]> git.proxmox.com Git - mirror_qemu.git/blame - qemu-doc.texi
qemu-block-drivers: Convert to rST
[mirror_qemu.git] / qemu-doc.texi
CommitLineData
386405f7 1\input texinfo @c -*- texinfo -*-
debc7065
FB
2@c %**start of header
3@setfilename qemu-doc.info
44cb280d 4@include version.texi
e080e785
SW
5
6@documentlanguage en
7@documentencoding UTF-8
8
44cb280d 9@settitle QEMU version @value{VERSION} User Documentation
debc7065
FB
10@exampleindent 0
11@paragraphindent 0
12@c %**end of header
386405f7 13
664785ac
TH
14@set qemu_system qemu-system-x86_64
15@set qemu_system_x86 qemu-system-x86_64
16
a1a32b05
SW
17@ifinfo
18@direntry
19* QEMU: (qemu-doc). The QEMU Emulator User Documentation.
20@end direntry
21@end ifinfo
22
0806e3f6 23@iftex
386405f7
FB
24@titlepage
25@sp 7
44cb280d 26@center @titlefont{QEMU version @value{VERSION}}
debc7065
FB
27@sp 1
28@center @titlefont{User Documentation}
386405f7
FB
29@sp 3
30@end titlepage
0806e3f6 31@end iftex
386405f7 32
debc7065
FB
33@ifnottex
34@node Top
35@top
36
37@menu
38* Introduction::
debc7065
FB
39* QEMU PC System emulator::
40* QEMU System emulator for non PC targets::
83195237 41* QEMU User space emulator::
483c6ad4 42* System requirements::
e8412576 43* Security::
78e87797 44* Implementation notes::
eb22aeca 45* Deprecated features::
369e8f5b 46* Recently removed features::
45b47130 47* Supported build platforms::
7544a042 48* License::
debc7065
FB
49* Index::
50@end menu
51@end ifnottex
52
53@contents
54
55@node Introduction
386405f7
FB
56@chapter Introduction
57
debc7065
FB
58@menu
59* intro_features:: Features
60@end menu
61
62@node intro_features
322d0c66 63@section Features
386405f7 64
1f673135
FB
65QEMU is a FAST! processor emulator using dynamic translation to
66achieve good emulation speed.
1eb20527 67
1f3e7e41 68@cindex operating modes
1eb20527 69QEMU has two operating modes:
0806e3f6 70
d7e5edca 71@itemize
7544a042 72@cindex system emulation
1f3e7e41 73@item Full system emulation. In this mode, QEMU emulates a full system (for
3f9f3aa1
FB
74example a PC), including one or several processors and various
75peripherals. It can be used to launch different Operating Systems
76without rebooting the PC or to debug system code.
1eb20527 77
7544a042 78@cindex user mode emulation
1f3e7e41 79@item User mode emulation. In this mode, QEMU can launch
83195237 80processes compiled for one CPU on another CPU. It can be used to
70b7fba9 81launch the Wine Windows API emulator (@url{https://www.winehq.org}) or
1f673135 82to ease cross-compilation and cross-debugging.
1eb20527
FB
83
84@end itemize
85
1f3e7e41
PB
86QEMU has the following features:
87
88@itemize
89@item QEMU can run without a host kernel driver and yet gives acceptable
90performance. It uses dynamic translation to native code for reasonable speed,
91with support for self-modifying code and precise exceptions.
92
93@item It is portable to several operating systems (GNU/Linux, *BSD, Mac OS X,
94Windows) and architectures.
95
96@item It performs accurate software emulation of the FPU.
97@end itemize
322d0c66 98
1f3e7e41 99QEMU user mode emulation has the following features:
52c00a5f 100@itemize
1f3e7e41
PB
101@item Generic Linux system call converter, including most ioctls.
102
103@item clone() emulation using native CPU clone() to use Linux scheduler for threads.
104
105@item Accurate signal handling by remapping host signals to target signals.
106@end itemize
107
108QEMU full system emulation has the following features:
109@itemize
110@item
111QEMU uses a full software MMU for maximum portability.
112
113@item
326c4c3c 114QEMU can optionally use an in-kernel accelerator, like kvm. The accelerators
1f3e7e41
PB
115execute most of the guest code natively, while
116continuing to emulate the rest of the machine.
117
118@item
119Various hardware devices can be emulated and in some cases, host
120devices (e.g. serial and parallel ports, USB, drives) can be used
121transparently by the guest Operating System. Host device passthrough
122can be used for talking to external physical peripherals (e.g. a
123webcam, modem or tape drive).
124
125@item
126Symmetric multiprocessing (SMP) support. Currently, an in-kernel
127accelerator is required to use more than one host CPU for emulation.
128
52c00a5f 129@end itemize
386405f7 130
0806e3f6 131
debc7065 132@node QEMU PC System emulator
3f9f3aa1 133@chapter QEMU PC System emulator
7544a042 134@cindex system emulation (PC)
1eb20527 135
debc7065
FB
136@menu
137* pcsys_introduction:: Introduction
138* pcsys_quickstart:: Quick Start
139* sec_invocation:: Invocation
a40db1b3
PM
140* pcsys_keys:: Keys in the graphical frontends
141* mux_keys:: Keys in the character backend multiplexer
debc7065 142* pcsys_monitor:: QEMU Monitor
2544e9e4 143* cpu_models:: CPU models
debc7065
FB
144* disk_images:: Disk Images
145* pcsys_network:: Network emulation
576fd0a1 146* pcsys_other_devs:: Other Devices
debc7065
FB
147* direct_linux_boot:: Direct Linux Boot
148* pcsys_usb:: USB emulation
f858dcae 149* vnc_security:: VNC security
5d19a6ea 150* network_tls:: TLS setup for network services
debc7065
FB
151* gdb_usage:: GDB usage
152* pcsys_os_specific:: Target OS specific information
153@end menu
154
155@node pcsys_introduction
0806e3f6
FB
156@section Introduction
157
158@c man begin DESCRIPTION
159
3f9f3aa1
FB
160The QEMU PC System emulator simulates the
161following peripherals:
0806e3f6
FB
162
163@itemize @minus
5fafdf24 164@item
15a34c63 165i440FX host PCI bridge and PIIX3 PCI to ISA bridge
0806e3f6 166@item
15a34c63
FB
167Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
168extensions (hardware level, including all non standard modes).
0806e3f6
FB
169@item
170PS/2 mouse and keyboard
5fafdf24 171@item
15a34c63 1722 PCI IDE interfaces with hard disk and CD-ROM support
1f673135
FB
173@item
174Floppy disk
5fafdf24 175@item
3a2eeac0 176PCI and ISA network adapters
0806e3f6 177@item
05d5818c
FB
178Serial ports
179@item
23076bb3
CM
180IPMI BMC, either and internal or external one
181@item
c0fe3827
FB
182Creative SoundBlaster 16 sound card
183@item
184ENSONIQ AudioPCI ES1370 sound card
185@item
e5c9a13e
AZ
186Intel 82801AA AC97 Audio compatible sound card
187@item
7d72e762
GH
188Intel HD Audio Controller and HDA codec
189@item
2d983446 190Adlib (OPL2) - Yamaha YM3812 compatible chip
b389dbfb 191@item
26463dbc
AZ
192Gravis Ultrasound GF1 sound card
193@item
cc53d26d 194CS4231A compatible sound card
195@item
a92ff8c1 196PCI UHCI, OHCI, EHCI or XHCI USB controller and a virtual USB-1.1 hub.
0806e3f6
FB
197@end itemize
198
3f9f3aa1
FB
199SMP is supported with up to 255 CPUs.
200
a8ad4159 201QEMU uses the PC BIOS from the Seabios project and the Plex86/Bochs LGPL
15a34c63
FB
202VGA BIOS.
203
c0fe3827
FB
204QEMU uses YM3812 emulation by Tatsuyuki Satoh.
205
2d983446 206QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
26463dbc 207by Tibor "TS" Schütz.
423d65f4 208
1a1a0e20 209Note that, by default, GUS shares IRQ(7) with parallel ports and so
b65ee4fa 210QEMU must be told to not have parallel ports to have working GUS.
720036a5 211
212@example
664785ac 213@value{qemu_system_x86} dos.img -soundhw gus -parallel none
720036a5 214@end example
215
216Alternatively:
217@example
664785ac 218@value{qemu_system_x86} dos.img -device gus,irq=5
720036a5 219@end example
220
221Or some other unclaimed IRQ.
222
cc53d26d 223CS4231A is the chip used in Windows Sound System and GUSMAX products
224
0806e3f6
FB
225@c man end
226
debc7065 227@node pcsys_quickstart
1eb20527 228@section Quick Start
7544a042 229@cindex quick start
1eb20527 230
664785ac
TH
231Download and uncompress a hard disk image with Linux installed (e.g.
232@file{linux.img}) and type:
0806e3f6
FB
233
234@example
664785ac 235@value{qemu_system} linux.img
0806e3f6
FB
236@end example
237
238Linux should boot and give you a prompt.
239
6cc721cf 240@node sec_invocation
ec410fc9
FB
241@section Invocation
242
243@example
0806e3f6 244@c man begin SYNOPSIS
664785ac 245@command{@value{qemu_system}} [@var{options}] [@var{disk_image}]
0806e3f6 246@c man end
ec410fc9
FB
247@end example
248
0806e3f6 249@c man begin OPTIONS
d2c639d6
BS
250@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
251targets do not need a disk image.
ec410fc9 252
5824d651 253@include qemu-options.texi
ec410fc9 254
3e11db9a
FB
255@c man end
256
e896d0f9
MA
257@subsection Device URL Syntax
258@c TODO merge this with section Disk Images
259
260@c man begin NOTES
261
262In addition to using normal file images for the emulated storage devices,
263QEMU can also use networked resources such as iSCSI devices. These are
264specified using a special URL syntax.
265
266@table @option
267@item iSCSI
268iSCSI support allows QEMU to access iSCSI resources directly and use as
269images for the guest storage. Both disk and cdrom images are supported.
270
271Syntax for specifying iSCSI LUNs is
272``iscsi://<target-ip>[:<port>]/<target-iqn>/<lun>''
273
274By default qemu will use the iSCSI initiator-name
275'iqn.2008-11.org.linux-kvm[:<name>]' but this can also be set from the command
276line or a configuration file.
277
278Since version Qemu 2.4 it is possible to specify a iSCSI request timeout to detect
279stalled requests and force a reestablishment of the session. The timeout
280is specified in seconds. The default is 0 which means no timeout. Libiscsi
2811.15.0 or greater is required for this feature.
282
283Example (without authentication):
284@example
664785ac 285@value{qemu_system} -iscsi initiator-name=iqn.2001-04.com.example:my-initiator \
e896d0f9
MA
286 -cdrom iscsi://192.0.2.1/iqn.2001-04.com.example/2 \
287 -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1
288@end example
289
290Example (CHAP username/password via URL):
291@example
664785ac 292@value{qemu_system} -drive file=iscsi://user%password@@192.0.2.1/iqn.2001-04.com.example/1
e896d0f9
MA
293@end example
294
295Example (CHAP username/password via environment variables):
296@example
297LIBISCSI_CHAP_USERNAME="user" \
298LIBISCSI_CHAP_PASSWORD="password" \
664785ac 299@value{qemu_system} -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1
e896d0f9
MA
300@end example
301
302@item NBD
303QEMU supports NBD (Network Block Devices) both using TCP protocol as well
0c61ebb0 304as Unix Domain Sockets. With TCP, the default port is 10809.
e896d0f9 305
0c61ebb0
EB
306Syntax for specifying a NBD device using TCP, in preferred URI form:
307``nbd://<server-ip>[:<port>]/[<export>]''
308
309Syntax for specifying a NBD device using Unix Domain Sockets; remember
310that '?' is a shell glob character and may need quoting:
311``nbd+unix:///[<export>]?socket=<domain-socket>''
312
313Older syntax that is also recognized:
e896d0f9
MA
314``nbd:<server-ip>:<port>[:exportname=<export>]''
315
316Syntax for specifying a NBD device using Unix Domain Sockets
317``nbd:unix:<domain-socket>[:exportname=<export>]''
318
319Example for TCP
320@example
664785ac 321@value{qemu_system} --drive file=nbd:192.0.2.1:30000
e896d0f9
MA
322@end example
323
324Example for Unix Domain Sockets
325@example
664785ac 326@value{qemu_system} --drive file=nbd:unix:/tmp/nbd-socket
e896d0f9
MA
327@end example
328
329@item SSH
330QEMU supports SSH (Secure Shell) access to remote disks.
331
332Examples:
333@example
664785ac
TH
334@value{qemu_system} -drive file=ssh://user@@host/path/to/disk.img
335@value{qemu_system} -drive file.driver=ssh,file.user=user,file.host=host,file.port=22,file.path=/path/to/disk.img
e896d0f9
MA
336@end example
337
338Currently authentication must be done using ssh-agent. Other
339authentication methods may be supported in future.
340
341@item Sheepdog
342Sheepdog is a distributed storage system for QEMU.
343QEMU supports using either local sheepdog devices or remote networked
344devices.
345
346Syntax for specifying a sheepdog device
347@example
348sheepdog[+tcp|+unix]://[host:port]/vdiname[?socket=path][#snapid|#tag]
349@end example
350
351Example
352@example
664785ac 353@value{qemu_system} --drive file=sheepdog://192.0.2.1:30000/MyVirtualMachine
e896d0f9
MA
354@end example
355
356See also @url{https://sheepdog.github.io/sheepdog/}.
357
358@item GlusterFS
359GlusterFS is a user space distributed file system.
360QEMU supports the use of GlusterFS volumes for hosting VM disk images using
361TCP, Unix Domain Sockets and RDMA transport protocols.
362
363Syntax for specifying a VM disk image on GlusterFS volume is
364@example
365
366URI:
367gluster[+type]://[host[:port]]/volume/path[?socket=...][,debug=N][,logfile=...]
368
369JSON:
370'json:@{"driver":"qcow2","file":@{"driver":"gluster","volume":"testvol","path":"a.img","debug":N,"logfile":"...",
371@ "server":[@{"type":"tcp","host":"...","port":"..."@},
372@ @{"type":"unix","socket":"..."@}]@}@}'
373@end example
374
375
376Example
377@example
378URI:
664785ac 379@value{qemu_system} --drive file=gluster://192.0.2.1/testvol/a.img,
e896d0f9
MA
380@ file.debug=9,file.logfile=/var/log/qemu-gluster.log
381
382JSON:
664785ac 383@value{qemu_system} 'json:@{"driver":"qcow2",
e896d0f9
MA
384@ "file":@{"driver":"gluster",
385@ "volume":"testvol","path":"a.img",
386@ "debug":9,"logfile":"/var/log/qemu-gluster.log",
387@ "server":[@{"type":"tcp","host":"1.2.3.4","port":24007@},
388@ @{"type":"unix","socket":"/var/run/glusterd.socket"@}]@}@}'
664785ac 389@value{qemu_system} -drive driver=qcow2,file.driver=gluster,file.volume=testvol,file.path=/path/a.img,
e896d0f9
MA
390@ file.debug=9,file.logfile=/var/log/qemu-gluster.log,
391@ file.server.0.type=tcp,file.server.0.host=1.2.3.4,file.server.0.port=24007,
392@ file.server.1.type=unix,file.server.1.socket=/var/run/glusterd.socket
393@end example
394
395See also @url{http://www.gluster.org}.
396
397@item HTTP/HTTPS/FTP/FTPS
398QEMU supports read-only access to files accessed over http(s) and ftp(s).
399
400Syntax using a single filename:
401@example
402<protocol>://[<username>[:<password>]@@]<host>/<path>
403@end example
404
405where:
406@table @option
407@item protocol
408'http', 'https', 'ftp', or 'ftps'.
409
410@item username
411Optional username for authentication to the remote server.
412
413@item password
414Optional password for authentication to the remote server.
415
416@item host
417Address of the remote server.
418
419@item path
420Path on the remote server, including any query string.
421@end table
422
423The following options are also supported:
424@table @option
425@item url
426The full URL when passing options to the driver explicitly.
427
428@item readahead
429The amount of data to read ahead with each range request to the remote server.
430This value may optionally have the suffix 'T', 'G', 'M', 'K', 'k' or 'b'. If it
431does not have a suffix, it will be assumed to be in bytes. The value must be a
432multiple of 512 bytes. It defaults to 256k.
433
434@item sslverify
435Whether to verify the remote server's certificate when connecting over SSL. It
436can have the value 'on' or 'off'. It defaults to 'on'.
437
438@item cookie
439Send this cookie (it can also be a list of cookies separated by ';') with
440each outgoing request. Only supported when using protocols such as HTTP
441which support cookies, otherwise ignored.
442
443@item timeout
444Set the timeout in seconds of the CURL connection. This timeout is the time
445that CURL waits for a response from the remote server to get the size of the
446image to be downloaded. If not set, the default timeout of 5 seconds is used.
447@end table
448
449Note that when passing options to qemu explicitly, @option{driver} is the value
450of <protocol>.
451
452Example: boot from a remote Fedora 20 live ISO image
453@example
93bbbdf6 454@value{qemu_system_x86} --drive media=cdrom,file=https://archives.fedoraproject.org/pub/archive/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly
e896d0f9 455
93bbbdf6 456@value{qemu_system_x86} --drive media=cdrom,file.driver=http,file.url=http://archives.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly
e896d0f9
MA
457@end example
458
459Example: boot from a remote Fedora 20 cloud image using a local overlay for
460writes, copy-on-read, and a readahead of 64k
461@example
93bbbdf6 462qemu-img create -f qcow2 -o backing_file='json:@{"file.driver":"http",, "file.url":"http://archives.fedoraproject.org/pub/archive/fedora/linux/releases/20/Images/x86_64/Fedora-x86_64-20-20131211.1-sda.qcow2",, "file.readahead":"64k"@}' /tmp/Fedora-x86_64-20-20131211.1-sda.qcow2
e896d0f9 463
664785ac 464@value{qemu_system_x86} -drive file=/tmp/Fedora-x86_64-20-20131211.1-sda.qcow2,copy-on-read=on
e896d0f9
MA
465@end example
466
467Example: boot from an image stored on a VMware vSphere server with a self-signed
468certificate using a local overlay for writes, a readahead of 64k and a timeout
469of 10 seconds.
470@example
471qemu-img create -f qcow2 -o backing_file='json:@{"file.driver":"https",, "file.url":"https://user:password@@vsphere.example.com/folder/test/test-flat.vmdk?dcPath=Datacenter&dsName=datastore1",, "file.sslverify":"off",, "file.readahead":"64k",, "file.timeout":10@}' /tmp/test.qcow2
472
664785ac 473@value{qemu_system_x86} -drive file=/tmp/test.qcow2
e896d0f9
MA
474@end example
475
476@end table
477
478@c man end
479
debc7065 480@node pcsys_keys
a40db1b3 481@section Keys in the graphical frontends
3e11db9a
FB
482
483@c man begin OPTIONS
484
de1db2a1
BH
485During the graphical emulation, you can use special key combinations to change
486modes. The default key mappings are shown below, but if you use @code{-alt-grab}
487then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
488@code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
489
a1b74fe8 490@table @key
f9859310 491@item Ctrl-Alt-f
7544a042 492@kindex Ctrl-Alt-f
a1b74fe8 493Toggle full screen
a0a821a4 494
d6a65ba3
JK
495@item Ctrl-Alt-+
496@kindex Ctrl-Alt-+
497Enlarge the screen
498
499@item Ctrl-Alt--
500@kindex Ctrl-Alt--
501Shrink the screen
502
c4a735f9 503@item Ctrl-Alt-u
7544a042 504@kindex Ctrl-Alt-u
c4a735f9 505Restore the screen's un-scaled dimensions
506
f9859310 507@item Ctrl-Alt-n
7544a042 508@kindex Ctrl-Alt-n
a0a821a4
FB
509Switch to virtual console 'n'. Standard console mappings are:
510@table @emph
511@item 1
512Target system display
513@item 2
514Monitor
515@item 3
516Serial port
a1b74fe8
FB
517@end table
518
f9859310 519@item Ctrl-Alt
7544a042 520@kindex Ctrl-Alt
a0a821a4
FB
521Toggle mouse and keyboard grab.
522@end table
523
7544a042
SW
524@kindex Ctrl-Up
525@kindex Ctrl-Down
526@kindex Ctrl-PageUp
527@kindex Ctrl-PageDown
3e11db9a
FB
528In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
529@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
530
a40db1b3
PM
531@c man end
532
533@node mux_keys
534@section Keys in the character backend multiplexer
535
536@c man begin OPTIONS
537
538During emulation, if you are using a character backend multiplexer
539(which is the default if you are using @option{-nographic}) then
540several commands are available via an escape sequence. These
541key sequences all start with an escape character, which is @key{Ctrl-a}
542by default, but can be changed with @option{-echr}. The list below assumes
543you're using the default.
ec410fc9
FB
544
545@table @key
a1b74fe8 546@item Ctrl-a h
7544a042 547@kindex Ctrl-a h
ec410fc9 548Print this help
3b46e624 549@item Ctrl-a x
7544a042 550@kindex Ctrl-a x
366dfc52 551Exit emulator
3b46e624 552@item Ctrl-a s
7544a042 553@kindex Ctrl-a s
1f47a922 554Save disk data back to file (if -snapshot)
20d8a3ed 555@item Ctrl-a t
7544a042 556@kindex Ctrl-a t
d2c639d6 557Toggle console timestamps
a1b74fe8 558@item Ctrl-a b
7544a042 559@kindex Ctrl-a b
1f673135 560Send break (magic sysrq in Linux)
a1b74fe8 561@item Ctrl-a c
7544a042 562@kindex Ctrl-a c
a40db1b3
PM
563Rotate between the frontends connected to the multiplexer (usually
564this switches between the monitor and the console)
a1b74fe8 565@item Ctrl-a Ctrl-a
a40db1b3
PM
566@kindex Ctrl-a Ctrl-a
567Send the escape character to the frontend
ec410fc9 568@end table
0806e3f6
FB
569@c man end
570
571@ignore
572
1f673135
FB
573@c man begin SEEALSO
574The HTML documentation of QEMU for more precise information and Linux
575user mode emulator invocation.
576@c man end
577
578@c man begin AUTHOR
579Fabrice Bellard
580@c man end
581
582@end ignore
583
debc7065 584@node pcsys_monitor
1f673135 585@section QEMU Monitor
7544a042 586@cindex QEMU monitor
1f673135
FB
587
588The QEMU monitor is used to give complex commands to the QEMU
589emulator. You can use it to:
590
591@itemize @minus
592
593@item
e598752a 594Remove or insert removable media images
89dfe898 595(such as CD-ROM or floppies).
1f673135 596
5fafdf24 597@item
1f673135
FB
598Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
599from a disk file.
600
601@item Inspect the VM state without an external debugger.
602
603@end itemize
604
605@subsection Commands
606
607The following commands are available:
608
2313086a 609@include qemu-monitor.texi
0806e3f6 610
2cd8af2d
PB
611@include qemu-monitor-info.texi
612
1f673135
FB
613@subsection Integer expressions
614
615The monitor understands integers expressions for every integer
616argument. You can use register names to get the value of specifics
617CPU registers by prefixing them with @emph{$}.
ec410fc9 618
2544e9e4
DB
619@node cpu_models
620@section CPU models
621
622@include docs/qemu-cpu-models.texi
623
1f47a922
FB
624@node disk_images
625@section Disk Images
626
ee29bdb6
PB
627QEMU supports many disk image formats, including growable disk images
628(their size increase as non empty sectors are written), compressed and
629encrypted disk images.
1f47a922 630
debc7065
FB
631@menu
632* disk_images_quickstart:: Quick start for disk image creation
633* disk_images_snapshot_mode:: Snapshot mode
13a2e80f 634* vm_snapshots:: VM snapshots
debc7065 635* qemu_img_invocation:: qemu-img Invocation
debc7065
FB
636@end menu
637
638@node disk_images_quickstart
acd935ef
FB
639@subsection Quick start for disk image creation
640
641You can create a disk image with the command:
1f47a922 642@example
acd935ef 643qemu-img create myimage.img mysize
1f47a922 644@end example
acd935ef
FB
645where @var{myimage.img} is the disk image filename and @var{mysize} is its
646size in kilobytes. You can add an @code{M} suffix to give the size in
647megabytes and a @code{G} suffix for gigabytes.
648
debc7065 649See @ref{qemu_img_invocation} for more information.
1f47a922 650
debc7065 651@node disk_images_snapshot_mode
1f47a922
FB
652@subsection Snapshot mode
653
654If you use the option @option{-snapshot}, all disk images are
655considered as read only. When sectors in written, they are written in
656a temporary file created in @file{/tmp}. You can however force the
acd935ef
FB
657write back to the raw disk images by using the @code{commit} monitor
658command (or @key{C-a s} in the serial console).
1f47a922 659
13a2e80f
FB
660@node vm_snapshots
661@subsection VM snapshots
662
663VM snapshots are snapshots of the complete virtual machine including
664CPU state, RAM, device state and the content of all the writable
665disks. In order to use VM snapshots, you must have at least one non
666removable and writable block device using the @code{qcow2} disk image
667format. Normally this device is the first virtual hard drive.
668
669Use the monitor command @code{savevm} to create a new VM snapshot or
670replace an existing one. A human readable name can be assigned to each
19d36792 671snapshot in addition to its numerical ID.
13a2e80f
FB
672
673Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
674a VM snapshot. @code{info snapshots} lists the available snapshots
675with their associated information:
676
677@example
678(qemu) info snapshots
679Snapshot devices: hda
680Snapshot list (from hda):
681ID TAG VM SIZE DATE VM CLOCK
6821 start 41M 2006-08-06 12:38:02 00:00:14.954
6832 40M 2006-08-06 12:43:29 00:00:18.633
6843 msys 40M 2006-08-06 12:44:04 00:00:23.514
685@end example
686
687A VM snapshot is made of a VM state info (its size is shown in
688@code{info snapshots}) and a snapshot of every writable disk image.
689The VM state info is stored in the first @code{qcow2} non removable
690and writable block device. The disk image snapshots are stored in
691every disk image. The size of a snapshot in a disk image is difficult
692to evaluate and is not shown by @code{info snapshots} because the
693associated disk sectors are shared among all the snapshots to save
19d36792
FB
694disk space (otherwise each snapshot would need a full copy of all the
695disk images).
13a2e80f
FB
696
697When using the (unrelated) @code{-snapshot} option
698(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
699but they are deleted as soon as you exit QEMU.
700
701VM snapshots currently have the following known limitations:
702@itemize
5fafdf24 703@item
13a2e80f
FB
704They cannot cope with removable devices if they are removed or
705inserted after a snapshot is done.
5fafdf24 706@item
13a2e80f
FB
707A few device drivers still have incomplete snapshot support so their
708state is not saved or restored properly (in particular USB).
709@end itemize
710
acd935ef
FB
711@node qemu_img_invocation
712@subsection @code{qemu-img} Invocation
1f47a922 713
acd935ef 714@include qemu-img.texi
05efe46e 715
debc7065 716@node pcsys_network
9d4fb82e
FB
717@section Network emulation
718
0e0266c2
TH
719QEMU can simulate several network cards (e.g. PCI or ISA cards on the PC
720target) and can connect them to a network backend on the host or an emulated
721hub. The various host network backends can either be used to connect the NIC of
722the guest to a real network (e.g. by using a TAP devices or the non-privileged
723user mode network stack), or to other guest instances running in another QEMU
724process (e.g. by using the socket host network backend).
9d4fb82e 725
41d03949
FB
726@subsection Using TAP network interfaces
727
728This is the standard way to connect QEMU to a real network. QEMU adds
729a virtual network device on your host (called @code{tapN}), and you
730can then configure it as if it was a real ethernet card.
9d4fb82e 731
8f40c388
FB
732@subsubsection Linux host
733
9d4fb82e
FB
734As an example, you can download the @file{linux-test-xxx.tar.gz}
735archive and copy the script @file{qemu-ifup} in @file{/etc} and
736configure properly @code{sudo} so that the command @code{ifconfig}
737contained in @file{qemu-ifup} can be executed as root. You must verify
41d03949 738that your host kernel supports the TAP network interfaces: the
9d4fb82e
FB
739device @file{/dev/net/tun} must be present.
740
ee0f4751
FB
741See @ref{sec_invocation} to have examples of command lines using the
742TAP network interfaces.
9d4fb82e 743
8f40c388
FB
744@subsubsection Windows host
745
746There is a virtual ethernet driver for Windows 2000/XP systems, called
747TAP-Win32. But it is not included in standard QEMU for Windows,
748so you will need to get it separately. It is part of OpenVPN package,
70b7fba9 749so download OpenVPN from : @url{https://openvpn.net/}.
8f40c388 750
9d4fb82e
FB
751@subsection Using the user mode network stack
752
41d03949
FB
753By using the option @option{-net user} (default configuration if no
754@option{-net} option is specified), QEMU uses a completely user mode
4be456f1 755network stack (you don't need root privilege to use the virtual
41d03949 756network). The virtual network configuration is the following:
9d4fb82e
FB
757
758@example
759
0e0266c2 760 guest (10.0.2.15) <------> Firewall/DHCP server <-----> Internet
41d03949 761 | (10.0.2.2)
9d4fb82e 762 |
2518bd0d 763 ----> DNS server (10.0.2.3)
3b46e624 764 |
2518bd0d 765 ----> SMB server (10.0.2.4)
9d4fb82e
FB
766@end example
767
768The QEMU VM behaves as if it was behind a firewall which blocks all
769incoming connections. You can use a DHCP client to automatically
41d03949
FB
770configure the network in the QEMU VM. The DHCP server assign addresses
771to the hosts starting from 10.0.2.15.
9d4fb82e
FB
772
773In order to check that the user mode network is working, you can ping
774the address 10.0.2.2 and verify that you got an address in the range
77510.0.2.x from the QEMU virtual DHCP server.
776
37cbfcce
GH
777Note that ICMP traffic in general does not work with user mode networking.
778@code{ping}, aka. ICMP echo, to the local router (10.0.2.2) shall work,
779however. If you're using QEMU on Linux >= 3.0, it can use unprivileged ICMP
780ping sockets to allow @code{ping} to the Internet. The host admin has to set
781the ping_group_range in order to grant access to those sockets. To allow ping
782for GID 100 (usually users group):
783
784@example
785echo 100 100 > /proc/sys/net/ipv4/ping_group_range
786@end example
b415a407 787
9bf05444
FB
788When using the built-in TFTP server, the router is also the TFTP
789server.
790
c8c6afa8
TH
791When using the @option{'-netdev user,hostfwd=...'} option, TCP or UDP
792connections can be redirected from the host to the guest. It allows for
793example to redirect X11, telnet or SSH connections.
443f1376 794
0e0266c2
TH
795@subsection Hubs
796
797QEMU can simulate several hubs. A hub can be thought of as a virtual connection
798between several network devices. These devices can be for example QEMU virtual
799ethernet cards or virtual Host ethernet devices (TAP devices). You can connect
800guest NICs or host network backends to such a hub using the @option{-netdev
801hubport} or @option{-nic hubport} options. The legacy @option{-net} option
802also connects the given device to the emulated hub with ID 0 (i.e. the default
803hub) unless you specify a netdev with @option{-net nic,netdev=xxx} here.
41d03949 804
0e0266c2 805@subsection Connecting emulated networks between QEMU instances
41d03949 806
0e0266c2
TH
807Using the @option{-netdev socket} (or @option{-nic socket} or
808@option{-net socket}) option, it is possible to create emulated
809networks that span several QEMU instances.
810See the description of the @option{-netdev socket} option in the
811@ref{sec_invocation,,Invocation chapter} to have a basic example.
41d03949 812
576fd0a1 813@node pcsys_other_devs
6cbf4c8c
CM
814@section Other Devices
815
816@subsection Inter-VM Shared Memory device
817
5400c02b
MA
818On Linux hosts, a shared memory device is available. The basic syntax
819is:
6cbf4c8c
CM
820
821@example
664785ac 822@value{qemu_system_x86} -device ivshmem-plain,memdev=@var{hostmem}
5400c02b
MA
823@end example
824
825where @var{hostmem} names a host memory backend. For a POSIX shared
826memory backend, use something like
827
828@example
829-object memory-backend-file,size=1M,share,mem-path=/dev/shm/ivshmem,id=@var{hostmem}
6cbf4c8c
CM
830@end example
831
832If desired, interrupts can be sent between guest VMs accessing the same shared
833memory region. Interrupt support requires using a shared memory server and
834using a chardev socket to connect to it. The code for the shared memory server
835is qemu.git/contrib/ivshmem-server. An example syntax when using the shared
836memory server is:
837
838@example
a75eb03b 839# First start the ivshmem server once and for all
50d34c4e 840ivshmem-server -p @var{pidfile} -S @var{path} -m @var{shm-name} -l @var{shm-size} -n @var{vectors}
a75eb03b
DM
841
842# Then start your qemu instances with matching arguments
664785ac 843@value{qemu_system_x86} -device ivshmem-doorbell,vectors=@var{vectors},chardev=@var{id}
50d34c4e 844 -chardev socket,path=@var{path},id=@var{id}
6cbf4c8c
CM
845@end example
846
847When using the server, the guest will be assigned a VM ID (>=0) that allows guests
848using the same server to communicate via interrupts. Guests can read their
1309cf44 849VM ID from a device register (see ivshmem-spec.txt).
6cbf4c8c 850
62a830b6
MA
851@subsubsection Migration with ivshmem
852
5400c02b
MA
853With device property @option{master=on}, the guest will copy the shared
854memory on migration to the destination host. With @option{master=off},
855the guest will not be able to migrate with the device attached. In the
856latter case, the device should be detached and then reattached after
857migration using the PCI hotplug support.
6cbf4c8c 858
62a830b6
MA
859At most one of the devices sharing the same memory can be master. The
860master must complete migration before you plug back the other devices.
861
7d4f4bda
MAL
862@subsubsection ivshmem and hugepages
863
864Instead of specifying the <shm size> using POSIX shm, you may specify
865a memory backend that has hugepage support:
866
867@example
664785ac 868@value{qemu_system_x86} -object memory-backend-file,size=1G,mem-path=/dev/hugepages/my-shmem-file,share,id=mb1
5400c02b 869 -device ivshmem-plain,memdev=mb1
7d4f4bda
MAL
870@end example
871
872ivshmem-server also supports hugepages mount points with the
873@option{-m} memory path argument.
874
9d4fb82e
FB
875@node direct_linux_boot
876@section Direct Linux Boot
1f673135
FB
877
878This section explains how to launch a Linux kernel inside QEMU without
879having to make a full bootable image. It is very useful for fast Linux
ee0f4751 880kernel testing.
1f673135 881
ee0f4751 882The syntax is:
1f673135 883@example
664785ac 884@value{qemu_system} -kernel bzImage -hda rootdisk.img -append "root=/dev/hda"
1f673135
FB
885@end example
886
ee0f4751
FB
887Use @option{-kernel} to provide the Linux kernel image and
888@option{-append} to give the kernel command line arguments. The
889@option{-initrd} option can be used to provide an INITRD image.
1f673135 890
ee0f4751
FB
891If you do not need graphical output, you can disable it and redirect
892the virtual serial port and the QEMU monitor to the console with the
893@option{-nographic} option. The typical command line is:
1f673135 894@example
664785ac 895@value{qemu_system} -kernel bzImage -hda rootdisk.img \
3804da9d 896 -append "root=/dev/hda console=ttyS0" -nographic
1f673135
FB
897@end example
898
ee0f4751
FB
899Use @key{Ctrl-a c} to switch between the serial console and the
900monitor (@pxref{pcsys_keys}).
1f673135 901
debc7065 902@node pcsys_usb
b389dbfb
FB
903@section USB emulation
904
a92ff8c1
TH
905QEMU can emulate a PCI UHCI, OHCI, EHCI or XHCI USB controller. You can
906plug virtual USB devices or real host USB devices (only works with certain
907host operating systems). QEMU will automatically create and connect virtual
908USB hubs as necessary to connect multiple USB devices.
b389dbfb 909
0aff66b5
PB
910@menu
911* usb_devices::
912* host_usb_devices::
913@end menu
914@node usb_devices
915@subsection Connecting USB devices
b389dbfb 916
a92ff8c1
TH
917USB devices can be connected with the @option{-device usb-...} command line
918option or the @code{device_add} monitor command. Available devices are:
b389dbfb 919
db380c06 920@table @code
a92ff8c1 921@item usb-mouse
0aff66b5 922Virtual Mouse. This will override the PS/2 mouse emulation when activated.
a92ff8c1 923@item usb-tablet
c6d46c20 924Pointer device that uses absolute coordinates (like a touchscreen).
b65ee4fa 925This means QEMU is able to report the mouse position without having
0aff66b5 926to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
a92ff8c1
TH
927@item usb-storage,drive=@var{drive_id}
928Mass storage device backed by @var{drive_id} (@pxref{disk_images})
929@item usb-uas
930USB attached SCSI device, see
70b7fba9 931@url{https://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/usb-storage.txt,usb-storage.txt}
a92ff8c1
TH
932for details
933@item usb-bot
934Bulk-only transport storage device, see
70b7fba9 935@url{https://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/usb-storage.txt,usb-storage.txt}
a92ff8c1 936for details here, too
1ee53067 937@item usb-mtp,rootdir=@var{dir}
a92ff8c1
TH
938Media transfer protocol device, using @var{dir} as root of the file tree
939that is presented to the guest.
940@item usb-host,hostbus=@var{bus},hostaddr=@var{addr}
941Pass through the host device identified by @var{bus} and @var{addr}
942@item usb-host,vendorid=@var{vendor},productid=@var{product}
943Pass through the host device identified by @var{vendor} and @var{product} ID
944@item usb-wacom-tablet
f6d2a316
AZ
945Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
946above but it can be used with the tslib library because in addition to touch
947coordinates it reports touch pressure.
a92ff8c1 948@item usb-kbd
47b2d338 949Standard USB keyboard. Will override the PS/2 keyboard (if present).
a92ff8c1 950@item usb-serial,chardev=@var{id}
db380c06 951Serial converter. This emulates an FTDI FT232BM chip connected to host character
a92ff8c1
TH
952device @var{id}.
953@item usb-braille,chardev=@var{id}
2e4d9fb1 954Braille device. This will use BrlAPI to display the braille output on a real
a92ff8c1
TH
955or fake device referenced by @var{id}.
956@item usb-net[,netdev=@var{id}]
957Network adapter that supports CDC ethernet and RNDIS protocols. @var{id}
958specifies a netdev defined with @code{-netdev @dots{},id=@var{id}}.
9ad97e65 959For instance, user-mode networking can be used with
6c9f886c 960@example
664785ac 961@value{qemu_system} [...] -netdev user,id=net0 -device usb-net,netdev=net0
6c9f886c 962@end example
a92ff8c1
TH
963@item usb-ccid
964Smartcard reader device
965@item usb-audio
966USB audio device
0aff66b5 967@end table
b389dbfb 968
0aff66b5 969@node host_usb_devices
b389dbfb
FB
970@subsection Using host USB devices on a Linux host
971
972WARNING: this is an experimental feature. QEMU will slow down when
973using it. USB devices requiring real time streaming (i.e. USB Video
974Cameras) are not supported yet.
975
976@enumerate
5fafdf24 977@item If you use an early Linux 2.4 kernel, verify that no Linux driver
b389dbfb
FB
978is actually using the USB device. A simple way to do that is simply to
979disable the corresponding kernel module by renaming it from @file{mydriver.o}
980to @file{mydriver.o.disabled}.
981
982@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
983@example
984ls /proc/bus/usb
985001 devices drivers
986@end example
987
988@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
989@example
990chown -R myuid /proc/bus/usb
991@end example
992
993@item Launch QEMU and do in the monitor:
5fafdf24 994@example
b389dbfb
FB
995info usbhost
996 Device 1.2, speed 480 Mb/s
997 Class 00: USB device 1234:5678, USB DISK
998@end example
999You should see the list of the devices you can use (Never try to use
1000hubs, it won't work).
1001
1002@item Add the device in QEMU by using:
5fafdf24 1003@example
a92ff8c1 1004device_add usb-host,vendorid=0x1234,productid=0x5678
b389dbfb
FB
1005@end example
1006
a92ff8c1
TH
1007Normally the guest OS should report that a new USB device is plugged.
1008You can use the option @option{-device usb-host,...} to do the same.
b389dbfb
FB
1009
1010@item Now you can try to use the host USB device in QEMU.
1011
1012@end enumerate
1013
1014When relaunching QEMU, you may have to unplug and plug again the USB
1015device to make it work again (this is a bug).
1016
f858dcae
TS
1017@node vnc_security
1018@section VNC security
1019
1020The VNC server capability provides access to the graphical console
1021of the guest VM across the network. This has a number of security
1022considerations depending on the deployment scenarios.
1023
1024@menu
1025* vnc_sec_none::
1026* vnc_sec_password::
1027* vnc_sec_certificate::
1028* vnc_sec_certificate_verify::
1029* vnc_sec_certificate_pw::
2f9606b3
AL
1030* vnc_sec_sasl::
1031* vnc_sec_certificate_sasl::
2f9606b3 1032* vnc_setup_sasl::
f858dcae
TS
1033@end menu
1034@node vnc_sec_none
1035@subsection Without passwords
1036
1037The simplest VNC server setup does not include any form of authentication.
1038For this setup it is recommended to restrict it to listen on a UNIX domain
1039socket only. For example
1040
1041@example
664785ac 1042@value{qemu_system} [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
f858dcae
TS
1043@end example
1044
1045This ensures that only users on local box with read/write access to that
1046path can access the VNC server. To securely access the VNC server from a
1047remote machine, a combination of netcat+ssh can be used to provide a secure
1048tunnel.
1049
1050@node vnc_sec_password
1051@subsection With passwords
1052
1053The VNC protocol has limited support for password based authentication. Since
1054the protocol limits passwords to 8 characters it should not be considered
1055to provide high security. The password can be fairly easily brute-forced by
1056a client making repeat connections. For this reason, a VNC server using password
1057authentication should be restricted to only listen on the loopback interface
0f66998f
PM
1058or UNIX domain sockets. Password authentication is not supported when operating
1059in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password
1060authentication is requested with the @code{password} option, and then once QEMU
1061is running the password is set with the monitor. Until the monitor is used to
1062set the password all clients will be rejected.
f858dcae
TS
1063
1064@example
664785ac 1065@value{qemu_system} [...OPTIONS...] -vnc :1,password -monitor stdio
f858dcae
TS
1066(qemu) change vnc password
1067Password: ********
1068(qemu)
1069@end example
1070
1071@node vnc_sec_certificate
1072@subsection With x509 certificates
1073
1074The QEMU VNC server also implements the VeNCrypt extension allowing use of
1075TLS for encryption of the session, and x509 certificates for authentication.
1076The use of x509 certificates is strongly recommended, because TLS on its
1077own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1078support provides a secure session, but no authentication. This allows any
1079client to connect, and provides an encrypted session.
1080
1081@example
664785ac 1082@value{qemu_system} [...OPTIONS...] \
756b9da7
DB
1083 -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server,verify-peer=no \
1084 -vnc :1,tls-creds=tls0 -monitor stdio
f858dcae
TS
1085@end example
1086
1087In the above example @code{/etc/pki/qemu} should contain at least three files,
1088@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1089users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1090NB the @code{server-key.pem} file should be protected with file mode 0600 to
1091only be readable by the user owning it.
1092
1093@node vnc_sec_certificate_verify
1094@subsection With x509 certificates and client verification
1095
1096Certificates can also provide a means to authenticate the client connecting.
1097The server will request that the client provide a certificate, which it will
1098then validate against the CA certificate. This is a good choice if deploying
756b9da7
DB
1099in an environment with a private internal certificate authority. It uses the
1100same syntax as previously, but with @code{verify-peer} set to @code{yes}
1101instead.
f858dcae
TS
1102
1103@example
664785ac 1104@value{qemu_system} [...OPTIONS...] \
756b9da7
DB
1105 -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server,verify-peer=yes \
1106 -vnc :1,tls-creds=tls0 -monitor stdio
f858dcae
TS
1107@end example
1108
1109
1110@node vnc_sec_certificate_pw
1111@subsection With x509 certificates, client verification and passwords
1112
1113Finally, the previous method can be combined with VNC password authentication
1114to provide two layers of authentication for clients.
1115
1116@example
664785ac 1117@value{qemu_system} [...OPTIONS...] \
756b9da7
DB
1118 -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server,verify-peer=yes \
1119 -vnc :1,tls-creds=tls0,password -monitor stdio
f858dcae
TS
1120(qemu) change vnc password
1121Password: ********
1122(qemu)
1123@end example
1124
2f9606b3
AL
1125
1126@node vnc_sec_sasl
1127@subsection With SASL authentication
1128
1129The SASL authentication method is a VNC extension, that provides an
1130easily extendable, pluggable authentication method. This allows for
1131integration with a wide range of authentication mechanisms, such as
1132PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1133The strength of the authentication depends on the exact mechanism
1134configured. If the chosen mechanism also provides a SSF layer, then
1135it will encrypt the datastream as well.
1136
1137Refer to the later docs on how to choose the exact SASL mechanism
1138used for authentication, but assuming use of one supporting SSF,
1139then QEMU can be launched with:
1140
1141@example
664785ac 1142@value{qemu_system} [...OPTIONS...] -vnc :1,sasl -monitor stdio
2f9606b3
AL
1143@end example
1144
1145@node vnc_sec_certificate_sasl
1146@subsection With x509 certificates and SASL authentication
1147
1148If the desired SASL authentication mechanism does not supported
1149SSF layers, then it is strongly advised to run it in combination
1150with TLS and x509 certificates. This provides securely encrypted
1151data stream, avoiding risk of compromising of the security
1152credentials. This can be enabled, by combining the 'sasl' option
1153with the aforementioned TLS + x509 options:
1154
1155@example
664785ac 1156@value{qemu_system} [...OPTIONS...] \
756b9da7
DB
1157 -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server,verify-peer=yes \
1158 -vnc :1,tls-creds=tls0,sasl -monitor stdio
2f9606b3
AL
1159@end example
1160
5d19a6ea
DB
1161@node vnc_setup_sasl
1162
1163@subsection Configuring SASL mechanisms
1164
1165The following documentation assumes use of the Cyrus SASL implementation on a
1166Linux host, but the principles should apply to any other SASL implementation
1167or host. When SASL is enabled, the mechanism configuration will be loaded from
1168system default SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1169unprivileged user, an environment variable SASL_CONF_PATH can be used to make
1170it search alternate locations for the service config file.
1171
1172If the TLS option is enabled for VNC, then it will provide session encryption,
1173otherwise the SASL mechanism will have to provide encryption. In the latter
1174case the list of possible plugins that can be used is drastically reduced. In
1175fact only the GSSAPI SASL mechanism provides an acceptable level of security
1176by modern standards. Previous versions of QEMU referred to the DIGEST-MD5
1177mechanism, however, it has multiple serious flaws described in detail in
1178RFC 6331 and thus should never be used any more. The SCRAM-SHA-1 mechanism
1179provides a simple username/password auth facility similar to DIGEST-MD5, but
1180does not support session encryption, so can only be used in combination with
1181TLS.
2f9606b3 1182
5d19a6ea 1183When not using TLS the recommended configuration is
f858dcae 1184
5d19a6ea
DB
1185@example
1186mech_list: gssapi
1187keytab: /etc/qemu/krb5.tab
1188@end example
1189
1190This says to use the 'GSSAPI' mechanism with the Kerberos v5 protocol, with
1191the server principal stored in /etc/qemu/krb5.tab. For this to work the
1192administrator of your KDC must generate a Kerberos principal for the server,
1193with a name of 'qemu/somehost.example.com@@EXAMPLE.COM' replacing
1194'somehost.example.com' with the fully qualified host name of the machine
1195running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
1196
1197When using TLS, if username+password authentication is desired, then a
1198reasonable configuration is
1199
1200@example
1201mech_list: scram-sha-1
1202sasldb_path: /etc/qemu/passwd.db
1203@end example
1204
1205The @code{saslpasswd2} program can be used to populate the @code{passwd.db}
1206file with accounts.
1207
1208Other SASL configurations will be left as an exercise for the reader. Note that
1209all mechanisms, except GSSAPI, should be combined with use of TLS to ensure a
1210secure data channel.
1211
1212
1213@node network_tls
1214@section TLS setup for network services
1215
1216Almost all network services in QEMU have the ability to use TLS for
1217session data encryption, along with x509 certificates for simple
1218client authentication. What follows is a description of how to
1219generate certificates suitable for usage with QEMU, and applies to
1220the VNC server, character devices with the TCP backend, NBD server
1221and client, and migration server and client.
1222
1223At a high level, QEMU requires certificates and private keys to be
1224provided in PEM format. Aside from the core fields, the certificates
1225should include various extension data sets, including v3 basic
1226constraints data, key purpose, key usage and subject alt name.
1227
1228The GnuTLS package includes a command called @code{certtool} which can
1229be used to easily generate certificates and keys in the required format
1230with expected data present. Alternatively a certificate management
1231service may be used.
1232
1233At a minimum it is necessary to setup a certificate authority, and
1234issue certificates to each server. If using x509 certificates for
1235authentication, then each client will also need to be issued a
1236certificate.
1237
1238Assuming that the QEMU network services will only ever be exposed to
1239clients on a private intranet, there is no need to use a commercial
1240certificate authority to create certificates. A self-signed CA is
1241sufficient, and in fact likely to be more secure since it removes
1242the ability of malicious 3rd parties to trick the CA into mis-issuing
1243certs for impersonating your services. The only likely exception
1244where a commercial CA might be desirable is if enabling the VNC
1245websockets server and exposing it directly to remote browser clients.
1246In such a case it might be useful to use a commercial CA to avoid
1247needing to install custom CA certs in the web browsers.
1248
1249The recommendation is for the server to keep its certificates in either
1250@code{/etc/pki/qemu} or for unprivileged users in @code{$HOME/.pki/qemu}.
f858dcae
TS
1251
1252@menu
5d19a6ea
DB
1253* tls_generate_ca::
1254* tls_generate_server::
1255* tls_generate_client::
1256* tls_creds_setup::
e1a6dc91 1257* tls_psk::
f858dcae 1258@end menu
5d19a6ea
DB
1259@node tls_generate_ca
1260@subsection Setup the Certificate Authority
f858dcae
TS
1261
1262This step only needs to be performed once per organization / organizational
1263unit. First the CA needs a private key. This key must be kept VERY secret
1264and secure. If this key is compromised the entire trust chain of the certificates
1265issued with it is lost.
1266
1267@example
1268# certtool --generate-privkey > ca-key.pem
1269@end example
1270
5d19a6ea
DB
1271To generate a self-signed certificate requires one core piece of information,
1272the name of the organization. A template file @code{ca.info} should be
1273populated with the desired data to avoid having to deal with interactive
1274prompts from certtool:
f858dcae
TS
1275@example
1276# cat > ca.info <<EOF
1277cn = Name of your organization
1278ca
1279cert_signing_key
1280EOF
1281# certtool --generate-self-signed \
1282 --load-privkey ca-key.pem
1283 --template ca.info \
1284 --outfile ca-cert.pem
1285@end example
1286
5d19a6ea
DB
1287The @code{ca} keyword in the template sets the v3 basic constraints extension
1288to indicate this certificate is for a CA, while @code{cert_signing_key} sets
1289the key usage extension to indicate this will be used for signing other keys.
1290The generated @code{ca-cert.pem} file should be copied to all servers and
1291clients wishing to utilize TLS support in the VNC server. The @code{ca-key.pem}
1292must not be disclosed/copied anywhere except the host responsible for issuing
1293certificates.
f858dcae 1294
5d19a6ea
DB
1295@node tls_generate_server
1296@subsection Issuing server certificates
f858dcae
TS
1297
1298Each server (or host) needs to be issued with a key and certificate. When connecting
1299the certificate is sent to the client which validates it against the CA certificate.
5d19a6ea
DB
1300The core pieces of information for a server certificate are the hostnames and/or IP
1301addresses that will be used by clients when connecting. The hostname / IP address
1302that the client specifies when connecting will be validated against the hostname(s)
1303and IP address(es) recorded in the server certificate, and if no match is found
1304the client will close the connection.
1305
1306Thus it is recommended that the server certificate include both the fully qualified
1307and unqualified hostnames. If the server will have permanently assigned IP address(es),
1308and clients are likely to use them when connecting, they may also be included in the
1309certificate. Both IPv4 and IPv6 addresses are supported. Historically certificates
1310only included 1 hostname in the @code{CN} field, however, usage of this field for
1311validation is now deprecated. Instead modern TLS clients will validate against the
1312Subject Alt Name extension data, which allows for multiple entries. In the future
1313usage of the @code{CN} field may be discontinued entirely, so providing SAN
1314extension data is strongly recommended.
1315
1316On the host holding the CA, create template files containing the information
1317for each server, and use it to issue server certificates.
f858dcae
TS
1318
1319@example
5d19a6ea 1320# cat > server-hostNNN.info <<EOF
f858dcae 1321organization = Name of your organization
5d19a6ea
DB
1322cn = hostNNN.foo.example.com
1323dns_name = hostNNN
1324dns_name = hostNNN.foo.example.com
1325ip_address = 10.0.1.87
1326ip_address = 192.8.0.92
1327ip_address = 2620:0:cafe::87
1328ip_address = 2001:24::92
f858dcae
TS
1329tls_www_server
1330encryption_key
1331signing_key
1332EOF
5d19a6ea 1333# certtool --generate-privkey > server-hostNNN-key.pem
f858dcae
TS
1334# certtool --generate-certificate \
1335 --load-ca-certificate ca-cert.pem \
1336 --load-ca-privkey ca-key.pem \
5d19a6ea
DB
1337 --load-privkey server-hostNNN-key.pem \
1338 --template server-hostNNN.info \
1339 --outfile server-hostNNN-cert.pem
f858dcae
TS
1340@end example
1341
5d19a6ea
DB
1342The @code{dns_name} and @code{ip_address} fields in the template are setting
1343the subject alt name extension data. The @code{tls_www_server} keyword is the
1344key purpose extension to indicate this certificate is intended for usage in
1345a web server. Although QEMU network services are not in fact HTTP servers
1346(except for VNC websockets), setting this key purpose is still recommended.
1347The @code{encryption_key} and @code{signing_key} keyword is the key usage
1348extension to indicate this certificate is intended for usage in the data
1349session.
1350
1351The @code{server-hostNNN-key.pem} and @code{server-hostNNN-cert.pem} files
1352should now be securely copied to the server for which they were generated,
1353and renamed to @code{server-key.pem} and @code{server-cert.pem} when added
1354to the @code{/etc/pki/qemu} directory on the target host. The @code{server-key.pem}
1355file is security sensitive and should be kept protected with file mode 0600
1356to prevent disclosure.
1357
1358@node tls_generate_client
1359@subsection Issuing client certificates
f858dcae 1360
5d19a6ea
DB
1361The QEMU x509 TLS credential setup defaults to enabling client verification
1362using certificates, providing a simple authentication mechanism. If this
1363default is used, each client also needs to be issued a certificate. The client
1364certificate contains enough metadata to uniquely identify the client with the
1365scope of the certificate authority. The client certificate would typically
1366include fields for organization, state, city, building, etc.
1367
1368Once again on the host holding the CA, create template files containing the
1369information for each client, and use it to issue client certificates.
f858dcae 1370
f858dcae
TS
1371
1372@example
5d19a6ea 1373# cat > client-hostNNN.info <<EOF
f858dcae
TS
1374country = GB
1375state = London
5d19a6ea 1376locality = City Of London
63c693f8 1377organization = Name of your organization
5d19a6ea 1378cn = hostNNN.foo.example.com
f858dcae
TS
1379tls_www_client
1380encryption_key
1381signing_key
1382EOF
5d19a6ea 1383# certtool --generate-privkey > client-hostNNN-key.pem
f858dcae
TS
1384# certtool --generate-certificate \
1385 --load-ca-certificate ca-cert.pem \
1386 --load-ca-privkey ca-key.pem \
5d19a6ea
DB
1387 --load-privkey client-hostNNN-key.pem \
1388 --template client-hostNNN.info \
1389 --outfile client-hostNNN-cert.pem
f858dcae
TS
1390@end example
1391
5d19a6ea
DB
1392The subject alt name extension data is not required for clients, so the
1393the @code{dns_name} and @code{ip_address} fields are not included.
1394The @code{tls_www_client} keyword is the key purpose extension to indicate
1395this certificate is intended for usage in a web client. Although QEMU
1396network clients are not in fact HTTP clients, setting this key purpose is
1397still recommended. The @code{encryption_key} and @code{signing_key} keyword
1398is the key usage extension to indicate this certificate is intended for
1399usage in the data session.
1400
1401The @code{client-hostNNN-key.pem} and @code{client-hostNNN-cert.pem} files
1402should now be securely copied to the client for which they were generated,
1403and renamed to @code{client-key.pem} and @code{client-cert.pem} when added
1404to the @code{/etc/pki/qemu} directory on the target host. The @code{client-key.pem}
1405file is security sensitive and should be kept protected with file mode 0600
1406to prevent disclosure.
1407
1408If a single host is going to be using TLS in both a client and server
1409role, it is possible to create a single certificate to cover both roles.
1410This would be quite common for the migration and NBD services, where a
1411QEMU process will be started by accepting a TLS protected incoming migration,
1412and later itself be migrated out to another host. To generate a single
1413certificate, simply include the template data from both the client and server
1414instructions in one.
2f9606b3 1415
5d19a6ea
DB
1416@example
1417# cat > both-hostNNN.info <<EOF
1418country = GB
1419state = London
1420locality = City Of London
1421organization = Name of your organization
1422cn = hostNNN.foo.example.com
1423dns_name = hostNNN
1424dns_name = hostNNN.foo.example.com
1425ip_address = 10.0.1.87
1426ip_address = 192.8.0.92
1427ip_address = 2620:0:cafe::87
1428ip_address = 2001:24::92
1429tls_www_server
1430tls_www_client
1431encryption_key
1432signing_key
1433EOF
1434# certtool --generate-privkey > both-hostNNN-key.pem
1435# certtool --generate-certificate \
1436 --load-ca-certificate ca-cert.pem \
1437 --load-ca-privkey ca-key.pem \
1438 --load-privkey both-hostNNN-key.pem \
1439 --template both-hostNNN.info \
1440 --outfile both-hostNNN-cert.pem
1441@end example
c6a9a9f5 1442
5d19a6ea
DB
1443When copying the PEM files to the target host, save them twice,
1444once as @code{server-cert.pem} and @code{server-key.pem}, and
1445again as @code{client-cert.pem} and @code{client-key.pem}.
1446
1447@node tls_creds_setup
1448@subsection TLS x509 credential configuration
1449
1450QEMU has a standard mechanism for loading x509 credentials that will be
1451used for network services and clients. It requires specifying the
1452@code{tls-creds-x509} class name to the @code{--object} command line
1453argument for the system emulators. Each set of credentials loaded should
1454be given a unique string identifier via the @code{id} parameter. A single
1455set of TLS credentials can be used for multiple network backends, so VNC,
1456migration, NBD, character devices can all share the same credentials. Note,
1457however, that credentials for use in a client endpoint must be loaded
1458separately from those used in a server endpoint.
1459
1460When specifying the object, the @code{dir} parameters specifies which
1461directory contains the credential files. This directory is expected to
1462contain files with the names mentioned previously, @code{ca-cert.pem},
1463@code{server-key.pem}, @code{server-cert.pem}, @code{client-key.pem}
1464and @code{client-cert.pem} as appropriate. It is also possible to
1465include a set of pre-generated Diffie-Hellman (DH) parameters in a file
1466@code{dh-params.pem}, which can be created using the
1467@code{certtool --generate-dh-params} command. If omitted, QEMU will
1468dynamically generate DH parameters when loading the credentials.
1469
1470The @code{endpoint} parameter indicates whether the credentials will
1471be used for a network client or server, and determines which PEM
1472files are loaded.
1473
1474The @code{verify} parameter determines whether x509 certificate
1475validation should be performed. This defaults to enabled, meaning
1476clients will always validate the server hostname against the
1477certificate subject alt name fields and/or CN field. It also
1478means that servers will request that clients provide a certificate
1479and validate them. Verification should never be turned off for
1480client endpoints, however, it may be turned off for server endpoints
1481if an alternative mechanism is used to authenticate clients. For
1482example, the VNC server can use SASL to authenticate clients
1483instead.
1484
1485To load server credentials with client certificate validation
1486enabled
2f9606b3
AL
1487
1488@example
664785ac 1489@value{qemu_system} -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server
2f9606b3
AL
1490@end example
1491
5d19a6ea 1492while to load client credentials use
2f9606b3
AL
1493
1494@example
664785ac 1495@value{qemu_system} -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=client
2f9606b3
AL
1496@end example
1497
5d19a6ea
DB
1498Network services which support TLS will all have a @code{tls-creds}
1499parameter which expects the ID of the TLS credentials object. For
1500example with VNC:
2f9606b3 1501
5d19a6ea 1502@example
664785ac 1503@value{qemu_system} -vnc 0.0.0.0:0,tls-creds=tls0
5d19a6ea 1504@end example
2f9606b3 1505
e1a6dc91
RJ
1506@node tls_psk
1507@subsection TLS Pre-Shared Keys (PSK)
1508
1509Instead of using certificates, you may also use TLS Pre-Shared Keys
1510(TLS-PSK). This can be simpler to set up than certificates but is
1511less scalable.
1512
1513Use the GnuTLS @code{psktool} program to generate a @code{keys.psk}
1514file containing one or more usernames and random keys:
1515
1516@example
1517mkdir -m 0700 /tmp/keys
1518psktool -u rich -p /tmp/keys/keys.psk
1519@end example
1520
1521TLS-enabled servers such as qemu-nbd can use this directory like so:
1522
1523@example
1524qemu-nbd \
1525 -t -x / \
1526 --object tls-creds-psk,id=tls0,endpoint=server,dir=/tmp/keys \
1527 --tls-creds tls0 \
1528 image.qcow2
1529@end example
1530
1531When connecting from a qemu-based client you must specify the
1532directory containing @code{keys.psk} and an optional @var{username}
1533(defaults to ``qemu''):
1534
1535@example
1536qemu-img info \
1537 --object tls-creds-psk,id=tls0,dir=/tmp/keys,username=rich,endpoint=client \
1538 --image-opts \
1539 file.driver=nbd,file.host=localhost,file.port=10809,file.tls-creds=tls0,file.export=/
1540@end example
1541
0806e3f6 1542@node gdb_usage
da415d54
FB
1543@section GDB usage
1544
1545QEMU has a primitive support to work with gdb, so that you can do
0806e3f6 1546'Ctrl-C' while the virtual machine is running and inspect its state.
da415d54 1547
b65ee4fa 1548In order to use gdb, launch QEMU with the '-s' option. It will wait for a
da415d54
FB
1549gdb connection:
1550@example
664785ac 1551@value{qemu_system} -s -kernel bzImage -hda rootdisk.img -append "root=/dev/hda"
da415d54
FB
1552Connected to host network interface: tun0
1553Waiting gdb connection on port 1234
1554@end example
1555
1556Then launch gdb on the 'vmlinux' executable:
1557@example
1558> gdb vmlinux
1559@end example
1560
1561In gdb, connect to QEMU:
1562@example
6c9bf893 1563(gdb) target remote localhost:1234
da415d54
FB
1564@end example
1565
1566Then you can use gdb normally. For example, type 'c' to launch the kernel:
1567@example
1568(gdb) c
1569@end example
1570
0806e3f6
FB
1571Here are some useful tips in order to use gdb on system code:
1572
1573@enumerate
1574@item
1575Use @code{info reg} to display all the CPU registers.
1576@item
1577Use @code{x/10i $eip} to display the code at the PC position.
1578@item
1579Use @code{set architecture i8086} to dump 16 bit code. Then use
294e8637 1580@code{x/10i $cs*16+$eip} to dump the code at the PC position.
0806e3f6
FB
1581@end enumerate
1582
60897d36
EI
1583Advanced debugging options:
1584
b6af0975 1585The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
94d45e44 1586@table @code
60897d36
EI
1587@item maintenance packet qqemu.sstepbits
1588
1589This will display the MASK bits used to control the single stepping IE:
1590@example
1591(gdb) maintenance packet qqemu.sstepbits
1592sending: "qqemu.sstepbits"
1593received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1594@end example
1595@item maintenance packet qqemu.sstep
1596
1597This will display the current value of the mask used when single stepping IE:
1598@example
1599(gdb) maintenance packet qqemu.sstep
1600sending: "qqemu.sstep"
1601received: "0x7"
1602@end example
1603@item maintenance packet Qqemu.sstep=HEX_VALUE
1604
1605This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1606@example
1607(gdb) maintenance packet Qqemu.sstep=0x5
1608sending: "qemu.sstep=0x5"
1609received: "OK"
1610@end example
94d45e44 1611@end table
60897d36 1612
debc7065 1613@node pcsys_os_specific
1a084f3d
FB
1614@section Target OS specific information
1615
1616@subsection Linux
1617
15a34c63
FB
1618To have access to SVGA graphic modes under X11, use the @code{vesa} or
1619the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1620color depth in the guest and the host OS.
1a084f3d 1621
e3371e62
FB
1622When using a 2.6 guest Linux kernel, you should add the option
1623@code{clock=pit} on the kernel command line because the 2.6 Linux
1624kernels make very strict real time clock checks by default that QEMU
1625cannot simulate exactly.
1626
7c3fc84d
FB
1627When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1628not activated because QEMU is slower with this patch. The QEMU
1629Accelerator Module is also much slower in this case. Earlier Fedora
4be456f1 1630Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
7c3fc84d
FB
1631patch by default. Newer kernels don't have it.
1632
1a084f3d
FB
1633@subsection Windows
1634
1635If you have a slow host, using Windows 95 is better as it gives the
1636best speed. Windows 2000 is also a good choice.
1637
e3371e62
FB
1638@subsubsection SVGA graphic modes support
1639
1640QEMU emulates a Cirrus Logic GD5446 Video
15a34c63
FB
1641card. All Windows versions starting from Windows 95 should recognize
1642and use this graphic card. For optimal performances, use 16 bit color
1643depth in the guest and the host OS.
1a084f3d 1644
3cb0853a
FB
1645If you are using Windows XP as guest OS and if you want to use high
1646resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
16471280x1024x16), then you should use the VESA VBE virtual graphic card
1648(option @option{-std-vga}).
1649
e3371e62
FB
1650@subsubsection CPU usage reduction
1651
1652Windows 9x does not correctly use the CPU HLT
15a34c63
FB
1653instruction. The result is that it takes host CPU cycles even when
1654idle. You can install the utility from
70b7fba9 1655@url{https://web.archive.org/web/20060212132151/http://www.user.cityline.ru/~maxamn/amnhltm.zip}
3ba34a70 1656to solve this problem. Note that no such tool is needed for NT, 2000 or XP.
1a084f3d 1657
9d0a8e6f 1658@subsubsection Windows 2000 disk full problem
e3371e62 1659
9d0a8e6f
FB
1660Windows 2000 has a bug which gives a disk full problem during its
1661installation. When installing it, use the @option{-win2k-hack} QEMU
1662option to enable a specific workaround. After Windows 2000 is
1663installed, you no longer need this option (this option slows down the
1664IDE transfers).
e3371e62 1665
6cc721cf
FB
1666@subsubsection Windows 2000 shutdown
1667
1668Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1669can. It comes from the fact that Windows 2000 does not automatically
1670use the APM driver provided by the BIOS.
1671
1672In order to correct that, do the following (thanks to Struan
1673Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1674Add/Troubleshoot a device => Add a new device & Next => No, select the
1675hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1676(again) a few times. Now the driver is installed and Windows 2000 now
5fafdf24 1677correctly instructs QEMU to shutdown at the appropriate moment.
6cc721cf
FB
1678
1679@subsubsection Share a directory between Unix and Windows
1680
c8c6afa8
TH
1681See @ref{sec_invocation} about the help of the option
1682@option{'-netdev user,smb=...'}.
6cc721cf 1683
2192c332 1684@subsubsection Windows XP security problem
e3371e62
FB
1685
1686Some releases of Windows XP install correctly but give a security
1687error when booting:
1688@example
1689A problem is preventing Windows from accurately checking the
1690license for this computer. Error code: 0x800703e6.
1691@end example
e3371e62 1692
2192c332
FB
1693The workaround is to install a service pack for XP after a boot in safe
1694mode. Then reboot, and the problem should go away. Since there is no
1695network while in safe mode, its recommended to download the full
1696installation of SP1 or SP2 and transfer that via an ISO or using the
1697vvfat block device ("-hdb fat:directory_which_holds_the_SP").
e3371e62 1698
a0a821a4
FB
1699@subsection MS-DOS and FreeDOS
1700
1701@subsubsection CPU usage reduction
1702
1703DOS does not correctly use the CPU HLT instruction. The result is that
3ba34a70 1704it takes host CPU cycles even when idle. You can install the utility from
70b7fba9 1705@url{https://web.archive.org/web/20051222085335/http://www.vmware.com/software/dosidle210.zip}
3ba34a70 1706to solve this problem.
a0a821a4 1707
debc7065 1708@node QEMU System emulator for non PC targets
3f9f3aa1
FB
1709@chapter QEMU System emulator for non PC targets
1710
1711QEMU is a generic emulator and it emulates many non PC
1712machines. Most of the options are similar to the PC emulator. The
4be456f1 1713differences are mentioned in the following sections.
3f9f3aa1 1714
debc7065 1715@menu
7544a042 1716* PowerPC System emulator::
24d4de45
TS
1717* Sparc32 System emulator::
1718* Sparc64 System emulator::
1719* MIPS System emulator::
1720* ARM System emulator::
1721* ColdFire System emulator::
7544a042
SW
1722* Cris System emulator::
1723* Microblaze System emulator::
1724* SH4 System emulator::
3aeaea65 1725* Xtensa System emulator::
debc7065
FB
1726@end menu
1727
7544a042
SW
1728@node PowerPC System emulator
1729@section PowerPC System emulator
1730@cindex system emulation (PowerPC)
1a084f3d 1731
15a34c63
FB
1732Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1733or PowerMac PowerPC system.
1a084f3d 1734
b671f9ed 1735QEMU emulates the following PowerMac peripherals:
1a084f3d 1736
15a34c63 1737@itemize @minus
5fafdf24 1738@item
006f3a48 1739UniNorth or Grackle PCI Bridge
15a34c63
FB
1740@item
1741PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1742@item
15a34c63 17432 PMAC IDE interfaces with hard disk and CD-ROM support
5fafdf24 1744@item
15a34c63
FB
1745NE2000 PCI adapters
1746@item
1747Non Volatile RAM
1748@item
1749VIA-CUDA with ADB keyboard and mouse.
1a084f3d
FB
1750@end itemize
1751
b671f9ed 1752QEMU emulates the following PREP peripherals:
52c00a5f
FB
1753
1754@itemize @minus
5fafdf24 1755@item
15a34c63
FB
1756PCI Bridge
1757@item
1758PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1759@item
52c00a5f
FB
17602 IDE interfaces with hard disk and CD-ROM support
1761@item
1762Floppy disk
5fafdf24 1763@item
15a34c63 1764NE2000 network adapters
52c00a5f
FB
1765@item
1766Serial port
1767@item
1768PREP Non Volatile RAM
15a34c63
FB
1769@item
1770PC compatible keyboard and mouse.
52c00a5f
FB
1771@end itemize
1772
15a34c63 1773QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
3f9f3aa1 1774@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
52c00a5f 1775
70b7fba9 1776Since version 0.9.1, QEMU uses OpenBIOS @url{https://www.openbios.org/}
006f3a48
BS
1777for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1778v2) portable firmware implementation. The goal is to implement a 100%
1779IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
992e5acd 1780
15a34c63
FB
1781@c man begin OPTIONS
1782
1783The following options are specific to the PowerPC emulation:
1784
1785@table @option
1786
4e257e5e 1787@item -g @var{W}x@var{H}[x@var{DEPTH}]
15a34c63 1788
340fb41b 1789Set the initial VGA graphic mode. The default is 800x600x32.
15a34c63 1790
4e257e5e 1791@item -prom-env @var{string}
95efd11c
BS
1792
1793Set OpenBIOS variables in NVRAM, for example:
1794
1795@example
1796qemu-system-ppc -prom-env 'auto-boot?=false' \
1797 -prom-env 'boot-device=hd:2,\yaboot' \
1798 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1799@end example
1800
1801These variables are not used by Open Hack'Ware.
1802
15a34c63
FB
1803@end table
1804
5fafdf24 1805@c man end
15a34c63
FB
1806
1807
52c00a5f 1808More information is available at
3f9f3aa1 1809@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
52c00a5f 1810
24d4de45
TS
1811@node Sparc32 System emulator
1812@section Sparc32 System emulator
7544a042 1813@cindex system emulation (Sparc32)
e80cfcfc 1814
34a3d239
BS
1815Use the executable @file{qemu-system-sparc} to simulate the following
1816Sun4m architecture machines:
1817@itemize @minus
1818@item
1819SPARCstation 4
1820@item
1821SPARCstation 5
1822@item
1823SPARCstation 10
1824@item
1825SPARCstation 20
1826@item
1827SPARCserver 600MP
1828@item
1829SPARCstation LX
1830@item
1831SPARCstation Voyager
1832@item
1833SPARCclassic
1834@item
1835SPARCbook
1836@end itemize
1837
1838The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1839but Linux limits the number of usable CPUs to 4.
e80cfcfc 1840
6a4e1771 1841QEMU emulates the following sun4m peripherals:
e80cfcfc
FB
1842
1843@itemize @minus
3475187d 1844@item
6a4e1771 1845IOMMU
e80cfcfc 1846@item
33632788 1847TCX or cgthree Frame buffer
5fafdf24 1848@item
e80cfcfc
FB
1849Lance (Am7990) Ethernet
1850@item
34a3d239 1851Non Volatile RAM M48T02/M48T08
e80cfcfc 1852@item
3475187d
FB
1853Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1854and power/reset logic
1855@item
1856ESP SCSI controller with hard disk and CD-ROM support
1857@item
6a3b9cc9 1858Floppy drive (not on SS-600MP)
a2502b58
BS
1859@item
1860CS4231 sound device (only on SS-5, not working yet)
e80cfcfc
FB
1861@end itemize
1862
6a3b9cc9
BS
1863The number of peripherals is fixed in the architecture. Maximum
1864memory size depends on the machine type, for SS-5 it is 256MB and for
7d85892b 1865others 2047MB.
3475187d 1866
30a604f3 1867Since version 0.8.2, QEMU uses OpenBIOS
70b7fba9 1868@url{https://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
0986ac3b
FB
1869firmware implementation. The goal is to implement a 100% IEEE
18701275-1994 (referred to as Open Firmware) compliant firmware.
3475187d
FB
1871
1872A sample Linux 2.6 series kernel and ram disk image are available on
34a3d239 1873the QEMU web site. There are still issues with NetBSD and OpenBSD, but
9bb9f217 1874most kernel versions work. Please note that currently older Solaris kernels
34a3d239
BS
1875don't work probably due to interface issues between OpenBIOS and
1876Solaris.
3475187d
FB
1877
1878@c man begin OPTIONS
1879
a2502b58 1880The following options are specific to the Sparc32 emulation:
3475187d
FB
1881
1882@table @option
1883
4e257e5e 1884@item -g @var{W}x@var{H}x[x@var{DEPTH}]
3475187d 1885
33632788
MCA
1886Set the initial graphics mode. For TCX, the default is 1024x768x8 with the
1887option of 1024x768x24. For cgthree, the default is 1024x768x8 with the option
1888of 1152x900x8 for people who wish to use OBP.
3475187d 1889
4e257e5e 1890@item -prom-env @var{string}
66508601
BS
1891
1892Set OpenBIOS variables in NVRAM, for example:
1893
1894@example
1895qemu-system-sparc -prom-env 'auto-boot?=false' \
1896 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1897@end example
1898
6a4e1771 1899@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook]
a2502b58
BS
1900
1901Set the emulated machine type. Default is SS-5.
1902
3475187d
FB
1903@end table
1904
5fafdf24 1905@c man end
3475187d 1906
24d4de45
TS
1907@node Sparc64 System emulator
1908@section Sparc64 System emulator
7544a042 1909@cindex system emulation (Sparc64)
e80cfcfc 1910
34a3d239
BS
1911Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
1912(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
9bb9f217
MCA
1913Niagara (T1) machine. The Sun4u emulator is mostly complete, being
1914able to run Linux, NetBSD and OpenBSD in headless (-nographic) mode. The
a2664ca0
AT
1915Sun4v emulator is still a work in progress.
1916
1917The Niagara T1 emulator makes use of firmware and OS binaries supplied in the S10image/ directory
1918of the OpenSPARC T1 project @url{http://download.oracle.com/technetwork/systems/opensparc/OpenSPARCT1_Arch.1.5.tar.bz2}
1919and is able to boot the disk.s10hw2 Solaris image.
1920@example
1921qemu-system-sparc64 -M niagara -L /path-to/S10image/ \
1922 -nographic -m 256 \
1923 -drive if=pflash,readonly=on,file=/S10image/disk.s10hw2
1924@end example
1925
b756921a 1926
c7ba218d 1927QEMU emulates the following peripherals:
83469015
FB
1928
1929@itemize @minus
1930@item
5fafdf24 1931UltraSparc IIi APB PCI Bridge
83469015
FB
1932@item
1933PCI VGA compatible card with VESA Bochs Extensions
1934@item
34a3d239
BS
1935PS/2 mouse and keyboard
1936@item
83469015
FB
1937Non Volatile RAM M48T59
1938@item
1939PC-compatible serial ports
c7ba218d
BS
1940@item
19412 PCI IDE interfaces with hard disk and CD-ROM support
34a3d239
BS
1942@item
1943Floppy disk
83469015
FB
1944@end itemize
1945
c7ba218d
BS
1946@c man begin OPTIONS
1947
1948The following options are specific to the Sparc64 emulation:
1949
1950@table @option
1951
4e257e5e 1952@item -prom-env @var{string}
34a3d239
BS
1953
1954Set OpenBIOS variables in NVRAM, for example:
1955
1956@example
1957qemu-system-sparc64 -prom-env 'auto-boot?=false'
1958@end example
1959
a2664ca0 1960@item -M [sun4u|sun4v|niagara]
c7ba218d
BS
1961
1962Set the emulated machine type. The default is sun4u.
1963
1964@end table
1965
1966@c man end
1967
24d4de45
TS
1968@node MIPS System emulator
1969@section MIPS System emulator
7544a042 1970@cindex system emulation (MIPS)
9d0a8e6f 1971
f7d257cb
SM
1972@menu
1973* nanoMIPS System emulator ::
1974@end menu
1975
d9aedc32
TS
1976Four executables cover simulation of 32 and 64-bit MIPS systems in
1977both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
1978@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
88cb0a02 1979Five different machine types are emulated:
24d4de45
TS
1980
1981@itemize @minus
1982@item
1983A generic ISA PC-like machine "mips"
1984@item
1985The MIPS Malta prototype board "malta"
1986@item
d9aedc32 1987An ACER Pica "pica61". This machine needs the 64-bit emulator.
6bf5b4e8 1988@item
f0fc6f8f 1989MIPS emulator pseudo board "mipssim"
88cb0a02
AJ
1990@item
1991A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
24d4de45
TS
1992@end itemize
1993
1994The generic emulation is supported by Debian 'Etch' and is able to
1995install Debian into a virtual disk image. The following devices are
1996emulated:
3f9f3aa1
FB
1997
1998@itemize @minus
5fafdf24 1999@item
6bf5b4e8 2000A range of MIPS CPUs, default is the 24Kf
3f9f3aa1
FB
2001@item
2002PC style serial port
2003@item
24d4de45
TS
2004PC style IDE disk
2005@item
3f9f3aa1
FB
2006NE2000 network card
2007@end itemize
2008
24d4de45
TS
2009The Malta emulation supports the following devices:
2010
2011@itemize @minus
2012@item
0b64d008 2013Core board with MIPS 24Kf CPU and Galileo system controller
24d4de45
TS
2014@item
2015PIIX4 PCI/USB/SMbus controller
2016@item
2017The Multi-I/O chip's serial device
2018@item
3a2eeac0 2019PCI network cards (PCnet32 and others)
24d4de45
TS
2020@item
2021Malta FPGA serial device
2022@item
1f605a76 2023Cirrus (default) or any other PCI VGA graphics card
24d4de45
TS
2024@end itemize
2025
ba182a18
AM
2026The Boston board emulation supports the following devices:
2027
2028@itemize @minus
2029@item
2030Xilinx FPGA, which includes a PCIe root port and an UART
2031@item
2032Intel EG20T PCH connects the I/O peripherals, but only the SATA bus is emulated
2033@end itemize
2034
24d4de45
TS
2035The ACER Pica emulation supports:
2036
2037@itemize @minus
2038@item
2039MIPS R4000 CPU
2040@item
2041PC-style IRQ and DMA controllers
2042@item
2043PC Keyboard
2044@item
2045IDE controller
2046@end itemize
3f9f3aa1 2047
88cb0a02
AJ
2048The MIPS Magnum R4000 emulation supports:
2049
2050@itemize @minus
2051@item
2052MIPS R4000 CPU
2053@item
2054PC-style IRQ controller
2055@item
2056PC Keyboard
2057@item
2058SCSI controller
2059@item
2060G364 framebuffer
2061@end itemize
2062
3a1b94d9
AM
2063The Fulong 2E emulation supports:
2064
2065@itemize @minus
2066@item
2067Loongson 2E CPU
2068@item
2069Bonito64 system controller as North Bridge
2070@item
2071VT82C686 chipset as South Bridge
2072@item
2073RTL8139D as a network card chipset
2074@end itemize
2075
53d21e7b
AM
2076The mipssim pseudo board emulation provides an environment similar
2077to what the proprietary MIPS emulator uses for running Linux.
2078It supports:
2079
2080@itemize @minus
2081@item
2082A range of MIPS CPUs, default is the 24Kf
2083@item
2084PC style serial port
2085@item
2086MIPSnet network emulation
2087@end itemize
2088
f7d257cb
SM
2089@node nanoMIPS System emulator
2090@subsection nanoMIPS System emulator
2091@cindex system emulation (nanoMIPS)
2092
2093Executable @file{qemu-system-mipsel} also covers simulation of
209432-bit nanoMIPS system in little endian mode:
2095
2096@itemize @minus
2097@item
2098nanoMIPS I7200 CPU
2099@end itemize
2100
2101Example of @file{qemu-system-mipsel} usage for nanoMIPS is shown below:
2102
2103Download @code{<disk_image_file>} from @url{https://mipsdistros.mips.com/LinuxDistro/nanomips/buildroot/index.html}.
2104
2105Download @code{<kernel_image_file>} from @url{https://mipsdistros.mips.com/LinuxDistro/nanomips/kernels/v4.15.18-432-gb2eb9a8b07a1-20180627102142/index.html}.
2106
2107Start system emulation of Malta board with nanoMIPS I7200 CPU:
2108@example
2109qemu-system-mipsel -cpu I7200 -kernel @code{<kernel_image_file>} \
2110 -M malta -serial stdio -m @code{<memory_size>} -hda @code{<disk_image_file>} \
2111 -append "mem=256m@@0x0 rw console=ttyS0 vga=cirrus vesa=0x111 root=/dev/sda"
2112@end example
2113
88cb0a02 2114
24d4de45
TS
2115@node ARM System emulator
2116@section ARM System emulator
7544a042 2117@cindex system emulation (ARM)
3f9f3aa1
FB
2118
2119Use the executable @file{qemu-system-arm} to simulate a ARM
2120machine. The ARM Integrator/CP board is emulated with the following
2121devices:
2122
2123@itemize @minus
2124@item
9ee6e8bb 2125ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
3f9f3aa1
FB
2126@item
2127Two PL011 UARTs
5fafdf24 2128@item
3f9f3aa1 2129SMC 91c111 Ethernet adapter
00a9bf19
PB
2130@item
2131PL110 LCD controller
2132@item
2133PL050 KMI with PS/2 keyboard and mouse.
a1bb27b1
PB
2134@item
2135PL181 MultiMedia Card Interface with SD card.
00a9bf19
PB
2136@end itemize
2137
2138The ARM Versatile baseboard is emulated with the following devices:
2139
2140@itemize @minus
2141@item
9ee6e8bb 2142ARM926E, ARM1136 or Cortex-A8 CPU
00a9bf19
PB
2143@item
2144PL190 Vectored Interrupt Controller
2145@item
2146Four PL011 UARTs
5fafdf24 2147@item
00a9bf19
PB
2148SMC 91c111 Ethernet adapter
2149@item
2150PL110 LCD controller
2151@item
2152PL050 KMI with PS/2 keyboard and mouse.
2153@item
2154PCI host bridge. Note the emulated PCI bridge only provides access to
2155PCI memory space. It does not provide access to PCI IO space.
4be456f1
TS
2156This means some devices (eg. ne2k_pci NIC) are not usable, and others
2157(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
00a9bf19 2158mapped control registers.
e6de1bad
PB
2159@item
2160PCI OHCI USB controller.
2161@item
2162LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
a1bb27b1
PB
2163@item
2164PL181 MultiMedia Card Interface with SD card.
3f9f3aa1
FB
2165@end itemize
2166
21a88941
PB
2167Several variants of the ARM RealView baseboard are emulated,
2168including the EB, PB-A8 and PBX-A9. Due to interactions with the
2169bootloader, only certain Linux kernel configurations work out
2170of the box on these boards.
2171
2172Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2173enabled in the kernel, and expect 512M RAM. Kernels for The PBX-A9 board
2174should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2175disabled and expect 1024M RAM.
2176
40c5c6cd 2177The following devices are emulated:
d7739d75
PB
2178
2179@itemize @minus
2180@item
f7c70325 2181ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
d7739d75
PB
2182@item
2183ARM AMBA Generic/Distributed Interrupt Controller
2184@item
2185Four PL011 UARTs
5fafdf24 2186@item
0ef849d7 2187SMC 91c111 or SMSC LAN9118 Ethernet adapter
d7739d75
PB
2188@item
2189PL110 LCD controller
2190@item
2191PL050 KMI with PS/2 keyboard and mouse
2192@item
2193PCI host bridge
2194@item
2195PCI OHCI USB controller
2196@item
2197LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
a1bb27b1
PB
2198@item
2199PL181 MultiMedia Card Interface with SD card.
d7739d75
PB
2200@end itemize
2201
b00052e4
AZ
2202The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2203and "Terrier") emulation includes the following peripherals:
2204
2205@itemize @minus
2206@item
2207Intel PXA270 System-on-chip (ARM V5TE core)
2208@item
2209NAND Flash memory
2210@item
2211IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2212@item
2213On-chip OHCI USB controller
2214@item
2215On-chip LCD controller
2216@item
2217On-chip Real Time Clock
2218@item
2219TI ADS7846 touchscreen controller on SSP bus
2220@item
2221Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2222@item
2223GPIO-connected keyboard controller and LEDs
2224@item
549444e1 2225Secure Digital card connected to PXA MMC/SD host
b00052e4
AZ
2226@item
2227Three on-chip UARTs
2228@item
2229WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2230@end itemize
2231
02645926
AZ
2232The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2233following elements:
2234
2235@itemize @minus
2236@item
2237Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2238@item
2239ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2240@item
2241On-chip LCD controller
2242@item
2243On-chip Real Time Clock
2244@item
2245TI TSC2102i touchscreen controller / analog-digital converter / Audio
2246CODEC, connected through MicroWire and I@math{^2}S busses
2247@item
2248GPIO-connected matrix keypad
2249@item
2250Secure Digital card connected to OMAP MMC/SD host
2251@item
2252Three on-chip UARTs
2253@end itemize
2254
c30bb264
AZ
2255Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2256emulation supports the following elements:
2257
2258@itemize @minus
2259@item
2260Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2261@item
2262RAM and non-volatile OneNAND Flash memories
2263@item
2264Display connected to EPSON remote framebuffer chip and OMAP on-chip
2265display controller and a LS041y3 MIPI DBI-C controller
2266@item
2267TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2268driven through SPI bus
2269@item
2270National Semiconductor LM8323-controlled qwerty keyboard driven
2271through I@math{^2}C bus
2272@item
2273Secure Digital card connected to OMAP MMC/SD host
2274@item
2275Three OMAP on-chip UARTs and on-chip STI debugging console
2276@item
2277Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2278TUSB6010 chip - only USB host mode is supported
2279@item
2280TI TMP105 temperature sensor driven through I@math{^2}C bus
2281@item
2282TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2283@item
2284Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2285through CBUS
2286@end itemize
2287
9ee6e8bb
PB
2288The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2289devices:
2290
2291@itemize @minus
2292@item
2293Cortex-M3 CPU core.
2294@item
229564k Flash and 8k SRAM.
2296@item
2297Timers, UARTs, ADC and I@math{^2}C interface.
2298@item
2299OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2300@end itemize
2301
2302The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2303devices:
2304
2305@itemize @minus
2306@item
2307Cortex-M3 CPU core.
2308@item
2309256k Flash and 64k SRAM.
2310@item
2311Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2312@item
2313OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2314@end itemize
2315
57cd6e97
AZ
2316The Freecom MusicPal internet radio emulation includes the following
2317elements:
2318
2319@itemize @minus
2320@item
2321Marvell MV88W8618 ARM core.
2322@item
232332 MB RAM, 256 KB SRAM, 8 MB flash.
2324@item
2325Up to 2 16550 UARTs
2326@item
2327MV88W8xx8 Ethernet controller
2328@item
2329MV88W8618 audio controller, WM8750 CODEC and mixer
2330@item
e080e785 2331128×64 display with brightness control
57cd6e97
AZ
2332@item
23332 buttons, 2 navigation wheels with button function
2334@end itemize
2335
997641a8 2336The Siemens SX1 models v1 and v2 (default) basic emulation.
40c5c6cd 2337The emulation includes the following elements:
997641a8
AZ
2338
2339@itemize @minus
2340@item
2341Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2342@item
2343ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2344V1
23451 Flash of 16MB and 1 Flash of 8MB
2346V2
23471 Flash of 32MB
2348@item
2349On-chip LCD controller
2350@item
2351On-chip Real Time Clock
2352@item
2353Secure Digital card connected to OMAP MMC/SD host
2354@item
2355Three on-chip UARTs
2356@end itemize
2357
3f9f3aa1
FB
2358A Linux 2.6 test image is available on the QEMU web site. More
2359information is available in the QEMU mailing-list archive.
9d0a8e6f 2360
d2c639d6
BS
2361@c man begin OPTIONS
2362
2363The following options are specific to the ARM emulation:
2364
2365@table @option
2366
2367@item -semihosting
2368Enable semihosting syscall emulation.
2369
2370On ARM this implements the "Angel" interface.
2371
2372Note that this allows guest direct access to the host filesystem,
2373so should only be used with trusted guest OS.
2374
2375@end table
2376
abc67eb6
TH
2377@c man end
2378
24d4de45
TS
2379@node ColdFire System emulator
2380@section ColdFire System emulator
7544a042
SW
2381@cindex system emulation (ColdFire)
2382@cindex system emulation (M68K)
209a4e69
PB
2383
2384Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2385The emulator is able to boot a uClinux kernel.
707e011b
PB
2386
2387The M5208EVB emulation includes the following devices:
2388
2389@itemize @minus
5fafdf24 2390@item
707e011b
PB
2391MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2392@item
2393Three Two on-chip UARTs.
2394@item
2395Fast Ethernet Controller (FEC)
2396@end itemize
2397
2398The AN5206 emulation includes the following devices:
209a4e69
PB
2399
2400@itemize @minus
5fafdf24 2401@item
209a4e69
PB
2402MCF5206 ColdFire V2 Microprocessor.
2403@item
2404Two on-chip UARTs.
2405@end itemize
2406
d2c639d6
BS
2407@c man begin OPTIONS
2408
7544a042 2409The following options are specific to the ColdFire emulation:
d2c639d6
BS
2410
2411@table @option
2412
2413@item -semihosting
2414Enable semihosting syscall emulation.
2415
2416On M68K this implements the "ColdFire GDB" interface used by libgloss.
2417
2418Note that this allows guest direct access to the host filesystem,
2419so should only be used with trusted guest OS.
2420
2421@end table
2422
abc67eb6
TH
2423@c man end
2424
7544a042
SW
2425@node Cris System emulator
2426@section Cris System emulator
2427@cindex system emulation (Cris)
2428
2429TODO
2430
2431@node Microblaze System emulator
2432@section Microblaze System emulator
2433@cindex system emulation (Microblaze)
2434
2435TODO
2436
2437@node SH4 System emulator
2438@section SH4 System emulator
2439@cindex system emulation (SH4)
2440
2441TODO
2442
3aeaea65
MF
2443@node Xtensa System emulator
2444@section Xtensa System emulator
2445@cindex system emulation (Xtensa)
2446
2447Two executables cover simulation of both Xtensa endian options,
2448@file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
2449Two different machine types are emulated:
2450
2451@itemize @minus
2452@item
2453Xtensa emulator pseudo board "sim"
2454@item
2455Avnet LX60/LX110/LX200 board
2456@end itemize
2457
b5e4946f 2458The sim pseudo board emulation provides an environment similar
3aeaea65
MF
2459to one provided by the proprietary Tensilica ISS.
2460It supports:
2461
2462@itemize @minus
2463@item
2464A range of Xtensa CPUs, default is the DC232B
2465@item
2466Console and filesystem access via semihosting calls
2467@end itemize
2468
2469The Avnet LX60/LX110/LX200 emulation supports:
2470
2471@itemize @minus
2472@item
2473A range of Xtensa CPUs, default is the DC232B
2474@item
247516550 UART
2476@item
2477OpenCores 10/100 Mbps Ethernet MAC
2478@end itemize
2479
2480@c man begin OPTIONS
2481
2482The following options are specific to the Xtensa emulation:
2483
2484@table @option
2485
2486@item -semihosting
2487Enable semihosting syscall emulation.
2488
2489Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2490Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2491
2492Note that this allows guest direct access to the host filesystem,
2493so should only be used with trusted guest OS.
2494
2495@end table
3f2ce724 2496
abc67eb6
TH
2497@c man end
2498
5fafdf24
TS
2499@node QEMU User space emulator
2500@chapter QEMU User space emulator
83195237
FB
2501
2502@menu
2503* Supported Operating Systems ::
0722cc42 2504* Features::
83195237 2505* Linux User space emulator::
84778508 2506* BSD User space emulator ::
83195237
FB
2507@end menu
2508
2509@node Supported Operating Systems
2510@section Supported Operating Systems
2511
2512The following OS are supported in user space emulation:
2513
2514@itemize @minus
2515@item
4be456f1 2516Linux (referred as qemu-linux-user)
83195237 2517@item
84778508 2518BSD (referred as qemu-bsd-user)
83195237
FB
2519@end itemize
2520
0722cc42
PB
2521@node Features
2522@section Features
2523
2524QEMU user space emulation has the following notable features:
2525
2526@table @strong
2527@item System call translation:
2528QEMU includes a generic system call translator. This means that
2529the parameters of the system calls can be converted to fix
2530endianness and 32/64-bit mismatches between hosts and targets.
2531IOCTLs can be converted too.
2532
2533@item POSIX signal handling:
2534QEMU can redirect to the running program all signals coming from
2535the host (such as @code{SIGALRM}), as well as synthesize signals from
2536virtual CPU exceptions (for example @code{SIGFPE} when the program
2537executes a division by zero).
2538
2539QEMU relies on the host kernel to emulate most signal system
2540calls, for example to emulate the signal mask. On Linux, QEMU
2541supports both normal and real-time signals.
2542
2543@item Threading:
2544On Linux, QEMU can emulate the @code{clone} syscall and create a real
2545host thread (with a separate virtual CPU) for each emulated thread.
2546Note that not all targets currently emulate atomic operations correctly.
2547x86 and ARM use a global lock in order to preserve their semantics.
2548@end table
2549
2550QEMU was conceived so that ultimately it can emulate itself. Although
2551it is not very useful, it is an important test to show the power of the
2552emulator.
2553
83195237
FB
2554@node Linux User space emulator
2555@section Linux User space emulator
386405f7 2556
debc7065
FB
2557@menu
2558* Quick Start::
2559* Wine launch::
2560* Command line options::
79737e4a 2561* Other binaries::
debc7065
FB
2562@end menu
2563
2564@node Quick Start
83195237 2565@subsection Quick Start
df0f11a0 2566
1f673135 2567In order to launch a Linux process, QEMU needs the process executable
5fafdf24 2568itself and all the target (x86) dynamic libraries used by it.
386405f7 2569
1f673135 2570@itemize
386405f7 2571
1f673135
FB
2572@item On x86, you can just try to launch any process by using the native
2573libraries:
386405f7 2574
5fafdf24 2575@example
1f673135
FB
2576qemu-i386 -L / /bin/ls
2577@end example
386405f7 2578
1f673135
FB
2579@code{-L /} tells that the x86 dynamic linker must be searched with a
2580@file{/} prefix.
386405f7 2581
b65ee4fa
SW
2582@item Since QEMU is also a linux process, you can launch QEMU with
2583QEMU (NOTE: you can only do that if you compiled QEMU from the sources):
386405f7 2584
5fafdf24 2585@example
1f673135
FB
2586qemu-i386 -L / qemu-i386 -L / /bin/ls
2587@end example
386405f7 2588
1f673135
FB
2589@item On non x86 CPUs, you need first to download at least an x86 glibc
2590(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2591@code{LD_LIBRARY_PATH} is not set:
df0f11a0 2592
1f673135 2593@example
5fafdf24 2594unset LD_LIBRARY_PATH
1f673135 2595@end example
1eb87257 2596
1f673135 2597Then you can launch the precompiled @file{ls} x86 executable:
1eb87257 2598
1f673135
FB
2599@example
2600qemu-i386 tests/i386/ls
2601@end example
4c3b5a48 2602You can look at @file{scripts/qemu-binfmt-conf.sh} so that
1f673135
FB
2603QEMU is automatically launched by the Linux kernel when you try to
2604launch x86 executables. It requires the @code{binfmt_misc} module in the
2605Linux kernel.
1eb87257 2606
1f673135
FB
2607@item The x86 version of QEMU is also included. You can try weird things such as:
2608@example
debc7065
FB
2609qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2610 /usr/local/qemu-i386/bin/ls-i386
1f673135 2611@end example
1eb20527 2612
1f673135 2613@end itemize
1eb20527 2614
debc7065 2615@node Wine launch
83195237 2616@subsection Wine launch
1eb20527 2617
1f673135 2618@itemize
386405f7 2619
1f673135
FB
2620@item Ensure that you have a working QEMU with the x86 glibc
2621distribution (see previous section). In order to verify it, you must be
2622able to do:
386405f7 2623
1f673135
FB
2624@example
2625qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2626@end example
386405f7 2627
1f673135 2628@item Download the binary x86 Wine install
5fafdf24 2629(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
386405f7 2630
1f673135 2631@item Configure Wine on your account. Look at the provided script
debc7065 2632@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
1f673135 2633@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
386405f7 2634
1f673135 2635@item Then you can try the example @file{putty.exe}:
386405f7 2636
1f673135 2637@example
debc7065
FB
2638qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2639 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
1f673135 2640@end example
386405f7 2641
1f673135 2642@end itemize
fd429f2f 2643
debc7065 2644@node Command line options
83195237 2645@subsection Command line options
1eb20527 2646
1f673135 2647@example
8485140f 2648@command{qemu-i386} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-cpu} @var{model}] [@option{-g} @var{port}] [@option{-B} @var{offset}] [@option{-R} @var{size}] @var{program} [@var{arguments}...]
1f673135 2649@end example
1eb20527 2650
1f673135
FB
2651@table @option
2652@item -h
2653Print the help
3b46e624 2654@item -L path
1f673135
FB
2655Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2656@item -s size
2657Set the x86 stack size in bytes (default=524288)
34a3d239 2658@item -cpu model
c8057f95 2659Select CPU model (-cpu help for list and additional feature selection)
f66724c9
SW
2660@item -E @var{var}=@var{value}
2661Set environment @var{var} to @var{value}.
2662@item -U @var{var}
2663Remove @var{var} from the environment.
379f6698
PB
2664@item -B offset
2665Offset guest address by the specified number of bytes. This is useful when
1f5c3f8c
SW
2666the address region required by guest applications is reserved on the host.
2667This option is currently only supported on some hosts.
68a1c816
PB
2668@item -R size
2669Pre-allocate a guest virtual address space of the given size (in bytes).
0d6753e5 2670"G", "M", and "k" suffixes may be used when specifying the size.
386405f7
FB
2671@end table
2672
1f673135 2673Debug options:
386405f7 2674
1f673135 2675@table @option
989b697d
PM
2676@item -d item1,...
2677Activate logging of the specified items (use '-d help' for a list of log items)
1f673135
FB
2678@item -p pagesize
2679Act as if the host page size was 'pagesize' bytes
34a3d239
BS
2680@item -g port
2681Wait gdb connection to port
1b530a6d
AJ
2682@item -singlestep
2683Run the emulation in single step mode.
1f673135 2684@end table
386405f7 2685
b01bcae6
AZ
2686Environment variables:
2687
2688@table @env
2689@item QEMU_STRACE
2690Print system calls and arguments similar to the 'strace' program
2691(NOTE: the actual 'strace' program will not work because the user
2692space emulator hasn't implemented ptrace). At the moment this is
2693incomplete. All system calls that don't have a specific argument
2694format are printed with information for six arguments. Many
2695flag-style arguments don't have decoders and will show up as numbers.
5cfdf930 2696@end table
b01bcae6 2697
79737e4a 2698@node Other binaries
83195237 2699@subsection Other binaries
79737e4a 2700
7544a042
SW
2701@cindex user mode (Alpha)
2702@command{qemu-alpha} TODO.
2703
2704@cindex user mode (ARM)
2705@command{qemu-armeb} TODO.
2706
2707@cindex user mode (ARM)
79737e4a
PB
2708@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2709binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2710configurations), and arm-uclinux bFLT format binaries.
2711
7544a042
SW
2712@cindex user mode (ColdFire)
2713@cindex user mode (M68K)
e6e5906b
PB
2714@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2715(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2716coldfire uClinux bFLT format binaries.
2717
79737e4a
PB
2718The binary format is detected automatically.
2719
7544a042
SW
2720@cindex user mode (Cris)
2721@command{qemu-cris} TODO.
2722
2723@cindex user mode (i386)
2724@command{qemu-i386} TODO.
2725@command{qemu-x86_64} TODO.
2726
2727@cindex user mode (Microblaze)
2728@command{qemu-microblaze} TODO.
2729
2730@cindex user mode (MIPS)
8639c5c9
AM
2731@command{qemu-mips} executes 32-bit big endian MIPS binaries (MIPS O32 ABI).
2732
2733@command{qemu-mipsel} executes 32-bit little endian MIPS binaries (MIPS O32 ABI).
2734
2735@command{qemu-mips64} executes 64-bit big endian MIPS binaries (MIPS N64 ABI).
2736
2737@command{qemu-mips64el} executes 64-bit little endian MIPS binaries (MIPS N64 ABI).
2738
2739@command{qemu-mipsn32} executes 32-bit big endian MIPS binaries (MIPS N32 ABI).
2740
2741@command{qemu-mipsn32el} executes 32-bit little endian MIPS binaries (MIPS N32 ABI).
7544a042 2742
e671711c
MV
2743@cindex user mode (NiosII)
2744@command{qemu-nios2} TODO.
2745
7544a042
SW
2746@cindex user mode (PowerPC)
2747@command{qemu-ppc64abi32} TODO.
2748@command{qemu-ppc64} TODO.
2749@command{qemu-ppc} TODO.
2750
2751@cindex user mode (SH4)
2752@command{qemu-sh4eb} TODO.
2753@command{qemu-sh4} TODO.
2754
2755@cindex user mode (SPARC)
34a3d239
BS
2756@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2757
a785e42e
BS
2758@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2759(Sparc64 CPU, 32 bit ABI).
2760
2761@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2762SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2763
84778508
BS
2764@node BSD User space emulator
2765@section BSD User space emulator
2766
2767@menu
2768* BSD Status::
2769* BSD Quick Start::
2770* BSD Command line options::
2771@end menu
2772
2773@node BSD Status
2774@subsection BSD Status
2775
2776@itemize @minus
2777@item
2778target Sparc64 on Sparc64: Some trivial programs work.
2779@end itemize
2780
2781@node BSD Quick Start
2782@subsection Quick Start
2783
2784In order to launch a BSD process, QEMU needs the process executable
2785itself and all the target dynamic libraries used by it.
2786
2787@itemize
2788
2789@item On Sparc64, you can just try to launch any process by using the native
2790libraries:
2791
2792@example
2793qemu-sparc64 /bin/ls
2794@end example
2795
2796@end itemize
2797
2798@node BSD Command line options
2799@subsection Command line options
2800
2801@example
8485140f 2802@command{qemu-sparc64} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-bsd} @var{type}] @var{program} [@var{arguments}...]
84778508
BS
2803@end example
2804
2805@table @option
2806@item -h
2807Print the help
2808@item -L path
2809Set the library root path (default=/)
2810@item -s size
2811Set the stack size in bytes (default=524288)
f66724c9
SW
2812@item -ignore-environment
2813Start with an empty environment. Without this option,
40c5c6cd 2814the initial environment is a copy of the caller's environment.
f66724c9
SW
2815@item -E @var{var}=@var{value}
2816Set environment @var{var} to @var{value}.
2817@item -U @var{var}
2818Remove @var{var} from the environment.
84778508
BS
2819@item -bsd type
2820Set the type of the emulated BSD Operating system. Valid values are
2821FreeBSD, NetBSD and OpenBSD (default).
2822@end table
2823
2824Debug options:
2825
2826@table @option
989b697d
PM
2827@item -d item1,...
2828Activate logging of the specified items (use '-d help' for a list of log items)
84778508
BS
2829@item -p pagesize
2830Act as if the host page size was 'pagesize' bytes
1b530a6d
AJ
2831@item -singlestep
2832Run the emulation in single step mode.
84778508
BS
2833@end table
2834
483c6ad4
BP
2835@node System requirements
2836@chapter System requirements
2837
2838@section KVM kernel module
2839
2840On x86_64 hosts, the default set of CPU features enabled by the KVM accelerator
2841require the host to be running Linux v4.5 or newer.
2842
2843The OpteronG[345] CPU models require KVM support for RDTSCP, which was
2844added with Linux 4.5 which is supported by the major distros. And even
2845if RHEL7 has kernel 3.10, KVM there has the required functionality there
2846to make it close to a 4.5 or newer kernel.
47eacb4f 2847
e8412576
SH
2848@include docs/security.texi
2849
78e87797
PB
2850@include qemu-tech.texi
2851
44c67847 2852@include qemu-deprecated.texi
efe2add7 2853
45b47130
DB
2854@node Supported build platforms
2855@appendix Supported build platforms
2856
2857QEMU aims to support building and executing on multiple host OS platforms.
2858This appendix outlines which platforms are the major build targets. These
2859platforms are used as the basis for deciding upon the minimum required
2860versions of 3rd party software QEMU depends on. The supported platforms
2861are the targets for automated testing performed by the project when patches
2862are submitted for review, and tested before and after merge.
2863
2864If a platform is not listed here, it does not imply that QEMU won't work.
2865If an unlisted platform has comparable software versions to a listed platform,
2866there is every expectation that it will work. Bug reports are welcome for
2867problems encountered on unlisted platforms unless they are clearly older
2868vintage than what is described here.
2869
2870Note that when considering software versions shipped in distros as support
2871targets, QEMU considers only the version number, and assumes the features in
2872that distro match the upstream release with the same version. In other words,
2873if a distro backports extra features to the software in their distro, QEMU
2874upstream code will not add explicit support for those backports, unless the
2875feature is auto-detectable in a manner that works for the upstream releases
2876too.
2877
2878The Repology site @url{https://repology.org} is a useful resource to identify
2879currently shipped versions of software in various operating systems, though
2880it does not cover all distros listed below.
2881
2882@section Linux OS
2883
2884For distributions with frequent, short-lifetime releases, the project will
2885aim to support all versions that are not end of life by their respective
2886vendors. For the purposes of identifying supported software versions, the
2887project will look at Fedora, Ubuntu, and openSUSE distros. Other short-
2888lifetime distros will be assumed to ship similar software versions.
2889
2890For distributions with long-lifetime releases, the project will aim to support
2891the most recent major version at all times. Support for the previous major
2892version will be dropped 2 years after the new major version is released. For
2893the purposes of identifying supported software versions, the project will look
2894at RHEL, Debian, Ubuntu LTS, and SLES distros. Other long-lifetime distros will
2895be assumed to ship similar software versions.
2896
2897@section Windows
2898
2899The project supports building with current versions of the MinGW toolchain,
2900hosted on Linux.
2901
2902@section macOS
2903
2904The project supports building with the two most recent versions of macOS, with
2905the current homebrew package set available.
2906
2907@section FreeBSD
2908
2909The project aims to support the all the versions which are not end of life.
2910
2911@section NetBSD
2912
2913The project aims to support the most recent major version at all times. Support
2914for the previous major version will be dropped 2 years after the new major
2915version is released.
2916
2917@section OpenBSD
2918
2919The project aims to support the all the versions which are not end of life.
2920
7544a042
SW
2921@node License
2922@appendix License
2923
2924QEMU is a trademark of Fabrice Bellard.
2925
2f8d8f01
TH
2926QEMU is released under the
2927@url{https://www.gnu.org/licenses/gpl-2.0.txt,GNU General Public License},
2928version 2. Parts of QEMU have specific licenses, see file
70b7fba9 2929@url{https://git.qemu.org/?p=qemu.git;a=blob_plain;f=LICENSE,LICENSE}.
7544a042 2930
debc7065 2931@node Index
7544a042
SW
2932@appendix Index
2933@menu
2934* Concept Index::
2935* Function Index::
2936* Keystroke Index::
2937* Program Index::
2938* Data Type Index::
2939* Variable Index::
2940@end menu
2941
2942@node Concept Index
2943@section Concept Index
2944This is the main index. Should we combine all keywords in one index? TODO
debc7065
FB
2945@printindex cp
2946
7544a042
SW
2947@node Function Index
2948@section Function Index
2949This index could be used for command line options and monitor functions.
2950@printindex fn
2951
2952@node Keystroke Index
2953@section Keystroke Index
2954
2955This is a list of all keystrokes which have a special function
2956in system emulation.
2957
2958@printindex ky
2959
2960@node Program Index
2961@section Program Index
2962@printindex pg
2963
2964@node Data Type Index
2965@section Data Type Index
2966
2967This index could be used for qdev device names and options.
2968
2969@printindex tp
2970
2971@node Variable Index
2972@section Variable Index
2973@printindex vr
2974
debc7065 2975@bye