]> git.proxmox.com Git - mirror_qemu.git/blame - target/i386/kvm.c
migration: Allow "device add" options to only add migratable devices
[mirror_qemu.git] / target / i386 / kvm.c
CommitLineData
05330448
AL
1/*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
b6a0aa05 15#include "qemu/osdep.h"
da34e65c 16#include "qapi/error.h"
05330448 17#include <sys/ioctl.h>
25d2e361 18#include <sys/utsname.h>
05330448
AL
19
20#include <linux/kvm.h>
5802e066 21#include <linux/kvm_para.h>
05330448
AL
22
23#include "qemu-common.h"
33c11879 24#include "cpu.h"
9c17d615 25#include "sysemu/sysemu.h"
b3946626 26#include "sysemu/hw_accel.h"
6410848b 27#include "sysemu/kvm_int.h"
1d31f66b 28#include "kvm_i386.h"
50efe82c
AS
29#include "hyperv.h"
30
022c62cb 31#include "exec/gdbstub.h"
1de7afc9
PB
32#include "qemu/host-utils.h"
33#include "qemu/config-file.h"
1c4a55db 34#include "qemu/error-report.h"
0d09e41a
PB
35#include "hw/i386/pc.h"
36#include "hw/i386/apic.h"
e0723c45
PB
37#include "hw/i386/apic_internal.h"
38#include "hw/i386/apic-msidef.h"
8b5ed7df 39#include "hw/i386/intel_iommu.h"
e1d4fb2d 40#include "hw/i386/x86-iommu.h"
50efe82c 41
022c62cb 42#include "exec/ioport.h"
73aa529a 43#include "standard-headers/asm-x86/hyperv.h"
a2cb15b0 44#include "hw/pci/pci.h"
15eafc2e 45#include "hw/pci/msi.h"
68bfd0ad 46#include "migration/migration.h"
4c663752 47#include "exec/memattrs.h"
8b5ed7df 48#include "trace.h"
05330448
AL
49
50//#define DEBUG_KVM
51
52#ifdef DEBUG_KVM
8c0d577e 53#define DPRINTF(fmt, ...) \
05330448
AL
54 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
55#else
8c0d577e 56#define DPRINTF(fmt, ...) \
05330448
AL
57 do { } while (0)
58#endif
59
1a03675d
GC
60#define MSR_KVM_WALL_CLOCK 0x11
61#define MSR_KVM_SYSTEM_TIME 0x12
62
d1138251
EH
63/* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
64 * 255 kvm_msr_entry structs */
65#define MSR_BUF_SIZE 4096
d71b62a1 66
c0532a76
MT
67#ifndef BUS_MCEERR_AR
68#define BUS_MCEERR_AR 4
69#endif
70#ifndef BUS_MCEERR_AO
71#define BUS_MCEERR_AO 5
72#endif
73
94a8d39a
JK
74const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
75 KVM_CAP_INFO(SET_TSS_ADDR),
76 KVM_CAP_INFO(EXT_CPUID),
77 KVM_CAP_INFO(MP_STATE),
78 KVM_CAP_LAST_INFO
79};
25d2e361 80
c3a3a7d3
JK
81static bool has_msr_star;
82static bool has_msr_hsave_pa;
c9b8f6b6 83static bool has_msr_tsc_aux;
f28558d3 84static bool has_msr_tsc_adjust;
aa82ba54 85static bool has_msr_tsc_deadline;
df67696e 86static bool has_msr_feature_control;
21e87c46 87static bool has_msr_misc_enable;
fc12d72e 88static bool has_msr_smbase;
79e9ebeb 89static bool has_msr_bndcfgs;
25d2e361 90static int lm_capable_kernel;
7bc3d711 91static bool has_msr_hv_hypercall;
f2a53c9e 92static bool has_msr_hv_crash;
744b8a94 93static bool has_msr_hv_reset;
8c145d7c 94static bool has_msr_hv_vpindex;
46eb8f98 95static bool has_msr_hv_runtime;
866eea9a 96static bool has_msr_hv_synic;
ff99aa64 97static bool has_msr_hv_stimer;
18cd2c17 98static bool has_msr_xss;
b827df58 99
0d894367
PB
100static bool has_msr_architectural_pmu;
101static uint32_t num_architectural_pmu_counters;
102
28143b40
TH
103static int has_xsave;
104static int has_xcrs;
105static int has_pit_state2;
106
87f8b626
AR
107static bool has_msr_mcg_ext_ctl;
108
494e95e9
CP
109static struct kvm_cpuid2 *cpuid_cache;
110
28143b40
TH
111int kvm_has_pit_state2(void)
112{
113 return has_pit_state2;
114}
115
355023f2
PB
116bool kvm_has_smm(void)
117{
118 return kvm_check_extension(kvm_state, KVM_CAP_X86_SMM);
119}
120
6053a86f
MT
121bool kvm_has_adjust_clock_stable(void)
122{
123 int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
124
125 return (ret == KVM_CLOCK_TSC_STABLE);
126}
127
1d31f66b
PM
128bool kvm_allows_irq0_override(void)
129{
130 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
131}
132
fb506e70
RK
133static bool kvm_x2apic_api_set_flags(uint64_t flags)
134{
135 KVMState *s = KVM_STATE(current_machine->accelerator);
136
137 return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags);
138}
139
e391c009 140#define MEMORIZE(fn, _result) \
2a138ec3 141 ({ \
2a138ec3
RK
142 static bool _memorized; \
143 \
144 if (_memorized) { \
145 return _result; \
146 } \
147 _memorized = true; \
148 _result = fn; \
149 })
150
e391c009
IM
151static bool has_x2apic_api;
152
153bool kvm_has_x2apic_api(void)
154{
155 return has_x2apic_api;
156}
157
fb506e70
RK
158bool kvm_enable_x2apic(void)
159{
2a138ec3
RK
160 return MEMORIZE(
161 kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS |
e391c009
IM
162 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK),
163 has_x2apic_api);
fb506e70
RK
164}
165
0fd7e098
LL
166static int kvm_get_tsc(CPUState *cs)
167{
168 X86CPU *cpu = X86_CPU(cs);
169 CPUX86State *env = &cpu->env;
170 struct {
171 struct kvm_msrs info;
172 struct kvm_msr_entry entries[1];
173 } msr_data;
174 int ret;
175
176 if (env->tsc_valid) {
177 return 0;
178 }
179
180 msr_data.info.nmsrs = 1;
181 msr_data.entries[0].index = MSR_IA32_TSC;
182 env->tsc_valid = !runstate_is_running();
183
184 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
185 if (ret < 0) {
186 return ret;
187 }
188
48e1a45c 189 assert(ret == 1);
0fd7e098
LL
190 env->tsc = msr_data.entries[0].data;
191 return 0;
192}
193
14e6fe12 194static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg)
0fd7e098 195{
0fd7e098
LL
196 kvm_get_tsc(cpu);
197}
198
199void kvm_synchronize_all_tsc(void)
200{
201 CPUState *cpu;
202
203 if (kvm_enabled()) {
204 CPU_FOREACH(cpu) {
14e6fe12 205 run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL);
0fd7e098
LL
206 }
207 }
208}
209
b827df58
AK
210static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
211{
212 struct kvm_cpuid2 *cpuid;
213 int r, size;
214
215 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
e42a92ae 216 cpuid = g_malloc0(size);
b827df58
AK
217 cpuid->nent = max;
218 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
76ae317f
MM
219 if (r == 0 && cpuid->nent >= max) {
220 r = -E2BIG;
221 }
b827df58
AK
222 if (r < 0) {
223 if (r == -E2BIG) {
7267c094 224 g_free(cpuid);
b827df58
AK
225 return NULL;
226 } else {
227 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
228 strerror(-r));
229 exit(1);
230 }
231 }
232 return cpuid;
233}
234
dd87f8a6
EH
235/* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
236 * for all entries.
237 */
238static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
239{
240 struct kvm_cpuid2 *cpuid;
241 int max = 1;
494e95e9
CP
242
243 if (cpuid_cache != NULL) {
244 return cpuid_cache;
245 }
dd87f8a6
EH
246 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
247 max *= 2;
248 }
494e95e9 249 cpuid_cache = cpuid;
dd87f8a6
EH
250 return cpuid;
251}
252
a443bc34 253static const struct kvm_para_features {
0c31b744
GC
254 int cap;
255 int feature;
256} para_features[] = {
257 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
258 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
259 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
0c31b744 260 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
0c31b744
GC
261};
262
ba9bc59e 263static int get_para_features(KVMState *s)
0c31b744
GC
264{
265 int i, features = 0;
266
8e03c100 267 for (i = 0; i < ARRAY_SIZE(para_features); i++) {
ba9bc59e 268 if (kvm_check_extension(s, para_features[i].cap)) {
0c31b744
GC
269 features |= (1 << para_features[i].feature);
270 }
271 }
272
273 return features;
274}
0c31b744
GC
275
276
829ae2f9
EH
277/* Returns the value for a specific register on the cpuid entry
278 */
279static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
280{
281 uint32_t ret = 0;
282 switch (reg) {
283 case R_EAX:
284 ret = entry->eax;
285 break;
286 case R_EBX:
287 ret = entry->ebx;
288 break;
289 case R_ECX:
290 ret = entry->ecx;
291 break;
292 case R_EDX:
293 ret = entry->edx;
294 break;
295 }
296 return ret;
297}
298
4fb73f1d
EH
299/* Find matching entry for function/index on kvm_cpuid2 struct
300 */
301static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
302 uint32_t function,
303 uint32_t index)
304{
305 int i;
306 for (i = 0; i < cpuid->nent; ++i) {
307 if (cpuid->entries[i].function == function &&
308 cpuid->entries[i].index == index) {
309 return &cpuid->entries[i];
310 }
311 }
312 /* not found: */
313 return NULL;
314}
315
ba9bc59e 316uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
c958a8bd 317 uint32_t index, int reg)
b827df58
AK
318{
319 struct kvm_cpuid2 *cpuid;
b827df58
AK
320 uint32_t ret = 0;
321 uint32_t cpuid_1_edx;
8c723b79 322 bool found = false;
b827df58 323
dd87f8a6 324 cpuid = get_supported_cpuid(s);
b827df58 325
4fb73f1d
EH
326 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
327 if (entry) {
328 found = true;
329 ret = cpuid_entry_get_reg(entry, reg);
b827df58
AK
330 }
331
7b46e5ce
EH
332 /* Fixups for the data returned by KVM, below */
333
c2acb022
EH
334 if (function == 1 && reg == R_EDX) {
335 /* KVM before 2.6.30 misreports the following features */
336 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
84bd945c
EH
337 } else if (function == 1 && reg == R_ECX) {
338 /* We can set the hypervisor flag, even if KVM does not return it on
339 * GET_SUPPORTED_CPUID
340 */
341 ret |= CPUID_EXT_HYPERVISOR;
ac67ee26
EH
342 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
343 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
344 * and the irqchip is in the kernel.
345 */
346 if (kvm_irqchip_in_kernel() &&
347 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
348 ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
349 }
41e5e76d
EH
350
351 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
352 * without the in-kernel irqchip
353 */
354 if (!kvm_irqchip_in_kernel()) {
355 ret &= ~CPUID_EXT_X2APIC;
b827df58 356 }
28b8e4d0
JK
357 } else if (function == 6 && reg == R_EAX) {
358 ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
c2acb022
EH
359 } else if (function == 0x80000001 && reg == R_EDX) {
360 /* On Intel, kvm returns cpuid according to the Intel spec,
361 * so add missing bits according to the AMD spec:
362 */
363 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
364 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
64877477
EH
365 } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) {
366 /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
367 * be enabled without the in-kernel irqchip
368 */
369 if (!kvm_irqchip_in_kernel()) {
370 ret &= ~(1U << KVM_FEATURE_PV_UNHALT);
371 }
b827df58
AK
372 }
373
0c31b744 374 /* fallback for older kernels */
8c723b79 375 if ((function == KVM_CPUID_FEATURES) && !found) {
ba9bc59e 376 ret = get_para_features(s);
b9bec74b 377 }
0c31b744
GC
378
379 return ret;
bb0300dc 380}
bb0300dc 381
3c85e74f
HY
382typedef struct HWPoisonPage {
383 ram_addr_t ram_addr;
384 QLIST_ENTRY(HWPoisonPage) list;
385} HWPoisonPage;
386
387static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
388 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
389
390static void kvm_unpoison_all(void *param)
391{
392 HWPoisonPage *page, *next_page;
393
394 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
395 QLIST_REMOVE(page, list);
396 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
7267c094 397 g_free(page);
3c85e74f
HY
398 }
399}
400
3c85e74f
HY
401static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
402{
403 HWPoisonPage *page;
404
405 QLIST_FOREACH(page, &hwpoison_page_list, list) {
406 if (page->ram_addr == ram_addr) {
407 return;
408 }
409 }
ab3ad07f 410 page = g_new(HWPoisonPage, 1);
3c85e74f
HY
411 page->ram_addr = ram_addr;
412 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
413}
414
e7701825
MT
415static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
416 int *max_banks)
417{
418 int r;
419
14a09518 420 r = kvm_check_extension(s, KVM_CAP_MCE);
e7701825
MT
421 if (r > 0) {
422 *max_banks = r;
423 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
424 }
425 return -ENOSYS;
426}
427
bee615d4 428static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
e7701825 429{
87f8b626 430 CPUState *cs = CPU(cpu);
bee615d4 431 CPUX86State *env = &cpu->env;
c34d440a
JK
432 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
433 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
434 uint64_t mcg_status = MCG_STATUS_MCIP;
87f8b626 435 int flags = 0;
e7701825 436
c34d440a
JK
437 if (code == BUS_MCEERR_AR) {
438 status |= MCI_STATUS_AR | 0x134;
439 mcg_status |= MCG_STATUS_EIPV;
440 } else {
441 status |= 0xc0;
442 mcg_status |= MCG_STATUS_RIPV;
419fb20a 443 }
87f8b626
AR
444
445 flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0;
446 /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
447 * guest kernel back into env->mcg_ext_ctl.
448 */
449 cpu_synchronize_state(cs);
450 if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) {
451 mcg_status |= MCG_STATUS_LMCE;
452 flags = 0;
453 }
454
8c5cf3b6 455 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
87f8b626 456 (MCM_ADDR_PHYS << 6) | 0xc, flags);
419fb20a 457}
419fb20a
JK
458
459static void hardware_memory_error(void)
460{
461 fprintf(stderr, "Hardware memory error!\n");
462 exit(1);
463}
464
20d695a9 465int kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
419fb20a 466{
20d695a9
AF
467 X86CPU *cpu = X86_CPU(c);
468 CPUX86State *env = &cpu->env;
419fb20a 469 ram_addr_t ram_addr;
a8170e5e 470 hwaddr paddr;
419fb20a
JK
471
472 if ((env->mcg_cap & MCG_SER_P) && addr
c34d440a 473 && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
07bdaa41
PB
474 ram_addr = qemu_ram_addr_from_host(addr);
475 if (ram_addr == RAM_ADDR_INVALID ||
a60f24b5 476 !kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
419fb20a
JK
477 fprintf(stderr, "Hardware memory error for memory used by "
478 "QEMU itself instead of guest system!\n");
479 /* Hope we are lucky for AO MCE */
480 if (code == BUS_MCEERR_AO) {
481 return 0;
482 } else {
483 hardware_memory_error();
484 }
485 }
3c85e74f 486 kvm_hwpoison_page_add(ram_addr);
bee615d4 487 kvm_mce_inject(cpu, paddr, code);
e56ff191 488 } else {
419fb20a
JK
489 if (code == BUS_MCEERR_AO) {
490 return 0;
491 } else if (code == BUS_MCEERR_AR) {
492 hardware_memory_error();
493 } else {
494 return 1;
495 }
496 }
497 return 0;
498}
499
500int kvm_arch_on_sigbus(int code, void *addr)
501{
182735ef
AF
502 X86CPU *cpu = X86_CPU(first_cpu);
503
504 if ((cpu->env.mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
419fb20a 505 ram_addr_t ram_addr;
a8170e5e 506 hwaddr paddr;
419fb20a
JK
507
508 /* Hope we are lucky for AO MCE */
07bdaa41
PB
509 ram_addr = qemu_ram_addr_from_host(addr);
510 if (ram_addr == RAM_ADDR_INVALID ||
182735ef 511 !kvm_physical_memory_addr_from_host(first_cpu->kvm_state,
a60f24b5 512 addr, &paddr)) {
419fb20a
JK
513 fprintf(stderr, "Hardware memory error for memory used by "
514 "QEMU itself instead of guest system!: %p\n", addr);
515 return 0;
516 }
3c85e74f 517 kvm_hwpoison_page_add(ram_addr);
182735ef 518 kvm_mce_inject(X86_CPU(first_cpu), paddr, code);
e56ff191 519 } else {
419fb20a
JK
520 if (code == BUS_MCEERR_AO) {
521 return 0;
522 } else if (code == BUS_MCEERR_AR) {
523 hardware_memory_error();
524 } else {
525 return 1;
526 }
527 }
528 return 0;
529}
e7701825 530
1bc22652 531static int kvm_inject_mce_oldstyle(X86CPU *cpu)
ab443475 532{
1bc22652
AF
533 CPUX86State *env = &cpu->env;
534
ab443475
JK
535 if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
536 unsigned int bank, bank_num = env->mcg_cap & 0xff;
537 struct kvm_x86_mce mce;
538
539 env->exception_injected = -1;
540
541 /*
542 * There must be at least one bank in use if an MCE is pending.
543 * Find it and use its values for the event injection.
544 */
545 for (bank = 0; bank < bank_num; bank++) {
546 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
547 break;
548 }
549 }
550 assert(bank < bank_num);
551
552 mce.bank = bank;
553 mce.status = env->mce_banks[bank * 4 + 1];
554 mce.mcg_status = env->mcg_status;
555 mce.addr = env->mce_banks[bank * 4 + 2];
556 mce.misc = env->mce_banks[bank * 4 + 3];
557
1bc22652 558 return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
ab443475 559 }
ab443475
JK
560 return 0;
561}
562
1dfb4dd9 563static void cpu_update_state(void *opaque, int running, RunState state)
b8cc45d6 564{
317ac620 565 CPUX86State *env = opaque;
b8cc45d6
GC
566
567 if (running) {
568 env->tsc_valid = false;
569 }
570}
571
83b17af5 572unsigned long kvm_arch_vcpu_id(CPUState *cs)
b164e48e 573{
83b17af5 574 X86CPU *cpu = X86_CPU(cs);
7e72a45c 575 return cpu->apic_id;
b164e48e
EH
576}
577
92067bf4
IM
578#ifndef KVM_CPUID_SIGNATURE_NEXT
579#define KVM_CPUID_SIGNATURE_NEXT 0x40000100
580#endif
581
582static bool hyperv_hypercall_available(X86CPU *cpu)
583{
584 return cpu->hyperv_vapic ||
585 (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY);
586}
587
588static bool hyperv_enabled(X86CPU *cpu)
589{
7bc3d711
PB
590 CPUState *cs = CPU(cpu);
591 return kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0 &&
592 (hyperv_hypercall_available(cpu) ||
48a5f3bc 593 cpu->hyperv_time ||
f2a53c9e 594 cpu->hyperv_relaxed_timing ||
744b8a94 595 cpu->hyperv_crash ||
8c145d7c 596 cpu->hyperv_reset ||
46eb8f98 597 cpu->hyperv_vpindex ||
866eea9a 598 cpu->hyperv_runtime ||
ff99aa64
AS
599 cpu->hyperv_synic ||
600 cpu->hyperv_stimer);
92067bf4
IM
601}
602
5031283d
HZ
603static int kvm_arch_set_tsc_khz(CPUState *cs)
604{
605 X86CPU *cpu = X86_CPU(cs);
606 CPUX86State *env = &cpu->env;
607 int r;
608
609 if (!env->tsc_khz) {
610 return 0;
611 }
612
613 r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL) ?
614 kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) :
615 -ENOTSUP;
616 if (r < 0) {
617 /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
618 * TSC frequency doesn't match the one we want.
619 */
620 int cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
621 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
622 -ENOTSUP;
623 if (cur_freq <= 0 || cur_freq != env->tsc_khz) {
624 error_report("warning: TSC frequency mismatch between "
d6276d26
EH
625 "VM (%" PRId64 " kHz) and host (%d kHz), "
626 "and TSC scaling unavailable",
627 env->tsc_khz, cur_freq);
5031283d
HZ
628 return r;
629 }
630 }
631
632 return 0;
633}
634
c35bd19a
EY
635static int hyperv_handle_properties(CPUState *cs)
636{
637 X86CPU *cpu = X86_CPU(cs);
638 CPUX86State *env = &cpu->env;
639
3ddcd2ed
EH
640 if (cpu->hyperv_time &&
641 kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) <= 0) {
642 cpu->hyperv_time = false;
643 }
644
c35bd19a
EY
645 if (cpu->hyperv_relaxed_timing) {
646 env->features[FEAT_HYPERV_EAX] |= HV_X64_MSR_HYPERCALL_AVAILABLE;
647 }
648 if (cpu->hyperv_vapic) {
649 env->features[FEAT_HYPERV_EAX] |= HV_X64_MSR_HYPERCALL_AVAILABLE;
650 env->features[FEAT_HYPERV_EAX] |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
c35bd19a 651 }
3ddcd2ed 652 if (cpu->hyperv_time) {
c35bd19a
EY
653 env->features[FEAT_HYPERV_EAX] |= HV_X64_MSR_HYPERCALL_AVAILABLE;
654 env->features[FEAT_HYPERV_EAX] |= HV_X64_MSR_TIME_REF_COUNT_AVAILABLE;
655 env->features[FEAT_HYPERV_EAX] |= 0x200;
c35bd19a
EY
656 }
657 if (cpu->hyperv_crash && has_msr_hv_crash) {
658 env->features[FEAT_HYPERV_EDX] |= HV_X64_GUEST_CRASH_MSR_AVAILABLE;
659 }
660 env->features[FEAT_HYPERV_EDX] |= HV_X64_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
661 if (cpu->hyperv_reset && has_msr_hv_reset) {
662 env->features[FEAT_HYPERV_EAX] |= HV_X64_MSR_RESET_AVAILABLE;
663 }
664 if (cpu->hyperv_vpindex && has_msr_hv_vpindex) {
665 env->features[FEAT_HYPERV_EAX] |= HV_X64_MSR_VP_INDEX_AVAILABLE;
666 }
667 if (cpu->hyperv_runtime && has_msr_hv_runtime) {
668 env->features[FEAT_HYPERV_EAX] |= HV_X64_MSR_VP_RUNTIME_AVAILABLE;
669 }
670 if (cpu->hyperv_synic) {
671 int sint;
672
673 if (!has_msr_hv_synic ||
674 kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_SYNIC, 0)) {
675 fprintf(stderr, "Hyper-V SynIC is not supported by kernel\n");
676 return -ENOSYS;
677 }
678
679 env->features[FEAT_HYPERV_EAX] |= HV_X64_MSR_SYNIC_AVAILABLE;
680 env->msr_hv_synic_version = HV_SYNIC_VERSION_1;
681 for (sint = 0; sint < ARRAY_SIZE(env->msr_hv_synic_sint); sint++) {
682 env->msr_hv_synic_sint[sint] = HV_SYNIC_SINT_MASKED;
683 }
684 }
685 if (cpu->hyperv_stimer) {
686 if (!has_msr_hv_stimer) {
687 fprintf(stderr, "Hyper-V timers aren't supported by kernel\n");
688 return -ENOSYS;
689 }
690 env->features[FEAT_HYPERV_EAX] |= HV_X64_MSR_SYNTIMER_AVAILABLE;
691 }
692 return 0;
693}
694
68bfd0ad
MT
695static Error *invtsc_mig_blocker;
696
f8bb0565 697#define KVM_MAX_CPUID_ENTRIES 100
0893d460 698
20d695a9 699int kvm_arch_init_vcpu(CPUState *cs)
05330448
AL
700{
701 struct {
486bd5a2 702 struct kvm_cpuid2 cpuid;
f8bb0565 703 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
541dc0d4 704 } QEMU_PACKED cpuid_data;
20d695a9
AF
705 X86CPU *cpu = X86_CPU(cs);
706 CPUX86State *env = &cpu->env;
486bd5a2 707 uint32_t limit, i, j, cpuid_i;
a33609ca 708 uint32_t unused;
bb0300dc 709 struct kvm_cpuid_entry2 *c;
bb0300dc 710 uint32_t signature[3];
234cc647 711 int kvm_base = KVM_CPUID_SIGNATURE;
e7429073 712 int r;
05330448 713
ef4cbe14
SW
714 memset(&cpuid_data, 0, sizeof(cpuid_data));
715
05330448
AL
716 cpuid_i = 0;
717
bb0300dc 718 /* Paravirtualization CPUIDs */
234cc647
PB
719 if (hyperv_enabled(cpu)) {
720 c = &cpuid_data.entries[cpuid_i++];
721 c->function = HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
1c4a55db
AW
722 if (!cpu->hyperv_vendor_id) {
723 memcpy(signature, "Microsoft Hv", 12);
724 } else {
725 size_t len = strlen(cpu->hyperv_vendor_id);
726
727 if (len > 12) {
728 error_report("hv-vendor-id truncated to 12 characters");
729 len = 12;
730 }
731 memset(signature, 0, 12);
732 memcpy(signature, cpu->hyperv_vendor_id, len);
733 }
eab70139 734 c->eax = HYPERV_CPUID_MIN;
234cc647
PB
735 c->ebx = signature[0];
736 c->ecx = signature[1];
737 c->edx = signature[2];
0c31b744 738
234cc647
PB
739 c = &cpuid_data.entries[cpuid_i++];
740 c->function = HYPERV_CPUID_INTERFACE;
eab70139
VR
741 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
742 c->eax = signature[0];
234cc647
PB
743 c->ebx = 0;
744 c->ecx = 0;
745 c->edx = 0;
eab70139
VR
746
747 c = &cpuid_data.entries[cpuid_i++];
eab70139
VR
748 c->function = HYPERV_CPUID_VERSION;
749 c->eax = 0x00001bbc;
750 c->ebx = 0x00060001;
751
752 c = &cpuid_data.entries[cpuid_i++];
eab70139 753 c->function = HYPERV_CPUID_FEATURES;
c35bd19a
EY
754 r = hyperv_handle_properties(cs);
755 if (r) {
756 return r;
46eb8f98 757 }
c35bd19a
EY
758 c->eax = env->features[FEAT_HYPERV_EAX];
759 c->ebx = env->features[FEAT_HYPERV_EBX];
760 c->edx = env->features[FEAT_HYPERV_EDX];
866eea9a 761
eab70139 762 c = &cpuid_data.entries[cpuid_i++];
eab70139 763 c->function = HYPERV_CPUID_ENLIGHTMENT_INFO;
92067bf4 764 if (cpu->hyperv_relaxed_timing) {
eab70139
VR
765 c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
766 }
2d5aa872 767 if (cpu->hyperv_vapic) {
eab70139
VR
768 c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
769 }
92067bf4 770 c->ebx = cpu->hyperv_spinlock_attempts;
eab70139
VR
771
772 c = &cpuid_data.entries[cpuid_i++];
eab70139
VR
773 c->function = HYPERV_CPUID_IMPLEMENT_LIMITS;
774 c->eax = 0x40;
775 c->ebx = 0x40;
776
234cc647 777 kvm_base = KVM_CPUID_SIGNATURE_NEXT;
7bc3d711 778 has_msr_hv_hypercall = true;
eab70139
VR
779 }
780
f522d2ac
AW
781 if (cpu->expose_kvm) {
782 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
783 c = &cpuid_data.entries[cpuid_i++];
784 c->function = KVM_CPUID_SIGNATURE | kvm_base;
79b6f2f6 785 c->eax = KVM_CPUID_FEATURES | kvm_base;
f522d2ac
AW
786 c->ebx = signature[0];
787 c->ecx = signature[1];
788 c->edx = signature[2];
234cc647 789
f522d2ac
AW
790 c = &cpuid_data.entries[cpuid_i++];
791 c->function = KVM_CPUID_FEATURES | kvm_base;
792 c->eax = env->features[FEAT_KVM];
f522d2ac 793 }
917367aa 794
a33609ca 795 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
05330448
AL
796
797 for (i = 0; i <= limit; i++) {
f8bb0565
IM
798 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
799 fprintf(stderr, "unsupported level value: 0x%x\n", limit);
800 abort();
801 }
bb0300dc 802 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
803
804 switch (i) {
a36b1029
AL
805 case 2: {
806 /* Keep reading function 2 till all the input is received */
807 int times;
808
a36b1029 809 c->function = i;
a33609ca
AL
810 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
811 KVM_CPUID_FLAG_STATE_READ_NEXT;
812 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
813 times = c->eax & 0xff;
a36b1029
AL
814
815 for (j = 1; j < times; ++j) {
f8bb0565
IM
816 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
817 fprintf(stderr, "cpuid_data is full, no space for "
818 "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
819 abort();
820 }
a33609ca 821 c = &cpuid_data.entries[cpuid_i++];
a36b1029 822 c->function = i;
a33609ca
AL
823 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
824 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
a36b1029
AL
825 }
826 break;
827 }
486bd5a2
AL
828 case 4:
829 case 0xb:
830 case 0xd:
831 for (j = 0; ; j++) {
31e8c696
AP
832 if (i == 0xd && j == 64) {
833 break;
834 }
486bd5a2
AL
835 c->function = i;
836 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
837 c->index = j;
a33609ca 838 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2 839
b9bec74b 840 if (i == 4 && c->eax == 0) {
486bd5a2 841 break;
b9bec74b
JK
842 }
843 if (i == 0xb && !(c->ecx & 0xff00)) {
486bd5a2 844 break;
b9bec74b
JK
845 }
846 if (i == 0xd && c->eax == 0) {
31e8c696 847 continue;
b9bec74b 848 }
f8bb0565
IM
849 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
850 fprintf(stderr, "cpuid_data is full, no space for "
851 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
852 abort();
853 }
a33609ca 854 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
855 }
856 break;
857 default:
486bd5a2 858 c->function = i;
a33609ca
AL
859 c->flags = 0;
860 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2
AL
861 break;
862 }
05330448 863 }
0d894367
PB
864
865 if (limit >= 0x0a) {
866 uint32_t ver;
867
868 cpu_x86_cpuid(env, 0x0a, 0, &ver, &unused, &unused, &unused);
869 if ((ver & 0xff) > 0) {
870 has_msr_architectural_pmu = true;
871 num_architectural_pmu_counters = (ver & 0xff00) >> 8;
872
873 /* Shouldn't be more than 32, since that's the number of bits
874 * available in EBX to tell us _which_ counters are available.
875 * Play it safe.
876 */
877 if (num_architectural_pmu_counters > MAX_GP_COUNTERS) {
878 num_architectural_pmu_counters = MAX_GP_COUNTERS;
879 }
880 }
881 }
882
a33609ca 883 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
05330448
AL
884
885 for (i = 0x80000000; i <= limit; i++) {
f8bb0565
IM
886 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
887 fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
888 abort();
889 }
bb0300dc 890 c = &cpuid_data.entries[cpuid_i++];
05330448 891
05330448 892 c->function = i;
a33609ca
AL
893 c->flags = 0;
894 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
05330448
AL
895 }
896
b3baa152
BW
897 /* Call Centaur's CPUID instructions they are supported. */
898 if (env->cpuid_xlevel2 > 0) {
b3baa152
BW
899 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
900
901 for (i = 0xC0000000; i <= limit; i++) {
f8bb0565
IM
902 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
903 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
904 abort();
905 }
b3baa152
BW
906 c = &cpuid_data.entries[cpuid_i++];
907
908 c->function = i;
909 c->flags = 0;
910 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
911 }
912 }
913
05330448
AL
914 cpuid_data.cpuid.nent = cpuid_i;
915
e7701825 916 if (((env->cpuid_version >> 8)&0xF) >= 6
0514ef2f 917 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
fc7a504c 918 (CPUID_MCE | CPUID_MCA)
a60f24b5 919 && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
5120901a 920 uint64_t mcg_cap, unsupported_caps;
e7701825 921 int banks;
32a42024 922 int ret;
e7701825 923
a60f24b5 924 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
75d49497
JK
925 if (ret < 0) {
926 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
927 return ret;
e7701825 928 }
75d49497 929
2590f15b 930 if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
49b69cbf 931 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
2590f15b 932 (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
49b69cbf 933 return -ENOTSUP;
75d49497 934 }
49b69cbf 935
5120901a
EH
936 unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
937 if (unsupported_caps) {
87f8b626
AR
938 if (unsupported_caps & MCG_LMCE_P) {
939 error_report("kvm: LMCE not supported");
940 return -ENOTSUP;
941 }
5120901a
EH
942 error_report("warning: Unsupported MCG_CAP bits: 0x%" PRIx64,
943 unsupported_caps);
944 }
945
2590f15b
EH
946 env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
947 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
75d49497
JK
948 if (ret < 0) {
949 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
950 return ret;
951 }
e7701825 952 }
e7701825 953
b8cc45d6
GC
954 qemu_add_vm_change_state_handler(cpu_update_state, env);
955
df67696e
LJ
956 c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
957 if (c) {
958 has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
959 !!(c->ecx & CPUID_EXT_SMX);
960 }
961
87f8b626
AR
962 if (env->mcg_cap & MCG_LMCE_P) {
963 has_msr_mcg_ext_ctl = has_msr_feature_control = true;
964 }
965
d99569d9
EH
966 if (!env->user_tsc_khz) {
967 if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
968 invtsc_mig_blocker == NULL) {
969 /* for migration */
970 error_setg(&invtsc_mig_blocker,
971 "State blocked by non-migratable CPU device"
972 " (invtsc flag)");
973 migrate_add_blocker(invtsc_mig_blocker);
974 /* for savevm */
975 vmstate_x86_cpu.unmigratable = 1;
976 }
68bfd0ad
MT
977 }
978
7e680753 979 cpuid_data.cpuid.padding = 0;
1bc22652 980 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
fdc9c41a
JK
981 if (r) {
982 return r;
983 }
e7429073 984
5031283d
HZ
985 r = kvm_arch_set_tsc_khz(cs);
986 if (r < 0) {
987 return r;
e7429073 988 }
e7429073 989
bcffbeeb
HZ
990 /* vcpu's TSC frequency is either specified by user, or following
991 * the value used by KVM if the former is not present. In the
992 * latter case, we query it from KVM and record in env->tsc_khz,
993 * so that vcpu's TSC frequency can be migrated later via this field.
994 */
995 if (!env->tsc_khz) {
996 r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
997 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
998 -ENOTSUP;
999 if (r > 0) {
1000 env->tsc_khz = r;
1001 }
1002 }
1003
28143b40 1004 if (has_xsave) {
fabacc0f
JK
1005 env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
1006 }
d71b62a1 1007 cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE);
fabacc0f 1008
273c515c
PB
1009 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) {
1010 has_msr_tsc_aux = false;
1011 }
d1ae67f6 1012
e7429073 1013 return 0;
05330448
AL
1014}
1015
50a2c6e5 1016void kvm_arch_reset_vcpu(X86CPU *cpu)
caa5af0f 1017{
20d695a9 1018 CPUX86State *env = &cpu->env;
dd673288 1019
e73223a5 1020 env->exception_injected = -1;
0e607a80 1021 env->interrupt_injected = -1;
1a5e9d2f 1022 env->xcr0 = 1;
ddced198 1023 if (kvm_irqchip_in_kernel()) {
dd673288 1024 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
ddced198
MT
1025 KVM_MP_STATE_UNINITIALIZED;
1026 } else {
1027 env->mp_state = KVM_MP_STATE_RUNNABLE;
1028 }
caa5af0f
JK
1029}
1030
e0723c45
PB
1031void kvm_arch_do_init_vcpu(X86CPU *cpu)
1032{
1033 CPUX86State *env = &cpu->env;
1034
1035 /* APs get directly into wait-for-SIPI state. */
1036 if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
1037 env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
1038 }
1039}
1040
c3a3a7d3 1041static int kvm_get_supported_msrs(KVMState *s)
05330448 1042{
75b10c43 1043 static int kvm_supported_msrs;
c3a3a7d3 1044 int ret = 0;
05330448
AL
1045
1046 /* first time */
75b10c43 1047 if (kvm_supported_msrs == 0) {
05330448
AL
1048 struct kvm_msr_list msr_list, *kvm_msr_list;
1049
75b10c43 1050 kvm_supported_msrs = -1;
05330448
AL
1051
1052 /* Obtain MSR list from KVM. These are the MSRs that we must
1053 * save/restore */
4c9f7372 1054 msr_list.nmsrs = 0;
c3a3a7d3 1055 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
6fb6d245 1056 if (ret < 0 && ret != -E2BIG) {
c3a3a7d3 1057 return ret;
6fb6d245 1058 }
d9db889f
JK
1059 /* Old kernel modules had a bug and could write beyond the provided
1060 memory. Allocate at least a safe amount of 1K. */
7267c094 1061 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
d9db889f
JK
1062 msr_list.nmsrs *
1063 sizeof(msr_list.indices[0])));
05330448 1064
55308450 1065 kvm_msr_list->nmsrs = msr_list.nmsrs;
c3a3a7d3 1066 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
05330448
AL
1067 if (ret >= 0) {
1068 int i;
1069
1070 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
1071 if (kvm_msr_list->indices[i] == MSR_STAR) {
c3a3a7d3 1072 has_msr_star = true;
75b10c43
MT
1073 continue;
1074 }
1075 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
c3a3a7d3 1076 has_msr_hsave_pa = true;
75b10c43 1077 continue;
05330448 1078 }
c9b8f6b6
AS
1079 if (kvm_msr_list->indices[i] == MSR_TSC_AUX) {
1080 has_msr_tsc_aux = true;
1081 continue;
1082 }
f28558d3
WA
1083 if (kvm_msr_list->indices[i] == MSR_TSC_ADJUST) {
1084 has_msr_tsc_adjust = true;
1085 continue;
1086 }
aa82ba54
LJ
1087 if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) {
1088 has_msr_tsc_deadline = true;
1089 continue;
1090 }
fc12d72e
PB
1091 if (kvm_msr_list->indices[i] == MSR_IA32_SMBASE) {
1092 has_msr_smbase = true;
1093 continue;
1094 }
21e87c46
AK
1095 if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) {
1096 has_msr_misc_enable = true;
1097 continue;
1098 }
79e9ebeb
LJ
1099 if (kvm_msr_list->indices[i] == MSR_IA32_BNDCFGS) {
1100 has_msr_bndcfgs = true;
1101 continue;
1102 }
18cd2c17
WL
1103 if (kvm_msr_list->indices[i] == MSR_IA32_XSS) {
1104 has_msr_xss = true;
1105 continue;
1106 }
f2a53c9e
AS
1107 if (kvm_msr_list->indices[i] == HV_X64_MSR_CRASH_CTL) {
1108 has_msr_hv_crash = true;
1109 continue;
1110 }
744b8a94
AS
1111 if (kvm_msr_list->indices[i] == HV_X64_MSR_RESET) {
1112 has_msr_hv_reset = true;
1113 continue;
1114 }
8c145d7c
AS
1115 if (kvm_msr_list->indices[i] == HV_X64_MSR_VP_INDEX) {
1116 has_msr_hv_vpindex = true;
1117 continue;
1118 }
46eb8f98
AS
1119 if (kvm_msr_list->indices[i] == HV_X64_MSR_VP_RUNTIME) {
1120 has_msr_hv_runtime = true;
1121 continue;
1122 }
866eea9a
AS
1123 if (kvm_msr_list->indices[i] == HV_X64_MSR_SCONTROL) {
1124 has_msr_hv_synic = true;
1125 continue;
1126 }
ff99aa64
AS
1127 if (kvm_msr_list->indices[i] == HV_X64_MSR_STIMER0_CONFIG) {
1128 has_msr_hv_stimer = true;
1129 continue;
1130 }
05330448
AL
1131 }
1132 }
1133
7267c094 1134 g_free(kvm_msr_list);
05330448
AL
1135 }
1136
c3a3a7d3 1137 return ret;
05330448
AL
1138}
1139
6410848b
PB
1140static Notifier smram_machine_done;
1141static KVMMemoryListener smram_listener;
1142static AddressSpace smram_address_space;
1143static MemoryRegion smram_as_root;
1144static MemoryRegion smram_as_mem;
1145
1146static void register_smram_listener(Notifier *n, void *unused)
1147{
1148 MemoryRegion *smram =
1149 (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
1150
1151 /* Outer container... */
1152 memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
1153 memory_region_set_enabled(&smram_as_root, true);
1154
1155 /* ... with two regions inside: normal system memory with low
1156 * priority, and...
1157 */
1158 memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
1159 get_system_memory(), 0, ~0ull);
1160 memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
1161 memory_region_set_enabled(&smram_as_mem, true);
1162
1163 if (smram) {
1164 /* ... SMRAM with higher priority */
1165 memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
1166 memory_region_set_enabled(smram, true);
1167 }
1168
1169 address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
1170 kvm_memory_listener_register(kvm_state, &smram_listener,
1171 &smram_address_space, 1);
1172}
1173
b16565b3 1174int kvm_arch_init(MachineState *ms, KVMState *s)
20420430 1175{
11076198 1176 uint64_t identity_base = 0xfffbc000;
39d6960a 1177 uint64_t shadow_mem;
20420430 1178 int ret;
25d2e361 1179 struct utsname utsname;
20420430 1180
28143b40
TH
1181#ifdef KVM_CAP_XSAVE
1182 has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1183#endif
1184
1185#ifdef KVM_CAP_XCRS
1186 has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1187#endif
1188
1189#ifdef KVM_CAP_PIT_STATE2
1190 has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1191#endif
1192
c3a3a7d3 1193 ret = kvm_get_supported_msrs(s);
20420430 1194 if (ret < 0) {
20420430
SY
1195 return ret;
1196 }
25d2e361
MT
1197
1198 uname(&utsname);
1199 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
1200
4c5b10b7 1201 /*
11076198
JK
1202 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
1203 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
1204 * Since these must be part of guest physical memory, we need to allocate
1205 * them, both by setting their start addresses in the kernel and by
1206 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
1207 *
1208 * Older KVM versions may not support setting the identity map base. In
1209 * that case we need to stick with the default, i.e. a 256K maximum BIOS
1210 * size.
4c5b10b7 1211 */
11076198
JK
1212 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
1213 /* Allows up to 16M BIOSes. */
1214 identity_base = 0xfeffc000;
1215
1216 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
1217 if (ret < 0) {
1218 return ret;
1219 }
4c5b10b7 1220 }
e56ff191 1221
11076198
JK
1222 /* Set TSS base one page after EPT identity map. */
1223 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
20420430
SY
1224 if (ret < 0) {
1225 return ret;
1226 }
1227
11076198
JK
1228 /* Tell fw_cfg to notify the BIOS to reserve the range. */
1229 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
20420430 1230 if (ret < 0) {
11076198 1231 fprintf(stderr, "e820_add_entry() table is full\n");
20420430
SY
1232 return ret;
1233 }
3c85e74f 1234 qemu_register_reset(kvm_unpoison_all, NULL);
20420430 1235
4689b77b 1236 shadow_mem = machine_kvm_shadow_mem(ms);
36ad0e94
MA
1237 if (shadow_mem != -1) {
1238 shadow_mem /= 4096;
1239 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
1240 if (ret < 0) {
1241 return ret;
39d6960a
JK
1242 }
1243 }
6410848b
PB
1244
1245 if (kvm_check_extension(s, KVM_CAP_X86_SMM)) {
1246 smram_machine_done.notify = register_smram_listener;
1247 qemu_add_machine_init_done_notifier(&smram_machine_done);
1248 }
11076198 1249 return 0;
05330448 1250}
b9bec74b 1251
05330448
AL
1252static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
1253{
1254 lhs->selector = rhs->selector;
1255 lhs->base = rhs->base;
1256 lhs->limit = rhs->limit;
1257 lhs->type = 3;
1258 lhs->present = 1;
1259 lhs->dpl = 3;
1260 lhs->db = 0;
1261 lhs->s = 1;
1262 lhs->l = 0;
1263 lhs->g = 0;
1264 lhs->avl = 0;
1265 lhs->unusable = 0;
1266}
1267
1268static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
1269{
1270 unsigned flags = rhs->flags;
1271 lhs->selector = rhs->selector;
1272 lhs->base = rhs->base;
1273 lhs->limit = rhs->limit;
1274 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
1275 lhs->present = (flags & DESC_P_MASK) != 0;
acaa7550 1276 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
05330448
AL
1277 lhs->db = (flags >> DESC_B_SHIFT) & 1;
1278 lhs->s = (flags & DESC_S_MASK) != 0;
1279 lhs->l = (flags >> DESC_L_SHIFT) & 1;
1280 lhs->g = (flags & DESC_G_MASK) != 0;
1281 lhs->avl = (flags & DESC_AVL_MASK) != 0;
4cae9c97 1282 lhs->unusable = !lhs->present;
7e680753 1283 lhs->padding = 0;
05330448
AL
1284}
1285
1286static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
1287{
1288 lhs->selector = rhs->selector;
1289 lhs->base = rhs->base;
1290 lhs->limit = rhs->limit;
4cae9c97
MC
1291 if (rhs->unusable) {
1292 lhs->flags = 0;
1293 } else {
1294 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
1295 (rhs->present * DESC_P_MASK) |
1296 (rhs->dpl << DESC_DPL_SHIFT) |
1297 (rhs->db << DESC_B_SHIFT) |
1298 (rhs->s * DESC_S_MASK) |
1299 (rhs->l << DESC_L_SHIFT) |
1300 (rhs->g * DESC_G_MASK) |
1301 (rhs->avl * DESC_AVL_MASK);
1302 }
05330448
AL
1303}
1304
1305static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
1306{
b9bec74b 1307 if (set) {
05330448 1308 *kvm_reg = *qemu_reg;
b9bec74b 1309 } else {
05330448 1310 *qemu_reg = *kvm_reg;
b9bec74b 1311 }
05330448
AL
1312}
1313
1bc22652 1314static int kvm_getput_regs(X86CPU *cpu, int set)
05330448 1315{
1bc22652 1316 CPUX86State *env = &cpu->env;
05330448
AL
1317 struct kvm_regs regs;
1318 int ret = 0;
1319
1320 if (!set) {
1bc22652 1321 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
b9bec74b 1322 if (ret < 0) {
05330448 1323 return ret;
b9bec74b 1324 }
05330448
AL
1325 }
1326
1327 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
1328 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
1329 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
1330 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
1331 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
1332 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
1333 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
1334 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
1335#ifdef TARGET_X86_64
1336 kvm_getput_reg(&regs.r8, &env->regs[8], set);
1337 kvm_getput_reg(&regs.r9, &env->regs[9], set);
1338 kvm_getput_reg(&regs.r10, &env->regs[10], set);
1339 kvm_getput_reg(&regs.r11, &env->regs[11], set);
1340 kvm_getput_reg(&regs.r12, &env->regs[12], set);
1341 kvm_getput_reg(&regs.r13, &env->regs[13], set);
1342 kvm_getput_reg(&regs.r14, &env->regs[14], set);
1343 kvm_getput_reg(&regs.r15, &env->regs[15], set);
1344#endif
1345
1346 kvm_getput_reg(&regs.rflags, &env->eflags, set);
1347 kvm_getput_reg(&regs.rip, &env->eip, set);
1348
b9bec74b 1349 if (set) {
1bc22652 1350 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
b9bec74b 1351 }
05330448
AL
1352
1353 return ret;
1354}
1355
1bc22652 1356static int kvm_put_fpu(X86CPU *cpu)
05330448 1357{
1bc22652 1358 CPUX86State *env = &cpu->env;
05330448
AL
1359 struct kvm_fpu fpu;
1360 int i;
1361
1362 memset(&fpu, 0, sizeof fpu);
1363 fpu.fsw = env->fpus & ~(7 << 11);
1364 fpu.fsw |= (env->fpstt & 7) << 11;
1365 fpu.fcw = env->fpuc;
42cc8fa6
JK
1366 fpu.last_opcode = env->fpop;
1367 fpu.last_ip = env->fpip;
1368 fpu.last_dp = env->fpdp;
b9bec74b
JK
1369 for (i = 0; i < 8; ++i) {
1370 fpu.ftwx |= (!env->fptags[i]) << i;
1371 }
05330448 1372 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
bee81887 1373 for (i = 0; i < CPU_NB_REGS; i++) {
19cbd87c
EH
1374 stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0));
1375 stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1));
bee81887 1376 }
05330448
AL
1377 fpu.mxcsr = env->mxcsr;
1378
1bc22652 1379 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
05330448
AL
1380}
1381
6b42494b
JK
1382#define XSAVE_FCW_FSW 0
1383#define XSAVE_FTW_FOP 1
f1665b21
SY
1384#define XSAVE_CWD_RIP 2
1385#define XSAVE_CWD_RDP 4
1386#define XSAVE_MXCSR 6
1387#define XSAVE_ST_SPACE 8
1388#define XSAVE_XMM_SPACE 40
1389#define XSAVE_XSTATE_BV 128
1390#define XSAVE_YMMH_SPACE 144
79e9ebeb
LJ
1391#define XSAVE_BNDREGS 240
1392#define XSAVE_BNDCSR 256
9aecd6f8
CP
1393#define XSAVE_OPMASK 272
1394#define XSAVE_ZMM_Hi256 288
1395#define XSAVE_Hi16_ZMM 416
f74eefe0 1396#define XSAVE_PKRU 672
f1665b21 1397
b503717d
EH
1398#define XSAVE_BYTE_OFFSET(word_offset) \
1399 ((word_offset) * sizeof(((struct kvm_xsave *)0)->region[0]))
1400
1401#define ASSERT_OFFSET(word_offset, field) \
1402 QEMU_BUILD_BUG_ON(XSAVE_BYTE_OFFSET(word_offset) != \
1403 offsetof(X86XSaveArea, field))
1404
1405ASSERT_OFFSET(XSAVE_FCW_FSW, legacy.fcw);
1406ASSERT_OFFSET(XSAVE_FTW_FOP, legacy.ftw);
1407ASSERT_OFFSET(XSAVE_CWD_RIP, legacy.fpip);
1408ASSERT_OFFSET(XSAVE_CWD_RDP, legacy.fpdp);
1409ASSERT_OFFSET(XSAVE_MXCSR, legacy.mxcsr);
1410ASSERT_OFFSET(XSAVE_ST_SPACE, legacy.fpregs);
1411ASSERT_OFFSET(XSAVE_XMM_SPACE, legacy.xmm_regs);
1412ASSERT_OFFSET(XSAVE_XSTATE_BV, header.xstate_bv);
1413ASSERT_OFFSET(XSAVE_YMMH_SPACE, avx_state);
1414ASSERT_OFFSET(XSAVE_BNDREGS, bndreg_state);
1415ASSERT_OFFSET(XSAVE_BNDCSR, bndcsr_state);
1416ASSERT_OFFSET(XSAVE_OPMASK, opmask_state);
1417ASSERT_OFFSET(XSAVE_ZMM_Hi256, zmm_hi256_state);
1418ASSERT_OFFSET(XSAVE_Hi16_ZMM, hi16_zmm_state);
1419ASSERT_OFFSET(XSAVE_PKRU, pkru_state);
1420
1bc22652 1421static int kvm_put_xsave(X86CPU *cpu)
f1665b21 1422{
1bc22652 1423 CPUX86State *env = &cpu->env;
86cd2ea0 1424 X86XSaveArea *xsave = env->kvm_xsave_buf;
42cc8fa6 1425 uint16_t cwd, swd, twd;
9be38598 1426 int i;
f1665b21 1427
28143b40 1428 if (!has_xsave) {
1bc22652 1429 return kvm_put_fpu(cpu);
b9bec74b 1430 }
f1665b21 1431
f1665b21 1432 memset(xsave, 0, sizeof(struct kvm_xsave));
6115c0a8 1433 twd = 0;
f1665b21
SY
1434 swd = env->fpus & ~(7 << 11);
1435 swd |= (env->fpstt & 7) << 11;
1436 cwd = env->fpuc;
b9bec74b 1437 for (i = 0; i < 8; ++i) {
f1665b21 1438 twd |= (!env->fptags[i]) << i;
b9bec74b 1439 }
86cd2ea0
EH
1440 xsave->legacy.fcw = cwd;
1441 xsave->legacy.fsw = swd;
1442 xsave->legacy.ftw = twd;
1443 xsave->legacy.fpop = env->fpop;
1444 xsave->legacy.fpip = env->fpip;
1445 xsave->legacy.fpdp = env->fpdp;
1446 memcpy(&xsave->legacy.fpregs, env->fpregs,
f1665b21 1447 sizeof env->fpregs);
86cd2ea0
EH
1448 xsave->legacy.mxcsr = env->mxcsr;
1449 xsave->header.xstate_bv = env->xstate_bv;
1450 memcpy(&xsave->bndreg_state.bnd_regs, env->bnd_regs,
79e9ebeb 1451 sizeof env->bnd_regs);
86cd2ea0
EH
1452 xsave->bndcsr_state.bndcsr = env->bndcs_regs;
1453 memcpy(&xsave->opmask_state.opmask_regs, env->opmask_regs,
9aecd6f8 1454 sizeof env->opmask_regs);
bee81887 1455
86cd2ea0
EH
1456 for (i = 0; i < CPU_NB_REGS; i++) {
1457 uint8_t *xmm = xsave->legacy.xmm_regs[i];
1458 uint8_t *ymmh = xsave->avx_state.ymmh[i];
1459 uint8_t *zmmh = xsave->zmm_hi256_state.zmm_hi256[i];
19cbd87c
EH
1460 stq_p(xmm, env->xmm_regs[i].ZMM_Q(0));
1461 stq_p(xmm+8, env->xmm_regs[i].ZMM_Q(1));
1462 stq_p(ymmh, env->xmm_regs[i].ZMM_Q(2));
1463 stq_p(ymmh+8, env->xmm_regs[i].ZMM_Q(3));
1464 stq_p(zmmh, env->xmm_regs[i].ZMM_Q(4));
1465 stq_p(zmmh+8, env->xmm_regs[i].ZMM_Q(5));
1466 stq_p(zmmh+16, env->xmm_regs[i].ZMM_Q(6));
1467 stq_p(zmmh+24, env->xmm_regs[i].ZMM_Q(7));
bee81887
PB
1468 }
1469
9aecd6f8 1470#ifdef TARGET_X86_64
86cd2ea0 1471 memcpy(&xsave->hi16_zmm_state.hi16_zmm, &env->xmm_regs[16],
b7711471 1472 16 * sizeof env->xmm_regs[16]);
86cd2ea0 1473 memcpy(&xsave->pkru_state, &env->pkru, sizeof env->pkru);
9aecd6f8 1474#endif
9be38598 1475 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
f1665b21
SY
1476}
1477
1bc22652 1478static int kvm_put_xcrs(X86CPU *cpu)
f1665b21 1479{
1bc22652 1480 CPUX86State *env = &cpu->env;
bdfc8480 1481 struct kvm_xcrs xcrs = {};
f1665b21 1482
28143b40 1483 if (!has_xcrs) {
f1665b21 1484 return 0;
b9bec74b 1485 }
f1665b21
SY
1486
1487 xcrs.nr_xcrs = 1;
1488 xcrs.flags = 0;
1489 xcrs.xcrs[0].xcr = 0;
1490 xcrs.xcrs[0].value = env->xcr0;
1bc22652 1491 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
f1665b21
SY
1492}
1493
1bc22652 1494static int kvm_put_sregs(X86CPU *cpu)
05330448 1495{
1bc22652 1496 CPUX86State *env = &cpu->env;
05330448
AL
1497 struct kvm_sregs sregs;
1498
0e607a80
JK
1499 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
1500 if (env->interrupt_injected >= 0) {
1501 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
1502 (uint64_t)1 << (env->interrupt_injected % 64);
1503 }
05330448
AL
1504
1505 if ((env->eflags & VM_MASK)) {
b9bec74b
JK
1506 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
1507 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
1508 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
1509 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
1510 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
1511 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
05330448 1512 } else {
b9bec74b
JK
1513 set_seg(&sregs.cs, &env->segs[R_CS]);
1514 set_seg(&sregs.ds, &env->segs[R_DS]);
1515 set_seg(&sregs.es, &env->segs[R_ES]);
1516 set_seg(&sregs.fs, &env->segs[R_FS]);
1517 set_seg(&sregs.gs, &env->segs[R_GS]);
1518 set_seg(&sregs.ss, &env->segs[R_SS]);
05330448
AL
1519 }
1520
1521 set_seg(&sregs.tr, &env->tr);
1522 set_seg(&sregs.ldt, &env->ldt);
1523
1524 sregs.idt.limit = env->idt.limit;
1525 sregs.idt.base = env->idt.base;
7e680753 1526 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
05330448
AL
1527 sregs.gdt.limit = env->gdt.limit;
1528 sregs.gdt.base = env->gdt.base;
7e680753 1529 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
05330448
AL
1530
1531 sregs.cr0 = env->cr[0];
1532 sregs.cr2 = env->cr[2];
1533 sregs.cr3 = env->cr[3];
1534 sregs.cr4 = env->cr[4];
1535
02e51483
CF
1536 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
1537 sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
05330448
AL
1538
1539 sregs.efer = env->efer;
1540
1bc22652 1541 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
05330448
AL
1542}
1543
d71b62a1
EH
1544static void kvm_msr_buf_reset(X86CPU *cpu)
1545{
1546 memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE);
1547}
1548
9c600a84
EH
1549static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value)
1550{
1551 struct kvm_msrs *msrs = cpu->kvm_msr_buf;
1552 void *limit = ((void *)msrs) + MSR_BUF_SIZE;
1553 struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs];
1554
1555 assert((void *)(entry + 1) <= limit);
1556
1abc2cae
EH
1557 entry->index = index;
1558 entry->reserved = 0;
1559 entry->data = value;
9c600a84
EH
1560 msrs->nmsrs++;
1561}
1562
73e1b8f2
PB
1563static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value)
1564{
1565 kvm_msr_buf_reset(cpu);
1566 kvm_msr_entry_add(cpu, index, value);
1567
1568 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
1569}
1570
f8d9ccf8
DDAG
1571void kvm_put_apicbase(X86CPU *cpu, uint64_t value)
1572{
1573 int ret;
1574
1575 ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value);
1576 assert(ret == 1);
1577}
1578
7477cd38
MT
1579static int kvm_put_tscdeadline_msr(X86CPU *cpu)
1580{
1581 CPUX86State *env = &cpu->env;
48e1a45c 1582 int ret;
7477cd38
MT
1583
1584 if (!has_msr_tsc_deadline) {
1585 return 0;
1586 }
1587
73e1b8f2 1588 ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline);
48e1a45c
PB
1589 if (ret < 0) {
1590 return ret;
1591 }
1592
1593 assert(ret == 1);
1594 return 0;
7477cd38
MT
1595}
1596
6bdf863d
JK
1597/*
1598 * Provide a separate write service for the feature control MSR in order to
1599 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
1600 * before writing any other state because forcibly leaving nested mode
1601 * invalidates the VCPU state.
1602 */
1603static int kvm_put_msr_feature_control(X86CPU *cpu)
1604{
48e1a45c
PB
1605 int ret;
1606
1607 if (!has_msr_feature_control) {
1608 return 0;
1609 }
6bdf863d 1610
73e1b8f2
PB
1611 ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL,
1612 cpu->env.msr_ia32_feature_control);
48e1a45c
PB
1613 if (ret < 0) {
1614 return ret;
1615 }
1616
1617 assert(ret == 1);
1618 return 0;
6bdf863d
JK
1619}
1620
1bc22652 1621static int kvm_put_msrs(X86CPU *cpu, int level)
05330448 1622{
1bc22652 1623 CPUX86State *env = &cpu->env;
9c600a84 1624 int i;
48e1a45c 1625 int ret;
05330448 1626
d71b62a1
EH
1627 kvm_msr_buf_reset(cpu);
1628
9c600a84
EH
1629 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs);
1630 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
1631 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
1632 kvm_msr_entry_add(cpu, MSR_PAT, env->pat);
c3a3a7d3 1633 if (has_msr_star) {
9c600a84 1634 kvm_msr_entry_add(cpu, MSR_STAR, env->star);
b9bec74b 1635 }
c3a3a7d3 1636 if (has_msr_hsave_pa) {
9c600a84 1637 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave);
b9bec74b 1638 }
c9b8f6b6 1639 if (has_msr_tsc_aux) {
9c600a84 1640 kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux);
c9b8f6b6 1641 }
f28558d3 1642 if (has_msr_tsc_adjust) {
9c600a84 1643 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust);
f28558d3 1644 }
21e87c46 1645 if (has_msr_misc_enable) {
9c600a84 1646 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE,
21e87c46
AK
1647 env->msr_ia32_misc_enable);
1648 }
fc12d72e 1649 if (has_msr_smbase) {
9c600a84 1650 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase);
fc12d72e 1651 }
439d19f2 1652 if (has_msr_bndcfgs) {
9c600a84 1653 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs);
439d19f2 1654 }
18cd2c17 1655 if (has_msr_xss) {
9c600a84 1656 kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss);
18cd2c17 1657 }
05330448 1658#ifdef TARGET_X86_64
25d2e361 1659 if (lm_capable_kernel) {
9c600a84
EH
1660 kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar);
1661 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase);
1662 kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask);
1663 kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar);
25d2e361 1664 }
05330448 1665#endif
ff5c186b 1666 /*
0d894367
PB
1667 * The following MSRs have side effects on the guest or are too heavy
1668 * for normal writeback. Limit them to reset or full state updates.
ff5c186b
JK
1669 */
1670 if (level >= KVM_PUT_RESET_STATE) {
9c600a84
EH
1671 kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc);
1672 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr);
1673 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
55c911a5 1674 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
9c600a84 1675 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
c5999bfc 1676 }
55c911a5 1677 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
9c600a84 1678 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr);
bc9a839d 1679 }
55c911a5 1680 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
9c600a84 1681 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr);
917367aa 1682 }
0d894367
PB
1683 if (has_msr_architectural_pmu) {
1684 /* Stop the counter. */
9c600a84
EH
1685 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
1686 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
0d894367
PB
1687
1688 /* Set the counter values. */
1689 for (i = 0; i < MAX_FIXED_COUNTERS; i++) {
9c600a84 1690 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i,
0d894367
PB
1691 env->msr_fixed_counters[i]);
1692 }
1693 for (i = 0; i < num_architectural_pmu_counters; i++) {
9c600a84 1694 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i,
0d894367 1695 env->msr_gp_counters[i]);
9c600a84 1696 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i,
0d894367
PB
1697 env->msr_gp_evtsel[i]);
1698 }
9c600a84 1699 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS,
0d894367 1700 env->msr_global_status);
9c600a84 1701 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
0d894367
PB
1702 env->msr_global_ovf_ctrl);
1703
1704 /* Now start the PMU. */
9c600a84 1705 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL,
0d894367 1706 env->msr_fixed_ctr_ctrl);
9c600a84 1707 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL,
0d894367
PB
1708 env->msr_global_ctrl);
1709 }
7bc3d711 1710 if (has_msr_hv_hypercall) {
9c600a84 1711 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID,
1c90ef26 1712 env->msr_hv_guest_os_id);
9c600a84 1713 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL,
1c90ef26 1714 env->msr_hv_hypercall);
eab70139 1715 }
2d5aa872 1716 if (cpu->hyperv_vapic) {
9c600a84 1717 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE,
5ef68987 1718 env->msr_hv_vapic);
eab70139 1719 }
3ddcd2ed 1720 if (cpu->hyperv_time) {
9c600a84 1721 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, env->msr_hv_tsc);
48a5f3bc 1722 }
f2a53c9e
AS
1723 if (has_msr_hv_crash) {
1724 int j;
1725
1726 for (j = 0; j < HV_X64_MSR_CRASH_PARAMS; j++)
9c600a84 1727 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j,
f2a53c9e
AS
1728 env->msr_hv_crash_params[j]);
1729
9c600a84 1730 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL,
f2a53c9e
AS
1731 HV_X64_MSR_CRASH_CTL_NOTIFY);
1732 }
46eb8f98 1733 if (has_msr_hv_runtime) {
9c600a84 1734 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime);
46eb8f98 1735 }
866eea9a
AS
1736 if (cpu->hyperv_synic) {
1737 int j;
1738
9c600a84 1739 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL,
866eea9a 1740 env->msr_hv_synic_control);
9c600a84 1741 kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION,
866eea9a 1742 env->msr_hv_synic_version);
9c600a84 1743 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP,
866eea9a 1744 env->msr_hv_synic_evt_page);
9c600a84 1745 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP,
866eea9a
AS
1746 env->msr_hv_synic_msg_page);
1747
1748 for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
9c600a84 1749 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j,
866eea9a
AS
1750 env->msr_hv_synic_sint[j]);
1751 }
1752 }
ff99aa64
AS
1753 if (has_msr_hv_stimer) {
1754 int j;
1755
1756 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) {
9c600a84 1757 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2,
ff99aa64
AS
1758 env->msr_hv_stimer_config[j]);
1759 }
1760
1761 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) {
9c600a84 1762 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2,
ff99aa64
AS
1763 env->msr_hv_stimer_count[j]);
1764 }
1765 }
1eabfce6 1766 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
112dad69
DDAG
1767 uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits);
1768
9c600a84
EH
1769 kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype);
1770 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
1771 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
1772 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
1773 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
1774 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
1775 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
1776 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
1777 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
1778 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
1779 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
1780 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
d1ae67f6 1781 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
112dad69
DDAG
1782 /* The CPU GPs if we write to a bit above the physical limit of
1783 * the host CPU (and KVM emulates that)
1784 */
1785 uint64_t mask = env->mtrr_var[i].mask;
1786 mask &= phys_mask;
1787
9c600a84
EH
1788 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i),
1789 env->mtrr_var[i].base);
112dad69 1790 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask);
d1ae67f6
AW
1791 }
1792 }
6bdf863d
JK
1793
1794 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
1795 * kvm_put_msr_feature_control. */
ea643051 1796 }
57780495 1797 if (env->mcg_cap) {
d8da8574 1798 int i;
b9bec74b 1799
9c600a84
EH
1800 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status);
1801 kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl);
87f8b626
AR
1802 if (has_msr_mcg_ext_ctl) {
1803 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl);
1804 }
c34d440a 1805 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
9c600a84 1806 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]);
57780495
MT
1807 }
1808 }
1a03675d 1809
d71b62a1 1810 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
48e1a45c
PB
1811 if (ret < 0) {
1812 return ret;
1813 }
05330448 1814
9c600a84 1815 assert(ret == cpu->kvm_msr_buf->nmsrs);
48e1a45c 1816 return 0;
05330448
AL
1817}
1818
1819
1bc22652 1820static int kvm_get_fpu(X86CPU *cpu)
05330448 1821{
1bc22652 1822 CPUX86State *env = &cpu->env;
05330448
AL
1823 struct kvm_fpu fpu;
1824 int i, ret;
1825
1bc22652 1826 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
b9bec74b 1827 if (ret < 0) {
05330448 1828 return ret;
b9bec74b 1829 }
05330448
AL
1830
1831 env->fpstt = (fpu.fsw >> 11) & 7;
1832 env->fpus = fpu.fsw;
1833 env->fpuc = fpu.fcw;
42cc8fa6
JK
1834 env->fpop = fpu.last_opcode;
1835 env->fpip = fpu.last_ip;
1836 env->fpdp = fpu.last_dp;
b9bec74b
JK
1837 for (i = 0; i < 8; ++i) {
1838 env->fptags[i] = !((fpu.ftwx >> i) & 1);
1839 }
05330448 1840 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
bee81887 1841 for (i = 0; i < CPU_NB_REGS; i++) {
19cbd87c
EH
1842 env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]);
1843 env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]);
bee81887 1844 }
05330448
AL
1845 env->mxcsr = fpu.mxcsr;
1846
1847 return 0;
1848}
1849
1bc22652 1850static int kvm_get_xsave(X86CPU *cpu)
f1665b21 1851{
1bc22652 1852 CPUX86State *env = &cpu->env;
86cd2ea0 1853 X86XSaveArea *xsave = env->kvm_xsave_buf;
f1665b21 1854 int ret, i;
42cc8fa6 1855 uint16_t cwd, swd, twd;
f1665b21 1856
28143b40 1857 if (!has_xsave) {
1bc22652 1858 return kvm_get_fpu(cpu);
b9bec74b 1859 }
f1665b21 1860
1bc22652 1861 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave);
0f53994f 1862 if (ret < 0) {
f1665b21 1863 return ret;
0f53994f 1864 }
f1665b21 1865
86cd2ea0
EH
1866 cwd = xsave->legacy.fcw;
1867 swd = xsave->legacy.fsw;
1868 twd = xsave->legacy.ftw;
1869 env->fpop = xsave->legacy.fpop;
f1665b21
SY
1870 env->fpstt = (swd >> 11) & 7;
1871 env->fpus = swd;
1872 env->fpuc = cwd;
b9bec74b 1873 for (i = 0; i < 8; ++i) {
f1665b21 1874 env->fptags[i] = !((twd >> i) & 1);
b9bec74b 1875 }
86cd2ea0
EH
1876 env->fpip = xsave->legacy.fpip;
1877 env->fpdp = xsave->legacy.fpdp;
1878 env->mxcsr = xsave->legacy.mxcsr;
1879 memcpy(env->fpregs, &xsave->legacy.fpregs,
f1665b21 1880 sizeof env->fpregs);
86cd2ea0
EH
1881 env->xstate_bv = xsave->header.xstate_bv;
1882 memcpy(env->bnd_regs, &xsave->bndreg_state.bnd_regs,
79e9ebeb 1883 sizeof env->bnd_regs);
86cd2ea0
EH
1884 env->bndcs_regs = xsave->bndcsr_state.bndcsr;
1885 memcpy(env->opmask_regs, &xsave->opmask_state.opmask_regs,
9aecd6f8 1886 sizeof env->opmask_regs);
bee81887 1887
86cd2ea0
EH
1888 for (i = 0; i < CPU_NB_REGS; i++) {
1889 uint8_t *xmm = xsave->legacy.xmm_regs[i];
1890 uint8_t *ymmh = xsave->avx_state.ymmh[i];
1891 uint8_t *zmmh = xsave->zmm_hi256_state.zmm_hi256[i];
19cbd87c
EH
1892 env->xmm_regs[i].ZMM_Q(0) = ldq_p(xmm);
1893 env->xmm_regs[i].ZMM_Q(1) = ldq_p(xmm+8);
1894 env->xmm_regs[i].ZMM_Q(2) = ldq_p(ymmh);
1895 env->xmm_regs[i].ZMM_Q(3) = ldq_p(ymmh+8);
1896 env->xmm_regs[i].ZMM_Q(4) = ldq_p(zmmh);
1897 env->xmm_regs[i].ZMM_Q(5) = ldq_p(zmmh+8);
1898 env->xmm_regs[i].ZMM_Q(6) = ldq_p(zmmh+16);
1899 env->xmm_regs[i].ZMM_Q(7) = ldq_p(zmmh+24);
bee81887
PB
1900 }
1901
9aecd6f8 1902#ifdef TARGET_X86_64
86cd2ea0 1903 memcpy(&env->xmm_regs[16], &xsave->hi16_zmm_state.hi16_zmm,
b7711471 1904 16 * sizeof env->xmm_regs[16]);
86cd2ea0 1905 memcpy(&env->pkru, &xsave->pkru_state, sizeof env->pkru);
9aecd6f8 1906#endif
f1665b21 1907 return 0;
f1665b21
SY
1908}
1909
1bc22652 1910static int kvm_get_xcrs(X86CPU *cpu)
f1665b21 1911{
1bc22652 1912 CPUX86State *env = &cpu->env;
f1665b21
SY
1913 int i, ret;
1914 struct kvm_xcrs xcrs;
1915
28143b40 1916 if (!has_xcrs) {
f1665b21 1917 return 0;
b9bec74b 1918 }
f1665b21 1919
1bc22652 1920 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
b9bec74b 1921 if (ret < 0) {
f1665b21 1922 return ret;
b9bec74b 1923 }
f1665b21 1924
b9bec74b 1925 for (i = 0; i < xcrs.nr_xcrs; i++) {
f1665b21 1926 /* Only support xcr0 now */
0fd53fec
PB
1927 if (xcrs.xcrs[i].xcr == 0) {
1928 env->xcr0 = xcrs.xcrs[i].value;
f1665b21
SY
1929 break;
1930 }
b9bec74b 1931 }
f1665b21 1932 return 0;
f1665b21
SY
1933}
1934
1bc22652 1935static int kvm_get_sregs(X86CPU *cpu)
05330448 1936{
1bc22652 1937 CPUX86State *env = &cpu->env;
05330448
AL
1938 struct kvm_sregs sregs;
1939 uint32_t hflags;
0e607a80 1940 int bit, i, ret;
05330448 1941
1bc22652 1942 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
b9bec74b 1943 if (ret < 0) {
05330448 1944 return ret;
b9bec74b 1945 }
05330448 1946
0e607a80
JK
1947 /* There can only be one pending IRQ set in the bitmap at a time, so try
1948 to find it and save its number instead (-1 for none). */
1949 env->interrupt_injected = -1;
1950 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1951 if (sregs.interrupt_bitmap[i]) {
1952 bit = ctz64(sregs.interrupt_bitmap[i]);
1953 env->interrupt_injected = i * 64 + bit;
1954 break;
1955 }
1956 }
05330448
AL
1957
1958 get_seg(&env->segs[R_CS], &sregs.cs);
1959 get_seg(&env->segs[R_DS], &sregs.ds);
1960 get_seg(&env->segs[R_ES], &sregs.es);
1961 get_seg(&env->segs[R_FS], &sregs.fs);
1962 get_seg(&env->segs[R_GS], &sregs.gs);
1963 get_seg(&env->segs[R_SS], &sregs.ss);
1964
1965 get_seg(&env->tr, &sregs.tr);
1966 get_seg(&env->ldt, &sregs.ldt);
1967
1968 env->idt.limit = sregs.idt.limit;
1969 env->idt.base = sregs.idt.base;
1970 env->gdt.limit = sregs.gdt.limit;
1971 env->gdt.base = sregs.gdt.base;
1972
1973 env->cr[0] = sregs.cr0;
1974 env->cr[2] = sregs.cr2;
1975 env->cr[3] = sregs.cr3;
1976 env->cr[4] = sregs.cr4;
1977
05330448 1978 env->efer = sregs.efer;
cce47516
JK
1979
1980 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
05330448 1981
b9bec74b
JK
1982#define HFLAG_COPY_MASK \
1983 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1984 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1985 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1986 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
05330448 1987
19dc85db
RH
1988 hflags = env->hflags & HFLAG_COPY_MASK;
1989 hflags |= (env->segs[R_SS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
05330448
AL
1990 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1991 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
b9bec74b 1992 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
05330448 1993 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
19dc85db
RH
1994
1995 if (env->cr[4] & CR4_OSFXSR_MASK) {
1996 hflags |= HF_OSFXSR_MASK;
1997 }
05330448
AL
1998
1999 if (env->efer & MSR_EFER_LMA) {
2000 hflags |= HF_LMA_MASK;
2001 }
2002
2003 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
2004 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
2005 } else {
2006 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
b9bec74b 2007 (DESC_B_SHIFT - HF_CS32_SHIFT);
05330448 2008 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
b9bec74b
JK
2009 (DESC_B_SHIFT - HF_SS32_SHIFT);
2010 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
2011 !(hflags & HF_CS32_MASK)) {
2012 hflags |= HF_ADDSEG_MASK;
2013 } else {
2014 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
2015 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
2016 }
05330448 2017 }
19dc85db 2018 env->hflags = hflags;
05330448
AL
2019
2020 return 0;
2021}
2022
1bc22652 2023static int kvm_get_msrs(X86CPU *cpu)
05330448 2024{
1bc22652 2025 CPUX86State *env = &cpu->env;
d71b62a1 2026 struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries;
9c600a84 2027 int ret, i;
fcc35e7c 2028 uint64_t mtrr_top_bits;
05330448 2029
d71b62a1
EH
2030 kvm_msr_buf_reset(cpu);
2031
9c600a84
EH
2032 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0);
2033 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0);
2034 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0);
2035 kvm_msr_entry_add(cpu, MSR_PAT, 0);
c3a3a7d3 2036 if (has_msr_star) {
9c600a84 2037 kvm_msr_entry_add(cpu, MSR_STAR, 0);
b9bec74b 2038 }
c3a3a7d3 2039 if (has_msr_hsave_pa) {
9c600a84 2040 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0);
b9bec74b 2041 }
c9b8f6b6 2042 if (has_msr_tsc_aux) {
9c600a84 2043 kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0);
c9b8f6b6 2044 }
f28558d3 2045 if (has_msr_tsc_adjust) {
9c600a84 2046 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0);
f28558d3 2047 }
aa82ba54 2048 if (has_msr_tsc_deadline) {
9c600a84 2049 kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0);
aa82ba54 2050 }
21e87c46 2051 if (has_msr_misc_enable) {
9c600a84 2052 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0);
21e87c46 2053 }
fc12d72e 2054 if (has_msr_smbase) {
9c600a84 2055 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0);
fc12d72e 2056 }
df67696e 2057 if (has_msr_feature_control) {
9c600a84 2058 kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0);
df67696e 2059 }
79e9ebeb 2060 if (has_msr_bndcfgs) {
9c600a84 2061 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0);
79e9ebeb 2062 }
18cd2c17 2063 if (has_msr_xss) {
9c600a84 2064 kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0);
18cd2c17
WL
2065 }
2066
b8cc45d6
GC
2067
2068 if (!env->tsc_valid) {
9c600a84 2069 kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0);
1354869c 2070 env->tsc_valid = !runstate_is_running();
b8cc45d6
GC
2071 }
2072
05330448 2073#ifdef TARGET_X86_64
25d2e361 2074 if (lm_capable_kernel) {
9c600a84
EH
2075 kvm_msr_entry_add(cpu, MSR_CSTAR, 0);
2076 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0);
2077 kvm_msr_entry_add(cpu, MSR_FMASK, 0);
2078 kvm_msr_entry_add(cpu, MSR_LSTAR, 0);
25d2e361 2079 }
05330448 2080#endif
9c600a84
EH
2081 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0);
2082 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0);
55c911a5 2083 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
9c600a84 2084 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0);
c5999bfc 2085 }
55c911a5 2086 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
9c600a84 2087 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0);
bc9a839d 2088 }
55c911a5 2089 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
9c600a84 2090 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0);
917367aa 2091 }
0d894367 2092 if (has_msr_architectural_pmu) {
9c600a84
EH
2093 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
2094 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
2095 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0);
2096 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0);
0d894367 2097 for (i = 0; i < MAX_FIXED_COUNTERS; i++) {
9c600a84 2098 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0);
0d894367
PB
2099 }
2100 for (i = 0; i < num_architectural_pmu_counters; i++) {
9c600a84
EH
2101 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0);
2102 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0);
0d894367
PB
2103 }
2104 }
1a03675d 2105
57780495 2106 if (env->mcg_cap) {
9c600a84
EH
2107 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0);
2108 kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0);
87f8b626
AR
2109 if (has_msr_mcg_ext_ctl) {
2110 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0);
2111 }
b9bec74b 2112 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
9c600a84 2113 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0);
b9bec74b 2114 }
57780495 2115 }
57780495 2116
1c90ef26 2117 if (has_msr_hv_hypercall) {
9c600a84
EH
2118 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0);
2119 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0);
1c90ef26 2120 }
2d5aa872 2121 if (cpu->hyperv_vapic) {
9c600a84 2122 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0);
5ef68987 2123 }
3ddcd2ed 2124 if (cpu->hyperv_time) {
9c600a84 2125 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0);
48a5f3bc 2126 }
f2a53c9e
AS
2127 if (has_msr_hv_crash) {
2128 int j;
2129
2130 for (j = 0; j < HV_X64_MSR_CRASH_PARAMS; j++) {
9c600a84 2131 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0);
f2a53c9e
AS
2132 }
2133 }
46eb8f98 2134 if (has_msr_hv_runtime) {
9c600a84 2135 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0);
46eb8f98 2136 }
866eea9a
AS
2137 if (cpu->hyperv_synic) {
2138 uint32_t msr;
2139
9c600a84
EH
2140 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0);
2141 kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, 0);
2142 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0);
2143 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0);
866eea9a 2144 for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
9c600a84 2145 kvm_msr_entry_add(cpu, msr, 0);
866eea9a
AS
2146 }
2147 }
ff99aa64
AS
2148 if (has_msr_hv_stimer) {
2149 uint32_t msr;
2150
2151 for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT;
2152 msr++) {
9c600a84 2153 kvm_msr_entry_add(cpu, msr, 0);
ff99aa64
AS
2154 }
2155 }
1eabfce6 2156 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
9c600a84
EH
2157 kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0);
2158 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0);
2159 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0);
2160 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0);
2161 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0);
2162 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0);
2163 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0);
2164 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0);
2165 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0);
2166 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0);
2167 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0);
2168 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0);
d1ae67f6 2169 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
9c600a84
EH
2170 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0);
2171 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0);
d1ae67f6
AW
2172 }
2173 }
5ef68987 2174
d71b62a1 2175 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf);
b9bec74b 2176 if (ret < 0) {
05330448 2177 return ret;
b9bec74b 2178 }
05330448 2179
9c600a84 2180 assert(ret == cpu->kvm_msr_buf->nmsrs);
fcc35e7c
DDAG
2181 /*
2182 * MTRR masks: Each mask consists of 5 parts
2183 * a 10..0: must be zero
2184 * b 11 : valid bit
2185 * c n-1.12: actual mask bits
2186 * d 51..n: reserved must be zero
2187 * e 63.52: reserved must be zero
2188 *
2189 * 'n' is the number of physical bits supported by the CPU and is
2190 * apparently always <= 52. We know our 'n' but don't know what
2191 * the destinations 'n' is; it might be smaller, in which case
2192 * it masks (c) on loading. It might be larger, in which case
2193 * we fill 'd' so that d..c is consistent irrespetive of the 'n'
2194 * we're migrating to.
2195 */
2196
2197 if (cpu->fill_mtrr_mask) {
2198 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52);
2199 assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS);
2200 mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits);
2201 } else {
2202 mtrr_top_bits = 0;
2203 }
2204
05330448 2205 for (i = 0; i < ret; i++) {
0d894367
PB
2206 uint32_t index = msrs[i].index;
2207 switch (index) {
05330448
AL
2208 case MSR_IA32_SYSENTER_CS:
2209 env->sysenter_cs = msrs[i].data;
2210 break;
2211 case MSR_IA32_SYSENTER_ESP:
2212 env->sysenter_esp = msrs[i].data;
2213 break;
2214 case MSR_IA32_SYSENTER_EIP:
2215 env->sysenter_eip = msrs[i].data;
2216 break;
0c03266a
JK
2217 case MSR_PAT:
2218 env->pat = msrs[i].data;
2219 break;
05330448
AL
2220 case MSR_STAR:
2221 env->star = msrs[i].data;
2222 break;
2223#ifdef TARGET_X86_64
2224 case MSR_CSTAR:
2225 env->cstar = msrs[i].data;
2226 break;
2227 case MSR_KERNELGSBASE:
2228 env->kernelgsbase = msrs[i].data;
2229 break;
2230 case MSR_FMASK:
2231 env->fmask = msrs[i].data;
2232 break;
2233 case MSR_LSTAR:
2234 env->lstar = msrs[i].data;
2235 break;
2236#endif
2237 case MSR_IA32_TSC:
2238 env->tsc = msrs[i].data;
2239 break;
c9b8f6b6
AS
2240 case MSR_TSC_AUX:
2241 env->tsc_aux = msrs[i].data;
2242 break;
f28558d3
WA
2243 case MSR_TSC_ADJUST:
2244 env->tsc_adjust = msrs[i].data;
2245 break;
aa82ba54
LJ
2246 case MSR_IA32_TSCDEADLINE:
2247 env->tsc_deadline = msrs[i].data;
2248 break;
aa851e36
MT
2249 case MSR_VM_HSAVE_PA:
2250 env->vm_hsave = msrs[i].data;
2251 break;
1a03675d
GC
2252 case MSR_KVM_SYSTEM_TIME:
2253 env->system_time_msr = msrs[i].data;
2254 break;
2255 case MSR_KVM_WALL_CLOCK:
2256 env->wall_clock_msr = msrs[i].data;
2257 break;
57780495
MT
2258 case MSR_MCG_STATUS:
2259 env->mcg_status = msrs[i].data;
2260 break;
2261 case MSR_MCG_CTL:
2262 env->mcg_ctl = msrs[i].data;
2263 break;
87f8b626
AR
2264 case MSR_MCG_EXT_CTL:
2265 env->mcg_ext_ctl = msrs[i].data;
2266 break;
21e87c46
AK
2267 case MSR_IA32_MISC_ENABLE:
2268 env->msr_ia32_misc_enable = msrs[i].data;
2269 break;
fc12d72e
PB
2270 case MSR_IA32_SMBASE:
2271 env->smbase = msrs[i].data;
2272 break;
0779caeb
ACL
2273 case MSR_IA32_FEATURE_CONTROL:
2274 env->msr_ia32_feature_control = msrs[i].data;
df67696e 2275 break;
79e9ebeb
LJ
2276 case MSR_IA32_BNDCFGS:
2277 env->msr_bndcfgs = msrs[i].data;
2278 break;
18cd2c17
WL
2279 case MSR_IA32_XSS:
2280 env->xss = msrs[i].data;
2281 break;
57780495 2282 default:
57780495
MT
2283 if (msrs[i].index >= MSR_MC0_CTL &&
2284 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
2285 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
57780495 2286 }
d8da8574 2287 break;
f6584ee2
GN
2288 case MSR_KVM_ASYNC_PF_EN:
2289 env->async_pf_en_msr = msrs[i].data;
2290 break;
bc9a839d
MT
2291 case MSR_KVM_PV_EOI_EN:
2292 env->pv_eoi_en_msr = msrs[i].data;
2293 break;
917367aa
MT
2294 case MSR_KVM_STEAL_TIME:
2295 env->steal_time_msr = msrs[i].data;
2296 break;
0d894367
PB
2297 case MSR_CORE_PERF_FIXED_CTR_CTRL:
2298 env->msr_fixed_ctr_ctrl = msrs[i].data;
2299 break;
2300 case MSR_CORE_PERF_GLOBAL_CTRL:
2301 env->msr_global_ctrl = msrs[i].data;
2302 break;
2303 case MSR_CORE_PERF_GLOBAL_STATUS:
2304 env->msr_global_status = msrs[i].data;
2305 break;
2306 case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
2307 env->msr_global_ovf_ctrl = msrs[i].data;
2308 break;
2309 case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
2310 env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
2311 break;
2312 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
2313 env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
2314 break;
2315 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
2316 env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
2317 break;
1c90ef26
VR
2318 case HV_X64_MSR_HYPERCALL:
2319 env->msr_hv_hypercall = msrs[i].data;
2320 break;
2321 case HV_X64_MSR_GUEST_OS_ID:
2322 env->msr_hv_guest_os_id = msrs[i].data;
2323 break;
5ef68987
VR
2324 case HV_X64_MSR_APIC_ASSIST_PAGE:
2325 env->msr_hv_vapic = msrs[i].data;
2326 break;
48a5f3bc
VR
2327 case HV_X64_MSR_REFERENCE_TSC:
2328 env->msr_hv_tsc = msrs[i].data;
2329 break;
f2a53c9e
AS
2330 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2331 env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
2332 break;
46eb8f98
AS
2333 case HV_X64_MSR_VP_RUNTIME:
2334 env->msr_hv_runtime = msrs[i].data;
2335 break;
866eea9a
AS
2336 case HV_X64_MSR_SCONTROL:
2337 env->msr_hv_synic_control = msrs[i].data;
2338 break;
2339 case HV_X64_MSR_SVERSION:
2340 env->msr_hv_synic_version = msrs[i].data;
2341 break;
2342 case HV_X64_MSR_SIEFP:
2343 env->msr_hv_synic_evt_page = msrs[i].data;
2344 break;
2345 case HV_X64_MSR_SIMP:
2346 env->msr_hv_synic_msg_page = msrs[i].data;
2347 break;
2348 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
2349 env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
ff99aa64
AS
2350 break;
2351 case HV_X64_MSR_STIMER0_CONFIG:
2352 case HV_X64_MSR_STIMER1_CONFIG:
2353 case HV_X64_MSR_STIMER2_CONFIG:
2354 case HV_X64_MSR_STIMER3_CONFIG:
2355 env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] =
2356 msrs[i].data;
2357 break;
2358 case HV_X64_MSR_STIMER0_COUNT:
2359 case HV_X64_MSR_STIMER1_COUNT:
2360 case HV_X64_MSR_STIMER2_COUNT:
2361 case HV_X64_MSR_STIMER3_COUNT:
2362 env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] =
2363 msrs[i].data;
866eea9a 2364 break;
d1ae67f6
AW
2365 case MSR_MTRRdefType:
2366 env->mtrr_deftype = msrs[i].data;
2367 break;
2368 case MSR_MTRRfix64K_00000:
2369 env->mtrr_fixed[0] = msrs[i].data;
2370 break;
2371 case MSR_MTRRfix16K_80000:
2372 env->mtrr_fixed[1] = msrs[i].data;
2373 break;
2374 case MSR_MTRRfix16K_A0000:
2375 env->mtrr_fixed[2] = msrs[i].data;
2376 break;
2377 case MSR_MTRRfix4K_C0000:
2378 env->mtrr_fixed[3] = msrs[i].data;
2379 break;
2380 case MSR_MTRRfix4K_C8000:
2381 env->mtrr_fixed[4] = msrs[i].data;
2382 break;
2383 case MSR_MTRRfix4K_D0000:
2384 env->mtrr_fixed[5] = msrs[i].data;
2385 break;
2386 case MSR_MTRRfix4K_D8000:
2387 env->mtrr_fixed[6] = msrs[i].data;
2388 break;
2389 case MSR_MTRRfix4K_E0000:
2390 env->mtrr_fixed[7] = msrs[i].data;
2391 break;
2392 case MSR_MTRRfix4K_E8000:
2393 env->mtrr_fixed[8] = msrs[i].data;
2394 break;
2395 case MSR_MTRRfix4K_F0000:
2396 env->mtrr_fixed[9] = msrs[i].data;
2397 break;
2398 case MSR_MTRRfix4K_F8000:
2399 env->mtrr_fixed[10] = msrs[i].data;
2400 break;
2401 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
2402 if (index & 1) {
fcc35e7c
DDAG
2403 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data |
2404 mtrr_top_bits;
d1ae67f6
AW
2405 } else {
2406 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
2407 }
2408 break;
05330448
AL
2409 }
2410 }
2411
2412 return 0;
2413}
2414
1bc22652 2415static int kvm_put_mp_state(X86CPU *cpu)
9bdbe550 2416{
1bc22652 2417 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
9bdbe550 2418
1bc22652 2419 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
9bdbe550
HB
2420}
2421
23d02d9b 2422static int kvm_get_mp_state(X86CPU *cpu)
9bdbe550 2423{
259186a7 2424 CPUState *cs = CPU(cpu);
23d02d9b 2425 CPUX86State *env = &cpu->env;
9bdbe550
HB
2426 struct kvm_mp_state mp_state;
2427 int ret;
2428
259186a7 2429 ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
9bdbe550
HB
2430 if (ret < 0) {
2431 return ret;
2432 }
2433 env->mp_state = mp_state.mp_state;
c14750e8 2434 if (kvm_irqchip_in_kernel()) {
259186a7 2435 cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
c14750e8 2436 }
9bdbe550
HB
2437 return 0;
2438}
2439
1bc22652 2440static int kvm_get_apic(X86CPU *cpu)
680c1c6f 2441{
02e51483 2442 DeviceState *apic = cpu->apic_state;
680c1c6f
JK
2443 struct kvm_lapic_state kapic;
2444 int ret;
2445
3d4b2649 2446 if (apic && kvm_irqchip_in_kernel()) {
1bc22652 2447 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
680c1c6f
JK
2448 if (ret < 0) {
2449 return ret;
2450 }
2451
2452 kvm_get_apic_state(apic, &kapic);
2453 }
2454 return 0;
2455}
2456
1bc22652 2457static int kvm_put_vcpu_events(X86CPU *cpu, int level)
a0fb002c 2458{
fc12d72e 2459 CPUState *cs = CPU(cpu);
1bc22652 2460 CPUX86State *env = &cpu->env;
076796f8 2461 struct kvm_vcpu_events events = {};
a0fb002c
JK
2462
2463 if (!kvm_has_vcpu_events()) {
2464 return 0;
2465 }
2466
31827373
JK
2467 events.exception.injected = (env->exception_injected >= 0);
2468 events.exception.nr = env->exception_injected;
a0fb002c
JK
2469 events.exception.has_error_code = env->has_error_code;
2470 events.exception.error_code = env->error_code;
7e680753 2471 events.exception.pad = 0;
a0fb002c
JK
2472
2473 events.interrupt.injected = (env->interrupt_injected >= 0);
2474 events.interrupt.nr = env->interrupt_injected;
2475 events.interrupt.soft = env->soft_interrupt;
2476
2477 events.nmi.injected = env->nmi_injected;
2478 events.nmi.pending = env->nmi_pending;
2479 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
7e680753 2480 events.nmi.pad = 0;
a0fb002c
JK
2481
2482 events.sipi_vector = env->sipi_vector;
68c6efe0 2483 events.flags = 0;
a0fb002c 2484
fc12d72e
PB
2485 if (has_msr_smbase) {
2486 events.smi.smm = !!(env->hflags & HF_SMM_MASK);
2487 events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
2488 if (kvm_irqchip_in_kernel()) {
2489 /* As soon as these are moved to the kernel, remove them
2490 * from cs->interrupt_request.
2491 */
2492 events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
2493 events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
2494 cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
2495 } else {
2496 /* Keep these in cs->interrupt_request. */
2497 events.smi.pending = 0;
2498 events.smi.latched_init = 0;
2499 }
2500 events.flags |= KVM_VCPUEVENT_VALID_SMM;
2501 }
2502
ea643051
JK
2503 if (level >= KVM_PUT_RESET_STATE) {
2504 events.flags |=
2505 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
2506 }
aee028b9 2507
1bc22652 2508 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
a0fb002c
JK
2509}
2510
1bc22652 2511static int kvm_get_vcpu_events(X86CPU *cpu)
a0fb002c 2512{
1bc22652 2513 CPUX86State *env = &cpu->env;
a0fb002c
JK
2514 struct kvm_vcpu_events events;
2515 int ret;
2516
2517 if (!kvm_has_vcpu_events()) {
2518 return 0;
2519 }
2520
fc12d72e 2521 memset(&events, 0, sizeof(events));
1bc22652 2522 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
a0fb002c
JK
2523 if (ret < 0) {
2524 return ret;
2525 }
31827373 2526 env->exception_injected =
a0fb002c
JK
2527 events.exception.injected ? events.exception.nr : -1;
2528 env->has_error_code = events.exception.has_error_code;
2529 env->error_code = events.exception.error_code;
2530
2531 env->interrupt_injected =
2532 events.interrupt.injected ? events.interrupt.nr : -1;
2533 env->soft_interrupt = events.interrupt.soft;
2534
2535 env->nmi_injected = events.nmi.injected;
2536 env->nmi_pending = events.nmi.pending;
2537 if (events.nmi.masked) {
2538 env->hflags2 |= HF2_NMI_MASK;
2539 } else {
2540 env->hflags2 &= ~HF2_NMI_MASK;
2541 }
2542
fc12d72e
PB
2543 if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
2544 if (events.smi.smm) {
2545 env->hflags |= HF_SMM_MASK;
2546 } else {
2547 env->hflags &= ~HF_SMM_MASK;
2548 }
2549 if (events.smi.pending) {
2550 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
2551 } else {
2552 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
2553 }
2554 if (events.smi.smm_inside_nmi) {
2555 env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
2556 } else {
2557 env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
2558 }
2559 if (events.smi.latched_init) {
2560 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
2561 } else {
2562 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
2563 }
2564 }
2565
a0fb002c 2566 env->sipi_vector = events.sipi_vector;
a0fb002c
JK
2567
2568 return 0;
2569}
2570
1bc22652 2571static int kvm_guest_debug_workarounds(X86CPU *cpu)
b0b1d690 2572{
ed2803da 2573 CPUState *cs = CPU(cpu);
1bc22652 2574 CPUX86State *env = &cpu->env;
b0b1d690 2575 int ret = 0;
b0b1d690
JK
2576 unsigned long reinject_trap = 0;
2577
2578 if (!kvm_has_vcpu_events()) {
2579 if (env->exception_injected == 1) {
2580 reinject_trap = KVM_GUESTDBG_INJECT_DB;
2581 } else if (env->exception_injected == 3) {
2582 reinject_trap = KVM_GUESTDBG_INJECT_BP;
2583 }
2584 env->exception_injected = -1;
2585 }
2586
2587 /*
2588 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
2589 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
2590 * by updating the debug state once again if single-stepping is on.
2591 * Another reason to call kvm_update_guest_debug here is a pending debug
2592 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
2593 * reinject them via SET_GUEST_DEBUG.
2594 */
2595 if (reinject_trap ||
ed2803da 2596 (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
38e478ec 2597 ret = kvm_update_guest_debug(cs, reinject_trap);
b0b1d690 2598 }
b0b1d690
JK
2599 return ret;
2600}
2601
1bc22652 2602static int kvm_put_debugregs(X86CPU *cpu)
ff44f1a3 2603{
1bc22652 2604 CPUX86State *env = &cpu->env;
ff44f1a3
JK
2605 struct kvm_debugregs dbgregs;
2606 int i;
2607
2608 if (!kvm_has_debugregs()) {
2609 return 0;
2610 }
2611
2612 for (i = 0; i < 4; i++) {
2613 dbgregs.db[i] = env->dr[i];
2614 }
2615 dbgregs.dr6 = env->dr[6];
2616 dbgregs.dr7 = env->dr[7];
2617 dbgregs.flags = 0;
2618
1bc22652 2619 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
ff44f1a3
JK
2620}
2621
1bc22652 2622static int kvm_get_debugregs(X86CPU *cpu)
ff44f1a3 2623{
1bc22652 2624 CPUX86State *env = &cpu->env;
ff44f1a3
JK
2625 struct kvm_debugregs dbgregs;
2626 int i, ret;
2627
2628 if (!kvm_has_debugregs()) {
2629 return 0;
2630 }
2631
1bc22652 2632 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
ff44f1a3 2633 if (ret < 0) {
b9bec74b 2634 return ret;
ff44f1a3
JK
2635 }
2636 for (i = 0; i < 4; i++) {
2637 env->dr[i] = dbgregs.db[i];
2638 }
2639 env->dr[4] = env->dr[6] = dbgregs.dr6;
2640 env->dr[5] = env->dr[7] = dbgregs.dr7;
ff44f1a3
JK
2641
2642 return 0;
2643}
2644
20d695a9 2645int kvm_arch_put_registers(CPUState *cpu, int level)
05330448 2646{
20d695a9 2647 X86CPU *x86_cpu = X86_CPU(cpu);
05330448
AL
2648 int ret;
2649
2fa45344 2650 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
dbaa07c4 2651
48e1a45c 2652 if (level >= KVM_PUT_RESET_STATE) {
6bdf863d
JK
2653 ret = kvm_put_msr_feature_control(x86_cpu);
2654 if (ret < 0) {
2655 return ret;
2656 }
2657 }
2658
36f96c4b
HZ
2659 if (level == KVM_PUT_FULL_STATE) {
2660 /* We don't check for kvm_arch_set_tsc_khz() errors here,
2661 * because TSC frequency mismatch shouldn't abort migration,
2662 * unless the user explicitly asked for a more strict TSC
2663 * setting (e.g. using an explicit "tsc-freq" option).
2664 */
2665 kvm_arch_set_tsc_khz(cpu);
2666 }
2667
1bc22652 2668 ret = kvm_getput_regs(x86_cpu, 1);
b9bec74b 2669 if (ret < 0) {
05330448 2670 return ret;
b9bec74b 2671 }
1bc22652 2672 ret = kvm_put_xsave(x86_cpu);
b9bec74b 2673 if (ret < 0) {
f1665b21 2674 return ret;
b9bec74b 2675 }
1bc22652 2676 ret = kvm_put_xcrs(x86_cpu);
b9bec74b 2677 if (ret < 0) {
05330448 2678 return ret;
b9bec74b 2679 }
1bc22652 2680 ret = kvm_put_sregs(x86_cpu);
b9bec74b 2681 if (ret < 0) {
05330448 2682 return ret;
b9bec74b 2683 }
ab443475 2684 /* must be before kvm_put_msrs */
1bc22652 2685 ret = kvm_inject_mce_oldstyle(x86_cpu);
ab443475
JK
2686 if (ret < 0) {
2687 return ret;
2688 }
1bc22652 2689 ret = kvm_put_msrs(x86_cpu, level);
b9bec74b 2690 if (ret < 0) {
05330448 2691 return ret;
b9bec74b 2692 }
ea643051 2693 if (level >= KVM_PUT_RESET_STATE) {
1bc22652 2694 ret = kvm_put_mp_state(x86_cpu);
b9bec74b 2695 if (ret < 0) {
680c1c6f
JK
2696 return ret;
2697 }
ea643051 2698 }
7477cd38
MT
2699
2700 ret = kvm_put_tscdeadline_msr(x86_cpu);
2701 if (ret < 0) {
2702 return ret;
2703 }
2704
1bc22652 2705 ret = kvm_put_vcpu_events(x86_cpu, level);
b9bec74b 2706 if (ret < 0) {
a0fb002c 2707 return ret;
b9bec74b 2708 }
1bc22652 2709 ret = kvm_put_debugregs(x86_cpu);
b9bec74b 2710 if (ret < 0) {
b0b1d690 2711 return ret;
b9bec74b 2712 }
b0b1d690 2713 /* must be last */
1bc22652 2714 ret = kvm_guest_debug_workarounds(x86_cpu);
b9bec74b 2715 if (ret < 0) {
ff44f1a3 2716 return ret;
b9bec74b 2717 }
05330448
AL
2718 return 0;
2719}
2720
20d695a9 2721int kvm_arch_get_registers(CPUState *cs)
05330448 2722{
20d695a9 2723 X86CPU *cpu = X86_CPU(cs);
05330448
AL
2724 int ret;
2725
20d695a9 2726 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
dbaa07c4 2727
1bc22652 2728 ret = kvm_getput_regs(cpu, 0);
b9bec74b 2729 if (ret < 0) {
f4f1110e 2730 goto out;
b9bec74b 2731 }
1bc22652 2732 ret = kvm_get_xsave(cpu);
b9bec74b 2733 if (ret < 0) {
f4f1110e 2734 goto out;
b9bec74b 2735 }
1bc22652 2736 ret = kvm_get_xcrs(cpu);
b9bec74b 2737 if (ret < 0) {
f4f1110e 2738 goto out;
b9bec74b 2739 }
1bc22652 2740 ret = kvm_get_sregs(cpu);
b9bec74b 2741 if (ret < 0) {
f4f1110e 2742 goto out;
b9bec74b 2743 }
1bc22652 2744 ret = kvm_get_msrs(cpu);
b9bec74b 2745 if (ret < 0) {
f4f1110e 2746 goto out;
b9bec74b 2747 }
23d02d9b 2748 ret = kvm_get_mp_state(cpu);
b9bec74b 2749 if (ret < 0) {
f4f1110e 2750 goto out;
b9bec74b 2751 }
1bc22652 2752 ret = kvm_get_apic(cpu);
680c1c6f 2753 if (ret < 0) {
f4f1110e 2754 goto out;
680c1c6f 2755 }
1bc22652 2756 ret = kvm_get_vcpu_events(cpu);
b9bec74b 2757 if (ret < 0) {
f4f1110e 2758 goto out;
b9bec74b 2759 }
1bc22652 2760 ret = kvm_get_debugregs(cpu);
b9bec74b 2761 if (ret < 0) {
f4f1110e 2762 goto out;
b9bec74b 2763 }
f4f1110e
RH
2764 ret = 0;
2765 out:
2766 cpu_sync_bndcs_hflags(&cpu->env);
2767 return ret;
05330448
AL
2768}
2769
20d695a9 2770void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
05330448 2771{
20d695a9
AF
2772 X86CPU *x86_cpu = X86_CPU(cpu);
2773 CPUX86State *env = &x86_cpu->env;
ce377af3
JK
2774 int ret;
2775
276ce815 2776 /* Inject NMI */
fc12d72e
PB
2777 if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
2778 if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
2779 qemu_mutex_lock_iothread();
2780 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
2781 qemu_mutex_unlock_iothread();
2782 DPRINTF("injected NMI\n");
2783 ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
2784 if (ret < 0) {
2785 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
2786 strerror(-ret));
2787 }
2788 }
2789 if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
2790 qemu_mutex_lock_iothread();
2791 cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
2792 qemu_mutex_unlock_iothread();
2793 DPRINTF("injected SMI\n");
2794 ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
2795 if (ret < 0) {
2796 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
2797 strerror(-ret));
2798 }
ce377af3 2799 }
276ce815
LJ
2800 }
2801
15eafc2e 2802 if (!kvm_pic_in_kernel()) {
4b8523ee
JK
2803 qemu_mutex_lock_iothread();
2804 }
2805
e0723c45
PB
2806 /* Force the VCPU out of its inner loop to process any INIT requests
2807 * or (for userspace APIC, but it is cheap to combine the checks here)
2808 * pending TPR access reports.
2809 */
2810 if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
fc12d72e
PB
2811 if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
2812 !(env->hflags & HF_SMM_MASK)) {
2813 cpu->exit_request = 1;
2814 }
2815 if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
2816 cpu->exit_request = 1;
2817 }
e0723c45 2818 }
05330448 2819
15eafc2e 2820 if (!kvm_pic_in_kernel()) {
db1669bc
JK
2821 /* Try to inject an interrupt if the guest can accept it */
2822 if (run->ready_for_interrupt_injection &&
259186a7 2823 (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
db1669bc
JK
2824 (env->eflags & IF_MASK)) {
2825 int irq;
2826
259186a7 2827 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
db1669bc
JK
2828 irq = cpu_get_pic_interrupt(env);
2829 if (irq >= 0) {
2830 struct kvm_interrupt intr;
2831
2832 intr.irq = irq;
db1669bc 2833 DPRINTF("injected interrupt %d\n", irq);
1bc22652 2834 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
ce377af3
JK
2835 if (ret < 0) {
2836 fprintf(stderr,
2837 "KVM: injection failed, interrupt lost (%s)\n",
2838 strerror(-ret));
2839 }
db1669bc
JK
2840 }
2841 }
05330448 2842
db1669bc
JK
2843 /* If we have an interrupt but the guest is not ready to receive an
2844 * interrupt, request an interrupt window exit. This will
2845 * cause a return to userspace as soon as the guest is ready to
2846 * receive interrupts. */
259186a7 2847 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
db1669bc
JK
2848 run->request_interrupt_window = 1;
2849 } else {
2850 run->request_interrupt_window = 0;
2851 }
2852
2853 DPRINTF("setting tpr\n");
02e51483 2854 run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
4b8523ee
JK
2855
2856 qemu_mutex_unlock_iothread();
db1669bc 2857 }
05330448
AL
2858}
2859
4c663752 2860MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
05330448 2861{
20d695a9
AF
2862 X86CPU *x86_cpu = X86_CPU(cpu);
2863 CPUX86State *env = &x86_cpu->env;
2864
fc12d72e
PB
2865 if (run->flags & KVM_RUN_X86_SMM) {
2866 env->hflags |= HF_SMM_MASK;
2867 } else {
f5c052b9 2868 env->hflags &= ~HF_SMM_MASK;
fc12d72e 2869 }
b9bec74b 2870 if (run->if_flag) {
05330448 2871 env->eflags |= IF_MASK;
b9bec74b 2872 } else {
05330448 2873 env->eflags &= ~IF_MASK;
b9bec74b 2874 }
4b8523ee
JK
2875
2876 /* We need to protect the apic state against concurrent accesses from
2877 * different threads in case the userspace irqchip is used. */
2878 if (!kvm_irqchip_in_kernel()) {
2879 qemu_mutex_lock_iothread();
2880 }
02e51483
CF
2881 cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
2882 cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
4b8523ee
JK
2883 if (!kvm_irqchip_in_kernel()) {
2884 qemu_mutex_unlock_iothread();
2885 }
f794aa4a 2886 return cpu_get_mem_attrs(env);
05330448
AL
2887}
2888
20d695a9 2889int kvm_arch_process_async_events(CPUState *cs)
0af691d7 2890{
20d695a9
AF
2891 X86CPU *cpu = X86_CPU(cs);
2892 CPUX86State *env = &cpu->env;
232fc23b 2893
259186a7 2894 if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
ab443475
JK
2895 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
2896 assert(env->mcg_cap);
2897
259186a7 2898 cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
ab443475 2899
dd1750d7 2900 kvm_cpu_synchronize_state(cs);
ab443475
JK
2901
2902 if (env->exception_injected == EXCP08_DBLE) {
2903 /* this means triple fault */
2904 qemu_system_reset_request();
fcd7d003 2905 cs->exit_request = 1;
ab443475
JK
2906 return 0;
2907 }
2908 env->exception_injected = EXCP12_MCHK;
2909 env->has_error_code = 0;
2910
259186a7 2911 cs->halted = 0;
ab443475
JK
2912 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
2913 env->mp_state = KVM_MP_STATE_RUNNABLE;
2914 }
2915 }
2916
fc12d72e
PB
2917 if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
2918 !(env->hflags & HF_SMM_MASK)) {
e0723c45
PB
2919 kvm_cpu_synchronize_state(cs);
2920 do_cpu_init(cpu);
2921 }
2922
db1669bc
JK
2923 if (kvm_irqchip_in_kernel()) {
2924 return 0;
2925 }
2926
259186a7
AF
2927 if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
2928 cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
02e51483 2929 apic_poll_irq(cpu->apic_state);
5d62c43a 2930 }
259186a7 2931 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4601f7b0 2932 (env->eflags & IF_MASK)) ||
259186a7
AF
2933 (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
2934 cs->halted = 0;
6792a57b 2935 }
259186a7 2936 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
dd1750d7 2937 kvm_cpu_synchronize_state(cs);
232fc23b 2938 do_cpu_sipi(cpu);
0af691d7 2939 }
259186a7
AF
2940 if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
2941 cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
dd1750d7 2942 kvm_cpu_synchronize_state(cs);
02e51483 2943 apic_handle_tpr_access_report(cpu->apic_state, env->eip,
d362e757
JK
2944 env->tpr_access_type);
2945 }
0af691d7 2946
259186a7 2947 return cs->halted;
0af691d7
MT
2948}
2949
839b5630 2950static int kvm_handle_halt(X86CPU *cpu)
05330448 2951{
259186a7 2952 CPUState *cs = CPU(cpu);
839b5630
AF
2953 CPUX86State *env = &cpu->env;
2954
259186a7 2955 if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
05330448 2956 (env->eflags & IF_MASK)) &&
259186a7
AF
2957 !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
2958 cs->halted = 1;
bb4ea393 2959 return EXCP_HLT;
05330448
AL
2960 }
2961
bb4ea393 2962 return 0;
05330448
AL
2963}
2964
f7575c96 2965static int kvm_handle_tpr_access(X86CPU *cpu)
d362e757 2966{
f7575c96
AF
2967 CPUState *cs = CPU(cpu);
2968 struct kvm_run *run = cs->kvm_run;
d362e757 2969
02e51483 2970 apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
d362e757
JK
2971 run->tpr_access.is_write ? TPR_ACCESS_WRITE
2972 : TPR_ACCESS_READ);
2973 return 1;
2974}
2975
f17ec444 2976int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
e22a25c9 2977{
38972938 2978 static const uint8_t int3 = 0xcc;
64bf3f4e 2979
f17ec444
AF
2980 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
2981 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
e22a25c9 2982 return -EINVAL;
b9bec74b 2983 }
e22a25c9
AL
2984 return 0;
2985}
2986
f17ec444 2987int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
e22a25c9
AL
2988{
2989 uint8_t int3;
2990
f17ec444
AF
2991 if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
2992 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
e22a25c9 2993 return -EINVAL;
b9bec74b 2994 }
e22a25c9
AL
2995 return 0;
2996}
2997
2998static struct {
2999 target_ulong addr;
3000 int len;
3001 int type;
3002} hw_breakpoint[4];
3003
3004static int nb_hw_breakpoint;
3005
3006static int find_hw_breakpoint(target_ulong addr, int len, int type)
3007{
3008 int n;
3009
b9bec74b 3010 for (n = 0; n < nb_hw_breakpoint; n++) {
e22a25c9 3011 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
b9bec74b 3012 (hw_breakpoint[n].len == len || len == -1)) {
e22a25c9 3013 return n;
b9bec74b
JK
3014 }
3015 }
e22a25c9
AL
3016 return -1;
3017}
3018
3019int kvm_arch_insert_hw_breakpoint(target_ulong addr,
3020 target_ulong len, int type)
3021{
3022 switch (type) {
3023 case GDB_BREAKPOINT_HW:
3024 len = 1;
3025 break;
3026 case GDB_WATCHPOINT_WRITE:
3027 case GDB_WATCHPOINT_ACCESS:
3028 switch (len) {
3029 case 1:
3030 break;
3031 case 2:
3032 case 4:
3033 case 8:
b9bec74b 3034 if (addr & (len - 1)) {
e22a25c9 3035 return -EINVAL;
b9bec74b 3036 }
e22a25c9
AL
3037 break;
3038 default:
3039 return -EINVAL;
3040 }
3041 break;
3042 default:
3043 return -ENOSYS;
3044 }
3045
b9bec74b 3046 if (nb_hw_breakpoint == 4) {
e22a25c9 3047 return -ENOBUFS;
b9bec74b
JK
3048 }
3049 if (find_hw_breakpoint(addr, len, type) >= 0) {
e22a25c9 3050 return -EEXIST;
b9bec74b 3051 }
e22a25c9
AL
3052 hw_breakpoint[nb_hw_breakpoint].addr = addr;
3053 hw_breakpoint[nb_hw_breakpoint].len = len;
3054 hw_breakpoint[nb_hw_breakpoint].type = type;
3055 nb_hw_breakpoint++;
3056
3057 return 0;
3058}
3059
3060int kvm_arch_remove_hw_breakpoint(target_ulong addr,
3061 target_ulong len, int type)
3062{
3063 int n;
3064
3065 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
b9bec74b 3066 if (n < 0) {
e22a25c9 3067 return -ENOENT;
b9bec74b 3068 }
e22a25c9
AL
3069 nb_hw_breakpoint--;
3070 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
3071
3072 return 0;
3073}
3074
3075void kvm_arch_remove_all_hw_breakpoints(void)
3076{
3077 nb_hw_breakpoint = 0;
3078}
3079
3080static CPUWatchpoint hw_watchpoint;
3081
a60f24b5 3082static int kvm_handle_debug(X86CPU *cpu,
48405526 3083 struct kvm_debug_exit_arch *arch_info)
e22a25c9 3084{
ed2803da 3085 CPUState *cs = CPU(cpu);
a60f24b5 3086 CPUX86State *env = &cpu->env;
f2574737 3087 int ret = 0;
e22a25c9
AL
3088 int n;
3089
3090 if (arch_info->exception == 1) {
3091 if (arch_info->dr6 & (1 << 14)) {
ed2803da 3092 if (cs->singlestep_enabled) {
f2574737 3093 ret = EXCP_DEBUG;
b9bec74b 3094 }
e22a25c9 3095 } else {
b9bec74b
JK
3096 for (n = 0; n < 4; n++) {
3097 if (arch_info->dr6 & (1 << n)) {
e22a25c9
AL
3098 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
3099 case 0x0:
f2574737 3100 ret = EXCP_DEBUG;
e22a25c9
AL
3101 break;
3102 case 0x1:
f2574737 3103 ret = EXCP_DEBUG;
ff4700b0 3104 cs->watchpoint_hit = &hw_watchpoint;
e22a25c9
AL
3105 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
3106 hw_watchpoint.flags = BP_MEM_WRITE;
3107 break;
3108 case 0x3:
f2574737 3109 ret = EXCP_DEBUG;
ff4700b0 3110 cs->watchpoint_hit = &hw_watchpoint;
e22a25c9
AL
3111 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
3112 hw_watchpoint.flags = BP_MEM_ACCESS;
3113 break;
3114 }
b9bec74b
JK
3115 }
3116 }
e22a25c9 3117 }
ff4700b0 3118 } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
f2574737 3119 ret = EXCP_DEBUG;
b9bec74b 3120 }
f2574737 3121 if (ret == 0) {
ff4700b0 3122 cpu_synchronize_state(cs);
48405526 3123 assert(env->exception_injected == -1);
b0b1d690 3124
f2574737 3125 /* pass to guest */
48405526
BS
3126 env->exception_injected = arch_info->exception;
3127 env->has_error_code = 0;
b0b1d690 3128 }
e22a25c9 3129
f2574737 3130 return ret;
e22a25c9
AL
3131}
3132
20d695a9 3133void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
e22a25c9
AL
3134{
3135 const uint8_t type_code[] = {
3136 [GDB_BREAKPOINT_HW] = 0x0,
3137 [GDB_WATCHPOINT_WRITE] = 0x1,
3138 [GDB_WATCHPOINT_ACCESS] = 0x3
3139 };
3140 const uint8_t len_code[] = {
3141 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
3142 };
3143 int n;
3144
a60f24b5 3145 if (kvm_sw_breakpoints_active(cpu)) {
e22a25c9 3146 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
b9bec74b 3147 }
e22a25c9
AL
3148 if (nb_hw_breakpoint > 0) {
3149 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
3150 dbg->arch.debugreg[7] = 0x0600;
3151 for (n = 0; n < nb_hw_breakpoint; n++) {
3152 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
3153 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
3154 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
95c077c9 3155 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
e22a25c9
AL
3156 }
3157 }
3158}
4513d923 3159
2a4dac83
JK
3160static bool host_supports_vmx(void)
3161{
3162 uint32_t ecx, unused;
3163
3164 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
3165 return ecx & CPUID_EXT_VMX;
3166}
3167
3168#define VMX_INVALID_GUEST_STATE 0x80000021
3169
20d695a9 3170int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
2a4dac83 3171{
20d695a9 3172 X86CPU *cpu = X86_CPU(cs);
2a4dac83
JK
3173 uint64_t code;
3174 int ret;
3175
3176 switch (run->exit_reason) {
3177 case KVM_EXIT_HLT:
3178 DPRINTF("handle_hlt\n");
4b8523ee 3179 qemu_mutex_lock_iothread();
839b5630 3180 ret = kvm_handle_halt(cpu);
4b8523ee 3181 qemu_mutex_unlock_iothread();
2a4dac83
JK
3182 break;
3183 case KVM_EXIT_SET_TPR:
3184 ret = 0;
3185 break;
d362e757 3186 case KVM_EXIT_TPR_ACCESS:
4b8523ee 3187 qemu_mutex_lock_iothread();
f7575c96 3188 ret = kvm_handle_tpr_access(cpu);
4b8523ee 3189 qemu_mutex_unlock_iothread();
d362e757 3190 break;
2a4dac83
JK
3191 case KVM_EXIT_FAIL_ENTRY:
3192 code = run->fail_entry.hardware_entry_failure_reason;
3193 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
3194 code);
3195 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
3196 fprintf(stderr,
12619721 3197 "\nIf you're running a guest on an Intel machine without "
2a4dac83
JK
3198 "unrestricted mode\n"
3199 "support, the failure can be most likely due to the guest "
3200 "entering an invalid\n"
3201 "state for Intel VT. For example, the guest maybe running "
3202 "in big real mode\n"
3203 "which is not supported on less recent Intel processors."
3204 "\n\n");
3205 }
3206 ret = -1;
3207 break;
3208 case KVM_EXIT_EXCEPTION:
3209 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
3210 run->ex.exception, run->ex.error_code);
3211 ret = -1;
3212 break;
f2574737
JK
3213 case KVM_EXIT_DEBUG:
3214 DPRINTF("kvm_exit_debug\n");
4b8523ee 3215 qemu_mutex_lock_iothread();
a60f24b5 3216 ret = kvm_handle_debug(cpu, &run->debug.arch);
4b8523ee 3217 qemu_mutex_unlock_iothread();
f2574737 3218 break;
50efe82c
AS
3219 case KVM_EXIT_HYPERV:
3220 ret = kvm_hv_handle_exit(cpu, &run->hyperv);
3221 break;
15eafc2e
PB
3222 case KVM_EXIT_IOAPIC_EOI:
3223 ioapic_eoi_broadcast(run->eoi.vector);
3224 ret = 0;
3225 break;
2a4dac83
JK
3226 default:
3227 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
3228 ret = -1;
3229 break;
3230 }
3231
3232 return ret;
3233}
3234
20d695a9 3235bool kvm_arch_stop_on_emulation_error(CPUState *cs)
4513d923 3236{
20d695a9
AF
3237 X86CPU *cpu = X86_CPU(cs);
3238 CPUX86State *env = &cpu->env;
3239
dd1750d7 3240 kvm_cpu_synchronize_state(cs);
b9bec74b
JK
3241 return !(env->cr[0] & CR0_PE_MASK) ||
3242 ((env->segs[R_CS].selector & 3) != 3);
4513d923 3243}
84b058d7
JK
3244
3245void kvm_arch_init_irq_routing(KVMState *s)
3246{
3247 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
3248 /* If kernel can't do irq routing, interrupt source
3249 * override 0->2 cannot be set up as required by HPET.
3250 * So we have to disable it.
3251 */
3252 no_hpet = 1;
3253 }
cc7e0ddf 3254 /* We know at this point that we're using the in-kernel
614e41bc 3255 * irqchip, so we can use irqfds, and on x86 we know
f3e1bed8 3256 * we can use msi via irqfd and GSI routing.
cc7e0ddf 3257 */
614e41bc 3258 kvm_msi_via_irqfd_allowed = true;
f3e1bed8 3259 kvm_gsi_routing_allowed = true;
15eafc2e
PB
3260
3261 if (kvm_irqchip_is_split()) {
3262 int i;
3263
3264 /* If the ioapic is in QEMU and the lapics are in KVM, reserve
3265 MSI routes for signaling interrupts to the local apics. */
3266 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
d1f6af6a 3267 if (kvm_irqchip_add_msi_route(s, 0, NULL) < 0) {
15eafc2e
PB
3268 error_report("Could not enable split IRQ mode.");
3269 exit(1);
3270 }
3271 }
3272 }
3273}
3274
3275int kvm_arch_irqchip_create(MachineState *ms, KVMState *s)
3276{
3277 int ret;
3278 if (machine_kernel_irqchip_split(ms)) {
3279 ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24);
3280 if (ret) {
df3c286c 3281 error_report("Could not enable split irqchip mode: %s",
15eafc2e
PB
3282 strerror(-ret));
3283 exit(1);
3284 } else {
3285 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
3286 kvm_split_irqchip = true;
3287 return 1;
3288 }
3289 } else {
3290 return 0;
3291 }
84b058d7 3292}
b139bd30
JK
3293
3294/* Classic KVM device assignment interface. Will remain x86 only. */
3295int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr,
3296 uint32_t flags, uint32_t *dev_id)
3297{
3298 struct kvm_assigned_pci_dev dev_data = {
3299 .segnr = dev_addr->domain,
3300 .busnr = dev_addr->bus,
3301 .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function),
3302 .flags = flags,
3303 };
3304 int ret;
3305
3306 dev_data.assigned_dev_id =
3307 (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn;
3308
3309 ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data);
3310 if (ret < 0) {
3311 return ret;
3312 }
3313
3314 *dev_id = dev_data.assigned_dev_id;
3315
3316 return 0;
3317}
3318
3319int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id)
3320{
3321 struct kvm_assigned_pci_dev dev_data = {
3322 .assigned_dev_id = dev_id,
3323 };
3324
3325 return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data);
3326}
3327
3328static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id,
3329 uint32_t irq_type, uint32_t guest_irq)
3330{
3331 struct kvm_assigned_irq assigned_irq = {
3332 .assigned_dev_id = dev_id,
3333 .guest_irq = guest_irq,
3334 .flags = irq_type,
3335 };
3336
3337 if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) {
3338 return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq);
3339 } else {
3340 return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq);
3341 }
3342}
3343
3344int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi,
3345 uint32_t guest_irq)
3346{
3347 uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX |
3348 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX);
3349
3350 return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq);
3351}
3352
3353int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked)
3354{
3355 struct kvm_assigned_pci_dev dev_data = {
3356 .assigned_dev_id = dev_id,
3357 .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0,
3358 };
3359
3360 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data);
3361}
3362
3363static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id,
3364 uint32_t type)
3365{
3366 struct kvm_assigned_irq assigned_irq = {
3367 .assigned_dev_id = dev_id,
3368 .flags = type,
3369 };
3370
3371 return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq);
3372}
3373
3374int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi)
3375{
3376 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX |
3377 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX));
3378}
3379
3380int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq)
3381{
3382 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI |
3383 KVM_DEV_IRQ_GUEST_MSI, virq);
3384}
3385
3386int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id)
3387{
3388 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI |
3389 KVM_DEV_IRQ_HOST_MSI);
3390}
3391
3392bool kvm_device_msix_supported(KVMState *s)
3393{
3394 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
3395 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
3396 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT;
3397}
3398
3399int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id,
3400 uint32_t nr_vectors)
3401{
3402 struct kvm_assigned_msix_nr msix_nr = {
3403 .assigned_dev_id = dev_id,
3404 .entry_nr = nr_vectors,
3405 };
3406
3407 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr);
3408}
3409
3410int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector,
3411 int virq)
3412{
3413 struct kvm_assigned_msix_entry msix_entry = {
3414 .assigned_dev_id = dev_id,
3415 .gsi = virq,
3416 .entry = vector,
3417 };
3418
3419 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry);
3420}
3421
3422int kvm_device_msix_assign(KVMState *s, uint32_t dev_id)
3423{
3424 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX |
3425 KVM_DEV_IRQ_GUEST_MSIX, 0);
3426}
3427
3428int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id)
3429{
3430 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX |
3431 KVM_DEV_IRQ_HOST_MSIX);
3432}
9e03a040
FB
3433
3434int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
dc9f06ca 3435 uint64_t address, uint32_t data, PCIDevice *dev)
9e03a040 3436{
8b5ed7df
PX
3437 X86IOMMUState *iommu = x86_iommu_get_default();
3438
3439 if (iommu) {
3440 int ret;
3441 MSIMessage src, dst;
3442 X86IOMMUClass *class = X86_IOMMU_GET_CLASS(iommu);
3443
3444 src.address = route->u.msi.address_hi;
3445 src.address <<= VTD_MSI_ADDR_HI_SHIFT;
3446 src.address |= route->u.msi.address_lo;
3447 src.data = route->u.msi.data;
3448
3449 ret = class->int_remap(iommu, &src, &dst, dev ? \
3450 pci_requester_id(dev) : \
3451 X86_IOMMU_SID_INVALID);
3452 if (ret) {
3453 trace_kvm_x86_fixup_msi_error(route->gsi);
3454 return 1;
3455 }
3456
3457 route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT;
3458 route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK;
3459 route->u.msi.data = dst.data;
3460 }
3461
9e03a040
FB
3462 return 0;
3463}
1850b6b7 3464
38d87493
PX
3465typedef struct MSIRouteEntry MSIRouteEntry;
3466
3467struct MSIRouteEntry {
3468 PCIDevice *dev; /* Device pointer */
3469 int vector; /* MSI/MSIX vector index */
3470 int virq; /* Virtual IRQ index */
3471 QLIST_ENTRY(MSIRouteEntry) list;
3472};
3473
3474/* List of used GSI routes */
3475static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \
3476 QLIST_HEAD_INITIALIZER(msi_route_list);
3477
e1d4fb2d
PX
3478static void kvm_update_msi_routes_all(void *private, bool global,
3479 uint32_t index, uint32_t mask)
3480{
3481 int cnt = 0;
3482 MSIRouteEntry *entry;
3483 MSIMessage msg;
3484 /* TODO: explicit route update */
3485 QLIST_FOREACH(entry, &msi_route_list, list) {
3486 cnt++;
3487 msg = pci_get_msi_message(entry->dev, entry->vector);
3488 kvm_irqchip_update_msi_route(kvm_state, entry->virq,
3489 msg, entry->dev);
3490 }
3f1fea0f 3491 kvm_irqchip_commit_routes(kvm_state);
e1d4fb2d
PX
3492 trace_kvm_x86_update_msi_routes(cnt);
3493}
3494
38d87493
PX
3495int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
3496 int vector, PCIDevice *dev)
3497{
e1d4fb2d 3498 static bool notify_list_inited = false;
38d87493
PX
3499 MSIRouteEntry *entry;
3500
3501 if (!dev) {
3502 /* These are (possibly) IOAPIC routes only used for split
3503 * kernel irqchip mode, while what we are housekeeping are
3504 * PCI devices only. */
3505 return 0;
3506 }
3507
3508 entry = g_new0(MSIRouteEntry, 1);
3509 entry->dev = dev;
3510 entry->vector = vector;
3511 entry->virq = route->gsi;
3512 QLIST_INSERT_HEAD(&msi_route_list, entry, list);
3513
3514 trace_kvm_x86_add_msi_route(route->gsi);
e1d4fb2d
PX
3515
3516 if (!notify_list_inited) {
3517 /* For the first time we do add route, add ourselves into
3518 * IOMMU's IEC notify list if needed. */
3519 X86IOMMUState *iommu = x86_iommu_get_default();
3520 if (iommu) {
3521 x86_iommu_iec_register_notifier(iommu,
3522 kvm_update_msi_routes_all,
3523 NULL);
3524 }
3525 notify_list_inited = true;
3526 }
38d87493
PX
3527 return 0;
3528}
3529
3530int kvm_arch_release_virq_post(int virq)
3531{
3532 MSIRouteEntry *entry, *next;
3533 QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) {
3534 if (entry->virq == virq) {
3535 trace_kvm_x86_remove_msi_route(virq);
3536 QLIST_REMOVE(entry, list);
3537 break;
3538 }
3539 }
9e03a040
FB
3540 return 0;
3541}
1850b6b7
EA
3542
3543int kvm_arch_msi_data_to_gsi(uint32_t data)
3544{
3545 abort();
3546}