]> git.proxmox.com Git - mirror_qemu.git/blame - qemu-doc.texi
block: Ignore generated job QAPI files
[mirror_qemu.git] / qemu-doc.texi
CommitLineData
386405f7 1\input texinfo @c -*- texinfo -*-
debc7065
FB
2@c %**start of header
3@setfilename qemu-doc.info
44cb280d 4@include version.texi
e080e785
SW
5
6@documentlanguage en
7@documentencoding UTF-8
8
44cb280d 9@settitle QEMU version @value{VERSION} User Documentation
debc7065
FB
10@exampleindent 0
11@paragraphindent 0
12@c %**end of header
386405f7 13
a1a32b05
SW
14@ifinfo
15@direntry
16* QEMU: (qemu-doc). The QEMU Emulator User Documentation.
17@end direntry
18@end ifinfo
19
0806e3f6 20@iftex
386405f7
FB
21@titlepage
22@sp 7
44cb280d 23@center @titlefont{QEMU version @value{VERSION}}
debc7065
FB
24@sp 1
25@center @titlefont{User Documentation}
386405f7
FB
26@sp 3
27@end titlepage
0806e3f6 28@end iftex
386405f7 29
debc7065
FB
30@ifnottex
31@node Top
32@top
33
34@menu
35* Introduction::
debc7065
FB
36* QEMU PC System emulator::
37* QEMU System emulator for non PC targets::
3f2ce724 38* QEMU Guest Agent::
83195237 39* QEMU User space emulator::
78e87797 40* Implementation notes::
eb22aeca 41* Deprecated features::
45b47130 42* Supported build platforms::
7544a042 43* License::
debc7065
FB
44* Index::
45@end menu
46@end ifnottex
47
48@contents
49
50@node Introduction
386405f7
FB
51@chapter Introduction
52
debc7065
FB
53@menu
54* intro_features:: Features
55@end menu
56
57@node intro_features
322d0c66 58@section Features
386405f7 59
1f673135
FB
60QEMU is a FAST! processor emulator using dynamic translation to
61achieve good emulation speed.
1eb20527 62
1f3e7e41 63@cindex operating modes
1eb20527 64QEMU has two operating modes:
0806e3f6 65
d7e5edca 66@itemize
7544a042 67@cindex system emulation
1f3e7e41 68@item Full system emulation. In this mode, QEMU emulates a full system (for
3f9f3aa1
FB
69example a PC), including one or several processors and various
70peripherals. It can be used to launch different Operating Systems
71without rebooting the PC or to debug system code.
1eb20527 72
7544a042 73@cindex user mode emulation
1f3e7e41 74@item User mode emulation. In this mode, QEMU can launch
83195237 75processes compiled for one CPU on another CPU. It can be used to
70b7fba9 76launch the Wine Windows API emulator (@url{https://www.winehq.org}) or
1f673135 77to ease cross-compilation and cross-debugging.
1eb20527
FB
78
79@end itemize
80
1f3e7e41
PB
81QEMU has the following features:
82
83@itemize
84@item QEMU can run without a host kernel driver and yet gives acceptable
85performance. It uses dynamic translation to native code for reasonable speed,
86with support for self-modifying code and precise exceptions.
87
88@item It is portable to several operating systems (GNU/Linux, *BSD, Mac OS X,
89Windows) and architectures.
90
91@item It performs accurate software emulation of the FPU.
92@end itemize
322d0c66 93
1f3e7e41 94QEMU user mode emulation has the following features:
52c00a5f 95@itemize
1f3e7e41
PB
96@item Generic Linux system call converter, including most ioctls.
97
98@item clone() emulation using native CPU clone() to use Linux scheduler for threads.
99
100@item Accurate signal handling by remapping host signals to target signals.
101@end itemize
102
103QEMU full system emulation has the following features:
104@itemize
105@item
106QEMU uses a full software MMU for maximum portability.
107
108@item
326c4c3c 109QEMU can optionally use an in-kernel accelerator, like kvm. The accelerators
1f3e7e41
PB
110execute most of the guest code natively, while
111continuing to emulate the rest of the machine.
112
113@item
114Various hardware devices can be emulated and in some cases, host
115devices (e.g. serial and parallel ports, USB, drives) can be used
116transparently by the guest Operating System. Host device passthrough
117can be used for talking to external physical peripherals (e.g. a
118webcam, modem or tape drive).
119
120@item
121Symmetric multiprocessing (SMP) support. Currently, an in-kernel
122accelerator is required to use more than one host CPU for emulation.
123
52c00a5f 124@end itemize
386405f7 125
0806e3f6 126
debc7065 127@node QEMU PC System emulator
3f9f3aa1 128@chapter QEMU PC System emulator
7544a042 129@cindex system emulation (PC)
1eb20527 130
debc7065
FB
131@menu
132* pcsys_introduction:: Introduction
133* pcsys_quickstart:: Quick Start
134* sec_invocation:: Invocation
a40db1b3
PM
135* pcsys_keys:: Keys in the graphical frontends
136* mux_keys:: Keys in the character backend multiplexer
debc7065
FB
137* pcsys_monitor:: QEMU Monitor
138* disk_images:: Disk Images
139* pcsys_network:: Network emulation
576fd0a1 140* pcsys_other_devs:: Other Devices
debc7065
FB
141* direct_linux_boot:: Direct Linux Boot
142* pcsys_usb:: USB emulation
f858dcae 143* vnc_security:: VNC security
5d19a6ea 144* network_tls:: TLS setup for network services
debc7065
FB
145* gdb_usage:: GDB usage
146* pcsys_os_specific:: Target OS specific information
147@end menu
148
149@node pcsys_introduction
0806e3f6
FB
150@section Introduction
151
152@c man begin DESCRIPTION
153
3f9f3aa1
FB
154The QEMU PC System emulator simulates the
155following peripherals:
0806e3f6
FB
156
157@itemize @minus
5fafdf24 158@item
15a34c63 159i440FX host PCI bridge and PIIX3 PCI to ISA bridge
0806e3f6 160@item
15a34c63
FB
161Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
162extensions (hardware level, including all non standard modes).
0806e3f6
FB
163@item
164PS/2 mouse and keyboard
5fafdf24 165@item
15a34c63 1662 PCI IDE interfaces with hard disk and CD-ROM support
1f673135
FB
167@item
168Floppy disk
5fafdf24 169@item
3a2eeac0 170PCI and ISA network adapters
0806e3f6 171@item
05d5818c
FB
172Serial ports
173@item
23076bb3
CM
174IPMI BMC, either and internal or external one
175@item
c0fe3827
FB
176Creative SoundBlaster 16 sound card
177@item
178ENSONIQ AudioPCI ES1370 sound card
179@item
e5c9a13e
AZ
180Intel 82801AA AC97 Audio compatible sound card
181@item
7d72e762
GH
182Intel HD Audio Controller and HDA codec
183@item
2d983446 184Adlib (OPL2) - Yamaha YM3812 compatible chip
b389dbfb 185@item
26463dbc
AZ
186Gravis Ultrasound GF1 sound card
187@item
cc53d26d 188CS4231A compatible sound card
189@item
a92ff8c1 190PCI UHCI, OHCI, EHCI or XHCI USB controller and a virtual USB-1.1 hub.
0806e3f6
FB
191@end itemize
192
3f9f3aa1
FB
193SMP is supported with up to 255 CPUs.
194
a8ad4159 195QEMU uses the PC BIOS from the Seabios project and the Plex86/Bochs LGPL
15a34c63
FB
196VGA BIOS.
197
c0fe3827
FB
198QEMU uses YM3812 emulation by Tatsuyuki Satoh.
199
2d983446 200QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
26463dbc 201by Tibor "TS" Schütz.
423d65f4 202
1a1a0e20 203Note that, by default, GUS shares IRQ(7) with parallel ports and so
b65ee4fa 204QEMU must be told to not have parallel ports to have working GUS.
720036a5 205
206@example
3804da9d 207qemu-system-i386 dos.img -soundhw gus -parallel none
720036a5 208@end example
209
210Alternatively:
211@example
3804da9d 212qemu-system-i386 dos.img -device gus,irq=5
720036a5 213@end example
214
215Or some other unclaimed IRQ.
216
cc53d26d 217CS4231A is the chip used in Windows Sound System and GUSMAX products
218
0806e3f6
FB
219@c man end
220
debc7065 221@node pcsys_quickstart
1eb20527 222@section Quick Start
7544a042 223@cindex quick start
1eb20527 224
285dc330 225Download and uncompress the linux image (@file{linux.img}) and type:
0806e3f6
FB
226
227@example
3804da9d 228qemu-system-i386 linux.img
0806e3f6
FB
229@end example
230
231Linux should boot and give you a prompt.
232
6cc721cf 233@node sec_invocation
ec410fc9
FB
234@section Invocation
235
236@example
0806e3f6 237@c man begin SYNOPSIS
8485140f 238@command{qemu-system-i386} [@var{options}] [@var{disk_image}]
0806e3f6 239@c man end
ec410fc9
FB
240@end example
241
0806e3f6 242@c man begin OPTIONS
d2c639d6
BS
243@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
244targets do not need a disk image.
ec410fc9 245
5824d651 246@include qemu-options.texi
ec410fc9 247
3e11db9a
FB
248@c man end
249
e896d0f9
MA
250@subsection Device URL Syntax
251@c TODO merge this with section Disk Images
252
253@c man begin NOTES
254
255In addition to using normal file images for the emulated storage devices,
256QEMU can also use networked resources such as iSCSI devices. These are
257specified using a special URL syntax.
258
259@table @option
260@item iSCSI
261iSCSI support allows QEMU to access iSCSI resources directly and use as
262images for the guest storage. Both disk and cdrom images are supported.
263
264Syntax for specifying iSCSI LUNs is
265``iscsi://<target-ip>[:<port>]/<target-iqn>/<lun>''
266
267By default qemu will use the iSCSI initiator-name
268'iqn.2008-11.org.linux-kvm[:<name>]' but this can also be set from the command
269line or a configuration file.
270
271Since version Qemu 2.4 it is possible to specify a iSCSI request timeout to detect
272stalled requests and force a reestablishment of the session. The timeout
273is specified in seconds. The default is 0 which means no timeout. Libiscsi
2741.15.0 or greater is required for this feature.
275
276Example (without authentication):
277@example
278qemu-system-i386 -iscsi initiator-name=iqn.2001-04.com.example:my-initiator \
279 -cdrom iscsi://192.0.2.1/iqn.2001-04.com.example/2 \
280 -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1
281@end example
282
283Example (CHAP username/password via URL):
284@example
285qemu-system-i386 -drive file=iscsi://user%password@@192.0.2.1/iqn.2001-04.com.example/1
286@end example
287
288Example (CHAP username/password via environment variables):
289@example
290LIBISCSI_CHAP_USERNAME="user" \
291LIBISCSI_CHAP_PASSWORD="password" \
292qemu-system-i386 -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1
293@end example
294
295@item NBD
296QEMU supports NBD (Network Block Devices) both using TCP protocol as well
297as Unix Domain Sockets.
298
299Syntax for specifying a NBD device using TCP
300``nbd:<server-ip>:<port>[:exportname=<export>]''
301
302Syntax for specifying a NBD device using Unix Domain Sockets
303``nbd:unix:<domain-socket>[:exportname=<export>]''
304
305Example for TCP
306@example
307qemu-system-i386 --drive file=nbd:192.0.2.1:30000
308@end example
309
310Example for Unix Domain Sockets
311@example
312qemu-system-i386 --drive file=nbd:unix:/tmp/nbd-socket
313@end example
314
315@item SSH
316QEMU supports SSH (Secure Shell) access to remote disks.
317
318Examples:
319@example
320qemu-system-i386 -drive file=ssh://user@@host/path/to/disk.img
321qemu-system-i386 -drive file.driver=ssh,file.user=user,file.host=host,file.port=22,file.path=/path/to/disk.img
322@end example
323
324Currently authentication must be done using ssh-agent. Other
325authentication methods may be supported in future.
326
327@item Sheepdog
328Sheepdog is a distributed storage system for QEMU.
329QEMU supports using either local sheepdog devices or remote networked
330devices.
331
332Syntax for specifying a sheepdog device
333@example
334sheepdog[+tcp|+unix]://[host:port]/vdiname[?socket=path][#snapid|#tag]
335@end example
336
337Example
338@example
339qemu-system-i386 --drive file=sheepdog://192.0.2.1:30000/MyVirtualMachine
340@end example
341
342See also @url{https://sheepdog.github.io/sheepdog/}.
343
344@item GlusterFS
345GlusterFS is a user space distributed file system.
346QEMU supports the use of GlusterFS volumes for hosting VM disk images using
347TCP, Unix Domain Sockets and RDMA transport protocols.
348
349Syntax for specifying a VM disk image on GlusterFS volume is
350@example
351
352URI:
353gluster[+type]://[host[:port]]/volume/path[?socket=...][,debug=N][,logfile=...]
354
355JSON:
356'json:@{"driver":"qcow2","file":@{"driver":"gluster","volume":"testvol","path":"a.img","debug":N,"logfile":"...",
357@ "server":[@{"type":"tcp","host":"...","port":"..."@},
358@ @{"type":"unix","socket":"..."@}]@}@}'
359@end example
360
361
362Example
363@example
364URI:
365qemu-system-x86_64 --drive file=gluster://192.0.2.1/testvol/a.img,
366@ file.debug=9,file.logfile=/var/log/qemu-gluster.log
367
368JSON:
369qemu-system-x86_64 'json:@{"driver":"qcow2",
370@ "file":@{"driver":"gluster",
371@ "volume":"testvol","path":"a.img",
372@ "debug":9,"logfile":"/var/log/qemu-gluster.log",
373@ "server":[@{"type":"tcp","host":"1.2.3.4","port":24007@},
374@ @{"type":"unix","socket":"/var/run/glusterd.socket"@}]@}@}'
375qemu-system-x86_64 -drive driver=qcow2,file.driver=gluster,file.volume=testvol,file.path=/path/a.img,
376@ file.debug=9,file.logfile=/var/log/qemu-gluster.log,
377@ file.server.0.type=tcp,file.server.0.host=1.2.3.4,file.server.0.port=24007,
378@ file.server.1.type=unix,file.server.1.socket=/var/run/glusterd.socket
379@end example
380
381See also @url{http://www.gluster.org}.
382
383@item HTTP/HTTPS/FTP/FTPS
384QEMU supports read-only access to files accessed over http(s) and ftp(s).
385
386Syntax using a single filename:
387@example
388<protocol>://[<username>[:<password>]@@]<host>/<path>
389@end example
390
391where:
392@table @option
393@item protocol
394'http', 'https', 'ftp', or 'ftps'.
395
396@item username
397Optional username for authentication to the remote server.
398
399@item password
400Optional password for authentication to the remote server.
401
402@item host
403Address of the remote server.
404
405@item path
406Path on the remote server, including any query string.
407@end table
408
409The following options are also supported:
410@table @option
411@item url
412The full URL when passing options to the driver explicitly.
413
414@item readahead
415The amount of data to read ahead with each range request to the remote server.
416This value may optionally have the suffix 'T', 'G', 'M', 'K', 'k' or 'b'. If it
417does not have a suffix, it will be assumed to be in bytes. The value must be a
418multiple of 512 bytes. It defaults to 256k.
419
420@item sslverify
421Whether to verify the remote server's certificate when connecting over SSL. It
422can have the value 'on' or 'off'. It defaults to 'on'.
423
424@item cookie
425Send this cookie (it can also be a list of cookies separated by ';') with
426each outgoing request. Only supported when using protocols such as HTTP
427which support cookies, otherwise ignored.
428
429@item timeout
430Set the timeout in seconds of the CURL connection. This timeout is the time
431that CURL waits for a response from the remote server to get the size of the
432image to be downloaded. If not set, the default timeout of 5 seconds is used.
433@end table
434
435Note that when passing options to qemu explicitly, @option{driver} is the value
436of <protocol>.
437
438Example: boot from a remote Fedora 20 live ISO image
439@example
440qemu-system-x86_64 --drive media=cdrom,file=http://dl.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly
441
442qemu-system-x86_64 --drive media=cdrom,file.driver=http,file.url=http://dl.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly
443@end example
444
445Example: boot from a remote Fedora 20 cloud image using a local overlay for
446writes, copy-on-read, and a readahead of 64k
447@example
448qemu-img create -f qcow2 -o backing_file='json:@{"file.driver":"http",, "file.url":"https://dl.fedoraproject.org/pub/fedora/linux/releases/20/Images/x86_64/Fedora-x86_64-20-20131211.1-sda.qcow2",, "file.readahead":"64k"@}' /tmp/Fedora-x86_64-20-20131211.1-sda.qcow2
449
450qemu-system-x86_64 -drive file=/tmp/Fedora-x86_64-20-20131211.1-sda.qcow2,copy-on-read=on
451@end example
452
453Example: boot from an image stored on a VMware vSphere server with a self-signed
454certificate using a local overlay for writes, a readahead of 64k and a timeout
455of 10 seconds.
456@example
457qemu-img create -f qcow2 -o backing_file='json:@{"file.driver":"https",, "file.url":"https://user:password@@vsphere.example.com/folder/test/test-flat.vmdk?dcPath=Datacenter&dsName=datastore1",, "file.sslverify":"off",, "file.readahead":"64k",, "file.timeout":10@}' /tmp/test.qcow2
458
459qemu-system-x86_64 -drive file=/tmp/test.qcow2
460@end example
461
462@end table
463
464@c man end
465
debc7065 466@node pcsys_keys
a40db1b3 467@section Keys in the graphical frontends
3e11db9a
FB
468
469@c man begin OPTIONS
470
de1db2a1
BH
471During the graphical emulation, you can use special key combinations to change
472modes. The default key mappings are shown below, but if you use @code{-alt-grab}
473then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
474@code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
475
a1b74fe8 476@table @key
f9859310 477@item Ctrl-Alt-f
7544a042 478@kindex Ctrl-Alt-f
a1b74fe8 479Toggle full screen
a0a821a4 480
d6a65ba3
JK
481@item Ctrl-Alt-+
482@kindex Ctrl-Alt-+
483Enlarge the screen
484
485@item Ctrl-Alt--
486@kindex Ctrl-Alt--
487Shrink the screen
488
c4a735f9 489@item Ctrl-Alt-u
7544a042 490@kindex Ctrl-Alt-u
c4a735f9 491Restore the screen's un-scaled dimensions
492
f9859310 493@item Ctrl-Alt-n
7544a042 494@kindex Ctrl-Alt-n
a0a821a4
FB
495Switch to virtual console 'n'. Standard console mappings are:
496@table @emph
497@item 1
498Target system display
499@item 2
500Monitor
501@item 3
502Serial port
a1b74fe8
FB
503@end table
504
f9859310 505@item Ctrl-Alt
7544a042 506@kindex Ctrl-Alt
a0a821a4
FB
507Toggle mouse and keyboard grab.
508@end table
509
7544a042
SW
510@kindex Ctrl-Up
511@kindex Ctrl-Down
512@kindex Ctrl-PageUp
513@kindex Ctrl-PageDown
3e11db9a
FB
514In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
515@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
516
a40db1b3
PM
517@c man end
518
519@node mux_keys
520@section Keys in the character backend multiplexer
521
522@c man begin OPTIONS
523
524During emulation, if you are using a character backend multiplexer
525(which is the default if you are using @option{-nographic}) then
526several commands are available via an escape sequence. These
527key sequences all start with an escape character, which is @key{Ctrl-a}
528by default, but can be changed with @option{-echr}. The list below assumes
529you're using the default.
ec410fc9
FB
530
531@table @key
a1b74fe8 532@item Ctrl-a h
7544a042 533@kindex Ctrl-a h
ec410fc9 534Print this help
3b46e624 535@item Ctrl-a x
7544a042 536@kindex Ctrl-a x
366dfc52 537Exit emulator
3b46e624 538@item Ctrl-a s
7544a042 539@kindex Ctrl-a s
1f47a922 540Save disk data back to file (if -snapshot)
20d8a3ed 541@item Ctrl-a t
7544a042 542@kindex Ctrl-a t
d2c639d6 543Toggle console timestamps
a1b74fe8 544@item Ctrl-a b
7544a042 545@kindex Ctrl-a b
1f673135 546Send break (magic sysrq in Linux)
a1b74fe8 547@item Ctrl-a c
7544a042 548@kindex Ctrl-a c
a40db1b3
PM
549Rotate between the frontends connected to the multiplexer (usually
550this switches between the monitor and the console)
a1b74fe8 551@item Ctrl-a Ctrl-a
a40db1b3
PM
552@kindex Ctrl-a Ctrl-a
553Send the escape character to the frontend
ec410fc9 554@end table
0806e3f6
FB
555@c man end
556
557@ignore
558
1f673135
FB
559@c man begin SEEALSO
560The HTML documentation of QEMU for more precise information and Linux
561user mode emulator invocation.
562@c man end
563
564@c man begin AUTHOR
565Fabrice Bellard
566@c man end
567
568@end ignore
569
debc7065 570@node pcsys_monitor
1f673135 571@section QEMU Monitor
7544a042 572@cindex QEMU monitor
1f673135
FB
573
574The QEMU monitor is used to give complex commands to the QEMU
575emulator. You can use it to:
576
577@itemize @minus
578
579@item
e598752a 580Remove or insert removable media images
89dfe898 581(such as CD-ROM or floppies).
1f673135 582
5fafdf24 583@item
1f673135
FB
584Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
585from a disk file.
586
587@item Inspect the VM state without an external debugger.
588
589@end itemize
590
591@subsection Commands
592
593The following commands are available:
594
2313086a 595@include qemu-monitor.texi
0806e3f6 596
2cd8af2d
PB
597@include qemu-monitor-info.texi
598
1f673135
FB
599@subsection Integer expressions
600
601The monitor understands integers expressions for every integer
602argument. You can use register names to get the value of specifics
603CPU registers by prefixing them with @emph{$}.
ec410fc9 604
1f47a922
FB
605@node disk_images
606@section Disk Images
607
ee29bdb6
PB
608QEMU supports many disk image formats, including growable disk images
609(their size increase as non empty sectors are written), compressed and
610encrypted disk images.
1f47a922 611
debc7065
FB
612@menu
613* disk_images_quickstart:: Quick start for disk image creation
614* disk_images_snapshot_mode:: Snapshot mode
13a2e80f 615* vm_snapshots:: VM snapshots
debc7065 616* qemu_img_invocation:: qemu-img Invocation
975b092b 617* qemu_nbd_invocation:: qemu-nbd Invocation
d3067b02 618* disk_images_formats:: Disk image file formats
19cb3738 619* host_drives:: Using host drives
debc7065 620* disk_images_fat_images:: Virtual FAT disk images
75818250 621* disk_images_nbd:: NBD access
42af9c30 622* disk_images_sheepdog:: Sheepdog disk images
00984e39 623* disk_images_iscsi:: iSCSI LUNs
8809e289 624* disk_images_gluster:: GlusterFS disk images
0a12ec87 625* disk_images_ssh:: Secure Shell (ssh) disk images
e86de5e4 626* disk_images_nvme:: NVMe userspace driver
b1d1cb27 627* disk_image_locking:: Disk image file locking
debc7065
FB
628@end menu
629
630@node disk_images_quickstart
acd935ef
FB
631@subsection Quick start for disk image creation
632
633You can create a disk image with the command:
1f47a922 634@example
acd935ef 635qemu-img create myimage.img mysize
1f47a922 636@end example
acd935ef
FB
637where @var{myimage.img} is the disk image filename and @var{mysize} is its
638size in kilobytes. You can add an @code{M} suffix to give the size in
639megabytes and a @code{G} suffix for gigabytes.
640
debc7065 641See @ref{qemu_img_invocation} for more information.
1f47a922 642
debc7065 643@node disk_images_snapshot_mode
1f47a922
FB
644@subsection Snapshot mode
645
646If you use the option @option{-snapshot}, all disk images are
647considered as read only. When sectors in written, they are written in
648a temporary file created in @file{/tmp}. You can however force the
acd935ef
FB
649write back to the raw disk images by using the @code{commit} monitor
650command (or @key{C-a s} in the serial console).
1f47a922 651
13a2e80f
FB
652@node vm_snapshots
653@subsection VM snapshots
654
655VM snapshots are snapshots of the complete virtual machine including
656CPU state, RAM, device state and the content of all the writable
657disks. In order to use VM snapshots, you must have at least one non
658removable and writable block device using the @code{qcow2} disk image
659format. Normally this device is the first virtual hard drive.
660
661Use the monitor command @code{savevm} to create a new VM snapshot or
662replace an existing one. A human readable name can be assigned to each
19d36792 663snapshot in addition to its numerical ID.
13a2e80f
FB
664
665Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
666a VM snapshot. @code{info snapshots} lists the available snapshots
667with their associated information:
668
669@example
670(qemu) info snapshots
671Snapshot devices: hda
672Snapshot list (from hda):
673ID TAG VM SIZE DATE VM CLOCK
6741 start 41M 2006-08-06 12:38:02 00:00:14.954
6752 40M 2006-08-06 12:43:29 00:00:18.633
6763 msys 40M 2006-08-06 12:44:04 00:00:23.514
677@end example
678
679A VM snapshot is made of a VM state info (its size is shown in
680@code{info snapshots}) and a snapshot of every writable disk image.
681The VM state info is stored in the first @code{qcow2} non removable
682and writable block device. The disk image snapshots are stored in
683every disk image. The size of a snapshot in a disk image is difficult
684to evaluate and is not shown by @code{info snapshots} because the
685associated disk sectors are shared among all the snapshots to save
19d36792
FB
686disk space (otherwise each snapshot would need a full copy of all the
687disk images).
13a2e80f
FB
688
689When using the (unrelated) @code{-snapshot} option
690(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
691but they are deleted as soon as you exit QEMU.
692
693VM snapshots currently have the following known limitations:
694@itemize
5fafdf24 695@item
13a2e80f
FB
696They cannot cope with removable devices if they are removed or
697inserted after a snapshot is done.
5fafdf24 698@item
13a2e80f
FB
699A few device drivers still have incomplete snapshot support so their
700state is not saved or restored properly (in particular USB).
701@end itemize
702
acd935ef
FB
703@node qemu_img_invocation
704@subsection @code{qemu-img} Invocation
1f47a922 705
acd935ef 706@include qemu-img.texi
05efe46e 707
975b092b
TS
708@node qemu_nbd_invocation
709@subsection @code{qemu-nbd} Invocation
710
711@include qemu-nbd.texi
712
78aa8aa0 713@include docs/qemu-block-drivers.texi
0a12ec87 714
debc7065 715@node pcsys_network
9d4fb82e
FB
716@section Network emulation
717
0e0266c2
TH
718QEMU can simulate several network cards (e.g. PCI or ISA cards on the PC
719target) and can connect them to a network backend on the host or an emulated
720hub. The various host network backends can either be used to connect the NIC of
721the guest to a real network (e.g. by using a TAP devices or the non-privileged
722user mode network stack), or to other guest instances running in another QEMU
723process (e.g. by using the socket host network backend).
9d4fb82e 724
41d03949
FB
725@subsection Using TAP network interfaces
726
727This is the standard way to connect QEMU to a real network. QEMU adds
728a virtual network device on your host (called @code{tapN}), and you
729can then configure it as if it was a real ethernet card.
9d4fb82e 730
8f40c388
FB
731@subsubsection Linux host
732
9d4fb82e
FB
733As an example, you can download the @file{linux-test-xxx.tar.gz}
734archive and copy the script @file{qemu-ifup} in @file{/etc} and
735configure properly @code{sudo} so that the command @code{ifconfig}
736contained in @file{qemu-ifup} can be executed as root. You must verify
41d03949 737that your host kernel supports the TAP network interfaces: the
9d4fb82e
FB
738device @file{/dev/net/tun} must be present.
739
ee0f4751
FB
740See @ref{sec_invocation} to have examples of command lines using the
741TAP network interfaces.
9d4fb82e 742
8f40c388
FB
743@subsubsection Windows host
744
745There is a virtual ethernet driver for Windows 2000/XP systems, called
746TAP-Win32. But it is not included in standard QEMU for Windows,
747so you will need to get it separately. It is part of OpenVPN package,
70b7fba9 748so download OpenVPN from : @url{https://openvpn.net/}.
8f40c388 749
9d4fb82e
FB
750@subsection Using the user mode network stack
751
41d03949
FB
752By using the option @option{-net user} (default configuration if no
753@option{-net} option is specified), QEMU uses a completely user mode
4be456f1 754network stack (you don't need root privilege to use the virtual
41d03949 755network). The virtual network configuration is the following:
9d4fb82e
FB
756
757@example
758
0e0266c2 759 guest (10.0.2.15) <------> Firewall/DHCP server <-----> Internet
41d03949 760 | (10.0.2.2)
9d4fb82e 761 |
2518bd0d 762 ----> DNS server (10.0.2.3)
3b46e624 763 |
2518bd0d 764 ----> SMB server (10.0.2.4)
9d4fb82e
FB
765@end example
766
767The QEMU VM behaves as if it was behind a firewall which blocks all
768incoming connections. You can use a DHCP client to automatically
41d03949
FB
769configure the network in the QEMU VM. The DHCP server assign addresses
770to the hosts starting from 10.0.2.15.
9d4fb82e
FB
771
772In order to check that the user mode network is working, you can ping
773the address 10.0.2.2 and verify that you got an address in the range
77410.0.2.x from the QEMU virtual DHCP server.
775
37cbfcce
GH
776Note that ICMP traffic in general does not work with user mode networking.
777@code{ping}, aka. ICMP echo, to the local router (10.0.2.2) shall work,
778however. If you're using QEMU on Linux >= 3.0, it can use unprivileged ICMP
779ping sockets to allow @code{ping} to the Internet. The host admin has to set
780the ping_group_range in order to grant access to those sockets. To allow ping
781for GID 100 (usually users group):
782
783@example
784echo 100 100 > /proc/sys/net/ipv4/ping_group_range
785@end example
b415a407 786
9bf05444
FB
787When using the built-in TFTP server, the router is also the TFTP
788server.
789
c8c6afa8
TH
790When using the @option{'-netdev user,hostfwd=...'} option, TCP or UDP
791connections can be redirected from the host to the guest. It allows for
792example to redirect X11, telnet or SSH connections.
443f1376 793
0e0266c2
TH
794@subsection Hubs
795
796QEMU can simulate several hubs. A hub can be thought of as a virtual connection
797between several network devices. These devices can be for example QEMU virtual
798ethernet cards or virtual Host ethernet devices (TAP devices). You can connect
799guest NICs or host network backends to such a hub using the @option{-netdev
800hubport} or @option{-nic hubport} options. The legacy @option{-net} option
801also connects the given device to the emulated hub with ID 0 (i.e. the default
802hub) unless you specify a netdev with @option{-net nic,netdev=xxx} here.
41d03949 803
0e0266c2 804@subsection Connecting emulated networks between QEMU instances
41d03949 805
0e0266c2
TH
806Using the @option{-netdev socket} (or @option{-nic socket} or
807@option{-net socket}) option, it is possible to create emulated
808networks that span several QEMU instances.
809See the description of the @option{-netdev socket} option in the
810@ref{sec_invocation,,Invocation chapter} to have a basic example.
41d03949 811
576fd0a1 812@node pcsys_other_devs
6cbf4c8c
CM
813@section Other Devices
814
815@subsection Inter-VM Shared Memory device
816
5400c02b
MA
817On Linux hosts, a shared memory device is available. The basic syntax
818is:
6cbf4c8c
CM
819
820@example
5400c02b
MA
821qemu-system-x86_64 -device ivshmem-plain,memdev=@var{hostmem}
822@end example
823
824where @var{hostmem} names a host memory backend. For a POSIX shared
825memory backend, use something like
826
827@example
828-object memory-backend-file,size=1M,share,mem-path=/dev/shm/ivshmem,id=@var{hostmem}
6cbf4c8c
CM
829@end example
830
831If desired, interrupts can be sent between guest VMs accessing the same shared
832memory region. Interrupt support requires using a shared memory server and
833using a chardev socket to connect to it. The code for the shared memory server
834is qemu.git/contrib/ivshmem-server. An example syntax when using the shared
835memory server is:
836
837@example
a75eb03b 838# First start the ivshmem server once and for all
50d34c4e 839ivshmem-server -p @var{pidfile} -S @var{path} -m @var{shm-name} -l @var{shm-size} -n @var{vectors}
a75eb03b
DM
840
841# Then start your qemu instances with matching arguments
5400c02b 842qemu-system-x86_64 -device ivshmem-doorbell,vectors=@var{vectors},chardev=@var{id}
50d34c4e 843 -chardev socket,path=@var{path},id=@var{id}
6cbf4c8c
CM
844@end example
845
846When using the server, the guest will be assigned a VM ID (>=0) that allows guests
847using the same server to communicate via interrupts. Guests can read their
1309cf44 848VM ID from a device register (see ivshmem-spec.txt).
6cbf4c8c 849
62a830b6
MA
850@subsubsection Migration with ivshmem
851
5400c02b
MA
852With device property @option{master=on}, the guest will copy the shared
853memory on migration to the destination host. With @option{master=off},
854the guest will not be able to migrate with the device attached. In the
855latter case, the device should be detached and then reattached after
856migration using the PCI hotplug support.
6cbf4c8c 857
62a830b6
MA
858At most one of the devices sharing the same memory can be master. The
859master must complete migration before you plug back the other devices.
860
7d4f4bda
MAL
861@subsubsection ivshmem and hugepages
862
863Instead of specifying the <shm size> using POSIX shm, you may specify
864a memory backend that has hugepage support:
865
866@example
5400c02b
MA
867qemu-system-x86_64 -object memory-backend-file,size=1G,mem-path=/dev/hugepages/my-shmem-file,share,id=mb1
868 -device ivshmem-plain,memdev=mb1
7d4f4bda
MAL
869@end example
870
871ivshmem-server also supports hugepages mount points with the
872@option{-m} memory path argument.
873
9d4fb82e
FB
874@node direct_linux_boot
875@section Direct Linux Boot
1f673135
FB
876
877This section explains how to launch a Linux kernel inside QEMU without
878having to make a full bootable image. It is very useful for fast Linux
ee0f4751 879kernel testing.
1f673135 880
ee0f4751 881The syntax is:
1f673135 882@example
3804da9d 883qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1f673135
FB
884@end example
885
ee0f4751
FB
886Use @option{-kernel} to provide the Linux kernel image and
887@option{-append} to give the kernel command line arguments. The
888@option{-initrd} option can be used to provide an INITRD image.
1f673135 889
ee0f4751
FB
890When using the direct Linux boot, a disk image for the first hard disk
891@file{hda} is required because its boot sector is used to launch the
892Linux kernel.
1f673135 893
ee0f4751
FB
894If you do not need graphical output, you can disable it and redirect
895the virtual serial port and the QEMU monitor to the console with the
896@option{-nographic} option. The typical command line is:
1f673135 897@example
3804da9d
SW
898qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
899 -append "root=/dev/hda console=ttyS0" -nographic
1f673135
FB
900@end example
901
ee0f4751
FB
902Use @key{Ctrl-a c} to switch between the serial console and the
903monitor (@pxref{pcsys_keys}).
1f673135 904
debc7065 905@node pcsys_usb
b389dbfb
FB
906@section USB emulation
907
a92ff8c1
TH
908QEMU can emulate a PCI UHCI, OHCI, EHCI or XHCI USB controller. You can
909plug virtual USB devices or real host USB devices (only works with certain
910host operating systems). QEMU will automatically create and connect virtual
911USB hubs as necessary to connect multiple USB devices.
b389dbfb 912
0aff66b5
PB
913@menu
914* usb_devices::
915* host_usb_devices::
916@end menu
917@node usb_devices
918@subsection Connecting USB devices
b389dbfb 919
a92ff8c1
TH
920USB devices can be connected with the @option{-device usb-...} command line
921option or the @code{device_add} monitor command. Available devices are:
b389dbfb 922
db380c06 923@table @code
a92ff8c1 924@item usb-mouse
0aff66b5 925Virtual Mouse. This will override the PS/2 mouse emulation when activated.
a92ff8c1 926@item usb-tablet
c6d46c20 927Pointer device that uses absolute coordinates (like a touchscreen).
b65ee4fa 928This means QEMU is able to report the mouse position without having
0aff66b5 929to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
a92ff8c1
TH
930@item usb-storage,drive=@var{drive_id}
931Mass storage device backed by @var{drive_id} (@pxref{disk_images})
932@item usb-uas
933USB attached SCSI device, see
70b7fba9 934@url{https://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/usb-storage.txt,usb-storage.txt}
a92ff8c1
TH
935for details
936@item usb-bot
937Bulk-only transport storage device, see
70b7fba9 938@url{https://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/usb-storage.txt,usb-storage.txt}
a92ff8c1
TH
939for details here, too
940@item usb-mtp,x-root=@var{dir}
941Media transfer protocol device, using @var{dir} as root of the file tree
942that is presented to the guest.
943@item usb-host,hostbus=@var{bus},hostaddr=@var{addr}
944Pass through the host device identified by @var{bus} and @var{addr}
945@item usb-host,vendorid=@var{vendor},productid=@var{product}
946Pass through the host device identified by @var{vendor} and @var{product} ID
947@item usb-wacom-tablet
f6d2a316
AZ
948Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
949above but it can be used with the tslib library because in addition to touch
950coordinates it reports touch pressure.
a92ff8c1 951@item usb-kbd
47b2d338 952Standard USB keyboard. Will override the PS/2 keyboard (if present).
a92ff8c1 953@item usb-serial,chardev=@var{id}
db380c06 954Serial converter. This emulates an FTDI FT232BM chip connected to host character
a92ff8c1
TH
955device @var{id}.
956@item usb-braille,chardev=@var{id}
2e4d9fb1 957Braille device. This will use BrlAPI to display the braille output on a real
a92ff8c1
TH
958or fake device referenced by @var{id}.
959@item usb-net[,netdev=@var{id}]
960Network adapter that supports CDC ethernet and RNDIS protocols. @var{id}
961specifies a netdev defined with @code{-netdev @dots{},id=@var{id}}.
9ad97e65 962For instance, user-mode networking can be used with
6c9f886c 963@example
a92ff8c1 964qemu-system-i386 [...] -netdev user,id=net0 -device usb-net,netdev=net0
6c9f886c 965@end example
a92ff8c1
TH
966@item usb-ccid
967Smartcard reader device
968@item usb-audio
969USB audio device
970@item usb-bt-dongle
971Bluetooth dongle for the transport layer of HCI. It is connected to HCI
972scatternet 0 by default (corresponds to @code{-bt hci,vlan=0}).
973Note that the syntax for the @code{-device usb-bt-dongle} option is not as
974useful yet as it was with the legacy @code{-usbdevice} option. So to
975configure an USB bluetooth device, you might need to use
976"@code{-usbdevice bt}[:@var{hci-type}]" instead. This configures a
977bluetooth dongle whose type is specified in the same format as with
2d564691
AZ
978the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
979no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
980This USB device implements the USB Transport Layer of HCI. Example
981usage:
982@example
8485140f 983@command{qemu-system-i386} [...@var{OPTIONS}...] @option{-usbdevice} bt:hci,vlan=3 @option{-bt} device:keyboard,vlan=3
2d564691 984@end example
0aff66b5 985@end table
b389dbfb 986
0aff66b5 987@node host_usb_devices
b389dbfb
FB
988@subsection Using host USB devices on a Linux host
989
990WARNING: this is an experimental feature. QEMU will slow down when
991using it. USB devices requiring real time streaming (i.e. USB Video
992Cameras) are not supported yet.
993
994@enumerate
5fafdf24 995@item If you use an early Linux 2.4 kernel, verify that no Linux driver
b389dbfb
FB
996is actually using the USB device. A simple way to do that is simply to
997disable the corresponding kernel module by renaming it from @file{mydriver.o}
998to @file{mydriver.o.disabled}.
999
1000@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1001@example
1002ls /proc/bus/usb
1003001 devices drivers
1004@end example
1005
1006@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1007@example
1008chown -R myuid /proc/bus/usb
1009@end example
1010
1011@item Launch QEMU and do in the monitor:
5fafdf24 1012@example
b389dbfb
FB
1013info usbhost
1014 Device 1.2, speed 480 Mb/s
1015 Class 00: USB device 1234:5678, USB DISK
1016@end example
1017You should see the list of the devices you can use (Never try to use
1018hubs, it won't work).
1019
1020@item Add the device in QEMU by using:
5fafdf24 1021@example
a92ff8c1 1022device_add usb-host,vendorid=0x1234,productid=0x5678
b389dbfb
FB
1023@end example
1024
a92ff8c1
TH
1025Normally the guest OS should report that a new USB device is plugged.
1026You can use the option @option{-device usb-host,...} to do the same.
b389dbfb
FB
1027
1028@item Now you can try to use the host USB device in QEMU.
1029
1030@end enumerate
1031
1032When relaunching QEMU, you may have to unplug and plug again the USB
1033device to make it work again (this is a bug).
1034
f858dcae
TS
1035@node vnc_security
1036@section VNC security
1037
1038The VNC server capability provides access to the graphical console
1039of the guest VM across the network. This has a number of security
1040considerations depending on the deployment scenarios.
1041
1042@menu
1043* vnc_sec_none::
1044* vnc_sec_password::
1045* vnc_sec_certificate::
1046* vnc_sec_certificate_verify::
1047* vnc_sec_certificate_pw::
2f9606b3
AL
1048* vnc_sec_sasl::
1049* vnc_sec_certificate_sasl::
2f9606b3 1050* vnc_setup_sasl::
f858dcae
TS
1051@end menu
1052@node vnc_sec_none
1053@subsection Without passwords
1054
1055The simplest VNC server setup does not include any form of authentication.
1056For this setup it is recommended to restrict it to listen on a UNIX domain
1057socket only. For example
1058
1059@example
3804da9d 1060qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
f858dcae
TS
1061@end example
1062
1063This ensures that only users on local box with read/write access to that
1064path can access the VNC server. To securely access the VNC server from a
1065remote machine, a combination of netcat+ssh can be used to provide a secure
1066tunnel.
1067
1068@node vnc_sec_password
1069@subsection With passwords
1070
1071The VNC protocol has limited support for password based authentication. Since
1072the protocol limits passwords to 8 characters it should not be considered
1073to provide high security. The password can be fairly easily brute-forced by
1074a client making repeat connections. For this reason, a VNC server using password
1075authentication should be restricted to only listen on the loopback interface
0f66998f
PM
1076or UNIX domain sockets. Password authentication is not supported when operating
1077in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password
1078authentication is requested with the @code{password} option, and then once QEMU
1079is running the password is set with the monitor. Until the monitor is used to
1080set the password all clients will be rejected.
f858dcae
TS
1081
1082@example
3804da9d 1083qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio
f858dcae
TS
1084(qemu) change vnc password
1085Password: ********
1086(qemu)
1087@end example
1088
1089@node vnc_sec_certificate
1090@subsection With x509 certificates
1091
1092The QEMU VNC server also implements the VeNCrypt extension allowing use of
1093TLS for encryption of the session, and x509 certificates for authentication.
1094The use of x509 certificates is strongly recommended, because TLS on its
1095own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1096support provides a secure session, but no authentication. This allows any
1097client to connect, and provides an encrypted session.
1098
1099@example
3804da9d 1100qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
f858dcae
TS
1101@end example
1102
1103In the above example @code{/etc/pki/qemu} should contain at least three files,
1104@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1105users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1106NB the @code{server-key.pem} file should be protected with file mode 0600 to
1107only be readable by the user owning it.
1108
1109@node vnc_sec_certificate_verify
1110@subsection With x509 certificates and client verification
1111
1112Certificates can also provide a means to authenticate the client connecting.
1113The server will request that the client provide a certificate, which it will
1114then validate against the CA certificate. This is a good choice if deploying
1115in an environment with a private internal certificate authority.
1116
1117@example
3804da9d 1118qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
f858dcae
TS
1119@end example
1120
1121
1122@node vnc_sec_certificate_pw
1123@subsection With x509 certificates, client verification and passwords
1124
1125Finally, the previous method can be combined with VNC password authentication
1126to provide two layers of authentication for clients.
1127
1128@example
3804da9d 1129qemu-system-i386 [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
f858dcae
TS
1130(qemu) change vnc password
1131Password: ********
1132(qemu)
1133@end example
1134
2f9606b3
AL
1135
1136@node vnc_sec_sasl
1137@subsection With SASL authentication
1138
1139The SASL authentication method is a VNC extension, that provides an
1140easily extendable, pluggable authentication method. This allows for
1141integration with a wide range of authentication mechanisms, such as
1142PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1143The strength of the authentication depends on the exact mechanism
1144configured. If the chosen mechanism also provides a SSF layer, then
1145it will encrypt the datastream as well.
1146
1147Refer to the later docs on how to choose the exact SASL mechanism
1148used for authentication, but assuming use of one supporting SSF,
1149then QEMU can be launched with:
1150
1151@example
3804da9d 1152qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio
2f9606b3
AL
1153@end example
1154
1155@node vnc_sec_certificate_sasl
1156@subsection With x509 certificates and SASL authentication
1157
1158If the desired SASL authentication mechanism does not supported
1159SSF layers, then it is strongly advised to run it in combination
1160with TLS and x509 certificates. This provides securely encrypted
1161data stream, avoiding risk of compromising of the security
1162credentials. This can be enabled, by combining the 'sasl' option
1163with the aforementioned TLS + x509 options:
1164
1165@example
3804da9d 1166qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
2f9606b3
AL
1167@end example
1168
5d19a6ea
DB
1169@node vnc_setup_sasl
1170
1171@subsection Configuring SASL mechanisms
1172
1173The following documentation assumes use of the Cyrus SASL implementation on a
1174Linux host, but the principles should apply to any other SASL implementation
1175or host. When SASL is enabled, the mechanism configuration will be loaded from
1176system default SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1177unprivileged user, an environment variable SASL_CONF_PATH can be used to make
1178it search alternate locations for the service config file.
1179
1180If the TLS option is enabled for VNC, then it will provide session encryption,
1181otherwise the SASL mechanism will have to provide encryption. In the latter
1182case the list of possible plugins that can be used is drastically reduced. In
1183fact only the GSSAPI SASL mechanism provides an acceptable level of security
1184by modern standards. Previous versions of QEMU referred to the DIGEST-MD5
1185mechanism, however, it has multiple serious flaws described in detail in
1186RFC 6331 and thus should never be used any more. The SCRAM-SHA-1 mechanism
1187provides a simple username/password auth facility similar to DIGEST-MD5, but
1188does not support session encryption, so can only be used in combination with
1189TLS.
2f9606b3 1190
5d19a6ea 1191When not using TLS the recommended configuration is
f858dcae 1192
5d19a6ea
DB
1193@example
1194mech_list: gssapi
1195keytab: /etc/qemu/krb5.tab
1196@end example
1197
1198This says to use the 'GSSAPI' mechanism with the Kerberos v5 protocol, with
1199the server principal stored in /etc/qemu/krb5.tab. For this to work the
1200administrator of your KDC must generate a Kerberos principal for the server,
1201with a name of 'qemu/somehost.example.com@@EXAMPLE.COM' replacing
1202'somehost.example.com' with the fully qualified host name of the machine
1203running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
1204
1205When using TLS, if username+password authentication is desired, then a
1206reasonable configuration is
1207
1208@example
1209mech_list: scram-sha-1
1210sasldb_path: /etc/qemu/passwd.db
1211@end example
1212
1213The @code{saslpasswd2} program can be used to populate the @code{passwd.db}
1214file with accounts.
1215
1216Other SASL configurations will be left as an exercise for the reader. Note that
1217all mechanisms, except GSSAPI, should be combined with use of TLS to ensure a
1218secure data channel.
1219
1220
1221@node network_tls
1222@section TLS setup for network services
1223
1224Almost all network services in QEMU have the ability to use TLS for
1225session data encryption, along with x509 certificates for simple
1226client authentication. What follows is a description of how to
1227generate certificates suitable for usage with QEMU, and applies to
1228the VNC server, character devices with the TCP backend, NBD server
1229and client, and migration server and client.
1230
1231At a high level, QEMU requires certificates and private keys to be
1232provided in PEM format. Aside from the core fields, the certificates
1233should include various extension data sets, including v3 basic
1234constraints data, key purpose, key usage and subject alt name.
1235
1236The GnuTLS package includes a command called @code{certtool} which can
1237be used to easily generate certificates and keys in the required format
1238with expected data present. Alternatively a certificate management
1239service may be used.
1240
1241At a minimum it is necessary to setup a certificate authority, and
1242issue certificates to each server. If using x509 certificates for
1243authentication, then each client will also need to be issued a
1244certificate.
1245
1246Assuming that the QEMU network services will only ever be exposed to
1247clients on a private intranet, there is no need to use a commercial
1248certificate authority to create certificates. A self-signed CA is
1249sufficient, and in fact likely to be more secure since it removes
1250the ability of malicious 3rd parties to trick the CA into mis-issuing
1251certs for impersonating your services. The only likely exception
1252where a commercial CA might be desirable is if enabling the VNC
1253websockets server and exposing it directly to remote browser clients.
1254In such a case it might be useful to use a commercial CA to avoid
1255needing to install custom CA certs in the web browsers.
1256
1257The recommendation is for the server to keep its certificates in either
1258@code{/etc/pki/qemu} or for unprivileged users in @code{$HOME/.pki/qemu}.
f858dcae
TS
1259
1260@menu
5d19a6ea
DB
1261* tls_generate_ca::
1262* tls_generate_server::
1263* tls_generate_client::
1264* tls_creds_setup::
f858dcae 1265@end menu
5d19a6ea
DB
1266@node tls_generate_ca
1267@subsection Setup the Certificate Authority
f858dcae
TS
1268
1269This step only needs to be performed once per organization / organizational
1270unit. First the CA needs a private key. This key must be kept VERY secret
1271and secure. If this key is compromised the entire trust chain of the certificates
1272issued with it is lost.
1273
1274@example
1275# certtool --generate-privkey > ca-key.pem
1276@end example
1277
5d19a6ea
DB
1278To generate a self-signed certificate requires one core piece of information,
1279the name of the organization. A template file @code{ca.info} should be
1280populated with the desired data to avoid having to deal with interactive
1281prompts from certtool:
f858dcae
TS
1282@example
1283# cat > ca.info <<EOF
1284cn = Name of your organization
1285ca
1286cert_signing_key
1287EOF
1288# certtool --generate-self-signed \
1289 --load-privkey ca-key.pem
1290 --template ca.info \
1291 --outfile ca-cert.pem
1292@end example
1293
5d19a6ea
DB
1294The @code{ca} keyword in the template sets the v3 basic constraints extension
1295to indicate this certificate is for a CA, while @code{cert_signing_key} sets
1296the key usage extension to indicate this will be used for signing other keys.
1297The generated @code{ca-cert.pem} file should be copied to all servers and
1298clients wishing to utilize TLS support in the VNC server. The @code{ca-key.pem}
1299must not be disclosed/copied anywhere except the host responsible for issuing
1300certificates.
f858dcae 1301
5d19a6ea
DB
1302@node tls_generate_server
1303@subsection Issuing server certificates
f858dcae
TS
1304
1305Each server (or host) needs to be issued with a key and certificate. When connecting
1306the certificate is sent to the client which validates it against the CA certificate.
5d19a6ea
DB
1307The core pieces of information for a server certificate are the hostnames and/or IP
1308addresses that will be used by clients when connecting. The hostname / IP address
1309that the client specifies when connecting will be validated against the hostname(s)
1310and IP address(es) recorded in the server certificate, and if no match is found
1311the client will close the connection.
1312
1313Thus it is recommended that the server certificate include both the fully qualified
1314and unqualified hostnames. If the server will have permanently assigned IP address(es),
1315and clients are likely to use them when connecting, they may also be included in the
1316certificate. Both IPv4 and IPv6 addresses are supported. Historically certificates
1317only included 1 hostname in the @code{CN} field, however, usage of this field for
1318validation is now deprecated. Instead modern TLS clients will validate against the
1319Subject Alt Name extension data, which allows for multiple entries. In the future
1320usage of the @code{CN} field may be discontinued entirely, so providing SAN
1321extension data is strongly recommended.
1322
1323On the host holding the CA, create template files containing the information
1324for each server, and use it to issue server certificates.
f858dcae
TS
1325
1326@example
5d19a6ea 1327# cat > server-hostNNN.info <<EOF
f858dcae 1328organization = Name of your organization
5d19a6ea
DB
1329cn = hostNNN.foo.example.com
1330dns_name = hostNNN
1331dns_name = hostNNN.foo.example.com
1332ip_address = 10.0.1.87
1333ip_address = 192.8.0.92
1334ip_address = 2620:0:cafe::87
1335ip_address = 2001:24::92
f858dcae
TS
1336tls_www_server
1337encryption_key
1338signing_key
1339EOF
5d19a6ea 1340# certtool --generate-privkey > server-hostNNN-key.pem
f858dcae
TS
1341# certtool --generate-certificate \
1342 --load-ca-certificate ca-cert.pem \
1343 --load-ca-privkey ca-key.pem \
5d19a6ea
DB
1344 --load-privkey server-hostNNN-key.pem \
1345 --template server-hostNNN.info \
1346 --outfile server-hostNNN-cert.pem
f858dcae
TS
1347@end example
1348
5d19a6ea
DB
1349The @code{dns_name} and @code{ip_address} fields in the template are setting
1350the subject alt name extension data. The @code{tls_www_server} keyword is the
1351key purpose extension to indicate this certificate is intended for usage in
1352a web server. Although QEMU network services are not in fact HTTP servers
1353(except for VNC websockets), setting this key purpose is still recommended.
1354The @code{encryption_key} and @code{signing_key} keyword is the key usage
1355extension to indicate this certificate is intended for usage in the data
1356session.
1357
1358The @code{server-hostNNN-key.pem} and @code{server-hostNNN-cert.pem} files
1359should now be securely copied to the server for which they were generated,
1360and renamed to @code{server-key.pem} and @code{server-cert.pem} when added
1361to the @code{/etc/pki/qemu} directory on the target host. The @code{server-key.pem}
1362file is security sensitive and should be kept protected with file mode 0600
1363to prevent disclosure.
1364
1365@node tls_generate_client
1366@subsection Issuing client certificates
f858dcae 1367
5d19a6ea
DB
1368The QEMU x509 TLS credential setup defaults to enabling client verification
1369using certificates, providing a simple authentication mechanism. If this
1370default is used, each client also needs to be issued a certificate. The client
1371certificate contains enough metadata to uniquely identify the client with the
1372scope of the certificate authority. The client certificate would typically
1373include fields for organization, state, city, building, etc.
1374
1375Once again on the host holding the CA, create template files containing the
1376information for each client, and use it to issue client certificates.
f858dcae 1377
f858dcae
TS
1378
1379@example
5d19a6ea 1380# cat > client-hostNNN.info <<EOF
f858dcae
TS
1381country = GB
1382state = London
5d19a6ea 1383locality = City Of London
63c693f8 1384organization = Name of your organization
5d19a6ea 1385cn = hostNNN.foo.example.com
f858dcae
TS
1386tls_www_client
1387encryption_key
1388signing_key
1389EOF
5d19a6ea 1390# certtool --generate-privkey > client-hostNNN-key.pem
f858dcae
TS
1391# certtool --generate-certificate \
1392 --load-ca-certificate ca-cert.pem \
1393 --load-ca-privkey ca-key.pem \
5d19a6ea
DB
1394 --load-privkey client-hostNNN-key.pem \
1395 --template client-hostNNN.info \
1396 --outfile client-hostNNN-cert.pem
f858dcae
TS
1397@end example
1398
5d19a6ea
DB
1399The subject alt name extension data is not required for clients, so the
1400the @code{dns_name} and @code{ip_address} fields are not included.
1401The @code{tls_www_client} keyword is the key purpose extension to indicate
1402this certificate is intended for usage in a web client. Although QEMU
1403network clients are not in fact HTTP clients, setting this key purpose is
1404still recommended. The @code{encryption_key} and @code{signing_key} keyword
1405is the key usage extension to indicate this certificate is intended for
1406usage in the data session.
1407
1408The @code{client-hostNNN-key.pem} and @code{client-hostNNN-cert.pem} files
1409should now be securely copied to the client for which they were generated,
1410and renamed to @code{client-key.pem} and @code{client-cert.pem} when added
1411to the @code{/etc/pki/qemu} directory on the target host. The @code{client-key.pem}
1412file is security sensitive and should be kept protected with file mode 0600
1413to prevent disclosure.
1414
1415If a single host is going to be using TLS in both a client and server
1416role, it is possible to create a single certificate to cover both roles.
1417This would be quite common for the migration and NBD services, where a
1418QEMU process will be started by accepting a TLS protected incoming migration,
1419and later itself be migrated out to another host. To generate a single
1420certificate, simply include the template data from both the client and server
1421instructions in one.
2f9606b3 1422
5d19a6ea
DB
1423@example
1424# cat > both-hostNNN.info <<EOF
1425country = GB
1426state = London
1427locality = City Of London
1428organization = Name of your organization
1429cn = hostNNN.foo.example.com
1430dns_name = hostNNN
1431dns_name = hostNNN.foo.example.com
1432ip_address = 10.0.1.87
1433ip_address = 192.8.0.92
1434ip_address = 2620:0:cafe::87
1435ip_address = 2001:24::92
1436tls_www_server
1437tls_www_client
1438encryption_key
1439signing_key
1440EOF
1441# certtool --generate-privkey > both-hostNNN-key.pem
1442# certtool --generate-certificate \
1443 --load-ca-certificate ca-cert.pem \
1444 --load-ca-privkey ca-key.pem \
1445 --load-privkey both-hostNNN-key.pem \
1446 --template both-hostNNN.info \
1447 --outfile both-hostNNN-cert.pem
1448@end example
c6a9a9f5 1449
5d19a6ea
DB
1450When copying the PEM files to the target host, save them twice,
1451once as @code{server-cert.pem} and @code{server-key.pem}, and
1452again as @code{client-cert.pem} and @code{client-key.pem}.
1453
1454@node tls_creds_setup
1455@subsection TLS x509 credential configuration
1456
1457QEMU has a standard mechanism for loading x509 credentials that will be
1458used for network services and clients. It requires specifying the
1459@code{tls-creds-x509} class name to the @code{--object} command line
1460argument for the system emulators. Each set of credentials loaded should
1461be given a unique string identifier via the @code{id} parameter. A single
1462set of TLS credentials can be used for multiple network backends, so VNC,
1463migration, NBD, character devices can all share the same credentials. Note,
1464however, that credentials for use in a client endpoint must be loaded
1465separately from those used in a server endpoint.
1466
1467When specifying the object, the @code{dir} parameters specifies which
1468directory contains the credential files. This directory is expected to
1469contain files with the names mentioned previously, @code{ca-cert.pem},
1470@code{server-key.pem}, @code{server-cert.pem}, @code{client-key.pem}
1471and @code{client-cert.pem} as appropriate. It is also possible to
1472include a set of pre-generated Diffie-Hellman (DH) parameters in a file
1473@code{dh-params.pem}, which can be created using the
1474@code{certtool --generate-dh-params} command. If omitted, QEMU will
1475dynamically generate DH parameters when loading the credentials.
1476
1477The @code{endpoint} parameter indicates whether the credentials will
1478be used for a network client or server, and determines which PEM
1479files are loaded.
1480
1481The @code{verify} parameter determines whether x509 certificate
1482validation should be performed. This defaults to enabled, meaning
1483clients will always validate the server hostname against the
1484certificate subject alt name fields and/or CN field. It also
1485means that servers will request that clients provide a certificate
1486and validate them. Verification should never be turned off for
1487client endpoints, however, it may be turned off for server endpoints
1488if an alternative mechanism is used to authenticate clients. For
1489example, the VNC server can use SASL to authenticate clients
1490instead.
1491
1492To load server credentials with client certificate validation
1493enabled
2f9606b3
AL
1494
1495@example
5d19a6ea 1496$QEMU -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server
2f9606b3
AL
1497@end example
1498
5d19a6ea 1499while to load client credentials use
2f9606b3
AL
1500
1501@example
5d19a6ea 1502$QEMU -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=client
2f9606b3
AL
1503@end example
1504
5d19a6ea
DB
1505Network services which support TLS will all have a @code{tls-creds}
1506parameter which expects the ID of the TLS credentials object. For
1507example with VNC:
2f9606b3 1508
5d19a6ea
DB
1509@example
1510$QEMU -vnc 0.0.0.0:0,tls-creds=tls0
1511@end example
2f9606b3 1512
0806e3f6 1513@node gdb_usage
da415d54
FB
1514@section GDB usage
1515
1516QEMU has a primitive support to work with gdb, so that you can do
0806e3f6 1517'Ctrl-C' while the virtual machine is running and inspect its state.
da415d54 1518
b65ee4fa 1519In order to use gdb, launch QEMU with the '-s' option. It will wait for a
da415d54
FB
1520gdb connection:
1521@example
3804da9d
SW
1522qemu-system-i386 -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1523 -append "root=/dev/hda"
da415d54
FB
1524Connected to host network interface: tun0
1525Waiting gdb connection on port 1234
1526@end example
1527
1528Then launch gdb on the 'vmlinux' executable:
1529@example
1530> gdb vmlinux
1531@end example
1532
1533In gdb, connect to QEMU:
1534@example
6c9bf893 1535(gdb) target remote localhost:1234
da415d54
FB
1536@end example
1537
1538Then you can use gdb normally. For example, type 'c' to launch the kernel:
1539@example
1540(gdb) c
1541@end example
1542
0806e3f6
FB
1543Here are some useful tips in order to use gdb on system code:
1544
1545@enumerate
1546@item
1547Use @code{info reg} to display all the CPU registers.
1548@item
1549Use @code{x/10i $eip} to display the code at the PC position.
1550@item
1551Use @code{set architecture i8086} to dump 16 bit code. Then use
294e8637 1552@code{x/10i $cs*16+$eip} to dump the code at the PC position.
0806e3f6
FB
1553@end enumerate
1554
60897d36
EI
1555Advanced debugging options:
1556
b6af0975 1557The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
94d45e44 1558@table @code
60897d36
EI
1559@item maintenance packet qqemu.sstepbits
1560
1561This will display the MASK bits used to control the single stepping IE:
1562@example
1563(gdb) maintenance packet qqemu.sstepbits
1564sending: "qqemu.sstepbits"
1565received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1566@end example
1567@item maintenance packet qqemu.sstep
1568
1569This will display the current value of the mask used when single stepping IE:
1570@example
1571(gdb) maintenance packet qqemu.sstep
1572sending: "qqemu.sstep"
1573received: "0x7"
1574@end example
1575@item maintenance packet Qqemu.sstep=HEX_VALUE
1576
1577This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1578@example
1579(gdb) maintenance packet Qqemu.sstep=0x5
1580sending: "qemu.sstep=0x5"
1581received: "OK"
1582@end example
94d45e44 1583@end table
60897d36 1584
debc7065 1585@node pcsys_os_specific
1a084f3d
FB
1586@section Target OS specific information
1587
1588@subsection Linux
1589
15a34c63
FB
1590To have access to SVGA graphic modes under X11, use the @code{vesa} or
1591the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1592color depth in the guest and the host OS.
1a084f3d 1593
e3371e62
FB
1594When using a 2.6 guest Linux kernel, you should add the option
1595@code{clock=pit} on the kernel command line because the 2.6 Linux
1596kernels make very strict real time clock checks by default that QEMU
1597cannot simulate exactly.
1598
7c3fc84d
FB
1599When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1600not activated because QEMU is slower with this patch. The QEMU
1601Accelerator Module is also much slower in this case. Earlier Fedora
4be456f1 1602Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
7c3fc84d
FB
1603patch by default. Newer kernels don't have it.
1604
1a084f3d
FB
1605@subsection Windows
1606
1607If you have a slow host, using Windows 95 is better as it gives the
1608best speed. Windows 2000 is also a good choice.
1609
e3371e62
FB
1610@subsubsection SVGA graphic modes support
1611
1612QEMU emulates a Cirrus Logic GD5446 Video
15a34c63
FB
1613card. All Windows versions starting from Windows 95 should recognize
1614and use this graphic card. For optimal performances, use 16 bit color
1615depth in the guest and the host OS.
1a084f3d 1616
3cb0853a
FB
1617If you are using Windows XP as guest OS and if you want to use high
1618resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
16191280x1024x16), then you should use the VESA VBE virtual graphic card
1620(option @option{-std-vga}).
1621
e3371e62
FB
1622@subsubsection CPU usage reduction
1623
1624Windows 9x does not correctly use the CPU HLT
15a34c63
FB
1625instruction. The result is that it takes host CPU cycles even when
1626idle. You can install the utility from
70b7fba9 1627@url{https://web.archive.org/web/20060212132151/http://www.user.cityline.ru/~maxamn/amnhltm.zip}
3ba34a70 1628to solve this problem. Note that no such tool is needed for NT, 2000 or XP.
1a084f3d 1629
9d0a8e6f 1630@subsubsection Windows 2000 disk full problem
e3371e62 1631
9d0a8e6f
FB
1632Windows 2000 has a bug which gives a disk full problem during its
1633installation. When installing it, use the @option{-win2k-hack} QEMU
1634option to enable a specific workaround. After Windows 2000 is
1635installed, you no longer need this option (this option slows down the
1636IDE transfers).
e3371e62 1637
6cc721cf
FB
1638@subsubsection Windows 2000 shutdown
1639
1640Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1641can. It comes from the fact that Windows 2000 does not automatically
1642use the APM driver provided by the BIOS.
1643
1644In order to correct that, do the following (thanks to Struan
1645Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1646Add/Troubleshoot a device => Add a new device & Next => No, select the
1647hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1648(again) a few times. Now the driver is installed and Windows 2000 now
5fafdf24 1649correctly instructs QEMU to shutdown at the appropriate moment.
6cc721cf
FB
1650
1651@subsubsection Share a directory between Unix and Windows
1652
c8c6afa8
TH
1653See @ref{sec_invocation} about the help of the option
1654@option{'-netdev user,smb=...'}.
6cc721cf 1655
2192c332 1656@subsubsection Windows XP security problem
e3371e62
FB
1657
1658Some releases of Windows XP install correctly but give a security
1659error when booting:
1660@example
1661A problem is preventing Windows from accurately checking the
1662license for this computer. Error code: 0x800703e6.
1663@end example
e3371e62 1664
2192c332
FB
1665The workaround is to install a service pack for XP after a boot in safe
1666mode. Then reboot, and the problem should go away. Since there is no
1667network while in safe mode, its recommended to download the full
1668installation of SP1 or SP2 and transfer that via an ISO or using the
1669vvfat block device ("-hdb fat:directory_which_holds_the_SP").
e3371e62 1670
a0a821a4
FB
1671@subsection MS-DOS and FreeDOS
1672
1673@subsubsection CPU usage reduction
1674
1675DOS does not correctly use the CPU HLT instruction. The result is that
3ba34a70 1676it takes host CPU cycles even when idle. You can install the utility from
70b7fba9 1677@url{https://web.archive.org/web/20051222085335/http://www.vmware.com/software/dosidle210.zip}
3ba34a70 1678to solve this problem.
a0a821a4 1679
debc7065 1680@node QEMU System emulator for non PC targets
3f9f3aa1
FB
1681@chapter QEMU System emulator for non PC targets
1682
1683QEMU is a generic emulator and it emulates many non PC
1684machines. Most of the options are similar to the PC emulator. The
4be456f1 1685differences are mentioned in the following sections.
3f9f3aa1 1686
debc7065 1687@menu
7544a042 1688* PowerPC System emulator::
24d4de45
TS
1689* Sparc32 System emulator::
1690* Sparc64 System emulator::
1691* MIPS System emulator::
1692* ARM System emulator::
1693* ColdFire System emulator::
7544a042
SW
1694* Cris System emulator::
1695* Microblaze System emulator::
1696* SH4 System emulator::
3aeaea65 1697* Xtensa System emulator::
debc7065
FB
1698@end menu
1699
7544a042
SW
1700@node PowerPC System emulator
1701@section PowerPC System emulator
1702@cindex system emulation (PowerPC)
1a084f3d 1703
15a34c63
FB
1704Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1705or PowerMac PowerPC system.
1a084f3d 1706
b671f9ed 1707QEMU emulates the following PowerMac peripherals:
1a084f3d 1708
15a34c63 1709@itemize @minus
5fafdf24 1710@item
006f3a48 1711UniNorth or Grackle PCI Bridge
15a34c63
FB
1712@item
1713PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1714@item
15a34c63 17152 PMAC IDE interfaces with hard disk and CD-ROM support
5fafdf24 1716@item
15a34c63
FB
1717NE2000 PCI adapters
1718@item
1719Non Volatile RAM
1720@item
1721VIA-CUDA with ADB keyboard and mouse.
1a084f3d
FB
1722@end itemize
1723
b671f9ed 1724QEMU emulates the following PREP peripherals:
52c00a5f
FB
1725
1726@itemize @minus
5fafdf24 1727@item
15a34c63
FB
1728PCI Bridge
1729@item
1730PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1731@item
52c00a5f
FB
17322 IDE interfaces with hard disk and CD-ROM support
1733@item
1734Floppy disk
5fafdf24 1735@item
15a34c63 1736NE2000 network adapters
52c00a5f
FB
1737@item
1738Serial port
1739@item
1740PREP Non Volatile RAM
15a34c63
FB
1741@item
1742PC compatible keyboard and mouse.
52c00a5f
FB
1743@end itemize
1744
15a34c63 1745QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
3f9f3aa1 1746@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
52c00a5f 1747
70b7fba9 1748Since version 0.9.1, QEMU uses OpenBIOS @url{https://www.openbios.org/}
006f3a48
BS
1749for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1750v2) portable firmware implementation. The goal is to implement a 100%
1751IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
992e5acd 1752
15a34c63
FB
1753@c man begin OPTIONS
1754
1755The following options are specific to the PowerPC emulation:
1756
1757@table @option
1758
4e257e5e 1759@item -g @var{W}x@var{H}[x@var{DEPTH}]
15a34c63 1760
340fb41b 1761Set the initial VGA graphic mode. The default is 800x600x32.
15a34c63 1762
4e257e5e 1763@item -prom-env @var{string}
95efd11c
BS
1764
1765Set OpenBIOS variables in NVRAM, for example:
1766
1767@example
1768qemu-system-ppc -prom-env 'auto-boot?=false' \
1769 -prom-env 'boot-device=hd:2,\yaboot' \
1770 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1771@end example
1772
1773These variables are not used by Open Hack'Ware.
1774
15a34c63
FB
1775@end table
1776
5fafdf24 1777@c man end
15a34c63
FB
1778
1779
52c00a5f 1780More information is available at
3f9f3aa1 1781@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
52c00a5f 1782
24d4de45
TS
1783@node Sparc32 System emulator
1784@section Sparc32 System emulator
7544a042 1785@cindex system emulation (Sparc32)
e80cfcfc 1786
34a3d239
BS
1787Use the executable @file{qemu-system-sparc} to simulate the following
1788Sun4m architecture machines:
1789@itemize @minus
1790@item
1791SPARCstation 4
1792@item
1793SPARCstation 5
1794@item
1795SPARCstation 10
1796@item
1797SPARCstation 20
1798@item
1799SPARCserver 600MP
1800@item
1801SPARCstation LX
1802@item
1803SPARCstation Voyager
1804@item
1805SPARCclassic
1806@item
1807SPARCbook
1808@end itemize
1809
1810The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1811but Linux limits the number of usable CPUs to 4.
e80cfcfc 1812
6a4e1771 1813QEMU emulates the following sun4m peripherals:
e80cfcfc
FB
1814
1815@itemize @minus
3475187d 1816@item
6a4e1771 1817IOMMU
e80cfcfc 1818@item
33632788 1819TCX or cgthree Frame buffer
5fafdf24 1820@item
e80cfcfc
FB
1821Lance (Am7990) Ethernet
1822@item
34a3d239 1823Non Volatile RAM M48T02/M48T08
e80cfcfc 1824@item
3475187d
FB
1825Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1826and power/reset logic
1827@item
1828ESP SCSI controller with hard disk and CD-ROM support
1829@item
6a3b9cc9 1830Floppy drive (not on SS-600MP)
a2502b58
BS
1831@item
1832CS4231 sound device (only on SS-5, not working yet)
e80cfcfc
FB
1833@end itemize
1834
6a3b9cc9
BS
1835The number of peripherals is fixed in the architecture. Maximum
1836memory size depends on the machine type, for SS-5 it is 256MB and for
7d85892b 1837others 2047MB.
3475187d 1838
30a604f3 1839Since version 0.8.2, QEMU uses OpenBIOS
70b7fba9 1840@url{https://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
0986ac3b
FB
1841firmware implementation. The goal is to implement a 100% IEEE
18421275-1994 (referred to as Open Firmware) compliant firmware.
3475187d
FB
1843
1844A sample Linux 2.6 series kernel and ram disk image are available on
34a3d239 1845the QEMU web site. There are still issues with NetBSD and OpenBSD, but
9bb9f217 1846most kernel versions work. Please note that currently older Solaris kernels
34a3d239
BS
1847don't work probably due to interface issues between OpenBIOS and
1848Solaris.
3475187d
FB
1849
1850@c man begin OPTIONS
1851
a2502b58 1852The following options are specific to the Sparc32 emulation:
3475187d
FB
1853
1854@table @option
1855
4e257e5e 1856@item -g @var{W}x@var{H}x[x@var{DEPTH}]
3475187d 1857
33632788
MCA
1858Set the initial graphics mode. For TCX, the default is 1024x768x8 with the
1859option of 1024x768x24. For cgthree, the default is 1024x768x8 with the option
1860of 1152x900x8 for people who wish to use OBP.
3475187d 1861
4e257e5e 1862@item -prom-env @var{string}
66508601
BS
1863
1864Set OpenBIOS variables in NVRAM, for example:
1865
1866@example
1867qemu-system-sparc -prom-env 'auto-boot?=false' \
1868 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1869@end example
1870
6a4e1771 1871@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook]
a2502b58
BS
1872
1873Set the emulated machine type. Default is SS-5.
1874
3475187d
FB
1875@end table
1876
5fafdf24 1877@c man end
3475187d 1878
24d4de45
TS
1879@node Sparc64 System emulator
1880@section Sparc64 System emulator
7544a042 1881@cindex system emulation (Sparc64)
e80cfcfc 1882
34a3d239
BS
1883Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
1884(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
9bb9f217
MCA
1885Niagara (T1) machine. The Sun4u emulator is mostly complete, being
1886able to run Linux, NetBSD and OpenBSD in headless (-nographic) mode. The
a2664ca0
AT
1887Sun4v emulator is still a work in progress.
1888
1889The Niagara T1 emulator makes use of firmware and OS binaries supplied in the S10image/ directory
1890of the OpenSPARC T1 project @url{http://download.oracle.com/technetwork/systems/opensparc/OpenSPARCT1_Arch.1.5.tar.bz2}
1891and is able to boot the disk.s10hw2 Solaris image.
1892@example
1893qemu-system-sparc64 -M niagara -L /path-to/S10image/ \
1894 -nographic -m 256 \
1895 -drive if=pflash,readonly=on,file=/S10image/disk.s10hw2
1896@end example
1897
b756921a 1898
c7ba218d 1899QEMU emulates the following peripherals:
83469015
FB
1900
1901@itemize @minus
1902@item
5fafdf24 1903UltraSparc IIi APB PCI Bridge
83469015
FB
1904@item
1905PCI VGA compatible card with VESA Bochs Extensions
1906@item
34a3d239
BS
1907PS/2 mouse and keyboard
1908@item
83469015
FB
1909Non Volatile RAM M48T59
1910@item
1911PC-compatible serial ports
c7ba218d
BS
1912@item
19132 PCI IDE interfaces with hard disk and CD-ROM support
34a3d239
BS
1914@item
1915Floppy disk
83469015
FB
1916@end itemize
1917
c7ba218d
BS
1918@c man begin OPTIONS
1919
1920The following options are specific to the Sparc64 emulation:
1921
1922@table @option
1923
4e257e5e 1924@item -prom-env @var{string}
34a3d239
BS
1925
1926Set OpenBIOS variables in NVRAM, for example:
1927
1928@example
1929qemu-system-sparc64 -prom-env 'auto-boot?=false'
1930@end example
1931
a2664ca0 1932@item -M [sun4u|sun4v|niagara]
c7ba218d
BS
1933
1934Set the emulated machine type. The default is sun4u.
1935
1936@end table
1937
1938@c man end
1939
24d4de45
TS
1940@node MIPS System emulator
1941@section MIPS System emulator
7544a042 1942@cindex system emulation (MIPS)
9d0a8e6f 1943
d9aedc32
TS
1944Four executables cover simulation of 32 and 64-bit MIPS systems in
1945both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
1946@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
88cb0a02 1947Five different machine types are emulated:
24d4de45
TS
1948
1949@itemize @minus
1950@item
1951A generic ISA PC-like machine "mips"
1952@item
1953The MIPS Malta prototype board "malta"
1954@item
d9aedc32 1955An ACER Pica "pica61". This machine needs the 64-bit emulator.
6bf5b4e8 1956@item
f0fc6f8f 1957MIPS emulator pseudo board "mipssim"
88cb0a02
AJ
1958@item
1959A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
24d4de45
TS
1960@end itemize
1961
1962The generic emulation is supported by Debian 'Etch' and is able to
1963install Debian into a virtual disk image. The following devices are
1964emulated:
3f9f3aa1
FB
1965
1966@itemize @minus
5fafdf24 1967@item
6bf5b4e8 1968A range of MIPS CPUs, default is the 24Kf
3f9f3aa1
FB
1969@item
1970PC style serial port
1971@item
24d4de45
TS
1972PC style IDE disk
1973@item
3f9f3aa1
FB
1974NE2000 network card
1975@end itemize
1976
24d4de45
TS
1977The Malta emulation supports the following devices:
1978
1979@itemize @minus
1980@item
0b64d008 1981Core board with MIPS 24Kf CPU and Galileo system controller
24d4de45
TS
1982@item
1983PIIX4 PCI/USB/SMbus controller
1984@item
1985The Multi-I/O chip's serial device
1986@item
3a2eeac0 1987PCI network cards (PCnet32 and others)
24d4de45
TS
1988@item
1989Malta FPGA serial device
1990@item
1f605a76 1991Cirrus (default) or any other PCI VGA graphics card
24d4de45
TS
1992@end itemize
1993
1994The ACER Pica emulation supports:
1995
1996@itemize @minus
1997@item
1998MIPS R4000 CPU
1999@item
2000PC-style IRQ and DMA controllers
2001@item
2002PC Keyboard
2003@item
2004IDE controller
2005@end itemize
3f9f3aa1 2006
b5e4946f 2007The mipssim pseudo board emulation provides an environment similar
f0fc6f8f
TS
2008to what the proprietary MIPS emulator uses for running Linux.
2009It supports:
6bf5b4e8
TS
2010
2011@itemize @minus
2012@item
2013A range of MIPS CPUs, default is the 24Kf
2014@item
2015PC style serial port
2016@item
2017MIPSnet network emulation
2018@end itemize
2019
88cb0a02
AJ
2020The MIPS Magnum R4000 emulation supports:
2021
2022@itemize @minus
2023@item
2024MIPS R4000 CPU
2025@item
2026PC-style IRQ controller
2027@item
2028PC Keyboard
2029@item
2030SCSI controller
2031@item
2032G364 framebuffer
2033@end itemize
2034
2035
24d4de45
TS
2036@node ARM System emulator
2037@section ARM System emulator
7544a042 2038@cindex system emulation (ARM)
3f9f3aa1
FB
2039
2040Use the executable @file{qemu-system-arm} to simulate a ARM
2041machine. The ARM Integrator/CP board is emulated with the following
2042devices:
2043
2044@itemize @minus
2045@item
9ee6e8bb 2046ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
3f9f3aa1
FB
2047@item
2048Two PL011 UARTs
5fafdf24 2049@item
3f9f3aa1 2050SMC 91c111 Ethernet adapter
00a9bf19
PB
2051@item
2052PL110 LCD controller
2053@item
2054PL050 KMI with PS/2 keyboard and mouse.
a1bb27b1
PB
2055@item
2056PL181 MultiMedia Card Interface with SD card.
00a9bf19
PB
2057@end itemize
2058
2059The ARM Versatile baseboard is emulated with the following devices:
2060
2061@itemize @minus
2062@item
9ee6e8bb 2063ARM926E, ARM1136 or Cortex-A8 CPU
00a9bf19
PB
2064@item
2065PL190 Vectored Interrupt Controller
2066@item
2067Four PL011 UARTs
5fafdf24 2068@item
00a9bf19
PB
2069SMC 91c111 Ethernet adapter
2070@item
2071PL110 LCD controller
2072@item
2073PL050 KMI with PS/2 keyboard and mouse.
2074@item
2075PCI host bridge. Note the emulated PCI bridge only provides access to
2076PCI memory space. It does not provide access to PCI IO space.
4be456f1
TS
2077This means some devices (eg. ne2k_pci NIC) are not usable, and others
2078(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
00a9bf19 2079mapped control registers.
e6de1bad
PB
2080@item
2081PCI OHCI USB controller.
2082@item
2083LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
a1bb27b1
PB
2084@item
2085PL181 MultiMedia Card Interface with SD card.
3f9f3aa1
FB
2086@end itemize
2087
21a88941
PB
2088Several variants of the ARM RealView baseboard are emulated,
2089including the EB, PB-A8 and PBX-A9. Due to interactions with the
2090bootloader, only certain Linux kernel configurations work out
2091of the box on these boards.
2092
2093Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2094enabled in the kernel, and expect 512M RAM. Kernels for The PBX-A9 board
2095should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2096disabled and expect 1024M RAM.
2097
40c5c6cd 2098The following devices are emulated:
d7739d75
PB
2099
2100@itemize @minus
2101@item
f7c70325 2102ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
d7739d75
PB
2103@item
2104ARM AMBA Generic/Distributed Interrupt Controller
2105@item
2106Four PL011 UARTs
5fafdf24 2107@item
0ef849d7 2108SMC 91c111 or SMSC LAN9118 Ethernet adapter
d7739d75
PB
2109@item
2110PL110 LCD controller
2111@item
2112PL050 KMI with PS/2 keyboard and mouse
2113@item
2114PCI host bridge
2115@item
2116PCI OHCI USB controller
2117@item
2118LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
a1bb27b1
PB
2119@item
2120PL181 MultiMedia Card Interface with SD card.
d7739d75
PB
2121@end itemize
2122
b00052e4
AZ
2123The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2124and "Terrier") emulation includes the following peripherals:
2125
2126@itemize @minus
2127@item
2128Intel PXA270 System-on-chip (ARM V5TE core)
2129@item
2130NAND Flash memory
2131@item
2132IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2133@item
2134On-chip OHCI USB controller
2135@item
2136On-chip LCD controller
2137@item
2138On-chip Real Time Clock
2139@item
2140TI ADS7846 touchscreen controller on SSP bus
2141@item
2142Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2143@item
2144GPIO-connected keyboard controller and LEDs
2145@item
549444e1 2146Secure Digital card connected to PXA MMC/SD host
b00052e4
AZ
2147@item
2148Three on-chip UARTs
2149@item
2150WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2151@end itemize
2152
02645926
AZ
2153The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2154following elements:
2155
2156@itemize @minus
2157@item
2158Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2159@item
2160ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2161@item
2162On-chip LCD controller
2163@item
2164On-chip Real Time Clock
2165@item
2166TI TSC2102i touchscreen controller / analog-digital converter / Audio
2167CODEC, connected through MicroWire and I@math{^2}S busses
2168@item
2169GPIO-connected matrix keypad
2170@item
2171Secure Digital card connected to OMAP MMC/SD host
2172@item
2173Three on-chip UARTs
2174@end itemize
2175
c30bb264
AZ
2176Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2177emulation supports the following elements:
2178
2179@itemize @minus
2180@item
2181Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2182@item
2183RAM and non-volatile OneNAND Flash memories
2184@item
2185Display connected to EPSON remote framebuffer chip and OMAP on-chip
2186display controller and a LS041y3 MIPI DBI-C controller
2187@item
2188TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2189driven through SPI bus
2190@item
2191National Semiconductor LM8323-controlled qwerty keyboard driven
2192through I@math{^2}C bus
2193@item
2194Secure Digital card connected to OMAP MMC/SD host
2195@item
2196Three OMAP on-chip UARTs and on-chip STI debugging console
2197@item
40c5c6cd 2198A Bluetooth(R) transceiver and HCI connected to an UART
2d564691 2199@item
c30bb264
AZ
2200Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2201TUSB6010 chip - only USB host mode is supported
2202@item
2203TI TMP105 temperature sensor driven through I@math{^2}C bus
2204@item
2205TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2206@item
2207Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2208through CBUS
2209@end itemize
2210
9ee6e8bb
PB
2211The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2212devices:
2213
2214@itemize @minus
2215@item
2216Cortex-M3 CPU core.
2217@item
221864k Flash and 8k SRAM.
2219@item
2220Timers, UARTs, ADC and I@math{^2}C interface.
2221@item
2222OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2223@end itemize
2224
2225The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2226devices:
2227
2228@itemize @minus
2229@item
2230Cortex-M3 CPU core.
2231@item
2232256k Flash and 64k SRAM.
2233@item
2234Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2235@item
2236OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2237@end itemize
2238
57cd6e97
AZ
2239The Freecom MusicPal internet radio emulation includes the following
2240elements:
2241
2242@itemize @minus
2243@item
2244Marvell MV88W8618 ARM core.
2245@item
224632 MB RAM, 256 KB SRAM, 8 MB flash.
2247@item
2248Up to 2 16550 UARTs
2249@item
2250MV88W8xx8 Ethernet controller
2251@item
2252MV88W8618 audio controller, WM8750 CODEC and mixer
2253@item
e080e785 2254128×64 display with brightness control
57cd6e97
AZ
2255@item
22562 buttons, 2 navigation wheels with button function
2257@end itemize
2258
997641a8 2259The Siemens SX1 models v1 and v2 (default) basic emulation.
40c5c6cd 2260The emulation includes the following elements:
997641a8
AZ
2261
2262@itemize @minus
2263@item
2264Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2265@item
2266ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2267V1
22681 Flash of 16MB and 1 Flash of 8MB
2269V2
22701 Flash of 32MB
2271@item
2272On-chip LCD controller
2273@item
2274On-chip Real Time Clock
2275@item
2276Secure Digital card connected to OMAP MMC/SD host
2277@item
2278Three on-chip UARTs
2279@end itemize
2280
3f9f3aa1
FB
2281A Linux 2.6 test image is available on the QEMU web site. More
2282information is available in the QEMU mailing-list archive.
9d0a8e6f 2283
d2c639d6
BS
2284@c man begin OPTIONS
2285
2286The following options are specific to the ARM emulation:
2287
2288@table @option
2289
2290@item -semihosting
2291Enable semihosting syscall emulation.
2292
2293On ARM this implements the "Angel" interface.
2294
2295Note that this allows guest direct access to the host filesystem,
2296so should only be used with trusted guest OS.
2297
2298@end table
2299
abc67eb6
TH
2300@c man end
2301
24d4de45
TS
2302@node ColdFire System emulator
2303@section ColdFire System emulator
7544a042
SW
2304@cindex system emulation (ColdFire)
2305@cindex system emulation (M68K)
209a4e69
PB
2306
2307Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2308The emulator is able to boot a uClinux kernel.
707e011b
PB
2309
2310The M5208EVB emulation includes the following devices:
2311
2312@itemize @minus
5fafdf24 2313@item
707e011b
PB
2314MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2315@item
2316Three Two on-chip UARTs.
2317@item
2318Fast Ethernet Controller (FEC)
2319@end itemize
2320
2321The AN5206 emulation includes the following devices:
209a4e69
PB
2322
2323@itemize @minus
5fafdf24 2324@item
209a4e69
PB
2325MCF5206 ColdFire V2 Microprocessor.
2326@item
2327Two on-chip UARTs.
2328@end itemize
2329
d2c639d6
BS
2330@c man begin OPTIONS
2331
7544a042 2332The following options are specific to the ColdFire emulation:
d2c639d6
BS
2333
2334@table @option
2335
2336@item -semihosting
2337Enable semihosting syscall emulation.
2338
2339On M68K this implements the "ColdFire GDB" interface used by libgloss.
2340
2341Note that this allows guest direct access to the host filesystem,
2342so should only be used with trusted guest OS.
2343
2344@end table
2345
abc67eb6
TH
2346@c man end
2347
7544a042
SW
2348@node Cris System emulator
2349@section Cris System emulator
2350@cindex system emulation (Cris)
2351
2352TODO
2353
2354@node Microblaze System emulator
2355@section Microblaze System emulator
2356@cindex system emulation (Microblaze)
2357
2358TODO
2359
2360@node SH4 System emulator
2361@section SH4 System emulator
2362@cindex system emulation (SH4)
2363
2364TODO
2365
3aeaea65
MF
2366@node Xtensa System emulator
2367@section Xtensa System emulator
2368@cindex system emulation (Xtensa)
2369
2370Two executables cover simulation of both Xtensa endian options,
2371@file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
2372Two different machine types are emulated:
2373
2374@itemize @minus
2375@item
2376Xtensa emulator pseudo board "sim"
2377@item
2378Avnet LX60/LX110/LX200 board
2379@end itemize
2380
b5e4946f 2381The sim pseudo board emulation provides an environment similar
3aeaea65
MF
2382to one provided by the proprietary Tensilica ISS.
2383It supports:
2384
2385@itemize @minus
2386@item
2387A range of Xtensa CPUs, default is the DC232B
2388@item
2389Console and filesystem access via semihosting calls
2390@end itemize
2391
2392The Avnet LX60/LX110/LX200 emulation supports:
2393
2394@itemize @minus
2395@item
2396A range of Xtensa CPUs, default is the DC232B
2397@item
239816550 UART
2399@item
2400OpenCores 10/100 Mbps Ethernet MAC
2401@end itemize
2402
2403@c man begin OPTIONS
2404
2405The following options are specific to the Xtensa emulation:
2406
2407@table @option
2408
2409@item -semihosting
2410Enable semihosting syscall emulation.
2411
2412Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2413Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2414
2415Note that this allows guest direct access to the host filesystem,
2416so should only be used with trusted guest OS.
2417
2418@end table
3f2ce724 2419
abc67eb6
TH
2420@c man end
2421
3f2ce724
TH
2422@node QEMU Guest Agent
2423@chapter QEMU Guest Agent invocation
2424
2425@include qemu-ga.texi
2426
5fafdf24
TS
2427@node QEMU User space emulator
2428@chapter QEMU User space emulator
83195237
FB
2429
2430@menu
2431* Supported Operating Systems ::
0722cc42 2432* Features::
83195237 2433* Linux User space emulator::
84778508 2434* BSD User space emulator ::
83195237
FB
2435@end menu
2436
2437@node Supported Operating Systems
2438@section Supported Operating Systems
2439
2440The following OS are supported in user space emulation:
2441
2442@itemize @minus
2443@item
4be456f1 2444Linux (referred as qemu-linux-user)
83195237 2445@item
84778508 2446BSD (referred as qemu-bsd-user)
83195237
FB
2447@end itemize
2448
0722cc42
PB
2449@node Features
2450@section Features
2451
2452QEMU user space emulation has the following notable features:
2453
2454@table @strong
2455@item System call translation:
2456QEMU includes a generic system call translator. This means that
2457the parameters of the system calls can be converted to fix
2458endianness and 32/64-bit mismatches between hosts and targets.
2459IOCTLs can be converted too.
2460
2461@item POSIX signal handling:
2462QEMU can redirect to the running program all signals coming from
2463the host (such as @code{SIGALRM}), as well as synthesize signals from
2464virtual CPU exceptions (for example @code{SIGFPE} when the program
2465executes a division by zero).
2466
2467QEMU relies on the host kernel to emulate most signal system
2468calls, for example to emulate the signal mask. On Linux, QEMU
2469supports both normal and real-time signals.
2470
2471@item Threading:
2472On Linux, QEMU can emulate the @code{clone} syscall and create a real
2473host thread (with a separate virtual CPU) for each emulated thread.
2474Note that not all targets currently emulate atomic operations correctly.
2475x86 and ARM use a global lock in order to preserve their semantics.
2476@end table
2477
2478QEMU was conceived so that ultimately it can emulate itself. Although
2479it is not very useful, it is an important test to show the power of the
2480emulator.
2481
83195237
FB
2482@node Linux User space emulator
2483@section Linux User space emulator
386405f7 2484
debc7065
FB
2485@menu
2486* Quick Start::
2487* Wine launch::
2488* Command line options::
79737e4a 2489* Other binaries::
debc7065
FB
2490@end menu
2491
2492@node Quick Start
83195237 2493@subsection Quick Start
df0f11a0 2494
1f673135 2495In order to launch a Linux process, QEMU needs the process executable
5fafdf24 2496itself and all the target (x86) dynamic libraries used by it.
386405f7 2497
1f673135 2498@itemize
386405f7 2499
1f673135
FB
2500@item On x86, you can just try to launch any process by using the native
2501libraries:
386405f7 2502
5fafdf24 2503@example
1f673135
FB
2504qemu-i386 -L / /bin/ls
2505@end example
386405f7 2506
1f673135
FB
2507@code{-L /} tells that the x86 dynamic linker must be searched with a
2508@file{/} prefix.
386405f7 2509
b65ee4fa
SW
2510@item Since QEMU is also a linux process, you can launch QEMU with
2511QEMU (NOTE: you can only do that if you compiled QEMU from the sources):
386405f7 2512
5fafdf24 2513@example
1f673135
FB
2514qemu-i386 -L / qemu-i386 -L / /bin/ls
2515@end example
386405f7 2516
1f673135
FB
2517@item On non x86 CPUs, you need first to download at least an x86 glibc
2518(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2519@code{LD_LIBRARY_PATH} is not set:
df0f11a0 2520
1f673135 2521@example
5fafdf24 2522unset LD_LIBRARY_PATH
1f673135 2523@end example
1eb87257 2524
1f673135 2525Then you can launch the precompiled @file{ls} x86 executable:
1eb87257 2526
1f673135
FB
2527@example
2528qemu-i386 tests/i386/ls
2529@end example
4c3b5a48 2530You can look at @file{scripts/qemu-binfmt-conf.sh} so that
1f673135
FB
2531QEMU is automatically launched by the Linux kernel when you try to
2532launch x86 executables. It requires the @code{binfmt_misc} module in the
2533Linux kernel.
1eb87257 2534
1f673135
FB
2535@item The x86 version of QEMU is also included. You can try weird things such as:
2536@example
debc7065
FB
2537qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2538 /usr/local/qemu-i386/bin/ls-i386
1f673135 2539@end example
1eb20527 2540
1f673135 2541@end itemize
1eb20527 2542
debc7065 2543@node Wine launch
83195237 2544@subsection Wine launch
1eb20527 2545
1f673135 2546@itemize
386405f7 2547
1f673135
FB
2548@item Ensure that you have a working QEMU with the x86 glibc
2549distribution (see previous section). In order to verify it, you must be
2550able to do:
386405f7 2551
1f673135
FB
2552@example
2553qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2554@end example
386405f7 2555
1f673135 2556@item Download the binary x86 Wine install
5fafdf24 2557(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
386405f7 2558
1f673135 2559@item Configure Wine on your account. Look at the provided script
debc7065 2560@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
1f673135 2561@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
386405f7 2562
1f673135 2563@item Then you can try the example @file{putty.exe}:
386405f7 2564
1f673135 2565@example
debc7065
FB
2566qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2567 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
1f673135 2568@end example
386405f7 2569
1f673135 2570@end itemize
fd429f2f 2571
debc7065 2572@node Command line options
83195237 2573@subsection Command line options
1eb20527 2574
1f673135 2575@example
8485140f 2576@command{qemu-i386} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-cpu} @var{model}] [@option{-g} @var{port}] [@option{-B} @var{offset}] [@option{-R} @var{size}] @var{program} [@var{arguments}...]
1f673135 2577@end example
1eb20527 2578
1f673135
FB
2579@table @option
2580@item -h
2581Print the help
3b46e624 2582@item -L path
1f673135
FB
2583Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2584@item -s size
2585Set the x86 stack size in bytes (default=524288)
34a3d239 2586@item -cpu model
c8057f95 2587Select CPU model (-cpu help for list and additional feature selection)
f66724c9
SW
2588@item -E @var{var}=@var{value}
2589Set environment @var{var} to @var{value}.
2590@item -U @var{var}
2591Remove @var{var} from the environment.
379f6698
PB
2592@item -B offset
2593Offset guest address by the specified number of bytes. This is useful when
1f5c3f8c
SW
2594the address region required by guest applications is reserved on the host.
2595This option is currently only supported on some hosts.
68a1c816
PB
2596@item -R size
2597Pre-allocate a guest virtual address space of the given size (in bytes).
0d6753e5 2598"G", "M", and "k" suffixes may be used when specifying the size.
386405f7
FB
2599@end table
2600
1f673135 2601Debug options:
386405f7 2602
1f673135 2603@table @option
989b697d
PM
2604@item -d item1,...
2605Activate logging of the specified items (use '-d help' for a list of log items)
1f673135
FB
2606@item -p pagesize
2607Act as if the host page size was 'pagesize' bytes
34a3d239
BS
2608@item -g port
2609Wait gdb connection to port
1b530a6d
AJ
2610@item -singlestep
2611Run the emulation in single step mode.
1f673135 2612@end table
386405f7 2613
b01bcae6
AZ
2614Environment variables:
2615
2616@table @env
2617@item QEMU_STRACE
2618Print system calls and arguments similar to the 'strace' program
2619(NOTE: the actual 'strace' program will not work because the user
2620space emulator hasn't implemented ptrace). At the moment this is
2621incomplete. All system calls that don't have a specific argument
2622format are printed with information for six arguments. Many
2623flag-style arguments don't have decoders and will show up as numbers.
5cfdf930 2624@end table
b01bcae6 2625
79737e4a 2626@node Other binaries
83195237 2627@subsection Other binaries
79737e4a 2628
7544a042
SW
2629@cindex user mode (Alpha)
2630@command{qemu-alpha} TODO.
2631
2632@cindex user mode (ARM)
2633@command{qemu-armeb} TODO.
2634
2635@cindex user mode (ARM)
79737e4a
PB
2636@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2637binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2638configurations), and arm-uclinux bFLT format binaries.
2639
7544a042
SW
2640@cindex user mode (ColdFire)
2641@cindex user mode (M68K)
e6e5906b
PB
2642@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2643(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2644coldfire uClinux bFLT format binaries.
2645
79737e4a
PB
2646The binary format is detected automatically.
2647
7544a042
SW
2648@cindex user mode (Cris)
2649@command{qemu-cris} TODO.
2650
2651@cindex user mode (i386)
2652@command{qemu-i386} TODO.
2653@command{qemu-x86_64} TODO.
2654
2655@cindex user mode (Microblaze)
2656@command{qemu-microblaze} TODO.
2657
2658@cindex user mode (MIPS)
2659@command{qemu-mips} TODO.
2660@command{qemu-mipsel} TODO.
2661
e671711c
MV
2662@cindex user mode (NiosII)
2663@command{qemu-nios2} TODO.
2664
7544a042
SW
2665@cindex user mode (PowerPC)
2666@command{qemu-ppc64abi32} TODO.
2667@command{qemu-ppc64} TODO.
2668@command{qemu-ppc} TODO.
2669
2670@cindex user mode (SH4)
2671@command{qemu-sh4eb} TODO.
2672@command{qemu-sh4} TODO.
2673
2674@cindex user mode (SPARC)
34a3d239
BS
2675@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2676
a785e42e
BS
2677@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2678(Sparc64 CPU, 32 bit ABI).
2679
2680@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2681SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2682
84778508
BS
2683@node BSD User space emulator
2684@section BSD User space emulator
2685
2686@menu
2687* BSD Status::
2688* BSD Quick Start::
2689* BSD Command line options::
2690@end menu
2691
2692@node BSD Status
2693@subsection BSD Status
2694
2695@itemize @minus
2696@item
2697target Sparc64 on Sparc64: Some trivial programs work.
2698@end itemize
2699
2700@node BSD Quick Start
2701@subsection Quick Start
2702
2703In order to launch a BSD process, QEMU needs the process executable
2704itself and all the target dynamic libraries used by it.
2705
2706@itemize
2707
2708@item On Sparc64, you can just try to launch any process by using the native
2709libraries:
2710
2711@example
2712qemu-sparc64 /bin/ls
2713@end example
2714
2715@end itemize
2716
2717@node BSD Command line options
2718@subsection Command line options
2719
2720@example
8485140f 2721@command{qemu-sparc64} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-bsd} @var{type}] @var{program} [@var{arguments}...]
84778508
BS
2722@end example
2723
2724@table @option
2725@item -h
2726Print the help
2727@item -L path
2728Set the library root path (default=/)
2729@item -s size
2730Set the stack size in bytes (default=524288)
f66724c9
SW
2731@item -ignore-environment
2732Start with an empty environment. Without this option,
40c5c6cd 2733the initial environment is a copy of the caller's environment.
f66724c9
SW
2734@item -E @var{var}=@var{value}
2735Set environment @var{var} to @var{value}.
2736@item -U @var{var}
2737Remove @var{var} from the environment.
84778508
BS
2738@item -bsd type
2739Set the type of the emulated BSD Operating system. Valid values are
2740FreeBSD, NetBSD and OpenBSD (default).
2741@end table
2742
2743Debug options:
2744
2745@table @option
989b697d
PM
2746@item -d item1,...
2747Activate logging of the specified items (use '-d help' for a list of log items)
84778508
BS
2748@item -p pagesize
2749Act as if the host page size was 'pagesize' bytes
1b530a6d
AJ
2750@item -singlestep
2751Run the emulation in single step mode.
84778508
BS
2752@end table
2753
47eacb4f 2754
78e87797
PB
2755@include qemu-tech.texi
2756
eb22aeca
DB
2757@node Deprecated features
2758@appendix Deprecated features
2759
2760In general features are intended to be supported indefinitely once
2761introduced into QEMU. In the event that a feature needs to be removed,
2762it will be listed in this appendix. The feature will remain functional
2763for 2 releases prior to actual removal. Deprecated features may also
2764generate warnings on the console when QEMU starts up, or if activated
2765via a monitor command, however, this is not a mandatory requirement.
2766
2767Prior to the 2.10.0 release there was no official policy on how
2768long features would be deprecated prior to their removal, nor
2769any documented list of which features were deprecated. Thus
2770any features deprecated prior to 2.10.0 will be treated as if
2771they were first deprecated in the 2.10.0 release.
2772
2773What follows is a list of all features currently marked as
2774deprecated.
2775
b7715af2
DB
2776@section Build options
2777
2778@subsection GTK 2.x
2779
2780Previously QEMU has supported building against both GTK 2.x
2781and 3.x series APIs. Support for the GTK 2.x builds will be
2782discontinued, so maintainers should switch to using GTK 3.x,
2783which is the default.
2784
e52c6ba3
DB
2785@subsection SDL 1.2
2786
2787Previously QEMU has supported building against both SDL 1.2
2788and 2.0 series APIs. Support for the SDL 1.2 builds will be
2789discontinued, so maintainers should switch to using SDL 2.0,
2790which is the default.
2791
eb22aeca
DB
2792@section System emulator command line arguments
2793
eb22aeca
DB
2794@subsection -no-kvm (since 1.3.0)
2795
2796The ``-no-kvm'' argument is now a synonym for setting
2797``-machine accel=tcg''.
2798
eb22aeca
DB
2799@subsection -vnc tls (since 2.5.0)
2800
2801The ``-vnc tls'' argument is now a synonym for setting
2802``-object tls-creds-anon,id=tls0'' combined with
2803``-vnc tls-creds=tls0'
2804
2805@subsection -vnc x509 (since 2.5.0)
2806
2807The ``-vnc x509=/path/to/certs'' argument is now a
2808synonym for setting
2809``-object tls-creds-x509,dir=/path/to/certs,id=tls0,verify-peer=no''
2810combined with ``-vnc tls-creds=tls0'
2811
2812@subsection -vnc x509verify (since 2.5.0)
2813
2814The ``-vnc x509verify=/path/to/certs'' argument is now a
2815synonym for setting
2816``-object tls-creds-x509,dir=/path/to/certs,id=tls0,verify-peer=yes''
2817combined with ``-vnc tls-creds=tls0'
2818
2819@subsection -tftp (since 2.6.0)
2820
fb815218
PB
2821The ``-tftp /some/dir'' argument is replaced by either
2822``-netdev user,id=x,tftp=/some/dir '' (for pluggable NICs, accompanied
2823with ``-device ...,netdev=x''), or ``-nic user,tftp=/some/dir''
0065e915
TH
2824(for embedded NICs). The new syntax allows different settings to be
2825provided per NIC.
eb22aeca
DB
2826
2827@subsection -bootp (since 2.6.0)
2828
fb815218
PB
2829The ``-bootp /some/file'' argument is replaced by either
2830``-netdev user,id=x,bootp=/some/file '' (for pluggable NICs, accompanied
2831with ``-device ...,netdev=x''), or ``-nic user,bootp=/some/file''
0065e915
TH
2832(for embedded NICs). The new syntax allows different settings to be
2833provided per NIC.
eb22aeca
DB
2834
2835@subsection -redir (since 2.6.0)
2836
0065e915 2837The ``-redir [tcp|udp]:hostport:[guestaddr]:guestport'' argument is
fb815218
PB
2838replaced by either
2839``-netdev user,id=x,hostfwd=[tcp|udp]:[hostaddr]:hostport-[guestaddr]:guestport''
2840(for pluggable NICs, accompanied with ``-device ...,netdev=x'') or
2841``-nic user,hostfwd=[tcp|udp]:[hostaddr]:hostport-[guestaddr]:guestport''
2842(for embedded NICs). The new syntax allows different settings to be
2843provided per NIC.
eb22aeca
DB
2844
2845@subsection -smb (since 2.6.0)
2846
fb815218
PB
2847The ``-smb /some/dir'' argument is replaced by either
2848``-netdev user,id=x,smb=/some/dir '' (for pluggable NICs, accompanied
2849with ``-device ...,netdev=x''), or ``-nic user,smb=/some/dir''
0065e915
TH
2850(for embedded NICs). The new syntax allows different settings to be
2851provided per NIC.
eb22aeca 2852
c08d46a9
TH
2853@subsection -drive cyls=...,heads=...,secs=...,trans=... (since 2.10.0)
2854
2855The drive geometry arguments are replaced by the the geometry arguments
2856that can be specified with the ``-device'' parameter.
2857
2858@subsection -drive serial=... (since 2.10.0)
2859
2860The drive serial argument is replaced by the the serial argument
2861that can be specified with the ``-device'' parameter.
2862
2863@subsection -drive addr=... (since 2.10.0)
2864
2865The drive addr argument is replaced by the the addr argument
2866that can be specified with the ``-device'' parameter.
2867
eb22aeca
DB
2868@subsection -usbdevice (since 2.10.0)
2869
2870The ``-usbdevice DEV'' argument is now a synonym for setting
2871the ``-device usb-DEV'' argument instead. The deprecated syntax
2872would automatically enable USB support on the machine type.
2873If using the new syntax, USB support must be explicitly
2874enabled via the ``-machine usb=on'' argument.
2875
3478eae9
EH
2876@subsection -nodefconfig (since 2.11.0)
2877
2878The ``-nodefconfig`` argument is a synonym for ``-no-user-config``.
2879
4060e671
TH
2880@subsection -balloon (since 2.12.0)
2881
2882The @option{--balloon virtio} argument has been superseded by
2883@option{--device virtio-balloon}.
2884
d69969e5
HP
2885@subsection -machine s390-squash-mcss=on|off (since 2.12.0)
2886
2887The ``s390-squash-mcss=on`` property has been obsoleted by allowing the
2888cssid to be chosen freely. Instead of squashing subchannels into the
2889default channel subsystem image for guests that do not support multiple
2890channel subsystems, all devices can be put into the default channel
2891subsystem image.
2892
db3b3c72
GK
2893@subsection -fsdev handle (since 2.12.0)
2894
2895The ``handle'' fsdev backend does not support symlinks and causes the 9p
2896filesystem in the guest to fail a fair amount of tests from the PJD POSIX
2897filesystem test suite. Also it requires the CAP_DAC_READ_SEARCH capability,
2898which is not the recommended way to run QEMU. This backend should not be
2899used and it will be removed with no replacement.
2900
e12c8198
TH
2901@subsection -no-frame (since 2.12.0)
2902
2903The @code{--no-frame} argument works with SDL 1.2 only. The other user
2904interfaces never implemented this in the first place. So this will be
2905removed together with SDL 1.2 support.
2906
f29d4450 2907@subsection -rtc-td-hack (since 2.12.0)
67358447 2908
f29d4450
TH
2909The @code{-rtc-td-hack} option has been replaced by
2910@code{-rtc driftfix=slew}.
2911
2912@subsection -localtime (since 2.12.0)
2913
2914The @code{-localtime} option has been replaced by @code{-rtc base=localtime}.
2915
2916@subsection -startdate (since 2.12.0)
2917
2918The @code{-startdate} option has been replaced by @code{-rtc base=@var{date}}.
67358447 2919
dcd42560 2920@subsection -virtioconsole (since 3.0.0)
45401299
TH
2921
2922Option @option{-virtioconsole} has been replaced by
2923@option{-device virtconsole}.
2924
d7e19545
TH
2925@subsection -clock (since 3.0.0)
2926
2927The @code{-clock} option is ignored since QEMU version 1.7.0. There is no
2928replacement since it is not needed anymore.
2929
3e99da5e
VSO
2930@section QEMU Machine Protocol (QMP) commands
2931
2932@subsection block-dirty-bitmap-add "autoload" parameter (since 2.12.0)
2933
2934"autoload" parameter is now ignored. All bitmaps are automatically loaded
2935from qcow2 images.
2936
ff9a9156
VM
2937@subsection query-cpus (since 2.12.0)
2938
2939The ``query-cpus'' command is replaced by the ``query-cpus-fast'' command.
2940
dcd42560 2941@subsection query-cpus-fast "arch" output member (since 3.0.0)
6ffa3ab4
LE
2942
2943The ``arch'' output member of the ``query-cpus-fast'' command is
2944replaced by the ``target'' output member.
2945
eb22aeca
DB
2946@section System emulator devices
2947
2948@subsection ivshmem (since 2.6.0)
2949
2950The ``ivshmem'' device type is replaced by either the ``ivshmem-plain''
2951or ``ivshmem-doorbell`` device types.
2952
64b47457
TH
2953@subsection Page size support < 4k for embedded PowerPC CPUs (since 2.12.0)
2954
2955qemu-system-ppcemb will be removed. qemu-system-ppc (or qemu-system-ppc64)
2956should be used instead. That means that embedded 4xx PowerPC CPUs will not
2957support page sizes < 4096 any longer.
2958
83926ad5
AF
2959@section System emulator machines
2960
efe2add7 2961@section Device options
4f7be280 2962
efe2add7
CLG
2963@subsection Block device options
2964
2965@subsubsection "backing": "" (since 2.12.0)
4f7be280
HR
2966
2967In order to prevent QEMU from automatically opening an image's backing
2968chain, use ``"backing": null'' instead.
2969
efe2add7
CLG
2970@subsection vio-spapr-device device options
2971
2972@subsubsection "irq": "" (since 3.0.0)
2973
2974The ``irq'' property is obsoleted.
2975
45b47130
DB
2976@node Supported build platforms
2977@appendix Supported build platforms
2978
2979QEMU aims to support building and executing on multiple host OS platforms.
2980This appendix outlines which platforms are the major build targets. These
2981platforms are used as the basis for deciding upon the minimum required
2982versions of 3rd party software QEMU depends on. The supported platforms
2983are the targets for automated testing performed by the project when patches
2984are submitted for review, and tested before and after merge.
2985
2986If a platform is not listed here, it does not imply that QEMU won't work.
2987If an unlisted platform has comparable software versions to a listed platform,
2988there is every expectation that it will work. Bug reports are welcome for
2989problems encountered on unlisted platforms unless they are clearly older
2990vintage than what is described here.
2991
2992Note that when considering software versions shipped in distros as support
2993targets, QEMU considers only the version number, and assumes the features in
2994that distro match the upstream release with the same version. In other words,
2995if a distro backports extra features to the software in their distro, QEMU
2996upstream code will not add explicit support for those backports, unless the
2997feature is auto-detectable in a manner that works for the upstream releases
2998too.
2999
3000The Repology site @url{https://repology.org} is a useful resource to identify
3001currently shipped versions of software in various operating systems, though
3002it does not cover all distros listed below.
3003
3004@section Linux OS
3005
3006For distributions with frequent, short-lifetime releases, the project will
3007aim to support all versions that are not end of life by their respective
3008vendors. For the purposes of identifying supported software versions, the
3009project will look at Fedora, Ubuntu, and openSUSE distros. Other short-
3010lifetime distros will be assumed to ship similar software versions.
3011
3012For distributions with long-lifetime releases, the project will aim to support
3013the most recent major version at all times. Support for the previous major
3014version will be dropped 2 years after the new major version is released. For
3015the purposes of identifying supported software versions, the project will look
3016at RHEL, Debian, Ubuntu LTS, and SLES distros. Other long-lifetime distros will
3017be assumed to ship similar software versions.
3018
3019@section Windows
3020
3021The project supports building with current versions of the MinGW toolchain,
3022hosted on Linux.
3023
3024@section macOS
3025
3026The project supports building with the two most recent versions of macOS, with
3027the current homebrew package set available.
3028
3029@section FreeBSD
3030
3031The project aims to support the all the versions which are not end of life.
3032
3033@section NetBSD
3034
3035The project aims to support the most recent major version at all times. Support
3036for the previous major version will be dropped 2 years after the new major
3037version is released.
3038
3039@section OpenBSD
3040
3041The project aims to support the all the versions which are not end of life.
3042
7544a042
SW
3043@node License
3044@appendix License
3045
3046QEMU is a trademark of Fabrice Bellard.
3047
2f8d8f01
TH
3048QEMU is released under the
3049@url{https://www.gnu.org/licenses/gpl-2.0.txt,GNU General Public License},
3050version 2. Parts of QEMU have specific licenses, see file
70b7fba9 3051@url{https://git.qemu.org/?p=qemu.git;a=blob_plain;f=LICENSE,LICENSE}.
7544a042 3052
debc7065 3053@node Index
7544a042
SW
3054@appendix Index
3055@menu
3056* Concept Index::
3057* Function Index::
3058* Keystroke Index::
3059* Program Index::
3060* Data Type Index::
3061* Variable Index::
3062@end menu
3063
3064@node Concept Index
3065@section Concept Index
3066This is the main index. Should we combine all keywords in one index? TODO
debc7065
FB
3067@printindex cp
3068
7544a042
SW
3069@node Function Index
3070@section Function Index
3071This index could be used for command line options and monitor functions.
3072@printindex fn
3073
3074@node Keystroke Index
3075@section Keystroke Index
3076
3077This is a list of all keystrokes which have a special function
3078in system emulation.
3079
3080@printindex ky
3081
3082@node Program Index
3083@section Program Index
3084@printindex pg
3085
3086@node Data Type Index
3087@section Data Type Index
3088
3089This index could be used for qdev device names and options.
3090
3091@printindex tp
3092
3093@node Variable Index
3094@section Variable Index
3095@printindex vr
3096
debc7065 3097@bye