]>
Commit | Line | Data |
---|---|---|
386405f7 | 1 | \input texinfo @c -*- texinfo -*- |
debc7065 FB |
2 | @c %**start of header |
3 | @setfilename qemu-doc.info | |
44cb280d | 4 | @include version.texi |
e080e785 SW |
5 | |
6 | @documentlanguage en | |
7 | @documentencoding UTF-8 | |
8 | ||
44cb280d | 9 | @settitle QEMU version @value{VERSION} User Documentation |
debc7065 FB |
10 | @exampleindent 0 |
11 | @paragraphindent 0 | |
12 | @c %**end of header | |
386405f7 | 13 | |
a1a32b05 SW |
14 | @ifinfo |
15 | @direntry | |
16 | * QEMU: (qemu-doc). The QEMU Emulator User Documentation. | |
17 | @end direntry | |
18 | @end ifinfo | |
19 | ||
0806e3f6 | 20 | @iftex |
386405f7 FB |
21 | @titlepage |
22 | @sp 7 | |
44cb280d | 23 | @center @titlefont{QEMU version @value{VERSION}} |
debc7065 FB |
24 | @sp 1 |
25 | @center @titlefont{User Documentation} | |
386405f7 FB |
26 | @sp 3 |
27 | @end titlepage | |
0806e3f6 | 28 | @end iftex |
386405f7 | 29 | |
debc7065 FB |
30 | @ifnottex |
31 | @node Top | |
32 | @top | |
33 | ||
34 | @menu | |
35 | * Introduction:: | |
debc7065 FB |
36 | * QEMU PC System emulator:: |
37 | * QEMU System emulator for non PC targets:: | |
3f2ce724 | 38 | * QEMU Guest Agent:: |
83195237 | 39 | * QEMU User space emulator:: |
78e87797 | 40 | * Implementation notes:: |
eb22aeca | 41 | * Deprecated features:: |
7544a042 | 42 | * License:: |
debc7065 FB |
43 | * Index:: |
44 | @end menu | |
45 | @end ifnottex | |
46 | ||
47 | @contents | |
48 | ||
49 | @node Introduction | |
386405f7 FB |
50 | @chapter Introduction |
51 | ||
debc7065 FB |
52 | @menu |
53 | * intro_features:: Features | |
54 | @end menu | |
55 | ||
56 | @node intro_features | |
322d0c66 | 57 | @section Features |
386405f7 | 58 | |
1f673135 FB |
59 | QEMU is a FAST! processor emulator using dynamic translation to |
60 | achieve good emulation speed. | |
1eb20527 | 61 | |
1f3e7e41 | 62 | @cindex operating modes |
1eb20527 | 63 | QEMU has two operating modes: |
0806e3f6 | 64 | |
d7e5edca | 65 | @itemize |
7544a042 | 66 | @cindex system emulation |
1f3e7e41 | 67 | @item Full system emulation. In this mode, QEMU emulates a full system (for |
3f9f3aa1 FB |
68 | example a PC), including one or several processors and various |
69 | peripherals. It can be used to launch different Operating Systems | |
70 | without rebooting the PC or to debug system code. | |
1eb20527 | 71 | |
7544a042 | 72 | @cindex user mode emulation |
1f3e7e41 | 73 | @item User mode emulation. In this mode, QEMU can launch |
83195237 | 74 | processes compiled for one CPU on another CPU. It can be used to |
70b7fba9 | 75 | launch the Wine Windows API emulator (@url{https://www.winehq.org}) or |
1f673135 | 76 | to ease cross-compilation and cross-debugging. |
1eb20527 FB |
77 | |
78 | @end itemize | |
79 | ||
1f3e7e41 PB |
80 | QEMU has the following features: |
81 | ||
82 | @itemize | |
83 | @item QEMU can run without a host kernel driver and yet gives acceptable | |
84 | performance. It uses dynamic translation to native code for reasonable speed, | |
85 | with support for self-modifying code and precise exceptions. | |
86 | ||
87 | @item It is portable to several operating systems (GNU/Linux, *BSD, Mac OS X, | |
88 | Windows) and architectures. | |
89 | ||
90 | @item It performs accurate software emulation of the FPU. | |
91 | @end itemize | |
322d0c66 | 92 | |
1f3e7e41 | 93 | QEMU user mode emulation has the following features: |
52c00a5f | 94 | @itemize |
1f3e7e41 PB |
95 | @item Generic Linux system call converter, including most ioctls. |
96 | ||
97 | @item clone() emulation using native CPU clone() to use Linux scheduler for threads. | |
98 | ||
99 | @item Accurate signal handling by remapping host signals to target signals. | |
100 | @end itemize | |
101 | ||
102 | QEMU full system emulation has the following features: | |
103 | @itemize | |
104 | @item | |
105 | QEMU uses a full software MMU for maximum portability. | |
106 | ||
107 | @item | |
326c4c3c | 108 | QEMU can optionally use an in-kernel accelerator, like kvm. The accelerators |
1f3e7e41 PB |
109 | execute most of the guest code natively, while |
110 | continuing to emulate the rest of the machine. | |
111 | ||
112 | @item | |
113 | Various hardware devices can be emulated and in some cases, host | |
114 | devices (e.g. serial and parallel ports, USB, drives) can be used | |
115 | transparently by the guest Operating System. Host device passthrough | |
116 | can be used for talking to external physical peripherals (e.g. a | |
117 | webcam, modem or tape drive). | |
118 | ||
119 | @item | |
120 | Symmetric multiprocessing (SMP) support. Currently, an in-kernel | |
121 | accelerator is required to use more than one host CPU for emulation. | |
122 | ||
52c00a5f | 123 | @end itemize |
386405f7 | 124 | |
0806e3f6 | 125 | |
debc7065 | 126 | @node QEMU PC System emulator |
3f9f3aa1 | 127 | @chapter QEMU PC System emulator |
7544a042 | 128 | @cindex system emulation (PC) |
1eb20527 | 129 | |
debc7065 FB |
130 | @menu |
131 | * pcsys_introduction:: Introduction | |
132 | * pcsys_quickstart:: Quick Start | |
133 | * sec_invocation:: Invocation | |
a40db1b3 PM |
134 | * pcsys_keys:: Keys in the graphical frontends |
135 | * mux_keys:: Keys in the character backend multiplexer | |
debc7065 FB |
136 | * pcsys_monitor:: QEMU Monitor |
137 | * disk_images:: Disk Images | |
138 | * pcsys_network:: Network emulation | |
576fd0a1 | 139 | * pcsys_other_devs:: Other Devices |
debc7065 FB |
140 | * direct_linux_boot:: Direct Linux Boot |
141 | * pcsys_usb:: USB emulation | |
f858dcae | 142 | * vnc_security:: VNC security |
debc7065 FB |
143 | * gdb_usage:: GDB usage |
144 | * pcsys_os_specific:: Target OS specific information | |
145 | @end menu | |
146 | ||
147 | @node pcsys_introduction | |
0806e3f6 FB |
148 | @section Introduction |
149 | ||
150 | @c man begin DESCRIPTION | |
151 | ||
3f9f3aa1 FB |
152 | The QEMU PC System emulator simulates the |
153 | following peripherals: | |
0806e3f6 FB |
154 | |
155 | @itemize @minus | |
5fafdf24 | 156 | @item |
15a34c63 | 157 | i440FX host PCI bridge and PIIX3 PCI to ISA bridge |
0806e3f6 | 158 | @item |
15a34c63 FB |
159 | Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA |
160 | extensions (hardware level, including all non standard modes). | |
0806e3f6 FB |
161 | @item |
162 | PS/2 mouse and keyboard | |
5fafdf24 | 163 | @item |
15a34c63 | 164 | 2 PCI IDE interfaces with hard disk and CD-ROM support |
1f673135 FB |
165 | @item |
166 | Floppy disk | |
5fafdf24 | 167 | @item |
3a2eeac0 | 168 | PCI and ISA network adapters |
0806e3f6 | 169 | @item |
05d5818c FB |
170 | Serial ports |
171 | @item | |
23076bb3 CM |
172 | IPMI BMC, either and internal or external one |
173 | @item | |
c0fe3827 FB |
174 | Creative SoundBlaster 16 sound card |
175 | @item | |
176 | ENSONIQ AudioPCI ES1370 sound card | |
177 | @item | |
e5c9a13e AZ |
178 | Intel 82801AA AC97 Audio compatible sound card |
179 | @item | |
7d72e762 GH |
180 | Intel HD Audio Controller and HDA codec |
181 | @item | |
2d983446 | 182 | Adlib (OPL2) - Yamaha YM3812 compatible chip |
b389dbfb | 183 | @item |
26463dbc AZ |
184 | Gravis Ultrasound GF1 sound card |
185 | @item | |
cc53d26d | 186 | CS4231A compatible sound card |
187 | @item | |
a92ff8c1 | 188 | PCI UHCI, OHCI, EHCI or XHCI USB controller and a virtual USB-1.1 hub. |
0806e3f6 FB |
189 | @end itemize |
190 | ||
3f9f3aa1 FB |
191 | SMP is supported with up to 255 CPUs. |
192 | ||
a8ad4159 | 193 | QEMU uses the PC BIOS from the Seabios project and the Plex86/Bochs LGPL |
15a34c63 FB |
194 | VGA BIOS. |
195 | ||
c0fe3827 FB |
196 | QEMU uses YM3812 emulation by Tatsuyuki Satoh. |
197 | ||
2d983446 | 198 | QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/}) |
26463dbc | 199 | by Tibor "TS" Schütz. |
423d65f4 | 200 | |
1a1a0e20 | 201 | Note that, by default, GUS shares IRQ(7) with parallel ports and so |
b65ee4fa | 202 | QEMU must be told to not have parallel ports to have working GUS. |
720036a5 | 203 | |
204 | @example | |
3804da9d | 205 | qemu-system-i386 dos.img -soundhw gus -parallel none |
720036a5 | 206 | @end example |
207 | ||
208 | Alternatively: | |
209 | @example | |
3804da9d | 210 | qemu-system-i386 dos.img -device gus,irq=5 |
720036a5 | 211 | @end example |
212 | ||
213 | Or some other unclaimed IRQ. | |
214 | ||
cc53d26d | 215 | CS4231A is the chip used in Windows Sound System and GUSMAX products |
216 | ||
0806e3f6 FB |
217 | @c man end |
218 | ||
debc7065 | 219 | @node pcsys_quickstart |
1eb20527 | 220 | @section Quick Start |
7544a042 | 221 | @cindex quick start |
1eb20527 | 222 | |
285dc330 | 223 | Download and uncompress the linux image (@file{linux.img}) and type: |
0806e3f6 FB |
224 | |
225 | @example | |
3804da9d | 226 | qemu-system-i386 linux.img |
0806e3f6 FB |
227 | @end example |
228 | ||
229 | Linux should boot and give you a prompt. | |
230 | ||
6cc721cf | 231 | @node sec_invocation |
ec410fc9 FB |
232 | @section Invocation |
233 | ||
234 | @example | |
0806e3f6 | 235 | @c man begin SYNOPSIS |
8485140f | 236 | @command{qemu-system-i386} [@var{options}] [@var{disk_image}] |
0806e3f6 | 237 | @c man end |
ec410fc9 FB |
238 | @end example |
239 | ||
0806e3f6 | 240 | @c man begin OPTIONS |
d2c639d6 BS |
241 | @var{disk_image} is a raw hard disk image for IDE hard disk 0. Some |
242 | targets do not need a disk image. | |
ec410fc9 | 243 | |
5824d651 | 244 | @include qemu-options.texi |
ec410fc9 | 245 | |
3e11db9a FB |
246 | @c man end |
247 | ||
e896d0f9 MA |
248 | @subsection Device URL Syntax |
249 | @c TODO merge this with section Disk Images | |
250 | ||
251 | @c man begin NOTES | |
252 | ||
253 | In addition to using normal file images for the emulated storage devices, | |
254 | QEMU can also use networked resources such as iSCSI devices. These are | |
255 | specified using a special URL syntax. | |
256 | ||
257 | @table @option | |
258 | @item iSCSI | |
259 | iSCSI support allows QEMU to access iSCSI resources directly and use as | |
260 | images for the guest storage. Both disk and cdrom images are supported. | |
261 | ||
262 | Syntax for specifying iSCSI LUNs is | |
263 | ``iscsi://<target-ip>[:<port>]/<target-iqn>/<lun>'' | |
264 | ||
265 | By default qemu will use the iSCSI initiator-name | |
266 | 'iqn.2008-11.org.linux-kvm[:<name>]' but this can also be set from the command | |
267 | line or a configuration file. | |
268 | ||
269 | Since version Qemu 2.4 it is possible to specify a iSCSI request timeout to detect | |
270 | stalled requests and force a reestablishment of the session. The timeout | |
271 | is specified in seconds. The default is 0 which means no timeout. Libiscsi | |
272 | 1.15.0 or greater is required for this feature. | |
273 | ||
274 | Example (without authentication): | |
275 | @example | |
276 | qemu-system-i386 -iscsi initiator-name=iqn.2001-04.com.example:my-initiator \ | |
277 | -cdrom iscsi://192.0.2.1/iqn.2001-04.com.example/2 \ | |
278 | -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1 | |
279 | @end example | |
280 | ||
281 | Example (CHAP username/password via URL): | |
282 | @example | |
283 | qemu-system-i386 -drive file=iscsi://user%password@@192.0.2.1/iqn.2001-04.com.example/1 | |
284 | @end example | |
285 | ||
286 | Example (CHAP username/password via environment variables): | |
287 | @example | |
288 | LIBISCSI_CHAP_USERNAME="user" \ | |
289 | LIBISCSI_CHAP_PASSWORD="password" \ | |
290 | qemu-system-i386 -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1 | |
291 | @end example | |
292 | ||
293 | @item NBD | |
294 | QEMU supports NBD (Network Block Devices) both using TCP protocol as well | |
295 | as Unix Domain Sockets. | |
296 | ||
297 | Syntax for specifying a NBD device using TCP | |
298 | ``nbd:<server-ip>:<port>[:exportname=<export>]'' | |
299 | ||
300 | Syntax for specifying a NBD device using Unix Domain Sockets | |
301 | ``nbd:unix:<domain-socket>[:exportname=<export>]'' | |
302 | ||
303 | Example for TCP | |
304 | @example | |
305 | qemu-system-i386 --drive file=nbd:192.0.2.1:30000 | |
306 | @end example | |
307 | ||
308 | Example for Unix Domain Sockets | |
309 | @example | |
310 | qemu-system-i386 --drive file=nbd:unix:/tmp/nbd-socket | |
311 | @end example | |
312 | ||
313 | @item SSH | |
314 | QEMU supports SSH (Secure Shell) access to remote disks. | |
315 | ||
316 | Examples: | |
317 | @example | |
318 | qemu-system-i386 -drive file=ssh://user@@host/path/to/disk.img | |
319 | qemu-system-i386 -drive file.driver=ssh,file.user=user,file.host=host,file.port=22,file.path=/path/to/disk.img | |
320 | @end example | |
321 | ||
322 | Currently authentication must be done using ssh-agent. Other | |
323 | authentication methods may be supported in future. | |
324 | ||
325 | @item Sheepdog | |
326 | Sheepdog is a distributed storage system for QEMU. | |
327 | QEMU supports using either local sheepdog devices or remote networked | |
328 | devices. | |
329 | ||
330 | Syntax for specifying a sheepdog device | |
331 | @example | |
332 | sheepdog[+tcp|+unix]://[host:port]/vdiname[?socket=path][#snapid|#tag] | |
333 | @end example | |
334 | ||
335 | Example | |
336 | @example | |
337 | qemu-system-i386 --drive file=sheepdog://192.0.2.1:30000/MyVirtualMachine | |
338 | @end example | |
339 | ||
340 | See also @url{https://sheepdog.github.io/sheepdog/}. | |
341 | ||
342 | @item GlusterFS | |
343 | GlusterFS is a user space distributed file system. | |
344 | QEMU supports the use of GlusterFS volumes for hosting VM disk images using | |
345 | TCP, Unix Domain Sockets and RDMA transport protocols. | |
346 | ||
347 | Syntax for specifying a VM disk image on GlusterFS volume is | |
348 | @example | |
349 | ||
350 | URI: | |
351 | gluster[+type]://[host[:port]]/volume/path[?socket=...][,debug=N][,logfile=...] | |
352 | ||
353 | JSON: | |
354 | 'json:@{"driver":"qcow2","file":@{"driver":"gluster","volume":"testvol","path":"a.img","debug":N,"logfile":"...", | |
355 | @ "server":[@{"type":"tcp","host":"...","port":"..."@}, | |
356 | @ @{"type":"unix","socket":"..."@}]@}@}' | |
357 | @end example | |
358 | ||
359 | ||
360 | Example | |
361 | @example | |
362 | URI: | |
363 | qemu-system-x86_64 --drive file=gluster://192.0.2.1/testvol/a.img, | |
364 | @ file.debug=9,file.logfile=/var/log/qemu-gluster.log | |
365 | ||
366 | JSON: | |
367 | qemu-system-x86_64 'json:@{"driver":"qcow2", | |
368 | @ "file":@{"driver":"gluster", | |
369 | @ "volume":"testvol","path":"a.img", | |
370 | @ "debug":9,"logfile":"/var/log/qemu-gluster.log", | |
371 | @ "server":[@{"type":"tcp","host":"1.2.3.4","port":24007@}, | |
372 | @ @{"type":"unix","socket":"/var/run/glusterd.socket"@}]@}@}' | |
373 | qemu-system-x86_64 -drive driver=qcow2,file.driver=gluster,file.volume=testvol,file.path=/path/a.img, | |
374 | @ file.debug=9,file.logfile=/var/log/qemu-gluster.log, | |
375 | @ file.server.0.type=tcp,file.server.0.host=1.2.3.4,file.server.0.port=24007, | |
376 | @ file.server.1.type=unix,file.server.1.socket=/var/run/glusterd.socket | |
377 | @end example | |
378 | ||
379 | See also @url{http://www.gluster.org}. | |
380 | ||
381 | @item HTTP/HTTPS/FTP/FTPS | |
382 | QEMU supports read-only access to files accessed over http(s) and ftp(s). | |
383 | ||
384 | Syntax using a single filename: | |
385 | @example | |
386 | <protocol>://[<username>[:<password>]@@]<host>/<path> | |
387 | @end example | |
388 | ||
389 | where: | |
390 | @table @option | |
391 | @item protocol | |
392 | 'http', 'https', 'ftp', or 'ftps'. | |
393 | ||
394 | @item username | |
395 | Optional username for authentication to the remote server. | |
396 | ||
397 | @item password | |
398 | Optional password for authentication to the remote server. | |
399 | ||
400 | @item host | |
401 | Address of the remote server. | |
402 | ||
403 | @item path | |
404 | Path on the remote server, including any query string. | |
405 | @end table | |
406 | ||
407 | The following options are also supported: | |
408 | @table @option | |
409 | @item url | |
410 | The full URL when passing options to the driver explicitly. | |
411 | ||
412 | @item readahead | |
413 | The amount of data to read ahead with each range request to the remote server. | |
414 | This value may optionally have the suffix 'T', 'G', 'M', 'K', 'k' or 'b'. If it | |
415 | does not have a suffix, it will be assumed to be in bytes. The value must be a | |
416 | multiple of 512 bytes. It defaults to 256k. | |
417 | ||
418 | @item sslverify | |
419 | Whether to verify the remote server's certificate when connecting over SSL. It | |
420 | can have the value 'on' or 'off'. It defaults to 'on'. | |
421 | ||
422 | @item cookie | |
423 | Send this cookie (it can also be a list of cookies separated by ';') with | |
424 | each outgoing request. Only supported when using protocols such as HTTP | |
425 | which support cookies, otherwise ignored. | |
426 | ||
427 | @item timeout | |
428 | Set the timeout in seconds of the CURL connection. This timeout is the time | |
429 | that CURL waits for a response from the remote server to get the size of the | |
430 | image to be downloaded. If not set, the default timeout of 5 seconds is used. | |
431 | @end table | |
432 | ||
433 | Note that when passing options to qemu explicitly, @option{driver} is the value | |
434 | of <protocol>. | |
435 | ||
436 | Example: boot from a remote Fedora 20 live ISO image | |
437 | @example | |
438 | qemu-system-x86_64 --drive media=cdrom,file=http://dl.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly | |
439 | ||
440 | qemu-system-x86_64 --drive media=cdrom,file.driver=http,file.url=http://dl.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly | |
441 | @end example | |
442 | ||
443 | Example: boot from a remote Fedora 20 cloud image using a local overlay for | |
444 | writes, copy-on-read, and a readahead of 64k | |
445 | @example | |
446 | qemu-img create -f qcow2 -o backing_file='json:@{"file.driver":"http",, "file.url":"https://dl.fedoraproject.org/pub/fedora/linux/releases/20/Images/x86_64/Fedora-x86_64-20-20131211.1-sda.qcow2",, "file.readahead":"64k"@}' /tmp/Fedora-x86_64-20-20131211.1-sda.qcow2 | |
447 | ||
448 | qemu-system-x86_64 -drive file=/tmp/Fedora-x86_64-20-20131211.1-sda.qcow2,copy-on-read=on | |
449 | @end example | |
450 | ||
451 | Example: boot from an image stored on a VMware vSphere server with a self-signed | |
452 | certificate using a local overlay for writes, a readahead of 64k and a timeout | |
453 | of 10 seconds. | |
454 | @example | |
455 | qemu-img create -f qcow2 -o backing_file='json:@{"file.driver":"https",, "file.url":"https://user:password@@vsphere.example.com/folder/test/test-flat.vmdk?dcPath=Datacenter&dsName=datastore1",, "file.sslverify":"off",, "file.readahead":"64k",, "file.timeout":10@}' /tmp/test.qcow2 | |
456 | ||
457 | qemu-system-x86_64 -drive file=/tmp/test.qcow2 | |
458 | @end example | |
459 | ||
460 | @end table | |
461 | ||
462 | @c man end | |
463 | ||
debc7065 | 464 | @node pcsys_keys |
a40db1b3 | 465 | @section Keys in the graphical frontends |
3e11db9a FB |
466 | |
467 | @c man begin OPTIONS | |
468 | ||
de1db2a1 BH |
469 | During the graphical emulation, you can use special key combinations to change |
470 | modes. The default key mappings are shown below, but if you use @code{-alt-grab} | |
471 | then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use | |
472 | @code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt): | |
473 | ||
a1b74fe8 | 474 | @table @key |
f9859310 | 475 | @item Ctrl-Alt-f |
7544a042 | 476 | @kindex Ctrl-Alt-f |
a1b74fe8 | 477 | Toggle full screen |
a0a821a4 | 478 | |
d6a65ba3 JK |
479 | @item Ctrl-Alt-+ |
480 | @kindex Ctrl-Alt-+ | |
481 | Enlarge the screen | |
482 | ||
483 | @item Ctrl-Alt-- | |
484 | @kindex Ctrl-Alt-- | |
485 | Shrink the screen | |
486 | ||
c4a735f9 | 487 | @item Ctrl-Alt-u |
7544a042 | 488 | @kindex Ctrl-Alt-u |
c4a735f9 | 489 | Restore the screen's un-scaled dimensions |
490 | ||
f9859310 | 491 | @item Ctrl-Alt-n |
7544a042 | 492 | @kindex Ctrl-Alt-n |
a0a821a4 FB |
493 | Switch to virtual console 'n'. Standard console mappings are: |
494 | @table @emph | |
495 | @item 1 | |
496 | Target system display | |
497 | @item 2 | |
498 | Monitor | |
499 | @item 3 | |
500 | Serial port | |
a1b74fe8 FB |
501 | @end table |
502 | ||
f9859310 | 503 | @item Ctrl-Alt |
7544a042 | 504 | @kindex Ctrl-Alt |
a0a821a4 FB |
505 | Toggle mouse and keyboard grab. |
506 | @end table | |
507 | ||
7544a042 SW |
508 | @kindex Ctrl-Up |
509 | @kindex Ctrl-Down | |
510 | @kindex Ctrl-PageUp | |
511 | @kindex Ctrl-PageDown | |
3e11db9a FB |
512 | In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down}, |
513 | @key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log. | |
514 | ||
a40db1b3 PM |
515 | @c man end |
516 | ||
517 | @node mux_keys | |
518 | @section Keys in the character backend multiplexer | |
519 | ||
520 | @c man begin OPTIONS | |
521 | ||
522 | During emulation, if you are using a character backend multiplexer | |
523 | (which is the default if you are using @option{-nographic}) then | |
524 | several commands are available via an escape sequence. These | |
525 | key sequences all start with an escape character, which is @key{Ctrl-a} | |
526 | by default, but can be changed with @option{-echr}. The list below assumes | |
527 | you're using the default. | |
ec410fc9 FB |
528 | |
529 | @table @key | |
a1b74fe8 | 530 | @item Ctrl-a h |
7544a042 | 531 | @kindex Ctrl-a h |
ec410fc9 | 532 | Print this help |
3b46e624 | 533 | @item Ctrl-a x |
7544a042 | 534 | @kindex Ctrl-a x |
366dfc52 | 535 | Exit emulator |
3b46e624 | 536 | @item Ctrl-a s |
7544a042 | 537 | @kindex Ctrl-a s |
1f47a922 | 538 | Save disk data back to file (if -snapshot) |
20d8a3ed | 539 | @item Ctrl-a t |
7544a042 | 540 | @kindex Ctrl-a t |
d2c639d6 | 541 | Toggle console timestamps |
a1b74fe8 | 542 | @item Ctrl-a b |
7544a042 | 543 | @kindex Ctrl-a b |
1f673135 | 544 | Send break (magic sysrq in Linux) |
a1b74fe8 | 545 | @item Ctrl-a c |
7544a042 | 546 | @kindex Ctrl-a c |
a40db1b3 PM |
547 | Rotate between the frontends connected to the multiplexer (usually |
548 | this switches between the monitor and the console) | |
a1b74fe8 | 549 | @item Ctrl-a Ctrl-a |
a40db1b3 PM |
550 | @kindex Ctrl-a Ctrl-a |
551 | Send the escape character to the frontend | |
ec410fc9 | 552 | @end table |
0806e3f6 FB |
553 | @c man end |
554 | ||
555 | @ignore | |
556 | ||
1f673135 FB |
557 | @c man begin SEEALSO |
558 | The HTML documentation of QEMU for more precise information and Linux | |
559 | user mode emulator invocation. | |
560 | @c man end | |
561 | ||
562 | @c man begin AUTHOR | |
563 | Fabrice Bellard | |
564 | @c man end | |
565 | ||
566 | @end ignore | |
567 | ||
debc7065 | 568 | @node pcsys_monitor |
1f673135 | 569 | @section QEMU Monitor |
7544a042 | 570 | @cindex QEMU monitor |
1f673135 FB |
571 | |
572 | The QEMU monitor is used to give complex commands to the QEMU | |
573 | emulator. You can use it to: | |
574 | ||
575 | @itemize @minus | |
576 | ||
577 | @item | |
e598752a | 578 | Remove or insert removable media images |
89dfe898 | 579 | (such as CD-ROM or floppies). |
1f673135 | 580 | |
5fafdf24 | 581 | @item |
1f673135 FB |
582 | Freeze/unfreeze the Virtual Machine (VM) and save or restore its state |
583 | from a disk file. | |
584 | ||
585 | @item Inspect the VM state without an external debugger. | |
586 | ||
587 | @end itemize | |
588 | ||
589 | @subsection Commands | |
590 | ||
591 | The following commands are available: | |
592 | ||
2313086a | 593 | @include qemu-monitor.texi |
0806e3f6 | 594 | |
2cd8af2d PB |
595 | @include qemu-monitor-info.texi |
596 | ||
1f673135 FB |
597 | @subsection Integer expressions |
598 | ||
599 | The monitor understands integers expressions for every integer | |
600 | argument. You can use register names to get the value of specifics | |
601 | CPU registers by prefixing them with @emph{$}. | |
ec410fc9 | 602 | |
1f47a922 FB |
603 | @node disk_images |
604 | @section Disk Images | |
605 | ||
ee29bdb6 PB |
606 | QEMU supports many disk image formats, including growable disk images |
607 | (their size increase as non empty sectors are written), compressed and | |
608 | encrypted disk images. | |
1f47a922 | 609 | |
debc7065 FB |
610 | @menu |
611 | * disk_images_quickstart:: Quick start for disk image creation | |
612 | * disk_images_snapshot_mode:: Snapshot mode | |
13a2e80f | 613 | * vm_snapshots:: VM snapshots |
debc7065 | 614 | * qemu_img_invocation:: qemu-img Invocation |
975b092b | 615 | * qemu_nbd_invocation:: qemu-nbd Invocation |
d3067b02 | 616 | * disk_images_formats:: Disk image file formats |
19cb3738 | 617 | * host_drives:: Using host drives |
debc7065 | 618 | * disk_images_fat_images:: Virtual FAT disk images |
75818250 | 619 | * disk_images_nbd:: NBD access |
42af9c30 | 620 | * disk_images_sheepdog:: Sheepdog disk images |
00984e39 | 621 | * disk_images_iscsi:: iSCSI LUNs |
8809e289 | 622 | * disk_images_gluster:: GlusterFS disk images |
0a12ec87 | 623 | * disk_images_ssh:: Secure Shell (ssh) disk images |
e86de5e4 | 624 | * disk_images_nvme:: NVMe userspace driver |
b1d1cb27 | 625 | * disk_image_locking:: Disk image file locking |
debc7065 FB |
626 | @end menu |
627 | ||
628 | @node disk_images_quickstart | |
acd935ef FB |
629 | @subsection Quick start for disk image creation |
630 | ||
631 | You can create a disk image with the command: | |
1f47a922 | 632 | @example |
acd935ef | 633 | qemu-img create myimage.img mysize |
1f47a922 | 634 | @end example |
acd935ef FB |
635 | where @var{myimage.img} is the disk image filename and @var{mysize} is its |
636 | size in kilobytes. You can add an @code{M} suffix to give the size in | |
637 | megabytes and a @code{G} suffix for gigabytes. | |
638 | ||
debc7065 | 639 | See @ref{qemu_img_invocation} for more information. |
1f47a922 | 640 | |
debc7065 | 641 | @node disk_images_snapshot_mode |
1f47a922 FB |
642 | @subsection Snapshot mode |
643 | ||
644 | If you use the option @option{-snapshot}, all disk images are | |
645 | considered as read only. When sectors in written, they are written in | |
646 | a temporary file created in @file{/tmp}. You can however force the | |
acd935ef FB |
647 | write back to the raw disk images by using the @code{commit} monitor |
648 | command (or @key{C-a s} in the serial console). | |
1f47a922 | 649 | |
13a2e80f FB |
650 | @node vm_snapshots |
651 | @subsection VM snapshots | |
652 | ||
653 | VM snapshots are snapshots of the complete virtual machine including | |
654 | CPU state, RAM, device state and the content of all the writable | |
655 | disks. In order to use VM snapshots, you must have at least one non | |
656 | removable and writable block device using the @code{qcow2} disk image | |
657 | format. Normally this device is the first virtual hard drive. | |
658 | ||
659 | Use the monitor command @code{savevm} to create a new VM snapshot or | |
660 | replace an existing one. A human readable name can be assigned to each | |
19d36792 | 661 | snapshot in addition to its numerical ID. |
13a2e80f FB |
662 | |
663 | Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove | |
664 | a VM snapshot. @code{info snapshots} lists the available snapshots | |
665 | with their associated information: | |
666 | ||
667 | @example | |
668 | (qemu) info snapshots | |
669 | Snapshot devices: hda | |
670 | Snapshot list (from hda): | |
671 | ID TAG VM SIZE DATE VM CLOCK | |
672 | 1 start 41M 2006-08-06 12:38:02 00:00:14.954 | |
673 | 2 40M 2006-08-06 12:43:29 00:00:18.633 | |
674 | 3 msys 40M 2006-08-06 12:44:04 00:00:23.514 | |
675 | @end example | |
676 | ||
677 | A VM snapshot is made of a VM state info (its size is shown in | |
678 | @code{info snapshots}) and a snapshot of every writable disk image. | |
679 | The VM state info is stored in the first @code{qcow2} non removable | |
680 | and writable block device. The disk image snapshots are stored in | |
681 | every disk image. The size of a snapshot in a disk image is difficult | |
682 | to evaluate and is not shown by @code{info snapshots} because the | |
683 | associated disk sectors are shared among all the snapshots to save | |
19d36792 FB |
684 | disk space (otherwise each snapshot would need a full copy of all the |
685 | disk images). | |
13a2e80f FB |
686 | |
687 | When using the (unrelated) @code{-snapshot} option | |
688 | (@ref{disk_images_snapshot_mode}), you can always make VM snapshots, | |
689 | but they are deleted as soon as you exit QEMU. | |
690 | ||
691 | VM snapshots currently have the following known limitations: | |
692 | @itemize | |
5fafdf24 | 693 | @item |
13a2e80f FB |
694 | They cannot cope with removable devices if they are removed or |
695 | inserted after a snapshot is done. | |
5fafdf24 | 696 | @item |
13a2e80f FB |
697 | A few device drivers still have incomplete snapshot support so their |
698 | state is not saved or restored properly (in particular USB). | |
699 | @end itemize | |
700 | ||
acd935ef FB |
701 | @node qemu_img_invocation |
702 | @subsection @code{qemu-img} Invocation | |
1f47a922 | 703 | |
acd935ef | 704 | @include qemu-img.texi |
05efe46e | 705 | |
975b092b TS |
706 | @node qemu_nbd_invocation |
707 | @subsection @code{qemu-nbd} Invocation | |
708 | ||
709 | @include qemu-nbd.texi | |
710 | ||
78aa8aa0 | 711 | @include docs/qemu-block-drivers.texi |
0a12ec87 | 712 | |
debc7065 | 713 | @node pcsys_network |
9d4fb82e FB |
714 | @section Network emulation |
715 | ||
4be456f1 | 716 | QEMU can simulate several network cards (PCI or ISA cards on the PC |
41d03949 FB |
717 | target) and can connect them to an arbitrary number of Virtual Local |
718 | Area Networks (VLANs). Host TAP devices can be connected to any QEMU | |
719 | VLAN. VLAN can be connected between separate instances of QEMU to | |
4be456f1 | 720 | simulate large networks. For simpler usage, a non privileged user mode |
41d03949 FB |
721 | network stack can replace the TAP device to have a basic network |
722 | connection. | |
723 | ||
724 | @subsection VLANs | |
9d4fb82e | 725 | |
41d03949 FB |
726 | QEMU simulates several VLANs. A VLAN can be symbolised as a virtual |
727 | connection between several network devices. These devices can be for | |
728 | example QEMU virtual Ethernet cards or virtual Host ethernet devices | |
729 | (TAP devices). | |
9d4fb82e | 730 | |
41d03949 FB |
731 | @subsection Using TAP network interfaces |
732 | ||
733 | This is the standard way to connect QEMU to a real network. QEMU adds | |
734 | a virtual network device on your host (called @code{tapN}), and you | |
735 | can then configure it as if it was a real ethernet card. | |
9d4fb82e | 736 | |
8f40c388 FB |
737 | @subsubsection Linux host |
738 | ||
9d4fb82e FB |
739 | As an example, you can download the @file{linux-test-xxx.tar.gz} |
740 | archive and copy the script @file{qemu-ifup} in @file{/etc} and | |
741 | configure properly @code{sudo} so that the command @code{ifconfig} | |
742 | contained in @file{qemu-ifup} can be executed as root. You must verify | |
41d03949 | 743 | that your host kernel supports the TAP network interfaces: the |
9d4fb82e FB |
744 | device @file{/dev/net/tun} must be present. |
745 | ||
ee0f4751 FB |
746 | See @ref{sec_invocation} to have examples of command lines using the |
747 | TAP network interfaces. | |
9d4fb82e | 748 | |
8f40c388 FB |
749 | @subsubsection Windows host |
750 | ||
751 | There is a virtual ethernet driver for Windows 2000/XP systems, called | |
752 | TAP-Win32. But it is not included in standard QEMU for Windows, | |
753 | so you will need to get it separately. It is part of OpenVPN package, | |
70b7fba9 | 754 | so download OpenVPN from : @url{https://openvpn.net/}. |
8f40c388 | 755 | |
9d4fb82e FB |
756 | @subsection Using the user mode network stack |
757 | ||
41d03949 FB |
758 | By using the option @option{-net user} (default configuration if no |
759 | @option{-net} option is specified), QEMU uses a completely user mode | |
4be456f1 | 760 | network stack (you don't need root privilege to use the virtual |
41d03949 | 761 | network). The virtual network configuration is the following: |
9d4fb82e FB |
762 | |
763 | @example | |
764 | ||
41d03949 FB |
765 | QEMU VLAN <------> Firewall/DHCP server <-----> Internet |
766 | | (10.0.2.2) | |
9d4fb82e | 767 | | |
2518bd0d | 768 | ----> DNS server (10.0.2.3) |
3b46e624 | 769 | | |
2518bd0d | 770 | ----> SMB server (10.0.2.4) |
9d4fb82e FB |
771 | @end example |
772 | ||
773 | The QEMU VM behaves as if it was behind a firewall which blocks all | |
774 | incoming connections. You can use a DHCP client to automatically | |
41d03949 FB |
775 | configure the network in the QEMU VM. The DHCP server assign addresses |
776 | to the hosts starting from 10.0.2.15. | |
9d4fb82e FB |
777 | |
778 | In order to check that the user mode network is working, you can ping | |
779 | the address 10.0.2.2 and verify that you got an address in the range | |
780 | 10.0.2.x from the QEMU virtual DHCP server. | |
781 | ||
37cbfcce GH |
782 | Note that ICMP traffic in general does not work with user mode networking. |
783 | @code{ping}, aka. ICMP echo, to the local router (10.0.2.2) shall work, | |
784 | however. If you're using QEMU on Linux >= 3.0, it can use unprivileged ICMP | |
785 | ping sockets to allow @code{ping} to the Internet. The host admin has to set | |
786 | the ping_group_range in order to grant access to those sockets. To allow ping | |
787 | for GID 100 (usually users group): | |
788 | ||
789 | @example | |
790 | echo 100 100 > /proc/sys/net/ipv4/ping_group_range | |
791 | @end example | |
b415a407 | 792 | |
9bf05444 FB |
793 | When using the built-in TFTP server, the router is also the TFTP |
794 | server. | |
795 | ||
c8c6afa8 TH |
796 | When using the @option{'-netdev user,hostfwd=...'} option, TCP or UDP |
797 | connections can be redirected from the host to the guest. It allows for | |
798 | example to redirect X11, telnet or SSH connections. | |
443f1376 | 799 | |
41d03949 FB |
800 | @subsection Connecting VLANs between QEMU instances |
801 | ||
802 | Using the @option{-net socket} option, it is possible to make VLANs | |
803 | that span several QEMU instances. See @ref{sec_invocation} to have a | |
804 | basic example. | |
805 | ||
576fd0a1 | 806 | @node pcsys_other_devs |
6cbf4c8c CM |
807 | @section Other Devices |
808 | ||
809 | @subsection Inter-VM Shared Memory device | |
810 | ||
5400c02b MA |
811 | On Linux hosts, a shared memory device is available. The basic syntax |
812 | is: | |
6cbf4c8c CM |
813 | |
814 | @example | |
5400c02b MA |
815 | qemu-system-x86_64 -device ivshmem-plain,memdev=@var{hostmem} |
816 | @end example | |
817 | ||
818 | where @var{hostmem} names a host memory backend. For a POSIX shared | |
819 | memory backend, use something like | |
820 | ||
821 | @example | |
822 | -object memory-backend-file,size=1M,share,mem-path=/dev/shm/ivshmem,id=@var{hostmem} | |
6cbf4c8c CM |
823 | @end example |
824 | ||
825 | If desired, interrupts can be sent between guest VMs accessing the same shared | |
826 | memory region. Interrupt support requires using a shared memory server and | |
827 | using a chardev socket to connect to it. The code for the shared memory server | |
828 | is qemu.git/contrib/ivshmem-server. An example syntax when using the shared | |
829 | memory server is: | |
830 | ||
831 | @example | |
a75eb03b | 832 | # First start the ivshmem server once and for all |
50d34c4e | 833 | ivshmem-server -p @var{pidfile} -S @var{path} -m @var{shm-name} -l @var{shm-size} -n @var{vectors} |
a75eb03b DM |
834 | |
835 | # Then start your qemu instances with matching arguments | |
5400c02b | 836 | qemu-system-x86_64 -device ivshmem-doorbell,vectors=@var{vectors},chardev=@var{id} |
50d34c4e | 837 | -chardev socket,path=@var{path},id=@var{id} |
6cbf4c8c CM |
838 | @end example |
839 | ||
840 | When using the server, the guest will be assigned a VM ID (>=0) that allows guests | |
841 | using the same server to communicate via interrupts. Guests can read their | |
1309cf44 | 842 | VM ID from a device register (see ivshmem-spec.txt). |
6cbf4c8c | 843 | |
62a830b6 MA |
844 | @subsubsection Migration with ivshmem |
845 | ||
5400c02b MA |
846 | With device property @option{master=on}, the guest will copy the shared |
847 | memory on migration to the destination host. With @option{master=off}, | |
848 | the guest will not be able to migrate with the device attached. In the | |
849 | latter case, the device should be detached and then reattached after | |
850 | migration using the PCI hotplug support. | |
6cbf4c8c | 851 | |
62a830b6 MA |
852 | At most one of the devices sharing the same memory can be master. The |
853 | master must complete migration before you plug back the other devices. | |
854 | ||
7d4f4bda MAL |
855 | @subsubsection ivshmem and hugepages |
856 | ||
857 | Instead of specifying the <shm size> using POSIX shm, you may specify | |
858 | a memory backend that has hugepage support: | |
859 | ||
860 | @example | |
5400c02b MA |
861 | qemu-system-x86_64 -object memory-backend-file,size=1G,mem-path=/dev/hugepages/my-shmem-file,share,id=mb1 |
862 | -device ivshmem-plain,memdev=mb1 | |
7d4f4bda MAL |
863 | @end example |
864 | ||
865 | ivshmem-server also supports hugepages mount points with the | |
866 | @option{-m} memory path argument. | |
867 | ||
9d4fb82e FB |
868 | @node direct_linux_boot |
869 | @section Direct Linux Boot | |
1f673135 FB |
870 | |
871 | This section explains how to launch a Linux kernel inside QEMU without | |
872 | having to make a full bootable image. It is very useful for fast Linux | |
ee0f4751 | 873 | kernel testing. |
1f673135 | 874 | |
ee0f4751 | 875 | The syntax is: |
1f673135 | 876 | @example |
3804da9d | 877 | qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda" |
1f673135 FB |
878 | @end example |
879 | ||
ee0f4751 FB |
880 | Use @option{-kernel} to provide the Linux kernel image and |
881 | @option{-append} to give the kernel command line arguments. The | |
882 | @option{-initrd} option can be used to provide an INITRD image. | |
1f673135 | 883 | |
ee0f4751 FB |
884 | When using the direct Linux boot, a disk image for the first hard disk |
885 | @file{hda} is required because its boot sector is used to launch the | |
886 | Linux kernel. | |
1f673135 | 887 | |
ee0f4751 FB |
888 | If you do not need graphical output, you can disable it and redirect |
889 | the virtual serial port and the QEMU monitor to the console with the | |
890 | @option{-nographic} option. The typical command line is: | |
1f673135 | 891 | @example |
3804da9d SW |
892 | qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \ |
893 | -append "root=/dev/hda console=ttyS0" -nographic | |
1f673135 FB |
894 | @end example |
895 | ||
ee0f4751 FB |
896 | Use @key{Ctrl-a c} to switch between the serial console and the |
897 | monitor (@pxref{pcsys_keys}). | |
1f673135 | 898 | |
debc7065 | 899 | @node pcsys_usb |
b389dbfb FB |
900 | @section USB emulation |
901 | ||
a92ff8c1 TH |
902 | QEMU can emulate a PCI UHCI, OHCI, EHCI or XHCI USB controller. You can |
903 | plug virtual USB devices or real host USB devices (only works with certain | |
904 | host operating systems). QEMU will automatically create and connect virtual | |
905 | USB hubs as necessary to connect multiple USB devices. | |
b389dbfb | 906 | |
0aff66b5 PB |
907 | @menu |
908 | * usb_devices:: | |
909 | * host_usb_devices:: | |
910 | @end menu | |
911 | @node usb_devices | |
912 | @subsection Connecting USB devices | |
b389dbfb | 913 | |
a92ff8c1 TH |
914 | USB devices can be connected with the @option{-device usb-...} command line |
915 | option or the @code{device_add} monitor command. Available devices are: | |
b389dbfb | 916 | |
db380c06 | 917 | @table @code |
a92ff8c1 | 918 | @item usb-mouse |
0aff66b5 | 919 | Virtual Mouse. This will override the PS/2 mouse emulation when activated. |
a92ff8c1 | 920 | @item usb-tablet |
c6d46c20 | 921 | Pointer device that uses absolute coordinates (like a touchscreen). |
b65ee4fa | 922 | This means QEMU is able to report the mouse position without having |
0aff66b5 | 923 | to grab the mouse. Also overrides the PS/2 mouse emulation when activated. |
a92ff8c1 TH |
924 | @item usb-storage,drive=@var{drive_id} |
925 | Mass storage device backed by @var{drive_id} (@pxref{disk_images}) | |
926 | @item usb-uas | |
927 | USB attached SCSI device, see | |
70b7fba9 | 928 | @url{https://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/usb-storage.txt,usb-storage.txt} |
a92ff8c1 TH |
929 | for details |
930 | @item usb-bot | |
931 | Bulk-only transport storage device, see | |
70b7fba9 | 932 | @url{https://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/usb-storage.txt,usb-storage.txt} |
a92ff8c1 TH |
933 | for details here, too |
934 | @item usb-mtp,x-root=@var{dir} | |
935 | Media transfer protocol device, using @var{dir} as root of the file tree | |
936 | that is presented to the guest. | |
937 | @item usb-host,hostbus=@var{bus},hostaddr=@var{addr} | |
938 | Pass through the host device identified by @var{bus} and @var{addr} | |
939 | @item usb-host,vendorid=@var{vendor},productid=@var{product} | |
940 | Pass through the host device identified by @var{vendor} and @var{product} ID | |
941 | @item usb-wacom-tablet | |
f6d2a316 AZ |
942 | Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet} |
943 | above but it can be used with the tslib library because in addition to touch | |
944 | coordinates it reports touch pressure. | |
a92ff8c1 | 945 | @item usb-kbd |
47b2d338 | 946 | Standard USB keyboard. Will override the PS/2 keyboard (if present). |
a92ff8c1 | 947 | @item usb-serial,chardev=@var{id} |
db380c06 | 948 | Serial converter. This emulates an FTDI FT232BM chip connected to host character |
a92ff8c1 TH |
949 | device @var{id}. |
950 | @item usb-braille,chardev=@var{id} | |
2e4d9fb1 | 951 | Braille device. This will use BrlAPI to display the braille output on a real |
a92ff8c1 TH |
952 | or fake device referenced by @var{id}. |
953 | @item usb-net[,netdev=@var{id}] | |
954 | Network adapter that supports CDC ethernet and RNDIS protocols. @var{id} | |
955 | specifies a netdev defined with @code{-netdev @dots{},id=@var{id}}. | |
9ad97e65 | 956 | For instance, user-mode networking can be used with |
6c9f886c | 957 | @example |
a92ff8c1 | 958 | qemu-system-i386 [...] -netdev user,id=net0 -device usb-net,netdev=net0 |
6c9f886c | 959 | @end example |
a92ff8c1 TH |
960 | @item usb-ccid |
961 | Smartcard reader device | |
962 | @item usb-audio | |
963 | USB audio device | |
964 | @item usb-bt-dongle | |
965 | Bluetooth dongle for the transport layer of HCI. It is connected to HCI | |
966 | scatternet 0 by default (corresponds to @code{-bt hci,vlan=0}). | |
967 | Note that the syntax for the @code{-device usb-bt-dongle} option is not as | |
968 | useful yet as it was with the legacy @code{-usbdevice} option. So to | |
969 | configure an USB bluetooth device, you might need to use | |
970 | "@code{-usbdevice bt}[:@var{hci-type}]" instead. This configures a | |
971 | bluetooth dongle whose type is specified in the same format as with | |
2d564691 AZ |
972 | the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If |
973 | no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}. | |
974 | This USB device implements the USB Transport Layer of HCI. Example | |
975 | usage: | |
976 | @example | |
8485140f | 977 | @command{qemu-system-i386} [...@var{OPTIONS}...] @option{-usbdevice} bt:hci,vlan=3 @option{-bt} device:keyboard,vlan=3 |
2d564691 | 978 | @end example |
0aff66b5 | 979 | @end table |
b389dbfb | 980 | |
0aff66b5 | 981 | @node host_usb_devices |
b389dbfb FB |
982 | @subsection Using host USB devices on a Linux host |
983 | ||
984 | WARNING: this is an experimental feature. QEMU will slow down when | |
985 | using it. USB devices requiring real time streaming (i.e. USB Video | |
986 | Cameras) are not supported yet. | |
987 | ||
988 | @enumerate | |
5fafdf24 | 989 | @item If you use an early Linux 2.4 kernel, verify that no Linux driver |
b389dbfb FB |
990 | is actually using the USB device. A simple way to do that is simply to |
991 | disable the corresponding kernel module by renaming it from @file{mydriver.o} | |
992 | to @file{mydriver.o.disabled}. | |
993 | ||
994 | @item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that: | |
995 | @example | |
996 | ls /proc/bus/usb | |
997 | 001 devices drivers | |
998 | @end example | |
999 | ||
1000 | @item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices: | |
1001 | @example | |
1002 | chown -R myuid /proc/bus/usb | |
1003 | @end example | |
1004 | ||
1005 | @item Launch QEMU and do in the monitor: | |
5fafdf24 | 1006 | @example |
b389dbfb FB |
1007 | info usbhost |
1008 | Device 1.2, speed 480 Mb/s | |
1009 | Class 00: USB device 1234:5678, USB DISK | |
1010 | @end example | |
1011 | You should see the list of the devices you can use (Never try to use | |
1012 | hubs, it won't work). | |
1013 | ||
1014 | @item Add the device in QEMU by using: | |
5fafdf24 | 1015 | @example |
a92ff8c1 | 1016 | device_add usb-host,vendorid=0x1234,productid=0x5678 |
b389dbfb FB |
1017 | @end example |
1018 | ||
a92ff8c1 TH |
1019 | Normally the guest OS should report that a new USB device is plugged. |
1020 | You can use the option @option{-device usb-host,...} to do the same. | |
b389dbfb FB |
1021 | |
1022 | @item Now you can try to use the host USB device in QEMU. | |
1023 | ||
1024 | @end enumerate | |
1025 | ||
1026 | When relaunching QEMU, you may have to unplug and plug again the USB | |
1027 | device to make it work again (this is a bug). | |
1028 | ||
f858dcae TS |
1029 | @node vnc_security |
1030 | @section VNC security | |
1031 | ||
1032 | The VNC server capability provides access to the graphical console | |
1033 | of the guest VM across the network. This has a number of security | |
1034 | considerations depending on the deployment scenarios. | |
1035 | ||
1036 | @menu | |
1037 | * vnc_sec_none:: | |
1038 | * vnc_sec_password:: | |
1039 | * vnc_sec_certificate:: | |
1040 | * vnc_sec_certificate_verify:: | |
1041 | * vnc_sec_certificate_pw:: | |
2f9606b3 AL |
1042 | * vnc_sec_sasl:: |
1043 | * vnc_sec_certificate_sasl:: | |
f858dcae | 1044 | * vnc_generate_cert:: |
2f9606b3 | 1045 | * vnc_setup_sasl:: |
f858dcae TS |
1046 | @end menu |
1047 | @node vnc_sec_none | |
1048 | @subsection Without passwords | |
1049 | ||
1050 | The simplest VNC server setup does not include any form of authentication. | |
1051 | For this setup it is recommended to restrict it to listen on a UNIX domain | |
1052 | socket only. For example | |
1053 | ||
1054 | @example | |
3804da9d | 1055 | qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc |
f858dcae TS |
1056 | @end example |
1057 | ||
1058 | This ensures that only users on local box with read/write access to that | |
1059 | path can access the VNC server. To securely access the VNC server from a | |
1060 | remote machine, a combination of netcat+ssh can be used to provide a secure | |
1061 | tunnel. | |
1062 | ||
1063 | @node vnc_sec_password | |
1064 | @subsection With passwords | |
1065 | ||
1066 | The VNC protocol has limited support for password based authentication. Since | |
1067 | the protocol limits passwords to 8 characters it should not be considered | |
1068 | to provide high security. The password can be fairly easily brute-forced by | |
1069 | a client making repeat connections. For this reason, a VNC server using password | |
1070 | authentication should be restricted to only listen on the loopback interface | |
0f66998f PM |
1071 | or UNIX domain sockets. Password authentication is not supported when operating |
1072 | in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password | |
1073 | authentication is requested with the @code{password} option, and then once QEMU | |
1074 | is running the password is set with the monitor. Until the monitor is used to | |
1075 | set the password all clients will be rejected. | |
f858dcae TS |
1076 | |
1077 | @example | |
3804da9d | 1078 | qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio |
f858dcae TS |
1079 | (qemu) change vnc password |
1080 | Password: ******** | |
1081 | (qemu) | |
1082 | @end example | |
1083 | ||
1084 | @node vnc_sec_certificate | |
1085 | @subsection With x509 certificates | |
1086 | ||
1087 | The QEMU VNC server also implements the VeNCrypt extension allowing use of | |
1088 | TLS for encryption of the session, and x509 certificates for authentication. | |
1089 | The use of x509 certificates is strongly recommended, because TLS on its | |
1090 | own is susceptible to man-in-the-middle attacks. Basic x509 certificate | |
1091 | support provides a secure session, but no authentication. This allows any | |
1092 | client to connect, and provides an encrypted session. | |
1093 | ||
1094 | @example | |
3804da9d | 1095 | qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio |
f858dcae TS |
1096 | @end example |
1097 | ||
1098 | In the above example @code{/etc/pki/qemu} should contain at least three files, | |
1099 | @code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged | |
1100 | users will want to use a private directory, for example @code{$HOME/.pki/qemu}. | |
1101 | NB the @code{server-key.pem} file should be protected with file mode 0600 to | |
1102 | only be readable by the user owning it. | |
1103 | ||
1104 | @node vnc_sec_certificate_verify | |
1105 | @subsection With x509 certificates and client verification | |
1106 | ||
1107 | Certificates can also provide a means to authenticate the client connecting. | |
1108 | The server will request that the client provide a certificate, which it will | |
1109 | then validate against the CA certificate. This is a good choice if deploying | |
1110 | in an environment with a private internal certificate authority. | |
1111 | ||
1112 | @example | |
3804da9d | 1113 | qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio |
f858dcae TS |
1114 | @end example |
1115 | ||
1116 | ||
1117 | @node vnc_sec_certificate_pw | |
1118 | @subsection With x509 certificates, client verification and passwords | |
1119 | ||
1120 | Finally, the previous method can be combined with VNC password authentication | |
1121 | to provide two layers of authentication for clients. | |
1122 | ||
1123 | @example | |
3804da9d | 1124 | qemu-system-i386 [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio |
f858dcae TS |
1125 | (qemu) change vnc password |
1126 | Password: ******** | |
1127 | (qemu) | |
1128 | @end example | |
1129 | ||
2f9606b3 AL |
1130 | |
1131 | @node vnc_sec_sasl | |
1132 | @subsection With SASL authentication | |
1133 | ||
1134 | The SASL authentication method is a VNC extension, that provides an | |
1135 | easily extendable, pluggable authentication method. This allows for | |
1136 | integration with a wide range of authentication mechanisms, such as | |
1137 | PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more. | |
1138 | The strength of the authentication depends on the exact mechanism | |
1139 | configured. If the chosen mechanism also provides a SSF layer, then | |
1140 | it will encrypt the datastream as well. | |
1141 | ||
1142 | Refer to the later docs on how to choose the exact SASL mechanism | |
1143 | used for authentication, but assuming use of one supporting SSF, | |
1144 | then QEMU can be launched with: | |
1145 | ||
1146 | @example | |
3804da9d | 1147 | qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio |
2f9606b3 AL |
1148 | @end example |
1149 | ||
1150 | @node vnc_sec_certificate_sasl | |
1151 | @subsection With x509 certificates and SASL authentication | |
1152 | ||
1153 | If the desired SASL authentication mechanism does not supported | |
1154 | SSF layers, then it is strongly advised to run it in combination | |
1155 | with TLS and x509 certificates. This provides securely encrypted | |
1156 | data stream, avoiding risk of compromising of the security | |
1157 | credentials. This can be enabled, by combining the 'sasl' option | |
1158 | with the aforementioned TLS + x509 options: | |
1159 | ||
1160 | @example | |
3804da9d | 1161 | qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio |
2f9606b3 AL |
1162 | @end example |
1163 | ||
1164 | ||
f858dcae TS |
1165 | @node vnc_generate_cert |
1166 | @subsection Generating certificates for VNC | |
1167 | ||
1168 | The GNU TLS packages provides a command called @code{certtool} which can | |
1169 | be used to generate certificates and keys in PEM format. At a minimum it | |
40c5c6cd | 1170 | is necessary to setup a certificate authority, and issue certificates to |
f858dcae TS |
1171 | each server. If using certificates for authentication, then each client |
1172 | will also need to be issued a certificate. The recommendation is for the | |
1173 | server to keep its certificates in either @code{/etc/pki/qemu} or for | |
1174 | unprivileged users in @code{$HOME/.pki/qemu}. | |
1175 | ||
1176 | @menu | |
1177 | * vnc_generate_ca:: | |
1178 | * vnc_generate_server:: | |
1179 | * vnc_generate_client:: | |
1180 | @end menu | |
1181 | @node vnc_generate_ca | |
1182 | @subsubsection Setup the Certificate Authority | |
1183 | ||
1184 | This step only needs to be performed once per organization / organizational | |
1185 | unit. First the CA needs a private key. This key must be kept VERY secret | |
1186 | and secure. If this key is compromised the entire trust chain of the certificates | |
1187 | issued with it is lost. | |
1188 | ||
1189 | @example | |
1190 | # certtool --generate-privkey > ca-key.pem | |
1191 | @end example | |
1192 | ||
1193 | A CA needs to have a public certificate. For simplicity it can be a self-signed | |
1194 | certificate, or one issue by a commercial certificate issuing authority. To | |
1195 | generate a self-signed certificate requires one core piece of information, the | |
1196 | name of the organization. | |
1197 | ||
1198 | @example | |
1199 | # cat > ca.info <<EOF | |
1200 | cn = Name of your organization | |
1201 | ca | |
1202 | cert_signing_key | |
1203 | EOF | |
1204 | # certtool --generate-self-signed \ | |
1205 | --load-privkey ca-key.pem | |
1206 | --template ca.info \ | |
1207 | --outfile ca-cert.pem | |
1208 | @end example | |
1209 | ||
1210 | The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize | |
1211 | TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all. | |
1212 | ||
1213 | @node vnc_generate_server | |
1214 | @subsubsection Issuing server certificates | |
1215 | ||
1216 | Each server (or host) needs to be issued with a key and certificate. When connecting | |
1217 | the certificate is sent to the client which validates it against the CA certificate. | |
1218 | The core piece of information for a server certificate is the hostname. This should | |
1219 | be the fully qualified hostname that the client will connect with, since the client | |
1220 | will typically also verify the hostname in the certificate. On the host holding the | |
1221 | secure CA private key: | |
1222 | ||
1223 | @example | |
1224 | # cat > server.info <<EOF | |
1225 | organization = Name of your organization | |
1226 | cn = server.foo.example.com | |
1227 | tls_www_server | |
1228 | encryption_key | |
1229 | signing_key | |
1230 | EOF | |
1231 | # certtool --generate-privkey > server-key.pem | |
1232 | # certtool --generate-certificate \ | |
1233 | --load-ca-certificate ca-cert.pem \ | |
1234 | --load-ca-privkey ca-key.pem \ | |
63c693f8 | 1235 | --load-privkey server-key.pem \ |
f858dcae TS |
1236 | --template server.info \ |
1237 | --outfile server-cert.pem | |
1238 | @end example | |
1239 | ||
1240 | The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied | |
1241 | to the server for which they were generated. The @code{server-key.pem} is security | |
1242 | sensitive and should be kept protected with file mode 0600 to prevent disclosure. | |
1243 | ||
1244 | @node vnc_generate_client | |
1245 | @subsubsection Issuing client certificates | |
1246 | ||
1247 | If the QEMU VNC server is to use the @code{x509verify} option to validate client | |
1248 | certificates as its authentication mechanism, each client also needs to be issued | |
1249 | a certificate. The client certificate contains enough metadata to uniquely identify | |
1250 | the client, typically organization, state, city, building, etc. On the host holding | |
1251 | the secure CA private key: | |
1252 | ||
1253 | @example | |
1254 | # cat > client.info <<EOF | |
1255 | country = GB | |
1256 | state = London | |
1257 | locality = London | |
63c693f8 | 1258 | organization = Name of your organization |
f858dcae TS |
1259 | cn = client.foo.example.com |
1260 | tls_www_client | |
1261 | encryption_key | |
1262 | signing_key | |
1263 | EOF | |
1264 | # certtool --generate-privkey > client-key.pem | |
1265 | # certtool --generate-certificate \ | |
1266 | --load-ca-certificate ca-cert.pem \ | |
1267 | --load-ca-privkey ca-key.pem \ | |
1268 | --load-privkey client-key.pem \ | |
1269 | --template client.info \ | |
1270 | --outfile client-cert.pem | |
1271 | @end example | |
1272 | ||
1273 | The @code{client-key.pem} and @code{client-cert.pem} files should now be securely | |
1274 | copied to the client for which they were generated. | |
1275 | ||
2f9606b3 AL |
1276 | |
1277 | @node vnc_setup_sasl | |
1278 | ||
1279 | @subsection Configuring SASL mechanisms | |
1280 | ||
1281 | The following documentation assumes use of the Cyrus SASL implementation on a | |
1282 | Linux host, but the principals should apply to any other SASL impl. When SASL | |
1283 | is enabled, the mechanism configuration will be loaded from system default | |
1284 | SASL service config /etc/sasl2/qemu.conf. If running QEMU as an | |
1285 | unprivileged user, an environment variable SASL_CONF_PATH can be used | |
1286 | to make it search alternate locations for the service config. | |
1287 | ||
c6a9a9f5 DB |
1288 | If the TLS option is enabled for VNC, then it will provide session encryption, |
1289 | otherwise the SASL mechanism will have to provide encryption. In the latter | |
1290 | case the list of possible plugins that can be used is drastically reduced. In | |
1291 | fact only the GSSAPI SASL mechanism provides an acceptable level of security | |
1292 | by modern standards. Previous versions of QEMU referred to the DIGEST-MD5 | |
1293 | mechanism, however, it has multiple serious flaws described in detail in | |
1294 | RFC 6331 and thus should never be used any more. The SCRAM-SHA-1 mechanism | |
1295 | provides a simple username/password auth facility similar to DIGEST-MD5, but | |
1296 | does not support session encryption, so can only be used in combination with | |
1297 | TLS. | |
1298 | ||
1299 | When not using TLS the recommended configuration is | |
2f9606b3 AL |
1300 | |
1301 | @example | |
c6a9a9f5 DB |
1302 | mech_list: gssapi |
1303 | keytab: /etc/qemu/krb5.tab | |
2f9606b3 AL |
1304 | @end example |
1305 | ||
c6a9a9f5 DB |
1306 | This says to use the 'GSSAPI' mechanism with the Kerberos v5 protocol, with |
1307 | the server principal stored in /etc/qemu/krb5.tab. For this to work the | |
1308 | administrator of your KDC must generate a Kerberos principal for the server, | |
1309 | with a name of 'qemu/somehost.example.com@@EXAMPLE.COM' replacing | |
1310 | 'somehost.example.com' with the fully qualified host name of the machine | |
1311 | running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm. | |
2f9606b3 | 1312 | |
c6a9a9f5 DB |
1313 | When using TLS, if username+password authentication is desired, then a |
1314 | reasonable configuration is | |
2f9606b3 AL |
1315 | |
1316 | @example | |
c6a9a9f5 DB |
1317 | mech_list: scram-sha-1 |
1318 | sasldb_path: /etc/qemu/passwd.db | |
2f9606b3 AL |
1319 | @end example |
1320 | ||
c6a9a9f5 DB |
1321 | The saslpasswd2 program can be used to populate the passwd.db file with |
1322 | accounts. | |
2f9606b3 | 1323 | |
c6a9a9f5 DB |
1324 | Other SASL configurations will be left as an exercise for the reader. Note that |
1325 | all mechanisms except GSSAPI, should be combined with use of TLS to ensure a | |
1326 | secure data channel. | |
2f9606b3 | 1327 | |
0806e3f6 | 1328 | @node gdb_usage |
da415d54 FB |
1329 | @section GDB usage |
1330 | ||
1331 | QEMU has a primitive support to work with gdb, so that you can do | |
0806e3f6 | 1332 | 'Ctrl-C' while the virtual machine is running and inspect its state. |
da415d54 | 1333 | |
b65ee4fa | 1334 | In order to use gdb, launch QEMU with the '-s' option. It will wait for a |
da415d54 FB |
1335 | gdb connection: |
1336 | @example | |
3804da9d SW |
1337 | qemu-system-i386 -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \ |
1338 | -append "root=/dev/hda" | |
da415d54 FB |
1339 | Connected to host network interface: tun0 |
1340 | Waiting gdb connection on port 1234 | |
1341 | @end example | |
1342 | ||
1343 | Then launch gdb on the 'vmlinux' executable: | |
1344 | @example | |
1345 | > gdb vmlinux | |
1346 | @end example | |
1347 | ||
1348 | In gdb, connect to QEMU: | |
1349 | @example | |
6c9bf893 | 1350 | (gdb) target remote localhost:1234 |
da415d54 FB |
1351 | @end example |
1352 | ||
1353 | Then you can use gdb normally. For example, type 'c' to launch the kernel: | |
1354 | @example | |
1355 | (gdb) c | |
1356 | @end example | |
1357 | ||
0806e3f6 FB |
1358 | Here are some useful tips in order to use gdb on system code: |
1359 | ||
1360 | @enumerate | |
1361 | @item | |
1362 | Use @code{info reg} to display all the CPU registers. | |
1363 | @item | |
1364 | Use @code{x/10i $eip} to display the code at the PC position. | |
1365 | @item | |
1366 | Use @code{set architecture i8086} to dump 16 bit code. Then use | |
294e8637 | 1367 | @code{x/10i $cs*16+$eip} to dump the code at the PC position. |
0806e3f6 FB |
1368 | @end enumerate |
1369 | ||
60897d36 EI |
1370 | Advanced debugging options: |
1371 | ||
b6af0975 | 1372 | The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior: |
94d45e44 | 1373 | @table @code |
60897d36 EI |
1374 | @item maintenance packet qqemu.sstepbits |
1375 | ||
1376 | This will display the MASK bits used to control the single stepping IE: | |
1377 | @example | |
1378 | (gdb) maintenance packet qqemu.sstepbits | |
1379 | sending: "qqemu.sstepbits" | |
1380 | received: "ENABLE=1,NOIRQ=2,NOTIMER=4" | |
1381 | @end example | |
1382 | @item maintenance packet qqemu.sstep | |
1383 | ||
1384 | This will display the current value of the mask used when single stepping IE: | |
1385 | @example | |
1386 | (gdb) maintenance packet qqemu.sstep | |
1387 | sending: "qqemu.sstep" | |
1388 | received: "0x7" | |
1389 | @end example | |
1390 | @item maintenance packet Qqemu.sstep=HEX_VALUE | |
1391 | ||
1392 | This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use: | |
1393 | @example | |
1394 | (gdb) maintenance packet Qqemu.sstep=0x5 | |
1395 | sending: "qemu.sstep=0x5" | |
1396 | received: "OK" | |
1397 | @end example | |
94d45e44 | 1398 | @end table |
60897d36 | 1399 | |
debc7065 | 1400 | @node pcsys_os_specific |
1a084f3d FB |
1401 | @section Target OS specific information |
1402 | ||
1403 | @subsection Linux | |
1404 | ||
15a34c63 FB |
1405 | To have access to SVGA graphic modes under X11, use the @code{vesa} or |
1406 | the @code{cirrus} X11 driver. For optimal performances, use 16 bit | |
1407 | color depth in the guest and the host OS. | |
1a084f3d | 1408 | |
e3371e62 FB |
1409 | When using a 2.6 guest Linux kernel, you should add the option |
1410 | @code{clock=pit} on the kernel command line because the 2.6 Linux | |
1411 | kernels make very strict real time clock checks by default that QEMU | |
1412 | cannot simulate exactly. | |
1413 | ||
7c3fc84d FB |
1414 | When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is |
1415 | not activated because QEMU is slower with this patch. The QEMU | |
1416 | Accelerator Module is also much slower in this case. Earlier Fedora | |
4be456f1 | 1417 | Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this |
7c3fc84d FB |
1418 | patch by default. Newer kernels don't have it. |
1419 | ||
1a084f3d FB |
1420 | @subsection Windows |
1421 | ||
1422 | If you have a slow host, using Windows 95 is better as it gives the | |
1423 | best speed. Windows 2000 is also a good choice. | |
1424 | ||
e3371e62 FB |
1425 | @subsubsection SVGA graphic modes support |
1426 | ||
1427 | QEMU emulates a Cirrus Logic GD5446 Video | |
15a34c63 FB |
1428 | card. All Windows versions starting from Windows 95 should recognize |
1429 | and use this graphic card. For optimal performances, use 16 bit color | |
1430 | depth in the guest and the host OS. | |
1a084f3d | 1431 | |
3cb0853a FB |
1432 | If you are using Windows XP as guest OS and if you want to use high |
1433 | resolution modes which the Cirrus Logic BIOS does not support (i.e. >= | |
1434 | 1280x1024x16), then you should use the VESA VBE virtual graphic card | |
1435 | (option @option{-std-vga}). | |
1436 | ||
e3371e62 FB |
1437 | @subsubsection CPU usage reduction |
1438 | ||
1439 | Windows 9x does not correctly use the CPU HLT | |
15a34c63 FB |
1440 | instruction. The result is that it takes host CPU cycles even when |
1441 | idle. You can install the utility from | |
70b7fba9 | 1442 | @url{https://web.archive.org/web/20060212132151/http://www.user.cityline.ru/~maxamn/amnhltm.zip} |
3ba34a70 | 1443 | to solve this problem. Note that no such tool is needed for NT, 2000 or XP. |
1a084f3d | 1444 | |
9d0a8e6f | 1445 | @subsubsection Windows 2000 disk full problem |
e3371e62 | 1446 | |
9d0a8e6f FB |
1447 | Windows 2000 has a bug which gives a disk full problem during its |
1448 | installation. When installing it, use the @option{-win2k-hack} QEMU | |
1449 | option to enable a specific workaround. After Windows 2000 is | |
1450 | installed, you no longer need this option (this option slows down the | |
1451 | IDE transfers). | |
e3371e62 | 1452 | |
6cc721cf FB |
1453 | @subsubsection Windows 2000 shutdown |
1454 | ||
1455 | Windows 2000 cannot automatically shutdown in QEMU although Windows 98 | |
1456 | can. It comes from the fact that Windows 2000 does not automatically | |
1457 | use the APM driver provided by the BIOS. | |
1458 | ||
1459 | In order to correct that, do the following (thanks to Struan | |
1460 | Bartlett): go to the Control Panel => Add/Remove Hardware & Next => | |
1461 | Add/Troubleshoot a device => Add a new device & Next => No, select the | |
1462 | hardware from a list & Next => NT Apm/Legacy Support & Next => Next | |
1463 | (again) a few times. Now the driver is installed and Windows 2000 now | |
5fafdf24 | 1464 | correctly instructs QEMU to shutdown at the appropriate moment. |
6cc721cf FB |
1465 | |
1466 | @subsubsection Share a directory between Unix and Windows | |
1467 | ||
c8c6afa8 TH |
1468 | See @ref{sec_invocation} about the help of the option |
1469 | @option{'-netdev user,smb=...'}. | |
6cc721cf | 1470 | |
2192c332 | 1471 | @subsubsection Windows XP security problem |
e3371e62 FB |
1472 | |
1473 | Some releases of Windows XP install correctly but give a security | |
1474 | error when booting: | |
1475 | @example | |
1476 | A problem is preventing Windows from accurately checking the | |
1477 | license for this computer. Error code: 0x800703e6. | |
1478 | @end example | |
e3371e62 | 1479 | |
2192c332 FB |
1480 | The workaround is to install a service pack for XP after a boot in safe |
1481 | mode. Then reboot, and the problem should go away. Since there is no | |
1482 | network while in safe mode, its recommended to download the full | |
1483 | installation of SP1 or SP2 and transfer that via an ISO or using the | |
1484 | vvfat block device ("-hdb fat:directory_which_holds_the_SP"). | |
e3371e62 | 1485 | |
a0a821a4 FB |
1486 | @subsection MS-DOS and FreeDOS |
1487 | ||
1488 | @subsubsection CPU usage reduction | |
1489 | ||
1490 | DOS does not correctly use the CPU HLT instruction. The result is that | |
3ba34a70 | 1491 | it takes host CPU cycles even when idle. You can install the utility from |
70b7fba9 | 1492 | @url{https://web.archive.org/web/20051222085335/http://www.vmware.com/software/dosidle210.zip} |
3ba34a70 | 1493 | to solve this problem. |
a0a821a4 | 1494 | |
debc7065 | 1495 | @node QEMU System emulator for non PC targets |
3f9f3aa1 FB |
1496 | @chapter QEMU System emulator for non PC targets |
1497 | ||
1498 | QEMU is a generic emulator and it emulates many non PC | |
1499 | machines. Most of the options are similar to the PC emulator. The | |
4be456f1 | 1500 | differences are mentioned in the following sections. |
3f9f3aa1 | 1501 | |
debc7065 | 1502 | @menu |
7544a042 | 1503 | * PowerPC System emulator:: |
24d4de45 TS |
1504 | * Sparc32 System emulator:: |
1505 | * Sparc64 System emulator:: | |
1506 | * MIPS System emulator:: | |
1507 | * ARM System emulator:: | |
1508 | * ColdFire System emulator:: | |
7544a042 SW |
1509 | * Cris System emulator:: |
1510 | * Microblaze System emulator:: | |
1511 | * SH4 System emulator:: | |
3aeaea65 | 1512 | * Xtensa System emulator:: |
debc7065 FB |
1513 | @end menu |
1514 | ||
7544a042 SW |
1515 | @node PowerPC System emulator |
1516 | @section PowerPC System emulator | |
1517 | @cindex system emulation (PowerPC) | |
1a084f3d | 1518 | |
15a34c63 FB |
1519 | Use the executable @file{qemu-system-ppc} to simulate a complete PREP |
1520 | or PowerMac PowerPC system. | |
1a084f3d | 1521 | |
b671f9ed | 1522 | QEMU emulates the following PowerMac peripherals: |
1a084f3d | 1523 | |
15a34c63 | 1524 | @itemize @minus |
5fafdf24 | 1525 | @item |
006f3a48 | 1526 | UniNorth or Grackle PCI Bridge |
15a34c63 FB |
1527 | @item |
1528 | PCI VGA compatible card with VESA Bochs Extensions | |
5fafdf24 | 1529 | @item |
15a34c63 | 1530 | 2 PMAC IDE interfaces with hard disk and CD-ROM support |
5fafdf24 | 1531 | @item |
15a34c63 FB |
1532 | NE2000 PCI adapters |
1533 | @item | |
1534 | Non Volatile RAM | |
1535 | @item | |
1536 | VIA-CUDA with ADB keyboard and mouse. | |
1a084f3d FB |
1537 | @end itemize |
1538 | ||
b671f9ed | 1539 | QEMU emulates the following PREP peripherals: |
52c00a5f FB |
1540 | |
1541 | @itemize @minus | |
5fafdf24 | 1542 | @item |
15a34c63 FB |
1543 | PCI Bridge |
1544 | @item | |
1545 | PCI VGA compatible card with VESA Bochs Extensions | |
5fafdf24 | 1546 | @item |
52c00a5f FB |
1547 | 2 IDE interfaces with hard disk and CD-ROM support |
1548 | @item | |
1549 | Floppy disk | |
5fafdf24 | 1550 | @item |
15a34c63 | 1551 | NE2000 network adapters |
52c00a5f FB |
1552 | @item |
1553 | Serial port | |
1554 | @item | |
1555 | PREP Non Volatile RAM | |
15a34c63 FB |
1556 | @item |
1557 | PC compatible keyboard and mouse. | |
52c00a5f FB |
1558 | @end itemize |
1559 | ||
15a34c63 | 1560 | QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at |
3f9f3aa1 | 1561 | @url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}. |
52c00a5f | 1562 | |
70b7fba9 | 1563 | Since version 0.9.1, QEMU uses OpenBIOS @url{https://www.openbios.org/} |
006f3a48 BS |
1564 | for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL |
1565 | v2) portable firmware implementation. The goal is to implement a 100% | |
1566 | IEEE 1275-1994 (referred to as Open Firmware) compliant firmware. | |
992e5acd | 1567 | |
15a34c63 FB |
1568 | @c man begin OPTIONS |
1569 | ||
1570 | The following options are specific to the PowerPC emulation: | |
1571 | ||
1572 | @table @option | |
1573 | ||
4e257e5e | 1574 | @item -g @var{W}x@var{H}[x@var{DEPTH}] |
15a34c63 | 1575 | |
340fb41b | 1576 | Set the initial VGA graphic mode. The default is 800x600x32. |
15a34c63 | 1577 | |
4e257e5e | 1578 | @item -prom-env @var{string} |
95efd11c BS |
1579 | |
1580 | Set OpenBIOS variables in NVRAM, for example: | |
1581 | ||
1582 | @example | |
1583 | qemu-system-ppc -prom-env 'auto-boot?=false' \ | |
1584 | -prom-env 'boot-device=hd:2,\yaboot' \ | |
1585 | -prom-env 'boot-args=conf=hd:2,\yaboot.conf' | |
1586 | @end example | |
1587 | ||
1588 | These variables are not used by Open Hack'Ware. | |
1589 | ||
15a34c63 FB |
1590 | @end table |
1591 | ||
5fafdf24 | 1592 | @c man end |
15a34c63 FB |
1593 | |
1594 | ||
52c00a5f | 1595 | More information is available at |
3f9f3aa1 | 1596 | @url{http://perso.magic.fr/l_indien/qemu-ppc/}. |
52c00a5f | 1597 | |
24d4de45 TS |
1598 | @node Sparc32 System emulator |
1599 | @section Sparc32 System emulator | |
7544a042 | 1600 | @cindex system emulation (Sparc32) |
e80cfcfc | 1601 | |
34a3d239 BS |
1602 | Use the executable @file{qemu-system-sparc} to simulate the following |
1603 | Sun4m architecture machines: | |
1604 | @itemize @minus | |
1605 | @item | |
1606 | SPARCstation 4 | |
1607 | @item | |
1608 | SPARCstation 5 | |
1609 | @item | |
1610 | SPARCstation 10 | |
1611 | @item | |
1612 | SPARCstation 20 | |
1613 | @item | |
1614 | SPARCserver 600MP | |
1615 | @item | |
1616 | SPARCstation LX | |
1617 | @item | |
1618 | SPARCstation Voyager | |
1619 | @item | |
1620 | SPARCclassic | |
1621 | @item | |
1622 | SPARCbook | |
1623 | @end itemize | |
1624 | ||
1625 | The emulation is somewhat complete. SMP up to 16 CPUs is supported, | |
1626 | but Linux limits the number of usable CPUs to 4. | |
e80cfcfc | 1627 | |
6a4e1771 | 1628 | QEMU emulates the following sun4m peripherals: |
e80cfcfc FB |
1629 | |
1630 | @itemize @minus | |
3475187d | 1631 | @item |
6a4e1771 | 1632 | IOMMU |
e80cfcfc | 1633 | @item |
33632788 | 1634 | TCX or cgthree Frame buffer |
5fafdf24 | 1635 | @item |
e80cfcfc FB |
1636 | Lance (Am7990) Ethernet |
1637 | @item | |
34a3d239 | 1638 | Non Volatile RAM M48T02/M48T08 |
e80cfcfc | 1639 | @item |
3475187d FB |
1640 | Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard |
1641 | and power/reset logic | |
1642 | @item | |
1643 | ESP SCSI controller with hard disk and CD-ROM support | |
1644 | @item | |
6a3b9cc9 | 1645 | Floppy drive (not on SS-600MP) |
a2502b58 BS |
1646 | @item |
1647 | CS4231 sound device (only on SS-5, not working yet) | |
e80cfcfc FB |
1648 | @end itemize |
1649 | ||
6a3b9cc9 BS |
1650 | The number of peripherals is fixed in the architecture. Maximum |
1651 | memory size depends on the machine type, for SS-5 it is 256MB and for | |
7d85892b | 1652 | others 2047MB. |
3475187d | 1653 | |
30a604f3 | 1654 | Since version 0.8.2, QEMU uses OpenBIOS |
70b7fba9 | 1655 | @url{https://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable |
0986ac3b FB |
1656 | firmware implementation. The goal is to implement a 100% IEEE |
1657 | 1275-1994 (referred to as Open Firmware) compliant firmware. | |
3475187d FB |
1658 | |
1659 | A sample Linux 2.6 series kernel and ram disk image are available on | |
34a3d239 | 1660 | the QEMU web site. There are still issues with NetBSD and OpenBSD, but |
9bb9f217 | 1661 | most kernel versions work. Please note that currently older Solaris kernels |
34a3d239 BS |
1662 | don't work probably due to interface issues between OpenBIOS and |
1663 | Solaris. | |
3475187d FB |
1664 | |
1665 | @c man begin OPTIONS | |
1666 | ||
a2502b58 | 1667 | The following options are specific to the Sparc32 emulation: |
3475187d FB |
1668 | |
1669 | @table @option | |
1670 | ||
4e257e5e | 1671 | @item -g @var{W}x@var{H}x[x@var{DEPTH}] |
3475187d | 1672 | |
33632788 MCA |
1673 | Set the initial graphics mode. For TCX, the default is 1024x768x8 with the |
1674 | option of 1024x768x24. For cgthree, the default is 1024x768x8 with the option | |
1675 | of 1152x900x8 for people who wish to use OBP. | |
3475187d | 1676 | |
4e257e5e | 1677 | @item -prom-env @var{string} |
66508601 BS |
1678 | |
1679 | Set OpenBIOS variables in NVRAM, for example: | |
1680 | ||
1681 | @example | |
1682 | qemu-system-sparc -prom-env 'auto-boot?=false' \ | |
1683 | -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single' | |
1684 | @end example | |
1685 | ||
6a4e1771 | 1686 | @item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook] |
a2502b58 BS |
1687 | |
1688 | Set the emulated machine type. Default is SS-5. | |
1689 | ||
3475187d FB |
1690 | @end table |
1691 | ||
5fafdf24 | 1692 | @c man end |
3475187d | 1693 | |
24d4de45 TS |
1694 | @node Sparc64 System emulator |
1695 | @section Sparc64 System emulator | |
7544a042 | 1696 | @cindex system emulation (Sparc64) |
e80cfcfc | 1697 | |
34a3d239 BS |
1698 | Use the executable @file{qemu-system-sparc64} to simulate a Sun4u |
1699 | (UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic | |
9bb9f217 MCA |
1700 | Niagara (T1) machine. The Sun4u emulator is mostly complete, being |
1701 | able to run Linux, NetBSD and OpenBSD in headless (-nographic) mode. The | |
a2664ca0 AT |
1702 | Sun4v emulator is still a work in progress. |
1703 | ||
1704 | The Niagara T1 emulator makes use of firmware and OS binaries supplied in the S10image/ directory | |
1705 | of the OpenSPARC T1 project @url{http://download.oracle.com/technetwork/systems/opensparc/OpenSPARCT1_Arch.1.5.tar.bz2} | |
1706 | and is able to boot the disk.s10hw2 Solaris image. | |
1707 | @example | |
1708 | qemu-system-sparc64 -M niagara -L /path-to/S10image/ \ | |
1709 | -nographic -m 256 \ | |
1710 | -drive if=pflash,readonly=on,file=/S10image/disk.s10hw2 | |
1711 | @end example | |
1712 | ||
b756921a | 1713 | |
c7ba218d | 1714 | QEMU emulates the following peripherals: |
83469015 FB |
1715 | |
1716 | @itemize @minus | |
1717 | @item | |
5fafdf24 | 1718 | UltraSparc IIi APB PCI Bridge |
83469015 FB |
1719 | @item |
1720 | PCI VGA compatible card with VESA Bochs Extensions | |
1721 | @item | |
34a3d239 BS |
1722 | PS/2 mouse and keyboard |
1723 | @item | |
83469015 FB |
1724 | Non Volatile RAM M48T59 |
1725 | @item | |
1726 | PC-compatible serial ports | |
c7ba218d BS |
1727 | @item |
1728 | 2 PCI IDE interfaces with hard disk and CD-ROM support | |
34a3d239 BS |
1729 | @item |
1730 | Floppy disk | |
83469015 FB |
1731 | @end itemize |
1732 | ||
c7ba218d BS |
1733 | @c man begin OPTIONS |
1734 | ||
1735 | The following options are specific to the Sparc64 emulation: | |
1736 | ||
1737 | @table @option | |
1738 | ||
4e257e5e | 1739 | @item -prom-env @var{string} |
34a3d239 BS |
1740 | |
1741 | Set OpenBIOS variables in NVRAM, for example: | |
1742 | ||
1743 | @example | |
1744 | qemu-system-sparc64 -prom-env 'auto-boot?=false' | |
1745 | @end example | |
1746 | ||
a2664ca0 | 1747 | @item -M [sun4u|sun4v|niagara] |
c7ba218d BS |
1748 | |
1749 | Set the emulated machine type. The default is sun4u. | |
1750 | ||
1751 | @end table | |
1752 | ||
1753 | @c man end | |
1754 | ||
24d4de45 TS |
1755 | @node MIPS System emulator |
1756 | @section MIPS System emulator | |
7544a042 | 1757 | @cindex system emulation (MIPS) |
9d0a8e6f | 1758 | |
d9aedc32 TS |
1759 | Four executables cover simulation of 32 and 64-bit MIPS systems in |
1760 | both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel} | |
1761 | @file{qemu-system-mips64} and @file{qemu-system-mips64el}. | |
88cb0a02 | 1762 | Five different machine types are emulated: |
24d4de45 TS |
1763 | |
1764 | @itemize @minus | |
1765 | @item | |
1766 | A generic ISA PC-like machine "mips" | |
1767 | @item | |
1768 | The MIPS Malta prototype board "malta" | |
1769 | @item | |
d9aedc32 | 1770 | An ACER Pica "pica61". This machine needs the 64-bit emulator. |
6bf5b4e8 | 1771 | @item |
f0fc6f8f | 1772 | MIPS emulator pseudo board "mipssim" |
88cb0a02 AJ |
1773 | @item |
1774 | A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator. | |
24d4de45 TS |
1775 | @end itemize |
1776 | ||
1777 | The generic emulation is supported by Debian 'Etch' and is able to | |
1778 | install Debian into a virtual disk image. The following devices are | |
1779 | emulated: | |
3f9f3aa1 FB |
1780 | |
1781 | @itemize @minus | |
5fafdf24 | 1782 | @item |
6bf5b4e8 | 1783 | A range of MIPS CPUs, default is the 24Kf |
3f9f3aa1 FB |
1784 | @item |
1785 | PC style serial port | |
1786 | @item | |
24d4de45 TS |
1787 | PC style IDE disk |
1788 | @item | |
3f9f3aa1 FB |
1789 | NE2000 network card |
1790 | @end itemize | |
1791 | ||
24d4de45 TS |
1792 | The Malta emulation supports the following devices: |
1793 | ||
1794 | @itemize @minus | |
1795 | @item | |
0b64d008 | 1796 | Core board with MIPS 24Kf CPU and Galileo system controller |
24d4de45 TS |
1797 | @item |
1798 | PIIX4 PCI/USB/SMbus controller | |
1799 | @item | |
1800 | The Multi-I/O chip's serial device | |
1801 | @item | |
3a2eeac0 | 1802 | PCI network cards (PCnet32 and others) |
24d4de45 TS |
1803 | @item |
1804 | Malta FPGA serial device | |
1805 | @item | |
1f605a76 | 1806 | Cirrus (default) or any other PCI VGA graphics card |
24d4de45 TS |
1807 | @end itemize |
1808 | ||
1809 | The ACER Pica emulation supports: | |
1810 | ||
1811 | @itemize @minus | |
1812 | @item | |
1813 | MIPS R4000 CPU | |
1814 | @item | |
1815 | PC-style IRQ and DMA controllers | |
1816 | @item | |
1817 | PC Keyboard | |
1818 | @item | |
1819 | IDE controller | |
1820 | @end itemize | |
3f9f3aa1 | 1821 | |
b5e4946f | 1822 | The mipssim pseudo board emulation provides an environment similar |
f0fc6f8f TS |
1823 | to what the proprietary MIPS emulator uses for running Linux. |
1824 | It supports: | |
6bf5b4e8 TS |
1825 | |
1826 | @itemize @minus | |
1827 | @item | |
1828 | A range of MIPS CPUs, default is the 24Kf | |
1829 | @item | |
1830 | PC style serial port | |
1831 | @item | |
1832 | MIPSnet network emulation | |
1833 | @end itemize | |
1834 | ||
88cb0a02 AJ |
1835 | The MIPS Magnum R4000 emulation supports: |
1836 | ||
1837 | @itemize @minus | |
1838 | @item | |
1839 | MIPS R4000 CPU | |
1840 | @item | |
1841 | PC-style IRQ controller | |
1842 | @item | |
1843 | PC Keyboard | |
1844 | @item | |
1845 | SCSI controller | |
1846 | @item | |
1847 | G364 framebuffer | |
1848 | @end itemize | |
1849 | ||
1850 | ||
24d4de45 TS |
1851 | @node ARM System emulator |
1852 | @section ARM System emulator | |
7544a042 | 1853 | @cindex system emulation (ARM) |
3f9f3aa1 FB |
1854 | |
1855 | Use the executable @file{qemu-system-arm} to simulate a ARM | |
1856 | machine. The ARM Integrator/CP board is emulated with the following | |
1857 | devices: | |
1858 | ||
1859 | @itemize @minus | |
1860 | @item | |
9ee6e8bb | 1861 | ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU |
3f9f3aa1 FB |
1862 | @item |
1863 | Two PL011 UARTs | |
5fafdf24 | 1864 | @item |
3f9f3aa1 | 1865 | SMC 91c111 Ethernet adapter |
00a9bf19 PB |
1866 | @item |
1867 | PL110 LCD controller | |
1868 | @item | |
1869 | PL050 KMI with PS/2 keyboard and mouse. | |
a1bb27b1 PB |
1870 | @item |
1871 | PL181 MultiMedia Card Interface with SD card. | |
00a9bf19 PB |
1872 | @end itemize |
1873 | ||
1874 | The ARM Versatile baseboard is emulated with the following devices: | |
1875 | ||
1876 | @itemize @minus | |
1877 | @item | |
9ee6e8bb | 1878 | ARM926E, ARM1136 or Cortex-A8 CPU |
00a9bf19 PB |
1879 | @item |
1880 | PL190 Vectored Interrupt Controller | |
1881 | @item | |
1882 | Four PL011 UARTs | |
5fafdf24 | 1883 | @item |
00a9bf19 PB |
1884 | SMC 91c111 Ethernet adapter |
1885 | @item | |
1886 | PL110 LCD controller | |
1887 | @item | |
1888 | PL050 KMI with PS/2 keyboard and mouse. | |
1889 | @item | |
1890 | PCI host bridge. Note the emulated PCI bridge only provides access to | |
1891 | PCI memory space. It does not provide access to PCI IO space. | |
4be456f1 TS |
1892 | This means some devices (eg. ne2k_pci NIC) are not usable, and others |
1893 | (eg. rtl8139 NIC) are only usable when the guest drivers use the memory | |
00a9bf19 | 1894 | mapped control registers. |
e6de1bad PB |
1895 | @item |
1896 | PCI OHCI USB controller. | |
1897 | @item | |
1898 | LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices. | |
a1bb27b1 PB |
1899 | @item |
1900 | PL181 MultiMedia Card Interface with SD card. | |
3f9f3aa1 FB |
1901 | @end itemize |
1902 | ||
21a88941 PB |
1903 | Several variants of the ARM RealView baseboard are emulated, |
1904 | including the EB, PB-A8 and PBX-A9. Due to interactions with the | |
1905 | bootloader, only certain Linux kernel configurations work out | |
1906 | of the box on these boards. | |
1907 | ||
1908 | Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET | |
1909 | enabled in the kernel, and expect 512M RAM. Kernels for The PBX-A9 board | |
1910 | should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET | |
1911 | disabled and expect 1024M RAM. | |
1912 | ||
40c5c6cd | 1913 | The following devices are emulated: |
d7739d75 PB |
1914 | |
1915 | @itemize @minus | |
1916 | @item | |
f7c70325 | 1917 | ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU |
d7739d75 PB |
1918 | @item |
1919 | ARM AMBA Generic/Distributed Interrupt Controller | |
1920 | @item | |
1921 | Four PL011 UARTs | |
5fafdf24 | 1922 | @item |
0ef849d7 | 1923 | SMC 91c111 or SMSC LAN9118 Ethernet adapter |
d7739d75 PB |
1924 | @item |
1925 | PL110 LCD controller | |
1926 | @item | |
1927 | PL050 KMI with PS/2 keyboard and mouse | |
1928 | @item | |
1929 | PCI host bridge | |
1930 | @item | |
1931 | PCI OHCI USB controller | |
1932 | @item | |
1933 | LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices | |
a1bb27b1 PB |
1934 | @item |
1935 | PL181 MultiMedia Card Interface with SD card. | |
d7739d75 PB |
1936 | @end itemize |
1937 | ||
b00052e4 AZ |
1938 | The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi" |
1939 | and "Terrier") emulation includes the following peripherals: | |
1940 | ||
1941 | @itemize @minus | |
1942 | @item | |
1943 | Intel PXA270 System-on-chip (ARM V5TE core) | |
1944 | @item | |
1945 | NAND Flash memory | |
1946 | @item | |
1947 | IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita" | |
1948 | @item | |
1949 | On-chip OHCI USB controller | |
1950 | @item | |
1951 | On-chip LCD controller | |
1952 | @item | |
1953 | On-chip Real Time Clock | |
1954 | @item | |
1955 | TI ADS7846 touchscreen controller on SSP bus | |
1956 | @item | |
1957 | Maxim MAX1111 analog-digital converter on I@math{^2}C bus | |
1958 | @item | |
1959 | GPIO-connected keyboard controller and LEDs | |
1960 | @item | |
549444e1 | 1961 | Secure Digital card connected to PXA MMC/SD host |
b00052e4 AZ |
1962 | @item |
1963 | Three on-chip UARTs | |
1964 | @item | |
1965 | WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses | |
1966 | @end itemize | |
1967 | ||
02645926 AZ |
1968 | The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the |
1969 | following elements: | |
1970 | ||
1971 | @itemize @minus | |
1972 | @item | |
1973 | Texas Instruments OMAP310 System-on-chip (ARM 925T core) | |
1974 | @item | |
1975 | ROM and RAM memories (ROM firmware image can be loaded with -option-rom) | |
1976 | @item | |
1977 | On-chip LCD controller | |
1978 | @item | |
1979 | On-chip Real Time Clock | |
1980 | @item | |
1981 | TI TSC2102i touchscreen controller / analog-digital converter / Audio | |
1982 | CODEC, connected through MicroWire and I@math{^2}S busses | |
1983 | @item | |
1984 | GPIO-connected matrix keypad | |
1985 | @item | |
1986 | Secure Digital card connected to OMAP MMC/SD host | |
1987 | @item | |
1988 | Three on-chip UARTs | |
1989 | @end itemize | |
1990 | ||
c30bb264 AZ |
1991 | Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48) |
1992 | emulation supports the following elements: | |
1993 | ||
1994 | @itemize @minus | |
1995 | @item | |
1996 | Texas Instruments OMAP2420 System-on-chip (ARM 1136 core) | |
1997 | @item | |
1998 | RAM and non-volatile OneNAND Flash memories | |
1999 | @item | |
2000 | Display connected to EPSON remote framebuffer chip and OMAP on-chip | |
2001 | display controller and a LS041y3 MIPI DBI-C controller | |
2002 | @item | |
2003 | TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers | |
2004 | driven through SPI bus | |
2005 | @item | |
2006 | National Semiconductor LM8323-controlled qwerty keyboard driven | |
2007 | through I@math{^2}C bus | |
2008 | @item | |
2009 | Secure Digital card connected to OMAP MMC/SD host | |
2010 | @item | |
2011 | Three OMAP on-chip UARTs and on-chip STI debugging console | |
2012 | @item | |
40c5c6cd | 2013 | A Bluetooth(R) transceiver and HCI connected to an UART |
2d564691 | 2014 | @item |
c30bb264 AZ |
2015 | Mentor Graphics "Inventra" dual-role USB controller embedded in a TI |
2016 | TUSB6010 chip - only USB host mode is supported | |
2017 | @item | |
2018 | TI TMP105 temperature sensor driven through I@math{^2}C bus | |
2019 | @item | |
2020 | TI TWL92230C power management companion with an RTC on I@math{^2}C bus | |
2021 | @item | |
2022 | Nokia RETU and TAHVO multi-purpose chips with an RTC, connected | |
2023 | through CBUS | |
2024 | @end itemize | |
2025 | ||
9ee6e8bb PB |
2026 | The Luminary Micro Stellaris LM3S811EVB emulation includes the following |
2027 | devices: | |
2028 | ||
2029 | @itemize @minus | |
2030 | @item | |
2031 | Cortex-M3 CPU core. | |
2032 | @item | |
2033 | 64k Flash and 8k SRAM. | |
2034 | @item | |
2035 | Timers, UARTs, ADC and I@math{^2}C interface. | |
2036 | @item | |
2037 | OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus. | |
2038 | @end itemize | |
2039 | ||
2040 | The Luminary Micro Stellaris LM3S6965EVB emulation includes the following | |
2041 | devices: | |
2042 | ||
2043 | @itemize @minus | |
2044 | @item | |
2045 | Cortex-M3 CPU core. | |
2046 | @item | |
2047 | 256k Flash and 64k SRAM. | |
2048 | @item | |
2049 | Timers, UARTs, ADC, I@math{^2}C and SSI interfaces. | |
2050 | @item | |
2051 | OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI. | |
2052 | @end itemize | |
2053 | ||
57cd6e97 AZ |
2054 | The Freecom MusicPal internet radio emulation includes the following |
2055 | elements: | |
2056 | ||
2057 | @itemize @minus | |
2058 | @item | |
2059 | Marvell MV88W8618 ARM core. | |
2060 | @item | |
2061 | 32 MB RAM, 256 KB SRAM, 8 MB flash. | |
2062 | @item | |
2063 | Up to 2 16550 UARTs | |
2064 | @item | |
2065 | MV88W8xx8 Ethernet controller | |
2066 | @item | |
2067 | MV88W8618 audio controller, WM8750 CODEC and mixer | |
2068 | @item | |
e080e785 | 2069 | 128×64 display with brightness control |
57cd6e97 AZ |
2070 | @item |
2071 | 2 buttons, 2 navigation wheels with button function | |
2072 | @end itemize | |
2073 | ||
997641a8 | 2074 | The Siemens SX1 models v1 and v2 (default) basic emulation. |
40c5c6cd | 2075 | The emulation includes the following elements: |
997641a8 AZ |
2076 | |
2077 | @itemize @minus | |
2078 | @item | |
2079 | Texas Instruments OMAP310 System-on-chip (ARM 925T core) | |
2080 | @item | |
2081 | ROM and RAM memories (ROM firmware image can be loaded with -pflash) | |
2082 | V1 | |
2083 | 1 Flash of 16MB and 1 Flash of 8MB | |
2084 | V2 | |
2085 | 1 Flash of 32MB | |
2086 | @item | |
2087 | On-chip LCD controller | |
2088 | @item | |
2089 | On-chip Real Time Clock | |
2090 | @item | |
2091 | Secure Digital card connected to OMAP MMC/SD host | |
2092 | @item | |
2093 | Three on-chip UARTs | |
2094 | @end itemize | |
2095 | ||
3f9f3aa1 FB |
2096 | A Linux 2.6 test image is available on the QEMU web site. More |
2097 | information is available in the QEMU mailing-list archive. | |
9d0a8e6f | 2098 | |
d2c639d6 BS |
2099 | @c man begin OPTIONS |
2100 | ||
2101 | The following options are specific to the ARM emulation: | |
2102 | ||
2103 | @table @option | |
2104 | ||
2105 | @item -semihosting | |
2106 | Enable semihosting syscall emulation. | |
2107 | ||
2108 | On ARM this implements the "Angel" interface. | |
2109 | ||
2110 | Note that this allows guest direct access to the host filesystem, | |
2111 | so should only be used with trusted guest OS. | |
2112 | ||
2113 | @end table | |
2114 | ||
abc67eb6 TH |
2115 | @c man end |
2116 | ||
24d4de45 TS |
2117 | @node ColdFire System emulator |
2118 | @section ColdFire System emulator | |
7544a042 SW |
2119 | @cindex system emulation (ColdFire) |
2120 | @cindex system emulation (M68K) | |
209a4e69 PB |
2121 | |
2122 | Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine. | |
2123 | The emulator is able to boot a uClinux kernel. | |
707e011b PB |
2124 | |
2125 | The M5208EVB emulation includes the following devices: | |
2126 | ||
2127 | @itemize @minus | |
5fafdf24 | 2128 | @item |
707e011b PB |
2129 | MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC). |
2130 | @item | |
2131 | Three Two on-chip UARTs. | |
2132 | @item | |
2133 | Fast Ethernet Controller (FEC) | |
2134 | @end itemize | |
2135 | ||
2136 | The AN5206 emulation includes the following devices: | |
209a4e69 PB |
2137 | |
2138 | @itemize @minus | |
5fafdf24 | 2139 | @item |
209a4e69 PB |
2140 | MCF5206 ColdFire V2 Microprocessor. |
2141 | @item | |
2142 | Two on-chip UARTs. | |
2143 | @end itemize | |
2144 | ||
d2c639d6 BS |
2145 | @c man begin OPTIONS |
2146 | ||
7544a042 | 2147 | The following options are specific to the ColdFire emulation: |
d2c639d6 BS |
2148 | |
2149 | @table @option | |
2150 | ||
2151 | @item -semihosting | |
2152 | Enable semihosting syscall emulation. | |
2153 | ||
2154 | On M68K this implements the "ColdFire GDB" interface used by libgloss. | |
2155 | ||
2156 | Note that this allows guest direct access to the host filesystem, | |
2157 | so should only be used with trusted guest OS. | |
2158 | ||
2159 | @end table | |
2160 | ||
abc67eb6 TH |
2161 | @c man end |
2162 | ||
7544a042 SW |
2163 | @node Cris System emulator |
2164 | @section Cris System emulator | |
2165 | @cindex system emulation (Cris) | |
2166 | ||
2167 | TODO | |
2168 | ||
2169 | @node Microblaze System emulator | |
2170 | @section Microblaze System emulator | |
2171 | @cindex system emulation (Microblaze) | |
2172 | ||
2173 | TODO | |
2174 | ||
2175 | @node SH4 System emulator | |
2176 | @section SH4 System emulator | |
2177 | @cindex system emulation (SH4) | |
2178 | ||
2179 | TODO | |
2180 | ||
3aeaea65 MF |
2181 | @node Xtensa System emulator |
2182 | @section Xtensa System emulator | |
2183 | @cindex system emulation (Xtensa) | |
2184 | ||
2185 | Two executables cover simulation of both Xtensa endian options, | |
2186 | @file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}. | |
2187 | Two different machine types are emulated: | |
2188 | ||
2189 | @itemize @minus | |
2190 | @item | |
2191 | Xtensa emulator pseudo board "sim" | |
2192 | @item | |
2193 | Avnet LX60/LX110/LX200 board | |
2194 | @end itemize | |
2195 | ||
b5e4946f | 2196 | The sim pseudo board emulation provides an environment similar |
3aeaea65 MF |
2197 | to one provided by the proprietary Tensilica ISS. |
2198 | It supports: | |
2199 | ||
2200 | @itemize @minus | |
2201 | @item | |
2202 | A range of Xtensa CPUs, default is the DC232B | |
2203 | @item | |
2204 | Console and filesystem access via semihosting calls | |
2205 | @end itemize | |
2206 | ||
2207 | The Avnet LX60/LX110/LX200 emulation supports: | |
2208 | ||
2209 | @itemize @minus | |
2210 | @item | |
2211 | A range of Xtensa CPUs, default is the DC232B | |
2212 | @item | |
2213 | 16550 UART | |
2214 | @item | |
2215 | OpenCores 10/100 Mbps Ethernet MAC | |
2216 | @end itemize | |
2217 | ||
2218 | @c man begin OPTIONS | |
2219 | ||
2220 | The following options are specific to the Xtensa emulation: | |
2221 | ||
2222 | @table @option | |
2223 | ||
2224 | @item -semihosting | |
2225 | Enable semihosting syscall emulation. | |
2226 | ||
2227 | Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select. | |
2228 | Tensilica baremetal libc for ISS and linux platform "sim" use this interface. | |
2229 | ||
2230 | Note that this allows guest direct access to the host filesystem, | |
2231 | so should only be used with trusted guest OS. | |
2232 | ||
2233 | @end table | |
3f2ce724 | 2234 | |
abc67eb6 TH |
2235 | @c man end |
2236 | ||
3f2ce724 TH |
2237 | @node QEMU Guest Agent |
2238 | @chapter QEMU Guest Agent invocation | |
2239 | ||
2240 | @include qemu-ga.texi | |
2241 | ||
5fafdf24 TS |
2242 | @node QEMU User space emulator |
2243 | @chapter QEMU User space emulator | |
83195237 FB |
2244 | |
2245 | @menu | |
2246 | * Supported Operating Systems :: | |
0722cc42 | 2247 | * Features:: |
83195237 | 2248 | * Linux User space emulator:: |
84778508 | 2249 | * BSD User space emulator :: |
83195237 FB |
2250 | @end menu |
2251 | ||
2252 | @node Supported Operating Systems | |
2253 | @section Supported Operating Systems | |
2254 | ||
2255 | The following OS are supported in user space emulation: | |
2256 | ||
2257 | @itemize @minus | |
2258 | @item | |
4be456f1 | 2259 | Linux (referred as qemu-linux-user) |
83195237 | 2260 | @item |
84778508 | 2261 | BSD (referred as qemu-bsd-user) |
83195237 FB |
2262 | @end itemize |
2263 | ||
0722cc42 PB |
2264 | @node Features |
2265 | @section Features | |
2266 | ||
2267 | QEMU user space emulation has the following notable features: | |
2268 | ||
2269 | @table @strong | |
2270 | @item System call translation: | |
2271 | QEMU includes a generic system call translator. This means that | |
2272 | the parameters of the system calls can be converted to fix | |
2273 | endianness and 32/64-bit mismatches between hosts and targets. | |
2274 | IOCTLs can be converted too. | |
2275 | ||
2276 | @item POSIX signal handling: | |
2277 | QEMU can redirect to the running program all signals coming from | |
2278 | the host (such as @code{SIGALRM}), as well as synthesize signals from | |
2279 | virtual CPU exceptions (for example @code{SIGFPE} when the program | |
2280 | executes a division by zero). | |
2281 | ||
2282 | QEMU relies on the host kernel to emulate most signal system | |
2283 | calls, for example to emulate the signal mask. On Linux, QEMU | |
2284 | supports both normal and real-time signals. | |
2285 | ||
2286 | @item Threading: | |
2287 | On Linux, QEMU can emulate the @code{clone} syscall and create a real | |
2288 | host thread (with a separate virtual CPU) for each emulated thread. | |
2289 | Note that not all targets currently emulate atomic operations correctly. | |
2290 | x86 and ARM use a global lock in order to preserve their semantics. | |
2291 | @end table | |
2292 | ||
2293 | QEMU was conceived so that ultimately it can emulate itself. Although | |
2294 | it is not very useful, it is an important test to show the power of the | |
2295 | emulator. | |
2296 | ||
83195237 FB |
2297 | @node Linux User space emulator |
2298 | @section Linux User space emulator | |
386405f7 | 2299 | |
debc7065 FB |
2300 | @menu |
2301 | * Quick Start:: | |
2302 | * Wine launch:: | |
2303 | * Command line options:: | |
79737e4a | 2304 | * Other binaries:: |
debc7065 FB |
2305 | @end menu |
2306 | ||
2307 | @node Quick Start | |
83195237 | 2308 | @subsection Quick Start |
df0f11a0 | 2309 | |
1f673135 | 2310 | In order to launch a Linux process, QEMU needs the process executable |
5fafdf24 | 2311 | itself and all the target (x86) dynamic libraries used by it. |
386405f7 | 2312 | |
1f673135 | 2313 | @itemize |
386405f7 | 2314 | |
1f673135 FB |
2315 | @item On x86, you can just try to launch any process by using the native |
2316 | libraries: | |
386405f7 | 2317 | |
5fafdf24 | 2318 | @example |
1f673135 FB |
2319 | qemu-i386 -L / /bin/ls |
2320 | @end example | |
386405f7 | 2321 | |
1f673135 FB |
2322 | @code{-L /} tells that the x86 dynamic linker must be searched with a |
2323 | @file{/} prefix. | |
386405f7 | 2324 | |
b65ee4fa SW |
2325 | @item Since QEMU is also a linux process, you can launch QEMU with |
2326 | QEMU (NOTE: you can only do that if you compiled QEMU from the sources): | |
386405f7 | 2327 | |
5fafdf24 | 2328 | @example |
1f673135 FB |
2329 | qemu-i386 -L / qemu-i386 -L / /bin/ls |
2330 | @end example | |
386405f7 | 2331 | |
1f673135 FB |
2332 | @item On non x86 CPUs, you need first to download at least an x86 glibc |
2333 | (@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that | |
2334 | @code{LD_LIBRARY_PATH} is not set: | |
df0f11a0 | 2335 | |
1f673135 | 2336 | @example |
5fafdf24 | 2337 | unset LD_LIBRARY_PATH |
1f673135 | 2338 | @end example |
1eb87257 | 2339 | |
1f673135 | 2340 | Then you can launch the precompiled @file{ls} x86 executable: |
1eb87257 | 2341 | |
1f673135 FB |
2342 | @example |
2343 | qemu-i386 tests/i386/ls | |
2344 | @end example | |
4c3b5a48 | 2345 | You can look at @file{scripts/qemu-binfmt-conf.sh} so that |
1f673135 FB |
2346 | QEMU is automatically launched by the Linux kernel when you try to |
2347 | launch x86 executables. It requires the @code{binfmt_misc} module in the | |
2348 | Linux kernel. | |
1eb87257 | 2349 | |
1f673135 FB |
2350 | @item The x86 version of QEMU is also included. You can try weird things such as: |
2351 | @example | |
debc7065 FB |
2352 | qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \ |
2353 | /usr/local/qemu-i386/bin/ls-i386 | |
1f673135 | 2354 | @end example |
1eb20527 | 2355 | |
1f673135 | 2356 | @end itemize |
1eb20527 | 2357 | |
debc7065 | 2358 | @node Wine launch |
83195237 | 2359 | @subsection Wine launch |
1eb20527 | 2360 | |
1f673135 | 2361 | @itemize |
386405f7 | 2362 | |
1f673135 FB |
2363 | @item Ensure that you have a working QEMU with the x86 glibc |
2364 | distribution (see previous section). In order to verify it, you must be | |
2365 | able to do: | |
386405f7 | 2366 | |
1f673135 FB |
2367 | @example |
2368 | qemu-i386 /usr/local/qemu-i386/bin/ls-i386 | |
2369 | @end example | |
386405f7 | 2370 | |
1f673135 | 2371 | @item Download the binary x86 Wine install |
5fafdf24 | 2372 | (@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page). |
386405f7 | 2373 | |
1f673135 | 2374 | @item Configure Wine on your account. Look at the provided script |
debc7065 | 2375 | @file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous |
1f673135 | 2376 | @code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}. |
386405f7 | 2377 | |
1f673135 | 2378 | @item Then you can try the example @file{putty.exe}: |
386405f7 | 2379 | |
1f673135 | 2380 | @example |
debc7065 FB |
2381 | qemu-i386 /usr/local/qemu-i386/wine/bin/wine \ |
2382 | /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe | |
1f673135 | 2383 | @end example |
386405f7 | 2384 | |
1f673135 | 2385 | @end itemize |
fd429f2f | 2386 | |
debc7065 | 2387 | @node Command line options |
83195237 | 2388 | @subsection Command line options |
1eb20527 | 2389 | |
1f673135 | 2390 | @example |
8485140f | 2391 | @command{qemu-i386} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-cpu} @var{model}] [@option{-g} @var{port}] [@option{-B} @var{offset}] [@option{-R} @var{size}] @var{program} [@var{arguments}...] |
1f673135 | 2392 | @end example |
1eb20527 | 2393 | |
1f673135 FB |
2394 | @table @option |
2395 | @item -h | |
2396 | Print the help | |
3b46e624 | 2397 | @item -L path |
1f673135 FB |
2398 | Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386) |
2399 | @item -s size | |
2400 | Set the x86 stack size in bytes (default=524288) | |
34a3d239 | 2401 | @item -cpu model |
c8057f95 | 2402 | Select CPU model (-cpu help for list and additional feature selection) |
f66724c9 SW |
2403 | @item -E @var{var}=@var{value} |
2404 | Set environment @var{var} to @var{value}. | |
2405 | @item -U @var{var} | |
2406 | Remove @var{var} from the environment. | |
379f6698 PB |
2407 | @item -B offset |
2408 | Offset guest address by the specified number of bytes. This is useful when | |
1f5c3f8c SW |
2409 | the address region required by guest applications is reserved on the host. |
2410 | This option is currently only supported on some hosts. | |
68a1c816 PB |
2411 | @item -R size |
2412 | Pre-allocate a guest virtual address space of the given size (in bytes). | |
0d6753e5 | 2413 | "G", "M", and "k" suffixes may be used when specifying the size. |
386405f7 FB |
2414 | @end table |
2415 | ||
1f673135 | 2416 | Debug options: |
386405f7 | 2417 | |
1f673135 | 2418 | @table @option |
989b697d PM |
2419 | @item -d item1,... |
2420 | Activate logging of the specified items (use '-d help' for a list of log items) | |
1f673135 FB |
2421 | @item -p pagesize |
2422 | Act as if the host page size was 'pagesize' bytes | |
34a3d239 BS |
2423 | @item -g port |
2424 | Wait gdb connection to port | |
1b530a6d AJ |
2425 | @item -singlestep |
2426 | Run the emulation in single step mode. | |
1f673135 | 2427 | @end table |
386405f7 | 2428 | |
b01bcae6 AZ |
2429 | Environment variables: |
2430 | ||
2431 | @table @env | |
2432 | @item QEMU_STRACE | |
2433 | Print system calls and arguments similar to the 'strace' program | |
2434 | (NOTE: the actual 'strace' program will not work because the user | |
2435 | space emulator hasn't implemented ptrace). At the moment this is | |
2436 | incomplete. All system calls that don't have a specific argument | |
2437 | format are printed with information for six arguments. Many | |
2438 | flag-style arguments don't have decoders and will show up as numbers. | |
5cfdf930 | 2439 | @end table |
b01bcae6 | 2440 | |
79737e4a | 2441 | @node Other binaries |
83195237 | 2442 | @subsection Other binaries |
79737e4a | 2443 | |
7544a042 SW |
2444 | @cindex user mode (Alpha) |
2445 | @command{qemu-alpha} TODO. | |
2446 | ||
2447 | @cindex user mode (ARM) | |
2448 | @command{qemu-armeb} TODO. | |
2449 | ||
2450 | @cindex user mode (ARM) | |
79737e4a PB |
2451 | @command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF |
2452 | binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB | |
2453 | configurations), and arm-uclinux bFLT format binaries. | |
2454 | ||
7544a042 SW |
2455 | @cindex user mode (ColdFire) |
2456 | @cindex user mode (M68K) | |
e6e5906b PB |
2457 | @command{qemu-m68k} is capable of running semihosted binaries using the BDM |
2458 | (m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and | |
2459 | coldfire uClinux bFLT format binaries. | |
2460 | ||
79737e4a PB |
2461 | The binary format is detected automatically. |
2462 | ||
7544a042 SW |
2463 | @cindex user mode (Cris) |
2464 | @command{qemu-cris} TODO. | |
2465 | ||
2466 | @cindex user mode (i386) | |
2467 | @command{qemu-i386} TODO. | |
2468 | @command{qemu-x86_64} TODO. | |
2469 | ||
2470 | @cindex user mode (Microblaze) | |
2471 | @command{qemu-microblaze} TODO. | |
2472 | ||
2473 | @cindex user mode (MIPS) | |
2474 | @command{qemu-mips} TODO. | |
2475 | @command{qemu-mipsel} TODO. | |
2476 | ||
e671711c MV |
2477 | @cindex user mode (NiosII) |
2478 | @command{qemu-nios2} TODO. | |
2479 | ||
7544a042 SW |
2480 | @cindex user mode (PowerPC) |
2481 | @command{qemu-ppc64abi32} TODO. | |
2482 | @command{qemu-ppc64} TODO. | |
2483 | @command{qemu-ppc} TODO. | |
2484 | ||
2485 | @cindex user mode (SH4) | |
2486 | @command{qemu-sh4eb} TODO. | |
2487 | @command{qemu-sh4} TODO. | |
2488 | ||
2489 | @cindex user mode (SPARC) | |
34a3d239 BS |
2490 | @command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI). |
2491 | ||
a785e42e BS |
2492 | @command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries |
2493 | (Sparc64 CPU, 32 bit ABI). | |
2494 | ||
2495 | @command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and | |
2496 | SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI). | |
2497 | ||
84778508 BS |
2498 | @node BSD User space emulator |
2499 | @section BSD User space emulator | |
2500 | ||
2501 | @menu | |
2502 | * BSD Status:: | |
2503 | * BSD Quick Start:: | |
2504 | * BSD Command line options:: | |
2505 | @end menu | |
2506 | ||
2507 | @node BSD Status | |
2508 | @subsection BSD Status | |
2509 | ||
2510 | @itemize @minus | |
2511 | @item | |
2512 | target Sparc64 on Sparc64: Some trivial programs work. | |
2513 | @end itemize | |
2514 | ||
2515 | @node BSD Quick Start | |
2516 | @subsection Quick Start | |
2517 | ||
2518 | In order to launch a BSD process, QEMU needs the process executable | |
2519 | itself and all the target dynamic libraries used by it. | |
2520 | ||
2521 | @itemize | |
2522 | ||
2523 | @item On Sparc64, you can just try to launch any process by using the native | |
2524 | libraries: | |
2525 | ||
2526 | @example | |
2527 | qemu-sparc64 /bin/ls | |
2528 | @end example | |
2529 | ||
2530 | @end itemize | |
2531 | ||
2532 | @node BSD Command line options | |
2533 | @subsection Command line options | |
2534 | ||
2535 | @example | |
8485140f | 2536 | @command{qemu-sparc64} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-bsd} @var{type}] @var{program} [@var{arguments}...] |
84778508 BS |
2537 | @end example |
2538 | ||
2539 | @table @option | |
2540 | @item -h | |
2541 | Print the help | |
2542 | @item -L path | |
2543 | Set the library root path (default=/) | |
2544 | @item -s size | |
2545 | Set the stack size in bytes (default=524288) | |
f66724c9 SW |
2546 | @item -ignore-environment |
2547 | Start with an empty environment. Without this option, | |
40c5c6cd | 2548 | the initial environment is a copy of the caller's environment. |
f66724c9 SW |
2549 | @item -E @var{var}=@var{value} |
2550 | Set environment @var{var} to @var{value}. | |
2551 | @item -U @var{var} | |
2552 | Remove @var{var} from the environment. | |
84778508 BS |
2553 | @item -bsd type |
2554 | Set the type of the emulated BSD Operating system. Valid values are | |
2555 | FreeBSD, NetBSD and OpenBSD (default). | |
2556 | @end table | |
2557 | ||
2558 | Debug options: | |
2559 | ||
2560 | @table @option | |
989b697d PM |
2561 | @item -d item1,... |
2562 | Activate logging of the specified items (use '-d help' for a list of log items) | |
84778508 BS |
2563 | @item -p pagesize |
2564 | Act as if the host page size was 'pagesize' bytes | |
1b530a6d AJ |
2565 | @item -singlestep |
2566 | Run the emulation in single step mode. | |
84778508 BS |
2567 | @end table |
2568 | ||
47eacb4f | 2569 | |
78e87797 PB |
2570 | @include qemu-tech.texi |
2571 | ||
eb22aeca DB |
2572 | @node Deprecated features |
2573 | @appendix Deprecated features | |
2574 | ||
2575 | In general features are intended to be supported indefinitely once | |
2576 | introduced into QEMU. In the event that a feature needs to be removed, | |
2577 | it will be listed in this appendix. The feature will remain functional | |
2578 | for 2 releases prior to actual removal. Deprecated features may also | |
2579 | generate warnings on the console when QEMU starts up, or if activated | |
2580 | via a monitor command, however, this is not a mandatory requirement. | |
2581 | ||
2582 | Prior to the 2.10.0 release there was no official policy on how | |
2583 | long features would be deprecated prior to their removal, nor | |
2584 | any documented list of which features were deprecated. Thus | |
2585 | any features deprecated prior to 2.10.0 will be treated as if | |
2586 | they were first deprecated in the 2.10.0 release. | |
2587 | ||
2588 | What follows is a list of all features currently marked as | |
2589 | deprecated. | |
2590 | ||
b7715af2 DB |
2591 | @section Build options |
2592 | ||
2593 | @subsection GTK 2.x | |
2594 | ||
2595 | Previously QEMU has supported building against both GTK 2.x | |
2596 | and 3.x series APIs. Support for the GTK 2.x builds will be | |
2597 | discontinued, so maintainers should switch to using GTK 3.x, | |
2598 | which is the default. | |
2599 | ||
e52c6ba3 DB |
2600 | @subsection SDL 1.2 |
2601 | ||
2602 | Previously QEMU has supported building against both SDL 1.2 | |
2603 | and 2.0 series APIs. Support for the SDL 1.2 builds will be | |
2604 | discontinued, so maintainers should switch to using SDL 2.0, | |
2605 | which is the default. | |
2606 | ||
eb22aeca DB |
2607 | @section System emulator command line arguments |
2608 | ||
eb22aeca DB |
2609 | @subsection -tdf (since 1.3.0) |
2610 | ||
2611 | The ``-tdf'' argument is ignored. The behaviour implemented | |
2612 | by this argument is now the default when using the KVM PIT, | |
2613 | but can be requested explicitly using | |
2614 | ``-global kvm-pit.lost_tick_policy=slew''. | |
2615 | ||
2616 | @subsection -no-kvm-pit-reinjection (since 1.3.0) | |
2617 | ||
2618 | The ``-no-kvm-pit-reinjection'' argument is now a | |
2619 | synonym for setting ``-global kvm-pit.lost_tick_policy=discard''. | |
2620 | ||
2621 | @subsection -no-kvm-irqchip (since 1.3.0) | |
2622 | ||
2623 | The ``-no-kvm-irqchip'' argument is now a synonym for | |
2624 | setting ``-machine kernel_irqchip=off''. | |
2625 | ||
eb22aeca DB |
2626 | @subsection -no-kvm (since 1.3.0) |
2627 | ||
2628 | The ``-no-kvm'' argument is now a synonym for setting | |
2629 | ``-machine accel=tcg''. | |
2630 | ||
eb22aeca DB |
2631 | @subsection -vnc tls (since 2.5.0) |
2632 | ||
2633 | The ``-vnc tls'' argument is now a synonym for setting | |
2634 | ``-object tls-creds-anon,id=tls0'' combined with | |
2635 | ``-vnc tls-creds=tls0' | |
2636 | ||
2637 | @subsection -vnc x509 (since 2.5.0) | |
2638 | ||
2639 | The ``-vnc x509=/path/to/certs'' argument is now a | |
2640 | synonym for setting | |
2641 | ``-object tls-creds-x509,dir=/path/to/certs,id=tls0,verify-peer=no'' | |
2642 | combined with ``-vnc tls-creds=tls0' | |
2643 | ||
2644 | @subsection -vnc x509verify (since 2.5.0) | |
2645 | ||
2646 | The ``-vnc x509verify=/path/to/certs'' argument is now a | |
2647 | synonym for setting | |
2648 | ``-object tls-creds-x509,dir=/path/to/certs,id=tls0,verify-peer=yes'' | |
2649 | combined with ``-vnc tls-creds=tls0' | |
2650 | ||
2651 | @subsection -tftp (since 2.6.0) | |
2652 | ||
0065e915 TH |
2653 | The ``-tftp /some/dir'' argument is replaced by |
2654 | ``-netdev user,id=x,tftp=/some/dir'', either accompanied with | |
2655 | ``-device ...,netdev=x'' (for pluggable NICs) or ``-net nic,netdev=x'' | |
2656 | (for embedded NICs). The new syntax allows different settings to be | |
2657 | provided per NIC. | |
eb22aeca DB |
2658 | |
2659 | @subsection -bootp (since 2.6.0) | |
2660 | ||
0065e915 TH |
2661 | The ``-bootp /some/file'' argument is replaced by |
2662 | ``-netdev user,id=x,bootp=/some/file'', either accompanied with | |
2663 | ``-device ...,netdev=x'' (for pluggable NICs) or ``-net nic,netdev=x'' | |
2664 | (for embedded NICs). The new syntax allows different settings to be | |
2665 | provided per NIC. | |
eb22aeca DB |
2666 | |
2667 | @subsection -redir (since 2.6.0) | |
2668 | ||
0065e915 TH |
2669 | The ``-redir [tcp|udp]:hostport:[guestaddr]:guestport'' argument is |
2670 | replaced by ``-netdev | |
2671 | user,id=x,hostfwd=[tcp|udp]:[hostaddr]:hostport-[guestaddr]:guestport'', | |
2672 | either accompanied with ``-device ...,netdev=x'' (for pluggable NICs) or | |
2673 | ``-net nic,netdev=x'' (for embedded NICs). The new syntax allows different | |
2674 | settings to be provided per NIC. | |
eb22aeca DB |
2675 | |
2676 | @subsection -smb (since 2.6.0) | |
2677 | ||
0065e915 TH |
2678 | The ``-smb /some/dir'' argument is replaced by |
2679 | ``-netdev user,id=x,smb=/some/dir'', either accompanied with | |
2680 | ``-device ...,netdev=x'' (for pluggable NICs) or ``-net nic,netdev=x'' | |
2681 | (for embedded NICs). The new syntax allows different settings to be | |
2682 | provided per NIC. | |
eb22aeca | 2683 | |
eb22aeca DB |
2684 | @subsection -net vlan (since 2.9.0) |
2685 | ||
69001917 | 2686 | The ``-net vlan=NN'' argument is partially replaced with the |
eb22aeca DB |
2687 | new ``-netdev'' argument. The remaining use cases will no |
2688 | longer be directly supported in QEMU. | |
2689 | ||
2690 | @subsection -drive if=scsi (since 2.9.0) | |
2691 | ||
2692 | The ``-drive if=scsi'' argument is replaced by the the | |
2693 | ``-device BUS-TYPE'' argument combined with ``-drive if=none''. | |
2694 | ||
c08d46a9 TH |
2695 | @subsection -drive cyls=...,heads=...,secs=...,trans=... (since 2.10.0) |
2696 | ||
2697 | The drive geometry arguments are replaced by the the geometry arguments | |
2698 | that can be specified with the ``-device'' parameter. | |
2699 | ||
2700 | @subsection -drive serial=... (since 2.10.0) | |
2701 | ||
2702 | The drive serial argument is replaced by the the serial argument | |
2703 | that can be specified with the ``-device'' parameter. | |
2704 | ||
2705 | @subsection -drive addr=... (since 2.10.0) | |
2706 | ||
2707 | The drive addr argument is replaced by the the addr argument | |
2708 | that can be specified with the ``-device'' parameter. | |
2709 | ||
eb22aeca DB |
2710 | @subsection -net dump (since 2.10.0) |
2711 | ||
2712 | The ``--net dump'' argument is now replaced with the | |
2713 | ``-object filter-dump'' argument which works in combination | |
2714 | with the modern ``-netdev`` backends instead. | |
2715 | ||
eb22aeca DB |
2716 | @subsection -usbdevice (since 2.10.0) |
2717 | ||
2718 | The ``-usbdevice DEV'' argument is now a synonym for setting | |
2719 | the ``-device usb-DEV'' argument instead. The deprecated syntax | |
2720 | would automatically enable USB support on the machine type. | |
2721 | If using the new syntax, USB support must be explicitly | |
2722 | enabled via the ``-machine usb=on'' argument. | |
2723 | ||
3478eae9 EH |
2724 | @subsection -nodefconfig (since 2.11.0) |
2725 | ||
2726 | The ``-nodefconfig`` argument is a synonym for ``-no-user-config``. | |
2727 | ||
d69969e5 HP |
2728 | @subsection -machine s390-squash-mcss=on|off (since 2.12.0) |
2729 | ||
2730 | The ``s390-squash-mcss=on`` property has been obsoleted by allowing the | |
2731 | cssid to be chosen freely. Instead of squashing subchannels into the | |
2732 | default channel subsystem image for guests that do not support multiple | |
2733 | channel subsystems, all devices can be put into the default channel | |
2734 | subsystem image. | |
2735 | ||
db3b3c72 GK |
2736 | @subsection -fsdev handle (since 2.12.0) |
2737 | ||
2738 | The ``handle'' fsdev backend does not support symlinks and causes the 9p | |
2739 | filesystem in the guest to fail a fair amount of tests from the PJD POSIX | |
2740 | filesystem test suite. Also it requires the CAP_DAC_READ_SEARCH capability, | |
2741 | which is not the recommended way to run QEMU. This backend should not be | |
2742 | used and it will be removed with no replacement. | |
2743 | ||
67358447 GH |
2744 | @subsection -no-frame (since 2.12.0) |
2745 | ||
2746 | The ``-no-frame'' argument works with SDL 1.2 only. SDL 2.0 lacks | |
2747 | support for frameless windows, and the other user interfaces never | |
2748 | implemented this in the first place. So this will be removed together | |
2749 | with SDL 1.2 support. | |
2750 | ||
eb22aeca DB |
2751 | @section qemu-img command line arguments |
2752 | ||
2753 | @subsection convert -s (since 2.0.0) | |
2754 | ||
2755 | The ``convert -s snapshot_id_or_name'' argument is obsoleted | |
2756 | by the ``convert -l snapshot_param'' argument instead. | |
2757 | ||
3e99da5e VSO |
2758 | @section QEMU Machine Protocol (QMP) commands |
2759 | ||
2760 | @subsection block-dirty-bitmap-add "autoload" parameter (since 2.12.0) | |
2761 | ||
2762 | "autoload" parameter is now ignored. All bitmaps are automatically loaded | |
2763 | from qcow2 images. | |
2764 | ||
ff9a9156 VM |
2765 | @subsection query-cpus (since 2.12.0) |
2766 | ||
2767 | The ``query-cpus'' command is replaced by the ``query-cpus-fast'' command. | |
2768 | ||
eb22aeca DB |
2769 | @section System emulator human monitor commands |
2770 | ||
bd7adc84 TH |
2771 | @subsection host_net_add (since 2.10.0) |
2772 | ||
2773 | The ``host_net_add'' command is replaced by the ``netdev_add'' command. | |
2774 | ||
2775 | @subsection host_net_remove (since 2.10.0) | |
2776 | ||
2777 | The ``host_net_remove'' command is replaced by the ``netdev_del'' command. | |
2778 | ||
eb22aeca DB |
2779 | @section System emulator devices |
2780 | ||
2781 | @subsection ivshmem (since 2.6.0) | |
2782 | ||
2783 | The ``ivshmem'' device type is replaced by either the ``ivshmem-plain'' | |
2784 | or ``ivshmem-doorbell`` device types. | |
2785 | ||
64b47457 TH |
2786 | @subsection Page size support < 4k for embedded PowerPC CPUs (since 2.12.0) |
2787 | ||
2788 | qemu-system-ppcemb will be removed. qemu-system-ppc (or qemu-system-ppc64) | |
2789 | should be used instead. That means that embedded 4xx PowerPC CPUs will not | |
2790 | support page sizes < 4096 any longer. | |
2791 | ||
83926ad5 AF |
2792 | @section System emulator machines |
2793 | ||
2794 | @subsection Xilinx EP108 (since 2.11.0) | |
2795 | ||
2796 | The ``xlnx-ep108'' machine has been replaced by the ``xlnx-zcu102'' machine. | |
2797 | The ``xlnx-zcu102'' machine has the same features and capabilites in QEMU. | |
2798 | ||
7544a042 SW |
2799 | @node License |
2800 | @appendix License | |
2801 | ||
2802 | QEMU is a trademark of Fabrice Bellard. | |
2803 | ||
2f8d8f01 TH |
2804 | QEMU is released under the |
2805 | @url{https://www.gnu.org/licenses/gpl-2.0.txt,GNU General Public License}, | |
2806 | version 2. Parts of QEMU have specific licenses, see file | |
70b7fba9 | 2807 | @url{https://git.qemu.org/?p=qemu.git;a=blob_plain;f=LICENSE,LICENSE}. |
7544a042 | 2808 | |
debc7065 | 2809 | @node Index |
7544a042 SW |
2810 | @appendix Index |
2811 | @menu | |
2812 | * Concept Index:: | |
2813 | * Function Index:: | |
2814 | * Keystroke Index:: | |
2815 | * Program Index:: | |
2816 | * Data Type Index:: | |
2817 | * Variable Index:: | |
2818 | @end menu | |
2819 | ||
2820 | @node Concept Index | |
2821 | @section Concept Index | |
2822 | This is the main index. Should we combine all keywords in one index? TODO | |
debc7065 FB |
2823 | @printindex cp |
2824 | ||
7544a042 SW |
2825 | @node Function Index |
2826 | @section Function Index | |
2827 | This index could be used for command line options and monitor functions. | |
2828 | @printindex fn | |
2829 | ||
2830 | @node Keystroke Index | |
2831 | @section Keystroke Index | |
2832 | ||
2833 | This is a list of all keystrokes which have a special function | |
2834 | in system emulation. | |
2835 | ||
2836 | @printindex ky | |
2837 | ||
2838 | @node Program Index | |
2839 | @section Program Index | |
2840 | @printindex pg | |
2841 | ||
2842 | @node Data Type Index | |
2843 | @section Data Type Index | |
2844 | ||
2845 | This index could be used for qdev device names and options. | |
2846 | ||
2847 | @printindex tp | |
2848 | ||
2849 | @node Variable Index | |
2850 | @section Variable Index | |
2851 | @printindex vr | |
2852 | ||
debc7065 | 2853 | @bye |