]> git.proxmox.com Git - mirror_edk2.git/blob - AppPkg/Applications/Python/Python-2.7.2/Python/compile.c
EmbeddedPkg: Extend NvVarStoreFormattedLib LIBRARY_CLASS
[mirror_edk2.git] / AppPkg / Applications / Python / Python-2.7.2 / Python / compile.c
1 /*
2 * This file compiles an abstract syntax tree (AST) into Python bytecode.
3 *
4 * The primary entry point is PyAST_Compile(), which returns a
5 * PyCodeObject. The compiler makes several passes to build the code
6 * object:
7 * 1. Checks for future statements. See future.c
8 * 2. Builds a symbol table. See symtable.c.
9 * 3. Generate code for basic blocks. See compiler_mod() in this file.
10 * 4. Assemble the basic blocks into final code. See assemble() in
11 * this file.
12 * 5. Optimize the byte code (peephole optimizations). See peephole.c
13 *
14 * Note that compiler_mod() suggests module, but the module ast type
15 * (mod_ty) has cases for expressions and interactive statements.
16 *
17 * CAUTION: The VISIT_* macros abort the current function when they
18 * encounter a problem. So don't invoke them when there is memory
19 * which needs to be released. Code blocks are OK, as the compiler
20 * structure takes care of releasing those. Use the arena to manage
21 * objects.
22 */
23
24 #include "Python.h"
25
26 #include "Python-ast.h"
27 #include "node.h"
28 #include "pyarena.h"
29 #include "ast.h"
30 #include "code.h"
31 #include "compile.h"
32 #include "symtable.h"
33 #include "opcode.h"
34
35 int Py_OptimizeFlag = 0;
36
37 #define DEFAULT_BLOCK_SIZE 16
38 #define DEFAULT_BLOCKS 8
39 #define DEFAULT_CODE_SIZE 128
40 #define DEFAULT_LNOTAB_SIZE 16
41
42 #define COMP_GENEXP 0
43 #define COMP_SETCOMP 1
44 #define COMP_DICTCOMP 2
45
46 struct instr {
47 unsigned i_jabs : 1;
48 unsigned i_jrel : 1;
49 unsigned i_hasarg : 1;
50 unsigned char i_opcode;
51 int i_oparg;
52 struct basicblock_ *i_target; /* target block (if jump instruction) */
53 int i_lineno;
54 };
55
56 typedef struct basicblock_ {
57 /* Each basicblock in a compilation unit is linked via b_list in the
58 reverse order that the block are allocated. b_list points to the next
59 block, not to be confused with b_next, which is next by control flow. */
60 struct basicblock_ *b_list;
61 /* number of instructions used */
62 int b_iused;
63 /* length of instruction array (b_instr) */
64 int b_ialloc;
65 /* pointer to an array of instructions, initially NULL */
66 struct instr *b_instr;
67 /* If b_next is non-NULL, it is a pointer to the next
68 block reached by normal control flow. */
69 struct basicblock_ *b_next;
70 /* b_seen is used to perform a DFS of basicblocks. */
71 unsigned b_seen : 1;
72 /* b_return is true if a RETURN_VALUE opcode is inserted. */
73 unsigned b_return : 1;
74 /* depth of stack upon entry of block, computed by stackdepth() */
75 int b_startdepth;
76 /* instruction offset for block, computed by assemble_jump_offsets() */
77 int b_offset;
78 } basicblock;
79
80 /* fblockinfo tracks the current frame block.
81
82 A frame block is used to handle loops, try/except, and try/finally.
83 It's called a frame block to distinguish it from a basic block in the
84 compiler IR.
85 */
86
87 enum fblocktype { LOOP, EXCEPT, FINALLY_TRY, FINALLY_END };
88
89 struct fblockinfo {
90 enum fblocktype fb_type;
91 basicblock *fb_block;
92 };
93
94 /* The following items change on entry and exit of code blocks.
95 They must be saved and restored when returning to a block.
96 */
97 struct compiler_unit {
98 PySTEntryObject *u_ste;
99
100 PyObject *u_name;
101 /* The following fields are dicts that map objects to
102 the index of them in co_XXX. The index is used as
103 the argument for opcodes that refer to those collections.
104 */
105 PyObject *u_consts; /* all constants */
106 PyObject *u_names; /* all names */
107 PyObject *u_varnames; /* local variables */
108 PyObject *u_cellvars; /* cell variables */
109 PyObject *u_freevars; /* free variables */
110
111 PyObject *u_private; /* for private name mangling */
112
113 int u_argcount; /* number of arguments for block */
114 /* Pointer to the most recently allocated block. By following b_list
115 members, you can reach all early allocated blocks. */
116 basicblock *u_blocks;
117 basicblock *u_curblock; /* pointer to current block */
118
119 int u_nfblocks;
120 struct fblockinfo u_fblock[CO_MAXBLOCKS];
121
122 int u_firstlineno; /* the first lineno of the block */
123 int u_lineno; /* the lineno for the current stmt */
124 bool u_lineno_set; /* boolean to indicate whether instr
125 has been generated with current lineno */
126 };
127
128 /* This struct captures the global state of a compilation.
129
130 The u pointer points to the current compilation unit, while units
131 for enclosing blocks are stored in c_stack. The u and c_stack are
132 managed by compiler_enter_scope() and compiler_exit_scope().
133 */
134
135 struct compiler {
136 const char *c_filename;
137 struct symtable *c_st;
138 PyFutureFeatures *c_future; /* pointer to module's __future__ */
139 PyCompilerFlags *c_flags;
140
141 int c_interactive; /* true if in interactive mode */
142 int c_nestlevel;
143
144 struct compiler_unit *u; /* compiler state for current block */
145 PyObject *c_stack; /* Python list holding compiler_unit ptrs */
146 PyArena *c_arena; /* pointer to memory allocation arena */
147 };
148
149 static int compiler_enter_scope(struct compiler *, identifier, void *, int);
150 static void compiler_free(struct compiler *);
151 static basicblock *compiler_new_block(struct compiler *);
152 static int compiler_next_instr(struct compiler *, basicblock *);
153 static int compiler_addop(struct compiler *, int);
154 static int compiler_addop_o(struct compiler *, int, PyObject *, PyObject *);
155 static int compiler_addop_i(struct compiler *, int, int);
156 static int compiler_addop_j(struct compiler *, int, basicblock *, int);
157 static basicblock *compiler_use_new_block(struct compiler *);
158 static int compiler_error(struct compiler *, const char *);
159 static int compiler_nameop(struct compiler *, identifier, expr_context_ty);
160
161 static PyCodeObject *compiler_mod(struct compiler *, mod_ty);
162 static int compiler_visit_stmt(struct compiler *, stmt_ty);
163 static int compiler_visit_keyword(struct compiler *, keyword_ty);
164 static int compiler_visit_expr(struct compiler *, expr_ty);
165 static int compiler_augassign(struct compiler *, stmt_ty);
166 static int compiler_visit_slice(struct compiler *, slice_ty,
167 expr_context_ty);
168
169 static int compiler_push_fblock(struct compiler *, enum fblocktype,
170 basicblock *);
171 static void compiler_pop_fblock(struct compiler *, enum fblocktype,
172 basicblock *);
173 /* Returns true if there is a loop on the fblock stack. */
174 static int compiler_in_loop(struct compiler *);
175
176 static int inplace_binop(struct compiler *, operator_ty);
177 static int expr_constant(expr_ty e);
178
179 static int compiler_with(struct compiler *, stmt_ty);
180
181 static PyCodeObject *assemble(struct compiler *, int addNone);
182 static PyObject *__doc__;
183
184 #define COMPILER_CAPSULE_NAME_COMPILER_UNIT "compile.c compiler unit"
185
186 PyObject *
187 _Py_Mangle(PyObject *privateobj, PyObject *ident)
188 {
189 /* Name mangling: __private becomes _classname__private.
190 This is independent from how the name is used. */
191 const char *p, *name = PyString_AsString(ident);
192 char *buffer;
193 size_t nlen, plen;
194 if (privateobj == NULL || !PyString_Check(privateobj) ||
195 name == NULL || name[0] != '_' || name[1] != '_') {
196 Py_INCREF(ident);
197 return ident;
198 }
199 p = PyString_AsString(privateobj);
200 nlen = strlen(name);
201 /* Don't mangle __id__ or names with dots.
202
203 The only time a name with a dot can occur is when
204 we are compiling an import statement that has a
205 package name.
206
207 TODO(jhylton): Decide whether we want to support
208 mangling of the module name, e.g. __M.X.
209 */
210 if ((name[nlen-1] == '_' && name[nlen-2] == '_')
211 || strchr(name, '.')) {
212 Py_INCREF(ident);
213 return ident; /* Don't mangle __whatever__ */
214 }
215 /* Strip leading underscores from class name */
216 while (*p == '_')
217 p++;
218 if (*p == '\0') {
219 Py_INCREF(ident);
220 return ident; /* Don't mangle if class is just underscores */
221 }
222 plen = strlen(p);
223
224 assert(1 <= PY_SSIZE_T_MAX - nlen);
225 assert(1 + nlen <= PY_SSIZE_T_MAX - plen);
226
227 ident = PyString_FromStringAndSize(NULL, 1 + nlen + plen);
228 if (!ident)
229 return 0;
230 /* ident = "_" + p[:plen] + name # i.e. 1+plen+nlen bytes */
231 buffer = PyString_AS_STRING(ident);
232 buffer[0] = '_';
233 strncpy(buffer+1, p, plen);
234 strcpy(buffer+1+plen, name);
235 return ident;
236 }
237
238 static int
239 compiler_init(struct compiler *c)
240 {
241 memset(c, 0, sizeof(struct compiler));
242
243 c->c_stack = PyList_New(0);
244 if (!c->c_stack)
245 return 0;
246
247 return 1;
248 }
249
250 PyCodeObject *
251 PyAST_Compile(mod_ty mod, const char *filename, PyCompilerFlags *flags,
252 PyArena *arena)
253 {
254 struct compiler c;
255 PyCodeObject *co = NULL;
256 PyCompilerFlags local_flags;
257 int merged;
258
259 if (!__doc__) {
260 __doc__ = PyString_InternFromString("__doc__");
261 if (!__doc__)
262 return NULL;
263 }
264
265 if (!compiler_init(&c))
266 return NULL;
267 c.c_filename = filename;
268 c.c_arena = arena;
269 c.c_future = PyFuture_FromAST(mod, filename);
270 if (c.c_future == NULL)
271 goto finally;
272 if (!flags) {
273 local_flags.cf_flags = 0;
274 flags = &local_flags;
275 }
276 merged = c.c_future->ff_features | flags->cf_flags;
277 c.c_future->ff_features = merged;
278 flags->cf_flags = merged;
279 c.c_flags = flags;
280 c.c_nestlevel = 0;
281
282 c.c_st = PySymtable_Build(mod, filename, c.c_future);
283 if (c.c_st == NULL) {
284 if (!PyErr_Occurred())
285 PyErr_SetString(PyExc_SystemError, "no symtable");
286 goto finally;
287 }
288
289 co = compiler_mod(&c, mod);
290
291 finally:
292 compiler_free(&c);
293 assert(co || PyErr_Occurred());
294 return co;
295 }
296
297 PyCodeObject *
298 PyNode_Compile(struct _node *n, const char *filename)
299 {
300 PyCodeObject *co = NULL;
301 mod_ty mod;
302 PyArena *arena = PyArena_New();
303 if (!arena)
304 return NULL;
305 mod = PyAST_FromNode(n, NULL, filename, arena);
306 if (mod)
307 co = PyAST_Compile(mod, filename, NULL, arena);
308 PyArena_Free(arena);
309 return co;
310 }
311
312 static void
313 compiler_free(struct compiler *c)
314 {
315 if (c->c_st)
316 PySymtable_Free(c->c_st);
317 if (c->c_future)
318 PyObject_Free(c->c_future);
319 Py_DECREF(c->c_stack);
320 }
321
322 static PyObject *
323 list2dict(PyObject *list)
324 {
325 Py_ssize_t i, n;
326 PyObject *v, *k;
327 PyObject *dict = PyDict_New();
328 if (!dict) return NULL;
329
330 n = PyList_Size(list);
331 for (i = 0; i < n; i++) {
332 v = PyInt_FromLong(i);
333 if (!v) {
334 Py_DECREF(dict);
335 return NULL;
336 }
337 k = PyList_GET_ITEM(list, i);
338 k = PyTuple_Pack(2, k, k->ob_type);
339 if (k == NULL || PyDict_SetItem(dict, k, v) < 0) {
340 Py_XDECREF(k);
341 Py_DECREF(v);
342 Py_DECREF(dict);
343 return NULL;
344 }
345 Py_DECREF(k);
346 Py_DECREF(v);
347 }
348 return dict;
349 }
350
351 /* Return new dict containing names from src that match scope(s).
352
353 src is a symbol table dictionary. If the scope of a name matches
354 either scope_type or flag is set, insert it into the new dict. The
355 values are integers, starting at offset and increasing by one for
356 each key.
357 */
358
359 static PyObject *
360 dictbytype(PyObject *src, int scope_type, int flag, int offset)
361 {
362 Py_ssize_t pos = 0, i = offset, scope;
363 PyObject *k, *v, *dest = PyDict_New();
364
365 assert(offset >= 0);
366 if (dest == NULL)
367 return NULL;
368
369 while (PyDict_Next(src, &pos, &k, &v)) {
370 /* XXX this should probably be a macro in symtable.h */
371 assert(PyInt_Check(v));
372 scope = (PyInt_AS_LONG(v) >> SCOPE_OFF) & SCOPE_MASK;
373
374 if (scope == scope_type || PyInt_AS_LONG(v) & flag) {
375 PyObject *tuple, *item = PyInt_FromLong(i);
376 if (item == NULL) {
377 Py_DECREF(dest);
378 return NULL;
379 }
380 i++;
381 tuple = PyTuple_Pack(2, k, k->ob_type);
382 if (!tuple || PyDict_SetItem(dest, tuple, item) < 0) {
383 Py_DECREF(item);
384 Py_DECREF(dest);
385 Py_XDECREF(tuple);
386 return NULL;
387 }
388 Py_DECREF(item);
389 Py_DECREF(tuple);
390 }
391 }
392 return dest;
393 }
394
395 static void
396 compiler_unit_check(struct compiler_unit *u)
397 {
398 basicblock *block;
399 for (block = u->u_blocks; block != NULL; block = block->b_list) {
400 assert((void *)block != (void *)0xcbcbcbcb);
401 assert((void *)block != (void *)0xfbfbfbfb);
402 assert((void *)block != (void *)0xdbdbdbdb);
403 if (block->b_instr != NULL) {
404 assert(block->b_ialloc > 0);
405 assert(block->b_iused > 0);
406 assert(block->b_ialloc >= block->b_iused);
407 }
408 else {
409 assert (block->b_iused == 0);
410 assert (block->b_ialloc == 0);
411 }
412 }
413 }
414
415 static void
416 compiler_unit_free(struct compiler_unit *u)
417 {
418 basicblock *b, *next;
419
420 compiler_unit_check(u);
421 b = u->u_blocks;
422 while (b != NULL) {
423 if (b->b_instr)
424 PyObject_Free((void *)b->b_instr);
425 next = b->b_list;
426 PyObject_Free((void *)b);
427 b = next;
428 }
429 Py_CLEAR(u->u_ste);
430 Py_CLEAR(u->u_name);
431 Py_CLEAR(u->u_consts);
432 Py_CLEAR(u->u_names);
433 Py_CLEAR(u->u_varnames);
434 Py_CLEAR(u->u_freevars);
435 Py_CLEAR(u->u_cellvars);
436 Py_CLEAR(u->u_private);
437 PyObject_Free(u);
438 }
439
440 static int
441 compiler_enter_scope(struct compiler *c, identifier name, void *key,
442 int lineno)
443 {
444 struct compiler_unit *u;
445
446 u = (struct compiler_unit *)PyObject_Malloc(sizeof(
447 struct compiler_unit));
448 if (!u) {
449 PyErr_NoMemory();
450 return 0;
451 }
452 memset(u, 0, sizeof(struct compiler_unit));
453 u->u_argcount = 0;
454 u->u_ste = PySymtable_Lookup(c->c_st, key);
455 if (!u->u_ste) {
456 compiler_unit_free(u);
457 return 0;
458 }
459 Py_INCREF(name);
460 u->u_name = name;
461 u->u_varnames = list2dict(u->u_ste->ste_varnames);
462 u->u_cellvars = dictbytype(u->u_ste->ste_symbols, CELL, 0, 0);
463 if (!u->u_varnames || !u->u_cellvars) {
464 compiler_unit_free(u);
465 return 0;
466 }
467
468 u->u_freevars = dictbytype(u->u_ste->ste_symbols, FREE, DEF_FREE_CLASS,
469 PyDict_Size(u->u_cellvars));
470 if (!u->u_freevars) {
471 compiler_unit_free(u);
472 return 0;
473 }
474
475 u->u_blocks = NULL;
476 u->u_nfblocks = 0;
477 u->u_firstlineno = lineno;
478 u->u_lineno = 0;
479 u->u_lineno_set = false;
480 u->u_consts = PyDict_New();
481 if (!u->u_consts) {
482 compiler_unit_free(u);
483 return 0;
484 }
485 u->u_names = PyDict_New();
486 if (!u->u_names) {
487 compiler_unit_free(u);
488 return 0;
489 }
490
491 u->u_private = NULL;
492
493 /* Push the old compiler_unit on the stack. */
494 if (c->u) {
495 PyObject *capsule = PyCapsule_New(c->u, COMPILER_CAPSULE_NAME_COMPILER_UNIT, NULL);
496 if (!capsule || PyList_Append(c->c_stack, capsule) < 0) {
497 Py_XDECREF(capsule);
498 compiler_unit_free(u);
499 return 0;
500 }
501 Py_DECREF(capsule);
502 u->u_private = c->u->u_private;
503 Py_XINCREF(u->u_private);
504 }
505 c->u = u;
506
507 c->c_nestlevel++;
508 if (compiler_use_new_block(c) == NULL)
509 return 0;
510
511 return 1;
512 }
513
514 static void
515 compiler_exit_scope(struct compiler *c)
516 {
517 int n;
518 PyObject *capsule;
519
520 c->c_nestlevel--;
521 compiler_unit_free(c->u);
522 /* Restore c->u to the parent unit. */
523 n = PyList_GET_SIZE(c->c_stack) - 1;
524 if (n >= 0) {
525 capsule = PyList_GET_ITEM(c->c_stack, n);
526 c->u = (struct compiler_unit *)PyCapsule_GetPointer(capsule, COMPILER_CAPSULE_NAME_COMPILER_UNIT);
527 assert(c->u);
528 /* we are deleting from a list so this really shouldn't fail */
529 if (PySequence_DelItem(c->c_stack, n) < 0)
530 Py_FatalError("compiler_exit_scope()");
531 compiler_unit_check(c->u);
532 }
533 else
534 c->u = NULL;
535
536 }
537
538 /* Allocate a new block and return a pointer to it.
539 Returns NULL on error.
540 */
541
542 static basicblock *
543 compiler_new_block(struct compiler *c)
544 {
545 basicblock *b;
546 struct compiler_unit *u;
547
548 u = c->u;
549 b = (basicblock *)PyObject_Malloc(sizeof(basicblock));
550 if (b == NULL) {
551 PyErr_NoMemory();
552 return NULL;
553 }
554 memset((void *)b, 0, sizeof(basicblock));
555 /* Extend the singly linked list of blocks with new block. */
556 b->b_list = u->u_blocks;
557 u->u_blocks = b;
558 return b;
559 }
560
561 static basicblock *
562 compiler_use_new_block(struct compiler *c)
563 {
564 basicblock *block = compiler_new_block(c);
565 if (block == NULL)
566 return NULL;
567 c->u->u_curblock = block;
568 return block;
569 }
570
571 static basicblock *
572 compiler_next_block(struct compiler *c)
573 {
574 basicblock *block = compiler_new_block(c);
575 if (block == NULL)
576 return NULL;
577 c->u->u_curblock->b_next = block;
578 c->u->u_curblock = block;
579 return block;
580 }
581
582 static basicblock *
583 compiler_use_next_block(struct compiler *c, basicblock *block)
584 {
585 assert(block != NULL);
586 c->u->u_curblock->b_next = block;
587 c->u->u_curblock = block;
588 return block;
589 }
590
591 /* Returns the offset of the next instruction in the current block's
592 b_instr array. Resizes the b_instr as necessary.
593 Returns -1 on failure.
594 */
595
596 static int
597 compiler_next_instr(struct compiler *c, basicblock *b)
598 {
599 assert(b != NULL);
600 if (b->b_instr == NULL) {
601 b->b_instr = (struct instr *)PyObject_Malloc(
602 sizeof(struct instr) * DEFAULT_BLOCK_SIZE);
603 if (b->b_instr == NULL) {
604 PyErr_NoMemory();
605 return -1;
606 }
607 b->b_ialloc = DEFAULT_BLOCK_SIZE;
608 memset((char *)b->b_instr, 0,
609 sizeof(struct instr) * DEFAULT_BLOCK_SIZE);
610 }
611 else if (b->b_iused == b->b_ialloc) {
612 struct instr *tmp;
613 size_t oldsize, newsize;
614 oldsize = b->b_ialloc * sizeof(struct instr);
615 newsize = oldsize << 1;
616
617 if (oldsize > (PY_SIZE_MAX >> 1)) {
618 PyErr_NoMemory();
619 return -1;
620 }
621
622 if (newsize == 0) {
623 PyErr_NoMemory();
624 return -1;
625 }
626 b->b_ialloc <<= 1;
627 tmp = (struct instr *)PyObject_Realloc(
628 (void *)b->b_instr, newsize);
629 if (tmp == NULL) {
630 PyErr_NoMemory();
631 return -1;
632 }
633 b->b_instr = tmp;
634 memset((char *)b->b_instr + oldsize, 0, newsize - oldsize);
635 }
636 return b->b_iused++;
637 }
638
639 /* Set the i_lineno member of the instruction at offset off if the
640 line number for the current expression/statement has not
641 already been set. If it has been set, the call has no effect.
642
643 The line number is reset in the following cases:
644 - when entering a new scope
645 - on each statement
646 - on each expression that start a new line
647 - before the "except" clause
648 - before the "for" and "while" expressions
649 */
650
651 static void
652 compiler_set_lineno(struct compiler *c, int off)
653 {
654 basicblock *b;
655 if (c->u->u_lineno_set)
656 return;
657 c->u->u_lineno_set = true;
658 b = c->u->u_curblock;
659 b->b_instr[off].i_lineno = c->u->u_lineno;
660 }
661
662 static int
663 opcode_stack_effect(int opcode, int oparg)
664 {
665 switch (opcode) {
666 case POP_TOP:
667 return -1;
668 case ROT_TWO:
669 case ROT_THREE:
670 return 0;
671 case DUP_TOP:
672 return 1;
673 case ROT_FOUR:
674 return 0;
675
676 case UNARY_POSITIVE:
677 case UNARY_NEGATIVE:
678 case UNARY_NOT:
679 case UNARY_CONVERT:
680 case UNARY_INVERT:
681 return 0;
682
683 case SET_ADD:
684 case LIST_APPEND:
685 return -1;
686
687 case MAP_ADD:
688 return -2;
689
690 case BINARY_POWER:
691 case BINARY_MULTIPLY:
692 case BINARY_DIVIDE:
693 case BINARY_MODULO:
694 case BINARY_ADD:
695 case BINARY_SUBTRACT:
696 case BINARY_SUBSCR:
697 case BINARY_FLOOR_DIVIDE:
698 case BINARY_TRUE_DIVIDE:
699 return -1;
700 case INPLACE_FLOOR_DIVIDE:
701 case INPLACE_TRUE_DIVIDE:
702 return -1;
703
704 case SLICE+0:
705 return 0;
706 case SLICE+1:
707 return -1;
708 case SLICE+2:
709 return -1;
710 case SLICE+3:
711 return -2;
712
713 case STORE_SLICE+0:
714 return -2;
715 case STORE_SLICE+1:
716 return -3;
717 case STORE_SLICE+2:
718 return -3;
719 case STORE_SLICE+3:
720 return -4;
721
722 case DELETE_SLICE+0:
723 return -1;
724 case DELETE_SLICE+1:
725 return -2;
726 case DELETE_SLICE+2:
727 return -2;
728 case DELETE_SLICE+3:
729 return -3;
730
731 case INPLACE_ADD:
732 case INPLACE_SUBTRACT:
733 case INPLACE_MULTIPLY:
734 case INPLACE_DIVIDE:
735 case INPLACE_MODULO:
736 return -1;
737 case STORE_SUBSCR:
738 return -3;
739 case STORE_MAP:
740 return -2;
741 case DELETE_SUBSCR:
742 return -2;
743
744 case BINARY_LSHIFT:
745 case BINARY_RSHIFT:
746 case BINARY_AND:
747 case BINARY_XOR:
748 case BINARY_OR:
749 return -1;
750 case INPLACE_POWER:
751 return -1;
752 case GET_ITER:
753 return 0;
754
755 case PRINT_EXPR:
756 return -1;
757 case PRINT_ITEM:
758 return -1;
759 case PRINT_NEWLINE:
760 return 0;
761 case PRINT_ITEM_TO:
762 return -2;
763 case PRINT_NEWLINE_TO:
764 return -1;
765 case INPLACE_LSHIFT:
766 case INPLACE_RSHIFT:
767 case INPLACE_AND:
768 case INPLACE_XOR:
769 case INPLACE_OR:
770 return -1;
771 case BREAK_LOOP:
772 return 0;
773 case SETUP_WITH:
774 return 4;
775 case WITH_CLEANUP:
776 return -1; /* XXX Sometimes more */
777 case LOAD_LOCALS:
778 return 1;
779 case RETURN_VALUE:
780 return -1;
781 case IMPORT_STAR:
782 return -1;
783 case EXEC_STMT:
784 return -3;
785 case YIELD_VALUE:
786 return 0;
787
788 case POP_BLOCK:
789 return 0;
790 case END_FINALLY:
791 return -3; /* or -1 or -2 if no exception occurred or
792 return/break/continue */
793 case BUILD_CLASS:
794 return -2;
795
796 case STORE_NAME:
797 return -1;
798 case DELETE_NAME:
799 return 0;
800 case UNPACK_SEQUENCE:
801 return oparg-1;
802 case FOR_ITER:
803 return 1; /* or -1, at end of iterator */
804
805 case STORE_ATTR:
806 return -2;
807 case DELETE_ATTR:
808 return -1;
809 case STORE_GLOBAL:
810 return -1;
811 case DELETE_GLOBAL:
812 return 0;
813 case DUP_TOPX:
814 return oparg;
815 case LOAD_CONST:
816 return 1;
817 case LOAD_NAME:
818 return 1;
819 case BUILD_TUPLE:
820 case BUILD_LIST:
821 case BUILD_SET:
822 return 1-oparg;
823 case BUILD_MAP:
824 return 1;
825 case LOAD_ATTR:
826 return 0;
827 case COMPARE_OP:
828 return -1;
829 case IMPORT_NAME:
830 return -1;
831 case IMPORT_FROM:
832 return 1;
833
834 case JUMP_FORWARD:
835 case JUMP_IF_TRUE_OR_POP: /* -1 if jump not taken */
836 case JUMP_IF_FALSE_OR_POP: /* "" */
837 case JUMP_ABSOLUTE:
838 return 0;
839
840 case POP_JUMP_IF_FALSE:
841 case POP_JUMP_IF_TRUE:
842 return -1;
843
844 case LOAD_GLOBAL:
845 return 1;
846
847 case CONTINUE_LOOP:
848 return 0;
849 case SETUP_LOOP:
850 case SETUP_EXCEPT:
851 case SETUP_FINALLY:
852 return 0;
853
854 case LOAD_FAST:
855 return 1;
856 case STORE_FAST:
857 return -1;
858 case DELETE_FAST:
859 return 0;
860
861 case RAISE_VARARGS:
862 return -oparg;
863 #define NARGS(o) (((o) % 256) + 2*((o) / 256))
864 case CALL_FUNCTION:
865 return -NARGS(oparg);
866 case CALL_FUNCTION_VAR:
867 case CALL_FUNCTION_KW:
868 return -NARGS(oparg)-1;
869 case CALL_FUNCTION_VAR_KW:
870 return -NARGS(oparg)-2;
871 #undef NARGS
872 case MAKE_FUNCTION:
873 return -oparg;
874 case BUILD_SLICE:
875 if (oparg == 3)
876 return -2;
877 else
878 return -1;
879
880 case MAKE_CLOSURE:
881 return -oparg-1;
882 case LOAD_CLOSURE:
883 return 1;
884 case LOAD_DEREF:
885 return 1;
886 case STORE_DEREF:
887 return -1;
888 default:
889 fprintf(stderr, "opcode = %d\n", opcode);
890 Py_FatalError("opcode_stack_effect()");
891
892 }
893 return 0; /* not reachable */
894 }
895
896 /* Add an opcode with no argument.
897 Returns 0 on failure, 1 on success.
898 */
899
900 static int
901 compiler_addop(struct compiler *c, int opcode)
902 {
903 basicblock *b;
904 struct instr *i;
905 int off;
906 off = compiler_next_instr(c, c->u->u_curblock);
907 if (off < 0)
908 return 0;
909 b = c->u->u_curblock;
910 i = &b->b_instr[off];
911 i->i_opcode = opcode;
912 i->i_hasarg = 0;
913 if (opcode == RETURN_VALUE)
914 b->b_return = 1;
915 compiler_set_lineno(c, off);
916 return 1;
917 }
918
919 static int
920 compiler_add_o(struct compiler *c, PyObject *dict, PyObject *o)
921 {
922 PyObject *t, *v;
923 Py_ssize_t arg;
924 double d;
925
926 /* necessary to make sure types aren't coerced (e.g., int and long) */
927 /* _and_ to distinguish 0.0 from -0.0 e.g. on IEEE platforms */
928 if (PyFloat_Check(o)) {
929 d = PyFloat_AS_DOUBLE(o);
930 /* all we need is to make the tuple different in either the 0.0
931 * or -0.0 case from all others, just to avoid the "coercion".
932 */
933 if (d == 0.0 && copysign(1.0, d) < 0.0)
934 t = PyTuple_Pack(3, o, o->ob_type, Py_None);
935 else
936 t = PyTuple_Pack(2, o, o->ob_type);
937 }
938 #ifndef WITHOUT_COMPLEX
939 else if (PyComplex_Check(o)) {
940 Py_complex z;
941 int real_negzero, imag_negzero;
942 /* For the complex case we must make complex(x, 0.)
943 different from complex(x, -0.) and complex(0., y)
944 different from complex(-0., y), for any x and y.
945 All four complex zeros must be distinguished.*/
946 z = PyComplex_AsCComplex(o);
947 real_negzero = z.real == 0.0 && copysign(1.0, z.real) < 0.0;
948 imag_negzero = z.imag == 0.0 && copysign(1.0, z.imag) < 0.0;
949 if (real_negzero && imag_negzero) {
950 t = PyTuple_Pack(5, o, o->ob_type,
951 Py_None, Py_None, Py_None);
952 }
953 else if (imag_negzero) {
954 t = PyTuple_Pack(4, o, o->ob_type, Py_None, Py_None);
955 }
956 else if (real_negzero) {
957 t = PyTuple_Pack(3, o, o->ob_type, Py_None);
958 }
959 else {
960 t = PyTuple_Pack(2, o, o->ob_type);
961 }
962 }
963 #endif /* WITHOUT_COMPLEX */
964 else {
965 t = PyTuple_Pack(2, o, o->ob_type);
966 }
967 if (t == NULL)
968 return -1;
969
970 v = PyDict_GetItem(dict, t);
971 if (!v) {
972 arg = PyDict_Size(dict);
973 v = PyInt_FromLong(arg);
974 if (!v) {
975 Py_DECREF(t);
976 return -1;
977 }
978 if (PyDict_SetItem(dict, t, v) < 0) {
979 Py_DECREF(t);
980 Py_DECREF(v);
981 return -1;
982 }
983 Py_DECREF(v);
984 }
985 else
986 arg = PyInt_AsLong(v);
987 Py_DECREF(t);
988 return arg;
989 }
990
991 static int
992 compiler_addop_o(struct compiler *c, int opcode, PyObject *dict,
993 PyObject *o)
994 {
995 int arg = compiler_add_o(c, dict, o);
996 if (arg < 0)
997 return 0;
998 return compiler_addop_i(c, opcode, arg);
999 }
1000
1001 static int
1002 compiler_addop_name(struct compiler *c, int opcode, PyObject *dict,
1003 PyObject *o)
1004 {
1005 int arg;
1006 PyObject *mangled = _Py_Mangle(c->u->u_private, o);
1007 if (!mangled)
1008 return 0;
1009 arg = compiler_add_o(c, dict, mangled);
1010 Py_DECREF(mangled);
1011 if (arg < 0)
1012 return 0;
1013 return compiler_addop_i(c, opcode, arg);
1014 }
1015
1016 /* Add an opcode with an integer argument.
1017 Returns 0 on failure, 1 on success.
1018 */
1019
1020 static int
1021 compiler_addop_i(struct compiler *c, int opcode, int oparg)
1022 {
1023 struct instr *i;
1024 int off;
1025 off = compiler_next_instr(c, c->u->u_curblock);
1026 if (off < 0)
1027 return 0;
1028 i = &c->u->u_curblock->b_instr[off];
1029 i->i_opcode = opcode;
1030 i->i_oparg = oparg;
1031 i->i_hasarg = 1;
1032 compiler_set_lineno(c, off);
1033 return 1;
1034 }
1035
1036 static int
1037 compiler_addop_j(struct compiler *c, int opcode, basicblock *b, int absolute)
1038 {
1039 struct instr *i;
1040 int off;
1041
1042 assert(b != NULL);
1043 off = compiler_next_instr(c, c->u->u_curblock);
1044 if (off < 0)
1045 return 0;
1046 i = &c->u->u_curblock->b_instr[off];
1047 i->i_opcode = opcode;
1048 i->i_target = b;
1049 i->i_hasarg = 1;
1050 if (absolute)
1051 i->i_jabs = 1;
1052 else
1053 i->i_jrel = 1;
1054 compiler_set_lineno(c, off);
1055 return 1;
1056 }
1057
1058 /* The distinction between NEW_BLOCK and NEXT_BLOCK is subtle. (I'd
1059 like to find better names.) NEW_BLOCK() creates a new block and sets
1060 it as the current block. NEXT_BLOCK() also creates an implicit jump
1061 from the current block to the new block.
1062 */
1063
1064 /* The returns inside these macros make it impossible to decref objects
1065 created in the local function. Local objects should use the arena.
1066 */
1067
1068
1069 #define NEW_BLOCK(C) { \
1070 if (compiler_use_new_block((C)) == NULL) \
1071 return 0; \
1072 }
1073
1074 #define NEXT_BLOCK(C) { \
1075 if (compiler_next_block((C)) == NULL) \
1076 return 0; \
1077 }
1078
1079 #define ADDOP(C, OP) { \
1080 if (!compiler_addop((C), (OP))) \
1081 return 0; \
1082 }
1083
1084 #define ADDOP_IN_SCOPE(C, OP) { \
1085 if (!compiler_addop((C), (OP))) { \
1086 compiler_exit_scope(c); \
1087 return 0; \
1088 } \
1089 }
1090
1091 #define ADDOP_O(C, OP, O, TYPE) { \
1092 if (!compiler_addop_o((C), (OP), (C)->u->u_ ## TYPE, (O))) \
1093 return 0; \
1094 }
1095
1096 #define ADDOP_NAME(C, OP, O, TYPE) { \
1097 if (!compiler_addop_name((C), (OP), (C)->u->u_ ## TYPE, (O))) \
1098 return 0; \
1099 }
1100
1101 #define ADDOP_I(C, OP, O) { \
1102 if (!compiler_addop_i((C), (OP), (O))) \
1103 return 0; \
1104 }
1105
1106 #define ADDOP_JABS(C, OP, O) { \
1107 if (!compiler_addop_j((C), (OP), (O), 1)) \
1108 return 0; \
1109 }
1110
1111 #define ADDOP_JREL(C, OP, O) { \
1112 if (!compiler_addop_j((C), (OP), (O), 0)) \
1113 return 0; \
1114 }
1115
1116 /* VISIT and VISIT_SEQ takes an ASDL type as their second argument. They use
1117 the ASDL name to synthesize the name of the C type and the visit function.
1118 */
1119
1120 #define VISIT(C, TYPE, V) {\
1121 if (!compiler_visit_ ## TYPE((C), (V))) \
1122 return 0; \
1123 }
1124
1125 #define VISIT_IN_SCOPE(C, TYPE, V) {\
1126 if (!compiler_visit_ ## TYPE((C), (V))) { \
1127 compiler_exit_scope(c); \
1128 return 0; \
1129 } \
1130 }
1131
1132 #define VISIT_SLICE(C, V, CTX) {\
1133 if (!compiler_visit_slice((C), (V), (CTX))) \
1134 return 0; \
1135 }
1136
1137 #define VISIT_SEQ(C, TYPE, SEQ) { \
1138 int _i; \
1139 asdl_seq *seq = (SEQ); /* avoid variable capture */ \
1140 for (_i = 0; _i < asdl_seq_LEN(seq); _i++) { \
1141 TYPE ## _ty elt = (TYPE ## _ty)asdl_seq_GET(seq, _i); \
1142 if (!compiler_visit_ ## TYPE((C), elt)) \
1143 return 0; \
1144 } \
1145 }
1146
1147 #define VISIT_SEQ_IN_SCOPE(C, TYPE, SEQ) { \
1148 int _i; \
1149 asdl_seq *seq = (SEQ); /* avoid variable capture */ \
1150 for (_i = 0; _i < asdl_seq_LEN(seq); _i++) { \
1151 TYPE ## _ty elt = (TYPE ## _ty)asdl_seq_GET(seq, _i); \
1152 if (!compiler_visit_ ## TYPE((C), elt)) { \
1153 compiler_exit_scope(c); \
1154 return 0; \
1155 } \
1156 } \
1157 }
1158
1159 static int
1160 compiler_isdocstring(stmt_ty s)
1161 {
1162 if (s->kind != Expr_kind)
1163 return 0;
1164 return s->v.Expr.value->kind == Str_kind;
1165 }
1166
1167 /* Compile a sequence of statements, checking for a docstring. */
1168
1169 static int
1170 compiler_body(struct compiler *c, asdl_seq *stmts)
1171 {
1172 int i = 0;
1173 stmt_ty st;
1174
1175 if (!asdl_seq_LEN(stmts))
1176 return 1;
1177 st = (stmt_ty)asdl_seq_GET(stmts, 0);
1178 if (compiler_isdocstring(st) && Py_OptimizeFlag < 2) {
1179 /* don't generate docstrings if -OO */
1180 i = 1;
1181 VISIT(c, expr, st->v.Expr.value);
1182 if (!compiler_nameop(c, __doc__, Store))
1183 return 0;
1184 }
1185 for (; i < asdl_seq_LEN(stmts); i++)
1186 VISIT(c, stmt, (stmt_ty)asdl_seq_GET(stmts, i));
1187 return 1;
1188 }
1189
1190 static PyCodeObject *
1191 compiler_mod(struct compiler *c, mod_ty mod)
1192 {
1193 PyCodeObject *co;
1194 int addNone = 1;
1195 static PyObject *module;
1196 if (!module) {
1197 module = PyString_InternFromString("<module>");
1198 if (!module)
1199 return NULL;
1200 }
1201 /* Use 0 for firstlineno initially, will fixup in assemble(). */
1202 if (!compiler_enter_scope(c, module, mod, 0))
1203 return NULL;
1204 switch (mod->kind) {
1205 case Module_kind:
1206 if (!compiler_body(c, mod->v.Module.body)) {
1207 compiler_exit_scope(c);
1208 return 0;
1209 }
1210 break;
1211 case Interactive_kind:
1212 c->c_interactive = 1;
1213 VISIT_SEQ_IN_SCOPE(c, stmt,
1214 mod->v.Interactive.body);
1215 break;
1216 case Expression_kind:
1217 VISIT_IN_SCOPE(c, expr, mod->v.Expression.body);
1218 addNone = 0;
1219 break;
1220 case Suite_kind:
1221 PyErr_SetString(PyExc_SystemError,
1222 "suite should not be possible");
1223 return 0;
1224 default:
1225 PyErr_Format(PyExc_SystemError,
1226 "module kind %d should not be possible",
1227 mod->kind);
1228 return 0;
1229 }
1230 co = assemble(c, addNone);
1231 compiler_exit_scope(c);
1232 return co;
1233 }
1234
1235 /* The test for LOCAL must come before the test for FREE in order to
1236 handle classes where name is both local and free. The local var is
1237 a method and the free var is a free var referenced within a method.
1238 */
1239
1240 static int
1241 get_ref_type(struct compiler *c, PyObject *name)
1242 {
1243 int scope = PyST_GetScope(c->u->u_ste, name);
1244 if (scope == 0) {
1245 char buf[350];
1246 PyOS_snprintf(buf, sizeof(buf),
1247 "unknown scope for %.100s in %.100s(%s) in %s\n"
1248 "symbols: %s\nlocals: %s\nglobals: %s",
1249 PyString_AS_STRING(name),
1250 PyString_AS_STRING(c->u->u_name),
1251 PyObject_REPR(c->u->u_ste->ste_id),
1252 c->c_filename,
1253 PyObject_REPR(c->u->u_ste->ste_symbols),
1254 PyObject_REPR(c->u->u_varnames),
1255 PyObject_REPR(c->u->u_names)
1256 );
1257 Py_FatalError(buf);
1258 }
1259
1260 return scope;
1261 }
1262
1263 static int
1264 compiler_lookup_arg(PyObject *dict, PyObject *name)
1265 {
1266 PyObject *k, *v;
1267 k = PyTuple_Pack(2, name, name->ob_type);
1268 if (k == NULL)
1269 return -1;
1270 v = PyDict_GetItem(dict, k);
1271 Py_DECREF(k);
1272 if (v == NULL)
1273 return -1;
1274 return PyInt_AS_LONG(v);
1275 }
1276
1277 static int
1278 compiler_make_closure(struct compiler *c, PyCodeObject *co, int args)
1279 {
1280 int i, free = PyCode_GetNumFree(co);
1281 if (free == 0) {
1282 ADDOP_O(c, LOAD_CONST, (PyObject*)co, consts);
1283 ADDOP_I(c, MAKE_FUNCTION, args);
1284 return 1;
1285 }
1286 for (i = 0; i < free; ++i) {
1287 /* Bypass com_addop_varname because it will generate
1288 LOAD_DEREF but LOAD_CLOSURE is needed.
1289 */
1290 PyObject *name = PyTuple_GET_ITEM(co->co_freevars, i);
1291 int arg, reftype;
1292
1293 /* Special case: If a class contains a method with a
1294 free variable that has the same name as a method,
1295 the name will be considered free *and* local in the
1296 class. It should be handled by the closure, as
1297 well as by the normal name loookup logic.
1298 */
1299 reftype = get_ref_type(c, name);
1300 if (reftype == CELL)
1301 arg = compiler_lookup_arg(c->u->u_cellvars, name);
1302 else /* (reftype == FREE) */
1303 arg = compiler_lookup_arg(c->u->u_freevars, name);
1304 if (arg == -1) {
1305 printf("lookup %s in %s %d %d\n"
1306 "freevars of %s: %s\n",
1307 PyObject_REPR(name),
1308 PyString_AS_STRING(c->u->u_name),
1309 reftype, arg,
1310 PyString_AS_STRING(co->co_name),
1311 PyObject_REPR(co->co_freevars));
1312 Py_FatalError("compiler_make_closure()");
1313 }
1314 ADDOP_I(c, LOAD_CLOSURE, arg);
1315 }
1316 ADDOP_I(c, BUILD_TUPLE, free);
1317 ADDOP_O(c, LOAD_CONST, (PyObject*)co, consts);
1318 ADDOP_I(c, MAKE_CLOSURE, args);
1319 return 1;
1320 }
1321
1322 static int
1323 compiler_decorators(struct compiler *c, asdl_seq* decos)
1324 {
1325 int i;
1326
1327 if (!decos)
1328 return 1;
1329
1330 for (i = 0; i < asdl_seq_LEN(decos); i++) {
1331 VISIT(c, expr, (expr_ty)asdl_seq_GET(decos, i));
1332 }
1333 return 1;
1334 }
1335
1336 static int
1337 compiler_arguments(struct compiler *c, arguments_ty args)
1338 {
1339 int i;
1340 int n = asdl_seq_LEN(args->args);
1341 /* Correctly handle nested argument lists */
1342 for (i = 0; i < n; i++) {
1343 expr_ty arg = (expr_ty)asdl_seq_GET(args->args, i);
1344 if (arg->kind == Tuple_kind) {
1345 PyObject *id = PyString_FromFormat(".%d", i);
1346 if (id == NULL) {
1347 return 0;
1348 }
1349 if (!compiler_nameop(c, id, Load)) {
1350 Py_DECREF(id);
1351 return 0;
1352 }
1353 Py_DECREF(id);
1354 VISIT(c, expr, arg);
1355 }
1356 }
1357 return 1;
1358 }
1359
1360 static int
1361 compiler_function(struct compiler *c, stmt_ty s)
1362 {
1363 PyCodeObject *co;
1364 PyObject *first_const = Py_None;
1365 arguments_ty args = s->v.FunctionDef.args;
1366 asdl_seq* decos = s->v.FunctionDef.decorator_list;
1367 stmt_ty st;
1368 int i, n, docstring;
1369
1370 assert(s->kind == FunctionDef_kind);
1371
1372 if (!compiler_decorators(c, decos))
1373 return 0;
1374 if (args->defaults)
1375 VISIT_SEQ(c, expr, args->defaults);
1376 if (!compiler_enter_scope(c, s->v.FunctionDef.name, (void *)s,
1377 s->lineno))
1378 return 0;
1379
1380 st = (stmt_ty)asdl_seq_GET(s->v.FunctionDef.body, 0);
1381 docstring = compiler_isdocstring(st);
1382 if (docstring && Py_OptimizeFlag < 2)
1383 first_const = st->v.Expr.value->v.Str.s;
1384 if (compiler_add_o(c, c->u->u_consts, first_const) < 0) {
1385 compiler_exit_scope(c);
1386 return 0;
1387 }
1388
1389 /* unpack nested arguments */
1390 compiler_arguments(c, args);
1391
1392 c->u->u_argcount = asdl_seq_LEN(args->args);
1393 n = asdl_seq_LEN(s->v.FunctionDef.body);
1394 /* if there was a docstring, we need to skip the first statement */
1395 for (i = docstring; i < n; i++) {
1396 st = (stmt_ty)asdl_seq_GET(s->v.FunctionDef.body, i);
1397 VISIT_IN_SCOPE(c, stmt, st);
1398 }
1399 co = assemble(c, 1);
1400 compiler_exit_scope(c);
1401 if (co == NULL)
1402 return 0;
1403
1404 compiler_make_closure(c, co, asdl_seq_LEN(args->defaults));
1405 Py_DECREF(co);
1406
1407 for (i = 0; i < asdl_seq_LEN(decos); i++) {
1408 ADDOP_I(c, CALL_FUNCTION, 1);
1409 }
1410
1411 return compiler_nameop(c, s->v.FunctionDef.name, Store);
1412 }
1413
1414 static int
1415 compiler_class(struct compiler *c, stmt_ty s)
1416 {
1417 int n, i;
1418 PyCodeObject *co;
1419 PyObject *str;
1420 asdl_seq* decos = s->v.ClassDef.decorator_list;
1421
1422 if (!compiler_decorators(c, decos))
1423 return 0;
1424
1425 /* push class name on stack, needed by BUILD_CLASS */
1426 ADDOP_O(c, LOAD_CONST, s->v.ClassDef.name, consts);
1427 /* push the tuple of base classes on the stack */
1428 n = asdl_seq_LEN(s->v.ClassDef.bases);
1429 if (n > 0)
1430 VISIT_SEQ(c, expr, s->v.ClassDef.bases);
1431 ADDOP_I(c, BUILD_TUPLE, n);
1432 if (!compiler_enter_scope(c, s->v.ClassDef.name, (void *)s,
1433 s->lineno))
1434 return 0;
1435 Py_XDECREF(c->u->u_private);
1436 c->u->u_private = s->v.ClassDef.name;
1437 Py_INCREF(c->u->u_private);
1438 str = PyString_InternFromString("__name__");
1439 if (!str || !compiler_nameop(c, str, Load)) {
1440 Py_XDECREF(str);
1441 compiler_exit_scope(c);
1442 return 0;
1443 }
1444
1445 Py_DECREF(str);
1446 str = PyString_InternFromString("__module__");
1447 if (!str || !compiler_nameop(c, str, Store)) {
1448 Py_XDECREF(str);
1449 compiler_exit_scope(c);
1450 return 0;
1451 }
1452 Py_DECREF(str);
1453
1454 if (!compiler_body(c, s->v.ClassDef.body)) {
1455 compiler_exit_scope(c);
1456 return 0;
1457 }
1458
1459 ADDOP_IN_SCOPE(c, LOAD_LOCALS);
1460 ADDOP_IN_SCOPE(c, RETURN_VALUE);
1461 co = assemble(c, 1);
1462 compiler_exit_scope(c);
1463 if (co == NULL)
1464 return 0;
1465
1466 compiler_make_closure(c, co, 0);
1467 Py_DECREF(co);
1468
1469 ADDOP_I(c, CALL_FUNCTION, 0);
1470 ADDOP(c, BUILD_CLASS);
1471 /* apply decorators */
1472 for (i = 0; i < asdl_seq_LEN(decos); i++) {
1473 ADDOP_I(c, CALL_FUNCTION, 1);
1474 }
1475 if (!compiler_nameop(c, s->v.ClassDef.name, Store))
1476 return 0;
1477 return 1;
1478 }
1479
1480 static int
1481 compiler_ifexp(struct compiler *c, expr_ty e)
1482 {
1483 basicblock *end, *next;
1484
1485 assert(e->kind == IfExp_kind);
1486 end = compiler_new_block(c);
1487 if (end == NULL)
1488 return 0;
1489 next = compiler_new_block(c);
1490 if (next == NULL)
1491 return 0;
1492 VISIT(c, expr, e->v.IfExp.test);
1493 ADDOP_JABS(c, POP_JUMP_IF_FALSE, next);
1494 VISIT(c, expr, e->v.IfExp.body);
1495 ADDOP_JREL(c, JUMP_FORWARD, end);
1496 compiler_use_next_block(c, next);
1497 VISIT(c, expr, e->v.IfExp.orelse);
1498 compiler_use_next_block(c, end);
1499 return 1;
1500 }
1501
1502 static int
1503 compiler_lambda(struct compiler *c, expr_ty e)
1504 {
1505 PyCodeObject *co;
1506 static identifier name;
1507 arguments_ty args = e->v.Lambda.args;
1508 assert(e->kind == Lambda_kind);
1509
1510 if (!name) {
1511 name = PyString_InternFromString("<lambda>");
1512 if (!name)
1513 return 0;
1514 }
1515
1516 if (args->defaults)
1517 VISIT_SEQ(c, expr, args->defaults);
1518 if (!compiler_enter_scope(c, name, (void *)e, e->lineno))
1519 return 0;
1520
1521 /* unpack nested arguments */
1522 compiler_arguments(c, args);
1523
1524 /* Make None the first constant, so the lambda can't have a
1525 docstring. */
1526 if (compiler_add_o(c, c->u->u_consts, Py_None) < 0)
1527 return 0;
1528
1529 c->u->u_argcount = asdl_seq_LEN(args->args);
1530 VISIT_IN_SCOPE(c, expr, e->v.Lambda.body);
1531 if (c->u->u_ste->ste_generator) {
1532 ADDOP_IN_SCOPE(c, POP_TOP);
1533 }
1534 else {
1535 ADDOP_IN_SCOPE(c, RETURN_VALUE);
1536 }
1537 co = assemble(c, 1);
1538 compiler_exit_scope(c);
1539 if (co == NULL)
1540 return 0;
1541
1542 compiler_make_closure(c, co, asdl_seq_LEN(args->defaults));
1543 Py_DECREF(co);
1544
1545 return 1;
1546 }
1547
1548 static int
1549 compiler_print(struct compiler *c, stmt_ty s)
1550 {
1551 int i, n;
1552 bool dest;
1553
1554 assert(s->kind == Print_kind);
1555 n = asdl_seq_LEN(s->v.Print.values);
1556 dest = false;
1557 if (s->v.Print.dest) {
1558 VISIT(c, expr, s->v.Print.dest);
1559 dest = true;
1560 }
1561 for (i = 0; i < n; i++) {
1562 expr_ty e = (expr_ty)asdl_seq_GET(s->v.Print.values, i);
1563 if (dest) {
1564 ADDOP(c, DUP_TOP);
1565 VISIT(c, expr, e);
1566 ADDOP(c, ROT_TWO);
1567 ADDOP(c, PRINT_ITEM_TO);
1568 }
1569 else {
1570 VISIT(c, expr, e);
1571 ADDOP(c, PRINT_ITEM);
1572 }
1573 }
1574 if (s->v.Print.nl) {
1575 if (dest)
1576 ADDOP(c, PRINT_NEWLINE_TO)
1577 else
1578 ADDOP(c, PRINT_NEWLINE)
1579 }
1580 else if (dest)
1581 ADDOP(c, POP_TOP);
1582 return 1;
1583 }
1584
1585 static int
1586 compiler_if(struct compiler *c, stmt_ty s)
1587 {
1588 basicblock *end, *next;
1589 int constant;
1590 assert(s->kind == If_kind);
1591 end = compiler_new_block(c);
1592 if (end == NULL)
1593 return 0;
1594
1595 constant = expr_constant(s->v.If.test);
1596 /* constant = 0: "if 0"
1597 * constant = 1: "if 1", "if 2", ...
1598 * constant = -1: rest */
1599 if (constant == 0) {
1600 if (s->v.If.orelse)
1601 VISIT_SEQ(c, stmt, s->v.If.orelse);
1602 } else if (constant == 1) {
1603 VISIT_SEQ(c, stmt, s->v.If.body);
1604 } else {
1605 if (s->v.If.orelse) {
1606 next = compiler_new_block(c);
1607 if (next == NULL)
1608 return 0;
1609 }
1610 else
1611 next = end;
1612 VISIT(c, expr, s->v.If.test);
1613 ADDOP_JABS(c, POP_JUMP_IF_FALSE, next);
1614 VISIT_SEQ(c, stmt, s->v.If.body);
1615 ADDOP_JREL(c, JUMP_FORWARD, end);
1616 if (s->v.If.orelse) {
1617 compiler_use_next_block(c, next);
1618 VISIT_SEQ(c, stmt, s->v.If.orelse);
1619 }
1620 }
1621 compiler_use_next_block(c, end);
1622 return 1;
1623 }
1624
1625 static int
1626 compiler_for(struct compiler *c, stmt_ty s)
1627 {
1628 basicblock *start, *cleanup, *end;
1629
1630 start = compiler_new_block(c);
1631 cleanup = compiler_new_block(c);
1632 end = compiler_new_block(c);
1633 if (start == NULL || end == NULL || cleanup == NULL)
1634 return 0;
1635 ADDOP_JREL(c, SETUP_LOOP, end);
1636 if (!compiler_push_fblock(c, LOOP, start))
1637 return 0;
1638 VISIT(c, expr, s->v.For.iter);
1639 ADDOP(c, GET_ITER);
1640 compiler_use_next_block(c, start);
1641 ADDOP_JREL(c, FOR_ITER, cleanup);
1642 VISIT(c, expr, s->v.For.target);
1643 VISIT_SEQ(c, stmt, s->v.For.body);
1644 ADDOP_JABS(c, JUMP_ABSOLUTE, start);
1645 compiler_use_next_block(c, cleanup);
1646 ADDOP(c, POP_BLOCK);
1647 compiler_pop_fblock(c, LOOP, start);
1648 VISIT_SEQ(c, stmt, s->v.For.orelse);
1649 compiler_use_next_block(c, end);
1650 return 1;
1651 }
1652
1653 static int
1654 compiler_while(struct compiler *c, stmt_ty s)
1655 {
1656 basicblock *loop, *orelse, *end, *anchor = NULL;
1657 int constant = expr_constant(s->v.While.test);
1658
1659 if (constant == 0) {
1660 if (s->v.While.orelse)
1661 VISIT_SEQ(c, stmt, s->v.While.orelse);
1662 return 1;
1663 }
1664 loop = compiler_new_block(c);
1665 end = compiler_new_block(c);
1666 if (constant == -1) {
1667 anchor = compiler_new_block(c);
1668 if (anchor == NULL)
1669 return 0;
1670 }
1671 if (loop == NULL || end == NULL)
1672 return 0;
1673 if (s->v.While.orelse) {
1674 orelse = compiler_new_block(c);
1675 if (orelse == NULL)
1676 return 0;
1677 }
1678 else
1679 orelse = NULL;
1680
1681 ADDOP_JREL(c, SETUP_LOOP, end);
1682 compiler_use_next_block(c, loop);
1683 if (!compiler_push_fblock(c, LOOP, loop))
1684 return 0;
1685 if (constant == -1) {
1686 VISIT(c, expr, s->v.While.test);
1687 ADDOP_JABS(c, POP_JUMP_IF_FALSE, anchor);
1688 }
1689 VISIT_SEQ(c, stmt, s->v.While.body);
1690 ADDOP_JABS(c, JUMP_ABSOLUTE, loop);
1691
1692 /* XXX should the two POP instructions be in a separate block
1693 if there is no else clause ?
1694 */
1695
1696 if (constant == -1) {
1697 compiler_use_next_block(c, anchor);
1698 ADDOP(c, POP_BLOCK);
1699 }
1700 compiler_pop_fblock(c, LOOP, loop);
1701 if (orelse != NULL) /* what if orelse is just pass? */
1702 VISIT_SEQ(c, stmt, s->v.While.orelse);
1703 compiler_use_next_block(c, end);
1704
1705 return 1;
1706 }
1707
1708 static int
1709 compiler_continue(struct compiler *c)
1710 {
1711 static const char LOOP_ERROR_MSG[] = "'continue' not properly in loop";
1712 static const char IN_FINALLY_ERROR_MSG[] =
1713 "'continue' not supported inside 'finally' clause";
1714 int i;
1715
1716 if (!c->u->u_nfblocks)
1717 return compiler_error(c, LOOP_ERROR_MSG);
1718 i = c->u->u_nfblocks - 1;
1719 switch (c->u->u_fblock[i].fb_type) {
1720 case LOOP:
1721 ADDOP_JABS(c, JUMP_ABSOLUTE, c->u->u_fblock[i].fb_block);
1722 break;
1723 case EXCEPT:
1724 case FINALLY_TRY:
1725 while (--i >= 0 && c->u->u_fblock[i].fb_type != LOOP) {
1726 /* Prevent continue anywhere under a finally
1727 even if hidden in a sub-try or except. */
1728 if (c->u->u_fblock[i].fb_type == FINALLY_END)
1729 return compiler_error(c, IN_FINALLY_ERROR_MSG);
1730 }
1731 if (i == -1)
1732 return compiler_error(c, LOOP_ERROR_MSG);
1733 ADDOP_JABS(c, CONTINUE_LOOP, c->u->u_fblock[i].fb_block);
1734 break;
1735 case FINALLY_END:
1736 return compiler_error(c, IN_FINALLY_ERROR_MSG);
1737 }
1738
1739 return 1;
1740 }
1741
1742 /* Code generated for "try: <body> finally: <finalbody>" is as follows:
1743
1744 SETUP_FINALLY L
1745 <code for body>
1746 POP_BLOCK
1747 LOAD_CONST <None>
1748 L: <code for finalbody>
1749 END_FINALLY
1750
1751 The special instructions use the block stack. Each block
1752 stack entry contains the instruction that created it (here
1753 SETUP_FINALLY), the level of the value stack at the time the
1754 block stack entry was created, and a label (here L).
1755
1756 SETUP_FINALLY:
1757 Pushes the current value stack level and the label
1758 onto the block stack.
1759 POP_BLOCK:
1760 Pops en entry from the block stack, and pops the value
1761 stack until its level is the same as indicated on the
1762 block stack. (The label is ignored.)
1763 END_FINALLY:
1764 Pops a variable number of entries from the *value* stack
1765 and re-raises the exception they specify. The number of
1766 entries popped depends on the (pseudo) exception type.
1767
1768 The block stack is unwound when an exception is raised:
1769 when a SETUP_FINALLY entry is found, the exception is pushed
1770 onto the value stack (and the exception condition is cleared),
1771 and the interpreter jumps to the label gotten from the block
1772 stack.
1773 */
1774
1775 static int
1776 compiler_try_finally(struct compiler *c, stmt_ty s)
1777 {
1778 basicblock *body, *end;
1779 body = compiler_new_block(c);
1780 end = compiler_new_block(c);
1781 if (body == NULL || end == NULL)
1782 return 0;
1783
1784 ADDOP_JREL(c, SETUP_FINALLY, end);
1785 compiler_use_next_block(c, body);
1786 if (!compiler_push_fblock(c, FINALLY_TRY, body))
1787 return 0;
1788 VISIT_SEQ(c, stmt, s->v.TryFinally.body);
1789 ADDOP(c, POP_BLOCK);
1790 compiler_pop_fblock(c, FINALLY_TRY, body);
1791
1792 ADDOP_O(c, LOAD_CONST, Py_None, consts);
1793 compiler_use_next_block(c, end);
1794 if (!compiler_push_fblock(c, FINALLY_END, end))
1795 return 0;
1796 VISIT_SEQ(c, stmt, s->v.TryFinally.finalbody);
1797 ADDOP(c, END_FINALLY);
1798 compiler_pop_fblock(c, FINALLY_END, end);
1799
1800 return 1;
1801 }
1802
1803 /*
1804 Code generated for "try: S except E1, V1: S1 except E2, V2: S2 ...":
1805 (The contents of the value stack is shown in [], with the top
1806 at the right; 'tb' is trace-back info, 'val' the exception's
1807 associated value, and 'exc' the exception.)
1808
1809 Value stack Label Instruction Argument
1810 [] SETUP_EXCEPT L1
1811 [] <code for S>
1812 [] POP_BLOCK
1813 [] JUMP_FORWARD L0
1814
1815 [tb, val, exc] L1: DUP )
1816 [tb, val, exc, exc] <evaluate E1> )
1817 [tb, val, exc, exc, E1] COMPARE_OP EXC_MATCH ) only if E1
1818 [tb, val, exc, 1-or-0] POP_JUMP_IF_FALSE L2 )
1819 [tb, val, exc] POP
1820 [tb, val] <assign to V1> (or POP if no V1)
1821 [tb] POP
1822 [] <code for S1>
1823 JUMP_FORWARD L0
1824
1825 [tb, val, exc] L2: DUP
1826 .............................etc.......................
1827
1828 [tb, val, exc] Ln+1: END_FINALLY # re-raise exception
1829
1830 [] L0: <next statement>
1831
1832 Of course, parts are not generated if Vi or Ei is not present.
1833 */
1834 static int
1835 compiler_try_except(struct compiler *c, stmt_ty s)
1836 {
1837 basicblock *body, *orelse, *except, *end;
1838 int i, n;
1839
1840 body = compiler_new_block(c);
1841 except = compiler_new_block(c);
1842 orelse = compiler_new_block(c);
1843 end = compiler_new_block(c);
1844 if (body == NULL || except == NULL || orelse == NULL || end == NULL)
1845 return 0;
1846 ADDOP_JREL(c, SETUP_EXCEPT, except);
1847 compiler_use_next_block(c, body);
1848 if (!compiler_push_fblock(c, EXCEPT, body))
1849 return 0;
1850 VISIT_SEQ(c, stmt, s->v.TryExcept.body);
1851 ADDOP(c, POP_BLOCK);
1852 compiler_pop_fblock(c, EXCEPT, body);
1853 ADDOP_JREL(c, JUMP_FORWARD, orelse);
1854 n = asdl_seq_LEN(s->v.TryExcept.handlers);
1855 compiler_use_next_block(c, except);
1856 for (i = 0; i < n; i++) {
1857 excepthandler_ty handler = (excepthandler_ty)asdl_seq_GET(
1858 s->v.TryExcept.handlers, i);
1859 if (!handler->v.ExceptHandler.type && i < n-1)
1860 return compiler_error(c, "default 'except:' must be last");
1861 c->u->u_lineno_set = false;
1862 c->u->u_lineno = handler->lineno;
1863 except = compiler_new_block(c);
1864 if (except == NULL)
1865 return 0;
1866 if (handler->v.ExceptHandler.type) {
1867 ADDOP(c, DUP_TOP);
1868 VISIT(c, expr, handler->v.ExceptHandler.type);
1869 ADDOP_I(c, COMPARE_OP, PyCmp_EXC_MATCH);
1870 ADDOP_JABS(c, POP_JUMP_IF_FALSE, except);
1871 }
1872 ADDOP(c, POP_TOP);
1873 if (handler->v.ExceptHandler.name) {
1874 VISIT(c, expr, handler->v.ExceptHandler.name);
1875 }
1876 else {
1877 ADDOP(c, POP_TOP);
1878 }
1879 ADDOP(c, POP_TOP);
1880 VISIT_SEQ(c, stmt, handler->v.ExceptHandler.body);
1881 ADDOP_JREL(c, JUMP_FORWARD, end);
1882 compiler_use_next_block(c, except);
1883 }
1884 ADDOP(c, END_FINALLY);
1885 compiler_use_next_block(c, orelse);
1886 VISIT_SEQ(c, stmt, s->v.TryExcept.orelse);
1887 compiler_use_next_block(c, end);
1888 return 1;
1889 }
1890
1891 static int
1892 compiler_import_as(struct compiler *c, identifier name, identifier asname)
1893 {
1894 /* The IMPORT_NAME opcode was already generated. This function
1895 merely needs to bind the result to a name.
1896
1897 If there is a dot in name, we need to split it and emit a
1898 LOAD_ATTR for each name.
1899 */
1900 const char *src = PyString_AS_STRING(name);
1901 const char *dot = strchr(src, '.');
1902 if (dot) {
1903 /* Consume the base module name to get the first attribute */
1904 src = dot + 1;
1905 while (dot) {
1906 /* NB src is only defined when dot != NULL */
1907 PyObject *attr;
1908 dot = strchr(src, '.');
1909 attr = PyString_FromStringAndSize(src,
1910 dot ? dot - src : strlen(src));
1911 if (!attr)
1912 return -1;
1913 ADDOP_O(c, LOAD_ATTR, attr, names);
1914 Py_DECREF(attr);
1915 src = dot + 1;
1916 }
1917 }
1918 return compiler_nameop(c, asname, Store);
1919 }
1920
1921 static int
1922 compiler_import(struct compiler *c, stmt_ty s)
1923 {
1924 /* The Import node stores a module name like a.b.c as a single
1925 string. This is convenient for all cases except
1926 import a.b.c as d
1927 where we need to parse that string to extract the individual
1928 module names.
1929 XXX Perhaps change the representation to make this case simpler?
1930 */
1931 int i, n = asdl_seq_LEN(s->v.Import.names);
1932
1933 for (i = 0; i < n; i++) {
1934 alias_ty alias = (alias_ty)asdl_seq_GET(s->v.Import.names, i);
1935 int r;
1936 PyObject *level;
1937
1938 if (c->c_flags && (c->c_flags->cf_flags & CO_FUTURE_ABSOLUTE_IMPORT))
1939 level = PyInt_FromLong(0);
1940 else
1941 level = PyInt_FromLong(-1);
1942
1943 if (level == NULL)
1944 return 0;
1945
1946 ADDOP_O(c, LOAD_CONST, level, consts);
1947 Py_DECREF(level);
1948 ADDOP_O(c, LOAD_CONST, Py_None, consts);
1949 ADDOP_NAME(c, IMPORT_NAME, alias->name, names);
1950
1951 if (alias->asname) {
1952 r = compiler_import_as(c, alias->name, alias->asname);
1953 if (!r)
1954 return r;
1955 }
1956 else {
1957 identifier tmp = alias->name;
1958 const char *base = PyString_AS_STRING(alias->name);
1959 char *dot = strchr(base, '.');
1960 if (dot)
1961 tmp = PyString_FromStringAndSize(base,
1962 dot - base);
1963 r = compiler_nameop(c, tmp, Store);
1964 if (dot) {
1965 Py_DECREF(tmp);
1966 }
1967 if (!r)
1968 return r;
1969 }
1970 }
1971 return 1;
1972 }
1973
1974 static int
1975 compiler_from_import(struct compiler *c, stmt_ty s)
1976 {
1977 int i, n = asdl_seq_LEN(s->v.ImportFrom.names);
1978
1979 PyObject *names = PyTuple_New(n);
1980 PyObject *level;
1981 static PyObject *empty_string;
1982
1983 if (!empty_string) {
1984 empty_string = PyString_FromString("");
1985 if (!empty_string)
1986 return 0;
1987 }
1988
1989 if (!names)
1990 return 0;
1991
1992 if (s->v.ImportFrom.level == 0 && c->c_flags &&
1993 !(c->c_flags->cf_flags & CO_FUTURE_ABSOLUTE_IMPORT))
1994 level = PyInt_FromLong(-1);
1995 else
1996 level = PyInt_FromLong(s->v.ImportFrom.level);
1997
1998 if (!level) {
1999 Py_DECREF(names);
2000 return 0;
2001 }
2002
2003 /* build up the names */
2004 for (i = 0; i < n; i++) {
2005 alias_ty alias = (alias_ty)asdl_seq_GET(s->v.ImportFrom.names, i);
2006 Py_INCREF(alias->name);
2007 PyTuple_SET_ITEM(names, i, alias->name);
2008 }
2009
2010 if (s->lineno > c->c_future->ff_lineno && s->v.ImportFrom.module &&
2011 !strcmp(PyString_AS_STRING(s->v.ImportFrom.module), "__future__")) {
2012 Py_DECREF(level);
2013 Py_DECREF(names);
2014 return compiler_error(c, "from __future__ imports must occur "
2015 "at the beginning of the file");
2016 }
2017
2018 ADDOP_O(c, LOAD_CONST, level, consts);
2019 Py_DECREF(level);
2020 ADDOP_O(c, LOAD_CONST, names, consts);
2021 Py_DECREF(names);
2022 if (s->v.ImportFrom.module) {
2023 ADDOP_NAME(c, IMPORT_NAME, s->v.ImportFrom.module, names);
2024 }
2025 else {
2026 ADDOP_NAME(c, IMPORT_NAME, empty_string, names);
2027 }
2028 for (i = 0; i < n; i++) {
2029 alias_ty alias = (alias_ty)asdl_seq_GET(s->v.ImportFrom.names, i);
2030 identifier store_name;
2031
2032 if (i == 0 && *PyString_AS_STRING(alias->name) == '*') {
2033 assert(n == 1);
2034 ADDOP(c, IMPORT_STAR);
2035 return 1;
2036 }
2037
2038 ADDOP_NAME(c, IMPORT_FROM, alias->name, names);
2039 store_name = alias->name;
2040 if (alias->asname)
2041 store_name = alias->asname;
2042
2043 if (!compiler_nameop(c, store_name, Store)) {
2044 Py_DECREF(names);
2045 return 0;
2046 }
2047 }
2048 /* remove imported module */
2049 ADDOP(c, POP_TOP);
2050 return 1;
2051 }
2052
2053 static int
2054 compiler_assert(struct compiler *c, stmt_ty s)
2055 {
2056 static PyObject *assertion_error = NULL;
2057 basicblock *end;
2058
2059 if (Py_OptimizeFlag)
2060 return 1;
2061 if (assertion_error == NULL) {
2062 assertion_error = PyString_InternFromString("AssertionError");
2063 if (assertion_error == NULL)
2064 return 0;
2065 }
2066 if (s->v.Assert.test->kind == Tuple_kind &&
2067 asdl_seq_LEN(s->v.Assert.test->v.Tuple.elts) > 0) {
2068 const char* msg =
2069 "assertion is always true, perhaps remove parentheses?";
2070 if (PyErr_WarnExplicit(PyExc_SyntaxWarning, msg, c->c_filename,
2071 c->u->u_lineno, NULL, NULL) == -1)
2072 return 0;
2073 }
2074 VISIT(c, expr, s->v.Assert.test);
2075 end = compiler_new_block(c);
2076 if (end == NULL)
2077 return 0;
2078 ADDOP_JABS(c, POP_JUMP_IF_TRUE, end);
2079 ADDOP_O(c, LOAD_GLOBAL, assertion_error, names);
2080 if (s->v.Assert.msg) {
2081 VISIT(c, expr, s->v.Assert.msg);
2082 ADDOP_I(c, RAISE_VARARGS, 2);
2083 }
2084 else {
2085 ADDOP_I(c, RAISE_VARARGS, 1);
2086 }
2087 compiler_use_next_block(c, end);
2088 return 1;
2089 }
2090
2091 static int
2092 compiler_visit_stmt(struct compiler *c, stmt_ty s)
2093 {
2094 int i, n;
2095
2096 /* Always assign a lineno to the next instruction for a stmt. */
2097 c->u->u_lineno = s->lineno;
2098 c->u->u_lineno_set = false;
2099
2100 switch (s->kind) {
2101 case FunctionDef_kind:
2102 return compiler_function(c, s);
2103 case ClassDef_kind:
2104 return compiler_class(c, s);
2105 case Return_kind:
2106 if (c->u->u_ste->ste_type != FunctionBlock)
2107 return compiler_error(c, "'return' outside function");
2108 if (s->v.Return.value) {
2109 VISIT(c, expr, s->v.Return.value);
2110 }
2111 else
2112 ADDOP_O(c, LOAD_CONST, Py_None, consts);
2113 ADDOP(c, RETURN_VALUE);
2114 break;
2115 case Delete_kind:
2116 VISIT_SEQ(c, expr, s->v.Delete.targets)
2117 break;
2118 case Assign_kind:
2119 n = asdl_seq_LEN(s->v.Assign.targets);
2120 VISIT(c, expr, s->v.Assign.value);
2121 for (i = 0; i < n; i++) {
2122 if (i < n - 1)
2123 ADDOP(c, DUP_TOP);
2124 VISIT(c, expr,
2125 (expr_ty)asdl_seq_GET(s->v.Assign.targets, i));
2126 }
2127 break;
2128 case AugAssign_kind:
2129 return compiler_augassign(c, s);
2130 case Print_kind:
2131 return compiler_print(c, s);
2132 case For_kind:
2133 return compiler_for(c, s);
2134 case While_kind:
2135 return compiler_while(c, s);
2136 case If_kind:
2137 return compiler_if(c, s);
2138 case Raise_kind:
2139 n = 0;
2140 if (s->v.Raise.type) {
2141 VISIT(c, expr, s->v.Raise.type);
2142 n++;
2143 if (s->v.Raise.inst) {
2144 VISIT(c, expr, s->v.Raise.inst);
2145 n++;
2146 if (s->v.Raise.tback) {
2147 VISIT(c, expr, s->v.Raise.tback);
2148 n++;
2149 }
2150 }
2151 }
2152 ADDOP_I(c, RAISE_VARARGS, n);
2153 break;
2154 case TryExcept_kind:
2155 return compiler_try_except(c, s);
2156 case TryFinally_kind:
2157 return compiler_try_finally(c, s);
2158 case Assert_kind:
2159 return compiler_assert(c, s);
2160 case Import_kind:
2161 return compiler_import(c, s);
2162 case ImportFrom_kind:
2163 return compiler_from_import(c, s);
2164 case Exec_kind:
2165 VISIT(c, expr, s->v.Exec.body);
2166 if (s->v.Exec.globals) {
2167 VISIT(c, expr, s->v.Exec.globals);
2168 if (s->v.Exec.locals) {
2169 VISIT(c, expr, s->v.Exec.locals);
2170 } else {
2171 ADDOP(c, DUP_TOP);
2172 }
2173 } else {
2174 ADDOP_O(c, LOAD_CONST, Py_None, consts);
2175 ADDOP(c, DUP_TOP);
2176 }
2177 ADDOP(c, EXEC_STMT);
2178 break;
2179 case Global_kind:
2180 break;
2181 case Expr_kind:
2182 if (c->c_interactive && c->c_nestlevel <= 1) {
2183 VISIT(c, expr, s->v.Expr.value);
2184 ADDOP(c, PRINT_EXPR);
2185 }
2186 else if (s->v.Expr.value->kind != Str_kind &&
2187 s->v.Expr.value->kind != Num_kind) {
2188 VISIT(c, expr, s->v.Expr.value);
2189 ADDOP(c, POP_TOP);
2190 }
2191 break;
2192 case Pass_kind:
2193 break;
2194 case Break_kind:
2195 if (!compiler_in_loop(c))
2196 return compiler_error(c, "'break' outside loop");
2197 ADDOP(c, BREAK_LOOP);
2198 break;
2199 case Continue_kind:
2200 return compiler_continue(c);
2201 case With_kind:
2202 return compiler_with(c, s);
2203 }
2204 return 1;
2205 }
2206
2207 static int
2208 unaryop(unaryop_ty op)
2209 {
2210 switch (op) {
2211 case Invert:
2212 return UNARY_INVERT;
2213 case Not:
2214 return UNARY_NOT;
2215 case UAdd:
2216 return UNARY_POSITIVE;
2217 case USub:
2218 return UNARY_NEGATIVE;
2219 default:
2220 PyErr_Format(PyExc_SystemError,
2221 "unary op %d should not be possible", op);
2222 return 0;
2223 }
2224 }
2225
2226 static int
2227 binop(struct compiler *c, operator_ty op)
2228 {
2229 switch (op) {
2230 case Add:
2231 return BINARY_ADD;
2232 case Sub:
2233 return BINARY_SUBTRACT;
2234 case Mult:
2235 return BINARY_MULTIPLY;
2236 case Div:
2237 if (c->c_flags && c->c_flags->cf_flags & CO_FUTURE_DIVISION)
2238 return BINARY_TRUE_DIVIDE;
2239 else
2240 return BINARY_DIVIDE;
2241 case Mod:
2242 return BINARY_MODULO;
2243 case Pow:
2244 return BINARY_POWER;
2245 case LShift:
2246 return BINARY_LSHIFT;
2247 case RShift:
2248 return BINARY_RSHIFT;
2249 case BitOr:
2250 return BINARY_OR;
2251 case BitXor:
2252 return BINARY_XOR;
2253 case BitAnd:
2254 return BINARY_AND;
2255 case FloorDiv:
2256 return BINARY_FLOOR_DIVIDE;
2257 default:
2258 PyErr_Format(PyExc_SystemError,
2259 "binary op %d should not be possible", op);
2260 return 0;
2261 }
2262 }
2263
2264 static int
2265 cmpop(cmpop_ty op)
2266 {
2267 switch (op) {
2268 case Eq:
2269 return PyCmp_EQ;
2270 case NotEq:
2271 return PyCmp_NE;
2272 case Lt:
2273 return PyCmp_LT;
2274 case LtE:
2275 return PyCmp_LE;
2276 case Gt:
2277 return PyCmp_GT;
2278 case GtE:
2279 return PyCmp_GE;
2280 case Is:
2281 return PyCmp_IS;
2282 case IsNot:
2283 return PyCmp_IS_NOT;
2284 case In:
2285 return PyCmp_IN;
2286 case NotIn:
2287 return PyCmp_NOT_IN;
2288 default:
2289 return PyCmp_BAD;
2290 }
2291 }
2292
2293 static int
2294 inplace_binop(struct compiler *c, operator_ty op)
2295 {
2296 switch (op) {
2297 case Add:
2298 return INPLACE_ADD;
2299 case Sub:
2300 return INPLACE_SUBTRACT;
2301 case Mult:
2302 return INPLACE_MULTIPLY;
2303 case Div:
2304 if (c->c_flags && c->c_flags->cf_flags & CO_FUTURE_DIVISION)
2305 return INPLACE_TRUE_DIVIDE;
2306 else
2307 return INPLACE_DIVIDE;
2308 case Mod:
2309 return INPLACE_MODULO;
2310 case Pow:
2311 return INPLACE_POWER;
2312 case LShift:
2313 return INPLACE_LSHIFT;
2314 case RShift:
2315 return INPLACE_RSHIFT;
2316 case BitOr:
2317 return INPLACE_OR;
2318 case BitXor:
2319 return INPLACE_XOR;
2320 case BitAnd:
2321 return INPLACE_AND;
2322 case FloorDiv:
2323 return INPLACE_FLOOR_DIVIDE;
2324 default:
2325 PyErr_Format(PyExc_SystemError,
2326 "inplace binary op %d should not be possible", op);
2327 return 0;
2328 }
2329 }
2330
2331 static int
2332 compiler_nameop(struct compiler *c, identifier name, expr_context_ty ctx)
2333 {
2334 int op, scope, arg;
2335 enum { OP_FAST, OP_GLOBAL, OP_DEREF, OP_NAME } optype;
2336
2337 PyObject *dict = c->u->u_names;
2338 PyObject *mangled;
2339 /* XXX AugStore isn't used anywhere! */
2340
2341 mangled = _Py_Mangle(c->u->u_private, name);
2342 if (!mangled)
2343 return 0;
2344
2345 op = 0;
2346 optype = OP_NAME;
2347 scope = PyST_GetScope(c->u->u_ste, mangled);
2348 switch (scope) {
2349 case FREE:
2350 dict = c->u->u_freevars;
2351 optype = OP_DEREF;
2352 break;
2353 case CELL:
2354 dict = c->u->u_cellvars;
2355 optype = OP_DEREF;
2356 break;
2357 case LOCAL:
2358 if (c->u->u_ste->ste_type == FunctionBlock)
2359 optype = OP_FAST;
2360 break;
2361 case GLOBAL_IMPLICIT:
2362 if (c->u->u_ste->ste_type == FunctionBlock &&
2363 !c->u->u_ste->ste_unoptimized)
2364 optype = OP_GLOBAL;
2365 break;
2366 case GLOBAL_EXPLICIT:
2367 optype = OP_GLOBAL;
2368 break;
2369 default:
2370 /* scope can be 0 */
2371 break;
2372 }
2373
2374 /* XXX Leave assert here, but handle __doc__ and the like better */
2375 assert(scope || PyString_AS_STRING(name)[0] == '_');
2376
2377 switch (optype) {
2378 case OP_DEREF:
2379 switch (ctx) {
2380 case Load: op = LOAD_DEREF; break;
2381 case Store: op = STORE_DEREF; break;
2382 case AugLoad:
2383 case AugStore:
2384 break;
2385 case Del:
2386 PyErr_Format(PyExc_SyntaxError,
2387 "can not delete variable '%s' referenced "
2388 "in nested scope",
2389 PyString_AS_STRING(name));
2390 Py_DECREF(mangled);
2391 return 0;
2392 case Param:
2393 default:
2394 PyErr_SetString(PyExc_SystemError,
2395 "param invalid for deref variable");
2396 return 0;
2397 }
2398 break;
2399 case OP_FAST:
2400 switch (ctx) {
2401 case Load: op = LOAD_FAST; break;
2402 case Store: op = STORE_FAST; break;
2403 case Del: op = DELETE_FAST; break;
2404 case AugLoad:
2405 case AugStore:
2406 break;
2407 case Param:
2408 default:
2409 PyErr_SetString(PyExc_SystemError,
2410 "param invalid for local variable");
2411 return 0;
2412 }
2413 ADDOP_O(c, op, mangled, varnames);
2414 Py_DECREF(mangled);
2415 return 1;
2416 case OP_GLOBAL:
2417 switch (ctx) {
2418 case Load: op = LOAD_GLOBAL; break;
2419 case Store: op = STORE_GLOBAL; break;
2420 case Del: op = DELETE_GLOBAL; break;
2421 case AugLoad:
2422 case AugStore:
2423 break;
2424 case Param:
2425 default:
2426 PyErr_SetString(PyExc_SystemError,
2427 "param invalid for global variable");
2428 return 0;
2429 }
2430 break;
2431 case OP_NAME:
2432 switch (ctx) {
2433 case Load: op = LOAD_NAME; break;
2434 case Store: op = STORE_NAME; break;
2435 case Del: op = DELETE_NAME; break;
2436 case AugLoad:
2437 case AugStore:
2438 break;
2439 case Param:
2440 default:
2441 PyErr_SetString(PyExc_SystemError,
2442 "param invalid for name variable");
2443 return 0;
2444 }
2445 break;
2446 }
2447
2448 assert(op);
2449 arg = compiler_add_o(c, dict, mangled);
2450 Py_DECREF(mangled);
2451 if (arg < 0)
2452 return 0;
2453 return compiler_addop_i(c, op, arg);
2454 }
2455
2456 static int
2457 compiler_boolop(struct compiler *c, expr_ty e)
2458 {
2459 basicblock *end;
2460 int jumpi, i, n;
2461 asdl_seq *s;
2462
2463 assert(e->kind == BoolOp_kind);
2464 if (e->v.BoolOp.op == And)
2465 jumpi = JUMP_IF_FALSE_OR_POP;
2466 else
2467 jumpi = JUMP_IF_TRUE_OR_POP;
2468 end = compiler_new_block(c);
2469 if (end == NULL)
2470 return 0;
2471 s = e->v.BoolOp.values;
2472 n = asdl_seq_LEN(s) - 1;
2473 assert(n >= 0);
2474 for (i = 0; i < n; ++i) {
2475 VISIT(c, expr, (expr_ty)asdl_seq_GET(s, i));
2476 ADDOP_JABS(c, jumpi, end);
2477 }
2478 VISIT(c, expr, (expr_ty)asdl_seq_GET(s, n));
2479 compiler_use_next_block(c, end);
2480 return 1;
2481 }
2482
2483 static int
2484 compiler_list(struct compiler *c, expr_ty e)
2485 {
2486 int n = asdl_seq_LEN(e->v.List.elts);
2487 if (e->v.List.ctx == Store) {
2488 ADDOP_I(c, UNPACK_SEQUENCE, n);
2489 }
2490 VISIT_SEQ(c, expr, e->v.List.elts);
2491 if (e->v.List.ctx == Load) {
2492 ADDOP_I(c, BUILD_LIST, n);
2493 }
2494 return 1;
2495 }
2496
2497 static int
2498 compiler_tuple(struct compiler *c, expr_ty e)
2499 {
2500 int n = asdl_seq_LEN(e->v.Tuple.elts);
2501 if (e->v.Tuple.ctx == Store) {
2502 ADDOP_I(c, UNPACK_SEQUENCE, n);
2503 }
2504 VISIT_SEQ(c, expr, e->v.Tuple.elts);
2505 if (e->v.Tuple.ctx == Load) {
2506 ADDOP_I(c, BUILD_TUPLE, n);
2507 }
2508 return 1;
2509 }
2510
2511 static int
2512 compiler_compare(struct compiler *c, expr_ty e)
2513 {
2514 int i, n;
2515 basicblock *cleanup = NULL;
2516
2517 /* XXX the logic can be cleaned up for 1 or multiple comparisons */
2518 VISIT(c, expr, e->v.Compare.left);
2519 n = asdl_seq_LEN(e->v.Compare.ops);
2520 assert(n > 0);
2521 if (n > 1) {
2522 cleanup = compiler_new_block(c);
2523 if (cleanup == NULL)
2524 return 0;
2525 VISIT(c, expr,
2526 (expr_ty)asdl_seq_GET(e->v.Compare.comparators, 0));
2527 }
2528 for (i = 1; i < n; i++) {
2529 ADDOP(c, DUP_TOP);
2530 ADDOP(c, ROT_THREE);
2531 ADDOP_I(c, COMPARE_OP,
2532 cmpop((cmpop_ty)(asdl_seq_GET(
2533 e->v.Compare.ops, i - 1))));
2534 ADDOP_JABS(c, JUMP_IF_FALSE_OR_POP, cleanup);
2535 NEXT_BLOCK(c);
2536 if (i < (n - 1))
2537 VISIT(c, expr,
2538 (expr_ty)asdl_seq_GET(e->v.Compare.comparators, i));
2539 }
2540 VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Compare.comparators, n - 1));
2541 ADDOP_I(c, COMPARE_OP,
2542 cmpop((cmpop_ty)(asdl_seq_GET(e->v.Compare.ops, n - 1))));
2543 if (n > 1) {
2544 basicblock *end = compiler_new_block(c);
2545 if (end == NULL)
2546 return 0;
2547 ADDOP_JREL(c, JUMP_FORWARD, end);
2548 compiler_use_next_block(c, cleanup);
2549 ADDOP(c, ROT_TWO);
2550 ADDOP(c, POP_TOP);
2551 compiler_use_next_block(c, end);
2552 }
2553 return 1;
2554 }
2555
2556 static int
2557 compiler_call(struct compiler *c, expr_ty e)
2558 {
2559 int n, code = 0;
2560
2561 VISIT(c, expr, e->v.Call.func);
2562 n = asdl_seq_LEN(e->v.Call.args);
2563 VISIT_SEQ(c, expr, e->v.Call.args);
2564 if (e->v.Call.keywords) {
2565 VISIT_SEQ(c, keyword, e->v.Call.keywords);
2566 n |= asdl_seq_LEN(e->v.Call.keywords) << 8;
2567 }
2568 if (e->v.Call.starargs) {
2569 VISIT(c, expr, e->v.Call.starargs);
2570 code |= 1;
2571 }
2572 if (e->v.Call.kwargs) {
2573 VISIT(c, expr, e->v.Call.kwargs);
2574 code |= 2;
2575 }
2576 switch (code) {
2577 case 0:
2578 ADDOP_I(c, CALL_FUNCTION, n);
2579 break;
2580 case 1:
2581 ADDOP_I(c, CALL_FUNCTION_VAR, n);
2582 break;
2583 case 2:
2584 ADDOP_I(c, CALL_FUNCTION_KW, n);
2585 break;
2586 case 3:
2587 ADDOP_I(c, CALL_FUNCTION_VAR_KW, n);
2588 break;
2589 }
2590 return 1;
2591 }
2592
2593 static int
2594 compiler_listcomp_generator(struct compiler *c, asdl_seq *generators,
2595 int gen_index, expr_ty elt)
2596 {
2597 /* generate code for the iterator, then each of the ifs,
2598 and then write to the element */
2599
2600 comprehension_ty l;
2601 basicblock *start, *anchor, *skip, *if_cleanup;
2602 int i, n;
2603
2604 start = compiler_new_block(c);
2605 skip = compiler_new_block(c);
2606 if_cleanup = compiler_new_block(c);
2607 anchor = compiler_new_block(c);
2608
2609 if (start == NULL || skip == NULL || if_cleanup == NULL ||
2610 anchor == NULL)
2611 return 0;
2612
2613 l = (comprehension_ty)asdl_seq_GET(generators, gen_index);
2614 VISIT(c, expr, l->iter);
2615 ADDOP(c, GET_ITER);
2616 compiler_use_next_block(c, start);
2617 ADDOP_JREL(c, FOR_ITER, anchor);
2618 NEXT_BLOCK(c);
2619 VISIT(c, expr, l->target);
2620
2621 /* XXX this needs to be cleaned up...a lot! */
2622 n = asdl_seq_LEN(l->ifs);
2623 for (i = 0; i < n; i++) {
2624 expr_ty e = (expr_ty)asdl_seq_GET(l->ifs, i);
2625 VISIT(c, expr, e);
2626 ADDOP_JABS(c, POP_JUMP_IF_FALSE, if_cleanup);
2627 NEXT_BLOCK(c);
2628 }
2629
2630 if (++gen_index < asdl_seq_LEN(generators))
2631 if (!compiler_listcomp_generator(c, generators, gen_index, elt))
2632 return 0;
2633
2634 /* only append after the last for generator */
2635 if (gen_index >= asdl_seq_LEN(generators)) {
2636 VISIT(c, expr, elt);
2637 ADDOP_I(c, LIST_APPEND, gen_index+1);
2638
2639 compiler_use_next_block(c, skip);
2640 }
2641 compiler_use_next_block(c, if_cleanup);
2642 ADDOP_JABS(c, JUMP_ABSOLUTE, start);
2643 compiler_use_next_block(c, anchor);
2644
2645 return 1;
2646 }
2647
2648 static int
2649 compiler_listcomp(struct compiler *c, expr_ty e)
2650 {
2651 assert(e->kind == ListComp_kind);
2652 ADDOP_I(c, BUILD_LIST, 0);
2653 return compiler_listcomp_generator(c, e->v.ListComp.generators, 0,
2654 e->v.ListComp.elt);
2655 }
2656
2657 /* Dict and set comprehensions and generator expressions work by creating a
2658 nested function to perform the actual iteration. This means that the
2659 iteration variables don't leak into the current scope.
2660 The defined function is called immediately following its definition, with the
2661 result of that call being the result of the expression.
2662 The LC/SC version returns the populated container, while the GE version is
2663 flagged in symtable.c as a generator, so it returns the generator object
2664 when the function is called.
2665 This code *knows* that the loop cannot contain break, continue, or return,
2666 so it cheats and skips the SETUP_LOOP/POP_BLOCK steps used in normal loops.
2667
2668 Possible cleanups:
2669 - iterate over the generator sequence instead of using recursion
2670 */
2671
2672 static int
2673 compiler_comprehension_generator(struct compiler *c,
2674 asdl_seq *generators, int gen_index,
2675 expr_ty elt, expr_ty val, int type)
2676 {
2677 /* generate code for the iterator, then each of the ifs,
2678 and then write to the element */
2679
2680 comprehension_ty gen;
2681 basicblock *start, *anchor, *skip, *if_cleanup;
2682 int i, n;
2683
2684 start = compiler_new_block(c);
2685 skip = compiler_new_block(c);
2686 if_cleanup = compiler_new_block(c);
2687 anchor = compiler_new_block(c);
2688
2689 if (start == NULL || skip == NULL || if_cleanup == NULL ||
2690 anchor == NULL)
2691 return 0;
2692
2693 gen = (comprehension_ty)asdl_seq_GET(generators, gen_index);
2694
2695 if (gen_index == 0) {
2696 /* Receive outermost iter as an implicit argument */
2697 c->u->u_argcount = 1;
2698 ADDOP_I(c, LOAD_FAST, 0);
2699 }
2700 else {
2701 /* Sub-iter - calculate on the fly */
2702 VISIT(c, expr, gen->iter);
2703 ADDOP(c, GET_ITER);
2704 }
2705 compiler_use_next_block(c, start);
2706 ADDOP_JREL(c, FOR_ITER, anchor);
2707 NEXT_BLOCK(c);
2708 VISIT(c, expr, gen->target);
2709
2710 /* XXX this needs to be cleaned up...a lot! */
2711 n = asdl_seq_LEN(gen->ifs);
2712 for (i = 0; i < n; i++) {
2713 expr_ty e = (expr_ty)asdl_seq_GET(gen->ifs, i);
2714 VISIT(c, expr, e);
2715 ADDOP_JABS(c, POP_JUMP_IF_FALSE, if_cleanup);
2716 NEXT_BLOCK(c);
2717 }
2718
2719 if (++gen_index < asdl_seq_LEN(generators))
2720 if (!compiler_comprehension_generator(c,
2721 generators, gen_index,
2722 elt, val, type))
2723 return 0;
2724
2725 /* only append after the last for generator */
2726 if (gen_index >= asdl_seq_LEN(generators)) {
2727 /* comprehension specific code */
2728 switch (type) {
2729 case COMP_GENEXP:
2730 VISIT(c, expr, elt);
2731 ADDOP(c, YIELD_VALUE);
2732 ADDOP(c, POP_TOP);
2733 break;
2734 case COMP_SETCOMP:
2735 VISIT(c, expr, elt);
2736 ADDOP_I(c, SET_ADD, gen_index + 1);
2737 break;
2738 case COMP_DICTCOMP:
2739 /* With 'd[k] = v', v is evaluated before k, so we do
2740 the same. */
2741 VISIT(c, expr, val);
2742 VISIT(c, expr, elt);
2743 ADDOP_I(c, MAP_ADD, gen_index + 1);
2744 break;
2745 default:
2746 return 0;
2747 }
2748
2749 compiler_use_next_block(c, skip);
2750 }
2751 compiler_use_next_block(c, if_cleanup);
2752 ADDOP_JABS(c, JUMP_ABSOLUTE, start);
2753 compiler_use_next_block(c, anchor);
2754
2755 return 1;
2756 }
2757
2758 static int
2759 compiler_comprehension(struct compiler *c, expr_ty e, int type, identifier name,
2760 asdl_seq *generators, expr_ty elt, expr_ty val)
2761 {
2762 PyCodeObject *co = NULL;
2763 expr_ty outermost_iter;
2764
2765 outermost_iter = ((comprehension_ty)
2766 asdl_seq_GET(generators, 0))->iter;
2767
2768 if (!compiler_enter_scope(c, name, (void *)e, e->lineno))
2769 goto error;
2770
2771 if (type != COMP_GENEXP) {
2772 int op;
2773 switch (type) {
2774 case COMP_SETCOMP:
2775 op = BUILD_SET;
2776 break;
2777 case COMP_DICTCOMP:
2778 op = BUILD_MAP;
2779 break;
2780 default:
2781 PyErr_Format(PyExc_SystemError,
2782 "unknown comprehension type %d", type);
2783 goto error_in_scope;
2784 }
2785
2786 ADDOP_I(c, op, 0);
2787 }
2788
2789 if (!compiler_comprehension_generator(c, generators, 0, elt,
2790 val, type))
2791 goto error_in_scope;
2792
2793 if (type != COMP_GENEXP) {
2794 ADDOP(c, RETURN_VALUE);
2795 }
2796
2797 co = assemble(c, 1);
2798 compiler_exit_scope(c);
2799 if (co == NULL)
2800 goto error;
2801
2802 if (!compiler_make_closure(c, co, 0))
2803 goto error;
2804 Py_DECREF(co);
2805
2806 VISIT(c, expr, outermost_iter);
2807 ADDOP(c, GET_ITER);
2808 ADDOP_I(c, CALL_FUNCTION, 1);
2809 return 1;
2810 error_in_scope:
2811 compiler_exit_scope(c);
2812 error:
2813 Py_XDECREF(co);
2814 return 0;
2815 }
2816
2817 static int
2818 compiler_genexp(struct compiler *c, expr_ty e)
2819 {
2820 static identifier name;
2821 if (!name) {
2822 name = PyString_FromString("<genexpr>");
2823 if (!name)
2824 return 0;
2825 }
2826 assert(e->kind == GeneratorExp_kind);
2827 return compiler_comprehension(c, e, COMP_GENEXP, name,
2828 e->v.GeneratorExp.generators,
2829 e->v.GeneratorExp.elt, NULL);
2830 }
2831
2832 static int
2833 compiler_setcomp(struct compiler *c, expr_ty e)
2834 {
2835 static identifier name;
2836 if (!name) {
2837 name = PyString_FromString("<setcomp>");
2838 if (!name)
2839 return 0;
2840 }
2841 assert(e->kind == SetComp_kind);
2842 return compiler_comprehension(c, e, COMP_SETCOMP, name,
2843 e->v.SetComp.generators,
2844 e->v.SetComp.elt, NULL);
2845 }
2846
2847 static int
2848 compiler_dictcomp(struct compiler *c, expr_ty e)
2849 {
2850 static identifier name;
2851 if (!name) {
2852 name = PyString_FromString("<dictcomp>");
2853 if (!name)
2854 return 0;
2855 }
2856 assert(e->kind == DictComp_kind);
2857 return compiler_comprehension(c, e, COMP_DICTCOMP, name,
2858 e->v.DictComp.generators,
2859 e->v.DictComp.key, e->v.DictComp.value);
2860 }
2861
2862 static int
2863 compiler_visit_keyword(struct compiler *c, keyword_ty k)
2864 {
2865 ADDOP_O(c, LOAD_CONST, k->arg, consts);
2866 VISIT(c, expr, k->value);
2867 return 1;
2868 }
2869
2870 /* Test whether expression is constant. For constants, report
2871 whether they are true or false.
2872
2873 Return values: 1 for true, 0 for false, -1 for non-constant.
2874 */
2875
2876 static int
2877 expr_constant(expr_ty e)
2878 {
2879 switch (e->kind) {
2880 case Num_kind:
2881 return PyObject_IsTrue(e->v.Num.n);
2882 case Str_kind:
2883 return PyObject_IsTrue(e->v.Str.s);
2884 case Name_kind:
2885 /* __debug__ is not assignable, so we can optimize
2886 * it away in if and while statements */
2887 if (strcmp(PyString_AS_STRING(e->v.Name.id),
2888 "__debug__") == 0)
2889 return ! Py_OptimizeFlag;
2890 /* fall through */
2891 default:
2892 return -1;
2893 }
2894 }
2895
2896 /*
2897 Implements the with statement from PEP 343.
2898
2899 The semantics outlined in that PEP are as follows:
2900
2901 with EXPR as VAR:
2902 BLOCK
2903
2904 It is implemented roughly as:
2905
2906 context = EXPR
2907 exit = context.__exit__ # not calling it
2908 value = context.__enter__()
2909 try:
2910 VAR = value # if VAR present in the syntax
2911 BLOCK
2912 finally:
2913 if an exception was raised:
2914 exc = copy of (exception, instance, traceback)
2915 else:
2916 exc = (None, None, None)
2917 exit(*exc)
2918 */
2919 static int
2920 compiler_with(struct compiler *c, stmt_ty s)
2921 {
2922 basicblock *block, *finally;
2923
2924 assert(s->kind == With_kind);
2925
2926 block = compiler_new_block(c);
2927 finally = compiler_new_block(c);
2928 if (!block || !finally)
2929 return 0;
2930
2931 /* Evaluate EXPR */
2932 VISIT(c, expr, s->v.With.context_expr);
2933 ADDOP_JREL(c, SETUP_WITH, finally);
2934
2935 /* SETUP_WITH pushes a finally block. */
2936 compiler_use_next_block(c, block);
2937 /* Note that the block is actually called SETUP_WITH in ceval.c, but
2938 functions the same as SETUP_FINALLY except that exceptions are
2939 normalized. */
2940 if (!compiler_push_fblock(c, FINALLY_TRY, block)) {
2941 return 0;
2942 }
2943
2944 if (s->v.With.optional_vars) {
2945 VISIT(c, expr, s->v.With.optional_vars);
2946 }
2947 else {
2948 /* Discard result from context.__enter__() */
2949 ADDOP(c, POP_TOP);
2950 }
2951
2952 /* BLOCK code */
2953 VISIT_SEQ(c, stmt, s->v.With.body);
2954
2955 /* End of try block; start the finally block */
2956 ADDOP(c, POP_BLOCK);
2957 compiler_pop_fblock(c, FINALLY_TRY, block);
2958
2959 ADDOP_O(c, LOAD_CONST, Py_None, consts);
2960 compiler_use_next_block(c, finally);
2961 if (!compiler_push_fblock(c, FINALLY_END, finally))
2962 return 0;
2963
2964 /* Finally block starts; context.__exit__ is on the stack under
2965 the exception or return information. Just issue our magic
2966 opcode. */
2967 ADDOP(c, WITH_CLEANUP);
2968
2969 /* Finally block ends. */
2970 ADDOP(c, END_FINALLY);
2971 compiler_pop_fblock(c, FINALLY_END, finally);
2972 return 1;
2973 }
2974
2975 static int
2976 compiler_visit_expr(struct compiler *c, expr_ty e)
2977 {
2978 int i, n;
2979
2980 /* If expr e has a different line number than the last expr/stmt,
2981 set a new line number for the next instruction.
2982 */
2983 if (e->lineno > c->u->u_lineno) {
2984 c->u->u_lineno = e->lineno;
2985 c->u->u_lineno_set = false;
2986 }
2987 switch (e->kind) {
2988 case BoolOp_kind:
2989 return compiler_boolop(c, e);
2990 case BinOp_kind:
2991 VISIT(c, expr, e->v.BinOp.left);
2992 VISIT(c, expr, e->v.BinOp.right);
2993 ADDOP(c, binop(c, e->v.BinOp.op));
2994 break;
2995 case UnaryOp_kind:
2996 VISIT(c, expr, e->v.UnaryOp.operand);
2997 ADDOP(c, unaryop(e->v.UnaryOp.op));
2998 break;
2999 case Lambda_kind:
3000 return compiler_lambda(c, e);
3001 case IfExp_kind:
3002 return compiler_ifexp(c, e);
3003 case Dict_kind:
3004 n = asdl_seq_LEN(e->v.Dict.values);
3005 ADDOP_I(c, BUILD_MAP, (n>0xFFFF ? 0xFFFF : n));
3006 for (i = 0; i < n; i++) {
3007 VISIT(c, expr,
3008 (expr_ty)asdl_seq_GET(e->v.Dict.values, i));
3009 VISIT(c, expr,
3010 (expr_ty)asdl_seq_GET(e->v.Dict.keys, i));
3011 ADDOP(c, STORE_MAP);
3012 }
3013 break;
3014 case Set_kind:
3015 n = asdl_seq_LEN(e->v.Set.elts);
3016 VISIT_SEQ(c, expr, e->v.Set.elts);
3017 ADDOP_I(c, BUILD_SET, n);
3018 break;
3019 case ListComp_kind:
3020 return compiler_listcomp(c, e);
3021 case SetComp_kind:
3022 return compiler_setcomp(c, e);
3023 case DictComp_kind:
3024 return compiler_dictcomp(c, e);
3025 case GeneratorExp_kind:
3026 return compiler_genexp(c, e);
3027 case Yield_kind:
3028 if (c->u->u_ste->ste_type != FunctionBlock)
3029 return compiler_error(c, "'yield' outside function");
3030 if (e->v.Yield.value) {
3031 VISIT(c, expr, e->v.Yield.value);
3032 }
3033 else {
3034 ADDOP_O(c, LOAD_CONST, Py_None, consts);
3035 }
3036 ADDOP(c, YIELD_VALUE);
3037 break;
3038 case Compare_kind:
3039 return compiler_compare(c, e);
3040 case Call_kind:
3041 return compiler_call(c, e);
3042 case Repr_kind:
3043 VISIT(c, expr, e->v.Repr.value);
3044 ADDOP(c, UNARY_CONVERT);
3045 break;
3046 case Num_kind:
3047 ADDOP_O(c, LOAD_CONST, e->v.Num.n, consts);
3048 break;
3049 case Str_kind:
3050 ADDOP_O(c, LOAD_CONST, e->v.Str.s, consts);
3051 break;
3052 /* The following exprs can be assignment targets. */
3053 case Attribute_kind:
3054 if (e->v.Attribute.ctx != AugStore)
3055 VISIT(c, expr, e->v.Attribute.value);
3056 switch (e->v.Attribute.ctx) {
3057 case AugLoad:
3058 ADDOP(c, DUP_TOP);
3059 /* Fall through to load */
3060 case Load:
3061 ADDOP_NAME(c, LOAD_ATTR, e->v.Attribute.attr, names);
3062 break;
3063 case AugStore:
3064 ADDOP(c, ROT_TWO);
3065 /* Fall through to save */
3066 case Store:
3067 ADDOP_NAME(c, STORE_ATTR, e->v.Attribute.attr, names);
3068 break;
3069 case Del:
3070 ADDOP_NAME(c, DELETE_ATTR, e->v.Attribute.attr, names);
3071 break;
3072 case Param:
3073 default:
3074 PyErr_SetString(PyExc_SystemError,
3075 "param invalid in attribute expression");
3076 return 0;
3077 }
3078 break;
3079 case Subscript_kind:
3080 switch (e->v.Subscript.ctx) {
3081 case AugLoad:
3082 VISIT(c, expr, e->v.Subscript.value);
3083 VISIT_SLICE(c, e->v.Subscript.slice, AugLoad);
3084 break;
3085 case Load:
3086 VISIT(c, expr, e->v.Subscript.value);
3087 VISIT_SLICE(c, e->v.Subscript.slice, Load);
3088 break;
3089 case AugStore:
3090 VISIT_SLICE(c, e->v.Subscript.slice, AugStore);
3091 break;
3092 case Store:
3093 VISIT(c, expr, e->v.Subscript.value);
3094 VISIT_SLICE(c, e->v.Subscript.slice, Store);
3095 break;
3096 case Del:
3097 VISIT(c, expr, e->v.Subscript.value);
3098 VISIT_SLICE(c, e->v.Subscript.slice, Del);
3099 break;
3100 case Param:
3101 default:
3102 PyErr_SetString(PyExc_SystemError,
3103 "param invalid in subscript expression");
3104 return 0;
3105 }
3106 break;
3107 case Name_kind:
3108 return compiler_nameop(c, e->v.Name.id, e->v.Name.ctx);
3109 /* child nodes of List and Tuple will have expr_context set */
3110 case List_kind:
3111 return compiler_list(c, e);
3112 case Tuple_kind:
3113 return compiler_tuple(c, e);
3114 }
3115 return 1;
3116 }
3117
3118 static int
3119 compiler_augassign(struct compiler *c, stmt_ty s)
3120 {
3121 expr_ty e = s->v.AugAssign.target;
3122 expr_ty auge;
3123
3124 assert(s->kind == AugAssign_kind);
3125
3126 switch (e->kind) {
3127 case Attribute_kind:
3128 auge = Attribute(e->v.Attribute.value, e->v.Attribute.attr,
3129 AugLoad, e->lineno, e->col_offset, c->c_arena);
3130 if (auge == NULL)
3131 return 0;
3132 VISIT(c, expr, auge);
3133 VISIT(c, expr, s->v.AugAssign.value);
3134 ADDOP(c, inplace_binop(c, s->v.AugAssign.op));
3135 auge->v.Attribute.ctx = AugStore;
3136 VISIT(c, expr, auge);
3137 break;
3138 case Subscript_kind:
3139 auge = Subscript(e->v.Subscript.value, e->v.Subscript.slice,
3140 AugLoad, e->lineno, e->col_offset, c->c_arena);
3141 if (auge == NULL)
3142 return 0;
3143 VISIT(c, expr, auge);
3144 VISIT(c, expr, s->v.AugAssign.value);
3145 ADDOP(c, inplace_binop(c, s->v.AugAssign.op));
3146 auge->v.Subscript.ctx = AugStore;
3147 VISIT(c, expr, auge);
3148 break;
3149 case Name_kind:
3150 if (!compiler_nameop(c, e->v.Name.id, Load))
3151 return 0;
3152 VISIT(c, expr, s->v.AugAssign.value);
3153 ADDOP(c, inplace_binop(c, s->v.AugAssign.op));
3154 return compiler_nameop(c, e->v.Name.id, Store);
3155 default:
3156 PyErr_Format(PyExc_SystemError,
3157 "invalid node type (%d) for augmented assignment",
3158 e->kind);
3159 return 0;
3160 }
3161 return 1;
3162 }
3163
3164 static int
3165 compiler_push_fblock(struct compiler *c, enum fblocktype t, basicblock *b)
3166 {
3167 struct fblockinfo *f;
3168 if (c->u->u_nfblocks >= CO_MAXBLOCKS) {
3169 PyErr_SetString(PyExc_SystemError,
3170 "too many statically nested blocks");
3171 return 0;
3172 }
3173 f = &c->u->u_fblock[c->u->u_nfblocks++];
3174 f->fb_type = t;
3175 f->fb_block = b;
3176 return 1;
3177 }
3178
3179 static void
3180 compiler_pop_fblock(struct compiler *c, enum fblocktype t, basicblock *b)
3181 {
3182 struct compiler_unit *u = c->u;
3183 assert(u->u_nfblocks > 0);
3184 u->u_nfblocks--;
3185 assert(u->u_fblock[u->u_nfblocks].fb_type == t);
3186 assert(u->u_fblock[u->u_nfblocks].fb_block == b);
3187 }
3188
3189 static int
3190 compiler_in_loop(struct compiler *c) {
3191 int i;
3192 struct compiler_unit *u = c->u;
3193 for (i = 0; i < u->u_nfblocks; ++i) {
3194 if (u->u_fblock[i].fb_type == LOOP)
3195 return 1;
3196 }
3197 return 0;
3198 }
3199 /* Raises a SyntaxError and returns 0.
3200 If something goes wrong, a different exception may be raised.
3201 */
3202
3203 static int
3204 compiler_error(struct compiler *c, const char *errstr)
3205 {
3206 PyObject *loc;
3207 PyObject *u = NULL, *v = NULL;
3208
3209 loc = PyErr_ProgramText(c->c_filename, c->u->u_lineno);
3210 if (!loc) {
3211 Py_INCREF(Py_None);
3212 loc = Py_None;
3213 }
3214 u = Py_BuildValue("(ziOO)", c->c_filename, c->u->u_lineno,
3215 Py_None, loc);
3216 if (!u)
3217 goto exit;
3218 v = Py_BuildValue("(zO)", errstr, u);
3219 if (!v)
3220 goto exit;
3221 PyErr_SetObject(PyExc_SyntaxError, v);
3222 exit:
3223 Py_DECREF(loc);
3224 Py_XDECREF(u);
3225 Py_XDECREF(v);
3226 return 0;
3227 }
3228
3229 static int
3230 compiler_handle_subscr(struct compiler *c, const char *kind,
3231 expr_context_ty ctx)
3232 {
3233 int op = 0;
3234
3235 /* XXX this code is duplicated */
3236 switch (ctx) {
3237 case AugLoad: /* fall through to Load */
3238 case Load: op = BINARY_SUBSCR; break;
3239 case AugStore:/* fall through to Store */
3240 case Store: op = STORE_SUBSCR; break;
3241 case Del: op = DELETE_SUBSCR; break;
3242 case Param:
3243 PyErr_Format(PyExc_SystemError,
3244 "invalid %s kind %d in subscript\n",
3245 kind, ctx);
3246 return 0;
3247 }
3248 if (ctx == AugLoad) {
3249 ADDOP_I(c, DUP_TOPX, 2);
3250 }
3251 else if (ctx == AugStore) {
3252 ADDOP(c, ROT_THREE);
3253 }
3254 ADDOP(c, op);
3255 return 1;
3256 }
3257
3258 static int
3259 compiler_slice(struct compiler *c, slice_ty s, expr_context_ty ctx)
3260 {
3261 int n = 2;
3262 assert(s->kind == Slice_kind);
3263
3264 /* only handles the cases where BUILD_SLICE is emitted */
3265 if (s->v.Slice.lower) {
3266 VISIT(c, expr, s->v.Slice.lower);
3267 }
3268 else {
3269 ADDOP_O(c, LOAD_CONST, Py_None, consts);
3270 }
3271
3272 if (s->v.Slice.upper) {
3273 VISIT(c, expr, s->v.Slice.upper);
3274 }
3275 else {
3276 ADDOP_O(c, LOAD_CONST, Py_None, consts);
3277 }
3278
3279 if (s->v.Slice.step) {
3280 n++;
3281 VISIT(c, expr, s->v.Slice.step);
3282 }
3283 ADDOP_I(c, BUILD_SLICE, n);
3284 return 1;
3285 }
3286
3287 static int
3288 compiler_simple_slice(struct compiler *c, slice_ty s, expr_context_ty ctx)
3289 {
3290 int op = 0, slice_offset = 0, stack_count = 0;
3291
3292 assert(s->v.Slice.step == NULL);
3293 if (s->v.Slice.lower) {
3294 slice_offset++;
3295 stack_count++;
3296 if (ctx != AugStore)
3297 VISIT(c, expr, s->v.Slice.lower);
3298 }
3299 if (s->v.Slice.upper) {
3300 slice_offset += 2;
3301 stack_count++;
3302 if (ctx != AugStore)
3303 VISIT(c, expr, s->v.Slice.upper);
3304 }
3305
3306 if (ctx == AugLoad) {
3307 switch (stack_count) {
3308 case 0: ADDOP(c, DUP_TOP); break;
3309 case 1: ADDOP_I(c, DUP_TOPX, 2); break;
3310 case 2: ADDOP_I(c, DUP_TOPX, 3); break;
3311 }
3312 }
3313 else if (ctx == AugStore) {
3314 switch (stack_count) {
3315 case 0: ADDOP(c, ROT_TWO); break;
3316 case 1: ADDOP(c, ROT_THREE); break;
3317 case 2: ADDOP(c, ROT_FOUR); break;
3318 }
3319 }
3320
3321 switch (ctx) {
3322 case AugLoad: /* fall through to Load */
3323 case Load: op = SLICE; break;
3324 case AugStore:/* fall through to Store */
3325 case Store: op = STORE_SLICE; break;
3326 case Del: op = DELETE_SLICE; break;
3327 case Param:
3328 default:
3329 PyErr_SetString(PyExc_SystemError,
3330 "param invalid in simple slice");
3331 return 0;
3332 }
3333
3334 ADDOP(c, op + slice_offset);
3335 return 1;
3336 }
3337
3338 static int
3339 compiler_visit_nested_slice(struct compiler *c, slice_ty s,
3340 expr_context_ty ctx)
3341 {
3342 switch (s->kind) {
3343 case Ellipsis_kind:
3344 ADDOP_O(c, LOAD_CONST, Py_Ellipsis, consts);
3345 break;
3346 case Slice_kind:
3347 return compiler_slice(c, s, ctx);
3348 case Index_kind:
3349 VISIT(c, expr, s->v.Index.value);
3350 break;
3351 case ExtSlice_kind:
3352 default:
3353 PyErr_SetString(PyExc_SystemError,
3354 "extended slice invalid in nested slice");
3355 return 0;
3356 }
3357 return 1;
3358 }
3359
3360 static int
3361 compiler_visit_slice(struct compiler *c, slice_ty s, expr_context_ty ctx)
3362 {
3363 char * kindname = NULL;
3364 switch (s->kind) {
3365 case Index_kind:
3366 kindname = "index";
3367 if (ctx != AugStore) {
3368 VISIT(c, expr, s->v.Index.value);
3369 }
3370 break;
3371 case Ellipsis_kind:
3372 kindname = "ellipsis";
3373 if (ctx != AugStore) {
3374 ADDOP_O(c, LOAD_CONST, Py_Ellipsis, consts);
3375 }
3376 break;
3377 case Slice_kind:
3378 kindname = "slice";
3379 if (!s->v.Slice.step)
3380 return compiler_simple_slice(c, s, ctx);
3381 if (ctx != AugStore) {
3382 if (!compiler_slice(c, s, ctx))
3383 return 0;
3384 }
3385 break;
3386 case ExtSlice_kind:
3387 kindname = "extended slice";
3388 if (ctx != AugStore) {
3389 int i, n = asdl_seq_LEN(s->v.ExtSlice.dims);
3390 for (i = 0; i < n; i++) {
3391 slice_ty sub = (slice_ty)asdl_seq_GET(
3392 s->v.ExtSlice.dims, i);
3393 if (!compiler_visit_nested_slice(c, sub, ctx))
3394 return 0;
3395 }
3396 ADDOP_I(c, BUILD_TUPLE, n);
3397 }
3398 break;
3399 default:
3400 PyErr_Format(PyExc_SystemError,
3401 "invalid subscript kind %d", s->kind);
3402 return 0;
3403 }
3404 return compiler_handle_subscr(c, kindname, ctx);
3405 }
3406
3407
3408 /* End of the compiler section, beginning of the assembler section */
3409
3410 /* do depth-first search of basic block graph, starting with block.
3411 post records the block indices in post-order.
3412
3413 XXX must handle implicit jumps from one block to next
3414 */
3415
3416 struct assembler {
3417 PyObject *a_bytecode; /* string containing bytecode */
3418 int a_offset; /* offset into bytecode */
3419 int a_nblocks; /* number of reachable blocks */
3420 basicblock **a_postorder; /* list of blocks in dfs postorder */
3421 PyObject *a_lnotab; /* string containing lnotab */
3422 int a_lnotab_off; /* offset into lnotab */
3423 int a_lineno; /* last lineno of emitted instruction */
3424 int a_lineno_off; /* bytecode offset of last lineno */
3425 };
3426
3427 static void
3428 dfs(struct compiler *c, basicblock *b, struct assembler *a)
3429 {
3430 int i;
3431 struct instr *instr = NULL;
3432
3433 if (b->b_seen)
3434 return;
3435 b->b_seen = 1;
3436 if (b->b_next != NULL)
3437 dfs(c, b->b_next, a);
3438 for (i = 0; i < b->b_iused; i++) {
3439 instr = &b->b_instr[i];
3440 if (instr->i_jrel || instr->i_jabs)
3441 dfs(c, instr->i_target, a);
3442 }
3443 a->a_postorder[a->a_nblocks++] = b;
3444 }
3445
3446 static int
3447 stackdepth_walk(struct compiler *c, basicblock *b, int depth, int maxdepth)
3448 {
3449 int i, target_depth;
3450 struct instr *instr;
3451 if (b->b_seen || b->b_startdepth >= depth)
3452 return maxdepth;
3453 b->b_seen = 1;
3454 b->b_startdepth = depth;
3455 for (i = 0; i < b->b_iused; i++) {
3456 instr = &b->b_instr[i];
3457 depth += opcode_stack_effect(instr->i_opcode, instr->i_oparg);
3458 if (depth > maxdepth)
3459 maxdepth = depth;
3460 assert(depth >= 0); /* invalid code or bug in stackdepth() */
3461 if (instr->i_jrel || instr->i_jabs) {
3462 target_depth = depth;
3463 if (instr->i_opcode == FOR_ITER) {
3464 target_depth = depth-2;
3465 } else if (instr->i_opcode == SETUP_FINALLY ||
3466 instr->i_opcode == SETUP_EXCEPT) {
3467 target_depth = depth+3;
3468 if (target_depth > maxdepth)
3469 maxdepth = target_depth;
3470 }
3471 maxdepth = stackdepth_walk(c, instr->i_target,
3472 target_depth, maxdepth);
3473 if (instr->i_opcode == JUMP_ABSOLUTE ||
3474 instr->i_opcode == JUMP_FORWARD) {
3475 goto out; /* remaining code is dead */
3476 }
3477 }
3478 }
3479 if (b->b_next)
3480 maxdepth = stackdepth_walk(c, b->b_next, depth, maxdepth);
3481 out:
3482 b->b_seen = 0;
3483 return maxdepth;
3484 }
3485
3486 /* Find the flow path that needs the largest stack. We assume that
3487 * cycles in the flow graph have no net effect on the stack depth.
3488 */
3489 static int
3490 stackdepth(struct compiler *c)
3491 {
3492 basicblock *b, *entryblock;
3493 entryblock = NULL;
3494 for (b = c->u->u_blocks; b != NULL; b = b->b_list) {
3495 b->b_seen = 0;
3496 b->b_startdepth = INT_MIN;
3497 entryblock = b;
3498 }
3499 if (!entryblock)
3500 return 0;
3501 return stackdepth_walk(c, entryblock, 0, 0);
3502 }
3503
3504 static int
3505 assemble_init(struct assembler *a, int nblocks, int firstlineno)
3506 {
3507 memset(a, 0, sizeof(struct assembler));
3508 a->a_lineno = firstlineno;
3509 a->a_bytecode = PyString_FromStringAndSize(NULL, DEFAULT_CODE_SIZE);
3510 if (!a->a_bytecode)
3511 return 0;
3512 a->a_lnotab = PyString_FromStringAndSize(NULL, DEFAULT_LNOTAB_SIZE);
3513 if (!a->a_lnotab)
3514 return 0;
3515 if (nblocks > PY_SIZE_MAX / sizeof(basicblock *)) {
3516 PyErr_NoMemory();
3517 return 0;
3518 }
3519 a->a_postorder = (basicblock **)PyObject_Malloc(
3520 sizeof(basicblock *) * nblocks);
3521 if (!a->a_postorder) {
3522 PyErr_NoMemory();
3523 return 0;
3524 }
3525 return 1;
3526 }
3527
3528 static void
3529 assemble_free(struct assembler *a)
3530 {
3531 Py_XDECREF(a->a_bytecode);
3532 Py_XDECREF(a->a_lnotab);
3533 if (a->a_postorder)
3534 PyObject_Free(a->a_postorder);
3535 }
3536
3537 /* Return the size of a basic block in bytes. */
3538
3539 static int
3540 instrsize(struct instr *instr)
3541 {
3542 if (!instr->i_hasarg)
3543 return 1; /* 1 byte for the opcode*/
3544 if (instr->i_oparg > 0xffff)
3545 return 6; /* 1 (opcode) + 1 (EXTENDED_ARG opcode) + 2 (oparg) + 2(oparg extended) */
3546 return 3; /* 1 (opcode) + 2 (oparg) */
3547 }
3548
3549 static int
3550 blocksize(basicblock *b)
3551 {
3552 int i;
3553 int size = 0;
3554
3555 for (i = 0; i < b->b_iused; i++)
3556 size += instrsize(&b->b_instr[i]);
3557 return size;
3558 }
3559
3560 /* Appends a pair to the end of the line number table, a_lnotab, representing
3561 the instruction's bytecode offset and line number. See
3562 Objects/lnotab_notes.txt for the description of the line number table. */
3563
3564 static int
3565 assemble_lnotab(struct assembler *a, struct instr *i)
3566 {
3567 int d_bytecode, d_lineno;
3568 int len;
3569 unsigned char *lnotab;
3570
3571 d_bytecode = a->a_offset - a->a_lineno_off;
3572 d_lineno = i->i_lineno - a->a_lineno;
3573
3574 assert(d_bytecode >= 0);
3575 assert(d_lineno >= 0);
3576
3577 if(d_bytecode == 0 && d_lineno == 0)
3578 return 1;
3579
3580 if (d_bytecode > 255) {
3581 int j, nbytes, ncodes = d_bytecode / 255;
3582 nbytes = a->a_lnotab_off + 2 * ncodes;
3583 len = PyString_GET_SIZE(a->a_lnotab);
3584 if (nbytes >= len) {
3585 if ((len <= INT_MAX / 2) && (len * 2 < nbytes))
3586 len = nbytes;
3587 else if (len <= INT_MAX / 2)
3588 len *= 2;
3589 else {
3590 PyErr_NoMemory();
3591 return 0;
3592 }
3593 if (_PyString_Resize(&a->a_lnotab, len) < 0)
3594 return 0;
3595 }
3596 lnotab = (unsigned char *)
3597 PyString_AS_STRING(a->a_lnotab) + a->a_lnotab_off;
3598 for (j = 0; j < ncodes; j++) {
3599 *lnotab++ = 255;
3600 *lnotab++ = 0;
3601 }
3602 d_bytecode -= ncodes * 255;
3603 a->a_lnotab_off += ncodes * 2;
3604 }
3605 assert(d_bytecode <= 255);
3606 if (d_lineno > 255) {
3607 int j, nbytes, ncodes = d_lineno / 255;
3608 nbytes = a->a_lnotab_off + 2 * ncodes;
3609 len = PyString_GET_SIZE(a->a_lnotab);
3610 if (nbytes >= len) {
3611 if ((len <= INT_MAX / 2) && len * 2 < nbytes)
3612 len = nbytes;
3613 else if (len <= INT_MAX / 2)
3614 len *= 2;
3615 else {
3616 PyErr_NoMemory();
3617 return 0;
3618 }
3619 if (_PyString_Resize(&a->a_lnotab, len) < 0)
3620 return 0;
3621 }
3622 lnotab = (unsigned char *)
3623 PyString_AS_STRING(a->a_lnotab) + a->a_lnotab_off;
3624 *lnotab++ = d_bytecode;
3625 *lnotab++ = 255;
3626 d_bytecode = 0;
3627 for (j = 1; j < ncodes; j++) {
3628 *lnotab++ = 0;
3629 *lnotab++ = 255;
3630 }
3631 d_lineno -= ncodes * 255;
3632 a->a_lnotab_off += ncodes * 2;
3633 }
3634
3635 len = PyString_GET_SIZE(a->a_lnotab);
3636 if (a->a_lnotab_off + 2 >= len) {
3637 if (_PyString_Resize(&a->a_lnotab, len * 2) < 0)
3638 return 0;
3639 }
3640 lnotab = (unsigned char *)
3641 PyString_AS_STRING(a->a_lnotab) + a->a_lnotab_off;
3642
3643 a->a_lnotab_off += 2;
3644 if (d_bytecode) {
3645 *lnotab++ = d_bytecode;
3646 *lnotab++ = d_lineno;
3647 }
3648 else { /* First line of a block; def stmt, etc. */
3649 *lnotab++ = 0;
3650 *lnotab++ = d_lineno;
3651 }
3652 a->a_lineno = i->i_lineno;
3653 a->a_lineno_off = a->a_offset;
3654 return 1;
3655 }
3656
3657 /* assemble_emit()
3658 Extend the bytecode with a new instruction.
3659 Update lnotab if necessary.
3660 */
3661
3662 static int
3663 assemble_emit(struct assembler *a, struct instr *i)
3664 {
3665 int size, arg = 0, ext = 0;
3666 Py_ssize_t len = PyString_GET_SIZE(a->a_bytecode);
3667 char *code;
3668
3669 size = instrsize(i);
3670 if (i->i_hasarg) {
3671 arg = i->i_oparg;
3672 ext = arg >> 16;
3673 }
3674 if (i->i_lineno && !assemble_lnotab(a, i))
3675 return 0;
3676 if (a->a_offset + size >= len) {
3677 if (len > PY_SSIZE_T_MAX / 2)
3678 return 0;
3679 if (_PyString_Resize(&a->a_bytecode, len * 2) < 0)
3680 return 0;
3681 }
3682 code = PyString_AS_STRING(a->a_bytecode) + a->a_offset;
3683 a->a_offset += size;
3684 if (size == 6) {
3685 assert(i->i_hasarg);
3686 *code++ = (char)EXTENDED_ARG;
3687 *code++ = ext & 0xff;
3688 *code++ = ext >> 8;
3689 arg &= 0xffff;
3690 }
3691 *code++ = i->i_opcode;
3692 if (i->i_hasarg) {
3693 assert(size == 3 || size == 6);
3694 *code++ = arg & 0xff;
3695 *code++ = arg >> 8;
3696 }
3697 return 1;
3698 }
3699
3700 static void
3701 assemble_jump_offsets(struct assembler *a, struct compiler *c)
3702 {
3703 basicblock *b;
3704 int bsize, totsize, extended_arg_count = 0, last_extended_arg_count;
3705 int i;
3706
3707 /* Compute the size of each block and fixup jump args.
3708 Replace block pointer with position in bytecode. */
3709 do {
3710 totsize = 0;
3711 for (i = a->a_nblocks - 1; i >= 0; i--) {
3712 b = a->a_postorder[i];
3713 bsize = blocksize(b);
3714 b->b_offset = totsize;
3715 totsize += bsize;
3716 }
3717 last_extended_arg_count = extended_arg_count;
3718 extended_arg_count = 0;
3719 for (b = c->u->u_blocks; b != NULL; b = b->b_list) {
3720 bsize = b->b_offset;
3721 for (i = 0; i < b->b_iused; i++) {
3722 struct instr *instr = &b->b_instr[i];
3723 /* Relative jumps are computed relative to
3724 the instruction pointer after fetching
3725 the jump instruction.
3726 */
3727 bsize += instrsize(instr);
3728 if (instr->i_jabs)
3729 instr->i_oparg = instr->i_target->b_offset;
3730 else if (instr->i_jrel) {
3731 int delta = instr->i_target->b_offset - bsize;
3732 instr->i_oparg = delta;
3733 }
3734 else
3735 continue;
3736 if (instr->i_oparg > 0xffff)
3737 extended_arg_count++;
3738 }
3739 }
3740
3741 /* XXX: This is an awful hack that could hurt performance, but
3742 on the bright side it should work until we come up
3743 with a better solution.
3744
3745 The issue is that in the first loop blocksize() is called
3746 which calls instrsize() which requires i_oparg be set
3747 appropriately. There is a bootstrap problem because
3748 i_oparg is calculated in the second loop above.
3749
3750 So we loop until we stop seeing new EXTENDED_ARGs.
3751 The only EXTENDED_ARGs that could be popping up are
3752 ones in jump instructions. So this should converge
3753 fairly quickly.
3754 */
3755 } while (last_extended_arg_count != extended_arg_count);
3756 }
3757
3758 static PyObject *
3759 dict_keys_inorder(PyObject *dict, int offset)
3760 {
3761 PyObject *tuple, *k, *v;
3762 Py_ssize_t i, pos = 0, size = PyDict_Size(dict);
3763
3764 tuple = PyTuple_New(size);
3765 if (tuple == NULL)
3766 return NULL;
3767 while (PyDict_Next(dict, &pos, &k, &v)) {
3768 i = PyInt_AS_LONG(v);
3769 /* The keys of the dictionary are tuples. (see compiler_add_o)
3770 The object we want is always first, though. */
3771 k = PyTuple_GET_ITEM(k, 0);
3772 Py_INCREF(k);
3773 assert((i - offset) < size);
3774 assert((i - offset) >= 0);
3775 PyTuple_SET_ITEM(tuple, i - offset, k);
3776 }
3777 return tuple;
3778 }
3779
3780 static int
3781 compute_code_flags(struct compiler *c)
3782 {
3783 PySTEntryObject *ste = c->u->u_ste;
3784 int flags = 0, n;
3785 if (ste->ste_type != ModuleBlock)
3786 flags |= CO_NEWLOCALS;
3787 if (ste->ste_type == FunctionBlock) {
3788 if (!ste->ste_unoptimized)
3789 flags |= CO_OPTIMIZED;
3790 if (ste->ste_nested)
3791 flags |= CO_NESTED;
3792 if (ste->ste_generator)
3793 flags |= CO_GENERATOR;
3794 if (ste->ste_varargs)
3795 flags |= CO_VARARGS;
3796 if (ste->ste_varkeywords)
3797 flags |= CO_VARKEYWORDS;
3798 }
3799
3800 /* (Only) inherit compilerflags in PyCF_MASK */
3801 flags |= (c->c_flags->cf_flags & PyCF_MASK);
3802
3803 n = PyDict_Size(c->u->u_freevars);
3804 if (n < 0)
3805 return -1;
3806 if (n == 0) {
3807 n = PyDict_Size(c->u->u_cellvars);
3808 if (n < 0)
3809 return -1;
3810 if (n == 0) {
3811 flags |= CO_NOFREE;
3812 }
3813 }
3814
3815 return flags;
3816 }
3817
3818 static PyCodeObject *
3819 makecode(struct compiler *c, struct assembler *a)
3820 {
3821 PyObject *tmp;
3822 PyCodeObject *co = NULL;
3823 PyObject *consts = NULL;
3824 PyObject *names = NULL;
3825 PyObject *varnames = NULL;
3826 PyObject *filename = NULL;
3827 PyObject *name = NULL;
3828 PyObject *freevars = NULL;
3829 PyObject *cellvars = NULL;
3830 PyObject *bytecode = NULL;
3831 int nlocals, flags;
3832
3833 tmp = dict_keys_inorder(c->u->u_consts, 0);
3834 if (!tmp)
3835 goto error;
3836 consts = PySequence_List(tmp); /* optimize_code requires a list */
3837 Py_DECREF(tmp);
3838
3839 names = dict_keys_inorder(c->u->u_names, 0);
3840 varnames = dict_keys_inorder(c->u->u_varnames, 0);
3841 if (!consts || !names || !varnames)
3842 goto error;
3843
3844 cellvars = dict_keys_inorder(c->u->u_cellvars, 0);
3845 if (!cellvars)
3846 goto error;
3847 freevars = dict_keys_inorder(c->u->u_freevars, PyTuple_Size(cellvars));
3848 if (!freevars)
3849 goto error;
3850 filename = PyString_FromString(c->c_filename);
3851 if (!filename)
3852 goto error;
3853
3854 nlocals = PyDict_Size(c->u->u_varnames);
3855 flags = compute_code_flags(c);
3856 if (flags < 0)
3857 goto error;
3858
3859 bytecode = PyCode_Optimize(a->a_bytecode, consts, names, a->a_lnotab);
3860 if (!bytecode)
3861 goto error;
3862
3863 tmp = PyList_AsTuple(consts); /* PyCode_New requires a tuple */
3864 if (!tmp)
3865 goto error;
3866 Py_DECREF(consts);
3867 consts = tmp;
3868
3869 co = PyCode_New(c->u->u_argcount, nlocals, stackdepth(c), flags,
3870 bytecode, consts, names, varnames,
3871 freevars, cellvars,
3872 filename, c->u->u_name,
3873 c->u->u_firstlineno,
3874 a->a_lnotab);
3875 error:
3876 Py_XDECREF(consts);
3877 Py_XDECREF(names);
3878 Py_XDECREF(varnames);
3879 Py_XDECREF(filename);
3880 Py_XDECREF(name);
3881 Py_XDECREF(freevars);
3882 Py_XDECREF(cellvars);
3883 Py_XDECREF(bytecode);
3884 return co;
3885 }
3886
3887
3888 /* For debugging purposes only */
3889 #if 0
3890 static void
3891 dump_instr(const struct instr *i)
3892 {
3893 const char *jrel = i->i_jrel ? "jrel " : "";
3894 const char *jabs = i->i_jabs ? "jabs " : "";
3895 char arg[128];
3896
3897 *arg = '\0';
3898 if (i->i_hasarg)
3899 sprintf(arg, "arg: %d ", i->i_oparg);
3900
3901 fprintf(stderr, "line: %d, opcode: %d %s%s%s\n",
3902 i->i_lineno, i->i_opcode, arg, jabs, jrel);
3903 }
3904
3905 static void
3906 dump_basicblock(const basicblock *b)
3907 {
3908 const char *seen = b->b_seen ? "seen " : "";
3909 const char *b_return = b->b_return ? "return " : "";
3910 fprintf(stderr, "used: %d, depth: %d, offset: %d %s%s\n",
3911 b->b_iused, b->b_startdepth, b->b_offset, seen, b_return);
3912 if (b->b_instr) {
3913 int i;
3914 for (i = 0; i < b->b_iused; i++) {
3915 fprintf(stderr, " [%02d] ", i);
3916 dump_instr(b->b_instr + i);
3917 }
3918 }
3919 }
3920 #endif
3921
3922 static PyCodeObject *
3923 assemble(struct compiler *c, int addNone)
3924 {
3925 basicblock *b, *entryblock;
3926 struct assembler a;
3927 int i, j, nblocks;
3928 PyCodeObject *co = NULL;
3929
3930 /* Make sure every block that falls off the end returns None.
3931 XXX NEXT_BLOCK() isn't quite right, because if the last
3932 block ends with a jump or return b_next shouldn't set.
3933 */
3934 if (!c->u->u_curblock->b_return) {
3935 NEXT_BLOCK(c);
3936 if (addNone)
3937 ADDOP_O(c, LOAD_CONST, Py_None, consts);
3938 ADDOP(c, RETURN_VALUE);
3939 }
3940
3941 nblocks = 0;
3942 entryblock = NULL;
3943 for (b = c->u->u_blocks; b != NULL; b = b->b_list) {
3944 nblocks++;
3945 entryblock = b;
3946 }
3947
3948 /* Set firstlineno if it wasn't explicitly set. */
3949 if (!c->u->u_firstlineno) {
3950 if (entryblock && entryblock->b_instr)
3951 c->u->u_firstlineno = entryblock->b_instr->i_lineno;
3952 else
3953 c->u->u_firstlineno = 1;
3954 }
3955 if (!assemble_init(&a, nblocks, c->u->u_firstlineno))
3956 goto error;
3957 dfs(c, entryblock, &a);
3958
3959 /* Can't modify the bytecode after computing jump offsets. */
3960 assemble_jump_offsets(&a, c);
3961
3962 /* Emit code in reverse postorder from dfs. */
3963 for (i = a.a_nblocks - 1; i >= 0; i--) {
3964 b = a.a_postorder[i];
3965 for (j = 0; j < b->b_iused; j++)
3966 if (!assemble_emit(&a, &b->b_instr[j]))
3967 goto error;
3968 }
3969
3970 if (_PyString_Resize(&a.a_lnotab, a.a_lnotab_off) < 0)
3971 goto error;
3972 if (_PyString_Resize(&a.a_bytecode, a.a_offset) < 0)
3973 goto error;
3974
3975 co = makecode(c, &a);
3976 error:
3977 assemble_free(&a);
3978 return co;
3979 }