]> git.proxmox.com Git - mirror_edk2.git/blob - AppPkg/Applications/Python/Python-2.7.2/Lib/test/test_cmath.py
EmbeddedPkg: Extend NvVarStoreFormattedLib LIBRARY_CLASS
[mirror_edk2.git] / AppPkg / Applications / Python / Python-2.7.2 / Lib / test / test_cmath.py
1 from test.test_support import run_unittest
2 from test.test_math import parse_testfile, test_file
3 import unittest
4 import cmath, math
5 from cmath import phase, polar, rect, pi
6
7 INF = float('inf')
8 NAN = float('nan')
9
10 complex_zeros = [complex(x, y) for x in [0.0, -0.0] for y in [0.0, -0.0]]
11 complex_infinities = [complex(x, y) for x, y in [
12 (INF, 0.0), # 1st quadrant
13 (INF, 2.3),
14 (INF, INF),
15 (2.3, INF),
16 (0.0, INF),
17 (-0.0, INF), # 2nd quadrant
18 (-2.3, INF),
19 (-INF, INF),
20 (-INF, 2.3),
21 (-INF, 0.0),
22 (-INF, -0.0), # 3rd quadrant
23 (-INF, -2.3),
24 (-INF, -INF),
25 (-2.3, -INF),
26 (-0.0, -INF),
27 (0.0, -INF), # 4th quadrant
28 (2.3, -INF),
29 (INF, -INF),
30 (INF, -2.3),
31 (INF, -0.0)
32 ]]
33 complex_nans = [complex(x, y) for x, y in [
34 (NAN, -INF),
35 (NAN, -2.3),
36 (NAN, -0.0),
37 (NAN, 0.0),
38 (NAN, 2.3),
39 (NAN, INF),
40 (-INF, NAN),
41 (-2.3, NAN),
42 (-0.0, NAN),
43 (0.0, NAN),
44 (2.3, NAN),
45 (INF, NAN)
46 ]]
47
48 class CMathTests(unittest.TestCase):
49 # list of all functions in cmath
50 test_functions = [getattr(cmath, fname) for fname in [
51 'acos', 'acosh', 'asin', 'asinh', 'atan', 'atanh',
52 'cos', 'cosh', 'exp', 'log', 'log10', 'sin', 'sinh',
53 'sqrt', 'tan', 'tanh']]
54 # test first and second arguments independently for 2-argument log
55 test_functions.append(lambda x : cmath.log(x, 1729. + 0j))
56 test_functions.append(lambda x : cmath.log(14.-27j, x))
57
58 def setUp(self):
59 self.test_values = open(test_file)
60
61 def tearDown(self):
62 self.test_values.close()
63
64 def rAssertAlmostEqual(self, a, b, rel_err = 2e-15, abs_err = 5e-323,
65 msg=None):
66 """Fail if the two floating-point numbers are not almost equal.
67
68 Determine whether floating-point values a and b are equal to within
69 a (small) rounding error. The default values for rel_err and
70 abs_err are chosen to be suitable for platforms where a float is
71 represented by an IEEE 754 double. They allow an error of between
72 9 and 19 ulps.
73 """
74
75 # special values testing
76 if math.isnan(a):
77 if math.isnan(b):
78 return
79 self.fail(msg or '{!r} should be nan'.format(b))
80
81 if math.isinf(a):
82 if a == b:
83 return
84 self.fail(msg or 'finite result where infinity expected: '
85 'expected {!r}, got {!r}'.format(a, b))
86
87 # if both a and b are zero, check whether they have the same sign
88 # (in theory there are examples where it would be legitimate for a
89 # and b to have opposite signs; in practice these hardly ever
90 # occur).
91 if not a and not b:
92 if math.copysign(1., a) != math.copysign(1., b):
93 self.fail(msg or 'zero has wrong sign: expected {!r}, '
94 'got {!r}'.format(a, b))
95
96 # if a-b overflows, or b is infinite, return False. Again, in
97 # theory there are examples where a is within a few ulps of the
98 # max representable float, and then b could legitimately be
99 # infinite. In practice these examples are rare.
100 try:
101 absolute_error = abs(b-a)
102 except OverflowError:
103 pass
104 else:
105 # test passes if either the absolute error or the relative
106 # error is sufficiently small. The defaults amount to an
107 # error of between 9 ulps and 19 ulps on an IEEE-754 compliant
108 # machine.
109 if absolute_error <= max(abs_err, rel_err * abs(a)):
110 return
111 self.fail(msg or
112 '{!r} and {!r} are not sufficiently close'.format(a, b))
113
114 def test_constants(self):
115 e_expected = 2.71828182845904523536
116 pi_expected = 3.14159265358979323846
117 self.assertAlmostEqual(cmath.pi, pi_expected, places=9,
118 msg="cmath.pi is {}; should be {}".format(cmath.pi, pi_expected))
119 self.assertAlmostEqual(cmath.e, e_expected, places=9,
120 msg="cmath.e is {}; should be {}".format(cmath.e, e_expected))
121
122 def test_user_object(self):
123 # Test automatic calling of __complex__ and __float__ by cmath
124 # functions
125
126 # some random values to use as test values; we avoid values
127 # for which any of the functions in cmath is undefined
128 # (i.e. 0., 1., -1., 1j, -1j) or would cause overflow
129 cx_arg = 4.419414439 + 1.497100113j
130 flt_arg = -6.131677725
131
132 # a variety of non-complex numbers, used to check that
133 # non-complex return values from __complex__ give an error
134 non_complexes = ["not complex", 1, 5L, 2., None,
135 object(), NotImplemented]
136
137 # Now we introduce a variety of classes whose instances might
138 # end up being passed to the cmath functions
139
140 # usual case: new-style class implementing __complex__
141 class MyComplex(object):
142 def __init__(self, value):
143 self.value = value
144 def __complex__(self):
145 return self.value
146
147 # old-style class implementing __complex__
148 class MyComplexOS:
149 def __init__(self, value):
150 self.value = value
151 def __complex__(self):
152 return self.value
153
154 # classes for which __complex__ raises an exception
155 class SomeException(Exception):
156 pass
157 class MyComplexException(object):
158 def __complex__(self):
159 raise SomeException
160 class MyComplexExceptionOS:
161 def __complex__(self):
162 raise SomeException
163
164 # some classes not providing __float__ or __complex__
165 class NeitherComplexNorFloat(object):
166 pass
167 class NeitherComplexNorFloatOS:
168 pass
169 class MyInt(object):
170 def __int__(self): return 2
171 def __long__(self): return 2L
172 def __index__(self): return 2
173 class MyIntOS:
174 def __int__(self): return 2
175 def __long__(self): return 2L
176 def __index__(self): return 2
177
178 # other possible combinations of __float__ and __complex__
179 # that should work
180 class FloatAndComplex(object):
181 def __float__(self):
182 return flt_arg
183 def __complex__(self):
184 return cx_arg
185 class FloatAndComplexOS:
186 def __float__(self):
187 return flt_arg
188 def __complex__(self):
189 return cx_arg
190 class JustFloat(object):
191 def __float__(self):
192 return flt_arg
193 class JustFloatOS:
194 def __float__(self):
195 return flt_arg
196
197 for f in self.test_functions:
198 # usual usage
199 self.assertEqual(f(MyComplex(cx_arg)), f(cx_arg))
200 self.assertEqual(f(MyComplexOS(cx_arg)), f(cx_arg))
201 # other combinations of __float__ and __complex__
202 self.assertEqual(f(FloatAndComplex()), f(cx_arg))
203 self.assertEqual(f(FloatAndComplexOS()), f(cx_arg))
204 self.assertEqual(f(JustFloat()), f(flt_arg))
205 self.assertEqual(f(JustFloatOS()), f(flt_arg))
206 # TypeError should be raised for classes not providing
207 # either __complex__ or __float__, even if they provide
208 # __int__, __long__ or __index__. An old-style class
209 # currently raises AttributeError instead of a TypeError;
210 # this could be considered a bug.
211 self.assertRaises(TypeError, f, NeitherComplexNorFloat())
212 self.assertRaises(TypeError, f, MyInt())
213 self.assertRaises(Exception, f, NeitherComplexNorFloatOS())
214 self.assertRaises(Exception, f, MyIntOS())
215 # non-complex return value from __complex__ -> TypeError
216 for bad_complex in non_complexes:
217 self.assertRaises(TypeError, f, MyComplex(bad_complex))
218 self.assertRaises(TypeError, f, MyComplexOS(bad_complex))
219 # exceptions in __complex__ should be propagated correctly
220 self.assertRaises(SomeException, f, MyComplexException())
221 self.assertRaises(SomeException, f, MyComplexExceptionOS())
222
223 def test_input_type(self):
224 # ints and longs should be acceptable inputs to all cmath
225 # functions, by virtue of providing a __float__ method
226 for f in self.test_functions:
227 for arg in [2, 2L, 2.]:
228 self.assertEqual(f(arg), f(arg.__float__()))
229
230 # but strings should give a TypeError
231 for f in self.test_functions:
232 for arg in ["a", "long_string", "0", "1j", ""]:
233 self.assertRaises(TypeError, f, arg)
234
235 def test_cmath_matches_math(self):
236 # check that corresponding cmath and math functions are equal
237 # for floats in the appropriate range
238
239 # test_values in (0, 1)
240 test_values = [0.01, 0.1, 0.2, 0.5, 0.9, 0.99]
241
242 # test_values for functions defined on [-1., 1.]
243 unit_interval = test_values + [-x for x in test_values] + \
244 [0., 1., -1.]
245
246 # test_values for log, log10, sqrt
247 positive = test_values + [1.] + [1./x for x in test_values]
248 nonnegative = [0.] + positive
249
250 # test_values for functions defined on the whole real line
251 real_line = [0.] + positive + [-x for x in positive]
252
253 test_functions = {
254 'acos' : unit_interval,
255 'asin' : unit_interval,
256 'atan' : real_line,
257 'cos' : real_line,
258 'cosh' : real_line,
259 'exp' : real_line,
260 'log' : positive,
261 'log10' : positive,
262 'sin' : real_line,
263 'sinh' : real_line,
264 'sqrt' : nonnegative,
265 'tan' : real_line,
266 'tanh' : real_line}
267
268 for fn, values in test_functions.items():
269 float_fn = getattr(math, fn)
270 complex_fn = getattr(cmath, fn)
271 for v in values:
272 z = complex_fn(v)
273 self.rAssertAlmostEqual(float_fn(v), z.real)
274 self.assertEqual(0., z.imag)
275
276 # test two-argument version of log with various bases
277 for base in [0.5, 2., 10.]:
278 for v in positive:
279 z = cmath.log(v, base)
280 self.rAssertAlmostEqual(math.log(v, base), z.real)
281 self.assertEqual(0., z.imag)
282
283 def test_specific_values(self):
284 if not float.__getformat__("double").startswith("IEEE"):
285 return
286
287 def rect_complex(z):
288 """Wrapped version of rect that accepts a complex number instead of
289 two float arguments."""
290 return cmath.rect(z.real, z.imag)
291
292 def polar_complex(z):
293 """Wrapped version of polar that returns a complex number instead of
294 two floats."""
295 return complex(*polar(z))
296
297 for id, fn, ar, ai, er, ei, flags in parse_testfile(test_file):
298 arg = complex(ar, ai)
299 expected = complex(er, ei)
300 if fn == 'rect':
301 function = rect_complex
302 elif fn == 'polar':
303 function = polar_complex
304 else:
305 function = getattr(cmath, fn)
306 if 'divide-by-zero' in flags or 'invalid' in flags:
307 try:
308 actual = function(arg)
309 except ValueError:
310 continue
311 else:
312 self.fail('ValueError not raised in test '
313 '{}: {}(complex({!r}, {!r}))'.format(id, fn, ar, ai))
314
315 if 'overflow' in flags:
316 try:
317 actual = function(arg)
318 except OverflowError:
319 continue
320 else:
321 self.fail('OverflowError not raised in test '
322 '{}: {}(complex({!r}, {!r}))'.format(id, fn, ar, ai))
323
324 actual = function(arg)
325
326 if 'ignore-real-sign' in flags:
327 actual = complex(abs(actual.real), actual.imag)
328 expected = complex(abs(expected.real), expected.imag)
329 if 'ignore-imag-sign' in flags:
330 actual = complex(actual.real, abs(actual.imag))
331 expected = complex(expected.real, abs(expected.imag))
332
333 # for the real part of the log function, we allow an
334 # absolute error of up to 2e-15.
335 if fn in ('log', 'log10'):
336 real_abs_err = 2e-15
337 else:
338 real_abs_err = 5e-323
339
340 error_message = (
341 '{}: {}(complex({!r}, {!r}))\n'
342 'Expected: complex({!r}, {!r})\n'
343 'Received: complex({!r}, {!r})\n'
344 'Received value insufficiently close to expected value.'
345 ).format(id, fn, ar, ai,
346 expected.real, expected.imag,
347 actual.real, actual.imag)
348 self.rAssertAlmostEqual(expected.real, actual.real,
349 abs_err=real_abs_err,
350 msg=error_message)
351 self.rAssertAlmostEqual(expected.imag, actual.imag,
352 msg=error_message)
353
354 def assertCISEqual(self, a, b):
355 eps = 1E-7
356 if abs(a[0] - b[0]) > eps or abs(a[1] - b[1]) > eps:
357 self.fail((a ,b))
358
359 def test_polar(self):
360 self.assertCISEqual(polar(0), (0., 0.))
361 self.assertCISEqual(polar(1.), (1., 0.))
362 self.assertCISEqual(polar(-1.), (1., pi))
363 self.assertCISEqual(polar(1j), (1., pi/2))
364 self.assertCISEqual(polar(-1j), (1., -pi/2))
365
366 def test_phase(self):
367 self.assertAlmostEqual(phase(0), 0.)
368 self.assertAlmostEqual(phase(1.), 0.)
369 self.assertAlmostEqual(phase(-1.), pi)
370 self.assertAlmostEqual(phase(-1.+1E-300j), pi)
371 self.assertAlmostEqual(phase(-1.-1E-300j), -pi)
372 self.assertAlmostEqual(phase(1j), pi/2)
373 self.assertAlmostEqual(phase(-1j), -pi/2)
374
375 # zeros
376 self.assertEqual(phase(complex(0.0, 0.0)), 0.0)
377 self.assertEqual(phase(complex(0.0, -0.0)), -0.0)
378 self.assertEqual(phase(complex(-0.0, 0.0)), pi)
379 self.assertEqual(phase(complex(-0.0, -0.0)), -pi)
380
381 # infinities
382 self.assertAlmostEqual(phase(complex(-INF, -0.0)), -pi)
383 self.assertAlmostEqual(phase(complex(-INF, -2.3)), -pi)
384 self.assertAlmostEqual(phase(complex(-INF, -INF)), -0.75*pi)
385 self.assertAlmostEqual(phase(complex(-2.3, -INF)), -pi/2)
386 self.assertAlmostEqual(phase(complex(-0.0, -INF)), -pi/2)
387 self.assertAlmostEqual(phase(complex(0.0, -INF)), -pi/2)
388 self.assertAlmostEqual(phase(complex(2.3, -INF)), -pi/2)
389 self.assertAlmostEqual(phase(complex(INF, -INF)), -pi/4)
390 self.assertEqual(phase(complex(INF, -2.3)), -0.0)
391 self.assertEqual(phase(complex(INF, -0.0)), -0.0)
392 self.assertEqual(phase(complex(INF, 0.0)), 0.0)
393 self.assertEqual(phase(complex(INF, 2.3)), 0.0)
394 self.assertAlmostEqual(phase(complex(INF, INF)), pi/4)
395 self.assertAlmostEqual(phase(complex(2.3, INF)), pi/2)
396 self.assertAlmostEqual(phase(complex(0.0, INF)), pi/2)
397 self.assertAlmostEqual(phase(complex(-0.0, INF)), pi/2)
398 self.assertAlmostEqual(phase(complex(-2.3, INF)), pi/2)
399 self.assertAlmostEqual(phase(complex(-INF, INF)), 0.75*pi)
400 self.assertAlmostEqual(phase(complex(-INF, 2.3)), pi)
401 self.assertAlmostEqual(phase(complex(-INF, 0.0)), pi)
402
403 # real or imaginary part NaN
404 for z in complex_nans:
405 self.assertTrue(math.isnan(phase(z)))
406
407 def test_abs(self):
408 # zeros
409 for z in complex_zeros:
410 self.assertEqual(abs(z), 0.0)
411
412 # infinities
413 for z in complex_infinities:
414 self.assertEqual(abs(z), INF)
415
416 # real or imaginary part NaN
417 self.assertEqual(abs(complex(NAN, -INF)), INF)
418 self.assertTrue(math.isnan(abs(complex(NAN, -2.3))))
419 self.assertTrue(math.isnan(abs(complex(NAN, -0.0))))
420 self.assertTrue(math.isnan(abs(complex(NAN, 0.0))))
421 self.assertTrue(math.isnan(abs(complex(NAN, 2.3))))
422 self.assertEqual(abs(complex(NAN, INF)), INF)
423 self.assertEqual(abs(complex(-INF, NAN)), INF)
424 self.assertTrue(math.isnan(abs(complex(-2.3, NAN))))
425 self.assertTrue(math.isnan(abs(complex(-0.0, NAN))))
426 self.assertTrue(math.isnan(abs(complex(0.0, NAN))))
427 self.assertTrue(math.isnan(abs(complex(2.3, NAN))))
428 self.assertEqual(abs(complex(INF, NAN)), INF)
429 self.assertTrue(math.isnan(abs(complex(NAN, NAN))))
430
431 # result overflows
432 if float.__getformat__("double").startswith("IEEE"):
433 self.assertRaises(OverflowError, abs, complex(1.4e308, 1.4e308))
434
435 def assertCEqual(self, a, b):
436 eps = 1E-7
437 if abs(a.real - b[0]) > eps or abs(a.imag - b[1]) > eps:
438 self.fail((a ,b))
439
440 def test_rect(self):
441 self.assertCEqual(rect(0, 0), (0, 0))
442 self.assertCEqual(rect(1, 0), (1., 0))
443 self.assertCEqual(rect(1, -pi), (-1., 0))
444 self.assertCEqual(rect(1, pi/2), (0, 1.))
445 self.assertCEqual(rect(1, -pi/2), (0, -1.))
446
447 def test_isnan(self):
448 self.assertFalse(cmath.isnan(1))
449 self.assertFalse(cmath.isnan(1j))
450 self.assertFalse(cmath.isnan(INF))
451 self.assertTrue(cmath.isnan(NAN))
452 self.assertTrue(cmath.isnan(complex(NAN, 0)))
453 self.assertTrue(cmath.isnan(complex(0, NAN)))
454 self.assertTrue(cmath.isnan(complex(NAN, NAN)))
455 self.assertTrue(cmath.isnan(complex(NAN, INF)))
456 self.assertTrue(cmath.isnan(complex(INF, NAN)))
457
458 def test_isinf(self):
459 self.assertFalse(cmath.isinf(1))
460 self.assertFalse(cmath.isinf(1j))
461 self.assertFalse(cmath.isinf(NAN))
462 self.assertTrue(cmath.isinf(INF))
463 self.assertTrue(cmath.isinf(complex(INF, 0)))
464 self.assertTrue(cmath.isinf(complex(0, INF)))
465 self.assertTrue(cmath.isinf(complex(INF, INF)))
466 self.assertTrue(cmath.isinf(complex(NAN, INF)))
467 self.assertTrue(cmath.isinf(complex(INF, NAN)))
468
469
470 def test_main():
471 run_unittest(CMathTests)
472
473 if __name__ == "__main__":
474 test_main()