]> git.proxmox.com Git - mirror_qemu.git/blame - qemu-doc.texi
block: maintain persistent disabled bitmaps
[mirror_qemu.git] / qemu-doc.texi
CommitLineData
386405f7 1\input texinfo @c -*- texinfo -*-
debc7065
FB
2@c %**start of header
3@setfilename qemu-doc.info
44cb280d 4@include version.texi
e080e785
SW
5
6@documentlanguage en
7@documentencoding UTF-8
8
44cb280d 9@settitle QEMU version @value{VERSION} User Documentation
debc7065
FB
10@exampleindent 0
11@paragraphindent 0
12@c %**end of header
386405f7 13
a1a32b05
SW
14@ifinfo
15@direntry
16* QEMU: (qemu-doc). The QEMU Emulator User Documentation.
17@end direntry
18@end ifinfo
19
0806e3f6 20@iftex
386405f7
FB
21@titlepage
22@sp 7
44cb280d 23@center @titlefont{QEMU version @value{VERSION}}
debc7065
FB
24@sp 1
25@center @titlefont{User Documentation}
386405f7
FB
26@sp 3
27@end titlepage
0806e3f6 28@end iftex
386405f7 29
debc7065
FB
30@ifnottex
31@node Top
32@top
33
34@menu
35* Introduction::
debc7065
FB
36* QEMU PC System emulator::
37* QEMU System emulator for non PC targets::
3f2ce724 38* QEMU Guest Agent::
83195237 39* QEMU User space emulator::
78e87797 40* Implementation notes::
eb22aeca 41* Deprecated features::
7544a042 42* License::
debc7065
FB
43* Index::
44@end menu
45@end ifnottex
46
47@contents
48
49@node Introduction
386405f7
FB
50@chapter Introduction
51
debc7065
FB
52@menu
53* intro_features:: Features
54@end menu
55
56@node intro_features
322d0c66 57@section Features
386405f7 58
1f673135
FB
59QEMU is a FAST! processor emulator using dynamic translation to
60achieve good emulation speed.
1eb20527 61
1f3e7e41 62@cindex operating modes
1eb20527 63QEMU has two operating modes:
0806e3f6 64
d7e5edca 65@itemize
7544a042 66@cindex system emulation
1f3e7e41 67@item Full system emulation. In this mode, QEMU emulates a full system (for
3f9f3aa1
FB
68example a PC), including one or several processors and various
69peripherals. It can be used to launch different Operating Systems
70without rebooting the PC or to debug system code.
1eb20527 71
7544a042 72@cindex user mode emulation
1f3e7e41 73@item User mode emulation. In this mode, QEMU can launch
83195237 74processes compiled for one CPU on another CPU. It can be used to
70b7fba9 75launch the Wine Windows API emulator (@url{https://www.winehq.org}) or
1f673135 76to ease cross-compilation and cross-debugging.
1eb20527
FB
77
78@end itemize
79
1f3e7e41
PB
80QEMU has the following features:
81
82@itemize
83@item QEMU can run without a host kernel driver and yet gives acceptable
84performance. It uses dynamic translation to native code for reasonable speed,
85with support for self-modifying code and precise exceptions.
86
87@item It is portable to several operating systems (GNU/Linux, *BSD, Mac OS X,
88Windows) and architectures.
89
90@item It performs accurate software emulation of the FPU.
91@end itemize
322d0c66 92
1f3e7e41 93QEMU user mode emulation has the following features:
52c00a5f 94@itemize
1f3e7e41
PB
95@item Generic Linux system call converter, including most ioctls.
96
97@item clone() emulation using native CPU clone() to use Linux scheduler for threads.
98
99@item Accurate signal handling by remapping host signals to target signals.
100@end itemize
101
102QEMU full system emulation has the following features:
103@itemize
104@item
105QEMU uses a full software MMU for maximum portability.
106
107@item
326c4c3c 108QEMU can optionally use an in-kernel accelerator, like kvm. The accelerators
1f3e7e41
PB
109execute most of the guest code natively, while
110continuing to emulate the rest of the machine.
111
112@item
113Various hardware devices can be emulated and in some cases, host
114devices (e.g. serial and parallel ports, USB, drives) can be used
115transparently by the guest Operating System. Host device passthrough
116can be used for talking to external physical peripherals (e.g. a
117webcam, modem or tape drive).
118
119@item
120Symmetric multiprocessing (SMP) support. Currently, an in-kernel
121accelerator is required to use more than one host CPU for emulation.
122
52c00a5f 123@end itemize
386405f7 124
0806e3f6 125
debc7065 126@node QEMU PC System emulator
3f9f3aa1 127@chapter QEMU PC System emulator
7544a042 128@cindex system emulation (PC)
1eb20527 129
debc7065
FB
130@menu
131* pcsys_introduction:: Introduction
132* pcsys_quickstart:: Quick Start
133* sec_invocation:: Invocation
a40db1b3
PM
134* pcsys_keys:: Keys in the graphical frontends
135* mux_keys:: Keys in the character backend multiplexer
debc7065
FB
136* pcsys_monitor:: QEMU Monitor
137* disk_images:: Disk Images
138* pcsys_network:: Network emulation
576fd0a1 139* pcsys_other_devs:: Other Devices
debc7065
FB
140* direct_linux_boot:: Direct Linux Boot
141* pcsys_usb:: USB emulation
f858dcae 142* vnc_security:: VNC security
debc7065
FB
143* gdb_usage:: GDB usage
144* pcsys_os_specific:: Target OS specific information
145@end menu
146
147@node pcsys_introduction
0806e3f6
FB
148@section Introduction
149
150@c man begin DESCRIPTION
151
3f9f3aa1
FB
152The QEMU PC System emulator simulates the
153following peripherals:
0806e3f6
FB
154
155@itemize @minus
5fafdf24 156@item
15a34c63 157i440FX host PCI bridge and PIIX3 PCI to ISA bridge
0806e3f6 158@item
15a34c63
FB
159Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
160extensions (hardware level, including all non standard modes).
0806e3f6
FB
161@item
162PS/2 mouse and keyboard
5fafdf24 163@item
15a34c63 1642 PCI IDE interfaces with hard disk and CD-ROM support
1f673135
FB
165@item
166Floppy disk
5fafdf24 167@item
3a2eeac0 168PCI and ISA network adapters
0806e3f6 169@item
05d5818c
FB
170Serial ports
171@item
23076bb3
CM
172IPMI BMC, either and internal or external one
173@item
c0fe3827
FB
174Creative SoundBlaster 16 sound card
175@item
176ENSONIQ AudioPCI ES1370 sound card
177@item
e5c9a13e
AZ
178Intel 82801AA AC97 Audio compatible sound card
179@item
7d72e762
GH
180Intel HD Audio Controller and HDA codec
181@item
2d983446 182Adlib (OPL2) - Yamaha YM3812 compatible chip
b389dbfb 183@item
26463dbc
AZ
184Gravis Ultrasound GF1 sound card
185@item
cc53d26d 186CS4231A compatible sound card
187@item
a92ff8c1 188PCI UHCI, OHCI, EHCI or XHCI USB controller and a virtual USB-1.1 hub.
0806e3f6
FB
189@end itemize
190
3f9f3aa1
FB
191SMP is supported with up to 255 CPUs.
192
a8ad4159 193QEMU uses the PC BIOS from the Seabios project and the Plex86/Bochs LGPL
15a34c63
FB
194VGA BIOS.
195
c0fe3827
FB
196QEMU uses YM3812 emulation by Tatsuyuki Satoh.
197
2d983446 198QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
26463dbc 199by Tibor "TS" Schütz.
423d65f4 200
1a1a0e20 201Note that, by default, GUS shares IRQ(7) with parallel ports and so
b65ee4fa 202QEMU must be told to not have parallel ports to have working GUS.
720036a5 203
204@example
3804da9d 205qemu-system-i386 dos.img -soundhw gus -parallel none
720036a5 206@end example
207
208Alternatively:
209@example
3804da9d 210qemu-system-i386 dos.img -device gus,irq=5
720036a5 211@end example
212
213Or some other unclaimed IRQ.
214
cc53d26d 215CS4231A is the chip used in Windows Sound System and GUSMAX products
216
0806e3f6
FB
217@c man end
218
debc7065 219@node pcsys_quickstart
1eb20527 220@section Quick Start
7544a042 221@cindex quick start
1eb20527 222
285dc330 223Download and uncompress the linux image (@file{linux.img}) and type:
0806e3f6
FB
224
225@example
3804da9d 226qemu-system-i386 linux.img
0806e3f6
FB
227@end example
228
229Linux should boot and give you a prompt.
230
6cc721cf 231@node sec_invocation
ec410fc9
FB
232@section Invocation
233
234@example
0806e3f6 235@c man begin SYNOPSIS
8485140f 236@command{qemu-system-i386} [@var{options}] [@var{disk_image}]
0806e3f6 237@c man end
ec410fc9
FB
238@end example
239
0806e3f6 240@c man begin OPTIONS
d2c639d6
BS
241@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
242targets do not need a disk image.
ec410fc9 243
5824d651 244@include qemu-options.texi
ec410fc9 245
3e11db9a
FB
246@c man end
247
e896d0f9
MA
248@subsection Device URL Syntax
249@c TODO merge this with section Disk Images
250
251@c man begin NOTES
252
253In addition to using normal file images for the emulated storage devices,
254QEMU can also use networked resources such as iSCSI devices. These are
255specified using a special URL syntax.
256
257@table @option
258@item iSCSI
259iSCSI support allows QEMU to access iSCSI resources directly and use as
260images for the guest storage. Both disk and cdrom images are supported.
261
262Syntax for specifying iSCSI LUNs is
263``iscsi://<target-ip>[:<port>]/<target-iqn>/<lun>''
264
265By default qemu will use the iSCSI initiator-name
266'iqn.2008-11.org.linux-kvm[:<name>]' but this can also be set from the command
267line or a configuration file.
268
269Since version Qemu 2.4 it is possible to specify a iSCSI request timeout to detect
270stalled requests and force a reestablishment of the session. The timeout
271is specified in seconds. The default is 0 which means no timeout. Libiscsi
2721.15.0 or greater is required for this feature.
273
274Example (without authentication):
275@example
276qemu-system-i386 -iscsi initiator-name=iqn.2001-04.com.example:my-initiator \
277 -cdrom iscsi://192.0.2.1/iqn.2001-04.com.example/2 \
278 -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1
279@end example
280
281Example (CHAP username/password via URL):
282@example
283qemu-system-i386 -drive file=iscsi://user%password@@192.0.2.1/iqn.2001-04.com.example/1
284@end example
285
286Example (CHAP username/password via environment variables):
287@example
288LIBISCSI_CHAP_USERNAME="user" \
289LIBISCSI_CHAP_PASSWORD="password" \
290qemu-system-i386 -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1
291@end example
292
293@item NBD
294QEMU supports NBD (Network Block Devices) both using TCP protocol as well
295as Unix Domain Sockets.
296
297Syntax for specifying a NBD device using TCP
298``nbd:<server-ip>:<port>[:exportname=<export>]''
299
300Syntax for specifying a NBD device using Unix Domain Sockets
301``nbd:unix:<domain-socket>[:exportname=<export>]''
302
303Example for TCP
304@example
305qemu-system-i386 --drive file=nbd:192.0.2.1:30000
306@end example
307
308Example for Unix Domain Sockets
309@example
310qemu-system-i386 --drive file=nbd:unix:/tmp/nbd-socket
311@end example
312
313@item SSH
314QEMU supports SSH (Secure Shell) access to remote disks.
315
316Examples:
317@example
318qemu-system-i386 -drive file=ssh://user@@host/path/to/disk.img
319qemu-system-i386 -drive file.driver=ssh,file.user=user,file.host=host,file.port=22,file.path=/path/to/disk.img
320@end example
321
322Currently authentication must be done using ssh-agent. Other
323authentication methods may be supported in future.
324
325@item Sheepdog
326Sheepdog is a distributed storage system for QEMU.
327QEMU supports using either local sheepdog devices or remote networked
328devices.
329
330Syntax for specifying a sheepdog device
331@example
332sheepdog[+tcp|+unix]://[host:port]/vdiname[?socket=path][#snapid|#tag]
333@end example
334
335Example
336@example
337qemu-system-i386 --drive file=sheepdog://192.0.2.1:30000/MyVirtualMachine
338@end example
339
340See also @url{https://sheepdog.github.io/sheepdog/}.
341
342@item GlusterFS
343GlusterFS is a user space distributed file system.
344QEMU supports the use of GlusterFS volumes for hosting VM disk images using
345TCP, Unix Domain Sockets and RDMA transport protocols.
346
347Syntax for specifying a VM disk image on GlusterFS volume is
348@example
349
350URI:
351gluster[+type]://[host[:port]]/volume/path[?socket=...][,debug=N][,logfile=...]
352
353JSON:
354'json:@{"driver":"qcow2","file":@{"driver":"gluster","volume":"testvol","path":"a.img","debug":N,"logfile":"...",
355@ "server":[@{"type":"tcp","host":"...","port":"..."@},
356@ @{"type":"unix","socket":"..."@}]@}@}'
357@end example
358
359
360Example
361@example
362URI:
363qemu-system-x86_64 --drive file=gluster://192.0.2.1/testvol/a.img,
364@ file.debug=9,file.logfile=/var/log/qemu-gluster.log
365
366JSON:
367qemu-system-x86_64 'json:@{"driver":"qcow2",
368@ "file":@{"driver":"gluster",
369@ "volume":"testvol","path":"a.img",
370@ "debug":9,"logfile":"/var/log/qemu-gluster.log",
371@ "server":[@{"type":"tcp","host":"1.2.3.4","port":24007@},
372@ @{"type":"unix","socket":"/var/run/glusterd.socket"@}]@}@}'
373qemu-system-x86_64 -drive driver=qcow2,file.driver=gluster,file.volume=testvol,file.path=/path/a.img,
374@ file.debug=9,file.logfile=/var/log/qemu-gluster.log,
375@ file.server.0.type=tcp,file.server.0.host=1.2.3.4,file.server.0.port=24007,
376@ file.server.1.type=unix,file.server.1.socket=/var/run/glusterd.socket
377@end example
378
379See also @url{http://www.gluster.org}.
380
381@item HTTP/HTTPS/FTP/FTPS
382QEMU supports read-only access to files accessed over http(s) and ftp(s).
383
384Syntax using a single filename:
385@example
386<protocol>://[<username>[:<password>]@@]<host>/<path>
387@end example
388
389where:
390@table @option
391@item protocol
392'http', 'https', 'ftp', or 'ftps'.
393
394@item username
395Optional username for authentication to the remote server.
396
397@item password
398Optional password for authentication to the remote server.
399
400@item host
401Address of the remote server.
402
403@item path
404Path on the remote server, including any query string.
405@end table
406
407The following options are also supported:
408@table @option
409@item url
410The full URL when passing options to the driver explicitly.
411
412@item readahead
413The amount of data to read ahead with each range request to the remote server.
414This value may optionally have the suffix 'T', 'G', 'M', 'K', 'k' or 'b'. If it
415does not have a suffix, it will be assumed to be in bytes. The value must be a
416multiple of 512 bytes. It defaults to 256k.
417
418@item sslverify
419Whether to verify the remote server's certificate when connecting over SSL. It
420can have the value 'on' or 'off'. It defaults to 'on'.
421
422@item cookie
423Send this cookie (it can also be a list of cookies separated by ';') with
424each outgoing request. Only supported when using protocols such as HTTP
425which support cookies, otherwise ignored.
426
427@item timeout
428Set the timeout in seconds of the CURL connection. This timeout is the time
429that CURL waits for a response from the remote server to get the size of the
430image to be downloaded. If not set, the default timeout of 5 seconds is used.
431@end table
432
433Note that when passing options to qemu explicitly, @option{driver} is the value
434of <protocol>.
435
436Example: boot from a remote Fedora 20 live ISO image
437@example
438qemu-system-x86_64 --drive media=cdrom,file=http://dl.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly
439
440qemu-system-x86_64 --drive media=cdrom,file.driver=http,file.url=http://dl.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly
441@end example
442
443Example: boot from a remote Fedora 20 cloud image using a local overlay for
444writes, copy-on-read, and a readahead of 64k
445@example
446qemu-img create -f qcow2 -o backing_file='json:@{"file.driver":"http",, "file.url":"https://dl.fedoraproject.org/pub/fedora/linux/releases/20/Images/x86_64/Fedora-x86_64-20-20131211.1-sda.qcow2",, "file.readahead":"64k"@}' /tmp/Fedora-x86_64-20-20131211.1-sda.qcow2
447
448qemu-system-x86_64 -drive file=/tmp/Fedora-x86_64-20-20131211.1-sda.qcow2,copy-on-read=on
449@end example
450
451Example: boot from an image stored on a VMware vSphere server with a self-signed
452certificate using a local overlay for writes, a readahead of 64k and a timeout
453of 10 seconds.
454@example
455qemu-img create -f qcow2 -o backing_file='json:@{"file.driver":"https",, "file.url":"https://user:password@@vsphere.example.com/folder/test/test-flat.vmdk?dcPath=Datacenter&dsName=datastore1",, "file.sslverify":"off",, "file.readahead":"64k",, "file.timeout":10@}' /tmp/test.qcow2
456
457qemu-system-x86_64 -drive file=/tmp/test.qcow2
458@end example
459
460@end table
461
462@c man end
463
debc7065 464@node pcsys_keys
a40db1b3 465@section Keys in the graphical frontends
3e11db9a
FB
466
467@c man begin OPTIONS
468
de1db2a1
BH
469During the graphical emulation, you can use special key combinations to change
470modes. The default key mappings are shown below, but if you use @code{-alt-grab}
471then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
472@code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
473
a1b74fe8 474@table @key
f9859310 475@item Ctrl-Alt-f
7544a042 476@kindex Ctrl-Alt-f
a1b74fe8 477Toggle full screen
a0a821a4 478
d6a65ba3
JK
479@item Ctrl-Alt-+
480@kindex Ctrl-Alt-+
481Enlarge the screen
482
483@item Ctrl-Alt--
484@kindex Ctrl-Alt--
485Shrink the screen
486
c4a735f9 487@item Ctrl-Alt-u
7544a042 488@kindex Ctrl-Alt-u
c4a735f9 489Restore the screen's un-scaled dimensions
490
f9859310 491@item Ctrl-Alt-n
7544a042 492@kindex Ctrl-Alt-n
a0a821a4
FB
493Switch to virtual console 'n'. Standard console mappings are:
494@table @emph
495@item 1
496Target system display
497@item 2
498Monitor
499@item 3
500Serial port
a1b74fe8
FB
501@end table
502
f9859310 503@item Ctrl-Alt
7544a042 504@kindex Ctrl-Alt
a0a821a4
FB
505Toggle mouse and keyboard grab.
506@end table
507
7544a042
SW
508@kindex Ctrl-Up
509@kindex Ctrl-Down
510@kindex Ctrl-PageUp
511@kindex Ctrl-PageDown
3e11db9a
FB
512In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
513@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
514
a40db1b3
PM
515@c man end
516
517@node mux_keys
518@section Keys in the character backend multiplexer
519
520@c man begin OPTIONS
521
522During emulation, if you are using a character backend multiplexer
523(which is the default if you are using @option{-nographic}) then
524several commands are available via an escape sequence. These
525key sequences all start with an escape character, which is @key{Ctrl-a}
526by default, but can be changed with @option{-echr}. The list below assumes
527you're using the default.
ec410fc9
FB
528
529@table @key
a1b74fe8 530@item Ctrl-a h
7544a042 531@kindex Ctrl-a h
ec410fc9 532Print this help
3b46e624 533@item Ctrl-a x
7544a042 534@kindex Ctrl-a x
366dfc52 535Exit emulator
3b46e624 536@item Ctrl-a s
7544a042 537@kindex Ctrl-a s
1f47a922 538Save disk data back to file (if -snapshot)
20d8a3ed 539@item Ctrl-a t
7544a042 540@kindex Ctrl-a t
d2c639d6 541Toggle console timestamps
a1b74fe8 542@item Ctrl-a b
7544a042 543@kindex Ctrl-a b
1f673135 544Send break (magic sysrq in Linux)
a1b74fe8 545@item Ctrl-a c
7544a042 546@kindex Ctrl-a c
a40db1b3
PM
547Rotate between the frontends connected to the multiplexer (usually
548this switches between the monitor and the console)
a1b74fe8 549@item Ctrl-a Ctrl-a
a40db1b3
PM
550@kindex Ctrl-a Ctrl-a
551Send the escape character to the frontend
ec410fc9 552@end table
0806e3f6
FB
553@c man end
554
555@ignore
556
1f673135
FB
557@c man begin SEEALSO
558The HTML documentation of QEMU for more precise information and Linux
559user mode emulator invocation.
560@c man end
561
562@c man begin AUTHOR
563Fabrice Bellard
564@c man end
565
566@end ignore
567
debc7065 568@node pcsys_monitor
1f673135 569@section QEMU Monitor
7544a042 570@cindex QEMU monitor
1f673135
FB
571
572The QEMU monitor is used to give complex commands to the QEMU
573emulator. You can use it to:
574
575@itemize @minus
576
577@item
e598752a 578Remove or insert removable media images
89dfe898 579(such as CD-ROM or floppies).
1f673135 580
5fafdf24 581@item
1f673135
FB
582Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
583from a disk file.
584
585@item Inspect the VM state without an external debugger.
586
587@end itemize
588
589@subsection Commands
590
591The following commands are available:
592
2313086a 593@include qemu-monitor.texi
0806e3f6 594
2cd8af2d
PB
595@include qemu-monitor-info.texi
596
1f673135
FB
597@subsection Integer expressions
598
599The monitor understands integers expressions for every integer
600argument. You can use register names to get the value of specifics
601CPU registers by prefixing them with @emph{$}.
ec410fc9 602
1f47a922
FB
603@node disk_images
604@section Disk Images
605
ee29bdb6
PB
606QEMU supports many disk image formats, including growable disk images
607(their size increase as non empty sectors are written), compressed and
608encrypted disk images.
1f47a922 609
debc7065
FB
610@menu
611* disk_images_quickstart:: Quick start for disk image creation
612* disk_images_snapshot_mode:: Snapshot mode
13a2e80f 613* vm_snapshots:: VM snapshots
debc7065 614* qemu_img_invocation:: qemu-img Invocation
975b092b 615* qemu_nbd_invocation:: qemu-nbd Invocation
d3067b02 616* disk_images_formats:: Disk image file formats
19cb3738 617* host_drives:: Using host drives
debc7065 618* disk_images_fat_images:: Virtual FAT disk images
75818250 619* disk_images_nbd:: NBD access
42af9c30 620* disk_images_sheepdog:: Sheepdog disk images
00984e39 621* disk_images_iscsi:: iSCSI LUNs
8809e289 622* disk_images_gluster:: GlusterFS disk images
0a12ec87 623* disk_images_ssh:: Secure Shell (ssh) disk images
e86de5e4 624* disk_images_nvme:: NVMe userspace driver
b1d1cb27 625* disk_image_locking:: Disk image file locking
debc7065
FB
626@end menu
627
628@node disk_images_quickstart
acd935ef
FB
629@subsection Quick start for disk image creation
630
631You can create a disk image with the command:
1f47a922 632@example
acd935ef 633qemu-img create myimage.img mysize
1f47a922 634@end example
acd935ef
FB
635where @var{myimage.img} is the disk image filename and @var{mysize} is its
636size in kilobytes. You can add an @code{M} suffix to give the size in
637megabytes and a @code{G} suffix for gigabytes.
638
debc7065 639See @ref{qemu_img_invocation} for more information.
1f47a922 640
debc7065 641@node disk_images_snapshot_mode
1f47a922
FB
642@subsection Snapshot mode
643
644If you use the option @option{-snapshot}, all disk images are
645considered as read only. When sectors in written, they are written in
646a temporary file created in @file{/tmp}. You can however force the
acd935ef
FB
647write back to the raw disk images by using the @code{commit} monitor
648command (or @key{C-a s} in the serial console).
1f47a922 649
13a2e80f
FB
650@node vm_snapshots
651@subsection VM snapshots
652
653VM snapshots are snapshots of the complete virtual machine including
654CPU state, RAM, device state and the content of all the writable
655disks. In order to use VM snapshots, you must have at least one non
656removable and writable block device using the @code{qcow2} disk image
657format. Normally this device is the first virtual hard drive.
658
659Use the monitor command @code{savevm} to create a new VM snapshot or
660replace an existing one. A human readable name can be assigned to each
19d36792 661snapshot in addition to its numerical ID.
13a2e80f
FB
662
663Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
664a VM snapshot. @code{info snapshots} lists the available snapshots
665with their associated information:
666
667@example
668(qemu) info snapshots
669Snapshot devices: hda
670Snapshot list (from hda):
671ID TAG VM SIZE DATE VM CLOCK
6721 start 41M 2006-08-06 12:38:02 00:00:14.954
6732 40M 2006-08-06 12:43:29 00:00:18.633
6743 msys 40M 2006-08-06 12:44:04 00:00:23.514
675@end example
676
677A VM snapshot is made of a VM state info (its size is shown in
678@code{info snapshots}) and a snapshot of every writable disk image.
679The VM state info is stored in the first @code{qcow2} non removable
680and writable block device. The disk image snapshots are stored in
681every disk image. The size of a snapshot in a disk image is difficult
682to evaluate and is not shown by @code{info snapshots} because the
683associated disk sectors are shared among all the snapshots to save
19d36792
FB
684disk space (otherwise each snapshot would need a full copy of all the
685disk images).
13a2e80f
FB
686
687When using the (unrelated) @code{-snapshot} option
688(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
689but they are deleted as soon as you exit QEMU.
690
691VM snapshots currently have the following known limitations:
692@itemize
5fafdf24 693@item
13a2e80f
FB
694They cannot cope with removable devices if they are removed or
695inserted after a snapshot is done.
5fafdf24 696@item
13a2e80f
FB
697A few device drivers still have incomplete snapshot support so their
698state is not saved or restored properly (in particular USB).
699@end itemize
700
acd935ef
FB
701@node qemu_img_invocation
702@subsection @code{qemu-img} Invocation
1f47a922 703
acd935ef 704@include qemu-img.texi
05efe46e 705
975b092b
TS
706@node qemu_nbd_invocation
707@subsection @code{qemu-nbd} Invocation
708
709@include qemu-nbd.texi
710
78aa8aa0 711@include docs/qemu-block-drivers.texi
0a12ec87 712
debc7065 713@node pcsys_network
9d4fb82e
FB
714@section Network emulation
715
4be456f1 716QEMU can simulate several network cards (PCI or ISA cards on the PC
41d03949
FB
717target) and can connect them to an arbitrary number of Virtual Local
718Area Networks (VLANs). Host TAP devices can be connected to any QEMU
719VLAN. VLAN can be connected between separate instances of QEMU to
4be456f1 720simulate large networks. For simpler usage, a non privileged user mode
41d03949
FB
721network stack can replace the TAP device to have a basic network
722connection.
723
724@subsection VLANs
9d4fb82e 725
41d03949
FB
726QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
727connection between several network devices. These devices can be for
728example QEMU virtual Ethernet cards or virtual Host ethernet devices
729(TAP devices).
9d4fb82e 730
41d03949
FB
731@subsection Using TAP network interfaces
732
733This is the standard way to connect QEMU to a real network. QEMU adds
734a virtual network device on your host (called @code{tapN}), and you
735can then configure it as if it was a real ethernet card.
9d4fb82e 736
8f40c388
FB
737@subsubsection Linux host
738
9d4fb82e
FB
739As an example, you can download the @file{linux-test-xxx.tar.gz}
740archive and copy the script @file{qemu-ifup} in @file{/etc} and
741configure properly @code{sudo} so that the command @code{ifconfig}
742contained in @file{qemu-ifup} can be executed as root. You must verify
41d03949 743that your host kernel supports the TAP network interfaces: the
9d4fb82e
FB
744device @file{/dev/net/tun} must be present.
745
ee0f4751
FB
746See @ref{sec_invocation} to have examples of command lines using the
747TAP network interfaces.
9d4fb82e 748
8f40c388
FB
749@subsubsection Windows host
750
751There is a virtual ethernet driver for Windows 2000/XP systems, called
752TAP-Win32. But it is not included in standard QEMU for Windows,
753so you will need to get it separately. It is part of OpenVPN package,
70b7fba9 754so download OpenVPN from : @url{https://openvpn.net/}.
8f40c388 755
9d4fb82e
FB
756@subsection Using the user mode network stack
757
41d03949
FB
758By using the option @option{-net user} (default configuration if no
759@option{-net} option is specified), QEMU uses a completely user mode
4be456f1 760network stack (you don't need root privilege to use the virtual
41d03949 761network). The virtual network configuration is the following:
9d4fb82e
FB
762
763@example
764
41d03949
FB
765 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
766 | (10.0.2.2)
9d4fb82e 767 |
2518bd0d 768 ----> DNS server (10.0.2.3)
3b46e624 769 |
2518bd0d 770 ----> SMB server (10.0.2.4)
9d4fb82e
FB
771@end example
772
773The QEMU VM behaves as if it was behind a firewall which blocks all
774incoming connections. You can use a DHCP client to automatically
41d03949
FB
775configure the network in the QEMU VM. The DHCP server assign addresses
776to the hosts starting from 10.0.2.15.
9d4fb82e
FB
777
778In order to check that the user mode network is working, you can ping
779the address 10.0.2.2 and verify that you got an address in the range
78010.0.2.x from the QEMU virtual DHCP server.
781
37cbfcce
GH
782Note that ICMP traffic in general does not work with user mode networking.
783@code{ping}, aka. ICMP echo, to the local router (10.0.2.2) shall work,
784however. If you're using QEMU on Linux >= 3.0, it can use unprivileged ICMP
785ping sockets to allow @code{ping} to the Internet. The host admin has to set
786the ping_group_range in order to grant access to those sockets. To allow ping
787for GID 100 (usually users group):
788
789@example
790echo 100 100 > /proc/sys/net/ipv4/ping_group_range
791@end example
b415a407 792
9bf05444
FB
793When using the built-in TFTP server, the router is also the TFTP
794server.
795
c8c6afa8
TH
796When using the @option{'-netdev user,hostfwd=...'} option, TCP or UDP
797connections can be redirected from the host to the guest. It allows for
798example to redirect X11, telnet or SSH connections.
443f1376 799
41d03949
FB
800@subsection Connecting VLANs between QEMU instances
801
802Using the @option{-net socket} option, it is possible to make VLANs
803that span several QEMU instances. See @ref{sec_invocation} to have a
804basic example.
805
576fd0a1 806@node pcsys_other_devs
6cbf4c8c
CM
807@section Other Devices
808
809@subsection Inter-VM Shared Memory device
810
5400c02b
MA
811On Linux hosts, a shared memory device is available. The basic syntax
812is:
6cbf4c8c
CM
813
814@example
5400c02b
MA
815qemu-system-x86_64 -device ivshmem-plain,memdev=@var{hostmem}
816@end example
817
818where @var{hostmem} names a host memory backend. For a POSIX shared
819memory backend, use something like
820
821@example
822-object memory-backend-file,size=1M,share,mem-path=/dev/shm/ivshmem,id=@var{hostmem}
6cbf4c8c
CM
823@end example
824
825If desired, interrupts can be sent between guest VMs accessing the same shared
826memory region. Interrupt support requires using a shared memory server and
827using a chardev socket to connect to it. The code for the shared memory server
828is qemu.git/contrib/ivshmem-server. An example syntax when using the shared
829memory server is:
830
831@example
a75eb03b 832# First start the ivshmem server once and for all
50d34c4e 833ivshmem-server -p @var{pidfile} -S @var{path} -m @var{shm-name} -l @var{shm-size} -n @var{vectors}
a75eb03b
DM
834
835# Then start your qemu instances with matching arguments
5400c02b 836qemu-system-x86_64 -device ivshmem-doorbell,vectors=@var{vectors},chardev=@var{id}
50d34c4e 837 -chardev socket,path=@var{path},id=@var{id}
6cbf4c8c
CM
838@end example
839
840When using the server, the guest will be assigned a VM ID (>=0) that allows guests
841using the same server to communicate via interrupts. Guests can read their
1309cf44 842VM ID from a device register (see ivshmem-spec.txt).
6cbf4c8c 843
62a830b6
MA
844@subsubsection Migration with ivshmem
845
5400c02b
MA
846With device property @option{master=on}, the guest will copy the shared
847memory on migration to the destination host. With @option{master=off},
848the guest will not be able to migrate with the device attached. In the
849latter case, the device should be detached and then reattached after
850migration using the PCI hotplug support.
6cbf4c8c 851
62a830b6
MA
852At most one of the devices sharing the same memory can be master. The
853master must complete migration before you plug back the other devices.
854
7d4f4bda
MAL
855@subsubsection ivshmem and hugepages
856
857Instead of specifying the <shm size> using POSIX shm, you may specify
858a memory backend that has hugepage support:
859
860@example
5400c02b
MA
861qemu-system-x86_64 -object memory-backend-file,size=1G,mem-path=/dev/hugepages/my-shmem-file,share,id=mb1
862 -device ivshmem-plain,memdev=mb1
7d4f4bda
MAL
863@end example
864
865ivshmem-server also supports hugepages mount points with the
866@option{-m} memory path argument.
867
9d4fb82e
FB
868@node direct_linux_boot
869@section Direct Linux Boot
1f673135
FB
870
871This section explains how to launch a Linux kernel inside QEMU without
872having to make a full bootable image. It is very useful for fast Linux
ee0f4751 873kernel testing.
1f673135 874
ee0f4751 875The syntax is:
1f673135 876@example
3804da9d 877qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1f673135
FB
878@end example
879
ee0f4751
FB
880Use @option{-kernel} to provide the Linux kernel image and
881@option{-append} to give the kernel command line arguments. The
882@option{-initrd} option can be used to provide an INITRD image.
1f673135 883
ee0f4751
FB
884When using the direct Linux boot, a disk image for the first hard disk
885@file{hda} is required because its boot sector is used to launch the
886Linux kernel.
1f673135 887
ee0f4751
FB
888If you do not need graphical output, you can disable it and redirect
889the virtual serial port and the QEMU monitor to the console with the
890@option{-nographic} option. The typical command line is:
1f673135 891@example
3804da9d
SW
892qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
893 -append "root=/dev/hda console=ttyS0" -nographic
1f673135
FB
894@end example
895
ee0f4751
FB
896Use @key{Ctrl-a c} to switch between the serial console and the
897monitor (@pxref{pcsys_keys}).
1f673135 898
debc7065 899@node pcsys_usb
b389dbfb
FB
900@section USB emulation
901
a92ff8c1
TH
902QEMU can emulate a PCI UHCI, OHCI, EHCI or XHCI USB controller. You can
903plug virtual USB devices or real host USB devices (only works with certain
904host operating systems). QEMU will automatically create and connect virtual
905USB hubs as necessary to connect multiple USB devices.
b389dbfb 906
0aff66b5
PB
907@menu
908* usb_devices::
909* host_usb_devices::
910@end menu
911@node usb_devices
912@subsection Connecting USB devices
b389dbfb 913
a92ff8c1
TH
914USB devices can be connected with the @option{-device usb-...} command line
915option or the @code{device_add} monitor command. Available devices are:
b389dbfb 916
db380c06 917@table @code
a92ff8c1 918@item usb-mouse
0aff66b5 919Virtual Mouse. This will override the PS/2 mouse emulation when activated.
a92ff8c1 920@item usb-tablet
c6d46c20 921Pointer device that uses absolute coordinates (like a touchscreen).
b65ee4fa 922This means QEMU is able to report the mouse position without having
0aff66b5 923to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
a92ff8c1
TH
924@item usb-storage,drive=@var{drive_id}
925Mass storage device backed by @var{drive_id} (@pxref{disk_images})
926@item usb-uas
927USB attached SCSI device, see
70b7fba9 928@url{https://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/usb-storage.txt,usb-storage.txt}
a92ff8c1
TH
929for details
930@item usb-bot
931Bulk-only transport storage device, see
70b7fba9 932@url{https://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/usb-storage.txt,usb-storage.txt}
a92ff8c1
TH
933for details here, too
934@item usb-mtp,x-root=@var{dir}
935Media transfer protocol device, using @var{dir} as root of the file tree
936that is presented to the guest.
937@item usb-host,hostbus=@var{bus},hostaddr=@var{addr}
938Pass through the host device identified by @var{bus} and @var{addr}
939@item usb-host,vendorid=@var{vendor},productid=@var{product}
940Pass through the host device identified by @var{vendor} and @var{product} ID
941@item usb-wacom-tablet
f6d2a316
AZ
942Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
943above but it can be used with the tslib library because in addition to touch
944coordinates it reports touch pressure.
a92ff8c1 945@item usb-kbd
47b2d338 946Standard USB keyboard. Will override the PS/2 keyboard (if present).
a92ff8c1 947@item usb-serial,chardev=@var{id}
db380c06 948Serial converter. This emulates an FTDI FT232BM chip connected to host character
a92ff8c1
TH
949device @var{id}.
950@item usb-braille,chardev=@var{id}
2e4d9fb1 951Braille device. This will use BrlAPI to display the braille output on a real
a92ff8c1
TH
952or fake device referenced by @var{id}.
953@item usb-net[,netdev=@var{id}]
954Network adapter that supports CDC ethernet and RNDIS protocols. @var{id}
955specifies a netdev defined with @code{-netdev @dots{},id=@var{id}}.
9ad97e65 956For instance, user-mode networking can be used with
6c9f886c 957@example
a92ff8c1 958qemu-system-i386 [...] -netdev user,id=net0 -device usb-net,netdev=net0
6c9f886c 959@end example
a92ff8c1
TH
960@item usb-ccid
961Smartcard reader device
962@item usb-audio
963USB audio device
964@item usb-bt-dongle
965Bluetooth dongle for the transport layer of HCI. It is connected to HCI
966scatternet 0 by default (corresponds to @code{-bt hci,vlan=0}).
967Note that the syntax for the @code{-device usb-bt-dongle} option is not as
968useful yet as it was with the legacy @code{-usbdevice} option. So to
969configure an USB bluetooth device, you might need to use
970"@code{-usbdevice bt}[:@var{hci-type}]" instead. This configures a
971bluetooth dongle whose type is specified in the same format as with
2d564691
AZ
972the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
973no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
974This USB device implements the USB Transport Layer of HCI. Example
975usage:
976@example
8485140f 977@command{qemu-system-i386} [...@var{OPTIONS}...] @option{-usbdevice} bt:hci,vlan=3 @option{-bt} device:keyboard,vlan=3
2d564691 978@end example
0aff66b5 979@end table
b389dbfb 980
0aff66b5 981@node host_usb_devices
b389dbfb
FB
982@subsection Using host USB devices on a Linux host
983
984WARNING: this is an experimental feature. QEMU will slow down when
985using it. USB devices requiring real time streaming (i.e. USB Video
986Cameras) are not supported yet.
987
988@enumerate
5fafdf24 989@item If you use an early Linux 2.4 kernel, verify that no Linux driver
b389dbfb
FB
990is actually using the USB device. A simple way to do that is simply to
991disable the corresponding kernel module by renaming it from @file{mydriver.o}
992to @file{mydriver.o.disabled}.
993
994@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
995@example
996ls /proc/bus/usb
997001 devices drivers
998@end example
999
1000@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1001@example
1002chown -R myuid /proc/bus/usb
1003@end example
1004
1005@item Launch QEMU and do in the monitor:
5fafdf24 1006@example
b389dbfb
FB
1007info usbhost
1008 Device 1.2, speed 480 Mb/s
1009 Class 00: USB device 1234:5678, USB DISK
1010@end example
1011You should see the list of the devices you can use (Never try to use
1012hubs, it won't work).
1013
1014@item Add the device in QEMU by using:
5fafdf24 1015@example
a92ff8c1 1016device_add usb-host,vendorid=0x1234,productid=0x5678
b389dbfb
FB
1017@end example
1018
a92ff8c1
TH
1019Normally the guest OS should report that a new USB device is plugged.
1020You can use the option @option{-device usb-host,...} to do the same.
b389dbfb
FB
1021
1022@item Now you can try to use the host USB device in QEMU.
1023
1024@end enumerate
1025
1026When relaunching QEMU, you may have to unplug and plug again the USB
1027device to make it work again (this is a bug).
1028
f858dcae
TS
1029@node vnc_security
1030@section VNC security
1031
1032The VNC server capability provides access to the graphical console
1033of the guest VM across the network. This has a number of security
1034considerations depending on the deployment scenarios.
1035
1036@menu
1037* vnc_sec_none::
1038* vnc_sec_password::
1039* vnc_sec_certificate::
1040* vnc_sec_certificate_verify::
1041* vnc_sec_certificate_pw::
2f9606b3
AL
1042* vnc_sec_sasl::
1043* vnc_sec_certificate_sasl::
f858dcae 1044* vnc_generate_cert::
2f9606b3 1045* vnc_setup_sasl::
f858dcae
TS
1046@end menu
1047@node vnc_sec_none
1048@subsection Without passwords
1049
1050The simplest VNC server setup does not include any form of authentication.
1051For this setup it is recommended to restrict it to listen on a UNIX domain
1052socket only. For example
1053
1054@example
3804da9d 1055qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
f858dcae
TS
1056@end example
1057
1058This ensures that only users on local box with read/write access to that
1059path can access the VNC server. To securely access the VNC server from a
1060remote machine, a combination of netcat+ssh can be used to provide a secure
1061tunnel.
1062
1063@node vnc_sec_password
1064@subsection With passwords
1065
1066The VNC protocol has limited support for password based authentication. Since
1067the protocol limits passwords to 8 characters it should not be considered
1068to provide high security. The password can be fairly easily brute-forced by
1069a client making repeat connections. For this reason, a VNC server using password
1070authentication should be restricted to only listen on the loopback interface
0f66998f
PM
1071or UNIX domain sockets. Password authentication is not supported when operating
1072in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password
1073authentication is requested with the @code{password} option, and then once QEMU
1074is running the password is set with the monitor. Until the monitor is used to
1075set the password all clients will be rejected.
f858dcae
TS
1076
1077@example
3804da9d 1078qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio
f858dcae
TS
1079(qemu) change vnc password
1080Password: ********
1081(qemu)
1082@end example
1083
1084@node vnc_sec_certificate
1085@subsection With x509 certificates
1086
1087The QEMU VNC server also implements the VeNCrypt extension allowing use of
1088TLS for encryption of the session, and x509 certificates for authentication.
1089The use of x509 certificates is strongly recommended, because TLS on its
1090own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1091support provides a secure session, but no authentication. This allows any
1092client to connect, and provides an encrypted session.
1093
1094@example
3804da9d 1095qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
f858dcae
TS
1096@end example
1097
1098In the above example @code{/etc/pki/qemu} should contain at least three files,
1099@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1100users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1101NB the @code{server-key.pem} file should be protected with file mode 0600 to
1102only be readable by the user owning it.
1103
1104@node vnc_sec_certificate_verify
1105@subsection With x509 certificates and client verification
1106
1107Certificates can also provide a means to authenticate the client connecting.
1108The server will request that the client provide a certificate, which it will
1109then validate against the CA certificate. This is a good choice if deploying
1110in an environment with a private internal certificate authority.
1111
1112@example
3804da9d 1113qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
f858dcae
TS
1114@end example
1115
1116
1117@node vnc_sec_certificate_pw
1118@subsection With x509 certificates, client verification and passwords
1119
1120Finally, the previous method can be combined with VNC password authentication
1121to provide two layers of authentication for clients.
1122
1123@example
3804da9d 1124qemu-system-i386 [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
f858dcae
TS
1125(qemu) change vnc password
1126Password: ********
1127(qemu)
1128@end example
1129
2f9606b3
AL
1130
1131@node vnc_sec_sasl
1132@subsection With SASL authentication
1133
1134The SASL authentication method is a VNC extension, that provides an
1135easily extendable, pluggable authentication method. This allows for
1136integration with a wide range of authentication mechanisms, such as
1137PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1138The strength of the authentication depends on the exact mechanism
1139configured. If the chosen mechanism also provides a SSF layer, then
1140it will encrypt the datastream as well.
1141
1142Refer to the later docs on how to choose the exact SASL mechanism
1143used for authentication, but assuming use of one supporting SSF,
1144then QEMU can be launched with:
1145
1146@example
3804da9d 1147qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio
2f9606b3
AL
1148@end example
1149
1150@node vnc_sec_certificate_sasl
1151@subsection With x509 certificates and SASL authentication
1152
1153If the desired SASL authentication mechanism does not supported
1154SSF layers, then it is strongly advised to run it in combination
1155with TLS and x509 certificates. This provides securely encrypted
1156data stream, avoiding risk of compromising of the security
1157credentials. This can be enabled, by combining the 'sasl' option
1158with the aforementioned TLS + x509 options:
1159
1160@example
3804da9d 1161qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
2f9606b3
AL
1162@end example
1163
1164
f858dcae
TS
1165@node vnc_generate_cert
1166@subsection Generating certificates for VNC
1167
1168The GNU TLS packages provides a command called @code{certtool} which can
1169be used to generate certificates and keys in PEM format. At a minimum it
40c5c6cd 1170is necessary to setup a certificate authority, and issue certificates to
f858dcae
TS
1171each server. If using certificates for authentication, then each client
1172will also need to be issued a certificate. The recommendation is for the
1173server to keep its certificates in either @code{/etc/pki/qemu} or for
1174unprivileged users in @code{$HOME/.pki/qemu}.
1175
1176@menu
1177* vnc_generate_ca::
1178* vnc_generate_server::
1179* vnc_generate_client::
1180@end menu
1181@node vnc_generate_ca
1182@subsubsection Setup the Certificate Authority
1183
1184This step only needs to be performed once per organization / organizational
1185unit. First the CA needs a private key. This key must be kept VERY secret
1186and secure. If this key is compromised the entire trust chain of the certificates
1187issued with it is lost.
1188
1189@example
1190# certtool --generate-privkey > ca-key.pem
1191@end example
1192
1193A CA needs to have a public certificate. For simplicity it can be a self-signed
1194certificate, or one issue by a commercial certificate issuing authority. To
1195generate a self-signed certificate requires one core piece of information, the
1196name of the organization.
1197
1198@example
1199# cat > ca.info <<EOF
1200cn = Name of your organization
1201ca
1202cert_signing_key
1203EOF
1204# certtool --generate-self-signed \
1205 --load-privkey ca-key.pem
1206 --template ca.info \
1207 --outfile ca-cert.pem
1208@end example
1209
1210The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1211TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1212
1213@node vnc_generate_server
1214@subsubsection Issuing server certificates
1215
1216Each server (or host) needs to be issued with a key and certificate. When connecting
1217the certificate is sent to the client which validates it against the CA certificate.
1218The core piece of information for a server certificate is the hostname. This should
1219be the fully qualified hostname that the client will connect with, since the client
1220will typically also verify the hostname in the certificate. On the host holding the
1221secure CA private key:
1222
1223@example
1224# cat > server.info <<EOF
1225organization = Name of your organization
1226cn = server.foo.example.com
1227tls_www_server
1228encryption_key
1229signing_key
1230EOF
1231# certtool --generate-privkey > server-key.pem
1232# certtool --generate-certificate \
1233 --load-ca-certificate ca-cert.pem \
1234 --load-ca-privkey ca-key.pem \
63c693f8 1235 --load-privkey server-key.pem \
f858dcae
TS
1236 --template server.info \
1237 --outfile server-cert.pem
1238@end example
1239
1240The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1241to the server for which they were generated. The @code{server-key.pem} is security
1242sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1243
1244@node vnc_generate_client
1245@subsubsection Issuing client certificates
1246
1247If the QEMU VNC server is to use the @code{x509verify} option to validate client
1248certificates as its authentication mechanism, each client also needs to be issued
1249a certificate. The client certificate contains enough metadata to uniquely identify
1250the client, typically organization, state, city, building, etc. On the host holding
1251the secure CA private key:
1252
1253@example
1254# cat > client.info <<EOF
1255country = GB
1256state = London
1257locality = London
63c693f8 1258organization = Name of your organization
f858dcae
TS
1259cn = client.foo.example.com
1260tls_www_client
1261encryption_key
1262signing_key
1263EOF
1264# certtool --generate-privkey > client-key.pem
1265# certtool --generate-certificate \
1266 --load-ca-certificate ca-cert.pem \
1267 --load-ca-privkey ca-key.pem \
1268 --load-privkey client-key.pem \
1269 --template client.info \
1270 --outfile client-cert.pem
1271@end example
1272
1273The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1274copied to the client for which they were generated.
1275
2f9606b3
AL
1276
1277@node vnc_setup_sasl
1278
1279@subsection Configuring SASL mechanisms
1280
1281The following documentation assumes use of the Cyrus SASL implementation on a
1282Linux host, but the principals should apply to any other SASL impl. When SASL
1283is enabled, the mechanism configuration will be loaded from system default
1284SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1285unprivileged user, an environment variable SASL_CONF_PATH can be used
1286to make it search alternate locations for the service config.
1287
c6a9a9f5
DB
1288If the TLS option is enabled for VNC, then it will provide session encryption,
1289otherwise the SASL mechanism will have to provide encryption. In the latter
1290case the list of possible plugins that can be used is drastically reduced. In
1291fact only the GSSAPI SASL mechanism provides an acceptable level of security
1292by modern standards. Previous versions of QEMU referred to the DIGEST-MD5
1293mechanism, however, it has multiple serious flaws described in detail in
1294RFC 6331 and thus should never be used any more. The SCRAM-SHA-1 mechanism
1295provides a simple username/password auth facility similar to DIGEST-MD5, but
1296does not support session encryption, so can only be used in combination with
1297TLS.
1298
1299When not using TLS the recommended configuration is
2f9606b3
AL
1300
1301@example
c6a9a9f5
DB
1302mech_list: gssapi
1303keytab: /etc/qemu/krb5.tab
2f9606b3
AL
1304@end example
1305
c6a9a9f5
DB
1306This says to use the 'GSSAPI' mechanism with the Kerberos v5 protocol, with
1307the server principal stored in /etc/qemu/krb5.tab. For this to work the
1308administrator of your KDC must generate a Kerberos principal for the server,
1309with a name of 'qemu/somehost.example.com@@EXAMPLE.COM' replacing
1310'somehost.example.com' with the fully qualified host name of the machine
1311running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
2f9606b3 1312
c6a9a9f5
DB
1313When using TLS, if username+password authentication is desired, then a
1314reasonable configuration is
2f9606b3
AL
1315
1316@example
c6a9a9f5
DB
1317mech_list: scram-sha-1
1318sasldb_path: /etc/qemu/passwd.db
2f9606b3
AL
1319@end example
1320
c6a9a9f5
DB
1321The saslpasswd2 program can be used to populate the passwd.db file with
1322accounts.
2f9606b3 1323
c6a9a9f5
DB
1324Other SASL configurations will be left as an exercise for the reader. Note that
1325all mechanisms except GSSAPI, should be combined with use of TLS to ensure a
1326secure data channel.
2f9606b3 1327
0806e3f6 1328@node gdb_usage
da415d54
FB
1329@section GDB usage
1330
1331QEMU has a primitive support to work with gdb, so that you can do
0806e3f6 1332'Ctrl-C' while the virtual machine is running and inspect its state.
da415d54 1333
b65ee4fa 1334In order to use gdb, launch QEMU with the '-s' option. It will wait for a
da415d54
FB
1335gdb connection:
1336@example
3804da9d
SW
1337qemu-system-i386 -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1338 -append "root=/dev/hda"
da415d54
FB
1339Connected to host network interface: tun0
1340Waiting gdb connection on port 1234
1341@end example
1342
1343Then launch gdb on the 'vmlinux' executable:
1344@example
1345> gdb vmlinux
1346@end example
1347
1348In gdb, connect to QEMU:
1349@example
6c9bf893 1350(gdb) target remote localhost:1234
da415d54
FB
1351@end example
1352
1353Then you can use gdb normally. For example, type 'c' to launch the kernel:
1354@example
1355(gdb) c
1356@end example
1357
0806e3f6
FB
1358Here are some useful tips in order to use gdb on system code:
1359
1360@enumerate
1361@item
1362Use @code{info reg} to display all the CPU registers.
1363@item
1364Use @code{x/10i $eip} to display the code at the PC position.
1365@item
1366Use @code{set architecture i8086} to dump 16 bit code. Then use
294e8637 1367@code{x/10i $cs*16+$eip} to dump the code at the PC position.
0806e3f6
FB
1368@end enumerate
1369
60897d36
EI
1370Advanced debugging options:
1371
b6af0975 1372The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
94d45e44 1373@table @code
60897d36
EI
1374@item maintenance packet qqemu.sstepbits
1375
1376This will display the MASK bits used to control the single stepping IE:
1377@example
1378(gdb) maintenance packet qqemu.sstepbits
1379sending: "qqemu.sstepbits"
1380received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1381@end example
1382@item maintenance packet qqemu.sstep
1383
1384This will display the current value of the mask used when single stepping IE:
1385@example
1386(gdb) maintenance packet qqemu.sstep
1387sending: "qqemu.sstep"
1388received: "0x7"
1389@end example
1390@item maintenance packet Qqemu.sstep=HEX_VALUE
1391
1392This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1393@example
1394(gdb) maintenance packet Qqemu.sstep=0x5
1395sending: "qemu.sstep=0x5"
1396received: "OK"
1397@end example
94d45e44 1398@end table
60897d36 1399
debc7065 1400@node pcsys_os_specific
1a084f3d
FB
1401@section Target OS specific information
1402
1403@subsection Linux
1404
15a34c63
FB
1405To have access to SVGA graphic modes under X11, use the @code{vesa} or
1406the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1407color depth in the guest and the host OS.
1a084f3d 1408
e3371e62
FB
1409When using a 2.6 guest Linux kernel, you should add the option
1410@code{clock=pit} on the kernel command line because the 2.6 Linux
1411kernels make very strict real time clock checks by default that QEMU
1412cannot simulate exactly.
1413
7c3fc84d
FB
1414When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1415not activated because QEMU is slower with this patch. The QEMU
1416Accelerator Module is also much slower in this case. Earlier Fedora
4be456f1 1417Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
7c3fc84d
FB
1418patch by default. Newer kernels don't have it.
1419
1a084f3d
FB
1420@subsection Windows
1421
1422If you have a slow host, using Windows 95 is better as it gives the
1423best speed. Windows 2000 is also a good choice.
1424
e3371e62
FB
1425@subsubsection SVGA graphic modes support
1426
1427QEMU emulates a Cirrus Logic GD5446 Video
15a34c63
FB
1428card. All Windows versions starting from Windows 95 should recognize
1429and use this graphic card. For optimal performances, use 16 bit color
1430depth in the guest and the host OS.
1a084f3d 1431
3cb0853a
FB
1432If you are using Windows XP as guest OS and if you want to use high
1433resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
14341280x1024x16), then you should use the VESA VBE virtual graphic card
1435(option @option{-std-vga}).
1436
e3371e62
FB
1437@subsubsection CPU usage reduction
1438
1439Windows 9x does not correctly use the CPU HLT
15a34c63
FB
1440instruction. The result is that it takes host CPU cycles even when
1441idle. You can install the utility from
70b7fba9 1442@url{https://web.archive.org/web/20060212132151/http://www.user.cityline.ru/~maxamn/amnhltm.zip}
3ba34a70 1443to solve this problem. Note that no such tool is needed for NT, 2000 or XP.
1a084f3d 1444
9d0a8e6f 1445@subsubsection Windows 2000 disk full problem
e3371e62 1446
9d0a8e6f
FB
1447Windows 2000 has a bug which gives a disk full problem during its
1448installation. When installing it, use the @option{-win2k-hack} QEMU
1449option to enable a specific workaround. After Windows 2000 is
1450installed, you no longer need this option (this option slows down the
1451IDE transfers).
e3371e62 1452
6cc721cf
FB
1453@subsubsection Windows 2000 shutdown
1454
1455Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1456can. It comes from the fact that Windows 2000 does not automatically
1457use the APM driver provided by the BIOS.
1458
1459In order to correct that, do the following (thanks to Struan
1460Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1461Add/Troubleshoot a device => Add a new device & Next => No, select the
1462hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1463(again) a few times. Now the driver is installed and Windows 2000 now
5fafdf24 1464correctly instructs QEMU to shutdown at the appropriate moment.
6cc721cf
FB
1465
1466@subsubsection Share a directory between Unix and Windows
1467
c8c6afa8
TH
1468See @ref{sec_invocation} about the help of the option
1469@option{'-netdev user,smb=...'}.
6cc721cf 1470
2192c332 1471@subsubsection Windows XP security problem
e3371e62
FB
1472
1473Some releases of Windows XP install correctly but give a security
1474error when booting:
1475@example
1476A problem is preventing Windows from accurately checking the
1477license for this computer. Error code: 0x800703e6.
1478@end example
e3371e62 1479
2192c332
FB
1480The workaround is to install a service pack for XP after a boot in safe
1481mode. Then reboot, and the problem should go away. Since there is no
1482network while in safe mode, its recommended to download the full
1483installation of SP1 or SP2 and transfer that via an ISO or using the
1484vvfat block device ("-hdb fat:directory_which_holds_the_SP").
e3371e62 1485
a0a821a4
FB
1486@subsection MS-DOS and FreeDOS
1487
1488@subsubsection CPU usage reduction
1489
1490DOS does not correctly use the CPU HLT instruction. The result is that
3ba34a70 1491it takes host CPU cycles even when idle. You can install the utility from
70b7fba9 1492@url{https://web.archive.org/web/20051222085335/http://www.vmware.com/software/dosidle210.zip}
3ba34a70 1493to solve this problem.
a0a821a4 1494
debc7065 1495@node QEMU System emulator for non PC targets
3f9f3aa1
FB
1496@chapter QEMU System emulator for non PC targets
1497
1498QEMU is a generic emulator and it emulates many non PC
1499machines. Most of the options are similar to the PC emulator. The
4be456f1 1500differences are mentioned in the following sections.
3f9f3aa1 1501
debc7065 1502@menu
7544a042 1503* PowerPC System emulator::
24d4de45
TS
1504* Sparc32 System emulator::
1505* Sparc64 System emulator::
1506* MIPS System emulator::
1507* ARM System emulator::
1508* ColdFire System emulator::
7544a042
SW
1509* Cris System emulator::
1510* Microblaze System emulator::
1511* SH4 System emulator::
3aeaea65 1512* Xtensa System emulator::
debc7065
FB
1513@end menu
1514
7544a042
SW
1515@node PowerPC System emulator
1516@section PowerPC System emulator
1517@cindex system emulation (PowerPC)
1a084f3d 1518
15a34c63
FB
1519Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1520or PowerMac PowerPC system.
1a084f3d 1521
b671f9ed 1522QEMU emulates the following PowerMac peripherals:
1a084f3d 1523
15a34c63 1524@itemize @minus
5fafdf24 1525@item
006f3a48 1526UniNorth or Grackle PCI Bridge
15a34c63
FB
1527@item
1528PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1529@item
15a34c63 15302 PMAC IDE interfaces with hard disk and CD-ROM support
5fafdf24 1531@item
15a34c63
FB
1532NE2000 PCI adapters
1533@item
1534Non Volatile RAM
1535@item
1536VIA-CUDA with ADB keyboard and mouse.
1a084f3d
FB
1537@end itemize
1538
b671f9ed 1539QEMU emulates the following PREP peripherals:
52c00a5f
FB
1540
1541@itemize @minus
5fafdf24 1542@item
15a34c63
FB
1543PCI Bridge
1544@item
1545PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1546@item
52c00a5f
FB
15472 IDE interfaces with hard disk and CD-ROM support
1548@item
1549Floppy disk
5fafdf24 1550@item
15a34c63 1551NE2000 network adapters
52c00a5f
FB
1552@item
1553Serial port
1554@item
1555PREP Non Volatile RAM
15a34c63
FB
1556@item
1557PC compatible keyboard and mouse.
52c00a5f
FB
1558@end itemize
1559
15a34c63 1560QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
3f9f3aa1 1561@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
52c00a5f 1562
70b7fba9 1563Since version 0.9.1, QEMU uses OpenBIOS @url{https://www.openbios.org/}
006f3a48
BS
1564for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1565v2) portable firmware implementation. The goal is to implement a 100%
1566IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
992e5acd 1567
15a34c63
FB
1568@c man begin OPTIONS
1569
1570The following options are specific to the PowerPC emulation:
1571
1572@table @option
1573
4e257e5e 1574@item -g @var{W}x@var{H}[x@var{DEPTH}]
15a34c63 1575
340fb41b 1576Set the initial VGA graphic mode. The default is 800x600x32.
15a34c63 1577
4e257e5e 1578@item -prom-env @var{string}
95efd11c
BS
1579
1580Set OpenBIOS variables in NVRAM, for example:
1581
1582@example
1583qemu-system-ppc -prom-env 'auto-boot?=false' \
1584 -prom-env 'boot-device=hd:2,\yaboot' \
1585 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1586@end example
1587
1588These variables are not used by Open Hack'Ware.
1589
15a34c63
FB
1590@end table
1591
5fafdf24 1592@c man end
15a34c63
FB
1593
1594
52c00a5f 1595More information is available at
3f9f3aa1 1596@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
52c00a5f 1597
24d4de45
TS
1598@node Sparc32 System emulator
1599@section Sparc32 System emulator
7544a042 1600@cindex system emulation (Sparc32)
e80cfcfc 1601
34a3d239
BS
1602Use the executable @file{qemu-system-sparc} to simulate the following
1603Sun4m architecture machines:
1604@itemize @minus
1605@item
1606SPARCstation 4
1607@item
1608SPARCstation 5
1609@item
1610SPARCstation 10
1611@item
1612SPARCstation 20
1613@item
1614SPARCserver 600MP
1615@item
1616SPARCstation LX
1617@item
1618SPARCstation Voyager
1619@item
1620SPARCclassic
1621@item
1622SPARCbook
1623@end itemize
1624
1625The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1626but Linux limits the number of usable CPUs to 4.
e80cfcfc 1627
6a4e1771 1628QEMU emulates the following sun4m peripherals:
e80cfcfc
FB
1629
1630@itemize @minus
3475187d 1631@item
6a4e1771 1632IOMMU
e80cfcfc 1633@item
33632788 1634TCX or cgthree Frame buffer
5fafdf24 1635@item
e80cfcfc
FB
1636Lance (Am7990) Ethernet
1637@item
34a3d239 1638Non Volatile RAM M48T02/M48T08
e80cfcfc 1639@item
3475187d
FB
1640Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1641and power/reset logic
1642@item
1643ESP SCSI controller with hard disk and CD-ROM support
1644@item
6a3b9cc9 1645Floppy drive (not on SS-600MP)
a2502b58
BS
1646@item
1647CS4231 sound device (only on SS-5, not working yet)
e80cfcfc
FB
1648@end itemize
1649
6a3b9cc9
BS
1650The number of peripherals is fixed in the architecture. Maximum
1651memory size depends on the machine type, for SS-5 it is 256MB and for
7d85892b 1652others 2047MB.
3475187d 1653
30a604f3 1654Since version 0.8.2, QEMU uses OpenBIOS
70b7fba9 1655@url{https://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
0986ac3b
FB
1656firmware implementation. The goal is to implement a 100% IEEE
16571275-1994 (referred to as Open Firmware) compliant firmware.
3475187d
FB
1658
1659A sample Linux 2.6 series kernel and ram disk image are available on
34a3d239 1660the QEMU web site. There are still issues with NetBSD and OpenBSD, but
9bb9f217 1661most kernel versions work. Please note that currently older Solaris kernels
34a3d239
BS
1662don't work probably due to interface issues between OpenBIOS and
1663Solaris.
3475187d
FB
1664
1665@c man begin OPTIONS
1666
a2502b58 1667The following options are specific to the Sparc32 emulation:
3475187d
FB
1668
1669@table @option
1670
4e257e5e 1671@item -g @var{W}x@var{H}x[x@var{DEPTH}]
3475187d 1672
33632788
MCA
1673Set the initial graphics mode. For TCX, the default is 1024x768x8 with the
1674option of 1024x768x24. For cgthree, the default is 1024x768x8 with the option
1675of 1152x900x8 for people who wish to use OBP.
3475187d 1676
4e257e5e 1677@item -prom-env @var{string}
66508601
BS
1678
1679Set OpenBIOS variables in NVRAM, for example:
1680
1681@example
1682qemu-system-sparc -prom-env 'auto-boot?=false' \
1683 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1684@end example
1685
6a4e1771 1686@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook]
a2502b58
BS
1687
1688Set the emulated machine type. Default is SS-5.
1689
3475187d
FB
1690@end table
1691
5fafdf24 1692@c man end
3475187d 1693
24d4de45
TS
1694@node Sparc64 System emulator
1695@section Sparc64 System emulator
7544a042 1696@cindex system emulation (Sparc64)
e80cfcfc 1697
34a3d239
BS
1698Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
1699(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
9bb9f217
MCA
1700Niagara (T1) machine. The Sun4u emulator is mostly complete, being
1701able to run Linux, NetBSD and OpenBSD in headless (-nographic) mode. The
a2664ca0
AT
1702Sun4v emulator is still a work in progress.
1703
1704The Niagara T1 emulator makes use of firmware and OS binaries supplied in the S10image/ directory
1705of the OpenSPARC T1 project @url{http://download.oracle.com/technetwork/systems/opensparc/OpenSPARCT1_Arch.1.5.tar.bz2}
1706and is able to boot the disk.s10hw2 Solaris image.
1707@example
1708qemu-system-sparc64 -M niagara -L /path-to/S10image/ \
1709 -nographic -m 256 \
1710 -drive if=pflash,readonly=on,file=/S10image/disk.s10hw2
1711@end example
1712
b756921a 1713
c7ba218d 1714QEMU emulates the following peripherals:
83469015
FB
1715
1716@itemize @minus
1717@item
5fafdf24 1718UltraSparc IIi APB PCI Bridge
83469015
FB
1719@item
1720PCI VGA compatible card with VESA Bochs Extensions
1721@item
34a3d239
BS
1722PS/2 mouse and keyboard
1723@item
83469015
FB
1724Non Volatile RAM M48T59
1725@item
1726PC-compatible serial ports
c7ba218d
BS
1727@item
17282 PCI IDE interfaces with hard disk and CD-ROM support
34a3d239
BS
1729@item
1730Floppy disk
83469015
FB
1731@end itemize
1732
c7ba218d
BS
1733@c man begin OPTIONS
1734
1735The following options are specific to the Sparc64 emulation:
1736
1737@table @option
1738
4e257e5e 1739@item -prom-env @var{string}
34a3d239
BS
1740
1741Set OpenBIOS variables in NVRAM, for example:
1742
1743@example
1744qemu-system-sparc64 -prom-env 'auto-boot?=false'
1745@end example
1746
a2664ca0 1747@item -M [sun4u|sun4v|niagara]
c7ba218d
BS
1748
1749Set the emulated machine type. The default is sun4u.
1750
1751@end table
1752
1753@c man end
1754
24d4de45
TS
1755@node MIPS System emulator
1756@section MIPS System emulator
7544a042 1757@cindex system emulation (MIPS)
9d0a8e6f 1758
d9aedc32
TS
1759Four executables cover simulation of 32 and 64-bit MIPS systems in
1760both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
1761@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
88cb0a02 1762Five different machine types are emulated:
24d4de45
TS
1763
1764@itemize @minus
1765@item
1766A generic ISA PC-like machine "mips"
1767@item
1768The MIPS Malta prototype board "malta"
1769@item
d9aedc32 1770An ACER Pica "pica61". This machine needs the 64-bit emulator.
6bf5b4e8 1771@item
f0fc6f8f 1772MIPS emulator pseudo board "mipssim"
88cb0a02
AJ
1773@item
1774A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
24d4de45
TS
1775@end itemize
1776
1777The generic emulation is supported by Debian 'Etch' and is able to
1778install Debian into a virtual disk image. The following devices are
1779emulated:
3f9f3aa1
FB
1780
1781@itemize @minus
5fafdf24 1782@item
6bf5b4e8 1783A range of MIPS CPUs, default is the 24Kf
3f9f3aa1
FB
1784@item
1785PC style serial port
1786@item
24d4de45
TS
1787PC style IDE disk
1788@item
3f9f3aa1
FB
1789NE2000 network card
1790@end itemize
1791
24d4de45
TS
1792The Malta emulation supports the following devices:
1793
1794@itemize @minus
1795@item
0b64d008 1796Core board with MIPS 24Kf CPU and Galileo system controller
24d4de45
TS
1797@item
1798PIIX4 PCI/USB/SMbus controller
1799@item
1800The Multi-I/O chip's serial device
1801@item
3a2eeac0 1802PCI network cards (PCnet32 and others)
24d4de45
TS
1803@item
1804Malta FPGA serial device
1805@item
1f605a76 1806Cirrus (default) or any other PCI VGA graphics card
24d4de45
TS
1807@end itemize
1808
1809The ACER Pica emulation supports:
1810
1811@itemize @minus
1812@item
1813MIPS R4000 CPU
1814@item
1815PC-style IRQ and DMA controllers
1816@item
1817PC Keyboard
1818@item
1819IDE controller
1820@end itemize
3f9f3aa1 1821
b5e4946f 1822The mipssim pseudo board emulation provides an environment similar
f0fc6f8f
TS
1823to what the proprietary MIPS emulator uses for running Linux.
1824It supports:
6bf5b4e8
TS
1825
1826@itemize @minus
1827@item
1828A range of MIPS CPUs, default is the 24Kf
1829@item
1830PC style serial port
1831@item
1832MIPSnet network emulation
1833@end itemize
1834
88cb0a02
AJ
1835The MIPS Magnum R4000 emulation supports:
1836
1837@itemize @minus
1838@item
1839MIPS R4000 CPU
1840@item
1841PC-style IRQ controller
1842@item
1843PC Keyboard
1844@item
1845SCSI controller
1846@item
1847G364 framebuffer
1848@end itemize
1849
1850
24d4de45
TS
1851@node ARM System emulator
1852@section ARM System emulator
7544a042 1853@cindex system emulation (ARM)
3f9f3aa1
FB
1854
1855Use the executable @file{qemu-system-arm} to simulate a ARM
1856machine. The ARM Integrator/CP board is emulated with the following
1857devices:
1858
1859@itemize @minus
1860@item
9ee6e8bb 1861ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
3f9f3aa1
FB
1862@item
1863Two PL011 UARTs
5fafdf24 1864@item
3f9f3aa1 1865SMC 91c111 Ethernet adapter
00a9bf19
PB
1866@item
1867PL110 LCD controller
1868@item
1869PL050 KMI with PS/2 keyboard and mouse.
a1bb27b1
PB
1870@item
1871PL181 MultiMedia Card Interface with SD card.
00a9bf19
PB
1872@end itemize
1873
1874The ARM Versatile baseboard is emulated with the following devices:
1875
1876@itemize @minus
1877@item
9ee6e8bb 1878ARM926E, ARM1136 or Cortex-A8 CPU
00a9bf19
PB
1879@item
1880PL190 Vectored Interrupt Controller
1881@item
1882Four PL011 UARTs
5fafdf24 1883@item
00a9bf19
PB
1884SMC 91c111 Ethernet adapter
1885@item
1886PL110 LCD controller
1887@item
1888PL050 KMI with PS/2 keyboard and mouse.
1889@item
1890PCI host bridge. Note the emulated PCI bridge only provides access to
1891PCI memory space. It does not provide access to PCI IO space.
4be456f1
TS
1892This means some devices (eg. ne2k_pci NIC) are not usable, and others
1893(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
00a9bf19 1894mapped control registers.
e6de1bad
PB
1895@item
1896PCI OHCI USB controller.
1897@item
1898LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
a1bb27b1
PB
1899@item
1900PL181 MultiMedia Card Interface with SD card.
3f9f3aa1
FB
1901@end itemize
1902
21a88941
PB
1903Several variants of the ARM RealView baseboard are emulated,
1904including the EB, PB-A8 and PBX-A9. Due to interactions with the
1905bootloader, only certain Linux kernel configurations work out
1906of the box on these boards.
1907
1908Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
1909enabled in the kernel, and expect 512M RAM. Kernels for The PBX-A9 board
1910should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
1911disabled and expect 1024M RAM.
1912
40c5c6cd 1913The following devices are emulated:
d7739d75
PB
1914
1915@itemize @minus
1916@item
f7c70325 1917ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
d7739d75
PB
1918@item
1919ARM AMBA Generic/Distributed Interrupt Controller
1920@item
1921Four PL011 UARTs
5fafdf24 1922@item
0ef849d7 1923SMC 91c111 or SMSC LAN9118 Ethernet adapter
d7739d75
PB
1924@item
1925PL110 LCD controller
1926@item
1927PL050 KMI with PS/2 keyboard and mouse
1928@item
1929PCI host bridge
1930@item
1931PCI OHCI USB controller
1932@item
1933LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
a1bb27b1
PB
1934@item
1935PL181 MultiMedia Card Interface with SD card.
d7739d75
PB
1936@end itemize
1937
b00052e4
AZ
1938The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
1939and "Terrier") emulation includes the following peripherals:
1940
1941@itemize @minus
1942@item
1943Intel PXA270 System-on-chip (ARM V5TE core)
1944@item
1945NAND Flash memory
1946@item
1947IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
1948@item
1949On-chip OHCI USB controller
1950@item
1951On-chip LCD controller
1952@item
1953On-chip Real Time Clock
1954@item
1955TI ADS7846 touchscreen controller on SSP bus
1956@item
1957Maxim MAX1111 analog-digital converter on I@math{^2}C bus
1958@item
1959GPIO-connected keyboard controller and LEDs
1960@item
549444e1 1961Secure Digital card connected to PXA MMC/SD host
b00052e4
AZ
1962@item
1963Three on-chip UARTs
1964@item
1965WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
1966@end itemize
1967
02645926
AZ
1968The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
1969following elements:
1970
1971@itemize @minus
1972@item
1973Texas Instruments OMAP310 System-on-chip (ARM 925T core)
1974@item
1975ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
1976@item
1977On-chip LCD controller
1978@item
1979On-chip Real Time Clock
1980@item
1981TI TSC2102i touchscreen controller / analog-digital converter / Audio
1982CODEC, connected through MicroWire and I@math{^2}S busses
1983@item
1984GPIO-connected matrix keypad
1985@item
1986Secure Digital card connected to OMAP MMC/SD host
1987@item
1988Three on-chip UARTs
1989@end itemize
1990
c30bb264
AZ
1991Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
1992emulation supports the following elements:
1993
1994@itemize @minus
1995@item
1996Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
1997@item
1998RAM and non-volatile OneNAND Flash memories
1999@item
2000Display connected to EPSON remote framebuffer chip and OMAP on-chip
2001display controller and a LS041y3 MIPI DBI-C controller
2002@item
2003TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2004driven through SPI bus
2005@item
2006National Semiconductor LM8323-controlled qwerty keyboard driven
2007through I@math{^2}C bus
2008@item
2009Secure Digital card connected to OMAP MMC/SD host
2010@item
2011Three OMAP on-chip UARTs and on-chip STI debugging console
2012@item
40c5c6cd 2013A Bluetooth(R) transceiver and HCI connected to an UART
2d564691 2014@item
c30bb264
AZ
2015Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2016TUSB6010 chip - only USB host mode is supported
2017@item
2018TI TMP105 temperature sensor driven through I@math{^2}C bus
2019@item
2020TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2021@item
2022Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2023through CBUS
2024@end itemize
2025
9ee6e8bb
PB
2026The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2027devices:
2028
2029@itemize @minus
2030@item
2031Cortex-M3 CPU core.
2032@item
203364k Flash and 8k SRAM.
2034@item
2035Timers, UARTs, ADC and I@math{^2}C interface.
2036@item
2037OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2038@end itemize
2039
2040The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2041devices:
2042
2043@itemize @minus
2044@item
2045Cortex-M3 CPU core.
2046@item
2047256k Flash and 64k SRAM.
2048@item
2049Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2050@item
2051OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2052@end itemize
2053
57cd6e97
AZ
2054The Freecom MusicPal internet radio emulation includes the following
2055elements:
2056
2057@itemize @minus
2058@item
2059Marvell MV88W8618 ARM core.
2060@item
206132 MB RAM, 256 KB SRAM, 8 MB flash.
2062@item
2063Up to 2 16550 UARTs
2064@item
2065MV88W8xx8 Ethernet controller
2066@item
2067MV88W8618 audio controller, WM8750 CODEC and mixer
2068@item
e080e785 2069128×64 display with brightness control
57cd6e97
AZ
2070@item
20712 buttons, 2 navigation wheels with button function
2072@end itemize
2073
997641a8 2074The Siemens SX1 models v1 and v2 (default) basic emulation.
40c5c6cd 2075The emulation includes the following elements:
997641a8
AZ
2076
2077@itemize @minus
2078@item
2079Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2080@item
2081ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2082V1
20831 Flash of 16MB and 1 Flash of 8MB
2084V2
20851 Flash of 32MB
2086@item
2087On-chip LCD controller
2088@item
2089On-chip Real Time Clock
2090@item
2091Secure Digital card connected to OMAP MMC/SD host
2092@item
2093Three on-chip UARTs
2094@end itemize
2095
3f9f3aa1
FB
2096A Linux 2.6 test image is available on the QEMU web site. More
2097information is available in the QEMU mailing-list archive.
9d0a8e6f 2098
d2c639d6
BS
2099@c man begin OPTIONS
2100
2101The following options are specific to the ARM emulation:
2102
2103@table @option
2104
2105@item -semihosting
2106Enable semihosting syscall emulation.
2107
2108On ARM this implements the "Angel" interface.
2109
2110Note that this allows guest direct access to the host filesystem,
2111so should only be used with trusted guest OS.
2112
2113@end table
2114
abc67eb6
TH
2115@c man end
2116
24d4de45
TS
2117@node ColdFire System emulator
2118@section ColdFire System emulator
7544a042
SW
2119@cindex system emulation (ColdFire)
2120@cindex system emulation (M68K)
209a4e69
PB
2121
2122Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2123The emulator is able to boot a uClinux kernel.
707e011b
PB
2124
2125The M5208EVB emulation includes the following devices:
2126
2127@itemize @minus
5fafdf24 2128@item
707e011b
PB
2129MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2130@item
2131Three Two on-chip UARTs.
2132@item
2133Fast Ethernet Controller (FEC)
2134@end itemize
2135
2136The AN5206 emulation includes the following devices:
209a4e69
PB
2137
2138@itemize @minus
5fafdf24 2139@item
209a4e69
PB
2140MCF5206 ColdFire V2 Microprocessor.
2141@item
2142Two on-chip UARTs.
2143@end itemize
2144
d2c639d6
BS
2145@c man begin OPTIONS
2146
7544a042 2147The following options are specific to the ColdFire emulation:
d2c639d6
BS
2148
2149@table @option
2150
2151@item -semihosting
2152Enable semihosting syscall emulation.
2153
2154On M68K this implements the "ColdFire GDB" interface used by libgloss.
2155
2156Note that this allows guest direct access to the host filesystem,
2157so should only be used with trusted guest OS.
2158
2159@end table
2160
abc67eb6
TH
2161@c man end
2162
7544a042
SW
2163@node Cris System emulator
2164@section Cris System emulator
2165@cindex system emulation (Cris)
2166
2167TODO
2168
2169@node Microblaze System emulator
2170@section Microblaze System emulator
2171@cindex system emulation (Microblaze)
2172
2173TODO
2174
2175@node SH4 System emulator
2176@section SH4 System emulator
2177@cindex system emulation (SH4)
2178
2179TODO
2180
3aeaea65
MF
2181@node Xtensa System emulator
2182@section Xtensa System emulator
2183@cindex system emulation (Xtensa)
2184
2185Two executables cover simulation of both Xtensa endian options,
2186@file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
2187Two different machine types are emulated:
2188
2189@itemize @minus
2190@item
2191Xtensa emulator pseudo board "sim"
2192@item
2193Avnet LX60/LX110/LX200 board
2194@end itemize
2195
b5e4946f 2196The sim pseudo board emulation provides an environment similar
3aeaea65
MF
2197to one provided by the proprietary Tensilica ISS.
2198It supports:
2199
2200@itemize @minus
2201@item
2202A range of Xtensa CPUs, default is the DC232B
2203@item
2204Console and filesystem access via semihosting calls
2205@end itemize
2206
2207The Avnet LX60/LX110/LX200 emulation supports:
2208
2209@itemize @minus
2210@item
2211A range of Xtensa CPUs, default is the DC232B
2212@item
221316550 UART
2214@item
2215OpenCores 10/100 Mbps Ethernet MAC
2216@end itemize
2217
2218@c man begin OPTIONS
2219
2220The following options are specific to the Xtensa emulation:
2221
2222@table @option
2223
2224@item -semihosting
2225Enable semihosting syscall emulation.
2226
2227Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2228Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2229
2230Note that this allows guest direct access to the host filesystem,
2231so should only be used with trusted guest OS.
2232
2233@end table
3f2ce724 2234
abc67eb6
TH
2235@c man end
2236
3f2ce724
TH
2237@node QEMU Guest Agent
2238@chapter QEMU Guest Agent invocation
2239
2240@include qemu-ga.texi
2241
5fafdf24
TS
2242@node QEMU User space emulator
2243@chapter QEMU User space emulator
83195237
FB
2244
2245@menu
2246* Supported Operating Systems ::
0722cc42 2247* Features::
83195237 2248* Linux User space emulator::
84778508 2249* BSD User space emulator ::
83195237
FB
2250@end menu
2251
2252@node Supported Operating Systems
2253@section Supported Operating Systems
2254
2255The following OS are supported in user space emulation:
2256
2257@itemize @minus
2258@item
4be456f1 2259Linux (referred as qemu-linux-user)
83195237 2260@item
84778508 2261BSD (referred as qemu-bsd-user)
83195237
FB
2262@end itemize
2263
0722cc42
PB
2264@node Features
2265@section Features
2266
2267QEMU user space emulation has the following notable features:
2268
2269@table @strong
2270@item System call translation:
2271QEMU includes a generic system call translator. This means that
2272the parameters of the system calls can be converted to fix
2273endianness and 32/64-bit mismatches between hosts and targets.
2274IOCTLs can be converted too.
2275
2276@item POSIX signal handling:
2277QEMU can redirect to the running program all signals coming from
2278the host (such as @code{SIGALRM}), as well as synthesize signals from
2279virtual CPU exceptions (for example @code{SIGFPE} when the program
2280executes a division by zero).
2281
2282QEMU relies on the host kernel to emulate most signal system
2283calls, for example to emulate the signal mask. On Linux, QEMU
2284supports both normal and real-time signals.
2285
2286@item Threading:
2287On Linux, QEMU can emulate the @code{clone} syscall and create a real
2288host thread (with a separate virtual CPU) for each emulated thread.
2289Note that not all targets currently emulate atomic operations correctly.
2290x86 and ARM use a global lock in order to preserve their semantics.
2291@end table
2292
2293QEMU was conceived so that ultimately it can emulate itself. Although
2294it is not very useful, it is an important test to show the power of the
2295emulator.
2296
83195237
FB
2297@node Linux User space emulator
2298@section Linux User space emulator
386405f7 2299
debc7065
FB
2300@menu
2301* Quick Start::
2302* Wine launch::
2303* Command line options::
79737e4a 2304* Other binaries::
debc7065
FB
2305@end menu
2306
2307@node Quick Start
83195237 2308@subsection Quick Start
df0f11a0 2309
1f673135 2310In order to launch a Linux process, QEMU needs the process executable
5fafdf24 2311itself and all the target (x86) dynamic libraries used by it.
386405f7 2312
1f673135 2313@itemize
386405f7 2314
1f673135
FB
2315@item On x86, you can just try to launch any process by using the native
2316libraries:
386405f7 2317
5fafdf24 2318@example
1f673135
FB
2319qemu-i386 -L / /bin/ls
2320@end example
386405f7 2321
1f673135
FB
2322@code{-L /} tells that the x86 dynamic linker must be searched with a
2323@file{/} prefix.
386405f7 2324
b65ee4fa
SW
2325@item Since QEMU is also a linux process, you can launch QEMU with
2326QEMU (NOTE: you can only do that if you compiled QEMU from the sources):
386405f7 2327
5fafdf24 2328@example
1f673135
FB
2329qemu-i386 -L / qemu-i386 -L / /bin/ls
2330@end example
386405f7 2331
1f673135
FB
2332@item On non x86 CPUs, you need first to download at least an x86 glibc
2333(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2334@code{LD_LIBRARY_PATH} is not set:
df0f11a0 2335
1f673135 2336@example
5fafdf24 2337unset LD_LIBRARY_PATH
1f673135 2338@end example
1eb87257 2339
1f673135 2340Then you can launch the precompiled @file{ls} x86 executable:
1eb87257 2341
1f673135
FB
2342@example
2343qemu-i386 tests/i386/ls
2344@end example
4c3b5a48 2345You can look at @file{scripts/qemu-binfmt-conf.sh} so that
1f673135
FB
2346QEMU is automatically launched by the Linux kernel when you try to
2347launch x86 executables. It requires the @code{binfmt_misc} module in the
2348Linux kernel.
1eb87257 2349
1f673135
FB
2350@item The x86 version of QEMU is also included. You can try weird things such as:
2351@example
debc7065
FB
2352qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2353 /usr/local/qemu-i386/bin/ls-i386
1f673135 2354@end example
1eb20527 2355
1f673135 2356@end itemize
1eb20527 2357
debc7065 2358@node Wine launch
83195237 2359@subsection Wine launch
1eb20527 2360
1f673135 2361@itemize
386405f7 2362
1f673135
FB
2363@item Ensure that you have a working QEMU with the x86 glibc
2364distribution (see previous section). In order to verify it, you must be
2365able to do:
386405f7 2366
1f673135
FB
2367@example
2368qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2369@end example
386405f7 2370
1f673135 2371@item Download the binary x86 Wine install
5fafdf24 2372(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
386405f7 2373
1f673135 2374@item Configure Wine on your account. Look at the provided script
debc7065 2375@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
1f673135 2376@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
386405f7 2377
1f673135 2378@item Then you can try the example @file{putty.exe}:
386405f7 2379
1f673135 2380@example
debc7065
FB
2381qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2382 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
1f673135 2383@end example
386405f7 2384
1f673135 2385@end itemize
fd429f2f 2386
debc7065 2387@node Command line options
83195237 2388@subsection Command line options
1eb20527 2389
1f673135 2390@example
8485140f 2391@command{qemu-i386} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-cpu} @var{model}] [@option{-g} @var{port}] [@option{-B} @var{offset}] [@option{-R} @var{size}] @var{program} [@var{arguments}...]
1f673135 2392@end example
1eb20527 2393
1f673135
FB
2394@table @option
2395@item -h
2396Print the help
3b46e624 2397@item -L path
1f673135
FB
2398Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2399@item -s size
2400Set the x86 stack size in bytes (default=524288)
34a3d239 2401@item -cpu model
c8057f95 2402Select CPU model (-cpu help for list and additional feature selection)
f66724c9
SW
2403@item -E @var{var}=@var{value}
2404Set environment @var{var} to @var{value}.
2405@item -U @var{var}
2406Remove @var{var} from the environment.
379f6698
PB
2407@item -B offset
2408Offset guest address by the specified number of bytes. This is useful when
1f5c3f8c
SW
2409the address region required by guest applications is reserved on the host.
2410This option is currently only supported on some hosts.
68a1c816
PB
2411@item -R size
2412Pre-allocate a guest virtual address space of the given size (in bytes).
0d6753e5 2413"G", "M", and "k" suffixes may be used when specifying the size.
386405f7
FB
2414@end table
2415
1f673135 2416Debug options:
386405f7 2417
1f673135 2418@table @option
989b697d
PM
2419@item -d item1,...
2420Activate logging of the specified items (use '-d help' for a list of log items)
1f673135
FB
2421@item -p pagesize
2422Act as if the host page size was 'pagesize' bytes
34a3d239
BS
2423@item -g port
2424Wait gdb connection to port
1b530a6d
AJ
2425@item -singlestep
2426Run the emulation in single step mode.
1f673135 2427@end table
386405f7 2428
b01bcae6
AZ
2429Environment variables:
2430
2431@table @env
2432@item QEMU_STRACE
2433Print system calls and arguments similar to the 'strace' program
2434(NOTE: the actual 'strace' program will not work because the user
2435space emulator hasn't implemented ptrace). At the moment this is
2436incomplete. All system calls that don't have a specific argument
2437format are printed with information for six arguments. Many
2438flag-style arguments don't have decoders and will show up as numbers.
5cfdf930 2439@end table
b01bcae6 2440
79737e4a 2441@node Other binaries
83195237 2442@subsection Other binaries
79737e4a 2443
7544a042
SW
2444@cindex user mode (Alpha)
2445@command{qemu-alpha} TODO.
2446
2447@cindex user mode (ARM)
2448@command{qemu-armeb} TODO.
2449
2450@cindex user mode (ARM)
79737e4a
PB
2451@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2452binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2453configurations), and arm-uclinux bFLT format binaries.
2454
7544a042
SW
2455@cindex user mode (ColdFire)
2456@cindex user mode (M68K)
e6e5906b
PB
2457@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2458(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2459coldfire uClinux bFLT format binaries.
2460
79737e4a
PB
2461The binary format is detected automatically.
2462
7544a042
SW
2463@cindex user mode (Cris)
2464@command{qemu-cris} TODO.
2465
2466@cindex user mode (i386)
2467@command{qemu-i386} TODO.
2468@command{qemu-x86_64} TODO.
2469
2470@cindex user mode (Microblaze)
2471@command{qemu-microblaze} TODO.
2472
2473@cindex user mode (MIPS)
2474@command{qemu-mips} TODO.
2475@command{qemu-mipsel} TODO.
2476
e671711c
MV
2477@cindex user mode (NiosII)
2478@command{qemu-nios2} TODO.
2479
7544a042
SW
2480@cindex user mode (PowerPC)
2481@command{qemu-ppc64abi32} TODO.
2482@command{qemu-ppc64} TODO.
2483@command{qemu-ppc} TODO.
2484
2485@cindex user mode (SH4)
2486@command{qemu-sh4eb} TODO.
2487@command{qemu-sh4} TODO.
2488
2489@cindex user mode (SPARC)
34a3d239
BS
2490@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2491
a785e42e
BS
2492@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2493(Sparc64 CPU, 32 bit ABI).
2494
2495@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2496SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2497
84778508
BS
2498@node BSD User space emulator
2499@section BSD User space emulator
2500
2501@menu
2502* BSD Status::
2503* BSD Quick Start::
2504* BSD Command line options::
2505@end menu
2506
2507@node BSD Status
2508@subsection BSD Status
2509
2510@itemize @minus
2511@item
2512target Sparc64 on Sparc64: Some trivial programs work.
2513@end itemize
2514
2515@node BSD Quick Start
2516@subsection Quick Start
2517
2518In order to launch a BSD process, QEMU needs the process executable
2519itself and all the target dynamic libraries used by it.
2520
2521@itemize
2522
2523@item On Sparc64, you can just try to launch any process by using the native
2524libraries:
2525
2526@example
2527qemu-sparc64 /bin/ls
2528@end example
2529
2530@end itemize
2531
2532@node BSD Command line options
2533@subsection Command line options
2534
2535@example
8485140f 2536@command{qemu-sparc64} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-bsd} @var{type}] @var{program} [@var{arguments}...]
84778508
BS
2537@end example
2538
2539@table @option
2540@item -h
2541Print the help
2542@item -L path
2543Set the library root path (default=/)
2544@item -s size
2545Set the stack size in bytes (default=524288)
f66724c9
SW
2546@item -ignore-environment
2547Start with an empty environment. Without this option,
40c5c6cd 2548the initial environment is a copy of the caller's environment.
f66724c9
SW
2549@item -E @var{var}=@var{value}
2550Set environment @var{var} to @var{value}.
2551@item -U @var{var}
2552Remove @var{var} from the environment.
84778508
BS
2553@item -bsd type
2554Set the type of the emulated BSD Operating system. Valid values are
2555FreeBSD, NetBSD and OpenBSD (default).
2556@end table
2557
2558Debug options:
2559
2560@table @option
989b697d
PM
2561@item -d item1,...
2562Activate logging of the specified items (use '-d help' for a list of log items)
84778508
BS
2563@item -p pagesize
2564Act as if the host page size was 'pagesize' bytes
1b530a6d
AJ
2565@item -singlestep
2566Run the emulation in single step mode.
84778508
BS
2567@end table
2568
47eacb4f 2569
78e87797
PB
2570@include qemu-tech.texi
2571
eb22aeca
DB
2572@node Deprecated features
2573@appendix Deprecated features
2574
2575In general features are intended to be supported indefinitely once
2576introduced into QEMU. In the event that a feature needs to be removed,
2577it will be listed in this appendix. The feature will remain functional
2578for 2 releases prior to actual removal. Deprecated features may also
2579generate warnings on the console when QEMU starts up, or if activated
2580via a monitor command, however, this is not a mandatory requirement.
2581
2582Prior to the 2.10.0 release there was no official policy on how
2583long features would be deprecated prior to their removal, nor
2584any documented list of which features were deprecated. Thus
2585any features deprecated prior to 2.10.0 will be treated as if
2586they were first deprecated in the 2.10.0 release.
2587
2588What follows is a list of all features currently marked as
2589deprecated.
2590
b7715af2
DB
2591@section Build options
2592
2593@subsection GTK 2.x
2594
2595Previously QEMU has supported building against both GTK 2.x
2596and 3.x series APIs. Support for the GTK 2.x builds will be
2597discontinued, so maintainers should switch to using GTK 3.x,
2598which is the default.
2599
e52c6ba3
DB
2600@subsection SDL 1.2
2601
2602Previously QEMU has supported building against both SDL 1.2
2603and 2.0 series APIs. Support for the SDL 1.2 builds will be
2604discontinued, so maintainers should switch to using SDL 2.0,
2605which is the default.
2606
eb22aeca
DB
2607@section System emulator command line arguments
2608
eb22aeca
DB
2609@subsection -tdf (since 1.3.0)
2610
2611The ``-tdf'' argument is ignored. The behaviour implemented
2612by this argument is now the default when using the KVM PIT,
2613but can be requested explicitly using
2614``-global kvm-pit.lost_tick_policy=slew''.
2615
2616@subsection -no-kvm-pit-reinjection (since 1.3.0)
2617
2618The ``-no-kvm-pit-reinjection'' argument is now a
2619synonym for setting ``-global kvm-pit.lost_tick_policy=discard''.
2620
2621@subsection -no-kvm-irqchip (since 1.3.0)
2622
2623The ``-no-kvm-irqchip'' argument is now a synonym for
2624setting ``-machine kernel_irqchip=off''.
2625
eb22aeca
DB
2626@subsection -no-kvm (since 1.3.0)
2627
2628The ``-no-kvm'' argument is now a synonym for setting
2629``-machine accel=tcg''.
2630
2631@subsection -mon default=on (since 2.4.0)
2632
2633The ``default'' option to the ``-mon'' argument is
2634now ignored. When multiple monitors were enabled, it
2635indicated which monitor would receive log messages
2636from the various subsystems. This feature is no longer
2637required as messages are now only sent to the monitor
2638in response to explicitly monitor commands.
2639
2640@subsection -vnc tls (since 2.5.0)
2641
2642The ``-vnc tls'' argument is now a synonym for setting
2643``-object tls-creds-anon,id=tls0'' combined with
2644``-vnc tls-creds=tls0'
2645
2646@subsection -vnc x509 (since 2.5.0)
2647
2648The ``-vnc x509=/path/to/certs'' argument is now a
2649synonym for setting
2650``-object tls-creds-x509,dir=/path/to/certs,id=tls0,verify-peer=no''
2651combined with ``-vnc tls-creds=tls0'
2652
2653@subsection -vnc x509verify (since 2.5.0)
2654
2655The ``-vnc x509verify=/path/to/certs'' argument is now a
2656synonym for setting
2657``-object tls-creds-x509,dir=/path/to/certs,id=tls0,verify-peer=yes''
2658combined with ``-vnc tls-creds=tls0'
2659
2660@subsection -tftp (since 2.6.0)
2661
0065e915
TH
2662The ``-tftp /some/dir'' argument is replaced by
2663``-netdev user,id=x,tftp=/some/dir'', either accompanied with
2664``-device ...,netdev=x'' (for pluggable NICs) or ``-net nic,netdev=x''
2665(for embedded NICs). The new syntax allows different settings to be
2666provided per NIC.
eb22aeca
DB
2667
2668@subsection -bootp (since 2.6.0)
2669
0065e915
TH
2670The ``-bootp /some/file'' argument is replaced by
2671``-netdev user,id=x,bootp=/some/file'', either accompanied with
2672``-device ...,netdev=x'' (for pluggable NICs) or ``-net nic,netdev=x''
2673(for embedded NICs). The new syntax allows different settings to be
2674provided per NIC.
eb22aeca
DB
2675
2676@subsection -redir (since 2.6.0)
2677
0065e915
TH
2678The ``-redir [tcp|udp]:hostport:[guestaddr]:guestport'' argument is
2679replaced by ``-netdev
2680user,id=x,hostfwd=[tcp|udp]:[hostaddr]:hostport-[guestaddr]:guestport'',
2681either accompanied with ``-device ...,netdev=x'' (for pluggable NICs) or
2682``-net nic,netdev=x'' (for embedded NICs). The new syntax allows different
2683settings to be provided per NIC.
eb22aeca
DB
2684
2685@subsection -smb (since 2.6.0)
2686
0065e915
TH
2687The ``-smb /some/dir'' argument is replaced by
2688``-netdev user,id=x,smb=/some/dir'', either accompanied with
2689``-device ...,netdev=x'' (for pluggable NICs) or ``-net nic,netdev=x''
2690(for embedded NICs). The new syntax allows different settings to be
2691provided per NIC.
eb22aeca 2692
eb22aeca
DB
2693@subsection -net vlan (since 2.9.0)
2694
69001917 2695The ``-net vlan=NN'' argument is partially replaced with the
eb22aeca
DB
2696new ``-netdev'' argument. The remaining use cases will no
2697longer be directly supported in QEMU.
2698
2699@subsection -drive if=scsi (since 2.9.0)
2700
2701The ``-drive if=scsi'' argument is replaced by the the
2702``-device BUS-TYPE'' argument combined with ``-drive if=none''.
2703
c08d46a9
TH
2704@subsection -drive cyls=...,heads=...,secs=...,trans=... (since 2.10.0)
2705
2706The drive geometry arguments are replaced by the the geometry arguments
2707that can be specified with the ``-device'' parameter.
2708
2709@subsection -drive serial=... (since 2.10.0)
2710
2711The drive serial argument is replaced by the the serial argument
2712that can be specified with the ``-device'' parameter.
2713
2714@subsection -drive addr=... (since 2.10.0)
2715
2716The drive addr argument is replaced by the the addr argument
2717that can be specified with the ``-device'' parameter.
2718
eb22aeca
DB
2719@subsection -net dump (since 2.10.0)
2720
2721The ``--net dump'' argument is now replaced with the
2722``-object filter-dump'' argument which works in combination
2723with the modern ``-netdev`` backends instead.
2724
eb22aeca
DB
2725@subsection -usbdevice (since 2.10.0)
2726
2727The ``-usbdevice DEV'' argument is now a synonym for setting
2728the ``-device usb-DEV'' argument instead. The deprecated syntax
2729would automatically enable USB support on the machine type.
2730If using the new syntax, USB support must be explicitly
2731enabled via the ``-machine usb=on'' argument.
2732
3478eae9
EH
2733@subsection -nodefconfig (since 2.11.0)
2734
2735The ``-nodefconfig`` argument is a synonym for ``-no-user-config``.
2736
d69969e5
HP
2737@subsection -machine s390-squash-mcss=on|off (since 2.12.0)
2738
2739The ``s390-squash-mcss=on`` property has been obsoleted by allowing the
2740cssid to be chosen freely. Instead of squashing subchannels into the
2741default channel subsystem image for guests that do not support multiple
2742channel subsystems, all devices can be put into the default channel
2743subsystem image.
2744
db3b3c72
GK
2745@subsection -fsdev handle (since 2.12.0)
2746
2747The ``handle'' fsdev backend does not support symlinks and causes the 9p
2748filesystem in the guest to fail a fair amount of tests from the PJD POSIX
2749filesystem test suite. Also it requires the CAP_DAC_READ_SEARCH capability,
2750which is not the recommended way to run QEMU. This backend should not be
2751used and it will be removed with no replacement.
2752
eb22aeca
DB
2753@section qemu-img command line arguments
2754
2755@subsection convert -s (since 2.0.0)
2756
2757The ``convert -s snapshot_id_or_name'' argument is obsoleted
2758by the ``convert -l snapshot_param'' argument instead.
2759
3e99da5e
VSO
2760@section QEMU Machine Protocol (QMP) commands
2761
2762@subsection block-dirty-bitmap-add "autoload" parameter (since 2.12.0)
2763
2764"autoload" parameter is now ignored. All bitmaps are automatically loaded
2765from qcow2 images.
2766
eb22aeca
DB
2767@section System emulator human monitor commands
2768
bd7adc84
TH
2769@subsection host_net_add (since 2.10.0)
2770
2771The ``host_net_add'' command is replaced by the ``netdev_add'' command.
2772
2773@subsection host_net_remove (since 2.10.0)
2774
2775The ``host_net_remove'' command is replaced by the ``netdev_del'' command.
2776
eb22aeca
DB
2777@section System emulator devices
2778
2779@subsection ivshmem (since 2.6.0)
2780
2781The ``ivshmem'' device type is replaced by either the ``ivshmem-plain''
2782or ``ivshmem-doorbell`` device types.
2783
64b47457
TH
2784@subsection Page size support < 4k for embedded PowerPC CPUs (since 2.12.0)
2785
2786qemu-system-ppcemb will be removed. qemu-system-ppc (or qemu-system-ppc64)
2787should be used instead. That means that embedded 4xx PowerPC CPUs will not
2788support page sizes < 4096 any longer.
2789
83926ad5
AF
2790@section System emulator machines
2791
2792@subsection Xilinx EP108 (since 2.11.0)
2793
2794The ``xlnx-ep108'' machine has been replaced by the ``xlnx-zcu102'' machine.
2795The ``xlnx-zcu102'' machine has the same features and capabilites in QEMU.
2796
7544a042
SW
2797@node License
2798@appendix License
2799
2800QEMU is a trademark of Fabrice Bellard.
2801
2f8d8f01
TH
2802QEMU is released under the
2803@url{https://www.gnu.org/licenses/gpl-2.0.txt,GNU General Public License},
2804version 2. Parts of QEMU have specific licenses, see file
70b7fba9 2805@url{https://git.qemu.org/?p=qemu.git;a=blob_plain;f=LICENSE,LICENSE}.
7544a042 2806
debc7065 2807@node Index
7544a042
SW
2808@appendix Index
2809@menu
2810* Concept Index::
2811* Function Index::
2812* Keystroke Index::
2813* Program Index::
2814* Data Type Index::
2815* Variable Index::
2816@end menu
2817
2818@node Concept Index
2819@section Concept Index
2820This is the main index. Should we combine all keywords in one index? TODO
debc7065
FB
2821@printindex cp
2822
7544a042
SW
2823@node Function Index
2824@section Function Index
2825This index could be used for command line options and monitor functions.
2826@printindex fn
2827
2828@node Keystroke Index
2829@section Keystroke Index
2830
2831This is a list of all keystrokes which have a special function
2832in system emulation.
2833
2834@printindex ky
2835
2836@node Program Index
2837@section Program Index
2838@printindex pg
2839
2840@node Data Type Index
2841@section Data Type Index
2842
2843This index could be used for qdev device names and options.
2844
2845@printindex tp
2846
2847@node Variable Index
2848@section Variable Index
2849@printindex vr
2850
debc7065 2851@bye