]> git.proxmox.com Git - mirror_qemu.git/blame - qemu-doc.texi
intel-iommu: replace more vtd_err_* traces
[mirror_qemu.git] / qemu-doc.texi
CommitLineData
386405f7 1\input texinfo @c -*- texinfo -*-
debc7065
FB
2@c %**start of header
3@setfilename qemu-doc.info
44cb280d 4@include version.texi
e080e785
SW
5
6@documentlanguage en
7@documentencoding UTF-8
8
44cb280d 9@settitle QEMU version @value{VERSION} User Documentation
debc7065
FB
10@exampleindent 0
11@paragraphindent 0
12@c %**end of header
386405f7 13
a1a32b05
SW
14@ifinfo
15@direntry
16* QEMU: (qemu-doc). The QEMU Emulator User Documentation.
17@end direntry
18@end ifinfo
19
0806e3f6 20@iftex
386405f7
FB
21@titlepage
22@sp 7
44cb280d 23@center @titlefont{QEMU version @value{VERSION}}
debc7065
FB
24@sp 1
25@center @titlefont{User Documentation}
386405f7
FB
26@sp 3
27@end titlepage
0806e3f6 28@end iftex
386405f7 29
debc7065
FB
30@ifnottex
31@node Top
32@top
33
34@menu
35* Introduction::
debc7065
FB
36* QEMU PC System emulator::
37* QEMU System emulator for non PC targets::
3f2ce724 38* QEMU Guest Agent::
83195237 39* QEMU User space emulator::
78e87797 40* Implementation notes::
eb22aeca 41* Deprecated features::
45b47130 42* Supported build platforms::
7544a042 43* License::
debc7065
FB
44* Index::
45@end menu
46@end ifnottex
47
48@contents
49
50@node Introduction
386405f7
FB
51@chapter Introduction
52
debc7065
FB
53@menu
54* intro_features:: Features
55@end menu
56
57@node intro_features
322d0c66 58@section Features
386405f7 59
1f673135
FB
60QEMU is a FAST! processor emulator using dynamic translation to
61achieve good emulation speed.
1eb20527 62
1f3e7e41 63@cindex operating modes
1eb20527 64QEMU has two operating modes:
0806e3f6 65
d7e5edca 66@itemize
7544a042 67@cindex system emulation
1f3e7e41 68@item Full system emulation. In this mode, QEMU emulates a full system (for
3f9f3aa1
FB
69example a PC), including one or several processors and various
70peripherals. It can be used to launch different Operating Systems
71without rebooting the PC or to debug system code.
1eb20527 72
7544a042 73@cindex user mode emulation
1f3e7e41 74@item User mode emulation. In this mode, QEMU can launch
83195237 75processes compiled for one CPU on another CPU. It can be used to
70b7fba9 76launch the Wine Windows API emulator (@url{https://www.winehq.org}) or
1f673135 77to ease cross-compilation and cross-debugging.
1eb20527
FB
78
79@end itemize
80
1f3e7e41
PB
81QEMU has the following features:
82
83@itemize
84@item QEMU can run without a host kernel driver and yet gives acceptable
85performance. It uses dynamic translation to native code for reasonable speed,
86with support for self-modifying code and precise exceptions.
87
88@item It is portable to several operating systems (GNU/Linux, *BSD, Mac OS X,
89Windows) and architectures.
90
91@item It performs accurate software emulation of the FPU.
92@end itemize
322d0c66 93
1f3e7e41 94QEMU user mode emulation has the following features:
52c00a5f 95@itemize
1f3e7e41
PB
96@item Generic Linux system call converter, including most ioctls.
97
98@item clone() emulation using native CPU clone() to use Linux scheduler for threads.
99
100@item Accurate signal handling by remapping host signals to target signals.
101@end itemize
102
103QEMU full system emulation has the following features:
104@itemize
105@item
106QEMU uses a full software MMU for maximum portability.
107
108@item
326c4c3c 109QEMU can optionally use an in-kernel accelerator, like kvm. The accelerators
1f3e7e41
PB
110execute most of the guest code natively, while
111continuing to emulate the rest of the machine.
112
113@item
114Various hardware devices can be emulated and in some cases, host
115devices (e.g. serial and parallel ports, USB, drives) can be used
116transparently by the guest Operating System. Host device passthrough
117can be used for talking to external physical peripherals (e.g. a
118webcam, modem or tape drive).
119
120@item
121Symmetric multiprocessing (SMP) support. Currently, an in-kernel
122accelerator is required to use more than one host CPU for emulation.
123
52c00a5f 124@end itemize
386405f7 125
0806e3f6 126
debc7065 127@node QEMU PC System emulator
3f9f3aa1 128@chapter QEMU PC System emulator
7544a042 129@cindex system emulation (PC)
1eb20527 130
debc7065
FB
131@menu
132* pcsys_introduction:: Introduction
133* pcsys_quickstart:: Quick Start
134* sec_invocation:: Invocation
a40db1b3
PM
135* pcsys_keys:: Keys in the graphical frontends
136* mux_keys:: Keys in the character backend multiplexer
debc7065 137* pcsys_monitor:: QEMU Monitor
2544e9e4 138* cpu_models:: CPU models
debc7065
FB
139* disk_images:: Disk Images
140* pcsys_network:: Network emulation
576fd0a1 141* pcsys_other_devs:: Other Devices
debc7065
FB
142* direct_linux_boot:: Direct Linux Boot
143* pcsys_usb:: USB emulation
f858dcae 144* vnc_security:: VNC security
5d19a6ea 145* network_tls:: TLS setup for network services
debc7065
FB
146* gdb_usage:: GDB usage
147* pcsys_os_specific:: Target OS specific information
148@end menu
149
150@node pcsys_introduction
0806e3f6
FB
151@section Introduction
152
153@c man begin DESCRIPTION
154
3f9f3aa1
FB
155The QEMU PC System emulator simulates the
156following peripherals:
0806e3f6
FB
157
158@itemize @minus
5fafdf24 159@item
15a34c63 160i440FX host PCI bridge and PIIX3 PCI to ISA bridge
0806e3f6 161@item
15a34c63
FB
162Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
163extensions (hardware level, including all non standard modes).
0806e3f6
FB
164@item
165PS/2 mouse and keyboard
5fafdf24 166@item
15a34c63 1672 PCI IDE interfaces with hard disk and CD-ROM support
1f673135
FB
168@item
169Floppy disk
5fafdf24 170@item
3a2eeac0 171PCI and ISA network adapters
0806e3f6 172@item
05d5818c
FB
173Serial ports
174@item
23076bb3
CM
175IPMI BMC, either and internal or external one
176@item
c0fe3827
FB
177Creative SoundBlaster 16 sound card
178@item
179ENSONIQ AudioPCI ES1370 sound card
180@item
e5c9a13e
AZ
181Intel 82801AA AC97 Audio compatible sound card
182@item
7d72e762
GH
183Intel HD Audio Controller and HDA codec
184@item
2d983446 185Adlib (OPL2) - Yamaha YM3812 compatible chip
b389dbfb 186@item
26463dbc
AZ
187Gravis Ultrasound GF1 sound card
188@item
cc53d26d 189CS4231A compatible sound card
190@item
a92ff8c1 191PCI UHCI, OHCI, EHCI or XHCI USB controller and a virtual USB-1.1 hub.
0806e3f6
FB
192@end itemize
193
3f9f3aa1
FB
194SMP is supported with up to 255 CPUs.
195
a8ad4159 196QEMU uses the PC BIOS from the Seabios project and the Plex86/Bochs LGPL
15a34c63
FB
197VGA BIOS.
198
c0fe3827
FB
199QEMU uses YM3812 emulation by Tatsuyuki Satoh.
200
2d983446 201QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
26463dbc 202by Tibor "TS" Schütz.
423d65f4 203
1a1a0e20 204Note that, by default, GUS shares IRQ(7) with parallel ports and so
b65ee4fa 205QEMU must be told to not have parallel ports to have working GUS.
720036a5 206
207@example
3804da9d 208qemu-system-i386 dos.img -soundhw gus -parallel none
720036a5 209@end example
210
211Alternatively:
212@example
3804da9d 213qemu-system-i386 dos.img -device gus,irq=5
720036a5 214@end example
215
216Or some other unclaimed IRQ.
217
cc53d26d 218CS4231A is the chip used in Windows Sound System and GUSMAX products
219
0806e3f6
FB
220@c man end
221
debc7065 222@node pcsys_quickstart
1eb20527 223@section Quick Start
7544a042 224@cindex quick start
1eb20527 225
285dc330 226Download and uncompress the linux image (@file{linux.img}) and type:
0806e3f6
FB
227
228@example
3804da9d 229qemu-system-i386 linux.img
0806e3f6
FB
230@end example
231
232Linux should boot and give you a prompt.
233
6cc721cf 234@node sec_invocation
ec410fc9
FB
235@section Invocation
236
237@example
0806e3f6 238@c man begin SYNOPSIS
8485140f 239@command{qemu-system-i386} [@var{options}] [@var{disk_image}]
0806e3f6 240@c man end
ec410fc9
FB
241@end example
242
0806e3f6 243@c man begin OPTIONS
d2c639d6
BS
244@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
245targets do not need a disk image.
ec410fc9 246
5824d651 247@include qemu-options.texi
ec410fc9 248
3e11db9a
FB
249@c man end
250
e896d0f9
MA
251@subsection Device URL Syntax
252@c TODO merge this with section Disk Images
253
254@c man begin NOTES
255
256In addition to using normal file images for the emulated storage devices,
257QEMU can also use networked resources such as iSCSI devices. These are
258specified using a special URL syntax.
259
260@table @option
261@item iSCSI
262iSCSI support allows QEMU to access iSCSI resources directly and use as
263images for the guest storage. Both disk and cdrom images are supported.
264
265Syntax for specifying iSCSI LUNs is
266``iscsi://<target-ip>[:<port>]/<target-iqn>/<lun>''
267
268By default qemu will use the iSCSI initiator-name
269'iqn.2008-11.org.linux-kvm[:<name>]' but this can also be set from the command
270line or a configuration file.
271
272Since version Qemu 2.4 it is possible to specify a iSCSI request timeout to detect
273stalled requests and force a reestablishment of the session. The timeout
274is specified in seconds. The default is 0 which means no timeout. Libiscsi
2751.15.0 or greater is required for this feature.
276
277Example (without authentication):
278@example
279qemu-system-i386 -iscsi initiator-name=iqn.2001-04.com.example:my-initiator \
280 -cdrom iscsi://192.0.2.1/iqn.2001-04.com.example/2 \
281 -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1
282@end example
283
284Example (CHAP username/password via URL):
285@example
286qemu-system-i386 -drive file=iscsi://user%password@@192.0.2.1/iqn.2001-04.com.example/1
287@end example
288
289Example (CHAP username/password via environment variables):
290@example
291LIBISCSI_CHAP_USERNAME="user" \
292LIBISCSI_CHAP_PASSWORD="password" \
293qemu-system-i386 -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1
294@end example
295
296@item NBD
297QEMU supports NBD (Network Block Devices) both using TCP protocol as well
298as Unix Domain Sockets.
299
300Syntax for specifying a NBD device using TCP
301``nbd:<server-ip>:<port>[:exportname=<export>]''
302
303Syntax for specifying a NBD device using Unix Domain Sockets
304``nbd:unix:<domain-socket>[:exportname=<export>]''
305
306Example for TCP
307@example
308qemu-system-i386 --drive file=nbd:192.0.2.1:30000
309@end example
310
311Example for Unix Domain Sockets
312@example
313qemu-system-i386 --drive file=nbd:unix:/tmp/nbd-socket
314@end example
315
316@item SSH
317QEMU supports SSH (Secure Shell) access to remote disks.
318
319Examples:
320@example
321qemu-system-i386 -drive file=ssh://user@@host/path/to/disk.img
322qemu-system-i386 -drive file.driver=ssh,file.user=user,file.host=host,file.port=22,file.path=/path/to/disk.img
323@end example
324
325Currently authentication must be done using ssh-agent. Other
326authentication methods may be supported in future.
327
328@item Sheepdog
329Sheepdog is a distributed storage system for QEMU.
330QEMU supports using either local sheepdog devices or remote networked
331devices.
332
333Syntax for specifying a sheepdog device
334@example
335sheepdog[+tcp|+unix]://[host:port]/vdiname[?socket=path][#snapid|#tag]
336@end example
337
338Example
339@example
340qemu-system-i386 --drive file=sheepdog://192.0.2.1:30000/MyVirtualMachine
341@end example
342
343See also @url{https://sheepdog.github.io/sheepdog/}.
344
345@item GlusterFS
346GlusterFS is a user space distributed file system.
347QEMU supports the use of GlusterFS volumes for hosting VM disk images using
348TCP, Unix Domain Sockets and RDMA transport protocols.
349
350Syntax for specifying a VM disk image on GlusterFS volume is
351@example
352
353URI:
354gluster[+type]://[host[:port]]/volume/path[?socket=...][,debug=N][,logfile=...]
355
356JSON:
357'json:@{"driver":"qcow2","file":@{"driver":"gluster","volume":"testvol","path":"a.img","debug":N,"logfile":"...",
358@ "server":[@{"type":"tcp","host":"...","port":"..."@},
359@ @{"type":"unix","socket":"..."@}]@}@}'
360@end example
361
362
363Example
364@example
365URI:
366qemu-system-x86_64 --drive file=gluster://192.0.2.1/testvol/a.img,
367@ file.debug=9,file.logfile=/var/log/qemu-gluster.log
368
369JSON:
370qemu-system-x86_64 'json:@{"driver":"qcow2",
371@ "file":@{"driver":"gluster",
372@ "volume":"testvol","path":"a.img",
373@ "debug":9,"logfile":"/var/log/qemu-gluster.log",
374@ "server":[@{"type":"tcp","host":"1.2.3.4","port":24007@},
375@ @{"type":"unix","socket":"/var/run/glusterd.socket"@}]@}@}'
376qemu-system-x86_64 -drive driver=qcow2,file.driver=gluster,file.volume=testvol,file.path=/path/a.img,
377@ file.debug=9,file.logfile=/var/log/qemu-gluster.log,
378@ file.server.0.type=tcp,file.server.0.host=1.2.3.4,file.server.0.port=24007,
379@ file.server.1.type=unix,file.server.1.socket=/var/run/glusterd.socket
380@end example
381
382See also @url{http://www.gluster.org}.
383
384@item HTTP/HTTPS/FTP/FTPS
385QEMU supports read-only access to files accessed over http(s) and ftp(s).
386
387Syntax using a single filename:
388@example
389<protocol>://[<username>[:<password>]@@]<host>/<path>
390@end example
391
392where:
393@table @option
394@item protocol
395'http', 'https', 'ftp', or 'ftps'.
396
397@item username
398Optional username for authentication to the remote server.
399
400@item password
401Optional password for authentication to the remote server.
402
403@item host
404Address of the remote server.
405
406@item path
407Path on the remote server, including any query string.
408@end table
409
410The following options are also supported:
411@table @option
412@item url
413The full URL when passing options to the driver explicitly.
414
415@item readahead
416The amount of data to read ahead with each range request to the remote server.
417This value may optionally have the suffix 'T', 'G', 'M', 'K', 'k' or 'b'. If it
418does not have a suffix, it will be assumed to be in bytes. The value must be a
419multiple of 512 bytes. It defaults to 256k.
420
421@item sslverify
422Whether to verify the remote server's certificate when connecting over SSL. It
423can have the value 'on' or 'off'. It defaults to 'on'.
424
425@item cookie
426Send this cookie (it can also be a list of cookies separated by ';') with
427each outgoing request. Only supported when using protocols such as HTTP
428which support cookies, otherwise ignored.
429
430@item timeout
431Set the timeout in seconds of the CURL connection. This timeout is the time
432that CURL waits for a response from the remote server to get the size of the
433image to be downloaded. If not set, the default timeout of 5 seconds is used.
434@end table
435
436Note that when passing options to qemu explicitly, @option{driver} is the value
437of <protocol>.
438
439Example: boot from a remote Fedora 20 live ISO image
440@example
441qemu-system-x86_64 --drive media=cdrom,file=http://dl.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly
442
443qemu-system-x86_64 --drive media=cdrom,file.driver=http,file.url=http://dl.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly
444@end example
445
446Example: boot from a remote Fedora 20 cloud image using a local overlay for
447writes, copy-on-read, and a readahead of 64k
448@example
449qemu-img create -f qcow2 -o backing_file='json:@{"file.driver":"http",, "file.url":"https://dl.fedoraproject.org/pub/fedora/linux/releases/20/Images/x86_64/Fedora-x86_64-20-20131211.1-sda.qcow2",, "file.readahead":"64k"@}' /tmp/Fedora-x86_64-20-20131211.1-sda.qcow2
450
451qemu-system-x86_64 -drive file=/tmp/Fedora-x86_64-20-20131211.1-sda.qcow2,copy-on-read=on
452@end example
453
454Example: boot from an image stored on a VMware vSphere server with a self-signed
455certificate using a local overlay for writes, a readahead of 64k and a timeout
456of 10 seconds.
457@example
458qemu-img create -f qcow2 -o backing_file='json:@{"file.driver":"https",, "file.url":"https://user:password@@vsphere.example.com/folder/test/test-flat.vmdk?dcPath=Datacenter&dsName=datastore1",, "file.sslverify":"off",, "file.readahead":"64k",, "file.timeout":10@}' /tmp/test.qcow2
459
460qemu-system-x86_64 -drive file=/tmp/test.qcow2
461@end example
462
463@end table
464
465@c man end
466
debc7065 467@node pcsys_keys
a40db1b3 468@section Keys in the graphical frontends
3e11db9a
FB
469
470@c man begin OPTIONS
471
de1db2a1
BH
472During the graphical emulation, you can use special key combinations to change
473modes. The default key mappings are shown below, but if you use @code{-alt-grab}
474then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
475@code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
476
a1b74fe8 477@table @key
f9859310 478@item Ctrl-Alt-f
7544a042 479@kindex Ctrl-Alt-f
a1b74fe8 480Toggle full screen
a0a821a4 481
d6a65ba3
JK
482@item Ctrl-Alt-+
483@kindex Ctrl-Alt-+
484Enlarge the screen
485
486@item Ctrl-Alt--
487@kindex Ctrl-Alt--
488Shrink the screen
489
c4a735f9 490@item Ctrl-Alt-u
7544a042 491@kindex Ctrl-Alt-u
c4a735f9 492Restore the screen's un-scaled dimensions
493
f9859310 494@item Ctrl-Alt-n
7544a042 495@kindex Ctrl-Alt-n
a0a821a4
FB
496Switch to virtual console 'n'. Standard console mappings are:
497@table @emph
498@item 1
499Target system display
500@item 2
501Monitor
502@item 3
503Serial port
a1b74fe8
FB
504@end table
505
f9859310 506@item Ctrl-Alt
7544a042 507@kindex Ctrl-Alt
a0a821a4
FB
508Toggle mouse and keyboard grab.
509@end table
510
7544a042
SW
511@kindex Ctrl-Up
512@kindex Ctrl-Down
513@kindex Ctrl-PageUp
514@kindex Ctrl-PageDown
3e11db9a
FB
515In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
516@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
517
a40db1b3
PM
518@c man end
519
520@node mux_keys
521@section Keys in the character backend multiplexer
522
523@c man begin OPTIONS
524
525During emulation, if you are using a character backend multiplexer
526(which is the default if you are using @option{-nographic}) then
527several commands are available via an escape sequence. These
528key sequences all start with an escape character, which is @key{Ctrl-a}
529by default, but can be changed with @option{-echr}. The list below assumes
530you're using the default.
ec410fc9
FB
531
532@table @key
a1b74fe8 533@item Ctrl-a h
7544a042 534@kindex Ctrl-a h
ec410fc9 535Print this help
3b46e624 536@item Ctrl-a x
7544a042 537@kindex Ctrl-a x
366dfc52 538Exit emulator
3b46e624 539@item Ctrl-a s
7544a042 540@kindex Ctrl-a s
1f47a922 541Save disk data back to file (if -snapshot)
20d8a3ed 542@item Ctrl-a t
7544a042 543@kindex Ctrl-a t
d2c639d6 544Toggle console timestamps
a1b74fe8 545@item Ctrl-a b
7544a042 546@kindex Ctrl-a b
1f673135 547Send break (magic sysrq in Linux)
a1b74fe8 548@item Ctrl-a c
7544a042 549@kindex Ctrl-a c
a40db1b3
PM
550Rotate between the frontends connected to the multiplexer (usually
551this switches between the monitor and the console)
a1b74fe8 552@item Ctrl-a Ctrl-a
a40db1b3
PM
553@kindex Ctrl-a Ctrl-a
554Send the escape character to the frontend
ec410fc9 555@end table
0806e3f6
FB
556@c man end
557
558@ignore
559
1f673135
FB
560@c man begin SEEALSO
561The HTML documentation of QEMU for more precise information and Linux
562user mode emulator invocation.
563@c man end
564
565@c man begin AUTHOR
566Fabrice Bellard
567@c man end
568
569@end ignore
570
debc7065 571@node pcsys_monitor
1f673135 572@section QEMU Monitor
7544a042 573@cindex QEMU monitor
1f673135
FB
574
575The QEMU monitor is used to give complex commands to the QEMU
576emulator. You can use it to:
577
578@itemize @minus
579
580@item
e598752a 581Remove or insert removable media images
89dfe898 582(such as CD-ROM or floppies).
1f673135 583
5fafdf24 584@item
1f673135
FB
585Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
586from a disk file.
587
588@item Inspect the VM state without an external debugger.
589
590@end itemize
591
592@subsection Commands
593
594The following commands are available:
595
2313086a 596@include qemu-monitor.texi
0806e3f6 597
2cd8af2d
PB
598@include qemu-monitor-info.texi
599
1f673135
FB
600@subsection Integer expressions
601
602The monitor understands integers expressions for every integer
603argument. You can use register names to get the value of specifics
604CPU registers by prefixing them with @emph{$}.
ec410fc9 605
2544e9e4
DB
606@node cpu_models
607@section CPU models
608
609@include docs/qemu-cpu-models.texi
610
1f47a922
FB
611@node disk_images
612@section Disk Images
613
ee29bdb6
PB
614QEMU supports many disk image formats, including growable disk images
615(their size increase as non empty sectors are written), compressed and
616encrypted disk images.
1f47a922 617
debc7065
FB
618@menu
619* disk_images_quickstart:: Quick start for disk image creation
620* disk_images_snapshot_mode:: Snapshot mode
13a2e80f 621* vm_snapshots:: VM snapshots
debc7065 622* qemu_img_invocation:: qemu-img Invocation
975b092b 623* qemu_nbd_invocation:: qemu-nbd Invocation
d3067b02 624* disk_images_formats:: Disk image file formats
19cb3738 625* host_drives:: Using host drives
debc7065 626* disk_images_fat_images:: Virtual FAT disk images
75818250 627* disk_images_nbd:: NBD access
42af9c30 628* disk_images_sheepdog:: Sheepdog disk images
00984e39 629* disk_images_iscsi:: iSCSI LUNs
8809e289 630* disk_images_gluster:: GlusterFS disk images
0a12ec87 631* disk_images_ssh:: Secure Shell (ssh) disk images
e86de5e4 632* disk_images_nvme:: NVMe userspace driver
b1d1cb27 633* disk_image_locking:: Disk image file locking
debc7065
FB
634@end menu
635
636@node disk_images_quickstart
acd935ef
FB
637@subsection Quick start for disk image creation
638
639You can create a disk image with the command:
1f47a922 640@example
acd935ef 641qemu-img create myimage.img mysize
1f47a922 642@end example
acd935ef
FB
643where @var{myimage.img} is the disk image filename and @var{mysize} is its
644size in kilobytes. You can add an @code{M} suffix to give the size in
645megabytes and a @code{G} suffix for gigabytes.
646
debc7065 647See @ref{qemu_img_invocation} for more information.
1f47a922 648
debc7065 649@node disk_images_snapshot_mode
1f47a922
FB
650@subsection Snapshot mode
651
652If you use the option @option{-snapshot}, all disk images are
653considered as read only. When sectors in written, they are written in
654a temporary file created in @file{/tmp}. You can however force the
acd935ef
FB
655write back to the raw disk images by using the @code{commit} monitor
656command (or @key{C-a s} in the serial console).
1f47a922 657
13a2e80f
FB
658@node vm_snapshots
659@subsection VM snapshots
660
661VM snapshots are snapshots of the complete virtual machine including
662CPU state, RAM, device state and the content of all the writable
663disks. In order to use VM snapshots, you must have at least one non
664removable and writable block device using the @code{qcow2} disk image
665format. Normally this device is the first virtual hard drive.
666
667Use the monitor command @code{savevm} to create a new VM snapshot or
668replace an existing one. A human readable name can be assigned to each
19d36792 669snapshot in addition to its numerical ID.
13a2e80f
FB
670
671Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
672a VM snapshot. @code{info snapshots} lists the available snapshots
673with their associated information:
674
675@example
676(qemu) info snapshots
677Snapshot devices: hda
678Snapshot list (from hda):
679ID TAG VM SIZE DATE VM CLOCK
6801 start 41M 2006-08-06 12:38:02 00:00:14.954
6812 40M 2006-08-06 12:43:29 00:00:18.633
6823 msys 40M 2006-08-06 12:44:04 00:00:23.514
683@end example
684
685A VM snapshot is made of a VM state info (its size is shown in
686@code{info snapshots}) and a snapshot of every writable disk image.
687The VM state info is stored in the first @code{qcow2} non removable
688and writable block device. The disk image snapshots are stored in
689every disk image. The size of a snapshot in a disk image is difficult
690to evaluate and is not shown by @code{info snapshots} because the
691associated disk sectors are shared among all the snapshots to save
19d36792
FB
692disk space (otherwise each snapshot would need a full copy of all the
693disk images).
13a2e80f
FB
694
695When using the (unrelated) @code{-snapshot} option
696(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
697but they are deleted as soon as you exit QEMU.
698
699VM snapshots currently have the following known limitations:
700@itemize
5fafdf24 701@item
13a2e80f
FB
702They cannot cope with removable devices if they are removed or
703inserted after a snapshot is done.
5fafdf24 704@item
13a2e80f
FB
705A few device drivers still have incomplete snapshot support so their
706state is not saved or restored properly (in particular USB).
707@end itemize
708
acd935ef
FB
709@node qemu_img_invocation
710@subsection @code{qemu-img} Invocation
1f47a922 711
acd935ef 712@include qemu-img.texi
05efe46e 713
975b092b
TS
714@node qemu_nbd_invocation
715@subsection @code{qemu-nbd} Invocation
716
717@include qemu-nbd.texi
718
78aa8aa0 719@include docs/qemu-block-drivers.texi
0a12ec87 720
debc7065 721@node pcsys_network
9d4fb82e
FB
722@section Network emulation
723
0e0266c2
TH
724QEMU can simulate several network cards (e.g. PCI or ISA cards on the PC
725target) and can connect them to a network backend on the host or an emulated
726hub. The various host network backends can either be used to connect the NIC of
727the guest to a real network (e.g. by using a TAP devices or the non-privileged
728user mode network stack), or to other guest instances running in another QEMU
729process (e.g. by using the socket host network backend).
9d4fb82e 730
41d03949
FB
731@subsection Using TAP network interfaces
732
733This is the standard way to connect QEMU to a real network. QEMU adds
734a virtual network device on your host (called @code{tapN}), and you
735can then configure it as if it was a real ethernet card.
9d4fb82e 736
8f40c388
FB
737@subsubsection Linux host
738
9d4fb82e
FB
739As an example, you can download the @file{linux-test-xxx.tar.gz}
740archive and copy the script @file{qemu-ifup} in @file{/etc} and
741configure properly @code{sudo} so that the command @code{ifconfig}
742contained in @file{qemu-ifup} can be executed as root. You must verify
41d03949 743that your host kernel supports the TAP network interfaces: the
9d4fb82e
FB
744device @file{/dev/net/tun} must be present.
745
ee0f4751
FB
746See @ref{sec_invocation} to have examples of command lines using the
747TAP network interfaces.
9d4fb82e 748
8f40c388
FB
749@subsubsection Windows host
750
751There is a virtual ethernet driver for Windows 2000/XP systems, called
752TAP-Win32. But it is not included in standard QEMU for Windows,
753so you will need to get it separately. It is part of OpenVPN package,
70b7fba9 754so download OpenVPN from : @url{https://openvpn.net/}.
8f40c388 755
9d4fb82e
FB
756@subsection Using the user mode network stack
757
41d03949
FB
758By using the option @option{-net user} (default configuration if no
759@option{-net} option is specified), QEMU uses a completely user mode
4be456f1 760network stack (you don't need root privilege to use the virtual
41d03949 761network). The virtual network configuration is the following:
9d4fb82e
FB
762
763@example
764
0e0266c2 765 guest (10.0.2.15) <------> Firewall/DHCP server <-----> Internet
41d03949 766 | (10.0.2.2)
9d4fb82e 767 |
2518bd0d 768 ----> DNS server (10.0.2.3)
3b46e624 769 |
2518bd0d 770 ----> SMB server (10.0.2.4)
9d4fb82e
FB
771@end example
772
773The QEMU VM behaves as if it was behind a firewall which blocks all
774incoming connections. You can use a DHCP client to automatically
41d03949
FB
775configure the network in the QEMU VM. The DHCP server assign addresses
776to the hosts starting from 10.0.2.15.
9d4fb82e
FB
777
778In order to check that the user mode network is working, you can ping
779the address 10.0.2.2 and verify that you got an address in the range
78010.0.2.x from the QEMU virtual DHCP server.
781
37cbfcce
GH
782Note that ICMP traffic in general does not work with user mode networking.
783@code{ping}, aka. ICMP echo, to the local router (10.0.2.2) shall work,
784however. If you're using QEMU on Linux >= 3.0, it can use unprivileged ICMP
785ping sockets to allow @code{ping} to the Internet. The host admin has to set
786the ping_group_range in order to grant access to those sockets. To allow ping
787for GID 100 (usually users group):
788
789@example
790echo 100 100 > /proc/sys/net/ipv4/ping_group_range
791@end example
b415a407 792
9bf05444
FB
793When using the built-in TFTP server, the router is also the TFTP
794server.
795
c8c6afa8
TH
796When using the @option{'-netdev user,hostfwd=...'} option, TCP or UDP
797connections can be redirected from the host to the guest. It allows for
798example to redirect X11, telnet or SSH connections.
443f1376 799
0e0266c2
TH
800@subsection Hubs
801
802QEMU can simulate several hubs. A hub can be thought of as a virtual connection
803between several network devices. These devices can be for example QEMU virtual
804ethernet cards or virtual Host ethernet devices (TAP devices). You can connect
805guest NICs or host network backends to such a hub using the @option{-netdev
806hubport} or @option{-nic hubport} options. The legacy @option{-net} option
807also connects the given device to the emulated hub with ID 0 (i.e. the default
808hub) unless you specify a netdev with @option{-net nic,netdev=xxx} here.
41d03949 809
0e0266c2 810@subsection Connecting emulated networks between QEMU instances
41d03949 811
0e0266c2
TH
812Using the @option{-netdev socket} (or @option{-nic socket} or
813@option{-net socket}) option, it is possible to create emulated
814networks that span several QEMU instances.
815See the description of the @option{-netdev socket} option in the
816@ref{sec_invocation,,Invocation chapter} to have a basic example.
41d03949 817
576fd0a1 818@node pcsys_other_devs
6cbf4c8c
CM
819@section Other Devices
820
821@subsection Inter-VM Shared Memory device
822
5400c02b
MA
823On Linux hosts, a shared memory device is available. The basic syntax
824is:
6cbf4c8c
CM
825
826@example
5400c02b
MA
827qemu-system-x86_64 -device ivshmem-plain,memdev=@var{hostmem}
828@end example
829
830where @var{hostmem} names a host memory backend. For a POSIX shared
831memory backend, use something like
832
833@example
834-object memory-backend-file,size=1M,share,mem-path=/dev/shm/ivshmem,id=@var{hostmem}
6cbf4c8c
CM
835@end example
836
837If desired, interrupts can be sent between guest VMs accessing the same shared
838memory region. Interrupt support requires using a shared memory server and
839using a chardev socket to connect to it. The code for the shared memory server
840is qemu.git/contrib/ivshmem-server. An example syntax when using the shared
841memory server is:
842
843@example
a75eb03b 844# First start the ivshmem server once and for all
50d34c4e 845ivshmem-server -p @var{pidfile} -S @var{path} -m @var{shm-name} -l @var{shm-size} -n @var{vectors}
a75eb03b
DM
846
847# Then start your qemu instances with matching arguments
5400c02b 848qemu-system-x86_64 -device ivshmem-doorbell,vectors=@var{vectors},chardev=@var{id}
50d34c4e 849 -chardev socket,path=@var{path},id=@var{id}
6cbf4c8c
CM
850@end example
851
852When using the server, the guest will be assigned a VM ID (>=0) that allows guests
853using the same server to communicate via interrupts. Guests can read their
1309cf44 854VM ID from a device register (see ivshmem-spec.txt).
6cbf4c8c 855
62a830b6
MA
856@subsubsection Migration with ivshmem
857
5400c02b
MA
858With device property @option{master=on}, the guest will copy the shared
859memory on migration to the destination host. With @option{master=off},
860the guest will not be able to migrate with the device attached. In the
861latter case, the device should be detached and then reattached after
862migration using the PCI hotplug support.
6cbf4c8c 863
62a830b6
MA
864At most one of the devices sharing the same memory can be master. The
865master must complete migration before you plug back the other devices.
866
7d4f4bda
MAL
867@subsubsection ivshmem and hugepages
868
869Instead of specifying the <shm size> using POSIX shm, you may specify
870a memory backend that has hugepage support:
871
872@example
5400c02b
MA
873qemu-system-x86_64 -object memory-backend-file,size=1G,mem-path=/dev/hugepages/my-shmem-file,share,id=mb1
874 -device ivshmem-plain,memdev=mb1
7d4f4bda
MAL
875@end example
876
877ivshmem-server also supports hugepages mount points with the
878@option{-m} memory path argument.
879
9d4fb82e
FB
880@node direct_linux_boot
881@section Direct Linux Boot
1f673135
FB
882
883This section explains how to launch a Linux kernel inside QEMU without
884having to make a full bootable image. It is very useful for fast Linux
ee0f4751 885kernel testing.
1f673135 886
ee0f4751 887The syntax is:
1f673135 888@example
3804da9d 889qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1f673135
FB
890@end example
891
ee0f4751
FB
892Use @option{-kernel} to provide the Linux kernel image and
893@option{-append} to give the kernel command line arguments. The
894@option{-initrd} option can be used to provide an INITRD image.
1f673135 895
ee0f4751
FB
896When using the direct Linux boot, a disk image for the first hard disk
897@file{hda} is required because its boot sector is used to launch the
898Linux kernel.
1f673135 899
ee0f4751
FB
900If you do not need graphical output, you can disable it and redirect
901the virtual serial port and the QEMU monitor to the console with the
902@option{-nographic} option. The typical command line is:
1f673135 903@example
3804da9d
SW
904qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
905 -append "root=/dev/hda console=ttyS0" -nographic
1f673135
FB
906@end example
907
ee0f4751
FB
908Use @key{Ctrl-a c} to switch between the serial console and the
909monitor (@pxref{pcsys_keys}).
1f673135 910
debc7065 911@node pcsys_usb
b389dbfb
FB
912@section USB emulation
913
a92ff8c1
TH
914QEMU can emulate a PCI UHCI, OHCI, EHCI or XHCI USB controller. You can
915plug virtual USB devices or real host USB devices (only works with certain
916host operating systems). QEMU will automatically create and connect virtual
917USB hubs as necessary to connect multiple USB devices.
b389dbfb 918
0aff66b5
PB
919@menu
920* usb_devices::
921* host_usb_devices::
922@end menu
923@node usb_devices
924@subsection Connecting USB devices
b389dbfb 925
a92ff8c1
TH
926USB devices can be connected with the @option{-device usb-...} command line
927option or the @code{device_add} monitor command. Available devices are:
b389dbfb 928
db380c06 929@table @code
a92ff8c1 930@item usb-mouse
0aff66b5 931Virtual Mouse. This will override the PS/2 mouse emulation when activated.
a92ff8c1 932@item usb-tablet
c6d46c20 933Pointer device that uses absolute coordinates (like a touchscreen).
b65ee4fa 934This means QEMU is able to report the mouse position without having
0aff66b5 935to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
a92ff8c1
TH
936@item usb-storage,drive=@var{drive_id}
937Mass storage device backed by @var{drive_id} (@pxref{disk_images})
938@item usb-uas
939USB attached SCSI device, see
70b7fba9 940@url{https://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/usb-storage.txt,usb-storage.txt}
a92ff8c1
TH
941for details
942@item usb-bot
943Bulk-only transport storage device, see
70b7fba9 944@url{https://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/usb-storage.txt,usb-storage.txt}
a92ff8c1
TH
945for details here, too
946@item usb-mtp,x-root=@var{dir}
947Media transfer protocol device, using @var{dir} as root of the file tree
948that is presented to the guest.
949@item usb-host,hostbus=@var{bus},hostaddr=@var{addr}
950Pass through the host device identified by @var{bus} and @var{addr}
951@item usb-host,vendorid=@var{vendor},productid=@var{product}
952Pass through the host device identified by @var{vendor} and @var{product} ID
953@item usb-wacom-tablet
f6d2a316
AZ
954Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
955above but it can be used with the tslib library because in addition to touch
956coordinates it reports touch pressure.
a92ff8c1 957@item usb-kbd
47b2d338 958Standard USB keyboard. Will override the PS/2 keyboard (if present).
a92ff8c1 959@item usb-serial,chardev=@var{id}
db380c06 960Serial converter. This emulates an FTDI FT232BM chip connected to host character
a92ff8c1
TH
961device @var{id}.
962@item usb-braille,chardev=@var{id}
2e4d9fb1 963Braille device. This will use BrlAPI to display the braille output on a real
a92ff8c1
TH
964or fake device referenced by @var{id}.
965@item usb-net[,netdev=@var{id}]
966Network adapter that supports CDC ethernet and RNDIS protocols. @var{id}
967specifies a netdev defined with @code{-netdev @dots{},id=@var{id}}.
9ad97e65 968For instance, user-mode networking can be used with
6c9f886c 969@example
a92ff8c1 970qemu-system-i386 [...] -netdev user,id=net0 -device usb-net,netdev=net0
6c9f886c 971@end example
a92ff8c1
TH
972@item usb-ccid
973Smartcard reader device
974@item usb-audio
975USB audio device
976@item usb-bt-dongle
977Bluetooth dongle for the transport layer of HCI. It is connected to HCI
978scatternet 0 by default (corresponds to @code{-bt hci,vlan=0}).
979Note that the syntax for the @code{-device usb-bt-dongle} option is not as
980useful yet as it was with the legacy @code{-usbdevice} option. So to
981configure an USB bluetooth device, you might need to use
982"@code{-usbdevice bt}[:@var{hci-type}]" instead. This configures a
983bluetooth dongle whose type is specified in the same format as with
2d564691
AZ
984the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
985no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
986This USB device implements the USB Transport Layer of HCI. Example
987usage:
988@example
8485140f 989@command{qemu-system-i386} [...@var{OPTIONS}...] @option{-usbdevice} bt:hci,vlan=3 @option{-bt} device:keyboard,vlan=3
2d564691 990@end example
0aff66b5 991@end table
b389dbfb 992
0aff66b5 993@node host_usb_devices
b389dbfb
FB
994@subsection Using host USB devices on a Linux host
995
996WARNING: this is an experimental feature. QEMU will slow down when
997using it. USB devices requiring real time streaming (i.e. USB Video
998Cameras) are not supported yet.
999
1000@enumerate
5fafdf24 1001@item If you use an early Linux 2.4 kernel, verify that no Linux driver
b389dbfb
FB
1002is actually using the USB device. A simple way to do that is simply to
1003disable the corresponding kernel module by renaming it from @file{mydriver.o}
1004to @file{mydriver.o.disabled}.
1005
1006@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1007@example
1008ls /proc/bus/usb
1009001 devices drivers
1010@end example
1011
1012@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1013@example
1014chown -R myuid /proc/bus/usb
1015@end example
1016
1017@item Launch QEMU and do in the monitor:
5fafdf24 1018@example
b389dbfb
FB
1019info usbhost
1020 Device 1.2, speed 480 Mb/s
1021 Class 00: USB device 1234:5678, USB DISK
1022@end example
1023You should see the list of the devices you can use (Never try to use
1024hubs, it won't work).
1025
1026@item Add the device in QEMU by using:
5fafdf24 1027@example
a92ff8c1 1028device_add usb-host,vendorid=0x1234,productid=0x5678
b389dbfb
FB
1029@end example
1030
a92ff8c1
TH
1031Normally the guest OS should report that a new USB device is plugged.
1032You can use the option @option{-device usb-host,...} to do the same.
b389dbfb
FB
1033
1034@item Now you can try to use the host USB device in QEMU.
1035
1036@end enumerate
1037
1038When relaunching QEMU, you may have to unplug and plug again the USB
1039device to make it work again (this is a bug).
1040
f858dcae
TS
1041@node vnc_security
1042@section VNC security
1043
1044The VNC server capability provides access to the graphical console
1045of the guest VM across the network. This has a number of security
1046considerations depending on the deployment scenarios.
1047
1048@menu
1049* vnc_sec_none::
1050* vnc_sec_password::
1051* vnc_sec_certificate::
1052* vnc_sec_certificate_verify::
1053* vnc_sec_certificate_pw::
2f9606b3
AL
1054* vnc_sec_sasl::
1055* vnc_sec_certificate_sasl::
2f9606b3 1056* vnc_setup_sasl::
f858dcae
TS
1057@end menu
1058@node vnc_sec_none
1059@subsection Without passwords
1060
1061The simplest VNC server setup does not include any form of authentication.
1062For this setup it is recommended to restrict it to listen on a UNIX domain
1063socket only. For example
1064
1065@example
3804da9d 1066qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
f858dcae
TS
1067@end example
1068
1069This ensures that only users on local box with read/write access to that
1070path can access the VNC server. To securely access the VNC server from a
1071remote machine, a combination of netcat+ssh can be used to provide a secure
1072tunnel.
1073
1074@node vnc_sec_password
1075@subsection With passwords
1076
1077The VNC protocol has limited support for password based authentication. Since
1078the protocol limits passwords to 8 characters it should not be considered
1079to provide high security. The password can be fairly easily brute-forced by
1080a client making repeat connections. For this reason, a VNC server using password
1081authentication should be restricted to only listen on the loopback interface
0f66998f
PM
1082or UNIX domain sockets. Password authentication is not supported when operating
1083in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password
1084authentication is requested with the @code{password} option, and then once QEMU
1085is running the password is set with the monitor. Until the monitor is used to
1086set the password all clients will be rejected.
f858dcae
TS
1087
1088@example
3804da9d 1089qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio
f858dcae
TS
1090(qemu) change vnc password
1091Password: ********
1092(qemu)
1093@end example
1094
1095@node vnc_sec_certificate
1096@subsection With x509 certificates
1097
1098The QEMU VNC server also implements the VeNCrypt extension allowing use of
1099TLS for encryption of the session, and x509 certificates for authentication.
1100The use of x509 certificates is strongly recommended, because TLS on its
1101own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1102support provides a secure session, but no authentication. This allows any
1103client to connect, and provides an encrypted session.
1104
1105@example
3804da9d 1106qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
f858dcae
TS
1107@end example
1108
1109In the above example @code{/etc/pki/qemu} should contain at least three files,
1110@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1111users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1112NB the @code{server-key.pem} file should be protected with file mode 0600 to
1113only be readable by the user owning it.
1114
1115@node vnc_sec_certificate_verify
1116@subsection With x509 certificates and client verification
1117
1118Certificates can also provide a means to authenticate the client connecting.
1119The server will request that the client provide a certificate, which it will
1120then validate against the CA certificate. This is a good choice if deploying
1121in an environment with a private internal certificate authority.
1122
1123@example
3804da9d 1124qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
f858dcae
TS
1125@end example
1126
1127
1128@node vnc_sec_certificate_pw
1129@subsection With x509 certificates, client verification and passwords
1130
1131Finally, the previous method can be combined with VNC password authentication
1132to provide two layers of authentication for clients.
1133
1134@example
3804da9d 1135qemu-system-i386 [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
f858dcae
TS
1136(qemu) change vnc password
1137Password: ********
1138(qemu)
1139@end example
1140
2f9606b3
AL
1141
1142@node vnc_sec_sasl
1143@subsection With SASL authentication
1144
1145The SASL authentication method is a VNC extension, that provides an
1146easily extendable, pluggable authentication method. This allows for
1147integration with a wide range of authentication mechanisms, such as
1148PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1149The strength of the authentication depends on the exact mechanism
1150configured. If the chosen mechanism also provides a SSF layer, then
1151it will encrypt the datastream as well.
1152
1153Refer to the later docs on how to choose the exact SASL mechanism
1154used for authentication, but assuming use of one supporting SSF,
1155then QEMU can be launched with:
1156
1157@example
3804da9d 1158qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio
2f9606b3
AL
1159@end example
1160
1161@node vnc_sec_certificate_sasl
1162@subsection With x509 certificates and SASL authentication
1163
1164If the desired SASL authentication mechanism does not supported
1165SSF layers, then it is strongly advised to run it in combination
1166with TLS and x509 certificates. This provides securely encrypted
1167data stream, avoiding risk of compromising of the security
1168credentials. This can be enabled, by combining the 'sasl' option
1169with the aforementioned TLS + x509 options:
1170
1171@example
3804da9d 1172qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
2f9606b3
AL
1173@end example
1174
5d19a6ea
DB
1175@node vnc_setup_sasl
1176
1177@subsection Configuring SASL mechanisms
1178
1179The following documentation assumes use of the Cyrus SASL implementation on a
1180Linux host, but the principles should apply to any other SASL implementation
1181or host. When SASL is enabled, the mechanism configuration will be loaded from
1182system default SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1183unprivileged user, an environment variable SASL_CONF_PATH can be used to make
1184it search alternate locations for the service config file.
1185
1186If the TLS option is enabled for VNC, then it will provide session encryption,
1187otherwise the SASL mechanism will have to provide encryption. In the latter
1188case the list of possible plugins that can be used is drastically reduced. In
1189fact only the GSSAPI SASL mechanism provides an acceptable level of security
1190by modern standards. Previous versions of QEMU referred to the DIGEST-MD5
1191mechanism, however, it has multiple serious flaws described in detail in
1192RFC 6331 and thus should never be used any more. The SCRAM-SHA-1 mechanism
1193provides a simple username/password auth facility similar to DIGEST-MD5, but
1194does not support session encryption, so can only be used in combination with
1195TLS.
2f9606b3 1196
5d19a6ea 1197When not using TLS the recommended configuration is
f858dcae 1198
5d19a6ea
DB
1199@example
1200mech_list: gssapi
1201keytab: /etc/qemu/krb5.tab
1202@end example
1203
1204This says to use the 'GSSAPI' mechanism with the Kerberos v5 protocol, with
1205the server principal stored in /etc/qemu/krb5.tab. For this to work the
1206administrator of your KDC must generate a Kerberos principal for the server,
1207with a name of 'qemu/somehost.example.com@@EXAMPLE.COM' replacing
1208'somehost.example.com' with the fully qualified host name of the machine
1209running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
1210
1211When using TLS, if username+password authentication is desired, then a
1212reasonable configuration is
1213
1214@example
1215mech_list: scram-sha-1
1216sasldb_path: /etc/qemu/passwd.db
1217@end example
1218
1219The @code{saslpasswd2} program can be used to populate the @code{passwd.db}
1220file with accounts.
1221
1222Other SASL configurations will be left as an exercise for the reader. Note that
1223all mechanisms, except GSSAPI, should be combined with use of TLS to ensure a
1224secure data channel.
1225
1226
1227@node network_tls
1228@section TLS setup for network services
1229
1230Almost all network services in QEMU have the ability to use TLS for
1231session data encryption, along with x509 certificates for simple
1232client authentication. What follows is a description of how to
1233generate certificates suitable for usage with QEMU, and applies to
1234the VNC server, character devices with the TCP backend, NBD server
1235and client, and migration server and client.
1236
1237At a high level, QEMU requires certificates and private keys to be
1238provided in PEM format. Aside from the core fields, the certificates
1239should include various extension data sets, including v3 basic
1240constraints data, key purpose, key usage and subject alt name.
1241
1242The GnuTLS package includes a command called @code{certtool} which can
1243be used to easily generate certificates and keys in the required format
1244with expected data present. Alternatively a certificate management
1245service may be used.
1246
1247At a minimum it is necessary to setup a certificate authority, and
1248issue certificates to each server. If using x509 certificates for
1249authentication, then each client will also need to be issued a
1250certificate.
1251
1252Assuming that the QEMU network services will only ever be exposed to
1253clients on a private intranet, there is no need to use a commercial
1254certificate authority to create certificates. A self-signed CA is
1255sufficient, and in fact likely to be more secure since it removes
1256the ability of malicious 3rd parties to trick the CA into mis-issuing
1257certs for impersonating your services. The only likely exception
1258where a commercial CA might be desirable is if enabling the VNC
1259websockets server and exposing it directly to remote browser clients.
1260In such a case it might be useful to use a commercial CA to avoid
1261needing to install custom CA certs in the web browsers.
1262
1263The recommendation is for the server to keep its certificates in either
1264@code{/etc/pki/qemu} or for unprivileged users in @code{$HOME/.pki/qemu}.
f858dcae
TS
1265
1266@menu
5d19a6ea
DB
1267* tls_generate_ca::
1268* tls_generate_server::
1269* tls_generate_client::
1270* tls_creds_setup::
e1a6dc91 1271* tls_psk::
f858dcae 1272@end menu
5d19a6ea
DB
1273@node tls_generate_ca
1274@subsection Setup the Certificate Authority
f858dcae
TS
1275
1276This step only needs to be performed once per organization / organizational
1277unit. First the CA needs a private key. This key must be kept VERY secret
1278and secure. If this key is compromised the entire trust chain of the certificates
1279issued with it is lost.
1280
1281@example
1282# certtool --generate-privkey > ca-key.pem
1283@end example
1284
5d19a6ea
DB
1285To generate a self-signed certificate requires one core piece of information,
1286the name of the organization. A template file @code{ca.info} should be
1287populated with the desired data to avoid having to deal with interactive
1288prompts from certtool:
f858dcae
TS
1289@example
1290# cat > ca.info <<EOF
1291cn = Name of your organization
1292ca
1293cert_signing_key
1294EOF
1295# certtool --generate-self-signed \
1296 --load-privkey ca-key.pem
1297 --template ca.info \
1298 --outfile ca-cert.pem
1299@end example
1300
5d19a6ea
DB
1301The @code{ca} keyword in the template sets the v3 basic constraints extension
1302to indicate this certificate is for a CA, while @code{cert_signing_key} sets
1303the key usage extension to indicate this will be used for signing other keys.
1304The generated @code{ca-cert.pem} file should be copied to all servers and
1305clients wishing to utilize TLS support in the VNC server. The @code{ca-key.pem}
1306must not be disclosed/copied anywhere except the host responsible for issuing
1307certificates.
f858dcae 1308
5d19a6ea
DB
1309@node tls_generate_server
1310@subsection Issuing server certificates
f858dcae
TS
1311
1312Each server (or host) needs to be issued with a key and certificate. When connecting
1313the certificate is sent to the client which validates it against the CA certificate.
5d19a6ea
DB
1314The core pieces of information for a server certificate are the hostnames and/or IP
1315addresses that will be used by clients when connecting. The hostname / IP address
1316that the client specifies when connecting will be validated against the hostname(s)
1317and IP address(es) recorded in the server certificate, and if no match is found
1318the client will close the connection.
1319
1320Thus it is recommended that the server certificate include both the fully qualified
1321and unqualified hostnames. If the server will have permanently assigned IP address(es),
1322and clients are likely to use them when connecting, they may also be included in the
1323certificate. Both IPv4 and IPv6 addresses are supported. Historically certificates
1324only included 1 hostname in the @code{CN} field, however, usage of this field for
1325validation is now deprecated. Instead modern TLS clients will validate against the
1326Subject Alt Name extension data, which allows for multiple entries. In the future
1327usage of the @code{CN} field may be discontinued entirely, so providing SAN
1328extension data is strongly recommended.
1329
1330On the host holding the CA, create template files containing the information
1331for each server, and use it to issue server certificates.
f858dcae
TS
1332
1333@example
5d19a6ea 1334# cat > server-hostNNN.info <<EOF
f858dcae 1335organization = Name of your organization
5d19a6ea
DB
1336cn = hostNNN.foo.example.com
1337dns_name = hostNNN
1338dns_name = hostNNN.foo.example.com
1339ip_address = 10.0.1.87
1340ip_address = 192.8.0.92
1341ip_address = 2620:0:cafe::87
1342ip_address = 2001:24::92
f858dcae
TS
1343tls_www_server
1344encryption_key
1345signing_key
1346EOF
5d19a6ea 1347# certtool --generate-privkey > server-hostNNN-key.pem
f858dcae
TS
1348# certtool --generate-certificate \
1349 --load-ca-certificate ca-cert.pem \
1350 --load-ca-privkey ca-key.pem \
5d19a6ea
DB
1351 --load-privkey server-hostNNN-key.pem \
1352 --template server-hostNNN.info \
1353 --outfile server-hostNNN-cert.pem
f858dcae
TS
1354@end example
1355
5d19a6ea
DB
1356The @code{dns_name} and @code{ip_address} fields in the template are setting
1357the subject alt name extension data. The @code{tls_www_server} keyword is the
1358key purpose extension to indicate this certificate is intended for usage in
1359a web server. Although QEMU network services are not in fact HTTP servers
1360(except for VNC websockets), setting this key purpose is still recommended.
1361The @code{encryption_key} and @code{signing_key} keyword is the key usage
1362extension to indicate this certificate is intended for usage in the data
1363session.
1364
1365The @code{server-hostNNN-key.pem} and @code{server-hostNNN-cert.pem} files
1366should now be securely copied to the server for which they were generated,
1367and renamed to @code{server-key.pem} and @code{server-cert.pem} when added
1368to the @code{/etc/pki/qemu} directory on the target host. The @code{server-key.pem}
1369file is security sensitive and should be kept protected with file mode 0600
1370to prevent disclosure.
1371
1372@node tls_generate_client
1373@subsection Issuing client certificates
f858dcae 1374
5d19a6ea
DB
1375The QEMU x509 TLS credential setup defaults to enabling client verification
1376using certificates, providing a simple authentication mechanism. If this
1377default is used, each client also needs to be issued a certificate. The client
1378certificate contains enough metadata to uniquely identify the client with the
1379scope of the certificate authority. The client certificate would typically
1380include fields for organization, state, city, building, etc.
1381
1382Once again on the host holding the CA, create template files containing the
1383information for each client, and use it to issue client certificates.
f858dcae 1384
f858dcae
TS
1385
1386@example
5d19a6ea 1387# cat > client-hostNNN.info <<EOF
f858dcae
TS
1388country = GB
1389state = London
5d19a6ea 1390locality = City Of London
63c693f8 1391organization = Name of your organization
5d19a6ea 1392cn = hostNNN.foo.example.com
f858dcae
TS
1393tls_www_client
1394encryption_key
1395signing_key
1396EOF
5d19a6ea 1397# certtool --generate-privkey > client-hostNNN-key.pem
f858dcae
TS
1398# certtool --generate-certificate \
1399 --load-ca-certificate ca-cert.pem \
1400 --load-ca-privkey ca-key.pem \
5d19a6ea
DB
1401 --load-privkey client-hostNNN-key.pem \
1402 --template client-hostNNN.info \
1403 --outfile client-hostNNN-cert.pem
f858dcae
TS
1404@end example
1405
5d19a6ea
DB
1406The subject alt name extension data is not required for clients, so the
1407the @code{dns_name} and @code{ip_address} fields are not included.
1408The @code{tls_www_client} keyword is the key purpose extension to indicate
1409this certificate is intended for usage in a web client. Although QEMU
1410network clients are not in fact HTTP clients, setting this key purpose is
1411still recommended. The @code{encryption_key} and @code{signing_key} keyword
1412is the key usage extension to indicate this certificate is intended for
1413usage in the data session.
1414
1415The @code{client-hostNNN-key.pem} and @code{client-hostNNN-cert.pem} files
1416should now be securely copied to the client for which they were generated,
1417and renamed to @code{client-key.pem} and @code{client-cert.pem} when added
1418to the @code{/etc/pki/qemu} directory on the target host. The @code{client-key.pem}
1419file is security sensitive and should be kept protected with file mode 0600
1420to prevent disclosure.
1421
1422If a single host is going to be using TLS in both a client and server
1423role, it is possible to create a single certificate to cover both roles.
1424This would be quite common for the migration and NBD services, where a
1425QEMU process will be started by accepting a TLS protected incoming migration,
1426and later itself be migrated out to another host. To generate a single
1427certificate, simply include the template data from both the client and server
1428instructions in one.
2f9606b3 1429
5d19a6ea
DB
1430@example
1431# cat > both-hostNNN.info <<EOF
1432country = GB
1433state = London
1434locality = City Of London
1435organization = Name of your organization
1436cn = hostNNN.foo.example.com
1437dns_name = hostNNN
1438dns_name = hostNNN.foo.example.com
1439ip_address = 10.0.1.87
1440ip_address = 192.8.0.92
1441ip_address = 2620:0:cafe::87
1442ip_address = 2001:24::92
1443tls_www_server
1444tls_www_client
1445encryption_key
1446signing_key
1447EOF
1448# certtool --generate-privkey > both-hostNNN-key.pem
1449# certtool --generate-certificate \
1450 --load-ca-certificate ca-cert.pem \
1451 --load-ca-privkey ca-key.pem \
1452 --load-privkey both-hostNNN-key.pem \
1453 --template both-hostNNN.info \
1454 --outfile both-hostNNN-cert.pem
1455@end example
c6a9a9f5 1456
5d19a6ea
DB
1457When copying the PEM files to the target host, save them twice,
1458once as @code{server-cert.pem} and @code{server-key.pem}, and
1459again as @code{client-cert.pem} and @code{client-key.pem}.
1460
1461@node tls_creds_setup
1462@subsection TLS x509 credential configuration
1463
1464QEMU has a standard mechanism for loading x509 credentials that will be
1465used for network services and clients. It requires specifying the
1466@code{tls-creds-x509} class name to the @code{--object} command line
1467argument for the system emulators. Each set of credentials loaded should
1468be given a unique string identifier via the @code{id} parameter. A single
1469set of TLS credentials can be used for multiple network backends, so VNC,
1470migration, NBD, character devices can all share the same credentials. Note,
1471however, that credentials for use in a client endpoint must be loaded
1472separately from those used in a server endpoint.
1473
1474When specifying the object, the @code{dir} parameters specifies which
1475directory contains the credential files. This directory is expected to
1476contain files with the names mentioned previously, @code{ca-cert.pem},
1477@code{server-key.pem}, @code{server-cert.pem}, @code{client-key.pem}
1478and @code{client-cert.pem} as appropriate. It is also possible to
1479include a set of pre-generated Diffie-Hellman (DH) parameters in a file
1480@code{dh-params.pem}, which can be created using the
1481@code{certtool --generate-dh-params} command. If omitted, QEMU will
1482dynamically generate DH parameters when loading the credentials.
1483
1484The @code{endpoint} parameter indicates whether the credentials will
1485be used for a network client or server, and determines which PEM
1486files are loaded.
1487
1488The @code{verify} parameter determines whether x509 certificate
1489validation should be performed. This defaults to enabled, meaning
1490clients will always validate the server hostname against the
1491certificate subject alt name fields and/or CN field. It also
1492means that servers will request that clients provide a certificate
1493and validate them. Verification should never be turned off for
1494client endpoints, however, it may be turned off for server endpoints
1495if an alternative mechanism is used to authenticate clients. For
1496example, the VNC server can use SASL to authenticate clients
1497instead.
1498
1499To load server credentials with client certificate validation
1500enabled
2f9606b3
AL
1501
1502@example
5d19a6ea 1503$QEMU -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server
2f9606b3
AL
1504@end example
1505
5d19a6ea 1506while to load client credentials use
2f9606b3
AL
1507
1508@example
5d19a6ea 1509$QEMU -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=client
2f9606b3
AL
1510@end example
1511
5d19a6ea
DB
1512Network services which support TLS will all have a @code{tls-creds}
1513parameter which expects the ID of the TLS credentials object. For
1514example with VNC:
2f9606b3 1515
5d19a6ea
DB
1516@example
1517$QEMU -vnc 0.0.0.0:0,tls-creds=tls0
1518@end example
2f9606b3 1519
e1a6dc91
RJ
1520@node tls_psk
1521@subsection TLS Pre-Shared Keys (PSK)
1522
1523Instead of using certificates, you may also use TLS Pre-Shared Keys
1524(TLS-PSK). This can be simpler to set up than certificates but is
1525less scalable.
1526
1527Use the GnuTLS @code{psktool} program to generate a @code{keys.psk}
1528file containing one or more usernames and random keys:
1529
1530@example
1531mkdir -m 0700 /tmp/keys
1532psktool -u rich -p /tmp/keys/keys.psk
1533@end example
1534
1535TLS-enabled servers such as qemu-nbd can use this directory like so:
1536
1537@example
1538qemu-nbd \
1539 -t -x / \
1540 --object tls-creds-psk,id=tls0,endpoint=server,dir=/tmp/keys \
1541 --tls-creds tls0 \
1542 image.qcow2
1543@end example
1544
1545When connecting from a qemu-based client you must specify the
1546directory containing @code{keys.psk} and an optional @var{username}
1547(defaults to ``qemu''):
1548
1549@example
1550qemu-img info \
1551 --object tls-creds-psk,id=tls0,dir=/tmp/keys,username=rich,endpoint=client \
1552 --image-opts \
1553 file.driver=nbd,file.host=localhost,file.port=10809,file.tls-creds=tls0,file.export=/
1554@end example
1555
0806e3f6 1556@node gdb_usage
da415d54
FB
1557@section GDB usage
1558
1559QEMU has a primitive support to work with gdb, so that you can do
0806e3f6 1560'Ctrl-C' while the virtual machine is running and inspect its state.
da415d54 1561
b65ee4fa 1562In order to use gdb, launch QEMU with the '-s' option. It will wait for a
da415d54
FB
1563gdb connection:
1564@example
3804da9d
SW
1565qemu-system-i386 -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1566 -append "root=/dev/hda"
da415d54
FB
1567Connected to host network interface: tun0
1568Waiting gdb connection on port 1234
1569@end example
1570
1571Then launch gdb on the 'vmlinux' executable:
1572@example
1573> gdb vmlinux
1574@end example
1575
1576In gdb, connect to QEMU:
1577@example
6c9bf893 1578(gdb) target remote localhost:1234
da415d54
FB
1579@end example
1580
1581Then you can use gdb normally. For example, type 'c' to launch the kernel:
1582@example
1583(gdb) c
1584@end example
1585
0806e3f6
FB
1586Here are some useful tips in order to use gdb on system code:
1587
1588@enumerate
1589@item
1590Use @code{info reg} to display all the CPU registers.
1591@item
1592Use @code{x/10i $eip} to display the code at the PC position.
1593@item
1594Use @code{set architecture i8086} to dump 16 bit code. Then use
294e8637 1595@code{x/10i $cs*16+$eip} to dump the code at the PC position.
0806e3f6
FB
1596@end enumerate
1597
60897d36
EI
1598Advanced debugging options:
1599
b6af0975 1600The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
94d45e44 1601@table @code
60897d36
EI
1602@item maintenance packet qqemu.sstepbits
1603
1604This will display the MASK bits used to control the single stepping IE:
1605@example
1606(gdb) maintenance packet qqemu.sstepbits
1607sending: "qqemu.sstepbits"
1608received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1609@end example
1610@item maintenance packet qqemu.sstep
1611
1612This will display the current value of the mask used when single stepping IE:
1613@example
1614(gdb) maintenance packet qqemu.sstep
1615sending: "qqemu.sstep"
1616received: "0x7"
1617@end example
1618@item maintenance packet Qqemu.sstep=HEX_VALUE
1619
1620This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1621@example
1622(gdb) maintenance packet Qqemu.sstep=0x5
1623sending: "qemu.sstep=0x5"
1624received: "OK"
1625@end example
94d45e44 1626@end table
60897d36 1627
debc7065 1628@node pcsys_os_specific
1a084f3d
FB
1629@section Target OS specific information
1630
1631@subsection Linux
1632
15a34c63
FB
1633To have access to SVGA graphic modes under X11, use the @code{vesa} or
1634the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1635color depth in the guest and the host OS.
1a084f3d 1636
e3371e62
FB
1637When using a 2.6 guest Linux kernel, you should add the option
1638@code{clock=pit} on the kernel command line because the 2.6 Linux
1639kernels make very strict real time clock checks by default that QEMU
1640cannot simulate exactly.
1641
7c3fc84d
FB
1642When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1643not activated because QEMU is slower with this patch. The QEMU
1644Accelerator Module is also much slower in this case. Earlier Fedora
4be456f1 1645Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
7c3fc84d
FB
1646patch by default. Newer kernels don't have it.
1647
1a084f3d
FB
1648@subsection Windows
1649
1650If you have a slow host, using Windows 95 is better as it gives the
1651best speed. Windows 2000 is also a good choice.
1652
e3371e62
FB
1653@subsubsection SVGA graphic modes support
1654
1655QEMU emulates a Cirrus Logic GD5446 Video
15a34c63
FB
1656card. All Windows versions starting from Windows 95 should recognize
1657and use this graphic card. For optimal performances, use 16 bit color
1658depth in the guest and the host OS.
1a084f3d 1659
3cb0853a
FB
1660If you are using Windows XP as guest OS and if you want to use high
1661resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
16621280x1024x16), then you should use the VESA VBE virtual graphic card
1663(option @option{-std-vga}).
1664
e3371e62
FB
1665@subsubsection CPU usage reduction
1666
1667Windows 9x does not correctly use the CPU HLT
15a34c63
FB
1668instruction. The result is that it takes host CPU cycles even when
1669idle. You can install the utility from
70b7fba9 1670@url{https://web.archive.org/web/20060212132151/http://www.user.cityline.ru/~maxamn/amnhltm.zip}
3ba34a70 1671to solve this problem. Note that no such tool is needed for NT, 2000 or XP.
1a084f3d 1672
9d0a8e6f 1673@subsubsection Windows 2000 disk full problem
e3371e62 1674
9d0a8e6f
FB
1675Windows 2000 has a bug which gives a disk full problem during its
1676installation. When installing it, use the @option{-win2k-hack} QEMU
1677option to enable a specific workaround. After Windows 2000 is
1678installed, you no longer need this option (this option slows down the
1679IDE transfers).
e3371e62 1680
6cc721cf
FB
1681@subsubsection Windows 2000 shutdown
1682
1683Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1684can. It comes from the fact that Windows 2000 does not automatically
1685use the APM driver provided by the BIOS.
1686
1687In order to correct that, do the following (thanks to Struan
1688Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1689Add/Troubleshoot a device => Add a new device & Next => No, select the
1690hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1691(again) a few times. Now the driver is installed and Windows 2000 now
5fafdf24 1692correctly instructs QEMU to shutdown at the appropriate moment.
6cc721cf
FB
1693
1694@subsubsection Share a directory between Unix and Windows
1695
c8c6afa8
TH
1696See @ref{sec_invocation} about the help of the option
1697@option{'-netdev user,smb=...'}.
6cc721cf 1698
2192c332 1699@subsubsection Windows XP security problem
e3371e62
FB
1700
1701Some releases of Windows XP install correctly but give a security
1702error when booting:
1703@example
1704A problem is preventing Windows from accurately checking the
1705license for this computer. Error code: 0x800703e6.
1706@end example
e3371e62 1707
2192c332
FB
1708The workaround is to install a service pack for XP after a boot in safe
1709mode. Then reboot, and the problem should go away. Since there is no
1710network while in safe mode, its recommended to download the full
1711installation of SP1 or SP2 and transfer that via an ISO or using the
1712vvfat block device ("-hdb fat:directory_which_holds_the_SP").
e3371e62 1713
a0a821a4
FB
1714@subsection MS-DOS and FreeDOS
1715
1716@subsubsection CPU usage reduction
1717
1718DOS does not correctly use the CPU HLT instruction. The result is that
3ba34a70 1719it takes host CPU cycles even when idle. You can install the utility from
70b7fba9 1720@url{https://web.archive.org/web/20051222085335/http://www.vmware.com/software/dosidle210.zip}
3ba34a70 1721to solve this problem.
a0a821a4 1722
debc7065 1723@node QEMU System emulator for non PC targets
3f9f3aa1
FB
1724@chapter QEMU System emulator for non PC targets
1725
1726QEMU is a generic emulator and it emulates many non PC
1727machines. Most of the options are similar to the PC emulator. The
4be456f1 1728differences are mentioned in the following sections.
3f9f3aa1 1729
debc7065 1730@menu
7544a042 1731* PowerPC System emulator::
24d4de45
TS
1732* Sparc32 System emulator::
1733* Sparc64 System emulator::
1734* MIPS System emulator::
1735* ARM System emulator::
1736* ColdFire System emulator::
7544a042
SW
1737* Cris System emulator::
1738* Microblaze System emulator::
1739* SH4 System emulator::
3aeaea65 1740* Xtensa System emulator::
debc7065
FB
1741@end menu
1742
7544a042
SW
1743@node PowerPC System emulator
1744@section PowerPC System emulator
1745@cindex system emulation (PowerPC)
1a084f3d 1746
15a34c63
FB
1747Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1748or PowerMac PowerPC system.
1a084f3d 1749
b671f9ed 1750QEMU emulates the following PowerMac peripherals:
1a084f3d 1751
15a34c63 1752@itemize @minus
5fafdf24 1753@item
006f3a48 1754UniNorth or Grackle PCI Bridge
15a34c63
FB
1755@item
1756PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1757@item
15a34c63 17582 PMAC IDE interfaces with hard disk and CD-ROM support
5fafdf24 1759@item
15a34c63
FB
1760NE2000 PCI adapters
1761@item
1762Non Volatile RAM
1763@item
1764VIA-CUDA with ADB keyboard and mouse.
1a084f3d
FB
1765@end itemize
1766
b671f9ed 1767QEMU emulates the following PREP peripherals:
52c00a5f
FB
1768
1769@itemize @minus
5fafdf24 1770@item
15a34c63
FB
1771PCI Bridge
1772@item
1773PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1774@item
52c00a5f
FB
17752 IDE interfaces with hard disk and CD-ROM support
1776@item
1777Floppy disk
5fafdf24 1778@item
15a34c63 1779NE2000 network adapters
52c00a5f
FB
1780@item
1781Serial port
1782@item
1783PREP Non Volatile RAM
15a34c63
FB
1784@item
1785PC compatible keyboard and mouse.
52c00a5f
FB
1786@end itemize
1787
15a34c63 1788QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
3f9f3aa1 1789@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
52c00a5f 1790
70b7fba9 1791Since version 0.9.1, QEMU uses OpenBIOS @url{https://www.openbios.org/}
006f3a48
BS
1792for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1793v2) portable firmware implementation. The goal is to implement a 100%
1794IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
992e5acd 1795
15a34c63
FB
1796@c man begin OPTIONS
1797
1798The following options are specific to the PowerPC emulation:
1799
1800@table @option
1801
4e257e5e 1802@item -g @var{W}x@var{H}[x@var{DEPTH}]
15a34c63 1803
340fb41b 1804Set the initial VGA graphic mode. The default is 800x600x32.
15a34c63 1805
4e257e5e 1806@item -prom-env @var{string}
95efd11c
BS
1807
1808Set OpenBIOS variables in NVRAM, for example:
1809
1810@example
1811qemu-system-ppc -prom-env 'auto-boot?=false' \
1812 -prom-env 'boot-device=hd:2,\yaboot' \
1813 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1814@end example
1815
1816These variables are not used by Open Hack'Ware.
1817
15a34c63
FB
1818@end table
1819
5fafdf24 1820@c man end
15a34c63
FB
1821
1822
52c00a5f 1823More information is available at
3f9f3aa1 1824@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
52c00a5f 1825
24d4de45
TS
1826@node Sparc32 System emulator
1827@section Sparc32 System emulator
7544a042 1828@cindex system emulation (Sparc32)
e80cfcfc 1829
34a3d239
BS
1830Use the executable @file{qemu-system-sparc} to simulate the following
1831Sun4m architecture machines:
1832@itemize @minus
1833@item
1834SPARCstation 4
1835@item
1836SPARCstation 5
1837@item
1838SPARCstation 10
1839@item
1840SPARCstation 20
1841@item
1842SPARCserver 600MP
1843@item
1844SPARCstation LX
1845@item
1846SPARCstation Voyager
1847@item
1848SPARCclassic
1849@item
1850SPARCbook
1851@end itemize
1852
1853The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1854but Linux limits the number of usable CPUs to 4.
e80cfcfc 1855
6a4e1771 1856QEMU emulates the following sun4m peripherals:
e80cfcfc
FB
1857
1858@itemize @minus
3475187d 1859@item
6a4e1771 1860IOMMU
e80cfcfc 1861@item
33632788 1862TCX or cgthree Frame buffer
5fafdf24 1863@item
e80cfcfc
FB
1864Lance (Am7990) Ethernet
1865@item
34a3d239 1866Non Volatile RAM M48T02/M48T08
e80cfcfc 1867@item
3475187d
FB
1868Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1869and power/reset logic
1870@item
1871ESP SCSI controller with hard disk and CD-ROM support
1872@item
6a3b9cc9 1873Floppy drive (not on SS-600MP)
a2502b58
BS
1874@item
1875CS4231 sound device (only on SS-5, not working yet)
e80cfcfc
FB
1876@end itemize
1877
6a3b9cc9
BS
1878The number of peripherals is fixed in the architecture. Maximum
1879memory size depends on the machine type, for SS-5 it is 256MB and for
7d85892b 1880others 2047MB.
3475187d 1881
30a604f3 1882Since version 0.8.2, QEMU uses OpenBIOS
70b7fba9 1883@url{https://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
0986ac3b
FB
1884firmware implementation. The goal is to implement a 100% IEEE
18851275-1994 (referred to as Open Firmware) compliant firmware.
3475187d
FB
1886
1887A sample Linux 2.6 series kernel and ram disk image are available on
34a3d239 1888the QEMU web site. There are still issues with NetBSD and OpenBSD, but
9bb9f217 1889most kernel versions work. Please note that currently older Solaris kernels
34a3d239
BS
1890don't work probably due to interface issues between OpenBIOS and
1891Solaris.
3475187d
FB
1892
1893@c man begin OPTIONS
1894
a2502b58 1895The following options are specific to the Sparc32 emulation:
3475187d
FB
1896
1897@table @option
1898
4e257e5e 1899@item -g @var{W}x@var{H}x[x@var{DEPTH}]
3475187d 1900
33632788
MCA
1901Set the initial graphics mode. For TCX, the default is 1024x768x8 with the
1902option of 1024x768x24. For cgthree, the default is 1024x768x8 with the option
1903of 1152x900x8 for people who wish to use OBP.
3475187d 1904
4e257e5e 1905@item -prom-env @var{string}
66508601
BS
1906
1907Set OpenBIOS variables in NVRAM, for example:
1908
1909@example
1910qemu-system-sparc -prom-env 'auto-boot?=false' \
1911 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1912@end example
1913
6a4e1771 1914@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook]
a2502b58
BS
1915
1916Set the emulated machine type. Default is SS-5.
1917
3475187d
FB
1918@end table
1919
5fafdf24 1920@c man end
3475187d 1921
24d4de45
TS
1922@node Sparc64 System emulator
1923@section Sparc64 System emulator
7544a042 1924@cindex system emulation (Sparc64)
e80cfcfc 1925
34a3d239
BS
1926Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
1927(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
9bb9f217
MCA
1928Niagara (T1) machine. The Sun4u emulator is mostly complete, being
1929able to run Linux, NetBSD and OpenBSD in headless (-nographic) mode. The
a2664ca0
AT
1930Sun4v emulator is still a work in progress.
1931
1932The Niagara T1 emulator makes use of firmware and OS binaries supplied in the S10image/ directory
1933of the OpenSPARC T1 project @url{http://download.oracle.com/technetwork/systems/opensparc/OpenSPARCT1_Arch.1.5.tar.bz2}
1934and is able to boot the disk.s10hw2 Solaris image.
1935@example
1936qemu-system-sparc64 -M niagara -L /path-to/S10image/ \
1937 -nographic -m 256 \
1938 -drive if=pflash,readonly=on,file=/S10image/disk.s10hw2
1939@end example
1940
b756921a 1941
c7ba218d 1942QEMU emulates the following peripherals:
83469015
FB
1943
1944@itemize @minus
1945@item
5fafdf24 1946UltraSparc IIi APB PCI Bridge
83469015
FB
1947@item
1948PCI VGA compatible card with VESA Bochs Extensions
1949@item
34a3d239
BS
1950PS/2 mouse and keyboard
1951@item
83469015
FB
1952Non Volatile RAM M48T59
1953@item
1954PC-compatible serial ports
c7ba218d
BS
1955@item
19562 PCI IDE interfaces with hard disk and CD-ROM support
34a3d239
BS
1957@item
1958Floppy disk
83469015
FB
1959@end itemize
1960
c7ba218d
BS
1961@c man begin OPTIONS
1962
1963The following options are specific to the Sparc64 emulation:
1964
1965@table @option
1966
4e257e5e 1967@item -prom-env @var{string}
34a3d239
BS
1968
1969Set OpenBIOS variables in NVRAM, for example:
1970
1971@example
1972qemu-system-sparc64 -prom-env 'auto-boot?=false'
1973@end example
1974
a2664ca0 1975@item -M [sun4u|sun4v|niagara]
c7ba218d
BS
1976
1977Set the emulated machine type. The default is sun4u.
1978
1979@end table
1980
1981@c man end
1982
24d4de45
TS
1983@node MIPS System emulator
1984@section MIPS System emulator
7544a042 1985@cindex system emulation (MIPS)
9d0a8e6f 1986
d9aedc32
TS
1987Four executables cover simulation of 32 and 64-bit MIPS systems in
1988both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
1989@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
88cb0a02 1990Five different machine types are emulated:
24d4de45
TS
1991
1992@itemize @minus
1993@item
1994A generic ISA PC-like machine "mips"
1995@item
1996The MIPS Malta prototype board "malta"
1997@item
d9aedc32 1998An ACER Pica "pica61". This machine needs the 64-bit emulator.
6bf5b4e8 1999@item
f0fc6f8f 2000MIPS emulator pseudo board "mipssim"
88cb0a02
AJ
2001@item
2002A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
24d4de45
TS
2003@end itemize
2004
2005The generic emulation is supported by Debian 'Etch' and is able to
2006install Debian into a virtual disk image. The following devices are
2007emulated:
3f9f3aa1
FB
2008
2009@itemize @minus
5fafdf24 2010@item
6bf5b4e8 2011A range of MIPS CPUs, default is the 24Kf
3f9f3aa1
FB
2012@item
2013PC style serial port
2014@item
24d4de45
TS
2015PC style IDE disk
2016@item
3f9f3aa1
FB
2017NE2000 network card
2018@end itemize
2019
24d4de45
TS
2020The Malta emulation supports the following devices:
2021
2022@itemize @minus
2023@item
0b64d008 2024Core board with MIPS 24Kf CPU and Galileo system controller
24d4de45
TS
2025@item
2026PIIX4 PCI/USB/SMbus controller
2027@item
2028The Multi-I/O chip's serial device
2029@item
3a2eeac0 2030PCI network cards (PCnet32 and others)
24d4de45
TS
2031@item
2032Malta FPGA serial device
2033@item
1f605a76 2034Cirrus (default) or any other PCI VGA graphics card
24d4de45
TS
2035@end itemize
2036
2037The ACER Pica emulation supports:
2038
2039@itemize @minus
2040@item
2041MIPS R4000 CPU
2042@item
2043PC-style IRQ and DMA controllers
2044@item
2045PC Keyboard
2046@item
2047IDE controller
2048@end itemize
3f9f3aa1 2049
b5e4946f 2050The mipssim pseudo board emulation provides an environment similar
f0fc6f8f
TS
2051to what the proprietary MIPS emulator uses for running Linux.
2052It supports:
6bf5b4e8
TS
2053
2054@itemize @minus
2055@item
2056A range of MIPS CPUs, default is the 24Kf
2057@item
2058PC style serial port
2059@item
2060MIPSnet network emulation
2061@end itemize
2062
88cb0a02
AJ
2063The MIPS Magnum R4000 emulation supports:
2064
2065@itemize @minus
2066@item
2067MIPS R4000 CPU
2068@item
2069PC-style IRQ controller
2070@item
2071PC Keyboard
2072@item
2073SCSI controller
2074@item
2075G364 framebuffer
2076@end itemize
2077
2078
24d4de45
TS
2079@node ARM System emulator
2080@section ARM System emulator
7544a042 2081@cindex system emulation (ARM)
3f9f3aa1
FB
2082
2083Use the executable @file{qemu-system-arm} to simulate a ARM
2084machine. The ARM Integrator/CP board is emulated with the following
2085devices:
2086
2087@itemize @minus
2088@item
9ee6e8bb 2089ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
3f9f3aa1
FB
2090@item
2091Two PL011 UARTs
5fafdf24 2092@item
3f9f3aa1 2093SMC 91c111 Ethernet adapter
00a9bf19
PB
2094@item
2095PL110 LCD controller
2096@item
2097PL050 KMI with PS/2 keyboard and mouse.
a1bb27b1
PB
2098@item
2099PL181 MultiMedia Card Interface with SD card.
00a9bf19
PB
2100@end itemize
2101
2102The ARM Versatile baseboard is emulated with the following devices:
2103
2104@itemize @minus
2105@item
9ee6e8bb 2106ARM926E, ARM1136 or Cortex-A8 CPU
00a9bf19
PB
2107@item
2108PL190 Vectored Interrupt Controller
2109@item
2110Four PL011 UARTs
5fafdf24 2111@item
00a9bf19
PB
2112SMC 91c111 Ethernet adapter
2113@item
2114PL110 LCD controller
2115@item
2116PL050 KMI with PS/2 keyboard and mouse.
2117@item
2118PCI host bridge. Note the emulated PCI bridge only provides access to
2119PCI memory space. It does not provide access to PCI IO space.
4be456f1
TS
2120This means some devices (eg. ne2k_pci NIC) are not usable, and others
2121(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
00a9bf19 2122mapped control registers.
e6de1bad
PB
2123@item
2124PCI OHCI USB controller.
2125@item
2126LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
a1bb27b1
PB
2127@item
2128PL181 MultiMedia Card Interface with SD card.
3f9f3aa1
FB
2129@end itemize
2130
21a88941
PB
2131Several variants of the ARM RealView baseboard are emulated,
2132including the EB, PB-A8 and PBX-A9. Due to interactions with the
2133bootloader, only certain Linux kernel configurations work out
2134of the box on these boards.
2135
2136Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2137enabled in the kernel, and expect 512M RAM. Kernels for The PBX-A9 board
2138should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2139disabled and expect 1024M RAM.
2140
40c5c6cd 2141The following devices are emulated:
d7739d75
PB
2142
2143@itemize @minus
2144@item
f7c70325 2145ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
d7739d75
PB
2146@item
2147ARM AMBA Generic/Distributed Interrupt Controller
2148@item
2149Four PL011 UARTs
5fafdf24 2150@item
0ef849d7 2151SMC 91c111 or SMSC LAN9118 Ethernet adapter
d7739d75
PB
2152@item
2153PL110 LCD controller
2154@item
2155PL050 KMI with PS/2 keyboard and mouse
2156@item
2157PCI host bridge
2158@item
2159PCI OHCI USB controller
2160@item
2161LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
a1bb27b1
PB
2162@item
2163PL181 MultiMedia Card Interface with SD card.
d7739d75
PB
2164@end itemize
2165
b00052e4
AZ
2166The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2167and "Terrier") emulation includes the following peripherals:
2168
2169@itemize @minus
2170@item
2171Intel PXA270 System-on-chip (ARM V5TE core)
2172@item
2173NAND Flash memory
2174@item
2175IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2176@item
2177On-chip OHCI USB controller
2178@item
2179On-chip LCD controller
2180@item
2181On-chip Real Time Clock
2182@item
2183TI ADS7846 touchscreen controller on SSP bus
2184@item
2185Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2186@item
2187GPIO-connected keyboard controller and LEDs
2188@item
549444e1 2189Secure Digital card connected to PXA MMC/SD host
b00052e4
AZ
2190@item
2191Three on-chip UARTs
2192@item
2193WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2194@end itemize
2195
02645926
AZ
2196The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2197following elements:
2198
2199@itemize @minus
2200@item
2201Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2202@item
2203ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2204@item
2205On-chip LCD controller
2206@item
2207On-chip Real Time Clock
2208@item
2209TI TSC2102i touchscreen controller / analog-digital converter / Audio
2210CODEC, connected through MicroWire and I@math{^2}S busses
2211@item
2212GPIO-connected matrix keypad
2213@item
2214Secure Digital card connected to OMAP MMC/SD host
2215@item
2216Three on-chip UARTs
2217@end itemize
2218
c30bb264
AZ
2219Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2220emulation supports the following elements:
2221
2222@itemize @minus
2223@item
2224Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2225@item
2226RAM and non-volatile OneNAND Flash memories
2227@item
2228Display connected to EPSON remote framebuffer chip and OMAP on-chip
2229display controller and a LS041y3 MIPI DBI-C controller
2230@item
2231TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2232driven through SPI bus
2233@item
2234National Semiconductor LM8323-controlled qwerty keyboard driven
2235through I@math{^2}C bus
2236@item
2237Secure Digital card connected to OMAP MMC/SD host
2238@item
2239Three OMAP on-chip UARTs and on-chip STI debugging console
2240@item
40c5c6cd 2241A Bluetooth(R) transceiver and HCI connected to an UART
2d564691 2242@item
c30bb264
AZ
2243Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2244TUSB6010 chip - only USB host mode is supported
2245@item
2246TI TMP105 temperature sensor driven through I@math{^2}C bus
2247@item
2248TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2249@item
2250Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2251through CBUS
2252@end itemize
2253
9ee6e8bb
PB
2254The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2255devices:
2256
2257@itemize @minus
2258@item
2259Cortex-M3 CPU core.
2260@item
226164k Flash and 8k SRAM.
2262@item
2263Timers, UARTs, ADC and I@math{^2}C interface.
2264@item
2265OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2266@end itemize
2267
2268The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2269devices:
2270
2271@itemize @minus
2272@item
2273Cortex-M3 CPU core.
2274@item
2275256k Flash and 64k SRAM.
2276@item
2277Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2278@item
2279OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2280@end itemize
2281
57cd6e97
AZ
2282The Freecom MusicPal internet radio emulation includes the following
2283elements:
2284
2285@itemize @minus
2286@item
2287Marvell MV88W8618 ARM core.
2288@item
228932 MB RAM, 256 KB SRAM, 8 MB flash.
2290@item
2291Up to 2 16550 UARTs
2292@item
2293MV88W8xx8 Ethernet controller
2294@item
2295MV88W8618 audio controller, WM8750 CODEC and mixer
2296@item
e080e785 2297128×64 display with brightness control
57cd6e97
AZ
2298@item
22992 buttons, 2 navigation wheels with button function
2300@end itemize
2301
997641a8 2302The Siemens SX1 models v1 and v2 (default) basic emulation.
40c5c6cd 2303The emulation includes the following elements:
997641a8
AZ
2304
2305@itemize @minus
2306@item
2307Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2308@item
2309ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2310V1
23111 Flash of 16MB and 1 Flash of 8MB
2312V2
23131 Flash of 32MB
2314@item
2315On-chip LCD controller
2316@item
2317On-chip Real Time Clock
2318@item
2319Secure Digital card connected to OMAP MMC/SD host
2320@item
2321Three on-chip UARTs
2322@end itemize
2323
3f9f3aa1
FB
2324A Linux 2.6 test image is available on the QEMU web site. More
2325information is available in the QEMU mailing-list archive.
9d0a8e6f 2326
d2c639d6
BS
2327@c man begin OPTIONS
2328
2329The following options are specific to the ARM emulation:
2330
2331@table @option
2332
2333@item -semihosting
2334Enable semihosting syscall emulation.
2335
2336On ARM this implements the "Angel" interface.
2337
2338Note that this allows guest direct access to the host filesystem,
2339so should only be used with trusted guest OS.
2340
2341@end table
2342
abc67eb6
TH
2343@c man end
2344
24d4de45
TS
2345@node ColdFire System emulator
2346@section ColdFire System emulator
7544a042
SW
2347@cindex system emulation (ColdFire)
2348@cindex system emulation (M68K)
209a4e69
PB
2349
2350Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2351The emulator is able to boot a uClinux kernel.
707e011b
PB
2352
2353The M5208EVB emulation includes the following devices:
2354
2355@itemize @minus
5fafdf24 2356@item
707e011b
PB
2357MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2358@item
2359Three Two on-chip UARTs.
2360@item
2361Fast Ethernet Controller (FEC)
2362@end itemize
2363
2364The AN5206 emulation includes the following devices:
209a4e69
PB
2365
2366@itemize @minus
5fafdf24 2367@item
209a4e69
PB
2368MCF5206 ColdFire V2 Microprocessor.
2369@item
2370Two on-chip UARTs.
2371@end itemize
2372
d2c639d6
BS
2373@c man begin OPTIONS
2374
7544a042 2375The following options are specific to the ColdFire emulation:
d2c639d6
BS
2376
2377@table @option
2378
2379@item -semihosting
2380Enable semihosting syscall emulation.
2381
2382On M68K this implements the "ColdFire GDB" interface used by libgloss.
2383
2384Note that this allows guest direct access to the host filesystem,
2385so should only be used with trusted guest OS.
2386
2387@end table
2388
abc67eb6
TH
2389@c man end
2390
7544a042
SW
2391@node Cris System emulator
2392@section Cris System emulator
2393@cindex system emulation (Cris)
2394
2395TODO
2396
2397@node Microblaze System emulator
2398@section Microblaze System emulator
2399@cindex system emulation (Microblaze)
2400
2401TODO
2402
2403@node SH4 System emulator
2404@section SH4 System emulator
2405@cindex system emulation (SH4)
2406
2407TODO
2408
3aeaea65
MF
2409@node Xtensa System emulator
2410@section Xtensa System emulator
2411@cindex system emulation (Xtensa)
2412
2413Two executables cover simulation of both Xtensa endian options,
2414@file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
2415Two different machine types are emulated:
2416
2417@itemize @minus
2418@item
2419Xtensa emulator pseudo board "sim"
2420@item
2421Avnet LX60/LX110/LX200 board
2422@end itemize
2423
b5e4946f 2424The sim pseudo board emulation provides an environment similar
3aeaea65
MF
2425to one provided by the proprietary Tensilica ISS.
2426It supports:
2427
2428@itemize @minus
2429@item
2430A range of Xtensa CPUs, default is the DC232B
2431@item
2432Console and filesystem access via semihosting calls
2433@end itemize
2434
2435The Avnet LX60/LX110/LX200 emulation supports:
2436
2437@itemize @minus
2438@item
2439A range of Xtensa CPUs, default is the DC232B
2440@item
244116550 UART
2442@item
2443OpenCores 10/100 Mbps Ethernet MAC
2444@end itemize
2445
2446@c man begin OPTIONS
2447
2448The following options are specific to the Xtensa emulation:
2449
2450@table @option
2451
2452@item -semihosting
2453Enable semihosting syscall emulation.
2454
2455Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2456Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2457
2458Note that this allows guest direct access to the host filesystem,
2459so should only be used with trusted guest OS.
2460
2461@end table
3f2ce724 2462
abc67eb6
TH
2463@c man end
2464
3f2ce724
TH
2465@node QEMU Guest Agent
2466@chapter QEMU Guest Agent invocation
2467
2468@include qemu-ga.texi
2469
5fafdf24
TS
2470@node QEMU User space emulator
2471@chapter QEMU User space emulator
83195237
FB
2472
2473@menu
2474* Supported Operating Systems ::
0722cc42 2475* Features::
83195237 2476* Linux User space emulator::
84778508 2477* BSD User space emulator ::
83195237
FB
2478@end menu
2479
2480@node Supported Operating Systems
2481@section Supported Operating Systems
2482
2483The following OS are supported in user space emulation:
2484
2485@itemize @minus
2486@item
4be456f1 2487Linux (referred as qemu-linux-user)
83195237 2488@item
84778508 2489BSD (referred as qemu-bsd-user)
83195237
FB
2490@end itemize
2491
0722cc42
PB
2492@node Features
2493@section Features
2494
2495QEMU user space emulation has the following notable features:
2496
2497@table @strong
2498@item System call translation:
2499QEMU includes a generic system call translator. This means that
2500the parameters of the system calls can be converted to fix
2501endianness and 32/64-bit mismatches between hosts and targets.
2502IOCTLs can be converted too.
2503
2504@item POSIX signal handling:
2505QEMU can redirect to the running program all signals coming from
2506the host (such as @code{SIGALRM}), as well as synthesize signals from
2507virtual CPU exceptions (for example @code{SIGFPE} when the program
2508executes a division by zero).
2509
2510QEMU relies on the host kernel to emulate most signal system
2511calls, for example to emulate the signal mask. On Linux, QEMU
2512supports both normal and real-time signals.
2513
2514@item Threading:
2515On Linux, QEMU can emulate the @code{clone} syscall and create a real
2516host thread (with a separate virtual CPU) for each emulated thread.
2517Note that not all targets currently emulate atomic operations correctly.
2518x86 and ARM use a global lock in order to preserve their semantics.
2519@end table
2520
2521QEMU was conceived so that ultimately it can emulate itself. Although
2522it is not very useful, it is an important test to show the power of the
2523emulator.
2524
83195237
FB
2525@node Linux User space emulator
2526@section Linux User space emulator
386405f7 2527
debc7065
FB
2528@menu
2529* Quick Start::
2530* Wine launch::
2531* Command line options::
79737e4a 2532* Other binaries::
debc7065
FB
2533@end menu
2534
2535@node Quick Start
83195237 2536@subsection Quick Start
df0f11a0 2537
1f673135 2538In order to launch a Linux process, QEMU needs the process executable
5fafdf24 2539itself and all the target (x86) dynamic libraries used by it.
386405f7 2540
1f673135 2541@itemize
386405f7 2542
1f673135
FB
2543@item On x86, you can just try to launch any process by using the native
2544libraries:
386405f7 2545
5fafdf24 2546@example
1f673135
FB
2547qemu-i386 -L / /bin/ls
2548@end example
386405f7 2549
1f673135
FB
2550@code{-L /} tells that the x86 dynamic linker must be searched with a
2551@file{/} prefix.
386405f7 2552
b65ee4fa
SW
2553@item Since QEMU is also a linux process, you can launch QEMU with
2554QEMU (NOTE: you can only do that if you compiled QEMU from the sources):
386405f7 2555
5fafdf24 2556@example
1f673135
FB
2557qemu-i386 -L / qemu-i386 -L / /bin/ls
2558@end example
386405f7 2559
1f673135
FB
2560@item On non x86 CPUs, you need first to download at least an x86 glibc
2561(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2562@code{LD_LIBRARY_PATH} is not set:
df0f11a0 2563
1f673135 2564@example
5fafdf24 2565unset LD_LIBRARY_PATH
1f673135 2566@end example
1eb87257 2567
1f673135 2568Then you can launch the precompiled @file{ls} x86 executable:
1eb87257 2569
1f673135
FB
2570@example
2571qemu-i386 tests/i386/ls
2572@end example
4c3b5a48 2573You can look at @file{scripts/qemu-binfmt-conf.sh} so that
1f673135
FB
2574QEMU is automatically launched by the Linux kernel when you try to
2575launch x86 executables. It requires the @code{binfmt_misc} module in the
2576Linux kernel.
1eb87257 2577
1f673135
FB
2578@item The x86 version of QEMU is also included. You can try weird things such as:
2579@example
debc7065
FB
2580qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2581 /usr/local/qemu-i386/bin/ls-i386
1f673135 2582@end example
1eb20527 2583
1f673135 2584@end itemize
1eb20527 2585
debc7065 2586@node Wine launch
83195237 2587@subsection Wine launch
1eb20527 2588
1f673135 2589@itemize
386405f7 2590
1f673135
FB
2591@item Ensure that you have a working QEMU with the x86 glibc
2592distribution (see previous section). In order to verify it, you must be
2593able to do:
386405f7 2594
1f673135
FB
2595@example
2596qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2597@end example
386405f7 2598
1f673135 2599@item Download the binary x86 Wine install
5fafdf24 2600(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
386405f7 2601
1f673135 2602@item Configure Wine on your account. Look at the provided script
debc7065 2603@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
1f673135 2604@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
386405f7 2605
1f673135 2606@item Then you can try the example @file{putty.exe}:
386405f7 2607
1f673135 2608@example
debc7065
FB
2609qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2610 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
1f673135 2611@end example
386405f7 2612
1f673135 2613@end itemize
fd429f2f 2614
debc7065 2615@node Command line options
83195237 2616@subsection Command line options
1eb20527 2617
1f673135 2618@example
8485140f 2619@command{qemu-i386} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-cpu} @var{model}] [@option{-g} @var{port}] [@option{-B} @var{offset}] [@option{-R} @var{size}] @var{program} [@var{arguments}...]
1f673135 2620@end example
1eb20527 2621
1f673135
FB
2622@table @option
2623@item -h
2624Print the help
3b46e624 2625@item -L path
1f673135
FB
2626Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2627@item -s size
2628Set the x86 stack size in bytes (default=524288)
34a3d239 2629@item -cpu model
c8057f95 2630Select CPU model (-cpu help for list and additional feature selection)
f66724c9
SW
2631@item -E @var{var}=@var{value}
2632Set environment @var{var} to @var{value}.
2633@item -U @var{var}
2634Remove @var{var} from the environment.
379f6698
PB
2635@item -B offset
2636Offset guest address by the specified number of bytes. This is useful when
1f5c3f8c
SW
2637the address region required by guest applications is reserved on the host.
2638This option is currently only supported on some hosts.
68a1c816
PB
2639@item -R size
2640Pre-allocate a guest virtual address space of the given size (in bytes).
0d6753e5 2641"G", "M", and "k" suffixes may be used when specifying the size.
386405f7
FB
2642@end table
2643
1f673135 2644Debug options:
386405f7 2645
1f673135 2646@table @option
989b697d
PM
2647@item -d item1,...
2648Activate logging of the specified items (use '-d help' for a list of log items)
1f673135
FB
2649@item -p pagesize
2650Act as if the host page size was 'pagesize' bytes
34a3d239
BS
2651@item -g port
2652Wait gdb connection to port
1b530a6d
AJ
2653@item -singlestep
2654Run the emulation in single step mode.
1f673135 2655@end table
386405f7 2656
b01bcae6
AZ
2657Environment variables:
2658
2659@table @env
2660@item QEMU_STRACE
2661Print system calls and arguments similar to the 'strace' program
2662(NOTE: the actual 'strace' program will not work because the user
2663space emulator hasn't implemented ptrace). At the moment this is
2664incomplete. All system calls that don't have a specific argument
2665format are printed with information for six arguments. Many
2666flag-style arguments don't have decoders and will show up as numbers.
5cfdf930 2667@end table
b01bcae6 2668
79737e4a 2669@node Other binaries
83195237 2670@subsection Other binaries
79737e4a 2671
7544a042
SW
2672@cindex user mode (Alpha)
2673@command{qemu-alpha} TODO.
2674
2675@cindex user mode (ARM)
2676@command{qemu-armeb} TODO.
2677
2678@cindex user mode (ARM)
79737e4a
PB
2679@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2680binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2681configurations), and arm-uclinux bFLT format binaries.
2682
7544a042
SW
2683@cindex user mode (ColdFire)
2684@cindex user mode (M68K)
e6e5906b
PB
2685@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2686(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2687coldfire uClinux bFLT format binaries.
2688
79737e4a
PB
2689The binary format is detected automatically.
2690
7544a042
SW
2691@cindex user mode (Cris)
2692@command{qemu-cris} TODO.
2693
2694@cindex user mode (i386)
2695@command{qemu-i386} TODO.
2696@command{qemu-x86_64} TODO.
2697
2698@cindex user mode (Microblaze)
2699@command{qemu-microblaze} TODO.
2700
2701@cindex user mode (MIPS)
8639c5c9
AM
2702@command{qemu-mips} executes 32-bit big endian MIPS binaries (MIPS O32 ABI).
2703
2704@command{qemu-mipsel} executes 32-bit little endian MIPS binaries (MIPS O32 ABI).
2705
2706@command{qemu-mips64} executes 64-bit big endian MIPS binaries (MIPS N64 ABI).
2707
2708@command{qemu-mips64el} executes 64-bit little endian MIPS binaries (MIPS N64 ABI).
2709
2710@command{qemu-mipsn32} executes 32-bit big endian MIPS binaries (MIPS N32 ABI).
2711
2712@command{qemu-mipsn32el} executes 32-bit little endian MIPS binaries (MIPS N32 ABI).
7544a042 2713
e671711c
MV
2714@cindex user mode (NiosII)
2715@command{qemu-nios2} TODO.
2716
7544a042
SW
2717@cindex user mode (PowerPC)
2718@command{qemu-ppc64abi32} TODO.
2719@command{qemu-ppc64} TODO.
2720@command{qemu-ppc} TODO.
2721
2722@cindex user mode (SH4)
2723@command{qemu-sh4eb} TODO.
2724@command{qemu-sh4} TODO.
2725
2726@cindex user mode (SPARC)
34a3d239
BS
2727@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2728
a785e42e
BS
2729@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2730(Sparc64 CPU, 32 bit ABI).
2731
2732@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2733SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2734
84778508
BS
2735@node BSD User space emulator
2736@section BSD User space emulator
2737
2738@menu
2739* BSD Status::
2740* BSD Quick Start::
2741* BSD Command line options::
2742@end menu
2743
2744@node BSD Status
2745@subsection BSD Status
2746
2747@itemize @minus
2748@item
2749target Sparc64 on Sparc64: Some trivial programs work.
2750@end itemize
2751
2752@node BSD Quick Start
2753@subsection Quick Start
2754
2755In order to launch a BSD process, QEMU needs the process executable
2756itself and all the target dynamic libraries used by it.
2757
2758@itemize
2759
2760@item On Sparc64, you can just try to launch any process by using the native
2761libraries:
2762
2763@example
2764qemu-sparc64 /bin/ls
2765@end example
2766
2767@end itemize
2768
2769@node BSD Command line options
2770@subsection Command line options
2771
2772@example
8485140f 2773@command{qemu-sparc64} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-bsd} @var{type}] @var{program} [@var{arguments}...]
84778508
BS
2774@end example
2775
2776@table @option
2777@item -h
2778Print the help
2779@item -L path
2780Set the library root path (default=/)
2781@item -s size
2782Set the stack size in bytes (default=524288)
f66724c9
SW
2783@item -ignore-environment
2784Start with an empty environment. Without this option,
40c5c6cd 2785the initial environment is a copy of the caller's environment.
f66724c9
SW
2786@item -E @var{var}=@var{value}
2787Set environment @var{var} to @var{value}.
2788@item -U @var{var}
2789Remove @var{var} from the environment.
84778508
BS
2790@item -bsd type
2791Set the type of the emulated BSD Operating system. Valid values are
2792FreeBSD, NetBSD and OpenBSD (default).
2793@end table
2794
2795Debug options:
2796
2797@table @option
989b697d
PM
2798@item -d item1,...
2799Activate logging of the specified items (use '-d help' for a list of log items)
84778508
BS
2800@item -p pagesize
2801Act as if the host page size was 'pagesize' bytes
1b530a6d
AJ
2802@item -singlestep
2803Run the emulation in single step mode.
84778508
BS
2804@end table
2805
47eacb4f 2806
78e87797
PB
2807@include qemu-tech.texi
2808
44c67847 2809@include qemu-deprecated.texi
efe2add7 2810
45b47130
DB
2811@node Supported build platforms
2812@appendix Supported build platforms
2813
2814QEMU aims to support building and executing on multiple host OS platforms.
2815This appendix outlines which platforms are the major build targets. These
2816platforms are used as the basis for deciding upon the minimum required
2817versions of 3rd party software QEMU depends on. The supported platforms
2818are the targets for automated testing performed by the project when patches
2819are submitted for review, and tested before and after merge.
2820
2821If a platform is not listed here, it does not imply that QEMU won't work.
2822If an unlisted platform has comparable software versions to a listed platform,
2823there is every expectation that it will work. Bug reports are welcome for
2824problems encountered on unlisted platforms unless they are clearly older
2825vintage than what is described here.
2826
2827Note that when considering software versions shipped in distros as support
2828targets, QEMU considers only the version number, and assumes the features in
2829that distro match the upstream release with the same version. In other words,
2830if a distro backports extra features to the software in their distro, QEMU
2831upstream code will not add explicit support for those backports, unless the
2832feature is auto-detectable in a manner that works for the upstream releases
2833too.
2834
2835The Repology site @url{https://repology.org} is a useful resource to identify
2836currently shipped versions of software in various operating systems, though
2837it does not cover all distros listed below.
2838
2839@section Linux OS
2840
2841For distributions with frequent, short-lifetime releases, the project will
2842aim to support all versions that are not end of life by their respective
2843vendors. For the purposes of identifying supported software versions, the
2844project will look at Fedora, Ubuntu, and openSUSE distros. Other short-
2845lifetime distros will be assumed to ship similar software versions.
2846
2847For distributions with long-lifetime releases, the project will aim to support
2848the most recent major version at all times. Support for the previous major
2849version will be dropped 2 years after the new major version is released. For
2850the purposes of identifying supported software versions, the project will look
2851at RHEL, Debian, Ubuntu LTS, and SLES distros. Other long-lifetime distros will
2852be assumed to ship similar software versions.
2853
2854@section Windows
2855
2856The project supports building with current versions of the MinGW toolchain,
2857hosted on Linux.
2858
2859@section macOS
2860
2861The project supports building with the two most recent versions of macOS, with
2862the current homebrew package set available.
2863
2864@section FreeBSD
2865
2866The project aims to support the all the versions which are not end of life.
2867
2868@section NetBSD
2869
2870The project aims to support the most recent major version at all times. Support
2871for the previous major version will be dropped 2 years after the new major
2872version is released.
2873
2874@section OpenBSD
2875
2876The project aims to support the all the versions which are not end of life.
2877
7544a042
SW
2878@node License
2879@appendix License
2880
2881QEMU is a trademark of Fabrice Bellard.
2882
2f8d8f01
TH
2883QEMU is released under the
2884@url{https://www.gnu.org/licenses/gpl-2.0.txt,GNU General Public License},
2885version 2. Parts of QEMU have specific licenses, see file
70b7fba9 2886@url{https://git.qemu.org/?p=qemu.git;a=blob_plain;f=LICENSE,LICENSE}.
7544a042 2887
debc7065 2888@node Index
7544a042
SW
2889@appendix Index
2890@menu
2891* Concept Index::
2892* Function Index::
2893* Keystroke Index::
2894* Program Index::
2895* Data Type Index::
2896* Variable Index::
2897@end menu
2898
2899@node Concept Index
2900@section Concept Index
2901This is the main index. Should we combine all keywords in one index? TODO
debc7065
FB
2902@printindex cp
2903
7544a042
SW
2904@node Function Index
2905@section Function Index
2906This index could be used for command line options and monitor functions.
2907@printindex fn
2908
2909@node Keystroke Index
2910@section Keystroke Index
2911
2912This is a list of all keystrokes which have a special function
2913in system emulation.
2914
2915@printindex ky
2916
2917@node Program Index
2918@section Program Index
2919@printindex pg
2920
2921@node Data Type Index
2922@section Data Type Index
2923
2924This index could be used for qdev device names and options.
2925
2926@printindex tp
2927
2928@node Variable Index
2929@section Variable Index
2930@printindex vr
2931
debc7065 2932@bye