]> git.proxmox.com Git - mirror_edk2.git/blob - AppPkg/Applications/Python/Python-2.7.2/Objects/obmalloc.c
EmbeddedPkg: Extend NvVarStoreFormattedLib LIBRARY_CLASS
[mirror_edk2.git] / AppPkg / Applications / Python / Python-2.7.2 / Objects / obmalloc.c
1 #include "Python.h"
2
3 #ifdef WITH_PYMALLOC
4
5 #ifdef WITH_VALGRIND
6 #include <valgrind/valgrind.h>
7
8 /* If we're using GCC, use __builtin_expect() to reduce overhead of
9 the valgrind checks */
10 #if defined(__GNUC__) && (__GNUC__ > 2) && defined(__OPTIMIZE__)
11 # define UNLIKELY(value) __builtin_expect((value), 0)
12 #else
13 # define UNLIKELY(value) (value)
14 #endif
15
16 /* -1 indicates that we haven't checked that we're running on valgrind yet. */
17 static int running_on_valgrind = -1;
18 #endif
19
20 /* An object allocator for Python.
21
22 Here is an introduction to the layers of the Python memory architecture,
23 showing where the object allocator is actually used (layer +2), It is
24 called for every object allocation and deallocation (PyObject_New/Del),
25 unless the object-specific allocators implement a proprietary allocation
26 scheme (ex.: ints use a simple free list). This is also the place where
27 the cyclic garbage collector operates selectively on container objects.
28
29
30 Object-specific allocators
31 _____ ______ ______ ________
32 [ int ] [ dict ] [ list ] ... [ string ] Python core |
33 +3 | <----- Object-specific memory -----> | <-- Non-object memory --> |
34 _______________________________ | |
35 [ Python's object allocator ] | |
36 +2 | ####### Object memory ####### | <------ Internal buffers ------> |
37 ______________________________________________________________ |
38 [ Python's raw memory allocator (PyMem_ API) ] |
39 +1 | <----- Python memory (under PyMem manager's control) ------> | |
40 __________________________________________________________________
41 [ Underlying general-purpose allocator (ex: C library malloc) ]
42 0 | <------ Virtual memory allocated for the python process -------> |
43
44 =========================================================================
45 _______________________________________________________________________
46 [ OS-specific Virtual Memory Manager (VMM) ]
47 -1 | <--- Kernel dynamic storage allocation & management (page-based) ---> |
48 __________________________________ __________________________________
49 [ ] [ ]
50 -2 | <-- Physical memory: ROM/RAM --> | | <-- Secondary storage (swap) --> |
51
52 */
53 /*==========================================================================*/
54
55 /* A fast, special-purpose memory allocator for small blocks, to be used
56 on top of a general-purpose malloc -- heavily based on previous art. */
57
58 /* Vladimir Marangozov -- August 2000 */
59
60 /*
61 * "Memory management is where the rubber meets the road -- if we do the wrong
62 * thing at any level, the results will not be good. And if we don't make the
63 * levels work well together, we are in serious trouble." (1)
64 *
65 * (1) Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles,
66 * "Dynamic Storage Allocation: A Survey and Critical Review",
67 * in Proc. 1995 Int'l. Workshop on Memory Management, September 1995.
68 */
69
70 /* #undef WITH_MEMORY_LIMITS */ /* disable mem limit checks */
71
72 /*==========================================================================*/
73
74 /*
75 * Allocation strategy abstract:
76 *
77 * For small requests, the allocator sub-allocates <Big> blocks of memory.
78 * Requests greater than 256 bytes are routed to the system's allocator.
79 *
80 * Small requests are grouped in size classes spaced 8 bytes apart, due
81 * to the required valid alignment of the returned address. Requests of
82 * a particular size are serviced from memory pools of 4K (one VMM page).
83 * Pools are fragmented on demand and contain free lists of blocks of one
84 * particular size class. In other words, there is a fixed-size allocator
85 * for each size class. Free pools are shared by the different allocators
86 * thus minimizing the space reserved for a particular size class.
87 *
88 * This allocation strategy is a variant of what is known as "simple
89 * segregated storage based on array of free lists". The main drawback of
90 * simple segregated storage is that we might end up with lot of reserved
91 * memory for the different free lists, which degenerate in time. To avoid
92 * this, we partition each free list in pools and we share dynamically the
93 * reserved space between all free lists. This technique is quite efficient
94 * for memory intensive programs which allocate mainly small-sized blocks.
95 *
96 * For small requests we have the following table:
97 *
98 * Request in bytes Size of allocated block Size class idx
99 * ----------------------------------------------------------------
100 * 1-8 8 0
101 * 9-16 16 1
102 * 17-24 24 2
103 * 25-32 32 3
104 * 33-40 40 4
105 * 41-48 48 5
106 * 49-56 56 6
107 * 57-64 64 7
108 * 65-72 72 8
109 * ... ... ...
110 * 241-248 248 30
111 * 249-256 256 31
112 *
113 * 0, 257 and up: routed to the underlying allocator.
114 */
115
116 /*==========================================================================*/
117
118 /*
119 * -- Main tunable settings section --
120 */
121
122 /*
123 * Alignment of addresses returned to the user. 8-bytes alignment works
124 * on most current architectures (with 32-bit or 64-bit address busses).
125 * The alignment value is also used for grouping small requests in size
126 * classes spaced ALIGNMENT bytes apart.
127 *
128 * You shouldn't change this unless you know what you are doing.
129 */
130 #define ALIGNMENT 8 /* must be 2^N */
131 #define ALIGNMENT_SHIFT 3
132 #define ALIGNMENT_MASK (ALIGNMENT - 1)
133
134 /* Return the number of bytes in size class I, as a uint. */
135 #define INDEX2SIZE(I) (((uint)(I) + 1) << ALIGNMENT_SHIFT)
136
137 /*
138 * Max size threshold below which malloc requests are considered to be
139 * small enough in order to use preallocated memory pools. You can tune
140 * this value according to your application behaviour and memory needs.
141 *
142 * The following invariants must hold:
143 * 1) ALIGNMENT <= SMALL_REQUEST_THRESHOLD <= 256
144 * 2) SMALL_REQUEST_THRESHOLD is evenly divisible by ALIGNMENT
145 *
146 * Although not required, for better performance and space efficiency,
147 * it is recommended that SMALL_REQUEST_THRESHOLD is set to a power of 2.
148 */
149 #define SMALL_REQUEST_THRESHOLD 256
150 #define NB_SMALL_SIZE_CLASSES (SMALL_REQUEST_THRESHOLD / ALIGNMENT)
151
152 /*
153 * The system's VMM page size can be obtained on most unices with a
154 * getpagesize() call or deduced from various header files. To make
155 * things simpler, we assume that it is 4K, which is OK for most systems.
156 * It is probably better if this is the native page size, but it doesn't
157 * have to be. In theory, if SYSTEM_PAGE_SIZE is larger than the native page
158 * size, then `POOL_ADDR(p)->arenaindex' could rarely cause a segmentation
159 * violation fault. 4K is apparently OK for all the platforms that python
160 * currently targets.
161 */
162 #define SYSTEM_PAGE_SIZE (4 * 1024)
163 #define SYSTEM_PAGE_SIZE_MASK (SYSTEM_PAGE_SIZE - 1)
164
165 /*
166 * Maximum amount of memory managed by the allocator for small requests.
167 */
168 #ifdef WITH_MEMORY_LIMITS
169 #ifndef SMALL_MEMORY_LIMIT
170 #define SMALL_MEMORY_LIMIT (64 * 1024 * 1024) /* 64 MB -- more? */
171 #endif
172 #endif
173
174 /*
175 * The allocator sub-allocates <Big> blocks of memory (called arenas) aligned
176 * on a page boundary. This is a reserved virtual address space for the
177 * current process (obtained through a malloc call). In no way this means
178 * that the memory arenas will be used entirely. A malloc(<Big>) is usually
179 * an address range reservation for <Big> bytes, unless all pages within this
180 * space are referenced subsequently. So malloc'ing big blocks and not using
181 * them does not mean "wasting memory". It's an addressable range wastage...
182 *
183 * Therefore, allocating arenas with malloc is not optimal, because there is
184 * some address space wastage, but this is the most portable way to request
185 * memory from the system across various platforms.
186 */
187 #define ARENA_SIZE (256 << 10) /* 256KB */
188
189 #ifdef WITH_MEMORY_LIMITS
190 #define MAX_ARENAS (SMALL_MEMORY_LIMIT / ARENA_SIZE)
191 #endif
192
193 /*
194 * Size of the pools used for small blocks. Should be a power of 2,
195 * between 1K and SYSTEM_PAGE_SIZE, that is: 1k, 2k, 4k.
196 */
197 #define POOL_SIZE SYSTEM_PAGE_SIZE /* must be 2^N */
198 #define POOL_SIZE_MASK SYSTEM_PAGE_SIZE_MASK
199
200 /*
201 * -- End of tunable settings section --
202 */
203
204 /*==========================================================================*/
205
206 /*
207 * Locking
208 *
209 * To reduce lock contention, it would probably be better to refine the
210 * crude function locking with per size class locking. I'm not positive
211 * however, whether it's worth switching to such locking policy because
212 * of the performance penalty it might introduce.
213 *
214 * The following macros describe the simplest (should also be the fastest)
215 * lock object on a particular platform and the init/fini/lock/unlock
216 * operations on it. The locks defined here are not expected to be recursive
217 * because it is assumed that they will always be called in the order:
218 * INIT, [LOCK, UNLOCK]*, FINI.
219 */
220
221 /*
222 * Python's threads are serialized, so object malloc locking is disabled.
223 */
224 #define SIMPLELOCK_DECL(lock) /* simple lock declaration */
225 #define SIMPLELOCK_INIT(lock) /* allocate (if needed) and initialize */
226 #define SIMPLELOCK_FINI(lock) /* free/destroy an existing lock */
227 #define SIMPLELOCK_LOCK(lock) /* acquire released lock */
228 #define SIMPLELOCK_UNLOCK(lock) /* release acquired lock */
229
230 /*
231 * Basic types
232 * I don't care if these are defined in <sys/types.h> or elsewhere. Axiom.
233 */
234 #undef uchar
235 #define uchar unsigned char /* assuming == 8 bits */
236
237 #undef uint
238 #define uint unsigned int /* assuming >= 16 bits */
239
240 #undef ulong
241 #define ulong unsigned long /* assuming >= 32 bits */
242
243 #undef uptr
244 #define uptr Py_uintptr_t
245
246 /* When you say memory, my mind reasons in terms of (pointers to) blocks */
247 typedef uchar block;
248
249 /* Pool for small blocks. */
250 struct pool_header {
251 union { block *_padding;
252 uint count; } ref; /* number of allocated blocks */
253 block *freeblock; /* pool's free list head */
254 struct pool_header *nextpool; /* next pool of this size class */
255 struct pool_header *prevpool; /* previous pool "" */
256 uint arenaindex; /* index into arenas of base adr */
257 uint szidx; /* block size class index */
258 uint nextoffset; /* bytes to virgin block */
259 uint maxnextoffset; /* largest valid nextoffset */
260 };
261
262 typedef struct pool_header *poolp;
263
264 /* Record keeping for arenas. */
265 struct arena_object {
266 /* The address of the arena, as returned by malloc. Note that 0
267 * will never be returned by a successful malloc, and is used
268 * here to mark an arena_object that doesn't correspond to an
269 * allocated arena.
270 */
271 uptr address;
272
273 /* Pool-aligned pointer to the next pool to be carved off. */
274 block* pool_address;
275
276 /* The number of available pools in the arena: free pools + never-
277 * allocated pools.
278 */
279 uint nfreepools;
280
281 /* The total number of pools in the arena, whether or not available. */
282 uint ntotalpools;
283
284 /* Singly-linked list of available pools. */
285 struct pool_header* freepools;
286
287 /* Whenever this arena_object is not associated with an allocated
288 * arena, the nextarena member is used to link all unassociated
289 * arena_objects in the singly-linked `unused_arena_objects` list.
290 * The prevarena member is unused in this case.
291 *
292 * When this arena_object is associated with an allocated arena
293 * with at least one available pool, both members are used in the
294 * doubly-linked `usable_arenas` list, which is maintained in
295 * increasing order of `nfreepools` values.
296 *
297 * Else this arena_object is associated with an allocated arena
298 * all of whose pools are in use. `nextarena` and `prevarena`
299 * are both meaningless in this case.
300 */
301 struct arena_object* nextarena;
302 struct arena_object* prevarena;
303 };
304
305 #undef ROUNDUP
306 #define ROUNDUP(x) (((x) + ALIGNMENT_MASK) & ~ALIGNMENT_MASK)
307 #define POOL_OVERHEAD ROUNDUP(sizeof(struct pool_header))
308
309 #define DUMMY_SIZE_IDX 0xffff /* size class of newly cached pools */
310
311 /* Round pointer P down to the closest pool-aligned address <= P, as a poolp */
312 #define POOL_ADDR(P) ((poolp)((uptr)(P) & ~(uptr)POOL_SIZE_MASK))
313
314 /* Return total number of blocks in pool of size index I, as a uint. */
315 #define NUMBLOCKS(I) ((uint)(POOL_SIZE - POOL_OVERHEAD) / INDEX2SIZE(I))
316
317 /*==========================================================================*/
318
319 /*
320 * This malloc lock
321 */
322 SIMPLELOCK_DECL(_malloc_lock)
323 #define LOCK() SIMPLELOCK_LOCK(_malloc_lock)
324 #define UNLOCK() SIMPLELOCK_UNLOCK(_malloc_lock)
325 #define LOCK_INIT() SIMPLELOCK_INIT(_malloc_lock)
326 #define LOCK_FINI() SIMPLELOCK_FINI(_malloc_lock)
327
328 /*
329 * Pool table -- headed, circular, doubly-linked lists of partially used pools.
330
331 This is involved. For an index i, usedpools[i+i] is the header for a list of
332 all partially used pools holding small blocks with "size class idx" i. So
333 usedpools[0] corresponds to blocks of size 8, usedpools[2] to blocks of size
334 16, and so on: index 2*i <-> blocks of size (i+1)<<ALIGNMENT_SHIFT.
335
336 Pools are carved off an arena's highwater mark (an arena_object's pool_address
337 member) as needed. Once carved off, a pool is in one of three states forever
338 after:
339
340 used == partially used, neither empty nor full
341 At least one block in the pool is currently allocated, and at least one
342 block in the pool is not currently allocated (note this implies a pool
343 has room for at least two blocks).
344 This is a pool's initial state, as a pool is created only when malloc
345 needs space.
346 The pool holds blocks of a fixed size, and is in the circular list headed
347 at usedpools[i] (see above). It's linked to the other used pools of the
348 same size class via the pool_header's nextpool and prevpool members.
349 If all but one block is currently allocated, a malloc can cause a
350 transition to the full state. If all but one block is not currently
351 allocated, a free can cause a transition to the empty state.
352
353 full == all the pool's blocks are currently allocated
354 On transition to full, a pool is unlinked from its usedpools[] list.
355 It's not linked to from anything then anymore, and its nextpool and
356 prevpool members are meaningless until it transitions back to used.
357 A free of a block in a full pool puts the pool back in the used state.
358 Then it's linked in at the front of the appropriate usedpools[] list, so
359 that the next allocation for its size class will reuse the freed block.
360
361 empty == all the pool's blocks are currently available for allocation
362 On transition to empty, a pool is unlinked from its usedpools[] list,
363 and linked to the front of its arena_object's singly-linked freepools list,
364 via its nextpool member. The prevpool member has no meaning in this case.
365 Empty pools have no inherent size class: the next time a malloc finds
366 an empty list in usedpools[], it takes the first pool off of freepools.
367 If the size class needed happens to be the same as the size class the pool
368 last had, some pool initialization can be skipped.
369
370
371 Block Management
372
373 Blocks within pools are again carved out as needed. pool->freeblock points to
374 the start of a singly-linked list of free blocks within the pool. When a
375 block is freed, it's inserted at the front of its pool's freeblock list. Note
376 that the available blocks in a pool are *not* linked all together when a pool
377 is initialized. Instead only "the first two" (lowest addresses) blocks are
378 set up, returning the first such block, and setting pool->freeblock to a
379 one-block list holding the second such block. This is consistent with that
380 pymalloc strives at all levels (arena, pool, and block) never to touch a piece
381 of memory until it's actually needed.
382
383 So long as a pool is in the used state, we're certain there *is* a block
384 available for allocating, and pool->freeblock is not NULL. If pool->freeblock
385 points to the end of the free list before we've carved the entire pool into
386 blocks, that means we simply haven't yet gotten to one of the higher-address
387 blocks. The offset from the pool_header to the start of "the next" virgin
388 block is stored in the pool_header nextoffset member, and the largest value
389 of nextoffset that makes sense is stored in the maxnextoffset member when a
390 pool is initialized. All the blocks in a pool have been passed out at least
391 once when and only when nextoffset > maxnextoffset.
392
393
394 Major obscurity: While the usedpools vector is declared to have poolp
395 entries, it doesn't really. It really contains two pointers per (conceptual)
396 poolp entry, the nextpool and prevpool members of a pool_header. The
397 excruciating initialization code below fools C so that
398
399 usedpool[i+i]
400
401 "acts like" a genuine poolp, but only so long as you only reference its
402 nextpool and prevpool members. The "- 2*sizeof(block *)" gibberish is
403 compensating for that a pool_header's nextpool and prevpool members
404 immediately follow a pool_header's first two members:
405
406 union { block *_padding;
407 uint count; } ref;
408 block *freeblock;
409
410 each of which consume sizeof(block *) bytes. So what usedpools[i+i] really
411 contains is a fudged-up pointer p such that *if* C believes it's a poolp
412 pointer, then p->nextpool and p->prevpool are both p (meaning that the headed
413 circular list is empty).
414
415 It's unclear why the usedpools setup is so convoluted. It could be to
416 minimize the amount of cache required to hold this heavily-referenced table
417 (which only *needs* the two interpool pointer members of a pool_header). OTOH,
418 referencing code has to remember to "double the index" and doing so isn't
419 free, usedpools[0] isn't a strictly legal pointer, and we're crucially relying
420 on that C doesn't insert any padding anywhere in a pool_header at or before
421 the prevpool member.
422 **************************************************************************** */
423
424 #define PTA(x) ((poolp )((uchar *)&(usedpools[2*(x)]) - 2*sizeof(block *)))
425 #define PT(x) PTA(x), PTA(x)
426
427 static poolp usedpools[2 * ((NB_SMALL_SIZE_CLASSES + 7) / 8) * 8] = {
428 PT(0), PT(1), PT(2), PT(3), PT(4), PT(5), PT(6), PT(7)
429 #if NB_SMALL_SIZE_CLASSES > 8
430 , PT(8), PT(9), PT(10), PT(11), PT(12), PT(13), PT(14), PT(15)
431 #if NB_SMALL_SIZE_CLASSES > 16
432 , PT(16), PT(17), PT(18), PT(19), PT(20), PT(21), PT(22), PT(23)
433 #if NB_SMALL_SIZE_CLASSES > 24
434 , PT(24), PT(25), PT(26), PT(27), PT(28), PT(29), PT(30), PT(31)
435 #if NB_SMALL_SIZE_CLASSES > 32
436 , PT(32), PT(33), PT(34), PT(35), PT(36), PT(37), PT(38), PT(39)
437 #if NB_SMALL_SIZE_CLASSES > 40
438 , PT(40), PT(41), PT(42), PT(43), PT(44), PT(45), PT(46), PT(47)
439 #if NB_SMALL_SIZE_CLASSES > 48
440 , PT(48), PT(49), PT(50), PT(51), PT(52), PT(53), PT(54), PT(55)
441 #if NB_SMALL_SIZE_CLASSES > 56
442 , PT(56), PT(57), PT(58), PT(59), PT(60), PT(61), PT(62), PT(63)
443 #endif /* NB_SMALL_SIZE_CLASSES > 56 */
444 #endif /* NB_SMALL_SIZE_CLASSES > 48 */
445 #endif /* NB_SMALL_SIZE_CLASSES > 40 */
446 #endif /* NB_SMALL_SIZE_CLASSES > 32 */
447 #endif /* NB_SMALL_SIZE_CLASSES > 24 */
448 #endif /* NB_SMALL_SIZE_CLASSES > 16 */
449 #endif /* NB_SMALL_SIZE_CLASSES > 8 */
450 };
451
452 /*==========================================================================
453 Arena management.
454
455 `arenas` is a vector of arena_objects. It contains maxarenas entries, some of
456 which may not be currently used (== they're arena_objects that aren't
457 currently associated with an allocated arena). Note that arenas proper are
458 separately malloc'ed.
459
460 Prior to Python 2.5, arenas were never free()'ed. Starting with Python 2.5,
461 we do try to free() arenas, and use some mild heuristic strategies to increase
462 the likelihood that arenas eventually can be freed.
463
464 unused_arena_objects
465
466 This is a singly-linked list of the arena_objects that are currently not
467 being used (no arena is associated with them). Objects are taken off the
468 head of the list in new_arena(), and are pushed on the head of the list in
469 PyObject_Free() when the arena is empty. Key invariant: an arena_object
470 is on this list if and only if its .address member is 0.
471
472 usable_arenas
473
474 This is a doubly-linked list of the arena_objects associated with arenas
475 that have pools available. These pools are either waiting to be reused,
476 or have not been used before. The list is sorted to have the most-
477 allocated arenas first (ascending order based on the nfreepools member).
478 This means that the next allocation will come from a heavily used arena,
479 which gives the nearly empty arenas a chance to be returned to the system.
480 In my unscientific tests this dramatically improved the number of arenas
481 that could be freed.
482
483 Note that an arena_object associated with an arena all of whose pools are
484 currently in use isn't on either list.
485 */
486
487 /* Array of objects used to track chunks of memory (arenas). */
488 static struct arena_object* arenas = NULL;
489 /* Number of slots currently allocated in the `arenas` vector. */
490 static uint maxarenas = 0;
491
492 /* The head of the singly-linked, NULL-terminated list of available
493 * arena_objects.
494 */
495 static struct arena_object* unused_arena_objects = NULL;
496
497 /* The head of the doubly-linked, NULL-terminated at each end, list of
498 * arena_objects associated with arenas that have pools available.
499 */
500 static struct arena_object* usable_arenas = NULL;
501
502 /* How many arena_objects do we initially allocate?
503 * 16 = can allocate 16 arenas = 16 * ARENA_SIZE = 4MB before growing the
504 * `arenas` vector.
505 */
506 #define INITIAL_ARENA_OBJECTS 16
507
508 /* Number of arenas allocated that haven't been free()'d. */
509 static size_t narenas_currently_allocated = 0;
510
511 #ifdef PYMALLOC_DEBUG
512 /* Total number of times malloc() called to allocate an arena. */
513 static size_t ntimes_arena_allocated = 0;
514 /* High water mark (max value ever seen) for narenas_currently_allocated. */
515 static size_t narenas_highwater = 0;
516 #endif
517
518 /* Allocate a new arena. If we run out of memory, return NULL. Else
519 * allocate a new arena, and return the address of an arena_object
520 * describing the new arena. It's expected that the caller will set
521 * `usable_arenas` to the return value.
522 */
523 static struct arena_object*
524 new_arena(void)
525 {
526 struct arena_object* arenaobj;
527 uint excess; /* number of bytes above pool alignment */
528
529 #ifdef PYMALLOC_DEBUG
530 if (Py_GETENV("PYTHONMALLOCSTATS"))
531 _PyObject_DebugMallocStats();
532 #endif
533 if (unused_arena_objects == NULL) {
534 uint i;
535 uint numarenas;
536 size_t nbytes;
537
538 /* Double the number of arena objects on each allocation.
539 * Note that it's possible for `numarenas` to overflow.
540 */
541 numarenas = maxarenas ? maxarenas << 1 : INITIAL_ARENA_OBJECTS;
542 if (numarenas <= maxarenas)
543 return NULL; /* overflow */
544 #if SIZEOF_SIZE_T <= SIZEOF_INT
545 if (numarenas > PY_SIZE_MAX / sizeof(*arenas))
546 return NULL; /* overflow */
547 #endif
548 nbytes = numarenas * sizeof(*arenas);
549 arenaobj = (struct arena_object *)realloc(arenas, nbytes);
550 if (arenaobj == NULL)
551 return NULL;
552 arenas = arenaobj;
553
554 /* We might need to fix pointers that were copied. However,
555 * new_arena only gets called when all the pages in the
556 * previous arenas are full. Thus, there are *no* pointers
557 * into the old array. Thus, we don't have to worry about
558 * invalid pointers. Just to be sure, some asserts:
559 */
560 assert(usable_arenas == NULL);
561 assert(unused_arena_objects == NULL);
562
563 /* Put the new arenas on the unused_arena_objects list. */
564 for (i = maxarenas; i < numarenas; ++i) {
565 arenas[i].address = 0; /* mark as unassociated */
566 arenas[i].nextarena = i < numarenas - 1 ?
567 &arenas[i+1] : NULL;
568 }
569
570 /* Update globals. */
571 unused_arena_objects = &arenas[maxarenas];
572 maxarenas = numarenas;
573 }
574
575 /* Take the next available arena object off the head of the list. */
576 assert(unused_arena_objects != NULL);
577 arenaobj = unused_arena_objects;
578 unused_arena_objects = arenaobj->nextarena;
579 assert(arenaobj->address == 0);
580 arenaobj->address = (uptr)malloc(ARENA_SIZE);
581 if (arenaobj->address == 0) {
582 /* The allocation failed: return NULL after putting the
583 * arenaobj back.
584 */
585 arenaobj->nextarena = unused_arena_objects;
586 unused_arena_objects = arenaobj;
587 return NULL;
588 }
589
590 ++narenas_currently_allocated;
591 #ifdef PYMALLOC_DEBUG
592 ++ntimes_arena_allocated;
593 if (narenas_currently_allocated > narenas_highwater)
594 narenas_highwater = narenas_currently_allocated;
595 #endif
596 arenaobj->freepools = NULL;
597 /* pool_address <- first pool-aligned address in the arena
598 nfreepools <- number of whole pools that fit after alignment */
599 arenaobj->pool_address = (block*)arenaobj->address;
600 arenaobj->nfreepools = ARENA_SIZE / POOL_SIZE;
601 assert(POOL_SIZE * arenaobj->nfreepools == ARENA_SIZE);
602 excess = (uint)(arenaobj->address & POOL_SIZE_MASK);
603 if (excess != 0) {
604 --arenaobj->nfreepools;
605 arenaobj->pool_address += POOL_SIZE - excess;
606 }
607 arenaobj->ntotalpools = arenaobj->nfreepools;
608
609 return arenaobj;
610 }
611
612 /*
613 Py_ADDRESS_IN_RANGE(P, POOL)
614
615 Return true if and only if P is an address that was allocated by pymalloc.
616 POOL must be the pool address associated with P, i.e., POOL = POOL_ADDR(P)
617 (the caller is asked to compute this because the macro expands POOL more than
618 once, and for efficiency it's best for the caller to assign POOL_ADDR(P) to a
619 variable and pass the latter to the macro; because Py_ADDRESS_IN_RANGE is
620 called on every alloc/realloc/free, micro-efficiency is important here).
621
622 Tricky: Let B be the arena base address associated with the pool, B =
623 arenas[(POOL)->arenaindex].address. Then P belongs to the arena if and only if
624
625 B <= P < B + ARENA_SIZE
626
627 Subtracting B throughout, this is true iff
628
629 0 <= P-B < ARENA_SIZE
630
631 By using unsigned arithmetic, the "0 <=" half of the test can be skipped.
632
633 Obscure: A PyMem "free memory" function can call the pymalloc free or realloc
634 before the first arena has been allocated. `arenas` is still NULL in that
635 case. We're relying on that maxarenas is also 0 in that case, so that
636 (POOL)->arenaindex < maxarenas must be false, saving us from trying to index
637 into a NULL arenas.
638
639 Details: given P and POOL, the arena_object corresponding to P is AO =
640 arenas[(POOL)->arenaindex]. Suppose obmalloc controls P. Then (barring wild
641 stores, etc), POOL is the correct address of P's pool, AO.address is the
642 correct base address of the pool's arena, and P must be within ARENA_SIZE of
643 AO.address. In addition, AO.address is not 0 (no arena can start at address 0
644 (NULL)). Therefore Py_ADDRESS_IN_RANGE correctly reports that obmalloc
645 controls P.
646
647 Now suppose obmalloc does not control P (e.g., P was obtained via a direct
648 call to the system malloc() or realloc()). (POOL)->arenaindex may be anything
649 in this case -- it may even be uninitialized trash. If the trash arenaindex
650 is >= maxarenas, the macro correctly concludes at once that obmalloc doesn't
651 control P.
652
653 Else arenaindex is < maxarena, and AO is read up. If AO corresponds to an
654 allocated arena, obmalloc controls all the memory in slice AO.address :
655 AO.address+ARENA_SIZE. By case assumption, P is not controlled by obmalloc,
656 so P doesn't lie in that slice, so the macro correctly reports that P is not
657 controlled by obmalloc.
658
659 Finally, if P is not controlled by obmalloc and AO corresponds to an unused
660 arena_object (one not currently associated with an allocated arena),
661 AO.address is 0, and the second test in the macro reduces to:
662
663 P < ARENA_SIZE
664
665 If P >= ARENA_SIZE (extremely likely), the macro again correctly concludes
666 that P is not controlled by obmalloc. However, if P < ARENA_SIZE, this part
667 of the test still passes, and the third clause (AO.address != 0) is necessary
668 to get the correct result: AO.address is 0 in this case, so the macro
669 correctly reports that P is not controlled by obmalloc (despite that P lies in
670 slice AO.address : AO.address + ARENA_SIZE).
671
672 Note: The third (AO.address != 0) clause was added in Python 2.5. Before
673 2.5, arenas were never free()'ed, and an arenaindex < maxarena always
674 corresponded to a currently-allocated arena, so the "P is not controlled by
675 obmalloc, AO corresponds to an unused arena_object, and P < ARENA_SIZE" case
676 was impossible.
677
678 Note that the logic is excruciating, and reading up possibly uninitialized
679 memory when P is not controlled by obmalloc (to get at (POOL)->arenaindex)
680 creates problems for some memory debuggers. The overwhelming advantage is
681 that this test determines whether an arbitrary address is controlled by
682 obmalloc in a small constant time, independent of the number of arenas
683 obmalloc controls. Since this test is needed at every entry point, it's
684 extremely desirable that it be this fast.
685
686 Since Py_ADDRESS_IN_RANGE may be reading from memory which was not allocated
687 by Python, it is important that (POOL)->arenaindex is read only once, as
688 another thread may be concurrently modifying the value without holding the
689 GIL. To accomplish this, the arenaindex_temp variable is used to store
690 (POOL)->arenaindex for the duration of the Py_ADDRESS_IN_RANGE macro's
691 execution. The caller of the macro is responsible for declaring this
692 variable.
693 */
694 #define Py_ADDRESS_IN_RANGE(P, POOL) \
695 ((arenaindex_temp = (POOL)->arenaindex) < maxarenas && \
696 (uptr)(P) - arenas[arenaindex_temp].address < (uptr)ARENA_SIZE && \
697 arenas[arenaindex_temp].address != 0)
698
699
700 /* This is only useful when running memory debuggers such as
701 * Purify or Valgrind. Uncomment to use.
702 *
703 #define Py_USING_MEMORY_DEBUGGER
704 */
705
706 #ifdef Py_USING_MEMORY_DEBUGGER
707
708 /* Py_ADDRESS_IN_RANGE may access uninitialized memory by design
709 * This leads to thousands of spurious warnings when using
710 * Purify or Valgrind. By making a function, we can easily
711 * suppress the uninitialized memory reads in this one function.
712 * So we won't ignore real errors elsewhere.
713 *
714 * Disable the macro and use a function.
715 */
716
717 #undef Py_ADDRESS_IN_RANGE
718
719 #if defined(__GNUC__) && ((__GNUC__ == 3) && (__GNUC_MINOR__ >= 1) || \
720 (__GNUC__ >= 4))
721 #define Py_NO_INLINE __attribute__((__noinline__))
722 #else
723 #define Py_NO_INLINE
724 #endif
725
726 /* Don't make static, to try to ensure this isn't inlined. */
727 int Py_ADDRESS_IN_RANGE(void *P, poolp pool) Py_NO_INLINE;
728 #undef Py_NO_INLINE
729 #endif
730
731 /*==========================================================================*/
732
733 /* malloc. Note that nbytes==0 tries to return a non-NULL pointer, distinct
734 * from all other currently live pointers. This may not be possible.
735 */
736
737 /*
738 * The basic blocks are ordered by decreasing execution frequency,
739 * which minimizes the number of jumps in the most common cases,
740 * improves branching prediction and instruction scheduling (small
741 * block allocations typically result in a couple of instructions).
742 * Unless the optimizer reorders everything, being too smart...
743 */
744
745 #undef PyObject_Malloc
746 void *
747 PyObject_Malloc(size_t nbytes)
748 {
749 block *bp;
750 poolp pool;
751 poolp next;
752 uint size;
753
754 #ifdef WITH_VALGRIND
755 if (UNLIKELY(running_on_valgrind == -1))
756 running_on_valgrind = RUNNING_ON_VALGRIND;
757 if (UNLIKELY(running_on_valgrind))
758 goto redirect;
759 #endif
760
761 /*
762 * Limit ourselves to PY_SSIZE_T_MAX bytes to prevent security holes.
763 * Most python internals blindly use a signed Py_ssize_t to track
764 * things without checking for overflows or negatives.
765 * As size_t is unsigned, checking for nbytes < 0 is not required.
766 */
767 if (nbytes > PY_SSIZE_T_MAX)
768 return NULL;
769
770 /*
771 * This implicitly redirects malloc(0).
772 */
773 if ((nbytes - 1) < SMALL_REQUEST_THRESHOLD) {
774 LOCK();
775 /*
776 * Most frequent paths first
777 */
778 size = (uint)(nbytes - 1) >> ALIGNMENT_SHIFT;
779 pool = usedpools[size + size];
780 if (pool != pool->nextpool) {
781 /*
782 * There is a used pool for this size class.
783 * Pick up the head block of its free list.
784 */
785 ++pool->ref.count;
786 bp = pool->freeblock;
787 assert(bp != NULL);
788 if ((pool->freeblock = *(block **)bp) != NULL) {
789 UNLOCK();
790 return (void *)bp;
791 }
792 /*
793 * Reached the end of the free list, try to extend it.
794 */
795 if (pool->nextoffset <= pool->maxnextoffset) {
796 /* There is room for another block. */
797 pool->freeblock = (block*)pool +
798 pool->nextoffset;
799 pool->nextoffset += INDEX2SIZE(size);
800 *(block **)(pool->freeblock) = NULL;
801 UNLOCK();
802 return (void *)bp;
803 }
804 /* Pool is full, unlink from used pools. */
805 next = pool->nextpool;
806 pool = pool->prevpool;
807 next->prevpool = pool;
808 pool->nextpool = next;
809 UNLOCK();
810 return (void *)bp;
811 }
812
813 /* There isn't a pool of the right size class immediately
814 * available: use a free pool.
815 */
816 if (usable_arenas == NULL) {
817 /* No arena has a free pool: allocate a new arena. */
818 #ifdef WITH_MEMORY_LIMITS
819 if (narenas_currently_allocated >= MAX_ARENAS) {
820 UNLOCK();
821 goto redirect;
822 }
823 #endif
824 usable_arenas = new_arena();
825 if (usable_arenas == NULL) {
826 UNLOCK();
827 goto redirect;
828 }
829 usable_arenas->nextarena =
830 usable_arenas->prevarena = NULL;
831 }
832 assert(usable_arenas->address != 0);
833
834 /* Try to get a cached free pool. */
835 pool = usable_arenas->freepools;
836 if (pool != NULL) {
837 /* Unlink from cached pools. */
838 usable_arenas->freepools = pool->nextpool;
839
840 /* This arena already had the smallest nfreepools
841 * value, so decreasing nfreepools doesn't change
842 * that, and we don't need to rearrange the
843 * usable_arenas list. However, if the arena has
844 * become wholly allocated, we need to remove its
845 * arena_object from usable_arenas.
846 */
847 --usable_arenas->nfreepools;
848 if (usable_arenas->nfreepools == 0) {
849 /* Wholly allocated: remove. */
850 assert(usable_arenas->freepools == NULL);
851 assert(usable_arenas->nextarena == NULL ||
852 usable_arenas->nextarena->prevarena ==
853 usable_arenas);
854
855 usable_arenas = usable_arenas->nextarena;
856 if (usable_arenas != NULL) {
857 usable_arenas->prevarena = NULL;
858 assert(usable_arenas->address != 0);
859 }
860 }
861 else {
862 /* nfreepools > 0: it must be that freepools
863 * isn't NULL, or that we haven't yet carved
864 * off all the arena's pools for the first
865 * time.
866 */
867 assert(usable_arenas->freepools != NULL ||
868 usable_arenas->pool_address <=
869 (block*)usable_arenas->address +
870 ARENA_SIZE - POOL_SIZE);
871 }
872 init_pool:
873 /* Frontlink to used pools. */
874 next = usedpools[size + size]; /* == prev */
875 pool->nextpool = next;
876 pool->prevpool = next;
877 next->nextpool = pool;
878 next->prevpool = pool;
879 pool->ref.count = 1;
880 if (pool->szidx == size) {
881 /* Luckily, this pool last contained blocks
882 * of the same size class, so its header
883 * and free list are already initialized.
884 */
885 bp = pool->freeblock;
886 pool->freeblock = *(block **)bp;
887 UNLOCK();
888 return (void *)bp;
889 }
890 /*
891 * Initialize the pool header, set up the free list to
892 * contain just the second block, and return the first
893 * block.
894 */
895 pool->szidx = size;
896 size = INDEX2SIZE(size);
897 bp = (block *)pool + POOL_OVERHEAD;
898 pool->nextoffset = POOL_OVERHEAD + (size << 1);
899 pool->maxnextoffset = POOL_SIZE - size;
900 pool->freeblock = bp + size;
901 *(block **)(pool->freeblock) = NULL;
902 UNLOCK();
903 return (void *)bp;
904 }
905
906 /* Carve off a new pool. */
907 assert(usable_arenas->nfreepools > 0);
908 assert(usable_arenas->freepools == NULL);
909 pool = (poolp)usable_arenas->pool_address;
910 assert((block*)pool <= (block*)usable_arenas->address +
911 ARENA_SIZE - POOL_SIZE);
912 pool->arenaindex = usable_arenas - arenas;
913 assert(&arenas[pool->arenaindex] == usable_arenas);
914 pool->szidx = DUMMY_SIZE_IDX;
915 usable_arenas->pool_address += POOL_SIZE;
916 --usable_arenas->nfreepools;
917
918 if (usable_arenas->nfreepools == 0) {
919 assert(usable_arenas->nextarena == NULL ||
920 usable_arenas->nextarena->prevarena ==
921 usable_arenas);
922 /* Unlink the arena: it is completely allocated. */
923 usable_arenas = usable_arenas->nextarena;
924 if (usable_arenas != NULL) {
925 usable_arenas->prevarena = NULL;
926 assert(usable_arenas->address != 0);
927 }
928 }
929
930 goto init_pool;
931 }
932
933 /* The small block allocator ends here. */
934
935 redirect:
936 /* Redirect the original request to the underlying (libc) allocator.
937 * We jump here on bigger requests, on error in the code above (as a
938 * last chance to serve the request) or when the max memory limit
939 * has been reached.
940 */
941 if (nbytes == 0)
942 nbytes = 1;
943 return (void *)malloc(nbytes);
944 }
945
946 /* free */
947
948 #undef PyObject_Free
949 void
950 PyObject_Free(void *p)
951 {
952 poolp pool;
953 block *lastfree;
954 poolp next, prev;
955 uint size;
956 #ifndef Py_USING_MEMORY_DEBUGGER
957 uint arenaindex_temp;
958 #endif
959
960 if (p == NULL) /* free(NULL) has no effect */
961 return;
962
963 #ifdef WITH_VALGRIND
964 if (UNLIKELY(running_on_valgrind > 0))
965 goto redirect;
966 #endif
967
968 pool = POOL_ADDR(p);
969 if (Py_ADDRESS_IN_RANGE(p, pool)) {
970 /* We allocated this address. */
971 LOCK();
972 /* Link p to the start of the pool's freeblock list. Since
973 * the pool had at least the p block outstanding, the pool
974 * wasn't empty (so it's already in a usedpools[] list, or
975 * was full and is in no list -- it's not in the freeblocks
976 * list in any case).
977 */
978 assert(pool->ref.count > 0); /* else it was empty */
979 *(block **)p = lastfree = pool->freeblock;
980 pool->freeblock = (block *)p;
981 if (lastfree) {
982 struct arena_object* ao;
983 uint nf; /* ao->nfreepools */
984
985 /* freeblock wasn't NULL, so the pool wasn't full,
986 * and the pool is in a usedpools[] list.
987 */
988 if (--pool->ref.count != 0) {
989 /* pool isn't empty: leave it in usedpools */
990 UNLOCK();
991 return;
992 }
993 /* Pool is now empty: unlink from usedpools, and
994 * link to the front of freepools. This ensures that
995 * previously freed pools will be allocated later
996 * (being not referenced, they are perhaps paged out).
997 */
998 next = pool->nextpool;
999 prev = pool->prevpool;
1000 next->prevpool = prev;
1001 prev->nextpool = next;
1002
1003 /* Link the pool to freepools. This is a singly-linked
1004 * list, and pool->prevpool isn't used there.
1005 */
1006 ao = &arenas[pool->arenaindex];
1007 pool->nextpool = ao->freepools;
1008 ao->freepools = pool;
1009 nf = ++ao->nfreepools;
1010
1011 /* All the rest is arena management. We just freed
1012 * a pool, and there are 4 cases for arena mgmt:
1013 * 1. If all the pools are free, return the arena to
1014 * the system free().
1015 * 2. If this is the only free pool in the arena,
1016 * add the arena back to the `usable_arenas` list.
1017 * 3. If the "next" arena has a smaller count of free
1018 * pools, we have to "slide this arena right" to
1019 * restore that usable_arenas is sorted in order of
1020 * nfreepools.
1021 * 4. Else there's nothing more to do.
1022 */
1023 if (nf == ao->ntotalpools) {
1024 /* Case 1. First unlink ao from usable_arenas.
1025 */
1026 assert(ao->prevarena == NULL ||
1027 ao->prevarena->address != 0);
1028 assert(ao ->nextarena == NULL ||
1029 ao->nextarena->address != 0);
1030
1031 /* Fix the pointer in the prevarena, or the
1032 * usable_arenas pointer.
1033 */
1034 if (ao->prevarena == NULL) {
1035 usable_arenas = ao->nextarena;
1036 assert(usable_arenas == NULL ||
1037 usable_arenas->address != 0);
1038 }
1039 else {
1040 assert(ao->prevarena->nextarena == ao);
1041 ao->prevarena->nextarena =
1042 ao->nextarena;
1043 }
1044 /* Fix the pointer in the nextarena. */
1045 if (ao->nextarena != NULL) {
1046 assert(ao->nextarena->prevarena == ao);
1047 ao->nextarena->prevarena =
1048 ao->prevarena;
1049 }
1050 /* Record that this arena_object slot is
1051 * available to be reused.
1052 */
1053 ao->nextarena = unused_arena_objects;
1054 unused_arena_objects = ao;
1055
1056 /* Free the entire arena. */
1057 free((void *)ao->address);
1058 ao->address = 0; /* mark unassociated */
1059 --narenas_currently_allocated;
1060
1061 UNLOCK();
1062 return;
1063 }
1064 if (nf == 1) {
1065 /* Case 2. Put ao at the head of
1066 * usable_arenas. Note that because
1067 * ao->nfreepools was 0 before, ao isn't
1068 * currently on the usable_arenas list.
1069 */
1070 ao->nextarena = usable_arenas;
1071 ao->prevarena = NULL;
1072 if (usable_arenas)
1073 usable_arenas->prevarena = ao;
1074 usable_arenas = ao;
1075 assert(usable_arenas->address != 0);
1076
1077 UNLOCK();
1078 return;
1079 }
1080 /* If this arena is now out of order, we need to keep
1081 * the list sorted. The list is kept sorted so that
1082 * the "most full" arenas are used first, which allows
1083 * the nearly empty arenas to be completely freed. In
1084 * a few un-scientific tests, it seems like this
1085 * approach allowed a lot more memory to be freed.
1086 */
1087 if (ao->nextarena == NULL ||
1088 nf <= ao->nextarena->nfreepools) {
1089 /* Case 4. Nothing to do. */
1090 UNLOCK();
1091 return;
1092 }
1093 /* Case 3: We have to move the arena towards the end
1094 * of the list, because it has more free pools than
1095 * the arena to its right.
1096 * First unlink ao from usable_arenas.
1097 */
1098 if (ao->prevarena != NULL) {
1099 /* ao isn't at the head of the list */
1100 assert(ao->prevarena->nextarena == ao);
1101 ao->prevarena->nextarena = ao->nextarena;
1102 }
1103 else {
1104 /* ao is at the head of the list */
1105 assert(usable_arenas == ao);
1106 usable_arenas = ao->nextarena;
1107 }
1108 ao->nextarena->prevarena = ao->prevarena;
1109
1110 /* Locate the new insertion point by iterating over
1111 * the list, using our nextarena pointer.
1112 */
1113 while (ao->nextarena != NULL &&
1114 nf > ao->nextarena->nfreepools) {
1115 ao->prevarena = ao->nextarena;
1116 ao->nextarena = ao->nextarena->nextarena;
1117 }
1118
1119 /* Insert ao at this point. */
1120 assert(ao->nextarena == NULL ||
1121 ao->prevarena == ao->nextarena->prevarena);
1122 assert(ao->prevarena->nextarena == ao->nextarena);
1123
1124 ao->prevarena->nextarena = ao;
1125 if (ao->nextarena != NULL)
1126 ao->nextarena->prevarena = ao;
1127
1128 /* Verify that the swaps worked. */
1129 assert(ao->nextarena == NULL ||
1130 nf <= ao->nextarena->nfreepools);
1131 assert(ao->prevarena == NULL ||
1132 nf > ao->prevarena->nfreepools);
1133 assert(ao->nextarena == NULL ||
1134 ao->nextarena->prevarena == ao);
1135 assert((usable_arenas == ao &&
1136 ao->prevarena == NULL) ||
1137 ao->prevarena->nextarena == ao);
1138
1139 UNLOCK();
1140 return;
1141 }
1142 /* Pool was full, so doesn't currently live in any list:
1143 * link it to the front of the appropriate usedpools[] list.
1144 * This mimics LRU pool usage for new allocations and
1145 * targets optimal filling when several pools contain
1146 * blocks of the same size class.
1147 */
1148 --pool->ref.count;
1149 assert(pool->ref.count > 0); /* else the pool is empty */
1150 size = pool->szidx;
1151 next = usedpools[size + size];
1152 prev = next->prevpool;
1153 /* insert pool before next: prev <-> pool <-> next */
1154 pool->nextpool = next;
1155 pool->prevpool = prev;
1156 next->prevpool = pool;
1157 prev->nextpool = pool;
1158 UNLOCK();
1159 return;
1160 }
1161
1162 #ifdef WITH_VALGRIND
1163 redirect:
1164 #endif
1165 /* We didn't allocate this address. */
1166 free(p);
1167 }
1168
1169 /* realloc. If p is NULL, this acts like malloc(nbytes). Else if nbytes==0,
1170 * then as the Python docs promise, we do not treat this like free(p), and
1171 * return a non-NULL result.
1172 */
1173
1174 #undef PyObject_Realloc
1175 void *
1176 PyObject_Realloc(void *p, size_t nbytes)
1177 {
1178 void *bp;
1179 poolp pool;
1180 size_t size;
1181 #ifndef Py_USING_MEMORY_DEBUGGER
1182 uint arenaindex_temp;
1183 #endif
1184
1185 if (p == NULL)
1186 return PyObject_Malloc(nbytes);
1187
1188 /*
1189 * Limit ourselves to PY_SSIZE_T_MAX bytes to prevent security holes.
1190 * Most python internals blindly use a signed Py_ssize_t to track
1191 * things without checking for overflows or negatives.
1192 * As size_t is unsigned, checking for nbytes < 0 is not required.
1193 */
1194 if (nbytes > PY_SSIZE_T_MAX)
1195 return NULL;
1196
1197 #ifdef WITH_VALGRIND
1198 /* Treat running_on_valgrind == -1 the same as 0 */
1199 if (UNLIKELY(running_on_valgrind > 0))
1200 goto redirect;
1201 #endif
1202
1203 pool = POOL_ADDR(p);
1204 if (Py_ADDRESS_IN_RANGE(p, pool)) {
1205 /* We're in charge of this block */
1206 size = INDEX2SIZE(pool->szidx);
1207 if (nbytes <= size) {
1208 /* The block is staying the same or shrinking. If
1209 * it's shrinking, there's a tradeoff: it costs
1210 * cycles to copy the block to a smaller size class,
1211 * but it wastes memory not to copy it. The
1212 * compromise here is to copy on shrink only if at
1213 * least 25% of size can be shaved off.
1214 */
1215 if (4 * nbytes > 3 * size) {
1216 /* It's the same,
1217 * or shrinking and new/old > 3/4.
1218 */
1219 return p;
1220 }
1221 size = nbytes;
1222 }
1223 bp = PyObject_Malloc(nbytes);
1224 if (bp != NULL) {
1225 memcpy(bp, p, size);
1226 PyObject_Free(p);
1227 }
1228 return bp;
1229 }
1230 #ifdef WITH_VALGRIND
1231 redirect:
1232 #endif
1233 /* We're not managing this block. If nbytes <=
1234 * SMALL_REQUEST_THRESHOLD, it's tempting to try to take over this
1235 * block. However, if we do, we need to copy the valid data from
1236 * the C-managed block to one of our blocks, and there's no portable
1237 * way to know how much of the memory space starting at p is valid.
1238 * As bug 1185883 pointed out the hard way, it's possible that the
1239 * C-managed block is "at the end" of allocated VM space, so that
1240 * a memory fault can occur if we try to copy nbytes bytes starting
1241 * at p. Instead we punt: let C continue to manage this block.
1242 */
1243 if (nbytes)
1244 return realloc(p, nbytes);
1245 /* C doesn't define the result of realloc(p, 0) (it may or may not
1246 * return NULL then), but Python's docs promise that nbytes==0 never
1247 * returns NULL. We don't pass 0 to realloc(), to avoid that endcase
1248 * to begin with. Even then, we can't be sure that realloc() won't
1249 * return NULL.
1250 */
1251 bp = realloc(p, 1);
1252 return bp ? bp : p;
1253 }
1254
1255 #else /* ! WITH_PYMALLOC */
1256
1257 /*==========================================================================*/
1258 /* pymalloc not enabled: Redirect the entry points to malloc. These will
1259 * only be used by extensions that are compiled with pymalloc enabled. */
1260
1261 void *
1262 PyObject_Malloc(size_t n)
1263 {
1264 return PyMem_MALLOC(n);
1265 }
1266
1267 void *
1268 PyObject_Realloc(void *p, size_t n)
1269 {
1270 return PyMem_REALLOC(p, n);
1271 }
1272
1273 void
1274 PyObject_Free(void *p)
1275 {
1276 PyMem_FREE(p);
1277 }
1278 #endif /* WITH_PYMALLOC */
1279
1280 #ifdef PYMALLOC_DEBUG
1281 /*==========================================================================*/
1282 /* A x-platform debugging allocator. This doesn't manage memory directly,
1283 * it wraps a real allocator, adding extra debugging info to the memory blocks.
1284 */
1285
1286 /* Special bytes broadcast into debug memory blocks at appropriate times.
1287 * Strings of these are unlikely to be valid addresses, floats, ints or
1288 * 7-bit ASCII.
1289 */
1290 #undef CLEANBYTE
1291 #undef DEADBYTE
1292 #undef FORBIDDENBYTE
1293 #define CLEANBYTE 0xCB /* clean (newly allocated) memory */
1294 #define DEADBYTE 0xDB /* dead (newly freed) memory */
1295 #define FORBIDDENBYTE 0xFB /* untouchable bytes at each end of a block */
1296
1297 /* We tag each block with an API ID in order to tag API violations */
1298 #define _PYMALLOC_MEM_ID 'm' /* the PyMem_Malloc() API */
1299 #define _PYMALLOC_OBJ_ID 'o' /* The PyObject_Malloc() API */
1300
1301 static size_t serialno = 0; /* incremented on each debug {m,re}alloc */
1302
1303 /* serialno is always incremented via calling this routine. The point is
1304 * to supply a single place to set a breakpoint.
1305 */
1306 static void
1307 bumpserialno(void)
1308 {
1309 ++serialno;
1310 }
1311
1312 #define SST SIZEOF_SIZE_T
1313
1314 /* Read sizeof(size_t) bytes at p as a big-endian size_t. */
1315 static size_t
1316 read_size_t(const void *p)
1317 {
1318 const uchar *q = (const uchar *)p;
1319 size_t result = *q++;
1320 int i;
1321
1322 for (i = SST; --i > 0; ++q)
1323 result = (result << 8) | *q;
1324 return result;
1325 }
1326
1327 /* Write n as a big-endian size_t, MSB at address p, LSB at
1328 * p + sizeof(size_t) - 1.
1329 */
1330 static void
1331 write_size_t(void *p, size_t n)
1332 {
1333 uchar *q = (uchar *)p + SST - 1;
1334 int i;
1335
1336 for (i = SST; --i >= 0; --q) {
1337 *q = (uchar)(n & 0xff);
1338 n >>= 8;
1339 }
1340 }
1341
1342 #ifdef Py_DEBUG
1343 /* Is target in the list? The list is traversed via the nextpool pointers.
1344 * The list may be NULL-terminated, or circular. Return 1 if target is in
1345 * list, else 0.
1346 */
1347 static int
1348 pool_is_in_list(const poolp target, poolp list)
1349 {
1350 poolp origlist = list;
1351 assert(target != NULL);
1352 if (list == NULL)
1353 return 0;
1354 do {
1355 if (target == list)
1356 return 1;
1357 list = list->nextpool;
1358 } while (list != NULL && list != origlist);
1359 return 0;
1360 }
1361
1362 #else
1363 #define pool_is_in_list(X, Y) 1
1364
1365 #endif /* Py_DEBUG */
1366
1367 /* Let S = sizeof(size_t). The debug malloc asks for 4*S extra bytes and
1368 fills them with useful stuff, here calling the underlying malloc's result p:
1369
1370 p[0: S]
1371 Number of bytes originally asked for. This is a size_t, big-endian (easier
1372 to read in a memory dump).
1373 p[S: 2*S]
1374 Copies of FORBIDDENBYTE. Used to catch under- writes and reads.
1375 p[2*S: 2*S+n]
1376 The requested memory, filled with copies of CLEANBYTE.
1377 Used to catch reference to uninitialized memory.
1378 &p[2*S] is returned. Note that this is 8-byte aligned if pymalloc
1379 handled the request itself.
1380 p[2*S+n: 2*S+n+S]
1381 Copies of FORBIDDENBYTE. Used to catch over- writes and reads.
1382 p[2*S+n+S: 2*S+n+2*S]
1383 A serial number, incremented by 1 on each call to _PyObject_DebugMalloc
1384 and _PyObject_DebugRealloc.
1385 This is a big-endian size_t.
1386 If "bad memory" is detected later, the serial number gives an
1387 excellent way to set a breakpoint on the next run, to capture the
1388 instant at which this block was passed out.
1389 */
1390
1391 /* debug replacements for the PyMem_* memory API */
1392 void *
1393 _PyMem_DebugMalloc(size_t nbytes)
1394 {
1395 return _PyObject_DebugMallocApi(_PYMALLOC_MEM_ID, nbytes);
1396 }
1397 void *
1398 _PyMem_DebugRealloc(void *p, size_t nbytes)
1399 {
1400 return _PyObject_DebugReallocApi(_PYMALLOC_MEM_ID, p, nbytes);
1401 }
1402 void
1403 _PyMem_DebugFree(void *p)
1404 {
1405 _PyObject_DebugFreeApi(_PYMALLOC_MEM_ID, p);
1406 }
1407
1408 /* debug replacements for the PyObject_* memory API */
1409 void *
1410 _PyObject_DebugMalloc(size_t nbytes)
1411 {
1412 return _PyObject_DebugMallocApi(_PYMALLOC_OBJ_ID, nbytes);
1413 }
1414 void *
1415 _PyObject_DebugRealloc(void *p, size_t nbytes)
1416 {
1417 return _PyObject_DebugReallocApi(_PYMALLOC_OBJ_ID, p, nbytes);
1418 }
1419 void
1420 _PyObject_DebugFree(void *p)
1421 {
1422 _PyObject_DebugFreeApi(_PYMALLOC_OBJ_ID, p);
1423 }
1424 void
1425 _PyObject_DebugCheckAddress(const void *p)
1426 {
1427 _PyObject_DebugCheckAddressApi(_PYMALLOC_OBJ_ID, p);
1428 }
1429
1430
1431 /* generic debug memory api, with an "id" to identify the API in use */
1432 void *
1433 _PyObject_DebugMallocApi(char id, size_t nbytes)
1434 {
1435 uchar *p; /* base address of malloc'ed block */
1436 uchar *tail; /* p + 2*SST + nbytes == pointer to tail pad bytes */
1437 size_t total; /* nbytes + 4*SST */
1438
1439 bumpserialno();
1440 total = nbytes + 4*SST;
1441 if (total < nbytes)
1442 /* overflow: can't represent total as a size_t */
1443 return NULL;
1444
1445 p = (uchar *)PyObject_Malloc(total);
1446 if (p == NULL)
1447 return NULL;
1448
1449 /* at p, write size (SST bytes), id (1 byte), pad (SST-1 bytes) */
1450 write_size_t(p, nbytes);
1451 p[SST] = (uchar)id;
1452 memset(p + SST + 1 , FORBIDDENBYTE, SST-1);
1453
1454 if (nbytes > 0)
1455 memset(p + 2*SST, CLEANBYTE, nbytes);
1456
1457 /* at tail, write pad (SST bytes) and serialno (SST bytes) */
1458 tail = p + 2*SST + nbytes;
1459 memset(tail, FORBIDDENBYTE, SST);
1460 write_size_t(tail + SST, serialno);
1461
1462 return p + 2*SST;
1463 }
1464
1465 /* The debug free first checks the 2*SST bytes on each end for sanity (in
1466 particular, that the FORBIDDENBYTEs with the api ID are still intact).
1467 Then fills the original bytes with DEADBYTE.
1468 Then calls the underlying free.
1469 */
1470 void
1471 _PyObject_DebugFreeApi(char api, void *p)
1472 {
1473 uchar *q = (uchar *)p - 2*SST; /* address returned from malloc */
1474 size_t nbytes;
1475
1476 if (p == NULL)
1477 return;
1478 _PyObject_DebugCheckAddressApi(api, p);
1479 nbytes = read_size_t(q);
1480 nbytes += 4*SST;
1481 if (nbytes > 0)
1482 memset(q, DEADBYTE, nbytes);
1483 PyObject_Free(q);
1484 }
1485
1486 void *
1487 _PyObject_DebugReallocApi(char api, void *p, size_t nbytes)
1488 {
1489 uchar *q = (uchar *)p;
1490 uchar *tail;
1491 size_t total; /* nbytes + 4*SST */
1492 size_t original_nbytes;
1493 int i;
1494
1495 if (p == NULL)
1496 return _PyObject_DebugMallocApi(api, nbytes);
1497
1498 _PyObject_DebugCheckAddressApi(api, p);
1499 bumpserialno();
1500 original_nbytes = read_size_t(q - 2*SST);
1501 total = nbytes + 4*SST;
1502 if (total < nbytes)
1503 /* overflow: can't represent total as a size_t */
1504 return NULL;
1505
1506 if (nbytes < original_nbytes) {
1507 /* shrinking: mark old extra memory dead */
1508 memset(q + nbytes, DEADBYTE, original_nbytes - nbytes + 2*SST);
1509 }
1510
1511 /* Resize and add decorations. We may get a new pointer here, in which
1512 * case we didn't get the chance to mark the old memory with DEADBYTE,
1513 * but we live with that.
1514 */
1515 q = (uchar *)PyObject_Realloc(q - 2*SST, total);
1516 if (q == NULL)
1517 return NULL;
1518
1519 write_size_t(q, nbytes);
1520 assert(q[SST] == (uchar)api);
1521 for (i = 1; i < SST; ++i)
1522 assert(q[SST + i] == FORBIDDENBYTE);
1523 q += 2*SST;
1524 tail = q + nbytes;
1525 memset(tail, FORBIDDENBYTE, SST);
1526 write_size_t(tail + SST, serialno);
1527
1528 if (nbytes > original_nbytes) {
1529 /* growing: mark new extra memory clean */
1530 memset(q + original_nbytes, CLEANBYTE,
1531 nbytes - original_nbytes);
1532 }
1533
1534 return q;
1535 }
1536
1537 /* Check the forbidden bytes on both ends of the memory allocated for p.
1538 * If anything is wrong, print info to stderr via _PyObject_DebugDumpAddress,
1539 * and call Py_FatalError to kill the program.
1540 * The API id, is also checked.
1541 */
1542 void
1543 _PyObject_DebugCheckAddressApi(char api, const void *p)
1544 {
1545 const uchar *q = (const uchar *)p;
1546 char msgbuf[64];
1547 char *msg;
1548 size_t nbytes;
1549 const uchar *tail;
1550 int i;
1551 char id;
1552
1553 if (p == NULL) {
1554 msg = "didn't expect a NULL pointer";
1555 goto error;
1556 }
1557
1558 /* Check the API id */
1559 id = (char)q[-SST];
1560 if (id != api) {
1561 msg = msgbuf;
1562 snprintf(msg, sizeof(msgbuf), "bad ID: Allocated using API '%c', verified using API '%c'", id, api);
1563 msgbuf[sizeof(msgbuf)-1] = 0;
1564 goto error;
1565 }
1566
1567 /* Check the stuff at the start of p first: if there's underwrite
1568 * corruption, the number-of-bytes field may be nuts, and checking
1569 * the tail could lead to a segfault then.
1570 */
1571 for (i = SST-1; i >= 1; --i) {
1572 if (*(q-i) != FORBIDDENBYTE) {
1573 msg = "bad leading pad byte";
1574 goto error;
1575 }
1576 }
1577
1578 nbytes = read_size_t(q - 2*SST);
1579 tail = q + nbytes;
1580 for (i = 0; i < SST; ++i) {
1581 if (tail[i] != FORBIDDENBYTE) {
1582 msg = "bad trailing pad byte";
1583 goto error;
1584 }
1585 }
1586
1587 return;
1588
1589 error:
1590 _PyObject_DebugDumpAddress(p);
1591 Py_FatalError(msg);
1592 }
1593
1594 /* Display info to stderr about the memory block at p. */
1595 void
1596 _PyObject_DebugDumpAddress(const void *p)
1597 {
1598 const uchar *q = (const uchar *)p;
1599 const uchar *tail;
1600 size_t nbytes, serial;
1601 int i;
1602 int ok;
1603 char id;
1604
1605 fprintf(stderr, "Debug memory block at address p=%p:", p);
1606 if (p == NULL) {
1607 fprintf(stderr, "\n");
1608 return;
1609 }
1610 id = (char)q[-SST];
1611 fprintf(stderr, " API '%c'\n", id);
1612
1613 nbytes = read_size_t(q - 2*SST);
1614 fprintf(stderr, " %" PY_FORMAT_SIZE_T "u bytes originally "
1615 "requested\n", nbytes);
1616
1617 /* In case this is nuts, check the leading pad bytes first. */
1618 fprintf(stderr, " The %d pad bytes at p-%d are ", SST-1, SST-1);
1619 ok = 1;
1620 for (i = 1; i <= SST-1; ++i) {
1621 if (*(q-i) != FORBIDDENBYTE) {
1622 ok = 0;
1623 break;
1624 }
1625 }
1626 if (ok)
1627 fputs("FORBIDDENBYTE, as expected.\n", stderr);
1628 else {
1629 fprintf(stderr, "not all FORBIDDENBYTE (0x%02x):\n",
1630 FORBIDDENBYTE);
1631 for (i = SST-1; i >= 1; --i) {
1632 const uchar byte = *(q-i);
1633 fprintf(stderr, " at p-%d: 0x%02x", i, byte);
1634 if (byte != FORBIDDENBYTE)
1635 fputs(" *** OUCH", stderr);
1636 fputc('\n', stderr);
1637 }
1638
1639 fputs(" Because memory is corrupted at the start, the "
1640 "count of bytes requested\n"
1641 " may be bogus, and checking the trailing pad "
1642 "bytes may segfault.\n", stderr);
1643 }
1644
1645 tail = q + nbytes;
1646 fprintf(stderr, " The %d pad bytes at tail=%p are ", SST, tail);
1647 ok = 1;
1648 for (i = 0; i < SST; ++i) {
1649 if (tail[i] != FORBIDDENBYTE) {
1650 ok = 0;
1651 break;
1652 }
1653 }
1654 if (ok)
1655 fputs("FORBIDDENBYTE, as expected.\n", stderr);
1656 else {
1657 fprintf(stderr, "not all FORBIDDENBYTE (0x%02x):\n",
1658 FORBIDDENBYTE);
1659 for (i = 0; i < SST; ++i) {
1660 const uchar byte = tail[i];
1661 fprintf(stderr, " at tail+%d: 0x%02x",
1662 i, byte);
1663 if (byte != FORBIDDENBYTE)
1664 fputs(" *** OUCH", stderr);
1665 fputc('\n', stderr);
1666 }
1667 }
1668
1669 serial = read_size_t(tail + SST);
1670 fprintf(stderr, " The block was made by call #%" PY_FORMAT_SIZE_T
1671 "u to debug malloc/realloc.\n", serial);
1672
1673 if (nbytes > 0) {
1674 i = 0;
1675 fputs(" Data at p:", stderr);
1676 /* print up to 8 bytes at the start */
1677 while (q < tail && i < 8) {
1678 fprintf(stderr, " %02x", *q);
1679 ++i;
1680 ++q;
1681 }
1682 /* and up to 8 at the end */
1683 if (q < tail) {
1684 if (tail - q > 8) {
1685 fputs(" ...", stderr);
1686 q = tail - 8;
1687 }
1688 while (q < tail) {
1689 fprintf(stderr, " %02x", *q);
1690 ++q;
1691 }
1692 }
1693 fputc('\n', stderr);
1694 }
1695 }
1696
1697 static size_t
1698 printone(const char* msg, size_t value)
1699 {
1700 int i, k;
1701 char buf[100];
1702 size_t origvalue = value;
1703
1704 fputs(msg, stderr);
1705 for (i = (int)strlen(msg); i < 35; ++i)
1706 fputc(' ', stderr);
1707 fputc('=', stderr);
1708
1709 /* Write the value with commas. */
1710 i = 22;
1711 buf[i--] = '\0';
1712 buf[i--] = '\n';
1713 k = 3;
1714 do {
1715 size_t nextvalue = value / 10;
1716 uint digit = (uint)(value - nextvalue * 10);
1717 value = nextvalue;
1718 buf[i--] = (char)(digit + '0');
1719 --k;
1720 if (k == 0 && value && i >= 0) {
1721 k = 3;
1722 buf[i--] = ',';
1723 }
1724 } while (value && i >= 0);
1725
1726 while (i >= 0)
1727 buf[i--] = ' ';
1728 fputs(buf, stderr);
1729
1730 return origvalue;
1731 }
1732
1733 /* Print summary info to stderr about the state of pymalloc's structures.
1734 * In Py_DEBUG mode, also perform some expensive internal consistency
1735 * checks.
1736 */
1737 void
1738 _PyObject_DebugMallocStats(void)
1739 {
1740 uint i;
1741 const uint numclasses = SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT;
1742 /* # of pools, allocated blocks, and free blocks per class index */
1743 size_t numpools[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT];
1744 size_t numblocks[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT];
1745 size_t numfreeblocks[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT];
1746 /* total # of allocated bytes in used and full pools */
1747 size_t allocated_bytes = 0;
1748 /* total # of available bytes in used pools */
1749 size_t available_bytes = 0;
1750 /* # of free pools + pools not yet carved out of current arena */
1751 uint numfreepools = 0;
1752 /* # of bytes for arena alignment padding */
1753 size_t arena_alignment = 0;
1754 /* # of bytes in used and full pools used for pool_headers */
1755 size_t pool_header_bytes = 0;
1756 /* # of bytes in used and full pools wasted due to quantization,
1757 * i.e. the necessarily leftover space at the ends of used and
1758 * full pools.
1759 */
1760 size_t quantization = 0;
1761 /* # of arenas actually allocated. */
1762 size_t narenas = 0;
1763 /* running total -- should equal narenas * ARENA_SIZE */
1764 size_t total;
1765 char buf[128];
1766
1767 fprintf(stderr, "Small block threshold = %d, in %u size classes.\n",
1768 SMALL_REQUEST_THRESHOLD, numclasses);
1769
1770 for (i = 0; i < numclasses; ++i)
1771 numpools[i] = numblocks[i] = numfreeblocks[i] = 0;
1772
1773 /* Because full pools aren't linked to from anything, it's easiest
1774 * to march over all the arenas. If we're lucky, most of the memory
1775 * will be living in full pools -- would be a shame to miss them.
1776 */
1777 for (i = 0; i < maxarenas; ++i) {
1778 uint j;
1779 uptr base = arenas[i].address;
1780
1781 /* Skip arenas which are not allocated. */
1782 if (arenas[i].address == (uptr)NULL)
1783 continue;
1784 narenas += 1;
1785
1786 numfreepools += arenas[i].nfreepools;
1787
1788 /* round up to pool alignment */
1789 if (base & (uptr)POOL_SIZE_MASK) {
1790 arena_alignment += POOL_SIZE;
1791 base &= ~(uptr)POOL_SIZE_MASK;
1792 base += POOL_SIZE;
1793 }
1794
1795 /* visit every pool in the arena */
1796 assert(base <= (uptr) arenas[i].pool_address);
1797 for (j = 0;
1798 base < (uptr) arenas[i].pool_address;
1799 ++j, base += POOL_SIZE) {
1800 poolp p = (poolp)base;
1801 const uint sz = p->szidx;
1802 uint freeblocks;
1803
1804 if (p->ref.count == 0) {
1805 /* currently unused */
1806 assert(pool_is_in_list(p, arenas[i].freepools));
1807 continue;
1808 }
1809 ++numpools[sz];
1810 numblocks[sz] += p->ref.count;
1811 freeblocks = NUMBLOCKS(sz) - p->ref.count;
1812 numfreeblocks[sz] += freeblocks;
1813 #ifdef Py_DEBUG
1814 if (freeblocks > 0)
1815 assert(pool_is_in_list(p, usedpools[sz + sz]));
1816 #endif
1817 }
1818 }
1819 assert(narenas == narenas_currently_allocated);
1820
1821 fputc('\n', stderr);
1822 fputs("class size num pools blocks in use avail blocks\n"
1823 "----- ---- --------- ------------- ------------\n",
1824 stderr);
1825
1826 for (i = 0; i < numclasses; ++i) {
1827 size_t p = numpools[i];
1828 size_t b = numblocks[i];
1829 size_t f = numfreeblocks[i];
1830 uint size = INDEX2SIZE(i);
1831 if (p == 0) {
1832 assert(b == 0 && f == 0);
1833 continue;
1834 }
1835 fprintf(stderr, "%5u %6u "
1836 "%11" PY_FORMAT_SIZE_T "u "
1837 "%15" PY_FORMAT_SIZE_T "u "
1838 "%13" PY_FORMAT_SIZE_T "u\n",
1839 i, size, p, b, f);
1840 allocated_bytes += b * size;
1841 available_bytes += f * size;
1842 pool_header_bytes += p * POOL_OVERHEAD;
1843 quantization += p * ((POOL_SIZE - POOL_OVERHEAD) % size);
1844 }
1845 fputc('\n', stderr);
1846 (void)printone("# times object malloc called", serialno);
1847
1848 (void)printone("# arenas allocated total", ntimes_arena_allocated);
1849 (void)printone("# arenas reclaimed", ntimes_arena_allocated - narenas);
1850 (void)printone("# arenas highwater mark", narenas_highwater);
1851 (void)printone("# arenas allocated current", narenas);
1852
1853 PyOS_snprintf(buf, sizeof(buf),
1854 "%" PY_FORMAT_SIZE_T "u arenas * %d bytes/arena",
1855 narenas, ARENA_SIZE);
1856 (void)printone(buf, narenas * ARENA_SIZE);
1857
1858 fputc('\n', stderr);
1859
1860 total = printone("# bytes in allocated blocks", allocated_bytes);
1861 total += printone("# bytes in available blocks", available_bytes);
1862
1863 PyOS_snprintf(buf, sizeof(buf),
1864 "%u unused pools * %d bytes", numfreepools, POOL_SIZE);
1865 total += printone(buf, (size_t)numfreepools * POOL_SIZE);
1866
1867 total += printone("# bytes lost to pool headers", pool_header_bytes);
1868 total += printone("# bytes lost to quantization", quantization);
1869 total += printone("# bytes lost to arena alignment", arena_alignment);
1870 (void)printone("Total", total);
1871 }
1872
1873 #endif /* PYMALLOC_DEBUG */
1874
1875 #ifdef Py_USING_MEMORY_DEBUGGER
1876 /* Make this function last so gcc won't inline it since the definition is
1877 * after the reference.
1878 */
1879 int
1880 Py_ADDRESS_IN_RANGE(void *P, poolp pool)
1881 {
1882 uint arenaindex_temp = pool->arenaindex;
1883
1884 return arenaindex_temp < maxarenas &&
1885 (uptr)P - arenas[arenaindex_temp].address < (uptr)ARENA_SIZE &&
1886 arenas[arenaindex_temp].address != 0;
1887 }
1888 #endif