]> git.proxmox.com Git - mirror_qemu.git/blame - qemu-doc.texi
pc: Remove redundant arguments from xen_hvm_init()
[mirror_qemu.git] / qemu-doc.texi
CommitLineData
386405f7 1\input texinfo @c -*- texinfo -*-
debc7065
FB
2@c %**start of header
3@setfilename qemu-doc.info
e080e785
SW
4
5@documentlanguage en
6@documentencoding UTF-8
7
8f40c388 8@settitle QEMU Emulator User Documentation
debc7065
FB
9@exampleindent 0
10@paragraphindent 0
11@c %**end of header
386405f7 12
a1a32b05
SW
13@ifinfo
14@direntry
15* QEMU: (qemu-doc). The QEMU Emulator User Documentation.
16@end direntry
17@end ifinfo
18
0806e3f6 19@iftex
386405f7
FB
20@titlepage
21@sp 7
8f40c388 22@center @titlefont{QEMU Emulator}
debc7065
FB
23@sp 1
24@center @titlefont{User Documentation}
386405f7
FB
25@sp 3
26@end titlepage
0806e3f6 27@end iftex
386405f7 28
debc7065
FB
29@ifnottex
30@node Top
31@top
32
33@menu
34* Introduction::
35* Installation::
36* QEMU PC System emulator::
37* QEMU System emulator for non PC targets::
83195237 38* QEMU User space emulator::
debc7065 39* compilation:: Compilation from the sources
7544a042 40* License::
debc7065
FB
41* Index::
42@end menu
43@end ifnottex
44
45@contents
46
47@node Introduction
386405f7
FB
48@chapter Introduction
49
debc7065
FB
50@menu
51* intro_features:: Features
52@end menu
53
54@node intro_features
322d0c66 55@section Features
386405f7 56
1f673135
FB
57QEMU is a FAST! processor emulator using dynamic translation to
58achieve good emulation speed.
1eb20527
FB
59
60QEMU has two operating modes:
0806e3f6 61
d7e5edca 62@itemize
7544a042 63@cindex operating modes
0806e3f6 64
5fafdf24 65@item
7544a042 66@cindex system emulation
1f673135 67Full system emulation. In this mode, QEMU emulates a full system (for
3f9f3aa1
FB
68example a PC), including one or several processors and various
69peripherals. It can be used to launch different Operating Systems
70without rebooting the PC or to debug system code.
1eb20527 71
5fafdf24 72@item
7544a042 73@cindex user mode emulation
83195237
FB
74User mode emulation. In this mode, QEMU can launch
75processes compiled for one CPU on another CPU. It can be used to
1f673135
FB
76launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
77to ease cross-compilation and cross-debugging.
1eb20527
FB
78
79@end itemize
80
e1b4382c 81QEMU can run without a host kernel driver and yet gives acceptable
5fafdf24 82performance.
322d0c66 83
52c00a5f
FB
84For system emulation, the following hardware targets are supported:
85@itemize
7544a042
SW
86@cindex emulated target systems
87@cindex supported target systems
9d0a8e6f 88@item PC (x86 or x86_64 processor)
3f9f3aa1 89@item ISA PC (old style PC without PCI bus)
52c00a5f 90@item PREP (PowerPC processor)
d45952a0 91@item G3 Beige PowerMac (PowerPC processor)
9d0a8e6f 92@item Mac99 PowerMac (PowerPC processor, in progress)
ee76f82e 93@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
c7ba218d 94@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
d9aedc32 95@item Malta board (32-bit and 64-bit MIPS processors)
88cb0a02 96@item MIPS Magnum (64-bit MIPS processor)
9ee6e8bb
PB
97@item ARM Integrator/CP (ARM)
98@item ARM Versatile baseboard (ARM)
0ef849d7 99@item ARM RealView Emulation/Platform baseboard (ARM)
ef4c3856 100@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
9ee6e8bb
PB
101@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
102@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
707e011b 103@item Freescale MCF5208EVB (ColdFire V2).
209a4e69 104@item Arnewsh MCF5206 evaluation board (ColdFire V2).
02645926 105@item Palm Tungsten|E PDA (OMAP310 processor)
c30bb264 106@item N800 and N810 tablets (OMAP2420 processor)
57cd6e97 107@item MusicPal (MV88W8618 ARM processor)
ef4c3856
AZ
108@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
109@item Siemens SX1 smartphone (OMAP310 processor)
48c50a62
EI
110@item AXIS-Devboard88 (CRISv32 ETRAX-FS).
111@item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze).
3aeaea65 112@item Avnet LX60/LX110/LX200 boards (Xtensa)
52c00a5f 113@end itemize
386405f7 114
7544a042
SW
115@cindex supported user mode targets
116For user emulation, x86 (32 and 64 bit), PowerPC (32 and 64 bit),
117ARM, MIPS (32 bit only), Sparc (32 and 64 bit),
118Alpha, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported.
0806e3f6 119
debc7065 120@node Installation
5b9f457a
FB
121@chapter Installation
122
15a34c63
FB
123If you want to compile QEMU yourself, see @ref{compilation}.
124
debc7065
FB
125@menu
126* install_linux:: Linux
127* install_windows:: Windows
128* install_mac:: Macintosh
129@end menu
130
131@node install_linux
1f673135 132@section Linux
7544a042 133@cindex installation (Linux)
1f673135 134
7c3fc84d
FB
135If a precompiled package is available for your distribution - you just
136have to install it. Otherwise, see @ref{compilation}.
5b9f457a 137
debc7065 138@node install_windows
1f673135 139@section Windows
7544a042 140@cindex installation (Windows)
8cd0ac2f 141
15a34c63 142Download the experimental binary installer at
debc7065 143@url{http://www.free.oszoo.org/@/download.html}.
7544a042 144TODO (no longer available)
d691f669 145
debc7065 146@node install_mac
1f673135 147@section Mac OS X
d691f669 148
15a34c63 149Download the experimental binary installer at
debc7065 150@url{http://www.free.oszoo.org/@/download.html}.
7544a042 151TODO (no longer available)
df0f11a0 152
debc7065 153@node QEMU PC System emulator
3f9f3aa1 154@chapter QEMU PC System emulator
7544a042 155@cindex system emulation (PC)
1eb20527 156
debc7065
FB
157@menu
158* pcsys_introduction:: Introduction
159* pcsys_quickstart:: Quick Start
160* sec_invocation:: Invocation
161* pcsys_keys:: Keys
162* pcsys_monitor:: QEMU Monitor
163* disk_images:: Disk Images
164* pcsys_network:: Network emulation
576fd0a1 165* pcsys_other_devs:: Other Devices
debc7065
FB
166* direct_linux_boot:: Direct Linux Boot
167* pcsys_usb:: USB emulation
f858dcae 168* vnc_security:: VNC security
debc7065
FB
169* gdb_usage:: GDB usage
170* pcsys_os_specific:: Target OS specific information
171@end menu
172
173@node pcsys_introduction
0806e3f6
FB
174@section Introduction
175
176@c man begin DESCRIPTION
177
3f9f3aa1
FB
178The QEMU PC System emulator simulates the
179following peripherals:
0806e3f6
FB
180
181@itemize @minus
5fafdf24 182@item
15a34c63 183i440FX host PCI bridge and PIIX3 PCI to ISA bridge
0806e3f6 184@item
15a34c63
FB
185Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
186extensions (hardware level, including all non standard modes).
0806e3f6
FB
187@item
188PS/2 mouse and keyboard
5fafdf24 189@item
15a34c63 1902 PCI IDE interfaces with hard disk and CD-ROM support
1f673135
FB
191@item
192Floppy disk
5fafdf24 193@item
3a2eeac0 194PCI and ISA network adapters
0806e3f6 195@item
05d5818c
FB
196Serial ports
197@item
c0fe3827
FB
198Creative SoundBlaster 16 sound card
199@item
200ENSONIQ AudioPCI ES1370 sound card
201@item
e5c9a13e
AZ
202Intel 82801AA AC97 Audio compatible sound card
203@item
7d72e762
GH
204Intel HD Audio Controller and HDA codec
205@item
2d983446 206Adlib (OPL2) - Yamaha YM3812 compatible chip
b389dbfb 207@item
26463dbc
AZ
208Gravis Ultrasound GF1 sound card
209@item
cc53d26d 210CS4231A compatible sound card
211@item
b389dbfb 212PCI UHCI USB controller and a virtual USB hub.
0806e3f6
FB
213@end itemize
214
3f9f3aa1
FB
215SMP is supported with up to 255 CPUs.
216
a8ad4159 217QEMU uses the PC BIOS from the Seabios project and the Plex86/Bochs LGPL
15a34c63
FB
218VGA BIOS.
219
c0fe3827
FB
220QEMU uses YM3812 emulation by Tatsuyuki Satoh.
221
2d983446 222QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
26463dbc 223by Tibor "TS" Schütz.
423d65f4 224
1a1a0e20 225Note that, by default, GUS shares IRQ(7) with parallel ports and so
b65ee4fa 226QEMU must be told to not have parallel ports to have working GUS.
720036a5 227
228@example
3804da9d 229qemu-system-i386 dos.img -soundhw gus -parallel none
720036a5 230@end example
231
232Alternatively:
233@example
3804da9d 234qemu-system-i386 dos.img -device gus,irq=5
720036a5 235@end example
236
237Or some other unclaimed IRQ.
238
cc53d26d 239CS4231A is the chip used in Windows Sound System and GUSMAX products
240
0806e3f6
FB
241@c man end
242
debc7065 243@node pcsys_quickstart
1eb20527 244@section Quick Start
7544a042 245@cindex quick start
1eb20527 246
285dc330 247Download and uncompress the linux image (@file{linux.img}) and type:
0806e3f6
FB
248
249@example
3804da9d 250qemu-system-i386 linux.img
0806e3f6
FB
251@end example
252
253Linux should boot and give you a prompt.
254
6cc721cf 255@node sec_invocation
ec410fc9
FB
256@section Invocation
257
258@example
0806e3f6 259@c man begin SYNOPSIS
3804da9d 260usage: qemu-system-i386 [options] [@var{disk_image}]
0806e3f6 261@c man end
ec410fc9
FB
262@end example
263
0806e3f6 264@c man begin OPTIONS
d2c639d6
BS
265@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
266targets do not need a disk image.
ec410fc9 267
5824d651 268@include qemu-options.texi
ec410fc9 269
3e11db9a
FB
270@c man end
271
debc7065 272@node pcsys_keys
3e11db9a
FB
273@section Keys
274
275@c man begin OPTIONS
276
de1db2a1
BH
277During the graphical emulation, you can use special key combinations to change
278modes. The default key mappings are shown below, but if you use @code{-alt-grab}
279then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
280@code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
281
a1b74fe8 282@table @key
f9859310 283@item Ctrl-Alt-f
7544a042 284@kindex Ctrl-Alt-f
a1b74fe8 285Toggle full screen
a0a821a4 286
d6a65ba3
JK
287@item Ctrl-Alt-+
288@kindex Ctrl-Alt-+
289Enlarge the screen
290
291@item Ctrl-Alt--
292@kindex Ctrl-Alt--
293Shrink the screen
294
c4a735f9 295@item Ctrl-Alt-u
7544a042 296@kindex Ctrl-Alt-u
c4a735f9 297Restore the screen's un-scaled dimensions
298
f9859310 299@item Ctrl-Alt-n
7544a042 300@kindex Ctrl-Alt-n
a0a821a4
FB
301Switch to virtual console 'n'. Standard console mappings are:
302@table @emph
303@item 1
304Target system display
305@item 2
306Monitor
307@item 3
308Serial port
a1b74fe8
FB
309@end table
310
f9859310 311@item Ctrl-Alt
7544a042 312@kindex Ctrl-Alt
a0a821a4
FB
313Toggle mouse and keyboard grab.
314@end table
315
7544a042
SW
316@kindex Ctrl-Up
317@kindex Ctrl-Down
318@kindex Ctrl-PageUp
319@kindex Ctrl-PageDown
3e11db9a
FB
320In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
321@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
322
7544a042 323@kindex Ctrl-a h
a0a821a4
FB
324During emulation, if you are using the @option{-nographic} option, use
325@key{Ctrl-a h} to get terminal commands:
ec410fc9
FB
326
327@table @key
a1b74fe8 328@item Ctrl-a h
7544a042 329@kindex Ctrl-a h
d2c639d6 330@item Ctrl-a ?
7544a042 331@kindex Ctrl-a ?
ec410fc9 332Print this help
3b46e624 333@item Ctrl-a x
7544a042 334@kindex Ctrl-a x
366dfc52 335Exit emulator
3b46e624 336@item Ctrl-a s
7544a042 337@kindex Ctrl-a s
1f47a922 338Save disk data back to file (if -snapshot)
20d8a3ed 339@item Ctrl-a t
7544a042 340@kindex Ctrl-a t
d2c639d6 341Toggle console timestamps
a1b74fe8 342@item Ctrl-a b
7544a042 343@kindex Ctrl-a b
1f673135 344Send break (magic sysrq in Linux)
a1b74fe8 345@item Ctrl-a c
7544a042 346@kindex Ctrl-a c
1f673135 347Switch between console and monitor
a1b74fe8 348@item Ctrl-a Ctrl-a
7544a042 349@kindex Ctrl-a a
a1b74fe8 350Send Ctrl-a
ec410fc9 351@end table
0806e3f6
FB
352@c man end
353
354@ignore
355
1f673135
FB
356@c man begin SEEALSO
357The HTML documentation of QEMU for more precise information and Linux
358user mode emulator invocation.
359@c man end
360
361@c man begin AUTHOR
362Fabrice Bellard
363@c man end
364
365@end ignore
366
debc7065 367@node pcsys_monitor
1f673135 368@section QEMU Monitor
7544a042 369@cindex QEMU monitor
1f673135
FB
370
371The QEMU monitor is used to give complex commands to the QEMU
372emulator. You can use it to:
373
374@itemize @minus
375
376@item
e598752a 377Remove or insert removable media images
89dfe898 378(such as CD-ROM or floppies).
1f673135 379
5fafdf24 380@item
1f673135
FB
381Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
382from a disk file.
383
384@item Inspect the VM state without an external debugger.
385
386@end itemize
387
388@subsection Commands
389
390The following commands are available:
391
2313086a 392@include qemu-monitor.texi
0806e3f6 393
1f673135
FB
394@subsection Integer expressions
395
396The monitor understands integers expressions for every integer
397argument. You can use register names to get the value of specifics
398CPU registers by prefixing them with @emph{$}.
ec410fc9 399
1f47a922
FB
400@node disk_images
401@section Disk Images
402
acd935ef
FB
403Since version 0.6.1, QEMU supports many disk image formats, including
404growable disk images (their size increase as non empty sectors are
13a2e80f
FB
405written), compressed and encrypted disk images. Version 0.8.3 added
406the new qcow2 disk image format which is essential to support VM
407snapshots.
1f47a922 408
debc7065
FB
409@menu
410* disk_images_quickstart:: Quick start for disk image creation
411* disk_images_snapshot_mode:: Snapshot mode
13a2e80f 412* vm_snapshots:: VM snapshots
debc7065 413* qemu_img_invocation:: qemu-img Invocation
975b092b 414* qemu_nbd_invocation:: qemu-nbd Invocation
665b5d0d 415* qemu_ga_invocation:: qemu-ga Invocation
d3067b02 416* disk_images_formats:: Disk image file formats
19cb3738 417* host_drives:: Using host drives
debc7065 418* disk_images_fat_images:: Virtual FAT disk images
75818250 419* disk_images_nbd:: NBD access
42af9c30 420* disk_images_sheepdog:: Sheepdog disk images
00984e39 421* disk_images_iscsi:: iSCSI LUNs
8809e289 422* disk_images_gluster:: GlusterFS disk images
0a12ec87 423* disk_images_ssh:: Secure Shell (ssh) disk images
debc7065
FB
424@end menu
425
426@node disk_images_quickstart
acd935ef
FB
427@subsection Quick start for disk image creation
428
429You can create a disk image with the command:
1f47a922 430@example
acd935ef 431qemu-img create myimage.img mysize
1f47a922 432@end example
acd935ef
FB
433where @var{myimage.img} is the disk image filename and @var{mysize} is its
434size in kilobytes. You can add an @code{M} suffix to give the size in
435megabytes and a @code{G} suffix for gigabytes.
436
debc7065 437See @ref{qemu_img_invocation} for more information.
1f47a922 438
debc7065 439@node disk_images_snapshot_mode
1f47a922
FB
440@subsection Snapshot mode
441
442If you use the option @option{-snapshot}, all disk images are
443considered as read only. When sectors in written, they are written in
444a temporary file created in @file{/tmp}. You can however force the
acd935ef
FB
445write back to the raw disk images by using the @code{commit} monitor
446command (or @key{C-a s} in the serial console).
1f47a922 447
13a2e80f
FB
448@node vm_snapshots
449@subsection VM snapshots
450
451VM snapshots are snapshots of the complete virtual machine including
452CPU state, RAM, device state and the content of all the writable
453disks. In order to use VM snapshots, you must have at least one non
454removable and writable block device using the @code{qcow2} disk image
455format. Normally this device is the first virtual hard drive.
456
457Use the monitor command @code{savevm} to create a new VM snapshot or
458replace an existing one. A human readable name can be assigned to each
19d36792 459snapshot in addition to its numerical ID.
13a2e80f
FB
460
461Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
462a VM snapshot. @code{info snapshots} lists the available snapshots
463with their associated information:
464
465@example
466(qemu) info snapshots
467Snapshot devices: hda
468Snapshot list (from hda):
469ID TAG VM SIZE DATE VM CLOCK
4701 start 41M 2006-08-06 12:38:02 00:00:14.954
4712 40M 2006-08-06 12:43:29 00:00:18.633
4723 msys 40M 2006-08-06 12:44:04 00:00:23.514
473@end example
474
475A VM snapshot is made of a VM state info (its size is shown in
476@code{info snapshots}) and a snapshot of every writable disk image.
477The VM state info is stored in the first @code{qcow2} non removable
478and writable block device. The disk image snapshots are stored in
479every disk image. The size of a snapshot in a disk image is difficult
480to evaluate and is not shown by @code{info snapshots} because the
481associated disk sectors are shared among all the snapshots to save
19d36792
FB
482disk space (otherwise each snapshot would need a full copy of all the
483disk images).
13a2e80f
FB
484
485When using the (unrelated) @code{-snapshot} option
486(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
487but they are deleted as soon as you exit QEMU.
488
489VM snapshots currently have the following known limitations:
490@itemize
5fafdf24 491@item
13a2e80f
FB
492They cannot cope with removable devices if they are removed or
493inserted after a snapshot is done.
5fafdf24 494@item
13a2e80f
FB
495A few device drivers still have incomplete snapshot support so their
496state is not saved or restored properly (in particular USB).
497@end itemize
498
acd935ef
FB
499@node qemu_img_invocation
500@subsection @code{qemu-img} Invocation
1f47a922 501
acd935ef 502@include qemu-img.texi
05efe46e 503
975b092b
TS
504@node qemu_nbd_invocation
505@subsection @code{qemu-nbd} Invocation
506
507@include qemu-nbd.texi
508
665b5d0d
MAL
509@node qemu_ga_invocation
510@subsection @code{qemu-ga} Invocation
511
512@include qemu-ga.texi
513
d3067b02
KW
514@node disk_images_formats
515@subsection Disk image file formats
516
517QEMU supports many image file formats that can be used with VMs as well as with
518any of the tools (like @code{qemu-img}). This includes the preferred formats
519raw and qcow2 as well as formats that are supported for compatibility with
520older QEMU versions or other hypervisors.
521
522Depending on the image format, different options can be passed to
523@code{qemu-img create} and @code{qemu-img convert} using the @code{-o} option.
524This section describes each format and the options that are supported for it.
525
526@table @option
527@item raw
528
529Raw disk image format. This format has the advantage of
530being simple and easily exportable to all other emulators. If your
531file system supports @emph{holes} (for example in ext2 or ext3 on
532Linux or NTFS on Windows), then only the written sectors will reserve
533space. Use @code{qemu-img info} to know the real size used by the
534image or @code{ls -ls} on Unix/Linux.
535
06247428
HT
536Supported options:
537@table @code
538@item preallocation
539Preallocation mode (allowed values: @code{off}, @code{falloc}, @code{full}).
540@code{falloc} mode preallocates space for image by calling posix_fallocate().
541@code{full} mode preallocates space for image by writing zeros to underlying
542storage.
543@end table
544
d3067b02
KW
545@item qcow2
546QEMU image format, the most versatile format. Use it to have smaller
547images (useful if your filesystem does not supports holes, for example
a1f688f4
MA
548on Windows), zlib based compression and support of multiple VM
549snapshots.
d3067b02
KW
550
551Supported options:
552@table @code
553@item compat
7fa9e1f9
SH
554Determines the qcow2 version to use. @code{compat=0.10} uses the
555traditional image format that can be read by any QEMU since 0.10.
d3067b02 556@code{compat=1.1} enables image format extensions that only QEMU 1.1 and
7fa9e1f9
SH
557newer understand (this is the default). Amongst others, this includes
558zero clusters, which allow efficient copy-on-read for sparse images.
d3067b02
KW
559
560@item backing_file
561File name of a base image (see @option{create} subcommand)
562@item backing_fmt
563Image format of the base image
564@item encryption
136cd19d 565If this option is set to @code{on}, the image is encrypted with 128-bit AES-CBC.
d3067b02 566
136cd19d
DB
567The use of encryption in qcow and qcow2 images is considered to be flawed by
568modern cryptography standards, suffering from a number of design problems:
569
570@itemize @minus
571@item The AES-CBC cipher is used with predictable initialization vectors based
572on the sector number. This makes it vulnerable to chosen plaintext attacks
573which can reveal the existence of encrypted data.
574@item The user passphrase is directly used as the encryption key. A poorly
575chosen or short passphrase will compromise the security of the encryption.
576@item In the event of the passphrase being compromised there is no way to
577change the passphrase to protect data in any qcow images. The files must
578be cloned, using a different encryption passphrase in the new file. The
579original file must then be securely erased using a program like shred,
580though even this is ineffective with many modern storage technologies.
581@end itemize
582
a1f688f4
MA
583Use of qcow / qcow2 encryption with QEMU is deprecated, and support for
584it will go away in a future release. Users are recommended to use an
585alternative encryption technology such as the Linux dm-crypt / LUKS
586system.
d3067b02
KW
587
588@item cluster_size
589Changes the qcow2 cluster size (must be between 512 and 2M). Smaller cluster
590sizes can improve the image file size whereas larger cluster sizes generally
591provide better performance.
592
593@item preallocation
0e4271b7
HT
594Preallocation mode (allowed values: @code{off}, @code{metadata}, @code{falloc},
595@code{full}). An image with preallocated metadata is initially larger but can
596improve performance when the image needs to grow. @code{falloc} and @code{full}
597preallocations are like the same options of @code{raw} format, but sets up
598metadata also.
d3067b02
KW
599
600@item lazy_refcounts
601If this option is set to @code{on}, reference count updates are postponed with
602the goal of avoiding metadata I/O and improving performance. This is
603particularly interesting with @option{cache=writethrough} which doesn't batch
604metadata updates. The tradeoff is that after a host crash, the reference count
605tables must be rebuilt, i.e. on the next open an (automatic) @code{qemu-img
606check -r all} is required, which may take some time.
607
608This option can only be enabled if @code{compat=1.1} is specified.
609
4ab15590 610@item nocow
bc3a7f90 611If this option is set to @code{on}, it will turn off COW of the file. It's only
4ab15590
CL
612valid on btrfs, no effect on other file systems.
613
614Btrfs has low performance when hosting a VM image file, even more when the guest
615on the VM also using btrfs as file system. Turning off COW is a way to mitigate
616this bad performance. Generally there are two ways to turn off COW on btrfs:
617a) Disable it by mounting with nodatacow, then all newly created files will be
618NOCOW. b) For an empty file, add the NOCOW file attribute. That's what this option
619does.
620
621Note: this option is only valid to new or empty files. If there is an existing
622file which is COW and has data blocks already, it couldn't be changed to NOCOW
623by setting @code{nocow=on}. One can issue @code{lsattr filename} to check if
bc3a7f90 624the NOCOW flag is set or not (Capital 'C' is NOCOW flag).
4ab15590 625
d3067b02
KW
626@end table
627
628@item qed
629Old QEMU image format with support for backing files and compact image files
630(when your filesystem or transport medium does not support holes).
631
632When converting QED images to qcow2, you might want to consider using the
633@code{lazy_refcounts=on} option to get a more QED-like behaviour.
634
635Supported options:
636@table @code
637@item backing_file
638File name of a base image (see @option{create} subcommand).
639@item backing_fmt
640Image file format of backing file (optional). Useful if the format cannot be
641autodetected because it has no header, like some vhd/vpc files.
642@item cluster_size
643Changes the cluster size (must be power-of-2 between 4K and 64K). Smaller
644cluster sizes can improve the image file size whereas larger cluster sizes
645generally provide better performance.
646@item table_size
647Changes the number of clusters per L1/L2 table (must be power-of-2 between 1
648and 16). There is normally no need to change this value but this option can be
649used for performance benchmarking.
650@end table
651
652@item qcow
653Old QEMU image format with support for backing files, compact image files,
654encryption and compression.
655
656Supported options:
657@table @code
658@item backing_file
659File name of a base image (see @option{create} subcommand)
660@item encryption
661If this option is set to @code{on}, the image is encrypted.
662@end table
663
d3067b02
KW
664@item vdi
665VirtualBox 1.1 compatible image format.
666Supported options:
667@table @code
668@item static
669If this option is set to @code{on}, the image is created with metadata
670preallocation.
671@end table
672
673@item vmdk
674VMware 3 and 4 compatible image format.
675
676Supported options:
677@table @code
678@item backing_file
679File name of a base image (see @option{create} subcommand).
680@item compat6
681Create a VMDK version 6 image (instead of version 4)
682@item subformat
683Specifies which VMDK subformat to use. Valid options are
684@code{monolithicSparse} (default),
685@code{monolithicFlat},
686@code{twoGbMaxExtentSparse},
687@code{twoGbMaxExtentFlat} and
688@code{streamOptimized}.
689@end table
690
691@item vpc
692VirtualPC compatible image format (VHD).
693Supported options:
694@table @code
695@item subformat
696Specifies which VHD subformat to use. Valid options are
697@code{dynamic} (default) and @code{fixed}.
698@end table
8282db1b
JC
699
700@item VHDX
701Hyper-V compatible image format (VHDX).
702Supported options:
703@table @code
704@item subformat
705Specifies which VHDX subformat to use. Valid options are
706@code{dynamic} (default) and @code{fixed}.
707@item block_state_zero
30af51ce
JC
708Force use of payload blocks of type 'ZERO'. Can be set to @code{on} (default)
709or @code{off}. When set to @code{off}, new blocks will be created as
710@code{PAYLOAD_BLOCK_NOT_PRESENT}, which means parsers are free to return
711arbitrary data for those blocks. Do not set to @code{off} when using
712@code{qemu-img convert} with @code{subformat=dynamic}.
8282db1b
JC
713@item block_size
714Block size; min 1 MB, max 256 MB. 0 means auto-calculate based on image size.
715@item log_size
716Log size; min 1 MB.
717@end table
d3067b02
KW
718@end table
719
720@subsubsection Read-only formats
721More disk image file formats are supported in a read-only mode.
722@table @option
723@item bochs
724Bochs images of @code{growing} type.
725@item cloop
726Linux Compressed Loop image, useful only to reuse directly compressed
727CD-ROM images present for example in the Knoppix CD-ROMs.
728@item dmg
729Apple disk image.
730@item parallels
731Parallels disk image format.
732@end table
733
734
19cb3738
FB
735@node host_drives
736@subsection Using host drives
737
738In addition to disk image files, QEMU can directly access host
739devices. We describe here the usage for QEMU version >= 0.8.3.
740
741@subsubsection Linux
742
743On Linux, you can directly use the host device filename instead of a
4be456f1 744disk image filename provided you have enough privileges to access
92a539d2 745it. For example, use @file{/dev/cdrom} to access to the CDROM.
19cb3738 746
f542086d 747@table @code
19cb3738
FB
748@item CD
749You can specify a CDROM device even if no CDROM is loaded. QEMU has
750specific code to detect CDROM insertion or removal. CDROM ejection by
751the guest OS is supported. Currently only data CDs are supported.
752@item Floppy
753You can specify a floppy device even if no floppy is loaded. Floppy
754removal is currently not detected accurately (if you change floppy
755without doing floppy access while the floppy is not loaded, the guest
756OS will think that the same floppy is loaded).
92a539d2
MA
757Use of the host's floppy device is deprecated, and support for it will
758be removed in a future release.
19cb3738
FB
759@item Hard disks
760Hard disks can be used. Normally you must specify the whole disk
761(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
762see it as a partitioned disk. WARNING: unless you know what you do, it
763is better to only make READ-ONLY accesses to the hard disk otherwise
764you may corrupt your host data (use the @option{-snapshot} command
765line option or modify the device permissions accordingly).
766@end table
767
768@subsubsection Windows
769
01781963
FB
770@table @code
771@item CD
4be456f1 772The preferred syntax is the drive letter (e.g. @file{d:}). The
01781963
FB
773alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
774supported as an alias to the first CDROM drive.
19cb3738 775
e598752a 776Currently there is no specific code to handle removable media, so it
19cb3738
FB
777is better to use the @code{change} or @code{eject} monitor commands to
778change or eject media.
01781963 779@item Hard disks
89dfe898 780Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
01781963
FB
781where @var{N} is the drive number (0 is the first hard disk).
782
783WARNING: unless you know what you do, it is better to only make
784READ-ONLY accesses to the hard disk otherwise you may corrupt your
785host data (use the @option{-snapshot} command line so that the
786modifications are written in a temporary file).
787@end table
788
19cb3738
FB
789
790@subsubsection Mac OS X
791
5fafdf24 792@file{/dev/cdrom} is an alias to the first CDROM.
19cb3738 793
e598752a 794Currently there is no specific code to handle removable media, so it
19cb3738
FB
795is better to use the @code{change} or @code{eject} monitor commands to
796change or eject media.
797
debc7065 798@node disk_images_fat_images
2c6cadd4
FB
799@subsection Virtual FAT disk images
800
801QEMU can automatically create a virtual FAT disk image from a
802directory tree. In order to use it, just type:
803
5fafdf24 804@example
3804da9d 805qemu-system-i386 linux.img -hdb fat:/my_directory
2c6cadd4
FB
806@end example
807
808Then you access access to all the files in the @file{/my_directory}
809directory without having to copy them in a disk image or to export
810them via SAMBA or NFS. The default access is @emph{read-only}.
811
812Floppies can be emulated with the @code{:floppy:} option:
813
5fafdf24 814@example
3804da9d 815qemu-system-i386 linux.img -fda fat:floppy:/my_directory
2c6cadd4
FB
816@end example
817
818A read/write support is available for testing (beta stage) with the
819@code{:rw:} option:
820
5fafdf24 821@example
3804da9d 822qemu-system-i386 linux.img -fda fat:floppy:rw:/my_directory
2c6cadd4
FB
823@end example
824
825What you should @emph{never} do:
826@itemize
827@item use non-ASCII filenames ;
828@item use "-snapshot" together with ":rw:" ;
85b2c688
FB
829@item expect it to work when loadvm'ing ;
830@item write to the FAT directory on the host system while accessing it with the guest system.
2c6cadd4
FB
831@end itemize
832
75818250
TS
833@node disk_images_nbd
834@subsection NBD access
835
836QEMU can access directly to block device exported using the Network Block Device
837protocol.
838
839@example
1d7d2a9d 840qemu-system-i386 linux.img -hdb nbd://my_nbd_server.mydomain.org:1024/
75818250
TS
841@end example
842
843If the NBD server is located on the same host, you can use an unix socket instead
844of an inet socket:
845
846@example
1d7d2a9d 847qemu-system-i386 linux.img -hdb nbd+unix://?socket=/tmp/my_socket
75818250
TS
848@end example
849
850In this case, the block device must be exported using qemu-nbd:
851
852@example
853qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
854@end example
855
9d85d557 856The use of qemu-nbd allows sharing of a disk between several guests:
75818250
TS
857@example
858qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
859@end example
860
1d7d2a9d 861@noindent
75818250
TS
862and then you can use it with two guests:
863@example
1d7d2a9d
PB
864qemu-system-i386 linux1.img -hdb nbd+unix://?socket=/tmp/my_socket
865qemu-system-i386 linux2.img -hdb nbd+unix://?socket=/tmp/my_socket
75818250
TS
866@end example
867
1d7d2a9d
PB
868If the nbd-server uses named exports (supported since NBD 2.9.18, or with QEMU's
869own embedded NBD server), you must specify an export name in the URI:
1d45f8b5 870@example
1d7d2a9d
PB
871qemu-system-i386 -cdrom nbd://localhost/debian-500-ppc-netinst
872qemu-system-i386 -cdrom nbd://localhost/openSUSE-11.1-ppc-netinst
873@end example
874
875The URI syntax for NBD is supported since QEMU 1.3. An alternative syntax is
876also available. Here are some example of the older syntax:
877@example
878qemu-system-i386 linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
879qemu-system-i386 linux2.img -hdb nbd:unix:/tmp/my_socket
880qemu-system-i386 -cdrom nbd:localhost:10809:exportname=debian-500-ppc-netinst
1d45f8b5
LV
881@end example
882
42af9c30
MK
883@node disk_images_sheepdog
884@subsection Sheepdog disk images
885
886Sheepdog is a distributed storage system for QEMU. It provides highly
887available block level storage volumes that can be attached to
888QEMU-based virtual machines.
889
890You can create a Sheepdog disk image with the command:
891@example
5d6768e3 892qemu-img create sheepdog:///@var{image} @var{size}
42af9c30
MK
893@end example
894where @var{image} is the Sheepdog image name and @var{size} is its
895size.
896
897To import the existing @var{filename} to Sheepdog, you can use a
898convert command.
899@example
5d6768e3 900qemu-img convert @var{filename} sheepdog:///@var{image}
42af9c30
MK
901@end example
902
903You can boot from the Sheepdog disk image with the command:
904@example
5d6768e3 905qemu-system-i386 sheepdog:///@var{image}
42af9c30
MK
906@end example
907
908You can also create a snapshot of the Sheepdog image like qcow2.
909@example
5d6768e3 910qemu-img snapshot -c @var{tag} sheepdog:///@var{image}
42af9c30
MK
911@end example
912where @var{tag} is a tag name of the newly created snapshot.
913
914To boot from the Sheepdog snapshot, specify the tag name of the
915snapshot.
916@example
5d6768e3 917qemu-system-i386 sheepdog:///@var{image}#@var{tag}
42af9c30
MK
918@end example
919
920You can create a cloned image from the existing snapshot.
921@example
5d6768e3 922qemu-img create -b sheepdog:///@var{base}#@var{tag} sheepdog:///@var{image}
42af9c30
MK
923@end example
924where @var{base} is a image name of the source snapshot and @var{tag}
925is its tag name.
926
1b8bbb46
MK
927You can use an unix socket instead of an inet socket:
928
929@example
930qemu-system-i386 sheepdog+unix:///@var{image}?socket=@var{path}
931@end example
932
42af9c30
MK
933If the Sheepdog daemon doesn't run on the local host, you need to
934specify one of the Sheepdog servers to connect to.
935@example
5d6768e3
MK
936qemu-img create sheepdog://@var{hostname}:@var{port}/@var{image} @var{size}
937qemu-system-i386 sheepdog://@var{hostname}:@var{port}/@var{image}
42af9c30
MK
938@end example
939
00984e39
RS
940@node disk_images_iscsi
941@subsection iSCSI LUNs
942
943iSCSI is a popular protocol used to access SCSI devices across a computer
944network.
945
946There are two different ways iSCSI devices can be used by QEMU.
947
948The first method is to mount the iSCSI LUN on the host, and make it appear as
949any other ordinary SCSI device on the host and then to access this device as a
950/dev/sd device from QEMU. How to do this differs between host OSes.
951
952The second method involves using the iSCSI initiator that is built into
953QEMU. This provides a mechanism that works the same way regardless of which
954host OS you are running QEMU on. This section will describe this second method
955of using iSCSI together with QEMU.
956
957In QEMU, iSCSI devices are described using special iSCSI URLs
958
959@example
960URL syntax:
961iscsi://[<username>[%<password>]@@]<host>[:<port>]/<target-iqn-name>/<lun>
962@end example
963
964Username and password are optional and only used if your target is set up
965using CHAP authentication for access control.
966Alternatively the username and password can also be set via environment
967variables to have these not show up in the process list
968
969@example
970export LIBISCSI_CHAP_USERNAME=<username>
971export LIBISCSI_CHAP_PASSWORD=<password>
972iscsi://<host>/<target-iqn-name>/<lun>
973@end example
974
f9dadc98
RS
975Various session related parameters can be set via special options, either
976in a configuration file provided via '-readconfig' or directly on the
977command line.
978
31459f46
RS
979If the initiator-name is not specified qemu will use a default name
980of 'iqn.2008-11.org.linux-kvm[:<name>'] where <name> is the name of the
981virtual machine.
982
983
f9dadc98
RS
984@example
985Setting a specific initiator name to use when logging in to the target
986-iscsi initiator-name=iqn.qemu.test:my-initiator
987@end example
988
989@example
990Controlling which type of header digest to negotiate with the target
991-iscsi header-digest=CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
992@end example
993
994These can also be set via a configuration file
995@example
996[iscsi]
997 user = "CHAP username"
998 password = "CHAP password"
999 initiator-name = "iqn.qemu.test:my-initiator"
1000 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
1001 header-digest = "CRC32C"
1002@end example
1003
1004
1005Setting the target name allows different options for different targets
1006@example
1007[iscsi "iqn.target.name"]
1008 user = "CHAP username"
1009 password = "CHAP password"
1010 initiator-name = "iqn.qemu.test:my-initiator"
1011 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
1012 header-digest = "CRC32C"
1013@end example
1014
1015
1016Howto use a configuration file to set iSCSI configuration options:
1017@example
1018cat >iscsi.conf <<EOF
1019[iscsi]
1020 user = "me"
1021 password = "my password"
1022 initiator-name = "iqn.qemu.test:my-initiator"
1023 header-digest = "CRC32C"
1024EOF
1025
1026qemu-system-i386 -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
1027 -readconfig iscsi.conf
1028@end example
1029
1030
00984e39
RS
1031Howto set up a simple iSCSI target on loopback and accessing it via QEMU:
1032@example
1033This example shows how to set up an iSCSI target with one CDROM and one DISK
1034using the Linux STGT software target. This target is available on Red Hat based
1035systems as the package 'scsi-target-utils'.
1036
1037tgtd --iscsi portal=127.0.0.1:3260
1038tgtadm --lld iscsi --op new --mode target --tid 1 -T iqn.qemu.test
1039tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 1 \
1040 -b /IMAGES/disk.img --device-type=disk
1041tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 2 \
1042 -b /IMAGES/cd.iso --device-type=cd
1043tgtadm --lld iscsi --op bind --mode target --tid 1 -I ALL
1044
f9dadc98
RS
1045qemu-system-i386 -iscsi initiator-name=iqn.qemu.test:my-initiator \
1046 -boot d -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
00984e39
RS
1047 -cdrom iscsi://127.0.0.1/iqn.qemu.test/2
1048@end example
1049
8809e289
BR
1050@node disk_images_gluster
1051@subsection GlusterFS disk images
00984e39 1052
8809e289
BR
1053GlusterFS is an user space distributed file system.
1054
1055You can boot from the GlusterFS disk image with the command:
1056@example
1057qemu-system-x86_64 -drive file=gluster[+@var{transport}]://[@var{server}[:@var{port}]]/@var{volname}/@var{image}[?socket=...]
1058@end example
1059
1060@var{gluster} is the protocol.
1061
1062@var{transport} specifies the transport type used to connect to gluster
1063management daemon (glusterd). Valid transport types are
1064tcp, unix and rdma. If a transport type isn't specified, then tcp
1065type is assumed.
1066
1067@var{server} specifies the server where the volume file specification for
1068the given volume resides. This can be either hostname, ipv4 address
1069or ipv6 address. ipv6 address needs to be within square brackets [ ].
d274e07c 1070If transport type is unix, then @var{server} field should not be specified.
8809e289
BR
1071Instead @var{socket} field needs to be populated with the path to unix domain
1072socket.
1073
1074@var{port} is the port number on which glusterd is listening. This is optional
1075and if not specified, QEMU will send 0 which will make gluster to use the
1076default port. If the transport type is unix, then @var{port} should not be
1077specified.
1078
1079@var{volname} is the name of the gluster volume which contains the disk image.
1080
1081@var{image} is the path to the actual disk image that resides on gluster volume.
1082
1083You can create a GlusterFS disk image with the command:
1084@example
1085qemu-img create gluster://@var{server}/@var{volname}/@var{image} @var{size}
1086@end example
1087
1088Examples
1089@example
1090qemu-system-x86_64 -drive file=gluster://1.2.3.4/testvol/a.img
1091qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4/testvol/a.img
1092qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4:24007/testvol/dir/a.img
1093qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]/testvol/dir/a.img
1094qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]:24007/testvol/dir/a.img
1095qemu-system-x86_64 -drive file=gluster+tcp://server.domain.com:24007/testvol/dir/a.img
1096qemu-system-x86_64 -drive file=gluster+unix:///testvol/dir/a.img?socket=/tmp/glusterd.socket
1097qemu-system-x86_64 -drive file=gluster+rdma://1.2.3.4:24007/testvol/a.img
1098@end example
00984e39 1099
0a12ec87
RJ
1100@node disk_images_ssh
1101@subsection Secure Shell (ssh) disk images
1102
1103You can access disk images located on a remote ssh server
1104by using the ssh protocol:
1105
1106@example
1107qemu-system-x86_64 -drive file=ssh://[@var{user}@@]@var{server}[:@var{port}]/@var{path}[?host_key_check=@var{host_key_check}]
1108@end example
1109
1110Alternative syntax using properties:
1111
1112@example
1113qemu-system-x86_64 -drive file.driver=ssh[,file.user=@var{user}],file.host=@var{server}[,file.port=@var{port}],file.path=@var{path}[,file.host_key_check=@var{host_key_check}]
1114@end example
1115
1116@var{ssh} is the protocol.
1117
1118@var{user} is the remote user. If not specified, then the local
1119username is tried.
1120
1121@var{server} specifies the remote ssh server. Any ssh server can be
1122used, but it must implement the sftp-server protocol. Most Unix/Linux
1123systems should work without requiring any extra configuration.
1124
1125@var{port} is the port number on which sshd is listening. By default
1126the standard ssh port (22) is used.
1127
1128@var{path} is the path to the disk image.
1129
1130The optional @var{host_key_check} parameter controls how the remote
1131host's key is checked. The default is @code{yes} which means to use
1132the local @file{.ssh/known_hosts} file. Setting this to @code{no}
1133turns off known-hosts checking. Or you can check that the host key
1134matches a specific fingerprint:
1135@code{host_key_check=md5:78:45:8e:14:57:4f:d5:45:83:0a:0e:f3:49:82:c9:c8}
1136(@code{sha1:} can also be used as a prefix, but note that OpenSSH
1137tools only use MD5 to print fingerprints).
1138
1139Currently authentication must be done using ssh-agent. Other
1140authentication methods may be supported in future.
1141
9a2d462e
RJ
1142Note: Many ssh servers do not support an @code{fsync}-style operation.
1143The ssh driver cannot guarantee that disk flush requests are
1144obeyed, and this causes a risk of disk corruption if the remote
1145server or network goes down during writes. The driver will
1146print a warning when @code{fsync} is not supported:
1147
1148warning: ssh server @code{ssh.example.com:22} does not support fsync
1149
1150With sufficiently new versions of libssh2 and OpenSSH, @code{fsync} is
1151supported.
0a12ec87 1152
debc7065 1153@node pcsys_network
9d4fb82e
FB
1154@section Network emulation
1155
4be456f1 1156QEMU can simulate several network cards (PCI or ISA cards on the PC
41d03949
FB
1157target) and can connect them to an arbitrary number of Virtual Local
1158Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1159VLAN. VLAN can be connected between separate instances of QEMU to
4be456f1 1160simulate large networks. For simpler usage, a non privileged user mode
41d03949
FB
1161network stack can replace the TAP device to have a basic network
1162connection.
1163
1164@subsection VLANs
9d4fb82e 1165
41d03949
FB
1166QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1167connection between several network devices. These devices can be for
1168example QEMU virtual Ethernet cards or virtual Host ethernet devices
1169(TAP devices).
9d4fb82e 1170
41d03949
FB
1171@subsection Using TAP network interfaces
1172
1173This is the standard way to connect QEMU to a real network. QEMU adds
1174a virtual network device on your host (called @code{tapN}), and you
1175can then configure it as if it was a real ethernet card.
9d4fb82e 1176
8f40c388
FB
1177@subsubsection Linux host
1178
9d4fb82e
FB
1179As an example, you can download the @file{linux-test-xxx.tar.gz}
1180archive and copy the script @file{qemu-ifup} in @file{/etc} and
1181configure properly @code{sudo} so that the command @code{ifconfig}
1182contained in @file{qemu-ifup} can be executed as root. You must verify
41d03949 1183that your host kernel supports the TAP network interfaces: the
9d4fb82e
FB
1184device @file{/dev/net/tun} must be present.
1185
ee0f4751
FB
1186See @ref{sec_invocation} to have examples of command lines using the
1187TAP network interfaces.
9d4fb82e 1188
8f40c388
FB
1189@subsubsection Windows host
1190
1191There is a virtual ethernet driver for Windows 2000/XP systems, called
1192TAP-Win32. But it is not included in standard QEMU for Windows,
1193so you will need to get it separately. It is part of OpenVPN package,
1194so download OpenVPN from : @url{http://openvpn.net/}.
1195
9d4fb82e
FB
1196@subsection Using the user mode network stack
1197
41d03949
FB
1198By using the option @option{-net user} (default configuration if no
1199@option{-net} option is specified), QEMU uses a completely user mode
4be456f1 1200network stack (you don't need root privilege to use the virtual
41d03949 1201network). The virtual network configuration is the following:
9d4fb82e
FB
1202
1203@example
1204
41d03949
FB
1205 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
1206 | (10.0.2.2)
9d4fb82e 1207 |
2518bd0d 1208 ----> DNS server (10.0.2.3)
3b46e624 1209 |
2518bd0d 1210 ----> SMB server (10.0.2.4)
9d4fb82e
FB
1211@end example
1212
1213The QEMU VM behaves as if it was behind a firewall which blocks all
1214incoming connections. You can use a DHCP client to automatically
41d03949
FB
1215configure the network in the QEMU VM. The DHCP server assign addresses
1216to the hosts starting from 10.0.2.15.
9d4fb82e
FB
1217
1218In order to check that the user mode network is working, you can ping
1219the address 10.0.2.2 and verify that you got an address in the range
122010.0.2.x from the QEMU virtual DHCP server.
1221
37cbfcce
GH
1222Note that ICMP traffic in general does not work with user mode networking.
1223@code{ping}, aka. ICMP echo, to the local router (10.0.2.2) shall work,
1224however. If you're using QEMU on Linux >= 3.0, it can use unprivileged ICMP
1225ping sockets to allow @code{ping} to the Internet. The host admin has to set
1226the ping_group_range in order to grant access to those sockets. To allow ping
1227for GID 100 (usually users group):
1228
1229@example
1230echo 100 100 > /proc/sys/net/ipv4/ping_group_range
1231@end example
b415a407 1232
9bf05444
FB
1233When using the built-in TFTP server, the router is also the TFTP
1234server.
1235
1236When using the @option{-redir} option, TCP or UDP connections can be
1237redirected from the host to the guest. It allows for example to
1238redirect X11, telnet or SSH connections.
443f1376 1239
41d03949
FB
1240@subsection Connecting VLANs between QEMU instances
1241
1242Using the @option{-net socket} option, it is possible to make VLANs
1243that span several QEMU instances. See @ref{sec_invocation} to have a
1244basic example.
1245
576fd0a1 1246@node pcsys_other_devs
6cbf4c8c
CM
1247@section Other Devices
1248
1249@subsection Inter-VM Shared Memory device
1250
1251With KVM enabled on a Linux host, a shared memory device is available. Guests
1252map a POSIX shared memory region into the guest as a PCI device that enables
1253zero-copy communication to the application level of the guests. The basic
1254syntax is:
1255
1256@example
3804da9d 1257qemu-system-i386 -device ivshmem,size=<size in format accepted by -m>[,shm=<shm name>]
6cbf4c8c
CM
1258@end example
1259
1260If desired, interrupts can be sent between guest VMs accessing the same shared
1261memory region. Interrupt support requires using a shared memory server and
1262using a chardev socket to connect to it. The code for the shared memory server
1263is qemu.git/contrib/ivshmem-server. An example syntax when using the shared
1264memory server is:
1265
1266@example
3804da9d
SW
1267qemu-system-i386 -device ivshmem,size=<size in format accepted by -m>[,chardev=<id>]
1268 [,msi=on][,ioeventfd=on][,vectors=n][,role=peer|master]
1269qemu-system-i386 -chardev socket,path=<path>,id=<id>
6cbf4c8c
CM
1270@end example
1271
1272When using the server, the guest will be assigned a VM ID (>=0) that allows guests
1273using the same server to communicate via interrupts. Guests can read their
1274VM ID from a device register (see example code). Since receiving the shared
1275memory region from the server is asynchronous, there is a (small) chance the
1276guest may boot before the shared memory is attached. To allow an application
1277to ensure shared memory is attached, the VM ID register will return -1 (an
1278invalid VM ID) until the memory is attached. Once the shared memory is
1279attached, the VM ID will return the guest's valid VM ID. With these semantics,
1280the guest application can check to ensure the shared memory is attached to the
1281guest before proceeding.
1282
1283The @option{role} argument can be set to either master or peer and will affect
1284how the shared memory is migrated. With @option{role=master}, the guest will
1285copy the shared memory on migration to the destination host. With
1286@option{role=peer}, the guest will not be able to migrate with the device attached.
1287With the @option{peer} case, the device should be detached and then reattached
1288after migration using the PCI hotplug support.
1289
9d4fb82e
FB
1290@node direct_linux_boot
1291@section Direct Linux Boot
1f673135
FB
1292
1293This section explains how to launch a Linux kernel inside QEMU without
1294having to make a full bootable image. It is very useful for fast Linux
ee0f4751 1295kernel testing.
1f673135 1296
ee0f4751 1297The syntax is:
1f673135 1298@example
3804da9d 1299qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1f673135
FB
1300@end example
1301
ee0f4751
FB
1302Use @option{-kernel} to provide the Linux kernel image and
1303@option{-append} to give the kernel command line arguments. The
1304@option{-initrd} option can be used to provide an INITRD image.
1f673135 1305
ee0f4751
FB
1306When using the direct Linux boot, a disk image for the first hard disk
1307@file{hda} is required because its boot sector is used to launch the
1308Linux kernel.
1f673135 1309
ee0f4751
FB
1310If you do not need graphical output, you can disable it and redirect
1311the virtual serial port and the QEMU monitor to the console with the
1312@option{-nographic} option. The typical command line is:
1f673135 1313@example
3804da9d
SW
1314qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1315 -append "root=/dev/hda console=ttyS0" -nographic
1f673135
FB
1316@end example
1317
ee0f4751
FB
1318Use @key{Ctrl-a c} to switch between the serial console and the
1319monitor (@pxref{pcsys_keys}).
1f673135 1320
debc7065 1321@node pcsys_usb
b389dbfb
FB
1322@section USB emulation
1323
0aff66b5
PB
1324QEMU emulates a PCI UHCI USB controller. You can virtually plug
1325virtual USB devices or real host USB devices (experimental, works only
071c9394 1326on Linux hosts). QEMU will automatically create and connect virtual USB hubs
f542086d 1327as necessary to connect multiple USB devices.
b389dbfb 1328
0aff66b5
PB
1329@menu
1330* usb_devices::
1331* host_usb_devices::
1332@end menu
1333@node usb_devices
1334@subsection Connecting USB devices
b389dbfb 1335
0aff66b5
PB
1336USB devices can be connected with the @option{-usbdevice} commandline option
1337or the @code{usb_add} monitor command. Available devices are:
b389dbfb 1338
db380c06
AZ
1339@table @code
1340@item mouse
0aff66b5 1341Virtual Mouse. This will override the PS/2 mouse emulation when activated.
db380c06 1342@item tablet
c6d46c20 1343Pointer device that uses absolute coordinates (like a touchscreen).
b65ee4fa 1344This means QEMU is able to report the mouse position without having
0aff66b5 1345to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
db380c06 1346@item disk:@var{file}
0aff66b5 1347Mass storage device based on @var{file} (@pxref{disk_images})
db380c06 1348@item host:@var{bus.addr}
0aff66b5
PB
1349Pass through the host device identified by @var{bus.addr}
1350(Linux only)
db380c06 1351@item host:@var{vendor_id:product_id}
0aff66b5
PB
1352Pass through the host device identified by @var{vendor_id:product_id}
1353(Linux only)
db380c06 1354@item wacom-tablet
f6d2a316
AZ
1355Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
1356above but it can be used with the tslib library because in addition to touch
1357coordinates it reports touch pressure.
db380c06 1358@item keyboard
47b2d338 1359Standard USB keyboard. Will override the PS/2 keyboard (if present).
db380c06
AZ
1360@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1361Serial converter. This emulates an FTDI FT232BM chip connected to host character
1362device @var{dev}. The available character devices are the same as for the
1363@code{-serial} option. The @code{vendorid} and @code{productid} options can be
0d6753e5 1364used to override the default 0403:6001. For instance,
db380c06
AZ
1365@example
1366usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1367@end example
1368will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1369serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
2e4d9fb1
AJ
1370@item braille
1371Braille device. This will use BrlAPI to display the braille output on a real
1372or fake device.
9ad97e65
AZ
1373@item net:@var{options}
1374Network adapter that supports CDC ethernet and RNDIS protocols. @var{options}
1375specifies NIC options as with @code{-net nic,}@var{options} (see description).
1376For instance, user-mode networking can be used with
6c9f886c 1377@example
3804da9d 1378qemu-system-i386 [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
6c9f886c
AZ
1379@end example
1380Currently this cannot be used in machines that support PCI NICs.
2d564691
AZ
1381@item bt[:@var{hci-type}]
1382Bluetooth dongle whose type is specified in the same format as with
1383the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
1384no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
1385This USB device implements the USB Transport Layer of HCI. Example
1386usage:
1387@example
3804da9d 1388qemu-system-i386 [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
2d564691 1389@end example
0aff66b5 1390@end table
b389dbfb 1391
0aff66b5 1392@node host_usb_devices
b389dbfb
FB
1393@subsection Using host USB devices on a Linux host
1394
1395WARNING: this is an experimental feature. QEMU will slow down when
1396using it. USB devices requiring real time streaming (i.e. USB Video
1397Cameras) are not supported yet.
1398
1399@enumerate
5fafdf24 1400@item If you use an early Linux 2.4 kernel, verify that no Linux driver
b389dbfb
FB
1401is actually using the USB device. A simple way to do that is simply to
1402disable the corresponding kernel module by renaming it from @file{mydriver.o}
1403to @file{mydriver.o.disabled}.
1404
1405@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1406@example
1407ls /proc/bus/usb
1408001 devices drivers
1409@end example
1410
1411@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1412@example
1413chown -R myuid /proc/bus/usb
1414@end example
1415
1416@item Launch QEMU and do in the monitor:
5fafdf24 1417@example
b389dbfb
FB
1418info usbhost
1419 Device 1.2, speed 480 Mb/s
1420 Class 00: USB device 1234:5678, USB DISK
1421@end example
1422You should see the list of the devices you can use (Never try to use
1423hubs, it won't work).
1424
1425@item Add the device in QEMU by using:
5fafdf24 1426@example
b389dbfb
FB
1427usb_add host:1234:5678
1428@end example
1429
1430Normally the guest OS should report that a new USB device is
1431plugged. You can use the option @option{-usbdevice} to do the same.
1432
1433@item Now you can try to use the host USB device in QEMU.
1434
1435@end enumerate
1436
1437When relaunching QEMU, you may have to unplug and plug again the USB
1438device to make it work again (this is a bug).
1439
f858dcae
TS
1440@node vnc_security
1441@section VNC security
1442
1443The VNC server capability provides access to the graphical console
1444of the guest VM across the network. This has a number of security
1445considerations depending on the deployment scenarios.
1446
1447@menu
1448* vnc_sec_none::
1449* vnc_sec_password::
1450* vnc_sec_certificate::
1451* vnc_sec_certificate_verify::
1452* vnc_sec_certificate_pw::
2f9606b3
AL
1453* vnc_sec_sasl::
1454* vnc_sec_certificate_sasl::
f858dcae 1455* vnc_generate_cert::
2f9606b3 1456* vnc_setup_sasl::
f858dcae
TS
1457@end menu
1458@node vnc_sec_none
1459@subsection Without passwords
1460
1461The simplest VNC server setup does not include any form of authentication.
1462For this setup it is recommended to restrict it to listen on a UNIX domain
1463socket only. For example
1464
1465@example
3804da9d 1466qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
f858dcae
TS
1467@end example
1468
1469This ensures that only users on local box with read/write access to that
1470path can access the VNC server. To securely access the VNC server from a
1471remote machine, a combination of netcat+ssh can be used to provide a secure
1472tunnel.
1473
1474@node vnc_sec_password
1475@subsection With passwords
1476
1477The VNC protocol has limited support for password based authentication. Since
1478the protocol limits passwords to 8 characters it should not be considered
1479to provide high security. The password can be fairly easily brute-forced by
1480a client making repeat connections. For this reason, a VNC server using password
1481authentication should be restricted to only listen on the loopback interface
0f66998f
PM
1482or UNIX domain sockets. Password authentication is not supported when operating
1483in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password
1484authentication is requested with the @code{password} option, and then once QEMU
1485is running the password is set with the monitor. Until the monitor is used to
1486set the password all clients will be rejected.
f858dcae
TS
1487
1488@example
3804da9d 1489qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio
f858dcae
TS
1490(qemu) change vnc password
1491Password: ********
1492(qemu)
1493@end example
1494
1495@node vnc_sec_certificate
1496@subsection With x509 certificates
1497
1498The QEMU VNC server also implements the VeNCrypt extension allowing use of
1499TLS for encryption of the session, and x509 certificates for authentication.
1500The use of x509 certificates is strongly recommended, because TLS on its
1501own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1502support provides a secure session, but no authentication. This allows any
1503client to connect, and provides an encrypted session.
1504
1505@example
3804da9d 1506qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
f858dcae
TS
1507@end example
1508
1509In the above example @code{/etc/pki/qemu} should contain at least three files,
1510@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1511users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1512NB the @code{server-key.pem} file should be protected with file mode 0600 to
1513only be readable by the user owning it.
1514
1515@node vnc_sec_certificate_verify
1516@subsection With x509 certificates and client verification
1517
1518Certificates can also provide a means to authenticate the client connecting.
1519The server will request that the client provide a certificate, which it will
1520then validate against the CA certificate. This is a good choice if deploying
1521in an environment with a private internal certificate authority.
1522
1523@example
3804da9d 1524qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
f858dcae
TS
1525@end example
1526
1527
1528@node vnc_sec_certificate_pw
1529@subsection With x509 certificates, client verification and passwords
1530
1531Finally, the previous method can be combined with VNC password authentication
1532to provide two layers of authentication for clients.
1533
1534@example
3804da9d 1535qemu-system-i386 [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
f858dcae
TS
1536(qemu) change vnc password
1537Password: ********
1538(qemu)
1539@end example
1540
2f9606b3
AL
1541
1542@node vnc_sec_sasl
1543@subsection With SASL authentication
1544
1545The SASL authentication method is a VNC extension, that provides an
1546easily extendable, pluggable authentication method. This allows for
1547integration with a wide range of authentication mechanisms, such as
1548PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1549The strength of the authentication depends on the exact mechanism
1550configured. If the chosen mechanism also provides a SSF layer, then
1551it will encrypt the datastream as well.
1552
1553Refer to the later docs on how to choose the exact SASL mechanism
1554used for authentication, but assuming use of one supporting SSF,
1555then QEMU can be launched with:
1556
1557@example
3804da9d 1558qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio
2f9606b3
AL
1559@end example
1560
1561@node vnc_sec_certificate_sasl
1562@subsection With x509 certificates and SASL authentication
1563
1564If the desired SASL authentication mechanism does not supported
1565SSF layers, then it is strongly advised to run it in combination
1566with TLS and x509 certificates. This provides securely encrypted
1567data stream, avoiding risk of compromising of the security
1568credentials. This can be enabled, by combining the 'sasl' option
1569with the aforementioned TLS + x509 options:
1570
1571@example
3804da9d 1572qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
2f9606b3
AL
1573@end example
1574
1575
f858dcae
TS
1576@node vnc_generate_cert
1577@subsection Generating certificates for VNC
1578
1579The GNU TLS packages provides a command called @code{certtool} which can
1580be used to generate certificates and keys in PEM format. At a minimum it
40c5c6cd 1581is necessary to setup a certificate authority, and issue certificates to
f858dcae
TS
1582each server. If using certificates for authentication, then each client
1583will also need to be issued a certificate. The recommendation is for the
1584server to keep its certificates in either @code{/etc/pki/qemu} or for
1585unprivileged users in @code{$HOME/.pki/qemu}.
1586
1587@menu
1588* vnc_generate_ca::
1589* vnc_generate_server::
1590* vnc_generate_client::
1591@end menu
1592@node vnc_generate_ca
1593@subsubsection Setup the Certificate Authority
1594
1595This step only needs to be performed once per organization / organizational
1596unit. First the CA needs a private key. This key must be kept VERY secret
1597and secure. If this key is compromised the entire trust chain of the certificates
1598issued with it is lost.
1599
1600@example
1601# certtool --generate-privkey > ca-key.pem
1602@end example
1603
1604A CA needs to have a public certificate. For simplicity it can be a self-signed
1605certificate, or one issue by a commercial certificate issuing authority. To
1606generate a self-signed certificate requires one core piece of information, the
1607name of the organization.
1608
1609@example
1610# cat > ca.info <<EOF
1611cn = Name of your organization
1612ca
1613cert_signing_key
1614EOF
1615# certtool --generate-self-signed \
1616 --load-privkey ca-key.pem
1617 --template ca.info \
1618 --outfile ca-cert.pem
1619@end example
1620
1621The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1622TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1623
1624@node vnc_generate_server
1625@subsubsection Issuing server certificates
1626
1627Each server (or host) needs to be issued with a key and certificate. When connecting
1628the certificate is sent to the client which validates it against the CA certificate.
1629The core piece of information for a server certificate is the hostname. This should
1630be the fully qualified hostname that the client will connect with, since the client
1631will typically also verify the hostname in the certificate. On the host holding the
1632secure CA private key:
1633
1634@example
1635# cat > server.info <<EOF
1636organization = Name of your organization
1637cn = server.foo.example.com
1638tls_www_server
1639encryption_key
1640signing_key
1641EOF
1642# certtool --generate-privkey > server-key.pem
1643# certtool --generate-certificate \
1644 --load-ca-certificate ca-cert.pem \
1645 --load-ca-privkey ca-key.pem \
63c693f8 1646 --load-privkey server-key.pem \
f858dcae
TS
1647 --template server.info \
1648 --outfile server-cert.pem
1649@end example
1650
1651The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1652to the server for which they were generated. The @code{server-key.pem} is security
1653sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1654
1655@node vnc_generate_client
1656@subsubsection Issuing client certificates
1657
1658If the QEMU VNC server is to use the @code{x509verify} option to validate client
1659certificates as its authentication mechanism, each client also needs to be issued
1660a certificate. The client certificate contains enough metadata to uniquely identify
1661the client, typically organization, state, city, building, etc. On the host holding
1662the secure CA private key:
1663
1664@example
1665# cat > client.info <<EOF
1666country = GB
1667state = London
1668locality = London
63c693f8 1669organization = Name of your organization
f858dcae
TS
1670cn = client.foo.example.com
1671tls_www_client
1672encryption_key
1673signing_key
1674EOF
1675# certtool --generate-privkey > client-key.pem
1676# certtool --generate-certificate \
1677 --load-ca-certificate ca-cert.pem \
1678 --load-ca-privkey ca-key.pem \
1679 --load-privkey client-key.pem \
1680 --template client.info \
1681 --outfile client-cert.pem
1682@end example
1683
1684The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1685copied to the client for which they were generated.
1686
2f9606b3
AL
1687
1688@node vnc_setup_sasl
1689
1690@subsection Configuring SASL mechanisms
1691
1692The following documentation assumes use of the Cyrus SASL implementation on a
1693Linux host, but the principals should apply to any other SASL impl. When SASL
1694is enabled, the mechanism configuration will be loaded from system default
1695SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1696unprivileged user, an environment variable SASL_CONF_PATH can be used
1697to make it search alternate locations for the service config.
1698
1699The default configuration might contain
1700
1701@example
1702mech_list: digest-md5
1703sasldb_path: /etc/qemu/passwd.db
1704@end example
1705
1706This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1707Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1708in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1709command. While this mechanism is easy to configure and use, it is not
1710considered secure by modern standards, so only suitable for developers /
1711ad-hoc testing.
1712
1713A more serious deployment might use Kerberos, which is done with the 'gssapi'
1714mechanism
1715
1716@example
1717mech_list: gssapi
1718keytab: /etc/qemu/krb5.tab
1719@end example
1720
1721For this to work the administrator of your KDC must generate a Kerberos
1722principal for the server, with a name of 'qemu/somehost.example.com@@EXAMPLE.COM'
1723replacing 'somehost.example.com' with the fully qualified host name of the
40c5c6cd 1724machine running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
2f9606b3
AL
1725
1726Other configurations will be left as an exercise for the reader. It should
1727be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1728encryption. For all other mechanisms, VNC should always be configured to
1729use TLS and x509 certificates to protect security credentials from snooping.
1730
0806e3f6 1731@node gdb_usage
da415d54
FB
1732@section GDB usage
1733
1734QEMU has a primitive support to work with gdb, so that you can do
0806e3f6 1735'Ctrl-C' while the virtual machine is running and inspect its state.
da415d54 1736
b65ee4fa 1737In order to use gdb, launch QEMU with the '-s' option. It will wait for a
da415d54
FB
1738gdb connection:
1739@example
3804da9d
SW
1740qemu-system-i386 -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1741 -append "root=/dev/hda"
da415d54
FB
1742Connected to host network interface: tun0
1743Waiting gdb connection on port 1234
1744@end example
1745
1746Then launch gdb on the 'vmlinux' executable:
1747@example
1748> gdb vmlinux
1749@end example
1750
1751In gdb, connect to QEMU:
1752@example
6c9bf893 1753(gdb) target remote localhost:1234
da415d54
FB
1754@end example
1755
1756Then you can use gdb normally. For example, type 'c' to launch the kernel:
1757@example
1758(gdb) c
1759@end example
1760
0806e3f6
FB
1761Here are some useful tips in order to use gdb on system code:
1762
1763@enumerate
1764@item
1765Use @code{info reg} to display all the CPU registers.
1766@item
1767Use @code{x/10i $eip} to display the code at the PC position.
1768@item
1769Use @code{set architecture i8086} to dump 16 bit code. Then use
294e8637 1770@code{x/10i $cs*16+$eip} to dump the code at the PC position.
0806e3f6
FB
1771@end enumerate
1772
60897d36
EI
1773Advanced debugging options:
1774
1775The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
94d45e44 1776@table @code
60897d36
EI
1777@item maintenance packet qqemu.sstepbits
1778
1779This will display the MASK bits used to control the single stepping IE:
1780@example
1781(gdb) maintenance packet qqemu.sstepbits
1782sending: "qqemu.sstepbits"
1783received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1784@end example
1785@item maintenance packet qqemu.sstep
1786
1787This will display the current value of the mask used when single stepping IE:
1788@example
1789(gdb) maintenance packet qqemu.sstep
1790sending: "qqemu.sstep"
1791received: "0x7"
1792@end example
1793@item maintenance packet Qqemu.sstep=HEX_VALUE
1794
1795This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1796@example
1797(gdb) maintenance packet Qqemu.sstep=0x5
1798sending: "qemu.sstep=0x5"
1799received: "OK"
1800@end example
94d45e44 1801@end table
60897d36 1802
debc7065 1803@node pcsys_os_specific
1a084f3d
FB
1804@section Target OS specific information
1805
1806@subsection Linux
1807
15a34c63
FB
1808To have access to SVGA graphic modes under X11, use the @code{vesa} or
1809the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1810color depth in the guest and the host OS.
1a084f3d 1811
e3371e62
FB
1812When using a 2.6 guest Linux kernel, you should add the option
1813@code{clock=pit} on the kernel command line because the 2.6 Linux
1814kernels make very strict real time clock checks by default that QEMU
1815cannot simulate exactly.
1816
7c3fc84d
FB
1817When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1818not activated because QEMU is slower with this patch. The QEMU
1819Accelerator Module is also much slower in this case. Earlier Fedora
4be456f1 1820Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
7c3fc84d
FB
1821patch by default. Newer kernels don't have it.
1822
1a084f3d
FB
1823@subsection Windows
1824
1825If you have a slow host, using Windows 95 is better as it gives the
1826best speed. Windows 2000 is also a good choice.
1827
e3371e62
FB
1828@subsubsection SVGA graphic modes support
1829
1830QEMU emulates a Cirrus Logic GD5446 Video
15a34c63
FB
1831card. All Windows versions starting from Windows 95 should recognize
1832and use this graphic card. For optimal performances, use 16 bit color
1833depth in the guest and the host OS.
1a084f3d 1834
3cb0853a
FB
1835If you are using Windows XP as guest OS and if you want to use high
1836resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
18371280x1024x16), then you should use the VESA VBE virtual graphic card
1838(option @option{-std-vga}).
1839
e3371e62
FB
1840@subsubsection CPU usage reduction
1841
1842Windows 9x does not correctly use the CPU HLT
15a34c63
FB
1843instruction. The result is that it takes host CPU cycles even when
1844idle. You can install the utility from
1845@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1846problem. Note that no such tool is needed for NT, 2000 or XP.
1a084f3d 1847
9d0a8e6f 1848@subsubsection Windows 2000 disk full problem
e3371e62 1849
9d0a8e6f
FB
1850Windows 2000 has a bug which gives a disk full problem during its
1851installation. When installing it, use the @option{-win2k-hack} QEMU
1852option to enable a specific workaround. After Windows 2000 is
1853installed, you no longer need this option (this option slows down the
1854IDE transfers).
e3371e62 1855
6cc721cf
FB
1856@subsubsection Windows 2000 shutdown
1857
1858Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1859can. It comes from the fact that Windows 2000 does not automatically
1860use the APM driver provided by the BIOS.
1861
1862In order to correct that, do the following (thanks to Struan
1863Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1864Add/Troubleshoot a device => Add a new device & Next => No, select the
1865hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1866(again) a few times. Now the driver is installed and Windows 2000 now
5fafdf24 1867correctly instructs QEMU to shutdown at the appropriate moment.
6cc721cf
FB
1868
1869@subsubsection Share a directory between Unix and Windows
1870
1871See @ref{sec_invocation} about the help of the option @option{-smb}.
1872
2192c332 1873@subsubsection Windows XP security problem
e3371e62
FB
1874
1875Some releases of Windows XP install correctly but give a security
1876error when booting:
1877@example
1878A problem is preventing Windows from accurately checking the
1879license for this computer. Error code: 0x800703e6.
1880@end example
e3371e62 1881
2192c332
FB
1882The workaround is to install a service pack for XP after a boot in safe
1883mode. Then reboot, and the problem should go away. Since there is no
1884network while in safe mode, its recommended to download the full
1885installation of SP1 or SP2 and transfer that via an ISO or using the
1886vvfat block device ("-hdb fat:directory_which_holds_the_SP").
e3371e62 1887
a0a821a4
FB
1888@subsection MS-DOS and FreeDOS
1889
1890@subsubsection CPU usage reduction
1891
1892DOS does not correctly use the CPU HLT instruction. The result is that
1893it takes host CPU cycles even when idle. You can install the utility
1894from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1895problem.
1896
debc7065 1897@node QEMU System emulator for non PC targets
3f9f3aa1
FB
1898@chapter QEMU System emulator for non PC targets
1899
1900QEMU is a generic emulator and it emulates many non PC
1901machines. Most of the options are similar to the PC emulator. The
4be456f1 1902differences are mentioned in the following sections.
3f9f3aa1 1903
debc7065 1904@menu
7544a042 1905* PowerPC System emulator::
24d4de45
TS
1906* Sparc32 System emulator::
1907* Sparc64 System emulator::
1908* MIPS System emulator::
1909* ARM System emulator::
1910* ColdFire System emulator::
7544a042
SW
1911* Cris System emulator::
1912* Microblaze System emulator::
1913* SH4 System emulator::
3aeaea65 1914* Xtensa System emulator::
debc7065
FB
1915@end menu
1916
7544a042
SW
1917@node PowerPC System emulator
1918@section PowerPC System emulator
1919@cindex system emulation (PowerPC)
1a084f3d 1920
15a34c63
FB
1921Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1922or PowerMac PowerPC system.
1a084f3d 1923
b671f9ed 1924QEMU emulates the following PowerMac peripherals:
1a084f3d 1925
15a34c63 1926@itemize @minus
5fafdf24 1927@item
006f3a48 1928UniNorth or Grackle PCI Bridge
15a34c63
FB
1929@item
1930PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1931@item
15a34c63 19322 PMAC IDE interfaces with hard disk and CD-ROM support
5fafdf24 1933@item
15a34c63
FB
1934NE2000 PCI adapters
1935@item
1936Non Volatile RAM
1937@item
1938VIA-CUDA with ADB keyboard and mouse.
1a084f3d
FB
1939@end itemize
1940
b671f9ed 1941QEMU emulates the following PREP peripherals:
52c00a5f
FB
1942
1943@itemize @minus
5fafdf24 1944@item
15a34c63
FB
1945PCI Bridge
1946@item
1947PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1948@item
52c00a5f
FB
19492 IDE interfaces with hard disk and CD-ROM support
1950@item
1951Floppy disk
5fafdf24 1952@item
15a34c63 1953NE2000 network adapters
52c00a5f
FB
1954@item
1955Serial port
1956@item
1957PREP Non Volatile RAM
15a34c63
FB
1958@item
1959PC compatible keyboard and mouse.
52c00a5f
FB
1960@end itemize
1961
15a34c63 1962QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
3f9f3aa1 1963@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
52c00a5f 1964
992e5acd 1965Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
006f3a48
BS
1966for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1967v2) portable firmware implementation. The goal is to implement a 100%
1968IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
992e5acd 1969
15a34c63
FB
1970@c man begin OPTIONS
1971
1972The following options are specific to the PowerPC emulation:
1973
1974@table @option
1975
4e257e5e 1976@item -g @var{W}x@var{H}[x@var{DEPTH}]
15a34c63 1977
340fb41b 1978Set the initial VGA graphic mode. The default is 800x600x32.
15a34c63 1979
4e257e5e 1980@item -prom-env @var{string}
95efd11c
BS
1981
1982Set OpenBIOS variables in NVRAM, for example:
1983
1984@example
1985qemu-system-ppc -prom-env 'auto-boot?=false' \
1986 -prom-env 'boot-device=hd:2,\yaboot' \
1987 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1988@end example
1989
1990These variables are not used by Open Hack'Ware.
1991
15a34c63
FB
1992@end table
1993
5fafdf24 1994@c man end
15a34c63
FB
1995
1996
52c00a5f 1997More information is available at
3f9f3aa1 1998@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
52c00a5f 1999
24d4de45
TS
2000@node Sparc32 System emulator
2001@section Sparc32 System emulator
7544a042 2002@cindex system emulation (Sparc32)
e80cfcfc 2003
34a3d239
BS
2004Use the executable @file{qemu-system-sparc} to simulate the following
2005Sun4m architecture machines:
2006@itemize @minus
2007@item
2008SPARCstation 4
2009@item
2010SPARCstation 5
2011@item
2012SPARCstation 10
2013@item
2014SPARCstation 20
2015@item
2016SPARCserver 600MP
2017@item
2018SPARCstation LX
2019@item
2020SPARCstation Voyager
2021@item
2022SPARCclassic
2023@item
2024SPARCbook
2025@end itemize
2026
2027The emulation is somewhat complete. SMP up to 16 CPUs is supported,
2028but Linux limits the number of usable CPUs to 4.
e80cfcfc 2029
6a4e1771 2030QEMU emulates the following sun4m peripherals:
e80cfcfc
FB
2031
2032@itemize @minus
3475187d 2033@item
6a4e1771 2034IOMMU
e80cfcfc 2035@item
33632788 2036TCX or cgthree Frame buffer
5fafdf24 2037@item
e80cfcfc
FB
2038Lance (Am7990) Ethernet
2039@item
34a3d239 2040Non Volatile RAM M48T02/M48T08
e80cfcfc 2041@item
3475187d
FB
2042Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2043and power/reset logic
2044@item
2045ESP SCSI controller with hard disk and CD-ROM support
2046@item
6a3b9cc9 2047Floppy drive (not on SS-600MP)
a2502b58
BS
2048@item
2049CS4231 sound device (only on SS-5, not working yet)
e80cfcfc
FB
2050@end itemize
2051
6a3b9cc9
BS
2052The number of peripherals is fixed in the architecture. Maximum
2053memory size depends on the machine type, for SS-5 it is 256MB and for
7d85892b 2054others 2047MB.
3475187d 2055
30a604f3 2056Since version 0.8.2, QEMU uses OpenBIOS
0986ac3b
FB
2057@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2058firmware implementation. The goal is to implement a 100% IEEE
20591275-1994 (referred to as Open Firmware) compliant firmware.
3475187d
FB
2060
2061A sample Linux 2.6 series kernel and ram disk image are available on
34a3d239 2062the QEMU web site. There are still issues with NetBSD and OpenBSD, but
9bb9f217 2063most kernel versions work. Please note that currently older Solaris kernels
34a3d239
BS
2064don't work probably due to interface issues between OpenBIOS and
2065Solaris.
3475187d
FB
2066
2067@c man begin OPTIONS
2068
a2502b58 2069The following options are specific to the Sparc32 emulation:
3475187d
FB
2070
2071@table @option
2072
4e257e5e 2073@item -g @var{W}x@var{H}x[x@var{DEPTH}]
3475187d 2074
33632788
MCA
2075Set the initial graphics mode. For TCX, the default is 1024x768x8 with the
2076option of 1024x768x24. For cgthree, the default is 1024x768x8 with the option
2077of 1152x900x8 for people who wish to use OBP.
3475187d 2078
4e257e5e 2079@item -prom-env @var{string}
66508601
BS
2080
2081Set OpenBIOS variables in NVRAM, for example:
2082
2083@example
2084qemu-system-sparc -prom-env 'auto-boot?=false' \
2085 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2086@end example
2087
6a4e1771 2088@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook]
a2502b58
BS
2089
2090Set the emulated machine type. Default is SS-5.
2091
3475187d
FB
2092@end table
2093
5fafdf24 2094@c man end
3475187d 2095
24d4de45
TS
2096@node Sparc64 System emulator
2097@section Sparc64 System emulator
7544a042 2098@cindex system emulation (Sparc64)
e80cfcfc 2099
34a3d239
BS
2100Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
2101(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
9bb9f217
MCA
2102Niagara (T1) machine. The Sun4u emulator is mostly complete, being
2103able to run Linux, NetBSD and OpenBSD in headless (-nographic) mode. The
2104Sun4v and Niagara emulators are still a work in progress.
b756921a 2105
c7ba218d 2106QEMU emulates the following peripherals:
83469015
FB
2107
2108@itemize @minus
2109@item
5fafdf24 2110UltraSparc IIi APB PCI Bridge
83469015
FB
2111@item
2112PCI VGA compatible card with VESA Bochs Extensions
2113@item
34a3d239
BS
2114PS/2 mouse and keyboard
2115@item
83469015
FB
2116Non Volatile RAM M48T59
2117@item
2118PC-compatible serial ports
c7ba218d
BS
2119@item
21202 PCI IDE interfaces with hard disk and CD-ROM support
34a3d239
BS
2121@item
2122Floppy disk
83469015
FB
2123@end itemize
2124
c7ba218d
BS
2125@c man begin OPTIONS
2126
2127The following options are specific to the Sparc64 emulation:
2128
2129@table @option
2130
4e257e5e 2131@item -prom-env @var{string}
34a3d239
BS
2132
2133Set OpenBIOS variables in NVRAM, for example:
2134
2135@example
2136qemu-system-sparc64 -prom-env 'auto-boot?=false'
2137@end example
2138
2139@item -M [sun4u|sun4v|Niagara]
c7ba218d
BS
2140
2141Set the emulated machine type. The default is sun4u.
2142
2143@end table
2144
2145@c man end
2146
24d4de45
TS
2147@node MIPS System emulator
2148@section MIPS System emulator
7544a042 2149@cindex system emulation (MIPS)
9d0a8e6f 2150
d9aedc32
TS
2151Four executables cover simulation of 32 and 64-bit MIPS systems in
2152both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2153@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
88cb0a02 2154Five different machine types are emulated:
24d4de45
TS
2155
2156@itemize @minus
2157@item
2158A generic ISA PC-like machine "mips"
2159@item
2160The MIPS Malta prototype board "malta"
2161@item
d9aedc32 2162An ACER Pica "pica61". This machine needs the 64-bit emulator.
6bf5b4e8 2163@item
f0fc6f8f 2164MIPS emulator pseudo board "mipssim"
88cb0a02
AJ
2165@item
2166A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
24d4de45
TS
2167@end itemize
2168
2169The generic emulation is supported by Debian 'Etch' and is able to
2170install Debian into a virtual disk image. The following devices are
2171emulated:
3f9f3aa1
FB
2172
2173@itemize @minus
5fafdf24 2174@item
6bf5b4e8 2175A range of MIPS CPUs, default is the 24Kf
3f9f3aa1
FB
2176@item
2177PC style serial port
2178@item
24d4de45
TS
2179PC style IDE disk
2180@item
3f9f3aa1
FB
2181NE2000 network card
2182@end itemize
2183
24d4de45
TS
2184The Malta emulation supports the following devices:
2185
2186@itemize @minus
2187@item
0b64d008 2188Core board with MIPS 24Kf CPU and Galileo system controller
24d4de45
TS
2189@item
2190PIIX4 PCI/USB/SMbus controller
2191@item
2192The Multi-I/O chip's serial device
2193@item
3a2eeac0 2194PCI network cards (PCnet32 and others)
24d4de45
TS
2195@item
2196Malta FPGA serial device
2197@item
1f605a76 2198Cirrus (default) or any other PCI VGA graphics card
24d4de45
TS
2199@end itemize
2200
2201The ACER Pica emulation supports:
2202
2203@itemize @minus
2204@item
2205MIPS R4000 CPU
2206@item
2207PC-style IRQ and DMA controllers
2208@item
2209PC Keyboard
2210@item
2211IDE controller
2212@end itemize
3f9f3aa1 2213
b5e4946f 2214The mipssim pseudo board emulation provides an environment similar
f0fc6f8f
TS
2215to what the proprietary MIPS emulator uses for running Linux.
2216It supports:
6bf5b4e8
TS
2217
2218@itemize @minus
2219@item
2220A range of MIPS CPUs, default is the 24Kf
2221@item
2222PC style serial port
2223@item
2224MIPSnet network emulation
2225@end itemize
2226
88cb0a02
AJ
2227The MIPS Magnum R4000 emulation supports:
2228
2229@itemize @minus
2230@item
2231MIPS R4000 CPU
2232@item
2233PC-style IRQ controller
2234@item
2235PC Keyboard
2236@item
2237SCSI controller
2238@item
2239G364 framebuffer
2240@end itemize
2241
2242
24d4de45
TS
2243@node ARM System emulator
2244@section ARM System emulator
7544a042 2245@cindex system emulation (ARM)
3f9f3aa1
FB
2246
2247Use the executable @file{qemu-system-arm} to simulate a ARM
2248machine. The ARM Integrator/CP board is emulated with the following
2249devices:
2250
2251@itemize @minus
2252@item
9ee6e8bb 2253ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
3f9f3aa1
FB
2254@item
2255Two PL011 UARTs
5fafdf24 2256@item
3f9f3aa1 2257SMC 91c111 Ethernet adapter
00a9bf19
PB
2258@item
2259PL110 LCD controller
2260@item
2261PL050 KMI with PS/2 keyboard and mouse.
a1bb27b1
PB
2262@item
2263PL181 MultiMedia Card Interface with SD card.
00a9bf19
PB
2264@end itemize
2265
2266The ARM Versatile baseboard is emulated with the following devices:
2267
2268@itemize @minus
2269@item
9ee6e8bb 2270ARM926E, ARM1136 or Cortex-A8 CPU
00a9bf19
PB
2271@item
2272PL190 Vectored Interrupt Controller
2273@item
2274Four PL011 UARTs
5fafdf24 2275@item
00a9bf19
PB
2276SMC 91c111 Ethernet adapter
2277@item
2278PL110 LCD controller
2279@item
2280PL050 KMI with PS/2 keyboard and mouse.
2281@item
2282PCI host bridge. Note the emulated PCI bridge only provides access to
2283PCI memory space. It does not provide access to PCI IO space.
4be456f1
TS
2284This means some devices (eg. ne2k_pci NIC) are not usable, and others
2285(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
00a9bf19 2286mapped control registers.
e6de1bad
PB
2287@item
2288PCI OHCI USB controller.
2289@item
2290LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
a1bb27b1
PB
2291@item
2292PL181 MultiMedia Card Interface with SD card.
3f9f3aa1
FB
2293@end itemize
2294
21a88941
PB
2295Several variants of the ARM RealView baseboard are emulated,
2296including the EB, PB-A8 and PBX-A9. Due to interactions with the
2297bootloader, only certain Linux kernel configurations work out
2298of the box on these boards.
2299
2300Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2301enabled in the kernel, and expect 512M RAM. Kernels for The PBX-A9 board
2302should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2303disabled and expect 1024M RAM.
2304
40c5c6cd 2305The following devices are emulated:
d7739d75
PB
2306
2307@itemize @minus
2308@item
f7c70325 2309ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
d7739d75
PB
2310@item
2311ARM AMBA Generic/Distributed Interrupt Controller
2312@item
2313Four PL011 UARTs
5fafdf24 2314@item
0ef849d7 2315SMC 91c111 or SMSC LAN9118 Ethernet adapter
d7739d75
PB
2316@item
2317PL110 LCD controller
2318@item
2319PL050 KMI with PS/2 keyboard and mouse
2320@item
2321PCI host bridge
2322@item
2323PCI OHCI USB controller
2324@item
2325LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
a1bb27b1
PB
2326@item
2327PL181 MultiMedia Card Interface with SD card.
d7739d75
PB
2328@end itemize
2329
b00052e4
AZ
2330The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2331and "Terrier") emulation includes the following peripherals:
2332
2333@itemize @minus
2334@item
2335Intel PXA270 System-on-chip (ARM V5TE core)
2336@item
2337NAND Flash memory
2338@item
2339IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2340@item
2341On-chip OHCI USB controller
2342@item
2343On-chip LCD controller
2344@item
2345On-chip Real Time Clock
2346@item
2347TI ADS7846 touchscreen controller on SSP bus
2348@item
2349Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2350@item
2351GPIO-connected keyboard controller and LEDs
2352@item
549444e1 2353Secure Digital card connected to PXA MMC/SD host
b00052e4
AZ
2354@item
2355Three on-chip UARTs
2356@item
2357WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2358@end itemize
2359
02645926
AZ
2360The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2361following elements:
2362
2363@itemize @minus
2364@item
2365Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2366@item
2367ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2368@item
2369On-chip LCD controller
2370@item
2371On-chip Real Time Clock
2372@item
2373TI TSC2102i touchscreen controller / analog-digital converter / Audio
2374CODEC, connected through MicroWire and I@math{^2}S busses
2375@item
2376GPIO-connected matrix keypad
2377@item
2378Secure Digital card connected to OMAP MMC/SD host
2379@item
2380Three on-chip UARTs
2381@end itemize
2382
c30bb264
AZ
2383Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2384emulation supports the following elements:
2385
2386@itemize @minus
2387@item
2388Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2389@item
2390RAM and non-volatile OneNAND Flash memories
2391@item
2392Display connected to EPSON remote framebuffer chip and OMAP on-chip
2393display controller and a LS041y3 MIPI DBI-C controller
2394@item
2395TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2396driven through SPI bus
2397@item
2398National Semiconductor LM8323-controlled qwerty keyboard driven
2399through I@math{^2}C bus
2400@item
2401Secure Digital card connected to OMAP MMC/SD host
2402@item
2403Three OMAP on-chip UARTs and on-chip STI debugging console
2404@item
40c5c6cd 2405A Bluetooth(R) transceiver and HCI connected to an UART
2d564691 2406@item
c30bb264
AZ
2407Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2408TUSB6010 chip - only USB host mode is supported
2409@item
2410TI TMP105 temperature sensor driven through I@math{^2}C bus
2411@item
2412TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2413@item
2414Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2415through CBUS
2416@end itemize
2417
9ee6e8bb
PB
2418The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2419devices:
2420
2421@itemize @minus
2422@item
2423Cortex-M3 CPU core.
2424@item
242564k Flash and 8k SRAM.
2426@item
2427Timers, UARTs, ADC and I@math{^2}C interface.
2428@item
2429OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2430@end itemize
2431
2432The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2433devices:
2434
2435@itemize @minus
2436@item
2437Cortex-M3 CPU core.
2438@item
2439256k Flash and 64k SRAM.
2440@item
2441Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2442@item
2443OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2444@end itemize
2445
57cd6e97
AZ
2446The Freecom MusicPal internet radio emulation includes the following
2447elements:
2448
2449@itemize @minus
2450@item
2451Marvell MV88W8618 ARM core.
2452@item
245332 MB RAM, 256 KB SRAM, 8 MB flash.
2454@item
2455Up to 2 16550 UARTs
2456@item
2457MV88W8xx8 Ethernet controller
2458@item
2459MV88W8618 audio controller, WM8750 CODEC and mixer
2460@item
e080e785 2461128×64 display with brightness control
57cd6e97
AZ
2462@item
24632 buttons, 2 navigation wheels with button function
2464@end itemize
2465
997641a8 2466The Siemens SX1 models v1 and v2 (default) basic emulation.
40c5c6cd 2467The emulation includes the following elements:
997641a8
AZ
2468
2469@itemize @minus
2470@item
2471Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2472@item
2473ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2474V1
24751 Flash of 16MB and 1 Flash of 8MB
2476V2
24771 Flash of 32MB
2478@item
2479On-chip LCD controller
2480@item
2481On-chip Real Time Clock
2482@item
2483Secure Digital card connected to OMAP MMC/SD host
2484@item
2485Three on-chip UARTs
2486@end itemize
2487
3f9f3aa1
FB
2488A Linux 2.6 test image is available on the QEMU web site. More
2489information is available in the QEMU mailing-list archive.
9d0a8e6f 2490
d2c639d6
BS
2491@c man begin OPTIONS
2492
2493The following options are specific to the ARM emulation:
2494
2495@table @option
2496
2497@item -semihosting
2498Enable semihosting syscall emulation.
2499
2500On ARM this implements the "Angel" interface.
2501
2502Note that this allows guest direct access to the host filesystem,
2503so should only be used with trusted guest OS.
2504
2505@end table
2506
24d4de45
TS
2507@node ColdFire System emulator
2508@section ColdFire System emulator
7544a042
SW
2509@cindex system emulation (ColdFire)
2510@cindex system emulation (M68K)
209a4e69
PB
2511
2512Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2513The emulator is able to boot a uClinux kernel.
707e011b
PB
2514
2515The M5208EVB emulation includes the following devices:
2516
2517@itemize @minus
5fafdf24 2518@item
707e011b
PB
2519MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2520@item
2521Three Two on-chip UARTs.
2522@item
2523Fast Ethernet Controller (FEC)
2524@end itemize
2525
2526The AN5206 emulation includes the following devices:
209a4e69
PB
2527
2528@itemize @minus
5fafdf24 2529@item
209a4e69
PB
2530MCF5206 ColdFire V2 Microprocessor.
2531@item
2532Two on-chip UARTs.
2533@end itemize
2534
d2c639d6
BS
2535@c man begin OPTIONS
2536
7544a042 2537The following options are specific to the ColdFire emulation:
d2c639d6
BS
2538
2539@table @option
2540
2541@item -semihosting
2542Enable semihosting syscall emulation.
2543
2544On M68K this implements the "ColdFire GDB" interface used by libgloss.
2545
2546Note that this allows guest direct access to the host filesystem,
2547so should only be used with trusted guest OS.
2548
2549@end table
2550
7544a042
SW
2551@node Cris System emulator
2552@section Cris System emulator
2553@cindex system emulation (Cris)
2554
2555TODO
2556
2557@node Microblaze System emulator
2558@section Microblaze System emulator
2559@cindex system emulation (Microblaze)
2560
2561TODO
2562
2563@node SH4 System emulator
2564@section SH4 System emulator
2565@cindex system emulation (SH4)
2566
2567TODO
2568
3aeaea65
MF
2569@node Xtensa System emulator
2570@section Xtensa System emulator
2571@cindex system emulation (Xtensa)
2572
2573Two executables cover simulation of both Xtensa endian options,
2574@file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
2575Two different machine types are emulated:
2576
2577@itemize @minus
2578@item
2579Xtensa emulator pseudo board "sim"
2580@item
2581Avnet LX60/LX110/LX200 board
2582@end itemize
2583
b5e4946f 2584The sim pseudo board emulation provides an environment similar
3aeaea65
MF
2585to one provided by the proprietary Tensilica ISS.
2586It supports:
2587
2588@itemize @minus
2589@item
2590A range of Xtensa CPUs, default is the DC232B
2591@item
2592Console and filesystem access via semihosting calls
2593@end itemize
2594
2595The Avnet LX60/LX110/LX200 emulation supports:
2596
2597@itemize @minus
2598@item
2599A range of Xtensa CPUs, default is the DC232B
2600@item
260116550 UART
2602@item
2603OpenCores 10/100 Mbps Ethernet MAC
2604@end itemize
2605
2606@c man begin OPTIONS
2607
2608The following options are specific to the Xtensa emulation:
2609
2610@table @option
2611
2612@item -semihosting
2613Enable semihosting syscall emulation.
2614
2615Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2616Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2617
2618Note that this allows guest direct access to the host filesystem,
2619so should only be used with trusted guest OS.
2620
2621@end table
5fafdf24
TS
2622@node QEMU User space emulator
2623@chapter QEMU User space emulator
83195237
FB
2624
2625@menu
2626* Supported Operating Systems ::
2627* Linux User space emulator::
84778508 2628* BSD User space emulator ::
83195237
FB
2629@end menu
2630
2631@node Supported Operating Systems
2632@section Supported Operating Systems
2633
2634The following OS are supported in user space emulation:
2635
2636@itemize @minus
2637@item
4be456f1 2638Linux (referred as qemu-linux-user)
83195237 2639@item
84778508 2640BSD (referred as qemu-bsd-user)
83195237
FB
2641@end itemize
2642
2643@node Linux User space emulator
2644@section Linux User space emulator
386405f7 2645
debc7065
FB
2646@menu
2647* Quick Start::
2648* Wine launch::
2649* Command line options::
79737e4a 2650* Other binaries::
debc7065
FB
2651@end menu
2652
2653@node Quick Start
83195237 2654@subsection Quick Start
df0f11a0 2655
1f673135 2656In order to launch a Linux process, QEMU needs the process executable
5fafdf24 2657itself and all the target (x86) dynamic libraries used by it.
386405f7 2658
1f673135 2659@itemize
386405f7 2660
1f673135
FB
2661@item On x86, you can just try to launch any process by using the native
2662libraries:
386405f7 2663
5fafdf24 2664@example
1f673135
FB
2665qemu-i386 -L / /bin/ls
2666@end example
386405f7 2667
1f673135
FB
2668@code{-L /} tells that the x86 dynamic linker must be searched with a
2669@file{/} prefix.
386405f7 2670
b65ee4fa
SW
2671@item Since QEMU is also a linux process, you can launch QEMU with
2672QEMU (NOTE: you can only do that if you compiled QEMU from the sources):
386405f7 2673
5fafdf24 2674@example
1f673135
FB
2675qemu-i386 -L / qemu-i386 -L / /bin/ls
2676@end example
386405f7 2677
1f673135
FB
2678@item On non x86 CPUs, you need first to download at least an x86 glibc
2679(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2680@code{LD_LIBRARY_PATH} is not set:
df0f11a0 2681
1f673135 2682@example
5fafdf24 2683unset LD_LIBRARY_PATH
1f673135 2684@end example
1eb87257 2685
1f673135 2686Then you can launch the precompiled @file{ls} x86 executable:
1eb87257 2687
1f673135
FB
2688@example
2689qemu-i386 tests/i386/ls
2690@end example
4c3b5a48 2691You can look at @file{scripts/qemu-binfmt-conf.sh} so that
1f673135
FB
2692QEMU is automatically launched by the Linux kernel when you try to
2693launch x86 executables. It requires the @code{binfmt_misc} module in the
2694Linux kernel.
1eb87257 2695
1f673135
FB
2696@item The x86 version of QEMU is also included. You can try weird things such as:
2697@example
debc7065
FB
2698qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2699 /usr/local/qemu-i386/bin/ls-i386
1f673135 2700@end example
1eb20527 2701
1f673135 2702@end itemize
1eb20527 2703
debc7065 2704@node Wine launch
83195237 2705@subsection Wine launch
1eb20527 2706
1f673135 2707@itemize
386405f7 2708
1f673135
FB
2709@item Ensure that you have a working QEMU with the x86 glibc
2710distribution (see previous section). In order to verify it, you must be
2711able to do:
386405f7 2712
1f673135
FB
2713@example
2714qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2715@end example
386405f7 2716
1f673135 2717@item Download the binary x86 Wine install
5fafdf24 2718(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
386405f7 2719
1f673135 2720@item Configure Wine on your account. Look at the provided script
debc7065 2721@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
1f673135 2722@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
386405f7 2723
1f673135 2724@item Then you can try the example @file{putty.exe}:
386405f7 2725
1f673135 2726@example
debc7065
FB
2727qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2728 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
1f673135 2729@end example
386405f7 2730
1f673135 2731@end itemize
fd429f2f 2732
debc7065 2733@node Command line options
83195237 2734@subsection Command line options
1eb20527 2735
1f673135 2736@example
68a1c816 2737usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] [-B offset] [-R size] program [arguments...]
1f673135 2738@end example
1eb20527 2739
1f673135
FB
2740@table @option
2741@item -h
2742Print the help
3b46e624 2743@item -L path
1f673135
FB
2744Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2745@item -s size
2746Set the x86 stack size in bytes (default=524288)
34a3d239 2747@item -cpu model
c8057f95 2748Select CPU model (-cpu help for list and additional feature selection)
f66724c9
SW
2749@item -E @var{var}=@var{value}
2750Set environment @var{var} to @var{value}.
2751@item -U @var{var}
2752Remove @var{var} from the environment.
379f6698
PB
2753@item -B offset
2754Offset guest address by the specified number of bytes. This is useful when
1f5c3f8c
SW
2755the address region required by guest applications is reserved on the host.
2756This option is currently only supported on some hosts.
68a1c816
PB
2757@item -R size
2758Pre-allocate a guest virtual address space of the given size (in bytes).
0d6753e5 2759"G", "M", and "k" suffixes may be used when specifying the size.
386405f7
FB
2760@end table
2761
1f673135 2762Debug options:
386405f7 2763
1f673135 2764@table @option
989b697d
PM
2765@item -d item1,...
2766Activate logging of the specified items (use '-d help' for a list of log items)
1f673135
FB
2767@item -p pagesize
2768Act as if the host page size was 'pagesize' bytes
34a3d239
BS
2769@item -g port
2770Wait gdb connection to port
1b530a6d
AJ
2771@item -singlestep
2772Run the emulation in single step mode.
1f673135 2773@end table
386405f7 2774
b01bcae6
AZ
2775Environment variables:
2776
2777@table @env
2778@item QEMU_STRACE
2779Print system calls and arguments similar to the 'strace' program
2780(NOTE: the actual 'strace' program will not work because the user
2781space emulator hasn't implemented ptrace). At the moment this is
2782incomplete. All system calls that don't have a specific argument
2783format are printed with information for six arguments. Many
2784flag-style arguments don't have decoders and will show up as numbers.
5cfdf930 2785@end table
b01bcae6 2786
79737e4a 2787@node Other binaries
83195237 2788@subsection Other binaries
79737e4a 2789
7544a042
SW
2790@cindex user mode (Alpha)
2791@command{qemu-alpha} TODO.
2792
2793@cindex user mode (ARM)
2794@command{qemu-armeb} TODO.
2795
2796@cindex user mode (ARM)
79737e4a
PB
2797@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2798binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2799configurations), and arm-uclinux bFLT format binaries.
2800
7544a042
SW
2801@cindex user mode (ColdFire)
2802@cindex user mode (M68K)
e6e5906b
PB
2803@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2804(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2805coldfire uClinux bFLT format binaries.
2806
79737e4a
PB
2807The binary format is detected automatically.
2808
7544a042
SW
2809@cindex user mode (Cris)
2810@command{qemu-cris} TODO.
2811
2812@cindex user mode (i386)
2813@command{qemu-i386} TODO.
2814@command{qemu-x86_64} TODO.
2815
2816@cindex user mode (Microblaze)
2817@command{qemu-microblaze} TODO.
2818
2819@cindex user mode (MIPS)
2820@command{qemu-mips} TODO.
2821@command{qemu-mipsel} TODO.
2822
2823@cindex user mode (PowerPC)
2824@command{qemu-ppc64abi32} TODO.
2825@command{qemu-ppc64} TODO.
2826@command{qemu-ppc} TODO.
2827
2828@cindex user mode (SH4)
2829@command{qemu-sh4eb} TODO.
2830@command{qemu-sh4} TODO.
2831
2832@cindex user mode (SPARC)
34a3d239
BS
2833@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2834
a785e42e
BS
2835@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2836(Sparc64 CPU, 32 bit ABI).
2837
2838@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2839SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2840
84778508
BS
2841@node BSD User space emulator
2842@section BSD User space emulator
2843
2844@menu
2845* BSD Status::
2846* BSD Quick Start::
2847* BSD Command line options::
2848@end menu
2849
2850@node BSD Status
2851@subsection BSD Status
2852
2853@itemize @minus
2854@item
2855target Sparc64 on Sparc64: Some trivial programs work.
2856@end itemize
2857
2858@node BSD Quick Start
2859@subsection Quick Start
2860
2861In order to launch a BSD process, QEMU needs the process executable
2862itself and all the target dynamic libraries used by it.
2863
2864@itemize
2865
2866@item On Sparc64, you can just try to launch any process by using the native
2867libraries:
2868
2869@example
2870qemu-sparc64 /bin/ls
2871@end example
2872
2873@end itemize
2874
2875@node BSD Command line options
2876@subsection Command line options
2877
2878@example
2879usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
2880@end example
2881
2882@table @option
2883@item -h
2884Print the help
2885@item -L path
2886Set the library root path (default=/)
2887@item -s size
2888Set the stack size in bytes (default=524288)
f66724c9
SW
2889@item -ignore-environment
2890Start with an empty environment. Without this option,
40c5c6cd 2891the initial environment is a copy of the caller's environment.
f66724c9
SW
2892@item -E @var{var}=@var{value}
2893Set environment @var{var} to @var{value}.
2894@item -U @var{var}
2895Remove @var{var} from the environment.
84778508
BS
2896@item -bsd type
2897Set the type of the emulated BSD Operating system. Valid values are
2898FreeBSD, NetBSD and OpenBSD (default).
2899@end table
2900
2901Debug options:
2902
2903@table @option
989b697d
PM
2904@item -d item1,...
2905Activate logging of the specified items (use '-d help' for a list of log items)
84778508
BS
2906@item -p pagesize
2907Act as if the host page size was 'pagesize' bytes
1b530a6d
AJ
2908@item -singlestep
2909Run the emulation in single step mode.
84778508
BS
2910@end table
2911
15a34c63
FB
2912@node compilation
2913@chapter Compilation from the sources
2914
debc7065
FB
2915@menu
2916* Linux/Unix::
2917* Windows::
2918* Cross compilation for Windows with Linux::
2919* Mac OS X::
47eacb4f 2920* Make targets::
debc7065
FB
2921@end menu
2922
2923@node Linux/Unix
7c3fc84d
FB
2924@section Linux/Unix
2925
2926@subsection Compilation
2927
2928First you must decompress the sources:
2929@example
2930cd /tmp
2931tar zxvf qemu-x.y.z.tar.gz
2932cd qemu-x.y.z
2933@end example
2934
2935Then you configure QEMU and build it (usually no options are needed):
2936@example
2937./configure
2938make
2939@end example
2940
2941Then type as root user:
2942@example
2943make install
2944@end example
2945to install QEMU in @file{/usr/local}.
2946
debc7065 2947@node Windows
15a34c63
FB
2948@section Windows
2949
2950@itemize
2951@item Install the current versions of MSYS and MinGW from
2952@url{http://www.mingw.org/}. You can find detailed installation
2953instructions in the download section and the FAQ.
2954
5fafdf24 2955@item Download
15a34c63 2956the MinGW development library of SDL 1.2.x
debc7065 2957(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
d0a96f3d
ST
2958@url{http://www.libsdl.org}. Unpack it in a temporary place and
2959edit the @file{sdl-config} script so that it gives the
15a34c63
FB
2960correct SDL directory when invoked.
2961
d0a96f3d
ST
2962@item Install the MinGW version of zlib and make sure
2963@file{zlib.h} and @file{libz.dll.a} are in
40c5c6cd 2964MinGW's default header and linker search paths.
d0a96f3d 2965
15a34c63 2966@item Extract the current version of QEMU.
5fafdf24 2967
15a34c63
FB
2968@item Start the MSYS shell (file @file{msys.bat}).
2969
5fafdf24 2970@item Change to the QEMU directory. Launch @file{./configure} and
15a34c63
FB
2971@file{make}. If you have problems using SDL, verify that
2972@file{sdl-config} can be launched from the MSYS command line.
2973
c5ec15ea 2974@item You can install QEMU in @file{Program Files/QEMU} by typing
15a34c63 2975@file{make install}. Don't forget to copy @file{SDL.dll} in
c5ec15ea 2976@file{Program Files/QEMU}.
15a34c63
FB
2977
2978@end itemize
2979
debc7065 2980@node Cross compilation for Windows with Linux
15a34c63
FB
2981@section Cross compilation for Windows with Linux
2982
2983@itemize
2984@item
2985Install the MinGW cross compilation tools available at
2986@url{http://www.mingw.org/}.
2987
d0a96f3d
ST
2988@item Download
2989the MinGW development library of SDL 1.2.x
2990(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2991@url{http://www.libsdl.org}. Unpack it in a temporary place and
2992edit the @file{sdl-config} script so that it gives the
2993correct SDL directory when invoked. Set up the @code{PATH} environment
2994variable so that @file{sdl-config} can be launched by
15a34c63
FB
2995the QEMU configuration script.
2996
d0a96f3d
ST
2997@item Install the MinGW version of zlib and make sure
2998@file{zlib.h} and @file{libz.dll.a} are in
40c5c6cd 2999MinGW's default header and linker search paths.
d0a96f3d 3000
5fafdf24 3001@item
15a34c63
FB
3002Configure QEMU for Windows cross compilation:
3003@example
d0a96f3d
ST
3004PATH=/usr/i686-pc-mingw32/sys-root/mingw/bin:$PATH ./configure --cross-prefix='i686-pc-mingw32-'
3005@end example
3006The example assumes @file{sdl-config} is installed under @file{/usr/i686-pc-mingw32/sys-root/mingw/bin} and
3007MinGW cross compilation tools have names like @file{i686-pc-mingw32-gcc} and @file{i686-pc-mingw32-strip}.
40c5c6cd 3008We set the @code{PATH} environment variable to ensure the MinGW version of @file{sdl-config} is used and
d0a96f3d 3009use --cross-prefix to specify the name of the cross compiler.
c5ec15ea 3010You can also use --prefix to set the Win32 install path which defaults to @file{c:/Program Files/QEMU}.
d0a96f3d
ST
3011
3012Under Fedora Linux, you can run:
3013@example
3014yum -y install mingw32-gcc mingw32-SDL mingw32-zlib
15a34c63 3015@end example
d0a96f3d 3016to get a suitable cross compilation environment.
15a34c63 3017
5fafdf24 3018@item You can install QEMU in the installation directory by typing
d0a96f3d 3019@code{make install}. Don't forget to copy @file{SDL.dll} and @file{zlib1.dll} into the
5fafdf24 3020installation directory.
15a34c63
FB
3021
3022@end itemize
3023
3804da9d
SW
3024Wine can be used to launch the resulting qemu-system-i386.exe
3025and all other qemu-system-@var{target}.exe compiled for Win32.
15a34c63 3026
debc7065 3027@node Mac OS X
15a34c63
FB
3028@section Mac OS X
3029
b352153f
JA
3030System Requirements:
3031@itemize
3032@item Mac OS 10.5 or higher
3033@item The clang compiler shipped with Xcode 4.2 or higher,
3034or GCC 4.3 or higher
3035@end itemize
3036
3037Additional Requirements (install in order):
3038@enumerate
3039@item libffi: @uref{https://sourceware.org/libffi/}
3040@item gettext: @uref{http://www.gnu.org/software/gettext/}
3041@item glib: @uref{http://ftp.gnome.org/pub/GNOME/sources/glib/}
3042@item pkg-config: @uref{http://www.freedesktop.org/wiki/Software/pkg-config/}
3043@item autoconf: @uref{http://www.gnu.org/software/autoconf/autoconf.html}
3044@item automake: @uref{http://www.gnu.org/software/automake/}
3045@item libtool: @uref{http://www.gnu.org/software/libtool/}
3046@item pixman: @uref{http://www.pixman.org/}
3047@end enumerate
3048
3049* You may find it easiest to get these from a third-party packager
3050such as Homebrew, Macports, or Fink.
3051
3052After downloading the QEMU source code, double-click it to expand it.
3053
3054Then configure and make QEMU:
3055@example
3056./configure
3057make
3058@end example
3059
3060If you have a recent version of Mac OS X (OSX 10.7 or better
3061with Xcode 4.2 or better) we recommend building QEMU with the
3062default compiler provided by Apple, for your version of Mac OS X
3063(which will be 'clang'). The configure script will
3064automatically pick this.
3065
3066Note: If after the configure step you see a message like this:
3067@example
3068ERROR: Your compiler does not support the __thread specifier for
3069 Thread-Local Storage (TLS). Please upgrade to a version that does.
3070@end example
6c76ec68 3071you may have to build your own version of gcc from source. Expect that to take
b352153f
JA
3072several hours. More information can be found here:
3073@uref{https://gcc.gnu.org/install/} @*
3074
3075These are some of the third party binaries of gcc available for download:
3076@itemize
3077@item Homebrew: @uref{http://brew.sh/}
3078@item @uref{https://www.litebeam.net/gcc/gcc_472.pkg}
3079@item @uref{http://www.macports.org/ports.php?by=name&substr=gcc}
3080@end itemize
3081
3082You can have several versions of GCC on your system. To specify a certain version,
3083use the --cc and --cxx options.
3084@example
3085./configure --cxx=<path of your c++ compiler> --cc=<path of your c compiler> <other options>
3086@end example
15a34c63 3087
47eacb4f
SW
3088@node Make targets
3089@section Make targets
3090
3091@table @code
3092
3093@item make
3094@item make all
3095Make everything which is typically needed.
3096
3097@item install
3098TODO
3099
3100@item install-doc
3101TODO
3102
3103@item make clean
3104Remove most files which were built during make.
3105
3106@item make distclean
3107Remove everything which was built during make.
3108
3109@item make dvi
3110@item make html
3111@item make info
3112@item make pdf
3113Create documentation in dvi, html, info or pdf format.
3114
3115@item make cscope
3116TODO
3117
3118@item make defconfig
3119(Re-)create some build configuration files.
3120User made changes will be overwritten.
3121
3122@item tar
3123@item tarbin
3124TODO
3125
3126@end table
3127
7544a042
SW
3128@node License
3129@appendix License
3130
3131QEMU is a trademark of Fabrice Bellard.
3132
3133QEMU is released under the GNU General Public License (TODO: add link).
3134Parts of QEMU have specific licenses, see file LICENSE.
3135
3136TODO (refer to file LICENSE, include it, include the GPL?)
3137
debc7065 3138@node Index
7544a042
SW
3139@appendix Index
3140@menu
3141* Concept Index::
3142* Function Index::
3143* Keystroke Index::
3144* Program Index::
3145* Data Type Index::
3146* Variable Index::
3147@end menu
3148
3149@node Concept Index
3150@section Concept Index
3151This is the main index. Should we combine all keywords in one index? TODO
debc7065
FB
3152@printindex cp
3153
7544a042
SW
3154@node Function Index
3155@section Function Index
3156This index could be used for command line options and monitor functions.
3157@printindex fn
3158
3159@node Keystroke Index
3160@section Keystroke Index
3161
3162This is a list of all keystrokes which have a special function
3163in system emulation.
3164
3165@printindex ky
3166
3167@node Program Index
3168@section Program Index
3169@printindex pg
3170
3171@node Data Type Index
3172@section Data Type Index
3173
3174This index could be used for qdev device names and options.
3175
3176@printindex tp
3177
3178@node Variable Index
3179@section Variable Index
3180@printindex vr
3181
debc7065 3182@bye