, if username+password authentication is desired, then a
1313reasonable configuration is
2f9606b3
AL
1314
1315@example
c6a9a9f5
DB
1316mech_list: scram-sha-1
1317sasldb_path: /etc/qemu/passwd.db
2f9606b3
AL
1318@end example
1319
c6a9a9f5
DB
1320The saslpasswd2 program can be used to populate the passwd.db file with
1321accounts.
2f9606b3 1322
c6a9a9f5
DB
1323Other SASL configurations will be left as an exercise for the reader. Note that
1324all mechanisms except GSSAPI, should be combined with use of TLS to ensure a
1325secure data channel.
2f9606b3 1326
0806e3f6 1327@node gdb_usage
da415d54
FB
1328@section GDB usage
1329
1330QEMU has a primitive support to work with gdb, so that you can do
0806e3f6 1331'Ctrl-C' while the virtual machine is running and inspect its state.
da415d54 1332
b65ee4fa 1333In order to use gdb, launch QEMU with the '-s' option. It will wait for a
da415d54
FB
1334gdb connection:
1335@example
3804da9d
SW
1336qemu-system-i386 -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1337 -append "root=/dev/hda"
da415d54
FB
1338Connected to host network interface: tun0
1339Waiting gdb connection on port 1234
1340@end example
1341
1342Then launch gdb on the 'vmlinux' executable:
1343@example
1344> gdb vmlinux
1345@end example
1346
1347In gdb, connect to QEMU:
1348@example
6c9bf893 1349(gdb) target remote localhost:1234
da415d54
FB
1350@end example
1351
1352Then you can use gdb normally. For example, type 'c' to launch the kernel:
1353@example
1354(gdb) c
1355@end example
1356
0806e3f6
FB
1357Here are some useful tips in order to use gdb on system code:
1358
1359@enumerate
1360@item
1361Use @code{info reg} to display all the CPU registers.
1362@item
1363Use @code{x/10i $eip} to display the code at the PC position.
1364@item
1365Use @code{set architecture i8086} to dump 16 bit code. Then use
294e8637 1366@code{x/10i $cs*16+$eip} to dump the code at the PC position.
0806e3f6
FB
1367@end enumerate
1368
60897d36
EI
1369Advanced debugging options:
1370
b6af0975 1371The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
94d45e44 1372@table @code
60897d36
EI
1373@item maintenance packet qqemu.sstepbits
1374
1375This will display the MASK bits used to control the single stepping IE:
1376@example
1377(gdb) maintenance packet qqemu.sstepbits
1378sending: "qqemu.sstepbits"
1379received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1380@end example
1381@item maintenance packet qqemu.sstep
1382
1383This will display the current value of the mask used when single stepping IE:
1384@example
1385(gdb) maintenance packet qqemu.sstep
1386sending: "qqemu.sstep"
1387received: "0x7"
1388@end example
1389@item maintenance packet Qqemu.sstep=HEX_VALUE
1390
1391This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1392@example
1393(gdb) maintenance packet Qqemu.sstep=0x5
1394sending: "qemu.sstep=0x5"
1395received: "OK"
1396@end example
94d45e44 1397@end table
60897d36 1398
debc7065 1399@node pcsys_os_specific
1a084f3d
FB
1400@section Target OS specific information
1401
1402@subsection Linux
1403
15a34c63
FB
1404To have access to SVGA graphic modes under X11, use the @code{vesa} or
1405the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1406color depth in the guest and the host OS.
1a084f3d 1407
e3371e62
FB
1408When using a 2.6 guest Linux kernel, you should add the option
1409@code{clock=pit} on the kernel command line because the 2.6 Linux
1410kernels make very strict real time clock checks by default that QEMU
1411cannot simulate exactly.
1412
7c3fc84d
FB
1413When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1414not activated because QEMU is slower with this patch. The QEMU
1415Accelerator Module is also much slower in this case. Earlier Fedora
4be456f1 1416Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
7c3fc84d
FB
1417patch by default. Newer kernels don't have it.
1418
1a084f3d
FB
1419@subsection Windows
1420
1421If you have a slow host, using Windows 95 is better as it gives the
1422best speed. Windows 2000 is also a good choice.
1423
e3371e62
FB
1424@subsubsection SVGA graphic modes support
1425
1426QEMU emulates a Cirrus Logic GD5446 Video
15a34c63
FB
1427card. All Windows versions starting from Windows 95 should recognize
1428and use this graphic card. For optimal performances, use 16 bit color
1429depth in the guest and the host OS.
1a084f3d 1430
3cb0853a
FB
1431If you are using Windows XP as guest OS and if you want to use high
1432resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
14331280x1024x16), then you should use the VESA VBE virtual graphic card
1434(option @option{-std-vga}).
1435
e3371e62
FB
1436@subsubsection CPU usage reduction
1437
1438Windows 9x does not correctly use the CPU HLT
15a34c63
FB
1439instruction. The result is that it takes host CPU cycles even when
1440idle. You can install the utility from
70b7fba9 1441@url{https://web.archive.org/web/20060212132151/http://www.user.cityline.ru/~maxamn/amnhltm.zip}
3ba34a70 1442to solve this problem. Note that no such tool is needed for NT, 2000 or XP.
1a084f3d 1443
9d0a8e6f 1444@subsubsection Windows 2000 disk full problem
e3371e62 1445
9d0a8e6f
FB
1446Windows 2000 has a bug which gives a disk full problem during its
1447installation. When installing it, use the @option{-win2k-hack} QEMU
1448option to enable a specific workaround. After Windows 2000 is
1449installed, you no longer need this option (this option slows down the
1450IDE transfers).
e3371e62 1451
6cc721cf
FB
1452@subsubsection Windows 2000 shutdown
1453
1454Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1455can. It comes from the fact that Windows 2000 does not automatically
1456use the APM driver provided by the BIOS.
1457
1458In order to correct that, do the following (thanks to Struan
1459Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1460Add/Troubleshoot a device => Add a new device & Next => No, select the
1461hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1462(again) a few times. Now the driver is installed and Windows 2000 now
5fafdf24 1463correctly instructs QEMU to shutdown at the appropriate moment.
6cc721cf
FB
1464
1465@subsubsection Share a directory between Unix and Windows
1466
c8c6afa8
TH
1467See @ref{sec_invocation} about the help of the option
1468@option{'-netdev user,smb=...'}.
6cc721cf 1469
2192c332 1470@subsubsection Windows XP security problem
e3371e62
FB
1471
1472Some releases of Windows XP install correctly but give a security
1473error when booting:
1474@example
1475A problem is preventing Windows from accurately checking the
1476license for this computer. Error code: 0x800703e6.
1477@end example
e3371e62 1478
2192c332
FB
1479The workaround is to install a service pack for XP after a boot in safe
1480mode. Then reboot, and the problem should go away. Since there is no
1481network while in safe mode, its recommended to download the full
1482installation of SP1 or SP2 and transfer that via an ISO or using the
1483vvfat block device ("-hdb fat:directory_which_holds_the_SP").
e3371e62 1484
a0a821a4
FB
1485@subsection MS-DOS and FreeDOS
1486
1487@subsubsection CPU usage reduction
1488
1489DOS does not correctly use the CPU HLT instruction. The result is that
3ba34a70 1490it takes host CPU cycles even when idle. You can install the utility from
70b7fba9 1491@url{https://web.archive.org/web/20051222085335/http://www.vmware.com/software/dosidle210.zip}
3ba34a70 1492to solve this problem.
a0a821a4 1493
debc7065 1494@node QEMU System emulator for non PC targets
3f9f3aa1
FB
1495@chapter QEMU System emulator for non PC targets
1496
1497QEMU is a generic emulator and it emulates many non PC
1498machines. Most of the options are similar to the PC emulator. The
4be456f1 1499differences are mentioned in the following sections.
3f9f3aa1 1500
debc7065 1501@menu
7544a042 1502* PowerPC System emulator::
24d4de45
TS
1503* Sparc32 System emulator::
1504* Sparc64 System emulator::
1505* MIPS System emulator::
1506* ARM System emulator::
1507* ColdFire System emulator::
7544a042
SW
1508* Cris System emulator::
1509* Microblaze System emulator::
1510* SH4 System emulator::
3aeaea65 1511* Xtensa System emulator::
debc7065
FB
1512@end menu
1513
7544a042
SW
1514@node PowerPC System emulator
1515@section PowerPC System emulator
1516@cindex system emulation (PowerPC)
1a084f3d 1517
15a34c63
FB
1518Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1519or PowerMac PowerPC system.
1a084f3d 1520
b671f9ed 1521QEMU emulates the following PowerMac peripherals:
1a084f3d 1522
15a34c63 1523@itemize @minus
5fafdf24 1524@item
006f3a48 1525UniNorth or Grackle PCI Bridge
15a34c63
FB
1526@item
1527PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1528@item
15a34c63 15292 PMAC IDE interfaces with hard disk and CD-ROM support
5fafdf24 1530@item
15a34c63
FB
1531NE2000 PCI adapters
1532@item
1533Non Volatile RAM
1534@item
1535VIA-CUDA with ADB keyboard and mouse.
1a084f3d
FB
1536@end itemize
1537
b671f9ed 1538QEMU emulates the following PREP peripherals:
52c00a5f
FB
1539
1540@itemize @minus
5fafdf24 1541@item
15a34c63
FB
1542PCI Bridge
1543@item
1544PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1545@item
52c00a5f
FB
15462 IDE interfaces with hard disk and CD-ROM support
1547@item
1548Floppy disk
5fafdf24 1549@item
15a34c63 1550NE2000 network adapters
52c00a5f
FB
1551@item
1552Serial port
1553@item
1554PREP Non Volatile RAM
15a34c63
FB
1555@item
1556PC compatible keyboard and mouse.
52c00a5f
FB
1557@end itemize
1558
15a34c63 1559QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
3f9f3aa1 1560@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
52c00a5f 1561
70b7fba9 1562Since version 0.9.1, QEMU uses OpenBIOS @url{https://www.openbios.org/}
006f3a48
BS
1563for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1564v2) portable firmware implementation. The goal is to implement a 100%
1565IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
992e5acd 1566
15a34c63
FB
1567@c man begin OPTIONS
1568
1569The following options are specific to the PowerPC emulation:
1570
1571@table @option
1572
4e257e5e 1573@item -g @var{W}x@var{H}[x@var{DEPTH}]
15a34c63 1574
340fb41b 1575Set the initial VGA graphic mode. The default is 800x600x32.
15a34c63 1576
4e257e5e 1577@item -prom-env @var{string}
95efd11c
BS
1578
1579Set OpenBIOS variables in NVRAM, for example:
1580
1581@example
1582qemu-system-ppc -prom-env 'auto-boot?=false' \
1583 -prom-env 'boot-device=hd:2,\yaboot' \
1584 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1585@end example
1586
1587These variables are not used by Open Hack'Ware.
1588
15a34c63
FB
1589@end table
1590
5fafdf24 1591@c man end
15a34c63
FB
1592
1593
52c00a5f 1594More information is available at
3f9f3aa1 1595@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
52c00a5f 1596
24d4de45
TS
1597@node Sparc32 System emulator
1598@section Sparc32 System emulator
7544a042 1599@cindex system emulation (Sparc32)
e80cfcfc 1600
34a3d239
BS
1601Use the executable @file{qemu-system-sparc} to simulate the following
1602Sun4m architecture machines:
1603@itemize @minus
1604@item
1605SPARCstation 4
1606@item
1607SPARCstation 5
1608@item
1609SPARCstation 10
1610@item
1611SPARCstation 20
1612@item
1613SPARCserver 600MP
1614@item
1615SPARCstation LX
1616@item
1617SPARCstation Voyager
1618@item
1619SPARCclassic
1620@item
1621SPARCbook
1622@end itemize
1623
1624The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1625but Linux limits the number of usable CPUs to 4.
e80cfcfc 1626
6a4e1771 1627QEMU emulates the following sun4m peripherals:
e80cfcfc
FB
1628
1629@itemize @minus
3475187d 1630@item
6a4e1771 1631IOMMU
e80cfcfc 1632@item
33632788 1633TCX or cgthree Frame buffer
5fafdf24 1634@item
e80cfcfc
FB
1635Lance (Am7990) Ethernet
1636@item
34a3d239 1637Non Volatile RAM M48T02/M48T08
e80cfcfc 1638@item
3475187d
FB
1639Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1640and power/reset logic
1641@item
1642ESP SCSI controller with hard disk and CD-ROM support
1643@item
6a3b9cc9 1644Floppy drive (not on SS-600MP)
a2502b58
BS
1645@item
1646CS4231 sound device (only on SS-5, not working yet)
e80cfcfc
FB
1647@end itemize
1648
6a3b9cc9
BS
1649The number of peripherals is fixed in the architecture. Maximum
1650memory size depends on the machine type, for SS-5 it is 256MB and for
7d85892b 1651others 2047MB.
3475187d 1652
30a604f3 1653Since version 0.8.2, QEMU uses OpenBIOS
70b7fba9 1654@url{https://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
0986ac3b
FB
1655firmware implementation. The goal is to implement a 100% IEEE
16561275-1994 (referred to as Open Firmware) compliant firmware.
3475187d
FB
1657
1658A sample Linux 2.6 series kernel and ram disk image are available on
34a3d239 1659the QEMU web site. There are still issues with NetBSD and OpenBSD, but
9bb9f217 1660most kernel versions work. Please note that currently older Solaris kernels
34a3d239
BS
1661don't work probably due to interface issues between OpenBIOS and
1662Solaris.
3475187d
FB
1663
1664@c man begin OPTIONS
1665
a2502b58 1666The following options are specific to the Sparc32 emulation:
3475187d
FB
1667
1668@table @option
1669
4e257e5e 1670@item -g @var{W}x@var{H}x[x@var{DEPTH}]
3475187d 1671
33632788
MCA
1672Set the initial graphics mode. For TCX, the default is 1024x768x8 with the
1673option of 1024x768x24. For cgthree, the default is 1024x768x8 with the option
1674of 1152x900x8 for people who wish to use OBP.
3475187d 1675
4e257e5e 1676@item -prom-env @var{string}
66508601
BS
1677
1678Set OpenBIOS variables in NVRAM, for example:
1679
1680@example
1681qemu-system-sparc -prom-env 'auto-boot?=false' \
1682 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1683@end example
1684
6a4e1771 1685@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook]
a2502b58
BS
1686
1687Set the emulated machine type. Default is SS-5.
1688
3475187d
FB
1689@end table
1690
5fafdf24 1691@c man end
3475187d 1692
24d4de45
TS
1693@node Sparc64 System emulator
1694@section Sparc64 System emulator
7544a042 1695@cindex system emulation (Sparc64)
e80cfcfc 1696
34a3d239
BS
1697Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
1698(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
9bb9f217
MCA
1699Niagara (T1) machine. The Sun4u emulator is mostly complete, being
1700able to run Linux, NetBSD and OpenBSD in headless (-nographic) mode. The
a2664ca0
AT
1701Sun4v emulator is still a work in progress.
1702
1703The Niagara T1 emulator makes use of firmware and OS binaries supplied in the S10image/ directory
1704of the OpenSPARC T1 project @url{http://download.oracle.com/technetwork/systems/opensparc/OpenSPARCT1_Arch.1.5.tar.bz2}
1705and is able to boot the disk.s10hw2 Solaris image.
1706@example
1707qemu-system-sparc64 -M niagara -L /path-to/S10image/ \
1708 -nographic -m 256 \
1709 -drive if=pflash,readonly=on,file=/S10image/disk.s10hw2
1710@end example
1711
b756921a 1712
c7ba218d 1713QEMU emulates the following peripherals:
83469015
FB
1714
1715@itemize @minus
1716@item
5fafdf24 1717UltraSparc IIi APB PCI Bridge
83469015
FB
1718@item
1719PCI VGA compatible card with VESA Bochs Extensions
1720@item
34a3d239
BS
1721PS/2 mouse and keyboard
1722@item
83469015
FB
1723Non Volatile RAM M48T59
1724@item
1725PC-compatible serial ports
c7ba218d
BS
1726@item
17272 PCI IDE interfaces with hard disk and CD-ROM support
34a3d239
BS
1728@item
1729Floppy disk
83469015
FB
1730@end itemize
1731
c7ba218d
BS
1732@c man begin OPTIONS
1733
1734The following options are specific to the Sparc64 emulation:
1735
1736@table @option
1737
4e257e5e 1738@item -prom-env @var{string}
34a3d239
BS
1739
1740Set OpenBIOS variables in NVRAM, for example:
1741
1742@example
1743qemu-system-sparc64 -prom-env 'auto-boot?=false'
1744@end example
1745
a2664ca0 1746@item -M [sun4u|sun4v|niagara]
c7ba218d
BS
1747
1748Set the emulated machine type. The default is sun4u.
1749
1750@end table
1751
1752@c man end
1753
24d4de45
TS
1754@node MIPS System emulator
1755@section MIPS System emulator
7544a042 1756@cindex system emulation (MIPS)
9d0a8e6f 1757
d9aedc32
TS
1758Four executables cover simulation of 32 and 64-bit MIPS systems in
1759both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
1760@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
88cb0a02 1761Five different machine types are emulated:
24d4de45
TS
1762
1763@itemize @minus
1764@item
1765A generic ISA PC-like machine "mips"
1766@item
1767The MIPS Malta prototype board "malta"
1768@item
d9aedc32 1769An ACER Pica "pica61". This machine needs the 64-bit emulator.
6bf5b4e8 1770@item
f0fc6f8f 1771MIPS emulator pseudo board "mipssim"
88cb0a02
AJ
1772@item
1773A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
24d4de45
TS
1774@end itemize
1775
1776The generic emulation is supported by Debian 'Etch' and is able to
1777install Debian into a virtual disk image. The following devices are
1778emulated:
3f9f3aa1
FB
1779
1780@itemize @minus
5fafdf24 1781@item
6bf5b4e8 1782A range of MIPS CPUs, default is the 24Kf
3f9f3aa1
FB
1783@item
1784PC style serial port
1785@item
24d4de45
TS
1786PC style IDE disk
1787@item
3f9f3aa1
FB
1788NE2000 network card
1789@end itemize
1790
24d4de45
TS
1791The Malta emulation supports the following devices:
1792
1793@itemize @minus
1794@item
0b64d008 1795Core board with MIPS 24Kf CPU and Galileo system controller
24d4de45
TS
1796@item
1797PIIX4 PCI/USB/SMbus controller
1798@item
1799The Multi-I/O chip's serial device
1800@item
3a2eeac0 1801PCI network cards (PCnet32 and others)
24d4de45
TS
1802@item
1803Malta FPGA serial device
1804@item
1f605a76 1805Cirrus (default) or any other PCI VGA graphics card
24d4de45
TS
1806@end itemize
1807
1808The ACER Pica emulation supports:
1809
1810@itemize @minus
1811@item
1812MIPS R4000 CPU
1813@item
1814PC-style IRQ and DMA controllers
1815@item
1816PC Keyboard
1817@item
1818IDE controller
1819@end itemize
3f9f3aa1 1820
b5e4946f 1821The mipssim pseudo board emulation provides an environment similar
f0fc6f8f
TS
1822to what the proprietary MIPS emulator uses for running Linux.
1823It supports:
6bf5b4e8
TS
1824
1825@itemize @minus
1826@item
1827A range of MIPS CPUs, default is the 24Kf
1828@item
1829PC style serial port
1830@item
1831MIPSnet network emulation
1832@end itemize
1833
88cb0a02
AJ
1834The MIPS Magnum R4000 emulation supports:
1835
1836@itemize @minus
1837@item
1838MIPS R4000 CPU
1839@item
1840PC-style IRQ controller
1841@item
1842PC Keyboard
1843@item
1844SCSI controller
1845@item
1846G364 framebuffer
1847@end itemize
1848
1849
24d4de45
TS
1850@node ARM System emulator
1851@section ARM System emulator
7544a042 1852@cindex system emulation (ARM)
3f9f3aa1
FB
1853
1854Use the executable @file{qemu-system-arm} to simulate a ARM
1855machine. The ARM Integrator/CP board is emulated with the following
1856devices:
1857
1858@itemize @minus
1859@item
9ee6e8bb 1860ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
3f9f3aa1
FB
1861@item
1862Two PL011 UARTs
5fafdf24 1863@item
3f9f3aa1 1864SMC 91c111 Ethernet adapter
00a9bf19
PB
1865@item
1866PL110 LCD controller
1867@item
1868PL050 KMI with PS/2 keyboard and mouse.
a1bb27b1
PB
1869@item
1870PL181 MultiMedia Card Interface with SD card.
00a9bf19
PB
1871@end itemize
1872
1873The ARM Versatile baseboard is emulated with the following devices:
1874
1875@itemize @minus
1876@item
9ee6e8bb 1877ARM926E, ARM1136 or Cortex-A8 CPU
00a9bf19
PB
1878@item
1879PL190 Vectored Interrupt Controller
1880@item
1881Four PL011 UARTs
5fafdf24 1882@item
00a9bf19
PB
1883SMC 91c111 Ethernet adapter
1884@item
1885PL110 LCD controller
1886@item
1887PL050 KMI with PS/2 keyboard and mouse.
1888@item
1889PCI host bridge. Note the emulated PCI bridge only provides access to
1890PCI memory space. It does not provide access to PCI IO space.
4be456f1
TS
1891This means some devices (eg. ne2k_pci NIC) are not usable, and others
1892(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
00a9bf19 1893mapped control registers.
e6de1bad
PB
1894@item
1895PCI OHCI USB controller.
1896@item
1897LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
a1bb27b1
PB
1898@item
1899PL181 MultiMedia Card Interface with SD card.
3f9f3aa1
FB
1900@end itemize
1901
21a88941
PB
1902Several variants of the ARM RealView baseboard are emulated,
1903including the EB, PB-A8 and PBX-A9. Due to interactions with the
1904bootloader, only certain Linux kernel configurations work out
1905of the box on these boards.
1906
1907Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
1908enabled in the kernel, and expect 512M RAM. Kernels for The PBX-A9 board
1909should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
1910disabled and expect 1024M RAM.
1911
40c5c6cd 1912The following devices are emulated:
d7739d75
PB
1913
1914@itemize @minus
1915@item
f7c70325 1916ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
d7739d75
PB
1917@item
1918ARM AMBA Generic/Distributed Interrupt Controller
1919@item
1920Four PL011 UARTs
5fafdf24 1921@item
0ef849d7 1922SMC 91c111 or SMSC LAN9118 Ethernet adapter
d7739d75
PB
1923@item
1924PL110 LCD controller
1925@item
1926PL050 KMI with PS/2 keyboard and mouse
1927@item
1928PCI host bridge
1929@item
1930PCI OHCI USB controller
1931@item
1932LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
a1bb27b1
PB
1933@item
1934PL181 MultiMedia Card Interface with SD card.
d7739d75
PB
1935@end itemize
1936
b00052e4
AZ
1937The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
1938and "Terrier") emulation includes the following peripherals:
1939
1940@itemize @minus
1941@item
1942Intel PXA270 System-on-chip (ARM V5TE core)
1943@item
1944NAND Flash memory
1945@item
1946IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
1947@item
1948On-chip OHCI USB controller
1949@item
1950On-chip LCD controller
1951@item
1952On-chip Real Time Clock
1953@item
1954TI ADS7846 touchscreen controller on SSP bus
1955@item
1956Maxim MAX1111 analog-digital converter on I@math{^2}C bus
1957@item
1958GPIO-connected keyboard controller and LEDs
1959@item
549444e1 1960Secure Digital card connected to PXA MMC/SD host
b00052e4
AZ
1961@item
1962Three on-chip UARTs
1963@item
1964WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
1965@end itemize
1966
02645926
AZ
1967The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
1968following elements:
1969
1970@itemize @minus
1971@item
1972Texas Instruments OMAP310 System-on-chip (ARM 925T core)
1973@item
1974ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
1975@item
1976On-chip LCD controller
1977@item
1978On-chip Real Time Clock
1979@item
1980TI TSC2102i touchscreen controller / analog-digital converter / Audio
1981CODEC, connected through MicroWire and I@math{^2}S busses
1982@item
1983GPIO-connected matrix keypad
1984@item
1985Secure Digital card connected to OMAP MMC/SD host
1986@item
1987Three on-chip UARTs
1988@end itemize
1989
c30bb264
AZ
1990Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
1991emulation supports the following elements:
1992
1993@itemize @minus
1994@item
1995Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
1996@item
1997RAM and non-volatile OneNAND Flash memories
1998@item
1999Display connected to EPSON remote framebuffer chip and OMAP on-chip
2000display controller and a LS041y3 MIPI DBI-C controller
2001@item
2002TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2003driven through SPI bus
2004@item
2005National Semiconductor LM8323-controlled qwerty keyboard driven
2006through I@math{^2}C bus
2007@item
2008Secure Digital card connected to OMAP MMC/SD host
2009@item
2010Three OMAP on-chip UARTs and on-chip STI debugging console
2011@item
40c5c6cd 2012A Bluetooth(R) transceiver and HCI connected to an UART
2d564691 2013@item
c30bb264
AZ
2014Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2015TUSB6010 chip - only USB host mode is supported
2016@item
2017TI TMP105 temperature sensor driven through I@math{^2}C bus
2018@item
2019TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2020@item
2021Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2022through CBUS
2023@end itemize
2024
9ee6e8bb
PB
2025The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2026devices:
2027
2028@itemize @minus
2029@item
2030Cortex-M3 CPU core.
2031@item
203264k Flash and 8k SRAM.
2033@item
2034Timers, UARTs, ADC and I@math{^2}C interface.
2035@item
2036OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2037@end itemize
2038
2039The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2040devices:
2041
2042@itemize @minus
2043@item
2044Cortex-M3 CPU core.
2045@item
2046256k Flash and 64k SRAM.
2047@item
2048Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2049@item
2050OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2051@end itemize
2052
57cd6e97
AZ
2053The Freecom MusicPal internet radio emulation includes the following
2054elements:
2055
2056@itemize @minus
2057@item
2058Marvell MV88W8618 ARM core.
2059@item
206032 MB RAM, 256 KB SRAM, 8 MB flash.
2061@item
2062Up to 2 16550 UARTs
2063@item
2064MV88W8xx8 Ethernet controller
2065@item
2066MV88W8618 audio controller, WM8750 CODEC and mixer
2067@item
e080e785 2068128×64 display with brightness control
57cd6e97
AZ
2069@item
20702 buttons, 2 navigation wheels with button function
2071@end itemize
2072
997641a8 2073The Siemens SX1 models v1 and v2 (default) basic emulation.
40c5c6cd 2074The emulation includes the following elements:
997641a8
AZ
2075
2076@itemize @minus
2077@item
2078Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2079@item
2080ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2081V1
20821 Flash of 16MB and 1 Flash of 8MB
2083V2
20841 Flash of 32MB
2085@item
2086On-chip LCD controller
2087@item
2088On-chip Real Time Clock
2089@item
2090Secure Digital card connected to OMAP MMC/SD host
2091@item
2092Three on-chip UARTs
2093@end itemize
2094
3f9f3aa1
FB
2095A Linux 2.6 test image is available on the QEMU web site. More
2096information is available in the QEMU mailing-list archive.
9d0a8e6f 2097
d2c639d6
BS
2098@c man begin OPTIONS
2099
2100The following options are specific to the ARM emulation:
2101
2102@table @option
2103
2104@item -semihosting
2105Enable semihosting syscall emulation.
2106
2107On ARM this implements the "Angel" interface.
2108
2109Note that this allows guest direct access to the host filesystem,
2110so should only be used with trusted guest OS.
2111
2112@end table
2113
abc67eb6
TH
2114@c man end
2115
24d4de45
TS
2116@node ColdFire System emulator
2117@section ColdFire System emulator
7544a042
SW
2118@cindex system emulation (ColdFire)
2119@cindex system emulation (M68K)
209a4e69
PB
2120
2121Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2122The emulator is able to boot a uClinux kernel.
707e011b
PB
2123
2124The M5208EVB emulation includes the following devices:
2125
2126@itemize @minus
5fafdf24 2127@item
707e011b
PB
2128MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2129@item
2130Three Two on-chip UARTs.
2131@item
2132Fast Ethernet Controller (FEC)
2133@end itemize
2134
2135The AN5206 emulation includes the following devices:
209a4e69
PB
2136
2137@itemize @minus
5fafdf24 2138@item
209a4e69
PB
2139MCF5206 ColdFire V2 Microprocessor.
2140@item
2141Two on-chip UARTs.
2142@end itemize
2143
d2c639d6
BS
2144@c man begin OPTIONS
2145
7544a042 2146The following options are specific to the ColdFire emulation:
d2c639d6
BS
2147
2148@table @option
2149
2150@item -semihosting
2151Enable semihosting syscall emulation.
2152
2153On M68K this implements the "ColdFire GDB" interface used by libgloss.
2154
2155Note that this allows guest direct access to the host filesystem,
2156so should only be used with trusted guest OS.
2157
2158@end table
2159
abc67eb6
TH
2160@c man end
2161
7544a042
SW
2162@node Cris System emulator
2163@section Cris System emulator
2164@cindex system emulation (Cris)
2165
2166TODO
2167
2168@node Microblaze System emulator
2169@section Microblaze System emulator
2170@cindex system emulation (Microblaze)
2171
2172TODO
2173
2174@node SH4 System emulator
2175@section SH4 System emulator
2176@cindex system emulation (SH4)
2177
2178TODO
2179
3aeaea65
MF
2180@node Xtensa System emulator
2181@section Xtensa System emulator
2182@cindex system emulation (Xtensa)
2183
2184Two executables cover simulation of both Xtensa endian options,
2185@file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
2186Two different machine types are emulated:
2187
2188@itemize @minus
2189@item
2190Xtensa emulator pseudo board "sim"
2191@item
2192Avnet LX60/LX110/LX200 board
2193@end itemize
2194
b5e4946f 2195The sim pseudo board emulation provides an environment similar
3aeaea65
MF
2196to one provided by the proprietary Tensilica ISS.
2197It supports:
2198
2199@itemize @minus
2200@item
2201A range of Xtensa CPUs, default is the DC232B
2202@item
2203Console and filesystem access via semihosting calls
2204@end itemize
2205
2206The Avnet LX60/LX110/LX200 emulation supports:
2207
2208@itemize @minus
2209@item
2210A range of Xtensa CPUs, default is the DC232B
2211@item
221216550 UART
2213@item
2214OpenCores 10/100 Mbps Ethernet MAC
2215@end itemize
2216
2217@c man begin OPTIONS
2218
2219The following options are specific to the Xtensa emulation:
2220
2221@table @option
2222
2223@item -semihosting
2224Enable semihosting syscall emulation.
2225
2226Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2227Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2228
2229Note that this allows guest direct access to the host filesystem,
2230so should only be used with trusted guest OS.
2231
2232@end table
3f2ce724 2233
abc67eb6
TH
2234@c man end
2235
3f2ce724
TH
2236@node QEMU Guest Agent
2237@chapter QEMU Guest Agent invocation
2238
2239@include qemu-ga.texi
2240
5fafdf24
TS
2241@node QEMU User space emulator
2242@chapter QEMU User space emulator
83195237
FB
2243
2244@menu
2245* Supported Operating Systems ::
0722cc42 2246* Features::
83195237 2247* Linux User space emulator::
84778508 2248* BSD User space emulator ::
83195237
FB
2249@end menu
2250
2251@node Supported Operating Systems
2252@section Supported Operating Systems
2253
2254The following OS are supported in user space emulation:
2255
2256@itemize @minus
2257@item
4be456f1 2258Linux (referred as qemu-linux-user)
83195237 2259@item
84778508 2260BSD (referred as qemu-bsd-user)
83195237
FB
2261@end itemize
2262
0722cc42
PB
2263@node Features
2264@section Features
2265
2266QEMU user space emulation has the following notable features:
2267
2268@table @strong
2269@item System call translation:
2270QEMU includes a generic system call translator. This means that
2271the parameters of the system calls can be converted to fix
2272endianness and 32/64-bit mismatches between hosts and targets.
2273IOCTLs can be converted too.
2274
2275@item POSIX signal handling:
2276QEMU can redirect to the running program all signals coming from
2277the host (such as @code{SIGALRM}), as well as synthesize signals from
2278virtual CPU exceptions (for example @code{SIGFPE} when the program
2279executes a division by zero).
2280
2281QEMU relies on the host kernel to emulate most signal system
2282calls, for example to emulate the signal mask. On Linux, QEMU
2283supports both normal and real-time signals.
2284
2285@item Threading:
2286On Linux, QEMU can emulate the @code{clone} syscall and create a real
2287host thread (with a separate virtual CPU) for each emulated thread.
2288Note that not all targets currently emulate atomic operations correctly.
2289x86 and ARM use a global lock in order to preserve their semantics.
2290@end table
2291
2292QEMU was conceived so that ultimately it can emulate itself. Although
2293it is not very useful, it is an important test to show the power of the
2294emulator.
2295
83195237
FB
2296@node Linux User space emulator
2297@section Linux User space emulator
386405f7 2298
debc7065
FB
2299@menu
2300* Quick Start::
2301* Wine launch::
2302* Command line options::
79737e4a 2303* Other binaries::
debc7065
FB
2304@end menu
2305
2306@node Quick Start
83195237 2307@subsection Quick Start
df0f11a0 2308
1f673135 2309In order to launch a Linux process, QEMU needs the process executable
5fafdf24 2310itself and all the target (x86) dynamic libraries used by it.
386405f7 2311
1f673135 2312@itemize
386405f7 2313
1f673135
FB
2314@item On x86, you can just try to launch any process by using the native
2315libraries:
386405f7 2316
5fafdf24 2317@example
1f673135
FB
2318qemu-i386 -L / /bin/ls
2319@end example
386405f7 2320
1f673135
FB
2321@code{-L /} tells that the x86 dynamic linker must be searched with a
2322@file{/} prefix.
386405f7 2323
b65ee4fa
SW
2324@item Since QEMU is also a linux process, you can launch QEMU with
2325QEMU (NOTE: you can only do that if you compiled QEMU from the sources):
386405f7 2326
5fafdf24 2327@example
1f673135
FB
2328qemu-i386 -L / qemu-i386 -L / /bin/ls
2329@end example
386405f7 2330
1f673135
FB
2331@item On non x86 CPUs, you need first to download at least an x86 glibc
2332(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2333@code{LD_LIBRARY_PATH} is not set:
df0f11a0 2334
1f673135 2335@example
5fafdf24 2336unset LD_LIBRARY_PATH
1f673135 2337@end example
1eb87257 2338
1f673135 2339Then you can launch the precompiled @file{ls} x86 executable:
1eb87257 2340
1f673135
FB
2341@example
2342qemu-i386 tests/i386/ls
2343@end example
4c3b5a48 2344You can look at @file{scripts/qemu-binfmt-conf.sh} so that
1f673135
FB
2345QEMU is automatically launched by the Linux kernel when you try to
2346launch x86 executables. It requires the @code{binfmt_misc} module in the
2347Linux kernel.
1eb87257 2348
1f673135
FB
2349@item The x86 version of QEMU is also included. You can try weird things such as:
2350@example
debc7065
FB
2351qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2352 /usr/local/qemu-i386/bin/ls-i386
1f673135 2353@end example
1eb20527 2354
1f673135 2355@end itemize
1eb20527 2356
debc7065 2357@node Wine launch
83195237 2358@subsection Wine launch
1eb20527 2359
1f673135 2360@itemize
386405f7 2361
1f673135
FB
2362@item Ensure that you have a working QEMU with the x86 glibc
2363distribution (see previous section). In order to verify it, you must be
2364able to do:
386405f7 2365
1f673135
FB
2366@example
2367qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2368@end example
386405f7 2369
1f673135 2370@item Download the binary x86 Wine install
5fafdf24 2371(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
386405f7 2372
1f673135 2373@item Configure Wine on your account. Look at the provided script
debc7065 2374@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
1f673135 2375@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
386405f7 2376
1f673135 2377@item Then you can try the example @file{putty.exe}:
386405f7 2378
1f673135 2379@example
debc7065
FB
2380qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2381 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
1f673135 2382@end example
386405f7 2383
1f673135 2384@end itemize
fd429f2f 2385
debc7065 2386@node Command line options
83195237 2387@subsection Command line options
1eb20527 2388
1f673135 2389@example
8485140f 2390@command{qemu-i386} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-cpu} @var{model}] [@option{-g} @var{port}] [@option{-B} @var{offset}] [@option{-R} @var{size}] @var{program} [@var{arguments}...]
1f673135 2391@end example
1eb20527 2392
1f673135
FB
2393@table @option
2394@item -h
2395Print the help
3b46e624 2396@item -L path
1f673135
FB
2397Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2398@item -s size
2399Set the x86 stack size in bytes (default=524288)
34a3d239 2400@item -cpu model
c8057f95 2401Select CPU model (-cpu help for list and additional feature selection)
f66724c9
SW
2402@item -E @var{var}=@var{value}
2403Set environment @var{var} to @var{value}.
2404@item -U @var{var}
2405Remove @var{var} from the environment.
379f6698
PB
2406@item -B offset
2407Offset guest address by the specified number of bytes. This is useful when
1f5c3f8c
SW
2408the address region required by guest applications is reserved on the host.
2409This option is currently only supported on some hosts.
68a1c816
PB
2410@item -R size
2411Pre-allocate a guest virtual address space of the given size (in bytes).
0d6753e5 2412"G", "M", and "k" suffixes may be used when specifying the size.
386405f7
FB
2413@end table
2414
1f673135 2415Debug options:
386405f7 2416
1f673135 2417@table @option
989b697d
PM
2418@item -d item1,...
2419Activate logging of the specified items (use '-d help' for a list of log items)
1f673135
FB
2420@item -p pagesize
2421Act as if the host page size was 'pagesize' bytes
34a3d239
BS
2422@item -g port
2423Wait gdb connection to port
1b530a6d
AJ
2424@item -singlestep
2425Run the emulation in single step mode.
1f673135 2426@end table
386405f7 2427
b01bcae6
AZ
2428Environment variables:
2429
2430@table @env
2431@item QEMU_STRACE
2432Print system calls and arguments similar to the 'strace' program
2433(NOTE: the actual 'strace' program will not work because the user
2434space emulator hasn't implemented ptrace). At the moment this is
2435incomplete. All system calls that don't have a specific argument
2436format are printed with information for six arguments. Many
2437flag-style arguments don't have decoders and will show up as numbers.
5cfdf930 2438@end table
b01bcae6 2439
79737e4a 2440@node Other binaries
83195237 2441@subsection Other binaries
79737e4a 2442
7544a042
SW
2443@cindex user mode (Alpha)
2444@command{qemu-alpha} TODO.
2445
2446@cindex user mode (ARM)
2447@command{qemu-armeb} TODO.
2448
2449@cindex user mode (ARM)
79737e4a
PB
2450@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2451binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2452configurations), and arm-uclinux bFLT format binaries.
2453
7544a042
SW
2454@cindex user mode (ColdFire)
2455@cindex user mode (M68K)
e6e5906b
PB
2456@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2457(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2458coldfire uClinux bFLT format binaries.
2459
79737e4a
PB
2460The binary format is detected automatically.
2461
7544a042
SW
2462@cindex user mode (Cris)
2463@command{qemu-cris} TODO.
2464
2465@cindex user mode (i386)
2466@command{qemu-i386} TODO.
2467@command{qemu-x86_64} TODO.
2468
2469@cindex user mode (Microblaze)
2470@command{qemu-microblaze} TODO.
2471
2472@cindex user mode (MIPS)
2473@command{qemu-mips} TODO.
2474@command{qemu-mipsel} TODO.
2475
e671711c
MV
2476@cindex user mode (NiosII)
2477@command{qemu-nios2} TODO.
2478
7544a042
SW
2479@cindex user mode (PowerPC)
2480@command{qemu-ppc64abi32} TODO.
2481@command{qemu-ppc64} TODO.
2482@command{qemu-ppc} TODO.
2483
2484@cindex user mode (SH4)
2485@command{qemu-sh4eb} TODO.
2486@command{qemu-sh4} TODO.
2487
2488@cindex user mode (SPARC)
34a3d239
BS
2489@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2490
a785e42e
BS
2491@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2492(Sparc64 CPU, 32 bit ABI).
2493
2494@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2495SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2496
84778508
BS
2497@node BSD User space emulator
2498@section BSD User space emulator
2499
2500@menu
2501* BSD Status::
2502* BSD Quick Start::
2503* BSD Command line options::
2504@end menu
2505
2506@node BSD Status
2507@subsection BSD Status
2508
2509@itemize @minus
2510@item
2511target Sparc64 on Sparc64: Some trivial programs work.
2512@end itemize
2513
2514@node BSD Quick Start
2515@subsection Quick Start
2516
2517In order to launch a BSD process, QEMU needs the process executable
2518itself and all the target dynamic libraries used by it.
2519
2520@itemize
2521
2522@item On Sparc64, you can just try to launch any process by using the native
2523libraries:
2524
2525@example
2526qemu-sparc64 /bin/ls
2527@end example
2528
2529@end itemize
2530
2531@node BSD Command line options
2532@subsection Command line options
2533
2534@example
8485140f 2535@command{qemu-sparc64} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-bsd} @var{type}] @var{program} [@var{arguments}...]
84778508
BS
2536@end example
2537
2538@table @option
2539@item -h
2540Print the help
2541@item -L path
2542Set the library root path (default=/)
2543@item -s size
2544Set the stack size in bytes (default=524288)
f66724c9
SW
2545@item -ignore-environment
2546Start with an empty environment. Without this option,
40c5c6cd 2547the initial environment is a copy of the caller's environment.
f66724c9
SW
2548@item -E @var{var}=@var{value}
2549Set environment @var{var} to @var{value}.
2550@item -U @var{var}
2551Remove @var{var} from the environment.
84778508
BS
2552@item -bsd type
2553Set the type of the emulated BSD Operating system. Valid values are
2554FreeBSD, NetBSD and OpenBSD (default).
2555@end table
2556
2557Debug options:
2558
2559@table @option
989b697d
PM
2560@item -d item1,...
2561Activate logging of the specified items (use '-d help' for a list of log items)
84778508
BS
2562@item -p pagesize
2563Act as if the host page size was 'pagesize' bytes
1b530a6d
AJ
2564@item -singlestep
2565Run the emulation in single step mode.
84778508
BS
2566@end table
2567
47eacb4f 2568
78e87797
PB
2569@include qemu-tech.texi
2570
eb22aeca
DB
2571@node Deprecated features
2572@appendix Deprecated features
2573
2574In general features are intended to be supported indefinitely once
2575introduced into QEMU. In the event that a feature needs to be removed,
2576it will be listed in this appendix. The feature will remain functional
2577for 2 releases prior to actual removal. Deprecated features may also
2578generate warnings on the console when QEMU starts up, or if activated
2579via a monitor command, however, this is not a mandatory requirement.
2580
2581Prior to the 2.10.0 release there was no official policy on how
2582long features would be deprecated prior to their removal, nor
2583any documented list of which features were deprecated. Thus
2584any features deprecated prior to 2.10.0 will be treated as if
2585they were first deprecated in the 2.10.0 release.
2586
2587What follows is a list of all features currently marked as
2588deprecated.
2589
2590@section System emulator command line arguments
2591
2592@subsection -drive boot=on|off (since 1.3.0)
2593
2594The ``boot=on|off'' option to the ``-drive'' argument is
2595ignored. Applications should use the ``bootindex=N'' parameter
2596to set an absolute ordering between devices instead.
2597
2598@subsection -tdf (since 1.3.0)
2599
2600The ``-tdf'' argument is ignored. The behaviour implemented
2601by this argument is now the default when using the KVM PIT,
2602but can be requested explicitly using
2603``-global kvm-pit.lost_tick_policy=slew''.
2604
2605@subsection -no-kvm-pit-reinjection (since 1.3.0)
2606
2607The ``-no-kvm-pit-reinjection'' argument is now a
2608synonym for setting ``-global kvm-pit.lost_tick_policy=discard''.
2609
2610@subsection -no-kvm-irqchip (since 1.3.0)
2611
2612The ``-no-kvm-irqchip'' argument is now a synonym for
2613setting ``-machine kernel_irqchip=off''.
2614
eb22aeca
DB
2615@subsection -no-kvm (since 1.3.0)
2616
2617The ``-no-kvm'' argument is now a synonym for setting
2618``-machine accel=tcg''.
2619
2620@subsection -mon default=on (since 2.4.0)
2621
2622The ``default'' option to the ``-mon'' argument is
2623now ignored. When multiple monitors were enabled, it
2624indicated which monitor would receive log messages
2625from the various subsystems. This feature is no longer
2626required as messages are now only sent to the monitor
2627in response to explicitly monitor commands.
2628
2629@subsection -vnc tls (since 2.5.0)
2630
2631The ``-vnc tls'' argument is now a synonym for setting
2632``-object tls-creds-anon,id=tls0'' combined with
2633``-vnc tls-creds=tls0'
2634
2635@subsection -vnc x509 (since 2.5.0)
2636
2637The ``-vnc x509=/path/to/certs'' argument is now a
2638synonym for setting
2639``-object tls-creds-x509,dir=/path/to/certs,id=tls0,verify-peer=no''
2640combined with ``-vnc tls-creds=tls0'
2641
2642@subsection -vnc x509verify (since 2.5.0)
2643
2644The ``-vnc x509verify=/path/to/certs'' argument is now a
2645synonym for setting
2646``-object tls-creds-x509,dir=/path/to/certs,id=tls0,verify-peer=yes''
2647combined with ``-vnc tls-creds=tls0'
2648
2649@subsection -tftp (since 2.6.0)
2650
2651The ``-tftp /some/dir'' argument is now a synonym for setting
2652the ``-netdev user,tftp=/some/dir' argument. The new syntax
2653allows different settings to be provided per NIC.
2654
2655@subsection -bootp (since 2.6.0)
2656
2657The ``-bootp /some/file'' argument is now a synonym for setting
2658the ``-netdev user,bootp=/some/file' argument. The new syntax
2659allows different settings to be provided per NIC.
2660
2661@subsection -redir (since 2.6.0)
2662
2663The ``-redir ARGS'' argument is now a synonym for setting
2664the ``-netdev user,hostfwd=ARGS'' argument instead. The new
2665syntax allows different settings to be provided per NIC.
2666
2667@subsection -smb (since 2.6.0)
2668
2669The ``-smb /some/dir'' argument is now a synonym for setting
2670the ``-netdev user,smb=/some/dir'' argument instead. The new
2671syntax allows different settings to be provided per NIC.
2672
2673@subsection -net channel (since 2.6.0)
2674
2675The ``--net channel,ARGS'' argument is now a synonym for setting
2676the ``-netdev user,guestfwd=ARGS'' argument instead.
2677
2678@subsection -net vlan (since 2.9.0)
2679
69001917 2680The ``-net vlan=NN'' argument is partially replaced with the
eb22aeca
DB
2681new ``-netdev'' argument. The remaining use cases will no
2682longer be directly supported in QEMU.
2683
2684@subsection -drive if=scsi (since 2.9.0)
2685
2686The ``-drive if=scsi'' argument is replaced by the the
2687``-device BUS-TYPE'' argument combined with ``-drive if=none''.
2688
2689@subsection -net dump (since 2.10.0)
2690
2691The ``--net dump'' argument is now replaced with the
2692``-object filter-dump'' argument which works in combination
2693with the modern ``-netdev`` backends instead.
2694
2695@subsection -hdachs (since 2.10.0)
2696
2697The ``-hdachs'' argument is now a synonym for setting
2698the ``cyls'', ``heads'', ``secs'', and ``trans'' properties
2699on the ``ide-hd'' device using the ``-device'' argument.
2700The new syntax allows different settings to be provided
2701per disk.
2702
2703@subsection -usbdevice (since 2.10.0)
2704
2705The ``-usbdevice DEV'' argument is now a synonym for setting
2706the ``-device usb-DEV'' argument instead. The deprecated syntax
2707would automatically enable USB support on the machine type.
2708If using the new syntax, USB support must be explicitly
2709enabled via the ``-machine usb=on'' argument.
2710
3478eae9
EH
2711@subsection -nodefconfig (since 2.11.0)
2712
2713The ``-nodefconfig`` argument is a synonym for ``-no-user-config``.
2714
d69969e5
HP
2715@subsection -machine s390-squash-mcss=on|off (since 2.12.0)
2716
2717The ``s390-squash-mcss=on`` property has been obsoleted by allowing the
2718cssid to be chosen freely. Instead of squashing subchannels into the
2719default channel subsystem image for guests that do not support multiple
2720channel subsystems, all devices can be put into the default channel
2721subsystem image.
2722
eb22aeca
DB
2723@section qemu-img command line arguments
2724
2725@subsection convert -s (since 2.0.0)
2726
2727The ``convert -s snapshot_id_or_name'' argument is obsoleted
2728by the ``convert -l snapshot_param'' argument instead.
2729
2730@section System emulator human monitor commands
2731
bd7adc84
TH
2732@subsection host_net_add (since 2.10.0)
2733
2734The ``host_net_add'' command is replaced by the ``netdev_add'' command.
2735
2736@subsection host_net_remove (since 2.10.0)
2737
2738The ``host_net_remove'' command is replaced by the ``netdev_del'' command.
2739
eb22aeca
DB
2740@section System emulator devices
2741
2742@subsection ivshmem (since 2.6.0)
2743
2744The ``ivshmem'' device type is replaced by either the ``ivshmem-plain''
2745or ``ivshmem-doorbell`` device types.
2746
2747@subsection spapr-pci-vfio-host-bridge (since 2.6.0)
2748
2749The ``spapr-pci-vfio-host-bridge'' device type is replaced by
2750the ``spapr-pci-host-bridge'' device type.
2751
83926ad5
AF
2752@section System emulator machines
2753
2754@subsection Xilinx EP108 (since 2.11.0)
2755
2756The ``xlnx-ep108'' machine has been replaced by the ``xlnx-zcu102'' machine.
2757The ``xlnx-zcu102'' machine has the same features and capabilites in QEMU.
2758
7544a042
SW
2759@node License
2760@appendix License
2761
2762QEMU is a trademark of Fabrice Bellard.
2763
2f8d8f01
TH
2764QEMU is released under the
2765@url{https://www.gnu.org/licenses/gpl-2.0.txt,GNU General Public License},
2766version 2. Parts of QEMU have specific licenses, see file
70b7fba9 2767@url{https://git.qemu.org/?p=qemu.git;a=blob_plain;f=LICENSE,LICENSE}.
7544a042 2768
debc7065 2769@node Index
7544a042
SW
2770@appendix Index
2771@menu
2772* Concept Index::
2773* Function Index::
2774* Keystroke Index::
2775* Program Index::
2776* Data Type Index::
2777* Variable Index::
2778@end menu
2779
2780@node Concept Index
2781@section Concept Index
2782This is the main index. Should we combine all keywords in one index? TODO
debc7065
FB
2783@printindex cp
2784
7544a042
SW
2785@node Function Index
2786@section Function Index
2787This index could be used for command line options and monitor functions.
2788@printindex fn
2789
2790@node Keystroke Index
2791@section Keystroke Index
2792
2793This is a list of all keystrokes which have a special function
2794in system emulation.
2795
2796@printindex ky
2797
2798@node Program Index
2799@section Program Index
2800@printindex pg
2801
2802@node Data Type Index
2803@section Data Type Index
2804
2805This index could be used for qdev device names and options.
2806
2807@printindex tp
2808
2809@node Variable Index
2810@section Variable Index
2811@printindex vr
2812
debc7065 2813@bye