]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/vdev_queue.c
Undo c89 workarounds to match with upstream
[mirror_zfs.git] / module / zfs / vdev_queue.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 /*
27 * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
28 */
29
30 #include <sys/zfs_context.h>
31 #include <sys/vdev_impl.h>
32 #include <sys/spa_impl.h>
33 #include <sys/zio.h>
34 #include <sys/avl.h>
35 #include <sys/dsl_pool.h>
36 #include <sys/metaslab_impl.h>
37 #include <sys/spa.h>
38 #include <sys/spa_impl.h>
39 #include <sys/kstat.h>
40 #include <sys/abd.h>
41
42 /*
43 * ZFS I/O Scheduler
44 * ---------------
45 *
46 * ZFS issues I/O operations to leaf vdevs to satisfy and complete zios. The
47 * I/O scheduler determines when and in what order those operations are
48 * issued. The I/O scheduler divides operations into five I/O classes
49 * prioritized in the following order: sync read, sync write, async read,
50 * async write, and scrub/resilver. Each queue defines the minimum and
51 * maximum number of concurrent operations that may be issued to the device.
52 * In addition, the device has an aggregate maximum. Note that the sum of the
53 * per-queue minimums must not exceed the aggregate maximum. If the
54 * sum of the per-queue maximums exceeds the aggregate maximum, then the
55 * number of active i/os may reach zfs_vdev_max_active, in which case no
56 * further i/os will be issued regardless of whether all per-queue
57 * minimums have been met.
58 *
59 * For many physical devices, throughput increases with the number of
60 * concurrent operations, but latency typically suffers. Further, physical
61 * devices typically have a limit at which more concurrent operations have no
62 * effect on throughput or can actually cause it to decrease.
63 *
64 * The scheduler selects the next operation to issue by first looking for an
65 * I/O class whose minimum has not been satisfied. Once all are satisfied and
66 * the aggregate maximum has not been hit, the scheduler looks for classes
67 * whose maximum has not been satisfied. Iteration through the I/O classes is
68 * done in the order specified above. No further operations are issued if the
69 * aggregate maximum number of concurrent operations has been hit or if there
70 * are no operations queued for an I/O class that has not hit its maximum.
71 * Every time an i/o is queued or an operation completes, the I/O scheduler
72 * looks for new operations to issue.
73 *
74 * All I/O classes have a fixed maximum number of outstanding operations
75 * except for the async write class. Asynchronous writes represent the data
76 * that is committed to stable storage during the syncing stage for
77 * transaction groups (see txg.c). Transaction groups enter the syncing state
78 * periodically so the number of queued async writes will quickly burst up and
79 * then bleed down to zero. Rather than servicing them as quickly as possible,
80 * the I/O scheduler changes the maximum number of active async write i/os
81 * according to the amount of dirty data in the pool (see dsl_pool.c). Since
82 * both throughput and latency typically increase with the number of
83 * concurrent operations issued to physical devices, reducing the burstiness
84 * in the number of concurrent operations also stabilizes the response time of
85 * operations from other -- and in particular synchronous -- queues. In broad
86 * strokes, the I/O scheduler will issue more concurrent operations from the
87 * async write queue as there's more dirty data in the pool.
88 *
89 * Async Writes
90 *
91 * The number of concurrent operations issued for the async write I/O class
92 * follows a piece-wise linear function defined by a few adjustable points.
93 *
94 * | o---------| <-- zfs_vdev_async_write_max_active
95 * ^ | /^ |
96 * | | / | |
97 * active | / | |
98 * I/O | / | |
99 * count | / | |
100 * | / | |
101 * |------------o | | <-- zfs_vdev_async_write_min_active
102 * 0|____________^______|_________|
103 * 0% | | 100% of zfs_dirty_data_max
104 * | |
105 * | `-- zfs_vdev_async_write_active_max_dirty_percent
106 * `--------- zfs_vdev_async_write_active_min_dirty_percent
107 *
108 * Until the amount of dirty data exceeds a minimum percentage of the dirty
109 * data allowed in the pool, the I/O scheduler will limit the number of
110 * concurrent operations to the minimum. As that threshold is crossed, the
111 * number of concurrent operations issued increases linearly to the maximum at
112 * the specified maximum percentage of the dirty data allowed in the pool.
113 *
114 * Ideally, the amount of dirty data on a busy pool will stay in the sloped
115 * part of the function between zfs_vdev_async_write_active_min_dirty_percent
116 * and zfs_vdev_async_write_active_max_dirty_percent. If it exceeds the
117 * maximum percentage, this indicates that the rate of incoming data is
118 * greater than the rate that the backend storage can handle. In this case, we
119 * must further throttle incoming writes (see dmu_tx_delay() for details).
120 */
121
122 /*
123 * The maximum number of i/os active to each device. Ideally, this will be >=
124 * the sum of each queue's max_active. It must be at least the sum of each
125 * queue's min_active.
126 */
127 uint32_t zfs_vdev_max_active = 1000;
128
129 /*
130 * Per-queue limits on the number of i/os active to each device. If the
131 * number of active i/os is < zfs_vdev_max_active, then the min_active comes
132 * into play. We will send min_active from each queue, and then select from
133 * queues in the order defined by zio_priority_t.
134 *
135 * In general, smaller max_active's will lead to lower latency of synchronous
136 * operations. Larger max_active's may lead to higher overall throughput,
137 * depending on underlying storage.
138 *
139 * The ratio of the queues' max_actives determines the balance of performance
140 * between reads, writes, and scrubs. E.g., increasing
141 * zfs_vdev_scrub_max_active will cause the scrub or resilver to complete
142 * more quickly, but reads and writes to have higher latency and lower
143 * throughput.
144 */
145 uint32_t zfs_vdev_sync_read_min_active = 10;
146 uint32_t zfs_vdev_sync_read_max_active = 10;
147 uint32_t zfs_vdev_sync_write_min_active = 10;
148 uint32_t zfs_vdev_sync_write_max_active = 10;
149 uint32_t zfs_vdev_async_read_min_active = 1;
150 uint32_t zfs_vdev_async_read_max_active = 3;
151 uint32_t zfs_vdev_async_write_min_active = 2;
152 uint32_t zfs_vdev_async_write_max_active = 10;
153 uint32_t zfs_vdev_scrub_min_active = 1;
154 uint32_t zfs_vdev_scrub_max_active = 2;
155
156 /*
157 * When the pool has less than zfs_vdev_async_write_active_min_dirty_percent
158 * dirty data, use zfs_vdev_async_write_min_active. When it has more than
159 * zfs_vdev_async_write_active_max_dirty_percent, use
160 * zfs_vdev_async_write_max_active. The value is linearly interpolated
161 * between min and max.
162 */
163 int zfs_vdev_async_write_active_min_dirty_percent = 30;
164 int zfs_vdev_async_write_active_max_dirty_percent = 60;
165
166 /*
167 * To reduce IOPs, we aggregate small adjacent I/Os into one large I/O.
168 * For read I/Os, we also aggregate across small adjacency gaps; for writes
169 * we include spans of optional I/Os to aid aggregation at the disk even when
170 * they aren't able to help us aggregate at this level.
171 */
172 int zfs_vdev_aggregation_limit = SPA_OLD_MAXBLOCKSIZE;
173 int zfs_vdev_read_gap_limit = 32 << 10;
174 int zfs_vdev_write_gap_limit = 4 << 10;
175
176 /*
177 * Define the queue depth percentage for each top-level. This percentage is
178 * used in conjunction with zfs_vdev_async_max_active to determine how many
179 * allocations a specific top-level vdev should handle. Once the queue depth
180 * reaches zfs_vdev_queue_depth_pct * zfs_vdev_async_write_max_active / 100
181 * then allocator will stop allocating blocks on that top-level device.
182 * The default kernel setting is 1000% which will yield 100 allocations per
183 * device. For userland testing, the default setting is 300% which equates
184 * to 30 allocations per device.
185 */
186 #ifdef _KERNEL
187 int zfs_vdev_queue_depth_pct = 1000;
188 #else
189 int zfs_vdev_queue_depth_pct = 300;
190 #endif
191
192
193 int
194 vdev_queue_offset_compare(const void *x1, const void *x2)
195 {
196 const zio_t *z1 = (const zio_t *)x1;
197 const zio_t *z2 = (const zio_t *)x2;
198
199 int cmp = AVL_CMP(z1->io_offset, z2->io_offset);
200
201 if (likely(cmp))
202 return (cmp);
203
204 return (AVL_PCMP(z1, z2));
205 }
206
207 static inline avl_tree_t *
208 vdev_queue_class_tree(vdev_queue_t *vq, zio_priority_t p)
209 {
210 return (&vq->vq_class[p].vqc_queued_tree);
211 }
212
213 static inline avl_tree_t *
214 vdev_queue_type_tree(vdev_queue_t *vq, zio_type_t t)
215 {
216 ASSERT(t == ZIO_TYPE_READ || t == ZIO_TYPE_WRITE);
217 if (t == ZIO_TYPE_READ)
218 return (&vq->vq_read_offset_tree);
219 else
220 return (&vq->vq_write_offset_tree);
221 }
222
223 int
224 vdev_queue_timestamp_compare(const void *x1, const void *x2)
225 {
226 const zio_t *z1 = (const zio_t *)x1;
227 const zio_t *z2 = (const zio_t *)x2;
228
229 int cmp = AVL_CMP(z1->io_timestamp, z2->io_timestamp);
230
231 if (likely(cmp))
232 return (cmp);
233
234 return (AVL_PCMP(z1, z2));
235 }
236
237 static int
238 vdev_queue_class_min_active(zio_priority_t p)
239 {
240 switch (p) {
241 case ZIO_PRIORITY_SYNC_READ:
242 return (zfs_vdev_sync_read_min_active);
243 case ZIO_PRIORITY_SYNC_WRITE:
244 return (zfs_vdev_sync_write_min_active);
245 case ZIO_PRIORITY_ASYNC_READ:
246 return (zfs_vdev_async_read_min_active);
247 case ZIO_PRIORITY_ASYNC_WRITE:
248 return (zfs_vdev_async_write_min_active);
249 case ZIO_PRIORITY_SCRUB:
250 return (zfs_vdev_scrub_min_active);
251 default:
252 panic("invalid priority %u", p);
253 return (0);
254 }
255 }
256
257 static int
258 vdev_queue_max_async_writes(spa_t *spa)
259 {
260 int writes;
261 uint64_t dirty = 0;
262 dsl_pool_t *dp = spa_get_dsl(spa);
263 uint64_t min_bytes = zfs_dirty_data_max *
264 zfs_vdev_async_write_active_min_dirty_percent / 100;
265 uint64_t max_bytes = zfs_dirty_data_max *
266 zfs_vdev_async_write_active_max_dirty_percent / 100;
267
268 /*
269 * Async writes may occur before the assignment of the spa's
270 * dsl_pool_t if a self-healing zio is issued prior to the
271 * completion of dmu_objset_open_impl().
272 */
273 if (dp == NULL)
274 return (zfs_vdev_async_write_max_active);
275
276 /*
277 * Sync tasks correspond to interactive user actions. To reduce the
278 * execution time of those actions we push data out as fast as possible.
279 */
280 if (spa_has_pending_synctask(spa))
281 return (zfs_vdev_async_write_max_active);
282
283 dirty = dp->dp_dirty_total;
284 if (dirty < min_bytes)
285 return (zfs_vdev_async_write_min_active);
286 if (dirty > max_bytes)
287 return (zfs_vdev_async_write_max_active);
288
289 /*
290 * linear interpolation:
291 * slope = (max_writes - min_writes) / (max_bytes - min_bytes)
292 * move right by min_bytes
293 * move up by min_writes
294 */
295 writes = (dirty - min_bytes) *
296 (zfs_vdev_async_write_max_active -
297 zfs_vdev_async_write_min_active) /
298 (max_bytes - min_bytes) +
299 zfs_vdev_async_write_min_active;
300 ASSERT3U(writes, >=, zfs_vdev_async_write_min_active);
301 ASSERT3U(writes, <=, zfs_vdev_async_write_max_active);
302 return (writes);
303 }
304
305 static int
306 vdev_queue_class_max_active(spa_t *spa, zio_priority_t p)
307 {
308 switch (p) {
309 case ZIO_PRIORITY_SYNC_READ:
310 return (zfs_vdev_sync_read_max_active);
311 case ZIO_PRIORITY_SYNC_WRITE:
312 return (zfs_vdev_sync_write_max_active);
313 case ZIO_PRIORITY_ASYNC_READ:
314 return (zfs_vdev_async_read_max_active);
315 case ZIO_PRIORITY_ASYNC_WRITE:
316 return (vdev_queue_max_async_writes(spa));
317 case ZIO_PRIORITY_SCRUB:
318 return (zfs_vdev_scrub_max_active);
319 default:
320 panic("invalid priority %u", p);
321 return (0);
322 }
323 }
324
325 /*
326 * Return the i/o class to issue from, or ZIO_PRIORITY_MAX_QUEUEABLE if
327 * there is no eligible class.
328 */
329 static zio_priority_t
330 vdev_queue_class_to_issue(vdev_queue_t *vq)
331 {
332 spa_t *spa = vq->vq_vdev->vdev_spa;
333 zio_priority_t p;
334
335 if (avl_numnodes(&vq->vq_active_tree) >= zfs_vdev_max_active)
336 return (ZIO_PRIORITY_NUM_QUEUEABLE);
337
338 /* find a queue that has not reached its minimum # outstanding i/os */
339 for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
340 if (avl_numnodes(vdev_queue_class_tree(vq, p)) > 0 &&
341 vq->vq_class[p].vqc_active <
342 vdev_queue_class_min_active(p))
343 return (p);
344 }
345
346 /*
347 * If we haven't found a queue, look for one that hasn't reached its
348 * maximum # outstanding i/os.
349 */
350 for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
351 if (avl_numnodes(vdev_queue_class_tree(vq, p)) > 0 &&
352 vq->vq_class[p].vqc_active <
353 vdev_queue_class_max_active(spa, p))
354 return (p);
355 }
356
357 /* No eligible queued i/os */
358 return (ZIO_PRIORITY_NUM_QUEUEABLE);
359 }
360
361 void
362 vdev_queue_init(vdev_t *vd)
363 {
364 vdev_queue_t *vq = &vd->vdev_queue;
365 zio_priority_t p;
366
367 mutex_init(&vq->vq_lock, NULL, MUTEX_DEFAULT, NULL);
368 vq->vq_vdev = vd;
369 taskq_init_ent(&vd->vdev_queue.vq_io_search.io_tqent);
370
371 avl_create(&vq->vq_active_tree, vdev_queue_offset_compare,
372 sizeof (zio_t), offsetof(struct zio, io_queue_node));
373 avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_READ),
374 vdev_queue_offset_compare, sizeof (zio_t),
375 offsetof(struct zio, io_offset_node));
376 avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_WRITE),
377 vdev_queue_offset_compare, sizeof (zio_t),
378 offsetof(struct zio, io_offset_node));
379
380 for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
381 int (*compfn) (const void *, const void *);
382
383 /*
384 * The synchronous i/o queues are dispatched in FIFO rather
385 * than LBA order. This provides more consistent latency for
386 * these i/os.
387 */
388 if (p == ZIO_PRIORITY_SYNC_READ || p == ZIO_PRIORITY_SYNC_WRITE)
389 compfn = vdev_queue_timestamp_compare;
390 else
391 compfn = vdev_queue_offset_compare;
392 avl_create(vdev_queue_class_tree(vq, p), compfn,
393 sizeof (zio_t), offsetof(struct zio, io_queue_node));
394 }
395
396 vq->vq_last_offset = 0;
397 }
398
399 void
400 vdev_queue_fini(vdev_t *vd)
401 {
402 vdev_queue_t *vq = &vd->vdev_queue;
403
404 for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++)
405 avl_destroy(vdev_queue_class_tree(vq, p));
406 avl_destroy(&vq->vq_active_tree);
407 avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_READ));
408 avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_WRITE));
409
410 mutex_destroy(&vq->vq_lock);
411 }
412
413 static void
414 vdev_queue_io_add(vdev_queue_t *vq, zio_t *zio)
415 {
416 spa_t *spa = zio->io_spa;
417 spa_stats_history_t *ssh = &spa->spa_stats.io_history;
418
419 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
420 avl_add(vdev_queue_class_tree(vq, zio->io_priority), zio);
421 avl_add(vdev_queue_type_tree(vq, zio->io_type), zio);
422
423 if (ssh->kstat != NULL) {
424 mutex_enter(&ssh->lock);
425 kstat_waitq_enter(ssh->kstat->ks_data);
426 mutex_exit(&ssh->lock);
427 }
428 }
429
430 static void
431 vdev_queue_io_remove(vdev_queue_t *vq, zio_t *zio)
432 {
433 spa_t *spa = zio->io_spa;
434 spa_stats_history_t *ssh = &spa->spa_stats.io_history;
435
436 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
437 avl_remove(vdev_queue_class_tree(vq, zio->io_priority), zio);
438 avl_remove(vdev_queue_type_tree(vq, zio->io_type), zio);
439
440 if (ssh->kstat != NULL) {
441 mutex_enter(&ssh->lock);
442 kstat_waitq_exit(ssh->kstat->ks_data);
443 mutex_exit(&ssh->lock);
444 }
445 }
446
447 static void
448 vdev_queue_pending_add(vdev_queue_t *vq, zio_t *zio)
449 {
450 spa_t *spa = zio->io_spa;
451 spa_stats_history_t *ssh = &spa->spa_stats.io_history;
452
453 ASSERT(MUTEX_HELD(&vq->vq_lock));
454 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
455 vq->vq_class[zio->io_priority].vqc_active++;
456 avl_add(&vq->vq_active_tree, zio);
457
458 if (ssh->kstat != NULL) {
459 mutex_enter(&ssh->lock);
460 kstat_runq_enter(ssh->kstat->ks_data);
461 mutex_exit(&ssh->lock);
462 }
463 }
464
465 static void
466 vdev_queue_pending_remove(vdev_queue_t *vq, zio_t *zio)
467 {
468 spa_t *spa = zio->io_spa;
469 spa_stats_history_t *ssh = &spa->spa_stats.io_history;
470
471 ASSERT(MUTEX_HELD(&vq->vq_lock));
472 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
473 vq->vq_class[zio->io_priority].vqc_active--;
474 avl_remove(&vq->vq_active_tree, zio);
475
476 if (ssh->kstat != NULL) {
477 kstat_io_t *ksio = ssh->kstat->ks_data;
478
479 mutex_enter(&ssh->lock);
480 kstat_runq_exit(ksio);
481 if (zio->io_type == ZIO_TYPE_READ) {
482 ksio->reads++;
483 ksio->nread += zio->io_size;
484 } else if (zio->io_type == ZIO_TYPE_WRITE) {
485 ksio->writes++;
486 ksio->nwritten += zio->io_size;
487 }
488 mutex_exit(&ssh->lock);
489 }
490 }
491
492 static void
493 vdev_queue_agg_io_done(zio_t *aio)
494 {
495 if (aio->io_type == ZIO_TYPE_READ) {
496 zio_t *pio;
497 zio_link_t *zl = NULL;
498 while ((pio = zio_walk_parents(aio, &zl)) != NULL) {
499 abd_copy_off(pio->io_abd, aio->io_abd,
500 0, pio->io_offset - aio->io_offset, pio->io_size);
501 }
502 }
503
504 abd_free(aio->io_abd);
505 }
506
507 /*
508 * Compute the range spanned by two i/os, which is the endpoint of the last
509 * (lio->io_offset + lio->io_size) minus start of the first (fio->io_offset).
510 * Conveniently, the gap between fio and lio is given by -IO_SPAN(lio, fio);
511 * thus fio and lio are adjacent if and only if IO_SPAN(lio, fio) == 0.
512 */
513 #define IO_SPAN(fio, lio) ((lio)->io_offset + (lio)->io_size - (fio)->io_offset)
514 #define IO_GAP(fio, lio) (-IO_SPAN(lio, fio))
515
516 static zio_t *
517 vdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio)
518 {
519 zio_t *first, *last, *aio, *dio, *mandatory, *nio;
520 uint64_t maxgap = 0;
521 uint64_t size;
522 uint64_t limit;
523 int maxblocksize;
524 boolean_t stretch = B_FALSE;
525 avl_tree_t *t = vdev_queue_type_tree(vq, zio->io_type);
526 enum zio_flag flags = zio->io_flags & ZIO_FLAG_AGG_INHERIT;
527 abd_t *abd;
528
529 maxblocksize = spa_maxblocksize(vq->vq_vdev->vdev_spa);
530 limit = MAX(MIN(zfs_vdev_aggregation_limit, maxblocksize), 0);
531
532 if (zio->io_flags & ZIO_FLAG_DONT_AGGREGATE || limit == 0)
533 return (NULL);
534
535 first = last = zio;
536
537 if (zio->io_type == ZIO_TYPE_READ)
538 maxgap = zfs_vdev_read_gap_limit;
539
540 /*
541 * We can aggregate I/Os that are sufficiently adjacent and of
542 * the same flavor, as expressed by the AGG_INHERIT flags.
543 * The latter requirement is necessary so that certain
544 * attributes of the I/O, such as whether it's a normal I/O
545 * or a scrub/resilver, can be preserved in the aggregate.
546 * We can include optional I/Os, but don't allow them
547 * to begin a range as they add no benefit in that situation.
548 */
549
550 /*
551 * We keep track of the last non-optional I/O.
552 */
553 mandatory = (first->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : first;
554
555 /*
556 * Walk backwards through sufficiently contiguous I/Os
557 * recording the last non-optional I/O.
558 */
559 while ((dio = AVL_PREV(t, first)) != NULL &&
560 (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
561 IO_SPAN(dio, last) <= limit &&
562 IO_GAP(dio, first) <= maxgap) {
563 first = dio;
564 if (mandatory == NULL && !(first->io_flags & ZIO_FLAG_OPTIONAL))
565 mandatory = first;
566 }
567
568 /*
569 * Skip any initial optional I/Os.
570 */
571 while ((first->io_flags & ZIO_FLAG_OPTIONAL) && first != last) {
572 first = AVL_NEXT(t, first);
573 ASSERT(first != NULL);
574 }
575
576
577 /*
578 * Walk forward through sufficiently contiguous I/Os.
579 * The aggregation limit does not apply to optional i/os, so that
580 * we can issue contiguous writes even if they are larger than the
581 * aggregation limit.
582 */
583 while ((dio = AVL_NEXT(t, last)) != NULL &&
584 (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
585 (IO_SPAN(first, dio) <= limit ||
586 (dio->io_flags & ZIO_FLAG_OPTIONAL)) &&
587 IO_SPAN(first, dio) <= maxblocksize &&
588 IO_GAP(last, dio) <= maxgap) {
589 last = dio;
590 if (!(last->io_flags & ZIO_FLAG_OPTIONAL))
591 mandatory = last;
592 }
593
594 /*
595 * Now that we've established the range of the I/O aggregation
596 * we must decide what to do with trailing optional I/Os.
597 * For reads, there's nothing to do. While we are unable to
598 * aggregate further, it's possible that a trailing optional
599 * I/O would allow the underlying device to aggregate with
600 * subsequent I/Os. We must therefore determine if the next
601 * non-optional I/O is close enough to make aggregation
602 * worthwhile.
603 */
604 if (zio->io_type == ZIO_TYPE_WRITE && mandatory != NULL) {
605 zio_t *nio = last;
606 while ((dio = AVL_NEXT(t, nio)) != NULL &&
607 IO_GAP(nio, dio) == 0 &&
608 IO_GAP(mandatory, dio) <= zfs_vdev_write_gap_limit) {
609 nio = dio;
610 if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) {
611 stretch = B_TRUE;
612 break;
613 }
614 }
615 }
616
617 if (stretch) {
618 /*
619 * We are going to include an optional io in our aggregated
620 * span, thus closing the write gap. Only mandatory i/os can
621 * start aggregated spans, so make sure that the next i/o
622 * after our span is mandatory.
623 */
624 dio = AVL_NEXT(t, last);
625 dio->io_flags &= ~ZIO_FLAG_OPTIONAL;
626 } else {
627 /* do not include the optional i/o */
628 while (last != mandatory && last != first) {
629 ASSERT(last->io_flags & ZIO_FLAG_OPTIONAL);
630 last = AVL_PREV(t, last);
631 ASSERT(last != NULL);
632 }
633 }
634
635 if (first == last)
636 return (NULL);
637
638 size = IO_SPAN(first, last);
639 ASSERT3U(size, <=, maxblocksize);
640
641 abd = abd_alloc_for_io(size, B_TRUE);
642 if (abd == NULL)
643 return (NULL);
644
645 aio = zio_vdev_delegated_io(first->io_vd, first->io_offset,
646 abd, size, first->io_type, zio->io_priority,
647 flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE,
648 vdev_queue_agg_io_done, NULL);
649 aio->io_timestamp = first->io_timestamp;
650
651 nio = first;
652 do {
653 dio = nio;
654 nio = AVL_NEXT(t, dio);
655 ASSERT3U(dio->io_type, ==, aio->io_type);
656
657 if (dio->io_flags & ZIO_FLAG_NODATA) {
658 ASSERT3U(dio->io_type, ==, ZIO_TYPE_WRITE);
659 abd_zero_off(aio->io_abd,
660 dio->io_offset - aio->io_offset, dio->io_size);
661 } else if (dio->io_type == ZIO_TYPE_WRITE) {
662 abd_copy_off(aio->io_abd, dio->io_abd,
663 dio->io_offset - aio->io_offset, 0, dio->io_size);
664 }
665
666 zio_add_child(dio, aio);
667 vdev_queue_io_remove(vq, dio);
668 zio_vdev_io_bypass(dio);
669 zio_execute(dio);
670 } while (dio != last);
671
672 return (aio);
673 }
674
675 static zio_t *
676 vdev_queue_io_to_issue(vdev_queue_t *vq)
677 {
678 zio_t *zio, *aio;
679 zio_priority_t p;
680 avl_index_t idx;
681 avl_tree_t *tree;
682
683 again:
684 ASSERT(MUTEX_HELD(&vq->vq_lock));
685
686 p = vdev_queue_class_to_issue(vq);
687
688 if (p == ZIO_PRIORITY_NUM_QUEUEABLE) {
689 /* No eligible queued i/os */
690 return (NULL);
691 }
692
693 /*
694 * For LBA-ordered queues (async / scrub), issue the i/o which follows
695 * the most recently issued i/o in LBA (offset) order.
696 *
697 * For FIFO queues (sync), issue the i/o with the lowest timestamp.
698 */
699 tree = vdev_queue_class_tree(vq, p);
700 vq->vq_io_search.io_timestamp = 0;
701 vq->vq_io_search.io_offset = vq->vq_last_offset - 1;
702 VERIFY3P(avl_find(tree, &vq->vq_io_search, &idx), ==, NULL);
703 zio = avl_nearest(tree, idx, AVL_AFTER);
704 if (zio == NULL)
705 zio = avl_first(tree);
706 ASSERT3U(zio->io_priority, ==, p);
707
708 aio = vdev_queue_aggregate(vq, zio);
709 if (aio != NULL)
710 zio = aio;
711 else
712 vdev_queue_io_remove(vq, zio);
713
714 /*
715 * If the I/O is or was optional and therefore has no data, we need to
716 * simply discard it. We need to drop the vdev queue's lock to avoid a
717 * deadlock that we could encounter since this I/O will complete
718 * immediately.
719 */
720 if (zio->io_flags & ZIO_FLAG_NODATA) {
721 mutex_exit(&vq->vq_lock);
722 zio_vdev_io_bypass(zio);
723 zio_execute(zio);
724 mutex_enter(&vq->vq_lock);
725 goto again;
726 }
727
728 vdev_queue_pending_add(vq, zio);
729 vq->vq_last_offset = zio->io_offset + zio->io_size;
730
731 return (zio);
732 }
733
734 zio_t *
735 vdev_queue_io(zio_t *zio)
736 {
737 vdev_queue_t *vq = &zio->io_vd->vdev_queue;
738 zio_t *nio;
739
740 if (zio->io_flags & ZIO_FLAG_DONT_QUEUE)
741 return (zio);
742
743 /*
744 * Children i/os inherent their parent's priority, which might
745 * not match the child's i/o type. Fix it up here.
746 */
747 if (zio->io_type == ZIO_TYPE_READ) {
748 if (zio->io_priority != ZIO_PRIORITY_SYNC_READ &&
749 zio->io_priority != ZIO_PRIORITY_ASYNC_READ &&
750 zio->io_priority != ZIO_PRIORITY_SCRUB)
751 zio->io_priority = ZIO_PRIORITY_ASYNC_READ;
752 } else {
753 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
754 if (zio->io_priority != ZIO_PRIORITY_SYNC_WRITE &&
755 zio->io_priority != ZIO_PRIORITY_ASYNC_WRITE)
756 zio->io_priority = ZIO_PRIORITY_ASYNC_WRITE;
757 }
758
759 zio->io_flags |= ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE;
760
761 mutex_enter(&vq->vq_lock);
762 zio->io_timestamp = gethrtime();
763 vdev_queue_io_add(vq, zio);
764 nio = vdev_queue_io_to_issue(vq);
765 mutex_exit(&vq->vq_lock);
766
767 if (nio == NULL)
768 return (NULL);
769
770 if (nio->io_done == vdev_queue_agg_io_done) {
771 zio_nowait(nio);
772 return (NULL);
773 }
774
775 return (nio);
776 }
777
778 void
779 vdev_queue_io_done(zio_t *zio)
780 {
781 vdev_queue_t *vq = &zio->io_vd->vdev_queue;
782 zio_t *nio;
783
784 mutex_enter(&vq->vq_lock);
785
786 vdev_queue_pending_remove(vq, zio);
787
788 zio->io_delta = gethrtime() - zio->io_timestamp;
789 vq->vq_io_complete_ts = gethrtime();
790 vq->vq_io_delta_ts = vq->vq_io_complete_ts - zio->io_timestamp;
791
792 while ((nio = vdev_queue_io_to_issue(vq)) != NULL) {
793 mutex_exit(&vq->vq_lock);
794 if (nio->io_done == vdev_queue_agg_io_done) {
795 zio_nowait(nio);
796 } else {
797 zio_vdev_io_reissue(nio);
798 zio_execute(nio);
799 }
800 mutex_enter(&vq->vq_lock);
801 }
802
803 mutex_exit(&vq->vq_lock);
804 }
805
806 /*
807 * As these two methods are only used for load calculations we're not
808 * concerned if we get an incorrect value on 32bit platforms due to lack of
809 * vq_lock mutex use here, instead we prefer to keep it lock free for
810 * performance.
811 */
812 int
813 vdev_queue_length(vdev_t *vd)
814 {
815 return (avl_numnodes(&vd->vdev_queue.vq_active_tree));
816 }
817
818 uint64_t
819 vdev_queue_last_offset(vdev_t *vd)
820 {
821 return (vd->vdev_queue.vq_last_offset);
822 }
823
824 #if defined(_KERNEL) && defined(HAVE_SPL)
825 module_param(zfs_vdev_aggregation_limit, int, 0644);
826 MODULE_PARM_DESC(zfs_vdev_aggregation_limit, "Max vdev I/O aggregation size");
827
828 module_param(zfs_vdev_read_gap_limit, int, 0644);
829 MODULE_PARM_DESC(zfs_vdev_read_gap_limit, "Aggregate read I/O over gap");
830
831 module_param(zfs_vdev_write_gap_limit, int, 0644);
832 MODULE_PARM_DESC(zfs_vdev_write_gap_limit, "Aggregate write I/O over gap");
833
834 module_param(zfs_vdev_max_active, int, 0644);
835 MODULE_PARM_DESC(zfs_vdev_max_active, "Maximum number of active I/Os per vdev");
836
837 module_param(zfs_vdev_async_write_active_max_dirty_percent, int, 0644);
838 MODULE_PARM_DESC(zfs_vdev_async_write_active_max_dirty_percent,
839 "Async write concurrency max threshold");
840
841 module_param(zfs_vdev_async_write_active_min_dirty_percent, int, 0644);
842 MODULE_PARM_DESC(zfs_vdev_async_write_active_min_dirty_percent,
843 "Async write concurrency min threshold");
844
845 module_param(zfs_vdev_async_read_max_active, int, 0644);
846 MODULE_PARM_DESC(zfs_vdev_async_read_max_active,
847 "Max active async read I/Os per vdev");
848
849 module_param(zfs_vdev_async_read_min_active, int, 0644);
850 MODULE_PARM_DESC(zfs_vdev_async_read_min_active,
851 "Min active async read I/Os per vdev");
852
853 module_param(zfs_vdev_async_write_max_active, int, 0644);
854 MODULE_PARM_DESC(zfs_vdev_async_write_max_active,
855 "Max active async write I/Os per vdev");
856
857 module_param(zfs_vdev_async_write_min_active, int, 0644);
858 MODULE_PARM_DESC(zfs_vdev_async_write_min_active,
859 "Min active async write I/Os per vdev");
860
861 module_param(zfs_vdev_scrub_max_active, int, 0644);
862 MODULE_PARM_DESC(zfs_vdev_scrub_max_active, "Max active scrub I/Os per vdev");
863
864 module_param(zfs_vdev_scrub_min_active, int, 0644);
865 MODULE_PARM_DESC(zfs_vdev_scrub_min_active, "Min active scrub I/Os per vdev");
866
867 module_param(zfs_vdev_sync_read_max_active, int, 0644);
868 MODULE_PARM_DESC(zfs_vdev_sync_read_max_active,
869 "Max active sync read I/Os per vdev");
870
871 module_param(zfs_vdev_sync_read_min_active, int, 0644);
872 MODULE_PARM_DESC(zfs_vdev_sync_read_min_active,
873 "Min active sync read I/Os per vdev");
874
875 module_param(zfs_vdev_sync_write_max_active, int, 0644);
876 MODULE_PARM_DESC(zfs_vdev_sync_write_max_active,
877 "Max active sync write I/Os per vdev");
878
879 module_param(zfs_vdev_sync_write_min_active, int, 0644);
880 MODULE_PARM_DESC(zfs_vdev_sync_write_min_active,
881 "Min active sync write I/Os per vdev");
882
883 module_param(zfs_vdev_queue_depth_pct, int, 0644);
884 MODULE_PARM_DESC(zfs_vdev_queue_depth_pct,
885 "Queue depth percentage for each top-level vdev");
886 #endif