]> git.proxmox.com Git - mirror_edk2.git/blob - AppPkg/Applications/Python/Python-2.7.2/Lib/test/test_random.py
EmbeddedPkg: Extend NvVarStoreFormattedLib LIBRARY_CLASS
[mirror_edk2.git] / AppPkg / Applications / Python / Python-2.7.2 / Lib / test / test_random.py
1 #!/usr/bin/env python
2
3 import unittest
4 import random
5 import time
6 import pickle
7 import warnings
8 from math import log, exp, pi, fsum, sin
9 from functools import reduce
10 from test import test_support
11
12 class TestBasicOps(unittest.TestCase):
13 # Superclass with tests common to all generators.
14 # Subclasses must arrange for self.gen to retrieve the Random instance
15 # to be tested.
16
17 def randomlist(self, n):
18 """Helper function to make a list of random numbers"""
19 return [self.gen.random() for i in xrange(n)]
20
21 def test_autoseed(self):
22 self.gen.seed()
23 state1 = self.gen.getstate()
24 time.sleep(0.1)
25 self.gen.seed() # diffent seeds at different times
26 state2 = self.gen.getstate()
27 self.assertNotEqual(state1, state2)
28
29 def test_saverestore(self):
30 N = 1000
31 self.gen.seed()
32 state = self.gen.getstate()
33 randseq = self.randomlist(N)
34 self.gen.setstate(state) # should regenerate the same sequence
35 self.assertEqual(randseq, self.randomlist(N))
36
37 def test_seedargs(self):
38 for arg in [None, 0, 0L, 1, 1L, -1, -1L, 10**20, -(10**20),
39 3.14, 1+2j, 'a', tuple('abc')]:
40 self.gen.seed(arg)
41 for arg in [range(3), dict(one=1)]:
42 self.assertRaises(TypeError, self.gen.seed, arg)
43 self.assertRaises(TypeError, self.gen.seed, 1, 2)
44 self.assertRaises(TypeError, type(self.gen), [])
45
46 def test_jumpahead(self):
47 self.gen.seed()
48 state1 = self.gen.getstate()
49 self.gen.jumpahead(100)
50 state2 = self.gen.getstate() # s/b distinct from state1
51 self.assertNotEqual(state1, state2)
52 self.gen.jumpahead(100)
53 state3 = self.gen.getstate() # s/b distinct from state2
54 self.assertNotEqual(state2, state3)
55
56 with test_support.check_py3k_warnings(quiet=True):
57 self.assertRaises(TypeError, self.gen.jumpahead) # needs an arg
58 self.assertRaises(TypeError, self.gen.jumpahead, 2, 3) # too many
59
60 def test_sample(self):
61 # For the entire allowable range of 0 <= k <= N, validate that
62 # the sample is of the correct length and contains only unique items
63 N = 100
64 population = xrange(N)
65 for k in xrange(N+1):
66 s = self.gen.sample(population, k)
67 self.assertEqual(len(s), k)
68 uniq = set(s)
69 self.assertEqual(len(uniq), k)
70 self.assertTrue(uniq <= set(population))
71 self.assertEqual(self.gen.sample([], 0), []) # test edge case N==k==0
72
73 def test_sample_distribution(self):
74 # For the entire allowable range of 0 <= k <= N, validate that
75 # sample generates all possible permutations
76 n = 5
77 pop = range(n)
78 trials = 10000 # large num prevents false negatives without slowing normal case
79 def factorial(n):
80 return reduce(int.__mul__, xrange(1, n), 1)
81 for k in xrange(n):
82 expected = factorial(n) // factorial(n-k)
83 perms = {}
84 for i in xrange(trials):
85 perms[tuple(self.gen.sample(pop, k))] = None
86 if len(perms) == expected:
87 break
88 else:
89 self.fail()
90
91 def test_sample_inputs(self):
92 # SF bug #801342 -- population can be any iterable defining __len__()
93 self.gen.sample(set(range(20)), 2)
94 self.gen.sample(range(20), 2)
95 self.gen.sample(xrange(20), 2)
96 self.gen.sample(str('abcdefghijklmnopqrst'), 2)
97 self.gen.sample(tuple('abcdefghijklmnopqrst'), 2)
98
99 def test_sample_on_dicts(self):
100 self.gen.sample(dict.fromkeys('abcdefghijklmnopqrst'), 2)
101
102 # SF bug #1460340 -- random.sample can raise KeyError
103 a = dict.fromkeys(range(10)+range(10,100,2)+range(100,110))
104 self.gen.sample(a, 3)
105
106 # A followup to bug #1460340: sampling from a dict could return
107 # a subset of its keys or of its values, depending on the size of
108 # the subset requested.
109 N = 30
110 d = dict((i, complex(i, i)) for i in xrange(N))
111 for k in xrange(N+1):
112 samp = self.gen.sample(d, k)
113 # Verify that we got ints back (keys); the values are complex.
114 for x in samp:
115 self.assertTrue(type(x) is int)
116 samp.sort()
117 self.assertEqual(samp, range(N))
118
119 def test_gauss(self):
120 # Ensure that the seed() method initializes all the hidden state. In
121 # particular, through 2.2.1 it failed to reset a piece of state used
122 # by (and only by) the .gauss() method.
123
124 for seed in 1, 12, 123, 1234, 12345, 123456, 654321:
125 self.gen.seed(seed)
126 x1 = self.gen.random()
127 y1 = self.gen.gauss(0, 1)
128
129 self.gen.seed(seed)
130 x2 = self.gen.random()
131 y2 = self.gen.gauss(0, 1)
132
133 self.assertEqual(x1, x2)
134 self.assertEqual(y1, y2)
135
136 def test_pickling(self):
137 state = pickle.dumps(self.gen)
138 origseq = [self.gen.random() for i in xrange(10)]
139 newgen = pickle.loads(state)
140 restoredseq = [newgen.random() for i in xrange(10)]
141 self.assertEqual(origseq, restoredseq)
142
143 def test_bug_1727780(self):
144 # verify that version-2-pickles can be loaded
145 # fine, whether they are created on 32-bit or 64-bit
146 # platforms, and that version-3-pickles load fine.
147 files = [("randv2_32.pck", 780),
148 ("randv2_64.pck", 866),
149 ("randv3.pck", 343)]
150 for file, value in files:
151 f = open(test_support.findfile(file),"rb")
152 r = pickle.load(f)
153 f.close()
154 self.assertEqual(r.randrange(1000), value)
155
156 class WichmannHill_TestBasicOps(TestBasicOps):
157 gen = random.WichmannHill()
158
159 def test_setstate_first_arg(self):
160 self.assertRaises(ValueError, self.gen.setstate, (2, None, None))
161
162 def test_strong_jumpahead(self):
163 # tests that jumpahead(n) semantics correspond to n calls to random()
164 N = 1000
165 s = self.gen.getstate()
166 self.gen.jumpahead(N)
167 r1 = self.gen.random()
168 # now do it the slow way
169 self.gen.setstate(s)
170 for i in xrange(N):
171 self.gen.random()
172 r2 = self.gen.random()
173 self.assertEqual(r1, r2)
174
175 def test_gauss_with_whseed(self):
176 # Ensure that the seed() method initializes all the hidden state. In
177 # particular, through 2.2.1 it failed to reset a piece of state used
178 # by (and only by) the .gauss() method.
179
180 for seed in 1, 12, 123, 1234, 12345, 123456, 654321:
181 self.gen.whseed(seed)
182 x1 = self.gen.random()
183 y1 = self.gen.gauss(0, 1)
184
185 self.gen.whseed(seed)
186 x2 = self.gen.random()
187 y2 = self.gen.gauss(0, 1)
188
189 self.assertEqual(x1, x2)
190 self.assertEqual(y1, y2)
191
192 def test_bigrand(self):
193 # Verify warnings are raised when randrange is too large for random()
194 with warnings.catch_warnings():
195 warnings.filterwarnings("error", "Underlying random")
196 self.assertRaises(UserWarning, self.gen.randrange, 2**60)
197
198 class SystemRandom_TestBasicOps(TestBasicOps):
199 gen = random.SystemRandom()
200
201 def test_autoseed(self):
202 # Doesn't need to do anything except not fail
203 self.gen.seed()
204
205 def test_saverestore(self):
206 self.assertRaises(NotImplementedError, self.gen.getstate)
207 self.assertRaises(NotImplementedError, self.gen.setstate, None)
208
209 def test_seedargs(self):
210 # Doesn't need to do anything except not fail
211 self.gen.seed(100)
212
213 def test_jumpahead(self):
214 # Doesn't need to do anything except not fail
215 self.gen.jumpahead(100)
216
217 def test_gauss(self):
218 self.gen.gauss_next = None
219 self.gen.seed(100)
220 self.assertEqual(self.gen.gauss_next, None)
221
222 def test_pickling(self):
223 self.assertRaises(NotImplementedError, pickle.dumps, self.gen)
224
225 def test_53_bits_per_float(self):
226 # This should pass whenever a C double has 53 bit precision.
227 span = 2 ** 53
228 cum = 0
229 for i in xrange(100):
230 cum |= int(self.gen.random() * span)
231 self.assertEqual(cum, span-1)
232
233 def test_bigrand(self):
234 # The randrange routine should build-up the required number of bits
235 # in stages so that all bit positions are active.
236 span = 2 ** 500
237 cum = 0
238 for i in xrange(100):
239 r = self.gen.randrange(span)
240 self.assertTrue(0 <= r < span)
241 cum |= r
242 self.assertEqual(cum, span-1)
243
244 def test_bigrand_ranges(self):
245 for i in [40,80, 160, 200, 211, 250, 375, 512, 550]:
246 start = self.gen.randrange(2 ** i)
247 stop = self.gen.randrange(2 ** (i-2))
248 if stop <= start:
249 return
250 self.assertTrue(start <= self.gen.randrange(start, stop) < stop)
251
252 def test_rangelimits(self):
253 for start, stop in [(-2,0), (-(2**60)-2,-(2**60)), (2**60,2**60+2)]:
254 self.assertEqual(set(range(start,stop)),
255 set([self.gen.randrange(start,stop) for i in xrange(100)]))
256
257 def test_genrandbits(self):
258 # Verify ranges
259 for k in xrange(1, 1000):
260 self.assertTrue(0 <= self.gen.getrandbits(k) < 2**k)
261
262 # Verify all bits active
263 getbits = self.gen.getrandbits
264 for span in [1, 2, 3, 4, 31, 32, 32, 52, 53, 54, 119, 127, 128, 129]:
265 cum = 0
266 for i in xrange(100):
267 cum |= getbits(span)
268 self.assertEqual(cum, 2**span-1)
269
270 # Verify argument checking
271 self.assertRaises(TypeError, self.gen.getrandbits)
272 self.assertRaises(TypeError, self.gen.getrandbits, 1, 2)
273 self.assertRaises(ValueError, self.gen.getrandbits, 0)
274 self.assertRaises(ValueError, self.gen.getrandbits, -1)
275 self.assertRaises(TypeError, self.gen.getrandbits, 10.1)
276
277 def test_randbelow_logic(self, _log=log, int=int):
278 # check bitcount transition points: 2**i and 2**(i+1)-1
279 # show that: k = int(1.001 + _log(n, 2))
280 # is equal to or one greater than the number of bits in n
281 for i in xrange(1, 1000):
282 n = 1L << i # check an exact power of two
283 numbits = i+1
284 k = int(1.00001 + _log(n, 2))
285 self.assertEqual(k, numbits)
286 self.assertTrue(n == 2**(k-1))
287
288 n += n - 1 # check 1 below the next power of two
289 k = int(1.00001 + _log(n, 2))
290 self.assertIn(k, [numbits, numbits+1])
291 self.assertTrue(2**k > n > 2**(k-2))
292
293 n -= n >> 15 # check a little farther below the next power of two
294 k = int(1.00001 + _log(n, 2))
295 self.assertEqual(k, numbits) # note the stronger assertion
296 self.assertTrue(2**k > n > 2**(k-1)) # note the stronger assertion
297
298
299 class MersenneTwister_TestBasicOps(TestBasicOps):
300 gen = random.Random()
301
302 def test_setstate_first_arg(self):
303 self.assertRaises(ValueError, self.gen.setstate, (1, None, None))
304
305 def test_setstate_middle_arg(self):
306 # Wrong type, s/b tuple
307 self.assertRaises(TypeError, self.gen.setstate, (2, None, None))
308 # Wrong length, s/b 625
309 self.assertRaises(ValueError, self.gen.setstate, (2, (1,2,3), None))
310 # Wrong type, s/b tuple of 625 ints
311 self.assertRaises(TypeError, self.gen.setstate, (2, ('a',)*625, None))
312 # Last element s/b an int also
313 self.assertRaises(TypeError, self.gen.setstate, (2, (0,)*624+('a',), None))
314
315 def test_referenceImplementation(self):
316 # Compare the python implementation with results from the original
317 # code. Create 2000 53-bit precision random floats. Compare only
318 # the last ten entries to show that the independent implementations
319 # are tracking. Here is the main() function needed to create the
320 # list of expected random numbers:
321 # void main(void){
322 # int i;
323 # unsigned long init[4]={61731, 24903, 614, 42143}, length=4;
324 # init_by_array(init, length);
325 # for (i=0; i<2000; i++) {
326 # printf("%.15f ", genrand_res53());
327 # if (i%5==4) printf("\n");
328 # }
329 # }
330 expected = [0.45839803073713259,
331 0.86057815201978782,
332 0.92848331726782152,
333 0.35932681119782461,
334 0.081823493762449573,
335 0.14332226470169329,
336 0.084297823823520024,
337 0.53814864671831453,
338 0.089215024911993401,
339 0.78486196105372907]
340
341 self.gen.seed(61731L + (24903L<<32) + (614L<<64) + (42143L<<96))
342 actual = self.randomlist(2000)[-10:]
343 for a, e in zip(actual, expected):
344 self.assertAlmostEqual(a,e,places=14)
345
346 def test_strong_reference_implementation(self):
347 # Like test_referenceImplementation, but checks for exact bit-level
348 # equality. This should pass on any box where C double contains
349 # at least 53 bits of precision (the underlying algorithm suffers
350 # no rounding errors -- all results are exact).
351 from math import ldexp
352
353 expected = [0x0eab3258d2231fL,
354 0x1b89db315277a5L,
355 0x1db622a5518016L,
356 0x0b7f9af0d575bfL,
357 0x029e4c4db82240L,
358 0x04961892f5d673L,
359 0x02b291598e4589L,
360 0x11388382c15694L,
361 0x02dad977c9e1feL,
362 0x191d96d4d334c6L]
363 self.gen.seed(61731L + (24903L<<32) + (614L<<64) + (42143L<<96))
364 actual = self.randomlist(2000)[-10:]
365 for a, e in zip(actual, expected):
366 self.assertEqual(long(ldexp(a, 53)), e)
367
368 def test_long_seed(self):
369 # This is most interesting to run in debug mode, just to make sure
370 # nothing blows up. Under the covers, a dynamically resized array
371 # is allocated, consuming space proportional to the number of bits
372 # in the seed. Unfortunately, that's a quadratic-time algorithm,
373 # so don't make this horribly big.
374 seed = (1L << (10000 * 8)) - 1 # about 10K bytes
375 self.gen.seed(seed)
376
377 def test_53_bits_per_float(self):
378 # This should pass whenever a C double has 53 bit precision.
379 span = 2 ** 53
380 cum = 0
381 for i in xrange(100):
382 cum |= int(self.gen.random() * span)
383 self.assertEqual(cum, span-1)
384
385 def test_bigrand(self):
386 # The randrange routine should build-up the required number of bits
387 # in stages so that all bit positions are active.
388 span = 2 ** 500
389 cum = 0
390 for i in xrange(100):
391 r = self.gen.randrange(span)
392 self.assertTrue(0 <= r < span)
393 cum |= r
394 self.assertEqual(cum, span-1)
395
396 def test_bigrand_ranges(self):
397 for i in [40,80, 160, 200, 211, 250, 375, 512, 550]:
398 start = self.gen.randrange(2 ** i)
399 stop = self.gen.randrange(2 ** (i-2))
400 if stop <= start:
401 return
402 self.assertTrue(start <= self.gen.randrange(start, stop) < stop)
403
404 def test_rangelimits(self):
405 for start, stop in [(-2,0), (-(2**60)-2,-(2**60)), (2**60,2**60+2)]:
406 self.assertEqual(set(range(start,stop)),
407 set([self.gen.randrange(start,stop) for i in xrange(100)]))
408
409 def test_genrandbits(self):
410 # Verify cross-platform repeatability
411 self.gen.seed(1234567)
412 self.assertEqual(self.gen.getrandbits(100),
413 97904845777343510404718956115L)
414 # Verify ranges
415 for k in xrange(1, 1000):
416 self.assertTrue(0 <= self.gen.getrandbits(k) < 2**k)
417
418 # Verify all bits active
419 getbits = self.gen.getrandbits
420 for span in [1, 2, 3, 4, 31, 32, 32, 52, 53, 54, 119, 127, 128, 129]:
421 cum = 0
422 for i in xrange(100):
423 cum |= getbits(span)
424 self.assertEqual(cum, 2**span-1)
425
426 # Verify argument checking
427 self.assertRaises(TypeError, self.gen.getrandbits)
428 self.assertRaises(TypeError, self.gen.getrandbits, 'a')
429 self.assertRaises(TypeError, self.gen.getrandbits, 1, 2)
430 self.assertRaises(ValueError, self.gen.getrandbits, 0)
431 self.assertRaises(ValueError, self.gen.getrandbits, -1)
432
433 def test_randbelow_logic(self, _log=log, int=int):
434 # check bitcount transition points: 2**i and 2**(i+1)-1
435 # show that: k = int(1.001 + _log(n, 2))
436 # is equal to or one greater than the number of bits in n
437 for i in xrange(1, 1000):
438 n = 1L << i # check an exact power of two
439 numbits = i+1
440 k = int(1.00001 + _log(n, 2))
441 self.assertEqual(k, numbits)
442 self.assertTrue(n == 2**(k-1))
443
444 n += n - 1 # check 1 below the next power of two
445 k = int(1.00001 + _log(n, 2))
446 self.assertIn(k, [numbits, numbits+1])
447 self.assertTrue(2**k > n > 2**(k-2))
448
449 n -= n >> 15 # check a little farther below the next power of two
450 k = int(1.00001 + _log(n, 2))
451 self.assertEqual(k, numbits) # note the stronger assertion
452 self.assertTrue(2**k > n > 2**(k-1)) # note the stronger assertion
453
454 def test_randrange_bug_1590891(self):
455 start = 1000000000000
456 stop = -100000000000000000000
457 step = -200
458 x = self.gen.randrange(start, stop, step)
459 self.assertTrue(stop < x <= start)
460 self.assertEqual((x+stop)%step, 0)
461
462 def gamma(z, sqrt2pi=(2.0*pi)**0.5):
463 # Reflection to right half of complex plane
464 if z < 0.5:
465 return pi / sin(pi*z) / gamma(1.0-z)
466 # Lanczos approximation with g=7
467 az = z + (7.0 - 0.5)
468 return az ** (z-0.5) / exp(az) * sqrt2pi * fsum([
469 0.9999999999995183,
470 676.5203681218835 / z,
471 -1259.139216722289 / (z+1.0),
472 771.3234287757674 / (z+2.0),
473 -176.6150291498386 / (z+3.0),
474 12.50734324009056 / (z+4.0),
475 -0.1385710331296526 / (z+5.0),
476 0.9934937113930748e-05 / (z+6.0),
477 0.1659470187408462e-06 / (z+7.0),
478 ])
479
480 class TestDistributions(unittest.TestCase):
481 def test_zeroinputs(self):
482 # Verify that distributions can handle a series of zero inputs'
483 g = random.Random()
484 x = [g.random() for i in xrange(50)] + [0.0]*5
485 g.random = x[:].pop; g.uniform(1,10)
486 g.random = x[:].pop; g.paretovariate(1.0)
487 g.random = x[:].pop; g.expovariate(1.0)
488 g.random = x[:].pop; g.weibullvariate(1.0, 1.0)
489 g.random = x[:].pop; g.normalvariate(0.0, 1.0)
490 g.random = x[:].pop; g.gauss(0.0, 1.0)
491 g.random = x[:].pop; g.lognormvariate(0.0, 1.0)
492 g.random = x[:].pop; g.vonmisesvariate(0.0, 1.0)
493 g.random = x[:].pop; g.gammavariate(0.01, 1.0)
494 g.random = x[:].pop; g.gammavariate(1.0, 1.0)
495 g.random = x[:].pop; g.gammavariate(200.0, 1.0)
496 g.random = x[:].pop; g.betavariate(3.0, 3.0)
497 g.random = x[:].pop; g.triangular(0.0, 1.0, 1.0/3.0)
498
499 def test_avg_std(self):
500 # Use integration to test distribution average and standard deviation.
501 # Only works for distributions which do not consume variates in pairs
502 g = random.Random()
503 N = 5000
504 x = [i/float(N) for i in xrange(1,N)]
505 for variate, args, mu, sigmasqrd in [
506 (g.uniform, (1.0,10.0), (10.0+1.0)/2, (10.0-1.0)**2/12),
507 (g.triangular, (0.0, 1.0, 1.0/3.0), 4.0/9.0, 7.0/9.0/18.0),
508 (g.expovariate, (1.5,), 1/1.5, 1/1.5**2),
509 (g.paretovariate, (5.0,), 5.0/(5.0-1),
510 5.0/((5.0-1)**2*(5.0-2))),
511 (g.weibullvariate, (1.0, 3.0), gamma(1+1/3.0),
512 gamma(1+2/3.0)-gamma(1+1/3.0)**2) ]:
513 g.random = x[:].pop
514 y = []
515 for i in xrange(len(x)):
516 try:
517 y.append(variate(*args))
518 except IndexError:
519 pass
520 s1 = s2 = 0
521 for e in y:
522 s1 += e
523 s2 += (e - mu) ** 2
524 N = len(y)
525 self.assertAlmostEqual(s1/N, mu, 2)
526 self.assertAlmostEqual(s2/(N-1), sigmasqrd, 2)
527
528 class TestModule(unittest.TestCase):
529 def testMagicConstants(self):
530 self.assertAlmostEqual(random.NV_MAGICCONST, 1.71552776992141)
531 self.assertAlmostEqual(random.TWOPI, 6.28318530718)
532 self.assertAlmostEqual(random.LOG4, 1.38629436111989)
533 self.assertAlmostEqual(random.SG_MAGICCONST, 2.50407739677627)
534
535 def test__all__(self):
536 # tests validity but not completeness of the __all__ list
537 self.assertTrue(set(random.__all__) <= set(dir(random)))
538
539 def test_random_subclass_with_kwargs(self):
540 # SF bug #1486663 -- this used to erroneously raise a TypeError
541 class Subclass(random.Random):
542 def __init__(self, newarg=None):
543 random.Random.__init__(self)
544 Subclass(newarg=1)
545
546
547 def test_main(verbose=None):
548 testclasses = [WichmannHill_TestBasicOps,
549 MersenneTwister_TestBasicOps,
550 TestDistributions,
551 TestModule]
552
553 try:
554 random.SystemRandom().random()
555 except NotImplementedError:
556 pass
557 else:
558 testclasses.append(SystemRandom_TestBasicOps)
559
560 test_support.run_unittest(*testclasses)
561
562 # verify reference counting
563 import sys
564 if verbose and hasattr(sys, "gettotalrefcount"):
565 counts = [None] * 5
566 for i in xrange(len(counts)):
567 test_support.run_unittest(*testclasses)
568 counts[i] = sys.gettotalrefcount()
569 print counts
570
571 if __name__ == "__main__":
572 test_main(verbose=True)