]> git.proxmox.com Git - mirror_edk2.git/blob - AppPkg/Applications/Python/Python-2.7.2/Lib/random.py
EmbeddedPkg: Extend NvVarStoreFormattedLib LIBRARY_CLASS
[mirror_edk2.git] / AppPkg / Applications / Python / Python-2.7.2 / Lib / random.py
1 """Random variable generators.
2
3 integers
4 --------
5 uniform within range
6
7 sequences
8 ---------
9 pick random element
10 pick random sample
11 generate random permutation
12
13 distributions on the real line:
14 ------------------------------
15 uniform
16 triangular
17 normal (Gaussian)
18 lognormal
19 negative exponential
20 gamma
21 beta
22 pareto
23 Weibull
24
25 distributions on the circle (angles 0 to 2pi)
26 ---------------------------------------------
27 circular uniform
28 von Mises
29
30 General notes on the underlying Mersenne Twister core generator:
31
32 * The period is 2**19937-1.
33 * It is one of the most extensively tested generators in existence.
34 * Without a direct way to compute N steps forward, the semantics of
35 jumpahead(n) are weakened to simply jump to another distant state and rely
36 on the large period to avoid overlapping sequences.
37 * The random() method is implemented in C, executes in a single Python step,
38 and is, therefore, threadsafe.
39
40 """
41
42 from __future__ import division
43 from warnings import warn as _warn
44 from types import MethodType as _MethodType, BuiltinMethodType as _BuiltinMethodType
45 from math import log as _log, exp as _exp, pi as _pi, e as _e, ceil as _ceil
46 from math import sqrt as _sqrt, acos as _acos, cos as _cos, sin as _sin
47 from os import urandom as _urandom
48 from binascii import hexlify as _hexlify
49 import hashlib as _hashlib
50
51 __all__ = ["Random","seed","random","uniform","randint","choice","sample",
52 "randrange","shuffle","normalvariate","lognormvariate",
53 "expovariate","vonmisesvariate","gammavariate","triangular",
54 "gauss","betavariate","paretovariate","weibullvariate",
55 "getstate","setstate","jumpahead", "WichmannHill", "getrandbits",
56 "SystemRandom"]
57
58 NV_MAGICCONST = 4 * _exp(-0.5)/_sqrt(2.0)
59 TWOPI = 2.0*_pi
60 LOG4 = _log(4.0)
61 SG_MAGICCONST = 1.0 + _log(4.5)
62 BPF = 53 # Number of bits in a float
63 RECIP_BPF = 2**-BPF
64
65
66 # Translated by Guido van Rossum from C source provided by
67 # Adrian Baddeley. Adapted by Raymond Hettinger for use with
68 # the Mersenne Twister and os.urandom() core generators.
69
70 import _random
71
72 class Random(_random.Random):
73 """Random number generator base class used by bound module functions.
74
75 Used to instantiate instances of Random to get generators that don't
76 share state. Especially useful for multi-threaded programs, creating
77 a different instance of Random for each thread, and using the jumpahead()
78 method to ensure that the generated sequences seen by each thread don't
79 overlap.
80
81 Class Random can also be subclassed if you want to use a different basic
82 generator of your own devising: in that case, override the following
83 methods: random(), seed(), getstate(), setstate() and jumpahead().
84 Optionally, implement a getrandbits() method so that randrange() can cover
85 arbitrarily large ranges.
86
87 """
88
89 VERSION = 3 # used by getstate/setstate
90
91 def __init__(self, x=None):
92 """Initialize an instance.
93
94 Optional argument x controls seeding, as for Random.seed().
95 """
96
97 self.seed(x)
98 self.gauss_next = None
99
100 def seed(self, a=None):
101 """Initialize internal state from hashable object.
102
103 None or no argument seeds from current time or from an operating
104 system specific randomness source if available.
105
106 If a is not None or an int or long, hash(a) is used instead.
107 """
108
109 if a is None:
110 try:
111 a = long(_hexlify(_urandom(16)), 16)
112 except NotImplementedError:
113 import time
114 a = long(time.time() * 256) # use fractional seconds
115
116 super(Random, self).seed(a)
117 self.gauss_next = None
118
119 def getstate(self):
120 """Return internal state; can be passed to setstate() later."""
121 return self.VERSION, super(Random, self).getstate(), self.gauss_next
122
123 def setstate(self, state):
124 """Restore internal state from object returned by getstate()."""
125 version = state[0]
126 if version == 3:
127 version, internalstate, self.gauss_next = state
128 super(Random, self).setstate(internalstate)
129 elif version == 2:
130 version, internalstate, self.gauss_next = state
131 # In version 2, the state was saved as signed ints, which causes
132 # inconsistencies between 32/64-bit systems. The state is
133 # really unsigned 32-bit ints, so we convert negative ints from
134 # version 2 to positive longs for version 3.
135 try:
136 internalstate = tuple( long(x) % (2**32) for x in internalstate )
137 except ValueError, e:
138 raise TypeError, e
139 super(Random, self).setstate(internalstate)
140 else:
141 raise ValueError("state with version %s passed to "
142 "Random.setstate() of version %s" %
143 (version, self.VERSION))
144
145 def jumpahead(self, n):
146 """Change the internal state to one that is likely far away
147 from the current state. This method will not be in Py3.x,
148 so it is better to simply reseed.
149 """
150 # The super.jumpahead() method uses shuffling to change state,
151 # so it needs a large and "interesting" n to work with. Here,
152 # we use hashing to create a large n for the shuffle.
153 s = repr(n) + repr(self.getstate())
154 n = int(_hashlib.new('sha512', s).hexdigest(), 16)
155 super(Random, self).jumpahead(n)
156
157 ## ---- Methods below this point do not need to be overridden when
158 ## ---- subclassing for the purpose of using a different core generator.
159
160 ## -------------------- pickle support -------------------
161
162 def __getstate__(self): # for pickle
163 return self.getstate()
164
165 def __setstate__(self, state): # for pickle
166 self.setstate(state)
167
168 def __reduce__(self):
169 return self.__class__, (), self.getstate()
170
171 ## -------------------- integer methods -------------------
172
173 def randrange(self, start, stop=None, step=1, int=int, default=None,
174 maxwidth=1L<<BPF):
175 """Choose a random item from range(start, stop[, step]).
176
177 This fixes the problem with randint() which includes the
178 endpoint; in Python this is usually not what you want.
179 Do not supply the 'int', 'default', and 'maxwidth' arguments.
180 """
181
182 # This code is a bit messy to make it fast for the
183 # common case while still doing adequate error checking.
184 istart = int(start)
185 if istart != start:
186 raise ValueError, "non-integer arg 1 for randrange()"
187 if stop is default:
188 if istart > 0:
189 if istart >= maxwidth:
190 return self._randbelow(istart)
191 return int(self.random() * istart)
192 raise ValueError, "empty range for randrange()"
193
194 # stop argument supplied.
195 istop = int(stop)
196 if istop != stop:
197 raise ValueError, "non-integer stop for randrange()"
198 width = istop - istart
199 if step == 1 and width > 0:
200 # Note that
201 # int(istart + self.random()*width)
202 # instead would be incorrect. For example, consider istart
203 # = -2 and istop = 0. Then the guts would be in
204 # -2.0 to 0.0 exclusive on both ends (ignoring that random()
205 # might return 0.0), and because int() truncates toward 0, the
206 # final result would be -1 or 0 (instead of -2 or -1).
207 # istart + int(self.random()*width)
208 # would also be incorrect, for a subtler reason: the RHS
209 # can return a long, and then randrange() would also return
210 # a long, but we're supposed to return an int (for backward
211 # compatibility).
212
213 if width >= maxwidth:
214 return int(istart + self._randbelow(width))
215 return int(istart + int(self.random()*width))
216 if step == 1:
217 raise ValueError, "empty range for randrange() (%d,%d, %d)" % (istart, istop, width)
218
219 # Non-unit step argument supplied.
220 istep = int(step)
221 if istep != step:
222 raise ValueError, "non-integer step for randrange()"
223 if istep > 0:
224 n = (width + istep - 1) // istep
225 elif istep < 0:
226 n = (width + istep + 1) // istep
227 else:
228 raise ValueError, "zero step for randrange()"
229
230 if n <= 0:
231 raise ValueError, "empty range for randrange()"
232
233 if n >= maxwidth:
234 return istart + istep*self._randbelow(n)
235 return istart + istep*int(self.random() * n)
236
237 def randint(self, a, b):
238 """Return random integer in range [a, b], including both end points.
239 """
240
241 return self.randrange(a, b+1)
242
243 def _randbelow(self, n, _log=_log, int=int, _maxwidth=1L<<BPF,
244 _Method=_MethodType, _BuiltinMethod=_BuiltinMethodType):
245 """Return a random int in the range [0,n)
246
247 Handles the case where n has more bits than returned
248 by a single call to the underlying generator.
249 """
250
251 try:
252 getrandbits = self.getrandbits
253 except AttributeError:
254 pass
255 else:
256 # Only call self.getrandbits if the original random() builtin method
257 # has not been overridden or if a new getrandbits() was supplied.
258 # This assures that the two methods correspond.
259 if type(self.random) is _BuiltinMethod or type(getrandbits) is _Method:
260 k = int(1.00001 + _log(n-1, 2.0)) # 2**k > n-1 > 2**(k-2)
261 r = getrandbits(k)
262 while r >= n:
263 r = getrandbits(k)
264 return r
265 if n >= _maxwidth:
266 _warn("Underlying random() generator does not supply \n"
267 "enough bits to choose from a population range this large")
268 return int(self.random() * n)
269
270 ## -------------------- sequence methods -------------------
271
272 def choice(self, seq):
273 """Choose a random element from a non-empty sequence."""
274 return seq[int(self.random() * len(seq))] # raises IndexError if seq is empty
275
276 def shuffle(self, x, random=None, int=int):
277 """x, random=random.random -> shuffle list x in place; return None.
278
279 Optional arg random is a 0-argument function returning a random
280 float in [0.0, 1.0); by default, the standard random.random.
281 """
282
283 if random is None:
284 random = self.random
285 for i in reversed(xrange(1, len(x))):
286 # pick an element in x[:i+1] with which to exchange x[i]
287 j = int(random() * (i+1))
288 x[i], x[j] = x[j], x[i]
289
290 def sample(self, population, k):
291 """Chooses k unique random elements from a population sequence.
292
293 Returns a new list containing elements from the population while
294 leaving the original population unchanged. The resulting list is
295 in selection order so that all sub-slices will also be valid random
296 samples. This allows raffle winners (the sample) to be partitioned
297 into grand prize and second place winners (the subslices).
298
299 Members of the population need not be hashable or unique. If the
300 population contains repeats, then each occurrence is a possible
301 selection in the sample.
302
303 To choose a sample in a range of integers, use xrange as an argument.
304 This is especially fast and space efficient for sampling from a
305 large population: sample(xrange(10000000), 60)
306 """
307
308 # Sampling without replacement entails tracking either potential
309 # selections (the pool) in a list or previous selections in a set.
310
311 # When the number of selections is small compared to the
312 # population, then tracking selections is efficient, requiring
313 # only a small set and an occasional reselection. For
314 # a larger number of selections, the pool tracking method is
315 # preferred since the list takes less space than the
316 # set and it doesn't suffer from frequent reselections.
317
318 n = len(population)
319 if not 0 <= k <= n:
320 raise ValueError("sample larger than population")
321 random = self.random
322 _int = int
323 result = [None] * k
324 setsize = 21 # size of a small set minus size of an empty list
325 if k > 5:
326 setsize += 4 ** _ceil(_log(k * 3, 4)) # table size for big sets
327 if n <= setsize or hasattr(population, "keys"):
328 # An n-length list is smaller than a k-length set, or this is a
329 # mapping type so the other algorithm wouldn't work.
330 pool = list(population)
331 for i in xrange(k): # invariant: non-selected at [0,n-i)
332 j = _int(random() * (n-i))
333 result[i] = pool[j]
334 pool[j] = pool[n-i-1] # move non-selected item into vacancy
335 else:
336 try:
337 selected = set()
338 selected_add = selected.add
339 for i in xrange(k):
340 j = _int(random() * n)
341 while j in selected:
342 j = _int(random() * n)
343 selected_add(j)
344 result[i] = population[j]
345 except (TypeError, KeyError): # handle (at least) sets
346 if isinstance(population, list):
347 raise
348 return self.sample(tuple(population), k)
349 return result
350
351 ## -------------------- real-valued distributions -------------------
352
353 ## -------------------- uniform distribution -------------------
354
355 def uniform(self, a, b):
356 "Get a random number in the range [a, b) or [a, b] depending on rounding."
357 return a + (b-a) * self.random()
358
359 ## -------------------- triangular --------------------
360
361 def triangular(self, low=0.0, high=1.0, mode=None):
362 """Triangular distribution.
363
364 Continuous distribution bounded by given lower and upper limits,
365 and having a given mode value in-between.
366
367 http://en.wikipedia.org/wiki/Triangular_distribution
368
369 """
370 u = self.random()
371 c = 0.5 if mode is None else (mode - low) / (high - low)
372 if u > c:
373 u = 1.0 - u
374 c = 1.0 - c
375 low, high = high, low
376 return low + (high - low) * (u * c) ** 0.5
377
378 ## -------------------- normal distribution --------------------
379
380 def normalvariate(self, mu, sigma):
381 """Normal distribution.
382
383 mu is the mean, and sigma is the standard deviation.
384
385 """
386 # mu = mean, sigma = standard deviation
387
388 # Uses Kinderman and Monahan method. Reference: Kinderman,
389 # A.J. and Monahan, J.F., "Computer generation of random
390 # variables using the ratio of uniform deviates", ACM Trans
391 # Math Software, 3, (1977), pp257-260.
392
393 random = self.random
394 while 1:
395 u1 = random()
396 u2 = 1.0 - random()
397 z = NV_MAGICCONST*(u1-0.5)/u2
398 zz = z*z/4.0
399 if zz <= -_log(u2):
400 break
401 return mu + z*sigma
402
403 ## -------------------- lognormal distribution --------------------
404
405 def lognormvariate(self, mu, sigma):
406 """Log normal distribution.
407
408 If you take the natural logarithm of this distribution, you'll get a
409 normal distribution with mean mu and standard deviation sigma.
410 mu can have any value, and sigma must be greater than zero.
411
412 """
413 return _exp(self.normalvariate(mu, sigma))
414
415 ## -------------------- exponential distribution --------------------
416
417 def expovariate(self, lambd):
418 """Exponential distribution.
419
420 lambd is 1.0 divided by the desired mean. It should be
421 nonzero. (The parameter would be called "lambda", but that is
422 a reserved word in Python.) Returned values range from 0 to
423 positive infinity if lambd is positive, and from negative
424 infinity to 0 if lambd is negative.
425
426 """
427 # lambd: rate lambd = 1/mean
428 # ('lambda' is a Python reserved word)
429
430 random = self.random
431 u = random()
432 while u <= 1e-7:
433 u = random()
434 return -_log(u)/lambd
435
436 ## -------------------- von Mises distribution --------------------
437
438 def vonmisesvariate(self, mu, kappa):
439 """Circular data distribution.
440
441 mu is the mean angle, expressed in radians between 0 and 2*pi, and
442 kappa is the concentration parameter, which must be greater than or
443 equal to zero. If kappa is equal to zero, this distribution reduces
444 to a uniform random angle over the range 0 to 2*pi.
445
446 """
447 # mu: mean angle (in radians between 0 and 2*pi)
448 # kappa: concentration parameter kappa (>= 0)
449 # if kappa = 0 generate uniform random angle
450
451 # Based upon an algorithm published in: Fisher, N.I.,
452 # "Statistical Analysis of Circular Data", Cambridge
453 # University Press, 1993.
454
455 # Thanks to Magnus Kessler for a correction to the
456 # implementation of step 4.
457
458 random = self.random
459 if kappa <= 1e-6:
460 return TWOPI * random()
461
462 a = 1.0 + _sqrt(1.0 + 4.0 * kappa * kappa)
463 b = (a - _sqrt(2.0 * a))/(2.0 * kappa)
464 r = (1.0 + b * b)/(2.0 * b)
465
466 while 1:
467 u1 = random()
468
469 z = _cos(_pi * u1)
470 f = (1.0 + r * z)/(r + z)
471 c = kappa * (r - f)
472
473 u2 = random()
474
475 if u2 < c * (2.0 - c) or u2 <= c * _exp(1.0 - c):
476 break
477
478 u3 = random()
479 if u3 > 0.5:
480 theta = (mu % TWOPI) + _acos(f)
481 else:
482 theta = (mu % TWOPI) - _acos(f)
483
484 return theta
485
486 ## -------------------- gamma distribution --------------------
487
488 def gammavariate(self, alpha, beta):
489 """Gamma distribution. Not the gamma function!
490
491 Conditions on the parameters are alpha > 0 and beta > 0.
492
493 The probability distribution function is:
494
495 x ** (alpha - 1) * math.exp(-x / beta)
496 pdf(x) = --------------------------------------
497 math.gamma(alpha) * beta ** alpha
498
499 """
500
501 # alpha > 0, beta > 0, mean is alpha*beta, variance is alpha*beta**2
502
503 # Warning: a few older sources define the gamma distribution in terms
504 # of alpha > -1.0
505 if alpha <= 0.0 or beta <= 0.0:
506 raise ValueError, 'gammavariate: alpha and beta must be > 0.0'
507
508 random = self.random
509 if alpha > 1.0:
510
511 # Uses R.C.H. Cheng, "The generation of Gamma
512 # variables with non-integral shape parameters",
513 # Applied Statistics, (1977), 26, No. 1, p71-74
514
515 ainv = _sqrt(2.0 * alpha - 1.0)
516 bbb = alpha - LOG4
517 ccc = alpha + ainv
518
519 while 1:
520 u1 = random()
521 if not 1e-7 < u1 < .9999999:
522 continue
523 u2 = 1.0 - random()
524 v = _log(u1/(1.0-u1))/ainv
525 x = alpha*_exp(v)
526 z = u1*u1*u2
527 r = bbb+ccc*v-x
528 if r + SG_MAGICCONST - 4.5*z >= 0.0 or r >= _log(z):
529 return x * beta
530
531 elif alpha == 1.0:
532 # expovariate(1)
533 u = random()
534 while u <= 1e-7:
535 u = random()
536 return -_log(u) * beta
537
538 else: # alpha is between 0 and 1 (exclusive)
539
540 # Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle
541
542 while 1:
543 u = random()
544 b = (_e + alpha)/_e
545 p = b*u
546 if p <= 1.0:
547 x = p ** (1.0/alpha)
548 else:
549 x = -_log((b-p)/alpha)
550 u1 = random()
551 if p > 1.0:
552 if u1 <= x ** (alpha - 1.0):
553 break
554 elif u1 <= _exp(-x):
555 break
556 return x * beta
557
558 ## -------------------- Gauss (faster alternative) --------------------
559
560 def gauss(self, mu, sigma):
561 """Gaussian distribution.
562
563 mu is the mean, and sigma is the standard deviation. This is
564 slightly faster than the normalvariate() function.
565
566 Not thread-safe without a lock around calls.
567
568 """
569
570 # When x and y are two variables from [0, 1), uniformly
571 # distributed, then
572 #
573 # cos(2*pi*x)*sqrt(-2*log(1-y))
574 # sin(2*pi*x)*sqrt(-2*log(1-y))
575 #
576 # are two *independent* variables with normal distribution
577 # (mu = 0, sigma = 1).
578 # (Lambert Meertens)
579 # (corrected version; bug discovered by Mike Miller, fixed by LM)
580
581 # Multithreading note: When two threads call this function
582 # simultaneously, it is possible that they will receive the
583 # same return value. The window is very small though. To
584 # avoid this, you have to use a lock around all calls. (I
585 # didn't want to slow this down in the serial case by using a
586 # lock here.)
587
588 random = self.random
589 z = self.gauss_next
590 self.gauss_next = None
591 if z is None:
592 x2pi = random() * TWOPI
593 g2rad = _sqrt(-2.0 * _log(1.0 - random()))
594 z = _cos(x2pi) * g2rad
595 self.gauss_next = _sin(x2pi) * g2rad
596
597 return mu + z*sigma
598
599 ## -------------------- beta --------------------
600 ## See
601 ## http://mail.python.org/pipermail/python-bugs-list/2001-January/003752.html
602 ## for Ivan Frohne's insightful analysis of why the original implementation:
603 ##
604 ## def betavariate(self, alpha, beta):
605 ## # Discrete Event Simulation in C, pp 87-88.
606 ##
607 ## y = self.expovariate(alpha)
608 ## z = self.expovariate(1.0/beta)
609 ## return z/(y+z)
610 ##
611 ## was dead wrong, and how it probably got that way.
612
613 def betavariate(self, alpha, beta):
614 """Beta distribution.
615
616 Conditions on the parameters are alpha > 0 and beta > 0.
617 Returned values range between 0 and 1.
618
619 """
620
621 # This version due to Janne Sinkkonen, and matches all the std
622 # texts (e.g., Knuth Vol 2 Ed 3 pg 134 "the beta distribution").
623 y = self.gammavariate(alpha, 1.)
624 if y == 0:
625 return 0.0
626 else:
627 return y / (y + self.gammavariate(beta, 1.))
628
629 ## -------------------- Pareto --------------------
630
631 def paretovariate(self, alpha):
632 """Pareto distribution. alpha is the shape parameter."""
633 # Jain, pg. 495
634
635 u = 1.0 - self.random()
636 return 1.0 / pow(u, 1.0/alpha)
637
638 ## -------------------- Weibull --------------------
639
640 def weibullvariate(self, alpha, beta):
641 """Weibull distribution.
642
643 alpha is the scale parameter and beta is the shape parameter.
644
645 """
646 # Jain, pg. 499; bug fix courtesy Bill Arms
647
648 u = 1.0 - self.random()
649 return alpha * pow(-_log(u), 1.0/beta)
650
651 ## -------------------- Wichmann-Hill -------------------
652
653 class WichmannHill(Random):
654
655 VERSION = 1 # used by getstate/setstate
656
657 def seed(self, a=None):
658 """Initialize internal state from hashable object.
659
660 None or no argument seeds from current time or from an operating
661 system specific randomness source if available.
662
663 If a is not None or an int or long, hash(a) is used instead.
664
665 If a is an int or long, a is used directly. Distinct values between
666 0 and 27814431486575L inclusive are guaranteed to yield distinct
667 internal states (this guarantee is specific to the default
668 Wichmann-Hill generator).
669 """
670
671 if a is None:
672 try:
673 a = long(_hexlify(_urandom(16)), 16)
674 except NotImplementedError:
675 import time
676 a = long(time.time() * 256) # use fractional seconds
677
678 if not isinstance(a, (int, long)):
679 a = hash(a)
680
681 a, x = divmod(a, 30268)
682 a, y = divmod(a, 30306)
683 a, z = divmod(a, 30322)
684 self._seed = int(x)+1, int(y)+1, int(z)+1
685
686 self.gauss_next = None
687
688 def random(self):
689 """Get the next random number in the range [0.0, 1.0)."""
690
691 # Wichman-Hill random number generator.
692 #
693 # Wichmann, B. A. & Hill, I. D. (1982)
694 # Algorithm AS 183:
695 # An efficient and portable pseudo-random number generator
696 # Applied Statistics 31 (1982) 188-190
697 #
698 # see also:
699 # Correction to Algorithm AS 183
700 # Applied Statistics 33 (1984) 123
701 #
702 # McLeod, A. I. (1985)
703 # A remark on Algorithm AS 183
704 # Applied Statistics 34 (1985),198-200
705
706 # This part is thread-unsafe:
707 # BEGIN CRITICAL SECTION
708 x, y, z = self._seed
709 x = (171 * x) % 30269
710 y = (172 * y) % 30307
711 z = (170 * z) % 30323
712 self._seed = x, y, z
713 # END CRITICAL SECTION
714
715 # Note: on a platform using IEEE-754 double arithmetic, this can
716 # never return 0.0 (asserted by Tim; proof too long for a comment).
717 return (x/30269.0 + y/30307.0 + z/30323.0) % 1.0
718
719 def getstate(self):
720 """Return internal state; can be passed to setstate() later."""
721 return self.VERSION, self._seed, self.gauss_next
722
723 def setstate(self, state):
724 """Restore internal state from object returned by getstate()."""
725 version = state[0]
726 if version == 1:
727 version, self._seed, self.gauss_next = state
728 else:
729 raise ValueError("state with version %s passed to "
730 "Random.setstate() of version %s" %
731 (version, self.VERSION))
732
733 def jumpahead(self, n):
734 """Act as if n calls to random() were made, but quickly.
735
736 n is an int, greater than or equal to 0.
737
738 Example use: If you have 2 threads and know that each will
739 consume no more than a million random numbers, create two Random
740 objects r1 and r2, then do
741 r2.setstate(r1.getstate())
742 r2.jumpahead(1000000)
743 Then r1 and r2 will use guaranteed-disjoint segments of the full
744 period.
745 """
746
747 if not n >= 0:
748 raise ValueError("n must be >= 0")
749 x, y, z = self._seed
750 x = int(x * pow(171, n, 30269)) % 30269
751 y = int(y * pow(172, n, 30307)) % 30307
752 z = int(z * pow(170, n, 30323)) % 30323
753 self._seed = x, y, z
754
755 def __whseed(self, x=0, y=0, z=0):
756 """Set the Wichmann-Hill seed from (x, y, z).
757
758 These must be integers in the range [0, 256).
759 """
760
761 if not type(x) == type(y) == type(z) == int:
762 raise TypeError('seeds must be integers')
763 if not (0 <= x < 256 and 0 <= y < 256 and 0 <= z < 256):
764 raise ValueError('seeds must be in range(0, 256)')
765 if 0 == x == y == z:
766 # Initialize from current time
767 import time
768 t = long(time.time() * 256)
769 t = int((t&0xffffff) ^ (t>>24))
770 t, x = divmod(t, 256)
771 t, y = divmod(t, 256)
772 t, z = divmod(t, 256)
773 # Zero is a poor seed, so substitute 1
774 self._seed = (x or 1, y or 1, z or 1)
775
776 self.gauss_next = None
777
778 def whseed(self, a=None):
779 """Seed from hashable object's hash code.
780
781 None or no argument seeds from current time. It is not guaranteed
782 that objects with distinct hash codes lead to distinct internal
783 states.
784
785 This is obsolete, provided for compatibility with the seed routine
786 used prior to Python 2.1. Use the .seed() method instead.
787 """
788
789 if a is None:
790 self.__whseed()
791 return
792 a = hash(a)
793 a, x = divmod(a, 256)
794 a, y = divmod(a, 256)
795 a, z = divmod(a, 256)
796 x = (x + a) % 256 or 1
797 y = (y + a) % 256 or 1
798 z = (z + a) % 256 or 1
799 self.__whseed(x, y, z)
800
801 ## --------------- Operating System Random Source ------------------
802
803 class SystemRandom(Random):
804 """Alternate random number generator using sources provided
805 by the operating system (such as /dev/urandom on Unix or
806 CryptGenRandom on Windows).
807
808 Not available on all systems (see os.urandom() for details).
809 """
810
811 def random(self):
812 """Get the next random number in the range [0.0, 1.0)."""
813 return (long(_hexlify(_urandom(7)), 16) >> 3) * RECIP_BPF
814
815 def getrandbits(self, k):
816 """getrandbits(k) -> x. Generates a long int with k random bits."""
817 if k <= 0:
818 raise ValueError('number of bits must be greater than zero')
819 if k != int(k):
820 raise TypeError('number of bits should be an integer')
821 bytes = (k + 7) // 8 # bits / 8 and rounded up
822 x = long(_hexlify(_urandom(bytes)), 16)
823 return x >> (bytes * 8 - k) # trim excess bits
824
825 def _stub(self, *args, **kwds):
826 "Stub method. Not used for a system random number generator."
827 return None
828 seed = jumpahead = _stub
829
830 def _notimplemented(self, *args, **kwds):
831 "Method should not be called for a system random number generator."
832 raise NotImplementedError('System entropy source does not have state.')
833 getstate = setstate = _notimplemented
834
835 ## -------------------- test program --------------------
836
837 def _test_generator(n, func, args):
838 import time
839 print n, 'times', func.__name__
840 total = 0.0
841 sqsum = 0.0
842 smallest = 1e10
843 largest = -1e10
844 t0 = time.time()
845 for i in range(n):
846 x = func(*args)
847 total += x
848 sqsum = sqsum + x*x
849 smallest = min(x, smallest)
850 largest = max(x, largest)
851 t1 = time.time()
852 print round(t1-t0, 3), 'sec,',
853 avg = total/n
854 stddev = _sqrt(sqsum/n - avg*avg)
855 print 'avg %g, stddev %g, min %g, max %g' % \
856 (avg, stddev, smallest, largest)
857
858
859 def _test(N=2000):
860 _test_generator(N, random, ())
861 _test_generator(N, normalvariate, (0.0, 1.0))
862 _test_generator(N, lognormvariate, (0.0, 1.0))
863 _test_generator(N, vonmisesvariate, (0.0, 1.0))
864 _test_generator(N, gammavariate, (0.01, 1.0))
865 _test_generator(N, gammavariate, (0.1, 1.0))
866 _test_generator(N, gammavariate, (0.1, 2.0))
867 _test_generator(N, gammavariate, (0.5, 1.0))
868 _test_generator(N, gammavariate, (0.9, 1.0))
869 _test_generator(N, gammavariate, (1.0, 1.0))
870 _test_generator(N, gammavariate, (2.0, 1.0))
871 _test_generator(N, gammavariate, (20.0, 1.0))
872 _test_generator(N, gammavariate, (200.0, 1.0))
873 _test_generator(N, gauss, (0.0, 1.0))
874 _test_generator(N, betavariate, (3.0, 3.0))
875 _test_generator(N, triangular, (0.0, 1.0, 1.0/3.0))
876
877 # Create one instance, seeded from current time, and export its methods
878 # as module-level functions. The functions share state across all uses
879 #(both in the user's code and in the Python libraries), but that's fine
880 # for most programs and is easier for the casual user than making them
881 # instantiate their own Random() instance.
882
883 _inst = Random()
884 seed = _inst.seed
885 random = _inst.random
886 uniform = _inst.uniform
887 triangular = _inst.triangular
888 randint = _inst.randint
889 choice = _inst.choice
890 randrange = _inst.randrange
891 sample = _inst.sample
892 shuffle = _inst.shuffle
893 normalvariate = _inst.normalvariate
894 lognormvariate = _inst.lognormvariate
895 expovariate = _inst.expovariate
896 vonmisesvariate = _inst.vonmisesvariate
897 gammavariate = _inst.gammavariate
898 gauss = _inst.gauss
899 betavariate = _inst.betavariate
900 paretovariate = _inst.paretovariate
901 weibullvariate = _inst.weibullvariate
902 getstate = _inst.getstate
903 setstate = _inst.setstate
904 jumpahead = _inst.jumpahead
905 getrandbits = _inst.getrandbits
906
907 if __name__ == '__main__':
908 _test()