]> git.proxmox.com Git - mirror_qemu.git/blame - qemu-doc.texi
target-i386: Reenable RDTSCP support on Opteron_G[345] CPU models CPU models
[mirror_qemu.git] / qemu-doc.texi
CommitLineData
386405f7 1\input texinfo @c -*- texinfo -*-
debc7065
FB
2@c %**start of header
3@setfilename qemu-doc.info
44cb280d 4@include version.texi
e080e785
SW
5
6@documentlanguage en
7@documentencoding UTF-8
8
44cb280d 9@settitle QEMU version @value{VERSION} User Documentation
debc7065
FB
10@exampleindent 0
11@paragraphindent 0
12@c %**end of header
386405f7 13
a1a32b05
SW
14@ifinfo
15@direntry
16* QEMU: (qemu-doc). The QEMU Emulator User Documentation.
17@end direntry
18@end ifinfo
19
0806e3f6 20@iftex
386405f7
FB
21@titlepage
22@sp 7
44cb280d 23@center @titlefont{QEMU version @value{VERSION}}
debc7065
FB
24@sp 1
25@center @titlefont{User Documentation}
386405f7
FB
26@sp 3
27@end titlepage
0806e3f6 28@end iftex
386405f7 29
debc7065
FB
30@ifnottex
31@node Top
32@top
33
34@menu
35* Introduction::
debc7065
FB
36* QEMU PC System emulator::
37* QEMU System emulator for non PC targets::
3f2ce724 38* QEMU Guest Agent::
83195237 39* QEMU User space emulator::
483c6ad4 40* System requirements::
78e87797 41* Implementation notes::
eb22aeca 42* Deprecated features::
45b47130 43* Supported build platforms::
7544a042 44* License::
debc7065
FB
45* Index::
46@end menu
47@end ifnottex
48
49@contents
50
51@node Introduction
386405f7
FB
52@chapter Introduction
53
debc7065
FB
54@menu
55* intro_features:: Features
56@end menu
57
58@node intro_features
322d0c66 59@section Features
386405f7 60
1f673135
FB
61QEMU is a FAST! processor emulator using dynamic translation to
62achieve good emulation speed.
1eb20527 63
1f3e7e41 64@cindex operating modes
1eb20527 65QEMU has two operating modes:
0806e3f6 66
d7e5edca 67@itemize
7544a042 68@cindex system emulation
1f3e7e41 69@item Full system emulation. In this mode, QEMU emulates a full system (for
3f9f3aa1
FB
70example a PC), including one or several processors and various
71peripherals. It can be used to launch different Operating Systems
72without rebooting the PC or to debug system code.
1eb20527 73
7544a042 74@cindex user mode emulation
1f3e7e41 75@item User mode emulation. In this mode, QEMU can launch
83195237 76processes compiled for one CPU on another CPU. It can be used to
70b7fba9 77launch the Wine Windows API emulator (@url{https://www.winehq.org}) or
1f673135 78to ease cross-compilation and cross-debugging.
1eb20527
FB
79
80@end itemize
81
1f3e7e41
PB
82QEMU has the following features:
83
84@itemize
85@item QEMU can run without a host kernel driver and yet gives acceptable
86performance. It uses dynamic translation to native code for reasonable speed,
87with support for self-modifying code and precise exceptions.
88
89@item It is portable to several operating systems (GNU/Linux, *BSD, Mac OS X,
90Windows) and architectures.
91
92@item It performs accurate software emulation of the FPU.
93@end itemize
322d0c66 94
1f3e7e41 95QEMU user mode emulation has the following features:
52c00a5f 96@itemize
1f3e7e41
PB
97@item Generic Linux system call converter, including most ioctls.
98
99@item clone() emulation using native CPU clone() to use Linux scheduler for threads.
100
101@item Accurate signal handling by remapping host signals to target signals.
102@end itemize
103
104QEMU full system emulation has the following features:
105@itemize
106@item
107QEMU uses a full software MMU for maximum portability.
108
109@item
326c4c3c 110QEMU can optionally use an in-kernel accelerator, like kvm. The accelerators
1f3e7e41
PB
111execute most of the guest code natively, while
112continuing to emulate the rest of the machine.
113
114@item
115Various hardware devices can be emulated and in some cases, host
116devices (e.g. serial and parallel ports, USB, drives) can be used
117transparently by the guest Operating System. Host device passthrough
118can be used for talking to external physical peripherals (e.g. a
119webcam, modem or tape drive).
120
121@item
122Symmetric multiprocessing (SMP) support. Currently, an in-kernel
123accelerator is required to use more than one host CPU for emulation.
124
52c00a5f 125@end itemize
386405f7 126
0806e3f6 127
debc7065 128@node QEMU PC System emulator
3f9f3aa1 129@chapter QEMU PC System emulator
7544a042 130@cindex system emulation (PC)
1eb20527 131
debc7065
FB
132@menu
133* pcsys_introduction:: Introduction
134* pcsys_quickstart:: Quick Start
135* sec_invocation:: Invocation
a40db1b3
PM
136* pcsys_keys:: Keys in the graphical frontends
137* mux_keys:: Keys in the character backend multiplexer
debc7065 138* pcsys_monitor:: QEMU Monitor
2544e9e4 139* cpu_models:: CPU models
debc7065
FB
140* disk_images:: Disk Images
141* pcsys_network:: Network emulation
576fd0a1 142* pcsys_other_devs:: Other Devices
debc7065
FB
143* direct_linux_boot:: Direct Linux Boot
144* pcsys_usb:: USB emulation
f858dcae 145* vnc_security:: VNC security
5d19a6ea 146* network_tls:: TLS setup for network services
debc7065
FB
147* gdb_usage:: GDB usage
148* pcsys_os_specific:: Target OS specific information
149@end menu
150
151@node pcsys_introduction
0806e3f6
FB
152@section Introduction
153
154@c man begin DESCRIPTION
155
3f9f3aa1
FB
156The QEMU PC System emulator simulates the
157following peripherals:
0806e3f6
FB
158
159@itemize @minus
5fafdf24 160@item
15a34c63 161i440FX host PCI bridge and PIIX3 PCI to ISA bridge
0806e3f6 162@item
15a34c63
FB
163Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
164extensions (hardware level, including all non standard modes).
0806e3f6
FB
165@item
166PS/2 mouse and keyboard
5fafdf24 167@item
15a34c63 1682 PCI IDE interfaces with hard disk and CD-ROM support
1f673135
FB
169@item
170Floppy disk
5fafdf24 171@item
3a2eeac0 172PCI and ISA network adapters
0806e3f6 173@item
05d5818c
FB
174Serial ports
175@item
23076bb3
CM
176IPMI BMC, either and internal or external one
177@item
c0fe3827
FB
178Creative SoundBlaster 16 sound card
179@item
180ENSONIQ AudioPCI ES1370 sound card
181@item
e5c9a13e
AZ
182Intel 82801AA AC97 Audio compatible sound card
183@item
7d72e762
GH
184Intel HD Audio Controller and HDA codec
185@item
2d983446 186Adlib (OPL2) - Yamaha YM3812 compatible chip
b389dbfb 187@item
26463dbc
AZ
188Gravis Ultrasound GF1 sound card
189@item
cc53d26d 190CS4231A compatible sound card
191@item
a92ff8c1 192PCI UHCI, OHCI, EHCI or XHCI USB controller and a virtual USB-1.1 hub.
0806e3f6
FB
193@end itemize
194
3f9f3aa1
FB
195SMP is supported with up to 255 CPUs.
196
a8ad4159 197QEMU uses the PC BIOS from the Seabios project and the Plex86/Bochs LGPL
15a34c63
FB
198VGA BIOS.
199
c0fe3827
FB
200QEMU uses YM3812 emulation by Tatsuyuki Satoh.
201
2d983446 202QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
26463dbc 203by Tibor "TS" Schütz.
423d65f4 204
1a1a0e20 205Note that, by default, GUS shares IRQ(7) with parallel ports and so
b65ee4fa 206QEMU must be told to not have parallel ports to have working GUS.
720036a5 207
208@example
3804da9d 209qemu-system-i386 dos.img -soundhw gus -parallel none
720036a5 210@end example
211
212Alternatively:
213@example
3804da9d 214qemu-system-i386 dos.img -device gus,irq=5
720036a5 215@end example
216
217Or some other unclaimed IRQ.
218
cc53d26d 219CS4231A is the chip used in Windows Sound System and GUSMAX products
220
0806e3f6
FB
221@c man end
222
debc7065 223@node pcsys_quickstart
1eb20527 224@section Quick Start
7544a042 225@cindex quick start
1eb20527 226
285dc330 227Download and uncompress the linux image (@file{linux.img}) and type:
0806e3f6
FB
228
229@example
3804da9d 230qemu-system-i386 linux.img
0806e3f6
FB
231@end example
232
233Linux should boot and give you a prompt.
234
6cc721cf 235@node sec_invocation
ec410fc9
FB
236@section Invocation
237
238@example
0806e3f6 239@c man begin SYNOPSIS
8485140f 240@command{qemu-system-i386} [@var{options}] [@var{disk_image}]
0806e3f6 241@c man end
ec410fc9
FB
242@end example
243
0806e3f6 244@c man begin OPTIONS
d2c639d6
BS
245@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
246targets do not need a disk image.
ec410fc9 247
5824d651 248@include qemu-options.texi
ec410fc9 249
3e11db9a
FB
250@c man end
251
e896d0f9
MA
252@subsection Device URL Syntax
253@c TODO merge this with section Disk Images
254
255@c man begin NOTES
256
257In addition to using normal file images for the emulated storage devices,
258QEMU can also use networked resources such as iSCSI devices. These are
259specified using a special URL syntax.
260
261@table @option
262@item iSCSI
263iSCSI support allows QEMU to access iSCSI resources directly and use as
264images for the guest storage. Both disk and cdrom images are supported.
265
266Syntax for specifying iSCSI LUNs is
267``iscsi://<target-ip>[:<port>]/<target-iqn>/<lun>''
268
269By default qemu will use the iSCSI initiator-name
270'iqn.2008-11.org.linux-kvm[:<name>]' but this can also be set from the command
271line or a configuration file.
272
273Since version Qemu 2.4 it is possible to specify a iSCSI request timeout to detect
274stalled requests and force a reestablishment of the session. The timeout
275is specified in seconds. The default is 0 which means no timeout. Libiscsi
2761.15.0 or greater is required for this feature.
277
278Example (without authentication):
279@example
280qemu-system-i386 -iscsi initiator-name=iqn.2001-04.com.example:my-initiator \
281 -cdrom iscsi://192.0.2.1/iqn.2001-04.com.example/2 \
282 -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1
283@end example
284
285Example (CHAP username/password via URL):
286@example
287qemu-system-i386 -drive file=iscsi://user%password@@192.0.2.1/iqn.2001-04.com.example/1
288@end example
289
290Example (CHAP username/password via environment variables):
291@example
292LIBISCSI_CHAP_USERNAME="user" \
293LIBISCSI_CHAP_PASSWORD="password" \
294qemu-system-i386 -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1
295@end example
296
297@item NBD
298QEMU supports NBD (Network Block Devices) both using TCP protocol as well
299as Unix Domain Sockets.
300
301Syntax for specifying a NBD device using TCP
302``nbd:<server-ip>:<port>[:exportname=<export>]''
303
304Syntax for specifying a NBD device using Unix Domain Sockets
305``nbd:unix:<domain-socket>[:exportname=<export>]''
306
307Example for TCP
308@example
309qemu-system-i386 --drive file=nbd:192.0.2.1:30000
310@end example
311
312Example for Unix Domain Sockets
313@example
314qemu-system-i386 --drive file=nbd:unix:/tmp/nbd-socket
315@end example
316
317@item SSH
318QEMU supports SSH (Secure Shell) access to remote disks.
319
320Examples:
321@example
322qemu-system-i386 -drive file=ssh://user@@host/path/to/disk.img
323qemu-system-i386 -drive file.driver=ssh,file.user=user,file.host=host,file.port=22,file.path=/path/to/disk.img
324@end example
325
326Currently authentication must be done using ssh-agent. Other
327authentication methods may be supported in future.
328
329@item Sheepdog
330Sheepdog is a distributed storage system for QEMU.
331QEMU supports using either local sheepdog devices or remote networked
332devices.
333
334Syntax for specifying a sheepdog device
335@example
336sheepdog[+tcp|+unix]://[host:port]/vdiname[?socket=path][#snapid|#tag]
337@end example
338
339Example
340@example
341qemu-system-i386 --drive file=sheepdog://192.0.2.1:30000/MyVirtualMachine
342@end example
343
344See also @url{https://sheepdog.github.io/sheepdog/}.
345
346@item GlusterFS
347GlusterFS is a user space distributed file system.
348QEMU supports the use of GlusterFS volumes for hosting VM disk images using
349TCP, Unix Domain Sockets and RDMA transport protocols.
350
351Syntax for specifying a VM disk image on GlusterFS volume is
352@example
353
354URI:
355gluster[+type]://[host[:port]]/volume/path[?socket=...][,debug=N][,logfile=...]
356
357JSON:
358'json:@{"driver":"qcow2","file":@{"driver":"gluster","volume":"testvol","path":"a.img","debug":N,"logfile":"...",
359@ "server":[@{"type":"tcp","host":"...","port":"..."@},
360@ @{"type":"unix","socket":"..."@}]@}@}'
361@end example
362
363
364Example
365@example
366URI:
367qemu-system-x86_64 --drive file=gluster://192.0.2.1/testvol/a.img,
368@ file.debug=9,file.logfile=/var/log/qemu-gluster.log
369
370JSON:
371qemu-system-x86_64 'json:@{"driver":"qcow2",
372@ "file":@{"driver":"gluster",
373@ "volume":"testvol","path":"a.img",
374@ "debug":9,"logfile":"/var/log/qemu-gluster.log",
375@ "server":[@{"type":"tcp","host":"1.2.3.4","port":24007@},
376@ @{"type":"unix","socket":"/var/run/glusterd.socket"@}]@}@}'
377qemu-system-x86_64 -drive driver=qcow2,file.driver=gluster,file.volume=testvol,file.path=/path/a.img,
378@ file.debug=9,file.logfile=/var/log/qemu-gluster.log,
379@ file.server.0.type=tcp,file.server.0.host=1.2.3.4,file.server.0.port=24007,
380@ file.server.1.type=unix,file.server.1.socket=/var/run/glusterd.socket
381@end example
382
383See also @url{http://www.gluster.org}.
384
385@item HTTP/HTTPS/FTP/FTPS
386QEMU supports read-only access to files accessed over http(s) and ftp(s).
387
388Syntax using a single filename:
389@example
390<protocol>://[<username>[:<password>]@@]<host>/<path>
391@end example
392
393where:
394@table @option
395@item protocol
396'http', 'https', 'ftp', or 'ftps'.
397
398@item username
399Optional username for authentication to the remote server.
400
401@item password
402Optional password for authentication to the remote server.
403
404@item host
405Address of the remote server.
406
407@item path
408Path on the remote server, including any query string.
409@end table
410
411The following options are also supported:
412@table @option
413@item url
414The full URL when passing options to the driver explicitly.
415
416@item readahead
417The amount of data to read ahead with each range request to the remote server.
418This value may optionally have the suffix 'T', 'G', 'M', 'K', 'k' or 'b'. If it
419does not have a suffix, it will be assumed to be in bytes. The value must be a
420multiple of 512 bytes. It defaults to 256k.
421
422@item sslverify
423Whether to verify the remote server's certificate when connecting over SSL. It
424can have the value 'on' or 'off'. It defaults to 'on'.
425
426@item cookie
427Send this cookie (it can also be a list of cookies separated by ';') with
428each outgoing request. Only supported when using protocols such as HTTP
429which support cookies, otherwise ignored.
430
431@item timeout
432Set the timeout in seconds of the CURL connection. This timeout is the time
433that CURL waits for a response from the remote server to get the size of the
434image to be downloaded. If not set, the default timeout of 5 seconds is used.
435@end table
436
437Note that when passing options to qemu explicitly, @option{driver} is the value
438of <protocol>.
439
440Example: boot from a remote Fedora 20 live ISO image
441@example
442qemu-system-x86_64 --drive media=cdrom,file=http://dl.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly
443
444qemu-system-x86_64 --drive media=cdrom,file.driver=http,file.url=http://dl.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly
445@end example
446
447Example: boot from a remote Fedora 20 cloud image using a local overlay for
448writes, copy-on-read, and a readahead of 64k
449@example
450qemu-img create -f qcow2 -o backing_file='json:@{"file.driver":"http",, "file.url":"https://dl.fedoraproject.org/pub/fedora/linux/releases/20/Images/x86_64/Fedora-x86_64-20-20131211.1-sda.qcow2",, "file.readahead":"64k"@}' /tmp/Fedora-x86_64-20-20131211.1-sda.qcow2
451
452qemu-system-x86_64 -drive file=/tmp/Fedora-x86_64-20-20131211.1-sda.qcow2,copy-on-read=on
453@end example
454
455Example: boot from an image stored on a VMware vSphere server with a self-signed
456certificate using a local overlay for writes, a readahead of 64k and a timeout
457of 10 seconds.
458@example
459qemu-img create -f qcow2 -o backing_file='json:@{"file.driver":"https",, "file.url":"https://user:password@@vsphere.example.com/folder/test/test-flat.vmdk?dcPath=Datacenter&dsName=datastore1",, "file.sslverify":"off",, "file.readahead":"64k",, "file.timeout":10@}' /tmp/test.qcow2
460
461qemu-system-x86_64 -drive file=/tmp/test.qcow2
462@end example
463
464@end table
465
466@c man end
467
debc7065 468@node pcsys_keys
a40db1b3 469@section Keys in the graphical frontends
3e11db9a
FB
470
471@c man begin OPTIONS
472
de1db2a1
BH
473During the graphical emulation, you can use special key combinations to change
474modes. The default key mappings are shown below, but if you use @code{-alt-grab}
475then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
476@code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
477
a1b74fe8 478@table @key
f9859310 479@item Ctrl-Alt-f
7544a042 480@kindex Ctrl-Alt-f
a1b74fe8 481Toggle full screen
a0a821a4 482
d6a65ba3
JK
483@item Ctrl-Alt-+
484@kindex Ctrl-Alt-+
485Enlarge the screen
486
487@item Ctrl-Alt--
488@kindex Ctrl-Alt--
489Shrink the screen
490
c4a735f9 491@item Ctrl-Alt-u
7544a042 492@kindex Ctrl-Alt-u
c4a735f9 493Restore the screen's un-scaled dimensions
494
f9859310 495@item Ctrl-Alt-n
7544a042 496@kindex Ctrl-Alt-n
a0a821a4
FB
497Switch to virtual console 'n'. Standard console mappings are:
498@table @emph
499@item 1
500Target system display
501@item 2
502Monitor
503@item 3
504Serial port
a1b74fe8
FB
505@end table
506
f9859310 507@item Ctrl-Alt
7544a042 508@kindex Ctrl-Alt
a0a821a4
FB
509Toggle mouse and keyboard grab.
510@end table
511
7544a042
SW
512@kindex Ctrl-Up
513@kindex Ctrl-Down
514@kindex Ctrl-PageUp
515@kindex Ctrl-PageDown
3e11db9a
FB
516In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
517@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
518
a40db1b3
PM
519@c man end
520
521@node mux_keys
522@section Keys in the character backend multiplexer
523
524@c man begin OPTIONS
525
526During emulation, if you are using a character backend multiplexer
527(which is the default if you are using @option{-nographic}) then
528several commands are available via an escape sequence. These
529key sequences all start with an escape character, which is @key{Ctrl-a}
530by default, but can be changed with @option{-echr}. The list below assumes
531you're using the default.
ec410fc9
FB
532
533@table @key
a1b74fe8 534@item Ctrl-a h
7544a042 535@kindex Ctrl-a h
ec410fc9 536Print this help
3b46e624 537@item Ctrl-a x
7544a042 538@kindex Ctrl-a x
366dfc52 539Exit emulator
3b46e624 540@item Ctrl-a s
7544a042 541@kindex Ctrl-a s
1f47a922 542Save disk data back to file (if -snapshot)
20d8a3ed 543@item Ctrl-a t
7544a042 544@kindex Ctrl-a t
d2c639d6 545Toggle console timestamps
a1b74fe8 546@item Ctrl-a b
7544a042 547@kindex Ctrl-a b
1f673135 548Send break (magic sysrq in Linux)
a1b74fe8 549@item Ctrl-a c
7544a042 550@kindex Ctrl-a c
a40db1b3
PM
551Rotate between the frontends connected to the multiplexer (usually
552this switches between the monitor and the console)
a1b74fe8 553@item Ctrl-a Ctrl-a
a40db1b3
PM
554@kindex Ctrl-a Ctrl-a
555Send the escape character to the frontend
ec410fc9 556@end table
0806e3f6
FB
557@c man end
558
559@ignore
560
1f673135
FB
561@c man begin SEEALSO
562The HTML documentation of QEMU for more precise information and Linux
563user mode emulator invocation.
564@c man end
565
566@c man begin AUTHOR
567Fabrice Bellard
568@c man end
569
570@end ignore
571
debc7065 572@node pcsys_monitor
1f673135 573@section QEMU Monitor
7544a042 574@cindex QEMU monitor
1f673135
FB
575
576The QEMU monitor is used to give complex commands to the QEMU
577emulator. You can use it to:
578
579@itemize @minus
580
581@item
e598752a 582Remove or insert removable media images
89dfe898 583(such as CD-ROM or floppies).
1f673135 584
5fafdf24 585@item
1f673135
FB
586Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
587from a disk file.
588
589@item Inspect the VM state without an external debugger.
590
591@end itemize
592
593@subsection Commands
594
595The following commands are available:
596
2313086a 597@include qemu-monitor.texi
0806e3f6 598
2cd8af2d
PB
599@include qemu-monitor-info.texi
600
1f673135
FB
601@subsection Integer expressions
602
603The monitor understands integers expressions for every integer
604argument. You can use register names to get the value of specifics
605CPU registers by prefixing them with @emph{$}.
ec410fc9 606
2544e9e4
DB
607@node cpu_models
608@section CPU models
609
610@include docs/qemu-cpu-models.texi
611
1f47a922
FB
612@node disk_images
613@section Disk Images
614
ee29bdb6
PB
615QEMU supports many disk image formats, including growable disk images
616(their size increase as non empty sectors are written), compressed and
617encrypted disk images.
1f47a922 618
debc7065
FB
619@menu
620* disk_images_quickstart:: Quick start for disk image creation
621* disk_images_snapshot_mode:: Snapshot mode
13a2e80f 622* vm_snapshots:: VM snapshots
debc7065 623* qemu_img_invocation:: qemu-img Invocation
975b092b 624* qemu_nbd_invocation:: qemu-nbd Invocation
d3067b02 625* disk_images_formats:: Disk image file formats
19cb3738 626* host_drives:: Using host drives
debc7065 627* disk_images_fat_images:: Virtual FAT disk images
75818250 628* disk_images_nbd:: NBD access
42af9c30 629* disk_images_sheepdog:: Sheepdog disk images
00984e39 630* disk_images_iscsi:: iSCSI LUNs
8809e289 631* disk_images_gluster:: GlusterFS disk images
0a12ec87 632* disk_images_ssh:: Secure Shell (ssh) disk images
e86de5e4 633* disk_images_nvme:: NVMe userspace driver
b1d1cb27 634* disk_image_locking:: Disk image file locking
debc7065
FB
635@end menu
636
637@node disk_images_quickstart
acd935ef
FB
638@subsection Quick start for disk image creation
639
640You can create a disk image with the command:
1f47a922 641@example
acd935ef 642qemu-img create myimage.img mysize
1f47a922 643@end example
acd935ef
FB
644where @var{myimage.img} is the disk image filename and @var{mysize} is its
645size in kilobytes. You can add an @code{M} suffix to give the size in
646megabytes and a @code{G} suffix for gigabytes.
647
debc7065 648See @ref{qemu_img_invocation} for more information.
1f47a922 649
debc7065 650@node disk_images_snapshot_mode
1f47a922
FB
651@subsection Snapshot mode
652
653If you use the option @option{-snapshot}, all disk images are
654considered as read only. When sectors in written, they are written in
655a temporary file created in @file{/tmp}. You can however force the
acd935ef
FB
656write back to the raw disk images by using the @code{commit} monitor
657command (or @key{C-a s} in the serial console).
1f47a922 658
13a2e80f
FB
659@node vm_snapshots
660@subsection VM snapshots
661
662VM snapshots are snapshots of the complete virtual machine including
663CPU state, RAM, device state and the content of all the writable
664disks. In order to use VM snapshots, you must have at least one non
665removable and writable block device using the @code{qcow2} disk image
666format. Normally this device is the first virtual hard drive.
667
668Use the monitor command @code{savevm} to create a new VM snapshot or
669replace an existing one. A human readable name can be assigned to each
19d36792 670snapshot in addition to its numerical ID.
13a2e80f
FB
671
672Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
673a VM snapshot. @code{info snapshots} lists the available snapshots
674with their associated information:
675
676@example
677(qemu) info snapshots
678Snapshot devices: hda
679Snapshot list (from hda):
680ID TAG VM SIZE DATE VM CLOCK
6811 start 41M 2006-08-06 12:38:02 00:00:14.954
6822 40M 2006-08-06 12:43:29 00:00:18.633
6833 msys 40M 2006-08-06 12:44:04 00:00:23.514
684@end example
685
686A VM snapshot is made of a VM state info (its size is shown in
687@code{info snapshots}) and a snapshot of every writable disk image.
688The VM state info is stored in the first @code{qcow2} non removable
689and writable block device. The disk image snapshots are stored in
690every disk image. The size of a snapshot in a disk image is difficult
691to evaluate and is not shown by @code{info snapshots} because the
692associated disk sectors are shared among all the snapshots to save
19d36792
FB
693disk space (otherwise each snapshot would need a full copy of all the
694disk images).
13a2e80f
FB
695
696When using the (unrelated) @code{-snapshot} option
697(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
698but they are deleted as soon as you exit QEMU.
699
700VM snapshots currently have the following known limitations:
701@itemize
5fafdf24 702@item
13a2e80f
FB
703They cannot cope with removable devices if they are removed or
704inserted after a snapshot is done.
5fafdf24 705@item
13a2e80f
FB
706A few device drivers still have incomplete snapshot support so their
707state is not saved or restored properly (in particular USB).
708@end itemize
709
acd935ef
FB
710@node qemu_img_invocation
711@subsection @code{qemu-img} Invocation
1f47a922 712
acd935ef 713@include qemu-img.texi
05efe46e 714
975b092b
TS
715@node qemu_nbd_invocation
716@subsection @code{qemu-nbd} Invocation
717
718@include qemu-nbd.texi
719
78aa8aa0 720@include docs/qemu-block-drivers.texi
0a12ec87 721
debc7065 722@node pcsys_network
9d4fb82e
FB
723@section Network emulation
724
0e0266c2
TH
725QEMU can simulate several network cards (e.g. PCI or ISA cards on the PC
726target) and can connect them to a network backend on the host or an emulated
727hub. The various host network backends can either be used to connect the NIC of
728the guest to a real network (e.g. by using a TAP devices or the non-privileged
729user mode network stack), or to other guest instances running in another QEMU
730process (e.g. by using the socket host network backend).
9d4fb82e 731
41d03949
FB
732@subsection Using TAP network interfaces
733
734This is the standard way to connect QEMU to a real network. QEMU adds
735a virtual network device on your host (called @code{tapN}), and you
736can then configure it as if it was a real ethernet card.
9d4fb82e 737
8f40c388
FB
738@subsubsection Linux host
739
9d4fb82e
FB
740As an example, you can download the @file{linux-test-xxx.tar.gz}
741archive and copy the script @file{qemu-ifup} in @file{/etc} and
742configure properly @code{sudo} so that the command @code{ifconfig}
743contained in @file{qemu-ifup} can be executed as root. You must verify
41d03949 744that your host kernel supports the TAP network interfaces: the
9d4fb82e
FB
745device @file{/dev/net/tun} must be present.
746
ee0f4751
FB
747See @ref{sec_invocation} to have examples of command lines using the
748TAP network interfaces.
9d4fb82e 749
8f40c388
FB
750@subsubsection Windows host
751
752There is a virtual ethernet driver for Windows 2000/XP systems, called
753TAP-Win32. But it is not included in standard QEMU for Windows,
754so you will need to get it separately. It is part of OpenVPN package,
70b7fba9 755so download OpenVPN from : @url{https://openvpn.net/}.
8f40c388 756
9d4fb82e
FB
757@subsection Using the user mode network stack
758
41d03949
FB
759By using the option @option{-net user} (default configuration if no
760@option{-net} option is specified), QEMU uses a completely user mode
4be456f1 761network stack (you don't need root privilege to use the virtual
41d03949 762network). The virtual network configuration is the following:
9d4fb82e
FB
763
764@example
765
0e0266c2 766 guest (10.0.2.15) <------> Firewall/DHCP server <-----> Internet
41d03949 767 | (10.0.2.2)
9d4fb82e 768 |
2518bd0d 769 ----> DNS server (10.0.2.3)
3b46e624 770 |
2518bd0d 771 ----> SMB server (10.0.2.4)
9d4fb82e
FB
772@end example
773
774The QEMU VM behaves as if it was behind a firewall which blocks all
775incoming connections. You can use a DHCP client to automatically
41d03949
FB
776configure the network in the QEMU VM. The DHCP server assign addresses
777to the hosts starting from 10.0.2.15.
9d4fb82e
FB
778
779In order to check that the user mode network is working, you can ping
780the address 10.0.2.2 and verify that you got an address in the range
78110.0.2.x from the QEMU virtual DHCP server.
782
37cbfcce
GH
783Note that ICMP traffic in general does not work with user mode networking.
784@code{ping}, aka. ICMP echo, to the local router (10.0.2.2) shall work,
785however. If you're using QEMU on Linux >= 3.0, it can use unprivileged ICMP
786ping sockets to allow @code{ping} to the Internet. The host admin has to set
787the ping_group_range in order to grant access to those sockets. To allow ping
788for GID 100 (usually users group):
789
790@example
791echo 100 100 > /proc/sys/net/ipv4/ping_group_range
792@end example
b415a407 793
9bf05444
FB
794When using the built-in TFTP server, the router is also the TFTP
795server.
796
c8c6afa8
TH
797When using the @option{'-netdev user,hostfwd=...'} option, TCP or UDP
798connections can be redirected from the host to the guest. It allows for
799example to redirect X11, telnet or SSH connections.
443f1376 800
0e0266c2
TH
801@subsection Hubs
802
803QEMU can simulate several hubs. A hub can be thought of as a virtual connection
804between several network devices. These devices can be for example QEMU virtual
805ethernet cards or virtual Host ethernet devices (TAP devices). You can connect
806guest NICs or host network backends to such a hub using the @option{-netdev
807hubport} or @option{-nic hubport} options. The legacy @option{-net} option
808also connects the given device to the emulated hub with ID 0 (i.e. the default
809hub) unless you specify a netdev with @option{-net nic,netdev=xxx} here.
41d03949 810
0e0266c2 811@subsection Connecting emulated networks between QEMU instances
41d03949 812
0e0266c2
TH
813Using the @option{-netdev socket} (or @option{-nic socket} or
814@option{-net socket}) option, it is possible to create emulated
815networks that span several QEMU instances.
816See the description of the @option{-netdev socket} option in the
817@ref{sec_invocation,,Invocation chapter} to have a basic example.
41d03949 818
576fd0a1 819@node pcsys_other_devs
6cbf4c8c
CM
820@section Other Devices
821
822@subsection Inter-VM Shared Memory device
823
5400c02b
MA
824On Linux hosts, a shared memory device is available. The basic syntax
825is:
6cbf4c8c
CM
826
827@example
5400c02b
MA
828qemu-system-x86_64 -device ivshmem-plain,memdev=@var{hostmem}
829@end example
830
831where @var{hostmem} names a host memory backend. For a POSIX shared
832memory backend, use something like
833
834@example
835-object memory-backend-file,size=1M,share,mem-path=/dev/shm/ivshmem,id=@var{hostmem}
6cbf4c8c
CM
836@end example
837
838If desired, interrupts can be sent between guest VMs accessing the same shared
839memory region. Interrupt support requires using a shared memory server and
840using a chardev socket to connect to it. The code for the shared memory server
841is qemu.git/contrib/ivshmem-server. An example syntax when using the shared
842memory server is:
843
844@example
a75eb03b 845# First start the ivshmem server once and for all
50d34c4e 846ivshmem-server -p @var{pidfile} -S @var{path} -m @var{shm-name} -l @var{shm-size} -n @var{vectors}
a75eb03b
DM
847
848# Then start your qemu instances with matching arguments
5400c02b 849qemu-system-x86_64 -device ivshmem-doorbell,vectors=@var{vectors},chardev=@var{id}
50d34c4e 850 -chardev socket,path=@var{path},id=@var{id}
6cbf4c8c
CM
851@end example
852
853When using the server, the guest will be assigned a VM ID (>=0) that allows guests
854using the same server to communicate via interrupts. Guests can read their
1309cf44 855VM ID from a device register (see ivshmem-spec.txt).
6cbf4c8c 856
62a830b6
MA
857@subsubsection Migration with ivshmem
858
5400c02b
MA
859With device property @option{master=on}, the guest will copy the shared
860memory on migration to the destination host. With @option{master=off},
861the guest will not be able to migrate with the device attached. In the
862latter case, the device should be detached and then reattached after
863migration using the PCI hotplug support.
6cbf4c8c 864
62a830b6
MA
865At most one of the devices sharing the same memory can be master. The
866master must complete migration before you plug back the other devices.
867
7d4f4bda
MAL
868@subsubsection ivshmem and hugepages
869
870Instead of specifying the <shm size> using POSIX shm, you may specify
871a memory backend that has hugepage support:
872
873@example
5400c02b
MA
874qemu-system-x86_64 -object memory-backend-file,size=1G,mem-path=/dev/hugepages/my-shmem-file,share,id=mb1
875 -device ivshmem-plain,memdev=mb1
7d4f4bda
MAL
876@end example
877
878ivshmem-server also supports hugepages mount points with the
879@option{-m} memory path argument.
880
9d4fb82e
FB
881@node direct_linux_boot
882@section Direct Linux Boot
1f673135
FB
883
884This section explains how to launch a Linux kernel inside QEMU without
885having to make a full bootable image. It is very useful for fast Linux
ee0f4751 886kernel testing.
1f673135 887
ee0f4751 888The syntax is:
1f673135 889@example
3804da9d 890qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1f673135
FB
891@end example
892
ee0f4751
FB
893Use @option{-kernel} to provide the Linux kernel image and
894@option{-append} to give the kernel command line arguments. The
895@option{-initrd} option can be used to provide an INITRD image.
1f673135 896
ee0f4751
FB
897When using the direct Linux boot, a disk image for the first hard disk
898@file{hda} is required because its boot sector is used to launch the
899Linux kernel.
1f673135 900
ee0f4751
FB
901If you do not need graphical output, you can disable it and redirect
902the virtual serial port and the QEMU monitor to the console with the
903@option{-nographic} option. The typical command line is:
1f673135 904@example
3804da9d
SW
905qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
906 -append "root=/dev/hda console=ttyS0" -nographic
1f673135
FB
907@end example
908
ee0f4751
FB
909Use @key{Ctrl-a c} to switch between the serial console and the
910monitor (@pxref{pcsys_keys}).
1f673135 911
debc7065 912@node pcsys_usb
b389dbfb
FB
913@section USB emulation
914
a92ff8c1
TH
915QEMU can emulate a PCI UHCI, OHCI, EHCI or XHCI USB controller. You can
916plug virtual USB devices or real host USB devices (only works with certain
917host operating systems). QEMU will automatically create and connect virtual
918USB hubs as necessary to connect multiple USB devices.
b389dbfb 919
0aff66b5
PB
920@menu
921* usb_devices::
922* host_usb_devices::
923@end menu
924@node usb_devices
925@subsection Connecting USB devices
b389dbfb 926
a92ff8c1
TH
927USB devices can be connected with the @option{-device usb-...} command line
928option or the @code{device_add} monitor command. Available devices are:
b389dbfb 929
db380c06 930@table @code
a92ff8c1 931@item usb-mouse
0aff66b5 932Virtual Mouse. This will override the PS/2 mouse emulation when activated.
a92ff8c1 933@item usb-tablet
c6d46c20 934Pointer device that uses absolute coordinates (like a touchscreen).
b65ee4fa 935This means QEMU is able to report the mouse position without having
0aff66b5 936to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
a92ff8c1
TH
937@item usb-storage,drive=@var{drive_id}
938Mass storage device backed by @var{drive_id} (@pxref{disk_images})
939@item usb-uas
940USB attached SCSI device, see
70b7fba9 941@url{https://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/usb-storage.txt,usb-storage.txt}
a92ff8c1
TH
942for details
943@item usb-bot
944Bulk-only transport storage device, see
70b7fba9 945@url{https://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/usb-storage.txt,usb-storage.txt}
a92ff8c1 946for details here, too
1ee53067 947@item usb-mtp,rootdir=@var{dir}
a92ff8c1
TH
948Media transfer protocol device, using @var{dir} as root of the file tree
949that is presented to the guest.
950@item usb-host,hostbus=@var{bus},hostaddr=@var{addr}
951Pass through the host device identified by @var{bus} and @var{addr}
952@item usb-host,vendorid=@var{vendor},productid=@var{product}
953Pass through the host device identified by @var{vendor} and @var{product} ID
954@item usb-wacom-tablet
f6d2a316
AZ
955Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
956above but it can be used with the tslib library because in addition to touch
957coordinates it reports touch pressure.
a92ff8c1 958@item usb-kbd
47b2d338 959Standard USB keyboard. Will override the PS/2 keyboard (if present).
a92ff8c1 960@item usb-serial,chardev=@var{id}
db380c06 961Serial converter. This emulates an FTDI FT232BM chip connected to host character
a92ff8c1
TH
962device @var{id}.
963@item usb-braille,chardev=@var{id}
2e4d9fb1 964Braille device. This will use BrlAPI to display the braille output on a real
a92ff8c1
TH
965or fake device referenced by @var{id}.
966@item usb-net[,netdev=@var{id}]
967Network adapter that supports CDC ethernet and RNDIS protocols. @var{id}
968specifies a netdev defined with @code{-netdev @dots{},id=@var{id}}.
9ad97e65 969For instance, user-mode networking can be used with
6c9f886c 970@example
a92ff8c1 971qemu-system-i386 [...] -netdev user,id=net0 -device usb-net,netdev=net0
6c9f886c 972@end example
a92ff8c1
TH
973@item usb-ccid
974Smartcard reader device
975@item usb-audio
976USB audio device
977@item usb-bt-dongle
978Bluetooth dongle for the transport layer of HCI. It is connected to HCI
979scatternet 0 by default (corresponds to @code{-bt hci,vlan=0}).
980Note that the syntax for the @code{-device usb-bt-dongle} option is not as
981useful yet as it was with the legacy @code{-usbdevice} option. So to
982configure an USB bluetooth device, you might need to use
983"@code{-usbdevice bt}[:@var{hci-type}]" instead. This configures a
984bluetooth dongle whose type is specified in the same format as with
2d564691
AZ
985the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
986no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
987This USB device implements the USB Transport Layer of HCI. Example
988usage:
989@example
8485140f 990@command{qemu-system-i386} [...@var{OPTIONS}...] @option{-usbdevice} bt:hci,vlan=3 @option{-bt} device:keyboard,vlan=3
2d564691 991@end example
0aff66b5 992@end table
b389dbfb 993
0aff66b5 994@node host_usb_devices
b389dbfb
FB
995@subsection Using host USB devices on a Linux host
996
997WARNING: this is an experimental feature. QEMU will slow down when
998using it. USB devices requiring real time streaming (i.e. USB Video
999Cameras) are not supported yet.
1000
1001@enumerate
5fafdf24 1002@item If you use an early Linux 2.4 kernel, verify that no Linux driver
b389dbfb
FB
1003is actually using the USB device. A simple way to do that is simply to
1004disable the corresponding kernel module by renaming it from @file{mydriver.o}
1005to @file{mydriver.o.disabled}.
1006
1007@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1008@example
1009ls /proc/bus/usb
1010001 devices drivers
1011@end example
1012
1013@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1014@example
1015chown -R myuid /proc/bus/usb
1016@end example
1017
1018@item Launch QEMU and do in the monitor:
5fafdf24 1019@example
b389dbfb
FB
1020info usbhost
1021 Device 1.2, speed 480 Mb/s
1022 Class 00: USB device 1234:5678, USB DISK
1023@end example
1024You should see the list of the devices you can use (Never try to use
1025hubs, it won't work).
1026
1027@item Add the device in QEMU by using:
5fafdf24 1028@example
a92ff8c1 1029device_add usb-host,vendorid=0x1234,productid=0x5678
b389dbfb
FB
1030@end example
1031
a92ff8c1
TH
1032Normally the guest OS should report that a new USB device is plugged.
1033You can use the option @option{-device usb-host,...} to do the same.
b389dbfb
FB
1034
1035@item Now you can try to use the host USB device in QEMU.
1036
1037@end enumerate
1038
1039When relaunching QEMU, you may have to unplug and plug again the USB
1040device to make it work again (this is a bug).
1041
f858dcae
TS
1042@node vnc_security
1043@section VNC security
1044
1045The VNC server capability provides access to the graphical console
1046of the guest VM across the network. This has a number of security
1047considerations depending on the deployment scenarios.
1048
1049@menu
1050* vnc_sec_none::
1051* vnc_sec_password::
1052* vnc_sec_certificate::
1053* vnc_sec_certificate_verify::
1054* vnc_sec_certificate_pw::
2f9606b3
AL
1055* vnc_sec_sasl::
1056* vnc_sec_certificate_sasl::
2f9606b3 1057* vnc_setup_sasl::
f858dcae
TS
1058@end menu
1059@node vnc_sec_none
1060@subsection Without passwords
1061
1062The simplest VNC server setup does not include any form of authentication.
1063For this setup it is recommended to restrict it to listen on a UNIX domain
1064socket only. For example
1065
1066@example
3804da9d 1067qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
f858dcae
TS
1068@end example
1069
1070This ensures that only users on local box with read/write access to that
1071path can access the VNC server. To securely access the VNC server from a
1072remote machine, a combination of netcat+ssh can be used to provide a secure
1073tunnel.
1074
1075@node vnc_sec_password
1076@subsection With passwords
1077
1078The VNC protocol has limited support for password based authentication. Since
1079the protocol limits passwords to 8 characters it should not be considered
1080to provide high security. The password can be fairly easily brute-forced by
1081a client making repeat connections. For this reason, a VNC server using password
1082authentication should be restricted to only listen on the loopback interface
0f66998f
PM
1083or UNIX domain sockets. Password authentication is not supported when operating
1084in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password
1085authentication is requested with the @code{password} option, and then once QEMU
1086is running the password is set with the monitor. Until the monitor is used to
1087set the password all clients will be rejected.
f858dcae
TS
1088
1089@example
3804da9d 1090qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio
f858dcae
TS
1091(qemu) change vnc password
1092Password: ********
1093(qemu)
1094@end example
1095
1096@node vnc_sec_certificate
1097@subsection With x509 certificates
1098
1099The QEMU VNC server also implements the VeNCrypt extension allowing use of
1100TLS for encryption of the session, and x509 certificates for authentication.
1101The use of x509 certificates is strongly recommended, because TLS on its
1102own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1103support provides a secure session, but no authentication. This allows any
1104client to connect, and provides an encrypted session.
1105
1106@example
756b9da7
DB
1107qemu-system-i386 [...OPTIONS...] \
1108 -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server,verify-peer=no \
1109 -vnc :1,tls-creds=tls0 -monitor stdio
f858dcae
TS
1110@end example
1111
1112In the above example @code{/etc/pki/qemu} should contain at least three files,
1113@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1114users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1115NB the @code{server-key.pem} file should be protected with file mode 0600 to
1116only be readable by the user owning it.
1117
1118@node vnc_sec_certificate_verify
1119@subsection With x509 certificates and client verification
1120
1121Certificates can also provide a means to authenticate the client connecting.
1122The server will request that the client provide a certificate, which it will
1123then validate against the CA certificate. This is a good choice if deploying
756b9da7
DB
1124in an environment with a private internal certificate authority. It uses the
1125same syntax as previously, but with @code{verify-peer} set to @code{yes}
1126instead.
f858dcae
TS
1127
1128@example
756b9da7
DB
1129qemu-system-i386 [...OPTIONS...] \
1130 -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server,verify-peer=yes \
1131 -vnc :1,tls-creds=tls0 -monitor stdio
f858dcae
TS
1132@end example
1133
1134
1135@node vnc_sec_certificate_pw
1136@subsection With x509 certificates, client verification and passwords
1137
1138Finally, the previous method can be combined with VNC password authentication
1139to provide two layers of authentication for clients.
1140
1141@example
756b9da7
DB
1142qemu-system-i386 [...OPTIONS...] \
1143 -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server,verify-peer=yes \
1144 -vnc :1,tls-creds=tls0,password -monitor stdio
f858dcae
TS
1145(qemu) change vnc password
1146Password: ********
1147(qemu)
1148@end example
1149
2f9606b3
AL
1150
1151@node vnc_sec_sasl
1152@subsection With SASL authentication
1153
1154The SASL authentication method is a VNC extension, that provides an
1155easily extendable, pluggable authentication method. This allows for
1156integration with a wide range of authentication mechanisms, such as
1157PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1158The strength of the authentication depends on the exact mechanism
1159configured. If the chosen mechanism also provides a SSF layer, then
1160it will encrypt the datastream as well.
1161
1162Refer to the later docs on how to choose the exact SASL mechanism
1163used for authentication, but assuming use of one supporting SSF,
1164then QEMU can be launched with:
1165
1166@example
3804da9d 1167qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio
2f9606b3
AL
1168@end example
1169
1170@node vnc_sec_certificate_sasl
1171@subsection With x509 certificates and SASL authentication
1172
1173If the desired SASL authentication mechanism does not supported
1174SSF layers, then it is strongly advised to run it in combination
1175with TLS and x509 certificates. This provides securely encrypted
1176data stream, avoiding risk of compromising of the security
1177credentials. This can be enabled, by combining the 'sasl' option
1178with the aforementioned TLS + x509 options:
1179
1180@example
756b9da7
DB
1181qemu-system-i386 [...OPTIONS...] \
1182 -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server,verify-peer=yes \
1183 -vnc :1,tls-creds=tls0,sasl -monitor stdio
2f9606b3
AL
1184@end example
1185
5d19a6ea
DB
1186@node vnc_setup_sasl
1187
1188@subsection Configuring SASL mechanisms
1189
1190The following documentation assumes use of the Cyrus SASL implementation on a
1191Linux host, but the principles should apply to any other SASL implementation
1192or host. When SASL is enabled, the mechanism configuration will be loaded from
1193system default SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1194unprivileged user, an environment variable SASL_CONF_PATH can be used to make
1195it search alternate locations for the service config file.
1196
1197If the TLS option is enabled for VNC, then it will provide session encryption,
1198otherwise the SASL mechanism will have to provide encryption. In the latter
1199case the list of possible plugins that can be used is drastically reduced. In
1200fact only the GSSAPI SASL mechanism provides an acceptable level of security
1201by modern standards. Previous versions of QEMU referred to the DIGEST-MD5
1202mechanism, however, it has multiple serious flaws described in detail in
1203RFC 6331 and thus should never be used any more. The SCRAM-SHA-1 mechanism
1204provides a simple username/password auth facility similar to DIGEST-MD5, but
1205does not support session encryption, so can only be used in combination with
1206TLS.
2f9606b3 1207
5d19a6ea 1208When not using TLS the recommended configuration is
f858dcae 1209
5d19a6ea
DB
1210@example
1211mech_list: gssapi
1212keytab: /etc/qemu/krb5.tab
1213@end example
1214
1215This says to use the 'GSSAPI' mechanism with the Kerberos v5 protocol, with
1216the server principal stored in /etc/qemu/krb5.tab. For this to work the
1217administrator of your KDC must generate a Kerberos principal for the server,
1218with a name of 'qemu/somehost.example.com@@EXAMPLE.COM' replacing
1219'somehost.example.com' with the fully qualified host name of the machine
1220running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
1221
1222When using TLS, if username+password authentication is desired, then a
1223reasonable configuration is
1224
1225@example
1226mech_list: scram-sha-1
1227sasldb_path: /etc/qemu/passwd.db
1228@end example
1229
1230The @code{saslpasswd2} program can be used to populate the @code{passwd.db}
1231file with accounts.
1232
1233Other SASL configurations will be left as an exercise for the reader. Note that
1234all mechanisms, except GSSAPI, should be combined with use of TLS to ensure a
1235secure data channel.
1236
1237
1238@node network_tls
1239@section TLS setup for network services
1240
1241Almost all network services in QEMU have the ability to use TLS for
1242session data encryption, along with x509 certificates for simple
1243client authentication. What follows is a description of how to
1244generate certificates suitable for usage with QEMU, and applies to
1245the VNC server, character devices with the TCP backend, NBD server
1246and client, and migration server and client.
1247
1248At a high level, QEMU requires certificates and private keys to be
1249provided in PEM format. Aside from the core fields, the certificates
1250should include various extension data sets, including v3 basic
1251constraints data, key purpose, key usage and subject alt name.
1252
1253The GnuTLS package includes a command called @code{certtool} which can
1254be used to easily generate certificates and keys in the required format
1255with expected data present. Alternatively a certificate management
1256service may be used.
1257
1258At a minimum it is necessary to setup a certificate authority, and
1259issue certificates to each server. If using x509 certificates for
1260authentication, then each client will also need to be issued a
1261certificate.
1262
1263Assuming that the QEMU network services will only ever be exposed to
1264clients on a private intranet, there is no need to use a commercial
1265certificate authority to create certificates. A self-signed CA is
1266sufficient, and in fact likely to be more secure since it removes
1267the ability of malicious 3rd parties to trick the CA into mis-issuing
1268certs for impersonating your services. The only likely exception
1269where a commercial CA might be desirable is if enabling the VNC
1270websockets server and exposing it directly to remote browser clients.
1271In such a case it might be useful to use a commercial CA to avoid
1272needing to install custom CA certs in the web browsers.
1273
1274The recommendation is for the server to keep its certificates in either
1275@code{/etc/pki/qemu} or for unprivileged users in @code{$HOME/.pki/qemu}.
f858dcae
TS
1276
1277@menu
5d19a6ea
DB
1278* tls_generate_ca::
1279* tls_generate_server::
1280* tls_generate_client::
1281* tls_creds_setup::
e1a6dc91 1282* tls_psk::
f858dcae 1283@end menu
5d19a6ea
DB
1284@node tls_generate_ca
1285@subsection Setup the Certificate Authority
f858dcae
TS
1286
1287This step only needs to be performed once per organization / organizational
1288unit. First the CA needs a private key. This key must be kept VERY secret
1289and secure. If this key is compromised the entire trust chain of the certificates
1290issued with it is lost.
1291
1292@example
1293# certtool --generate-privkey > ca-key.pem
1294@end example
1295
5d19a6ea
DB
1296To generate a self-signed certificate requires one core piece of information,
1297the name of the organization. A template file @code{ca.info} should be
1298populated with the desired data to avoid having to deal with interactive
1299prompts from certtool:
f858dcae
TS
1300@example
1301# cat > ca.info <<EOF
1302cn = Name of your organization
1303ca
1304cert_signing_key
1305EOF
1306# certtool --generate-self-signed \
1307 --load-privkey ca-key.pem
1308 --template ca.info \
1309 --outfile ca-cert.pem
1310@end example
1311
5d19a6ea
DB
1312The @code{ca} keyword in the template sets the v3 basic constraints extension
1313to indicate this certificate is for a CA, while @code{cert_signing_key} sets
1314the key usage extension to indicate this will be used for signing other keys.
1315The generated @code{ca-cert.pem} file should be copied to all servers and
1316clients wishing to utilize TLS support in the VNC server. The @code{ca-key.pem}
1317must not be disclosed/copied anywhere except the host responsible for issuing
1318certificates.
f858dcae 1319
5d19a6ea
DB
1320@node tls_generate_server
1321@subsection Issuing server certificates
f858dcae
TS
1322
1323Each server (or host) needs to be issued with a key and certificate. When connecting
1324the certificate is sent to the client which validates it against the CA certificate.
5d19a6ea
DB
1325The core pieces of information for a server certificate are the hostnames and/or IP
1326addresses that will be used by clients when connecting. The hostname / IP address
1327that the client specifies when connecting will be validated against the hostname(s)
1328and IP address(es) recorded in the server certificate, and if no match is found
1329the client will close the connection.
1330
1331Thus it is recommended that the server certificate include both the fully qualified
1332and unqualified hostnames. If the server will have permanently assigned IP address(es),
1333and clients are likely to use them when connecting, they may also be included in the
1334certificate. Both IPv4 and IPv6 addresses are supported. Historically certificates
1335only included 1 hostname in the @code{CN} field, however, usage of this field for
1336validation is now deprecated. Instead modern TLS clients will validate against the
1337Subject Alt Name extension data, which allows for multiple entries. In the future
1338usage of the @code{CN} field may be discontinued entirely, so providing SAN
1339extension data is strongly recommended.
1340
1341On the host holding the CA, create template files containing the information
1342for each server, and use it to issue server certificates.
f858dcae
TS
1343
1344@example
5d19a6ea 1345# cat > server-hostNNN.info <<EOF
f858dcae 1346organization = Name of your organization
5d19a6ea
DB
1347cn = hostNNN.foo.example.com
1348dns_name = hostNNN
1349dns_name = hostNNN.foo.example.com
1350ip_address = 10.0.1.87
1351ip_address = 192.8.0.92
1352ip_address = 2620:0:cafe::87
1353ip_address = 2001:24::92
f858dcae
TS
1354tls_www_server
1355encryption_key
1356signing_key
1357EOF
5d19a6ea 1358# certtool --generate-privkey > server-hostNNN-key.pem
f858dcae
TS
1359# certtool --generate-certificate \
1360 --load-ca-certificate ca-cert.pem \
1361 --load-ca-privkey ca-key.pem \
5d19a6ea
DB
1362 --load-privkey server-hostNNN-key.pem \
1363 --template server-hostNNN.info \
1364 --outfile server-hostNNN-cert.pem
f858dcae
TS
1365@end example
1366
5d19a6ea
DB
1367The @code{dns_name} and @code{ip_address} fields in the template are setting
1368the subject alt name extension data. The @code{tls_www_server} keyword is the
1369key purpose extension to indicate this certificate is intended for usage in
1370a web server. Although QEMU network services are not in fact HTTP servers
1371(except for VNC websockets), setting this key purpose is still recommended.
1372The @code{encryption_key} and @code{signing_key} keyword is the key usage
1373extension to indicate this certificate is intended for usage in the data
1374session.
1375
1376The @code{server-hostNNN-key.pem} and @code{server-hostNNN-cert.pem} files
1377should now be securely copied to the server for which they were generated,
1378and renamed to @code{server-key.pem} and @code{server-cert.pem} when added
1379to the @code{/etc/pki/qemu} directory on the target host. The @code{server-key.pem}
1380file is security sensitive and should be kept protected with file mode 0600
1381to prevent disclosure.
1382
1383@node tls_generate_client
1384@subsection Issuing client certificates
f858dcae 1385
5d19a6ea
DB
1386The QEMU x509 TLS credential setup defaults to enabling client verification
1387using certificates, providing a simple authentication mechanism. If this
1388default is used, each client also needs to be issued a certificate. The client
1389certificate contains enough metadata to uniquely identify the client with the
1390scope of the certificate authority. The client certificate would typically
1391include fields for organization, state, city, building, etc.
1392
1393Once again on the host holding the CA, create template files containing the
1394information for each client, and use it to issue client certificates.
f858dcae 1395
f858dcae
TS
1396
1397@example
5d19a6ea 1398# cat > client-hostNNN.info <<EOF
f858dcae
TS
1399country = GB
1400state = London
5d19a6ea 1401locality = City Of London
63c693f8 1402organization = Name of your organization
5d19a6ea 1403cn = hostNNN.foo.example.com
f858dcae
TS
1404tls_www_client
1405encryption_key
1406signing_key
1407EOF
5d19a6ea 1408# certtool --generate-privkey > client-hostNNN-key.pem
f858dcae
TS
1409# certtool --generate-certificate \
1410 --load-ca-certificate ca-cert.pem \
1411 --load-ca-privkey ca-key.pem \
5d19a6ea
DB
1412 --load-privkey client-hostNNN-key.pem \
1413 --template client-hostNNN.info \
1414 --outfile client-hostNNN-cert.pem
f858dcae
TS
1415@end example
1416
5d19a6ea
DB
1417The subject alt name extension data is not required for clients, so the
1418the @code{dns_name} and @code{ip_address} fields are not included.
1419The @code{tls_www_client} keyword is the key purpose extension to indicate
1420this certificate is intended for usage in a web client. Although QEMU
1421network clients are not in fact HTTP clients, setting this key purpose is
1422still recommended. The @code{encryption_key} and @code{signing_key} keyword
1423is the key usage extension to indicate this certificate is intended for
1424usage in the data session.
1425
1426The @code{client-hostNNN-key.pem} and @code{client-hostNNN-cert.pem} files
1427should now be securely copied to the client for which they were generated,
1428and renamed to @code{client-key.pem} and @code{client-cert.pem} when added
1429to the @code{/etc/pki/qemu} directory on the target host. The @code{client-key.pem}
1430file is security sensitive and should be kept protected with file mode 0600
1431to prevent disclosure.
1432
1433If a single host is going to be using TLS in both a client and server
1434role, it is possible to create a single certificate to cover both roles.
1435This would be quite common for the migration and NBD services, where a
1436QEMU process will be started by accepting a TLS protected incoming migration,
1437and later itself be migrated out to another host. To generate a single
1438certificate, simply include the template data from both the client and server
1439instructions in one.
2f9606b3 1440
5d19a6ea
DB
1441@example
1442# cat > both-hostNNN.info <<EOF
1443country = GB
1444state = London
1445locality = City Of London
1446organization = Name of your organization
1447cn = hostNNN.foo.example.com
1448dns_name = hostNNN
1449dns_name = hostNNN.foo.example.com
1450ip_address = 10.0.1.87
1451ip_address = 192.8.0.92
1452ip_address = 2620:0:cafe::87
1453ip_address = 2001:24::92
1454tls_www_server
1455tls_www_client
1456encryption_key
1457signing_key
1458EOF
1459# certtool --generate-privkey > both-hostNNN-key.pem
1460# certtool --generate-certificate \
1461 --load-ca-certificate ca-cert.pem \
1462 --load-ca-privkey ca-key.pem \
1463 --load-privkey both-hostNNN-key.pem \
1464 --template both-hostNNN.info \
1465 --outfile both-hostNNN-cert.pem
1466@end example
c6a9a9f5 1467
5d19a6ea
DB
1468When copying the PEM files to the target host, save them twice,
1469once as @code{server-cert.pem} and @code{server-key.pem}, and
1470again as @code{client-cert.pem} and @code{client-key.pem}.
1471
1472@node tls_creds_setup
1473@subsection TLS x509 credential configuration
1474
1475QEMU has a standard mechanism for loading x509 credentials that will be
1476used for network services and clients. It requires specifying the
1477@code{tls-creds-x509} class name to the @code{--object} command line
1478argument for the system emulators. Each set of credentials loaded should
1479be given a unique string identifier via the @code{id} parameter. A single
1480set of TLS credentials can be used for multiple network backends, so VNC,
1481migration, NBD, character devices can all share the same credentials. Note,
1482however, that credentials for use in a client endpoint must be loaded
1483separately from those used in a server endpoint.
1484
1485When specifying the object, the @code{dir} parameters specifies which
1486directory contains the credential files. This directory is expected to
1487contain files with the names mentioned previously, @code{ca-cert.pem},
1488@code{server-key.pem}, @code{server-cert.pem}, @code{client-key.pem}
1489and @code{client-cert.pem} as appropriate. It is also possible to
1490include a set of pre-generated Diffie-Hellman (DH) parameters in a file
1491@code{dh-params.pem}, which can be created using the
1492@code{certtool --generate-dh-params} command. If omitted, QEMU will
1493dynamically generate DH parameters when loading the credentials.
1494
1495The @code{endpoint} parameter indicates whether the credentials will
1496be used for a network client or server, and determines which PEM
1497files are loaded.
1498
1499The @code{verify} parameter determines whether x509 certificate
1500validation should be performed. This defaults to enabled, meaning
1501clients will always validate the server hostname against the
1502certificate subject alt name fields and/or CN field. It also
1503means that servers will request that clients provide a certificate
1504and validate them. Verification should never be turned off for
1505client endpoints, however, it may be turned off for server endpoints
1506if an alternative mechanism is used to authenticate clients. For
1507example, the VNC server can use SASL to authenticate clients
1508instead.
1509
1510To load server credentials with client certificate validation
1511enabled
2f9606b3
AL
1512
1513@example
5d19a6ea 1514$QEMU -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server
2f9606b3
AL
1515@end example
1516
5d19a6ea 1517while to load client credentials use
2f9606b3
AL
1518
1519@example
5d19a6ea 1520$QEMU -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=client
2f9606b3
AL
1521@end example
1522
5d19a6ea
DB
1523Network services which support TLS will all have a @code{tls-creds}
1524parameter which expects the ID of the TLS credentials object. For
1525example with VNC:
2f9606b3 1526
5d19a6ea
DB
1527@example
1528$QEMU -vnc 0.0.0.0:0,tls-creds=tls0
1529@end example
2f9606b3 1530
e1a6dc91
RJ
1531@node tls_psk
1532@subsection TLS Pre-Shared Keys (PSK)
1533
1534Instead of using certificates, you may also use TLS Pre-Shared Keys
1535(TLS-PSK). This can be simpler to set up than certificates but is
1536less scalable.
1537
1538Use the GnuTLS @code{psktool} program to generate a @code{keys.psk}
1539file containing one or more usernames and random keys:
1540
1541@example
1542mkdir -m 0700 /tmp/keys
1543psktool -u rich -p /tmp/keys/keys.psk
1544@end example
1545
1546TLS-enabled servers such as qemu-nbd can use this directory like so:
1547
1548@example
1549qemu-nbd \
1550 -t -x / \
1551 --object tls-creds-psk,id=tls0,endpoint=server,dir=/tmp/keys \
1552 --tls-creds tls0 \
1553 image.qcow2
1554@end example
1555
1556When connecting from a qemu-based client you must specify the
1557directory containing @code{keys.psk} and an optional @var{username}
1558(defaults to ``qemu''):
1559
1560@example
1561qemu-img info \
1562 --object tls-creds-psk,id=tls0,dir=/tmp/keys,username=rich,endpoint=client \
1563 --image-opts \
1564 file.driver=nbd,file.host=localhost,file.port=10809,file.tls-creds=tls0,file.export=/
1565@end example
1566
0806e3f6 1567@node gdb_usage
da415d54
FB
1568@section GDB usage
1569
1570QEMU has a primitive support to work with gdb, so that you can do
0806e3f6 1571'Ctrl-C' while the virtual machine is running and inspect its state.
da415d54 1572
b65ee4fa 1573In order to use gdb, launch QEMU with the '-s' option. It will wait for a
da415d54
FB
1574gdb connection:
1575@example
3804da9d
SW
1576qemu-system-i386 -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1577 -append "root=/dev/hda"
da415d54
FB
1578Connected to host network interface: tun0
1579Waiting gdb connection on port 1234
1580@end example
1581
1582Then launch gdb on the 'vmlinux' executable:
1583@example
1584> gdb vmlinux
1585@end example
1586
1587In gdb, connect to QEMU:
1588@example
6c9bf893 1589(gdb) target remote localhost:1234
da415d54
FB
1590@end example
1591
1592Then you can use gdb normally. For example, type 'c' to launch the kernel:
1593@example
1594(gdb) c
1595@end example
1596
0806e3f6
FB
1597Here are some useful tips in order to use gdb on system code:
1598
1599@enumerate
1600@item
1601Use @code{info reg} to display all the CPU registers.
1602@item
1603Use @code{x/10i $eip} to display the code at the PC position.
1604@item
1605Use @code{set architecture i8086} to dump 16 bit code. Then use
294e8637 1606@code{x/10i $cs*16+$eip} to dump the code at the PC position.
0806e3f6
FB
1607@end enumerate
1608
60897d36
EI
1609Advanced debugging options:
1610
b6af0975 1611The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
94d45e44 1612@table @code
60897d36
EI
1613@item maintenance packet qqemu.sstepbits
1614
1615This will display the MASK bits used to control the single stepping IE:
1616@example
1617(gdb) maintenance packet qqemu.sstepbits
1618sending: "qqemu.sstepbits"
1619received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1620@end example
1621@item maintenance packet qqemu.sstep
1622
1623This will display the current value of the mask used when single stepping IE:
1624@example
1625(gdb) maintenance packet qqemu.sstep
1626sending: "qqemu.sstep"
1627received: "0x7"
1628@end example
1629@item maintenance packet Qqemu.sstep=HEX_VALUE
1630
1631This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1632@example
1633(gdb) maintenance packet Qqemu.sstep=0x5
1634sending: "qemu.sstep=0x5"
1635received: "OK"
1636@end example
94d45e44 1637@end table
60897d36 1638
debc7065 1639@node pcsys_os_specific
1a084f3d
FB
1640@section Target OS specific information
1641
1642@subsection Linux
1643
15a34c63
FB
1644To have access to SVGA graphic modes under X11, use the @code{vesa} or
1645the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1646color depth in the guest and the host OS.
1a084f3d 1647
e3371e62
FB
1648When using a 2.6 guest Linux kernel, you should add the option
1649@code{clock=pit} on the kernel command line because the 2.6 Linux
1650kernels make very strict real time clock checks by default that QEMU
1651cannot simulate exactly.
1652
7c3fc84d
FB
1653When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1654not activated because QEMU is slower with this patch. The QEMU
1655Accelerator Module is also much slower in this case. Earlier Fedora
4be456f1 1656Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
7c3fc84d
FB
1657patch by default. Newer kernels don't have it.
1658
1a084f3d
FB
1659@subsection Windows
1660
1661If you have a slow host, using Windows 95 is better as it gives the
1662best speed. Windows 2000 is also a good choice.
1663
e3371e62
FB
1664@subsubsection SVGA graphic modes support
1665
1666QEMU emulates a Cirrus Logic GD5446 Video
15a34c63
FB
1667card. All Windows versions starting from Windows 95 should recognize
1668and use this graphic card. For optimal performances, use 16 bit color
1669depth in the guest and the host OS.
1a084f3d 1670
3cb0853a
FB
1671If you are using Windows XP as guest OS and if you want to use high
1672resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
16731280x1024x16), then you should use the VESA VBE virtual graphic card
1674(option @option{-std-vga}).
1675
e3371e62
FB
1676@subsubsection CPU usage reduction
1677
1678Windows 9x does not correctly use the CPU HLT
15a34c63
FB
1679instruction. The result is that it takes host CPU cycles even when
1680idle. You can install the utility from
70b7fba9 1681@url{https://web.archive.org/web/20060212132151/http://www.user.cityline.ru/~maxamn/amnhltm.zip}
3ba34a70 1682to solve this problem. Note that no such tool is needed for NT, 2000 or XP.
1a084f3d 1683
9d0a8e6f 1684@subsubsection Windows 2000 disk full problem
e3371e62 1685
9d0a8e6f
FB
1686Windows 2000 has a bug which gives a disk full problem during its
1687installation. When installing it, use the @option{-win2k-hack} QEMU
1688option to enable a specific workaround. After Windows 2000 is
1689installed, you no longer need this option (this option slows down the
1690IDE transfers).
e3371e62 1691
6cc721cf
FB
1692@subsubsection Windows 2000 shutdown
1693
1694Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1695can. It comes from the fact that Windows 2000 does not automatically
1696use the APM driver provided by the BIOS.
1697
1698In order to correct that, do the following (thanks to Struan
1699Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1700Add/Troubleshoot a device => Add a new device & Next => No, select the
1701hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1702(again) a few times. Now the driver is installed and Windows 2000 now
5fafdf24 1703correctly instructs QEMU to shutdown at the appropriate moment.
6cc721cf
FB
1704
1705@subsubsection Share a directory between Unix and Windows
1706
c8c6afa8
TH
1707See @ref{sec_invocation} about the help of the option
1708@option{'-netdev user,smb=...'}.
6cc721cf 1709
2192c332 1710@subsubsection Windows XP security problem
e3371e62
FB
1711
1712Some releases of Windows XP install correctly but give a security
1713error when booting:
1714@example
1715A problem is preventing Windows from accurately checking the
1716license for this computer. Error code: 0x800703e6.
1717@end example
e3371e62 1718
2192c332
FB
1719The workaround is to install a service pack for XP after a boot in safe
1720mode. Then reboot, and the problem should go away. Since there is no
1721network while in safe mode, its recommended to download the full
1722installation of SP1 or SP2 and transfer that via an ISO or using the
1723vvfat block device ("-hdb fat:directory_which_holds_the_SP").
e3371e62 1724
a0a821a4
FB
1725@subsection MS-DOS and FreeDOS
1726
1727@subsubsection CPU usage reduction
1728
1729DOS does not correctly use the CPU HLT instruction. The result is that
3ba34a70 1730it takes host CPU cycles even when idle. You can install the utility from
70b7fba9 1731@url{https://web.archive.org/web/20051222085335/http://www.vmware.com/software/dosidle210.zip}
3ba34a70 1732to solve this problem.
a0a821a4 1733
debc7065 1734@node QEMU System emulator for non PC targets
3f9f3aa1
FB
1735@chapter QEMU System emulator for non PC targets
1736
1737QEMU is a generic emulator and it emulates many non PC
1738machines. Most of the options are similar to the PC emulator. The
4be456f1 1739differences are mentioned in the following sections.
3f9f3aa1 1740
debc7065 1741@menu
7544a042 1742* PowerPC System emulator::
24d4de45
TS
1743* Sparc32 System emulator::
1744* Sparc64 System emulator::
1745* MIPS System emulator::
1746* ARM System emulator::
1747* ColdFire System emulator::
7544a042
SW
1748* Cris System emulator::
1749* Microblaze System emulator::
1750* SH4 System emulator::
3aeaea65 1751* Xtensa System emulator::
debc7065
FB
1752@end menu
1753
7544a042
SW
1754@node PowerPC System emulator
1755@section PowerPC System emulator
1756@cindex system emulation (PowerPC)
1a084f3d 1757
15a34c63
FB
1758Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1759or PowerMac PowerPC system.
1a084f3d 1760
b671f9ed 1761QEMU emulates the following PowerMac peripherals:
1a084f3d 1762
15a34c63 1763@itemize @minus
5fafdf24 1764@item
006f3a48 1765UniNorth or Grackle PCI Bridge
15a34c63
FB
1766@item
1767PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1768@item
15a34c63 17692 PMAC IDE interfaces with hard disk and CD-ROM support
5fafdf24 1770@item
15a34c63
FB
1771NE2000 PCI adapters
1772@item
1773Non Volatile RAM
1774@item
1775VIA-CUDA with ADB keyboard and mouse.
1a084f3d
FB
1776@end itemize
1777
b671f9ed 1778QEMU emulates the following PREP peripherals:
52c00a5f
FB
1779
1780@itemize @minus
5fafdf24 1781@item
15a34c63
FB
1782PCI Bridge
1783@item
1784PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1785@item
52c00a5f
FB
17862 IDE interfaces with hard disk and CD-ROM support
1787@item
1788Floppy disk
5fafdf24 1789@item
15a34c63 1790NE2000 network adapters
52c00a5f
FB
1791@item
1792Serial port
1793@item
1794PREP Non Volatile RAM
15a34c63
FB
1795@item
1796PC compatible keyboard and mouse.
52c00a5f
FB
1797@end itemize
1798
15a34c63 1799QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
3f9f3aa1 1800@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
52c00a5f 1801
70b7fba9 1802Since version 0.9.1, QEMU uses OpenBIOS @url{https://www.openbios.org/}
006f3a48
BS
1803for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1804v2) portable firmware implementation. The goal is to implement a 100%
1805IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
992e5acd 1806
15a34c63
FB
1807@c man begin OPTIONS
1808
1809The following options are specific to the PowerPC emulation:
1810
1811@table @option
1812
4e257e5e 1813@item -g @var{W}x@var{H}[x@var{DEPTH}]
15a34c63 1814
340fb41b 1815Set the initial VGA graphic mode. The default is 800x600x32.
15a34c63 1816
4e257e5e 1817@item -prom-env @var{string}
95efd11c
BS
1818
1819Set OpenBIOS variables in NVRAM, for example:
1820
1821@example
1822qemu-system-ppc -prom-env 'auto-boot?=false' \
1823 -prom-env 'boot-device=hd:2,\yaboot' \
1824 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1825@end example
1826
1827These variables are not used by Open Hack'Ware.
1828
15a34c63
FB
1829@end table
1830
5fafdf24 1831@c man end
15a34c63
FB
1832
1833
52c00a5f 1834More information is available at
3f9f3aa1 1835@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
52c00a5f 1836
24d4de45
TS
1837@node Sparc32 System emulator
1838@section Sparc32 System emulator
7544a042 1839@cindex system emulation (Sparc32)
e80cfcfc 1840
34a3d239
BS
1841Use the executable @file{qemu-system-sparc} to simulate the following
1842Sun4m architecture machines:
1843@itemize @minus
1844@item
1845SPARCstation 4
1846@item
1847SPARCstation 5
1848@item
1849SPARCstation 10
1850@item
1851SPARCstation 20
1852@item
1853SPARCserver 600MP
1854@item
1855SPARCstation LX
1856@item
1857SPARCstation Voyager
1858@item
1859SPARCclassic
1860@item
1861SPARCbook
1862@end itemize
1863
1864The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1865but Linux limits the number of usable CPUs to 4.
e80cfcfc 1866
6a4e1771 1867QEMU emulates the following sun4m peripherals:
e80cfcfc
FB
1868
1869@itemize @minus
3475187d 1870@item
6a4e1771 1871IOMMU
e80cfcfc 1872@item
33632788 1873TCX or cgthree Frame buffer
5fafdf24 1874@item
e80cfcfc
FB
1875Lance (Am7990) Ethernet
1876@item
34a3d239 1877Non Volatile RAM M48T02/M48T08
e80cfcfc 1878@item
3475187d
FB
1879Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1880and power/reset logic
1881@item
1882ESP SCSI controller with hard disk and CD-ROM support
1883@item
6a3b9cc9 1884Floppy drive (not on SS-600MP)
a2502b58
BS
1885@item
1886CS4231 sound device (only on SS-5, not working yet)
e80cfcfc
FB
1887@end itemize
1888
6a3b9cc9
BS
1889The number of peripherals is fixed in the architecture. Maximum
1890memory size depends on the machine type, for SS-5 it is 256MB and for
7d85892b 1891others 2047MB.
3475187d 1892
30a604f3 1893Since version 0.8.2, QEMU uses OpenBIOS
70b7fba9 1894@url{https://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
0986ac3b
FB
1895firmware implementation. The goal is to implement a 100% IEEE
18961275-1994 (referred to as Open Firmware) compliant firmware.
3475187d
FB
1897
1898A sample Linux 2.6 series kernel and ram disk image are available on
34a3d239 1899the QEMU web site. There are still issues with NetBSD and OpenBSD, but
9bb9f217 1900most kernel versions work. Please note that currently older Solaris kernels
34a3d239
BS
1901don't work probably due to interface issues between OpenBIOS and
1902Solaris.
3475187d
FB
1903
1904@c man begin OPTIONS
1905
a2502b58 1906The following options are specific to the Sparc32 emulation:
3475187d
FB
1907
1908@table @option
1909
4e257e5e 1910@item -g @var{W}x@var{H}x[x@var{DEPTH}]
3475187d 1911
33632788
MCA
1912Set the initial graphics mode. For TCX, the default is 1024x768x8 with the
1913option of 1024x768x24. For cgthree, the default is 1024x768x8 with the option
1914of 1152x900x8 for people who wish to use OBP.
3475187d 1915
4e257e5e 1916@item -prom-env @var{string}
66508601
BS
1917
1918Set OpenBIOS variables in NVRAM, for example:
1919
1920@example
1921qemu-system-sparc -prom-env 'auto-boot?=false' \
1922 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1923@end example
1924
6a4e1771 1925@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook]
a2502b58
BS
1926
1927Set the emulated machine type. Default is SS-5.
1928
3475187d
FB
1929@end table
1930
5fafdf24 1931@c man end
3475187d 1932
24d4de45
TS
1933@node Sparc64 System emulator
1934@section Sparc64 System emulator
7544a042 1935@cindex system emulation (Sparc64)
e80cfcfc 1936
34a3d239
BS
1937Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
1938(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
9bb9f217
MCA
1939Niagara (T1) machine. The Sun4u emulator is mostly complete, being
1940able to run Linux, NetBSD and OpenBSD in headless (-nographic) mode. The
a2664ca0
AT
1941Sun4v emulator is still a work in progress.
1942
1943The Niagara T1 emulator makes use of firmware and OS binaries supplied in the S10image/ directory
1944of the OpenSPARC T1 project @url{http://download.oracle.com/technetwork/systems/opensparc/OpenSPARCT1_Arch.1.5.tar.bz2}
1945and is able to boot the disk.s10hw2 Solaris image.
1946@example
1947qemu-system-sparc64 -M niagara -L /path-to/S10image/ \
1948 -nographic -m 256 \
1949 -drive if=pflash,readonly=on,file=/S10image/disk.s10hw2
1950@end example
1951
b756921a 1952
c7ba218d 1953QEMU emulates the following peripherals:
83469015
FB
1954
1955@itemize @minus
1956@item
5fafdf24 1957UltraSparc IIi APB PCI Bridge
83469015
FB
1958@item
1959PCI VGA compatible card with VESA Bochs Extensions
1960@item
34a3d239
BS
1961PS/2 mouse and keyboard
1962@item
83469015
FB
1963Non Volatile RAM M48T59
1964@item
1965PC-compatible serial ports
c7ba218d
BS
1966@item
19672 PCI IDE interfaces with hard disk and CD-ROM support
34a3d239
BS
1968@item
1969Floppy disk
83469015
FB
1970@end itemize
1971
c7ba218d
BS
1972@c man begin OPTIONS
1973
1974The following options are specific to the Sparc64 emulation:
1975
1976@table @option
1977
4e257e5e 1978@item -prom-env @var{string}
34a3d239
BS
1979
1980Set OpenBIOS variables in NVRAM, for example:
1981
1982@example
1983qemu-system-sparc64 -prom-env 'auto-boot?=false'
1984@end example
1985
a2664ca0 1986@item -M [sun4u|sun4v|niagara]
c7ba218d
BS
1987
1988Set the emulated machine type. The default is sun4u.
1989
1990@end table
1991
1992@c man end
1993
24d4de45
TS
1994@node MIPS System emulator
1995@section MIPS System emulator
7544a042 1996@cindex system emulation (MIPS)
9d0a8e6f 1997
d9aedc32
TS
1998Four executables cover simulation of 32 and 64-bit MIPS systems in
1999both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2000@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
88cb0a02 2001Five different machine types are emulated:
24d4de45
TS
2002
2003@itemize @minus
2004@item
2005A generic ISA PC-like machine "mips"
2006@item
2007The MIPS Malta prototype board "malta"
2008@item
d9aedc32 2009An ACER Pica "pica61". This machine needs the 64-bit emulator.
6bf5b4e8 2010@item
f0fc6f8f 2011MIPS emulator pseudo board "mipssim"
88cb0a02
AJ
2012@item
2013A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
24d4de45
TS
2014@end itemize
2015
2016The generic emulation is supported by Debian 'Etch' and is able to
2017install Debian into a virtual disk image. The following devices are
2018emulated:
3f9f3aa1
FB
2019
2020@itemize @minus
5fafdf24 2021@item
6bf5b4e8 2022A range of MIPS CPUs, default is the 24Kf
3f9f3aa1
FB
2023@item
2024PC style serial port
2025@item
24d4de45
TS
2026PC style IDE disk
2027@item
3f9f3aa1
FB
2028NE2000 network card
2029@end itemize
2030
24d4de45
TS
2031The Malta emulation supports the following devices:
2032
2033@itemize @minus
2034@item
0b64d008 2035Core board with MIPS 24Kf CPU and Galileo system controller
24d4de45
TS
2036@item
2037PIIX4 PCI/USB/SMbus controller
2038@item
2039The Multi-I/O chip's serial device
2040@item
3a2eeac0 2041PCI network cards (PCnet32 and others)
24d4de45
TS
2042@item
2043Malta FPGA serial device
2044@item
1f605a76 2045Cirrus (default) or any other PCI VGA graphics card
24d4de45
TS
2046@end itemize
2047
2048The ACER Pica emulation supports:
2049
2050@itemize @minus
2051@item
2052MIPS R4000 CPU
2053@item
2054PC-style IRQ and DMA controllers
2055@item
2056PC Keyboard
2057@item
2058IDE controller
2059@end itemize
3f9f3aa1 2060
b5e4946f 2061The mipssim pseudo board emulation provides an environment similar
f0fc6f8f
TS
2062to what the proprietary MIPS emulator uses for running Linux.
2063It supports:
6bf5b4e8
TS
2064
2065@itemize @minus
2066@item
2067A range of MIPS CPUs, default is the 24Kf
2068@item
2069PC style serial port
2070@item
2071MIPSnet network emulation
2072@end itemize
2073
88cb0a02
AJ
2074The MIPS Magnum R4000 emulation supports:
2075
2076@itemize @minus
2077@item
2078MIPS R4000 CPU
2079@item
2080PC-style IRQ controller
2081@item
2082PC Keyboard
2083@item
2084SCSI controller
2085@item
2086G364 framebuffer
2087@end itemize
2088
2089
24d4de45
TS
2090@node ARM System emulator
2091@section ARM System emulator
7544a042 2092@cindex system emulation (ARM)
3f9f3aa1
FB
2093
2094Use the executable @file{qemu-system-arm} to simulate a ARM
2095machine. The ARM Integrator/CP board is emulated with the following
2096devices:
2097
2098@itemize @minus
2099@item
9ee6e8bb 2100ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
3f9f3aa1
FB
2101@item
2102Two PL011 UARTs
5fafdf24 2103@item
3f9f3aa1 2104SMC 91c111 Ethernet adapter
00a9bf19
PB
2105@item
2106PL110 LCD controller
2107@item
2108PL050 KMI with PS/2 keyboard and mouse.
a1bb27b1
PB
2109@item
2110PL181 MultiMedia Card Interface with SD card.
00a9bf19
PB
2111@end itemize
2112
2113The ARM Versatile baseboard is emulated with the following devices:
2114
2115@itemize @minus
2116@item
9ee6e8bb 2117ARM926E, ARM1136 or Cortex-A8 CPU
00a9bf19
PB
2118@item
2119PL190 Vectored Interrupt Controller
2120@item
2121Four PL011 UARTs
5fafdf24 2122@item
00a9bf19
PB
2123SMC 91c111 Ethernet adapter
2124@item
2125PL110 LCD controller
2126@item
2127PL050 KMI with PS/2 keyboard and mouse.
2128@item
2129PCI host bridge. Note the emulated PCI bridge only provides access to
2130PCI memory space. It does not provide access to PCI IO space.
4be456f1
TS
2131This means some devices (eg. ne2k_pci NIC) are not usable, and others
2132(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
00a9bf19 2133mapped control registers.
e6de1bad
PB
2134@item
2135PCI OHCI USB controller.
2136@item
2137LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
a1bb27b1
PB
2138@item
2139PL181 MultiMedia Card Interface with SD card.
3f9f3aa1
FB
2140@end itemize
2141
21a88941
PB
2142Several variants of the ARM RealView baseboard are emulated,
2143including the EB, PB-A8 and PBX-A9. Due to interactions with the
2144bootloader, only certain Linux kernel configurations work out
2145of the box on these boards.
2146
2147Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2148enabled in the kernel, and expect 512M RAM. Kernels for The PBX-A9 board
2149should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2150disabled and expect 1024M RAM.
2151
40c5c6cd 2152The following devices are emulated:
d7739d75
PB
2153
2154@itemize @minus
2155@item
f7c70325 2156ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
d7739d75
PB
2157@item
2158ARM AMBA Generic/Distributed Interrupt Controller
2159@item
2160Four PL011 UARTs
5fafdf24 2161@item
0ef849d7 2162SMC 91c111 or SMSC LAN9118 Ethernet adapter
d7739d75
PB
2163@item
2164PL110 LCD controller
2165@item
2166PL050 KMI with PS/2 keyboard and mouse
2167@item
2168PCI host bridge
2169@item
2170PCI OHCI USB controller
2171@item
2172LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
a1bb27b1
PB
2173@item
2174PL181 MultiMedia Card Interface with SD card.
d7739d75
PB
2175@end itemize
2176
b00052e4
AZ
2177The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2178and "Terrier") emulation includes the following peripherals:
2179
2180@itemize @minus
2181@item
2182Intel PXA270 System-on-chip (ARM V5TE core)
2183@item
2184NAND Flash memory
2185@item
2186IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2187@item
2188On-chip OHCI USB controller
2189@item
2190On-chip LCD controller
2191@item
2192On-chip Real Time Clock
2193@item
2194TI ADS7846 touchscreen controller on SSP bus
2195@item
2196Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2197@item
2198GPIO-connected keyboard controller and LEDs
2199@item
549444e1 2200Secure Digital card connected to PXA MMC/SD host
b00052e4
AZ
2201@item
2202Three on-chip UARTs
2203@item
2204WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2205@end itemize
2206
02645926
AZ
2207The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2208following elements:
2209
2210@itemize @minus
2211@item
2212Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2213@item
2214ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2215@item
2216On-chip LCD controller
2217@item
2218On-chip Real Time Clock
2219@item
2220TI TSC2102i touchscreen controller / analog-digital converter / Audio
2221CODEC, connected through MicroWire and I@math{^2}S busses
2222@item
2223GPIO-connected matrix keypad
2224@item
2225Secure Digital card connected to OMAP MMC/SD host
2226@item
2227Three on-chip UARTs
2228@end itemize
2229
c30bb264
AZ
2230Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2231emulation supports the following elements:
2232
2233@itemize @minus
2234@item
2235Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2236@item
2237RAM and non-volatile OneNAND Flash memories
2238@item
2239Display connected to EPSON remote framebuffer chip and OMAP on-chip
2240display controller and a LS041y3 MIPI DBI-C controller
2241@item
2242TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2243driven through SPI bus
2244@item
2245National Semiconductor LM8323-controlled qwerty keyboard driven
2246through I@math{^2}C bus
2247@item
2248Secure Digital card connected to OMAP MMC/SD host
2249@item
2250Three OMAP on-chip UARTs and on-chip STI debugging console
2251@item
40c5c6cd 2252A Bluetooth(R) transceiver and HCI connected to an UART
2d564691 2253@item
c30bb264
AZ
2254Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2255TUSB6010 chip - only USB host mode is supported
2256@item
2257TI TMP105 temperature sensor driven through I@math{^2}C bus
2258@item
2259TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2260@item
2261Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2262through CBUS
2263@end itemize
2264
9ee6e8bb
PB
2265The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2266devices:
2267
2268@itemize @minus
2269@item
2270Cortex-M3 CPU core.
2271@item
227264k Flash and 8k SRAM.
2273@item
2274Timers, UARTs, ADC and I@math{^2}C interface.
2275@item
2276OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2277@end itemize
2278
2279The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2280devices:
2281
2282@itemize @minus
2283@item
2284Cortex-M3 CPU core.
2285@item
2286256k Flash and 64k SRAM.
2287@item
2288Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2289@item
2290OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2291@end itemize
2292
57cd6e97
AZ
2293The Freecom MusicPal internet radio emulation includes the following
2294elements:
2295
2296@itemize @minus
2297@item
2298Marvell MV88W8618 ARM core.
2299@item
230032 MB RAM, 256 KB SRAM, 8 MB flash.
2301@item
2302Up to 2 16550 UARTs
2303@item
2304MV88W8xx8 Ethernet controller
2305@item
2306MV88W8618 audio controller, WM8750 CODEC and mixer
2307@item
e080e785 2308128×64 display with brightness control
57cd6e97
AZ
2309@item
23102 buttons, 2 navigation wheels with button function
2311@end itemize
2312
997641a8 2313The Siemens SX1 models v1 and v2 (default) basic emulation.
40c5c6cd 2314The emulation includes the following elements:
997641a8
AZ
2315
2316@itemize @minus
2317@item
2318Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2319@item
2320ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2321V1
23221 Flash of 16MB and 1 Flash of 8MB
2323V2
23241 Flash of 32MB
2325@item
2326On-chip LCD controller
2327@item
2328On-chip Real Time Clock
2329@item
2330Secure Digital card connected to OMAP MMC/SD host
2331@item
2332Three on-chip UARTs
2333@end itemize
2334
3f9f3aa1
FB
2335A Linux 2.6 test image is available on the QEMU web site. More
2336information is available in the QEMU mailing-list archive.
9d0a8e6f 2337
d2c639d6
BS
2338@c man begin OPTIONS
2339
2340The following options are specific to the ARM emulation:
2341
2342@table @option
2343
2344@item -semihosting
2345Enable semihosting syscall emulation.
2346
2347On ARM this implements the "Angel" interface.
2348
2349Note that this allows guest direct access to the host filesystem,
2350so should only be used with trusted guest OS.
2351
2352@end table
2353
abc67eb6
TH
2354@c man end
2355
24d4de45
TS
2356@node ColdFire System emulator
2357@section ColdFire System emulator
7544a042
SW
2358@cindex system emulation (ColdFire)
2359@cindex system emulation (M68K)
209a4e69
PB
2360
2361Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2362The emulator is able to boot a uClinux kernel.
707e011b
PB
2363
2364The M5208EVB emulation includes the following devices:
2365
2366@itemize @minus
5fafdf24 2367@item
707e011b
PB
2368MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2369@item
2370Three Two on-chip UARTs.
2371@item
2372Fast Ethernet Controller (FEC)
2373@end itemize
2374
2375The AN5206 emulation includes the following devices:
209a4e69
PB
2376
2377@itemize @minus
5fafdf24 2378@item
209a4e69
PB
2379MCF5206 ColdFire V2 Microprocessor.
2380@item
2381Two on-chip UARTs.
2382@end itemize
2383
d2c639d6
BS
2384@c man begin OPTIONS
2385
7544a042 2386The following options are specific to the ColdFire emulation:
d2c639d6
BS
2387
2388@table @option
2389
2390@item -semihosting
2391Enable semihosting syscall emulation.
2392
2393On M68K this implements the "ColdFire GDB" interface used by libgloss.
2394
2395Note that this allows guest direct access to the host filesystem,
2396so should only be used with trusted guest OS.
2397
2398@end table
2399
abc67eb6
TH
2400@c man end
2401
7544a042
SW
2402@node Cris System emulator
2403@section Cris System emulator
2404@cindex system emulation (Cris)
2405
2406TODO
2407
2408@node Microblaze System emulator
2409@section Microblaze System emulator
2410@cindex system emulation (Microblaze)
2411
2412TODO
2413
2414@node SH4 System emulator
2415@section SH4 System emulator
2416@cindex system emulation (SH4)
2417
2418TODO
2419
3aeaea65
MF
2420@node Xtensa System emulator
2421@section Xtensa System emulator
2422@cindex system emulation (Xtensa)
2423
2424Two executables cover simulation of both Xtensa endian options,
2425@file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
2426Two different machine types are emulated:
2427
2428@itemize @minus
2429@item
2430Xtensa emulator pseudo board "sim"
2431@item
2432Avnet LX60/LX110/LX200 board
2433@end itemize
2434
b5e4946f 2435The sim pseudo board emulation provides an environment similar
3aeaea65
MF
2436to one provided by the proprietary Tensilica ISS.
2437It supports:
2438
2439@itemize @minus
2440@item
2441A range of Xtensa CPUs, default is the DC232B
2442@item
2443Console and filesystem access via semihosting calls
2444@end itemize
2445
2446The Avnet LX60/LX110/LX200 emulation supports:
2447
2448@itemize @minus
2449@item
2450A range of Xtensa CPUs, default is the DC232B
2451@item
245216550 UART
2453@item
2454OpenCores 10/100 Mbps Ethernet MAC
2455@end itemize
2456
2457@c man begin OPTIONS
2458
2459The following options are specific to the Xtensa emulation:
2460
2461@table @option
2462
2463@item -semihosting
2464Enable semihosting syscall emulation.
2465
2466Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2467Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2468
2469Note that this allows guest direct access to the host filesystem,
2470so should only be used with trusted guest OS.
2471
2472@end table
3f2ce724 2473
abc67eb6
TH
2474@c man end
2475
3f2ce724
TH
2476@node QEMU Guest Agent
2477@chapter QEMU Guest Agent invocation
2478
2479@include qemu-ga.texi
2480
5fafdf24
TS
2481@node QEMU User space emulator
2482@chapter QEMU User space emulator
83195237
FB
2483
2484@menu
2485* Supported Operating Systems ::
0722cc42 2486* Features::
83195237 2487* Linux User space emulator::
84778508 2488* BSD User space emulator ::
83195237
FB
2489@end menu
2490
2491@node Supported Operating Systems
2492@section Supported Operating Systems
2493
2494The following OS are supported in user space emulation:
2495
2496@itemize @minus
2497@item
4be456f1 2498Linux (referred as qemu-linux-user)
83195237 2499@item
84778508 2500BSD (referred as qemu-bsd-user)
83195237
FB
2501@end itemize
2502
0722cc42
PB
2503@node Features
2504@section Features
2505
2506QEMU user space emulation has the following notable features:
2507
2508@table @strong
2509@item System call translation:
2510QEMU includes a generic system call translator. This means that
2511the parameters of the system calls can be converted to fix
2512endianness and 32/64-bit mismatches between hosts and targets.
2513IOCTLs can be converted too.
2514
2515@item POSIX signal handling:
2516QEMU can redirect to the running program all signals coming from
2517the host (such as @code{SIGALRM}), as well as synthesize signals from
2518virtual CPU exceptions (for example @code{SIGFPE} when the program
2519executes a division by zero).
2520
2521QEMU relies on the host kernel to emulate most signal system
2522calls, for example to emulate the signal mask. On Linux, QEMU
2523supports both normal and real-time signals.
2524
2525@item Threading:
2526On Linux, QEMU can emulate the @code{clone} syscall and create a real
2527host thread (with a separate virtual CPU) for each emulated thread.
2528Note that not all targets currently emulate atomic operations correctly.
2529x86 and ARM use a global lock in order to preserve their semantics.
2530@end table
2531
2532QEMU was conceived so that ultimately it can emulate itself. Although
2533it is not very useful, it is an important test to show the power of the
2534emulator.
2535
83195237
FB
2536@node Linux User space emulator
2537@section Linux User space emulator
386405f7 2538
debc7065
FB
2539@menu
2540* Quick Start::
2541* Wine launch::
2542* Command line options::
79737e4a 2543* Other binaries::
debc7065
FB
2544@end menu
2545
2546@node Quick Start
83195237 2547@subsection Quick Start
df0f11a0 2548
1f673135 2549In order to launch a Linux process, QEMU needs the process executable
5fafdf24 2550itself and all the target (x86) dynamic libraries used by it.
386405f7 2551
1f673135 2552@itemize
386405f7 2553
1f673135
FB
2554@item On x86, you can just try to launch any process by using the native
2555libraries:
386405f7 2556
5fafdf24 2557@example
1f673135
FB
2558qemu-i386 -L / /bin/ls
2559@end example
386405f7 2560
1f673135
FB
2561@code{-L /} tells that the x86 dynamic linker must be searched with a
2562@file{/} prefix.
386405f7 2563
b65ee4fa
SW
2564@item Since QEMU is also a linux process, you can launch QEMU with
2565QEMU (NOTE: you can only do that if you compiled QEMU from the sources):
386405f7 2566
5fafdf24 2567@example
1f673135
FB
2568qemu-i386 -L / qemu-i386 -L / /bin/ls
2569@end example
386405f7 2570
1f673135
FB
2571@item On non x86 CPUs, you need first to download at least an x86 glibc
2572(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2573@code{LD_LIBRARY_PATH} is not set:
df0f11a0 2574
1f673135 2575@example
5fafdf24 2576unset LD_LIBRARY_PATH
1f673135 2577@end example
1eb87257 2578
1f673135 2579Then you can launch the precompiled @file{ls} x86 executable:
1eb87257 2580
1f673135
FB
2581@example
2582qemu-i386 tests/i386/ls
2583@end example
4c3b5a48 2584You can look at @file{scripts/qemu-binfmt-conf.sh} so that
1f673135
FB
2585QEMU is automatically launched by the Linux kernel when you try to
2586launch x86 executables. It requires the @code{binfmt_misc} module in the
2587Linux kernel.
1eb87257 2588
1f673135
FB
2589@item The x86 version of QEMU is also included. You can try weird things such as:
2590@example
debc7065
FB
2591qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2592 /usr/local/qemu-i386/bin/ls-i386
1f673135 2593@end example
1eb20527 2594
1f673135 2595@end itemize
1eb20527 2596
debc7065 2597@node Wine launch
83195237 2598@subsection Wine launch
1eb20527 2599
1f673135 2600@itemize
386405f7 2601
1f673135
FB
2602@item Ensure that you have a working QEMU with the x86 glibc
2603distribution (see previous section). In order to verify it, you must be
2604able to do:
386405f7 2605
1f673135
FB
2606@example
2607qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2608@end example
386405f7 2609
1f673135 2610@item Download the binary x86 Wine install
5fafdf24 2611(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
386405f7 2612
1f673135 2613@item Configure Wine on your account. Look at the provided script
debc7065 2614@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
1f673135 2615@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
386405f7 2616
1f673135 2617@item Then you can try the example @file{putty.exe}:
386405f7 2618
1f673135 2619@example
debc7065
FB
2620qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2621 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
1f673135 2622@end example
386405f7 2623
1f673135 2624@end itemize
fd429f2f 2625
debc7065 2626@node Command line options
83195237 2627@subsection Command line options
1eb20527 2628
1f673135 2629@example
8485140f 2630@command{qemu-i386} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-cpu} @var{model}] [@option{-g} @var{port}] [@option{-B} @var{offset}] [@option{-R} @var{size}] @var{program} [@var{arguments}...]
1f673135 2631@end example
1eb20527 2632
1f673135
FB
2633@table @option
2634@item -h
2635Print the help
3b46e624 2636@item -L path
1f673135
FB
2637Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2638@item -s size
2639Set the x86 stack size in bytes (default=524288)
34a3d239 2640@item -cpu model
c8057f95 2641Select CPU model (-cpu help for list and additional feature selection)
f66724c9
SW
2642@item -E @var{var}=@var{value}
2643Set environment @var{var} to @var{value}.
2644@item -U @var{var}
2645Remove @var{var} from the environment.
379f6698
PB
2646@item -B offset
2647Offset guest address by the specified number of bytes. This is useful when
1f5c3f8c
SW
2648the address region required by guest applications is reserved on the host.
2649This option is currently only supported on some hosts.
68a1c816
PB
2650@item -R size
2651Pre-allocate a guest virtual address space of the given size (in bytes).
0d6753e5 2652"G", "M", and "k" suffixes may be used when specifying the size.
386405f7
FB
2653@end table
2654
1f673135 2655Debug options:
386405f7 2656
1f673135 2657@table @option
989b697d
PM
2658@item -d item1,...
2659Activate logging of the specified items (use '-d help' for a list of log items)
1f673135
FB
2660@item -p pagesize
2661Act as if the host page size was 'pagesize' bytes
34a3d239
BS
2662@item -g port
2663Wait gdb connection to port
1b530a6d
AJ
2664@item -singlestep
2665Run the emulation in single step mode.
1f673135 2666@end table
386405f7 2667
b01bcae6
AZ
2668Environment variables:
2669
2670@table @env
2671@item QEMU_STRACE
2672Print system calls and arguments similar to the 'strace' program
2673(NOTE: the actual 'strace' program will not work because the user
2674space emulator hasn't implemented ptrace). At the moment this is
2675incomplete. All system calls that don't have a specific argument
2676format are printed with information for six arguments. Many
2677flag-style arguments don't have decoders and will show up as numbers.
5cfdf930 2678@end table
b01bcae6 2679
79737e4a 2680@node Other binaries
83195237 2681@subsection Other binaries
79737e4a 2682
7544a042
SW
2683@cindex user mode (Alpha)
2684@command{qemu-alpha} TODO.
2685
2686@cindex user mode (ARM)
2687@command{qemu-armeb} TODO.
2688
2689@cindex user mode (ARM)
79737e4a
PB
2690@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2691binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2692configurations), and arm-uclinux bFLT format binaries.
2693
7544a042
SW
2694@cindex user mode (ColdFire)
2695@cindex user mode (M68K)
e6e5906b
PB
2696@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2697(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2698coldfire uClinux bFLT format binaries.
2699
79737e4a
PB
2700The binary format is detected automatically.
2701
7544a042
SW
2702@cindex user mode (Cris)
2703@command{qemu-cris} TODO.
2704
2705@cindex user mode (i386)
2706@command{qemu-i386} TODO.
2707@command{qemu-x86_64} TODO.
2708
2709@cindex user mode (Microblaze)
2710@command{qemu-microblaze} TODO.
2711
2712@cindex user mode (MIPS)
8639c5c9
AM
2713@command{qemu-mips} executes 32-bit big endian MIPS binaries (MIPS O32 ABI).
2714
2715@command{qemu-mipsel} executes 32-bit little endian MIPS binaries (MIPS O32 ABI).
2716
2717@command{qemu-mips64} executes 64-bit big endian MIPS binaries (MIPS N64 ABI).
2718
2719@command{qemu-mips64el} executes 64-bit little endian MIPS binaries (MIPS N64 ABI).
2720
2721@command{qemu-mipsn32} executes 32-bit big endian MIPS binaries (MIPS N32 ABI).
2722
2723@command{qemu-mipsn32el} executes 32-bit little endian MIPS binaries (MIPS N32 ABI).
7544a042 2724
e671711c
MV
2725@cindex user mode (NiosII)
2726@command{qemu-nios2} TODO.
2727
7544a042
SW
2728@cindex user mode (PowerPC)
2729@command{qemu-ppc64abi32} TODO.
2730@command{qemu-ppc64} TODO.
2731@command{qemu-ppc} TODO.
2732
2733@cindex user mode (SH4)
2734@command{qemu-sh4eb} TODO.
2735@command{qemu-sh4} TODO.
2736
2737@cindex user mode (SPARC)
34a3d239
BS
2738@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2739
a785e42e
BS
2740@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2741(Sparc64 CPU, 32 bit ABI).
2742
2743@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2744SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2745
84778508
BS
2746@node BSD User space emulator
2747@section BSD User space emulator
2748
2749@menu
2750* BSD Status::
2751* BSD Quick Start::
2752* BSD Command line options::
2753@end menu
2754
2755@node BSD Status
2756@subsection BSD Status
2757
2758@itemize @minus
2759@item
2760target Sparc64 on Sparc64: Some trivial programs work.
2761@end itemize
2762
2763@node BSD Quick Start
2764@subsection Quick Start
2765
2766In order to launch a BSD process, QEMU needs the process executable
2767itself and all the target dynamic libraries used by it.
2768
2769@itemize
2770
2771@item On Sparc64, you can just try to launch any process by using the native
2772libraries:
2773
2774@example
2775qemu-sparc64 /bin/ls
2776@end example
2777
2778@end itemize
2779
2780@node BSD Command line options
2781@subsection Command line options
2782
2783@example
8485140f 2784@command{qemu-sparc64} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-bsd} @var{type}] @var{program} [@var{arguments}...]
84778508
BS
2785@end example
2786
2787@table @option
2788@item -h
2789Print the help
2790@item -L path
2791Set the library root path (default=/)
2792@item -s size
2793Set the stack size in bytes (default=524288)
f66724c9
SW
2794@item -ignore-environment
2795Start with an empty environment. Without this option,
40c5c6cd 2796the initial environment is a copy of the caller's environment.
f66724c9
SW
2797@item -E @var{var}=@var{value}
2798Set environment @var{var} to @var{value}.
2799@item -U @var{var}
2800Remove @var{var} from the environment.
84778508
BS
2801@item -bsd type
2802Set the type of the emulated BSD Operating system. Valid values are
2803FreeBSD, NetBSD and OpenBSD (default).
2804@end table
2805
2806Debug options:
2807
2808@table @option
989b697d
PM
2809@item -d item1,...
2810Activate logging of the specified items (use '-d help' for a list of log items)
84778508
BS
2811@item -p pagesize
2812Act as if the host page size was 'pagesize' bytes
1b530a6d
AJ
2813@item -singlestep
2814Run the emulation in single step mode.
84778508
BS
2815@end table
2816
483c6ad4
BP
2817@node System requirements
2818@chapter System requirements
2819
2820@section KVM kernel module
2821
2822On x86_64 hosts, the default set of CPU features enabled by the KVM accelerator
2823require the host to be running Linux v4.5 or newer.
2824
2825The OpteronG[345] CPU models require KVM support for RDTSCP, which was
2826added with Linux 4.5 which is supported by the major distros. And even
2827if RHEL7 has kernel 3.10, KVM there has the required functionality there
2828to make it close to a 4.5 or newer kernel.
47eacb4f 2829
78e87797
PB
2830@include qemu-tech.texi
2831
44c67847 2832@include qemu-deprecated.texi
efe2add7 2833
45b47130
DB
2834@node Supported build platforms
2835@appendix Supported build platforms
2836
2837QEMU aims to support building and executing on multiple host OS platforms.
2838This appendix outlines which platforms are the major build targets. These
2839platforms are used as the basis for deciding upon the minimum required
2840versions of 3rd party software QEMU depends on. The supported platforms
2841are the targets for automated testing performed by the project when patches
2842are submitted for review, and tested before and after merge.
2843
2844If a platform is not listed here, it does not imply that QEMU won't work.
2845If an unlisted platform has comparable software versions to a listed platform,
2846there is every expectation that it will work. Bug reports are welcome for
2847problems encountered on unlisted platforms unless they are clearly older
2848vintage than what is described here.
2849
2850Note that when considering software versions shipped in distros as support
2851targets, QEMU considers only the version number, and assumes the features in
2852that distro match the upstream release with the same version. In other words,
2853if a distro backports extra features to the software in their distro, QEMU
2854upstream code will not add explicit support for those backports, unless the
2855feature is auto-detectable in a manner that works for the upstream releases
2856too.
2857
2858The Repology site @url{https://repology.org} is a useful resource to identify
2859currently shipped versions of software in various operating systems, though
2860it does not cover all distros listed below.
2861
2862@section Linux OS
2863
2864For distributions with frequent, short-lifetime releases, the project will
2865aim to support all versions that are not end of life by their respective
2866vendors. For the purposes of identifying supported software versions, the
2867project will look at Fedora, Ubuntu, and openSUSE distros. Other short-
2868lifetime distros will be assumed to ship similar software versions.
2869
2870For distributions with long-lifetime releases, the project will aim to support
2871the most recent major version at all times. Support for the previous major
2872version will be dropped 2 years after the new major version is released. For
2873the purposes of identifying supported software versions, the project will look
2874at RHEL, Debian, Ubuntu LTS, and SLES distros. Other long-lifetime distros will
2875be assumed to ship similar software versions.
2876
2877@section Windows
2878
2879The project supports building with current versions of the MinGW toolchain,
2880hosted on Linux.
2881
2882@section macOS
2883
2884The project supports building with the two most recent versions of macOS, with
2885the current homebrew package set available.
2886
2887@section FreeBSD
2888
2889The project aims to support the all the versions which are not end of life.
2890
2891@section NetBSD
2892
2893The project aims to support the most recent major version at all times. Support
2894for the previous major version will be dropped 2 years after the new major
2895version is released.
2896
2897@section OpenBSD
2898
2899The project aims to support the all the versions which are not end of life.
2900
7544a042
SW
2901@node License
2902@appendix License
2903
2904QEMU is a trademark of Fabrice Bellard.
2905
2f8d8f01
TH
2906QEMU is released under the
2907@url{https://www.gnu.org/licenses/gpl-2.0.txt,GNU General Public License},
2908version 2. Parts of QEMU have specific licenses, see file
70b7fba9 2909@url{https://git.qemu.org/?p=qemu.git;a=blob_plain;f=LICENSE,LICENSE}.
7544a042 2910
debc7065 2911@node Index
7544a042
SW
2912@appendix Index
2913@menu
2914* Concept Index::
2915* Function Index::
2916* Keystroke Index::
2917* Program Index::
2918* Data Type Index::
2919* Variable Index::
2920@end menu
2921
2922@node Concept Index
2923@section Concept Index
2924This is the main index. Should we combine all keywords in one index? TODO
debc7065
FB
2925@printindex cp
2926
7544a042
SW
2927@node Function Index
2928@section Function Index
2929This index could be used for command line options and monitor functions.
2930@printindex fn
2931
2932@node Keystroke Index
2933@section Keystroke Index
2934
2935This is a list of all keystrokes which have a special function
2936in system emulation.
2937
2938@printindex ky
2939
2940@node Program Index
2941@section Program Index
2942@printindex pg
2943
2944@node Data Type Index
2945@section Data Type Index
2946
2947This index could be used for qdev device names and options.
2948
2949@printindex tp
2950
2951@node Variable Index
2952@section Variable Index
2953@printindex vr
2954
debc7065 2955@bye