]> git.proxmox.com Git - mirror_qemu.git/blame - qemu-doc.texi
tpm: move TpmIf in include/sysemu/tpm.h
[mirror_qemu.git] / qemu-doc.texi
CommitLineData
386405f7 1\input texinfo @c -*- texinfo -*-
debc7065
FB
2@c %**start of header
3@setfilename qemu-doc.info
44cb280d 4@include version.texi
e080e785
SW
5
6@documentlanguage en
7@documentencoding UTF-8
8
44cb280d 9@settitle QEMU version @value{VERSION} User Documentation
debc7065
FB
10@exampleindent 0
11@paragraphindent 0
12@c %**end of header
386405f7 13
a1a32b05
SW
14@ifinfo
15@direntry
16* QEMU: (qemu-doc). The QEMU Emulator User Documentation.
17@end direntry
18@end ifinfo
19
0806e3f6 20@iftex
386405f7
FB
21@titlepage
22@sp 7
44cb280d 23@center @titlefont{QEMU version @value{VERSION}}
debc7065
FB
24@sp 1
25@center @titlefont{User Documentation}
386405f7
FB
26@sp 3
27@end titlepage
0806e3f6 28@end iftex
386405f7 29
debc7065
FB
30@ifnottex
31@node Top
32@top
33
34@menu
35* Introduction::
debc7065
FB
36* QEMU PC System emulator::
37* QEMU System emulator for non PC targets::
3f2ce724 38* QEMU Guest Agent::
83195237 39* QEMU User space emulator::
78e87797 40* Implementation notes::
eb22aeca 41* Deprecated features::
7544a042 42* License::
debc7065
FB
43* Index::
44@end menu
45@end ifnottex
46
47@contents
48
49@node Introduction
386405f7
FB
50@chapter Introduction
51
debc7065
FB
52@menu
53* intro_features:: Features
54@end menu
55
56@node intro_features
322d0c66 57@section Features
386405f7 58
1f673135
FB
59QEMU is a FAST! processor emulator using dynamic translation to
60achieve good emulation speed.
1eb20527 61
1f3e7e41 62@cindex operating modes
1eb20527 63QEMU has two operating modes:
0806e3f6 64
d7e5edca 65@itemize
7544a042 66@cindex system emulation
1f3e7e41 67@item Full system emulation. In this mode, QEMU emulates a full system (for
3f9f3aa1
FB
68example a PC), including one or several processors and various
69peripherals. It can be used to launch different Operating Systems
70without rebooting the PC or to debug system code.
1eb20527 71
7544a042 72@cindex user mode emulation
1f3e7e41 73@item User mode emulation. In this mode, QEMU can launch
83195237 74processes compiled for one CPU on another CPU. It can be used to
70b7fba9 75launch the Wine Windows API emulator (@url{https://www.winehq.org}) or
1f673135 76to ease cross-compilation and cross-debugging.
1eb20527
FB
77
78@end itemize
79
1f3e7e41
PB
80QEMU has the following features:
81
82@itemize
83@item QEMU can run without a host kernel driver and yet gives acceptable
84performance. It uses dynamic translation to native code for reasonable speed,
85with support for self-modifying code and precise exceptions.
86
87@item It is portable to several operating systems (GNU/Linux, *BSD, Mac OS X,
88Windows) and architectures.
89
90@item It performs accurate software emulation of the FPU.
91@end itemize
322d0c66 92
1f3e7e41 93QEMU user mode emulation has the following features:
52c00a5f 94@itemize
1f3e7e41
PB
95@item Generic Linux system call converter, including most ioctls.
96
97@item clone() emulation using native CPU clone() to use Linux scheduler for threads.
98
99@item Accurate signal handling by remapping host signals to target signals.
100@end itemize
101
102QEMU full system emulation has the following features:
103@itemize
104@item
105QEMU uses a full software MMU for maximum portability.
106
107@item
326c4c3c 108QEMU can optionally use an in-kernel accelerator, like kvm. The accelerators
1f3e7e41
PB
109execute most of the guest code natively, while
110continuing to emulate the rest of the machine.
111
112@item
113Various hardware devices can be emulated and in some cases, host
114devices (e.g. serial and parallel ports, USB, drives) can be used
115transparently by the guest Operating System. Host device passthrough
116can be used for talking to external physical peripherals (e.g. a
117webcam, modem or tape drive).
118
119@item
120Symmetric multiprocessing (SMP) support. Currently, an in-kernel
121accelerator is required to use more than one host CPU for emulation.
122
52c00a5f 123@end itemize
386405f7 124
0806e3f6 125
debc7065 126@node QEMU PC System emulator
3f9f3aa1 127@chapter QEMU PC System emulator
7544a042 128@cindex system emulation (PC)
1eb20527 129
debc7065
FB
130@menu
131* pcsys_introduction:: Introduction
132* pcsys_quickstart:: Quick Start
133* sec_invocation:: Invocation
a40db1b3
PM
134* pcsys_keys:: Keys in the graphical frontends
135* mux_keys:: Keys in the character backend multiplexer
debc7065
FB
136* pcsys_monitor:: QEMU Monitor
137* disk_images:: Disk Images
138* pcsys_network:: Network emulation
576fd0a1 139* pcsys_other_devs:: Other Devices
debc7065
FB
140* direct_linux_boot:: Direct Linux Boot
141* pcsys_usb:: USB emulation
f858dcae 142* vnc_security:: VNC security
debc7065
FB
143* gdb_usage:: GDB usage
144* pcsys_os_specific:: Target OS specific information
145@end menu
146
147@node pcsys_introduction
0806e3f6
FB
148@section Introduction
149
150@c man begin DESCRIPTION
151
3f9f3aa1
FB
152The QEMU PC System emulator simulates the
153following peripherals:
0806e3f6
FB
154
155@itemize @minus
5fafdf24 156@item
15a34c63 157i440FX host PCI bridge and PIIX3 PCI to ISA bridge
0806e3f6 158@item
15a34c63
FB
159Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
160extensions (hardware level, including all non standard modes).
0806e3f6
FB
161@item
162PS/2 mouse and keyboard
5fafdf24 163@item
15a34c63 1642 PCI IDE interfaces with hard disk and CD-ROM support
1f673135
FB
165@item
166Floppy disk
5fafdf24 167@item
3a2eeac0 168PCI and ISA network adapters
0806e3f6 169@item
05d5818c
FB
170Serial ports
171@item
23076bb3
CM
172IPMI BMC, either and internal or external one
173@item
c0fe3827
FB
174Creative SoundBlaster 16 sound card
175@item
176ENSONIQ AudioPCI ES1370 sound card
177@item
e5c9a13e
AZ
178Intel 82801AA AC97 Audio compatible sound card
179@item
7d72e762
GH
180Intel HD Audio Controller and HDA codec
181@item
2d983446 182Adlib (OPL2) - Yamaha YM3812 compatible chip
b389dbfb 183@item
26463dbc
AZ
184Gravis Ultrasound GF1 sound card
185@item
cc53d26d 186CS4231A compatible sound card
187@item
a92ff8c1 188PCI UHCI, OHCI, EHCI or XHCI USB controller and a virtual USB-1.1 hub.
0806e3f6
FB
189@end itemize
190
3f9f3aa1
FB
191SMP is supported with up to 255 CPUs.
192
a8ad4159 193QEMU uses the PC BIOS from the Seabios project and the Plex86/Bochs LGPL
15a34c63
FB
194VGA BIOS.
195
c0fe3827
FB
196QEMU uses YM3812 emulation by Tatsuyuki Satoh.
197
2d983446 198QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
26463dbc 199by Tibor "TS" Schütz.
423d65f4 200
1a1a0e20 201Note that, by default, GUS shares IRQ(7) with parallel ports and so
b65ee4fa 202QEMU must be told to not have parallel ports to have working GUS.
720036a5 203
204@example
3804da9d 205qemu-system-i386 dos.img -soundhw gus -parallel none
720036a5 206@end example
207
208Alternatively:
209@example
3804da9d 210qemu-system-i386 dos.img -device gus,irq=5
720036a5 211@end example
212
213Or some other unclaimed IRQ.
214
cc53d26d 215CS4231A is the chip used in Windows Sound System and GUSMAX products
216
0806e3f6
FB
217@c man end
218
debc7065 219@node pcsys_quickstart
1eb20527 220@section Quick Start
7544a042 221@cindex quick start
1eb20527 222
285dc330 223Download and uncompress the linux image (@file{linux.img}) and type:
0806e3f6
FB
224
225@example
3804da9d 226qemu-system-i386 linux.img
0806e3f6
FB
227@end example
228
229Linux should boot and give you a prompt.
230
6cc721cf 231@node sec_invocation
ec410fc9
FB
232@section Invocation
233
234@example
0806e3f6 235@c man begin SYNOPSIS
8485140f 236@command{qemu-system-i386} [@var{options}] [@var{disk_image}]
0806e3f6 237@c man end
ec410fc9
FB
238@end example
239
0806e3f6 240@c man begin OPTIONS
d2c639d6
BS
241@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
242targets do not need a disk image.
ec410fc9 243
5824d651 244@include qemu-options.texi
ec410fc9 245
3e11db9a
FB
246@c man end
247
debc7065 248@node pcsys_keys
a40db1b3 249@section Keys in the graphical frontends
3e11db9a
FB
250
251@c man begin OPTIONS
252
de1db2a1
BH
253During the graphical emulation, you can use special key combinations to change
254modes. The default key mappings are shown below, but if you use @code{-alt-grab}
255then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
256@code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
257
a1b74fe8 258@table @key
f9859310 259@item Ctrl-Alt-f
7544a042 260@kindex Ctrl-Alt-f
a1b74fe8 261Toggle full screen
a0a821a4 262
d6a65ba3
JK
263@item Ctrl-Alt-+
264@kindex Ctrl-Alt-+
265Enlarge the screen
266
267@item Ctrl-Alt--
268@kindex Ctrl-Alt--
269Shrink the screen
270
c4a735f9 271@item Ctrl-Alt-u
7544a042 272@kindex Ctrl-Alt-u
c4a735f9 273Restore the screen's un-scaled dimensions
274
f9859310 275@item Ctrl-Alt-n
7544a042 276@kindex Ctrl-Alt-n
a0a821a4
FB
277Switch to virtual console 'n'. Standard console mappings are:
278@table @emph
279@item 1
280Target system display
281@item 2
282Monitor
283@item 3
284Serial port
a1b74fe8
FB
285@end table
286
f9859310 287@item Ctrl-Alt
7544a042 288@kindex Ctrl-Alt
a0a821a4
FB
289Toggle mouse and keyboard grab.
290@end table
291
7544a042
SW
292@kindex Ctrl-Up
293@kindex Ctrl-Down
294@kindex Ctrl-PageUp
295@kindex Ctrl-PageDown
3e11db9a
FB
296In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
297@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
298
a40db1b3
PM
299@c man end
300
301@node mux_keys
302@section Keys in the character backend multiplexer
303
304@c man begin OPTIONS
305
306During emulation, if you are using a character backend multiplexer
307(which is the default if you are using @option{-nographic}) then
308several commands are available via an escape sequence. These
309key sequences all start with an escape character, which is @key{Ctrl-a}
310by default, but can be changed with @option{-echr}. The list below assumes
311you're using the default.
ec410fc9
FB
312
313@table @key
a1b74fe8 314@item Ctrl-a h
7544a042 315@kindex Ctrl-a h
ec410fc9 316Print this help
3b46e624 317@item Ctrl-a x
7544a042 318@kindex Ctrl-a x
366dfc52 319Exit emulator
3b46e624 320@item Ctrl-a s
7544a042 321@kindex Ctrl-a s
1f47a922 322Save disk data back to file (if -snapshot)
20d8a3ed 323@item Ctrl-a t
7544a042 324@kindex Ctrl-a t
d2c639d6 325Toggle console timestamps
a1b74fe8 326@item Ctrl-a b
7544a042 327@kindex Ctrl-a b
1f673135 328Send break (magic sysrq in Linux)
a1b74fe8 329@item Ctrl-a c
7544a042 330@kindex Ctrl-a c
a40db1b3
PM
331Rotate between the frontends connected to the multiplexer (usually
332this switches between the monitor and the console)
a1b74fe8 333@item Ctrl-a Ctrl-a
a40db1b3
PM
334@kindex Ctrl-a Ctrl-a
335Send the escape character to the frontend
ec410fc9 336@end table
0806e3f6
FB
337@c man end
338
339@ignore
340
1f673135
FB
341@c man begin SEEALSO
342The HTML documentation of QEMU for more precise information and Linux
343user mode emulator invocation.
344@c man end
345
346@c man begin AUTHOR
347Fabrice Bellard
348@c man end
349
350@end ignore
351
debc7065 352@node pcsys_monitor
1f673135 353@section QEMU Monitor
7544a042 354@cindex QEMU monitor
1f673135
FB
355
356The QEMU monitor is used to give complex commands to the QEMU
357emulator. You can use it to:
358
359@itemize @minus
360
361@item
e598752a 362Remove or insert removable media images
89dfe898 363(such as CD-ROM or floppies).
1f673135 364
5fafdf24 365@item
1f673135
FB
366Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
367from a disk file.
368
369@item Inspect the VM state without an external debugger.
370
371@end itemize
372
373@subsection Commands
374
375The following commands are available:
376
2313086a 377@include qemu-monitor.texi
0806e3f6 378
2cd8af2d
PB
379@include qemu-monitor-info.texi
380
1f673135
FB
381@subsection Integer expressions
382
383The monitor understands integers expressions for every integer
384argument. You can use register names to get the value of specifics
385CPU registers by prefixing them with @emph{$}.
ec410fc9 386
1f47a922
FB
387@node disk_images
388@section Disk Images
389
ee29bdb6
PB
390QEMU supports many disk image formats, including growable disk images
391(their size increase as non empty sectors are written), compressed and
392encrypted disk images.
1f47a922 393
debc7065
FB
394@menu
395* disk_images_quickstart:: Quick start for disk image creation
396* disk_images_snapshot_mode:: Snapshot mode
13a2e80f 397* vm_snapshots:: VM snapshots
debc7065 398* qemu_img_invocation:: qemu-img Invocation
975b092b 399* qemu_nbd_invocation:: qemu-nbd Invocation
d3067b02 400* disk_images_formats:: Disk image file formats
19cb3738 401* host_drives:: Using host drives
debc7065 402* disk_images_fat_images:: Virtual FAT disk images
75818250 403* disk_images_nbd:: NBD access
42af9c30 404* disk_images_sheepdog:: Sheepdog disk images
00984e39 405* disk_images_iscsi:: iSCSI LUNs
8809e289 406* disk_images_gluster:: GlusterFS disk images
0a12ec87 407* disk_images_ssh:: Secure Shell (ssh) disk images
b1d1cb27 408* disk_image_locking:: Disk image file locking
debc7065
FB
409@end menu
410
411@node disk_images_quickstart
acd935ef
FB
412@subsection Quick start for disk image creation
413
414You can create a disk image with the command:
1f47a922 415@example
acd935ef 416qemu-img create myimage.img mysize
1f47a922 417@end example
acd935ef
FB
418where @var{myimage.img} is the disk image filename and @var{mysize} is its
419size in kilobytes. You can add an @code{M} suffix to give the size in
420megabytes and a @code{G} suffix for gigabytes.
421
debc7065 422See @ref{qemu_img_invocation} for more information.
1f47a922 423
debc7065 424@node disk_images_snapshot_mode
1f47a922
FB
425@subsection Snapshot mode
426
427If you use the option @option{-snapshot}, all disk images are
428considered as read only. When sectors in written, they are written in
429a temporary file created in @file{/tmp}. You can however force the
acd935ef
FB
430write back to the raw disk images by using the @code{commit} monitor
431command (or @key{C-a s} in the serial console).
1f47a922 432
13a2e80f
FB
433@node vm_snapshots
434@subsection VM snapshots
435
436VM snapshots are snapshots of the complete virtual machine including
437CPU state, RAM, device state and the content of all the writable
438disks. In order to use VM snapshots, you must have at least one non
439removable and writable block device using the @code{qcow2} disk image
440format. Normally this device is the first virtual hard drive.
441
442Use the monitor command @code{savevm} to create a new VM snapshot or
443replace an existing one. A human readable name can be assigned to each
19d36792 444snapshot in addition to its numerical ID.
13a2e80f
FB
445
446Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
447a VM snapshot. @code{info snapshots} lists the available snapshots
448with their associated information:
449
450@example
451(qemu) info snapshots
452Snapshot devices: hda
453Snapshot list (from hda):
454ID TAG VM SIZE DATE VM CLOCK
4551 start 41M 2006-08-06 12:38:02 00:00:14.954
4562 40M 2006-08-06 12:43:29 00:00:18.633
4573 msys 40M 2006-08-06 12:44:04 00:00:23.514
458@end example
459
460A VM snapshot is made of a VM state info (its size is shown in
461@code{info snapshots}) and a snapshot of every writable disk image.
462The VM state info is stored in the first @code{qcow2} non removable
463and writable block device. The disk image snapshots are stored in
464every disk image. The size of a snapshot in a disk image is difficult
465to evaluate and is not shown by @code{info snapshots} because the
466associated disk sectors are shared among all the snapshots to save
19d36792
FB
467disk space (otherwise each snapshot would need a full copy of all the
468disk images).
13a2e80f
FB
469
470When using the (unrelated) @code{-snapshot} option
471(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
472but they are deleted as soon as you exit QEMU.
473
474VM snapshots currently have the following known limitations:
475@itemize
5fafdf24 476@item
13a2e80f
FB
477They cannot cope with removable devices if they are removed or
478inserted after a snapshot is done.
5fafdf24 479@item
13a2e80f
FB
480A few device drivers still have incomplete snapshot support so their
481state is not saved or restored properly (in particular USB).
482@end itemize
483
acd935ef
FB
484@node qemu_img_invocation
485@subsection @code{qemu-img} Invocation
1f47a922 486
acd935ef 487@include qemu-img.texi
05efe46e 488
975b092b
TS
489@node qemu_nbd_invocation
490@subsection @code{qemu-nbd} Invocation
491
492@include qemu-nbd.texi
493
78aa8aa0 494@include docs/qemu-block-drivers.texi
0a12ec87 495
debc7065 496@node pcsys_network
9d4fb82e
FB
497@section Network emulation
498
4be456f1 499QEMU can simulate several network cards (PCI or ISA cards on the PC
41d03949
FB
500target) and can connect them to an arbitrary number of Virtual Local
501Area Networks (VLANs). Host TAP devices can be connected to any QEMU
502VLAN. VLAN can be connected between separate instances of QEMU to
4be456f1 503simulate large networks. For simpler usage, a non privileged user mode
41d03949
FB
504network stack can replace the TAP device to have a basic network
505connection.
506
507@subsection VLANs
9d4fb82e 508
41d03949
FB
509QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
510connection between several network devices. These devices can be for
511example QEMU virtual Ethernet cards or virtual Host ethernet devices
512(TAP devices).
9d4fb82e 513
41d03949
FB
514@subsection Using TAP network interfaces
515
516This is the standard way to connect QEMU to a real network. QEMU adds
517a virtual network device on your host (called @code{tapN}), and you
518can then configure it as if it was a real ethernet card.
9d4fb82e 519
8f40c388
FB
520@subsubsection Linux host
521
9d4fb82e
FB
522As an example, you can download the @file{linux-test-xxx.tar.gz}
523archive and copy the script @file{qemu-ifup} in @file{/etc} and
524configure properly @code{sudo} so that the command @code{ifconfig}
525contained in @file{qemu-ifup} can be executed as root. You must verify
41d03949 526that your host kernel supports the TAP network interfaces: the
9d4fb82e
FB
527device @file{/dev/net/tun} must be present.
528
ee0f4751
FB
529See @ref{sec_invocation} to have examples of command lines using the
530TAP network interfaces.
9d4fb82e 531
8f40c388
FB
532@subsubsection Windows host
533
534There is a virtual ethernet driver for Windows 2000/XP systems, called
535TAP-Win32. But it is not included in standard QEMU for Windows,
536so you will need to get it separately. It is part of OpenVPN package,
70b7fba9 537so download OpenVPN from : @url{https://openvpn.net/}.
8f40c388 538
9d4fb82e
FB
539@subsection Using the user mode network stack
540
41d03949
FB
541By using the option @option{-net user} (default configuration if no
542@option{-net} option is specified), QEMU uses a completely user mode
4be456f1 543network stack (you don't need root privilege to use the virtual
41d03949 544network). The virtual network configuration is the following:
9d4fb82e
FB
545
546@example
547
41d03949
FB
548 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
549 | (10.0.2.2)
9d4fb82e 550 |
2518bd0d 551 ----> DNS server (10.0.2.3)
3b46e624 552 |
2518bd0d 553 ----> SMB server (10.0.2.4)
9d4fb82e
FB
554@end example
555
556The QEMU VM behaves as if it was behind a firewall which blocks all
557incoming connections. You can use a DHCP client to automatically
41d03949
FB
558configure the network in the QEMU VM. The DHCP server assign addresses
559to the hosts starting from 10.0.2.15.
9d4fb82e
FB
560
561In order to check that the user mode network is working, you can ping
562the address 10.0.2.2 and verify that you got an address in the range
56310.0.2.x from the QEMU virtual DHCP server.
564
37cbfcce
GH
565Note that ICMP traffic in general does not work with user mode networking.
566@code{ping}, aka. ICMP echo, to the local router (10.0.2.2) shall work,
567however. If you're using QEMU on Linux >= 3.0, it can use unprivileged ICMP
568ping sockets to allow @code{ping} to the Internet. The host admin has to set
569the ping_group_range in order to grant access to those sockets. To allow ping
570for GID 100 (usually users group):
571
572@example
573echo 100 100 > /proc/sys/net/ipv4/ping_group_range
574@end example
b415a407 575
9bf05444
FB
576When using the built-in TFTP server, the router is also the TFTP
577server.
578
c8c6afa8
TH
579When using the @option{'-netdev user,hostfwd=...'} option, TCP or UDP
580connections can be redirected from the host to the guest. It allows for
581example to redirect X11, telnet or SSH connections.
443f1376 582
41d03949
FB
583@subsection Connecting VLANs between QEMU instances
584
585Using the @option{-net socket} option, it is possible to make VLANs
586that span several QEMU instances. See @ref{sec_invocation} to have a
587basic example.
588
576fd0a1 589@node pcsys_other_devs
6cbf4c8c
CM
590@section Other Devices
591
592@subsection Inter-VM Shared Memory device
593
5400c02b
MA
594On Linux hosts, a shared memory device is available. The basic syntax
595is:
6cbf4c8c
CM
596
597@example
5400c02b
MA
598qemu-system-x86_64 -device ivshmem-plain,memdev=@var{hostmem}
599@end example
600
601where @var{hostmem} names a host memory backend. For a POSIX shared
602memory backend, use something like
603
604@example
605-object memory-backend-file,size=1M,share,mem-path=/dev/shm/ivshmem,id=@var{hostmem}
6cbf4c8c
CM
606@end example
607
608If desired, interrupts can be sent between guest VMs accessing the same shared
609memory region. Interrupt support requires using a shared memory server and
610using a chardev socket to connect to it. The code for the shared memory server
611is qemu.git/contrib/ivshmem-server. An example syntax when using the shared
612memory server is:
613
614@example
a75eb03b 615# First start the ivshmem server once and for all
50d34c4e 616ivshmem-server -p @var{pidfile} -S @var{path} -m @var{shm-name} -l @var{shm-size} -n @var{vectors}
a75eb03b
DM
617
618# Then start your qemu instances with matching arguments
5400c02b 619qemu-system-x86_64 -device ivshmem-doorbell,vectors=@var{vectors},chardev=@var{id}
50d34c4e 620 -chardev socket,path=@var{path},id=@var{id}
6cbf4c8c
CM
621@end example
622
623When using the server, the guest will be assigned a VM ID (>=0) that allows guests
624using the same server to communicate via interrupts. Guests can read their
1309cf44 625VM ID from a device register (see ivshmem-spec.txt).
6cbf4c8c 626
62a830b6
MA
627@subsubsection Migration with ivshmem
628
5400c02b
MA
629With device property @option{master=on}, the guest will copy the shared
630memory on migration to the destination host. With @option{master=off},
631the guest will not be able to migrate with the device attached. In the
632latter case, the device should be detached and then reattached after
633migration using the PCI hotplug support.
6cbf4c8c 634
62a830b6
MA
635At most one of the devices sharing the same memory can be master. The
636master must complete migration before you plug back the other devices.
637
7d4f4bda
MAL
638@subsubsection ivshmem and hugepages
639
640Instead of specifying the <shm size> using POSIX shm, you may specify
641a memory backend that has hugepage support:
642
643@example
5400c02b
MA
644qemu-system-x86_64 -object memory-backend-file,size=1G,mem-path=/dev/hugepages/my-shmem-file,share,id=mb1
645 -device ivshmem-plain,memdev=mb1
7d4f4bda
MAL
646@end example
647
648ivshmem-server also supports hugepages mount points with the
649@option{-m} memory path argument.
650
9d4fb82e
FB
651@node direct_linux_boot
652@section Direct Linux Boot
1f673135
FB
653
654This section explains how to launch a Linux kernel inside QEMU without
655having to make a full bootable image. It is very useful for fast Linux
ee0f4751 656kernel testing.
1f673135 657
ee0f4751 658The syntax is:
1f673135 659@example
3804da9d 660qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1f673135
FB
661@end example
662
ee0f4751
FB
663Use @option{-kernel} to provide the Linux kernel image and
664@option{-append} to give the kernel command line arguments. The
665@option{-initrd} option can be used to provide an INITRD image.
1f673135 666
ee0f4751
FB
667When using the direct Linux boot, a disk image for the first hard disk
668@file{hda} is required because its boot sector is used to launch the
669Linux kernel.
1f673135 670
ee0f4751
FB
671If you do not need graphical output, you can disable it and redirect
672the virtual serial port and the QEMU monitor to the console with the
673@option{-nographic} option. The typical command line is:
1f673135 674@example
3804da9d
SW
675qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
676 -append "root=/dev/hda console=ttyS0" -nographic
1f673135
FB
677@end example
678
ee0f4751
FB
679Use @key{Ctrl-a c} to switch between the serial console and the
680monitor (@pxref{pcsys_keys}).
1f673135 681
debc7065 682@node pcsys_usb
b389dbfb
FB
683@section USB emulation
684
a92ff8c1
TH
685QEMU can emulate a PCI UHCI, OHCI, EHCI or XHCI USB controller. You can
686plug virtual USB devices or real host USB devices (only works with certain
687host operating systems). QEMU will automatically create and connect virtual
688USB hubs as necessary to connect multiple USB devices.
b389dbfb 689
0aff66b5
PB
690@menu
691* usb_devices::
692* host_usb_devices::
693@end menu
694@node usb_devices
695@subsection Connecting USB devices
b389dbfb 696
a92ff8c1
TH
697USB devices can be connected with the @option{-device usb-...} command line
698option or the @code{device_add} monitor command. Available devices are:
b389dbfb 699
db380c06 700@table @code
a92ff8c1 701@item usb-mouse
0aff66b5 702Virtual Mouse. This will override the PS/2 mouse emulation when activated.
a92ff8c1 703@item usb-tablet
c6d46c20 704Pointer device that uses absolute coordinates (like a touchscreen).
b65ee4fa 705This means QEMU is able to report the mouse position without having
0aff66b5 706to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
a92ff8c1
TH
707@item usb-storage,drive=@var{drive_id}
708Mass storage device backed by @var{drive_id} (@pxref{disk_images})
709@item usb-uas
710USB attached SCSI device, see
70b7fba9 711@url{https://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/usb-storage.txt,usb-storage.txt}
a92ff8c1
TH
712for details
713@item usb-bot
714Bulk-only transport storage device, see
70b7fba9 715@url{https://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/usb-storage.txt,usb-storage.txt}
a92ff8c1
TH
716for details here, too
717@item usb-mtp,x-root=@var{dir}
718Media transfer protocol device, using @var{dir} as root of the file tree
719that is presented to the guest.
720@item usb-host,hostbus=@var{bus},hostaddr=@var{addr}
721Pass through the host device identified by @var{bus} and @var{addr}
722@item usb-host,vendorid=@var{vendor},productid=@var{product}
723Pass through the host device identified by @var{vendor} and @var{product} ID
724@item usb-wacom-tablet
f6d2a316
AZ
725Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
726above but it can be used with the tslib library because in addition to touch
727coordinates it reports touch pressure.
a92ff8c1 728@item usb-kbd
47b2d338 729Standard USB keyboard. Will override the PS/2 keyboard (if present).
a92ff8c1 730@item usb-serial,chardev=@var{id}
db380c06 731Serial converter. This emulates an FTDI FT232BM chip connected to host character
a92ff8c1
TH
732device @var{id}.
733@item usb-braille,chardev=@var{id}
2e4d9fb1 734Braille device. This will use BrlAPI to display the braille output on a real
a92ff8c1
TH
735or fake device referenced by @var{id}.
736@item usb-net[,netdev=@var{id}]
737Network adapter that supports CDC ethernet and RNDIS protocols. @var{id}
738specifies a netdev defined with @code{-netdev @dots{},id=@var{id}}.
9ad97e65 739For instance, user-mode networking can be used with
6c9f886c 740@example
a92ff8c1 741qemu-system-i386 [...] -netdev user,id=net0 -device usb-net,netdev=net0
6c9f886c 742@end example
a92ff8c1
TH
743@item usb-ccid
744Smartcard reader device
745@item usb-audio
746USB audio device
747@item usb-bt-dongle
748Bluetooth dongle for the transport layer of HCI. It is connected to HCI
749scatternet 0 by default (corresponds to @code{-bt hci,vlan=0}).
750Note that the syntax for the @code{-device usb-bt-dongle} option is not as
751useful yet as it was with the legacy @code{-usbdevice} option. So to
752configure an USB bluetooth device, you might need to use
753"@code{-usbdevice bt}[:@var{hci-type}]" instead. This configures a
754bluetooth dongle whose type is specified in the same format as with
2d564691
AZ
755the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
756no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
757This USB device implements the USB Transport Layer of HCI. Example
758usage:
759@example
8485140f 760@command{qemu-system-i386} [...@var{OPTIONS}...] @option{-usbdevice} bt:hci,vlan=3 @option{-bt} device:keyboard,vlan=3
2d564691 761@end example
0aff66b5 762@end table
b389dbfb 763
0aff66b5 764@node host_usb_devices
b389dbfb
FB
765@subsection Using host USB devices on a Linux host
766
767WARNING: this is an experimental feature. QEMU will slow down when
768using it. USB devices requiring real time streaming (i.e. USB Video
769Cameras) are not supported yet.
770
771@enumerate
5fafdf24 772@item If you use an early Linux 2.4 kernel, verify that no Linux driver
b389dbfb
FB
773is actually using the USB device. A simple way to do that is simply to
774disable the corresponding kernel module by renaming it from @file{mydriver.o}
775to @file{mydriver.o.disabled}.
776
777@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
778@example
779ls /proc/bus/usb
780001 devices drivers
781@end example
782
783@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
784@example
785chown -R myuid /proc/bus/usb
786@end example
787
788@item Launch QEMU and do in the monitor:
5fafdf24 789@example
b389dbfb
FB
790info usbhost
791 Device 1.2, speed 480 Mb/s
792 Class 00: USB device 1234:5678, USB DISK
793@end example
794You should see the list of the devices you can use (Never try to use
795hubs, it won't work).
796
797@item Add the device in QEMU by using:
5fafdf24 798@example
a92ff8c1 799device_add usb-host,vendorid=0x1234,productid=0x5678
b389dbfb
FB
800@end example
801
a92ff8c1
TH
802Normally the guest OS should report that a new USB device is plugged.
803You can use the option @option{-device usb-host,...} to do the same.
b389dbfb
FB
804
805@item Now you can try to use the host USB device in QEMU.
806
807@end enumerate
808
809When relaunching QEMU, you may have to unplug and plug again the USB
810device to make it work again (this is a bug).
811
f858dcae
TS
812@node vnc_security
813@section VNC security
814
815The VNC server capability provides access to the graphical console
816of the guest VM across the network. This has a number of security
817considerations depending on the deployment scenarios.
818
819@menu
820* vnc_sec_none::
821* vnc_sec_password::
822* vnc_sec_certificate::
823* vnc_sec_certificate_verify::
824* vnc_sec_certificate_pw::
2f9606b3
AL
825* vnc_sec_sasl::
826* vnc_sec_certificate_sasl::
f858dcae 827* vnc_generate_cert::
2f9606b3 828* vnc_setup_sasl::
f858dcae
TS
829@end menu
830@node vnc_sec_none
831@subsection Without passwords
832
833The simplest VNC server setup does not include any form of authentication.
834For this setup it is recommended to restrict it to listen on a UNIX domain
835socket only. For example
836
837@example
3804da9d 838qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
f858dcae
TS
839@end example
840
841This ensures that only users on local box with read/write access to that
842path can access the VNC server. To securely access the VNC server from a
843remote machine, a combination of netcat+ssh can be used to provide a secure
844tunnel.
845
846@node vnc_sec_password
847@subsection With passwords
848
849The VNC protocol has limited support for password based authentication. Since
850the protocol limits passwords to 8 characters it should not be considered
851to provide high security. The password can be fairly easily brute-forced by
852a client making repeat connections. For this reason, a VNC server using password
853authentication should be restricted to only listen on the loopback interface
0f66998f
PM
854or UNIX domain sockets. Password authentication is not supported when operating
855in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password
856authentication is requested with the @code{password} option, and then once QEMU
857is running the password is set with the monitor. Until the monitor is used to
858set the password all clients will be rejected.
f858dcae
TS
859
860@example
3804da9d 861qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio
f858dcae
TS
862(qemu) change vnc password
863Password: ********
864(qemu)
865@end example
866
867@node vnc_sec_certificate
868@subsection With x509 certificates
869
870The QEMU VNC server also implements the VeNCrypt extension allowing use of
871TLS for encryption of the session, and x509 certificates for authentication.
872The use of x509 certificates is strongly recommended, because TLS on its
873own is susceptible to man-in-the-middle attacks. Basic x509 certificate
874support provides a secure session, but no authentication. This allows any
875client to connect, and provides an encrypted session.
876
877@example
3804da9d 878qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
f858dcae
TS
879@end example
880
881In the above example @code{/etc/pki/qemu} should contain at least three files,
882@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
883users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
884NB the @code{server-key.pem} file should be protected with file mode 0600 to
885only be readable by the user owning it.
886
887@node vnc_sec_certificate_verify
888@subsection With x509 certificates and client verification
889
890Certificates can also provide a means to authenticate the client connecting.
891The server will request that the client provide a certificate, which it will
892then validate against the CA certificate. This is a good choice if deploying
893in an environment with a private internal certificate authority.
894
895@example
3804da9d 896qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
f858dcae
TS
897@end example
898
899
900@node vnc_sec_certificate_pw
901@subsection With x509 certificates, client verification and passwords
902
903Finally, the previous method can be combined with VNC password authentication
904to provide two layers of authentication for clients.
905
906@example
3804da9d 907qemu-system-i386 [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
f858dcae
TS
908(qemu) change vnc password
909Password: ********
910(qemu)
911@end example
912
2f9606b3
AL
913
914@node vnc_sec_sasl
915@subsection With SASL authentication
916
917The SASL authentication method is a VNC extension, that provides an
918easily extendable, pluggable authentication method. This allows for
919integration with a wide range of authentication mechanisms, such as
920PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
921The strength of the authentication depends on the exact mechanism
922configured. If the chosen mechanism also provides a SSF layer, then
923it will encrypt the datastream as well.
924
925Refer to the later docs on how to choose the exact SASL mechanism
926used for authentication, but assuming use of one supporting SSF,
927then QEMU can be launched with:
928
929@example
3804da9d 930qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio
2f9606b3
AL
931@end example
932
933@node vnc_sec_certificate_sasl
934@subsection With x509 certificates and SASL authentication
935
936If the desired SASL authentication mechanism does not supported
937SSF layers, then it is strongly advised to run it in combination
938with TLS and x509 certificates. This provides securely encrypted
939data stream, avoiding risk of compromising of the security
940credentials. This can be enabled, by combining the 'sasl' option
941with the aforementioned TLS + x509 options:
942
943@example
3804da9d 944qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
2f9606b3
AL
945@end example
946
947
f858dcae
TS
948@node vnc_generate_cert
949@subsection Generating certificates for VNC
950
951The GNU TLS packages provides a command called @code{certtool} which can
952be used to generate certificates and keys in PEM format. At a minimum it
40c5c6cd 953is necessary to setup a certificate authority, and issue certificates to
f858dcae
TS
954each server. If using certificates for authentication, then each client
955will also need to be issued a certificate. The recommendation is for the
956server to keep its certificates in either @code{/etc/pki/qemu} or for
957unprivileged users in @code{$HOME/.pki/qemu}.
958
959@menu
960* vnc_generate_ca::
961* vnc_generate_server::
962* vnc_generate_client::
963@end menu
964@node vnc_generate_ca
965@subsubsection Setup the Certificate Authority
966
967This step only needs to be performed once per organization / organizational
968unit. First the CA needs a private key. This key must be kept VERY secret
969and secure. If this key is compromised the entire trust chain of the certificates
970issued with it is lost.
971
972@example
973# certtool --generate-privkey > ca-key.pem
974@end example
975
976A CA needs to have a public certificate. For simplicity it can be a self-signed
977certificate, or one issue by a commercial certificate issuing authority. To
978generate a self-signed certificate requires one core piece of information, the
979name of the organization.
980
981@example
982# cat > ca.info <<EOF
983cn = Name of your organization
984ca
985cert_signing_key
986EOF
987# certtool --generate-self-signed \
988 --load-privkey ca-key.pem
989 --template ca.info \
990 --outfile ca-cert.pem
991@end example
992
993The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
994TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
995
996@node vnc_generate_server
997@subsubsection Issuing server certificates
998
999Each server (or host) needs to be issued with a key and certificate. When connecting
1000the certificate is sent to the client which validates it against the CA certificate.
1001The core piece of information for a server certificate is the hostname. This should
1002be the fully qualified hostname that the client will connect with, since the client
1003will typically also verify the hostname in the certificate. On the host holding the
1004secure CA private key:
1005
1006@example
1007# cat > server.info <<EOF
1008organization = Name of your organization
1009cn = server.foo.example.com
1010tls_www_server
1011encryption_key
1012signing_key
1013EOF
1014# certtool --generate-privkey > server-key.pem
1015# certtool --generate-certificate \
1016 --load-ca-certificate ca-cert.pem \
1017 --load-ca-privkey ca-key.pem \
63c693f8 1018 --load-privkey server-key.pem \
f858dcae
TS
1019 --template server.info \
1020 --outfile server-cert.pem
1021@end example
1022
1023The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1024to the server for which they were generated. The @code{server-key.pem} is security
1025sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1026
1027@node vnc_generate_client
1028@subsubsection Issuing client certificates
1029
1030If the QEMU VNC server is to use the @code{x509verify} option to validate client
1031certificates as its authentication mechanism, each client also needs to be issued
1032a certificate. The client certificate contains enough metadata to uniquely identify
1033the client, typically organization, state, city, building, etc. On the host holding
1034the secure CA private key:
1035
1036@example
1037# cat > client.info <<EOF
1038country = GB
1039state = London
1040locality = London
63c693f8 1041organization = Name of your organization
f858dcae
TS
1042cn = client.foo.example.com
1043tls_www_client
1044encryption_key
1045signing_key
1046EOF
1047# certtool --generate-privkey > client-key.pem
1048# certtool --generate-certificate \
1049 --load-ca-certificate ca-cert.pem \
1050 --load-ca-privkey ca-key.pem \
1051 --load-privkey client-key.pem \
1052 --template client.info \
1053 --outfile client-cert.pem
1054@end example
1055
1056The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1057copied to the client for which they were generated.
1058
2f9606b3
AL
1059
1060@node vnc_setup_sasl
1061
1062@subsection Configuring SASL mechanisms
1063
1064The following documentation assumes use of the Cyrus SASL implementation on a
1065Linux host, but the principals should apply to any other SASL impl. When SASL
1066is enabled, the mechanism configuration will be loaded from system default
1067SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1068unprivileged user, an environment variable SASL_CONF_PATH can be used
1069to make it search alternate locations for the service config.
1070
c6a9a9f5
DB
1071If the TLS option is enabled for VNC, then it will provide session encryption,
1072otherwise the SASL mechanism will have to provide encryption. In the latter
1073case the list of possible plugins that can be used is drastically reduced. In
1074fact only the GSSAPI SASL mechanism provides an acceptable level of security
1075by modern standards. Previous versions of QEMU referred to the DIGEST-MD5
1076mechanism, however, it has multiple serious flaws described in detail in
1077RFC 6331 and thus should never be used any more. The SCRAM-SHA-1 mechanism
1078provides a simple username/password auth facility similar to DIGEST-MD5, but
1079does not support session encryption, so can only be used in combination with
1080TLS.
1081
1082When not using TLS the recommended configuration is
2f9606b3
AL
1083
1084@example
c6a9a9f5
DB
1085mech_list: gssapi
1086keytab: /etc/qemu/krb5.tab
2f9606b3
AL
1087@end example
1088
c6a9a9f5
DB
1089This says to use the 'GSSAPI' mechanism with the Kerberos v5 protocol, with
1090the server principal stored in /etc/qemu/krb5.tab. For this to work the
1091administrator of your KDC must generate a Kerberos principal for the server,
1092with a name of 'qemu/somehost.example.com@@EXAMPLE.COM' replacing
1093'somehost.example.com' with the fully qualified host name of the machine
1094running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
2f9606b3 1095
c6a9a9f5
DB
1096When using TLS, if username+password authentication is desired, then a
1097reasonable configuration is
2f9606b3
AL
1098
1099@example
c6a9a9f5
DB
1100mech_list: scram-sha-1
1101sasldb_path: /etc/qemu/passwd.db
2f9606b3
AL
1102@end example
1103
c6a9a9f5
DB
1104The saslpasswd2 program can be used to populate the passwd.db file with
1105accounts.
2f9606b3 1106
c6a9a9f5
DB
1107Other SASL configurations will be left as an exercise for the reader. Note that
1108all mechanisms except GSSAPI, should be combined with use of TLS to ensure a
1109secure data channel.
2f9606b3 1110
0806e3f6 1111@node gdb_usage
da415d54
FB
1112@section GDB usage
1113
1114QEMU has a primitive support to work with gdb, so that you can do
0806e3f6 1115'Ctrl-C' while the virtual machine is running and inspect its state.
da415d54 1116
b65ee4fa 1117In order to use gdb, launch QEMU with the '-s' option. It will wait for a
da415d54
FB
1118gdb connection:
1119@example
3804da9d
SW
1120qemu-system-i386 -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1121 -append "root=/dev/hda"
da415d54
FB
1122Connected to host network interface: tun0
1123Waiting gdb connection on port 1234
1124@end example
1125
1126Then launch gdb on the 'vmlinux' executable:
1127@example
1128> gdb vmlinux
1129@end example
1130
1131In gdb, connect to QEMU:
1132@example
6c9bf893 1133(gdb) target remote localhost:1234
da415d54
FB
1134@end example
1135
1136Then you can use gdb normally. For example, type 'c' to launch the kernel:
1137@example
1138(gdb) c
1139@end example
1140
0806e3f6
FB
1141Here are some useful tips in order to use gdb on system code:
1142
1143@enumerate
1144@item
1145Use @code{info reg} to display all the CPU registers.
1146@item
1147Use @code{x/10i $eip} to display the code at the PC position.
1148@item
1149Use @code{set architecture i8086} to dump 16 bit code. Then use
294e8637 1150@code{x/10i $cs*16+$eip} to dump the code at the PC position.
0806e3f6
FB
1151@end enumerate
1152
60897d36
EI
1153Advanced debugging options:
1154
b6af0975 1155The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
94d45e44 1156@table @code
60897d36
EI
1157@item maintenance packet qqemu.sstepbits
1158
1159This will display the MASK bits used to control the single stepping IE:
1160@example
1161(gdb) maintenance packet qqemu.sstepbits
1162sending: "qqemu.sstepbits"
1163received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1164@end example
1165@item maintenance packet qqemu.sstep
1166
1167This will display the current value of the mask used when single stepping IE:
1168@example
1169(gdb) maintenance packet qqemu.sstep
1170sending: "qqemu.sstep"
1171received: "0x7"
1172@end example
1173@item maintenance packet Qqemu.sstep=HEX_VALUE
1174
1175This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1176@example
1177(gdb) maintenance packet Qqemu.sstep=0x5
1178sending: "qemu.sstep=0x5"
1179received: "OK"
1180@end example
94d45e44 1181@end table
60897d36 1182
debc7065 1183@node pcsys_os_specific
1a084f3d
FB
1184@section Target OS specific information
1185
1186@subsection Linux
1187
15a34c63
FB
1188To have access to SVGA graphic modes under X11, use the @code{vesa} or
1189the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1190color depth in the guest and the host OS.
1a084f3d 1191
e3371e62
FB
1192When using a 2.6 guest Linux kernel, you should add the option
1193@code{clock=pit} on the kernel command line because the 2.6 Linux
1194kernels make very strict real time clock checks by default that QEMU
1195cannot simulate exactly.
1196
7c3fc84d
FB
1197When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1198not activated because QEMU is slower with this patch. The QEMU
1199Accelerator Module is also much slower in this case. Earlier Fedora
4be456f1 1200Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
7c3fc84d
FB
1201patch by default. Newer kernels don't have it.
1202
1a084f3d
FB
1203@subsection Windows
1204
1205If you have a slow host, using Windows 95 is better as it gives the
1206best speed. Windows 2000 is also a good choice.
1207
e3371e62
FB
1208@subsubsection SVGA graphic modes support
1209
1210QEMU emulates a Cirrus Logic GD5446 Video
15a34c63
FB
1211card. All Windows versions starting from Windows 95 should recognize
1212and use this graphic card. For optimal performances, use 16 bit color
1213depth in the guest and the host OS.
1a084f3d 1214
3cb0853a
FB
1215If you are using Windows XP as guest OS and if you want to use high
1216resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
12171280x1024x16), then you should use the VESA VBE virtual graphic card
1218(option @option{-std-vga}).
1219
e3371e62
FB
1220@subsubsection CPU usage reduction
1221
1222Windows 9x does not correctly use the CPU HLT
15a34c63
FB
1223instruction. The result is that it takes host CPU cycles even when
1224idle. You can install the utility from
70b7fba9 1225@url{https://web.archive.org/web/20060212132151/http://www.user.cityline.ru/~maxamn/amnhltm.zip}
3ba34a70 1226to solve this problem. Note that no such tool is needed for NT, 2000 or XP.
1a084f3d 1227
9d0a8e6f 1228@subsubsection Windows 2000 disk full problem
e3371e62 1229
9d0a8e6f
FB
1230Windows 2000 has a bug which gives a disk full problem during its
1231installation. When installing it, use the @option{-win2k-hack} QEMU
1232option to enable a specific workaround. After Windows 2000 is
1233installed, you no longer need this option (this option slows down the
1234IDE transfers).
e3371e62 1235
6cc721cf
FB
1236@subsubsection Windows 2000 shutdown
1237
1238Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1239can. It comes from the fact that Windows 2000 does not automatically
1240use the APM driver provided by the BIOS.
1241
1242In order to correct that, do the following (thanks to Struan
1243Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1244Add/Troubleshoot a device => Add a new device & Next => No, select the
1245hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1246(again) a few times. Now the driver is installed and Windows 2000 now
5fafdf24 1247correctly instructs QEMU to shutdown at the appropriate moment.
6cc721cf
FB
1248
1249@subsubsection Share a directory between Unix and Windows
1250
c8c6afa8
TH
1251See @ref{sec_invocation} about the help of the option
1252@option{'-netdev user,smb=...'}.
6cc721cf 1253
2192c332 1254@subsubsection Windows XP security problem
e3371e62
FB
1255
1256Some releases of Windows XP install correctly but give a security
1257error when booting:
1258@example
1259A problem is preventing Windows from accurately checking the
1260license for this computer. Error code: 0x800703e6.
1261@end example
e3371e62 1262
2192c332
FB
1263The workaround is to install a service pack for XP after a boot in safe
1264mode. Then reboot, and the problem should go away. Since there is no
1265network while in safe mode, its recommended to download the full
1266installation of SP1 or SP2 and transfer that via an ISO or using the
1267vvfat block device ("-hdb fat:directory_which_holds_the_SP").
e3371e62 1268
a0a821a4
FB
1269@subsection MS-DOS and FreeDOS
1270
1271@subsubsection CPU usage reduction
1272
1273DOS does not correctly use the CPU HLT instruction. The result is that
3ba34a70 1274it takes host CPU cycles even when idle. You can install the utility from
70b7fba9 1275@url{https://web.archive.org/web/20051222085335/http://www.vmware.com/software/dosidle210.zip}
3ba34a70 1276to solve this problem.
a0a821a4 1277
debc7065 1278@node QEMU System emulator for non PC targets
3f9f3aa1
FB
1279@chapter QEMU System emulator for non PC targets
1280
1281QEMU is a generic emulator and it emulates many non PC
1282machines. Most of the options are similar to the PC emulator. The
4be456f1 1283differences are mentioned in the following sections.
3f9f3aa1 1284
debc7065 1285@menu
7544a042 1286* PowerPC System emulator::
24d4de45
TS
1287* Sparc32 System emulator::
1288* Sparc64 System emulator::
1289* MIPS System emulator::
1290* ARM System emulator::
1291* ColdFire System emulator::
7544a042
SW
1292* Cris System emulator::
1293* Microblaze System emulator::
1294* SH4 System emulator::
3aeaea65 1295* Xtensa System emulator::
debc7065
FB
1296@end menu
1297
7544a042
SW
1298@node PowerPC System emulator
1299@section PowerPC System emulator
1300@cindex system emulation (PowerPC)
1a084f3d 1301
15a34c63
FB
1302Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1303or PowerMac PowerPC system.
1a084f3d 1304
b671f9ed 1305QEMU emulates the following PowerMac peripherals:
1a084f3d 1306
15a34c63 1307@itemize @minus
5fafdf24 1308@item
006f3a48 1309UniNorth or Grackle PCI Bridge
15a34c63
FB
1310@item
1311PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1312@item
15a34c63 13132 PMAC IDE interfaces with hard disk and CD-ROM support
5fafdf24 1314@item
15a34c63
FB
1315NE2000 PCI adapters
1316@item
1317Non Volatile RAM
1318@item
1319VIA-CUDA with ADB keyboard and mouse.
1a084f3d
FB
1320@end itemize
1321
b671f9ed 1322QEMU emulates the following PREP peripherals:
52c00a5f
FB
1323
1324@itemize @minus
5fafdf24 1325@item
15a34c63
FB
1326PCI Bridge
1327@item
1328PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1329@item
52c00a5f
FB
13302 IDE interfaces with hard disk and CD-ROM support
1331@item
1332Floppy disk
5fafdf24 1333@item
15a34c63 1334NE2000 network adapters
52c00a5f
FB
1335@item
1336Serial port
1337@item
1338PREP Non Volatile RAM
15a34c63
FB
1339@item
1340PC compatible keyboard and mouse.
52c00a5f
FB
1341@end itemize
1342
15a34c63 1343QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
3f9f3aa1 1344@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
52c00a5f 1345
70b7fba9 1346Since version 0.9.1, QEMU uses OpenBIOS @url{https://www.openbios.org/}
006f3a48
BS
1347for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1348v2) portable firmware implementation. The goal is to implement a 100%
1349IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
992e5acd 1350
15a34c63
FB
1351@c man begin OPTIONS
1352
1353The following options are specific to the PowerPC emulation:
1354
1355@table @option
1356
4e257e5e 1357@item -g @var{W}x@var{H}[x@var{DEPTH}]
15a34c63 1358
340fb41b 1359Set the initial VGA graphic mode. The default is 800x600x32.
15a34c63 1360
4e257e5e 1361@item -prom-env @var{string}
95efd11c
BS
1362
1363Set OpenBIOS variables in NVRAM, for example:
1364
1365@example
1366qemu-system-ppc -prom-env 'auto-boot?=false' \
1367 -prom-env 'boot-device=hd:2,\yaboot' \
1368 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1369@end example
1370
1371These variables are not used by Open Hack'Ware.
1372
15a34c63
FB
1373@end table
1374
5fafdf24 1375@c man end
15a34c63
FB
1376
1377
52c00a5f 1378More information is available at
3f9f3aa1 1379@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
52c00a5f 1380
24d4de45
TS
1381@node Sparc32 System emulator
1382@section Sparc32 System emulator
7544a042 1383@cindex system emulation (Sparc32)
e80cfcfc 1384
34a3d239
BS
1385Use the executable @file{qemu-system-sparc} to simulate the following
1386Sun4m architecture machines:
1387@itemize @minus
1388@item
1389SPARCstation 4
1390@item
1391SPARCstation 5
1392@item
1393SPARCstation 10
1394@item
1395SPARCstation 20
1396@item
1397SPARCserver 600MP
1398@item
1399SPARCstation LX
1400@item
1401SPARCstation Voyager
1402@item
1403SPARCclassic
1404@item
1405SPARCbook
1406@end itemize
1407
1408The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1409but Linux limits the number of usable CPUs to 4.
e80cfcfc 1410
6a4e1771 1411QEMU emulates the following sun4m peripherals:
e80cfcfc
FB
1412
1413@itemize @minus
3475187d 1414@item
6a4e1771 1415IOMMU
e80cfcfc 1416@item
33632788 1417TCX or cgthree Frame buffer
5fafdf24 1418@item
e80cfcfc
FB
1419Lance (Am7990) Ethernet
1420@item
34a3d239 1421Non Volatile RAM M48T02/M48T08
e80cfcfc 1422@item
3475187d
FB
1423Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1424and power/reset logic
1425@item
1426ESP SCSI controller with hard disk and CD-ROM support
1427@item
6a3b9cc9 1428Floppy drive (not on SS-600MP)
a2502b58
BS
1429@item
1430CS4231 sound device (only on SS-5, not working yet)
e80cfcfc
FB
1431@end itemize
1432
6a3b9cc9
BS
1433The number of peripherals is fixed in the architecture. Maximum
1434memory size depends on the machine type, for SS-5 it is 256MB and for
7d85892b 1435others 2047MB.
3475187d 1436
30a604f3 1437Since version 0.8.2, QEMU uses OpenBIOS
70b7fba9 1438@url{https://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
0986ac3b
FB
1439firmware implementation. The goal is to implement a 100% IEEE
14401275-1994 (referred to as Open Firmware) compliant firmware.
3475187d
FB
1441
1442A sample Linux 2.6 series kernel and ram disk image are available on
34a3d239 1443the QEMU web site. There are still issues with NetBSD and OpenBSD, but
9bb9f217 1444most kernel versions work. Please note that currently older Solaris kernels
34a3d239
BS
1445don't work probably due to interface issues between OpenBIOS and
1446Solaris.
3475187d
FB
1447
1448@c man begin OPTIONS
1449
a2502b58 1450The following options are specific to the Sparc32 emulation:
3475187d
FB
1451
1452@table @option
1453
4e257e5e 1454@item -g @var{W}x@var{H}x[x@var{DEPTH}]
3475187d 1455
33632788
MCA
1456Set the initial graphics mode. For TCX, the default is 1024x768x8 with the
1457option of 1024x768x24. For cgthree, the default is 1024x768x8 with the option
1458of 1152x900x8 for people who wish to use OBP.
3475187d 1459
4e257e5e 1460@item -prom-env @var{string}
66508601
BS
1461
1462Set OpenBIOS variables in NVRAM, for example:
1463
1464@example
1465qemu-system-sparc -prom-env 'auto-boot?=false' \
1466 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1467@end example
1468
6a4e1771 1469@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook]
a2502b58
BS
1470
1471Set the emulated machine type. Default is SS-5.
1472
3475187d
FB
1473@end table
1474
5fafdf24 1475@c man end
3475187d 1476
24d4de45
TS
1477@node Sparc64 System emulator
1478@section Sparc64 System emulator
7544a042 1479@cindex system emulation (Sparc64)
e80cfcfc 1480
34a3d239
BS
1481Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
1482(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
9bb9f217
MCA
1483Niagara (T1) machine. The Sun4u emulator is mostly complete, being
1484able to run Linux, NetBSD and OpenBSD in headless (-nographic) mode. The
a2664ca0
AT
1485Sun4v emulator is still a work in progress.
1486
1487The Niagara T1 emulator makes use of firmware and OS binaries supplied in the S10image/ directory
1488of the OpenSPARC T1 project @url{http://download.oracle.com/technetwork/systems/opensparc/OpenSPARCT1_Arch.1.5.tar.bz2}
1489and is able to boot the disk.s10hw2 Solaris image.
1490@example
1491qemu-system-sparc64 -M niagara -L /path-to/S10image/ \
1492 -nographic -m 256 \
1493 -drive if=pflash,readonly=on,file=/S10image/disk.s10hw2
1494@end example
1495
b756921a 1496
c7ba218d 1497QEMU emulates the following peripherals:
83469015
FB
1498
1499@itemize @minus
1500@item
5fafdf24 1501UltraSparc IIi APB PCI Bridge
83469015
FB
1502@item
1503PCI VGA compatible card with VESA Bochs Extensions
1504@item
34a3d239
BS
1505PS/2 mouse and keyboard
1506@item
83469015
FB
1507Non Volatile RAM M48T59
1508@item
1509PC-compatible serial ports
c7ba218d
BS
1510@item
15112 PCI IDE interfaces with hard disk and CD-ROM support
34a3d239
BS
1512@item
1513Floppy disk
83469015
FB
1514@end itemize
1515
c7ba218d
BS
1516@c man begin OPTIONS
1517
1518The following options are specific to the Sparc64 emulation:
1519
1520@table @option
1521
4e257e5e 1522@item -prom-env @var{string}
34a3d239
BS
1523
1524Set OpenBIOS variables in NVRAM, for example:
1525
1526@example
1527qemu-system-sparc64 -prom-env 'auto-boot?=false'
1528@end example
1529
a2664ca0 1530@item -M [sun4u|sun4v|niagara]
c7ba218d
BS
1531
1532Set the emulated machine type. The default is sun4u.
1533
1534@end table
1535
1536@c man end
1537
24d4de45
TS
1538@node MIPS System emulator
1539@section MIPS System emulator
7544a042 1540@cindex system emulation (MIPS)
9d0a8e6f 1541
d9aedc32
TS
1542Four executables cover simulation of 32 and 64-bit MIPS systems in
1543both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
1544@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
88cb0a02 1545Five different machine types are emulated:
24d4de45
TS
1546
1547@itemize @minus
1548@item
1549A generic ISA PC-like machine "mips"
1550@item
1551The MIPS Malta prototype board "malta"
1552@item
d9aedc32 1553An ACER Pica "pica61". This machine needs the 64-bit emulator.
6bf5b4e8 1554@item
f0fc6f8f 1555MIPS emulator pseudo board "mipssim"
88cb0a02
AJ
1556@item
1557A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
24d4de45
TS
1558@end itemize
1559
1560The generic emulation is supported by Debian 'Etch' and is able to
1561install Debian into a virtual disk image. The following devices are
1562emulated:
3f9f3aa1
FB
1563
1564@itemize @minus
5fafdf24 1565@item
6bf5b4e8 1566A range of MIPS CPUs, default is the 24Kf
3f9f3aa1
FB
1567@item
1568PC style serial port
1569@item
24d4de45
TS
1570PC style IDE disk
1571@item
3f9f3aa1
FB
1572NE2000 network card
1573@end itemize
1574
24d4de45
TS
1575The Malta emulation supports the following devices:
1576
1577@itemize @minus
1578@item
0b64d008 1579Core board with MIPS 24Kf CPU and Galileo system controller
24d4de45
TS
1580@item
1581PIIX4 PCI/USB/SMbus controller
1582@item
1583The Multi-I/O chip's serial device
1584@item
3a2eeac0 1585PCI network cards (PCnet32 and others)
24d4de45
TS
1586@item
1587Malta FPGA serial device
1588@item
1f605a76 1589Cirrus (default) or any other PCI VGA graphics card
24d4de45
TS
1590@end itemize
1591
1592The ACER Pica emulation supports:
1593
1594@itemize @minus
1595@item
1596MIPS R4000 CPU
1597@item
1598PC-style IRQ and DMA controllers
1599@item
1600PC Keyboard
1601@item
1602IDE controller
1603@end itemize
3f9f3aa1 1604
b5e4946f 1605The mipssim pseudo board emulation provides an environment similar
f0fc6f8f
TS
1606to what the proprietary MIPS emulator uses for running Linux.
1607It supports:
6bf5b4e8
TS
1608
1609@itemize @minus
1610@item
1611A range of MIPS CPUs, default is the 24Kf
1612@item
1613PC style serial port
1614@item
1615MIPSnet network emulation
1616@end itemize
1617
88cb0a02
AJ
1618The MIPS Magnum R4000 emulation supports:
1619
1620@itemize @minus
1621@item
1622MIPS R4000 CPU
1623@item
1624PC-style IRQ controller
1625@item
1626PC Keyboard
1627@item
1628SCSI controller
1629@item
1630G364 framebuffer
1631@end itemize
1632
1633
24d4de45
TS
1634@node ARM System emulator
1635@section ARM System emulator
7544a042 1636@cindex system emulation (ARM)
3f9f3aa1
FB
1637
1638Use the executable @file{qemu-system-arm} to simulate a ARM
1639machine. The ARM Integrator/CP board is emulated with the following
1640devices:
1641
1642@itemize @minus
1643@item
9ee6e8bb 1644ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
3f9f3aa1
FB
1645@item
1646Two PL011 UARTs
5fafdf24 1647@item
3f9f3aa1 1648SMC 91c111 Ethernet adapter
00a9bf19
PB
1649@item
1650PL110 LCD controller
1651@item
1652PL050 KMI with PS/2 keyboard and mouse.
a1bb27b1
PB
1653@item
1654PL181 MultiMedia Card Interface with SD card.
00a9bf19
PB
1655@end itemize
1656
1657The ARM Versatile baseboard is emulated with the following devices:
1658
1659@itemize @minus
1660@item
9ee6e8bb 1661ARM926E, ARM1136 or Cortex-A8 CPU
00a9bf19
PB
1662@item
1663PL190 Vectored Interrupt Controller
1664@item
1665Four PL011 UARTs
5fafdf24 1666@item
00a9bf19
PB
1667SMC 91c111 Ethernet adapter
1668@item
1669PL110 LCD controller
1670@item
1671PL050 KMI with PS/2 keyboard and mouse.
1672@item
1673PCI host bridge. Note the emulated PCI bridge only provides access to
1674PCI memory space. It does not provide access to PCI IO space.
4be456f1
TS
1675This means some devices (eg. ne2k_pci NIC) are not usable, and others
1676(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
00a9bf19 1677mapped control registers.
e6de1bad
PB
1678@item
1679PCI OHCI USB controller.
1680@item
1681LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
a1bb27b1
PB
1682@item
1683PL181 MultiMedia Card Interface with SD card.
3f9f3aa1
FB
1684@end itemize
1685
21a88941
PB
1686Several variants of the ARM RealView baseboard are emulated,
1687including the EB, PB-A8 and PBX-A9. Due to interactions with the
1688bootloader, only certain Linux kernel configurations work out
1689of the box on these boards.
1690
1691Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
1692enabled in the kernel, and expect 512M RAM. Kernels for The PBX-A9 board
1693should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
1694disabled and expect 1024M RAM.
1695
40c5c6cd 1696The following devices are emulated:
d7739d75
PB
1697
1698@itemize @minus
1699@item
f7c70325 1700ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
d7739d75
PB
1701@item
1702ARM AMBA Generic/Distributed Interrupt Controller
1703@item
1704Four PL011 UARTs
5fafdf24 1705@item
0ef849d7 1706SMC 91c111 or SMSC LAN9118 Ethernet adapter
d7739d75
PB
1707@item
1708PL110 LCD controller
1709@item
1710PL050 KMI with PS/2 keyboard and mouse
1711@item
1712PCI host bridge
1713@item
1714PCI OHCI USB controller
1715@item
1716LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
a1bb27b1
PB
1717@item
1718PL181 MultiMedia Card Interface with SD card.
d7739d75
PB
1719@end itemize
1720
b00052e4
AZ
1721The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
1722and "Terrier") emulation includes the following peripherals:
1723
1724@itemize @minus
1725@item
1726Intel PXA270 System-on-chip (ARM V5TE core)
1727@item
1728NAND Flash memory
1729@item
1730IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
1731@item
1732On-chip OHCI USB controller
1733@item
1734On-chip LCD controller
1735@item
1736On-chip Real Time Clock
1737@item
1738TI ADS7846 touchscreen controller on SSP bus
1739@item
1740Maxim MAX1111 analog-digital converter on I@math{^2}C bus
1741@item
1742GPIO-connected keyboard controller and LEDs
1743@item
549444e1 1744Secure Digital card connected to PXA MMC/SD host
b00052e4
AZ
1745@item
1746Three on-chip UARTs
1747@item
1748WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
1749@end itemize
1750
02645926
AZ
1751The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
1752following elements:
1753
1754@itemize @minus
1755@item
1756Texas Instruments OMAP310 System-on-chip (ARM 925T core)
1757@item
1758ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
1759@item
1760On-chip LCD controller
1761@item
1762On-chip Real Time Clock
1763@item
1764TI TSC2102i touchscreen controller / analog-digital converter / Audio
1765CODEC, connected through MicroWire and I@math{^2}S busses
1766@item
1767GPIO-connected matrix keypad
1768@item
1769Secure Digital card connected to OMAP MMC/SD host
1770@item
1771Three on-chip UARTs
1772@end itemize
1773
c30bb264
AZ
1774Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
1775emulation supports the following elements:
1776
1777@itemize @minus
1778@item
1779Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
1780@item
1781RAM and non-volatile OneNAND Flash memories
1782@item
1783Display connected to EPSON remote framebuffer chip and OMAP on-chip
1784display controller and a LS041y3 MIPI DBI-C controller
1785@item
1786TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
1787driven through SPI bus
1788@item
1789National Semiconductor LM8323-controlled qwerty keyboard driven
1790through I@math{^2}C bus
1791@item
1792Secure Digital card connected to OMAP MMC/SD host
1793@item
1794Three OMAP on-chip UARTs and on-chip STI debugging console
1795@item
40c5c6cd 1796A Bluetooth(R) transceiver and HCI connected to an UART
2d564691 1797@item
c30bb264
AZ
1798Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
1799TUSB6010 chip - only USB host mode is supported
1800@item
1801TI TMP105 temperature sensor driven through I@math{^2}C bus
1802@item
1803TI TWL92230C power management companion with an RTC on I@math{^2}C bus
1804@item
1805Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
1806through CBUS
1807@end itemize
1808
9ee6e8bb
PB
1809The Luminary Micro Stellaris LM3S811EVB emulation includes the following
1810devices:
1811
1812@itemize @minus
1813@item
1814Cortex-M3 CPU core.
1815@item
181664k Flash and 8k SRAM.
1817@item
1818Timers, UARTs, ADC and I@math{^2}C interface.
1819@item
1820OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
1821@end itemize
1822
1823The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
1824devices:
1825
1826@itemize @minus
1827@item
1828Cortex-M3 CPU core.
1829@item
1830256k Flash and 64k SRAM.
1831@item
1832Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
1833@item
1834OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
1835@end itemize
1836
57cd6e97
AZ
1837The Freecom MusicPal internet radio emulation includes the following
1838elements:
1839
1840@itemize @minus
1841@item
1842Marvell MV88W8618 ARM core.
1843@item
184432 MB RAM, 256 KB SRAM, 8 MB flash.
1845@item
1846Up to 2 16550 UARTs
1847@item
1848MV88W8xx8 Ethernet controller
1849@item
1850MV88W8618 audio controller, WM8750 CODEC and mixer
1851@item
e080e785 1852128×64 display with brightness control
57cd6e97
AZ
1853@item
18542 buttons, 2 navigation wheels with button function
1855@end itemize
1856
997641a8 1857The Siemens SX1 models v1 and v2 (default) basic emulation.
40c5c6cd 1858The emulation includes the following elements:
997641a8
AZ
1859
1860@itemize @minus
1861@item
1862Texas Instruments OMAP310 System-on-chip (ARM 925T core)
1863@item
1864ROM and RAM memories (ROM firmware image can be loaded with -pflash)
1865V1
18661 Flash of 16MB and 1 Flash of 8MB
1867V2
18681 Flash of 32MB
1869@item
1870On-chip LCD controller
1871@item
1872On-chip Real Time Clock
1873@item
1874Secure Digital card connected to OMAP MMC/SD host
1875@item
1876Three on-chip UARTs
1877@end itemize
1878
3f9f3aa1
FB
1879A Linux 2.6 test image is available on the QEMU web site. More
1880information is available in the QEMU mailing-list archive.
9d0a8e6f 1881
d2c639d6
BS
1882@c man begin OPTIONS
1883
1884The following options are specific to the ARM emulation:
1885
1886@table @option
1887
1888@item -semihosting
1889Enable semihosting syscall emulation.
1890
1891On ARM this implements the "Angel" interface.
1892
1893Note that this allows guest direct access to the host filesystem,
1894so should only be used with trusted guest OS.
1895
1896@end table
1897
abc67eb6
TH
1898@c man end
1899
24d4de45
TS
1900@node ColdFire System emulator
1901@section ColdFire System emulator
7544a042
SW
1902@cindex system emulation (ColdFire)
1903@cindex system emulation (M68K)
209a4e69
PB
1904
1905Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
1906The emulator is able to boot a uClinux kernel.
707e011b
PB
1907
1908The M5208EVB emulation includes the following devices:
1909
1910@itemize @minus
5fafdf24 1911@item
707e011b
PB
1912MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
1913@item
1914Three Two on-chip UARTs.
1915@item
1916Fast Ethernet Controller (FEC)
1917@end itemize
1918
1919The AN5206 emulation includes the following devices:
209a4e69
PB
1920
1921@itemize @minus
5fafdf24 1922@item
209a4e69
PB
1923MCF5206 ColdFire V2 Microprocessor.
1924@item
1925Two on-chip UARTs.
1926@end itemize
1927
d2c639d6
BS
1928@c man begin OPTIONS
1929
7544a042 1930The following options are specific to the ColdFire emulation:
d2c639d6
BS
1931
1932@table @option
1933
1934@item -semihosting
1935Enable semihosting syscall emulation.
1936
1937On M68K this implements the "ColdFire GDB" interface used by libgloss.
1938
1939Note that this allows guest direct access to the host filesystem,
1940so should only be used with trusted guest OS.
1941
1942@end table
1943
abc67eb6
TH
1944@c man end
1945
7544a042
SW
1946@node Cris System emulator
1947@section Cris System emulator
1948@cindex system emulation (Cris)
1949
1950TODO
1951
1952@node Microblaze System emulator
1953@section Microblaze System emulator
1954@cindex system emulation (Microblaze)
1955
1956TODO
1957
1958@node SH4 System emulator
1959@section SH4 System emulator
1960@cindex system emulation (SH4)
1961
1962TODO
1963
3aeaea65
MF
1964@node Xtensa System emulator
1965@section Xtensa System emulator
1966@cindex system emulation (Xtensa)
1967
1968Two executables cover simulation of both Xtensa endian options,
1969@file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
1970Two different machine types are emulated:
1971
1972@itemize @minus
1973@item
1974Xtensa emulator pseudo board "sim"
1975@item
1976Avnet LX60/LX110/LX200 board
1977@end itemize
1978
b5e4946f 1979The sim pseudo board emulation provides an environment similar
3aeaea65
MF
1980to one provided by the proprietary Tensilica ISS.
1981It supports:
1982
1983@itemize @minus
1984@item
1985A range of Xtensa CPUs, default is the DC232B
1986@item
1987Console and filesystem access via semihosting calls
1988@end itemize
1989
1990The Avnet LX60/LX110/LX200 emulation supports:
1991
1992@itemize @minus
1993@item
1994A range of Xtensa CPUs, default is the DC232B
1995@item
199616550 UART
1997@item
1998OpenCores 10/100 Mbps Ethernet MAC
1999@end itemize
2000
2001@c man begin OPTIONS
2002
2003The following options are specific to the Xtensa emulation:
2004
2005@table @option
2006
2007@item -semihosting
2008Enable semihosting syscall emulation.
2009
2010Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2011Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2012
2013Note that this allows guest direct access to the host filesystem,
2014so should only be used with trusted guest OS.
2015
2016@end table
3f2ce724 2017
abc67eb6
TH
2018@c man end
2019
3f2ce724
TH
2020@node QEMU Guest Agent
2021@chapter QEMU Guest Agent invocation
2022
2023@include qemu-ga.texi
2024
5fafdf24
TS
2025@node QEMU User space emulator
2026@chapter QEMU User space emulator
83195237
FB
2027
2028@menu
2029* Supported Operating Systems ::
0722cc42 2030* Features::
83195237 2031* Linux User space emulator::
84778508 2032* BSD User space emulator ::
83195237
FB
2033@end menu
2034
2035@node Supported Operating Systems
2036@section Supported Operating Systems
2037
2038The following OS are supported in user space emulation:
2039
2040@itemize @minus
2041@item
4be456f1 2042Linux (referred as qemu-linux-user)
83195237 2043@item
84778508 2044BSD (referred as qemu-bsd-user)
83195237
FB
2045@end itemize
2046
0722cc42
PB
2047@node Features
2048@section Features
2049
2050QEMU user space emulation has the following notable features:
2051
2052@table @strong
2053@item System call translation:
2054QEMU includes a generic system call translator. This means that
2055the parameters of the system calls can be converted to fix
2056endianness and 32/64-bit mismatches between hosts and targets.
2057IOCTLs can be converted too.
2058
2059@item POSIX signal handling:
2060QEMU can redirect to the running program all signals coming from
2061the host (such as @code{SIGALRM}), as well as synthesize signals from
2062virtual CPU exceptions (for example @code{SIGFPE} when the program
2063executes a division by zero).
2064
2065QEMU relies on the host kernel to emulate most signal system
2066calls, for example to emulate the signal mask. On Linux, QEMU
2067supports both normal and real-time signals.
2068
2069@item Threading:
2070On Linux, QEMU can emulate the @code{clone} syscall and create a real
2071host thread (with a separate virtual CPU) for each emulated thread.
2072Note that not all targets currently emulate atomic operations correctly.
2073x86 and ARM use a global lock in order to preserve their semantics.
2074@end table
2075
2076QEMU was conceived so that ultimately it can emulate itself. Although
2077it is not very useful, it is an important test to show the power of the
2078emulator.
2079
83195237
FB
2080@node Linux User space emulator
2081@section Linux User space emulator
386405f7 2082
debc7065
FB
2083@menu
2084* Quick Start::
2085* Wine launch::
2086* Command line options::
79737e4a 2087* Other binaries::
debc7065
FB
2088@end menu
2089
2090@node Quick Start
83195237 2091@subsection Quick Start
df0f11a0 2092
1f673135 2093In order to launch a Linux process, QEMU needs the process executable
5fafdf24 2094itself and all the target (x86) dynamic libraries used by it.
386405f7 2095
1f673135 2096@itemize
386405f7 2097
1f673135
FB
2098@item On x86, you can just try to launch any process by using the native
2099libraries:
386405f7 2100
5fafdf24 2101@example
1f673135
FB
2102qemu-i386 -L / /bin/ls
2103@end example
386405f7 2104
1f673135
FB
2105@code{-L /} tells that the x86 dynamic linker must be searched with a
2106@file{/} prefix.
386405f7 2107
b65ee4fa
SW
2108@item Since QEMU is also a linux process, you can launch QEMU with
2109QEMU (NOTE: you can only do that if you compiled QEMU from the sources):
386405f7 2110
5fafdf24 2111@example
1f673135
FB
2112qemu-i386 -L / qemu-i386 -L / /bin/ls
2113@end example
386405f7 2114
1f673135
FB
2115@item On non x86 CPUs, you need first to download at least an x86 glibc
2116(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2117@code{LD_LIBRARY_PATH} is not set:
df0f11a0 2118
1f673135 2119@example
5fafdf24 2120unset LD_LIBRARY_PATH
1f673135 2121@end example
1eb87257 2122
1f673135 2123Then you can launch the precompiled @file{ls} x86 executable:
1eb87257 2124
1f673135
FB
2125@example
2126qemu-i386 tests/i386/ls
2127@end example
4c3b5a48 2128You can look at @file{scripts/qemu-binfmt-conf.sh} so that
1f673135
FB
2129QEMU is automatically launched by the Linux kernel when you try to
2130launch x86 executables. It requires the @code{binfmt_misc} module in the
2131Linux kernel.
1eb87257 2132
1f673135
FB
2133@item The x86 version of QEMU is also included. You can try weird things such as:
2134@example
debc7065
FB
2135qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2136 /usr/local/qemu-i386/bin/ls-i386
1f673135 2137@end example
1eb20527 2138
1f673135 2139@end itemize
1eb20527 2140
debc7065 2141@node Wine launch
83195237 2142@subsection Wine launch
1eb20527 2143
1f673135 2144@itemize
386405f7 2145
1f673135
FB
2146@item Ensure that you have a working QEMU with the x86 glibc
2147distribution (see previous section). In order to verify it, you must be
2148able to do:
386405f7 2149
1f673135
FB
2150@example
2151qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2152@end example
386405f7 2153
1f673135 2154@item Download the binary x86 Wine install
5fafdf24 2155(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
386405f7 2156
1f673135 2157@item Configure Wine on your account. Look at the provided script
debc7065 2158@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
1f673135 2159@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
386405f7 2160
1f673135 2161@item Then you can try the example @file{putty.exe}:
386405f7 2162
1f673135 2163@example
debc7065
FB
2164qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2165 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
1f673135 2166@end example
386405f7 2167
1f673135 2168@end itemize
fd429f2f 2169
debc7065 2170@node Command line options
83195237 2171@subsection Command line options
1eb20527 2172
1f673135 2173@example
8485140f 2174@command{qemu-i386} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-cpu} @var{model}] [@option{-g} @var{port}] [@option{-B} @var{offset}] [@option{-R} @var{size}] @var{program} [@var{arguments}...]
1f673135 2175@end example
1eb20527 2176
1f673135
FB
2177@table @option
2178@item -h
2179Print the help
3b46e624 2180@item -L path
1f673135
FB
2181Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2182@item -s size
2183Set the x86 stack size in bytes (default=524288)
34a3d239 2184@item -cpu model
c8057f95 2185Select CPU model (-cpu help for list and additional feature selection)
f66724c9
SW
2186@item -E @var{var}=@var{value}
2187Set environment @var{var} to @var{value}.
2188@item -U @var{var}
2189Remove @var{var} from the environment.
379f6698
PB
2190@item -B offset
2191Offset guest address by the specified number of bytes. This is useful when
1f5c3f8c
SW
2192the address region required by guest applications is reserved on the host.
2193This option is currently only supported on some hosts.
68a1c816
PB
2194@item -R size
2195Pre-allocate a guest virtual address space of the given size (in bytes).
0d6753e5 2196"G", "M", and "k" suffixes may be used when specifying the size.
386405f7
FB
2197@end table
2198
1f673135 2199Debug options:
386405f7 2200
1f673135 2201@table @option
989b697d
PM
2202@item -d item1,...
2203Activate logging of the specified items (use '-d help' for a list of log items)
1f673135
FB
2204@item -p pagesize
2205Act as if the host page size was 'pagesize' bytes
34a3d239
BS
2206@item -g port
2207Wait gdb connection to port
1b530a6d
AJ
2208@item -singlestep
2209Run the emulation in single step mode.
1f673135 2210@end table
386405f7 2211
b01bcae6
AZ
2212Environment variables:
2213
2214@table @env
2215@item QEMU_STRACE
2216Print system calls and arguments similar to the 'strace' program
2217(NOTE: the actual 'strace' program will not work because the user
2218space emulator hasn't implemented ptrace). At the moment this is
2219incomplete. All system calls that don't have a specific argument
2220format are printed with information for six arguments. Many
2221flag-style arguments don't have decoders and will show up as numbers.
5cfdf930 2222@end table
b01bcae6 2223
79737e4a 2224@node Other binaries
83195237 2225@subsection Other binaries
79737e4a 2226
7544a042
SW
2227@cindex user mode (Alpha)
2228@command{qemu-alpha} TODO.
2229
2230@cindex user mode (ARM)
2231@command{qemu-armeb} TODO.
2232
2233@cindex user mode (ARM)
79737e4a
PB
2234@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2235binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2236configurations), and arm-uclinux bFLT format binaries.
2237
7544a042
SW
2238@cindex user mode (ColdFire)
2239@cindex user mode (M68K)
e6e5906b
PB
2240@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2241(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2242coldfire uClinux bFLT format binaries.
2243
79737e4a
PB
2244The binary format is detected automatically.
2245
7544a042
SW
2246@cindex user mode (Cris)
2247@command{qemu-cris} TODO.
2248
2249@cindex user mode (i386)
2250@command{qemu-i386} TODO.
2251@command{qemu-x86_64} TODO.
2252
2253@cindex user mode (Microblaze)
2254@command{qemu-microblaze} TODO.
2255
2256@cindex user mode (MIPS)
2257@command{qemu-mips} TODO.
2258@command{qemu-mipsel} TODO.
2259
e671711c
MV
2260@cindex user mode (NiosII)
2261@command{qemu-nios2} TODO.
2262
7544a042
SW
2263@cindex user mode (PowerPC)
2264@command{qemu-ppc64abi32} TODO.
2265@command{qemu-ppc64} TODO.
2266@command{qemu-ppc} TODO.
2267
2268@cindex user mode (SH4)
2269@command{qemu-sh4eb} TODO.
2270@command{qemu-sh4} TODO.
2271
2272@cindex user mode (SPARC)
34a3d239
BS
2273@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2274
a785e42e
BS
2275@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2276(Sparc64 CPU, 32 bit ABI).
2277
2278@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2279SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2280
84778508
BS
2281@node BSD User space emulator
2282@section BSD User space emulator
2283
2284@menu
2285* BSD Status::
2286* BSD Quick Start::
2287* BSD Command line options::
2288@end menu
2289
2290@node BSD Status
2291@subsection BSD Status
2292
2293@itemize @minus
2294@item
2295target Sparc64 on Sparc64: Some trivial programs work.
2296@end itemize
2297
2298@node BSD Quick Start
2299@subsection Quick Start
2300
2301In order to launch a BSD process, QEMU needs the process executable
2302itself and all the target dynamic libraries used by it.
2303
2304@itemize
2305
2306@item On Sparc64, you can just try to launch any process by using the native
2307libraries:
2308
2309@example
2310qemu-sparc64 /bin/ls
2311@end example
2312
2313@end itemize
2314
2315@node BSD Command line options
2316@subsection Command line options
2317
2318@example
8485140f 2319@command{qemu-sparc64} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-bsd} @var{type}] @var{program} [@var{arguments}...]
84778508
BS
2320@end example
2321
2322@table @option
2323@item -h
2324Print the help
2325@item -L path
2326Set the library root path (default=/)
2327@item -s size
2328Set the stack size in bytes (default=524288)
f66724c9
SW
2329@item -ignore-environment
2330Start with an empty environment. Without this option,
40c5c6cd 2331the initial environment is a copy of the caller's environment.
f66724c9
SW
2332@item -E @var{var}=@var{value}
2333Set environment @var{var} to @var{value}.
2334@item -U @var{var}
2335Remove @var{var} from the environment.
84778508
BS
2336@item -bsd type
2337Set the type of the emulated BSD Operating system. Valid values are
2338FreeBSD, NetBSD and OpenBSD (default).
2339@end table
2340
2341Debug options:
2342
2343@table @option
989b697d
PM
2344@item -d item1,...
2345Activate logging of the specified items (use '-d help' for a list of log items)
84778508
BS
2346@item -p pagesize
2347Act as if the host page size was 'pagesize' bytes
1b530a6d
AJ
2348@item -singlestep
2349Run the emulation in single step mode.
84778508
BS
2350@end table
2351
47eacb4f 2352
78e87797
PB
2353@include qemu-tech.texi
2354
eb22aeca
DB
2355@node Deprecated features
2356@appendix Deprecated features
2357
2358In general features are intended to be supported indefinitely once
2359introduced into QEMU. In the event that a feature needs to be removed,
2360it will be listed in this appendix. The feature will remain functional
2361for 2 releases prior to actual removal. Deprecated features may also
2362generate warnings on the console when QEMU starts up, or if activated
2363via a monitor command, however, this is not a mandatory requirement.
2364
2365Prior to the 2.10.0 release there was no official policy on how
2366long features would be deprecated prior to their removal, nor
2367any documented list of which features were deprecated. Thus
2368any features deprecated prior to 2.10.0 will be treated as if
2369they were first deprecated in the 2.10.0 release.
2370
2371What follows is a list of all features currently marked as
2372deprecated.
2373
2374@section System emulator command line arguments
2375
2376@subsection -drive boot=on|off (since 1.3.0)
2377
2378The ``boot=on|off'' option to the ``-drive'' argument is
2379ignored. Applications should use the ``bootindex=N'' parameter
2380to set an absolute ordering between devices instead.
2381
2382@subsection -tdf (since 1.3.0)
2383
2384The ``-tdf'' argument is ignored. The behaviour implemented
2385by this argument is now the default when using the KVM PIT,
2386but can be requested explicitly using
2387``-global kvm-pit.lost_tick_policy=slew''.
2388
2389@subsection -no-kvm-pit-reinjection (since 1.3.0)
2390
2391The ``-no-kvm-pit-reinjection'' argument is now a
2392synonym for setting ``-global kvm-pit.lost_tick_policy=discard''.
2393
2394@subsection -no-kvm-irqchip (since 1.3.0)
2395
2396The ``-no-kvm-irqchip'' argument is now a synonym for
2397setting ``-machine kernel_irqchip=off''.
2398
2399@subsection -no-kvm-pit (since 1.3.0)
2400
2401The ``-no-kvm-pit'' argument is ignored. It is no longer
2402possible to disable the KVM PIT directly.
2403
2404@subsection -no-kvm (since 1.3.0)
2405
2406The ``-no-kvm'' argument is now a synonym for setting
2407``-machine accel=tcg''.
2408
2409@subsection -mon default=on (since 2.4.0)
2410
2411The ``default'' option to the ``-mon'' argument is
2412now ignored. When multiple monitors were enabled, it
2413indicated which monitor would receive log messages
2414from the various subsystems. This feature is no longer
2415required as messages are now only sent to the monitor
2416in response to explicitly monitor commands.
2417
2418@subsection -vnc tls (since 2.5.0)
2419
2420The ``-vnc tls'' argument is now a synonym for setting
2421``-object tls-creds-anon,id=tls0'' combined with
2422``-vnc tls-creds=tls0'
2423
2424@subsection -vnc x509 (since 2.5.0)
2425
2426The ``-vnc x509=/path/to/certs'' argument is now a
2427synonym for setting
2428``-object tls-creds-x509,dir=/path/to/certs,id=tls0,verify-peer=no''
2429combined with ``-vnc tls-creds=tls0'
2430
2431@subsection -vnc x509verify (since 2.5.0)
2432
2433The ``-vnc x509verify=/path/to/certs'' argument is now a
2434synonym for setting
2435``-object tls-creds-x509,dir=/path/to/certs,id=tls0,verify-peer=yes''
2436combined with ``-vnc tls-creds=tls0'
2437
2438@subsection -tftp (since 2.6.0)
2439
2440The ``-tftp /some/dir'' argument is now a synonym for setting
2441the ``-netdev user,tftp=/some/dir' argument. The new syntax
2442allows different settings to be provided per NIC.
2443
2444@subsection -bootp (since 2.6.0)
2445
2446The ``-bootp /some/file'' argument is now a synonym for setting
2447the ``-netdev user,bootp=/some/file' argument. The new syntax
2448allows different settings to be provided per NIC.
2449
2450@subsection -redir (since 2.6.0)
2451
2452The ``-redir ARGS'' argument is now a synonym for setting
2453the ``-netdev user,hostfwd=ARGS'' argument instead. The new
2454syntax allows different settings to be provided per NIC.
2455
2456@subsection -smb (since 2.6.0)
2457
2458The ``-smb /some/dir'' argument is now a synonym for setting
2459the ``-netdev user,smb=/some/dir'' argument instead. The new
2460syntax allows different settings to be provided per NIC.
2461
2462@subsection -net channel (since 2.6.0)
2463
2464The ``--net channel,ARGS'' argument is now a synonym for setting
2465the ``-netdev user,guestfwd=ARGS'' argument instead.
2466
2467@subsection -net vlan (since 2.9.0)
2468
69001917 2469The ``-net vlan=NN'' argument is partially replaced with the
eb22aeca
DB
2470new ``-netdev'' argument. The remaining use cases will no
2471longer be directly supported in QEMU.
2472
2473@subsection -drive if=scsi (since 2.9.0)
2474
2475The ``-drive if=scsi'' argument is replaced by the the
2476``-device BUS-TYPE'' argument combined with ``-drive if=none''.
2477
2478@subsection -net dump (since 2.10.0)
2479
2480The ``--net dump'' argument is now replaced with the
2481``-object filter-dump'' argument which works in combination
2482with the modern ``-netdev`` backends instead.
2483
2484@subsection -hdachs (since 2.10.0)
2485
2486The ``-hdachs'' argument is now a synonym for setting
2487the ``cyls'', ``heads'', ``secs'', and ``trans'' properties
2488on the ``ide-hd'' device using the ``-device'' argument.
2489The new syntax allows different settings to be provided
2490per disk.
2491
2492@subsection -usbdevice (since 2.10.0)
2493
2494The ``-usbdevice DEV'' argument is now a synonym for setting
2495the ``-device usb-DEV'' argument instead. The deprecated syntax
2496would automatically enable USB support on the machine type.
2497If using the new syntax, USB support must be explicitly
2498enabled via the ``-machine usb=on'' argument.
2499
3478eae9
EH
2500@subsection -nodefconfig (since 2.11.0)
2501
2502The ``-nodefconfig`` argument is a synonym for ``-no-user-config``.
2503
eb22aeca
DB
2504@section qemu-img command line arguments
2505
2506@subsection convert -s (since 2.0.0)
2507
2508The ``convert -s snapshot_id_or_name'' argument is obsoleted
2509by the ``convert -l snapshot_param'' argument instead.
2510
2511@section System emulator human monitor commands
2512
bd7adc84
TH
2513@subsection host_net_add (since 2.10.0)
2514
2515The ``host_net_add'' command is replaced by the ``netdev_add'' command.
2516
2517@subsection host_net_remove (since 2.10.0)
2518
2519The ``host_net_remove'' command is replaced by the ``netdev_del'' command.
2520
eb22aeca
DB
2521@section System emulator devices
2522
2523@subsection ivshmem (since 2.6.0)
2524
2525The ``ivshmem'' device type is replaced by either the ``ivshmem-plain''
2526or ``ivshmem-doorbell`` device types.
2527
2528@subsection spapr-pci-vfio-host-bridge (since 2.6.0)
2529
2530The ``spapr-pci-vfio-host-bridge'' device type is replaced by
2531the ``spapr-pci-host-bridge'' device type.
2532
83926ad5
AF
2533@section System emulator machines
2534
2535@subsection Xilinx EP108 (since 2.11.0)
2536
2537The ``xlnx-ep108'' machine has been replaced by the ``xlnx-zcu102'' machine.
2538The ``xlnx-zcu102'' machine has the same features and capabilites in QEMU.
2539
7544a042
SW
2540@node License
2541@appendix License
2542
2543QEMU is a trademark of Fabrice Bellard.
2544
2f8d8f01
TH
2545QEMU is released under the
2546@url{https://www.gnu.org/licenses/gpl-2.0.txt,GNU General Public License},
2547version 2. Parts of QEMU have specific licenses, see file
70b7fba9 2548@url{https://git.qemu.org/?p=qemu.git;a=blob_plain;f=LICENSE,LICENSE}.
7544a042 2549
debc7065 2550@node Index
7544a042
SW
2551@appendix Index
2552@menu
2553* Concept Index::
2554* Function Index::
2555* Keystroke Index::
2556* Program Index::
2557* Data Type Index::
2558* Variable Index::
2559@end menu
2560
2561@node Concept Index
2562@section Concept Index
2563This is the main index. Should we combine all keywords in one index? TODO
debc7065
FB
2564@printindex cp
2565
7544a042
SW
2566@node Function Index
2567@section Function Index
2568This index could be used for command line options and monitor functions.
2569@printindex fn
2570
2571@node Keystroke Index
2572@section Keystroke Index
2573
2574This is a list of all keystrokes which have a special function
2575in system emulation.
2576
2577@printindex ky
2578
2579@node Program Index
2580@section Program Index
2581@printindex pg
2582
2583@node Data Type Index
2584@section Data Type Index
2585
2586This index could be used for qdev device names and options.
2587
2588@printindex tp
2589
2590@node Variable Index
2591@section Variable Index
2592@printindex vr
2593
debc7065 2594@bye