]> git.proxmox.com Git - mirror_qemu.git/blame - qemu-doc.texi
slirp: Fix memory leak on small incoming ipv4 packet
[mirror_qemu.git] / qemu-doc.texi
CommitLineData
386405f7 1\input texinfo @c -*- texinfo -*-
debc7065
FB
2@c %**start of header
3@setfilename qemu-doc.info
e080e785
SW
4
5@documentlanguage en
6@documentencoding UTF-8
7
8f40c388 8@settitle QEMU Emulator User Documentation
debc7065
FB
9@exampleindent 0
10@paragraphindent 0
11@c %**end of header
386405f7 12
a1a32b05
SW
13@ifinfo
14@direntry
15* QEMU: (qemu-doc). The QEMU Emulator User Documentation.
16@end direntry
17@end ifinfo
18
0806e3f6 19@iftex
386405f7
FB
20@titlepage
21@sp 7
8f40c388 22@center @titlefont{QEMU Emulator}
debc7065
FB
23@sp 1
24@center @titlefont{User Documentation}
386405f7
FB
25@sp 3
26@end titlepage
0806e3f6 27@end iftex
386405f7 28
debc7065
FB
29@ifnottex
30@node Top
31@top
32
33@menu
34* Introduction::
35* Installation::
36* QEMU PC System emulator::
37* QEMU System emulator for non PC targets::
83195237 38* QEMU User space emulator::
debc7065 39* compilation:: Compilation from the sources
7544a042 40* License::
debc7065
FB
41* Index::
42@end menu
43@end ifnottex
44
45@contents
46
47@node Introduction
386405f7
FB
48@chapter Introduction
49
debc7065
FB
50@menu
51* intro_features:: Features
52@end menu
53
54@node intro_features
322d0c66 55@section Features
386405f7 56
1f673135
FB
57QEMU is a FAST! processor emulator using dynamic translation to
58achieve good emulation speed.
1eb20527
FB
59
60QEMU has two operating modes:
0806e3f6 61
d7e5edca 62@itemize
7544a042 63@cindex operating modes
0806e3f6 64
5fafdf24 65@item
7544a042 66@cindex system emulation
1f673135 67Full system emulation. In this mode, QEMU emulates a full system (for
3f9f3aa1
FB
68example a PC), including one or several processors and various
69peripherals. It can be used to launch different Operating Systems
70without rebooting the PC or to debug system code.
1eb20527 71
5fafdf24 72@item
7544a042 73@cindex user mode emulation
83195237
FB
74User mode emulation. In this mode, QEMU can launch
75processes compiled for one CPU on another CPU. It can be used to
1f673135
FB
76launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
77to ease cross-compilation and cross-debugging.
1eb20527
FB
78
79@end itemize
80
e1b4382c 81QEMU can run without a host kernel driver and yet gives acceptable
5fafdf24 82performance.
322d0c66 83
52c00a5f
FB
84For system emulation, the following hardware targets are supported:
85@itemize
7544a042
SW
86@cindex emulated target systems
87@cindex supported target systems
9d0a8e6f 88@item PC (x86 or x86_64 processor)
3f9f3aa1 89@item ISA PC (old style PC without PCI bus)
52c00a5f 90@item PREP (PowerPC processor)
d45952a0 91@item G3 Beige PowerMac (PowerPC processor)
9d0a8e6f 92@item Mac99 PowerMac (PowerPC processor, in progress)
ee76f82e 93@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
c7ba218d 94@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
d9aedc32 95@item Malta board (32-bit and 64-bit MIPS processors)
88cb0a02 96@item MIPS Magnum (64-bit MIPS processor)
9ee6e8bb
PB
97@item ARM Integrator/CP (ARM)
98@item ARM Versatile baseboard (ARM)
0ef849d7 99@item ARM RealView Emulation/Platform baseboard (ARM)
ef4c3856 100@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
9ee6e8bb
PB
101@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
102@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
707e011b 103@item Freescale MCF5208EVB (ColdFire V2).
209a4e69 104@item Arnewsh MCF5206 evaluation board (ColdFire V2).
02645926 105@item Palm Tungsten|E PDA (OMAP310 processor)
c30bb264 106@item N800 and N810 tablets (OMAP2420 processor)
57cd6e97 107@item MusicPal (MV88W8618 ARM processor)
ef4c3856
AZ
108@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
109@item Siemens SX1 smartphone (OMAP310 processor)
48c50a62
EI
110@item AXIS-Devboard88 (CRISv32 ETRAX-FS).
111@item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze).
3aeaea65 112@item Avnet LX60/LX110/LX200 boards (Xtensa)
52c00a5f 113@end itemize
386405f7 114
7544a042
SW
115@cindex supported user mode targets
116For user emulation, x86 (32 and 64 bit), PowerPC (32 and 64 bit),
117ARM, MIPS (32 bit only), Sparc (32 and 64 bit),
118Alpha, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported.
0806e3f6 119
debc7065 120@node Installation
5b9f457a
FB
121@chapter Installation
122
15a34c63
FB
123If you want to compile QEMU yourself, see @ref{compilation}.
124
debc7065
FB
125@menu
126* install_linux:: Linux
127* install_windows:: Windows
128* install_mac:: Macintosh
129@end menu
130
131@node install_linux
1f673135 132@section Linux
7544a042 133@cindex installation (Linux)
1f673135 134
7c3fc84d
FB
135If a precompiled package is available for your distribution - you just
136have to install it. Otherwise, see @ref{compilation}.
5b9f457a 137
debc7065 138@node install_windows
1f673135 139@section Windows
7544a042 140@cindex installation (Windows)
8cd0ac2f 141
15a34c63 142Download the experimental binary installer at
debc7065 143@url{http://www.free.oszoo.org/@/download.html}.
7544a042 144TODO (no longer available)
d691f669 145
debc7065 146@node install_mac
1f673135 147@section Mac OS X
d691f669 148
15a34c63 149Download the experimental binary installer at
debc7065 150@url{http://www.free.oszoo.org/@/download.html}.
7544a042 151TODO (no longer available)
df0f11a0 152
debc7065 153@node QEMU PC System emulator
3f9f3aa1 154@chapter QEMU PC System emulator
7544a042 155@cindex system emulation (PC)
1eb20527 156
debc7065
FB
157@menu
158* pcsys_introduction:: Introduction
159* pcsys_quickstart:: Quick Start
160* sec_invocation:: Invocation
a40db1b3
PM
161* pcsys_keys:: Keys in the graphical frontends
162* mux_keys:: Keys in the character backend multiplexer
debc7065
FB
163* pcsys_monitor:: QEMU Monitor
164* disk_images:: Disk Images
165* pcsys_network:: Network emulation
576fd0a1 166* pcsys_other_devs:: Other Devices
debc7065
FB
167* direct_linux_boot:: Direct Linux Boot
168* pcsys_usb:: USB emulation
f858dcae 169* vnc_security:: VNC security
debc7065
FB
170* gdb_usage:: GDB usage
171* pcsys_os_specific:: Target OS specific information
172@end menu
173
174@node pcsys_introduction
0806e3f6
FB
175@section Introduction
176
177@c man begin DESCRIPTION
178
3f9f3aa1
FB
179The QEMU PC System emulator simulates the
180following peripherals:
0806e3f6
FB
181
182@itemize @minus
5fafdf24 183@item
15a34c63 184i440FX host PCI bridge and PIIX3 PCI to ISA bridge
0806e3f6 185@item
15a34c63
FB
186Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
187extensions (hardware level, including all non standard modes).
0806e3f6
FB
188@item
189PS/2 mouse and keyboard
5fafdf24 190@item
15a34c63 1912 PCI IDE interfaces with hard disk and CD-ROM support
1f673135
FB
192@item
193Floppy disk
5fafdf24 194@item
3a2eeac0 195PCI and ISA network adapters
0806e3f6 196@item
05d5818c
FB
197Serial ports
198@item
23076bb3
CM
199IPMI BMC, either and internal or external one
200@item
c0fe3827
FB
201Creative SoundBlaster 16 sound card
202@item
203ENSONIQ AudioPCI ES1370 sound card
204@item
e5c9a13e
AZ
205Intel 82801AA AC97 Audio compatible sound card
206@item
7d72e762
GH
207Intel HD Audio Controller and HDA codec
208@item
2d983446 209Adlib (OPL2) - Yamaha YM3812 compatible chip
b389dbfb 210@item
26463dbc
AZ
211Gravis Ultrasound GF1 sound card
212@item
cc53d26d 213CS4231A compatible sound card
214@item
b389dbfb 215PCI UHCI USB controller and a virtual USB hub.
0806e3f6
FB
216@end itemize
217
3f9f3aa1
FB
218SMP is supported with up to 255 CPUs.
219
a8ad4159 220QEMU uses the PC BIOS from the Seabios project and the Plex86/Bochs LGPL
15a34c63
FB
221VGA BIOS.
222
c0fe3827
FB
223QEMU uses YM3812 emulation by Tatsuyuki Satoh.
224
2d983446 225QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
26463dbc 226by Tibor "TS" Schütz.
423d65f4 227
1a1a0e20 228Note that, by default, GUS shares IRQ(7) with parallel ports and so
b65ee4fa 229QEMU must be told to not have parallel ports to have working GUS.
720036a5 230
231@example
3804da9d 232qemu-system-i386 dos.img -soundhw gus -parallel none
720036a5 233@end example
234
235Alternatively:
236@example
3804da9d 237qemu-system-i386 dos.img -device gus,irq=5
720036a5 238@end example
239
240Or some other unclaimed IRQ.
241
cc53d26d 242CS4231A is the chip used in Windows Sound System and GUSMAX products
243
0806e3f6
FB
244@c man end
245
debc7065 246@node pcsys_quickstart
1eb20527 247@section Quick Start
7544a042 248@cindex quick start
1eb20527 249
285dc330 250Download and uncompress the linux image (@file{linux.img}) and type:
0806e3f6
FB
251
252@example
3804da9d 253qemu-system-i386 linux.img
0806e3f6
FB
254@end example
255
256Linux should boot and give you a prompt.
257
6cc721cf 258@node sec_invocation
ec410fc9
FB
259@section Invocation
260
261@example
0806e3f6 262@c man begin SYNOPSIS
8485140f 263@command{qemu-system-i386} [@var{options}] [@var{disk_image}]
0806e3f6 264@c man end
ec410fc9
FB
265@end example
266
0806e3f6 267@c man begin OPTIONS
d2c639d6
BS
268@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
269targets do not need a disk image.
ec410fc9 270
5824d651 271@include qemu-options.texi
ec410fc9 272
3e11db9a
FB
273@c man end
274
debc7065 275@node pcsys_keys
a40db1b3 276@section Keys in the graphical frontends
3e11db9a
FB
277
278@c man begin OPTIONS
279
de1db2a1
BH
280During the graphical emulation, you can use special key combinations to change
281modes. The default key mappings are shown below, but if you use @code{-alt-grab}
282then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
283@code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
284
a1b74fe8 285@table @key
f9859310 286@item Ctrl-Alt-f
7544a042 287@kindex Ctrl-Alt-f
a1b74fe8 288Toggle full screen
a0a821a4 289
d6a65ba3
JK
290@item Ctrl-Alt-+
291@kindex Ctrl-Alt-+
292Enlarge the screen
293
294@item Ctrl-Alt--
295@kindex Ctrl-Alt--
296Shrink the screen
297
c4a735f9 298@item Ctrl-Alt-u
7544a042 299@kindex Ctrl-Alt-u
c4a735f9 300Restore the screen's un-scaled dimensions
301
f9859310 302@item Ctrl-Alt-n
7544a042 303@kindex Ctrl-Alt-n
a0a821a4
FB
304Switch to virtual console 'n'. Standard console mappings are:
305@table @emph
306@item 1
307Target system display
308@item 2
309Monitor
310@item 3
311Serial port
a1b74fe8
FB
312@end table
313
f9859310 314@item Ctrl-Alt
7544a042 315@kindex Ctrl-Alt
a0a821a4
FB
316Toggle mouse and keyboard grab.
317@end table
318
7544a042
SW
319@kindex Ctrl-Up
320@kindex Ctrl-Down
321@kindex Ctrl-PageUp
322@kindex Ctrl-PageDown
3e11db9a
FB
323In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
324@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
325
a40db1b3
PM
326@c man end
327
328@node mux_keys
329@section Keys in the character backend multiplexer
330
331@c man begin OPTIONS
332
333During emulation, if you are using a character backend multiplexer
334(which is the default if you are using @option{-nographic}) then
335several commands are available via an escape sequence. These
336key sequences all start with an escape character, which is @key{Ctrl-a}
337by default, but can be changed with @option{-echr}. The list below assumes
338you're using the default.
ec410fc9
FB
339
340@table @key
a1b74fe8 341@item Ctrl-a h
7544a042 342@kindex Ctrl-a h
ec410fc9 343Print this help
3b46e624 344@item Ctrl-a x
7544a042 345@kindex Ctrl-a x
366dfc52 346Exit emulator
3b46e624 347@item Ctrl-a s
7544a042 348@kindex Ctrl-a s
1f47a922 349Save disk data back to file (if -snapshot)
20d8a3ed 350@item Ctrl-a t
7544a042 351@kindex Ctrl-a t
d2c639d6 352Toggle console timestamps
a1b74fe8 353@item Ctrl-a b
7544a042 354@kindex Ctrl-a b
1f673135 355Send break (magic sysrq in Linux)
a1b74fe8 356@item Ctrl-a c
7544a042 357@kindex Ctrl-a c
a40db1b3
PM
358Rotate between the frontends connected to the multiplexer (usually
359this switches between the monitor and the console)
a1b74fe8 360@item Ctrl-a Ctrl-a
a40db1b3
PM
361@kindex Ctrl-a Ctrl-a
362Send the escape character to the frontend
ec410fc9 363@end table
0806e3f6
FB
364@c man end
365
366@ignore
367
1f673135
FB
368@c man begin SEEALSO
369The HTML documentation of QEMU for more precise information and Linux
370user mode emulator invocation.
371@c man end
372
373@c man begin AUTHOR
374Fabrice Bellard
375@c man end
376
377@end ignore
378
debc7065 379@node pcsys_monitor
1f673135 380@section QEMU Monitor
7544a042 381@cindex QEMU monitor
1f673135
FB
382
383The QEMU monitor is used to give complex commands to the QEMU
384emulator. You can use it to:
385
386@itemize @minus
387
388@item
e598752a 389Remove or insert removable media images
89dfe898 390(such as CD-ROM or floppies).
1f673135 391
5fafdf24 392@item
1f673135
FB
393Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
394from a disk file.
395
396@item Inspect the VM state without an external debugger.
397
398@end itemize
399
400@subsection Commands
401
402The following commands are available:
403
2313086a 404@include qemu-monitor.texi
0806e3f6 405
2cd8af2d
PB
406@include qemu-monitor-info.texi
407
1f673135
FB
408@subsection Integer expressions
409
410The monitor understands integers expressions for every integer
411argument. You can use register names to get the value of specifics
412CPU registers by prefixing them with @emph{$}.
ec410fc9 413
1f47a922
FB
414@node disk_images
415@section Disk Images
416
acd935ef
FB
417Since version 0.6.1, QEMU supports many disk image formats, including
418growable disk images (their size increase as non empty sectors are
13a2e80f
FB
419written), compressed and encrypted disk images. Version 0.8.3 added
420the new qcow2 disk image format which is essential to support VM
421snapshots.
1f47a922 422
debc7065
FB
423@menu
424* disk_images_quickstart:: Quick start for disk image creation
425* disk_images_snapshot_mode:: Snapshot mode
13a2e80f 426* vm_snapshots:: VM snapshots
debc7065 427* qemu_img_invocation:: qemu-img Invocation
975b092b 428* qemu_nbd_invocation:: qemu-nbd Invocation
665b5d0d 429* qemu_ga_invocation:: qemu-ga Invocation
d3067b02 430* disk_images_formats:: Disk image file formats
19cb3738 431* host_drives:: Using host drives
debc7065 432* disk_images_fat_images:: Virtual FAT disk images
75818250 433* disk_images_nbd:: NBD access
42af9c30 434* disk_images_sheepdog:: Sheepdog disk images
00984e39 435* disk_images_iscsi:: iSCSI LUNs
8809e289 436* disk_images_gluster:: GlusterFS disk images
0a12ec87 437* disk_images_ssh:: Secure Shell (ssh) disk images
debc7065
FB
438@end menu
439
440@node disk_images_quickstart
acd935ef
FB
441@subsection Quick start for disk image creation
442
443You can create a disk image with the command:
1f47a922 444@example
acd935ef 445qemu-img create myimage.img mysize
1f47a922 446@end example
acd935ef
FB
447where @var{myimage.img} is the disk image filename and @var{mysize} is its
448size in kilobytes. You can add an @code{M} suffix to give the size in
449megabytes and a @code{G} suffix for gigabytes.
450
debc7065 451See @ref{qemu_img_invocation} for more information.
1f47a922 452
debc7065 453@node disk_images_snapshot_mode
1f47a922
FB
454@subsection Snapshot mode
455
456If you use the option @option{-snapshot}, all disk images are
457considered as read only. When sectors in written, they are written in
458a temporary file created in @file{/tmp}. You can however force the
acd935ef
FB
459write back to the raw disk images by using the @code{commit} monitor
460command (or @key{C-a s} in the serial console).
1f47a922 461
13a2e80f
FB
462@node vm_snapshots
463@subsection VM snapshots
464
465VM snapshots are snapshots of the complete virtual machine including
466CPU state, RAM, device state and the content of all the writable
467disks. In order to use VM snapshots, you must have at least one non
468removable and writable block device using the @code{qcow2} disk image
469format. Normally this device is the first virtual hard drive.
470
471Use the monitor command @code{savevm} to create a new VM snapshot or
472replace an existing one. A human readable name can be assigned to each
19d36792 473snapshot in addition to its numerical ID.
13a2e80f
FB
474
475Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
476a VM snapshot. @code{info snapshots} lists the available snapshots
477with their associated information:
478
479@example
480(qemu) info snapshots
481Snapshot devices: hda
482Snapshot list (from hda):
483ID TAG VM SIZE DATE VM CLOCK
4841 start 41M 2006-08-06 12:38:02 00:00:14.954
4852 40M 2006-08-06 12:43:29 00:00:18.633
4863 msys 40M 2006-08-06 12:44:04 00:00:23.514
487@end example
488
489A VM snapshot is made of a VM state info (its size is shown in
490@code{info snapshots}) and a snapshot of every writable disk image.
491The VM state info is stored in the first @code{qcow2} non removable
492and writable block device. The disk image snapshots are stored in
493every disk image. The size of a snapshot in a disk image is difficult
494to evaluate and is not shown by @code{info snapshots} because the
495associated disk sectors are shared among all the snapshots to save
19d36792
FB
496disk space (otherwise each snapshot would need a full copy of all the
497disk images).
13a2e80f
FB
498
499When using the (unrelated) @code{-snapshot} option
500(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
501but they are deleted as soon as you exit QEMU.
502
503VM snapshots currently have the following known limitations:
504@itemize
5fafdf24 505@item
13a2e80f
FB
506They cannot cope with removable devices if they are removed or
507inserted after a snapshot is done.
5fafdf24 508@item
13a2e80f
FB
509A few device drivers still have incomplete snapshot support so their
510state is not saved or restored properly (in particular USB).
511@end itemize
512
acd935ef
FB
513@node qemu_img_invocation
514@subsection @code{qemu-img} Invocation
1f47a922 515
acd935ef 516@include qemu-img.texi
05efe46e 517
975b092b
TS
518@node qemu_nbd_invocation
519@subsection @code{qemu-nbd} Invocation
520
521@include qemu-nbd.texi
522
665b5d0d
MAL
523@node qemu_ga_invocation
524@subsection @code{qemu-ga} Invocation
525
526@include qemu-ga.texi
527
d3067b02
KW
528@node disk_images_formats
529@subsection Disk image file formats
530
531QEMU supports many image file formats that can be used with VMs as well as with
532any of the tools (like @code{qemu-img}). This includes the preferred formats
533raw and qcow2 as well as formats that are supported for compatibility with
534older QEMU versions or other hypervisors.
535
536Depending on the image format, different options can be passed to
537@code{qemu-img create} and @code{qemu-img convert} using the @code{-o} option.
538This section describes each format and the options that are supported for it.
539
540@table @option
541@item raw
542
543Raw disk image format. This format has the advantage of
544being simple and easily exportable to all other emulators. If your
545file system supports @emph{holes} (for example in ext2 or ext3 on
546Linux or NTFS on Windows), then only the written sectors will reserve
547space. Use @code{qemu-img info} to know the real size used by the
548image or @code{ls -ls} on Unix/Linux.
549
06247428
HT
550Supported options:
551@table @code
552@item preallocation
553Preallocation mode (allowed values: @code{off}, @code{falloc}, @code{full}).
554@code{falloc} mode preallocates space for image by calling posix_fallocate().
555@code{full} mode preallocates space for image by writing zeros to underlying
556storage.
557@end table
558
d3067b02
KW
559@item qcow2
560QEMU image format, the most versatile format. Use it to have smaller
561images (useful if your filesystem does not supports holes, for example
a1f688f4
MA
562on Windows), zlib based compression and support of multiple VM
563snapshots.
d3067b02
KW
564
565Supported options:
566@table @code
567@item compat
7fa9e1f9
SH
568Determines the qcow2 version to use. @code{compat=0.10} uses the
569traditional image format that can be read by any QEMU since 0.10.
d3067b02 570@code{compat=1.1} enables image format extensions that only QEMU 1.1 and
7fa9e1f9
SH
571newer understand (this is the default). Amongst others, this includes
572zero clusters, which allow efficient copy-on-read for sparse images.
d3067b02
KW
573
574@item backing_file
575File name of a base image (see @option{create} subcommand)
576@item backing_fmt
577Image format of the base image
578@item encryption
136cd19d 579If this option is set to @code{on}, the image is encrypted with 128-bit AES-CBC.
d3067b02 580
136cd19d
DB
581The use of encryption in qcow and qcow2 images is considered to be flawed by
582modern cryptography standards, suffering from a number of design problems:
583
584@itemize @minus
585@item The AES-CBC cipher is used with predictable initialization vectors based
586on the sector number. This makes it vulnerable to chosen plaintext attacks
587which can reveal the existence of encrypted data.
588@item The user passphrase is directly used as the encryption key. A poorly
589chosen or short passphrase will compromise the security of the encryption.
590@item In the event of the passphrase being compromised there is no way to
591change the passphrase to protect data in any qcow images. The files must
592be cloned, using a different encryption passphrase in the new file. The
593original file must then be securely erased using a program like shred,
594though even this is ineffective with many modern storage technologies.
595@end itemize
596
a1f688f4
MA
597Use of qcow / qcow2 encryption with QEMU is deprecated, and support for
598it will go away in a future release. Users are recommended to use an
599alternative encryption technology such as the Linux dm-crypt / LUKS
600system.
d3067b02
KW
601
602@item cluster_size
603Changes the qcow2 cluster size (must be between 512 and 2M). Smaller cluster
604sizes can improve the image file size whereas larger cluster sizes generally
605provide better performance.
606
607@item preallocation
0e4271b7
HT
608Preallocation mode (allowed values: @code{off}, @code{metadata}, @code{falloc},
609@code{full}). An image with preallocated metadata is initially larger but can
610improve performance when the image needs to grow. @code{falloc} and @code{full}
611preallocations are like the same options of @code{raw} format, but sets up
612metadata also.
d3067b02
KW
613
614@item lazy_refcounts
615If this option is set to @code{on}, reference count updates are postponed with
616the goal of avoiding metadata I/O and improving performance. This is
617particularly interesting with @option{cache=writethrough} which doesn't batch
618metadata updates. The tradeoff is that after a host crash, the reference count
619tables must be rebuilt, i.e. on the next open an (automatic) @code{qemu-img
620check -r all} is required, which may take some time.
621
622This option can only be enabled if @code{compat=1.1} is specified.
623
4ab15590 624@item nocow
bc3a7f90 625If this option is set to @code{on}, it will turn off COW of the file. It's only
4ab15590
CL
626valid on btrfs, no effect on other file systems.
627
628Btrfs has low performance when hosting a VM image file, even more when the guest
629on the VM also using btrfs as file system. Turning off COW is a way to mitigate
630this bad performance. Generally there are two ways to turn off COW on btrfs:
631a) Disable it by mounting with nodatacow, then all newly created files will be
632NOCOW. b) For an empty file, add the NOCOW file attribute. That's what this option
633does.
634
635Note: this option is only valid to new or empty files. If there is an existing
636file which is COW and has data blocks already, it couldn't be changed to NOCOW
637by setting @code{nocow=on}. One can issue @code{lsattr filename} to check if
bc3a7f90 638the NOCOW flag is set or not (Capital 'C' is NOCOW flag).
4ab15590 639
d3067b02
KW
640@end table
641
642@item qed
643Old QEMU image format with support for backing files and compact image files
644(when your filesystem or transport medium does not support holes).
645
646When converting QED images to qcow2, you might want to consider using the
647@code{lazy_refcounts=on} option to get a more QED-like behaviour.
648
649Supported options:
650@table @code
651@item backing_file
652File name of a base image (see @option{create} subcommand).
653@item backing_fmt
654Image file format of backing file (optional). Useful if the format cannot be
655autodetected because it has no header, like some vhd/vpc files.
656@item cluster_size
657Changes the cluster size (must be power-of-2 between 4K and 64K). Smaller
658cluster sizes can improve the image file size whereas larger cluster sizes
659generally provide better performance.
660@item table_size
661Changes the number of clusters per L1/L2 table (must be power-of-2 between 1
662and 16). There is normally no need to change this value but this option can be
663used for performance benchmarking.
664@end table
665
666@item qcow
667Old QEMU image format with support for backing files, compact image files,
668encryption and compression.
669
670Supported options:
671@table @code
672@item backing_file
673File name of a base image (see @option{create} subcommand)
674@item encryption
675If this option is set to @code{on}, the image is encrypted.
676@end table
677
d3067b02
KW
678@item vdi
679VirtualBox 1.1 compatible image format.
680Supported options:
681@table @code
682@item static
683If this option is set to @code{on}, the image is created with metadata
684preallocation.
685@end table
686
687@item vmdk
688VMware 3 and 4 compatible image format.
689
690Supported options:
691@table @code
692@item backing_file
693File name of a base image (see @option{create} subcommand).
694@item compat6
695Create a VMDK version 6 image (instead of version 4)
696@item subformat
697Specifies which VMDK subformat to use. Valid options are
698@code{monolithicSparse} (default),
699@code{monolithicFlat},
700@code{twoGbMaxExtentSparse},
701@code{twoGbMaxExtentFlat} and
702@code{streamOptimized}.
703@end table
704
705@item vpc
706VirtualPC compatible image format (VHD).
707Supported options:
708@table @code
709@item subformat
710Specifies which VHD subformat to use. Valid options are
711@code{dynamic} (default) and @code{fixed}.
712@end table
8282db1b
JC
713
714@item VHDX
715Hyper-V compatible image format (VHDX).
716Supported options:
717@table @code
718@item subformat
719Specifies which VHDX subformat to use. Valid options are
720@code{dynamic} (default) and @code{fixed}.
721@item block_state_zero
30af51ce
JC
722Force use of payload blocks of type 'ZERO'. Can be set to @code{on} (default)
723or @code{off}. When set to @code{off}, new blocks will be created as
724@code{PAYLOAD_BLOCK_NOT_PRESENT}, which means parsers are free to return
725arbitrary data for those blocks. Do not set to @code{off} when using
726@code{qemu-img convert} with @code{subformat=dynamic}.
8282db1b
JC
727@item block_size
728Block size; min 1 MB, max 256 MB. 0 means auto-calculate based on image size.
729@item log_size
730Log size; min 1 MB.
731@end table
d3067b02
KW
732@end table
733
734@subsubsection Read-only formats
735More disk image file formats are supported in a read-only mode.
736@table @option
737@item bochs
738Bochs images of @code{growing} type.
739@item cloop
740Linux Compressed Loop image, useful only to reuse directly compressed
741CD-ROM images present for example in the Knoppix CD-ROMs.
742@item dmg
743Apple disk image.
744@item parallels
745Parallels disk image format.
746@end table
747
748
19cb3738
FB
749@node host_drives
750@subsection Using host drives
751
752In addition to disk image files, QEMU can directly access host
753devices. We describe here the usage for QEMU version >= 0.8.3.
754
755@subsubsection Linux
756
757On Linux, you can directly use the host device filename instead of a
4be456f1 758disk image filename provided you have enough privileges to access
92a539d2 759it. For example, use @file{/dev/cdrom} to access to the CDROM.
19cb3738 760
f542086d 761@table @code
19cb3738
FB
762@item CD
763You can specify a CDROM device even if no CDROM is loaded. QEMU has
764specific code to detect CDROM insertion or removal. CDROM ejection by
765the guest OS is supported. Currently only data CDs are supported.
766@item Floppy
767You can specify a floppy device even if no floppy is loaded. Floppy
768removal is currently not detected accurately (if you change floppy
769without doing floppy access while the floppy is not loaded, the guest
770OS will think that the same floppy is loaded).
92a539d2
MA
771Use of the host's floppy device is deprecated, and support for it will
772be removed in a future release.
19cb3738
FB
773@item Hard disks
774Hard disks can be used. Normally you must specify the whole disk
775(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
776see it as a partitioned disk. WARNING: unless you know what you do, it
777is better to only make READ-ONLY accesses to the hard disk otherwise
778you may corrupt your host data (use the @option{-snapshot} command
779line option or modify the device permissions accordingly).
780@end table
781
782@subsubsection Windows
783
01781963
FB
784@table @code
785@item CD
4be456f1 786The preferred syntax is the drive letter (e.g. @file{d:}). The
01781963
FB
787alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
788supported as an alias to the first CDROM drive.
19cb3738 789
e598752a 790Currently there is no specific code to handle removable media, so it
19cb3738
FB
791is better to use the @code{change} or @code{eject} monitor commands to
792change or eject media.
01781963 793@item Hard disks
89dfe898 794Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
01781963
FB
795where @var{N} is the drive number (0 is the first hard disk).
796
797WARNING: unless you know what you do, it is better to only make
798READ-ONLY accesses to the hard disk otherwise you may corrupt your
799host data (use the @option{-snapshot} command line so that the
800modifications are written in a temporary file).
801@end table
802
19cb3738
FB
803
804@subsubsection Mac OS X
805
5fafdf24 806@file{/dev/cdrom} is an alias to the first CDROM.
19cb3738 807
e598752a 808Currently there is no specific code to handle removable media, so it
19cb3738
FB
809is better to use the @code{change} or @code{eject} monitor commands to
810change or eject media.
811
debc7065 812@node disk_images_fat_images
2c6cadd4
FB
813@subsection Virtual FAT disk images
814
815QEMU can automatically create a virtual FAT disk image from a
816directory tree. In order to use it, just type:
817
5fafdf24 818@example
3804da9d 819qemu-system-i386 linux.img -hdb fat:/my_directory
2c6cadd4
FB
820@end example
821
822Then you access access to all the files in the @file{/my_directory}
823directory without having to copy them in a disk image or to export
824them via SAMBA or NFS. The default access is @emph{read-only}.
825
826Floppies can be emulated with the @code{:floppy:} option:
827
5fafdf24 828@example
3804da9d 829qemu-system-i386 linux.img -fda fat:floppy:/my_directory
2c6cadd4
FB
830@end example
831
832A read/write support is available for testing (beta stage) with the
833@code{:rw:} option:
834
5fafdf24 835@example
3804da9d 836qemu-system-i386 linux.img -fda fat:floppy:rw:/my_directory
2c6cadd4
FB
837@end example
838
839What you should @emph{never} do:
840@itemize
841@item use non-ASCII filenames ;
842@item use "-snapshot" together with ":rw:" ;
85b2c688
FB
843@item expect it to work when loadvm'ing ;
844@item write to the FAT directory on the host system while accessing it with the guest system.
2c6cadd4
FB
845@end itemize
846
75818250
TS
847@node disk_images_nbd
848@subsection NBD access
849
850QEMU can access directly to block device exported using the Network Block Device
851protocol.
852
853@example
1d7d2a9d 854qemu-system-i386 linux.img -hdb nbd://my_nbd_server.mydomain.org:1024/
75818250
TS
855@end example
856
857If the NBD server is located on the same host, you can use an unix socket instead
858of an inet socket:
859
860@example
1d7d2a9d 861qemu-system-i386 linux.img -hdb nbd+unix://?socket=/tmp/my_socket
75818250
TS
862@end example
863
864In this case, the block device must be exported using qemu-nbd:
865
866@example
867qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
868@end example
869
9d85d557 870The use of qemu-nbd allows sharing of a disk between several guests:
75818250
TS
871@example
872qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
873@end example
874
1d7d2a9d 875@noindent
75818250
TS
876and then you can use it with two guests:
877@example
1d7d2a9d
PB
878qemu-system-i386 linux1.img -hdb nbd+unix://?socket=/tmp/my_socket
879qemu-system-i386 linux2.img -hdb nbd+unix://?socket=/tmp/my_socket
75818250
TS
880@end example
881
1d7d2a9d
PB
882If the nbd-server uses named exports (supported since NBD 2.9.18, or with QEMU's
883own embedded NBD server), you must specify an export name in the URI:
1d45f8b5 884@example
1d7d2a9d
PB
885qemu-system-i386 -cdrom nbd://localhost/debian-500-ppc-netinst
886qemu-system-i386 -cdrom nbd://localhost/openSUSE-11.1-ppc-netinst
887@end example
888
889The URI syntax for NBD is supported since QEMU 1.3. An alternative syntax is
890also available. Here are some example of the older syntax:
891@example
892qemu-system-i386 linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
893qemu-system-i386 linux2.img -hdb nbd:unix:/tmp/my_socket
894qemu-system-i386 -cdrom nbd:localhost:10809:exportname=debian-500-ppc-netinst
1d45f8b5
LV
895@end example
896
42af9c30
MK
897@node disk_images_sheepdog
898@subsection Sheepdog disk images
899
900Sheepdog is a distributed storage system for QEMU. It provides highly
901available block level storage volumes that can be attached to
902QEMU-based virtual machines.
903
904You can create a Sheepdog disk image with the command:
905@example
5d6768e3 906qemu-img create sheepdog:///@var{image} @var{size}
42af9c30
MK
907@end example
908where @var{image} is the Sheepdog image name and @var{size} is its
909size.
910
911To import the existing @var{filename} to Sheepdog, you can use a
912convert command.
913@example
5d6768e3 914qemu-img convert @var{filename} sheepdog:///@var{image}
42af9c30
MK
915@end example
916
917You can boot from the Sheepdog disk image with the command:
918@example
5d6768e3 919qemu-system-i386 sheepdog:///@var{image}
42af9c30
MK
920@end example
921
922You can also create a snapshot of the Sheepdog image like qcow2.
923@example
5d6768e3 924qemu-img snapshot -c @var{tag} sheepdog:///@var{image}
42af9c30
MK
925@end example
926where @var{tag} is a tag name of the newly created snapshot.
927
928To boot from the Sheepdog snapshot, specify the tag name of the
929snapshot.
930@example
5d6768e3 931qemu-system-i386 sheepdog:///@var{image}#@var{tag}
42af9c30
MK
932@end example
933
934You can create a cloned image from the existing snapshot.
935@example
5d6768e3 936qemu-img create -b sheepdog:///@var{base}#@var{tag} sheepdog:///@var{image}
42af9c30
MK
937@end example
938where @var{base} is a image name of the source snapshot and @var{tag}
939is its tag name.
940
1b8bbb46
MK
941You can use an unix socket instead of an inet socket:
942
943@example
944qemu-system-i386 sheepdog+unix:///@var{image}?socket=@var{path}
945@end example
946
42af9c30
MK
947If the Sheepdog daemon doesn't run on the local host, you need to
948specify one of the Sheepdog servers to connect to.
949@example
5d6768e3
MK
950qemu-img create sheepdog://@var{hostname}:@var{port}/@var{image} @var{size}
951qemu-system-i386 sheepdog://@var{hostname}:@var{port}/@var{image}
42af9c30
MK
952@end example
953
00984e39
RS
954@node disk_images_iscsi
955@subsection iSCSI LUNs
956
957iSCSI is a popular protocol used to access SCSI devices across a computer
958network.
959
960There are two different ways iSCSI devices can be used by QEMU.
961
962The first method is to mount the iSCSI LUN on the host, and make it appear as
963any other ordinary SCSI device on the host and then to access this device as a
964/dev/sd device from QEMU. How to do this differs between host OSes.
965
966The second method involves using the iSCSI initiator that is built into
967QEMU. This provides a mechanism that works the same way regardless of which
968host OS you are running QEMU on. This section will describe this second method
969of using iSCSI together with QEMU.
970
971In QEMU, iSCSI devices are described using special iSCSI URLs
972
973@example
974URL syntax:
975iscsi://[<username>[%<password>]@@]<host>[:<port>]/<target-iqn-name>/<lun>
976@end example
977
978Username and password are optional and only used if your target is set up
979using CHAP authentication for access control.
980Alternatively the username and password can also be set via environment
981variables to have these not show up in the process list
982
983@example
984export LIBISCSI_CHAP_USERNAME=<username>
985export LIBISCSI_CHAP_PASSWORD=<password>
986iscsi://<host>/<target-iqn-name>/<lun>
987@end example
988
f9dadc98
RS
989Various session related parameters can be set via special options, either
990in a configuration file provided via '-readconfig' or directly on the
991command line.
992
31459f46
RS
993If the initiator-name is not specified qemu will use a default name
994of 'iqn.2008-11.org.linux-kvm[:<name>'] where <name> is the name of the
995virtual machine.
996
997
f9dadc98
RS
998@example
999Setting a specific initiator name to use when logging in to the target
1000-iscsi initiator-name=iqn.qemu.test:my-initiator
1001@end example
1002
1003@example
1004Controlling which type of header digest to negotiate with the target
1005-iscsi header-digest=CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
1006@end example
1007
1008These can also be set via a configuration file
1009@example
1010[iscsi]
1011 user = "CHAP username"
1012 password = "CHAP password"
1013 initiator-name = "iqn.qemu.test:my-initiator"
1014 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
1015 header-digest = "CRC32C"
1016@end example
1017
1018
1019Setting the target name allows different options for different targets
1020@example
1021[iscsi "iqn.target.name"]
1022 user = "CHAP username"
1023 password = "CHAP password"
1024 initiator-name = "iqn.qemu.test:my-initiator"
1025 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
1026 header-digest = "CRC32C"
1027@end example
1028
1029
1030Howto use a configuration file to set iSCSI configuration options:
1031@example
1032cat >iscsi.conf <<EOF
1033[iscsi]
1034 user = "me"
1035 password = "my password"
1036 initiator-name = "iqn.qemu.test:my-initiator"
1037 header-digest = "CRC32C"
1038EOF
1039
1040qemu-system-i386 -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
1041 -readconfig iscsi.conf
1042@end example
1043
1044
00984e39
RS
1045Howto set up a simple iSCSI target on loopback and accessing it via QEMU:
1046@example
1047This example shows how to set up an iSCSI target with one CDROM and one DISK
1048using the Linux STGT software target. This target is available on Red Hat based
1049systems as the package 'scsi-target-utils'.
1050
1051tgtd --iscsi portal=127.0.0.1:3260
1052tgtadm --lld iscsi --op new --mode target --tid 1 -T iqn.qemu.test
1053tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 1 \
1054 -b /IMAGES/disk.img --device-type=disk
1055tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 2 \
1056 -b /IMAGES/cd.iso --device-type=cd
1057tgtadm --lld iscsi --op bind --mode target --tid 1 -I ALL
1058
f9dadc98
RS
1059qemu-system-i386 -iscsi initiator-name=iqn.qemu.test:my-initiator \
1060 -boot d -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
00984e39
RS
1061 -cdrom iscsi://127.0.0.1/iqn.qemu.test/2
1062@end example
1063
8809e289
BR
1064@node disk_images_gluster
1065@subsection GlusterFS disk images
00984e39 1066
8809e289
BR
1067GlusterFS is an user space distributed file system.
1068
1069You can boot from the GlusterFS disk image with the command:
1070@example
1071qemu-system-x86_64 -drive file=gluster[+@var{transport}]://[@var{server}[:@var{port}]]/@var{volname}/@var{image}[?socket=...]
1072@end example
1073
1074@var{gluster} is the protocol.
1075
1076@var{transport} specifies the transport type used to connect to gluster
1077management daemon (glusterd). Valid transport types are
1078tcp, unix and rdma. If a transport type isn't specified, then tcp
1079type is assumed.
1080
1081@var{server} specifies the server where the volume file specification for
1082the given volume resides. This can be either hostname, ipv4 address
1083or ipv6 address. ipv6 address needs to be within square brackets [ ].
d274e07c 1084If transport type is unix, then @var{server} field should not be specified.
8809e289
BR
1085Instead @var{socket} field needs to be populated with the path to unix domain
1086socket.
1087
1088@var{port} is the port number on which glusterd is listening. This is optional
1089and if not specified, QEMU will send 0 which will make gluster to use the
1090default port. If the transport type is unix, then @var{port} should not be
1091specified.
1092
1093@var{volname} is the name of the gluster volume which contains the disk image.
1094
1095@var{image} is the path to the actual disk image that resides on gluster volume.
1096
1097You can create a GlusterFS disk image with the command:
1098@example
1099qemu-img create gluster://@var{server}/@var{volname}/@var{image} @var{size}
1100@end example
1101
1102Examples
1103@example
1104qemu-system-x86_64 -drive file=gluster://1.2.3.4/testvol/a.img
1105qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4/testvol/a.img
1106qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4:24007/testvol/dir/a.img
1107qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]/testvol/dir/a.img
1108qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]:24007/testvol/dir/a.img
1109qemu-system-x86_64 -drive file=gluster+tcp://server.domain.com:24007/testvol/dir/a.img
1110qemu-system-x86_64 -drive file=gluster+unix:///testvol/dir/a.img?socket=/tmp/glusterd.socket
1111qemu-system-x86_64 -drive file=gluster+rdma://1.2.3.4:24007/testvol/a.img
1112@end example
00984e39 1113
0a12ec87
RJ
1114@node disk_images_ssh
1115@subsection Secure Shell (ssh) disk images
1116
1117You can access disk images located on a remote ssh server
1118by using the ssh protocol:
1119
1120@example
1121qemu-system-x86_64 -drive file=ssh://[@var{user}@@]@var{server}[:@var{port}]/@var{path}[?host_key_check=@var{host_key_check}]
1122@end example
1123
1124Alternative syntax using properties:
1125
1126@example
1127qemu-system-x86_64 -drive file.driver=ssh[,file.user=@var{user}],file.host=@var{server}[,file.port=@var{port}],file.path=@var{path}[,file.host_key_check=@var{host_key_check}]
1128@end example
1129
1130@var{ssh} is the protocol.
1131
1132@var{user} is the remote user. If not specified, then the local
1133username is tried.
1134
1135@var{server} specifies the remote ssh server. Any ssh server can be
1136used, but it must implement the sftp-server protocol. Most Unix/Linux
1137systems should work without requiring any extra configuration.
1138
1139@var{port} is the port number on which sshd is listening. By default
1140the standard ssh port (22) is used.
1141
1142@var{path} is the path to the disk image.
1143
1144The optional @var{host_key_check} parameter controls how the remote
1145host's key is checked. The default is @code{yes} which means to use
1146the local @file{.ssh/known_hosts} file. Setting this to @code{no}
1147turns off known-hosts checking. Or you can check that the host key
1148matches a specific fingerprint:
1149@code{host_key_check=md5:78:45:8e:14:57:4f:d5:45:83:0a:0e:f3:49:82:c9:c8}
1150(@code{sha1:} can also be used as a prefix, but note that OpenSSH
1151tools only use MD5 to print fingerprints).
1152
1153Currently authentication must be done using ssh-agent. Other
1154authentication methods may be supported in future.
1155
9a2d462e
RJ
1156Note: Many ssh servers do not support an @code{fsync}-style operation.
1157The ssh driver cannot guarantee that disk flush requests are
1158obeyed, and this causes a risk of disk corruption if the remote
1159server or network goes down during writes. The driver will
1160print a warning when @code{fsync} is not supported:
1161
1162warning: ssh server @code{ssh.example.com:22} does not support fsync
1163
1164With sufficiently new versions of libssh2 and OpenSSH, @code{fsync} is
1165supported.
0a12ec87 1166
debc7065 1167@node pcsys_network
9d4fb82e
FB
1168@section Network emulation
1169
4be456f1 1170QEMU can simulate several network cards (PCI or ISA cards on the PC
41d03949
FB
1171target) and can connect them to an arbitrary number of Virtual Local
1172Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1173VLAN. VLAN can be connected between separate instances of QEMU to
4be456f1 1174simulate large networks. For simpler usage, a non privileged user mode
41d03949
FB
1175network stack can replace the TAP device to have a basic network
1176connection.
1177
1178@subsection VLANs
9d4fb82e 1179
41d03949
FB
1180QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1181connection between several network devices. These devices can be for
1182example QEMU virtual Ethernet cards or virtual Host ethernet devices
1183(TAP devices).
9d4fb82e 1184
41d03949
FB
1185@subsection Using TAP network interfaces
1186
1187This is the standard way to connect QEMU to a real network. QEMU adds
1188a virtual network device on your host (called @code{tapN}), and you
1189can then configure it as if it was a real ethernet card.
9d4fb82e 1190
8f40c388
FB
1191@subsubsection Linux host
1192
9d4fb82e
FB
1193As an example, you can download the @file{linux-test-xxx.tar.gz}
1194archive and copy the script @file{qemu-ifup} in @file{/etc} and
1195configure properly @code{sudo} so that the command @code{ifconfig}
1196contained in @file{qemu-ifup} can be executed as root. You must verify
41d03949 1197that your host kernel supports the TAP network interfaces: the
9d4fb82e
FB
1198device @file{/dev/net/tun} must be present.
1199
ee0f4751
FB
1200See @ref{sec_invocation} to have examples of command lines using the
1201TAP network interfaces.
9d4fb82e 1202
8f40c388
FB
1203@subsubsection Windows host
1204
1205There is a virtual ethernet driver for Windows 2000/XP systems, called
1206TAP-Win32. But it is not included in standard QEMU for Windows,
1207so you will need to get it separately. It is part of OpenVPN package,
1208so download OpenVPN from : @url{http://openvpn.net/}.
1209
9d4fb82e
FB
1210@subsection Using the user mode network stack
1211
41d03949
FB
1212By using the option @option{-net user} (default configuration if no
1213@option{-net} option is specified), QEMU uses a completely user mode
4be456f1 1214network stack (you don't need root privilege to use the virtual
41d03949 1215network). The virtual network configuration is the following:
9d4fb82e
FB
1216
1217@example
1218
41d03949
FB
1219 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
1220 | (10.0.2.2)
9d4fb82e 1221 |
2518bd0d 1222 ----> DNS server (10.0.2.3)
3b46e624 1223 |
2518bd0d 1224 ----> SMB server (10.0.2.4)
9d4fb82e
FB
1225@end example
1226
1227The QEMU VM behaves as if it was behind a firewall which blocks all
1228incoming connections. You can use a DHCP client to automatically
41d03949
FB
1229configure the network in the QEMU VM. The DHCP server assign addresses
1230to the hosts starting from 10.0.2.15.
9d4fb82e
FB
1231
1232In order to check that the user mode network is working, you can ping
1233the address 10.0.2.2 and verify that you got an address in the range
123410.0.2.x from the QEMU virtual DHCP server.
1235
37cbfcce
GH
1236Note that ICMP traffic in general does not work with user mode networking.
1237@code{ping}, aka. ICMP echo, to the local router (10.0.2.2) shall work,
1238however. If you're using QEMU on Linux >= 3.0, it can use unprivileged ICMP
1239ping sockets to allow @code{ping} to the Internet. The host admin has to set
1240the ping_group_range in order to grant access to those sockets. To allow ping
1241for GID 100 (usually users group):
1242
1243@example
1244echo 100 100 > /proc/sys/net/ipv4/ping_group_range
1245@end example
b415a407 1246
9bf05444
FB
1247When using the built-in TFTP server, the router is also the TFTP
1248server.
1249
c8c6afa8
TH
1250When using the @option{'-netdev user,hostfwd=...'} option, TCP or UDP
1251connections can be redirected from the host to the guest. It allows for
1252example to redirect X11, telnet or SSH connections.
443f1376 1253
41d03949
FB
1254@subsection Connecting VLANs between QEMU instances
1255
1256Using the @option{-net socket} option, it is possible to make VLANs
1257that span several QEMU instances. See @ref{sec_invocation} to have a
1258basic example.
1259
576fd0a1 1260@node pcsys_other_devs
6cbf4c8c
CM
1261@section Other Devices
1262
1263@subsection Inter-VM Shared Memory device
1264
1265With KVM enabled on a Linux host, a shared memory device is available. Guests
1266map a POSIX shared memory region into the guest as a PCI device that enables
1267zero-copy communication to the application level of the guests. The basic
1268syntax is:
1269
1270@example
a9282c25 1271qemu-system-i386 -device ivshmem,size=@var{size},shm=@var{shm-name}
6cbf4c8c
CM
1272@end example
1273
1274If desired, interrupts can be sent between guest VMs accessing the same shared
1275memory region. Interrupt support requires using a shared memory server and
1276using a chardev socket to connect to it. The code for the shared memory server
1277is qemu.git/contrib/ivshmem-server. An example syntax when using the shared
1278memory server is:
1279
1280@example
a75eb03b 1281# First start the ivshmem server once and for all
50d34c4e 1282ivshmem-server -p @var{pidfile} -S @var{path} -m @var{shm-name} -l @var{shm-size} -n @var{vectors}
a75eb03b
DM
1283
1284# Then start your qemu instances with matching arguments
50d34c4e 1285qemu-system-i386 -device ivshmem,size=@var{shm-size},vectors=@var{vectors},chardev=@var{id}
a75eb03b 1286 [,msi=on][,ioeventfd=on][,role=peer|master]
50d34c4e 1287 -chardev socket,path=@var{path},id=@var{id}
6cbf4c8c
CM
1288@end example
1289
1290When using the server, the guest will be assigned a VM ID (>=0) that allows guests
1291using the same server to communicate via interrupts. Guests can read their
1292VM ID from a device register (see example code). Since receiving the shared
1293memory region from the server is asynchronous, there is a (small) chance the
1294guest may boot before the shared memory is attached. To allow an application
1295to ensure shared memory is attached, the VM ID register will return -1 (an
1296invalid VM ID) until the memory is attached. Once the shared memory is
1297attached, the VM ID will return the guest's valid VM ID. With these semantics,
1298the guest application can check to ensure the shared memory is attached to the
1299guest before proceeding.
1300
1301The @option{role} argument can be set to either master or peer and will affect
1302how the shared memory is migrated. With @option{role=master}, the guest will
1303copy the shared memory on migration to the destination host. With
1304@option{role=peer}, the guest will not be able to migrate with the device attached.
1305With the @option{peer} case, the device should be detached and then reattached
1306after migration using the PCI hotplug support.
1307
7d4f4bda
MAL
1308@subsubsection ivshmem and hugepages
1309
1310Instead of specifying the <shm size> using POSIX shm, you may specify
1311a memory backend that has hugepage support:
1312
1313@example
8d31d6b6 1314qemu-system-i386 -object memory-backend-file,size=1G,mem-path=/mnt/hugepages/my-shmem-file,id=mb1
1d649244 1315 -device ivshmem,x-memdev=mb1
7d4f4bda
MAL
1316@end example
1317
1318ivshmem-server also supports hugepages mount points with the
1319@option{-m} memory path argument.
1320
9d4fb82e
FB
1321@node direct_linux_boot
1322@section Direct Linux Boot
1f673135
FB
1323
1324This section explains how to launch a Linux kernel inside QEMU without
1325having to make a full bootable image. It is very useful for fast Linux
ee0f4751 1326kernel testing.
1f673135 1327
ee0f4751 1328The syntax is:
1f673135 1329@example
3804da9d 1330qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1f673135
FB
1331@end example
1332
ee0f4751
FB
1333Use @option{-kernel} to provide the Linux kernel image and
1334@option{-append} to give the kernel command line arguments. The
1335@option{-initrd} option can be used to provide an INITRD image.
1f673135 1336
ee0f4751
FB
1337When using the direct Linux boot, a disk image for the first hard disk
1338@file{hda} is required because its boot sector is used to launch the
1339Linux kernel.
1f673135 1340
ee0f4751
FB
1341If you do not need graphical output, you can disable it and redirect
1342the virtual serial port and the QEMU monitor to the console with the
1343@option{-nographic} option. The typical command line is:
1f673135 1344@example
3804da9d
SW
1345qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1346 -append "root=/dev/hda console=ttyS0" -nographic
1f673135
FB
1347@end example
1348
ee0f4751
FB
1349Use @key{Ctrl-a c} to switch between the serial console and the
1350monitor (@pxref{pcsys_keys}).
1f673135 1351
debc7065 1352@node pcsys_usb
b389dbfb
FB
1353@section USB emulation
1354
0aff66b5
PB
1355QEMU emulates a PCI UHCI USB controller. You can virtually plug
1356virtual USB devices or real host USB devices (experimental, works only
071c9394 1357on Linux hosts). QEMU will automatically create and connect virtual USB hubs
f542086d 1358as necessary to connect multiple USB devices.
b389dbfb 1359
0aff66b5
PB
1360@menu
1361* usb_devices::
1362* host_usb_devices::
1363@end menu
1364@node usb_devices
1365@subsection Connecting USB devices
b389dbfb 1366
0aff66b5
PB
1367USB devices can be connected with the @option{-usbdevice} commandline option
1368or the @code{usb_add} monitor command. Available devices are:
b389dbfb 1369
db380c06
AZ
1370@table @code
1371@item mouse
0aff66b5 1372Virtual Mouse. This will override the PS/2 mouse emulation when activated.
db380c06 1373@item tablet
c6d46c20 1374Pointer device that uses absolute coordinates (like a touchscreen).
b65ee4fa 1375This means QEMU is able to report the mouse position without having
0aff66b5 1376to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
db380c06 1377@item disk:@var{file}
0aff66b5 1378Mass storage device based on @var{file} (@pxref{disk_images})
db380c06 1379@item host:@var{bus.addr}
0aff66b5
PB
1380Pass through the host device identified by @var{bus.addr}
1381(Linux only)
db380c06 1382@item host:@var{vendor_id:product_id}
0aff66b5
PB
1383Pass through the host device identified by @var{vendor_id:product_id}
1384(Linux only)
db380c06 1385@item wacom-tablet
f6d2a316
AZ
1386Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
1387above but it can be used with the tslib library because in addition to touch
1388coordinates it reports touch pressure.
db380c06 1389@item keyboard
47b2d338 1390Standard USB keyboard. Will override the PS/2 keyboard (if present).
db380c06
AZ
1391@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1392Serial converter. This emulates an FTDI FT232BM chip connected to host character
1393device @var{dev}. The available character devices are the same as for the
1394@code{-serial} option. The @code{vendorid} and @code{productid} options can be
0d6753e5 1395used to override the default 0403:6001. For instance,
db380c06
AZ
1396@example
1397usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1398@end example
1399will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1400serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
2e4d9fb1
AJ
1401@item braille
1402Braille device. This will use BrlAPI to display the braille output on a real
1403or fake device.
9ad97e65
AZ
1404@item net:@var{options}
1405Network adapter that supports CDC ethernet and RNDIS protocols. @var{options}
1406specifies NIC options as with @code{-net nic,}@var{options} (see description).
1407For instance, user-mode networking can be used with
6c9f886c 1408@example
3804da9d 1409qemu-system-i386 [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
6c9f886c
AZ
1410@end example
1411Currently this cannot be used in machines that support PCI NICs.
2d564691
AZ
1412@item bt[:@var{hci-type}]
1413Bluetooth dongle whose type is specified in the same format as with
1414the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
1415no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
1416This USB device implements the USB Transport Layer of HCI. Example
1417usage:
1418@example
8485140f 1419@command{qemu-system-i386} [...@var{OPTIONS}...] @option{-usbdevice} bt:hci,vlan=3 @option{-bt} device:keyboard,vlan=3
2d564691 1420@end example
0aff66b5 1421@end table
b389dbfb 1422
0aff66b5 1423@node host_usb_devices
b389dbfb
FB
1424@subsection Using host USB devices on a Linux host
1425
1426WARNING: this is an experimental feature. QEMU will slow down when
1427using it. USB devices requiring real time streaming (i.e. USB Video
1428Cameras) are not supported yet.
1429
1430@enumerate
5fafdf24 1431@item If you use an early Linux 2.4 kernel, verify that no Linux driver
b389dbfb
FB
1432is actually using the USB device. A simple way to do that is simply to
1433disable the corresponding kernel module by renaming it from @file{mydriver.o}
1434to @file{mydriver.o.disabled}.
1435
1436@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1437@example
1438ls /proc/bus/usb
1439001 devices drivers
1440@end example
1441
1442@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1443@example
1444chown -R myuid /proc/bus/usb
1445@end example
1446
1447@item Launch QEMU and do in the monitor:
5fafdf24 1448@example
b389dbfb
FB
1449info usbhost
1450 Device 1.2, speed 480 Mb/s
1451 Class 00: USB device 1234:5678, USB DISK
1452@end example
1453You should see the list of the devices you can use (Never try to use
1454hubs, it won't work).
1455
1456@item Add the device in QEMU by using:
5fafdf24 1457@example
b389dbfb
FB
1458usb_add host:1234:5678
1459@end example
1460
1461Normally the guest OS should report that a new USB device is
1462plugged. You can use the option @option{-usbdevice} to do the same.
1463
1464@item Now you can try to use the host USB device in QEMU.
1465
1466@end enumerate
1467
1468When relaunching QEMU, you may have to unplug and plug again the USB
1469device to make it work again (this is a bug).
1470
f858dcae
TS
1471@node vnc_security
1472@section VNC security
1473
1474The VNC server capability provides access to the graphical console
1475of the guest VM across the network. This has a number of security
1476considerations depending on the deployment scenarios.
1477
1478@menu
1479* vnc_sec_none::
1480* vnc_sec_password::
1481* vnc_sec_certificate::
1482* vnc_sec_certificate_verify::
1483* vnc_sec_certificate_pw::
2f9606b3
AL
1484* vnc_sec_sasl::
1485* vnc_sec_certificate_sasl::
f858dcae 1486* vnc_generate_cert::
2f9606b3 1487* vnc_setup_sasl::
f858dcae
TS
1488@end menu
1489@node vnc_sec_none
1490@subsection Without passwords
1491
1492The simplest VNC server setup does not include any form of authentication.
1493For this setup it is recommended to restrict it to listen on a UNIX domain
1494socket only. For example
1495
1496@example
3804da9d 1497qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
f858dcae
TS
1498@end example
1499
1500This ensures that only users on local box with read/write access to that
1501path can access the VNC server. To securely access the VNC server from a
1502remote machine, a combination of netcat+ssh can be used to provide a secure
1503tunnel.
1504
1505@node vnc_sec_password
1506@subsection With passwords
1507
1508The VNC protocol has limited support for password based authentication. Since
1509the protocol limits passwords to 8 characters it should not be considered
1510to provide high security. The password can be fairly easily brute-forced by
1511a client making repeat connections. For this reason, a VNC server using password
1512authentication should be restricted to only listen on the loopback interface
0f66998f
PM
1513or UNIX domain sockets. Password authentication is not supported when operating
1514in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password
1515authentication is requested with the @code{password} option, and then once QEMU
1516is running the password is set with the monitor. Until the monitor is used to
1517set the password all clients will be rejected.
f858dcae
TS
1518
1519@example
3804da9d 1520qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio
f858dcae
TS
1521(qemu) change vnc password
1522Password: ********
1523(qemu)
1524@end example
1525
1526@node vnc_sec_certificate
1527@subsection With x509 certificates
1528
1529The QEMU VNC server also implements the VeNCrypt extension allowing use of
1530TLS for encryption of the session, and x509 certificates for authentication.
1531The use of x509 certificates is strongly recommended, because TLS on its
1532own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1533support provides a secure session, but no authentication. This allows any
1534client to connect, and provides an encrypted session.
1535
1536@example
3804da9d 1537qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
f858dcae
TS
1538@end example
1539
1540In the above example @code{/etc/pki/qemu} should contain at least three files,
1541@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1542users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1543NB the @code{server-key.pem} file should be protected with file mode 0600 to
1544only be readable by the user owning it.
1545
1546@node vnc_sec_certificate_verify
1547@subsection With x509 certificates and client verification
1548
1549Certificates can also provide a means to authenticate the client connecting.
1550The server will request that the client provide a certificate, which it will
1551then validate against the CA certificate. This is a good choice if deploying
1552in an environment with a private internal certificate authority.
1553
1554@example
3804da9d 1555qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
f858dcae
TS
1556@end example
1557
1558
1559@node vnc_sec_certificate_pw
1560@subsection With x509 certificates, client verification and passwords
1561
1562Finally, the previous method can be combined with VNC password authentication
1563to provide two layers of authentication for clients.
1564
1565@example
3804da9d 1566qemu-system-i386 [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
f858dcae
TS
1567(qemu) change vnc password
1568Password: ********
1569(qemu)
1570@end example
1571
2f9606b3
AL
1572
1573@node vnc_sec_sasl
1574@subsection With SASL authentication
1575
1576The SASL authentication method is a VNC extension, that provides an
1577easily extendable, pluggable authentication method. This allows for
1578integration with a wide range of authentication mechanisms, such as
1579PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1580The strength of the authentication depends on the exact mechanism
1581configured. If the chosen mechanism also provides a SSF layer, then
1582it will encrypt the datastream as well.
1583
1584Refer to the later docs on how to choose the exact SASL mechanism
1585used for authentication, but assuming use of one supporting SSF,
1586then QEMU can be launched with:
1587
1588@example
3804da9d 1589qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio
2f9606b3
AL
1590@end example
1591
1592@node vnc_sec_certificate_sasl
1593@subsection With x509 certificates and SASL authentication
1594
1595If the desired SASL authentication mechanism does not supported
1596SSF layers, then it is strongly advised to run it in combination
1597with TLS and x509 certificates. This provides securely encrypted
1598data stream, avoiding risk of compromising of the security
1599credentials. This can be enabled, by combining the 'sasl' option
1600with the aforementioned TLS + x509 options:
1601
1602@example
3804da9d 1603qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
2f9606b3
AL
1604@end example
1605
1606
f858dcae
TS
1607@node vnc_generate_cert
1608@subsection Generating certificates for VNC
1609
1610The GNU TLS packages provides a command called @code{certtool} which can
1611be used to generate certificates and keys in PEM format. At a minimum it
40c5c6cd 1612is necessary to setup a certificate authority, and issue certificates to
f858dcae
TS
1613each server. If using certificates for authentication, then each client
1614will also need to be issued a certificate. The recommendation is for the
1615server to keep its certificates in either @code{/etc/pki/qemu} or for
1616unprivileged users in @code{$HOME/.pki/qemu}.
1617
1618@menu
1619* vnc_generate_ca::
1620* vnc_generate_server::
1621* vnc_generate_client::
1622@end menu
1623@node vnc_generate_ca
1624@subsubsection Setup the Certificate Authority
1625
1626This step only needs to be performed once per organization / organizational
1627unit. First the CA needs a private key. This key must be kept VERY secret
1628and secure. If this key is compromised the entire trust chain of the certificates
1629issued with it is lost.
1630
1631@example
1632# certtool --generate-privkey > ca-key.pem
1633@end example
1634
1635A CA needs to have a public certificate. For simplicity it can be a self-signed
1636certificate, or one issue by a commercial certificate issuing authority. To
1637generate a self-signed certificate requires one core piece of information, the
1638name of the organization.
1639
1640@example
1641# cat > ca.info <<EOF
1642cn = Name of your organization
1643ca
1644cert_signing_key
1645EOF
1646# certtool --generate-self-signed \
1647 --load-privkey ca-key.pem
1648 --template ca.info \
1649 --outfile ca-cert.pem
1650@end example
1651
1652The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1653TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1654
1655@node vnc_generate_server
1656@subsubsection Issuing server certificates
1657
1658Each server (or host) needs to be issued with a key and certificate. When connecting
1659the certificate is sent to the client which validates it against the CA certificate.
1660The core piece of information for a server certificate is the hostname. This should
1661be the fully qualified hostname that the client will connect with, since the client
1662will typically also verify the hostname in the certificate. On the host holding the
1663secure CA private key:
1664
1665@example
1666# cat > server.info <<EOF
1667organization = Name of your organization
1668cn = server.foo.example.com
1669tls_www_server
1670encryption_key
1671signing_key
1672EOF
1673# certtool --generate-privkey > server-key.pem
1674# certtool --generate-certificate \
1675 --load-ca-certificate ca-cert.pem \
1676 --load-ca-privkey ca-key.pem \
63c693f8 1677 --load-privkey server-key.pem \
f858dcae
TS
1678 --template server.info \
1679 --outfile server-cert.pem
1680@end example
1681
1682The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1683to the server for which they were generated. The @code{server-key.pem} is security
1684sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1685
1686@node vnc_generate_client
1687@subsubsection Issuing client certificates
1688
1689If the QEMU VNC server is to use the @code{x509verify} option to validate client
1690certificates as its authentication mechanism, each client also needs to be issued
1691a certificate. The client certificate contains enough metadata to uniquely identify
1692the client, typically organization, state, city, building, etc. On the host holding
1693the secure CA private key:
1694
1695@example
1696# cat > client.info <<EOF
1697country = GB
1698state = London
1699locality = London
63c693f8 1700organization = Name of your organization
f858dcae
TS
1701cn = client.foo.example.com
1702tls_www_client
1703encryption_key
1704signing_key
1705EOF
1706# certtool --generate-privkey > client-key.pem
1707# certtool --generate-certificate \
1708 --load-ca-certificate ca-cert.pem \
1709 --load-ca-privkey ca-key.pem \
1710 --load-privkey client-key.pem \
1711 --template client.info \
1712 --outfile client-cert.pem
1713@end example
1714
1715The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1716copied to the client for which they were generated.
1717
2f9606b3
AL
1718
1719@node vnc_setup_sasl
1720
1721@subsection Configuring SASL mechanisms
1722
1723The following documentation assumes use of the Cyrus SASL implementation on a
1724Linux host, but the principals should apply to any other SASL impl. When SASL
1725is enabled, the mechanism configuration will be loaded from system default
1726SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1727unprivileged user, an environment variable SASL_CONF_PATH can be used
1728to make it search alternate locations for the service config.
1729
1730The default configuration might contain
1731
1732@example
1733mech_list: digest-md5
1734sasldb_path: /etc/qemu/passwd.db
1735@end example
1736
1737This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1738Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1739in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1740command. While this mechanism is easy to configure and use, it is not
1741considered secure by modern standards, so only suitable for developers /
1742ad-hoc testing.
1743
1744A more serious deployment might use Kerberos, which is done with the 'gssapi'
1745mechanism
1746
1747@example
1748mech_list: gssapi
1749keytab: /etc/qemu/krb5.tab
1750@end example
1751
1752For this to work the administrator of your KDC must generate a Kerberos
1753principal for the server, with a name of 'qemu/somehost.example.com@@EXAMPLE.COM'
1754replacing 'somehost.example.com' with the fully qualified host name of the
40c5c6cd 1755machine running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
2f9606b3
AL
1756
1757Other configurations will be left as an exercise for the reader. It should
1758be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1759encryption. For all other mechanisms, VNC should always be configured to
1760use TLS and x509 certificates to protect security credentials from snooping.
1761
0806e3f6 1762@node gdb_usage
da415d54
FB
1763@section GDB usage
1764
1765QEMU has a primitive support to work with gdb, so that you can do
0806e3f6 1766'Ctrl-C' while the virtual machine is running and inspect its state.
da415d54 1767
b65ee4fa 1768In order to use gdb, launch QEMU with the '-s' option. It will wait for a
da415d54
FB
1769gdb connection:
1770@example
3804da9d
SW
1771qemu-system-i386 -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1772 -append "root=/dev/hda"
da415d54
FB
1773Connected to host network interface: tun0
1774Waiting gdb connection on port 1234
1775@end example
1776
1777Then launch gdb on the 'vmlinux' executable:
1778@example
1779> gdb vmlinux
1780@end example
1781
1782In gdb, connect to QEMU:
1783@example
6c9bf893 1784(gdb) target remote localhost:1234
da415d54
FB
1785@end example
1786
1787Then you can use gdb normally. For example, type 'c' to launch the kernel:
1788@example
1789(gdb) c
1790@end example
1791
0806e3f6
FB
1792Here are some useful tips in order to use gdb on system code:
1793
1794@enumerate
1795@item
1796Use @code{info reg} to display all the CPU registers.
1797@item
1798Use @code{x/10i $eip} to display the code at the PC position.
1799@item
1800Use @code{set architecture i8086} to dump 16 bit code. Then use
294e8637 1801@code{x/10i $cs*16+$eip} to dump the code at the PC position.
0806e3f6
FB
1802@end enumerate
1803
60897d36
EI
1804Advanced debugging options:
1805
b6af0975 1806The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
94d45e44 1807@table @code
60897d36
EI
1808@item maintenance packet qqemu.sstepbits
1809
1810This will display the MASK bits used to control the single stepping IE:
1811@example
1812(gdb) maintenance packet qqemu.sstepbits
1813sending: "qqemu.sstepbits"
1814received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1815@end example
1816@item maintenance packet qqemu.sstep
1817
1818This will display the current value of the mask used when single stepping IE:
1819@example
1820(gdb) maintenance packet qqemu.sstep
1821sending: "qqemu.sstep"
1822received: "0x7"
1823@end example
1824@item maintenance packet Qqemu.sstep=HEX_VALUE
1825
1826This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1827@example
1828(gdb) maintenance packet Qqemu.sstep=0x5
1829sending: "qemu.sstep=0x5"
1830received: "OK"
1831@end example
94d45e44 1832@end table
60897d36 1833
debc7065 1834@node pcsys_os_specific
1a084f3d
FB
1835@section Target OS specific information
1836
1837@subsection Linux
1838
15a34c63
FB
1839To have access to SVGA graphic modes under X11, use the @code{vesa} or
1840the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1841color depth in the guest and the host OS.
1a084f3d 1842
e3371e62
FB
1843When using a 2.6 guest Linux kernel, you should add the option
1844@code{clock=pit} on the kernel command line because the 2.6 Linux
1845kernels make very strict real time clock checks by default that QEMU
1846cannot simulate exactly.
1847
7c3fc84d
FB
1848When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1849not activated because QEMU is slower with this patch. The QEMU
1850Accelerator Module is also much slower in this case. Earlier Fedora
4be456f1 1851Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
7c3fc84d
FB
1852patch by default. Newer kernels don't have it.
1853
1a084f3d
FB
1854@subsection Windows
1855
1856If you have a slow host, using Windows 95 is better as it gives the
1857best speed. Windows 2000 is also a good choice.
1858
e3371e62
FB
1859@subsubsection SVGA graphic modes support
1860
1861QEMU emulates a Cirrus Logic GD5446 Video
15a34c63
FB
1862card. All Windows versions starting from Windows 95 should recognize
1863and use this graphic card. For optimal performances, use 16 bit color
1864depth in the guest and the host OS.
1a084f3d 1865
3cb0853a
FB
1866If you are using Windows XP as guest OS and if you want to use high
1867resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
18681280x1024x16), then you should use the VESA VBE virtual graphic card
1869(option @option{-std-vga}).
1870
e3371e62
FB
1871@subsubsection CPU usage reduction
1872
1873Windows 9x does not correctly use the CPU HLT
15a34c63
FB
1874instruction. The result is that it takes host CPU cycles even when
1875idle. You can install the utility from
1876@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1877problem. Note that no such tool is needed for NT, 2000 or XP.
1a084f3d 1878
9d0a8e6f 1879@subsubsection Windows 2000 disk full problem
e3371e62 1880
9d0a8e6f
FB
1881Windows 2000 has a bug which gives a disk full problem during its
1882installation. When installing it, use the @option{-win2k-hack} QEMU
1883option to enable a specific workaround. After Windows 2000 is
1884installed, you no longer need this option (this option slows down the
1885IDE transfers).
e3371e62 1886
6cc721cf
FB
1887@subsubsection Windows 2000 shutdown
1888
1889Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1890can. It comes from the fact that Windows 2000 does not automatically
1891use the APM driver provided by the BIOS.
1892
1893In order to correct that, do the following (thanks to Struan
1894Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1895Add/Troubleshoot a device => Add a new device & Next => No, select the
1896hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1897(again) a few times. Now the driver is installed and Windows 2000 now
5fafdf24 1898correctly instructs QEMU to shutdown at the appropriate moment.
6cc721cf
FB
1899
1900@subsubsection Share a directory between Unix and Windows
1901
c8c6afa8
TH
1902See @ref{sec_invocation} about the help of the option
1903@option{'-netdev user,smb=...'}.
6cc721cf 1904
2192c332 1905@subsubsection Windows XP security problem
e3371e62
FB
1906
1907Some releases of Windows XP install correctly but give a security
1908error when booting:
1909@example
1910A problem is preventing Windows from accurately checking the
1911license for this computer. Error code: 0x800703e6.
1912@end example
e3371e62 1913
2192c332
FB
1914The workaround is to install a service pack for XP after a boot in safe
1915mode. Then reboot, and the problem should go away. Since there is no
1916network while in safe mode, its recommended to download the full
1917installation of SP1 or SP2 and transfer that via an ISO or using the
1918vvfat block device ("-hdb fat:directory_which_holds_the_SP").
e3371e62 1919
a0a821a4
FB
1920@subsection MS-DOS and FreeDOS
1921
1922@subsubsection CPU usage reduction
1923
1924DOS does not correctly use the CPU HLT instruction. The result is that
1925it takes host CPU cycles even when idle. You can install the utility
1926from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1927problem.
1928
debc7065 1929@node QEMU System emulator for non PC targets
3f9f3aa1
FB
1930@chapter QEMU System emulator for non PC targets
1931
1932QEMU is a generic emulator and it emulates many non PC
1933machines. Most of the options are similar to the PC emulator. The
4be456f1 1934differences are mentioned in the following sections.
3f9f3aa1 1935
debc7065 1936@menu
7544a042 1937* PowerPC System emulator::
24d4de45
TS
1938* Sparc32 System emulator::
1939* Sparc64 System emulator::
1940* MIPS System emulator::
1941* ARM System emulator::
1942* ColdFire System emulator::
7544a042
SW
1943* Cris System emulator::
1944* Microblaze System emulator::
1945* SH4 System emulator::
3aeaea65 1946* Xtensa System emulator::
debc7065
FB
1947@end menu
1948
7544a042
SW
1949@node PowerPC System emulator
1950@section PowerPC System emulator
1951@cindex system emulation (PowerPC)
1a084f3d 1952
15a34c63
FB
1953Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1954or PowerMac PowerPC system.
1a084f3d 1955
b671f9ed 1956QEMU emulates the following PowerMac peripherals:
1a084f3d 1957
15a34c63 1958@itemize @minus
5fafdf24 1959@item
006f3a48 1960UniNorth or Grackle PCI Bridge
15a34c63
FB
1961@item
1962PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1963@item
15a34c63 19642 PMAC IDE interfaces with hard disk and CD-ROM support
5fafdf24 1965@item
15a34c63
FB
1966NE2000 PCI adapters
1967@item
1968Non Volatile RAM
1969@item
1970VIA-CUDA with ADB keyboard and mouse.
1a084f3d
FB
1971@end itemize
1972
b671f9ed 1973QEMU emulates the following PREP peripherals:
52c00a5f
FB
1974
1975@itemize @minus
5fafdf24 1976@item
15a34c63
FB
1977PCI Bridge
1978@item
1979PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1980@item
52c00a5f
FB
19812 IDE interfaces with hard disk and CD-ROM support
1982@item
1983Floppy disk
5fafdf24 1984@item
15a34c63 1985NE2000 network adapters
52c00a5f
FB
1986@item
1987Serial port
1988@item
1989PREP Non Volatile RAM
15a34c63
FB
1990@item
1991PC compatible keyboard and mouse.
52c00a5f
FB
1992@end itemize
1993
15a34c63 1994QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
3f9f3aa1 1995@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
52c00a5f 1996
992e5acd 1997Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
006f3a48
BS
1998for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1999v2) portable firmware implementation. The goal is to implement a 100%
2000IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
992e5acd 2001
15a34c63
FB
2002@c man begin OPTIONS
2003
2004The following options are specific to the PowerPC emulation:
2005
2006@table @option
2007
4e257e5e 2008@item -g @var{W}x@var{H}[x@var{DEPTH}]
15a34c63 2009
340fb41b 2010Set the initial VGA graphic mode. The default is 800x600x32.
15a34c63 2011
4e257e5e 2012@item -prom-env @var{string}
95efd11c
BS
2013
2014Set OpenBIOS variables in NVRAM, for example:
2015
2016@example
2017qemu-system-ppc -prom-env 'auto-boot?=false' \
2018 -prom-env 'boot-device=hd:2,\yaboot' \
2019 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
2020@end example
2021
2022These variables are not used by Open Hack'Ware.
2023
15a34c63
FB
2024@end table
2025
5fafdf24 2026@c man end
15a34c63
FB
2027
2028
52c00a5f 2029More information is available at
3f9f3aa1 2030@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
52c00a5f 2031
24d4de45
TS
2032@node Sparc32 System emulator
2033@section Sparc32 System emulator
7544a042 2034@cindex system emulation (Sparc32)
e80cfcfc 2035
34a3d239
BS
2036Use the executable @file{qemu-system-sparc} to simulate the following
2037Sun4m architecture machines:
2038@itemize @minus
2039@item
2040SPARCstation 4
2041@item
2042SPARCstation 5
2043@item
2044SPARCstation 10
2045@item
2046SPARCstation 20
2047@item
2048SPARCserver 600MP
2049@item
2050SPARCstation LX
2051@item
2052SPARCstation Voyager
2053@item
2054SPARCclassic
2055@item
2056SPARCbook
2057@end itemize
2058
2059The emulation is somewhat complete. SMP up to 16 CPUs is supported,
2060but Linux limits the number of usable CPUs to 4.
e80cfcfc 2061
6a4e1771 2062QEMU emulates the following sun4m peripherals:
e80cfcfc
FB
2063
2064@itemize @minus
3475187d 2065@item
6a4e1771 2066IOMMU
e80cfcfc 2067@item
33632788 2068TCX or cgthree Frame buffer
5fafdf24 2069@item
e80cfcfc
FB
2070Lance (Am7990) Ethernet
2071@item
34a3d239 2072Non Volatile RAM M48T02/M48T08
e80cfcfc 2073@item
3475187d
FB
2074Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2075and power/reset logic
2076@item
2077ESP SCSI controller with hard disk and CD-ROM support
2078@item
6a3b9cc9 2079Floppy drive (not on SS-600MP)
a2502b58
BS
2080@item
2081CS4231 sound device (only on SS-5, not working yet)
e80cfcfc
FB
2082@end itemize
2083
6a3b9cc9
BS
2084The number of peripherals is fixed in the architecture. Maximum
2085memory size depends on the machine type, for SS-5 it is 256MB and for
7d85892b 2086others 2047MB.
3475187d 2087
30a604f3 2088Since version 0.8.2, QEMU uses OpenBIOS
0986ac3b
FB
2089@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2090firmware implementation. The goal is to implement a 100% IEEE
20911275-1994 (referred to as Open Firmware) compliant firmware.
3475187d
FB
2092
2093A sample Linux 2.6 series kernel and ram disk image are available on
34a3d239 2094the QEMU web site. There are still issues with NetBSD and OpenBSD, but
9bb9f217 2095most kernel versions work. Please note that currently older Solaris kernels
34a3d239
BS
2096don't work probably due to interface issues between OpenBIOS and
2097Solaris.
3475187d
FB
2098
2099@c man begin OPTIONS
2100
a2502b58 2101The following options are specific to the Sparc32 emulation:
3475187d
FB
2102
2103@table @option
2104
4e257e5e 2105@item -g @var{W}x@var{H}x[x@var{DEPTH}]
3475187d 2106
33632788
MCA
2107Set the initial graphics mode. For TCX, the default is 1024x768x8 with the
2108option of 1024x768x24. For cgthree, the default is 1024x768x8 with the option
2109of 1152x900x8 for people who wish to use OBP.
3475187d 2110
4e257e5e 2111@item -prom-env @var{string}
66508601
BS
2112
2113Set OpenBIOS variables in NVRAM, for example:
2114
2115@example
2116qemu-system-sparc -prom-env 'auto-boot?=false' \
2117 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2118@end example
2119
6a4e1771 2120@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook]
a2502b58
BS
2121
2122Set the emulated machine type. Default is SS-5.
2123
3475187d
FB
2124@end table
2125
5fafdf24 2126@c man end
3475187d 2127
24d4de45
TS
2128@node Sparc64 System emulator
2129@section Sparc64 System emulator
7544a042 2130@cindex system emulation (Sparc64)
e80cfcfc 2131
34a3d239
BS
2132Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
2133(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
9bb9f217
MCA
2134Niagara (T1) machine. The Sun4u emulator is mostly complete, being
2135able to run Linux, NetBSD and OpenBSD in headless (-nographic) mode. The
2136Sun4v and Niagara emulators are still a work in progress.
b756921a 2137
c7ba218d 2138QEMU emulates the following peripherals:
83469015
FB
2139
2140@itemize @minus
2141@item
5fafdf24 2142UltraSparc IIi APB PCI Bridge
83469015
FB
2143@item
2144PCI VGA compatible card with VESA Bochs Extensions
2145@item
34a3d239
BS
2146PS/2 mouse and keyboard
2147@item
83469015
FB
2148Non Volatile RAM M48T59
2149@item
2150PC-compatible serial ports
c7ba218d
BS
2151@item
21522 PCI IDE interfaces with hard disk and CD-ROM support
34a3d239
BS
2153@item
2154Floppy disk
83469015
FB
2155@end itemize
2156
c7ba218d
BS
2157@c man begin OPTIONS
2158
2159The following options are specific to the Sparc64 emulation:
2160
2161@table @option
2162
4e257e5e 2163@item -prom-env @var{string}
34a3d239
BS
2164
2165Set OpenBIOS variables in NVRAM, for example:
2166
2167@example
2168qemu-system-sparc64 -prom-env 'auto-boot?=false'
2169@end example
2170
2171@item -M [sun4u|sun4v|Niagara]
c7ba218d
BS
2172
2173Set the emulated machine type. The default is sun4u.
2174
2175@end table
2176
2177@c man end
2178
24d4de45
TS
2179@node MIPS System emulator
2180@section MIPS System emulator
7544a042 2181@cindex system emulation (MIPS)
9d0a8e6f 2182
d9aedc32
TS
2183Four executables cover simulation of 32 and 64-bit MIPS systems in
2184both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2185@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
88cb0a02 2186Five different machine types are emulated:
24d4de45
TS
2187
2188@itemize @minus
2189@item
2190A generic ISA PC-like machine "mips"
2191@item
2192The MIPS Malta prototype board "malta"
2193@item
d9aedc32 2194An ACER Pica "pica61". This machine needs the 64-bit emulator.
6bf5b4e8 2195@item
f0fc6f8f 2196MIPS emulator pseudo board "mipssim"
88cb0a02
AJ
2197@item
2198A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
24d4de45
TS
2199@end itemize
2200
2201The generic emulation is supported by Debian 'Etch' and is able to
2202install Debian into a virtual disk image. The following devices are
2203emulated:
3f9f3aa1
FB
2204
2205@itemize @minus
5fafdf24 2206@item
6bf5b4e8 2207A range of MIPS CPUs, default is the 24Kf
3f9f3aa1
FB
2208@item
2209PC style serial port
2210@item
24d4de45
TS
2211PC style IDE disk
2212@item
3f9f3aa1
FB
2213NE2000 network card
2214@end itemize
2215
24d4de45
TS
2216The Malta emulation supports the following devices:
2217
2218@itemize @minus
2219@item
0b64d008 2220Core board with MIPS 24Kf CPU and Galileo system controller
24d4de45
TS
2221@item
2222PIIX4 PCI/USB/SMbus controller
2223@item
2224The Multi-I/O chip's serial device
2225@item
3a2eeac0 2226PCI network cards (PCnet32 and others)
24d4de45
TS
2227@item
2228Malta FPGA serial device
2229@item
1f605a76 2230Cirrus (default) or any other PCI VGA graphics card
24d4de45
TS
2231@end itemize
2232
2233The ACER Pica emulation supports:
2234
2235@itemize @minus
2236@item
2237MIPS R4000 CPU
2238@item
2239PC-style IRQ and DMA controllers
2240@item
2241PC Keyboard
2242@item
2243IDE controller
2244@end itemize
3f9f3aa1 2245
b5e4946f 2246The mipssim pseudo board emulation provides an environment similar
f0fc6f8f
TS
2247to what the proprietary MIPS emulator uses for running Linux.
2248It supports:
6bf5b4e8
TS
2249
2250@itemize @minus
2251@item
2252A range of MIPS CPUs, default is the 24Kf
2253@item
2254PC style serial port
2255@item
2256MIPSnet network emulation
2257@end itemize
2258
88cb0a02
AJ
2259The MIPS Magnum R4000 emulation supports:
2260
2261@itemize @minus
2262@item
2263MIPS R4000 CPU
2264@item
2265PC-style IRQ controller
2266@item
2267PC Keyboard
2268@item
2269SCSI controller
2270@item
2271G364 framebuffer
2272@end itemize
2273
2274
24d4de45
TS
2275@node ARM System emulator
2276@section ARM System emulator
7544a042 2277@cindex system emulation (ARM)
3f9f3aa1
FB
2278
2279Use the executable @file{qemu-system-arm} to simulate a ARM
2280machine. The ARM Integrator/CP board is emulated with the following
2281devices:
2282
2283@itemize @minus
2284@item
9ee6e8bb 2285ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
3f9f3aa1
FB
2286@item
2287Two PL011 UARTs
5fafdf24 2288@item
3f9f3aa1 2289SMC 91c111 Ethernet adapter
00a9bf19
PB
2290@item
2291PL110 LCD controller
2292@item
2293PL050 KMI with PS/2 keyboard and mouse.
a1bb27b1
PB
2294@item
2295PL181 MultiMedia Card Interface with SD card.
00a9bf19
PB
2296@end itemize
2297
2298The ARM Versatile baseboard is emulated with the following devices:
2299
2300@itemize @minus
2301@item
9ee6e8bb 2302ARM926E, ARM1136 or Cortex-A8 CPU
00a9bf19
PB
2303@item
2304PL190 Vectored Interrupt Controller
2305@item
2306Four PL011 UARTs
5fafdf24 2307@item
00a9bf19
PB
2308SMC 91c111 Ethernet adapter
2309@item
2310PL110 LCD controller
2311@item
2312PL050 KMI with PS/2 keyboard and mouse.
2313@item
2314PCI host bridge. Note the emulated PCI bridge only provides access to
2315PCI memory space. It does not provide access to PCI IO space.
4be456f1
TS
2316This means some devices (eg. ne2k_pci NIC) are not usable, and others
2317(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
00a9bf19 2318mapped control registers.
e6de1bad
PB
2319@item
2320PCI OHCI USB controller.
2321@item
2322LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
a1bb27b1
PB
2323@item
2324PL181 MultiMedia Card Interface with SD card.
3f9f3aa1
FB
2325@end itemize
2326
21a88941
PB
2327Several variants of the ARM RealView baseboard are emulated,
2328including the EB, PB-A8 and PBX-A9. Due to interactions with the
2329bootloader, only certain Linux kernel configurations work out
2330of the box on these boards.
2331
2332Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2333enabled in the kernel, and expect 512M RAM. Kernels for The PBX-A9 board
2334should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2335disabled and expect 1024M RAM.
2336
40c5c6cd 2337The following devices are emulated:
d7739d75
PB
2338
2339@itemize @minus
2340@item
f7c70325 2341ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
d7739d75
PB
2342@item
2343ARM AMBA Generic/Distributed Interrupt Controller
2344@item
2345Four PL011 UARTs
5fafdf24 2346@item
0ef849d7 2347SMC 91c111 or SMSC LAN9118 Ethernet adapter
d7739d75
PB
2348@item
2349PL110 LCD controller
2350@item
2351PL050 KMI with PS/2 keyboard and mouse
2352@item
2353PCI host bridge
2354@item
2355PCI OHCI USB controller
2356@item
2357LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
a1bb27b1
PB
2358@item
2359PL181 MultiMedia Card Interface with SD card.
d7739d75
PB
2360@end itemize
2361
b00052e4
AZ
2362The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2363and "Terrier") emulation includes the following peripherals:
2364
2365@itemize @minus
2366@item
2367Intel PXA270 System-on-chip (ARM V5TE core)
2368@item
2369NAND Flash memory
2370@item
2371IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2372@item
2373On-chip OHCI USB controller
2374@item
2375On-chip LCD controller
2376@item
2377On-chip Real Time Clock
2378@item
2379TI ADS7846 touchscreen controller on SSP bus
2380@item
2381Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2382@item
2383GPIO-connected keyboard controller and LEDs
2384@item
549444e1 2385Secure Digital card connected to PXA MMC/SD host
b00052e4
AZ
2386@item
2387Three on-chip UARTs
2388@item
2389WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2390@end itemize
2391
02645926
AZ
2392The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2393following elements:
2394
2395@itemize @minus
2396@item
2397Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2398@item
2399ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2400@item
2401On-chip LCD controller
2402@item
2403On-chip Real Time Clock
2404@item
2405TI TSC2102i touchscreen controller / analog-digital converter / Audio
2406CODEC, connected through MicroWire and I@math{^2}S busses
2407@item
2408GPIO-connected matrix keypad
2409@item
2410Secure Digital card connected to OMAP MMC/SD host
2411@item
2412Three on-chip UARTs
2413@end itemize
2414
c30bb264
AZ
2415Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2416emulation supports the following elements:
2417
2418@itemize @minus
2419@item
2420Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2421@item
2422RAM and non-volatile OneNAND Flash memories
2423@item
2424Display connected to EPSON remote framebuffer chip and OMAP on-chip
2425display controller and a LS041y3 MIPI DBI-C controller
2426@item
2427TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2428driven through SPI bus
2429@item
2430National Semiconductor LM8323-controlled qwerty keyboard driven
2431through I@math{^2}C bus
2432@item
2433Secure Digital card connected to OMAP MMC/SD host
2434@item
2435Three OMAP on-chip UARTs and on-chip STI debugging console
2436@item
40c5c6cd 2437A Bluetooth(R) transceiver and HCI connected to an UART
2d564691 2438@item
c30bb264
AZ
2439Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2440TUSB6010 chip - only USB host mode is supported
2441@item
2442TI TMP105 temperature sensor driven through I@math{^2}C bus
2443@item
2444TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2445@item
2446Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2447through CBUS
2448@end itemize
2449
9ee6e8bb
PB
2450The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2451devices:
2452
2453@itemize @minus
2454@item
2455Cortex-M3 CPU core.
2456@item
245764k Flash and 8k SRAM.
2458@item
2459Timers, UARTs, ADC and I@math{^2}C interface.
2460@item
2461OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2462@end itemize
2463
2464The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2465devices:
2466
2467@itemize @minus
2468@item
2469Cortex-M3 CPU core.
2470@item
2471256k Flash and 64k SRAM.
2472@item
2473Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2474@item
2475OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2476@end itemize
2477
57cd6e97
AZ
2478The Freecom MusicPal internet radio emulation includes the following
2479elements:
2480
2481@itemize @minus
2482@item
2483Marvell MV88W8618 ARM core.
2484@item
248532 MB RAM, 256 KB SRAM, 8 MB flash.
2486@item
2487Up to 2 16550 UARTs
2488@item
2489MV88W8xx8 Ethernet controller
2490@item
2491MV88W8618 audio controller, WM8750 CODEC and mixer
2492@item
e080e785 2493128×64 display with brightness control
57cd6e97
AZ
2494@item
24952 buttons, 2 navigation wheels with button function
2496@end itemize
2497
997641a8 2498The Siemens SX1 models v1 and v2 (default) basic emulation.
40c5c6cd 2499The emulation includes the following elements:
997641a8
AZ
2500
2501@itemize @minus
2502@item
2503Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2504@item
2505ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2506V1
25071 Flash of 16MB and 1 Flash of 8MB
2508V2
25091 Flash of 32MB
2510@item
2511On-chip LCD controller
2512@item
2513On-chip Real Time Clock
2514@item
2515Secure Digital card connected to OMAP MMC/SD host
2516@item
2517Three on-chip UARTs
2518@end itemize
2519
3f9f3aa1
FB
2520A Linux 2.6 test image is available on the QEMU web site. More
2521information is available in the QEMU mailing-list archive.
9d0a8e6f 2522
d2c639d6
BS
2523@c man begin OPTIONS
2524
2525The following options are specific to the ARM emulation:
2526
2527@table @option
2528
2529@item -semihosting
2530Enable semihosting syscall emulation.
2531
2532On ARM this implements the "Angel" interface.
2533
2534Note that this allows guest direct access to the host filesystem,
2535so should only be used with trusted guest OS.
2536
2537@end table
2538
24d4de45
TS
2539@node ColdFire System emulator
2540@section ColdFire System emulator
7544a042
SW
2541@cindex system emulation (ColdFire)
2542@cindex system emulation (M68K)
209a4e69
PB
2543
2544Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2545The emulator is able to boot a uClinux kernel.
707e011b
PB
2546
2547The M5208EVB emulation includes the following devices:
2548
2549@itemize @minus
5fafdf24 2550@item
707e011b
PB
2551MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2552@item
2553Three Two on-chip UARTs.
2554@item
2555Fast Ethernet Controller (FEC)
2556@end itemize
2557
2558The AN5206 emulation includes the following devices:
209a4e69
PB
2559
2560@itemize @minus
5fafdf24 2561@item
209a4e69
PB
2562MCF5206 ColdFire V2 Microprocessor.
2563@item
2564Two on-chip UARTs.
2565@end itemize
2566
d2c639d6
BS
2567@c man begin OPTIONS
2568
7544a042 2569The following options are specific to the ColdFire emulation:
d2c639d6
BS
2570
2571@table @option
2572
2573@item -semihosting
2574Enable semihosting syscall emulation.
2575
2576On M68K this implements the "ColdFire GDB" interface used by libgloss.
2577
2578Note that this allows guest direct access to the host filesystem,
2579so should only be used with trusted guest OS.
2580
2581@end table
2582
7544a042
SW
2583@node Cris System emulator
2584@section Cris System emulator
2585@cindex system emulation (Cris)
2586
2587TODO
2588
2589@node Microblaze System emulator
2590@section Microblaze System emulator
2591@cindex system emulation (Microblaze)
2592
2593TODO
2594
2595@node SH4 System emulator
2596@section SH4 System emulator
2597@cindex system emulation (SH4)
2598
2599TODO
2600
3aeaea65
MF
2601@node Xtensa System emulator
2602@section Xtensa System emulator
2603@cindex system emulation (Xtensa)
2604
2605Two executables cover simulation of both Xtensa endian options,
2606@file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
2607Two different machine types are emulated:
2608
2609@itemize @minus
2610@item
2611Xtensa emulator pseudo board "sim"
2612@item
2613Avnet LX60/LX110/LX200 board
2614@end itemize
2615
b5e4946f 2616The sim pseudo board emulation provides an environment similar
3aeaea65
MF
2617to one provided by the proprietary Tensilica ISS.
2618It supports:
2619
2620@itemize @minus
2621@item
2622A range of Xtensa CPUs, default is the DC232B
2623@item
2624Console and filesystem access via semihosting calls
2625@end itemize
2626
2627The Avnet LX60/LX110/LX200 emulation supports:
2628
2629@itemize @minus
2630@item
2631A range of Xtensa CPUs, default is the DC232B
2632@item
263316550 UART
2634@item
2635OpenCores 10/100 Mbps Ethernet MAC
2636@end itemize
2637
2638@c man begin OPTIONS
2639
2640The following options are specific to the Xtensa emulation:
2641
2642@table @option
2643
2644@item -semihosting
2645Enable semihosting syscall emulation.
2646
2647Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2648Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2649
2650Note that this allows guest direct access to the host filesystem,
2651so should only be used with trusted guest OS.
2652
2653@end table
5fafdf24
TS
2654@node QEMU User space emulator
2655@chapter QEMU User space emulator
83195237
FB
2656
2657@menu
2658* Supported Operating Systems ::
2659* Linux User space emulator::
84778508 2660* BSD User space emulator ::
83195237
FB
2661@end menu
2662
2663@node Supported Operating Systems
2664@section Supported Operating Systems
2665
2666The following OS are supported in user space emulation:
2667
2668@itemize @minus
2669@item
4be456f1 2670Linux (referred as qemu-linux-user)
83195237 2671@item
84778508 2672BSD (referred as qemu-bsd-user)
83195237
FB
2673@end itemize
2674
2675@node Linux User space emulator
2676@section Linux User space emulator
386405f7 2677
debc7065
FB
2678@menu
2679* Quick Start::
2680* Wine launch::
2681* Command line options::
79737e4a 2682* Other binaries::
debc7065
FB
2683@end menu
2684
2685@node Quick Start
83195237 2686@subsection Quick Start
df0f11a0 2687
1f673135 2688In order to launch a Linux process, QEMU needs the process executable
5fafdf24 2689itself and all the target (x86) dynamic libraries used by it.
386405f7 2690
1f673135 2691@itemize
386405f7 2692
1f673135
FB
2693@item On x86, you can just try to launch any process by using the native
2694libraries:
386405f7 2695
5fafdf24 2696@example
1f673135
FB
2697qemu-i386 -L / /bin/ls
2698@end example
386405f7 2699
1f673135
FB
2700@code{-L /} tells that the x86 dynamic linker must be searched with a
2701@file{/} prefix.
386405f7 2702
b65ee4fa
SW
2703@item Since QEMU is also a linux process, you can launch QEMU with
2704QEMU (NOTE: you can only do that if you compiled QEMU from the sources):
386405f7 2705
5fafdf24 2706@example
1f673135
FB
2707qemu-i386 -L / qemu-i386 -L / /bin/ls
2708@end example
386405f7 2709
1f673135
FB
2710@item On non x86 CPUs, you need first to download at least an x86 glibc
2711(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2712@code{LD_LIBRARY_PATH} is not set:
df0f11a0 2713
1f673135 2714@example
5fafdf24 2715unset LD_LIBRARY_PATH
1f673135 2716@end example
1eb87257 2717
1f673135 2718Then you can launch the precompiled @file{ls} x86 executable:
1eb87257 2719
1f673135
FB
2720@example
2721qemu-i386 tests/i386/ls
2722@end example
4c3b5a48 2723You can look at @file{scripts/qemu-binfmt-conf.sh} so that
1f673135
FB
2724QEMU is automatically launched by the Linux kernel when you try to
2725launch x86 executables. It requires the @code{binfmt_misc} module in the
2726Linux kernel.
1eb87257 2727
1f673135
FB
2728@item The x86 version of QEMU is also included. You can try weird things such as:
2729@example
debc7065
FB
2730qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2731 /usr/local/qemu-i386/bin/ls-i386
1f673135 2732@end example
1eb20527 2733
1f673135 2734@end itemize
1eb20527 2735
debc7065 2736@node Wine launch
83195237 2737@subsection Wine launch
1eb20527 2738
1f673135 2739@itemize
386405f7 2740
1f673135
FB
2741@item Ensure that you have a working QEMU with the x86 glibc
2742distribution (see previous section). In order to verify it, you must be
2743able to do:
386405f7 2744
1f673135
FB
2745@example
2746qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2747@end example
386405f7 2748
1f673135 2749@item Download the binary x86 Wine install
5fafdf24 2750(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
386405f7 2751
1f673135 2752@item Configure Wine on your account. Look at the provided script
debc7065 2753@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
1f673135 2754@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
386405f7 2755
1f673135 2756@item Then you can try the example @file{putty.exe}:
386405f7 2757
1f673135 2758@example
debc7065
FB
2759qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2760 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
1f673135 2761@end example
386405f7 2762
1f673135 2763@end itemize
fd429f2f 2764
debc7065 2765@node Command line options
83195237 2766@subsection Command line options
1eb20527 2767
1f673135 2768@example
8485140f 2769@command{qemu-i386} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-cpu} @var{model}] [@option{-g} @var{port}] [@option{-B} @var{offset}] [@option{-R} @var{size}] @var{program} [@var{arguments}...]
1f673135 2770@end example
1eb20527 2771
1f673135
FB
2772@table @option
2773@item -h
2774Print the help
3b46e624 2775@item -L path
1f673135
FB
2776Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2777@item -s size
2778Set the x86 stack size in bytes (default=524288)
34a3d239 2779@item -cpu model
c8057f95 2780Select CPU model (-cpu help for list and additional feature selection)
f66724c9
SW
2781@item -E @var{var}=@var{value}
2782Set environment @var{var} to @var{value}.
2783@item -U @var{var}
2784Remove @var{var} from the environment.
379f6698
PB
2785@item -B offset
2786Offset guest address by the specified number of bytes. This is useful when
1f5c3f8c
SW
2787the address region required by guest applications is reserved on the host.
2788This option is currently only supported on some hosts.
68a1c816
PB
2789@item -R size
2790Pre-allocate a guest virtual address space of the given size (in bytes).
0d6753e5 2791"G", "M", and "k" suffixes may be used when specifying the size.
386405f7
FB
2792@end table
2793
1f673135 2794Debug options:
386405f7 2795
1f673135 2796@table @option
989b697d
PM
2797@item -d item1,...
2798Activate logging of the specified items (use '-d help' for a list of log items)
1f673135
FB
2799@item -p pagesize
2800Act as if the host page size was 'pagesize' bytes
34a3d239
BS
2801@item -g port
2802Wait gdb connection to port
1b530a6d
AJ
2803@item -singlestep
2804Run the emulation in single step mode.
1f673135 2805@end table
386405f7 2806
b01bcae6
AZ
2807Environment variables:
2808
2809@table @env
2810@item QEMU_STRACE
2811Print system calls and arguments similar to the 'strace' program
2812(NOTE: the actual 'strace' program will not work because the user
2813space emulator hasn't implemented ptrace). At the moment this is
2814incomplete. All system calls that don't have a specific argument
2815format are printed with information for six arguments. Many
2816flag-style arguments don't have decoders and will show up as numbers.
5cfdf930 2817@end table
b01bcae6 2818
79737e4a 2819@node Other binaries
83195237 2820@subsection Other binaries
79737e4a 2821
7544a042
SW
2822@cindex user mode (Alpha)
2823@command{qemu-alpha} TODO.
2824
2825@cindex user mode (ARM)
2826@command{qemu-armeb} TODO.
2827
2828@cindex user mode (ARM)
79737e4a
PB
2829@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2830binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2831configurations), and arm-uclinux bFLT format binaries.
2832
7544a042
SW
2833@cindex user mode (ColdFire)
2834@cindex user mode (M68K)
e6e5906b
PB
2835@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2836(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2837coldfire uClinux bFLT format binaries.
2838
79737e4a
PB
2839The binary format is detected automatically.
2840
7544a042
SW
2841@cindex user mode (Cris)
2842@command{qemu-cris} TODO.
2843
2844@cindex user mode (i386)
2845@command{qemu-i386} TODO.
2846@command{qemu-x86_64} TODO.
2847
2848@cindex user mode (Microblaze)
2849@command{qemu-microblaze} TODO.
2850
2851@cindex user mode (MIPS)
2852@command{qemu-mips} TODO.
2853@command{qemu-mipsel} TODO.
2854
2855@cindex user mode (PowerPC)
2856@command{qemu-ppc64abi32} TODO.
2857@command{qemu-ppc64} TODO.
2858@command{qemu-ppc} TODO.
2859
2860@cindex user mode (SH4)
2861@command{qemu-sh4eb} TODO.
2862@command{qemu-sh4} TODO.
2863
2864@cindex user mode (SPARC)
34a3d239
BS
2865@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2866
a785e42e
BS
2867@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2868(Sparc64 CPU, 32 bit ABI).
2869
2870@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2871SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2872
84778508
BS
2873@node BSD User space emulator
2874@section BSD User space emulator
2875
2876@menu
2877* BSD Status::
2878* BSD Quick Start::
2879* BSD Command line options::
2880@end menu
2881
2882@node BSD Status
2883@subsection BSD Status
2884
2885@itemize @minus
2886@item
2887target Sparc64 on Sparc64: Some trivial programs work.
2888@end itemize
2889
2890@node BSD Quick Start
2891@subsection Quick Start
2892
2893In order to launch a BSD process, QEMU needs the process executable
2894itself and all the target dynamic libraries used by it.
2895
2896@itemize
2897
2898@item On Sparc64, you can just try to launch any process by using the native
2899libraries:
2900
2901@example
2902qemu-sparc64 /bin/ls
2903@end example
2904
2905@end itemize
2906
2907@node BSD Command line options
2908@subsection Command line options
2909
2910@example
8485140f 2911@command{qemu-sparc64} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-bsd} @var{type}] @var{program} [@var{arguments}...]
84778508
BS
2912@end example
2913
2914@table @option
2915@item -h
2916Print the help
2917@item -L path
2918Set the library root path (default=/)
2919@item -s size
2920Set the stack size in bytes (default=524288)
f66724c9
SW
2921@item -ignore-environment
2922Start with an empty environment. Without this option,
40c5c6cd 2923the initial environment is a copy of the caller's environment.
f66724c9
SW
2924@item -E @var{var}=@var{value}
2925Set environment @var{var} to @var{value}.
2926@item -U @var{var}
2927Remove @var{var} from the environment.
84778508
BS
2928@item -bsd type
2929Set the type of the emulated BSD Operating system. Valid values are
2930FreeBSD, NetBSD and OpenBSD (default).
2931@end table
2932
2933Debug options:
2934
2935@table @option
989b697d
PM
2936@item -d item1,...
2937Activate logging of the specified items (use '-d help' for a list of log items)
84778508
BS
2938@item -p pagesize
2939Act as if the host page size was 'pagesize' bytes
1b530a6d
AJ
2940@item -singlestep
2941Run the emulation in single step mode.
84778508
BS
2942@end table
2943
15a34c63
FB
2944@node compilation
2945@chapter Compilation from the sources
2946
debc7065
FB
2947@menu
2948* Linux/Unix::
2949* Windows::
2950* Cross compilation for Windows with Linux::
2951* Mac OS X::
47eacb4f 2952* Make targets::
debc7065
FB
2953@end menu
2954
2955@node Linux/Unix
7c3fc84d
FB
2956@section Linux/Unix
2957
2958@subsection Compilation
2959
2960First you must decompress the sources:
2961@example
2962cd /tmp
2963tar zxvf qemu-x.y.z.tar.gz
2964cd qemu-x.y.z
2965@end example
2966
2967Then you configure QEMU and build it (usually no options are needed):
2968@example
2969./configure
2970make
2971@end example
2972
2973Then type as root user:
2974@example
2975make install
2976@end example
2977to install QEMU in @file{/usr/local}.
2978
debc7065 2979@node Windows
15a34c63
FB
2980@section Windows
2981
2982@itemize
2983@item Install the current versions of MSYS and MinGW from
2984@url{http://www.mingw.org/}. You can find detailed installation
2985instructions in the download section and the FAQ.
2986
5fafdf24 2987@item Download
15a34c63 2988the MinGW development library of SDL 1.2.x
debc7065 2989(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
d0a96f3d
ST
2990@url{http://www.libsdl.org}. Unpack it in a temporary place and
2991edit the @file{sdl-config} script so that it gives the
15a34c63
FB
2992correct SDL directory when invoked.
2993
d0a96f3d
ST
2994@item Install the MinGW version of zlib and make sure
2995@file{zlib.h} and @file{libz.dll.a} are in
40c5c6cd 2996MinGW's default header and linker search paths.
d0a96f3d 2997
15a34c63 2998@item Extract the current version of QEMU.
5fafdf24 2999
15a34c63
FB
3000@item Start the MSYS shell (file @file{msys.bat}).
3001
5fafdf24 3002@item Change to the QEMU directory. Launch @file{./configure} and
15a34c63
FB
3003@file{make}. If you have problems using SDL, verify that
3004@file{sdl-config} can be launched from the MSYS command line.
3005
c5ec15ea 3006@item You can install QEMU in @file{Program Files/QEMU} by typing
15a34c63 3007@file{make install}. Don't forget to copy @file{SDL.dll} in
c5ec15ea 3008@file{Program Files/QEMU}.
15a34c63
FB
3009
3010@end itemize
3011
debc7065 3012@node Cross compilation for Windows with Linux
15a34c63
FB
3013@section Cross compilation for Windows with Linux
3014
3015@itemize
3016@item
3017Install the MinGW cross compilation tools available at
3018@url{http://www.mingw.org/}.
3019
d0a96f3d
ST
3020@item Download
3021the MinGW development library of SDL 1.2.x
3022(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
3023@url{http://www.libsdl.org}. Unpack it in a temporary place and
3024edit the @file{sdl-config} script so that it gives the
3025correct SDL directory when invoked. Set up the @code{PATH} environment
3026variable so that @file{sdl-config} can be launched by
15a34c63
FB
3027the QEMU configuration script.
3028
d0a96f3d
ST
3029@item Install the MinGW version of zlib and make sure
3030@file{zlib.h} and @file{libz.dll.a} are in
40c5c6cd 3031MinGW's default header and linker search paths.
d0a96f3d 3032
5fafdf24 3033@item
15a34c63
FB
3034Configure QEMU for Windows cross compilation:
3035@example
d0a96f3d
ST
3036PATH=/usr/i686-pc-mingw32/sys-root/mingw/bin:$PATH ./configure --cross-prefix='i686-pc-mingw32-'
3037@end example
3038The example assumes @file{sdl-config} is installed under @file{/usr/i686-pc-mingw32/sys-root/mingw/bin} and
3039MinGW cross compilation tools have names like @file{i686-pc-mingw32-gcc} and @file{i686-pc-mingw32-strip}.
40c5c6cd 3040We set the @code{PATH} environment variable to ensure the MinGW version of @file{sdl-config} is used and
d0a96f3d 3041use --cross-prefix to specify the name of the cross compiler.
c5ec15ea 3042You can also use --prefix to set the Win32 install path which defaults to @file{c:/Program Files/QEMU}.
d0a96f3d
ST
3043
3044Under Fedora Linux, you can run:
3045@example
3046yum -y install mingw32-gcc mingw32-SDL mingw32-zlib
15a34c63 3047@end example
d0a96f3d 3048to get a suitable cross compilation environment.
15a34c63 3049
5fafdf24 3050@item You can install QEMU in the installation directory by typing
d0a96f3d 3051@code{make install}. Don't forget to copy @file{SDL.dll} and @file{zlib1.dll} into the
5fafdf24 3052installation directory.
15a34c63
FB
3053
3054@end itemize
3055
3804da9d
SW
3056Wine can be used to launch the resulting qemu-system-i386.exe
3057and all other qemu-system-@var{target}.exe compiled for Win32.
15a34c63 3058
debc7065 3059@node Mac OS X
15a34c63
FB
3060@section Mac OS X
3061
b352153f
JA
3062System Requirements:
3063@itemize
3064@item Mac OS 10.5 or higher
3065@item The clang compiler shipped with Xcode 4.2 or higher,
3066or GCC 4.3 or higher
3067@end itemize
3068
3069Additional Requirements (install in order):
3070@enumerate
3071@item libffi: @uref{https://sourceware.org/libffi/}
3072@item gettext: @uref{http://www.gnu.org/software/gettext/}
3073@item glib: @uref{http://ftp.gnome.org/pub/GNOME/sources/glib/}
3074@item pkg-config: @uref{http://www.freedesktop.org/wiki/Software/pkg-config/}
3075@item autoconf: @uref{http://www.gnu.org/software/autoconf/autoconf.html}
3076@item automake: @uref{http://www.gnu.org/software/automake/}
b352153f
JA
3077@item pixman: @uref{http://www.pixman.org/}
3078@end enumerate
3079
3080* You may find it easiest to get these from a third-party packager
3081such as Homebrew, Macports, or Fink.
3082
3083After downloading the QEMU source code, double-click it to expand it.
3084
3085Then configure and make QEMU:
3086@example
3087./configure
3088make
3089@end example
3090
3091If you have a recent version of Mac OS X (OSX 10.7 or better
3092with Xcode 4.2 or better) we recommend building QEMU with the
3093default compiler provided by Apple, for your version of Mac OS X
3094(which will be 'clang'). The configure script will
3095automatically pick this.
3096
3097Note: If after the configure step you see a message like this:
3098@example
3099ERROR: Your compiler does not support the __thread specifier for
3100 Thread-Local Storage (TLS). Please upgrade to a version that does.
3101@end example
6c76ec68 3102you may have to build your own version of gcc from source. Expect that to take
b352153f
JA
3103several hours. More information can be found here:
3104@uref{https://gcc.gnu.org/install/} @*
3105
3106These are some of the third party binaries of gcc available for download:
3107@itemize
3108@item Homebrew: @uref{http://brew.sh/}
3109@item @uref{https://www.litebeam.net/gcc/gcc_472.pkg}
3110@item @uref{http://www.macports.org/ports.php?by=name&substr=gcc}
3111@end itemize
3112
3113You can have several versions of GCC on your system. To specify a certain version,
3114use the --cc and --cxx options.
3115@example
3116./configure --cxx=<path of your c++ compiler> --cc=<path of your c compiler> <other options>
3117@end example
15a34c63 3118
47eacb4f
SW
3119@node Make targets
3120@section Make targets
3121
3122@table @code
3123
3124@item make
3125@item make all
3126Make everything which is typically needed.
3127
3128@item install
3129TODO
3130
3131@item install-doc
3132TODO
3133
3134@item make clean
3135Remove most files which were built during make.
3136
3137@item make distclean
3138Remove everything which was built during make.
3139
3140@item make dvi
3141@item make html
3142@item make info
3143@item make pdf
3144Create documentation in dvi, html, info or pdf format.
3145
3146@item make cscope
3147TODO
3148
3149@item make defconfig
3150(Re-)create some build configuration files.
3151User made changes will be overwritten.
3152
3153@item tar
3154@item tarbin
3155TODO
3156
3157@end table
3158
7544a042
SW
3159@node License
3160@appendix License
3161
3162QEMU is a trademark of Fabrice Bellard.
3163
3164QEMU is released under the GNU General Public License (TODO: add link).
3165Parts of QEMU have specific licenses, see file LICENSE.
3166
3167TODO (refer to file LICENSE, include it, include the GPL?)
3168
debc7065 3169@node Index
7544a042
SW
3170@appendix Index
3171@menu
3172* Concept Index::
3173* Function Index::
3174* Keystroke Index::
3175* Program Index::
3176* Data Type Index::
3177* Variable Index::
3178@end menu
3179
3180@node Concept Index
3181@section Concept Index
3182This is the main index. Should we combine all keywords in one index? TODO
debc7065
FB
3183@printindex cp
3184
7544a042
SW
3185@node Function Index
3186@section Function Index
3187This index could be used for command line options and monitor functions.
3188@printindex fn
3189
3190@node Keystroke Index
3191@section Keystroke Index
3192
3193This is a list of all keystrokes which have a special function
3194in system emulation.
3195
3196@printindex ky
3197
3198@node Program Index
3199@section Program Index
3200@printindex pg
3201
3202@node Data Type Index
3203@section Data Type Index
3204
3205This index could be used for qdev device names and options.
3206
3207@printindex tp
3208
3209@node Variable Index
3210@section Variable Index
3211@printindex vr
3212
debc7065 3213@bye